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Introduction: 

 Why Do We Need Quantum Mechanics? 

Just over 100 years ago, in the 1890’s, physics looked in pretty good shape. The 

beautiful mathematical development of Newton’s mechanics, coupled with 

increasingly sophisticated technology, predicted the movements of the solar 

system to incredible accuracy, apart from a tiny discrepancy in the orbit of 

Mercury. It had been less than a hundred years since it was realized that an 

electric current could exert a force on a magnet, but that discovery had led to 

power stations, electric trains, and a network of telegraph wires across land and 

under the oceans. It had also been only a hundred years since it had been 

established that light was a wave, and only forty years since Maxwell’s realization 

that the waves in a light signal were electric and magnetic fields, satisfying a wave 

equation he was able to derive purely by considering electric and magnetic field 

phenomena. In particular, he was able to predict the speed of light by measuring 

the electrostatic attractive forces between charges and the magnetic forces 

between currents. 

At about the same time, in the 1860’s, Maxwell and Boltzmann gave a brilliant 

account of the properties of gases by assuming that they were made up of weakly 

interacting molecules flying about in a container, bouncing off the sides, with a 

statistical distribution of energies so that the probability of a molecule having 

energy EE was proportional to           , kk being a universal constant known 

as Boltzmann’s constant. Boltzmann generalized this result from a box of gas to 

any system. For example, a solid can be envisioned classically as a lattice of balls 

(the atoms) connected by springs, which can sustain oscillations in many ways, 

each such mode can be thought of as a simple harmonic oscillator, with 

reasonable approximations concerning the properties of the springs, etc. 

Boltzmann’s work leads to the conclusion that each such mode of oscillation, or 

degree of freedom, would at temperature T have average energy   , made up 

of      potential energy,      kinetic energy. Notice that this average energy is 

independent of the strength of the springs, or the masses! All modes of vibration, 

which will vibrate at very different rates, contain the same energy at the same 
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temperature. This equal sharing is called the Equipartition of Energy. It is not 

difficult to check this for a one-dimensional classical harmonic oscillator, 

averaging the energy by integrating over all displacements and momenta 

(independently) with the weighting factor           ,  (which of course needs 

to be normalized). The result doesn’t depend on the spring constant or the mass. 

Boltzmann’s result gave an excellent account of the specific heats of a wide range 

of materials over a wide temperature range, but there were some exceptions, for 

example hydrogen gas at low temperatures, and even solids at low enough 

temperatures. Still, it was generally felt these problems could be handled within 

the existing framework, just as the slightly odd behavior of Mercury was likely 

caused by a small planet, named Vulcan, closer to the sun, and so very hard to 

observe. 

 What was Wrong with Classical Mechanics? 

Basically, classical statistical mechanics wasn’t making sense... 

Maxwell and Boltzmann evolved the equipartition theorem: a physical system can 

have many states (gas with particles having different velocities, or springs in 

different states of compression). 

At nonzero temperature, energy will flow around in the system, it will constantly 

move from one state to another. So, what is the probability that at any instant it 

is in a particular state with energy  ? 

M&B proves it was proportional to             This proportionality factor is 

also correct for any subsystem of the system: for example, a single molecule. 

Notice this means if a system is a set of oscillators, different masses on different 

strength springs, for example, then in thermal equilibrium each oscillator has on 

average the same energy as all the others. For three-dimensional oscillators in 

thermal equilibrium, the average energy of each oscillator is    , where   is 

Boltzmann’s constant. 
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 Black Body Radiation 

Now put this together with Maxwell’s discovery that light is an electromagnetic 

wave: inside a hot oven, Maxwell’s equations can be solved yielding standing 

wave solutions, and the set of different wavelengths allowed standing waves 

amount to an infinite series of oscillators, with no upper limit on the frequencies 

on going far into the ultraviolet. Therefore, from the classical equipartition 

theorem, an oven at thermal equilibrium at a definite temperature should contain 

an infinite amount of energy—of order    in each of an infinite number of 

modes—and if you let radiation out through a tiny hole in the side, you should see 

radiation of all frequencies. 

This is not, of course, what is observed: as an oven is warmed, it emits infrared, 

then red, then yellow light, etc. This means that the higher frequency oscillators 

(blue, etc.) are in fact not excited at low temperatures: equipartition is not true. 

Planck showed that the experimentally observed intensity/frequency curve was 

exactly reproduced if it was assumed that the radiation was quantized: light of 

frequency   could only be emitted in quanta—now photons—having 

energy   ,   being Planck’s constant. This was the beginning of quantum 

mechanics. 

 The Photoelectric Effect 

Einstein showed the same quantization of electromagnetic radiation explained 

the photoelectric effect: a photon of energy    knocks an electron out of a metal, 

it takes a certain work   to get it out, the rest of the photon energy goes to the 

kinetic energy of the electron, for the fastest electrons emitted (those that come 

right from the surface, so encountering no further resistance). Plotting the 

maximum electron kinetic energy as a function of incident light frequency 

confirms the hypothesis, giving the same value for   as that needed to explain 

radiation from an oven. (It had previously been assumed that more intense light 

would increase the kinetic energy—this turned out not to be the case.) 
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 The Bohr Atom 

Bohr put together this quantization of light energy with Rutherford’s discovery 

that the atom had a nucleus, with electrons somehow orbiting around it: for the 

hydrogen atom, light emitted when the atom is thermally excited has a particular 

pattern, the observed emitted wavelengths are given by 

              

with           RHRH is now called the Rydberg constant.) Bohr realized these 

were photons having energy equal to the energy difference between two allowed 

orbits of the electron circling the nucleus (the proton),         , leading to 

the conclusion that the allowed levels must be: 

           

How could the quantum    restricting allowed radiation energies also restrict the 

allowed electron orbits? Bohr realized there must be a connection—

because   has the dimensions of angular momentum! What if the electron were 

only allowed to be in circular orbits of angular momentum    , with   an 

integer? Bohr did the math for orbits under an inverse square law and found that 

the observed spectra were in fact correctly accounted for by taking       . 

But then he realized he did not even need the experimental results to find KK: 

quantum mechanics must agree with classical mechanics in the regime where we 

know experimentally that classical mechanics (including Maxwell’s equations) is 

correct, that is, for systems of macroscopic size. Consider a negative charge 

orbiting around a fixed positive charge at a radius of 10 cm., the charges being 

such that the speed is of order meters per second (we don’t want relativistic 

effects making things more complicated). Then from classical E&M, the charge 

will radiate at the orbital frequency. Now imagine this is a hydrogen atom, in a 

perfect vacuum, in a high state of excitation. It must be radiating at this same 

frequency. But Bohr’s theory can’t just be right for small orbits, so the radiation 

must satisfy         . The spacing between adjacent levels will vary slowly 

for these large orbits, so   times the orbital frequency must be the energy 

difference between adjacent levels. Now, that energy difference depends on the 
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allowed angular momentum step between the adjacent levels: that is, on  . 

Reconciling these two expressions for the radiation frequency gives       . 

This classical limit argument, then, predicts the Rydberg constant in terms of 

already known quantities: 

                            

 What’s right about the Bohr atom? 

 It gives the Balmer series spectra. 

 The first orbit size is close to the observed size of the atom: and remember 

there are no adjustable parameters, the classical limit argument 

determines the spectra and the size. 

 What’s wrong with the Bohr atom? 

No explanation for why angular momentum should be quantized. (This was solved 

by de Broglie a little later.) 

Why don’t the circling electrons radiate, as predicted classically? Well, the fact 

that radiation is quantized means the classical picture of an accelerating charge 

smoothly emitting radiation cannot work if the energies involved are of 

order   times the frequencies involved. 

The lowest state has nonzero angular momentum. This is a defect of the model, 

corrected in the truly quantum model (Schrödinger’s equation). 

In an inverse square field, orbits are in general elliptical. 

This was at first a puzzle: why should there be only circular orbits allowed? In fact, 

the model does allow elliptical orbits, and they do not show up in the Balmer 

series because, as proved by Sommerfeld, if the allowed elliptical orbits have the 

same allowed angular momenta as Bohr’s orbits, they have the same set of 

energies. This is a special property of the inverse square force. 
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 De Broglie Waves 

The first explanation of why only certain angular momenta is allowed for the 

circling electron was given by de Broglie: just as photons act like particles (definite 

energy and momentum), but undoubtedly are wave like, being light, so particles 

like electrons perhaps have wave like properties. For photons, the relationship 

between wavelength and momentum is     λ. Assuming this is also true of 

electrons, and that the allowed circular orbits are standing waves, Bohr’s angular 

momentum quantization follows. 

 The Nature of Matter 

By the 1890’s and early 1900’s, most scientists believed in the existence of atoms. 

Not all—the distinguished German chemist Ostwald did not, for example. But 

nobody had a clear picture of even a hydrogen atom. The electron had just been 

discovered, and it was believed that the hydrogen atom had a single electron. It 

was suggested that maybe the electron went in circles around a central charge, 

but nobody believed that because Maxwell had established that accelerating 

charges radiate, so it was assumed that a circling electron would rapidly loose 

energy, spiral into the center, and the atom would collapse. Instead, it was 

thought, the hydrogen atom (which was of course electrically neutral) was a ball 

of positively charged jelly with an electron inside, which would oscillate when 

heated, and emit radiation. Rough calculations, based on the accepted size of the 

atom, suggested that the radiation would be in the visible range, but no-one 

could remotely reproduce the known spectrum of hydrogen. 

The big breakthrough came in 1909, when Rutherford tried to map the 

distribution of positive charge in a heavy atom (gold) by scattering alpha particles 

from it. To his amazement, he found the positive charge was all concentrated in a 

tiny nucleus, with a radius of order one ten-thousandth that of the atom. This 

meant that after all the electrons must be going in planetary orbits, and the 

Maxwell’s equations prediction of radiation did not apply, just as it did not always 

apply in blackbody radiation. 
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2.1: The One-Dimensional Wave Equation 

 Learning Objectives 

 To introduce the wave equation including time and position dependence 

In the most general sense, waves are particles or other media with wavelike 

properties and structure (presence of crests and troughs). 

Figure 2.1.1: A simple translational (transverse) wave. (CC BY-SA 4.0 International; And 1mu via 

Wikimedia Commons) 

The simplest wave is the (spatially) one-dimensional sine wave (Figure 2.1.1) with 

a varying amplitude AA described by the equation: 

                                                                                                             

Where, 

    is the maximum amplitude of the wave, maximum distance from the 

highest point of the disturbance in the medium (the crest) to the 

equilibrium point during one wave cycle. In Figure 2.1.1, this is the 

maximum vertical distance between the baseline and the wave. 

   is the space coordinate 

   is the time coordinate 

   is the wavenumber 

   is the angular frequency 

   is the phase constant. 
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One can categorize “waves” into two different groups: traveling 

waves and stationary waves. 

 Traveling Waves 

Traveling waves, such as ocean waves or electromagnetic radiation, are waves 

that “move,” meaning that they have a frequency and are propagated through 

time and space. Another way of describing this property of “wave movement” is 

in terms of energy transmission – a wave travels, or transmits energy, over a set 

distance. The most important kinds of traveling waves in everyday life are 

electromagnetic waves, sound waves, and perhaps water waves, depending on 

where you live. It is difficult to analyze waves spreading out in three dimensions, 

reflecting off objects, etc., so we begin with the simplest interesting examples of 

waves, those restricted to move along a line. Let’s start with a rope, like a 

clothesline, stretched between two hooks. You take one end off the hook, holding 

the rope, and, keeping it stretched fairly tight, wave your hand up and back once. 

If you, do it fast enough, you’ll see a single bump travel along the rope: 

 

Figure 2.1.2: A one-dimensional traveling wave at one instance of time    

This is the simplest example of a traveling wave. You can make waves of different 

shapes by moving your hand up and down in different patterns, for example an 

upward bump followed by a dip, or two bumps. You’ll find that the traveling 

wave keeps the same shape as it moves down the rope. Taking the rope to be 

stretched tightly enough that we can take it to be horizontal, we’ll use its rest 

position as our x-axis (Figure 2.1.1). The y-axis is taken vertically upwards, and we 
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only wave the rope in an up-and-down way, so actually        will be how far 

from the rope is from its rest position at   at time  : that is, Figure 2.1.2 shows 

where the rope is at a single time  . 

We can now express the observation that the wave “keeps the same shape” more 

precisely. Taking for convenience time t=0 to be the moment when the peak of 

the wave passes x=0, we graph here the rope’s position at       and some later 

times t as a movie (Figure 2.1.3). Denoting the first function by            , 

then the second               : it is the same function with the “same 

shape,” but just moved over by   , where v is the velocity of the wave. 

 

Figure 2.1.3: A one-dimensional traveling wave at as a function of time. Traveling waves 

propagate energy from one spot to another with a fixed velocity vv. (CC BY-NC-ND; Daniel A. 

Russell). 

To summarize: on sending a traveling wave down a rope by jerking the end up and 

down, from observation the wave travels at constant speed and keeps its shape, 

so the displacement y of the rope at any horizontal position at x at time t has the 

form 

                                                                                                                         

We are neglecting frictional effects—in a real rope, the bump gradually gets 

smaller as it moves along. 

 Standing Waves 

In contrast to traveling waves, standing waves, or stationary waves, remain in a 

constant position with crests and troughs in fixed intervals. One way of producing 

a variety of standing waves is by plucking a melody on a set of guitar or violin 

strings. When placing one’s finger on a part of the string and then plucking it with 

http://www.acs.psu.edu/drussell/
http://www.acs.psu.edu/drussell/
https://human.libretexts.org/Textbook_Maps/Music/Understanding_Basic_Music_Theory_(OpenSTAX)/4%3A_The_Physical_Basis/4.2%3A_Standing_Waves_and_Musical_Instruments
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another, one has created a standing wave. The solutions to this problem involve 

the string oscillating in a sine-wave pattern (Figure 2.1.4) with no vibration at the 

ends. There is also no vibration at a series of equally spaced points between the 

ends; these "quiet" places are nodes. The places of maximum oscillation 

are antinodes. 

Figure 2.1.4: Animation of standing wave in the stationary medium with marked wave nodes 

(red circles). (Public domain; Lucas VB). 

 Bound vs. Free particles and Traveling vs. Stationary Waves 

Traveling waves exhibit movement and propagate through time and space and 

stationary wave have crests and troughs at fixed intervals separated by nodes. 

"Free" particles like the photoelectron discussed in the photoelectron effect, 

exhibit traveling wave like properties. In contrast, electrons that are "bound" 

waves will exhibit stationary wave like properties. The latter was invoked for the 

Bohr atom for quantizing angular moment of an electron bound within a 

hydrogen atom. 

 The Wave Equation 

The mathematical description of the one-dimensional waves (both traveling and 

standing) can be expressed as 

                                                                                                                        

with   is the amplitude of the wave at position   and time  , and   is the velocity 

of the wave (Figure 2.1.2). 

Equation 2.1.3 is called the classical wave equation in one dimension and is 

a linear partial differential equation. It tells us how the displacement u can change 

as a function of position and time and the function. The solutions to the wave 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/02%3A_The_Classical_Wave_Equation/2.01%3A_The_One-Dimensional_Wave_Equation#mjx-eqn-2.1.1_1
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equation (        are obtained by appropriate integration techniques. It may not 

be surprising that not all possible waves will satisfy Equation 2.1.3 and the waves 

that do must satisfy both the initial conditions and the boundary conditions, i.e. 

on how the wave is produced and what is happening on the ends of the string. 

For example, for a standing wave of string with length   held taut at two ends 

(Figure 2.1.3), the boundary conditions are 

                                                                                                                                    

and 

                                                                                                                                    

for all values of  . As expected, different system will have different boundary 

conditions and hence different solutions. 

 Summary 

Waves which exhibit movement and are propagated through time and space. The 

two basic types of waves are traveling and stationary. Both exhibit wavelike 

properties and structure (presence of crests and troughs) which can be 

mathematically described by a wavefunction or amplitude function. Both wave 

types display movement (up and down displacement), but in different ways. 

Traveling waves have crests and troughs which are constantly moving from one 

point to another as they travel over a length or distance. In this way, energy is 

transmitted along the length of a traveling wave. In contrast, standing waves have 

nodes at fixed positions; this means that the wave’s crests and troughs are also 

located at fixed intervals. Therefore, standing waves only experience vibrational 

movement (up and down displacement) on these set intervals - no movement or 

energy travels along the length of a standing wave. 

 

 

 

http://mathwiki.ucdavis.edu/Analysis/Partial_differential_equations
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/02%3A_The_Classical_Wave_Equation/2.01%3A_The_One-Dimensional_Wave_Equation#mjx-eqn-2.1.1_1
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1.4: Matter Has Wavelike Properties 

 Learning Objectives 

 To introduce the wave-particle duality of light extends to matter 

The next real advance in understanding the atom came from an unlikely quarter - 

a student prince in Paris. Prince Louis de Broglie was a member of an illustrious 

family, prominent in politics and the military since the 1600's. Louis began his 

university studies with history, but his elder brother Maurice studied x-rays in his 

own laboratory, and Louis became interested in physics. After World War I, de 

Broglie focused his attention on Einstein's two major achievements, the theory of 

special relativity and the quantization of light waves. He wondered if there could 

be some connection between them. Perhaps the quantum of radiation really 

should be thought of as a particle. De Broglie suggested that if waves (photons) 

could behave as particles, as demonstrated by the photoelectric effect, then the 

converse, namely that particles could behave as waves, should be true. He 

associated a wavelength   to a particle with momentum pp using Planck's 

constant as the constant of proportionality: 

                                                                                                                                      

which is called the de Broglie wavelength. The fact that particles can behave as 

waves but also as particles, depending on which experiment you perform on 

them, is known as the particle-wave duality. 

 Deriving the de Broglie Wavelength 

From the discussion of the photoelectric effect, we have the first part of the 

particle-wave duality, namely, that electromagnetic waves can behave like 

particles. These particles are known as photons, and they move at the speed of 

light. Any particle that moves at or near the speed of light has kinetic energy given 

by Einstein's special theory of relatively. In general, a particle of mass mm and 

momentum pp has an energy 

                                           √                                                                           
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Note that if    , this reduces to the famous rest-energy expression      . 

However, photons are massless particles (technically rest-massless) that always 

have a finite momentum p. In this case, Equation 1.4.2 becomes 

      

From Planck's hypothesis, one quantum of electromagnetic radiation has energy 

     Thus, equating these two expressions for the kinetic energy of a photon, 

we have 

           

Solving for the wavelength λ gives Equation 1.6.1: 

                                                                                                                          

Where,   is the velocity of the particle. Hence, de Broglie argued that if particles 

can behave as waves, then a relationship like this, which pertains particularly to 

waves, should also apply to particles. 

Equation 1.4.3 allows us to associate a wavelength   to a particle with 

momentum  . As the momentum increases, the wavelength decreases. In both 

cases, this means the energy becomes larger. i.e., short wavelengths and high 

momenta correspond to high energies. 

It is a common feature of quantum mechanics that particles and waves with short 

wavelengths correspond to high energies and vice versa. 

Having decided that the photon might well be a particle with a rest mass, even if 

very small, it dawned on de Broglie that in other respects it might not be too 

different from other particles, especially the very light electron. In particular, may 

be the electron also had an associated wave. The obvious objection was that if 

the electron was wavelike, why had no diffraction or interference effects been 

observed? But there was an answer. If de Broglie's relation between momentum 

and wavelength also held for electrons, the wavelength was sufficiently short that 

these effects would be easy to miss. As de Broglie himself pointed out, the wave 

nature of light is not very evident in everyday life. As the next section will 
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demonstrate, the validity of de Broglie’s proposal was confirmed by electron 

diffraction experiments of G.P. Thomson in 1926 and of C. Davisson and L. H. 

Germer in 1927. In these experiments it was found that electrons were scattered 

from atoms in a crystal and that these scattered electrons produced an 

interference pattern. These diffraction patterns are characteristic of wave-like 

behavior and are exhibited by both electrons (i.e., matter) and electromagnetic 

radiation (i.e., light). 

 Example 1.4.1: Electron Waves 

Calculate the de Broglie wavelength for an electron with a kinetic energy of 1000 

eV. 

 Solution 

To calculate the de Broglie wavelength (Equation 1.4.3), the momentum of the 

particle must be established and requires knowledge of both the mass and 

velocity of the particle. The mass of an electron is 9.109383×10−28g and the 

velocity is obtained from the given kinetic energy of 1000 eV: 

                      

Solve for momentum 

  √     

convert to SI units 

  √                                              

expanding definition of joule into base SI units and cancel 

  √                                      

 √                  
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Now substitute the momentum into the equation for de Broglie's wavelength 

(Equation 1.6.1) with Planck constant (                  ). After expanding 

expanding unites in Planks constant 

      

                                                                                

                         

 Exercise 1.4.1: Baseball Waves 

Calculate the de Broglie wavelength for a fast ball thrown at 100 miles per hour 

and weighing 4 ounces. Comment on whether the wave properties of baseballs 

could be experimentally observed. 

 Answer 

Following the unit conversions below, a 4 oz baseball has a mass of 0.11 kg. The 

velocity of a fast ball thrown at 100 miles per hour in m/s is 44.7 m/s. 

                             

                                             

The de Broglie wavelength of this fast ball is: 
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1.5: de Broglie Waves can be Experimentally Observed 

 Learning Objectives 

 To present the experimental evidence behind the wave-particle duality of 

matter 

The validity of de Broglie’s proposal was confirmed by electron diffraction 

experiments of G.P. Thomson in 1926 and of C. Davisson and L. H. Germer in 

1927. In these experiments it was found that electrons were scattered from 

atoms in a crystal and that these scattered electrons produced an interference 

pattern. The interference pattern was just like that produced when water waves 

pass through two holes in a barrier to generate separate wave fronts that 

combine and interfere with each other. These diffraction patterns are 

characteristic of wave-like behavior and are exhibited by both matter (e.g., 

electrons and neutrons) and electromagnetic radiation. Diffraction patterns are 

obtained if the wavelength is comparable to the spacing between scattering 

centers. 

Diffraction occurs when waves encounter obstacles whose size is comparable with 
its wavelength. 

Continuing with our analysis of experiments that lead to the new quantum 
theory, we now look at the phenomenon of electron diffraction. 

 Diffraction of Light (Light as a Wave) 

It is well-known that light has the ability to diffract around objects in its path, 

leading to an interference pattern that is particular to the object. This is, in fact, 

how holography works (the interference pattern is created by allowing the 

diffracted light to interfere with the original beam so that the hologram can be 

viewed by shining the original beam on the image). A simple illustration of light 

diffraction is the Young double slit experiment (Figure 1.5.1). 

https://phys.libretexts.org/TextBooks_and_TextMaps/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/3%3A_Interference/3.1%3A_Young's_Double-Slit_Interference
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Figure 1.5.1: Young double slit experiment. Two slits are illuminated by a plane light waves. (CC 
BY-NC; Ümit Kaya) 
 

Here, light as waves (pictured as waves in a plane parallel to the double slit 

apparatus) impinge on the two slits. Each slit then becomes a point source for 

spherical waves that subsequently interfere with each other, giving rise to the 

light and dark fringes on the screen at the right. 

Interference is a wave phenomenon in which two waves superimpose to form a 

resultant wave of greater or lower amplitude. It is the primary property used to 

identify wave behavior. 

 Diffraction of Electrons (Electrons as Waves) 

According to classical physics, electrons should behave like particles - they travel 

in straight lines and do not curve in flight unless acted on by an external agent, 

like a magnetic field. In this model, if we fire a beam of electrons through a 

double slit onto a detector, we should get two bands of "hits", much as you would 

get if you fired a machine gun at the side of a house with two windows - you 

would get two areas of bullet-marked wall inside, and the rest would be intact 

Figure 1.5.2 (left). 
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Figure 1.5.2: (left) classical model of electrons. (right) wave property of electrons. (CC BY-NC; 
Ümit Kaya) 

However, if the slits are made small enough and close enough together, we 

actually observe the electrons are diffracting through the slits and interfering with 

each other just like waves. This means that the electrons have wave-particle 

duality, just like photons, in agreement with de Broglie's hypothesis discussed 

previously. In this case, they must have properties like wavelength and frequency. 

We can deduce the properties from the behavior of the electrons as they pass 

through our diffraction grating. 

This was a pivotal result in the development of quantum mechanics. Just as the 

photoelectric effect demonstrated the particle nature of light, the Davisson–

Germer experiment showed the wave-nature of matter and completed the theory 

of wave-particle duality. For physicists this idea was important because it meant 

that not only could any particle exhibit wave characteristics, but that one could 

use wave equations to describe phenomena in matter if one used the de Broglie 

wavelength. 
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Figure 1.5.3: An image of an ant in a scanning electron microscope based on the wave 

properties of electrons. (Public Domain; United States Geological Survey, an agency of the 
United States Department of the Interior) 

An electron microscope uses a beam of accelerated electrons as a source of 

illumination. Since the wavelength of electrons can be up to 100,000 times 

shorter than that of visible light photons, electron microscopes have a higher 

resolving power than light microscopes and can reveal the structure of smaller 

objects. A transmission electron microscope can achieve better than 50 pm 

resolution and magnifications of up to about 10,000,000  whereas most light 

microscopes are limited by diffraction to about 200 nm resolution and useful 

magnifications below 2000  (Figure 1.5.3). 

 Is Matter a Particle or a Wave? 

An electron, indeed, any particle, is neither a particle nor a wave. Describing the 

electron as a particle is a mathematical model that works well in some 

circumstances while describing it as a wave is a different mathematical model 

that works well in other circumstances. When you choose to do some calculation 

of the electron's behavior that treats it either as a particle or as a wave, you're 

not saying the electron is a particle or is a wave: you're just choosing the 

mathematical model that makes it easiest to do the calculation. 

 

 Neutrons Diffraction (Neutrons as Waves) 
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Like all quantum particles, neutrons can also exhibit wave phenomena and if that 

wavelength is short enough, atoms or their nuclei can serve as diffraction 

obstacles. When a beam of neutrons emanating from a reactor is slowed down 

and selected properly by their speed, their wavelength lies near one angstrom 

(0.1 nanometer), the typical separation between atoms in a solid material. Such a 

beam can then be used to perform a diffraction experiment. Neutrons interact 

directly with the nucleus of the atom, and the contribution to the diffracted 

intensity depends on each isotope; for example, regular hydrogen and deuterium 

contribute differently. It is also often the case that light (low Z) atoms contribute 

strongly to the diffracted intensity even in the presence of large Z atoms. 

Example 1.7.1: Neutron Diffraction 

Neutrons have no electric charge, so they do not interact with the atomic 

electrons. Hence, they are very penetrating (e.g., typically 10 cm in lead). Neutron 

diffraction was proposed in 1934, to exploit de Broglie’s hypothesis about the 

wave nature of matter. Calculate the momentum and kinetic energy of a neutron 

whose wavelength is comparable to atomic spacing (          ). 

 Solution 

This is a simple use of de Broglie’s equation 

      

where we recognize that the wavelength of the neutron must be comparable to 

atomic spacing (let's assumed equal for convenience, so λ=1.8×10−10m). 

Rearranging the de Broglie wavelength relationship above to solve for momentum 

( ): 

      

                        

                   

The relationship for kinetic energy is 
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where v is the velocity of the particle. From the reference table of physical 

constants, the mass of a neutron is                  , so 

                                               

            

The neutrons released in nuclear fission are ‘fast’ neutrons, i.e., much more 

energetic than this. Their wavelengths be much smaller than atomic dimensions 

and will not be useful for neutron diffraction. We slow down these fast neutrons 

by introducing a "moderator", which is a material (e.g., graphite) that neutrons 

can penetrate, but will slow down appreciable. 
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1.6: The Heisenberg Uncertainty Principle 

 Learning Objectives 

 To understand that sometimes you cannot know everything about a 

quantum system as demonstrated by the Heisenberg uncertainly principle. 

In classical physics, studying the behavior of a physical system is often a simple 

task since several physical qualities can be measured simultaneously. However, 

this possibility is absent in the quantum world. In 1927 the German physicist 

Werner Heisenberg described such limitations as the Heisenberg Uncertainty 

Principle, or simply the Uncertainty Principle, stating that it is not possible to 

measure both the momentum and position of a particle simultaneously. 

The Heisenberg Uncertainty Principle is a fundamental theory in quantum 

mechanics that defines why a scientist cannot measure multiple quantum 

variables simultaneously. Until the dawn of quantum mechanics, it was held as a 

fact that all variables of an object could be known to exact precision 

simultaneously for a given moment. Newtonian physics placed no limits on how 

better procedures and techniques could reduce measurement uncertainty so that 

it was conceivable that with proper care and accuracy all information could be 

defined. Heisenberg made the bold proposition that there is a lower limit to this 

precision making our knowledge of a particle inherently uncertain. 

 Probability 

Matter and photons are waves, implying they are spread out over some distance. 

What is the position of a particle, such as an electron? Is it at the center of the 

wave? The answer lies in how you measure the position of an electron. 

Experiments show that you will find the electron at some definite location, unlike 

a wave. But if you set up exactly the same situation and measure it again, you will 

find the electron in a different location, often far outside any experimental 

uncertainty in your measurement. Repeated measurements will display a 

statistical distribution of locations that appears wavelike (Figure 1.6.1). 
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Figure 1.6.1: The building up of the diffraction pattern of electrons scattered from a crystal 

surface. Each electron arrives at a definite location, which cannot be precisely predicted. The 

overall distribution shown at the bottom can be predicted as the diffraction of waves having 

the de Broglie wavelength of the electrons. Image used with permission (CC BY; OpenStax). 

After de Broglie proposed the wave nature of matter, many physicists, including 

Schrödinger and Heisenberg, explored the consequences. The idea quickly 

emerged that, because of its wave character, a particle’s trajectory and 

destination cannot be precisely predicted for each particle individually. However, 

each particle goes to a definite place (Figure 1.6.1). After compiling enough data, 

you get a distribution related to the particle’s wavelength and diffraction pattern. 

There is a certain probability of finding the particle at a given location, and the 

overall pattern is called a probability distribution. Those who developed quantum 

mechanics devised equations that predicted the probability distribution in various 

circumstances. 

It is somewhat disquieting to think that you cannot predict exactly where an 

individual particle will go, or even follow it to its destination. Let us explore what 

happens if we try to follow a particle. Consider the double-slit patterns obtained 
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for electrons and photons in Figure 1.6.2. The interference patterns build up 

statistically as individual particles fall on the detector. This can be observed for 

photons or electrons—for now, let us concentrate on electrons. You might 

imagine that the electrons are interfering with one another as any waves do. To 

test this, you can lower the intensity until there is never more than one electron 

between the slits and the screen. The same interference pattern builds up! 

This implies that a particle’s probability distribution spans both slits, and the 

particles actually interfere with themselves. Does this also mean that the electron 

goes through both slits? An electron is a basic unit of matter that is not divisible. 

But it is a fair question, and so we should look to see if the electron traverses one 

slit or the other, or both. One possibility is to have coils around the slits that 

detect charges moving through them. What is observed is that an electron always 

goes through one slit or the other; it does not split to go through both. 

But there is a catch. If you determine that the electron went through one of the 

slits, you no longer get a double slit pattern—instead, you get single slit 

interference. There is no escape by using another method of determining which 

slit the electron went through. Knowing the particle went through one slit force a 

single-slit pattern. If you do not observe which slit the electron goes through, you 

obtain a double-slit pattern. How does knowing which slit the electron passed 

through change the pattern? The answer is fundamentally important 

measurement affects the system being observed. Information can be lost, and in 

some cases, it is impossible to measure two physical quantities simultaneously to 

exact precision. For example, you can measure the position of a moving electron 

by scattering light or other electrons from it. Those probes have momentum 

themselves, and by scattering from the electron, they change its momentum in a 

manner that loses information. There is a limit to absolute knowledge, even in 

principle. 

 Heisenberg’s Uncertainty Principle 

It is mathematically possible to express the uncertainty that, Heisenberg 

concluded, always exists if one attempts to measure the momentum and position 
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of particles. First, we must define the variable “ ” as the position of the particle 

and define “ ” as the momentum of the particle. The momentum of a photon of 

light is known to simply be its frequency, expressed by the ratio    , where h 

represents Planck’s constant and   represents the wavelength of the photon. The 

position of a photon of light is simply its wavelength ( ). To represent finite 

change in quantities, the Greek uppercase letter delta, or Δ, is placed in front of 

the quantity. Therefore, 

                                                                                                                                    

                                                                                                                                       

By substituting    for   into Equation 1.6.1, we derive 

                                                                                                                                  

or, 

                                                                                                                                                                            
                                                                               early form of uncertainty principle 

 A Common Trend in Quantum Systems 

Equation 1.6.4 can be derived by assuming the particle of interest is behaving as a 

particle, and not as a wave. Simply let                      (from De 

Broglie’s expression for the wavelength of a particle). Substituting in    for    in 

the second equation leads to Equation 1.6.4. 

Equation 1.6.4 was further refined by Heisenberg and his colleague Niels Bohr, 
and was eventually rewritten as 

                                                                                                                     

with                       
          

Equation 1.6.5 reveals that the more accurately a particle’s position is known (the 

smaller    is), the less accurately the momentum of the particle in the x direction 

(   ) is known. Mathematically, this occurs because the smaller    becomes, the 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.1
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.4
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.4
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.4
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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larger     must become in order to satisfy the inequality. However, the more 

accurately momentum is known the less accurately position is known 

(Figure 1.6.2). 

 

Figure 1.6.2: The animation shows the relevant spreads in the uncertainty for position and 

momentum of light/photons (light wave's corresponding photon particle). From the result of de 

Broglie, we know that for a particle with known momentum, pp will have a precise value for its 

de Broglie wavelength can be determined (and hence a specific color of the light). 

 What is the Proper Definition of Uncertainty? 

Equation 1.6.5 relates the uncertainty of momentum and position. An immediate 

question that arises is if    represents the full range of possible   values or if it is 

half (e.g., ⟨ ⟩    ).    is the standard deviation and is a statistic measure of the 

spread of   values? The use of half the possible range is more accurate estimate 

of   . As we will demonstrated later, once we construct a wavefunction to 

describe the system, then both xx and    can be explicitly derived. However for 

now, Equation 1.6.5 will work. 

For example: If a problem argues a particle is trapped in a box of length, L, then 

the uncertainly of it position is ±L/2. So the value of    used in 

Equation 1.6.5 should be L/2, not L.   

 Example 1.6.1 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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An electron is confined to the size of a magnesium atom with a 150 pm radius. 
What is the minimum uncertainty in its velocity? 

 Solution 

The uncertainty principle (Equation 1.6.5): 

         

can be written 

         

and substituting        since the mass is not uncertain. 

          

the relevant parameters are mass of electron                       

uncertainty in position:                

             
                                                   

             

 Exercise 1.6.1 

What is the maximum uncertainty of velocity the electron described in 
Example 1.9.1? 

 Answer 

Infinity. There is no limit in the maximum uncertainty, just the minimum 
uncertainty. 

 Example 1.6.2 

The speed of a 1.0 g projectile is known to within     m/s. 

a. Calculate the minimum uncertainty in its position. 

b. What is the maximum uncertainty of its position? 

 Solution 

a) From Equation 1.6.5, the          with m=1.0 g. Solving for    to get 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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This negligible for all intents and purpose as expected for any macroscopic object. 

b) Unlimited (or the size of the universe). The Heisenberg uncertainty 

principles does not quantify the maximum uncertainty. 

 Exercise 1.6.2 

Estimate the minimum uncertainty in the speed of an electron confined to a 

hydrogen atom within a diameter of 1×      ? 

 Answer 

We need to quantify the uncertainty of the electron in position. We can estimate 

that as ±5×10−10 m. Hence, substituting the relevant numbers into 

Equation 1.6.5 and solving for    we get 

                 

Notice that the uncertainty is significantly greater for the electron in a hydrogen 

atom than in the magnesium atom (Example 1.6.1) as expected since the 

magnesium atom is appreciably bigger. 

Heisenberg’s Uncertainty Principle not only helped shape the new school of 

thought known today as quantum mechanics, but it also helped discredit older 

theories. Most importantly, the Heisenberg Uncertainty Principle made it obvious 

that there was a fundamental error in the Bohr model of the atom. Since the 

position and momentum of a particle cannot be known simultaneously, Bohr’s 

theory that the electron traveled in a circular path of a fixed radius orbiting the 

nucleus was obsolete. Furthermore, Heisenberg’s uncertainty principle, when 

combined with other revolutionary theories in quantum mechanics, helped shape 

wave mechanics and the current scientific understanding of the atom. 

 Humor: Heisenberg and the Police 

Heisenberg get pulled over for speeding by the police. The officer asks him "Do you 
know how fast you were going?" 
Heisenberg replies, "No, but we know exactly where we are!" 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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The officer looks at him confused and says, "you were going 108 miles per hour!" 
Heisenberg throws his arms up and cries, "Great! Now we're lost!" 
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 The Schrödinger Equation and a Particle in a Box 

The particle in a box model provides one of the very few problems in quantum 

mechanics which can be solved analytically, without approximations. This means 

that the observable properties of the particle (such as its energy and position) are 

related to the mass of the particle and the width of the well by simple 

mathematical expressions. Due to its simplicity, the model allows insight into 

quantum effects without the need for complicated mathematics 

3.1: The Schrödinger Equation 

 Learning Objectives 

 To be introduced to the general properties of the Schrödinger equation and 

its solutions. 

De Broglie’s doctoral thesis, defended at the end of 1924, created a lot of 

excitement in European physics circles. Shortly after it was published in the fall of 

1925 Pieter Debye, Professor of Theoretical Physics at Zurich and Einstein's 

successor, suggested to Erwin Schrödinger that he give a seminar on de Broglie’s 

work. Schrödinger gave a polished presentation, but at the end Debye remarked 

that he considered the whole theory rather childish: why should a wave confine 

itself to a circle in space? It wasn’t as if the circle was a waving circular string, real 

waves in space diffracted and diffused, in fact they obeyed three-dimensional 

wave equations, and that was what was needed. This was a direct challenge to 

Schrödinger, who spent some weeks in the Swiss mountains working on the 

problem and constructing his equation. There is no rigorous derivation of 

Schrödinger’s equation from previously established theory, but it can be made 

very plausible by thinking about the connection between light waves and 

photons, and construction an analogous structure for de Broglie’s waves and 

electrons (and, later, other particles). 

 The Schrödinger Equation: A Better Approach 

While the Bohr model is able to predict the allowed energies of any single-

electron atom or cation, it by no means, a general approach. Moreover, it relies 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box
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heavily on classical ideas, clumsily grafting quantization onto an essentially 

classical picture, and therefore, provides no real insights into the true quantum 

nature of the atom. Any rule that might be capable of predicting the allowed 

energies of a quantum system must also account for the wave-particle duality and 

implicitly include a wave-like description for particles. Nonetheless, we will 

attempt a heuristic argument to make the result at least plausible. In classical 

electromagnetic theory, it follows from Maxwell's equations that each component 

of the electric and magnetic fields in vacuum is a solution of the 3-D wave 

equation for electromagnetic waves: 

                                                                                                

The wave equation in Equation 3.1.1 is the three-dimensional analog to the wave 

equation presented earlier (Equation 2.1.1) with the velocity fixed to the known 

speed of light: c. Instead of a partial derivative ∂2/∂x2 in one dimension, 

the Laplacian (or "del-squared") operator is introduced: 

                                                                                                                                      

Corresponding, the solution to this 3D equation wave equation is a function 

of four independent variables:         and   and is generally called 

the wavefunction  . 

We will attempt now to create an analogous equation for de Broglie's matter 

waves. Accordingly, let us consider an only 1-dimensional wave motion 

propagating in the x-direction. At a given instant of time, the form of a wave 

might be represented by a function such as 

                                                                                                                            

where      represents a sinusoidal function such as                      or 

some linear combination of these. The most suggestive form will turn out to be 

the complex exponential, which is related to the sine and cosine by Euler's 

formula 

https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_II_-_Thermodynamics%2C_Electricity%2C_and_Magnetism_(OpenStax)/16%3A_Electromagnetic_Waves/16.1%3A_Maxwell%E2%80%99s_Equations_and_Electromagnetic_Waves
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.1
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Each of the above is a periodic function, its value repeating every time its 

argument increases by   . This happens whenever x increases by one 

wavelength  . At a fixed point in space, the time-dependence of the wave has an 

analogous structure: 

                                                                                                                               

where   gives the number of cycles of the wave per unit time. Taking into account 

both   and   dependence, we consider a wavefunction of the form 

                                                    [           ]                                              

representing waves traveling from left to right. Now we make use of the Planck 

formula (    ) and de Broglie formulas (    ) to replace   and   by their 

particle analogs. This gives 

                                                   [          ]                                                 

Where, 

                                                                                                                                    

Since Planck's constant occurs in most formulas with the denominator   , 

the   symbol was introduced by Paul Dirac. Equation 3.1.5 represents in some 

way the wavelike nature of a particle with energy   and momentum  . The time 

derivative of Equation 3.1.7 gives 

                                                    [          ]                                      

Thus from a simple comparison of Equations 3.1.7 and 3.1.9 

                                                                                                                            

or analogously differentiation of Equation 3.1.9 with respect to   

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.5
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and then the second derivative 

                                                                                                                       

The energy and momentum for a nonrelativistic free particle (i.e., all energy is 

kinetic with no potential energy involved) are related by 

                                                                                                                 

Substituting Equations 3.1.12 and 3.1.10 into Equation 3.1.13 shows 

that        satisfies the following partial differential equation 

                                                                                                                   

Equation 3.1.14 is the applicable differential equation describing the 

wavefunction of a free particle that is not bound by any external forces or 

equivalently not in a region where its potential energy        varies. 

For a particle with a non-zero potential energy     , the total energy   is then a 

sum of kinetics and potential energies 

                                                                                                                       

we postulate that Equation 3.1.3 for matter waves can be generalized to 

                                         [                    ]                 (3.1.16) 

time-dependent Schrödinger equation in 1D 

For matter waves in three dimensions, Equation 3.1.6 is then expanded 

                            (  ⃗  )     *             (  ⃗)+ (  ⃗  )                          

(3.1.17) 

time-dependent Schrödinger equation in 3D 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.12
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Here the potential energy and the wavefunctions Ψ depend on the three space 

coordinates          which we write for brevity as   ⃗. Notice that the potential 

energy is assumed to depend on position only and not time (i.e., particle motion). 

This is applicable for conservative forces that a potential energy 

function  (  ⃗) can be formulated. 

 The Laplacian Operator 

The three second derivatives in parentheses together are called the Laplacian 

 operator, or del-squared, 

       

                                                                                                       

with the del operator, 

                                      

  (  ⃗       ⃗       ⃗    )                                          

Remember from basic calculus that when the del operator is directly operates on 

a field (e.g.,          , it denotes the gradient (i.e., the locally steepest slope) of 

the field. The symbols with arrows in Equation 3.1.19 are unit vectors. 

Equation 3.1.17 is the time-dependent Schrödinger equation describing the 

wavefunction amplitude  (  ⃗  ) of matter waves associated with the particle 

within a specified potential  (  ⃗)  Its formulation in 1926 represents the start of 

modern quantum mechanics (Heisenberg in 1925 proposed another version 

known as matrix mechanics). 

For conservative systems, the energy is a constant, and the time-dependent factor 

from Equation 3.1.7 can be separated from the space-only factor (via 

the Separation of Variables technique discussed in Section 2.2) 
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 (  ⃗  )   (  ⃗)                                                              

where    ⃗   is a wavefunction dependent (or time-independent) wavefuction 

that only depends on space coordinates. Putting Equation 3.1.20 into 

Equation 3.1.17 and cancelling the exponential factors, we obtain the time-

independent Schrödinger equation: 

                          [              ⃗  ]   ⃗        ⃗                                          

 time-independent Schrödinger equation 

The overall form of the Equation 3.1.21 is not unusual or unexpected as it uses 

the principle of the conservation of energy. Most of our applications of quantum 

mechanics to chemistry will be based on this equation (with the exception of 

spectroscopy). The terms of the time-independent Schrödinger equation can then 

be interpreted as total energy of the system, equal to the system kinetic energy 

plus the system potential energy. In this respect, it is just the same as in classical 

physics. 

 Time Dependence to the Wavefunctions 

Notice that the wavefunctions used with the time-independent Schrödinger 

equation (i.e.,    ⃗   do not have explicit t dependences like the wavefunctions of 

time-dependent analog in Equation 3.1.17 (i.e.,    ⃗       That does not 

imply that there is no time dependence to the wavefunction. 

Equation 3.1.20 argues that the time-dependent (i.e., full spatial and temporal) 

wavefunction     ⃗      differs from the time-independent (i.e., spatial only) 

wavefunction    ⃗    by a "phase factor" of constant magnitude. Using the Euler 

relationship in Equation 3.1.4, the total wavefunction above can be expanded 

                                ⃗        ⃗                                                       
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40 
 

This means the total wavefunction has a complex behavior with a real part and an 

imaginary part. Moreover, using the trigonometry identity               

      Equation 3.1.22 can further simplified to 

                            ⃗       ⃗               ⃗                               

This shows that both the real and the imaginary components of the total 

wavefunction oscillate the imaginary part of the total wavefunction oscillates out 

of phase by     with respect to the real part. 

Note that while all wavefunctions have a time-dependence, that dependence may 

not impact in simple quantum problems as the next sections discuss and can 

often be ignored. 

Before we embark on this, however, let us pause to comment on the validity of 

quantum mechanics. Despite its weirdness, its abstractness, and its strange view 

of the universe as a place of randomness and unpredictability, quantum theory 

has been subject to intense experimental scrutiny. It has been found to agree 

with experiments to better than        for all cases studied so far. When the 

Schrödinger Equation is combined with a quantum description of the 

electromagnetic field, a theory known as quantum electrodynamics, the result is 

one of the most accurate theories of matter that has ever been put forth. Keeping 

this in mind, let us forge ahead in our discussion of the quantum universe and 

how to apply quantum theory to both model and real situations. 
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3.2: Linear Operators in Quantum Mechanics 

 Learning Objectives 

 Classical-Mechanical quantities are represented by linear operators in 

Quantum Mechanics 

 Understand that "algebra" of scalars and functions do not always to 

operators (specifically the commutative property) 

The bracketed object in the time-independent Schrödinger Equation (in 1D) 

                             [              ⃗  ]   ⃗       ⃗                                          

is called an operator. An operator is a generalization of the concept of a function 

applied to a function. Whereas a function is a rule for turning one number into 

another, an operator is a rule for turning one function into another. For the time-

independent Schrödinger Equation, the operator of relevance is the Hamiltonian 

operator (often just called the Hamiltonian) and is the most ubiquitous 

operator in quantum mechanics. 

                                          ̂                ⃗                                                      

We often (but not always) indicate that an object is an operator by placing a 'hat' 

over it, e.g.,  ̂. So time-independent Schrödinger Equation can then be simplified 

from Equation 3.2.1 to 

                                           ̂    ⃗       ⃗                                                                    

Equation 3.2.3 says that the Hamiltonian operator operates on the wavefunction 

to produce the energy, which is a scalar (i.e., a number, a quantity 

and observable) times the wavefunction. Such an equation, where the operator, 

operating on a function, produces a constant times the function, is called an 

eigenvalue equation. The function is called an eigenfunction, and the resulting 

numerical value is called the eigenvalue. Eigen here is the German word meaning 

self or own. We will discuss this in detail in later Sections. 
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 Fundamental Properties of Operators 

Most properties of operators are straightforward, but they are summarized below 

for completeness. 

The sum and difference of two operators A^ and B^ are given by 

                                                                                                     

The product of two operators is defined by 

                                                   [   ]                                                                 

Two operators are equal if 

                                                                                                                                  

for all functions ff. The identity operator 1^ does nothing (or multiplies by 1) 

                                                                                                                                      

The  -th power of an operator A^  is defined as   successive applications of 

the operator, e.g. 

                                                                                                                             

The associative law holds for operators 

                                                                                                                   

The commutative law does not generally hold for operators. In general, but not 

always, 

                                                                                                                            

To help identify if the inequality in Equation 3.2.10 holds for any two specific 
operators, we define the commutator. 

 Definition: The Commutator 

It is convenient to define the commutator of A^ and B^ 

                                                [     ]                                                         

              commute, then 
                                                [     ]                                                                          

If the commutator is not zero, the order of operating matters and the operators 

are said to "not commute." Moreover, this property applies 
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                                            [     ]   [     ]                                                          

 Linear Operators 

The action of an operator that turns the function      into the function g(x) is 

represented by 

                                                                                                                             

The most common kind of operator encountered are linear operators which 

satisfies the following two conditions: 

                                                                                                 
Condition A 

and 
                                                                                                                       

Condition B 

where 

    is a linear operator, 

   is a constant that can be a complex number         , and 
      and      are functions of   

If an operator fails to satisfy either Equations 3.2.15 or 3.2.16 then it is not a 
linear operator. 

 Example 3.2.1 

Is this operator              linear? 

 Solution 

To confirm is an operator is linear, both conditions in Equation 3.2.16 must be 

demonstrated. 

Condition A (Equation 3.2.15): 

                                  

From basic calculus, we know that we can use the sum rule for differentiation 
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Condition A is confirmed. Does Condition B (Equation 3.2.16) hold? 

                          

Also from basic calculus, this can be factored out of the derivative 

                                  

Yes. This operator is a linear operator (this is the linear momentum operator). 

 Exercise 3.2.1 

Confirm if the square root operator √f(x) linear or not? 

 Answer 

To confirm is an operator is linear, both conditions in 

Equations 3.2.15 and 3.2.16 must be demonstrated. Let's look first at Condition B. 

Does Condition B (Equation 3.2.16) hold? 

                

√            

Condition B does not hold; therefore, the square root operator is not linear. 

The most operators encountered in quantum mechanics are linear operators. 
 

 Hermitian Operators 

An important property of operators is suggested by considering the Hamiltonian 

 for the particle in a box: 

                                                                                                                 

Let f(x) and g(x) be arbitrary functions which obey the same boundary values as 
the eigenfunctions of H^ (e.g., they vanish at x=0 and x=a). Consider the integral 
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                       ∫             
 

 
         ∫              

 

 
                          

Now, using integration by parts, 

                    

∫              
 

 
  ∫              

 

 
           

                           

The boundary terms vanish by the assumed conditions on   and  . A second 

integration by parts transforms Equation 3.2.19 to 

                                    ∫             
 

 
                                                        

It follows therefore that 

                                ∫             
 

 
 ∫             

 

 
                                   

An obvious generalization for complex functions will read 

                                 ∫              
 

 
  ∫                

 

 
                   

In mathematical terminology, an operator A^ for which 

                                 ∫            ∫                                                          

for all functions f and g which obey specified boundary conditions is classified 

as Hermitian or self-adjoint. Evidently, the Hamiltonian is a Hermitian operator. It 

is postulated that all quantum-mechanical operators that represent dynamical 

variables are Hermitian. The term is also used for specific times of matrices in 

linear algebra courses. 

All quantum-mechanical operators that represent dynamical variables 

are Hermitian. 
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3.3: The Schrödinger Equation is an Eigenvalue Problem 

 Learning Objectives 

 To recognize that each quantum mechanical observable is determined by 

solve by an eigenvalue problem with different operators for 

different observable 

 Confirm if a specific wavefunction is an eigenfunction of a specific 

operation and extract the corresponding observable (the eigenvalue) 

 To recognize that the Schrödinger equation, just like all measurable, is also 

an eigenvalue problem with the eigenvalue ascribed to total energy 

 Identity and manipulate several common quantum mechanical operators 

As per the definition, an operator acting on a function gives another function, 

however a special case occurs when the generated function is proportional to the 

original  

                                                                                                                                    

This case can be expressed in terms of a equality by introducing a proportionality 

constant k 

                                                                                                                                  

Not all functions will solve an equation like in Equation 3.3.2 If a function does, 

then ψ is known as an eigenfunction and the constant k is called 

its eigenvalue (these terms are hybrids with German, the purely English 

equivalents being "characteristic function" and "characteristic value", 

respectively). Solving eigenvalue problems are discussed in most linear algebra 

courses. 

In quantum mechanics, every experimental measurable aa is the eigenvalue of a 

specific operator (A^): 

                                                                                                                                  

The aa eigenvalues represent the possible measured values of the A^ operator. 

Classically, aa would be allowed to vary continuously, but in quantum 

mechanics, aa typically has only a sub-set of allowed values (hence the quantum 
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aspect). Both time-dependent and time-independent Schrödinger equations are 

the best-known instances of an eigenvalue equations in quantum mechanics, with 

its eigenvalues corresponding to the allowed energy levels of the quantum 

system. 

                          [                ⃗  ]   ⃗       ⃗                                        

The object on the left that acts on ψ(x)ψ(x) is an example of an operator 

                               [                ⃗  ]                                                                  

In effect, what is says to do is "take the second derivative of       multiply the 

result by          and then add          to the result of that." Quantum 

mechanics involves many different types of operators. This one, however, plays a 

special role because it appears on the left side of the Schrödinger equation. It is 

called the Hamiltonian operator and is denoted as 

                                                        ⃗                                                     

Therefore, the time-dependent Schrödinger equation can be (and it more 

commonly) written as 

                                                                                                                 

and the time-independent Schrödinger equation 

                                                                                                                           

Note that the functional form of Equation 3.3.8  is the same as the general  

eigenvalue equation  in Equation 3.3.2 where the eigenvalues are the (allowed) 

total energies ( ). 

The Hamiltonian, named after the Irish mathematician Hamilton, comes from the 

formulation of Classical Mechanics that is based on the total energy,      , 

rather than Newton's second law,     . Equation 3.3.8 says that 

the Hamiltonian operator operates on the wavefunction to produce the energy E, 

which is a scalar (e.g., expressed in Joules) times the wavefunction. 
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 Correspondence Principle 

Note that    is derived from the classical energy            simply by 

replacing              This is an example of the Correspondence 

Principle initially proposed by Niels Bohr that states that the behavior of systems 

described by quantum theory reproduces classical physics in the limit of 

large quantum numbers. 

It is a general principle of Quantum Mechanics that there is an operator for every 

physical observable. A physical observable is anything that can be measured. If 

the wavefunction that describes a system is an eigenfunction of an operator, then 

the value of the associated observable is extracted from the eigenfunction by 

operating on the eigenfunction with the appropriate operator. The value of the 

observable for the system is then the eigenvalue, and the system is said to be in 

an eigenstate. Equation 3.3.8 states this principle mathematically for the case of 

energy as the observable. If the wavefunction is not the eigenfunction of the 

operation, then the measurement will give an eigenvalue (by definition), but not 

necessarily the same one for each measurement (this will be discussed in more 

detail in later section). 

 Common Operators 

Although we could theoretically come up with an infinite number of operators, in 
practice there are a few which are much more important than any others. 

 Linear Momentum: 

The linear momentum operator of a particle moving in one dimension 
(the  -direction) is 

                                                                                                                             

and can be generalized in three dimensions: 

                                                    ⃗                                                                           

 Position 
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The position operator of a particle moving in one dimension (the  -
direction) is 

                                                                                                                                      

and can be generalized in three dimensions: 

                                                   ⃗    ⃗                                                                            

where  ⃗           

 Kinetic Energy 

Classically, the kinetic energy of a particle moving in one dimension (the  -
direction), in terms of momentum, is 

                                                                                                                    

Quantum mechanically, the corresponding kinetic energy operator is 

                                                                                                    

and can be generalized in three dimensions: 

                                                                                                         

 Angular Momentum: 

Angular momentum requires a more complex discussion, but is the cross 

product of the position operator  ⃗   and the momentum operator    

                                  ⃗        ⃗                                                                             

 Hamiltonian: 

The Hamiltonian operator corresponds to the total energy of the system 
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and it represents the total energy of the particle of mass   in the 
potential     . The Hamiltonian in three dimensions is 

                                                          ⃗                                                 

 Total Energy: 

The energy operator from the time-dependent Schrödinger equation 

                                                                                                              

The right hand side of Equation 3.3.6 is the Hamiltonian Operator. In 

addition, determining system energies, the Hamiltonian operator dictates 

the time evolution of the wavefunction 

                                                                                                                

This aspect will be discussed in more detail elsewhere. 

 Eigenstate, Eigenvalues, Wavefunctions, Measurables and Observables 

In general, the wavefunction gives the "state of the system" for the system under 

discussion. It stores all the information available to the observer about the 

system. Often in discussions of quantum mechanics, the 

terms eigenstate and wavefunction are used interchangeably. The term 

eigenvalue is used to designate the value of measurable quantity associated with 

the wavefunction. 

 If you want to measure the energy of a particle, you have to operate on the 

wavefunction with the Hamiltonian operator (Equation 3.3.6). 

 If you want to measure the momentum of a particle, you have to operate 

on wavefunction with the momentum operator (Equation 3.3.9). 

 If you want to measure the position of a particle, you have to operate on 

wavefunction with the position operator (Equation 3.3.11). 

 If you want to measure the kinetic energy of a particle, you have to operate 

on wavefunction with the kinetic energy operator (Equation 3.3.14). 
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When discussing the eigenstates of the Hamiltonian (H^), the associated 

eigenvalues represent energies and within the context of the momentum 

operators, the associated eigenvalues refer to the momentum of the particle. 

However, not all wavefunctions ( ) are eigenstates of an operator ( ) – and if 

they are not, they can usually be written as superpositions of eigenstates. 

                                                                                                                                  

This will be discussed in more detail in later sections. 

While the wavefunction may not be the eigenstate of an observable, when that  

operator operates on that wavefunction, the wavefunction becomes an 

eigenstate of that observable and only eigenvalues can be observed. Another way 

to say this is that the wavefunction "collapses" into an eigenstate of the  

observable. Because quantum mechanical operators have different forms, their 

associated eigenstates are similarly often (i.e., most of the time) different. For 

example, when a wavefunction is an eigenstate of total energy, it will not be an 

eigenstate of momentum.  

If a wavefunction is an eigenstate of one operator, (e.g., momentum), that state is 

not necessarily an eigenstate of a different operator (e.g., energy), although not 

always.  

The wavefunction immediately after a measurement is an eigenstate of 

the operator associated with this measurement. What happens to the 

wavefunction after the measurement is a different topic. 

 Example 3.3.1 

Confirm that the following wavefunctions are eigenstates of linear momentum 

and kinetic energy (or neither or both): 

a.             

b.                  

 Strategy 
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This question is asking if the eigenvalue equation holds for the operators and 

these wavefunctions. This is just asking if these wavefunctions are solutions to 

Equation 3.3.2 using the operators in Equations 3.3.9 and 3.3.14, i.e., are these 

equations true: 

                                                                                                                              

                                                                                                                            

where    and    are the measurables (eigenvalues) for these operators. 

 Solution 

a. Let's evaluate the left side of the linear momentum eigenvalue problem 

(Equation 3.3.22) 

                                   

and compare to the right side of Equation 3.3.22 

             

These are not the same so this wavefunction is not an eigenstate of momentum. 

Let's look at the left side of the kinetic energy eigenvalue problem 

(Equation 3.3.23) 

                                                    

                       

and compare to the right side 

             

These are same, so this specific wavefunction is an eigenstate of kinetic energy. 

Moreover, the measured kinetic energy will be 

               

b. Let's look at the left side of Equation 3.3.22 for linear momentum 
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and the right side of Equation 3.3.22 

                                                                

These are the same so this wavefunction is an eigenstate of momentum with 

momentum      . 

Let's look at the left side of Equation 3.3.23 for kinetic energy 

                                                         

                     

and the right side 

                

These are same so this wavefunction is an eigenstate of kinetic energy. And the 

measured kinetic energy will be 

        

This wavefunction is an eigenstate of both momentum and kinetic energy. 

 Exercise 3.3.1 

Are              functions eigenstates of linear momentum and kinetic 

energy (or neither or both)? 

 Answer 

  is an eigenstate of linear momentum with an eigenvalue of     and also an 

eigenstate of kinetic energy with an eigenvalue of   . 

3.4: Wavefunctions Have a Probabilistic Interpretation 

 Learning Objectives 

 To understand that wavefunctions can have probabilistic interpretations. 

 To calculate the probabilities directly from a wavefunctions 
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For a single-particle system, the wavefunction    ⃗           ⃗   for the time-

independent case, represents the amplitude of the still vaguely defined matter 

waves. Since wavefunctions can in general be complex functions, the physical 

significance cannot be found from the function itself because the √−1 is not a 

property of the physical world. Rather, the physical significance is found in the 

product of the wavefunction and its complex conjugate, i.e., the absolute square 

of the wavefunction, which also is called the square of the modulus (also called 

absolute value). 

                                                    ⃗         ⃗       ⃗                                           

                                                                      ⃗                                                            

Where,  ⃗ is a vector         specifying a point in three-dimensional space. The 

square is used, rather than the modulus itself, just like the intensity of a light 

wave depends on the square of the electric field. 

Born proposed in 1926, the most commonly accepted interpretation of the 

wavefunction that the square of the modulus (Equation 3.4.2) is proportional to 

the probability density (probability per unit volume) that the electron is in the 

volume    located at   . Since the wavefunction represents the wave properties 

of matter, the probability amplitude        will also exhibit wave-like 

behavior. Probability density is the three-dimensional analog of the diffraction 

pattern that appears on the two-dimensional screen in the double-slit diffraction 

experiment for electrons. The idea that we can understand the world of atoms 

and molecules only in terms of probabilities is disturbing to some, who are 

seeking more satisfying descriptions through ongoing research. 

The Born interpretation therefore calls the wavefunction the probability 

amplitude, the absolute square of the wavefunction is called the probability 

density, and the probability density times a volume element in three-dimensional 

space (  ) is the probability   

The probability that a single quantum particle moving in one spatial dimension 

will be found in a region   [   ] if a measurement of its location is performed is 
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                                       [   ]  ∫           
 

 
                                                    

In three dimensions, Equation 3.4.3 is represented differently 

                                      [   ]  ∫      ⃗                                                          

This integration extends over a specified volume ( ) with the 

symbol    designating the appropriate volume element (including a Jacobian) of 

the coordinate system adopted: 

 Cartesian: 

                                                                                                                    

 Spherical: 

                                                                                                            

 Cylindrical: 

                                                                                                                   

For rectilinear Cartesian space, Equation 3.4.4 can be is expanded with dimension 
explicitly indicated 

                                        

    [   ]  ∫ ∫ ∫                       
  

  

  

  

  

  
         

where the limits of integration are selected to encompass the volume   of 
consideration. 

The Born interpretation (Equation 3.4.2) of relating the wavefunction to 

probability forces certain demands on its mathematical behavior of 

wavefunctions and not any mathematical function can be a valid wavefunction. 

 Required Properties of Wavefunction 

 The wavefunction must be a single-valued function of all its coordinates 

since the probability density ought to be uniquely determined at each point 

in space. 
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 The wavefunction should be both finite as an infinite probability has no 

meaning. 

 The wavefunction should be continuous everywhere, as expected for a 

physically meaningful probability density. 

The conditions that the wavefunction be single-valued, finite and continuous--in 

short, "well behaved"-- lead to restrictions on solutions of the Schrödinger 

equation such that only certain values of the energy and other dynamical 

variables are allowed. This is called quantization and is in the feature that 

gives quantum mechanics its name. 

It is important to note that this interpretation implies the wavefunction 

does not mean the particle is distributed over a large region as a sort of "charge 

cloud". The wavefunction is used to describe the electron motion that behaves 

like waves and satisfies a wave equation. This is akin to how a grade distribution 

in a large class does not represent a smearing of grades for a single student, but 

only makes sense when taking into account that the distribution is the result of 

many measurables (e.g., student performances). 
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3.5: The Energy of a Particle in a Box is Quantized 

 Learning Objectives 

 Solve the particle-in-a-box model used to describing a trapped particle in 1 

D well 

 Characterize the particle-in-a-box eigenstates (i.e., wavefunctions) and the 

eigen energies as a function of the quantum number 

 Demonstrate that the eigenstates are orthogonal 

The particle in the box model system is the simplest non-trivial application of the 

Schrödinger equation, but one which illustrates many of the fundamental 

concepts of quantum mechanics. For a particle moving in one dimension (again 

along the x- axis), the Schrödinger equation can be written 

                                  

Assume that the particle can move freely between two endpoints     and   

 , but cannot penetrate past either end. This is equivalent to a potential energy 

dependent on xx with 

     ,
                                          
                                    

         

This potential is represented in Figure 3.5.1 The infinite potential energy 

constitutes an impenetrable barrier since the particle would have an infinite 

potential energy if found there, which is clearly impossible. 
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Figure 3.5.1: The barriers outside a one-dimensional box have infinitely large potential, while 

the interior of the box has a constant, zero potential. (CC-BY 4.0; OpenStax). 

The particle is thus bound to a "potential well" since the particle cannot penetrate 

beyond            

                                                                                                            

By the requirement that the wavefunction be continuous, it must be true as well 
that 

                                                                                                                    

which constitutes a pair of boundary conditions on the wavefunction within the 
box. Inside the box,       , so the Schrödinger equation reduces to the free-
particle form: 

                                                                                                                  

with      . 

We again have the differential equation 

                                                                                                                        

with 
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The general solution can be written 

                                                                                                                 

where   and   are constants to be determined by the boundary conditions in 
Equation 3.5.2 By the first condition, we find 

                                                                                                       

The second boundary condition at     then implies 

                                                                                                                        

It is assumed that    , for otherwise      would be zero everywhere and the 
particle would disappear (i.e., the trivial solution). The condition that          
implies that 

                                                                                                                                     

Where,   is a integer, positive, negative or zero. The case     must be 

excluded, for then     and again      would vanish everywhere. 

Eliminating   between Equation 3.5.4 and 3.5.9, we obtain 

                                                                                              

with              

These are the only values of the energy which allows solutions of the Schrödinger 

Equation 3.5.3 consistent with the boundary conditions in Equation 3.5.2. The 

integer  , called a quantum number, is appended as a subscript on   to label the 

allowed energy levels. Negative values of n add nothing new because the energies 

in Equation 3.5.10 depends on   . 
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Figure 3.5.2: A plot of       for the first four wavefunctions. (CC-BY 4.0; OpenStax). 

Figure 3.5.2 shows part of the energy-level diagram for the particle in a box. The 

occurrence of discrete or quantized energy levels is characteristic of a bound 

system, that is, one confined to a finite region in space. For the free particle, the 

absence of confinement allowed an energy continuum. Note that, in both cases, 

the number of energy levels is infinite-denumerably infinite for the particle in a 

box, but nondenumerable infinite for the free particle. 

The particle in a box assumes its lowest possible energy when    , namely 

                                                                                                                           

The state of lowest energy for a quantum system is termed its ground state. 

 Zero Point Energy 
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An interesting point is that     , whereas the corresponding classical system 

would have a minimum energy of zero. This is a recurrent phenomenon in 

quantum mechanics. The residual energy of the ground state, that is, the energy 

in excess of the classical minimum, is known as zero-point energy. In effect, the 

kinetic energy, hence the momentum, of a bound particle cannot be reduced to 

zero. The minimum value of momentum is found by equating    to        

giving            . This can be expressed as an uncertainty in momentum 

given by       . Coupling this with the uncertainty in position      , from 

the size of the box, we can write 

                                                                                                                                  

This is in accord with the Heisenberg uncertainty principle. 

The particle-in-a-box eigenfunctions are given by Equation 3.5.13, with     

and         , in accordance with Equation 3.5.9 

                                                                                                                     

with            

These, like the energies, can be labeled by the quantum number  . The 

constant A, thus far arbitrary, can be adjusted so that       is normalized. The 

normalization condition is, in this case, 

                                              ∫ [     ]    
 

 
                                                              

the integration running over the domain of the particle        Substituting 

Equation 3.5.13 into Equation 3.5.14, 

                        ∫               
 

 
          ∫          

  

 
                         

                                                                                                                              

We have made the substitution          and used the fact that the average 

value of         over an integral number of half wavelengths equals 1/2 
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(alternatively, one could refer to standard integral tables). From Equation 3.5.16, 

we can identify the general normalization constant 

                                            √                                                                                     

for all values of  . Finally, we can write the normalized eigenfunctions: 

                                               √                                                                

with            

The first few eigenfunctions and the corresponding probability distributions are 

plotted in Figure 3.5.3. There is a close analogy between the states of this 

quantum system and the modes of vibration of a violin string. The patterns of 

standing waves on the string are, in fact, identical in form with the wavefunctions 

in Equation 3.5.18. 

 

Figure 3.5.3: The probability density distribution           for a quantum particle in a box for: 

(a) the ground state, n=1; (b) the first excited state, n=2; and (c) the nineteenth excited 

state, n=2. (CC-BY 4.0; OpenStax). 
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 Nodes and Curvature 

A significant feature of the particle-in-a-box quantum states is the occurrence 

of nodes. These are points, other than the two end points (which are fixed by the 

boundary conditions), at which the wavefunction vanishes. At a node there is 

exactly zero probability of finding the particle. The nth quantum state has, in 

fact, n−1 nodes. It is generally true that the number of nodes increases with the 

energy of the quantum state, which can be rationalized by the following 

qualitative argument. As the number of nodes increases, so does the number and 

the steepness of the 'wiggles' in the wavefunction. It's like skiing down a slalom 

course. Accordingly, the average curvature, given by the second derivative, must 

increase. But the second derivative is proportional to the kinetic energy operator. 

Therefore, the more nodes, the higher the energy. This will prove to be an 

invaluable guide in more complex quantum systems. 

 Example 3.5.1: Excited State Probabilities 

For a particle in a one-dimensional box of length    the second excited state 

wavefunction (   ) is 

   √                 

 What is the probability that the particle is in the left half of the box? 

 What is the probability that the particle is in the middle third of the box? 

 Solution 

Probability that the particle will be found between   and   is 

       ∫  

 

 

       

For this problem, 

   √                 

therefore, 
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            ∫                

 

 

  

                               

                  [                     ] 

(a) The probability that the particle is in the left half of the box is 

                          [                            ]      

(b) The probability that the particle is in the middle third of the box 

           

                    [                              ] 

     

 Exercise 3.5.1: Ground State Probability 

For a particle in a one-dimensional box, the ground state wavefunction is 

   √              

What is the probability that the particle is in the left half of the box in the ground 

state? 

 Answer 

            ∫              

   

 

  

                                        

     

 This is the same answer as for the      state in Example 3.5.1. This is because the 

eigenstate squared (. e., probability density) for the particle in a 1D box will 
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always be symmetric around the center of the box. So, there will be equal 

probability to be on either side (i.e., no side is favored). 

 Time Dependence and Complex Nature of Wavefunctions 

Recall that the time-dependence of the wavefunction with time-independent 

potential was discussed in Section 3.1 and is expressed as 

                                                                                                               

so, for the particle in a box, these are 

                                         √                                                      

with    given by Equation 3.5.10. 

The phase part of Equation 3.5.20 can be expanded into a real part and a complex 

components. So, the total wavefunction for a particle in a box is 

                   

       

 √                                                               √             

                                                              

which can be simplified (slightly) to 

  

                           (√             )             

                                 √                                                                   

 

As discussed previously, the imaginary part of the total wavefunction oscillates 

out of phase by π/2 with respect to the real part (we call this "out of phase"). This 

is demonstrated in the time-dependent behavior of the first three eigenfunctions 

in Figure 3.5.4. 
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Figure 3.5.4: Some trajectories of a particle in a box according to Newton's laws of classical 

mechanics (A), and according to the Schrödinger equation of quantum mechanics (B-D). In (B-

D), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part 

(red) of the wavefunction. The states (B, C, D) are energy eigenstates. (Public 

Domain; Sbyrnes321 via Wikipedia). 

Note that as n increased, the energy of the wavefunction increases 

(Equation 3.5.10) and both the number of nodes and antinodes increase and the 

frequency of oscillation of the wavefunction increases. 

It is generally true in quantum systems (not just for particles in boxes) that the 
number of nodes in a wavefunction increases with the energy of the quantum 
state. 

 Orthonormality of the Eigenstates 

Another important property of the eigenfunctions in Equation 3.5.18 applies to 

the integral over a product of two different eigenfunctions (Equation 3.5.18). It is 

easy to see from Figure 3.5.5 that the integral 

                                                  ∫                
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Figure 3.5.5: (Top Row): Select plots of the n=1 (red curves), n=2 (purple curves), n=3 (green 

curves), and n=4 (blue curves) eigenfunctions. (Bottom Row): Product of 

different eigenstates with positive (tan) and negative (cyan) areas emphasized. Note that the 

negative and positive areas perfectly cancel when added together. Created via fooplot (CC BY-

NC; Ümit Kaya) 

To prove this result in general, use the trigonometric identity 
                                        [                 ]                               

to show that 

                          ∫               
 

 
                                                              

This property is called orthogonality. We will show in the next Chapter, that this is 

a general result from quantum-mechanical eigenfunctions. The normalization 

(Equation 3.5.23) together with the orthogonality (Equation 3.5.25) can be 

combined into a single relationship 

                          ∫               
 

 
                                                                     

In terms of the Kronecker delta 

                                   {
                                 
                                

                                                 

http://fooplot.com/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.05%3A_The_Energy_of_a_Particle_in_a_Box_is_Quantized#mjx-eqn-3.5.18
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.05%3A_The_Energy_of_a_Particle_in_a_Box_is_Quantized#mjx-eqn-3.5.19_1
https://math.libretexts.org/TextMaps/Linear_Algebra/Map%3A_Linear_Algebra_(Schilling%2C_Nachtergaele_and_Lankham)/09._Inner_product_spaces/9.4_Orthonormal_bases


68 
 

A set of functions {  } which obeys Equation 3.5.26. is called orthonormal. 

 Example 3.5.2 

Evaluate    ⟨     ⟩ 

for the normalized wavefunctions: 

   ⟩  √               

 Strategy 

These are four different integrals and we can solve them directly or use 

orthonormality (Equation 3.5.27) to evaluate. 

⟨      ∫ √                 √                 

 

  

 

    ∫(            )  

 

  

 

This is an integration over an even function, so it cannot be tossed out via 

symmetry. We can use the Trigonometry relationship in Equation 3.5.24 to get 

   ∫(            )  

 

  

    ∫
 

 
(     

   

 
)  

 

  

 

and we can continue the fun. However, there is no need. Since the we can 

recognize that ⟨     ⟩ is 1 by the normalization criteria which is folded into the 

orthonormal criteria (Equation 3.5.27). 

Therefore ⟨ψ3|ψ3⟩=1. 

We can expand this integral and evaluate, but since the integrand is odd, this 

integral is zero. Alternatively, we can use the orthogonality criteria into the 

greater orthonormal criteria (Equation 3.5.27). 
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3.6: Wavefunctions Must Be Normalized 

 Learning Objectives 

 Calculate the probability of an event from the wavefunction 

 Understand the utility and importance of normalizing wavefunctions 

 Demonstrate how to normalize an arbitrary wavefunction 

 Extracting Probabilities 

Since wavefunctions can in general be complex functions, the physical significance 

of wavefunctions cannot be found from the functions themselves because 

the √−1 is not a property of the physical world. Rather, the physical significance is 

found in the product of the wavefunction and its complex conjugate, i.e., the 

absolute square of the wavefunction, which also is called the square of the 

modulus. 

                                                                                                                                         

where r is a vector specifying a point in three-dimensional space. The square is 

used, rather than the modulus itself, just like the intensity of a light wave depends 

on the square of the electric field. Remember that the Born interpretation is 

that                is the probability that the electron is in the 

volume    located at   . The Born interpretation therefore calls the wavefunction 

the probability amplitude, the absolute square of the wavefunction is called 

the probability density, and the probability density times a volume element in 

three-dimensional space (  ) is the probability. 

Since the squared magnitude      of the wavefunction of a particle can be 

interpreted as the probability density, then the probability for a one-dimensional 

wavefunction between the points x=a and x=b can be calculated by 

                                               ∫            
 

 
                                                              

This is just the area under the under the      curve (Figure 3.6.1). 
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Figure 3.6.1: The probability can be interpreted as an area under the probability density |ψ|2. 

(CC BY-NC Copyright; Ümit Kaya) 

If the probability of a two-dimensional wavefunction is being evaluated, then 

Equation 3.6.2 will be amended to include a double integral: 

                                                                                                                

and similarly, a triple integral would be used for calculating probabilities of three-

dimensional wavefunctions: 

                                                                                                      

 Example 3.6.1: Probability of a Particle in a Box 

Calculate the probability of finding an electron at L/2 in a box of infinite height 

within an interval ranging from                        for the   

  and     states. Since the length of the interval,      , is small compared 

to  , you can get an approximate answer without explicitly integrating. 

 Solution 

The wavefunction for the particle in a box is 

      √               

and the wavefunction for the n=1 state is 

     √              
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From the interpretation that the wavefunction modulus squared is the probability 

density, we can establish the following integral to solve the problem (note the 

limits of integration) 

            ∫     

        

       

                                                                            

We can solve this, but we can also recognize that Equation 3.6.5 is just calculating 

an area that can be approximated as the area of a rectangle with a height 

(               )) at       and width          (Figure 3.6.2). 

 

Figure 3.6.2: The probability can be interpreted as an area under the probability density      . 

(CC BY-NC Copyright; Ümit Kaya) 

This area can be computed: 

                              

              

           

Given that the wavefunction is sinusoidal, the actual probability of finding an 

electron within the given interval at    should be slightly less because of the 

behavior of the sinusoid at    is at its peak of the wavefunction (Figure 3.6.2). 

The wavefunction for the     state 

     √               
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so, the integral that we need to construct and solve is 

            ∫     

        

       

          

We can use the same graphical interpretation as above but using the probability 

density of the    wavefunction (Figure 3.6.3). 

 

Figure 3.6.3: The probability can be interpreted as an area under the probability density      . 

(CC BY-NC Copyright; Ümit Kaya) 

                                

The probability of finding an electron in a box at    for     is approximately 

zero. 

 Normalizing of the Wavefunction 

A probability is a real number between 0 and 1, inclusive. An outcome of a 

measurement which has a probability 0 is an impossible outcome, whereas an 

outcome which has a probability 1 is a certain outcome. According to 

Equation 3.6.1, the probability of a measurement of   yielding a result 

between −∞− and +∞ is 

                                             ∫              
 

  
                                                 

However, a measurement of x must yield a value between −∞ and +∞ since the 

particle must be located somewhere. It follows that Px −∞:∞(t)=1 or 
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                                          ∫              
 

  
                                                                   

which is generally known as the normalization condition for the wavefunction. 

 Time Dependence to the Wavefunction 

Now, it is important to demonstrate that if a wavefunction is initially normalized 

then it stays normalized as it evolves in time according to the time-dependent 

Schrödinger's equation. If this is not the case then the probability interpretation 

of the wavefunction is untenable, since it does not make sense for the probability 

that a measurement of x yields any possible outcome (which is, manifestly, unity) 

to change in time. Hence, we require that 

                                 ∫              
 

  
                                                                    

for wavefunctions satisfying the time-dependent Schrödinger's equation (this 

results from the time-dependent Schrödinger's equation and Equation 3.6.7). The 

above equation gives 

            ∫            
 

  
  ∫             

 

  
                                 

Now, multiplying Schrödinger's equation by        , we obtain 

                                                                                                    

The complex conjugate of this expression yields 

                                                                                                 

since 

             
           
        

Summing Equation 3.6.10 and 3.6.11 results in 
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Equations 3.6.9 and 3.6.12 can be combined to produce 

     ∫         

 

  

         [                 ]                     

The above equation is satisfied provided the wavefunction converges 

                                                                                                                        

However, this is a necessary condition for the integral on the left-hand side of 

Equation 3.6.7 to converge. Hence, we conclude that all wavefunctions which 

are square-integrable [i.e., are such that the integral in equation 3.6.7 converges] 

have the property that if the normalization condition Equation 3.6.7 is satisfied at 

one instant in time then it is satisfied at all subsequent times. 

 Not all Wavefunctions can be Normalized 

Not all wavefunctions can be normalized according to the scheme set out in 

Equation 3.6.7 For instance, a planewave wavefunction for a quantum free 

particle 

                        

is not square-integrable, and, thus, cannot be normalized. For such 

wavefunctions, the best we can say is that 

          ∫              

 

  

 

In the following, all wavefunctions are assumed to be square-integrable 

 and normalized, unless otherwise stated. 
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3.7: The Average Momentum of a Particle in a Box is Zero 

 Learning Objectives 

 Calculate the expectation value for a measurement 

  Apply the expectation value concept to calculate average properties of a 

participle in a box model  

 Understand the origin of a zero-point energy/zero-point motion. 

 Extend the concept of orthogonality from vectors to mathematical 

functions (and wavefunctions). 

Now that we have mathematical expressions for the wavefunctions and energies 

for the particle-in-a-box, we can answer several interesting questions. The 

answers to these questions use quantum mechanics to predict some important 

and general properties for electrons, atoms, molecules, gases, liquids, and solids. 

Key to addressing these questions is the formulation and use of expectation 

values. This is demonstrated below and used in the context of evaluating average 

properties (momentum of the particle in a box for the case below). 

 Classical Expectation Values 

The expectation value is the probabilistic expected value of the result 

(measurement) of an experiment. It is not the most probable value of a 

measurement; indeed, the expectation value may even have zero probability of 

occurring. The expected value (or expectation, mathematical expectation, mean, 

or first moment) refers to the value of a variable one would "expect" to find if one 

could repeat the random variable process an infinite number of times and take 

the average of the values obtained. More formally, the expected value is a 

weighted average of all possible values. 

 Example 3.7.1: Classical Expectation Value of Exam Scores (a discretized 

example) 

A classical example is calculating the expectation value (i.e., average) of the exam 

grades in the class. For example, if the class scores for an exam were 
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The discrete way is to sum up all scores and divide by the number of students: 

                                          ⟨ ⟩                                                                                 

which of this example of scores is 

                             ⟨ ⟩                                  

Notice that the average is not an allowable score on an individual exam. 

Equation 3.7.1 can be rewritten with "probability" or "probability weights" 

                                       ⟨ ⟩                                                                                   

Where,       is the probability of observing a score of s. This is just the number of 

times it occurs in a dataset divided by the number of elements in that data set. 

Applying Equation 3.7.2 to the set of scores, we need to calculate these weights: 

Score 65 67 94 43 76 
Ps 1/8 3/8 2/8 1/8 1/8 

As with all probabilities, the sum of all probabilities possible must be one. These 

confirm that for the weights here: 

                                                                                                  

This is the discretized "normalization" criterion (the same as why we normalize 

wavefunctions). So, now we can use Equation 3.7.2 properly 

⟨ ⟩                                       

Hence, Equation 3.7.2 gives the same result, as expected, from Equation 3.7.1. 

 Quantum Expectation Values 

The extension of the classical expectation (average) approach in 

Example 3.7.1 using Equation 3.7.2 to evaluating quantum mechanical 

expectation values requires three small changes: 

65 67 94 43 67 76 94 67 
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1. Switch from discretized to continuous variables 

2. Substitute the wavefunction squared for the probability weights (i.e., the 

probability distribution) 

3. Use an operator instead of the scalar 

Hence, the quantum mechanical expectation value ⟨ ⟩ for an observable,  , 

associated with an operator,   , is given by 

                                             ⟨ ⟩  ∫            
 

  
                                                    

where x is the range of space that is integrated over (i.e., an integration over all 

possible probabilities). The expectation value changes as the wavefunction 

changes and the operator used (i.e., which observable you are averaging over). 

In general, changing the wavefunction changes the expectation value for that  

operator for a state defined by that wavefunction. 

 Average Energy of a Particle in a Box 

If we generalize this conclusion, such integrals give the average value for any 

physical quantity by using the operator corresponding to that 

physical observable in the integral in Equation 3.7.4. In the equation below, the 

symbol ⟨ ⟩ is used to denote the average value for the total energy. 

                       ⟨ ⟩  ∫                  
 

  
                                                                

                         ∫                  
 

  
 ∫                 

 

  
                     

        ∫                            
 

  
 ∫                 

 

  
           

The Hamiltonian operator consists of a kinetic energy term and a potential energy 

term. The kinetic energy operator involves differentiation of the wavefunction to 

the right of it. This step must be completed before multiplying by the complex 

conjugate of the wavefunction. The potential energy, however, usually depends 

only on position and not momentum (i.e., it involves conservative forces). The 
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potential energy operator therefore only involves the coordinates of a particle 

and does not involve differentiation. For this reason we do not need to use a 

caret over   in Equation 3.7.7 

Equation 3.7.7can be simplified 

                                                    ⟨ ⟩  ⟨  ⟩  ⟨ ⟩                                                           

The potential energy integral then involves only products of functions, and the 

order of multiplication does not affect the result, e.g., 6×4 = 4×6 = 24. This 

property is called the commutative property. The average potential energy 

therefore can be written as 

                                                ⟨ ⟩  ∫                    
 

  
                                    

This integral is telling us to take the probability that the particle is in the 

interval    at  , which is            , multiply this probability by the potential 

energy at  , and sum (i.e., integrate) over all possible values of  . This procedure 

is just the way to calculate the average potential energy ⟨ ⟩ of the particle. 

 Average Position of a Particle in a Box 

We can calculate the most probable position of the particle from knowledge of 

probability distribution,     . For the ground-state particle in a box 

wavefunction with n=1 (Figure 3.7.1a) 

                                          √                                                                     

This state has the following probability distribution (Figure 3.7.1b): 
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Figure 3.7.1: (left) The ground-state (n=1) wavefunction for a particle in a box. (right) The 

ground-state (n=1) probability for a particle in a box. 

The expectation value for position with the      operation for any wavefunction 

(Equation 3.7.4) is 

                                  ⟨ ⟩  ∫            
 

  
                                                                 

which for the ground-state wavefunction (Equation 3.7.10) shown in Figure 3.7.1 is 

                ⟨ ⟩  ∫   √              
 

  
  √                                                  

                            ∫                 
 

  
                                                                      

 Solution by Inspection 

Without even having to evaluate Equation 3.7.14, we can get the expectation 

value from simply inspecting               (Figure 3.7.1;right3.7.1;right). 

This is a symmetric distribution around the center of the box (L/2) so it is just as 

likely to be found in the left half than the right half. Moreover, specifically at any 

point a fixed distance away from the mean, i.e. 

                                      

Therefore, the particle is most likely to be found at the center of the box. So 

⟨ ⟩      
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 Average Momentum of a Particle in a Box 

What is the average momentum of a particle in the box? We start with 

Equation 3.7.4 and use the momentum operator 

                                                                                                                        

 Example 3.7.3: The Average Momentum of a Particle in a Box is Zero 

Even though the wavefunctions are not momentum eigenfunctions, we can 

calculate the expectation value for the momentum. Show that the expectation or 

average value for the momentum of an electron in the box is zero in every state 

(i.e., arbitrary values of  ). 

 Strategy 

First write the expectation value integral (Equation 3.7.4) with the 

momentum operator. Then insert the expression for the wavefunction and 

evaluate the integral as shown here. 

 Answer 

                    ⟨ ⟩  ∫                           
 

 
 

                            ∫    
 

 
                                                   

                                    ∫    
 

 
                                

                                          ∫    
 

 
                         

Note that this makes sense since the particles spends an equal amount of time 

traveling in the    and –   direction. 

 Interpretation 

It may seem that this means the particle in a box does not have any momentum, 

which is incorrect because we know the energy is never zero. In fact, the energy 

that we obtained for the particle-in-a-box is entirely kinetic energy because we 
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set the potential energy at 0. Since the kinetic energy is the momentum squared 

divided by twice the mass, it is easy to understand how the average momentum 

can be zero and the kinetic energy finite 

 Did we just Violate the Uncertainty Principle? 

Does the fact that the average momentum of an electron is zero and the average 

position is     violate the Heisenberg Uncertainty Principle? No, because the 

Heisenberg Uncertainty Principle pertains to the uncertainty in the momentum 

and in the position, not to the average values. Quantitative values for these 

uncertainties can be obtained to compare with the limit set by the 

Heisenberg Uncertainty Principle for the product of the uncertainties in the 

momentum and position. However, to do this we need a quantitative definition of 

uncertainty, which is discussed in the following Section. 

 Orthogonality 

In vector calculus, orthogonality is the relation of two lines at right angles to one 

another (i.e., perpendicularity), but is generalized into n dimensions via zero 

amplitude "dot products" or "inner products." Hence, orthogonality is thought of 

as describing non-overlapping, uncorrelated, or independent objects of some 

kind. The concept of orthogonality extends to functions (wavefunctions or 

otherwise) too. Two functions    and    are said to be orthogonal if 

                                         ∫    
 

        
                                                              

In general, eigenfunctions of a quantum mechanical operator with different 

eigenvalues are orthogonal. Are the eigenfunctions of the particle-in-a-

box Hamiltonian orthogonal? 
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3.8: A Particle in a Three-Dimensional Box 

 Learning Objectives 

 To demonstrate how the particle in 1-D box problem can extend to a 

particle in a 3D box 

 Introduction to nodal surfaces (e.g., nodal planes) 

The quantum particle in the 1D box problem can be expanded to consider a 

particle within a higher dimension as demonstrated elsewhere for a quantum 

particle in a 2D box. Here we continue the expansion into a particle trapped in a 

3D box with three lengths Lx, Ly, and Lz. As with the other systems, there is NO 

FORCE (i.e., no potential) acting on the particles inside the box (Figure 3.8.1). 

 

Figure 3.8.1: A particle in 3D box with three lengths Lx, Ly, and Lz. (CC BY-NC; Ümit Kaya) 

The potential for the particle inside the box 

                                                             ⃗                                                                       
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 ⃗  is the vector with all three components along the three axes of the 3-D 

box:  ⃗                     When the potential energy is infinite, then the 

wavefunction equals zero. When the potential energy is zero, then the 

wavefunction obeys the Time-Independent Schrödinger Equation 

                                                                                                   

Since we are dealing with a 3-dimensional figure, we need to add the 3 different 
axes into the Schrödinger equation: 

                                                                    

The easiest way in solving this partial differential equation is by having the 

wavefunction equal to a product of individual function for each independent 

variable (e.g., the Separation of Variables technique): 

                                                                                                                   

Now each function has its own variable: 

      is a function of variable   only 
      is a function of variable   only 
      is a function of variable   only 

Now substitute Equation 3.8.4 into Equation 3.8.3 and divide it by 

the     product: 

                                                                                            

                                                                                            

                                                                                            

                                           

                                                                                                              

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.3
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.2
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  is an energy constant and is the sum of     , and  . For this to work, each term 

must equal its own constant. For example, 

                                                                                                            

Now separate each term in Equation 3.8.8 to equal zero: 

                       

                       

                       

Now we can add all the energies together to get the total energy: 

                                                                                                                        

Do these equations look familiar? They should because we have now reduced the 

3D box into three particles in a 1D box problems! 

                                                                      

Now the equations are very similar to a 1-D box and the boundary conditions are 

identical, i.e., 

                                                                                                                                 

Use the normalization wavefunction equation for each variable: 

                             {
√                               

                                                    
                               

Normalization wavefunction equation for each variable (that substitute into 
Equation 3.8.4): 

                               √                                                                                

                              √                                                                                

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.4
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.3


85 
 

                               √                                                                                 

The limits of the three quantum numbers 

               
               
               

For each constant use the de Broglie Energy equation: 

                                                                                                                       

with          

Do the same for variables    and   . Combine Equation 3.8.4 with 

Equations 3.8.14 -3.8.16 to find the wavefunctions inside a 3D box. 

        √                                                                        

with 

                                                                                                      

To find the Total Energy, add Equation 3.8.17 and Equation 3.8.103. 

                                                                           

Notice the similarity between the energies a particle in a 3D box (Equation 3.8.20) 

and a 1D box. 

 Degeneracy in a 3D Cube 

The energy of the particle in a 3-D cube (i.e.,        ) in the ground state is 

given by Equation 3.8.20 with     ,     , and     . This energy (E1,1,1) is 

hence 

                                                                                                                       

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.3
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.8a
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.8c
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.9_1
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.6_1
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.10
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.10
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The ground state has only one wavefunction and no other state has this specific 

energy; the ground state and the energy level are said to be non-degenerate. 

However, in the 3-D cubical box potential the energy of a state depends upon the 

sum of the squares of the quantum numbers 

 (Equation 3.8.18). The particle having a particular value of energy in the excited 

state MAY has several different stationary states or wavefunctions. If so, these 

states and energy eigenvalues are said to be degenerate. 

For the first excited state, three combinations of the quantum numbers 

                                         The sum of squares of the quantum 

numbers in each combination is same (equal to 6). Each wavefunction has same 

energy: 

                                                                                                 

Corresponding to these combinations three different wavefunctions 

and three different states are possible. Hence, the first excited state is said to be 

three-fold or triply degenerate. The number of independent wavefunctions for 

the stationary states of an energy level is called as the degree of degeneracy 

 of the energy level. The value of energy levels with the corresponding 

combinations and sum of squares of the quantum numbers 

                                                                                                                 

as well as the degree of degeneracy 

 Example 3.8.1: Accidental Degeneracies 

When is there degeneracy in a 3-D box when none of the sides are of equal length 

(i.e.,            

 Solution 

From simple inspection of Equation 3.8.20, it is clear that degeneracy  originates 

from different combinations of                              that give the 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3D_wave
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.09%3A_A_Particle_in_a_Three-Dimensional_Box#mjx-eqn-3.9.10
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same value. These will occur at common multiples of at least two of these 

quantities (the Least Common Multiple is one example). For example 

if 

                

there will be a degeneracy. Also, degeneracies will exist if 

                

or if 

                

and especially if 

                         

There are two general kinds of degeneracies in quantum mechanics: degeneracies 

due to a symmetry (           ) and accidental degeneracies like those above. 

 Exercise 3.8.1 

The 6th energy level of a particle in a 3D Cube box is 6-fold degenerate. 

a. What is the energy of the 7th energy level? 

b. What is the degeneracy of the 7th energy level? 

 Answer a 

17h2/8mL2 

 Answer b 

three-fold (i.e., there are three wavefunctions that share the same energy. 

https://math.libretexts.org/TextMaps/Map%3A_Prealgebra_(OpenStax)/2%3A_Introduction_to_the_Language_of_Algebra/2.5%3A_Prime_Factorization_and_the_Least_Common_Multiple_(Part_1)
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Tunnel Effect 
 

 

Quantum tunneling or tunneling refers to the quantum mechanical phenomenon 
where a particle tunnels through a barrier that it classically could not surmount. 
This plays an essential role in several physical phenomena, such as the alpha 
decay and the nuclear fusion that occurs in main sequence stars like the Sun. It 
has important applications to modern devices such as the tunnel diode, quantum 
computing, and the scanning tunneling microscope. 
Tunneling is often explained using the Heisenberg uncertainty principle and the 
wave–particle duality of matter. Pure quantum mechanical concepts are central 
to the phenomenon, so quantum tunneling is one of the novel implications of 
quantum mechanics. 

Quantum tunneling falls under the domain of quantum mechanics: the study of 
what happens at the quantum scale. This process cannot be directly perceived, 
but much of its understanding is shaped by the microscopic world, which classical 
mechanics cannot adequately explain. To understand the phenomenon, particles 
attempting to travel between potential barriers can be compared to a ball trying 
to roll over a hill; quantum mechanics and classical mechanics differ in their 
treatment of this scenario. Classical mechanics predicts that particles that do not 
have enough energy to classically surmount a barrier will not be able to reach the 
other side. Thus, a ball without sufficient energy to surmount the hill would roll 
back down. Or, lacking the energy to penetrate a wall, it would bounce back 
(reflection) or in the extreme case, bury itself inside the wall (absorption). In 

http://physicsopenlab.org/wp-content/uploads/2017/05/TunnelFetvsMOS.jpg
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quantum mechanics, these particles can, with a very small probability, tunnel to 
the other side, thus crossing the barrier. Here, the “ball” could, in a 
sense, borrow energy from its surroundings to tunnel through the wall or “roll 
over the hill”, paying it back by making the reflected electrons more energetic 
than they otherwise would have been. 
The reason for this difference comes from the treatment of matter in quantum 
mechanics as having properties of waves and particles. One interpretation of this 
duality involves the Heisenberg uncertainty principle, which defines a limit on 
how precisely the position and the momentum of a particle can be known at the 
same time. This implies that there are no solutions with a probability of exactly 
zero (or one), though a solution may approach infinity if, for example, the 
calculation for its position was taken as a probability of 1, the other, i.e. its speed, 
would have to be infinity. Hence, the probability of a given particle’s existence on 
the opposite side of an intervening barrier is non-zero, and such particles will 
appear on the ‘other’ (a semantically difficult word in this instance) side with a 
relative frequency proportional to this probability. 
The image below shows the wave function of a particle after a potential barrier. 

 
The Tunnel effect is involved in many physical phenomena and even in some 
common technological applications, we see some examples. 

 

 

http://physicsopenlab.org/wp-content/uploads/2017/06/tunnelWave.jpg
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