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1- Introduction

Focus of attention in many modern and practical
fields is to obtain numerical results that can be
extrapolated easily and used directly. The acceleration of
scientific development and the growth of industries and
reliance on scientific applications has increased the need
to develop sports sections that deal with such cases. The
most important of these branches is numerical analysis and
mathematical programming.

The numerical analysis is the science which aims to
derive, describe and analyze the ways to obtain
approximate solutions to mathematical problems That
suffer from difficulty in solving using analytical methods.

Often there are four reasons to use numerical
analysis, namely:

1- When the problem is difficult to solve with
analytical methods such as:

Algebraic equations of the fifth degree and above,
such as

x6—3x4—5x3+x +1=0

Non-linear algebraic equations contain some functions,
such as

xeX —cosx+1=0
Or finite Integrations of functions is difficult to evaluate
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Iexdx

0
2-When the problem is given as a table of schedule
resulted from the experience of certain, in this case we
have only numbers, It is difficult, as an example, to find

an approximate value of the second derivative at x = 0.2,
for the function described in the following table

X 0.1 0.2 0.3 0.4 0.5

y 0.0001 0.0016 0.0081 0.0256 0.0625

3-When the problem can be solved by analytical methods,
but the result of the solution has some problems in
calculating the numerical value, for example, partial
differential equation

u _

ot ox 2
Has the analytic solution

U(x,t)= ZZ (sm n;zj S|nn7rx)exp(—n27z2t)

Where —ZSXSZMO. This solution is difficult to

accurately calculate its value at a specified value of Xt .

4- Some analytical methods look like to be applicable in
all situations. An example of this type: the solution of
algebraic linear system of equations




a11x1 + a12x2 A alnxn == bl
alel + azzxz + -+ aann = bz

Ap1Xy T ApaXy + -+ AppXy = bn

X; — X, + X3 = -3

using determinants or a reverse way. The accuracy of such
methods weaken when the system is large.

The numerical analysis strongly requires a good
knowledge of one of mathematical programming
technique, which helps student to understand such topics
of numerical methods and access to numerical solutions of
the issues addressed by these methods and plot graphs
illustrate the nature of these solutions and show the
efficiency of the used numerical methods.

Observers of the technological development in the field of
computing and the software will find that many of the
software used for scientific programming has been
developed in the last two decades. The newer versions of
Visual Basic language Appeared as well as C and Fortran.
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Newer  versions, and more efficient mathematical
programming software also appeared such as Matlab,
Mathematica, Mathcad and Maple. These software is
added to the existence of other languages such as Pascal,

Java and the language of PHP.

On the other hand, the Foundations of education in the
Arab world gives great importance to the education of
students at the level of pre-university basics of dealing
with the computer, the Internet, and spreadsheet Excel.
Excel is chosen as one of the programming methods to
deal with most of what poses in this book.

We add MATLAB to that as a language specialist in
mathematical programming through which student may
work exercises in the chapters of the book, after work
Introduction adequate for this language.



Chapter 1

Errors and Computer Computations

1. Decimal Floating-Point Numbers

Floating point notation
It is similar to what is called scientific notation in high school
algebra. For a nonzero number x, we can write it in the form

with e is an integer, X = (a;.a,a;3 ...a,)19, 1 <x <10 and
o =+1. Thus
124.62 = (1.2462) 10 with o =+1, e=2, x = 1.2462.

The general form for the floating point notation for decimal
numbers is
x =0-%"10° = 0(a;.a0a; ...a,),10°

with a, # 0, so that there are n decimal digits in the significand
X.

On a decimal computer or calculator, we store x by instead
storing o, and € .

We must restrict the number of digits in x and the size of the
exponent e.

For example, on a Nokia 6610 Mobile calculator, the number of
digits kept in x is 8, and the exponent is restricted to —99 <e <
99.
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Binary Floating-Point Numbers

With MATLAB, we can define the corresponding binary
numbers for integers from zero to ten. Here is the program:

Code Results
j= 0101
i = (0:10); 0000 0110
j=dec2base(i,2) 0001 0111
0010 1000
0011 1001
0100 1010

We now do something similar with the binary representation of
a number x. Write

with 1 < ¥ < (10),
and e an integer. For example,
x =11011.0111

then o=+1, e=4=(100), and x =(1.10110111),
SO

x = 110110111 - 2*
The number x is stored in the computer by storing the o, X, and
e. On all computers, there are restrictions on the number of
digits in x and the size of e.

Floating Point Numbers Representation

When a number x outside a computer or calculator is converted
into a machine number, we denote it by fI(x). On an HP-
calculator,

1
fl (§> = (3.333333333),,107"

The decimal fraction of infinite length will not fit in the
registers of the calculator, but the latter 10-digit number will fit.



On a binary computer, we use a similar notation. We shall
concentrate on a particular form of computer floating point
number, that called the IEEE floating point standard, reffered
to Instite of Electrical and Electronics Engineers .

In single precision, we write such a number as
fl(x) = a(l.ayas ...a54), - 2¢
The significand X = (1-32---324 )2 immediately satisfies
1 <x <(10)2= 210.

The number x will be stored in the computer as follows: We
store ¢ as a single bit, the significand x as 24 bits, and the
exponent 8 bits , i.e.
-(1111110); < e <(1111111),
In actuality, the limits are
-(126)10 < e <(127)10

In Double precision arithmetic, we have:
_(1022)10 S e < (1023)10
fl(x) = o(1.aya; ...ass), * 2°

The Machine Epsilon
It is a widely used measure of the accuracy possible in
representing numbers in the machine.

It equal the difference between 1 and the smallest number
representable in the machine arithmetic that is greater than 1

Let y be the smallest number representable in the machine
arithmetic that is greater than 1.

The machine epsilonisn=y — 1.
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The number 1 has the simple floating point representation
1=(1.0...0),2°

What is the smallest number that is greater than 1? It is
1+27%=(1.0..01),2° >1
and the machine epsilon in IEEE single precision floating point
format is
n=22=1.19x10""
This mean that the number 1+2 can not be represented
exactly in this format

In Double precision arithmetic we have
n=2°2=2.22x1016

2. Rounding And Chopping
Let us first consider these concepts with decimal arithmetic.
We write a computer floating point number z as

z=o0"x-10° = g(ay. aya3 ... a,),,10°

with a; # 0, so that there are n decimal digits in the significand
X = (a1.0503 ... @), -
Given a general number

x =0-%"10° = 0(a;.a,a;3 ... a, ...),,10°
ya, #0
we must shorten it to fit within the computer. This is done by
either chopping or rounding.

The floating point chopped version of x is given by

fl(x) = og(a;,.a,a5 ...a,)1010°
where we assume that e fits within the bounds required by the
computer.

For the rounded version, we must decide whether to round up
or round down. A simplified formula is



o(a;.a,as ...a,)1010°, A1 <5
flx) =

ol(a,.aya; ...ay)19 + (0.00 ...1),,]10%, a,4 =5

The term (0.00..1);, denotes 10-®-Y = 10-"*! giving the
ordinary sense of rounding with which you are familiar.

Chopping/Rounding In Binary

Let x =o0(l.a,as...a,...),2°
with all a,i =2,3,..,n equal to 0 or 1. Then for a chopped
floating point representation, we have
fl(x) = o(ay.a,a; ...a,),2°
For a rounded floating point representation, we have

o(a,.a,as ...a,),2°%, ant1 =0
flx) =

ol(a;.aya;...a,), +(0.00...1),]2%, a,.; =1

Example 1:

[Q32] Let x > 0 has been represented using a positive binary
floating-point representation with n bits of precision in the
significand.  Assume that chopping is used in going from a
number x outside the computer to its floating-point
approximation f1(x), inside the computer

(a) Show that 0<x —fl(x)<2°™" +1

(b) Show that x > 2° and use (a) to show

X —fl (x)
X

< 2—n +1
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Answer:
(a)the value of x is
x=0(l.aya;...a, ...),2° (1)

Let n is the number of digits available in the computer
precision. The floating point reresentation for x is

fl(x) = o(1.a,a5 ...a,),2° (2)
using chopping in going from a number x outside the computer
to its binary floating-point approximation fi(x), inside the
computer then

flix) <«x
and hence

0<x —fl(x)

< 29 —(n —1)

since 0.8y 4187 428743 <1

(b) We have from (a)

x — fl(x) < 28"+
(3)

Since x>2°%  and by division

_ —n+1
X fI(x)Sze N+ :2—n+1
X o€

(4)



2- Error Measurements

Basic Definitions
Let Xr denote the true value of some number, usually unknown
In practice; and let X denote an approximation of X.

E(Xa)=X1-Xa,
AE(Xa)= | X1 - Xa|

Rel(Xa)= [X1 - Xal|/ X7

Example(1):
Xt =1=3.14159265, Xa=22/7=3.1428571
Then

E(Xa )= n-22/7=3.14159265-3.1428571=-0.00126
Rel(Xa)= =-0.00126/3.14159265=-0.000402

Example(2):

Four students take four distances to be measured .
Their results are as follows

1 2 3 4
F 100 20 200 | 400
P 104 19 194 | 390

Where f is the exact value and P is the measured value
Which of them is the most accurate?
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Answer:
The absolute errors are

1 3 4
4 6 10
So the 2" is the best
Taking the relative error
1 2 3 4
0.04 |0.05 |0.03 0.025

Thus the 4" is the best

Indeed the relative error is the best error measurement , since it
takes into account the size of the exact solulion




Sources Of Error

This is a very rough categorization of the sources of error in the
calculation of the solution of a mathematical model for some
physical situation

A) Basic Errors

Modelling Error:

As an example, if a projectile of mass m is travelling thru the
earth’s atmosphere, then a popular description of its motion is
given by

d?r(t) dr
dt2 mgk "z
with b > 0. In this, r(t) is the vector position of the projectile;
and the final term in the equation represents friction.«.. If there
is an error in this a model of a physical situation, then the
numerical solution of this equation is not going to improve the

results

m

programming errors:

that often means programming errors. They are often
embedded in very large codes which may mask their effect.
Some simple rules:

(i) Break programs into small testable subprograms.

(if) Run test cases for which you know the outcome.

(iti) When running the full code, look at the output, checking
whether the output is reasonable or not.

Observational Error:
The radius of an electron is given by
C =(2.997925+ ¢) 10" cm / sec,

|¢| < 0.000003
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This error cannot be removed, and it must affect the accuracy of
any computation in which it is used. We need to be aware of
these effects and to so arrange the computation as to minimize
the effects.

Rounding/chopping Error:

This is the main source of many problems, especially
problems in solving systems of linear equations. We later look
at the effects of such errors.

Approximation Error:

This i1s also called “discretization error” and “truncation error’;
and it is the main source of error with which we deal in this
course. Such errors generally occur when we replace a
computationally unsolvable problem with a nearby problem that
Is more tractable computationally.

For example, To evaluate

1

I = je'xzdx

0
We usw the Taylor polynomial approximation

Which contains an “approximation error”.  Thus the numerical
integration

Can easily obtained, but it contains an approximation error



B) Consequent Errors

Loss Of Significance Errors

This can be considered a source of error or a consequence of the
finiteness of machine arithmetic. It occurs when we substract
an approximately equall two numbers.

We begin with some illustrations.
Example Define

f () =x|Vx+1-vx |

and consider evaluating it with an increasing positive values of
x on a 3-digit decimal software which uses rounded arithmetic.
The values of f (x):

N e e RIS
10 |1 3.32 |3.162] 0.158 | 1.58
100/ 10.0] 10.0 ] 0.00 |0.00

For 4-digit decimal, we have:

X RS S| ]
10 3.317 | 3.1623 ] 0.1547 | 1.547
100 10.05] 10.00 | 0.05 |5.0
1000 |31.64]31.62| 0.02 |20
10000 | 100 | 100 0 0

We notice that the error is still small until the 16-digit decimal
Is reached, then the error become large.
We can write

f(x) =x[Vx + 1 —x]

B V+1++x x
B I STy oY
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Then the function

fO) = =5 @)
Is used with no loss of significance errors.
Comparing (1) and (2), the previous two tables becomes

x | 05K | e | ErrOr
10 | 1.58 1.45 0.13
100 | 0.00 5.00 5.00
. (] ﬁ Error
10 1.547 | 1.543 | 0.004
100 5.0 4,988 |0.012
1000 | 2.0 15.81 | 13.81
10000 | 0O 50 50

Using Excel, we have

X

Error

1.4386E-15
3.2862E-14
1.0651E-11
6.8088E-05

x| x[Frk]
10 1.543471302
100 | 4.987562112

10000 | 49.99875006

1E+8 | 5000.000056

[t

1.543471302
4.987562112
49.99875006
4999.999988

1E+9

15811.39077

15811.3883

0.00247045

1E+10

49999.94417

50000

0.05583153

1E+11

158115.2901

158113.883

1.40709731

1E+12

500003.8072

500000

3.80724681

1E+13

1578591.764

1581138.83

2547.06611

1E+14

5029141.903

5000000

29141.9029

1E+15

0

15811388.3

15811388.3




NOISE IN FUNCTION EVALUATION

Whenever a function f (x) is evaluated, there are arithmetic
operations carried out which involve rounding or chopping
errors. This means that what the computer eventually returns as
an answer contains noise. This noise is generally “random” and
small. But it can affect the accuracy of other calculations which
depend on f (x).

For example, we illustrate the evaluation of

f(x)=x?-4x +4
which is simply (x-1)® and has only a single root at x=1. We use
MATLAB with its IEEE double precision arithmetic and standard
rounding.

The following Figure contains the graph of the computed values of f(x)
for 0< x< 2, Note that the graph of f(x) does not appear to be taken from a
continuous curve, but rather, it is a narrow "fuzzy band" of seemingly
random values. This is true of all parts of the computed curve of f(x), but
it becomes evident only when you look at the curve very closely.

1.2
feo
0.8 -

0.6 -

0.4 -

0.2 1

0

1 2 3

Real plot of f(x)
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AT R -

Numerical plot of f(x)

Underflow And Overflow Errors

Underflow Errors

If we use numbers that are too small for the floating-point format
will lead to underflow errors.

The variable x which agrees underflow is set to be zero from the
machine. The programer and the user needs to be aware of such
errors. This kind of error does not often stop the programm runnig.

Programming Exercise 1:
Use your favorite program to generate an underflow error on your

computer, write a program to repeatedly divide by 10%° of a number
x < 1 and print the result Eventually. you will exceed your machine's
exponent limit for floating-point numbers.

x=10e+19; y =1.0000e-40
fori=1:4 = .
NEPR y =1.0000e-160
y =0
end
y=0

Overflow Errors

If we use numbers that are too large for the floating-point format
will lead to overflow errors. These are generally fatal errors on most



computers. With the IEEE floating-point format, overflow errors can
be carried along as having a value of oo or NaN, depending on the
context. Usually an overflow error is an indication of a more
significant problem or error in the program and the user needs to be
aware of such errors.

This kind of error often stops the programm runnig and give an error
massage.

Programming Exercise

Use your favorite program to generate an overflow error on
your computer, write a program to repeatedly square a number X
> 1 and print the result Eventually. you will exceed your
machine's exponent limit for floating-point numbers.

x:1_099; y =1.0000e+20

for (I;’:\Li):"?"Z y =1.0000e+80

em y =1.0000e+180
y= Inf

[Q33] Define Loss of significant error, show how you can avoid it
in the following cases( x close to zero )

[1] f (x)=log (x +1)~log (x ), x is large

2] f(x)=%3+x -1
af (x) = YArx =2

X
[Q34] Use Tylor expansion to avoid Loss of significant error in the
following cases( x close to zero)
[1]

2

@) 1 () =22 (b) f (x) = o)’ 2

3
X
(©) 1 00 =500 ) 1 () =* 7
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3. Error Propagation

4.1 Propagation In Arithmetic Operations

Example
[Q35] Let X7, yr and ® denotes the true values for two numbers

and the arithmetic operation. Let also Xa , ya , W are the
machine values and arithmetic operation.

Show that the process of rounding or chopping introduce a
relatively small error into the copmuted value of Xa W™ ya.

Answer

Let @ denote arithmetic operation such as +, —, *, or/. LetXr,
yr be the true values and xa , ya are the machine values
including rounding or chopping error.

The term E=XT ® Y1- Xa ® Ya
is called the propagated error:

Now, let »" denote the same arithmetic operation as it is
actually carried out in the computer, including rounding or
chopping error.

We want to obtain X @Y+ |, but we actually obtain X Ao Ya.
The error in this operation is given by

XT ® Y1 - Xa 0% ya :[xTooyT- XA(DyA]

+ [Xa ® YA - Xa ©* Ya]
The final term in the error introduced by the inexactness of the
machine arithmetic. We may call it the machine error. The first
term is the propagated error.



the machine error is often known and bounded. This implies
that the resulting error depends on the the propagated error.
When using IEEE arithmetic operation, we have

Xa 0* Ya = ﬂ(XA O Ya ) (1)
This means that the quantity X @Y , is computed exactly and is

then rounded or chopped to fit the answer into the floating point
representation of the machine.

The formula (1) implies
Xa ©F YA = Xa ® YA (1+ 8) (2)

with some limits given for €. Manipulating (2), we have

Rel( Xa ®* ya) =-¢€
Thus the process of rounding or chopping introduce a relatively
small error in the copmuted value.

We now examine the propagated error for particular cases.

Propagation In Summation and Subtraction

For ® equal to — or +, we have

[Xr £ y1] - [Xa £ Ya] =[ X1 - Xa] £ [y7- YAl
Thus the error in a sum is the sum of the errors in the original
values, and similarly for subtraction.
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Example

[Q36] Let xA =1.36 and yA = 5.431 be correctly rounded from
Xt and yr, to the number of digits shown. Then give a bound for
the propagated error in the summation and division processes.

Answer:
Xa =1.36 and ya = 5.431
X, —x,|<0.005, |y, —y,|<0.0005,

or. equivalently,

1.355<x, <1.365, 5.4305<y. <5.4315 1)

Xa =1.36 and Ya = 5.431
For the operation of addition

Xa + Ya = 6.791 (2)
For the true value, use (1) to obtain the bounding interval
1.355+5.4305<X, +Yy, <1.365+5.4315
6.7865<x. +y, <6.7965 (3)
To obtain a bound for the propagated error, subtract (2) from (3)
to get
—0.0045<(x; +y; )—(x, +Yy,)<0.0055

X
TR *A _ 136 _
With division, yp 5431 0.25041 4)
Also, For the true value, use (1) to obtain the bounding interval
1.355<x, <1.365, 5.4305<y. <5.4315 Q)

1.355 T . 1.365
5.4305 ~ yr ~ 5.4315

Dividing the fractions and rounding to seven digits. we obtain

0.24951< ’;1 <0.25131 (5)



To obtain a bound for the propagated error, subtract (4) from (5)
to get

—0.0001< );; —0.252256 <0.0001

This technique of obtaining an interval that is guaranteed to
contain the true answer is called interval arithmetic.

It is a useful technique, and it has been implemented on
computers. both using software and hardware. But for extended
calculations, interval arithmetic must be implemented with a
great deal of care or else it will lead to predicted error bounds
that are far in excess of the true error.

Propagation In Multiplication
Example
Lemma:

[Q37] small relative errors in the values of xa and ya leads
to a small relative error in the product Xa Ya.

Proof:
Consider first ® = *. Then for the relative error in

XA*yA =Xa¥Ya,

Rel (z 4y 4) = LTYT — TAYA

LTy

Write

rp =T +E, Yyr =Y4 +1
Then
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TTYT

rryr — (27 — &) (yr — )

TTYT
zrn + yrf —£n

TTYT

£, n_£.n
TP Yr TT Yr
— Rel(z4) + Rel(y4) — Rel(z4) - Rel (y4)
4)

Rel(x4y4) =

Since we usually have
|IRel (z 4)|, |[Rel(y4) < 1

the relation (4) says
Rel (z4y4) ~ Rel(z4) + Rel (y4)

Thus small relative errors in the values of XA and Y o leads to

a small relative error in the product XaYa.

Also, note that there is some cancellation if these relative errors
are of opposite sign.

Propagation In Division

There is a similar result for division:

Rel (3‘_4) ~ Rel (24) — Rel (y.4)
YA

Provided

IRel (y4)| < 1

Propagation In Function Evaluation

Suppose we evaluate a function f(x) in the machine. Then the
result is generally not f(x), but rather an approximate of it
which we denote by f(x ). Now suppose that we have a
number x; = x,.

We want to calculate f(x;), but instead we evaluate f(x,).



The error in this computed quantity is

f O )= ) =[F () =F )]+ (x0)=F (x,) ]

The quantity f(x;) — f(x,) is called the propagated error; and
it is the error that results from using perfect arithmetic in the
evaluation of the function.

If the function f (X) is differentiable, then we can use the
“mean-value theorem” to write

f (%) —F () = '€) (X% —x,)

for some c between x; and x,.

Since usually xt and xa are close together, we can say c is close
to either of them, and

f(xr)=f (x0) =T (%) (Xr =X0) (1)

Example
[Q38] Consider evaluation f(x)=a* , where a is a positive

real number, approximate the propagated error. Then
evaluate the condition number for the computation
and show how it affects in the accuracy.

Answer
Define  f(x)=a*

Then (1) yields

a*T —a*A = (loga)a*™(x; — x,)

divide by a*r
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a*T —a*a

= (loga)(xr —x,4)

axt
Multiply on x; up and down in the RHS
Rel(a*4) = Rel(f (x,)) = x;(log @) - X ~
T
= xr(loga) Rel(x,) = K - Rel(xy,)

with K = x;(log a).
7
Note that if K = 10* and Rel(xa) =10 | then
Rel (bXA ):10‘3

This is a large decrease in accuracy; and it is independent of
how we actually calculate a* .

Then number K is called a condition number for the
computation.

4. Stable and Unstable Computations

In this section we introduce another idea that occurs repeatedly
in numerical analysis:

the different between numerical processes that are stable and
those that are not. Closely related are the concepts of well-
conditioned problems and badly-conditioned problems.

Numerical Instability

We say that a numerical process is unstable if small errors
made at one stage of the process are magnified in subsequent
stages and decrease the accuracy of the overall calculation.

Example
[Q39] Consider the sequence of real numbers defined

inductively by
Xo=1 X, =%, (1.a)

Xns1=E X 3 X, 021 (1.b)



Which has the solution
xo= (L)’ @
check the validity of the solution. Then discuss the stability of

the solution.
Answer

we can check the validity of (2) as a solution of (1) via
Induction as follows:

Equation (2) is obviously true for n = 0 and 1. If its validity is
granted for n=Kk, then substituting from (2) in (1) we obtain

)k—l

The solution of the recurrence formula
Xo=1, X1=Y,
Xn+1:%Xn'%Xn_1, nZl

IS unstabe for two resons:

1-Any error present in X

X n+l.
Hence it propagates more than four times in each iteration

n is multiplied by 13/3 in computing

. n .
2- the solution formula x,=(%)" becomes small and continues
decreasing as n increases. So the relative error compare to the
increasing error become big.

Excercises

[Q40] Consider the identity
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1-cosx 2

X
jsin(xt)dt =
0
Explain the difficulty in using the right-hand fraction to
evaluate this expression when x is close to zero. Give a way to

avoid this problem.
[Q41] Consider the sequence of real numbers defined

inductively by
Xn+1=100.01Xp-Xp-1, n>1 (1)
Which has the general solution
n n
x=A (100)" +B (3;) @)
Find the solution that satisfies the conditions:
Xo=1, X1:0.01, (3)

and then discuss the stability of the solution.



Chapter 2

Solution of linear system equations
Principle of Linear System

Systems of linear equations arise in a large number of areas, both directly in
modeling physical situations and indirectly in the numerical solution of
other mathematical models.

These applications occur areas of the physical, biological, and social
sciences. In addition, linear systems are involved in the following:
optimization theory; solving systems of nonlinear equations; the
approximation of functions; the numerical solution of boundary value
problems for ordinary differential equations, partial differential equations,
and integral equations; statistical inference; and numerous other problems.

Because of importance of linear systems, much research has been devoted to
their numerical solution. Excellent algorithms have been developed for the
most common types of problems for linear systems, and some of these are
defined, analyzed, and illustrated in this chapter.

The most common type of problem is to solve a square linear system
AX =B

of moderate order, with coefficients that are mostly nonzero. Such linear
systems, of any order, are called dense. For such systems, the coefficient
matrix A must generally be stored in the main memory of the computer in
order to efficiently solve the linear system, and thus memory storage
limitations in most computers will limit the order of the system.

With the rapid decrease in the cost of computer memory, quite large linear
systems can be accommodated on some machines, but it is expected that for
most smaller machines, the practical upper limits on the order will be of size
100 to 500. Most algorithms for solving such dense systems are based on
Gaussian elimination, which is defined in Section 4.1. It is a direct method
in the theoretical sense that if rounding errors are ignored, then the exact
answer is found in a finite number of steps.



A second important type of problem is to solve Ax = b when: A is square,
sparse, and of large order. A sparse matrix is one in which most coefficients
are zero. Such systems arise in a variety of ways, but we restrict our
development to those for which there is a simple, known pattern for the
nonzero coefficients.

These systems arise commonly in the numerical solution of partial
differential equations. Iteration methods are the preferred method of
solution, and these

are introduced in Section 8.6 through Section 8.9.

In this chapter, direct techniques are considered to solve the linear system

Q1 X Xyt +a,X, =
Ay Xy + 8y Xy F v e +a,,X, =h,
(1)
A X, + X, o +a,,X, =b,
Which can be written in matrix form as
AX =B
Where
all a12 """""""" ain Xl b1
- WO PO a,, X, )
A= . X =|. B =
_anl anz """""""" a‘nn_ _Xn_ _bn_

As an Example:

17



X; — X, +3X3 = -3

Can be written as:
2 1 5| |x 11

1 -1 3| |x,|=|-3
4 2 6| |x| |41

Methods for solving this problem are classified into two

categories:
1-Direct method such as Gaussian elimination.
2- Indirect or Iteration methods

1 Gaussian Elimination

This is the formal name given to the method of solving systems of linear
equations by successively eliminating unknowns and reducing to systems of lower
order. It is the method most people learn in high school algebra or in an
undergraduate linear algebra course (in which it is often associated with producing
the row-echelon form of a matrix). A precise definition is given of Gaussian
elimination, which is necessary when implementing it on a computer and when
analyzing the effects of rounding errors that occur when computing with it.
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Gﬂ "'\no\ 'é‘us PSS, we c‘o\‘\m

X'\-" ) xh-‘) vy Y\JX\' x‘

Direct methods[ ]
Gaussian elimination method

Provided a,, # 0 perform E; = E; — :—jEl , for j=2,3,...n.
11

this step will eliminate the coefficient of x; in each of these
rows . the resulting system is

a11x1 + a12x2 + -+ alnxn == b1 E1
C_lzzxz + -4 C_lann = bz E2|:|

d32X2 + 633X3+. . +d3nxn == b3 E3

24



ApoXy + GpzXs+... +AynXy, = by, E,
We change the symbol of coef. from a toa and
b tob Since we expect that entries in row 2,3,...n will

be changed.

For ease of notation we again denote the entry in the i*"*row
and j*"column by a;; .

a11X1 + a12x2 + -+ alnxn = bl E]_

azzxz + -+ C_lann == bz _E2|:|
d32x2 + d33x3+. . +a3nxn = b3 E3D
C_lnzxz + C_ln3X3+. . +C_lnnxn == bn En

Provided that a;; # 0 perform
a.
Ej=Ej—a—’Ej J=i+1,i+2.n
i
This sequential stop will eliminate  x; in each row below
the i*"one .
The resulting system is

a11x1 + a12x2 + .- + alnxn - b1 E1|:|
azzxz + - + dann == bz EZ
a33X3+. . +a3n.xn = b3 E3

ApnXn = bn E,

25



This system is called upper triangular system.

Eq.(4) represent triangular system . this system can be solved
by backward substitution .

he upper triangular system can be solved by backward

substitution , that is, solving Equation E,,, we obtain
bn

Apn Xp =by  E, = x, = a

substitution with x,in E,,_,, we obtain ]
Ap—1n—-1Xn—1 + Ap_1nXp = bn—1|:|
bn—l - an—l,nan

Xn-1 =
an—Ln—l

solving Eq.( E,,)of Eq. (4)
Now , Eq. E,,_41S

Ap_1Xp—1 T Ap_1nXy = bn—l
Substitute with x,,,we obtain

bn—l - an—l,n an

Xn-1 =
an—l,n—l
Continuing this process , we obtain
Xn-2,Xn-3,-+,X3,X2,X1

Example : use Gaussian method to solve

26



X1+2X2+X3=0 :El

2xy + 2x5 + 3x3 = 3 : E,
—x1 + 3x2 - 2 : E3
Answer

I]: Eliminating coefficients of some x; to obtain upper
triangular system :

(a) provided a;; # 0, perfrom E; = E; — ﬂEl

aia

J=2,3,...n

all =1,j=2,a21 :2

asq 2
Ez :Ez __El :EZ __E]_

aq 1
The system become
X1+ 2x, +x3=0 P Ey
_ZXZ + X3 - 3 : EZ

—Xy — X3 =2 : Eg
=3, az; = -1

a -1
Ey=E,———E, =E, —uE1 = E;+E,

a1 1

E; <« E;+E;

E3: - x1 - 3X2 - 2
El: x1+2x2 +X3 - O

NEWEg 0_x2+x3:2
The system become

27



El:xl+2X2+X3=0
EZ: —2X2+x3 =3
E3: — Xy +X3 =2

up to now , we eliminate the coefficient of x, from E,

andE;. In the next step we shall eliminate x, from E; to
complete the shape of upper triangular system:

(b) provided a,, # 0, perfrom E; = E; — mE2

azz
,j=3.4,..n
a22=—2,j=3,a32:—1
asz; (-1) 1
E;=FE;——E,=FE;———F,=E; ——=F

1
E3 (_E3_§E2
E3: _x2+X3=2=§
1 1 -3
—5E; — X2 T 5X3 = 7

28



The system become

Ei:xq+2x,+x3=0

E,: —2x;+x3=3

E;: %xg = %
This is the required upper triangular system

the upper triangular system can be solved by backward

substitution :

1 1
E3:Ex3 :E—)xg =1

Ey:—2xy+x3 =3 > —2x,+1=3
- —2Xx, =2
- Xy = —1
Eiixi+2x;+x3=0-x,+2(-1)+1=0
- x1=1

Hence the solution of the given system is
x1=1,x2=—1,x3 =1

ANNANNNNNNNNNNNNNNNNNNNNNNNNNAN

Iterative methods

Leolnd] 3,000 2- 4
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Typaall poliall (e yuss sae Sle st oF Lia A dbgaiall ciles 13
e e s il e By dall slia aatad 5. dgalid] 5 ydall alazid Juady dils
o se ¥oalall allad o aqiad el o 2 (anganll 9 Xo bl Sl
gl ! g ol X1, Xa, .. cln,aill e elalis J1 Py sl Sl

s gaadl Ly, lall il ol Tl Cagen 9. X

Jacobean method iugaad) 15,08 1- 2- 4

41Xy +a,X, +ay3X s =Dy E,
8y X1 + 85X, +8y3X 5 =D, E, (1)
31X | +8g3,X , +a33X 3 =g E,

& X slml 5,253 Lle Jacobean method iugaed) el aeus
S (1) @¥olall et Jealadl 3L V0 By @3 2l

_af
Xy =5-[br —a,X, —ay3X 5 |

X, ==[b, _321X1_323X3] (2)

a, L

RN
X3 _bs_a31X1_a32X2]

a5 L

.
el il () cyies X O = [xfo’,x © x EO)] Sl @
A (2) @¥alall Lo alaie ! dpmball el Llhes &
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(k+) _ 1 [ (k) (k)
Xl - —__bl_a.12X2 _a13X3 ]

3

k+1) _ 1 [ (k) (k)
k=01..3 ¢

iz, of Jacobean method iugaed! ia ol ewd dd,datl ola
ALl | Yo

11 Y
[Q3] Use Jacobean method to solve
ol ¥ alall I allaill ot L gaad] a8 platl sl
Ox, +X, +X43=10
2%, +10x, +3x4 =19
3X; +4x, +11x 5 =
Starting from
X (© =[0,0,0] Lsloc¥ coraiatl oo feoivn cnliia caskit wlls 5
Evaluate the error if you know that the exact is
X :[1,2,—1]T O ceale 13 ol J&o 2 LaadYI Lasdl cocun

1=l
Ol oz K =0 w55 (3) eo¥alatl alaznly

31



O _ [ (0) (0)

2 ay [

x ¥ :é:bg —agx ¥ —agx EO)]
Lt Slaall ca¥alall allsd e yaly
a; =9, b, =10, x @ =x? =0
99X, +X, +X4=10
2X, +10x, +3x4 =19
3X, +4Xx, +11x;=0

1
X1 = 5 [10 Xo — x:;]
xz = 2-[19 — 221 — 313]
X3 = 11 [0 — 3x; — 4x;,]

O35 by

Il

=
|
[EEN
|

x W =$[10-0-0]

, 1 10
x®W=L[0-0-0]=0

32



e =X —xfl) -1-1.111=-0.111

1

e, =x,—xP=2-19-01

e =x —x§{)=-1-0=-1
ad¥ | Uasdl gy
E® =maxfe, |_max|0 111,0.1, 1.0

o o of azn K =1 gz g 095 Jilly S gl
X1 = %[10 X2 — X3]
Xz = = [19 — 2x; — 3x3]
X3 1—11 [0 — 3x; — 4x;]

x® =L|b,—a,x® —ax® ]
= 1[10-1.9-0]=0.9

x @=L [bz—aﬂx @ —a,x 21)}
= 1[19-2*1.111-3%0]
=1.6/78

x 2 :a—i[b3 —agx Y —agX 21)]
= 1[0-3*1.111-4*19]
=-0.99
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e =x —x¥=1-09=01

1

e, =X, -x"=2-16778=0322

2

e =x —x§{?=-1+0.99=-0.01

UJABS” Uastl (yg&an o
E ¥ =maxle; | = max|0.1, 0.322, - 0.01 =0.322

1<i <3 1<i <3

A bl sy

k x1 X2 X3
1.0000 1.1111 1.9000 0

2.0000 0.9000 1.6778 -0.9939

3.0000 1.0351 2.0182 -0.8556

s Yl — gwols> 430 b 2- 2- 4

Gauss-Seidel method[ ]

A X1 +8,X, +aX g =D, El
Ay Xy +a0X, +AXy=h, E2 (1)
Ag X +8g3,X , + 83X 53 =Dy E3

o il Tngiaall A ylall daagll lBSLall (yuis Jors (gl L ylo (aalss

ypeall e
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ks _ 1T _

X —all[b alzx a13x J
+ 1

ng nZg[bz_alel(k)_azsxék)J (2)
+ 1

ng 1):a—%[b3—a3lxl(k)—a32x£kq

Jd Laade Lilias 3l claslall L€ sl il e suniadl 5 ) €adll 4l

(k+1)

O s Loyas Lol o asd X' 7 Gl e lied iuss pe Jo ol

(k+1)

w&»i%}a}ijJ_@u&u‘S}_’a}”%mu}@ﬁ Xl )hxl

X ) x ) i o m Load XY Gl e sl usiy X F)

5ol Luanlial) BN mrent Logal il (yEnas

+ 1
Xl(k 1):a—n[b1—a12x§k)—a13x§k)]

+ 1 +
x < :g[bfamxl(k 1)—a23x§")} (3)
X (kD) - 1 [b X (k+1)_a32X£k+1):|

da3
o2 Jlw — Gugly dayydat Ll LGl b ale Js2dn

m+1 {b _Zaux (m+1) i aijxgm)} (9)

a‘u j=i+1l
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Vil axe n 5 1=12....,n ys3

[@4] Use Gauss-Seidel method to solve []
OX, + X, + X3 =10, 2% +10x, +3%; =19, 3% +4X, +11X; =0

Starting from X © =[0,0,0] . Do 2 iterations. Evaluate
the error if you know that the exact is X =[1,2,-1]
3 gl ol G cele 13 o5 JE5 2 a3 Y1 Ladl Covus
X =[1,2,-1]
st

1 1 0 0
x Y —_—[bl—a12x§ ) _a x| )}
Lood ¥aslall allsy oya L G

a, =9, b, =10, x\V=x{Y =0
o3

x®=1n0-0-0]=2-1111
b9 9
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ol llis,

1
X él) = a_22 [bz —ayX 1(1) —ay3X :(),o) J

x M = %[19— 2(1.11)-3(-1)]=1.6778

1
X 3(’1) = a_% [bs — a3 X 1(1) —agpX gl) }

a3 =11, b, =0, a;, =3, a;, =4
x () = L[0-3(L111)~ 4(1.6778) ] = -0.9131
11
Lol ad¥) Uasdl Gleustg
e, =x, —xV=1-1.111=-0.111

e, =X, X =2-1.6778=0.322
e, =X, —x) =—1+0.9131=-0.0869

adY| Uastl gy

E® = max|e; | =0.322

1<i<3

reatd K =1 gl
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02l
x %) = %[10 ~1(1.778) -1(~0.9131) | =1.0262
x ) = %[19 ~2(1.0262) - 3(~0.9131) | =1.9687

x {2 :1—11[0—3(1.0262)—4(1.9687)] —-0.9958
095 ad | Uasdl bty

e, =X, —x? =1-1.0262 =0.0738
e, =X, —x? =2-1.9687=0.0313
e, =X, —x.2 =—1+0.9958 = —0.0042
¥ Uasll (9509

E®) = maxle; | = 0.0313

i<i<3

S Jgamd! Lo Juamd Bslead! JELT 2 ol colagls ) peicolsy

AL 5Ll g2y
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kmax =

10

k X1 X2 X3
1.0000 1.1111 1.6778 -0.9131
2.0000 1.0262 1.9687 -0.9958
3.0000 1.0030 1.9981 -1.0001
4.0000 1.0002 2.0000 -1.0001
5.0000 1.0000 2.0000 -1.0000
6.0000 1.0000 2.0000 -1.0000
7.0000 1.0000 2.0000 -1.0000

sday) S| dwgdad| ddsydati 2 Uastiawin3- 2- 4

[Q5] Consider the system AX = B, of order n such that a;; #
0 fori =1,2,...,n. Study the error of Jacobean method for
solving this system. Then obtain number of iterations k

required to obtain accuracy «.

b1y F Oy i g,y e tanal iy AX =h oLty

5ysuall e alladll s Dliss sme Gls . 1=12,..,0

39



a

1

X2 Ay,
1
X3 —_—

:b1 —a;X, _313)(3]
:bz — 8y X1 —ayX 3] (1)

s —a5X; —agX 2]

[Hlaia! of
1 n
Xj=— bi Zainj 1 =12,... ,N (2)
g =
JET
lo,3dl e sae ola, J=l Jolcaya =120, N J=st Xi(O)QTubj-é-)
k+1 [ k k
Xf +)=é_b2—a21xl( )_azsxi )] 3)
(k+) _ 1 [ (k) (k)
X s —%_b:a —3.31X L _a32X ) :|
‘)\.44]5.‘37
NS I Y —ia--x-(k) .
! 4jj I =) ()
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el el ssala Layyb alaziwl 2 Thasdl il jul oY
(L) aliaits X abidl Jouls (4) dimally M 35lasl 2 il oy ga X ™
a2 Uasdl o taxs M0 gt @™ =X =X ™ gl clines,

I(k +1) Z aij X

J¢|

X
i & j=1 ajj j 1a||
J #i J #i
Replace m by m-1
b < & (m-t
xi(™ ‘—‘—Z i X =_|_Z_JXJ.( )
dji & j=1 ajj J_1a||
j;ﬁl j;ﬁl
By subtraction
x,(m+1) x,(m)——z ai(xj(m) xj(m 1)) “i=12...n :m>1
i
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+ a; -
(™ %™ <| 3 % ] x, ™~ x (72
j=1| & | [1=1="
J=#i
-y B | |l X9
i=L | & "
j#i
Where | x™ —x™| = max x, (M —x, (6)
0 <J<n
= MaX
Now, If we Put: 1<i<n le a , We have
jil
‘&mm—xm)gﬂuﬂm—%mw Vi=12,..., n
RIEY EPSVCITR T PR U JUURS
max | X @*ﬂ)_xi@ﬂ <A x(m)—x(m_DH
1<i<n 00
Using (6),

[, —x ™

QQS&HX('")—X(m

o0

Loyl (1) allaidl cdlalas 3asd o galemy <1 doyill

i =12,...,n 0

j#1

Al Liagge anss (7) dopddl L) Gamy ol A=(8)  2asauatl
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Ol X Jemll lasyas X M XM )

HX (m+1) _ y (m)

safxmxe)

0

<aa | x Y- x("2)

o0

x O _x (O)H (8)

Jo=ll € 30y oy e Jpuazmll a3l it Kl ssutl sie bt 3
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o0

7\.k

HX (m) X (k) < _H X (1)_X (0)
selim X M=ox e,
©f « 2 v @ _y©
Hx ~X H <’ /1HX ~X H k>0 (7)

Jee apbaite X bl gl & 230y X O Cm e Jsannll s aule

G dye K due )l p=a1dl

g xe x5
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k 2{Iog H x M _x (O)Hw —log ¢ —log (1—1)}/Log (YA (8)

ANNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

:(3) e

R PEN [INT-N
2%, — X, =1
—2X% +5X, + 2%, =1
4x, +6x, =8

X ©'=(1,0.2,2/3)

Ol alaill 1ad = ol

3
A = Max
1<i ng -1

G

ajj

PRPSY VS K ad S
256)] 5

1/2 0 Y2 o011 0.6

xW=[15+| 2/5 0 -2/5|/0.2]|=|0.33333
8/6| |-46 0 0 [|2/3] |0.66667
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H x @ _x O Z=Max X_(l)_x_(o)‘
w 1<i<3 |t !
= Max (0.4 , 0.13333, O.3334><10_2)
=04

old K ga Lgllall ol )yl sue 3]y
k
@A) L 04c10® = (0.8) <5%10*
1-4/5
k>34.06 Lgiss

. K=35 4a Ll ol enl sue
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Chapter 3

Solution of nonlinear equations

Principle of Root Finding
We shall study in this chapter numerical method that can
solve such problems
The general form of non linear equation is
fx) =0, 1)

with f a given nonlinear function.

As examples, the nonlinear equations

x®_3x4_5x31x +1=0, xeX—cosx+1=0
Have no analytical solution.

Here, we denote such roots or zeroes by the Greek letter «.
Root finding problems occur in many contexts. Sometimes
they are a direct formulation of some physical situation; but
more often, they are an intermediate step in solving a much
larger problem.

Graphically, any function y = f (x) satisfies (1) must pass x
axis



Solution of nonlinear equations

Finding the root « of a given function f (x) corresponds to
obtaining the point x at which the graph of y = f (x)
intersects the x-axis. One of the principles of numerical
analysis is the following.

Since we cannot solve the given problem, then solve a
“nearby problem”.

The nearby problem is to find where a straight line
intersects the x-axis. Thus we seek to replace f(x)=0 by
that of solving p(x) = 0 for some linear polynomial p(x) that
approximates f (x) in the vicinity of the root a.



Chapter 3

(Xo , f(x0))

y=f(x)

X1

Given an estimate of a, say a = Xo, approximate f(x) by its
linear Taylor polynomial at (Xo, f (Xo)):

p(x)=F (Xo)+(x =xo)f *(xo)
If xo is very close to «, then the root of p(x) should be close
to a. Denote this approximating root by xi; repeat the
process to further improve our estimate of a.

Denoting the root of p(x) = 0 by x1, we solve for x in
f(Xo)+ (X =Xo)f '(x4)=0

f (xo)

f'(xo)

The general Newton’s method for solving f(x)=0is

derived exactly as above. The result is a sequence of

numbers Xo, X1 X2...., defined by

f (Xn)
Xn41=Xn ~7 ,(er‘]), n=012,...

3



Solution of nonlinear equations

Again, we want to know whether these numbers converge to
the desired root o; and we would also like to know
something about the speed of convergence (which says
something about how many such iterates must actually be
computed).

1- Closed Domain Method

Two of the simplest methods for finding the roots of a
nonlinear equation are:

1. Interval halving (bisection method)

2. False position method

We start solving (1) , If we have a domain x=a and x=b that
contains the root (solution) that is a [a, b]

The Bisection Method

Consider y=f (x) is given

Let x=a and x=b satisfy f(a)f(b) < 0.

Then the interval [a, b]contains the root.

The main idea of this method is interval halving

_Prx]

\f &‘(‘-\) -3 J e
o a
-

(A) F(@)+, F(b)- (B) F(a)-, F(b)+
4




Chapter 3
Assume that f (x) is continuous on a given interval [a, b].
We conclude the interval (a,b) must satisfies that the sign of
f (X) must be changed between a, b.
The condition
fla)f(d) <0 )

ensure that we have a root in [a, b].

..‘...‘...‘...‘...‘...‘...‘IO

..‘...‘r..‘...‘.

Fig. 3.1 Bisection method.

Using the intermediat value Theorem, the function f(x)
must have at least one root in [a, b]. Usually [a, b] is
chosen to contain only one



Solution of nonlinear equations

root «, but the following algorithm for the bisection
method will always converge to some root « in [a, b].

Bisection Algorithm

Input: function f (x), An interval [a, b], small number ¢
f (x)=x°*-2x -5, a=0, b=3 ands=0.00001
Output: a value c satisfies | f(C) | <eor |b - C|<e

1. Define take c= (a+ b)/2, evaluate fc=f(c)

2. If | f(c)| <sor |b-cj<e then accept root = c, and exit.
3. If f(c) f(b)<0, then a= c; otherwise, b =c.

4. Return to step 1.

The interval [a,b] is halved in size for every pass
through the algorithm.  Because of step 3, [a, b] will
always contain a root of f(x). Since a root a is in [a, b],
it must lie within either [a, c]or [c, b]; and consequently

Ic- of<b-C, IC- of< c-a
This is justification for the test in step 2. On completion

of the algorithm, ¢ will be an approximation to the root
with

|C' 0{|£8

Example



Chapter 3
Use bisection method to find the root « of
f(x)=x3—2x—-5

in[0,3]. to within 0.00001
Answer:

a=0 b=3
f(a) = f(0) =0 — 2(0) — 5 = -5
f(b)=f(33)=3*-2(33)-5=16
=27 -6 - 5=16
f(a) f(b) <0 , f(b)=16
Clb)-( 4

\ \ )
) \_.: \
b=
{'(a) e
a=0 , b=3
f(a)=-5
So x*e [0,3]
c—OzlS =1.5



Solution of nonlinear equations

a=0 = a=15 , f(b)=16
f(a)=-5, c¢=1.5 b=3

f(c)=-4.625
JM):I ¢
- G=I.5

ﬁ‘::‘ C’Zl'; b= 3
= 425

fa)r-5 fea)

[fc|=4.625 isnot <
|b-c|=[3-1.5]=1.5 isnot<e

we must do one more iteration starting from step 1 .
a+b _ 1543

c=—= = 2.25

2 2
fc=f(c) =f(1.5)=(1.5)3 — 2(1.5) = 5 = 1.89
Since fa fc <0,then b=c=2.25
fb=fc=1.89




fc, fb=16
a=15 , c¢=2.25 , b=3
fa=fc=-4.625

[fc|=1.89 isnot <¢
|b-c|=|3=2.25| isnot <e

We must do more one iteration starting from step2



Solution of nonlinear equations

Programming home work

Write program for bisection method to find the
root of f(x) =0

In the interval [a, b] with accuracy c. Check
the program with the example

fx) = x3-2x-5, [0,3] c=0.00001

Matlab program will be as follows

Clear
f=@(x) x"3-2*x-5;

a=0; fa=1(a);

b = 3; fb = f(b); fx
eps=0.00001,; -4.6250
x=a;fx=fa; 1.8906
w="x fX’ -2.1582

while abs(fx)>eps
X = (a+b)/2;
x=f(x);

w=[x fX]

if sign(fx) == sign(fa)
a=x; fa=1fx;
else

b=x; fb =fx;
end

end

X

X

= -8.8818e-016

10



Chapter 3
Convergence of bisection method

Let an, bn ,cn defines the values of a b, ¢ at iteration no. n.
then we can write

1
bn+1_an+l :E(bn _an) n=1
SO
1/1
:§|:§(bn—1_ n—l):|
— 7~ )
t ? 3 "2‘ . :’\v- :', :
o A

Continuing this, until we reach the initial data, we

obtain
1 .
:2_n(b —a) y n 21
SO
1
bn —a, = 2n—1 (b _a) (*)

11



Solution of nonlinear equations

The root lies at [a, c] or [c, b]

sian.Cn] AL Blbaill catie B Lo o m @ 5a ol o e
Ll Lusses [0, ]

@) (@) \ (@)
& Cn \ o bn

let « be the exact root

|l —c| s%(bn —an)

Using (*)

Ol

12
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o ¢ | g — b~ a
= ~ {
/ ) < > 4" o9/ /M‘(
q "fl/q

e %‘ qff)n/(‘m‘\.fe Vaaf

TL_Q Y- S ?:’; /’/Ez orir:ja( \'vrfcrv:alsi%e]

'UK‘ (‘xq(.( Y(u{\\

This means that ¢, convergesasto o as n >,

To evaluate number of iteration required to
obtain a certain accuracy £

(b -a)<s

_a:>nlog22logw
& &

Iog{(b ga)}

log2

o —c,|<

2" >

nz=

Example
Find number n of iterations required to obtain

an error to within 1073
If we use bisection method to find the root of
f (x)=x°-x-1o0n [0,2].

13



Solution of nonlinear equations

Answer
The formula for the error in bisection method
IS

la—c,| <+

(b-a)
Since we have b=2 a=0
|Error| < zin[z — 0] =2 =

2n Zn—l

IA

0.001

1/2"1<0.001
1/2™1<1/1000
2"1<1000

We know that 21° = 1024

n-1 =10
n=11

14



o ‘1\
e 2' ‘02‘*’ |o'?4 0000 9

n~41

False Position Method

The bisection method brackets a root in the interval
[a, b]approximates the root as the midpoint of the
interval. In the false position, the nonlinear function
f(x) is assumed to be a linear function g(x) in the
interval [a, b], and the root of the linear function g(x),
x = c, is taken as the next approximation of the root of
the nonlinear function f(x).

15




Solution of nonlinear equations

The process is illustrated graphically in Figure 2. This
method is also called the linear interpolation method.
The root of the linear function g(x), that is, x = c, is
not the root of the nonlinear function f(x). It is a false
position, which gives the method its name. We now
have two intervals, (a, ¢) and (c, b). As in the interval-
halving (bisection) method, the interval containing the
root of the nonlinear function f(x) is retained. so the
root remains bracketed.
The equation of the linear function g(x) is
L0~ g'(x) 1)

where f(c) = 0, and the slope of the linear function
g'(x) is given

g'(x) =552 (2)
Solving Eq. (1) for the value of ¢ which gives f(c) =0
yields

¢—b—10) (3)

16



Chapter 3

v

Note that f(a) and a could have been used in Egs. (1)
and (2) instead of f(b).

Equation (3) is applied repetitively until either one or
both of the following two
convergence criteria are satisfied:

DIb—al<e,  @DIf(O) <€

Example 1
Use False Position Method to find the root of

f(x)=x>-2x -5

In the intervall®3]
Answer: the iterations are:

a=0 b=3

17




Solution of nonlinear equations

fa=-5 fbh=6

x =0.7143 fx = -6.0641
a=0.7143 b=3

x =1.3425 fx =-5.2654
a=1.3425 b=3
x=1.7529 fx=-3.1197
a=1.7529 b= 3

x =1.9564 fx = -1.4248
a=1.9564 b =3

clear
f=@(x) x"3-2*x-5;

a=0; fa="f(a)
b =3; fb =f(b)
eps=0.1;

for i=1:10
gdx=(fb-fa)/(b-a);
x = b-fb/gdx;
x=f(x);

if sign(fx) == sign(fa)
a=x; fa=1x;




Chapter 3

else

b =x; fb = fx;
end

xX(1)=x

ff(i)=fx
end

x f
w=[xx"' ff']

1- 3 ks

5 olasli L Sl el @ o Gle 5538l Capad gali o anseiad (D)
Sl fals f(x)=tan(z—x)—X =0 idslaall i s ol st ¢l
[1.6,3]

et eWolall ot 5300 Cans 550801 Capatd gall g aniwl (2)
Sltaitl Jals f(x)=x5=x —1=0 Lslaall jiia slosul B i asdl
11,2]

Jsbo oles a0 T (X)) alal jis slowd 5,0l Carenss 1a,L 2 (3)
St el sae aagle ¢ 1 ga Lg il sga g St Llin V1 5,4l

0.00T 235 JI Sy 13 2351 Fay 51

AT)=AX —COSX =0 LIl jim slo¥ 5,580 Careats auiiad (4)
107 day us [0,1] 5l

<o [ab] slis assi . X*=5X =3 5jj .l ,Lae ¥l 2 2 ati(5)
ALl o] 50 e (S5t

19



Solution of nonlinear equations

A sus JEa il Guad 2 Y =28INX Y =X ol eyl (6)
slon¥ 5y0al Caald sl @3 plolaull Lads gatod 3,18 2 plolaul|
107" i3y s f(X)=X —2sinX =0 Uil i

3yidd| Caads alasiwls (6) 5(5) G leidl Jomd M5ke sl oo (7)
G315 pa S s gl aluseinils 96 0

5 olaln Lot il @iy of le 513 o sl ali o auieial (8)
Slladl falsf(x)=tan(z—x)—Xx =0 idslaall yi s Ol cust el Ih
[1.6,3]

et a¥alall J 3550 all Canii a5l s sl el aneiwl (9)
Sl Lals f () =x8—x =120 sleall yiis sloul 2 il
[1,2]

2- Open Domain Method

This class of methods need only one point near the
solution . we name it initial guess or estimate , we
denote by Xo .

A sequence of iterated approximation is obtained by the
formula

Xn+l = g'(xn)

For some known function g depends on the used
method .

20



Chapter 3

The interval halving (bisection) method and the false
position method presented in Section 3.1 converge
slowly. More efficient methods for finding the roots of a
nonlinear equation are desirable. Four such methods are
presented in this section:

1. Fixed-point iteration

2. Newton’s method

3. The secant method

4. Aitken method

These methods are called open domain methods since
they are not required to keep the root bracketed in a
closed domain during the refinement process. Fixed-
point iteration is not a reliable method and is not
recommended for wuse. It is included simply for
completeness since it is a well-known method. Muller’s
method is similar to the secant method. However, it is
slightly more complicated, so the secant method is
generally preferred. Newton’s method and the secant
method are two of the most efficient methods for
refining the roots of a nonlinear equation

Newton’s Method

Consider solving f (x) =0 with initial estimate xo is given
near the root o . The iterates of Newton's method are
generated by

f(xp)
Xn41=Xp —7 ,(er‘]), n=012,...

21



Solution of nonlinear equations

For a general equation f (x) = 0, we assume we are given an
initial estimate Xo of the root a.
The first few formulae are:

o oF ol LT T f (%) slane Ald oyl asd o a s
X ysmega Y = f(X) DI Limie gloliny Ladie X ilad

Dle Joo agad (ULdl oid Mot o Lisman ¥ LT Lasg
Dot of ey i) Losiine Und st o0 oo Bsn il Wlaadly . i35
Joiias Cag o LT 6T el 5sdl g ol (11 il s
ors Jm 0 el da S il p(x) = 0 Js f(x) = 0
(X0:f (X)) Lot 2ty ade 2z ol ay (X, F (X)) 2oz
rdslaa 3]

Fx)-f(x0) _ ¢ '(Xo)

o 15 yguall of
f(x)=Ff (Xq)+(x —xo)f "(Xo)

22
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y=f(x)

(Xo, f(x0))

" [x % X

f(X1)=00161 X 5me g dasl fa plalas TadiXy oof G

f(Xo)+ (X —%o)f (Xo)

15 yguall of

f (%)

f'(xo)

(O il s X e Lime 1y Xy 09555 0 gd5ll e 3T Lasg
ENCHURSPES RS SRS PR FE PRV FES R
daandl o8l ) gas0 1oy

f(xy)

f(x1)

Mae ¥Vl e Lol e Jeasy Cages ddaall oia )l y&a

X1, X 9y X gyens
@il 8l e slae ¥ oda @ qgllall Hasdl I claws of Jal Gl
ol i
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Solution of nonlinear equations

Example 3.2:

Use Newton formula to obtain the root ¢ of

f(x)=x2-4x +4

Starting from x0=0

fxX)=x*—4x+4=0 :

ff(x)=2x- 4

Xo=0 , f ()= f(O)=4

f'(x0)=f'(0)= - 4

from the formula
f (xn)

xn+1:xn—f,(xn) f(n)=0,1,2, .............
X 4
n=0 = xlzxo_f,(x(:)): —4:1 : (1)
f'(x) =-2
X
n=1 =—= Xy = X1 —]{,((xll)) 1.5
f (x,)= 025
n=2 = X3 = X3 —]]:,(gé)) 1.75
f (x3) = 0.0625
Iteration no X; If (x| 1Xi41 — x4
0 0 4 0

24



1 1 1 1
2 1.5 0.25 0.5
3 1.75 0.0625 0.25

Newton's Alghoithm :

Chapter 3

Input : function f (x), its derivative f'(x) initial
estimate Xo , small positive value € ,largest number of

iteration N .

f)=x*—-4x+4=0
fl(x)=2x- 4, xo =0
e=1x10"° , N=10

Ouput : x, that satisfies |f (x,) | <e€

Loop:from n=0to N

fo=f (xn) ’fIdn = f,(xn)
xnpl = Xn —
fnpl = f (xnpl)

if | f (np1) | <€, then

output x,,; astherootof f (x)

stop

otherwise continue loop

fdn

25



Solution of nonlinear equations

Programming Exercise

Use your favorite program to find numerical solution for the
following non linear equations using Newton's method with
the given estimate :

1- f (x)=x?-4x +4 ,X%=0

2-f (x)=x*-2x -5 , %Xo=1.5

3-f (x)=x®-x-1=0 , =15

Use your favorite program that uses Newton method for
f (x):x6—x -1=0

We use an initial guess of xo=0.0 and 1.0

f=@(X)(x"6)-x-1; a=
fd=@(x)6*(x"5)-1; 0 1.2000 -1.0000
x=1.0; a=

n=0; 1.0000 1.1436 0.7860
while n<6 a=

f1=f(x); 2.0000 1.1349 0.0930

fd1=fd(x); a=
x=x-f1/fd1; 3.0000 1.1347 0.0019
a=[n x f1] a=
n=n+1; 4.0000 1.1347 0.0000
end a=

5.0000 1.1347 0.0000

26



Chapter 3

n Tn flan) T — Tp_] C—Tp_q
0 15 8.80E +1

1 130049088 254E-+1 —200E—-1 -365E—-1
2 118148042 538E—-1 —119E—-1 -—-166E—-1
3 113945559 492E—-2 —420E—-2 —468E-2
4 113477763 550E—4 —468E—-3 —473E-3
5 113472415 7.11E-8 —535E—-5 —-535E-5
6 113472414 155E—-15 —691E—-9 —691E-O

As seen from the output, the convergence is very rapid. The
iterate xs is accurate to the machine precision of around 16
decimal digits. This is the typical results seen with
Newton’s method for most problems, but not all.

Example 3.3:
consider the nonlinear equation
fX)=b—1/x=0
(a) Use approach of Newton’s method to evaluate a
recurrence formula that approximate the solution.

(b) Express the relative error in the n stage of using the
recurrence formula in terms of the error in the initial stage.

(c) Evaluate the interval of convergence

Answer:

(a) We consider a number b > 0, and the equation
f(X)=b—-1x=0 (1)

The solution is, of course, a = 1/b.

27



Solution of nonlinear equations

Let xo be an estimate of the root a = 1/b.
We have

Using Newton iteration , we have

f(x
xn+1:xn—,(—”), n=01....
fr(xn)
it become
oL
X
Xnig =Xp — 1 -
Xy
or simply
Xn =X, (2-bx,), n=012,.. (2)

for solving (1)

We use a method of analysis which works for only this
example, and later we use another approach to the general
Newton’s method.

(b) Write
Xpne1 = X,(1+1—bx,) = x,(1+1,)

Wherer;, = 1 — bx,
Note that the error and relative error in Xn are given by

28
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e, =——X, LI (xn)ze—”:r—”-b =r,,
b b a b

Thus ry is the relative error and we have x» converges to o if
and only if r, tends to zero. We find a recursion formula for
rn, recalling that r, =1—bx,, forall n. Then

P :1_bxn+l
=1-bx, (1+r,)
=1-(1-r,)(1+r,)
:1—(1— rnz): r’

Thus
2
i =Tn
for every integer n > 0. Thus
h=15, L=t'=r, r=r’=r
By induction, we obtain
ro=r2, n=012,.. (3)

(c) We can use this to analyze the convergence of
Xpa =X, (1+r,), r,=1-bx,
In particular, we have r, — 0 if and only if
Iry| <1
This is equivalent to saying
-1<1-bx,<1

O<x0<E
b

Which is called the ‘interval of convergence’.

29



Solution of nonlinear equations

1

A look at a graph of f (x) =b — x  will show the reason for
2

this condition. If xo is chosen greater than b , then x1 will

be negative, which is unacceptable.

To see why, consider the relative errors in the above.
Assume the initial guess xo has been so chosen that

70 = -1. Then
i

rm=r8. n=00123 .

ro = lﬂ_q', ry = lﬂ_E:

T4 — 10_15

ry = 1[]_2__
Thus very few iterates need be computed.
30
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ADVANTAGES & DISADVANTAGES

Advantages:

1. It is rapidly convergent in most cases.

2. Itis simple in its formulation, and therefore relatively easy to apply and

program.

3. Itis intuitive in its construction. This means it is easier to understand its
behaviour, when it is likely to behave well and when it may behave poorly.

Disadvantages:
1. It may not converge.

2. Itis likely to have difficulty if f’(oc) = (. This condition means the x-
axis is tangent to the graph of y = f (x) at x = a.

3. It needs to know both f (x) and f ’(x). Contrast this with the bisection
method which requires only f (x).

AN ERROR FORMULA

Example
Derive an error formula for Newton method to solve a

nonlinear equation then prove that Newton method is
sensitive for the initial estimate. find the interval of initial
estimate for Newton method to be convergent.

ANSwWer:
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Solution of nonlinear equations

$%W&M”{IW& (o, t |
“ OY“’\L‘ 01

5 > @KPaANg( |
- ( ) P
.; X “\‘ ‘ ()’)\ l\“ ()() \ ‘\( “()« \ ‘ )“g (;\v
\ ) 2 ) ‘ S S R
\ 15 Small Va i g : t

’wv Ko M v+ h Kot I o(,k Ry ,(“,.m
"‘f() “M\M“‘ m)‘“ Xn)- (X \“)‘\u(") \

W}" Ve ( w9 l"(“ “en )('\ Mvm‘ 4)(

Suppose we use Taylor’s formula to expand f (o) beside x =
Xn. Then we have

f (@)= (x,)+(@=x,)f "(x0) +5(a =%, F *(c,)
for some ¢, between o and x». Note that f (o) = 0. Then
divide both sides of this equation by f '(x») #0, yielding

O:M+05—Xn+(05—xm)2M
f'(x,) 2f '(x,,)
Note that
:’(():(:))_Xn =Xnu
and thus
_f 14 Cn
OZ—Xn+1:2f ,((Xng(a—xn)z
C(_Xn+1:|vI (a—Xn)Z, (31)
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where, since X, close to a, and therefore c, also close to a, we

have
M= Cn) | i
of '(Xn) 2f ()
Thus Newton’s method is quadratically convergent,

provided f ‘(o) £0 and f (x) is twice differentiable beside the
root a.

A=Yt 15 Small (4he e\/ro)’)
= = M (AR

)
E XQ(';{‘ Ss (“;{"i"f"} \3
Namefsical Solution

at iteya h}m(::) Emf 6{" i‘{e(qﬁ‘on/“n)
E{{Ofar(— iteva fon@

The error in iteration n+1 is proportial to the
square error in iteration_n
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Solution of nonlinear equations

g, = /M Eoz =M («_}'\)C i

0.04 M
2
£2: (e0l) M = 0 gool M

”'\\‘S means the + the eyp ‘-"i”i‘ff«g‘i‘!’%-far)

IF ED 7 i b Ey\ Wll\ €ncCyease as pn

"'\({e_aSc Se

We can also use this to explore the ‘interval of convergence’
of Newton’s method. Write the above as

_ =f %)

2
a=Xn1*M (a=xn)" M =525 3n)

Multiply both sides by M to get
M(a —xp41) = Mz(a - xn)z =M(a - xn))z

M@ —xn11) =(M(@ —xp_1))%
= === (M(a -x9))%,n=>1
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2n
Then we want the quantity [M (05 —X o)] to decrease; and this

suggests choosing Xo so that

2f ()
f "(a)
If |M| is very large, then we may need to have a very good initial guess in
order to have the iterates Xo converge to o.

Example
Estimate the error in Newton method for obtaining the

root of
f (x)=x6—x -1=0
Answer

M (z—x0)| <1 ->|a_xo|<MA:‘

©)

_f
(@~ Xn2) =@ = X)) 5o |

- "(cy) ~ —f"(Xp) _ _30Xn4 _ _15Xn4 | ~ —15 3
2f '(xn) T 2f '(xp) 2(6Xn5—1) 6Xn5—l Xp=176-1

So the error in step n+1 equal the square of the error in step
n multiply in 3.

Example
obtain an iterative formula using Newton method to find va
for real number a. Use the resulting iterative formula to find

V5 to three digits of accuracy.
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Solution of nonlinear equations

Qon.&n‘oka:‘ vs o e
"9 Ahevrtin nathos
Thind ayeet g ya

£C-’<-): )(l__q

9—\"\‘1{ e cnteryn/ D Fho+- Cﬂh{*—\(nu

X.o S"\Cli +k‘\+ A/cu.—f;n J"f“?rﬁ’h

Convergend e

Answer

f()=x"—a=0 i X’ =a b s X=va oi joya

Oig 09l alusinly o

f (%)
Xig =X = X:)
g XA
Xin =X — 2 —§<Xi +x%)

ol a=5 leuie

2 e (953 Hlnll Jgum sl bl bl ol Xp =2 L2 130
A Jgandl
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Xn

f(Xn)

Xn-Xn-1

2

-1.000000000

0.250000000

2.250000000

0.062500000

-0.013888889

2.236111111

0.000192901

-0.000043133

2.236067978

0.000000002

0.000000000

A WIN|FP|O|S

2.236067977

0.000000000

2J‘:,J__.ujd‘);x.g~1\ AL;.:v.:ﬁu]}:u &ﬂammuMI— 3 Jj.&;

THE SECANT METHOD

The Secant Method:

When the derivative function, f'(x), is unavailable or
costly to evaluate, an alternative to Newton’s method is
required. The preferred alternative is the secant method.

The secant method is illustrated graphically in Figure
3.4. The nonlinear function f(x) is approximated
locally by the linear function g(x), which is the secant
to f(x), and the root of g(x) is taken as an improved
approximation to the root of the nonlinear function

fx).

A secant to a curve is the straight line which passes
through two points on the curve.
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Solution of nonlinear equations

The procedure is applied repetitively to convergence.

Two initial approximationsXy,X;, which are not

required to bracket the root, are required to initiate the
secant method.

The slope of the secant passing through two points,
X, X, , IS given by

g'(x;) =" 50 (1)

P\ L9
XL X &\ Xl
A\ X

The equation of the secant line is given by
F(Xiaa)F (xi) _ g '(X- )

Xi1—Xj

v

where f (x,,,)=0. Solving this Eq. for Xi+1 yields
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_ f(xi)
Xis =X; — o )

Equations(1)-(2) are applied repetitively until either one
or both of the following two convergence criteria are
satisfied:

Dlxes —xl <€, @Ifx)I<e€

Example

We solve the equation

f (x)=x6—x -1=0
which was used previously as an example for both the
bisection and Newton methods. The quantity Xn — Xn-
1 i1s used as an estimate of a — Xn-1. The iterate X9 equals a
rounded to nine significant digits. As with Newton’s method
for this equation, the initial iterates do not converge rapidly.

But as the iterates become closer to a, the speed of
convergence increases.

Programming Exercise
Use your Matlab program using Secant method
for example to obtain the following results:

clear
x0=2.0;
x1=1.0;

f0=(x0"6)-x0-1;
f1=(x1"6)-x1-1;
n=0;




Solution of nonlinear equations

a='n x0 f0'
a=[n x0 0] 1.0161 -0.9154
n=1;
a=[n x1 f1] 1.1906 0.6575
while n<5
f0=(x0"6)-x0-1;
f1=(x1"6)-x1-1; 1.1177 -0.1685
x=x1-f1*(x1-x0)/(f1-
f0);
n=n+i; 1.1325 -0.0224
x0=x1,
X1=x;
f=(x"6)-x-1;
a=[n x f]
end
In f{’fn] I — Tp—1 00— Ty 1
2.0 61.0
1.0 —1.0 —1.0

1.01612903 —-9.15E-—-1 1.61E -2 1.35E —1
1.19057777 6.57E -1 1.74E -1 1.19E -1
1.11765583 —-163E—-1 —-7.20E—-2 —550E -2
1.132531556 —2.24E — 2 1.49E — 2 1.71E — 2
1.13481681 0.54E — 4 2.20E -3 2.19E -3
1.13472365 —507E—-6 —-932E-5 —-027E-5
1.13472414 —-1.13E-9 492E -7 492E -7

(== T = N N =

It is clear from the numerical results that the secant method
requires more iterates than the Newton method. But note
that the secant method does not require a knowledge of f
'(X), whereas Newton’s method requires both f (x) and f '(x).
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Comparison of Newton and Secant Methods

From the foregoing discussion, Newton's method
converges more rapidly than the secant method. Thus,
Newton's method should require fewer iterations to
attain a given error tolerance.

The Newton method
=X —LX”) n=012,...

ToE(x)
requires one function and one derivative evaluations
per iteration, that of f (x,) and f '(x,). The secant method

Tptl = i'n—.f{fﬂ]+f{3:n} — f{IR_lj. n=1.23..
En — Ip-1

requires just two function evaluations per iteration.

X

n+l

The derivative evaluation is more complicated than
function evaluation. Indeed the numerical
approximation for derivative (5) requires two function
evaluations.

For this reason, the secant method is often faster in time,
even though more iterates are needed with it than with
Newton’s method to attain a similar accuracy.

Advantages & Disadvantages

Advantages of secant method:

1. It converges at faster than a linear rate, so that it is more
rapidly convergent than the bisection method.
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2. It does not require use of the derivative of the function,
something that is not available in a number of applications.

3. It requires only one function evaluation per iteration, as
compared with Newton’s method which requires two.

Disadvantages of secant method:

1. It may not converge.

2. There is no guaranteed error bound for the computed
iterates.

3. It is likely to have difficulty if T (@), This means the x-
axis is tangent to the graph of y = F ) atx=a.

4. Newton’s method generalizes more easily to new
methods for solving simultaneous systems of nonlinear
equations.

Fixed Point lteration

One of the most frequently recurring ideas in numerical
calculations is iteration or successive approximation.
Taken generally, iteration means the repetition of a
pattern of action or process.

To illustrate a more specific use of the idea of iteration,
we consider the problem of solving a (usually) nonlinear
equation of the form
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X =g(x) (1)
where g is assumed to be a differentiable function

whose value can be computed for any given value of a
real variable x within a certain interval. Using the
method of iteration, one starts with an initial
approximation x,, and computes the sequence

Xlzg(xo)!xzzg(xl); X3=g(X2) ..... 2)

Each computation of the type x, ,=g(x,)is called a fixed

point iteration.
As i [grows, we would like the numbers x, to be better

and better estimates of the desired root.
If the sequence {x,} converges to a limiting value a then

we have

a=limx,,,=limg(Xx,)=g ()

n—o n—oo

S0 x =aSatisfies the equation x =g(x). One can then

stop the iterations when the desired accuracy has been
attained.

Example

Tudas et ALl i lowsd L0l Aaddl) Lan,be anil
f(x)=x2-5=0
il G| JM5
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clear i

i x a=
x=2.5; 1.0000
i=0; a=

while i<5 2.0000
x=1+x-(x"2)/5; a=

i=i+1; 3.0000
a=[i x| a=

End 4.0000
a=

5.0000

The Newton method and the secant method are examples of
one-point and two-point iteration methods respectively. In
this section, we give a more general introduction to iteration
methods, presenting a general theory for one-point iteration
formulas.

Example

Consider solving the equation

f(x)=x?-5=0 1)
for the root « =+/5=2.2361. Test which of these four iteration
methods to solve this equation converges?

1. X,,=5+X, —X’ 2. X,,,=5/X,

3 X,y =1l+x,—ix? 4. X,,=3(x,+5/x,)
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NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
All four iterations have the property that if the sequence
{xn| n=>0} has a limit 0., then is a root of (1).

For each equation, check this as follows: Replace x, and Xn+1 by

o, and then show that this implies 0i=++/5. In the following
Exercise, you shall evaluate the iterates x, for these four
iteration methods.

Programming Exercise :
Write Matlab program evaluate the iteraion values for (1)
making use of the above four methods statrting from xo=2.5
to obtain the following table:

X2=2.5; »>»> fixedpointl
X3=2.5; .-
x4=2.5;

n=0;

while n<5
x1=5+x1-x1"2;
X2=5/x2;
x3=1+x3-
0.2*x3"2;
X4:0.5*(X4+5/X 2.0000 -12.2852 2.0000 2.2362 2.23
4);

a=[n x1 x2 x3

u] 1.2500 Z2.0000 2.2500 2.2§

1.0000 4.6875 Z.5000 2.2375 2.23

X4] 3.0000 -155.2102 Z.5000 2.2361 2.23

45

[alu]

6l

6l

61



Solution of nonlinear equations

n=n+1;

End
n X, X, 2 X, . 3 x, 4
0 z.5 2.5 2.5 2.5
1 1.25 2.0 2.25 2.25
2 4 6875 2.5 22375 2.2361
3 —12. 28582 2.0 2.2362 2.2361

To explain these numerical results. we present a general theory
for one point iteration formula.

As another example, note that the Newton method

R €Y
Tp4+l = Tn — F(2n)
is also a fixed point iteration, for the equation
T=x — _f[:t’)
(@)
In general, we are interested in solving equations
v = g(x)
by means of fixed point iteration:
Tp+1 = g(xn), n=20,1,2,..

If the iterates x» converge to a point «. then
lim x,4; = lim g{x,)
n— o n=—

a = gla)

Existence Theorem
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We begin by asking whether the equation x = g(x)
has a solution. For this to occur, the graphs of y =
x and y = g(x) must intersect. The lemmas and
theorems in the section give conditions under
which we are guaranteed there is a fixed point a.

Lemma: Let g(x) be a continuous function on the interval
[a, b], and suppose it satisfies the property

a=x=b = a<g(z)=bh
(1)
Then the equation x = g(x) has at least one solution o in the
interval [a, b]. See the graphs for examples.
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Solution of nonlinear equations

Theorem(1): Assume g(x) and g'(x) exist and are continuous
on the interval [a, b]; and further, assume

a<zrz<b = a<g(z)<b

a=x=<b (2)
Then:
S1. The equation x = g(x) has a unique solution o in [a, b].
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S2. For any initial guess Xxo in [a, b], the iteration

Tpa1 = g(xn), n=20,1,2,...

will converge to a.
)t?'t

S3. o — Ip| = |J!31 — x|, n= 0

=71 =

4. .0 — T
lim ———

[t
Thus for X close to o, n—% o — 7. ()

o — Tpi1 7 ¢(a) (@ — n)

Proof. Note first that the hypotheses on g allow us to use the
previous Lemma to assert the existence of at least one
solution to x = g(x). In addition. using the mean value
theorem, we have that for any two points w and z in [a, b]

glw) — g(z) = g'(c)(w — 2)
for some ¢ between w and z. By using (2), we obtain
lg(w) — g()| = |g'(©)] lw — z|
<Alw — 2] azw.z<bh

©)

S1. Suppose there are two solutions, denoted by @ = &(e)
and £ = &(8), By subtracting these, we find that

o —f=gla) —g(B)

Take absolute values and use (3):
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e — Bl < Al — B
(I-A)e -8l <0

Since ‘* <1 we must have @ = B and thus, the
equation x=g(x) has only one solution in the interval [a, b].

S2. From the assumption (1), it can be shown that for any
Initial guess Xo in [a, b], the iterates x» will all remain in [a,
b].

For example, if“EIﬂEb, then (1) implies

a < glxo) = b. gince X1= g(Xo),this shows x1 is in [a,b].
Repeat the argument to show that x. = g(xz) is in [a, b], and
continue the argument inductively.

To show that the iterates converge, subtract Xn+1 = g(Xn)

from ® = £{(&) obtaining

o —xppt = g'(ca)er — Xxy)

(4)

for some Cn between & and x». Using the assumption (2),
we get

ja_-xn-{rllf}'-ta'"'xnlw n>0
Inductively. we can then show that

o — xp) < A" @ — xp], n=>0 (5)
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Since A< , the right side of (5) goes to zero as

n— m’ and this then shows that

I,,—}QHSH_?CC'.

S3. Use (3) with n =1 to obtain
& —Xo| =|ar =X, + X, =X,
Using triangle inequilty
lor — xol < e — x| + |x) — x0]
< Ala = xg| + |x; ~ xol

(1 —l)la-—x{;] =< |X] ——x.3|

e — xgl = lxi — xa

1 —A
combining this to (5) we obtain the required.

S4. Use (4) to write

a —Xpyt = g’(fn)(a — Xa)
N ¢ Sl TR .

im — = im g

"ok O — X, o

Chapter 3

Each cn is between & And ., and x,, — ¢y 5o Thys,
Cx —> @. Combine this with the continuity of the function

g'(x) to obtain
lim ¢'(c,) = g (o)
1 A ]

thus proving the required
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Corollary:

Assume that g(x) and g'(x) are continuous for some interval
¢ < x < d, with the fixed point o contained in this interval.
Moreover, assume that

| g' (a) [<1 (7)

Then, there is an interval [a, b] around o for which the
hypotheses, and hence also the conclusions, of Theorem(1)
are true.

If the contrary, | g' (o) | <1, then the iteration method

Xpit = 20} will not converge to a,

{When| g' (o) |=1,no conclusion can be drawn; and

even if convergence occurs, the method would be far too
slow for the iteration method to be practical}

Answer of Example 3.6:
Using the result,|g’(a)| <1 as a condition for convergence,

we can examine the iteration methods in example 1, namely:

1. X,,=5+X, -x? 2. X,,=5/x,
3. X, =1l+x,—ix? 4. X,o=3%(x,+5/x,)
L gx)=5+x—x% gx)=1-2x, gay=1-2/5<—1I
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Thus, the iteration 1 will not converge to /5.
2. g0y =5/x, gx)=-5/x% gla)=-1
We cannot conclude that the iteration. converges or

diverges. But from Table 1, it is clear that the iterates will
not converge to o.

o gvy=1+4+x— %xz, gixy=1-~ ,_%x, giay=1- %[: 0.106
From the corollary, the iteration will converge. And from(5

),
iﬂ[ - Iﬂ—l—'li = Dl%lrﬂ - In‘

when X, is close to a. The errors decrease by approximately
a factor of 0.1 with each iteration.

4, g(x} = 3(x +5/x), g'(x)=3(1-5/x%), ga)=0
Thus. the condition for convergence is easily satisfied. Note
that this is Newton's method for computing /5.

Remark:

It is often difficult to know how to convert a rootfinding
problem f(x) = 0 into a fixed point problem x = g(x) that
leads to a convergent method.

The possible behavior of the fixed point iterates X, is shown
graphically in Figure 1, for various sizes of g'(a). To see the
convergence, consider the case of x1 = g(xo), the height of
the graph of y = g(x) at xo . We bring the number x; back to
the x-axis by using the line y = x and the height y = x1. We
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Solution of nonlinear equations

continue this with each iterate, obtaining a stairstep
behavior when g'(a)>0. When g'(a)<0. the iterates oscillate
around the fixed point a, as can be seen in Figure 1.

L
-

/J’ "ﬂ il .I'E i

Degial<1
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Solution of nonlinear equations

v ()

Example

In Table 1, we give results from the iteration 3

.
Xarr = 1 +x, — gx;

along with more information on the convergence of the

iterates. The errors are given, along with the ratios
a — Tp]

r =g'(a) = im o —

Empirically, the values of r converge to g'(a)=0.105573,
which agrees with(S4)(see the following table).
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Tabie The Iteration v, =1 + x, — %1:

n X, o - Ay r,

0 2.5 ~2edll -1

l 228 - AuE 2 052K
2 Y2375 -1 43E - 3 01028
3 223621875 ~1.51E 4 0. 1053
4 2.23608344 -1.534E -5 0 1035
5 2. 23606966 1.68E - 6 01050
fr 223606315 - 1L.7E - 7 0.1056
7 ! (. 10156

2_236068(K) -1 .R7E -~

HIGHER ORDER METHODS

lg' ()] <

1. . :
The convergence formula gives less information

in the case g'(a)=0,
although the convergence is clearly quite good.

To improve on the results in Existence Theorem, consider
the Taylor expansion of g (xn) about a , assuming that g (x)
IS twice continuously differentiable:

g (Xn)= g(a)+ | (8)
(xn —at)g'(a) + E(x,, — )" (ca)
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with ¢, between X, and a. Using g(Xn) = Xn+1 and g(a) = a.
Also assume g'(a) = 0.
Then

Tht1 = a+39"(cn) (@n —a)’

a—apr1 = —30"(ca) (2n — )’

Thus if g'(a)= 0, the fixed point iteration is quadratically
convergent or better. More ever

O — ¥y 1

lith ———T° — __ o"(g
ﬂ_‘t}'.'l{U, "In)‘: 2 g‘ (U)

If g"(a) #0, then this formula shows. that the iteration X«
= g(xn)is of order 2 or is quadrarically convergent.

If also g"(a)= 0, and perhaps also some higher-order
derivatives are zero at o, then expand the Taylor series
through higher-order terms in (8), until the final error term
contains a derivative of g that is nonzero at a. This leads to
methods with an order of convergence greater than 2.

Aitken Error Estimation and Extrapolation

Example

Write with proof the Aitken’s extrapolation formula with an
algorithm to program it, derive from it Aitken’s error
estimation formula

Answer
Recall the result
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for the iteration

Thus

a—xp = Ao —2,-1)
1)
with A = ¢/(a) and [A| < 1.

If we were to know A, then we could solve (1) for a:

Tn — ATp_1

1—A
Usually, we write this as a modification of the currently
computed iterate Xn:
Ln — ’\xn—l

1—A
Ty — AT Axp — Ax,—1

1—A + 1—A

A
1— )\ [mﬂ - In—l] (2)

Fan
—

s

= In +
The formula
A

T1-A
is said to be an extrapolation of the numbers X,-1 and Xn.

Ln [mﬂ - ‘rn—l]

Now for estimating A , from (1)

we have
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A~ a7 In
ot (3)

Unfortunately this also involves the unknown root o which we
seek; and we must find some other way of estimating A.

To calculate A consider the ratio

In — Lp—1

)\n -
Lpn—1 — Tnp—2 (4)

To see this is approximately A as x, approaches a, write
Ln —Lp—1 g(@n—1) — glzn—2)

LTp—1 — Lp-—2 Lpn—1 — Tnp-—2

= g'(cn)

with ¢, between x,-1 and x.-2. As the iterates approach a, the
number ¢, must also approach a. Thus A, approaches A as xn —
a.

We combine these results(2)-(4) to obtain the estimation
hrs

55?1 = rn+ [ﬂ:n — $n—1]

1— A, ’ (5)

In — Tp—1
An —

Lp—1 — Tn—2
We call &, the Aitken extrapolate of {zy,_», 2p_1.Tn};
and o /2 Ip.

We can also rewrite (5) as
An

1—An
This is called Aitken’s error estimation formula.
60
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The accuracy of these procedures is tied directly to the accuracy
of the formulas( from (11))
a—xp = A (o — 2y_1)
a—Tp_1 = Ao —xp_))
If this is accurate, then so are the above extrapolation and error
estimation formulas.

Example
Consider the iteration

Tpe1 = 6.28 + sin(xn), n=0,1,2 ..
for solving

X=6.28+sinx
So, g(x)=6.28+sinx, lterates are shown on the
accompanying sheet, including calculations of An, the error
estimate

An
Q—Tn R Tp—Tn = 7 ™ [2r — Zp—1]
The latter is called “Estimate” in the table. In this instance,

Tn — Tp—1

Tpn—1 — Tn—2
A=g'(a) = .9644
and therefore the convergence is very slow. This is apparent
in the table.

Programming Exercise
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Use Matlab program to calculates Aitken’s error estimation

for example 3.8 to obtain the following table.

iterations converge rapidly or slowly.

Detect if the

Estimate
n x, Xy = Xpo1 A, a-x,
0 6.0000000 1.55E - 2
1 6.0005845 S.84SE - 4 1.49E - 2
2 6.0011458 S.613E - 4 9603 1.44E - 2 1.36E — 2
3 6.0016848 5.3%0E - 4 9604 1.38E - 2 1.31E - 2
4 6.0022026 S178E - 4 9606 1.33E - 2 1.26E — 2
5 6.0027001 4.974E - 4 9607 1.28E - 2 1.22E - 2
6 6.0031780 4.780E - 4 9609 1.23E - 2 117E - 2
7 6.0036374 4.593E - 4 9610 1.18E - 2 1.13E - 2

Aitken’s Algorithm

Step 1: Select xo
Step 2: Calculate

z1 = g(zg), x9 = g(z1)
Step3: Calculate

ry — 1
=270
71 — 7
A2
$3=$2+1_\2[3’2—$1]=

Step 4: Calculate
x4 = g(x3). x5 =g(x4)

and calculate xs as the extrapolate of {xs, X4, Xs}.

_ X5—X4 _ A5 _
A=k X6 X5t [x5-X4]
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Continue this procedure.

Of course in practice we will have some kind of error test to
stop this procedure when believe we have sufficient
accuracy.

General Comments
Aitken extrapolation can greatly accelerate the convergence
of a linearly convergent iteration

Tp+1 = g(Tn)

This shows the power of understanding the behaviour of the
error in a numerical process. From that understanding, we
can often improve the accuracy, thru extrapolation or some
other procedure.

This is a justification for using mathematical analyses to
understand numerical methods. We will see this repeated at
later points in the course, and it holds with many different
types of problems and numerical methods for their solution.

Example 3
Consider solving

f (x):x6—x -1=0
for its positive root a. An initial guess xo can be generated
from a graph of y = f (x). The iteration is given by
6
X=X, -1
"oex2-1
We use an initial guess of x,=1.5. We shall take
Ix

X, ..=X , n>0

n+l

n41— X | as the numerical error.
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Excercises

(2-3) Gy les
e JE5 Ragd sl ¥ (sl Ao alasinly dunls Bps aai (1)
(i) Ya, (i)%
U5 35 s wlIdg a=5, N=2 Leadie Lgie J55 da® aa gl @ (19
iyl sl
i e (1) JUEL 350 £a 00T (w9l dhile el p 2235 we(2)
§das M5 13Le «X0=1.5, 5.0, 100. | &l itazs
§x =C0sX Ldasdl jue Aslall Hio et (3500 Ak anziwl (3)
arie Ll Juee as gl g A ydat Tasdl jauds el ys I (e (4)
s @5 ey o f (1) =x 8 =X =1 Ldastl 2 kel His Gl
(1) JEL Laoadt Z50a pa <03 013 . clagln 4 ey a3 5001 Uas|
s ADolell i Gl 390 Laypb dmayd sl ansziwl (5)
idast|
f(x)=x6—x -1
(1) Jlie pe m5latt LB . X g =1.5 000 leny g

ridslaell Cngo Has Jof ol g0 &»}b&@&,ﬁi(6)
f (x)=sinx =0

oda J >t e B dan,b Lgoo,lan &;._V\[a,b] SJJJJ.A&T 4_?.3?
ST
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Byiall s @3 (e yio Jol Byt slall AN eyl 1 g
ST H9da ST Al e s Jon ¥ )
§X =COSX Ldasdl e Aslall Hio ileusd pdolall da,ds ez (7)
Ladasdl ye Islall i bt alalally 350 iy b ansind (8)

5eX =sin(%")

idasdl ye e Tolall Hi s Glwsd (850 L ayyds anzi wl (9)
Xo=cre e f(X) = x%—4x + 4

(1) Find a recurrence relation for Newton's method to
find values of

(i) Ya, (i)L
Then find the value of each of them when a=5, n=2to
within 3 digits of accuracy.

f(x)=x"-a <x"=a ex=Na g=ai(i)

Xin=Xi — w1 -y | N T

1 a
:N—(XiN _Xi +W]

dall s oS0 L_'qj.ug_ym“_b._\?ﬂ OG8N =3¢a=25 EREY Jala

L
n Xn f (Xn) Xn'Xn-]_
0 2 -17.000000000 1.416666667
1 3.416666667 14.884837963 -0.425028092
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2 2.991638575 1.774870159 -0.066103900
2.925534675 0.038929063 -0.001516150
4 2.924018525 0.000020171

w

(2) rerun your program for Newton's method for
Example 1 with interchange of the initial point to Xo=1.5,
5.0, 100. What is your remarks.

(3) Use Newton's method to find root for the nonlinear
equation x =cosx

e lal Joas as ol (g 4y pdat Uasdl pouis dulys JMS e (4)
sax @ e ¢ F () =x% —x =1 Ldas al Aslall His ol
(1) JEL ool Z50a pn <03 058 . lagln 4 siay g3 5301 Uasd|

s pall dslall His Glasd (390 42y yds dome pd Juwss] auieiod (B)
fa)=x6—x—1
(D) Jlis pon g8lidl 013 . X g =15 (e ey i

Uslaall Cox g Hia Jol sloa¥ 350 Ao,k Gulad <21 (6)
f (x)=sinx =0
ALl ol ot (g0 4 ybo Lgud plan il [a,b] 5yie jssT ua o
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Yul” 5 yiall AJ.&-@B»}A)J.}. dﬁi 9 il slaadl a1 ) M)!M

)21 9ha LT )il e pe do

X =005X s »all Uslall Hin Gl plolall 43,k aniial (7)
Ldas st slall Hhs Gleasd alalal) g 350 Gidisls ansial (8)
X _gin(ZX

.e” =sin( 3 )

[1](a) Derive an error formula for Newton method to solve a
nonlinear equation then prove that Newton method is sensitive for the
initial guess.

Answer : In the text

[1] (b) consider computing Ja using Newton's method. Find the
interval D that must contains xo such that Newton iteration is
convergent

Answer : In the text

*[1] (c) consider computing W/a using Newton's method. Find the
interval D that must contains xo such that Newton iteration is
convergent

**[2] (a) use Newton's method to find a recurrence relation for the

computation of In(u), with u>0.

**[2] (b) Derive an error formula for Newton method then derive a
formula for the relative error in the n+1 stage in terms of the previous
stage for problem [2] (a).

**[2] (c) find the interval D that must contains X0 such that Newton

2
iteration is convergent in evaluating In(u) , U=¢e-,

Exercise

[1] (a) On most computers. the computation of Ja is based on
Newton's method. Set up the Newton iteration for solving x?-
a=0, and show that it can be written in the form
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| a
In+l=§(1n+""). n=0

X

(b) Write without proof the error formula for Newton method
then derive a formula for the relative error in the n+1 stage in
terms of the previous stage.

(c) find the interval D that must contains Xo such that Newton
iteration is convergent

(d ) For xo near \/g , the last formula becomes

Relxy41) =~ — %lRe"In”:- n>0

Assuming Rel(x0) = 0.1, use this formula to estimate
the relative error in Xz, X2, X3, and Xa.

Answer:
a) X = \/a

bt Pox) = Kow me  se POX = 2x

Xnt1 =Xn — &) = 0,12,

f'(xp)'
M
= X - i;:_f'—.-‘-'i!'(x“’kxn)
2 X,n

b) The error formula for Newton method

F

o e) 2

o — Tyl —Ef{,(ﬂ]m—xn} (1)
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For X, close to a, and therefore c, also close to q,

We can also use this to explore the ‘interval of
convergence’ of Newton’s method. Write the above as
f'(a) ;

)

M=— - — B, = Mo — xn
2 (a) €& — Tyl (e

Multiply both sides by M to get
M (@=Xp.1) M (@=xp)°

M (@—X1.1) z([M (a—xn)]z)z, n>0
2n
=[M (a—x0)]
. 7
Then we want the quantity [M (a—Xg)]
and this suggests choosing Xo so that

to decrease;

2f ()
f ()
If M| is very large, then we may need to have a very
good initial guess in order to have the iterates Xo
converge to a.

IM (a—xg)|<1 -)|a—xo|<Mi:‘ @
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¥ 2
vsing ) e E_C_.t_ﬁl(ok_%“}

2070w
aliabing m = = £ - - 2 __ )
with ozUa ; we lave
1
(o= Y= —A (m =) 5,

b 2N

Por  Yalobive tvier  wehave

L
J:'E — Kuat R S C e —Ya)
Va ‘2~er?~

T
= -—____.‘E;‘ ( JE;—X,-,B

Z X
1
.

()

ing ) | a=%| < o
vs:‘r_vj )

with Xn-se

T
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s U
X
)
1
|~J
N

70



Chapter 3

Hence ﬂ.c M al 3“’”‘ must bt tw i wbrval p
for Mitrton muthed o bt Convaramt

| a—%\ < 2 v

-2/a Ay, < 2Va
A=v o

~_va 2% <« ava-va
-1/ a -

—3FO\ L—'Ka <, ﬁ

= ~a
—-—Ja <% < 3Jq

*[2] (d) consider computing a solution for the nonlinear equation
f(x)=b—1x=0

using Newton's method. Find the interval D that must contains xo

such that Newton iteration is convergent

[3] state a convergence Corollary for the fixed point method. Then

apply it to check the convergence of the following iteration formula:

2
1. X,.,=5+X, =X 2. X,,=5/X,
— 1y ? 1
3. X, =1+x, —ix; 4. X,,=%(x,+5/x,)

[4] write with proof the Aitken’s extrapolation formula with an
algorithm to program it, derive from it Aitken’s error estimation
formula
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Interpolation

4.1 Principle of Linear Interpolation

In many applications, the function may be given as a table. For example:

X 0.0 0.2 04| 0.6 0.8 1.0

f(x) 00| 0.04| 0.16| 0.36 0.64 1.0

It is required from the given values of the function { f(x;),i=1,2,3,4 } to obtain a
value of f(x) for certain value of x , as an example f (3.55) . or the value of x for
certain value of f(x) , as an example ; what is x when f(x)=0.11.

This problem is called an interpolation problem .

To solve it , we define polynomial p,,(x) of degree n to be an approximation of
f(x). The polynomial curve must pass on the given points

'*0 :(1 \>X

1-Lagrange Interpolation

a- Linear Interpolation
Consider (X,,Y,), (X, Y;). then the line pass through them is
X, X —X,

y=p(x)=2—Ly + y
- Xo— Xy ° X1 =Xy .




Interpolation

We define
X —X X =X

Lo(x) = -, L (x) = : (1)
Xo = Xq X1 =Xy

Which has the properties

Lo(Xo) =L Lo(x) =0,  Ly(X) =0, Ly(x;) =1 @)

These function L;(x)=0,]j =0,1, are called Lagrange functions or multiplies.

y=f(x)

-
-

y]‘:f(Xl) I‘...‘...‘...‘0..‘...‘..."/”

'
'

yO:f(XO) Oooooooooooooo’//

7o

~
o0 000

v

x
o
x
[
>

So
P.(X)=Ly(X)y, +Li(X)y, 3)
And then
P (X)) =Lo(Xg)Yo +Li(X0)Y1 =2Yo) +0(y,) =Y,
P (X)) =Lo(X)Yo +Li(X1)Y1 =0(yo) +Uy,) =Y,
Or
p,(X;)=Yy;.,i =01

Example
Find the linear polynomial that passes through the three points (1, 1), (4, 2). Then
find the value of the function at x=3

Answer: Let(x .y )=(4.2), (x,,y,)=(11) then

X —X X —
L = L2 “-1(x-1
O( ) XO—Xl 4-1 3( )
X —X X —4
L,(x)= 0 — =—1(x -4
I v (UL

Since f (Xo)=Y,=2, f (X;)=Yy,=1then
P (x) =Lo()f (xo) + L (X)f (Xy)
=1(x ~D(2) +(-Hx -4
=Z(x 1) -s(x —4) =%x -3-Ix +3

1y 42
_3X+3



at x=3
p(3)=1@+5=3

b- quadratic Interpolation
Let f (X) is defined at three points:

(X5, Yo)s X1, Y1) (X5, 5)

Then

P,(X)=Lo(X)yo+Li(X)y; +L,(X)y,
where

o (X —Xq)(X =X,)
Ll(X):(X(l_XZ)g)((l_;z;
L_Zh(X):(Xz_Xz)(Xz_il)

Li(x)=1 Li(x;)=0,i=j, i,j=012

Example

(4)

(5)

(6)

Chapter 4

Find the polynomial of degree 2 that passes through the three points (2, 7), (1, -1) and

(0,-1). Then find the value of the function at x=3

Answer: Let
I 0
Xi 0
Yi 0
oy =2 1o
sLy(x)= 0-00-2 —Z(X D(x -2)
_X=0K-2) X oy
Ly(x)= 02 1(x 2)=-X (X -2)
_(x-0x-) x .,
=600y 2"

Then

2,00 =Lyl * LY+ Loy = (- -2+ -2+ 28 k-

f (3);Pz(x):%1(3—1)(3—2)+3(3—2)+£(3)(3—1):23



Interpolation

c- Higher degree interpolation(Lagrange interpolation)
We consider the following data is given.

T | Ir“ ‘ :lrl ‘ :1:2 ‘ - \ IH’

y|§n‘y|‘y2""‘yn

Then Lagrange polynomial interpolation is

Cx )=
Fexo Pn(") :Zoiwﬁtmxm—f*

""‘Lr\(Wh
pn(x) = ;Lzo L](X)yl (1)

Where
L. (X): (X —XO)(X —Xl)...(X _Xi—l)(x —Xi+1)...(X —Xn)

i (X =Xo)(Xj =X1)- (X =X )X =X 41)--(X; =Xp)
_ (X —Xy)

k=0 (Xi =Xx)

k #i
We have
L: (X _5.._1 d=]

I(XJ)_U —{0 ,i;tj
Home work :

Use the following data obtain a suitable interpolation polynomial and then find the value of the
functionat =5 .

4
X 6
y 1 8 27 64 216

Answer,
we have n=4 so

_ (x — xq)(x — x2) (x — x3) (x — x4)
Lo(x) =

(x9 — x1)(xg — x2) (29 — x3) (X9 — X4)
=) -3)(x - (x—-6)

C(1-2(1-3)a-4H1-6)
= ;—;(x —-2)(x—=3)(x—4)(x —6)




(x = x0) (x = x2) (x — x3) (X — %)

L) = (1 — x0) (X1 — x2) (X1 — x3) (X1 — x4)
- %(x —1)(x = 3)(x — 4)(x — 6)
L (= x) (= xg) (0 — x3) (x — xy)
20 = G, %0t — 20 (3 — x9) (5 — x3)
= %(x - Dx—-2)(x—4)(x —6)
I _ (x — x0) (x — 1) (X — 25) (X — x4)
3(¥) = (X3 — x0) (3 — x1) (x5 — x5) (X3 — x4)
- - D -2 - B~ 6)
Ly = G )G = x) () (x = x3)
4(x) =

(x4 — x0) (x4 _1951)(954 — x2) (x4 — x3)
=170~ DE -2 —3)(x —4)

Py(x) = Lo(x)yo + L1(9§))’1 + Ly (x)y; + L3(x)ys + La(x)y,
= %(x —2)(x=3)(x -4 (x —6)(1)

P - D - - D - 6)(6)
2 - D - D~ )~ 6)(27)
(= D - 2)(x — 3)(x — 6)(64)

1
+FO(x —D(x—=2)(x—=3)(x—4)(216)

-1
Pi(5) = 25.(5 ~ 2)(5 ~ 3)(5 ~ 4)(5 ~ 6)
—65-1)G-3)(5-4)(5-06)
+ 250G -6 -G -6)
G- DGE-2E-3)E-6)

2165 5 5 5 = 125
+ oG- DE-2)(E - HE—4) = 12

The Matlab program is as follows

clear V=
x=[12346];y=[1827 64 216];

Chapter 4



Interpolation

| = lag_intrp(x,y); 5.0000 125.0000
xx =[1: 0.2 : 6]; yy = polyval(l,xx);
clf, plot(xx,yy,'b', x,y,*",'LineWidth',2)
ylabel('y','FontSize',12)
xlabel('x','FontSize',12)

xX0=b;

yy0 = polyval(l,xx0);

v=[xx0 yy0]

function [I,L] = lag_intrp(x,y)
N = length(x)-1;

1=0;
form=1:N+1
P=1;
fork=1:N+1
if k ~=m, P = conv(P,[1 -x(k)])/(x(m)-x(k)); end
end
L(m,:) =P;
= 1 +y(m)*P;
end
250 T T T T T T T T T
200~
150 —

100~

O: r r r r r r r r
1 15 2 2.5 3 3.5 4 4.5 5 55 6
X

The function w=conv(u,Vv) used in this program is the product of
multiplication(element by element) for two matrices u,v, with dimensions
m = length(u) and n = length(v)
Then we have
w(n) = u(1l)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
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Theory of interpolation

and we seek a polynomial P(x) of lowest possible degree for which
p,(X;)=Vy;,1=01..n
Such a polynomial is said to interpolate the data.

Does such a polynomial exist, and if so, what is its degree? Is it unique? What is a
formula for producing P (x) from the given data?
By writing
p(x)=au+a1x + -0 +a, x"” O
1
for a general polynomial of degree m, we see there are m + 1 independent parameters ao, a1, =,

am. Since (1) imposes n + 1 conditions on P (x), it is reasonable to first consider the case when
m = n. Then we want to find ao, a7, ---, an such that

ag + ayxg + a,xi+ - Fa xf =y,

ag + ayx, + a, x>+ -+ +a x"=y
2)
This is a system of n + 1 linear equations in n + 1 unknowns, and solving it is

completely equivalent to solving the polynomial interpolation problem. In vector and
matrix notation, the system is

Xa=Y (3)
with

x={x/] i, j=01,..,n

a=lagapna]”  y= Dol

The matrix X s called a Vandermonde matrix.
Here is the theorem that governs this polynomials.

Theorem 3.1

Given n + 1 distinct points x 0, -~ , xn and n + 1 ordinates yo, -, yn, there is a
polynomial p(x) of degree< n that interpolates y; at xii = 0, 1, ..., n. This polynomial p(x) is
unigue among the set of all polynomials of degree at most n.



Interpolation

Given n + 1 distinct points x,,...,x, and n + 1 ordinates
Yo+ ---+ Yo there is a polynomial p(x) of degree < n that inter-
polates y, at x,, i =0,1,..., n. This polynomial p(x) is unique
among the set of all polynomials of degree at most n.

Proof
It can be shown that for the matrix X in (3),

det) = IT (x, - x)
O0<j<izn ' (4)
This shows that det(X) = 0, since the points x; are distinct. Thus X is nonsingular and
the system Xa =y has a unique solution a. This proves the existence and uniqueness of
an interpolating polynomial of degree <n.

To prove uniqueness, suppose q(x) is another polynomial of
degree : n that satisfies (1). Define

r(x) = p(x)- a(x)

Then degree r(x) < n, and

r(x) = p(xi) - q(x) =yi-yi=0, i=0,1,...,n
Since r(x) has n + 1 zeros, we must have r(x) — 0. This proves
p(x) = q(x), completing the proof. .

If a function f(x) is given, then we can form an approximation to it using the interpolating
polynomial

n
Pa(x)= Y Li (X); (7)
i =0
This interpolates f(x) at x 0, -, xn. For example, we later consider f(x) =log1o x with linear
interpolation. The basic result used in analyzing the error of interpolation is the following
theorem. As a notation, £{a, b, c, ... } denotes the smallest interval containing all of the real
numbers a, b, ¢, ... .

This interpolates f(x) at x,,..., x,. For example, we later consider f(x) =
log,, x with linear interpolation. The basic result used in analyzing the error of
interpolation is the following theorem. As a notation, #°{a, b, c,...} denotes
the smallest interval containing all of the real numbers a, b, ¢, ... .

Theorem 2
Let xo, X1, ..., Xn be distinct real numbers, and let f be a given real valued function with n +
1 continuous derivatives on the interval It = £{t, xo, «--, xn}, with t some given real number.

Let xg, Xy,..., X, be distinct real numbers, and let f be a given
real valued function with n + 1 continuous derivatives on the
interval I, = #{t, xp,..., x,}, with ¢ some given real number.

Then. there exists £e t, with ( Voo )
n t—Xxg) -\t —Xx,) .
f(e) - Jgof(xj)lj(t) = (n + 1) Frh(E) ®)
8




Chapter 4
The error of Lagrange interpolation is

f(n+1) © n
R() = () = P00 = Ty T Lo O = %)

Whe e C (S Some w}\e(( L¢'( weenn  Xo, \(1,~ 1Y anel K

Proof:
Note that the result is trivially true if t is any node point, since then both sides of (8) are
zero. Assume t does not equal any node point. Then define

E(x) =f(x) = po(x)  pu(x) = X 7(x)1,(x)

Jj=0

V(x
G(x)=E(x) - —q:%.—z-})-E(t) forall x el

©)
With

¥(x)=(x—x0)---(x—x,)

The function G(x) is n + 1 times continuously differentiable on the

interval 1, as are E(x) and ¥ (x). Also,

The function G(x) is n + 1 times continuously differentiable on the
interval I, as are E(x) and ¥(x). Also,

G(x;) = E(x;) — %(-(J-:-"j)—E(z) =0 i=0,1,...,n
G(t)=E(t)-E(1)=0

Thus G has r + 2 distinct zeros in I,. Using the mean value theorem, G’
has n + 1 distinct zeros. Inductively, G(7(x) has n + 2 — j zeros in I,,
for j =0,1,...,n + 1. Let £ be a zero of G{"+*1(x),

G+0(£) = 0

Since
E®*D(x) = £+ )(x)
Yt D(x) = (n + 1)
we obtain
(n+ 1)
G(x) = 7D (x) =~ E()



Interpolation

Substituting x = § and solving for E(1),

¥ (1)

E(r) = (n+1)

- fTR(E)

the desired result.

This may seem a "tricky" derivation, but it is a commonly used
technique for obtaining some error formulas.

Example For n = 1, using x in place of t,
fny = AT o) (5= () (= o)

“) e )

(10)
for some & e £{x0, X1, X}. The subscript x on ~x shows explicitly that & depends on x;
usually we omit the subscript, for convenience.

We now apply the n = 1 case to the common high school technique of linear interpolation in
a logarithm table. Let

f(x)= log;q x

Then f”(x) = —log,, e/x%, log,y € = 0.434. In a table, we generally would have
Xo < x < x;. Then

(x - xo)(xl - x) log,g e

E(x) = 3 s xo< <2
This gives the upper and lower bounds
logg e ) (x— xo)(x, - x) log,, € . (x = xo}(x; — x)

x} 2 < EBlx) < x3 2
This shows that the error function E(x) looks very much like a quadratic polynomial,
especially if the distance h = x1 - x 0 is reasonably small. For a uniform bound on [x 0, x1]
hz
Max (x, = x){x—x4) = —
Xp<XEX 4

h* 434 0542h%

= < .0542h*
8 x} x}

Hog,o x = py(x)| <

(11)
for x 0 >1, as is usual in a logarithm table. Note that the interpolation error in a standard
table is much less for x near 10 than near 1. Also, the maximum error is near the midpoint
of [x 0, x1].

For a four-place table, h = .01,

llogox — py(x)} <542%X107¢ 1<x,<x, <10

10



Chapter 4
Since the entries in the table are given to four digits (e.g., log10 2 = .3010), this result is

sufficiently accurate. Why do we need a more accurate five-place table if the preceding is so
accurate? Because we have neglected to include the effects of the rounding errors present in
the table entries. For example, with log 10 2=.3010.

|log,, 2 — .3010| < 00005

and this will dominate the interpolation error if X0 or x1 = 2.

Example 3
If the function f(x) = sin(mx) is approximated by a polynomial of degree 9 that
interpolates f(x) at ten points in the interval [0,1], estimate the error on this interval

Solution
To answer this question, we use R(x) in the preceding theorem. Obviously,

'ns Rex)= Sinx

’RCK)—T (x-x;) ém(‘()

y G

Estimate ( not evaluate or calculate)
So it is enough to define a bound for R(X) ;
|x—xi|S1 i=1,.....,n

and If O ) 1< 1.

So, for all x in [0,1],
11



Interpolation

: 1 7
|sinz — p(x)| = 01 < 2.8 x 10

:(4) Jles

By alaziawlx = éz\_!a.a.ﬁ‘ aief(x) = sin(mx) Ulal Jlesaial wie pdgull Lasdl cowsl ()
1 1 1 .. . .
Xg = §,x1 = g,xz = > .JaLa_d\)Lg.olg G_"):r'ﬁ Dol
x= ; sl we f(x) = sin(rx) Ulal Jlasai !l e @l Jlesmi ¥ Ths sl ()
1 1 1

. xO = E,xl = g,xz = Eu!am‘)\_&;o\_ﬁ?‘ﬂy 9l sﬁ:&ﬁ‘MD

: d.z‘\
(3) 2 pausaills (i
(X =Xg)(X =X9)(X —=X2) ¢ (2+1)
R = f
2(x) 2:1)! (&)
(-0 X~ )
= 3 f(S)
1Ol g
f Ox)=rzcos(zx), f @(x)=-2sin(zx), f @(x)=-r>cos(zx),
1 1
—X (X _E)(X _6)
R,(x)= . 7° cos(7)
O g =%OT sjcos(zE)| < 1=y
-33-HE-d
‘Rz (%)‘ = 6 7° 0.04791

of a0 (2)- (1) alaials (G
Yo=8in0=0,y,=sinf=%, y,=sinZ=1
Po(X) =Lo(x)yo +Li(X)y; +L(X)y,

1 1
Lo( )_ (X _Xl)(x _XZ) _ (X _6)()( _E)

" _(Xo_x1)(xo_xz)_ (_1j(_1j
6 2

1

(X =X)(X =X,) X (x _E)
(X1_Xo)(X1_X2)_1(1_1j
6l6 2

L, (x)=

12
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X (X 1)
C—xg)x—x) XX —¢
LZ(X)‘(xz—xz)(xz—xo‘1(1_1j

202 6
Po(X)=Lo(X)yo+Li(X)y, +L(X)Y,
1, 1 1 1
A AL U S

)Y

P,(X)=-9x(X —3)+6x (X —%)
U (%)-—FE(%)\=ﬂ5in(%)-F2(%ﬂ
=0.866234 -0.83333=0.032903

Rounding error analysis for linear interpolation
Let

f(xo) =fo+ < fx) =fi +¢
with f; and f; the table entries and €, ¢; the rounding errors. We will assume
l€ols les] <

for a known e. In the case of the four-place logarithm table, € = .00005.
We want to bound '

&(x)=f(x) - Lo x)o+ (x = xo), XgS X <X

Xy~ Xg
(12)
Using f;= f(x;) — ¢,

(x; = x)f(x) + (x - xg)f(x;)

X — Xg

&(x) = f(x) -

(X1 —x)eg + (x — x5) ¢,

= E(x) + R{(x)
(13)
E(x) = XT3 e

2

The error &'(x) is the sum of the theoretical interpolation error E(x) and the
function R(x), which depends on «g,¢,. Since R(x) is a straight line, its
maximum on [x,, x,] is attained at an endpoint, :

13
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Max [R(x)| = Max {|eo|, |es|} < ¢

Xp =X X
(14)

With x; = xg + &, x5 < x < x,

hz
€(a)| < 5 Max /()] + Max {jel, les]}
XpS£I<x

(15)

Example
For the earlier logarithm example using a four-place table,

|€(x)] <542 X107 +5X1075=55x%x 1077
For a five-place table, A = .001, ¢ = .000005, and
[F(x)] <542x1078 +5%x107=505x10"° x,<x<ux

The rounding error is the only significant error in using linear interpolation in a five-
place logarithm table. In fact, it would seem worthwhile to increase the five-place table
to a six-place table, without changing the mesh size h. Then we would have a maximum

error for & (x) of 5.5 X 107, without any significant increase in computation. These
arguments on rounding error generalize to higher degree polynomial interpolation,
although the result on Max IR(x)I is slightly

more complicated .

None of the results of this section take into account new rounding errors that occur in the
evaluation of pn(x). These are minimized by results given in the next section.

Convergence of Interpolating Polynomials Theorem
If fis a continuous function on [a, b], then there is a system of prescribed system of
nodes

ag;rf]n}ﬂi;rgﬂ}{---cixi:‘]gb (n 2 0)

such that the polynomials pn is an interpolation to f at these nodes satisfy
lim, oo "f — Palles = 0.

The Weierstrass Approximation Theorem
If £ is continuous on [a,b] and if € > 0, then there is a polynomial p satisfying

|f(z) — p(z)| £ € on the interval[a,b].

14



PROBLEM SET
1- Determine whether the algorithm

X= anbn
fori=12,..,ndo
X =(X + an-i)b,
end
computes
T 1
T = Zai H b,
1= 1=
2- What is the final value of v in the algorithm shown?
v=Ci1
forj=1,i+1,..,ndo
vV =vX + Cj
end

What is the number of additions and subtractions involved in this algorithm?

3- Write an efficient algorithm for evaluating

Chapter 4

i=1 3=1
(1-5) dyted
f(323.5) cowun !y = (X)Wl @ual AL Jgasdl (1)
X 321.0 322.8 324.2 325.0
y 2.50651 | 2.50893 | 2.51081 | 2.51188

AL gl 2 Less bl 4 wie DIl @@ codac i 151 (2)

X f (X)
3.35 0.298507
3.40 0.294118
3.50 0.285714
3.60 0.277778

y =F (3.44) Glud idail Rdlesmia¥ mila Y Ligw ansiul (D

y =F (3.44) Gluwnd iunnyill Llesmia¥ il oY dhps anial (0

y =f (3.44) bt el idlesminNl il ya Y Lws anzial ()

ey 2 138 GUALL Tasl vl y =F ()= 17X 4 dlesmiead | A11001 o caale 1314

15

shasly mhaY sgus 5y Y =SINZX DIWL 55 (3)



Interpolation

X -2 0 1
f(x) 10.75 -1.65 1.45
£(0.5) sl
(ol caele 1] Y Gas alusiuly Y =% 3,8 ied aa sl (5)
X y

0.3 1.35

032 | 1.377

0.34 | 1.405

036 | 1.433

038 | 1.462

04 | 1.492

4.2 Finite differences interpolation
Let y = f(x) isagiven function. We denote AX = h for the change in the
independent variable. Then the formula
Ay = Af (X) = T (x+ Ax) — T (X) (1)
is called finite differences from the first order. For higher order we have
Ay = A(A"1y), n =23, ..

As an example:
A’y = A{f (x + AX) — T (X)}
={f (x+2Ax) — f (x+ AX)}—{f (x+Ax) - f (X)}
= f(X+2Ax) -2 f (X + AX) + f (X)

from (1) we have:

fx +Ax)= f(x) +A f(x)

f(x +Ax)=(1+4) £ (x) (2)

Appling (2) n times we obtain
f (X +nAX) =1+ A)" f (X) 3)
using binomial theorem

f(x+nAX) = 3 CA™f (x)
o= @

where
16
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w-(3)- sy
m/  m!(n—m)!

Equation (4) express the iterative values of f(x) in terms of its finite differences.

Example:
Obtain all finite differences for the function p(x) = x3 with Ax = 1.

Answer:

Ap(x) = (x+1)° —x3 =3x2 +3x+ 1,

Ap(x) = [3Cx+ 1)* +3(x + 1) + 1]-[3x2 + 3x + 1]
=6x+6

Adp(x) =[6(x+ 1)+ 6] — [6x+ 6]=6

A"p(x) =0,n>3

Finite Difference Table

It is convenient to put the finite differences from different orders in table. We have
two types of tables:

(I) Horizontal table for finite differences

(1) Diagonal table for finite differences

The Diagonal table is as follows

X Y | Ay | Ay | A’y | Aty
Xo Yo
Ay,
X1 Y1
Ay, | APy,
X2 Y2 A%y, Ay, A
Ay, A%y, A%y | A%,
X3 Y3
A
Xy Ya Y3

And the Horizontal table is as follows

Xo Yo Ay, A Yo
X1 Y1 Ayl A2 Y1
Xy Yo Ay, A Y,

17
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Generalized powers

The n degree of Generalized power for number x is defined by multiplication of n
factors, the first is x and the next is ( x-h) where h is constant.

XN — x(x = h)(x = 2h)...[x = (N = 1)h]
=1 xM=x = xPl=x(x-h),

xXM—x" at h=0

Let AX =h, then we can evaluate the finite differences for Xt as follows
AXIM = (x + h)T — xIn]

= (X+h)x((x=h)...[x=(n—=2)h) = x(x=h)...[x = (n=D)h]

= X(X—h)...[x=(n-=2)h]nh

= nhx["-Y
Thus,

AX" = phx["-U (*)
The second order finite difference is
A = A(AxIMY = A(nhx["H)
= nh(n - 1)hx"2
Or,
A = A(AxIMY = A(nhx["H)
=n(n—1)h?x"~2

Similarly,
AXM =n(n=1)(n-2)...[n— (k =D]h*x"™ k=1,2,....,n
AXM =0 v k>n

Newton First Formula for interpolation

Let the values Yi = T (%) pe given for i = %o +ih, 1=0L....,N gnd h a given
step.
We require a polynomial p,(x) of most n degree that interpolates a function f and

satisfies

pn(xl):yﬂ I:O’llln (1)
Taking differences, we have
A"p,(x,)=A"y,, m=041,...,n
For Newton method we put the interpolated polynomial on the form

18
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Ph(X) =8y +a1(X—Xg) +ar(X—=Xg)(X=X1) + ...

(2)
+ & (X=X ) (X=X )-er. (X = X(_1)
Using Generalized power
Pn (X) =3, +a1(x—xo)[1] +a2(x—x0)[2] + (3)
oot 8 (X=X )
To obtain the coefficient a;, we set x = x, in (3),
Pn (Xo) =Yo =8,
Taking first order differences
AXIM = phxtn
Ap, (x) = a;h + 2a,h(x — x, )M +.... +na h(x — x, )"
(4)
Set x = x in (4)
Ap, (Xo) = Ayo = alh
A
" a.l == A
1'h
Taking second order differences and Setting X=Xo
N pn(Xo) = AZ)/o = 2!hza2
2
2'h
Continue in this iteration, we obtain:
i
aiz_A—y9 1=012,....,n
ith'
with A’y =y « 0l=1
Substituting with a; in (3) we obtain
_y 4+ A m, A%, [2]
pn(x) =Yt 11h (X_Xo) + 2!h2 (X_Xo) REEEEERE
A'Y, [n]
+—n!h” (X—=X,)
(5)

: X — X :
Putting q = ™ 2 we obtain

(X_Xo)[i] _ (x— Xo) (x- Xo —h) (X_Xo —(@—-1h))
i = h . no n
=0g(q—-1...(q-i1+1, i=012,....,n

Substituting in (4) we obtain

19
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P.(X)=Yy,+0qAy,+

2!

q(q-1) AZy +
0

n!

which is the Newton First Formula for interpolation.

_._+q(q—1)---(q—n+1) Anyo

Example
Find Newton interpolation polynomial defined by the data:
X 0 1 2 3 4 5
y 5.2 8.0 104 | 124 | 140 | 15.2
Answer:
We write first the difference table:
X y A A A
0 5.2
2.8
1 8.0 -0.4
2.4 0
2 10.4 -0.4
2.0 0
3 12.4 -0.4
1.6
4 14.0 -0.4
1.2
5 15.2
We have X, =0 , h=1
So using (4)
X, =0, h=1
y=5.2+28x-%x(x-1)
Or
y =52+ 3x —0.2x?
(2-5) Gyled

(6)

X=4 X=1loimm all X s aie Y= X0 —8X—4X° +1ssu i si e anl (1)

B9yall Jgu iinly

Al idleem eV e sgas 3,865 [35,3.7] st 5matt 2 s g h = 0,055 51 jlaelh (2)

Joumtls sllaatl y = €%

3.50

3.55

3.60

3.65

3.70

33.115

34.813

36.598

38.475

40.447
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y =109() ;5 . asd Jyax Lot (3)

X 1000 1010 1020 1030 1040 1050
Yy |3.000000 | 3.004321 | 3.008600 [ 3.012837 | 3.017033 | 3.021189

log(1044) PRI

U1l @sd Jgo Lapaas () Y TSN ygnpis X =15 gy x=553hsuty h=5 (i g
s gf SIN14°
5 35 Sy En da gl @3 I gl s Bkatt (X)=2X D1l 2ualedl 35,01 55 (5)
V215 Ly daladl g pal

X 2.0 2.1 2.2 2.3 2.4
f(x) | 1.414214 | 1.449138 | 1.483240 1.516575 1.549193

sty LAl 3a,al s sgis s sal & F(X) = VX D1 24101 35,40 5 (6)
V235, V2.15 @il Cuya sl Leis J&s
AN e e zlinY Leeall 8l Cay pal anzil (7)

AL gl slaall A1) JlesaminsY Al (500 ga 558 da gT ()

X 4 6 8 10
y 1 3 8 20

4.3 Divided Differences

The Lagrange form of the interpolation polynomial can be used for interpolation
to a function given in tabular form. But there are other forms that are much more
convenient such as Divided Differences which will be developed in this section. With
the Lagrange form, it is inconvenient to pass from one interpolation polynomial to
another of degree one greater. Such a comparison of different degree interpolation
polynomials is a useful technique in deciding what degree polynomial to use. The
formulas developed in this section are for nonevenly spaced grid points {xi}. We would
like to write

Pn(X) = pp_y(x) + C(x), (*)
C(x)is a corection term

Then, in general, C(x) is a polynomial of degree n, since usually degree ( p,_,)
= n — 1 and degree ( p,) = n. Also we have

C(x:‘) = Pn(x;‘) _prr—l(xr') =f(x|’) "f(xi) = 0 i=0,..., n-—1

Thus

C(I) = a,,(x - xl)) e (1 ”xn-l)
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Since p,, (x,,) = f(x,,), we have from (*)

S(xn) = Pa-a{x4)
(xn - xﬂ} U (xn - xn—l)

For reasons derived below, this coefficient a, is called lhé nth-order Newton
divided difference of f, and it is denoted by

a, =

a, = f[xq, x50, x,]

Thus our interpolation formula becomes
Pa(x) = ppoa(x) + (x = x) -+ - (x = x, ) f[xo,-.., x,] (3.2.2)

To obtain more information on a,, we return to the Lagrange formula (3.1.7)
for p,(x). Write

¥,(x) = (x = xo) -+~ (x — x,) (323)
Then

"I'n'(xi) = (I: - xo) T (Ii - xi-—l)(xi = Xi) (Ii - xn)

and if x is not a node point

2 ¥, (x) _
pa(x) = E.U CEDZAD) f(x) (3:2.4)

Since a, is the coefficient of x" in p,(x), we use the Lagrange formula to obtain
the coefficient of x". By looking at each nth-degree term in the formula (3.2.4),
we obtain

f[xo, xl,...,xn] = E m (3.2.5)

From this formula, we obtain an important property of the divided difference.
Let (iy, i3, ...,{,) be some permutation of (0,1,..., n). Then easily

ff(x) A (%)
Lot - EuE,)

Jj=0

since the second sum is merely a rearrangement of the first one. But then
Flxor ximee s X =[x X0 %3 | - (3.2.)

for any permutation (iy,...,,) of (0,1,..., n).
Another useful formula for computing f[x,,..., x,] is

- f[xh“'s xn] _f[x()’""xn-l]

Xn — Xo

Fl%0s Xpseees X,] (3.2.7)

which also explains the name of divided difference. This result can be proved
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from (3.2.5) or from the following alternative formula for p,(x):

(x, = x) P17 0(x) + (x = xo) P (x)

xﬂ.hxo

Palx) = (3.2.8)

with p@71-D(x) the polynomial of degree < n — 1 interpolating f(x) at
{xgy---, Xy} and ptP(x) the polynomial interpolating f(x) at {x,,..., x,}.
The proofs of (3.2.7) and (3.2.8) appear in Problem 13.

Returning to the formula (3.2.2), we have the formulas

Divided Differences interpolation

Consider f(x) is given at x, X4, ... ... Xp,

Such that Ax; = x;,1 —x; # 0,i =0,1,2 ... are not equal. Then divided difference
formula from first order is

_Yi+17 Vi | ._
[xi, Xi+1] = —xi+1—xi 51 :())/,1,2,3] ...........
) 1~ Yo
i =0- [x0,x] = ’
X1 — Xp
. Y2 — V1
i=1-[x,x]=—7""—,....
2 — X1
Format for constructing divided differences of f(x)
X f(x) [x;, Xi11] [X;, Xi+1, Xi42]
X0 Yo [x0, x1] [x0, X1, X3]
X1 Y1 [x1, %3] [x1, %2, x3]
X2 Y2 [x2, x3] [x2, X3, x4]
X3 Y3 [x3, x4]
X4 Ya [x4 ,X5] ......

Example:
Obtain the divided difference for the following given function

X 0 0.5 1.0 2.5 3.0 5.0
y -5 -6.125 -9 -20.63 -23 -5

Answer
Xo =0, x; = 0.5, x, = 1.0, X3 = 2.5, X, =3, Xs =05

, = = = —2.25
[xO xl] x1 - xo 05 - 0

xz - Xl B 1.5 - 0.5

= —5.75

[x1,x2] =
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BERECERETEN
0/0 |-5 [xg, X1]=-2.25
110.5]-6.125 | [x4,x,]=-5.75
210-9 [x5,x3] =

—7.75
3125]-20.63 |[x3,x4] =

—4.75
413.0(-23 [x4,%5] =9
5150/|-5

Divided difference is similar to differentiation
[ x01] = Yier — Vi _ f Qe + Axy) — f(x;)

PR i — Ax;
fx+Ax)—f(x)

f, = limAx—»O

The second order divided differences is

[Xi41,Xi42]—[XiXit1] i
[xl-,xi+1,xi+2] = . . ,1—0,1,2, ...........
Xi+2 =X

[Xi, Xi

_@Hu Xi-u} = [X") Xiq 3

: ~+! )X,‘*Z X,-_n . ’(( PREXY lronme
Examples:
[x1, x%5] — [%0,%,] —5.75+ 2.25
[xlelixZ] - Xy — X - 1.0—-0 = =35
[x,,x3] — [x1,x,] —7.75+ 5.75
o X = T T Tas—0s ¢
i x |f(x) [xi, xi41] [Xi, Xiv1, Xis2]
0|0 |-5 [x0,%1]=-2.25 | [x0,x1,x;] = —3.5
1/0.5(-6.125 | [x4,x,]=-5.75 | [x1, x5, x3] = —1
2 10 '9 [x21x3] =—7.75 [XZ,X3,X4,] = 15
3125|-20.63 | [x3,x4] = —4.75 | [x3,%x4,%5] = 5.5
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3.0 |-23 [x4,x5] =9
5.0]-5
The general formula for divided differences is
i Xiga, e X = [0 Xig 1, Xig2) oo Xignoa]
(X0 Xi41, Xivas o e Xign] =
Xi+n — Xi

Examples:

o 21 %0, %] = [x1, X5, X3] — [X0, X1, X2] _ —1+35
012,23 x3 - xo 25 - 0

i x FO) | [xi, Xi44] [Xi) Xi41) Xi42] [Xi) Xi+1 X0 Xis3]

0| 0 -5 [x0, x1]7-2.25 [x0, %1, %,] = =35 [x0, %1, %2, %3] =1

1105 -6.125 | [x4,%,]=-5.75 [21, 20, %3] = =1 [x1,%5,%3,%4] = 1

2| 1.0 -9 [x5, %3] = =7.75 | [x,%x3,%4] = 1.5 [x, %3, x4, x5] = 1

3] 25 | -20.63 | [x3,x,] = —4.75 | [x3,%4,%5] =5.5

4] 3.0 -23 [x4,%5] =9

5] 5.0 -5

p1(x) = f(xg) + (x — x0)[x0, X1]
p2(x) = f(xo) + (x — x0)[x0, %] + (x — x0) (x — x1) [x0, X1, X]

Pn(x) = f(xo) + (x — x0)[x0, x1] + (x — x0) (x — x1)[%0, X1, X2]+..
+(x —x0)(x — x1) . (6 — X0 1)[X0) X1, wov oon Xn]

Newton's polynomial for
divided difference
interpolation formula is

po(x) = f(x9) = yo

This is called Newton's divided difference formula for the interpolation polynomial.

It is much better for computation than the Lagrange formula (although there are
variants of the Lagrange formula that are more efficient than the Lagrange formula).
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To construct the divided differences, use the format shown in Table 3.1. Each
numerator of a difference is obtained by differencing the two adjacent entries in the
column to the left of the column you are constructing.

Example
Obtain the Newton's divided difference polynomial for interpolating the given

function tabulated below. Then find f(2.0).

X 0 0.5 1.0 2.5 3.0 5.0
y -5 [-6125] -9 -20.63 | -23 -5

f(x0)=-5, [x0, x1] = —2.25, [xg, X1, X2] = —3.5, [xg, %1, X2, %3] =1

pn(x) = f(xo) + (x — x0) [x0, x1] + (x — x0) (x — x1) [%0, X1, x2]+-.
+(x — x0) (x — x1) oo (X — X 1) [X0) X1y ver oen X

p3(x) = f(xo) + (x — x0)[x0, x1] + (x — x0) (x — x1) [x0%1, x,] +
+(x — x0) (x — x1) (x — x3) [x0, X1, X2, %3] + 0+ 0

we stop since divided differences of higher order is zero

=-5+(x-0)[-2.25]+(x-0)(x-0.5) [-3. 5]+(x-0)(x-0. 5)(x-1)[1]
f(2) = p, (2) = =5 + 2[~2.25] + 2(2 — 0.5)[3.5] + 2(2 — 0.5)(2 — 1)(1)
=-17

A simple algorithm can be given for constructing the differences
f(xl})i f[xnv xl]ﬂ f[xur X1s xz]a ciey f['xﬂv Xise ..,,xn]

which are necessary for evaluating the Newton form (3.2.9).

Algorithm for Divided Differences
An algorithm for computing a divided difference table can be very efficient and is
recommended as the best means for producing an interpolating polynomial.

The data of interpolation are
xi,y; = f(x), i=012,..n
Setdy; = f(x;) zero order divided difference
do,o = f(xo)
_Yi+1— Vi

[xi, Xi41] = P d1o = [x0, x1]
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. _ G
1% order divided difference d;; = —++—>*
’ Xit+1—X{
[xi+1r xi+2] - [xi; xi+1]

Xi+2 — Xj

[Xi) X1, Xig2] =

d2,0 = [xOI xl, xz]
.. ) g
2" order divided difference d,; = —*—
’ d xi+2:lxi
d. . = Sir1=d2i
d d 3t Xi+3—Xi
dk,i = k_11%+1 {(_111 ’ k=031929'--n9 i=0,1,...n
Xi+k—Xi

Algorithm for divided differences
Input: x;, f(x;),i =0,1,...n
Output: divided differences of order k, k=0,1,...n
fori=0,1,...n-K, d;
Stepl : set d ;=f(x;) ,i=0,1,...n
Step2 : fork=1,2,...n
and i=0,1,...n-k do step3
step3:setdi; = (dy_q 100 — Ay )/ K — %1)
End

Algorithm for Newton interpolation polynomial
Pn(x) = f(xg) + (x — x0) [x0, 1] + (x — x0) (x — x1)[x0, X1, X2, ]
+ (x — x0) (x — x1) (x — x3)[x0, X1, X2, X3]
+eo (= x0) (0 — x1) oo (0 — X 1) [X0) X1y ver e Xn]
=dg,o +(x — x¢)d1 o+ (x — x0)(x — x1)dp 0 + (x — x0) (x — x1) (x — x3)d3 +
et (= x0) (X — xq) o (X — xp_1)dp

=30 o [T (x — x)]dio

Algorithm for Newton interpolation polynomial
Input : x; , dy,, ,i=0,1,...n ,k=0,1,...n , value x=t
Output £ (t) = pn(t)

Stepl : p=0, PI=1

Step2: for k=0to n

Step3 : for i=0 to n-1

Pl=pl*(t-x; )
Stepd : p=p + pl *dy;
End
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Example For f(x) = Vx, we give in Table 3.3 the values of P.(x) for various
values of x and n. The highest degree polynomial p,(x) uses function values at
the grid points x, = 2.0 through x, = 2.4. The necessary divided differences are
given in the last example, Table 3.2.

Exercise

Consider the following data for f(x)=+/x Obtain Newton's polynomial that
interpolate f(x). Then find f(2.05). Evaluate the numerical error.

X 2.0 2.1 2.2 2.3 24
Y | 2414214 | 2.449138 | 2.483240 | 2.516575 | 2.549193

An error formula divided differences
f(X) - pn(x) = (X - xl)(x - xl) (X, xn) [xleli ...Xn,X] (1)
Comparing (1) , with the error of Lagrange formula

f ) = pp() = EREZLI f () ()
With c is somewhere between x, x4, ... x,, and x

So we can approximate

f(n+1(c)
X0, X1, oo Xy, X| = ———— 3
When a value of x falls outside 5#{xg, x,,..., x,}, we often say that p (x)

extrapolates f(x). In the last example, note the greater inaccuracy of the
extrapolated value p,(2.45) as compared with p,(2.05) and p,(2.15). In this text,
however, the word interpolation always includes the possibility that x falls
outside the interval 3#{x,,..., x,}.

Often we know the value of the function f(x), and we want to compute the
corresponding value of x. This is called inverse interpolation. It is commonly
known to users of logarithm tables as computing the antilog of a pumber. To
compute x, we treat it as the dependent vanable and y = f(x) as the indepen-
dent variable. Given table values (x,, y,), i = 0,..., n, we produce a polynomial
P.(») that interpolates x; at y;, i = 0,..., n. In effect, we are interpolating the
inverse function g(y)=/"'(y); in the error formula of Theorem 3.2, with

x = [y,

(y=x) - (y—»)
(n+ 1)

x=pr)= g h(¢) (3.2.10)

for some { € #{ y, y5, Y1s--.. Va}- If they are needed, the derivatives of g(y)
can be computed by differentiating the composite formula

g(f(x)) = x

for example,

1
g =5y for =f(x)

Remark
The divided differences symbol
[XOr Xy e xn] = f[xor X1y ee Xy x]
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As written in some books

Example From Table 3.2, of divided differences for f(x) = Vx,
f[2.0,2.1,...,2.4] = —.002084
Since f@(x) = —15/(16x%/x), it is easy to show that

*(2.3103
I-%—l = — 002084

so £ = 2.31 in (3.2.12) for this case.

Example 1
Compute a divided difference table for these function values:

Tj|]5ﬁ

Table (1)

Solution
We arrange the given table vertically and compute divided differences by use of

Formula (11), arriving at
My, =13 2 = | M, =5 s, x &

Bl s ROG) =
Blxn= Roxd = -3
g—E-‘:q] = g—(ﬁ_'}: 2

FOx12 FOS) 2w
PO,y 5 EExd= B v et e

Ri— X, 1 =3 -y
ﬁ[“‘f"l}: M —~ 2 -~ (-1) .5
X —X, - 5o - q
Efxz,»’glg RCxY - RCx) eoa R
5ax T g-s T 72
[xr o BOx) - Bl w) s i
flroxsal = tmmea——" - % P
S <3 ) = "75"
e lxux, R - Pl - Pfxl,x:3 RN .
X-s_ ¥ 6"" :_"-3_-_:-5:'

f[!., Y\;rz,x{s: F{Y\,KLJX;}—-%Y‘ :Xt;ﬂt‘): r (___-%‘]
7(.5‘__!. Za

&+ s 21 7
2 3y T Fon T 4o
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3 1| 2 -3/8 7/40
1 -3 | 5/4 3/20

1 )
[ )

2

Pexy= ROy + R %y €x—1) + FOX x5 ex—x)trx)

o ROL X 3% %) Cre k) (XX CX Xy 4 ~ -
p(x)=1+2(x-3)- g(x -3)(x-1) + % (x-3)(x-1)(x - 5)

.y n

H{xg X1y-++5 X, }. Then

T, = {(rl, lyoont,)] all 2,20, )1 < 1} (3.2.14)
1

lp=1~- Efi
Note that 1, > 0 and Xj¢; = 1.

suggest the general induction proof.

1. n=1 Thenr =[0,1]
l ' l r
];f(foxo“‘ 1x,) dty = j;f(xo + (%, — x0)) dt,

1 n=1
f(xo + t,(x; — %))

X1 7 Xo =0
LT

Theorem 3.3 (Hermite-Gennochi) Let xg, x,..., x, be distinct, and Iet
f(x) be n times continuously differentiable on the interval

flxor Xpeos Xal = [0 [£P(tgx + o+ +,x,) dty...d1, (3.2.13)

Proof We show that (3.2.13) is true for n = 1 and 2, and these two cases should
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2. n=2 Then 7, is the triangle with vertices (0, 0), (0,1), and (1,0),
shown in Figure 3.1.

[ [t 10+ e

Ta

1 rl—t
= j; fo fr(xg + n(x = xg) + 13(x5 — x¢)) dty dy

1 + -1-
f [j’(x‘) f(x = x0) + 12(x; — xo))]::,,ol " dt,
0 X3~ Xp

1 1 .
= --—xz o [fﬂf (x; + {x; — x,)) dt,
1
__’;f’(xo + 1,(x; — xo)) dfl]
1
T X, —x {‘f{xl’}:z] _f{xﬂ*‘xl]} = f[xp, x;, x,]
2 0
I
{0, 1)
(ty, 1=t,)
Iy {1, 0} .

Figure 3.1 Region 7,.

We can now look at f[x,, x|,..., x,] using (3.2.13). Doing so, we see that if
f(x)is n times continuously differentiable on J#{x,...., x,}, then f[x,...., x,]
is a continuous function of the n variables x,, x,,..., x,, regardless of whether
they are distinct or not. For example, if we let all points coalesce to x,, then for
the nth-order divided difference,
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flxoreir ol = [+ [0 (xo) ... i,

=f{")(x0) - Vol (Tn)‘

From Problem 15, Vol(7,) = 1/n!, and thus

f‘")(xo)

n!

flxgs--y xo] = (3.2.15)
This could have been predicted directly from (3.2.12). But if only some of the
nodes coalesce, we must use (3.2.13) to justify the existence of f[xg, ..., x,].

In applications to numerical integration, we need to know whether

d
E;f[xo,...,xn,x] (3.2.16)

exists. If f is n -+ 2 times continuously differentiable, then we can apply Theorem
3.3. By applying theorems on differentiating an integral with respect to a
parameter in the integrand, we can conclude the existence of (3.2.16). More,

directly,

d o flxps - xp x + R = flxg... ., X, x]
Ef[xo,...,x,,,x]—-l.;ll_r%t P

o flxgeexpx + R = flx, xg,1, X,
= Limit
B0 h

= liin%tf[x,xg,...,x,,,x + h)
= flx, x5 X15eers X, X] '

d : .
};f[xo, Xpseoos Xy x] = flxg, X000, X0 X, x] (3.2.17)

The existence and continuity of the right-hand side is guaranteed using (3.2.13).

There is a rich theory involving polynomial interpolation and divided differ-
ences, but we conclude at this point with one final straightforward result. If f(x)
is a polynomial of degree m, then

a, n=m-1 (3.2.18)
0 n>m-—1

polynomial of degree m — n — 1 n<m-—1 :
flxgsees x50 x] =

where f(x) = a,x™ + lower degree terms. For the proof, see Problem 14.

32




Problems

1. Recall the Vandermonde matrix X given in (3.1.3), and define

2 n
1 xp x5 Xg
V,(x) = det
%2 X"
n—1 n—1 n—1
1 x x2 . x"

(a) Show that V,(x) is a polynomial of degree n, and that its roots are
X0y, X,_1- Obtain the formula

Vo(x)=(x=x5) -+ (x Xy W (x,-1)

Hint: Expand the last row of V,(x) by minors to show that ¥, (x) is a
polynomial of degree n and to find the coefficient of the term x".

(b) Show
det(X) = ¥,(x,) = TT (x-x)
O=j<i<n
2. For the basis functions /; ,(x) given in (3.1.5), prove that for any n >

LLa(x)=1 forall x
j=0

3. Recall the Lagrange functions [5(x),..., [, (x), defined in (3.1.5) and then
rewritten in a slightly different form in (3.2.4), using

To(x) = (x = xg) -+ (x = x,)

Let w; = [‘I’,;‘(xj)]'l. Show that the polynomial p,(x) interpolating f(x)
can be written as

3 [ ()] /Cx = 2,)
Pn(x) = =2 n
¥ w/(x ~ x,)

j=0

provided x is not a node point. This is called the barycentric representation
of p,(x), giving it as a weighted sum of the values { f(x,),..., f(x,)}. For
a discussion of the use of this representation, see Henrici (1982, p. 237).

11.  Let xg,..., x, be distinct real points, and consider the following interpola
tion problem. Choose a function

P(x)= L e~
j=0

such that
Pn(xf)=)’; i=0,1,...,n

with the { y;} given data. Show there is a unique choice of ¢y, ..., ¢,. Hint:
The problem can be reduced to that of ordinary polynomial interpolation,
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12. Consider finding a rational function p(x) = (a + bx)/(1 + cx) that
satisfies

p(x) =y i=123

with x,, x,, x; distinct. Does such a function p(x) exist, or are additional
conditions needed to ensure existence and uniqueness of p(x)? For a
general theory of rational interpolation, see Stoer and Bulirsch (1980,
p. 58).

151 of 663

In the preceding section, we discussed the problem of interpolating a function by a
polynomial. We return to that problem now. Let f be a function whose values are
known or computable at a set of points (nodes) Xo, X1, . . ., Xn. We assume in this
section that these points are distinct, but they need not be equally spaced on the real
line.

We know that there exists a unique polynomial p of degree at most n that interpolates
f at the n + 1 nodes:

ple:) = f(z:) (0=izn) (1)

Of course, the polynomial p can be constructed as a linear combination of the basic
polynomials 1,x,x?, .. ., X", namely,
n
p(x)= D cyX 5
k=0
As discussed in the previous section, this basis is not recommended, and we prefer to
use a basis appropriate to the Newton form of the interpolating polynomial:
o(z) =1
q(z) = (z - z0)
g2(x) = (z — xp)(z — 31)
ga(x) = (T — zo)(x — 21 )(z — x2)

gn(z) = (2 — 2o )(x — 31 )(T — T2) -+ (T — Tp—1)
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These lead to the Newton form

ple) =Y ejq;(x)

3=0

The interpolation conditions (1) give rise to a linear system of equations for the
determination of the unknown coefficients c;:

mn

Y eigiz) = f(z)  (0Zi<n) (2)

=0
In this system of equations, the coefficient matrix is an (n + 1) x (n + 1) matrix A
whose elements are

ai; =gj{z:)  (05¢j5n) (3)

The matrix A is lower triangular because
-1
g5(«) = [ [ (= — &)
k=0

j—1
g(@) = [[(@i—m)=0 i izj-1

k=0

For example, consider the case of three nodes with
pa(z) = coqolx) + cr1q1(x) + caga(z)
= ¢p + e1(z — zp) + c2(x — zo)(x — 1)
Setting X = Xo, X = X1, and X = X2, we have a lower triangular system
ez G +Ctr=K) 4 GUx-X[lx~x,)
KXo =2 P oex,)al (xy) awd
C° —+ 9 4 o = QCK’] -._)m
X=Xy == P, Cx)=fCxy)
C°4Q.Cxl—x. ) 4+ o _:PCK\)-_;E\

K:ﬁ;ﬂ FZCK‘).‘:‘ﬁ(‘K;}

G LR -X) 4 G- 0 Ka-x) 2R G) Q)
L - A\t
VA Lt Cospf) s \‘3’?%?:5::;“3
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1 0 0 o flzo)
1 [iI'[ — :I"u} 0 (%] = f{‘rl} {5}
1 (a2 —wo) (22 —xo){za —a1) | |2 flz2)

In solving Equation (2) for co, C1, . . ., Ca, We can start at the top and work down,
computing the coefficients ¢; in the order given by their subscripts. In this process,
see that co depends only on f(xo), that c1 depends on f(xo) and f(x1), and so

Thus, ¢, depends on f at Xo, X1, . . ., Xn. We define

f:nzf['r{h:rh---wrn] (E}

to be the coefficient of gn when k=0 ki interpolates f at Xo, X1, . . ., Xn. Since
gnlz) = (@ —zo)(zx — 1) (x — &p_;) = 2™ + lower-order terms

we can also say that f [Xo, X1, . . ., Xa] IS the coefficient of x, in the polynomial of
degree at most n that interpolates f at Xo, X1, . . ., Xn.
In all of the preceding description, n can take on arbitrary values. The expressions f
[Xo, X1, . . ., Xn] are called divided differences of f.

Explicit formulae for the first few divided differences will now be given. First, f [Xo]
is the coefficient of x° in the polynomial of degree 0 interpolating f at xo. Thus, we
must have

flwo] = f(xo) (7)

The quantity f [Xo, X1] is the coefficient of x in the polynomial of degree at most 1
interpolating f at X, and xi1. Since that polynomial is

plz) = flxo) + w[n — o) (8)
we see that the coefficient of g () is
fleom] = H—f: ﬁ S (9)

This gives a hint as to why the term divided difference was adopted. A divided
difference table of the following form can be displayed

ro  flzo) flzo, =]
Iy f(J'l}
and the interpolation polynomial is easily formed from

plx) = flzo) + flzo, z1](x — o)

Formulae (7) and (9) can also be obtained by solving for co and c1 in System (5),
because co = f[xo] and c1 = f [Xo, X], in accordance with Equation (6). Equation (1)
allows us to write the Newton interpolating polynomial in the form
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P ex)= REGN + PRI % ¥\ C¥=1%) + ?[X—,KLJKLI Cx—%)0y-Y,)
o ROk X %) Croty) LX) CXXy) 4 ~ -

Higher-Order Divided Differences

THEOREML Divided differences satisfy the equation

flzy, xa, .- @n] — flzo, 21, .. Tn-1]
fr by

(11)

f[IUrII:.-.11;En] =

The preceding theorem gives us these particular formulae:

flwo, 1] = iﬂﬂ_:}{[[]fi}
flzo. 21, 29] = f[;i!.‘h:!::]!:ii;rn,:m]
e,

In these formulae, Xo, X1, . . . can be interpreted independent variables. Because
of that, we also have equations such as

Tidds Tig2q e v v g Bigg| = JlT3, Tizty oo oy Bigej—
Fontn ] = DT il = gz, il gy

Ligg — Ly

Here flzil, flzi 2], flzs @ipr, @igal, £l @icn, @eva, 2igs), ete. gre differences of order
0,1, 2, 3, etc., respectively.

If a table of function values (xi, f(xi)) is given, we can construct from it a
table of divided differences. This is customarily laid out in the following form, where
differences of orders 0, 1, 2, 3 are shown in each successive column:

ro flzo] | flro.x]  flzo,zy ] fleo, 21, 22,23]
ry f[f'-‘-‘ll flzy, @2 f[ﬂ-‘hiﬂzwral

zz fle] | flzz s

x3  flxa

The information to the left of the vertical line is given, and the quantities on the right
are to be computed. Formula (11) is used to do this. The recursive nature of Formula
(11) dictates the triangular form of the divided difference table. For example, the data

given do not allow us to compute 13, Zals flz2, 23,24, etc.
By comparing Equations (10) and (11), we see that the coefficients required in the
Newton interpolating polynomial occupy the top row in the divided difference table.
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Algorithm for Divided Differences
An algorithm for computing a divided difference table can be very efficient and is
recommended as the best means for producing an interpolating polynomial.

Let us change the notation so that our divided difference table has the entries as
shown here:

Iy 00 Con Coz o3 ¢ Com—1 COom
I 10 11 ¢z C13 0 Cim-1

Iz a0 a1 Caa O3

Tp—-1 Cn-10 Cn—1,1

Ly Crl)

The vertical line separates the data (on the left) from the entries to be computed. It
Is clear that we have set

cij = flTe, Tig1y o o2 Tigg]

An algorithm is obtained from a direct translation of Equation (13), and goes as
follows:

for j=1,2,....ndo
fori=0,1,...,n—jdo

cij = (Cig1,5-1 = Cij=1)/(Tiy; — Ti)
end

Lyt g\ o RE T than s Xia) - Rt oon )
ARSI VAT

C; (43 i+ f—/ v |
+1 I 14D P
S5 P - oy
— : (3=
DN .

V)

In this algorithm, the numbers cio (which are input)

Ceo 2 002 R0 Cioz PCX)
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are the values of the function f at the points x; . They are also the values that the
interpolating polynomial will have at those points.

The interpolating polynomial, of course, is
Ptx) = C,, 4, C, Cx=¥)= C_ CF-X)CX-¥)

+ Gy Cx=Y) Cx—=Xn) CR< Y )+ -

1 G CRmRLH= Y o CX=X )

write analye dhe T Greot The

MewTon Aividdedh 0’{“%99{‘\@5 fﬂjm\»\h\

who n valuesd Pog) are Knewn
at n oli et nodes.

Programming Exercise
Use your favorite program that Compute a divided difference table for these function

values:

f.hzﬂw’v'lw--.-:ﬂ]:f[:cﬂ:mh---:i'n] (15)

Divided Difference Error THEOREM
Let p be the polynomial of degree at most n that interpolates a function f at a set of n

+ 1 distinct nodes, Xo, X1, . . ., Xn. If tis a point different from the nodes, then
f(t) = p(t) = flao, 1. ., zn ] [] (2 = 25) (16)
F=0
Proof
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First, let g be the polynomial of degree at most n + 1 that interpolates f at the nodes

Xo, X1, . . ., Xn, t. We know that q is obtained from p by adding one term. In fact,
glz) = p(e) + flzo. 21, .z, 8] [[ (& — 25)
=0

Since q(t) = f(t), we obtain at once (by letting x = 1)
f(t)=p(t) + flzo.xr,... zn t] [J (£ —25)
F=0
Divided Difference estimation THEOREM

If f is n times continuously differentiable on [a, b] and if Xo, X1, . . ., Xn are distinct
points in [a, b], then there exists a point & in (a, b) such that

f[i'm'»?l.-n--'ﬂn] = Ef{n}{ﬂ (17)
Proof
First, let p be the polynomial of degree at most n - 1 that interpolates f at the nodes
xo, X1, . .., xn-1. By Error In Polynomial Interpolation Theorem of the previous

section , there exists a point & in (&, b) such that

1 . n—1
flea) = p(ea) = ™€) [ ] (@n = 2)) (18)
! et
By Theorem of Error in this section,

n—1
flzn) —plan) = flzo, @1, 2n] H(iﬂ_:ﬂ.f] (19)
By comparing Equations (18) and (19), we deduce Equation (17).

p(x;) = f(x;) P#{;ﬂ'ij = f“(-'l-'i]' {'-'; =0,1)

40



Pcx)= oa—+bts+ Cxrad (>

plz) = a+ b(z — 20) + e(z — z0)* + d(x — z0)(x — 71)

p(z) = b+ 2¢(z — 2g) + 2d(x — x¢) (& — 21) + d(z — 2p)*

fleg) =a

fleo) =b

flzy)=a+bh+ch®  (h=uz — )
f'(x1) = b+ 2ch + dh?

p(0)=0,p(1) =1, p'(3) =2

1=p(l) =b+e
2=p(})=bte

p(z) = a+ bz + ex® + dz®
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l=b+c+d
2=b+c+3d

pU3 ), ... p (),
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PCxy - ° - W
Ple) 4 C(Xx=Xe) pla) 4 (x- x.) P(oh
+ CK Ku
*—;T-— Pl ..
L.-'.ﬁ-,:‘.-g +hqd,'{'ﬁg\ (\1_.)

02 Cok
plz) = con + ez — 7o) + —[T—Tn}2+"'+ F{I—Iu

9! )

plag) =con  P'(%0) = cm plz1) = e (3)

Ty Cop e
n o 7
Iy Cip

f' {Iu:'

lim fleg, 2] = lim f(z) =~ f(zo)
I—TITp f e T — ID

This equation justifies our defining
flzo,zo] = f'(z0)

T plx €1 — €
plrg, 1] = PEU ZPZ0) _ c10 = con (4)
&Iy — Iy Iy — Ip
o, 1] — plre,xe] 10— o e
plzo, 70, 71] = pl 1] — plza, xo] _ € mz o (5)
] — Tg {1 — ) Iy — &g
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plz) = plxo) + pleo, xol{z — x0) + plzo, o, 21| (2 — zp)?

p(x;) = f(x;) P#{;ﬂ'ij = f“(-'l-'i]' {'-'; =0,1)

p(x) = flzo) + f{zo)(z — z0) + flao, o, 21)(x — z0)*

+ flzg, oo,z 1 (2 — J:UJE(J‘? —rj)

xo) () flro,zo,71]  flzo, o, 21, 21]

oy £l

zg  flra) f[-fl]:-j:l] flxo, z1, 21}
1 fle) 2]

1 flxy)

f[I'[]_-.'I-‘n_....__;rﬂ] -

?’CX-J F['w L,fat‘) F‘r-‘ut) Kl,tll Ef K.,L)f‘f!“!‘]
%0 FL Yoty %)) PLX, %, %, %0
Fxo Fexy s
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3777
777
7 4

NN D =
Cy O O b BD

f i) =Ple)= 3 Py = fix) =7
= o
?c:o L

Plx,cy o RO-B g2y
T oo T ’
o (%,
FL%,%,x 1] = £k - RIX, %) e -ﬂ—ﬁ )
tL__t. z-l
L 4=3 .
= =2

PL % % %) . PLxw) —R Lo}

k'\_._t- T -
o I=% _ 3
|
ﬁ[&,".’i‘{!"l = F[x‘i(\iyt] "'?[Kr.l::il_] . Y ! = 2
Y, — Y. - T . -
PLX gy )~  PEXR XD k06 %, 1) L pixg = 3
. o\ — - Lr -
K. — ¢, I
= ——-g"__s PR s SN

2 —1 \

PLX, 6 AN =F0%, G ox) /oy

[X 6,k 3=
F fK'Jx‘I (] 13 A = -
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B OB B
SO
-1 = W
W O =

pr)=2+3(z -+ (z— 12+ 2z~ 1)z -2) - (z — 1)*(z - 2)*

plai) = flas)  pla) =flz) (V=i En)

fE+2) (g) -
T (2n+2) H}{x_r‘]z

flz) — plz)

5- PIECEWISE POLYNOMIAL INTERPOLATION

Recall the preceding three section, we study some interpolation methods. There
method may fail in some cases such as when the interpolated function f (x) is
oscillatory.

To obtain interpolants that are better behaved, we look at other forms of interpolating
functions. Consider the data

x| 0 1 2 25 3 35 4
y|[25 05 05 15 15 1.125 0

What are methods of interpolating this data, other than using a degree 6 polynomial.
Shown in the text are the graphs of the degree 6 polynomial interpolant, along with
those of piecewise linear and a piecewise quadratic interpolating functions.

Since we only have the data to consider, we would generally want to use an
interpolant that had somewhat the shape of that of the piecewise linear interpolant.
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] | |
1 2 2

e
»

The data points

Piecewise Polynomial Functions

Consider being given a set of data points (X1, Vi), ...(Xn, VYn), with

T < Ty < --- < Tn ] ] )
Then the simplest way to connect the points (X;, y;) is by

straight line segments. This is called a piecewise linear interpolant of the data {(x;,

yi)}.

| | |
1 2 2 4

Piecewise linear interpolation

This graph has “corners”, and often we expect the interpolant to have a smooth
graph.

To obtain a somewhat smoother graph, consider using piecewise quadratic

interpolation. Begin by constructing the quadratic polynomial that interpolates

{(z1,91): (22, ¥2), (23, y3) }
Then construct the quadratic polynomial that interpolates

{(3.v3). (4, ya). (x5.y5)
a7
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Continue this process of constructing quadratic interpolants on the subintervals

[x1, 23], [23, 5], [25, 27], ...

¥

ra

1 2 2 4

Piecewise quadratic interpolation

If the number of subintervals is even (and therefore n is odd), then this process comes
out fine, with the last interval being [Xa-2, Xa]. This was illustrated on the graph for
the preceding data. If, however, n is even, then the approximation on the last interval
must be handled by some modification of this procedure. Suggest such!

With piecewise quadratic interpolants, however, there are “corners” on the graph of
the interpolating function. With our preceding example, they are at X3 and Xs. we can
avoid this by enlarging the polynomial power for interpolation.

¥

1 2 2 4

Polynomial Interpolation

Smooth Non-Oscillatory Interpolation

Let data points (X1, Y1), ..., (Xn, Yn) be given, as let
Consider finding functions s(x) for which the following properties hold:
(1) s(xi) =vyi,i=1,...,n

(2) s(x), s'(x), s"(x) are continuous on [X1, Xn].

1 < Tp < - <L In
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Then among such functions s(x) satisfying these properties, find the one which
minimizes the integral

Tn 2
f ? '5”(:13)‘ dx
a

1
The idea of minimizing the integral is to obtain an interpolating function for which
the first derivative does not change rapidly. It turns out there is a unique solution to
this problem, and it is called a natural cubic spline function.

SPLINE FUNCTIONS
Let a set of node points {xi} be given, satisfying

a = ] << Lp < -+ < In < b
for some numbers a and b. Often we use [a, b] =[x1, Xa]. A cubic spline function s(x)
on [a, b] with “breakpoints” or “knots™ {xi} has the following properties:

1. On each of the intervals
[a, x1], [X1, X2], ..., [Xu-1, D]
s(X) is a polynomial of degree < 3.
2. 5(x), s'(x), s"(x) are continuous on [a, b].

In the case that we have given data points (X1, y1),...,(Xn, Yn), We say s(X) is a cubic
interpolating spline function for this data if

3.s(x)=vyi, 1=1, .., n.

EXAMPLE
Define
3
3 _J(z=—a), z>a
(2 —a)> = { 0, r<a

This is a cubic spline function on (—o0, o) with the single breakpoint x1 = a.
Combinations of these form more complicated cubic spline functions. For example,

s(z) =3(z—1)2 —2(z-3)3
is a cubic spline function on (—oo, ) with the breakpoints x;=1, X>=3.
Define

n ) .3
s(z) = p3(z) + D aj (z— :e:_j.-)+
= . .

with p3(x) some cubic polynomial. Then s(x) is a cubic spline function on (—o0, o)
with breakpoints {x, ..., Xn}.
Return to the earlier problem of choosing an interpolating function s(x) to minimize
the integral

49



Interpolation

) 2
f ? '5”(:13)‘ dx
|

There is a unique solution to problem. The solution s(x) is a cubic interpolating spline
function, and moreover, it satisfies

s"(z1) = 8" (zn) =0

Spline functions satisfying these boundary conditions are called “natural” cubic
spline functions, and the solution to our minimization problem is a “natural cubic
interpolatory spline function”. We will show a method to construct this function from
the interpolation data.

Motivation for these boundary conditions can be given by looking at the physics of
bending thin beams of flexible materials to pass thru the given data. To the left of x;
and to the right of xn, the beam is straight and therefore the second derivatives are
zero at the transition points x; and Xn.

Construction Of The Interpolating Spline Function

To make the presentation more specific, suppose we have data
(X1, Y1), (X2, Y2) , (X3, Y3) , (X, Y4)
With
X1 < X2 < X3 < Xa.
Then on each of the intervals
[X1, X2] , [X2, X3] , [X3, X4]

r 1 [ ]

X1 X2 X3 X4

s(x) is a cubic polynomial. Taking the first interval, s(x) is a cubic polynomial and
s"(x) is a linear polynomial. Let

Mi=s"(xi),1=1,2,3,4
Then on [x1, X2],
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S S %) s7exy) 4 Cx-wy) $T0x,)

X, — X
(‘Lz — ‘L) My + (‘L — Il) kag

s"(z) = p—— , T < x < ao

We can find s(x) by integrating twice:
{12 — 1)3 1_{1 {:t? — :1,‘1)3 ;“L-fg

s(x) = 6 (s — 21) + c12 + ¢
We determine the constants of integration by using
S(X1) = Y1, 8(X2) = y2 (*)
Then

=,
s+ NI
3!‘: fﬂz—-‘h) M]-{-Cx"'—' \ -L-l- (lyl—ﬁcz_

L
& C Xy~ %V
Mo

3
¥, -~ K, —“{tj\M‘. <+ C K-;_n-‘ﬂ.,)l
" + G Xz (g

'.i'ol\l/l'_rv -F‘I\z..u . *As -, w-!."‘&n/{_

Ty 2 S
(z2 — ) y1 + (& — 21) ¥o

Lo —d

Lo — I
—% [(z2 — o) M7 + (z — 21) M2]

s(x) =

_|_

51

Chapter 4



Interpolation

for x1 <x < xo.

We can repeat this on the intervals [X2, X3] and [x3, X4], obtaining similar formulas.
For x2 <x <xs,

(23 — JJ)R My + (x — ngjj M3

() =
() 6 (23 — x2)
(x3 —z)y2 + (2 — x2) y3
_I_
I3 — I
Ly — I

———— l(z3 —2) Mp + (2 — a2) Mj3]
For X3 <x <xa,

(24 — JE)R M3 + (z — 4:3)3 My

s(z) =

6 (x4 — 23)
+(Cf4 — ) y3 + (z — x3) ya
L4 — I3
Trg — I3 1
————— (x4 — x) M3 + (x — 23) M4]

6

We still do not know the values of the second derivatives {Mi1, Mz, Ms, Ms}. The
above formulas guarantee that s(x) and s"(x) are continuous for X1 < x < xa. For
example, the formula on [x1, X2] yields
S(X2) = Y2, $"(X2) = M2
The formula on [x2, x3] also yields
S(X2) = Y2, $"(X2) = M2
All that is lacking is to make s'(x) continuous at x> and xs. Thus we require
S'(x2+0) =s'(x2—0)
S'(x3+0)=s'(x3—0)
This means

X=X,

*)
and similarly for xs.
To simplify the presentation somewhat, | assume in the following that our node
points are equally spaced:
X2 = X1+ h, X3=X1 +2h, X4 = X1 + 3h
Then our earlier formulas simplify to
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s(m) . (o — :{3)3 M+ (x — 331)3 Mo
- bh
(=) y1+(z—21) 2
| h
h
~ [(z0 — ) My + (z — 21) Mp]

for X1 < x < x2, with similar formulas on [x2, X3] and [xs, Xa].
Without going thru all of the algebra, the conditions (**) leads to the following pair
of equations.

h oh h
_— AM — J.M _— J.M
i S e A

Y3—Y2 Y2 -0
h h

h oh h
_— J.M — J.M _— ;ﬂb’ir
g 2 T3 M3 g

_Ya—y3s Y3~ Y2
h h
This gives us two equations in four unknowns. The earlier boundary conditions on

s"(x) gives us immediately
Mi=Ms=0

F—o = F’Q-k'Dg?;\;m Y a:sﬁlr\)_._.. fq“)

Then we can solve the linear system for M2 and Ms.

|

EXAMPLE
Consider the interpolation data points

z|1 2 3 4

T 1 1
v[1 5 3 7
In this case, h =1, and linear system becomes
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2 1 1
—M —M7 = -2 g
3 2+ 6 3 Y3 Y2 + Y1 3
1 2 1
- M M+ = -2 e
52 + 33 Y4 Y3z + Y2 D

This has the solution

Mz =%, M3=0
This leads to the spline function formula on each subinterval.
On[1, 2],

s(z) = (zo — :1:)3 M, ﬁ—h(ﬂf’ — :1:1)3 Mo

(xog —z)y1 + (2 — 1) Y2
™ h

_g [(zp —x) My + ( — x1) M>]
(-2 0+(@-1)0°(3) (@-2)1+@-1)(3)
_|_
1 ° ‘ l
—=[e—2)-0+(@-1)(3)]
— L1 -L(@-1)+1

Similarly, for 2 <x <3,

—1 1 1 1
)=—(z—2P¥ +=(z—2)2 —Z(z—1)+=
(@)= (@-2 4+ (@-2? -z (@-1)+3
and for 3 <x <4,

—1 1
7)) = —(z—4) + =
s(@) = = (@—8)+3
SO

I S (I 3

a7 =Xt — x4 3, | =x =<2

sy =1 —H2+i7 - Ix4 ¥, 2=x=3,
|. T

— 54 = K
z|1 2 3 4

1 1 1
yl 2 3 %
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Graph of example of natural cubic spline interpolation

THE GENERAL PROBLEM

Consider the spline interpolation problem with n nodes
(le yl) ) (X21 yZ) p ooog (Xm yn)

and assume the node points {xi} are evenly spaced,
Xi=x1+(G—1)h,j=1,..,n

Chapter 4

We have that the interpolating spline s(x) on X; < x < xj+1 IS given by

i 3 . 3
‘5(%) _ I:\J{J‘}'_l — .T) :Ufj + |i’1, — JLJ) ﬂfj_l
‘ 6h |

(Zj+1— ) y; + (2 — ) yj+1
h
h

"6 (i1 —2) Mj + (2 — 2;) My

forj=1,...,n—1.

To enforce continuity of s'(x) at the interior node points X, ...

derivatives{Mj}must satisfy the linear equations

Ao 2 Ry %% i
M+ 2M 2, =Y it Y
6 J 1 3 J+6 ,,i'+1 h

forj=2,...,n— 1. Writing them out,
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h 2h h Y1 — 2y + U3
=M — My + =M7; =

g 1Tz 2T g h

h ?h h

- , . Yo — 2y3 + ya
VALY, VALY,
g 2T g3 T g h

h Oh h o Yno— Y1ty
Eﬂ'fn_z —l— ?ﬂ-fﬂ_l T E:‘Lfn _= n hn n

This is a system of n —2 equations in the n unknowns {Mj, ..., Mn}. Two more
conditions must be imposed on s(x) in order to have the number of equations equal
the number of unknowns, namely n. With the added boundary conditions, this form
of linear system can be solved very efficiently.

ERROR IN CUBIC SPLINE INTERPOLATION

Let an interval [a, b] be given, and then define
b—a

h = :
n—1
Suppose we want to approximate a given function f (x) on the interval [a,b] using
cubic spline interpolation. Define
yi=f(x),j=1,..,n

r;=a+(j—1)h, j=1..n

Let sn(X) denote the cubic spline interpolating this data. Then it can be shown that
for a suitable constant c,

En = max |f(z) — sn(z)| < ch®
a<xz=b
where ¢ depends on f"(a), f"(b). and max,c, < ]fm(x)l.

The corresponding bound for natural cubic spline interpolation contains only a term
of h, rather than hg; it does not converge to zero as rapidly.
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Numerical Differentiation

Principle of Linear Numerical Differentiation

There are two major reasons for considering numerically
approximations of the differentiation process.

1. Approximation of derivatives in ordinary differential
equations and partial differential equations. This is done in
order to reduce the differential equation to a form that can be
solved more easily than the original differential equation.

2. Forming the derivative of a function f(x) which is known
only as empirical data {(x;,y;) |i=1,...,m}.  The data
generally is known only approximately, so that y; = f (x;),
i=1,...,m.

4.1 differentiation for the first order derivative
4.1.1 differentiation depends on two points

Examplel:
Use Taylor's expansion to obtain two different formulae for

finite difference approximation of f'(x ) that depend on two
points.

Answer:

Consider Taylor's expansion for function f(x) at a point x=a,
o)



Numerical Differentiation
F) = (@) + (= f O(@) + 7 (x ~ ) D (a)

ot~ (x = )" (@) ®
Take a=x, and x =x, +h,so x —a=x, +h —x, =h , Eq(1) become
f(x, +h)= f(x )+hf “(x,)+Zh% "(x, )+ h% <3>(x )+ 2hf D(x,)+..
@ T

<—
f (x; +h)—f (x;)=hf "(x;)+5h% "(x;)+&h% Ox,)+Zh*% D(x;)+...

By canceling terms of degree higher than 2, we obtain
f (x, +h)—f (x,)=hf '(x,)+Lh? "), x, <c<x, +h
Dividing by h

f'(x;) = /‘(96%)’1—]‘(%)_%]”,(5)’ x; <c<x+h...(3)

Formula (3) is called a forward difference formula for
approximating f '(x).

We can write:
f'(x;) = Dp + Eg
Where
f(xi+h)—f(x;) _ _h oy
DF_—Zh , Ep= zf (9

Dy called a forward difference formula for approximating
f'(x ) and Ep is the error.

Take a=x, and x =x, —h,so x —a=x, —h —x, =—h, Eq(1) become
f (x, —h)=f (x;,)—hf'(x;)+Lh% "(x;) -1 h’f (3)(X Y+EhF @ (x,)+....
(4)

]
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f (x;, —h)—f (x;)=-hf "(x;)+Lh’*f "(c), x;, —h <c <x,
Dividing by h

f(x)—w —f"(&, xi—h<c<x...(3)

Formula (5) is called a backward difference formula for
approximating f'(x ).

forward and backward difference are called two points
methods

Example2:
Use forward difference formula for approximating f (x) = x3

at x=2. Take h=0.01. Compute the numerical and
estimated errors.

Answer:

Xi':l-c’ Xi+h:9°.o'

f'(x;)=F+E;
F=0T0) E — 1hf"(c), X, <C <X, +h
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D, = f (Xl + h)_f (Xl) — 8120601- 80 _ 12 0601

h 0.01
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T o A ~ -
€3 limqg tec) €V oY /L <=2 g ( ‘ /"\“
- S >

{EF( g (0‘005)( (2-)

= 0. 0o
NANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNANAN

This is the matlab program for numerical differentiation
by forward difference formula.

x=1.0;

h =0.0001; forward FD Differentiation is
f=@(x) x."3; DIFf =3.0003

fp=f(x+h);

fO=f(x);
st="forward
Differentiation is'
DIFf = (fp-f0)/h

ANANNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Example3:
Consider the function given by the following data

X 0.1 0.2 0.3 0.4 0.5

y 0.0001 0.0016 0.0081 0.0256 0.0625
Use forward and backward difference formula for
approximating f'(x) atx = 0.2. Compute the numerical and
estimated errors if f(x) = x*.

Answer:
241



Numerical Differentiation

, f (x,+h)-f (x;) 0.0081-0.0016 0.0065
Fla)= h o1 oa

f. (0.2)=0.032 |Error|=|0.065-0.032|=0.033

=0.065

f (x)-f (x,—h) _0.0016-0.0001

f(x,)= —0.015
(%) h 0.1

|[Error|=|0.032 - 0.015'| =0.017
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Numerical Differentiation

f ”(c)|:%(1202):0.6c2

|Error | _h
2

Select c =x,=0.2

~0.6(0.2) =0.6(0.04)=0.024

4.1.2 differentiation depends on three points

Examplel:
Use Taylor's expansion to obtain different formulae for finite

difference approximation of f'(x;) that depend on three
points.

Answer:

Consider Taylor's expansion for function f(x) at a point x =
a, SO
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F0) = F@) + (xr ~ f V(@) +5 (x ~ ) O@

ot (= "M (@) ®
Take a=x, and x =x, +h,so x —a=x, +h —x, =h , Eq(1) become
F (X, +h)=F (x,)+hf "<, ) +20%F "(x,)+ Lh%F O, )+ Lh* D(x,)+....
(2)

Take a=x; and x =x; —h,so x —a=Xx; —h —x, =—h, Eq(2) become
f (x; —h)=f (x,)=hf "(x,)+Eh?f "(x,) =40 O(x,)+Lh* D(x,)+....
3)
We use Eq.(2)-(3) to obtain
f(x, +h)—f (x, —=h)=f (x;)+hf "(x,)+£h% "(x,)+ L0 @, )+Lh%F O (x,)+....
—[f () =hf () + £ 0% "(x) =0 O(x)+ Hh*F O(x))+....]

So
F O +h) = (¢ =h)=2f () + 50 D(x,)+ Eh°f Q) +...

f (x; +h)—f (x, —h) =2hf '(Xi)+%h3f ®©), X; —h <c<x, +h
Dividing by 2h

f,(xi) — f(xi+h)2_hf(xi_h) _hT:f,”(g)s Xi _h <c SXi +h
(4)

This is the central method
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Numerical Differentiation

y
A
Xi-1 Xi Xi+1
Example3:
Consider the function given by the following data
X 0.1 0.2 0.3 0.4 0.5
y 0.0001 0.0016 0.0081 0.0256 0.0625

Use Dbackward and central difference formula for
approximating f'(x) atx = 0.2. Compute the numerical and

estimated errors for each if f(x) = x*. Which of them is the
best.
Answer:

- ~

i O '1 > 3 G
. l 0-3 Io“f' Ia-S

o,vroolo”0~wﬂl 0:0256¢ | p-06235
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x; =0.2, f (x;+h)=0.0081, f (x; —h)=0.0001, h =0.1

f'(x ):f (x,+h)=f (x,=h) 0.0081-0.0.01 _0.0080
v 2h T 2001) 02

f(x)=x*=f"(x)=4x% £,/(0.2)=4(0.2)' =0.032

=0.04

|Error|=

fo'(x1)—f, (x,)|=|0.04-0.032|=0.08
f7(x)=12x? f ¥ (x)=24x
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C\‘Oz

/P(C)/ /2 (2} "
}EG / = ?'_(/'E:(Q )/
Eé,/(o-"f'g} - 0,024
The some 5 must B
 , and W1 lave i+ @5
Gobral At

2
|R|=%‘f O(c)= (061) (24¢)=0.01*24¢ <0.24 (0.1) =0.024

Differentiation Using Interpolation

Use Lagrange interpolation formula to derive an
approximation for the first derivative of f(x) at a point
belong to a set of three equally spaced nodes.
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Let Pn(X) be the degree n polynomial that interpolates f(x) at

n + 1 node points Xo, X1, . . ., Xn. TO calculate f '(x) at some
point X =t, use

f'(t) = Pi(t) (6)
Many different formulas can be obtained by varying n and by
varying the placement of the nodes xo, . . ., Xn .

Example. Take n = 2, and use equally spaced nodes
Xo, X1 = Xo+ h, X2 =Xx1 + h.
Then

Py(x) = f(zo)Lo(x)+ f(z1)Ll1(x) + f(z2)Lo(x)
Py(z) = f(zo)Ly(z) + f(z1)Li(z) + f(z2)L5(x)
with

(= 2z)(z — x9)

Fole) = (iEf‘D - ﬁl%EIu - ff?)
. £ —IToL — I

La(2) = (21 — zo)(z1 — 22)

LE(I‘} — {I - $D)(I _ :1:1}

(2 — zo)(z2 — 71)
Forming the derivatives of these Lagrange basis functions and
evaluating them at X = x1

. flzr+h)— fle1 —h
‘]L}[:I]_) = Pi;(ﬁl) = ( )Qh { :} —

Dp f(x1)
(7)
For the error,

/ h)—f —h h? 111
Flay) - LT D) R pey) (s)
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Numerical Differentiation
with x]1 —h <c2<xI +h.

Undetermined Coefficients
Use Undetermined  Coefficients to Derive an
approximation for f*(x). estimate the error.

Derive an approximation for f "(x) at x = t. Write

fr(t) = ij f(t) = Af(t+h)
+Bf(t)+Cf(t—h)
(1)
with A, B, and C are unspecified constants. Use Taylor
polynomial approximations

hE
£t = h) = £(8) = h'(2) + (1)

K3 b
. e (4) (¢
CRACRE ARG

2

f(E+h) = f(t) + hf'(t) + %
4

h? 11 h (4)
ey + 2 o

Substitute into (1) and rearrange:

£t
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DV f(t) ~ (A + B+ O)f(1)
2
+MA—GM%LJ%H—CUWﬂ

Eu Cﬁﬂﬂ+ﬁu ) F@(e)

To have
2) . ,
DY £(t) ~ £(t)
for arbitrary functions f (x), require
A+ B+ C=0: coefficient of f(t)
h(A —C)=0: coefficient of f'(t)

3)

(4)

h?
?{A + C)=1: coethicient of f”(t)
Solution:
1 2
A=C=—=, B=——
R’ h?

()

This determines

250 = HE P =200+ e =)

(6)
For the error, substitute (2) into (3):

P (e) ~ (1) + 2 f“”(t}
Thus
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Numerical Differentiation

Ft+h)—2f(t)+ f(t—h) —h?

v (4)
t) — 2 t
7(2) > TEANS)
(6)
Lo
Example. Let f (x) = cos(x),t= 6"; use (14) to calculate f "(t)
1_
=—cos(6")
h DLQJ I Error Ratio
0.5 —0.84813289 —1.789E — 2
0.25 —0.86152424 —4501E—-3 3.97
0.125 —0.86489835 —1.127E—-3 3.99

0.0625 —0.86574353 —-2819E—4 4.00
0.03125 —0.86595493 —7.048E—-5 4.00

5.2 differentiation for the Second order derivative

Example4:
Use Taylor's expansion to obtain different formulae for finite

difference approximation of f "(x).

Answer:
Consider Taylor's expansion for function f(x) at a point x=a, so

F) = (@) + (= )f O(@) + 7 (x ~ ) D (a)
oot = (x = )" (a) ®)
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Take a=x, and x =x, +h,so x —a=x, +h—x, =h , Eq(1) become

f (x; +h)=f (x;)+hf '(x;)+5h% "(x;)+h% @ (x;)+Lh*F Dx,)+....
()

Take a=x; and x =x; —h,so x —a=Xx; —h —x, =—h, Eq(2) become

f (x, =h)=f (x,)=hf "(x;)+Lh%f "(x,)=2h% @ (x,)+Lh*f D(x,)+...

)
We use Eq.(2)-(3) to obtain

7] i+h)—2 i)+ i—h h?
') = [tk f,f:) I )—Efm(C),xi —h<c<x;+h..4)

A}’f rolima l1or Por €he _2,\4 ordey of erivelive

JP;CK{): 5 - (E”

(2/

= Fexitn ) =2 £ ) + B CKimh)
D . J

1 Y |
g - %}’\ } Cey 1?;\5(15\»-‘;’%#\

Example5:
Consider the function given by the following data
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X 0.1 0.2 0.3 0.4 0.5
y 0.0001 0.0016 0.0081 0.0256 0.0625

Use difference formula for approximating f"'(x) at x = 0.2.
Compute the numerical and estimated errors for each if

flx) =x*
Answer:
@)
\ SuwtY (2)
Ans S \
}f/m ) (1) NP o mi-anini
(z) —’— F ("’")}

') \/\’
B |

iz (xi+h)=2f(x;)+f (x;i—h) h2 )
[ () = EEERELEO R o f @O0, —h < e S x+

0.0081-2(0.0016)+0.0001 _ 0.0082—0.0032 _ 0.005
f(0.2) = B = =205 _ o5
(0.1)2 0.01 0.01
2

fr(x)=12x?, £.(0.2)=12(0.2) =12(0.04)=0.48
fo'(x1)—f, (x,)|=[0.48-05=0.02

|Error|=

2
RI=12f @)= CD (24) - 0.01%2=0.02

Programming home work
Write program for approximating
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Chapter 6

Numerical Integration

0-Introduction

The problem of evaluating definite integrals arises both in
mathematics and beyond, in many areas of science and
engineering. At some point in our mathematical education
we all learned to calculate simple integrals such as

fol x%dx or fon cos x dx

using a table of integrals, we obtain the values of them to
be [3 '] and 0 respectively; but

Most of integration such as

1 1 1
[xe¥dx , [xe*dx , [xe*dx
0 0 0

Have no analytical solution.
Moreover, if the function is given as a table

X 0.0 0.2 0.4 0.6 0.8 1.0
f(x) 0.0 0.04 0.16 0.36 0.64 1.0




Numerical Integration

1
and fo f (x)dx is required, and also in this case on

analytic solution can be done.
In these cases , we turn to numerical integration

a continuous real-valued function f(x) defined on a
closed interval [a, b] of the real line such that the definite
integral

b
I=[ f(x)dx (1)
is very hard to reduce to an entry in the table of integrals

by means of the usual tricks of variable substitution and
integration by parts

The purpose of this chapter, is to answer this question.
Specifically, we shall address the problem of evaluating
approximately, by applying the results of polynomial
interpolation to derive formulae for numerical integration
(also called numerical quadrature rules).

6.1 Rules for single integrations
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| s

The physical meaning of f; f(x)dx is the area between the
lines x=a , x=b and between x axis and the curve y = f(x)

We draw a line between (a, f (a)) and (b, f (b)) and then

take the area between this line and x as is as an
approximation for the required integration

The Basic Trapezoidal Rule
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The idea of Numerical integration depends on
constructing Taylor polynomial approximations p,,(x) as
an interpolation for f(x). So we have:

=[] f(x)dx = [ py(x)dx (1)

The interval [a, b] is divided into n subinterval making

use of the points x,x;, X, X, in the given interval.

These points are equidistance h. So we have

X,=a,X; =X,+ih, i =1,..,n-1,x_=b, (2
The integration is evaluated using the function values at
these points.

Linear Numerical Integration

In this case, we use polynomial approximations p, (x) of
degree one as an interpolation for f(x). The resulting
rule is called the trapezoidal rule.

p1(x) = a + Bx
The unknown constants a and £ can be evaluated using
the function values at the points:

(a, f(@)), (b, f (b)) (How?)
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In the other hand, we approximate the area under the

curve of f(x) by the area under the segment pass

through (a, f (a)), (b, f (b)).

[Mustrating I = T(f)
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Numerical Integration

IN\ (b,Reb))
|
‘P/q) ‘j {3} _(Qo-P/ﬂ?’ '3‘._;'“'.’. = - Q[/’[},o{,,_ | (}(/

B

|

l -

{ =

}4 )

g e h—tsib

The area of the trapezoidal is half of average base (the two
bases are f(a), f (b))multiplied on the altitude b-a.

Take h=b-a. Then the area of trapezoidal is
b) , _h
1, = B 0=2 £ (a) + £ (D))

2
Then the basic trapezoidal rule for I = f:f(x)dx is
b), h
Ty = 2O R [£(@) 4+ B @)
Example:
Approximate fol lizz using basic trapezoidal rule , then

evaluate the numerical error.
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Answer:

= = =1
f(x) Tr24=0, b

fa)=f(0)=1  f(b)=F(1)=~
h=b-a=1-0=1

h
Ty =5 [f(@ + f®)]

h 1 1
T =3 f@+ )] = [1 + E] ~ 075

To obtain the numerical error we must have the exact
solution first :

d 1 1 dx 1
—tan " x = - =tan " x +c¢

dx 1+ x2 1+ x2
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o g
| _101+x2 = tan (1) = £ = 0.785714286
numerical error then is

E,=[l -T,|=0.785714286—0.75=0.035714286 = 3.5x10 ™

Obtaining Greater Accuracy

To improve our estimate of the integral

I= fb f(z) dx

One direction is to increase the degree of the approximation,
moving next to a quadratic interpolating polynomial for f
(). We first look at an alternative. Instead of using the
trapezoidal rule on the original interval [a, b], apply it to
integrals of f (x) over smaller subintervals. For example:

I = f:f'{x}d:tr-l-/if(ﬂf)dr- c ="
~ 52[f(a) + ()] + 552 [f(e) + f(D)]
= Lif(a) £ 2f(c) + FO)] = To(f), h=5%2

Example 2
divide the interval [0,1] into two halves then evaluate the

. 1 . . . .
integral Of1+x2 in each. Find an approximation for
1 d .
[, ===. Evaluate the numerical error
0 1+x2

Answer: since
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1
1 2 1
f dx _j dx +j‘ dx
14+x2 ) 1+ x2 1+ x2
0 0 1
2
Thenh =1 so applying

h
T, =3 [f(@) + £ ()]
in each subinterval

T, =2 (0)+f (5)]+2[f (3)+f 1)]

| =" _tani(t) =2 = 0.785714286

“Jogyx?
E =|I —T,|=0.785714286—0.775 = 0.010714286 =1.1x10~

E,=11x1072
If we compare the error

E, > E,

We conclude from the result of example 2 that dividing the
interval and evaluating T;in each sub interaval will decrease
the error
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Working with this conclusion , we shall divide [a, b] into n
equally subintervals using the points

The Composite Trapezoidal Rule
Derive composite trapezoidal rule for integration
starting from linear interpolant

Consider approximating fff(x)dx. We divide [a, b]to n

subinterval with equally spaced points
b—a

x;=a+ih ,h= ,i=01,..,n

n
And then evaluate T; in each
h
I =Zlf(a)+fb)]
S“Ei’l'é‘tr\/q (
(o) f(()) ’(
:) b ﬁ(x\) ﬂxnﬁ ; *
| |
: “
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We can continue as above by dividing [a, b] into even
smaller subintervals and applying

B
h
| readx =311 + FB)

on each of the smaller subintervals. Begin by introducing a
positive integer n> 1,

Then

T, = ff(x)dx + Tf(x)dx + -+ f f(x)dx

Xn-1

yn

f(b)
—_ f@@ f(x1) //

v

ahxh x X1 h b
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Use [a, B] = [xo, X1], [X1, X2], ..., [Xn-1, Xn], for each of which
the subinterval has length h.  Then applying

The numerical integration is approximated by summation
of all trapezoidal resulting from passing lines between the
points:

(af (@), (xu.f (%)), (X F (Xp))semr(Xpaof (X,0)): (0, f (b))

We have:
I—IfQMxTa “[f@+fB)Lh=b-a

T, —Jf(x)dx+jf(x)dx+ -+ jf(x)dx

[f(a) + O]+ 2 [F Ge) + F Q)] + -+
SLf Gen) + £ (D]
h
=S {f (@) + f Q) + frr) + ) + -+ f (n-s)
, + f(b)}
= S{f(@) + 2f (1) + -+ 2f Genoy) + F(B))

= U@ + 2585 FOx)H0)}= 1)

Thus
b

= ff(x)dx =T, +Rp

a
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Where
n—-1
h
Th=3 [f(a) +f(b) +2 Z f(xi)‘
and
R, =—"f " (c),a<c <b (4)

T, is called composite trapezoidal rule

Example 3 :
Approximate fol f (x)dx using composite trapezoidal rule for
the function f(x) is given by the table

a:XO x1 xz X3 X4_ x5 == xg
X 0 0.2 0.4 0.6 0.8

() 0] 004] 016] 036] 064 1
n=5 % = % = % =0.2

b

I = ff(x)dx =T, +Rp

a

Where

h n-—1
To=73 [f(a) +f(b) +2 Z f(xi)]
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h = Xiy1 — X; = 0.2
So

T, = "2—2 [0+ 1+ 2(0.04 + 0.16 + 0.36 + 0.64)] = 0.34

+(3) JLwe
folf(x)dx Glees 2 Jalenill o, mill dedisaeld anst
AL Jgamly da el f () Ll

X 0.0 0.2 0.4 0.6 0.8 1.0
f(x) 0.0 0.04 0.16 0.36 0.64 1.0

: Joxl
camly Lgie Lagiaie (dalGill soe o T Luad Uladloia
SR
n=5h="2=02h= x4 —% = 0.2
oy Oty eal! 0008 B oyl dut g3l
T,(f) = 2{f (@) + 25051 £ (x) + f(b)}
SR

0.2
Ts = > [0+ 14 2(0.04+0.16 + 0.36 + 0.64)] = 0.34

Error formula for Trapezoidal rule
—(a — b)h2
12

Ry =1-T, = f'(c),a<c<bh
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Example : Estimate the error for using Trapezoidal rule to

obtainfo1 x?dx, with n=5
Answer:

a=0 b=1h=""=1=02
fO)=x* ff(x)=2x f"(x)=2

1(0.2)2
12

IRy| = (2) =0.00667

Consider approximating f01x3dx using composite trapezoidal
rule. Estimate the error, with n=10

Answer:
The error formula is
—(b — a)h?
R, = T f'(c),a<c<bh
fx)=x3,f =3x2,f" =6x
—op=1n=2"%_1 o4
S T T
—(1-0)(0.1
T = ( ) )6(c),OSCS1
12
—0.01
= > c = —0.005c
IR;| = 0.005¢

Since this value increases when c¢ increases . we
shall take the greatest value in [0.1] as an estimation
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|IRt| < 0.005(1)
|IRt| < 0.005

Programming Exercise
Write

Write a Pregram t appyelimgte SP(:IJK

Oan’er\ fcxl,q b qn,( y\q..‘b(roF Sltbm‘fM{s

glven f(x) a b and number of subintervals n . test
your program for
f(x)=x%,a=0,b=n,taken=5,10,100,1000
and complete the table:

n error

5

10

100

100
n—-1

h b—a
= = [f@) + f(b) + ZZf(xi) =

i=1

Algorithm for Trapezoidal rule
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Input : f(x) as a function , I = f: f(x)dx

a,b,n
Output : T;, that proximates ff f(x)dx , the error
Septl : h=(b-a)/n
Step2 : T=f(a)+f(b)
Step3:for i=1 to n-1 do step4
Stepd: T =T+ 2 *f(x;)
Step5 : T,=T*h/2
Step6 : E = |T, — |

T =f(a)+f(b)
i=1->T=T+ 2f(x,)
i=2>5T=T+ 2f(x,)
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L;Q-:\—”j ¢l ot ae Linssy caoMila &Al_bud.u_' Lied 134
Ol byl ad iyl aluseialsf (X)) = X P01 Jolend dd Liza o

: 9 N=10 e alipdl Juaii il

a=0.0; st=

b=1.0; trapezoidal integraion is
N=10; INTF

h=(b-a)/N;

for i=1:N

x(i) = a +i*h;

end . ; s e -
f= @(X) X.’\3; . W—7<% C_ALJ).J‘ LLLLAJ* C_'LJ L&u.;u
fa=f(a);
th=f(b);
sumf=0.0;
for i=1:N-1

trapezoidal integraion is
sumf=sumf+f(x(i)); |N-F|)-f: .

end o 0.2500
st="trapezoidal integraion is'

INTT = 0.5*h*(fa+fb+2*sumf)

2 Uasdl ceanls T (X) =X 0T e 16 alaadl JLAL 2 () L0

235l Unslly o pall
:o?f(X)ZXZ Of G =l
X3
| = ['x2dx == g=1(1)3—0=1=o.3333
3 3 3

o, E 2 Tl o))
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[E|=[1 —T4|=0.3333-0.0.34| = 0.00667

Oyo (el Byl \@Bmﬁ%éjﬁ.! Unasdl daen
h2

R =—(b —-a)—f "(c) , a<c<b
r == -a)f"C),
o=y
f)=x* f'=X fr=2
e h_2 vt — 1 m (027
|R|_|b a|12|f (c)|—(1 0) B (2)

—0.00667 =6.6x107°

(0,04, 0.02
=1 B (2) =

Basic Simpson’s Rule
Derive Simpson’s rule for integration via quadratic
interpolant

Consider f'(x) is defined at three points
@ f @), (x1, f(x1)) and (b, f (b))

In this case, we use polynomial approximations p, (x) of
degree two as an interpolation for f(x). The resulting
rule is called the trapezoidal rule.

po(x) = a + Bx + yx?
The unknown constants «, 8 and y can be evaluated
using the function values at the points:

(a, f(@)), (x1, f (x1), (b, f (D))
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In the other hand, we want to approximate I = ff f(x)dx
using quadratic interpolation of f (x). Interpolate f (x) at the

1
points {a, ¢, b}, with € — 2 (@ +0)- Also let

— Ll
h =3 (b—a) The quadratic interpolating polynomial is
given by
z—c)(xz—2>5 x—a)lz—0>
Poa) = BV 2Dy

(z—a)(x—c)
e O
Replacing f (x) by P2(x), we obtain the approximation
b b
fa flz)dxe == fﬁ Py(x)dx
= £1f(a) +4f(c) + F(b)] = Sa(f)

Then the basic Simpson's Rule for numerical integration is

b
[ reax= s, = S17@ + 476 + 7

()
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This is called Simpson’s rule.

L ]

Xo=d h X h x.=h

[llustration of 1 = Sy(f)

ele Gy gecanies A Baytay Jalesith3- 6 Jens

. 1 d . . .
Approximate fo 1:;2 using basic Simpson's rule , then

evaluate the numerical error.
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f(a)=f(0)=i=1 Pr@)=—m=t
fB)=f1)=—7= %

1+12

1
2
a+b 0+1 1
2

X, = > = > =

The numerical value for integration is

So=2[f (a)+4 (1,)+1 (b)]

h=(b-a)/2=1/2

—

h 1
szzg[f (a)+4f (22)+f (b)]:%[“ﬁ%J

=0.783333

1+4< ) ——0.78333
2(3) [ 2 60
The exact solution is

| = j; X _ tant(1) = 2 = 0.785714286

1+x°2
Hence the error is
E =|I -S,|=]0.785714286 - 0.783333| = 0.02409 = 2.4x10~*

Composite Simpson’s Rule
Derive composite Simpson’s rule for integration via
quadratic interpolant
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We divide the interval [a, b] to even number of intervals n
using the points

A=Xg <X <X, < <Xy 1<X,=b

With h = == and x; = a + kh

K=0,1,2,...,n

As with the trapezoidal rule, we can apply Simpson’s rule
on smaller subdivisions in order to obtain better accuracy in
approximating

I= Lbf{&‘?) da

Again, Simpson’s rule is given by

8 5 L +8
[ #@)de S [F(@) +47() + F8)], ==
and d = %(3 — a).

Let n be a positive even integer, and

b —
h = a.. rj=a+gh, 5J=01..n
n
Then write
I = [T
-/ro flz)dx
] oy | Tn
= (x) dz + (z)de +---+ (z)d
[ @ dz+ [ f(z)da [, i@
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g 5 > ‘ 3
[ #@de S @) <48 + £B). 7=

to each of these subintegrals, with

[ﬂ'. 3] — [ID.' $2] 7 [:1:2:- I4] LILRRE [$?1—2$ I?l]
In all cases,( — a)/2 = h. Then
I~ L [f(wo) + 4f(z1) + f(2)]
+5[f(22) + 4 (w3) + f(24)]
4.
‘P% [jl(xﬂ—q-} LE 4..f{ffn—3) + f{mn—E)]
+% [f(xn—z} Ll 4..f{$n—1) + f{fn}]
This can be simplified to

[ $@)de = 5u(5) = §15(z0) + 41 (a1
+2f(w2) + 4f(3) + 2f(x4)
+ -t Z.f{mn—Q) + 4II(I?1—1) L rf(‘r”)]

alazial alwd¥l N I Blaill @ cdd Joalemill oy y 85 (nvamilg
olal

a=Xgy, X1, Xp,0 Xp =D, 2K =n

The composite Simpon Rule for integration then is

b
I :jf (x)dx =S, +Ry

a
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Where
Odd values of the function

h
Sn =3 [f (@) + 4{f (x1) + f(x3) + -+ f(xp-1)}
Even values of the function

+2[f () + fxa) + -+ fxn-2)] + f(D)]

This is called the “composite Simpson’s rule” or more
simply, Simpson’s rule

Set n=2k

h
Sn = 3 [f(@) + 4{f(x,) + (x3) + -+ + FGxaxc 1))
+2[f(xz) + f(x4) + -+ + f(x1-2)] + f(b)]

And the error is obtained by

f®(),a<c<h

Example:
(a) Approximate fol f (x)dx using composite

Simpson’s rule for the function f(x) is given by the

table
| x | o0 | 02 | 04 | 06 | 08 | 10 | 1.2 |
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f(x) 0.0 004 | 016 | 0.36 | 0.64 1.0 1.44

1!
sutd Gy L 9301y 2 yall Lol 3 (G gsons Ainyle Y 155
:‘:,_Y\:J\& N‘E'”
f(x0) = f(a) = f(0) =0,
f(xe) = f(b) = f(1.2) = 1.44
iga il @gal! L 9! audl!
k fCxx) k f ()
1 0.04 2 0.16
3 0.36 4 0.64
5 1.0
gl
1.40 0.80
0.2
S =—-[0+ 4{1.4} + 2{0.80} + 1.44]

0.2
=—-[5.6+ 1.6+ 1.44]

0.2 0.2
= 3 [5.6 + 1.6 + 1.44] = 3 (8.64) = 0.567
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(b) If f(x) = x? evaluate the numerical and estimated

error.

1=l
1.2 1.2
3™ 1.2)3
j x2dx =% =( 3) = 0.567
0 0

IR RN
E =0567—-0.567=0
R — Mf@)(c)
s 180

JRI=0 o3 F P (X)=0 o Gy
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:(8) Jlie
aely b ymill 4t saeld (e Jom aliil e 3l Ll o cyl3

n=10 , [Zsin(x) dx V10l Jelestd ¢ pensens
1=l
T
f(x) = sin(x), [a, b] = [O, E],n = 10.

d)_‘?_ll‘ 4-.ul e ld Y’:‘..\_‘L"u.u\.v

—(a — b)h?
RT=(a1—2)f”(c),a$csb

f(x) =sinx, f'(x) =cosx, f""(x) = —sinx.

— b)h?
Rrl =2 )

b—a __0 T
h: =2 = —
n n 2n

(O - _) (2(10))2
12
288

(1) = 0.02

IRr| <
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O gty e ld ‘A‘.J._‘L"u.u\_' 9

—(b —a)h* @
R,=1-S5, 180 fH(c)a<c<bh
f ® = _cosx f @ —sinx
Ol Gy
|sinx | <1
(b — a)h*
-~ 7 |f@
T
5—0 4
(2 )( T ) -6
R.| < 1) =5. 10
IR < T80 2(10) (1) =53+

Consider using Simpson's rule to evaluate [2 sin(x) dx.
Find n required to obtain an error within 107>,
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. 4
RI=O=3N @y a<cs<b
180
—(b — a)h*
RS :%fﬂ)(c),a <c<bh
i slaall Al o) Gy
f (x) =sin(x)
L Ll ) dail) o9 Al
‘f (4)(x )‘Sl
Sladll ol Eom g
T
[a,b]_[o,ﬂ
100l
R|<=————h*=0.00873n"
2(180)
0.00873h* <0.000005

nt< 0.000005 5

< = =0.000573
0.00873 8730

Nt PRSI

h? <0.0239
318 0 il Haadl ALy

h <0.1547

b—a
< 0.1547

n
T
— < 0.1547
2n
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1 _2(0.1547)
Tl T

h? <0.0239

TZEARSV IRV NEN [INEN e
h <0.1547
h=b2 = n=>02=> n22(015) “opers = 10.5
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Trapezoidal Error Formula Theorem
Let f (x) have two continuous derivatives on the interval a <
x <b. Then

b
Ex(f) = fu f(x) de — Th(f) =

for some cn in the interval [a, b].

h (b )fﬂ (Cn)

The above formula says that the error decreases in a manner
that is roughly proportional to h?. Thus doubling n (and
halving h) should cause the error to decrease by a factor of
approximately 4. This is what we observed with a past
example from the preceding section.

Example
Consider evaluating

I:/E dx
0 1L 2

using the trapezoidal method Tn(f ). How large should n be
chosen in order to ensure that

EL(f)| <5x107°

We begin by calculating the derivatives:

| 2w , —2 4 622
flle)=———.  flle)=——=
{Ll—:ufgj {Ll—:lrgj

From a graph of f " (x),
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max ||_f”(:t?}, =2

0<z=2
Recall that b — a = 2. Therefore,
_— h2(b—a) .
1) = D)
12
h22 h?
T(r P
‘En(j)‘ >~ 17 2= 3

a7
We bound |77 (en)| since we do not know cn, and
therefore we must assume theworst possible case, that
which makes the error formula largest. That is what has
been done above.

EZ(f)| <5x107° "
To ensure this, we choose h so small that
h?
— <5 x107°
3
This is equivalent to choosing h and n to satisfy
h < .003873
2
—— > b16.4
h
Thus n > 517 will imply (1).

n

1-60n )\
o ) 1 dx
gmuﬂ&pﬂ%wouds43T4%wg\|=k1+xzLpEiN(D

.MQ)@}@}'&\ Uasdl
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FO=1f@)=5f =21 =f Q) =0 o p=ai )

1
[F 00X =7 Slass oyl s dhgs el 1] 0 Zagd ay
0
O3Em Byl A Bl il 108 2 ngpall malipdl alusioly (3)
ol o G g ¢l el auli n=2,4,8,256 o T < ual Jous
Uasl g gauadl Uasdl Joamll 2ol ¢ Jolend Jo alal 7lia mueial|
]|
n 1
(@) [e*sin(x)dx =4(e” +1) (b) [xdx =%
0 0

(c) [e™* sinxdx =e —%
0

L(x-7)?2

(d) i *__ =tan"(3— ) +tan " (x)

Ogencs L yls el aluseinly () oo el 555 (4)
9Byl didisueld e Jo aluia] wie pdgill Uasdl on o)L3 (5)
A1 Jelentd ¢ gnracs 50cl®
(i) f(x)=x"-4x3
(IDf(x)=1/(1+x)
oy bt N=2,4,8206 oo (o ymill 4l Lo auixinl (6)
el Blaitt 2 ¢ 2t Jealt Y =F (X) Lol s s Lawall

(@ [x*Inxdx (b) [e'dx
© [z (d) [Vxe'dx
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2

A s OO0 Jalemall Cay il 40s B Buskal ol 131 (8)
0

F (D) e s gle 2 lasd (gencares Lo Guelal e

fay¥ Ly n A Jolsmtll Glewsmd e300 N 2oLl a1 (9)
2

I :J.dx / X dﬂd‘@ﬁ&&ﬁ‘@bhﬂe@)i
1

6.2- Error Analysis for single numerical integration

Derive the error formula for the trapezoidal method
for numerical integrations then derive an asymptotic
error estimate

There are two stages in deriving the error:

(1) Obtain the error formula for the case of a single
subinterval (n = 1);
(2) Use this to obtain the general error formula given earlier.

For the trapezoidal method with only a single subinterval,
we have
From Trapezoidal Error Formula Theorem with h =(b-a)

ath ] h_, . o h
| f@)dz— S [F(@) + Fla+h)] = —£"(0)

Tk

for some c in the interval [a, o + h].
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Recall that the general trapezoidal rule To( f) was obtained
by applying the simple trapezoidal rule to a subdivision of
the original interval of integration. Recall defining and
writing
b—a . .
h = — rj=a+jh, 3=01,..n

I = !ﬂj(m)dt
rq T
= [f@)de+ [ f@)da+ -
xq xq
N er
Lp—1

S %—[f(mg) + f(z1)] + % [f(z1) + f(x2)]
4.
—|—% [f(mn_g) -+ f(l‘n—l)] T % Ul(mﬂ—l} i j‘($n)]

Then the error
b
EEU) — /ﬂ flz)dz — T,(f)

can be analyzed by adding together the errors over the
subintervals [xo, x1], [X1, X2], ..., [Xn-1, Xn]. Recall
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ath ] h . P\ — 13 "
[ f@) e~ 2@ + flat ] = 1)
Then on [Xj-1, Xj] ,
] : hie : ] h3 v
E_flf(:v) de —= | f(@j-1) + f(z;)] = =577 (%))
xj_

with X;-1 < 'J < xj, but otherwise vj unknown.
Then combining these errors, we obtain

Tie h3 . R3 »
En(f)=—35f"0n) = = 5 ()
This formula can be further simplified, and we will do so in
two ways.
Rewrite this error as
: R3n [F(~) 4+ -- -+ f'(~
EH (j) —_— — { l) ( ﬂ',)

12 n

Denote the quantity inside the brackets by {n. This number
satisfies

. i < < oI ! _
LI, ) < G = e, SR

Since f "(x) is a continuous function (by original
assumption), we have that there must be some number cn in
[a, b] for which

..f”(c?l) = (n
Recall also that h, =b — a. Then
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P h3n ,_f” ~) + "'-I—,f” v,
BI() = o (Pt )

= ()

This is the error formula given on the first slide.

An Error Estimate
We now obtain a way to estimate the error E! (f ) Return to

the formula

EI( f} h'j fﬂ{ ) h'j fH{ }
= —— ) — e — — -
n \. 12° [ 12° Fr
and rewrite it as
- h? 1
Ty p - .
E?z (f) — _E _IH(A."I)h + - .}LH(H.’::-J.}';T’_

The quantity
DR+ 4 (vn)h
Is a Riemann sum for the integral
[ @)z = 1'(8) - 1'(a)
By t?ﬂs we mean

lim (1) + -+ F(vn)h] = f " () du

1—00

Thus
f'yp)h+ -+ (v )h = () — f(a)
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for larger values of n. Combining this with the earlier error

formula we have

: h2 - ) 1
E?Iz_(f) — _E _IH("."I)h +-- .}LH(H.’:H}';T’_

This is a computable estimate of the error in the numerical

2 ¢ e
EL(f) = —55 [7(0) ~ ()] = BX(7)

integration. It is called an asymptotic error estimate.

Example.
Consider evaluating the integral ff f(x)dx  where

[a,b] = [0,7] and T (X)=e" cosx by the trapezoidal
rule. Prove that the error and the error estimate are
quite close(assume that [f"'(x)| < 14.921). Evaluate

the corrected trapezoidal rule
Answer

Consider evaluating

e” +1

I(f) = Lﬁ e’ cosxdr = — 5= —12.070346
In this case,
() = e*[cosx — sinzx]
(x) = —2e%sinz
Jmax_[f"(z) = |f"(.757)] =14.921
Then
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h2(b—a) ,

T(#y — _
En{.f) - 12 I (CH)
. h2r
EI(f) < 5-14.921 — 3.906Ah2
Also
ni e h® Y f
E?“-. {ﬂ — A j- (F) —J {D)]
12
hE
= —[e" +1] =2.012h

For evaluating the integral | by the
trapezoidal rule, we see that the error

EI (f) and the error estimate EI (f) are
quite close. Therefore

h?
I(f) = Ta(f) =~ E[E + 1]
, N
I(f) & Tn(f)+5 1 +1]
This last formula is called the corrected
trapezoidal rule. We see it gives a much
smaller error for essentially the same amount
of work; and it converges much more rapidly.

In general,

300



Chapter 6

I(f) = Tu(f) = ——[1'(6) — f'(a)]

I() = Tu(f) - 55 [£(0) - £'(a)]

This is the corrected trapezoidal rule. It is easy to
obtain from the trapezoidal rule, and in most cases, it
converges more rapidly than the trapezoidal rule.

Simpson’s Rule Error Formula
Recall the general Simpson’s rule

+4f(x3) +2f(2g) + - -

_2..»{(3??1—2) + 4f($ﬂ_1:} + j(xﬂ)]
For its error, we have

180

for some a < ¢y < b, with cn otherwise unknown. For an
asymptotic error estimate,

b 4h 4
BN = [ @) de— $u() = —— 0,

b . 4
[ #@)de=5a(f) = ES(1) = —75 [£7(0) — £"(@)]

Discussion
For Simpson’s error formula, both formulas assume that the
integrand f (x) has four continuous derivatives on the
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interval [a, b]. What happens when this is not valid? We
return later to this question.

Both formulas also say the error should decrease by a factor
of around 16 when n is doubled. Compare these results with
those for the trapezoidal

rule error formulas:.

T L o N h2(b—a) .,
EL(f) = [ f(@)de = Tu(f) = ————" (cn)

2 - ~
EL(f) = 5 [7(0) - (a)] = BL(7)

Example 6
Consider evaluating

2 dx
0 1+ x2

using Simpson’s rule Sn( f). How large should n be chosen
in order to ensure that

B3(£)] <5x107°

Begin by noting that

5% 1022 L1
FW(z) = 4= — ==

(1+2)°
02%el W) = f¥(0) =24
Then
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. h4(b—a)_
EZ(f) = —Ti{‘”(cn)
4.2 4h4
B3| < B2 2
180 15
Then Er(£)] =5 x10 is true if
4h*
— < 5x107°
15
h < .0658
n = 30.39

Therefore, choosing n > 32 will give the desired error
bound. Compare this with the earlier trapezoidal example in
which n > 517 was needed.

For the asymptotic error estimate, we have

x? -1
fz) = 24— - 1
(1+22)
BS(f) = —2o [pm(2) - #7(0)
T 18-0 1

Rt 144 4 4
. — 1
180 625 3125

Integrating Sart(x)
Consider the numerical approximation of

' d _2
t(z)dr = =
LSqr (z) dx 3
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In the following table, we give the errors when using both
the trapezoidal and Simpson rules.

n ET Ratio E> Ratio

T

216311E -2 2.860E — 2
4123388 -2 270 [1.012E—-2 2.82
8 |18536E -3 274 |3587FE—3 283
16 | 3.085E —3 2.77 | 1.268E —3 2.83
32 11.108E —3 278 | 4.485E —4 2383
b4 | 3.950F —4 2.80 | 1.586E —4 2.83
126 | 1.410E — 4 2.81 | 5.606E —5 2.863
The rate of convergence is slower because the function f (x)

=sqgrt(x) is not sufficiently differentiable on [0, 1]. Both
methods converge with a rate proportional to h®,

ASYMPTOTIC ERROR FORMULAS

If we have a numerical integration formula,

|'_'} T

/ Fa)de =~ wf(z;)
) J:G

let E, (f) denote its error,

b !
En(f) = [ fl@)de = 3 w; ()
3 __Ii'=D
We say another formula E (f)is an asymptotic error
formula for this numerical integration if it satisfies
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jim Z2U0)
n—o00 E?_L(f)
Equivalently,
lim E”(j) _ EH(I) —
n—00 FEn (f)

These conditions say that E, (f) looks increasingly like
E.(f) asn increases, and thus
E,(f)~E,(f)

Example.
For the trapezoidal rule,

N o Ty, h? o, 47 3]
EL(f) = Eq(f) = —35 [1'(0) = '(a)

where f (x) has two continuous derivatives on the interval [a,
b].

Example.

For Simpson’s rule,

' S e "?'4 [ ol I
EX(f) = B (f) = —155 [17(0) = 1"(a)]

where f (x) has four continuous derivatives on the interval
[a, b].

Note that both of these formulas can be written in an
equivalent form as
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i~ . I
En(f)=—

nF

for appropriate constant ¢ and exponent p. With the
trapezoidal rule, p =2

P=2, - . (b-a)? L) — 07
E;(p,} = -(b-—q)z ff’(é’) _ {:,(0\)1
120-,-.-.)
h=b-a — n - b;—\q

EnCRl 2 -7 10 1 pcu) _(Ctar)

= =W T (e
and

—a 2
e= - 1) - 1(a)

and for Simpson’s rule, p = 4 with a suitable ¢
The formula

En(f) = % )

occurs for many other numerical integration formulas that
we have not yet defined or studied. In addition, if we use the
trapezoidal or Simpson rules with an integrand f (x) which is
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not sufficiently differentiable, then (2) may hold with an

exponent p that is less than the ideal.

Application Of Asymptotic Error Formulas
Assume we know that an asymptotic error formula

c

I — I =~
E= nP

is valid for some numerical integration rule denoted by In.

Initially, assume we know the exponent p. Then imagine
calculating both I, and I2n. With I2n, we have

c
2Pnp

I_IE?'.', ~=

This leads to
T = 2fT =T, T

T (22— = 2%1,,.-1,
I lezu_lm“\"““”@l“; e
o
= Lan Lan — Ty
2%
[ -1, = 2P[I — Ip,]
I = QPIEH In: 2“_12?? I‘r“
P —1 R |
The formula
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Iy, — In
I~ IE?: L %
B (4)

is called Richardson’s extrapolation formula.

Example.
With the trapezoidal rule and with the integrand f (x)

having two continuous derivatives,
1
I~ TEH + § [TEH - T?“-.]
(22-1=4-1=3)

Example.
With Simpson’s rule and with the integrand f (x) having

four continuous derivatives,

1 .
I =~ ‘92:'1 T E [SEH - Sn]

(2%-1=16-1=15)

We can also use the formula (4) to obtain error estimation

formulas:
IEH — In

I_IQ}IE P _ 1 (5)

This is called Richardson’s error estimate. For example,
with the trapezoidal rule,

1
I — TEH = § [TQH — T"]
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6.3 Gaussian Numerical Integration
We look for numerical integration formulas

1 T
[ f@)de~ Y wf(z))

J=1

which are to be exact for polynomials of as large degree as
possible. There are no restrictions placed on the nodes {xi}
nor the weights {wi} in working towards that goal. The
motivation is that if it is exact for high degree polynomials,
then perhaps it will be very accurate when integrating
functions that are well approximated by polynomials.

There is no guarantee that such an approach will work. In
fact, it turns out to be a bad idea when the node points {xi}
are required to be evenly spaced over the interval of
integration. But without this restriction on {x;} we are able
to develop a very accurate set of quadrature formulas.

The case n = 1. We want a formula
(1)Evaluate Gaussian numerical integration formula when there is

only one node.
(1b) prove that the midpoint integration rule is a spectral case of
Gaussian numerical integration.

Answer:
We look for numerical integration formulas
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1
wif()~ [ f(z)de

The weight wy and the node x: are to be so chosen that the
formula is exact for polynomials of as large degree as
possible.

To do this we substitute f (x) = 1 and f (X) = x. The first
choice leads to .
wy-1 = f 1 1dx
uy = 2
The choice f (x) = x leads to
1
wyaE, = / l:a:d;a: =0
£ = 0
The desired formula is

[  F(@)dz ~ 2£(0)

We say it has degree of precision equal to 1. since it
integrates exactly all linear polynomials. It is called the
midpoint rule.

The case n = 2. We want a formula
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(2) obtain 3 precision formula for Gaussian

integration. Then use it to obtain f_ll f(x)dx,

where f(x) = x3.
Answer:

1
wif(@1) +waf(e2) = [ f(a)da

The weights wi, w2 and the nodes xi, x2 are to be so chosen
that the formula is exact for polynomials of as large a degree
as possible. We substitute and force equality for

flz) =1,2,2% 2’
This leads to the system

wy +wy =
Wy + woIy =

1 2
-wlm% - *wz:t?% = / 22 dw = 3
0

-1
3 3 1 3
wyxy + woxry; = f - dr =
—1
The solution is given by
H = Wy = o= ——1 -1
wp=wy =1, 2= sqrt(3) ’ T2 = sqrt(3)

This yields the formula

[ i@ =1 () + 7 (5k3) "
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We say it has degree of precision equal to 3 since it
integrates exactly all polynomials of degree < 3. We can
verify directly that it does not integrate exactly f (x) = x*.

1
f $4dm:%
—1

(b)) + 7 (i) =3

Thus (1) has degree of precision exactly 3.

EXAMPLE
For an Integrated function which is not in a polynomial
form, we have as an example:

1 dr
f — log?2 = 0.69314718
13+ x

The formula (1) yields

g ‘71_}(—- g-":ﬁ = Jn (Erbx] ]t |

B Ll & —A
= "Q"”(_"‘?) "'E"‘{I)
R N T
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ﬁbr): -
24X
?('ﬁr’f‘}+f2 (f’f ) = o
S*J‘E. 34;—‘;
. A
LA CI 3 = ©.6323e 7y

The General Case
We want to find the weights {wi} and nodes {xi} so as to
have

1 1n
[, @) de = > wif(a)
J=

be exact for a polynomials f (x) of as large a degree as
possible. As unknowns, there are n weights wi and n nodes
Xi. Thus it makes sense to initially impose 2n conditions so
as to obtain 2n equations for the 2n unknowns. We require
the quadrature formula to be exact for the cases

o5 il e 222l 138 Jial rlias Llé 2 Jaalaall 22e ()Y

f(m):mé__ 1:U ]--_2-_..._.2’."1—]_
Then we obtain the system of equations

. . : 1 .
wqT] +wozh - b wpr, = f . z' dx

fori=0, 1,2, ..., 2n — 1. For the right sides,
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Numerical Integration

2
1. . o 1=0,2,...2n -2
f rtdr=< 1+1
-1 0, i=1,3..,2n—1
The system of equations 2
; ; - , 1 =0.2,...,2n -2
wiry + - Fwpr, = ¢ 1+ 1

0. r=1.3.....2n—1

has a solution, and the solution is unique except for re-
ordering the unknowns. The resulting numerical integration
rule is called Gaussian quadrature.

In fact, the nodes and weights are not found by solving this
system. Rather, the nodes and weights have other properties
which enable them to be found more easily by other
methods. There are programs to produce them; and most
subroutine libraries have either a program to produce them
or tables of them for commonly used cases.

Symmetry Of Formula
The nodes and weights possess symmetry properties. In
particular,

T; = — Ly, W; = Wy —j, 1=1,2,....n

Change Of Interval Of Integration
Integrals on other finite intervals [a, b] can be converted to
integrals over [—1, 1], as follows:
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LbF{m)dI: b;a.f_llF(b+a+2t(b—a)) gt

based on the change of integration variables
x_b+a+ﬂb—m
— 5 ‘

1<t<1

EXAMPLE
Over the interval [0, wt], use

r=(1+1t)7
Then

[:F(m) dm:%fllF((l—f]%) dt

EXAMPLE
Consider again the integrals used before :

1
) — ‘f e~ dr = 74682413081234

0
4

12 = f dz — arctan 4
01+ a?
2 T
0 24+ cosxz  sqrt(3)

315



Numerical Integration

n 71— 1) 71— 1(2) I — 1)

2 229E —4 —-233FE — 2 8.23E — 1

3 955E -6 —349F —2 —-430FE -1
4 —33FE -7 —-190F -3 1.77E — 1
5
b

6.05E —9 1.70E —3 —8.12E -2
—T777E — 11 2.74F — 4 3.55F — 2
7 860FE —13 —645FE -5 —158E -2

10 x 127E—6 137E -3
15 * 7.40E —10 —2.33E—5
20 % x 3.96F — 7

Compare these results with those before

An Error Formula
Let f (x) be continuous fora<x <b;letn>1. Then, for the
Gaussian numerical integration formula

b mn
1= f flx)de = Y w;f(z;) = In
23 J:]-
on [a, b], the error in In satisfies

I(f) = In(F) =2(b—a) pon—a(f)  (3)
Here p2n-1(f) 1s the minimax error of degree 2n — 1 for f (x)

on [a, b]:
pm(f) = min [ F@) - p@)| . m>0

deg(p)=m |a=x=b

EXAMPLE

316



Chapter 6
Letf(x)=e™ *  Then the minimax errors pm(f) are given
in the following table.

1 F’m(..ﬂ m pm(f)

1 5H530E-2| 6 7.82E-—-6
2 179E-—-2| 7 462E-7
3 663E—4| 8 9.64E -8
4 463E—-4| 9 8.05E-—-9
5 1.62E—-5 |10 9.16E — 10

Using this table, apply (3) to

1 2
I:f e " dx
0

Forn =3, (3) implies
2 _
115 < 2p5 (€™ )i3.24><10 5
The actual error is 9:5 5E - 6.

Weighted Gaussian Quadrature
Consider needing to evaluate integrals such as

1 1 1
ﬁj,j"(a:)loga:d:t?: A;Jlgf(:t?){h?

How do we proceed? Consider numerical integration
formulas

b i
/ w(z) f(z)do = Y w,f(z;)
a =
in which f (x) is considered a “nice” function (one with

several continuous derivatives). The function w(x) is
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allowed to be singular, but must be integrable. We
assume here that [a, b] is a finite interval. The

function w(x) is called a “weight function”, and it is
implicitly absorbed into the definition of the quadrature
weights {wi}. We again determine the nodes

{xi} and weights {wi} so as to make the integration formula
exact for f (x) a polynomial of as large a degree as possible.
The resulting numerical integration formula

|'_I} s
f w(a) f(x) de ~ Z w; f(x;)
[ =1

is called a Gaussian quadrature formula with weight
function w(x). We determine the nodes {x;} and weights
{wi} by requiring exactness in the above formula for

f(cl*):ﬁ 1 =0.1.2....2n—-1

To make the derivation more understandable, we consider
the particular case

1 1 T
[t e~ 3 wyf(z,)
=1
We follow the same pattern as used ear

The case n = 1. We want a formula

1 31
wif(e) ~ [ @3f(z)de

The weight wy and the node x: are to be so chosen that the
formula is exact for polynomials of as large a degree as
possible. Choosing f (x) = 1, we have
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13
w1 :/ xIdr =
0

Choosing f (x) = x, we have

B [

wiry =

=

%

=

P

=

Il
~Jlw

£ =
Thus

./[}1 I%f(l) dx == %f (%)

has degree of precision 1.

The case n = 2. We want a forrriula
il ] 1 il
wif(e) + waf(eg) ~ [ e3f(2)da

The weights w1, w, and the nodes x1, X2 are to be so chosen
that the formula is exact for polynomials of as large a degree
as possible. We determine them by requiring equality for

f(@) =1,2,2% 2
This leads to the system
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u —wa =

W + WoTp =

Lult% + H-'gﬁ?% =

1
-wlmf — u_lza‘?g = :333;'3 dr = %
The solution is
R 3 _ 1 3
r1 = 15 — g sart(35), x> = 73 + g sart(35)

3 3 3
w1 = § — 395 59rt(35), wp = 3+ 3555qrt(35)

Numerically,

v1 = 2654117024, w5 = 8115113746
wy = 3297238792, w, = .4202761208

The formula

Ll m%f{:t‘) dz &~ wy f(x1) + waf(z2) )

has degree of precision 3.

EXAMPLE
Consider evaluating the integral
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1 1
f x3 cosx dx (5)
0
In applying (4), we take f (x) = cosx. Then
wlf(:c?l) + wgf(:lfg) = 0.6074977951
The true answer is

1
f 23 cos z dz = 0.6076257393
0

and our numerical answer is in error by E>=.000128.

This is quite a good answer involving very little
computational effort (once the formula has been
determined). In contrast, the trapezoidal and Simpson rules
applied to (5) would converge very slowly because the first
derivative of the integrand is singular at the origin.

6.4 Numerical approximation of Singular integrals

sonds il as T 3asa 13 SINgular Jias Jolesdl o eeny
s i Jalemtl Blad 5l Jleadsl idag dlelent| UIall geay o (1)

321



Numerical Integration

Isdx '[2 ax Itanxdx

1S dguzma ye Jolsaddl &Ua_n 9= Of (@)

+oo (X +o  dX U
I —, j - | e dx
Lox® s=14x° 7=

Jins yu Jolemill o (oyias ol Jaleaill Gl dusaall 3kl

1ol ga=w T non singular

b se dgallal dlalest] Wl

At 3 Jolatal- 2 finite igue- 1

2 ks ey Ul s 5y Al Jolsaidl Blas 2 el

Sladl (s

sl e ssmn Jalesill gl L 5 dugiie Jolesnll 5,78 (2)
jaf (x)dx, a,beR

o] G & Jas yed Jalemd J) Jias JalEml Jagmd Yo e 5
Jolemill Lo ,55 ded lewsd Dosaall 3kl

iliae yue Malead J dlias e el oo 3k 4000 Sl Legd

Jladi¥f dolsh euld Jloudl Jolenil- 2- 6
Uy ey « X @b Gaay die 3agume e dalsal) Dl (9 Lgudg
PRI Byl usly Il Y1 AL asd
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u.é.i.ﬁ.i:lj‘ - 1
: (1))

| J‘ 1COSX

s X =t sl aluioled X =0 e Jies Jolentll 1 : Jadl

Ol

2
I :FCOSt 2tdt :Zj.lcostzdt
0t 0

Jine il SlolEs gy

ook Aledaie alazmal - 2
Ie! Jose OF yobs Laledia aluzin Eaay oo 5 :(2) L

| — 1sinde
__[0 X Jale=ut!
O a2 5sbd Ueabiatia aluzicld X =0 Lie Jins Jaleaill 1aa s ]l
)k 1X2k—1
sin(x ) =
kZ:; (2k —1)!

ol
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15in x 11 & (-1) T x
I :jo dx —Z( dx

X Ox & (2k —1)!

1& (—1)k_1 x 2k—2

-y

Syl Jalemutl- 3
Jelemll Idlue| U15] 2 &5l Jalemil ansial : (3) L
1COS X

| = dx

0 X
s Gyl Jalsall aluzicls X =0 sie Jine Jalesill aa ol
Ol

1
X 2 COS X

= —J‘JZ\/X_.(—sinx)dx

2 0
=2c0sl- 2];2«/x_sin xXax

Jias pue Malems sa9
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=il (Q_J_uﬁj ‘a}_\i 4.»\3. @LE.U\ JESK I W idasy il (5] - 4

o Jealaidl @ e ¥ ddady wie oy JI Blaill @eudy (bl
:a..x}u.\.r_ﬁaﬁdé
rwf (x)dx = f f (x )dx +J'+°Of (x )dx

—00

[ ()de = [°F (x)dx + [ F (), f )R

U.E:;ES:-A..LCC GIEN

sagdome yid 5,18 Lo cdlalesut) 2- 2- 6
LAl Y Jolesull 5)5s (9t ddg

© e
| :_[0 N +1dx Jels=ill el L35 ol e oo sy

X =—In(t) ot =€ asaill anxiad : Jd

-1 1 dt
—In(t) 7 g 0t 01— t2In(t)

limt In(t 0] o G
t—0 () Ol >3

I—"—.O

Jins i Jalemll 1ia ola

O s (o @ A Jalssal) el Glead sus: ()]l

Lt
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J+OO
\/_ (x +1)
o Lolis sgame yud FLaill 0¥ Yol somuread Jine Lis Jalesil : ol
Jeleatll @audh CBgan Galaadl G yaill cya LU S (6350 Jana¥1 o

Sle Jamia X =1 e onbyad

j\/_x+1 j\/_x+l j\/_x+1)
sl 250 Ll sgumdl Ll &y Jalemill Jad

=u?, dx =2udu
OsSa8

1 du +o (u
:Zjou2+1+2j1 u?+1

J'+oo dX
0 \/x_(x +1)
fayae tANTTU Lo crdadl 2 dlalent] Alall dpwsnall U1ad) o Gun

e Y 1] @3 03 ] st Bls <0,1and oo uie
J BIE —_——al

Gy e Jgamll Lgalazial a30U1 N daladll sue ,u.j (6)JLw
Jalesnlt
jlsmxdx
0 X
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5x107° i3y o ymill dud sueld alaial,
:J=d!
- . . sinx .
9 Jime Julemitl 10ga X =0 mwﬂef(x):T ol Cos

x® x° x’
SINX =X ——+——"—+.......
31 51 71
B 2 4 6
foy=2MX _ X X X
X 31 51 71
3 5
frx)yo X A
6 5 71
2 4
Frx)= -ty d0X° 6Gx " .
3 le2e3ede5 Jle22e3e4e5eGe7
1 x? x*
e AT
3 10 168
O0<X <1 iy
1 x2 x4
f )| ==+ 32— X 4 .
3 10 168
1{4 1
|7(0)| = 5=0.3333 jiw X =0 wcuis
ol azs X =1 ey
\f%Dk{—1+£L——i—+ .....
3 10 168
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. 1
a3l a3 < S = 0.5 L tasm o3 deiall s o) s s
o Lol Lo, pa dandd) uliat

1
f” -
£ 700] <

Ll joudl g9 Al
b_ ”
RI=E=2n2|f ")
h? 1 h?

<S—e—=—
12 2 24
5x107° o Lsllall DA G o g
2

%35 x107° =h?<24(5)x10° =120x10°°

~.h <1.095%x10°°
hob-a 1 .1 9087
n n h
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L 3] rmay s o @5 A Jalssall Plie | Gl sas (D
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L[4 dx . o [nx
Ol o (i1 =], S
3d_X . +00 X
(iii) O[x—l]% (iv) IO (1—-x )e™dx

Al Jlas) a3l (2)
X3 +1, 0<x <0.1
f (x)=141.001+0.03(x —0.1)+0.3(x —0.1)* +2(x —0.1)* 0.1<x <0.2
1.009+0.15(x —0.2) +0.9(x —0.2)* +2(x —0.2)* 0.2<x <0.3

03
Ala US4 adsidl) (Rl Taa aa J'O f (x)dx

O] Joja F 5ok Ml aluzian¥ fmay Cayss sy (3)

el
J‘”/Z cos xdx dx
0 K

Lsie e o &

6.5 Multiple Integrals
The techniques discussed in the previous sections can be
modified in a straightforward manner for use in the
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approximation of multiple integrals. Let us first consider
The double integral

f fx,»dA,

R
where R is a rectangular region in the plane:
R={(xyla<xz<bcc<yc=<d)
for some constant and b, ¢, and d (see Figure ). We will
employ the Composite Simpson's rule to illustrate the
approximation technique. although any other approximation
formula could be used without major modifications.

b

Suppose that even integers n and m are chosen to determine
the step sizes h = (b -a)/nand k = (d - c)/m. We first write
the double integral as an iterated integral.
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[[ s dA=[: ([cdf(x,y)dy) dr,

R

and use the Composite Simpson's rule to approximate

d
[ fix,y)dy,

treating x as a constant. Letyj =c + jk for eachj=0,1,.. .
.m. Then

(m/2)~1 m/2

a k
/ f('x’ Y) dy = —3- [f(x! )’0) +2 Z f(x¢ )’Zj) +4Zf(xv ij—l) + f(x1 )’m)jl

i=1 j=1

d= ok
180 ayt
for some, p in (c, d). Thus

b pd k b (m/2)-1 .p
//f(x,y)dydx=§[f fyoydx+2 Y / f(x, y2;) dx
a c a Jj=1 a

m/2

b b
+4) f £x,y2j-1) dx + j f(x,ym)dx]
j=1v4 a

(d—c)k* P8 flx, W)
180 /a ayt
Composite Simpson's rule is now employed on each integral
in this equation. Let
Xi =a + ih for each 1 =0,1,2.. ,n. Then for each j=0,1,... ,m,
we have

dx.

b h (n/2)-1 ny2
/ faypde=3 [f(xo, Y2 Y Fla y)+4) fOmior ¥) + flom, yj)}
a i=1 i=l1
b-ayp*f
BT
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for some 1’:" in (a, b). The resulting approximation has the
form
(n/2)—

f / flx, y)dde~—l[f(xO yo) +2 Z f(xi, yo)

n/2
+4Zf(xz,'_1,)’0) + f (%, YO):,

(m/2)-1 (mj2)-1 (n/2)-1
+2[ Z [, y2j) +2 Z Y Floyy)
j=1 i=1
/-1 n/2 (m/2)-1
+4 Z Zf(th 1,)’2])"' Z fxn,YZj]
j=1 =1
m/2 m/2 (n/2)~1
+4[Zf (X0, Y2~ 1)+2Z Z [, y2j-1)
Jj=1 i=1
m/2 nj2 m/2
+4)° Y f Gy, vy 1)+Zf (%Xn, y2y-1 }
j=1 i=1
(n/2)-1 nj2
+ [f(x(),ym)+2 Y faiym)+4) f(aict, yn)
i=1 i=1

|

The error term. E. is given by
—k(b — ) [ f o, yo) | TN 3 f By, ¥a)) | 4R B f a1 ya)
E= [ +2 ) == a4y

4
540 x4 p Ix = x4

3 fem,ym) ] d—0k* [P 8*f(x, )
+ Py ]— 180 ‘/a P dx.
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If 8*f/8x*is continuous. the Intermediate Value Theorem
and Mean Value Theorem for Integrals can be used to show
that the error formula can be simplified to
—k(b — a)h4 a4 f o (d — o)k* _[b 3 f(x, 1)
=My | — dx,
540 180 a ay*

for some (ﬁ! m in R.If 34f/8y4 is also

continuous, the Weighted Mean Value Theorem for
Integrals implies that

b 84 4
[ TLLE 4, (b-a)——{(n ),
a y

E =

for some (7, 4) in R. Since m = (d - c)/k, the error term
has the form
—k(b — a)h* [ a4f(_ _] _@-ob-a, 84f -

E =
540 180 3y (7, )

or

_ d-ob—a) o 2V
E=- T30 [ 7 (1,0 +k y(n u)}

for some (77, v) and (7, fi) in R.
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Example:
Evaluate the error when simpson' s rule is used to

approximate the double integral
bl "
S } 6 xAonX

With n=m=4

3 ; _’J]J
y-

)E)(:*EK ﬁxxaf

J—X
Pz~ B s
%E(X’a __9—; gﬁ(?“;D
R Q . D 9%
X/EQ‘CO,%A 9

-+ Ose 'K'\:CL?CZO.\A\CL\_ v da Siand
e
AQX S gcﬁ‘-:‘f\,} é\\s A . ==

=
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EXAM PLE 1 The Composite Simpson's rule applied to
approximate

20 ,1.5
f f In(x +2y)dy dx,
1.4 J1.0

with n = 4 and m = 2 uses the step sizes h = 0.15 and k =
0.25. The region of integration R is shown in Figure
together with the nodes (xi, y;) far i =0, 1,234 and j =0
1,2, and the coefficients wi,j of f(xi,yi) = In(x; + 2y;) in the
sum.
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YA
1 4 2 4 1
1.50 +
4 16 |8 16 |4
1.25 +
1 4 2 4 1
1.00 +
j | . : —
140 155 170 185 200 *

The approximation is

20 15 0.15)(0.25) ¢t &
/ / In(x +2y) dy dx %E—)é(—)zzwi,j In(x; +2y;)
1.4 1.0

i=0 j=0
= 0.4295524387.
Since
3 f —6 34 f -96
PR x, = —-——m——mm ———— , e -—-—,
dx* Y) (x +2y)4 ay* (. ¥) (x +2y)4

and the maximum value of ?;1”12_):?‘ on K occurs at (1.4, 1.0),

the error is bounded by

(0.5)(0.6) 4 4 96 :l
E 0.15 0.25
Bl = 180 [( ) (xr,'ﬁi‘;e (x +2y)* +( ) (xr,l;?iil(R (x +2y)*
< 4.72 x 1078,
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The actual value of the integral to 10 decimal places is

2.0 p1.5
f [ In(x +2y) dy dx = 0.42955452635,
14 J10

so the approximation is accurate to within 2.1 X 10°°.

The same techniques can be applied for the approximation
of triple integrals. as well as higher integrals for functions of
more than three variables. The number of functional
evaluations required for the approximation is the product of
the number required when the method is applied to each
variable.

To reduce the number of functional evaluations. more
efficient methods such as Gaussian quadrature, Romberg
integration, or Adaptive gquadrature can be incorporated in
place of Simpson's formula. The following example
illustrates the use of Gaussian quadrature for the integral
considered in Example 1.

EXAM PLE 2
Consider the double integral given in Example 1. Before
employing a Gaussian quadrature technique to approximate
this integral, we must transform the region of integration
R={(x,1)|14=xr=20, 10=y=1.5}
into
R={uv| -1=u=<1, -1=sv=sl}

The linear transformations that accomplish this are
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1

= 2x—14—20), and v= @2y — 1.0 — 1.5).
b v et I A e :

Employing this change of variables gives an integral on
which Gaussian quadrature can be applied:

20 15 "
/ / In(x + 2y) dv dx = 0.075 / / In(0.3u + 0.5v + 4.2y dv du.

4 J1.0 ol =

The Gaussian quadrature formula for n = 3 in both u and v
requires that we use the nodes

Uy =wv = rya = 1, Hp =W =nmn) = -0.7745966692,

and w = v = riy = 0.7745966692.

The associated weights are found in Table 4.3 (Section 4.5)
to be C3.2 =0.88 and ¢3.1 = ¢3.3 = 0.55,s0

20

/- ' / In(x +2y) dy dx = 0.075 5" S e3¢5, In(037s; + 0573 + 4.2)
J1.4 ) i=| j=I

= (.4295545313.
Even though this result requires only 9 functional
evaluations compared to 15 for
the Composite Simpson's rule considered in Example I, the
result is accurate to within 4.8 X 10°, compared to an
accuracy of only 2X10®forSimpson's rule.

The use of approximation methods for double integrals is
not limited to integrals with rectangular regions of
integration. The techniques previously discussed can be
modified to approximate double integrals with variable
inner limits-that is. integrals of the form
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b pdix)

f flx,¥) dy dx.
d olx)

For this type of integral we begin as before by applying

Simpson's Composite rule to integrate with respect to both

variables. The step size for the variable x is h = (b - a)/2, but

the step size k(x) for y varies with x (see Figure 4.16 on

page 152):

d(x) = c(x)

-

k(x) =
Consequently,

b d(x) b ki g
. / / f(x,y)dy dx = / "T”[f(.r,d.r)) + 4 f(x,c(x) + k(x)) + f(x,d(x))] dx
a clx) a

3iilh -3

J

dk(a + h ;
- (a3 )[f(a + h,c(a+ h)) + 4f(a + h,cla + h)

h{k
~ = { -ii)[f(a,c(a)) + 4 f(a, c(a) + k(a)) + f(a,d(a))]

+ k(a + h)) + f(a + h,d(a + h))]

+ 1L:))[f(b, c(B)) + 4£(b, c(b) + k(b)) + j'(b,d(b))l}~
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d(a) + y = d(x)
ab) T
k(a) .
N
a) T |
= o(x)
ka + h)/: A E
; a -14- h l‘)

=Y

345

Chapter 6



Numerical Integration

z=f(x,y)

-
|
!
/|

(b)

The program DINTGLA44 applies the Composite Simpson's
rule to a double integral in this form and is also appropriate.
of course. when c(x) == c and d(x) == d.

To apply Gaussian quadrarure to the double integral first
requires transforming, for

each x in [a,b1, the interval [c(x),d(X)] to [-1, t] and then
applying Gaussian quadrature. This results in the formula
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/ / f(x,y)dy dx
Ja Jelx)

?d(x) = c(x) Y’L [ (d(x) = c(xX))rn; +d(x) + c(x)
aQ

——ee ] 4,
/

-

where, as before, the roots "=/ and coefficients “*/ come
from Table 4.6. Now the interval [a,b] is transformed to [-
1,1], and Gaussian quadrature is applied to approximate the
integral on the right side of this equation. The program
DGQINT45 uses this technique

EXAMPLE
Applying Simpson's double integral program DINTGL44
withn=m =10 to

IIll.h:':c:': F': L £k

I, j,1 &' dy dx
requires 121 evaluations of the function f(x,y) = ¢ and
produces the approximation 0.0333054, accurate to nearly 7
decimal places, to the volume of the solid shown in Figure
4.17. Applying the Gaussian quadrature program
DGQINT45 with n = m. = .5 requires only 25 function
evaluations and gives the approximation, 0.3330556611.
which IS accurate . . . . to 11 decimal places.
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2

14 (01,001, ¢(0.5,0.25, ")
. N

EXERCISE SET 4.7
1. Use Composite Simpson’s rule for double integrals with n[1=m=4

to approximate the following double integrals. Compare the results to
the exact answer

25 p14 05,05
a. [ f xy*dy dx b. f f e dydx
21 J12 0 Jo

22 p2x 15 px
c / (x*+y') dy dx d. f f (2 + /) dy dx
2 x 1 Jo
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2- Find the smallest values for n = m so that Composite Simpson’s

can be used to approximate the integrals in Exercise 1 to within 10 of
the actual value.

3. Use Algorithm 44 with () » = 4, m = 8, (ii))n = 8, m = 4,and (ii) n = m = 6 to
approximate the following double integrals, and compare the results to the exact answers.

/ / (2ysinx + cos? x) dy dx b. /flnxydydx
Sinx

f/ (x> +y*) dy dx ff (O +x°) dydx
/fcosxdydx f/cosydvdx

n/4 sinx 1 3m/2 A4
dy dx h. f (ysinx + xcosy)dy dx
L /(; \/1 - yZ — 0

3. Composite Simpson’s rule first with n = 4 and m = &, then with n =8 and m = 4,

and finally with n = m = 6 gives the following.
a. 05119875, 05118533, 0.5118722
b. 1.718857, 1.718220, 1.718385
c. 1.001953, 1.000122, 1.000386
d. 0.7838542, 0.7833659, 0.7834362
e. —1.985611, —1.999182, —1.997353
f. 2.004596, 2.000879, 2.000980

0.3084277, 0.3084562, 0.3084323

o
at

h. —22.061612, —19.85408, —20.14117
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[6] Find the smallest values for n = m so that Composite
Simpson’s rule for double integrals can be used to
approximate the integral

to within 10-6 of the actual value.
Answer

Since n=m, so h=k,

h=(b-a)/n=(1/2n)
n=4
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