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Chapter (1) : The nuclear atom.

3-1 The Thomson atom. The discovery of radioactivity, together
with Thomson’s proof of the independent existence of the electron, pro-
vided a starting point for theories of atomic structure. The fact that
atoms of a radioactive element are transformed into atoms of another
element by emitting positively or negatively charged particles led to the
view that atoms are made up of positive and negative charges. If this
view is correct, the total negative charge in an atom must be an integral
multiple of the electronic charge and, since the atom is electrically neutral
under normal conditions, the positive and negative charges must be
numerically equal. The emission of electrons by atoms under widely
different conditions was convincing evidence that electrons exist as such
inside atoms. The first modern theories of atomic structure were, there-
fore, based on the hypothesis that atoms are made up of electrons and
positive charges. No particular assumptions could be made about the
nature of the positive charges because the properties of the positive par-
ticles from radioactive substances and from gas discharge tubes did not
have the uniformity shown by the properties of the negative particles.

Two important questions then arose: (1) how many electrons are there
in an atom, and (2) how are the electrons and the positive charges arranged
in an atom? Information about the first question was obtained experi-
mentally by studying the way in which x-rays interact with atoms, and
this problem will be treated in some detail in the next chapter. It will
suffice, for the present, to state that early experiments of this kind indi-
cated that the number of electrons per atom is of the order of the atomic
weight. It was known that the mass of an electron is about one two-
thousandth of the mass of a hydrogen atom, which has an atomic weight
very close to unity. Hence, the total mass of the electrons in an atom
is only a very small part of the mass of the atom, and it was logical to
assume that practically the entire mass of an atom is associated with the
positive charge.

In the absence of information about the way in which the positive and
negative charges are distributed in an atom, Thomson proposed a simple
model. He assumed that an atom consisted of a sphere of positive elec-
tricity of uniform density, throughout which was distributed an equal
and opposite charge in the form of electrons. It was remarked that the
atom, under this assumption, was like a plum pudding, with the negative
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52 THE NUCLEAR ATOM [crAP. 3

electricity dispersed like currants in a dough of positive electricity. The
diameter of the sphere was supposed to be of the order of 10~® ¢m, the mag-
nitude found for the size of an atom. With this model, Thomson was
able to calculate theoretically how atoms should behave under certain
conditions, and the theoretical predictions could be compared with the
results of experiments. It became clear when this comparison was made
that Thomson’s theory was inadequate; but the failure of the Thomson
model in the particular case of the scattering of a-particles proved to be
most profitable because it led to the concept of the nuclear atom. This
concept is fundamental to atomic and nuclear physics, and the scattering
of a-particles will therefore be discussed in some detail.

When a parallel beam of rays from a radioactive substance or from a
discharge tube passes through matter, some of the rays are deflected, or
scattered, from their original direction. The scattering process is a result
of the interaction between the rays of the beam and the atoms of the
material, and a careful study of the process can yield information about
the rays, the atoms, or both. The scattering of a-particles was first
demonstrated by Rutherford, who found that when a beam of a-particles
passed through a narrow slit and fell on a photographic plate, the image
of the slit had sharply defined edges if the experiment was performed in
an evacuated vessel. When the apparatus contained air, the image of the
slit on the photographic plate was broadened, showing that some of the
rays had been deflected from their original path by the molecules in the
air. Alpha-particles are also scattered by a very thin film of matter such
as gold or silver foil. When a beam of particles passes through a small
circular hole and falls on a zinc sulfide screen, scintillations are seen
over a well-defined circular area equal to the cross section of the beam.
If a very thin foil is placed in the path of the beam, the area over which
the scintillations occur becomes larger, and its boundary is much less
definite than in the absence of the foil, showing again that some of the
particles have been deflected from their original direction.

The scattering of charged particles such as a-particles can be described
qualitatively in terms of the electrostatic forces between the particles and
the charges which make up atoms. Since atoms contain both positive
and negative charges, an a-particle is subjected to both repulsive and
attractive electrostatic forces in passing through matter. The magnitude
and direction of these forces depend on how near the particle happens to
approach to the centers of the atoms past which or through which it
moves. When a particular atomic model is postulated, the extent of the
scattering of the a-particles can be calculated quantitatively and compared
with experiment. In the case of the Thomson atom, it was shown that
the average deflection caused by a single atom should be very small. The
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mean deflection of a particle in passing through a thin foil of thickness ¢
should be, according to Thomson’s theory,"’

bm = O(na®))!'?, G-
where 6 is the average deflection caused by a single atom, n is the number
of atoms per cubic centimeter, a is the radius of the atom in centimeters,
and ¢ is the thickness of the foil in centimeters. If the scatterer is a gold
foil 4 X 1075 cm thick, and if a is assumed to be 10~8 cm, then ¢,, turns
out to be about 306. The scattering of a-particles by a thin foil, according
to the Thomson theory, is the result of a relatively large number of small
deflections caused by the action of a large number of atoms of the scatter-
ing material on a single a-particle. This process is called compound, or
mulliple, scattering.

In an experiment, it is convenient to count the number of a-particles
scattered through a certain angle. Rutherford showed that the number
of a-particles N4 scattered through an angle equal to, or greater than,
¢ should be given by

2

N, — Noe—(lﬁlém) \ (3-2)
where N is the number of particles corresponding to ¢ = 0, and ¢, is the
average deflection after passing through the foil. It was found experi-
mentally by Geiger ‘® that when a gold foil 4 X 10~% cm thick was used,
the most probable angle of deflection of a beam of a-particles was about 1°,
If this value is used for ¢,, in Eq. (3-2), it can be seen that the probability
that an a-particle is scattered through a large angle becomes vanishingly
small. For example, the number of a-particles which should be scattered
through an angle of 10° or more is

N10° = Noe—loo ~ 10_43No.

Geiger found that the scattering agreed with that predicted by Eq. (3-2)
for very small angles, that is, for very small values of ¢, but the number of
particles scattered through large angles was much greater ® than that pre-
dicted by the Thomson theory. In fact, one out of about every 8000
a-particles was scattered through an angle greater than 90°, which means
that a significant number of «a-particles in a beam incident on a foil had
their directions changed to such an extent that they emerged again on
the side of incidence. The experimental scattering of a-particles at large
angles could not possibly be reconciled with the theoretical predictions
based on multiple scattering by a Thomson atom, and it was necessary to
look for a better model for the atom.

3-2 Rutherford’s theory of the scattering of alpha-particles. Ruther-
ford ¥ (1911) proposed a new theory of the scattering of a-particles by
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matter; this theory was based on a new atomic model and was successful
in describing the experimental results. Rutherford suggested that the
deflection of an a-particle through a large angle could be caused by a
single encounter with an atom rather than by multiple scattering. Photo-
graphs of the tracks of a-particles in a cloud chamber showed that a-par-
ticles often traveled in a straight line for a considerable distance and then
were deflected suddenly through a large angle. Rutherford’s suggestion
was in agreement with this kind of experimental evidence. For large
angle scattering to be possible, it was necessary to suppose that there is
an intense electric field near an atom. Rutherford proposed a simple
model of the atom which could provide such a field. He assumed that
the positive charge of the atom, instead of being distributed uniformly
throughout a region of the size of the atom, is concentrated in a minute
center or nucleus, and that the negative charge is distributed over a sphere
of radius comparable with the atomic radius. On this model, an a-particle
can penetrate very close to the nucleus before the repulsive force on it
becomes large enough to turn it back, but the repulsive force can then
be very large, and can result in a large deflection. At the same time, when
the a-particle is near the nucleus, it is relatively far from the negative
charges, which are spread over a much larger volume, so that the attractive
forces exerted on the o-particle by the electrons can be neglected. For
purposes of calculation, Rutherford assumed that the nuclear and a-par-
ticle charges act as point charges and that the scattering is caused by the
repulsive electrostatic force between the nucleus and the a-particle. If
the magnitude of the a-particle charge is 2¢ and that of the nucleus is
Ze, where Z is an integer, and if r is the distance between the two charges,
the magnitude of this force is oZ¢?
€

F = = (3-3)

In his first calculation, Rutherford treated the case of an atom suffi-
ciently heavy so that the nucleus could be considered to remain at rest
during the scattering process. With the above assumptions, the calcula-
tion of the orbit of the a-particle is reduced to a familiar problem of classical
mechanics, that of the motion of a highly energetic particle under a repul-
sive inverse square law of force.’® The orbit is one branch of a hyperbola
with the nucleus of the atom as the external focus,* as shown in Fig. 3-1,
and the formula for the deflection can be derived from geometrical and
physical relationships.

The first step in the derivation of the Rutherford scattering formula is
to write down some useful geometrical relationships. In Fig. 3-1, the

* This statement is proved in Appendix IV, where a second derivation of the
Rutherford scattering formula is given which contains certain points of special
interest.
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Fia. 3-1. The scattering of an a-particle by the Rutherford nuclear atom.

origin of the coordinate system is taken at the center of the hyperbola,
one of whose branches is the path of the a-particle. The initial path of
a particle, when the latter is far from the nucleus, is along 4O, one of
the asymptotes of the hyperbola; the perpendicular distance from the
nucleus, situated at the external focus z = ¢, to the line OA is called the
impact parameler and is denoted by p. The a-particle, on nearing the
nucleus, is deflected through the angle ¢ and approaches the asymptote
0A4’. The vertex of the orbitisat z = — a, while that of the second branch
of the hyperbola is at 2 = a. The equation of the hyperbola is, from
analytic geometry,

32 y2

where a is the major semiaxis of the hyperbola. It can also be seen from
the figure that p? = ¢* — a2, so that p is the minor semiaxis. The eccen-
tricity € is defined as the ratio € = ¢/a, and the angle between the z-axis
and the initial direction of the a-particle is denoted by 8. The angle of
deviation ¢ is then equal to 7 — 26 radians. Now, let s denote the dis-
tance of the nucleus from the vertex of the orbit of the a-particle; the
magnitude of s is

s=c+a= c(l+%)=c(1+coso).
Also, ¢ = p/sin 6, so that

1+ cosé [
s=£(.__:i'n_o___l=pcot§. (3-5)

The next step is to find a relationship between the impact parameter
p and the scattering angle ¢, which can be done by applying the laws of
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conservation of energy and angular momentum. According to the former,
the sum of the kinetic energy and the potential energy is constant. When
the a-particle is at a great distance from the nucleus, its potential energy,
which is inversely proportional to this distance, is practically zero. If
the velocity of the a-particle is V at this large separation, which is assumed
to be infinite, its total energy is equal to its initial kinetic energy, MV?2/2,
where M is the mass. This energy must also be equal to the total energy
of the a-particle when it is just at the vertex of the hyperbola. If the
velocity at this point is Vg, then ‘
2

WV = ymvi+ 2o 3-6)
The second term on the right represents the potential energy of the
a-particle, at the vertex of its orbit, in the electric field of the nucleus.
If the last equation is divided through by 4MV? and if a new quantity b
is introduced, b = 4Ze?/M V2, the result is

Vi_ . _ b,
Ve = 1 p (3-7a)
When the expression for s from Eq. (3-5)’is inserted into the last equation,
Ve _,_b _sing g
vz =1 p (1 + cos 6) (3-7b)
It follows from the law of conservation of angular momentum that
MVp = MVys, (3-8)
or
YVo_p_  siné
V s 1-+cosé’
and
2 ;2 _
Vo_ _ sin®8 1 —cosb (3-9)

Vz2- (1+cos®)?2 1+ cosb
When this value for (V/V)? is put into Eq. (3-7), it is found that

p= b—tg—“—" (3-10)
and, since ¢ = T — 26,
=t .t 8. _
P=3 cot ) (3-11)

Equation (3-11) is the desired relation between the impact parameter
and the scattering angle.
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It is now possible to calculate the fraction of the a-particles scattered
through a given angle ¢. Suppose that the beam of a-particles is incident
perpendicularly on a thin foil of material of thickness ¢, containing n
atoms per unit volume. It is assumed that the foil is so thin that the
particles pass through without any significant change in velocity and
that, with the exception of a few particles which are scattered through a
large angle, the beam passes perpendicularly through the foil. Then the
chance that a particle passes within a distance p of a nucleus is

p—— (3-12)

A particle which moves so as to pass within a distance p of the nucleus is
scattered through an angle greater than ¢, where ¢ is given by Eq. (3-11).
Hence the fraction of the total number of a-particles deflected through
an angle greater than ¢ is obtained by inserting for p, from Eq. (3-11),
and

g = 3mntb® cot? g . (3-13)
Similarly, the probability of deflection through an angle between ¢ and

¢ + d¢ is equal to the probability of striking between the radii p and
p -+ dp, and is given by

dg = 2mpnt dp.
Then,
dg = }mnib? cot %’ cosec? g dé
_ 2 ¢ 3¢
= %mntdb” cos 5 cosec” o d¢
= }7ntb® sin ¢ cosec* gdgb. (3-14)

In the experiments made to test the theory, the scattering was deter-
mined by counting the number of a-particles incident perpendicularly on
a constant area of a zinc sulfide screen placed at a distance R from the
foil. The fraction of the scattered a-particles falling on an element of
area of the screen at a distance R is given by

dq _ ntb® cosec*(¢/2)
2TR2sin ¢ dop 16 R2

(3-15)

If now, Q is the total number of a-particles incident on the foil, and if
Y is the number of a-particles scattered to unit area of the zinc sulfide
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screen placed at a distance R from the foil and at an angle ¢ with the
original direction of the particles, then

_ Qntb® cosec*(4/2) |

Y 162

(3-16)

According to Rutherford’s theory, the number of a-particles falling on
a unit area of the zinc sulfide screen at a distance R from the point of
scattering should be proportional to

1. cosec* (¢/2), where ¢ is the scatterng angle,

2. t, the thickness of the scattering material,

3. 1/(MV?)?2 or to the reciprocal of the square of the initial energy of
the a-particle,

4. (Ze)?, the square of the nuclear positive charge.

3-3 The experimental test of the Rutherford scattering theory.
Rutherford’s nuclear theory of the scattering of a-particles was tested
point by point in 1913 by Geiger and Marsden.® The dependence of
the scattering on the four quantities listed at the end of the last section
will be considered in order.

1. The dependence of the scattering on the angle of deflection. The effect
of varying the angle of deflection ¢ was studied in the apparatus shown
schematically in Fig. 3-2. In the diagram, R represents a radioactive
substance which is the source of the a-particles, F is a very thin foil of
scattering material, and S is a zinc sulfide screen rigidly attached to a
microscope M. The source and foil were held fixed, while the screen
and microscope could be rotated in an airtight joint, varying the angle
of deflection. The entire apparatus was enclosed in a metal box which
could be evacuated. The number of a-particles reaching unit area of
the screen in a chosen time interval was obtained by counting the scintil-
lations. In the experiment, the angle ¢ was varied while all of the other
variables in Eq. (3-16) were held constant. The number of scintilla-
tions counted, N, is proportional to Y, or to cosec* (¢/2); hence, the ratio
N/cosec* (¢/2) should be constant for a given foil under the conditions
of the experiment.

The results of two sets of experiments, one with a silver scattering foil,
the other with a gold foil, are given in Table 3-1. The first column gives
the values of the angle ¢ between the direction of the incident beam of
a-particles and the direction in which the scattered particles were counted ;
the second column gives the corresponding values of cosec* (¢/2). Col-
ums IIT and V give the observed numbers N of scintillations for silver
and gold respectively; columns IV and VI show the value of the ratio
N/cosec* (¢/2). The variation in the value of the ratio is very small



3-3]

TEST OF THE RUTHERFORD SCATTERING THEORY

59

Fia. 3-2. Apparatus of Geiger and Marsden for testing the angular depend-
ence of a-particle scattering.(®

TABLE 3-1%*

THE DEPENDENCE OF THE SCATTERING OF ALPHA-PARTICLES
ON THE ANGLE OF DEFLECTION

1 I1 111 v A\’ VI
Silver Gold
Angle of Number of Number of
deflection scintillations N scintillations N
¢ cosect(¢/2) N cosect(¢/2) N cosect(¢/2)
150° 1.15 22.2 19.3 33.1 28.8
135 1.38 274 19.8 43.0 31.2
120 1.79 33.0 18.4 51.9 29.0
105 2.53 47.3 18.7 69.5 27.5
75 7.25 136 18.8 211 29.1
60 16.0 320 20.0 477 29.8
45 46.6 989 21.2 1435 30.8
37.5 93.7 1760 18.8 3300 35.3
30 223 5260 23.6 7800 35.0
22.5 690 20,300 29.4 27,300 39.6
15 3445 105,400 30.6 132,000 38.4
30 223 5.3 0.024 3.1 0.014
225 690 16.6 0.024 8.4 0.012
15 3445 93.0 0.027 48.2 0.014
10 17,330 508 0.029 200 0.012
7.5 54,650 1710 0.031 607 0.011
5 276,300 | ......... | ..... 3320 0.012

* From Geiger and Marsden.(®
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compared with that of cosec* (¢/2), for angles between ¢ = 15° and
¢ = 150°. For smaller angles, it was found desirable to reduce the
number of scintillations counted; the value of the ratio was practically
constant between ¢ = 5° and ¢ = 30°. The results for the smaller
angles can be compared with those of the larger angles by noting that in
the case of the gold foil, the number of scintillations was reduced by
about 2500. When the results are fitted to those for the larger angles,
it is clear that the value of the ratio changes little over the entire range
of values of ¢, while the value of cosec* (¢/2) varies by a factor of 250,000.
The deviations of the ratio from constancy were thought to be within the
experimental error and it was concluded that the theory predicts the
correct dependence of the scattering on the angle of deviation.

2. The dependence of the scattering on the thickness of the scattering material.
The dependence of the scattering on the thickness of the scattering material
was tested by fixing the angle of deflection and using foils of different
thicknesses and also of different materials. The results of several experi-
ments are shown in Fig. 3-3, in which the number of particles per minute
scattered through an angle of 25° is plotted as ordinate and the thickness ¢
of the scattering foil is plotted as abscissa. The thickness of the foil is
expressed in terms of the equivalent length of path in air, that is, the
thickness of air which produces the same loss in energy of the a-particles
traversing it as that produced by the material being studied. The equiv-
alent path length in air often serves as a useful standard for comparison

/1

160

/

120

&

/

Gold Silver
A Copper

0 0.4 0.8 1.2 1.6 20
Thickness of foils in centimeters of air equivalent

S

Number of scintillations per minute

Aluminium
//

F1g. 3-3. The variation of the scattering of a-particles with the thickness
of the scattering material.(®
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in work with a-particles. The straight lines show that for any one element,
the number of particles scattered through a given angle per unit time is
directly proportional to the thickness of the foil, in agreement with the
theory.

3. The dependence of the scaltering on the energy or the velocity of the
a-particles. According to the Rutherford scattering formula, the number
of a-particles scattered through an angle ¢ should be inversely propor-
tional to the square of the energy of the particles, or to the fourth power
of the velocity. In a series of experiments, Geiger and Marsden varied
the velocity of the a-particles from a given source by placing screens of
mica between the source and the scattering foil; the thicker the screen,
the slower were the particles which reached the scattering foil. The
velocities of the particles were determined by finding how far they traveled
in air. This distance, called the range of the a-particles, could be deter-
mined in several ways, which will be discussed in Chapter 13. The range
R was known to be related to the velocity by the empirical formula,

R = aV?, (3-17)

where a is a known constant. When the velocity of the a-particles which
passed through a given thickness of mica screen had been obtained in this
way, the scattering through a known angle was measured by counting
the number N of scintillations. The product NV* should be constant
when V is varied. The results of a typical experiment are shown in
Table 3-2. The fourth column gives the number N of scintillations per
minute under fixed conditions, when a-particles of the ranges given in
the second column were used. The relative values of 1/V* are given in the

TABLE 3-2*

THE VARIATION OF ALPHA-PARTICLE SCATTERING WITH VELOCITY

Number N
Number of Range of Relative of
sheets a-particles values of scintillations
of mica (cm) 1/v*% per minute NV*
0 5.5 1.0 24.7 25
1 4.76 1.21 29.0 24
2 4.05 1.50 33.4 22
3 3.32 191 44 23
4 2.51 2.84 81 28
5 1.84 4.32 101 23
6 1.04 9.22 255 28

* From Geiger and Marsden.(®
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third column. The product NV* given in the last column is very nearly
constant over the range of values of V studied, showing that the scattering
varies inversely as the fourth power of the velocity, as predicted by
Rutherford’s theory.

4. The dependence of the scattering on the nuclear charge. The scattering
angle, the thickness of the scatterer, and the velocity of the incident
a-particles are quantities which could be measured directly and their
effect on the scattering determined. The nuclear charge, unlike the other
parameters, could not be measured directly, and a direct comparison
between theory and experiment could not be made in this case. It is
evident from Eq. (3-16), however, that the value of Z can be found by
counting the number of a-particles in the beam incident on the scattering
foil and the number in the scattered beam under fixed geometric condi-
tions. Some information about Z could also be obtained from experi-
ments on the scattering by different foil materials. From these two types
of experiments it was found that for elements heavier than aluminum,
the positive charge Ze on the nucleus was approximately 4Ae, that is,
Z =~ A/2, where A is the atomic weight and e is the electronic charge.
These experiments were not accurate enough to provide a reliable determi-
nation of the nuclear charge Z. It was not until 1920 that Chadwick,”
using improved scattering techniques, succeeded in measuring the nuclear
charge with good precision. For platinum, silver, and copper foils, he
obtained

copper: Z = 29.3 £ 0.5,
silver: Z = 46.3 + 0.7,
platinum: Z = 774 + 1.

These results are not precise enough to determine unique, integral values
of Z, but, as will be seen in the next chapter, they agree well with the
values 29, 47, and 78 for the three elements, obtained by an entirely inde-
pendent method. Thus, all four tests of the Rutherford scattering theory
were met successfully and constitute the earliest if not the greatest single
piece of experimental evidence for the nuclear model of the atom.

3—4 Some characteristics of the atomic nucleus. The remarkably
good agreement between the predictions of Rutherford’s theory and the
experimental results was interpreted as establishing the correctness of
the concept of the nuclear atom. Since 1913 the atom has therefore been
considered to consist of a minute, positively charged nucleus around which
is distributed, in some way, an equal and opposite negative charge in
the form of electrons.

So far, the atomic nucleus itself is a vague concept. It has been described
as “minute” or “very small” and has been treated mathematically as a
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point; at the same time, it is supposed to contain practically all of the
mass of the atom. It is clear that quantitative information is now needed
about the size of the nucleus. The first information of this kind was
obtained from the experiments on the scattering of a-particles; it came
from the consideration of the distance of closest approach of an a-particle
to a nucleus, and of the range of validity of the Coulomb force law.

For any hyperbolic orbit, the distance of closest approach is s, the dis-
tance from the vertex of the hyperbola to the nucleus as given by Eq. (3-5).
The smallest value that s can have is that for a head-on collision, when
the a-particle is deflected through an angle of 180°. In such a collision,
the velocity of the a-particle at the turning point is just zero. It follows
from Eq. (3-7a), that for V to vanish, s must be equal to b; furthermore,
since Vo can never be negative, this is the smallest value which s may have.
Hence, the quantity b, defined by

4Ze?

b= 3rve’

(3-18)
gives the closest distance which an a-particle of velocity V can approach
to a nucleus of charge Z. The magnitude of this distance can be estimated
by calculating a typical value of . Consider the case of a copper nucleus
bombarded by a-particles from radon. Copper has an atomic weight of
63.5; if the results of Geiger and Marsden for Z as given by scattering
experiments are used, then Z for copper is approximately half of 63.5,
or 32. An a-particle has a mass four times that of the hydrogen atom,
or 4 X 1.67 X 1024 gm; the velocity of an a-particle from radon is close
to 1.6 X 10° cm/sec. With e = 4.8 X 1071 esu, the result for b is

4(32)(4.8)%1072°

—_ —~ —12
= W6NA10-24)(1.6)3(1018) ~ L7 X 107 "em.

b

The above calculation depends on the assumption that the Coulomb
force law between the a-particle and the nucleus is still valid at such small
distances from the nucleus. The validity of this assumption was borne
out by the agreement between the Rutherford scattering theory and the
results of the experiments of Geiger and Marsden. By using faster
a-particles, Rutherford and others extended the experiments to see how
close to the nucleus the 1/r% force law holds. The results showed that for
silver the Coulomb law held down to 2 X 1072 cm, for copper down to
1.2 X 10™!2 cm, and for gold down to 3.2 X 1072 cm. It might be ex-
pected that if an a-particle approaches more closely to a nucleus, the inverse
square law would eventually break down. If this happens, the forces
between the a-particle and the nucleus should begin to change very rapidly
with the distance, and the scattering of a-particles should depart widely



64 THE NUCLEAR ATOM [caaP. 3

from the predictions of the theory. If the nucleus is defined as the region
of deviation from the Coulomb force law, then for the elements mentioned,
the radii of the respective nuclei are smaller than the distances listed.
Thus, the nuclei of these elements are about 107!2 cm in radius, and are
indeed very small compared with an atom, with its radius of 1078 cm. It
will be seen in later chapters that other methods of estimating values of
nuclear radii give results in good agreement with that just obtained.

It is seen from Eq. (3-18) that for a-particles of a given energy the
distance of closest approach is proportional to the nuclear charge Z. On
the basis of the finding that Z was approximately proportional to the
atomic weight, it was expected that a-particles might come closer than
1072 e¢m to light nuclei, and that it might be possible to find departures
from the Coulomb force law. Theoretical and experimental studies showed
that such departures from the inverse square law do indeed exist.® In
the case of aluminum, the inverse square law was found to break down at
about 6 to 8 X 107!% ¢m, with similar results for other light elements.
The deviations from the inverse square law scattering showed that very
close to the nucleus, the repulsion was smaller than that calculated from
the Coulomb force alone. These results provided the first evidence of
the existence of a nonelectrical, specifically nuclear force.

The study of the scattering of a-particles has continued to be an im-
portant source of information concerning the atomic nucleus.®1%1V By
1935, data had been collected on the elastic scattering of a-particles from
most of the light elements through aluminum. In each case departures
from Coulomb scattering were observed. With the aid of newer theoreti-
cal methods, these data could be used to make quantitative estimates of
nuclear radii. It was shown ® that the data could be interpreted in a
consistent way if the radius of the nucleus is assumed to be approximately
proportional to the cube root of the atomic weight, that is, if

r = T()Alla,

where A is the atomic weight, and ro = 1.4 to 1.5 X 103 ecm. This
property will be discussed further in Chapter 13.



Chapter ( 2 ) : The constitution of the nucleus .

THE CONSTITUTION OF THE NUCLEUS

In the last chapter, it was shown that the application of quantum theory
to the nuclear model of the atom led to the development of a satisfactory
theory for those properties of atoms that depend on the extranuclear
electrons. The development of a theory of the nucleus is a more difficult
problem. The density of matter in the nucleus offers a clue to the source
of the difficulty. The work of Rutherford and his colleagues on the
scattering of a-particles showed that the atomic nucleus has a radius of
1072 to0 10™!'3 c¢m, so that the volume of the nucleus is of the order of
10738 c¢m? or less. Now, the mass of one of the lighter atoms is about
10724 gm, and it is almost all concentrated in the nucleus, with the result
that the density of the nucleus is at least 10*2 gm/cm3 A density of
this magnitude is inconceivably large, and it is clear that in the atomic
nucleus, matter is put together in a way which may not be amenable to
ordinary experimental and theoretical methods of analysis. Consequently,
the interpretation of the nuclear properties of atoms in terms of a theory
of nuclear structure presents great problems.

There is now available a large amount of experimental information
about nuclei, derived from work in several fields: (1) the precise measure-
ment of the masses of atoms; (2) radioactivity, natural and artificial;
(3) the artificial transmutation of nuclei by bombardment with particles
from radioactive substances or with high-speed particles produced by
laboratory methods; (4) optical spectroscopy in the visible and ultra-
violet regions; (5) the direct measurement of certain nuclear properties,
such as spin and magnetic moment. The main problems of nuclear
physics are the collection and correlation of the experimental facts and
their interpretation in terms of a theory or model of the nucleus. In this
chapter, the problem of the constitution of the nucleus will be discussed,
and some ideas will be developed which will be useful in the interpretation
of experimental data in the following chapters. In addition, some new
and unfamiliar properties of the nucleus will be considered.

8~1 The proton-electron hypothesis of the constitution of the nucleus.

The fact that certain radioactive atoms emit a- and g-rays, both of which

are corpuscular in nature, led to the idea that atoms are built up of ele-

mentary constituents. As early as 1816, on the basis of the small number

of atomic weights then known, Prout suggested that all atomic weights

are whole numbers, that they might be integral multiples of the atomic
183
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weight of hydrogen, and that all elements might be built up of hydrogen.
Prout’s hypothesis was discarded when it was found that the atomic
weights of some elements are fractional, as for example, those of chlorine
(35.46) and copper (63.54). Nevertheless, 50 many elements have atomic
weights which are very close to whole numbers that there seemed to be
some basis for Prout’s hypothesis. The idea that all elements are built
up from one basic substance received new support during the early years
of the 20th century when the study of the radioactive elements led to
the discovery of isotopes. It was found that there are atomic species which
have different masses in spite of the fact that they belong to the same
element and have the same atomic number and chemical properties; the
different species belonging to the same element are called isofopes. For
example, four radioactive isotopes of lead were discovered with atomic
weights of 214, 212, 211, and 210, as well as three nonradioactive isotopes
with atomic weights of 206, 207, and 208. The nuclei of these isotopes,
varying in mass from 206 to 214, show a wide range of stability as measured
by the extent of their radioactivity, although all have the same charge.

The proof of the existence of isotopes in the radioactive elements led
to experiments to test whether some of the ordinary elements also consist
of a mixture of isotopes. It was found that this is indeed the case. Most
elements are mixtures of isotopes, and the atomic masses of the isotopes
are very close to whole numbers. Chlorine, as found in nature, has two
isotopes with atomic weights of 34.98 and 36.98, respectively; 75.4%, of
the chlorine atoms have the smaller mass, while 24.69, have the greater
mass, and this distribution explains the atomic weight 35.46 of chlorine.
Analogous results were obtained for copper. The different isotopes of an
element have the same number and arrangement of extranuclear electrons,
and consequently their spectra have the same general structure; they are
distinguished from one another by their different atomic masses.

The fact that the atomic masses of the isotopes of an element are close
to whole numbers led Aston to formulate his whole number rule. Accord-
ing to this rule, which is really a modified form of Prout’s hypothesis, all
atomic weights are very close to integers, and the fractional atomic weights
determined by chemical methods are caused by the presence of two or
more isotopes each of which has a nearly integral atomic weight. Much
of the experimental work on isotopes involved the analysis of the positive
rays from different substances; and in all the work of this kind the lightest
positively charged particle that was ever found had the same mass as the
hydrogen atom, and carried one positive charge equal in magnitude to
the electronic charge, but of opposite sign. This particle is evidently
the nucleus of a hydrogen atom and, as shown in Chapter 1, has a mass
very close to one atomic mass unit. The combination of the whole number
rule and the special properties of the hydrogen nucleus led to the assump-
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tion that atomic nuclei are built up of hydrogen nuclei, and the hydrogen
nucleus was given the name proton to indicate its importance as a funda-
mental constituent of all atoms.

The whole number rule is actually an approximation, holding to an
accuracy of about 1 part in 1000. The most precise experiments show
that there are small but systematic departures from this rule over the
whole range of elements. It will be shown in the next chapter that these
variations are of great importance in adding to our knowledge of the
structure of nuclei.

To account for the mass of a nucleus whose atomic weight is very close
to the integer A, it was necessary to assume that the nucleus contained
A protons. But if this were the case, the charge on the nucleus would
be equal to A, nearly the same as the atomic weight and not equal to the
atomic number Z, which is half, or less, of the atomic weight. To get
around this difficulty, it was assumed that in addition to the protons,
atomic nuclei contained A — Z electrons; these would contribute a
negligible amount to the mass of the nucleus, but would make the charge
equal to + Z, as required. It was thus possible to consider the atom as
consisting of a nucleus of A protons and A — Z electrons surrounded by Z
extranuclear electrons. The number A is called the mass number and is
the integer closest to the atomic weight.

The proton-electron hypothesis of the nucleus seemed to be consistent
with the emission of a- and g-particles by the atoms of radioactive elements.
The interpretation of certain generalizations about radioactivity in terms
of the nuclear atom showed that both the a- and g-particles were ejected
from the nuclei of the atoms undergoing transformation; and the presence
of electrons in the nucleus made it seem reasonable that under the ap-
propriate conditions one of them might be ejected. It was also reasonable
to assume that a-particles could be formed in the nucleus by the combina-
tion of four protons and two electrons. The a-particles could exist as
such, or they might be formed at the instant of emission.

8-2 The angular momentum of the nucleus; failure of the proton-
electron hypothesis. Although the hypothesis that nuclei are built up of
protons and electrons had some satisfactory aspects, it eventually led to
contradictions and had to be abandoned. One of the failures of the hy-
pothesis was associated with a hitherto unknown property of the nucleus,
the angular momentum. The discovery that the atomic nucleus has an
angular momentum, or spin, with which is associated a magnetic moment,
was the result of the detailed study of spectral lines. When individual
components of multiplet lines were examined with spectral apparatus of
the highest possible resolution, it was found that each of these components
is split into a number of lines lying extremely close together; this further
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splitting is called hyperfine structure. The total splitting, in units of wave
number, is only about 2 cm™? or less. The hyperfine structure could not
be accounted for in terms of the extranuclear electrons, and it was neces-
sary to assume, as Pauli did in 1924, that it is related to properties of the
atomic nucleus. The properties associated with the hyperfine structure
are the mass and angular momentum of the nucleus.

It was shown in Chapter 7 that because of the simultaneous motion of
nucleus and electron around the common center of gravity, the Rydberg
constant of an element depends on the mass of the atomic nucleus. Hence,
if an element has more than one isotope, each isotope has a slightly dif-
ferent value of the Rydberg constant, and corresponding spectral lines of
different isotopes have slightly different wave numbers. This effect has
been found experimentally, and the theoretical predictions have been
confirmed. In many cases, however, the isotope effect is not enough to
explain the hyperfine structure because the number of components is
greater than the number of isotopes. Elements which have only one
isotope, such as bismuth, also show hyperfine structure. In these cases,
the hyperfine structures can be accounted for quantitatively if it is as-
sumed, as for the extranuclear electrons, that the nucleus has an angular
momentum.

A magnetic moment is associated with the angular momentum of the
nucleus just as one is associated with the angular momentum of an elec-
tron. The two magnetic moments interact, and the interaction energy
perturbs the total energy of the electrons; there is, therefore, a splitting
of the atomic levels, which gives rise to the hyperfine structure of the
lines of the atomic spectrum. The multiplicity and the relative spacings
of the lines can be derived theoretically and depend on the magnitudes of
the nuclear angular momentum and magnetic moment. The nuclear
angular momentum can then be deduced from the experimentally deter-
mined multiplicity and relative spacings. Newer methods, which involve
radiofrequency spectroscopy, microwave spectroscopy, or the deflection
of molecular beams in magnetic fields, have been developed for measuring
the nuclear magnetic moment, and a large body of experimental informa-
tion has been built up concerning these nuclear properties.

The nuclear angulgr momentum has quantum mechanical properties
analogous to those of the angular momentum of the electron. It is a
vector, I, of magnitude \/I(I + 1) h/27, where I is the quantum number
which defines the greatest possible component of I along a specified axis,
according to the rule

Iz =1 (8-1)

The value of I has been found experimentally to depend on the mass
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number A of the nucleus; if A is even, [ is an integer or zero; if 4 is odd,
I has an odd half-integral value (half of an odd integer). In other words,
if the mass number of the nucleus is even, I may have one of the values:
0,1,2 3,...;if Aisodd, I may have one of the values 4, §, %, ....

The rules just cited lead to one of the failures of the proton-electron
hypothesis for the constitution of the nucleus. Nitrogen has an atomic
number of 7 and a mass number of 14, and its nucleus would have 14
protons and 7 electrons under this hypothesis. The contribution of the
protons to the angular momentum should be an integral multiple of
h/2m, whether the angular momentum of a proton is an integral or odd
half-integral multiple of 2/27. An electron has spin #(h/2m) so that its
total angular momentum is always an odd half-integral multiple of k/27
(see Section 7-9). The contribution of 7 electrons is, therefore, an odd
half-integral multiple of A/2w, and the total angular momentum of the
nitrogen nucleus should be an odd half-integral multiple of A/27w. But
the angular momentum of the nitrogen nucleus has been found experi-
mentally to be I = 1, an integer, in contradiction to the value predicted
by the hypothesis. Experiments show that the proton, like the electron,
has an intrinsic spin of #(h/2w), and it is possible with this additional
information to predict the angular momenta of many other nuclei on the
basis of the proton-electron hypothesis. Thus, the isotopes of cadmium
(Z = 48), mercury (Z = 80), and lead (Z = 82) with odd mass numbers
should each have an odd number of electrons and an even number of
particles all together. The angular momenta of these nuclei should,
therefore, be zero or integral; they have been found experimentally to be
odd half-integers, and the hypothesis again predicts values which disagree
with the experimental results.

The proton-electron hypothesis also fails to account for the order of
magnitude of nuclear magnetic moments. Measurements of the magnetic
moments of many nuclei have given values which are only about 1/1000
of the value of the magnetic moment of the electron. The magnitude of
the latter is
___¢h
= Zmme’

BB (8-2)
where m is the mass of the electron; this quantity is called the Bohr
magneton and has the value 0.92 X 1072 erg/gauss. All measured nuclear
magnetic moments are of the order 10~22 erg/gauss, and their values can
be expressed appropriately in terms of the quantity

py = ij’;; — 0.505 X 10~23 erg/gauss, (8-3)

in which the electron mass has been replaced by the proton mass; the
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quantity uy is called the nuclear magneton. Measured values of the nuclear
magnetic moment vary from zero to about 5 nuclear magnetons, and the
proton has a magnetic moment of 2.7926 + 0.0001 nuclear magnetons.
If electrons were present in the nucleus, we should expect to find nuclear
magnetic moments of the order of magnitude of the Bohr magneton, at
least in those nuclei for which A — Z is odd (and which would, on the
proton-electron hypothesis, contain an odd number of electrons). The
fact that nuclear magnetic moments are only of the order of magnitude of
the nuclear magneton is, therefore, another strong argument against the
existence of electrons inside the nucleus.

There is also a wave-mechanical argument against the existence of
free electrons in the nucleus. According to the uncertainty principle
(cf. Section 7-8),

AzAp ~ h, (84)

where Az is the uncertainty in the position of a particle and Ap is the
uncertainty in its momentum. Suppose that the principle is applied to
an electron in the nucleus. The uncertainty Az in the position of an
electron is roughly the same as the diameter of the nucleus, which is
assumed here to be 2 X 1072 cm. Then

h _ 66x10"%

Az Zx10-12 3.3x 1078 erg-sec/cm.

Ap ~
From the uncertainty in the momentum, it is possible to get a rough
estimate of the energy of an electron in the nucleus. Relativistic formulas
must be used because the electron moves very rapidly in the nucleus, as
will be seen. From Eqgs. (6-36) and (6-38), the total energy of a particle
can be expressed in terms of the momentum,

E? = p’* + mict, (8-5)

where m, is the rest mass of the electron, and ¢ is the velocity of light.
If it is now assumed that the momentum p of the electron is no larger
than the values just found for the uncertainty Ap, then p ~ 3.3 X 1078,
and p%? = (3.3 X 1071%)%(3 x 10'%2 = 1078 erg. This value is much
greater than the term m2c* = (9 X 107%%)%(3 X 10'%)? ~ 1072, which
can consequently be neglected. Then E? ~ 108 and

10~*

7
W:GXIO ev = 60 Mev.

E~10"terg =
According to this result, a free electron confined within a space as small
as the nucleus would have to have a kinetic energy of the order of 60 Mev,
and a velocity greater than 0.999¢. Experimentally, however, the electrons
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emitted by radioactive nuclei have never been found to have kinetic
energies greater than about 4 Mev, or at least an order of magnitude
smaller than that calculated from the uncertainty principle. Although
the calculation is a rough one, similar results are obtained from more
rigorous calculations, and in view of the large discrepancy it seems im-
probable that nuclei can contain free electrons.

The above argument does not apply to a proton in the nucleus because
the proton mass (1.67 X 10™%* gm) is nearly 2000 times as great as the
electron rest mass. For the proton in the nucleus, Az is also about 2 X
10™!2 ¢m, and Ap =~ 3.3 X 1071% erg-sec/cm. If it is assumed, as in the
case of the electron, that the momentum is of the order of the uncertainty
in the momentum, then from Eq. (8-5),

E2 ~ 1078 + (1.67 X 10~2%)%(3 x 10'%)*
= 1078 4 2.3 X 1078,

and now the first term may be neglected in comparison with the second.

Then
—3
E~15x 10-3erg = 23X 19" _ 94 % 10°ev = 940 Mev.

1.6 X 10-12
This value is only slightly greater than the rest energy of the proton, which
is 1.008 X 931 = 938 Mev. Hence, the kinetic energy of a proton in
the nucleus is of the order of a few Mev, and it should be possible for a
free proton to be contained in the nucleus.

8-3 Nuclear transmutation and the discovery of the neutron. The
failure of the proton-electron hypothesis of the nucleus was related to
the properties of the free electron. It was proposed, therefore, that the
electrons are bound to the positively charged particles and have no inde-
pendent existence in the nucleus. One possibility, which had been sug-
gested by Rutherford as early as 1920, was that an electron and a proton
might be so closely combined as to form a neutral particle, and this hypo-
thetical particle was given the name neutron. Now, all of the methods
that have been discussed so far for detecting particles of nuclear size
depend on effects of the particle’s electric charge, as deflection in magnetic
or electric fields and ionization. The presence of a neutron, which has
no charge, would be very hard to detect, and many unsuccessful attempts
were made to find neutrons. Finally, in 1932, as one of the results of
research on the disintegration or transmutation of nuclei by a-particles,
Chadwick demonstrated the existence of neutrons. This discovery opened
up a vast field for further experimental work and led to the presently
accepted idea of the constitution of the nucleus: that it is built of protons
and neutrons.
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It has been mentioned that the fact that the masses of the atoms of
all elements, or their isotopes, are very close to whole numbers led to
the hypothesis that the atomic nucleus is a composite structure made up
of an integral number of elementary particles with masses close to unity.
If so, it should be possible by suitable means to break down the nucleus
and to change one element into another. Radioactivity is a naturally
occurring process of this kind. Rutherford and his colleagues used energetic
a-particles from radioactive substances as projectiles with which to
bombard atomic nuclei in the attempt to produce artificial nuclear dis-
integrations. They found that when nitrogen was bombarded with a-
particles, energetic protons were obtained. The protons were identified
by magnetic deflection measurements, and their energies were consider-
ably greater than those of the bombarding a-particles. They must have
been shot out from the struck nucleus in such a way that part, at least, of
their energy was derived from the internal energy of the nucleus. Cloud-
chamber studies of the process showed that the a-particle was captured
by the nitrogen nucleus, and then the proton was ejected. This explana-
tion corresponds to the formation from nitrogen (atomic number 7, atomic
weight 14) of an atom of atomic number 8 and atomic weight 17, i.e., the
oxygen isotope of mass 17. The bombardment with a-particles was found
by Rutherford to cause emission of protons from all the elements of atomic
number up to 19 with the exception of hydrogen, helium, lithium, carbon,
and beryllium. The most marked transmutation effects occurred with
boron, nitrogen, and aluminum.

Closer investigation of the bombardment of boron and beryllium by
a-particles gave some additional and unexpected results. Bothe and
Becker (1930) discovered that these elements emitted a highly penetrating
radiation when so bombarded. It was thought that this radiation might
be a form of 7-ray of very high energy. Curie and Joliot (1932) found
that when the radiation was allowed to fall on substances containing
hydrogen, it caused the production of highly energetic protons. Chadwick
(1931) was also able to show that the rays emitted from bombarded
beryllium gave rise to rapidly moving atoms when allowed to fall on other
substances, for example, He, Li, Be, C, O, and N. These resuits could
not be explained under the assumption that the new radiation consisted of
high-energy 7-rays. Chadwick finally (1932) proved that the energies
of the protons ejected from hydrogenous materials, and of the other
rapidly moving atoms, could only be explained on the view that the
“rays” from bombarded beryllium actually consisted of particles with a
mass close to that of the proton. These particles, unlike protons, produce
no tracks in the cloud chamber and no ionization in the ionization chamber.
These facts, together with the extremely high penetrating power of the
particles, show that the charge of the latter must be zero. Since the new
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particle was found to be neutral and to have a mass close to unity, it was
identified with Rutherford’s neutron. Later measurements have shown
that the mass of the neutron is 1.00898 amu, so that it is slightly heavier
than the proton, with a mass of 1.00758 amu.

8-4 The proton-neutron hypothesis. The discovery of a particle,
the neutron, with an atomic weight very close to unity and without electric
charge, led to the assumption that every atomic nucleus consists of protons
and neutrons. This hypothesis was used for the first time as the basis of
a detailed theory of the nucleus by Heisenberg in 1932. Under the proton-
neutron hypothesis, the total number of elementary particles in the
nucleus, protons and neutrons together, is equal to the mass number 4 of
the nucleus; the atomic weight is therefore very close to a whole number.
The number of protons is given by the nuclear charge Z, and the number
of neutrons is A — Z.

The new nuclear model avoids the failures of the proton-electron hy-
pothesis. The empirical rule connecting mass number and nuclear angular
momentum can be interpreted as showing that the neutron, as well as the
proton, has a half-integral spin; the evidence is now convincing that the
spin of the neutron is indeed 3k/2w. If both proton and neutron have
spin % then, according to quantum theory, the resultant of the spins of A
elementary particles, neutrons and protons, will be an integral or half-
integral multiple of /27 according to whether A is even or odd. This con-
clusion is in accord with all the existing observations of nuclear angular
momenta. The value of the magnetic moment of the neutron is close to
—2 nuclear magnetons; it is opposite in sign to that of the proton, but
not very different in magnitude. The values for both the proton and
neutron are consistent with those measured for many different nuclei.
Finally, since the mass of the neutron is very close to that of the proton,
the argument showing that protons can be contained within the nucleus
is also valid for neutrons.

The neutron-proton hypothesis is consistent with the phenomena of
radioactivity. Since there are several reasons why electrons cannot be
present in the nucleus, it must be concluded that in g-radioactivity, the
electron is created in the act of emission. This event is regarded as the
result of the change of a neutron within the nucleus into a proton, an
electron, and a new particle called a neutrino, and both experimental
and theoretical evidence offer strong support for this view. In S-radio-
activity, then, the nucleus is transformed into a different one with one
proton more and one neutron less, and an electron is emitted. An a-
particle can be formed by the combination of two protons and two neutrons.
It may exist as such in the nucleus, or it may be formed at the instant of
emission; the latter possibility is now regarded as more likely.
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It must be emphasized, however, that in considering the nuclei of
different elements as being built of protons and neutrons, the neutron is
not regarded as a composite system formed by a proton and an electron.
The neutron is a fundamental particle in the same sense that the proton is.
The two are sometimes called nucleons in order to indicate their function
as the building blocks of nuclei.

One of the main problems of nuclear physics is that of understanding
the nature of the forces holding the protons and neutrons together. Much
of the research in nuclear physics is aimed at the clarification of the laws
of interaction between nuclear particles. This problem will not be treated
in a detailed, quantitative way in this book because of its complexity, but
it will be discussed in a later chapter. The emphasis in the following
chapters will be rather on the facts about nuclei, and on the transforma-
tion of one nuclear species into another by the rearrangement of its con-
stituent nucleons. The information accumulated will be considered and
interpreted in terms of the proton-neutron hypothesis. This aspect of
nuclear physics is analogous to the application of atomic physics to the
chemical properties of the elements, and is sometimes referred to among
physicists as nuclear chemistry.

For the present, it will suffice to point out some of the qualitative
properties of the forees between the protons and neutrons in the nucleus.
Because of the positive charge of the proton, there must be repulsive,
electrostatic forces between the protons tending to push the nucleus apart.
It is apparent from the small size and great density of the nucleus that
these forces must be very large in comparison with the forces between
the nucleus and the extranuclear electrons. Hence, if stable complex
nuclei are to exist, there must be attractive forces in the nucleus strong
enough to overcome the repulsive forces. These attractive forces are the
specifically nuclear forces between a proton and a neutron, between two
neutrons, or between two protons. They seem to be more complex than
the gravitational or electromagnetic forces of classical physics. The
nuclear attractive forces must be very strong at distances of the order of
the nuclear radius, i.e., they are short-range forces. Outside the nucleus,
they decrease very rapidly, and the Coulomb repulsive forces responsible
for the scattering of a-particles predominate. The magnitude of the
nuclear forces is such that the work required to divide a nucleus into its
constituent particles (the binding energy of the nucleus) is very much
greater than the work needed to separate an extranuclear electron from
an atom. Whereas the latter is of the order of electron volts, energy
changes in the nucleus are of the order of millions of electron volts. It is
the magnitude of the energies associated with nuclear transformations
that is responsible for the large-scale applications of nuclear physics, and
for the rise of the new field of nuclear engineering.
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8~5 Magnetic and electric properties of the nucleus. It will be con-
venient to include in this chapter a few more remarks about the angular
momentum of the nucleus, as well as a brief discussion of some magnetic
and electric properties of the nucleus. These properties are important
in the interpretation of many nuclear phenomena and in the theory of
the nucleus, and they occupy a prominent place in nuclear physics. They
are, however, among the less elementary aspects of the subject and will
not be treated in detail in this book. Nevertheless, some familiarity with
the ideas and terminology of these matters will be helpful to the reader.

Each proton and each neutron in the nucleus has an angular momentum
which may be pictured as being caused by the particle’s spinning motion
about an axis through its center of mass. The magnitude of this spin
angular momentum is 3k/2w. The wave-mechanical properties of an
angular momentum of this kind are such that its orientation in space
can be described by only two states: the spin axis is either “parallel” or
“antiparallel” to any given direction. The component of the spin along
a given direction, say the z-axis, is either 32/27 or —%h/2w. In addition,
each nucleon may be pictured as having an angular momentum associated
with orbital motion within the nucleus. According to quantum theory,
the orbital angular momentum is a vector whose greatest possible com-
ponent in any given direction is an integral multiple of h/27w. Each
nucleon has a total angular momentum ¢ about a given direction, with

t=1=s, (8-6)

where ! is the orbital angular momentum and s is the spin angular mo-
mentum. The spin of any single nucleon can add or subtract 4h/2m
depending on its orientation with respect to the axis of reference, and 7 is
therefore half-integral. For nuclei containing more than one particle, it
is customary to write corresponding relationships between the momenta
in capitals; the resultant total angular momentum of the nucleus is then

I=L%xS, (8-7)

where L is the total orbital angular momentum, and S is the total spin
angular momentum. The total angular momentum is actually a vector,
denoted by I, and the scalar quantity I is defined as the maximum possible
component of I in any given direction. The orbital angular momentum
L is an integral multiple of A/2w; S is an even half-integral multiple of
h/2w if the number of nuclear particles is even, and an odd half-integral
multiple if the number of particles is odd. Hence, I is an integral multiple
of h/2m when A is even, and an odd half-integral multiple when A4 is
odd, in agreement with experimental results.
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There are two possible sources of confusion which arise from careless
usage. The term “spin” is often used for the total angular momentum
of a nucleus rather than for the spin S alone. This incorrect usage was
introduced before the problem of the internal structure of nuclei had
attained its present importance and has been continued. In addition, the
total orbital angular momentum of a nucleus is often denoted by  rather
than by L. The meaning of the term “spin” and the symbol ! can usually
be inferred without difficulty from the context in which they appear.

The magnetic moment of a nucleus can be represented as

h
B =15 I = grunl, (8-8)

where v; and g; are defined by Egs. (8-3) and (8-8) and are called the
nuclear gyromagnetic ratio and nuclear g-factor, respectively; uy is the
nuclear magneton defined by Eq. (8-3), and has the numerical value
5.04929 X 10724 erg/gauss. The quantity which measures the magnitude
of nr, and is called the nuclear magnetic moment y;, is

b= 1. (8-9)

The details of the methods for measuring nuclear spins and magnetic
moments will not be discussed in this book. The interested reader is
referred to the works by Ramsey and Kopfermann listed at the end of
the chapter, for a treatment of the methods and results. The spins and
magnetic moments of many nuclei have been measured, particularly for
the ground state of the nucleus, and certain patterns have been observed
in the experimental results. Significant conclusions as to the structure
of the nucleus may be obtained from data on nuclear spin and magnetic
moment, just as knowledge of the arrangement of the extranuclear elec-
trons was obtained from information about their angular momenta. It
has been found, for example, that I = 0 for nuclei containing even numbers
of protons and neutrons. It follows from Eq. (8-9) that a so-called
even-even nucleus should have no magnetic moment, and this has been
found experimentally to be the case. This generalization, and others,
have proved very useful in the study of nuclear structure and other
properties.

Another property which is highly important in connection with the
shape of the nucleus is the electric quadrupole moment. This quantity,
which cannot be discussed in a simple way, is a measure of the deviation
of a nucleus from spherical symmetry. If a nucleus is imagined to be an
ellipsoid of revolution whose diameter is 2b along the symmetry axis and
2a at right angles to this axis, and if the electric charge density is assumed
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uniform throughout the ellipsoid, the quadrupole moment @ is given by
Q= %2Z(H% — a?d). (8-10)

Its magnitude depends on the size of the nucleus, the extent of the deviation
from spherical symmetry, and the magnitude of the charge; the sign may
be positive or negative. Many nuclei have been found to have quadrupole
moments; thus, deuterium, a nucleus with one proton and one neutron, has
a Q-value of 40.00274 X 10~2* c¢m?, while an isotope of lutecium con-
taining 176 nucleons has a Q-value of 7 X 10724 em2. The investigation
of quadrupole moments along with spins and magnetic moments has led to
important developments in the theory of nuclear structure, as will be
shown in Chapter 17.

8-6 Additional properties of atomic nuclei. In addition to their
electric and magnetic properties, nuclei have certain properties which are
not obviously physical in nature. Although these properties will not be
treated in detail, the reader should at least know of the existence and
usefulness of the concepts involved. The properties which will be dis-
cussed very briefly are the statistics to which nuclei are subject, and the
party.

The concept of statistics in physics is related to the behavior of large
numbers of particles. Thus, the distribution of energies or velocities
among the molecules of a gas can be described by the classical Maxwell-
Boltzmann statistics, as can many other macroscopic properties of gases.
The properties of assemblies of photons, electrons, protons, neutrons, and
atomic nuclei cannot, in general, be described on the basis of classical
statistics, and two new forms of statistics have been devised, based on
quantum mechanics rather than on classical mechanics. These are the
Bose-Einstein statistics, and the Fermi-Dirac statistics. The question of
which form of quantum statistics applies to a system of particles of a
given kind is related to a particular property of the wave function which
describes the system. This property has to do with the effect on the
wave function of interchanging all of the coordinates of two identical
particles, say of two protons in a nucleus. A nucleon is described by
a function of its three space coordinates and the value of its spin, whether
it is $h/27 or —4h/27. The Fermi-Dirac statistics apply to systems of
particles for which the wave function of the system is antisymmetrical,
ie., it changes sign when all of the coordinates (three spatial and one
spin) of two identical particles are interchanged. It follows from this
property of the wave function that each completely specified quantum
state can be occupied by only one particle; that is, the Pauli exclusion
principle applies to particles obeying the Fermi-Dirac statistics. It has
been deduced from experiments that electrons, protons, and neutrons obey
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the Fermi-Dirac statistics, as do all nuclei of odd mass number A. In the
Bose-Einstein statistics, the wave function is symmetrical, i.e., it does
not change sign when all the coordinates of any pair of identical particles
are interchanged. Two or more particles may be in the same quantum
state. All nuclei having even mass number A obey the Bose-Einstein
statistics. There is a direct correlation between the total angular mo-
mentum of a nucleus and its statistics: Fermi-Dirac particles (odd A)
have total nuclear angular momenta which are odd half-integral multiples
of h/2x, while Bose-Einstein particles (even A) have momenta which are
integral multiples of h/2.

The last property that will be mentioned is the parity. To a good ap-
proximation, the wave function of a nucleus may be expressed as the
product of a function of the space coordinates and a function depending
only on the spin orientation. The motion of a nucleus is said to have
even parily if the spatial part of its wave function is unchanged when
the space coordinates (z,y,z) are replaced by (—z, —y, —z). This trans-
formation of coordinates is equivalent to a reflection of the nucleus’
position about the origin of the z, y, z system of axes. When reflection
changes the sign of the spatial part of the wave function, the motion of
the nucleus is said to have odd parity. It has been shown that the parity
of a nucleus in a given state is related to the value of the orbital angular
momentum L; if L is even, the parity is even; if L is odd, the parity is odd.
A system of particles will have even parity when the sum of the numerical
values for L for all its particles is even, and odd parity when the sum is odd.
Although the parity seems to be an abstract sort of property, the selection
rules for many nuclear transitions involve conditions on the parity, as
well as on the total angular momentum.



Chapter ( 3) : isotopes.

9-3 Isotopic masses and abundances : the mass spectrograph-and mass
spectrometer. The Thomson parabola method of analyzing positive rays
was adequate for a general survey of masses and velocities, but it could
not yield precise values of isotopic masses and abundances. The further
quantitative study of the constitution of the elements required the deter-
mination of isotopic masses with a precision of at least one part in a thou-
sand. To meet this need, Aston® (1919) designed the mass spectro-
graph. Aston’s method of analysis was an improvement on that of
Thomson in that greater dispersion was achieved (i.e., greater separation
of ions of different masses) and all ions with a given value of ¢/M were
brought to a focus instead of being spread out in a parabola. By these
means, greater sensitivity and precision were attained.

A schematic diagram of Aston’s first mass spectrograph is shown in
Fig. 9-3. The positive rays from a discharge tube pass through two very
narrow parallel slits S; and S; and enter the space between the metal
plates P, and P,. An electric field between these plates causes a deflec-
tion of the ions toward P,, the amount of the deflection being greater the
smaller the velocity of the ions. The narrow beam contains particles
with a wide range of velocities, with the result that it is broadened as it
passes through the field. A group of these particles is selected by means
of the relatively wide diaphragm D. After passing through D, this diverg-
ing stream of ions enters a magnetic field, indicated by the circle at O,
perpendicular to the plane of the paper. The magnetic field causes deflec-
tions, as shown in the diagram, the more slowly.moving ions being deflected
more than the faster ones. The paths of the slow-moving ions, therefore,
intersect those of the faster-moving ions at some point F. If the instru-
ment is properly designed, ions having the same value of ¢/M but slightly
different energies can be brought to a single focus on a photographic plate.
Other ions with the same range of energies but a different value of ¢/M
are brought to a focus at a different point on the photographic plate. The

Fia. 9-3. Diagram of Aston’s first mass spectrograph (1920).
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focus for a particular value of ¢/M is actually a line, and the result of an
analysis is a series of lines reminiscent of an optical line spectrum. Because
of this similarity, the series of lines is called a mass spectrum and the
apparatus a mass spectrograph. Some typical mass spectra are shown in
Fig. 94.

The isotopic masses can be determined quantitatively in several different
ways. In one method, for example, the positions of the lines caused by
the masses in question are compared with the positions of the lines caused
by standard substances whose masses are accurately known. With this
new instrument, Aston was able to prove beyond a doubt that neon has
two isotopes with masses very close to the integers 20 and 22, respec-
tively. He also showed that in the mass spectrum of chlorine there
was no line corresponding to the chemical atomic weight (35.46) of chlorine.
Instead, two lines were seen, corresponding very closely to the masses
35.0 and 37.0, the former being the more intense line. This result showed
that chlorine has two isotopes of nearly integral atomic mass, and ordinary
chlorine is a mixture of these two kinds of atoms in such proportions that
the chemical atomic weight is 35.46.

Aston improved the design of the mass spectrograph, and in his second
instrument‘® isotopic masses could be determined with an accuracy of
1 part in 10,000. With this instrument, Aston determined the masses
of the isotopes of a large number of elements, as well as their abundances,
and showed that the masses of atoms are very nearly, but not quite, integers,
when the mass of oxygen is taken as 16. For example, the isotopes of
chlorine were found to have the masses 34.983 and 36.980 rather than
35.0 and 37.0, respectively. Later instruments designed and built by
Aston, Dempster, Bainbridge, Jordon, Mattauch, and others have yielded
isotopic masses with accuracies approaching 1 part in 100,000.

Modern mass spectroscopic measurements are based on the mass-
doublet technique in which the quantity actually determined is the differ-
ence in mass between two ions of the same mass number but having
slightly different masses. The newer spectrometers yield high dispersion,

§ ¥ 8 9 ¥
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.F16. 94. Mass spectra obtained by Aston with his first spectrograph (1920).
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that is, the distance between the two lines of a doublet are relatively
large, and differences in mass can be measured with high precision. The
mass of one of the members of the doublet must be known accurately.
Hydrocarbon compounds (which give molecular ions) are used as sources
of reference masses because of the relative ease with which fragments of
almost any mass number can be obtained for comparison with other ions
of the same mass number. The masses of C'2, the carbon isotope of mass
number 12, and H!, the hydrogen isotope of mass number 1, are used as
secondary standards, with 0'® the primary standard.

The masses of C'2 and H! relative to that of 0'® can be determined in a
number of different ways. One method is to measure the following mass-
doublet differences:

(016)2 - 832 = a,
(C”); — 832010 — b,

C2(H'), — 0" = «.

The three equations are solved simultaneously, with O!'® = 16 atomic
mass units (exactly), and the result is

832 =32 — a,

12 b—a

C* =12+ T’
1 a—b—!—c.
H =1+ 16

More complicated cycles involving a larger number of atoms can also be
used, and highly precise results can be obtained; values of mass-doublet
differences have been compiled,®? and values of atomic masses deter-
mined by this method.®1?

It will be seen in Chapter 11 that information from nuclear reactions
can also be used to determine atomic masses with precision comparable
to that obtained with mass spectroscopic methods. Authoritative com-
pilations of atomic masses usually combine results obtained with both
methods. *3-2V

Other techniques have also been developed‘®® which will only be
mentioned here. The chronotron of Goudsmit‘?3~2% measures the time
needed for ions to describe a number of revolutions in a uniform
magnetic field. This time is proportional to the mass of the ion, with the
result that the precision is practically constant for all masses, whereas
the precision which can be obtained with the mass spectrograph decreases
with increasing mass. Another device which depends on the angular
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Fie. 9-5. Diagram of Dempster’s mass spectrometer.
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F16. 9-6. Mass spectrum of potassium (Dempster, 1922).

motion of ions in a known magnetic induction is the mass synchrometer,?®
which has given good results. Microwave spectroscopy‘?” has also been
used successfully for the measurement of atomic masses.

In the systematic study of isotopes, it is essential to know not only the
isotopic masses, but also the relative numbers of atoms of each isotope of
an element. The mass spectrograph can be used for making abundance
measurements, and indeed many of the isotopes now known were first
discovered and their abundances measured by Aston by means of this
instrument. When used for abundance measurements, however, a mass
spectrograph is inconvenient because a photographic plate is used to
record the different isotopic ions, and the procedure of determining abun-
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dances from the plate traces is both more tedious and less reliable than the
direct measurements made with a somewhat simpler instrument, the mass
Specirometer.

About the time of the development of the mass spectrograph by Aston,
Dempster?® built an instrument which was basically simpler and which
was well suited for making abundance measurements, although it could
not be used for making accurate mass measurements. It was called a
mass spectrometer because the ion current was measured electrically
rather than recorded on a photographic plate. A schematic diagram
of one of Dempster’s spectrometer models is shown in Fig. 9-5. Ions
of the element to be analyzed are formed by heating a salt of the element,
or by bombarding it with electrons. Upon emerging from the source A,
the ions are accelerated through a potential difference V of about 1000
volts by an electric field maintained in the region between A and C. A slit
S; in the plate C allows a narrow bundle of ions to pass into the region
of the magnetic field H. In passing from A to C, the positive ions carrying
a charge ¢ acquire energy equal to ¢V. This energy may also be repre-
sented by $Mv?, where M is the mass of the positive ion and v its velocity
on emerging from the slit in C; consequently,

qV = M2 (9-4)

If the magnetic field is perpendicular to the plane of the paper, the ions
180
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Fi1e. 9-7. Mass spectrum of mercury (Nier, 1937).
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will be forced to move along a circular path defined by the relationship

2

H QU = M'Tv: (9—5)

where R is the radius of the circle. Since the radius of the circle must
have a certain definite value in order that the ions enter the slit S, and
be detected by an electrometer at P, it is clear that ions with only one
particular value of ¢/M, say q/M’, will be received for a given combination
of accelerating potential and magnetic field. By varying the potential
difference V, ions with different values of g/M are, in turn, made to pass
through the second slit S, to the collector plate P. The current recorded
by the electrometer is proportional to the number of positive ions reaching
it per unit time and, since each accelerating potential corresponds to a
definite mass of particle reaching the electrometer, the current can be
plotted against the atomic weight. A typical curve obtained by Dempster

O Phillips
= ion gauge
Gas
inlet
a
\_/
A= Alnico
poles
Ion
collectors
Mercury
diffusion
pump
Preamplifier

Fic. 9-8. Schematic diagram of a Nier mass spectrometer (Nier(30).
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for potassium with a slightly modified apparatus is shown in Fig. 9-6.
There are two isotopes with atomic weights 39 and 41 units, the former
being much more abundant; for the ratio of the abundances, Dempster
obtained 18:1.

During recent years, owing largely to improved vacuum techniques and
the development of new methods of electrical measurement, mass spectrom-
etry has advanced rapidly. One of the most useful instruments was
that of Nier,?® which had extremely high resolving power and sensitivity
and was especially designed for searching for rare isotopes and measuring
relative abundances. It was a modification of the Dempster apparatus
and gave results like those shown in Fig. 9-7. The figure shows a
“mass spectrogram” of mercury, and the isotope abundances are closely
proportional to the magnitude of the peaks of the positive ion current.
A more recent form of spectrometer designed by Nier®® is shown in
Fig. 9-8. Ions are produced by the electron bombardment of the gas
under investigation, and are accelerated by a potential drop of about
1000 volts. The beam of ions passes into a wedge-shaped magnetic field
in which they suffer a deflection of 60°, rather than 180° as in the Dempster
spectrometer. This deflection makes it possible to obtain high resolution
with a simple magnet. In the diagram the ion beam is shown broken into
two parts which fall on separate collectors and are measured by separate
amplifiers. This instrument has been used to get highly precise isotopic
abundances.

9—4 The stable isotopes of the elements and their percentage abun-
dances. The mass spectra of the elements have been investigated in detail
and the isotopic composition of the elements has been determined. 3:32:3%
The results obtained for the isotopes of 83 elements are collected in
Table 9-1. Before discussing these results, some remarks about termin-
ology are in order. In recent years, the term nuclide has been widely
accepted for a species of atom characterized by the constitution of its
nucleus, i.e., by the numbers of protons and neutrons it contains. Thus,
the atomic species listed in Table 9-1 may be referred to as the naturally
occurring stable nuclides. Similarly, every radioactive species is a radio-
active nuclide or radionuclide. An isotope is then one of a group of two
or more nuclides having the same number of protons or, in other words,
having the same atomic number. An element like beryllium or aluminum,
of which only one species exists in nature, is said to form a single stable
nuclide, rather than a single stable isotope, since the word isotope implies
more than one species occupying the same place in the periodic system.
A nuclide is usually indicated by the chemical symbol with a subscript
at the lower left giving the atomic number, and a superscript at the upper
right giving the mass number; in the symbol z84, Z is the atomic number,
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THE STABLE NUCLIDES AND THEIR PERCENTAGE ABUNDANCE

Sym- Atomic Mass Relative Sym- Atomic Mass Relative
g:ll number, | number, | abundance, t}::ll number, | number, | abundance,
z A A z A %
H 1 1 |99.9840- Al 13 27 100
99.9861
Si 14 28 92.21
D 1 2 |0.0139- 29 4.70
0.0151 30 3.09
He 2 3 {~10-5-10—¢| P 15 31 100
4 |~100
s 16 32 95.0
Li 3 6 7.52 33 0.760
7 92.48 34 422
36 0.014
Be 4 9 100
cl 17 35 75.529
B 5 10 | 18.45- 37 24.471
19.64
u | 8036 A 18 36 0.337
81.55 38 0.063
10 99.600
¢ 6 ;3 gf:fg: K 19 39 93.10
40 0.012
N 7 14 99.634 41 6.58
15 0.366 Ca 20 m 96.97
0 8 16 99.759 g g:?;
17 0.037 “ 2.06
18 0.204 46 0.003
48 0.185
F 9 19 100
Se 21 45 100
Ne 10 20 90.92
21 0.257 Ti 22 46 7.93
22 8.82 47 7.98
48 73.94
Na 1 23 100 49 5.38
50 5.34
Mg 12 24 78.70
25 10.13 v 23 50 0.24
26 1117 51 99.76
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TaBLE 9-1 (Continued)
Sym- Atomic Mass Relative Svm- Atomic Mass Relative
t};’:l] number, | number, | abundance, g:; number, | number, | abundance,
¥4 A % A %
Cr 24 50 4.31 Br 35 79 50.54
52 83.76 81 49.46
53 9.55
54 2.38 Kr 36 78 0.354
80 2.27
Mn 25 55 100 82 11.56
Fe 2 54 5.82 83 11.66
84 56.90
56 91.66 7
57 2.19 86 17.37
58 0.3 Rb | 37 85 72.15
Co 27 59 100 87 27.85
Ni 28 58 67.88 Sr 38 84 0.56
60 26.23 86 9.86
61 1.19 87 7.02
62 3.66 88 82.56
64 1.08
Cu 29 63 69.1 Y 39 8 100
65 30.9 Zr 40 90 51.46
Zn 30 64 48.89 91 1123
66 27.81 92 17.11
7 4.11 94 17.40
68 18.56 96 2.80
70 0.62
Nb 41 93 100
Ga 31 69 60.4
71 39.6 Mo 42 92 15.84
Ge 32 70 20.52 i 9.04
95 15.72
72 27.43
96 16.53
73 7.76 97 0.46
74 36.54 )
76 7.76 98 23.78
. 100 9.63
As 33 75 100
Ru 44 96 5.51
Se 34 74 0.87 98 1.87
76 9.02 99 12.72
77 7.58 100 12.62
78 23.52 101 17.07
80 49.82 102 31.61
82 9.19 104 18.58

(Continued)
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TaBLE 9-1 (Continued)
Sym- Atomic Mass Relative S Atomic Mass Relative
by;l number, | number, | abundance, Ii’:ll- number, | number, | abundance,
z A % z A %
Rh 45 103 100 Te 52 126 18.71
128 31.79
Pd 46 102 0.96 130 34.49
104 10.97
105 22.23 I 53 127 100
106 27.33
e wn Xe | 54 124 0.096
. 126 0.090
Ag 47 107 51.35 128 1.919
109 48.65 1290 26.44
130 4.08
cd 48 106 1.215 131 21.18
132 26.89
108 0.875
134 10.44
110 12.39 136 8.87
111 12.75 -
112 24.07
113 12.26 Cs 133 100
114 28.86
116 7.58 Ba 130 0.101
132 0.097
In 49 113 4.28 134 2.42
115 95.72 135 6.59
136 7.81
Sn 50 112 0.96 137 11.32
114 0.66 138 71.66
115 0.35
116 14.30 La | 57 138 0.089
117 7.61 139 99.911
118 24.03
119 8.58 Ce 58 136 0.193
120 32.85
138 0.250
122 472
124 5.94 140 88.48
* 142 11.07
Sb 51 121 57.25
123 42.75 Pr 59 141 100
Te 52 120 0.089 Nd 60 142 27.11
122 2.46 143 12.17
123 0.87 144 23.85
124 4.61 145 8.30
125 6.99 146 17.22
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TaBLE 9-1 (Continued)

Sym- Atomic Mass Relative Sym- Atomic Mass Relative
bol number, | number, | abundance, bol number, | number, | abundance,
z A A z A %
Sm 62 144 3.09 Yb 70 172 21.82
147 14.97 173 16.13
148 11.24 174 31.84
149 13.83 176 12.73
150 7.44
152 26.72 Lu 71 175 97.40
154 22.71 176 2.60
Eu 63 151 47.82 Hf 72 174 0.18
153 52.18 176 5.20
177 18.50
Gd 64 152 0.20 178 27.14
154 215 179 13.75
155 14.73 180 35.24
156 20.47
157 15.68 Ta 73 181 100
158 24.87
160 21.90 w 74 180 0.135
182 26.41
Tb 65 159 100 183 14.40
184 30.64
Dy 66 156 0.0524 186 28.41
158 0.0902
160 2.294 Re 75 185 37.07
161 18.88 187 62.93
162 25.53
163 24.97 Os 76 184 0.018
164 28.18 186 1.59
187 1.64
Ho 67 165 100 188 13.3
189 16.1
Er 68 162 0.136 190 26.4
164 1.56 192 41.0
166 33.41
167 22.94 Ir 77 191 37.3
168 27.07 193 62.7
170 14.88
Pt 78 190 0.0127
Tm 69 169 100 192 0.78
194 329
Yb 70 168 0.135 195 33.8
170 3.03 196 25.3
171 14.31 198 7.21

(Continued)



214 ISOTOPES [cuar. 9

TaBLE 9-1 (Concluded)

Sym- Atomic Mass Relative Sym- Atomic Mass Relative
bol number, | number, | abundance, bol number, | number, | abundance,
Z A % z A %
Au 79 197 100 Pb 82 204 1.48
206 23.6
Hg 80 196 0.146 207 22.6
198 10.02 208 52.3
199 16.84
200 23.13 Bi 83 209 100
201 13.22
202 29.80 Th 90 232 100
204 6.85
U 92 234 0.0056
Ti 81 203 29.50 235 0.7205
205 70.50 238 99.2739

A is the mass number, and § is the chemical symbol. Thus, the symbol
505n12° represents the nuclide with 50 protons and a mass number of
120; it is one of the ten isotopes of tin. The number of neutrons is, of
course, equal to A — Z. Sometimes it is not necessary to show the number
of protons explicitly, and the symbol for a nuclide is then shortened to S4.

Not all of the nuclides listed in Table 9-1 are actually stable. Thorium
 and uranium are radioactive, but they occur in sufficient amounts and
with sufficiently weak activity so that they can be handled in the same
way as the stable elements. At least nine naturally occurring isotopes
of “stable” elements show feeble radioactivity: K*°, Rb%7, In!!5 Lal38
Nd*4, Sm!*7, Lu'?8, Re'%” and Pt'®%. These nuclides are distinct from
the families or chains of the heavy naturally occurring radionuclides and
are much feebler in activity. It is therefore more convenient to include
them with the stable elements than with the radioactive ones.

With the exceptions noted, Table 9-1 contains 284 stable nuclides
divided among 83 elements. Twenty elements, about one-fourth in all,
are single species; all the others consist of two or more isotopes. Hydrogen
has two isotopes, the one with mass number 2 having a relative abundance
of only about 0.015%,. This rare isotope, however, has a mass about
double that of the common isotope, so that the difference in mass is as
great as the mass of the ordinary hydrogen atom itself. This relation-
ship between the masses is an exceptional one and, as a result, the differ-
ences between the properties of the two isotopes are more marked than in
any other pair of isotopes. The hydrogen isotope of mass 2 has therefore
been given its own name, deutertum, with the occasionally used symbol D.
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TasLe 92

Some IsoToPE STATISTICS

Number of 0dd A | Even A | Total Average number

elements of isotopes
0dd Z 40 53 8 61 1.5
Even Z 43 57 166 223 5.2
Total 83 110 174 284 3.4

Carbon and nitrogen also have two isotopes, while oxygen has three, two
of which are rare. Tin has the greatest number of isotopes, ten, while
xenon has nine, cadmium and tellurium have eight each, and several
elements have seven.

There are some striking regularities in Table 9-1. Nuclides of even Z
are much more numerous than those of odd Z, and nuclides of even A are
much more numerous than those of odd 4. Nearly all nuclides with even
A have even Z, the only common exceptions being 1HZ, 3Li%, sB!° and
sN1% The nuclides ;oK*® and 7;Lu'?® have odd Z and even A but are
weakly radioactive, while 23V5° and 57La’3® are very rare. The numbers
of nuclides with the various combinations of even and odd atomic and
mass numbers are listed in Table 9-2. Of the 20 elements which have
only a single nuclide, only beryllium has an even value of Z, while the
other 19 have odd Z. Nineteen elements with odd Z have two isotopes
apiece, and each of these nuclides has odd 4. One element with odd Z,
potassium, has three isotopes; two of these have odd mass numbers, and
the only isotope with an even mass number is the weakly radioactive K*°.
The four common elements which have odd values of Z and A, hydrogen
lithium, boron, and nitrogen, have equal numbers of protons and neutrons.
The elements which have more than two isotopes (apart from potassium)
all have even values of Z.

An examination of the values of Z and A in Table 9-1 shows that in the
stable nuclei, with the exception of H! and He?, the number of neutrons
is always greater than or equal to the number of protons. There is always
at least one neutron for each proton. This property of the stable nuclides
is shown in Fig. 9-9, in which the number of neutrons A — Z is plotted
against the number of protons. The number of neutrons which can be
included in a stable nucleus with a given number of protons is limited.
For example, tin with an atomic number of 50 has neutron numbers from
62 to 74, and the mass numbers of the tin isotopes lie between 112 and 124.
Apparently the tin nucleus cannot contain less than 62 neutrons nor more
than 74 neutrons and still remain stable. For the other elements (except
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xenon) this range is smaller and the limits for the existence of stable nuclei
are narrower.

The regularities that have just been noted are closely connected with
the problem of nuclear stability and must eventually be accounted for in
terms of the proton-neutron theory of the nucleus, in particular, in terms
of the forces between nucleons. From this standpoint, the hydrogen
isotope of mass two (deuterium) is especially important because its nucleus
consists of one proton and one neutron. The properties of this nucleus
yield information about the force between a proton and a neutron, and
deuterium has a prominent place in theoretical nuclear physics.

In the preceding discussion it was assumed that the relative abundance
of an isotope is constant in nature, that is, independent of the source of
the sample that is measured. This assumption is true, in general. There
are, however, some exceptions which, although interesting, do not affect
any of the conclusions previously drawn from the consideration of abun-
dances. The relative abundances of H! and H? depend somewhat on the
source, and the spread in the values listed in Table 9-1 shows that the
variation is small. The ratio of hydrogen to deuterium abundance has
been determined as 6700 = 50 for samples of tap water from London,
Osaka, and various cities in the United States; this corresponds to a value
of 0.0149%, for the relative abundance of H? in tap water. The range
0.0139 to 0.01519, includes the variation over a wide range of substances
such as water, snow, ice, organic compounds, and animal and mineral
materials from many sources. There are wide variations in the ratio of
He? and He* abundances; for example, the abundance of He® is approxi-
mately ten times as great in atmospheric helium as in well helium. Helium
is formed in radioactive minerals because of alpha-decay, and such helium
is all He*. In nonradioactive ores, the He? content varies widely, and it
has been suggested that He? can be formed as a result of the transfor-
mation of various nuclides in the air and on the ground by cosmic-ray
bombardment. Cosmic rays are highly penetrating radiations which
originate outside the earth and consist of protons, electrons, neutrons,
photons, and other particles. The range of abundances of the boron
isotopes shown in the table is equivalent to a variation in the B''/B1° ratio
from 4.27 to 4.42 or about 39,. Although this variation seems small,
it affects the use of certain boron standards in nuclear physics; it is neces-
sary, therefore, to cite the abundance ratios when measurements involving
this standard are reported. The abundance of the carbon isotopes cited in
Table 9-1 are those found in limestone and correspond to a C2/C!3 ratio
of 89.2; in coal the ratio is 91.8. In general, the relative content of C!?
seems to be somewhat greater in plant material than in limestone.

The relative abundances of the oxygen isotopes also vary, and the value
of the 0'%/0'® ratio in nature has a spread of about 4%,. The values of
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the abundances quoted in the table are those for atmospheric oxygen and
correspond to a value of the O'%/0!8 ratio of 489.2 + 0.7. This value
is also correct for the oxygen from limestone, but for oxygen from water
or iron ores the ratio may be 49, higher. The values used for the abun-
dances of the oxygen isotopes affect the value of the factor for converting
atomic weights from the physical scale to the chemical scale (see Section
9-5). The variation in the value of the conversion factor may be large
enough to affect the precision of atomic weight determinations and, if
the latter are to be made to more than five significant figures, the isotopic
composition of the oxygen used as a reference must be specified.

Wide variations in the abundances of the lead isotopes are also found,
and these are usually associated with the radioactive sources from which
the different lead samples are derived. Even for common lead, it is not
possible to give exact isotopic abundances without specifying the source
of the material; the values in the table are for Great Bear Lake galena.

The abundance variations which have been discussed are the most
important ones known and, for the remaining elements, either there are
no significant variations, or else they do not seriously affect further work
in nuclear physics.

9-5 Atomic masses: packing fractions and binding energies. Some
atomic masses!®19:36 are given in Table 9-3. The standard of mass
used here is slightly different from that used for the chemical atomic
weights. It is seen from Table 9-1 that oxygen actually has three isotopes,
the most abundant of which has the mass number 16. The other two
isotopes together constitute only about 0.29, of the oxygen atoms. In
the determination of isotopic weights by the mass spectrograph it is the
practice to take as the standard the value of 16.00000 for the weight of
the common isotope of oxygen. The weights so obtained differ slightly
from those based on the ordinary chemical atomic weight scale. In the
latter case, the number 16.00000 is associated with ordinary atmospheric
oxygen, which is a mixture of isotopes, whereas on the mass spectrographic,
or physical, atomic weight scale, this is taken as the isotopic weight of
the single, most abundant isotope. The relationship between the chemical
and physical atomic weight scales may be determined in the following way.
Atmospheric oxygen consists of 99.759%, of the isotope of mass 16.00000,
together with 0.037%, of the isotope of mass 17.004529, and 0.2049, of
the isotope of mass 18.004840. The weighted mean of these values is
16.004462, and this is the atomic weight of atmospheric oxygen on the
physical scale, as compared with the postulated value of 16.00000 on the
chemical scale. Then

Physical atomic weight 16.004462

Chemical atomic weight — 16.000000 — 1-000279-
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TaBLE 9-3

Atomic Masses, Packing Fracrions, aNnp BinpING ENERGIES
OF SoME OF THE STABLE NUCLIDES

Number | Number Packing Binding energy
. of of Mass, .
Nuclide protons, | neutrons, amu fr;(clt:]‘:n’ total, nuzleeron
A—-2 Mev Mev 4

n! 0 1 1.0089830 (=1.7) 89.8

H! 1 0 1.0081437 (=1.8) 81.4

H? 1 1 2.0147361 (*=2.9) 73.7 2.225| 1.113
He+ 2 2 4.0038727 (=2.1) 9.7 28.29 7.07
Li7 3 4 7.018222 (=6) 26.0 39.24 5.61
Be? 4 5 9.015041 (=5) 16.7 58.18 6.46
B11 5 6 11.012795 (=5) 11.6 76.19 6.93
C12 6 6 12.0038065 (=3.9) 3.2 92.14 7.68
c13 [ 7 13.0074754 (=4.1) 58 97.09 7.47
Nis 7 7 14.0075179 (=3.0) 54 104.63 7.47
Q1 8 8 16.0000000 1] 127.58 7.97
o 8 9 17.0045293 (=3.9) 2.7 131.73 7.75
O1s 8 10 18.004840 (=9) 2.7 139.80 7.77
Fi¢ 9 10 19.004447 (=7) 2.3 147.75 7.78
Ne?° 10 10 19.998765 (=10) -~0.6 160.62 8.03
Al27 13 14 26.990080 (=14) -3.7 224.92 8.33
8izs 14 14 27.985777 (=+16) -5.1 236.51 8.45
p3 15 16 30.983563 (==18) -563 262.88 8.48
832 16 16 31.982190 (==20) -5.6 271.74 8.49
Cl3s 17 i8 34.979906 (=80) —-5.7 208.13 8.52
Cl37 17 20 36.9776573 (=16) —6.0 317.00 8.57
A4o 18 22 39.975088 (=4) —6.2 343.71 8.59
Cato 20 20 39.975330 (=30) —-6.2 341.92 8.55
Fest 26 30 55.952722 (=6) -84 492.11 8.79
Cus? 29 34 62.949607 (=11) —8.0 551.22 8.75
As78 33 42 74.945510 (=100) -7.3 652.23 8.70
Sres 38 50 87.933680 (=300) -75 768.13 8.73
Mo®8 42 56 97.937240 (=+350) -6.3 845.73 8.63
Sniie 50 66 115.938850 (=300) -53 988.14 8.52
Sn120 50 70 119.940330 (=140) -5.0 |1020.2 8.50
Xeldo 54 76 120.944810 (=30) —4.3 |1096.6 8.44
Xelss 54 82 135.950420 (=25) -3.7 |1141.5 8.39
Ndtso 60 90 149.968490 (=70) —-2.1 |[1237.1 8.25
Hf7¢ 72 104 175.99650 (=800) —-0.2 |1419.1 8.06
Wiss 74 110 184.008300 (=600) 0.4 14735 8.01
Aul?? 79 118 197.028000 (=1000) 1.4 | 1560.0 7.92
Ph32os 82 124 206.037900 (=500) 1.8 §1623.7 7.88
Th332 90 142 232.109800 (=500) 4.7 |1768.0 7.62
U23s 92 146 238.124300 (=500) 5.2 |1803.1 7.58
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Hence, isotopic weights obtained by means of the mass spectrograph must
be divided by 1.000279 in order to convert the results to the chemical
atomic weight scale. The conversion factor is used only when it is neces-
sary to compare mass spectrographic results with weights obtained by
chemical methods; in nuclear work the atomic masses on the physical
scale are used.

Estimates of the errors of the mass spectrographic measurements have
been included in order to indicate the high precision with which atomic
masses can now be determined. The error, given in parentheses, is ex-
pressed in units of 107 amu. This precision is essential in the study of
nuclear reactions and transformations, as will be seen in later chapters.
It is also important in the precise calculation of packing fractions and
binding energies, as will now be shown.

It is seen from Table 9-3 that the isotopic masses are indeed very close
to whole numbers. It seemed clear to the early workers in this field that
the systematic study of the divergences of the masses of nuclides from
whole numbers was an important problem. Aston expressed these diver-
gences in the form of a quantity called the packing fraction defined by

Atomic mass — Mass number
Mass number

_  Mza— A
_-—————-A ,

Packing fraction =

(9-6)

where Mz 4 is the actual weight of a nuclide on the physical atomic weight
scale, and A is the mass number. If the packing fraction is denoted by f,
then

Mza = A1+ ). (9-7)

Sample values of the packing fraction are listed in Table 9-3, and the varia-
tion of the packing fraction with mass number for a larger number of
nuclides is shown graphically in Fig. 9-10. The packing fractions, with
the exception of those for He*, C!2, and Q! fall on or near the solid curve.
The values are high for elements of low mass number, apart from the
nuclides mentioned. For O!%, the value is zero, by definition. As A
increases, the packing fraction becomes negative, passes through a rather
flat minimum and then rises gradually, becoming positive again at values
of A of about 180. The packing fraction was very useful in the study of
isotopic masses, but it does not have a precise physical meaning. The
explanation for its usefulness will appear from the discussion of the binding
energies of nuclei.

The atomic mass of a nuclide can be understood in terms of the masses
of its constituent particles and a quantity called the binding energy. It
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Fra. 9-10. Packing fraction as a function of mass number.

might at first be supposed that the mass of an atom should be the sum of
the masses of its constituent particles. A survey of the atomic masses
shows, however, that the atomic mass is less than the sum of its constituent
particles in the free state. To account for this difference in mass, the
principle of the equivalence of mass and energy, derived from the special
theory of relativity, is used. If AM is the decrease in mass when a number
of protons, neutrons, and electrons combine to form an atom, then the
above principle states that an amount of energy equal to

AE = c2aM (9-8)

is released in the process. The difference in mass, AM, is called the mass
defect; it is the amount of mass which would be converted to energy if a
particular atom were to be assembled from the requisite numbers of pro-
tons, neutrons, and electrons. The same amount of energy would be
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Fig. 9-11. Binding energy per nucleon as a function of mass number.

needed to break the atom into its constituent particles, and the energy
equivalent of the mass defect is therefore a measure of the binding energy
of the nucleus. The mass of the constituent particles is the sum of Z
proton masses, Z electrons, and A — Z neutrons. The proton and electron
masses can be combined into the mass of Z hydrogen atoms because the
minute change in mass which may accompany the formation of a hydrogen
atom from a proton and electron is negligible. The mass defect can then
be written

AM = Zmyg + (A — Z)ymn — Mz 4, (9-9)

where my, the mass of the hydrogen atom is 1.0081437 mass units and m.,,
the mass of the neutron, is 1.0089830 mass units. Then

AM = 1.0081437Z + 1.0089830(4 — Z) — Mz 4. (9-10)

Since one atomic mass unit is equivalent to 931.145 Mev, the binding
energy of the nucleus is given by

AE(Mev) = 931.145[1.0081437Z + 1.0089830(A — Z) — Mz 4l. (9-11)

The average binding energy per nucleon is obtained by dividing the
total binding energy of the nucleus by the mass number A. Some values of
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the binding energy obtained by the method just outlined are listed in the
last two columns of Table 9-3, and a graph of the binding energy per
nucleon as a function of the mass number is shown in Fig. 9-11. With
the exception of He*, C'2, and 08, the values of the binding energy per
particle lie on or close to a single curve. The binding energies of some
of the very light nuclides, such as H2, are very small. The binding energies
of He*, C'2, and O'® are considerably greater than those of their neighbors,
as is shown clearly by the values in the last column of Table 9-3. The
binding energy per particle rises sharply, and reaches a maximum value of
about 8.8 Mev in the neighborhood of A = 50. The maximum is quite
flat, and the binding energy is still 8.4 Mev at about A = 140. For higher
mass numbers, the value decreases to about 7.6 Mev at uranium.

The magnitude of the binding energy is enormous, as can be shown by
converting from Mev per nucleon to more familiar units such as Btu per
pound. One Mev is equivalent to 1.519 X 1078 Btu. One pound of
an atomic species contains 453.6/M gram atomic weights (M is the atomic
‘weight), or

453.6 X 6.023 X 10?3 X A/M nucleons.

The mass number A and the atomic weight M are practically the same,
5o that one pound contains 2.73 X 10%® nucleons. The unit “1 Mev/
nucleon” is then practically the same as 4.15 X 10'° Btu/pound. In the
neighborhood of the maximum of the binding energy curve, the binding
energy is about 8.8 Mev/nucleon or 350 billion Btu/pound. This enormous
value of the energy that would be needed to dissociate a nucleus into its
constituent protons and neutrons is another indication of the magnitude
of the nuclear forces.

The application of the principle of the equivalence of mass and energy
and the introduction of the concept of binding energy have, thus far in
our treatment, only a theoretical basis. In recent years, however, many
nuclear transmutations have been accurately studied and careful measure-
ments have been made of the changes of mass and energy in these reactions.
The validity of the relativistic mass-energy relationship has been proven,
as well as that of its application to the problems of nuclear physics. The
binding energy of a nucleus is, therefore, a quantity with real physical
meaning, and the masses and binding energies of nuclei yield useful informa-
tion about the constitution and stability of nuclei. In addition, the analysis
of nuclear transformations has provided an independent means of determin-
ing atomic masses which is at present even more powerful than the mass
spectrographic method. These matters will be discussed in detail in later
chapters.

The subject of atomic masses should not be left without a brief dis-
cussion of a proposal®® to replace the mass standard, O'®, by C'?, i,
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to assign to C!? the atomic mass 12.0000000 units. The use of C!? as
the standard would have several advantages in mass spectrometry.
Carbon forms many more chemical compounds which can provide mo-
lecular ions for use in a spectrometer than does oxygen. Doubly, triply,
and quadruply charged ions of C!? occur at integral mass numbers and
can be paired in doublets with ions of mass number 6, 4, and 3, respectively,
so that C'2 would be a convenient standard for atoms of low mass number.
No other element besides carbon forms molecular ions containing as many
atoms of one kind, up to 10 or more; this property would permit many
more doublet comparisons to be made directly with the reference nuclide
than are now possible, and would yield masses with increased precision
at intermediate and large values of A. Thus, carbon forms many com-
pounds with hydrogen, providing easy reference lines for doublets with
masses up to 120 units; for values of A between 120 and 240, doubly
charged ions of heavier elements could be compared directly with singly
charged ions of the type (C*?), or (C'?), (HY)m.

A table of atomic masses has been prepared®® based on C!? as the
standard and the following results have been obtained.

Nuclide 016 Standard C!2 Standard
n 1.0089861 1.0086654
H! 1.0081456 1.0078252
H2 2.0147425 2.0141022
c12 12.0038150 12.0000000
o1e 16.0000000 15.9941949

The relation between the atomic mass units on the two scales is
1 amu (C!'?) = 1.00031792 amu (O'9).
The conversion factor from mass to energy is
1 amu (C!?) = 931.441 Mev,

as compared with 1 amu (0'®) = 931.145 Mev. The values of binding
energies are unchanged; thus, the binding energy of the deuteron is 2.2247
Mev when either mass standard is used.

Throughout this book, we shall use 0'® as the mass standard and the
atomic masses given in Table 9-3, but the reader should be aware of the
possibility that the standard may be changed within the next few years.



Chapter ( 4 ) : Natural radioactivity & the laws of

radioactive transformation .

Many of the ideas and techniques of atomic and nuclear physics are
based on the properties of the radioactive elements and their radiations,
and the study and use of radioactivity are essential to nuclear physics.
It has been seen that the emission of a- and S-particles by certain atoms
gave rise to the idea that atoms are built up of smaller units, and to the
concept of atomic structure. The investigation of the scattering of a-par-
ticles by atoms led to the idea of the nuclear atom, which is fundamental
to all of atomic theory. The analysis of the chemical relationships between
the various radioactive elements resulted in the discovery of isotopes.
The bombardment of atoms with swift a-particles from radioactive sub-
stances was found to cause the disintegration of atomic nuclei, and this
led in turn to the discovery of the neutron and to the current theory of the
composition of the nucleus. It will be shown in a later chapter that the
transmuted atoms resulting from this kind of bombardment are often
radioactive. This discovery of artificial, or induced, radioactivity by
Joliot and Curie, in 1934, started & new line of research, and hundreds of
radioactive nuclides have now been made by various methods. The
investigation of the radiations from the natural and artificial radionuclides
has shown that the nucleus has energy levels analogous to the atomic energy
levels discussed in Chapter 7. Nuclear speciroscopy, which deals with the
identification and classification of these levels, is an important source of
information about the structure of the nucleus. Thus, radioactivity has
been intimately connected with the development of nuclear physics, and
it is impossible to conceive of nuclear physics as something separate from
radioactivity.

The importance of radioactivity depends to a large extent on the ability
to measure radioactive changes with high precision, and to describe them
quantitatively by means of a straightforward theory. The laws of radio-
active change were developed from information about the natural radio-
elements, but they are also valid for the artificial radionuclides. They
can be applied, therefore, to any radioactive transformation, and are
fundamental to a large part of the work to be discussed in the remaining
chapters of this book.

10-1 The basis of the theory of radioactive disintegration. The first
problem which will be considered is that of the quantitative description
of radioactive growth and decay. A clue to the way in which one radio-

229
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F1e. 10-2. The decay of uranium X activity and the recovery of uranium
activity.

active substance is produced from another was provided by early experi-
ments of Crookes, Becquerel, and Rutherford and Soddy.”’ Crookes
(1900) found that if a uranium salt was precipitated from solution by the
addition of ammonium carbonate, and then redissolved in excess of the
reagent, a small residue was left. This residue, when removed from the
solution, was found to be highly radioactive. The product obtained
by evaporating the solution, which contained practically all the uranium,
had very little activity. It appeared, therefore, that most of the observed
activity of compounds of uranium was not caused by that element, but
by another substance which could be separated from the uranium. The
active substance was contained in the residue and was given the name
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uranium X (UX) to distinguish it from uranium. Becquerel then found
that if the uranium X and uranium fractions were allowed to stand sep-
arately for some time, the activity of the UX decreased, while that of the
uranium fraction increased. Rutherford and Soddy (1902) ‘¥ obtained
similar results with thorium salts; an active material which was called
thorium X was separated, and the main body of the thorium was prac-
tically inactive. After a few days, it was noticed that the thorium X
was losing its activity, while the thorium, which had been freed from
thorium X, was recovering its activity.

Rutherford and Soddy studied quantitatively the rate of decay of the
ThX activity and the rate of recovery of the thorium activity, and obtained
the curves shown in Fig. 10-1. The experimental decay curve for the
ThX was exponential in nature, i.e., the activity could be expressed as a
function of time by the equation

A(l) = Azoe™, (10-1)

where A is the initial activity of the ThX, A.(f) is the activity after a
time ¢, and X is a constant, called the distniegration constant. The recovery
curve for the thorium was found to fit the formula

Alt) = Ag(l — &™), (10-2)

in which the constant A has the same value as in Eq. (10-1); the decay
and recovery curves are therefore symmetrical. The results for UX and
U are shown in Fig. 10-2. The curves are similar to those for the thorium
bodies except that the time scale is different. Thorium X loses half of
its activity in about 3.5 days, while UX loses half of its activity in 24 days,
so that the value of \ is greater for ThX than for UX.

These experimental observations enabled Rutherford and Soddy to
formulate a theory of radioactive change. They suggested that the atoms
of radioactive elements undergo spontaneous disintegration with the
emission of a- or B-particles and the formation of atoms of a new element.
Then the intensity of the radioactivity, which has been called the activity,
is proportional to the number of atoms which disintegrate per unit time.
The activity, A, measured by one of the methods discussed in Chapter 2,
may then be replaced by the number of atoms N, and Eq. (10-1) may be
written

N(t) = Ngge™. (10-3)

The notation may be simplified by dropping the subscript z, which was
used only to distinguish between the X body and its parent substance.
Then

N(t) = Noe™ (104)
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is the equation which represents the change with time of the number of
atoms of a single decaying radioactive substance. Differentiation of both
sides of Eq. (10-4) gives

dN

— S =W, (10-5)

where N(f) has been abbreviated as N. According to Eq. (10-5), the
decrease per unit time in the number of atoms of a radicactive element
because of disintegration is proportional to the number of atoms which have
not yet disintegrated. The proportionality factor is the disintegration
constant, which is characteristic of a particular radioactive species.

Equation (10-5) is the fundamental equation of radioactive decay.
With this equation, and with two assumptions, it was possible to account
for the growth of activity in the thorium or uranium fractions from which
the ThX or UX had been removed. The assumptions are (1) that there
is a constant production of a new radioactive substance (say UX) by the
radioactive element (uranium), and (2) that the new substance (UX)
itself disintegrates according to the law of Eq. (10-5). Suppose that Q
atoms of UX are produced per second by a given mass of uranium, and
let N be the number of atoms of UX present at time ¢ after the complete
removal of the initial amount of UX. Then the net rate of increase of
UX atoms in the uranium fraction is

_dT=Q—)‘N' (10-6)

The first term on the right side of Eq. (10-6) gives the rate of formation
of UX atoms from U atoms; the second term gives the rate of disappearance
of UX atoms because of their radioactive disintegration. To integrate
Eq. (10-6), write it in the form

dN
—‘E"')\N‘_Qr

and multiply through by . Then

My

M d My A
dt+)\Ne = Qe"’, or dt(Ne)—Qe.

The last equation can be integrated directly to give
Ne = % &+C  or = g + Ce™;

C is an integration constant determined by the condition that N = 0
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when ¢t = 0. This condition gives C = —@Q/)\, and

=2 = Nt — ™, (10-7)

with No = @Q/A\.

Equation (10-7) is the same as the recovery equation (10-2) so that
the theory gives the correct result for the growth of activity in the uranium
or thorium after the removal of the X body. Equation (10-7) also shows
that the number of UX atoms in the mass of uranium approaches an
equilibrium value for large values of ¢ given by the ratio

Q _ Number of atoms of UX produced from U per second

A~ Fractions of atoms of UX which decay per second

The exponential law of decay was deduced by E. von Schweidler (1905)
without any special hypothesis about the structure of the radioactive atoms
or about the mechanism of disintegration. He assumed only that the
disintegration of an atom of a radioactive element is subject to the laws
of chance, and that the probability p for an atom to disintegrate in a time
interval At is independent of the past history of the atom and is the same
for all atoms of the same type. The probability of disintegration then
depends only on the length of the time interval and, for sufficiently short
intervals, is proportional to At. Then p = MAt, where X is the disintegra-
tion constant characteristic of the particular radioactive substance. The
probability that the given atom will not disintegrate during the short
interval Atis 1 — p = 1 — MAt. If the atom has survived this interval,
then the probability that it will not disintegrate in a second time interval At
is again 1 — MAt. The probability that the given atom will survive both
the first and the second intervals is (1 — AAf)Z; for n such intervals, the
probability of survival is (1 — MAt)®. If the total time nAt is set equal
to t, the probability of survival is [I — A(¢/n)]*. The probability that
the atom will remain unchanged after time ¢ is the limit of this quantity
as At becomes vanishingly small, or as n becomes very large. Now, one of
the definitions of the exponential functions is

e =1lm{1l — il:) )
n—s0 n
from which it follows that

t\" At
lim(l—k—) =¢ .
n—so n

The statistical interpretation of this result is that if there are initially a
large number Ny of radioactive atoms, then the fraction remaining un-
changed after a time ¢ is N/No = ¢, where N is the number of un-
changed atoms at time ¢.
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The law of radioactive decay is thus a statistical law and is the result
of a very large number of events subject to the laws of probability. The
number of atoms which disintegrate in one second is, on the average, AN,
but the number which break up in any second shows fluctuations around
this value. The magnitude of these fluctuations can be calculated with
the aid of the theory of probability, and the statistical considerations
involved are important in the design and interpretation of experiments
having to do with the measurement of radioactivity.®

The number of radioactive atoms N and the activity A have been used
interchangeably so far on the grounds that the latter is proportional to
the former. For a given radioactive substance, the two quantities are
actually connected by the relationship

A = ¢\N. (10-8a)

The proportionality factor ¢, which is sometimes called the detection coeffi-
cient, depends on the nature and efficiency of the detection instrument
and may vary considerably from one radioactive substance to another.
For any one substance, the quantity in which we are usually interested
is the ratio of the number of atoms at two values of the time. But, from
Eq. (10-8a), it follows that

N(ty) - Al) ,
N(t) A(t2)

(10-8b)

and the detection coefficient cancels out. Hence, the use of N and A as
equivalent quantities usually leads to no confusion in the case of a single
substance. When two different substances are considered, the measured
activitiesare A; = ¢;A\N;and A2 = caA2N o, respectively. If the number
of atoms which disintegrate per unit time is the same for both substances,
AN, = AgN,, but the measured activities, say in counts per minute, are
not necessarily equal. They are equal only if the detection coefficients
are equal. It will be assumed, with occasional exceptions, that the detec-
tion coefficients are all equal to unity, i.e., that each disintegration is
detected. This condition usually cannot be achieved in practice, but it
is adopted here to simplify the discussion. The activity will then be
equal to the number of atoms disintegrating per unit time, A = AN, unless
otherwise noted.

10-2 The disintegration constant, the half-life, and the mean life. A
radioactive nuclide may be characterized by the rate at which it disinte-
grates, and any one of three quantities, the disintegration constant, the
half-life, or the mean life, may be used for this purpose. The disintegra-
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Fia. 10-3. Graphical method for determining the value of the disintegration
constant.

tion constant A can be determined experimentally, in many cases, with
the help of Eq. (10-4), which may be written

NG
In N,

where the symbol “In” represents the natural logarithm. The latter can
be transformed to the ordinary logarithm, denoted by “log,” and Eq. (10-9)
becomes

= —\, (10-9)

log N® = —0.4343\, (10-10)
Ny
since the logarithm to the base ¢ is equal to 2.3026 times the logarithm to
the base 10. The numbeér of atoms N (¢} is proportional to the measured
activity A(f), so that N(t)/No = A(t)/Ao, and Eq. (10-10) may be
written
log A(t) = log Ao — 0.4343\¢. (10-11)

Hence, if the logarithm of the measured activity is plotted against the
time, a straight line should result whose slope is equal to —0.4343\. An
example of this method of determining A is shown in Fig. 10-3; for con-
venience, the plot is made on semilog paper. In the example shown, the
slope is —0.00808, with the time expressed in minutes; A is then 0.0186
min~!, or 3.10 X 10™* sec™.
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Another quantity which is used to characterize a radionuclide is the
half-life, T, the time needed for half of the radioactive atoms to disinte-
grate. After one half-life, N(T')/No = 0.5, and it follows from Eq. (10-11)
that log 0.5 = —0.4343\T or log 2 = 0.4343AT. Since log 2 = 0.3010,

half-life = T = 0.693/A. (10-12)

The relationship between the activity and the half-life is illustrated in
Fig. 10-4. After n half-lives ({ = nT), the fraction of the activity remain-
ing is (4)". This fraction never reaches zero, but it becomes very small;
after seven half-lives the activity is 1/128, or less than one percent of the
initial activity. After ten half-lives, the activity has fallen to 1/1024 or
about 0.1, of the original amount, and is usually negligible in comparison
with the initial value.

1t is also possible to determine the mean life, or average life expectancy,
of the atoms of a radioactive species. The mean life, usually denoted by 7,
is given by the sum of the times of existence of all the atoms, divided by
the initial number. Mathematically, it is found in the following way.
The number of atoms which decay between ¢ and ¢ + dt is

dN = \Ndt;
but the number of atoms still existing at time ¢ is

N =N oe'—“,
so that
dN = ANge ™ dt.

Since the decay process is a statistical one, any single atom may have a
life from O to oo. Hence, the mean life is given by

=4 / Nohe™ dt = A / e™Md=1,  (10-13)
No Jo 0 A

and is simply the reciprocal of the disintegration constant. From Egs.
(10-12) and (10-13), it follows that the half-life and the mean life are
proportional quantities:

T = 0.693r. (10-14)

If the half-life of a single radioactive species has a value in the range from
several seconds to several years, it can be determined experimentally by
measuring the activity as a function of the time, as in the case of the dis-
integration constant. When the activity is plotted against the time on
semilog paper, a straight line is obtained, and the half-life can be read off
directly.
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It often happens that two or more radioactive species are mixed together,
in which case the observed activity is the sum of the separate activities.
If the activities are independent, i.e., one component of the mixture does
not give rise to another, the various activities can sometimes be distin-
guished, and the separate half-lives determined. When the total activity
is plotted against the time on semilog paper, a curve like the solid one in
Fig. 10-5 is obtained. The curve is concave upward because the shorter-
lived components decay relatively rapidly, eventually leaving the long-
lived components. After a sufficiently long time, only the longest-lived
activity will remain, and the value of its half-life can be read from the
late portion of the decay curve, which will be a straight line. If this
straight-line portion is extrapolated back to ¢t = 0, and if the values of
the activity given by the line are subtracted from the total activity, the
curve that remains will represent the decay of all the components of the
mixture except the longest-lived. The example in Fig. 10-5 is a mixture
of two activities, one with a half-life of 0.8 hour, the other with a half-
life of 8 hours. The curve for the total activity is the sum of the two
straight lines which represent the individual activities. Although, in
principle, any complex decay curve can be analyzed into its components,
practical difficulties may limit the usefulness of the method to three com-
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Fre. 10-5. Anslysis of a composite decay curve. (a) Composite curve.
(b) Longer-lived component (T4 = 8.0 hr). (c) Shorter-lived component
(T3 = 0.8 hr). (Reprinted by permission from G. Friedlander and J. W.
Kennedy, Introduction to Radiochemistry. New York: Wiley, 1949.)
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ponents, and even a two-component mixture may be hard to resolve if the
half-lives differ by less than a factor of about two.

If the half-life of a radionuclide is either very long or very short, methods
different from those discussed so far must be used. When the half-life
is very long, i.e., \ is very small, it may not be possible to detect a change
in activity during the course of the measurement. The experimental
activity, 4, is equal to cAN, where ¢ gives the fraction of the disintegrating
atoms detected by the measuring device. Then A can be found from the
relation

dN _ A
c

?

provided that N, the number of atoms of the nuclide in the sample, is
known, and that c is known as a result of an appropriate calibration. This
method has been used successfully for long-lived a-emitters, and values
of half-lives up to the order of 10'° years have been determined. For very
short half-lives, other methods ‘* must be used, the discussion of which
is beyond the scope of this book; half-lives as short as 10~° sec have been
determined.

10-3 Successive radioactive transformations. It was found experi-
mentally that the naturally occurring radioactive nuclides form three
series. In each series, the parent nuclide decays into a daughter nuclide,
which decays in turn, and so on, until finally a stable end product is reached.
In the study of radioactive series, it is important to know the number of
atoms of each member of the series as a function of time. The answer to
a problem of this kind can be obtained by solving a system of differential
equations. The procedure may be illustrated by treating the case of a
radioactive nuclide, denoted by the subscript 1, which decays into another
radioactive nuclide (subscript 2); the latter, in turn, decays into a stable
end product (subscript 3). The numbers of atoms of the three kinds at
any time ¢ are denoted by N, N3, and N3, respectively, and the disintegra-
tion constants are Aj, Az, and Az. The system is described by the three
equations

‘_%’_1 = —\ Ny, (10-152)
i

Qg?g = )\1N1 - XzNz, (10—15b)
% = )\2N2. (10—150)

These equations express the following facts: the parent nuclide decays ac-
cording to the basic law Eq. (10-5); atoms of the second kind are formed
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at the rate \;N| because of the decay of parent atoms, and disappear at
the rate A;N,; atoms of the stable end product appear at the rate A,N.
as a result of the decay of atoms of the second kind.

It is instructive to solve this system of equations in detail because the
procedure is one which is often used. The number of atoms N, can be
written down immediately,

Ni(t) = Nle™, (10-16)

where N9 is the number of atoms of the first kind present at the time ¢ = 0.
This expression for N is inserted into Eq. (10-15b), and gives

% = MNP — \,N,,
or
% + ANy = AN ™™, (10-17)
Multiply Eq. (10-17) through by €*#; this gives
ot % + ApNget = A N0t
or

i (Nze)‘") — )‘lN(l)e(h—M)‘.
dt

The last equation can be integrated directly to give

Nzex” = _———Xz 11 X[ N‘l’e(’"_"‘)’ + C,

where C is a constant of integration. Multiplying through by e™# gives

.
Nz(t) - Az _ Al

Nie™1f 4 Ce (10-18)
The value of the integration constant is determined by noting that when
t = 0, the number of atoms of the second kind has some constant value,
or Ny = NY, with NJ equal to a constant. Then

a0 M 0
C-—Nz _—Xz—)\_lNl'
Inserting this value into Eq. (10-18) and rearranging, we obtain the
solution for N, as a function of time:

A

Fy—— N{(e™* — ¢73%) 4 N33, (10-19)

N2=



10-3] SUCCESSIVE RADIOACTIVE TRANSFORMATIONS 241

The number of atoms of the third kind is found by inserting this expres-
sion for N into Eq. (10-15¢) and integrating, which gives

_ M 0 _ a0}, —Agt _ A2 0 —At
N3 = (—'—‘"——->\2 N N1 N2) € —-——-Az T Nxe + D, (10—20)
where D is an integration constant, determined by the condition N3 = NJ
at t = 0. This condition gives

D = N§+ N+ N}
When this expression for D is inserted into Eq. (10-20), the result is

Na= N3+ N1 — eyt N0 (14 M gar A2 e"‘“) -
P o —

(10-21)

Equations (10-16), (10-19), and (10-21) represent the solution of the
problem.

One of the cases met most often in practice is that in which only radio-
active atoms of the first kind are present initially. In this case, the con-
stants N3 and NJ are both equal to zero, and the solutions for N and
N3 reduce to

A

V=n=x

N(e™t — e, (10-22)

a0 A gt Az A
Ng = N? (1 e e (10-23)

The curves of Fig. 10-6 show what happens in this case if it is assumed
that the half-lives of the active species are Ty = 1 hour and T'; = 5 hours,
respectively; the corresponding values of the disintegration constants are
A1 = 0.693 hr™!, and A, = 0.1386 hr—!, respectively. The ordinates of
the curves represent the relative numbers of the substances 1, 2, and 3 as
functions of the time when the initial number of atoms of the substance 1 is
taken as N9 = 100. The number of atoms, N, of substance 1, decreases
exponentially according to Eq. (10-16) with a half-life of 1 hour; N, is
initially zero, increases, and passes through a maximum after about three
hours, and then decreases gradually. The number of atoms N3z of the
stable end product increases steadily with time, although slowly at first;
when ¢ becomes very large, N3 approaches 100, since eventually all the
atoms of the substance 1 will bé converted to atoms of the stable end
product.

The treatment just discussed can be extended to a chain of any number
of radioactive products, and the solution of this problem is often useful.
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Fre. 10-6. A radioactive series with three members: only the parent (T} =
1 hr) is present initially; the daughter has a half-life of 5 hr, and the third member
is stable.

The procedure is similar to that of the special case already considered
except that the mathematics becomes more tedious and the expressions for
the numbers of atoms become more complicated as the length of the chain
increases. The differential equations of the system are

dN

&~ MV

dN

jdt—z = MN1 — AN,

dN 10-24
d_t3= ANz — N3N3, (10-24)
dN.

dlﬂ = xn—lzvn—l - Xn]\rﬂ-

The solution of this system of equations under the assumption that at
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Fic. 10-7. The decay of Radium A. [Reprinted by permission from Ruther-
ford, Chadwick, and Ellis, Radiations from Radioactive Substances, Cambridge
University Press (Macmillan Co.), 1930.]

t = 0 only the parent substance is present was derived by Bateman.‘®
The initial conditions are

t=0; N, =N} NI=NJ=..=N2=0 (10-25)
The number of atoms of the nth member of the chain is given by

Na(t) = Cre™*  + Coe™ 4 Cae ™ + -+« 4 Cpe™, (10-26)
with

MAz ... An_y 0
- Ni,
Ci= = —A... e =N
Rl)ka [ A,‘_l 0
- _ N9, 10-27
Ca A~ M)A — M) (A — Ag) ( )
C. = AMAz- .. Aas N

(xl . )\n)()‘2 b Ru) R (An-wl e Rn)

An example of the application of the Bateman equations, Eqs. (10-24) to
(10-27), is shown in Fig. 10-7, taken from Rutherford, Chadwick, and
Ellis’ book Radiations from Radioactive Substances. The curves were
obtained under the conditions which follow. A test body was exposed
for a few seconds to radon (Em?®2%), and a certain number of atoms of
the decay product of radon, RaA or Po?!3, with a half-life of 3.05 min
were deposited on the test body. The RaA decays into RaB (Pb2'*) with
a half-life of 26.8 min, which decays, in turn, into RaC (Bi%!*) with a
half-life of 19.7 min. Finally, the end product RaD or Pb?'?, with a
half-life of 22 years, is formed. The last half-life is sufficiently long so
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that the number of radium D atoms which disintegrate may safely be
neglected. The number of RaA atoms decreases exponentially. The
number of RaB atoms is initially zero, passes through a maximum about
10 min later, and then decreases with time. The number of RaC atoms
passes through a maximum after about 35 min. The number of RaD
atoms increases, reaching a maximum when the RaA and RaB have dis-
appeared. Eventually the RaD would decay exponentially with a half-life
of 22 years. The sum of all the atoms present at any time is N, the initial
number of atoms of RaA.

Solutions can be obtained for other problems with different initial con-
ditions, and the reader is referred to the book by Rutherford, Chadwick,
and Ellis for additional examples of the application of the theory.

104 Radioactive equilibrium. The term equitlibrium is usually used
to express the condition that the derivative of a function with respect to
the time is equal to zero. When this condition is applied to the members
of a radioactive chain described by Egs. (10-24), it means that the deriva-
tives dN1/dt, dNo/dt, . . ., AN, /dt are all equal to zero, or that the number
of atoms of any member of the chain is not changing. The conditions for
equilibrium are then

dN,

-:i't—' = ‘_XINI = 0,
MN = AN,

)\zNg = XaNa, (10‘"28)

An—an—l = AﬂA’tI:

These conditions cannot be satisfied rigorously if the parent substance is
a radioactive substance because the first of Egs. (10-28) implies that
A1 = 0, which is a contradiction. It is possible to achieve a state very
close to equilibrium, however, if the parent substance decays much more
slowly than any of the other members of the chain; in other words, if the
parent has a half-life very long compared with that of any of its decay
products. This condition is satisfied by the naturally occurring radio-
active chains. Uranium I has a half-life of 4.5 X 10? years and the fraction
of UI atoms transformed during the life of an experimenter is indeed
negligible. In such a case, the number of atoms N; can be taken to be
constant, and the value of A\, is very much smaller than that of any of the
other N’s in the chain. The first of Eqs. (10-28) is then a very good ap-
proximation, and the rest of the conditions are rigorously valid. This
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type of equilibrium is called secular equilibrium, and satisfies the condition

AINX = AzNz = ksNa = e = An—an-—l = AnNn, (10—29)
or, in terms of half-lives,
Ny _Ny _ Ny _ Ny No
Tl - Tz - T3 o - Tn—l - Tn (10—30)

The relationships (10-29) and (10-30) may be applied whenever several
short-lived products arise from successive decays beginning with a rela-
tively long-lived parent. It is only necessary to be sure that the material
has been undisturbed, that is, that no decay products have been removed or
allowed to escape for a long enough time for secular equilibrium to be
established. Secular equilibrium can also be attained when a radioactive
substance is produced at a steady rate by some artificial method, such
as a nuclear reaction in a cyclotron or chain-reacting pile. The term
AN, in the second of Eqs. (10-24) is then constant, as in the case of a
very long-lived parent, and the condition (10-29) is satisfied.

The relationships (10-30) can be used to find the half-life of a radio-
nuclide whose half-life is very long. For example, uranium minerals in
which secular equilibrium has been established have been shown to contain
one atom of radium for every 2.8 X 10° atoms of uranium I. If uranium I
is denoted by the subscript 1 and radium by the subscript 2, then at equi-
librium N,/N2 = 2.8 X 10%. The half-life of radium is known from direct
measurements to be 1620 years. Consequently, the half-life of uranium I
is

T, = %_; T, = 2.8 X 10°% X 1620 = 4.5 X 10° years.

We consider next an example of the approach to secular equilibrium.
The case is that of a long-lived parent (T = o) and a short-lived daughter.
It is assumed that the daughter has been separated from the parent, so
that the latter is initially pure. The mathematical expressions for the
number of atoms of parent and daughter may be obtained from Egs.
(10-16) and (10-22) if it is noted that A; = 0, and N\; < A2. Then
e ™! ~ 1 and

N; = N, (10-31)

Ny = %l N1 — e~sh. (10-32)
2

Equation (10-32) may be rewritten
ANz = MNY(1L — e, (10-33)
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F16. 10-8. Secular equilibrium. (a) Daughter activity growing in freshly
purified parent fraction. (b) Activity of parent (T4 = «). (c) Total activity
of an initially pure parent fraction. (d) Decay of freshly isolated daughter
fraction (T3 = 0.80 hr). (Reprinted by permission from G. Friedlander and
J. W. Kennedy, Introduction to Radiochemistry. New York: Wiley, 1949.)

The last equation gives the activity of the daughter as a function of the
time, in terms of the (constant) activity of the parent. The total activity
is given by

Awhl = X;N? + XgNz = 2X1N? - MN?e‘”'. (10—34)

Equation (10-33) shows that as ¢ increases the activity of the daughter
increases, and after several half-lives, \;N» approaches A\, N?, satisfying
the condition for secular equilibrium. These relationships are shown graph-
ically in curves a and b of Fig. 10-8; curve ¢ gives the total activity. For
comparison, curve d shows how a freshly isolated daughter fraction would
decay.

A somewhat different state of affairs, called transtent equilibrium, results
if the parent is longer-lived than the daughter (A, < A;), but the half-
life of the parent is not very long. In this case, the approximation A; = 0
may not be made. If the parent and daughter are separated so that the
parent can be assumed to be initially pure, the numbers of atoms are
again given by Eqgs. (10-16) and (10-22). After ¢ becomes sufficiently
large, €3 becomes negligible compared with e, and the number of
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F1e. 10-9. Transient equilibrium. (a) Daughter activity growing in freshly
purified parent fraction. (b) Activity of parent (T3 = 8.0 hr). (c¢) Total
activity of an initially pure parent fraction. (d) Decay of freshly isolated
daughter fraction (T3 = 0.80 hr). (e) Total daughter activity in parent-plus-
daughter fractions. (Reprinted by permission from G. Friedlander and J. W.
Kennedy, Introduction to Radiochemistry. New York: Wiley, 1949.)

atoms of the daughter becomes

A

N =~ 575

Ne™t, (10-35)

Thus, the daughter eventually decays with the same half-life as the parent.
Since N% ™ = N, it follows from Eq. (10-35) that

Ni_d— M,

No W (10-36)
The ratio of the measured activities at equilibrium is
A _ MMy _d— M, (10-37)

and the daughter activity is greater than that of the parent by the factor
A2/(A2 — A1). The above results, which are characteristic of transient
equilibrium between parent and daughter atoms, are shown graphically
in Fig. 10-9.
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When the parent has a shorter half-life than the daughter (\; > \j),
no state of equilibrium is attained. If the parent and daughter are sep-
arated initally, then as the parent decays, the number of daughter atoms
will increase, pass through a maximum, and eventually decay with the
half-life of the daughter.

10-5 The natural radioactive series. As a result of physical and chemi-
cal researcl: on the naturally occurring radioactive elements, it was proved
that each radioactive nuclide is a member of one of three long chains, or
radioactive series, stretching through the last part of the periodic system.
These series are named the uranium, actinium, and thorium series, respec-
tively, after elements at, or near, the head of the series. In the uranium
series, the mass number of each member can be expressed in the form
(4n + 2), where n is an integer, and the uranium series is sometimes
called the “4n + 2” series. In the actinium and thorium series, the mass
numbers are given by the expressions 4n + 3 and 4n, respectively. There

TasLE 10-1
TeE URANIUM SERIES

s Type of . Particle
Radioacive | Nuclide | disinte- |  Halflife | 5™ | energy,
spect gration sec—1 ’ Mev
Uranium I (UI) 0sU238 a 450 X 10°y |4.88 X 10718 | 420
Uranium X, (UX;) | ¢0Th22¢ ] 24.1d 3.33 X 1077 |0.19
Uranium X; (UX3) | 91 Pa23¢ B8 1.18 m 9.77 X 10~% | 2.32
Uranium Z (UZ) 91Paz3¢ 8 6.7h 2.88 X 107¢ | 113
Uranium II (UII) 9aU23e a 250 X 105y [ 8.80 X 10714} 4768
Tonium (Io) 90Th?3° | o 80 X 10*y |275X 10™13{468m
Radium (Ra) ssRa23¢ @ 1620 y 1.36 X 1071 | 4777 m
Ra Emanstion (Rn) | ssEm??2 | o 382d 2.10 X 1076 | 5.486
Radium A (RaA) asPo?18 a B 3.05 m 3.78 X 10~ | :5.998
g:?
Radium B (RaB) asPb314 [} 26.8 m 431 X 107¢ 107
Astatine-218 (At318) | g5At318 a 1.5-20s 0.4 6.63
Radium C (RaC) asBi21¢ af [19.7m 586 X 107¢ |a:551m
B:3.17
Radium C’ (RaC’) s4Po?1¢ a 1.64 X 10~¢8 | 4.23 X 102 7.683
Radium C” (RaC”) | sTI310 ] 1.32m 875X 1074 |19
Radium D (RaD) | 4;Pb21o | g8 194y 113 X 10~° |0.017
Radium E (RaE) asBi?10 8 50d 1.60 X 10—¢ | 1.155
Radium F (RaF) 84Po?10 a 138.3d 5.80 X 10® | 5.300
Thallium-206 (T1208) | 5, T1206 8 42m 275 X 1073 | 1.51
Radium G (RaG) ssPb208 | Stable




10-5] 249

THE NATURAL RADIOACTIVE SERIES
is no natural radioactive series of nuclides whose mass numbers are
represented by 4n + 1.

The members of the uranium series are listed in Table 10-1 together
with the mode of disintegration, the half-life,’® the disintegration con-
stant, and the maximum energy of the emitted particles.‘® The changes
in atomic number and mass number are shown in Fig. 10-10. Table 10-2
and Fig. 10-11 give the corresponding information about the actinium
series, while Table 10-3 and Fig. 10-12 are for the thorium series. The
first column of each table gives the old-fashioned, historical names of the
radionuclides, while the second column gives the modern symbol. Both
are included because both are found in the literature of physics, and it is
helpful to have a code for translation readily available. The older name
usually indicates the series to which a radioactive substance belongs and
gives some idea of the relative position in the series; the modern symbol
gives the atomic and mass numbers. The mode of decay, the value of
the half-life (or disintegration constant), and the energy of the emitted
particle characterize the radioactivity. The half-life may be in years,
days, hours, minutes, or seconds, abbreviated as y, d, h, m, s, respectively.

TasLe 10-2
THE AcTINIUM SERIES
Disinte- .
. . Type of . Particle
Radloa'ctlve Nuclide | disinte- Half-life gration energy,
species : constant,
gration sec—1 Mev
Actinouranium (AcU) | 4,U238 a 7.10 X 108y |3.09 X 10717 | 4.559 m
Uranium Y (UY) 9o Th23! B 25.6 h 7.51 X 107¢ |0.30
Protoactinium (Pa) 91Pa231 a 343 X 10ty {6.40 X 10713|5.046 m
Actinium (Ac) spAc227 a B |216y 1.02 X 10™° |«:4.94
B:0.046
Radioactinium(RdAc) | 9oTh??7 | « 18.17d 4.41 X 10”7 |6.03m
Actinium K (AcK) g7Fr223 af {22m 525 X 104 [8:1.2
«:5.34
Actinium X (AcX) ssRa?23 a 11.68d 6.87 X 1077 |5.864
Astatine-219 ssAt219 a,f |09m 1.26 X 1072 | a:6.27
Ac Emanation (An) ssEm?21¢% | o 3.92s 0.177 6.810 m
Bismuth-215 s3Bi218 o, |8m 144 X 1073 |?
Actinium A (AcA) s4Po218 a, B |1.83 X 10738}3.79 X 10?2 :7.37
Actinium B (AcB) s2Pb313 [:] 36.1m 3.20 X 10+* |1.39
Astatine-215 ssAt215 a 10748 7 X 103 8.00
Actinium C (AcC) s3Bi211 o f [215m 528 X 1073 | q:6.617m
Actinium C’ (AcC’) s4Po211 a 0.52s 1.33 7.442m
Actinium C” (AcC") | ,T1207 8 4.79m 2.41 X 10™3 |1.44
Actinium D (AcD) 82Pb207 | Stable
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Fi1g. 10-10. The uranium (4n + 2) series.
TaBLE 10-3
THE THORIUM SERIES
. . Type of N Particle
R&dloa.ctlve Nuclide | disinte- Half-life gration energy,
species . constant,
gration i Mev
sec
Thorium (Th) 9oTh232 a 1.39 X 10'°y ] 1.58 X 10718 4.007
Mesothorium1(MsTh1) | ssRa228 | 8 6.7y 3.28 X 107 |0.04
Mesothorium2(MsTh2) | sgAc*28 B8 6.13h 3.14 X 1075 |2.18
Radiothorium (RdTh) |¢oTh??8 | « 1910y 1.15 X 1078 [5.423 m
Thorium X (ThX) ssRa224 a 3.64d 2.20 X 107% |5.681 m
Th Emanation (Tn) ssEm?20| o 51.58 1.34 X 1072 |6.280
Thorium A (ThA) s4Po218 a, 8 |0.168 4.33 6.774
Thorium B (ThB) s3Pb2?13 B8 10.6 h 1.82 X 108 (0.58
Astatine-216 (At216) | g5At218 | o 3X 1078 |23 X103 |7.79
Thorium C (ThC) ssBi212 a B8 |60.5m 191 X 104 | :6.086 m
B:2.25
Thorium C’ (ThC’) sP0?12 | o 30X 10778 {231 X 10® |8.780
Thorium C” (ThC”) s1T1208 B8 3.10 m 3.73 X102 |1.79
Thorium D (ThD) 22Pb298 | Stable
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Fig. 10-11. The actinium (4n + 3) series.
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In the case of B-particles, the energy value listed is that of the most ener-
getic particles. For some radionuclides, the a-particles are monoenergetic;
for others, an a-particle may have one of several energy values, in which
case the greatest value is listed and denoted by “m.” Figures 10-10
through 10-12 illustrate Soddy’s displacement law discussed in Section
9-1. It will be remembered that the emission of an a-particle decreases
the charge of a nucleus by two units and the mass number by 4 units,
while the emission of a g-particle increases the charge of the nucleus by
one unit and leaves the mass number unchanged. In the figures, there-
fore, an a-disintegration is represented by an arrow sloping downward
and to the left, and a S-transition by a horizontal arrow pointing to the
right. All of the elements in any one column have the same atomic number
and must occupy the same place in the periodic table. For example,
RaA, RaC’, RaF, AcA, AcC’, ThA, and ThC’ all have the atomic number
84 and are isotopes of polonium. Similarly, RaB, RaD, RaG, AcB, AcD,
ThB, and ThD all have the atomic number 82 and are isotopes of lead.
Series schemes like those of Figs. 10-10 through 10-12 led Soddy (1913)
to the discovery of the existence of isotopes.

In most of the disintegration processes that make up a radioactive
series, each of the radionuclides breaks up in a definite way, giving one
a- or B-particle and one atom of the product nuclide. In some cases,
however, the atoms break up in two different ways, giving rise to two
products with different properties. This kind of disintegration is called
branching decay and is illustrated by the decay of Po?!8 (RaA), Bi2!*(RaC),
and Bi?'? (RaE) in the uranium series; by Ac®3?, Po?!% (AcA), Bi%!!
(AcC), 87Fr??® (AcK), and g5At?'® in the actinium series; and by
Po?'% (ThA) and Bi?!? (ThC) in the thorium series. Each of these nu-
clides can decay either by a-emission or by g-emission. The probability of
disintegration is the sum of the separate probabilities and A = A, + Ag;
the half-life is 7 = 0.693/X = 0.693/(As + As). In most cases, one
mode of decay is much more probable than the other. Radium A
and AcA decay almost entirely by a-emission, with only a small fraction
of one percent of the atoms disintegrating by g-emission. On the other
hand, RaC, RaE, Ac, and AcC decay almost entirely by 8-decay, with one
percent or less of the atoms decaying by a-emission. The case of ThC
(Bi%'2) is especially interesting because 66.3%, of the disintegrations are
by B-emission, and 33.7%, by a-emission, in contrast to the other cases
mentioned. In each branched decay, the product atoms decay in turn to
give the same nuclide. For example, ThC emits a g-particle to form ThC’
{Po?'?) or an a-particle to form ThC” (T12°%); ThC’ then emits an a-
particle to give stable Pb2°® (ThD), while ThC” emits a S-particle and
also forms stable Pb2°%.
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10-6 Units of radioactivity. The intensity of radioactivity has so far
been considered in terms of the number of atoms which disintegrate per
unit time, or in terms of the number of emitted particles counted per unit
time by a detector. As in other branches of physics, it is useful to have a
standard quantitative unit with an appropriate name. In radioactivity,
the standard unit is the curte, at present defined as that quantity of any
radioactive material giving 3.70 X 10'° disintegrations/sec. The milli-
curie, which is one-thousandth of a curie, and the microcurie, equal to
one-millionth of a curie, are also useful units; these would correspond to
amounts of active materials giving 3.7 X 107 and 3.7 X 10* disintegra-~
tions/sec, respectively.

For various reasons, mainly historical, there has been some confusion
about the use of the curie as the standard unit. Consequently, a new
absolute unit of radioactive disintegration rate has been recommended,
namely, the rutherford (rd), defined as that amount of a radioactive sub-
stance which gives 10° disintegrations/sec. The millirutherford (mrd)
and microrutherford (urd) correspond to 10® disintegrations/sec and 1
disintegration/sec, respectively.

To get an idea of some orders of magnitude, consider the problem of
calculating the weight in grams of 1 curie and 1 rd of RaB (Pb2'4), from
its half-life of 26.8 min. The disintegration constant is

A= 431 X 1074 sec™.
If W is the unknown weight, then

—dn/dt = AN = 4.31 X 107% X W/214 X 6.02 X 1023

= 1.21W x 108 disintegrations/sec.

If —dN/dt = 3.70 X 10'? disintegrations/sec (1 curie), then

_370x10"° -8
W= 121 X 1018 — 3.1 X 107° gm.
For1rd,
- 10° _ -13

Thus, for a substance with a short, but not very short, half-life very little
material is needed to provide a curie of activity. When the half-life is a
small fraction of a second (Po?'%, Po?!%, At?'5, At?!S, or Po?!2?), the
amount of material which gives a curie of activity is almost unimaginably
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small. In the case of a nuclide with a very long haif-life, such as U238
(T = 450 X 10° y), A = 4.9 X 1078 gec™!. Then

_dN _ e —18,, W 23
dt—)\N—-«t.Qxlo X238X6.02X10

= 1.24 X 10*W disintegrations/sec.
For 1 curie of activity,

3.70 x 10'°
1.14 X 104

and more than three metric tons are needed.

W= = 3.2 X 10% gm,
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Cloud chamber pholograph of a-particle tracks from Th C, C’ showing two rane
ons from Radioactive Substances, Rutherford Chad:):c‘: and
& IC and

Fig. 15.2 ‘ap
ffect. (Taken from Radiati
Ellis. C.U.P., 1930.)

straggling ¢

ges of the common natural o-emitters, together with
it is apparent that there is a rough reciprocal relation
se quantities in detail and it is important 1o
ranging from 1-4 x 10'° a for 232Th

If we examine the ran

their respective half-lives,
between them. Table 15.2 shows the

notice the tremendous range of half-life T', 5,
which is therefore almost a stable isotope, to 300 ns for ?§3Po which is almost a
non-existent isotope. Since these nuclides have the shortest and longest a-particle

ranges respectively these figures suggest a reciprocal relation of the form:
o 3 . T,,,"R™=constant
e 1— AR™, where_/.=0-693/T”2 (p. 49) and A is a constant. This gives log/
=m19g_R+B, putting B=log A. y \
sur'l;l;;sgiﬁe GCI%eL—IN;ttall rule, first discovered in 1911 as the result of a careful
fthe available data. The rule can b i i : is diffic
tolg;(plam B icaly. e verified experimentally but is difficult
otting the results of Table 15.2 in Fi 1 =
: ) : g. 153 we find the slope m=60
approximately, and the intercept B= —44-2 giving A=10"%%, so ?h’dr:
A=10" 84 R60 .






























Chapter ( 6 ) : Photon interactions.



















Chapter ( 7 ) : Accelerating machines as used in nuclear physics .
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18.1 Introduction . ; p
The first bombarding particles to be used in nuclear physics were hthteﬂolz
particles available from natural radioactive elements, and we have seen that the

upper energy limit of these is afew MeV. It was realizgd by the Cambrldgeb sct_moc:
in the 1920s that there was a limit to the transmutations that could be obtaine
with these and that if other particles could be used as missiles the whple range of
information would increase, as different types of nuclear reaction became
possible. The only other feasible bombarding particles then known were protons,
ince electrons do not produce nuclear effects. The first researgh was 'dxrectgd
rds the acceleration of protons to energies of a few MeV. This culminated in
ockeroft-Walton accelerator which appeared in 1932, and was the
er of the machines we have today giving energies up to 500 GeV.
esign of successful accelerating machines depends not only on classical
. electrical engineering, electronics and vacuum techniques, but also on
‘hanical engineering before accurately collimated beams of charged
‘can be made available for nuclear bombardment experiments.
over, one must remember that the maximum particle energies which can be
ced artificially are far less than those energies found in cosmic ray particles.
COs pic rays have energies of the order of many millions of GeV, the
of the particle accelerators lies in the fact that the intensity of the beam
than the intensity of cosmic rays at sea-level.

'ockcr.oft and Walton adopted was that of the voltage
1t shown diagrammatically in Fig. 18.1. In this diagram two
>C4 are connected across the transformer giving a

e circuit formed by the
first half-cycle assume O












Fig. 183 Tandem electrostatic accelerator, Aldermaston, England. This machine and a similar
accelerator at Harwell are designed to yield basic information on the behaviour of nuclei. (By courtesy
of UK.A.E.A)

really a wave-guide since it contains apertures spaced according to the frequency
of the travelling wave and the size of the tube. Electrons are injected at about 80
kVin the case of the Stanford University electron linear accelerator, which has an
output of 1 GeV (10° eV) and is 91 m long.

The most powerful electron linear accelerator in the world is at the Stanford
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