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CHAPTER 1: Introduction

Obijectives

This chapter aims to:

e To make the students familiar with the basic thermodynamics concepts such as system,
surrounding, Boundary, Universe, state, thermodynamic path, process, thermal equilibrium, and
Temperature.

o Review the concept of triple point, temperature scales.

e To introduce the students with temperature measurements instruments.



1. Thermodynamics: It’s concerned with Thermal energy (often called internal energy) and its
applications. t’s a phenomenological theory of the macroscopic properties of system at certain
equilibrium state. This theory describes the system in terms of a few experimentally measurable
parameters like - Volume, Pressure P, Temperature T, Density p, ,..etc.

The laws of thermodynamics are general and primitive (axioms). These laws cannot be derived from
anything more basic).

2. Thermodynamic system/ System: It is any quantity of matter, any region of space, selected for
study, see figure 1.
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Figure 1

3. Surrounding: everything outside the system is called surrounding
4. Boundary : The envelope ( imaginary or real ) which encloses a system and separates it from its
surrounding.
5. Universe: System and surrounding together are called universe ( System+ Surrounding = Universe ).
6. Types of system: There are three types of system:
(I) Open system: The boundary of this system permits either matter or energy or both to be exchange
with its surrounding. ( ex.: boiling of water in an open vessel).
(I1) Closed system: the boundary of this system permits only energy to be exchange with the
surrounding. ( ex. : boiling of water in a closed vessel)
(1) Isolated system: An isolated system can exchange neither energy nor matter with the surrounding.

(ex.: system and its surrounding is an example of isolated system).

Open  Closed

(Phenomenological theory means that it does not provide the microscopic origin of a phenomenon)



7.

There are certain characteristics by which the physical condition of a system may be described, e.g. Volume

(1

(1

Thermodynamic quantities (thermodynamics coordinates, or thermodynamic variables):

V, Pressure P, Temperature T. such properties is known as the properties of a system. When all

the properties of the system are known the system is said to have a definite state. These properties

are called the thermodynamic coordinates of the system

Types of quantities:

Classified as either extensive or intensive!

Extensive quantities : quantities proportional to the amount of matter present. Suppose
we have a system and we double it. That means that we double the volume V , double the
number of particles N, double the internal energy U, and double the entropy S. Quantities

such as V, N, U, and S which are additive are called extensive.

Intensive quantities: quantities independent of the amount of matter present. The
variables which arise from differentiating the entropy, such as temperature 1/T = dS/0E
and pressure p = T dS/dV and chemical potential u = TdS/dN involve the ratio of two
extensive quantities and so do not change as we scale the system: they are called intensive
quantities.

“An easy way to determine whether a property is intensive or extensive is to divide the system
into two equal parts with an imaginary partition, as shown in Fig. 2-6. Each part will have the
same value of intensive properties as the original system, but half the value of the extensive

properties [1]”
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FIGURE 2-6
Clriteria to differentiate intensive and
extensive properties.

11. State: The word state represent all the macroscopic properties ( variables) associated with a

system.

1 Kant formulate his distinction between extensive and intensive magnitudes. According to Kant, extensive magnitudes are those “in
which the representation of the parts makes possible the representation of the whole”
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Figure 2

12. Path: The successive states passes through during process is called the path.

13. Process: Transformation from one equilibrium state to another

pol-e--- 1 State 2 (P2, V2)

- i

path

State 1 (P1, V1)

oS

|
|
|
|
>
2 g
'
|
I

Figure 3: Process1 —> 2

14. Cycle : if the system go back to its initial after a series of states, this process is called cycle, or
thermodynamic cycle.
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Figure 4: Example of thermodynamic cycle.

Q: Find out the state, properties, path, process, and cycle from the figure below given below.



F1

F2

Ans. States: State 1 and State 2
Properties: Pressure (P), and Volume (V)
Paths: path A, Path B, and Path C
Process : Process 1 ———2, or process 2———> 1
Cycle: 1 2 1
Classification of thermodynamic processes :

I. Quasi-static process: the transformation proceeds sufficiently slowly (a mathematically
infinitesimal paths) so that the system can be considered to remain in equilibrium at the average of
the two point in the path.

1. Reversible process: quasi-static transformation is usually reversible, that is, the system will traces
the transformation in reverse, when the external change is reversed. A reversible transformation

can be represented by a continuous path, as illustrated in Fig.5.

Figure 5 ( Quasi-static process is reversible process)
I11. Irreversible process: an irreversible transformation cannot be retraced by reversing the external
conditions. Such a transformation cannot be represented by a path in the equation-of-state space.
Figure 6 is an example of an irreversible transformation is mixing of two gases by removing the

separation wall
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Fig. 6: Mixing of two gases as an example of an irreversible
thermodynamic transformation. An example of irreversible
process.




The following table shows a comparison between reversible and irreversible process:

Reversible Process

i
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9. Thermal equilibrium, the zeroth Law of thermodynamic, and temperature

10.1 Thermal equilibrium

If two thermodynamic systems such as gases are put in thermal contact, after a time no further changes
in the pressure and volumes will occur, and the gasses are said to be in thermal equilibrium with each
other. Generally, thermal equilibrium is the state achieved by two ( or more) systems, characterized by

restricted values of the coordinates of the system, after they have been in communication with each other
through diathermal wall.

10.2 Zeroth law of thermodynamics
If each of two systems is in thermal equilibrium with a third, then they are also in
thermal equilibrium with each other.
This implies the existence of a property called temperature. Two systems that are in thermal equilibrium

with each other must have the same temperature.

10.3 Temperature:

“ The temperature of a system is a property that determines whether or not that system in thermal

equlibrium with other systems”.

Measuring Temperature:
Any thermoscope ( device that measures temperature ) must satisfy the following properties:
I. It should be based on an easily measured macroscopic quantity such as volume, resistance, etc.
1. The function that relates the chosen parameter with temperature, T= f(a), should be monotonic.
1. The quantity should be measurable over as wide a range of T as possible.
First define and measure temperatures on the Kelvin scale. Then we calibrate a thermoscope so as to

make it a thermometer.



» The absolute (Kelvin) temperature scale:

This scale is based on the triple point of water (T =273.16 K and P = 611.73 Pa) where water can

coexist in the solid, liquid, and gas phases in equilibrium). This new absolute temperature scale (also

called the Kelvin scale). This scale use the kelvin to be the Sl unit of absolute P (=)
temperature. j

Kelvin : is 1/273.16 of the difference between absolute zero and the

/
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temperature of the triple point of
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Figure 7(a)
» The constant —volume gas thermometer

It is the standard thermometer, against which all other thermometers are calibrated. It is based on
measuring the pressure of a gas in a fixed volume. it consists of a gas-filled bulb connected by a tube to a

mercury manometer. By raising and lowering reservoir R, the mercury level in the left "
Gas-filled

arm of the U-tube can always be brought to the zero of the scale to keep the gas  wuo-

volume constant. The temperature of the path or any body in thermal contact with the
bulb is (‘according to the ideal gas law, where the volume is constant ):
T =CP (1.1)

In which P is the pressure of the gas, and C is constant. The pressure P is given as;

I |
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P =P, + pgh-+12) Figure 7(b)

Where P, is the atmospheric pressure, p is the density of mercury, and h is the measured difference
between the mercury levels in the two arms of the tube ( The sign is positive if P is measured down the
level at which the pressure is P, and vise versa, Figure 7 (a,b)).
If we next put the bulb in a triple-point cell (Fig. 8), the temperature now being measured is:

T3 = CPs....(1.3) Cas

thermometer ——
bulb

P; is the gas pressure now. Eliminating C between eqgs. And gives us the (vapor \/

temperature as ‘;
L)
T=T (P) (273 16K)<P) (1.4) i
= — | = . el R . \’ Water ~ /
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Fig. 8

Consider measuring the ideal —gas temperature at the normal boiling point of water (the steam point). An

amount of gas is introduced into the bulb of a constant —volume gas thermometer, and one measure P,



when the bulb of the constant —volume gas thermometer is inserted in the triple point cell shown in Fig. 8.
Suppose that P; = 120kPa Keeping the volume V constant, carry out the following procedures:
1) Surround the bulb with steam at standard atmospheric pressure, measure the gas pressure P , and

calculate the empirical T using eq. (1.4 ),

T = (273.16K) <%>

1) Then repeat both measurements with a smaller amount of gas in the bulb. So that P; has a smaller

value, say, 60kPa. Measure the new value of P and calculate a new value,

T = (273.16K) (%)

I11) Continue reducing the amount of gas in the bulb so that P; and P have smaller and smaller values,
P; having values of say, 40kPa, 20kPa, etc. At each value of P; and P calculate the corresponding
T.
IV) Plot T against P; and extrapolate the resulting curve to the axis where P; = 0. Read T from
the graph, Fig. (9).
&

T {K) 37360

37350

37340

373.30 T(steam) = 373,124 K

373.20 |
? H,

37310 He

1} 20 40 L1 120

P3 (kPa)

Figure (9) shows T(K) versus Ps; (kPa) for three different gases in order to measure the
temperature of boiling water. It is clear that, although the readings of a constant —volume gas
thermometer depend upon the nature of the gas, all gases indicte the same temperature as Ps is
lowered and made approach zero.

Therefore ,generally, we define the ideal gas temperature as:

P
T = 273.16 K lim (—) ------ (constant V) - ------ (1.5)

P30 \I’3



11.1 The Celsius Scale

e The Celsius temperature scale, named after the Swedish astronomer

Anders Celsius.

e The Celsius scale (formerly called the centigrade scale).

e The Celsius temperature are measured in degrees, and the Celsius degree
has the same size as the kelvin. However, the zero of the Celsius scale is
shifted to the ice point of water 273.15 K.

o If T, represents a Celsius temperature and T a Kelvin temperature, then;

o T.=T—273.15% - (1.5)
» Platinium Resistance thermometers

Resistance thermometer is based on the variation of electrical resistance of a metal with temperature,
cover an even greater range. Platinum is of a metal with temperature, cover an even greater range. Platinum
is Often because:

1) It is comparatively easy to purify, purity improving its performance at low temperatures.
1) It also has a high melting point (1770 °C). Between 70 K and 1200 °C it is capable of very high
accuracy, It is not far from linear.
For a moderate accuracy, the instrument calibrate to a quadratic relation between the resistance and
temperature;
R(T) = Ry(1 + aT + bT?) - (1.6)
R(T): Is the resistance of platinum at temperature T.
R7: Is the resistance of platinum when it is surrounded by a water at triple point.

a, and b are constants.

» Radiation thermometry

None of the thermometers described above is useful far above the gold point (1064 °C) and in this
range radiation pyrometers are used. These are based on measurement of the radiation emitted by
a body when hot. In radiation thermometry we use the Planck radiation law, which relates
thermodynamic temperature to the measured spectral radiance.

» Thermocouples

Schematic diagram of thermocouple is shown in Figure (10). Thermocouples, thermometers using the
variation of the Seebeck e.m.f. with temperature range. Where the temperature to be measured is located at

the test junction. Thermal electromotive force is generated at the junction of the two point A and B. The



two thermocouple wire are connected to cooper wires located the reference junction which is maintained at
the melting point of ice. junction . The e.m.f. is generally well represented by an expression of the form
e=cy+ T+ T2+ ;T3 (1.7)

Where ¢ is the thermal emf and ¢, ¢;, c,, c5 are constants depend on the thermocouple.

Test  om-m=mme—comitarencnncnncmann “
junction ~—————7 e v e g S ~

Copper wire &

Reference junction

Copper wire =
Figure 610
Table 1 : Some Common thermocouples.
Approximate Normal working
Pair sensitivity/uV K™! range/°C
copper—constantan® 40 —200 to +300
iron—constantan 50 —200to +750
chromel®~alumel® 40 —200 to +1200
platinum-platinum/rhodium*® 6 —200to +1450
¢ Usually 60% Cu, 40% Ni. ®* 90% Ni, 10% Cr.
¢ 95% Ni plus Al, Si, Mn. 4 90% Pt, 10% Rh.

11.2 International Temperature Scale of 1990

The experimental difficulties of accurate measurement of thermodynamic temperature with gas or
other primary thermometers make it necessary for laboratories and standards institutions to have available a
set of convenient practical thermometers whose behaviour is known in sufficient detail for them to be used
for accurate interpolation between basic reference points whose thermodynamic temperatures have been
determined with precision.
The basic idea of The international Temperature Scale of 1990 (1TS-90) is :

(a) Selection a set of reference points and assigns to these points values of thermodynamic
temperature in the light of best available measurements,

(b) Selection a set of thermometers for interpolation between the reference points.

Range
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3.0 Kto24.556 K constant —volume gas thermpmeter

13.81 Kt0 903.89 K platinum resistance thermometer
903.89 K t0 1337.58 K platinum/(platinum4-10% rhodium) thermocouple
above 1337.58 K radiation pyrometer

11.2 Fahrenheit Scale

The Fahrenheit temperature is related to the Celsius temperature by the equation
9
Tp =T, +32 (19)
REFERENCES:

[1] Cengel: Introduction toThermodynamics and Heat Transfer, Second Edition
QUESTIONS:

1. True thermodynamic equikibrium is attained in
i) Finite time
ii) Infinite time
2. Thermodynamic concern with the behaviour of the systems at happenings
i) microscopic level
ii) macroscopic scale
3. Energy of an isolated system can be altered
i) By doing work on the system
ii) By extracting work from the system
iii) By heating or cooling the system

iv) Cannot be changed at all

4. Two different objects are in thermal contact with one another. The objects are at different
temperatures. The temperatures of the two objects determine
(@) the process by which thermal energy is transferred.
(b) the heat capacity of each object.
(c) the direction of transfer of thermal energy between the objects.

(d) the amount of internal energy in each object.

5. What is the difference between extensive and intensive quantities?
Ans. Intensive properties do not depend on the amount of matter of the system but extensive

properties do.

11



6. The specific weight (w) of a system is defined as the weight (W) divided by the volume (V), Is the
specific weight an extensive or intensive property?
Ans. The specific weight is defined as:

w=—
|4

If we were to divide the system into two halves, each half weighs W/2 and occupies a volume of
V/2. The

specific weight of one of these halves is

w/2 W
emy2 Ty
which is the same as the original specific weight. Hence, specific weight is an intensive property.

7. For asystem to be in thermodynamic equilibrium, do the temperature and the pressure have to be
the same everywhere?

8. Ans. For a system to be in thermodynamic equilibrium, the temperature has to be the same
throughout but the pressure does not. However, there should be no unbalanced pressure forces
present. The increasing pressure with depth in a fluid, for example, should be balanced by

increasing weight.

9. What is the state postulate?

Ans. The State represent all the macroscopic properties ( variables) associated with a system.

1.2. The limiting value of the ratio of pressures of a gas at the steam point and at the triple
point of water when the gas is kept at constant volume is found to be 1.365954. What
is the ideal-gas temperature of the steam point to six significant figures?

12



1.3. The resistance R’ of a particular carbon resistor obeys the equation

log R’

= blog R’
T a+blogR’,

where @ = —1.16 and b = 0.675.
(a) In aliquid helium cryostat, the resistance is found to be exactly 1000 €2 (ohms).
What is the temperature?

1.4. The resistance of a doped germanium crystal obeys the equation
log R’ = 4.697 — 3.917log T.

(a) In a liquid helium cryostat, the resistance is measured to be 218 2. What is the
temperature?

1.9. What is the temperature on the Fahrenheit scale of the normal boiling point of H,0,
if this temperature is 99.974°C? (Use five significant figures.)

13



Chapter 2

Simple thermodynamic Systems

2.1 Thermodynamic equilibrium



2.1 Thermodynamic equilibrium:

There are three types of thermodynamic equilibrium:

(I)Mechanical equilibrium: when there is no unbalanced force or torque in the interior if
the system and also none between a system and surrounding, the system is said to be in
mechanical equilibrium.,

(I Chemical equilibrium: Consider a system in mechanical equilibrium, and does not
tend to undergoes changes in the internal structure such as chemical reaction, or
diffusion ( transfer of matter from one part of the system to another ) , then it is said to
be in a state of chemical equilibrium.

(1) Thermal equilibrium: exist when there is no change in the coordinates of a system
of mechanical and chemical equilibrium in spite of it is in a closed state. In other word
there is no exchange of heat between the system and its surrounding, although the
system in a closed state. In thermal equilibrium all the part of the system has the same
temperature and this temperature is the same as that of surrounding. When this
condition are not satisfied, a change of state will take place until new thermal

equilibrium is reached.

When the three types of equilibrium is reached, the system is said to be in state of
thermodynamic equlibrium. Thermodynamic equlibrium can be described by macroscopic
coordinates that do not involve the time, that is in terms of thermodynamic coordinates.

When the condition for any one of the three types of equlibrium that constitute
thermodynamic equlibrium are not satisfied , the system is said to be in nonequlibrium
state. In this case there is no single pressure that refere to the system as a whole. Similarly
there is no single temperature refere to the system as a whole. Therefore in the
nonequlibrium state the system can not described in terms of thermodynamic

coordinates that describe the system as a whole.

2.2 Equation of state:
Consider a system of constant mass of gas in thermodnamic equilibrium. In this case the
thermodynamic variables (P, V, T ) are not independent of one another, but constrained by

the so-called equation of state.



FP,V,T) =0 (2.1)

where f is a characteristic function of the system under study. It shows that, of the three directly
measurable variables, P, VV and T, only two are independent ( Can take any arbitrary values) and

the third is determined by the two others.

Example: For ideal gas ( where there are no intermolecular attractions and the molecules

themselves have no volume) the equation of state is
PV =nRT (2.2)

j
molK '

Here n is the number of moles present, R = 8- 31 is a constant called the universal gas

constantm, and T is the temperature in KELVINS. .

At high pressures, the equation of state is more complicated, and represented by van der Waals
equation, which takes into account particles interactions and the finite size of the particles, Thus;

2
<p + %) (V —nb) = nRT (2.3)

where a and b are constants that depend on the type of gas.

Geometrical representation of the equation of state: The equation of state of the ideal gas can be
represented by a surface in the state space spanned by P, V, and T (see Fig. 1). All equilibrium
states must be on this surface. f is a continuous, differentiable function, except at some special

points.

Equation of
state surface

Irreversible
path

Reversible
path

Figure 1

Fig. 1: The state space in thermodynamics




Before we go further let me recall several useful relations which are valid for any Substance

N m
R=kNy n=ge, n=qi (24)

where k = 1.38 x 10723]J K is Boltzmann’s constant, N is the total number of molecules,

N, = 6.02 x 10%3mol is (Avogadro number) the number of molecules in one mole of any
substance, m is the mass of a substance, M is the molar mass (the mass of one mole) of a
substance. The molar mass of a substance is numerically equal to the molecular mass, but
expressed in mass units per mole, usually as g/mol (grams per mole) or kg/kmol. The
molecular mass of a substance is the mass of one molecule of that substance, relative to the
unified atomic mass unit (equal to 1/12 the mass of one atom of carbon-12). The molecular
mass can be calculated as the sum of the atomic masses of all the atoms of any one

molecule.

Example Problem (2.1):
(a) What is the volume of one mole of air at 0°C and atmospheric pressure.
(b) ; what is the density of air under the same conditions?

Solution: We consider the air under these conditions as an ideal gas

(Imol (831 Jmol-K ) (273K ) .
=0.0224 m 22.4 liters
1.01 = 10" N/m

i PM .
From the 1deal gas law p T where M 1s air molar mass. Alr 1s a mixture of N

(78%), O.(21%). and Ar (1%).1e. M =078x28+0.21x 32 +0.01 x 40 = 29 kg 'kmol

{1.01 x 10°N/m* )29 kg/k mol) ) :
P i ——~ 1.29kg/ m
(8310 Jkmol-K ) (273K) )

Example Problem (2.2): A balloon of 700 liters contains 10 kmol of COzat a temperature
of 137 °C. Calculate the pressure in atmospheres inside the ballon from the ideal gas law
and from the van der Waals equation if a = 364 x 103 ] -m3/kmol® ,
b = 0.0427 m3/kmol. What is the mass of COz2 inside the balloon?



Solution:  From the ideal gas law P = m;i :
10 kmol)(8310 J/kmol-K) (410K - _
P:( mol (83 1;10 ) )=:r 487-10° N/m” ~482atm:
0.7m
. RT ’
From the van der Waals equation P = Ii? 5 6;ij i
7 —n 7=

~ (10)(8310)(410) _(364-103)‘102

= 5 ~505-10° N/m?* ~500 atm :
0.7—(10)(0.0427) 0.7°

According to the definition, m =nM , m =10k mol-(12+32) kg/kmol = 440kg .

It is obvious that no equation of states exists for the states traversed by a system that is
not in mechanical and thermal equlibrium, since such states cannot be described in terms of

thermodynamic coordinates referring to the system as a whole.

2.3 Hydrostatic systems
Simple systems: are those systems that can be fully described by three thermodynamics
corrdinates X,Y,Z ( XYZ systems).
B The hydrostatic or PVT systems: is a tyep of the simple systems that can be described
by the three coordinates P, V, T ( PVT Systems). The hydrostatic systems exerts uniform

hydrostatic pressure to the surrounding -sometimes is referred to as ‘fluid system’

Categories of hydrostatic systems:

1. A pure substance: is a single chemical compound (e.g. H2O ) in a single phase orina
mixture of a solid, liquid, or gas phase.

2. A homogeneous mixture of different ompound: such as a mixture of inert gasses, a
mixture of active gasses, a mixtur of liquid or, solution.

3. A hetrogeneous mixture: such as a mixture of diffrernt gasses in contact with different

liquids.



Every hydrostatic system, that is, PVT system, has an equation of state that is valid for
equlubrium states, as eq.(2.1). The equation of state for any coordinate can be solved in terms

of the other two, thus comsider the volume of V in terma of P,V

V=V(T,P)
The differential of V is written as;
dV=(a—V) dT+<a—V) dp, -+ (2.5)
oT/p oP/

From the last equation we can define the following quantities:

» Coefficient of Volume expansion, ( Volume expansivity) B,

g = %(Z—K)P .. (2.6)

Note that: g is always positive, except for a few exceptions such as water between 0°C and 4°C

experiences decrease in VV with increasing T.

» Bulk modulus , B

The inverse of B is called compressibility, k

e=-1(2) 7
=-2(5p T...( 7)
Note that: Volume expansivity, B, and the compressibility, k are of great use in

thermodynamics, why?

B Because the left side of eq. (2. ) and eq.( 2.) are experimentally measuramble values,

while the right side is theoretical values ( partial derivatives). So, Measuring k and S allows
us to get the change in thermodynamic coordinates which can not determine from the

experiment.

Similarly, if the equation of state is solved for P and T , then we get



P=P(T,V) and T=T(,P)

Which gives the partial differential equations

dP—(aP) dT+<aP> AV, - (2.8)
-~ \aT/y vl '

dT—(aT) dV+(aT) dP, - - (2.9)
~\av/p oP/p ' '

Consequently, the differential dP ,dV, and dT in all the above equation are differentiale of actual

functions and are called exact differentials.

> Exact differential: dz is called an exact differential as a function of X,y if dz can be

written as;

dz = (a>y dx + (g—;) dy (2.10)

X

An infinitesimal that is not the differential of an actual function is called an inexact differential

2.4 MATHEMATICAL THEORIES ( The reciprocal and reciprocity theorems)

Suppose that three variable are related through the relation

f(x,y,z2)=0 (2.11)

We may write the differential of dx and dy as;

d _(ax d +(ax> dz - (2.12)
*= (')y)Zy az), " |

And

d d
dy = (%) dx + (6_};) dz .- (2.13)
Z X

Combining the two equations we get;



dx = (Z—;)Z {(Z—Z)Z dx + (g—i)x dz} + (g—;c)y dz -+ (2.14)

o= (3,0 0+ (59 (0 + () oo

Choosing x and z as independent coordinates, the above is true for all the values of
xand z . Thusif dz = 0 and dx # 0, then

(g_;i)Z (Z_DZ — e (2.16)

Or

(Z_DZ =@......(2.17)
x z

This is the reciprocal theorem which allows us to replace any partial derivative by the reciprocal

of the inverted derivative with the same variable(s) held constant.

If dx = 0 and dz # 0, then

5.6+ @), -0 ew

(5, 52). =~ G2)

(5), @), G,

(2.19)




This is the reciprocity theroem. It may be written starting with any derivative then following

through the other variables in cyclic order.
» Appling the theorem to PVT system

In the case of a PVT system, the reciprocity ( cyclical) theroem yields the result
5).3).=-&),=@).G),=-G), ex
dy) \oz),  \az), "\av/);\aT/p  \oT/y (2:20)

By defintion , the volume expansivity (eg.2 ) and the isothermal comressipility

(eg.2 ) are
= %(%)P ...... (2.21)
- -3Gp),

But

(57), Gr), =~ Gr), @20

Then
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> dP interms of § and k:

Consider an infinitesimal change in P, then

dp = (a—P>V dT + (a—P)T AV (2.26)

oT av
Then
dP—BdT - av (2.27)
Tk kV
AtV = constant
B
dP = EdT (2.28)

For a small change in T form T; to T , at constant volume, we can consider both £ and k

constant, and then the change in P from P; to Py, as
Tr
P
TL

B
From which the final pressure can be calculated.

Example problem (2.3): consider a mass of mercury at standard atmospheric
pressure and a temperature15°C is kept at constant volume. If the temperature is raised

to 25°C , what will be the final pressure?.

Solution
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B=181x10*K™,

and k=4.01x10""Pal;
1.81 x 10*K™! x 10K
hence, Pr—P;i= . x_l
4.01 x 10-11 Pa
=4.51 x 10" Pa,

and, since the initial atmospheric pressure is approximately P; = 1 x 10° Pa,
we have

Pr =451 x10"Pa+0.01 x 10’ Pa
=4.52 x 10’ Pa = 452 atm.

Much of the development of thermodynamics has been based on the the hydrostatic or
PVT system.

2.5 Streched Wire

A wire can be thought of as a one —dimensional simple system. We know from the
experimental results that the equlibrium states of the wire can be described by two

independent variables of the following three coordinates:

1. The tension in the wire 7", measured in newtons (N)
2. The length of the wire L, measured in meters

3. The absolute temperature T, measured in kelvin (K)
This variables are connected through the the equation of states
g@,L,T) =0 (2.30)

If the wire undergoes an infintesimal change from one state of equlibrium to another, then

the length can be written as a function of 7" and T as;
L=L(T,T)

Then dL is an exact differential and is written as

a=(2) ar+(2) ar
~\oT/ 5 T ) ¢
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These derivatives are connected with very important physical quantities, in general
physics,
» The average coefficient of linear expansion, and linear expansivity

change in length per unit length

Avergae coef ficient of linear expansion =
g z f P change of temperature

For infetisimal change in temperature, we get an infinitesimal change in length, and then we can

define the linear expansivity, a as;

a = %(%)T ...... (2.31)

The linear expansivity « is in unit of reciprocal kelvin (K~1).

In general physics, the average Young’s modulus was defined as

change in tension per unit area

Y ’ dulus =
average Young's modulus change of Length per unit length

For infetisimal change in tension, we can define the isothermal Young’s modulus, Y as;

v = %(Z_DT ...... (2.32)

Where A denote the cross-section area of the wire.
Note That:

e Y isalways positive
e Y depend mostly in teperature and is constant for a small te,perature range
e Theunitof Y is (N/m?)

Using the cyclical theory , then

(), G7), ), =
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(57), =~ &), @),

oT YA
(39, -4
L

oT L
So
(6_7) R (2.33)
daT/,,
Questions

1- Is the number of moles of a substance contained in a system an extensive or intensive
property?
Problems
2.1. The equation of state of an ideal gas is PV = nRT, where n and R are constants.

(a) Show that the volume expansivity 3 is equal to 1/7.
(b) Show that the isothermal compressibility « is equal to 1/P.

Answer
(a) Given equation of state for a ideal gas

PV=nRT, Eq.(1)

oV
and the definition of volume expansivity f = \7(8_Tj , it is easily verified that f= 1/T by taking the partial

derivate of Eq. (1) with respectto T:

9 (pv=mRT) P _nR Eq. (2)
ot ot

Inserting PV = nRT into Eq. (2), we arrive at
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1(oV 1/vy 1
Hence, f=—| — [=f=—| = |==.
V(@Tj V(Tj T

(b)
Given equation of state for a ideal gas

PV=nRT, Eq.(1)

1 1(0oV
and the definition of isothermal compressibility K = E = —V(a—Pj , it is easily verified that f=1/P by

taking the partial derivate of Eq. (1) with respect to P:

0 v 0
2 (PV =nRT) > P 4v = £ (nRT) =0 .
op (PV =NRT) > P g +V =55 (0RT) fa-

Inserting PV = nRT into Eq. (2), we arrive at

1(0oV 1V 1
Hence, Kk =——| — |[=——| —— |=—.
V \ oP Vi P P

2.2. The equation of state of a van der Waals gas is given as

(P+%)(v—b) — RT,
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where a, b, and R are constants. Calculate the following quantities:
(@) (9P/0v);:;
From parts (a) and () calculate (3v/0T)p.

Answer

2

a
Problem 2.2: Given the equation of state of a van der Waals gas, (P + —j(v - b) =RT:
Vv

(a) Taking the partial derivative with respect to v, with constant T,

%Km%](v_b)}%(m):o




(c) From

(&) {5

16

_(6Pj R
N ﬂ _ or Vo Vv—b _ R
oT J» oP p a a Z2ab
— t% 9a 2= P
ov J; _ Vi f4 vty
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3.1 WORK

Qualitatively: At any time, an object undergoes a displacement under the action of force, work is
said to be done.
Quantitively; work is the product of the force and the component of displacement parallel to the
force.
There are Two kinds of work
)] External Work: As a result of interaction between the system and its surrounding
(e.g. a gas confined cylinder when expand does external work on its surrounding ).

i) Internal Work: As a result of interactions between different parts of the system
(e.g. the interactions at the microscopic scales between molecules, atoms, or
electrons on one another).

We will confine our attention to the external work.
Sign convention:
e Work is positive when done on the system
e Work is negative when done by the system.
3.2 QUASI-STATIC PROCESS
We introduced the concept of quasi—static process in chapter 1. Here, we want to redefine
this process more precisely:
» The quasistatic process : is an ideal case in which the external forces acting on a system
are varied only slightly, and the process proceeds infinitesimally slowly.
The quasistatic process has the following features:

i) During this process, the system is in all times infinitesimally near a state of
thermodynamic equilibrium. This means we can get equation of state describe the
system as a whole.

i) The quasistatic process is equivalent to reversible process.

Now we will discuss the quasistatic process in those systems that we discussed in the previous

chapter:

3.3 WORK IN CHANGING THE VOLUME OF A HYDROSTATIC SYSTEM:

As shown in the figure, consider quasi-static compression of a hydrostatic system enclosed by an
adiabatic cylinder and piston.
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R FIGURE 3-1
oz 7 Quasi-static compression of a hydrostatic system
dx enclosed by an adiabatic cylinder and piston.

e The pressure exerted by the system at the internal face of the piston is P. Therefore, the
force on the internal face of the pistonis PA ( : is the cross—section area of the
cylinder).

e The surrounding exerts an external force F on the external face of the piston.

e If F increased slightly the force PA of the system, then the piston will move
infinitesimal distance dx during compression, as shown in the Fig.3-1.

e The work done by the external force during this displacement is ;

dW = Fdx = PAdx (2.1)
But during compression the volume of the system decreases, so
Adx = —=dV (2.2)
Then
dW = —PdV «----- (2.3)

e The convention is that work done on the system increases the energy of the system and
work done by the system decrease the energy of the system.

e Therefore, the minus sign before PdV ensures that negative dv
(a compression) gives rise a positive work done on the system, and conversely positive
dV ( expansion) gives rise a negative work done by the system.

(The SI unit of work is Joule (J))

In a finite quasi-static process the work done by a system in expansion from initial volume V; to
a larger volume V; is expressed as

Vy

Wi = — f PAV  (24)

Vi

and in contracting from state f to state i , along the same path of integration but in opposite
direction , the work done on the system is



Vi
Wp = — f PdV  (2.5)
Vy
So over quasi-static path , we have
Wi =-Wy  (2.6)
3.4 PV DIAGRAM

Consider the process of compression or expansion of the hydrostatic system shown in
figure 3-1 . The resulting diagram in which pressure is plotted along y-axis and the volume along
x-axis, is called a PV diagram.

e The area under the PV curve represents the work done by or on the system

PA P A PA

v,
—f”PdV

P ——

<V
R 4

(b) (o)

FIGURE 3-2

PV diagram of a gas with shaded area to show work done by the system or work done
on the system. (a) Curve I, expansion; (b) curve II, compression; (¢) curves I and II
together constitute a cycle.

e Figure 3-2(a) shows expansion process (curve I). The integral — f: T PaV is negative, i.e.

the work is done by the system.
e Figure 3-2(b) shows compression process (curve Il). The integral — f;f" PdV is positive,

i.e. the work is done on the system.

e Figure 3-2(c) shows the two curves | and Il together. Such a series of two or more
process represent by a closed figure is called a cycle. The net work done in a cycle is the
difference between the area under curve | and curve II.



3.5 HYDROSTATIC WORK DEPENDS ON THE PATH

As shown in the figure below, the paths, if, and ibf, has a different area. Then they have a
different work.

PA

i Isobar
2Py | i ( ar) a

(Isochor)

f

Y, 27, 4

FIGURE 3-3

Work depends on the path of integration from the initial state equilibrium 7 to the final
equilibrium state f. The most work is done by the system traversing path iaf, which
does more work than traversing path if, which does more work than traversing path

ibf.

e This means that, the work done by a system depends not only on the initial and final
states but also on the path of integration. Consequently, the work is inexact differential (
i.e. the work is not state function).

3.6 CALCULATION OF [ PdV FOR QUASI-STATIC PROCESSES

i.  Quasi-static isothermal expansion or compression of an ideal gas
f f f
W = deV— JnRTdV— RTJdV— RTInL (27
= = v =-n | Vv =-n HV_ (2.7)
l

/ f t
i i



Example :

Let us calculate the work in compressing 2 mol of an ideal gas kept at a
constant temperature of 20°C from a volume of 4 liters to 1 liter. Then, we
have n=2mol, R=8.315 J/mol-K, T =293K, V;=4x10"°m’, and
Vr=1x10"m’. Thus,

W = —(2mol)(8.315J/mol - K)(293K)(In})
=6753J.

The positive value of W indicates that work was done on the gas.
i) Quasi-static isothermal increase of pressure on a solid

Suppose the pressure of on 10g of cooper increased quasi-statically and isothermally at 20°C
from 0 to 100 atm. What is the work done during this process?

Answer:
W = —deV (2.8)
But
v = (E)V) dT + <6V) dP 2.9
~\aT/p P/, (29)
And since
k= ! (6V> 2.10
Vv \oP/; (2.10)
Then

dv = —kVdp  (2.11)

Substituting this result for dV in the expression for work, then

W = J PkVdp (2.12)

At constant temperature, k and V are practically constant , then



kV
W= 7(sz — P?) (2.13)
Example

For copper at 20°C, p=2896x103kg/m’, x=7.16x10"12Pa"!,
m = 10"?kg, P; =0, and Pr =1000atm = 1.01 x 108 Pa. Hence,

(10-2kg)(7.16 x 10-'2Pa~')(1.01 x 108 Pa)’
2(8.96 x 103 kg/m®)

= 0.408 x 10' Pa - m’

= 4.087.

W =

The positive value of W indicates that work was done on the copper.

Note That: A little work was done in raising the pressure on the cooper compared with the work
in compressing the gas in the first example. The reason is that the volume of cooper changed
very little. So in compressing the gas we can usually neglect the work done on the material of the
container.

PROBLEMS
Problem 3.1

Show that the work done by an ideal gas during the quasi-static, isothermal expansion from an
initial pressure V; to a final pressure V, is given by

W = —nRT In (V;/V)).

Solution

f f f
nRT %
W=—jPdV=—J—dV——nRTf—=—nRT1n—
) J %4 V;
l l

Problem 3.2

(a) Show that the work done by an ideal gas during the quasi-static, isothermal expansion
from an initial pressure Pj to a final pressure Py, is given by



Solution:
For isothermal process

BV, = PeVf.
Hence
Ve/Vi = P [Pf.
Substitute this into
W = —RT In (V¢/V}).
Then

Problem 3.3

An adiabatic chamber with rigid walls consists of two compartments, one containing a gas and the
other evacuated; the partition between the two compartments is suddenly removed. Is the work
done during an infinitesimal portion of this process (called an adiabatic expansion) equal PdV ?

Answer: NO. Because there is no work done against the expansion of the gas-filled

compartment by the evacuated compartment. During a free expansion of a gas, the heat

transfer between the system and the surrounding, and the work done by the gas are both

equals to zero. In other words, no work is done by the gas during a free expansion.

Problem 3.4

@ Calculate the work done upon expansion of 1 mol of gas quasi-statically and isothermally

from volume vi to volume vr, when the equation of state is (P + %)(v— b)=RT, where
v

a and b are the van der Waals constant.

(b)  If a=1.4x10° N-m*mol and b=3.2x10"> m*/mol, how much work is done when the gas
expands from a volume of 10 liters to a volume of 22.4 liters at 20°C?

Solutions: (a)

p= RT a
T (v—=b) v?
vf
W = —f Pdv
v
Yf —RT a RT
= e dv = |l
(b) W @0 2 Tlemp e
_ | 831(293)  2(1.4%x10%)|0.0224 =2.25x10%]
" |(v=3.2x1075)2 v3 0.01



CHAPTER 4

Heat and the First Law of
Thermodynamics



The first law of thermodynamics is essentially an extension of the principle of the conservation
of energy to include systems in which there is flow of heat. Historically, it marks the recognition
of heat as a form of energy.

4.1 WORK AND HEAT

e In chapter 3 we saw how system can transfer from initial state to final state via quasi-static
process by doing a work ( figure 4-1 a,b). Also, we explained how the work done during
the process could be calculated.

e However, there are other means for changing the state of the system do not necessary
involve the performance of a work. By absorbing (or releasing ) heat ( figure 4-1 c,d).
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v
/]

FIGURE 4-1

Distinction between work and heat: (@) and (b) show work being done on the system by
means of a falling body, whereas (¢) and (d) show heat entering the system from a
hotter substance.

Definition: Heat is a form of energy that transfer between a system and its environment because
of the different in temperature only.



4.2 ADIABATIC WORK

When a closed a system confined within an adiabatic boundary allowing no heat to penetrate,
as shown in figure 4.2, the system may still be coupled to the surrounding so that work may be

done.

T
| A

Magnetic

C‘/] sol’id \ ;

MMM

O.000

T
Electric cell

FIGURE 4-2
Adiabatic work for different types of systems.

e Path independent adiabatic work:

figure 4.2, shows a series of experiments which show that the system can be changed from
initial state to the same final state by the performance of adiabatic work only through a

different paths.

i) path I: The state of composite electrical system, composed of a resistor immersed in
water, is changed from an initial state i of (P; = 1 atm, T; = 287.7 K), to a final state
f of (Pr=1atm,T; = 288.7 K), by passing a current through the resistor from, as

shown in figure 4-3.
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Changing the state of a
system from the initial state
i to the final state f along

i

i

]

|

i

! > three different adiabatic
T, T, Temperature T paths,

ii) path 11, the system is changed from the state i to the state f by compressing the water
adiabatically from i to a , then use a current in a resistor from a to b and then expand

frombto f .
iii) path 11l is another path to reach by the system from the state i to the
state f.

In conclusion: there are an infinite number of paths by which a system may be transferred
from initial state to a final state by performance of adiabatic work only. The generalization of
this rule is a statement for the first law of thermodynamic.

If a closed system is caused to change from an initial state to a final state by
adiabatic means only, then the work done on the system is the same for all
adiabatic paths connecting the two states.

The path independent work follow from the restricted statement of the first law of thermodynamic
ensures the existence of a function of the thermodynamic coordinates of the system whose value
at the final state minus its value at the initial state equal the adiabatic work done during this
change. This function is called the internal energy function, U. Then we have

If Wi_r >0, then Ur > U;
4.3 INTERNAL ENERGY AS A STATE FUNCTION

Now it is shown that the change in the internal energy is path independent. This means that
U is a state function. It was clear in chapter two that the equilibrium state of hydrostatic
system, which is described by three coordinates P, V, and T, can be totally determined by
two coordinates, and the third is fixed by the equation of state.



Then the infinitesimal change in the internal energy dU is an exact deferential. Which
means that, if U is a function of V and T for hydrostatic system, then dU is given as

dU(T, V) = (‘;_g) VdT + (g—g) TdV,

Or if we considered U as a function of T and P, then

ou ou
dU(T, P) = (a:r) ar (&p) ap

Note that :

(7). * ),

They have a different meaning as we will see later
4.4 MATHEMATICAL FORMULATION OF THE FIRST LAW

We have been considering processes during which a system undergoes a change of state through
the performance of adiabatic work only. in this case it is cleared as given in eq.(4.1) that AU =
Up=U; = Wiy

e Equation (4.1) applies to adiabatic processes.

e However, we know that it is also possible to change the state of a system without doing work
on it (We may use heat alone) or any combination of heat and work. Thus, when a system is
not thermally isolated equation (4.1) is no longer valid. It must now be modified to

AU=U;—U;=Q+W:--- (4-2)

Where Q is the heat add to the system . Like internal energy and work heat is measured in
Joules in the Sl unit of system.

Equation (4 - 2) is the mathematical form of the first law of thermodynamics. This formula
contains three relateds idea

1
2
3
Note that
Heating is a process by which there is an exchange of energy between system and its surrounding
because of temperature difference.
But what is the energy that exchange?
The answer depend on the condition of process.

The existence of the internal energy function
The principle of conservation of energy
The definition of heat as energy in transit by virtue of temperature difference.

5



In isochoric process of hydrostatic system ( constant volume process ), the heat
transferred is simply the internal energy.

In isobaric process of hydrostatic system ( constant pressure process) , the heat
transferred is enthalpy, which is another state function, which is a type of energy, as we
will see later.

45 THE CONCEPT OH HEAT
Note that

As we have defined the heat as “ heat is either internal energy or enthalpy in transit”
because of difference in temperature.

consequently

When the flow of heat has stopped we can not use the word of heat at all. So, it is not
correct to refer to the heat of body.

The heat and the work done on or by the system is not a function of the coordinates of the
system ( they are not a state function or exact differential) , So infinitesimal amount of
heat and work is written as dW or as dQ ( read d bar W or d bar Q).

Example : ( The method of mixture)

But

system

Consider two systems A, and B with different temperatures and in thermal contact.
Consider the composite system is surrounded by adiabatic walls.

Prof that
QA = _QB (4-3)

where Q4 is heat giant or lost by system A, and Qj is the heat gain or lost by system B.

Answer
Applying the first law of thermodynamics to system A and system B we have

Usp —Upi = Qu+ W, (44)
Ugsf —Upi = Qp + Wpg (4.5)

Adding the two equations we get
(Uas + Usp) = (Ui + Up) = (Qu + Q) + (Wa + Wp)  (4.6)

(UAf + UBf) — (Uy; + Ug;) isthe change in the internal energy of the composite

and (W, + Wy) is the work done on the composite system.

Then

(Q4 + Qp) isthe heat add to the composite system.

6



But the composite system is surrounded by adiabatic walls, the

(Qa+Qp)=0
Then

Qa=—0Qp-(47)

Note that :

Equation (3.4) is the basis for calculating the final temperature when a piece of hot metal
dropped into a cold water contained in calorimeter.

4.6 DIFFERENTAL FORM OF FIRST LAW
For infinitesimal change on the coordinates of the system, the first law of thermodynamics is
written as;

AU = dQ + dW -+ e - (4.8)

For an infinitesimal quasi-static process of a hydrostatic system, the first law of
thermodynamic can be written as

dU =dQ — PdV ------ 4-9)
Where dW = —PdV

4.7 HEAT CAPCITY AND ITS MEASUREMENTS
If a system experience a change of temperature from T; to T, during the transfer of Q@ units
of heat, the average heat capacity of the system is defined as;

Average heat capacity = (4.10)

T, — T,

When @Q and Ty — T; becomes infinitesimal, then this ratio approach limiting value, known as
the heat capacity C, thus

C = lim

T¢-Ty Tf — Ti
Or
dQ
=S 411
€= (4.11)

Where heat is measured on Joule per kelvin (J /K) in Sl unit.




e The Specific heat
The heat capacity is an extensive quantity, it depend on the mass of the system. So, it is better to
use the specific heat c as an Intensive quantity, which is given as;
C 1dQ
C = a = aﬁ (412)
Where m is the mass of the system

c is measured in Joule per kilogram-Kelvin ( J/kg-K)
e Molar specific heat
We can also define molar specific heat, which is defined as

Mol ifich t—C—ldQ 4.13
olar specific hea =-=-= (4.13)

Where n is the number of moles contained on the system.

Molar specific heat is measured on (J/molK).
Depending on the process which the system undergoes, two type of heat capacity can be defined

e The heat capacity at constant volume Cy,

e The heat capacity at constant pressure

In general C, and Cp are different

4.8 SPECIFIC HEAT OF WATER ; THE CALORIE
Calorie ( abbreviation Cal) is : The amount of heat required to raise the temperature of 1

g of water from 14.5°C to 15.5°C.

4.9 EQUATIONS FOR HYDROSTATIC SYSTEM
The mathematical formulation for the first law of hydrostatic system is

dQ = dU +pdV  (4.16)



ou aou
dU = (ﬁ) 'dT + (W) rd"'.

Therefore, the first law becomes

a0 - (g—g) ar [(g—:‘j)rw]dy. (4.17)

Dividing by dT, we get

dQ (oU U dv
it~ (ar),*|Gr) 7] & @

This equation is true for any process involving any temperature change dT’
and any volume change dV.

1. If V is constant, then dV = 0, and

(‘;_g) - (g_;) (@19

Where U is a function of P, V, and T . Choosing T and V , then we have

()

But

Then




2. If P is constant, li1en Eq. (4.12) betomes'

(dg) _(au | 6U) )| (@

But, by definition (dQ/dT), = Cpandalso (3¥'/dT), = V3 from Eq. (2.3).

Hence,
U ,
CF =Cy+ (5—#) T+P V3,
or (E’ﬁ—{’-r —CP_C"—P
), vg 42

Although this equation is not important in its present form, it is a good
example of an equation that relates a quantity (0U/dV)y, which is ordi-
narily not measured, with state functions such as Cp, Cy, and /3, which can
be measured.

410 QUASI-STATIC FLOW OF HEAT, HEAT RESERVIOR

B A heat reservoir : is A body of such a large mass that it may absorbed or reject an unlimited
quantity of heat without experiencing an appreciable change in temperature or in any other
thermodynamic coordinate.

The ocean and atmosphere is example for heat reservoir.

mal. The flow of heat will be quasi-static and can be calculated as follows

from the definition of Cp:
_ (492

and, therefore, for a quasi-static isobaric process, a path of integration is
prescribed, so

Ty
Op = [r CpdT. (4.22)

For example, the heat absorbed by water from a series of reservoirs vary-
ing in temperature from 7; to 7y during a quasi-static isobaric process is
calculated from Eq. (4.15). Assume Cp remains practically constant, integrate,
and then

Qp = Cp(Ty — T;).

10



For a quasi-static isochoric process, another path of integration is prescribed,
SO

Ty
Oy = L Cydl. (4.23)

Similar considerations hold for other systems during quasi-static processes.

Problems

4.1 A combustion experiment is performed by burning a mixture of fuel and oxygen in a
constant-volume container surrounded by a water bath. During the experiment, the
temperature of the water rises. If the system is the mixture of fuel and oxygen:

(a) Has heat been transferred?
() Has work been done?
(¢) What is the sign of AU?

4.2 A liquid is irregularly stirred in a well-insulated container and thereby experiences a
rise in temperature. If the system is the liquid:
(a) Has heat been transferred?
(b) Has work been done?
(c) What is the sign of AU?

4.3 The amount of water in a lake may be increased by action of underground springs, by
inflow from a river, and by rain. It may be decreased by various outflows and by
evaporation.

(a) Comment on the question: How much rain is there in the lake?
(b)) Comment on the question: How much water in the lake is due to rain?
(¢) What concept is analogous to “rain in the lake™?

4.4 A container with rigid well-insulated walls is divided into two parts by a partition.
One part contains a gas, and the other is evacuated. If the partition suddenly breaks,
show that the initial and final internal energies of the gas are equal. (Note: this
process is called an adiabatic free expansion.)

11



4.5 Regarding the internal energy of a hydrostatic system to be a function of 7 and P,
derive the following equations:

o 40 (38), () o 39, (5 Jor

AU
(b) (‘—) Cp - PV
or )y ="

aU
(c) (ﬁ) = PVk - (Cp—-Cy) %

Solution
a) Let U=U(P,T),then

w= () ap+ () ar
~\or/; oT/p

The first law of thermodynamics is

du =dQ — PdV
Combining the two equations

dQ = (gg) dT+(gg) dp+pPdv (1)

For a PVT system, we can write V as a function of T and P.

dVv = (BV) dT+(aV) dp
aT opP

By substituting the expression of dV into equation Eqg. (1), we get

10 =(57) p +# Gr) o Jar+ (G5) -7 G7) oo

(b) For a PVT system, we can write V as a function of T and P.

dv = (BV) dT+(6V) dP
T P

By substituting the expression of dV into equation Eq. (1), we get

12



0=1(57) , +2 () ler+l(G7) - +7 G) oo

At constant pressure, dP=0. Setting dP=0, and dividing Eq. (2) by dT, we get

aQ
dT

pECP :[(g_g)P +P(g_1;)P]dT

But

p= %(3—9 P
Then

C, —(BU) + PV
v \ar/p B

(c) At constant volume, dV=0. Setting dV=0, and dividing Eq.(1) by dT, we get

CEL L

U oU
dQ = (ﬁ) AT+ (ﬁ) AP+ PV

(8Uj (8U) dP
ECV: e +| — -
y oT ), \oP ). dT

where
()
v \dT )y
But

(g_;)v (2_1]:) P(%)T =1
)] (5
but

= _71(3_}/’) T

(Z_?)V =§

aQ
aT

aP
aT

13



ﬂ:(lj n (@J +p]ﬁ C :(B_U) +pvp W Combining Eq.
ar \er), [\ev). ~ldI' (g ag =~ ‘TP
Then

_ B 8_U ﬁ CV—CP+,BPV= ouU
CV_(CP IBPV)+( jT(Kj: ( jT

s

4.6 One mole of a gas obeys the van der Waals equation of state:
a
(P+5)(w—b) =R,

and its molar internal energy is given by
a
u=cT —-,
ll

where a, b, ¢, and R are constants. Calculate the molar heat capacities ¢y and cp.

Solution
Letu=u(T,v)
Then
du—(@} dTJr(@j av 1)
oT ), ov J;
dq = du + Pdv @)

Eqg. (1) combined with Eq. (2) then

dq:(ﬁ_u) dT + (a_uj + P |dv
ot ), N J):

Divided by dT then,

14
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(5)

At constant volume we have

dq
dT

=C, :(a_uj =c,sinceu=cT —al/v
oT ),

Vv
B At constant pressure, Eq. (5) becomes
d_q Ecpz(a_uj + (a_u) +P ﬂ
dT |, aT )y ov ); dT |,
Co =C, + (a—uj +P [ﬂ) =G, +{%+P}(ﬂj sinceu=cT —al/v
N J; oT ), Vv aT J)p

And from

(P+%)(v—b)=RT

Then
&)
oT Jp a 2a (V — b)
V2o
Then

15



CHAPTER 5

Ideal Gas



5.1: EQUATION OF STATE OF A GAS

Let P is the pressure of an ideal gas and v = V/n is the specific volume of a real gas.

Experiments show that

Pv=A(1+BP+ CP* + ) - (5-1)

Where A4, B, C, etc., are virial coefficients which depend on the temperature and on the nature of

the gas.

It was found experimentally that as the pressure approach zero, the product Pv approach a
constant value A that depend only on the temperature and independent on the nature of a gas;

lim(Pr) =A =

{ function of temperature only,
P—0

independent of gas.

“Lam (Pu) . = 3.1027 k)/mol
308 F-e0

' . e A
0 05 10 1.5 20 25 30 35 a0 °”
F. MPa
Pv, kJ/mol
2.30 H,
— N..
2.20 Air
Lim (Pv),, = 2.2712 k¥/mol o
2.10 rowo :
. s ' ' A s
O 0s 1.0 1.5 2.0 2.5 30 3s 4.0 >
P, MPa
Pv, k)/mol
1.70 H,
160 |\
l Pv - 1.6629 kJ/mol Na
1 30F S (FUlcn,™ }.005T Rime Air
T ():>
0 0.5 1.0 1.5 2.5 30 35 40

20
P, MPa
FIGURE 5-1
A fundamental property of gases is that im (Pv), is independent of the species
chemical and depends only on the temperature of the gas.

(5.2)



The ideal gas temperature is defined in chapter 1 as;

P
T =273.16 K lim (—) -+ (constant V) (5.3)

P30 \I'3
i PV lim (Pv
so that T =273.16Klim— 1" = 316K 2P
PrpV/n lim (Pv)p
y ; _|lim (Pv)1p
and Ilm(Pl) = [m T

The bracketed term is called the molar gas constant and is denoted by R. Thus,

lim (Pv)yp
~2ma6k (04)

The constant R is called the gas constant , where R = 8.31 /] /mol.K.

Finally, substituting in eq.(5.2) then,

lim(PV) =nRT,

Which is the experimental equation of state of an ideal gas.

From eq. (5.4) it follow that
lim (Pv) = A = RT,

Then eq.(5.1) becomes

PU—1+BP+CP2+ 5.5
RT_ (')

5.1 INTERNAL ENERGY OF A REAL GAS
Internal energy of Free Expansion

In general, the internal energy of any gas is a function of any two of the coordinates P, V, and T.
So;

w= (2 ar+ () v s
—\ar/, ov/)y (5.6)

If dT = 0, and dU = 0 as the case of free expansion then

(Z—g)T —0 57)

Which means that U is independent on V.



Now consider U is a function of P, and T, then

w=(22) ap+(3) ar s
- \oP/r oT/p -8)
If dT = 0, and dU = 0 as the case of free expansion then
() ~o 59

Which means that U is independent on P in the case of free expansion.

Experiments performed under isothermal expansion in which heat is transferred and work is
done for measuring the quantity (du/dP); , where u is the molar internal energy is shown in
figure 5-2.

Pressure, atm
0 5 10 15 20 25 30 35 40 45

0 >

%\ |

Py Airat 28°C
~100 ~—-~;\\\\‘*<;\

%‘\FD\
o
~200 >~
N
(%)1 = slope \Ce\

—-300 *li = —6.08 J/mol -atm

—400 i

v
u(P, T)— (P, T), J/mol

FIGURE 5-3
Dependence of change of molar internal energy of a real gas on pressure, where Py is
atmospheric pressure.

Rossini and Frandsen’s with air , oxygen, and mixtures of oxygen and carbon led to the
conclusion that the internal energy is a function of both temperature and pressure, They found
no pressure or temperature range in which (du/oP); =0

5.3: IDEAL GAS

We have for a real gas m only as the pressure approaches zero does the equation of state take the
simple form

PV = nRT

Furthermore the internal energy is a function of P, and T,.



Then we can define the ideal gas is the gas whose properties approach the real gas properties at
low pressure.

The ideal gas, then satisfy the following properties

‘ PV = nRT

| ({J{') -0 | (ideal gas). (5.10)
T

Problem: given the following relation for ideal gas
(6U> — 0
oP);

Answer : To prove this we should prove first that (AU /dV); = 0

(o), (), &),

Proofthat U = U(T)

But
(6P/0V)y = —nRT/V? = —P/V
Therefore
(6P> £ 0
V)
But
(6U> _ 0
oP);
Then
(6U> 0 (ideal (5-6)
), (ideal gas)

Finally, since both (aU/dP)r = 0and (0U/dV); = 0, then

| U =/(T) only. (5.11)

Now for infinitesimal quasi —static process of a hydrostatic system, the first law is



dQ = dU + Pdv,

and the heat capacity at constant volume is given by
ou
Cy=|—1| .
" (BT)V

For ideal gas U is a function of T only ; therefore,

C _(6U> _dU
V=\or/, dr

Then

dQ = Cy dT + PdV. (5.12)

Now, all equilibrium states are represented by the ideal-gas equation,

PV = nRT,
and, for an infinitesimal quasi-static process,

PdV + VdP =nRdT.
Substituting the above in Eq. (5.8), we get
dQ = (Cy +nR)dT — V dP,

and dividing by d7 yields

do dP

-d_T=CV+nR—VEf?I

At constant P , this equation becomes

aqQ
(ﬁ)p = Cv + nR

But (%)p = Cp , then

|l Cp=Cy+nR (ideal gas). (5.13)




Question Explain why for an ideal gas
Cp, > Cy.
Answer

The reason is the following: As heat is supplied to a system at constant
pressure, the gas expands and works against the external pressure, which, of
course, is equal to the pressure of the gas in a quasi-static process. Thus, Cp
includes work of expansion, which is not found in the constant volume
([ PdV = 0) heat capacity Cy.

Since U 1s a function of 7 only for an ideal gas, it follows that

AU , -
Cy = iﬁ = a function of T alone,
and so Cp = Cy + nR = a function of T alone.

One more useful equation can be obtained. Since
dQ = (Cy + nR)dT - V dP,

we find dQ = CpdT - V dP. (5_14)

5.4 EXPERIMENTAL DETERMINATION OF HEAT CAPACITY

The heat capacities of real gases are measured by the electrical method. To
measure Cy, the gas is contained in a thin-walled steel flask with a heating
wire wound around it. By maintaining an electric current in the wire, an
equivalent amount of heat is supplied to the gas, and the heat capacity at
constant volume is obtained by measuring the temperature rise of the gas.

(a) cy is constant over a wide temperature range and is very nearly equal to
3
5R.

(b) cpisconstant over a wide temperature range and is very nearly equal to
5
3R ‘

(c) the ratio cp/cy = <y is constant over a wide temperature range and is
very nearly equal to 3.

same method is used to measure Cp except that, instead of confining the gas to
a constant volume, the gas is allowed to flow at constant pressure through a
calorimeter, where it receives electrically a known equivalent heat per unit of
time. From the initial (inlet) and final (outlet) temperatures, the rate of supply
of heat, and the rate of flow of gas, the value of Cp is calculated.



3. So-called permanent dz'an;mz’c gases, namely, air, H,, D,, O,, N5, NO, and
CO:

(a) cyp is constant at ordinary temperatures, being equal to about %R, and
increases as the temperature is raised.

(b) cp is constant at ordinary temperatures, being equal to about R, and
increases as the temperature is raised.

(c) theratio cp/cp = -y is constant at ordinary temperatures, being equal to
about % and decreases as the temperature is raised.

4. Polyatomic gases and gases that are chemically active, such as CO,, NH;,
CH,, Cl,, and Br,:

cp, ¢y, and cp/cy vary with the temperature, the variation being dif-

ferent for each gas.

Monatomic Rigid Diatomic Vibrating Diatomic
U:EnRT U:§nRT U:ZnF\’T
2 2 2
3 5 7
C, =>nR Cy ==nR Cy =—nR
V2 Y72 VT2
5 7 9
Cp ==nR Cp =—nR Cp =—-nR
P72 ) P72
,_Cp_5 ,_Ce T ,_Cp_9
"¢y 3 ""cy 5 oy 7
Internal energy due to | Internal energy due to Internal energy due to
3 translational DoF . 3 translational DoF 3 translational DoF
s=3 plus 2 rotational DoF. plus 2 Rotational DoF
s=5 plus 2 Vibrational DoF.
s=7




5.5 QUASI-STATIC ADIABATIC PROCESS

d0 = Cy dT + Pav,

and dQ = CpdT — V dP.
In an adiabatic process, dQ = 0, so
VdP = CpdT,
and PdV = -CydT.
Dividing the first equation by the second, we obtain
ap . CpdV
P Cy V'’
and denoting the ratio of the heat capacities by the symbol v, we have
dP av
Ve

In P=—~InV + Inconst.,

or F PV = const. (5.15)

A family of curves representing quasi-static adiabatic processes may be
plotted on a PV diagram by assigning different values to the constant in
Eq. (5.11). The slope of any adiabatic curve is

P
— = —ry _V—.’_l
((')V)b yconst

JP P
- (;-)7): . (5.16)

where the subscript S is used to denote a reversible adiabatic process.

Quasi-static isothermal processes are represented by a family of equilat-
eral hyperbolas obtained by assigning different values to 7" in the equation

PV = nRT. Since
(f'?_'i) =L 54D
wv), v

Then we have

@./&@),-r e



Because y > 1 then, the adiabatic curve has a steeper negative slope than isothermal curve at
the same point. Look figure 5-5.

T

Pressure

FIGURE 5-5
The PV'T surface for the ideal gas and its projection onto a PV diagram. (Isotherms are
shown as dashed curves, and adiabatics as full curves.)

Problems

Problem 1 (5.9)

Prove that the work done by an ideal gas with constant heat capacities during a
quasi-static adiabatic expansion is equal to:

(a) W = —CV(T;'— Tf)

Pfo - P;V;

®) w="L—

Answer

(@) The first law of thermodynamic is

10



AU=Q+W
For adiabatic process Q = 0, SO
AU =W

but
AU = C,AT

Then
W = CyAT = Cy(T; — T;) = —Cy(T; — Tf)
(b)
dW = —PdV
PVY =C

dW = —=Ccv=rdv
f

W = —f cv=rdv
i

cyr+i Vy _ C‘G‘_]H—l _ CVi—V"'l vaYV—V‘H _ PL'ViyVi_y+1

=_ —_ __J5Y
1—yVi 1—-y 1—-y
11—y y—1

11



CHAPTER 6

The Second Law of Thermodynamics



6.1 : CONVERSION OF WORK INTO HEAT AND VICE VERSA

The first law of thermodynamics tells us that, in any process, energy is conserved. It may be
converted from one form to another but the total amount of energy is unchanged. The second law
of thermodynamics imposes limits on the efficiency of processes which convert heat into work,
such as system or internal combustion engines.

Although we know that work may be converted into heat by a suitable dissipative
mechanism (Joule's paddle wheels, or a resistor), we have not examined the conversion of heat
into work. The first law emphasized the equivalence of heat and work as forms of energy, but it
tells us nothing about the conversion from one form to the other; and, in particular, it tells us
nothing about the efficiency with which heat may be converted into work, a matter of enormous
practical importance.

To convert heat into work, we must also have at hand a process, by means of which such
a conversion may continue indefinitely without any changes in the state of the system. What we
need is a series of processes in which a system is brought back to its initial state (cycle).

Each of the processes that constitute the cycle involves either the performance of work
or a flow of heat between the system and its surroundings, which consist of higher temperature
reservoir and lower temperature reservoir

Let

e The symbol |Qy| represent the heat exchanged between the high-temperature reservoir
and the system

e The symbol |Q, | represent the heat exchanged between the low-temperature reservoir and
the system

e The symbol |W| represent the work exchanged between the system and the surrounding

All the three |Qyl, |Q.|, and |W| are expressed as absolute values, that is positive values. If
|Qy| is larger than |Q,| and if |W| is done by the system, the mechanical device by whose
agency the system is caused to undergo the cycle is called a heat engine.

The heat engine: is a machine that absorbs a heat |Q,| from hot reservoir. turns part from
this heat into work and the other part |Q,| is rejected to the cold reservoir.



Heat Reservoir

T,

|Qn|.

Working w
System & —

cycle

Q1.

Heat Reservoir
T-

eg.

STEAM ENGINE Superheated steam in. Condensed water out
PETROL ENGINE Hot ignited petrol vapour+ air in  Cooler exhaust gases out
i) Efficiency of a Heat Engine.

™ ] o _ Work out
ermal ef ficiency = heat input
ld (6.1)
or n= , ,
On

Where |Qy| and |W| are measured in joules. Applying the first law to one complete cycle,
remembering that there is no change of internal energy, we get

|Qu| = |0L| = W],

and, therefore,

|0u| - 104l
(T TR



or

ne1-— l'gL'l | 6.2)
H

Note: Thermal efficiency will be 100% only if |Qr|=0. We shall see later under
what conditions this is possible in principle and why it is not possible in practice.

There are two types of engine:

e External combustion engine (such as the Stirling engine and the steam engine)
e Internal-combustion engine (such as the gasoline engine and the diesel engine.)
In both types, a gas or a mixture of gases contained in a cylinder undergoes a cycle, thereby
causing a piston to impart to a shaft a motion of rotation against an opposing force.

6.2 The Stirling engine

In 1816 a minister of the Church of Scotland named Robert Stirling designed and patented a hot-
air engine that could convert some of the energy liberated by a burning fuel into work. The steps
in the operation of a somewhat idealized Stirling engine are shown schematically in Fig. 2-1 a.

Ty X T

[

4—»1

Figure 2 : (a) Schematic diagram of steps in the operation of an idealized Stirling engine.
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Fig. 6-2 b: The numbers under each diagram refer to the processes shown on PV diagram

Two pistons, an expansion piston on the left and a compression piston on the right, are
connected to the same shaft. As the shaft rotates, these pistons move in different phase, with the
aid of suitable connecting linkages. The space between the two pistons is filled with gas, and the
left-hand portion of the space is kept in contact with a hot reservoir (burning fuel), while the
right-hand portion is in contact with a cold reservoir. Between the two portions of gas is a device
R, called a regenerator, consisting of a packing of steel wool or a series of metal baffles, whose
thermal conductivity is low enough to support the temperature difference between the hot and
cold ends without appreciable heat conduction.

The Stirling cycle consists of four processes depicted schematically in Fig. 6-2 b and
involving pressure and volume changes plotted (as though ideal conditions existed) on the PV
diagram of Fig. 6-2 b.

1—2 While the left piston remains at the top, the right piston moves halfway up, compressing
cold gas while in contact with the cold reservoir and therefore causing heat Q. to leave. This is
an approximately isothermal compression and is depicted as a rigorously isothermal process at
the temperature 6, in Fig. 6-2b.

2—3 The left piston moves down and the right piston up, so that there is no change in volume,
but gas is forced through the regenerator from the cold side to the hot side and enters the left-
hand side at the higher temperature 8. To accomplish this, the regenerator supplied heat Qr to
the gas. Note that the process 2 —3 in
Fig. 6-2 b is at constant volume.



3 —> 4 The right piston now remains stationary as the left piston continues moving down while
in contact with the hot reservoir, causing the gas to undergo an approximately isothermal
expansion, during which heat Q is absorbed at the temperature, as shown in Fig. 6-2 b.

The, net result of the cycle is the absorption of heal |Qy| at the high temperature Ty, the
rejection of heat |Q,| at the low temperature T, and the delivery of work W = |Qy| — Q.| to
the surroundings, with no net heat transfer resulting from the two constant-volume processes.

The stirling engine has some unique advantages compared with other heat engines.

1- The engine can use any heat source ( heating from radioactivity to combustion of biomass
waste products)
2- Using open -air combustion
3- The engine does not produce toxic exhaust
Applications
1- An interesting application is an implantable Stirling engine for artificial heart power,
which is being developed at the Joint Center for Graduate Study, University of
Washington.

6.3 STEAM ENGINE

The steam is historically quite important, because it was the first engine driven by heat, rather
than animals, water, or wind.

A schematic diagram of an elementary steam power plant is shown in Fig. 6-3a.



4 Pressure P

Feed-water

Cylinder
pump =

and piston

Volume V

(a) (&)
Iig. 7-3 {a) Efementary steam powcer plant. (b} PV diagram of Rankine cycle.

6-4: INTERNAL COMBUSTION ENGINE

e Gasoline Engine

Pressure P &

Volume V

Figure 6.4: Otto Cycle for idealized gasoline engine.

(1) The behavior of a gasoline engine can be approximated by assuming a set of ideal conditions

(2) All processes arc quasi-static.



(3) There is no friction.

On the basis of these assumptions the standard Otto cycle is composed of six simple processes
of an ideal gas four of which require motion of the piston and are called strokes , ( See Fig. 6-
4a).

5 —> 1 represents a quasi-static isobaric intake at atmospheric pressure. There is no friction and
no acceleration. The volume varies from zero to V; as the number of moles varies from
zero to n according to the equation

P()V = ?’.LRT],

where P, is atmospheric pressure and T; is the temperature of the outside air.

1—> 2 represents a quasi-static, adiabatic compression of n moles of air. There is no friction
and no loss of heat through the cylinder wall. The temperature rises from T; to T,
according to the equation

T =TV,

2 — 3 represents a quasi-static isochoric increase of temperature and pressure of n moles of air,
brought about by an absorption of heat |Q,| from a series of external reservoirs whose
temperatures range from T, to T3, If there were only one reservoir at temperature 3, the
flow of heat would not be quasi-static. This process is meant to approximate the effect of
the explosion in a gasoline engine.

3 —4 represents a quasi-static adiabatic expansion of n moles of air, involving a drop in
temperature from T; to T,| according to the equation

T3V = Tav]™,

4 —1 represents a quasi-static isochoric drop in temperature and pressure of n moles of air,
brought about by a rejection of |Q.| heat to a series of external reservoirs ranging in
temperature from T, to T;. This process is meant to approximate the drop to atmospheric
pressure upon opening the exhaust valve.

1 —5 represents a quasi-static isobaric exhaust at atmospheric pressure. The volume varies from
V; to zero as the number of moles varies from n to zero, with the temperature remaining
constant at the value T; .



Note: The two isobaric processes 5—> 1 and 1 —5 obviously cancel each other
e Summary of Otto cycle for gasoline engine:

The Otto cycle consists of two constant -volume steps during which heat is transferred,
connected by two adiabatic, as shown in the figure.

Stepl - 2: Q12=0 Wiy = AUy, = Gy (T, — Ty)
Step2 — 3: W3 =0 Q23 = Qy = AUp3 = Cy(T3 — T)
Step3 > 41 (3, =0 W3y = AU3y = Cy(Ty — T3)
Step4d - 1. Wy =0 Q41 = QL =AUy = Cy(T; —T,)
n= |chcle| —1— |QL| -1— CV(T4 - Tl)
|Qxl |Qul Cy (T3 — T3)
(T, — Ty)
12 .. (6.3)
7 (Ts — T3)

The two adiabatic processes during the compression stroke and power stroke
are given by

nW =
and T, l"lﬁﬁl =T "3 l,
which yield, after division,
nhn T
Ty Ty

Change signs and add unity to obtain
TJ‘T] ) T_\—Tg

T Ts
or Li-Th _Ti
h-T» T

Combine this result with Eq. (6.4) and Eq. (6.3) to obtain the thermal effi-
ciency n of an idealized gasoline engine,
(6.5)

—1-=L
n T,



It shows that the thermal efficiency of a gasoline engine
working in the Otto cycle depends on the temperature before and after com-
pression. In a gasoline engine with temperatures 77 = 300K and 75, = 580K,
the efficiency is 48 percent.

This is the optimum efficiency for a gasoline engine operating in an idealized
quasi -static Otto cycle for the temperatures cited.

6.3 THE DISEL ENGINE

Pressure P A

1Ol

2

|

|

j FIGURE 6-2

; Idealized Diesel cycle for oil-
A A v, fired engines shown on a PV

Volume V diagram.

B |n comparison to gasoline engine, the process 2> 3 of an air-standard diesel engine is an
isobaric heat absorption while the volume expands quasi-statically

B 2->3isa vertical line in Otto’s while it’s a horizontal line in Diesel’s.

n=1—-—— - “*—-—=-— (6.6)

where the expansion ratio rg (also called the “cutoff ratio” in engineering) is
given by

10



and T, and T are the temperatures at the beginning and end of the compres-
sion stroke, respectively. Interestingly, the efficiency of the Diesel cycle
expressed in Eq. (6.6) does not depend on the compression ratio rc given by

Fc = Vz.
Taking, for example, rg =95, y= 14, T) = 300K, and 7> = 990K, we

obtain
. (54 —1) 300K
T T 095 -1) 990K
= 54 percent.

6-5 HEAT ENGINE:KELVIN -BLANCK STATEMENT OF THE SECOND LAW

Thermodynamics owes its origin to the attempt of conversion of heat into work and to
develop the theory of operation of devices for this purpose. It is therefore fitting that one of the
fundamental laws of thermodynamics is based upon the operation of heat engines.

The second law originated as an empirical statement about the limitations of heat engines. There
are two early statements of the second law made after empirical observation of how the real
world behaved

i) The Kelvin-Planck Statement: “No process is possible whose sole result is the
absorption of heal from a reservoir and the conversion of this heal into work.”.

6-7: REFREGIRATOR; CLAUSIUS STATEMENT OF THE SECOND LAW

We have seen that a heat engine is: a device by which a system is taken through a cycle in such
a direction that some heat is absorbed at high temperature, a smaller amount is rejected at a lower
temperature, and a net amount of work is done by the system on the outside.

Refrigerator: is a device work in the opposite direction to that of an engine : the absorption
of some heat at a low temperature, the rejection of a larger amount at higher temperature, and a
net amount of work done on the system, as shown in figure 6-6.

11



High-temperature reservoir

FIGURE 6-6
Schematic representation of the generalized
refrigerator.

Low-temperature reservoir

The Stirling cycle is capable of being reversed and, when reversed, it gives rise to one of the
most useful types of refrigerator.

Figure 6-6 represents a schematic diagram of a refrigerator.

Let the following notation ( all positive quantities( refer to one complete cycle:

|Qn| represents the amount of heat rejected by the refrigerant to the high-
temperature reservoir;

|QL| represents the amount of heat absorbed by the refrigerant from the
low-temperature reservoir; and

|W| represents the net work done on the refrigerant by the surroundings.

Since the refrigerant undergoes a cycle, there is no change in internal energy,
and the first law becomes

IQLl = |QH| = |W|’
or |Qn| = QL] + [W].

Efficiency of the refrigerator : From the definition efficiency of refrigerator is given by

A
T=WT ™ 1eal = 1040

Work is always necessary to transfer heat from a lower-temperature reservoir to a higher
temperature reservoir, this because the nature fact is that heat does not flow spontaneously from
a lower-temperature reservoir to a higher temperature reservoir. This negative statement leads to
the Clausius statement of the second law.

“No process is possible whose sole result is the transfer of heal from a cooler to a hotter
body.”

12



6-8: EQUIVALENCE OF KELVIN-PLANCK AND CLAUSIUS STATEMENTS

At first sight, the Kelvin-Planck and the Clausius statements appear to be quite unconnected, but
we shall see immediately that they are in all respects equivalent.

Kelvin Clausius
Reservoir Reservoir
T, Ti>T:
Lo [ e
> W=Q >

Systen) [r— System
T Q

Reservoir

T:
IMPOSSIBLE

Two statements are said to be equivalent in two ways:

1- The truth of one implies the truth of the second and the truth of the second implies the truth
of the first.

2- The violation of one implies the violation of the second, and violation of the second implies
the violation of the first.

We will select the second way ( we will prove The violation of Kevin-Planck statement implies

the violation of Clausius statement, and violation of Clausius statement implies the violation of

Kelvin-Planck statement).

To prove that violation of Clausius statement statement implies the violation of Kevin-Planck,
consider a refrigerator, shown in the left-hand side of P'ig. 7-10, which requires no work to
transfer Q, units of heat from a cold reservoir to a hot reservoir and which therefore violates the
Clausius statement. Suppose that a heat engine (on the right) also operates between the same two
reservoirs in such a way that heat Q, is delivered to the cold reservoir. The engine, of course,
docs not violate any law, but the refrigerator and engine together constitute a self-acting device
whose sole effect is to take heat Q; — Q, from the hot reservoir and to convert all this heat into
work. Therefore the refrigerator and engine together constitute a violation of the Kelvin-Planck
statement.

13



T, T
! 0
) 1
P - —— 0,-0:
1 1
I L W=0,-0, - 00
| R E —— Composite V=00
I 1 Engine
LI [ I
le QZ
r<T1 Ir<n

IMPOSSIBLE

Now, to prove that violation of Kelvin-Plank statement statement implies the violation of
Clausius statements consider an engine, shown on the left hand side of Fig. 6-11, which rejects
no heat to the cold reservoir and which therefore violates the Kelvin-Planck statement. Suppose
that a refrigerator (on the right) also operates between the same two reservoirs and uses up all the
work liberated by the engine. The refrigerator violates no law, but the engine and refrigerator
together constitute a self-acting device whose sole effect is to transfer heat Q, from the cold to
the hot reservoir. Therefore the engine and refrigerator together constitute, a violation of the
Clausius statement.

T

TVI

Q O+ 0,

1
E R ! C it
_ — 1 ~omposite
=0, I - refrigerator
0, 0,
T<1 r<n

IMPOSSIBLE

Problems

6.1. Show that the thermal efficiency of an ideal Otto cycle is given by

Where the ratio r =V, /V, is called either the compression ratio or the expansion ratio. of the
spark. Calculaten whenr =9andy = 1.5

14



Solution

The Otto cycle consists of 4-steps: two constant -volume steps during which heat is transferred,
connected by two adiabatic, as shown in the figure.

Pressure P 4

Volume V¥

Stepl g 2: Q12 = 0 le = AUlZ = CV(TZ - Tl)
Step2 > 3: Wy =0 Q23 = Qy = AUp3 = Cy(T3 — T2)
Step3 4 4: Q34 = 0 W34 = AU34 = Cv(T4 —_ T3)
Stepd - 1: Wy =0 Qa1 = Qp =AUy = Cy(T; — T,)
— |chcle| — |QH| - |QL| -1— IQLI
|Qul |Qxl |Qxl
_GM=T) W=
Cv(T3 —T) (T5 — T3)

The two adiabatic process during the compression and power stroke satisfy the following
relations:

Which yield after devision
n T
T, Ts
Changing sign and adding unity to obtain
T, —T, T3—-T,
T, T

. (4)

Or

15



L-T T,

Ts—T, Ts
Combinig this result with Eq. (1) and Eq. (4) then
Ty
(A
But from Eq.(2)
T, (V2>”_1 1
T. V. /AN
2 1 (V_;)
Then
_ 1 1 2
n=1- (ﬁ)y_l e wherer = —2
V2
Whenr =9andy = 1.5, then
n= 1—\/—1_=0.67=67%
9
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CHAPTER 7

The Carnot Cycle and the
Thermodynamic Temperature Scale



7-1: CARNOT CYCLE

Inasmuch as100 percent efficiency is not allowed by the second law , let us ask the following
questions:

(1) What is the maximum efficiency that can be achieved by an engine operating between
these two reservoirs?

(2) What are the characteristics of such an engine?

(3) Of what effect is the nature of the substance undergoing the cycle?

The importance of these questions was recognized by Nicolas Leonard Sadi Carnot who in the
year 1824, before the first law of thermodynamics was firmly established, published a paper
entitled " Reflections on the Motive power of Fire”. In this paper Carnot described an ideal
engine operating in a particularly simple cycle known today as the Carnot cycle.

An engine operating in a Carnot cycle is' called a Camol engine. A Carnot engine operates
between two reservoirs in a particularly simple way. All the heat that is absorbed is absorbed at
a constant high temperature, namely, that of the hot reservoir. Also, all the heal that is rejected
is rejected at a constant lower temperature, that of the cold reservoir. Since all four processes
are reversible, the Carnot cycle

is a reversible cycle.
7-2: EXAMPLES OF CARNOT ENGINE

Figure 7-1 shows the simplest example of carnot cycle. The gas is not necessary an ideal gas.

Pressure P 4

» FIGURE 7-1
Volume ¥ Carnot cycle of a real gas.

The dashed line marked Ty and T, are isothermal curves. The gas is initially in the state
represented by the point 1. The four procees is then:

1. Process 1 — 2: Reversible asiabatic compression until temperature rises to Ty >
2. Process 2 — 3: reversible isothermal expansion until the point 3 is reached.
3. Process 3 — 4: Reversible asiabatic expansion until temperature drops to T;.

2



4. Process 4 — 1: reversible isothermal compression until the original state reached.

During the isothermal expansion 2 — 3 . heat |Qy| is absorbed from the hotter reservoir at Ty .
During the isothermal compression 4 — 1, heat |Q, | is rejected to the cooler reservoir at T},

7-3: CARNOT REFREGIRATOR

Because Carnot cycle is reversible , then the reversible of Carnot engine is Carnot refrigerator.
The figure 7-5 shows representation of Carnot refrigerator.

High-temperature reservoir High-temperature reservoir
|Oxl
v
R ——» Wl wl—t%» R

Low-temperature reservoir Low-temperature reservoir

(a) (b)
FIGURE 7-5
Schematic representation of (a) the Carnot engine, and (b) the Carnot refrigerator.

The Importance of Carnot refrigerator is the same quantities of Carnot engine is used in Carnot
refrigerator with the opposite sign.

7-4: CARNOT TEOREM AND COROLLARY

Carnot theorem stated that “ No heat engine operating between two given reservoirs can be
more efficient than a Carnot engine operating between the same two reservoirs”

Proof:

As shown in Figure - ,imagine a Carnot engine R, which is reversible, and other engine I ,
which is irreversible, working between the same two reversoirs and adjust so that they both
deliver the same amount of work |W| .



High-temperature reservoir

llQ},rl

Wi
g P
Qul — |W| Q| =W

Low-temperature reservoir

Let us assume that the efficiency of the engine | is greater than that of R;

N > Mg
w w
Oor W] “,”
lleul] = |Qn

So  1Qul > [lQul|

\Now let the engine | drive the Carnot engine an Carnot refrigerator. This is shown in figure 7-6



High-temperature reservoir

LA | B

104l - W] 1Qul = W]

FIGURE 7-6
Irreversible engine / operating a Carnot
refrigerator R.

Low-temperature reservoir

The net heat extracted from the low-temperature reservoir by the composite system

(IQu| = W) = (124 — IW]) = |Qu| — |24,
The net heat delivered t the high-temperature reservoir is also

Qx| — Q4]

The net heat extracted = The net heat delivered

the composite system transfer 12#] —1Qx| from the cold and delivers the same amount of heat
to the hot reservoir without work being done by the surroundings. This composite system violate
the second law of thermodynamics (Clausius statement).

Then the assumption of ; > ny is false and this proof Carnot theorem .
We may express this result in symbols, thus:

ul < Ng = (71)

A corollary to this theorem is that “all Carnot engines running between the same two reservoir
have the same efficiency”.



Problem 4.5. Prove directly (by calculating the heat taken in and the heat expelled) that a Carnot
engine using an ideal gas as the working substance has an efficiency of 1 — T, /Ty.

Answer:

Pressure P &

47T,

»  FIGURE 7-1
Volume ¥ Carnot cycle of a real gas.

As shown in figure 7-1, to compute |Q,| and |Qy| ,we need only to consider the isothermal
The isothermal process 2 — 3

For any infinitesimal reversible process of an ideal gas , the fisrt law of thermodynamic can be
written as;

dQ = C,dT + PdV

Applying this equation to the isothermal process 2 — 3, the heat absorbed is

V3

104l = | Pav

Similarly , for the isothermal process 4 — 1

Va
Q.| = nRTyln—
Vi

Therefore
V.
In2
Qnl _ _VVz - (7.2)
|QL| 11'174

1



Since the process 1 — 2 is adiabatic, we may write, for any infinitesimal portion

Or
cyar =Ly
Ty
Integrating from 1 — 2, we get
Th
1 f o 4T _ Ve
aR ) VT T MY,
Ty
Similarly, for the adiabatic process 3 — 4,
Ty
1 f o 4T _ Vs
R VT T,
Th
Therefore
V2 V3
In—=In—
TLV1 TLV4
or e (7.3)
My
nV2 = nV1
Combining eq.( 7.2) and (7.3) ,e obtain
Qul _ Tu
QL] T
1-T,/Ty
Ty
=1-—
n T,



CHAPTER 8

Entropy



We proved in chapter 7 , For Carnot engine that

Qul _ Tu
QT
Qu_ _Tn
o T,

So actually, during this reversible process we have

Q, QH) _ yng _ ,
z (TL + To) =0 = T = 0 (reversible process)

n

Let us consider the following theorem stated by Clausius:

= ”In an arbitrary cyclic process P, the following inequality
holds:

where the equality holds for P reversible.”

2.4 Entropy

Since gﬁd?Q = 0 for reversible process, then %Q is exact differentia. This implies that there a state

function S called entropy whose differential is given as

dQ
ds = T
The entropy is defined up to an additive constant. The difference between entropies of any two
states A and B is
B dQ
SA - SB = f T
A

What happens when the integration is along an irreversible path? Since | — R is a cycle
(see Fig. 2.5), it follows from Clausius’ theorem that



~

\P irreversible
path

reversible

T

Figure 2.5: | — R (irreversible-reversible) cycle.

9
—r I~

R
o0 00
v < c — LS? - AS1 £ .
< [ [ =swm-sw

Therefore, in general

Bs0
¢ < LS-1 - AS-T ‘-'" N
| F s -s)

and the equality holds for a reversible process.

and the equality holds for a reversible process. In particular, for an isolated system, which does
not exchange heat with a reservoir, §Q = 0 and therefore
AS = 0.
This means that the entropy of an isolated system never decreases and remains constant
during a reversible transformation.

Note:

i) The joint of a system and its environment is called "universe”. Defined in this
way, the “universe” is an isolated system and, therefore, its entropy never decreases.
However, the entropy of a non-isolated system may decrease at the expense of the
system’s environment.



i) Since the entropy is a state function, S(B) — S(A) is independent of the path,
regardless whether it is reversible or irreversible. For an irreversible path, the entropy
of the environment changes, whereas for a reversible one it does not.

iii) Remember that the entropy difference
B
dQ
S,—Sp = f T
A

only when the path is reversible; otherwise the difference is larger than the integral

Example Problem ( ): The heat capacity at constant volume of a number of substances can
be represented empirically by an equation of the form
Cy = a+ bT + CT?
where a, b, and c are constants. Calculate the change in internal energy and the change in
entropy when the temperature changes fromT;toT, at constant volume.
Solution
At constant volume, we have dU = Cy dT and AU = f;;z CydT = f;z(a + bT + cT?)dT .

Thus,
AU = (aT +bT?/2+cT?/3)|7

T T
AS=S:—S = | Cy/TdT = alnT +bT +cT?/2 ;
4T 1

8.4 ENTROPY OF AN IDEAL GAS

If a system absorbs an infinitesimal amount of heat d Qg during a reversible process, the entropy
change of the system is equal to

_ 9

ds T

T is interesting to note that, although dQg, the ration dQg/T is exact. The reciprocal of the
absolute thermodynamic temperature is, therefore, the integrating factor of the integrating factor
of dQp.

consider one of the expressions for dQy of an ideal gas,

dU = dQ + dW

4



For reversible process

Then

SO

For ideal gas we have

So

Consequently

But

Now in equation (2)

By integration this becomes

dU = dQ — PdV

dQr
S =——

dU =TdS — PdV

C,dT = TdS — PdV - (1)

dr P
ds = CVT-I_FdV(Z)

PV =nRT
P_nR

T V
dT nR

ds = CVT+7dV

f

dT v
Sf:fch-Fannvi-i‘Si

i

f

dT Ve
AS = f CVT-I_annVi """ (3)

i




e Calculate of AS intermsof Cp

we have

And from the ideal gas law
PV =nRT
Then
PdV 4+ VdP = nRdT
PdV = nRdT — VdP --- (5)

From eq.(4) and eq. (5) with eq.(1),

Then

(Cp — nR)AT = TdS — nRdT — VdP

Which becomes

is=c, T VP o
S ProT
And from the ideal gas law
PV = nRT
vV _ nR
T P
Then eq. (6) becomes
s = C dT nRdP
S PT P

With integration this becomes

f

AS—JCdT ledp

I A I 2
l



Or

dT
AS=fCP——ann—

f
Py

T P,

i

f
P;

dT
ASszp?+ann— (7)

i

Py




Chapter 9:
Mathematical methods



9.1 : Characteristic function

Change of variables, known as Legendre differential transformation, yield
functions that are fundamentally important in thermodynamics.

If the state of a system id described by a function of two variables f(x,y),
which satisfies the equation

df =udx +vdy - 9.1)

and we wish to change the description to one involving a new function g(u, y),
satisfying a similar equation in terms of du and dy, then it is necessary to
define the Legendre transform g(u, y) as

g=f—ux (92)
It is readily verified that g satisfies the equation
dg = —xdu+vdy. (9.3)

Let us apply this to the first law of thermodynamics.

Consider the first law of thermadynami::s for a hydrostatic system with
heat expressed in terms of temperature and entropy, namely,

dU = —PdV + T dS, (9.4)

e ENTHALPY

Define a new characteristic function H, called en?ﬁa!py, using Eq. (10.2) to
obtain

H=U+pyv. (9.9)

Since U, P, and V are all state functions, H is also a state function. In
differential form,

dH = dU + PdV + VdP

But from eq.(10.4), then
dH = —PdV + Tds + PdV + VdP



dH = Tds + VdP -+ - (9.6)

where H is a function characterized by P and S.

e HELMHOLTZ FREE ENERGY

Equation (10.4) may be rewritten as
dU =TdS — PdV,

in order to generate a characteristic function other than enthalpy, namely, the
Helmholtz function A, given by the Legendre transform

A=U-TS§S, (9.7)

which is also a state function. In differential form,

dA = —-SdT — PdV, (9.8)

where 4 is a function of T and V.

The last characteristic function, known as the Gibbs function G, is gener-
ated by a Legendre transformation of

dH = TdS + V dP,
Then

G=H-TS, (9.9)

which is also a state function. In differential form,

dG = V dP — S dT., (9.10}}

where G is a function characterized by P and T.



In terms of the state functions so far defined, we have written four differ-
ential equations that are formulations of the first law, namely,

dU = —PdV + T ds,
dH = VdP+ TdS,
dA = —PdV — SdT,

and dG =V dP — SdT.

The characteristics functions U(V,S),H(P,S),A(V,T),and G(P,T) are known
as thermodynamic potential functions.

Now

ucv,s)
Then we can write

oU oU
dU = (a_V) SdV + (ﬁ) VdS,

from comparison with Eq. (10.4), that
au au
(m'): pand (US‘), =T (9.11)
9.5: MAXWELL RELATIONS

We have seen that the hydrostatic properties of a pure substance are conve-
niently represented in terms of the differentials of any of these four functions:

dU = —Pdv + T dS,
dH = VdP+ T ds,
dAd = —PdV — SdT,

dG=VdP—SdT.

From (10.11), then

ou au
((ZW) .s'_ —-P and (ﬁ) V— T.

But



(), @), - ), ),

Then
( ) (=P) = ( ) )
Then
(aT) - (ap) First Maxwell Equati
6V < = 65 . Lrs axwe qua on

Similarly from eq.(10.6);
dH = Tds + VdP ---(9.12)

And H = H(S, P) as exact differential is written as

dH=<(;—1;I) ds + (g;[) dP - (9.13)

Comparing egs.( 10.6 , 10.7 ) ,then

r=(), v =),
(7). ), - &), &)

(2,0~ (%), ®

Then

(aT) = (av> Second Il equati
aP < = 65’ P, econa maxwe equa on
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Similarly dA is ;
dA = —PdV — SdT --- (9.14)
And A = A(V,T) as exact differential is written as

0A

94
dA = (W>T v + (6_T)V dT --- (9.15)

Comparing egs.(10.8 , 10.9) ,then

p= (1), w0 -s=(2),
(). G7), = 7). ),

(), 9= Gz,

Then

(as> —(ap) Third Il equati
6V , = 6T V, ira maxwe equa on

Similarly dG is;
dG = VdP — SdT -+ (9.16)

And G = G(P,T) as exact differential is written as

dG = <aa> dP + <aa) dT --- (9.17)
~\oP/; aT/p '

Comparing egs.( 10.10, 10.11 ) ,then

V=), m -s=(5),




(7, G7), = G5), ),

(57), 0= (3), 9
Then

(%) =~ (%5) . Fourth maswelt equati
aT P— P T, ourtn maxwetl equation

Then in conclusion we can write the following

1. dU =TdS — PdV; hence, (B—T) = _(3}’)

ov), \as),
2. dH = TdS + V dP; hence, (%g) S= (g—g)P.
3. dA=-SdT — PdV; hence, (g—i) T= (g_;)v
4. dG = —SdT + V dP; hence, (%) T: — (g—;f) R

Problem (10.1)

Given the relations

l. dU=TdS — PdV
2. dH=TdS+ VdP;

3. dA=-8dT - PdV;

4. dG = —-SdT + V dP;



Derive the following Maxwell’s equations

.57, = =),
2.(57), = (5),
3 (), = o)y
+ (), =~ ),

( Look the answer above)





