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Electricity and Magnetism 

 

Reading Assignment:  Read the entire chapter. 

Homework:  see the web site for homework.   

http://web.fccj.org/~smilczan/psc/homewkmid.html 

 

The forces of electricity and charge are important both in the 

macroscopic world (the world we live in,) and the microscopic world 

(the world of atoms and molecules).  In our everyday lives know that 

we are turning chemical energy stored in coal to electrical energy  (at 

the power plant just over the Dames point bridge) and we then turn 

the electrical energy to heat (thermal energy) and light (radiant 

energy).  In the microscopic world, the atoms and molecules are held 

together by electrostatic attraction. 

 

What is Charge? (The structure of the atom) 

(Section 5.2) 

 The atom is composed of sub-atomic particles called ________, 

________ and ________.  In a standard view of the atom, the protons 

and neutrons are in a small area in the center of the atom called the 

nucleus.  The electrons circle the nucleus the same way the earth 

revolves around the sun.  The nucleus is very small compared to the 

size of the atom.  As an analogy, if the atom where the size of a 

baseball stadium, then the nucleus would be smaller than a baseball, 

perhaps closer to the size of a ping pong ball.  You can imagine that 

most of atom is, in fact, empty space.   

 

 mass mass (kg) relative charge in 

http://web.fccj.org/~smilczan/psc/homewkmid.html


(amu) charge coulombs 

proton 1 1.67 x 10
-27 

+1 1.67 x 10
-19

 

neutron 1 1.67 x 10
-27

 0 0 

electron 0.00054 9.11 x 10
-31

 -1 -1.67 x 10
-19

 

  

 

 

 

 

Positive and Negative Charge 

(Section 5.1) 

Electric charge is a fundamental property of certain of the elementary 

particles of which all matter is composed. All electric charges are 

either __________ or __________ . Like charges repel each other, 

unlike charges attract each other.  Matter that has no overall charge is 

called neutral.  In anything larger than an atom, this means that the 

number of protons and equals the number of electrons.   

 

The unit of charge is the __________ (C) and the charge on the 

electron is -1.6 x 10
-19

 C. Since the smallest charges possible are that 

of the proton and the electron, all charges, of either sign, occur in 

multiples of e = 1.6 x 10
-19

 C. 

 

Coulombs’s Law 

(Section 5-3) 

Coulombs law involves the quantifying (putting numbers to) of the 

attraction of unlike charges and the repulsion of like charges.  There 

are two aspects that should be obvious to us.  First, the greater the 

charges, the greater the repulsion or attraction.  If I am a proton, with 

a 1+ charge, a particle with a 2+ charge should be twice as repulsive 

to be as a particle with a 1+ charge.  The second aspect is that the 

attraction/repulsion decreases with distance. If I am a proton, with a 

1+ charge, I will be more repulsed by a particle with a 1+ charge right 

next to me than a particle with a 1+ charge 100 yards away. 

 

The results of experimentation show that this effect can be quantified 

with the following equation: 
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and r is the distance between the charges in meters. 

 

Shouldn’t the protons in a nucleus repel each other and fly apart?  

The helium nucleus contains two protons.  They repel each other.  

Why doesn‟t the helium nucleus break apart?  The answer is very 

unsatisfying.  There is another force called the “binding force” or 

“nuclear force” that holds the nucleus together.  One can imagine that 

this is a very strong force and it is the energy from this force that we 

tap in to in nuclear reactions.   

 

On the other hand, the electron is held together with the protons in the 

nucleus by the electrostatic force.  The force of gravity between the 

masses of the nucleus and the electron is negligible compared to the 

electrostatic force in the atom. 

 

Force on an uncharged object. 

Surely you have noticed that static electricity can cause things to stick 

together.  The explanation for this is a movement of electrons from 

one thing to another.  Allow me to use a comb and a piece of paper as 

an example. 

 

It is fairly dry today.  As I comb my hair, the rubber comb picks up 

electrons from my hair.  This gives the comb a negative charge and 

my hair a positive charge.  Unlike the lady shown in the illustration 

below, my hair did not stick out too badly. Notice how there was no 

overall change in the number of TOTAL protons and electrons.  

While I was in the bathroom I grabbed a small bit of toilet paper.  As I 

brought the comb toward the paper, the paper jumped up and stuck to 

it.  



 
While I was in the bathroom I grabbed a small bit of toilet paper.  As I 

brought the comb toward the paper, the paper jumped up and stuck to 

it. Why?  The negative charges on the comb repelled the electrons in 

the paper.  This left the positive charges near the comb. The negative 

comb and the positive side of the paper attracted each other and the 

paper stuck to the comb 

 

 

 

 

 
 

Charging by induction. The comb has become charged by 

friction, acquiring an excess of electrons. The paper (A) 

normally has a random distribution of (+) and (-) charges. 



(B) When the charged comb is held close to the paper, 

there is a reorientation of charges because of the repulsion 

of the charges. This leaves a net positive charge on the 

side close to the comb, and since unlike charges attract, the 

paper is attracted to the comb. 

 

 

 

Please go to the following web site for more information on static 

electricity: 

 

http://207.10.97.102/physicszone/lesson/07elecst/static/triboele.htm 

 

 

 
(You may wish to draw the character in various stages of his walk.) 

Anyone who has ever felt the zap of an electric shock after walking 

across a carpet and then touching a metal doorknob has experienced 

that two objects rubbing together can create electrostatic charges.  

As the neutrally charged person walks across the wool carpet, his 

leather-soled shoes have less desire for electrons than the wool 

carpet.  As a result, electrons get stolen from the shoe by the carpet.  

With every step the person becomes more and more positively 

charged.  That charge distributes itself over the body.   When the 

positively charged person gets near the metal door he will actually 

attract charges from the door which jump in the form of a spark.  

Notice how only the negative charges (electrons) are free to move. 

 

Please watch Animation 5.1: Charging by Conduction and 

Induction on your CD. 

 

 

http://207.10.97.102/physicszone/lesson/07elecst/static/triboele.htm


The first segment shows charging by __________. A conducting 

object with an excess of positive charge is placed in contact with 

another conductor that is originally neutral. Charges move from one 

conductor to the other until the average distribution of all the charges 

on the surfaces of the two objects is the same. The second segment 

shows charging by ___________. A charged object is brought near a 

neutral conductor and the charges that already exist in the neutral 

object shift. The like charges migrate away from the conductor and 

opposite charges migrate toward the conductor. If the originally 

neutral object is separated into two parts, then each part has an equal 

but opposite charge.  

 

 

 

 

 

The Ampere 

(Section 5.8) 

A flow of charge from one place to another is an ________ ________.  

We can see a current in a simple circuit using a battery as a 

electromotive source.  In a battery, a chemical reaction is taking place 

that causes electrons to move.  We then harness these electrons by 

forcing them to go through a wire. 

 
 



We can see the effects of this electron flow with the light bulb, which 

converts some of the energy of this movement to light. The light bulb 

also gets hot so it is converting some of the energy to heat. Light 

bulbs and heating elements are examples of resistors, they impede the 

flow of electrons.  The flow of electrons is called current and is 

measured in amperes (A). An ampere is equal to a flow of 1 

coulomb/second. 

 

 A conventional current describes positive charges moving from the 

positive terminal (+) to the negative terminal (-).   You may see this 

convention in circuit diagrams in physics books.   Chemists describe 

electron current as negative charges (-) moving from the negative 

terminal (-) to the positive terminal (+).  This would seem to make 

more sense, as it is electrons that are moving. (sort of….) 

 

Actually, individual electrons move very slowly. With a drift velocity 

of 0.01 cm/s, more than 5 hr would be required for an electron to 

travel 200 cm from a car battery to the brake light.  What actually 

happens is than an electron “pushes” another electron, which 

“pushes” another electron and so on down the length of the wire. 

Therefore, it is the electric field, not the electrons, which moves at 

near the speed of light in an electric circuit. 

 

There are four factors that influence the resistance of an electrical 

conductor.  They are the length of the conductor, the cross-sectional 

area of the conductor, the material the conductor is made of, and the 

temperature of the conductor.   

 

We have seen batteries run motors so we know they can do work.  

How much?  The answer is it depends on the push from the battery.  

This push is called the electrical potential or voltage and is the 

electric potential energy per amount of charge.  It is measured in 

voltage. 1 volt = J/C 

 

The voltage of batteries set up in series is additive.  To connect 

batteries in series one connects the positive terminal of one battery to 



the negative terminal of another.  Two 1.5V batteries set up this way 

will have a combined voltage of 3.0 volts. 

 

Ohm’s Law 

(Section 5.10) 

In a circuit, we can imagine the greater the resistance (or impedance) 

to flow the lower the current (or flow).  We can also imagine the 

greater the push (or voltage), the greater the current (or flow).    

Ohm‟s Law can summarize this: 

RIVor    
R

V
I   

where I is the current ( in amperes ), V is the voltage ( in volts) and R 

is the resistance.  Resistance is measured in ohms and is this unit is 

given the Greek letter omega. 

A

V
 1   1   

Feel free to examine animation 5.2: Ohm‟s Law if you like. 

Sample Problem 

In our problem we can draw a circuit diagram with the following 

symbols. 

 
If we have a circuit with a 4 Ohm resistor and a 12 volt battery, what 

is the current? 

 
 

 

 

 

 

 



 

 

Electric Power 

The power of an electric current is the rate at which work is being 

done.   Electrical power is current times voltage. 

 

P=I x V or P=IV 

 

 P is power, I is current and V is voltage. The unit of power is the watt 

(W) 

 

Magnetism 

(Section 5.12) 

The subjects of magnetism and electricity developed almost 

independently of each other until 1820, when a Danish physicist 

named Hans Christian Oersted discovered in a classroom 

demonstration that an electric current affects a magnetic compass.  He 

saw that magnetism was related to electricity.  We will begin by 

looking at permanent magnets and then look at Oersted‟s experiment. 

 
Magnets have a north and a south pole.  Like magnetic poles repel 

each other and unlike poles attract each other.  The names of the poles 

come from the fact that the earth has a magnetic field.  The part of the 

magnet that will align toward the north pole of earth is called the 

north pole of the magnet. 

 



Some atoms, depending on their electronic structure, act like magnets 

and have a north and south pole.  In most matter, there is no 

alignment of the poles of the atoms. In a bar magnet, the atoms will 

line up.  Sometimes this alignment can be achieved by simply 

banging on a piece of iron.  This can cause enough of the atoms to 

line up with the earth‟s magnetic field for the magnetic field of the 

iron to be measured. 

 

The iron atoms in an unmagnetized iron bar are randomly 

oriented, whereas in a magnetized bar they are aligned 

with their north poles pointing in the same direction. The 

ability of iron atoms to remain aligned in this way is 

responsible for the magnetic properties of iron. 

 

 

 

 

Oersted’s Experiment 
(Section 5.14) 



 
 Oersted discovered that a compass needle below a wire (A) pointed 

north when there was not a current, (B) moved at right angles when a 

current flowed one way, and (C) moved at right angles in the opposite 

direction when the current was reversed. 

 

The Right Hand Rule: 

What we can determine from this is that an electrical current produces 

a magnetic field .  A magnetic field surrounds the wire as shown 

below 

 



A magnetic compass shows the presence and direction of 

the magnetic field around a straight length of current-

carrying wire. 

 

This effect can be summarized by the right hand rule.  This rule states 

that if you put the thumb of your right hand in the direction of the 

current, the magnetic field will wrap around the wire the same way 

your fingers will. 

 

Use (A) a right-hand rule of thumb to determine the direction of a 

magnetic field around a conventional current.  Remember that most 

people write current going from positive to negative.  If your 

stubbornness requires you to thing about electron flow, you will have 

to reverse everything and use the left-hand rule of thumb.  

Electromagnets 

(Section 5.15) 

 



 Forming a wire into a loop causes the magnetic field to pass through 

the loop in the same direction.   Notice that all sides of the loop, by 

using the right hand rule, push the magnetic field the same direction.  

This gives one side of the loop a north pole and the other side a south 

pole.  The magnetic field of the loop is the same of that as a bar 

magnet. 

 

 

 

When a current is run through a cylindrical coil of wire, a solenoid, it 

produces a magnetic field like the magnetic field of a bar magnet.  

 

Magnetic force and current. 

Because a wire carrying a current away from you, represented by the 

black dot, has a magnetic field it will be affected by the magnetic 

field of a magnet.  The yellow and red boxes represent the ends of the 

magnet.  The field of the magnet is in green.  The circular magnetic 

field of the wire is shown.  Notice how at the top the fields are lined 

up and repelling and at the bottom the fields are opposite and 

attracting.  The wire, if it can move, feels a force down called the 

Lorentz force.  This force is perpendicular to both the magnetic field 

of the magnet and the current of the wire. 



N 
S 

field of magnet 

Lorentz force 

 

Motors 

Please open this applet. 

http://webphysics.ph.msstate.edu/jc/library/20-3/index.html 

 

An electric motor, is a machine which converts electrical energy into 

mechanical (rotational or kinetic) energy.  A current causes the coil to 

rotate mechanically.  For this to occur  

In the motor a current is passed through a loop, which is immersed in 

a magnetic field. A force exists on the top leg of the loop, which 

pushes the loop left, while a force on the bottom leg of the loop 

pushes the loop right. The net effect of these forces is to rotate the 

loop in the direction indicated.  At some point, to keep the loop 

rotating it is necessary to switch the direction of the current. This is 

done on this applet when the loop is horizontal. 

 

http://webphysics.ph.msstate.edu/jc/library/20-3/index.html


Induction 

Electromagnetic induction refers to the production of a current in a 

wire when there is relative motion between the wire and a magnetic 

field.  This connection was discovered by Faraday, who found that 

changing magnetic fields though loops of wire will cause currents to 

be induced. 

 

In the above picture, a current is induced in a coil of wire moved 

through a magnetic field. The direction of the current depends on the 

direction of motion. These induced currents only exist as long as the 

magnet is moving, and will die off when the magnet becomes 

stationary.   

It is interesting to note that the current flows so as to create a 

magnetic field to oppose the change created by moving the bar 

magnet.  This feature that the magnetic effects of the induced current 

are such as to oppose the external change is known as Lenz's law. 

The induction of currents from changing magnetic fields has a 

number of important applications, including, odiously, the electrical 

generator. 



 

(A) Schematic of a simple alternator (ac generator) with 

one output loop. (B) Output of the single loop turning in a 

constant magnetic field, which alternates the induced 

current each half cycle.  

 

Transformers 

A transformers useful for changing the voltage of an alternating 

current circuit.  In a transformer an alternating current in one coil of 

wire creates a changing magnetic field.  This changing magnetic field 

induces an alternating current in another nearby coil. Depending on 

the ratio of turns of the coils, the induced current can have a voltage 

that is larger, smaller, or the same as that of the primary current.  

 



 

 (A) This step-down transformer has 10 turns on the 

primary for each turn on the secondary and reduces the 

voltage from 120 V to 12 V. (B) This step-up transformer 

increases the voltage from 120 V to 1,200 V, since there 

are 10 turns on the secondary to each turn on the primary.  

 

 



 
 
 

Chapter 1 
 
 

Heat and Properties of Matter 
 
 
 

1.1 Properties of matter 
 

1.1.1 Density 
 

Matter is a substance which has mass and occupies space. The 

density of matter refers to how much mass is in a given volume. 

Said difierently, you can imagine the density to be the amount of 

mass packed into a given volume. 
 

‰ 

= 

m  

; 

densit

y = 

 

M 

ass 

V 
V 

olume     
If we consider a bar of soap and a bar of steel with the same 

volume, the steel will have more mass because it has a greater 

density. The density is greater in steal because more atoms are 

closely packed in comparison to the soap. Although they are 

both the same size, the bar of steel will be "heavier" because it 

has more mass. 
 
 

Worked Example 1 
 

Density of objects 
 

A bar of aluminum (Al) has dimensions 2cm x 3cm x 

5cm with a mass of 81g. A bar of lead (Pb) has 

dimensions 3cm x 3cm x 5cm and a mass of 510.3g. 

Calculate the density of the aluminum and lead. 

Solution: 

First we calculate the volume of Al and Pb: 
 

volume = Length ⁄ W idth ⁄ Height 



 
For Aluminum: volume = 2cm ⁄ 3cm ⁄ 5cm = 30cm

3 

For Lead: volume = 3cm ⁄ 3cm ⁄ 5cm = 45cm
3 

 
We can now calculate the densities using the mass and volume 

of each material.  

For Aluminum: 

density =  

8

1

g  

= 

2:7g=c

m
3 

30cm 
3 

   
For Lead: density = 

510:3g
 = 11:34g=cm

3 

45cm3 
 

1 



 
 
 
 
 
 
 
 
 
 
 
 
 

5cm32 
 
 
 
 
 

Now that you know the density of aluminum and lead, 

which object would be bigger (larger volume): 1kg of 

Lead or 1kg of Aluminum. 
 

Solution: 

1kg of aluminum will be much larger in volume than 

1kg of lead. Aluminum has a smaller density so it will 

take a lot more of it to have a weight of 1kg. Lead is 

much more dense, so it will take less for it to weigh 1kg. 
 
 
 

The density of liquids and gases can be calculated the same 

way as in solids. If the mass and volume of a liquid is known, 

the density can be calculated. We can often determine which 

liquid has a greater density by mixing two liquids and seeing 

how they settle. The more dense liquid will fall towards the 

bottom, or ‟sink‟. If you have ever added olive oil to water, you 

have seen it sits on the surface, or ‟°oats‟. This is because olive 

oil is less dense than water. Fog occurs when water vapor 

becomes more dense than air("a cloud that sinks in air").  
This principle can be used with solids and liquids. In fact, it is 

the density of an object that determines if it will °oat or sink in 

water. Objects with densities greater than water will sink. 
 
 
 

Worked Example 2 



 
Objects °oating in water 

 
Ivory soap is famous for "soap that °oats". If a 5cm x 

3cm x 10cm bar of ivory soap weighs 1.35 Newtons, 

show that its density is less than water. 
 

Solution: 
First calculate the bars volume: volume = 3cm ⁄ 5cm ⁄ 10cm = 
150cm

3 
 

Now we must determine the mass of the bar based on its 

weight. We will use Newton‟s Second law (F = ma): 
 

W eight = mass ⁄ gravity =) W eight = 9:8m=s
2
 ⁄ M ass 

 
 
 

2 



 
 
 

1:35N 
M ass = 

9:8m=s2 
=
 
:138kg 

 
Using the mass and the volume we determine the density of the 
soap: 

density = 
138g

 = :92g=cm
3 

 
150cm3  

Water has a density of 1g=cm
3
, therefore the soap is less 

dense than water, allowing it to °oat. 
 
 
 

1.2 Phases of matter 
 

Although phases are conceptually simple, they are hard to deflne 

precisely. In nature, a material can be found in various phases, 

such as water can be liquid, ice or vapor. This can only be 

understood within the theory of thermodynamics. 

Thermodynamics deals with quantities, such as: 
 

† Internal energy: U : sum of kinetic and potential energy 
 

† Entropy: S : measure for the disorder in a system 
 

† Free Energy: F : measures the energy of the total state 
 

The free energy is the difierence between the inner energy U 

minus the temperature T mul-tiplied by the entropy S. 
 

F=U¡T¢S (1.1) 

A good deflnition of a phase of a system is a region in the 

parameter space of the system‟s thermodynamic variables in 

which the free energy F is a continuous well-behaved function 

of external conditions such as temperature or pressure. At certain 

conditions, the stable state is the one which minimizes the free 

energy.  
All the thermodynamic properties of a system { the entropy, 

heat capacity, magnetization, compressibility, and so forth { may 

be expressed in terms of the free energy and its derivatives. For 



example, the entropy is simply the flrst derivative of the free 

energy with temperature. 
 

S 

= 

–

F 

(1.2)  
–
T    

 
1.2.1 Solids 

 
From equation 1.1 we                                                                                                                                                                                                                                                                                                                                                                                                                                   

see that at low temperatures, the term U dominates, that is, we 

want the kinetic and potential energies to be low, which is 

realized in solids.  
Solids are materials in which the atoms or molecules are set in 

place. We distinguish difierent types of solids: The most 

disordered solids are the amorphous solids, like glass or various 

plastic materials, where the material is hard but on the other 

hand, the atoms are not completely ordered. In ionic crystals 

such as table salt crystals NaCl, one type of atoms gives one or 

more electrons to another atom, and hence charging itself. These 

ions are connected to their neighbors by electrical attraction. 

Covalently bonded crystals such as aluminium, iron, silicon or 

diamond 

 
3 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Two difierent crystal structures. The left side shows 

a simple cubic structure as appears for NaCl, whereas the right 

side shows the crystal structure of diamond or Silicon. 

 

produce the hardest materials. In the last two classes, crystalline 

solids, the atoms are arranged on a lattice. Two difierent lattices 

are shown in flg. 1.2.1 for the most simple crystal as realized in 

NaCl or a more complicated for diamond or silicon. At flrst 

sight, one cannot distinguish among the various forms of 

lattices. One can determine the structure of a material by 

irradiating X-ray light. 
 
 
 

Worked Example 3 
 

X-ray light 
 

As a side project: As we know, light can be described as 

a wave. Find out the frequency range for X-rays. From 

that calculate the range of wave lengths ‚. Find out in the 

internet the ionic radii for Na and Cl. Calculate an 

average size of the lattice spacing a for NaCl. 

Solution: 

The frequency ” range for X-rays is given between 

approximately 
 

6:0 ¢ 10
16

s
¡1

 < ” < 1:0 ¢ 10
20

s
¡1 

 



With the relation ‚ = c=” we obtain for the range of wave 

lengths ‚ 
 

3:0 ¢ 10
¡3

nm < ‚ < 50nm  
A good table of characteristics for all elements is given on 

http://www.webelements.com/. 
The atomic radius for Na is rNa … 0.190 nm, the one for Cl is 
rCl … 0.08 nm.  
At flrst sight one would estimate the size of the lattice 

parameter to be 0.27 nm. This is however too small, as 

the electric charges repel each other. It is approximately 

0.45 nm. 
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Figure 1.2: Explanation of Bragg‟s law. Two incident X-rays are 

re°ected by the planes. The triangles denote the necessary 

conditions for constructive interference. 

 
Lets consider the arrangement on flg. 1.2.1. An X-ray which 

re°ects from the surface of a substance has travelled less distance 

than an X-ray which re°ects from a plane of atoms inside the 

crystal, on the next plane. The penetrating X-ray travels down to 

the internal layer, re°ects, and travels back over the same 

distance before being back at the surface. The conditions 

necessary is to make the phases of the beams coincide when the 

incident angle equals and re°ecting angle. The rays of the 

incident beam are always in phase and parallel up to the point at 

which the top beam strikes the top layer at atom z. The second 

beam continues to the next layer where it is scattered by atom B. 

The second beam must travel the extra distance AB + BC if the 

two beams are to continue traveling adjacent and parallel. This 

extra distance must be an integral n multiple of the wave length ‚ 

for the phases of the two beams to be the same: n‚ = AB +BC.  
Recognizing d as the hypotenuse of the right triangle ABz, we 

can use trigonometry to relate d and q to the distance (AB + 

BC). The distance AB is opposite q so, AB = d sin(q).  



Because AB = BC, n‚ = 2AB. Bragg recognized these 

geometries flrst and expressed this in an equation now known as 

Bragg’s Law: 
 

n ¢ ‚ = 2 ¢ d ¢ sin(µ) (1.3) 
 
 

Worked Example 4 
 

Bragg‟s Law 
 

Given ‚ = 100 pm, and knowing that for the Pyrolytic 
Graphite the distance between the layers is d = 3 

”
A, use 

Bragg‟s law to determine the correct Bragg angle for the 
flrst re°ection.  
Solution: 

We will simply use Bragg‟s law and solve for µ  

µ = 

arcsin 
µ 

n 

¢ 

‚ 

¶ 2 

 

¢ d  
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This gives for the flrst Bragg angle: µ = 9.6
–
. 

 
 

The temperature that can be shown by solid materials is due to 

the movement in place of the atoms or molecules. They have no 

independent linear motion of translation because they are 

attached to one another. Solids can have molecular energy due to 

vibration and rotation. Picture a class of second graders glued to 

their seat. Each student can jump up and down and sideways and 

turn the chair around, but they cant move out of place. Another 

useful mental picture is a junkyard for springs. The springs have 

all been tied to each other in one enormous mass. Each spring 

can twist and vibrate, but it cant get loose from its neighbor.  
It is now necessary to change from being able to see and 

understand each atom or molecule to our larger world. Solids 

show a deflnite shape and a deflnite volume. Unless forces are 

used that are not commonly found near the earths surface, solids 

have a very low compressibility. 
 

1.2.2 Deformation of solids 
 

strain, stress 
 

Stress (¾) and strain (†) is one of the most fundamental concepts 

used in the mechanics of materials. The concept can be easily 

illustrated by considering a solid, straight bar with a constant 

cross section throughout its length where a force is distributed 

evenly at the ends of the bar. This force puts a stress upon the 

bar. Like pressure, the stress is the force per unit area. In this 

case the area is the cross sectional area of the bar. 
 

stress 

= 

F orce 

=)  ¾= 

F 

  

Areacross

section A 
 
 
 
 
 



(A)(B)BarBarunderundercompressiontension 
 
 
 

Figure 1.3: Illustration of Bar  
!¡ 

The bar in flgure 1a is said to be under compression. If the 

direction of the force ( F ), were reversed, stretching the bar, it 

would be under tension (flg. 1b). Using intuition, you can 

imagine how the bar might change in shape under compression 

and tension. Under a compressive load, the bar will shorten and 

thicken. In contrast, a tensile load will lengthen the bar and 

make it thinner. 
 
 
 
 
 

Figure 1.4: Bar changes length under tensile stress 
 

For a bar with an original length L, the addition of a stress will 

result in change of length 4L. With 4L and L we can now deflne 

strain as the ratio between the two. That is, strain is 
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deflned as the fractional change in length of the bar: 

Strain · 
4L 

 
L 

 
 
 
 
 

4LL 
 

Figure 1.5: Left end of bar is flxed as length changes 
 
 

Elastic and plastic behavior 
 

Material properties are often characterized by a stress versus 

strain graph (flgure x.xx). One way in which these graphs can be 

determined is by tensile testing. In this process, a machine 

stretches a the material by constant amounts and the 

corresponding stress is measured and plotted. Typical solid 

metal bars will show a result like that of flgure x.xx. This is 

called a Type  
II response. Other materials may exibit difierent responses. We 

will only concern ourself with Type II materials.  
The linear region of the graph is called the elastic region. By 

obtaining the slope of the linear region, it is easy to flnd the 

strain for a given stress, or vice-versa. This slope shows itself to 

be very useful in characterizing materials, so it is called the 

Modulus of Elasticity, or Young‟s Modulus: 

E = stress =  F=A  
strain ¢L=L  

The elastic region has the unique property that allows the 

material to return to its original shape when the stress is 

removed. As the stress is removed it will follow line back to 

zero. One may think of stretching a spring and then letting it 

return to its original length. When a stress is applied in the linear 

region, the material is said to undergo elastic deformation. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6: dashed line represents plastic recovery **incomplete** 
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Figure 1.7: dashed line represents plastic recovery **incomplete** 
 
 

When a stress is applied that is in the non-linear region, the 

material will no longer return to its original shape. This is 

referred to as plastic deformation. If you have overstretched a 

spring you have seen that it no longer returns to its initial length; 

it has been plastically deformed. The stress where plastic 

behavior begins is called the yield strength (point A, flg x).  
When a material has plastically deformed it will still recover 

some of its shape (like an overstretched spring). When a stress in 

the non-linear region is removed, the stress strain graph will 

follow a line with a slope equal to the modulus of elasticity (see 

the dashed line in flgure x.xx). The plastically deformed material 

will now have a linear region that follows the dashed line.  
Greater stresses in the plastic region will eventually lead to 

fracture (the material breaks).  
The maximum stress the material can undergo before fracture is the 

ultimate strength. 
 

1.2.3 Liquids 
 

Liquids are materials in which the atoms or molecules are as 

close to each other as solids, but the materials can slip over each 

other to change places. If you were only a few magnitudes larger 

than atoms, you might view liquids as B-Bs in a dump truck. 

Consider a large dump truck going fast down a very bumpy 

road. The B-Bs have some energy from the bumpy road. The top 

of the load is level. A few B-Bs are always in the process of 



getting enough energy to hop out of the dump truck. (This is a 

picture of vapor pressure of a liquid.) The B-Bs can be poured 

out of the dump truck. If there were a hole in the bottom of the 

dump truck, the B-Bs would leak out onto the ground. Like the 

B-Bs, liquids have no shape except for the shape of the 

container. B-Bs and liquids can not be compressed under 

common pressures. In a liquid the forces that hold the particles 

of liquid close to each other are greater than the forces due to 

motion that would force the particles away from each other.  
The property of liquids of incompressibility is useful to us in 

hydraulic machines. A simple system of automobile hydraulic 

brakes are a good example of this. The brake pedal pushes a 

master cylinder. The travel (A description of distance (!) See 

Units and Measures.) of the brake petal is a few inches. The 

master cylinder pushes a small area of a liquid (hydraulic °uid) 

down a small tube (the brake lines) to the wheel cylinders. The 

wheel cylinders have a much larger area, but they go a shorter 

distance to push the brake pad against the drum or rotor, 

depending on what kind of brakes you have. The brake system 

cannot work correctly if there is any air (gas) in the system 

because the gas is compressible. 
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1.2.4 Pressure in °uids 
 

Consider a vessel of liquid as in flg. 1.2.4. The volume is given by  
 
 
 

height h 
 
 
 

Area A 
 
 

Figure 1.8: Vessel of liquid with area A and height h. 
 
 

V = A ¢ h (1.4) 

The mass is given by ‰ ¢ V as the density is in the whole °uid 

the same (incompressibility). Therefore the gravitational force 

on the bottom of the vessel by the °uid is given as 
 

Fg = g ¢ ‰Ah (1.5) 

Therefore, it is easy to see, that the pressure excerted by a °uid 

with a height h on the bottom and on the walls near the bottom is 

given as 
 

p 

= 

F

g 

= ‰g (1.6)  

 A  

and is therefore independent of the form of the vessel. This 

fact is known as the hydrostatic paradoxon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure 1.9: Hydrostatic paradoxon 
 

As one sees from the difierent containers, the pressure is the 

same for all difierent vessels. The total pressure in a hydrostatic 

medium is given as 
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ptot = p0 + ‰gh (1.7)  
where p0 is the atmospheric pressure.  

 
 

Δh 
 
 
 
 
 
 
 
 
 

Figure 1.10: Barometer U-tube. 
 
 
 
 

Worked Example 5 
 

pressureliquid1 
 
Look at flg. 1.2.4. On the right side, the tube is sealed, on the left side 

it is open  
to atmospheric pressure. What are the heights for a 
column of water (‰water = 1 kg/dm

3
), a column of 

alcohol (‰alcohol = 0.8 kg/dm
3
) and a column of mercury 

(‰water = 13.6 kg/dm
3
) if the atmospheric pressure is 1 

bar? 
solution  
The pressure on the left side is the atmospheric pressure 
of 10

5
 Pa. It is equal to the pressure from the difierence 

of the height of the columns. 
 

p0 = ‰g¢h  
solving for ¢h yields for water ¢hwater = 10.2 m, for 
alcohol ¢halcohol = 12.7 m, and for mercury ¢hmercury = 75 
cm. This is the reason that one uses mercury in 
thermometers. With water the thermometer should be 
about 10 m long. 

 
 
 



In the following, we will meet a force, which is called the 

buoyant force. As you ascend a solid into a liquid, it might 

drawn, as in the case of an iron block immersed into water. 

However, looking at an ice cube, you realize, that it swims in 

water and some part stays above the surface. Consider in the 

following the block of solid in the liquid shown in flg. 1.2.4  
The top of the cube feels a pressure from the liquid above it 

given as 
 

p1 = ‰0 + ‰gh1 (1.8) 

whereas on the bottom of the cube there is a pressure 

on the cube given by  

p2 = ‰0 + ‰gh2 (1.9) 
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Figure 1.11: buoyant force. 
 
 

This leads to a difierence in pressure and hence to a force F = p ¢ 

A 
 

Fbuoyant = (F2 ¡ F1) = A ¢ (p2 ¡ p1) = A‰g(h2 ¡ h1) 

= g ¢ ‰ ¢ Vexcluded (1.10) 

We observe that the buoyant force is given by the 

gravitational force of the solid inside the liquid. If the solid is 

only partially immersed into a liquid, only the part which is 

immerse has to be counted for the buoyant force. This is how we 

can also understand °oating or sinking. If the density of a 

material immersed in a liquid is higher than the one from the 

material it sinks. If the density is lower, than it °oats and only a 

part is immersed into water. 
 
 
 

Worked Example 6 
 

anchor 
 

An iron anchor weighs 1200 kg in air and has a weight 
density of 8 kg/dm

3
. If it is immersed in sea water that 

has a weight density of 1 kg/dm
3
, how much force would 

be required to lift it while it is immersed?  
solution  
The force is given as the sum of the gravitational force mg 

minus the buoyant force  
g ¢ ‰water ¢ Vanchor 

 



F = g ¢ ‰water ¢ Vanchor ¡ manchor ¢ g = g ¢ ‰water ¢ 
manchor

 ¡ manchor ¢ g 
… 10kN 

‰
anchor  

 
 
 

Worked Example 7 
 

ice berg 
 

Why does an ice berg swim in water?  
solution 
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The density of ice is 0.91 g/cm
3
 whereas water has a 

density of 1 g/cm
3
. Therefore for something which is 

°oating in a liquid, we use the idea, that the gravitational 
force is equal to the buoyant force. Hence 

 
Fgrav = Fbuoyant 

 

mg = gVexcluded 

 

‰icebergVicebergg = g‰liquidVimmersed 
 

Vimmersed = 
‰

‰
iceberg

 Viceberg = 0:91Viceberg  
liquid 

 
 

and hence about ninety percent of the iceberg is under the 

water surface. This can be very dangerous for ships travelling in 

the north or south seas, since they only see about 10 % of the 

iceberg. 
 

1.2.5 Fluid mechanics 
 

Fluid mechanics is the study of matter which cannot withstand 

shear stress. As such, this includes liquids and gases. In our case, 

°uids are considered a continuous medium which is 

incompressible. Some °uid mechanics problems can be solved 

by applying conservation laws (mass, momentum, energy) of 

mechanics to a flnite control volume. However, in general, it is 

necessary to apply the laws to an inflntesimal control volume. 

The movement of a tiny volume is characteristic of the 

movement of the whole liquid. The chapters core is Bernoulli‟s 

law and we aim to understand and use it.  
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 1.12: The velocity of the °uid is higher in the narrower tube. 
 

In the following we will consider °uids as consisting of small 

particles with an inflnitesimal volume. They move along 

streamlines. That means, particles arriving at difierent times at 

the same position will follow the same path, simply at difierent 

times. A streamline is the imaginary line whose tangent gives 

the velocity of °ow at all times. A common practice in analysis 

is taking some of the walls of a control volume to be along 

streamlines. Since there is no °ow perpendicular to streamlines, 

only the °ow across the other boundaries need be considered. 

The Italian scientist Giovanni Battista Venturi discovered that 

the velocity of a °uid in a tube is 
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inversely proportional to its area. This can be viewed as a 

consequence of the conservation of mass in an incompressible 

°uid. Lets say, at a time ¢t the °uid that passes point 1 is 
 

m1 = ‰ ¢ V1 = ‰ ¢ A1 ¢ v1 

¢ ¢t (1.11) 

At a point 2, the same mass has to pass there (so write the last 

equation with index 2). Comparing the two equations yields the 

equation of conservation of mass (watch, ‰ cancels, since it is 

an incompressible °uid). 
 

A1 ¢ v1 = A2 ¢ v2 (1.12) 
That means in a thinner tube the velocity has to be higher.  
Let us consider a °owing liquid under an external pressure 

such as the atmosphere. We do not consider any friction here, 

but say that the liquid can °ow without loosing energy and 

becoming slower. Imagine yourself a tube where the water runs.  
The energy of a fractional volume ¢V in this °uid is given as the 

sum of the kinetic energy 
 

Ekin = 1=2mv
2
 = 1=2‰V v

2 
(1.13) 

and the potential energy  

Epot = ‰ghV (1.14) 

Along a path the total energy is conserved which yields  

Etot=V = 1=2‰v
2
 + ‰gh (1.15) 

This flnally yields for a °uid on a steady, incompressible 

°ow along a streamline  
 

p0 + ‰gh + 1=2‰v
2
 = constant 

 
p0 : external pressure (P a)  
‰ : density 
(kgm

¡3
) g : 

9.81 ms
¡2

 
h  : height (m) 
v  : velociy (ms

¡2
) 

 



which is a simple but very practical form of the Bernoulli 

equation. We see that Bernoulli‟s equation is just the law of 

conservation of energy without the heat transfer and work. 
 
 

Worked Example 8 
 

Venturi 
 

Consider flg. 1.2.5. A liquid with density 1 gcm
¡3

 moves 
from left to right. We measure a difierence in height of 
10 cm. The radius of the second tube is half the radius of 
the flrst one. How fast is the liquid moving initially and 
how fast at the end?  
solution  
We make use of Bernoulli‟s equation to see that the pressure 

difierence is 
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Figure 1.13: The Venturi experiment. 
 
 

¢p = 1=2‰(v2
2
 ¡ v1

2
) 

 
Using the equation 1.12, we replace v2 and obtain 

µ
A2    

¶ 

¢p = 1=2‰v1
2
 A

1
2 ¡ 1  

2  
and hence for the initial speed  

v  u
 2¢p 

v1 = ut
‰ 

‡
AA

2
12 ¡ 1

·
 
… 

 
2  

For the flnal velociy we simply use eq. 1.12 again and obtain v2 

… ... . 
 
 
 
 
 

Worked Example 9 
 

pressureliquid2 
 

A cylinder of 50 cm height fllled with water has holes on 

the side at 10 cm, 20 cm and 30 cm from the bottom of 

the dewar. Give a drawing of the water coming out of the 

holes and explain qualitatively how far the water from 

each hole will reach from the cylinder wall away.  
solution  
The qualitative solution is given in flg. 1.2.5. At the 

position h above the dewar we have the pressure 



 
p = p0 + ‰g(50cm ¡ h) 

 
This is equal to a pressure from the °ow. This gives you 

for the velocities depending on the height using the 

Bernoulli equation 
r2  

v = ‰ [p0 + ‰g(50cm ¡ h)]  
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Figure 1.14: pressure in a liquid. 
 
 

Using the kinetic equations as the liquid is drawn 

towards the ground by the gravi-tational force 
 

1=2gt
2
 = h  

one solves for the length  
p  

s = 2ghv 
 

And this should yield the behaviour as shown in the flg. 1.2.5. 
 
 
 

It may seem that Bernoulli‟s equation can only be applied in a 

very limited set of situations, as it requires ideal conditions. 

However, since the equation applies to streamlines, we can 

consider a streamline near the area of interest where it is 

satisfled, and it might still give good results, i.e., you don‟t need 

a control volume for the actual analysis (although one is used in 

the derivation of the equation).  
Bernoulli‟s equation can be rewritten as 

 

p 

+ 

v
2 

+ h = constant (1.16) ‰

g 
2
g     

This constant can be called head of the water, and is a 

representation of the amount of work that can be extracted from 

it. For example, for water in a dam, at the inlet of the penstock, 

the pressure is high, but the velocity is low, while at the outlet, 



the pressure is low (atmospheric) while the velocity is high. The 

value of head calculated above remains constant (ignoring 

frictional losses).  
Let us consider the situation where a °uid passes over a solid 

body, the streamlines get closer together, the °ow velocity 

increases, and the pressure decreases. Airfoils are designed so 

that the °ow over the top surface is faster than over the bottom 

surface, and therefore the average pressure over the top surface 

is less than the average pressure over the bottom surface, and a 

resultant force due to this pressure difierence is produced. This 

is the source of lift on an airfoil. Lift is deflned as the force 

acting on an airfoil due to its motion, in a direction normal to the 

direction of motion. Likewise, drag on an airfoil is deflned as the 

force acting on an airfoil due to its motion, along the direction of 

motion.  
An easy demonstration of the lift produced by an airstream 

requires a piece of notebook paper and two books of about equal 

thickness. Place the books four to flve inches apart, and 
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cover the gap with the paper. When you blow through the 

passage made by the books and the paper, what do you see? 

Why?  
Two more examples: Example 1 A table tennis ball placed in 

a vertical air jet becomes suspended in the jet, and it is very 

stable to small perturbations in any direction. Push the ball 

down, and it springs back to its equilibrium position; push it 

sideways, and it rapidly returns to its original position in the 

center of the jet. In the vertical direction, the weight of the ball is 

balanced by a force due to pressure difierences: the pressure 

over the rear half of the sphere is lower than over the front half 

because of losses that occur in the wake (large eddies form in the 

wake that dissipate a lot of °ow energy). To understand the 

balance of forces in the horizontal direction, you need to know 

that the jet has its maximum velocity in the center, and the 

velocity of the jet decreases towards its edges. The ball position 

is stable because if the ball moves sideways, its outer side moves 

into a region of lower velocity and higher pressure, whereas its 

inner side moves closer to the center where the velocity is higher 

and the pressure is lower. The difierences in pressure tend to 

move the ball back towards the center. Example 3 Suppose a ball 

is spinning clockwise as it travels through the air from left to 

right The forces acting on the spinning ball would be the same if 

it was placed in a stream of air moving from right to left, as 

shown in flg. 1.2.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.15: The rotating ball. 
 



A thin layer of air (a boundary layer) is forced to spin with the 

ball because of viscous friction. At A the motion due to spin is 

opposite to that of the air stream, and therefore near A there is a 

region of low velocity where the pressure is close to 

atmospheric. At B, the direction of motion of the boundary layer 

is the same as that of the external air stream, and since the 

velocities add, the pressure in this region is below atmospheric. 

The ball experiences a force acting from A to B, causing its path 

to curve. If the spin was counterclockwise, the path would have 

the opposite curvature. The appearance of a side force on a 

spinning sphere or cylinder is called the Magnus efiect, and it 

well known to all participants in ball sports, especially baseball, 

cricket and tennis players. Stagnation pressure and dynamic 

pressure Bernoulli‟s equation leads to some interesting 

conclusions regarding the variation of pressure along a 

streamline. Consider a steady °ow impinging on a perpendicular 

plate (flg. 1.2.5).  
There is one streamline that divides the °ow in half: above this 

streamline all the °ow goes over the plate, and below this 

streamline all the °ow goes under the plate. Along this dividing 

streamline, the °uid moves towards the plate. Since the °ow 

cannot pass through the plate, the °uid must come to rest at the 

point where it meets the plate. In other words, it \stagnates." The 

°uid along the dividing, or \stagnation streamline" slows down 

and eventually comes to rest without de°ection at the stagnation 

point.  
Bernoulli‟s equation along the stagnation streamline gives 
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Figure 1.16: Stagnation point °ow. 
 
 

p 

e 

+ 

1=2‰

v
2 

= 

p 

0 

+ 

1=2‰v
2 

(1.17) 

 e  0   
where the point e is far upstream and point 0 is at the 

stagnation point. Since the velocity at the stagnation point is 

zero, 
 

pe + 1=2‰ve
2
 = p0 (1.18) 

The stagnation or total pressure, p0, is the pressure measured 
at the point where the °uid comes to rest. It is the highest 
pressure found anywhere in the °owfleld, and it occurs at the 
stagnation point. It is the sum of the static pressure (p0), and the 
dynamic pressure measured far upstream. It is called the 
dynamic pressure because it arises from the motion of the °uid.  

The dynamic pressure is not really a pressure at all: it is 

simply a convenient name for the quantity (half the density times 

the velocity squared), which represents the decrease in the 

pressure due to the velocity of the °uid.  
We can also express the pressure anywhere in the °ow in the 

form of a non-dimensional pressure coe–cient Cp, where 
 

Cp 

= 

p ¡ p 

(1.19) 1=2

‰ve    
At the stagnation point Cp = 1, which is its maximum value. In 

the freestream, far from the plate, Cp = 0. Pitot tube One of the 
most immediate applications of Bernoulli‟s equation is in the 



measurement of velocity with a Pitot-tube. The Pitot tube 
(named after the French scientist Pitot) is one of the simplest and 
most useful instruments ever devised. It simply consists of a 
tube bent at right angles (flg. 1.2.5).  

By pointing the tube directly upstream into the °ow and 

measuring the difierence between the pressure sensed by the 

Pitot tube and the pressure of the surrounding air °ow, it can 

give a very accurate measure of the velocity. In fact, it is 

probably the most accurate method available for measuring °ow 

velocity on a routine basis, and accuracies better than 1% are 

easily possible. Bernoulli‟s equation along the streamline that 

begins far upstream of the tube and comes to rest in the mouth of 

the Pitot tube shows the Pitot tube measures the stagnation 

pressure in the °ow. Therefore, to flnd the velocity ve, we need to 

know the density of air, and the pressure difierence (p0 - pe). The 

density can be found from standard tables if the temperature and 

the pressure are known. The pressure difierence is usually found 

indirectly by using a \static pressure tapping" located on the wall 

of the wind tunnel, or on the surface of the model. 
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Figure 1.17: The Pitot tube. 

 

1.2.6 gases 
 

Gas, or vapor, is the most energetic phase of matter commonly 

found here on earth. The particles of gas, either atoms or 

molecules, have too much energy to settle down attached to each 

other or to come close to other particles to be attracted by them. 

Material in the vapor phase have no shape of their own, that is, 

they take on the shape of the container. Gases have no given 

volume. A certain amount of gas at a pressure of one atmosphere 

and a volume of ten liters could become flve liters if the pressure 

was increased or would become more than ten liters if the 

pressure was decreased.. The gas expands to flll the container. 

The Gas Law that covers the calculations of the pressure, 

volume, and temperature of gases is in a later chapter.  
How can you picture the materials as a gas? A pool table is 

only in two dimensions, but what if the balls kept moving and 

the pool table were in three dimensions? Such a pool table 

would be like a gas. The rails of the 3-D pool table would be the 

sides of the container. The billiard balls would bounce ofi each 

other in completely elastic collisions and would bounce ofi the 

sides of the table to produce a constant pressure. The real 

hallmark of the gas is that the motion of the particles is so great 

that the forces of attraction between the particles are not able to 

hold any of them together. 
 

1.2.7 Phase transitions 
 



The thermodynamic properties of material are described with 

thermodynamic potentials. Two very important are the free 

energy F or the entropy S. The free energy depends only on the 

heat  
capacity c, where we distinguish the heat capacity per mole of a 
substance cmole or per kg of a substance cm. These are usually 
strongly temperature-dependent quantities. The free energy can 
be written as  

Z Z  

F = m   cm(T 

)dT = n cmole(T )dT (1.20) 
 

where m is the mass and n the molar mass. In the following 

we will assume temperature-independent heat capacities. The 

change in internal energy as one enhances the temperature is 

given by 
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¢F = mcm¢T = ncmole¢T 
 

Q : internal 

energy (J) m : 

mass (kg) 

cm : heat capacity (J=kg=K) 
cn : molar heat capacity (J=mole=K) 
T : temperature (K) 

 
 
 

Worked Example 10 
 

internal energy 
 

How much energy do you have to put into a vessel 

containing 1 l of water neglecting the vessel in order to 

warm it up by 10 degrees? The heat capacity of water is 

4182 J/kg/K  
solution  
The solution is simple 

 
¢F = m ⁄ cm ⁄ ¢T = 1kg ⁄ 4182J=kg=K ⁄ 10K = 41820J: 

 
 
 

When a system goes from one phase to another, there will 

generally be a region where the system is neither in one phase 

nor the other. This is known as a phase transition and the regime 

where the two phases coexist is called the critical regime. 

Familiar examples of phase transitions are melting (solid to 

liquid), freezing (liquid to solid), boiling (liquid to gas), and 

condensation (gas to liquid). A beautiful example where the the 

two phases coexist is in water, when it starts to boil or when a 

liquid get opalescent. During a transition, the heat capacity may 

become inflnite, jump abruptly to a difierent value, or exhibit a 

"kink" or discontinuity in its derivative.  



In practice, each type of phase is distinguished by a handful of 

relevant thermodynamic properties. For example, the 

distinguishing feature of a solid is its rigidity; unlike a liquid or a 

gas, a solid does not easily change its shape. Liquids are distinct 

from gases because they have much lower compressibility: a gas 

in a large container fllls the container, whereas a liquid forms a 

puddle in the bottom.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.18: The phase diagram of an ordinary material. 
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The difierent phases of a system may be represented using a 

phase diagram. The axes of the diagrams are the relevant 

thermodynamic variables. For simple mechanical systems, we 

generally use the pressure and temperature. The following flgure 

shows a phase diagram for a typical material exhibiting solid, 

liquid and gaseous phases. In flg 1.2.7 we plot a phase diagram 

of an ordinary substance. At low temperatures, almost any 

material becomes solid. At ambient pressure it usually 

transforms into a liquid and increasing the temperature even 

further, it becomes a gas. If one reduces the pressure, the liquid 

phase might vanish and there is a transition directly from the 

solid to the gas-phase.  
In the above diagram, the phase boundary between liquid and 

gas does not continue indef-initely. Instead, it terminates at a 

point on the phase diagram called the critical point. This re°ects 

the fact that, at extremely high temperatures and pressures, the 

liquid and gaseous phases become indistinguishable. In water, 

the critical point occurs at around 647 K (374 C or 705 F) and 

22.064 MPa.  
The existence of the liquid-gas critical point reveals a slight 

ambiguity in our above deflnitions. When going from the liquid 

to the gaseous phase, one usually crosses the phase boundary, 

but it is possible to choose a path that never crosses the 

boundary by going to the right of the critical point. Thus, phases 

can sometimes blend continuously into each other. We should 

note, however, that this does not always happen. For example, it 

is impossible for the solid-liquid phase boundary to end in a 

critical point in the same way as the liquid-gas boundary, 

because the solid and liquid phases have difierent symmetry.  
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 1.19: The phase diagram of water. 
 

An interesting thing to note is that the solid-liquid phase 

boundary in the phase diagram of most substances, such as the 

one shown above, has a positive slope. This is due to the solid 

phase having a higher density than the liquid, so that increasing 

the pressure increases the melting temperature. However, in the 

phase diagram for water the solid-liquid phase boundary has a 

negative slope. This re°ects the fact that ice has a lower density 

than water, which is an unusual property for a material.  
To take another example, many substances can exist in a 

variety of solid phases each corre-sponding to a unique crystal 

structure. These varying crystal phases of the same substance are 

called polymorphs. Diamond and graphite are examples of 

polymorphs of carbon. Graphite is composed of layers of 

hexagonally arranged carbon atoms, in which each carbon atom 

is strongly bound to three neighboring atoms in the same layer 

and is weakly bound to atoms in the neigh-boring layers. By 

contrast in diamond each carbon atom is strongly bound to four 

neighboring carbon atoms in a cubic array. The unique crystal 

structures of graphite and diamond are responsible for the vastly 

difierent properties of these two materials.  
Metastable states may sometimes be considered as phases, 

although strictly speaking they aren‟t because they are unstable. 

For example, each polymorph of a given substance is usually 

 
20 



 
 

only stable over a speciflc range of conditions. For example, 

diamond is only stable at extremely high pressures. Graphite is 

the stable form of carbon at normal atmospheric pressures. 

Although diamond is not stable at atmospheric pressures and 

should transform to graphite, we know that diamonds exist at 

these pressures. This is because at normal temperatures the 

transformation from diamond to graphite is extremely slow. If 

we were to heat the diamond, the rate of transformation would 

increase and the diamond would become graphite. However, at 

normal temperatures the diamond can persist for a very long 

time.  
Another important example of metastable polymorphs occurs 

in the processing of steel. Steels are often subjected to a variety 

of thermal treatments designed to produce various combinations 

of stable and metastable iron phases. In this way the steel 

properties, such as hardness and strength can be adjusted by 

controlling the relative amounts and crystal sizes of the various 

phases that form. 

 
1.3 Ideal gasses 
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Any liquid or solid material, heated up above its boiling point, 

undergoes a transition into a gaseous state. For some materials 

such as aluminium, one has to heat up to three thousand degrees 

Celsius (
–
C), whereas Helium is a gas already at -269 

–
C. For 

more examples see Table 1.1. As we flnd very strong bonding 

between the atoms in a solid material, a gas consists of 

molecules which do interact very poorly. If one forgets about 

any electrostatic or intermolecular attractive forces between the 

molecules, one can assume that all collisions are perfectly 

elastic. One can visualize the gas as a collection of perfectly 

hard spheres which collide but which otherwise do not interact 

with each other. In such a gas, all the internal energy is in the 

form of kinetic energy and any change in internal energy is 

accompanied by a change in temperature. Such a gas is called an 

ideal gas.  
In order for a gas to be described as an ideal gas, the 

temperature should be raised far enough above the melting point. 

A few examples of ideal gases at room temperature are Helium, 

Argon and hydrogen. Despite the fact that there are only a few 

gases which can be accurately described as an ideal gas, the 

underlying theory is widely used in Physics because of its beauty 

and simplicity.  
A thermodynamic system may have a certain substance or 

material whose quantity can be expressed in mass or mols in an 

overall volume. These are extensive properties of the system. In 

the following we will be considering often intensive versus 

extensive quantities. A material‟s intensive property, is a 

quantity which does not depend on the size of the material, such 

as temperature, pressure or density. Extensive properties like 

volume, mass or number of atoms on the other hand gets bigger 

the bigger the material is (see Table 1.2 for various 

intensive/extensive properties). If the substance is evenly 

distributed throughout the volume in question, then a 
 
 

21 



 
 

Material 

Temperature in 

Celsius 

Temperature in 

Kelvin 
Aluminiu

m 2467 
–
C 2740 K 

Water 100 
–
C 373.15 K 

Ethyl 

alcohol 78.5 
–
C 351.6 K 

Methyl 

ether -25 
–
C 248 K 

Nitrogen -195.8 
–
C 77.3 K 

Helium -268.9 
–
C 4.2 K 

 
Table 1.1: Boiling points for various materials in degrees Celsius and 

in Kelvin 
 

quantity unit 

intensive or 

extensive 
pressure p Pa intensive 
volume V m3 extensive 

molar volume 
vmol 

m
3
/mo
l intensive 

temperature T K intensive 

mass M kg extensive 

density ‰ kg/m
3 intensive 

internal 

energy E J extensive 

   
 

Table 1.2: Intensive versus extensive properties of matter 

 

value of volume per amount of substance may be used as an 

intensive property. For an example, for an amount called a mol, 

volume per mol is typically called molar volume. Also, a volume 

per mass for a speciflc substance may be called speciflc volume. 

In the case of an ideas gas, a simple equation of state relates the 

three intensive properties, temperature, pressure, and molar or 

speciflc volume. Hence, for a closed system containing an ideal 



gas, the state can be specifled by giving the values of any two of 

pressure, temperature, and molar volume. 
 

1.3.1 Equation of state 
 

The ideal gas can be described with a single equation. However, 

in order to arrive there, we will be introducing three difierent 

equations of state, which lead to the ideal gas law. The 

combination of these three laws leads to a complete picture of 

the ideal gas.  
1661 - Robert Boyle used a U-tube and Mercury to develop a 

mathematical relationship between pressure and volume. To a 

good approximation, the pressure and volume of a flxed amount 

of gas at a constant temperature were related by 
 

p ¢ V = constant 
 

p : pressure 

(P a) V : 

Volume (m
3
) 

 
In other words, if we compress a given quantity of gas, the 

pressure will increase. And if we put it under pressure, the 

volume of the gas will decrease proportionally. 
 
 

Worked Example 11 
 

compressed Helium gas 
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Figure 1.20: Pressure-Volume diagram for the ideal gas at constant 

temperature. 
 
 

A sample of Helium gas at 25
–
C is compressed from 200 

cm
3
 to 0.240 cm

3
. Its pressure is now 3.00 cm Hg. What 

was the original pressure of the Helium? Solution:  
It‟s always a good idea to write down the values of all 

known variables, indicating whether the values are for 

initial or flnal states. Boyle‟s Law problems are 

essentially special cases of the Ideal Gas Law:  
Initial: p1 = ?; V1 = 200 cm

3
; 

Final: p2 = 3.00 cm Hg; V2 = 0.240 cm
3
;  

Since the number of molecules stays constant and the 

temperature is not changed along the process, so 
 

p1 ¢ V1 = p2 ¢ V2  
hence 

 



p1 = p2 ¢ V2=V1 = 3:00cmHg ¢ 

0:240cm
3
=200cm

3
 Setting in the values 

yields p1 = 3.60 ¢ 10
¡3

 cm Hg. 

Did you notice that the units for the pressure are in cm Hg? 

You may wish to convert 

this to a more common unit, such as millimeters of mercury, 

atmospheres, or pascals. 
3.60 ¢ 10

¡3
 Hg ¢ 10mm/1 cm = 3.60 ¢ 10

¡2
 mm Hg  

3.60 ¢ 10
¡3

 Hg ¢ 1 atm/76.0 cm Hg = 4.74 ¢ 10
¡5

 atm 
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One way to experience this is to dive under water. There is air 

in your middle ear, which is normally at one atmosphere of 

pressure to balance the air outside your ear drum. The water will 

put pressure on the ear drum, thereby compressing the air in 

your middle ear. Divers must push air into the ear through their 

Eustacean tubes to equalize this pressure. 
 
 
 

Worked Example 12 
 

pressure in the ear of a diver 
 

How deep would you have to dive before the air in your 

middle ear would be com-pressed to 75% of its initial 

volume? Assume for the beginning that the temperature 

of the sea is constant as you dive. 

Solution: 

First we write down the pressure as a function of height h: 
 

p = p0 + ‰ ¢ g ¢ h 
 

where we take for p0 the atmospheric pressure at height h 

= 0, ‰ is the density of water at 20 degrees Celsius 

998.23 kg/m
3
, g = 9.81 ms

¡2
. 

 
As the temperature is constant, it holds for both heights h 

 
p0 ¢ V0 = (p0 + ‰gh) ¢ Ve 

 
Now solving for h using the fact that 

 
Ve=V0 = 0:75 

 
yields  

h = (0:75 ⁄ p0 ¡ p0)=(‰g)  
Now, how far can the diver dive down before the membranes 

of his ear brake. 
 

Solution: 



As the result is negative, h determines the way he can 

dive down. h is given as roughly 2.6 m. 
 
 
 

In 1809, the French chemist Joseph-Louis Gay-Lussac 

investigated the relationship between the Pressure of a gas and 

its temperature. Keeping a constant volume, the pressure of a gas 

sample is directly proportional to the temperature. Attention, the 

temperature is measured in Kelvin! The mathematical statement 

is as follows: 
 

p1=T1 = p2=T2 = constant 
 

p1

;2 : 

pressures (P 

a) 

T1

;2 : 

Temperature

s (K) 
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Figure 1.21: Pressure-temperature diagram for the ideal gas at 

constant volume. 

 
That means, that pressure divided by temperature is a 

constant. On the other hand, if we plot pressure versus 
temperature, the graph crosses 0 pressure for T = 0 K = -273.15 

–

C as shown in the following flgure. That point is called the 
absolute Zero. That is where any motion of molecules, electrons 
or other particles stops. 

 
 

Worked Example 13 
 

Gay-Lussac 



 
Suppose we have the following problem:  
A gas cylinder containing explosive hydrogen gas has a 

pressure of 50 atm at a temperature of 300 K. The 

cylinder can withstand a pressure of 500 atm before it 

bursts, causing a building-°attening explosion. What is 

the maximum temperature the cylinder can withstand 

before bursting? Solution: Let‟s rewrite this, identifying 

the variables:  
A gas cylinder containing explosive hydrogen gas has a 
pressure of 50 atm (p1) at a temperature of 300 K (T1). 
The cylinder can withstand a pressure of 500 atm (p2) 
before it bursts, causing a building-°attening explosion. 
What is the maximum temperature the cylinder can 
withstand before bursting?  
Plugging in the known variables into the expression for the 

Gay-Lussac law yields 
 

T2 = p2=p1 ⁄ T1 = 500atm=50atm ⁄ 

300K = 3000K we flnd the answer to be 3000 

K. 

 
25 



 
 
 
 
 

The law of combining volumes was interpreted by the Italian 

chemist Amedeo Avogadro in 1811, using what was then known 

as the Avogadro hypothesis. We would now properly refer to it 

as Avogadro‟s law:  
Equal volumes of gases under the same conditions of 

temperature and pressure contain equal numbers of molecules.  
This can be understood in the following. As in an ideal gas, all 

molecules are considered to be tiny particles with no spatial 
extension which collide elastically with each other. So, the kind 
of gas is irrelevant. Avogadro found that at room temperature, in 
atmospheric pressure the volume of a mol of a substance, i.e. 
6.022¢10

23
 molecules or atoms, occupies the volume of 22.4 l.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.22: Two difierent gases occupying the same volume under 

the same circumstances. 
 

Combination of the three empirical gas laws, described in the 

preceding three sections leads to the Ideal Gas Law which is 

usually written as: 
 

p ¢ V = n ¢ R ¢ T 
 



p : pressure 
(P a) V : 
Volume (m

3
) 

n  : number of mols (mol) 

R  : gas konstant (J=molK)  
T   : temperature (K) 

 
where p = pressure, V = volume, n = number of mols, T = 

kelvin temperature and R the ideal gas constant.  
The ideal gas constant R in this equation is known as the 

universal gas constant. It arises from a combination of the 

proportionality constants in the three empirical gas laws. The 

universal 
 
 

26 



 
 

gas constant has a value which depends only upon the units in 

which the pressure and volume are measured. The best available 

value of the universal gas constant is: 

8.3143

510 

 J or 

8.314351

0 

kP 
adm3   

molK molK     
Another value which is sometimes convenient is 0.08206 dm

3
 

atm/mol K. R is related to the 
Boltzmann-constant 

as:    

     R = N0 ¢ kB (1.21) 
where N0 is the number of molecules in a mol of a substance, 

i.e. 6.022¢10
23

 and kB is 1.308¢10
¡23

 J/K is valid for one single 
particle. 

This ideal gas equation is one of the most used equations in 

daily life, which we show in the following problem set: 
 
 
 

Worked Example 14 
 

ideal gas 1 
 

A sample of 1.00 mol of oxygen at 50 
–
C and 98.6 kPa 

occupies what volume? 
Solution:  
We solve the ideal gas equation for the volume  

V = 

n

R

T 

p 

 
and plug in the values n = 1, T = 273.15 + 50 K = 323.15 
K and p = 98.6¢10

3
 Pa, yielding for the volume V = 

0.0272 m
3
 = 27.2 dm

3
. 

 



 
This equation is often used to determine the molecular masses 

from gas data. 
 
 
 

Worked Example 15 
 

ideal gas 2 
 

A liquid can be decomposed by electricity into two 

gases. In one experiment, one of the gases was collected. 

The sample had a mass of 1.090 g, a volume of 850 ml, a 

pressure of 746 torr, and a temperature of 25 
–
C. 

Calculate its molecular mass. 
Solution: 
To calculate the molecular mass we need the number of 

grams and the number of mols. We can get the number 

of grams directly from the information in the question. 

We can calculate the mols from the rest of the 

information and the ideal gas equation. 
 

V = 850mL = 0:850L = 0:850dm
3
  

P = 746torr=760torr = 

0:982atm T = 25:0
–
C 

+ 273:15 = 298:15K 
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pV = nRT 
 

(0:982atm)(0:850L) = (n)(0:0821Latmmol ¡ 1K ¡ 1)(298:15K) 
 

n = 0:0341mol 
 

molecular mass = g/mol = 1.090 g/ 0.0341 mol = 31.96 g/mol. The 

gas is oxygen. 
 
 
 

Or the equation can be comfortably used to design a gas 

temperature controller: 
 
 
 

Worked Example 16 
 

ideal gas 3 
 

In a gas thermometer, the pressure needed to flx the 

volume of 0.20 g of Helium at 0.50 L is 113.3 kPa. What 

is the temperature? 

Solution:  
We transform flrst need to flnd the number of mols for 

Helium. Helium consists of 2 protons and 2 neutrons in 

the core (see later) and therefore has a molar volume of 4 

g/mol. Therefore, we flnd 
 

n = 0:20g=4g=mol = 0:05mol 
 

plugging this into the ideal gas equation and solving for the 

temperature T we flnd: 
 

T 

= 

p

V 

= 

113:3 ¢ 10
3
P a ¢ 0:5 

¢ 10
¡3

m
3 

= 

136:3

K 
n
R 

0:05mol ¢ 

8:314J=molK     
The temperature is 136 Kelvin. 

 
 
 



1.3.2 Kinetic theory of gasses 
 

The results of several experiments can lead to a scientiflc law, 

which describes then all experi-ments performed. This is an 

empirical, that is based on experience only, approach to Physics. 

A law, however, only describes results; it does not explain why 

they have been obtained. Signif-icantly stronger, a theory is a 

formulation which explains the results of experiments. A theory 

usually bases on postulates, that is a proposition that is accepted 

as true in order to provide a basis for logical reasoning. The 

most famous postulate in Physics is probably the one formulated 

by Walter Nernst which states that if one could reach absolute 

zero, all bodies would have the same entropy.  
The kinetic-molecular theory of gases is a theory of great 

explanatory power. We shall see how it explains the ideal gas 

law, which includes the laws of Boyle and of Charles; Dalton‟s 

law of partial pressures; and the law of combining volumes.  
The kinetic-molecular theory of gases can be stated as four 

postulates: 
 

† A gas consists of particles (atoms or molecules) in continuous, 

random motion. 
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† Gas molecules in°uence each other only by collision; they 

exert no other forces on each other. 
 

† All collisions between gas molecules are perfectly elastic; all 

kinetic energy is conserved. 
 

† The average energy of translational motion of a gas particle 

is directly proportional to temperature. 
 

In addition to the postulates above, it is assumed that the 

volumes of the particles are negligible as compared to container 

volume.  
These postulates, which correspond to a physical model of a 

gas much like a group of billiard balls moving around on a 

billiard table, describe the behavior of an ideal gas. At room 

temper-atures and pressures at or below normal atmospheric 

pressure, real gases seem to be accurately described by these 

postulates, and the consequences of this model correspond to the 

empirical gas laws in a quantitative way. 
We deflne the average kinetic energy of translation Et of a 
particle in a gas as 

 

Et = 1=2 ¢ mv
2 

(1.22) 

where m is the mass of the particle with average velocity v. 

The forth postulate states that the average kinetic energy is a 

constant deflning the temperature, i.e. we can formulate 
 

Et = 1=2 ¢ mv
2
 = c ¢ T (1.23) 

where the temperature T is given in Kelvin and c is a constant, 
which has the same value for all gases. As we have 3 difierent 
directions of motion and each possible movement gives kBT , we 
flnd for the energy of a particle in a gas as 

 

Et = 1=2 ¢ 

mv
2 

= 3=2kBT 

= 3=2 

R 

T (1.24) 

 
N
A 



Hence, we can flnd an individual gas particle‟s speed rms = 

root mean square, which is the average square root of the speed 

of the individual particles (flnd u)  

vrms = 
r 
3RT 

(1.25) Mmol  
where Mmol is the molar mass, i.e. the mass of the particle m 

times the Avogadro number NA. 
 
 
 

Worked Example 17 
 

kinetic theory 1 
 
Calculate the root-mean-square velocity of oxygen molecules at room 

temperature,  
25 

–

C. 
Soluti
on: 
Using  

p  
vrms = 3RT =Mmol  ; 

 
 

29 



 
 

the molar mass of molecular oxygen is 31.9998 g/mol; 
the molar gas constant has the value 8.3143 J/mol K, and 
the temperature is 298.15 K. Since the joule is the 
kg¢m

2
¢s

¡2
, the molar mass must be expressed as 

0.0319998 kg/mol. The root-mean-square velocity is 
then given by:  

p  
vrms = 3(8:3143)(298:15)=(0:0319998) = 482:1m=s 

 
A speed of 482.1 m/s is 1726 km/h, much faster than a 

jetliner can °y and faster than most ri°e bullets. 
 
 
 

The very high speed of gas molecules under normal room 

conditions would indicate that a gas molecule would travel 

across a room almost instantly. In fact, gas molecules do not do 

so. If a small sample of the very odorous (and poisonous!) gas 

hydrogen sulflde is released in one corner of a room, our noses 

will not detect it in another corner of the room for several 

minutes unless the air is vigorously stirred by a mechanical fan. 

The slow difiusion of gas molecules which are moving very 

quickly occurs because the gas molecules travel only short 

distances in straight lines before they are de°ected in a new 

direction by collision with other gas molecules.  
The distance any single molecule travels between collisions 

will vary from very short to very long distances, but the average 

distance that a molecule travels between collisions in a gas can 

be calculated. This distance is called the mean free path l of the 

gas molecules. If the root-mean-square velocity is divided by the 

mean free path of the gas molecules, the result will be the 

number of collisions one molecule undergoes per second. This 

number is called the collision frequency Z1 of the gas molecules.  
The postulates of the kinetic-molecular theory of gases permit 

the calculation of the mean free path of gas molecules. The gas 
molecules are visualized as small hard spheres. A sphere of 
diameter d sweeps through a cylinder of cross-sectional area … ¢ 



(d=2)
2
 and length vrms each second, colliding with all molecules 

in the cylinder.  
The radius of the end of the cylinder is d because two 

molecules will collide if their diameters overlap at all. This 

description of collisions with stationary gas molecules is not 

quite accurate, however, because the gas molecules are all 

moving relative to each other. Those relative velocities 
range between zero for two molecules moving in the same 
direction and 2vrms for a head-on 
collision. The average relative velocity is that of a 

collision at right angles, which is p 

 vr

ms. 2 
The total number of collisions per second per unit volume, 

Z1, is    

Z1 = 

…d
2p 

 

vrms (1.26) 2 
This total number of collisions must now be divided by the 

number of molecules which are present per unit volume. The 
number of gas molecules present per unit volume is found by 
rearrangement of the ideal gas law to n=V = p=RT and use of 
Avogadro‟s number, n = N=NA; thus N=V = pNA=RT . This 
gives the mean free path of the gas molecules, l, as  

p  
(urms=Z1)=(N=V ) = l = RT =…d

2
pNA 2

 (1.27)  
According to this expression, the mean free path of the 

molecules should get longer as the temperature increases; as the 

pressure decreases; and as the size of the molecules decreases. 
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Worked Example 18 
 

mean free path 
 

Calculate the length of the mean free path of oxygen 
molecules at room temperature, 25 

–
C, taking the 

molecular diameter of an oxygen molecule as 370 pm. 
Solution:  
Using the formula for mean free path given above and 
the value of the root-mean-square velocity urms,  

(8:3143kgm
2
s

¡2
=Kmol)(298:15K) 

l
 
= 

…(370 ¢ 10
¡12

m)2(101325kg=ms
2
)(6:0225 ¢ 

10
23

mol
¡1

)
p
2 

; 

  
so l = 6.7¢10

¡8
 m = 67 nm. 

 
 

The apparently slow difiusion of gas molecules takes place 
because the molecules travel only a very short distance before 
colliding. At room temperature and atmospheric pressure, 
oxygen molecules travel only (6.7¢10

¡8
 m)/(370¢10

¡12
 m) = 180 

molecular diameters between collisions. The same thing can be 
pointed out using the collision frequency for a single molecule 
Z1, which is the root-mean-square velocity divided by the mean 
free path:  

  …d
2
p

NA p 

   

Z

1 = 

2 

= vrms=l (1.28)  
=R
T 

  

       
 

For oxygen at room temperature, each gas molecule collides 
with another every 0.13 nanosec-onds (one nanosecond is 
1.0¢10

¡9
 s), since the collision frequency is 7.2¢10

+9
 collisions 

per second per molecule.  
For an ideal gas, the number of molecules per unit volume is 

given using pV = nRT and n 
= N=NA as 

 
N=V = NAp=RT (1.29) 

 



which for oxygen at 25 
–
C would be (6.022¢10

23
 

mol
¡1

)(101325 kg/m s
2
) / (8.3143 kg m

2
/s

2
 K mol)(298.15 K) or 

2.46¢10
25

 molecules/m
3
. The number of collisions between two 

molecules in a volume, Z11, would then be the product of the 
number of collisions each molecule makes times the number of 
molecules there are, Z1N=V , except that this would count each 
collision twice (since two molecules are involved in each one 
collision). The correct equation must be 

…d
2
p

2
N

2
 
p
2vrms  

Z11 = A (1.30)  
2R

2
T

2 
 

If the molecules present in the gas had difierent masses they 
would also have difierent speeds, so an average value of vrms 
would be using a weighted average of the molar masses; the 
partial pressures of the difierent gases in the mixture would also 
be required. Although such calculations involve no new 
principles, they are beyond our scope. 
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1.3.3 Pressure of a gas 
 

In the kinetic-molecular theory of gases, pressure is the force 

exerted against the wall of a container by the continual collision 

of molecules against it. From Newton‟s second law of motion, 

the force exerted on a wall by a single gas molecule of mass m 

and velocity v colliding with it is: 
 

F = m ¢ a 

= m 

¢v 

(1.31) ¢t   
In the above equation, the change in a quantity is indicated by 

the symbol ¢, that means by changing the time t by a fraction, 

we change the velocity v by some other minimal amount. It is 

assumed that the molecule rebounds elastically and no kinetic 

energy is lost in a perpendicular collision, so ¢v = v - (-v) = 2v 

(see flgure below). If the molecule is moving perpendicular to 

the wall it will strike the opposite parallel wall, rebound, and 

return to strike the original wall again. If the length of the 

container or distance between the two walls is the path length l, 

then the time between two successive collisions on the same 

wall is ¢t = 2l/v. The continuous force which the molecule 

moving perpendicular to the wall exerts is therefore  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.23: Change in momentum as a particle hits a wall. 

 

F = 

m 

2v 

= 

mv
2 

(1.32) 2l l 



 =v    
The molecules in a sample of gas are not, of course, all 

moving perpendicularly to a wall, but the components of their 

actual movement can be considered to be along the three 

mutually perpendicular x, y, and z axes. If the number of 

molecules moving randomly, N, is large, then on the average 

one-third of them can be considered as exerting their force along 

each of the three perpendicular axes. The square of the average 

velocity along each axis, v
2
(x), v

2
(y), or v

2
(z), will be one-third of 

the square of the average total velocity v
2
: 

 
v

2
(x) = v

2
(y) = v

2
(z) = v

2
=3 (1.33)  

The average or mean of the square of the total velocity can 

replace the square of the perpen-dicular velocity, and so for a 

large number of molecules N, 
 

F = 

(N=3) 

m

v
2 

(1.34) 

l    
Since pressure is force per unit area, and the area of one side 

of a cubic container must be l
2
, the pressure p will be given by 

F=l
2
 as: 
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p = 

(N=3) 

mv
2 

 

(1.35) 

l
3   

This equation rearranges to    

pV = N ¢ mv
2
=3 (1.36) 

because volume V is the cube of the length l. The form of the 

ideal gas law given above shows the pressure-volume product is 

directly proportional to the mean-square velocity of the gas 

molecules. If the velocity of the molecules is a function only of 

the temperature, and we shall see in the next section that this is 

so, the kinetic-molecular theory gives a quantitative explanation 

of Boyle‟s law. 
 
 
 

Worked Example 19 
 

gas pressure 
 

A square box contains He (Helium) at 25 
–
C. If the 

atoms are colliding with the walls perpendicularly (at 90
–

) at the rate of 4.0 ¢ 10
22

 times per second, calculate the 
force (in Newtons) and the pressure exerted on the wall 
per mol of He given that the area of the wall is 100 cm

2
 

and the speed of the atoms is 600 ms
¡1

. 
Solution:  
We use the equation 1.34 

to calculate 
 

F = (N=3) 

 
the force. 
 
mv2 

= (N=3)mv 
v 

 
l l 

 
The fraction v=l is the collision frequency Z1 = 0.6679 

s
¡1

. The product of N ¢ Z1 is the number of molecules 

impinging on the wall per second. This induces for the 

force: 
 

F = (N=3)mv¿ = 6:022 

¢ 1023=3 ¢ 

0:004g

=mol 

¢ 600m=s ¢ 

0:6679s
¡1 



 

 
6:022 ¢ 
10

23 

yielding for the force F = 0.534 N. The pressure is the force per 
area: 

 
p = F=A = 0:534N=0:01m

2
 = 53:4P a:  

The calculated force is 0.534 N and the resulting pressure is 

53.4 Pa. 
 
 
 

1.3.4 Kinetic energy of molecules 
 

In the following, we will make the connection between the 

kinetic theory and the ideal gas laws. We will flnd that the 

temperature is an important quantity which is the only intrinsic 

parameter entering in the kinetic energy of a gas.  
We will consider an ensemble of molecules in a gas, where 

the molecules will be regarded as rigid large particles. We 

therefore neglect any vibrations or rotations in the molecule. 

Hence, making this assumption, Physics for a molecular gas is 

the same as for a single atom gas. 
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The square of the velocity is sometimes di–cult to conceive, 
but an alternative statement can be given in terms of kinetic 
energy. The kinetic energy Ek of a single particle of mass m 
moving at velocity v is mv

2
=2. For a large number of molecules 

N, the total kinetic energy Ek will depend on the mean-square 
velocity in the same way: 

 
Ek = N ¢ mv

2
=2 = n ¢ M 

v
2
=2 (1.37) 

The second form is on a molar basis, since n = N=NA and the 
molar mass M= mNA where 

NA is Avogadro‟s number 6.022¢10
23

. The ideal gas law then 

appears in the form:  
pV = 2Ek=3 (1.38)  

Compare pV = nM v
2
=2. This statement that the pressure-

volume product of an ideal gas is directly proportional to the 
total kinetic energy of the gas is also a statement of Boyle‟s law, 
since the total kinetic energy of an ideal gas depends only upon 
the temperature.  

Comparison of the ideal gas law, pV = nRT , with the kinetic-
molecular theory expression pV = 2Ek=3 derived in the previous 
section shows that the total kinetic energy of a collection of gas 
molecules is directly proportional to the absolute temperature of 
the gas. Equating the pV term of both equations gives 

 
Ek = 3=2nRT  ; (1.39)  

which rearranges to an explicit expression for temperature, 
 

T 

= 

2  

E

k 

= 

M 

v
2 

(1.40) 
3R 
n 3R    

We see that temperature is a function only of the mean kinetic 
energy Ek, the mean molecular velocity v, and the mean molar 
mass M. 

 
 

Worked Example 20 
 

mean velocity 1 



 
Calculate the kinetic energy of 1 mol of nitrogen molecules at 

300 K?  
Solution: 

Assume nitrogen behaves as an ideal gas, then 
 

Ek = 3=2 ¢ RT = (3=2)8:3145J=(molK) ¢ 300K = 

3742J=mol(or3:74kJ=mol) 
 

At 300 K, any gas that behaves like an ideal gas has the same 

energy per mol. 
 
 

As the absolute temperature decreases, the kinetic energy 

must decrease and thus the mean velocity of the molecules must 

decrease also. At T = 0, the absolute zero of temperature, all 

motion of gas molecules would cease and the pressure would 

then also be zero. No molecules would be moving. 

Experimentally, the absolute zero of temperature has never been 

attained, although modern experiments have extended to 

temperatures as low as 1 „K.  
However, at low temperatures, the interactions between the 

particles becomes important and we enter a new regime of 

Quantum Mechanics, which considers molecules, single atoms 

or protons and electrons simultaneously as waves and as rigid 

particles. However, this would go too far. 
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Worked Example 21 
 

mean velocity 2 
 

If the translational rms. speed of the water vapor 
molecules (H2O) in air is 648 m/s, what is the 
translational rms speed of the carbon dioxide molecules 
(CO2) in the same air? Both gases are at the same 
temperature. And what is the temperature we measure?  
Solution: 
The molar mass of H2O is 

 
MH2O = 2 ¢ 1g=mol + 1 ¢ 16g=mol = 18g=mol 

 
As the temperature is constant we can write  

T = 
M v2

 = 
0:018kg=mol

 
¢
 
(648m=s)2

 = 303:0K = 29:9–C 

3R3 ¢ 8:314J=mol ¢ K   
Now we calculate the molar mass of CO2  

MCO2 = 2 ¢ 16g=mol + 1 ¢ 12g=mol = 44g=mol 
 

The rms velocity is again calculated with eq. 1.40  

vCO2 = 
s 

 R T 

= s 

3  

8:314J=molK  

303:0K  

3 

¢  ¢ ¢ = 

414:5m

=s 

MC

O2   

0:044kg=m

ol  
The experiment was performed at 29.9 

–
C and the speed 

of the CO2-molecules is 414.5 m/s, that is much slower 
than the water molecules as they are much heavier. 

 
 
 

1.4 Temperature 
 

Let us look back to the equation for the temperature of an ideal gas, 
 

T 

= 

 

2 

Ek 

(1.41) 
    
 3R 



 n   
We can see that temperature is proportional to the average 

kinetic energy of a molecule in the gas. In other words 

temperature is a measure of how much energy is contained in an 

object { in hot things the atoms have a lot of kinetic energy, in 

cold things they have less. It may be surprising that „hot‟ and 

„cold‟ are really just words for how fast molecules or atoms are 

moving around, but it is true. 
 
 

Deflnition: Temperature is a measure of the average 

kinetic energy of the particles in a body. 
 

It should now be clear that heat is nothing more than energy on the 

move. It can be carried 
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waterice 
 

Figure 1.24: A heat °ow diagram showing the heat °owing from 

the warmer water into the cooler ice cube. 

 
by atoms, molecules or electromagnetic radiation but it is always 

just transport of energy. This is very important when we 

describe movement of heat as we will do in the following 

sections. „Cold‟ is not a physical thing. It does not move from 

place to place, it is just the word for a lack of heat, just like dark 

is the word for an absence of light. 
 
 

1.4.1 Thermal equilibrium 
 

Now that we have deflned the temperature of an isolated object 

(usually referred to as a body) we need to consider how heat will 

move between bodies at difierent temperatures. Let us take two 

bodies; A which has a flxed temperature and B whose 

temperature is allowed to change. If we allow heat to move 

between the two bodies we say they are in thermal contact.  
First let us consider what happens if B is cooler than A. 

Remember { we have flxed the temperture of A so we need only 

worry about the temperature of B changing. An example of such 

a situation is an ice cube being dropped into a large pan of 

boiling water on a flre. The water temperature is flxed i.e. does 

not change, because the flre keeps it constant. It should be 

obvious that the ice cube will heat up and melt. In physical terms 

we say that the heat is °owing out of the (warmer) boiling water, 



into the (cooler) ice cube. This °ow of heat into the ice cube 

causes it to warm up and melt. In fact the temperature of any 

cooler object in thermal contact with a warmer one will increase 

as heat from the warmer object °ows into it. 
 

The reverse would be true if B were warmer than A. We can 

now picture putting a small amount of warm water in to a 

freezer. If we come back in an hour or so the water will have 

cooled down and possibly frozen. In physical terms we say that 

the heat is °owing out of the (warmer) water, into the (cooler) air 

in the freezer. This °ow of heat out of the ice cube in to the 

aircauses it to cool down and (eventually) freeze. Again, any 

warm object in thermal contact with a cooler one will cool down 

due to heat °owing out of it.  
There is one special case which we have not yet discussed { 

what happens if A and B are at the same temperature? In this 

case B will neither warm up nor cool down, in fact, its 

temperature will remain constant. When two bodies are at the 

same temperature we say that they are in thermal equilibrium. 

Another way to express this is to say that two bodies are in 

thermal equi-librium if the particles within those bodies have the 

same average kinetic energies. 
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Figure 1.25: A heat °ow diagram showing the heat °owing from 

the warmer water into the cooler air in the fridge. 

 

Convince yourself that the last three paragraghs are correct 

before you continue. You should notice that heat always °ows 

from the warmer object to the cooler object, never the other way 

around. Also, we never talk about coldness moving as it is not a 

real physical thing, only a lack of heat. Most importantly, it 

should be clear that the °ow of heat between the two objects 

always attempts to bring them to the same temperature (or in 

other words, into thermal equilibrium). The logical conclusion of 

all this is that if two bodies are in thermal contact heat will °ow 

from the hotter object to the cooler one until they are in thermal 

equilibrium (i.e. at the same tem-perature). We will see how to 

deal with this if the temperature of object A is not flxed in the 

section on heat capacities. 
 
 

1.4.2 Temperature scales 
 

Temperature scales are often confusing and even university level 

students can be tricked into using the wrong one. For most 

purposes in physics we do not use the familiar celcius (often 

innaccurately called centigrade) scale but the closely related 



absolute (or kelvin) scale { why? Let us think about the celcius 

scale now that we have deflned temperature as a measure of the 

average kinteic energy of the atoms or molecules in a body.  
A scale is a way of assigning a number to a physical quantity. 

Consider distance { using a ruler we can measure a distance and 

flnd its legnth. This legnth could be measured in metres, inches, 

or miles. The same is true of temperatures in that many difierent 

scales exist to measure them. Table 1.3 shows a few of these 

scales. Just like a ruler the scales have two deflned points which 

flx the scale (consider the values at the beginning and end of the 

ruler e.g. 0cm and 15cm). This is usually achieved by deflning 

the temperature of some physical process, e.g. the freezing point 

of water.  
Armed with our knowledge of temperture we can see that 

Celcius‟s scale has a big problem { it allows us to have a 

negative temperature. 
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Scale 

 Symb

ol 

 

Deflnition   

     
Fahrenh
eit  –F  

Temperature at which an equal mixture of ice 
and salt melts = 0

–
F 

    Temperature of blood = 96
–
F 

Celcius  –C  Temperature at which water freezes = 0
–
C 

    Temperature at which water boils = 100
–
C 

Kelvin  K  Absolute zero is 0 K 

    Triple point of water is 273:16 K 

     
 

Table 1.3: The most important temperature scales. 
 
 

We found that temperature is a measure of the average kinetic 

energy of the particles in a body. Therefore, a negative 

temperature suggests that that the particles have negative kinetic 

energy. This can not be true as kinetic energy can only be 

positive. Kelvin addressed this problem by redeflning the zero of 

the scale. He realised that the coldest temperature you could 

achieve would be when the particles in a body were not moving 

at all. There is no way to cool something further than this as 

there is no more kinetic energy to remove from the body. This 

temperature is called absolute zero. Kelvin chose his scale so 

that 0K was the same as absolute zero and chose the size of his 

degree to be the same as one degree in the celcius scale. 
 
 
 

Interesting 
Rankine did a similar thing to Kelvin but set his degree to be 
the same size as one degree 

Fact: 
fahrenheit. Unfortunately for him, almost everyone 

preferred Kelvin‟s absolute scale and the rankine scale is 

now hardly ever used! 
 
 



 
It turns out that the freezing point of water, 0

–
C, is equal to 

273:15 K. So, in order to convert from celcius to kelvin need to 
subtact 273.15. 

 
 

Deflnition: T (K) = T (
–
C) ¡ 273:15 

 
 

1.4.3 Practical thermometers 
 

It is often important to be able to determine an object‟s 

temperature precisely. This can be a challenge at very high or 

low tempertures or in inaccesible places. Consider a scientist 

who wishes to know how hot the magma in a volcano is. They 

are not going to be able to just lower a thermometer in to the 

magma as it will just melt as it reaches the superheated rock.  
We will now look at some less extreme situations and show how 

a variety of thermometry tech-niques can be developed. 

Consider flrst the gas cylinder which we tried to explode in 

worked example 7 by heating it while sealed. We decided that 

we would need to heat it to around 3000K before it explodes. 

How can we check this experimentally? In a sealed gas cylinder 

the volume of the gas and the number of moles of gas remain 

constant as we heat, this is why we could use the Gay-Lussac 

law in example 7. The Gay-Lussac law tells us that pressure is 

directly proportional 
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to temperature for flxed volume and amount of gas. Therefore 

by mesuring the pressure in the cylinder (which can be done by 

fltting a pressure gauge to the top of it) we can indirectly work 

out the temperature.  
This is similar to familiar alcohol or mercury thermometers. In 

these we use the fact that ex-pansion of a liquid as it is heated is 

approximately proportional to temperature so we can use this 

expansion to as a measure of temperature. In fact, any 

thermometer you can imagine uses some physical property 

which varies with temperature to measure it indirectly. 
 
 

1.4.4 Speciflc heat capacity 
 

Conversion of macroscopic energy to microscopic kinetic 

energy thus tends to raise the temper-ature, while the reverse 

conversion lowers it. It is easy to show experimentally that the 

amount of heating needed to change the temperature of a body 

by some amount is proportional to the amount of matter in the 

body. Thus, it is natural to write 
 

¢Q = MC¢T 
 

(23.4)  
where M is the mass of material, ¢Q is the amount of energy 

transferred to the material, and ¢T is the change of the material‟s 

temperature. The quantity C is called the speciflc heat of the 

material in question and is the amount of energy needed to raise 

the temperature of a unit mass of material one degree in 

temperature. C varies with the type of material. Values for 

common materials are given in table 22.2. 
Table 22.2: Speciflc heats of common materials. Material C (J 

kg
¡1

 K
¡1

) brass 385 glass 669 ice 2092 steel 448 methyl alcohol 
2510 glycerine 2427 water 4184 

 
1.4.5 Speciflc latent heat 

 



It can be seen that the speciflc heat as deflned above will be 

inflnitely large for a phase change, where heat is transferred 

without any change in temperature. Thus, it is much more useful 

to deflne a quantity called latent heat, which is the amount of 

energy required to change the phase of a unit mass of a 

substance at the phase change temperature. 
 

1.4.6 Internal energy 
 

In thermodynamics, the internal energy is the energy of a system 

due to its temperature. The statement of flrst law refers to 

thermodynamic cycles. Using the concept of internal energy it is 

possible to state the flrst law for a non-cyclic process. Since the 

flrst law is another way of stating the conservation of energy, the 

energy of the system is the sum of the heat and work input, i.e., 

E = Q + W. Here E represents the heat energy of the system 

along with the kinetic energy and the potential energy (E = U + 

K.E. + P.E.) and is called the total internal energy of the system. 

This is the statement of the flrst law for non-cyclic processes.  
For gases, the value of K.E. and P.E. is quite small, so the 

important internal energy function is U. In particular, since for 

an ideal gas the state can be specifled using two variables, the 

state variable u is given by , where v is the speciflc volume and t 

is the temperature. Thus, by deflnition, , where cv is the speciflc 

heat at constant volume. 
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Internal energy of an Ideal gas 
 

In the previous section, the internal energy of an ideal gas was 

shown to be a function of both the volume and temperature. 

Joule performed an experiment where a gas at high pressure 

inside a bath at the same temperature was allowed to expand into 

a larger volume.  
picture required  
In the above image, two vessels, labeled A and B, are 

immersed in an insulated tank containing water. A thermometer 

is used to measure the temperature of the water in the tank. The 

two vessels A and B are connected by a tube, the °ow through 

which is controlled by a stop. Initially, A contains gas at high 

pressure, while B is nearly empty. The stop is removed so that 

the vessels are connected and the flnal temperature of the bath is 

noted.  
The temperature of the bath was unchanged at the and of the 

process, showing that the internal energy of an ideal gas was the 

function of temperature alone. Thus Joule‟s law is stated as = 0. 
 

1.4.7 First law of thermodynamics 
 

We now address some questions of terminology. The use of the 

terms \heat" and \quantity of heat" to indicate the amount of 

microscopic kinetic energy inhabiting a body has long been out 

of favor due to their association with the discredited \caloric" 

theory of heat. Instead, we use the term internal energy to 

describe the amount of microscopic energy in a body. The word 

heat is most correctly used only as a verb, e. g., \to heat the 

house". Heat thus represents the transfer of internal energy from 

one body to another or conversion of some other form of energy 

to internal energy. Taking into account these deflnitions, we can 

express the idea of energy conservation in some material body 

by the equation 
 

¢E = ¢Q ¡ ¢W (flrst law of thermodynamics) 
 



where ¢E is the change in internal energy resulting from the 

addition of heat ¢Q to the body and the work ¢W done by the 

body on the outside world. This equation expresses the flrst law 

of thermodynamics. Note that the sign conventions are 

inconsistent as to the direction of energy °ow. However, these 

conventions result from thinking about heat engines, i. e., 

machines which take in heat and put out macroscopic work. 

Examples of heat engines are steam engines, coal and nuclear 

power plants, the engine in your automobile, and the engines on 

jet aircraft. 

 
1.5 Important Equations and Quantities  

 
 

Units  
Quantity Symbol Unit S.I. Units

 Direction   
or  

 
 

Table 1.4: Units used in Electricity and Magnetism 
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