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وقدرات   مهارات  وتطوير   ، القومية  الأكاديمية  للمعايير  طبقاً  متميزين 

الموارد البشرية وتوفير خدمات مجتمعية وبيئية تلبى طموحات مجتمع  

 جنوب الوادى ، وبناء الشراكات المجتمعية الفاعلة. 
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Introduction   

  The different branches of theoretical physics are concerned with the 

study of all physical phenomena that occur in the universe. These 

phenomena consist of a group of mechanical phenomena that relate to the 

states of static and movement of physical bodies under the influence of 

natural forces, and electromagnetic phenomena that consist of electric and 

magnetic fields that arise from the presence of static or moving electrical 

charges that generate light radiation from them. The many in the form of 

waves that propagate and interact with matter, and besides that there are 

other phenomena that occur in the range of the atom and its components. 

To understand these phenomena, the human mind resorts to science, 

which depends mainly on experience, and the method of science is to 

make certain models stemming from experience and experience that a 

person touches when he observes a certain type of phenomena. In the 

model, the mind names some things and knows other things, and then 

uses these concepts to put his experimental notes in the form of principles 

and laws, and he may add to this assumptions from his creations. 

 

 In most of these models mathematics with its laws and mathematical 

logic plays a constructive role. Theories are based on this basis using the 

rules of logic, and their correctness or error is judged by experience. Until 

the late nineteenth century, mechanical phenomena and the phenomena of 

gravity were interpreted in a very satisfactory manner using Newton's 

laws of motion and Newton's law of general attraction, which led 

scientists to believe that the mental framework of these laws is the correct 

and appropriate framework for describing all physical phenomena. At the 

same time (in 1864 A.D.) Maxwell's electromagnetic theory appeared, 

which was successful when explaining electric and magnetic phenomena 

and considering light to be electromagnetic waves. It was possible that 

the path of science based on Newton's laws in classical mechanics, and 

Maxwell's theory of electromagnetic fields lined with wreaths of success, 

especially after the great technological progress and the success of 

celestial mechanics in discovering new planets. Except that some 

contradictions and questions arose when scientists attempted to link the 

laws of classical mechanics with electromagnetic theory to explain some 

common phenomena. This link stems from the (false) belief that the 

mental framework of Newton's laws is the correct framework for building 
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physical theories. Here it was the collision of basic concepts, the 

beginning of thinking to revisit classical physics, which resulted in the 

emergence of new ideas and modern science. Among the recent theories 

that have resulted from this collision : 

The Theory of Relativity developed by the scientist Albert Einstein 

between 1905 and 1917 AD and is in two parts: The first part is called the 

theory of special relativity The Special (Restricted) Theory of 

Relativity it was developed in 1905, and it is the subject of our studies in 

these lectures. The second part is called The General Theory of Relativity 

and takes into account the fields of gravitation. In the first section, we 

will try to clarify the questions in classical physics that led to the 

emergence of relativity.  

 

Since ancient times, scholars and philosophers have spoken of 

relativistic knowledge and relativistic movement. And "Newton" was 

aware of the relativistic movement, until he announced in 1687 what he 

called "the principle of relativity to Newton", which is: "Does the 

movement of objects in relation to one another in a framework (ie 

somewhere: a train or other) change if this framework moves?" Which 

contains the objects a regular movement after he was still. " As for the 

theory of relativity, it searches for laws that explain physical phenomena, 

and are not affected by time, space and conditions . 
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Chapter One 
Pre-Relativity Physics 

1. Reference Frame 

Physical phenomena are events that occur at a specific location and 

time. In order to measure these events and formulate the laws that govern 

them, we need an accurate hour to know the time of their occurrence and 

space engineering that enables us to determine their locations and the 

distances between these events. In the mathematical model, the event 

represents with a geometrical point whose location is determined by 

measuring its dimensions (Coordinates) from three planes called the basic 

planes, as it is called the lines of its intersection with the basic axes. The 

main set of axes, in addition to the clock, is known as a reference frame, 

and it is denoted by the symbol 𝑺. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

Fig. (1) 

 

Where the spatial coordinates are: )( ,, zyx  And time is 𝒕 form fig.(1)  

as the name of the observer is called for those who make the observations 

and measurements in this frame, and it is symbolized by the symbol 𝑨. 

There is an infinite number of correlative frames that are suitable for 

measuring physical phenomena, and usually the observer chooses the 

affiliate frame that is consistent with his mechanical state. ). 

We will symbolize these animated frames as SS  ,   .............. 

Where the spatial coordinates are: )(,)( ,,,, zyxzyx  . The 

corresponding times are tt  , . ... and so on ......................... 
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In order to relate the results to the measurements obtained by the 

observers 𝑨,𝑩, 𝑪...... each in its affiliation frame, we need a relationship 

between the coordinates: 

)( ,, zyx  and time 𝑡, and coordinates )( ,, zyx   and time 𝑡′, and 

coordinates )( ,, zyx  and time 𝑡′′, .................  

This relationship is called a transformation, and transformations play an 

important role in the formulation of physical laws, as it is through them 

that the frameworks of affiliation can be chosen in which the physical law 

takes its simplest form. 

 

2. Newton's laws of motion: 

Newton assumed the existence of an affiliate frame preferable to others, 

and all phenomena can be measured from static or movement with 

respect to it, and it is called the Absolute Frame: Newton formulated his 

three known laws regarding the absolute frame. If we code for this frame 

𝑺, then Newton's laws take the formula: 

 

The first law: 

If the force  𝑭⃗⃗   acting on a particle is null, then it is moving at a 

regular velocity  𝒗𝟎⃗⃗⃗⃗   in a straight line, i.e if: 𝑭⃗⃗ = 𝟎⃗⃗     then: 

v
dt
rd

v o
==                 (1) 

Where 𝒓⃗  the position vector of the particle, 𝒕 time is measured with 

respect to the absolute frame, so the path of the particle is as: 

tvrr oo
+=             (2) 

 This is the equation of a straight line in the vector form. 

 

The second law: 

If a force  𝑭⃗⃗   acts on a particle of mass  𝒎, it moves with acceleration 𝒂⃗⃗  

as:    

==

dt
rd

mamF 2

2

                  (3) 

The path of the particle depends on the form of the force 𝑭⃗⃗ , i.e. the form 

of the law of force. 
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The third law: 

Every action has a reaction of equal magnitude and opposite to it in 

direction. 

If it 𝑭𝟏𝟐
⃗⃗ ⃗⃗ ⃗⃗   is the force that body 1 acts on body 2, 𝑭𝟐𝟏

⃗⃗ ⃗⃗ ⃗⃗   that which body 2 

acts on body 1 at the same moment, then: 

   FF 2112
−=

                   (4) 

This law means that if the two bodies are far apart, then each of them is 

affected by the other at the same moment, meaning that the influence of 

the forces is instantaneous. 

 

3. Absolute Time: 

From Newton's first law, we find that if the force acting on a particle 

vanishes, the particle’s path measured with respect to the frame 𝑺 is a 

straight line. If we consider another frame 𝑺′ moving at a uniform 

velocity 𝑽⃗⃗  in a straight line with respect to the frame 𝑺, we find that the 

particle is moving with respect 𝑺′ at regular velocity 𝒗′⃗⃗  ⃗, which is given 

by the formula: 

 −= Vvv
                        (5) 

Where 𝑣  the velocity of the particle is with respect to 𝑺. If  𝒓′⃗⃗  ⃗ is the 

vector of the position of the particle with respect to the frame 𝑺′  then: 

 





−= Vv
td
rd                         (6) 

Where 𝒕′ the time measured with respect to 𝑺′, and by substituting 𝒗⃗⃗  

from equation (1) into equation (6): 

 





−= Vv
td
rd

o

                        (7) 

By integrating with respect to time: 𝒕′  we find that: 

 

 +−= rtVvr oo
)(                         (8) 

 

Where 𝒓𝟎
′⃗⃗⃗⃗  is the position of the particle at the moment: 𝒕′ = 𝟎 Equation 

(8) is the equation of the path of the particle if it is observed by the 

observer 𝑩 in the frame 𝑺′, but 𝑩 he also notices that the particle is not 
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under the influence of a force, so its path must be a straight line with 

respect to it. Assuming that the two frames 𝑺 , 𝑺′ apply when: 𝒕′ = 𝒕 =

𝟎 it is  
rr oo

=   also produced - from fig. ( 2). That: 

 

 
Fig. (2) 

 

 +−=−= rtVvtVrr oo
)(                            (9) 

 

In comparison with equation (8), we find that: 

 

tt =                                (10) 

 

Condition (10) means that time is absolute and does not depend on the 

enrollment framework measured against it. We conclude from this - 

assuming that time is absolute - that if Newton's first law applies in the 

frame 𝑺, then it also applies in 𝑺′ reality. There is a set of proportional 

frames that move relative to each other at a regular velocity in a straight 

line, and in each of them Newton's first law applies. These frames are 

called inertial frames, and they play a large role in physical laws. 

These frames can be considered a substitute for the absolute frame 

imposed by Newton, and he recently called them "the alpha particles" 
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4. The principle of symmetry of observers - Galileo 

Transformation: 

The physical phenomena that occur in the universe are completely 

independent of the observer who observes them. If the observer 𝑨 finds 

that the path of a particle is a straight line and deduces from this that the 

particle is not under the influence of a force, then the observer 𝑩- who 

moves at a uniform velocity in a straight line with respect to the 

observer 𝑨 - must find that as well. 

 

It is expressed that the observers in inertial frames are the same or 

equivalent to describe physical phenomena. All the difference between 

them is that they use different symbols, but the form of the law that 

governs the physical phenomenon they reach is one. 

 

The relationship between measurements of the observers in inertial 

frames can be found by transformations. Assume that the frame 𝑺′ 

moves with respect to the a frame 𝑺 at a regular velocity 𝑽⃗⃗  in a straight 

line - Figure (2) – if   𝑟⃗⃗  , 𝑟′ ⃗⃗⃗⃗  are the two locations of the event 𝒑 at the 

two times 𝑡 , 𝑡′, with respect to each of 𝑆 , 𝑆′, then: 

 

tt =        ,     
                                                    (11) 

 −= tVrr
 

 

The two equations (11) are known as the Galileo transformation. This 

transformation is the basis on which classical mechanics are built. Under 

this transformation, which links the measurements of each of the 

observers 𝑨,𝑩 to each other, we find that Newton's second law 

preserves its form, so if we assume that the form of this law in relation 

to the observer 𝑨 is: 

 

= Fdt
rd

m 2

2      

 

For what is observed 𝑩 is: 
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
 =−=

dt
rd

tVrdt
d

dt
rd

2

2

2

2

2

2

)(
            (12) 

 

This is because a 𝑽⃗⃗  vector is constant. 

 

   If we denote the measured force with respect to the observer 𝑩 

symbol 𝑭′⃗⃗  ⃗, then: 

 





 === Fdt
rd

m
td
rd

mF 2

2

2

2

            (13) 

 

This means that Newton's laws are "invariant in form" under Galileo 

transformation. That is observers 𝑨 , 𝑩 obtain the same form of laws in 

the language of the affiliated frameworks to which they belong. This is 

called the principle of relativity of Galileo. It is noticed that in the last 

step of equation (13) we assumed - with Newton - that: 

 

mm =                (14) 

 

That is, the mass of a particle is absolute, not dependent on the frame 

measured with respect to it. 

 

5. Result: 

If we impose two events that are localized in relation to the frame 𝑺 

they are  𝒓𝟏⃗⃗⃗⃗  , 𝒓𝟐⃗⃗⃗⃗  , at the same moment 𝒕, then their localization in 

relation to the frame 𝑺′ are: 

 

tVrr −= 11

    ,  −= tVrr 22

    

 

Subtraction and quadrature we find that: 

 

)(
2

21 rr  −     −= )(
2

21 rr             (15) 

 

That is, the distance between the two events remains "invariant in the 

form" under  Galileo transformation, and this means that the measured 
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lengths are absolute. If we take the two events very close to each other, 

then (15) becomes: 

,)()(
22

rdrd =  

 ++=++ )()()()()()(
22222

dzdydxzdydxd         (16) 

 

This quadratic form is called "the square of the element of length in the 

Euclidean triple space" and is denoted by the symbol (𝒅𝒔)𝟐 where 𝒅𝒔 

the element is length. It is known that vectors in the triple space (triple 

vectors) do not depend on choosing a specific affiliate frame, and it can 

also be shown that the scalar product of two vectors remains " invariant 

in the form " under  Galileo information, and accordingly the laws 

governing physical phenomena in the triple space ( It does not depend 

on the observer measuring it) it must be an absolute relationship. 

 

6. Newton's Law of General Attraction: 

It states that everything attracts everything. The force of attraction 𝑭⃗⃗  

between two masses 𝒎𝟏 ,𝒎𝟐 separated by a distance 𝒓 is measured by 

the inverse square law: 

 

= rr
mm

F 3
21                  (17) 

 

According to this law, the planets revolve in constant elliptical paths 

around the sun, which is at one of their foci, but in 1882 the French 

astronomer Louvriere discovered that the path of Mercury is not fixed, 

but rather it rotates at a very small angle. 

 

7. The electromagnetic theory of light: 

Maxwell developed the equations known by his name, which link 

electrical and magnetic phenomena, and according to Maxwell's theory 

all radiation (especially light) appears as electromagnetic waves 

traveling at a constant speed in space equal to about 𝟑 × 𝟏𝟎𝟏𝟎 cm / sec 

and usually denoted by the symbol 𝒄. As found - by observing Even 

stars - that the velocity of light does not depend on the velocity of the 

source that radiates the light waves, but with which correlational frame 

is the speed of light measured? 
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Waves generally need a physical medium for their propagation, and 

their velocity can be measured relative to the frame in which this 

material medium is static. For example, sound waves we find that the 

velocity of sound is measured in relation to the static air, and nineteenth 

century scientists proposed an invisible medium that fills all space and 

penetrates all materials and allows waves to travel Electromagnetism as 

a carrier of it. The velocity of light relative to the frame in which the 

medium is static is 𝒄. This medium was named:   Ether 

 

Until the late nineteenth century, scientists were trying to attribute 

physical phenomena (and in particular electromagnetic phenomena) to 

mechanics, so all physical laws had to be "invariant in form" under 

Galileo transformation, which is the basis of the laws of classical 

mechanics. But the assumption of the existence of the Ether made it 

possible to distinguish an associative frame from other frames, which is 

in which the Ether is static, and this distinction makes Maxwell's 

equations "not invariant in form" under Galileo transformation. Here 

was the question: Can the imposition of the existence of the ether be 

dispensed with? And if so, what other transformations between inertial 

frames make Maxwell's equations "invariant in form"? 

 

8. Synchronization of distant clocks: 

To measure the multiple events in the universe, we assume the 

presence of an observer in an affiliate framework, and we assume that 

there is a group of observers distributed at different points in the triple 

space, and each of them is equipped with a clock, and these clocks are 

identical and read the same time when they are next to each other, that 

is, they are accurate. But what happens when the clocks run apart? Is it 

also correct? To verify this we attend one of the distant clocks and 

compare its reading to our reading. 

Assuming absolute time, the readings must apply. 

Another question is whether clocks read the same time when spaced 

apart. In another phrase, this question can be asked: When we say "now" 

in one place, is it also "now" in another place with respect to the same 

static frame 𝑺 ? 
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In the classical nature we get the answer yes, that is, there is an 

absolute "Anne". But let us discuss the following ideal experiment: 

Suppose that we have two hours 𝑷 , 𝑸, set at the beginning - Fig. (3) - at 

the moment 𝒕𝟏𝑷 we let a light signal go from 𝑷 to 𝑸 where  

 

 
Fig. (3) 

 

you reach it at the moment 𝒕𝟐𝑸 with speed 𝒗𝟏, and at this moment a 

symmetric signal from 𝑸 to 𝑷 again, and it reaches it at the moment 𝒕𝟑𝑷 

with speed 𝒗𝟐. If the distance between the two hours 𝑳 is: 

 

)()( 232121 ttvttvL QPPQ
−=−=              (18) 

 

This is the condition that must be met if the two clocks are accurate. 

Assuming that this condition is fulfilled, the question that arises now is 

whether 𝑷 , 𝑸 each of the two is static in relation to the space in which 

the light (ether) is traveling. Assuming that the speed of light with 

respect to the ether is higher 𝒄, and the speed of the a ether with respect 

to the affiliate frame 𝑺 is 𝒖: 

 

,)(
2
1

21 vvc +=          

                                                    (19) 

−= )(
2
1

21 vvu
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From this it becomes clear that 𝑷 , 𝑸, they are not static in relation to 

the ether, and that by knowing each 𝒗𝟏 , 𝒗𝟐, their velocity can be 

determined with respect to the Ether and we will see in the next item 

when we discuss the experiment of Michelson and Morley that this 

conflicts with the results of the experiment. 

 

9. Scientific Contradictions in Classical Physics: 

In the second half of the nineteenth century, scholars conducted 

experiments to verify the correctness of classical assumptions and laws. 

Which led to the emergence of scientific contradictions and many 

questions that called for the need to reconsider the basic concepts on 

which Newton's laws and Maxwell's theory are based. We will address 

some of these experiences here. 

 

a) Fizeau & Fresnel experiment 

Both Fizeau and Fresnel conducted experiments around 1859 to 

measure the velocity of light in moving materials. Fizeau found that 

the speed of light 𝒖 in a fluid moving in a tube at a velocity 𝒗 is: 

 

−= )
1

1( 2

n
v

n
c

u
              (20) 

 

Where 𝒏 is the refractive index of the liquid and the signal ± 

depending on whether the liquid is moving in a direction or opposite 

to the velocity of light. It was expected, according to Newton's laws, 

that the velocity of light in this case would be: 

 

= v
n
c

u
              (21) 

 

b) Michelson & Morely experiment 

Scientists have assumed the existence of the ether as a material 

medium that carries light waves and allows the movement of physical 

bodies without friction and the velocity of light in which the Ether is 

present is 𝒄 and it is assumed that the Earth moves around 

The sun has a velocity of about 30 km / sec. Under the assumption of 

the presence of the Ether, this velocity represents the Earth's velocity 
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with respect to the ether, and therefore it can be measured with respect 

to it. 

 

Both Mickelson and Morley made an experiment to discover the 

relative motion of the Earth with respect to the ether, using the device 

shown in Figure (4) 

 

 
Fig. (4) 

 

𝑴𝟏 ,𝑴𝟐 two flat mirrors, 𝒑 a half-silvered sheet of glass to let in and 

reflect the light, a 𝒔 light source, a 𝑻 telescope. 

 

 Assume that the velocity of the Earth (the device) in relation to the 

ether is 𝒗, and that the length of the arms 𝒑𝑴𝟏 , 𝒑𝑴𝟐 are equal and 

equal to 𝒍 use: the light comes out from the light source 𝒔, where some 

of it enters the mirror 𝑴𝟐, is reflected back to the telescope 𝑻, and some 

is reflected from 𝒑 to the mirror 𝑴𝟏 and then reflected back to the 

telescope 𝑻, where it records the arrival time of the two rays. As the 

velocities of light and device with respect to the ether are 𝒄 , 𝒗, 

respectively. If the velocity of light with respect to the device in both 

directions 𝒑𝑴𝟐 ,𝑴𝟐𝒑, is 𝒄 ± 𝒗 in the vertical direction 𝒑𝑴𝟏 it is equal 

to: √𝒄𝟐 − 𝒗𝟐  From this, the arrival time of the ray 𝒑𝑴𝟐 to the telescope 

is equal to: 
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2 2

( )2 /
l l

lc c v
c v c v

+ = −

− +

 

 
And the arrival time of the ray 𝒑𝑴𝟏 to the telescope: 

 

− vcl
22

/2  

 

It is clear that there is a time difference for the arrival of the two rays, 

assuming that is ∆𝒕: 

 

)(/2/2
2222

vclcvclt −−−=          

                                                    (22) 

  
−

−

−

=

vc

c

vc

l
2222

1
2

             

 

And since 𝒗 ≪ 𝒄, by approximation, equation (22) becomes in the 

form: 

 
2

2

vl
t

c c
= 

                   (23) 

 

This time difference causes interference in the light, which results in 

light rings that can be seen with the telescope. If 𝒏 the number of rings , 

𝝀 is the length of the light wave, then: 

 

 = nt                    (24) 

 

Although the experiment was repeated at different times of the year 

and over many years, no light rings were observed. This means that 

there is no time difference between the arrival of the two rays. 

 

10. Scientists' attempts to explain previous results: 

a) Ether Drag assumption 

 To explain the results of the two previous experiments, the scientists 

assumed that the bodies "drag" the Ether with them, resulting in the 

velocity of the bodies with respect to the Ether is equal to zero. This 
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assumption contrasts with measurements made on the diffraction of 

light from the stars, where it was found that the measurements are 

consistent with the movement of the Earth at a velocity of about 30 

km / sec. 

 

b) Fitzgeald-Lorntz assumption 

 The previous result of the Michelson and Morley experiment can be 

explained by assuming that moving objects contract their lengths in 

the direction of motion by: 

  𝟏:√𝟏 − 𝒗𝟐 𝑪𝟐⁄ . That is, the length 𝒑𝑴𝟏 does not equal 𝒍, but rather 

shrinks to become: 𝒍√𝟏 − 𝒗𝟐 𝑪𝟐⁄  In this case, the time of arrival of 

the ray 𝒑𝑴𝟐 to the telescope is: 

 

−=

−

−
cvl

vc

cvlc 22

22

22

/12
/12       

 

This is exactly equal to the ray's arrival time 𝒑𝑴𝟏. 

 

11. The scientific ideas that paved the way for the theory of 

special relativity: 

a) Lorentz's theory 

In the period between the years 1895 - 1904, Lorenz was able to 

formulate a theory that explains the contradictions that have appeared 

in physics until this time. In his theory, Lorentz believed in Newtonian 

notions of absolute time and space, as he assumed that the frame in 

which the Ether is static is the absolute frame (in which Maxwell's 

equations take the simplest form) and when he tried to find the 

transformations that make Maxwell's equations "invariant in form" in 

the same frames Inertia, Lorentz arrived at the following formulas, 

which are known by his name: 

 

zzyyVtxx ==−=  )(          

                                                                                  (25) 

 −=−= cV
c

Vx
tt

22

2 /1/1)(     
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Where 𝑽 the tire velocity 𝑺′ is relative to 𝑺, and the relative movement 

in the direction of the axis 𝒐𝒙. By means of this transformation, it can 

be concluded that objects contract their lengths in the direction of 

motion while not occurring in other directions. Since movement 

means that the body has traveled some distance in a certain time, the 

period of time must also change the result of the movement. This 

explains the change of time from one frame to another, as is evident 

from the Lorenz Transformation (25). On this basis, the physical 

structure of the universe is such that moving objects contract in the 

direction of their movement, and this contraction cannot be measured 

by natural means, as the "meterstick" also suffers the same amount of 

contraction, so it is not possible, for example, to measure the velocity 

of the Earth with respect to the Ether. 

 

b) Poincare Ideas 

 Since the relative motion of bodies in relation to the Ether cannot be 

detected, the physical scientist Poincaré wondered in 1904 AD 

whether this Ether has a real and natural existence. Likewise, in 

Newton's mechanics, the action or action of the force moves 

momentarily, that is, if we have two bodies, each of them It affects the 

other with a force felt by both bodies at the same moment of their 

effect - Newton's third law - and if we change the position of one of 

them, the effect changes and moves to the new position at the same 

time. This situation can be envisioned by imposing an infinite velocity 

in magnitude for the transmission of influence or action. But this 

proved to be incorrect, as light as one of the paths of influence takes 

time to travel from one place to another (the time of transmission of 

light from the sun to the earth is about 8 minutes). Poincaré declared 

that the actions spread with a limited speed and assumed that the 

velocity of light 𝒄 in space represented the ultimate end of all possible 

velocities. Therefore, Newton's laws must be replaced by others in 

which all possible velocities are less than the velocity of light in space. 

That is, the velocity of light denotes the final velocity. This was the 

situation in the year 1904 - 1905 AD when Einstein came out with his 

theory, without knowing about Lorentz's theory or Poincaré ideas, as 

he called for the abandonment of the idea of the Ether and the absolute 

concepts of Newton. 
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Chapter Two 
The Special Theory of Relativity 

1. The Postulates of Special Relativity: 

Einstein had built the special theory of relativity on two main postulates: 

a) The first postulate: 

   Physical laws do not depend on the movement of inertial frames 

attributed to and measured in it. In other words, all inertial frames 

are equivalent to describe physical phenomena . This is called 

Einstein's principle of relativity. 

 

   It is noted that this principle dispenses with the assumption of the 

existence of the ether, since if it is assumed that the aether can be 

discovered, then it is possible to specify the motions of all inertial 

frames with respect to it, which contradicts the principle of 

relativity and does not agree with the observations. This principle 

can be seen as a generalization of Galileo principle of relativity, 

which requires the preservation of physical laws in their inertial 

frames under the Galileo transformation, while Einstein's principle 

does not require this, but - as we shall see later - it leads to other 

transformations more general than Galileo transformation. 

 

b) The second postulate: 

   The velocity of light does not depend on the speed of the source 

of radiation or the observer who measures it, this is called the 

principle of the constant speed of light . 

 

2. The Lorentz Transformation: 

   According to Einstein's assumptions, transformation formulas between 

inertial frames could be found. 

 

Consider two observers 𝑨 , 𝑩 in 𝑺 , 𝑺′ frames. Fig. (5). At  𝒕 = 𝒕’ =  𝟎, let 

𝑨 , 𝑩 are equals. 
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Fig. (5) 

 

At the same moment, each of them emits a light signal . Let 𝑺′ ( and the 

observer 𝑩 )  moves relative to 𝑺 ( observer 𝑨 ) with a constant velocity 𝑉 

in 𝒐𝒙 direction. In this case the light signal propagates from both 

observations as a spherical wave . Consider 𝑨 , 𝑩 measurements. 

 

A- Measurements  :  

  

At the moment 𝒕 the equation of the wave surface appears as : 

 

=−++ 0
22222

tczyx            (1)       

 

B - Measurements : 

  

At the moment (t′) the equation of the wave surface appears as : 

 

 =−++ 0
22222

tczyx          (2) 

  

Using the principle of the constant speed of light from the second 

postulate : 

 

                  𝐶 = 𝐶′                          (3) 

 

Then equation (2) will be  
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 =−++ 0
22222

tczyx             (4) 

 

From this we see that the necessary transformation should be such that : 

 

=−++  tczyx
22222   −++ tczyx

22222       (5) 

 
If the lengths do not change in the vertical directions on the movement ,  

we can say that. 

 

     == zzyy ,           (6) 

 

In this case the relationship ( 5 )  becomes : 

 

=−  tcx
222

− tcx
222         (7) 

 

Assume that the transformation has the following formula : 

 

   ,txx  +=                    
                                                              (8) 

 += txt 
 

 

Where   ,,,   constants are to be determined in the following 

manner: we consider the movement of the origin 𝑶′ with respect to 𝑺′′   :  

𝑶′ coordinate is                     Substituting in the first equation of 

equation (8), we can get 𝑶’ velocity relative to 𝑺 as : 

                            

x
V

t



= − = 
     

                    

So, we get:  

−= V  
 

Considering 𝑶 𝒎ovement in relative to 𝑺’ and 𝑶 coordinate is  x=0 

Substituting in the two equations (8) we find that : 

 





−== V
t
x



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From that we get : 

 

== 
V                (10) 

 

  

In this case the two equations (8) become : 

 

,)( Vtxx −=          

                                            += txt       (11)     

                                              

Substituting in (7) we find that.  

 

−=+−− tcxtxcVtx
2222222

)()(           (12) 

 

 

Comparing the factors of the two sides results in : 

 

−=−= cVcV
222

/,/1/1 
        (13) 

 

 

Thus, it will be concluded that the required transformation takes the 

following form : 

 

zzyyVtxx ==−=  )(       
                                                                                                    (14) 

                            
 −=−= cV

c
Vx

tt
22

2 /1/1)( 
     

  

This transformation is called the Lorentz transformation, and it is noted 

that the transformation formulas fit perfectly with the transformations that 

Lorentz imposed on his theory. 

 

Except Its physical meaning is completely different from what Lorentz 

conceived . While Lorentz built his theory on absolute concepts and 

explains the change of lengths from frame to another as a real 

contraction, we find that Einstein refuses absolute concepts, which 

is produced from his postulates that length and time change from one 

frame to another according to the Lorentz transformation (14) 
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The Lorentz transformation (14) corresponds to Galileo Transformation 

(11) in the first chapter when it tends to infinity, this is the meaning of 

saying that the velocity of light denotes infinite velocity in Newton laws, 

from another point of view, a Lorentz transformation is corresponding to 

the transformation of Galileo roughly when : 

 

                       cV                              (15) 

 

This is the condition for applying Newton's laws of motion to physical 

phenomena. but if the velocity of the objects is close to the velocity of 

light, then Newton mechanics, fails to explain the natural phenomena that 

arises in this case and it must be replaced by mechanics of another kind 

that is consistent with Einstein's postulates (Lorentz transform) he calls it 

relativistic mechanics. 

 

3. Setting the spaced clocks: 

   By repeating the same experiment in section 8 from the first chapter – 

fig. (3) – and considering the second postulate of Einstein, So: 

 

== cvv 21             (15) 

 

So, the condition of setting the 𝑷 , 𝑸 clocks in the static frames 𝑺 

 

+= )(
2
1

312 ttt PPQ

         (16)    

 

4. Properties of Lorentz transformation: 

 The basis of relativistic mechanics is in the Lorentz transformation and 

to show the changes in classic concepts its preferred to Lorentz 

transformation mode in the differential form: 

 

,,,)( dzzddyydVdtdxxd ==−=         

 
 −= )( 2 dx

c
V

dttd 
 

 

From this form, the following properties of the Lorentz transformation 

could be deduced. 

 

(17) 
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a) Inverse Lorentz transformation is also the Lorentz 

transformation : 

 

By solving equations (17). to find  𝒅𝒙, 𝒅𝒕  by knowing  𝒅𝒙’, 𝒅𝒕’ 
 

,)( tVdxddx  +=         
                                                                  (18) 

                             
 += )( 2 xd

c
V

tddt 
 

  

This is the same as the Lorentz transformation by substituting the 

velocity (−𝑽) instead of 𝑽. 

 

b) Under Lorentz transformation the expression: 

 

)()()()(
22222

dtcdzdydx −++
 

 

Is  "invariant" in form: 

If we gave the symbol (ds)2 to this expression and by using The 

Lorentz transformation inverse then we get : 

 

               
)()()()()(

2

2

2222222

xd
c
VtdczdydtdVxdds  +−+++= 

  

        )()1()()()()1(
2

2

2

22222

2

2
2

td
c
V

czdydxd
c
V  −−++−=           (19) 

                        −++= )()()()(
22222

tdczdydxd  

  

This expression (ds)2 which maintains its form under Lorentz 

transformation, Geometrically, it is the square of the total distance 

between two nearby events specified by the coordinates 
(𝒙, 𝒚, 𝒛 , 𝒕), (𝒙 + 𝒅𝒙, 𝒚 + 𝒅𝒚, 𝒛 + 𝒅𝒛 , 𝒕 + 𝒅𝒕) in the 4-space-time  Also 

(ds) is  called the (Space-time interval). this result is completely 

different from that in Galileo transformation that separates the 

immutable (𝒅𝒓⃗ )𝟐 and the temporal variable (dt)2  

 

,)()(
22

rdrd =


            (20) 

                                  = )()(
22

tddt                                
 

This separation in time and space is the result of assuming that time is 

absolute but in Lorentz transformation, time changes from one frame to 
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another, completely like changing spatial coordinates . Which makes 

time and space connected quadrantally (space-time) . In this 4 – space -

time, events are represented by coordinates (𝒙, 𝒚, 𝒛 , 𝒕)  and the 

connecting line between them gives the evolution event from his past to 

his future and this line is called the  "World line". 

 

5. Properties of Lorentz transformation: 

 

a) Fitzgerald - Lorentz contraction:  

   Consider two rods exactly the same when they are still with 

respect to each other, fix the rods parallel to the axis 𝒐𝒙  one of 

them in the 𝑺 frame  and the other in 𝑺′ frame so that the two grades 

are easy to compare when sliding one on the other Fig. (6) 

 

 
Fig. (6) 

 

Let observer 𝑩 puts two signs on the rod which determine 

the distance 𝒅𝒙′, and the observer 𝑨 observes two events of 

occlusion of both ends of the distance 𝒅𝒙’ on the scale of his 

rod when 𝑺′ moves across it . In this case the two 

events must be recorded at the same moment 𝒅𝒕 = 𝟎, from  

the Lorentz transformation (17) we find that  

 

 −== cVdxdxxd
22

/1/            (21) 

  

Where 𝑽  is the velocity of 𝑺’ relative to 𝑺  

 

 −= cVxddx
22

/1               (22) 
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From which it results that :  

 

 xddx  
 

If the length of the rod in 𝑺’ is 𝑳𝟎 and in 𝑺 is 𝑳: 

 

−= cVLL o

22

/1                (23) 

 

This means that a rod of length 𝑳𝟎 is  measured by 𝑩 (static with 

respect to 𝑺’) it appears shrunk if measured by 𝑨 (moving relative 

to it). It must be understood here that this contraction can not be 

measured by natural methods or, it corresponds to real contraction 

of objects as a result of their movements with respect to an 

absolute frame in which length and time are absolute concepts. 

 

In the theory of relativity, we have replaced the absolute concepts 

of Newton with the last relativity changes according to the moving 

frames that we measure these concepts relative to. 

 

b) Simultaneity of events:  

   According to Galileo transformation : 

 

 == 0tddt  
 

That means, if two events happen at the same moment within a 

framework, they both happen at the same moment in all other 

frames . But we'll find that the ultimate concept of instantaneous 

events takes on another meaning, according to the Lorentz 

transformation. 

 

  Consider two simultaneous events with respect to 𝑺’ at 𝒅𝒕’ = 𝟎 . 

Using the Lorentz transformation (17) we find that :  

 

           
= dx

c
V

dt 2

            (24) 

 

This means that the events  in the two immediate situations 𝑺’ is 

not the same as in 𝑺. 
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c) Time dilatation:  

   Consider two events that happen consecutively took place relative 

to the observer 𝑩 in 𝑺′, if we assumed that the time period between 

them is 𝒅𝒕′ so, using equation (18) after putting 𝒅𝒙′ = 𝟎 that: 

 

                               tddt =         (25) 

          Then we get                        tddt    

 

If T0 is the time period measured in 𝑺’ and 𝑻 at 𝑺 then 

 

             −= cVTT o

22

/1/             (26) 

 

From this it is evident that a clock is given a power time lapse 

T0 that  measured by 𝑩 (Static relative to 𝑩) will give a time of T  if 

measured by 𝑨 (moving relative to itself). 

 

d) Velocity transformations:  

   Assume that a particle is moving with velocity u


  with  respect 

to 𝑺 and u

 with respect to 𝑺’. 

,),,( 321 uuuu  =


      
,),,( 321 uuuu =


 

      
,3

dt
dz

u =,2

dt

dy
u =

   
,1

dt
dx

u =

 
     

Using the Lorentz transformation in the formulas (27) we get :  

 

       

,
1 2

1

1

2

1

c

uV
Vu

xd
c
V

td

tdVxd
u 







+

+
=

+

+
=

 
     ,

1

1

2
1

2

2

c
uV

u
u




+

=


 






+

=

c
uV

u
u

2
1

3

3

1

1


 

 

 

 

 

 

(27) 

(28) 

(29) 

(30) 
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Results 

 

(i) It is observed that 𝒖𝟏 is the resultant of the two velocities   ,𝑽, 𝒖𝟏
′   

in the same direction  . According to classical mechanics : 

 

1 1u u V= +   

 

This can be obtained from the formula (28) if we assumed that 𝒄 

corresponds to the infinity or   𝑽 ≪ 𝒄 .So, if 𝒖 is the resultant of the two   -

velocities   𝒗 and 𝒘  in the same direction. It will be formulated in the 

theory of Special relativity such that : 

 

c
vw
wv

u
21 +

+
=

 
 

This formula is called Einstein's law of summation of velocities. 

  

(ii) It is noted that the velocity components that move in the  

perpendicular direction ( 𝒖𝟐, 𝒖𝟑 ) are changing also, other than 

coordinates, however If  𝒖𝟐
′ , 𝒖𝟑

′  vanish  then  𝒖𝟐, 𝒖𝟑  will  vanish 

  

(iii) Formula (31) can be written as :  

 

c
vw
wv

cc
u

21

1
11

+

+
−=−

 

+−−= )1(/)1()1( 2

c
vw

c
w

c
v

 
 

From this we conclude that if 𝒗 =  𝒄 or 𝒘 =  𝒄 then 𝒖 =  𝒄 also that 

means, the resultant of two velocities, one of them is the velocity of 

light in space, is equal to the velocity of light in space . This means that 

velocity of  light in space is the fastest possible velocity. 

 

(iv) To find the transformation of the square velocity , )(
2

u


 
 
 put  (30) - 

(28) in the form : 


−

−
=

c

uV
Vu

u
2

1

1

1

1
 

(31) 

(32) 

(28)′ 
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
−

=

c
uV

u
u

2
1

2

2

1

1


 


−

=

c
uV

u
u

2
1

3

3

1

1


 
 

By squaring and adding together and noting that   VuVu


=
1

 we 

get :  

 

 
2 22 2 2

21 2 3

2

2

1 1( ) ( )2
( )1

u u u u uV V
u V

c


= − + + +

−

 


 

 
2 22

2

2

2

_1 1( ) ( )2
( )1

u u uV V V
cu V

c

= − + 

−




 

 

6. Important property of the Lorentz transformation: 

 We know that the Galileo transformation can be formed as follows : 

 

,tVrr


−=  

V

 = tt  

 

If we have three frames of inertia 𝑺, 𝑺’, 𝑺’’ where V   is the velocity of   

S     relative to  S    in Ox direction and    moves with   relative to     on       

direction. The Galileo transformation connecting between is 𝑺’, 𝑺’’ is : 

 = tt ,r r V t= −        

 

and this results from the transformation, which connects 𝑺, 𝑺’’ 
  

tVtVrr  −−=


 

   ,)( tVVr

+−=

 

 = tt  
 

Also converting Galilee in velocity ( )V V+  to all directions of 

velocity expressing about it that Galileo transfers between frames with 

inrtia be with each group is characterized by this group two 

special characteristics : 

(29)′ 

(30)′ 

(33) 

(35) 

(36) 

(34) 
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(i) It contains the unit element that transforms the frame itself, 

and this element is denoted by the symbol : 

 

SSe ⎯→⎯:  
                                     

(ii) The  resultant of the two components (two transformations) 

also be an element in the group . That is, if 𝑮𝟏, 𝑮𝟐 are two 

elements of the group where : 

 

    SSG ⎯→⎯:2   ،SSG ⎯→⎯:1  

 

  Then the resultant of them is  

 

SSGG ⎯→⎯:12  
                                                      

It is clear from this that the elements (transformations) differ with 

the change of velocity frames. It is expressed that the group has a 

parameter V


        

  )(2 VGG =


     ،)(1 VGG


=  

 

The product of 𝑮𝟐 𝑮𝟏 is an element with the parameter VV

+

.Where: 

 

)()()(12 VVGVGVGGG

 +==

 
  

This property is also applied to Lorentz transformations in case of 

parallel velocities VV

,     only .To prove this, suppose the frames 

𝑺, 𝑺’, 𝑺’’ move relative to each other in the direction of 𝒐𝒙 with the 

velocities 𝑽, 𝑽’respectively . 

 

If we denote to the two transformations among the three frames, 

respectively, by the two symbols 𝑳(𝑽), 𝑳(𝑽’) then : 

 

)( VL : 

,)( Vtxx −=   

 −=−= cV
c

Vx
tt

22

2 /1/1,)( 
 

(37) 
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( )VL  : 

 

,)( tVxx  −=   
 


 −=−= cV

c
xV

tt
22

2 /1/1,)( 
 

 

By substituting 𝒙’, 𝒕’ from equation (37( in equation )38) 

We get the product of the two elements  𝑳(𝑽), 𝑳(𝑽’) 
 

)( VL  )( VL  : 

,)(
/1

1
22 utx

cu
x −

−
=

 

 −
−

= )(
/1

1
22 x

c
u

t
cu

t
 

 

  

Where 𝒖 is the sum of the two velocities 𝑽, 𝑽’  according to 

Einstein's law (31) From this results that : 

 

)( VL  = )()( uLVL  
 

The resulting transformation is a Lorentz transformation with 

velocity 𝒖 is called as the resultant of the last two transformations. 

 

We will now study the case when the two velocities 𝑽 , 𝑽′ are not 

in one direction, but orthogonal. Take 𝑽 in the direction 𝒐𝒙, the 

velocity 𝑽′ is in the direction  𝒐𝒚. In this case, they become transfers 

Lorentz on the formula: 

 

,)( Vtxxx −==    

,)( 2

c
Vx

ttt −==  
   

)( tVyy  −=   

                   


 −+= )( 2 tVx
c
VVy 

       (40) 

 

(38) 

(39) 
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Fig. (7) 

 

If 𝜽 was the angle that the straight line laying between the two axes 

𝒐′′𝒚′′, 𝒐′′𝒙′′ in 𝑺’ with 𝒐′′𝒙′′ , then the length of this part – fig. (7) – 

equals: 

 

++=+
 )sincos(sincos 2 

c
VV

xyx
 

                                                                                                        

(41) 

 +−+ )sincos(sin  VVty  
 

As the length of the perpendicular part on the movement is static, 

then the 𝜽 value of that corresponds the perpendicular direction of 

movement is found by equaling the coefficient of 𝒕 with zero: 

 

          −=  VV /tan          (42) 

 

 

By substituting in equation (41), we find that: 

 

  UVyUxVyx //sincos +−=+         (43) 

 +=  sincos yx  
 

Where: 

 

             ,/
222222

cVVVVU  −+=
       (44) 

                  −= VV
2

/tan            (45) 

 

Direction of the 

resultant velocity 
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It’s clear that 𝜽 ≠ 𝜽′. We conclude that there is a rotation by 𝜽 −
𝜽′ beside the resultant Lorentz transformation, to find the value of 

rotation we know that: 

 







+

−
=−

tantan1
tantan)(tan

 
 

)/1(

)/1(
22









+

−
=

VVV

V

 
                                                                        (46) 





+

−
=

VV

VV
22

)1(





 
 

 

If  𝑽, 𝑽’ ≪ 𝒄 ,  we can make the following rounding: 

 

     



 +

c
V

2

2

2
11,

2
11 2

2

c
V+

 
 

By substituting in (46) and considering the angle 𝜽 − 𝜽′. Is small, 

then: 

 

         



 ==−−

c
VV

2

2
1)(tan 

         (47) 

 

This rotation is called Thomas precession and has a big role in the 

new biology science (Electron rotation) 

 

7. Clock Paradox: 

 In the early days of relativity there were many discussions about It is 

called the "clock paradox" although there is no contradiction in the 

correct mean. Consider observers, each supplied with a watch. At first, 

we assume that they are together, and their clocks are correct. Let 𝑨 

moves with speed 𝑉 with respect to 𝐵, and after a certain distance it goes 

back to 𝐵 where he compares with 𝐵 watch according to the phenomenon 

of Time dilatation, the 𝑨 hour will appear slower than the 𝑩 hour. But 

we can Suppose that 𝑨 it is still, and that 𝑩 it moves in the opposite 

direction with −𝑽 speed. From that we deduced that the two hours must 

be affected by the same time resolves this paradox is shown in the 

assumption that the observers 𝑨, 𝑩 are equivalent, but there is no natural 

equivalence, as one of them 𝑩 was still, while the other 𝑩 moved and 
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then changed the direction of its movement which necessitates the impact 

of force on him. 
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Problems 

 
1- Prove that Lorentz transformations is a reciprocal group if speeds 

were in the same direction. 

 

2- Prove that the element of length and the element of time in the 

triple space are not ………….. under Lorentz transformation. 

 

 

3- Find the transformation of the element of volume for an object with 

respect to the two inertia of frames 𝑺, 𝑺′, and prove that the volume 

is shrinking in the direction of movement. 

 

4- If a rocket traveled around the earth with a speed of 
1

10
 𝑐, where 𝑐 

is the speed of light. Find rocket’s percentage of shrinkage with 

respect to an observer on the earth. 

 

 

5- If the speed of light in a liquid was 
𝑐

𝑛
, where 𝑛 is the coefficient of 

light refraction, show that the speed of light 𝑢 in the liquid when it 

moves with 𝑉 ≪ 𝑐 is given by:  𝑢 =
𝑐

𝑛
± 𝑉(1 − 

1

𝑛2
)  according to 

the direction of liquid movement with respect to light. 
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Chapter Three 
Geometric Representation of  The Theory of Special 

Relativity 

1. The 4 – dimensional space-time of Minkowski: 

We know that under the Lorentz transform (14) the square of the space-

time component  : 

 

)()()()()(
222222

dtcdzdydxds −++=          (1) 

 

remains  "Invariant" in form 

 

In 1908 AD, Minkowski introduced the following variables: 

 

==== ictxzxyxxx 4321 ,,,         (2) 

 

Where 𝒊 = √−𝟏  . In this case (𝒅𝒔)𝟐 takes the form: 

 

+++= )()()()()(
2

4

2

3

2

2

2

1

2

dxdxdxdxds         (3) 

 

From the geometric point of view 𝒅𝒔 is called in the equation (3), the 

left of the Euclidean quadrilaterals (ie the plane) is called where the 

differential coefficients 𝒅𝒙𝟏 , 𝒅𝒙𝟐, … .. are equal to the unit. In the general 

case, the geometric properties of space can be deduced from these 

coefficients in "Euclidean" geometry. The differential coefficients are 

functions of the variables. Likewise, if the differential coefficients are in 

order (𝟏, 𝟏, 𝟏, −𝟏) then the space is called a Pseudo-Euclidean space, 

sometimes called the Euclidean space in which the coordinate is The 

fourth 𝒙𝟒 is to imagine the quadrant of Minkowski space. In terms of 

coordinates (𝒙𝟏 , 𝒙𝟐 , 𝒙𝟑 , 𝒙𝟒 ), the Lorentz transform can be placed on the 

formula: 

 

,)( 4211 x
c
V

ixx +=  ,22 xx = ,33 xx =     

 −= )( 1244 x
c
V

ixx          (4) 
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Using compensation: 

 

=

c
V

itan            (5) 

 

We find that equations (4) become as: 

 

 1 1 4 ,cos sinx x x = +           

      4 4 1cos sinx x x = −         (6) 

 

(We will dispense with the other coordinates later 𝒙𝟐 , 𝒙𝟑) 

 

This means that the Lorentz transform can be represented geometrically 

by the rotation of the axes 𝒐𝒙𝟏 , 𝒐𝒙𝟒, in the quadrilaterals of Minkowski 

with an imaginary angle 𝜽 given by the formula (5). 

 

In other words, to turn from the frame 𝑺 to 𝑺′ rotate the axes 𝒐𝒙𝟏 , 𝒐𝒙𝟒, 

by the angle 𝜽. With this geometric method, the event is represented by a 

point in the quadrilateral space (𝒙𝟏 , 𝒙𝟐 , 𝒙𝟑 , 𝒙𝟒 ),, in order to describe the 

event with respect to the moving frame, we have to read the new 

coordinates 

 

 
Fig. (8) 

 

(𝒙𝟏
′  , 𝒙𝟐

′  , 𝒙𝟑
′  , 𝒙𝟒

′ ) we get it by rotating the two axes 𝒐𝒙𝟏 , 𝒐𝒙𝟒, by an 

angle: 
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
−

==


)/(tan
1

41 ciVxox        

 

Also, an inverse Lorentz transform takes the picture: 

 

1 1 4 ,cos sinx x x = −   

       4 4 1cos sinx x x = −         (6)′ 

 

2. World line of a particle: 

A particle's natural state (its history) is described by the set of events 

occurring in its past, present, and future. These events are represented by 

points in the Minkowski 4 – dimensional space - time. 

 

a) World line of a static particle: 

   Since the static particle occupies the same subject ( place ) at 

different times, the world line for it is a straight line 𝑳𝑴 that 

 

 
Fig. (9) 

 

Parallel to the axis 𝒐𝒙𝟒 in the plane – Fig. (9). 

 

b) World line of a moving particle: 

   If we impose a particle moving with uniform velocity 𝑉 parallel to 

the axis 𝒐𝒙 in the associative frame 𝑺, then the equation of its 

trajectory with respect to the observer 𝑨 is: 

 

+= Vtxx o
          (7) 



THE SPECIAL THEOTY OF RELATIVITY                                                DR. NASR El-DIEN FARIED El-ANSARY   

 

37 

 

 

Using Minkowski coordinates, we get equation (7) in the form 

 

  
−= tan41 xxx o

          (8) 

Where                          = ciV /tan               (9) 

 

   Equation (8) represents a straight line 𝑳𝑴 that is inclined at an angle 

(
𝝅

𝟐
+ 𝜽) to the axis 𝒐𝒙𝟏 in the plane 𝒙𝟏𝒐𝒙𝟒 - Fig. (3)- By rotating the 

two axes 𝒐𝒙𝟏 , 𝒐𝒙𝟒, at an angle 𝜽 = 𝐭𝐚𝐧−𝟏(𝒊𝑽 𝒄⁄ ), it becomes clear 

that the line 𝑳𝑴 is parallel to the axis 𝒐𝒙𝟒. That is, the particle is static 

with respect to the new axes - Fig. (10). 

 

 
Fig. (10) 

 

3. Geometric representation of kinematic phenomena: 

a. Fitzgerald and Lorentz contraction 

   Since the moving rod, whose length 𝑳0 is static with respect to 

the frame moving with it, i.e. with respect to the axes 𝒐𝒙𝟏
′  , 𝒐𝒙𝟒

′ , 

the paths of different points are parallel to the axis - Fig. (11) 

Likewise, the bar whose length 𝑳 is static with respect to the frame 

𝑺 i.e. with respect to the axes 𝒐𝒙𝟏 , 𝒐𝒙𝟒, so the paths of a point are 

parallel to the axis  𝒐𝒙𝟒 of Fig. (11) we conclude that: 
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Fig. (11) 

 

= cosLLo
         (10) 

 

From the equation (9) we find that: 

 

=−=  cV
22

/1/1cos         (11) 

 

From this it follows that: 

 

−= cVLL o

22

/1  

 

It is the same as the previous relationship (Equation (23 in Chapter 

Two). 

 

b. Simultaneity of events 

   Consider two simultaneous events 𝑷 , 𝑸, with respect to the 

frame 𝑺′ these two events are represented by two points so that the 

connecting line between them is parallel 
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Fig. (12) 

 

to the axis 𝒐𝒙𝟏
′  - Fig. (12) - it is clear from the figure that there is a 

time difference between the two events with respect to the frame 𝑺 

equal to  𝑄𝑅. 

 

c. Time dilatation : 

   Consider two events occurring at the same place with respect to 

𝑺′ .These two events are represented by the two points 𝑷 , 𝑸, where 

the connecting line between them is parallel to the axis 𝒐𝒙𝟒
′  – Fig. 

(13) - the time difference between the two events measured with 

respect to 𝑺′ is: 

 

 
 

Fig. (13) 

 

= PQT o
         (13) 
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For 𝑺 the time difference is: 

 

= RQT          (14) 

 

It is clear from the figure that: 

 

−== cVTTT oO

22

/1/cos           (15) 

 

It is the same as the previous relationship. 

 

4. Proper Time: 

  We found that the Quadro space 𝒅𝒔 apron remains " Invariant " under 

Lorentz transformation, meaning that: 

 

=−++ )()()()(
222

3

2

2

2

1 dtcdxdxdx       (16) 

 −++ )()()()(
222

3

2

2

2

1 tdcxdxdxd  

 

Or                 = )()(
22

sdds          (17) 

 

Assuming that a particle is moving with a velocity 𝒗⃗⃗  with respect to 𝑺, 

then it can be considered static with respect to another frame 𝑺′ moving 

with respect to 𝑺 the same velocity 𝒗⃗⃗  and thus be: 

 











=++ 0)()()(
2

3
2

2
2

1

td
xd

td
xd

td
xd       (18) 

 

++= )()()(
2

3
2

2
2

12

dt
dx

dt
dx

dt
dx

v
        (19) 

 

By substituting in (16) it comes to: 

 

−=−= )()()()(
222222

tdcdtcvds       (20) 

 

Or                 dtcvtd
22

/1 −=                 (21) 
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−= ds
c
i                (22) 

 

From the last equation (22) it becomes clear that the period of time 𝒅𝒕′ 

remains "invariant" under Lorentz transformation. That is, it does not 

change from one frame to another from one of the inertial frames. The 

time 𝒕′ in this case is called the local time and is symbolized by the 

symbol 𝝉 where 

 

−= dtcvd
22

/1       (23) 

 

5. Light Cone: 

If two neighboring events occur, in  the 4 – dimensional  space-time 

then square distance between them is given by the formula: 

 

)()()()()(
222

3

2

2

2

1

2

dtcdxdxdxds −++=  

)()(
222

dtcv −=  

                       0               (24) 

  

 

We will now study three cases: 

i. If they are then to be less than, this is consistent with natural 

phenomena. In this case, the distance is called "Time Like" 

Because by switching to another frame in which the particle is 

stationary, we find that: 

 

−= )()(
222

tdcds       (25) 

 

That is, the space-time is measured in time difference only. 

 

ii. If (𝒅𝒔)𝟐 = 𝟎 it was, then: 𝒗𝟐 = 𝒄𝟐. the particle moves at the 

velocity of light in space, and we will return to study this case 

later. 
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iii. If (𝒅𝒔)𝟐 > 𝟎 it is, then 𝒗𝟐 is greater than 𝒄𝟐 and this is not 

consistent with physical phenomena, so there are no physical 

particles moving faster than light in space. 𝒅𝒔 in this case the 

distance is called a "space like" because in this case it is 

possible to convert to another frame in which it is: 

 

 ++= )()()()(
2

3

2

2

2

1

2

xdxdxdds          (26) 

 

In the 4 – space time of Minkowski the equation is represented: 

 

= 0)(
2

ds             (27) 

 

A cone (two straight lines in the figure (14), inside the cone 

corresponds to the "Time Like" distances while outside it 

corresponds to the "space like" distances. 

 

 
Fig. (14) 

 

   Physical events correspond to points within a cone: the lower portion 𝑷 

represents the past, the upper 𝑸 the future. Any line 𝑷 that reaches 𝑸 

through 𝒐 is a world line. From the "Invariant" characteristic of 𝒅𝒔 under 

the Lorentz transform, it can be concluded that the "space like" distance 

always remains space like and so the "space like" always remains space 

like. This means that it is not possible to relate the inside of the cone 
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(physical events) to the outside (the abnormal events). This is known as 

the Causality Principle. 
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Chapter Four 
Relativistic Mechanics 

1. Introduction: 

We saw in Chapter 1 that Newton's laws of motion preserve their form 

under the Lorentz transformation, meaning that if an observer 𝑨 measures 

an event with respect to the inertial frame 𝑺 and finds that he follows one 

of Newton's three laws, the observer 𝑩 in the inertial frame 𝑺′ reaches the 

same result. Mathematically, this is due to the formulation of Newton's 

laws in terms of triple vectors, as it takes one of the two forms: 

 

   "Invariant" + "Invariant" + ...... = zero, or "variable" × triple vector + 

"invariant" × triple vector + ..... = zero vector. What is meant by "the 

variable" is that standard quantity that does not change from one frame to 

another, such as the mass or the scalar product of two triple vectors. 

 

   In fact, keeping the spatial distance (the element of length in the 

Euclidean triple space) and the time period, each separately, in its form 

under the Galileo transformation is what enables us to define triple 

vectors (have three components with respect to the three spatial 

dimensions) and conclude that their scalar product (for example Square 

element length) remains "invariant" under the Galileo Transformation. 

 

    And in the special theory of relativity - chapter two - we found that the 

space-time distance (the element of length in the 4- dimensional space 

time ) is what preserves its form under the Lorentz transform, and 

accordingly, in order to reach the correct Newtonian laws that preserve its 

form under the Lorentz transform, we must use - instead of Triple vectors 

– 4- vectors (have four components with respect to the 4- dimensional  

space-time). By means of these 4- vectors, it is possible to formulate the 

laws governing physical phenomena in accordance with the principle of 

relativity, as they must take one of the two Forms: 

 

    " quadruped invariant" + " quadruped invariant" + ..... = zero,      "   

quadruped invariant" × quadruped vector + "quadruped invariant" × 

quadruped vector +  ..... = zero       (1) 

 

    The "quadruped invariant" is, in this case, the scalar product of two 4- 

vectors (for example the square of the length element in the 4- 

dimensional space-time). In the following, we shall study the two 
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branches of relativistic mechanics: relativistic kinematics and relativistic 

dynamics. 

 

Relativistic kinematics 
 

2. 4- Vector: 

The Lorentz transformation (6) in Chapter 3 in the differential form 

becomes: 

 

,sincos 411 dxdxxd  +=  

2 2 ,dx dx=   
3 3 ,dx dx=       

                                    4 4 1cos sindx dx dx  = −                 (2) 

 

These equations can be placed on the form: 

 






=

= dx
x

x
xd 








4

1

               (3) 

                              4,3,2,1, =  

 

Where: 
x

x







  they are called the transformation elements, and they can 

be arranged in an array as: 

 

             

 

 

                       (4) 
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   Lorentz's inverse transformation can be found by calculating the 

reciprocal of the matrix (4). If we denote the reciprocal by the symbol: 

x

x







  then: 

             

 

 

                       (5) 

 

 

 

 

 

   Thus an inverse Lorentz transformation takes the formula: 

 






=

= xd
x

x
dx 








4

1

               (6) 

                                          4,3,2,1, =  

 
Or: 

,sincos 411 xdxddx  −=   

   ,22 xddx =    ,33 xddx =       
         += xdxdxd 144 sincos          (7) 

 

   It is noticed that the transformation (7) is the same as the transformation 

(6)′ form in Chapter Three. It is further noted that: 

 









 =

==
1

4

1

4

1 x

x

x

x











        (8) 

 

   The quantity 𝑨 is defined as a 4 – vector (quadruped) if its components 

(𝝁 = 𝟏, 𝟐, 𝟑, 𝟒) 𝑨𝝁 follow the same transformation formulas (3), (6) in 

converting them from one frame to another, to which the components 

𝒅𝒙𝝁 are subject, i.e.: 
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




=

= A
x

x
A 








4

1

            (9) 






=

= A
x

x
A 








4

1

        (10) 

                        4,3,2,1, =  
 

   Obviously, the components 𝒅𝒙𝝁 form a 4 - vector which is called the 

differential position vector, and denoted by the symbol 𝒅𝑹. 

 

Note: 

 

   We will dispense with the summation sign 
4

1

here if the "index" is 

repeated, for example in the formulas (9), (10) the indexes are repeated so 

we will write 𝝁, 𝒗 it on the form: 

 





 = A

x

x
A 






              (9)′ 





= A

x

x
A 






        (10)′ 

 

   Where the combination is taken on the repetitive indexes from 1 to 4. 

Quadruped quantities 𝑨𝝁 are also called quadruped vectors (or tensors of 

the first order) . 

 

3. The scalar product of two 4 - vectors “Inner product”: 

The scalar product of two 4 - vectors 𝑨 , 𝑩 is known as the following: 

 

BABABABABA 44332211),( +++=  

= BA 
               (11) 

 

Also, the square of the 4-vector of 𝑨 is defined as: 
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+++== AAAAAAA
2

4

2

3

2

2

2

1

2

)( ,           (12) 

 

We will prove that the scalar product (11) of two 4 - vectors remains 

"Invariant" under the Lorentz transformation, that is: 

 

 = ),(),( BABA           (13) 

 

Using the formula (9), we find that: 

 

B
x

x
A

x

x
BABA 










 







 ==),(

 










= BA

x

x

x

x








           (14) 














=

x

x

x

x

x

x











           (15) 

 

By placing: 

 





= 





x

x  

 

Where: 

 

 
 

    𝜹𝑽𝝀 is called the Kronecker delta function 

By substituting in (1) it follows that: 

 










 = BA

x

x

x

x
BA 








),(

       (17) 

 

   By finding a square whose length is the length of the differential subject 

vector according to the formula (13), we find that: 
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++= )()()()(),(
2

4

2

3

2

2

2

1 dxdxdxdxRdRd  

 

   This is equal to the square of the element of length in the 4 – 

dimensional space-time that remains "Invariant" under Lorentz 

transformation. It can be expressed as: 

 

dxdxdxdxRdRd 
==),(        

                                                                     (18) 

= ),( RdRd  

 

From this it follows that: 

 










= 1

x

x

x

x







        (19) 

 

In this case (17), after the collection procedure, with respect to the 

duplicated index 𝝀, to: 

 

 == ),(),( BABABA 
 

 

4. Position 4- Vector: 

   To define an event (particle position) in 4- dimensional space-time , we 

need four coordinates (𝒙𝟏 , 𝒙𝟐 , 𝒙𝟑 , 𝒙𝟒). These four numbers are the 

components of the position 4- vector 𝑹, and it is written as: 

 

=R    )( 4321
,,, xxxx      

                                                                     (20) 

                           
x=

   ,  4,3,2,1=        

 

Using the definition of the Minkowski coordinates, 𝑹 it is possible to put  

 

=R   = ),()( ,,, ictrictzyx
      (21) 
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   Where 𝒓⃗  the triple position vector. To find the square of the length of 

the quadruped position vector, 𝑹𝟐, we find: 

 

tczyxtcrRR
22222222

),( −++=−=        (22) 

 

   And this is an "Invariant" quantity under the Lorentz transformation. By 

finding the differential of the quadruped subject vector, we obtain the 

differential position 4- vector, 𝒅𝑹, as: 

 

= ),( dticrdRd
            (23) 

 

5. Velocity 4- Vector: 

   If we consider a particle moving, then the world line for it is 

represented in the 4- dimensional space-time (in the case of regular 

motion, the world line is a straight line). Parametric equations for this 

curve are: 

 

= )( sxx 
        (24) 

                        4,3,2,1, =  

 

   Where 𝒔 the parameter represents the length of the curve - Fig. (15) - 

the direction of tangency to this curve is given by differentiate equation 

(24) with respect to 𝒔, i.e. 
𝒅𝒙𝝁

𝒅𝒔
, but we know - from equation (22) in 

 

 
Fig. (15) 
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 Chapter Three -  𝒅𝝉 = −
𝒊

𝒄
𝒅𝒔  that: Where 𝝉 is the local time, and it is a 

"invariant" quantity under Lorentz transformation. 

 

   We will define the velocity 4- vector 𝝌 according to the following 

formula: 

 

=





 d

dx          (25) 

  Or  

== )( ,,,




d
dt

ic
d
dz

d

dy

d
dx

d

Rd          (26) 

 

   From the equation (23) in Chapter Three, we find that: 

 

=−= dtdtcvd


 1/1
22           (27) 

  Where: 

++= )()()(
2222

dt
dz

dt

dy

dt
dx

v  

 

  It is the square of the particle's triple velocity, 𝜷 = 𝟏 √𝟏 − 𝒗𝟐 𝒄𝟐⁄⁄ , by 

substituting in (26) then we get: 

 

= )( ,  icv
       (28) 

 

   Where 𝒗⃗⃗  the triple velocity vector of the particle. It is noticed from 

formula (26) that the velocity 4- vector 𝝌 is the division of the differential 

position 4- vector 𝒅𝑹 by the differential element of local time, and it 

follows from this that the velocity 4- vector (such as the position 4- 

vector) follows the same Lorentz transformation. Also, the square of the 

quadruped velocity vector is given by the formula: 

 

ccv
222222

),( −=−==        (29) 
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   And this, of course, is an "invariant" quantity from which it follows that 

if the triple velocity, 𝒗⃗⃗ = 𝟎⃗⃗  ,vanishes, then quadruped velocity does not 

vanish. 

 

6. Acceleration 4- Vector: 

   In the same way as before, the acceleration 4-vector 𝜶 is known by the 

following formula: 

 

==









d

xd

d

d
2

2

        (30) 

 

   Using the two formulas: (27) and (28) we get: 

 

  =

dt

d
civ

dt
d 

 ,)(
       (30)′ 

 

   It is noticed here, unlike the quadruped velocity vector, that if the triple 

acceleration vanishes, that is 
𝒅 𝒗⃗⃗ 

𝒅𝒕
= 𝟎⃗⃗ , the quadruped acceleration also 

vanishes. Likewise if the body is momentarily static, i.e. 𝒗⃗⃗ = 𝟎⃗⃗   then: 

𝜷 = 𝟏 and the quadruped acceleration is: 

 

= )0,(
dt

vd


         (31) 

 

   If we consider the two associative frameworks, 𝑺 , 𝑺′. The frame 𝑺′ 

moves at the velocity 𝒗⃗⃗  of the particle, so the particle is static with 

respect to the frame 𝑺′, in this case 𝑺′ is called the rest frame (or static 

frame relative to the particle). whereas the square of quadruped 

acceleration vector is an "invariant " quantity under Lorentz 

transformation, then: 

 

== )(),(
22

dt
vd



        (32) 

 

   From this we conclude that the "Invariant" is the square of a particle's 

triple acceleration measured in the static frame of the particle. 
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Relativistic Dynamics 
 

7. Correspondence Principle: 

   We have previously found that the Lorentz transform devolves into the 

Galileo transformation when the velocity of light approaches infinity, or 

if the velocity at which a particle moves relative to the velocity of light is 

neglected. 

 

   To deduce the relativistic laws that govern physical phenomena, we 

must take this characteristic into consideration, meaning that the laws of 

relativity that we are looking for must refer to their counterpart in 

classical physics under the aforementioned condition. This is called the 

correspondence principle, and we will see - in the following - how this 

principle can be used to arrive at the correct forms of the laws of 

relativistic dynamics. 

 

8. Momentum 4- Vector: 

   By analogy to the above when deforming the position 4- vector 𝑹 of a 

particle, the momentum 4- vector 𝚷 is defined as follows: 

 

),( 4PiP


=          (33) 

 

   Where 𝑷⃗⃗  the triple momentum vector, 𝑷𝟒 is the fourth component, we 

consider two frames, 𝑺 , 𝑺′. If 𝚷′ is the momentum 4- vector measured 

with respect to 𝑺′, then: 

 

),( 4PiP  =
        (34) 

 

   To find the relationship between, 𝚷, 𝚷′  we use the Lorentz 

transformation on the formula: 

 

;)( 411 P
c
v

PP  +=         (35) 

;)( 144 P
c
v

PP  +=  cv
22

/1/1 −=       
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   Where 𝒗 is the frame velocity 𝑺′ with respect to 𝑺. 

 

   Assume now that 𝑺′is the rest frame of the particle (i.e. it moves with 

the particle at the same velocity) and equations (35) become on the 

formula. 

 

;41 P
c
v

P =            (36) 

= PP 14              (37) 

 

   To find 𝑷𝟒
′  value, we use the principle of correspondence. Where 

equation (36) must refer to its counterpart in classical mechanics, i.e.: 

 

mvP =
1

               (38) 

 

   Considering 𝒗 ≪ 𝒄 and by using (38), then equation (36) leads to: 

 

 +=  14P
c
v

mv   Neglected terms]              

 

   From which it results that: 

 

 = mcP 4
        (39) 

 

   Where 𝒎 here is the mass of the particle measured with respect to the 

static frame of the particle, and we will symbolize it as a symbol 𝒎𝟎. The 

static mass of the particle is called, 𝒎𝟎 , Rest mass, and the equations 

(36), (37) become in the forms: 

 

= vmP o1
        (40) 

= cmP o4
        (41) 

 

   Generally, (40) can be written in the vector form: 
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= vmP o


         (42) 

 

  

  From this , it follows that the momentum 4- vector takes the image: 

 

 = ),( cmivm oo 
         (43) 

 

   In comparison with formula (28) for the velocity 4- vector 𝝌, we find 

that: 

 

 = mo
        (44) 

 

   Or in terms of components: 

 


 mo

=
  ,    4,3,2,1=        (45) 

 

   From formula (43), the square of momentum 4- vector , 𝚷 , can be 

found on the formula 

 

)(),(
22222

4

2

cvmPP o
−=−=   

                              −= cmo

22            (46) 

 

   This is an "invariant" quantity under the Lorentz transformation. 

 

9. Moving mass: 

   The formula (42) for the triple momentum vector 𝑷⃗⃗  can be written as 

follows: 

 

= vmP


        (47) 

 

   Where: 

 

−== cvmmm oo

22

/1/         (48) 
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   Note that when: 𝒗⃗⃗ = 𝟎⃗⃗  so 𝒎 = 𝒎𝟎. Therefor 𝒎 is called a moving 

particle mass. From this we see that the mass of a particle is not an 

absolute concept, as in classical physics. Rather, it is a variable quantity 

that depends on the velocity at which the particle is moving, similar to it 

in that length and time. Using formula (47) ,momentum 4-vector becomes 

: 

 

 == ),(),( imcPcmivm
         (49) 

 

10. Relativistic Equations of Motion: 

   We know that Newton's second law gives a way to measure force in 

terms of the mass of a particle, but we found that this mass is not constant 

but rather changes with the velocity of the particle. To find the correct 

form of Newton's second law, we have to reformulate it in terms of 4-

vectors. In order to take a picture (1) that is consistent with the principle 

of relativity. Assuming 𝚪𝝁 the components of the force 4- vector, the 

correct generalization of Newton's second law is as follows: 

 

 =
d

d            4,3,2,1=        (50) 

 

The vector 𝚪 is called the Minkowski force 4- vector where: 

 

.),( 4GiG


=         (51) 

 

𝑮⃗⃗  is the triple force vector. 

 

   Using the definition of the acceleration 4- vector (30) and formula (44) 

for the momentum 4-vector we get: 

 

 == 
  m

d
d

m
d
d

oo

        (52) 

 

   Thus Newton's law can be put in relativistic form: 
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=
mo

        (53) 

 

   Equations (50), (53) are valid for use with respect to any frame of 

inertia, by writing equation (50) in detail, i.e. as : 

 

= Gvm
dt

d
o


)(          (54) 

= Gcm
dt

d
o 4)(          (55) 

 

   Consider the frame 𝑺′ that moves with the particle at the same velocity. 

In this frame 𝜷 = 𝟏, the equations (54), (55) are interpreted to the forms: 

 

= F
dt

vd
mo


        (56) 

= G40         (57) 

 

   Where 𝑭⃗⃗  is the triple force measured in the static frame of the particle. 

Note that equation (56 is the same as Newton’s usual law. From this we 

conclude that the Minkowski force: (𝑮⃗⃗  , 𝒊 𝑮𝟒) it is the result of the 

transformation of the Newtonian force: (𝑭⃗⃗  , 𝟎) by means of the Lorentz 

transformation. In the general case we will put: 

 

,/ GF


=  = /4GP        (58) 

 

   Where 𝑭⃗⃗  it means the force measured with respect to a frame of inertia 

in which the particle is moving with velocity 𝒗⃗⃗ . 

 

Put 𝒎 = 𝜷𝒎𝟎 , then the equations (55), (54) become in the form: 

 

= Fvm
dt

d 
)(         (59) 

= Pcm
dt

d
)(

        (60) 
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   It is these equations that replace Newton's second law in relativistic 

mechanics. 

 

11. The relation between mass and energy: 

   Assuming that the principle of energy conservation is correct in the 

theory of special relativity, it can be put as: 

 

= vF
dt
dE          (61) 

 

   Where 𝑬 is the kinetic energy of the particle. From equation (59) it is 

obtained that: 

 

 +=

dt
dm

v
dt

vd
vmvF )(

2         (62) 

 

   By differentiating the law of change of mass (48) for time: 

 

=

dt
vd

v
c

m

dt
dm


2

2

         (63) 

 

   By substitution in equation (62), we find that: 

 

dt
dmc

dt
dm

vvF


2

2
2

)( +=
  

                                 
=

dt
dm

c
2                    (64) 

 

   By substituting in equation (61), the law of energy conservation 

becomes: 

 

          = dmcdE
2           (65) 

 

   If we assume that: 𝑬 = 𝟎 when the particle is static, 𝒎 = 𝒎𝟎 then is: 

 

−= cmmE o

2

)(         (66) 
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This relationship is one of the most important results of the special theory 

of relativity, and it means that the mass difference 𝚫𝒎 = 𝒎 − 𝒎𝟎 is 

equivalent to an energy 𝑬 equals: 𝚫𝒎 𝒄𝟐 This relationship is known as 

Einstein's law of mass-energy equivalent. The amount 𝒎𝟎 𝒄
𝟐 is called: 

Rest Energy. 

 

Important note: 

   Einstein assumed that each mass 𝒎 is equivalent to an energy 𝑬, where 

 

= cmE
2         (67) 

 

Some results: 

a) Using the formula (67) the quadrilateral motion vector 𝚷 can be 

written as follows: 

 

 = ),(
c

E
iP

       (68) 

 

So this vector is called the momentum and energy vector. 

 

b) Equation (60) can be put as follows: 

 

= P
c

E

dt

d
)(       (69) 

 

Compared to the Energy Conservation Law (61) it follows that: 

 

= vFPc


      (70) 

 

That is, the magnitude: 𝒄 𝑷 is equal to the rate of change of work 

exerted by the force 𝑭⃗⃗ . 

 

c) Placing the equation (60) on the formula: 

 

 ==

dt
rd

FvFcm
dt

d


)(
2    
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To perform the integration, it: 

 

= rdFmc
r

r o





2       (71) 

 

Complementarity is work exerted by force 𝑭⃗⃗ . If it is a conservative 

force 𝑭⃗⃗  then: 

 

−= F


      (72) 

 

Where 𝝓 is the potential energy (potential) function. By substituting 

in (71) we get the law of proof of energy on the formula: 

 

=+ tconsrmc tan)(
2 
       (73) 

 

d) The formula "Invariant" can be placed for the square of momentum 

4-vector (46) by the formula: 

 

=−=− cm
c
EPPP o

22

2

2

22

4

2

)(
    

 

That: 

+= cmPcE o

42222       (74) 

 

12. Longitudinal and transverse mass: 

   From equations (59), (60) we get: 

 

+=

dt

vd
mv

dt
dm

F


         (75) 

 =

dt
dm

cvF
2         (76) 

 

   Substituting 𝒎 from equation (76) in (75), we get: 
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+=  vF
c
v

dt

vd
mF




2

        (77) 

 

   By analyzing the force vector 𝑭⃗⃗  and the acceleration vector 
𝒅𝒗⃗⃗ 

𝒅𝒕
 into two 

components, one of them is parallel to the direction of the velocity vector 

𝒗⃗⃗ , and the other is perpendicular to it, i.e.: 

 

          +=
⊥FFF


//
        (78) 

+=
⊥

)()(
// dt

vd
dt
vd

dt
vd


         

 

   And by substituting in equation (77), we find that: 

 

+= F
c
v

dt
vd

mF


//2

2

////
)(  

 

Then we get: 

 

== )()(
//

3

//

2

//

dt
vd

m
dt
vd

mF o


         (79) 

       =
⊥⊥

)(
dt
vd

mF o


         (80) 

 

   From the form of equations (79), (80) we conclude that any moving 

particle has a longitudinal mass: 𝒎𝟎𝜷
𝟑 with respect to its exposure to a 

force F


//
 parallel to the direction of its velocity 𝒗⃗⃗ , and a transverse mass 

is: 𝒎𝟎𝜷 with respect to its exposure to a force 𝑭⃗⃗ ⊥ perpendicular to the 

direction of its velocity. (This distinction between the two masses was 

observed in experiments of motion of Electrons)
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Chapter Five 
The Special Theory of Relativity Applications  

(A) Mechanical applications 

1. Movement of the planets around the sun: 

Suppose that the static mass of the planet is 𝒎𝟎 . Using the definition of 

velocity 4-vector (16), it is possible to write the first three components of 

the motion equation (52) in the formula: 

 

)(
 d
rd

m
d
d

am oo
=          (1) 

 

Where 𝒓⃗  the triple position vector - Fig. (16) - a  the triple acceleration 

vector of the planet, if we assume that Newton’s law of universal 

attraction is correct 

 

 
Fig. (16) 

   Then: 

 

r
r

Mm
FGam

o

o 3


 −===          (2) 

 

   Where 𝜸 the universal gravitational constant, 𝑴 is the mass of the Sun, 

assuming it is at the origin 𝒐. By substitution in (1) we find that: 

 

r
r

M

d
rd

32

2





−=          (3) 

 

   And multiply equation (3) directionally by 𝒓⃗ , we find that: 
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02

2

=
d
rd

r
 

0)( =
 d
rd

r
d
d  

 

   From which it results that: 

 

== 
d
rd

r
 Constant vector       (4) 

 

This represents the principle of angular momentum conservation. In polar 

coordinates we find that: 

 

 ===

dt
d

r
d
d

r
d

rd
r







22          (5) 

 

   Also, the component of acceleration in the direction of the vector radius 

is: 

 

)(
2

2

2




 d
d

r
d

rd −          (6) 

 

Substituting in equation (3) we get: 

 

r

M

d
d

r
d

rd
2

2

2

2

)(







−=−          (7) 

 

From equation (5) it follows that: 

 

     
rd

d
2

=


           (8) 

 

By establishing: 𝒓 = 𝟏/𝒖 and performing the differentiation, and using 

equation (8), we find that: 

 

 d
du

d
dr

−=  
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u
d

ud
d

rd 2

2

2

2

2

2


−=          (9) 

 

Substituting in equation (7), we get: 

 

uMu
d

ud
u

2

2

2

22

)( 


=+
 

Or  


=+

22

2

M
u

d
ud 




         (10) 

 

Noting that the potential energy function (the gravitational field) is given 

by ∅ the formula: 

 

uMm
r

Mm
o

o  −=−=          (11) 

 

And the application of the principle of energy conservation (73) from 

Chapter four on the image: 

 

tconsEuMmcm oo tan
2

==−           (12) 

 

It results in: 

 

cmuMmE oo

2

/)(  +=          (13) 

 

By substituting in equation (10), we obtain the differential equation for 

the path of the planet around the sun in the formula: 

 


=−+

2222

22

2

2

)1(
cm

EM
u

c

M

d
ud

o




         (14) 

 

The general solution to this equation is: 

 




 222)(cos


++=

cm
EM

Au
o

         (15) 

Where:  
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−=
22222

/1 cM          (16) 

 

   Where 𝑨 , 𝜺 are constants. Equation (15) represents an ellipse rotating 

very slowly (because 𝝎 ≈ 𝟏), and this rotation has been seen in the 

movement of the planet Mercury. This result, however, does not give the 

correct rotation value, but rather explains it to some extent. This results 

from our assumption that Newton's law of universal gravitation is correct. 

However, the reality is not so, in order to get the exact amount of rotation 

we must change Newton's theory of gravity. The new theory of gravity 

was also created by Einstein and it is called the General Theory of 

Relativity. 

 

 

(B) Photovoltaic applications 

2. Doppler effect: 

If a light source moves, then the frequency of the light wave emanating 

from it changes from whether the source is static, and it has been 

observed that the frequency decreases if the source moves away from the 

observer, and increases if the source approaches it. This phenomenon is 

known as the Doppler effect. 

 

  To explain this phenomenon, we suppose that the source is static with 

respect to a frame of inertia 𝑺′ that moves with it at a regular velocity 𝑽⃗⃗  

parallel to axis 𝒐𝒙 with respect to another frame 𝑺 – Fig. (17) – 

 

 
Fig. (17) 
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Assume that the source 𝑷 emits flat monochromatic waves (having a 

certain frequency enochromatic). For the observer 𝑩 in the co-ordinate 

frame 𝑺′, the wave takes the shape represented by the mathematical form: 

 

)(exp trki  −           (17) 

 

To understand the physical meaning of the previous formula we consider 

a simple example: we take two axes 𝒙 , ∅ perpendicular to the plane of the 

wave profile at the moment: 𝒕 = 𝟎 given by relation: 

 

)( xf=          (18) 

 

If the surface is a sinnoidal function, then the relationship is – Fig. (18) - 

in the form: 

 

xa

 2

cos=          (18) 

 

Where 𝒂 is the amplitude, 𝝀 is the wave-length. When the wave surface 

travels at 𝒖 in the direction of the axis 𝒐𝒙, its equation at the moment 𝒕 is  

 

 
Fig. (18) 

 

given by the wave function: 

 

)(2
cos utxa −=


          (19) 
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Or as follows: 

 

)(2cos t
u
x

a −=              (20) 

  

Where  is called the frequency: 

 

 /u=          (21) 

 

In triple space the wave function becomes: 

 

)(2cos 2 t
u

ur
a −=


  

)2(cos t
u

ur
a 


 −=

  

)(cos trka −=           (22) 





 2,2,2 === k

u
u

k
         (23) 

 

Where 𝝎 is the circular frequency, 𝒌⃗⃗  is the wave vector, and it gives the 

direction of wave propagation (the movement of wave transmission) in 

space. By finding ∆∅, we find that the direction is the direction of the 

vector 𝒌⃗⃗ . From this we see that 𝒌⃗⃗  is in the direction perpendicular to the 

wave surface. In light waves it is: 

 

 /, ccu ==          (24) 

 

The vector 𝒌⃗⃗  gives the direction of the ray. In the combined form, 

equation (22) becomes in the form mentioned in formula (17). Likewise, 

the wave (with respect to the observer 𝑨 in the affiliate frame) takes the 

form characteristic of the mathematical expression: 

 

)(exp trki −          (25) 

 

The quantity: 
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)(
2
1)( 2 trkt

c
cr




 −=− 
          (26) 

 

Wave phase is a scalar quantity. From this we conclude that it represents 

an "Invariant" quantity under the Lorentz transform, i.e.: 

 

trktrk  −=−           (27) 

 

And since the quantity "Invariant" must be the scalar product of two quad 

vectors(𝒌⃗⃗  , 𝒊
𝝎

𝒄
), it follows from formula (27) that it is the components of 

the 4-vector 𝑲, where: 

 

),(
c

ikK =          (28) 

 

The vector 𝑲 is called the quadruped wave and frequency. Equation (27) 

can be put into the formula: 

 

),(),( RKRK =          (29) 

 

Where 𝑹 the position 4- vector. 

 

 

By applying the Lorentz transformation, the relationship between the two 

vectors 𝑲 ,𝑲′ can be found where the transformation can be placed 

between them by the formula: 

 

,)( 211 
c
v

kk −=  

                                                                                       (30) 

c
v

kv 2

2

1 1/1,)( −=−= 
     

 

If 𝜽 it is the angle between the vector 𝒌⃗⃗  and the axis 𝒐𝒙 - Fig. (18) 

(velocity direction 𝒗⃗⃗ ) then using equation (23) we get: 
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






 coscos
2

cos1

c
kk ===

         (31) 

 

By substituting in equation (30) it comes to: 

 

)cos1( 
c
v−=

         (32) 

 

We will study here the following two important cases: 

 

(i) Doppler Radial phenomenon 

It produces: 

 

 ,0=  

 

Equation (32) becomes: 

 

cv

cv

/1

)/1(
22

−

=



         (33) 

 

If 𝜽 = 𝟎: 

 

cv

cv

/1

/1

+

−
= 

         (34) 

 

And from this relation that: 

 

)(;        

 

That is, the light is shifted by movement to the red spectrum region as 

the source moves away from the observer. If 𝜽 = 𝝅: 

 

cv

cv

/1

/1

−

+
= 

           (35) 
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From which it results that: 

 

)(;       

 

That is, the light is shifted to the violet region of the spectrum as the 

source approaches the observer. 

 

(ii) Doppler Transverse phenomenon 

This phenomenon is produced by: In this case 𝜽 = 𝝅/𝟐  it becomes the 

equation (32) as follow: 

 

c
v

2

2

1/ −== 
           (36) 

 

That: 

 

)(;    

 

This means that if the light source moves perpendicular to the direction 

of propagation of the wave, the light is shifted to the area of the violet 

spectrum. This accidental effect cannot be inferred in classical physics, 

that is, it is a purely relativistic phenomenon, that is, a result of the results 

of the special theory of relativity. 

 

 

(C) Applications in modern physics 

3. Particles of Zero Mass: 

In physics, there are elementary particles that move at the velocity of 

light in space 𝒄. Examples of these particles include photons, and 

neutrinos. In order to describe these particles, we know from equation 

(46) in Chapter Four that: 

 

cmcmP o

22222
−=−            (37) 
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Where 𝒎𝟎 is the static mass of the particle, 𝒎 the moving mass of the 

particle, 𝑷⃗⃗  vector of the triple momentum of the particle. Assuming that 

the direction of motion of the particle is in the direction of the unit vector 

𝒋, then: 

 

jmcP =            (38) 

 

By substituting in equation (37), we find that: 

 

0=mo
           (39) 

 

This means that the static mass of these particles diminishes, and they 

only have a moving mass 𝒎. Einstein assumed that each of these 

particles is accompanied by a wave of a certain frequency 𝒗, and depends 

on the energy of the particle 𝑬, and they are related together by the 

relation: 

 

hE =            (40) 

 

Where 𝒉 it is called Planck's constant and is equal to: 𝟔. 𝟔𝟑 ×

𝟏𝟎−𝟐𝟕 𝒓𝒆𝒈 − 𝒔𝒆𝒄 From formula (74) of Chapter Four it is: 

 

j
c

hj
c
E

P
==            (41) 

 

And the vector of the quadruped momentum of the particle becomes: 

 

),(
c

h
ij

c
h

o

=            (42) 

 

4. Compton effect: 

If a beam (light) falls on the surface of a metal, it will be scattered, and 

this results in a change in its frequency and direction of fall. This 

phenomenon can be interpreted as a collision between the incident 

photons (light) and electrons below the surface of the metal. 
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This phenomenon is called the Compton effect, which was discovered in 

1927 A.D. To study this, we assume that the incident photon has a 

frequency 𝒗𝟎 , and that it collided with a static electron of its static mass 

𝒎𝟎. After the event, the light is scattered, creating an angle 𝜽 with the 

direction of its fall and its frequency - Fig. (19) - as a result of the 

collision, the electron acquires motion energy and bounces back. 

 

 

 
 

Fig. (19) 

 

Suppose that it is then moving in a direction that makes an angle ∅ with 

the direction of the incident light. Assume that the two quadruped 

momentum vectors of the photon before and after collision with the 

formula: 

),(
c

h
ij

c
h o

o

o

o

=  

                                                                                       (43) 

),(
c

h
ij

c
h

o

=  

 

Where 𝑗 , 𝑗0 vector units are in the direction of motion of the photon 

before and after the collision. Likewise for the electron: 

,),0( cimo
=  

                                                                                       (44) 

.),( cimP=  

 

Where 𝒎 the electron's moving mass, 𝑷⃗⃗  the electron's triple momentum 

vector. In relativity theory, the principle of energy conservation and the 

 

 

 

 

 

 

Scattered photon 

Reciprocating electron 

Incident photon 
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principle of momentum conservation in collisions can be applied. If they 

are expressed in terms of 4- vectors, by equating the sum of momentum 

4- vectors before and after collision, we find that: 

 

 +=+
oo

           (45) 

 

From this it follows that: 

 

 −+=
oo

           (46) 

 

By multiplying both sides of this equation to a scalar vector  , given 

that: 

,),(),(
22

cmo
−==             (47) 

.0),(),( == 
oooo

               (48) 

 

Then we get the relation: 

.),(),(),(  +=
oooo

           (49) 

 

By substituting (43), (44) in (49), we find that: 

 

.2

2

2

2




 hm
c

hjj
c

h
mh o

o

o

o

oo
−−=−          (50) 

 

Whereas: 𝑗 , 𝑗0 = cos 𝜃   by substituting in the equation (50), we find 

that: 

 

.)()cos1(2 
 −=−

oo

o m
c

h  

Or 

.sin
211

2
2

2


 cm
h
oo

=−            (51) 

 

 

Where: 
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.)11(



o

o c −=−=            (52) 

 

Then by substituting in equation (51) from equation (52), we get: 

 

,
2

sin2
2 =            (53) 

./ cmh o
=            (54) 

 

 it is called the Compton wavelength. The relationship (53) gives the 

change in the wavelength of the incident light due to its scattering. To 

find the electron's bounce angle ∅, solve the equation (45) by finding 𝚷′
 𝟎

 

instead of  𝚷′ and following the same previous method. 

 

5. Photo electric effect: 

In order for an electron to escape from a plasma, work must be done 

against the surface resistance of the metal. If the incident light has a high 

energy (high frequency) such as x-rays, it may happen that the electron 

absorbs all the energy of the incident photon and thus acquires a large 

kinetic energy with which it can overcome the resistance of the surface of 

the metal and leave it. For this to happen, Einstein (1905AD) found that 

the following condition must be fulfilled: 

 

.AEh +=              (55) 

 

𝑨 it is called the work function of the surface of the metal, and 

depending on the nature of the metal, 𝑬 it is the kinetic energy of the 

electron. This phenomenon is called the photoelectric effect, since by 

collecting the output electrons, an electric current can be obtained. For 

this purpose, a device called a "photoelectric cell" is manufactured. 

 

6. Emmission of a photon from an excited atom: 

We know that, according to Bohr's theory, the atom is composed of 

electrons orbiting in specific orbits around the nucleus. If there is an 

imbalance in the movement of these electrons, then it is said that the atom 

is in the state of Excitation disturbance. In order for the atom to return to 



THE SPECIAL THEOTY OF RELATIVITY                                                DR. NASR El-DIEN FARIED El-ANSARY   

 

75 

 

its stable state, it must radiate some amount of energy that comes out in 

the form of light of a certain frequency, and depending on the amount of 

this energy we impose a static atom that radiates a photon of frequency 𝑣 

and returns at 𝒗⃗⃗   Fig. (20). 

 

 
Fig. (20) 

 

If 𝑴𝟎 ,𝒎𝟎 is the masses of the atom before and after the radiation, 𝒎 is 

the moving mass of the atom. The momentum 4- vectors of photon 𝚷𝟎 

and atom 𝚷 before and after collision take the formula: 

,0)0,0( ==
o

 

                                                                                       (56) 

,),(
c

h
i

v
v

c
h

o

=


 

 

,),0( cMi o
=  

                                                                                       (57) 

.),( cmivm−=


 

 

Applying the principle of conservation of the quadruped momentum 

before and after radiation, we find that 

 

. +=+
oo

             (58) 

 

By writing these equations in the component function: 

 

,0 vm
v
v

c
h −=   

                                                                                       (59) 
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.
22

hmccM o
+=  

 

Or  

.)(
222

cm
c

h
cM o

=−               (60) 

 

By squaring equation (59) and subtracting from equation (60) we get: 

 

.)1()( 2

2

22

2

22
2

c
v

cm
c

h
c

h
cM o

−=−−               (61) 

 

Where: 

.1/ 2

2

c
v

mm o
−=              (62) 

 

By substituting in equation (61), we find that: 

 

.)(
22

2

22
2

cm
c

h
c

h
cM oo

=−−               (63) 

 

If ∆ 𝑬 is the energy required to move from the turbulent state of the 

atom (then its mass is 𝑴𝟎) to the steady state (its mass 𝒎𝟎), then 

according to Einstein's law (67) in Chapter 4 - it is: 

 

.)(
2

cmME oo
−=              (64) 

 

By substitution in equation (63): 

 

.)2/1(
2

cMEEh o −=              (65) 

 

This is the relationship between the frequency of the radiation from the 

turbulent atom and the disturbance energy ∆ 𝑬. 

 

7. Decay of Elementary Particles: 

In nature there are many elementary particles such as:  
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proton 𝒑, neutron 𝒏, electron 𝒆, mesons (of which 𝝅𝒐 , 𝝅± , 𝝁 , 𝚲 , …….) 

as well as photons 𝒑𝒉., and neutrinos 𝒗𝟎 , 𝒗±. 

 

Some of these particles are stable, that is, they retain their nature for a 

relatively long period (expressing that the life time of the particle is large) 

and some of these particles are unstable i.e. live for a short period, then 

dissolve into other elementary particles. 𝝅 (meson), as it is an unstable 

first particle of age: 2.5 × 10−8 𝑆𝑒𝑐. This meson is a first particle with a 

static mass equal to about 273 times the static mass of the electron, and 

there are three types of it: positive 𝝅+, negative 𝝅−, and neutral 𝝅𝟎. It 

was found that the neutral meson is dissolved into two photons, and that 

is represented by the equation: 

→ ph
o

2              (66) 

 

As for the charged mesons, they are solved according to the equation: 

 


oo

+


→              (67) 

 

Where 𝝁+,  is another type of meson whose static mass is 207 times the 

static mass of an electron, 𝒗𝟎 is the neutral newton with an almost 

vanishing stationary mass. To study the decay of charged mesons, 

suppose that the static masses of the particles in the equation (67) are on 

the order 𝒎𝝅 ,𝒎𝝁 ,𝒎𝒗. If the particle 𝝅 is a static meson in an inertial 

frame, then the particles that result from its decay move in opposite 

directions, and have the same amount of motion 𝑷 (The constant of 

momentum) i.e. a moving particle that has a kinetic energy 𝑬 is given by 

the relation (74) in Chapter Four: 

cmPcE o

42222
+=              (68) 

 

By applying the law of conservation of energy to the decay of 𝝅 - meson 

represented by relationship (67) - then: 

 

)()( 2

1
2242

2

1
224222

PccmPccmcm +++=


 

                                                                                       (69) 
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EE 
+=  

 

From equation (68) it can be concluded that: 

 

−=− cmmEE
42222

)( 
             (70) 

 

By solving equations (69) and (70), the energy of the particles due to 

decay can be determined: 

 

−+= mmmmcE 2/)(
2222


             (71) 

−+= mmmmcE 2/)(
2222


             (72) 

 

The static mass of the neutrino could have been obtained from the 

equation (71) in the formula: 

 

 xyxmm 2)1(
222
−−=


             (73) 

 

Where: 

,/ mmx 
=  

=−=

cm

T

cm

E
y 22 1







              (74) 

 

Where 𝑻𝝁 is the kinetic energy of 𝝁 mesons. Substituting the two values 

of 𝒎𝝅 ,𝒎𝝁, we find that: 

31
207
273

==x  

That: 

=− 090)1(
2

x  

 

By neglecting the second term in the equation (73), we find that: 

 

090)/(
2

=mm 
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And thus: 

mm  30=  

 

Which supports the imposition of the static neutrino mass to be 

approximately equal to zero. 

 

8. Decay of Elementary Particles: 

The relationship between Einstein's mass and energy - Equation (67) in 

Chapter Four - plays a big role, especially in nuclear reactions, where 

matter can (actually) be transformed into tremendous energy (as in an 

atomic bomb). 

 

To understand this, we know that the nucleus of an atom is made up of 

one number of protons and one neutron. In stable atoms, the stationary 

mass of an atom 𝑴𝟎 is less than the sum of the rest masses ∑𝒎𝟎 of its 

components (protons, neutrons, and electrons). The difference in mass is 

the binding energy of the nucleus contents - according to Einstein's law 

(67) in Chapter 4, if: 

,Mmm oo
−=  

 

That: 

 

cmE
2

 =              (76) 

 

For example, the atomic mass of lithium Li
6

3
 is 6.01697 atomic units 

(atomic unit 𝒂.𝒎. 𝒖.= 𝟏. 𝟔𝟔 × 𝟏𝟎−𝟐𝟒 𝒈𝒎). This atom consists of three 

neutrons (the mass of the neutron 𝒂.𝒎. 𝒖.= 𝟏. 𝟎𝟎𝟖𝟗𝟑) along with three 

hydrogen atoms - each of them is made up of a proton and an electron 

(the mass of a hydrogen atom 𝒂.𝒎.𝒖.= 𝟏. 𝟎𝟎𝟖𝟏𝟐) The sum of all the 

universe is equal to: 

 

= umamo 051166  

 

Subtracting the atomic mass of lithium from this sum, we get: 
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 = umam 034190  

 

From relationship (76) the binding energy is: 

 

MevE 831       )10361(
5

Meverg   

 

It is clear that this energy is necessary to separate the contents of the 

nucleus from each other, that is, for fission to occur, Disintegration. 

 

In unstable nuclei (radioactive material nuclei) the mass of the resulting 

radioactive material is slightly less than the original mass. This difference 

appears in the form of kinetic energy, with which the products of the 

process move. In this way, a nuclear reaction could be induced, producing 

enormous energy. 

 

For example, if a radioactive lithium atom Li
7

3
 is bombarded with a 

neutron, it produces two helium atoms He
7

3
 with an energy 17.15 𝑀𝑒𝑣 

of this energy which is, in fact, the difference between the masses of the 

two helium atoms and the original lithium atom. This can be represented 

by the following reactivity equation: 

 

QHenLi ++ →
4

2

7

3 2              (77) 

 

Where 𝑸 is the energy generated and equal 17.25 𝑀𝑒𝑣. Another 

example of applying Einstein's law is the fission of heavy radioactive 

materials such as uranium, where the nucleus of a uranium atom enters a 

neutron, and the resulting mass of material is less than the original mass, 

as the difference turns into energy (the atomic bomb). 

 

9. Particle collision in nuclear physics: 

High energy physics    

 

Most nuclear phenomena arise from a collision between particles 

traveling at very high speeds, and the collision process consists of a 
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shocking particle (projectile) and a collision particle (Target), which 

results in one of the following two states: 

 

(i) The change of the mechanical state of the group (projectile and 

target) and this is represented by the equation: 

 

baba → ++              (78) 

 

And each particle remains in its nature, and collision in this case is 

called Elastic Collision & Scattering. This type of collision is 

characterized by that no change occurs in the sum of the two quartile 

quantum vectors during the collision. 

 

(ii) Nuclear reaction: represented by the equation: 

 

→ +++ dcpa              (79) 

 

And other particles arise from the interaction that differs from the 

colliding particles. The collision is called inelastic collision. Here we 

must take into account the transformation of the difference in masses 

into energy. 

 

When studying collision phenomena, an affiliation frame is used in 

which the phenomenon is measured, and it is called a laboratory 

frame. To facilitate the description of the process, another frame is 

used - usually - in which the center of mass - of the missile and the 

target is static, meaning that the two motion vectors are equal and 

opposite in direction. This frame is called the Center of Mass Frame 

and denoted by CM. In the CM frame and after collision, the three 

motion vectors of the two scattered particles or resulting from the 

nuclear reaction (assuming that the reaction product is only two 

particles c, d) are equal and opposite in direction Fig. (21) In the case 

of an elastic collision only: 

 

qp =              (80) 
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Fig. (21) 

 

In order to convert from the CM frame to the lab frame or vice versa, 

we can use the Lorentz transform, where the conversion speed can be 

set 𝒗⃗⃗ 𝑪𝑴 from the condition: 

ppp  −=
21

             (81) 

 

Alternatively,  the law of  conservation of  a quadruped  

momentum4- vector can be applied in the following way: 

 

 +=+
2121

             (82) 

By finding the following scalar product: 

 

)(
2121

,  ++  = )(
2121

,  ++          (83) 

 

Where the left side is related to the frame of the laboratory (in which 

the target is 𝒃 static, i.e. 𝑷⃗⃗ 𝟐 = 𝟎⃗⃗ ) and the right side is related to the 

frame CM (and it is 𝑷′ = 𝑷′
𝟐 =). Substituting for this into equation 

(83), we obtain: 

 

)()(
2

21

22

21

2

EEcmEP  +−=+−              (84) 

PcmE
242

1

2

1
+=                                       (85) 

 

Where we put in these formulas: 

 

PP =
1

             (86) 
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By substituting in equation (84) it is obtained that the total energy 

with respect to the CM frame is: 

 

EEE  +=
21
     

)2( 2

1

21

22

2

22

1 mEcmcmc ++=              (87) 

 

To find each of 𝑬′
𝟏 , 𝑬

′
𝟐  separately, we consider the scalar product 

in the form: 

),(),(
211211

 +=+              (88) 

 

From this it follows that: 

 

EcmcmEE  −+= 2/)(
42

2

42

1

2

1
             (89) 

EcmcmEE  −+= 2/)(
42

1

42

2

2

2
             (90) 

 

 

 

Applying the Lorentz transformation it results that: 

 

PvmP CMCM −=−=
22

                                        (91) 

cvcmE CMCMCM

222

22 /1/1, −==               (92) 

 

It can also be shown that: 

PE
m

P  = 2              (93) 

 

By substituting from equation (93) into (91), 𝒗⃗⃗ 𝑪𝑴 can be found in the 

form: 

PE
m

v
CM

CM 
= 2              (94) 
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But from equation (92) we find that: 

 

cmECM

2

22 /=              (95) 

 

By substituting in equation (94) and using formula (87), it turns out 

that: 

P
cmE

vCM 2

21

1
+

=              (96) 

 

You can also find 𝜷𝑪𝑴 on the formula: 

 

EcmECM
+= /)(

2

21              (97) 

 

Note: 

Equations (93, (96) refer to the familiar formulas when:  
𝒗𝒄𝒖

𝒄
≪ 𝟏 

where the total kinetic energy with respect to the CM frame in this 

case is equal to: 

 

)
2
1()(

2

11

21

2

21

2

vm
mm

m
mmcET

+

+−= 
             (98) 

 

This is the same result that can be obtained when applying the laws 

of classical mechanics. 

 

We turn now to another case study, which arises when a nuclear 

reaction produces two or more particles. Assume that the masses of 

the resulting particles are: 𝒎𝒊 , where: 𝒊 = 𝟏, 𝟐,…. and the difference 

between the masses is ∆𝒎, so that: 

 

 +−

=

= )( 21

3
mmmm

i
i

             (99) 

 

If it is ∆𝒎 > 𝟎, then the reaction does not occur unless the projectile 

energy (𝒎𝒊  for example) equals or exceeds a certain value 𝑻𝒕𝒉 called 

"Threshold energy" This condition can be formulated for the CM 

frame on the formula: 
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 ++= cmmmE th

2

21 )()(              (100) 

 

From equation (78) we find that the movement at the "reaction 

threshold" is: 

 




 ++= c
m
m

m
m

mT th

2

22

1 )
2

1(              (101) 

 

Example: 

If a photon falls on a proton, it produces 𝝅𝟎 - a meson. This reaction 

is called the photo-production of meson. This is represented by the 

equation. 

→ ++ 
o

ppph  

 

Where we have denoted the proton as 𝑷. To calculate the kinetic 

energy at the "reaction threshold" 𝑻𝒕𝒉, we do the following: 

 

 == Mevcmcm o 135
22


 

 

== Mevcmcm p 5938
22

2
 

 

By applying the formula (101), we find that: 

 

  


=+= MevT th 144
59382

135
1135
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Appendix (A) 
 

Table of general physical constants* 

 

Planck's constant 
sec10)00015.062559.6(2

27

ergh 
−

==   

sec10)00003.005449.1(
2

27

ergh 
−

==


  

Light speed sec10)000001.0997925.2(
110 −

= cmc  

Electric charge esue 10)00006.080298.4(
10


−

=  

coul10)00002.060210.1(
19


−

=  

Gravitational constant gmcmdyneG
228

10)005.0670.6(
−−

=  

Avogadro's number molN o

123

10)00009.002252.6(
−

=  

Boltzmann's constant )(10)00006.038054.1(
116 −−

= Kergk
o  

Faradway's constant molcoulN oe

1

)5.00.96487(
−

=  

General gas constant molKergkNR
o

o

117

)(10314.8
−−

==  

Electron mass gmm 10)0003.010903.3(
23


−

=  

amu10)00003.048597.5(
4


−

=  

cMev /)000002.0511006.0(
2

=  

Atomic mass unit gmamu 10)00002.066043.1(
24


−

=  

cMev /)005.0478.931(
2

=  

Proton mass gmM P 10)00003.067252.1(
24


−

=  

amu)00000008.000727663.1( =  

cMev /)005.0256.938(
2

=  

Neutron mass amuM n )000004.00086654.1( =  

cMev /)005.0550.938(
2

=  

Compton wavelength 

of the electron 
cm

mc
h

e 10)00002.042621.2(
10

1 
−

==  

cm
mc

e 10)00003.086144.3(
11


−

==   

Fixed exact 

composition 
10)00003.029720.7(

3
2


−

==

c
e


  
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The classic radius of 

the electron 
cmmce e 10)00004.081777.2(/

1322


−

==   

Magnenton Bohr mceB 2/=

gausserg
121

10)00021.027314.9(
−−

=  

The frequency 

associated with 1 eV 

sec/10)00002.041804.2(
14

cycle  

The wave number 

associated with 1 eV 

cm
−

)08.073.8065(
1  

The temperature 

associated with 1 eV 
K

o

)5.09.11604(   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* E.R.Cohen and J. W. DuMond "Our Knowledge of  Fundamental 

Constants of Physics and Chemistry in 1965" Reviews of Modern 

Physics 37,537(1965) 
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Appendix (B) 

 

Table of most stable elementary particles* 

 

Particle Mass (MeV) Average life time (Sec) 

Photon  𝛾 0 Stable 

Leptons 

Neutrino ee

−

  

Neutrino  

−  

 

0(< 0.2𝑘𝑒𝑉) 

0(< 2𝑘𝑒𝑉) 

 

Stable 

Electron – positron (𝑒∓) 0.511006 Stable 

Muons  𝜇∓ 105.659 2.20 × 10−5 

Baryons 

Proton  𝑝 

Neutron  𝑛 

 

938.256 

939.550 

 

Stable 

1.01 × 103 

Hebron-Lambda (Λ) 1115.58 2.51 × 10−10 

Sigma-hyperonate ∑+ 

∑0 

∑− 

1189.47 

1192.56 

1197.44 

0.81 × 10−19 

< 1.0 × 10−14 

1.65 × 10−10 

Sequential particles 
o
 

                                
−
  

1314 

13211.2 

3.0 × 10−10 

1.74 × 10−10 

Negative Omega  Ω− 1674 1.5 × 10−10 

Mesons 

Charged pions  𝑛± 

Neutral pions  𝑛0 

 

139.58 

134.98 

 

2.608 × 10−8 

0.89 × 10−16 

Charged entities  𝐾± 493.8 1.235 × 10−8 

Neutral Entities 𝐾0 

                          𝐾1 

                          𝐾2 

497.9 ------- 

0.87 × 10−10 

5.68 × 10−8 

 

 

 

 

 

* Reviews of Modern Physics 39,1  (1967)  
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Appendix (C) 

 

Table of units and conversion factors 

 

Length metermicron 10)(1
6

=
−

  

cmmetermicronmi 1010)(lim1
79

==
−−

  

cmAAngstromA
o

10)(
8

=
−  

cmffermi 10)(1
13

=
−  

Area cmbbarn
224

10)(1 =
−  

Time sec1015631
7

year  

Force dynenewton 101
5

=  

Energy caloriesergjoule )1864/123890(101
7

===  

jouleVvoltelectron 10)000020602101()(1
19

=
−  

Mass )(1 amuunitmassatomic  

gm10)000020660431(
24

=
−  

Charge esucoulomb 10)00000109979252(1
9

=  

emu10=  

Voltage )()000107920299(1 Vvoltesu =  

Magnetic induction gaussmvolt 10sec/1
42

=−  

Energy equivalent 

to the unit of 

atomic masses 

eVcamu 10)000050314789()1(
82

=  

Radioactive sample 

activity 
ondpertegrationdicurie secsin10731

10

=  
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Physical phenomena 
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