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CHAPTER 1: Introduction 
Objectives 

 

This chapter aims to: 

• To make the students familiar with the basic thermodynamics concepts such as system, 

surrounding, Boundary, Universe, state, thermodynamic path, process, thermal equilibrium, and 

Temperature.  

• Review the concept of triple point, temperature scales. 

• To introduce the students with temperature measurements instruments. 
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1. Thermodynamics: It’s concerned with Thermal energy (often called internal energy) and its 

applications. It’s a phenomenological theory of the macroscopic properties of system at certain 

equilibrium state. This theory describes the system in terms of a few experimentally measurable 

parameters like - Volume, Pressure P, Temperature T, Density ρ, ,..etc. 

The laws of thermodynamics are general and primitive (axioms). These laws cannot be derived from 

anything more basic). 

2. Thermodynamic system/ System: It is any quantity of matter, any region of space, selected for 

study, see figure 1. 

 

 

 

 

  

 

 

 

 

 

3.  Surrounding: everything outside the system is called surrounding 

4. Boundary : The  envelope ( imaginary or real ) which encloses a system  and separates it from its 

surrounding. 

5. Universe: System and surrounding together are called universe ( System+ Surrounding = Universe ). 

6. Types of system: There are three types of system: 

(I) Open system: The boundary of this system permits either matter or energy or both to be exchange 

with its surrounding. ( ex.: boiling of water in an open vessel).  

(II) Closed system:  the boundary of this system permits only energy to be exchange with the 

surrounding. ( ex. : boiling of water in a closed vessel) 

(III) Isolated system: An isolated system can exchange neither energy nor matter with the surrounding. 

( ex.: system and its surrounding is an example of isolated system). 

 

______________ 

(Phenomenological theory means that it does not provide the microscopic origin of a phenomenon) 

Figure 1 

System 
Boundary 

Surrounding Universe 
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7. Thermodynamic quantities (thermodynamics coordinates, or thermodynamic variables): 

There are certain characteristics by which the physical condition of a system may be described, e.g. Volume 

V, Pressure P, Temperature T. such properties is known as the properties of a system. When all 

the properties of the system are known the system is said to have a definite state. These properties 

are called the thermodynamic coordinates of the system 

8. Types of quantities: 

 Classified as either extensive or intensive1  

(I) Extensive quantities  : quantities proportional to the amount of matter present. Suppose 

we have a system and we double it. That means that we double the volume V , double the 

number of particles N, double the internal energy U, and double the entropy S. Quantities 

such as V, N, U, and S which are additive are called extensive. 

 

(I) Intensive quantities:  quantities independent of the amount of matter present. The 

variables which arise from differentiating the entropy, such as temperature 1/𝑇 =  𝜕𝑆/𝜕𝐸 

and pressure 𝑝 =  𝑇 𝜕𝑆/𝜕𝑉 and chemical potential µ =  𝑇𝜕𝑆/𝜕𝑁 involve the ratio of two 

extensive quantities and so do not change as we scale the system: they are called intensive 

quantities. 

“An easy way to determine whether a property is intensive or extensive is to divide the system 

into two equal parts with an imaginary partition, as shown in Fig. 2–6. Each part will have the 

same value of intensive properties as the original system, but half the value of the extensive 

properties [1]” 

 

11. State:  The word  state represent all the macroscopic properties ( variables) associated with a 

system. 

 
1 Kant formulate his distinction between extensive and intensive magnitudes. According to Kant, extensive magnitudes are those “in 

which the representation of the parts makes possible the representation of the whole”  



4 

 

 

Figure 2 

12. Path: The successive states  passes through during process is called the path.  

13. Process: Transformation from one equilibrium state to another 

 

Figure 3: Process 1                2 

14. Cycle : if the system go back to its initial after a series of states, this process is called cycle, or 

thermodynamic cycle. 

 
 

 

 

 

 

 

 

 

 

 

Q: Find out the state, properties, path, process, and cycle from the figure below given below.  

State 1 (P1, V1) 

State 2 (P2, V2) 

State 1 (P1, V1) 

State 2 (P2, V2) 

Figure 4: Example of thermodynamic cycle. 
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Ans. States: State 1   and State 2  

      Properties: Pressure (P), and Volume (V) 

      Paths: path A, Path B, and Path C 

     Process : Process 1               2 , or process 2               1 

        Cycle: 1               2               1 

        Classification of thermodynamic processes : 

I. Quasi-static process: the transformation proceeds sufficiently slowly (a mathematically 

infinitesimal paths) so that the system can be considered to remain in equilibrium at the average of 

the two point in the path. 

II. Reversible process: quasi-static transformation is usually reversible, that is, the system will traces 

the transformation in reverse, when the external change is reversed. A reversible transformation 

can be represented by a continuous path, as illustrated in Fig.5. 

 

Figure 5 ( Quasi-static process is reversible process) 

III. Irreversible process: an irreversible transformation cannot be retraced by reversing the external 

conditions. Such a transformation cannot be represented by a path in the equation-of-state space. 

Figure 6 is an example of an irreversible transformation is mixing of two gases by removing the 

separation wall 

 

 

 

 
Fig. 6: Mixing of two gases  as an example of an irreversible 

thermodynamic transformation. An example of irreversible 

process. 
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The following table shows a comparison between reversible and irreversible process: 

 

9. Thermal equilibrium, the zeroth Law of thermodynamic, and temperature 

10.1 Thermal equilibrium 

If two thermodynamic systems such as gases are put in thermal contact, after a time no further changes 

in the pressure and volumes will occur, and the gasses are said to be in thermal equilibrium with each 

other. Generally, thermal equilibrium is the state achieved by two ( or more) systems, characterized by 

restricted values of the coordinates of the system, after they have been in communication with each other 

through diathermal wall. 

 

10.2 Zeroth law of thermodynamics 

If each of two systems is in thermal equilibrium with a third, then they are also in  

thermal equilibrium with each other.  

This implies the existence of a property called temperature. Two systems that  are in thermal equilibrium 

with each other must have the same temperature. 

10.3 Temperature: 

 “ The temperature of a system is a property that determines whether or not that system in thermal 

equlibrium with other systems”. 

Measuring Temperature: 

Any thermoscope (  device that measures temperature ) must satisfy the following properties: 

I. It should be based on an easily measured macroscopic quantity such as volume, resistance, etc. 

II. The function that relates the chosen parameter with temperature, T= f(a), should be monotonic. 

III. The quantity should be measurable over as wide a range of T as possible.  

First define and measure temperatures on the Kelvin scale. Then we calibrate a thermoscope so as to 

make it a thermometer. 
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➢ The absolute (Kelvin) temperature scale: 

  This scale is based on the triple point of water (T =273.16 K and P = 611.73 Pa) where water can 

coexist in the solid, liquid, and gas phases in equilibrium). This new absolute temperature scale (also 

called the Kelvin scale). This scale use the kelvin to be the SI unit of absolute 

temperature. 

Kelvin : is 1/273.16 of the difference between absolute zero and the 

temperature of the triple point of  

➢ Note that we do not use a degree mark in reporting Kelvin temperatures It is 

300 K (not 300o𝐾), and it is read "300 kelvins" (not "300 degrees Kelvin"). 

 

➢ The constant –volume gas thermometer  

It is the standard thermometer, against which all other thermometers are calibrated. It is based on 

measuring the pressure of a gas in a fixed volume. it consists of a gas-filled bulb connected by a tube to a 

mercury manometer. By raising and lowering reservoir 𝑅, the mercury level in the left 

arm of the U-tube can always be brought to the zero of the scale to keep the gas 

volume constant. The temperature of the path or any body in thermal contact with the 

bulb is ( according to the ideal gas law, where the volume is constant ): 

𝑇 = 𝐶𝑃          (1.1  ) 

In which  P is the pressure of the gas, and  C  is constant. The pressure P is given as; 

 

𝑃 = 𝑃0 ± 𝜌gh⋯⋯(1.2) 

 

Where 𝑃0 is the atmospheric pressure, 𝜌 is the density of mercury, and ℎ is the measured difference 

between the mercury levels in the two arms of the tube ( The sign is positive if  P is measured down the 

level at which the pressure is 𝑃0, and vise versa, Figure 7 (a,b)). 

If we next put the bulb in a triple-point cell (Fig. 8), the temperature now being measured is: 

𝑇3 = 𝐶𝑃3⋯⋯(1.3) 

𝑃3 is the gas pressure now. Eliminating 𝐶 between  eqs. And    gives us the 

temperature as 

 

𝑇 = 𝑇3 (
𝑃

𝑃3

) = (273.16K) (
𝑃

𝑃3

) ⋯ ⋯ (1.4) 

 

 

Consider measuring the ideal –gas temperature at the normal boiling point of water (the steam point). An 

amount of gas is introduced into the bulb of a constant –volume gas thermometer, and one measure 𝑃3 

Figure 7(b) 

Fig. 8 

Figure 7(a) 
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when the bulb of the constant –volume gas thermometer is inserted in the triple point cell shown in Fig. 8. 

Suppose that 𝑃3 = 120𝑘𝑃𝑎  Keeping the volume 𝑉 constant, carry out the following procedures:  

I) Surround the bulb with steam at standard atmospheric pressure, measure the gas pressure 𝑃 , and 

calculate the empirical T using eq. (1.4  ), 

𝑇 = (273.16K) (
𝑃

120
) 

II) Then repeat both measurements with a smaller amount of gas in the bulb. So that  𝑃3 has a smaller 

value, say, 60kPa. Measure the new value of 𝑃 and calculate a new value, 

𝑇 = (273.16K) (
𝑃

60
) 

III) Continue reducing the amount of gas in the bulb so that 𝑃3 and 𝑃 have smaller and smaller values, 

𝑃3 having values of say, 40kPa, 20kPa, etc. At each value of 𝑃3 and 𝑃 calculate the corresponding 

𝑇. 

IV) Plot 𝑇 against 𝑃3 and extrapolate the resulting curve to the axis where 𝑃3 = 0. Read 𝑇 from 

the graph, Fig. (9). 

 

Figure (9) shows T(K) versus P3 (kPa) for three different gases in order to measure the  

temperature of boiling water. It is clear that, although the readings of a constant –volume gas 

thermometer depend upon the nature of the gas, all gases indicte the same temperature as P3 is 

lowered and made approach zero. 

 

Therefore ,generally, we define the ideal gas temperature as: 

  

𝑇 = 273.16 𝐾 lim
𝑃3→0

(
𝑃

𝑃3

) ⋯ ⋯ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑉) ∙ ⋯ ⋯ (1.5) 
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11.1 The Celsius Scale 

• The Celsius temperature scale, named after the Swedish astronomer 

Anders Celsius. 

•  The Celsius scale (formerly called the centigrade scale). 

•  The Celsius temperature are measured in degrees, and the Celsius degree 

has the same size as the kelvin. However, the zero of the Celsius scale is 

shifted to the ice point of water 273.15 K. 

• If 𝑇𝐶 represents a Celsius temperature and 𝑇 a Kelvin temperature, then; 

 

• 𝑇𝐶 = 𝑇 − 273. 15𝑜 ⋯ ⋯ (1.5) 

➢ Platinium Resistance thermometers 

Resistance thermometer is based on the variation of electrical resistance of a metal with temperature, 

cover an even greater range. Platinum is of a metal with temperature, cover an even greater range. Platinum 

is Often because: 

I) It is comparatively easy to purify,  purity improving its performance at low temperatures. 

II)  It also has a high melting point (1770 °C). Between 70 K and 1200 °C it is capable of very high 

accuracy, It is not far from linear. 

For a moderate accuracy, the instrument calibrate to a quadratic relation between the resistance and 

temperature; 

𝑅(𝑇) = 𝑅𝑇
′ (1 + 𝑎𝑇 + 𝑏𝑇2) ⋯ ⋯ (1.6) 

𝑅(𝑇): Is the resistance of platinum at temperature 𝑇.  

𝑅𝑇
′ : Is the resistance of platinum when it is surrounded by a water at triple point. 

𝑎, and 𝑏 are constants. 

 

➢ Radiation thermometry 

None of the thermometers described above is useful far above the gold point (1064 °C) and in this 

range radiation pyrometers are used. These are based on measurement of the radiation emitted by 

a body when hot. In radiation thermometry we  use the Planck radiation law, which relates 

thermodynamic temperature to the measured spectral radiance.  

➢ Thermocouples 

Schematic diagram of thermocouple is shown in Figure (10). Thermocouples, thermometers using the 

variation of the Seebeck e.m.f. with temperature range. Where the temperature to be measured is located at 

the test junction. Thermal electromotive force is generated at the junction of the two point 𝐴 and 𝐵. The 
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two thermocouple wire are connected to cooper wires located the reference junction which is maintained at 

the melting point of ice. junction . The e.m.f. is generally well represented by an expression of the form 

𝜀 = 𝑐0 + 𝑐1𝑇 + 𝑐2𝑇2 + 𝑐3𝑇3   (1.7) 

Where 𝜀 is the thermal emf and 𝑐0, 𝑐1, 𝑐2, 𝑐3 are constants depend on the thermocouple. 

 

 

Figure 610 

 

Table 1  : Some Common thermocouples. 

 

 

11.2 International Temperature Scale of 1990 

The experimental difficulties of accurate measurement of  thermodynamic temperature with gas or 

other primary thermometers make it necessary for laboratories and standards institutions to have available a 

set of convenient practical thermometers whose behaviour is known in sufficient detail for them to be used 

for accurate interpolation between basic reference points whose thermodynamic temperatures have been 

determined with precision.  

The basic idea of  The international Temperature Scale of 1990 (ITS-90) is : 

(a) Selection a set of reference points and assigns to these points values of thermodynamic 

temperature in the light of best  available measurements,  

(b) Selection a set of thermometers for interpolation between the reference points. 

 

Range 
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3.0 K to 24.556 K                                 constant –volume gas thermpmeter                 

13.81 K to 903.89 K                      platinum resistance thermometer 

903.89 K to 1337.58 K                  platinum/(platinum4-10% rhodium) thermocouple 

above 1337.58 K                         radiation pyrometer 

 

11.2 Fahrenheit Scale 

The Fahrenheit temperature is related to the Celsius temperature by the equation 

𝑇𝐹 =
9

5
𝑇𝑐 + 32   (1.9) 

REFERENCES: 

 [1] Çengel: Introduction toThermodynamics and Heat Transfer, Second Edition 

QUESTIONS: 

 

1. True thermodynamic equikibrium is attained in 

i) Finite time 

ii) Infinite time 

2. Thermodynamic concern with the behaviour of the systems at happenings 

i) microscopic level 

ii) macroscopic scale 

3. Energy of an isolated system can be altered 

i) By doing work on the system 

ii) By extracting work from the system 

iii) By heating or cooling the system 

iv) Cannot be changed at all 

 

4. Two different objects are in thermal contact with one another. The objects are at different  

     temperatures. The temperatures of the two objects determine 

     (a) the process by which thermal energy is transferred. 

     (b) the heat capacity of each object. 

     (c) the direction of transfer of thermal energy between the objects. 

     (d) the amount of internal energy in each object. 

 

 

5. What is the difference between extensive and intensive quantities? 

Ans. Intensive properties do not depend on the amount of matter of the system but extensive 

properties do. 
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6. The specific weight (𝑤) of a system is defined as the weight (𝑊) divided by the volume (𝑉), Is the 

specific weight an extensive or intensive property? 

Ans. The specific weight is defined as: 

𝑤 =
𝑊

𝑉
 

If we were to divide the system into two halves, each half weighs W/2 and occupies a volume of 

V/2. The 

specific weight of one of these halves is 

 

𝑤2 =
𝑊 2⁄

𝑉 2⁄
=

𝑊

𝑉
= 𝑤 

which is the same as the original specific weight. Hence, specific weight is an intensive property. 

 

7. For a system to be in thermodynamic equilibrium, do the temperature and the pressure have to be 

the same everywhere? 

8. Ans. For a system to be in thermodynamic equilibrium, the temperature has to be the same 

throughout but the pressure does not. However, there should be no unbalanced pressure forces 

present. The increasing pressure with depth in a fluid, for example, should be balanced by 

increasing weight. 

 

9. What is the state postulate? 

 

Ans. The State represent all the macroscopic properties ( variables) associated with a system. 
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Chapter 2 

________________________ 

Simple thermodynamic Systems 

2.1 Thermodynamic equilibrium 
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2.1 Thermodynamic equilibrium: 

There are three types of thermodynamic equilibrium: 

(I) Mechanical equilibrium: when there is no unbalanced force or torque in the interior if 

the system and also none between a system and surrounding, the system is said to be in 

mechanical equilibrium. 

(II) Chemical equilibrium: Consider a system in mechanical equilibrium, and does not 

tend to undergoes changes in the internal structure such as chemical reaction, or 

diffusion ( transfer of matter from one part of the system to another ) , then it is said to 

be in a state of chemical equilibrium. 

(III) Thermal equilibrium: exist when there is no change in the coordinates of a system 

of mechanical and chemical equilibrium in spite of it is in a closed state.  In other word 

there is no exchange of heat between the system and its surrounding, although the 

system in a closed state. In thermal equilibrium all the part of the system has the same 

temperature and this temperature is the same as that of surrounding. When this 

condition are not satisfied, a change of state will  take place  until new  thermal 

equilibrium is reached. 

When the three types of equilibrium is reached, the system is said to be in state of 

thermodynamic equlibrium. Thermodynamic equlibrium can be described by macroscopic 

coordinates that do not involve the time, that is in terms of thermodynamic coordinates. 

When the condition for any one of the three types of equlibrium that constitute 

thermodynamic equlibrium are not satisfied , the system is said to be in nonequlibrium 

state. In this case there is no single pressure that refere to the system as a whole. Similarly 

there is no single temperature refere to the system as a whole. Therefore in the  

nonequlibrium state the system can not described in terms of thermodynamic 

coordinates that describe the system as a whole. 

2.2 Equation of state: 

     Consider a system of constant mass of gas  in thermodnamic equilibrium. In this case the 

thermodynamic variables (𝑃, 𝑉, 𝑇 ) are not independent of one another, but constrained by 

the so-called equation of state. 
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𝑓(𝑃, 𝑉, 𝑇) = 0               (2.1) 

      where f is a characteristic function of the system under study. It shows that, of the three directly 

measurable variables, 𝑃, 𝑉 and 𝑇, only two are independent ( Can take any arbitrary values) and 

the third is determined by the two others. 

Example: For ideal gas ( where there are no intermolecular attractions and the molecules 

themselves have no volume) the equation of state is  

𝑃𝑉 = 𝑛𝑅𝑇               (2.2) 

Here 𝑛 is the number of moles present,  𝑅 = 8 ∙ 31
j

𝑚𝑜𝑙∙𝐾
 , is a constant called the universal gas 

constantm, and 𝑇 is the temperature in KELVINS.  . 

At high pressures, the equation of state is more complicated, and represented by van der Waals 

equation, which takes into account particles interactions and the finite size of the particles, Thus; 

(𝑃 +
𝑛2𝑎

𝑉2
) (𝑉 − 𝑛𝑏) = 𝑛𝑅𝑇               (2.3) 

where 𝑎 and 𝑏 are constants that depend on the type of gas. 

Geometrical representation of the equation of state: The equation of state of the ideal gas can be 

represented by a surface in the state space spanned by P, V , and T (see Fig. 1). All equilibrium 

states must be on this surface. f is a continuous, differentiable function, except at some special 

points. 

 

 

 

 

 

 

 

 

Fig. 1: The state space in thermodynamics 

 

Figure 1 
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Before we go further let me recall several useful relations which are valid for any Substance 

 

𝑅 = 𝑘𝑁𝑎,    𝑛 =
𝑁

𝑁𝑎
,   𝑛 =

𝑚

𝑀
⋯ ⋯ (2.4) 

where 𝑘 =  1.38 × 10−23J 𝐾 is Boltzmann’s constant, N is the total number of molecules, 

𝑁𝑎 = 6.02 × 1023mol is (Avogadro number) the number of molecules in one mole of any 

substance, m is the mass of a substance, M is the molar mass (the mass of one mole) of a 

substance. The molar mass of a substance is numerically equal to the molecular mass, but 

expressed in mass units per mole, usually as g/mol (grams per mole) or kg/kmol. The 

molecular mass of a substance is the mass of one molecule of that substance, relative to the 

unified atomic mass unit (equal to 1/12 the mass of one atom of carbon-12). The molecular 

mass can be calculated as the sum of the atomic masses of all the atoms of any one 

molecule. 

 

Example Problem (2.1):  

(a) What is the volume of one mole of air at 0°C and atmospheric pressure. 

(b) ; what is the density of air under the same conditions? 

Solution: We consider the air under these conditions as an ideal gas 

 

Example Problem (2.2): A balloon of 700 liters contains 10 kmol of CO2 at a temperature 

of 137 °C. Calculate the pressure in atmospheres inside the ballon from the ideal gas law 

and from the van der Waals equation if 𝑎 =  364 × 103
 𝐽 ⋅ 𝑚3/𝑘mol

2
, 

 𝑏 =  0.0427 m3/kmol. What is the mass of CO2 inside the balloon? 
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It is obvious  that no equation of states exists for the states traversed by a system that is 

not in mechanical and thermal equlibrium, since such states cannot be described in terms of 

thermodynamic coordinates referring to the system as a whole.   

2.3 Hydrostatic systems  

Simple systems: are those systems  that can be fully described by three thermodynamics  

corrdinates 𝑋, 𝑌, 𝑍 ( 𝑋𝑌𝑍 𝑠𝑦𝑠𝑡𝑒𝑚𝑠). 

◼  The hydrostatic or 𝐏𝐕𝐓 systems:  is a tyep of the simple systems that can be described 

by the three coordinates P, V, T  ( 𝑃𝑉𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝑠).  The hydrostatic systems exerts uniform 

hydrostatic pressure to the surrounding -sometimes is referred to as ‘fluid system’ 

 

Categories of hydrostatic systems: 

1.   A pure substance: is a single chemical compound (e.g. H2O )  in a single phase  or in a 

mixture of a solid, liquid, or  gas phase. 

2. A homogeneous  mixture of different ompound: such as a mixture of inert gasses, a 

mixture of active gasses, a mixtur of liquid or, solution. 

3.  A hetrogeneous mixture: such as a mixture of diffrernt gasses in contact with different 

liquids.  
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Every hydrostatic system, that is, 𝑃𝑉𝑇  system, has an equation of state that is valid for 

equlubrium states, as eq.(2.1). The equation of state for any coordinate can be solved in terms 

of the other two, thus comsider the volume of 𝑉 in terma of 𝑃, 𝑉 

 

𝑉 = 𝑉( 𝑇, 𝑃) 

The differential of  𝑉 is written as; 

𝑑𝑉 = (
𝜕𝑉

𝜕𝑇
)

𝑃
𝑑𝑇 + (

𝜕𝑉

𝜕𝑃
)

𝑇
𝑑𝑃, ⋯ ⋯ (2.5) 

From the last equation we can define the following quantities: 

➢ Coefficient of Volume expansion, ( Volume expansivity) 𝜷, 

 

𝛽 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
… . (2.6) 

Note that: 𝛽 is always positive, except for a few exceptions such as water between 00𝐶 and 40𝐶 

experiences decrease in 𝑉 with increasing 𝑇. 

➢ Bulk modulus , B 

𝐵 = −𝑉 (
𝜕𝑃

𝜕𝑉
)

𝑇
⋯ ⋯ (2.6) 

The inverse of 𝐵 is called compressibility, 𝒌 

𝑘 = −
1

𝑉
(

𝜕𝑉

𝜕𝑃
)

𝑇
… (2.7) 

Note that: Volume expansivity,  𝜷 , and the  compressibility, 𝒌  are of great use in 

thermodynamics, why?  

◼ Because the left  side of eq. (2. ) and eq.( 2.) are experimentally  measuramble values, 

while the right side is theoretical values ( partial derivatives). So, Measuring k and 𝛽 allows 

us to get the change in thermodynamic coordinates which can not determine from the 

experiment.  

Similarly, if the equation of state is solved for 𝑃 and 𝑇 , then we get 
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𝑃 = 𝑃(𝑇, 𝑉)          and         𝑇 = 𝑇(𝑉, 𝑃) 

Which gives the partial differential equations 

𝑑𝑃 = (
𝜕𝑃

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑃

𝜕𝑉
)

𝑇
𝑑𝑉, ⋯ ⋯ (2.8) 

𝑑𝑇 = (
𝜕𝑇

𝜕𝑉
)

𝑃
𝑑𝑉 + (

𝜕𝑇

𝜕𝑃
)

𝑃
𝑑𝑃, ⋯ ⋯ (2.9) 

Consequently, the differential 𝑑𝑃 , 𝑑𝑉, and 𝑑𝑇 in all the above equation are differentiale of actual 

functions and are called exact differentials. 

➢ Exact differential:  𝑑𝑧 is called an exact differential as a function of   x, y if dz can be 

written as; 

𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

𝑑𝑦    (2.10) 

  An infinitesimal that is not the differential of an actual function is called an inexact differential  

 

2.4 MATHEMATICAL THEORIES ( The reciprocal and reciprocity theorems) 

Suppose that three variable are related through the relation 

𝑓( 𝑥, 𝑦, 𝑧) = 0               (2.11) 

We may write the differential of 𝑑𝑥  and 𝑑𝑦 as; 

𝑑𝑥 = (
𝜕𝑥

𝜕𝑦
)

𝑧

𝑑𝑦 + (
𝜕𝑥

𝜕𝑧
)

𝑦
𝑑𝑧 ⋯ ⋯ (2.12) 

And 

𝑑𝑦 = (
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧 ⋯ ⋯ (2.13) 

Combining the two equations we get; 
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𝑑𝑥 = (
𝜕𝑥

𝜕𝑦
)

𝑧

{(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + (

𝜕𝑦

𝜕𝑧
)

𝑥
𝑑𝑧} + (

𝜕𝑥

𝜕𝑧
)

𝑦
𝑑𝑧 ⋯ ⋯ (2.14) 

𝑑𝑥 = (
𝜕𝑥

𝜕𝑦
)

𝑧

(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥 + {(

𝜕𝑥

𝜕𝑦
)

𝑧

(
𝜕𝑦

𝜕𝑧
)

𝑥
+ (

𝜕𝑥

𝜕𝑧
)

𝑦
} 𝑑𝑧 ⋯ ⋯ (2.15) 

Choosing 𝑥 and 𝑧 as independent coordinates, the above is true for all the values of 

𝑥 and 𝑧 . Thus if 𝑑𝑧 = 0 and 𝑑𝑥 ≠ 0, then 

(
𝜕𝑥

𝜕𝑦
)

𝑧

(
𝜕𝑦

𝜕𝑥
)

𝑧
= 1 ⋯ ⋯ (2.16) 

Or 

(
𝜕𝑥

𝜕𝑦
)

𝑧

=
1

(
𝜕𝑦
𝜕𝑥

)
𝑧

⋯ ⋯ (2.17) 

This is the reciprocal theorem which allows us to replace any partial derivative by the reciprocal 

of the inverted derivative with the same variable(s) held constant. 

 If 𝑑𝑥 = 0 and 𝑑𝑧 ≠ 0, then 

(
𝜕𝑥

𝜕𝑦
)

𝑧

(
𝜕𝑦

𝜕𝑧
)

𝑥
+ (

𝜕𝑥

𝜕𝑧
)

𝑦
= 0           (2.18) 

 

 

 

                                                                                                               ( 2.19 ) 

 

 

 

(
𝜕𝑥

𝜕𝑦
)

𝑧

(
𝜕𝑦

𝜕𝑧
)

𝑥
= − (

𝜕𝑥

𝜕𝑧
)

𝑦
 

(
𝜕𝑥

𝜕𝑦
)

𝑧

(
𝜕𝑦

𝜕𝑧
)

𝑥
(

𝜕𝑧

𝜕𝑥
)

𝑦
= −1 
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This is the reciprocity theroem. It may be written starting with any derivative then following 

through the other variables in cyclic order. 

➢ Appling the theorem to PVT system 

In the  case of a 𝑃𝑉𝑇 system, the reciprocity ( cyclical)  theroem yields the result 

 

(
𝜕𝑥

𝜕𝑦
)

𝑧

(
𝜕𝑦

𝜕𝑧
)

𝑥
= − (

𝜕𝑥

𝜕𝑧
)

𝑦
⇒ (

𝜕𝑃

𝜕𝑉
)

𝑇
(

𝜕𝑉

𝜕𝑇
)

𝑃
= − (

𝜕𝑃

𝜕𝑇
)

𝑉
    (2.20) 

   

By defintion , the volume expansivity ( eq.2  ) and the isothermal comressipility 

(eq.2  ) are  

𝛽 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
⋯ ⋯ (2.21) 

𝑘 = −
1

𝑉
(

𝜕𝑉

𝜕𝑃
)

𝑇
⋯ (2.22) 

𝛽

𝑘
=

(
𝜕𝑉
𝜕𝑇

)
𝑃

− (
𝜕𝑉
𝜕𝑃

)
𝑇

= − (
𝜕𝑉

𝜕𝑇
)

𝑃
(

𝜕𝑃

𝜕𝑉
)

𝑇
    (2.23) 

But  

(
𝜕𝑉

𝜕𝑇
)

𝑃
(

𝜕𝑃

𝜕𝑇
)

𝑇
= − (

𝜕𝑃

𝜕𝑇
)

𝑉
    (2.24) 

Then  

𝛽

𝑘
= (

𝜕𝑃

𝜕𝑇
)

𝑉
⋯ ⋯ (2.25)) 
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➢ 𝒅𝑷 in terms of 𝛽 and 𝑘: 

Consider an infinitesimal change in P, then 

𝑑𝑃 = (
𝜕𝑃

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑃

𝜕𝑉
)

𝑇
𝑑𝑉    (2.26) 

Then 

𝑑𝑃 =
𝛽

𝑘
𝑑𝑇 −

1

𝑘𝑉
𝑑𝑉 ⋯ ⋯ (2.27) 

At 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑑𝑃 =
𝛽

𝑘
𝑑𝑇   (2.28) 

For a small change in 𝑇 form 𝑇𝑖 to 𝑇𝑓 , at constant volume, we can consider both 𝛽 and 𝑘 

constant,   and then  the change in 𝑃 from 𝑃𝑖 to 𝑃𝑓, as 

𝑃𝑓 − 𝑃𝑖 =
𝛽

𝑘
∫ 𝑑𝑇

𝑇𝑓

𝑇𝑖

 

𝑃𝑓 − 𝑃𝑖 =
𝛽

𝑘
(𝑇𝑓 − 𝑇𝑖)      (2.29) 

From which the final pressure can be calculated. 

Example problem (2.3): consider a mass of mercury at standard atmospheric 

pressure and a temperature150𝐶 is kept at constant volume. If the temperature is raised 

to 250𝐶 , what will be the final pressure?. 

Solution 
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Much of the development of thermodynamics has been  based on the the hydrostatic or 

PVT system. 

2.5 Streched Wire 

A wire can be thought of as a one –dimensional simple system. We know from the 

experimental results that the equlibrium states of the wire can be described by two 

independent variables of the following  three coordinates: 

1. The tension in the wire 𝒯 , measured in newtons (N) 

2. The length of the wire 𝐿, measured in meters 

3. The absolute temperature 𝑇, measured in kelvin (K) 

This variables are connected through the the equation of states 

𝑔(𝒯, 𝐿, 𝑇) = 0 ⋯ ⋯ (2.30) 

If the wire undergoes an infintesimal change from one state of equlibrium to another, then 

the length can be written as a function of  𝒯 and 𝑇 as; 

𝐿 = 𝐿(𝒯, 𝑇) 

Then 𝑑𝐿 is an exact differential and is written as 

𝑑𝐿 = (
𝜕𝐿

𝜕𝑇
)

𝒯
𝑑𝑇 + (

𝜕𝐿

𝜕𝒯
)

𝑇
𝑑𝒯 
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These derivatives are connected with very important physical quantities, in general 

physics, 

➢ The average coefficient of linear expansion, and linear expansivity 

𝐴𝑣𝑒𝑟𝑔𝑎𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 

For infetisimal change in temperature, we get an infinitesimal change in length, and then we can 

define the linear expansivity, 𝛼 as; 

𝛼 =
1

𝐿
(

𝜕𝐿

𝜕𝑇
)

𝒯
⋯ ⋯ (2.31) 

The linear expansivity 𝛼 is in unit of reciprocal kelvin (𝐾−1). 

In general physics, the average Young’s modulus was defined as 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑌𝑜𝑢𝑛𝑔’𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓  𝐿𝑒𝑛𝑔𝑡ℎ 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
 

For infetisimal change in tension, we can define the isothermal Young’s modulus, 𝑌 as; 

𝑌 =
𝐿

𝐴
(

𝜕𝒯

𝜕𝐿
)

𝑇
⋯ ⋯ (2.32) 

Where 𝐴 denote the cross-section area of the wire.  

Note That: 

• 𝑌   is always positive 

• 𝑌  depend mostly in teperature and is constant for a small te,perature range 

• The unit of  𝑌  is (𝑁 m2⁄ )  

Using the cyclical theory , then 

(
𝜕𝒯

𝜕𝐿
)

𝑇
(

𝜕𝐿

𝜕𝑇
)

𝒯

(
𝜕𝑇

𝜕𝒯
)

𝐿

= −1 
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(
𝜕𝒯

𝜕𝑇
)

𝐿
= − (

𝜕𝒯

𝜕𝐿
)

𝑇

(
𝜕𝐿

𝜕𝑇
)

𝐿

 

(
𝜕𝒯

𝜕𝑇
)

𝐿
= −

𝑌𝐴

𝐿
𝛼𝐿 

So 

(
𝜕𝒯

𝜕𝑇
)

𝐿
= −𝐴𝑌𝛼 ⋯ ⋯ (2.33) 

Questions 

1- Is the number of moles of a substance contained in a system an extensive or intensive 

property? 

Problems 
 

 

Answer 

(a) Given equation of state for a ideal gas  

 

PV = n RT,    Eq. (1) 

 

and the definition of volume expansivity 
1 V

V T


 
=  

 
, it is easily verified that  = 1/T by taking the partial 

derivate of Eq. (1) with respect to T:  

 

( )
V

PV nRT P nR
T T

 
= → =

 
 Eq. (2) 

 

Inserting PV = nRT into Eq. (2), we arrive at  
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1V nR PV V

T P T P T


= = =


 

Hence, 
1 V

V T


 
=  

 
=

1 1V

V T T


 
= = 

 
. 

 

(b) 

 

Given equation of state for a ideal gas  

 

PV = n RT,    Eq. (1) 

 

and the definition of isothermal compressibility 
1 1 V

B V P


 
= = −  

 
, it is easily verified that  = 1/P by 

taking the partial derivate of Eq. (1) with respect to P:  

 

( ) ( ) 0
V

PV nRT P V nRT
P P P

  
= → + = =

  
 Eq. (2) 

 

Inserting PV = nRT into Eq. (2), we arrive at  

 

V V

P P


= −


 

Hence, 
1 1 1V V

V P V P P


   
= − = − − =   

   
. 
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Answer 
 

Problem 2.2: Given the equation of state of a van der Waals gas, ( )2

a
P v b RT

v

 
+ − = 

 
: 

 

(a) Taking the partial derivative with respect to v, with constant T,  

( ) ( )2
0

a
P v b RT

v v v

    
+ − = =     

 

( ) ( )

( )

2 2

3 2

2

3

0

2
0

2

a a
v b P P v b

v v v v

P a a
v b P

v v v

a
P

P av

v v b v

    
− + + + − =   

    

   
− − + + =   

   

+


= − +
 −

 

 

(b) Taking the partial derivative with respect to T, with constant v,  

( ) ( )

( ) ( )

( )

( )

2

2 2

2 2

2

1

0 0

a
P v b RT

T v T

a a
v b P P v b R

T v v T

P a v
v b a P R

T T v v T

P a
v b P R

T v

P R

T v b

    
+ − =     

    
− + + + − =   

    

      
− + + + =          

   
− + + +  =   

   


=

 −
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(c) From  

2 2 3

3

2

2

T P v

V

P

T

P v P

v T T

P R
v RT v b

a a abPT
P P

av v vv
v b v

       
= −     

       

 
− 

     −→ = = − =      + − − 
  − +

−
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Chapter 3 
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3.1 WORK 

Qualitatively: At any time, an object undergoes a displacement under the action of force, work is 

said to be done.  

Quantitively; work is the product of the force and the component of displacement parallel to the 

force. 

 There are Two kinds of work  

i) External Work:  As a result of interaction between the system and its surrounding 

 ( e.g. a gas confined cylinder when expand does external  work on its surrounding ). 

ii)    Internal Work: As a result of  interactions between different parts of the system 

(e.g. the interactions at the microscopic scales between molecules, atoms, or 

electrons on one another). 

We will confine our attention to the external work .  

Sign convention:  

• Work is positive when done on the system 

• Work is negative when done by the system. 

3.2 QUASI-STATIC PROCESS 

  We introduced the concept of quasi–static process in chapter 1. Here, we want to redefine 

this process more precisely:     

➢ The quasistatic process : is an ideal case in which the external forces acting on a system 

are varied only slightly, and the process proceeds infinitesimally slowly.  

The quasistatic process has the following features:  

i) During this process, the system is in all times infinitesimally near a state of 

thermodynamic equilibrium. This means we can get equation of state describe the 

system as a whole. 

ii) The quasistatic process is  equivalent to reversible process.  

      Now we will discuss the quasistatic process in those systems that we discussed in the previous 

chapter: 

3.3 WORK IN CHANGING THE VOLUME OF A HYDROSTATIC SYSTEM: 

As shown in the figure, consider quasi-static compression of a hydrostatic system enclosed by an 

adiabatic cylinder and piston. 
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• The pressure exerted by the system at the internal face of the piston is 𝑃. Therefore, the 

force on the internal face of the piston is  𝑃𝐴  (  : is the cross–section area of the 

cylinder). 

• The surrounding exerts an external force 𝐹  on the external face of  the piston.  

• If  𝐹   increased slightly the force 𝑃𝐴 of the system, then the piston will move 

infinitesimal distance 𝑑𝑥 during compression, as shown in the Fig.3-1. 

• The work done by the external force during this displacement is ; 

𝑑𝑊 = 𝐹𝑑𝑥 = 𝑃𝐴𝑑𝑥    (2.1) 

But during compression the volume of the system decreases, so 

𝐴𝑑𝑥 = −𝑑𝑉    (2.2) 

Then 

𝑑𝑊 = −𝑃𝑑𝑉 ⋯ ⋯ (2.3) 

• The convention is that work done on the system increases the energy of the system and 

work done by the system decrease the energy of the system. 

• Therefore, the minus sign before 𝑃𝑑𝑉 ensures that negative  𝑑𝑉 

 (a compression) gives rise a positive work done on the system, and conversely positive 

𝑑𝑉( expansion) gives rise a  negative work done by the system. 

(The SI unit of work is Joule ( J) ) 

In a finite quasi-static process  the work done by a system in expansion  from initial volume 𝑉𝑖 to 

a larger volume 𝑉𝑓  is expressed as 

𝑊𝑖𝑓 = − ∫ 𝑃𝑑𝑉

𝑉𝑓

𝑉𝑖

       (2.4) 

and  in contracting from state 𝑓 to state 𝑖 , along the same path of integration but in opposite 

direction , the work done on the system is 
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𝑊𝑓𝑖 = − ∫ 𝑃𝑑𝑉     (2.5)

𝑉𝑖

𝑉𝑓

 

So over  quasi-static path , we have 

𝑊𝑖𝑓 = −𝑊𝑓𝑖          (2.6) 

3.4 PV DIAGRAM  

Consider the process of compression or expansion of the hydrostatic system shown in 

figure 3-1 . The resulting diagram in which pressure is plotted along y-axis and the volume along 

x-axis, is called a PV diagram. 

• The area under the PV curve represents the work done by or on the system 

 

• Figure 3-2(a) shows expansion process (curve I). The integral  − ∫ 𝑃𝑑𝑉
𝑉𝑓

𝑉𝑖
 is negative, i.e. 

the work is done by the system. 

• Figure 3-2(b) shows compression process (curve II). The integral  − ∫ 𝑃𝑑𝑉
𝑉𝑖

𝑉𝑓
 is positive, 

i.e. the work is done on the system. 

• Figure 3-2(c) shows the two curves  I and II together. Such a series of two or more 

process represent by a closed figure is called a cycle. The net work done in a cycle is the 

difference between the area under curve I and curve II. 
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3.5 HYDROSTATIC WORK DEPENDS ON THE PATH 

As shown in the figure below, the paths , 𝑖𝑓, and 𝑖𝑏𝑓, has a different area. Then they have a 

different work.  

 

• This means that, the work done by a system depends not only on the initial and final 

states but also on the path of integration. Consequently, the work is inexact differential ( 

i.e. the work  is not state function). 

 

 

3.6 CALCULATION OF ∫ 𝑷𝒅𝑽 FOR QUASI-STATIC PROCESSES  

i. Quasi-static isothermal expansion or compression of an ideal gas 

𝑊 = − ∫ 𝑃𝑑𝑉

𝑓

𝑖

= − ∫
𝑛𝑅𝑇

𝑉
𝑑𝑉

𝑓

𝑖

= −𝑛𝑅𝑇 ∫
𝑑𝑉

𝑉

𝑓

𝑖

= −𝑛𝑅𝑇ln
𝑉𝑓

𝑉𝑖
   (2.7) 
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Example : 

 

 

ii) Quasi-static isothermal increase of pressure on a solid  

Suppose the pressure of on 10g of cooper increased quasi-statically and isothermally at 20oC 

from 0 to 100 atm. What is the work done during this process? 

Answer: 

𝑊 = − ∫ 𝑃𝑑𝑉   (2.8) 

But 

𝑑𝑉 = (
𝜕𝑉

𝜕𝑇
)

𝑃
𝑑𝑇 + (

𝜕𝑉

𝜕𝑃
)

𝑇
𝑑𝑃        (2.9) 

And since 

𝑘 = −
1

𝑉
(

𝜕𝑉

𝜕𝑃
)

𝑇
                  (2.10) 

Then 

𝑑𝑉 = −𝑘𝑉𝑑𝑝       (2.11) 

Substituting this result for 𝑑𝑉 in the expression for work, then 

 

𝑊 = ∫ 𝑃𝑘𝑉𝑑𝑝      (2.12) 

At constant temperature, 𝑘 and 𝑉 are practically constant , then 
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𝑊 =
𝑘𝑉

2
(𝑃𝑓

2 − 𝑃𝑖
2)  (2.13) 

Example 

 

 

Note That:  A little work was done in raising the pressure on the cooper compared with the work 

in compressing the gas in the first example. The reason is that the volume of cooper changed 

very little. So in compressing the gas we can usually neglect the work done on the material of the 

container.   

PROBLEMS 

Problem 3.1  

Show that the work done by an ideal gas during the quasi-static, isothermal expansion from an 

initial pressure 𝑉𝑖 to a final pressure 𝑉𝑓, is given by 

 

 𝑊 =  − 𝑛𝑅𝑇 𝑙𝑛 (𝑉𝑓/𝑉𝑖). 

Solution 

𝑊 = − ∫ 𝑃𝑑𝑉

𝑓

𝑖

= − ∫
𝑛𝑅𝑇

𝑉
𝑑𝑉

𝑓

𝑖

= −𝑛𝑅𝑇 ∫
𝑑𝑉

𝑉

𝑓

𝑖

= −𝑛𝑅𝑇ln
𝑉𝑓

𝑉𝑖
 

Problem 3.2  

(a) Show that the work done by an ideal gas during the quasi-static, isothermal expansion 

from an initial pressure Pi to a final pressure Pf, is given by  

𝑊 =   𝑛𝑅𝑇 𝑙𝑛 (𝑃𝑓/𝑃𝑖). 
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Solution: 

For isothermal process 

𝑃𝑖𝑉𝑖  =  𝑃𝑓𝑉𝑓. 

Hence  

𝑉𝑓/𝑉𝑖   =  𝑃𝑖  /𝑃𝑓 . 

 Substitute this into  

𝑊 =  − 𝑅𝑇 𝑙𝑛 (𝑉𝑓/𝑉𝑖). 

Then     

𝑊 = − 𝑛𝑅𝑇 𝑙𝑛 (𝑃𝑖/𝑃𝑓) = 𝑛𝑅𝑇 𝑙𝑛 (𝑃𝑓/𝑃𝑖). 

Problem 3.3  

An adiabatic chamber with rigid walls consists of two compartments, one containing a gas and the 

other evacuated; the partition between the two compartments is suddenly removed. Is the work 

done during an infinitesimal portion of this process (called an adiabatic expansion) equal PdV ? 

Answer: NO. Because there is no work done against the expansion of the gas-filled 

compartment by the evacuated compartment. During a free expansion of a gas, the heat 

transfer between the system and the surrounding, and the work done by the gas are both 

equals to zero. In other words, no work is done by the gas during a free expansion.  

Problem 3.4  

(a)  Calculate the work done upon expansion of 1 mol of gas quasi-statically and isothermally 

from volume vi to volume vf, when the equation of state is ( )2

a
P v b RT

v

 
+ − = 

 
, where 

a and b are the van der Waals constant.  

(b) If a =1.4109 N∙m4/mol and b=3.210-5 m3/mol, how much work is done when the gas 

expands from a volume of 10 liters to a volume of 22.4 liters at 20°C? 

Solutions: (a) 

 

 

 

 

(b)  

                                                                                                            

= 2.251015 J 
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    The first law of thermodynamics is essentially an extension of the principle of the conservation 

of energy to include systems in which there is flow of heat. Historically, it marks the recognition 

of heat as a form of energy. 

4.1 WORK AND HEAT 

• In chapter 3 we saw how system can transfer from initial state  to final state via quasi-static 

process by doing a work ( figure 4-1 a,b).  Also, we explained how the work done during 

the process could be calculated. 

• However, there are other means for changing the state of the system do not necessary 

involve the performance of a work. By absorbing (or releasing ) heat ( figure 4-1 c,d). 

 

Definition: Heat is a form of energy that transfer between a system and its environment because 

of the different in temperature only. 
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4.2 ADIABATIC WORK 

When a closed a system confined within an adiabatic boundary allowing no heat to penetrate, 

as shown in figure 4.2, the system may still be coupled to the surrounding so that work may be 

done.    

 

 

• Path independent adiabatic work: 

figure 4.2, shows a series of experiments which show that the system can be changed from 

initial state to the same final state by the performance of adiabatic work only through a 

different paths. 

i) path 𝐈: The state of composite electrical system, composed of a resistor immersed in 

water,  is changed from an initial state 𝑖 of (𝑃𝑖 = 1 𝑎𝑡𝑚, 𝑇𝑖 = 287.7 𝐾), to a final state 

𝑓 of  (𝑃𝑓 = 1 𝑎𝑡𝑚, 𝑇𝑖 = 288.7 𝐾), by passing a current through the resistor from, as 

shown in figure 4-3. 
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ii) path II, the system is changed from the state 𝑖 to the state 𝑓 by compressing the water 

adiabatically from 𝑖 to a , then use a current in a resistor from  a  to  b  and then expand 

from b to 𝑓 . 

iii) path III is another path to reach by the system from the state 𝑖  to the 

 state 𝑓. 

In conclusion:  there are an infinite number of paths by which a system may be transferred 

from initial state to a final state by performance of adiabatic work only.  The generalization of 

this rule is a statement for the first law of thermodynamic. 

 
The path independent work follow from the restricted statement of the first law of thermodynamic 

ensures the existence of a function of the thermodynamic coordinates of the system whose value 

at the  final state minus its value at the initial state equal the adiabatic work done during this 

change. This function is called the internal energy function, 𝑼. Then we have 

 

𝑊𝑖⇁𝑓 = 𝑈𝑓 − 𝑈𝑖 ⋯ ⋯ (4 ∙ 1) 

If  𝑊𝑖⇁𝑓 > 0, then 𝑈𝑓 > 𝑈𝑖  

4.3 INTERNAL ENERGY AS A STATE FUNCTION 

Now it is shown that the change in the internal energy is path independent. This means that 

𝑈 is a state function. It was clear in chapter two that the equilibrium state of   hydrostatic 

system, which is described by three coordinates 𝑃, 𝑉, and 𝑇, can be totally determined by 

two coordinates, and the third is fixed by the equation of state. 
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Then the infinitesimal change in the internal energy 𝑑𝑈 is an exact deferential. Which 

means that, if 𝑼 is a function of  𝑽 and  𝑻  for hydrostatic system, then 𝑑𝑈  is given as 

 

Or if we considered 𝑼 as a function of 𝑇 and 𝑃, then 

 

Note that :  

(
𝜕𝑈

𝜕𝑇
)

𝑉
≠ (

𝜕𝑈

𝜕𝑇
)

𝑃
 

They have a different meaning as we will see later  

4.4  MATHEMATICAL FORMULATION OF THE FIRST LAW 

We have been considering processes during which a system undergoes a change of state through 

the performance of adiabatic work only.  in this case it is cleared as given in eq.(4.1)  that ∆U =

𝑈𝑓 − 𝑈𝑖 =  𝑊𝑖→𝑓 

• Equation (4.1) applies to adiabatic processes. 

• However, we know that it is also possible to change the state of a system without doing work 

on it (We may use heat alone)  or any combination of heat and work. Thus, when a system is 

not thermally isolated equation (4.1) is no longer valid. It must now be modified to 

∆U = 𝑈𝑓 − 𝑈𝑖 =  𝑄 + 𝑊 ⋯ ⋯ (4 ∙ 2) 

 

Where Q is the heat add to the system . Like internal energy and work heat is measured in 

Joules in the SI unit of system. 

Equation (4 ∙ 2) is the mathematical form of the first law of thermodynamics. This formula 

contains three relateds idea 

1- The existence of the internal energy function 

2- The principle of conservation of energy 

3- The definition of heat as energy in transit by virtue of temperature difference. 

Note that 

Heating is a process by which there is an exchange of energy between system and its surrounding 

because of temperature difference.  

But what is the energy that exchange? 

The answer depend on the condition of process.   
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• In isochoric process of hydrostatic system ( constant volume process ), the heat 

transferred is simply the internal energy. 

• In isobaric process of hydrostatic system ( constant pressure process) , the heat 

transferred is enthalpy, which is another state function, which is a type of energy, as we 

will see later.  

4.5 THE CONCEPT OH HEAT 

Note that 

As we have defined the heat as “ heat is either internal energy or enthalpy in transit” 

because of difference in temperature. 

 consequently 

1. When the flow of heat has stopped we can not use the word of heat at all. So, it is not 

correct to refer  to the heat of body.  

2. The heat and the work done on or by the system is not a function of the coordinates of the 

system ( they are not a state function or exact differential)  , So infinitesimal amount of 

heat and work is written as 𝑑𝑊 or as 𝑑𝑄 ( read d bar W or d bar Q). 

 

Example : ( The method of mixture) 

Consider two systems A, and B with different temperatures  and in thermal contact. 

Consider the composite system is surrounded by adiabatic walls. 

 

Prof that 

𝑄𝐴 = −𝑄𝐵 ⋯ (4.3) 

 

where  𝑄𝐴 is heat giant or lost by system A, and 𝑄𝐵 is the heat gain or lost by system B. 

 

Answer 

Applying the first law of thermodynamics to system 𝐴 and system 𝐵 we have 

 

𝑈𝐴𝑓 − 𝑈𝐴𝑖 =  𝑄𝐴 + 𝑊𝐴    (4.4) 

 

𝑈𝐵𝑓 − 𝑈𝐵𝑖 =  𝑄𝐵 + 𝑊𝐵         (4.5) 

Adding the two equations we get 

(𝑈𝐴𝑓 + 𝑈𝐵𝑓) − (𝑈𝐴𝑖 + 𝑈𝐵𝑖) = (𝑄𝐴 + 𝑄𝐵) + (𝑊𝐴 + 𝑊𝐵)    (4.6) 

 

But 

 (𝑈𝐴𝑓 + 𝑈𝐵𝑓) − (𝑈𝐴𝑖 + 𝑈𝐵𝑖)  is the  change in the internal energy of the composite 

system  

and  (𝑊𝐴 + 𝑊𝐵)  is the work done on the composite system.  

Then 

(𝑄𝐴 + 𝑄𝐵)  is the heat add to the composite system.  
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But the composite system is surrounded by adiabatic walls, the   

 (𝑄𝐴 + 𝑄𝐵) = 0  

Then  

𝑄𝐴 = −𝑄𝐵 ⋯ (4.7) 

 

Note that :  

Equation (3.4) is the basis for calculating the final temperature when a piece of hot metal 

dropped into a cold water contained in calorimeter.  

 

4.6  DIFFERENTAL FORM OF FIRST LAW  

For infinitesimal change on the coordinates of the system, the first law of thermodynamics is 

written as; 

 

𝑑𝑈 = 𝑑𝑄 + 𝑑𝑊 ⋯ ⋯ ⋯ (4.8) 

 

For an infinitesimal  quasi-static process of a hydrostatic system, the first law of 

thermodynamic can be written as  

 

𝑑𝑈 = 𝑑𝑄 − 𝑃𝑑𝑉 ⋯ ⋯ (4 ∙ 9) 

Where 𝑑𝑊 = −𝑃𝑑𝑉 

 

4.7 HEAT CAPCITY AND ITS MEASUREMENTS 

If a system experience a change of temperature from 𝑇𝑖  to 𝑇𝑓 during the transfer of 𝑄 units 

of heat, the average heat capacity of the system is defined as; 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑄

𝑇𝑓 − 𝑇𝑖
             (4.10) 

 

When 𝑄 and 𝑇𝑓 − 𝑇𝑖 becomes infinitesimal, then this ratio approach limiting value, known as 

the heat capacity 𝐶,  thus 

𝐶 = lim
𝑇𝑓→𝑇𝑖

𝑄

𝑇𝑓 − 𝑇𝑖
 

Or  

𝐶 =
𝑑𝑄

𝑑𝑇
⋯ ⋯ (4.11) 

Where heat is measured on Joule per kelvin ( J K⁄ ) in SI unit. 

 

 



 

8 
 

 

• The Specific heat 

The heat capacity is an extensive quantity, it depend on the mass of the system. So,   it is better to 

use the specific heat 𝑐 as an  Intensive quantity, which is given as; 

 

𝑐 =
𝐶

𝑚
=

1

𝑚

𝑑𝑄

𝑑𝑇
    (4.12) 

   Where 𝑚 is the mass of the system  

 

𝑐 is measured in Joule per kilogram-Kelvin ( J kg∙K⁄ )    

• Molar specific heat 

We can also define molar specific heat, which is defined as  

 

𝑀𝑜𝑙𝑎𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 =
𝐶

𝑛
=

1

𝑛

𝑑𝑄

𝑑𝑇
         (4.13) 

 

Where 𝑛 is the number of moles contained on the system. 

Molar specific heat is measured on ( J mol∙K⁄ ). 

    Depending on the process which the system undergoes, two type of heat capacity can be defined 

• The heat capacity at constant volume 𝐶𝑉 

𝐶𝑉 = (
𝑑𝑄

𝑑𝑇
)

𝑉
⋯ ⋯ (4 ∙ 14) 

 

• The heat capacity at constant pressure 

𝐶𝑃 = (
𝑑𝑄

𝑑𝑇
)

𝑃
⋯ ⋯ (4 ∙ 15) 

In general 𝐶𝑉 and 𝐶𝑃 are different  

 

4.8 SPECIFIC HEAT OF WATER ; THE CALORIE 

 Calorie ( abbreviation Cal) is : The amount of heat required to raise the temperature of 1 

g of water from 14.5oC to 15.5oC. 

 

4.9 EQUATIONS FOR HYDROSTATIC SYSTEM 

The mathematical formulation for the first law  of  hydrostatic system is  

𝑑𝑄 = 𝑑𝑈 + 𝑝𝑑𝑉     (4.16) 
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Where 𝑈 is a function of P, V, and T . Choosing T and V , then we have 

But  

𝐶𝑉 = (
𝑑𝑄

𝑑𝑇
)

𝑉
 

Then 

 

𝐶𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
⋯ ⋯ (4.20) 

 



 

10 
 

 

4.10 QUASI –STATIC FLOW OF HEAT, HEAT RESERVIOR 

◼ A heat reservoir : is A body of such a large mass that it may absorbed or reject an unlimited 

quantity of heat without experiencing an appreciable change in temperature or in any other 

thermodynamic coordinate. 

The ocean and atmosphere is example for heat reservoir.  
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Problems 
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Solution 

a) Let  𝑈 = 𝑈(𝑃, 𝑇) , then 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑃
)

𝑇
𝑑𝑃 + (

𝜕𝑈

𝜕𝑇
)

𝑃
𝑑𝑇 

The first law of thermodynamics is  

   

𝑑𝑢 = 𝑑𝑄 − 𝑃𝑑𝑉 

Combining the two equations  

 

 

      (1)      

 

 

For a 𝑃𝑉𝑇 system,  we can write V as a function of T and P. 

 

By substituting the expression of dV into equation Eq. (1), we get 

 

(b)  For a PVT system, we can write V as a function of T and P. 

 

By substituting the expression of dV into equation Eq. (1), we get 
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At constant pressure, dP=0. Setting dP=0, and dividing Eq. (2) by dT, we get  

 

P

P

dQ
C

dT


 

But 

 

Then 

 

( c)  At constant volume, dV=0. Setting dV=0, and dividing Eq.(1) by dT, we get 

 

V

V

;
P T V P T V

dQ U U dP U U P
C

dT T P dT T P T

             
 = + = +         

               

where 

V V

dP P

dT T

 
=  

   

But 

 

1 1

P P P

V T T
V V

V T V V
 



       
=  =  =     

         

but 
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◼ Combining Eq. (3), 

(4), and    

Then 

( ) V
V

P
P

T T

C C PVU U
C C PV

P P








− +      
= − +  =     

       
 
   

 

Solution 

Let u = u(T,v) 

Then 

 

        (1) 

 

 

                         (2) 

 

Eq. (1) combined with Eq. (2) then 

 

v T

u u
dq dT P dv

T v

     
= + +    

       

Divided by 𝑑𝑇 then, 
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            (5) 

 

At constant volume we have  

,since /V

v v

dq u
c c u cT a v

dT T

 
 = = = − 

 
 

◼ At constant pressure, Eq. (5) becomes 

2
since /

P

P V T P

P V V

T P P

dq u u dv
c P

dT T v dT

u v a v
c c P c P u cT a v

v T v T

     
 = + +    

     

          
= + + = + + = −                   

And from 

 

Then 

( )
2 3

2
P

v R

a v bT a
P

v v

 
= 

− 
+ −

 

Then 

( )

2

2

2 3

2
P V

P

a
P

a V VC C P R
a v bV T a

P
v v

 
+    

− = + =     −     + −
    
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5.1:  EQUATION OF STATE OF A GAS 

 Let P is the pressure of an ideal gas and  𝑣 = 𝑉/𝑛  is the specific volume of a real gas. 

Experiments show that 

𝑃𝑣 = 𝐴(1 + 𝐵𝑃 + 𝐶𝑃2 + ⋯ ) ⋯ ⋯ (5 ∙ 1) 

Where 𝐴, 𝐵, 𝐶, 𝑒𝑡𝑐., are virial coefficients which depend on the temperature and on the nature of 

the gas.  

It was found experimentally that  as the pressure approach zero, the product 𝑃𝑣 approach a 

constant value 𝐴 that depend only on the temperature and independent on the nature of a gas; 
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The ideal gas temperature is defined in chapter 1 as; 

𝑇 = 273.16 𝐾 lim
𝑃3→0

(
𝑃

𝑃3
) ⋯ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑉)  (5.3) 

 

The constant 𝑅 is called the gas constant , where 𝑅 = 8.31 𝐽/mol.K.  

Finally, substituting in eq.(5.2) then, 

 

Which is the experimental equation of state of an ideal gas.  

From eq. (5.4) it follow that 

 

Then eq.(5.1) becomes 

𝑃𝑣

𝑅𝑇
= 1 + 𝐵𝑃 + 𝐶𝑃2 + ⋯   (5.5) 

5.1 INTERNAL ENERGY OF A REAL GAS 

Internal energy of Free Expansion 

In general, the internal energy of any gas is a function of any two of the coordinates P, V, and T. 

So; 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉      (5.6) 

If 𝑑𝑇 = 0, and 𝑑𝑈 = 0 as the case of free expansion then  

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 0       5.7) 

Which means that 𝑈 is independent on 𝑉. 
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    Now consider 𝑈 is a function of P, and T, then 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑃
)

𝑇
𝑑𝑃 + (

𝜕𝑈

𝜕𝑇
)

𝑃
𝑑𝑇     (5.8) 

If 𝑑𝑇 = 0, and 𝑑𝑈 = 0 as the case of free expansion then  

(
𝜕𝑈

𝜕𝑃
)

𝑇
= 0                      (5.9) 

Which means that 𝑈 is independent on 𝑃 in the case of free expansion. 

    Experiments performed under isothermal expansion in which heat is transferred and work is 

done for measuring the quantity (𝜕𝑢 𝜕𝑃⁄ )𝑇 , where 𝑢 is the molar internal energy is shown in 

figure 5-2.   

 

 

Rossini and Frandsen’s with air , oxygen, and mixtures of oxygen and carbon led to the 

conclusion that the internal energy is a function of both temperature and pressure, They found 

no pressure or temperature range in which  (𝜕𝑢 𝜕𝑃⁄ )𝑇 = 0 

5.3: IDEAL GAS 

We have for a real gas m only as the pressure approaches zero does the equation of state take the 

simple form  

𝑃𝑉 = 𝑛𝑅𝑇 

Furthermore the internal energy is a function of P, and T,. 
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Then we can define the ideal gas is the gas whose properties approach the real gas properties at 

low pressure. 

 

 The ideal gas, then satisfy the following properties 

 

Problem: given the following relation for ideal gas   

(
𝜕𝑈

𝜕𝑃
)

𝑇
= 0 

Proof that   𝑈 = 𝑈(𝑇)  
 

Answer : To prove this we should prove first that (𝜕𝑈 𝜕𝑉⁄ )𝑇 = 0 

 

 

 
But 

 
Therefore  

(
𝜕𝑃

𝜕𝑉
)

𝑇
≠ 0 

But  

(
𝜕𝑈

𝜕𝑃
)

𝑇
= 0 

Then 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 0          (𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠) ⋯ ⋯ (5 ∙ 6) 

Finally, since both  (𝜕𝑈 𝜕𝑃⁄ )𝑇 = 0 and  (𝜕𝑈 𝜕𝑉⁄ )𝑇 = 0 , then  

 

Now for infinitesimal quasi –static process of a hydrostatic system, the first law is 
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For ideal gas U is a function of T only ; therefore, 

𝐶𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
=

𝑑𝑈

𝑑𝑇
 

Then  

 

 

At constant  P  , this equation becomes 

(
𝑑𝑄

𝑑𝑇
)

𝑝
= 𝐶𝑣 + 𝑛𝑅 

But  (
𝑑𝑄

𝑑𝑇
)

𝑝
= 𝐶𝑝 , then 
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Question Explain why for an ideal gas 

  𝐶𝑝 > 𝐶𝑉. 

Answer 

 

 

 

 

 

 

5.4 EXPERIMENTAL DETERMINATION OF HEAT CAPACITY 
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5.5  QUASI-STATIC ADIABATIC PROCESS 

 

 

 
 

 
 

 
 

Then we have 

(
𝜕𝑃

𝜕𝑉
)

𝑆
(

𝜕𝑃

𝜕𝑉
)

𝑇
⁄ = 𝛾                    (5.18) 
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Because 𝜸 > 𝟏 then, the adiabatic curve has a steeper negative slope than isothermal curve at 

the same point. Look figure 5-5. 

   

 
 

 

 

Problems 

Problem 1 ( 5.9) 

 

Answer 

(a) The first law of thermodynamic is  
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∆𝑈 = 𝑄 + 𝑊 

For adiabatic process 𝑄 = 0, so 

∆𝑈 = 𝑊 

 

but 

∆𝑈 = 𝐶𝑉∆𝑇 

 

Then 

𝑊 = 𝐶𝑉∆𝑇 = 𝐶𝑉(𝑇𝑓 − 𝑇𝑖) = −𝐶𝑉(𝑇𝑖 − 𝑇𝑓) 

 

 

(b)  

 

𝑑𝑊 = −𝑃𝑑𝑉 

 

𝑃𝑉𝛾 = 𝐶 

 

𝑑𝑊 = −𝐶𝑉−𝛾𝑑𝑉 

 

𝑊 = − ∫ 𝐶𝑉−𝛾𝑑𝑉
𝑓

𝑖

 

 

𝑊 = −
𝐶𝑉𝛾+1

1 − 𝛾
|

𝑉𝑖

𝑉𝑓

= −
𝐶𝑉𝑓

−𝛾+1
− 𝐶𝑉𝑖

−𝛾+1

1 − 𝛾
= −

𝑃𝑓𝑉𝑓
𝛾

𝑉𝑓
−𝛾+1

− 𝑃𝑖𝑉𝑖
𝛾

𝑉𝑖
−𝛾+1

1 − 𝛾
 

   𝑊 = −
𝑃𝑓𝑉𝑓 − 𝑃𝑖𝑉𝑖

1 − 𝛾
=

𝑃𝑓𝑉𝑓 − 𝑃𝑖𝑉𝑖

𝛾 − 1
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6.1 :  CONVERSION OF WORK INTO HEAT AND VICE VERSA  

The first law of thermodynamics tells us that, in any process, energy is conserved. It may be 

converted from one form to another but the total amount of energy is unchanged. The second law 

of thermodynamics imposes limits on the efficiency of processes which convert heat into work, 

such as system or internal combustion engines.  

  Although we know that work may be converted into heat by a suitable dissipative 

mechanism (Joule's paddle wheels, or a resistor), we have not examined the conversion of heat 

into work. The first law emphasized the equivalence of heat and work as forms of energy, but it 

tells us nothing about the conversion from one form to the other; and, in particular, it tells us 

nothing about the efficiency with which heat may be converted into work, a matter of enormous 

practical importance.  

 To convert heat into work, we must also have at  hand a process, by means of which such 

a conversion may continue indefinitely without any changes in the state of the system. What we 

need is a series of processes in which a system is brought back to its initial state   (cycle). 

 Each of the processes that constitute the cycle involves either the performance of work 

or a flow of heat between the system and its surroundings, which consist of higher temperature 

reservoir and lower temperature reservoir   

Let 

• The symbol |𝑄𝐻| represent the heat exchanged between the high-temperature reservoir 

and the system 

• The symbol |𝑄𝐿| represent the heat exchanged between the low-temperature reservoir and 

the system 

• The symbol |𝑊| represent the work exchanged between the system and the surrounding 

All the three |𝑄𝐻|, |𝑄𝐿|, and |𝑊|  are expressed as absolute values, that is positive values. If  

|𝑄𝐻|  is larger than |𝑄𝐿| and if |𝑊| is done by the system, the mechanical device by whose 

agency the system is caused to undergo the cycle is called a heat engine. 

    The heat engine: is a machine that absorbs a heat |𝑄𝐻|  from hot reservoir. turns part from 

this heat into work and the other part  |𝑄𝐿|   is rejected to the cold reservoir. 
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Figure 5-1: Diagram of heat engine 

 

eg.  

STEAM ENGINE        Superheated steam in.                         Condensed water out  

PETROL ENGINE   Hot ignited petrol vapour+ air in     Cooler exhaust gases out 

i) Efficiency of a Heat Engine.  

 

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑊𝑜𝑟𝑘 𝑜𝑢𝑡

ℎ𝑒𝑎𝑡 𝑖𝑛𝑝𝑢𝑡
 

 

 

Where |𝑄𝐻| and |𝑊| are measured in joules. Applying the first law to one complete cycle, 

remembering that there is no change of internal energy, we get   
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Note: Thermal efficiency will be 100% only if |QL|=0. We shall see later under 

what conditions this is possible in principle and why it is not possible in practice. 

 

There are two types of engine: 

• External combustion engine (such as the  Stirling engine and the steam engine) 

• Internal-combustion engine (such as the gasoline engine and the diesel engine.) 

    In both types, a gas or a mixture of gases contained in a cylinder undergoes a cycle, thereby 

causing a piston to impart to a shaft a motion of rotation against an opposing force. 

 

6.2 The Stirling engine  

In 1816 a minister of the Church of Scotland named Robert Stirling designed and patented a hot-

air engine that could convert some of the energy liberated by a burning fuel into work. The steps 

in the operation of a somewhat idealized Stirling engine are shown schematically in Fig. 2-1 a. 

 

Figure 2  : (a) Schematic diagram of steps in the operation of an idealized Stirling engine. 
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Fig. 6-2 b: The numbers under each diagram refer to the processes shown on PV diagram  

    Two pistons, an expansion piston on the left and a compression piston on the right, are 

connected to the same shaft. As the shaft rotates, these pistons move in different phase, with the 

aid of suitable connecting linkages. The space between the two pistons is filled with gas, and the 

left-hand portion of the space is kept in contact with a hot reservoir (burning fuel), while the 

right-hand portion is in contact with a cold reservoir. Between the two portions of gas is a device 

R, called a regenerator, consisting of a packing of steel wool or a series of metal baffles, whose 

thermal conductivity is low enough to support the temperature difference between the hot and 

cold ends without appreciable heat conduction. 

    The Stirling cycle consists of four processes depicted schematically in Fig. 6-2 b and 

involving pressure and volume changes plotted (as though ideal conditions existed) on the PV 

diagram of Fig. 6-2 b. 

1—2 While the left piston remains at the top, the right piston moves halfway up, compressing 

cold gas while in contact with the cold reservoir and therefore causing heat Qc to leave. This is 

an approximately isothermal compression and is depicted as a rigorously isothermal process at 

the temperature 𝜃𝑐 in Fig. 6-2b. 

2—3 The left piston moves down and the right piston up, so that there is no change in volume, 

but gas is forced through the regenerator from the cold side to the hot side and enters the left-

hand side at the higher temperature 𝜃𝐻. To accomplish this, the regenerator supplied heat Qr to 

the gas. Note that the process 2 —3 in 

 Fig. 6-2 b is at constant volume. 
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3 —> 4 The right piston now remains stationary as the left piston continues moving down while 

in contact with the hot reservoir, causing the gas to undergo an approximately isothermal 

expansion, during which heat 𝑄𝐻 is absorbed at the temperature, as shown in Fig. 6-2 b. 

    The, net result of the cycle is the absorption of heal |𝑄𝐻| at the high temperature 𝑇𝐻, the 

rejection of heat |𝑄𝐿| at the low temperature 𝑇𝐿, and the delivery of work 𝑊 =  |𝑄𝐻| — |𝑄𝐿|   to 

the surroundings, with no net heat transfer resulting from the two constant-volume processes. 

     The stirling engine has some unique advantages compared with other heat engines. 

1- The engine can use any heat source ( heating from radioactivity to combustion of biomass 

waste products) 

2- Using open -air combustion 

3- The engine does not produce toxic exhaust 

Applications 

1- An interesting application is an implantable Stirling engine for artificial heart power, 

which is being developed at the Joint Center for Graduate Study, University of 

Washington. 

6.3 STEAM ENGINE 

    The steam is historically quite important, because it was the first engine driven by heat, rather 

than animals, water, or wind.  

A schematic diagram of an elementary steam power plant is shown in Fig. 6-3a. 
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6-4: INTERNAL COMBUSTION ENGINE 

• Gasoline Engine 

 

Figure 6.4: Otto Cycle for idealized  gasoline engine. 

(1) The behavior of a gasoline engine can be approximated by assuming a set of ideal conditions    

 (2) All processes arc quasi-static.  
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(3) There is no friction.  

    On the basis of these assumptions the standard Otto cycle is composed of six simple processes 

of an ideal gas four of which require motion of the piston and are called strokes , ( See Fig. 6-

4a). 

5 —> 1 represents a quasi-static isobaric intake at atmospheric pressure. There is no friction and 

no acceleration. The volume varies from zero to 𝑉1 as the number of moles varies from 

zero to 𝑛 according to the equation 

 

where 𝑃0 is atmospheric pressure and 𝑇1 is the temperature of the outside air. 

 

1 —> 2 represents a quasi-static, adiabatic compression of 𝑛 moles of air. There is no friction 

and no loss of heat through the cylinder wall. The temperature rises from 𝑇1 to 𝑇2 

according to the equation 

 

2 — 3 represents a quasi-static isochoric increase of temperature and pressure of n moles of air, 

brought about by an absorption of heat |𝑄𝐻| from a series of external reservoirs whose 

temperatures range from 𝑇2 to 𝑇3, If there were only one reservoir at temperature 3, the 

flow of heat would not be quasi-static. This process is meant to approximate the effect of 

the explosion in a gasoline engine. 

 

3 —4 represents a quasi-static adiabatic expansion of n moles of air, involving a drop in 

temperature from 𝑇3  to 𝑇4| according to the equation 

 

4 —1 represents a quasi-static isochoric drop in temperature and pressure of n moles of air, 

brought about by a rejection of |𝑄𝑐| heat  to a series of external reservoirs ranging in 

temperature from 𝑇4 to 𝑇1. This process is meant to approximate the drop to atmospheric 

pressure upon opening the exhaust valve. 

1 —5 represents a quasi-static isobaric exhaust at atmospheric pressure. The volume varies from 

𝑉1 to zero as the number of moles varies from n to zero, with the temperature remaining 

constant at the value 𝑇1 . 
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Note: The two isobaric processes 5 —> 1 and 1 —5 obviously cancel each other 

• Summary of Otto cycle for gasoline engine: 

The Otto cycle consists of two constant -volume steps during which heat is transferred, 

connected by two adiabatic, as shown in the figure.  

 𝑆𝑡𝑒𝑝1 → 2:      𝑄12 = 0              𝑊12 = ∆𝑈12 = 𝐶𝑉(𝑇2 − 𝑇1) 

 𝑆𝑡𝑒𝑝2 → 3:      𝑊23 = 0              𝑄23 = 𝑄𝐻 = ∆𝑈23 = 𝐶𝑉(𝑇3 − 𝑇2) 

 𝑆𝑡𝑒𝑝3 → 4:      𝑄34 = 0              𝑊34 = ∆𝑈34 = 𝐶𝑉(𝑇4 − 𝑇3) 

 𝑆𝑡𝑒𝑝4 → 1:      𝑊41 = 0              𝑄41 = 𝑄𝐿 = ∆𝑈41 = 𝐶𝑉(𝑇1 − 𝑇4) 

 

𝜂 =
|𝑊𝑐𝑦𝑐𝑙𝑒|

|𝑄𝐻|
= 1 −

|𝑄𝐿|

|𝑄𝐻|
= 1 −

𝐶𝑉(𝑇4 − 𝑇1)

𝐶𝑉(𝑇3 − 𝑇2)
 

𝜂 = 1 −
(𝑇4 − 𝑇1)

(𝑇3 − 𝑇2)
⋯ ⋯ (6.3) 
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This is the optimum efficiency for a gasoline engine operating in an idealized 

 quasi -static  Otto cycle for the temperatures cited. 

6.3 THE DISEL ENGINE 

 

◼ In comparison to gasoline engine, the process 2→3 of an air-standard diesel engine is an 

isobaric heat absorption while the volume expands quasi-statically 

◼ 2→3 is a vertical line in Otto’s while it’s a horizontal  line in Diesel’s. 
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6-5  HEAT ENGINE:KELVIN -BLANCK STATEMENT OF THE SECOND LAW 

    Thermodynamics owes its origin to the attempt of conversion of heat into work and to 

develop the theory of operation of devices for this purpose. It is therefore fitting that one of the 

fundamental laws of thermodynamics is based upon the operation of heat engines. 

The second law originated as an empirical statement about the limitations of heat engines. There 

are two early statements of the second law made after empirical observation of how the real 

world behaved 

i) The Kelvin-Planck Statement: “No process is possible whose sole result is the 

absorption of heal from a reservoir and the conversion of this heal into work.”. 

6-7: REFREGIRATOR; CLAUSIUS STATEMENT OF THE SECOND LAW 

We have seen that a heat engine is:  a device by which a system is taken through a cycle in such 

a direction that some heat is absorbed at high temperature, a smaller amount is rejected at a lower 

temperature, and a net amount of work is done by the system on the outside.  

    Refrigerator:  is a device work in the opposite direction to that of an engine : the absorption 

of some heat at a low temperature, the rejection of a larger amount at  higher temperature, and a 

net amount of work done on the system, as shown in figure 6-6. 
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The Stirling cycle is capable of being reversed and, when reversed, it gives rise to one of the 

most useful types of refrigerator. 

Figure 6-6 represents a schematic diagram of a refrigerator.  

Let the following notation ( all positive quantities( refer to one complete cycle: 

 

Efficiency of the refrigerator : From the definition efficiency of refrigerator is given by 

𝜂 =
|𝑄𝐿|

|𝑊|
=

|𝑄𝐿|

|𝑄𝐻| − |𝑄𝐿|
 

Work is always necessary to transfer heat from a lower-temperature reservoir to a higher 

temperature reservoir, this because the nature fact is that heat does not flow spontaneously from 

a lower-temperature reservoir to a higher temperature reservoir. This negative statement leads to 

the Clausius statement of the second law. 

“No process is possible whose sole result is the transfer of heal from a cooler to a hotter 

body.” 
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6-8: EQUIVALENCE OF KELVIN-PLANCK AND CLAUSIUS STATEMENTS 

At first sight, the Kelvin-Planck and the Clausius statements appear to be quite unconnected, but 

we shall see immediately that they are in all respects equivalent. 

 

Two statements are said to be equivalent in two ways: 

1- The truth of one implies the truth of the second and the truth of the second implies the truth 

of the first. 

2- The violation of one implies the violation of the second, and violation of the second implies 

the violation of the first. 

We will select the second way ( we will prove The violation of Kevin-Planck statement implies 

the violation of Clausius statement ,  and violation of Clausius statement implies the violation of 

Kelvin-Planck statement). 

 

To prove that violation of Clausius statement statement implies the violation of Kevin-Planck, 

consider a refrigerator, shown in the left-hand side of P'ig. 7-10, which requires no work to 

transfer 𝑄2 units of heat from a cold reservoir to a hot reservoir and which therefore violates the 

Clausius statement. Suppose that a heat engine (on the right) also operates between the same two 

reservoirs in such a way that heat 𝑄2 is delivered to the cold reservoir. The engine, of course, 

docs not violate any law, but the refrigerator and engine together constitute a self-acting device 

whose sole effect is to take heat 𝑄1 − 𝑄2 from the hot reservoir and to convert all this heat into 

work. Therefore the refrigerator and engine together constitute a violation of the Kelvin-Planck 

statement. 
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Now, to prove that violation of Kelvin-Plank  statement statement implies the violation of 

Clausius statements consider an engine, shown on the left hand side of Fig. 6-11, which rejects 

no heat to the cold reservoir and which therefore violates the Kelvin-Planck statement. Suppose 

that a refrigerator (on the right) also operates between the same two reservoirs and uses up all the 

work liberated by the engine. The refrigerator violates no law, but the engine and refrigerator 

together constitute a self-acting device whose sole effect is to transfer heat 𝑄2 from the cold to 

the hot reservoir. Therefore the engine and refrigerator together constitute, a violation of the 

Clausius statement. 

 

Problems 

6.1. Show that the thermal efficiency of an ideal Otto cycle is given by   

𝜂 = 1 −
1

𝑟𝛾−1
 

Where the ratio r = V1 V2⁄  is called either the compression ratio or the expansion ratio. of the 

spark.  Calculate 𝜂  when 𝑟 = 9 and 𝛾 = 1.5 
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Solution 

The Otto cycle consists of 4-steps:  two constant -volume steps during which heat is transferred, 

connected by two adiabatic, as shown in the figure.  

 

 𝑆𝑡𝑒𝑝1 → 2:      𝑄12 = 0              𝑊12 = ∆𝑈12 = 𝐶𝑉(𝑇2 − 𝑇1) 

 𝑆𝑡𝑒𝑝2 → 3:      𝑊23 = 0              𝑄23 = 𝑄𝐻 = ∆𝑈23 = 𝐶𝑉(𝑇3 − 𝑇2) 

 𝑆𝑡𝑒𝑝3 → 4:      𝑄34 = 0              𝑊34 = ∆𝑈34 = 𝐶𝑉(𝑇4 − 𝑇3) 

 𝑆𝑡𝑒𝑝4 → 1:      𝑊41 = 0              𝑄41 = 𝑄𝐿 = ∆𝑈41 = 𝐶𝑉(𝑇1 − 𝑇4) 

𝜂 =
|𝑊𝑐𝑦𝑐𝑙𝑒|

|𝑄𝐻|
=

|𝑄𝐻| − |𝑄𝐿|

|𝑄𝐻|
= 1 −

|𝑄𝐿|

|𝑄𝐻|
         

 

   = 1 −
𝐶𝑉(𝑇4 − 𝑇1)

𝐶𝑉(𝑇3 − 𝑇2)
= 1 −

(𝑇4 − 𝑇1)

(𝑇3 − 𝑇2)
⋯ (1) 

The two adiabatic process during the compression and power stroke satisfy the following 

relations: 

𝑇1𝑉1
𝛾−1

= 𝑇2𝑉2
𝛾−1

⋯ ⋯ (2) 

𝑇4𝑉1
𝛾−1

= 𝑇3𝑉2
𝛾−1

⋯ ⋯ (3) 

Which yield after devision 

𝑇1

𝑇4
=

𝑇2

𝑇3
⋯ (4) 

Changing sign and adding unity to obtain 

𝑇4 − 𝑇1

𝑇4
=

𝑇3 − 𝑇2

𝑇3
 

Or 
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𝑇4 − 𝑇1

𝑇3 − 𝑇2
=

𝑇4

𝑇3
 

Combinig this result with Eq. (1) and Eq. (4) then 

𝜂 = 1 −
𝑇1

𝑇2
 

But from Eq.(2) 

𝑇1

𝑇2
= (

𝑉2

𝑉1
)

𝛾−1

=
1

(
𝑉1

𝑉2
)

𝛾−1 

Then 

𝜂 = 1 −
1

(
𝑉1

𝑉2
)

𝛾−1 = 1 −
1

𝑟𝛾−1
,     𝑤ℎ𝑒𝑟𝑒 𝑟 =

𝑉1

𝑉2
 

When 𝑟 = 9 and 𝛾 = 1.5 , then  

𝜂 = 1 −
1

√9
= 0.67 = 67% 
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7-1: CARNOT CYCLE 

Inasmuch as100 percent  efficiency is not allowed by the second law , let us ask the following 

questions: 

(1) What is the maximum efficiency that can be achieved by an engine operating between 

these two reservoirs? 

(2) What are the characteristics of such an engine? 

(3) Of what effect is the nature of the substance undergoing the cycle? 

The importance of these questions was recognized by Nicolas Leonard Sadi Carnot who in the 

year 1824, before the first law of thermodynamics was firmly established, published a paper 

entitled " Reflections on the Motive power of Fire”. In this paper Carnot described an ideal 

engine operating in a particularly simple cycle known today as the Carnot cycle.  

    An engine operating in a Carnot cycle is' called a Camol engine. A Carnot engine operates 

between two reservoirs in a particularly simple way. All the heat that is absorbed is absorbed at 

a constant high temperature, namely, that of the hot reservoir. Also, all the heal that is rejected 

is rejected at a constant lower temperature, that of the cold reservoir. Since all four processes 

are reversible, the Carnot cycle 

is a reversible cycle. 

7-2: EXAMPLES OF CARNOT ENGINE 

Figure 7-1 shows the simplest example of carnot cycle.  The gas is not necessary an ideal gas.  

 

The dashed line marked 𝑇𝐻 and  𝑇𝐿 are isothermal curves. The gas is initially in the state 

represented by the point 1.  The four procees is then: 

1. Process 1 ⟶ 2: Reversible asiabatic compression until temperature rises to 𝑇𝐻> 

2.  Process 2 ⟶ 3: reversible isothermal expansion until the point 3 is reached. 

3.  Process 3 ⟶ 4: Reversible asiabatic expansion until temperature drops  to 𝑇𝐿. 
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4. Process 4 ⟶ 1: reversible isothermal compression until the original state reached. 

During the isothermal expansion 2 ⟶ 3 . heat |𝑄𝐻| is absorbed from the hotter reservoir at 𝑇𝐻 . 

During the isothermal compression 4 ⟶ 1 , heat |𝑄𝐿| is rejected to the cooler reservoir at  𝑇𝐿 

 

7-3: CARNOT REFREGIRATOR 

Because Carnot cycle is reversible , then the reversible of Carnot engine is Carnot refrigerator. 

The figure 7-5  shows representation of Carnot refrigerator.   

  

 

The Importance of Carnot refrigerator is the same quantities of Carnot engine is used in Carnot 

refrigerator with the opposite sign.  

7-4: CARNOT TEOREM AND COROLLARY 

Carnot theorem stated that “ No heat engine operating between two given reservoirs can be 

more efficient than a Carnot engine operating between the same two reservoirs”  

Proof: 

As shown in Figure -   ,imagine a Carnot engine R, which is reversible, and other engine I , 

which is irreversible, working between the same two reversoirs and adjust so that they both 

deliver the same amount of work |W| . 
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    Let us assume that the efficiency of the engine I is greater than that of R; 

𝜂𝐼 > 𝜂𝑅 

Or      
|𝑊|

||𝑄𝐻||
>

||𝑊||

|𝑄𝐻
′ |

 

So      |𝑄𝐻
′ | > ||𝑄𝐻|| 

 

 

\Now let the engine I drive the Carnot engine  an Carnot refrigerator. This is shown in figure 7-6 

. 
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The net heat extracted from the low-temperature reservoir by the composite system  

 

 

The net heat delivered t the high-temperature reservoir is also 

 

 

𝑇ℎ𝑒 𝑛𝑒𝑡 ℎ𝑒𝑎𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 = 𝑇ℎ𝑒 𝑛𝑒𝑡 ℎ𝑒𝑎𝑡 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑  

 

the composite system transfer   from the cold  and delivers the same amount of heat 

to the hot reservoir without work being done by the surroundings. This composite system violate 

the second law of thermodynamics (Clausius statement). 

Then the assumption of 𝜼𝑰 > 𝜼𝑹  is false and this proof Carnot theorem . 

We may express this result in symbols, thus: 

𝜂𝐼 ≤ 𝜂𝑅 ⋯ ⋯ (7.1) 

A corollary to this theorem is that  “all Carnot engines running between the same two reservoir 

have the same efficiency”.  
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Problem 4.5. Prove directly (by calculating the heat taken in and the heat expelled) that a Carnot 

engine using an ideal gas as the working substance has an efficiency of 1 − 𝑇𝑐 𝑇𝐻⁄ . 

Answer: 

 

As shown in figure 7-1, to compute |𝑄𝐿|  and |𝑄𝐻|   ,we need only to consider the isothermal  

The isothermal process 2 → 3  

For any infinitesimal  reversible process of an ideal gas , the fisrt law of thermodynamic can be 

written as; 

𝑑𝑄 = 𝐶𝑉𝑑𝑇 + 𝑃𝑑𝑉 

Applying this equation to the isothermal process 2 → 3 , the heat absorbed is 

|𝑄𝐻| = ∫ 𝑃𝑑𝑉

𝑉3

𝑉2

 

= 𝑛𝑅𝑇𝐿ln
𝑉3

𝑉2
 

Similarly , for the isothermal process 4 → 1 

|𝑄𝐿| = 𝑛𝑅𝑇𝐻ln
𝑉4

𝑉1
 

Therefore 

|𝑄𝐻|

|𝑄𝐿|
=

ln
𝑉3

𝑉2

ln
𝑉4

𝑉1

⋯ ⋯ (7.2) 
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Since the process  1 → 2 is adiabatic, we may write, for any infinitesimal portion 

−𝐶𝑉𝑑𝑇 = 𝑃𝑑𝑉. 

Or 

−𝐶𝑉𝑑𝑇 =
𝑛𝑅𝑇

𝑉
𝑑𝑉 

Integrating from 1 → 2 , we get 

1

𝑛𝑅
∫ 𝐶𝑉

𝑑𝑇

𝑇

𝑇𝐻

𝑇𝐿

= 𝑙𝑛
𝑉2

𝑉1
 

Similarly, for the adiabatic process 3 → 4, 

1

𝑛𝑅
∫ 𝐶𝑉

𝑑𝑇

𝑇

𝑇𝐿

𝑇𝐻

= 𝑙𝑛
𝑉4

𝑉3
 

Therefore  

𝑙𝑛
𝑉2

𝑉1
= 𝑙𝑛

𝑉3

𝑉4
𝑜𝑟

𝑙𝑛
𝑉3

𝑉2
= 𝑙𝑛

𝑉4

𝑉1

⋯ ⋯ (7.3) 

Combining eq.( 7.2) and (7.3) ,e obtain 

|𝑄𝐻|

|𝑄𝐿|
=

𝑇𝐻

𝑇𝐿
 

 

1 − 𝑇𝐿 𝑇𝐻⁄  

𝜂 = 1 −
𝑇𝐿

𝑇𝐻
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We proved in chapter 7 , For Carnot engine that 

|𝑄𝐻|

|𝑄𝐿|
=

𝑇𝐻

𝑇𝐿
 

𝑄𝐻

𝑄𝐿
= −

𝑇𝐻

𝑇𝐿
 

So actually, during this reversible process we have 

∑ (
𝑸𝑳

𝑻𝑳
+

𝑸𝑯

𝑻𝑯
)

𝒏𝒏

= 𝟎 ⟹ ∮
𝒅𝑸

𝑻
= 𝟎    ( 𝒓𝒆𝒗𝒆𝒓𝒔𝒊𝒃𝒍𝒆 𝒑𝒓𝒐𝒄𝒆𝒔𝒔)   

Let us consider the following theorem stated by Clausius: 

 

 

 

 

 

2.4 Entropy 

Since ∮
dQ

T
= 0 for reversible process, then 

dQ

T
 is exact differentia. This implies that there a state 

function   S called entropy  whose differential is given as 

𝑑𝑆 =
dQ

T
 

The entropy is defined up to an additive constant. The difference between entropies of any two 

states 𝐴 and 𝐵 is 

𝑺𝑨 − 𝑺𝑩 = ∫
𝒅𝑸

𝑻

𝑩

𝑨

 

What happens when the integration is along an irreversible path? Since I − R is a cycle  

(see Fig. 2.5), it follows from Clausius’ theorem that 

⇒ ”In an arbitrary cyclic process P, the following inequality 

holds: 

 

∮
𝑑𝑄

𝑇
≤ 0

𝑷

 

 
where the equality holds for P reversible.“ 
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Figure 2.5: I − R (irreversible-reversible) cycle. 

 

 
 

and the equality holds for a reversible process. In particular, for an isolated system, which does 

not exchange heat with a reservoir, 𝛿𝑄 =  0 and therefore 

∆𝑺 ≥  𝟎 . 

This means that the entropy of an isolated system never decreases and remains constant 

during a reversible transformation. 

 

Note: 

i) The joint of a system and its environment is called ”universe”. Defined in this 

way, the ”universe” is an isolated system and, therefore, its entropy never decreases. 

However, the entropy of a non-isolated system may decrease at the expense of the 

system’s environment. 
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ii) Since the entropy is a state function, 𝑆(𝐵)  −  𝑆(𝐴) is independent of the path, 

 regardless whether it is reversible or irreversible. For an irreversible path, the entropy 

of the environment changes, whereas for a reversible one it does not. 

 

iii) Remember that the entropy difference 

𝑺𝑨 − 𝑺𝑩 = ∫
𝒅𝑸

𝑻

𝑩

𝑨

 

only when the path is reversible; otherwise the difference is larger than the integral 

_______________________________________________________________ 

Example Problem (  ): The heat capacity at constant volume of a number of substances can 

be represented empirically by an equation of the form 

𝑪𝑽 = 𝒂 + 𝒃𝑻 + 𝑪𝑻𝟐 

where a, b, and c are constants. Calculate the change in internal energy and the change in 

entropy when the temperature changes from𝑇1to𝑇2  at constant volume. 

Solution 

At constant volume, we have 𝑑𝑈 =  𝐶𝑉 𝑑𝑇 and ∆𝑈 =  ∫ 𝐶𝑉
𝑇2

𝑇1
𝑑𝑇 = ∫ (𝑎 + 𝑏𝑇 + 𝑐𝑇2)𝑑𝑇

𝑇2

𝑇1
 . 

Thus, 

                                                                ∆𝑈 = (𝑎𝑇 + 𝑏 𝑇2 2⁄ + 𝑐 𝑇3 3⁄ )|𝑇1

𝑇2  

 

 
 

8.4 ENTROPY OF AN IDEAL GAS 

If a system absorbs an infinitesimal amount of heat 𝑑𝑄𝑅 during a reversible process, the entropy 

change of the system is equal to  

𝑑𝑆 =
𝑑𝑄𝑅

𝑇
 

T is interesting to note that, although 𝑑𝑄𝑅, the ration 𝑑𝑄𝑅 𝑇⁄  is exact. The reciprocal of the 

absolute thermodynamic temperature is, therefore, the integrating factor of the integrating factor 

of 𝑑𝑄𝑅. 

 

consider one of the expressions for 𝑑𝑄𝑅 of an ideal gas,  

 

𝑑𝑈 = 𝑑𝑄 + 𝑑𝑊 
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𝑑𝑈 = 𝑑𝑄 − 𝑃𝑑𝑉 

For reversible process 

𝑑𝑆 =
𝑑𝑄𝑅

𝑇
 

Then 

𝑑𝑄𝑅 = 𝑇𝑑𝑆 

so 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 

For ideal gas we have 

𝑑𝑈 = 𝐶𝑉𝑑𝑇 

So 

𝐶𝑉𝑑𝑇 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 ⋯ (1) 

Consequently 

𝑑𝑆 = 𝐶𝑉

𝑑𝑇

𝑇
+

𝑃

𝑇
𝑑𝑉 ⋯ (2) 

But 

𝑃𝑉 = 𝑛𝑅𝑇 

𝑃

𝑇
=

𝑛𝑅

𝑉
 

Now in equation (2) 

𝑑𝑆 = 𝐶𝑉

𝑑𝑇

𝑇
+

𝑛𝑅

𝑉
𝑑𝑉 

By integration this becomes 

𝑆𝑓 = ∫ 𝐶𝑉

𝑑𝑇

𝑇

𝑓

𝑖

+ 𝑛𝑅ln
𝑉𝑓

𝑉𝑖
+ 𝑆𝑖 

 

∆𝑆 = ∫ 𝐶𝑉

𝑑𝑇

𝑇

𝑓

𝑖

+ 𝑛𝑅ln
𝑉𝑓

𝑉𝑖
⋯ ⋯ (3) 
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• Calculate of  ∆𝑺 in terms of 𝑪𝑷  

we have 

𝐶𝑃 = 𝐶𝑉 + 𝑛𝑅 ⋯ (4) 

 

And from the ideal gas law 

𝑃𝑉 = 𝑛𝑅𝑇 

Then 

𝑃𝑑𝑉 + 𝑉𝑑𝑃 = 𝑛𝑅𝑑𝑇 

𝑃𝑑𝑉 = 𝑛𝑅𝑑𝑇 − 𝑉𝑑𝑃 ⋯ (5) 

From eq.(4) and eq. (5) with eq.(1), 

Then  

(𝐶𝑃 − 𝑛𝑅)𝑑𝑇 = 𝑇𝑑𝑆 − 𝑛𝑅𝑑𝑇 − 𝑉𝑑𝑃 

Which becomes 

𝑑𝑆 = 𝐶𝑃

𝑑𝑇

𝑇
−

𝑉𝑑𝑃

𝑇
⋯ (6) 

And from the ideal gas law 

𝑃𝑉 = 𝑛𝑅𝑇 

𝑉

𝑇
=

𝑛𝑅

𝑃
 

Then eq. (6) becomes 

 

𝑑𝑆 = 𝐶𝑃

𝑑𝑇

𝑇
−

𝑛𝑅𝑑𝑃

𝑃
 

With integration this becomes 

∆𝑆 = ∫ 𝐶𝑃

𝑑𝑇

𝑇

𝑓

𝑖

− 𝑛𝑅ln ∫
𝑑𝑃

𝑃

𝑓

𝑖

 



7 
 

∆𝑆 = ∫ 𝐶𝑃

𝑑𝑇

𝑇

𝑓

𝑖

− 𝑛𝑅ln
𝑃𝑓

𝑃𝑖
 

Or  

∆𝑆 = ∫ 𝐶𝑃

𝑑𝑇

𝑇

𝑓

𝑖

+ 𝑛𝑅ln
𝑃𝑖

𝑃𝑓
⋯ ⋯ (7) 
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9.1 : Characteristic function 

Change of variables, known as Legendre differential transformation, yield 

functions that are fundamentally important in thermodynamics. 

 If the state of a system id described by a function of two variables 𝑓(𝑥, 𝑦), 

which satisfies the equation  

𝑑𝑓 = 𝑢𝑑𝑥 + 𝑣𝑑𝑦 ⋯ ⋯ (9.1) 

 

 

Let us apply this to the first law of thermodynamics.  

 

• ENTHALPY 

 

 

𝑑𝐻 = 𝑑𝑈 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 

But from eq.(10.4), then 

𝑑𝐻 = −𝑃𝑑𝑉 + 𝑇𝑑𝑠 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 
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𝑑𝐻 = 𝑇𝑑𝑠 + 𝑉𝑑𝑃 ⋯ ⋯ (9.6) 

 

 

 

• HELMHOLTZ FREE ENERGY 

 

 
 

 

 

 

 

 

Then 
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The characteristics functions 𝑈( 𝑉, 𝑆) , 𝐻( 𝑃, 𝑆), 𝐴(𝑉, 𝑇), 𝑎𝑛𝑑 𝐺(𝑃, 𝑇) are known 

as thermodynamic potential functions. 

Now 

𝑈( 𝑉, 𝑆) 

Then we can write 

 

 

 

9.5 : MAXWELL RELATIONS 

 

 

 

From (10.11), then 

 

But 
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(
𝜕

𝜕𝑆
)

𝑉
(

𝜕𝑈

𝜕𝑉
)

𝑆
= (

𝜕

𝜕𝑉
)

𝑆
(

𝜕𝑈

𝜕𝑆
)

𝑉
 

Then 

(
𝜕

𝜕𝑆
)

𝑉

(−𝑃) = (
𝜕

𝜕𝑉
)

𝑆

(𝑇) 

 

Then 

(
𝝏𝑻

𝝏𝑽
)

𝑺
= − (

𝝏𝑷

𝝏𝑺
)

𝑽
   𝑭𝒊𝒓𝒔𝒕 𝑴𝒂𝒙𝒘𝒆𝒍𝒍 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 

     

 

Similarly from eq.(10.6); 

𝑑𝐻 = 𝑇𝑑𝑠 + 𝑉𝑑𝑃 ⋯ (9.12) 

And 𝐻 = 𝐻(𝑆, 𝑃) as exact differential is written as 

𝑑𝐻 = (
𝜕𝐻

𝜕𝑆
)

𝑃
𝑑𝑆 + (

𝜕𝐻

𝜕𝑃
)

𝑆
𝑑𝑃 ⋯ (9.13) 

Comparing eqs.( 10.6 , 10.7  ) ,then 

𝑇 = (
𝜕𝐻

𝜕𝑆
)

𝑃
   and   𝑉 = (

𝜕𝐻

𝜕𝑃
)

𝑆
 

 

(
𝜕

𝜕𝑉
)

𝑆
(

𝜕𝐻

𝜕𝑆
)

𝑉
= (

𝜕

𝜕𝑆
)

𝑉
(

𝜕𝐻

𝜕𝑉
)

𝑆
 

 

(
𝝏

𝝏𝑷
)

𝑺

(𝑻) = (
𝝏

𝝏𝑺
)

𝑷

(𝑽) 

Then 

(
𝝏𝑻

𝝏𝑷
)

𝑺
= (

𝝏𝑽

𝝏𝑺
)

𝑷
, 𝑺𝒆𝒄𝒐𝒏𝒅 𝒎𝒂𝒙𝒘𝒆𝒍𝒍 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 
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Similarly 𝑑𝐴 is ; 

𝑑𝐴 = −𝑃𝑑𝑉 − 𝑆𝑑𝑇 ⋯ (9.14) 

And 𝐴 = 𝐴(𝑉, 𝑇) as exact differential is written as 

𝑑𝐴 = (
𝜕𝐴

𝜕𝑉
)

𝑇
𝑑𝑉 + (

𝜕𝐴

𝜕𝑇
)

𝑉
𝑑𝑇 ⋯ (9.15) 

Comparing eqs.(10.8  , 10.9 ) ,then 

−𝑃 = (
𝜕𝐴

𝜕𝑉
)

𝑇
   and   −𝑆 = (

𝜕𝐴

𝜕𝑇
)

𝑉
 

 

(
𝜕

𝜕𝑉
)

𝑇
(

𝜕𝐴

𝜕𝑇
)

𝑉
= (

𝜕

𝜕𝑇
)

𝑉
(

𝜕𝐴

𝜕𝑉
)

𝑇
 

 

(
𝜕

𝜕𝑉
)

𝑇

(−𝑆) = (
𝜕

𝜕𝑇
)

𝑉

(−𝑃) 

Then 

(
𝝏𝑺

𝝏𝑽
)

𝑻
= (

𝝏𝑷

𝝏𝑻
)

𝑽
, 𝑻𝒉𝒊𝒓𝒅 𝒎𝒂𝒙𝒘𝒆𝒍𝒍 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 

 

Similarly  𝑑𝐺 is; 

𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 ⋯ (9.16) 

And 𝐺 = 𝐺(𝑃, 𝑇) as exact differential is written as 

𝑑𝐺 = (
𝜕𝐺

𝜕𝑃
)

𝑇
𝑑𝑃 + (

𝜕𝐺

𝜕𝑇
)

𝑃
𝑑𝑇 ⋯ (9.17) 

Comparing eqs.( 10.10 , 10.11  ) ,then 

𝑉 = (
𝜕𝐺

𝜕𝑃
)

𝑇
   and   −𝑆 = (

𝜕𝐺

𝜕𝑇
)

𝑃
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(
𝜕

𝜕𝑇
)

𝑃
(

𝜕𝐺

𝜕𝑃
)

𝑇
= (

𝜕

𝜕𝑃
)

𝑇
(

𝜕𝐺

𝜕𝑇
)

𝑃
 

 

(
𝜕

𝜕𝑇
)

𝑃

(𝑉) = (
𝜕

𝜕𝑃
)

𝑇

(−𝑆) 

Then 

(
𝝏𝑽

𝝏𝑻
)

𝑷
= − (

𝝏𝑺

𝝏𝑷
)

𝑻
, 𝑭𝒐𝒖𝒓𝒕𝒉 𝒎𝒂𝒙𝒘𝒆𝒍𝒍 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 

 

Then in  conclusion we can write the following 

 

Problem (10.1) 

Given the relations  
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Derive the following Maxwell’s equations 

1. (
𝜕𝑇

𝜕𝑉
)

𝑆
= − (

𝜕𝑃

𝜕𝑆
)

𝑉
 

2. (
𝜕𝑇

𝜕𝑃
)

𝑆
= (

𝜕𝑉

𝜕𝑆
)

𝑃
 

3. (
𝝏𝑺

𝝏𝑽
)

𝑻
= (

𝝏𝑷

𝝏𝑻
)

𝑽
 

4. (
𝜕𝑉

𝜕𝑇
)

𝑃
= − (

𝜕𝑆

𝜕𝑃
)

𝑇
 

( Look the answer above) 




