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Chapter 1

Dirac Formulation of Quantum
Mechanics

The failure of classical mechanics to account for many

experimental resultssuch as the stability of atoms and

matter, blackbody radiation, specific heatof solids, wave-

particle duality of light and material particles, and

such, led physicists to the realization that classical

concepts were inherently inadequate to describe the

physical behavior of events on an atomic scale. To ex-
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6 CHAPTER 1. DIRAC FORMULATION OF QUANTUM MECHANICS

plainthese phenomena, a fundamental departure from

classical mechanics wasnecessary. This departure took

the form of postulating, as a fundamental law of na-

ture, that there is a limit to the accuracy with which

a measurement(or observation) on a physical system

can be made. That is, the aciual measurement itself

disturbs the system being measured in an uncontrol-

lable way, regardless of the care, skill, or ingenuity of

the experimenter. The disturbance produced by the

measurement in turn requires modification ofthe clas-

sical concept of causality, since, in the classical sense,

there is a causalconnection between the system and

the measurement. This leads to a theoryin which one
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can predict only the probability of obtaining a certain

result when a measurement is made on a system rather

than an exact value, as inthe classical case.

Classical mechanics must be contained as a limiting

case in quantum mechanics because, if the disturbance

caused by an observation may beneglected, classical

mechanics is valid. The quantum description of a

system must shift to a classical description in this

limit, provided the quantum system has a classical

analog. This is called the correspondence principle

andrestricts the possible forms that a quantum theory

may have.

In the following we give a simplified treatment of the
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Dirac formulation ofnonrelativistic quantum mechan-

ics. We restrict ourselves to one-dimensionalproblems,

for the most part, since the extension to three dimen-

sions isfairly straightforward.

The Dirac formulation involves the concept of vectors

(and operators) ina space that may have a finite or

an infinite number of dimensions. Let usgive a sim-

ple illustration of the way in which such vectors arise

in the theory. We shall consider a particle of mass

m constrained to move in one dimensionin a poten-

tial V (q), where q is the coordinate of the particle

which may have any value from −∞ to +∞; that is,

the particle may be anywhere in theone-dimensional
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space. According to the Schrödinger formulation of

wave mechanics, the state of the particle at time t is

described by a wavefunction in the position represen-

tation, ψ(q, t). If no intervening measurements are

made, this state develops in a completely causal way

from thestate at time t0, ψ(q, t0), according to the pos-

tulated Schrödinger wave equation

[
−

~2

2m

∂2

∂q2
+ V (q)

]
ψ(q, t) = i~

∂ψ

∂t
(1.0.1)

where ~ is Planck’s constant divided by 2π, The prob-

ability interpretation (necessary when a measurement

is made to determine the position of the particle) of

ψ(q, t) is as follows: |ψ(q, t)|2dq gives the probability



10 CHAPTER 1. DIRAC FORMULATION OF QUANTUM MECHANICS

of finding the particle between q and q + dq at time t

when a measurement of positionis made.

We may take the Fourier transform of ψ(q, t) to obtain

another wave function

φ(p, t) =
1
√

2π~

∫ +∞

−∞
ψ(q, t)e−ipq/~dq (1.0.2)

This is called the wave function in the momentum rep-

resentation, where prepresents the momentum of the

particle. It is completely determined by ψ(q, t), which

represents the state of the system at time t. It is there-

fore reasonable to say that φ(p, t) represents the same

dynamical state as ψ(q, t).It is just another way of de-

scribing the same state. For the momentum wavefunc-
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tion the probability interpretation is that |φ(p, t)|2dp

gives the probabilitythat a measurement of the mo-

mentum will yield a value between p and p+ dp.

The theory can be developed in an entirely equivalent

way in either theposition or the momentum represen-

tation. In fact, the representation playsa role analo-

gous to a coordinate system in geometry. Since, in

ordinary geometry, problems may be solved by means

of vectors, without the use of acoordinate system (and

in more generality), it is interesting to ask if quantum

mechanics may be formulated without the use of a

particular representation.The results would be inde-

pendent of any particular representation then. The
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obvious advantages of using a representation in such

a formulation wouldnot be lost, however. A conve-

nient representation could always be used tocarry out

a calculation just as a coordinate system may be cho-

sen when vectors are used. This is the goal of the

Dirac formulation of quantum mechanics: to develop

the theory independent of any specific representation.

To see how to go about this program, let us attempt

to give a geometrical interpretation to the wave func-

tion ψ(q) at time t to take advantage of the con-

cept of vectors. The coordinate q can have any value

from −∞ to +∞, as noted earlier. For each spe-

cific value, say q1, q2, q3, . . . , the wave function has a
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value ψ(q1), ψ(q2), ψ(q3), . . . . We may imagine that an

infinite-dimensional space has a set of mutually per-

pendicular axes each labeled by one of the values of

q(q1, q2, q3, . . . ), and that ψ(q1) is the projection of

some vector on the q1 axis, ψ(q2) is the projection

of the same vector on the q2 axis, and so on. The

Figure 1.1: Ket vector and three of its coordinate representatives.
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vector then represents the state of the system just as

its components do. This vector is not an ordinary

vector since it has a complex character, and we must

have a special notation to designate it, just as we do

for an ordinary vector. Dirac uses the symbol | 〉 to

designate a vector of this type and calls it a ket vec-

tor, or simply a ket, to distinguish it from ordinary

vectors. The particular vector whose components are

ψ(q1), ψ(q2), . . . is called ket ψ and written |ψ〉. Fig-

ure 1.1 shows a diagrammatic sketch of the vector |ψ〉

and its ”components” along the mutuallyperpendicu-

lar axes described above.

By way of analogy, if A is an ordinary vector and
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(x, y, z) represent a cartesian coordinate system, A

may be specified by giving its components along these

axes: A = (Ax, Ay, Az); that is, A can be repre-

sented by its components. Similarly, |ψ〉 may be spec-

ified by its components along the orthogonal q axes:

|ψ〉 = [ψ(q1), ψ(q2), ψ(q3), . . . ]. Thus A represents the

vector equally as well as its components along certain

axes, and |ψ〉 represents thestate of the system just as

well as its components. The vector in this case is said

to be given in the position representation. The vector

A may also be specified by giving its components along

anothercartesian coordinate system (x′, y′, z′) rotated

with respect to (x, y, z) :A = (Ax′, Ay′, Az′). So too
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|ψ〉may be expressed in another representation: |ψ〉 =

[φ(p1), φ(p2), φ(p3), . . . ]. This is called the momentum

representationand is visualized roughly as the compo-

nents of the same vector on a rotatedorthogonal set of

axes; this is shown in Fig. (1.2). The relation between

the q and p axes is given by the Fourier transform.

1.1 KET VECTORS

As noted above, Dirac calls vectors designated by the

symbol |a〉, |x〉, andsuch ket vectors. A general ket is

denoted by | 〉, and the labels insidedesignate partic-

ular kets.

From the discussion above, we associate a ket vector
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Figure 1.2: Ket vector and three of its coordinate representatives.
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with each state ofthe dynamical system under study.

Since we shall postulate that a linearsuperposition of

states of the system is also a state of the system, the

ketvector space must be a linear vector space. A vec-

tor space is said to belinear in the following sense. If

ct and c2 are complex numbers and |a〉 and |b〉 are two

kets, the linear combination

|u〉 = c1|a〉+ c2|b〉 (1.1.1)

is also a ket vector, since a linear combination of two

states associated with |a〉 and |b〉 is also a state of the

system. If a ket depends on a parameter q′, which may

take on any value in a certain range, q′1 ≤ q′ ≤ q′2, we
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may generalize (1.1.1) to read

|v〉 =

∫ q′2

q′1

c(q′)|q′〉dq′ (1.1.2)

where c(q′) is an ordinary (complex) function of q′ and

the vector |v〉 is in ket space. Kets such as |u〉 (and

|v〉) above are said to be linearly dependent on |a〉 and

|b〉 (or |q′〉)). If, in a certain set of ket vectors (two

or more), none of them can be expressed as a linear

combination of the others, the vectorsare said to be

linearly independent.

Although the classical and quantum superposition prin-

ciples are different,as we shall see below, it may be

stated by way of analogy that, if i, j, and k are three
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mutually perpendicular unit vectors in ordinary space,

any other vector may be written as a linear combina-

tion of these three; that is, anyother constant vector

A may be written as A = c1j + c2j + c3k. On the oth-

erhand, i cannot be expressed as a linear combination

of J and k and is said to be linearly independent of j

and k.

Another assumption in the theory is that if a state is

superimposed withitself, there results not a new state

vector but only the original state again;that is, when

c1|a〉 and c2|a〉 are added, where c1 and c2 are arbi-

trary complex numbers, the result is

c1|a〉+ c2|a〉 = (c1 + c2)|a〉 (1.1.3)
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and the kets c1|a〉, c1|a〉, (c1 + c2)|a〉 all represent the

same state of thesystem, with the exception of the

case c1 + c2 = 0, which corresponds tono state at all.

Thus a state is specified entirely by the direction of

the ketvector. It may be concluded that +|a〉 and

−|a〉 represent the same state. Therefore, there is a

one-to-one correspondence between a state of a syste-

mand a direction in ket vector space. This assumption

is a departure fromclassical mechanics and shows that

the classical and quantum superpositionprinciples are

different.

The ket vector have a finite or an infinite number of-

space maydimensions. The dimensionality is deter-
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mined by the number of linearlyindependent kets in

the space. Since independent states of a quantum sys-

temare represented by independent kets, the dimen-

sionality is determined bythe number of independent

states of the quantum system.

1.2 SCALAR PRODUCT; BRA VECTORS

We have introduced ket vectors in an abstract linear

vector space by sayingthat their projection on a given

set of orthogonal axes in an infinite-dimensional space

gives the values of the wave function y)(q, t) in the

position representation at time t.

The essential definition of kets is that a direction in



1.2. SCALAR PRODUCT; BRA VECTORS 23

ket space andevery state of the system are in one-to-

one correspondence.

In the study of ordinary vector analysis, we may define

the scalar productof A and B as follows: with every

two vectors A and Bin the space, there isassociated a

real number f , which is written

f = A · B (1.2.1)

The scalar product of any two vectors is then defined,

since the number toassociate with any pair of them

is known. This definition may seem strange at first

but a little reflection shows that it is a more general

definition thanany formulas we might give for finding
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the number f, having been given A and B. One such

formula is f = |A||B| cos θ, where the first two fac-

tors arethe magnitudes of A and B, and 6 is the angle

between them. But the length itself is defined only

in terms of the scalar product of the vector with it-

self,and so the formula does not serve as an effective

definition of a scalarproduct, although it is very useful

in practice.

More generally, the scalar product of a particular vec-

tor B with all other vectors A in the space may be

regarded as a way of defining B. If the set ofnum-

bers f(B) for all A’s is given, B is determined. For

three-dimensional space, it is sufficient to take for A
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the three unit vectors i, j, and k, which arelinearly in-

dependent, and define B by giving its scalar product

with each. Thus

Bx = B · i, By = B · j, Bz = B · k, (1.2.2)

and the three numbers Bx, By, and Bz define B.

It is a postulate of the theory of ordinary vectors that

the function f(B) a linear function of B. This means

that, if B1 and B2 are two vectors,

A · (B1 + B2) = A · B1 + A · B2 (1.2.3)

A · (cB) = c(A · B) (1.2.4)

where c is a number. It is clear that the numbers f(B)

may be considered a function of B since for every A



26 CHAPTER 1. DIRAC FORMULATION OF QUANTUM MECHANICS

there is a number, f(B). This is what is meant by the

expression a function φ(x) of a continuous variable x:

with each x is associated a number φ(x).

After this introduction, we now define scalar products

of ketvectors in the following way. With each ket |a〉

is associated a complexnumber f . (In the examples

above the numbers were real but ket vectors aremore

general vectors than those in ordinary space.) The set

of numbersassociated with different |a〉’s is a function

of |a〉. This function must be a linear function, which

means that if |a1〉 and |a2〉 are two kets, the number

associated with |a1〉 and |a2〉 is the sum of the numbers

associated with |a1〉 and |a2〉 separately, and the num-
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ber associated with c|a〉, where c is a complex number,

is c times the number associated with |a〉, that is,

f(|a1〉+ |a2〉) = f(|a1〉) + f(|a2〉) (1.2.5)

f(c|a1〉) = cf(|a1〉) (1.2.6)

Dirac calls the vectors denotedby the symbol 〈 | bra

vectors. We may write the scalar product of (〈f | and

|a〉 as

f(|a〉) = 〈f |a〉 (1.2.7)

If we give all the numbers f for each ket |a〉, we have

defined 〈f |. The space of bra vectors is different from

the space of ket vectors, just as the reciprocal lat-

tice space was different from the original crystal space.
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The definition here is more general, however, because

f may be a complex number in (1.2.7) whereas it was

real in the crystal example.

When we use the scalar product notation of (1.2.7),

we may rewrite (1.2.5, 1.2.6) as

〈f |(|a1〉+ |a2〉) = 〈f |a1〉+ 〈f |a2〉 (1.2.8)

〈f |(c|a1〉) = c〈f |a1〉 (1.2.9)

Since a bra is defined by its scalar product with a

ket, 〈b| = 0 if 〈b|a〉 = 0 for every ket |a〉. Similarly,

〈b1| = 〈b2| if 〈b1|a〉 = 〈b2|a〉 for every |a〉.The sum

of two bras is defined by its scalar product with |a〉.
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Thus

(〈b1|+ 〈b2|)|a〉 = 〈b1|a〉+ 〈b2|a〉 (1.2.10)

(c〈b1|)|a〉 = c〈b1|a〉 (1.2.11)

Thus far we have defined bras only in terms of their

scalar products withkets, and there is no definite re-

lation between them. To give a connection,we make

the following assumption: each ket may be associated

with a singlebra in a unique way; that is, a one-to-one

correspondence between kets andbras is assumed. It

is therefore reasonable to give the bra the same label

asthe ket with which it is associated. Thus 〈a| is the
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bra associated with |a〉 .Similarly, with the ket

|u〉 = |a〉+ |b〉 (1.2.12)

there is associated the bra

〈u| = 〈a|+ 〈b| (1.2.13)

and with the ket

|v〉 = c|a〉 (1.2.14)

where c is a complex number, there is associated the

bra

〈v| = c∗〈a| (1.2.15)

where c∗ is the complex conjugate of c. We shall not

go into the reason for taking c∗ instead of c but just

accept it as a new assumption for simplicity. It is
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therefore reasonable to call the bra associated with a

ket its hermitianadjoint, and vice versa, and write

〈u| = (|u〉)†, |u〉 = (〈u|)†, (1.2.16)

where the dagger means that the bra is changed to its

associated ket (andvice versa) and the complex conju-

gate of any numbers involved.

Since by assumption there is a unique correspondence

between bras andkets, the direction of a bra vector

may represent the state of a quantumsystem equally

as well as does the direction of a ket. They are said

to beduals of one another.

As yet we have not defined the length of a bra or ket.
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We shall considertwo kets |a〉 and |b〉 and the associ-

ated bras 〈a| and 〈b|. From these vectorswe may form

four numbers 〈a|b〉, 〈b|a〉, 〈a|a〉, and 〈b|b〉. In gen-

eral, 〈a|b〉 and 〈b|a〉) will be complex, and we make

the additional assumption that theyare related by

〈a|b〉 = 〈b|a〉∗ (1.2.17)

where the asterisk means complex conjugate in the

future. With thisassumption, if we let |b〉 = |a〉, we

conclude that 〈a|a〉 is real. We define the length,or

norm, of |a〉 as 〈a|a〉, and so assumption (1.2.17) is

necessary if we want thevectors to have a real norm.

We make the further assumption that the lengthof a
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vector must be positive or zero, that is,

〈a|a〉 ≥ 0 (1.2.18)

The equality holds only if |a〉 = 0.

The assumptions (1.2.17) and (1.2.18) may be given

motivation from aconsideration of the wave function

ψ(q, t) and its complex conjugate ψ∗(q, t). We visual-

ized ψ(q, t) as components of |ψ〉 in ket space. Like-

wise we mayvisualize ψ∗(q, t) as the components of 〈ψ|

in bra space. We then know from wave mechanics that

the complex numbers ψ∗(q, t)χ(q, t) and χ∗(q, t)ψ(q, t)

are related by

ψ∗(q)χ(q) = [χ∗(q)ψ(q)]∗ (1.2.19)
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and ∫ +∞

−∞
|ψ(q)|2dq ≥ 0 (1.2.20)

Similar relations should hold for bras and kets since

they can be intimatelyrelated to wave functions. This

motivated the assumptions (1.2.17) and (1.2.18).

The concept of orthogonality is also important where

vectors are concerned. In the case of bras and kets, if

the scalar product 〈a|b〉 = 0, the vectors are orthogo-

nal. In wave mechanics, ψ∗(q) and χ(q) are orthogo-

nal if
∫
ψ∗(q)χ(q)dq = 0. The orthogonality involved

here is different from the orthogonality of two ordi-

nary vectors A and B. If A · B = 0, A and B are at

right angles to one another. But A and B are in the
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same vector space. In the present case, 〈a| and |b〉

are in different vector spaces. (See the crystal-lattice

example treated earlier.) Nevertheless, if 〈a|b〉 = 0, it

may be said that |a〉 and |b〉 are orthogonal as well as

〈a| and 〈b|. When 〈a|b〉 = 0, it may also be said that

the associated quantum states of the system that they

represent are orthogonal.

If the norm of all vectors in the space is finite, the

space is called Hilbertspace. The theory must include

vectors of infinite norm, as we shall seelater. The space

of these vectors forms an even more general vector

spacewhich is called ket or bra space. Including vec-

tors of infinite norm requiresthe introduction of the
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Dirac δ function at a later stage.

1.3 LINEAR OPERATORS

The concept of linear operators is already familiar to

the reader. For example, if f(t) is a square integrable

function of a continuous variable t,the function be-

longs to Hilbert space. We may then define the lin-

earoperator djdt in this space by associating another

function g(t) with f(t) and write

g(t) =
d

dt
f(t) (1.3.1)

If, with every f(t) in the space, we associate another

g(t), we have defined the operator d/dt. If, further-
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more, we require that

d

dt
[f1(t) + f2(t)] = g1(t) + g2(t) (1.3.2)

d

dt
cf(t) = cg(t) (1.3.3)

where g1g2, and g are the three functions associated

f1, f2 and f respectively, and c is a number, then d/dt

is a linear operator.

We may similarly define other linear operators such as

integration, multiplication by a constant, and many

others and build up a whole schemeof linear opera-

tors. Clearly, such operators are needed also in vector

spaceto extend its range of applicability.

We must now introduce linear operators in the space
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of ket and bra vectors. If with each ket |a〉 in the space

we associate another ket |b〉, the association may be

used to define an operator D which we may write in

the form

|b〉 = D|a〉 (1.3.4)

where D might mean differentiation, integration, or

something else. Note the convention that an operator

appears to the left of the ket on which it operates.

We are interested only in linear operators; this means

that if |a1〉, |a2〉 and |a〉 are any three kets and c is a

number, D must satisfy the relations

D(|a1〉+ |a2〉) = D|a1〉+D|a2〉 (1.3.5)
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D(c|a〉) = cD|a〉 (1.3.6)

Since an operator is completely defined when its effect

on every ket in thespace is known, two operators D1

and D22 are equal if D1|a〉 = D2|a〉 forevery |a〉. The

null operator, D = 0, is defined by D|a〉 = 0 for every

|a〉.

The identity operator, D = I, is defined by D|a〉 = |a〉

for every |a〉.

At this stage we may build up an algebra of linear

operators. We maydefine the sum of two operators

D1 +D2 by their action on |a〉:

(D1 +D2)|a〉 = D1|a〉+D2|a〉 (1.3.7)
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a product

(D1D2)|a〉 = D1(D2)|a〉 (1.3.8)

From this, if D1 = D2, we can define powers of oper-

ators, and so on.

We also have, for example,

(D1 +D2)|a〉 = (D2 +D1)|a〉 (1.3.9)

[(D1 +D2) +D3]|a〉 = [(D1 + (D2 +D3)|a〉 (1.3.10)

[(D1(D2 +D3)|a〉 = D1D2|a〉+D1D3|a〉 (1.3.11)
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