
South Valley University

Faculty of Commerce

Statistical Computer
Programming

2022-2023

Prepared By

Dr\ Saddam Hussein Ahmed

 PhD- University of Lincoln- UK

2

INTRODUCTION

Computer programming were and still a major milestone in

the last era of the human history. It changed the human life

for better by minimizing the effort to do the most complex and

timely jobs in a matter of seconds or even less.

The knowledge of computer programming is essential to

everyone, specially ‘students’ who wants to build their skills

for a better chance in the jobs market upon their graduation.

Developing a program involves a series of steps. The

programmer defines a problem, plans a solution, codes the

program, tests the program and, finally, documents the

program. Usually, the programmer defines what he knows

and the objective, selects a program to use, debugs the

program in stages after completion to ensure no errors are

introduced and then documents the design, development and

testing of the program. With the ever-changing face of

computer technology, programming is an exciting and always

challenging environment that few programmers ever dream

of leaving. Furthermore, programming is a platform to

showcase creativity, especially in problem-solving and

entertainment. Programming develops new business ideas to

resolve a particular problem.

This course starts with a gentle introduction to learn

programming which is designing prototypes using the flow

chart model. This helps the student to understand the various

3

programming concepts. From an applicability perspective,

this course will study computer programming using one of

the most popular languages ‘C++’. However, the course will

be driven by the commercial and statistical needs to enrich

your knowledge and support your future commercial career.

We will also study the ‘MATLAB’ programming platform and

the SPSS software. Both are statistical software’s that offers

wide range of ready available tools to easily solve the various

statistical problems that would further polish your thinking

and skills.

Dr\ Saddam Hussein Ahmed

Associate Professor

PhD- University of Lincoln- UK

4

Table of Contents

Part 1
Chapter 1 Algorithm and Flow Chart 5

Part 2
Chapter 1 C++ Programming Basics 25

Chapter 2 Using Microsoft visual studio. 59

Chapter 3 Loops and Decisions in C++. 77

Part 3
Chapter 1 MATLAB programming: An introduction 142

Chapter 2 Plotting in MATLAB 142

Chapter 3 Vectors and matrices in MATLAB 150

Chapter 4 Statistical MATLAB Applications 170

Part 4
Chapter 1 An introduction to SPSS 189

Previous Exams 147

References 130

Communication with Lecturer 251

5

Part 1

Chapter 1
Algorithm and Flow Chart

6

An algorithm is a set of instructions, sometimes called a procedure or a
function that is used to perform a certain task. This can be a simple process,
such as adding two numbers together, or a complex function, such as adding
effects to an image. For example, in order to sharpen a digital photo, the
algorithm would need to process each pixel in the image and determine
which ones to change and how much to change them in order to make the
image look sharper. Most computer programmers spend a large percentage
of their time creating algorithms. (The rest of their time is spent debugging
the algorithms that do not work properly.) The goal is to create efficient
algorithms that do not waste more computer resources (such as RAM and
CPU time) than necessary. This can be difficult, because an algorithm that
performs well on one set of data may perform poorly on other data. As you
might guess, poorly written algorithms can cause programs to run slowly
and even crash. Therefore, software updates are often introduced, touting
“improved stability and performance”. While this sounds impressive, it also
means that the algorithms in the previous versions of the software were not
written as well as they could have been.

An algorithm generally takes some input, carries out a number of effective
steps in a finite Given a list of numbers, you can easily order them from
largest to smallest with the simple instruction “Sort these numbers.” A
computer, however, needs more detail to sort numbers. It must be told to
search for the smallest number, how to find the smallest number, how to
compare numbers together, etc. The operation “Sort these numbers” is
ambiguous to a computer because the computer has no basic operations
for sorting. Basic operations used for writing algorithms are known as
primitive operations or primitives. When an algorithm is written in
computer primitives, then the algorithm is unambiguous and the computer
can execute it.

7

Algorithms should be composed of a finite number of operations and they
should complete their execution in a finite amount of time. Suppose we
wanted to write an algorithm to print all the integers greater than 1. Our
steps might look something like this:

1. Print the number

2. Print the number 5

3. Print the number 7

While our algorithm seems to be pretty clear, we have two problems. First,
the algorithm must have an infinite number of steps because there are an
infinite number of integers greater than one. Second, the algorithm will run
forever trying to count to infinity. These problems violate our definition that
an algorithm must halt in a finite amount of time. Every algorithm must
reach some operation that tells it to stop.

Advantages and Disadvantages of Algorithms

Advantages The use of algorithms provides a number of advantages. One
of these advantages is in the development of the procedure itself, which
involves identification of the processes, major decision points, and variables
necessary to solve the problem. Developing an algorithm allows and even
forces examination of the solution process in a rational manner.
Identification of the processes and decision points reduces the task into a
series of smaller steps of more manageable size. Problems that would be
difficult or impossible to solve wholesale can be approached as a series of
small, solvable subproblems. The required specification aids in the
identification and reduction of subconscious biases. By using an algorithm,
decision-making becomes a more rational process. In additional to making
the process more rational, use of an algorithm will make the process more
efficient and more consistent. Efficiency is an inherent result of the analysis

8

and specification process. Consistency comes from both the use of the same
specified process and increased skill in applying the process. An algorithm
serves as a mnemonic device and helps ensure that variables or parts of the
problem are not ignored. Presenting the solution process as an algorithm
allows more precise communication. Finally, separation of the procedure
steps facilitates division of labor and development of expertise.

A final benefit of the use of an algorithm comes from the improvement it
makes possible. If the problem solver does not know what was done, he or
she will not know what was done wrong. As time goes by and results are
compared with goals, the existence of a specified solution process allows
identification of weaknesses and errors in the process. Reduction of a task
to a specified set of steps or algorithm is an important part of analysis,
control, and evaluation. Disadvantages One disadvantage of algorithms is
that they always terminate, which means there are some computational
procedures—occasionally even useful ones—which are not algorithms.
Furthermore, all computational procedures, whether they terminate or not,
can only give computable results, so you cannot, for example, design a
program which determines a busy beaver number more quickly than could
be done by actually running the associated types of turing machines.

Disadvantages One disadvantage of algorithms is that they always
terminate, which means there are some computational procedures—
occasionally even useful ones—which are not algorithms. Furthermore, all
computational procedures, whether they terminate or not, can only give
computable results, so you cannot, for example, design a program which
determines a busy beaver number more quickly than could be done by
actually running the associated types of turing machines.

9

FLOW CHART

A flow chart, or flow diagram, is a graphical representation of a process or
system that details the sequencing of steps required to create output. A
typical flow chart uses a set of basic symbols to represent various functions,
and shows the sequence and interconnection of functions with lines and
arrows. Flow charts can be used to document virtually any type of business
system, from the movement of materials through machinery in a
manufacturing operation to the flow of applicant information through the
hiring process in a human resources department. 86 Computer Basics with
Office Automation.

Each flow chart is concerned with one particular process or system. It begins
with the input of data or materials into the system and traces all the
procedures needed to convert the input into its final output form.
Specialized flow chart symbols show the processes that take place, the
actions that are performed in each step, and the relationship between
various steps. Flow charts can include different levels of detail as needed,
from a high-level overview of an entire system to a detailed diagram of one
component process within a larger system. In any case, the flow chart shows
the overall structure of the process or system, traces the flow of information
and work through it, and highlights key processing and decision points.

Flow charts are an important tool for the improvement of processes. By
providing a graphical representation, they help project teams to identify the
different elements of a process and understand the interrelationships
among the various steps. Flow charts may also be used to gather
information and data about a process as an aid to decision-making or
performance evaluation. For example, the owner of a small advertising
agency who hopes to reduce the time involved in creating a print ad might
be able to use a flow chart of the process to identify and eliminate

10

unnecessary steps. Though flow charts are relatively old design tools, they
remain popular among computer programmers working on systems analysis
and design. In recent years, many software programs have been developed
to assist businesspeople in creating flow charts.

Constructing Flow Charts

Flow charts typically utilize specialized symbols. Some of the main symbols
that are used to construct flow charts include:

 A round-edged rectangle to represent starting and ending activities,
which are sometimes referred to as terminal activities.

 A rectangle to represent an activity or step.
 Each step or activity within a process is indicated by a single rectangle,

which is known as an activity or process symbol.
 A diamond to signify a decision point. The question to be answered or

decision to be made is written inside the diamond, which is known as
a decision symbol. The answer determines the path that will be taken
as a next step.

 Flow lines show the progression or transition from one step to
another.

Constructing a flow chart involves the following main steps: (1) Define the
process and identify the scope of the flow diagram; (2) Identify project team
members that are to be involved in the construction of the process flow
diagram; (3) Define the different steps involved in the process and the
interrelationships between the different steps (all team members should
help develop and agree upon the different steps for the process); (4) Finalize
the diagram, involving other concerned individuals as needed and making
any modifications necessary; and (5) Use the flow diagram and continuously
update it as needed.

11

Flow Chart EXAMPLES

EXAMPLE (1)

Draw a flow chart to print your name 5 times.

12

Start

Print Zeyad

Print Zeyad

PRINT Zeyad

END

Print Zeyad

Print Zeyad

13

EXAMPLE (2)

Draw a flow chart to find the summation of the numbers from 1 to 50.

Start

T=0

SS=0

STOP

YES

I<=50 PRINT T, SS

T=T+I
SS=SS+I2

I= I+1

NO

END

14

EXAMPLE (3)
Draw a flow chart to find the area and circumference of a circle.

Start

Read R

A=3.14 x R2

C=2 x 3.14 x R

PRINT A, C

END

15

EXAMPLE (4)
Draw a flow chart to find the mean and standard deviation for a group of N
numbers.

Start

INPUT P

SUMP=0

SUMP2=0

LOOP I,1, N

SUMP=SUMP+ P

SUMP2=SUMP2+ P2

NEXT

MEAN= SUMP /N

SD=√((SUMP2-SUMP)/N)

PRINT MEAN, SD

END

16

EXAMPLE (5)
Draw a flow chart to find the compound interest on a depositor money,
known that the interest is 9%.

Suppose that the original amount of money is M.

The number of years is N.

The interest I=M× N× 9%.

I = M × N × 0.09
S = M + I

Print M,I,S

Read M,N

END

START

17

EXAMPLE (6)
Draw a flow chart to find the sum of five different number pairs, using the
loops technique.

Start

INPUT A, B

LOOP I, 1, 5

SUM= A+B

NEXT

PRINT SUM

END

18

EXAMPLE (7)
Draw a flow chart to find the bigger value among two different numbers A
and B.

Start

Read A, B

B > Max ?

No

Yes

Max = A

Max = B

Print Max

END

19

EXAMPLE (8)
A certain company would like to buy a group of new computers. A couple

of suppliers presented some offers with specific prices. Draw a flow chart

that find the offer with the minimum price.

Presume that the offers are N, and they are listed as follows:

X(1),

X(2),

X(3),

X(4),

X(5),

X(6),

………..,

X(N)

Suppose that the minimum offer price is XMIN

20

YES

NO

Start

INPUT X(I)

LOOP I, 1, N

XMIN=X(1)

NEXT

PRINT XMIN

END

READ N

NEXT

LOOP I, 2 , N

XMIN
< X(I)

XMIN=X(I)

21

EXAMPLE (9)

Draw a flow chart that finds the minimum of two numbers.

Start

Read A, B

B > Max ?

No

Yes

Max = A

Max = B

Print Max

END

22

Another solution:

Start

Read A, B

A >= B ?
No Yes

Max = A

Print Max

END

Max = B

23

Exercises

1- Draw a flow chart that implements the following function:









0

0
)(

xifx

xifx
xxAbs

2- Draw a flow chart that implements a program that reads an input
number N and examines if the number is odd or even.

3- Draw a flow chart that implements the following function:

𝑓(𝑥) = ൝
 2𝑋ଶ + 3 𝑋 > 0
𝑋 + 8 𝑋 = 0
3𝑋 − 9 𝑋 < 0

4- Draw a flow chart that fin the odd numbers between 1 and 500.

5- Draw a flow chart to determine if a given number is prime or not.

6- Draw a flow chart that finds the solution of a quadratic equation.

24

Exam question 2019

25

Part 2

Chapter 1

C++ Programming Basics

26

What are computer programming languages?

A vocabulary and set of grammatical rules for instructing a computer to
perform specific tasks. The term programming language usually refers to
high-level languages, such as BASIC, C, C++, COBOL, FORTRAN, Ada, and
Pascal. Each language has a unique set of keywords (words that it
understands) and a special syntax for organizing program instructions.

High-level programming languages, while simple compared to human
languages, are more complex than the languages the computer actually
understands, called machine languages. Each different type of CPU has its
own unique machine language.

Lying between machine languages and high-level languages are languages
called assembly languages. Assembly languages are similar to machine
languages, but they are much easier to program in because they allow a
programmer to substitute names for numbers. Machine languages consist
of numbers only.

Lying above high-level languages are languages called fourth-generation
languages (usually abbreviated 4GL). 4GLs are far removed from machine
languages and represent the class of computer languages closest to human
languages.

Regardless of what language you use, you eventually need to convert your
program into machine language so that the computer can understand it.
There are two ways to do this:

 Compile the program
 Interpret the program

The question of which language is best is one that consumes a lot of time
and energy among computer professionals. Every language has its strengths
and weaknesses. For example, FORTRAN is a particularly good language for

27

processing numerical data, but it does not lend itself very well to organizing
large programs. Pascal is very good for writing well-structured and readable
programs, but it is not as flexible as the C programming language. C++
embodies powerful object-oriented features, but it is complex and difficult
to learn.

The choice of which language to use depends on the type of computer the
program is to run on, what sort of program it is, and the expertise of the
programmer. However, in this course we will target C++ programming
language.

History of C++ :

C++ is a general-purpose programming language created by Bjarne
Stroustrup as an extension of the C programming language, or "C with
Classes". The language has expanded significantly over time, and modern
C++ now has object-oriented, generic, and functional features in addition to
facilities for low-level memory manipulation. It is almost always
implemented as a compiled language, and many vendors provide C++
compilers, including the Free Software Foundation, LLVM, Microsoft, Intel,
Oracle, and IBM, so it is available on many platforms.

C++ was designed with a bias toward system programming and embedded,
resource-constrained software and large systems, with performance,
efficiency, and flexibility of use as its design highlights. C++ has also been
found useful in many other contexts, with key strengths being software
infrastructure and resource-constrained applications, including desktop
applications, video games, servers (e.g. e-commerce, Web search, or SQL
servers), and performance-critical applications (e.g. telephone switches or
space probes).

28

C++ is standardized by the International Organization for Standardization
(ISO), with the latest standard version ratified and published by ISO in
December 2020 as ISO/IEC 14882:2020 (informally known as C++20). The
C++ programming language was initially standardized in 1998 as ISO/IEC
14882:1998, which was then amended by the C++03, C++11, C++14, and
C++17 standards. The current C++20 standard supersedes these with new
features and an enlarged standard library. Before the initial standardization
in 1998, C++ was developed by Danish computer scientist Bjarne Stroustrup
at Bell Labs since 1979 as an extension of the C language; he wanted an
efficient and flexible language similar to C that also provided high-level
features for program organization. Since 2012, C++ is on a three-year
release schedule, with C++23 the next planned standard.

Your first C++ program

Before you can develop even the most basic programmes in any language,
you must first learn some fundamentals. Three such fundamentals are
introduced in this chapter: basic programme building, variables, and
input/output (I/O). It also covers comments, arithmetic operators, the
increment operator, data conversion, and library functions, among other
language features.

Although these topics are not theoretically tough, you may find that C++'s
style is more austere than, say, BASIC or Pascal. A C++ programme may look
more like a mathematical formula than a computer programme until you
discover what it's all about. This isn't something to be concerned about. As
you become more comfortable with C++, you'll notice that it appears less
intimidating, whereas other languages appear too complicated and
verbose.

29

Let us look at a very simple C++ program called BASIC.cpp. It simply prints a
sentence on the screen. Here it is:

1
2
3
4
5
6
7
8
9

#include <iostream>
//BASIC.cpp

using namespace std;
int main()
{

cout<< “HELLO Third Year Students \n”;
return 0;

}

Despite its small size, this program demonstrates a great deal about the
construction of C++ programs. Let us examine it in detail.

Functions in C++ Programs

Functions are one of the fundamental building blocks of C++. The BASIC
program consists almost entirely of a single function called main(). The only
parts of this program that are not part of the function are the first two
lines—the ones that start with #include and using.

Function Name

A function is distinguished by the parenthesis that follow the word main.
The compiler would assume that main refers to a variable or another
programme element without the parenthesis. We'll use the same
convention as C++ when discussing functions in the text: Following the

30

function name, we'll use parentheses. The term int before the function
name denotes that the function's return value is of the type int.

Function body is always delimited with Braces

A function's body is encircled by braces (sometimes called curly brackets).
In several languages, these braces serve the same purpose as the BEGIN and
END keywords: They are used to encircle or delimit a group of programme
statements. This pair of braces must be used around the function body in
every function. The function body in this example contains only two
statements: the line beginning with cout and the line beginning with return.
A function body, on the other hand, can include a large number of
statements.

main() must be in every program

The first statement performed when you run a C++ programme is at the
start of a function called main(). (At least, that's what the console mode
programmes in this book are like.) Although the programme may have a
large number of functions, classes, and other programme pieces, control is
always passed to main on startup. If you don't have a function called main()
in your programme, you'll get an error when you run it. As we'll see later,
main() in most C++ programmes invokes member functions in various
objects to carry out the program's actual job. Other standalone functions
may be called from the main() function.

There exist two statements in the BASIC program: the line

cout << “Hello Third Year Students \n”;

and the return statement

31

return 0;

These are called program statements. The first statement tells the
computer to display the quoted phrase. Most statements tell the computer
to do something. In this respect, statements in C++ are similar to statements
in other languages.

The statement comes to a close with a semicolon. This is an important
component of the syntax, yet it's easy to overlook. The end of a statement
is signalled by the end of the line in certain languages, but not in C++. If you
omit the semicolon, the compiler will usually give you an error message.

Terminating a program

return 0; is the last statement in the function body. This instructs main() to
return 0 to the caller, which in this case is the operating system or compiler
(normal program termination) .

Programming and Whitespace

The end of a line isn't significant to a C++ compiler, as we previously stated.
Whitespace is virtually completely ignored by the compiler. Spaces, carriage
returns, linefeeds, tabs, vertical tabs, and form feeds are all examples of
whitespace. The compiler is oblivious to these characters. You can insert
many statements on a single line, separated by any number of spaces or
tabs, or run a statement across two or more lines. To the compiler, it's all
the same. As a result, the BASIC programme may be written as follows:

1

2

3

4

5

#include <iostream>
using
namespace std;
int main () { cout

<<
“Hello Third Year Students \n”

32

6

7

; return
0;}

There are several exceptions to the rule that whitespace is invisible to the
compiler. The first line of the program, starting with #include, is a pre-
processor directive, which must be written on one line. Also, string
constants, such as “Every age has a language of its own”, cannot be broken
into separate lines.

Printing Output Using cout

As you have seen, the statement:

cout << “Hello Third Year Students \n”;

causes the phrase in quotation marks to be displayed on the screen. The
identifier cout (pronounced “C out”) is actually an object. It is predefined in
C++ to correspond to the standard output stream. A stream is an abstraction
that refers to a flow of data. The standard output stream normally flows to
the screen display—although it can be redirected to other output devices.
The operator << is called the insertion or put to operator. It directs the
contents of the variable on its right to the object on its left. In BASIC it
directs the string constant “Hello Third Year Students \n” to cout, which
sends it to the display.

Although the concepts behind the use of cout and << may be unclear at this
point, using them is easy. They’ll appear in almost every example program.
Figure 1 shows the result of using cout and the insertion operator <<.

33

Figure 1 Output with cout in C++ program.

C++ and String Constants

The phrase "Hello Third Year Students \n" which is enclosed in quotation
marks, is an example of a string constant. A constant, unlike a variable,
cannot be given a new value while the programme is running. Its value is
determined at the time the programme is developed and remains constant
during the program's life.

Escape sequence

The '\n' character at the end of the string constant is an example of an
escape sequence. It causes the next text output to be displayed on a new
line.

“Press any key to continue”

The string “Press any key to continue,” is inserted by some compilers for
display after the program terminates. You cannot delete it.

34

Directives

The two lines that begin the BASIC program are directives. The first is a pre-
processor directive, and the second is a using directive. They occupy a sort
of gray area: They’re not part of the basic C++ language, but they’re
necessary anyway.

Pre-processor Directives

The first line of the BASIC programme #include <iostream> is a programme
statement, but it is not. It's not part of a function body, and it doesn't end
with a semicolon like programme statements must. Instead, a number sign
(#) is used as the first character. A pre-processor directive is what it's called.
Remember that programme statements are computer instructions for doing
things like adding two numbers or printing a sentence. On the other hand,
a pre-processor directive is a compiler command. The compiler has a section
called the pre-processor deals with these directives before it begins the real
compilation process. The pre-processor directive #include tells the compiler
to insert another file into your source file. In effect, the #include directive is
replaced by the contents of the file indicated. Using an #include directive to
insert another file into your source file is similar to pasting a block of text
into a document with your word processor. #include is only one of many
pre-processor directives, all of which can be identified by the initial # sign.
The use of pre-processor directives is not as common in C++ as it is in C, but
we’ll look at a few additional examples as we go along. The type file usually
included by #include is called a header file.

Header Files in C++ Language
In the BASIC example, the pre-processor directive #include tells the
compiler to add the source file IOSTREAM to the BASIC.CPP source file

35

before compiling. IOSTREAM is concerned with basic input/output
operations, and contains declarations that are needed by the cout identifier
and the << operator. Without these declarations, the compiler won’t
recognize cout and will think << is being used incorrectly. Try running the
program with omitting the #include <iostream>

The using Directive

Try searching the internet for the meaning of the using namespace std;
statement ?

How to use Comments

Comments are parts of the source code disregarded by the compiler. They
simply do nothing. Their purpose is only to allow the programmer to insert
notes or descriptions embedded within the source code. C++ supports two
ways to insert comments:

// line comment

/* block
comment */

Let us rewrite our BASIC program, incorporating comments into our source
file.

1
2
3
4
5
6
7
8

// demonstrates comments
#include <iostream> //pre-processor directive

using namespace std; //”using” directive
int main() //function name “main”
{ //start function body
 cout << “Hello Third Year Students \n”;

36

9
10

 return 0; //statement
} //end function body

Variables in C++ : Integer Variables

A variable provides us with named storage that our programs can
manipulate. Each variable in C++ has a specific type, which determines the
size and layout of the variable's memory; the range of values that can be
stored within that memory; and the set of operations that can be applied to
the variable.

Integer variables represent integer numbers like 1, 9000, and –29. Unlike
floating-point numbers, integers have no fractional part. Integer variables
exist in several sizes, but the most commonly used is type int. The amount
of memory occupied by the integer types is system dependent. However, it
is mostly 4 bytes . Figure 2 shows an integer variable in memory.

1
2
3
4
5
6
7
8
9
10
11
12
13

// illustrates integer variables
#include <iostream>
using namespace std;
int main()
{

int var1; //define var1
int var2; //define var2
var1 = 150; //assign value to var1
var2 = var1 + 11; //assign value to var2
cout << “var1+11 is “; //output text
cout << var2 << endl; //output value of var2
return 0;

37

Figure 2 Variable of type int in computer memory.

int var1;
int var2;

The previous two lines define two integer variables, var1 and var2. The
keyword int indicates the type of the variable. Before you can use a variable,
you must first declare it. Variable declarations, on the other hand, can be
placed anywhere in a programme.

Declarations and Definitions : What is the difference?

A declaration presents a variable’s name (such as var1) into a program and
specifies its type (such as int). However, if a declaration also sets aside
memory for the variable, it is also called a definition. The statements

int var1;
int var2;

are definitions, as well as declarations, because they set aside memory for
var1 and var2. We will be concerned mostly with declarations that are also

38

definitions, but later on we’ll see various kinds of declarations that are not
definitions.

Naming variables

A variable name can consist of alphabets (both upper and lower case),
numbers and the underscore _ character. However, the name must not
start with a number.

You cannot use a C++ keyword as a variable name. A keyword is a
predefined word with a special meaning. int, class, if, and while are
examples of keywords. A variable’s name should make clear to anyone
reading the listing the variable’s purpose and how it is used.

Assignment Statements

The statements
var1 = 150;
var2 = var1 + 11;

assign values to the two variables. The equal sign (=), causes the value on
the right to be assigned to the variable on the left. In the first line shown
here, var1, which previously had no value, is given the value 150.

The statement

cout << “var1+11 is “;

displays a string constant, as we’ve seen before. The next statement

cout << var2 << endl;

39

displays the value of the variable var2. As you can see in your console output
window, the output of the program is var1+11 is 161. It's important to note
that cout and the operator can handle an integer and a string in different
ways. They print strings as text if we send them a string. They print an
integer as a number if we send them an integer.

As you can see, the output of the two cout statements appears on the same
line on the output screen. No linefeed is inserted automatically. If you want
to start on a new line, you must insert a linefeed yourself. We’ve seen how
to do this with the '\n' escape sequence. Now we’ll see another way: using
something called a manipulator.

\n versus the endl Manipulator

The endl manipulator produces a newline character, exactly as the insertion
of '\n' does, but it also has an additional behaviour when it is used with
buffered streams: the buffer is flushed. Anyway, cout will be an unbuffered
stream in most cases, so you can generally use both the \n escape character
and the endl manipulator in order to specify a new line without any
difference in its behaviour.

Character Variables

Type char stores integers that range in value from –128 to 127. variables of
this type occupy only 1 byte (eight bits) of memory. Character variables are
used to store ASCII characters. Note the different between characters and
strings as follows :
'z'
'p'
"Hello world"
"How do you do?"

40

The following program further illustrates the character variables :

1
2
3
4
5
6
7
8
9
10
11
12
13

// Shows character variables
#include <iostream>
using namespace std;
int main()
{

char var_1 = ‘A’; //define char variable as character

cout << var_1; //display character
char var_2 = ‘B’; //set char variable to char constant
cout << var_2; //display character
cout << ‘\n’; //display newline character
return 0;

}

Standard input with (cin)

The standard input device is usually the keyboard. Handling the standard
input in C++ is done by applying the extraction (>>) on the cin stream. The
operator must be followed by the variable that will store the data that is
going to be extracted from the stream. cin can only process the input from
the keyboard once the ENTER key has been pressed. Therefore, even if you
request a single character, the extraction from cin will not process the input
until the user presses ENTER key after the character has been introduced.
You must always consider the type of the variable that you are using as a
container with cin extractions. If you request an integer you will get an
integer, if you request a character you will get a character and if you request
a string of characters you will get a string of characters. The following
program is a simple demonstration of the input with cin.

1
2
3

#include <iostream>
using namespace std;
int main()

41

4
5
6
7
8
9
10

{
cout << "Please enter an integer value: ";
cin >> i;
cout << "The value you entered is " << i;
cout << " and its double is " << i*2 << ".\n";
return 0;
}

The statement
cin >> i;

causes the program to wait for the user to type in a number. The resulting
number is placed in the variable i. Figure 3 shows input using cin and the
extraction operator >>.

Figure 3 Input with cin.

It is worth mentioning that variables could be defined anywhere in the
program whenever you need them.

Cascading << variables

Carefully study the following program, could you inspect what is cascading
is ?

1
2

#include <iostream>
using namespace std;

42

3
4
5
6
7
8
9

int main()
{
 cout << "Please enter an integer value: ";
 cin >> i;
 cout << i<<i*2 << ".\n";
}
return 0;

Operator Precedence

Operator precedence determines the grouping of terms in an expression.
The associativity of an operator is a property that determines how
operators of the same precedence are grouped in the absence of
parentheses. This affects how an expression is evaluated. Certain operators
have higher precedence than others; for example, the multiplication
operator has higher precedence than the addition operator. For example,
x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.
The following figure further illustrates such issue (Figure 4).

Figure 4 Operator precedence in C++

43

Floating Point variable types

We’ve talked about type int and type char, both of which represent
numbers as integers—that is, numbers without a fractional part. Now let us
examine a different way of storing numbers as floating-point variables.

Floating-point variables represent numbers with a decimal place—like
3.1497, 0.0025, and –10.2. They have both an integer part, to the left of the
decimal point, and a fractional part, to the right. There are three kinds of
floating-point variables in C++: type float, type double, and type long
double. Let us start with the smallest of these, type float.

Type (float)

Type float stores numbers in the range of about 3.4x10–38 to 3.4x1038, with
a precision of seven digits. It occupies 4 bytes (32 bits) in memory. The
following example program prompts the user to type in a floating-point
number representing the radius of a circle. It then calculates and displays
the circle’s area.

1
2
3
4
5
6
7
8
9
10
11
12
13

//Empty Line
#include <iostream>
using namespace std;
int main()
{

float R; //variable of type float
const float PI = 3.14; //type const float
cout << “Enter radius of circle: “; //prompt
cin >> R; //get radius
float area = PI * R * R; //find area
cout << “Area is “ << area << endl; //display answer
return 0;

}

44

Here is a sample interaction with the program:

Enter radius of circle: 1.0
Area is 3.14

Type (double)

The larger floating-point types, double, are similar to float except that it
requires more memory space and provide a wider range of values and more
precision. Type double requires 8 bytes of storage.

Defining constant variables: The const qualifier

Besides demonstrating variables of type float, the AREA example also
introduces the qualifier const. It’s used in the statement

const float PI = 3.14; //type const float

A variable's data type is preceded by the keyword const (for constant). It
declares that a variable's value will remain constant throughout the
programme. The compiler will throw an error if you try to change the value
of a variable defined with this qualifier.

Variable Type bool

A boolean data type is declared with the bool keyword and can only take
the values true or false. When the value is returned, true = 1 and false = 0.
It only needs one byte of storage.

bool program_ended=1 //1 Means True

45

C++ Variable Type Summary

When programming, we store the variables in our computer's memory, but
the computer has to know what kind of data we want to store in them, since
it is not going to occupy the same amount of memory to store a simple
number than to store a single letter or a large number, and they are not
going to be interpreted the same way.

The memory in our computers is organized in bytes. A byte is the minimum
amount of memory that we can manage in C++. A byte can store a relatively
small amount of data: one single character or a small integer (generally an
integer between 0 and 255). In addition, the computer can manipulate more
complex data types that come from grouping several bytes, such as long
numbers or non-integer numbers. Next you have a summary of the basic
fundamental data types in C++, as well as the range of values that can be
represented with each one.

Table 1 Variable types and sizes in C++

Name Description Size* Range*

char Character or small integer. 1byte signed: -128 to 127
unsigned: 0 to 255

short Short Integer. 2bytes signed: -32768 to 32767
unsigned: 0 to 65535

int Integer. 4bytes
signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

long Long integer. 4bytes
signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

bool Boolean value. It can take one of two
values: true or false. 1byte true or false

float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)

double Double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)

long double Long double precision floating point
number. 8bytes +/- 1.7e +/- 308 (~15 digits)

However, the values of the columns Size and Range depend on the system
the program is compiled for. The values shown above are those found on
most 32-bit systems.

46

unsigned Data Types: When to use them?

You can modify the range of the character and integer types to start at 0
and include only positive numbers by removing the sign. They can now
represent numbers that are twice as large as the signed kind. The unsigned
versions are shown in Table 2. The unsigned types are used when the
quantities represented are always positive

Table 2 Unsigned Integer Types

Study the following C++ program that demonstrates the usage of signed and
unsigned variables.

1
2
3
4
5
6
7
8
9
10
11
12
13

//Empty Line……………………..
#include <iostream>
using namespace std;
int main()
{

int signedVar = 1900000000;
unsigned int unsignVar = 1900000000;
signedVar = (signedVar * 2) / 3; // out of range
unsignVar = (unsignVar * 2) / 3; // within range
cout << “signedVar = “ << signedVar << endl; //wrong
cout << “unsignVar = “ << unsignVar << endl; //Right
return 0;

}

47

The program multiplies both variables by 2, then divides them by 3.
Although the result is smaller than the original number, the intermediate
calculation is larger than the original number. Here is the output:

signedVar = -431,655,764
unsignVar = 1,000,000,000

The signed variable now displays an incorrect answer, while the unsigned
variable, which is large enough to hold the intermediate result of the
multiplication, records the result correctly.

Type Conversion

Consider the following CONVERSION program:

1
2
3
4
5
6
7
8
9
10
11

// Useless Line
#include <iostream>
using namespace std;
int main()
{

int count = 8;
float avgWeight = 160.5;
double totalWeight = count * avgWeight;
cout << “totalWeight=” << totalWeight << endl;
return 0;

}

Here a variable of type int is multiplied by a variable of type float to yield a
result of type double. This program compiles without error; the compiler
considers it normal that you want to multiply (or perform any other
arithmetic operation on) numbers of different types.

48

Automatic Conversions

Conversion between types is logical only when the types are related. In such
a case, we can use an object or value of one type as an operand in place of
an actual operand type that is expected. The compiler does the conversion
implicitly, without any direct programmer intervention. For example,
consider the following expression.

int i = 10;

double d = 1.14159;

int sum = d + i;

Observe that operands of the expressions are two different types: double
and integer. Before adding the two values of two different types, the
compiler uses a conversion function to transform the operands to a
common type. Even a simple looking expression has many tacit functions
associated with it.

Observe that the expression has both integer and floating-point operands;
the compiler prior to addition transforms the lower type (int) to its
associated higher type (floating-point) before performing the function
signified by the operator (addition). Therefore, after addition the result
actually becomes 11.14159. Now, because initialization happens next (with
= operator), the type we are initializing to prevail over any type we want to
assign and the floating-point result are re-converted back to the dominant
type (which is integer in this case). Therefore, the final content of the sum
is 11, discarding the fractional part as the sum variable which is declared as
an integer. The conversion between fundamental types thus is defined to
do the transformation from lower type (as depicted in table 3) to higher
type to preserve precision in the context of a mathematical expression. The

49

conversion from double to int shall always truncate the fractional part,
delimiting the precision.

Table 3 Order of Date Types in conversion.

The Remainder Operator

There is an important arithmetic operator that works only with integer
variables. It is called the remainder operator, and is represented by the
percent symbol (%). This operator (also called the modulus operator) finds
the remainder when one number is divided by another. The following
program demonstrates the effect.

1
2
3
4
5
6
7
8
9
10
11

#include <iostream>
using namespace std;
int main()
{

cout << 6 % 8 << endl // 6
 << 7 % 8 << endl // 7

 << 8 % 8 << endl // Guess
 << 9 % 8 << endl // ?
 << 10 % 8 << endl; // ?
 return 0;
}

50

SMART coding: Compound Assignment Operators

Consider the following arithmetic expressions and their corresponding
abbreviations :

The compound-assignment operators combine the simple-assignment
operator with another binary operator. Compound-assignment operators
perform the operation specified by the additional operator, then assign the
result to the left operand. For example, a compound-assignment expression
such as. expression1 += expression2.

There are arithmetic assignment operators corresponding to all the
arithmetic operations: +=, -=, *=, /=, and %= (and some other operators as
well). The following example shows the arithmetic assignment operators in
use:

1
2
3
4

#include <iostream>
using namespace std;
int main()
{

51

5
6
7
8
9
10
11
12
13
14
15
16
17

 int ans = 20;
 ans += 10; //same as: ans = ans + 10;
 cout << ans << “, “;
 ans -= 7; //same as: ans = ans - 7;
 cout << ans << “, “;
 ans *= 2; //same as: ans = ans * 2;
 cout << ans << “, “;
 ans /= 3; //same as: ans = ans / 3;
 cout << ans << “, “;
 ans %= 3; //same as: ans = ans % 3;
 cout << ans << endl;
 return 0;
}

Run the previous program and see what is the output ?

C++ Increment Operators

Here is an even more specialized operator. You often need to add 1 to the
value of an existing variable. You can do this the “normal” way:

count = count + 1; // adds 1 to “count”

Or you can use an arithmetic assignment operator:

count += 1; // adds 1 to “count”

But there is an even more condensed approach:

++count; // adds 1 to “count”

The ++ operator increments (adds 1 to) its argument.

52

Increment and decrement operators

Increment Operators: The increment operator is used to increment the
value of a variable in an expression. In the Pre-Increment, value is first
incremented and then used inside the expression. Whereas in the Post-
Increment, value is first used inside the expression and then incremented.
Syntax:

// PREFIX
++m

// POSTFIX
m++

Decrement Operators: The decrement operator is used to decrement the
value of a variable in an expression. In the Pre-Decrement, value is first
decremented and then used inside the expression. Whereas in the Post-
Decrement, value is first used inside the expression and then decremented.
Syntax:

// PREFIX

--m

// POSTFIX

m--

Differences between Increment and Decrement Operators:

The following figures illustrates the difference between prefix and postfix
operators:

53

Figure 5 Prefix and postfix in C++

Figure 6 The increment operator

Here is an example that shows both the prefix and postfix versions of the
increment operator:

1
2
3
4
5
6
7
8
9

// Demonstrates the increment operator

#include <iostream>

using namespace std;

int main()

{

 int ASD = 10;

 cout << “ASD =” << ASD << endl; //displays 10

 cout << “ASD =” << ++ ASD << endl; //displays 11 (prefix)

54

10
11
12
13
14

 cout << “ASD =” << ASD << endl; //displays 11

 cout << “ASD =” << ASD ++ << endl; //displays 11 (postfix)

 cout << “ASD =” << ASD << endl; //displays 12

 return 0;

}

Here is the program’s output:
ASD =10

ASD =11

ASD =11
ASD =11
ASD =12

Library Functions in C++

Many activities in C++ are carried out by library functions. These functions
perform file access, mathematical computations, and data conversion,
among other things. The next example, SQRT, uses the library function
sqrt() to calculate the square root of a number entered by the user.

1
2
3
4
5
6
7
8
9
10
11
12
13

#include <iostream> //Guess for what?

#include <cmath> //for sqrt()

using namespace std;

int main()

{

 double number, answer;

 cout << “Please enter a number: “;

 cin >> number; //get the number

 answer = sqrt(number); //find square root

 cout << “Square root is “

 << answer << endl; //display it

55

14 return 0;

}

The program first obtains a number from the user. This number is then used
as an argument to the sqrt() function, in the statement

answer = sqrt(number);

Here is some output from the program:

Enter a number: 100

Square root is 10

What Are Header Files?

A header file is a file containing declarations to be shared between several
source files. You request the use of a header file in your program by
including it, with the pre-processing directive #include. Header files serve
two purposes.

 System header files declare the interfaces to parts of the operating

system. You include them in your program to supply the definitions
and declarations you need to invoke system calls and libraries, like
<iostream>

 Your own header files contain declarations for interfaces between the

source files of your program. Each time you have a group of related
declarations and macro definitions all or most of which are needed in
several different source files, it is a good idea to create a header file
for them.

56

Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear in only
one place. If they need to be changed, they can be changed in one place,
and programs that include the header file will automatically use the new
version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to find
one copy will result in inconsistencies within a program.

57

Exercises

1. Write an example of a normal C++ comment and an example of an old-
fashioned /* comment.

2. How many bytes are occupied by the following data types in a normal
32-bit system:
a. Type int
c. Type float
d. Type long

3. True or false: A variable of type char can hold the value 501.
4. True or false: In an assignment statement, the value on the left of the

equal sign is always equal to the value on the right.

5. What header file must you #include with your source file to use cout?

6. Write a statement that gets a numerical value from the keyboard and
places it in the variable temp.

7. The expression 11%5 evaluates to ________.

8. Write a program that generates the following table: Use a single cout
statement for all the output.

1990 199
1991 72950
1992 1135500
1993 16200

9. Write a program that accepts a sequence of 6 numbers and outputs

their average and standard deviation.

58

10. Write a program that accepts 3 numbers and prints out their
sum, difference, division and multiplication results.

11. Write a program that accepts an integer number and prints its
square value.

12. Write a program that asks the user for his salary and computes
a 25% tax deduction. The program should print the finial salary after
deduction the computed 25% tax.

13. Write a program that asks the user for his salary and adds a 30%
bonus. The program should print the finial salary after adding the
computed 30% bonus.

59

Chapter 2

Using Microsoft visual studio.

60

Putting C++ into action

In the previous chapter we learnt the basic structure of a C++ program. In
this chapter we will learn how to use Microsoft visual studio to code and
run C++ programs and see their results.

Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE)
from Microsoft. It is used to develop computer programs for Microsoft
Windows, as well as web sites, web applications and web services. Visual
Studio uses Microsoft software development platforms such as Windows
API, Windows Forms, Windows Presentation Foundation, Windows Store
and Microsoft Silverlight. It can produce both native code and managed
code.

Visual Studio includes a code editor supporting IntelliSense (the code
completion component) as well as code refactoring. The integrated
debugger works both as a source-level debugger and a machine-level
debugger. Other built-in tools include a forms designer for building GUI
applications, web designer, class designer, and database schema designer.
It accepts plug-ins that enhance the functionality at almost every level
including adding support for source-control systems (like Subversion) and
adding new toolsets like editors and visual designers for domain-specific
languages or toolsets for other aspects of the software development
lifecycle (like the Team Foundation Server client: Team Explorer).

61

Microsoft Visual Studio

There exists more than 10 version of visual studio, since the first release in
1997. Each version has a different and advanced feature following their
chronological sequence as listed in Table 4 below.

Table 4 Microsoft visual studio versions

Product name Codename
Version
number

Supported .NET
Framework

versions
Release date

Visual Studio 97 Boston 5.0 N/A February 1997

Visual Studio 6.0 Aspen 6.0 N/A June 1998

Visual Studio .NET
(2002)

Rainier 7.0 1.0 February 13, 2002

Visual Studio .NET
2003

Everett 7.1 1.1 April 24, 2003

Visual Studio 2005 Whidbey 8.0 2.0, 3.0 November 7, 2005

Visual Studio 2008 Orcas 9.0 2.0, 3.0, 3.5
November 19,

2007

Visual Studio 2010 Dev10/Rosario 10.0 2.0 – 4.0 April 12, 2010

Visual Studio 2012 Dev11 11.0 2.0 – 4.5.2
September 12,

2012

Visual Studio 2013 Dev12 12.0 2.0 – 4.5.2 October 17, 2013

62

Visual Studio 2015 Dev14 14.0 2.0 – 4.6 July 20, 2015

Visual Studio 2017 Dev15 15.0 2.0 – 4.6.2; Core 1.0 TBA

Visual Studio 2019

Any of the different visual studio versions could be used to build and run all
of the C++ programs provided in this book. However, this chapter will target
visual studio 2013 as a target case (it’s start screen is depicted in Figure 11).

Figure 7 Microsoft visual studio 2013 start screen.

63

How to get Visual studio?

Fortunately, Microsoft believes in the “code for all principle”, hence, it
released the visual studio for free. You can visit the below link and download
the community edition for free.

https://www.visualstudio.com/downloads/

Your First Visual Studio Run

Once you have installed visual studio 2013 (or whatever version), double
click its shortcut from the desktop as shown in Figure 12 below:

Figure 8 Visual studio desktop shortcut

Depending on your computer speed the program will run shortly after it
performs some initialization steps to adjust some settings for the first run.
However, do not worry the start-up time would be less next time unless you
bought a high spec computer. The next Figure 13 displays the start-up
screen of the visual studio compiler.

64

Figure 9 The start-up screen of Microsoft visual studio.

The next step is starting a new project:

File -> New Project...

Here, on the left-hand side, select Templates -> Visual C++. Then, on the
central part, select Win32 Console Application:

65

Then, type whatever project name and location on your hard drive, where
the files will be stored. The default options are fine, but you can also change
them to better fit your needs.

66

Now click [OK]

This will open the Win32 Application Wizard:

Click [Next].

67

Leave "Console application" selected, and in Additional options select
Empty project. Other options are not needed, but won't bother either.

Now we have an empty project. We need to add a file to it. For that: On the
Solution Explorer at right, look for Source Files under your application.
Right-click -> Add -> New Item...

68

Here, add a new C++ file:

69

you can give it any name you want with a .cpp extension, such
as example.cpp. After clicking OK, the main window will display the editor
to edit this new C++ file.

Write the following code in it:

#include <iostream>

using namespace std;

int main()

{

cout << “Hello world! \n”;

return 0;

}

The visual studio window should look like the following screen:

70

Then, to compile and run this application simply press Ctrl+F5. Or
alternatively you can select BUILD -> Build Solution. Then DEBUG -> Start
without debugging. This is depicted in the below screens:

71

Finally, after you execute the previous steps, you will be able to see the
result as shown in the next screen:

72

Other C++ compilers
Microsoft visual studio is not the only software package that is used to
compile and run C++ code. There are numerous available packages, some of
them are listed below:

1- XCode on the MAC OS platform

73

2- Borland C++ builder

74

3- Intel C++ compiler

4- Salford C++ Compiler.
5- KAI C++ Compiler.
6- Solaris Studio Express

75

Exercises

What is the result of the following C++ program cout lines?

Program 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

int x=0,y=5,z=0;

x=y*z;

cout<<x;

x=y+y*10;

cout<<x

z=50;

z++;

cout<<z;

cout<<z++;

cout<<++z;

cout<<z-1;

Program 2

1
2
3
4
5
6
7
8
9

int m=5;

float f=5.0;

cout<<m+f;

f+=0.5;

cout<<f;

cout<<(int)f;

m=f;

cout<<m;

76

Program 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14

int x1=0,x2=5,x3=0;

float x3=1.3,x4=1.7;

cout<<x3+x4;

cout<<(int) x3+x4;

cout<<(int) (x3+x4);

x1=x3+x4;

cout<<x1;

int x5=x3+x4;

cout<<x5;

Program 4

1
2
3
4
5
6
7

int x1=10,x2=25,x3=30;

cout<<x1+x2+x3;

cout<<(x1+x2)+x3;

cout<<x1%2;

cout<<x1/2;

cout<<x2%30;

77

Chapter 3

Loops and Decisions in C++.

78

Few programmes execute all of their statements in the same order from
start to finish. Most programmes, like many humans, make decisions based
on changing conditions. Depending on the computations completed in the
programme, the flow of control jumps from one area of the programme to
another. Control statements are programme statements that generate such
jumps. Loops and decisions are the two major categories.

The number of times a loop is executed, or whether a choice causes a
portion of code to be executed, is determined by whether particular
expressions are true or false. A relational operator is a type of operator that
compares two values and is commonly used in these expressions. Since the
operation of loops and decisions is so closely involved with these operators,
we’ll examine them first.

Relational Operators

Relational operators are used for comparing two or more numerical values.
C++ has different types of Operators which are used for carrying out
numerous functions in the program. One such type used is the Relational
Operators. We use Relational Operators for the decision-making process.
This section contains information about the different types of Relational
Operators, their uses, and their program examples. Have a look at the
following program the further illustrates these operators.

1
2
3
4
5
6
7
8

#include <iostream>
using namespace std;
int main()
{
 int numb;
 cout << “Enter a number: “;
 cin >> numb;
 cout << “numb<5 is “ << (numb < 5) << endl;

79

9
10
11
12

 cout << “numb>5 is “ << (numb > 5) << endl;
 cout << “numb==5 is “ << (numb == 5) << endl;
 return 0;
}

This program performs three kinds of comparisons between 5 and a number
entered by the user. Here is the output when the user enters 20:

Enter a number: 20
numb<5 is 0
numb>5 is 1
numb==5 is 0

If numb is less than 10, the first expression holds true. If numb is larger than
10, the second expression is true, and if numb is equal to 10, the third
expression is true. As you can see from the output, the C++ compiler assigns
a value of 1 to a true expression and a value of 0 to a false expression.

Here is the complete list of C++ relational operators:

80

Loops and repeating code
A loop is used for executing a block of statements repeatedly until a
particular condition is satisfied. For example, when you are displaying
number from 1 to 100 you may want set the value of a variable to 1 and
display it 100 times, increasing its value by 1 on each loop iteration. There
are three kinds of loops in C++:

 for loop
 while loop
 do loop

The for Loop

The for loop is the simplest C++ loop to grasp (at least for many people). All
of its loop control parts are in one location, however in other loop
architectures, they are dispersed across the programme, making it more
difficult to figure out how these loops function. The for loop repeats a
portion of code for a predetermined number of times. It's frequently (but
not always) utilised when you know how many times you want to run the
code before entering the loop. The squares of the integers 0 to 14 are
displayed in the following example:

1
2
3
4
5
6
7
8
9
10
11

#include <iostream>
using namespace std;
int main()
{
 int j; //define a loop variable
 for(j=0; j<15; j++) //loop from 0  14,
 cout << j * j << “ “; //displaying the square of j

 cout << endl;
 return 0;
}

81

Here is the output:

0 1 4 9 16 25 36 49 64 81 100 121 144 169 196

How does this work? The for statement controls the loop. It consists of the
keyword for, followed by parentheses that contain three expressions
separated by semicolons:

for(j=0; j<15; j++)

These three expressions are the initialization expression, the test condition,
and the increment expression, as shown in Figure 10.

Figure 10 Structure of the for loop

82

These three expressions usually (but not always) involve the same variable,
which we call the loop variable. In the previous example the loop variable is
j. It’s defined before the statements within the loop body start to execute.

The code that will be run each time the loop is repeated is the body of the
loop. The loop's raison d'être is to repeat this code. The loop body in this
example is made up of just one statement:

cout << j * j << “ “;

It's worth noting that the for statement isn't preceded by a semicolon.
Because the for statement and the loop body are both considered
programme statements, this is the case. This is a crucial detail. If you use a
semicolon after the for statement, the compiler will believe there is no loop
body, and the programme will behave in unexpected ways. Let us see how
the three expressions in the for statement control the loop.

The Initialization Expression

When the loop first starts, the initialization statement is only run once. It
assigns a starting value to the loop variable. In the previous example it sets
j to 0.

The Test Expression

A relational operator is frequently used in the test expression. It is assessed
every time the loop is run, shortly before the loop's body is executed. It
decides whether or not the loop will be repeated. If the test expression
returns true, the loop is repeated. If it's false, the loop is terminated, and
control is passed to the statements that follow it. The statement in the
previous example was

83

cout << endl;

is executed following the completion of the loop.

The Increment Expression

The increment expression changes the value of the loop variable, often by
incrementing it. It is always executed at the end of the loop, after the loop
body has been executed. Here the increment operator ++ adds 1 to j each
time through the loop. Figure 11 shows a flowchart of a for loop’s operation.

A different for loop example:

for (count=0; count<200; count++)

// loop body

How many times will the loop body be repeated here? Exactly 199 times,
with count going from 0 to 199.

How Many Times The loop is Repeated?

The loop in the previous example executes exactly 15 times. The first time,
j is 0. This is ensured in the initialization expression. The last time through
the loop, j is 14. This is determined by the test expression j<15. When j
becomes 15, the loop terminates; the loop body is not executed when j has
this value. The arrangement shown is commonly used to do something a
fixed number of times: start at 0, use a test expression with the less-than
operator and a value equal to the desired number of iterations, and
increment the loop variable after each iteration.

84

Figure 11 Operation of the for loop.

Multiple Statements in the For Loop Body
Of course, you may want to use the loop body to execute multiple
statements. Braces, like functions, are used to separate several statements.
Although there are semicolons after the different statements in the loop
body, there is no semicolon after the final brace of the loop body. In the
next example, the loop body has three statements. It uses a two-column
format to print the cubes of the digits 1 to 10.

1

2

3

4

5

6

#include <iostream>

#include <iomanip> //for setw

using namespace std;

int main()

{

int numb; //define loop variable

85

7

8

9

10

11

12

13

14

for(numb=1; numb<=11; numb++) //loop from 1 to 10

 {

cout << setw(4) << numb; //display 1st column

int cube = numb*numb*numb; //calculate cube

cout << setw(6) << cube << endl; //display 2nd column

 }

return 0;

}

Here is the output from the program:

1 1
2 8
3 27
4 64
5 125
6 216
7 343
8 512
9 729
10 1000
11 1331

We’ve made another change in the program to show there is nothing
immutable about the format used in the last example. The loop variable is
initialized to 1, not to 0, and it ends at 11, by virtue of <=, the less-than-or-
equal-to operator. The effect is that the loop body is executed 11 times,
with the loop variable running from 1 to 11.

Variable Visibility in Code Blocks
The loop body, which consists of braces delimiting several statements, is
called a block of code. One important aspect of a block is that a variable
defined inside the block is not visible outside it. Visible means that program

86

statements can access or “see” the variable. In previous program we define
the variable cube inside the block, in the statement

int cube = numb*numb*numb;

This variable is only visible within the braces and cannot be accessed outside
of the block. As a result, if you put the statement after the loop body, the
compiler will complain since the variable cube is undefined outside the loop.
One benefit of limiting variable accessibility is that the same variable name
can be used in multiple blocks within the same programme.

Variations of the for Loop

The increment expression isn't required to increment the loop variable; it
can do whatever it wants with it. The loop variable is decremented in the
next example. The below program below, factorial, prompts the user to
enter a number, after which it calculates the factorial of that number. (To
compute the factorial, multiply the original number by all positive integers
lower than itself.) 5*4*3*2*1, or 120, is the factorial of 5.)

1

2

3

4

5

6

7

8

9

10

11

// Factorial program

#include <iostream>

using namespace std;

int main()

{

 unsigned int number;

 unsigned long fact=1; //long for larger numbers

 cout << “Enter a number: “;

 cin >> number; //get number

 for(int j=number; j>0; j--) //multiply 1 by

 fact *= j; //numb, number-1, ..., 2, 1

87

12

13

14

 cout << “Factorial is “ << fact << endl;

 return 0;

}

Notice that we used type unsigned long for the factorial because even small
values have big factorials. On 32-bit systems like Windows, int is the same
as long, however on 16-bit systems, long provides more space. Even for
small input numbers, the following output shows how big factorials may be:

Enter a number: 12

Factorial is 479001600

The largest number you can use for input is 12 (why?). You won’t get an
error message for larger inputs, but the results will be wrong, as the capacity
of type long will be exceeded.

Variables Defined inside the for Statements

Notice how the variable j is defined inside the for loop, at the initialization
expression:

for(int j=numb; j>0; j--)

Endless for loop

This is a common C++ construct and, in most circumstances, the ideal way
to handle loop variables. It defines the variable as closest as feasible to its
point of use in the listing. Variables declared in the loop statement in this
manner are only visible in the loop body. Actually, you can omit some or all
of the expressions if you choose. The statement :

for (;;)

88

The while Loop

The for loop repeats something a certain number of times. What if you
don't know how many times you want to do something before starting the
loop? In this scenario, a second type of loop, the while loop, may be utilised.

The next example, asks the user to input a sequence of numbers. When the
number entered is 0, the loop terminates.

1

2

3

4

5

6

7

8

9

10

#include <iostream>

using namespace std;

int main()

{

int n = 88; // make sure n isn’t initialized to 0

while(n != 0) // loop until n is 0

 cin >> n; // read a number into n

cout << endl;

return 0;

}

Here is some sample interaction with the program. As long as the test
expression is true, the loop continues to be executed.
1

270

303

1404

90

0

The while loop looks like a simplified version of the for loop. It contains a
test expression but no initialization or increment expressions. Figure 12

89

shows the syntax of the while loop, and Figure 13, shows the operation of a
while loop.

Figure 12 Syntax of the while loop.

Figure 13 Operation of the while loop.

90

Multiple Statements inside a while Loop

The following example employs numerous statements within a while loop.
It's a for loop-based variation on the cube programme presented before,
except instead of the cube, it computes the fourth power of a series of
integers. Assume that with this programme, it is critical to display the results
in a four-digit column. To ensure that the results fit inside this column width,
we must end the loop before the results exceed 9999. We don't know what
number will produce a result of this size without prior calculation, so we let
the programme figure it out. The while statement's test expression
terminates the programme before the powers become too great.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#include <iostream>
#include <iomanip> //for setw
using namespace std;
int main()
{
 int pow=1; //power initially 1
 int numb=1; //numb goes from 1 to ???
 while(pow<1000) //loop while power <= 3 digits
 {

 cout << setw(2) << numb;
 cout << setw(5) << pow << endl;
 ++numb;
 pow = numb*numb*numb;

 }
 cout << endl;
 return 0;
}

We simply increase the third power (cubic) of numb by itself three times to
discover it. We increment numb each time we run the loop. However, we

91

do not use numb in the while test statement; instead, the resulting value of
pow determines when to end the loop. Here is the result:

1 1
2 16
3 81
4 256
5 625

The next number would be 1296, which is too wide for our three-digit
column; but by this time the loop has terminated.

The do-while Loop

You know that, the test expression is evaluated at the beginning of a while
loop. The loop body will not be executed if the test expression is false when
the loop is entered. In certain cases, this is exactly what you want. However,
there are situations when you want to ensure that the loop body gets run
at least once, regardless of the initial state of the test expression. In this
scenario, the do-while loop should be used, which places the test
expression at the end of the loop.

Our next example, divde_reminder, asks the user to enter two numbers:
a dividend (numerator) and a divisor (denumerator). It then calculates the
quotient (the answer) and the remainder, using the / and % operators, and
prints out the result.

92

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// Empty useless line

#include <iostream>

using namespace std;

int main()

{

 long dividend, divisor;

 char ch;

do

{

cout << “Enter dividend: “; cin >> dividend;

cout << “Enter divisor: “; cin >> divisor;

cout << “Quotient is “ << dividend / divisor;

cout << “, remainder is “ << dividend % divisor;

cout << “\nDo another? (y/n): “; //do it again?

cin >> ch;

}

while(ch != ‘n’); //loop condition

return 0;

}

The do loop contains the majority of this programme. First, the term do
denotes the start of the loop. The body of the loop is then delimited by
braces, as with the other loops. Finally, a while statement completes the
loop by providing the test expression. Except for its position at the end of
the loop and the fact that it finishes with a semicolon (which is easy to miss!
), this while statement appears quite similar to the one in a while loop.
Figure 14 depicts the syntax of the do-while loop.

93

Figure 14 Syntax of the do loop.

Following each computation, divde_reminder asks if the user wants to do
another. If so, the user enters a ‘y’ character, and the test expression

ch != ‘n’

remains true. If the user enters ‘n’, the test expression becomes false and
the loop ends. Figure 15 shows the process of the do loop. Here is an
example of divde_reminder output:

Enter dividend: 11
Enter divisor: 3
Quotient is 3, remainder is 2
Do another? (y/n): y
Enter dividend: 10
Enter divisor: 2
Quotient is 5, remainder is 0
Do another? (y/n): n

94

Figure 15 Operation of the do loop.

When to use which of the three Loops

We've made some broad statements regarding how loops work. When you
know how many times the loop will be executed, the for loop is acceptable.
The while and do loops are used when you don't know when the loop will
end (the while loop when you're not sure if you want to execute the loop
body even once, and the do loop when you're certain you want to execute
the loop body at least once). These standards are somewhat arbitrary.
Which loop type to use is a question of taste rather than hard and fast laws.
Any of the loop types can be made to function in practically any situation.
You should select the type that will make your software the clearest and
easiest to understand.

95

Control Structures and Decisions in C++ Language

C++ conditional statements allow you to make a decision, based upon the
result of a condition. These statements are called Decision Making
Statements or Conditional Statements. So far, we have seen that all set of
statements in a C++ program gets executed sequentially in the order in
which they are written and appear. This occurs when there is no jump based
statements or repetitions of certain calculations. But some situations may
arise where we may have to change the order of execution of statements
depending on some specific conditions. This involves a kind of decision
making from a set of calculations. This type of structure requires that the
programmers indicate several conditions for evaluation within a program.
The statement(s) will get executed only if the condition becomes true and
optionally, alternative statement or set of statements will get executed if
the condition becomes false. The flowchart of the Decision-making
technique in C++ can be expressed as follows:

Figure 16 Operation of the if statemen

96

The if Statement

The if statement is the simplest C++ decision statements. The next program,
provides an example.

1
2
3
4
5
6
7
8
9
10
11
12

#include <iostream>

using namespace std;

int main()

{

 int x;

 cout << “Enter a number: “;

 cin >> x;

 if(x > 90)

 cout << “That number is greater than 90\n”;

 return 0;

}

The if keyword is followed by a parenthesized test expression. Figure 16
depicts the syntax of the if statement. As can be seen, the syntax of if is
extremely similar to that of while. The distinction is that the statements
following the if are only run once if the test expression is true, whereas the
statements following the while are done continually until the test
expression is false.

Here is an example of the previous program’s output when the number
entered by the user is greater than 90:

Enter a number: 2000

That number is greater than 90

97

If the number entered is not greater than 90, the program will terminate
without printing the second line.

Figure 17 Syntax of the if statement (single line).

Multiple Statements in the if Body

As in loops, the code in an if body can consist of a single statement—as
shown in the previous example—or a block of statements delimited by
braces. You can include more than one single statement in the if block, as
depicted in the following figure and program.

Figure 18 Syntax of the if statement (multi-line).

98

1
2
3
4
5
6
7
8
9
10
11
12
13
14

#include <iostream>
using namespace std;
int main()
{
 int x;
 cout << “Enter a number: “;
 cin >> x;
 if(x > 90)
 {
 cout << “The number “ << x;
 cout << “ is greater than 90\n”;
 }
 return 0;
}

Here is some output from IF2:

Enter a number: 905
The number 905 is greater than 100

Embedding ifs Inside Loops

So far, we've seen that loop and decision structures can be layered inside of
one another. Ifs can be nestled within loops, loops within ifs, ifs within ifs,
and so on. The following is an example of nesting an if within a for loop. This
example determines whether a number entered is a prime number. (Prime
numbers are integers that can only be divided by themselves and 1.) (2, 3,
5, 7, 11, 13, 17) are the first few primes.

1
2
3

#include <iostream>
using namespace std;
#include <process.h> //for exit()

99

4
5
6
7
8
9
10
11
12
13
14
15
16
17

int main()
{
unsigned long n, j;

cout << “Enter a number: “;
cin >> n;
for(j=2; j <= n/2; j++) //divide by every integer
if(n%j == 0) //if remainder is 0,
{ //it’s divisible by j
 cout << “It’s not prime; divisible by “ << j << endl;
 exit(0); //exit from the program
}
cout << “It’s prime\n”;
return 0;
}

In this example, the user enters a number that is allocated to n. The program
then uses a for loop to divide n by all the numbers from 2 to n/2. The loop
variable, j, is the divisor. If any value of j divides evenly into n, then n is not
prime. When a number divides evenly into another, the remainder is 0; we
use the remainder operator % in the if statement to test for this condition
with each value of j. If the number is not prime, we notify the user and exit
the programme. There are no braces around the body of the loop. This is
due to the fact that the if statement and the statements in its body are
treated as a single statement. You can add braces for readability even if the
compiler does not require them.

The following are the results of three separate invocations of the
programme:

Enter a number: 7

It’s prime

Enter a number: 22229

100

It’s prime

Enter a number: 22231

It’s not prime; divisible by 11

The exit() Library Function

When the previous programme discovers that an input number is not prime,
it terminates immediately because proving a number is not prime more
than once is pointless. This is performed through the use of the library
function exit(). This function causes the programme to exit, regardless of
where it is in the listing. It does not have a return value. When the
programme exits, its sole argument, 0 in our case, is returned to the
operating system. (This value is important in batch files, where the
ERRORLEVEL value can be used to query the return value returned by exit()).
Normally, the value 0 indicates a successful termination; other numbers
indicate faults.)

Extra Decision: The if...else Statement

If a condition is true, the if statement allows you to do something. Nothing
happens if it isn't true. However, suppose we wish to do one thing if a
condition is true and another if it is false. This is when the if...else statement
comes into play. It consists of an if statement, a statement or block of
statements, the keyword else, and another statement or group of
statements. Figure 19 depicts the syntax.

101

Figure 19 Syntax of the if...else statement.

Here is a variation of the original if-statement example, with an else added
to the if:

1
2
3
4
5
6
7
8
9
10
11
12
13

#include <iostream>
using namespace std;

int main()
{
 int x;
 cout << “\n Enter a number: “;
 cin >> x;
 if(x > 90)

cout << “That number is greater than 90\n”;
 else

cout << “That number is not greater than 90\n”;
 return 0;
}

102

Here is output from two different invocations of the program:

Enter a number: 300
That number is greater than 100
Enter a number: 3
That number is not greater than 100

The operation of the if...else statement is shown in Figure 20.

Figure 20 Operation of the if...else statement.

Matching the else with the right if statement

A potential issue with nested if...else statements is that you may mistakenly
match an else with the incorrect if. The following program is an example.

103

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// shows ELSE matched with the wrong IF

#include <iostream>

using namespace std;

int main()

{

 int a, b, c;

 cout << “Enter three numbers, a, b, and c:\n”;

 cin >> x >> y >> z;

 if(x==y)

if(y==z)

 cout << “x, y, and z are the same\n”;

 else

cout << “x and y are different\n”;

 return 0;

}

We utilised several values with a single cin. Following each value you enter,
press Enter; the three values will be allocated to x, y, and z.

What happens if you type 2, 3, and 3 again? Variable x equals 2, and variable
y equals 3. Because they differ, the first test statement is false, and you
would expect the else to be executed, because printed x and y differ.
However, nothing is printed. What's the mistake? Because else is matched
with the incorrect if. The indentation would lead you to believe that the else
corresponds to the first if, but it actually corresponds to the second if. The
rule is as follows: If the last else does not have its own else, it is matched
with the last else.

This is the corrected version of the previous program:

104

if(x==y)

if(y==z)

 cout << “x, y, and z are the same\n”;

else

 cout << “y and z are different\n”;

We altered the indentation as well as the phrase written by the else body.
Nothing will be printed if you type 2, 3, 3. However, typing 2, 2, 3 will result
in different output y and z. If you truly want to connect an else with an
earlier if, you can use braces around the inner if:

if(x==y)

{

if(y==z)

cout << “x, y, and z are the same”;

}

else

cout << “x and y are different”;

Remember, brackets are the solution for matching else with the right if.

The else...if Construction

You can also use else if construction in the same line, carefully study the
following program:

1

2

3

4

5

6

#include <iostream>

using namespace std;

int main()

{

 int time = 0;

105

7

8

9

10

11

12

13

14

15

16

 cin>>time;

 if (time < 10)

 {

 cout << "Good morning.";

 }

 else if (time < 20)

 cout << "Good day.";

 else

 cout << "Good evening.";

return 0;

} //end main

More Decision Making: The switch Statement

Switch case statement is used when we have multiple conditions and we
need to perform different action based on the condition. When we have
multiple conditions and we need to execute a block of statements when a
particular condition is satisfied. In such case either we can use lengthy
if..else-if statement or switch case. The problem with lengthy if..else-if is
that it becomes complex when we have several conditions. The switch case
is a clean and efficient method of handling such scenarios.

1

2

3

4

5

6

7

#include <iostream>

using namespace std;

int main()

{

int DAY; //day of the week

cout << “\nEnter 1, 2, or 3: “;

cin >> DAY; //user enters day

106

8

9

10

11

12

13

14

15

16

17

18

19

20

21

switch(DAY) //selection based on Day

 {

case 1: //user entered 1

 cout << “Saturday\n”;

 break;

case 2: //user entered 2

 cout << “Sunday\n”;

 break;

case 3: //user entered 3

 cout << “Monday\n”;

 break;

 }

return 0;

}

This program prints one of three possible week days, depending on whether
the user inputs the number 1, 2, or 3. The keyword switch is followed by a
switch variable in parentheses. Figure 21 shows the syntax of the switch
statement.

switch(Day)

Braces then delimit a number of case statements. Each case keyword is
followed by a constant, which is not in parentheses but is followed by a
colon.

case 1:

107

Figure 21 Syntax of the switch statement.

The switch variable should be assigned a value before the programme
enters the switch. Typically, this value will match a constant in one of the
case statements. When this happens, the statements that come after the
keyword case are performed until a break is reached. Here's an example of
the result:

Enter 1, 2, or 3:
1
Saturday

The break keyword importance

Break statements are used when you want your program-flow to come out
of the switch body. Whenever a break statement is encountered in the
switch body, the execution flow would directly come out of the switch,

108

ignoring rest of the cases. This is why you must end each case block with the
break statement.

switch Versus if...else

A switch statement is usually more efficient than a set of nested ifs. Deciding
whether to use if-then-else statements or a switch statement is based on
readability and the expression that the statement is testing.

 Check the Testing Expression: An if-then-else statement can test
expressions based on ranges of values or conditions, whereas a switch
statement tests expressions based only on a single integer,
enumerated value, or String object. As shown below:

if(Pressure*Factor > 57)

 // statements

else if(Voltage + 200 < 25000)

 // statements

else if(day==Monday)

 // statements

else

 // statements

 Switch better for Multi way branching: When compiler compiles a

switch statement, it will inspect each of the case constants and create
a “jump table” that it will use for selecting the path of execution
depending on the value of the expression. Therefore, if we need to
select among a large group of values, a switch statement will run much
faster than the equivalent logic coded using a sequence of if-elses. The
compiler can do this because it knows that the case constants are all
the same type and simply must be compared for equality with the
switch expression, while in case of if expressions, the compiler has no
such knowledge.

109

 if-else better for boolean values: If-else conditional branches are great
for variable conditions that result into a boolean, whereas switch
statements are great for fixed data values.

 Speed: A switch statement might prove to be faster than ifs provided
number of cases are good. If there are only few cases, it might not
effect the speed in any case. Prefer switch if the number of cases are
more than 5 otherwise, you may use if-else too. If a switch contains
more than five items, it’s implemented using a lookup table or a hash
list. This means that all items get the same access time, compared to
a list of ifs where the last item takes much more time to reach as it has
to evaluate every previous condition first.

 Clarity in readability: A switch looks much cleaner when you have to
combine cases.

The Conditional Operator

The conditional operator is also known as a ternary operator. The
conditional statements are the decision-making statements which depends
upon the output of the expression. It is represented by two symbols, i.e., ?
and :. As conditional operator works on three operands, so it is also known
as the ternary operator. The behaviour of the conditional operator is similar
to the 'if-else' statement as 'if-else' statement is also a decision-making
statement. For example, here is an if...else statement that gives the variable
min the value of num1 or the value of num2, depending on which is smaller:

if(num1 < num2)
 min = num1;
else
 min = beta;

Here is the equivalent of the same program fragment, using a conditional
operator:

110

min = (num1<num2) ? num1 : num2;

the below figures depict the syntax and corresponding flow chart of the
conditional operator.

Figure 22 Syntax of the conditional operator.

Figure 23 Operation of the conditional operator.

111

Here is another example: a statement that employs the conditional
operator to determine the absolute value of the variable n (A number's
absolute value is the number with any negative sign removed, therefore it
is always positive.)

absval = n<0 ? -n : n;

If n is smaller than zero, the equation is -n, which is a positive number. If n
is greater than zero, the expression remains n. The absolute value of n is
allocated to absval as a result.

C++ programmers adore this kind of thing: getting a lot of bang for their
buck with very little code. However, you are not required to try for concise
code if you do not choose to.

Logical Operators in C++

C++ uses logical operators to check whether an expression is true or false.
If the expression is true, it returns 1 whereas if the expression is false, it
returns 0. There are three logical operators in C++, depicted in the below
figure:

Figure 24 C++ logical operators

Logical AND Operator

Here is an example, that uses the and logical operator .

112

1

2

3

4

5

6

7

8

9

10

11

12

13

#include <iostream>

using namespace std;

int main()

{

 int x, y;

 cout<<”Please enter two numbers” ;

 cin>>x>>y;

 if(x==8 && y==12)

 {

 cout << “ x is 8 and y is 12 \n”;

 }

 Return 0;

 }

The key to this program is the if statement
if(x==8 && y==12)

The test expression will be true only if x is 8 and y is 12 at the same time.
The logical AND operator && joins the two relational expressions to achieve
this result. Notice that parentheses are not necessary around the relational
expressions.

((x==8) && (y==12)) // inner parentheses not necessary

This is because relational operators take precedence over logical operators.
Here is some interaction as the user arrives at these coordinates:

Please enter two numbers

8

12

x is 8 and y is 12

113

Logical OR Operator

Check the following program that illustrates the logical OR operator:

1

2

3

4

5

6

7

8

9

10

11

12

13

#include <iostream>

using namespace std;

int main()

{

 int x, y;

 cout<<” Please enter two numbers” ;

 cin>>x>>y;

 if(x==5 || y==19)

 {

 cout << “ x is 8 OR y is 12 \n”;

 }

 Return 0;

 }

The expression :

x==5 || y==19
is true whenever either x is 5 or y is 19. Again, the || operator has lower
precedence than the relational operators < and >, so no parentheses are
needed in this expression.

Logical NOT Operator

The logical NOT operator ! is a unary operator—that is, it takes only one
operand. The effect of the ! is that the logical value of its operand is
reversed: If something is true, ! makes it false; if it is false, ! makes it true.

114

(It would be nice if life were so easily manipulated.) For example, (x==8) is
true if x is equal to 8, but !(x==8) is true if x is not equal to 8.

Summary of Operator Precedence

Let us recap the precedence situation for the operators we've examined
thus far. The operators at the top of the list take precedence over those at
the bottom. Higher precedence operators are evaluated before lower
precedence operators. The precedence of operators on the same row is the
same. By enclosing an expression in parenthesis, you can force it to be
evaluated first.

115

General C++ programming Exercises

Write a C++ program that computes the volume of a room after inputting
the dimensions of the room :

1

2

3

4

5

6

7

8

9

10

11

12

#include <iostream>

using namespace std;

int main()

{

 float volume, height, length, width;

 cout <<"Enter height, length, width: ";

 cin >> height>> length >> width;

 volume = height * length * width;

 cout << "volume = "<<volume<<endl;

 return 0;

 }

Write a C++ program that computes the area of the circle:

1

2

3

4

5

6

7

8

9

10

11

#include <iostream>

using namespace std;

int main()

{

 double area, radius;

 cout <<"Enter the radius ==> ";

 cin >> radius;

 area = 3.14 * radius * radius;

 cout << "Area = "<< area <<endl;

 return 0;

 }

116

Write a program that allows inputting three real numbers, then computes
their average:

1

2

3

4

5

6

7

8

9

10

11

12

#include <iostream>

using namespace std;

int main()

{

 float average, num1, num2, num3;

 cout <<"Enter three numbers ";

 cin >> num1>>num2>>num3;

 average = (num1+num2+num3) / 3;

 cout << "Average = "<< average <<endl;

 return 0;

 }

Write a program that allows inputting three integer numbers, then prints
the smallest number:

1

2

3

4

5

6

7

8

9

10

11

12

13

#include <iostream>

using namespace std;

int main()

{

 int smallest, num1, num2, num3;

 cout <<"Enter three integer numbers ==> ";

 cin >> num1 >> num2 >> num3;

 smallest = num1;

 if(num2 < smallest) smallest = num2;

 if(num3 < smallest) smallest = num3;

 cout << "The smallest is "<< smallest <<endl;

 return 0;

 }

117

Write a program that read a number n, then computes the summation of
numbers from 1 to n:

1

2

3

4

5

6

7

8

9

10

11

12

#include <iostream>

using namespace std;

int main()

{

 int sum, n;

 cout <<"Enter value for n ==> ";

 cin >> n;

 sum = n*(n+1)/2;

 cout << "sum = "<< sum <<endl;

 return 0;

 }

Write a program that prints the statement “Hello world” 10 times on the
screen:

1

2

3

4

5

6

7

8

9

#include <iostream>

using namespace std;

int main()

{

 for(int i=0; i<10; i++)

 cout<<”Hello world”;

 return 0;

 }

Write a program that asks the user for his age in years and prints the
equivalent in days:

118

1

2

3

4

5

6

7

8

9

10

11

#include <iostream>

using namespace std;

int main()

{

 float years, days;

 cout<<”please enter your age”;

 cin>>years;

 days= years * 365;

 cout<<”your age in days is”<<days;

 return 0;

 }

Write a program that reads a group of n numbers and prints their average:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

#include <iostream>

using namespace std;

int main()

{

 int n;

 float sum=0, Average=0, val;

 cout<<”How many numbers?”;

 cin>>n;

 for(int i=1; i<=n; i++)

 {

 cin>>val;

 sum+=val;

 }

 Average=sum/n;

 cout<<”Average is ”<<Average;

 return 0;

 }

119

Exercises

1. Write an expression that uses a relational operator to return true if
the variable ASD is not equal to TXX.

2. Is –1 true or false?
3. The increment expression in a for loop can decrement the loop

variable: True or false?
4. Write a for loop that displays the numbers from 150 to 110.
5. A block of code is delimited by ………………….
6. Write a while loop that displays the numbers from 190 to 195.
7. Relational operators have a higher precedence than arithmetic

operators: True or false?
8. Write a program that asks the user to type all the integers between 9

and 15 (both included) using a do-while loop.
9. Write a program that asks the user to type 15 integers and writes the

sum of these integers.
10. Write a program that asks the user to type 9 integers and writes

the smallest value.
11. Write a program that asks the user to type positive numbers until

either a zero or a negative is typed, and then show the user how many
positives were typed in.

12. Write a program that asks the user to enter an integer number
and determines if this number is odd or even.

120

Exam question 2019

121

Part 3

Chapter 1

MATLAB programming: An introduction

122

What is MATLAB

123

MATLAB is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar
mathematical notation. Typical uses include:

 Statistical computation
 Math computation
 Algorithm development
 Modelling, simulation, and prototyping
 Data analysis, exploration, and visualization
 Scientific and engineering graphics
 Application development, including Graphical User Interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations,
in a fraction of the time it would take to write a program in a scalar non-
interactive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally
written to provide easy access to matrix software developed by the LINPACK
and EISPACK projects, which together represent the state-of-the-art in
software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In
university environments, it is the standard instructional tool for
introductory and advanced courses in mathematics, engineering, and
science. In industry, MATLAB is the tool of choice for high-productivity
research, development, and analysis.

MATLAB features a family of application-specific solutions called toolboxes.
Very important to most users of MATLAB, toolboxes allow you to learn and
apply specialized technology. Toolboxes are comprehensive collections of

124

MATLAB functions (M-files) that extend the MATLAB environment to solve
particular classes of problems. Areas in which toolboxes are available
include statistical and mathematical computations, signal processing,
control systems, neural networks, fuzzy logic, wavelets, simulation, and
many others.

The MATLAB system consists of five main parts:

The MATLAB language.

This is a high-level matrix/array language with control flow
statements, functions, data structures, input/output, and object-
oriented programming features. It allows both "programming in the
small" to rapidly create quick and dirty throw-away programs, and
"programming in the large" to create complete large and complex
application programs.

The MATLAB working environment.

This is the set of tools and facilities that you work with as the MATLAB
user or programmer. It includes facilities for managing the variables in
your workspace and importing and exporting data. It also includes
tools for developing, managing, debugging, and profiling M-files,
MATLAB's applications.

Handle Graphics.

This is the MATLAB graphics system. It includes high-level commands
for two-dimensional and three-dimensional data visualization, image
processing, animation, and presentation graphics. It also includes low-
level commands that allow you to fully customize the appearance of

125

graphics as well as to build complete Graphical User Interfaces on your
MATLAB applications.

The MATLAB statistical and mathematical function library.

This is a vast collection of computational algorithms ranging from
elementary functions like sum, sine, cosine, and complex arithmetic,
to more sophisticated functions like matrix inverse, matrix
eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB Application Program Interface (API).

This is a library that allows you to write C and Fortran programs that
interact with MATLAB. It includes facilities for calling routines from
MATLAB (dynamic linking), calling MATLAB as a computational engine,
and for reading and writing MAT-files.

Why to use MATLAB

MATLAB has several advantages over other methods or languages:

 MATLAB’s functionality can be greatly expanded by the addition of
toolboxes. These are sets of specific functions that provided more
specialized functionality. Ex: Excel link allows data to be written in a
format recognized by Excel, Statistics Toolbox allows more specialized
statistical manipulation of data (Anova, Basic Fits, etc)

 Its basic data element is the matrix. A simple integer is considered an
matrix of one row and one column. Several mathematical operations
that work on arrays or matrices are built-in to the Matlab

126

environment. For example, cross-products, dot-products,
determinants, inverse matrices.

 Vectorized operations. Adding two arrays together needs only one
command, instead of a for or while loop.

 The graphical output is optimized for interaction. You can plot your
data very easily, and then change colors, sizes, scales, etc, by using the
graphical interactive tools.

 MATLAB has a long history of refinement, and Has very good user
documentation and a helpful support community.

 MATLAB has a very large library of built-in pre-written functions for
many common numerical computing tasks.

 MATLAB is quite an informal language, allowing newcomers to get
going and get results quickly.

Starting MATLAB
Once you finished installing MATLAB the below screen will appear. It’s the
main MATLAB interface and gives you access to all of its functionality. Study
this window carefully to gain some insight about its components, as it would
be the start point to inject your MATLAB code and run it.

127

Command Window

Menu/Control bar

Workspace Window

128

You are now faced with the MATLAB desktop on your computer, which
contains the prompt (>>) in the Command Window. Once, you see the
command prompt, it means you are ready to execute your Matlab code.

Using MATLAB as a calculator

As an example of a simple interactive calculation, just type the expression
you want to evaluate. Let's start at the very beginning. For example, let us
suppose you want to calculate the expression, 1 + 2 * 3. You type it at the
prompt command (>>) as follows,

>> 1+2*3
ans =
7

You will have noticed that if you do not specify an output variable, MATLAB
uses a default variable ans, short for answer, to store the results of the
current calculation. Note that the variable ans is created (or overwritten, if
it is already existed). To avoid this, you may assign a value to a variable or
output argument name. For example,

>> x = 1+2*3
x =
7

will result in x being given the value 1 + 2 * 3 = 7. This variable name can
always be used to refer to the results of the previous computations.
Therefore, computing 4x will result in

>> 4*x
ans =
28.0000

129

Before we conclude this minimum session, Table 6 gives the partial list of
arithmetic operators.

Table 5 Basic arithmetic operators

Quitting MATLAB

To end your MATLAB session, type quit in the Command Window, or select
File -> Exit MATLAB in the desktop main menu.

>> quit

Getting started

After learning the minimum MATLAB session, we will now learn to use
some additional operations.

Creating MATLAB variables

MATLAB variables are created with an assignment statement. The syntax
of variable assignment is:

variable name = a value (or an expression)

130

For example,

>> x = expression

where expression is a combination of numerical values, mathematical
operators, variables, and function calls. On other words, expression can
involve:
 manual entry.
 built-in functions.
 user-defined functions.

Overwriting variable

Once a variable has been created, it can be reassigned. In addition, if you do
not wish to see the intermediate results, you can suppress the numerical
output by putting a semicolon (;) at the end of the line. Then the sequence
of commands looks like this:

>> t = 5;
>> t = t+1
t =
6

131

Error messages

If we enter an expression incorrectly, MATLAB will return an error message.
For example, in the following, we left out the multiplication sign, *, in the
following expression:

>> x = 10;
>> 5x
??? 5x
 |
Error: Unexpected MATLAB expression.

Making corrections

To make corrections, we can, of course retype the expressions. But if the
expression is lengthy, we make more mistakes by typing a second time. A

previously typed command can be recalled with the up-arrow key ↑. When
the command is displayed at the command prompt, it can be modified if
needed and executed.

Controlling the hierarchy of operations or precedence

Let's consider the previous arithmetic operation, but now we will include
parentheses. For example, 1 + 2 * 3 will become (1 + 2) * 3

>> (1+2)*3
ans =
 9

and, from previous example

132

>> 1+2*3
ans =

7

By adding parentheses, these two expressions give different results: 9 and
7. The order in which MATLAB performs arithmetic operations is exactly
that taught in high school algebra courses. Exponentiations are done first,
followed by multiplications and divisions, and finally by additions and
subtractions. However, the standard order of precedence of arithmetic
operations can be changed by inserting parentheses. For example, the
result of 1+2*3 is quite different than the similar expression with
parentheses (1+2) *3. The results are 7 and 9 respectively. Parentheses can
always be used to overrule priority, and their use is recommended in some
complex expressions to avoid ambiguity.

Therefore, to make the evaluation of expressions unambiguous, MATLAB
has established a series of rules. The order in which the arithmetic
operations are evaluated is given in Table 7. MATLAB arithmetic operators
obey the same precedence rules as those in most computer programs. For
operators of equal precedence, evaluation is from left to right.

Table 6 Hierarchy of arithmetic operations

133

Now, consider another example:

In MATLAB, it becomes

>> 1/(2+3^2)+4/5*6/7
ans =
 0.7766

or, if parentheses are missing,

>> 1/2+3^2+4/5*6/7
ans =

10.1857

So here what we get: two different results. Therefore, we want to
emphasize the importance of precedence rule in order to avoid ambiguity.

Controlling the appearance of floating point number

MATLAB by default displays only 4 decimals in the result of the calculations,
for example -163:6667, as shown in above examples. However, MATLAB
does numerical calculations in double precision, which is 15 digits. The
command format controls how the results of computations are displayed.
Here are some examples of the different formats together with the resulting
outputs.

>> format short
>> x=-163.6667

If we want to see all 15 digits, we use the command format long

134

>> format long
>> x= -1.636666666666667e+002

To return to the standard format, enter format short, or simply format.
There are several other formats. For more details, see the MATLAB
documentation, or type help format. Note - Up to now, we have let MATLAB
repeat everything that we enter at the prompt (>>). Sometimes this is not
quite useful, in particular when the output is pages en length. To prevent
MATLAB from echoing what we type, simply enter a semicolon (;) at
the end of the command. For example,

>> x=-163.6667;

and then ask about the value of x by typing,

>> x
x =

-163.6667

Managing the workspace

The contents of the workspace persist between the executions of separate
commands. Therefore, it is possible for the results of one problem to have
an effect on the next one. To avoid this possibility, it is a good idea to issue
a clear command at the start of each new independent calculation.

>> clear

The command clear or clear all removes all variables from the workspace.
This frees up system memory. In order to display a list of the variables
currently in the memory, type

>> who

135

while, whos will give more details which include size, space allocation, and
class of the variables.

Keeping track of your work session

It is possible to keep track of everything done during a MATLAB session with
the diary command.

>> diary

or give a name to a created file,

>> diary FileName

where FileName could be any arbitrary name you choose.

The function diary is useful if you want to save a complete MATLAB session.
They save all input and output as they appear in the MATLAB window. When
you want to stop the recording, enter diary off. If you want to start recording
again, enter diary on. The file that is created is a simple text file. It can be
opened by an editor or a word processing program and edited to remove
extraneous material, or to add your comments. You can use the function
type to view the diary file or you can edit in a text editor or print. This
command is useful, for example in the process of preparing a homework or
lab submission.

Entering multiple statements per line

It is possible to enter multiple statements per line. Use commas (,) or
semicolons (;) to enter more than one statement at once. Commas (,) allow
multiple statements per line without suppressing output.

>> a=7; b=cos(a), c=cosh(a)
b =
 0.6570

136

c =
 548.3170

Miscellaneous commands

Here are few additional useful commands:
 To clear the Command Window, type clc
 To abort a MATLAB computation, type ctrl-c
 To continue a line, type . . .

Getting help

To view the online documentation, select MATLAB Help from Help menu or
MATLAB Help directly in the Command Window. The preferred method is
to use the Help Browser. The Help Browser can be started by selecting the
? icon from the desktop toolbar. On the other hand, information about any
command is available by typing

>> help Command

Another way to get help is to use the lookfor command. The lookfor
command differs from the help command. The help commands search for
an exact function name match, while the lookfor command searches the
quick summary information in each function for a match. For example,
suppose that we were looking for a function to take the inverse of a matrix.
Since MATLAB does not have a function named inverse, the command help
inverse will produce nothing. On the other hand, the command lookfor
inverse will produce detailed information, which includes the function of
interest, inv.

137

>> lookfor inverse

Note - At this particular time of our study, it is important to emphasize one
main point. Because MATLAB is a huge program; it is impossible to cover all
the details of each function one by one. However, we will give you
information how to get help. Here are some examples:

 Use on-line help to request info on a specific function

>> help sqrt

 In the current version, the doc function opens the on-line version of
the help manual. This is very helpful for more complex commands.

>> doc plot

 Use lookfor to find functions by keywords. The general form is

>> lookfor FunctionName

Mathematical functions

MATLAB offers many pre-defined mathematical functions for technical
computing which contains a large set of mathematical functions. Typing
help elfun and help specfun calls up full lists of elementary and special
functions respectively.

There is a long list of mathematical functions that are built into MATLAB.
These functions are called built-ins. Many standard mathematical functions,

138

such as sin(x), cos(x), tan(x), ex, ln(x), are evaluated by the functions sin, cos,
tan, exp, and log respectively in MATLAB.

Table 8 lists some commonly used functions, where variables x and y can be
numbers, vectors, or matrices.

Table 7 lists some commonly used functions, where variables x and y can be
numbers,

In addition to the elementary functions, MATLAB includes a number of
predefined constant values. A list of the most common values is given in
Table 9.

139

Table 8 Predefined constant values

Examples

We illustrate here some typical examples which related to the elementary
functions previously defined.

As a first example, the value of the expression y = e-a sin(x) + 10√y
 for a = 5, x = 2, and y = 8 is computed by

>> a = 5; x = 2; y = 8;
>> y = exp(-a)*sin(x)+10*sqrt(y)
y =
 28.2904

The subsequent examples are

>> log(142)
ans =
 4.9558

>> log10(142)
ans =
 2.1523

140

Note the difference between the natural logarithm log(x) and the decimal
logarithm (base 10) log10(x).

To calculate sin(π/4) and e10, we enter the following commands in MATLAB,

>> sin(pi/4)
ans =
 0.7071
>> exp(10)
ans =
 2.2026e+004

Notes:

 Only use built-in functions on the right-hand side of an expression.
Reassigning the value to a built-in function can create problems.

 There are some exceptions. For example, i and j are pre-assigned to

√(-1). However, one or both of i or j are often used as loop indices.

 To avoid any possible confusion, it is suggested to use instead ii or jj

as loop indices.

141

Exercises
1- Evaluate the following MATLAB expressions by hand and use MATLAB to
check the answers

 a. 2 / 2 * 3
 b. 6 - 2 / 5 + 7 ^ 2 - 1
 c. 10 / 2 \ 5 - 3 + 2 * 4
 d. 3 ^ 2 / 4
 e. 3 ^ 2 ^ 2
 f. 2 + round(6 / 9 + 3 * 2) / 2 - 3
 g. 2 + floor(6 / 9 + 3 * 2) / 2 - 3
 h. 2 + ceil(6 / 9 + 3 * 2) / 2 - 3

2- Write down the MATLAB expression(s) that will

 a. Compute the length of the hypotenuse of a right triangle given the
lengths of the sides (try to do this for a vector of side-length values).

b. Compute the length of the third side of a triangle given the lengths
of the other two sides, given the cosine rule

 c2 = a2 + b2 - 2(a)(b)cos(t)

 where t is the included angle between the given sides. Assume any
arbitrary lengths for a and b.

3- Write down the MATLAB expression that will compute the average of the
following numbers sequence 10, 11, 15, 0, 40 and 24.
4- Write down the MATLAB expression that computes the standard
deviation of the previous numbers in exercise 3.

142

Chapter 2

Plotting in MATLAB

143

Basic plotting

MATLAB has an excellent set of graphic tools. Plotting a given data set or
the results of computation is possible with very few commands. You are
highly encouraged to plot mathematical functions and results of analysis as
often as possible. Trying to understand mathematical equations with
graphics is an enjoyable and very efficient way of learning mathematics.
Being able to plot mathematical functions and data freely is the most
important step, and this section is written to assist you to do just that.

Creating simple plots

The basic MATLAB graphing procedure, for example in 2D, is to take a vector
of x coordinates, x = (x1,…, xN), and a vector of y-coordinates, y = (y1,…, yN),
locate the points (xi , yi), with i = 1, 2,…, n and then join them by straight
lines. You need to prepare x and y in an identical array form; namely, x and
y are both row arrays or column arrays of the same length.

The MATLAB command to plot a graph is plot(x,y). The vectors x = (1, 2, 3,
4, 5, 6) and y = (3,-1, 2, 4, 5, 1) produce the picture shown in Figure 34.

>> x = [1 2 3 4 5 6];
>> y = [3 -1 2 4 5 1];
>> plot(x,y)

Note: The plot functions have different forms depending on the input
arguments. If y is a vector plot(y)produces a piecewise linear graph of the
elements of y versus the index of the elements of y. If we specify two
vectors, as mentioned above, plot(x,y) produces a graph of y versus x.

144

For example, to plot the function sin (x) on the interval [0; 2 π], we first
create a vector of x values ranging from 0 to 2π, then compute the sine of
these values, and finally plot the result:

Figure 25 Plot for the vectors x and y

>> x = 0: pi/100:2*pi;
>> y = sin(x);
>> plot(x,y)

Notes:

 0: pi/100:2*pi yields a vector that

 starts at 0,
 takes steps (or increments) of π=100,
 stops when 2π is reached.

 If you omit the increment, MATLAB automatically increments by 1.

145

Adding titles, axis labels, and annotations

MATLAB enables you to add axis labels and titles. For example, using the
graph from the previous example, add an x- and y-axis labels.

Now label the axes and add a title. The character \pi creates the symbol π
An example of 2D plot is shown in Figure 35.

Figure 26 Plot of the Sine function

>> xlabel('x = 0:2\pi')
>> ylabel('Sine of x')
>> title('Plot of the Sine function')

146

The color of a single curve is, by default, blue, but other colors are possible.
The desired color is indicated by a third argument. For example, red is
selected by plot(x,y,'r'). Note the single quotes, ' ', around r.

Multiple data sets in one plot

Multiple (x; y) pairs arguments create multiple graphs with a single call to
plot. For example, these statements plot three related functions of x: y1 = 2
cos(x), y2 = cos(x), and y3 = 0.5 * cos(x), in the interval 0 <= x <= 2π.

>> x = 0:pi/100:2*pi;

>> y1 = 2*cos(x);

>> y2 = cos(x);

>> y3 = 0.5*cos(x);

>> plot(x,y1,'--',x,y2,'-',x,y3,':')

>> xlabel('0 \leq x \leq 2\pi')

>> ylabel('Cosine functions')

>> legend('2*cos(x)','cos(x)','0.5*cos(x)')

>> title('Typical example of multiple plots')

>> axis([0 2*pi -3 3])

The result of multiple data sets in one graph plot is shown in Figure 36.

By default, MATLAB uses line style and color to distinguish the data sets
plotted in the graph. However, you can change the appearance of these
graphic components or add annotations to the graph to help explain your
data for presentation.

147

Figure 27 Typical example of multiple plots

Specifying line styles and colors

It is possible to specify line styles, colors, and markers (e.g., circles, plus
signs, . . .) using the plot command:

plot(x,y,'style_color_marker')

where style_color_marker is a triplet of values from Table 10. To find
additional information, type help plot or doc plot.

148

Table 9 Attributes for plot

149

Exercises
1. Using MATLAB plot the function of a straight line:

y= a x +b
where a is the slope of the line and b is the intercept part of the Y-axis,
you can assume x=[0,…,10] and the slope is 2 with an intercept of zero
value.

2. Execute the following MATLAB code, and try to guess what does the
output plot statistically represents:

>> x = [-3:.1:3];
 norm = normpdf(x,0,1);
 figure;
 plot(x,norm)

3. Use MATLAB to sketch the following function

y = (x + 2)2 – 3
assume the range x=[-4,…,4].
What does this equation called, and what does it represent?

4. Execute the following code in MATLAB and analyse the output graph

>>cx = input('Enter x coordinate: ');
 cy = input('Enter y coordinate: ');

 n = 50;
 R = 1;
 angle = 0:2*pi/n:2*pi;
 x = cx+R*cos(angle); y = cy+R*sin(angle);
 plot(x,y);
 axis equal;
 grid on;

150

Chapter 3

Statistical usages of Vectors
and matrices in MATLAB

151

Introduction

Matrices/vectors are the basic elements of the MATLAB environment. A
matrix is a two-dimensional array consisting of m rows and n columns.
Special cases are column vectors (n = 1) and row vectors (m = 1).

In this chapter we will illustrate how to apply different operations on
matrices. The following topics are discussed: vectors and matrices in
MATLAB, the inverse of a matrix, determinants, and matrix manipulation.

MATLAB supports two types of operations, known as matrix operations and
array operations. Matrix operations will be discussed first, as vectors are
special case from the matrices (One dimensional matrix).

Vectors in MATLAB

A vector is a special case of a matrix. The purpose of this section is to show
how to create vectors and matrices in MATLAB. As discussed earlier, an
array of dimension 1*n is called a row vector, whereas an array of
dimension m*1 is called a column vector. The elements of vectors in
MATLAB are enclosed by square brackets and are separated by spaces or by
commas. For example, to enter a row vector, v, type

>> v = [1 4 7 10 13]
 v =
 1 4 7 10 13

Column vectors are created in a similar way, however, semicolon (;) must
separate the components of a column vector,

>> w = [1;4;7;10;13]
 w =

1

152

4
7
10
13

On the other hand, a row vector is converted to a column vector using the
transpose operator. The transpose operation is denoted by an apostrophe
or a single quote (').

>> w = v'
 w =
 1
 4
 7
 10
 13

Thus, v(1) is the first element of vector v, v(2) its second element, and so
forth. Furthermore, to access blocks of elements, we use MATLAB's colon
notation (:). For example, to access the first three elements of v, we write,

>> v(1:3)
ans =
1 4 7

Or, all elements from the third through the last elements,

>> v(3,end)
ans =
7 10 13

153

where end signatures the last element in the vector. If v is a vector, writing

>> v(:)

produces a column vector, whereas writing

>> v(1:end)

produces a row vector.

Creating a matrix

A matrix is an array of numbers. To type a matrix into MATLAB you must:
 Begin with a square bracket, [
 Separate elements in a row with spaces or commas (,)
 Use a semicolon (;) to separate rows
 End the matrix with another square bracket,].

Here is a typical example. To enter a matrix A, such as,

type,

>> A = [1 2 3; 4 5 6; 7 8 9]

MATLAB then displays the 3 x 3 matrix as follows,

A =
1 2 3
4 5 6
7 8 9

154

Note that the use of semicolons (;) here is different from their use
mentioned earlier to suppress output or to write multiple commands in a
single line. Once we have entered the matrix, it is automatically stored and
remembered in the Workspace. We can refer to it simply as matrix A. We
can then view a particular element in a matrix by specifying its location. We
write,

>> A(2,1)
ans =
4

A(2,1) is an element located in the second row and first column. Its value is
4.

Matrix indexing

We select elements in a matrix just as we did for vectors, but now we need
two indices. The element of row i and column j of the matrix A is denoted
by A(i,j). Thus, A(i,j) in MATLAB refers to the element Aij of matrix A. The
first index is the row number and the second index is the column number.
For example, A(1,3) is an element of first row and third column. Here,
A(1,3)=3.

Correcting any entry is easy through indexing. Here we substitute A(3,3)=9
by A(3,3)=0. The result is:

>> A(3,3) = 0
 A =

1 2 3
4 5 6
7 8 0

155

Single elements of a matrix are accessed as A(i,j), where i >= 1 and j >= 1.
Zero or negative subscripts are not supported in MATLAB.

Colon operator
The colon operator will prove very useful and understanding how it works
is the key to efficient and convenient usage of MATLAB. It occurs in several
different forms.

Often we must deal with matrices or vectors that are too large to enter one
element at a time. For example, suppose we want to enter a vector x
consisting of points (0, 0.1, 0.2, 0.3,…, 5). We can use the command

>> x = 0:0.1:5;

The row vector has 51 elements.

Linear spacing

On the other hand, there is a command to generate linearly spaced vectors:
linspace. It is similar to the colon operator (:), but gives direct control over
the number of points. For example,

y = linspace(a,b)

generates a row vector y of 100 points linearly spaced between and
including a and b.

y = linspace(a,b,n)
generates a row vector y of n points linearly spaced between and including
a and b. This is useful when we want to divide an interval into a number of
subintervals of the same length. For example,

156

>> theta = linspace(0,2*pi,101)

divides the interval [0, 2π] into 100 equal subintervals, then creating a
vector of 101 elements.

Colon operator in a matrix

The colon operator can also be used to pick out a certain row or column.
For example, the statement A(m:n,k:l) specifies rows m to n and column k
to l. Subscript expressions refer to portions of a matrix. For example,

>> A(2,:)
ans =
4 5 6

is the second row elements of A.

The colon operator can also be used to extract a sub-matrix from a matrix
A, as in the following example.

>> A(:,2:3)
ans =

2 3
5 6
8 0

A(:,2:3) is a sub-matrix with the last two columns of A.

A row or a column of a matrix can be deleted by setting it to a null vector,
[].

>> A(:,2)=[]
ans =

157

1 3
4 6
7 0

Creating a sub-matrix

To extract a submatrix B consisting of rows 2 and 3 and columns 1 and 2 of
the matrix A, do the following:

>> B = A([2 3],[1 2])
B =

4 5
7 8

To interchange rows 1 and 2 of A, use the vector of row indices together
with the colon operator.

>> C = A([2 1 3],:)
C =

4 5 6
1 2 3
7 8 0

It is important to note that the colon operator (:) stands for all columns or
all rows. To create a vector version of matrix A, do the following:

>> A(:)
 ans =

1
2
3
4
5
6

158

7
8
0

The submatrix comprising the intersection of rows p to q and columns r to
s is denoted by A(p:q,r:s).

As a special case, a colon (:) as the row or column specifier covers all entries
in that row or column; thus
 A(:,j) is the jth column of A.

 A(i,:) is the ith row.

 A(end,:) picks out the last row of A.

The keyword end, used in A(end,:), denotes the last index in the specified
dimension. Here are some examples.

>> A
 A =

1 2 3
4 5 6
7 8 9

>> A(2:3,2:3)
 ans =

5 6
8 9

>> A(end:-1:1,end)
 ans =
 9
 6
 3

159

>> A([1 3],[2 3])
ans =

2 3
8 9

Deleting row or column

To delete a row or column of a matrix, use the empty vector operator, [].

>> A(3,:) = []
A =

1 2 3
4 5 6

Third row of matrix A is now deleted. To restore the third row, we use a
technique for creating a matrix

>> A = [A(1,:);A(2,:);[7 8 0]]
A =

1 2 3
4 5 6
7 8 0

Matrix A is now restored to its original form.

Matrix Dimensions

To determine the dimensions of a matrix or vector, use the command size.
For example,

160

>> size(A)
ans =

3 3

means 3 rows and 3 columns.
Or more explicitly with,

>> [m,n]=size(A)

Transposing a matrix

The transpose operation is denoted by an apostrophe or a single quote (').
It flips a matrix about its main diagonal and it turns a row vector into a
column vector. Thus,

>> A’
ans =

1 4 7
2 5 8
3 6 0

By using linear algebra notation, the transpose of m x n real matrix A is the
n x m matrix that results from interchanging the rows and columns of A. The
transpose matrix is denoted AT .

Concatenating matrices

Matrices can be made up of sub-matrices. Here is an example. First, let us
recall our previous matrix A.

161

A =[
1 2 3,
4 5 6,
7 8 9]

The new matrix B will be,

>> B = [A 10*A; -A [1 0 0; 0 1 0; 0 0 1]]
B =

1 2 3 10 20 30
4 5 6 40 50 60
7 8 9 70 80 90
-1 -2 -3 1 0 0
-4 -5 -6 0 1 0
-7 -8 -9 0 0 1

Matrix generators

MATLAB provides functions that generates elementary matrices. The matrix
of zeros, the matrix of ones, and the identity matrix are returned by the
function’s zeros, ones, and eye, respectively.

Table 10 Elementary matrices

For a complete list of elementary matrices and matrix manipulations, type
help elmat or doc elmat. Here are some examples:

162

>> b=ones(3,1)
b =

1
1
1

>> eye(3)
ans =

1 0 0
0 1 0
0 0 1

>> c=zeros(2,3)
c =

0 0 0
0 0 0

In addition, it is important to remember that the three elementary
operations of addition (+), subtraction (¡), and multiplication (¤) apply also
to matrices whenever the
dimensions are compatible.

Two other important matrix generation functions are rand and random,
which generate matrices of (pseudo-)random numbers using the same
syntax as eye.

In addition, matrices can be constructed in a block form. With C defined by
C = [1 2; 3 4], we may create a matrix D as follows:

163

>> D = [C zeros(2); ones(2) eye(2)]
D =

1 2 0 0
3 4 0 0
1 1 1 0
1 1 0 1

Special matrices

MATLAB provides a number of special matrices (see Table 12). These
matrices have interesting properties that make them useful for constructing
examples and for testing algorithms.

For more information, see MATLAB documentation.

Table 11 Special Matrices

Array operations

MATLAB has two different types of arithmetic operations: matrix arithmetic
operations and array arithmetic operations. We have seen matrix arithmetic
operations in the previous lab. Now, we are interested in array operations
that will facilitate for the statistical analysis.

164

As we mentioned earlier, MATLAB allows arithmetic operations: +, ¡, x, and
^ to be carried out on matrices. Thus,

A+B or B+A is valid if A and B are of the same size
A*B is valid if A's number of column equals B's number of rows
A^2 is valid if A is square and equals A*A
α*A or A* α multiplies each element of A by α

On the other hand, array arithmetic operations or array operations for
short, are done element-by-element. The period character, ., distinguishes
the array operations from the matrix operations. However, since the matrix
and array operations are the same for addition (+) and subtraction (¡), the
character pairs (.+) and (.-) are not used. The list of array operators is shown
below in Table 13. If A and B are two matrices of the same size with
elements A = [aij] and B = [bij], then the command

Table 12 Array operations

>> C = A.*B

produces another matrix C of the same size with elements cij = aij bij . For
example, using the same 3 x 3 matrices,

165

we have,

>> C = A.*B

C =

10 40 90

160 250 360

490 640 810

To raise a scalar to a power, we use for example the command 10^2. If we
want the operation to be applied to each element of a matrix, we use. ^2.
For example, if we want to produce a new matrix whose elements are the
square of the elements of the matrix A, we enter

>> A.^2
ans =

1 4 9
16 25 36
49 64 81

The relations below summarize the above operations. To simplify, let us
consider two vectors U and V with elements U = [ui] and V = [vj].

Matrix inverse

Let's consider the same matrix A.

166

Calculating the inverse of A manually is probably not a pleasant work. Here
the hand calculation of A-1 gives as a final result:

In MATLAB, however, it becomes as simple as the following commands:

>> A = [1 2 3; 4 5 6; 7 8 0];
>> inv(A)
 ans =
 -1.7778 0.8889 -0.1111
 1.5556 -0.7778 0.2222
 -0.1111 0.2222 -0.1111

which is similar to:

and the determinant of A is

>> det(A)
ans =

27

167

Matrix functions

MATLAB provides many matrix functions for various matrix/vector
manipulations; see Table 14 for some of these functions. Use the online help
of MATLAB to find how to use these functions.

Table 13 Matrix functions

168

Exercises

1. Write the Matlab code that converts temperature in degrees
Fahrenheit (F) to degrees Centigrade (C). Use input and fprintf
commands to display a mix of text and numbers. Recall the conversion
formulation, C = 5=9 * (F - 32).

2. Write the Given x = [3 1 5 7 9 2 6], explain what the following
commands "mean" by summarizing the net result of the command.

a. x(3)
b. x(1:7)
c. x(1:end)
d. x(1:end-1)
e. x(6:-2:1)
f. x([1 6 2 1 1])
g. sum(x)

3. Given the array A = [2 4 1 ; 6 7 2 ; 3 5 9], provide the commands
needed to

a. assign the first row of A to a vector called x1
b. assign the last 2 rows of A to an array called y
c. compute the sum over the columns of A
d. compute the sum over the rows of A
e. compute the standard error of the mean of each column of A

(NB. the standard error of the mean is defined as the standard
deviation divided by the square root of the number of elements
used to compute the mean.)

169

4. Give the following commands to create an array called F:

 >> randn('seed',123456789)
 F = randn(5,10);

a) Compute the mean of each column and assign the results to the

elements of a vector called avg.
b) Compute the standard deviation of each column and assign the

results to the elements of a vector called s.
c) Compute the vector of t-scores that test the hypothesis that the

mean of each column is no different from zero.
d) If Pr(|t| > 2.132) = 0.1 with 4 degrees of freedom, are any of the

mean values in the vector avg statistically different from 0?

(hint for question 4, look at the below Matlab code)
 N = size(F,1)
 avg = mean(F)
 s = std(F)
 tscore = (avg - 0)./(s/sqrt(N))
 None were different at (all < 2.132).

5. Create a vector x containing integer numbers from 1 to 100. Create a

vector y containing numbers 1, 0.9, 0.8, 0.7, . . . 0.1, 0 in this order.

6. Create matrix 3x3 with all ones. Create matrix 8 by 1 with all zeros.
Create matrix 5 by 2 with all elements equal to 0.37.

7. Given A = [1 1; 2 2; 3 3; 4 100] Run the MATLAB code:

 average = mean(A)
med = median(A)
dev = std(A)

170

Chapter 4

Statistical Applications of
MATLAB

171

You may need to summarize large, complex data sets—both numerically
and visually—to convey their essence to the data analyst and to allow for
further processing. This chapter focuses on numerical summaries.

Measures of Central Tendency

Measures of central tendency locate a distribution of data along an
appropriate scale. The following table lists the functions that calculate the
measures of central tendency.

The following table lists the MATLAB functions that calculate the measures
of central tendency.

The average is a simple and popular estimate of location. If the data sample
comes from a normal distribution, then the sample mean is also optimal.

Unfortunately, outliers, data entry errors, or glitches exist in almost all real
data. The sample mean is sensitive to these problems. One bad data value
can move the average away from the centre of the rest of the data by an
arbitrarily large distance.

172

The median and trimmed mean are two measures that are resistant
(robust) to outliers. The median is the 50th percentile of the sample, which
will only change slightly if you add a large perturbation to any value. The
idea behind the trimmed mean is to ignore a small percentage of the highest
and lowest values of a sample when determining the canter of the sample.

The geometric mean and harmonic mean, like the average, are not robust
to outliers. They are useful when the sample is distributed lognormal or
heavily skewed.

The following example shows the behaviour of the measures of location for
a sample with one outlier.

>>x = [ones(1,6) 100]
 x =
 1 1 1 1 1 1 100

>>locate = [geomean(x) harmmean(x) mean(x) median(x)...
 trimmean(x,25)]
 locate =
 1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the
influence of the outlier. The median and trimmed mean ignore the outlying
value and describe the location of the rest of the data values.

173

Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the
data values are on the number line. Another term for these statistics is
measures of spread.

The table gives the function names and descriptions.

The range (the difference between the maximum and minimum values) is
the simplest measure of spread. But if there is an outlier in the data, it will
be the minimum or maximum value. Thus, the range is not robust to
outliers.

The standard deviation and the variance are popular measures of spread
that are optimal for normally distributed samples. The sample variance is.
The standard deviation is the square root of the variance and has the
desirable property of being in the same units as the data. That is, if the data
is in meters, the standard deviation is in meters as well. The variance is in
meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data

174

value that is separate from the body of the data can increase the value of
the statistics by an arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the
MAD does not move quite as much as the standard deviation or variance in
response to bad data.

The interquartile range (IQR) is the difference between the 75th and 25th
percentile of the data. Since only the middle 50% of the data affects this
measure, it is robust to outliers.

The following example shows the behaviour of the measures of dispersion
for a sample with one outlier.

>>x = [ones(1,6) 100]
x =

1 1 1 1 1 1 100
stats = [iqr(x) mad(x) range(x) std(x)]
stats =

0 24.2449 99.0000 37.4185

Measures of Shape

Quantiles and percentiles provide information about the shape of data as
well as its location and spread.

The quantile of order p (0 ≤ p ≤ 1) is the smallest x value where the
cumulative distribution function equals or exceeds p. The function quantile
computes quantiles as follows:

175

1. n sorted data points are the 0.5/n, 1.5/n, ..., (n–0.5)/n quantiles.
2. Linear interpolation is used to compute intermediate quantiles.
3. The data min or max are assigned to quantiles outside the range.
4. Missing values are treated as NaN, and removed from the data.

Percentiles, computed by the prctile function, are quantiles for a certain
percentage of the data, specified for 0 ≤ p ≤ 100.

The following example shows the result of looking at every quartile
(quantiles with orders that are multiples of 0.25) of a sample containing a
mixture of two distributions.

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p;y]
z =
0 25.0000 50.0000 75.0000 100.0000
1.8293 4.6728 5.6459 6.0766 7.1546

A box plot helps to visualize the statistics:

boxplot(x)

The box plot figure is depicted in Figure 37 below.

176

Figure 28 Box plot

The long lower tail and plus signs show the lack of symmetry in the sample
values. For more information on box plots.

The shape of a data distribution is also measured by the Statistics Toolbox
functions skewness, kurtosis, and, more generally, moment.

Data with Missing Values

Many data sets have one or more missing values. It is convenient to code
missing values as NaN (Not a Number) to preserve the structure of data sets
across multiple variables and observations.

For example:

177

X = magic(3);
X([1 5]) = [NaN NaN]
X =

NaN 1 6
3 NaN 7
4 9 2

Normal MATLAB arithmetic operations yield NaN values when operands are
NaN:

s1 = sum(X)
s1 =
NaN NaN 15

Removing the NaN values would destroy the matrix structure. Removing the
rows containing the NaN values would discard data. Statistics Toolbox
functions in the following table remove NaN values only for the purposes of
computation.

178

For example:

s2 = nansum(X)
s2 =
7 10 15

Other Statistics Toolbox functions also ignore NaN values. These include iqr,
kurtosis, mad, prctile, range, skewness, and trimmean.

Statistical Visualization

Statistics Toolbox data visualization functions add to the extensive graphics
capabilities already in MATLAB.

 Scatter plots are a basic visualization tool for multivariate data. They

are used to identify relationships among variables. Grouped versions
of these plots use different plotting symbols to indicate group
membership. The gname function is used to label points on these plots
with a text label or an observation number.

 Box plots display a five-number summary of a set of data: the median,

the two ends of the interquartile range (the box), and two extreme
values (the whiskers) above and below the box. Because they show
less detail than histograms, box plots are most useful for side-by-side
comparisons of two distributions.

 Distribution plots help you identify an appropriate distribution family
for your data. They include normal and Weibull probability plots,
quantile-quantile plots, and empirical cumulative distribution plots.

179

Scatter Plots

A scatter plot is a simple plot of one variable against another. The MATLAB
functions plot and scatter produce scatter plots. The MATLAB function
plotmatrix can produce a matrix of such plots showing the relationship
between several pairs of variables.

Statistics Toolbox functions gscatter and gplotmatrix produce grouped
versions of these plots. These are useful for determining whether the values
of two variables or the relationship between those variables is the same in
each group.

Suppose you want to examine the weight and mileage of cars from three
different model years.

load carsmall
gscatter(Weight,MPG,Model_Year,'','xos')

180

This shows that not only is there a strong relationship between the weight
of a car and its mileage, but also that newer cars tend to be lighter and have
better gas mileage than older cars.

The default arguments for gscatter produce a scatter plot with the different
groups shown with the same symbol but different colors. The last two
arguments above request that all groups be shown in default colors and
with different symbols.

what is carsmall dataset?

Carsmall is a built in dataset in the MATLAB that is available to try the
various statistical functions and study their behaviour. After you load it in
the MATLAB workspace, have a look at its different variables. (A snapshot is
depicted in Figure 38).

This data contains a total of 100 cars, each defined by its
Accelartion,Cylinders, Displacement, Horsepower, Mfg, Model,
Model_Year, MPG, Origin and Weight.

Figure 29 variables of the MATLAB carsmall dataset

181

The carsmall data set contains other variables that describe different
aspects of cars. You can examine several of them in a single display by
creating a grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'','xos')

The upper right subplot displays MPG against Horsepower, and shows that
over the years the horsepower of the cars has decreased but the gas
mileage has improved.

The gplotmatrix function can also graph all pairs from a single list of
variables, along with histograms for each variable.

182

Box Plots

The graph below, created with the boxplot command, compares petal
lengths in samples from two species of iris.

load fisheriris
s1 = meas(51:100,3);
s2 = meas(101:150,3);
boxplot([s1 s2],'notch','on',...
'labels',{'versicolor','virginica'})

This plot has the following features:

 The tops and bottoms of each “box” are the 25th and 75th percentiles

of the samples, respectively. The distances between the tops and
bottoms are the interquartile ranges.

 The line in the middle of each box is the sample median. If the median
is not centred in the box, it shows sample skewness.

183

 The whiskers are lines extending above and below each box. Whiskers

are drawn from the ends of the interquartile ranges to the furthest
observations within the whisker length (the adjacent values).

 Observations beyond the whisker length are marked as outliers. By
default, an outlier is a value that is more than 1.5 times the
interquartile range away from the top or bottom of the box, but this
value can be adjusted with additional input arguments. Outliers are
displayed with a red + sign.

 Notches display the variability of the median between samples. The

width of a notch is computed so that box plots whose notches do not
overlap (as above) have different medians at the 5% significance level.
The significance level is based on a normal distribution assumption,
but comparisons of medians are reasonably robust for other
distributions. Comparing box-plot medians is like a visual hypothesis
test, analogous to the t-test used for means.

what is fisheriris dataset?

fisheriris is another built in dataset in the MATLAB that is available to try
the various statistical functions and study their behaviour. After you load it
in the MATLAB workspace, have a look at its different variables.

This data contains a total of 150 iris, each defined by its species and meas.
For further information about this dataset load it into MATLAB and search
the unknown terms in google.

184

Normal Probability Plots

Normal probability plots are used to assess whether data comes from a
normal distribution. Many statistical procedures make the assumption that
an underlying distribution is normal, so normal probability plots can provide
some assurance that the assumption is justified, or else provide a warning
of problems with the assumption.

The following example shows a normal probability plot created with the
normplot function.

x = normrnd(10,1,25,1);
normplot(x)

185

The plus signs plot the empirical probability versus the data value for each
point in the data. A solid line connects the 25th and 75th percentiles in the
data, and a dashed line extends it to the ends of the data. The y-axis values
are probabilities from zero to one, but the scale is not linear. The distance
between tick marks on the y-axis matches the distance between the
quantiles of a normal distribution. The quantiles are close together near the
median (probability = 0.5) and stretch out symmetrically as you move away
from the median.

In a normal probability plot, if all the data points fall near the line, an
assumption of normality is reasonable. Otherwise, the points will curve
away from the line, and an assumption of normality is not justified.

For example:

x = exprnd(10,100,1);
 normplot(x)

186

The plot is strong evidence that the underlying distribution is not normal.
Do you recall how does the normal distribution looks like?

Quantile-Quantile Plots

Quantile-quantile plots are used to determine whether two samples come
from the same distribution family. They are scatter plots of quantiles
computed from each sample, with a line drawn between the first and third
quartiles. If the data falls near the line, it is reasonable to assume that the
two samples come from the same distribution. The method is robust with
respect to changes in the location and scale of either distribution.

To create a quantile-quantile plot, use the qqplot function. The following
example shows a quantile-quantile plot of two samples from Poisson
distributions.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
 qqplot(x,y);

187

Even though the parameters and sample sizes are different, the
approximate linear relationship suggests that the two samples may come
from the same distribution family. For statistical procedures that depend on
the two samples coming from the same distribution, however, a linear
quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying
distributions are not the same.

x = normrnd(5,1,100,1);
y = wblrnd(2,0.5,100,1);

qqplot(x,y);

These samples clearly are not from the same distribution family.

188

Cumulative Distribution Plots

An empirical cumulative distribution function (cdf) plot shows the
proportion of data less than each x value, as a function of x. The scale on
the y-axis is linear; in particular, it is not scaled to any particular distribution.
Empirical cdf plots are used to compare data cdfs to cdfs for particular
distributions.

To create an empirical cdf plot, use the cdfplot function (or ecdf and stairs).
The following example compares the empirical cdf for a sample from an
extreme value distribution with a plot of the cdf for the sampling
distribution. In practice, the sampling distribution would be unknown, and
would be chosen to match the empirical cdf.

y = evrnd(0,3,100,1);
 cdfplot(y)
 hold on
 x = -20:0.1:10;
 f = evcdf(x,0,3);
 plot(x,f,'m')
 legend('Empirical','Theoretical','Location','NW')

189

Part 4

Chapter 1

An introduction to SPSS

190

What is SPSS?

SPSS is a Windows based program that can be used to perform data entry
and analysis and to create tables and graphs. SPSS is capable of handling
large amounts of data and can perform all of the analyses covered in the
text and much more. SPSS is commonly used in the Social Sciences and in
the business world, so familiarity with this program should serve you well in
the future. SPSS is updated often. This document was written around an
earlier version, but the differences should not cause any problems. If you
want to go further and learn much more about SPSS, I strongly recommend
Andy Field’s book (Field, 2009, Discovering statistics using SPSS). Those of
us who have used software for years think that we know it all and do not
pay a lot of attention to new features. I learned a huge amount from Andy’s
book.

Opening SPSS
 Depending on how the computer you are working on is structured,
you can open SPSS in one of two ways.

1. If there is an SPSS shortcut like this on the desktop, simply put the
cursor on it and double click the left mouse button.

2. Click the left mouse button on the button on your screen, then
put your cursor on Programs or All Programs and left click the mouse. Select
SPSS 17.0 for Windows by clicking the left mouse button. The version
number may change by the time you read this.) Either approach will launch
the program.

191

You will see a screen that looks like the image on the next page. The dialog
box that appears offers choices of running the tutorial, typing in data,
running queries, or opening an existing data source. The window behind
this is the Data Editor window which is used to display the data from
whatever file you are using. You could select any one of the options on the
start-up dialog box and click OK, or you could simply hit Cancel. If you hit
Cancel, you can either enter new data in the blank Data Editor or you could
open an existing file using the File menu bar as explained later.

Layout of SPSS
The Data Editor window has two views that can be selected from the lower
left hand side of the screen. Data View is where you see the data you are
using. Variable View is where you can specify the format of your data when
you are creating a file or where you can check the format of a pre-existing
file. The data in the Data Editor is saved in a file with the extension .sav.

Menu bar

Icons

Start-up dialog box

192

The other most commonly used SPSS window is the SPSS Viewer window
which displays the output from any analyses that have been run and any
error messages. Information from the Output Viewer is saved in a file with
the extension .spo. Let us open an output file and look at it.

Finally, there is the Syntax window which displays the command language
used to run various operations. Typically, you will simply use the dialog
boxes to set up commands, and would not see the Syntax window. The
Syntax window would be activated if you pasted the commands from the
dialog box to it, or if you wrote you own syntax--something we will not focus
on here. Syntax files end in the extension .sps.

193

Data View in SPSS

Unlike in Excel, SPSS files have 2 “sides”: the Data view which looks very
much like an Excel file and a Variable view which is a kind of “behind the
scenes” thing.

In Data View, columns represent variables (e.g. gender, length), and rows
represent cases (observations such as the gender and the length of coyote
(an American wolf species)).

Variable view

194

Variable view is where you define the variables you will be using: to
define/modify a property of a given variable, you click on the cell containing
the property you want to define/modify.

You can modify:

- the name and the type of your variable,
- the width, which corresponds to the number of characters you can have

in a cell,
- the decimals, which corresponds to the number of decimals recorded,
Tip: when importing data from Excel, SPSS would sometimes give
extravagant number of decimals. Do not forget to check that before you
start drawing graphs or analysing your data, otherwise you will be unable
to read some of analysis outputs and you will get ugly graphs.

- The label is used when you want to define a variable more accurately or
to describe it. In the example above, the label “length” could be “length
of the body”.

- The values: useful for categorical data (e.g. gender: male=1 and
female=2). This is quite an important characteristic:

o some analyses will not accept a string variable as a factor,
o when you draw a graph from your data, if you have not defined

any values, you will only see numerical values on the x-axis. For
example, you measure the level of a substance in 5 types of cell
and you plot it. If you have not specified any values you’ll get a x-
axis with numbers from 1 to 5 instead of having the names of the
types of cell.

o you will need to remember that you decided that male=1 and
female=2!

195

- missing: useful for epidemiological questionnaires,
- column (see width),
- align: like Excel: right, left or centre,
- measure: scale (e.g. weight: quantitative variable), ordinal (e.g. no, a

little, a lot) or nominal (e.g. male or female: qualitative variable).

SPSS Menus and Icons
Now, let us review the menus and icons.

Edit includes the typical cut, copy,
and paste commands, and allows
you to specify various options for
displaying data and output.

Click on Options, and you will see
the dialog box to the left. You can
use this to format the data,
output, charts, etc. These choices
are rather overwhelming, and
you can simply take the default
options for now. The author of
your text (me) was too dumb to
even know these options could
easily be set.

File includes all of the options
you typically use in other
programs, such as open, save,
exit. Notice, that you can open or
create new files of multiple types
as illustrated to the right.

196

View allows you to select which toolbars you want to show, select font size,
add or remove the gridlines that separate each piece of data, and to select
whether or not to display your raw data or the data labels.

Data allows you to select several options ranging from displaying data that
is sorted by a specific variable to selecting certain cases for subsequent
analyses.

Transform includes several options to change current variables. For
example, you can change continuous variables to categorical variables,
change scores into rank scores, add a constant to variables, etc.

Analyze includes all of the commands to carry out statistical analyses and
to calculate descriptive statistics. Much of this book will focus on using
commands located in this menu.

Graphs includes the commands to create various types of graphs including
box plots, histograms, line graphs, and bar charts.

Utilities allows you to list file information which is a list of all variables, there
labels, values, locations in the data file, and type.

Add-ons are programs that can be added to the base SPSS package. You
probably do not have access to any of those.

Window can be used to select which window you want to view (i.e., Data
Editor, Output Viewer, or Syntax). Since we have a data file and an output
file open, let us try this.

Select Window/Data Editor. Then select Window/SPSS Viewer.

197

Help has many useful options including a link to the SPSS homepage, a
statistics coach, and a syntax guide. Using topics, you can use the index
option to type in any key word and get a list of options, or you can view the
categories and subcategories available under contents. This is an excellent
tool and can be used to troubleshoot most problems. The Icons directly
under the Menu bar provide shortcuts to many common commands that
are available in specific menus. Take a moment to review these as well.

Place your cursor over the Icons for a few seconds, and a description of the
underlying command will appear. For example, this icon is the shortcut
for Save. Review the others yourself.

Exiting SPSS
To close SPSS, you can either left click on the close button located on
the upper right hand corner of the screen or select Exit from the File
menu.

A dialog box like the one below will appear for every open window asking
you if you want to save it before exiting. You almost always want to save
data files. Output files may be large, so you should ask yourself if you need
to save them or if you simply want to print them.

Click No for each dialog box since we do not have any new files or changed
files to save.

198

Entering and Editing Data Using the Data Editor

The Data Editor provides a convenient spreadsheet-like facility for entering,
editing, and displaying the contents of your data file. A Data Editor window
opens automatically when you start an SPSS session. Instruction on Using
the Data Editor to enter data is given in the SPSS Help Tutorials. Note that
if you are already familiar with entering data into a different spreadsheet
program (e.g., MS Excel), you might find it easy to enter your data in the
program you are familiar with and then read the data into SPSS.

Entering Data.
Basic data entry in the Data Editor is simple:
Step 1. Create a new (empty) Data Editor window. At the start of an SPSS
session a new (empty) Data Editor window opens automatically. During an
SPSS session you can create a new Data Editor window by

1. Choose File
2. Choose New
3. Choose Data

Step 2. Move the cursor to the first empty column.

Step 3. Type a value into the cell. As you type, the value appears in the cell
editor at the top of the Data Editor window. Each time you press the Enter
key, the value is entered in the cell and you move down to the next row. By
entering data in a column, you automatically create a variable and SPSS
gives it the default variable name var00001.

Step 4. Choose the first cell in the next column. You can use the mouse to
click on the cell or use the arrow keys on the keyboard to move to the cell.
By default, SPSS names the data in the second column var00002.

199

 Step 5. Repeat step 4 until you have entered all the data. If you entered an
incorrect value(s) you will need to edit your data. See the following section
on Editing Data.

Entering Data from Excel Files
To read Excel files, select Open from the File menu and Data from the sub-
menu. Select the file type from the drop-down list. Select a file from the list.
If the first row of the Excel file contains column headings or labels, click Read
variable names from first row of data. For Excel 5 or later, you can also
specify the sheet in the Excel file that you want to read. Column headings
from the Excel file are used as variable names. Since variable names cannot
exceed 8 characters, column headings are truncated at 8 characters. The
original column heading is preserved as a variable label. If the column
heading cell is blank, a default variable name is assigned. For Excel 5 or later
files, if a column contains mixed data types (for example numeric and
string), the data values in the column are read as string data.

200

Entering Data from Database Files with the Database Wizard
To read any database data source, in the Data Editor, select Open Database
from the File menu and choose New Query. Click the appropriate data
source in the Database Wizard, and then click Next. If the data source you
need isn’t displayed in the list, click Add Data Source. Then use the ODBC
Data Source Administrator to add the data source.

In distributed analysis mode (available with the server version), the Add
Data Source button is not available because only the system administrator
can add data sources. For some data sources you may also have to select a
file. You may also need to supply a username and password. Each table is
shown in the Available Tables list. Click the plus sign (+) to show all the fields
in a table. Drag and drop the table(s) you want to import into the Retrieve

201

Fields list. Fields become variables in the Data Editor. You can also select a
subset of fields. Specify join types if you are importing fields from more than
one table. Select a subset of cases based on conditional expressions. Specify
user-friendly variable names. Save the query to file for use in other sessions.

Reading Text Data Files

If your raw data are in a simple text file (standard ASCII format), select Read
Text Data from the File menu. Select a text data file to read. This opens the
Text Wizard. The data file is displayed in the preview window. In the first
step you can apply a predefined format (previously saved in the Text
Wizard). In this example, we'll simply click Next since we want to define a
new format.

202

Step 2 provides information about variables. A variable is similar to a field
in a database. For example, each item in a questionnaire is a variable. Fixed
format means each variable is recorded in the same column location for
every case. Delimited means that spaces, commas, tabs, or other characters
are used to separate variables. The variables are recorded in the same order
for each case but not necessarily in the same column locations. In this
example, the data file is delimited. It also contains descriptive labels in the
first row, which you can use as variable names.

Step 3 provides information about cases. A case is similar to a record in a
database. For example, each respondent to a questionnaire is a case. In the
previous step we indicated that the top line of the file contains variable
names -- so in this step we indicate that the data values start on the second
line. The Text Wizard also needs to know how many variables to read for
each case. In this example, all the data values for each case are recorded on

203

a single line. If not all lines contain the same number of data values, the
number of variables for each case is determined by the line with the
greatest number of data values.

Step 4 displays the Text Wizard's best guess on how to read the data file
and allows you to modify the way the Text Wizard will read variables from
the data file. In this example the Text Wizard correctly detected that
commas are used to delimit data values. The Text Wizard also assumes that
consecutive delimiters indicate missing data. In this comma-delimited file,
that means that two commas without an intervening data value indicate a
variable with a missing value.

Step 5 controls the data format that the Text Wizard will use to read each
variable and which variables will be included in the final data file. To change
the format of a variable, click the variable in the preview window. Then
select a format from the drop-down list. To omit a variable from the
imported data file, click the variable in the preview window, and select Do
Not Import from the drop-down list.

Step 6 is the final step of the Text Wizard. You can save your specifications
to read similar text data files. You can also paste and save the underlying
command syntax. When you're ready to read the text data file, just click
Finish.

Editing Data at the Data Editor Screen.
With the Data Editor, you can modify a data file in many ways. For example,
you can change values or cut, copy, and paste values, or add and delete
cases.

To Change a Data Value:

1. Click on a data cell. The cell value is displayed in the cell editor.
2. Type the new value. It replaces the old value in the cell editor.

204

3. Press then Enter key. The new value appears in the data cell.
To Cut, Copy, and Paste Data Values

1. Select (highlight) the cell value(s) you want to cut or copy.
2. Pull down the Edit box on the main menu bar.
3. Choose Cut. The selected cell values will be copied, then deleted. Or
4. Choose Copy. The selected cell values will be copied, but not deleted.
5. Select the target cell(s) (where you want to put the cut or copy values).
6. Pull down the Edit box on the main menu bar.
7. Choose Paste. The cut or copy values will be ``pasted'' in the target

cells.

To Delete a Case (i.e., a Row of Data)

1. Click on the case number on the left side of the row. The whole row
will be highlighted.

2. Pull down the Edit box on the main menu bar.
3. Choose Clear.

To Add a Case (i.e., a Row of Data)

1. Select any cell in the case from the row below where you want to insert
the new case.

2. Pull down the Data box on the main menu bar.
3. Choose Insert.

Defining Variables.
 The default name for new variables is the prefix var and a sequential five-
digit number (e.g., var00001, var00002, var00003). To change the name,
format and other attributes of a variable.

1. Double click on the variable name at the top of a column or,
2. Click on the Variable View tab at the bottom of Data Editor Window.

205

3. Edit the variable name under column labeled Name. The variable name
must be eight characters or less in length. You can also specify the
number of decimal places (under Decimals), assign a descriptive name
(under Label), define missing values (under Missing), define the type of
variable (under Measure; e.g., scale, ordinal, nominal), and define the
values for nominal variables (under Values).

After the data is entered (or several times during data entering), you will
want to save it as an SPSS save file. See the section on Saving Data As An
SPSS Save File.

Saving Data as an SPSS Data (.sav) File

To save data as a new SPSS Data file onto your computer:
1. Display the Data Editor window (i.e., execute the following commands

while in the Data Editor window displaying the data you want to save.)
2. Choose File on the menu bar.
3. Choose Save As...
4. Edit the directory or disk drive to indicate where the data should be

saved. SPSS will automatically add the .sav suffix to the filename.
5. Choose Save

To save data changes in an existing SPSS Save: file.

1. Display the Data Editor window (i.e., execute the following commands
while in the Data Editor window displaying the data you want to save.)

2. Choose File box on the menu bar
3. Choose Save

Caution. The Save command saves the modified data by overwriting the
previous version of the file.

206

You can save your data in other formats besides an SPSS save file (e.g., as
an ASCII file, Excel file, SAS data set). To save your data with a given format
you follow the same steps as saving data in a new SPSS Save file, except that
you specify the Save as Type as the desired format.

Saving Your Output (Statistical Results and Graphs)
To save the statistical results and graphs displayed in the Viewer window as
a new SPSS Output file:

1. Display the Viewer window (i.e., execute the following commands
while in the Viewer window displaying the results you want to save.)

2. Choose File on the menu bar.
3. Choose Save As...
4. Edit the directory or disk drive to indicate where the output should be

saved. SPSS will automatically add the .spo suffix to the filename.
5. Choose Save

To save Viewer changes in an existing SPSS Output file.

1. Display the Viewer window (i.e., execute the following commands
while in the Viewer window displaying the results you want to save.)

2. Choose File on the menu bar.
3. Choose Save.

Caution. The Save command saves the modified Viewer window by
overwriting the previous version of the file. Note that you will not be able
to open SPSS output that was created with a newer version than the version
of SPSS that you are using to open the output. Hence, you may want to
avoid this problem you by exporting your output in html or MS word format.
Also, charts often do not export properly into a Html or Word file. Usually
you need to export charts separately into a window metafile file (.wmf).

207

Sometimes the output, including charts, and be copied and pasted directly
into a Word file.

Exporting SPSS Output
Sometimes you will want to save your SPSS output in a different file format
than a SPSS output file, because you want to avoid compatibility problems
between different versions of SPSS, you want to further edit your output in
a Word document, or you want include graphs or figures in another
document file. The basic steps in exporting SPSS output to another file type
are, while in a SPSS (output) Viewer window:

1. Choose File
2. Choose Export

 3. Choose what you want to export:
Output Document – exports all the output
Output Document (No Charts) – exports
only the numerical results
Charts Only – exports only charts (i.e.,
graphs & figures)

Note that charts often do not export properly
into a Html or Word file. Usually you need to
export charts separately into a window
metafile file (.wmf).

208

4. Define further what you want to
export:

All Objects – this option also
exports other extraneous
information (rarely useful)
All Visible Objects – use this option
to export all the output.
Selected Objects – this allows you
to export only the objects you have
selected in the Viewer window.

5. Choose the file type

HTML and Word/RTF a good file
types for numerical results (no
charts).

Windows Metafile (.WMF) is a good
file type for charts in you want to
include figures in a MS Word
document.

Note that the file type options are
dependent on what you are
exporting.

209

Printing Your Work in SPSS

To print statistical results and graphs in the Viewer window or data in the
Data Editor window:

Exiting SPSS

To exit SPSS:

1. Choose File on the menu bar
2. Choose Exit SPSS

6. Choose the location and file name
for the output you want to export.

1. Display the output or data you want
to print (i.e., execute the following
commands while in a output or data
window)

2. Choose File on the menu bar.
3. Choose Print...
4. Choose All visible output or Selection

(if you have selected parts of the
output). When printing from a data
file, the options are All, Selection and
Page # to Page #.

5. Choose OK

210

If you have made changes to the data file or the output file since the last
time you saved these files, before exiting SPSS you will be asked whether
you want to save the contents of the Data Editor window and Viewer
window. If you are unsure as to whether you want to save the contents of
the data or output window, choose Cancel, then display the window(s) and
if you want to save the contents of the window, follow the instructions in
this handout for saving data or output windows. SPSS will use the overwrite
method when saving the contents of the window.

Creating a New Variable
To create a new variable:

1. Display the Data Editor window (i.e., execute the following commands

while in the Data Editor window displaying the data file you want to use
to create a new variable).

2. Choose Transform on the menu bar
3. Choose Compute...
4. Enter the new variable name in the Target Variable box.
5. Enter the definition of the new variable in the Numeric Expression box

(e.g., SQRT(visan), LN(age), or MEAN(age)) or
6. Select variable(s) and combine with desired arithmetic operations and/or

functions.
7. Choose OK

After creating a new variable(s), you will probably want to save the new
variable(s) by re-saving your data using the Save command under File on the
menu bar (See Saving Data as an SPSS Save File). Further instructions on
creating a new variable are given in the SPSS Help Tutorials under
Modifying Data Values.

211

Example: Creating a (New) Transformed Variable

You can use the SPSS commands for creating a new variable to create a
transformed variable. Suppose you have a variable indicating triglyceride
level, trig, and you want to transform this variable using the natural
logarithm to make the distribution less skewed (i.e., you want to create a
new variable which is natural logarithm of triglyceride levels).

Now, a new variable, lntrig, which is the natural logarithm of trig, will be
added to your data set. Remember to save your data set before exiting SPSS
(e.g., while in the SPSS Data window, choose Save under File or click on the
floppy disk icon).

Recoding or Combining Categories of a Variable
To recode or combine categories of a variable:

1. Display the Data Editor window (i.e., execute the following commands

while in the Data Editor window displaying the data file you want to use
to recode variables).

2. Choose Transform on the menu bar
3. Choose Recode

1. Display the Data Editor
window

2. Choose Transform on the
menu bar

3. Choose Compute...
4. Enter, say, lntrig, in the Target

Variable box.
5. Enter Ln(trig) in the Numeric

Expression box.
6. Choose OK

212

4. Choose Into Same Variable... or Into Different Variable...
5. Select a variable to recode from the variable list on the left and then

click on the arrow located in the middle of the window. This defines the
input variable.

6. If recoding into a different variable, enter the new variable name in the
box under Name:, then choose Change. This defines the output variable.

7. Choose Old and New Values...
8. Choose Value or Range under Old Value and enter old value(s).
9. Choose New Value and enter new value, then choose Add.
10. Repeat the process until all old values have been redefined.
11. Choose Continue
12. Choose OK

After creating a new variable(s), you will probably want to save the new
variable(s) by re-saving your data using the Save command under File box
on the menu bar (See Saving Data as an SPSS Save File).

Example: Recoding a Categorical Variable

You can use the commands for recoding a variable to change the coding
values of a categorical variable. You may want to change a coding value for
a particular category to modify which category SPSS uses as the referent
category in a statistical procedure. For example, suppose you want to
perform linear regression using the ANOVA (or General Linear Model)
commands, and one of your independent variables is smoking status,
smoke, that is coded 1 for never smoked, 2 for former smoker and 3 for
current smoker. By default SPSS will use current smoker as the referent
category because current smoker has the largest numerical (code) value. If
you want never smoked to be the referent category you need to recode the
value for never smoked to a value larger than 3.

213

Although you can recode the smoking status into the same variable, it is
better to recode the variable into a new/different variable, newsmoke, so
you do not lose your original data if you make an error while recoding.

1. Display the Data Editor window
2. Choose Transform
3. Choose Recode
4. Choose Into Different Variables...
5. Select the variable smoke as the Input variable
6. Enter newsmoke as the name of the Output variable, and then

choose Change.
7. Choose Old and New Values...

214

8. Choose Value under Old
Value. (It may already be
selected.)

9. Enter 1 (code for never
smoker)

10. Choose Value under New
Value. (It may already be
selected.)

11. Enter 4 (or any value greater
than 3)

12. Choose Add
13. Choose All Other Values

under Old Value.
14. Choose Copy Old Value(s)

under New Value.
15. Choose Add
16. Choose Continue
17. Choose OK

215

Example: Creating Indicator or Dummy Variables

You can use the commands for recoding a variable to create indicator or
dummy variables in SPSS. Suppose you have a variable indicating smoking
status, smoke, that is coded 1 for never smoked, 2 for former smoker and 3
for current smoker. To create three new indicator or dummy variables for
never, former and current smoking:

1. Display the Data Editor
window

2. Choose Transform
3. Choose Recode
4. Choose Into Different

Variables...
5. Select the variable smoke as

the Input variable
6. Enter neversmoke as the

name of the Output variable,
and then choose Change.

7. Choose Old and New Values...
8. Choose Value under Old

Value. (It may already be
selected.)

9. Enter 1 (code value for never
smoker)

10. Choose Value under New
Value. (It may already be
selected.)

11. Enter 1 (to indicate never
smoker)

12. Choose Add
13. Choose All Other Values

under Old Value.
14. Choose Value under New

Value.
15. Enter 0
16. Choose Add
17. Choose Continue
18. Choose OK

216

Now, you have created a binary indicator variable for never smoker (coded
1 if never smoker, 0 if former or current smoker). Next, create a binary
indicator variable for former smoker.

Summarizing Your Data in SPSS

Frequency Tables (& Bar Charts) for Categorical Variables.
To produce frequency tables and bar charts for categorical variables:

1. Choose Analyze from the menu bar
2. Choose Descriptive Statistics
3. Choose Frequencies…
4. Variable(s): To select the variables you want from the source list on the

left, highlight a variable by pointing and clicking the mouse and then click
on the arrow located in the middle of the window. Repeat the process
until you have selected all the variables you want.

5. Choose Charts (Skip to step 7 if you do not want bar charts.)
6. Choose Bar Chart(s)
7. Choose Continue
8. Choose OK

Example: Frequency table and bar chart for the categorical variable,
smoking status.

Smoking status
is the selected
variable(s) and
Bar charts
under Charts…
has been
selected.

217

Frequency table and bar chart of smoking status

Descriptive Statistics (& Histograms) for Numerical Variables.

To produce descriptive statistics and histograms for numerical variables:
1. Choose Analyze on the menu bar
2. Choose Descriptive Statistics
3. Choose Frequencies...
4. Variable(s): To select the variables you want from the source list on the

left, highlight a variable by pointing and clicking the mouse and then
click on the arrow located in the middle of the window. Repeat the
process until you have selected all the variables you want.

5. Choose Display frequency tables to turn off the option. Note that the
option is turned off when the little box is empty.

6. Choose Statistics
7. Choose summary measures (e.g., mean, median, standard deviation,

minimum, maximum, skewness or kurtosis).
8. Choose Continue
9. Choose Charts (Skip to step 11 if you do not want histograms.)
10. Choose Histograms(s)
11. Choose Continue
12. Choose OK

currentformernever

Smoking status

60

50

40

30

20

10

0

P
e

rc
e

n
t

Smoking status

Smoking status

Fre-

quency Percent
Valid

Percent

Cumu-
lative

Percent

never 590 59.0 59.0 59.0

former 293 29.3 29.3 88.3

current 117 11.7 11.7 100.0

Total 1000 100.0 100.0

218

An alternate way to produce only the descriptive statistics is at step 3 to
choose Descriptives... instead of Frequencies..., then, select the variables
you want. By default, SPSS computes the mean, standard deviation,
minimum and maximum. Choose Options... to select other summary
measures.

Example:
Descriptive summaries and histogram for the numerical variable age.

Age is the variable to summarize.
You can select more than one
variable to analyze.

Remember to turn off the Display
frequency tables option.

Mean, standard
deviation, minimum
and maximum were
selected under
Statistics…, and
histogram was
selected under
Charts…

219

Summaries for Age

Statistics

 Age

N Valid 1000

Missing 0

Mean 72.14

Std. Deviation 5.275

Minimum 65

Maximum 90

Histogram of Age

9590858075706560

Age

120

100

80

60

40

20

0

F
re

q
u

e
n

c
y

 Mean =72.14
 Std. Dev. =5.275

N =1,000

Histogram

220

Graphing Your Data

You can produce very fancy figures and graphs in SPSS. Producing fancy
figures and graphs is beyond the scope of this handout. Instructions on
producing figures and graphs can be found in SPSS Help under Topics →
Contents → Chart Galleries, Standard Charts, and Chart Editor, as well as in
the SPSS Tutorials under Creating and Editing Charts. The commands for
making charts are located under Graphs (and then Legacy Dialogs, if using
Version 15) on the menu bar, and the commands for making simple figures
and graphs are relatively easy to use and some instruction is given below.
The Interactive option under Graphs is another way to produce charts in
SPSS interactively, as well as fancier versions of the basic charts (e.g., 3-
dimensional bar charts).

Bar Charts
The easiest way to produce simple bar charts is to use the Bar Chart option
with the Frequencies... command. See Frequency Tables (& Bar Charts) for
Categorical Variables. You can only produce only one bar chart at a time
using the Bar command.

1. Choose Graphs (& then Legacy Dialogs, if Version 15) from the menu bar.
2. Choose Bar...
3. Choose Simple, Clustered, or Stacked
4. Choose what the data in the bar chart represent (e.g., summaries for

groups of cases).
5. Choose Define
6. Select a variable from the variable list on the left and the click on the

arrow next to the Category axis.
7. Choose what the bars represent (e.g., number of cases or percentage of

cases)
8. Choose OK

221

Histograms
The easiest way to produce simple histograms is to use the Histogram
option with the Frequencies... command. See Descriptive Statistics (&
Histograms) for Numerical Variables. You can produce only one histogram
at a time using the Histogram command.

currentformernever

Smoking status

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

P
e

rc
e

n
t

currentformernever

Smoking status

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

P
e

rc
e

n
t

yes

no

Family history of
heart attack

1. Choose Graphs (& then
Legacy Dialogs, if Version
15) from the menu bar

2. Choose Histogram...
3. Select a variable from the

variable list on the left and
then click on the arrow in
the middle of the window.

4. Choose Display normal
Curve if you want a normal
curve superimposed on the
histogram.

5. Choose OK

5040302010

Body mass index

120

100

80

60

40

20

0

F
re

q
u

e
n

cy

 Mean =26.2366
 Std. Dev. =4.8667

N =1,000

222

Boxplots
The easiest way to produce simple boxplots is to use the Boxplot option with
the Explore... command. See Descriptive Statistics (& Boxplots) By Groups
for Numerical Variables. You can produce only one boxplot at a time using
the Boxplot command.

 1. Choose Graphs (& then

Legacy Dialogs, if Version
15) from the menu bar.

2. Choose Boxplot...
3. Choose Simple or Clustered
4. Choose what the data in the

boxplots represent (e.g.,
summaries for groups of
cases).

5. Choose Define
6. Select a variable from the

variable list on the left and
then click on the arrow next
to the Variable box.

7. Select the variable from the
variable list that defines the
groups and then click on the
arrow next to Category Axis.

8. Choose OK

diabeticimpaired fasting
glucose

normal

ADA diabetes status

400

200

0

S
e

ru
m

 f
a

s
ti

n
g

 g
lu

c
o

s
e

785

880

684

77

673

223

Normal Probability Plots.

To produce Normal probability plots:

1. Choose Graphs (& then Legacy Dialogs, if Version 15) from the menu bar.
2. Choose Q-Q... to get a plot of the quantiles (Q-Q plot) or choose P-P... to

get a plot of the cumulative proportions (P-P plot)
3. Select the variables from the source list on the left and then click on the

arrow located in the middle of the window.
4. Choose Normal as the Test Distribution. The Normal distribution is the

default Test Distribution. Other Test Distributions can be selected by
clicking on the down arrow and clicking on the desired Test distribution.

5. Choose OK

SPSS will produce both a Normal probability plot and a detrended Normal
probability plot for each selected variable. Usually the Q-Q plot is the most
useful for assessing if the distribution of the variable is approximately
Normal.

6004002000-200

Observed Value

250

200

150

100

50

0

-50

E
x

p
e

c
te

d
 N

o
rm

a
l

V
a

lu
e

Normal Q-Q Plot of Serum fasting glucose

5040302010

Observed Value

40

30

20

10

E
x

p
e

c
te

d
 N

o
rm

a
l

V
a

lu
e

Normal Q-Q Plot of Body mass index

224

Scatter Plot.
To produce a scatter plot between two numerical variables:

Practical Example (1) DESCRIPTIVE STATISTICS

Consider the smoker data condensed from a study conducted to explore the
prevalence and impact of smoking problems on various aspects of people's
lives. Staff from a university in Melbourne, Australia were invited to
complete a questionnaire containing questions about their smoking status.

5040302010

Body mass index

140

120

100

80

60

40

20

0

H
D

L
 c

h
o

le
s

te
ro

l

HLD cholesterol vs BMI1. Choose Graphs (& then
Legacy Dialogs, if
Version 15) on the
menu bar.

2. Choose Scatter/Dot...
3. Choose Simple
4. Choose Define
5. Y Axis: Select the y

variable you want from
the source list on the
left and then click on
the arrow next to the y
axis box.

6. X Axis: Select the x
variable you want from
the source list on the
left and then click on
the arrow next to the x
axis box.

7. Choose Titles...
8. Enter a title for the plot

(e.g., y vs. x).
9. Choose Continue
10. Choose OK

225

The sample consisted of 271 respondents (55% female, 45% male) ranging
in age from 18 to 84 years (mean=44yrs). The task is to use SPSS to analyse
this data.

The figure below shows the variable view window in the SPSS.

The figure below shows a partial view of the smoker data.

226

Now to obtain the descriptive statistics from the Analyse menu choose
descriptive statistics, then choose the variables you wish to analyse, as
depicted in the following screen shot. Choose the variables age, gender,
weight, height and smoke.

227

Then click options and make sure the following options are selected, as
showed in the following screen.

After selecting the previous settings, hit the continue button and the
following results will appear as in the following screen.

228

After a careful examination for the descriptive statistics for the five variables
(age, gender, weight, height and smoke). The table depicts six columns in
addition to the variable name column. The first column is N which indicates
the total number of observations for each variable. The other five columns
represent the minimum, maximum, mean, standard deviation and variance
for each of the five variables.

For a quick refreshment for these terms study the following formulas:

Mean

Standard deviation

Variance

And finally Min and Max are the highest and lowest values among the
variable values.

NOTE. For a given variable there might be missing entries, that’s is why not
all the number of observations (Column N) are equal in the table.

CONTINUED. Practical Example (1) Frequency Analysis

SPSS is rich with various commands to explore the data. For example, you
can use the Frequencies command to reorganize your data and sort them
ascending or descending according to a specific choice.

229

Consider the previous example for the smoke data. To obtain the frequency
analysis for the variables from the Analyse menu select frequencies as
shown below. Analyze  Descriptive statistics  Frequancies

Then select the required statistics you require, as shown below.

The final step is to select the required charts you want to display. For
example, select the Histogram chart and check the with normal curve
option. This option enables you to check If the data follows the normal
distribution or not.

230

The following results appear upon pressing continue in the previous
dialogue. This table displays the central tendency measures for each
variable of the five variables.

SPSS frequency command also gives a frequency table for each of the
variables as shown below.

Statistics

271 248 249 246 270

0 23 22 25 1

.45 43.87 73.38 170.22 1.87

.00 44.00 72.00 170.00 2.00

0 35a 75 165 2

.498 12.684 15.284 10.275 .332

.248 160.882 233.606 105.585 .110

.216 .075 1.009 .355 -2.268

.148 .155 .154 .155 .148

-1.968 -.566 3.472 -.610 3.166

.295 .308 .307 .309 .295

1 66 117 49 1

0 18 43 150 1

1 84 160 199 2

.00 23.00 51.50 155.00 1.00

.00 34.00 63.00 162.50 2.00

.00 44.00 72.00 170.00 2.00

1.00 54.00 82.00 178.00 2.00

Valid

Missing

N

Mean

Median

Mode

Std. Deviation

Variance

Skewness

Std. Error of Skewness

Kurtosis

Std. Error of Kurtosis

Range

Minimum

Maximum

5

25

50

75

Percentiles

sex age weight height do you smoke

Multiple modes exist. The smallest value is showna.

gender

231

To find the rest of the frequencies tables you can apply the example on your
computer. The second part is the histograms tables that is displayed per
each variable along with the statistics table. As depicted in the following
results.

sex

150 55.4 55.4 55.4

121 44.6 44.6 100.0

271 100.0 100.0

female

male

Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

do you smoke

34 12.5 12.6 12.6

236 87.1 87.4 100.0

270 99.6 100.0

1 .4

271 100.0

yes

no

Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent
Cumulative

Percent

gender

232

233

Hypothesis Tests & Confidence Intervals

One-Sample t-Test

The One Sample t-Test determines whether the sample mean is statistically
different from a known or hypothesized population mean. The One Sample
t-Test is a parametric test. Furthermore, this test can only compare a single
sample mean to a specified constant. It cannot compare sample means
between two or more groups. If you wish to compare the means of multiple
groups to each other, you will likely want to run an Independent Samples t-
Test (to compare the means of two groups) or a One-Way ANOVA (to
compare the means of two or more groups).

1. Choose Analyze from the menu bar.
2. Choose Compare Means
3. Choose One-Sample T Test...
4. Test Variable(s): Select the variable you want from the source list on the

left, highlight variables by pointing and clicking the mouse and then click
on the arrow located in the middle of the window.

5. Edit the Test Value. The Test Value is the value of the mean under the
null hypothesis. The default value is zero.

6. Choose OK

Confidence Interval for a Mean (from one sample of data)
1. Choose Analyze from the menu bar.
2. Choose Compare Means
3. Choose One-Sample T Test...
4. Test Variable(s): Select the variable you want from the source list on the

left, highlight variables by pointing and clicking the mouse and then click
on the arrow located in the middle of the window.

5. The Test Value should be 0, which is the default value.

234

6. By default, a 95% confidence interval will be computed. Choose
Options… to change the confidence level.

7. Choose OK

EXAMPLE (2)
SIDS Example. There were 48 SIDS cases in King County, Washington,
during the years 1974 and 1975. The birth weights (in grams) of these 48
cases were:

2466 3941 2807 3118 2098 3175
3317 3742 3062 3033 2353 3515
2013 3515 3260 2892 1616 4423
2750 2807 2807 3005 3374 3572
2722 2495 3459 3374 1984 2495
3005 2608 2353 4394 3232 3062
2013 2551 2977 3118 2637 1503
2722 2863 2013 3232 2863 2438

We want to know if the mean birth weight in the population of SIDS infant
is different from that of normal children, 3300 grams. We could construct a
95% confidence interval, to see if the interval contains the value of 3300
grams or we could perform a one sample t test to test if the mean in the
SIDs population is equal to 3300 (versus not equal to 3300).

To construct a 95% confidence interval

The mean (and standard
deviation) of these
measurements is 2891
(623) grams.

When computing the interval
for a mean make sure the
Test Value is 0.

235

One-Sample Statistics

 N Mean Std. Deviation
Std. Error

Mean

birth weight 48 2891.1250 623.39177 89.97885

 One-Sample Test

Test Value = 0

t df Sig. (2-tailed)
Mean

Difference

95% Confidence Interval
of the Difference

Lower Upper

birth weight 32.131 47 .000 2891.12500 2710.1109 3072.1391

To perform a one sample t test to test if the mean in the SIDs population is
equal to 3300 versus not equal to 3300.

Ignore the t test results (t, df, sig.)
because these results are for testing
if the mean birth weight is equal to
0 (versus not equal to zero).

95% confidence interval for the
mean birth weight is 2710 to 3072

grams

Number of subjects, mean,
standard deviation, and
standard error of the mean.

To run the one-sample t test to
test if the mean birth weight is
equal to 3300 you need to
change the Test Value from the
default value of 0 to 3300.

236

 One-Sample Statistics

 N Mean Std. Deviation
Std. Error

Mean

birth weight 48 2891.1250 623.39177 89.97885

 One-Sample Test

Test Value = 3300

t df Sig. (2-tailed)
Mean

Difference

95% Confidence
Interval of the

Difference

Lower Upper

birth weight -4.544 47 .000 -408.87500 -589.8891 -227.8609

Paired t-Test
The Paired Samples t-Test compares two means that are from the same
individual, object, or related units. The two means typically represent two
different times (e.g., pre-test and post-test with an intervention between
the two time points) or two different but related conditions or units (e.g.,
left and right ears, twins). The purpose of the test is to determine whether
there is statistical evidence that the mean difference between paired
observations on a particular outcome is significantly different from zero.
The Paired Samples t-Test is a parametric test.

1. Choose Analyze from the menu bar.
2. Choose Compare Means
3. Choose Paired-Samples T Test...

Ignore the results for 95%
confidence interval of the
difference, because it is the
confidence interval for the mean
minus 3300.

Sig. (2-tailed) = two tailed p-value = <.001

t = test statistic value = -4.544

df = degrees of freedom = 47

237

4. Paired Variable(s): Select two paired variables you want from the source
list on the left, highlight both variables by pointing and clicking the mouse
and then click on the arrow located in the middle of the window. Repeat
the process until you have selected all the paired variables you want to
test.

5. Choose OK

Confidence Interval for the Difference Between Means from Paired
Sample. By default, a 95% confidence interval for the difference means of
the paired samples will be computed when performing a paired t test.
Choose Options… to change the confidence level.

EXAMPLE (2)
Prozac Example. To compare the effect of Prozac (some kind of medicine)
on anxiety 10 subjects are given one week of treatment with Prozac and one
week of treatment with a placebo (another medicine). The order of the
treatments was randomized for each subject. An anxiety questionnaire was
used to measure a subject's anxiety on a scale of 0 to 30. Higher scores
indicate more anxiety.

Subject Placebo Prozac Difference

1 22 19 3
2 18 11 7
3 17 14 3
4 19 17 2
5 22 23 -1
6 12 11 1
7 14 15 -1

8 11 19 -8
9 19 11 8

10 7 8 -1

Mean difference, 1.3d 
Standard deviation, 4.5ds

238

Paired t-test and confidence interval for the difference between paired
means.

 Paired Samples Statistics

 Mean N Std. Deviation
Std. Error

Mean

Pair 1 placebo 16.1000 10 4.95424 1.56667

prozac 14.8000 10 4.68568 1.48174

 Paired Samples Correlations

 N Correlation Sig.

Pair 1 placebo & prozac 10 .556 .095

Paired Samples Test

 Paired Differences t df
Sig. (2-
tailed)

 Mean
Std.

Deviation
Std. Error

Mean
95% Confidence Interval of

the Difference

 Lower Upper

Pair 1 placebo
- prozac

1.30000 4.54728 1.43798 -1.95293 4.55293 .904 9 .390

Summaries for each
sample of data (or
variable).

Correlation between the
paired values - usually not
useful.

difference = placebo - prozac

mean difference = 1.3

standard deviation of the
differences = 4.5

standard error of the
differences = 1.4

95% confidence interval for the
mean difference is -1.9 to 4.6

Paired t test
Sig. (2 tailed) = two-sided p-value = 0.39
t = test statistic value = .904
df = degrees of freedom

The order of the variables in
calculating the difference is
determined by the order of the
variables in the data set (and not
the order in which you select the
variables).

239

Two-Sample t-Test
The Independent Samples t-Test compares the means of two independent
groups in order to determine whether there is statistical evidence that the
associated population means are significantly different. The Independent
Samples t-Test is a parametric test.

1. Choose Analyze on the menu bar.
2. Choose Compare Means
3. Choose Independent-Samples T Test...
4. Test Variable(s): Select the test variable you want from the source list

on the left and then click on the arrow located next to the test variable
box. Repeat the process until you have selected all the variables you
want.

5. Grouping Variable: Select the variable which defines the groups and
then click on the arrow located next to the grouping variable box.

6. Choose Define Groups...
7. Click on blank box next to Group 1, then enter the code value (numeric

or character/string) for group 1.
8. Click on blank box next to Group 2, then enter the code value (numeric

or character/string) for group 2.
9. Choose Continue
10. Choose OK

Confidence Interval for the Difference Between Means from Independent
Samples
By default, a 95% confidence interval for the difference means from two
independent samples will be computed when performing a two sample t
test. Choose Options… to change the confidence level.

240

EXAMPLE (3)
Model Cities Example. Two groups of people were studied - those who had
been randomly allocated to a Fee-For-Service medical insurance group and
those who had been randomly allocated to a Prepaid insurance group.

We would like to compare the two groups on the quality of health care they
received in each group, but first we would like to know how comparable the
groups are on other characteristics that might affect medical outcome. For
example, we would like to know if the mean age in the two groups is similar.
Hopefully, the process of random allocation minimizes this possibility, but
there is always a chance that it didn't.

Group n Mean Standard deviation

Prepaid (GHC) 1167 24.0 15.3

Fee-for-service (KCM) 3207 26.4 17.1

We could compare the average age between the two groups using a two
sample t-test or a confidence interval for the difference between the
average ages of the two groups.

Two sample t test and 95% confidence interval for the difference between means
(from independent samples).

After you select the Grouping Variable,
SPSS will put in question marks to
prompt you to define the code values
for the two groups. Select Define
Groups… to enter the code values.

241

T-Test

 Group Statistics

 prov N Mean Std. Deviation
Std. Error

Mean

age GHC 1167 23.9846 15.30787 .44810

KCM 3207 26.3676 17.10260 .30200

 Independent Samples Test

Levene's Test for

Equality of Variances

 F Sig.

age Equal variances
assumed

47.068 .000

 Equal variances
not assumed

In this example the group codes
are numeric, 0 (for GHC) and 1
(for KCM)

Summaries for each
sample/group.

SPSS by default tests if the
variances are equal using
Levene’s test. A small p-value
(sig.) indicates the variances
may be different.

sig. = p-value = <.001

F = test statistic value = 47.0

242

Independent Samples Test

 t-test for Equality of Means

 t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

age Equal variances
assumed

-4.188 4372 .000 -2.38306 .56896

 Equal variances
not assumed

-4.410 2293.698 .000 -2.38306 .54037

 Independent Samples Test

95% Confidence
Interval of the

Difference

 Lower Upper

age Equal variances
assumed

-3.49851 -1.26760

 Equal variances
not assumed

-3.44273 -1.32338

Two Sample t test. SPSS by default always performs both versions of the two
sample t test assuming equal variance and unequal variances
Sig. (2 – tailed) = two sided p-value = <.001 (equal var.), <.001 (unequal
var.)
t = test statistic value = -4.2 (equal var.), -4.4 (unequal var.)
df = degrees of freedom = 4372 (equal var.), 2294 (unequal var.)
mean difference = difference between means = -2.4 (equal and unequal var.)
std. error difference = standard error of the difference between means = .6 (equal
var.), .5 (unequal var.)

95% confidence interval for the
difference between means is

-3.4 to -1.3 (assuming equal
variances)

-3.4 to -1.3 (assuming unequal
variances)

243

One-way ANOVA (Analysis of Variance)

The One-Way ANOVA ("analysis of variance") compares the means of two
or more independent groups in order to determine whether there is
statistical evidence that the associated population means are significantly
different. One-Way ANOVA is a parametric test. The variables used in this
test are known as:

Dependent variable

Independent variable (also known as the grouping variable, or factor)

This variable divides cases into two or more mutually exclusive levels, or
groups.

Towards comparing two or more means from two or more independent
samples
1. Choose Analyze on the menu bar
2. Choose Compare Means
3. Choose One-Way ANOVA...
4. Dependent: Select the variable from the source list on the left for which

you want to use to compare the groups and then click on the arrow next
to the dependent variable box. You run multiple one-way ANOVAs by
selecting more than one dependent variable.

5. Factor: Select the variable from the source list on the left which defines
the groups.

6. Choose OK

To perform pairwise comparisons to determine which groups are different
while controlling for multiple testing use the Post Hoc... option. There are
many methods to choose from (e.g., Bonferroni and R-E-G-W-Q).

244

Other useful options can be found under Options... For example, choose
Descriptive to get descriptive statistics for each group (e.g., mean, standard
deviation, minimum value, and maximum value). Choose Homogeneity-of-
variance to perform the Levene Test to test if the group variances are all
equal versus not all equal. A small p-value for the Levene's Test may indicate
that the variances are not all equal.

EXAMPLE (4)
CHD Example. We can use one-way ANOVA to compare HDL levels between
subjects with different hypertensive status (0=normotensive, 1=borderline,
2=definite)

Hypertensive Standard
Group n Mean Deviation

Normotensive 1568 55.8 15.5
Borderline 547 55.7 16.2

Definite 1310 53.5 15.2

You can select 1 or more variables to
compare between groups.

The variable selected as the Factor
defines the groups. The variable can
be numeric or character/string.

245

Oneway ANOVA

HDL cholesterol

Sum of

Squares df Mean Square F Sig.

Between Groups 4344.834 2 2172.417 9.045 .000

Within Groups 821904.577 3422 240.183

Total 826249.411 3424

Descriptive statistics

Under Options you can request Descriptive for each group to be computed.
This information can be used to describe the differences between the
groups.

HDL cholesterol

 N Mean
Std.

Deviation
Std.
Error

95% Confidence Interval for
Mean Minimum Maximum

 Lower Bound Upper Bound

normotensive 1568 55.82 15.500 .391 55.05 56.59 21 138

borderline 547 55.67 16.202 .693 54.30 57.03 24 149

definite 1310 53.47 15.192 .420 52.64 54.29 15 129

Total 3425 54.90 15.534 .265 54.38 55.42 15 149

One-way analysis of variance

Sig. = p-value = <.001

F = test statistic = 9.0; df = degrees of freedom

Sometimes the test statistic and degrees of freedom of the test statistics are
reported along with the p-value; in this example, F=9.0 with degrees of
freedom 2 and 3422. Sum of squares and mean square are used to compute
the test statistic; they are usually not reported.

246

Exercises

1. The following data represents the ages of a sample population of 23
college students. Enter the data in the SPSS and write the SPSS
commands to display and explore this data.

AGE: 16 17 19 20 25 30 17 17 18 18 15 14
 12 17 19 21 22 23 24 20 20 16 24.

2. The following data represents the weight of a group of students, use
the SPSS program to find the mode, mean, variance and standard
deviation.
WEIGHT 42 44 48 46 50 52 55 44

3. The administrator at your local hospital states that on weekends the
average wait time for emergency room visits is 10 minutes. Based on
discussions you have had with friends who have complained on how
long they waited to be seeing in the ER over a weekend, you dispute
the administrator's claim. You decide to test you hypothesis. Over the
course of a few weekends you record the wait time for 40 randomly
selected patients. The average wait time for these 40 patients is 11
minutes with a standard deviation of 3 minutes. Use SPSS to examine
if you have enough evidence to support your hypothesis that the
average ER wait time exceeds 10 minutes? You opt to conduct the test
at a 5% level of significance.

247

Previous Exams
Choose the right answer

(1) The computer language that uses binary symbols:
 High-Level Language
 Assembly Language

 Machine Language
 HTML

(2) A program that coverts a program source code to a machine language :
 Operating system
 Visual Studio

 Microsoft Office
 Compiler

(3) The C++ language is considered:
 Procedural language
 Machine language

 Assembly language
 High level language

(4) The extension of an executable C++ program is:
 .bmp
 .cpp

 .obj
 .exe

(5) The extension of a C++ source file is:
 .exe
 . link

 .obj
 .cpp

(6) The stage that precedes the compilation of a C++ program:
 Errors discovering
 Compilation

 Linking
 Pre-processing

(7) The <iostream> header file includes the definitions of:
 File handling functions
 Math functions

 String functions
 Input/output commands

(8) The <cmath> header file includes the definitions of:
 Input/output commands
 File handling functions

 String functions
 Math functions

(9) Each C++ file contains:
 A single #include statement
 A single cout statement

 A single cin statement
 A single main() function

(10) Each C++ line ends with a:
 Extraction operator
 Double quotation

 Insertion operator
 Semicolon

248

(11) The return 0; statement at the end of each C++ program means:
 An endless program
 Problematic program termination

 Normal program termination
 The program did not execute yet

(12) Which C++ statements are not executed:
 cout
 cin

 pre-processor directives
 comments

(13) The command that defines an integer variable in C++:
 float
 unsigned double

 char
 unsigned long

(14) The C++ datatype that uses one byte of memory
 unsigned int
 long

 float
 char

(15) How many ways to write a comment in a C++ program:
 1
 3

 4
 2

(16) The keyword the forbids changing a variable value:
 fixed
 int

 assignment
 const

(17) The statement k=k+1; can be abbreviated to:
 k+=2;
 k++;

 k;
 ++k;

(18) The statement k=k-2; is equivalent to:
 k-=1;  k-=1;
 k--;  k--;

(19) The expression k+m/3/y-1; is equivalent to:
 k+(m/3)/(y--);
 (k+((m/3) /y))-1;
 k+(m/3)/(y-1);
 k+m+3/(y-1);

Study the next C++ program (figure 1) then
answer the questions from 20 to 30:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#include<iostream>
using namespace std;
int main()
{
 int x1=10, x2=30,
x3=20;
 cout<< x1+x2/2;
 cout<< x1+(x2/15);
 cout<< (x1+x2%10);
 cout<< (x1+x2)/2;
 cout<< (x1%x2)/2;
 cout<<x1/x2;
 ++x1;
 for(int k=0; k<113;
k++)
 cout<<k;
 return 0;
}

Figure (1)

249

(20) The cout output at line 6 is:
 40
 25

 2.66
 2

(21) The cout output at line 7 is:
 40
 12

 2.66
 2

(22) The cout output at line 8 is :
 40
 10

 2.66
 0

(23) The cout output at line 9 is :
 40
 20

 2.66
 12

(24) How many variables in the whole program :
 3 integers
 4 integers

 3 floats
 4 floats

(25) The cout output at line 10 is:
 40
 5

 2.66
 20

(26) The cout output at line 11 is:
 10
 0

 0.33
 1

(27) How many time the loop at line 13 is repeated:
 112
 113

 100
 110

(28) The loop at line 13 prints:
 Even numbers between 0 and 113
 Numbers starting from 0 to 112

 Numbers between 0 and 113
 Odd numbers between 0 and 113

(29) The last even number printed by the loop at line 13 is:
 110
 112

 113
 111

(30) The last odd number printed by the loop at line 13 is:


 111
 112
 113
 110

250

REFERENCES
1. Meyers, Scott. More effective C++: 35 new ways to improve your programs and

designs. 1995.
2. Stroustrup, Bjarne. The design and evolution of C++. Pearson Education India,

1994.
3. Deitel, Paul, and Harvey Deitel. C++ How to Program 7th Edition. Prentice Hall,

2010.
4. Karlsson, Björn. Beyond the C++ standard library: an introduction to boost.

Pearson Education, 2005.
5. Dawson, Michael. Beginning C++ Game Programming (Game Development

Series). Premier Press, 2004.
6. Lafore, Robert. Object-oriented programming in C++. Pearson Education, 1997.
7. Venugopal, K. R., and Rajkumar Buyya. Mastering C++. Tata McGraw-Hill

Education, 2013.
8. Schildt, Herbert. C++: the complete reference. McGraw-Hill/Osborne, 2003.
9. Stroustrup, Bjarne. The C++ programming language. Pearson Education, 2013.
10. S. J. Chapman. MATLAB Programming for Engineers. Thomson, 2004.
11. The MathWorks Inc. MATLAB 7.0 (R14SP2). The MathWorks Inc., 2005.
12. C. F. Van Loan. Introduction to Scienti¯c Computing. Prentice Hall, 1997.
13. Statistics and Machine Learning Toolbox User’s Guide, 2016.
14. J. Cooper. A MATLAB Companion for Multivariable Calculus. Academic Press,

2001.
15. J. C. Polking and D. Arnold. ODE using MATLAB. Prentice Hall, 2004.
16. Houcque, David. "Introduction to Matlab for engineering

students." Northwestern University(2005).
17. D. Kahaner, C. Moler, and S. Nash. Numerical Methods and Software. Prentice-

Hall,1989.
18. Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 4th ed. Applied

Linear Statistical Models. Irwin Press, 1996.
19. Glenda Francis, INTRODUCTION TO SPSS FOR WINDOWS Version 15.0. 5th

edition, 1999.
20. Chaudhuri, Anil Bikas., The Art of Programming Through Flowcharts &

Algorithms. Firewall Media, 2005.

251

Communication with Lecturer

Email:

Website:

