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Preface

Dear Sir or Madam, will you read my book, it took me years to write, will you
take a look?

JOHN LENNON AND PAUL MCCARTNEY, Paperback Writer, single

Although I wrote the first edition of this book more than twenty years
ago, my goals for it remain the same. I want students to receive a solid
introduction to the traditional topics. I want readers to come away with
the view that abstract algebra is a contemporary subject—that its con-
cepts and methodologies are being used by working mathematicians,
computer scientists, physicists, and chemists. I want students to enjoy
reading the book. To this end, I have included lines from popular songs,
poems, quotations, biographies, historical notes, dozens of photographs,
hundreds of figures, numerous tables and charts, and reproductions of
stamps and currency that honor mathematicians. I want students to be
able to do computations and to write proofs. Accordingly, I have
included an abundance of exercises to develop both skills.

Changes for the seventh edition include 120 new exercises, new
theorems and examples, and a freshening of the quotations and biogra-
phies. I have also expanded the supplemental material for abstract alge-
bra available at my website.

These changes accentuate and enhance the hallmark features that
have made previous editions of the book a comprehensive, lively, and
engaging introduction to the subject:

• Extensive coverage of groups, rings, and fields, plus a variety of
non-traditional special topics

• A good mixture of now more than 1750 computational and theoreti-
cal exercises appearing in each chapter and in Supplementary
Exercise sets that synthesize concepts from multiple chapters

• Worked-out examples—now totaling 275—providing thorough
practice for key concepts

• Computer exercises performed using interactive software available
on my website

xi
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xii Preface

• A large number of applications from scientific and computing fields,
as well as from everyday life

• Numerous historical notes and biographies that illuminate the peo-
ple and events behind the mathematics

• Annotated suggested readings and media for interesting further
exploration of topics.

My website—accessible at www.d.umn.edu/~jgallian or through
Cengage’s book companion site at www.cengage.com/math/gallian—
offers a wealth of additional online resources supporting the book,
including:

• True/false questions
• Flash cards
• Essays on learning abstract algebra, doing proofs, and reasons why

abstract algebra is a valuable subject to learn
• Links to abstract algebra-related websites and software packages
• . . . and much, much more.

Additionally, Cengage offers the following student and instructor
ancillaries to accompany the book:

• A Student Solutions Manual, available for purchase separately, with
worked-out solutions to the odd-numbered exercises in the book
(ISBN-13: 978-0-547-16539-4; ISBN-10: 0-547-16539-0)

• An online laboratory manual, written by Julianne Rainbolt and me,
with exercises designed to be done with the free computer algebra
system software GAP

• An online Instructor’s Solutions Manual with solutions to the even-
numbered exercises in the book and additional test questions and
solutions

• Online instructor answer keys to the book’s computer exercises and
the exercises in the GAP lab manual.

Connie Day was the copyeditor and Robert Messer was the accuracy
reviewer. I am grateful to each of them for their careful reading of the
manuscript. I also wish to express my appreciation to Janine Tangney,
Daniel Seibert, and Molly Taylor from Cengage Learning, as well as
Tamela Ambush and the Cengage production staff.

I greatly valued the thoughtful input of the following people, who
kindly served as reviewers for the seventh edition:

Rebecca Berg, Bowie State University; Monte Boisen, University of
Idaho; Tara Brendle, Louisiana State University; Jeff Clark, Elon
University; Carl Eckberg, San Diego State University; Tom Farmer,
Miami University; Yuval Flicker, Ohio State University; Ed Hinson,
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Preface xiii

University of New Hampshire; Gizem Karaali, Pomona College; Mohan
Shrikhande, Central Michigan University; Ernie Stitzinger, North
Carolina State University.

Over the years, many faculty and students have kindly sent me valu-
able comments and suggestions. They have helped to make each edition
better. I owe thanks to my UMD colleague Robert McFarland for giv-
ing me numerous exercises and comments that have been included in
this edition. Please send any comments and suggestions you have to me
at jgallian@d.umn.edu.

Joseph A. Gallian
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1

P A R T  1

Integers and
Equivalence Relations

For online student resources, visit this textbook’s website at
http://college.hmco.com/PIC/gallian7e
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3

Preliminaries

The whole of science is nothing more than a refinement 
of everyday thinking.

ALBERT EINSTEIN, Physics and Reality

Properties of Integers
Much of abstract algebra involves properties of integers and sets. In this
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the
so-called Well Ordering Principle. Since this property cannot be proved
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

The concept of divisibility plays a fundamental role in the theory of
numbers. We say a nonzero integer t is a divisor of an integer s if there
is an integer u such that s 5 tu. In this case, we write t | s (read “t
divides s”). When t is not a divisor of s, we write t B s. A prime is a
positive integer greater than 1 whose only positive divisors are 1 and
itself. We say an integer s is a multiple of an integer t if there is an in-
teger u such that s 5 tu.

As our first application of the Well Ordering Principle, we establish
a fundamental property of integers that we will use often.

Theorem 0.1 Division Algorithm

PROOF We begin with the existence portion of the theorem. Consider
the set S 5 {a 2 bk | k is an integer and a 2 bk $ 0}. If 0 [ S, then b

Let a and b be integers with b . 0. Then there exist unique integers q
and r with the property that a 5 bq 1 r, where 0 # r , b.

Every nonempty set of positive integers contains a smallest member.

0
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4 Integers and Equivalence Relations

divides a and we may obtain the desired result with q 5 a/b and r 5 0.
Now assume 0 n S. Since S is nonempty [if a . 0, a 2 b ? 0 [ S; if a ,
0, a 2 b(2a) 5 a(1 2 2b) [ S; a � 0 since 0 n S], we may apply the
Well Ordering Principle to conclude that S has a smallest member, say
r 5 a 2 bq. Then a 5 bq 1 r and r $ 0, so all that remains to be
proved is that r , b.

If r $ b, then a 2 b(q 1 1) 5 a 2 bq 2 b 5 r 2 b $ 0, so that
a 2 b(q 1 1) [ S. But a 2 b(q 1 1) , a 2 bq, and a 2 bq is the
smallest member of S. So, r , b.

To establish the uniqueness of q and r, let us suppose that there are
integers q, q9, r, and r9 such that

a 5 bq 1 r, 0 # r , b and a 5 bq9 1 r9, 0 # r9 , b.

For convenience, we may also suppose that r9 $ r. Then bq 1 r 5
bq9 1 r9 and b(q 2 q9) 5 r9 2 r. So, b divides r9 2 r and 0 # r9 2 r #
r9 , b. It follows that r9 2 r 5 0, and therefore r9 5 r and q 5 q9.

The integer q in the division algorithm is called the quotient upon di-
viding a by b; the integer r is called the remainder upon dividing a by b.

EXAMPLE 1 For a 5 17 and b 5 5, the division algorithm gives
17 5 5 ? 3 1 2; for a 5 223 and b 5 6, the division algorithm gives
223 5 6(24) 1 1.

Several states use linear functions to encode the month and date of
birth into a three-digit number that is incorporated into driver’s li-
cense numbers. If the encoding function is known, the division algo-
rithm can be used to recapture the month and date of birth from the
three-digit number. For instance, the last three digits of a Florida male
driver’s license number are those given by the formula 40(m 2 1) 1 b,
where m is the number of the month of birth and b is the day of birth.
Thus, since 177 5 40 ? 4 1 17, a person with these last three digits
was born on May 17. For New York licenses issued prior to
September of 1992, the last two digits indicate the year of birth, and
the three preceding digits code the month and date of birth. For a
male driver, these three digits are 63m 1 2b, where m denotes the
number of the month of birth and b is the date of birth. So, since 701 5
63 ? 11 1 2 ? 4, a license that ends with 70174 indicates that the
holder is a male born on November 4, 1974. (In cases where the for-
mula for the driver’s license number yields the same result for two or
more people, a “tie-breaking” digit is inserted before the two digits
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0 | Preliminaries 5

for the year of birth.) Incidentally, Wisconsin uses the same method
as Florida to encode birth information, but the numbers immediately
precede the last pair of digits.

Definitions Greatest Common Divisor, Relatively Prime Integers

The greatest common divisor of two nonzero integers a and b is the
largest of all common divisors of a and b. We denote this integer by
gcd(a, b). When gcd(a, b) 5 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the
Well Ordering Principle. 

Theorem 0.2 GCD Is a Linear Combination

PROOF Consider the set S 5 {am 1 bn | m, n are integers and 
am 1 bn . 0}. Since S is obviously nonempty (if some choice of m
and n makes am 1 bn , 0, then replace m and n by 2m and 2n), the
Well Ordering Principle asserts that S has a smallest member, say,
d 5 as 1 bt. We claim that d 5 gcd(a, b). To verify this claim, use the
division algorithm to write a 5 dq 1 r, where 0 # r , d. If r . 0,
then r 5 a 2 dq 5 a 2 (as 1 bt)q 5 a 2 asq 2 btq 5 a(1 2 sq) 1
b(2tq) [ S, contradicting the fact that d is the smallest member of S.
So, r 5 0 and d divides a. Analogously (or, better yet, by symmetry),
d divides b as well. This proves that d is a common divisor of a and b.
Now suppose d9 is another common divisor of a and b and write a 5
d9h and b 5 d9k. Then d 5 as 1 bt 5 (d9h)s 1 (d9k)t 5 d9(hs 1 kt),
so that d9 is a divisor of d. Thus, among all common divisors of a and
b, d is the greatest.

The special case of Theorem 0.2 when a and b are relatively prime is
so important in abstract algebra that we single it out as a corollary.

Corollary

If a and b are relatively prime, than there exist integers s and t such
that as 1 bt 5 1.

For any nonzero integers a and b, there exist integers s and t such that
gcd(a, b) 5 as 1 bt. Moreover, gcd(a, b) is the smallest positive integer
of the form as 1 bt.
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EXAMPLE 2 gcd(4, 15) 5 1; gcd(4, 10) 5 2; gcd(22 ? 32 ? 5, 2 ? 33 ?
72) 5 2 ? 32. Note that 4 and 15 are relatively prime, whereas 4 and 10 are
not. Also, 4 ? 4 1 15(21) 5 1 and 4(22) 1 10 ? 1 5 2.

The next lemma is frequently used. It appeared in Euclid’s Elements.

Euclid’s Lemma p | ab Implies p | a or p | b

PROOF Suppose p is a prime that divides ab but does not divide a. We
must show that p divides b. Since p does not divide a, there 
are integers s and t such that 1 5 as 1 pt. Then b 5 abs 1 ptb, and since
p divides the right-hand side of this equation, p also divides b.

Note that Euclid’s Lemma may fail when p is not a prime, since 
6 | (4 ? 3) but 6 B 4 and 6 B 3.

Our next property shows that the primes are the building blocks for
all integers. We will often use this property without explicitly saying so.

Theorem 0.3 Fundamental Theorem of Arithmetic

We will prove the existence portion of Theorem 0.3 later in this
chapter. The uniqueness portion is a consequence of Euclid’s Lemma
(Exercise 27).

Another concept that frequently arises is that of the least common
multiple of two integers.

Definition Least Common Multiple

The least common multiple of two nonzero integers a and b is the
smallest positive integer that is a multiple of both a and b. We will de-
note this integer by lcm(a, b).

We leave it as an exercise (Exercise 12) to prove that every common
multiple of a and b is a multiple of lcm(a, b).

Every integer greater than 1 is a prime or a product of primes. This
product is unique, except for the order in which the factors appear.
That is, if n 5 p1p2

. . . pr and n 5 q1q2
. . . qs, where the p’s and q’s

are primes, then r 5 s and, after renumbering the q’s, we have pi 5 qi
for all i.

If p is a prime that divides ab, then p divides a or p divides b.

6 Integers and Equivalence Relations
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0 | Preliminaries 7

EXAMPLE 3 lcm(4, 6) 5 12; lcm(4, 8) 5 8; lcm(10, 12) 5 60;
lcm(6, 5) 5 30; lcm(22 ? 32 ? 5, 2 ? 33 ? 72) 5 22 ? 33 ? 5 ? 72.

Modular Arithmetic
Another application of the division algorithm that will be important to
us is modular arithmetic. Modular arithmetic is an abstraction of a
method of counting that you often use. For example, if it is now
September, what month will it be 25 months from now? Of course, the
answer is October, but the interesting fact is that you didn’t arrive at the
answer by starting with September and counting off 25 months.
Instead, without even thinking about it, you simply observed that
25 5 2 ? 12 1 1, and you added 1 month to September. Similarly, if it
is now Wednesday, you know that in 23 days it will be Friday. This
time, you arrived at your answer by noting that 23 5 7 ? 3 1 2, so you
added 2 days to Wednesday instead of counting off 23 days. If your
electricity is off for 26 hours, you must advance your clock 2 hours,
since 26 5 2 ? 12 1 2. Surprisingly, this simple idea has numerous im-
portant applications in mathematics and computer science. You will see
a few of them in this section. The following notation is convenient.

When a 5 qn 1 r, where q is the quotient and r is the remainder
upon dividing a by n, we write a mod n 5 r. Thus,

3 mod 2 5 1 since 3 5 1 ? 2 1 1,
6 mod 2 5 0 since 6 5 3 ? 2 1 0,

11 mod 3 5 2 since 11 5 3 ? 3 1 2,
62 mod 85 5 62 since 62 5 0 ? 85 1 62,

22 mod 15 5 13 since 22 5 (21)15 1 13.

In general, if a and b are integers and n is a positive integer, then 
a mod n 5 b mod n if and only if n divides a 2 b (Exercise 9).

In our applications, we will use addition and multiplication mod n.
When you wish to compute ab mod n or (a 1 b) mod n, and a or b is
greater than n, it is easier to “mod first.” For example, to compute
(27 ? 36) mod 11, we note that 27 mod 11 5 5 and 36 mod 11 5 3, so
(27 ? 36) mod 11 5 (5 ? 3) mod 11 5 4. (See Exercise 11.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We pre-
sent two such applications.

EXAMPLE 4 The United States Postal Service money order shown
in Figure 0.1 has an identification number consisting of 10 digits together
with an extra digit called a check. The check digit is the 10-digit number
modulo 9. Thus, the number 3953988164 has the check digit 2, since  
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Figure 0.1

3953988164 mod 9 5 2.† If the number 39539881642 were incorrectly
entered into a computer (programmed to calculate the check digit) as,
say, 39559881642 (an error in the fourth position), the machine would
calculate the check digit as 4, whereas the entered check digit would be
2. Thus the error would be detected.

EXAMPLE 5 Airline companies, United Parcel Service, and the
rental car companies Avis and National use the modulo 7 values of
identification numbers to assign check digits. Thus, the identification
number 00121373147367 (see Figure 0.2) has the check digit 3 appended 

Figure 0.2

8 Integers and Equivalence Relations

†The value of N mod 9 is easy to compute with a calculator. If N 5 9q 1 r, where r is
the remainder upon dividing N by 9, then on a calculator screen N 4 9 appears as
q.rrrrr . . . , so the first decimal digit is the check digit. For example, 3953988164 4 9 5
439332018.222, so 2 is the check digit. If N has too many digits for your calculator, re-
place N by the sum of its digits and divide that  number by 9. Thus, 3953988164 mod 9 5
56 mod 9 5 2. The value of 3953988164 mod 9 can also be computed by searching
Google for 3953988164 mod 9.
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0 | Preliminaries 9

Figure 0.3

to it because 121373147367 mod 7 5 3. Similarly, the UPS pickup
record number 768113999, shown in Figure 0.3, has the check digit 2
appended to it.

The methods used by the Postal Service and the airline companies do
not detect all single-digit errors (see Exercises 35 and 39). However, detec-
tion of all single-digit errors, as well as nearly all errors involving the trans-
position of two adjacent digits, is easily achieved. One method that does
this is the one used to assign the so-called Universal Product Code (UPC)
to most retail items (see Figure 0.4). A UPC identification number has 12
digits. The first six digits identify the manufacturer, the next five identify
the product, and the last is a check. (For many items, the 12th digit is not
printed, but it is always bar-coded.) In Figure 0.4, the check digit is 8.

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(a1, a2, . . . , ak) ? (w1, w2, . . . , wk) 5 a1w1 1 a2w2 1 ? ? ? 1 akwk.
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An item with the UPC identification number a1a2 ??? a12 satisfies the
condition

(a1, a2, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

To verify that the number in Figure 0.4 satisfies the condition above, we
calculate

(0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 6 ? 3 1 5 ? 1
1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1) mod 10 5 90 mod 10 5 0.

The fixed k-tuple used in the calculation of check digits is called the
weighting vector.

Now suppose a single error is made in entering the number in
Figure 0.4 into a computer. Say, for instance, that 021000958978 is
entered (notice that the seventh digit is incorrect). Then the computer
calculates

0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 9 ? 3 
1 5 ? 1 1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1 5 99.

Since 99 mod 10 � 0, the entered number cannot be correct.
In general, any single error will result in a sum that is not 0 modulo 10.
The advantage of the UPC scheme is that it will detect nearly all

errors involving the transposition of two adjacent digits as well as all
errors involving one digit. For doubters, let us say that the identifica-
tion number given in Figure 0.4 is entered as 021000658798. Notice
that the last two digits preceding the check digit have been trans-
posed. But by calculating the dot product, we obtain 94 mod 10 � 0,
so we have detected an error. In fact, the only undetected transposi-
tion errors of adjacent digits a and b are those where |a 2 b| 5 5. To
verify this, we observe that a transposition error of the form

a1a2 ? ? ? aiai11 ? ? ? a12 → a1a2 ? ? ? ai11ai ? ? ? a12

is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

That is, the error is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10
5 (a1, a2, . . . , ai, ai11, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10.

This equality simplifies to either

(3ai11 1 ai) mod 10 5 (3ai 1 ai11) mod 10

or

(ai11 1 3ai) mod 10 5 (ai 1 3ai11) mod 10

10 Integers and Equivalence Relations
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depending on whether i is even or odd. Both cases reduce to 2(ai11 2 ai)
mod 10 5 0. It follows that |ai11 2 ai| 5 5, if ai11 � ai.

In 2005 United States companies began to phase in the use of a 13th
digit to be in conformance with the 13-digit product indentification
numbers used in Europe. The weighing vector for 13-digit numbers is
(1, 3, 1, 3, . . . , 3, 1).

Identification numbers printed on bank checks (on the bottom left
between the two colons) consist of an eight-digit number a1a2 ? ? ? a8
and a check digit a9, so that

(a1, a2, . . . , a9) ? (7, 3, 9, 7, 3, 9, 7, 3, 9) mod 10 5 0.

As is the case for the UPC scheme, this method detects all single-
digit errors and all errors involving the transposition of adjacent digits a
and b except when |a 2 b| 5 5. But it also detects most errors of the
form ? ? ? abc ? ? ? → ? ? ? cba ? ? ?, whereas the UPC method detects no
errors of this form.

In Chapter 5, we will examine more sophisticated means of assign-
ing check digits to numbers.

What about error correction? Suppose you have a number such as
73245018 and you would like to be sure that even if a single mistake
were made in entering this number into a computer, the computer
would nevertheless be able to determine the correct number. (Think of
it. You could make a mistake in dialing a telephone number but still get
the correct phone to ring!) This is possible using two check digits. One
of the check digits determines the magnitude of any single-digit error,
while the other check digit locates the position of the error. With these
two pieces of information, you can fix the error. To illustrate the idea, let
us say that we have the eight-digit identification number a1a2 ? ? ? a8. We
assign two check digits a9 and a10 so that

(a1 1 a2 1 ? ? ? 1 a9 1 a10) mod 11 5 0

and

(a1, a2, . . . , a9, a10) ? (1, 2, 3, . . . , 10) mod 11 5 0

are satisfied.
Let’s do an example. Say our number before appending the two

check digits is 73245018. Then a9 and a10 are chosen to satisfy

(7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  1 a9 1 a10) mod 11 5 0 (1)
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and

(7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1 0 ? 6 (2)
1 1 ? 7 1 8 ? 8 1 a9 ? 9 1 a10 ? 10) mod 11 5 0.

Since 7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  5 30  and 30 mod 11 5 8,
Equation (1) reduces to

(8 1 a9 1 a10) mod 11 5 0. (19)

Likewise, since (7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1
0 ? 6 1 1 ? 7 1 8 ? 8) mod 11 5 10, Equation (2) reduces to

(10 1 9a9 1 10a10) mod 11 5 0. (29)

Since we are using mod 11, we may rewrite Equation (29) as

(21 2 2a9 2 a10) mod 11 5 0

and add this to Equation (19) to obtain 7 2 a9 5 0. Thus a9 5 7. Now
substituting a9 5 7 into Equation (19) or Equation (29), we obtain 
a10 5 7 as well. So, the number is encoded as 7324501877.

Now let us suppose that this number is erroneously entered into a
computer programmed with our encoding scheme as 7824501877 (an
error in position 2). Since the sum of the digits of the received number
mod 11 is 5, we know that some digit is 5 too large or 6 too small
(assuming only one error has been made). But which one? Say the
error is in position i. Then the second dot product has the form a1 ? 1 1
a2 ? 2 1 ? ? ? 1 (ai 1 5)i 1 ai11 ? (i 1 1) 1 ? ? ? 1 a10 ? 10 5
(a1, a2, ? ? ? , a10) ? (1, 2, ? ? ? , 10) 1 5i. So, (7, 8, 2, 4, 5, 0, 1, 8, 7, 7) ?
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) mod 11 5 5i mod 11. Since the left-hand
side mod 11 is 10, we see that i 5 2. Our conclusion: The digit in posi-
tion 2 is 5 too large. We have successfully corrected the error.

Mathematical Induction
There are two forms of proof by mathematical induction that we will
use. Both are equivalent to the Well Ordering Principle. The explicit
formulation of the method of mathematical induction came in the 16th
century. Francisco Maurolycus (1494–1575), a teacher of Galileo, used
it in 1575 to prove that 1 1 3 1 5 1 ? ? ? 1 (2n 2 1) 5 n2, and Blaise
Pascal (1623–1662) used it when he presented what we now call
Pascal’s triangle for the coefficients of the binomial expansion. The
term mathematical induction was coined by Augustus De Morgan.

12 Integers and Equivalence Relations
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Theorem 0.4 First Principle of Mathematical Induction

PROOF The proof is left as an exercise (Exercise 29).

So, to use induction to prove that a statement involving positive inte-
gers is true for every positive integer, we must first verify that the state-
ment is true for the integer 1. We then assume the statement is true for
the integer n and use this assumption to prove that the statement is true
for the integer n 1 1.

Our next example uses some facts about plane geometry. Recall that
given a straightedge and compass, we can construct a right angle.

EXAMPLE 6 We use induction to prove that given a straightedge, a
compass, and a unit length, we can construct a line segment of length

for every positive integer n. The case when n 5 1 is given. Now we
assume that we can construct a line segment of length . Then use
the straightedge and compass to construct a right triangle with height 1
and base . The hypotenuse of the triangle has length . So,
by induction, we can construct a line segment of length for every
positive integer n.

EXAMPLE 7 DEMOIVRE’S THEOREM We use induction to prove
that for every positive integer n and every real number u, (cos u 1
i sin u)n 5 cos nu 1 i sin nu, where i is the complex number .
Obviously, the statement is true for n 5 1. Now assume it is true for n.
We must prove that (cos u 1 i sin u)n11 5 cos(n 1 1)u 1 i sin(n 1 1)u.
Observe that

(cos u 1 i sin u)n11 5 (cos u 1 i sin u)n(cos u 1 i sin u)
5 (cos nu 1 i sin nu)(cos u 1 i sin u)
5 cos nu cos u 1 i(sin nu cos u

1 sin u cos nu) 2 sin nu sin u.

Now, using trigonometric identities for cos(a 1 b) and sin(a 1 b), we
see that this last term is cos(n 1 1)u 1 i sin(n 1 1)u. So, by induction,
the statement is true for all positive integers.

In many instances, the assumption that a statement is true for an in-
teger n does not readily lend itself to a proof that the statement is true

" 21

"n
"n 1 1"n

"n
"n

Let S be a set of integers containing a. Suppose S has the property that
whenever some integer n $ a belongs to S, then the integer n 1 1 also
belongs to S. Then, S contains every integer greater than or equal to a.

16509_ch00_p001-026 pp4  11/17/08  9:22 AM  Page 13



for the integer n 1 1. In such cases, the following equivalent form of
induction may be more convenient. Some authors call this formulation
the strong form of induction.

Theorem 0.5 Second Principle of Mathematical Induction

PROOF The proof is left to the reader.

To use this form of induction, we first show that the statement is true
for the integer a. We then assume that the statement is true for all inte-
gers that are greater than or equal to a and less than n, and use this as-
sumption to prove that the statement is true for n.

EXAMPLE 8 We will use the Second Principle of Mathematical
Induction with a 5 2 to prove the existence portion of the Fundamental
Theorem of Arithmetic. Let S be the set of integers greater than 1 that
are primes or products of primes. Clearly, 2 [ S. Now we assume that
for some integer n, S contains all integers k with 2 # k , n. We must
show that n [ S. If n is a prime, then n [ S by definition. If n is not a
prime, then n can be written in the form ab, where 1 , a , n and 1 ,
b , n. Since we are assuming that both a and b belong to S, we know
that each of them is a prime or a product of primes. Thus, n is also a
product of primes. This completes the proof.

Notice that it is more natural to prove the Fundamental Theorem of
Arithmetic with the Second Principle of Mathematical Induction than
with the First Principle. Knowing that a particular integer factors as a
product of primes does not tell you anything about factoring the next
larger integer. (Does knowing that 5280 is a product of primes help you
to factor 5281 as a product of primes?)

The following problem appeared in the “Brain Boggler” section of
the January 1988 issue of the science magazine Discover.

EXAMPLE 9 The Quakertown Poker Club plays with blue chips
worth $5.00 and red chips worth $8.00. What is the largest bet that
cannot be made?

Let S be a set of integers containing a. Suppose S has the property that
n belongs to S whenever every integer less than n and greater than or
equal to a belongs to S. Then, S contains every integer greater than or
equal to a.

14 Integers and Equivalence Relations
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To gain insight into this problem, we try various combinations of
blue and red chips and obtain 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25,
26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40. It appears that the
answer is 27. But how can we be sure? Well, we need only prove that
every integer greater than 27 can be written in the form a ? 5 1
b ? 8, where a and b are nonnegative integers. This will solve the prob-
lem, since a represents the number of blue chips and b the number of red
chips needed to make a bet of a ? 5 1 b ? 8. For the purpose of contrast,
we will give two proofs—one using the First Principle of Mathematical
Induction and one using the Second Principle.

Let S be the set of all integers greater than or equal to 28 of the form
a ? 5 1 b ? 8, where a and b are nonnegative. Obviously, 28 [ S. Now
assume that some integer n [ S, say, n 5 a ? 5 1 b ? 8. We must show
that n 1 1 [ S. First, note that since n $ 28, we cannot have both
a and b less than 3. If a $ 3, then

n 1 1 5 (a ? 5 1 b ? 8) 1 (23 ? 5 1 2 ? 8)
5 (a 2 3) ? 5 1 (b 1 2) ? 8.

(Regarding chips, this last equation says that we may increase a bet
from n to n 1 1 by removing three blue chips from the pot and adding
two red chips.) If b $ 3, then

n 1 1 5 (a ? 5 1 b ? 8) 1 (5 ? 5 2 3 ? 8)
5 (a 1 5) ? 5 1 (b 2 3) ? 8.

(The bet can be increased by 1 by removing three red chips and adding
five blue chips.) This completes the proof.

To prove the same statement by the Second Principle, we note that
each of the integers 28, 29, 30, 31, and 32 is in S. Now assume that for
some integer n . 32, S contains all integers k with 28 # k , n. We
must show that n [ S. Since n 2 5 [ S, there are nonnegative
integers a and b such that n 2 5 5 a ? 5 1 b ? 8. But then n 5
(a 1 1) ? 5 1 b ? 8. Thus n is in S.

Equivalence Relations
In mathematics, things that are considered different in one context may
be viewed as equivalent in another context. We have already seen one
such example. Indeed, the sums 2 1 1 and 4 1 4 are certainly different
in ordinary arithmetic, but are the same under modulo 5 arithmetic.
Congruent triangles that are situated differently in the plane are not the
same, but they are often considered to be the same in plane geometry.
In physics, vectors of the same magnitude and direction can produce
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different effects—a 10-pound weight placed 2 feet from a fulcrum pro-
duces a different effect than a 10-pound weight placed 1 foot from a
fulcrum. But in linear algebra, vectors of the same magnitude and di-
rection are considered to be the same. What is needed to make these
distinctions precise is an appropriate generalization of the notion of
equality; that is, we need a formal mechanism for specifying whether or
not two quantities are the same in a given setting. This mechanism is an
equivalence relation.

Definition Equivalence Relation

An equivalence relation on a set S is a set R of ordered pairs of
elements of S such that

1. (a, a) [ R for all a [ S (reflexive property).
2. (a, b) [ R implies (b, a) [ R (symmetric property).
3. (a, b) [ R and (b, c) [ R imply (a, c) [ R (transitive property).

When R is an equivalence relation on a set S, it is customary to write
aRb instead of (a, b) [ R. Also, since an equivalence relation is just a
generalization of equality, a suggestive symbol such as <, ;, or , is
usually used to denote the relation. Using this notation, the three condi-
tions for an equivalence relation become a , a; a , b implies 
b , a; and a , b and b , c imply a , c. If , is an equivalence relation
on a set S and a [ S, then the set [a] 5 {x [ S | x , a} is called the
equivalence class of S containing a.

EXAMPLE 10 Let S be the set of all triangles in a plane. If a, b [ S,
define a , b if a and b are similar—that is, if a and b have correspond-
ing angles that are the same. Then, , is an equivalence relation on S.

EXAMPLE 11 Let S be the set of all polynomials with real coeffi-
cients. If f, g [ S, define f , g if f 9 5 g9, where f 9 is the derivative of f.
Then, , is an equivalence relation on S. Since two polynomials with
equal derivatives differ by a constant, we see that for any f in S, [ f ] 5
{ f 1 c | c is real}.

EXAMPLE 12 Let S be the set of integers and let n be a positive inte-
ger. If a, b [ S, define a ; b if a mod n 5 b mod n (that is, if a 2 b is
divisible by n). Then, ; is an equivalence relation on S and [a] 5 {a 1
kn | k [ S}. Since this particular relation is important in abstract alge-
bra, we will take the trouble to verify that it is indeed an equivalence
relation. Certainly, a 2 a is divisible by n, so that a ; a for all a in S.
Next, assume that a ; b, say, a 2 b 5 rn. Then, b 2 a 5 (2r)n, and

16 Integers and Equivalence Relations
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therefore b ; a. Finally, assume that a ; b and b ; c, say, a 2 b 5 rn
and b 2 c 5 sn. Then, we have a 2 c 5 (a 2 b) 1 (b 2 c) 5 rn 1 sn 5
(r 1 s)n, so that a ; c.

EXAMPLE 13 Let ; be as in Example 12 and let n 5 7. Then we
have 16 ; 2; 9 ; 25; and 24 ; 3. Also, [1] 5 {. . . , 220, 213, 26, 1,
8, 15, . . .} and [4] 5 {. . . , 217, 210, 23, 4, 11, 18, . . .}.

EXAMPLE 14 Let S 5 {(a, b) | a, b are integers, b 2 0}. If 
(a, b), (c, d ) [ S, define (a, b) < (c, d ) if ad 5 bc. Then < is an equiv-
alence relation on S. [The motivation for this example comes from frac-
tions. In fact, the pairs (a, b) and (c, d) are equivalent if the fractions a/b
and c/d are equal.]

To verify that < is an equivalence relation on S, note that (a, b) < (a, b)
requires that ab 5 ba, which is true. Next, we assume that (a, b) < (c, d),
so that ad 5 bc. We have (c, d) < (a, b) provided that cb 5 da, which is
true from commutativity of multiplication. Finally, we assume that (a, b) <
(c, d ) and (c, d) < (e, f ) and prove that (a, b) < (e, f ). This amounts to
using ad 5 bc and cf 5 de to show that af 5 be. Multiplying both sides
of ad 5 bc by f and replacing cf by de, we obtain adf 5 bcf 5 bde. Since
d 2 0, we can cancel d from the first and last terms.

Definition Partition

A partition of a set S is a collection of nonempty disjoint subsets of S
whose union is S. Figure 0.5 illustrates a partition of a set into four
subsets.

Figure 0.5 Partition of S into four subsets.

EXAMPLE 15 The sets {0}, {1, 2, 3, . . .}, and {. . . , 23, 22, 21}
constitute a partition of the set of integers.

EXAMPLE 16 The set of nonnegative integers and the set of non-
positive integers do not partition the integers, since both contain 0.

The next theorem reveals that equivalence relations and partitions
are intimately intertwined.

S
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Theorem 0.6 Equivalence Classes Partition

PROOF Let , be an equivalence relation on a set S. For any a [ S, the
reflexive property shows that a [ [a]. So, [a] is nonempty and the union
of all equivalence classes is S. Now, suppose that [a] and [b] are distinct
equivalence classes. We must show that [a] > [b] 5 0/. On the contrary,
assume c [ [a] > [b]. We will show that [a] # [b]. To this end, let x [ [a].
We then have c , a, c , b, and x , a. By the symmetric property, we
also have a , c. Thus, by transitivity, x , c, and by transitivity again,
x , b. This proves [a] # [b]. Analogously, [b] # [a]. Thus, [a] 5 [b],
in contradiction to our assumption that [a] and [b] are distinct equiva-
lence classes.

To prove the converse, let P be a collection of nonempty disjoint
subsets of S whose union is S. Define a , b if a and b belong to the
same subset in the collection. We leave it to the reader to show that , is
an equivalence relation on S (Exercise 55).

Functions (Mappings)
Although the concept of a function plays a central role in nearly every
branch of mathematics, the terminology and notation associated with
functions vary quite a bit. In this section, we establish ours.

Definition Function (Mapping)

A function (or mapping) f from a set A to a set B is a rule that assigns
to each element a of A exactly one element b of B. The set A is called
the domain of f, and B is called the range of f. If f assigns b to a, then
b is called the image of a under f. The subset of B comprising all the
images of elements of A is called the image of A under f.

We use the shorthand f: A → B to mean that f is a mapping from
A to B. We will write f(a) 5 b or f: a → b to indicate that f carries
a to b.

There are often different ways to denote the same element of a set. In
defining a function in such cases one must verify that the function
values assigned to the elements depend not on the way the elements
are expressed but only on the elements themselves. For example, the

The equivalence classes of an equivalence relation on a set S
constitute a partition of S. Conversely, for any partition P of S, there
is an equivalence relation on S whose equivalence classes are the
elements of P.

18 Integers and Equivalence Relations
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correspondence f from the rational numbers to the integers given by
f(a/b) 5 a 1 b does not define a function since 1/2 5 2/4 but f (1/2) ?
f (2/4). To verify that a correspondence is a function, you assume that 
x1 5 x2 and prove that f (x1) 5 (x2).

Definition Composition of Functions

Let f: A → B and c: B → C. The composition cf is the mapping from
A to C defined by (cf)(a) 5 c(f(a)) for all a in A. The composition
function cf can be visualized as in Figure 0.6.

Figure 0.6 Composition of functions f and c.

In calculus courses, the composition of f with g is written ( f 8 g)(x) and
is defined by ( f 8 g)(x) 5 f (g(x)). When we compose functions, we omit
the “circle.”

There are several kinds of functions that occur often enough to be
given names.

Definition One-to-One Function

A function f from a set A is called one-to-one if for every a1, a2 [ A,
f(a1) 5 f(a2) implies a1 5 a2.

The term one-to-one is suggestive, since the definition ensures that
one element of B can be the image of only one element of A. Alternatively,
f is one-to-one if a1 � a2 implies f(a1) � f(a2). That is, different ele-
ments of A map to different elements of B. See Figure 0.7.

Figure 0.7

a1 a1

a2 a2
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 (a2)
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φ

16509_ch00_p001-026 pp4  11/17/08  9:22 AM  Page 19



Definition Function from A onto B

A function f from a set A to a set B is said to be onto B if each element
of B is the image of at least one element of A. In symbols, f: A → B is
onto if for each b in B there is at least one a in A such that f(a) 5 b.
See Figure 0.8.

Figure 0.8

The next theorem summarizes the facts about functions we will need.

Theorem 0.7 Properties of Functions

PROOF We prove only part 1. The remaining parts are left as exercises
(Exercise 51). Let a [ A. Then (g(ba))(a) 5 g((ba)(a)) 5 g(b(a(a))).
On the other hand, ((gb)a)(a) 5 (gb)(a(a)) 5 g(b(a(a))). So, g(ba) 5
(gb)a.

It is useful to note that if a is one-to-one and onto, the function a21

described in part 4 of Theorem 0.7 has the property that if a (s) 5 t,
then a21(t) 5 s. That is, the image of t under a21 is the unique element s
that maps to t under a. In effect, a21 “undoes” what a does.

EXAMPLE 17 Let Z denote the set of integers, R the set of real num-
bers, and N the set of nonnegative integers. The following table illus-
trates the properties of one-to-one and onto.

Given functions a: A → B, b: B → C, and g: C → D, then

1. g(ba) 5 (gb)a (associativity).
2. If a and b are one-to-one, then ba is one-to-one.
3. If a and b are onto, then ba is onto.
4. If a is one-to-one and onto, then there is a function a21 from B

onto A such that (a21a)(a) 5 a for all a in A and (aa21)(b) 5 b
for all b in B.

φ is onto is not ontoψ

ψφ
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Domain Range Rule One-to-one Onto
Z Z x → x3 Yes No
R R x → x3 Yes Yes
Z N x → |x| No Yes
Z Z x → x2 No No

To verify that x → x3 is one-to-one in the first two cases, notice that if
x3 5 y3, we may take the cube roots of both sides of the equation to ob-
tain x 5 y. Clearly, the mapping from Z to Z given by x → x3 is not
onto, since 2 is the cube of no integer. However, x → x3 defines an
onto function from R to R, since every real number is the cube of its
cube root (that is, → b). The remaining verifications are left to
the reader.

Exercises

I was interviewed in the Israeli Radio for five minutes and I said that more
than 2000 years ago, Euclid proved that there are infinitely many primes.
Immediately the host interrupted me and asked: “Are there still infinitely
many primes?”

NOGA ALON

1. For n 5 5, 8, 12, 20, and 25, find all positive integers less than n
and relatively prime to n.

2. Determine gcd(24 ? 32 ? 5 ? 72, 2 ? 33 ? 7 ? 11) and lcm(23 ? 32 ? 5,
2 ? 33 ? 7 ? 11).

3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, (82 ? 73)
mod 7, (51 1 68) mod 7, (35 ? 24) mod 11, and (47 1 68) mod 11.

4. Find integers s and t such that 1 5 7 ? s 1 11 ? t. Show that s and t
are not unique.

5. In Florida, the fourth and fifth digits from the end of a driver’s license
number give the year of birth. The last three digits for a male with
birth month m and birth date b are represented by 40(m 2 1) 1 b. For
females the digits are 40(m 2 1) 1 b 1 500. Determine the dates of
birth of people who have last five digits 42218 and 53953.

6. For driver’s license numbers issued in New York prior to
September of 1992, the three digits preceding the last two of the
number of a male with birth month m and birth date b are repre-
sented by 63m 1 2b. For females the digits are 63m 1 2b 1 1.
Determine the dates of birth and sex(es) corresponding to the num-
bers 248 and 601.

3"b

16509_ch00_p001-026 pp4  11/17/08  9:22 AM  Page 21



7. Show that if a and b are positive integers, then ab 5 lcm(a, b) ?
gcd(a, b).

8. Suppose a and b are integers that divide the integer c. If a and b are
relatively prime, show that ab divides c. Show, by example, that if
a and b are not relatively prime, then ab need not divide c.

9. If a and b are integers and n is a positive integer, prove that a mod n 5
b mod n if and only if n divides a 2 b.

10. Let a and b be integers and d 5 gcd(a, b). If a 5 da9 and b 5 db9,
show that gcd(a9, b9) 5 1.

11. Let n be a fixed positive integer greater than 1. If a mod n 5 a9 and 
b mod  n 5 b9, prove that (a 1 b) mod n 5 (a9 1 b9) mod n and 
(ab) mod n 5 (a9b9) mod n. (This exercise is referred to in Chapters
6, 8, and 15.)

12. Let a and b be positive integers and let d 5 gcd(a, b) and m 5
lcm(a, b). If t divides both a and b, prove that t divides d. If s is a
multiple of both a and b, prove that s is a multiple of m.

13. Let n and a be positive integers and let d 5 gcd(a, n). Show that the
equation ax mod n 5 1 has a solution if and only if d 5 1. (This
exercise is referred to in Chapter 2.)

14. Show that 5n 1 3 and 7n 1 4 are relatively prime for all n.
15. Prove that every prime greater than 3 can be written in the form

6n 1 1 or 6n 1 5.
16. Determine 71000 mod 6 and 61001 mod 7.
17. Let a, b, s, and t be integers. If a mod st 5 b mod st, show that

a mod s 5 b mod s and a mod t 5 b mod t. What condition on s
and t is needed to make the converse true? (This exercise is referred
to in Chapter 8.)

18. Determine 8402 mod 5.
19. Show that gcd(a, bc) 5 1 if and only if gcd(a, b) 5 1 and

gcd(a, c) 5 1. (This exercise is referred to in Chapter 8.)
20. Let p1, p2, . . . , pn be primes. Show that p1 p2 ? ? ? pn 1 1 is divisi-

ble by none of these primes.
21. Prove that there are infinitely many primes. (Hint: Use Exercise 20.)
22. For every positive integer n, prove that 1 1 2 1 ? ? ? 1 n 5

n(n 1 1)/2.
23. For every positive integer n, prove that a set with exactly n elements

has exactly 2n subsets (counting the empty set and the entire set).
24. For any positive integer n, prove that 2n 32n 2 1 is always divisible

by 17.
25. Prove that there is some positive integer n such that  n, n 1 1,

n 1 2, ? ? ? , n 1 200 are all composite.

22 Integers and Equivalence Relations
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26. (Generalized Euclid’s Lemma) If p is a prime and p divides
a1a2 ? ? ? an, prove that p divides ai for some i.

27. Use the Generalized Euclid’s Lemma (see Exercise 26) to establish
the uniqueness portion of the Fundamental Theorem of Arithmetic.

28. What is the largest bet that cannot be made with chips worth $7.00
and $9.00? Verify that your answer is correct with both forms of
induction.

29. Prove that the First Principle of Mathematical Induction is a conse-
quence of the Well Ordering Principle.

30. The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . In gen-
eral, the Fibonacci numbers are defined by f1 5 1, f2 5 1, and for
n $ 3, fn 5 fn21 1 fn22. Prove that the nth Fibonacci number fn sat-
isfies fn , 2n.

31. In the cut “As” from Songs in the Key of Life, Stevie Wonder men-
tions the equation 8 3 8 3 8 3 8 5 4. Find all integers n for which
this statement is true, modulo n.

32. Prove that for every integer n, n3 mod 6 5 n mod 6.
33. If it were 2:00 A.M. now, what time would it be 3736 hours from now?
34. Determine the check digit for a money order with identification

number 7234541780.
35. Suppose that in one of the noncheck positions of a money order

number, the digit 0 is substituted for the digit 9 or vice versa. Prove
that this error will not be detected by the check digit. Prove that all
other errors involving a single position are detected.

36. Suppose that a money order identification number and check digit
of 21720421168 is erroneously copied as 27750421168. Will the
check digit detect the error?

37. A transposition error involving distinct adjacent digits is one of the
form . . . ab . . . → . . . ba . . . with a � b. Prove that the money
order check digit scheme will not detect such errors unless the
check digit itself is transposed.

38. Determine the check digit for the Avis rental car with identification
number 540047. (See Example 6.)

39. Show that a substitution of a digit ai9 for the digit ai (ai9 � ai) in
a noncheck position of a UPS number is detected if and only
if |ai 2 ai9| � 7.

40. Determine which transposition errors involving adjacent digits are
detected by the UPS check digit.

41. Use the UPC scheme to determine the check digit for the number
07312400508.
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42. Explain why the check digit for a money order for the number N is
the repeated decimal digit in the real number N 4 9.

43. The 10-digit International Standard Book Number (ISBN-10)
a1a2a3a4a5a6a7a8 a9a10 has the property (a1, a2, . . . , a10) ? (10, 9, 8, 7,
6, 5, 4, 3, 2, 1) mod 11 5 0. The digit a10 is the check digit. When
a10 is required to be 10 to make the dot product 0, the character X is
used as the check digit. Verify the check digit for the ISBN-10 as-
signed to this book.

44. Suppose that an ISBN-10 has a smudged entry where the question
mark appears in the number 0-716?-2841-9. Determine the missing
digit.

45. Suppose three consecutive digits abc of an ISBN-10 are scrambled as
bca. Which such errors will go undetected?

46. The ISBN-10 0-669-03925-4 is the result of a transposition of two
adjacent digits not involving the first or last digit. Determine the
correct ISBN-10.

47. Suppose the weighting vector for ISBN-10s was changed to (1, 2, 3,
4, 5, 6, 7, 8, 9, 10). Explain how this would affect the check digit.

48. Use the two-check-digit error-correction method described in this
chapter to append two check digits to the number 73445860.

49. Suppose that an eight-digit number has two check digits appended
using the error-correction method described in this chapter and it is
incorrectly transcribed as 4302511568. If exactly one digit is in-
correct, determine the correct number.

50. The state of Utah appends a ninth digit a9 to an eight-digit driver’s
license number a1a2 . . . a8 so that (9a1 1 8a2 1 7a3 1 6a4 1 5a5 1
4a6 1 3a7 1 2a8 1 a9) mod 10 5 0. If you know that the license
number 149105267 has exactly one digit incorrect, explain why the
error cannot be in position 2, 4, 6, or 8.

51. Complete the proof of Theorem 0.7.
52. Let S be the set of real numbers. If a, b [ S, define a , b if a 2 b

is an integer. Show that , is an equivalence relation on S. Describe
the equivalence classes of S.

53. Let S be the set of integers. If a, b [ S, define aRb if ab $ 0. Is R an
equivalence relation on S?

54. Let S be the set of integers. If a, b [ S, define aRb if a 1 b is even.
Prove that R is an equivalence relation and determine the equivalence
classes of S.

55. Complete the proof of Theorem 0.6 by showing that , is an equiva-
lence relation on S.

24 Integers and Equivalence Relations
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56. Prove that none of the integers 11, 111, 1111, 11111, . . . is a
square of an integer.

57. (Cancellation Property) Suppose a, b and g are functions. If ag 5
bg and g is one-to-one and onto, prove that a 5 b.

Computer Exercises

There is nothing more practical than a good theory.
LEONID BREZHNEV

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software checks the validity of a Postal Service money order
number. Use it to verify that 39539881642 is valid. Now enter the
same number with one digit incorrect. Was the error detected? Enter
the number with the 9 in position 2 replaced with a 0. Was the error
detected? Explain why or why not. Enter the number with two dig-
its transposed. Was the error detected? Explain why or why not.

2. This software checks the validity of a UPC number. Use it to verify
that 090146003386 is valid. Now enter the same number with one
digit incorrect. Was the error detected? Enter the number with two
consecutive digits transposed. Was the error detected? Enter the
number with the second 3 and the 8 transposed. Was the error de-
tected? Explain why or why not. Enter the number with the 9 and
the 1 transposed. Was the error detected? Explain why or why not. 

3. This software checks the validity of a UPS number. Use it to verify
that 8733456723 is valid. Now enter the same number with one digit
incorrect. Was the error detected? Enter the number with two consecu-
tive digits transposed. Was the error detected? Enter the number with
the 8 replaced by 1. Was the error detected? Explain why or why not. 

4. This software checks the validity of an identification number on a
bank check. Use it to verify that 091902049 is valid. Now enter the
same number with one digit incorrect. Was the error detected?
Enter the number with two consecutive digits transposed. Was the
error detected? Enter the number with the 2 and the 4 transposed.
Was the error detected? Explain why or why not. 

5. This software checks the validity of an ISBN-10. Use it to verify that
0395872456 is valid. Now enter the same number with one digit in-
correct. Was the error detected? Enter the number with two digits
transposed (they need not be consecutive). Was the error detected? 
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6. This software determines the two check digits for the mod 11 dec-
imal error-correction scheme discussed in this chapter. Run the
program with the input 21355432, 20965744, 10033456. Then
enter these numbers with the two check digits appended with one
digit incorrect. Was the error corrected? 

Suggested Readings

Linda Deneen, “Secret Encryption with Public Keys,” The UMAP Journal
8 (1987): 9–29.

This well-written article describes several ways in which modular
arithmetic can be used to code secret messages. They range from a
simple scheme used by Julius Caesar to a highly sophisticated scheme
invented in 1978 and based on modular n arithmetic, where n has more
than 200 digits.

J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics Maga-
zine 64 (1991): 13–22.

This article describes various methods used by the states to assign dri-
ver’s license numbers. Several include check digits for error detection.
This article can be downloaded at http://www.d.umn.edu/~jgallian/
license.pdf

J. A. Gallian, “The Mathematics of Identification Numbers,” The College
Mathematics Journal 22 (1991): 194–202.

This article is a comprehensive survey of check digit schemes that are
associated with identification numbers. This article can be downloaded
at http://www.d.umn.edu/~jgallian/ident.pdf

J. A. Gallian and S. Winters, “Modular Arithmetic in the Marketplace,”
The American Mathematical Monthly 95 (1988): 548–551.

This article provides a more detailed analysis of the check digit
schemes presented in this chapter. In particular, the error detection
rates for the various schemes are given. This article can be downloaded
at http://www.d.umn.edu/~jgallian/marketplace.pdf

26 Integers and Equivalence Relations
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P A R T  2

Groups

For online student resources, visit this textbook’s website at
http://college.hmco.com/PIC/gallian7e
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Introduction 
to Groups

Symmetry is a vast subject, significant in art and nature. Mathematics lies at
its root, and it would be hard to find a better one on which to demonstrate
the working of the mathematical intellect.

HERMANN WEYL, Symmetry

1

Symmetries of a Square
Suppose we remove a square region from a plane, move it in some way,
then put the square back into the space it originally occupied. Our goal
in this chapter is to describe in some reasonable fashion all possible
ways in which this can be done. More specifically, we want to describe
the possible relationships between the starting position of the square
and its final position in terms of motions. However, we are interested
in the net effect of a motion, rather than in the motion itself. Thus, for
example, we consider a 908 rotation and a 4508 rotation as equal, since
they have the same net effect on every point. With this simplifying con-
vention, it is an easy matter to achieve our goal.

To begin, we can think of the square region as being transparent
(glass, say), with the corners marked on one side with the colors blue,
white, pink, and green. This makes it easy to distinguish between mo-
tions that have different effects. With this marking scheme, we are now
in a position to describe, in simple fashion, all possible ways in which
a square object can be repositioned. See Figure 1.1. We now claim that
any motion—no matter how complicated—is equivalent to one of these
eight. To verify this claim, observe that the final position of the square
is completely determined by the location and orientation (that is, face
up or face down) of any particular corner. But, clearly, there are only
four locations and two orientations for a given corner, so there are
exactly eight distinct final positions for the corner.
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30 Groups

Figure 1.1

Let’s investigate some consequences of the fact that every motion is
equal to one of the eight listed in Figure 1.1. Suppose a square is repo-
sitioned by a rotation of 908 followed by a flip about the horizontal axis
of symmetry. In pictures,

Thus, we see that this pair of motions—taken together—is equal to
the single motion D. This observation suggests that we can compose
two motions to obtain a single motion. And indeed we can, since the
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eight motions may be viewed as functions from the square region to
itself, and as such we can combine them using function composition.

With this in mind, we may now write HR90 5 D. The eight motions R0,
R90, R180, R270, H, V, D, and D9, together with the operation composition,
form a mathematical system called the dihedral group of order 8 (the
order of a group is the number of elements it contains). It is denoted by
D4. Rather than introduce the formal definition of a group here, let’s
look at some properties of groups by way of the example D4.

To facilitate future computations, we construct an operation table or
Cayley table (so named in honor of the prolific English mathematician
Arthur Cayley, who first introduced them in 1854) for D4 below. The
circled entry represents the fact that D 5 HR90. (In general, ab denotes
the entry at the intersection of the row with a at the left and the column
with b at the top.)

R0 R90 R180 R270 H V D D9

R0 R0 R90 R180 R270 H V D D9

R90 R90 R180 R270 R0 D9 D H V
R180 R180 R270 R0 R90 V H D9 D
R270 R270 R0 R90 R180 D D9 V H
H H D� V D9 R0 R180 R90 R270

V V D9 H D R180 R0 R270 R90

D D V D9 H R270 R90 R0 R180
D9 D9 H D V R90 R270 R180 R0

Notice how orderly this table looks! This is no accident. Perhaps the
most important feature of this table is that it has been completely filled
in without introducing any new motions. Of course, this is because, as
we have already pointed out, any sequence of motions turns out to be
the same as one of these eight. Algebraically, this says that if A and B
are in D4, then so is AB. This property is called closure, and it is one of
the requirements for a mathematical system to be a group. Next, notice
that if A is any element of D4, then AR0 5 R0 A 5 A. Thus, combining
any element A on either side with R0 yields A back again. An element
R0 with this property is called an identity, and every group must have
one. Moreover, we see that for each element A in D4, there is exactly
one element B in D4 such that AB 5 BA 5 R0. In this case, B is said to
be the inverse of A and vice versa. For example, R90 and R270 are
inverses of each other, and H is its own inverse. The term inverse is a
descriptive one, for if A and B are inverses of each other, then B “un-
does” whatever A “does,” in the sense that A and B taken together in ei-
ther order produce R0, representing no change. Another striking feature
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32 Groups

of the table is that every element of D4 appears exactly once in each
row and column. This feature is something that all groups must have,
and, indeed, it is quite useful to keep this fact in mind when construct-
ing the table in the first place.

Another property of D4 deserves special comment. Observe that
HD Z DH but R90R180 5 R180R90. Thus, in a group, ab may or may not
be the same as ba. If it happens that ab 5 ba for all choices of group
elements a and b, we say the group is commutative or—better yet—
Abelian (in honor of the great Norwegian mathematician Niels Abel).
Otherwise, we say the group is non-Abelian.

Thus far, we have illustrated, by way of D4, three of the four con-
ditions that define a group—namely, closure, existence of an identity,
and existence of inverses. The remaining condition required for a group
is associativity; that is, (ab)c 5 a(bc) for all a, b, c in the set. To be sure
that D4 is indeed a group, we should check this equation for each of the
83 5 512 possible choices of a, b, and c in D4. In practice, however,
this is rarely done! Here, for example, we simply observe that the eight
motions are functions and the operation is function composition. Then,
since function composition is associative, we do not have to check the
equations.

The Dihedral Groups
The analysis carried out above for a square can similarly be done for
an equilateral triangle or regular pentagon or, indeed, any regular n-gon
(n $ 3). The corresponding group is denoted by Dn and is called the
dihedral group of order 2n.

The dihedral groups arise frequently in art and nature. Many of the
decorative designs used on floor coverings, pottery, and buildings have
one of the dihedral groups as a group of symmetry. Corporation logos
are rich sources of dihedral symmetry [1]. Chrysler’s logo has D5 as a
symmetry group, and that of Mercedes-Benz has D3. The ubiquitous
five-pointed star has symmetry group D5. The phylum Echinodermata
contains many sea animals (such as starfish, sea cucumbers, feather
stars, and sand dollars) that exhibit patterns with D5 symmetry.

Chemists classify molecules according to their symmetry. Moreover,
symmetry considerations are applied in orbital calculations, in determin-
ing energy levels of atoms and molecules, and in the study of molecular
vibrations. The symmetry group of a pyramidal molecule such as ammo-
nia (NH3), depicted in Figure 1.2, has symmetry group D3.
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Figure 1.2 A pyramidal molecule with symmetry group D3.

Mineralogists determine the internal structures of crystals (that is,
rigid bodies in which the particles are arranged in three-dimensional
repeating patterns—table salt and table sugar are two examples) by
studying two-dimensional x-ray projections of the atomic makeup 
of the crystals. The symmetry present in the projections reveals the
internal symmetry of the crystals themselves. Commonly occurring
symmetry patterns are D4 and D6 (see Figure 1.3). Interestingly, it is
mathematically impossible for a crystal to possess a Dn symmetry pat-
tern with n 5 5 or n . 6.

Figure 1.3 X-ray diffraction photos revealing D4 symmetry patterns in crystals.

The dihedral group of order 2n is often called the group of sym-
metries of a regular n-gon. A plane symmetry of a figure F in a
plane is a function from the plane to itself that carries F onto F and
preserves distances; that is, for any points p and q in the plane, the 
distance from the image of p to the image of q is the same as the

N

H

H
H
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distance from p to q. (The term symmetry is from the Greek word
symmetros, meaning “of like measure.”) The symmetry group of a
plane figure is the set of all symmetries of the figure. Symmetries in
three dimensions are defined analogously. Obviously, a rotation of a
plane about a point in the plane is a symmetry of the plane, and a rota-
tion about a line in three dimensions is a symmetry in three-dimensional
space. Similarly, any translation of a plane or of three-dimensional
space is a symmetry. A reflection across a line L is that function that
leaves every point of L fixed and takes any point q, not on L, to the point
q9 so that L is the perpendicular bisector of the line segment joining
q and q9 (see Figure 1.4). A reflection across a plane in three dimen-
sions is defined analogously. Notice that the restriction of a 1808 rota-
tion about a line L in three dimensions to a plane containing L is a
reflection across L in the plane. Thus, in the dihedral groups, the mo-
tions that we described as flips about axes of symmetry in three dimen-
sions (for example, H, V, D, D9) are reflections across lines in two
dimensions. Just as a reflection across a line is a plane symmetry that
cannot be achieved by a physical motion of the plane in two dimen-
sions, a reflection across a plane is a three-dimensional symmetry that
cannot be achieved by a physical motion of three-dimensional space.
A cup, for instance, has reflective symmetry across the plane bisecting
the cup, but this symmetry cannot be duplicated with a physical mo-
tion in three dimensions.

Figure 1.4

Many objects and figures have rotational symmetry but not reflective
symmetry. A symmetry group consisting of the rotational symmetries of
08, 3608/n, 2(3608)/n, . . . , (n 2 1)3608/n, and no other symmetries is
called a cyclic rotation group of order n and is denoted by 7R360/n8. Cyclic
rotation groups, along with dihedral groups, are favorites of artists, de-
signers, and nature. Figure 1.5 illustrates with corporate logos the cyclic
rotation groups of orders 2, 3, 4, 5, 6, 8, 16, and 20.

Further examples of the occurrence of dihedral groups and cyclic
groups in art and nature can be found in the references. A study of sym-
metry in greater depth is given in Chapters 27 and 28.

q

q9

L   
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Exercises

The only way to learn mathematics is to do mathematics.
PAUL HALMOS, Hilbert Space Problem Book

1. With pictures and words, describe each symmetry in D3 (the set of
symmetries of an equilateral triangle).

2. Write out a complete Cayley table for D3.
3. Is D3 Abelian?
4. Describe in pictures or words the elements of D5 (symmetries of a

regular pentagon).
5. For n $ 3, describe the elements of Dn. (Hint: You will need to

consider two cases—n even and n odd.) How many elements
does Dn have?

6. In Dn, explain geometrically why a reflection followed by a reflec-
tion must be a rotation.

7. In Dn, explain geometrically why a rotation followed by a rotation
must be a rotation.

8. In Dn, explain geometrically why a rotation and a reflection taken
together in either order must be a reflection.

9. Associate the number 11 with a rotation and the number 21 with
a reflection. Describe an analogy between multiplying these two
numbers and multiplying elements of Dn.

Figure 1.5 Logos with cyclic rotation symmetry groups.
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10. If r1, r2, and r3 represent rotations from Dn and f1, f2, and f3 represent
reflections from Dn, determine whether r1r2 f1r3 f2 f3r3 is a rotation
or a reflection.

11. Find elements A, B, and C in D4 such that AB 5 BC but A Z C.
(Thus, “cross cancellation” is not valid.)

12. Explain what the following diagram proves about the group Dn.

13. Describe the symmetries of a nonsquare rectangle. Construct the
corresponding Cayley table.

14. Describe the symmetries of a parallelogram that is neither a rec-
tangle nor a rhombus. Describe the symmetries of a rhombus that
is not a rectangle.

15. Describe the symmetries of a noncircular ellipse. Do the same for
a hyperbola.

16. Consider an infinitely long strip of equally spaced H’s:

? ? ? H H H H ? ? ?

Describe the symmetries of this strip. Is the group of symmetries
of the strip Abelian?

17. For each of the snowflakes in the figure, find the symmetry group
and locate the axes of reflective symmetry (disregard imperfections).

Photographs of snowflakes from the Bentley and Humphrey atlas.

1 1

2

1

n

2

31

2

13

n2

n

n – 11

2n

F

FR360/ n

R360 /n
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18. Determine the symmetry group of the outer shell of the cross sec-
tion of the human immunodeficiency virus (HIV) shown below.

19. Does an airplane propeller have a cyclic symmetry group or a di-
hedral symmetry group?

20. Bottle caps that are pried off typically have 22 ridges around the
rim. Find the symmetry group of such a cap.

21. What group theoretic property do upper-case letters F, G, J, K, L,
P, Q, R have that is not shared by the remaining upper-case letters
in the alphabet?

22. For each design below, determine the symmetry group (ignore
imperfections).
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23. What would the effect be if a six-bladed ceiling fan were designed
so that the centerlines of two of the blades were at a 708 angle and
all the other blades were set at a 588 angle?

Reference

1. B. B. Capitman, American Trademark Designs, New York: Dover, 1976.

Suggested Reading

Michael Field and Martin Golubitsky, Symmetry in Chaos, Oxford Uni-
versity Press, 1992.

This book has many beautiful symmetric designs that arise in
chaotic dynamic systems.

38 Groups
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Niels Abel

He [Abel] has left mathematicians
something to keep them busy for five
hundred years.

CHARLES HERMITE

NIELS HENRIK ABEL, one of the foremost
mathematicians of the 19th century, was
born in Norway on August 5, 1802. At the
age of 16, he began reading the classic math-
ematical works of Newton, Euler, Lagrange,
and Gauss. When Abel was 18 years old, his
father died, and the burden of supporting the
family fell upon him. He took in private
pupils and did odd jobs, while continuing to
do mathematical research. At the age of 19,
Abel solved a problem that had vexed lead-
ing mathematicians for hundreds of years.
He proved that, unlike the situation for equa-
tions of degree 4 or less, there is no finite
(closed) formula for the solution of the gen-
eral fifth-degree equation.

Although Abel died long before the ad-
vent of the subjects that now make up ab-
stract algebra, his solution to the quintic
problem laid the groundwork for many of
these subjects. Just when his work was be-
ginning to receive the attention it deserved,
Abel contracted tuberculosis. He died on
April 6, 1829, at the age of 26. 

In recognition of the fact that there is no
Nobel Prize for mathematics, in 2002 Norway
established the Abel Prize as the “Nobel Prize
in mathematics” in honor of its native son. At
approximately the $1,000,000 level, the Abel
Prize is now seen as an award equivalent to
the Nobel Prize.

To find more information about Abel, visit:
http://www-groups.dcs.st-and

.ac.uk/~history/

A 500-kroner bank note first issued
by Norway in 1948.

This stamp was issued in 1929
to commemorate the 100th
anniversary of Abel’s death.
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Groups

A good stock of examples, as large as possible, is indispensable 
for a thorough understanding of any concept, and when I want 
to learn something new, I make it my first job to build one.

PAUL R. HALMOS

2

Definition and Examples of Groups
The term group was used by Galois around 1830 to describe sets of
one-to-one functions on finite sets that could be grouped together to
form a set closed under composition. As is the case with most funda-
mental concepts in mathematics, the modern definition of a group that
follows is the result of a long evolutionary process. Although this defi-
nition was given by both Heinrich Weber and Walter von Dyck in 1882,
it did not gain universal acceptance until the 20th century.

Definition Binary Operation

Let G be a set. A binary operation on G is a function that assigns each
ordered pair of elements of G an element of G.

A binary operation on a set G, then, is simply a method (or for-
mula) by which the members of an ordered pair from G combine to
yield a new member of G. This condition is called closure. The most
familiar binary operations are ordinary addition, subtraction, and
multiplication of integers. Division of integers is not a binary opera-
tion on the integers because an integer divided by an integer need not
be an integer.

The binary operations addition modulo n and multiplication mod-
ulo n on the set {0, 1, 2, . . . , n 2 1}, which we denote by Zn, play an
extremely important role in abstract algebra. In certain situations we
will want to combine the elements of Zn by addition modulo n only;
in other situations we will want to use both addition modulo n and
multiplication modulo n to combine the elements. It will be clear
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from the context whether we are using addition only or addition and
multiplication. For example, when multiplying matrices with entries
from Zn, we will need both addition modulo n and multiplication
modulo n.

Definition Group

Let G be a set together with a binary operation (usually called multipli-
cation) that assigns to each ordered pair (a, b) of elements of G an ele-
ment in G denoted by ab. We say G is a group under this operation if
the following three properties are satisfied.

1. Associativity. The operation is associative; that is, (ab)c 5 a(bc) for
all a, b, c in G.

2. Identity. There is an element e (called the identity) in G such that
ae 5 ea 5 a for all a in G.

3. Inverses. For each element a in G, there is an element b in G
(called an inverse of a) such that ab 5 ba 5 e.

In words, then, a group is a set together with an associative opera-
tion such that there is an identity, every element has an inverse, and any
pair of elements can be combined without going outside the set. Be
sure to verify closure when testing for a group (see Example 5). Notice
that if a is the inverse of b, then b is the inverse of a.

If a group has the property that ab 5 ba for every pair of elements
a and b, we say the group is Abelian. A group is non-Abelian if there
is some pair of elements a and b for which ab 2 ba. When encounter-
ing a particular group for the first time, one should determine whether
or not it is Abelian.

Now that we have the formal definition of a group, our first job is
to build a good stock of examples. These examples will be used
throughout the text to illustrate the theorems. (The best way to grasp
the meat of a theorem is to see what it says in specific cases.) As we
progress, the reader is bound to have hunches and conjectures that
can be tested against the stock of examples. To develop a better un-
derstanding of the following examples, the reader should supply the
missing details.

EXAMPLE 1 The set of integers Z (so denoted because the German
word for numbers is Zahlen), the set of rational numbers Q (for quo-
tient), and the set of real numbers R are all groups under ordinary addi-
tion. In each case, the identity is 0 and the inverse of a is 2a.
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EXAMPLE 2 The set of integers under ordinary multiplication is not
a group. Since the number 1 is the identity, property 3 fails. For exam-
ple, there is no integer b such that 5b 5 1.

EXAMPLE 3 The subset {1, 21, i, 2i} of the complex numbers 
is a group under complex multiplication. Note that 21 is its own inverse,
whereas the inverse of i is 2i, and vice versa.

EXAMPLE 4 The set Q1 of positive rationals is a group under ordi-
nary multiplication. The inverse of any a is 1/a 5 a21.

EXAMPLE 5 The set S of positive irrational numbers together with 1
under multiplication satisfies the three properties given in the definition
of a group but is not a group. Indeed, ? 5 2, so S is not closed
under multiplication.

EXAMPLE 6 A rectangular array of the form is called a 

2 3 2 matrix. The set of all 2 3 2 matrices with real entries is a group
under componentwise addition. That is,

The identity is and the inverse of is 

EXAMPLE 7 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a group under
addition modulo n. For any j . 0 in Zn, the inverse of j is n 2 j. 
This group is usually referred to as the group of integers modulo n.

As we have seen, the real numbers, the 2 3 2 matrices with real en-
tries, and the integers modulo n are all groups under the appropriate ad-
dition. But what about multiplication? In each case, the existence of
some elements that do not have inverses prevents the set from being a
group under the usual multiplication. However, we can form a group in
each case by simply throwing out the rascals. Examples 8, 9, and 11
illustrate this.

EXAMPLE 8 The set R* of nonzero real numbers is a group under
ordinary multiplication. The identity is 1. The inverse of a is 1/a.

c2a 2b

2c 2d
d .ca b

c d
dc0 0

0 0
d ,

ca1 b1

c1 d1
d 1 ca2 b2

c2 d2
d 5 ca1 1 a2

c1 1 c2

b1 1 b2

d1 1 d2
d

ca b

c d
d

"2"2
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EXAMPLE 9† The determinant of the 2 3 2 matrix is the

number ad 2 bc. If A is a 2 3 2 matrix, det A denotes the determinant
of A. The set

GL(2, R) 5

of 2 3 2 matrices with real entries and nonzero determinant is a non-
Abelian group under the operation

.

The first step in verifying that this set is a group is to show that the
product of two matrices with nonzero determinant also has nonzero
determinant. This follows from the fact that for any pair of 2 3 2
matrices A and B, det (AB) 5 (det A)(det B).

Associativity can be verified by direct (but cumbersome) calcula-

tions. The identity is ; the inverse of is

(explaining the requirement that ad 2 bc 2 0). This very important
non-Abelian group is called the general linear group of 2 3 2 matrices
over R.

EXAMPLE 10 The set of all 2 3 2 matrices with real number entries
is not a group under the operation defined in Example 9. Inverses do
not exist when the determinant is 0.

Now that we have shown how to make subsets of the real numbers
and subsets of the set of 2 3 2 matrices into multiplicative groups, we
next consider the integers under multiplication modulo n.

≥
d

ad 2 bc

2b

ad 2 bc

2c

ad 2 bc

a

ad 2 bc

¥

ca b

c d
dc1 0

0 1
d

ca1 b1

c1 d1
d ca2 b2

c2 d2
d 5 ca1a2 1 b1c2

c1a2 1 d1c2

a1b2 1 b1d2

c1b2 1 d1d2
d

e ca b

c d
d  `  a, b, c, d P R, ad 2 bc ? 0 f

ca b

c d
d

†For simplicity, we have restricted our matrix examples to the 2 3 2 case. However,
readers who have had linear algebra can readily generalize to n 3 n matrices.
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EXAMPLE 11 (L. Euler, 1761) By Exercise 13 in Chapter 0, an
integer a has a multiplicative inverse modulo n if and only if a and n are
relatively prime. So, for each n . 1, we define U(n) to be the set of all
positive integers less than n and relatively prime to n. Then U(n) is a
group under multiplication modulo n. (We leave it to the reader to
check that this set is closed under this operation.)

For n 5 10, we have U(10) 5 {1, 3, 7, 9}. The Cayley table for
U(10) is

(Recall that ab mod n is the unique integer r with the property a ? b 5
nq 1 r, where 0 # r , n and a ? b is ordinary multiplication.) In the
case that n is a prime, U(n) 5 {1, 2, . . . , n 2 1}.

In his classic book Lehrbuch der Algebra, published in 1899, Heinrich
Weber gave an extensive treatment of the groups U(n) and described
them as the most important examples of finite Abelian groups.

EXAMPLE 12 The set {0, 1, 2, 3} is not a group under multiplica-
tion modulo 4. Although 1 and 3 have inverses, the elements 0 and 2
do not.

EXAMPLE 13 The set of integers under subtraction is not a group,
since the operation is not associative.

With the examples given thus far as a guide, it is wise for the reader
to pause here and think of his or her own examples. Study actively!
Don’t just read along and be spoon-fed by the book.

EXAMPLE 14 For all integers n $ 1, the set of complex nth roots
of unity

(i.e., complex zeros of xn 2 1) is a group under multiplication. (See
DeMoivre’s Theorem—Example 7 in Chapter 0.) Compare this group
with the one in Example 3.

e cos 
k ? 360°

n
1 i sin 

k ? 360°
n

 ` k 5 0, 1, 2, . . . , n 2 1 f

44 Groups

mod 10 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1
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The complex number a 1 bi can be represented geometrically as the
point (a, b) in a plane coordinatized by a horizontal real axis and a ver-
tical i or imaginary axis. The distance from the point a 1 bi to the ori-
gin is and is often denoted by Ua 1 bi|. For any angle u, the
line segment joining the complex number cos u 1 i sin u and the origin
forms an angle of u with the positive real axis. Thus, the six complex
zeros of x6 5 1 are located at points around the circle of radius 1, 60°
apart, as shown in Figure 2.1.

Figure 2.1

EXAMPLE 15 The set Rn 5 {(a1, a2, . . . , an) U a1, a2, . . . , an [ R}
is a group under componentwise addition [i.e., (a1, a2, . . . , an) 1
(b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)].

EXAMPLE 16 For a fixed point (a, b) in R2, define Ta,b: R2 → R2

by (x, y) → (x 1 a, y 1 b). Then G 5 {Ta,b U a, b [ R} is a group
under function composition. Straightforward calculations show that
Ta,bTc,d 5 Ta1c,b1d. From this formula we may observe that G is
closed, T0,0 is the identity, the inverse of Ta,b is T2a,2b, and G is Abelian.
Function composition is always associative. The elements of G are
called translations.

EXAMPLE 17 The set of all 2 3 2 matrices with determinant 1 with en-
tries from Q (rationals), R (reals), C (complex numbers), or Zp (p a prime)
is a non-Abelian group under matrix multiplication. This group is called
the special linear group of 2 3 2 matrices over Q, R, C, or Zp, respectively.

2
1

2
1

2
3

60°
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2
1

2
3–– i i

2
1

2
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2
3

i2
1

2
3+– i
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If the entries are from F, where F is any of the above, we denote this group
by SL(2, F). For the group SL(2, F), the formula given in Example 9 for

the inverse of simplifies to When the matrix 

entries are from Zp, we use modulo p arithmetic to compute determi-
nants, matrix products, and inverses. To illustrate the case SL(2, Z5),

consider the element A 5 . Then det A 5 (3 ? 4 2 4 ? 4) mod 5 5

24 mod 5 5 1, and the inverse of A is . Note

that when the arithmetic is done modulo 5.

Example 9 is a special case of the following general construction.

EXAMPLE 18 Let F be any of Q, R, C, or Zp ( p a prime). The set
GL(2, F) of all 2 3 2 matrices with nonzero determinants and entries
from F is a non-Abelian group under matrix multiplication. As in
Example 17, when F is Zp, modulo p arithmetic is used to calculate
determinants, the matrix products, and inverses. The formula given in 

Example 9 for the inverse of remains valid for elements from

GL(2, Zp) provided we interpret division by ad 2 bc as multiplication
by the inverse of ad 2 bc modulo p. For example, in GL(2, Z7),

consider . Then the determinant (ad 2 bc) mod 7 is (12 2 30)

mod 7 5 218 mod 7 5 3 and the inverse of 3 is 5 [since (3 ? 5) 

mod 7 5 1]. So, the inverse of is . 

[The reader should check that in GL(2, Z7)].

EXAMPLE 19 The set {1, 2, . . . , n 2 1} is a group under multipli-
cation modulo n if and only if n is prime.

EXAMPLE 20 The set of all symmetries of the infinite ornamental
pattern in which arrowheads are spaced uniformly a unit apart along 

c4 5

6 3
d  c1 3

5 6
d 5 c1 0

0 1
d

c3 ? 5 2 ? 5

1 ? 5 4 ? 5
d 5 c1 3

5 6
dc4 5

6 3
d

c4 5

6 3
d

ca b

c d
d

c3 4

4 4
d c4 1

1 3
d 5 c1 0

0 1
d

c 4 24

24 3
d 5 c4 1

1 3
d

c3 4

4 4
d

c d 2b

2c a
d .ca b

c d
d
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2 | Groups 47

a line is an Abelian group under composition. Let T denote a translation
to the right by one unit, T 21 a translation to the left by one unit, and H a re-
flection across the horizontal line of the figure. Then, every member of the
group is of the form x1x2 ? ? ? xn, where each xi [
{T, T21, H}. In this case, we say that T, T21, and H generate the group.

Table 2.1 summarizes many of the specific groups that we have
presented thus far.

As the examples above demonstrate, the notion of a group is a very
broad one indeed. The goal of the axiomatic approach is to find proper-
ties general enough to permit many diverse examples having these
properties and specific enough to allow one to deduce many interesting
consequences.

The goal of abstract algebra is to discover truths about algebraic
systems (that is, sets with one or more binary operations) that are inde-
pendent of the specific nature of the operations. All one knows 
or needs to know is that these operations, whatever they may be, have

Table 2.1 Summary of Group Examples (F can be any of Q, R, C, or Zp; L is a reflection)

Form of
Group Operation Identity Element Inverse Abelian

Z Addition 0 k 2k Yes
Q1 Multiplication 1 m/n, n/m Yes

m, n . 0
Zn Addition mod n 0 k n 2 k Yes
R* Multiplication 1 x 1/x Yes
GL(2, F) Matrix

,
No

multiplication

ad 2 bc 2 0
U(n) Multiplication 1 k, Solution to Yes

mod n gcd(k, n) 5 1 kx mod n 5 1
Rn Componentwise (0, 0, …, 0) (a1, a2, …, an) (2a1, 2a2, …, 2an) Yes

addition
SL(2, F) Matrix No

multiplication

ad 2 bc 5 1
Dn Composition R0 Ra, L R360 2 a, L No

c d

2c

2b

a
dca b

c d
dc1 0

0 1
d

ca b

c d
dc1 0

0 1
d

≥
d

ad 2 bc

2b

ad 2 bc

2c

ad 2 bc

a

ad 2 bc

¥
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certain properties. We then seek to deduce consequences of these
properties. This is why this branch of mathematics is called abstract
algebra. It must be remembered, however, that when a specific group
is being discussed, a specific operation must be given (at least 
implicitly).

Elementary Properties of Groups
Now that we have seen many diverse examples of groups, we wish to
deduce some properties that they share. The definition itself raises
some fundamental questions. Every group has an identity. Could a
group have more than one? Every group element has an inverse. Could
an element have more than one? The examples suggest not. But exam-
ples can only suggest. One cannot prove that every group has a unique
identity by looking at examples, because each example inherently has
properties that may not be shared by all groups. We are forced to
restrict ourselves to the properties that all groups have; that is, we must
view groups as abstract entities rather than argue by example. The next
three theorems illustrate the abstract approach.

Theorem 2.1 Uniqueness of the Identity

PROOF Suppose both e and e9 are identities of G. Then,

1. ae 5 a for all a in G, and
2. e9a 5 a for all a in G.

The choices of a 5 e9 in (1) and a 5 e in (2) yield e9e 5 e9 and 
e9e 5 e. Thus, e and e9 are both equal to e9e and so are equal to each
other.

Because of this theorem, we may unambiguously speak of “the iden-
tity” of a group and denote it by “e” (because the German word for
identity is Einheit).

Theorem 2.2 Cancellation

In a group G, the right and left cancellation laws hold; that is, 
ba 5 ca implies b 5 c, and ab 5 ac implies b 5 c.

In a group G, there is only one identity element.
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PROOF Suppose ba 5 ca. Let a9 be an inverse of a. Then, multi-
plying on the right by a9 yields (ba)a9 5 (ca)a9. Associativity yields 
b(aa9) 5 c(aa9). Then, be 5 ce and, therefore, b 5 c as desired. Simi-
larly, one can prove that ab 5 ac implies b 5 c by multiplying by a9 on
the left.

A consequence of the cancellation property is the fact that in a
Cayley table for a group, each group element occurs exactly once in
each row and column (see Exercise 23). Another consequence of the
cancellation property is the uniqueness of inverses.

Theorem 2.3 Uniqueness of Inverses

PROOF Suppose b and c are both inverses of a. Then ab 5 e and 
ac 5 e, so that ab 5 ac. Canceling the a on both sides gives b 5 c, as
desired.

As was the case with the identity element, it is reasonable, in view
of Theorem 2.3, to speak of “the inverse” of an element g of a group;
in fact, we may unambiguously denote it by g21. This notation is sug-
gested by that used for ordinary real numbers under multiplication.
Similarly, when n is a positive integer, the associative law allows us to
use gn to denote the unambiguous product

gg ? ? ? g.

n factors

We define g0 5 e. When n is negative, we define gn 5 (g21)|n| [for ex-
ample, g23 5 (g21)3]. Unlike for real numbers, in an abstract group we
do not permit noninteger exponents such as g1/2. With this notation, the
familiar laws of exponents hold for groups; that is, for all integers m and
n and any group element g, we have gmgn 5 gm1n and (gm)n 5 gmn.
Although the way one manipulates the group expressions gmgn and
(gm)n coincides with the laws of exponents for real numbers, the laws
of exponents fail to hold for expressions involving two group elements.
Thus, for groups in general, (ab)n Z anbn (see Exercise 15).

Also, one must be careful with this notation when dealing with a
specific group whose binary operation is addition and is denoted by

For each element a in a group G, there is a unique element b in G
such that ab 5 ba 5 e.
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“1.” In this case, the definitions and group properties expressed in
multiplicative notation must be translated to additive notation. For
example, the inverse of g is written as 2g. Likewise, for example, g3

Table 2.2

Multiplicative Group Additive Group

a ? b or ab Multiplication a 1 b Addition
e or 1 Identity or one 0 Zero
a21 Multiplicative inverse of a 2a Additive inverse of a
an Power of a na Multiple of a
ab21 Quotient a 2 b Difference

means g 1 g 1 g and is usually written as 3g, whereas g23 means
(2g) 1 (2g) 1 (2g) and is written as 23g. When additive notation 
is used, do not interpret “ng” as combining n and g under the group
operation; n may not even be an element of the group! Table 2.2 shows
the common notation and corresponding terminology for groups un-
der multiplication and groups under addition. As is the case for real
numbers, we use a 2 b as an abbreviation for a 1 (2b).

Because of the associative property, we may unambiguously write
the expression abc, for this can be reasonably interpreted as only (ab)c
or a(bc), which are equal. In fact, by using induction and repeated ap-
plication of the associative property, one can prove a general associa-
tive property that essentially means that parentheses can be inserted or
deleted at will without affecting the value of a product involving any
number of group elements. Thus,

a2(bcdb2) 5 a2b(cd )b2 5 (a2b)(cd )b2 5 a(abcdb)b,

and so on.
Although groups do not have the property that (ab)n 5 anbn there is

a simple relationship between (ab)21 and a21 and b21.

Theorem 2.4 Socks-Shoes Property

PROOF Since (ab)(ab)21 5 e and (ab)(b21a21) 5 a(bb21)a21 5
aea21 5 aa21 5 e, we have by Theorem 2.3 that (ab)21 5 b21a21.

For group elements a and b, (ab)21 5 b21a21.
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Historical Note
We conclude this chapter with a bit of history concerning the non-
commutativity of matrix multiplication. In 1925, quantum theory was
replete with annoying and puzzling ambiguities. It was Werner
Heisenberg who recognized the cause. He observed that the product of
the quantum-theoretical analogs of the classical Fourier series did not
necessarily commute. For all his boldness, this shook Heisenberg. As
he later recalled [2, p. 94]:

In my paper the fact that XY was not equal to YX was very disagreeable to me. I felt
this was the only point of difficulty in the whole scheme, otherwise I would be per-
fectly happy. But this difficulty had worried me and I was not able to solve it.

Heisenberg asked his teacher, Max Born, if his ideas were worth pub-
lishing. Born was fascinated and deeply impressed by Heisenberg’s new
approach. Born wrote [1, p. 217]:

After having sent off Heisenberg’s paper to the Zeitschrift für Physik for publica-
tion, I began to ponder over his symbolic multiplication, and was soon so involved
in it that I thought about it for the whole day and could hardly sleep at night. For I
felt there was something fundamental behind it, the consummation of our endeav-
ors of many years. And one morning, about the 10 July 1925, I suddenly saw light:
Heisenberg’s symbolic multiplication was nothing but the matrix calculus, well-
known to me since my student days from Rosanes’ lectures in Breslau.

Born and his student, Pascual Jordan, reformulated Heisenberg’s ideas
in terms of matrices, but it was Heisenberg who was credited with the
formulation. In his autobiography, Born laments [1, p. 219]:

Nowadays the textbooks speak without exception of Heisenberg’s matrices, Heisen-
berg’s commutation law, and Dirac’s field quantization.

In fact, Heisenberg knew at that time very little of matrices and had to study
them.

Upon learning in 1933 that he was to receive the Nobel Prize
with Dirac and Schrödinger for this work, Heisenberg wrote to Born
[1, p. 220]:

If I have not written to you for such a long time, and have not thanked you for your
congratulations, it was partly because of my rather bad conscience with respect to
you. The fact that I am to receive the Nobel Prize alone, for work done in Göttingen
in collaboration—you, Jordan, and I—this fact depresses me and I hardly know
what to write to you. I am, of course, glad that our common efforts are now appre-
ciated, and I enjoy the recollection of the beautiful time of collaboration. I also be-
lieve that all good physicists know how great was your and Jordan’s contribution to
the structure of quantum mechanics—and this remains unchanged by a wrong deci-
sion from outside. Yet I myself can do nothing but thank you again for all the fine
collaboration, and feel a little ashamed.

The story has a happy ending, however, because Born received the
Nobel Prize in 1954 for his fundamental work in quantum mechanics.
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Exercises

“For example,” is not proof.
Jewish Proverb

1. Give two reasons why the set of odd integers under addition is not
a group.

2. Referring to Example 13, verify the assertion that subtraction is not
associative.

3. Show that {1, 2, 3} under multiplication modulo 4 is not a group
but that {1, 2, 3, 4} under multiplication modulo 5 is a group.

4. Show that the group GL(2, R) of Example 9 is non-Abelian by ex-
hibiting a pair of matrices A and B in GL(2, R) such that AB 2 BA.

5. Find the inverse of the element in GL(2, Z11).

6. Give an example of group elements a and b with the property that
a21ba 2 b.

7. Translate each of the following multiplicative expressions into its
additive counterpart. Assume that the operation is commutative.
a. a2b3

b. a22(b21c)2

c. (ab2)23c2 5 e
8. Show that the set {5, 15, 25, 35} is a group under multiplication

modulo 40. What is the identity element of this group? Can you see
any relationship between this group and U(8)?

10. List the members of H 5 {x 2 | x [ D4} and K 5 {x [ D4 | x 2 5 e}.
11. Prove that the set of all 2 3 2 matrices with entries from R and de-

terminant 11 is a group under matrix multiplication.
12. For any integer n . 2, show that there are at least two elements in

U(n) that satisfy x2 5 1.

c2 6

3 5
d
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13. An abstract algebra teacher intended to give a typist a list of nine in-
tegers that form a group under multiplication modulo 91. Instead,
one of the nine integers was inadvertently left out, so that the list ap-
peared as 1, 9, 16, 22, 53, 74, 79, 81. Which integer was left out?
(This really happened!)

14. Let G be a group with the following property: Whenever a, b, and
c belong to G and ab 5 ca, then b 5 c. Prove that G is Abelian.
(“Cross cancellation” implies commutativity.)

15. (Law of Exponents for Abelian Groups) Let a and b be elements of
an Abelian group and let n be any integer. Show that (ab)n 5 anbn.
Is this also true for non-Abelian groups?

16. (Socks-Shoes Property) Draw an analogy between the statement
(ab)21 5 b21a21 and the act of putting on and taking off your socks
and shoes. Find an example that shows that in a group, it is possible
to have (ab)22 2 b22a22. Find distinct nonidentity elements a and
b from a non-Abelian group such that (ab)21 5 a21b21.

17. Prove that a group G is Abelian if and only if (ab)21 5 a21b21 for
all a and b in G.

18. Prove that in a group, (a21)21 5 a for all a.

19. For any elements a and b from a group and any integer n, prove
that (a21ba)n 5 a21bna.

20. If a1, a2, . . . , an belong to a group, what is the inverse of a1a2
. . . an?

21. The integers 5 and 15 are among a collection of 12 integers that
form a group under multiplication modulo 56. List all 12.

22. Give an example of a group with 105 elements. Give two examples
of groups with 44 elements.

23. Prove that every group table is a Latin square†; that is, each ele-
ment of the group appears exactly once in each row and each col-
umn. (This exercise is referred to in this chapter.)

24. Construct a Cayley table for U(12).

25. Suppose the table below is a group table. Fill in the blank entries.

†Latin squares are useful in designing statistical experiments. There is also a close con-
nection between Latin squares and finite geometries.

e a b c d

e e — — — —
a — b — — e
b — c d e —
c — d — a b

d — — — — —
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26. Prove that if (ab)2 5 a2b2 in a group G, then ab 5 ba.
27. Let a, b, and c be elements of a group. Solve the equation axb 5 c

for x. Solve a21xa 5 c for x.
28. Prove that the set of all rational numbers of the form 3m6n, where

m and n are integers, is a group under multiplication.
29. Let G be a finite group. Show that the number of elements x of G

such that x3 5 e is odd. Show that the number of elements x of G
such that x2 2 e is even.

30. Give an example of a group with elements a, b, c, d, and x such
that axb 5 cxd but ab 2 cd. (Hence “middle cancellation” is not
valid in groups.)

31. Let R be any rotation in some dihedral group and F any reflection
in the same group. Prove that RFR 5 F.

32. Let R be any rotation in some dihedral group and F, any reflection
in the same group. Prove that FRF 5 R21 for all integers k.

33. Suppose that G is a group with the property that for every choice
of elements in G, axb 5 cxd implies ab 5 cd. Prove that G is
Abelian. (“Middle cancellation” implies commutativity.)

34. In the dihedral group Dn, let R 5 R360/n and let F be any reflection.
Write each of the following products in the form Ri or RiF, where 
0 # i , n.
a. In D4, FR22FR5

b. In D5, R23FR4FR22

c. In D6, FR5FR22F
35. Prove that if G is a group with the property that the square of every

element is the identity, then G is Abelian. (This exercise is referred
to in Chapter 26.)

36. Prove that the set of all 3 3 3 matrices with real entries of the form

is a group. (Multiplication is defined by

This group, sometimes called the Heisenberg group after the
Nobel Prize–winning physicist Werner Heisenberg, is intimately re-
lated to the Heisenberg Uncertainty Principle of quantum physics.)

 £
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37. Prove the assertion made in Example 19 that the set {1, 2, . . . ,
n 2 1} is a group under multiplication modulo n if and only if n is
prime.

38. In a finite group, show that the number of nonidentity elements
that satisfy the equation x5 5 e is a multiple of 4. If the stipulation
that the group be finite is omitted, what can you say about the
number of nonidentity elements that satisfy the equation x5 5 e?

39. Let Show that G is a group under

matrix multiplication. Explain why each element of G has an inverse
even though the matrices have 0 determinant. (Compare with Exam-
ple 10.)

Computer Exercises

Almost immediately after the war, Johnny [Von Neumann] and I also began
to discuss the possibilities of using computers heuristically to try to obtain
insights into questions of pure mathematics. By producing examples and by
observing the properties of special mathematical objects, one could hope to
obtain clues as to the behavior of general statements which have been
tested on examples.

S. M. ULAM, Adventures of a Mathematician

Software for the computer exercises in this chapter is available at the web-
site:

http://www.d.umn.edu/~jgallian

1. This software prints the elements of U(n) and the inverse of each 
element.

2. This software determines the size of U(k). Run the program for 
k 5 9, 27, 81, 243, 25, 125, 49, 121. On the basis of this output, try
to guess a formula for the size of U( pn) as a function of the prime
p and the integer n. Run the program for k 5 18, 54, 162, 486, 50,
250, 98, 242. Make a conjecture about the relationship between the
size of U(2pn) and the size of U( pn), where p is a prime greater
than 2.

3. This software computes the inverse of any element in GL(2, Zp),
where p is a prime.

4. This software determines the number of elements in GL(2, Zp) and
SL(2, Zp). (The technical term for the number of elements in a group
is the order of the group.) Run the program for p 5 3, 5, 7, and 11.

G 5 e ca a

a a
d 0 aPR, a ? 0 f .
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Do you see a relationship between the orders of GL (2, Zp) and
SL(2, Zp) and p 2 1? Does this relationship hold for p 5 2? Based
on these examples, does it appear that p always divides the order
of SL (2, Zp)? What about p 2 1? What about p 1 1? Guess a
formula for the order of SL (2, Zp). Guess a formula for the order
of GL (2, Zp).
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Finite Groups;
Subgroups

In our own time, in the period 1960–1980, we have seen particle physics
emerge as the playground of group theory.

FREEMAN DYSON

57

3

Terminology and Notation
As we will soon discover, finite groups—that is, groups with finitely
many elements—have interesting arithmetic properties. To facilitate
the study of finite groups, it is convenient to introduce some terminol-
ogy and notation.

Definition Order of a Group

The number of elements of a group (finite or infinite) is called its
order. We will use |G| to denote the order of G.

Thus, the group Z of integers under addition has infinite order,
whereas the group U(10) 5 {1, 3, 7, 9} under multiplication modulo
10 has order 4.

Definition Order of an Element

The order of an element g in a group G is the smallest positive integer
n such that gn 5 e. (In additive notation, this would be ng 5 0.) If no
such integer exists, we say that g has infinite order. The order of an
element g is denoted by |g|.

So, to find the order of a group element g, you need only compute the
sequence of products g, g2, g3, . . . , until you reach the identity for the first
time. The exponent of this product (or coefficient if the operation is addi-
tion) is the order of g. If the identity never appears in the sequence, then
g has infinite order.

EXAMPLE 1 Consider U(15) 5 {1, 2, 4, 7, 8, 11, 13, 14} under
multiplication modulo 15. This group has order 8. To find the order of
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the element 7, say, we compute the sequence 71 5 7, 72 5 4, 73 5 13,
74 5 1, so |7| 5 4. To find the order of 11, we compute 111 5 11,
112 5 1, so |11| 5 2. Similar computations show that |1| 5 1, |2| 5 4,
|4| 5 2, |8| 5 4, |13| 5 4, |14| 5 2. [Here is a trick that makes these
calculations easier. Rather than compute the sequence 131, 132, 133,
134, we may observe that 13 5 22 mod 15, so that 132 5 (22)2 5 4,
133 5 22 ? 4 5 28, 134 5 (22)(28) 5 1.]†

EXAMPLE 2 Consider Z10 under addition modulo 10. Since 1 ? 2 5 2,
2 ? 2 5 4, 3 ? 2 5 6, 4 ? 2 5 8, 5 ? 2 5 0, we know that |2| 5 5. Similar
computations show that |0| 5 1, |7| 5 10, |5| 5 2, |6| 5 5. (Here 2 ? 2 is
an abbreviation for 2 1 2, 3 ? 2 is an abbreviation for 2 1 2 1 2, etc.)

EXAMPLE 3 Consider Z under ordinary addition. Here every nonzero
element has infinite order, since the sequence a, 2a, 3a, . . . never includes
0 when a � 0.

The perceptive reader may have noticed among our examples of
groups in Chapter 2 that some are subsets of others with the same
binary operation. The group SL(2, R) in Example 17, for instance, is
a subset of the group GL(2, R) in Example 9. Similarly, the group of
complex numbers {1, 21, i, 2i} under multiplication is a subset of
the group described in Example 14 for n equal to any multiple of 4.
This situation arises so often that we introduce a special term to de-
scribe it.

Definition Subgroup

If a subset H of a group G is itself a group under the operation of G, we
say that H is a subgroup of G.

We use the notation H # G to mean that H is a subgroup of G. If we
want to indicate that H is a subgroup of G but is not equal to G itself,
we write H , G. Such a subgroup is called a proper subgroup. The
subgroup {e} is called the trivial subgroup of G; a subgroup that is not
{e} is called a nontrivial subgroup of G.

Notice that Zn under addition modulo n is not a subgroup of Z under
addition, since addition modulo n is not the operation of Z.

Subgroup Tests
When determining whether or not a subset H of a group G is a sub-

† The website www.google.com provides a convenient way to do modular arithmetic.
For example, to compute 134 mod 15, just type 13ˆ4 mod 15 in the search box.
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group of G, one need not directly verify the group axioms. The next
three results provide simple tests that suffice to show that a subset of a
group is a subgroup.

Theorem 3.1 One-Step Subgroup Test

PROOF Since the operation of H is the same as that of G, it is clear
that this operation is associative. Next, we show that e is in H. Since H
is nonempty, we may pick some x in H. Then, letting a 5 x and b 5 x in
the hypothesis, we have e 5 xx21 5 ab21 is in H. To verify that x21 is
in H whenever x is in H, all we need to do is to choose a 5 e and b 5
x in the statement of the theorem. Finally, the proof will be complete
when we show that H is closed; that is, if x, y belong to H, we must
show that xy is in H also. Well, we have already shown that y21 is in H
whenever y is; so, letting a 5 x and b 5 y21, we have xy 5 x(y21)21 5
ab21 is in H.

Although we have dubbed Theorem 3.1 the “One-Step Subgroup
Test,’’ there are actually four steps involved in applying the theorem.
(After you gain some experience, the first three steps will be routine.)
Notice the similarity between the last three steps listed  below and the
three steps involved in the Principle of Mathematical Induction.

1. Identify the property P that distinguishes the elements of H; that is,
identify a defining condition.

2. Prove that the identity has property P. (This verifies that H is
nonempty.)

3. Assume that two elements a and b have property P.
4. Use the assumption that a and b have property P to show that

ab21 has property P.

The procedure is illustrated in Examples 4 and 5.

EXAMPLE 4 Let G be an Abelian group with identity e. Then H 5
{x [ G | x2 5 e} is a subgroup of G. Here, the defining property of H
is the condition x2 5 e. So, we first note that e2 5 e, so that H is non-
empty. Now we assume that a and b belong to H. This means that a2 5 e
and b2 5 e. Finally, we must show that (ab21)2 5 e. Since G is
Abelian, (ab21)2 5 ab21ab21 5 a2(b21)2 5 a2(b2)21 5 ee21 5 e.
Therefore, ab21 belongs to H and, by the One-Step Subgroup Test, H
is a subgroup of G.

Let G be a group and H a nonempty subset of G. If ab21 is in H
whenever a and b are in H, then H is a subgroup of G. (In additive
notation, if a 2 b is in H whenever a and b are in H, then H is a
subgroup of G.)
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In many instances, a subgroup will consist of all elements that have
a particular form. Then the property P is that the elements have that
particular form. This is illustrated in the following example.

EXAMPLE 5 Let G be an Abelian group under multiplication with
identity e. Then H 5 {x2 | x [ G} is a subgroup of G. (In words, H is
the set of all “squares.”) Since e2 5 e, the identity has the correct form.
Next, we write two elements of H in the correct form, say, a2 and b2. We
must show that a2(b2)21 also has the correct form; that is, a2(b2)21 is the
square of some element. Since G is Abelian, we may write a2(b2)21 as
(ab21)2, which is the correct form. Thus, H is a subgroup of G.

Beginning students often prefer to use the next theorem instead of
Theorem 3.1.

Theorem 3.2 Two-Step Subgroup Test

PROOF By Theorem 3.1, it suffices to show that a, b [ H implies 
ab21 [ H. So, we suppose that a, b [ H. Since H is closed under 
taking inverses, we also have b21 [ H. Thus, ab21 [ H by closure un-
der multiplication.

When applying the “Two-Step Subgroup Test,” we proceed exactly
as in the case of the “One-Step Subgroup Test,” except we use the as-
sumption that a and b have property P to prove that ab has property P
and that a21 has property P.

How do you prove that a subset of a group is not a subgroup? Here
are three possible ways, any one of which guarantees that the subset is
not a subgroup:

1. Show that the identity is not in the set.
2. Exhibit an element of the set whose inverse is not in the set.
3. Exhibit two elements of the set whose product is not in the set.

EXAMPLE 6 Let G be the group of nonzero real numbers under
multiplication, H 5 {x [ G | x 5 1 or x is irrational} and K 5
{x [ G | x $ 1}. Then H is not a subgroup of G, since [ H
but 5 2 o H. Also, K is not a subgroup, since 2 [ K but
221 o K.

"2 ? "2
"2

Let G be a group and let H be a nonempty subset of G. If ab is in H
whenever a and b are in H (H is closed under the operation), and a21

is in H whenever a is in H (H is closed under taking inverses), then H
is a subgroup of G.
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When dealing with finite groups, it is easier to use the following
subgroup test.

Theorem 3.3 Finite Subgroup Test

PROOF In view of Theorem 3.2, we need only prove that a21 [ H
whenever a [ H. If a 5 e, then a21 5 a and we are done. If a � e,
consider the sequence a, a2, . . . . By closure, all of these elements
belong to H. Since H is finite, not all of these elements are distinct. Say
ai 5 aj and i . j. Then, ai2j 5 e; and since a � e, i 2 j . 1. Thus,
aai2j21 5 ai2j 5 e and, therefore, ai2j21 5 a21. But, i 2 j 2 1 $ 1
implies ai2j21 [ H and we are done.

Examples of Subgroups
The proofs of the next few theorems show how our subgroup tests
work. We first introduce an important notation. For any element a from
a group, we let �a� denote the set {an | n [ Z}. In particular, observe
that the exponents of a include all negative integers as well as 0 and the
positive integers (a0 is defined to be the identity).

Theorem 3.4 �a� Is a Subgroup

PROOF Since a [ �a�, �a� is not empty. Let an, am [ �a�. Then,
an(am)21 5 an2m [ �a�; so, by Theorem 3.1, �a� is a subgroup of G.

The subgroup �a� is called the cyclic subgroup of G generated by a. In
the case that G 5 �a�, we say that G is cyclic and a is a generator of G.
(A cyclic group may have many generators.) Notice that although the
list . . . , a22, a21, a0, a1, a2, . . . has infinitely many entries, the set 
{an | n [ Z} might have only finitely many elements. Also note that,
since aiaj 5 ai1j 5 aj1i 5 ajai, every cyclic group is Abelian.

EXAMPLE 7 In U(10), �3� 5 {3, 9, 7, 1} 5 U(10), for 31 5 3,
32 5 9, 33 5 7, 34 5 1, 35 5 34 ? 3 5 1 ? 3, 36 5 34 ? 32 5 9, . . . ; 321 5 7

Let G be a group, and let a be any element of G. Then, �a� is a sub-
group of G.

Let H be a nonempty finite subset of a group G. If H is closed under
the operation of G, then H is a subgroup of G.
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Rn 5 e

Rn11 5 R R21 5 Rn21 

R22 5 Rn22 Rn12 5 R2

(since 3 ? 7 5 1), 322 5 9, 323 5 3, 324 5 1, 325 5 324 ? 321 5
1 ? 7, 326 5 324 ? 322 5 1 ? 9 5 9, . . . .

EXAMPLE 8 In Z10, �2� 5 {2, 4, 6, 8, 0}. Remember, an means na
when the operation is addition.

EXAMPLE 9 In Z, �21� 5 Z. Here each entry in the list . . . ,
22(21), 21(21), 0(21), 1(21), 2(21), . . . represents a distinct group
element.

EXAMPLE 10 In Dn, the dihedral group of order 2n, let R denote a
rotation of 360/n degrees. Then,

Rn 5 R360° 5 e, Rn11 5 R, Rn12 5 R2, . . . .

Similarly, R21 5 Rn21, R22 5 Rn22, . . . , so that �R� 5 {e, R, . . . ,
Rn21}. We see, then, that the powers of R “cycle back” periodically
with period n. Visually, raising R to successive positive powers is the
same as moving counterclockwise around the following circle one
node at a time, whereas raising R to successive negative powers is the
same as moving around the circle clockwise one node at a time.

In Chapter 4 we will show that |�a�| 5 |a|; that is, the order of the
subgroup generated by a is the order of a itself. (Actually, the definition
of |a| was chosen to ensure the validity of this equation.)

We next consider one of the most important subgroups.

Definition Center of a Group

The center, Z(G ), of a group G is the subset of elements in G that
commute with every element of G. In symbols,

Z(G) 5 {a [ G | ax 5 xa for all x in G}.

[The notation Z(G) comes from the fact that the German word for
center is Zentrum. The term was coined by J. A. de Seguier in 1904.]

Theorem 3.5 Center Is a Subgroup

The center of a group G is a subgroup of G.
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PROOF For variety, we shall use Theorem 3.2 to prove this result.
Clearly, e [ Z(G), so Z(G) is nonempty. Now, suppose a, b [ Z(G).
Then (ab)x 5 a(bx) 5 a(xb) 5 (ax)b 5 (xa)b 5 x(ab) for all x in G;
and, therefore, ab [ Z(G).

Next, assume that a [ Z(G). Then we have ax 5 xa for all x in G.
What we want is a21x 5 xa21 for all x in G. Informally, all we need do
to obtain the second equation from the first one is simultaneously to
bring the a’s across the equals sign:

ax 5 xa

becomes xa21 5 a21x. (Be careful here; groups need not be commuta-
tive. The a on the left comes across as a21 on the left, and the a on the
right comes across as a21 on the right.) Formally, the desired equation
can be obtained from the original one by multiplying it on the left and
right by a21, like so:

a21(ax)a21 5 a21(xa)a21,
(a21a)xa21 5 a21x(aa21),

exa21 5 a21xe,
xa21 5 a21x.

This shows that a21 [ Z(G) whenever a is.

For practice, let’s determine the centers of the dihedral groups.

EXAMPLE 11 For n $ 3,

To verify this, first observe that since every rotation in Dn is a power
of R360/n, rotations commute with rotations. We now investigate when a
rotation commutes with a reflection. Let R be any rotation in Dn and let 
F be any reflection in Dn. Observe that since RF is a reflection we have
RF 5 (RF )21 5 F21 R21 5 FR21. Thus it follows that R and F commute
if and only if FR 5 RF 5 FR21. By cancellation, this holds if and only if
R 5 R21. But R 5 R21 only when R 5 R0 or R 5 R180, and R180 is in Dn
only when n is even. So, we have proved that Z(Dn) 5 {R0} when n is
odd and Z(Dn) 5 {R0, R180} when n is even.

Although an element from a non-Abelian group does not necessarily
commute with every element of the group, there are always some
elements with which it will commute. For example, every element a

when n is even,

when n is odd.
Z(Dn) 5 e 5R0, R18065R06
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commutes with all powers of a. This observation prompts the next def-
inition and theorem.

Definition Centralizer of a in G

Let a be a fixed element of a group G. The centralizer of a in G, C(a), is
the set of all elements in G that commute with a. In symbols, C(a) 5
{g [ G | ga 5 ag}.

EXAMPLE 12 In D4, we have the following centralizers:

C(R0) 5 D4 5 C(R180),
C(R90) 5 {R0, R90, R180, R270} 5 C(R270),

C(H) 5 {R0, H, R180, V} 5 C(V),
C(D) 5 {R0, D, R180, D9} 5 C(D9).

Notice that each of the centralizers in Example 12 is actually a sub-
group of D4. The next theorem shows that this was not a coincidence.

Theorem 3.6 C(a) Is a Subgroup

PROOF A proof similar to that of Theorem 3.5 is left to the reader to
supply (Exercise 25).

Notice that for every element a of a group G, Z(G) # C(a). Also,
observe that G is Abelian if and only if C(a) 5 G for all a in G.

Exercises

The purpose of proof is to understand, not to verify.
ARNOLD ROSS

1. For each group in the following list, find the order of the group
and the order of each element in the group. What relation do you
see between the orders of the elements of a group and the order of
the group?

Z12, U(10), U(12), U(20), D4

2. Let Q be the group of rational numbers under addition and let Q*
be the group of nonzero rational numbers under multiplication.
In Q, list the elements in � �. In Q*, list the elements in � �.1

2
1
2

For each a in a group G, the centralizer of a is a subgroup of G.
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3. Let Q and Q* be as in Exercise 2. Find the order of each element
in Q and in Q*.

4. Prove that in any group, an element and its inverse have the
same order.

5. Without actually computing the orders, explain why the two ele-
ments in each of the following pairs of elements from Z30 must
have the same order: {2, 28}, {8, 22}. Do the same for the follow-
ing pairs of elements from U(15): {2, 8}, {7, 13}.

6. Suppose that a is a group element and a6 5 e. What are the possi-
bilities for |a|? Provide reasons for your answer.

7. If a is a group element and a has infinite order, prove that am ? an

when m ? n.
8. Let x belong to a group. If x2 2 e and x6 5 e, prove that x4 2 e and

x5 � e. What can we say about the order of x?
9. Show that if a is an element of a group G, then |a| # |G|.

10. Show that U(14) 5 �3� 5 �5�. [Hence, U(14) is cyclic.] Is 
U(14) 5 �11�?

11. Show that U(20) 2 �k� for any k in U(20). [Hence, U(20) is not
cyclic.]

12. Prove that an Abelian group with two elements of order 2 must
have a subgroup of order 4.

13. Find groups that contain elements a and b such that |a| 5 |b| 5 2
and
a. |ab| 5 3, b. |ab| 5 4, c. |ab| 5 5.
Can you see any relationship among |a|, |b|, and |ab|?

14. Suppose that H is a proper subgroup of Z under addition and H
contains 18, 30, and 40. Determine H.

15. Suppose that H is a proper subgroup of Z under addition and that H
contains 12, 30 and 54. What are the possibilities for H?

16. Prove that the dihedral group of order 6 does not have a subgroup
of order 4.

17. For each divisor k . 1 of n, let Uk(n) 5 {x [ U(n) | x mod k 5 1}.
[For example, U3(21) 5 {1, 4, 10, 13, 16, 19} and U7(21) 5 {1, 8}.]
List the elements of U4(20), U5(20), U5(30), and U10(30). Prove that
Uk(n) is a subgroup of U(n). Let H 5 {x [ U(10) | x mod 3 5 1}. Is
H a subgroup of U(10)? (This exercise is referred to in Chapter 8.)

18. If H and K are subgroups of G, show that H > K is a subgroup of
G. (Can you see that the same proof shows that the intersection
of any number of subgroups of G, finite or infinite, is again a
subgroup of G?)
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19. Let G be a group. Show that Z(G) 5 >a[GC(a). [This means the
intersection of all subgroups of the form C(a).]

20. Let G be a group, and let a [ G. Prove that C(a) 5 C(a21).
21. For any group element a and any integer k, show that C(a) # C(ak).

Use this fact to complete the following statement: “In a group, if R
is an integer and x commutes with a, then . . . .” Is the converse true?

22. Complete the partial Cayley group table given below.

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 2 1 7 8 6 5
4 4 3 1 2 8 7 5 6
5 5 6 8 7 1
6 6 5 7 8 1
7 7 8 5 6 1
8 8 7 6 5 1

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 8 7 6 5 4 3
3 3 4 5 6 7 8 1 2
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 4 3 2 1 8 7
7 7 8 1 2 3 4 5 6
8 8 7 6 5 4 3 2 1

23. Suppose G is the group defined by the following Cayley table.

a. Find the centralizer of each member of G.
b. Find Z(G).
c. Find the order of each element of G. How are these orders arith-

metically related to the order of the group?

24. If a and b are distinct group elements, prove that either a2 2 b2 or
a3 2 b3.

25. Prove Theorem 3.6.

26. If H is a subgroup of G, then by the centralizer C(H) of H we mean
the set {x [ G | xh 5 hx for all h [ H}. Prove that C(H) is a sub-
group of G.

27. Must the centralizer of an element of a group be Abelian?

28. Must the center of a group be Abelian?

29. Let G be an Abelian group with identity e and let n be some fixed in-
teger. Prove that the set of all elements of G that satisfy the equation
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xn 5 e is a subgroup of G. Give an example of a group G in which
the set of all elements of G that satisfy the equation x2 5 e does not
form a subgroup of G. (This exercise is referred to in Chapter 11.)

30. Suppose a belongs to a group and |a| 5 5. Prove that C(a) 5 C(a3).
Find an element a from some group such that |a| 5 6 and C(a) �
C(a3).

31. Determine all finite subgroups of R*, the group of nonzero real
numbers under multiplication.

32. Suppose n is an even positive integer and H is a subgroup of Zn.
Prove that either every member of H is even or exactly half of the
members of H are even.

33. Suppose a group contains elements a and b such that |a| 5 4,
|b| 5 2, and a3b 5 ba. Find |ab|.

34. Suppose a and b are group elements such that |a| 5 2, b ? e, and
aba 5 b2. Determine |b|.

35. Let a be a group element of order n, and suppose that d is a posi-
tive divisor of n. Prove that |ad | 5 n/d.

36. Consider the elements and from 

SL(2, R). Find |A|, |B|, and |AB|. Does your answer surprise you?

37. Consider the element in SL(2, R). What is the order of 

A? If we view as a member of SL(2, Zp) (p is a prime),

what is the order of A?
38. For any positive integer n and any angle u, show that in the group

SL(2, R),

Use this formula to find the order of

(Geometrically, represents a rotation of the plane 

u degrees.)
39. Let G be the symmetry group of a circle. Show that G has elements

of every finite order as well as elements of infinite order.

ccos u 2 sin u

sin u cos u
d

ccos 60° 2 sin 60°

sin 60° cos 60°
d

 
and ccos "2° 2 sin "2°

sin "2° cos "2°
d .

ccos u 2 sin u

sin u cos u
d n

5 ccos nu 2 sin nu

sin nu cos nu
d .

A 5 c1 1

0 1
d

A 5 c1 1

0 1
d

B 5 c 0 1

21 21
dA 5 c0 21

1 0
d
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40. Let x belong to a group and |x| 5 6. Find |x2|, |x3|, |x4|, and |x5|. Let
y belong to a group and |y| 5 9. Find |yi| for i 5 2, 3, . . . , 8. Do
these examples suggest any relationship between the order of the
power of an element and the order of the element?

41. D4 has seven cyclic subgroups. List them. Find a subgroup of D4 of
order 4 that is not cyclic.

42. U(15) has six cyclic subgroups. List them.
43. Prove that a group of even order must have an element of order 2.
44. Suppose G is a group that has exactly eight elements of order 3.

How many subgroups of order 3 does G have?
45. Let H be a subgroup of a finite group G. Suppose that g belongs to

G and n is the smallest positive integer such that gn [ H. Prove that
n divides |g|.

46. Compute the orders of the following groups.
a. U(3), U(4), U(12)
b. U(5), U(7), U(35)
c. U(4), U(5), U(20)
d. U(3), U(5), U(15)
On the basis of your answers, make a conjecture about the relation-
ship among |U(r)|, |U(s)|, and |U(rs)|.

47. Let R* be the group of nonzero real numbers under multiplication
and let H 5 {x [ R* | x2 is rational}. Prove that H is a subgroup of
R*. Can the exponent 2 be replaced by any positive integer and still
have H be a subgroup?

48. Compute |U(4)|, |U(10)|, and |U(40)|. Do these groups provide a
counterexample to your answer to Exercise 46? If so, revise your
conjecture.

49. Find a cyclic subgroup of order 4 in U(40).
50. Find a noncyclic subgroup of order 4 in U(40).

51. Let G 5 under addition. Let H 5

. Prove that H is a subgroup of G.

What if 0 is replaced by 1?
52. Let H 5 {A [ GL(2, R)| det A is an integer power of 2}. Show that

H is a subgroup of GL(2, R).
53. Let H be a subgroup of R under addition. Let K 5 {2a | a [ H}.

Prove that K is a subgroup of R* under multiplication.

e ca b

c d
dP G | a 1 b 1 c 1 d 5 0f

e  ca b

c d
 d  0  a, b, c, d  [ Z f
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54. Let G be a group of functions from R to R*, where the operation
of G is multiplication of functions. Let H 5 { f [ G | f(2) 5 1}.
Prove that H is a subgroup of G. Can 2 be replaced by any real
number?

55. Let G 5 GL(2, R) and inte-

under the operation of matrix multiplication. Prove or

disprove that H is a subgroup of GL(2, R).
56. Let H 5 {a 1 bi | a, b [ R, ab $ 0}. Prove or disprove that H is a

subgroup of C under addition.
57. Let H 5 {a 1 bi | a, b [ R, a2 1 b2 5 1}. Prove or disprove that

H is a subgroup of C* under multiplication. Describe the elements
of H geometrically.

58. The smallest subgroup containing a collection of elements S is the
subgroup H with the property that if K is any subgroup containing
S then K also contains H. (So, the smallest subgroup containing S is
contained in every subgroup that contains S.) The notation for this
subgroup is �S�. In the group Z, find
a. �8, 14�
b. �8, 13�
c. �6, 15�
d. �m, n�
e. �12, 18, 45�.
In each part, find an integer k such that the subgroup is �k�.

59. Let G 5 GL(2, R).

a. Find C .

b. Find C .

c. Find Z(G).
60. Let G be a finite group with more than one element. Show that G

has an element of prime order.
61. Let a belong to a group and |a| 5 m. If n is relatively prime to m,

show that a can be written as the nth power of some element in the
group.

62. Let G be a finite Abelian group and let a and b belong to G. Prove
that the set Ka, bL 5 {aib j | i, j [ Z} is a subgroup of G. What can
you say about |Ka, bL| in terms of |a| and |b|?

a c0 1

1 0
d b

a c1 1

1 0
d b

 gers f
H 5 e  ca 0

0 b
 d 0  a and b are nonzero
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Computer Exercises

A Programmer’s Lament

I really hate this damned machine;

I wish that they would sell it

It never does quite what I want

but only what I tell it.

DENNIE L. VAN TASSEL, The Compleat Computer

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the cyclic subgroups of U(n) generated
by each k in U(n) (n , 100). Run the program for n 5 12, 15, and
30. Compare the order of the subgroups with the order of the group
itself. What arithmetic relationship do these integers have?

2. The program lists the elements of Zn that generate all of Zn—that is,
those elements k, 0 # k # n 2 1, for which Zn 5 �k�. How does this
set compare with U(n)?  Make a conjecture.

3. This software does the following: For each pair of elements a and b
from U(n) (n , 100), it prints |a|, |b|, and |ab| on the same line. Run
the program for several values of n. Is there an arithmetic relation-
ship between |ab| and |a| and |b|?

4. This exercise repeats Exercise 3 for Zn using a 1 b in place of ab.
5. This software computes the order of elements in GL(2, Zp). Enter

several choices for matrices A and B. The software returns |A|, |B|,
|AB|, |BA|, |A21BA|, and |B21AB|. Do you see any relationship be-
tween |A|, |B| and |AB|? Do you see any relationship between |AB|
and |BA|? Make a conjecture about this relationship. Test your con-
jecture for several other choices for A and B. Do you see any rela-
tionship between |B| and |A21BA|? Do you see any relationship
between |A| and |B21AB|? Make a conjecture about this relation-
ship. Test your conjecture for several other choices for A and B.

Suggested Readings

Ruth Berger, “Hidden Group Structure,” Mathematics Magazine 78
(2005): 45–48.
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In this note, the author investigates groups obtained from U(n) by mul-
tiplying each element by some k in U(n). Such groups have identities
that are not obvious.

J. Gallian and M. Reid, “Abelian Forcing Sets,” American Mathematical
Monthly 100 (1993): 580–582.

A set S is called Abelian forcing if the only groups that satisfy (ab)n 5
anbn for all a and b in the group and all n in S are the Abelian ones.
This paper characterizes the Abelian forcing sets.

Gina Kolata, “Perfect Shuffles and Their Relation to Math,” Science 216
(1982): 505–506.

This is a delightful nontechnical article that discusses how group the-
ory and computers were used to solve a difficult problem about shuf-
fling a deck of cards. Serious work on the problem was begun by an
undergraduate student as part of a programming course.

Suggested Software

Allen Hibbard and Kenneth Levasseur, Exploring Abstract Algebra with
Mathematica, New York: Springer-Verlag, 1999.

This book, intended as a supplement for a course in abstract algebra,
consists of 14 group labs, 13 ring labs, and documentation for the
Abstract Algebra software on which the labs are based. The software uses
the Mathematica language, and only a basic familiarity with the program
is required. The software can be freely downloaded at http://www
.central.edu/eaam/ and can be used independently of the book. This arti-
cle can be downloaded at http://www.d.umn.edu/~jgallian/forcing.pdf
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Cyclic Groups

72

4

Properties of Cyclic Groups
Recall from Chapter 3 that a group G is called cyclic if there is an ele-
ment a in G such that G 5 {an | n [ Z}. Such an element a is called a
generator of G. In view of the notation introduced in the preceding
chapter, we may indicate that G is a cyclic group generated by a by
writing G 5 �a�.

In this chapter, we examine cyclic groups in detail and determine
their important characteristics. We begin with a few examples.

EXAMPLE 1 The set of integers Z under ordinary addition is cyclic.
Both 1 and 21 are generators. (Recall that, when the operation is addi-
tion, 1n is interpreted as

1 1 1 1 ? ? ? 1 1

n terms

when n is positive and as

(21) 1 (21) 1 ? ? ? 1 (21)

|n| terms

when n is negative.)

EXAMPLE 2 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a 
cyclic group under addition modulo n. Again, 1 and 21 5 n 2 1 are 
generators.

The notion of a “group,” viewed only 30 years ago as the epitome of
sophistication, is today one of the mathematical concepts most widely 
used in physics, chemistry, biochemistry, and mathematics itself.

ALEXEY SOSINSKY, 1991
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4 | Cyclic Groups 73

Unlike Z, which has only two generators, Zn may have many genera-
tors (depending on which n we are given).

EXAMPLE 3 Z8 5 k1l 5 k3l 5 k5l 5 k7l. To verify, for instance, that
Z8 5 k3l, we note that k3l 5 {3, 3 1 3, 3 1 3 1 3, . . .} is the set {3, 6,
1, 4, 7, 2, 5, 0} 5 Z8. Thus, 3 is a generator of Z8. On the other hand, 2
is not a generator, since k2l 5 {0, 2, 4, 6} 2 Z8.

EXAMPLE 4 (See Example 11 in Chapter 2.)
U(10) 5 {1, 3, 7, 9} 5 {30, 31, 33, 32} 5 �3�. Also, {1, 3, 7, 9} 5
{70, 73, 71, 72} 5 �7�. So both 3 and 7 are generators for U(10).

Quite often in mathematics, a “nonexample” is as helpful in under-
standing a concept as an example. With regard to cyclic groups, U(8)
serves this purpose; that is, U(8) is not a cyclic group. How can we ver-
ify this? Well, note that U(8) 5 {1, 3, 5, 7}. But

�1� 5 {1}
�3� 5 {3, 1}
�5� 5 {5, 1}
�7� 5 {7, 1}

so U(8) 2 �a� for any a in U(8).
With these examples under our belts, we are now ready to tackle

cyclic groups in an abstract way and state their key properties.

Theorem 4.1 Criterion for ai 5 a j

Let G be a group, and let a belong to G. If a has infinite order, then
if and only if . If a has finite order, say, n, then �a� 5

{e, a, a2, . . . , an–1} and ai 5 aj if and only if n divides i – j.
i 5 jai 5 aj

PROOF If a has infinite order, there is no nonzero n such that an is the
identity. Since ai 5 aj implies ai2j 5 e, we must have i 2 j 5 0, and the
first statement of the theorem is proved.

Now assume that |a| 5 n. We will prove that �a� 5 {e, a, . . . , an21}.
Certainly, the elements e, a, . . . , an21 are in �a�.

Now, suppose that ak is an arbitrary member of �a�. By the division
algorithm, there exist integers q and r such that

k 5 qn 1 r with 0 # r , n.
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Then ak 5 aqn1r 5 aqnar 5 (an)qar 5 ear 5 ar, so that ak [ {e, a,
a2, . . . , an21}. This proves that �a� 5 {e, a, a2, . . . , an21}.

Next, we assume that ai 5 a j and prove that n divides i 2 j. We
begin by observing that ai 5 aj implies ai2j 5 e. Again, by the division
algorithm, there are integers q and r such that

i 2 j 5 qn 1 r with 0 # r , n.

Then ai2j 5 aqn1r, and therefore e 5 ai2j 5 aqn1r 5 (an)qar 5 eqar 5
ear 5 ar. Since n is the least positive integer such that an is the identity,
we must have r 5 0, so that n divides i 2 j.

Conversely, if i 2 j 5 nq, then ai2j 5 anq 5 eq 5 e, so that 
ai 5 aj.

Theorem 4.1 reveals the reason for the dual use of the notation and
terminology for the order of an element and the order of a group.

Corollary 1 |a| 5 |�a�|

One special case of Theorem 4.1 occurs so often that it deserves
singling out.

Corollary 2 ak 5 e Implies That |a| Divides k

PROOF Since ak 5 e 5 a0, we know by Theorem 4.1 that n divides 
k 2 0.

Theorem 4.1 and its corollaries for the case |a| 5 6 are illustrated in
Figure 4.1.

What is important about Theorem 4.1 in the finite case is that it says
that multiplication in �a� is essentially done by addition modulo n. That
is, if (i 1 j) mod n 5 k, then aia j 5 ak. Thus, no matter what group G
is, or how the element a is chosen, multiplication in �a� works the same
as addition in Zn whenever |a| 5 n. Similarly, if a has infinite order,

Let G be a group and let a be an element of order n in G. If ak 5 e,
then n divides k.

For any group element a, |a| 5 |�a�|.
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Figure 4.1

then multiplication in �a� works the same as addition in Z, since aia j 5
ai1j and no modular arithmetic is done.

For these reasons, the cyclic groups Zn and Z serve as prototypes for
all cyclic groups, and algebraists say that there is essentially only one
cyclic group of each order. What is meant by this is that, although
there may be many different sets of the form {an | n [ Z}, there is
essentially only one way to operate on these sets. Algebraists do not
really care what the elements of a set are; they care only about the
algebraic properties of the set—that is, the ways in which the elements
of a set can be combined. We will return to this theme in the chapter
on isomorphisms (Chapter 6).

The next theorem provides a simple method for computing |ak|
knowing only |a|, and its first corollary provides a simple way to tell
when �ai� 5 �aj�.

Theorem 4.2 �ak� 5 �agcd(n,k)�

PROOF To simplify the notation, let d 5 gcd(n,k) and let k 5 dr.
Since ak 5 (ad)r, we have by closure that �ak� # �ad�. By Theorem 0.2
(the gcd theorem), there are integers s and t such that d 5 ns 1 kt. So,
ad 5 ans1kt 5 ansakt 5 (an)s(ak)t 5 e(ak)t 5 (ak)t [ �ak�. This proves
�ad� # �ak�. So, we have verified that �ak� 5 �agcd(n,k)�.

We prove the second part of the theorem by showing first that |ad| 5
n/d for any divisor d of n. Clearly, (ad)n/d 5 an 5 e, so that |ad| # n/d. On
the other hand, if i is a positive integer less than n/d, then (ad)i 2 e by de-
finition of |a|. We now apply this fact with d 5 gcd(n,k) to obtain |ak| 5
|�ak�| 5 |�agcd(n,k)�| 5 |agcd(n,k)| 5 n/gcd(n,k).

The advantage of Theorem 4.2 is that it allows us to replace one 
generator of a cyclic subgroup with a more convenient one. For example,

Let a be an element of order n in a group and let k be a positive
integer. Then �ak� 5 �agcd(n,k)� and |ak| 5 n/gcd(n,k).

... a–6 = a0 = a6 ...

... a –5 = a = a7...

... a–4 = a 2 = a8 ...

... a–3 = a3 = a9...

... a–2 = a4 = a 10...

... a–1 = a 5 = a 11...

16509_ch04_p072-094 pp3  11/15/08  11:15 AM  Page 75



76 Groups

if |a| 5 30, we have �a26� 5 �a2�, �a23� 5 �a�, �a22� 5 �a2�, �a21� 5 �a3�.
From this we can easily see that |a23| 5 30 and |a22| 5 15. Moreover, if
one wants to list the elements of, say, �a21�, it is easier to list the elements
of �a3� instead. (Try it doing it both ways!).

Theorem 4.2 establishes an important relationship between the order
of an element in a finite cyclic group and the order of the group.

Corollary 1 Orders of Elements in Finite Cyclic Groups

Corollary 2 Criterion for �ai� � �aj� and |ai | � |aj |

PROOF Theorem 4.2 shows that �ai� 5 �agcd(n,i)� and �a j� 5 �agcd(n,j)�,
so that the proof reduces to proving that �agcd(n,i)� 5 �agcd(n, j)� if and
only if gcd(n, i) 5 gcd(n, j). Certainly, gcd(n, i) 5 gcd(n, j) implies
that �agcd(n, i)� 5 �agcd(n, j)�. On the other hand, �agcd(n,i)� 5 �agcd(n, j)�
implies that |agcd(n,i)|5 |agcd(n, j)|, so that by the second conclusion of
Theorem 4.2, we have n/gcd(n, i) 5 n/gcd(n, j), and therefore gcd(n, i) 5
gcd(n, j).

The second part of the corollary follows from the first part and
Corollary 1 of Theorem 4.1.

The next two corollaries are important special cases of the preceding
corollary.

Corollary 3 Generators of Finite Cyclic Groups

Corollary 4 Generators of Zn

The value of Corollary 3 is that once one generator of a cyclic group has
been found, all generators of the cyclic group can easily be determined.

An integer k in Zn is a generator of Zn if and only if gcd(n, k) 5 1.

Let |a| 5 n. Then �a� 5 �aj� if and only if gcd(n, j) 5 1 and 
|a| 5 |�aj�| if and only if gcd(n, j) 5 1.

Let |a| 5 n. Then �ai� 5 �aj� if and only if gcd(n, i) 5 gcd(n, j) 
and |ai| 5 |aj| if and only if gcd(n, i) 5 gcd(n, j) .

In a finite cyclic group, the order of an element divides the order 
of the group.
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For example, consider the subgroup of all rotations in D6. Clearly, one
generator is R60. And, since |R60| 5 6, we see by Corollary 3 that the only
other generator is (R60)5 5 R300. Of course, we could have readily deduced
this information without the aid of Corollary 3 by direct calculations. So,
to illustrate the real power of Corollary 3, let us use it to find all genera-
tors of the cyclic group U(50). First, note that direct computations show
that |U(50)| 5 20 and that 3 is one of its generators. Thus, in view of
Corollary 3, the complete list of generators for U(50) is

3 mod 50 5 3, 311 mod 50 5 47,
33 mod 50 5 27, 313 mod 50 5 23,
37 mod 50 5 37, 317 mod 50 5 13,
39 mod 50 5 33, 319 mod 50 5 17.

Admittedly, we had to do some arithmetic here, but it certainly entailed
much less work than finding all the generators by simply determining
the order of each element of U(50) one by one.

The reader should keep in mind that Theorem 4.2 and its corollaries
apply only to elements of finite order.

Classification of Subgroups
of Cyclic Groups

The next theorem tells us how many subgroups a finite cyclic group has
and how to find them.

Theorem 4.3 Fundamental Theorem of Cyclic Groups

Before we prove this theorem, let’s see what it means. Understand-
ing what a theorem means is a prerequisite to understanding its proof.
Suppose G 5 �a� and G has order 30. The first and second parts of the
theorem say that if H is any subgroup of G, then H has the form �a30/k� for
some k that is a divisor of 30. The third part of the theorem says that G
has one subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15, and 30—and
no others. The proof will also show how to find these subgroups.

PROOF Let G 5 �a� and suppose that H is a subgroup of G. We must
show that H is cyclic. If it consists of the identity alone, then clearly H is
cyclic. So we may assume that H 2 {e}. We now claim that H contains

Every subgroup of a cyclic group is cyclic. Moreover, if |�a�| 5 n,
then the order of any subgroup of �a� is a divisor of n; and, for each
positive divisor k of n, the group �a� has exactly one subgroup of
order k—namely, �an/ k�.
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an element of the form at, where t is positive. Since G 5 �a�, every
element of H has the form at; and when at belongs to H with t , 0, then
a2t belongs to H also and 2t is positive. Thus, our claim is verified. Now
let m be the least positive integer such that am [ H. By closure, �am� # H.
We next claim that H 5 �am�. To prove this claim, it suffices to let b be an
arbitrary member of H and show that b is in �am�. Since b [ G 5 �a�, we
have b 5 ak for some k. Now, apply the division algorithm to k and m to
obtain integers q and r such that k 5 mq 1 r where 0 # r , m. Then ak 5
amq1r 5 amqar, so that ar 5 a2mqak. Since ak 5 b [ H and a2mq 5
(am)2q is in H also, ar [ H. But, m is the least positive integer such that
am [ H, and 0 # r , m, so r must be 0. Therefore, b 5 ak 5 amq 5
(am)q [ �am�. This proves the assertion of the theorem that every sub-
group of a cyclic group is cyclic.

To prove the next portion of the theorem, suppose that |�a�| 5 n and
H is any subgroup of �a�. We have already shown that H 5 �am�, where
m is the least positive integer such that am [ H. Using e 5 b 5 an as in
the preceding paragraph, we have n 5 mq.

Finally, let k be any positive divisor of n. We will show that �an/k� is
the one and only subgroup of �a� of order k. From Theorem 4.2, we see
that �an/k� has order n/gcd(n, n/k) 5 n/(n/k) 5 k. Now let H be any
subgroup of �a� of order k. We have already shown above that H 5 �am�,
where m is a divisor of n. Then m 5 gcd(n, m) and k 5 |am| 5 |agcd(n,m)| 5
n/gcd (n, m) 5 n/m. Thus, m 5 n/k and H 5 �an/k�.

Returning for a moment to our discussion of the cyclic group �a�,
where a has order 30, we may conclude from Theorem 4.3 that the sub-
groups of �a� are precisely those of the form �am�, where m is a divisor
of 30. Moreover, if k is a divisor of 30, the subgroup of order k is
�a30/k�. So the list of subgroups of �a� is:

�a� 5 {e, a, a2, . . . , a29} order 30,
�a2� 5 {e, a2, a4, . . . , a28} order 15,
�a3� 5 {e, a3, a6, . . . , a27} order 10,
�a5� 5 {e, a5, a10, a15, a20, a25} order 6,
�a6� 5 {e, a6, a12, a18, a24} order 5,

�a10� 5 {e, a10, a20} order 3,
�a15� 5 {e, a15} order 2,
�a30� 5 {e} order 1.

In general, if �a� has order n and k divides n, then �an/k� is the unique
subgroup of order k.

Taking the group in Theorem 4.3 to be Zn and a to be 1, we obtain
the following important special case.
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Corollary Subgroups of Zn

EXAMPLE 5 The list of subgroups of Z30 is

�1� 5 {0, 1, 2, . . . , 29} order 30,
�2� 5 {0, 2, 4, . . . , 28} order 15,
�3� 5 {0, 3, 6, . . . , 27} order 10,
�5� 5 {0, 5, 10, 15, 20, 25} order 6,
�6� 5 {0, 6, 12, 18, 24} order 5,

�10� 5 {0, 10, 20} order 3,
�15� 5 {0, 15} order 2,
�30� 5 {0} order 1.

By combining Theorems 4.2 and 4.3, we can easily count the num-
ber of elements of each order in a finite cyclic group. For convenience,
we introduce an important number-theoretic function called the Euler
phi function. Let f(1) 5 1, and for any integer n . 1, let f(n) denote
the number of positive integers less than n and relatively prime to n.
Notice that by definition of the group U(n), |U(n)| 5 f(n). The first 12
values of f(n) are given in Table 4.1.

For each positive divisor k of n, the set �n/k� is the unique subgroup
of Zn of order k; moreover, these are the only subgroups of Zn.

Table 4.1 Values of f(n)

n 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 1 1 2 2 4 2 6 4 6 4 10 4

Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

PROOF By Theorem 4.3, the group has exactly one subgroup of 
order d—call it �a�. Then every element of order d also generates the sub-
group �a� and, by Corollary 3 of Theorem 4.2, an element ak generates
�a� if and only if gcd(k, d) 5 1. The number of such elements is precisely
f(d).

If d is a positive divisor of n, the number of elements of order d in 
a cyclic group of order n is f(d).
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Notice that for a finite cyclic group of order n, the number of elements
of order d for any divisor d of n depends only on d. Thus, Z8, Z640, and
Z80000 each have f(8) 5 4 elements of order 8.

Although there is no formula for the number of elements of each
order for arbitrary finite groups, we still can say something important
in this regard.

Corollary Number of Elements of Order d in a Finite Group

PROOF If a finite group has no elements of order d, the statement is
true, since f(d) divides 0. Now suppose that a [ G and |a| 5 d. By
Theorem 4.4, we know that �a� has f(d) elements of order d. If all
elements of order d in G are in �a�, we are done. So, suppose that there
is an element b in G of order d that is not in �a�. Then, �b� also has f(d)
elements of order d. This means that we have found 2f(d) elements of
order d in G provided that �a� and �b� have no elements of order d in
common. If there is an element c of order d that belongs to both �a� and
�b�, then we have �a� 5 �c� 5 �b�, so that b [ �a�, which is a contradic-
tion. Continuing in this fashion, we see that the number of elements of
order d in a finite group is a multiple of f(d).

On its face, the value of Theorem 4.4 and its corollary seem limited 
for large values of n because it is tedious to determine the number of
positive integers less than or equal to n and relatively prime to n
by examining them one by one. However, the following properties of the

function make computing simple: For any prime p, 5
(see Exercise 71) and for relatively prime m and n,

5 Thus, (40) 5

The relationships among the various subgroups of a group can be
illustrated with a subgroup lattice of the group. This is a diagram that in-
cludes all the subgroups of the group and connects a subgroup H at one
level to a subgroup K at a higher level with a sequence of line segments
if and only if H is a proper subgroup of K. Although there are many
ways to draw such a diagram, the connections between the subgroups
must be the same. Typically one attempts to present the diagram in an
eye-pleasing fashion. The lattice diagram for Z30 is shown in Figure 4.2.
Notice that �10� is a subgroup of both �2� and �5�, but �6� is not a sub-
group of �10�.

f(52)f(3) 5 (25 2 5) ? 2 5 40.
f(8)f(5) 5 4 ? 4 5 16; f(75) 5ff(m)f(n).

f(mn)pn 2 pn21
f(pn)f(n)f

In a finite group, the number of elements of order d is divisible 
by f(d).
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Figure 4.2 Subgroup lattice of Z30.

The precision of Theorem 4.3 can be appreciated by comparing the
ease with which we are able to identify the subgroups of Z30 with that of
doing the same for, say, U(30) or D30. And these groups have relatively
simple structures among noncyclic groups.

We will prove in Chapter 7 that a certain portion of Theorem 4.3
extends to arbitrary finite groups; namely, the order of a subgroup di-
vides the order of the group itself. We will also see, however, that a finite
group need not have exactly one subgroup corresponding to each divisor
of the order of the group. For some divisors, there may be none at all,
whereas for other divisors, there may be many. Indeed, D4, the dihedral
group of order 8, has five subgroups of order 2 and three of order 4.

One final remark about the importance of cyclic groups is appropri-
ate. Although cyclic groups constitute a very narrow class of finite
groups, we will see in Chapter 11 that they play the role of building
blocks for all finite Abelian groups in much the same way that primes
are the building blocks for the integers and that chemical elements are
the building blocks for the chemical compounds.

Exercises

It is not unreasonable to use the hypothesis.
ARNOLD ROSS

1. Find all generators of Z6, Z8, and Z20.
2. Suppose that �a�, �b�, and �c� are cyclic groups of orders 6, 8, and

20, respectively. Find all generators of �a�, �b�, and �c�.
3. List the elements of the subgroups and in . Let a be a

group element of order 30. List the elements of the subgroups 
and .�a10�

�a20�
Z30�10��20�

<10>

<0>

<6> <15>

<3>

<5>
<2>

<1>
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4. List the elements of the subgroups �3� and �15� in Z18. Let a be a
group element of order 18. List the elements of the subgroups �a3�
and �a15�.

5. List the elements of the subgroups �3� and �7� in U(20).
6. What do Exercises 3, 4, and 5 have in common? Try to make a gen-

eralization that includes these three cases.
7. Find an example of a noncyclic group, all of whose proper sub-

groups are cyclic.
8. Let a be an element of a group and let |a| 5 15. Compute the or-

ders of the following elements of G.
a. a3, a6, a9, a12

b. a5, a10

c. a2, a4, a8, a14

9. How many subgroups does Z20 have? List a generator for each of
these subgroups. Suppose that G 5 �a� and |a| 5 20. How many
subgroups does G have? List a generator for each of these sub-
groups.

10. In Z24 list all generators for the subgroup of order 8. Let G 5 �a�
and let |a| 5 24. List all generators for the subgroup of order 8.

11. Let G be a group and let a [ G. Prove that �a21� 5 �a�.
12. In Z find all generators of the subgroup . If a has infinite order,

find all generators of the subgroup .
13. In Z24 find a generator for �21� > �10�. Suppose that |a| 5 24. Find

a generator for �a21� > �a10�. In general, what is a generator for the
subgroup �am� > �an�?

14. Suppose that a cyclic group G has exactly three subgroups: G
itself, {e}, and a subgroup of order 7. What is |G|? What can you
say if 7 is replaced with p where p is a prime?

15. Let G be an Abelian group and let H 5 {g [ G| |g| divides 12}.
Prove that H is a subgroup of G. Is there anything special about 12
here? Would your proof be valid if 12 were replaced by some other
positive integer? State the general result.

16. Find a collection of distinct subgroups �a1�, �a2�, . . . , �an� of Z240 

with the property that �a1� , �a2� , ? ? ? , �an� with n as large as 
possible.

17. Complete the following statement: |a| 5 |a2| if and only if |a| . . . .
18. If a cyclic group has an element of infinite order, how many ele-

ments of finite order does it have?
19. List the cyclic subgroups of U(30).

�a3�

�3�
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20. Suppose that G is an Abelian group of order 35 and every element
of G satisfies the equation x35 5 e. Prove that G is cyclic. Does
your argument work if 35 is replaced with 33?

21. Let G be a group and let a be an element of G.
a. If a12 5 e, what can we say about the order of a?
b. If am 5 e, what can we say about the order of a?
c. Suppose that |G| 5 24 and that G is cyclic. If a8 2 e and a12 2 e,

show that �a� 5 G.
22. Prove that a group of order 3 must be cyclic.
23. Let Z denote the group of integers under addition. Is every sub-

group of Z cyclic? Why? Describe all the subgroups of Z. Let a be
a group element with infinite order. Describe all subgroups of .

24. For any element a in any group G, prove that �a� is a subgroup of
C(a) (the centralizer of a).

25. If d is a positive integer, d 2 2, and d divides n, show that the num-
ber of elements of order d in Dn is f(d). How many elements of
order 2 does Dn have?

26. Find all generators of Z. Let a be a group element that has infinite
order. Find all generators of .

27. Prove that C*, the group of nonzero complex numbers under multi-
plication, has a cyclic subgroup of order n for every positive integer n.

28. Let a be a group element that has infinite order. Prove that �ai� 5
�aj� if and only if i 5 �j.

29. List all the elements of order 8 in Z8000000. How do you know your
list is complete? Let a be a group element such that |a| .
List all elements of order 8 in . How do you know your list is
complete?

30. Suppose a and b belong to a group, a has odd order, and aba21 5
b21. Show that b2 5 e.

31. Let G be a finite group. Show that there exists a fixed positive integer
n such that an 5 e for all a in G. (Note that n is independent of a.)

32. Determine the subgroup lattice for Z12.
33. Determine the subgroup lattice for , where p and q are distinct

primes.
34. Determine the subgroup lattice for Z8.
35. Determine the subgroup lattice for , where p is a prime and n is

some positive integer.
36. Prove that a finite group is the union of proper subgroups if and

only if the group is not cyclic.
37. Show that the group of positive rational numbers under multiplica-

tion is not cyclic.

Zpn

Zp2q

�a�

5 8000000

�a�

�a�
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38. Consider the set {4, 8, 12, 16}. Show that this set is a group under
multiplication modulo 20 by constructing its Cayley table. What
is the identity element? Is the group cyclic? If so, find all of its
generators.

39. Give an example of a group that has exactly 6 subgroups (including
the trivial subgroup and the group itself). Generalize to exactly n
subgroups for any positive integer n.

40. Let m and n be elements of the group Z. Find a generator for the
group �m� > �n�.

41. Suppose that a and b are group elements that commute and have
orders m and n. If �a� > �b� 5 {e}, prove that the group contains an
element whose order is the least common multiple of m and n.
Show that this need not be true if a and b do not commute.

42. Prove that an infinite group must have an infinite number of sub-
groups.

43. Let p be a prime. If a group has more than p 2 1 elements of order p,
why can’t the group be cyclic?

44. Suppose that G is a cyclic group and that 6 divides |G|. How many
elements of order 6 does G have? If 8 divides |G|, how many ele-
ments of order 8 does G have? If a is one element of order 8, list
the other elements of order 8.

45. List all the elements of Z40 that have order 10. Let |x| 5 40. List all
the elements of �x� that have order 10.

46. Reformulate the corollary of Theorem 4.4 to include the case when
the group has infinite order.

47. Determine the orders of the elements of D33 and how many there
are of each.

48. If G is a cyclic group and 15 divides the order of G, determine the
number of solutions in G of the equation x15 5 e. If 20 divides
the order of G, determine the number of solutions of x20 5 e.
Generalize.

49. If G is an Abelian group and contains cyclic subgroups of orders 4
and 5, what other sizes of cyclic subgroups must G contain?
Generalize.

50. If G is an Abelian group and contains cyclic subgroups of orders 4
and 6, what other sizes of cyclic subgroups must G contain?
Generalize.

51. Prove that no group can have exactly two elements of order 2.
52. Given the fact that U(49) is cyclic and has 42 elements, deduce the

number of generators that U(49) has without actually finding any of
the generators.
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53. Let a and b be elements of a group. If |a| 5 10 and |b| 5 21, show
that �a� > �b� 5 {e}.

54. Let a and b belong to a group. If |a| and |b| are relatively prime,
show that �a� > �b� 5 {e}.

55. Let a and b belong to a group. If |a| 5 24 and |b| 5 10, what are
the possibilities for |�a� > �b�|?

56. Prove that U(2n) (n $ 3) is not cyclic.
57. Suppose that a group G has at least nine elements x such that x8 5

e. Can you conclude that G is not cyclic? What if G has at least five
elements x such that x4 5 e? Generalize.

58. Prove that Zn has an even number of generators if n . 2. What
does this tell you about f(n)?

59. If |a5| 5 12, what are the possibilities for |a|? If |a4| 5 12, what
are the possibilities for |a|?

60. Suppose that |x| 5 n. Find a necessary and sufficient condition on
r and s such that �xr� # �xs�.

61. Suppose a is a group element such that and .
Determine .

62. Let a be group element such that . For each part find a di-
visor k of 48 such that
a.
b.
c. .

63. Let p be a prime. Show that in a cyclic group of order pn 21, every
element is a pth power (that is, every element can be written in the
form ap for some a).

64. Prove that is a cyclic subgroup of

GL(2, R).
65. Let a and b belong to a group. If |a| 5 12, |b| 5 22, and �a� > �b� 2

{e}, prove that a6 5 b11.
66. Suppose that G is a finite group with the property that every non-

identity element has prime order (for example, D3 and D5). If Z(G)
is not trivial, prove that every nonidentity element of G has the
same order.

67. Let G be the set of all polynomials of the form ax2 1 bx 1 c with
coefficients from the set {0, 1, 2}. We can make G a group under
addition by adding the polynomials in the usual way, except that
we use modulo 3 to combine the coefficients. With this operation,
prove that G is a group of order 27 that is not cyclic.

H 5  e c1 n

0 1
d  0  n[Z f

�a18� 5 �ak�
�a14� 5 �ak�
�a21� 5 �ak�

|a| 5 48
|a|

|a22| 5 20|a28| 5 10
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68. Let and be rational numbers. Prove that the group 
under addition is cyclic. Gen-

eralize to the case where you have , , . . . , rationals.
69. Let a and b belong to some group. Suppose that and

and m and n are relatively prime. If for some inte-
ger k, prove that mn divides k.

70. For every integer n greater than 2, prove that the group 
is not cyclic.

71. Prove that for any prime p and positive integer n, 5
.

72. Give an example of an infinite group that has exactly two elements
of order 4.

Computer Exercises

The nerds are running the world now.
JOE PISCOPO

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines if U(n) is cyclic. Run the program for 
n 5 8, 32, 64, and 128. Make a conjecture. Run the program for n 5
3, 9, 27, 81, 243, 5, 25, 125, 7, 49, 11, and 121. Make a conjecture.
Run the program for n 5 12, 20, 28, 44, 52, 15, 21, 33, 39, 51, 57,
69, 35, 55, 65, and 85. Make a conjecture.

2. For any pair of positive integers m and n, let Zm % Zn 5 {(a, b) |
a [ Zm, b [ Zn}. For any pair of elements (a, b) and (c, d) in Zm %

Zn, define (a, b) 1 (c, d) 5 ((a 1 c) mod m, (b 1 d) mod n). [For
example, in Z3 % Z4, we have (1, 2) 1 (2, 3) 5 (0, 1).] This soft-
ware checks whether or not Zm % Zn is cyclic. Run the program for
the following choices of m and n: (2, 2), (2, 3), (2, 4), (2, 5), (3, 4),
(3, 5), (3, 6), (3, 7), (3, 8), (3, 9), and (4, 6). On the basis of this out-
put, guess how m and n must be related for Zm % Zn to be cyclic.

3. In this exercise, a, b [ U(n). Define �a, b� 5 {aib j | 0 # i , |a|,
0 # j , |b|}. This software computes the orders of �a, b�, �a�, �b�,
and �a� > �b�. Run the program for the following choices of a, b,
and n: (21, 101, 550), (21, 49, 550), (7, 11, 100), (21, 31, 100), and

pn 2 pn21

f(pn)

U(n2 2 1)

ak 5 bk|b| 5 n
|a| 5 m

rkr2r1

5n1r1 1 n2r2 |n1 and n2 are integers6 G 5r2r1
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(63, 77, 100). On the basis of your output, make a conjecture about
arithmetic relationships among |�a, b�|, |�a�|, |�b�|, and |�a� > �b�|.

4. For each positive integer n, this software gives the order of U(n)
and the order of each element in U(n). Do you see any relationship
between the order of U(n) and the order of its elements? Run the
program for n 5 8, 16, 32, 64, and 128. Make a conjecture about
the number of elements of order 2 in U(2k) when k is at least 3.
Make a conjecture about the number of elements of order 4 in
U(2k) when k is at least 4. Make a conjecture about the number of
elements of order 8 in U(2k) when k is at least 5. Make a conjecture
about the maximum order of any element in U(2k) when k is at least
3. Try to find a formula for an element of order 4 in U(2k) when k is
at least 4.

5. For each positive integer n, this software lists the number of ele-
ments of U(n) of each order. For each order d of some element of
U(n), this software lists f(d) and the number of elements of order d.
(Recall that f(d) is the number of positive integers less than or
equal to d and relatively prime to d). Do you see any relationship
between the number of elements of order d and f(d)? Run the pro-
gram for n 5 3, 9, 27, 81, 5, 25, 125, 7, 49, and 343. Make a con-
jecture about the number of elements of order d and f(d) when n is
a power of an odd prime. Run the program for n 5 6, 18, 54, 162,
10, 50, 250, 14, 98, and 686. Make a conjecture about the number
of elements of order d and f(d) when n is twice a power of an odd
prime. Make a conjecture about the number of elements of various
orders in U( pk) and U(2pk) where p is an odd prime.

6. For each positive integer n, this software gives the order of U(n).
Run the program for n 5 9, 27, 81, and 243. Try to guess a formula
for the order of U(3k) when k is at least 2. Run the program for n 5
18, 54, 162, and 486. How does the order of U(2 ? 3k) appear to be re-
lated to the order of U(3k)? Run the program for n 5 25, 125, and
625. Try to guess a formula for the order of U(5k) when k is at least 2.
Run the program for n 5 50, 250, and 1250. How does the order of
U(2 ? 5k) appear to be related to the order of U(5k)? Run the program
for n 5 49 and 343. Try to guess a formula for the order of U(7k)
when k is at least 2. Run the program for n 5 98 and 686. How does
the order of U(2 ? 7k) appear to be related to the order of U(7k)?
Based on your guesses for U(3k), U(5k), and U(7k), guess a formula
for the order of U( pk) when p is an odd prime and k is at least 2.
What about the order of U(2pk) when p is an odd prime and k is at
least 2. Does your formula also work when k is 1?
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Suggested Reading

Deborah L. Massari, “The Probability of Regenerating a Cyclic Group,”
Pi Mu Epsilon Journal 7 (1979): 3–6.

In this easy-to-read paper, it is shown that the probability of a ran-
domly chosen element from a cyclic group being a generator of the
group depends only on the set of prime divisors of the order of the
group, and not on the order itself. This article, written by an under-
graduate student, received first prize in a Pi Mu Epsilon 
Paper Contest.
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J. J. Sylvester

I really love my subject.
J. J. SYLVESTER

†F. Cajori, Teaching and History of Mathematics in the U.S., Washington, 1890, 265–266.

JAMES JOSEPH SYLVESTER was the most influ-
ential mathematician in America in the 19th
century. Sylvester was born on September 3,
1814, in London and showed his mathemati-
cal genius early. At the age of 14, he studied
under De Morgan and won several prizes for
his mathematics, and at the unusually young
age of 25, he was elected a Fellow of the
Royal Society.

After receiving B.A. and M.A. degrees
from Trinity College in Dublin in 1841,
Sylvester began a professional life that was
to include academics, law, and actuarial ca-
reers. In 1876, at the age of 62, he was ap-
pointed to a prestigious position at the newly
founded Johns Hopkins University. During
his seven years at Johns Hopkins, Sylvester
pursued research in pure mathematics 
with tremendous vigor and enthusiasm. 
He also founded the American Journal of
Mathematics, the first journal in America
devoted to mathematical research. Sylvester
returned to England in 1884 to a professor-
ship at Oxford, a position he held until his
death on March 15, 1897.

Sylvester’s major contributions to
mathematics were in the theory of equations,
matrix theory, determinant theory, and in-
variant theory (which he founded with
Cayley). His writings and lectures—flowery
and eloquent, pervaded with poetic flights,
emotional expressions, bizarre utterances,
and paradoxes—reflected the personality of
this sensitive, excitable, and enthusiastic

man. We quote three of his students.† E. W.
Davis commented on Sylvester’s teaching
methods.

Sylvester’s methods! He had none. “Three lec-
tures will be delivered on a New Universal
Algebra,” he would say; then, “The course
must be extended to twelve.” It did last all the
rest of that year. The following year the course
was to be Substitutions-Theorie, by Netto. We
all got the text. He lectured about three times,
following the text closely and stopping sharp
at the end of the hour. Then he began to think
about matrices again. “I must give one lecture
a week on those,” he said. He could not con-
fine himself to the hour, nor to the one lecture
a week. Two weeks were passed, and Netto
was forgotten entirely and never mentioned
again. Statements like the following were not
infrequent in his lectures: “I haven’t proved
this, but I am as sure as I can be of anything
that it must be so. From this it will follow,
etc.” At the next lecture it turned out that what
he was so sure of was false. Never mind, he
kept on forever guessing and trying, and
presently a wonderful discovery followed,
then another and another. Afterward he would
go back and work it all over again, and sur-
prise us with all sorts of side lights. He then
made another leap in the dark, more treasures
were discovered, and so on forever.

FPO
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Sylvester’s enthusiasm for teaching and his
influence on his students are captured in the
following passage written by Sylvester’s first
student at Johns Hopkins, G. B. Halsted.

A short, broad man of tremendous vitality, . . .
Sylvester’s capacious head was ever lost in 
the highest cloud-lands of pure mathematics.
Often in the dead of night he would get his
favorite pupil, that he might communicate 
the very last product of his creative thought.
Everything he saw suggested to him some-
thing new in the higher algebra. This transmu-
tation of everything into new mathematics 
was a revelation to those who knew him
intimately. They began to do it themselves.

Another characteristic of Sylvester, which
is very unusual among mathematicians, was
his apparent inability to remember mathemat-
ics! W. P. Durfee had the following to say.

Sylvester had one remarkable peculiarity. He
seldom remembered theorems, propositions,
etc., but had always to deduce them when he
wished to use them. In this he was the very
antithesis of Cayley, who was thoroughly
conversant with everything that had been
done in every branch of mathematics.

I remember once submitting to Sylvester
some investigations that I had been engaged
on, and he immediately denied my first state-
ment, saying that such a proposition had never
been heard of, let alone proved. To his aston-
ishment, I showed him a paper of his own in
which he had proved the proposition; in fact, I
believe the object of his paper had been the
very proof which was so strange to him.

For more information about Sylvester,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Supplementary Exercises for Chapters 1–4

If you really want something in this life, you have to work for it—Now quiet,
they’re about to announce the lottery numbers!

HOMER SIMPSON

True/False questions for Chapters 1–4 are available on the web at:

http://www.d.umn.edu/~jgallian/TF

1. Let G be a group and let H be a subgroup of G. For any fixed x in
G, define xHx21 5 {xhx21 | h [ H}. Prove the following.
a. xHx21 is a subgroup of G.
b. If H is cyclic, then xHx21 is cyclic.
c. If H is Abelian, then xHx21 is Abelian.
The group xHx21 is called a conjugate of H. (Note that conjuga-
tion preserves structure.)

2. Let G be a group and let H be a subgroup of G. Define N(H) 5
{x [ G | xHx21 5 H}. Prove that N(H) (called the normalizer of
H) is a subgroup of G.†

3. Let G be a group. For each a [ G, define cl(a) 5 {xax21 | x [ G}.
Prove that these subsets of G partition G. [cl(a) is called the
conjugacy class of a.]

4. The group defined by the following table is called the group of
quaternions. Use the table to determine each of the following:
a. The center
b. cl(a)
c. cl(b)
d. All cyclic subgroups

e a a2 a3 b ba ba2 ba3

e e a a2 a3 b ba ba2 ba3

a a a2 a3 e ba3 b ba ba2

a2 a2 a3 e a ba2 ba3 b ba
a3 a3 e a a2 ba ba2 ba3 b
b b ba ba2 ba3 a2 a3 e a
ba ba ba2 ba3 b a a2 a3 e
ba2 ba2 ba3 b ba e a a2 a3

ba3 ba3 b ba ba2 a3 e a a2

†This very important subgroup was first used by L. Sylow in 1872 to prove the exis-
tence of certain kinds of subgroups in a group. His work is discussed in Chapter 24.
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5. (Conjugation preserves order.) Prove that, in any group, |xax21| 5
|a|. (This exercise is referred to in Chapter 24.)

6. Prove that, in any group, |ab| 5 |ba|.
7. If a, b, and c are elements of a group, give an example to show that

it need not be the case that |abc| 5 |cba|.
8. Let a and b belong to a group G. Prove that there is an element x in

G such that xax 5 b if and only if ab 5 c2 for some element c in G.
9. Prove that if a is the only element of order 2 in a group, then a lies

in the center of the group.
10. Let G be the plane symmetry group of the infinite strip of equally

spaced H’s shown below.

Let x be the reflection about Axis 1 and let y be the reflection about
Axis 2. Calculate |x|, |y|, and |xy|. Must the product of elements of
finite order have finite order?

11. What are the orders of the elements of D15? How many elements
have each of these orders?

12. Prove that a group of order 4 is Abelian.
13. Prove that a group of order 5 must be cyclic.
14. Prove that an Abelian group of order 6 must be cyclic.
15. Let G be an Abelian group and let n be a fixed positive integer. Let

Gn 5 {gn | g [ G}. Prove that Gn is a subgroup of G. Give an ex-
ample showing that Gn need not be a subgroup of G when G is
non-Abelian. (This exercise is referred to in Chapter 11.)

16. Let , where a and b are rational numbers not
both 0. Prove that G is a group under ordinary multiplication.

17. (1969 Putnam Competition) Prove that no group is the union of
two proper subgroups. Does the statement remain true if “two” is
replaced by “three”?

18. Prove that the subset of elements of finite order in an Abelian
group forms a subgroup. (This subgroup is called the torsion sub-
group.) Is the same thing true for non-Abelian groups?

19. Let p be a prime and let G be an Abelian group. Show that the set
of all elements whose orders are powers of p is a subgroup of G.

20. Suppose that a and b are group elements. If and ,
determine the possibilities for .|a|

bab 5 a4|b| 5 2

G 5 5a 1 b"2 6

H H HHH
Axis 1 Axis 2
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21. Suppose that a finite group is generated by two elements a and b
(that is, every element of the group can be expressed as some prod-
uct of a’s and b’s). Given that a35 b2 5 e and ba2 5 ab, construct
the Cayley table for the group. We have already seen an example
of a group that satisfies these conditions. Name it.

22. If a is an element of a group and , prove that 
when k is relatively prime to n.

23. Let x and y belong to a group G. If xy [ Z(G), prove that xy 5 yx.
24. Suppose that H and K are nontrivial subgroups of Q under addi-

tion. Show that H > K is a nontrivial subgroup of Q. Is this true if
Q is replaced by R?

25. Let H be a subgroup of G and let g be an element of G. Prove that
N(gHg21) 5 gN(H)g21. See Exercise 2 for the notation.

26. Let H be a subgroup of a group G and let |g| 5 n. If gm belongs to
H and m and n are relatively prime, prove that g belongs to H.

27. Find a group that contains elements a and b such that |a| 5 2,
|b| 5 11, and |ab| 5 2.

28. Suppose that G is a group with exactly eight elements of order 10.
How many cyclic subgroups of order 10 does G have?

29. (1989 Putnam Competition) Let S be a nonempty set with an asso-
ciative operation that is left and right cancellative (xy 5 xz implies
y 5 z, and yx 5 zx implies y 5 z). Assume that for every a in S the
set {an | n 5 1, 2, 3, . . .} is finite. Must S be a group?

30. Let H1, H2, H3, . . . be a sequence of subgroups of a group with the
property that H1 # H2 # H3 . . . . Prove that the union of the se-
quence is a subgroup.

31. Let R* be the group of nonzero real numbers under multiplication
and let H 5{g [ R*| some nonzero integer power of g is a rational
number}. Prove that H is a subgroup of R*.

32. Suppose that a and b belong to a group, a and b commute, and |a|
and |b| are relatively prime. Prove that |ab| 5 |a||b|. Give an exam-
ple showing that |ab| need not be |a||b| when a and b commute but
|a| and |b| are not relatively prime. (Don’t use .)

33. Let H 5 {A [ GL(2, R) | det A is rational}. Prove or disprove that
H is a subgroup of GL(2, R). What if “rational” is replaced by “an
integer”?

34. Suppose that G is a group that has exactly one nontrivial proper
subgroup. Prove that G is cyclic and |G| 5 p2, where p is prime.

35. Suppose that G is a group and G has exactly two nontrivial proper
subgroups. Prove that G is cyclic and |G| 5 pq, where p and q are
distinct primes, or that G is cyclic and |G| 5 p3, where p is prime.

a [ �b�

C(a) 5 C(ak)|a| 5 n
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36. If |a2| 5 |b2|, prove or disprove that |a| 5 |b|.
37. (1995 Putnam Competition) Let S be a set of real numbers that is

closed under multiplication. Let T and U be disjoint subsets of S
whose union is S. Given that the product of any three (not neces-
sarily distinct) elements of T is in T and that the product of any
three elements of U is in U, show that at least one of the two sub-
sets T and U is closed under multiplication.

38. If p is an odd prime, prove that there is no group that has exactly p
elements of order p.

39. Give an example of a group G with infinitely many distinct sub-
groups H1, H2, H3, . . . such that H1 , H2 , H3 . . . .

40. Suppose a and b are group elements and b 2 e. If a21ba 5 b2 and 
|a| 5 3, find |b|. What is |b|, if |a| 5 5? What can you say about
|b| in the case where |a| 5 k?

41. Let a and b belong to a group G. Show that there is an element g in
G such that g21 abg 5 ba.

42. Suppose G is a group and x3y3 5 y3x3 for every x and y in G. Let 
H 5 {x [ G| |x| is relatively prime to 3}. Prove that elements of H
commute with each other and that H is a subgroup of G. Is your
argument valid if 3 is replaced by an arbitrary positive integer n?
Explain why or why not.

43. Let G be a finite group and let S be a subset of G that contains
more than half of the elements of G. Show that every element of G
can be expressed in the form s1s2 where s1 and s2 belong to S.

44. Let G be a group and let f be a function from G to some set. Show
that H 5 {g [ G| f (xg) 5 f (x) for all x [ G} is a subgroup of G.
In the case that G is the group of real numbers under addition and 
f (x) 5 sin x, describe H.

45. Let G be a cyclic group of order n and let H be the subgroup of
order d. Show that H 5 {x [ G| |x| divides d}.

46. Let a be an element of maximum order from a finite Abelian group
G. Prove that for any element b in G, |b| divides |a|. Show by
example that this need not be true for finite non-Abelian groups.

47. Define an operation * on the set of integers by a * .
Show that the set of integers under this operation is a cyclic group.

48. Let n be an integer greater than 1. Find a noncyclic subgroup of
of order 4 that contains the element .2n 2 1U(4n)

b 5 a 1 b 2 1
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Permutation Groups

Wigner’s discovery about the electron permutation group was just the
beginning. He and others found many similar applications and nowadays
group theoretical methods—especially those involving characters and
representations—pervade all branches of quantum mechanics.

GEORGE MACKEY, Proceedings of the 

American Philosophical Society

5

Definition and Notation
In this chapter, we study certain groups of functions, called permutation
groups, from a set A to itself. In the early and mid-19th century, groups
of permutations were the only groups investigated by mathematicians.
It was not until around 1850 that the notion of an abstract group was in-
troduced by Cayley, and it took another quarter century before the idea
firmly took hold.

Definitions Permutation of A, Permutation Group of A

A permutation of a set A is a function from A to A that is both one-
to-one and onto. A permutation group of a set A is a set of permuta-
tions of A that forms a group under function composition.

Although groups of permutations of any nonempty set A of objects
exist, we will focus on the case where A is finite. Furthermore, it is
customary, as well as convenient, to take A to be a set of the form
{1, 2, 3, . . . , n} for some positive integer n. Unlike in calculus, where
most functions are defined on infinite sets and are given by formulas,
in algebra, permutations of finite sets are usually given by an explicit
listing of each element of the domain and its corresponding functional
value. For example, we define a permutation a of the set {1, 2, 3, 4} by
specifying

a(1) 5 2, a(2) 5 3, a(3) 5 1, a(4) 5 4.
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96 Groups

A more convenient way to express this correspondence is to write a in
array form as

Here a( j) is placed directly below j for each j. Similarly, the permuta-
tion b of the set {1, 2, 3, 4, 5, 6} given by

b(1) 5 5, b(2) 5 3, b(3) 5 1, b(4) 5 6, b(5) 5 2, b(6) 5 4

is expressed in array form as

Composition of permutations expressed in array notation is carried
out from right to left by going from top to bottom, then again from top
to bottom. For example, let

and

then

g 5 c1 2 3 4 5

5 4 1 2 3
d ;

s 5 c1 2 3 4 5

2 4 3 5 1
d

b 5 c1 2 3 4 5 6

5 3 1 6 2 4
d.

a 5 c1 2 3 4

2 3 1 4
d .

On the right we have 4 under 1, since (gs)(1) 5 g(s(1)) 5 g(2) 5 4,
so gs sends 1 to 4. The remainder of the bottom row gs is obtained in
a similar fashion.

We are now ready to give some examples of permutation groups.

EXAMPLE 1 Symmetric Group S
3

Let S3 denote the set of all one-
to-one functions from {1, 2, 3} to itself. Then S3, under function com-
position, is a group with six elements. The six elements are

, , ,a2 5 c1 2 3

3 1 2
da 5 c1 2 3

2 3 1
de 5 c1 2 3

1 2 3
d
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, .

Note that ba 5 5 a2b 2 ab, so that S3 is non-Abelian.

The relation ba 5 a2b can be used to compute other products in S3
without resorting to the arrays. For example, ba2 5 (ba)a 5 (a2b)a 5
a2(ba) 5 a2(a2b) 5 a4b 5 ab.

Example 1 can be generalized as follows.

EXAMPLE 2 Symmetric Group S
n

Let A 5 {1, 2, . . . , n}. The set
of all permutations of A is called the symmetric group of degree n and is
denoted by Sn. Elements of Sn have the form

It is easy to compute the order of Sn. There are n choices of a(1). Once
a(1) has been determined, there are n 2 1 possibilities for a(2) [since 
a is one-to-one, we must have a(1) 2 a(2)]. After choosing a(2), there
are exactly n 2 2 possibilities for a(3). Continuing along in this fashion,
we see that Sn has n(n 2 1) ? ? ? 3 ? 2 ? 1 5 n! elements. We leave it to the
reader to prove that Sn is non-Abelian when n $ 3 (Exercise 41).

The symmetric groups are rich in subgroups. The group S4 has 30
subgroups, and S5 has well over 100 subgroups.

EXAMPLE 3 Symmetries of a Square As a third example, we
associate each motion in D4 with the permutation of the locations of each
of the four corners of a square. For example, if we label the four corner
positions as in the figure below and keep these labels fixed for reference,
we may describe a 90° counterclockwise rotation by the permutation

r 5 c1 2 3 4

2 3 4 1
d ,

3

4

2

1

a 5 c 1  2   c n

a(1) a(2) ca(n)
d .

c1 2 3

3 2 1
d

a2b 5 c1 2 3

3 2 1
dab 5 c1 2 3

2 1 3
db 5 c1 2 3

1 3 2
d ,
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whereas a reflection across a horizontal axis yields

These two elements generate the entire group (that is, every element is
some combination of the r’s and f’s).

When D4 is represented in this way, we see that it is a subgroup
of S4.

Cycle Notation
There is another notation commonly used to specify permutations. It is
called cycle notation and was first introduced by the great French math-
ematician Cauchy in 1815. Cycle notation has theoretical advantages in
that certain important properties of the permutation can be readily de-
termined when cycle notation is used.

As an illustration of cycle notation, let us consider the permutation

This assignment of values could be presented schematically as follows:

Although mathematically satisfactory, such diagrams are cumber-
some. Instead, we leave out the arrows and simply write a 5 (1, 2)
(3, 4, 6)(5). As a second example, consider

In cycle notation, b can be written (2, 3, 1, 5)(6, 4) or (4, 6)(3, 1, 5, 2),
since both of these unambiguously specify the function b. An expres-
sion of the form (a1, a2, . . . , am) is called a cycle of length m or an 
m-cycle.

b 5 c1 2 3 4 5 6

5 3 1 6 2 4
d.

2

1

α α

α α

α α

6

3 5

4

a 5 c1 2 3 4 5 6

2 1 4 6 5 3
d.

f 5 c1 2 3 4

2 1 4 3
d .
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A multiplication of cycles can be introduced by thinking of a cycle
as a permutation that fixes any symbol not appearing in the cycle.
Thus, the cycle (4, 6) can be thought of as representing the 

permutation In this way, we can multiply cycles

by thinking of them as permutations given in array form. Consider the
following example from S8. Let a 5 (13)(27)(456)(8) and b 5
(1237)(648)(5). (When the domain consists of single-digit integers, it is
common practice to omit the commas between the digits.) What 
is the cycle form of ab? Of course, one could say that ab 5
(13)(27)(456)(8)(1237)(648)(5), but it is usually more desirable to ex-
press a permutation in a disjoint cycle form (that is, the various cycles
have no number in common). Well, keeping in mind that function com-
position is done from right to left and that each cycle that does not con-
tain a symbol fixes the symbol, we observe that: (5) fixes 1; (648) fixes 1;
(1237) sends 1 to 2; (8) fixes 2; (456) fixes 2; (27) sends 2 to 7; and (13)
fixes 7. So the net effect of ab is to send 1 to 7. Thus we begin 
ab 5 (17 ? ? ?) ? ? ? . Now, repeating the entire process beginning with 7,
we have, cycle by cycle, right to left, 7 → 7 → 7 → 1 → 1 → 1 → 1 → 3,
so that ab 5 (173 ? ? ?) ? ? ? . Ultimately, we have ab 5 (1732)(48)(56).
The important thing to bear in mind when multiplying cycles is to “keep
moving” from one cycle to the next from right to left. (Warning: Some au-
thors compose cycles from left to right. When reading another text, be
sure to determine which convention is being used.)

To be sure you understand how to switch from one notation to the
other and how to multiply permutations, we will do one more example
of each.

If array notations for a and b, respectively, are

and

then, in cycle notation, a 5 (12)(3)(45), b 5 (153)(24), and ab 5
(12)(3)(45)(153)(24).

To put ab in disjoint cycle form, observe that (24) fixes 1; (153)
sends 1 to 5; (45) sends 5 to 4; and (3) and (12) both fix 4. So, ab sends
1 to 4. Continuing in this way we obtain ab 5 (14)(253).

One can convert ab back to array form without converting each
cycle of ab into array form by simply observing that (14) means 1 goes
to 4 and 4 goes to 1; (253) means 2 → 5, 5 → 3, 3 → 2.

One final remark about cycle notation: Mathematicians prefer not to
write cycles that have only one entry. In this case, it is understood that any

c1 2 3 4 5

5 4 1 2 3
dc1 2 3 4 5

2 1 3 5 4
d

c1 2 3 4 5 6

1 2 3 6 5 4
d .
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missing element is mapped to itself. With this convention, the permutation
a above can be written as (12)(45). Similarly,

can be written a 5 (134). Of course, the identity permutation consists
only of cycles with one entry, so we cannot omit all of these! In this
case, one usually writes just one cycle. For example,

e

can be written as e 5 (5) or e 5 (1). Just remember that missing
elements are mapped to themselves.

Properties of Permutations
We are now ready to state several theorems about permutations and
cycles. The proof of the first theorem is implicit in our discussion of
writing permutations in cycle form.

Theorem 5.1 Products of Disjoint Cycles

PROOF Let a be a permutation on A 5 {1, 2, . . . , n}. To write a in
disjoint cycle form, we start by choosing any member of A, say a1, and let

a2 5 a(a1), a3 5 a(a(a1)) 5 a2(a1),

and so on, until we arrive at a1 5 am(a1) for some m. We know that such
an m exists because the sequence a1, a(a1), a2(a1), ? ? ? must be finite;
so there must eventually be a repetition, say a i(a1) 5 a j(a1) for some
i and j with i , j. Then a1 5 am(a1), where m 5 j 2 i. We express this
relationship among a1, a2, . . . , am as

a 5 (a1, a2, . . . , am) ? ? ? .

The three dots at the end indicate the possibility that we may not have
exhausted the set A in this process. In such a case, we merely choose
any element b1 of A not appearing in the first cycle and proceed to cre-
ate a new cycle as before. That is, we let b2 5 a(b1), b3 5 a2(b1), and so
on, until we reach b1 5 a k(b1) for some k. This new cycle will have no

Every permutation of a finite set can be written as a cycle or as a
product of disjoint cycles.

5 c1 2 3 4 5

1 2 3 4 5
d

a 5 c1 2 3 4 5

3 2 4 1 5
d
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elements in common with the previously constructed cycle. For, if so,
then a i(a1) 5 a j(b1) for some i and j. But then a i2j(a1) 5 b1, and there-
fore b1 5 at for some t. This contradicts the way b1 was chosen.
Continuing this process until we run out of elements of A, our permuta-
tion will appear as

a 5 (a1, a2, . . . , am)(b1, b2, . . . , bk) ? ? ? (c1, c2, . . . , cs).

In this way, we see that every permutation can be written as a product
of disjoint cycles.

Theorem 5.2 Disjoint Cycles Commute

PROOF For definiteness, let us say that a and b are permutations of
the set

S 5 {a1, a2, . . . , am, b1, b2, . . . , bn, c1, c2, . . . , ck}

where the c’s are the members of S left fixed by both a and b (there
may not be any c’s). To prove that ab 5 ba, we must show that (ab)(x) 5
(ba)(x) for all x in S. If x is one of the a elements, say ai, then

(ab)(ai) 5 a(b(ai)) 5 a(ai) 5 ai11,

since b fixes all a elements. (We interpret ai11 as a1 if i 5 m.) For the
same reason,

(ba)(ai) 5 b(a (ai)) 5 b(ai11) 5 ai11.

Hence, the functions of ab and ba agree on the a elements. A similar
argument shows that ab and ba agree on the b elements as well.
Finally, suppose that x is a c element, say ci. Then, since both a and b
fix c elements, we have

(ab)(ci) 5 a(b(ci)) 5 a(ci) 5 ci

and

(ba)(ci) 5 b(a(ci)) 5 b(ci) 5 ci.

This completes the proof.

In demonstrating how to multiply cycles, we showed that the
product (13)(27)(456)(8)(1237)(648)(5) can be written in disjoint cycle

If the pair of cycles a 5 (a1, a2, . . . , am) and b 5 (b1,b2, . . . , bn) 
have no entries in common, then ab 5 ba.

16509_ch05_p095-121 pp3  11/17/08  9:58 AM  Page 101



102 Groups

form as (1732)(48)(56). Is economy in expression the only advantage
to writing a permutation in disjoint cycle form? No. The next theorem
shows that the disjoint cycle form has the enormous advantage of
allowing us to “eyeball” the order of the permutation.

Theorem 5.3 Order of a Permutation (Ruffini—1799)

PROOF First, observe that a cycle of length n has order n. (Verify this
yourself.) Next, suppose that a and b are disjoint cycles of lengths m
and n, and let k be the least common multiple of m and n. It follows from
Theorem 4.1 that both ak and bk are the identity permutation e and, since
a and b commute, (ab)k 5 akbk is also the identity. Thus, we know by
Corollary 2 to Theorem 4.1 (ak 5 e implies that |a| divides k) that the
order of ab—let us call it t—must divide k. But then (ab)t 5 atb t 5 e,
so that at 5 b2t. However, it is clear that if a and b have no common
symbol, the same is true for a t and b2t, since raising a cycle to a power
does not introduce new symbols. But, if a t and b2t are equal and have
no common symbol, they must both be the identity, because every sym-
bol in a t is fixed by b2t and vice versa (remember that a symbol not ap-
pearing in a permutation is fixed by the permutation). It follows, then,
that both m and n must divide t. This means that k, the least common
multiple of m and n, divides t also. This shows that k 5 t.

Thus far, we have proved that the theorem is true in the cases
where the permutation is a single cycle or a product of two disjoint
cycles. The general case involving more than two cycles can be han-
dled in an analogous way.

Theorem 5.3 is an enomously powerful tool for calculating the or-
ders of permuations. We demonstrate this in the next example.

EXAMPLE 4 To determine the orders of the 5040 elements of , we
need only consider the possible disjoint cycle structures of the
elements of . For convenience, we denote an n-cycle by (n). Then, ar-
ranging all possible disjoint cycle structures of elements of 
according to longest cycle lengths left to right, we have

S7

S7

S7

The order of a permutation of a finite set written in disjoint cycle
form is the least common multiple of the lengths of the cycles.
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(7)
(6) (1)
(5) (2)
(5) (1) (1)
(4) (3)
(4) (2) (1)
(4) (1) (1) (1)
(3) (3) (1)
(3) (2) (2)
(3) (2) (1) (1)
(3) (1) (1) (1) (1) (1)
(2) (2) (2) (1)
(2) (2) (1) (1) (1)
(2) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1).

Now, from Theorem 5.3 we see that the orders of the elements of 
are 7, 6, 10, 5, 12, 4, 3, 2, and 1. To do the same for the 
elements of would be nearly as simple.

As we will soon see, a particularly important kind of permutation is
a cycle of length 2—that is, a permutation of the form (ab) where
a 2 b. Many authors call these permutations transpositions, since the
effect of (ab) is to interchange or transpose a and b.

Theorem 5.4 Product of 2-Cycles

PROOF First, note that the identity can be expressed as (12)(12), and
so it is a product of 2-cycles. By Theorem 5.1, we know that every per-
mutation can be written in the form

(a1a2 ? ? ? ak)(b1b2 ? ? ? bt) ? ? ? (c1c2 ? ? ? cs).

A direct computation shows that this is the same as

(a1ak)(a1ak21) ? ? ? (a1a2)(b1bt)(b1bt21) ? ? ? (b1b2) 
? ? ? (c1cs)(c1cs21) ? ? ? (c1c2).

This completes the proof.

The decompositions in the following example demonstrate this technique.

Every permutation in Sn, n . 1, is a product of 2-cycles.

S10

10! 5 3,628,800
S7
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EXAMPLE 5

(12345) 5 (15)(14)(13)(12)
(1632)(457) 5 (12)(13)(16)(47)(45)

The decomposition of a permutation into a product of 2-cycles given
in the proof of Theorem 5.4 is not the only way a permutation can be
written as a product of 2-cycles. Although the next example shows that
even the number of 2-cycles may vary from one decomposition to an-
other, we will prove in Theorem 5.5 (first proved by Cauchy) that there
is one aspect of a decomposition that never varies.

EXAMPLE 6

(12345) 5 (54)(53)(52)(51)
(12345) 5 (54)(52)(21)(25)(23)(13)

We isolate a special case of Theorem 5.5 as a lemma.

Lemma

PROOF Clearly, r 2 1, since a 2-cycle is not the identity. If r 5 2, we
are done. So, we suppose that r . 2, and we proceed by induction.
Since (ij) 5 ( ji), the product br21br can be expressed in one of the fol-
lowing forms shown on the right:

e 5 (ab)(ab)
(ab)(bc) 5 (ac)(ab)
(ac)(cb ) 5 (bc)(ab)
(ab)(cd) 5 (cd)(ab).

If the first case occurs, we may delete br21br from the original product
to obtain e 5 b1b2 ? ? ? br22. In the other three cases, we replace the
form of br21br on the right by its counterpart on the left to obtain a new
product of r 2-cycles that is still the identity, but where the rightmost
occurrence of the integer a is in the second-from-the-rightmost 2-cycle
of the product instead of the rightmost 2-cycle. We now repeat the proce-
dure just described with br22br21, and, as before, we obtain a product of
(r 2 2) 2-cycles equal to the identity or a new product of r 2-cycles,
where the rightmost occurrence of a is in the third 2-cycle from the right.

If e 5 b1b2 ? ? ? br, where the b’s are 2-cycles, then r is even.
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Continuing this process, we must obtain a product of (r 2 2) 2-cycles
equal to the identity, because otherwise we have a product equal to the
identity in which the only occurrence of the integer a is in the leftmost 2-
cycle, and such a product does not fix a, whereas the identity does. Hence,
by the Second Principle of Mathematical Induction, r 2 2 is even, and r
is even as well.

Theorem 5.5 Always Even or Always Odd

PROOF Observe that b1b2 ? ? ? br 5 g1g2 ? ? ? gs implies

e 5 g1g2 ? ? ? gsbr
21 ? ? ? b2

21b1
21

5 g1g2 ? ? ? gsbr ? ? ? b2b1,

since a 2-cycle is its own inverse. Thus, the lemma on page 104 guar-
antees that s 1 r is even. It follows that r and s are both even or both
odd.

Definition Even and Odd Permutations

A permutation that can be expressed as a product of an even number
of 2-cycles is called an even permutation. A permutation that can 
be expressed as a product of an odd number of 2-cycles is called an
odd permutation.

Theorems 5.4 and 5.5 together show that every permutation can be
unambiguously classified as either even or odd. The significance of this
observation is given in Theorem 5.6.

Theorem 5.6 Even Permutations Form a Group

PROOF This proof is left to the reader (Exercise 13).

The subgroup of even permutations in Sn arises so often that we give
it a special name and notation.

The set of even permutations in Sn forms a subgroup of Sn.

If a permutation a can be expressed as a product of an even (odd)
number of 2-cycles, then every decomposition of a into a product of
2-cycles must have an even (odd) number of 2-cycles. In symbols, if

a 5 b1b2 ? ? ? br and a 5 g1g2 ? ? ? gs,

where the b’s and the g’s are 2-cycles, then r and s are both even or
both odd.
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Definition Alternating Group of Degree n

The group of even permutations of n symbols is denoted by An and is
called the alternating group of degree n.

The next result shows that exactly half of the elements of Sn(n . 1)
are even permutations.

Theorem 5.7

PROOF For each odd permutation a, the permutation (12)a is even
and (12)a 2 (12)b when a 2 b. Thus, there are at least as many even
permutations as there are odd ones. On the other hand, for each
even permutation a, the permutation (12)a is odd and (12)a 2 (12)b
when a 2 b. Thus, there are at least as many odd permutations as there
are even ones. It follows that there are equal numbers of even and odd
permutations. Since |Sn| 5 n!, we have |An| 5 n!/2.

The names for the symmetric group and the alternating group of degree
n come from the study of polynomials over n variables. A symmetric
polynomial in the variables x1, x2, . . . , xn is one that is unchanged under
any transposition of two of the variables. An alternating polynomial is
one that changes signs under any transposition of two of the variables. For
example, the polynomial x1x2x3 is unchanged by any transposition of two
of the three variables, whereas the polynomial (x12x2)(x12x3)(x22x3)
changes signs when any two of the variables are transposed. Since every
member of the symmetric group is the product of transpositions, the sym-
metric polynomials are those that are unchanged by members of the sym-
metric group. Likewise, since any member of the alternating group is the
product of an even number of transpositions, the alternating polynomials
are those that are unchanged by members of the alternating group and
change sign by the other permutations of Sn.

The alternating groups are among the most important examples of
groups. The groups A4 and A5 will arise on several occasions in later
chapters. In particular, A5 has great historical significance.

A geometric interpretation of A4 is given in Example 7, and a multi-
plication table for A4 is given as Table 5.1.

EXAMPLE 7 ROTATIONS OF A TETRAHEDRON The 12 rota-
tions of a regular tetrahedron can be conveniently described with the
elements of A4. The top row of Figure 5.1 illustrates the identity and
three 180° “edge” rotations about axes joining midpoints of two edges.

For n . 1, An has order n!/2.
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A A

B

C C

D

1

2

3

4

(1)

A

B
B

C

DD

1

2

3

4

(12)(34) (13)(24)

C C

D

A A

B

1

2

3

4
C

DD

A

BB

1

3

2
4

(14)(23)

A

C
C

D
BB

1

3

2
4

(123)

A A

D
D

C
B

1

3

2
4

(134)

D D

AA

BC

1

3

2
4

(243)

A
D

C C

BB

1

2

3

4

(142)

C

BB

D
AA

1

3

2
4

(132)
1

D

A
A

C

BB

3

2
4

(234) (124)
1

A

DD

B

CC

3

2
4

2

(143)
1

B

C
C

A

DD

3

4

Table 5.1 The Alternating Group A4 of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A4 are designated as a1, a2, . . . , a12 and an entry k inside 
the table represents ak. For example, a3 a8 5 a6.)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

(1) 5 a1 1 2 3 4 5 6 7 8 9 10 11 12
(12)(34) 5 a2 2 1 4 3 6 5 8 7 10 9 12 11
(13)(24) 5 a3 3 4 1 2 7 8 5 6 11 12 9 10
(14)(23) 5 a4 4 3 2 1 8 7 6 5 12 11 10 9

(123) 5 a5 5 8 6 7 9 12 10 11 1 4 2 3
(243) 5 a6 6 7 5 8 10 11 9 12 2 3 1 4
(142) 5 a7 7 6 8 5 11 10 12 9 3 2 4 1
(134) 5 a8 8 5 7 6 12 9 11 10 4 1 3 2
(132) 5 a9 9 11 12 10 1 3 4 2 5 7 8 6
(143) 5 a10 10 12 11 9 2 4 3 1 6 8 7 5
(234) 5 a11 11 9 10 12 3 1 2 4 7 5 6 8
(124) 5 a12 12 10 9 11 4 2 1 3 8 6 5 7

Figure 5.1 Rotations of a regular tetrahedron.
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The second row consists of 120° “face” rotations about axes joining a ver-
tex to the center of the opposite face. The third row consists of 2120° (or
240°) “face” rotations. Notice that the four rotations in the second row can
be obtained from those in the first row by left-multiplying the four in the
first row by the rotation (123), whereas those in the third row can be ob-
tained from those in the first row by left-multiplying the ones in the first
row by (132).

Many molecules with chemical formulas of the form AB4, such as
methane (CH4) and carbon tetrachloride (CCl4), have A4 as their sym-
metry group. Figure 5.2 shows the form of one such molecule.

Many games and puzzles can be analyzed using permutations.

Figure 5.2 A tetrahedral AB4 molecule.

EXAMPLE 8 (Loren Larson) A Sliding Disk Puzzle
Consider the puzzle shown below (the space in the middle is empty).

By sliding disks from one position to another along the lines
indicated without lifting or jumping, can we obtain the following
arrangement?

1

2

3

4

5

6
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To answer this question, we view the positions as numbered in the
first figure above and consider two basic operations. Let r denote the
following operation: Move the disk in position 1 to the center position,
then move the disk in position 6 to position 1, the disk in position 5 to
position 6, the disk in position 4 to position 5, the disk in position 3 to
position 4, then the disk in the middle position to position 3. Let s
denote the operation: Move the disk in position 1 to the center position,
then move the disk in position 2 to position 1, then move the disk in po-
sition 3 to position 2, and finally move the disk in the center to position 3.
In permutation notation, we have r 5 (13456) and s 5 (132). The
permutation for the arrangement we seek is (16523). Clearly, if we can
express (16523) as a string of r’s and s’s, we can achieve the desired
arangement. Rather than attempt to find an appropriate combination of
r’s and s’s by hand, it is easier to employ computer software that is de-
signed for this kind of problem. One such software program is GAP (see
Suggested Software at the end of this chapter). With GAP, all we need to
do is use the following commands:

gap. G :5 SymmetricGroup(6);
gap. r :5 (1,3,4,5,6); s :5 (1, 3, 2);
gap. K :5 Subgroup(G,[r,s]);
gap. Factorization(K,(1,6,5,2,3));

The first three lines inform the computer that our group is the
subgroup of S6 generated by r 5 (13456) and s 5 (132). The fourth
line requests that (16523) be expressed in terms of r and s. The re-
sponse to the command  

gap. Size (K);

tells us that the order of the subgroup generated by r and s is 360. Then,
observing that r and s are even permutations and that |A6| 5 360, we
deduce that r and s can achieve any arrangement that corresponds to an
even permutation.

3

5

2

4

6

1
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GAP can even compute the 43,252,003,274,489,856,000 (431 quin-
tillion) permutations of the Rubik’s Cube! Labeling the faces of the
cube as shown here,

the group of permutations of the cube is generated by the following ro-
tations of the six layers:

top 5 (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
left 5 (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
front 5 (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
right 5 (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
rear 5 (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
bottom 5 (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)

(16,24,32,40)

A Check Digit Scheme Based on D5

In Chapter 0, we presented several schemes for appending a check digit
to an identification number. Among these schemes, only the Interna-
tional Standard Book Number method was capable of detecting all
single-digit errors and all transposition errors involving adjacent digits.
However, recall that this success was achieved by introducing the al-
phabetical character X to handle the case where 10 was required to
make the dot product 0 modulo 11.

In contrast, in 1969, J. Verhoeff [2] devised a method utilizing the
dihedral group of order 10 that detects all single-digit errors and all
transposition errors involving adjacent digits without the necessity of
avoiding certain numbers or introducing a new character. To describe
this method, consider the permutation s 5 (01589427)(36) and the di-
hedral group of order 10 as represented in Table 5.2. (Here we use 0 
through 4 for the rotations, 5 through 9 for the reflections, and * for the
operation of D5.)

1
4

6 7

2 3

8
5top

9 10 11

14 15 16 22 23 24
12 left 13 20 21 28

17 18 19

41
44

46 47

42 43

48
45bottom

front right
25

30

26

31
29
27

32
36 rear
33

38

34

39
37
35

40
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Verhoeff’s idea is to view the digits 0 through 9 as the elements of the
group D5 and to replace ordinary addition with calculations done in D5.
In particular, to any string of digits a1a2 . . . an21, we append the check
digit an so that s(a1) p s2(a2) p ? ? ? p s n 22(an22) p s n 21(an21) p

s n (an) 5 0. [Here s2(x) 5 s(s(x)), s3(x) 5 s(s2 (x)), and so on.]
Since s has the property that s i (a) 2 s i(b) if a 2 b, all single-digit er-
rors are detected. Also, because

a p s(b) 2 b p s(a) if a 2 b, (1)

as can be checked on a case-by-case basis (see Exercise 49), it follows
that all transposition errors involving adjacent digits are detected [since
Equation (1) implies that s i(a) p s i11(b) 2 si(b) p s i11(a) if a 2 b].

From 1990 until 2002, the German government used a minor modi-
fication of Verhoeff’s check-digit scheme to append a check digit to the
serial numbers on German banknotes. Table 5.3 gives the values of the
functions s, s2, . . . , s10 needed for the computations. [The functional
value s i ( j) appears in the row labeled with s i and the column labeled j.]
Since the serial numbers on the banknotes use 10 letters of the alphabet in
addition to the 10 decimal digits, it is necessary to assign numerical val-
ues to the letters to compute the check digit. This assignment is shown in
Table 5.4.

To any string of digits a1a2 . . . a10 corresponding to a banknote serial
number, the check digit a11 is chosen such that s (a1) p s 2(a2) p ? ? ? p

s9(a9) p s10(a10) p a11 5 0 [instead of s(a1) p s2(a2) p ? ? ? p s10(a10) p
s11(a11) 5 0 as in the Verhoeff scheme].

Table 5.2 Multiplication for D5

* 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0
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To trace through a specific example, consider the banknote (featur-
ing the mathematician Gauss) shown in Figure 5.3 with the number
AG8536827U7. To verify that 7 is the appropriate check digit, we ob-
serve that s(0) p s2(2) p s3(8) p s 4 (5) p s 5 (3) p s 6 (6) p s7(8) p
s 8 (2) p s9(7) p s10(7) p 7 5 1 p 0 p 2 p 2 p 6 p 6 p 5 p 2 p 0 p 1 p
7 5 0, as it should be. [To illustrate how to use the multiplication table
for D5, we compute 1 p 0 p 2 p 2 5 (1 p 0) p 2 p 2 5 1 p 2 p 2 5
(1 p 2) p 2 5 3 p 2 5 0.]

Figure 5.3 German banknote with serial number AG8536827U and check digit 7.

One shortcoming of the German banknote scheme is that it does not
distinguish between a letter and its assigned numerical value. Thus, a

Table 5.3 Powers of s

0 1 2 3 4 5 6 7 8 9

s 1 5 7 6 2 8 3 0 9 4
s2 5 8 0 3 7 9 6 1 4 2
s3 8 9 1 6 0 4 3 5 2 7
s4 9 4 5 3 1 2 6 8 7 0
s5 4 2 8 6 5 7 3 9 0 1
s6 2 7 9 3 8 0 6 4 1 5
s7 7 0 4 6 9 1 3 2 5 8
s8 0 1 2 3 4 5 6 7 8 9
s9 1 5 7 6 2 8 3 0 9 4
s10 5 8 0 3 7 9 6 1 4 2

Table 5.4 Letter Values

A D G K L N S U Y Z

0 1 2 3 4 5 6 7 8 9
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substitution of 7 for U (or vice versa) and the transposition of 7 and U
are not detected by the check digit. Moreover, the banknote scheme
does not detect all transpositions of adjacent characters involving the
check digit itself. For example, the transposition of D and 8 in posi-
tions 10 and 11 is not detected. Both of these defects can be avoided by
using the Verhoeff method with D18, the dihedral group of order 36, to
assign every letter and digit a distinct value together with an appropri-
ate function s (see Gallian [1]). Using this method to append a check
character, all single-position errors and all transposition errors involv-
ing adjacent digits will be detected.

Exercises

1. Find the order of each of the following permutations.
a. (14)
b. (147)
c. (14762)
d.

2. Write each of the following permutations as a product of disjoint
cycles.
a. (1235)(413)
b. (13256)(23)(46512)
c. (12)(13)(23)(142)

3. What is the order of each of the following permutations?
a. (124)(357)
b. (124)(3567)
c. (124)(35)
d. (124)(357869)
e. (1235)(24567)
f. (345)(245)

(a1a2 
. . . ak)
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4. What is the order of each of the following permutations?

a.

b.

5. What is the order of the product of a pair of disjoint cycles of
lengths 4 and 6?

6. Show that A8 contains an element of order 15.
7. What are the possible orders for the elements of S6 and A6? What

about A7? (This exercise is referred to in Chapter 25.)
8. What is the maximum order of any element in A10?
9. Determine whether the following permutations are even or odd.

a. (135)
b. (1356)
c. (13567)
d. (12)(134)(152)
e. (1243)(3521)

10. Show that a function from a finite set S to itself is one-to-one if and
only if it is onto. Is this true when S is infinite? (This exercise is re-
ferred to in Chapter 6.)

11. Let n be a positive integer. If n is odd, is an n-cycle an odd or an
even permutation? If n is even, is an n-cycle an odd or an even per-
mutation?

12. If a is even, prove that a21 is even. If a is odd, prove that a21 is odd.
13. Prove Theorem 5.6.
14. In Sn, let a be an r-cycle, b an s-cycle, and g a t-cycle. Complete

the following statements: ab is even if and only if r 1 s is ______;
abg is even if and only if r 1 s 1 t is ______.

15. Let a and b belong to Sn. Prove that ab is even if and only if a
and b are both even or both odd.

16. Associate an even permutation with the number 11 and an odd
permutation with the number 21. Draw an analogy between the
result of multiplying two permutations and the result of multiply-
ing their corresponding numbers 11 or 21.

17. Let

a 5 and b 5 .c1 2 3 4 5 6

6 1 2 4 3 5
dc1 2 3 4 5 6

2 1 3 5 4 6
d

c1 2 3 4 5 6 7

7 6 1 2 3 4 5
d

 c1 2 3 4 5 6

2 1 5 4 6 3
d
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Compute each of the following.
a. a21

b. ba
c. ab

18. Let

a 5 and b 5 .

Write a, b, and ab as
a. products of disjoint cycles,
b. products of 2-cycles.

19. Show that if H is a subgroup of Sn, then either every member of H
is an even permutation or exactly half of the members are even.
(This exercise is referred to in Chapter 25.)

20. Compute the order of each member of A4. What arithmetic rela-
tionship do these orders have with the order of A4?

21. Give two reasons why the set of odd permutations in is not a
subgroup.

22. Let a and b belong to Sn. Prove that a21b21ab is an even
permutation.

23. Use Table 5.1 to compute the following.
a. The centralizer of a3 5 (13)(24).
b. The centralizer of a12 5 (124).

24. How many elements of order 5 are in S7?
25. How many elements of order 4 does have? How many elements

of order 2 does have?
26. Prove that (1234) is not the product of 3-cycles.
27. Let b [ S7 and suppose b4 5 (2143567). Find b.
28. Let b 5 (123)(145). Write b99 in disjoint cycle form.
29. Find three elements s in S9 with the property that s3 5

(157)(283)(469).
30. What cycle is (a1a2 ? ? ? an)

21?
31. Let G be a group of permutations on a set X. Let a [ X and define

stab(a) 5 {a [ G|a(a) 5 a}. We call stab(a) the stabilizer of a in
G (since it consists of all members of G that leave a fixed). Prove
that stab(a) is a subgroup of G. (This subgroup was introduced by
Galois in 1832.) This exercise is referred to in Chapter 7.

32. Let b 5 (1, 3, 5, 7, 9, 8, 6)(2, 4, 10). What is the smallest positive
integer n for which bn 5 b25?

S6

S6

Sn

c1 2 3 4 5 6 7 8

1 3 8 7 6 5 2 4
dc1 2 3 4 5 6 7 8

2 3 4 5 1 7 8 6
d
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33. Let a 5 (1, 3, 5, 7, 9)(2, 4, 6)(8, 10). If am is a 5-cycle, what can
you say about m?

34. Let H 5 {b [ S5|b(1) 5 1 and b(3) 5 3}. Prove that H is a sub-
group of S5. How many elements are in H? Is your argument valid
when 5 is replaced by any ? How many elements are in H
when 5 is replaced by any ?

35. How many elements of order 5 are there in A6?
36. In S4, find a cyclic subgroup of order 4 and a noncyclic subgroup

of order 4.
37. Suppose that b is a 10-cycle. For which integers i between 2 and

10 is bi also a 10-cycle?
38. In S3, find elements a and b such that |a| 5 2, |b| 5 2, and |ab| 5 3.
39. Find group elements a and b such that |a| 5 3, |b| 5 3, and 

|ab| 5 5.
40. Represent the symmetry group of an equilateral triangle as a group

of permutations of its vertices (see Example 3).
41. Prove that Sn is non-Abelian for all n $ 3.
42. Let a and b belong to Sn. Prove that bab21 and a are both even or

both odd.
43. Show that A5 has 24 elements of order 5, 20 elements of order 3, and

15 elements of order 2. (This exercise is referred to in Chapter 25.)
44. Find a cyclic subgroup of that has order 4.
45. Find a noncyclic subgroup of that has order 4.
46. Suppose that H is a subgroup of of odd order. Prove that H is a

subgroup of .
47. Show that every element in An for n $ 3 can be expressed as a 

3-cycle or a product of three cycles.
48. Show that for n $ 3, Z(Sn) 5 {e}.
49. Verify the statement made in the discussion of the Verhoeff check

digit scheme based on D5 that a * s(b) 2 b * s(a) for distinct a and
b. Use this to prove that si(a) * si11(b) 2 si(b) * si11(a) for all i.
Prove that this implies that all transposition errors involving adjacent
digits are detected.

50. Use the Verhoeff check-digit scheme based on D5 to append a
check digit to 45723.

51. Prove that every element of Sn (n . 1)  can be written as a product
of elements of the form (1k).

52. (Indiana College Mathematics Competition) A card-shuffling ma-
chine always rearranges cards in the same way relative to the order
in which they were given to it. All of the hearts arranged in order

An

Sn

A8

A8

n $ 3
n $ 3
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from ace to king were put into the machine, and then the shuffled
cards were put into the machine again to be shuffled. If the cards
emerged in the order 10, 9, Q, 8, K, 3, 4, A, 5, J, 6, 2, 7, in what
order were the cards after the first shuffle?

53. Show that a permutation with odd order is an even permutation.
54. Let G be a group. Prove or disprove that H 5 {g2 | g [ G} is a sub-

group of G. (Compare with Example 5 in Chapter 3.)
55. Determine integers n for which e is a sub-

group of .
56. Given that b and g are in with , and

, determine b and g.
57. Why does the fact that the orders of the elements of A4 are 1, 2, and

3 imply that |Z(A4)| 5 1?
58. Label the four locations of tires on an automobile with the labels

1, 2, 3, and 4, clockwise. Let a represent the operation of switching
the tires in positions 1 and 3 and switching the tires in positions
2 and 4. Let b represent the operation of rotating the tires in posi-
tions 2, 3, and 4 clockwise and leaving the tire in position 1 as is.
Let G be the group of all possible combinations of a and b. How
many elements are in G? 

59. Shown below are four tire rotation patterns recommended by the
Dunlop Tire Company. Explain how these patterns can be repre-
sented as permutations in S4 and find the smallest subgroup of S4
that contains these four patterns. Is the subgroup Abelian?

b(1) 5 4
gb 5 (1243)bg 5 (1432)S4

An

6H 5 5a [ An |a2 5

FRONT

Modified 
X

Rear Wheel Drive
Vehicles

4 Wheel Drive
Vehicles

FRONT

Modified X

X Tires to
the Driven Axle

Front Wheel Drive
Vehicles

Alternate Pattern

FRONT

 X

FRONT

Normal
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Computer Exercises

Science is what we understand well enough to explain to a computer. 
Art is everything else we do.

DONALD KNUTH, The Art of Computer Programming, 1969

Software for Computer Exercise 1 in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines whether the two permutations (1x) and
(123 ? ? ? n) generate Sn for various choices of x and n (that is,
whether every element of Sn can be expressed as some product of
these permutations). For n 5 4, run the program for x 5 2, 3, and
4. For n 5 5, run the program for x 5 2, 3, 4, and 5. For n 5 6, run
the program for x 5 2, 3, 4, 5, and 6. For n 5 8, run the program
for x 5 2, 3, 4, 5, 6, 7, and 8. Conjecture a necessary and sufficient
condition involving x and n for (1x) and (123 ? ? ? n) to generate Sn.

2. Use a software package (see Suggested Software on page 120) to
express the following permutations in terms of the r and s given in
Example 8. (For GAP, the prompt brk. means that the permuta-
tion entered is not in the group. In this situation, use Control-D to
return to the main prompt. Be advised that GAP composes permu-
tations from left to right as opposed to our method of right to left.)
a. (456)
b. (23)
c. (12)(34)
d. (12)(34)(56)

3. Repeat Example 8 for the puzzle shown here.

1

2

3

4

5

6
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Augustin Cauchy

You see that little young 
man? Well! He will supplant 
all of us in so far as we are 
mathematicians.

Spoken by Lagrange 

to Laplace About the 

11-year-old Cauchy

AUGUSTIN LOUIS CAUCHY was born on
August 21, 1789, in Paris. By the time 
he was 11, both Laplace and Lagrange had
recognized Cauchy’s extraordinary talent
for mathematics. In school he won prizes for
Greek, Latin, and the humanities. At the age
of 21, he was given a commission in
Napoleon’s army as a civil engineer. For the
next few years, Cauchy attended to his engi-
neering duties while carrying out brilliant
mathematical research on the side.

In 1815, at the age of 26, Cauchy was
made Professor of Mathematics at the École
Polytechnique and was recognized as the
leading mathematician in France. Cauchy
and his contemporary Gauss were among
the last mathematicians to know the whole
of mathematics as known at their time, and
both made important contributions to nearly

every branch, both pure and applied, as well
as to physics and astronomy.

Cauchy introduced a new level of rigor
into mathematical analysis. We owe our
contemporary notions of limit and continu-
ity to him. He gave the first proof of the
Fundamental Theorem of Calculus. Cauchy
was the founder of complex function theory
and a pioneer in the theory of permutation
groups and determinants. His total written
output of mathematics fills 24 large volumes.
He wrote more than 500 research papers
after the age of 50. Cauchy died at the age of
67 on May 23, 1857.

For more information about Cauchy,
visit:

http://www–groups.dcs
.st-and.ac.uk/~history/

121

This stamp was issued by France 
in Cauchy’s honor.
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Isomorphisms6

Motivation
Suppose an American and a German are asked to count a handful of ob-
jects. The American says, “One, two, three, four, five, . . . ,” whereas the
German says “Eins, zwei, drei, vier, fünf, . . .” Are the two doing different
things? No. They are both counting the objects, but they are using differ-
ent terminology to do so. Similarly, when one person says: “Two plus
three is five” and another says: “Zwei und drei ist fünf,” the two are in
agreement on the concept they are describing, but they are using different
terminology to describe the concept. An analogous situation often occurs
with groups; the same group is described with different terminology. We
have seen two examples of this so far. In Chapter 1, we described the sym-
metries of a square in geometric terms (e.g., R90), whereas in Chapter 5 we
described the same group by way of permutations of the corners. In both
cases, the underlying group was the symmetries of a square. In Chapter 4,
we observed that when we have a cyclic group of order n generated by a,
the operation turns out to be essentially that of addition modulo n, since
aras 5 ak, where k 5 (r 1 s) mod n. For example, each of U(43) and U(49)
is cyclic of order 42. So, each has the form �a�, where aras 5 a (r 1 s) mod 42.

Definition and Examples
In this chapter, we give a formal method for determining whether two
groups defined in different terms are really the same. When this is the
case, we say that there is an isomorphism between the two groups. This
notion was first introduced by Galois about 175 years ago. The term
isomorphism is derived from the Greek words isos, meaning “same” or
“equal,” and morphe, meaning “form.” R. Allenby has colorfully

The basis for poetry and scientific discovery is the ability to comprehend 
the unlike in the like and the like in the unlike.

JACOB BRONOWSKI
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defined an algebraist as “a person who can’t tell the difference between
isomorphic systems.”

Definition Group Isomorphism

An isomorphism f from a group G to a group is a one-to-one map-
ping (or function) from G onto that preserves the group operation.
That is,

f(ab) 5 f(a)f(b) for all a, b in G.

If there is an isomorphism from G onto , we say that G and are
isomorphic and write G < .

This definition can be visualized as shown in Figure 6.1. The pairs
of dashed arrows represent the group operations.

Figure 6.1

It is implicit in the definition of isomorphism that isomorphic
groups have the same order. It is also implicit in the definition of
isomorphism that the operation on the left side of the equal sign is that
of G, whereas the operation on the right side is that of . The four
cases involving ? and 1 are shown in Table 6.1.

G

a

b

ab

(a)

(b)

G G
φ

φ

φ
φ

φ

φφ (a)  (b)

G
GG

G
G

Table 6.1

G Operation Operation Operation Preservation

? ? f(a ? b) 5 f(a) ? f(b)
? 1 f(a ? b) 5 f(a) 1 f(b)
1 ? f(a 1 b) 5 f(a) ? f(b)
1 1 f(a 1 b) 5 f(a) 1 f(b)  

G

There are four separate steps involved in proving that a group G is
isomorphic to a group .

Step 1 “Mapping.” Define a candidate for the isomorphism; that is, de-
fine a function f from G to .

Step 2 “1–1.” Prove that f is one-to-one; that is, assume that f(a) 5
f(b) and prove that a 5 b.

G

G
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Step 3 “Onto.” Prove that f is onto; that is, for any element in ,
find an element g in G such that f(g) 5 .

Step 4 “O.P.” Prove that f is operation-preserving; that is, show that
f(ab) 5 f(a)f(b) for all a and b in G.

None of these steps is unfamiliar to you. The only one that may appear
novel is the fourth one. It requires that one be able to obtain the same
result by combining two elements and then mapping, or by mapping
two elements and then combining them. Roughly speaking, this says
that the two processes—operating and mapping—can be done in either
order without affecting the result. This same concept arises in calculus
when we say

or

Before going any further, let’s consider some examples.

EXAMPLE 1 Let G be the real numbers under addition and let be
the positive real numbers under multiplication. Then G and are iso-
morphic under the mapping f(x) 5 2x. Certainly, f is a function from
G to . To prove that it is one-to-one, suppose that 2x 5 2y. Then log2 2x 5
log2 2y, and therefore x 5 y. For “onto,” we must find for any positive
real number y some real number x such that f(x) 5 y; that is, 2x 5 y.
Well, solving for x gives log2 y. Finally,

f(x 1 y) 5 2x1y 5 2x ? 2y 5 f(x)f(y)

for all x and y in G, so that f is operation-preserving as well.

EXAMPLE 2 Any infinite cyclic group is isomorphic to Z. Indeed, if
a is a generator of the cyclic group, the mapping ak → k is an
isomorphism. Any finite cyclic group �a� of order n is isomorphic 
to Zn under the mapping ak → k mod n. That these correspondences are
functions and are one-to-one is the essence of Theorem 4.1. Obviously,
the mappings are onto. That the mappings are operation-preserving
follows from Exercise 11 in Chapter 0 in the finite case and from the
definitions in the infinite case.

G

G
G

3
b

a

( f 1 g) dx 5 3
b

a

f dx 1 3
b

a

g dx.

 lim
xSa

(
 

f (x) ? g(x) ) 5  lim 
xSa

 f (x)  lim
xSa

 g(x)

g
Gg
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EXAMPLE 3 The mapping from R under addition to itself given by
f(x) 5 x3 is not an isomorphism. Although f is one-to-one and onto, it
is not operation-preserving, since it is not true that (x 1 y)3 5 x3 1 y3

for all x and y.

EXAMPLE 4 U(10) < Z4 and U(5) < Z4. To verify this, one need
only observe that both U(10) and U(5) are cyclic of order 4. Then ap-
peal to Example 2.

EXAMPLE 5 U(10) ] U(12). This is a bit trickier to prove. First,
note that x2 5 1 for all x in U(12). Now, suppose that f is an isomor-
phism from U(10) onto U(12). Then,

f(9) 5 f(3 ? 3) 5 f(3)f(3) 5 1

and

f(1) 5 f(1 ? 1) 5 f(1)f(1) 5 1.

Thus, f(9) 5 f(1), but 9 2 1, which contradicts the assumption that
f is one-to-one.

EXAMPLE 6 There is no isomorphism from Q, the group of rational
numbers under addition, to Q*, the group of nonzero rational numbers
under multiplication. If f were such a mapping, there would be a ra-
tional number a such that f(a) 5 21. But then

21 5 f(a) 5 f( a 1 a) 5 f( a)f( a) 5 [f( a)]2.

However, no rational number squared is 21.

EXAMPLE 7 Let G 5 SL(2, R), the group of 2 3 2 real matrices
with determinant 1. Let M be any 2 3 2 real matrix with determinant 1.
Then we can define a mapping from G to G itself by fM(A) 5 MAM21

for all A in G. To verify that fM is an isomorphism, we carry out the
four steps.

Step 1 fM is a function from G to G. Here, we must show that fM(A)
is indeed an element of G whenever A is. This follows from properties
of determinants:

det (MAM21) 5 (det M)(det A)(det M)21 5 1 ? 1 ? 121 5 1.

Thus, MAM21 is in G.

Step 2 fM is one-to-one. Suppose that fM(A) 5 fM(B). Then MAM21 5
MBM21 and, by left and right cancellation, A 5 B.

1
2

1
2

1
2

1
2

1
2
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Step 3 fM is onto. Let B belong to G. We must find a matrix A in G
such that fM(A) 5 B. How shall we do this? If such a matrix A is to ex-
ist, it must have the property that MAM21 5 B. But this tells us exactly
what A must be! For we can solve for A to obtain A 5 M21BM and
verify that fM(A) 5 MAM21 5 M(M21BM)M21 5 B.

Step 4 fM is operation-preserving. Let A and B belong to G. Then,

fM(AB) 5 M(AB)M21 5 MA(M21M)BM21

5 (MAM21)(MBM21) 5 fM(A)fM(B).

The mapping fM is called conjugation by M.

Cayley’s Theorem
Our first theorem is a classic result of Cayley. An important generaliza-
tion of it will be given in Chapter 25.

Theorem 6.1 Cayley’s Theorem (1854)

PROOF To prove this, let G be any group. We must find a group of
permutations that we believe is isomorphic to G. Since G is all we have
to work with, we will have to use it to construct . For any g in G,
define a function Tg from G to G by

Tg(x) 5 gx for all x in G.

(In words, Tg is just multiplication by g on the left.) We leave it as an
exercise (Exercise 23) to prove that Tg is a permutation on the set of
elements of G. Now, let 5 {Tg | g [ G}. Then, is a group under
the operation of function composition. To verify this, we first observe
that for any g and h in G we have TgTh(x) 5 Tg(Th(x)) 5 Tg(hx) 5 g(hx) 5
(gh)x 5 Tgh(x), so that TgTh 5 Tgh. From this it follows that Te is the
identity and (Tg)

21 5 Tg21 (see Exercise 9). Since function composition
is associative, we have verified all the conditions for to be a group.

The isomorphism f between G and is now ready-made. For every
g in G, define f(g) 5 Tg. If Tg 5 Th, then Tg(e) 5 Th(e) or ge 5 he.
Thus, g 5 h and f is one-to-one. By the way was constructed, we
see that f is onto. The only condition that remains to be checked is that
f is operation-preserving. To this end, let a and b belong to G. Then

f(ab) 5 Tab 5 TaTb 5 f(a)f(b).

G

G
G

GG

G

G

Every group is isomorphic to a group of permutations.
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The group constructed above is called the left regular representa-
tion of G.

EXAMPLE 8 For concreteness, let us calculate the left regular repre-
sentation for U(12) 5 {1, 5, 7, 11}. Writing the permutations of
U(12) in array form, we have (remember, Tx is just multiplication by x)

, ,

, .

It is instructive to compare the Cayley table for U(12) and its left regu-
lar representation .U(12)

T11 5 c 1 5 7 11

11 7 5 1
dT7 5 c1 5 7 11

7 11 1 5
d

T5 5 c1 5 7 11

5 1 11 7
dT1 5 c1 5 7 11

1 5 7 11
d

U(12)

G

T1 T5 T7 T11

T1 T1 T5 T7 T11
T5 T5 T1 T11 T7
T7 T7 T11 T1 T5
T11 T11 T7 T5 T1

U(12)U(12) 1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5

11 11 7 5 1

It should be abundantly clear from these tables that U(12) and 
are only notationally different.

Cayley’s Theorem is important for two contrasting reasons. One is
that it allows us to represent an abstract group in a concrete way. A sec-
ond is that it shows that the present-day set of axioms we have adopted
for a group is the correct abstraction of its much earlier predecessor—a
group of permutations. Indeed, Cayley’s Theorem tells us that abstract
groups are not different from permutation groups. Rather, it is the
viewpoint that is different. It is this difference of viewpoint that has
stimulated the tremendous progress in group theory and many other
branches of mathematics in the 20th century.

It is sometimes very difficult to prove or disprove, whichever the
case may be, that two particular groups are isomorphic. For example, it
requires somewhat sophisticated techniques to prove the surprising fact
that the group of real numbers under addition is isomorphic to the
group of complex numbers under addition. Likewise, it is not easy 
to prove the fact that the group of nonzero complex numbers under
multiplication is isomorphic to the group of complex numbers with ab-
solute value of 1 under multiplication. In geometric terms, this says
that, as groups, the punctured plane and the unit circle are isomorphic.
(See reference 1.)

U(12)
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PROOF We will restrict ourselves to proving only properties 1, 2, and 4,
but observe that property 5 follows from properties 1 and 2, property 6
follows from property 2, and property 7 follows from property 5. For
convenience, let us denote the identity in G by e and the identity in 
by . Then, since  e 5 ee, we have

f(e) 5 f(ee) 5 f(e)f(e).

Also, because f(e) [ , we have f(e) 5 f(e), as well. Thus, by can-
cellation, 5 f(e). This proves property 1.

For positive integers, property 2 follows from the definition of an
isomorphism and mathematical induction. If n is negative, then 2n is
positive, and we have from property 1 and the observation about the
positive integer case that e 5 f(e) 5 f(gng2n) 5 f(gn)f(g2n) 5
f(gn)(f(g))2n. Thus, multiplying both sides on the right by (f(g))n, we
have (f(g))n 5 f(gn). Property 1 takes care of the case n 5 0.

To prove property 4, let G 5 �a� and note that, by closure, �f(a)� #
. Because f is onto, for any element b in , there is an element ak in

G such that f(ak) 5 b. Thus, b 5 (f(a))k and so b [ �f(a)�. This
proves that 5 �f(a)�.

Now suppose that 5 �f(a)�. Clearly, �a� # G. For any element 
b in G, we have f(b) [ �f(a)�. So, for some integer k we have 

G
G

GG

e
eG

e
G

Properties of Isomorphisms
Our next two theorems give a catalog of properties of isomorphisms
and isomorphic groups.

Theorem 6.2 Properties of Isomorphisms Acting on Elements

Suppose that f is an isomorphism from a group G onto a group .
Then

1. f carries the identity of G to the identity of .
2. For every integer n and for every group element a in G, f(an) 5

[f(a)]n.
3. For any elements a and b in G, a and b commute if and only if

f(a) and f(b) commute.
4. G 5 �a� if and only if 5 �f(a)�.
5. |a| 5 |f(a)| for all a in G (isomorphisms preserve orders).
6. For a fixed integer k and a fixed group element b in G, the

equation xk 5 b has the same number of solutions in G as does
the equation xk 5 f(b) in .

7. If G is finite, then G and have exactly the same number of
elements of every order.

G
G

G

G

G
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f(b) 5 (f(a))k 5 f(ak). Because f is one-to-one, b 5 ak. This proves
that �a� 5 G.

When the group operation is addition, property 2 of Theorem 6.2 is
f(na) 5 nf(a); property 4 says that an isomorphism between two
cyclic groups takes a generator to a generator.

Property 6 is quite useful for showing that two groups are not iso-
morphic. Often b is picked to be the identity. For example, consider C*
and R*. Because the equation x4 5 1 has four solutions in C* but only
two in R*, no matter how one attempts to define an isomorphism from
C* to R*, property 6 cannot hold.

Theorem 6.3 Properties of Isomorphisms Acting on Groups

Suppose that f is an isomorphism from a group G onto a group .
Then

1. f21 is an isomorphism from onto G.
2. G is Abelian if and only if is Abelian.
3. G is cyclic if and only if is cyclic.
4. If K is a subgroup of G, then f(K) 5 {f(k) | k [ K} is a

subgroup of .G

G
G

G

G

PROOF Properties 1 and 4 are left as exercises (Exercises 21 and 22).
Property 2 is a direct consequence of property 3 of Theorem 6.2.
Property 3 follows from property 4 of Theorem 6.2 and property 1 of
Theorem 6.3.

Theorems 6.2 and 6.3 show that isomorphic groups have many prop-
erties in common. Actually, the definition is precisely formulated so
that isomorphic groups have all group-theoretic properties in common.
By this we mean that if two groups are isomorphic, then any property
that can be expressed in the language of group theory is true for one if
and only if it is true for the other. This is why algebraists speak of iso-
morphic groups as “equal” or “the same.” Admittedly, calling such
groups equivalent, rather than the same, might be more appropriate, but
we bow to long-standing tradition.

Automorphisms
Certain kinds of isomorphisms are referred to so often that they have
been given special names.
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Definition Automorphism

An isomorphism from a group G onto itself is called an automorphism
of G.

The isomorphism in Example 7 is an automorphism of SL(2, R).
Two more examples follow.

EXAMPLE 9 The function f from C to C given by f(a 1 bi) 5
a 2 bi is an automorphism of the group of complex numbers under
addition. The restriction of f to C* is also an automorphism of the
group of nonzero complex numbers under multiplication. (See
Exercise 25.)

EXAMPLE 10 Let R2 5 {(a, b) | a, b [ R}. Then f(a, b) 5 (b, a)
is an automorphism of the group R2 under componentwise addition.
Geometrically, f reflects each point in the plane across the line y 5 x.
More generally, any reflection across a line passing through the
origin or any rotation of the plane about the origin is an automor-
phism of R2.

The isomorphism in Example 7 is a particular instance of an auto-
morphism that arises often enough to warrant a name and notation of
its own.

Definition Inner Automorphism Induced by a

Let G be a group, and let a [ G. The function fa defined by fa(x) 5
axa21 for all x in G is called the inner automorphism of G induced by a.

We leave it for the reader to show that fa is actually an automor-
phism of G. (Use Example 7 as a model.)

EXAMPLE 11 The action of the inner automorphism of D4 induced
by R90 is given in the following table.

x → R90 x R90
21

R0 → R90R0R90
–1 5 R0

R90 → R90R90R90
21 5 R90

R180 → R90R180R90
21 5 R180

R270 → R90R270R90
21 5 R270

H → R90HR90
21 5 V

V → R90VR90
21 5 H

D → R90DR90
21 5 D9

D9 → R90D9R90
21 5 D

fR90
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When G is a group, we use Aut(G) to denote the set of all auto-
morphisms of G and Inn(G) to denote the set of all inner automor-
phisms of G. The reason these sets are noteworthy is demonstrated by
the next theorem.

Theorem 6.4 Aut(G) and Inn(G) Are Groups†

PROOF The proof of Theorem 6.4 is left as an exercise (Exercise 15).

The determination of Inn(G) is routine. If G 5 {e, a, b, c. . . .}, then
Inn(G) 5 {fe, fa, fb, fc, . . .}. This latter list may have duplications,
however, since fa may be equal to fb even though a 2 b (see Exercise
33). Thus, the only work involved in determining Inn(G) is deciding
which distinct elements give the distinct automorphisms. On the other
hand, the determination of Aut(G) is, in general, quite involved.

EXAMPLE 12 Inn(D
4

)

To determine Inn(D4), we first observe that the complete list of inner
automorphisms is fR0

, fR90
, fR180

, fR270
, fH, fV, fD, and fD9. Our job is

to determine the repetitions in this list. Since R180 [ Z(D4), we have
fR180

(x) 5 R180 xR180
21 5 x, so that fR180

5 fR0
. Also, fR270

(x) 5
R270 xR270

21 5 R90R180 xR180
21R90

21 5 R90 xR90
21 5 fR90

(x). Similarly,
since H 5 R180V and D9 5 R180D, we have fH 5 fV and fD 5 fD9.
This proves that the previous list can be pared down to fR0

, fR90
, fH,

and fD. We leave it to the reader to show that these are distinct
(Exercise 13).

EXAMPLE 13 Aut(Z
10

)

To compute Aut(Z10), we try to discover enough information about an
element a of Aut(Z10) to determine how a must be defined. Because Z10
is so simple, this is not difficult to do. To begin with, observe that once
we know a(1), we know a(k) for any k, because

The set of automorphisms of a group and the set of inner
automorphisms of a group are both groups under the operation 
of function composition.

†The group Aut(G) was first studied by O. Hölder in 1893 and, independently, by 
E. H. Moore in 1894.
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a(k) 5 a(1 1 1 1 ? ? ? 1 1)
k terms

5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 ka(1).
k terms

So, we need only determine the choices for a(1) that make a an
automorphism of Z10. Since property 5 of Theorem 6.2 tells us that
|a(1)| 5 10, there are four candidates for a(1):

a(1) 5 1; a(1) 5 3; a(1) 5 7; a(1) 5 9.

To distinguish among the four possibilities, we refine our notation by
denoting the mapping that sends 1 to 1 by a1, 1 to 3 by a3, 1 to 7 by a7,
and 1 to 9 by a9. So the only possibilities for Aut(Z10) are a1, a3, a7, and
a9. But are all these automorphisms? Clearly, a1 is the identity. Let us
check . Since implies ,

is well defined. Moreover, because is a generator of , it
follows that a3 is onto (and, by Exercise 10 in Chapter 5, it is also one-
to-one). Finally, since a3(a 1 b) 5 3(a 1 b) 5 3a 1 3b 5 a3(a) 1 a3(b),
we see that a3 is operation-preserving as well. Thus, a3 [ Aut(Z10). The
same argument shows that a7 and a9 are also automorphisms.

This gives us the elements of Aut(Z10) but not the structure. For in-
stance, what is a3a3? Well, (a3a3)(1) 5 a3(3) 5 3 ? 3 5 9 5 a9(1), so
a3a3 5 a9. Similar calculations show that a 3

3 5 a7 and a 3
4 5 a1, so

that |a3| 5 4. Thus, Aut(Z10) is cyclic. Actually, the following Cayley
tables reveal that Aut(Z10) is isomorphic to U(10).

Z10a3(1) 5 3a3

3x mod 10 5 3y mod 10x mod 10 5 y mod 10a3

U(10) 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Aut(Z10) a1 a3 a7 a9

a1 a1 a3 a7 a9
a3 a3 a9 a1 a7
a7 a7 a1 a9 a3
a9 a9 a7 a3 a1

With Example 13 as a guide, we are now ready to tackle the group
Aut(Zn). The result is particularly nice, since it relates the two kinds of
groups we have most frequently encountered thus far—the cyclic
groups Zn and the U-groups U(n).

Theorem 6.5 Aut(Zn) < U(n)

For every positive integer n, Aut(Zn) is isomorphic to U(n).
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PROOF As in Example 13, any automorphism a is determined by the
value of a(1), and a(1) [ U(n). Now consider the correspondence
from Aut(Zn) to U(n) given by T: a → a(1). The fact that a(k) 5 ka(1)
(see Example 13) implies that T is a one-to-one mapping. For if a and
b belong to Aut(Zn) and a(1) 5 b(1), then a(k) 5 ka(1) 5 kb(1) 5
b(k) for all k in Zn, and therefore a 5 b.

To prove that T is onto, let r [ U(n) and consider the mapping a
from Zn to Zn defined by a(s) 5 sr (mod n) for all s in Zn. We leave it as
an exercise to verify that a is an automorphism of Zn (see Exercise 17).
Then, since T(a) 5 a(1) 5 r, T is onto U(n).

Finally, we establish the fact that T is operation-preserving. Let a,
b [ Aut(Zn). We then have

T(ab) 5 (ab)(1) 5 a(b(1)) 5 a(1 1 1 1 ? ? ? 1 1)

b(1) terms

5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 a(1)b(1)

b(1) terms
5 T(a)T(b).

This completes the proof.

Exercises

Being a mathematician is a bit like being a manic depressive: you spend
your life alternating between giddy elation and black despair.

STEVEN G. KRANTZ, A Primer of Mathematical Writing

1. Find an isomorphism from the group of integers under addition to
the group of even integers under addition.

2. Find Aut(Z).
3. Let R1 be the group of positive real numbers under multiplication.

Show that the mapping f(x) 5 is an automorphism of R1.
4. Show that U(8) is not isomorphic to U(10).
5. Show that U(8) is isomorphic to U(12).
6. Prove that the notion of group isomorphism is transitive. That is, if

G, H, and K are groups and G < H and H < K, then G < K.
7. Prove that S4 is not isomorphic to D12.
8. Show that the mapping is an isomorphism from R+

under multiplication to R under addition.
9. In the notation of Theorem 6.1, prove that Te is the identity and

that (Tg)
21 5 Tg21.

a S log10 a

"x
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10. Let G be a group. Prove that the mapping a(g) 5 g21 for all g in G
is an automorphism if and only if G is Abelian.

11. For inner automorphisms fg, fh , and fgh, prove that fgfh 5 fgh.
12. Find two groups G and H such that G ] H, but Aut(G) < Aut(H).
13. Prove the assertion in Example 12 that the inner automorphisms

fR0
, fR90

, fH, and fD of D4 are distinct.
14. Find Aut(Z6).
15. If G is a group, prove that Aut(G) and Inn(G) are groups.
16. Prove that the mapping from U(16) to itself given by x → x3 is an

automorphism. What about x → x5 and x → x7? Generalize.
17. Let r [ U(n). Prove that the mapping a: Zn → Zn defined by a(s) 5

sr mod n for all s in Zn is an automorphism of Zn. (This exercise is
referred to in this chapter.)

18. The group a[ Z is isomorphic to what familiar group?

What if Z is replaced by R?
19. If and g are isomorphisms from the cyclic group to some

group and , prove that .
20. Suppose that : is an automorphism with .

Determine a formula for .
21. Prove Property 1 of Theorem 6.3.
22. Prove Property 4 of Theorem 6.3.
23. Referring to Theorem 6.1, prove that Tg is indeed a permutation on

the set G.
24. Prove or disprove that U(20) and U(24) are isomorphic.
25. Show that the mapping f(a 1 bi) 5 a 2 bi is an automorphism of

the group of complex numbers under addition. Show that f pre-
serves complex multiplication as well—that is, f(xy) 5 f(x)f(y)
for all x and y in C. (This exercise is referred to in Chapter 15.)

26. Let

G 5 {a 1 b | a, b rational}

and

H 5 a, b rational .

Show that G and H are isomorphic under addition. Prove that G
and H are closed under multiplication. Does your isomorphism
preserve multiplication as well as addition? (G and H are examples
of rings—a topic we will take up in Part 3.)

f`ca 2b

b a
de

"2

f(x)
f(11) 5 13Z50 S Z50f

f 5 gf(a) 5 g(a)
�a�f

f`e c1  a

0 1
d
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27. Prove that Z under addition is not isomorphic to Q under addition.
28. Prove that the quaternion group (see Exercise 4, Supplementary Exer-

cises for Chapters 1–4) is not isomorphic to the dihedral group D4.
29. Let C be the complex numbers and

M 5 a, b [ R .

Prove that C and M are isomorphic under addition and that C* and
M*, the nonzero elements of M, are isomorphic under multiplication.

30. Let Rn 5 {(a1, a2, . . . , an) | ai [ R}. Show that the mapping f:
(a1, a2, . . . , an) → (2a1, 2a2, . . . , 2an) is an automorphism of
the group Rn under componentwise addition. This automorphism
is called inversion. Describe the action of f geometrically.

31. Consider the following statement: The order of a subgroup divides
the order of the group. Suppose you could prove this for finite
permutation groups. Would the statement then be true for all finite
groups? Explain.

32. Suppose that G is a finite Abelian group and G has no element of
order 2. Show that the mapping g → g2 is an automorphism of G.
Show, by example, that if G is infinite the mapping need not be an
automorphism.

33. Let G be a group and let g [ G. If z [ Z(G), show that the inner
automorphism induced by g is the same as the inner automorphism
induced by zg (that is, that the mappings fg and fzg are equal).

34. If a and g are elements of a group, prove that is isomorphic to
.

35. Suppose that g and h induce the same inner automorphism of a
group G. Prove that h21g [ Z(G).

36. Combine the results of Exercises 33 and 35 into a single “if and
only if” theorem.

37. Let a belong to a group G and let |a| be finite. Let fa be the auto-
morphism of G given by fa(x) 5 axa21. Show that |fa| divides |a|.
Exhibit an element a from a group for which 1 , |fa| , |a|.

38. Let G 5 {0, 62, 64, 66, . . .} and H 5 {0, 63, 66, 69, . . .}.
Show that G and H are isomorphic groups under addition. Does
your isomorphism preserve multiplication? Generalize to the case
when and , where m and n are integers.

39. Suppose that is an automorphism of such that 
and . Determine and .

40. In Aut(Z9), let ai denote the automorphism that sends 1 to i where 
gcd(i, 9) 5 1. Write a5 and a8 as permutations of {0, 1, . . . , 8} in 
disjoint cycle form. [For example, a2 5 (0)(124875)(36).]

f(H)f(D)f(V) 5 V
f(R90) 5 R270D4f

H 5 �n�G 5 �m�

C(gag21)
C(a)

f`ca 2b

b a
de

16509_ch06_p122-137 pp3  11/15/08  11:34 AM  Page 135



136 Groups

41. Write the permutation corresponding to R90 in the left regular rep-
resentation of D4 in cycle form.

42. Show that every automorphism f of the rational numbers Q under
addition to itself has the form f(x) 5 xf(1).

43. Prove that Q1, the group of positive rational numbers under multi-
plication, is isomorphic to a proper subgroup.

44. Prove that Q, the group of rational numbers under addition, is not
isomorphic to a proper subgroup of itself.

45. Prove that every automorphism of R*, the group of nonzero real
numbers under multiplication, maps positive numbers to positive
numbers and negative numbers to negative numbers.

46. Let G be a finite group. Show that in the disjoint cycle form of the
right regular representation of G each cycle has
length .

47. Give a group-theoretic proof that Q under addition is not isomor-
phic to R+ under multiplication.

Reference

1. J. R. Clay, “The Punctured Plane Is Isomorphic to the Unit
Circle,” Journal of Number Theory 1 (1964): 500–501.

Computer Exercise

There is only one satisfying way to boot a computer.
J. H. GOLDFUSS

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software computes the order of Aut(Dn). Run the program for 
n 5 3, 5, 7, and 11. Make a conjecture about the order when n is
prime. Run the program for n 5 4, 8, 16, and 32. Make a conjecture
about the order when n is a power of 2. Run the program when n 5
6, 10, 14, and 22. Make a conjecture about the order when n is twice
a prime. Run the program for n 5 9, 15, 21, and 33. Make a conjec-
ture about the order when n is 3 times a prime. Try to deduce a gen-
eral formula for the order of Aut(Dn).

0g 0 Tg(x) 5 xg
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Arthur Cayley

Cayley is forging the weapons for future
generations of physicists.

PETER TAIT

ARTHUR CAYLEY was born on August 16,
1821, in England. His genius showed itself at
an early age. He published his first research
paper while an undergraduate of 20, and in
the next year he published eight papers.
While still in his early twenties, he originated
the concept of n-dimensional geometry.

After graduating from Trinity College,
Cambridge, Cayley stayed on for three years
as a tutor. At the age of 25, he began a 14-
year career as a lawyer. During this period,
he published approximately 200 mathemati-
cal papers, many of which are now classics.

In 1863, Cayley accepted the newly es-
tablished Sadlerian professorship of mathe-
matics at Cambridge University. He spent
the rest of his life in that position. One of his
notable accomplishments was his role in the
successful effort to have women admitted to
Cambridge.

Among Cayley’s many innovations in
mathematics were the notions of an abstract
group and a group algebra, and the matrix
concept. He made major contributions to
geometry and linear algebra. Cayley and his
lifelong friend and collaborator J. J. Sylvester
were the founders of the theory of invariants,
which was later to play an important role in
the theory of relativity.

Cayley’s collected works comprise 13
volumes, each about 600 pages in length.
He died on January 26, 1895.

To find more information about Cayley,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Cosets and Lagrange’s
Theorem7

Properties of Cosets
In this chapter, we will prove the single most important theorem in finite
group theory—Lagrange’s Theorem. But first, we introduce a new and
powerful tool for analyzing a group—the notion of a coset. This notion
was invented by Galois in 1830, although the term was coined by 
G. A. Miller in 1910.

Definition Coset of H in G

Let G be a group and let H be a subset of G. For any a [ G, the set
{ah | h [ H} is denoted by aH. Analogously, Ha 5 {ha | h [ H} and
aHa21 5 {aha21 | h [ H}. When H is a subgroup of G, the set aH is called
the left coset of H in G containing a, whereas Ha is called the right coset
of H in G containing a. In this case, the element a is called the coset
representative of aH (or Ha). We use |aH| to denote the number of ele-
ments in the set aH, and |Ha| to denote the number of elements in Ha.

EXAMPLE 1 Let G 5 S3 and H 5 {(1), (13)}. Then the left cosets of
H in G are

(1)H 5 H,
(12)H 5 {(12), (12)(13)} 5 {(12), (132)} 5 (132)H,
(13)H 5 {(13), (1)} 5 H,
(23)H 5 {(23), (23)(13)} 5 {(23), (123)} 5 (123)H.

It might be difficult, at this point, for students to see the extreme
importance of this result [Lagrange’s Theorem]. As we penetrate the subject
more deeply they will become more and more aware of its basic character.

I. N. HERSTEIN, Topics in Algebra
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7 | Cosets and Lagrange’s Theorem 139

EXAMPLE 2 Let _ 5 {R0, R180} in D4, the dihedral group of order 8.
Then,

R0_ 5 _,
R90_ 5 {R90, R270} 5 R270_,

R180_ 5 {R180, R0} 5 _,
V_ 5 {V, H} 5 H_,
D_ 5 {D, D9} 5 D9_.

EXAMPLE 3 Let H 5 {0, 3, 6} in Z9 under addition. In the case that
the group operation is addition, we use the notation a 1 H instead of
aH. Then the cosets of H in Z9 are

0 1 H 5 {0, 3, 6} 5 3 1 H 5 6 1 H,
1 1 H 5 {1, 4, 7} 5 4 1 H 5 7 1 H,
2 1 H 5 {2, 5, 8} 5 5 1 H 5 8 1 H.

The three preceding examples illustrate a few facts about cosets that
are worthy of our attention. First, cosets are usually not subgroups.
Second, aH may be the same as bH, even though a is not the same as b.
Third, since in Example 1 (12)H 5 {(12), (132)} whereas H(12) 5
{(12), (123)}, aH need not be the same as Ha.

These examples and observations raise many questions. When does
aH 5 bH? Do aH and bH have any elements in common? When does 
aH 5 Ha? Which cosets are subgroups? Why are cosets important? The
next lemma and theorem answer these questions. (Analogous results
hold for right cosets.)

Lemma Properties of Cosets

PROOF

1. a 5 ae [ aH.
2. To verify property 2, we first suppose that aH 5 H. Then a 5

ae [ aH 5 H. Next, we assume that a [ H and show that aH # H

Let H be a subgroup of G, and let a and b belong to G. Then,

1. a [ aH,
2. aH 5 H if and only if a [ H,
3. aH 5 bH if and only if a [ bH
4. aH 5 bH or aH > bH 5 [,
5. aH 5 bH if and only if a21b [ H,
6. |aH| 5 |bH|,
7. aH 5 Ha if and only if H 5 aHa21,
8. aH is a subgroup of G if and only if a [ H.
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and H # aH. The first inclusion follows directly from the closure of
H. To show that H # aH, let h [ H. Then, since a [ H and h [ H, we
know that a21h [ H. Thus, h 5 eh 5 (aa21)h 5 a(a21h) [ aH.

3. If aH 5 bH, then a 5 ae [ aH 5 bH. Conversely, if a [ bH we have 
a 5 bh where h [ H, and therefore aH 5 (bh)H 5 b(hH) 5 bH.

4. Property 4 follows directly from property 3, for if there is an ele-
ment c in aH y bH, then cH 5 aH and cH 5 bH.

5. Observe that aH 5 bH if and only if H 5 a21bH. The result now
follows from property 2.

6. To prove that |aH| 5 |bH|, it suffices to define a one-to-one map-
ping from aH onto bH. Obviously, the correspondence ah → bh
maps aH onto bH. That it is one-to-one follows directly from the
cancellation property.

7. Note that aH 5 Ha if and only if (aH)a21 5 (Ha)a21 5 H(aa–1) 5
H—that is, if and only if aHa21 5 H.

8. If aH is a subgroup, then it contains the identity e. Thus, aH >
eH 2 0/; and, by property 4, we have aH 5 eH 5 H. Thus, from
property 2, we have a [ H. Conversely, if a [ H, then, again by
property 2, aH 5 H.

Although most mathematical theorems are written in symbolic form,
one should also know what they say in words. In the preceding lemma,
property 1 says simply that the left coset of H containing a does contain a.
Property 2 says that the H “absorbs” an element if and only if the ele-
ment belongs to H. Property 3 shows that a left coset of H is uniquely
determined by any one of its elements. In particular, any element of a
left coset can be used to represent the coset. Property 4 says—and this is
very important—that two left cosets of H are either identical or disjoint.
Property 5 shows how we may transfer a question about equality of left
cosets of H to a question about H itself and vice versa. Property 6 says
that all left cosets of H have the same size. Property 7 is analogous to
property 5 in that it shows how a question about the equality of the left
and right cosets of H containing a is equivalent to a question about the
equality of two subgroups of G. The last property of the lemma says that
H itself is the only coset of H that is a subgroup of G.

Note that properties 1, 4, and 6 of the lemma guarantee that the left
cosets of a subgroup H of G partition G into blocks of equal size.
Indeed, we may view the cosets of H as a partitioning of G into equiva-
lence classes under the equivalence relation defined by a , b if 
aH 5 bH (see Theorem 0.6).

In practice, the subgroup H is often chosen so that the cosets parti-
tion the group in some highly desirable fashion. For example, if G is 
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3-space R3 and H is a plane through the origin, then the coset (a, b, c) 1
H (addition is done componentwise) is the plane passing through the
point (a, b, c) and parallel to H. Thus, the cosets of H constitute a par-
tition of 3-space into planes parallel to H. If G 5 GL(2, R) and 
H 5 SL(2, R), then for any matrix A in G, the coset AH is the set of all
2 3 2 matrices with the same determinant as A. Thus,

H is the set of all 2 3 2 matrices of determinant 2

and

H is the set of all 2 3 2 matrices of determinant 23.

Property 4 of the lemma is useful for actually finding the distinct
cosets of a subgroup. We illustrate this in the next example.

EXAMPLE 4 To find the cosets of H 5 {1, 15} in G 5 U(32) 5 
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31} we begin with 
H 5 {1, 15}. We can find a second coset by choosing any element not
in H, say 3, as a coset representative. This gives the coset 3H 5 {3, 13}.
We find our next coset by choosing a representative not already appear-
ing in the two previously chosen cosets, say 5. This gives us the coset 5H 5
{5, 11}. We continue to form cosets by picking elements from U(32)
that have not yet appeared in the previous cosets as representatives of
the cosets until we have accounted for every element of U(32). We then
have the complete list of all distinct cosets of H.

Lagrange’s Theorem and Consequences
We are now ready to prove a theorem that has been around for more
than 200 years—longer than group theory itself! (This theorem was not
originally stated in group theoretic terms.) At this stage, it should come
as no surprise.

Theorem 7.1 Lagrange’s Theorem†: |H| Divides |G|

If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Moreover, the number of distinct left (right) cosets of H in G is |G| / |H|.

c1 2

2 1
d

c2 0

0 1
d

†Lagrange stated his version of this theorem in 1770, but the first complete proof was
given by Pietro Abbati some 30 years later.
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PROOF Let a1H, a2H, . . . , arH denote the distinct left cosets of H in
G. Then, for each a in G, we have aH 5 aiH for some i. Also, by prop-
erty 1 of the lemma, a [ aH. Thus, each member of G belongs to one
of the cosets aiH. In symbols,

G 5 a1H < ? ? ? < ar H.

Now, property 4 of the lemma shows that this union is disjoint, so that

|G| 5 |a1H| 1 |a2H| 1 ? ? ? 1 |ar H|.

Finally, since |aiH| 5 |H| for each i, we have |G| 5 r|H|.

We pause to emphasize that Lagrange’s Theorem is a subgroup can-
didate criterion; that is, it provides a list of candidates for the orders of
the subgroups of a group. Thus, a group of order 12 may have sub-
groups of order 12, 6, 4, 3, 2, 1, but no others. Warning! The converse
of Lagrange’s Theorem is false. For example, a group of order 12 need
not have a subgroup of order 6. We prove this in Example 5.

A special name and notation have been adopted for the number of
left (or right) cosets of a subgroup in a group. The index of a subgroup
H in G is the number of distinct left cosets of H in G. This number 
is denoted by |G:H|. As an immediate consequence of the proof of
Lagrange’s Theorem, we have the following useful formula for the
number of distinct left (or right) cosets of H in G.

Corollary 1 |G:H| 5 |G|/|H|

Corollary 2 |a| Divides |G|

PROOF Recall that the order of an element is the order of the subgroup
generated by that element.

Corollary 3 Groups of Prime Order Are Cyclic

A group of prime order is cyclic.

In a finite group, the order of each element of the group divides the
order of the group.

If G is a finite group and H is a subgroup of G, then |G:H| 5 |G|/|H|.
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PROOF Suppose that G has prime order. Let a [ G and a 2 e. Then,
|�a�| divides |G| and |�a�| 2 1. Thus, |�a�| 5 |G| and the corollary
follows.

Corollary 4 a|G| 5 e

PROOF By Corollary 2, |G| 5 |a|k for some positive integer k. Thus,
a|G| 5 a|a|k 5 ek 5 e.

Corollary 5 Fermat’s Little Theorem

PROOF By the division algorithm, a 5 pm 1 r, where 0 # r , p.
Thus, a mod p 5 r, and it suffices to prove that rp mod p 5 r. If r 5 0,
the result is trivial, so we may assume that r [ U(p). [Recall that 
U(p) 5 {1, 2, . . . , p 2 1} under multiplication modulo p.] Then, by the
preceding corollary, rp21 mod p 5 1 and, therefore, rp mod p 5 r.

Fermat’s Little Theorem has been used in conjunction with comput-
ers to test for primality of certain numbers. One case concerned the
number p 5 2257 2 1. If p is prime, then we know from Fermat’s Little
Theorem that 10 p mod p 5 10 mod p and, therefore, 10 p11 mod p 5
100 mod p. Using multiple precision and a simple loop, a computer
was able to calculate 10 p11 mod p 5 102257 mod p in a few seconds.
The result was not 100, and so p is not prime.

EXAMPLE 5 The Converse of Lagrange’s Theorem Is False†

The group A4 of order 12 has no subgroups of order 6. To verify this,
recall that A4 has eight elements of order 3 (a5 through a12 in the nota-
tion of Table 5.1) and suppose that H is a subgroup of order 6. Let a be
any element of order 3 in A4. Since H has index 2 in A4, at most two of
the cosets H, aH, and a2H are distinct. But equality of any pair of these
three implies that aH 5 H, so that a [ H. (For example, if H 5 a2H,
multiply on the left by a.) Thus, a subgroup of A4 of order 6 would have
to contain all eight elements of order 3, which is absurd.

For every integer a and every prime p, ap mod p 5 a mod p.

Let G be a finite group, and let a [ G. Then, a|G| 5 e.

†The first counterexample to the converse of Lagrange’s Theorem was given by Paolo
Ruffini in 1799.
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For any prime p . 2, we know that Z2p and Dp are nonisomorphic
groups of order 2p. This naturally raises the question of whether there
could be other possible groups of these orders. Remarkably, with just
the simple machinery available to us at this point, we can answer this
question.

Theorem 7.2 Classification of Groups of Order 2p

PROOF We assume that G does not have an element of order 2p and
show that G < Dp. We begin by first showing that G must have an 
element of order p. By our assumption and Lagrange’s Theorem, any
nonidentity element of G must have order 2 or p. Thus, to verify our as-
sertion, we may assume that every nonidentity element of G has order 2.
In this case, we have for all a and b in the group ab 5 (ab)21 5 b21a21 5
ba, so that G is Abelian. Then, for any nonidentity elements a, b [ G
with a 2 b, the set {e, a, b, ab} is closed and therefore is a subgroup of
G of order 4. Since this contradicts Lagrange’s Theorem, we have
proved that G must have an element of order p; call it a.

Now let b be any element not in kal. Then bkal 2 kal and G 5 
kal < bkal. We next claim that |b| 5 2. To see this, observe that since 
kal and bkal are the only two distinct cosets of kal in G, we must have 
b2kal 5 kal or b2kal 5 bkal. We may rule out b2kal 5 bkal, for then bkal 5
kal. On the other hand, b2kal 5 kal implies that b2 [ kal and, therefore,
|b2| 5 1 or |b2| 5 p. But |b2| 5 p and |b| 2 2p imply that |b| 5 p. Then
kbl 5 kb2l and therefore b [ kal, which is a contradiction. Thus, any
element of G not in kal has order 2.

Next consider ab. Since ab o kal, our argument above shows that
|ab| 5 2. Then ab 5 (ab)21 5 b21a21 5 ba21. Moreover, this relation
completely determines the multiplication table for G. [For example,
a3(ba4) 5 a2(ab)a4 5 a2(ba21)a4 5 a(ab)a3 5 a(ba21)a3 5 (ab)a2 5
(ba21)a2 5 ba.] Since the multiplication table for all noncyclic groups
of order 2p is uniquely determined by the relation ab 5 ba21, all
noncyclic groups of order 2p must be isomorphic to each other. But of
course, Dp, the dihedral group of order 2p, is one such group.

As an immediate corollary, we have that S3, the symmetric group of
degree 3, is isomorphic to D3.

Let G be a group of order 2p, where p is a prime greater than 2. Then
G is isomorphic to Z2p or Dp.
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An Application of Cosets 
to Permutation Groups

Lagrange’s Theorem and its corollaries dramatically demonstrate the
fruitfulness of the coset concept. We next consider an application of
cosets to permutation groups.

Definition Stabilizer of a Point

Let G be a group of permutations of a set S. For each i in S, let stabG(i) 5
{f [ G | f(i) 5 i}. We call stabG(i) the stabilizer of i in G.

The student should verify that stabG(i) is a subgroup of G. (See
Exercise 31 in Chapter 5.)

Definition Orbit of a Point

Let G be a group of permutations of a set S. For each s in S, let orbG(s) 5
{f(s) | f [ G}. The set orbG(s) is a subset of S called the orbit of s
under G. We use |orbG(s)| to denote the number of elements in orbG(s).

Example 6 should clarify these two definitions.

EXAMPLE 6 Let

G 5 {(1), (132)(465)(78), (132)(465), (123)(456),

(123)(456)(78), (78)}.

Then,

orbG(1) 5 {1, 3, 2}, stabG(1) 5 {(1), (78)},
orbG(2) 5 {2, 1, 3}, stabG(2) 5 {(1), (78)},
orbG(4) 5 {4, 6, 5}, stabG(4) 5 {(1), (78)},
orbG(7) 5 {7, 8}, stabG(7) 5 {(1), (132)(465), (123)(456)}.

EXAMPLE 7 We may view D4 as a group of permutations of a
square region. Figure 7.1(a) illustrates the orbit of the point p under D4,
and Figure 7.1(b) illustrates the orbit of the point q under D4. Observe
that stabD

4
( p) 5 {R0, D}, whereas stabD

4
(q) 5 {R0}.

Figure 7.1

The preceding two examples also illustrate the following theorem.

q

(b)

p

(a)
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Theorem 7.3 Orbit-Stabilizer Theorem

PROOF By Lagrange’s Theorem, |G|/|stabG(i)| is the number of dis-
tinct left cosets of stabG(i) in G. Thus, it suffices to establish a one-
to-one correspondence between the left cosets of stabG(i) and the 
elements in the orbit of i. To do this, we define a correspondence T
by mapping the coset fstabG(i) to f(i) under T. To show that T is a well-
defined function, we must show that astabG(i) 5 bstabG(i) implies a(i) 5
b(i). But astabG(i) 5 bstabG(i) implies a21b [ stabG(i), so that 
(a21b) (i) 5 i and, therefore, b(i) 5 a(i). Reversing the argument from
the last step to the first step shows that T is also one-to-one. We conclude
the proof by showing that T is onto orbG(i). Let j [ orbG(i). Then a(i) 5 j
for some a [ G and clearly T(astabG(i)) 5 a(i) 5 j, so that T is onto.

We leave as an exercise the proof of the important fact that the orbits
of the elements of a set S under a group partition S (Exercise 33).

The Rotation Group of a Cube
and a Soccer Ball

It cannot be overemphasized that Theorem 7.3 and Lagrange’s Theorem
(Theorem 7.1) are counting theorems.† They enable us to determine the
numbers of elements in various sets. To see how Theorem 7.3 works, we
will determine the order of the rotation group of a cube and a soccer ball.
That is, we wish to find the number of essentially different ways in
which we can take a cube or a soccer ball in a certain location in space,
physically rotate it, and then still occupy its original location.

EXAMPLE 8 Let G be the rotation group of a cube. Label the six
faces of the cube 1 through 6. Since any rotation of the cube must carry
each face of the cube to exactly one other face of the cube and different
rotations induce different permutations of the faces, G can be viewed as
a group of permutations on the set {1, 2, 3, 4, 5, 6}. Clearly, there is
some rotation about a central horizontal or vertical axis that carries face
number 1 to any other face, so that |orbG(1)| 5 6. Next, we consider
stabG(1). Here, we are asking for all rotations of a cube that leave face
number 1 where it is. Surely, there are only four such motions—
rotations of 0°, 90°, 180°, and 270°—about the line perpendicular to

Let G be a finite group of permutations of a set S. Then, for 
any i from S, |G| 5 |orbG (i)| |stabG(i)|.

†People who don’t count won’t count (Anatole France).
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the face and passing through its center (see Figure 7.2). Thus, by
Theorem 7.3, |G| 5 |orbG(1)| |stabG(1)| 5 6 ? 4 5 24.

Figure 7.2 Axis of rotation of a cube.

Now that we know how many rotations a cube has, it is simple to de-
termine the actual structure of the rotation group of a cube. Recall that
S4 is the symmetric group of degree 4.

Theorem 7.4 The Rotation Group of a Cube

PROOF Since the group of rotations of a cube has the same order as
S4, we need only prove that the group of rotations is isomorphic to a
subgroup of S4. To this end, observe that a cube has four diagonals and
that the rotation group induces a group of permutations on the four di-
agonals. But we must be careful not to assume that different rotations
correspond to different permutations. To see that this is so, all we need
do is show that all 24 permutations of the diagonals arise from rota-
tions. Labeling the consecutive diagonals 1, 2, 3, and 4, it is obvious
that there is a 90° rotation that yields the permutation a 5 (1234); an-
other 90° rotation about an axis perpendicular to our first axis yields
the permutation b 5 (1423). See Figure 7.3. So, the group of permuta-
tions induced by the rotations contains the eight-element subgroup 
{e, a, a2, a3, b2, b2a, b2a2, b2a3} (see Exercise 37) and ab, which has
order 3. Clearly, then, the rotations yield all 24 permutations since the
order of the rotation group must be divisible by both 8 and 3.

EXAMPLE 9 A traditional soccer ball has 20 faces that are regular
hexagons and 12 faces that are regular pentagons. (The technical term
for this solid is truncated icosahedron.) To determine the number of ro-
tational symmetries of a soccer ball using Theorem 7.3, we may choose 

The group of rotations of a cube is isomorphic to S4.
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Figure 7.3

our set S to be the 20 hexagons or the 12 pentagons. Let us say that S is
the set of 12 pentagons. Since any pentagon can be carried to any other
pentagon by some rotation, the orbit of any pentagon is S. Also, there
are five rotations that fix (stabilize) any particular pentagon. Thus, by
the Orbit-Stabilizer Theorem, there are 12 ? 5 5 60 rotational symme-
tries. (In case you are interested, the rotation group of a soccer ball is
isomorphic to A5.)

In 1985, chemists Robert Curl, Richard Smalley, and Harold Kroto
caused tremendous excitement in the scientific community when they
created a new form of carbon by using a laser beam to vaporize graphite.
The structure of the new molecule is composed of 60 carbon atoms
arranged in the shape of a soccer ball! Because the shape of the new mol-
ecule reminded them of the dome structures built by the architect 
R. Buckminster Fuller, Curl, Smalley, and Kroto named their discovery
“buckyballs.” Buckyballs are the roundest, most symmetrical large mol-
ecules known. Group theory has been particularly useful in illuminating
the properties of buckyballs, since the absorption spectrum of a molecule
depends on its symmetries and chemists classify various molecular states

2

2

3

1

3

1

4

4

= (1423)β

2

2

3

1

3

1

4

4

= (1234)α
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according to their symmetry properties. The buckyball discovery spurred
a revolution in carbon chemistry. In 1996, Curl, Smalley, and Kroto
received the Nobel Prize in chemistry for their discovery.

Exercises

I don’t know, Marge. Trying is the first step towards failure.
HOMER SIMPSON

1. Let H 5 {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of
H in A4 (see Table 5.1 on page 107).

2. Let H be as in Exercise 1. How many left cosets of H in S4 are
there? (Determine this without listing them.)

3. Let H 5 {0, 63, 66, 69, . . .}. Find all the left cosets of H in Z.
4. Rewrite the condition a21b [ H given in property 5 of the lemma

on page 139 in additive notation. Assume that the group is Abelian.
5. Let H be as in Exercise 3. Use Exercise 4 to decide whether or not

the following cosets of H are the same.
a. 11 1 H and 17 1 H
b. 21 1 H and 5 1 H
c. 7 1 H and 23 1 H

6. Let n be a positive integer. Let H 5 {0, 6n, 62n, 63n, . . .}. Find
all left cosets of H in Z. How many are there?

7. Find all of the left cosets of {1, 11} in U(30).
8. Suppose that a has order 15. Find all of the left cosets of �a5� in �a�.
9. Let |a| 5 30. How many left cosets of �a4� in �a� are there? List them.

10. Let a and b be nonidentity elements of different orders in a group
G of order 155. Prove that the only subgroup of G that contains 
a and b is G itself.

11. Let H be a subgroup of R*, the group of nonzero real numbers un-
der multiplication. If R+ # H # R*, prove that H 5 R+ or H 5 R*.

12. Let C* be the group of nonzero complex numbers under multiplica-
tion and let H 5 {a + bi [ C*| a2 + b2 5 1}. Give a geometric de-
scription of the coset (3 + 4i)H. Give a geometric description of the
coset (c + di)H.

13. Let G be a group of order 60. What are the possible orders for the
subgroups of G?

14. Suppose that K is a proper subgroup of H and H is a proper sub-
group of G. If |K| 5 42 and |G| 5 420, what are the possible
orders of H?
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15. Let G be a group with |G| 5 pq, where p and q are prime. Prove
that every proper subgroup of G is cyclic.

16. Recall that, for any integer n greater than 1, f(n) denotes the num-
ber of positive integers less than n and relatively prime to n. Prove
that if a is any integer relatively prime to n, then af(n) mod n 5 1.

17. Compute 515 mod 7 and 713 mod 11.
18. Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove

that the order of U(n) is even when n . 2.
19. Suppose G is a finite group of order n and m is relatively prime to n.

If g [ G and gm 5 e, prove that g 5 e.
20. Suppose H and K are subgroups of a group G. If |H| 5 12 and 

|K| 5 35, find |H > K|. Generalize.
21. Suppose that H is a subgroup of S4 and that H contains (12) and

(234.) Prove that H 5 S4.
22. Suppose that H and K are subgroups of G and there are elements 

a and b in G such that aH 8 bK. Prove that H 8 K.
23. Suppose that G is an Abelian group with an odd number of elements.

Show that the product of all of the elements of G is the identity.
24. Suppose that G is a group with more than one element and G has

no proper, nontrivial subgroups. Prove that |G| is prime. (Do not
assume at the outset that G is finite.)

25. Let |G| 5 15. If G has only one subgroup of order 3 and only one
of order 5, prove that G is cyclic. Generalize to |G| 5 pq, where p
and q are prime.

26. Let G be a group of order 25. Prove that G is cyclic or g5 5 e for 
all g in G.

27. Let |G| 5 33. What are the possible orders for the elements of G?
Show that G must have an element of order 3.

28. Let |G| 5 8. Show that G must have an element of order 2.
29. Can a group of order 55 have exactly 20 elements of order 11?

Give a reason for your answer.
30. Determine all finite subgroups of C*, the group of nonzero com-

plex numbers under multiplication.
31. Let H and K be subgroups of a finite group G with H # K # G.

Prove that |G:H| 5 |G:K| |K:H|.
32. Show that Q, the group of rational numbers under addition, has no

proper subgroup of finite index.
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33. Let G be a group of permutations of a set S. Prove that the orbits of
the members of S constitute a partition of S. (This exercise is re-
ferred to in this chapter and in Chapter 29.)

34. Prove that every subgroup of Dn of odd order is cyclic.
35. Let G 5 {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13),

(14)(23), (24)(56)}.
a. Find the stabilizer of 1 and the orbit of 1.
b. Find the stabilizer of 3 and the orbit of 3.
c. Find the stabilizer of 5 and the orbit of 5.

36. Let G be a group of order pn where p is prime. Prove that the center
of G cannot have order pn21.

37. Prove that the eight-element set in the proof of Theorem 7.4 is a
group.

38. Prove that a group of order 12 must have an element of order 2.
39. Suppose that a group contains elements of orders 1 through 10.

What is the minimum possible order of the group?
40. Let G be a finite Abelian group and let n be a positive integer that

is relatively prime to |G|. Show that the mapping a → an is an au-
tomorphism of G.

41. Show that in a group G of odd order, the equation x2 5 a has a
unique solution for all a in G.

42. Let G be a group of order pqr, where p, q, and r are distinct primes.
If H and K are subgroups of G with |H| 5 pq and |K| 5 qr, prove
that |H > K| 5 q.

43. Let G 5 GL(2, R) and H 5 SL(2, R). Let A [ G and suppose that
det A 5 2. Prove that AH is the set of all 2 3 2 matrices in G that
have determinant 2.

44. Let G be the group of rotations of a plane about a point P in the
plane. Thinking of G as a group of permutations of the plane, de-
scribe the orbit of a point Q in the plane. (This is the motivation for
the name “orbit.”)

45. Let G be the rotation group of a cube. Label the faces of the cube 
1 through 6, and let H be the subgroup of elements of G that carry
face 1 to itself. If s is a rotation that carries face 2 to face 1, give a
physical description of the coset Hs.

46. The group D4 acts as a group of permutations of the square regions
shown on the following page. (The axes of symmetry are drawn for
reference purposes.) For each square region, locate the points in
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the orbit of the indicated point under D4. In each case, determine
the stabilizer of the indicated point.

47. Let G 5 GL(2, R), the group of 2 3 2 matrices over R with nonzero
determinant. Let H be the subgroup of matrices of determinant 61.
If a, b [ G and aH 5 bH, what can be said about det (a) and
det (b)? Prove or disprove the converse.

48. Calculate the orders of the following (refer to Figure 27.5 for illus-
trations):
a. The group of rotations of a regular tetrahedron (a solid with

four congruent equilateral triangles as faces)
b. The group of rotations of a regular octahedron (a solid with

eight congruent equilateral triangles as faces)
c. The group of rotations of a regular dodecahedron (a solid with

12 congruent regular pentagons as faces)
d. The group of rotations of a regular icosahedron (a solid with 20

congruent equilateral triangles as faces)
49. If G is a finite group with fewer than 100 elements and G has sub-

groups of orders 10 and 25, what is the order of G?
50. A soccer ball has 20 faces that are regular hexagons and 12 faces

that are regular pentagons. Use Theorem 7.3 to explain why a soc-
cer ball cannot have a 60° rotational symmetry about a line through
the centers of two opposite hexagonal faces.
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Computer Exercise

In the fields of observation chance favors only the prepared mind.
LOUIS PASTEUR

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines when Zn is the only group of order n in
the case that n 5 pq where p and q are distinct primes. Run the
software for n 5 3 ? 5, 3 ? 7, 3 ? 11, 3 ? 13, 3 ? 17, 3 ? 31, 5 ? 7, 5 ? 11,
5 ? 13, 5 ? 17, 5 ? 31, 7 ? 11, 7 ? 13, 7 ? 17, 7 ? 19, and 7 ? 43. Conjec-
ture a necessary and sufficient condition about p and q for Zpq to
be the only group of order pq, where p and q are distinct primes.
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Joseph Lagrange

JOSEPH LOUIS LAGRANGE was born in Italy of
French ancestry on January 25, 1736. He be-
came captivated by mathematics at an early
age when he read an essay by Halley on
Newton’s calculus. At the age of 19, he be-
came a professor of mathematics at the Royal
Artillery School in Turin. Lagrange made sig-
nificant contributions to many branches of
mathematics and physics, among them the
theory of numbers, the theory of equations,
ordinary and partial differential equations, the
calculus of variations, analytic geometry,
fluid dynamics, and celestial mechanics. His
methods for solving third- and fourth-degree
polynomial equations by radicals laid the
groundwork for the group-theoretic approach
to solving polynomials taken by Galois.
Lagrange was a very careful writer with a
clear and elegant style.

At the age of 40, Lagrange was appointed
Head of the Berlin Academy, succeeding
Euler. In offering this appointment, Frederick
the Great proclaimed that the “greatest king
in Europe” ought to have the “greatest mathe-
matician in Europe” at his court. In 1787,
Lagrange was invited to Paris by Louis XVI
and became a good friend of the king and his
wife, Marie Antoinette. In 1793, Lagrange
headed a commission, which included
Laplace and Lavoisier, to devise a new system

Lagrange is the Lofty Pyramid of the
Mathematical Sciences.

NAPOLEON BONAPARTE

This stamp was issued by
France in Lagrange’s honor
in 1958.

of weights and measures. Out of this came
the metric system. Late in his life he was
made a count by Napoleon. Lagrange died on
April 10, 1813.

To find more information about Lagrange,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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External Direct 
Products

The universe is an enormous direct product of representations 
of symmetry groups.

STEVEN WEINBERG†

Definition and Examples
In this chapter, we show how to piece together groups to make larger
groups. In Chapter 9, we will show that we can often start with one
large group and decompose it into a product of smaller groups in much
the same way as a composite positive integer can be broken down into
a product of primes. These methods will later be used to give us a sim-
ple way to construct all finite Abelian groups.

Definition External Direct Product

Let G1, G2, . . . , Gn be a finite collection of groups. The external direct
product of G1, G2, . . . , Gn, written as G1 % G2 % ? ? ? % Gn, is the set of
all n-tuples for which the ith component is an element of Gi and the
operation is componentwise.

In symbols,

G1 % G2 % ? ? ? % Gn 5 {(g1, g2, . . . , gn) | gi [ Gi},

where (g1, g2, . . . , gn)(g19, g29, . . . , gn9) is defined to be (g1g19,
g2g29, . . . , gngn9). It is understood that each product gigi9 is performed
with the operation of Gi. We leave it to the reader to show that the
external direct product of groups is itself a group (Exercise 1).

This construction is not new to students who have had linear algebra or
physics. Indeed, R2 5 R % R and R3 5 R % R % R—the operation being
componentwise addition. Of course, there is also scalar multiplication, but

†Weinberg received the 1979 Nobel Prize in physics with Sheldon Glashow and Abdus
Salam for their construction of a single theory incorporating weak and electromagnetic
interactions.

8
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we ignore this for the time being, since we are interested only in the group
structure at this point.

EXAMPLE 1

U(8) % U(10) 5 {(1, 1), (1, 3), (1, 7), (1, 9), (3, 1), (3, 3),
(3, 7), (3, 9), (5, 1), (5, 3), (5, 7), (5, 9),
(7, 1),(7, 3), (7, 7), (7, 9)}.

The product (3, 7)(7, 9) 5 (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are
combined by multiplication modulo 10.

EXAMPLE 2

Z2 % Z3 5 {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z6? Consider the
subgroup of Z2 % Z3 generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) 5 (1, 1), 2(1, 1) 5 (0, 2), 3(1, 1) 5
(1, 0), 4(1, 1) 5 (0, 1), 5(1, 1) 5 (1, 2), and 6(1, 1) 5 (0, 0). Hence 
Z2 % Z3 is cyclic. It follows that Z2 % Z3 is isomorphic to Z6.

In Theorem 7.2 we classified the groups of order 2p where p is an
odd prime. Now that we have defined Z2 % Z2, it is easy to classify the
groups of order 4.

EXAMPLE 3 Classification of Groups of Order 4
A group of order 4 is isomorphic to Z4 or Z2 % Z2. To verify this, let G 5
{e, a, b, ab}. If G is not cyclic, then it follows from Lagrange’s Theorem
that |a | 5 |b | 5 |ab | 5 2. Then the mapping e S (0, 0), a S (1, 0),
b S (0, 1), and ab S (1, 1) is an isomorphism from G onto Z2 % Z2.

We see from Examples 2 and 3 that in some cases is isomor-
phic to and in some cases it is not. Theorem 8.2 provides a simple
characterization for when the isomorphism holds.

Properties of External Direct Products
Our first theorem gives a simple method for computing the order of an
element in a direct product in terms of the orders of the component
pieces.

Zmn

Zm % Zn
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Theorem 8.1 Order of an Element in a Direct Product

PROOF Denote the identity of Gi by ei. Let s 5 lcm(|g1|, |g2|, . . . , |gn|)
and t 5|(g1, g2, . . . , gn)|. Because s is a multiple of each |gi| implies that 
(g1, g2, . . . , gn)

s 5 (gs
1, gs

2, . . . , gs
n) 5 (e1, e2, . . . , en), we know that t # s. On

the other hand, from (gt
1, gt

2, . . . , gt
n) 5 (g1, g2, . . . , gn)

t 5(e1, e2, . . . , en) we
see that t is a common multiple of |g1|, |g2|, . . . , |gn|. Thus, s # t.

The next two examples are applications of Theorem 8.1.

EXAMPLE 4 We determine the number of elements of order 5 in 
Z25 % Z5. By Theorem 8.1, we may count the number of elements 
(a, b) in Z25 % Z5 with the property that 5 5 |(a, b)| 5 lcm(|a|, |b|).
Clearly this requires that either |a| 5 5 and |b| 5 1 or 5, or |b| 5 5 and
|a| 5 1 or 5. We consider two mutually exclusive cases.

Case 1 |a| 5 5 and |b| 5 1 or 5. Here there are four choices for a
(namely, 5, 10, 15, and 20) and five choices for b. This gives 20 ele-
ments of order 5.

Case 2 |a| 5 1 and |b| 5 5. This time there is one choice for a and four
choices for b, so we obtain four more elements of order 5.

Thus, Z25 % Z5 has 24 elements of order 5.

EXAMPLE 5 We determine the number of cyclic subgroups of order
10 in Z100 % Z25. We begin by counting the number of elements (a, b) of
order 10.

Case 1 |a| 5 10 and |b| 5 1 or 5. Since Z100 has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators
(Theorem 4.4), there are four choices for a. Similarly, there are five
choices for b. This gives 20 possibilities for (a, b).

Case 2 |a| 5 2 and |b| 5 5. Since any finite cyclic group of even order
has a unique subgroup of order 2 (Theorem 4.4), there is only one
choice for a. Obviously, there are four choices for b. So, this case
yields four more possibilities for (a, b).

The order of an element in a direct product of a finite number of
finite groups is the least common multiple of the orders of the
components of the element. In symbols,

|(g1, g2, . . . , gn)| 5 lcm(|g1|, |g2|, . . . , |gn|).
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Thus, Z100 % Z25 has 24 elements of order 10. Because each cyclic
subgroup of order 10 has four elements of order 10 and no two of the
cyclic subgroups can have an element of order 10 in common, there
must be 24/4 5 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs
and dividing by 4.)

The direct product notation is convenient for specifying certain sub-
groups of a direct product.

EXAMPLE 6 For each divisor r of m and s of n the group 
has a subgroup isomorphic to (see Exercise 17). To find a sub-
group of say isomorphic to we observe that is a
subgroup of of order 6 and is a subgroup of of order 4, so

is the desired subgroup.

The next theorem and its first corollary characterize those direct
products of cyclic groups that are themselves cyclic.

Theorem 8.2 Criterion for G % H to be Cyclic

PROOF Let |G| 5 m and |H| 5 n, so that |G % H| 5 mn. To prove the
first half of the theorem, we assume G % H is cyclic and show that 
m and n are relatively prime. Suppose that gcd(m, n) 5 d and (g, h) is a
generator of G % H. Since (g, h)mn/d 5 ((gm)n/d, (hn)m/d) 5 (e, e), we
have mn 5 |(g, h)| # mn/d. Thus, d 5 1.

To prove the other half of the theorem, let G 5 �g� and H 5 �h� and
suppose gcd(m, n) 5 1. Then, |(g, h)| 5 lcm(m, n) 5 mn 5 |G % H|,
so that (g, h) is a generator of G % H.

As a consequence of Theorem 8.2 and an induction argument, we
obtain the following extension of Theorem 8.2.

Corollary 1 Criterion for G1 % G2 % ? ? ? % Gn to Be Cyclic

An external direct product G1 % G2 % ? ? ? % Gn of a finite number 
of finite cyclic groups is cyclic if and only if |Gi| and |Gj| are relatively
prime when i 2 j.

Let G and H be finite cyclic groups. Then G % H is cyclic if and only
if |G| and |H| are relatively prime.

�5� % �3�
Z12�3�Z30

�5�Z6 % Z4Z30 % Z12

Zr % Zs

Zm % Zn
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Corollary 2 Criterion for Zn1n2 . . . nk
< Zn1

% Zn2
% . . . % Znk

By using the results above in an iterative fashion, one can express
the same group (up to isomorphism) in many different forms. For ex-
ample, we have

Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5 < Z2 % Z30.

Similarly,

Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5

< Z2 % Z3 % Z2 % Z5 < Z6 % Z10.

Thus, Z2 % Z30 < Z6 % Z10. Note, however, that Z2 % Z30 ] Z60.

The Group of Units Modulo n As 
An External Direct Product

The U-groups provide a convenient way to illustrate the preceding
ideas. We first introduce some notation. If k is a divisor of n, let

Uk(n) 5 {x [ U(n)| x mod k 5 1}.

For example, U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92}. It can be readily
shown that Uk(n) is indeed a subgroup of U(n). (See Exercise 17 in
Chapter 3.)

Theorem 8.3 U(n) as an External Direct Product

PROOF An isomorphism from U(st) to U(s) % U(t) is x → (x mod s,
x mod t); an isomorphism from Us(st) to U(t) is x → x mod t; an isomor-
phism from Ut(st) to U(s) is x → x mod s. We leave the verification that
these mappings are operation-preserving, one-to-one, and onto to the
reader. (See Exercises 11, 17, and 19 in Chapter 0; see also  [1].)

As a consequence of Theorem 8.3, we have the following result.

Suppose s and t are relatively prime. Then U(st) is isomorphic to the
external direct product of U(s) and U(t). In short,

U(st) < U(s) % U(t).

Moreover, Us(st) is isomorphic to U(t) and Ut(st) is isomorphic to U(s).

Let m 5 n1n2 ? ? ? nk. Then Zm is isomorphic to Zn1
% Zn2

% ? ? ? % Znk
if and only if ni and nj are relatively prime when i 2 j.
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Corollary

To see how these results work, let’s apply them to U(105). We obtain

U(105) < U(7) % U(15)
U(105) < U(21) % U(5)
U(105) < U(3) % U(5) % U(7).

Moreover,

U(7) < U15(105) 5 {1, 16, 31, 46, 61, 76}
U(15) < U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92}
U(21) < U5(105) 5 {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}
U(5) < U21(105) 5 {1, 22, 43, 64}
U(3) < U35(105) 5 {1, 71}.

Among all groups, surely the cyclic groups Zn have the simplest
structures and, at the same time, are the easiest groups with which to
compute. Direct products of groups of the form Zn are only slightly
more complicated in structure and computability. Because of this, al-
gebraists endeavor to describe a finite Abelian group as such a direct
product. Indeed, we shall soon see that every finite Abelian group can
be so represented. With this goal in mind, let us reexamine the 
U-groups. Using the corollary to Theorem 8.3 and the facts (see 
[2, p. 93]), first proved by Carl Gauss in 1801, that

U(2) < {0}, U(4) < Z2, U(2n) < Z2 % Z2n22 for n $ 3,

and

U( pn) < Zpn2pn21 for p an odd prime,

we now can write any U-group as an external direct product of cyclic
groups. For example,

U(105) 5 U(3 ? 5 ? 7) < U(3) % U(5) % U(7)

< Z2 % Z4 % Z6

and

U(720) 5 U(16 ? 9 ? 5) < U(16) % U(9) % U(5)

< Z2 % Z4 % Z6 % Z4.

Let m 5 n1n2 ? ? ? nk, where gcd(ni, nj ) 5 1 for i 2 j. Then,

U(m) < U(n1) % U(n2) % ? ? ? % U(nk).
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What is the advantage of expressing a group in this form? Well, for one
thing, we immediately see that the orders of the elements U(720) can
only be 1, 2, 3, 4, 6, and 12. This follows from the observations that an
element from Z2 % Z4 % Z6 % Z4 has the form (a, b, c, d), where
|a| 5 1 or 2, |b| 5 1, 2, or 4, |c| 5 1, 2, 3, or 6, and |d| 5 1, 2, or 4, and 
that |(a, b, c, d)| 5 lcm(|a|, |b|, |c|, |d|). For another thing, we can read-
ily determine the number of elements of order 12, say, that U(720) has.
Because U(720) is isomorphic to Z2 % Z4 % Z6 % Z4, it suffices to cal-
culate the number of elements of order 12 in Z2 % Z4 % Z6 % Z4. But
this is easy. By Theorem 8.1, an element (a, b, c, d) has order 12 if and
only if lcm(|a|, |b|, |c|, |d|) 5 12. Since |a| 5 1 or 2, it does not matter
how a is chosen. So, how can we have lcm(|b|, |c|, |d|) 5 12? One way
is to have |b| 5 4, |c| 5 3 or 6, and d arbitrary. By Theorem 4.4, there
are two choices for b, four choices for c, and four choices for d. So, in
this case, we have 2 ? 4 ? 4 5 32 choices. The only other way to have
lcm(|b|, |c|, |d|) 5 12 is for |d| 5 4, |c| 5 3 or 6, and |b| 5 1 or 2 (we
exclude |b| 5 4, since this was already accounted for). This gives 2 ? 4 ?
2 5 16 new choices. Finally, since a can be either of the two elements
in Z2, we have a total of 2(32 1 16) 5 96 elements of order 12.

These calculations tell us more. Since Aut(Z720) is isomorphic to
U(720), we also know that there are 96 automorphisms of Z720 of
order 12. Imagine trying to deduce this information directly from
U(720) or, worse yet, from Aut(Z720)! These results beautifully illus-
trate the advantage of being able to represent a finite Abelian group as
a direct product of cyclic groups. They also show the value of our the-
orems about Aut(Zn) and U(n). After all, theorems are labor-
saving devices. If you want to convince yourself of this, try to prove
directly from the definitions that Aut(Z720) has exactly 96 elements of
order 12.

Applications
We conclude this chapter with five applications of the material pre-
sented here—three to cryptography, the science of sending and deci-
phering secret messages, one to genetics, and one to electric circuits.

Data Security

Because computers are built from two-state electronic components,
it is natural to represent information as strings of 0s and 1s called
binary strings. A binary string of length n can naturally be thought of
as an element of Z2 % Z2 % ? ? ? % Z2 (n copies) where the parenthe-
ses and the commas have been deleted. Thus the binary string
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11000110 corresponds to the element (1, 1, 0, 0, 0, 1, 1, 0) in Z2 % Z2 %

Z2 % Z2 % Z2 % Z2 % Z2 % Z2. Similarly, two binary strings a1a2 ? ? ? an
and b1b2 ? ? ? bn are added componentwise modulo 2 just as their
corresponding elements in Z2 % Z2 % ? ? ? % Z2 are. For example,

11000111 1 01110110 5 10110001

and

10011100 1 10011100 5 00000000.

The fact that the sum of two binary sequences a1a2 ? ? ? an 1 b1b2 ? ? ?
bn 5 00 ? ? ? 0 if and only if the sequences are identical is the basis for
a data security system used to protect internet transactions.

Suppose that you want to purchase a compact disc from www
.Amazon.com. Need you be concerned that a hacker will intercept
your credit-card number during the transaction? As you might expect,
your credit-card number is sent to Amazon in a way that protects the
data. We explain one way to send credit-card numbers over the Web
securely. When you place an order with Amazon the company sends
your computer a randomly generated string of 0’s and 1’s called a key.
This key has the same length as the binary string corresponding to
your credit-card number and the two strings are added (think of this
process as “locking” the data). The resulting sum is then transmitted
to Amazon. Amazon in turn adds the same key to the received string
which then produces the original string corresponding to your credit-
card number (adding the key a second time “unlocks” the data).

To illustrate the idea, say you want to send an eight-digit binary string
such as s 5 10101100 to Amazon (actual credit-card numbers have very
long strings) and Amazon sends your computer the key 
k 5 00111101. Your computer returns the string s 1 k 5 10101100 1
00111101 5 10010001 to Amazon, and Amazon adds k to this string to
get 10010001 1 00111101 5 10101100, which is the string represent-
ing your credit-card number. If someone intercepts the number 
s 1 k 5 10010001 during transmission it is no value without knowing k.

The method is secure because the key sent by Amazon is randomly
generated and used only one time. You can tell when you are using an en-
cryption scheme on a web transaction by looking to see if the web ad-
dress begins with “https” rather than the customary “http.” You will also
see a small padlock in the status bar at the bottom of the browser window.

Application to Public Key Cryptography

In the mid-1970s, Ronald Rivest, Adi Shamir, and Leonard Adleman
devised an ingenious method that permits each person who is to
receive a secret message to tell publicly how to scramble messages
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sent to him or her. And even though the method used to scramble the
message is known publicly, only the person for whom it is intended
will be able to unscramble the message. The idea is based on the fact
that there exist efficient methods for finding very large prime numbers
(say about 100 digits long) and for multiplying large numbers, but no
one knows an efficient algorithm for factoring large integers (say
about 200 digits long). So, the person who is to receive the message
chooses a pair of large primes p and q and chooses an integer r with
1 , r , m, where m 5 lcm( p 2 1, q 2 1), such that r is relatively prime
to m (any such r will do). This person calculates n 5 pq and announces
that a message M is to be sent to him or her publicly as Mr mod n.
Although r, n, and Mr are available to everyone, only the person who
knows how to factor n as pq will be able to decipher the message.

To present a simple example that nevertheless illustrates the princi-
pal features of the method, say we wish to send the message “YES.” We
convert the message into a string of digits by replacing A by 01, B by
02, . . . , Z by 26, and a blank by 00. So, the message YES becomes
250519. To keep the numbers involved from becoming too unwieldy,
we send the message in blocks of four digits and fill in with blanks
when needed. Thus, the message YES is represented by the two blocks
2505 and 1900. The person to whom the message is to be sent has
picked two primes p and q, say p 5 37 and q 5 73 (in actual practice,
p and q would have 100 or so digits), and a number r that has no prime
divisors in common with lcm( p 2 1, q 2 1) 5 72, say r 5 5, and has
published n 5 37 ? 73 5 2701 and r 5 5 in a public directory. We will
send the “scrambled” numbers (2505)5 mod 2701 and (1900)5 mod
2701 rather than 2505 and 1900, and the receiver will unscramble them.
We show the work involved for us and the receiver only for the block
2505. The arithmetic involved in computing these numbers is simpli-
fied as follows:

2505 mod 2701 5 2505
(2505)2 mod 2701 5 602
(2505)4 mod 2701 5 (602)(602) mod 2701 5 470.

So, (2505)5 mod 2701 5 (2505)(470) mod 2701 5 2415.†

†To determine 25052 mod 2701 with a calculator, enter 2505 3 2505 to obtain
62750025, then divide 6275025 by 2701 to obtain 2323.2228. Finally, enter 6275025 2
(2323 3 2701) to obtain 602. Provided that the numbers are not too large, the Google
search engine at http://www.google.com will do modular arithmetic. For example, en-
tering 2505^2 mod 2701 in the search box yields 602. Be careful, however, because en-
tering 2505^5 mod 2701 computes the wrong value since 25055 is too large. Instead, we
can use Google to compute smaller powers such as 25053 mod 2701 (which yields 852)
and 25052 mod 2701 and then compute (852  3 602) mod 2701 5 2415.
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Thus, the number 2415 is sent to the receiver. Now the receiver must
take this number and convert it back to 2505. To do so, the receiver
takes the two factors of 2701, p 5 37 and q 5 73, and calculates the
least common multiple of p 2 1 5 36 and q 2 1 5 72, which is 72.
(This is where the knowledge of p and q is necessary.) Next, the re-
ceiver must find s 5 r21 in U(72)—that is, solve the equation 5 ? s 5 1
mod 72. This number is 29. (There is a simple algorithm for finding
this number.) Then the receiver takes the number received, 2415, and
calculates (2415)29 mod 2701. This calculation can be simplified as fol-
lows:

2415 mod 2701 5 2415
(2415)2 mod 2701 5 766 
(2415)4 mod 2701 5 (766)2 mod 2701 5 639 
(2415)8 mod 2701 5 (639)2 mod 2701 5 470 

(2415)16 mod 2701 5 (470)2 mod 2701 5 2119

So, (2415)29 mod 2701 5 (2415)16(2415)8(2415)4(2415) mod 2701 5
(2119)(470)(639)(2415) mod 2701 5 ((2119)(470) mod 2701 3
(639)(2415) mod 2701) mod 2701 5 (1962)(914) mod 2701 5 2505. [We
compute the product (2119)(470)(639)(2415) in two stages so that we
may use a hand calculator.]

Thus the receiver correctly determines the code for “YE.” On the
other hand, without knowing how pq factors, one cannot find the modu-
lus (in our case, 72) that is needed to determine the intended message.

The procedure just described is called the RSA public key encryption
scheme in honor of the three people (Rivest, Shamir, and Adleman) who
discovered the method. It is widely used in conjunction with web servers
and browsers, e-mail programs, remote login sessions, and electronic fi-
nancial transactions. The algorithm is summarized below.

Receiver

1. Pick very large primes p and q and compute n 5 pq.
2. Compute the least common multiple of p 2 1 and q 2 1; let us call

it m.
3. Pick r relatively prime to m.
4. Find s such that rs mod m 5 1.
5. Publicly announce n and r.

Sender

1. Convert the message to a string of digits. (In practice, the ASCII
code is used.)

2. Break up the message into uniform blocks of digits; call them M1,
M2, . . . , Mk.
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3. Check to see that the greatest common divisor of each Mi and n is
1. If not, n can be factored and our code is broken. (In practice, the
primes p and q are so large that they exceed all Mi, so this step may
be omitted.)

4. Calculate and send Ri 5 Mi
r mod n.

Receiver

1. For each received message Ri, calculate Ri
s mod n.

2. Convert the string of digits back to a string of characters.

Why does this method work? Well, we know that U(n) < U( p) %
U(q) < Zp21 % Zq21. Thus an element of the form xm in U(n) corre-
sponds under an isomorphism to one of the form (mx1, mx2) in Zp21 %

Zq21. Since m is the least common multiple of p 2 1 and q 2 1, we
may write m 5 u( p 2 1) and m 5 v(q 2 1) for some u and v. Then
(mx1, mx2) 5 (u( p 2 1)x1, v(q 2 1)x2) 5 (0, 0) in Zp21 % Zq21, and it
follows that xm 5 1 for all x in U(n). So, because each message Mi is
an element of U(n) and r was chosen so that rs 5 1 1 tm for some t,
we have, modulo n,

Ri
s 5 (Mi

r)s 5 Mi
rs 5 Mi

11tm 5 (Mi
m)tMi 5 1tMi 5 Mi.

In 2002, Ronald Rivest, Adi Shamir, and Leonard Adleman received
the Association for Computing Machinery A. M. Turing Award which
is considered the “Nobel Prize of Computing” for their contribution to
public key cryptography.

The software for Computer Exercise 5 in this chapter implements
the RSA scheme for small primes.

Digital Signatures

With so many financial transactions now taking place electronically, the
problem of authenticity is paramount. How is a stockbroker to know that
an electronic message she receives that tells her to sell one stock and buy
another actually came from her client? The technique used in public key
cryptography allows for digital signatures as well. Let us say that person
A wants to send a secret message to person  B in such a way that only B
can decode the message and B will know that only A could have sent it.
Abstractly, let EA and DA denote the algorithms that A uses for encryp-
tion and decryption, respectively, and let EB and DB denote the algo-
rithms that B uses for encryption and decryption, respectively. Here
we assume that EA and EB are available to the public, whereas DA is
known only to A and DB is known only to B and that DBEB and EADA
applied to any message leaves the message unchanged. Then A sends
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a message M to B as EB (DA(M)) and B decodes the received message
by applying the function EADB to it to obtain

(EADB) (EB(DA(M)) 5 EA(DBEB)(DA(M)) 5 EA(DA(M)) 5 M.

Notice that only A can execute the first step [i.e., create DA(M)] and
only B can implement the last step (i.e., apply EADB to the received
message).

Transactions using digital signatures became legally binding in the
United States in October 2000.

Application to Genetics†

The genetic code can be conveniently modeled using elements of Z4 %

Z4 % ? ? ? % Z4 where we omit the parentheses and the commas and
just use strings of 0s, 1s, 2s, and 3s and add componentwise modulo 4.
A DNA molecule is composed of two long strands in the form of a
double helix. Each strand is made up of strings of the four nitrogen
bases adenine (A), thymine (T), guanine (G), and cytosine (C). Each
base on one strand binds to a complementary base on the other strand.
Adenine always is bound to thymine, and guanine always is bound to
cytosine. To model this process, we identify A with 0, T with 2, G with 1,
and C with 3. Thus, the DNA segment ACGTAACAGGA and its com-
plement segment TGCATTGTCCT are denoted by 03120030110 and
21302212332. Noting that in Z4, 0 1 2 5 2, 2 1 2 5 0, 1 1 2 5 3, and
3 1 2 5 1, we see that adding 2 to elements of Z4 interchanges 0 and 2
and 1 and 3. So, for any DNA segment a1a2 ? ? ? an represented by ele-
ments of Z4 % Z4 % ? ? ? % Z4, we see that its complementary segment
is represented by a1a2 ? ? ? an 1 22 ? ? ? 2.

Application to Electric Circuits

Many homes have light fixtures that are operated by a pair of switches.
They are wired so that when either switch is thrown the light changes
its status (from on to off or vice versa). Suppose the wiring is done so
that the light is on when both switches are in the up position. We can
conveniently think of the states of the two switches as being matched
with the elements of Z2 % Z2 with the two switches in the up position
corresponding to (0, 0) and the two switches in the down position cor-
responding to (1, 1). Each time a switch is thrown, we add 1 to the
corresponding component in the group Z2 % Z2. We then see that the
lights are on when the switches correspond to the elements of the sub-
group �(1, 1)� and are off when the switches correspond to the elements

†This discussion is adapted from [3].
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in the coset (1, 0) 1 �(1, 1)�. A similar analysis applies in the case of
three switches with the subgroup {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)}
corresponding to the lights-on situation.

Exercises

What’s the most difficult aspect of your life as a mathematician, Diane
Maclagan, an assistant professor at Rutgers, was asked. “Trying to prove
theorems,” she said. And the most fun? “Trying to prove theorems.”

1. Prove that the external direct product of any finite number of
groups is a group. (This exercise is referred to in this chapter.)

2. Show that Z2 % Z2 % Z2 has seven subgroups of order 2.
3. Let G be a group with identity eG and let H be a group with iden-

tity eH. Prove that G is isomorphic to G % {eH} and that H is iso-
morphic to {eG} % H.

4. Show that G % H is Abelian if and only if G and H are Abelian.
State the general case.

5. Prove or disprove that Z % Z is a cyclic group.
6. Prove, by comparing orders of elements, that Z8 % Z2 is not iso-

morphic to Z4 % Z4.
7. Prove that G1 % G2 is isomorphic to G2 % G1. State the general

case.
8. Is Z3 % Z9 isomorphic to Z27? Why?
9. Is Z3 % Z5 isomorphic to Z15? Why?

10. How many elements of order 9 does Z3 % Z9 have? (Do not do this
exercise by brute force.)

11. How many elements of order 4 does Z4 % Z4 have? (Do not do this
by examining each element.) Explain why Z4 % Z4 has the same
number of elements of order 4 as does Z8000000 % Z400000. General-
ize to the case Z4m % Z4n.

12. The dihedral group Dn of order 2n (n $ 3) has a subgroup of n ro-
tations and a subgroup of order 2. Explain why Dn cannot be iso-
morphic to the external direct product of two such groups.

13. Prove that the group of complex numbers under addition is iso-
morphic to R % R.

14. Suppose that G1 < G2 and H1 < H2. Prove that G1 % H1 < G2 %

H2. State the general case.
15. If G % H is cyclic, prove that G and H are cyclic. State the general

case.
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16. In Z40 % Z30, find two subgroups of order 12.
17. If r is a divisor of m and s is a divisor of n, find a subgroup of Zm

% Zn isomorphic to Zr % Zs.
18. Find a subgroup of Z12 % Z18 isomorphic to Z9 % Z4.
19. Let G and H be finite groups and (g, h) [ G % H. State a neces-

sary and sufficient condition for �(g, h)� 5 �g� % �h�.
20. Determine the number of elements of order 15 and the number of

cyclic subgroups of order 15 in Z30 % Z20.
21. What is the order of any nonidentity element of Z3 % Z3 % Z3?

Generalize.
22. Let m . 2 be an even integer and let n . 2 be an odd integer. Find

a formula for the number of elements of order 2 in Dm % Dn.
23. Let M be the group of all real 2 3 2 matrices under addition. Let 

N 5 R % R % R % R under componentwise addition. Prove that
M and N are isomorphic. What is the corresponding theorem for
the group of m 3 n matrices under addition?

24. The group S3 % Z2 is isomorphic to one of the following groups:
Z12, Z6 % Z2, A4, D6. Determine which one by elimination.

25. Let G be a group, and let H 5 {(g, g) | g [ G}. Show that H is a
subgroup of G % G. (This subgroup is called the diagonal of 
G % G.) When G is the set of real numbers under addition, de-
scribe G % G and H geometrically.

26. Find a subgroup of Z4 % Z2 that is not of the form H % K, where H
is a subgroup of Z4 and K is a subgroup of Z2.

27. Find all subgroups of order 3 in Z9 % Z3.
28. Find all subgroups of order 4 in Z4 % Z4.
29. What is the largest order of any element in Z30 % Z20?
30. How many elements of order 2 are in Z2000000 % Z4000000? Generalize.
31. Find a subgroup of Z800 % Z200 that is isomorphic to Z2 % Z4.
32. Find a subgroup of Z12 % Z4 % Z15 that has order 9.
33. Prove that R* % R* is not isomorphic to C*. (Compare this with

Exercise 13.)
34. Let

(See Exercise 36 in Chapter 2 for the definition of multiplication.)
Show that H is an Abelian group of order 9. Is H isomorphic to Z9
or to Z3 % Z3?

H 5 • £
1 a b

0 1 0

0 0 1

§ † a, b [ Z3¶ .
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35. Let G 5 {3m6n | m, n [ Z} under multiplication. Prove that G is isomor-
phic to Z % Z. Does your proof remain valid if G 5 {3m9n | m, n [ Z}?

36. Let (a1, a2, . . . , an) [ G1 % G2 % ? ? ? % Gn. Give a necessary and
sufficient condition for |(a1, a2, . . . , an)| 5 `.

37. Prove that D3 % D4 ] D12% Z2.
38. Determine the number of cyclic subgroups of order 15 in Z90 % Z36.
39. If a group has exactly 24 elements of order 6, how many cyclic

subgroups of order 6 does it have?
40. For any Abelian group G and any positive integer n, let Gn 5 {gn |

g [ G} (see Exercise 15, Supplementary Exercises for Chapters
1– 4). If H and K are Abelian, show that (H % K)n 5 Hn % Kn.

41. Express Aut(U(25)) in the form Zm % Zn.
42. Determine Aut(Z2 % Z2).
43. Suppose that n1, n2, . . . , nk are positive even integers. How many

elements of order 2 does Zn1
% Zn2

% . . . % Znk
have ? How many are

there if we drop the requirement that n1, n2, . . . , nk must be even?
44. Is Z10 % Z12 % Z6 ^ Z60 % Z6 % Z2?
45. Is Z10 % Z12 % Z6 ^ Z15 % Z4 % Z12?
46. Find an isomorphism from Z12 to Z4 % Z3.
47. How many isomorphisms are there from Z12 to Z4 % Z3?
48. Suppose that f is an isomorphism from Z3 % Z5 to Z15 and 

f(2, 3) 5 2. Find the element in Z3 % Z5 that maps to 1.
49. Let (a, b) belong to Zm % Zn. Prove that |(a, b)| divides lcm(m, n).
50. Let G 5 {ax2 1 bx 1 c | a, b, c [ Z3}. Add elements of G as you

would polynomials with integer coefficients, except use modulo 3
addition. Prove that G is isomorphic to Z3 % Z3 % Z3. Generalize.

51. Use properties of U-groups to determine all cyclic groups that have
exactly two generators.

52. Explain a way that a string of length n of the four nitrogen bases A,
T, G, and C could be modeled with the external direct product of n
copies of Z2 % Z2.

53. Let p be a prime. Prove that Zp % Zp has exactly p 1 1 subgroups
of order p.

54. Give an example of an infinite non-Abelian group that has exactly
six elements of finite order.

55. Give an example to show that there exists a group with elements a
and b such that |a| 5 `, |b| 5 ` and |ab| 5 2.

56. Express U(165) as an external direct product of cyclic groups of
the form Zn.

57. Express U(165) as an external direct product of U-groups in four
different ways.
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58. Without doing any calculations in Aut(Z20), determine how many
elements of Aut(Z20) have order 4. How many have order 2?

59. Without doing any calculations in Aut(Z720), determine how many
elements of Aut(Z720) have order 6.

60. Without doing any calculations in U(27), decide how many sub-
groups U(27) has.

61. What is the largest order of any element in U(900)?
62. Let p and q be odd primes and let m and n be positive integers.

Explain why U( pm) % U(qn) is not cyclic.
63. Use the results presented in this chapter to prove that U(55) is

isomorphic to U(75).
64. Use the results presented in this chapter to prove that U(144) is

isomorphic to U(140).
65. For every n . 2, prove that U(n)2 5 {x2 | x [ U(n)} is a proper

subgroup of U(n).
66. Show that U(55)3 5 {x3 | x [ U(55)} is U(55).
67. Find an integer n such that U(n) contains a subgroup isomorphic to 

Z5 % Z5.
68. Find a subgroup of order 6 in U(700).
69. Show that there is a U-group containing a subgroup isomorphic 

to Z3 % Z3.
70. Show that no U-group has order 14.
71. Show that there is a U-group containing a subgroup isomorphic 

to Z14.
72. Show that no U-group is isomorphic to Z4 % Z4.
73. Show that there is a U-group containing a subgroup isomorphic to 

Z4 % Z4.
74. Using the RSA scheme with p 5 37, q 5 73, and r 5 5, what num-

ber would be sent for the message “RM”?
75. Assuming that a message has been sent via the RSA scheme with 

p 5 37, q 5 73, and r 5 5, decode the received message “34.”

Computer Exercises

The geek shall inherit the earth.
LEV GROSSMAN

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

16509_ch08_p155-177 pp3  11/15/08  11:37 AM  Page 170



8 | External Direct Products 171

1. This software lists the elements of Us(st), where s and t are rela-
tively prime. Run the program for (s, t) 5 (5, 16), (16, 5), (8, 25),
(5, 9), (9, 5), (9, 10), (10, 9), and (10, 25).

2. This software computes the elements of the subgroup U(n)k 5 
{xk | x [ U(n)} of U(n) and its order. Run the program for (n, k) 5
(27, 3), (27, 5), (27, 7), and (27, 11). Do you see a relationship
connecting |U(n)| and |U(n)k|, f(n), and k? Make a conjecture.
Run the program for (n, k) 5 (25, 3), (25, 5), (25, 7), and (25, 11).
Do you see a relationship connecting |U(n)| and |U(n)k|, f(n), and
k? Make a conjecture. Run the program for (n, k) 5 (32, 2), (32,
4), and (32, 8). Do you see a relationship connecting |U(n)| and
|U(n)k|, f(n), and k? Make a conjecture. Is your conjecture valid
for (32, 16)? If not, restrict your conjecture. Run the program for
(n, k) 5 (77, 2), (77, 3), (77, 5), (77, 6), (77, 10), and (77, 15)? Do
you see a relationship among U(77, 6), U(77, 2), and U(77, 3)?
What about U(77, 10) U(77, 2), and U(77, 5)? What about U(77,
15), U(77, 3), and U(77, 5)? Make a conjecture. Use the theory
developed in this chapter about expressing U(n) as external direct
products of cyclic groups of the form Zn to analyze these groups
to verify your conjectures.

3. This software implements the algorithm given on page 160 to ex-
press U(n) as an external direct product of groups of the form Zk.
Run the program for n 5 3 ? 5 ? 7, 16 ? 9 ? 5, 8 ? 3 ? 25, 9 ? 5 ? 11,
and 2 ? 27 ? 125.

4. This software allows you to input positive integers n1, n2, n3, . . . , nk,
where k # 5, and compute the number of elements in Zn1

% 

Zn 2

% ? ? ? % Znk
of any specified order m. Use this software to ver-

ify the values obtained in Examples 4 and 5 and in Exercise 20.
Run the software for n1 5 6, n2 5 10, n3 5 12, and m 5 6.

5. This program implements the RSA public key cryptography
scheme. The user enters two primes p and q, an r that is relatively
prime to m 5 lcm (p 2 1, q 2 1), and the message M to be sent.
Then the program computes s, which is the inverse of r mod m,
and the value of Mr mod pq. Also, the user can input those num-
bers and have the computer raise the numbers to the s power to ob-
tain the original input.

6. This software determines the order of Aut(Zp % Zp), where p is a
prime. Run the software for p 5 3, 5, and 7. Is the result always
divisible by p? Is the result always divisible by p 2 1? Is the result
always divisible by p 1 1? Make a conjecture about the order of
Aut(Zp % Zp) for all primes p.
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7. This software determines the order of Aut(Zp % Zp % Zp), where p
is a prime. Run the software for p 5 3, 5, and 7. What is the highest
power of p that divides the order? What is the highest power of p 2 1
that divides the order? What is the highest power of p 1 1 that di-
vides the order? Make a conjecture about the order of 
Aut(Zp % Zp % Zp) for all primes p.
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Leonard Adleman

LEONARD ADLEMAN grew up in San Francisco.
He did not have any great ambitions for him-
self and, in fact, never even thought about be-
coming a mathematician. He enrolled at the
University of California at Berkeley intending
to be a chemist, then changed his mind and
said he would be a doctor. Finally, he settled
on a mathematics major. “I had gone through a
zillion things and finally the only thing that
was left where I could get out in a reasonable
time was mathematics,” he said.

Adleman graduated in five years, in
1968, “wondering what I wanted to do with
my life.” He took a job as a computer pro-
grammer at the Bank of America. Then he
decided that maybe he should be a physicist,
so he began taking classes at San Francisco
State College while working at the bank.
Once again, Adleman lost interest. “I didn’t
like doing experiments, I liked thinking
about things,” he said. Later, he returned to
Berkeley with the aim of getting a Ph.D. in
computer science. “I thought that getting a
Ph.D. in computer science would at least
further my career,” he said.

But, while in graduate school, something
else happened to Adleman. He finally under-
stood the true nature and compelling beauty
of mathematics. He discovered, he said, that
mathematics “is less related to accounting
than it is to philosophy.”

“People think of mathematics as some
kind of practical art,” Adleman said. But, he
added, “the point when you become a mathe-
matician is where you somehow see through
this and see the beauty and power of mathe-
matics.” Adleman got his Ph.D. in 1976 and
immediately landed a job as an assistant pro-
fessor of mathematics at the Massachusetts
Institute of Technology. There he met Ronald
Rivest and Adi Shamir, who were trying to
invent an unbreakable public key system.
They shared their excitement about the idea
with Adleman, who greeted it with a polite
yawn, thinking it impractical and not very in-
teresting. Nevertheless, Adleman agreed to
try to break the codes Rivest and Shamir pro-
posed. Rivest and Shamir invented 42 coding
systems, and each time Adleman broke the
code. Finally, on their 43rd attempt, they hit
upon what is now called the RSA scheme.

Adleman’s mode of working is to find
something that intrigues him and to dig in.
He does not read mathematics journals, he
says, because he does not want to be influ-
enced by other people’s ideas.

Asked what it is like to simply sit and
think for six months, Adleman responded,
“That’s what a mathematician always does.
Mathematicians are trained and inclined to
sit and think. A mathematician can sit and
think intensely about a problem for 12 hours

“. . . Dr. Adleman [has played] a central role
in some of the most surprising, and
provocative, discoveries in theoretical
computer science.”

GINA KOLATA, The New York Times, 

13 December 1994.
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Supplementary Exercises for Chapters 5–8

My mind rebels at stagnation. Give me problems, give me work, give me 
the most obstruse cryptogram, or the most intricate analysis, and I am in 
my own proper atmosphere.

SHERLOCK HOLMES, The Sign of Four

True/False questions for Chapters 5–8 are available on the Web at:

www.d.umn.edu/~jgallian/TF

1. A subgroup N of a group G is called a characteristic subgroup if
f(N) 5 N for all automorphisms f of G. (The term characteristic
was first applied by G. Frobenius in 1895.) Prove that every sub-
group of a cyclic group is characteristic.

2. Prove that the center of a group is characteristic.
3. The commutator subgroup G9 of a group G is the subgroup gener-

ated by the set {x21y21xy | x, y [ G}. (That is, every element of G9
has the form a1

i1a2
i2 ? ? ? a k

ik, where each aj has the form x21y21xy,
each ij 5 61, and k is any positive integer.) Prove that G9 is a char-
acteristic subgroup of G. (This subgroup was first introduced by 
G. A. Miller in 1898.)

4. Prove that the property of being a characteristic subgroup is transi-
tive. That is, if N is a characteristic subgroup of K and K is a char-
acteristic subgroup of G, then N is a characteristic subgroup of G.

5. Let G 5 Z3 % Z3 % Z3 and let H be the subgroup of SL(3, Z3)
consisting of

H 5 • £
1 a b

0 1 0

0 0 1

§ †  a, b c [ Z3¶ .

a day, six months straight, with perhaps just
a pencil and paper.” The only prop he needs,
he said, is a blackboard to stare at.

Adapted from an article by Gina Kolata,
The New York Times, 13 December 1994.

For more information about Adleman,
visit:

http://www.wikipedia.com

16509_ch08_p155-177 pp3  11/15/08  11:37 AM  Page 174



8 | Supplementary Exercises for Chapters 5–8 175

(See Exercise 36 in Chapter 2 for the definition of multiplication.)
Determine the number of elements of each order in G and H. Are G
and H isomorphic? (This exercise shows that two groups with the
same number of elements of each order need not be isomorphic.)

6. Let H and K be subgroups of a group G and let HK 5 {hk | h [ H,
k [ K} and KH 5 {kh | k [ K, h [ H}. Prove that HK is a group if
and only if HK 5 KH.

7. Let H and K be subgroups of a finite group G. Prove that

.

(This exercise is referred to in Chapters 10, 11, and 24.)
8. The exponent of a group is the smallest positive integer n such that 

xn 5 e for all x in the group. Prove that every finite group has an ex-
ponent that divides the order of the group.

9. Determine all U-groups of exponent 2.
10. Suppose that H and K are subgroups of a group and that |H| and |K|

are relatively prime. Show that H y K 5 {e}.

11. Let R1 denote the multiplicative group of positive real numbers and
let T 5 {a 1 bi [ C*| a2 1 b2 5 1} be the multiplicative group of
complex numbers of norm 1. Show that every element of C* can be
uniquely expressed in the form rz, where r [ R1 and z [ T.

12. Use a group-theoretic proof to show that Q* under multiplication is
not isomorphic to R* under multiplication.

13. Use a group-theoretic proof to show that Q under addition is not
isomorphic to R under addition.

14. Prove that R under addition is not isomorphic to R* under
multiplication.

15. Show that Q1 (the set of positive rational numbers) under multipli-
cation is not isomorphic to Q under addition.

16. Suppose that G 5 {e, x, x2, y, yx, yx2} is a non-Abelian group with
|x| 5 3 and |y| 5 2. Show that xy 5 yx2.

17. Let p be an odd prime. Show that 1 is the only solution of  xp22 5 1
in U(p).

18. Let G be an Abelian group under addition. Let n be a fixed positive
integer and let H 5 {(g, ng) | g [ G}. Show that H is a subgroup of
G % G. When G is the set of real numbers under addition, describe
H geometrically.

19. Find five subgroups of Z12 % Z20 1 Z10 isomorphic to Z4 % Z5.
20. Suppose that G 5 G1 % G2 % ? ? ? % Gn. Prove that Z(G) 5

Z(G1) % Z(G2) % ? ? ? % Z(Gn).

0HK 0 5
0H 0  0K 0
0H d K 0
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21. Exhibit four nonisomorphic groups of order 18.
22. What is the order of the largest cyclic subgroup in Aut(Z720)? (Hint:

It is not necessary to consider automorphisms of Z720.)
23. Let G be the group of all permutations of the positive integers. Let

H be the subset of elements of G that can be expressed as a product
of a finite number of cycles. Prove that H is a subgroup of G.

24. Let H be a subgroup of G. Show that Z(G)H is a subgroup of G.
25. Show that D11 % Z3 ] D3 % Z11. (This exercise is referred to in

Chapter 24.)
26. Show that D33 ] D11 % Z3. (This exercise is referred to in Chapter 24.)
27. Show that D33 ] D3 % Z11. (This exercise is referred to in Chapter 24.)
28. Exhibit four nonisomorphic groups of order 66. (This exercise is

referred to in Chapter 24.)
29. Prove that |Inn(G)| 5 1 if and only if G is Abelian.
30. Prove that x100 5 1 for all x in U(1000).
31. Find a subgroup of order 6 in U(450).
32. List four elements of Z20 % Z5 % Z60 that form a noncyclic 

subgroup.
33. In S10, let b 5 (13)(17)(265)(289). Find an element in S10 that com-

mutes with b but is not a power of b.
34. Prove or disprove that Z4 % Z15 < Z6 % Z10.
35. Prove or disprove that D12 < Z3 % D4.
36. Describe a three-dimensional solid whose symmetry group is iso-

morphic to D5.
37. Let G 5 U(15) % Z10 % S5. Find the order of (2, 3, (123)(15)). Find

the inverse of (2, 3, (123)(15)).
38. Let G 5 Z % Z10 and let H 5 {g [ G| |g| 5 ` or |g| 5 1}. Prove

or disprove that H is a subgroup of G.
39. Let G be an infinite group of the form G1 % G2 % . . . % Gn where

each Gi is a nontrivial group and n . 1. Prove that G is not cyclic.
40. For any s in Sn and any k-cycle (i1i2 . . . ik) in Sn, prove that s(i1i2 . . .

ik)s
21 5 s(i1)s(i2) . . . s(ik).

41. Find an element of order 10 in A9.
42. In the left regular representation for D4, write TR90

and TH in matrix
form and in cycle form.

43. How many elements of order 6 are in S7?
44. Prove that S3 % S4 is not isomorphic to a subgroup of S6.
45. Find a permutation b such that b2 5 (13579)(268).
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46. In R % R under componentwise addition, let H 5 {(x, 3x) | x [ R}.
(Note that H is the subgroup of all points on the line y 5 3x.) Show
that (2, 5) 1 H is a straight line passing through the point (2, 5) and
parallel to the line y 5 3x.

47. In R % R, suppose that H is the subgroup of all points lying on a
line through the origin. Show that any left coset of H is either H or
a line parallel to H.

48. Let G be a group of permutations on the set {1, 2, . . . , n}. Recall
that stabG(1) 5 {a [ G | a(1) 5 1}. If g sends 1 to k, prove that
g stabG(1) 5 {b [ G | b(1) 5 k}.

49. Let H be a subgroup of G and let a, b [ G. Show that aH 5 bH if
and only if Ha21 5 Hb21.

50. Suppose that G is a finite Abelian group that does not contain a
subgroup isomorphic to Zp % Zp for any prime p. Prove that G is
cyclic.

51. Let p be a prime. Determine the number of elements of order p in
% .

52. Show that % has exactly one subgroup isomorphic to Zp % Zp.
53. Let p be a prime. Determine the number of subgroups of %

isomorphic to .
54. Find a group of order 32 ? 52 ? 72 ? 28 that contains a subgroup iso-

morphic to A8.
55. Let p and q be distinct odd primes. Let n 5 lcm(p 2 1, q 2 1).

Prove that xn 5 1 for all x [ U( pq).
56. Prove that D6 is not isomorphic to a subgroup of S4.
57. Prove that the permutations (12) and (123 . . . n) generate Sn. (That

is, every member of Sn can be expressed as some combination of
these elements.

58. Suppose that n is even and s is an (n 2 1)-cycle in Sn. Show that s
does not commute with any element of order 2.

59. Suppose that n is odd and s is an n-cycle in Sn. Prove that s does
not commute with any element of order 2.

Zp2

Zp2Zp2

Zp2Zp2

Zp2Zp2
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Normal Subgroups 
and Factor Groups

It is tribute to the genius of Galois that he recognized that those subgroups
for which the left and right cosets coincide are distinguished ones. Very
often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

I. N. HERSTEIN, Topics in Algebra

9

Normal Subgroups
As we saw in Chapter 7, if G is a group and H is a subgroup of G, it is not
always true that aH 5 Ha for all a in G. There are certain situations where
this does hold, however, and these cases turn out to be of critical impor-
tance in the theory of groups. It was Galois, about 175 years ago, who first
recognized that such subgroups were worthy of special attention.

Definition Normal Subgroup

A subgroup H of a group G is called a normal subgroup of G if aH 5
Ha for all a in G. We denote this by H v G.

Many students make the mistake of thinking that “H is normal in G”
means ah 5 ha for a [ G and h [ H. This is not what normality of H
means; rather, it means that if a [ G and h [ H, then there exist ele-
ments h9 and h0 in H such that ah 5 h9a and ha 5 ah0. Think of it this
way: You can switch the order of a product of an element from the group
and an element from the normal subgroup, but you must “fudge” a bit on
the element from the normal subgroup by using h9 or h0 rather than h. (It
is possible that h9 5 h or h0 5 h, but we may not assume this.)

There are several equivalent formulations of the definition of nor-
mality. We have chosen the one that is the easiest to use in applications.
However, to verify that a subgroup is normal, it is usually better to use
Theorem 9.1, which is a weaker version of property 7 of the lemma in
Chapter 7. It allows us to substitute a condition about two subgroups of
G for a condition about two cosets of G.
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Theorem 9.1 Normal Subgroup Test

PROOF If H is normal in G, then for any x [ G and h [ H there is an h9
in H such that xh 5 h9x. Thus, xhx21 5 h9, and therefore xHx21 # H.

Conversely, if xHx21 # H for all x, then, letting x 5 a, we have
aHa21 # H or aH # Ha. On the other hand, letting x 5 a21, we have
a21H(a21)21 5 a21Ha # H or Ha # aH.

EXAMPLE 1 Every subgroup of an Abelian group is normal. (In this
case, ah 5 ha for a in the group and h in the subgroup.)

EXAMPLE 2 The center Z(G) of a group is always normal. [Again,
ah 5 ha for any a [ G and any h [ Z(G).]

EXAMPLE 3 The alternating group An of even permutations is a nor-
mal subgroup of Sn. [Note, for example, that for (12) [ Sn and (123) [
An, we have (12)(123) 2 (123)(12) but (12)(123) 5 (132)(12) and 
(132) [ An.]

EXAMPLE 4 The subgroup of rotations in Dn is normal in Dn. (For
any rotation r and any reflection f, we have fr 5 r21f, whereas for any
rotations r and r9, we have rr9 5 r9r.)

EXAMPLE 5 The group SL(2, R) of 2 3 2 matrices with determinant
1 is a normal subgroup of GL(2, R), the group of 2 3 2 matrices with
nonzero determinant. To verify this, we use the normal subgroup test
given in Theorem 9.1. Let x [ GL(2, R) 5 G, h [ SL(2, R) 5 H and
note that det xhx21 5 (det x)(det h)(det x)21 5 (det x)(det x)21 5 1. So,
xhx21 [ H, and, therefore, xHx21 # H.

EXAMPLE 6 Referring to the group table for A4 given in Table 5.1 on
page 107, we may observe that H 5 {a1, a2, a3, a4} is a normal
subgroup of A4, whereas K 5 {a1, a5, a9} is not a normal subgroup
of A4. To see that H is normal, simply note that for any b in A4, bHb21 is
a subgroup of order 4 and H is the only subgroup of A4 of order 4 
since all other elements of A4 have order 3. Thus, bHb21 5 H. In con-
trast, a2a5a 2

21 5 a7, so that a2Ka2
21 s K.

A subgroup H of G is normal in G if and only if xHx21 # H 
for all x in G.
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Factor Groups
We have yet to explain why normal subgroups are of special significance.
The reason is simple. When the subgroup H of G is normal, then the set
of left (or right) cosets of H in G is itself a group—called the factor group
of G by H (or the quotient group of G by H). Quite often, one can obtain
information about a group by studying one of its factor groups. This
method will be illustrated in the next section of this chapter.

Theorem 9.2 Factor Groups (O. Hölder, 1889)

PROOF Our first task is to show that the operation is well defined; that
is, we must show that the correspondence defined above from G/H 3
G/H into G/H is actually a function. To do this we assume that for
some elements a, a9, b, and b9 from G, we have aH 5 a9H and bH 5
b9H and verify that aHbH 5 a9Hb9H. That is, verify that abh 5 a9b9H.
(This shows that the definition of multiplication depends only on the
cosets and not on the coset representatives.) From aH 5 a9H and bH 5
b9H , we have a9 5 ah1 and b9 5 bh2 for some h1, h2 in H, and therefore
a9b9H 5 ah1bh2H 5 ah1bH 5 ah1Hb 5 aHb 5 abH. Here we have made
multiple use of associativity, property 2 of the lemma in Chapter 7, and
the fact that H v G. The rest is easy: eH 5 H is the identity; a21H is the
inverse of aH; and (aHbH)cH 5 (ab)HcH 5 (ab)cH 5 a(bc)H 5
aH(bc)H 5 aH(bHcH). This proves that G/H is a group.

Although it is merely a curiosity, we point out that the converse of
Theorem 9.2 is also true; that is, if the correspondence aHbH 5 abH
defines a group operation on the set of left cosets of H in G, then H is
normal in G.

The next few examples illustrate the factor group concept.

EXAMPLE 7 Let 4Z 5 {0, 64, 68, . . .}. To construct Z/4Z, we first
must determine the left cosets of 4Z in Z. Consider the following four
cosets:

0 1 4Z 5 4Z 5 {0, 64, 68, . . .},
1 1 4Z 5 {1, 5, 9, . . . ; 23, 27, 211, . . .},

Let G be a group and let H be a normal subgroup of G. The set 
G/H 5 {aH | a [ G} is a group under the operation (aH)(bH) 5 abH.†

†The notation G/H was first used by C. Jordan.  
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2 1 4Z 5 {2, 6, 10, . . . ; 22, 26, 210, . . .},
3 1 4Z 5 {3, 7, 11, . . . ; 21, 25, 29, . . .}.

We claim that there are no others. For if k [ Z, then k 5 4q 1 r, where
0 # r , 4; and, therefore, k 1 4Z 5 r 1 4q 1 4Z 5 r 1 4Z. Now that
we know the elements of the factor group, our next job is to determine
the structure of Z/4Z. Its Cayley table is

0 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z

0 1 4Z 0 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z
1 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z 0 1 4Z
2 1 4Z 2 1 4Z 3 1 4Z 0 1 4Z 1 1 4Z
3 1 4Z 3 1 4Z 0 1 4Z 1 1 4Z 2 1 4Z

Clearly, then, Z/4Z L Z4. More generally, if for any n . 0 we let nZ 5
{0, 6n, 62n, 63n, . . .}, then Z/nZ is isomorphic to Zn.

EXAMPLE 8 Let G 5 Z18 and let H 5 �6� 5 {0, 6, 12}. Then G/H 5
{0 1 H, 1 1 H, 2 1 H, 3 1 H, 4 1 H, 5 1 H}. To illustrate how the
group elements are combined, consider (5 1 H) 1 (4 1 H). This
should be one of the six elements listed in the set G/H. Well, (5 1 H) 1
(4 1 H) 5 5 1 4 1 H 5 9 1 H 5 3 1 6 1 H 5 3 1 H, since H ab-
sorbs all multiples of 6.

A few words of caution about notation are warranted here. When H
is a normal subgroup of G, the expression |aH| has two possible inter-
pretations. One could be thinking of aH as a set of elements and |aH|
as the size of the set; or, as is more often the case, one could be think-
ing of aH as a group element of the factor group G/H and |aH| as the
order of the element aH in G/H. In Example 8, for instance, the set 3 1
H has size 3, since 3 1 H 5 {3, 9, 15}. But the group element
3 1 H has order 2, since (3 1 H) 1 (3 1 H) 5 6 1 H 5 0 1 H. As is
usually the case when one notation has more than one meaning, the ap-
propriate interpretation will be clear from the context.

EXAMPLE 9 Let _ 5 {R0, R180}, and consider the factor group of
the dihedral group D4 (see page 31 for the multiplication table for D4)

D4/_ 5 {_, R90_, H_, D_}.

The multiplication table for D4/_ is given in Table 9.1. (Notice that
even though R90H 5 D9, we have used D_ in Table 9.1 for H_R90_
because D9_ 5 D_.)
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D4/_ provides a good opportunity to demonstrate how a factor
group of G is related to G itself. Suppose we arrange the heading of the
Cayley table for D4 in such a way that elements from the same coset of
_ are in adjacent columns (Table 9.2). Then, the multiplication table
for D4 can be blocked off into boxes that are cosets of _, and the sub-
stitution that replaces a box containing the element x with the coset x_
yields the Cayley table for D4/_.

For example, when we pass from D4 to D4/_, the box

in Table 9.2 becomes the element H_ in Table 9.1. Similarly, the box

becomes the element D_, and so on.

Table 9.2

R0 R180 R90 R270 H V D D9

R0 R0 R180 R90 R270 H V D D9
R180 R180 R0 R270 R90 V H D9 D

R90 R90 R270 R180 R0 D9 D H V
R270 R270 R90 R0 R180 D D9 V H

H H V D D9 R0 R180 R90 R270
V V H D9 D R180 R0 R270 R90

D D D9 V H R270 R90 R0 R180
D9 D9 D H V R90 R270 R180 R0

H V

V H

D D9

D9 D

Table 9.1

__ R90__ H__ D__

__ _ R90_ H_ D_
R90__ R90_ _ D_ H_
H__ H_ D_ _ R90_
D__ D_ H_ R90_ _
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Table 9.3

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 4 3 6 5 8 7 10 9 12 11
3 3 4 1 2 7 8 5 6 11 12 9 10
4 4 3 2 1 8 7 6 5 12 11 10 9

5 5 8 6 7 9 12 10 11 1 4 2 3
6 6 7 5 8 10 11 9 12 2 3 1 4
7 7 6 8 5 11 10 12 9 3 2 4 1
8 8 5 7 6 12 9 11 10 4 1 3 2

9 9 11 12 10 1 3 4 2 5 7 8 6
10 10 12 11 9 2 4 3 1 6 8 7 5
11 11 9 10 12 3 1 2 4 7 5 6 8
12 12 10 9 11 4 2 1 3 8 6 5 7

Table 9.4

1H 5H 9H

1H 1H 5H 9H
5H 5H 9H 1H
9H 9H 1H 5H

In this way, one can see that the formation of a factor group G/H
causes a systematic collapse of the elements of G. In particular, all the
elements in the coset of H containing a collapse to the single group el-
ement aH in G/H.

EXAMPLE 10 Consider the group A4 as represented by Table 5.1
on page 107. (Here i denotes the permutation ai.) Let H 5 {1, 2, 3, 4}.
Then the three cosets of H are H, 5H 5 {5, 6, 7, 8}, and 9H 5 {9,
10, 11, 12}. (In this case, rearrangement of the headings is unneces-
sary.) Blocking off the table for A4 into boxes that are cosets of H
and replacing the boxes containing 1, 5, and 9 (see Table 9.3) with
the cosets 1H, 5H, and 9H, we obtain the Cayley table for G/H given
in Table 9.4.

This procedure can be illustrated more vividly with colors. Let’s say
we had printed the elements of H in green, the elements of 5H in red,
and the elements of 9H in blue. Then, in Table 9.3, each box would
consist of elements of a uniform color. We could then think of 
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the factor group as consisting of the three colors that define a group
table isomorphic to G/H.

It is instructive to see what happens if we attempt the same proce-
dure with a group G and a subgroup H that is not normal in G—that is,
if we arrange the headings of the Cayley table so that the elements
from the same coset of H are in adjacent columns and attempt to block
off the table into boxes that are also cosets of H to produce a Cayley
table for the set of cosets. Say, for instance, we were to take G to be A4
and H 5 {1, 5, 9}. The cosets of H would be H, 2H 5 {2, 6, 10},
3H 5 {3, 7, 11}, and 4H 5 {4, 8, 12}. Then the first three rows of the
rearranged Cayley table for A4 would be

Green Red Blue

Green Green Red Blue
Red Red Blue Green
Blue Blue Green Red

1 5 9 2 6 10 3 7 11 4 8 12

1 1 5 9 2 6 10 3 7 11 4 8 12
5 5 9 1 8 12 4 6 10 2 7 11 3
9 9 1 5 11 3 7 12 4 8 10 2 6

But already we are in trouble, for blocking these off into 3 3 3 boxes
yields boxes that contain elements of different cosets. Hence, it is im-
possible to represent an entire box by a single element of the box in the
same way we could for boxes made from the cosets of a normal sub-
group. Had we printed the rearranged table in four colors with all
members of the same coset having the same color, we would see multi-
colored boxes rather than the uniformly colored boxes produced by a
normal subgroup. 

In Chapter 11, we will prove that every finite Abelian group is
isomorphic to a direct product of cyclic groups. In particular, an
Abelian group of order 8 is isomorphic to one of Z8, Z4 % Z2, or Z2 %

Z2 % Z2. In the next two examples, we examine Abelian factor groups
of order 8 and determine the isomorphism type of each.

EXAMPLE 11 Let G 5 U(32) 5 {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
23, 25, 27, 29, 31} and H 5 U16(32) 5 {1, 17}. Then G/H is an Abelian
group of order 16/2 5 8. Which of the three Abelian groups of order 8
is it—Z8, Z4 % Z2, or Z2 % Z2 % Z2? To answer this question, we need
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only determine the elements of G/H and their orders. Observe that the
eight cosets

1H 5 {1, 17}, 3H 5 {3, 19}, 5H 5 {5, 21}, 7H 5 {7, 23},
9H 5 {9, 25}, 11H 5 {11, 27}, 13H 5 {13, 29}, 15H 5 {15, 31}

are all distinct, so that they form the factor group G/H. Clearly,
(3H)2 5 9H 2 H, and so 3H has order at least 4. Thus, G/H is not 
Z2 % Z2 % Z2. On the other hand, direct computations show that both
7H and 9H have order 2, so that G/H cannot be Z8 either, since a cyclic
group of even order has exactly one element of order 2 (Theorem 4.4).
This proves that U(32)/U16(32) L Z4 % Z2, which (not so incidentally!)
is isomorphic to U(16).

EXAMPLE 12 Let G 5 U(32) and K 5 {1, 15}. Then |G/K| 5 8, and
we ask, which of the three Abelian groups of order 8 is G/K? Since
(3K)4 5 81K 5 17K 2 K, |3K| 5 8. Thus, G/K L Z8.

It is crucial to understand that when we factor out by a normal sub-
group H, what we are essentially doing is defining every element in H
to be the identity. Thus, in Example 9, we are making R180_ 5 _ the
identity. Likewise, R270_ 5 R90R180_ 5 R90_. Similarly, in Example 7,
we are declaring any multiple of 4 to be 0 in the factor group Z/4Z. This
is why 5 1 4Z 5 1 1 4 1 4Z 5 1 1 4Z, and so on. In Example 11, we
have 3H 5 19H, since 19 5 3 ? 17 in U(32) and going to the factor
group makes 17 the identity. Algebraists often refer to the process of
creating the factor group G/H as “killing” H.

Applications of Factor Groups
Why are factor groups important? Well, when G is finite and H 2 {e},
G/H is smaller than G, and its structure is usually less complicated than
that of G. At the same time, G/H simulates G in many ways. In fact, we
may think of a factor group of G as a less complicated approximation
of G (similar to using the rational number 3.14 for the irrational
number p). What makes factor groups important is that one can often
deduce properties of G by examining the less complicated group G/H
instead. We illustrate this by giving another proof that A4 has no sub-
group of order 6.

EXAMPLE 13 A
4

Has No Subgroup of Order 6

The group A4 of even permutations on the set {1, 2, 3, 4} has no sub-
group H of order 6. To see this, suppose that A4 does have a subgroup H
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of order 6. By Exercise 7 in this chapter, we know that H v A4. Thus,
the factor group A4/H exists and has order 2. Since the order of an
element divides the order of the group, we have for all a [ A4 that a2

H 5 (aH)2 5 H. Thus, a2 [ H for all a in A4. Referring to the main
diagonal of the group table for A4 given in Table 5.1 on page 107, how-
ever, we observe that A4 has nine different elements of the form a2, all
of which must belong to H, a subgroup of order 6. This is clearly
impossible, so a subgroup of order 6 cannot exist in A4.

†

The next three theorems illustrate how knowledge of a factor group
of G reveals information about G itself.

Theorem 9.3 The G/Z Theorem

PROOF Let gZ(G) be a generator of the factor group G/Z(G), and let
a, b [ G. Then there exist integers i and j such that

aZ(G) 5 (gZ(G))i 5 giZ(G)

and

bZ(G) 5 (gZ(G)) j 5 gjZ(G).

Thus, a 5 gix for some x in Z(G) and b 5 gjy for some y in Z(G). It fol-
lows then that

ab 5 (gix)(gjy) 5 gi(xg j)y 5 gi(gjx)y

5 (gig j)(xy) 5 (gjgi)(yx) 5 (gjy)(gix) 5 ba.

A few remarks about Theorem 9.3 are in order. First, our proof shows
that a better result is possible: If G/H is cyclic, where H is a subgroup of
Z(G), then G is Abelian. Second, in practice, it is the contrapositive of
the theorem that is most often used—that is, if G is non-Abelian, then
G/Z(G) is not cyclic. For example, it follows immediately from this
statement and Lagrange’s Theorem that a non-Abelian group of order
pq, where p and q are primes, must have a trivial center. Third, if G/Z(G)
is cyclic, it must be trivial.

Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic,
then G is Abelian.

†How often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth. Sherlock Holmes, The Sign of Four
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Theorem 9.4 G/Z(G) Inn(G)

PROOF Consider the correspondence from G/Z(G) to Inn(G) given by
T : gZ(G) → fg [where, recall, fg(x) 5 gxg21 for all x in G]. First, we
show that T is well defined. To do this, we assume that

and verify that . (This shows that the image
of a coset of depends only on the coset itself and not on the ele-
ment representing the coset.) From , we have that

belongs to Z(G). Then, for all x in G, h21gx 5 xh21g. Thus,
gxg21 5 hxh21 for all x in G, and, therefore, fg 5 fh. Reversing this
argument shows that T is one-to-one, as well. Clearly, T is onto.

That T is operation-preserving follows directly from the fact that
fgfh 5 fgh for all g and h in G.

As an application of Theorems 9.3 and 9.4, we may easily determine
Inn(D6) without looking at Inn(D6)!

EXAMPLE 14 We know from Example 11 in Chapter 3 that
|Z(D6)| 5 2. Thus, |D6 /Z (D6)| 5 6. So, by our classification of groups
of order 6 (Theorem 7.2), we know that Inn(D6) is isomorphic to D3
or Z6. Now, if Inn(D6) were cyclic, then, by Theorem 9.4, D6/Z(D6)
would be also. But then, Theorem 9.3 would tell us that D6 is Abelian.
So, Inn(D6) is isomorphic to D3.

The next theorem demonstrates one of the most powerful proof tech-
niques available in the theory of finite groups—the combined use of
factor groups and induction.

Theorem 9.5 Cauchy’s Theorem for Abelian Groups

PROOF Clearly, this statement is true for the case in which G has
order 2. We prove the theorem by using the Second Principle of Math-
ematical Induction on |G|. That is, we assume that the statement is true
for all Abelian groups with fewer elements than G and use this assump-
tion to show that the statement is true for G as well. Certainly, G has
elements of prime order, for if |x| 5 m and m 5 qn, where q is prime,
then |xn| 5 q. So let x be an element of G of some prime order q, say. If

Let G be a finite Abelian group and let p be a prime that divides the
order of G. Then G has an element of order p.

h21g
gZ(G) 5 hZ(G)

Z(G)
fg 5 fhgZ(G) 5 hZ(G)

For any group G, G/Z(G) is isomorphic to Inn(G).

<
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q 5 p, we are finished; so assume that q 2 p. Since every subgroup of
an Abelian group is normal, we may construct the factor group 5
G/�x�. Then is Abelian and p divides | |, since | | 5 |G|/q. By
induction, then, has an element—call it y�x�—of order p. The con-
clusion now follows from Exercise 65.

Internal Direct Products
As we have seen, the external direct product provides a way of putting
groups together into a larger group. It would be quite useful to be able
to reverse this process—that is, to be able to start with a large group
and break it down into a product of smaller groups. It is occasionally
possible to do this. To this end, suppose that H and K are subgroups of
some group G. We define the set HK 5 {hk | h [ H, k [ K}.

EXAMPLE 15 In U(24) 5 {1, 5, 7, 11, 13, 17, 19, 23}, let H 5
{1, 17} and K 5 {1, 13}. Then, HK 5 {1, 13, 17, 5}, since 5 5 17 ? 13
mod 24.

EXAMPLE 16 In S3, let H 5 {(1), (12)} and K 5 {(1), (13)}. Then,
HK 5 {(1), (13), (12), (12)(13)} 5 {(1), (13), (12), (132)}.

The student should be careful not to assume that the set HK is a sub-
group of G; in Example 15 it is, but in Example 16 it is not.

Definition Internal Direct Product of H and K

We say that G is the internal direct product of H and K and write 
G 5 H 3 K if H and K are normal subgroups of G and

G 5 HK and H > K 5 {e}.

The wording of the phrase “internal direct product” is easy to justify.
We want to call G the internal direct product of H and K if H and K are
subgroups of G, and if G is naturally isomorphic to the external direct
product of H and K. One forms the internal direct product by starting
with a group G and then proceeding to find two subgroups H and K
within G such that G is isomorphic to the external direct product of H
and K. (The definition ensures that this is the case—see Theorem 9.6.)
On the other hand, one forms an external direct product by starting with
any two groups H and K, related or not, and proceeding to produce the
larger group H % K. The difference between the two products is that the
internal direct product can be formed within G itself, using subgroups
of G and the operation of G, whereas the external direct product can be
formed with totally unrelated groups by creating a new set and a new
operation. (See Figures 9.1 and 9.2.)

G
GGG

G
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Figure 9.1 For the internal direct product, 
H and K must be subgroups of the same group.

Figure 9.2 For the external
direct product, H and K can
be any groups.

Perhaps the following analogy with integers will be useful in clari-
fying the distinction between the two products of groups discussed in
the preceding paragraph. Just as we may take any (finite) collection of
integers and form their product, we may also take any collection of
groups and form their external direct product. Conversely, just as we
may start with a particular integer and express it as a product of cer-
tain of its divisors, we may be able to start with a particular group and
factor it as an internal direct product of certain of its subgroups.

EXAMPLE 17 In D6, the dihedral group of order 12, let F denote
some reflection and let Rk denote a rotation of k degrees. Then,

D6 5 {R0, R120, R240, F, R120F, R240F} 3 {R0, R180}.

Students should be cautioned about the necessity of having all con-
ditions of the definition of internal direct product satisfied to ensure
that HK L H % K. For example, if we take

G 5 S3, H 5 �(123)�, and K 5 �(12)�,

then G 5 HK, and H > K 5 {(1)}. But G is not isomorphic to H % K,
since, by Theorem 8.2, H % K is cyclic, whereas S3 is not. Note that K
is not normal.

A group G can also be the internal direct product of a collection of
subgroups.

H K

G

eH K
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Definition Internal Direct Product H
1
3 H

2
3 ? ? ? 3 H

n

Let H1, H2, . . . , Hn be a finite collection of normal subgroups of G. We
say that G is the internal direct product of H1, H2, . . . , Hn and write
G 5 H1 3 H2 3 ? ? ? 3 Hn, if

1. G 5 H1H2 ? ? ? Hn 5 {h1h2 ? ? ? hn | hi [ Hi}
2. (H1H2 ? ? ? Hi) > Hi11 5 {e} for i 5 1, 2, . . . , n 2 1.

This definition is somewhat more complicated than the one given for
two subgroups. The student may wonder about the motivation for it—
that is, why should we want the subgroups to be normal and why is it
desirable for each subgroup to be disjoint from the product of all previ-
ous ones? The reason is quite simple. We want the internal direct prod-
uct to be isomorphic to the external direct product. As the next theorem
shows, the conditions in the definition of internal direct product were
chosen to ensure that the two products are isomorphic.

Theorem 9.6 H1 3 H2 3 ? ? ? 3 Hn L H1 % H2 % ? ? ? % Hn

PROOF We first show that the normality of the H’s together with the
second condition of the definition guarantees that h’s from different
Hi’s commute. For if hi [ Hi and hj [ Hj with i 2 j, then

(hihjhi
21)hj

21 [ Hjhj
21 5 Hj

and

hi(hjhi
21hj

21) [ hiHi 5 Hi.

Thus, hihj hi
21hj

21 [ Hi > Hj 5 {e} (see Exercise 3), and, therefore,
hihj 5 hjhi. We next claim that each member of G can be expressed
uniquely in the form h1h2 ? ? ? hn, where hi [ Hi. That there is at least one
such representation is the content of condition 1 of the definition. To
prove uniqueness, suppose that g 5 h1h2 ? ? ? hn and g 5 h19 h29 ? ? ? hn9,
where hi and hi9 belong to Hi for i 5 1, . . . , n. Then, using the fact that
the h’s from different Hi’s commute, we can solve the equation

h1h2 ? ? ? hn 5 h19 h29 ? ? ? hn9 (1)

for hn9 hn
21 to obtain

hn9 hn
21 5 (h91)

21h1(h29)
21h2 ? ? ? (h9n21)

21hn21.

If a group G is the internal direct product of a finite number of
subgroups H1, H2, . . . , Hn, then G is isomorphic to the external
direct product of H1, H2, . . . , Hn.
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But then

hn9 hn
21 [ H1H2 ? ? ? Hn21 > Hn 5 {e},

so that hn9 hn
21 5 e and, therefore, hn9 5 hn. At this point, we can cancel

hn and hn9 from opposite sides of the equal sign in Equation (1) and repeat
the preceding argument to obtain hn21 5 h 9n21. Continuing in this fash-
ion, we eventually have hi 5 hi9 for i 5 1, . . . , n. With our claim estab-
lished, we may now define a function f from G to H1 % H2 % ? ? ? % Hn
by f(h1h2 ? ? ? hn) 5 (h1, h2, . . . , hn). We leave to the reader the easy ver-
ification that f is an isomorphism.

The next theorem provides an important application of Theorem 9.6.

Theorem 9.7 Classification of Groups of Order p2

Every group of order p2, where p is a prime, is isomorphic to or
Zp % Zp. 

Zp2

PROOF Let G be a group of order , where p is a prime. If G has an
element of order , then G is isomorphic to . So, by Corollary 2 of
Lagrange’s Theorem, we may assume that every nonidentity element of
G has order p. First we show that for any element a, the subgroup is
normal in G. If this is not the case then there is an element b in G such
that is not in . Then and are distinct subgroups of
order p. Since is a subgroup of both and ,
we have that . From this it follows that the distinct
left cosets of are , , , . . . ,

. Since must lie in one of these cosets, we may write
in the form for some i and j. Cancel-

ing the terms, we obtain and therefore .
This contradiction verifies our assertion that every subgroup of the form

is normal in G. To complete the proof, let x be any nonidentity ele-
ment in G and y be any element of G not in . Then, by comparing or-
ders and using Theorem 9.6, we see that  .

As an immediate corollary of Theorem 9.7, we have the following
important fact.

Corollary

If G is a group of order p2, where p is a prime, then G is Abelian. 

G 5 �x� 3 �y� < Zp % Zp

�x�
�a�

b 5 a2i2 j [ �a�e 5 aibajb21
aibajb21b21 5 ai(bab21) j 5b21

b21ap21�bab21�
a2�bab21�a�bab21��bab21��bab21�

�a� x �bab21� 5 5e6 �bab21��a��a� x �bab21�
�bab21��a��a�bab21

�a�

Zp2p2
p2
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We mention in passing that if G 5 H1 % H2 % ? ? ? % Hn, then G can
be expressed as the internal direct product of subgroups isomorphic to
H1, H2, . . . , Hn. For example, if G 5 H1 % H2, then G 5 3 ,
where 5 H1 % {e} and 5 {e} % H2.

The topic of direct products is one in which notation and terminol-
ogy vary widely. Many authors use H 3 K to denote both the internal
direct product and the external direct product of H and K, making no
notational distinction between the two products. A few authors define
only the external direct product. Many people reserve the notation 
H % K for the situation where H and K are Abelian groups under addi-
tion and call it the direct sum of H and K. In fact, we will adopt this ter-
minology in the section on rings (Part 3), since rings are always
Abelian groups under addition.

The U-groups provide a convenient way to illustrate the preceding
ideas and to clarify the distinction between internal and external direct
products. It follows directly from Theorem 8.3 and its corollary and
Theorem 9.6 that if m 5 n1n2 ? ? ? nk, where gcd(ni, nj) 5 1 for i 2 j, then

U(m) 5 Um/n1
(m) 3 Um/n2

(m) 3 ? ? ? 3 Um/nk
(m)

L U(n1) % U(n2) % ? ? ? % U(nk).

Let us return to the examples given following Theorem 8.3.

U(105) 5 U(15 ? 7) 5 U15(105) 3 U7(105)
5 {1, 16, 31, 46, 61, 76} 3 {1, 8, 22, 29, 43, 64, 71, 92}
L U(7) % U(15),

U(105) 5 U(5 ? 21) 5 U5(105) 3 U21(105)
5 {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}

3 {1, 22, 43, 64} L U(21) % U(5),

U(105) 5 U(3 ? 5 ? 7) 5 U35(105) 3 U21(105) 3 U15(105)
5 {1, 71} 3 {1, 22, 43, 64} 3 {1, 16, 31, 46, 61, 76}
L U(3) % U(5) % U(7).

H2H1

H2H1
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Exercises

Understanding is a kind of ecstasy.
CARL SAGAN

1. Let H 5 {(1), (12)}. Is H normal in S3?
2. Prove that An is normal in Sn.
3. Show that if G is the internal direct product of H1, H2, . . . , Hn and

i 2 j with 1 # i # n, 1 # j # n, then Hi > Hj 5 {e}. (This exercise
is referred to in this chapter.)

4. Let . Is H a normal sub-

group of GL(2, R)?
5. Let G 5 GL(2, R) and let K be a subgroup of R*. Prove that H 5

{A [ G| det A [ K} is a normal subgroup of G.
6. Viewing �3� and �12� as subgroups of Z, prove that �3�/�12� is iso-

morphic to Z4. Similarly, prove that �8�/�48� is isomorphic to Z6.
Generalize to arbitrary integers k and n.

7. Prove that if H has index 2 in G, then H is normal in G. (This exer-
cise is referred to in Chapters 24 and 25 and this chapter.)

8. Let H 5 {(1), (12)(34)} in A4.
a. Show that H is not normal in A4.
b. Referring to the multiplication table for A4 in Table 5.1 on page

107, show that, although a6H 5 a7H and a9H 5 a11H, it is not
true that a6a9H 5 a7a11H. Explain why this proves that the left
cosets of H do not form a group under coset multiplication.

9. Let G 5 Z4 % U(4), H 5 �(2, 3)�, and K 5 �(2, 1)�. Show that G/H
is not isomorphic to G/K. (This shows that H L K does not imply
that G/H L G/K.)

10. Prove that a factor group of a cyclic group is cyclic.
11. Let H be a normal subgroup of G. If H and G/H are Abelian, must

G be Abelian?
12. Prove that a factor group of an Abelian group is Abelian.
13. If H is a subgroup of G and a, b [ G, prove that (ab)H 5 a(bH).
14. What is the order of the element 14 1 �8� in the factor group

Z24/�8�?
15. What is the order of the element 4U5(105) in the factor group

U(105)/U5(105)?
16. Recall that Z(D6) 5 {R0, R180}. What is the order of the element

R60Z(D6) in the factor group D6/Z(D6)?

H 5 e ca b

0 d
d  `  a, b, d P R,  ad 2 0 f
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17. Let G 5 Z/�20� and H 5 �4�/�20�. List the elements of H and G/H.
18. What is the order of the factor group Z60/�15�?
19. What is the order of the factor group (Z10 % U(10))/�(2, 9)�?
20. Construct the Cayley table for U(20)/U5(20).
21. Prove that an Abelian group of order 33 is cyclic.
22. Determine the order of (Z % Z)/�(2, 2)�. Is the group cyclic?
23. Determine the order of (Z % Z)/�(4, 2)�. Is the group cyclic?
24. The group (Z4 % Z12)/�(2, 2)� is isomorphic to one of Z8, Z4 % Z2, or

Z2 % Z2 % Z2. Determine which one by elimination.
25. Let G 5 U(32) and H 5 {1, 31}. The group G/H is isomorphic to

one of Z8, Z4 % Z2, or Z2 % Z2 % Z2. Determine which one by
elimination.

26. Let G be the group of quarternions given by the table in Exercise 4
of the Supplementary Exercises for Chapters 1–4 on page 91, and
let H be the subgroup {e, a2}. Is G/H isomorphic to Z4 or Z2 % Z2?

27. Let G 5 U(16), H 5 {1, 15}, and K 5 {1, 9}. Are H and K iso-
morphic? Are G/H and G/K isomorphic?

28. Let G 5 Z4 % Z4, H 5 {(0, 0), (2, 0), (0, 2), (2, 2)}, and K 5 �(1, 2)�.
Is G/H isomorphic to Z4 or Z2 % Z2? Is G/K isomorphic to Z4 or 
Z2 % Z2?

29. Prove that has no subgroup of order 18.
30. Express U(165) as an internal direct product of proper subgroups

in four different ways.
31. Let R* denote the group of all nonzero real numbers under multi-

plication. Let R1 denote the group of positive real numbers under
multiplication. Prove that R* is the internal direct product of R1

and the subgroup {1, 21}.
32. Prove that D4 cannot be expressed as an internal direct product of

two proper subgroups.
33. Let H and K be subgroups of a group G. If G 5 HK and g 5 hk,

where h [ H and k [ K, is there any relationship among |g|, |h|,
and |k|? What if G 5 H 3 K?

34. In Z, let H 5 �5� and K 5 �7�. Prove that Z 5 HK. Does Z 5 H 3 K?
35. Let G 5 {3a6b10c | a, b, c [ Z} under multiplication and H 5

{3a6b12c | a, b, c [ Z} under multiplication. Prove that G 5 �3� 3
�6� 3 �10�, whereas H 2 �3� 3 �6� 3 �12�.

36. Determine all subgroups of R* (nonzero reals under multiplica-
tion) of index 2.

A4 % Z3
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37. Let G be a finite group and let H be a normal subgroup of G. Prove
that the order of the element gH in G/H must divide the order 
of g in G.

38. Let H be a normal subgroup of G and let a belong to G. If the ele-
ment aH has order 3 in the group G/H and |H| 510, what are the
possibilities for the order of a?

39. If H is a normal subgroup of a group G, prove that C(H), the cen-
tralizer of H in G, is a normal subgroup of G. 

40. An element is called a square if it can be expressed in the form b2

for some b. Suppose that G is an Abelian group and H is a sub-
group of G. If every element of H is a square and every element of
G/H is a square, prove that every element of G is a square. Does
your proof remain valid when “square” is replaced by “nth power,”
where n is any integer?

41. Show, by example, that in a factor group G/H it can happen that
aH 5 bH but |a| 2 |b|. (Do not use a 5 e or b 5 e.)

42. Observe from the table for A4 given in Table 5.1 on page 107 that
the subgroup given in Example 6 of this chapter is the only sub-
group of A4 of order 4. Why does this imply that this subgroup
must be normal in A4? Generalize this to arbitrary finite groups.

43. Let p be a prime. Show that if H is a subgroup of a group of order
2p that is not normal, then H has order 2.

44. Show that is isomorphic to .
45. Suppose that N is a normal subgroup of a finite group G and H is a

subgroup of G. If is prime, prove that H is contained in N or
that .

46. If G is a group and , prove that .
47. Suppose that G is a non-Abelian group of order p3, where p is a

prime, and Z(G) 2 {e}. Prove that |Z(G)| 5 p.
48. If |G| 5 pq, where p and q are primes that are not necessarily dis-

tinct, prove that |Z(G)| 5 1 or pq.
49. Let N be a normal subgroup of G and let H be a subgroup of G. If

N is a subgroup of H, prove that H/N is a normal subgroup of G/N
if and only if H is a normal subgroup of G.

50. Let G be an Abelian group and let H be the subgroup consisting of
all elements of G that have finite order (See Exercise 18 in the
Supplementary Exercises for Chapters 1–4). Prove that every non-
identity element in G/H has infinite order.

51. Determine all subgroups of R* that have finite index.

G>Z(G) < Z2 % Z2|G : Z(G)| 5 4
NH 5 G

ZG>N Z

Inn(D13)D13
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52. Let G 5 {61, 6i, 6j, 6k}, where i2 5 j2 5 k2 5 21, 2i 5 (21)i,
12 5 (21)2 5 1, ij 5 2ji 5 k, jk 5 2kj 5 i, and ki 5 2ik 5 j.
a. Construct the Cayley table for G.
b. Show that H 5 {1, 21} v G.
c. Construct the Cayley table for . Is isomorphic to or

?
(The rules involving i, j, and k can be remembered by using the cir-
cle below.

Going clockwise, the product of two consecutive elements is the
third one. The same is true for going counterclockwise, except that
we obtain the negative of the third element.) This is the group of
quaternions that was given in another form in Exercise 4 in the
Supplementary Exercises for Chapters 1–4. It was invented by
William Hamilton in 1843. The quaternions are used to describe
rotations in three-dimensional space, and they are used in physics.
The quaternions can be used to extend the complex numbers in a
natural way.

53. In D4, let K 5 {R0, D} and let L 5 {R0, D, D9, R180}. Show that K v

L v D4, but that K is not normal in D4. (Normality is not transitive.
Compare Exercise 4, Supplementary Exercises for Chapters 5–8.)

54. Show that the intersection of two normal subgroups of G is a nor-
mal subgroup of G. Generalize.

55. Let N be a normal subgroup of G and let H be any subgroup of G.
Prove that NH is a subgroup of G. Give an example to show that
NH need not be a subgroup of G if neither N nor H is normal. (This
exercise is referred to in Chapter 24.)

56. If N and M are normal subgroups of G, prove that NM is also a nor-
mal subgroup of G.

57. Let N be a normal subgroup of a group G. If N is cyclic, prove that
every subgroup of N is also normal in G. (This exercise is referred
to in Chapter 24.)

58. Without looking at inner automorphisms of Dn, determine the num-
ber of such automorphisms.

k j

i

Z2 % Z2

Z4G>HG>H
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59. Let H be a normal subgroup of a finite group G and let x [ G. If
gcd(|x|, |G/H|) 5 1, show that x [ H. (This exercise is referred to
in Chapter 25.)

60. Let G be a group and let G9 be the subgroup of G generated by the
set S 5 {x21y21xy | x, y [ G}. (See Exercise 3, Supplementary
Exercises for Chapters 5–8, for a more complete description of G9.)
a. Prove that G9 is normal in G.
b. Prove that G/G9 is Abelian.
c. If G/N is Abelian, prove that G9 # N.
d. Prove that if H is a subgroup of G and G9 # H, then H is normal

in G.
61. If N is a normal subgroup of G and |G/N| 5 m, show that xm [ N

for all x in G.
62. Suppose that a group G has a subgroup of order n. Prove that the

intersection of all subgroups of G of order n is a normal subgroup
of G.

63. If G is non-Abelian, show that Aut(G) is not cyclic.
64. Let |G| 5 pnm, where p is prime and gcd( p, m) 5 1. Suppose that

H is a normal subgroup of G of order pn. If K is a subgroup of G of
order pk, show that K # H.

65. Suppose that H is a normal subgroup of a finite group G. If G/H
has an element of order n, show that G has an element of order n.
Show, by example, that the assumption that G is finite is necessary.
(This exercise is referred to in this chapter.)

66. Recall that a subgroup N of a group G is called characteristic if
f(N) 5 N for all automorphisms f of G. If N is a characteristic
subgroup of G, show that N is a normal subgroup of G.

67. In D4, let _ 5 {R0, H}. Form an operation table for the cosets _,
D_, V_, and D9_. Is the result a group table? Does your answer
contradict Theorem 9.2?

68. Show that S4 has a unique subgroup of order 12.
69. If |G| 5 30 and |Z(G)| 5 5, what is the structure of G/Z(G)?
70. If H is a normal subgroup of G and |H| 5 2, prove that H is con-

tained in the center of G.
71. Prove that A5 cannot have a normal subgroup of order 2.
72. Let G be a finite group and let H be an odd-order subgroup of G of

index 2. Show that the product of all the elements of G (taken in
any order) cannot belong to H.
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73. Let G be a group and p a prime. Suppose that is a
subgroup of G. Show that H is normal and that every nonidentity
element of has order p.

74. Suppose that H is a normal subgroup of G. If |H| 5 4 and gH has
order 3 in G/H, find a subgroup of order 12 in G.

75. Let G be a group and H a subgroup of G of index 2. Show that H
contains every element of G of odd order.

Suggested Readings

Michael Brennan and Des MacHale, “Variations on a Theme: A4 Defi-
nitely Has No Subgroup of Order Six!,” Mathematics Magazine, 73
(2000): 36–40.

The authors offer 11 proofs that A4 has no subgroup of order 6. These
proofs provide a review of many of the ideas covered thus far in this
text.

J. A. Gallian, R. S. Johnson, and S. Peng. “On the Quotient Structure of
Zn,” Pi Mu Epsilon Journal, 9 (1993): 524–526.

The authors determine the structure of the group (Z % Z)/�(a, b)� and
related groups. This article can be downloaded at http://www.d.umn
.edu/~jgallian/quotient_structures.pdf

Tony Rothman, “Genius and Biographers: The Fictionalization of Évariste
Galois,” The American Mathematical Monthly 89 (1982): 84–106. 

The author convincingly argues that three of the most widely read
accounts of Galois’ life are highly fictitious. 

Paul F. Zweifel, “Generalized Diatonic and Pentatonic Scales: A Group-
theoretic Approach,” Perspectives of New Music, 34 (1996): 140–161.

The author discusses how group-theoretic notions such as subgroups,
cosets, factor groups, and isomorphisms of Z12 and Z20 relate to musical
scales, tuning, temperament, and structure.

G>H
H 5 5gp Zg [ G6
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ÉVARISTE GALOIS (pronounced gal-WAH)
was born on October 25, 1811, near Paris.
Although he had mastered the works of
Legendre and Lagrange at age 15, Galois
twice failed his entrance examination to
l’Ecole Polytechnique. He did not know
some basic mathematics, and he did mathe-
matics almost entirely in his head, to the
annoyance of the examiner.

At 18, Galois wrote his important research
on the theory of equations and submitted it to
the French Academy of Sciences for publica-
tion. The paper was given to Cauchy for ref-
ereeing. Cauchy, impressed by the paper,
agreed to present it to the academy, but he
never did. At the age of 19, Galois entered a

199

Galois at seventeen was making discover-
ies of epochal significance in the theory of
equations, discoveries whose conse-
quences are not yet exhausted after more
than a century.

E. T. BELL, Men of Mathematics

This French stamp was issued as part of
the 1984 “Celebrity Series” in support of
the Red Cross Fund.

Evariste Galois

paper of the highest quality in the competi-
tion for the Grand Prize in Mathematics,
given by the French Academy of Sciences.
The paper was given to Fourier, who died
shortly thereafter. Galois’s paper was never
seen again.

Galois spent most of the last year and a
half of his life in prison for revolutionary po-
litical offenses. While in prison, he attempted
suicide and prophesied that he would die in a
duel. On May 30, 1832, Galois was shot in a
duel and died the next day at the age of 20.

Among the many concepts introduced by
Galois are normal subgroups, isomorphisms,
simple groups, finite fields, and Galois theory.
His work provided a method for disposing
of several famous constructability problems,
such as trisecting an arbitrary angle and dou-
bling a cube. Galois’s entire collected works
fill only 60 pages.

To find more information about Galois,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Definition and Examples
In this chapter, we consider one of the most fundamental ideas of
algebra—homomorphisms. The term homomorphism comes from the
Greek words homo, “like,” and morphe, “form.” We will see that a ho-
momorphism is a natural generalization of an isomorphism and that
there is an intimate connection between factor groups of a group and
homomorphisms of a group. The concept of group homomorphisms
was introduced by Camille Jordan in 1870, in his influential book
Traité des Substitutions.

Definition Group Homomorphism

A homomorphism f from a group G to a group is a mapping 
from G into that preserves the group operation; that is, f(ab) 5
f(a)f(b) for all a, b in G.

Before giving examples and stating numerous properties of
homomorphisms, it is convenient to introduce an important subgroup
that is intimately related to the image of a homomorphism. (See
property 4 of Theorem 10.1.)

Definition Kernel of a Homomorphism

The kernel of a homomorphism f from a group G to a group with
identity e is the set {x [ G | f(x) 5 e}. The kernel of f is denoted by
Ker f.

G
G

10
Group 
Homomorphisms

All modern theories of nuclear and electromagnetic interactions are based
on group theory.

ANDREW WATSON, New Scientist
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10 | Group Homomorphisms 201

EXAMPLE 1 Any isomorphism is a homomorphism that is also onto
and one-to-one. The kernel of an isomorphism is the trivial subgroup.

EXAMPLE 2 Let R* be the group of nonzero real numbers under
multiplication. Then the determinant mapping A → det A is a
homomorphism from GL(2, R) to R*. The kernel of the determinant
mapping is SL(2, R).

EXAMPLE 3 The mapping f from R* to R*, defined by f(x) 5 |x|,
is a homomorphism with Ker f 5 {1, 21}.

EXAMPLE 4 Let R[x] denote the group of all polynomials with real
coefficients under addition. For any f in R[x], let f 9 denote the deriva-
tive of f. Then the mapping f S f 9 is a homomorphism from R[x] to it-
self. The kernel of the derivative mapping is the set of all constant poly-
nomials.

EXAMPLE 5 The mapping f from Z to Zn, defined by f(m) 5 m
mod n, is a homomorphism (see Exercise 11 in Chapter 0). The kernel
of this mapping is �n�.

EXAMPLE 6 The mapping f(x) 5 x2 from R*, the nonzero real
numbers under multiplication, to itself is a homomorphism, since 
f(ab) 5 (ab)2 5 a2b2 5 f(a)f(b) for all a and b in R*. (See Exercise 5.) 
The  kernel is {1, –1}.

EXAMPLE 7 The mapping f(x) 5 x2 from R, the real numbers
under addition, to itself is not a homomorphism, since f(a 1 b) 5 
(a 1 b)2 5 a2 1 2ab 1 b2, whereas f(a) 1 f(b) 5 a2 1 b2.

When defining a homomorphism from a group in which there are
several ways to represent the elements, caution must be exercised to en-
sure that the correspondence is a function. (The term well-defined is
often used in this context.) For example, since 3(x 1 y) 5 3x 1 3y in
Z6, one might believe that the correspondence x 1 �3� S 3x from Z/�3� to
Z6 is a homomorphism. But it is not a function, since 0 1 �3� 5 3 1
�3� in Z/�3� but 3 ? 0 2 3 ? 3 in Z6.

For students who have had linear algebra, we remark that every
linear transformation is a group homomorphism and the nullspace is
the same as the kernel. An invertible linear transformation is a group
isomorphism.
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Properties of Homomorphisms
Theorem 10.1 Properties of Elements Under Homomorphisms

Let f be a homomorphism from a group G to a group and let g be
an element of G. Then

1. f carries the identity of G to the identity of .
2. f(gn) 5 (f(g))n for all n in Z.
3. If |g| is finite, then |f(g)| divides |g|.
4. Ker f is a subgroup of G.
5. f(a) 5 f(b) if and only if aKer f 5 bKer f.
6. If f(g) 5 g9, then f21(g9) 5 {x [ G | f(x) 5 g9} 5 gKer f.

G

G

PROOF The proofs of properties 1 and 2 are identical to the proofs of
properties 1 and 2 of isomorphisms in Theorem 6.2. To prove property 3,
notice that properties 1 and 2 together with gn 5 e imply that e 5
f(e) 5 f(gn) 5 (f(g))n. So, by Corollary 2 to Theorem 4.1, we have
|f(g)| divides n.

By property 1 we know that Ker f is not empty. So, to prove prop-
erty 4, we assume that a, b [ Ker f and show that ab21 [ Ker f.
Since f(a) 5 e and f(b) 5 e, we have f(ab21) 5 f(a)f(b21) 5
f(a)(f(b))21 5 ee21 5 e. So, ab21 [ Ker f.

To prove property 5, first assume that f(a) 5 f(b). Then 
e 5 (f(b))21f(a) 5 f(b21)f(a) 5 f(b21a), so that b21a[ Ker f. 
It now follows from property 5 of the lemma in Chapter 7 that 
bKer f 5 aKer f. Reversing this argument completes the proof.

To prove property 6, we must show that f21(g9) # gKer f and that
gKer f # f21(g9). For the first inclusion, let x [ f21(g9), so that 
f(x) 5 g9. Then f(g) 5 f(x) and by property 5 we have gKer f 5
xKer f and therefore x [ gKer f.  This completes the proof that
f21(g9) # gKer f. To prove that gKer f # f21(g9), suppose that k [
Ker f. Then f(gk) 5 f(g)f(k) 5 g9e 5 g9. Thus, by definition, gk [
f21(g9).

Since homomorphisms preserve the group operation, it should not be
a surprise that they preserve many group properties.
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Theorem 10.2 Properties of Subgroups Under Homomorphisms

PROOF First note that the proofs of properties 1, 2, and 3 are identi-
cal to the proofs of properties 4, 3, and 2, respectively, of Theorem
6.3, since those proofs use only the fact that an isomorphism is an
operation-preserving mapping.

To prove property 4, let f(h) [ f(H) and f(g) [ f(G). Then
f(g)f(h)f(g)21 5 f(ghg21) [ f(H), since H is normal in G.

Property 5 follows directly from property 6 of Theorem 10.1 and the
fact that all cosets of Ker f 5 f21(e) have the same number of elements.

To prove property 6, let fH denote the restriction of f to the 
elements of H. Then fH is a homomorphism from H onto f(H).
Suppose |Ker fH| 5 t. Then, by property 5, fH is a t-to-1 mapping. So,
|f(H)|t 5 |H|.

To prove property 7, we use the One-Step Subgroup Test. Clearly,
e [ f21( ), so that f21( ) is not empty. Let k1, k2 [ f21( ). Then,
by the definition of f21( ), we know that f(k1), f(k2) [ . Thus,
f(k2)

21 [ as well and f(k1k2
21) 5 f(k1)f(k2)

21 [ . So, by definition 

of f21( ), we have k1k2
21 [ f21( ).

To prove property 8, we use the normality test given in Theorem 9.1.
Note that every element in xf21( )x21 has the form xkx21, where f(k) [

. Thus, since is normal in , f(xkx21) 5 f(x)f(k)(f(x))21 [ ,
and, therefore, xkx21 [ f21( ).

Finally, property 9 follows directly from property 5.
K

KGKK
K

KK

KK
KK

KKK

Let f be a homomorphism from a group G to a group and let H be
a subgroup of G. Then

1. f(H) 5 {f(h) | h [ H} is a subgroup of .
2. If H is cyclic, then f(H) is cyclic.
3. f H is Abelian, then f(H) is Abelian.
4. If H is normal in G, then f(H) is normal in f(G).
5. If |Ker f| 5 n, then f is an n-to-1 mapping from G onto f(G).
6. If |H| 5 n, then |f(H)| divides n.
7. If is a subgroup of , then f21( ) 5 {k [ G | f(k) [ }

is a subgroup of G.
8. If is a normal subgroup of , then f21( ) 5 {k [ G |

f(k) [ } is a normal subgroup of G.
9. If f is onto and Ker f 5 {e}, then f is an isomorphism 

from G to .G

K
KGK

KKGK

G

G
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A few remarks about Theorems 10.1 and 10.2 are in order. Students
should remember the various properties of these theorems in words. For
example, properties 2 and 3 of Theorem 10.2 say that the homomorphic
image of a cyclic group is cyclic and the homomorphic image of an
Abelian group is Abelian. Property 4 of Theorem 10.2 says that the ho-
momorphic image of a normal subgroup of G is normal in the image of
G. Property 5 of Theorem 10.2 says that if f is a homomorphism from
G to , then every element of that gets “hit” by f gets hit the same
number of times as does the identity. The set f21(g9) defined in prop-
erty 6 of Theorem 10.1 is called the inverse image of g9 (or the pullback
of g9). Note that the inverse image of an element is a coset of the kernel
and that every element in that coset has the same image. Similarly, the
set f21( ) defined in property 7 of Theorem 10.2 is called the inverse
image of (or the pullback of ).

Property 6 of Theorem 10.1 is reminiscent of something from linear
algebra and differential equations. Recall that if x is a particular solu-
tion to a system of linear equations and S is the entire solution set of the
corresponding homogeneous system of linear equations, then x 1 S is
the entire solution set of the nonhomogeneous system. In reality, this
statement is just a special case of property 6. Properties 1 and 6 of
Theorem 10.1 and property 5 of Theorem 10.2 are pictorially repre-
sented in Figure 10.1.

The special case of property 8 of Theorem 10.2, where 5 {e}, is
of such importance that we single it out.

Corollary Kernels Are Normal

The next two examples illustrate several properties of Theorems 10.1
and 10.2.

EXAMPLE 8 Consider the mapping f from C* to C* given by 
f(x) 5 x4. Since (xy)4 5 x4y4, f is a homomorphism. Clearly,
Ker f 5 {x | x4 5 1} 5 {1, 21, i, 2i}. So, by property 5 of Theorem
10.2, we know that f is a 4-to-1 mapping. Now let’s find all elements
that map to, say, 2. Certainly, f( ) 5 2. Then, by property 6 of
Theorem 10.1, the set of all elements that map to 2 is Ker f 5
{ , 2 , i, 2 i}.4"24"24"24"2

4"2

4"2

K

KK
K

GG

Let f be a group homomorphism from G to . Then Ker f is a nor-
mal subgroup of G.

G

16509_ch10_p200-217 pp3  11/17/08  9:59 AM  Page 204



10 | Group Homomorphisms 205

Finally, we verify a specific instance of property 3 of Theorem 10.1
and of property 2 and property 6 of Theorem 10.2. Let H 5
�cos 30° 1 i sin 30°�. It follows from DeMoivre’s Theorem (Example 7
in Chapter 0) that |H| 5 12, f(H) 5 �cos 120° 1 i sin 120°�, and 
|f(H)| 5 3.

EXAMPLE 9 Define f:Z12 → Z12 by f(x) 5 3x. To verify that f is a
homomorphism, we observe that in Z12, 3(a 1 b) 5 3a 1 3b (since the
group operation is addition modulo 12). Direct calculations show that
Ker f 5 {0, 4, 8}. Thus, we know from property 5 of Theorem 10.2 that
f is a 3-to-1 mapping. Since f(2) 5 6, we have by property 6 of
Theorem 10.1 that f21(6) 5 2 1 Ker f 5 {2, 6, 10}. Notice also that �2�
is cyclic and f(�2�) 5 {0, 6} is cyclic. Moreover, |2| 5 6 and |f(2)| 5
|6| 5 2, so |f(2)| divides |2| in agreement with property 3 of Theorem
10.1. Letting 5 {0, 6}, we see that the subgroup f21( ) 5 {0, 2, 4, 6,
8, 10}. This verifies property 7 of Theorem 10.2 in this particular case.

The next example illustrates how one can easily determine all homo-
morphisms from a cyclic group to a cyclic group.

EXAMPLE 10 We determine all homomorphisms from Z12 to Z30.
By property 2 of Theorem 10.1, such a homomorphism is completely
specified by the image of 1. That is, if 1 maps to a, then x maps to xa.
Lagrange’s Theorem and property 3 of Theorem 10.1 require that |a| di-
vide both 12 and 30. So, |a| 5 1, 2, 3, or 6. Thus, a 5 0, 15, 10, 20,
5, or 25. This gives us a list of candidates for the homomorphisms. That
each of these six possibilities yields an operation-preserving, well-
defined function can now be verified by direct calculations. [Note that
gcd(12, 30) 5 6. This is not a coincidence!]

KK

φ

φ

φ φ

(g) = g9

G

G

(G)

e

φ φKer 21(e)= φ φgKer 21(g9)=

 e = g1, g2,..., gn  g, gg2,..., ggn

Figure 10.1
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EXAMPLE 11 The mapping from Sn to Z2 that takes an even permu-
tation to 0 and an odd permutation to 1 is a homomorphism. Figure 10.2
illustrates the telescoping nature of the mapping.
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(1
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(1
32)

(1
32)

(1
)

(1
)

1

1
1

1

O

O

O

O

Figure 10.2 Homomorphism from S3 to Z2.

The First Isomorphism Theorem
In Chapter 9, we showed that for a group G and a normal subgroup H,
we could arrange the Cayley table of G into boxes that represented the
cosets of H in G, and that these boxes then became a Cayley table for
G/H. The next theorem shows that for any homomorphism f of G and
the normal subgroup Ker f, the same process produces a Cayley table
isomorphic to the homomorphic image of G. Thus, homomorphisms,
like factor groups, cause a systematic collapse of a group to a simpler
but closely related group. This can be likened to viewing a group
through the reverse end of a telescope—the general features of the
group are present, but the apparent size is diminished. The important
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10 | Group Homomorphisms 207

relationship between homomorphisms and factor groups given below is
often called the Fundamental Theorem of Group Homomorphisms.

Theorem 10.3 First Isomorphism Theorem (Jordan, 1870)

PROOF Let us use c to denote the correspondence gKerf S f(g).
That c is well defined (that is, the correspondence is independent of
the particular coset representative chosen) and one-to-one follows
directly from property 5 of Theorem 10.1. To show that c is operation-
preserving, observe that c(xKer f yKer f) 5 c(xyKer f) 5 f(xy) 5
f(x) f(y) 5 c(xKer f)c(yKer f).

The next corollary follows directly from Theorem 10.3, property 1 of
Theorem 10.2, and Lagrange’s Theorem.

Corollary

EXAMPLE 10 To illustrate Theorem 10.3 and its proof, consider the
homomorphism f from D4 to itself given by

R0 R180 R90 R270 H V D D9

R0 H R180 V

Then Ker f 5 {R0, R180}, and the mapping c in Theorem 10.3 is
R0Ker f S R0, R90Ker f S H, HKer f S R180, DKer f S V. It is
straight-forward to verify that the mapping c is an isomorphism.

Mathematicians often give a pictorial representation of Theorem
10.3, as follows:

G (G)
φ

φ

φ

γ ψ

G/Ker

Let f be a group homomorphism from G to . Then the mapping
from G/Ker f to f(G), given by gKer f → f(g), is an isomorphism.
In symbols, G/Ker f L f(G).

G

If f is a homomorphism from a finite group G to , then |f(G)|
divides |G| and | |.G

G
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where g:G S G/Ker f is defined as g(g) 5 gKer f. The mapping g
is called the natural mapping from G to G/Ker f. Our proof of
Theorem 10.3 shows that cg 5 f. In this case, one says that the pre-
ceding diagram is commutative.

As a consequence of Theorem 10.3, we see that all homomorphic im-
ages of G can be determined using G. We may simply consider the various
factor groups of G. For example, we know that the homomorphic image of
an Abelian group is Abelian because the factor group of an Abelian group
is Abelian. We know that the number of homomorphic images of a cyclic
group G of order n is the number of divisors of n, since there is exactly one
subgroup of G (and therefore one factor group of G) for each divisor of n.
(Be careful: The number of homomorphisms of a cyclic group of order n
need not be the same as the number of divisors of n, since different homo-
morphisms can have the same image.)

An appreciation for Theorem 10.3 can be gained by looking at a few
examples.

EXAMPLE 13 Z/8N9 LL Z
N

Consider the mapping from Z to Zn defined in Example 5. Clearly, its
kernel is �n�. So, by Theorem 10.3, Z/�n� L Zn.

EXAMPLE 14 The Wrapping Function

Recall the wrapping function W from trigonometry. The real number
line is wrapped around a unit circle in the plane centered at (0, 0) with
the number 0 on the number line at the point (1, 0), the positive reals
in the counterclockwise direction and the negative reals in the
clockwise direction (see Figure 10.3). The function W assigns to each
real number a the point a radians from (1, 0) on the circle. This map-
ping is a homomorphism from the group R under addition onto the
circle group (the group of complex numbers of magnitude 1 under
multiplication). Indeed, it follows from elementary facts of trigonom-
etry that W(x) 5 cos x 1 i sin x and W(x 1 y) 5 W(x)W(y). Since W is
periodic of period 2p, Ker W 5 �2p�. So, from the First Isomorphism
Theorem, we see that R/�2p� is isomorphic to the circle group.

Figure 10.3

W(3)

W(2)

W(0)

W(1)

(0, 0)

(1, 0)

W(21)
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10 | Group Homomorphisms 209

Our next example is a theorem that is used repeatedly in Chapters 24
and 25.

EXAMPLE 15 The N/C Theorem

Let H be a subgroup of a group G. Recall that the normalizer of H in
G is N(H) 5 {x [ G | xHx21 5 H} and the centralizer of H in G is 
C(H) 5 {x [ G | xhx21 5 h for all h in H}. Consider the mapping from
N(H) to Aut(H) given by g S fg, where fg is the inner automorphism of
H induced by g [that is, fg(h) 5 ghg21 for all h in H]. This mapping is a
homomorphism with kernel C(H). So, by Theorem 10.3, N(H)/C(H) is
isomorphic to a subgroup of Aut(H).

As an application of the N/C Theorem, we will show that every
group of order 35 is cyclic.

EXAMPLE 16 Let G be a group of order 35. By Lagrange’s
Theorem, every nonidentity element of G has order 5, 7, or 35. If
some element has order 35, G is cyclic. So we may assume that all
nonidentity elements have order 5 or 7. However, not all such
elements can have order 5, since elements of order 5 come 4 at a time
(if |x| 5 5, then |x2| 5 |x3| 5 |x4| 5 5) and 4 does not divide 34.
Similarly, since 6 does not divide 34, not all nonidentity elements can
have order 7. So, G has elements of order 7 and order 5. Since G has
an element of order 7, it has a subgroup of order 7. Let us call it H. In
fact, H is the only subgroup of G of order 7, for if K is another sub-
group of G of order 7, we have by Exercise 7 of the Supplementary
Exercises for Chapters 5–8 that |HK| 5 |H||K|/|H > K| 5 7 ? 7/1 5 49.
But, of course, this is impossible in a group of order 35. Since for every
a in G, aHa21 is also a subgroup of G of order 7 (see Exercise 1 of the
Supplementary Exercises for Chapters 1–4), we must have aHa21 5 H.
So, N(H) 5 G. Since H has prime order, it is cyclic and therefore
Abelian. In particular, C(H) contains H. So, 7 divides |C(H)| and
|C(H)| divides 35. It follows, then, that C(H) 5 G or C(H) 5 H. If
C(H) 5 G, then we may obtain an element x of order 35 by letting 
x 5 hk, where h is a nonidentity element of H and k has order 5. On the
other hand, if C(H) 5 H, then |C(H)| 5 7 and |N(H)/C(H)| 5 35/7 5 5.
However, 5 does not divide |Aut(H)| 5 |Aut(Z7)| 5 6. This contradic-
tion shows that G is cyclic.

The corollary of Theorem 10.2 says that the kernel of every homo-
morphism of a group is a normal subgroup of the group. We conclude
this chapter by verifying that the converse of this statement is also true.
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Theorem 10.4 Normal Subgroups Are Kernels

PROOF Define g:G S G/N by g(g) 5 gN. (This mapping is called the
natural homomorphism from G to G/N.) Then, g(xy) 5 (xy)N 5 xNyN 5
g(x)g(y). Moreover, g [ Ker g if and only if gN 5 g(g) 5 N, which is
true if and only if g [ N (see property 2 of the lemma in Chapter 7).

Examples 13, 14, and 15 illustrate the utility of the First Isomorphism
Theorem. But what about homomorphisms in general? Why would one
care to study a homomorphism of a group? The answer is that, just as
was the case with factor groups of a group, homomorphic images of a
group tell us some of the properties of the original group. One measure
of the likeness of a group and its homomorphic image is the size of the
kernel. If the kernel of the homomorphism of group G is the identity,
then the image of G tells us everything (group theoretically) about G (the
two being isomorphic). On the other hand, if the kernel of the homomor-
phism is G itself, then the image tells us nothing about G. Between these
two extremes, some information about G is preserved and some is lost.
The utility of a particular homomorphism lies in its ability to preserve
the group properties we want, while losing some inessential ones. In this
way, we have replaced G by a group less complicated (and therefore eas-
ier to study) than G; but, in the process, we have saved enough informa-
tion to answer questions that we have about G itself. For example, if G is
a group of order 60 and G has a homomorphic image of order 12 that is
cyclic, then we know from properties 5, 7, and 8 of Theorem 10.2 that G
has normal subgroups of orders 5, 10, 15, 20, 30, and 60. To illustrate
further, suppose we are asked to find an infinite group that is the union of
three proper subgroups. Instead of attempting to do this directly, we first
make the problem easier by finding a finite group that is the union
of three proper subgroups. Observing that Z2 % Z2 is the union of H1 5
�1, 0�, H2 5 �0, 1�, and H3 5 �1, 1�, we have found our finite group. Now
all we need do is think of an infinite group that has Z2 % Z2 as a homo-
morphic image and pull back H1, H2, and H3, and our original problem is
solved. Clearly, the mapping from Z2 % Z2 % Z onto Z2 % Z2 given by
f(a, b, c) 5 (a, b) is such a mapping, and therefore Z2 % Z2 % Z is the
union of f21(H1) 5 {(a, 0, c,) | a [ Z2, c [ Z}, f21(H2) 5 {(0, b, c) | b
[ Z2, c [ Z}, and f21(H3) 5 {(a, a, c) | a [ Z2, c [ Z}.

Every normal subgroup of a group G is the kernel of a homomor-
phism of G. In particular, a normal subgroup N is the kernel 
of the mapping g S gN from G to G/N.
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10 | Group Homomorphisms 211

Although an isomorphism is a special case of a homomorphism, the
two concepts have entirely different roles. Whereas isomorphisms
allow us to look at a group in an alternative way, homomorphisms act as
investigative tools. The following analogy between homomorphisms
and photography may be instructive.† A photograph of a person cannot
tell us the person’s exact height, weight, or age. Nevertheless, we may
be able to decide from a photograph whether the person is tall or short,
heavy or thin, old or young, male or female. In the same way, a homo-
morphic image of a group gives us some information about the group.

In certain branches of group theory, and especially in physics and
chemistry, one often wants to know all homomorphic images of a group
that are matrix groups over the complex numbers (these are called group
representations). Here, we may carry our analogy with photography one
step further by saying that this is like wanting photographs of a person
from many different angles (front view, profile, head-to-toe view, close-
up, etc.), as well as x-rays! Just as this composite information from the
photographs reveals much about the person, several homomorphic im-
ages of a group reveal much about the group.

Exercises

The greater the difficulty, the more glory in surmounting it. Skillful pilots
gain their reputation from storms and tempests.

EPICURUS

1. Prove that the mapping given in Example 2 is a homomorphism.
2. Prove that the mapping given in Example 3 is a homomorphism.
3. Prove that the mapping given in Example 4 is a homomorphism.
4. Prove that the mapping given in Example 11 is a homomorphism.
5. Let R* be the group of nonzero real numbers under multiplication,

and let r be a positive integer. Show that the mapping that takes x
to xr is a homomorphism from R* to R* and determine the kernel.
Which values of r yield an isomorphism?

6. Let G be the group of all polynomials with real coefficients under ad-
dition. For each f in G, let �f denote the antiderivative of f that passes
through the point (0, 0). Show that the mapping f S �f from G to G is
a homomorphism. What is the kernel of this mapping? Is this map-
ping a homomorphism if �f denotes the antiderivative of f that passes
through (0, 1)?

†All perception of truth is the detection of an analogy. Henry David Thoreau, Journal.
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7. If f is a homomorphism from G to H and s is a homomorphism
from H to K, show that is a homomorphism from G to K. How
are Ker f and Ker related? If f and s are onto and G is finite,
describe [Ker : Ker f] in terms of |H| and |K|.

8. Let G be a group of permutations. For each s in G, define

sgn(s) 5

Prove that sgn is a homomorphism from G to the multiplicative
group {11, 21}. What is the kernel? Why does this homomor-
phism allow you to conclude that is a normal subgroup of of
index 2?

9. Prove that the mapping from G % H to G given by (g, h) S g is a
homomorphism. What is the kernel? This mapping is called the
projection of G % H onto G.

10. Let G be a subgroup of some dihedral group. For each x in G, define

f(x) 5

Prove that f is a homomorphism from G to the multiplicative
group . What is the kernel? 

11. Prove that (Z % Z )/(�(a, 0)� 3 �(0, b)�) is isomorphic to Za % Zb.
12. Suppose that k is a divisor of n. Prove that Zn/�k� L Zk.
13. Prove that (A % B)/(A % {e}) L B.
14. Explain why the correspondence x → 3x from Z12 to Z10 is not a ho-

momorphism.
15. Suppose that f is a homomorphism from Z30 to Z30 and Ker f 5

{0, 10, 20}. If f(23) 5 9, determine all elements that map to 9.
16. Prove that there is no homomorphism from Z8 % Z2 onto Z4 % Z4.
17. Prove that there is no homomorphism from Z16 % Z2 onto Z4 % Z4.
18. Can there be a homomorphism from Z4 % Z4 onto Z8? Can there be

a homomorphism from Z16 onto Z2 % Z2? Explain your answers.
19. Suppose that there is a homomorphism f from Z17 to some group

and that f is not one-to-one. Determine f.
20. How many homomorphisms are there from Z20 onto Z8? How many

are there to Z8?
21. If f is a homomorphism from Z30 onto a group of order 5, deter-

mine the kernel of f.

511,216

e11   if x is a rotation,

21     if x is a reflection.

SnAn

e11  if s is an even permutation,

  21   if s is an odd permutation.

sf

sf
sf
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22. Suppose that f is a homomorphism from a finite group G onto 
and that has an element of order 8. Prove that G has an element
of order 8. Generalize.

23. Suppose that f is a homomorphism from Z36 to a group of order 24.
a. Determine the possible homomorphic images.
b. For each image in part a, determine the corresponding kernel of f.

24. Suppose that f: Z50 S Z15 is a group homomorphism with f(7) 5 6.
a. Determine f(x).
b. Determine the image of f.
c. Determine the kernel of f.
d. Determine f21(3). That is, determine the set of all elements

that map to 3.
25. How many homomorphisms are there from Z20 onto Z10? How

many are there to Z10?
26. Determine all homomorphisms from Z4 to Z2 % Z2.
27. Determine all homomorphisms from Zn to itself.
28. Suppose that f is a homomorphism from S4 onto Z2. Determine

Ker f. Determine all homomorphisms from S4 to Z2.
29. Suppose that there is a homomorphism from a finite group G onto

Z10. Prove that G has normal subgroups of indexes 2 and 5.
30. Suppose that f is a homomorphism from a group G onto Z6 % Z2

and that the kernel of f has order 5. Explain why G must have nor-
mal subgroups of orders 5, 10, 15, 20, 30, and 60.

31. Suppose that f is a homomorphism from U(30) to U(30) and 
that Ker f 5 {1, 11}. If f(7) 5 7, find all elements of U(30) that
map to 7.

32. Find a homomorphism f from U(30) to U(30) with kernel {1, 11}
and f(7) 5 7.

33. Suppose that f is a homomorphism from U(40) to U(40) and that 
Ker f 5 {1, 9, 17, 33}. If f(11) 5 11, find all elements of U(40)
that map to 11.

34. Find a homomorphism f from U(40) to U(40) with kernel {1, 9,
17, 33} and f(11) 5 11.

35. Prove that the mapping f: Z % Z S Z given by (a, b) S a 2 b is a
homomorphism. What is the kernel of f? Describe the set f21(3)
(that is, all elements that map to 3).

36. Suppose that there is a homomorphism f from Z % Z to a group G
such that f((3, 2)) 5 a and f((2, 1)) 5 b. Determine f((4, 4)) in
terms of a and b. Assume that the operation of G is addition.

G
G
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37. Prove that the mapping x S x6 from C* to C* is a homomorphism.
What is the kernel?

38. For each pair of positive integers m and n, we can define a homo-
morphism from Z to Zm % Zn by x S (x mod m, x mod n). What is
the kernel when (m, n) 5 (3, 4)? What is the kernel when (m, n) 5
(6, 4)? Generalize.

39. (Second Isomorphism Theorem) If K is a subgroup of G and N is
a normal subgroup of G, prove that K/(K > N) is isomorphic 
to KN/N.

40. (Third Isomorphism Theorem) If M and N are normal subgroups of
G and N # M, prove that (G/N)/(M/N) L G/M.

41. Let f(d) denote the Euler phi function of d (see page 79). Show
that the number of homomorphisms from Zn to Zk is Sf(d), where
the sum runs over all common divisors d of n and k. [It follows
from number theory that this sum is actually gcd(n, k).]

42. Let k be a divisor of n. Consider the homomorphism from U(n) to
U(k) given by x S x mod k. What is the relationship between this
homomorphism and the subgroup Uk(n) of U(n)?

43. Determine all homomorphic images of D4 (up to isomorphism).
44. Let N be a normal subgroup of a finite group G. Use the theorems

of this chapter to prove that the order of the group element gN in
G/N divides the order of g.

45. Suppose that G is a finite group and that Z10 is a homomorphic
image of G. What can we say about |G|? Generalize.

46. Suppose that Z10 and Z15 are both homomorphic images of a finite
group G. What can be said about |G|? Generalize.

47. Suppose that for each prime p, Zp is the homomorphic image of a
group G. What can we say about |G|? Give an example of such a
group.

48. (For students who have had linear algebra.) Suppose that x is a
particular solution to a system of linear equations and that S is the
entire solution set of the corresponding homogeneous system of
linear equations. Explain why property 6 of Theorem 10.1 guaran-
tees that x 1 S is the entire solution set of the nonhomogeneous
system. In particular, describe the relevant groups and the homo-
morphism between them.

49. Let N be a normal subgroup of a group G. Use property 7 of
Theorem 10.2 to prove that every subgroup of G/N has the form
H/N, where H is a subgroup of G. (This exercise is referred to in
Chapter 24.)

16509_ch10_p200-217 pp3  11/17/08  9:59 AM  Page 214



10 | Group Homomorphisms 215

50. Show that a homomorphism defined on a cyclic group is com-
pletely determined by its action on a generator of the group.

51. Use the First Isomorphism Theorem to prove Theorem 9.4.

52. Let a and b be group homomorphisms from G to and let H 5

{g [ G | a(g) 5 b(g)}. Prove or disprove that H is a subgroup of G.
53. Let Z[x] be the group of polynomials in x with integer coefficients

under addition. Prove that the mapping from Z[x] into Z given by
f(x) S f(3) is a homomorphism. Give a geometric description of
the kernel of this homomorphism. Generalize.

54. Prove that the mapping from R under addition to GL(2, R) that
takes x to

is a group homomorphism. What is the kernel of the homomorphism?
55. Suppose there is a homomorphism from G onto Z2 % Z2. Prove

that G is the union of three proper normal subgroups.
56. If H and K are normal subgroups of G and H > K 5 {e}, prove that

G is isomorphic to a subgroup of G/H % G/K.
57. Suppose that H and K are distinct subgroups of G of index 2. Prove

that H > K is a normal subgroup of G of index 4 and that G/(H > K)
is not cyclic.

58. Suppose that the number of homomorphisms from G to H is n.
How many homomorphisms are there from G to H % H % ? ? ? % H
(s terms)? When H is Abelian, how many homomorphisms are there
from G % G % ? ? ? % G (s terms) to H?

59. Prove that every group of order 77 is cyclic.
60. Determine all homomorphisms from Z onto S3. Determine all

homomorphisms from Z to S3.
61. Suppose G is an Abelian group under addition with the property

that for every positive integer n the set nG 5{ng|g [ G} 5 G.
Show that every proper subgroup of G is properly contained in a
proper subgroup of G. Name two familiar groups that satisfy the
hypothesis.

62. Let p be a prime. Determine the number of homomorphisms from
into .ZpZp %  Zp

f

c  cos x  sin x

2sin x  cos x
d

G
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Computer Exercise

A computer lets you make more mistakes faster than any invention in
human history—with the possible exceptions of handguns and tequila.

MITCH RATLIFFE

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the homomorphisms from Zm to Zn. 
(Recall that a homomorphism from Zm is completely determined by
the image of 1.) Run the program for m 5 20 with various choices
for n. Run the program for m 5 15 with various choices for n. What
relationship do you see between m and n and the number of homo-
morphisms from Zm to Zn? For each choice of m and n, observe the
smallest positive image of 1. Try to see the relationship between this
image and the values of m and n. What relationship do you see be-
tween the smallest positive image of 1 and the other images of 1?
Test your conclusions with other choices of m and n.
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Camille Jordan

CAMILLE JORDAN was born into a well-to-do
family on January 5, 1838, in Lyons, France.
Like his father, he graduated from the École
Polytechnique and became an engineer.
Nearly all of his 120 research papers in
mathematics were written before his retire-
ment from engineering in 1885. From 1873
until 1912, Jordan taught simultaneously at
the École Polytechnique and at the College
of France.

In the great French tradition, Jordan was
a universal mathematician who published in
nearly every branch of mathematics. Among
the concepts named after him are the Jordan
canonical form in matrix theory, the Jordan
curve theorem from topology, and the
Jordan-Hölder theorem from group theory.

His classic book Traité des Substitutions,
published in 1870, was the first to be de-
voted solely to group theory and its applica-
tions to other branches of mathematics.

Another book that had great influence
and set a new standard for rigor was his
Cours d’analyse. This book gave the first
clear definitions of the notions of volume
and multiple integral. Nearly 100 years after
this book appeared, the distinguished
mathematician and mathematical historian
B. L. van der Waerden wrote, “For me, every
single chapter of the Cours d’analyse is a
pleasure to read.” Jordan died in Paris on
January 22, 1922.

To find more information about Jordan,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/

Although these contributions [to 
analysis and topology] would have been
enough to rank Jordan very high among
his mathematical contemporaries, it is
chiefly as an algebraist that he reached
celebrity when he was barely thirty; and
during the next forty years he was
universally regarded as the undisputed
master of group theory.

J. DIEUDONNÉ, Dictionary of 

Scientific Biography
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Fundamental 
Theorem of Finite
Abelian Groups

The Fundamental Theorem
In this chapter, we present a theorem that describes to an algebraist’s
eye (that is, up to isomorphism) all finite Abelian groups in a stan-
dardized way. Before giving the proof, which is long and difficult, we
discuss some consequences of the theorem and its proof. The first
proof of the theorem was given by Leopold Kronecker in 1858.

Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

11

By a small sample we may judge of the whole piece.
MIGUEL DE CERVANTES, Don Quixote

Every finite Abelian group is a direct product of cyclic groups of
prime-power order. Moreover, the number of terms in the product
and the orders of the cyclic groups are uniquely determined by the
group.

Since a cyclic group of order n is isomorphic to Zn, Theorem 11.1
shows that every finite Abelian group G is isomorphic to a group of
the form

Zp1
n1 % Zp2

n2 % ? ? ? % Zpk
nk,

where the pi’s are not necessarily distinct primes and the prime-
powers p1

n1, p2
n2, . . . , pk

nk are uniquely determined by G. Writing a
group in this form is called determining the isomorphism class of G.

The Isomorphism Classes 
of Abelian Groups

The Fundamental Theorem is extremely powerful. As an application,
we can use it as an algorithm for constructing all Abelian groups of any
order. Let’s look at groups whose orders have the form pk, where p is
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prime and k # 4. In general, there is one group of order pk for each set
of positive integers whose sum is k (such a set is called a partition of k);
that is, if k can be written as

k 5 n1 1 n2 1 ? ? ? 1 nt,

where each ni is a positive integer, then

Zp
n1 % Zp

n2 % ? ? ? % Zp
nt

is an Abelian group of order pk.

Possible direct 
Order of G Partitions of k products for G

p 1 Zp

p2 2 Zp2

1 1 1 Zp % Zp

p3 3 Zp3

2 1 1 Zp2 % Zp

1 1 1 1 1 Zp % Zp % Zp

p4 4 Zp4

3 1 1 Zp3 % Zp

2 1 2 Zp2 % Zp2

2 1 1 1 1 Zp2 % Zp % Zp

1 1 1 1 1 1 1 Zp % Zp % Zp % Zp

Furthermore, the uniqueness portion of the Fundamental Theorem
guarantees that distinct partitions of k yield distinct isomorphism
classes. Thus, for example, Z9 % Z3 is not isomorphic to Z3 % Z3 % Z3.
A reliable mnemonic for comparing external direct products is the can-
cellation property: If A is finite, then

A % B L A % C if and only if B L C (see [1]).

Thus Z4 % Z4 is not isomorphic to Z4 % Z2 % Z2 because Z4 is not 
isomorphic to Z2 % Z2.

To appreciate fully the potency of the Fundamental Theorem, contrast
the ease with which the Abelian groups of order pk, k # 4, were
determined with the corresponding problem for non-Abelian groups.
Even a description of the two non-Abelian groups of order 8 is a chal-
lenge (see Chapter 26), and a description of the nine non-Abelian
groups of order 16 is well beyond the scope of this text.

Now that we know how to construct all the Abelian groups of prime-
power order, we move to the problem of constructing all Abelian
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groups of a certain order n, where n has two or more distinct prime
divisors. We begin by writing n in prime-power decomposition form 
n 5 p1

n1p2
n2 ? ? ? pk

nk. Next, we individually form all Abelian groups of
order p1

n1, then p2
n 2, and so on, as described earlier. Finally, we form all

possible external direct products of these groups. For example, let n 5
1176 5 23 ? 3 ? 72. Then, the complete list of the distinct isomorphism
classes of Abelian groups of order 1176 is

Z8 % Z3 % Z49,
Z4 % Z2 % Z3 % Z49,
Z2 % Z2 % Z2 % Z3 % Z49,
Z8 % Z3 % Z7 % Z7,
Z4 % Z2 % Z3 % Z7 % Z7,
Z2 % Z2 % Z2 % Z3 % Z7 % Z7.

If we are given any particular Abelian group G of order 1176, the
question we want to answer about G is: Which of the preceding six iso-
morphism classes represents the structure of G? We can answer this
question by comparing the orders of the elements of G with the orders of
the elements in the six direct products, since it can be shown that two fi-
nite Abelian groups are isomorphic if and only if they have the same
number of elements of each order. For instance, we could determine
whether G has any elements of order 8. If so, then G must be isomorphic
to the first or fourth group above, since these are the only ones with ele-
ments of order 8. To narrow G down to a single choice, we now need
only check whether or not G has an element of order 49, since the first
product above has such an element, whereas the fourth one does not.

What if we have some specific Abelian group G of order p1
n1p2

n2

? ? ? pk
nk, where the pi’s are distinct primes? How can G be expressed as

an internal direct product of cyclic groups of prime-power order? For
simplicity, let us say that the group has 2n elements. First, we must
compute the orders of the elements. After this is done, pick an element
of maximum order 2r, call it a1. Then �a1� is one of the factors in the
desired internal direct product. If G 2 �a1�, choose an element a2 of
maximum order 2s such that s # n 2 r and none of a2, a2

2, a2
4, . . . ,

a2
2 s21

is in �a1�. Then �a2� is a second direct factor. If n 2 r 1 s, select
an element a3 of maximum order 2t such that t # n 2 r 2 s and none of
a3, a3

2, a3
4, . . . , a3

2 t21
is in �a1� 3 �a2� 5 {a1

ia2
j | 0 # i , 2r, 0 #

j , 2s}. Then �a3� is another direct factor. We continue in this fashion
until our direct product has the same order as G.

A formal presentation of this algorithm for any Abelian group G of
prime-power order pn is as follows.
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Element 1 8 12 14 18 21 27 31 34 38 44 47 51 53 57 64

Order 1 4 4 2 4 4 4 4 4 4 4 4 2 4 4 2

From the table of orders, we can instantly rule out all but Z4 % Z4 and 
Z4 % Z2 % Z2 as possibilities. Finally, we observe that since this latter
group has a subgroup isomorphic to Z2 % Z2 % Z2, it has more than
three elements of order 2, and therefore we must have G L Z4 % Z4.

Expressing G as an internal direct product is even easier. Pick an el-
ement of maximum order, say the element 8. Then �8� is a factor in the
product. Next, choose a second element, say a, so that a has order 4 and
a and a2 are not in �8� 5 {1, 8, 64, 57}. Since 12 has this property, we
have G 5 �8� 3 �12�.

Greedy Algorithm for an Abelian Group of Order pn

1. Compute the orders of the elements of the group G.
2. Select an element a1 of maximum order and define G1 5 �a1�. 

Set i 5 1.
3. If |G| 5 |Gi|, stop. Otherwise, replace i by i 1 1.
4. Select an element ai of maximum order pk such that pk #

|G|/|Gi21| and none of ai , ai
p, ai

p 2
,. . . , ai

pk21
is in Gi21, and define

Gi 5 Gi21 3 �ai�.
5. Return to step 3.

In the general case where |G| 5 p1
n 1p2

n 2 ? ? ? pk
n k, we simply use the

algorithm to build up a direct product of order p1
n 1, then another of

order p2
n 2, and so on. The direct product of all of these pieces is the

desired factorization of G. The following example is small enough that
we can compute the appropriate internal and external direct products
by hand.

EXAMPLE 1 Let G 5 {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51,
53, 57, 64} under multiplication modulo 65. Since G has order 16, we
know it is isomorphic to one of

Z16,
Z8 % Z2,
Z4 % Z4,

Z4 % Z2 % Z2,
Z2 % Z2 % Z2 % Z2.

To decide which one, we dirty our hands to calculate the orders of the
elements of G.
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Example 1 illustrates how quickly and easily one can write an Abelian
group as a direct product given the orders of the elements of the group.
But calculating all those orders is certainly not an appealing prospect!
The good news is that, in practice, a combination of theory and calcula-
tion of the orders of a few elements will usually suffice.

EXAMPLE 2 Let G 5 {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62,
64, 71, 73, 82, 89, 91, 98, 107, 109, 116, 118, 127, 134} under multi-
plication modulo 135. Since G has order 24, it is isomorphic to 
one of

Z8 % Z3 L Z24,
Z4 % Z2 % Z3 L Z12 % Z2,

Z2 % Z2 % Z2 % Z3 L Z6 % Z2 % Z2.

Consider the element 8. Direct calculations show that 86 5 109 and 812 5
1. (Be sure to mod as you go. For example, 83 mod 135 5 512 mod 
135 5 107, so compute 84 as 8 ? 107 rather than 8 ? 512.) But now we
know G. Why? Clearly, |8| 5 12 rules out the third group in the list. At
the same time, |109| 5 2 5 |134| (remember, 134 5 21 mod 135) im-
plies that G is not Z24 (see Theorem 4.4). Thus, G L Z12 % Z2, and G 5
�8� 3 �134�.

Rather than express an Abelian group as a direct product of cyclic
groups of prime-power orders, it is often more convenient to combine
the cyclic factors of relatively prime order, as we did in Example 2, to
obtain a direct product of the form Zn1

% Zn2
% ? ? ? % Znk

, where ni di-
vides ni21. For example, Z4 % Z4 % Z2 % Z9 % Z3 % Z5 would be written
as Z180 % Z12 % Z2 (see Exercise 11). The algorithm above is easily
adapted to accomplish this by replacing step 4 by 49: select an element ai
of maximum order m such that m # |G|/|Gi21| and none of ai, ai

2, . . . ,
ai

m21 is in Gi21, and define Gi 5 Gi21 3 �ai�.
As a consequence of the Fundamental Theorem of Finite Abelian

Groups, we have the following corollary, which shows that the converse
of Lagrange’s Theorem is true for finite Abelian groups.

Corollary Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a
subgroup of order m.

It is instructive to verify this corollary for a specific case. Let us say
that G is an Abelian group of order 72 and we wish to produce a subgroup
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of order 12. According to the Fundamental Theorem, G is isomorphic to
one of the following six groups:

Z8 % Z9, Z8 % Z3 % Z3,
Z4 % Z2 % Z9, Z4 % Z2 % Z3 % Z3,
Z2 % Z2 % Z2 % Z9, Z2 % Z2 % Z2 % Z3 % Z3.

Obviously, Z8 % Z9 L Z72 and Z4 % Z2 % Z3 % Z3 L Z12 % Z6 both
have a subgroup of order 12. To construct a subgroup of order 12 in Z4
% Z2 % Z9, we simply piece together all of Z4 and the subgroup of order
3 in Z9; that is, {(a, 0, b) | a [ Z4, b [ {0, 3, 6}}. A subgroup of order
12 in Z8 % Z3 % Z3 is given by {(a, b, 0) | a [ {0, 2, 4, 6}, b [ Z3}. An
analogous procedure applies to the remaining cases and indeed to any
finite Abelian group.

Proof of the Fundamental Theorem
Because of the length and complexity of the proof of the Fundamental
Theorem of Finite Abelian Groups, we will break it up into a series of
lemmas.

Lemma 1

PROOF It is an easy exercise to prove that H and K are subgroups of G
(see Exercise 29 in Chapter 3). Because G is Abelian, to prove that G 5
H 3 K we need only prove that G 5 HK and H > K 5 {e}. Since we
have gcd(m, pn) 5 1, there are integers s and t such that 1 5 sm 1 tpn.
For any x in G, we have x 5 x1 5 xsm1tpn

5 xsmxtpn
and, by Corollary 4

of Lagrange’s Theorem (Theorem 7.1), xsm [ H and x tpn
[ K. Thus,

G 5 HK. Now suppose that some x [ H > K. Then xpn 5 e 5 xm and,
by Corollary 2 to Theorem 4.1, |x| divides both pn and m. Since p does
not divide m, we have |x| 5 1 and, therefore, x 5 e.

To prove the second assertion of the lemma, note that pnm 5
|HK| 5 |H||K|/|H > K| 5 |H||K| (see Exercise 7 in the Supplementary
Exercises for Chapters 5–8). It follows from Theorem 9.5 and
Corollary 2 to Theorem 4.1 that p does not divide |K| and therefore 
|H| 5 pn.

Given an Abelian group G with |G| 5 p1
n1p2

n2 ? ? ? pk
nk, where the

p’s are distinct primes, we let G(pi) denote the set {x [ G | x pi
ni

5 e}.

Let G be a finite Abelian group of order pnm, where p is a prime that
does not divide m. Then G 5 H 3 K, where H 5 {x [ G | x p

n

5 e}
and K 5 {x [ G | xm 5 e}. Moreover, |H| 5 pn.
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It then follows immediately from Lemma 1 and induction that G 5
G(p1) 3 G(p2) 3 ? ? ? 3 G(pk) and |G(pi)| 5 pi

n i. Hence, we turn our
attention to groups of prime-power order.

Lemma 2

PROOF We denote |G| by pn and induct on n. If n 5 1, then G 5
�a� 3 �e�. Now assume that the statement is true for all Abelian
groups of order pk, where k , n. Among all the elements of G, choose
a of maximal order pm. Then x pm 5 e for all x in G. We may assume
that G 2 �a�, for otherwise there is nothing to prove. Now, among all
the elements of G, choose b of smallest order such that b o �a�. We
claim that �a� > �b� 5 {e}. Since |b p| 5 |b|/p, we know that b p [ �a�
by the manner in which b was chosen. Say b p 5 ai. Notice that e 5
b pm 5 (b p) pm21 5 (ai) pm21, so |ai| # pm21. Thus, ai is not a generator of
�a� and, therefore, by Corollary 3 to Theorem 4.2, gcd(pm, i) 2 1.
This proves that p divides i, so that we can write i 5 pj. Then bp 5
ai 5 apj. Consider the element c 5 a2jb. Certainly, c is not in �a�, for
if it were, b would be, too. Also, cp 5 a2jpb p 5 a2ib p 5 b2pb p 5 e.
Thus, we have found an element c of order p such that c o �a�. Since
b was chosen to have smallest order such that b o �a�, we conclude
that b also has order p. It now follows that �a� > �b� 5 {e} because
any nonidentity element of the intersection would generate �b� and
thus contradict b o �a�.

Now consider the factor group 5 G/�b�. To simplify the notation,
we let denote the coset x�b� in . If | | , |a| 5 pm, then pm21

5 . This
means that (a�b�) pm21

5 a pm21
�b� 5 �b�, so that apm21

[ �a� > �b� 5 {e},
contradicting the fact that |a| 5 pm. Thus, | | 5 |a| 5 pm, and therefore

is an element of maximal order in . By induction, we know that 
can be written in the form � � 3 for some subgroup of . Let K be
the pullback of under the natural homomorphism from G to (that
is, K 5 {x [ G | [ }). We claim that �a� > K 5 {e}. For if x [ �a�
> K, then [ � � > 5 { } 5 �b� and x [ �a� > �b� 5 {e}. It now
follows from an order argument (see Exercise 33) that G 5 �a�K, and
therefore G 5 �a� 3 K.

Lemma 2 and induction on the order of the group now give the
following.

eKax
Kx

GK
GKKa

GGa
a

eaaGx
G

Let G be an Abelian group of prime-power order and let a be an
element of maximal order in G. Then G can be written in the form
�a� 3 K.
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Lemma 3

Let us pause to determine where we are in our effort to prove the
Fundamental Theorem of Finite Abelian Groups. The remark following
Lemma 1 shows that G 5 G( p1) 3 G( p2) 3 ? ? ? 3 G( pn), where each 
G( pi) is a group of prime-power order, and Lemma 3 shows that each of
these factors is an internal direct product of cyclic groups. Thus, we have
proved that G is an internal direct product of cyclic groups of prime-
power order. All that remains to be proved is the uniqueness of the factors.
Certainly the groups G( pi) are uniquely determined by G, since they
comprise the elements of G whose orders are powers of pi. So we must
prove that there is only one way (up to isomorphism and rearrangement of
factors) to write each G( pi) as an internal direct product of cyclic groups.

Lemma 4

PROOF We proceed by induction on |G|. Clearly, the case where |G| 5
p is true. Now suppose that the statement is true for all Abelian groups
of order less than |G|. For any Abelian group L, the set Lp 5 {x p | x [
L} is a subgroup of L (see Exercise 15 in the Supplementary Exercises
for Chapters 1– 4) and, by Theorem 9.5, is a proper subgroup if p
divides |L|. It follows that Gp 5 H1

p 3 H2
p 3 ? ? ? 3 Hm9

p, and Gp 5
K1

p 3 K2
p 3 ? ? ? 3 Kn9

p, where m9 is the largest integer i such that 
|Hi| . p, and n9 is the largest integer j such that |Kj| . p. (This ensures
that our two direct products for G p do not have trivial factors.) Since |G p|
, |G|, we have, by induction, m9 5 n9 and |Hi

p| 5 |Ki
p| for i 5 1, . . . ,

m9. Since |Hi| 5 p|Hi
p|, this proves that |Hi| 5 |Ki| for all i 5 1, . . . , m9.

All that remains to be proved is that the number of Hi of order p equals
the number of Ki of order p; that is, we must prove that m 2 m9 5 n 2 n9
(since n9 5 m9). This follows directly from the facts that |H1||H2| ? ? ?
|Hm9|p

m2m9 5 |G| 5 |K1||K2| ? ? ? |Kn9|p
n2n9, |Hi| 5 |Ki|, and m9 5 n9.

A finite Abelian group of prime-power order is an internal direct
product of cyclic groups.

Suppose that G is a finite Abelian group of prime-power order. If 
G 5 H1 3 H2 3 ? ? ? 3 Hm and G 5 K1 3 K2 3 ? ? ? 3 Kn, where the
H’s and K’s are nontrivial cyclic subgroups with |H1| $ |H2| $ ? ? ? $
|Hm| and |K1| $ |K2| $ ? ? ? $ |Kn|, then m 5 n and |Hi| 5 |Ki|
for all i.
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Exercises

You know it ain’t easy, you know how hard it can be.
JOHN LENNON AND PAUL MCCARTNEY, 

“The Ballad of John and Yoko”

1. What is the smallest positive integer n such that there are two non-
isomorphic groups of order n? Name the two groups.

2. What is the smallest positive integer n such that there are three
nonisomorphic Abelian groups of order n? Name the three groups.

3. What is the smallest positive integer n such that there are exactly
four nonisomorphic Abelian groups of order n? Name the four
groups.

4. Calculate the number of elements of order 2 in each of Z16, Z8 % Z2,
Z4 % Z4, and Z4 % Z2 % Z2. Do the same for the elements of order 4.

5. Prove that any Abelian group of order 45 has an element of order 15.
Does every Abelian group of order 45 have an element of order 9?

6. Show that there are two Abelian groups of order 108 that have ex-
actly one subgroup of order 3.

7. Show that there are two Abelian groups of order 108 that have ex-
actly four subgroups of order 3.

8. Show that there are two Abelian groups of order 108 that have ex-
actly 13 subgroups of order 3.

9. Suppose that G is an Abelian group of order 120 and that G has
exactly three elements of order 2. Determine the isomorphism class
of G.

10. Find all Abelian groups (up to isomorphism) of order 360.
11. Prove that every finite Abelian group can be expressed as the

(external) direct product of cyclic groups of orders n1, n2, . . . , nt,
where ni11 divides ni for i 5 1, 2, . . . , t 2 1. (This exercise is re-
ferred to in this chapter and in Chapter 22.)

12. Suppose that the order of some finite Abelian group is divisible by
10. Prove that the group has a cyclic subgroup of order 10.

13. Show, by example, that if the order of a finite Abelian group is di-
visible by 4, the group need not have a cyclic subgroup of order 4.

14. On the basis of Exercises 12 and 13, draw a general conclusion
about the existence of cyclic subgroups of a finite Abelian group.
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15. How many Abelian groups (up to isomorphism) are there
a. of order 6?
b. of order 15?
c. of order 42?
d. of order pq, where p and q are distinct primes?
e. of order pqr, where p, q, and r are distinct primes?
f. Generalize parts d and e.

16. How does the number (up to isomorphism) of Abelian groups of
order n compare with the number (up to isomorphism) of Abelian
groups of order m where
a. n 5 32 and m 5 52?
b. n 5 24 and m 5 54?
c. n 5 pr and m 5 qr, where p and q are prime?
d. n 5 pr and m 5 prq, where p and q are distinct primes?
e. n 5 pr and m 5 prq2, where p and q are distinct primes?

17. The symmetry group of a nonsquare rectangle is an Abelian group
of order 4. Is it isomorphic to Z4 or Z2 % Z2?

18. Verify the corollary to the Fundamental Theorem of Finite
Abelian Groups in the case that the group has order 1080 and the
divisor is 180.

19. The set {1, 9, 16, 22, 29, 53, 74, 79, 81} is a group under multipli-
cation modulo 91. Determine the isomorphism class of this group.

20. Suppose that G is a finite Abelian group that has exactly one sub-
group for each divisor of |G|. Show that G is cyclic.

21. Characterize those integers n such that the only Abelian groups of
order n are cyclic.

22. Characterize those integers n such that any Abelian group of order
n belongs to one of exactly four isomorphism classes.

23. Refer to Example 1 in this chapter and explain why it is unneces-
sary to compute the orders of the last five elements listed to deter-
mine the isomorphism class of G.

24. Let G 5 {1, 7, 17, 23, 49, 55, 65, 71} under multiplication modulo 
96. Express G as an external and an internal direct product of cyclic
groups.

25. Let G 5 {1, 7, 43, 49, 51, 57, 93, 99, 101, 107, 143, 149, 151, 157,
193, 199} under multiplication modulo 200. Express G as an exter-
nal and an internal direct product of cyclic groups.

26. The set G 5 {1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44} is a group
under multiplication modulo 45. Write G as an external and an in-
ternal direct product of cyclic groups of prime-power order.
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27. Suppose that G is an Abelian group of order 9. What is the maxi-
mum number of elements (excluding the identity) of which one
needs to compute the order to determine the isomorphism class of
G? What if G has order 18? What about 16?

28. Suppose that G is an Abelian group of order 16, and in computing
the orders of its elements, you come across an element of order 8
and two elements of order 2. Explain why no further computations
are needed to determine the isomorphism class of G.

29. Let G be an Abelian group of order 16. Suppose that there are ele-
ments a and b in G such that |a| 5 |b| 5 4 and a2 2 b2. Determine
the isomorphism class of G.

30. Prove that an Abelian group of order 2n (n $ 1) must have an odd
number of elements of order 2.

31. Without using Lagrange’s Theorem, show that an Abelian group of
odd order cannot have an element of even order.

32. Let G be the group of all n 3 n diagonal matrices with 61 diago-
nal entries. What is the isomorphism class of G?

33. Prove the assertion made in the proof of Lemma 2 that G 5 �a�K.
34. Suppose that G is a finite Abelian group. Prove that G has order pn,

where p is prime, if and only if the order of every element of G is a
power of p.

35. Dirichlet’s Theorem says that, for every pair of relatively prime in-
tegers a and b, there are infinitely many primes of the form at 1 b.
Use Dirichlet’s Theorem to prove that every finite Abelian group is
isomorphic to a subgroup of a U-group.

36. Determine the isomorphism class of Aut(Z2 % Z3 % Z5).
37. Give an example to show that Lemma 2 is false if G is non-Abelian.

Computer Exercises

The purpose of computation is insight, not numbers.
RICHARD HAMMING

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software lists the isomorphism classes of all finite Abelian
groups of any particular order n. Run the program for n 5 16, 24,
512, 2048, 441000, and 999999.
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2. This software determines how many integers in a given interval are
the order of exactly one Abelian group, of exactly two Abelian
groups, and so on, up to exactly nine Abelian groups. Run your pro-
gram for the integers up to 1000. Then from 10001 to 11000. Then
choose your own interval of 1000 consecutive integers. Is there
much difference in the results?

3. This software expresses a U-group as an internal direct product of
sub-groups H1 3 H2 3 ? ? ? 3 Hi, where |Hi| divides |Hi21|. Run the
program for the groups U(32), U(80), and U(65).
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Supplementary Exercises for Chapters 9–11

Every prospector drills many a dry hole, pulls out his rig, and moves on.
JOHN L. HESS

True/false questions for Chapters 9–11 are available on the Web at:

http://www.d.umn.edu/,jgallian/TF

1. Suppose that H is a subgroup of G and that each left coset of H in
G is some right coset of H in G. Prove that H is normal in G.

2. Use a factor group-induction argument to prove that a finite
Abelian group of order n has a subgroup of order m for every posi-
tive divisor m of n.

3. Let diag(G) 5 {(g, g) | g [ G}. Prove that diag(G) v G % G if
and only if G is Abelian. When G is finite, what is the index of
diag(G) in G % G?

4. Let H be any group of rotations in Dn. Prove that H is normal in Dn.
5. Prove that Inn(G) v Aut(G).
6. Let H be a subgroup of G. Prove that H is a normal subgroup if and

only if, for all a and b in G, ab [ H implies ba [ H.
7. The factor group GL(2, R)/SL(2, R) is isomorphic to some very

familiar group. What is the group?
8. Let k be a divisor of n. The factor group (Z/�n�)/(�k�/�n�) is isomor-

phic to some very familiar group. What is the group?
9. Let

under matrix multiplication.
a. Find .
b. Prove that Z(H) is isomorphic to Q under addition.
c. Prove that H/Z(H) is isomorphic to Q % Q.
d. Are your proofs for parts a and b valid when Q is replaced by

R? Are they valid when Q is replaced by Zp, where p is prime?
10. Prove that D4/Z(D4) is isomorphic to Z2 % Z2.
11. Prove that Q/Z under addition is an infinite group in which every

element has finite order.
12. Show that the intersection of any collection of normal subgroups of

a group is a normal subgroup.
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 §  †  a, b, c [ Q ¶
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13. Let n . 1 be a fixed integer and let G be a group. If the set H 5
{x [ G| |x| 5 n} together with the identity forms a subgroup of
G, prove that it is a normal subgroup of G. In the case where such
a subgroup exists, what can be said about n? Give an example of
a non-Abelian group that has such a subgroup. Give an example
of a group G and a prime n for which the set H together with the
identity is not a subgroup.

14. Show that Q/Z has a unique subgroup of order n for each positive
integer n.

15. If H and K are normal Abelian subgroups of a group and H > K 5
{e}, prove that HK is Abelian.

16. Let G be a group of odd order. Prove that the mapping x S x2 from
G to itself is one-to-one.

17. Suppose that G is a group of permutations on some set. If |G| 5 60
and orbG(5) 5 {1, 5}, prove that stabG(5) is normal in G.

18. Suppose that G 5 H 3 K and that N is a normal subgroup of H.
Prove that N is normal in G.

19. Show that there is no homomorphism from Z8 % Z2 % Z2 onto 
Z4 % Z4.

20. Show that there is no homomorphism from A4 onto a group of
order 2, 4, or 6, but that there is a homomorphism from A4 onto a
group of order 3.

21. Let H be a normal subgroup of S4 of order 4. Prove that S4/H is iso-
morphic to S3.

22. Suppose that f is a homomorphism of U(36), Ker f 5 {1, 13, 25},
and f(5) 5 17. Determine all elements that map to 17.

23. Let n 5 2m, where m is odd. How many elements of order 2 
does Dn/Z(Dn) have? How many elements are in the subgroup
�R360/n�/Z(Dn)? How do these numbers compare with the number
of elements of order 2 in Dm?

24. Suppose that H is a normal subgroup of a group G of odd order and
that |H| 5 5. Show that H # Z(G).

25. Let G be an Abelian group and let n be a positive integer. Let Gn 5
{g | gn 5 e} and Gn 5 {gn | g [ G}. Prove that G/Gn is isomorphic
to Gn.

26. Let R1 denote the multiplicative group of positive reals and let T 5
{a 1 bi [ C| a2 1 b2 5 1} be the multiplicative group of complex
numbers of norm 1. Show that C* is the internal direct product of R1

and T.
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27. Let G be a finite group and let p be a prime. If p2 . |G|, show that
any subgroup of order p is normal in G.

28. Let G 5 Z % Z and H 5 {(x, y)| x and y are even integers}. Show
that H is a subgroup of G. Determine the order of G/H. To which
familiar group is G/H isomorphic?

29. Let n be a positive integer. Prove that every element of order n in
Q/Z is contained in �1/n 1 Z�.

30. (1997 Putnam Competition) Let G be a group and let f : G S G be
a function such that

f(g1)f(g2)f(g3) 5 f(h1)f(h2)f(h3)

whenever g1g2g3 5 e 5 h1h2h3. Prove that there exists an element a
in G such that c(x) 5 af(x) is a homomorphism.

31. Prove that every homomorphism from Z % Z into Z has the form 
(x, y) S ax 1 by, where a and b are integers.

32. Prove that every homomorphism from Z % Z into Z % Z has the
form (x, y) S (ax 1 by, cx 1 dy), where a, b, c, and d are integers.

33. Prove that Q/Z is not isomorphic to a proper subgroup of itself.
34. Prove that for each positive integer n, the group Q/Z has exactly

f(n) elements of order n (f is the Euler phi function).
35. Show that any group with more than two elements has an automor-

phism other than the identity mapping.
36. A proper subgroup H of a group G is called maximal if there is no

subgroup K such that H , K , G. Prove that Q under addition has
no maximal subgroups.

37. Let G be the group of quaternions as given in Exercise 4 of the
Supplementary Exercises for Chapters 1–4 and . Determine
whether is isomorphic to or . Is isomorphic to a
subgroup of G?

38. Write the dihedral group as 
and let .

Prove that N is normal in . Given that de-
termine whether is cyclic.D8>N

F1N 5 5F1, F4, F3, F26D8

N 5 5R0, R90, R180, R2706R315, F1, F2, F3, F4, F5, F6, F7, F8

5R0,  R45, R90, R135, R180, R225, R270,D8

G>HZ2 % Z2Z4G>H H 5 �a2�
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39. Let G be the group where a, b [ R, and

| where x [ R . Show that H is a subgroup of G. Is

H a normal subgroup of G? Justify your answer.
40. Find a subgroup H of Zp2 % Zp2 such that (Zp2 % Zp2)/H is isomorphic

to Zp % Zp.
41. Recall that H is a characteristic subgroup of K if for

every automorphism of K. Prove that if H is a characteristic sub-
group of K, and K is a normal subgroup of G, then H is a normal
subgroup of G.

f
f(H) 5 H

fH 5 e c1 x

0 1
d

fb ? 0e c1 a

0 b
d |
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Introduction 
to Rings

Example is the school of mankind, and they will learn at no other.
EDMUND BURKE, On a Regicide Peace

237

12

†The term ring was first applied in 1897 by the German mathematician David Hilbert
(1862–1943).

Motivation and Definition
Many sets are naturally endowed with two binary operations: addition
and multiplication. Examples that quickly come to mind are the inte-
gers, the integers modulo n, the real numbers, matrices, and polynomi-
als. When considering these sets as groups, we simply used addition
and ignored multiplication. In many instances, however, one wishes to
take into account both addition and multiplication. One abstract con-
cept that does this is the concept of a ring.† This notion was originated
in the mid-nineteenth century by Richard Dedekind, although its first
formal abstract definition was not given until Abraham Fraenkel pre-
sented it in 1914.

Definition Ring

A ring R is a set with two binary operations, addition (denoted by 
a 1 b) and multiplication (denoted by ab), such that for all a, b, c in R:

1. a 1 b 5 b 1 a.
2. (a 1 b) 1 c 5 a 1 (b 1 c).
3. There is an additive identity 0. That is, there is an element 0 in R

such that a 1 0 5 a for all a in R.
4. There is an element 2a in R such that a 1 (2a) 5 0.
5. a(bc) 5 (ab)c.
6. a(b 1 c) 5 ab 1 ac and (b 1 c) a 5 ba 1 ca.

So, a ring is an Abelian group under addition, also having an asso-
ciative multiplication that is left and right distributive over addition.
Note that multiplication need not be commutative. When it is, we say
that the ring is commutative. Also, a ring need not have an identity
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under multiplication. A unity (or identity) in a ring is a nonzero element
that is an identity under multiplication. A nonzero element of a com-
mutative ring with unity need not have a multiplicative inverse. When it
does, we say that it is a unit of the ring. Thus, a is a unit if a21 exists.

The following terminology and notation are convenient. If a and b
belong to a commutative ring R and a is nonzero, we say that a divides
b (or that a is a factor of b) and write a | b, if there exists an element c
in R such that b 5 ac. If a does not divide b, we write a B b.

Recall that if a is an element from a group under the operation of
addition and n is a positive integer, na means a 1 a 1 ? ? ? 1 a, where
there are n summands. When dealing with rings, this notation can cause
confusion, since we also use juxtaposition for the ring multiplication.
When there is the potential for confusion, we will use n ? a to mean
a 1 a 1 ? ? ? 1 a (n summands).

For an abstraction to be worthy of study, it must have many diverse
concrete realizations. The following list of examples shows that the
ring concept is pervasive.

Examples of Rings
EXAMPLE 1 The set Z of integers under ordinary addition and

multiplication is a commutative ring with unity 1. The units of Z are
1 and 21.

EXAMPLE 2 The set Zn 5 {0, 1, . . . , n 2 1} under addition and
multiplication modulo n is a commutative ring with unity 1. The set of
units is U(n).

EXAMPLE 3 The set Z[x] of all polynomials in the variable x with
integer coefficients under ordinary addition and multiplication is a
commutative ring with unity f(x) 5 1.

EXAMPLE 4 The set M2(Z) of 2 3 2 matrices with integer entries 

is a noncommutative ring with unity .

EXAMPLE 5 The set 2Z of even integers under ordinary addition
and multiplication is a commutative ring without unity.

EXAMPLE 6 The set of all continuous real-valued functions of a
real variable whose graphs pass through the point (1, 0) is a commuta-
tive ring without unity under the operations of pointwise addition and

c1 0

0 1
d

238 Rings
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multiplication [that is, the operations ( f 1 g)(a) 5 f(a) 1 g(a) and 
( fg)(a) 5 f(a)g(a)].

EXAMPLE 7 Let R1, R2, . . . , Rn be rings. We can use these to con-
struct a new ring as follows. Let

R1 % R2 % ? ? ? % Rn 5 {(a1, a2, . . . , an) | ai [ Ri}

and perform componentwise addition and multiplication; that is, define

(a1, a2, . . . , an) 1 (b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)

and

(a1, a2, . . . , an)(b1, b2, . . . , bn) 5 (a1b1, a2b2, . . . , anbn).

This ring is called the direct sum of R1, R2, . . . , Rn.

Properties of Rings
Our first theorem shows how the operations of addition and multiplica-
tion intertwine. We use b 2 c to denote b 1 (2c).

Theorem 12.1 Rules of Multiplication

PROOF We will prove rules 1 and 2 and leave the rest as easy exercises
(see Exercise 11). To prove statements such as those in Theorem 12.1, we
need only “play off ” the distributive property against the fact that R is a
group under addition with additive identity 0. Consider rule 1. Clearly,

0 1 a0 5 a0 5 a(0 1 0) 5 a0 1 a0.

So, by cancellation, 0 5 a0. Similarly, 0a 5 0.

Let a, b, and c belong to a ring R. Then

1. a0 5 0a 5 0.
2. a(2b) 5 (2a)b 5 2(ab).
3. (2a)(2b) 5 ab.†

4. a(b 2 c) 5 ab 2 ac and (b 2 c)a 5 ba 2 ca.

Furthermore, if R has a unity element 1, then

5. (21)a 5 2a.
6. (21)(21) 5 1.

12 | Introduction to Rings 239

†Minus times minus is plus.
The reason for this we need not discuss.
W. H. Auden
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To prove rule 2, we observe that a(2b) 1 ab 5 a(2b 1 b) 5
a0 5 0. So, adding 2(ab) to both sides yields a(2b) 5 2(ab). The re-
mainder of rule 2 is done analogously.

Recall that in the case of groups, the identity and inverses are unique.
The same is true for rings, provided that these elements exist. The proofs
are identical to the ones given for groups and therefore are omitted.

Theorem 12.2 Uniqueness of the Unity and Inverses

Many students have the mistaken tendency to treat a ring as if it were
a group under multiplication. It is not. The two most common errors are
the assumptions that ring elements have multiplicative inverses—they
need not—and that a ring has a multiplicative identity—it need not. For
example, if a, b, and c belong to a ring, a 2 0 and ab 5 ac, we cannot
conclude that b 5 c. Similarly, if a2 5 a, we cannot conclude that a 5 0
or 1 (as is the case with real numbers). In the first place, the ring need
not have multiplicative cancellation, and in the second place, the ring
need not have a multiplicative identity. There is an important class of
rings wherein multiplicative identities exist and for which multiplica-
tive cancellation holds. This class is taken up in the next chapter.

Subrings
In our study of groups, subgroups played a crucial role. Subrings, the
analogous structures in ring theory, play a much less prominent role than
their counterparts in group theory. Nevertheless, subrings are important.

Definition Subring

A subset S of a ring R is a subring of R if S is itself a ring with the
operations of R.

Just as was the case for subgroups, there is a simple test for subrings.

Theorem 12.3 Subring Test

A nonempty subset S of a ring R is a subring if S is closed under
subtraction and multiplication—that is, if a 2 b and ab are in S
whenever a and b are in S.

If a ring has a unity, it is unique. If a ring element has a multipli-
cative inverse, it is unique.

240 Rings
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PROOF Since addition in R is commutative and S is closed under sub-
traction, we know by the One-Step Subgroup Test (Theorem 3.1) that S
is an Abelian group under addition. Also, since multiplication in R is
associative as well as distributive over addition, the same is true for
multiplication in S. Thus, the only condition remaining to be checked
is that multiplication is a binary operation on S. But this is exactly what
closure means.

We leave it to the student to confirm that each of the following ex-
amples is a subring.

EXAMPLE 8 {0} and R are subrings of any ring R. {0} is called the
trivial subring of R.

EXAMPLE 9 {0, 2, 4} is a subring of the ring Z6, the inte-
gers modulo 6. Note that although 1 is the unity in Z6, 4 is the unity in
{0, 2, 4}.

EXAMPLE 10 For each positive integer n, the set

nZ 5 {0, 6n, 62n, 63n, . . .}

is a subring of the integers Z.

EXAMPLE 11 The set of Gaussian integers

Z[i] 5 {a 1 bi | a, b [ Z}

is a subring of the complex numbers C.

EXAMPLE 12 Let R be the ring of all real-valued functions of a sin-
gle real variable under pointwise addition and multiplication. The sub-
set S of R of functions whose graphs pass through the origin forms a
subring of R.

EXAMPLE 13 The set

of diagonal matrices is a subring of the ring of all 2 3 2 matrices 
over Z.

We can picture the relationship between a ring and its various sub-
rings by way of a subring lattice diagram. In such a diagram, any ring
is a subring of all the rings that it is connected to by one or more up-
ward lines. Figure 12.1 shows the relationships among some of the
rings we have already discussed.

e ca 0

0 b
d 0  a, b [ Z f
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Figure 12.1 Partial subring lattice diagram of C

In the next several chapters, we will see that many of the fundamen-
tal concepts of group theory can be naturally extended to rings. In par-
ticular, we will introduce ring homomorphisms and factor rings.

Exercises

There is no substitute for hard work.
THOMAS ALVA EDISON, Life

1. Give an example of a finite noncommutative ring. Give an exam-
ple of an infinite noncommutative ring that does not have a unity.

2. The ring {0, 2, 4, 6, 8} under addition and multiplication modulo
10 has a unity. Find it.

3. Give an example of a subset of a ring that is a subgroup under
addition but not a subring.

4. Show, by example, that for fixed nonzero elements a and b in a
ring, the equation ax 5 b can have more than one solution. How
does this compare with groups?

5. Prove Theorem 12.2.
6. Find an integer n that shows that the rings Zn need not have the fol-

lowing properties that the ring of integers has.
a. a2 5 a implies a 5 0 or a 5 1.
b. ab 5 0 implies a 5 0 or b 5 0.
c. ab 5 ac and a 2 0 imply b 5 c.
Is the n you found prime?

C

Q
Q(√2) = {a 1 b√2 | a, b [ Q}

Z

R

5Z 2Z 3Z

6Z4Z

8Z 12Z 18Z

10Z

7Z

9Z

Z[i] = {a 1 bi | a, b [ Z}

242 Rings
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7. Show that the three properties listed in Exercise 6 are valid for Zp,
where p is prime.

8. Show that a ring is commutative if it has the property that ab 5 ca
implies b 5 c when a 2 0.

9. Prove that the intersection of any collection of subrings of a ring R
is a subring of R.

10. Verify that Examples 8 through 13 in this chapter are as stated.
11. Prove parts 3 through 6 of Theorem 12.1.
12. Let a, b, and c be elements of a commutative ring, and suppose that

a is a unit. Prove that b divides c if and only if ab divides c.
13. Describe all the subrings of the ring of integers.
14. Let a and b belong to a ring R and let m be an integer. Prove that 

m ? (ab) 5 (m ? a)b 5 a(m ? b).
15. Show that if m and n are integers and a and b are elements from a

ring, then (m ? a)(n ? b) 5 (mn) ? (ab). (This exercise is referred to
in Chapters 13 and 15.)

16. Show that if n is an integer and a is an element from a ring, then 
n ? (2a) 5 2(n ? a).

17. Show that a ring that is cyclic under addition is commutative.
18. Let a belong to a ring R. Let S 5 {x [ R | ax 5 0}. Show that S is

a subring of R.
19. Let R be a ring. The center of R is the set {x [ R | ax 5 xa for all

a in R}. Prove that the center of a ring is a subring.
20. Describe the elements of M2(Z) (see Example 4) that have multi-

plicative inverses.
21. Suppose that R1, R2, . . . , Rn are rings that contain nonzero ele-

ments. Show that R1 % R2 % ? ? ? % Rn has a unity if and only if
each Ri has a unity.

22. Let R be a commutative ring with unity and let U(R) denote the set
of units of R. Prove that U(R) is a group under the multiplication of
R. (This group is called the group of units of R.)

23. Determine U(Z[i]) (see Example 11).
24. If R1, R2, . . . , Rn are commutative rings with unity, show that

U(R1 % R2 % ? ? ? % Rn) 5 U(R1) % U(R2) % ? ? ? % U(Rn).
25. Determine U(Z[x]). (This exercise is referred to in Chapter 17.)
26. Determine U(R[x]).
27. Show that a unit of a ring divides every element of the ring.
28. In Z6, show that 4 | 2; in Z8, show that 3 | 7; in Z15, show that 9 | 12.

12 | Introduction to Rings 243
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29. Suppose that a and b belong to a commutative ring R with unity. If
a is a unit of R and b2 5 0, show that a 1 b is a unit of R.

30. Suppose that there is an integer n . 1 such that xn 5 x for all elements
x of some ring. If m is a positive integer and am 5 0 for some a, show
that a 5 0.

31. Give an example of ring elements a and b with the properties that
ab 5 0 but ba 2 0.

32. Let n be an integer greater than 1. In a ring in which xn 5 x for all x,
show that ab 5 0 implies ba 5 0.

33. Suppose that R is a ring such that x3 5 x for all x in R. Prove that
6x 5 0 for all x in R.

34. Suppose that a belongs to a ring and a4 5 a2. Prove that a2n 5 a2

for all n $ 1.
35. Find an integer n . 1 such that an 5 a for all a in Z6. Do the same

for Z10. Show that no such n exists for Zm when m is divisible by the
square of some prime.

36. Let m and n be positive integers and let k be the least common mul-
tiple of m and n. Show that mZ > nZ 5 kZ.

37. Explain why every subgroup of Zn under addition is also a subring
of Zn.

38. Is Z6 a subring of Z12?
39. Suppose that R is a ring with unity 1 and a is an element of R such

that a2 5 1. Let S 5 {ara | r [ R}. Prove that S is a subring of R.
Does S contain 1?

40. Let M2(Z) be the ring of all 2 3 2 matrices over the integers and let R 5

. Prove or disprove that R is a subring

of M2(Z).
41. Let M2(Z) be the ring of all 2 3 2 matrices over the integers and let R 5

. Prove or disprove that R is a sub-

ring of M2(Z).

42. Let R 5 . Prove or disprove that R is a subring 

of M2(Z).
43. Let R 5 Z % Z % Z and S 5 {(a, b, c) [ R | a 1 b 5 c}. Prove or

disprove that S is a subring of R.
44. Suppose that there is a positive even integer n such that an 5 a for

all elements a of some ring. Show that 2a 5 a for all a in the ring.

e ca a

b b
d `  a, b [ Z f

e c a a 2 b

a 2 b b
d `  a, b [ Z f

e c a a 1 b

a 1 b b
d `  a, b [ Z f
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45. Let R be a ring with unity 1. Show that S 5 {n ? 1| n [ Z} is a sub-
ring of R.

46. Show that 2Z < 3Z is not a subring of Z.
47. Determine the smallest subring of Q that contains 1/2. (That is,

find the subring S with the property that S contains 1/2 and, if T is
any subring containing 1/2, then T contains S.)

48. Determine the smallest subring of Q that contains 2/3.
49. Let R be a ring. Prove that a2 2 b2 5 (a 1 b)(a 2 b) for all a, b in

R if and only if R is commutative.
50. Suppose that R is a ring and that a2 5 a for all a in R. Show that R

is commutative. [A ring in which a2 5 a for all a is called a
Boolean ring, in honor of the English mathematician George Boole
(1815–1864).]

51. Give an example of a Boolean ring with four elements. Give an ex-
ample of an infinite Boolean ring.

Computer Exercises

Theory is the general; experiments are the soldiers.
LEONARDO DA VINCI

Software for the computer exercises in this chapter is available at the 
website:

http://www.d.umn.edu/~jgallian

1. This software finds all solutions to the equation x2 1 y2 5 0 in Zp.
Run the software for all odd primes up to 37. Make a conjecture
about the existence of nontrivial solutions in Zp ( p a prime) and the
form of p.

2. Let Zn[i] 5 {a 1 bi| a, b belong to Zn, i2 5 21} (the Gaussian inte-
gers modulo n). This software finds the group of units of this ring
and the order of each element of the group. Run the program for 
n 5 3, 7, 11, and 23. Is the group of units cyclic for these cases? Try
to guess a formula for the order of the group of units of Zn[i] as a
function of n when n is a prime and n mod 4 5 3. Run the program
for n 5 9 and 27. Are the groups cyclic? Try to guess a formula for
the order when n 5 3k. Run the program for n 5 5, 13, 17, and 29.
Is the group cyclic for these cases? What is the largest order of any
element in the group? Try to guess a formula for the order of the
group of units of Zn[i] as a function of n when n is a prime and
n mod 4 5 1. Try to guess a formula for the largest order of any
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element in the group of units of Zn[i] as a function of n when n is a
prime and n mod 4 5 1. On the basis of the orders of the elements
of the group of units, try to guess the isomorphism class of the
group. Run the program for n 5 25. Is this group cyclic? Based on
the number of elements in this group and the orders of the elements,
try to guess the isomorphism class of the group.

3. This software determines the isomorphism class of the group of
units of Zn[i]. Run the program for n 5 5, 13, 17, 29, and 37. Make
a conjecture. Run the program for n 5 3, 7, 11, 19, 23, and 31.
Make a conjecture. Run the program for n 5 5, 25, and 125. Make
a conjecture. Run the program for n 5 13 and 169. Make a conjec-
ture. Run the program for n 5 3, 9, and 27. Make a conjecture. Run
the program for n 5 7 and 49. Make a conjecture. Run the program
for n 5 11 and 121. Make a conjecture. Make a conjecture about
the case where n 5 pk where p is a prime and p mod 4 5 1. Make
a conjecture about the case where n 5 pk where p is a prime and
p mod 4 5 3.

4. This software determines the order of the group of units in the ring
of 2 3 2 matrices over Zn (that is, the group GL(2, Zn)) and the sub-
group SL(2, Zn). Run the program for n 5 2, 3, 5, 7, 11, and 13.
What relationship do you see between the order of GL(2, Zn) and the
order of SL(2, Zn) in these cases? Run the program for n 516, 27,
25, and 49. Make a conjecture about the relationship between the or-
der of GL(2, Zn) and the order of SL(2, Zn) when n is a power of a
prime. Run the program for n 5 32. (Notice that when you run the
program for n 5 32, the table shows the orders for all divisors of 32
greater than 1.) How do the orders of the two groups change each
time you increase the power of 2 by 1? Run the program for n 5 27.
How do the orders of the two groups change each time you increase
the power of 3 by 1? Run the program for n 5 25. How do the orders
of the two groups change when you increase the power of 5 by 1?
Make a conjecture about the relationship between |SL(2, Zpi)| and
|SL(2, Zpi11)|. Make a conjecture about the relationship between
|GL(2, Zpt)| and |GL(2, Zpi11)|. Run the program for n 5 12, 15, 20,
21, and 30. Make a conjecture about the order of GL(2, Zn) in terms
of the orders of GL(2, Zs) and GL(2, Zt) where n 5 st and s and t are
relatively prime. (Notice that when you run the program for st, the
table shows the values for st, s, and t.) For each value of n, is the or-
der of SL(2, Zn) divisible by n? Is it divisible by n 1 1? Is it divisible
by n 2 1?

5. In the ring Zn, this software finds the number of solutions to the
equation x2 5 21. Run the program for all primes between 3 and 29.

246 Rings

16509_ch12_p235-248 pp3  11/18/08  1:34 AM  Page 246



How does the answer depend on the prime? Make a conjecture about
the number of solutions when n is a prime greater than 2. Run the
program for the squares of all primes between 3 and 29. Make a con-
jecture about the number of solutions when n is the square of a
prime greater than 2. Run the program for the cubes of primes be-
tween 3 and 29. Make a conjecture about the number of solutions
when n is any power of an odd prime. Run the program for n 5 2, 4,
8, 16, and 32. Make a conjecture about the number of solutions
when n is a power of 2. Run the program for n 5 12, 20, 24, 28,
and 36. Make a conjecture about the number of solutions when n is a
multiple of 4. Run the program for various cases where n 5 pq and
n 5 2pq where p and q are odd primes. Make a conjecture about the
number of solutions when n 5 pq or n 5 2pq where p and q are odd
primes. What relationship do you see among the numbers of solu-
tions for n 5 p, n 5 q, and n 5 pq? Run the program for various
cases where n 5 pqr and n 5 2pqr where p, q, and r are odd primes.
Make a conjecture about the number of solutions when n 5 pqr or
n 5 2pqr where p, q, and r are odd primes. What relationship do you
see among the numbers of solutions when n 5 p, n 5 q, and n 5 r
and the case that n 5 pqr? 

6. This software determines the number of solutions to the equation
X2 5 2I where X is a 2 3 2 matrix with entries from Zn and I is the
identity. Run the program for n 5 32. Make a conjecture about the
number of solutions when n 5 2k where k . 1. Run the program
for n 5 3, 11, 19, 23, and 31. Make a conjecture about the number
of solutions when n is a prime of the form 4q 1 3. Run the pro-
gram for n 5 27 and 49. Make a conjecture about the number of
solutions when n has the form pi where p is a prime of the form
4q 1 3. Run the program for n 5 5, 13, 17, 29, and 37. Make a
conjecture about the number of solutions when n is a prime of the
form 4q 1 1. Run the program for n 5 6, 10, 14, 22, 15, 21, 33, 39,
30, 42. What seems to be the relationship between the number of
solutions for a given n and the number of solutions for the prime
power factors of n?

Suggested Reading

D. B. Erickson, “Orders for Finite Noncommutative Rings,” American
Mathematical Monthly 73 (1966): 376–377.

In this elementary paper, it is shown that there exists a noncommutative ring
of order m . 1 if and only if m is divisible by the square of a prime.
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I. N. Herstein

A whole generation of textbooks and an entire
generation of mathematicians, myself included,
have been profoundly influenced by that text
[Herstein’s Topics in Algebra].

GEORGIA BENKART

I. N. HERSTEIN was born on March 28, 1923,
in Poland. His family moved to Canada
when he was seven. He grew up in a poor and
tough environment, on which he commented
that in his neighborhood you became either a
gangster or a college professor. During his
school years he played football, hockey, golf,
tennis, and pool. During this time he worked
as a steeplejack and as a barber at a fair.
Herstein received a B.S. degree from the
University of Manitoba, an M.A. from the
University of Toronto, and, in 1948, a Ph.D.
degree from Indiana University under the su-
pervision of Max Zorn. Before permanently
settling at the University of Chicago in 1962,
he held positions at the University of Kansas,
the Ohio State University, the University of
Pennsylvania, and Cornell University.

Herstein wrote more than 100 research
papers and a dozen books. Although his
principal interest was noncommutative ring

theory, he also wrote papers on finite
groups, linear algebra, and mathematical
economics. His textbook Topics in Algebra,
first published in 1964, dominated the field
for 20 years and has become a classic.
Herstein had great influence through his
teaching and his collaboration with col-
leagues. He had 30 Ph.D. students, and
traveled and lectured widely. His nonmath-
ematical interests included languages and
art. He spoke Italian, Hebrew, Polish, and
Portuguese. Herstein died on February 9,
1988, after a long battle with cancer.

To find more information about Herstein,
visit:

http://www-groups.dcs.st-
and.ac.uk/~history/
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Integral Domains13

Definition and Examples
To a certain degree, the notion of a ring was invented in an attempt to
put the algebraic properties of the integers into an abstract setting. A
ring is not the appropriate abstraction of the integers, however, for too
much is lost in the process. Besides the two obvious properties of com-
mutativity and existence of a unity, there is one other essential feature
of the integers that rings in general do not enjoy—the cancellation
property. In this chapter, we introduce integral domains—a particular
class of rings that have all three of these properties. Integral domains
play a prominent role in number theory and algebraic geometry.

Definition Zero-Divisors

A zero-divisor is a nonzero element a of a commutative ring R such
that there is a nonzero element b [ R with ab 5 0.

Definition Integral Domain

An integral domain is a commutative ring with unity and no 
zero-divisors.

Thus, in an integral domain, a product is 0 only when one of the
factors is 0; that is, ab 5 0 only when a 5 0 or b 5 0. The following
examples show that many familiar rings are integral domains and some
familiar rings are not. For each example, the student should verify the
assertion made.

EXAMPLE 1 The ring of integers is an integral domain.

Don’t just read it! Ask your own questions, look for your own examples,
discover your own proofs. Is the hypothesis necessary? Is the converse
true? What happens in the classical special case? Where does the proof 
use the hypothesis?

PAUL HALMOS
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250 Rings

EXAMPLE 2 The ring of Gaussian integers Z[i] 5 {a 1 bi | a, b [ Z}
is an integral domain.

EXAMPLE 3 The ring Z[x] of polynomials with integer coefficients
is an integral domain.

EXAMPLE 4 The ring Z[ ] 5 {a 1 b | a, b [ Z} is an integral
domain.

EXAMPLE 5 The ring Zp of integers modulo a prime p is an integral
domain.

EXAMPLE 6 The ring Zn of integers modulo n is not an integral do-
main when n is not prime.

EXAMPLE 7 The ring M2(Z) of 2 3 2 matrices over the integers is
not an integral domain.

EXAMPLE 8 Z % Z is not an integral domain.

What makes integral domains particularly appealing is that they have
an important multiplicative group-theoretic property, in spite of the fact
that the nonzero elements need not form a group under multiplication.
This property is cancellation.

Theorem 13.1 Cancellation

"2"2

Let a, b, and c belong to an integral domain. If a 2 0 and ab 5 ac,
then b 5 c.

PROOF From ab 5 ac, we have a(b 2 c) 5 0. Since a 2 0, we must
have b 2 c 5 0.

Many authors prefer to define integral domains by the cancellation
property—that is, as commutative rings with unity in which the cancel-
lation property holds. This definition is equivalent to ours.

Fields
In many applications, a particular kind of integral domain called a field
is necessary.

Definition Field

A field is a commutative ring with unity in which every nonzero
element is a unit.
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13 | Integral Domains 251

To verify that every field is an integral domain, observe that if a and
b belong to a field with a 2 0 and ab 5 0, we can multiply both sides
of the last expression by a21 to obtain b 5 0.

It is often helpful to think of ab21 as a divided by b. With this in
mind, a field can be thought of as simply an algebraic system that 
is closed under addition, subtraction, multiplication, and division
(except by 0). We have had numerous examples of fields: the complex
numbers, the real numbers, the rational numbers. The abstract theory
of fields was initiated by Heinrich Weber in 1893. Groups, rings, and
fields are the three main branches of abstract algebra. Theorem 13.2
says that, in the finite case, fields and integral domains are the same.

Theorem 13.2 Finite Integral Domains Are Fields

A finite integral domain is a field.

PROOF Let D be a finite integral domain with unity 1. Let a be any
nonzero element of D. We must show that a is a unit. If a 5 1, a is its
own inverse, so we may assume that a 2 1. Now consider the following
sequence of elements of D: a, a2, a3, . . . . Since D is finite, there must
be two positive integers i and j such that i . j and ai 5 a j. Then, by can-
cellation, ai2j 5 1. Since a 2 1, we know that i 2 j . 1, and we have
shown that ai2j21 is the inverse of a.

Corollary Zp Is a Field

For every prime p, Zp, the ring of integers modulo p, is a field.

PROOF According to Theorem 13.2, we need only prove that Zp has
no zero-divisors. So, suppose that a, b [ Zp and ab 5 0. Then ab 5 pk
for some integer k. But then, by Euclid’s Lemma (see Chapter 0), p
divides a or p divides b. Thus, in Zp, a 5 0 or b 5 0.

Putting the preceding corollary together with Example 6, we see that
Zn is a field if and only if n is prime. In Chapter 22, we will describe
how all finite fields can be constructed. For now, we give one example
of a finite field that is not of the form Zp.

EXAMPLE 9 Field with Nine Elements
Let Z3[i] 5 {a 1 bi | a, b [ Z3}

5 {0, 1, 2, i, 1 1 i, 2 1 i, 2i, 1 1 2i, 2 1 2i},
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252 Rings

where i2 5 21. This is the ring of Gaussian integers modulo 3. Ele-
ments are added and multiplied as in the complex numbers, except that
the coefficients are reduced modulo 3. In particular, 21 5 2. Table 13.1
is the multiplication table for the nonzero elements of Z3[i].

Table 13.1 Multiplication Table for Z3[i]*

1 2 i 1 1 i 2 1 i 2i 1 1 2i 2 1 2i

1 1 2 i 1 1 i 2 1 i 2i 1 1 2i 2 1 2i
2 2 1 2i 2 1 2i 1 1 2i i 2 1 i 1 1 i
i i 2i 2 2 1 i 2 1 2i 1 1 1 i 1 1 2i
1 1 i 1 1 i 2 1 2i 2 1 i 2i 1 1 1 2i 2 i
2 1 i 2 1 i 1 1 2i 2 1 2i 1 i 1 1 i 2i 2
2i 2i i 1 1 1 2i 1 1 i 2 2 1 2i 2 1 i
1 1 2i 1 1 2i 2 1 i 1 1 i 2 2i 2 1 2i i 1
2 1 2i 2 1 2i 1 1 i 1 1 2i i 2 2 1 i 1 2i

EXAMPLE 10 Let Q[ ] 5 {a 1 b | a, b [ Q}. It is easy to see
that Q[ ] is a ring. Viewed as an element of R, the multiplicative in-
verse of any nonzero element of the form a 1 b is simply 1/(a 1
b ). To verify that Q[ ] is a field, we must show that 1/(a 1 b )
can be written in the form c 1 d . In high school algebra, this process
is called “rationalizing the denominator.” Specifically,

.

(Note that a 1 b 2 0 guarantees that a 2 b 2 0.)

Characteristic of a Ring
Note that for any element x in Z3[i], we have 3x 5 x 1 x 1 x 5 0, since
addition is done modulo 3. Similarly, in the subring {0, 3, 6, 9} of Z12,
we have 4x 5 x 1 x 1 x 1 x 5 0 for all x. This observation motivates
the following definition.

Definition Characteristic of a Ring

The characteristic of a ring R is the least positive integer n such that
nx 5 0 for all x in R. If no such integer exists, we say that R has char-
acteristic 0. The characteristic of R is denoted by char R.

Thus, the ring of integers has characteristic 0, and Zn has character-
istic n. An infinite ring can have a nonzero characteristic. Indeed, the

"2"2

1

a 1 b"2
5

1

a 1 b"2
 
a 2 b"2

a 2 b"2
5

a

a2 2 2b2 2
b

a2 2 2b2 "2

"2
"2"2"2

"2
"2

"2"2
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Let R be a ring with unity 1. If 1 has infinite order under addition,
then the characteristic of R is 0. If 1 has order n under addition,
then the characteristic of R is n.

PROOF If 1 has infinite order, then there is no positive integer n such
that n ? 1 5 0, so R has characteristic 0. Now suppose that 1 has addi-
tive order n. Then n ? 1 5 0, and n is the least positive integer with this
property. So, for any x in R, we have

n ? x 5 x 1 x 1 ? ? ? 1 x (n summands)
5 1x 1 1x 1 ? ? ? 1 1x (n summands)
5 (1 1 1 1 ? ? ? 1 1)x (n summands)
5 (n ? 1)x 5 0x 5 0.

Thus, R has characteristic n.

In the case of an integral domain, the possibilities for the character-
istic are severely limited.

Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is 0 or prime.

PROOF By Theorem 13.3, it suffices to show that if the additive order
of 1 is finite, it must be prime. Suppose that 1 has order n and that n 5 st,
where 1 # s, t # n. Then, by Exercise 15 in Chapter 12,

0 5 n ? 1 5 (st) ? 1 5 (s ? 1)(t ? 1).

So, s ? 1 5 0 or t ? 1 5 0. Since n is the least positive integer with the
property that n ? 1 5 0, we must have s 5 n or t 5 n. Thus, n is 
prime.

We conclude this chapter with a brief discussion of polynomials
with coefficients from a ring—a topic we will consider in detail in

ring Z2[x] of all polynomials with coefficients in Z2 has characteristic 2.
(Addition and multiplication are done as for polynomials with ordinary
integer coefficients except that the coefficients are reduced modulo 2.)
When a ring has a unity, the task of determining the characteristic is
simplified by Theorem 13.3.

Theorem 13.3 Characteristic of a Ring with Unity
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later chapters. The existence of zero-divisors in a ring causes unusual
results when one is finding zeros of polynomials with coefficients in
the ring. Consider, for example, the equation x2 2 4x 1 3 5 0. In the
integers, we could find all solutions by factoring

x2 2 4x 1 3 5 (x 2 3)(x 2 1) 5 0

and setting each factor equal to 0. But notice that when we say we can
find all solutions in this manner, we are using the fact that the only way
for a product to equal 0 is for one of the factors to be 0—that is, we are
using the fact that Z is an integral domain. In Z12, there are many pairs of
nonzero elements whose products are 0: 2 ? 6 5 0, 3 ? 4 5 0, 4 ? 6 5 0,
6 ? 8 5 0, and so on. So, how do we find all solutions of x2 2 4x 1 3 5 0
in Z12? The easiest way is simply to try every element! Upon doing so,
we find four solutions: x 5 1, x 5 3, x 5 7, and x 5 9. Observe that we
can find all solutions of x2 2 4x 1 3 5 0 over Z11 or Z13, say, by setting
the two factors x 2 3 and x 2 1 equal to 0. Of course, the reason this
works for these rings is that they are integral domains. Perhaps this will
convince you that integral domains are particularly advantageous rings.
Table 13.2 gives a summary of some of the rings we have introduced and
their properties.

Table 13.2 Summary of Rings and Their Properties

Integral
Ring Form of Element Unity Commutative Domain Field Characteristic

Z k 1 Yes Yes No 0

Zn, n composite k 1 Yes No No n

Zp, p prime k 1 Yes Yes Yes p

Z[x] anxn 1 ? ? ? 1 f(x) 5 1 Yes Yes No 0

a1x 1 a0

nZ, n . 1 nk None Yes No No 0

M2(Z) No No No 0

M2(2Z) None No No No 0

Z[i] a 1 bi 1 Yes Yes No 0

Z3[i] a 1 bi; a, b [ Z3 1 Yes Yes Yes 3

Z[ ] a 1 b ; a, b [ Z 1 Yes Yes No 0

Q[ ] a 1 b ; a, b [ Q 1 Yes Yes Yes 0

Z % Z (a, b) (1, 1) Yes No No 0

"2"2
"2"2

c2a 2b

2c 2d
d

c1 0

0 1
dca b

c d
d
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Exercises

It looked absolutely impossible. But it so happens that you go on worrying
away at a problem in science and it seems to get tired, and lies down and
lets you catch it.

WILLIAM LAWRENCE BRAGG†

1. Verify that Examples 1 through 8 are as claimed.
2. Which of Examples 1 through 5 are fields?
3. Show that a commutative ring with the cancellation property

(under multiplication) has no zero-divisors.
4. List all zero-divisors in Z20. Can you see a relationship between the

zero-divisors of Z20 and the units of Z20?
5. Show that every nonzero element of Zn is a unit or a zero-divisor.
6. Find a nonzero element in a ring that is neither a zero-divisor nor a

unit.
7. Let R be a finite commutative ring with unity. Prove that every

nonzero element of R is either a zero-divisor or a unit. What hap-
pens if we drop the “finite” condition on R?

8. Describe all zero-divisors and units of Z % Q % Z.
9. Let d be an integer. Prove that Z[ ] 5 {a 1 b | a, b [ Z} is

an integral domain. (This exercise is referred to in Chapter 18.)
10. In Z7, give a reasonable interpretation for the expressions 1/2,

22/3, , and 21/6.
11. Give an example of a commutative ring without zero-divisors that

is not an integral domain.
12. Find two elements a and b in a ring such that both a and b are zero-

divisors, a 1 b 2 0, and a 1 b is not a zero-divisor.
13. Let a belong to a ring R with unity and suppose that an 5 0 for

some positive integer n. (Such an element is called nilpotent.)
Prove that 1 2 a has a multiplicative inverse in R. [Hint: Consider
(1 2 a)(1 1 a 1 a2 1 ? ? ? 1 an21).]

14. Show that the nilpotent elements of a commutative ring form a
subring.

15. Show that 0 is the only nilpotent element in an integral domain.
16. A ring element a is called an idempotent if a2 5 a. Prove that the

only idempotents in an integral domain are 0 and 1.

"23

"d"d

†Bragg, at age 24, won the Nobel Prize for the invention of x-ray crystallography. He
remains the youngest person ever to receive the Nobel Prize.
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17. Let a and b be idempotents in a commutative ring. Show that each
of the following is also an idempotent: ab, , ,

.
18. Prove that if a is a ring idempotent, then for all positive inte-

gers n.
19. Determine all ring elements that are both nilpotents and idempotents.
20. Find a zero-divisor in Z5[i] 5 {a 1 bi | a, b [ Z5}.
21. Find an idempotent in Z5[i] 5 {a 1 bi | a, b [ Z5}.
22. Find all units, zero-divisors, idempotents, and nilpotent elements

in Z3 % Z6.
23. Determine all elements of a ring that are both units and idempotents.
24. Let R be the set of all real-valued functions defined for all real

numbers under function addition and multiplication.
a. Determine all zero-divisors of R.
b. Determine all nilpotent elements of R.
c. Show that every nonzero element is a zero-divisor or a unit.

25. (Subfield Test) Let F be a field and let K be a subset of F with at
least two elements. Prove that K is a subfield of F if, for any 
a, b (b 2 0) in K, a 2 b and ab21 belong to K.

26. Let d be a positive integer. Prove that Q[ ] 5 {a 1 b |
a, b [ Q} is a field.

27. Let R be a ring with unity 1. If the product of any pair of nonzero
elements of R is nonzero, prove that ab 5 1 implies ba 5 1.

28. Let R 5 {0, 2, 4, 6, 8} under addition and multiplication modulo
10. Prove that R is a field.

29. Formulate the appropriate definition of a subdomain (that is, a
“sub” integral domain). Let D be an integral domain with unity 1.
Show that P 5 { | n [ Z} (that is, all integral multiples of 1)
is a subdomain of D. Show that P is contained in every subdomain
of D. What can we say about the order of P?

30. Prove that there is no integral domain with exactly six elements. Can
your argument be adapted to show that there is no integral domain
with exactly four elements? What about 15 elements? Use these ob-
servations to guess a general result about the number of elements in
a finite integral domain.

31. Let F be a field of order 2n. Prove that char F 5 2.
32. Determine all elements of an integral domain that are their own in-

verses under multiplication.
33. Characterize those integral domains for which 1 is the only ele-

ment that is its own multiplicative inverse.

n ? 1

"d"d

an 5 a
a 1 b 2 2ab

a 1 b 2 aba 2 ab
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34. Determine all integers for which ! is a zero-divisor
in .

35. Suppose that a and b belong to an integral domain.
a. If a5 5 b5 and a3 5 b3, prove that a 5 b.
b. If am 5 bm and an 5 bn, where m and n are positive integers that

are relatively prime, prove that a 5 b.
36. Find an example of an integral domain and distinct positive inte-

gers m and n such that am 5 bm and an 5 bn, but a 2 b.
37. If a is an idempotent in a commutative ring, show that 1 2 a is also

an idempotent.
38. Construct a multiplication table for Z2[i], the ring of Gaussian in-

tegers modulo 2. Is this ring a field? Is it an integral domain?
39. The nonzero elements of Z3[i] form an Abelian group of order 8 un-

der multiplication. Is it isomorphic to Z8, Z4 % Z2, or Z2 % Z2 % Z2?

40. Show that Z 7[ ] 5 {a 1 b | a, b [ Z 7} is a field. For any
positive integer k and any prime p, determine a necessary and suf-
ficient condition for Zp[ ] 5 {a 1 b | a, b [ Zp} to be a field.

41. Show that a finite commutative ring with no zero-divisors and at
least two elements has a unity.

42. Suppose that a and b belong to a commutative ring and ab is a
zero-divisor. Show that either a or b is a zero-divisor.

43. Suppose that R is a commutative ring without zero-divisors. Show
that all the nonzero elements of R have the same additive order.

44. Suppose that R is a commutative ring without zero-divisors. Show
that the characteristic of R is 0 or prime.

45. Let x and y belong to a commutative ring R with prime character-
istic p.
a. Show that (x 1 y)p 5 xp 1 yp.
b. Show that, for all positive integers n, (x 1 y)pn

5 xpn
1 ypn

.
c. Find elements x and y in a ring of characteristic 4 such that 

(x 1 y)4 2 x4 1 y4. (This exercise is referred to in Chapter 20.)

46. Let R be a commutative ring with unity 1 and prime characteristic.
If a [ R is nilpotent, prove that there is a positive integer k such that
(1 1 a)k 5 1.

47. Show that any finite field has order pn, where p is a prime. Hint: Use
facts about finite Abelian groups. (This exercise is referred to in
Chapter 22.)

48. Give an example of an infinite integral domain that has character-
istic 3.

49. Let R be a ring and let M2(R) be the ring of 2 3 2 matrices with entries
from R. Explain why these two rings have the same characteristic.

"k"k

"3"3

Zn

(n 2 1)n . 1
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50. Let R be a ring with m elements. Show that the characteristic of R
divides m.

51. Explain why a finite ring must have a nonzero characteristic.
52. Find all solutions of x2 2 x 1 2 5 0 over Z3[i]. (See Example 9.)
53. Consider the equation x2 2 5x 1 6 5 0.

a. How many solutions does this equation have in Z7?
b. Find all solutions of this equation in Z8.
c. Find all solutions of this equation in Z12.
d. Find all solutions of this equation in Z14.

54. Find the characteristic of Z4 % 4Z.
55. Suppose that R is an integral domain in which 20 ? 1 5 0 and 

12 ? 1 5 0. (Recall that n ? 1 means the sum 1 1 1 1 ? ? ? 1 1 with
n terms.) What is the characteristic of R?

56. In a commutative ring of characteristic 2, prove that the idempo-
tents form a subring.

57. Describe the smallest subfield of the field of real numbers that con-
tains . (That is, describe the subfield K with the property that K
contains and if F is any subfield containing , then F con-
tains K.)

58. Let F be a finite field with n elements. Prove that xn21 5 1 for all
nonzero x in F.

59. Let F be a field of prime characteristic p. Prove that K 5 {x [ F |
xp 5 x} is a subfield of F.

60. Suppose that a and b belong to a field of order 8 and that a2 1 ab 1
b2 5 0. Prove that a 5 0 and b 5 0. Do the same when the field has
order 2n with n odd.

61. Let F be a field of characteristic 2 with more than two elements.
Show that (x 1 y)3 2 x3 1 y3 for some x and y in F.

62. Suppose that F is a field with characteristic not 2, and that the
nonzero elements of F form a cyclic group under multiplication.
Prove that F is finite.

63. Suppose that D is an integral domain and that f is a nonconstant
function from D to the nonnegative integers such that f(xy) 5
f(x)f(y). If x is a unit in D, show that f(x) 5 1.

64. Let F be a field of order 32. Show that the only subfields of F are
F itself and {0, 1}.

65. Suppose that F is a field with 27 elements. Show that for every
element , .5a 5 2aa [ F

"2"2
"2
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Computer Exercises

The basic unit of mathematics is conjecture.
ARNOLD ROSS

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software lists the idempotents (see Exercise 16 for the defini-
tion) in Zn. Run the program for various values of n. Use these data
to make conjectures about the number of idempotents in Zn as a
function of n.  For example, how many idempotents are there when
n is a prime power? What about when n is divisible by exactly two
distinct primes? In the case where n is of the form pq where p and
q are primes, can you see a relationship between the two idempo-
tents that are not 0 and 1? Can you see a relationship between the
number of idempotents for a given n and the number of distinct
prime divisors of n?

2. This software lists the nilpotent elements (see Exercise 13 for the
definition) in Zn. Run the program for various values of n. Use
these data to make conjectures about the number of nilpotent ele-
ments in Zn as a function of n.

3. This software determines which rings of the form Zp[i] are fields.
Run the program for all primes up to 37. From these data, make a
conjecture about the form of the primes that yield a field.

4. This software finds the idempotents in Zn[i] 5 {a 1 bi | a, b [ Zn}
(Gaussian integers modulo n). Run the software for n 5 4, 8, 16, and
32. Make a conjecture about the number of idempotents when n 5 2k.
Run the software for n 5 13, 17, 29, and 37. What do these values of
n have in common? Make a conjecture about the number of idempo-
tents for these n. Run the software for n 5 7, 11, 19, 23, 31, and 43.
What do these values of n have in common? Make a conjecture about
the number of idempotents for these n.

5. This software finds the nilpotent elements in Zn[i] 5 {a 1 bi | 
a, b [ Zn}. Run the software for n 5 4, 8, 16, and 32. Make a con-
jecture about the number of nilpotent elements when n 5 2k. Run the
software for n 5 3, 5, 7, 11, 13, and 17. What do these values of n
have in common? Make a conjecture about the number of nilpotent
elements for these n. Run the program for n 5 9. Do you need to
revise the conjecture you made based on n 5 3, 5, 7, 11, 13, and 17?
Run the software for n 5 9, 25, and 49. What do these values 

16509_ch13_p249-261 pp4  11/15/08  12:12 PM  Page 259



260 Rings

of n have in common? Make a conjecture about the number of nilpo-
tent elements for these n. Run the program for n 5 81. Do you need
to revise the conjecture you made based on n 59, 25, and 49?
What do these values of n have in common? Make a conjecture
about the number of nilpotent elements for these n. Run the pro-
gram for n 5 27. Do you need to revise the conjecture you made
based on n 5 9, 25, and 49? Run your program for n 5 125 (this
may take a few seconds). On the basis of all of your data for this ex-
ercise, make a single conjecture in the case that n 5 pk where p is
any prime. Run the program for n 5 6, 15, and 21. Make a conjec-
ture. Run the program for 12, 20, 28, and 45. Make a conjecture.
Run the program for 36 and 100 (this may take a few minutes). On
the basis of all your data for this exercise, make a single conjecture
that covers all integers n . 1.

6. This software determines the zero-divisors in Zn[i] 5 {a 1 bi | a,
b [ Zn}. Use the software to formulate and test conjectures about the
number of zero-divisors in Zn[i] based on various conditions of n.

Suggested Readings

Eric Berg, “A Family of Fields,” Pi Mu Epsilon 9 (1990): 154–155.

In this article, the author uses properties of logarithms and exponents 
to define recursively an infinite family of fields starting with the real
numbers.

N. A. Khan, “The Characteristic of a Ring,” American Mathematical Monthly
70 (1963): 736.

Here it is shown that a ring has nonzero characteristic n if and only 
if n is the maximum of the orders of the elements of R.

K. Robin McLean, “Groups in Modular Arithmetic,” The Mathematical
Gazette 62 (1978): 94–104.

This article explores the interplay between various groups of integers un-
der multiplication modulo n and the ring Zn. It shows how to construct
groups of integers in which the identity is not obvious; for example, 1977
is the identity of the group {1977, 5931} under multiplication modulo
7908.
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Nathan Jacobson

NATHAN JACOBSON was born on September 8,
1910, in Warsaw, Poland. After arriving in
the United States in 1917, Jacobson grew up
in Alabama, Mississippi, and Georgia, where
his father owned small clothing stores. He
received a B.A. degree from the University of
Alabama in 1930 and a Ph.D. from Princeton
in 1934. After brief periods as a professor at
Bryn Mawr, the University of Chicago, the
University of North Carolina, and Johns
Hopkins, Jacobson accepted a position at
Yale, where he remained until his retirement
in 1981.

Jacobson’s principal contributions to al-
gebra were in the areas of rings, Lie algebras,
and Jordan algebras. In particular, he devel-
oped structure theories for these systems. He
was the author of nine books and numerous
articles, and he had 33 Ph.D. students.

Few mathematicians have been as produc-
tive over such a long career or have had as
much influence on the profession as has
Professor Jacobson.

Citation for the Steele Prize

for Lifetime Achievement

Jacobson held visiting positions in
France, India, Italy, Israel, China, Australia,
and Switzerland. Among his many honors
were the presidency of the American
Mathematical Society, memberships in the
National Academy of Sciences and the
American Academy of Arts and Sciences, a
Guggenheim Fellowship, and an honorary
degree from the University of Chicago.
Jacobson died on December 5, 1999, at the
age of 89.

To find more information about Jacobson,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Ideals and Factor Rings

The secret of science is to ask the right questions, and it is the choice of
problem more than anything else that marks the man of genius in the
scientific world.

SIR HENRY TIZARD IN C. P. SNOW, 

A postscript to Science and Government

14

Ideals
Normal subgroups play a special role in group theory—they permit us
to construct factor groups. In this chapter, we introduce the analogous
concepts for rings—ideals and factor rings.

Definition Ideal

A subring A of a ring R is called a (two-sided) ideal of R if for 
every r [ R and every a [ A both ra and ar are in A.

So, a subring A of a ring R is an ideal of R if A “absorbs” elements
from R—that is, if rA 5 {ra| a [ A} # A and Ar 5 {ar| a [ A} # A
for all r [ R.

An ideal A of R is called a proper ideal of R if A is a proper subset
of R. In practice, one identifies ideals with the following test, which is
an immediate consequence of the definition of ideal and the subring
test given in Theorem 12.3.

Theorem 14.1 Ideal Test

A nonempty subset A of a ring R is an ideal of R if

1. a 2 b [ A whenever a, b [ A.
2. ra and ar are in A whenever a [ A and r [ R.
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EXAMPLE 1 For any ring R, {0} and R are ideals of R. The ideal {0}
is called the trivial ideal.

EXAMPLE 2 For any positive integer n, the set nZ 5 {0, 6n,
62n, . . .} is an ideal of Z.

EXAMPLE 3 Let R be a commutative ring with unity and let a [ R.
The set �a� 5 {ra | r [ R} is an ideal of R called the principal ideal
generated by a. (Notice that �a� is also the notation we used for 
the cyclic subgroup generated by a. However, the intended meaning
will always be clear from the context.) The assumption that R is com-
mutative is necessary in this example (see Exercise 29 in the Sup-
plementary Exercises for Chapters 12–14).

EXAMPLE 4 Let R[x] denote the set of all polynomials with real co-
efficients and let A denote the subset of all polynomials with constant
term 0. Then A is an ideal of R[x] and A 5 �x�.

EXAMPLE 5 Let R be a commutative ring with unity and let a1,
a2, . . . , an belong to R. Then I 5 �a1, a2, . . . , an� 5 {r1a1 1 r2a2 1
? ? ? 1 rnan | ri [ R} is an ideal of R called the ideal generated by a1,
a2, . . . , an. The verification that I is an ideal is left as an easy exercise
(Exercise 3).

EXAMPLE 6 Let Z[x] denote the ring of all polynomials with inte-
ger coefficients and let I be the subset of Z[x] of all polynomials with
even constant terms. Then I is an ideal of Z[x] and I 5 �x, 2� (see
Exercise 37).

EXAMPLE 7 Let R be the ring of all real-valued functions of a real
variable. The subset S of all differentiable functions is a subring of R
but not an ideal of R.

Factor Rings
Let R be a ring and let A be an ideal of R. Since R is a group under addi-
tion and A is a normal subgroup of R, we may form the factor group
R/A 5 {r 1 A | r [ R}. The natural question at this point is: How may
we form a ring of this group of cosets? The addition is already taken care
of, and, by analogy with groups of cosets, we define the product of two
cosets of s 1 A and t 1 A as st 1 A. The next theorem shows that this de-
finition works as long as A is an ideal, and not just a subring, of R.
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Theorem 14.2 Existence of Factor Rings

PROOF We know that the set of cosets forms a group under addition.
Once we know that multiplication is indeed a binary operation on the
cosets, it is trivial to check that the multiplication is associative and
that multiplication is distributive over addition. Hence, the proof boils
down to showing that multiplication is well defined if and only if A is
an ideal of R. To do this, let us suppose that A is an ideal and let s 1 A 5
s9 1 A and t 1 A 5 t9 1 A. Then we must show that st 1 A 5 s9t9 1 A.
Well, by definition, s 5 s9 1 a and t 5 t9 1 b, where a and b belong
to A. Then

st 5 (s9 1 a)(t9 1 b) 5 s9t9 1 at9 1 s9b 1 ab,

and so

st 1 A 5 s9t9 1 at9 1 s9b 1 ab 1 A 5 s9t9 1 A,

since A absorbs at9 1 s9b 1 ab. Thus, multiplication is well defined
when A is an ideal.

On the other hand, suppose that A is a subring of R that is not an
ideal of R. Then there exist elements a [ A and r [ R such that ar o A
or ra o A. For convenience, say ar o A. Consider the elements a 1 A 5
0 1 A and r 1 A. Clearly, (a 1 A)(r 1 A) 5 ar 1 A but (0 1 A) ?
(r 1 A) 5 0 ? r 1 A 5 A. Since ar 1 A 2 A, the multiplication is not
well defined and the set of cosets is not a ring.

Let’s look at a few factor rings.

EXAMPLE 8 Z/4Z 5 {0 1 4Z, 1 1 4Z, 2 1 4Z, 3 1 4Z}. To see how
to add and multiply, consider 2 1 4Z and 3 1 4Z.

(2 1 4Z) 1 (3 1 4Z) 5 5 1 4Z 5 1 1 4 1 4Z 5 1 1 4Z,
(2 1 4Z)(3 1 4Z) 5 6 1 4Z 5 2 1 4 1 4Z 5 2 1 4Z.

One can readily see that the two operations are essentially modulo 4
arithmetic.

Let R be a ring and let A be a subring of R. The set of cosets {r 1 A |
r [ R} is a ring under the operations (s 1 A) 1 (t 1 A) 5 s 1 t 1 A
and (s 1 A)(t 1 A) 5 st 1 A if and only if A is an ideal of R.
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EXAMPLE 9 2Z/6Z 5 {0 1 6Z, 2 1 6Z, 4 1 6Z}. Here the opera-
tions are essentially modulo 6 arithmetic. For example, (4 1 6Z) 1
(4 1 6Z) 5 2 1 6Z and (4 1 6Z)(4 1 6Z) 5 4 1 6Z.

Here is a noncommutative example of an ideal and factor ring.

EXAMPLE 10 Let R 5 and let I be the 

subset of R consisting of matrices with even entries. It is easy to 
show that I is indeed an ideal of R (Exercise 21). Consider the factor 
ring R/I. The interesting question about this ring is: What is its size? 

We claim R/I has 16 elements; in fact, R/I 5 . 

An example illustrates the typical situation. Which of the 16 elements 

is ? Well, observe that 

, since an ideal absorbs its own elements. 

The general case is left to the reader (Exercise 23).

EXAMPLE 11 Consider the factor ring of the Gaussian integers
R 5 Z[i]/�2 2 i�. What does this ring look like? Of course, the elements
of R have the form a 1 bi 1 �2 2 i�, where a and b are integers, but the
important question is: What do the distinct cosets look like? The fact
that 2 2 i 1 �2 2 i� 5 0 1 �2 2 i� means that when dealing with coset
representatives, we may treat 2 2 i as equivalent to 0, so that 2 5 i. For
example, the coset 3 1 4i 1 �2 2 i� 5 3 1 8 1 �2 2 i� 5 11 1 �2 2 i�.
Similarly, all the elements of R can be written in the form a 1 �2 2 i�,
where a is an integer. But we can further reduce the set of distinct coset
representatives by observing that when dealing with coset representa-
tives, 2 5 i implies (by squaring both sides) that 4 5 21 or 5 5 0.
Thus, the coset 3 1 4i 1 �2 2 i� 5 11 1 �2 2 i� 5 1 1 5 1 5 1 �2 2 i� 5
1 1 �2 2 i�. In this way, we can show that every element of R is equal to
one of the following cosets: 0 1 �2 2 i�, 1 1 �2 2 i�, 2 1 �2 2 i�, 3 1
�2 2 i�, 4 1 �2 2 i�. Is any further reduction possible? To demonstrate
that there is not, we will show that these five cosets are distinct. It suf-
fices to show that 1 1 �2 2 i� has additive order 5. Since 5(1 1 �2 2 i�) 5
5 1 �2 2 i� 5 0 1 �2 2 i�, 1 1 �2 2 i� has order 1 or 5. If the order is
actually 1, then 1 1 �2 2 i� 5 0 1 �2 2 i�, so 1 [ �2 2 i�. Thus, 1 5
(2 2 i) (a 1 bi) 5 2a 1 b 1 (2a 1 2b)i for some integers a and b. But
this equation implies that 1 5 2a 1 b and 0 5 2a 1 2b, and solving these

c6 8

4 24
d 1 I 5 c1   0

1  1
d 1 I

c7 8

5 23
d 1 I 5 c1 0

1 1
d  1c7 8

5 23
d 1 I

ecr1 r2

r3 r4
d1I 0  ri[ 50, 16f

e c a1 a2

a3 a4
d `  ai P Z f

16509_ch14_p262-279 pp3  11/15/08  11:51 AM  Page 265



266 Rings

simultaneously yields b 5 1/5, which is a contradiction. It should be
clear that the ring R is essentially the same as the field Z5.

EXAMPLE 12 Let R[x] denote the ring of polynomials with real co-
efficients and let �x2 1 1� denote the principal ideal generated by 
x2 1 1; that is,

�x2 1 1� 5 {f(x)(x2 1 1) | f(x) [ R[x]}.

Then

R[x]/�x2 1 1� 5 {g(x) 1 �x2 1 1� | g(x) [ R[x]}
5 {ax 1 b 1 �x2 1 1� | a, b [ R}.

To see this last equality, note that if g(x) is any member of R[x], then
we may write g(x) in the form q(x)(x2 1 1) 1 r(x), where q(x) is the
quotient and r(x) is the remainder upon dividing g(x) by x2 1 1. In
particular, r(x) 5 0 or the degree of r(x) is less than 2, so that r(x) 5
ax 1 b for some a and b in R. Thus,

g(x) 1 �x2 1 1� 5 q(x)(x2 1 1) 1 r(x) 1 �x2 1 1�

5 r(x) 1 �x2 1 1�,

since the ideal �x2 1 1� absorbs the term q(x)(x2 1 1).
How is multiplication done? Since

x2 1 1 1 �x2 1 1� 5 0 1 �x2 1 1�,

one should think of x2 1 1 as 0 or, equivalently, as x2 5 21. So, for
example,

(x 1 3 1 �x2 1 1�) ? (2x 1 5 1 �x2 1 1�)
5 2x2 1 11x 1 15 1 �x2 1 1� 5 11x 1 13 1 �x2 1 1�.

In view of the fact that the elements of this ring have the form ax 1
b 1 �x2 1 1�, where x2 1 �x2 1 1� 5 21 1 �x2 1 1�, it is perhaps not
surprising that this ring turns out to be algebraically the same ring as
the ring of complex numbers. This observation was first made by
Cauchy in 1847.

Examples 11 and 12 illustrate one of the most important applica-
tions of factor rings—the construction of rings with highly desirable
properties. In particular, we shall show how one may use factor rings
to construct integral domains and fields.
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Prime Ideals and Maximal Ideals
Definition Prime Ideal, Maximal Ideal

A prime ideal A of a commutative ring R is a proper ideal of R such
that a, b [ R and ab [ A imply a [ A or b [ A. A maximal ideal of a
commutative ring R is a proper ideal of R such that, whenever B is an
ideal of R and A # B # R, then B 5 A or B 5 R.

So, the only ideal that properly contains a maximal ideal is the en-
tire ring. The motivation for the definition of a prime ideal comes from
the integers.

EXAMPLE 13 Let n be an integer greater than 1. Then, in the ring of
integers, the ideal nZ is prime if and only if n is prime (Exercise 9).
({0} is also a prime ideal of Z.)

EXAMPLE 14 The lattice of ideals of Z36 (Figure 14.1) shows that
only �2� and �3� are maximal ideals.

EXAMPLE 15 The ideal �x2 1 1� is maximal in R[x]. To see this, as-
sume that A is an ideal of R[x] that properly contains �x2 1 1�. We will
prove that A 5 R[x] by showing that A contains some nonzero real
number c. [This is the constant polynomial h(x) 5 c for all x.] Then 1 5
(1/c)c [ A and therefore, by Exercise 15, A 5 R[x]. To this end, let
f(x) [ A, but f(x) o �x2 1 1�. Then

f(x) 5 q(x)(x2 1 1) 1 r(x),

where r(x) 2 0 and the degree of r(x) is less than 2. It follows that 
r(x) 5 ax 1 b, where a and b are not both 0, and

ax 1 b 5 r(x) 5 f(x) 2 q(x)(x2 1 1) [ A.

Figure 14.1

<2>

<4>

<12> <18>

<6>

<3>

<9>

<0>

Z36
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Thus,

a2x2 2 b2 5 (ax 1 b)(ax 2 b) [ A and a2(x2 1 1) [ A.

So,

0 2 a2 1 b2 5 (a2x2 1 a2) 2 (a2x2 2 b2) [ A.

EXAMPLE 16 The ideal �x2 1 1� is not prime in Z2[x], since it con-
tains (x 1 1)2 5 x2 1 2x 1 1 5 x2 1 1 but does not contain x 1 1.

The next two theorems are useful for determining whether a particu-
lar ideal is prime or maximal.

Theorem 14.3 R/A Is an Integral Domain If and Only If A Is Prime

PROOF Suppose that R/A is an integral domain and ab [ A. Then 
(a 1 A)(b 1 A) 5 ab 1 A 5 A, the zero element of the ring R/A. So,
either a 1 A 5 A or b 1 A 5 A; that is, either a [ A or b [ A. Hence,
A is prime.

To prove the other half of the theorem, we first observe that R/A is a
commutative ring with unity for any proper ideal A. Thus, our task is
simply to show that when A is prime, R/A has no zero-divisors. So, sup-
pose that A is prime and (a 1 A)(b 1 A) 5 0 1 A 5 A. Then ab [ A
and, therefore, a [ A or b [ A. Thus, one of a 1 A or b 1 A is the zero
coset in R/A.

For maximal ideals, we can do even better.

Theorem 14.4 R/A Is a Field If and Only If A Is Maximal

PROOF Suppose that R/A is a field and B is an ideal of R that properly
contains A. Let b [ B but b o A. Then b 1 A is a nonzero element
of R/A and, therefore, there exists an element c 1 A such that 
(b 1 A) ? (c 1 A) 5 1 1 A, the multiplicative identity of R/A. Since 
b [ B, we have bc [ B. Because

1 1 A 5 (b 1 A)(c 1 A) 5 bc 1 A,

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is a field if and only if A is maximal.

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is an integral domain if and only if A is prime.
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we have 1 2 bc [ A , B. So, 1 5 (1 2 bc) 1 bc [ B. By Exercise 15,
B 5 R. This proves that A is maximal.

Now suppose that A is maximal and let b [ R but b o A. It suffices
to show that b 1 A has a multiplicative inverse. (All other properties
for a field follow trivially.) Consider B 5 {br 1 a | r [ R, a [ A}. This
is an ideal of R that properly contains A (Exercise 25). Since A is maxi-
mal, we must have B 5 R. Thus, 1 [ B, say, 1 5 bc 1 a9, where a9 [ A.
Then

1 1 A 5 bc 1 a9 1 A 5 bc 1 A 5 (b 1 A)(c 1 A).

When a commutative ring has a unity, it follows from Theorems
14.3 and 14.4 that a maximal ideal is a prime ideal. The next example
shows that a prime ideal need not be maximal.

EXAMPLE 17 The ideal �x� is a prime ideal in Z[x] but not a maxi-
mal ideal in Z[x]. To verify this, we begin with the observation that
�x� 5 {f(x) [ Z[x] | f(0) 5 0} (see Exercise 29). Thus, if g(x)h(x) [ �x�,
then g(0)h(0) 5 0. And since g(0) and h(0) are integers, we have g(0) 5 0
or h(0) 5 0.

To see that �x� is not maximal, we simply note that �x� , �x, 2� ,
Z[x] (see Exercise 37).

Exercises

1. Verify that the set defined in Example 3 is an ideal.
2. Verify that the set A in Example 4 is an ideal and that A 5 �x�.
3. Verify that the set I in Example 5 is an ideal and that if J is any

ideal of R that contains a1, a2, . . . , an, then I # J. (Hence, �a1,
a2, . . . , an� is the smallest ideal of R that contains a1, a2, . . . , an.)

4. Find a subring of Z % Z that is not an ideal of Z % Z.
5. Let S 5 {a 1 bi | a, b [ Z, b is even}. Show that S is a subring of

Z[i], but not an ideal of Z[i].
6. Find all maximal ideals in 

a. Z8, b. Z10, c. Z12, d. Zn.
7. Let a belong to a commutative ring R. Show that aR 5 {ar | r [ R} is

an ideal of R. If R is the ring of even integers, list the elements of 4R.
8. Prove that the intersection of any set of ideals of a ring is an ideal.
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9. If n is an integer greater than 1, show that �n� 5 nZ is a prime ideal
of Z if and only if n is prime. (This exercise is referred to in this
chapter.)

10. If A and B are ideals of a ring, show that the sum of A and B, A 1 B 5
{a 1 b | a [ A, b [ B}, is an ideal.

11. In the ring of integers, find a positive integer a such that
a. �a� 5 �2� 1 �3�,
b. �a� 5 �6� 1 �8�,
c. �a� 5 �m� 1 �n�.

12. If A and B are ideals of a ring, show that the product of A and B,
AB 5 {a1b1 1 a2b2 1 ? ? ? 1 anbn | ai [ A, bi [ B, n a positive
integer}, is an ideal.

13. Find a positive integer a such that
a. �a� 5 �3��4�,
b. �a� 5 �6��8�,
c. �a� 5 �m��n�.

14. Let A and B be ideals of a ring. Prove that AB # A > B.
15. If A is an ideal of a ring R and 1 belongs to A, prove that A 5 R.

(This exercise is referred to in this chapter.)
16. If A and B are ideals of a commutative ring R with unity and A 1 B 5 R,

show that A > B 5 AB.
17. If an ideal I of a ring R contains a unit, show that I 5 R.
18. Suppose that in the ring Z the ideal �35� is a proper ideal of J and J

is a proper ideal of I. What are the possibilities for J? What are the
possibilities for I?

19. Give an example of a ring that has exactly two maximal ideals.
20. Suppose that R is a commutative ring and . If I is an ideal

of R and , prove that I is a maximal ideal.
21. Let R and I be as described in Example 10. Prove that I is an ideal 

of R.
22. Let I 5 �2�. Prove that I[x] is not a maximal ideal of Z[x] even

though I is a maximal ideal of Z.
23. Verify the claim made in Example 10 about the size of R/I.
24. Give an example of a commutative ring that has a maximal ideal

that is not a prime ideal.
25. Show that the set B in the latter half of the proof of Theorem 14.4

is an ideal of R. (This exercise is referred to in this chapter.)
26. If R is a commutative ring with unity and A is a proper ideal of R,

show that R/A is a commutative ring with unity.
27. Prove that the only ideals of a field F are {0} and F itself.

|I| 5 10
|R| 5 30
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28. Show that R[x]/�x2 1 1� is a field.
29. In Z[x], the ring of polynomials with integer coefficients, let I 5

{ f (x) [ Z [x] | f (0) 5 0}. Prove that I 5 �x�. (This exercise is re-
ferred to in this chapter and in Chapter 15.)

30. Show that A 5 {(3x, y) | x, y [ Z} is a maximal ideal of Z % Z.
Generalize. What happens if 3x is replaced by 4x? Generalize.

31. Let R be the ring of continuous functions from R to R. Show that 
A 5 { f [ R | f (0) 5 0} is a maximal ideal of R.

32. Let R 5 Z8 % Z30. Find all maximal ideals of R, and for each max-
imal ideal I, identify the size of the field R/I.

33. How many elements are in Z[i]/�3 1 i�? Give reasons for your
answer.

34. In Z[x], the ring of polynomials with integer coefficients, let I 5
{ f (x) [ Z[x] | f (0) 5 0}. Prove that I is not a maximal ideal.

35. In Z % Z, let I 5 {(a, 0) | a [ Z}. Show that I is a prime ideal but
not a maximal ideal.

36. Let R be a ring and let I be an ideal of R. Prove that the factor ring
R/I is commutative if and only if rs 2 sr [ I for all r and s in R.

37. In Z[x], let I 5 { f(x) [ Z[x] | f (0) is an even integer}. Prove that 
I 5 �x, 2�. Is I a prime ideal of Z[x]? Is I a maximal ideal? How
many elements does Z[x]/I have? (This exercise is referred to in
this chapter.)

38. Prove that I 5 �2 1 2i� is not a prime ideal of Z[i]. How many
elements are in Z[i]/I? What is the characteristic of Z[i]/I?

39. In Z5[x], let I 5 �x2 1 x 1 2�. Find the multiplicative inverse of 2x 1
3 1 I in Z5[x]/I.

40. Let R be a ring and let p be a fixed prime. Show that Ip 5 {r [ R |
additive order of r is a power of p} is an ideal of R.

41. An integral domain D is called a principal ideal domain if every
ideal of D has the form �a� 5 {ad | d [ D} for some a in D. Show
that Z is a principal ideal domain. (This exercise is referred to in
Chapter 18.)

42. Let and 

. If S is an ideal of R, what can you say about r and t?

43. If R and S are principal ideal domains, prove that R % S is a princi-

pal ideal ring.

is even f
S 5 e c r s

0 t
d 0 r, s, t [ Z, sR 5 e ca b

0 d
d 0  a, b, d [ Z6
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44. Let a and b belong to a commutative ring R. Prove that {x [ R |
ax [ bR} is an ideal.

45. Let R be a commutative ring and let A be any subset of R. Show
that the annihilator of A, Ann(A) 5 {r [ R | ra 5 0 for all a in A},
is an ideal.

46. Let R be a commutative ring and let A be any ideal of R. Show that
the nil radical of A, N(A) 5 {r [ R | r n [ A for some positive in-
teger n (n depends on r)}, is an ideal of R. [N(�0�) is called the nil
radical of R.]

47. Let R 5 Z27. Find
a. N(�0�), b. N(�3�), c. N(�9�).

48. Let R 5 Z36. Find
a. N(�0�), b. N(�4�), c. N(�6�).

49. Let R be a commutative ring. Show that R/N(�0�) has no nonzero
nilpotent elements.

50. Let A be an ideal of a commutative ring. Prove that N(N(A)) 5 N(A).
51. Let Z2[x] be the ring of all polynomials with coefficients in Z2 (that

is, coefficients are 0 or 1, and addition and multiplication of coef-
ficients are done modulo 2). Show that Z2[x]/�x2 1 x 1 1� is a
field.

52. List the elements of the field given in Exercise 51, and make an ad-
dition and multiplication table for the field.

53. Show that Z3[x]/�x2 1 x 1 1� is not a field.
54. Let R be a commutative ring without unity, and let a [ R. Describe

the smallest ideal I of R that contains a (that is, if J is any ideal that
contains a, then I # J).

55. Let R be the ring of continuous functions from R to R. Let A 5
{ f [ R | f (0) is an even integer}. Show that A is a subring of R,
but not an ideal of R.

56. Show that Z[i]/�1 2 i� is a field. How many elements does this
field have?

57. If R is a principal ideal domain and I is an ideal of R, prove that
every ideal of R/I is principal (see Exercise 41).

58. How many elements are in Z5[i]/�1 1 i�?
59. Let R be a commutative ring with unity that has the property that

a2 5 a for all a in R. Let I be a prime ideal in R. Show that |R/I| 5 2.
60. Let R be a commutative ring with unity, and let I be a proper ideal

with the property that every element of R that is not in I is a unit of R.
Prove that I is the unique maximal ideal of R.

16509_ch14_p262-279 pp3  11/15/08  11:51 AM  Page 272



14 | Ideals and Factor Rings 273

61. Let I0 5 { f(x) [ Z[x] | f(0) 5 0}. For any positive integer n, show
that there exists a sequence of strictly increasing ideals such that
I0 , I1 , I2 , ? ? ? , In , Z[x].

62. Let R 5 {(a1, a2, a3, . . .)}, where each ai [ Z. Let I 5 {(a1, a2,
a3, . . . )}, where only a finite number of terms are nonzero. Prove
that I is not a principal ideal of R.

63. Let R be a commutative ring with unity and let a, b [ R. Show that 
�a, b�, the smallest ideal of R containing a and b, is I 5 {ra 1 sb|
r, s [ R}. That is, show that I contains a and b and that any ideal
that contains a and b also contains I.

Computer Exercises

What is the common denominator of intellectual accomplishment? In math,
science, economics, history, or any other subject, the answer is the same:
great thinkers notice patterns.

DAVID NIVEN, PSYCHOLOGIST

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the number of elements in the ring Z[i]/
�a 1 bi� (where i2 5 21). Run the program for several cases and
formulate a conjecture based on your data.

2. This software determines the characteristic of the ring Z[i]/�a 1 bi�
(where i2 5 21). Let d 5 gcd(a, b). Run the program for several
cases with d 5 1 and formulate a conjecture based on your data.
Run the program for several cases with d . 1 and formulate a con-
jecture in terms of a, b, and d based on your data. Does the formula
you found for d . 1 also work in the case that d 5 1?

3. This software determines when the ring Z[i]/�a 1 bi� (where i2 5 21)
is isomorphic to the ring Za21b2. Run the program for several cases
and formulate a conjecture based on your data.
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Richard Dedekind

This stamp was issued by East Germany 
in 1981 to commemorate the 150th
anniversary of Dedekind’s birth. Notice
that it features the representation of an
ideal as the product of powers of prime
ideals.

Richard Dedekind was not only 
a mathematician, but one of the wholly
great in the history of mathematics, now
and in the past, the last hero of a great
epoch, the last pupil of Gauss, for four
decades himself a classic, from whose
works not only we, but our teachers and
the teachers of our teachers, have drawn.

EDMUND LANDAU,
Commemorative Address 

to the Royal Society of Göttingen

RICHARD DEDEKIND was born on October 6,
1831, in Brunswick, Germany, the birth-
place of Gauss. Dedekind was the youngest
of four children of a law professor. His early
interests were in chemistry and physics, but
he obtained a doctor’s degree in mathemat-
ics at the age of 21 under Gauss at the
University of Göttingen. Dedekind contin-
ued his studies at Göttingen for a few years,
and in 1854 he began to lecture there.

Dedekind spent the years 1858–1862 as a
professor in Zürich. Then he accepted a po-
sition at an institute in Brunswick where he
had once been a student. Although this
school was less than university level,
Dedekind remained there for the next 50
years. He died in Brunswick in 1916.

During his career, Dedekind made numer-
ous fundamental contributions to mathemat-
ics. His treatment of irrational numbers,
“Dedekind cuts,” put analysis on a firm,
logical foundation. His work on unique
factorization led to the modern theory of
algebraic numbers. He was a pioneer in the
theory of rings and fields. The notion of
ideals as well as the term itself are attributed
to Dedekind. Mathematics historian Morris
Kline has called him “the effective founder
of abstract algebra.”

To find more information about
Dedekind, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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EMMY NOETHER was born on March 23,
1882, in Germany. When she entered the
University of Erlangen, she was one of
only two women among the 1000 students.
Noether completed her doctorate in 1907.

In 1916, Noether went to Göttingen and,
under the influence of David Hilbert and
Felix Klein, became interested in general
relativity. While there, she made a major
contribution to physics with her theorem
that whenever there is a symmetry in nature,
there is also a conservation law, and vice
versa. Hilbert tried unsuccessfully to obtain
a faculty appointment at Göttingen for
Noether, saying, “I do not see that the sex of
the candidate is an argument against her ad-
mission as Privatdozent. After all, we are a
university and not a bathing establishment.”

It was not until she was 38 that Noether’s
true genius revealed itself. Over the next
13 years, she used an axiomatic method to
develop a general theory of ideals and non-
commutative algebras. With this abstract
theory, Noether was able to weld together
many important concepts. Her approach was
even more important than the individual re-
sults. Hermann Weyl said of Noether, “She
originated above all a new and epoch-mak-
ing style of thinking in algebra.”

With the rise of Hitler in 1933, Noether, a
Jew, fled to the United States and took a po-
sition at Bryn Mawr College. She died sud-
denly on April 14, 1935, following an oper-
ation.

To find more information about Noether,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/

In the judgment of the most competent
living mathematicians, Fräulein Noether
was the most significant creative mathe-
matical genius thus far produced since the
higher education of women began. In the
realm of algebra, in which the most gifted
mathematicians have been busy for cen-
turies, she discovered methods which have
proved of enormous importance in the de-
velopment of the present-day younger
generation of mathematicians.

ALBERT EINSTEIN, The New York Times

Emmy Noether
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Supplementary Exercises for Chapters 12–14

If at first you do succeed—try to hide your astonishment.
HARRY F. BANKS

True/false questions for Chapters 12–14 are available on the Web at:

http://www.d.umn.edu/~jgallian/TF

1. Find all idempotent elements in Z10, Z20, and Z30. (Recall that a is
idempotent if a2 5 a.)

2. If m and n are relatively prime integers greater than 1, prove that
Zmn has at least two idempotents besides 0 and 1.

3. Suppose that R is a ring in which a2 5 0 implies a 5 0. Show that
R has no nonzero nilpotent elements. (Recall that b is nilpotent if
bn 5 0 for some positive integer n.)

4. Let R be a commutative ring with more than one element. Prove
that if for every nonzero element a of R we have aR 5 R, then R is
a field.

5. Let A, B, and C be ideals of a ring R. If AB # C and C is a prime
ideal of R, show that A # C or B # C. (Compare this with Euclid’s
Lemma in Chapter 0.)

6. Show, by example, that the intersection of two prime ideals need
not be a prime ideal.

7. Let R denote the ring of real numbers. Determine all ideals of R % R.
What happens if R is replaced by any field F?

8. Determine all factor rings of Z.
9. Suppose that n is a square-free positive integer (that is, n is not

divisible by the square of any prime). Prove that Zn has no nonzero
nilpotent elements.

10. Let R be a commutative ring with unity. Suppose that a is a unit
and b is nilpotent. Show that a 1 b is a unit. (Hint: See Exercise 29
in Chapter 12.)

11. Let A, B, and C be subrings of a ring R. If A # B < C, show that
A # B or A # C.

12. For any element a in a ring R, define �a� to be the smallest ideal of
R that contains a. If R is a commutative ring with unity, show that
�a� 5 aR 5 {ar | r [ R}. Show, by example, that if R is commuta-
tive but does not have a unity, then �a� and aR may be different.

13. Let R be a ring with unity. Show that �a� 5 {s1at1 1 s2at2 1 ? ? ? 1
snatn | si, ti [ R and n is a positive integer}.

14. Show that Zn[x] has characteristic n.
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15. Let A and B be ideals of a ring R. If A > B 5 {0}, show that ab 5 0
when a [ A and b [ B.

16. Show that the direct sum of two integral domains is not an integral
domain.

17. Consider the ring R 5 {0, 2, 4, 6, 8, 10} under addition and multi-
plication modulo 12. What is the characteristic of R?

18. What is the characteristic of Zm % Zn? Generalize.
19. Let R be a commutative ring with unity. Suppose that the only

ideals of R are {0} and R. Show that R is a field.
20. Suppose that I is an ideal of J and that J is an ideal of R. Prove that

if I has a unity, then I is an ideal of R. (Be careful not to assume that
the unity of I is the unity of R. It need not be—see Exercise 2 in
Chapter 12.)

21. Recall that an idempotent element b in a ring is one with the property
that b2 5 b. Find a nontrivial idempotent (that is, not 0 and not 1) in
Q[x]/�x4 1 x2�.

22. In a principal ideal domain, show that every nontrivial prime ideal
is a maximal ideal.

23. Find an example of a commutative ring R with unity such that a,
b [ R, a 2 b, and an 5 bn and am 5 bm, where n and m are positive
integers that are relatively prime. (Compare with Exercise 35, part b,
in Chapter 13.)

24. Let Q( ) denote the smallest subfield of R that contains Q and
. [That is, Q( ) is the subfield with the property that Q( )

contains Q and and if F is any subfield containing Q and ,
then F contains Q( ).] Describe the elements of Q( ).

25. Let R be an integral domain with nonzero characteristic. If A is a
proper ideal of R, show that R/A has the same characteristic as R.

26. Let F be a field of order pn. Determine the group isomorphism
class of F under the operation addition.

27. If R is a finite commutative ring with unity, prove that every prime
ideal of R is a maximal ideal of R.

28. Let R be a noncommutative ring and let C(R) be the center of R
(see Exercise 19 in Chapter 12). Prove that the additive group of
R/C(R) is not cyclic.

29. Let

R 5 e ca b

c d
d `  a, b, c, d [ Z2 f

3"23"2

3"23"2

3"23"23"2

3"2
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with ordinary matrix addition and multiplication modulo 2. Show that

is not an ideal of R. (Hence, in Exercise 7 in Chapter 14, the com-
mutativity assumption is necessary.)

30. If R is an integral domain and A is a proper ideal of R, must R/A be
an integral domain?

31. Let A 5 {a 1 bi | a, b [ Z, a mod 2 5 b mod 2}. How many ele-
ments does Z[i]/A have? Show that A is a maximal ideal of Z[i].

32. Suppose that R is a commutative ring with unity such that for each
a in R there is a positive integer n greater than 1 (n depends on a)
such that an 5 a. Prove that every prime ideal of R is a maximal
ideal of R.

33. State a “finite subfield test”; that is, state conditions that guarantee
that a finite subset of a field is a subfield.

34. Let F be a finite field with more than two elements. Prove that the
sum of all of the elements of F is 0.

35. Show that if there are nonzero elements a and b in Zn such that a2 1
b2 5 0, then the ring Zn[i] 5 {x 1 yi | x, y [ Zn} has zero-divisors.
Use this fact to find a zero-divisor in Z13[i].

36. Suppose that R is a ring with no zero-divisors and that R contains a
nonzero element b such that b2 5 b. Show that b is a unity for R.

37. Find the characteristic of Z[i]/�2 1 i�.
38. Show that the characteristic of Z[i]/�a 1 bi� divides a2 1 b2.
39. Show that 4x2 1 6x 1 3 is a unit in Z8[x].
40. For any commutative ring R, R[x, y] is the ring of polynomials in x

and y with coefficients in R (that is, R[x, y] consists of all finite sums
of terms of the form axiyj, where a [ R and i and j are nonnegative
integers). (For example, x4 2 3x2y 2 y3 [ Z[x, y].) Prove that �x, y�
is a prime ideal in Z[x, y] but not a maximal ideal in Z[x, y].

41. Prove that �x, y� is a maximal ideal in Z5[x, y].
42. Prove that �2, x, y� is a maximal ideal in Z[x, y].
43. Let R and S be rings. Prove that (a, b) is nilpotent in R % S if and

only if both a and b are nilpotent.
44. Let R and S be commutative rings. Prove that (a, b) is a zero-divisor

in R % S if and only if a or b is a zero-divisor or exactly one of a or
b is 0.

A 5 e c1 0

0 0
d r `  r [ R f
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45. Determine all idempotents in Zp k, where p is a prime.
46. Let R be a commutative ring with unity 1. Show that a is an idem-

potent if and only if there exists an element b in R such that ab 5 0
and a 1 b 5 1.

47. Let Zn[ ] 5 {a 1 b | a, b [ Zn}. Define addition and multi-
plication as in Z[ ], except that modulo n arithmetic is used to
combine the coefficients. Show that Z3[ ] is a field but Z7[ ]
is not.

48. Let p be a prime. Prove that every zero-divisor in is a nilpotent
element.

49. If x is a nilpotent element in a commutative ring R, prove that rx is
nilpotent for all r in R.

Zpn

"2"2
"2

"2"2
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Ring Homomorphisms

If there is one central idea which is common to 
all aspects of modern algebra it is the notion of homomorphism.

I. N. HERSTEIN, Topics in Algebra

Definition and Examples
In our work with groups, we saw that one way to discover information
about a group is to examine its interaction with other groups by way of
homomorphisms. It should not be surprising to learn that this concept
extends to rings with equally profitable results.

Just as a group homomorphism preserves the group operation, a ring
homomorphism preserves the ring operations.

Definitions Ring Homomorphism, Ring Isomorphism

A ring homomorphism f from a ring R to a ring S is a mapping from
R to S that preserves the two ring operations; that is, for all a, b in R,

f(a 1 b) 5 f(a) 1 f(b) and f(ab) 5 f(a)f(b).

A ring homomorphism that is both one-to-one and onto is called a
ring isomorphism.

As is the case for groups, in the preceding definition the operations
on the left of the equal signs are those of R, whereas the operations on
the right of the equal signs are those of S.

Again as with group theory, the roles of isomorphisms and homomor-
phisms are entirely distinct. An isomorphism is used to show that two
rings are algebraically identical; a homomorphism is used to simplify a
ring while retaining certain of its features.

A schematic representation of a ring homomorphism is given in
Figure 15.1. The dashed arrows indicate the results of performing the
ring operations.

The following examples illustrate ring homomorphisms. The reader
should supply the missing details.

15
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Figure 15.1

EXAMPLE 1 For any positive integer n, the mapping k S k mod n is
a ring homomorphism from Z onto Zn (see Exercise 11 in Chapter 0).
This mapping is called the natural homomorphism from Z to Zn.

EXAMPLE 2 The mapping a 1 bi S a 2 bi is a ring isomorphism
from the complex numbers onto the complex numbers (see Exercise 25
in Chapter 6).

EXAMPLE 3 Let R[x] denote the ring of all polynomials with real
coefficients. The mapping f (x) S f (1) is a ring homomorphism from
R[x] onto R.

EXAMPLE 4 The correspondence f: x S 5x from Z4 to Z10

is a ring homomorphism. Although showing that f(x 1 y) 5
f(x) 1 f(y) appears to be accomplished by the simple statement that
5(x 1 y) 5 5x 1 5y, we must bear in mind that the addition on the left is
done modulo 4, whereas the addition on the right and the multiplication
on both sides are done modulo 10. An analogous difficulty arises in show-
ing that f preserves multiplication. So, to verify that f preserves both op-
erations, we write x 1 y 5 4q1 1 r1 and xy 5 4q2 1 r2, where 0 # r1 , 4
and 0 # r2 , 4. Then f(x 1 y) 5 f(r1) 5 5r1 5 5(x 1 y 2 4q1) 5 5x 1
5y 2 20q1 5 5x 1 5y 5 f(x) 1 f(y) in Z10. Similarly, using the fact that
5 ? 5 5 5 in Z10, we have f(xy) 5 f(r2) 5 5r2 5 5(xy 2 4q2) 5 5xy 2
20q2 5 (5 ? 5)xy 5 5x5y 5 f(x)f(y) in Z10.

EXAMPLE 5 We determine all ring homomorphisms from Z12 to Z30.
By Example 10 in Chapter 10, the only group homomorphisms from Z12

to Z30 are x S ax, where a 5 0, 15, 10, 20, 5, or 25. But, since 1 ? 1 5 1
in Z12, we must have a ? a 5 a in Z30. This requirement rules out 20 and 5
as possibilities for a. Finally, simple calculations show that each of the re-
maining four choices does yield a ring homomorphism.

a

b

a . b (a)  .   (b)
a 1 b

φ

φ

φ φ

(a) 1   (b)φ φ

φ

φ

φ

SR

(a)

φ (b)
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EXAMPLE 6 Let R be a commutative ring of characteristic 2. Then
the mapping a S a2 is a ring homomorphism from R to R.

EXAMPLE 7 Although 2Z, the group of even integers under addi-
tion, is group-isomorphic to the group Z under addition, the ring 2Z is
not ring-isomorphic to the ring Z. (Quick! What does Z have that 2Z
doesn’t?)

Our next two examples are applications to number theory of the nat-
ural homomorphism given in Example 1.

EXAMPLE 8 (Test for Divisibility by 9)

An integer n with decimal representation akak21 ? ? ? a0 is divisible by 9
if and only if ak 1 ak21 1 ? ? ? 1 a0 is divisible by 9. To verify this, ob-
serve that n 5 ak10k 1 ak2110k21 1 ? ? ? 1 a0. Then, letting a denote
the natural homomorphism from Z to Z9 [in particular, a(10) 5 1], we
note that n is divisible by 9 if and only if

0 5 a(n) 5 a(ak)(a(10))k 1 a(ak21)(a(10))k21 1 ? ? ? 1 a(a0)

5 a(ak) 1 a(ak21) 1 ? ? ? 1 a(a0)

5 a(ak 1 ak21 1 ? ? ? 1 a0).

But a(ak 1 ak21 1 ? ? ? 1 a0) 5 0 is equivalent to ak 1 ak21 1 ? ? ? 1
a0 being divisible by 9.

EXAMPLE 9 (Theorem of Gersonides)

Among the most important unsolved problems in number theory is the
so-called “abc conjecture.” This conjecture is a natural generalization
of a theorem first proved in the fourteenth century by the Rabbi
Gersonides. Gersonides proved that the only pairs of positive integers
that are powers of 2 and powers of 3 which differ by 1 are 1, 2; 2, 3; 3,
4; and 8, 9. That is, these four pairs are the only solutions to the equa-
tions 2m 5 3n 6 1. To verify that this is so for 2m 5 3n 1 1, observe that
for all n we have 3n mod 8 5 3 or 1. Thus, 3n 1 1 mod 8 5 4 or 2. On
the other hand, for m . 3, we have 2m mod 8 5 0. To handle the case
where 2m 5 3n 2 1, we first note that for all n, 3n mod 16 5 3, 9, 11, or
1, depending on the value of n mod 4. Thus, (3n 2 1) mod 16 5 2, 8, 10,
or 0. Since 2m mod 16 5 0 for m $ 4, we have ruled out the cases where
n mod 4 5 1, 2, or 3. Because 34k mod 5 5 (34)k mod 5 5 1k mod 5 5
1, we know that (34k 2 1) mod 5 5 0. But the only values for 2m mod 5
are 2, 4, 3, and 1. This contradiction completes the proof.
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Properties of Ring Homomorphisms
Theorem 15.1 Properties of Ring Homomorphisms

PROOF The proofs of these properties are similar to those given in
Theorems 10.1 and 10.2 and are left as exercises (Exercise 1).

The student should learn the various properties of Theorem 15.1
in words in addition to the symbols. Property 2 says that the homomor-
phic image of a subring is a subring. Property 4 says that the pullback
of an ideal is an ideal, and so on.

The next three theorems parallel results we had for groups. The
proofs are nearly identical to their group theory counterparts and are
left as exercises (Exercises 2, 3, and 4).

Theorem 15.2 Kernels Are Ideals

Theorem 15.3 First Isomorphism Theorem for Rings

Let f be a ring homomorphism from R to S. Then the mapping from
R/Ker f to f(R), given by r 1 Ker f S f(r), is an isomorphism. In
symbols, R/Ker f < f(R).

Let f be a ring homomorphism from a ring R to a ring S. Then Ker f
5 {r [ R | f(r) 5 0} is an ideal of R.

Let f be a ring homomorphism from a ring R to a ring S. Let A be a
subring of R and let B be an ideal of S.

1. For any r [ R and any positive integer n, f(nr) 5 nf(r) and
f(rn) 5 (f(r))n.

2. f(A) 5 {f(a) | a [ A} is a subring of S.
3. If A is an ideal and f is onto S, then f(A) is an ideal.
4. f21(B) 5 {r [ R | f(r) [ B} is an ideal of R.
5. If R is commutative, then f(R) is commutative.
6. If R has a unity 1, S 2 {0}, and f is onto, then f(1) is the unity

of S.
7. f is an isomorphism if and only if f is onto and Ker f 5

{r [ R | f(r) 5 0} 5 {0}.
8. If f is an isomorphism from R onto S, then f21 is an

isomorphism from S onto R.
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Theorem 15.4 Ideals Are Kernels

The homomorphism from R to R/A given in Theorem 15.4 is called
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.

In Example 17 in Chapter 14 we gave a direct proof that �x� is a
prime ideal of Z[x] but not a maximal ideal. In the following example
we illustrate a better way to do this kind of problem.

EXAMPLE 10 Since the mapping f from Z[x] onto Z given by 
f( f(x)) 5 f(0) is a ring homomorphism with Ker f 5 �x� (see Exercise
29 in Chapter 14), we have, by Theorem 15.3, Z[x]/�x� < Z. And because
Z is an integral domain but not a field, we know by Theorems 14.3 and
14.4 that the ideal �x� is prime but not maximal in Z[x].

Theorem 15.5 Homomorphism from Z to a Ring with Unity

PROOF Since the multiplicative group property am+n 5 aman translates to
(m 1 n)a 5 ma 1 na when the operation is addition, we have f(m 1 n) 5
(m 1 n) ? 1 5 m ? 1 1 n ? 1. So, f preserves addition. 

That f also preserves multiplication follows from Exercise 15 in
Chapter 12, which says that (m ? a)(n ? b) 5 (mn) ? (ab) for all integers
m and n. Thus, f(mn) 5 (mn) ? 1 5 (mn) ? ((1)(1)) 5 (m ? 1)(n ? 1) 5
f(m)f(n). So, f preserves multiplication as well.

Corollary 1 A Ring with Unity Contains Zn or Z

PROOF Let 1 be the unity of R and let S 5 {k ? 1 | k [ Z}. Theorem 15.5
shows that the mapping f from Z to S given by f(k) 5 k ? 1 is a homo-
morphism, and by the First Isomorphism Theorem for rings, we have
Z/Ker f < S. But, clearly, Ker f 5 �n�, where n is the additive order of 1

If R is a ring with unity and the characteristic of R is n . 0, then
R contains a subring isomorphic to Zn. If the characteristic of R is 0,
then R contains a subring isomorphic to Z.

Let R be a ring with unity 1. The mapping f: Z S R given by n S n ? 1
is a ring homomorphism.

Every ideal of a ring R is the kernel of a ring homomorphism of R. 
In particular, an ideal A is the kernel of the mapping r S r 1 A 
from R to R/A.
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and, by Theorem 13.3, n is also the characteristic of R. So, when R
has characteristic n, S < Z/�n� < Zn. When R has characteristic 0, S <
Z/�0� < Z.

Corollary 2 Zm Is a Homomorphic Image of Z

PROOF This follows directly from the statement of Theorem 15.5,
since in the ring Zm, the integer x mod m is x ? 1. (For example, in Z3, if
x 5 5, we have 5 ? 1 5 1 1 1 1 1 1 1 1 1 5 2.)

Corollary 3 A Field Contains Zp or Q (Steinitz, 1910)

PROOF By Corollary 1, F contains a subring isomorphic to Zp if F has
characteristic p, and F has a subring S isomorphic to Z if F has charac-
teristic 0. In the latter case, let

T 5 {ab21 | a, b [ S, b 2 0}.

Then T is isomorphic to the rationals (Exercise 63).

Since the intersection of all subfields of a field is itself a subfield
(Exercise 11), every field has a smallest subfield (that is, a subfield
that is contained in every subfield). This subfield is called the prime
subfield of the field. It follows from Corollary 3 that the prime
subfield of a field of characteristic p is isomorphic to Zp, whereas the
prime subfield of a field of characteristic 0 is isomorphic to Q. (See
Exercise 67.) 

The Field of Quotients
Although the integral domain Z is not a field, it is at least contained in a
field—the field of rational numbers. And notice that the field of rational
numbers is nothing more than quotients of integers. Can we mimic the
construction of the rationals from the integers for other integral do-
mains? Yes. The field constructed in Theorem 15.6 is called the field of
quotients of D. Throughout the proof of Theorem 15.6, you should keep

If F is a field of characteristic p, then F contains a subfield
isomorphic to Zp. If F is a field of characteristic 0, then F contains
a subfield isomorphic to the rational numbers.

For any positive integer m, the mapping of f: Z S Zm given by x S
x mod m is a ring homomorphism.
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in mind that we are using the construction of the rationals from the inte-
gers as a model for our construction of the field of quotients of D.

Theorem 15.6 Field of Quotients

PROOF Let S 5 {(a, b) | a, b [ D, b 2 0}. We define an equivalence
relation on S by (a, b) ; (c, d ) if ad 5 bc (compare with Example 14
in Chapter 0). Now, let F be the set of equivalence classes of S under
the relation ; and denote the equivalence class that contains (x, y) by
x/y. We define addition and multiplication on F by

a/b 1 c/d 5 (ad 1 bc)/(bd ) and a/b ? c/d 5 (ac)/(bd ).

(Notice that here we need the fact that D is an integral domain to ensure
that multiplication is closed; that is, bd 2 0 whenever b 2 0 and d 2 0.)

Since there are many representations of any particular element of F
( just as in the rationals, we have 1/2 5 3/6 5 4/8), we must show that
these two operations are well defined. To do this, suppose that a/b 5 a9/b9
and c/d 5 c9/d9, so that ab9 5 a9b and cd9 5 c9d. It then follows that

(ad 1 bc)b9d9 5 adb9d9 1 bcb9d9 5 (ab9)dd9 1 (cd9)bb9
5 (a9b)dd9 1 (c9d)bb9 5 a9d9bd 1 b9c9bd
5 (a9d9 1 b9c9)bd.

Thus, by definition, we have

(ad 1 bc)/(bd) 5 (a9d9 1 b9c9)/(b9d9),

and, therefore, addition is well defined. We leave the verification that
multiplication is well defined as an exercise (Exercise 55). That F is a
field is straightforward. Let 1 denote the unity of D. Then 0/1 is the
additive identity of F. The additive inverse of a/b is 2a/b; the multi-
plicative inverse of a nonzero element a/b is b/a. The remaining field
properties can be checked easily.

Finally, the mapping f: D S F given by x S x/1 is a ring isomor-
phism from D to f(D) (see Exercise 7).

EXAMPLE 11 Let D 5 Z[x]. Then the field of quotients of D is
{f(x)/g(x) | f(x), g(x) [ D, where g(x) is not the zero polynomial}.

When F is a field, the field of quotients of F[x] is traditionally de-
noted by F(x).

Let D be an integral domain. Then there exists a field F (called the
field of quotients of D) that contains a subring isomorphic to D.
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EXAMPLE 12 Let p be a prime. Then Zp(x) 5 {f(x)/g(x) | f(x), g(x) [
Zp[x], g(x) 2 0} is an infinite field of characteristic p.

Exercises

We can work it out.
TITLE OF SONG BY JOHN LENNON AND

PAUL MCCARTNEY, December 1965

1. Prove Theorem 15.1.
2. Prove Theorem 15.2.
3. Prove Theorem 15.3.
4. Prove Theorem 15.4.
5. Show that the correspondence x S 5x from Z5 to Z10 does not pre-

serve addition.
6. Show that the correspondence x S 3x from Z4 to Z12 does not pre-

serve multiplication.
7. Show that the mapping f: D S F in the proof of Theorem 15.6 is a

ring homomorphism.
8. Prove that every ring homomorphism f from Zn to itself has the

form f(x) 5 ax, where a2 5 a.
9. Suppose that f is a ring homomorphism from Zm to Zn. Prove that

if f(1) 5 a, then a2 5 a. Give an example to show that the converse
is false.

10. a. Is the ring 2Z isomorphic to the ring 3Z?
b. Is the ring 2Z isomorphic to the ring 4Z?

11. Prove that the intersection of any collection of subfields of a field
F is a subfield of F. (This exercise is referred to in this chapter.)

12. Let Z3[i] 5 {a 1 bi | a, b [ Z3} (see Example 9 in Chapter 13). Show
that the field Z3[i] is ring-isomorphic to the field Z3[x]/�x2 1 1�. 

13. Let

S 5 .

Show that f: C S S given by

f(a 1 bi) 5

is a ring isomorphism.

c a b

2b a
d

e c a b

2b a
d `a, b [ R f
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14. Let Z[ ] 5 {a 1 b | a, b [ Z}. Let

H 5

Show that Z[ ] and H are isomorphic as rings.

15. Consider the mapping from M2(Z ) into Z given by S a. 

Prove or disprove that this is a ring homomorphism.

16. Let R 5 . Prove or disprove that the map-

ping S a is a ring homomorphism.

17. Is the mapping from Z5 to Z30 given by x S 6x a ring homomor-
phism? Note that the image of the unity is the unity of the image
but not the unity of Z30.

18. Is the mapping from Z10 to Z10 given by x S 2x a ring homomor-
phism?

19. Describe the kernel of the homomorphism given in Example 3.
20. Recall that a ring element a is called an idempotent if a2 5 a. Prove

that a ring homomorphism carries an idempotent to an idempotent.
21. Determine all ring homomorphisms from Z6 to Z6. Determine all

ring homomorphisms from Z20 to Z30.
22. Determine all ring isomorphisms from Zn to itself.
23. Determine all ring homomorphisms from Z to Z.
24. Suppose f is a ring homomorphism from Z % Z into Z % Z. What

are the possibilities for f((1, 0))?
25. Determine all ring homomorphisms from Z % Z into Z % Z.
26. In Z, let A 5 �2� and B 5 �8�. Show that the group A/B is isomor-

phic to the group Z4 but that the ring A/B is not ring-isomorphic to
the ring Z4.

27. Let R be a ring with unity and let f be a ring homomorphism from R
onto S where S has more than one element. Prove that S has a unity.

28. Show that (Z % Z )/(�a� % �b�) is ring-isomorphic to Za % Zb.
29. Determine all ring homomorphisms from Z % Z to Z.
30. Prove that the sum of the squares of three consecutive integers can-

not be a square.
31. Let m be a positive integer and let n be an integer obtained from m

by rearranging the digits of m in some way. (For example, 72345 is
a rearrangement of 35274.) Show that m 2 n is divisible by 9.

ca b

0 c
d

e ca b

0 c
d `  a, b, c [ Z f

ca b

c d
d

"2

e ca 2b

b a
d ` a, b [ Z f .

"2"2
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32. (Test for divisibility by 11) Let n be an integer with decimal repre-
sentation akak21 ? ? ? a1a0. Prove that n is divisible by 11 if and only
if a0 2 a1 1 a2 2 ? ? ? (21)kak is divisible by 11.

33. Show that the number 7,176,825,942,116,027,211 is divisible by 9
but not divisible by 11.

34. Show that the number 9,897,654,527,609,805 is divisible by 99.
35. (Test for divisibility by 3) Let n be an integer with decimal repre-

sentation akak21 ? ? ? a1a0. Prove that n is divisible by 3 if and only
if ak 1 ak21 1 ? ? ? 1 a1 1 a0 is divisible by 3.

36. (Test for divisibility by 4) Let n be an integer with decimal repre-
sentation akak21 ? ? ? a1a0. Prove that n is divisible by 4 if and only
if a1a0 is divisible by 4.

37. Show that no integer of the form 111,111,111, . . . ,111 is prime.
38. Consider an integer n of the form a, 111,111,111,111,111,111,

111,111,12b. Find values for a and b such that n is divisible by 99.
39. Suppose n is a positive integer written in the form n 5 ak3k 1

ak213k21 1 ? ? ? 1 a13 1 a0, where each of the ai’s is 0, 1, or 2 (the
base 3 representative of n). Show that n is even if and only if ak 1
ak21 1 ? ? ? 1 a1 1 a0 is even.

40. Find an analog of the condition given in the previous exercise for
characterizing divisibility by 4.

41. In your head, determine (2 ? 1075 1 2)100 mod 3 and (10100 1 1)99

mod 3.
42. Determine all ring homomorphisms from Q to Q.
43. Let R and S be commutative rings with unity. If f is a homomor-

phism from R onto S and the characteristic of R is nonzero, prove
that the characteristic of S divides the characteristic of R.

44. Let R be a commutative ring of prime characteristic p. Show that
the Frobenius map x S xp is a ring homomorphism from R to R.

45. Is there a ring homomorphism from the reals to some ring whose
kernel is the integers?

46. Show that a homomorphism from a field onto a ring with more
than one element must be an isomorphism.

47. Suppose that R and S are commutative rings with unities. Let f be a
ring homomorphism from R onto S and let A be an ideal of S.
a. If A is prime in S, show that f21(A) 5 {x [ R | f(x) [ A} is

prime in R.
b. If A is maximal in S, show that f21(A) is maximal in R.
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48. A principal ideal ring is a ring with the property that every ideal
has the form �a�. Show that the homomorphic image of a principal
ideal ring is a principal ideal ring.

49. Let R and S be rings.
a. Show that the mapping from R % S onto R given by (a, b) S a

is a ring homomorphism.
b. Show that the mapping from R to R % S given by a S (a, 0) is a

one-to-one ring homomorphism.
c. Show that R % S is ring-isomorphic to S % R.

50. Show that if m and n are distinct positive integers, then mZ is not
ring-isomorphic to nZ.

51. Prove or disprove that the field of real numbers is ring-isomorphic
to the field of complex numbers.

52. Show that the only ring automorphism of the real numbers is the
identity mapping.

53. Determine all ring homomorphisms from R to R.
54. Suppose that n divides m and that a is an idempotent of Zn (that is,

a2 5 a). Show that the mapping x S ax is a ring homomorphism
from Zm to Zn. Show that the same correspondence need not yield a
ring homomorphism if n does not divide m.

55. Show that the operation of multiplication defined in the proof of
Theorem 15.6 is well defined.

56. Let Q[ ] 5 {a 1 b | a, b [ Q} and Q[ ] 5 {a 1 b |
a, b [ Q}. Show that these two rings are not ring-isomorphic.

57. Let Z[i] 5 {a 1 bi | a, b [ Z}. Show that the field of quotients of
Z[i] is ring-isomorphic to Q[i] 5 {r 1 si | r, s [ Q}. (This exercise
is referred to in Chapter 18.)

58. Let F be a field. Show that the field of quotients of F is ring-
isomorphic to F.

59. Let D be an integral domain and let F be the field of quotients of D.
Show that if E is any field that contains D, then E contains a
subfield that is ring-isomorphic to F. (Thus, the field of quotients
of an integral domain D is the smallest field containing D.)

60. Explain why a commutative ring with unity that is not an integral do-
main cannot be contained in a field. (Compare with Theorem 15.6.)

61. Show that the relation ; defined in the proof of Theorem 15.6 is an
equivalence relation.

62. Give an example of a ring without unity that is contained in a field.
63. Prove that the set T in the proof of Corollary 3 to Theorem 15.5 is

ring-isomorphic to the field of rational numbers.

"5"5"2"2
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64. Suppose that f: R S S is a ring homomorphism and that the
image of f is not {0}. If R has a unity and S is an integral domain,
show that f carries the unity of R to the unity of S. Give an ex-
ample to show that the preceding statement need not be true if S
is not an integral domain.

65. Let f(x) [ R[x]. If a 1 bi is a complex zero of f(x) (here i 5 ),
show that a 2 bi is a zero of f(x). (This exercise is referred to in
Chapter 32.)

66. Let R 5 , and let f be the mapping that

takes to a 2 b.

a. Show that f is a homomorphism.
b. Determine the kernel of f.
c. Show that R/Ker f is isomorphic to Z.
d. Is Ker f a prime ideal?
e. Is Ker f a maximal ideal?

67. Show that the prime subfield of a field of characteristic p is ring-
isomorphic to Zp and that the prime subfield of a field of charac-
teristic 0 is ring-isomorphic to Q. (This exercise is referred to in
this chapter.)

68. Let n be a positive integer. Show that there is a ring isomorphism
from Z2 to a subring of Z2n if and only if n is odd.

69. Show that Zmn is ring-isomorphic to Zm % Zn when m and n are rel-
atively prime.

Suggested Readings

J. A. Gallian and J. Van Buskirk, “The Number of Homomorphisms from
Zm into Zn,” American Mathematical Monthly 91 (1984): 196–197.

In this article, formulas are given for the number of group homomor-
phisms from Zm into Zn and the number of ring homomorphisms from
Zm into Zn. This article can be downloaded at http://www.d.umn.edu/
~jgallian/homs.pdf

Lillian Kinkade and Joyce Wagner, “When Polynomial Rings Are
Principal Ideal Rings,” Journal of Undergraduate Mathematics 23
(1991): 59–62.

In this article written by undergraduates, it is shown that R[x] is a
principal ideal ring if and only if R < R1 % R2 % ? ? ? % Rn, where
each Ri is a field.

ca b

b a
d

e ca b

b a
d `  a, b [ Z f

"21
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Mohammad Saleh and Hasan Yousef, “The Number of Ring Homomor-
phisms from Zm1

% ? ? ? % Zmr into Zk1
% ? ? ? % Zk s,” American Mathe-

matical Monthly 105 (1998): 259–260.

This article gives a formula for the number described in the title.

Suggested Website

http://www.d.umn.edu/~jgallian/puzzle

This site has a math puzzle that is based on the ideas presented in this
chapter. The user selects an integer and then proceeds through a series of
steps to produce a new integer. Finally, another integer is created by using
all but one of the digits of the previous integer in any order. The software
then determines the digit not used.
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Wit lies in recognizing the resemblance among things which differ and the
difference between things which are alike.

MADAME DE STAEL
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16 Polynomial Rings

293

Notation and Terminology
One of the mathematical concepts that students are most familiar with
and most comfortable with is that of a polynomial. In high school,
students study polynomials with integer coefficients, rational coeffi-
cients, real coefficients, and perhaps even complex coefficients. In ear-
lier chapters of this book, we introduced something that was probably
new—polynomials with coefficients from Zn. Notice that all of these
sets of polynomials are rings, and, in each case, the set of coefficients is
also a ring. In this chapter, we abstract all of these examples into one.

Definition Ring of Polynomials over R

Let R be a commutative ring. The set of formal symbols

R[x] 5 {anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0 | ai [ R,
n is a nonnegative integer}

is called the ring of polynomials over R in the indeterminate x.

Two elements

anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0

and

bmxm 1 bm21xm21 1 ? ? ? 1 b1x 1 b0

of R[x] are considered equal if and only if ai 5 bi for all nonnegative
integers i. (Define ai 5 0 when i . n and bi 5 0 when i . m.)   
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In this definition, the symbols x, x2, . . . , xn do not represent
“unknown” elements or variables from the ring R. Rather, their purpose
is to serve as convenient placeholders that separate the ring elements
an, an21, . . . , a0. We could have avoided the x’s by defining a polyno-
mial as an infinite sequence a0, a1, a2, . . . , an, 0, 0, 0, . . . , but our
method takes advantage of the student’s experience in manipulating
polynomials where x does represent a variable. The disadvantage of our
method is that one must be careful not to confuse a polynomial with the
function determined by a polynomial. For example, in Z3[x], the poly-
nomials f (x) 5 x3 and g(x) 5 x5 determine the same function from Z3

to Z3, since f(a) 5 g(a) for all a in Z3.† But f(x) and g(x) are different
elements of Z3[x]. Also, in the ring Zn[x], be careful to reduce only the
coefficients and not the exponents modulo n. For example, in Z3[x],
5x 5 2x, but x5 2 x2.

To make R[x] into a ring, we define addition and multiplication in
the usual way.

Definition Addition and Multiplication in R[x]

Let R be a commutative ring and let

f (x) 5 anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0

and

g(x) 5 bmxm 1 bm21xm21 1 ? ? ? 1 b1x 1 b0

belong to R[x]. Then

f (x) 1 g(x) 5 (as 1 bs)xs 1 (as21 1 bs21)xs21

1 ? ? ? 1 (a1 1 b1)x 1 a0 1 b0,

where s is the maximum of m and n, ai 5 0 for i . n, and bi 5 0 for 
i . m. Also,

f (x)g(x) 5 cm1nxm1n 1 cm1n21xm1n21 1 ? ? ? 1 c1x 1 c0,

where

ck 5 akb0 1 ak21b1 1 ? ? ? 1 a1bk21 1 a0bk

for k 5 0, . . . , m 1 n.

Although the definition of multiplication might appear complicated,
it is just a formalization of the familiar process of using the distributive

†In general, given f(x) in R[x] and a in R, f(a) means substitute a for x in the formula
for f(x). This substitution is a homomorphism from R[x] to R.
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property and collecting like terms. So, just multiply polynomials over a
commutative ring R in the same way that polynomials are always mul-
tiplied. Here is an example.

Consider f (x) 5 2x3 1 x2 1 2x 1 2 and g(x) 5 2x2 1 2x 1 1 in Z3[x].
Then, in our preceding notation, a5 5 0, a4 5 0, a3 5 2, a2 5 1, a1 5 2,
a0 5 2, and b5 5 0, b4 5 0, b3 5 0, b2 5 2, b1 5 2, b0 5 1. Now, using
the definitions and remembering that addition and multiplication of the
coefficients are done modulo 3, we have

f(x) 1 g(x) 5 (2 1 0)x3 1 (1 1 2)x2 1 (2 1 2)x 1 (2 1 1)

5 2x3 1 0x2 1 1x 1 0

5 2x3 1 x

and

f(x) ? g(x) 5 (0 ? 1 1 0 ? 2 1 2 ? 2 1 1 ? 0 1 2 ? 0 1 2 ? 0)x5

1 (0 ? 1 1 2 ? 2 1 1 ? 2 1 2 ? 0 1 2 ? 0)x4

1 (2 ? 1 1 1 ? 2 1 2 ? 2 1 2 ? 0)x3

1 (1 ? 1 1 2 ? 2 1 2 ? 2)x2 1 (2 ? 1 1 2 ? 2)x 1 2 ? 1
5 x5 1 0x4 1 2x3 1 0x2 1 0x 1 2
5 x5 1 2x3 1 2

Our definitions for addition and multiplication of polynomials were
formulated so that they are commutative and associative, and so that
multiplication is distributive over addition. We leave the verification
that R[x] is a ring to the reader.

It is time to introduce some terminology for polynomials. If

f(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0,

where an 2 0, we say that f(x) has degree n; the term an is called the
leading coefficient of f(x), and if the leading coefficient is the multi-
plicative identity element of R, we say that f(x) is a monic polynomial.
The polynomial f(x) 5 0 has no degree. Polynomials of the form
f(x) 5 a0 are called constant. We often write deg f(x) 5 n to indicate
that f(x) has degree n. In keeping with our experience with polynomials
with real coefficients, we adopt the following notational conventions:
We may insert or delete terms of the form 0xk; 1xk will be denoted by
xk; 1 (2ak)xk will be denoted by 2akxk.

Very often properties of R carry over to R[x]. Our first theorem is a
case in point.
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Theorem 16.1 D an Integral Domain Implies D[x] an Integral Domain

PROOF Since we already know that D[x] is a ring, all we need 
to show is that D[x] is commutative with a unity and has no zero-divisors.
Clearly, D[x] is commutative whenever D is. If 1 is the unity element of
D, it is obvious that f(x) 5 1 is the unity element of D[x]. Finally, sup-
pose that

f (x) 5 anxn 1 an21xn21 1 ? ? ? 1 a0

and

g(x) 5 bmxm 1 bm21xm21 1 ? ? ? 1 b0,

where an 2 0 and bm 2 0. Then, by definition, f(x)g(x) has leading co-
efficient anbm and, since D is an integral domain, anbm 2 0.

The Division Algorithm 
and Consequences

One of the properties of integers that we have used repeatedly is the
division algorithm: If a and b are integers and b 2 0, then there exist
unique integers q and r such that a 5 bq 1 r, where 0 # r , |b|. The
next theorem is the analogous statement for polynomials over a field.

Theorem 16.2 Division Algorithm for F[x]

PROOF We begin by showing the existence of q(x) and r(x). If
f(x) 5 0 or deg f(x) , deg g(x), we simply set q(x) 5 0 and r(x) 5 f(x).
So, we may assume that n 5 deg f(x) $ deg g(x) 5 m and let f(x) 5
anxn 1 ? ? ? 1 a0 and g(x) 5 bmxm 1 ? ? ? 1 b0. The idea behind this
proof is to begin just as if you were going to “long divide” g(x) into
f(x), then use the Second Principle of Mathematical Induction on
deg f(x) to finish up. Thus, resorting to long division, we let f1(x) 5

Let F be a field and let f(x) and g(x) [ F[x] with g(x) 2 0. Then 
there exist unique polynomials q(x) and r(x) in F[x] such that f(x) 5

g(x)q(x) 1 r(x) and either r(x) 5 0 or deg r(x) , deg g(x).

If D is an integral domain, then D [x] is an integral domain.
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f(x) 2 anbm
21xn2mg(x).† Then, f1(x) 5 0 or deg f1(x) , deg f(x); so, by

our induction hypothesis, there exist q1(x) and r1(x) in F[x] such that 
f1(x) 5 g(x)q1(x) 1 r1(x), where r1(x) 5 0 or deg r1(x) , deg g(x).
[Technically, we should get the induction started by proving the case
in which deg f(x) 5 0, but this is trivial.] Thus,

f(x) 5 anbm
21xn2mg(x) 1 f1(x)

5 anbm
21xn2mg(x) 1 q1(x)g(x) 1 r1(x)

5 [anbm
21xn2m 1 q1(x)]g(x) 1 r1(x).

So, the polynomials q(x) 5 anbm
21xn2m 1 q1(x) and r(x) 5 r1(x) have

the desired properties.
To prove uniqueness, suppose that f(x) 5 g(x)q(x) 1 r(x) and f(x) 5

g(x) (x) 1 (x), where r(x) 5 0 or deg r(x) , deg g(x) and (x) 5 0
or deg (x) , deg g(x). Then, subtracting these two equations, we obtain

0 5 g(x)[q(x) 2 (x)] 1 [r(x) 2 (x)]

or

(x) 2 r(x) 5 g(x)[q(x) 2 (x)].

Thus, (x) 2 r(x) is 0, or the degree of (x) 2 r(x) is at least that of 
g(x). Since the latter is clearly impossible, we have (x) 5 r(x) and 
q(x) 5 (x) as well.

The polynomials q(x) and r(x) in the division algorithm are called
the quotient and remainder in the division of f(x) by g(x). When the
ring of coefficients of a polynomial ring is a field, we can use the long
division process to determine the quotient and remainder.

q
r

rr

qr

rq

r
rrq

†For example,

So,
23x2 1 x 1 1 5 3x4 1 x 1 1 2 (3/2)x2(2x2 1 2)

In general,

So,
f1(x) 5 (anxn 1 ? ? ?) 2 anbm

21xn2m(bmxm 1 ? ? ?)

anbm
21xn2m

qan x
n 1 . . . 

 an x
n 1 . . . 

      f1(x)

bm xm 1 . . .

     (3>2)x2

q3x4                1 x 1 1

3x4 1 3x2                   

2 3x2 1 x 1 1

2x2 1 2
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EXAMPLE 1 To find the quotient and remainder upon dividing
f(x) 5 3x4 1 x3 1 2x2 1 1 by g(x) 5 x2 1 4x 1 2, where f(x) and g(x)
belong to Z5[x], we may proceed by long division, provided we keep in
mind that addition and multiplication are done modulo 5. Thus,

So, 3x2 1 4x is the quotient and 2x 1 1 is the remainder. Therefore,

3x4 1 x3 1 2x2 1 1 5 (x2 1 4x 1 2)(3x2 1 4x) 1 2x 1 1.

Let D be an integral domain. If f(x) and g(x) [ D[x], we say that g(x)
divides f(x) in D[x] [and write g(x) | f(x)] if there exists an h(x) [ D[x]
such that f(x) 5 g(x)h(x). In this case, we also call g(x) a factor of f(x).
An element a is a zero (or a root) of a polynomial f(x) if f(a) 5 0.
[Recall that f(a) means substitute a for x in the expression for f(x).]
When F is a field, a [ F, and f(x) [ F[x], we say that a is a zero of
multiplicity k (k $ 1) if (x 2 a)k is a factor of f(x) but (x 2 a)k11 is not
a factor of f(x). With these definitions, we may now give several impor-
tant corollaries of the division algorithm. No doubt you have seen these
for the special case where F is the field of real numbers.

Corollary 1 The Remainder Theorem

PROOF The proof of Corollary 1 is left as an exercise (Exercise 5).

Corollary 2 The Factor Theorem

PROOF The proof of Corollary 2 is left as an exercise (Exercise 7).

 3x2 1 4x

q3x4 1 x3 1 2x2     1 1

  3x4 1 2x3 1    x2                   

  4x3 1  x2     1 1

  4x3 1  x2 1 3x        

  2x 1 1

x2 1 4x 1 2

Let F be a field, a [ F, and f(x) [ F [x]. Then f(a) is the remainder in
the division of f(x) by x 2 a.

Let F be a field, a [ F, and f(x) [ F[x]. Then a is a zero of f(x) if
and only if x 2 a is a factor of f(x).
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Corollary 3 Polynomials of Degree n Have at Most n Zeros

PROOF We proceed by induction on n. Clearly, a polynomial of
degree 0 over a field has no zeros. Now suppose that f(x) is a polyno-
mial of degree n over a field and a is a zero of f(x) of multiplicity k.
Then, f(x) 5 (x 2 a)kq(x) and q(a) 2 0; and, since n 5 deg f(x) 5
deg (x 2 a)k q(x) 5 k 1 deg q(x), we have k # n (see Exercise 17). If
f(x) has no zeros other than a, we are done. On the other hand, if b 2 a
and b is a zero of f(x), then 0 5 f(b) 5 (b 2 a)kq(b), so that b is also a
zero of q(x) with the same multiplicity as it has for f (x) (see Exercise
19). By the Second Principle of Mathematical Induction, we know
that q(x) has at most deg q(x) 5 n 2 k zeros, counting multiplicity. Thus,
f(x) has at most k 1 n 2 k 5 n zeros, counting multiplicity.

We remark that Corollary 3 is not true for arbitrary polynomial rings.
For example, the polynomial x2 1 3x 1 2 has four zeros in Z6. (See
Exercise 3.) Lagrange was the first to prove Corollary 3 for polynomi-
als in Zp[x].

EXAMPLE 2 The Complex Zeros of xn 2 1

We find all complex zeros of xn 2 1. Let v 5 cos(360°/n) 1
i sin(360°/n). It follows from DeMoivre’s Theorem (see Example 7
in Chapter 0) that vn 5 1 and vk 2 1 for 1 # k , n. Thus, each of 1,
v, v2, . . . , vn21 is a zero of xn 2 1 and, by Corollary 3, there are no
others.

The complex number v in Example 2 is called the primitive nth root
of unity.

We conclude this chapter with an important theoretical application
of the division algorithm, but first an important definition.

Definition Principal Ideal Domain (PID)

A principal ideal domain is an integral domain R in which every ideal
has the form �a� 5 {ra | r [ R} for some a in R.

Theorem 16.3 F[x] Is a PID

A polynomial of degree n over a field has at most n zeros, counting
multiplicity.

Let F be a field. Then F[x] is a principal ideal domain.
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PROOF By Theorem 16.1, we know that F[x] is an integral domain.
Now, let I be an ideal in F[x]. If I 5 {0}, then I 5 �0�. If I 2 {0}, then
among all the elements of I, let g(x) be one of minimum degree. We will
show that I 5 �g(x)�. Since g(x) [ I, we have �g(x)� # I. Now
let f(x) [ I. Then, by the division algorithm, we may write f(x) 5
g(x)q(x) 1 r(x), where r(x) 5 0 or deg r(x) , deg g(x). Since r(x) 5 f(x) 2
g(x)q(x) [ I, the minimality of deg g(x) implies that the latter condition
cannot hold. So, r(x) 5 0 and, therefore, f(x) [ �g(x)�. This shows that
I # �g(x)�.

The proof of Theorem 16.3 also establishes the following.

Theorem 16.4 Criterion for I 5 �g(x)�

As an application of the First Isomorphism Theorem for Rings
(Theorem 15.3) and Theorem 16.4, we verify the remark we made in
Example 12 in Chapter 14 that the ring R[x]/�x2 1 1� is isomorphic to
the ring of complex numbers.

EXAMPLE 3 Consider the homomorphism f from R[x] onto C given
by f(x) → f(i) (that is, evaluate a polynomial in R[x] at i). Then 
x2 1 1 [ Ker f and is clearly a polynomial of minimum degree in Ker f.
Thus, Ker f 5 �x2 1 1� and R[x]/�x2 1 1� is isomorphic to C.

Exercises

If I feel unhappy, I do mathematics to become happy. If I am happy, I do
mathematics to keep happy.

PAUL TURÁN

1. Let f(x) 5 4x3 1 2x2 1 x 1 3 and g(x) 5 3x4 1 3x3 1 3x2 1 x 1 4,
where f(x), g(x) [ Z5[x]. Compute f(x) 1 g(x) and f(x) ? g(x).

2. In Z3[x], show that the distinct polynomials x4 1 x and x2 1 x
determine the same function from Z3 to Z3.

3. Show that x2 1 3x 1 2 has four zeros in Z6. (This exercise is
referred to in this chapter.)

Let F be a field, I a nonzero ideal in F [x], and g(x) an element of
F [x]. Then, I 5 8g(x)9 if and only if g(x) is a nonzero polynomial of
minimum degree in I.
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4. If R is a commutative ring, show that the characteristic of R[x] is
the same as the characteristic of R.

5. Prove Corollary 1 of Theorem 16.2.
6. List all the polynomials of degree 2 in Z2[x].
7. Prove Corollary 2 of Theorem 16.2.
8. Let R be a commutative ring. Show that R[x] has a subring isomor-

phic to R.
9. If f: R → S is a ring homomorphism, define :R[x] → S[x] by

(anxn 1 ? ? ? 1 a0) → f(an)xn 1 ? ? ? 1 f(a0). Show that is a ring
homomorphism. (This exercise is referred to in Chapter 33.)

10. If the rings R and S are isomorphic, show that R[x] and S[x] are 
isomorphic.

11. Let f(x) 5 x3 1 2x 1 4 and g(x) 5 3x 1 2 in Z5[x]. Determine the 
quotient and remainder upon dividing f(x) by g(x).

12. Let f(x) 5 5x4 1 3x3 1 1 and g(x) 5 3x2 1 2x 1 1 in Z7[x].
Determine the quotient and remainder upon dividing f(x) by g(x).

13. Show that the polynomial 2x 1 1 in Z4[x] has a multiplicative in-
verse in Z4[x].

14. Are there any nonconstant polynomials in Z[x] that have multi-
plicative inverses? Explain your answer.

15. Let p be a prime. Are there any nonconstant polynomials in Zp[x]
that have multiplicative inverses? Explain your answer.

16. Show that Corollary 3 of Theorem 16.2 is false for any commuta-
tive ring that has a zero divisor.

17. (Degree Rule) Let D be an integral domain and f(x), g(x) [ D[x].
Prove that deg ( f(x) ? g(x)) 5 deg f(x) 1 deg g(x). Show, by exam-
ple, that for commutative ring R it is possible that deg f(x)g(x) ,
deg f(x) 1 deg g(x) where f(x) and g(x) are nonzero elements in
R[x]. (This exercise is referred to in this chapter, Chapter 17, and
Chapter 18.)

18. Prove that the ideal �x� in Q[x] is maximal.
19. Let f(x) belong to F[x], where F is a field. Let a be a zero of f(x) of

multiplicity n, and write f(x) 5 (x 2 a)nq(x). If b a is a zero of
q(x), show that b has the same multiplicity as a zero of q(x) as it
does for f(x). (This exercise is referred to in this chapter.)

20. Prove that for any positive integer n, a field F can have at most a
finite number of elements of order at most n.

21. Let F be an infinite field and let f(x) [ F[x]. If f(a) 5 0 for infi-
nitely many elements a of F, show that f(x) 5 0.

?

f
f
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22. Let F be an infinite field and let f(x), g(x) [ F[x]. If f(a) 5 g(a) for
infinitely many elements a of F, show that f(x) 5 g(x).

23. Let F be a field and let p(x) [ F[x]. If f(x), g(x) [ F[x] and 
deg f(x) , deg p(x) and deg g(x) , deg p(x), show that f(x) 1
�p(x)� 5 g(x) 1 �p(x)� implies f(x) 5 g(x). (This exercise is
referred to in Chapter 20.)

24. Prove that Z[x] is not a principal ideal domain. (Compare this with
Theorem 16.3.)

25. Find a polynomial with integer coefficients that has 1/2 and 21/3
as zeros.

26. Let f(x) [ R[x]. Suppose that f(a) 5 0 but f9(a) 2 0, where f9(x) is
the derivative of f(x). Show that a is a zero of f(x) of multiplicity 1.

27. Show that Corollary 2 of Theorem 16.2 is true over any commuta-
tive ring with unity.

28. Show that Corollary 3 of Theorem 16.2 is true for polynomials
over integral domains.

29. Let F be a field and let

I 5 {anxn 1 an21xn21 1 ? ? ? 1 a0 | an, an21, . . . , a0 [ F and
an 1 an21 1 ? ? ? 1 a0 5 0}.

Show that I is an ideal of F[x] and find a generator for I.
30. Let F be a field and let f(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a0 [ F[x].

Prove that x 2 1 is a factor of f(x) if and only if an 1 an21 1 ? ? ? 1
a0 5 0.

31. Let m be a fixed positive integer. For any integer a, let denote
a mod m. Show that the mapping of f: Z[x] → Zm[x] given by

f(anxn 1 an21xn21 1 ? ? ? 1 a0) 5 nxn 1 n21xn21 1 ? ? ? 1 0

is a ring homomorphism. (This exercise is referred to in Chapters
17 and 33.)

32. Find infinitely many polynomials f(x) in Z3[x] such that f(a) 5 0 for
all a in Z3.

33. For every prime p, show that

xp21 2 1 5 (x 2 1)(x 2 2) ? ? ? [x 2 (p 2 1)]
in Zp[x].

34. (Wilson’s Theorem) For every integer n . 1, prove that (n 2 1)!
mod n 5 n 2 1 if and only if n is prime.

35. For every prime p, show that ( p 2 2)! mod p 5 1.
36. Find the remainder upon dividing 98! by 101.
37. Prove that (50!)2 mod 101 5 21 mod 101.

aaa

a
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38. If I is an ideal of a ring R, prove that I[x] is an ideal of R[x].
39. Give an example of a commutative ring R with unity and a

maximal ideal I of R such that I[x] is not a maximal ideal of R[x].
40. Let R be a commutative ring with unity. If I is a prime ideal of R,

prove that I[x] is a prime ideal of R[x].
41. Let F be a field, and let f(x) and g(x) belong to F[x]. If there is no

polynomial of positive degree in F[x] that divides both f(x) and g(x)
[in this case, f(x) and g(x) are said to be relatively prime], prove that
there exist polynomials h(x) and k(x) in F[x] with the property that
f(x)h(x) 1 g(x)k(x) 5 1. (This exercise is referred to in Chapter 20.)

42. Prove that Q[x]/�x2 2 2� is ring-isomorphic to Q[ ] 5 {a 1
b | a, b [ Q}.

43. Let f(x) [ R[x]. If f(a) 5 0 and f 9(a) 5 0 [f 9(a) is the derivative of
f(x) at a], show that (x 2 a)2 divides f(x).

44. Let F be a field and let I 5 {f(x) [ F[x] | f(a) 5 0 for all a in F}.
Prove that I is an ideal in F[x]. Prove that I is infinite when F is fi-
nite and I 5 {0} when F is infinite. When F is finite, find a monic
polynomial g(x) such that I 5 �g(x)�.

45. Let g(x) and h(x) belong to Z[x] and let h(x) be monic. If h(x) di-
vides g(x) in Q[x], show that h(x) divides g(x) in Z[x]. (This exer-
cise is referred to in Chapter 33.)

46. For any field F, recall that F(x) denotes the field of quotients of the
ring F[x]. Prove that there is no element in F(x) whose square is x.

47. Let F be a field. Show that there exist a, b [ F with the property
that x2 1 x 1 1 divides x43 1 ax 1 b.

48. Let f(x) 5 amxm 1 am21xm21 1 ? ? ? 1 a0 and g(x) 5 bnxn 1 bn21xn21 1
? ? ? 1 b0 belong to Q[x] and suppose that f 8 g belongs to Z[x]. Prove
that aibj is an integer for every i and j.

49. Let f (x) belong to Z[x]. If a mod m 5 b mod m, prove that f (a)
mod m 5 f(b) mod m. Prove that if both f(0) and f(1) are odd then 
f has no zero in Z.

50. Find the remainder when x51 is divided by x 1 4 in Z7[x].
51. Show that 1 is the only solution of x25 2 1 5 0 in Z37.

"2
"2
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Saunders Mac Lane

SAUNDERS MAC LANE ranks among the most
influential mathematicians in the twentieth
century. He was born on August 4, 1909, in
Norwich, Connecticut. In 1933, at the height
of the Depression, he was newly married; de-
spite having degrees from Yale, the University
of Chicago, and the University of Göttingen,
he had no prospects for a position at a college
or university. After applying for employment
as a master at a private preparatory school for
boys, Mac Lane received a two-year instruc-
torship at Harvard in 1934. He then spent a
year at Cornell and a year at the University
of Chicago before returning to Harvard in
1938. In 1947, he went back to Chicago per-
manently. 

Much of Mac Lane’s work focuses on the
interconnections among algebra, topology,

The 1986 Steele Prize for cumulative
influence is awarded to Saunders Mac Lane
for his many contributions to algebra and
algebraic topology, and in particular for his
pioneering work in homological and
categorical algebra.

Citation for the Steele Prize

304

and geometry. His book, Survey of Modern
Algebra, coauthored with Garrett Birkhoff,
influenced generations of mathematicians
and is now a classic. Mac Lane has served as
president of the Mathematical Association of
America and the American Mathematical
Society. He was elected to the National
Academy of Sciences, received the National
Medal of Science and supervised 41 Ph.D.
theses. Mac Lane died April 14, 2005, at age
of 95.

To find more information about Mac
Lane, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Factorization 
of Polynomials

The value of a principle is the number of things it will explain.
RALPH WALDO EMERSON
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17

Reducibility Tests
In high school, students spend much time factoring polynomials and
finding their zeros. In this chapter, we consider the same problems in a
more abstract setting.

To discuss factorization of polynomials, we must first introduce the
polynomial analog of a prime integer.

Definition Irreducible Polynomial, Reducible Polynomial

Let D be an integral domain. A polynomial f(x) from D[x] that is
neither the zero polynomial nor a unit in D[x] is said to be irreducible
over D if, whenever f(x) is expressed as a product f(x) 5 g(x)h(x), with
g(x) and h(x) from D[x], then g(x) or h(x) is a unit in D[x]. A nonzero,
nonunit element of D[x] that is not irreducible over D is called
reducible over D.

In the case that an integral domain is a field F, it is equivalent and more
convenient to define a nonconstant f(x) [ F[x] to be irreducible if f(x) can-
not be expressed as a product of two polynomials of lower degree.

EXAMPLE 1 The polynomial f(x) 5 2x2 1 4 is irreducible over Q
but reducible over Z, since 2x2 1 4 5 2(x2 1 2) and neither 2 nor x2 1 2
is a unit in Z[x].

EXAMPLE 2 The polynomial f(x) 5 2x2 1 4 is irreducible over R
but reducible over C.

EXAMPLE 3 The polynomial x2 2 2 is irreducible over Q but re-
ducible over R.
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EXAMPLE 4 The polynomial x2 1 1 is irreducible over Z3 but re-
ducible over Z5.

In general, it is a difficult problem to decide whether or not a partic-
ular polynomial is reducible over an integral domain, but there are spe-
cial cases when it is easy. Our first theorem is a case in point. It applies
to the three preceding examples.

Theorem 17.1 Reducibility Test for Degrees 2 and 3

PROOF Suppose that f(x) 5 g(x)h(x), where both g(x) and h(x) belong
to F[x] and have degrees less than that of f(x). Since deg f(x) 5 deg g(x) 1
deg h(x) (Exercise 17 in Chapter 16) and deg f(x) is 2 or 3, at least one
of g(x) and h(x) has degree 1. Say g(x) 5 ax 1 b. Then, clearly, 2a21b
is a zero of g(x) and therefore a zero of f(x) as well.

Conversely, suppose that f(a) 5 0, where a [ F. Then, by the Factor
Theorem, we know that x 2 a is a factor of f(x) and, therefore, f(x) is
reducible over F.

Theorem 17.1 is particularly easy to use when the field is Zp, be-
cause, in this case, we can check for reducibility of f(x) by simply test-
ing to see if f(a) 5 0 for a 5 0, 1, . . . , p 2 1. For example, since 2 is a
zero of x2 1 1 over Z5, x2 1 1 is reducible over Z5. On the other hand,
because neither 0, 1, nor 2 is a zero of x2 1 1 over Z3, x2 1 1 is irre-
ducible over Z3.

Note that polynomials of degree larger than 3 may be reducible over
a field, even though they do not have zeros in the field. For example, in
Q[x], the polynomial x4 1 2x2 1 1 is equal to (x2 1 1)2, but has no
zeros in Q.

Our next three tests deal with polynomials with integer coefficients.
To simplify the proof of the first of these, we introduce some terminol-
ogy and isolate a portion of the argument in the form of a lemma.

Definition Content of Polynomial, Primitive Polynomial

The content of a nonzero polynomial anxn 1 an21x
n21 1 ? ? ? 1 a0,

where the a’s are integers, is the greatest common divisor of the
integers an, an21, . . . , a0. A primitive polynomial is an element of Z[x]
with content 1.

Let F be a field. If f(x) [ F[x] and deg f(x) is 2 or 3, then f(x) is
reducible over F if and only if f(x) has a zero in F.

306 Rings
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Gauss’s Lemma

PROOF Let f(x) and g(x) be primitive polynomials, and suppose that
f(x)g(x) is not primitive. Let p be a prime divisor of the content of
f(x)g(x), and let , , and be the polynomials obtained
from f(x), g(x), and f(x)g(x) by reducing the coefficients modulo p.
Then, and belong to the integral domain Zp[x] and 5

5 0, the zero element of Zp[x] (see Exercise 31 in Chapter 16).
Thus, 5 0 or 5 0. This means that either p divides every co-
efficient of f(x) or p divides every coefficient of g(x). Hence, either f(x)
is not primitive or g(x) is not primitive. This contradiction completes
the proof.

Remember that the question of reducibility depends on which ring of
coefficients one permits. Thus, x2 2 2 is irreducible over Z but 
reducible over Q[ ]. In Chapter 20, we will prove that every poly-
nomial of degree greater than 1 with coefficients from an integral 
domain is reducible over some field. Theorem 17.2 shows that in the
case of polynomials irreducible over Z, this field must be larger than
the field of rational numbers.

Theorem 17.2 Reducibility over Q Implies Reducibility Over Z

PROOF Suppose that f (x) 5 g(x)h(x), where g(x) and h(x) [ Q[x].
Clearly, we may assume that f(x) is primitive because we can divide
both f (x) and g(x) by the content of f(x). Let a be the least common
multiple of the denominators of the coefficients of g(x), and b the least
common multiple of the denominators of the coefficients of h(x). Then
abf(x) 5 ag(x) ? bh(x), where ag(x) and bh(x) [ Z[x]. Let c1 be the con-
tent of ag(x) and let c2 be the content of bh(x). Then ag(x) 5 c1g1(x) and
bh(x) 5 c2h1(x), where both g1(x) and h1(x) are primitive and abf(x) 5
c1c2g1(x)h1(x). Since f(x) is primitive, the content of abf(x) is ab. Also,
since the product of two primitive polynomials is primitive, it follows
that the content of c1c2g1(x)h1(x) is c1c2. Thus, ab 5 c1c2 and f(x) 5
g1(x)h1(x), where g1(x) and h1(x) [ Z[x] and deg g1(x) 5 deg g(x) and
deg h1(x) 5 deg h(x).

Let f(x) [ Z[x]. If f(x) is reducible over Q, then it is reducible over Z.

"2

g(x)f (x)
f(x)g(x)

g(x)f (x)g(x)f (x)

f(x)g(x)g(x)f (x)

The product of two primitive polynomials is primitive.
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EXAMPLE 5 We illustrate the proof of Theorem 17.2 by tracing
through it for the polynomial f (x) 5 6x2 1 x 2 2 5 (3x 2 3/2)(2x 1
4/3) 5 g(x)h(x). In this case we have a 5 2, b 5 3, c1 5 3, c2 5 2, g1(x) 5
2x 2 1, and h1(x) 5 3x 1 2, so that 2 ? 3(6x2 1 x 2 2) 5 3 ? 2(2x 2
1)(3x 1 2) or 6x2 1 x 2 2 5 (2x 2 1)(3x 1 2).

Irreducibility Tests
Theorem 17.1 reduces the question of irreducibility of a polynomial of
degree 2 or 3 to one of finding a zero. The next theorem often allows us
to simplify the problem even further.

Theorem 17.3 Mod p Irreducibility Test

PROOF It follows from the proof of Theorem 17.2 that if f(x) is re-
ducible over Q, then f(x) 5 g(x)h(x) with g(x), h(x) [ Z[x], and both
g(x) and h(x) have degree less than that of f(x). Let , , and 
be the polynomials obtained from f(x), g(x), and h(x) by reducing all
the coefficients modulo p. Since deg f(x) 5 deg , we have deg 

# deg g(x) , deg and deg # deg h(x) , deg . But,
5 , and this contradicts our assumption that is irre-

ducible over Zp.

EXAMPLE 6 Let f(x) 5 21x3 2 3x2 1 2x 1 9. Then, over Z2, we
have 5 x3 1 x2 1 1 and, since 5 1 and 5 1, we see that

is irreducible over Z2. Thus, f (x) is irreducible over Q. Notice that,
over Z3, 5 2x is irreducible, but we may not apply Theorem 17.3
to conclude that f(x) is irreducible over Q.

Be careful not to use the converse of Theorem 17.3. If f(x) [ Z[x]
and is reducible over Zp for some p, f(x) may still be irreducible
over Q. For example, consider f(x) 5 21x3 2 3x2 1 2x 1 8. Then, over
Z2, 5 x3 1 x2 5 x2(x 1 1). But over Z5, has no zeros and
therefore is irreducible over Z5. So, f(x) is irreducible over Q. Note that
this example shows that the Mod p Irreducibility Test may fail for
some p and work for others. To conclude that a particular f(x) in Z[x] is

f (x)f (x)

f (x)

f (x)
f (x)

f (1)f (0)f (x)

f (x)g(x)h(x)f (x)
f (x)h(x)f (x)g(x)

f (x)

h(x)g(x)f (x)

308 Rings

Let p be a prime and suppose that f(x) [ Z[x] with deg f(x) $ 1.
Let (x) be the polynomial in Zp[x] obtained from f(x) by reducing 
all the coefficients of f(x) modulo p. If (x) is irreducible over Zp and
deg (x) 5 deg f(x), then f(x) is irreducible over Q.f

f
f
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irreducible over Q, all we need to do is find a single p for which the cor-
responding polynomial in Zp is irreducible. However, this is not al-
ways possible, since f(x) 5 x4 1 1 is irreducible over Q but reducible
over Zp for every prime p. (See Exercise 29.)

The Mod p Irreducibility Test can also be helpful in checking for
irreducibility of polynomials of degree greater than 3 and polynomials
with rational coefficients.

EXAMPLE 7 Let f(x) 5 (3/7)x4 2 (2/7)x2 1 (9/35)x 1 3/5. We will
show that f(x) is irreducible over Q. First, let h(x) 5 35f(x) 5 15x4 2
10x2 1 9x 1 21. Then f(x) is irreducible over Q if h(x) is irreducible
over Z. Next, applying the Mod 2 Irreducibility Test to h(x), we get 

5 x4 1 x 1 1. Clearly, has no zeros in Z2. Furthermore,
has no quadratic factor in Z2[x] either. [For if so, the factor would have
to be either x2 1 x 1 1 or x2 1 1. Long division shows that x2 1 x 1 1
is not a factor, and x2 1 1 cannot be a factor because it has a zero
whereas does not.] Thus is irreducible over Z2[x]. This guaran-
tees that h(x) is irreducible over Q.

EXAMPLE 8 Let f(x) 5 x5 1 2x 1 4. Obviously, neither Theorem
17.1 nor the Mod 2 Irreducibility Test helps here. Let’s try mod 3.
Substitution of 0, 1, and 2 into does not yield 0, so there are no linear
factors. But may have a quadratic factor. If so, we may assume it has
the form x2 1 ax 1 b (see Exercise 5). This gives nine possibilities to
check. We can immediately rule out each of the nine that has a zero over
Z3, since does not have one. This leaves only x2 1 1, x2 1 x 1 2, and
x2 1 2x 1 2 to check. These are eliminated by long division. So, since

is irreducible over Z3, f(x) is irreducible over Q. (Why is it unnec-
essary to check for cubic or fourth-degree factors?)

Another important irreducibility test is the following one, credited to
Ferdinand Eisenstein (1823–1852), a student of Gauss. The corollary
was first proved by Gauss by a different method.

Theorem 17.4 Eisenstein’s Criterion (1850)

Let

f(x) 5 anxn 1 an21x
n21 1 ? ? ? 1 a0 [ Z[x].

If there is a prime p such that p B an, p | an21, . . . , p | a0 and p2 B a0,
then f(x) is irreducible over Q.

f (x)

f (x)

f (x)
f (x)

h(x)h(x)

h(x)h(x)h(x)

f (x)
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PROOF If f (x) is reducible over Q, we know by Theorem 17.2 that
there exist elements g(x) and h(x) in Z[x] such that f(x) 5 g(x)h(x) and
1 # deg g(x), and 1 # deg h(x) , n. Say g(x) 5 br x

r 1 ? ? ? 1 b0 and
h(x) 5 cs x

s 1 ? ? ? 1 c0. Then, since p | a0, p2 B a0, and a0 5 b0c0, it fol-
lows that p divides one of b0 and c0 but not the other. Let us say p | b0
and p B c0. Also, since p B an 5 brcs, we know that p B br. So, there is a
least integer t such that p B bt. Now, consider at 5 btc0 1 bt21c1 1 ? ? ?
1 b0ct. By assumption, p divides at and, by choice of t, every summand
on the right after the first one is divisible by p. Clearly, this forces p to
divide btc0 as well. This is impossible, however, since p is prime and p
divides neither bt nor c0.

Corollary Irreducibility of pth Cyclotomic Polynomial

PROOF Let

Then, since every coefficient except that of xp21 is divisible by p and
the constant term is not divisible by p2, by Eisenstein’s Criterion, f(x) is
irreducible over Q. So, if Fp(x) 5 g(x)h(x) were a nontrivial factoriza-
tion of Fp(x) over Q, then f(x) 5 Fp(x 1 1) 5 g(x 1 1) ? h(x 1 1)
would be a nontrivial factorization of f(x) over Q. Since this is impossi-
ble, we conclude that Fp(x) is irreducible over Q.

EXAMPLE 9 The polynomial 3x5 1 15x4 2 20x3 1 10x 1 20 is
irreducible over Q because 5 B 3 and 25 B 20 but 5 does divide 15,
220, 10, and 20.

The principal reason for our interest in irreducible polynomials
stems from the fact that there is an intimate connection among them,
maximal ideals, and fields. This connection is revealed in the next the-
orem and its first corollary.

f(x)5Fp(x11)5
(x11)p21

(x11)21
5x p211ap

1
b xp221ap

2
b xp231.

 
. .1ap

1
b.
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For any prime p, the pth cyclotomic polynomial

Fp(x) 5 5 xp21 1 xp22 1 ? ? ? 1 x 1 1

is irreducible over Q.

xp 2 1
x 2 1
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Theorem 17.5 � p(x)� Is Maximal If and Only If p(x) Is Irreducible

PROOF Suppose first that �p(x)� is a maximal ideal in F[x]. Clearly,
p(x) is neither the zero polynomial nor a unit in F[x], because neither
{0} nor F[x] is a maximal ideal in F[x]. If p(x) 5 g(x)h(x) is a factor-
ization of p(x) over F, then �p(x)� # �g(x)� # F[x]. Thus, �p(x)� 5 �g(x)�
or F[x] 5 �g(x)�. In the first case, we must have deg p(x) 5 deg g(x). In
the second case, it follows that deg g(x) 5 0 and, consequently, deg h(x) 5
deg p(x). Thus, p(x) cannot be written as a product of two polynomials
in F[x] of lower degree.

Now, suppose that p(x) is irreducible over F. Let I be any ideal of
F[x] such that �p(x)� # I # F[x]. Because F[x] is a principal ideal do-
main, we know that I 5 �g(x)� for some g(x) in F[x]. So, p(x) [ �g(x)�
and, therefore, p(x) 5 g(x)h(x), where h(x) [ F[x]. Since p(x) is irre-
ducible over F, it follows that either g(x) is a constant or h(x) is a con-
stant. In the first case, we have I 5 F[x]; in the second case, we have 
�p(x)� 5 �g(x)� 5 I. So, �p(x)� is maximal in F[x].

Corollary 1 F[x]/� p(x)� Is a Field

PROOF This follows directly from Theorems 17.5 and 14.4.

The next corollary is a polynomial analog of Euclid’s Lemma for
primes (see Chapter 0).

Corollary 2 p(x) | a(x)b(x) Implies p(x) | a(x) or p(x) | b(x)

PROOF Since p(x) is irreducible, F[x]/� p(x)� is a field and, therefore, an
integral domain. From Theorem 14.3, we know that �p(x)� is a prime
ideal, and since p(x) divides a(x)b(x), we have a(x)b(x) [ �p(x)�. Thus,
a(x) [ �p(x)� or b(x) [ �p(x)�. This means that p(x) | a(x) or p(x) | b(x).

The next two examples put the theory to work.

Let F be a field and let p(x), a(x), b(x) [ F[x]. If p(x) is irreducible
over F and p(x) | a(x)b(x), then p(x) | a(x) or p(x) | b(x).

Let F be a field and p(x) an irreducible polynomial over F. Then
F[x]/�p(x)� is a field.

Let F be a field and let p(x) [ F[x]. Then �p(x)� is a maximal ideal 
in F[x] if and only if p(x) is irreducible over F.
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EXAMPLE 10 We construct a field with eight elements. By
Theorem 17.1 and Corollary 1 of Theorem 17.5, it suffices to find a
cubic polynomial over Z2 that has no zero in Z2. By inspection, x3 1
x 1 1 fills the bill. Thus, Z2[x]/�x3 1 x 1 1� 5 {ax2 1 bx 1 c 1 �x3 1
x 1 1� | a, b, c [ Z2} is a field with eight elements. For practice, let us
do a few calculations in this field. Since the sum of two polynomials of
the form ax2 1 bx 1 c is another one of the same form, addition is easy.
For example,

(x2 1 x 1 1 1 �x3 1 x 1 1�) 1 (x2 1 1 1 �x3 1 x 1 1�)
5 x 1 �x3 1 x 1 1�.

On the other hand, multiplication of two coset representatives need not
yield one of the original eight coset representatives:

(x2 1 x 1 1 1 �x3 1 x 1 1�) ? (x2 1 1 1 �x3 1 x 1 1�)
5 x4 1 x3 1 x 1 1 1 �x3 1 x 1 1� 5 x4 1 �x3 1 x 1 1�

(since the ideal absorbs the last three terms). How do we express this in
the form ax2 1 bx 1 c 1 �x3 1 x 1 1�? One way is to long divide x4 by
x3 1 x 1 1 to obtain the remainder of x2 1 x (just as one reduces 
12 1 �5� to 2 1 �5� by dividing 12 by 5 to obtain the remainder 2).
Another way is to observe that x3 1 x 1 1 1 �x3 1 x 1 1� 5 0 1
�x3 1 x 1 1� implies x3 1 �x3 1 x 1 1� 5 x 1 1 1 �x3 1 x 1 1�. Thus,
we may multiply both sides by x to obtain

x4 1 �x3 1 x 1 1� 5 x2 1 x 1 �x3 1 x 1 1�.

Similarly,

(x2 1 x 1 kx3 1 x 1 1l) ? (x 1 kx3 1 x 1 1l)
5 x3 1 x2 1 kx3 1 x 1 1l
5 x2 1 x 1 1 1 kx3 1 x 1 1l.

A partial multiplication table for this field is given in Table 17.1. To
simplify the notation, we indicate a coset by its representative only.

Table 17.1 A Partial Multiplication Table for Example 10

1 x x 1 1 x2 x2 1 1 x2 1 x x2 1 x 1 1

1 1 x x 1 1 x2 x2 1 1 x2 1 x x2 1 x 1 1
x x x2 x2 1 x x 1 1 1 x2 1 x 1 1 x2 1 1
x 1 1 x 1 1 x2 1 x x2 1 1 x2 1 x 1 1 x2 1 x
x2 x2 x 1 1 x2 1 x 1 1 x2 1 x x x2 1 1 1
x2 1 1 x2 1 1 1 x2 x x2 1 x 1 1 x 1 1 x2 1 x

312 Rings

16509_ch17_p305-321 pp3  11/15/08  11:53 AM  Page 312



(Complete the table yourself. Keep in mind that x3 can be replaced by 
x 1 1 and x4 by x2 1 x.)

EXAMPLE 11 Since x2 1 1 has no zero in Z3, it is irreducible over
Z3. Thus, Z3[x]/�x2 1 1� is a field. Analogous to Example 12 in Chapter 14,
Z3[x]/�x2 1 1� 5 {ax 1 b 1 �x2 1 1� | a, b [ Z3}. Thus, this field has
nine elements. A multiplication table for this field can be obtained from
Table 13.1 by replacing i by x. (Why does this work?)

Unique Factorization in Z[x]
As a further application of the ideas presented in this chapter, we next
prove that Z[x] has an important factorization property. In Chapter 18,
we will study this property in greater depth. The first proof of Theorem
17.6 was given by Gauss. In reading this theorem and its proof, keep in
mind that the units in Z[x] are precisely f(x) 5 1 and f(x) 5 21 (see
Exercise 25 in Chapter 12), the irreducible polynomials of degree 0
over Z are precisely those of the form f(x) 5 p and f(x) 5 2p where p is
a prime, and every nonconstant polynomial from Z[x] that is irreducible
over Z is primitive (see Exercise 3).

Theorem 17.6 Unique Factorization in Z[x]

PROOF Let f(x) be a nonzero, nonunit polynomial from Z[x]. If
deg f(x) 5 0, then f(x) is constant and the result follows from the
Fundamental Theorem of Arithmetic. If deg f(x) . 0, let b denote the
content of f(x), and let b1b2 ? ? ? bs be the factorization of b as a product
of primes. Then, f(x) 5 b1b2 ? ? ? bs f1(x), where f1(x) belongs to Z[x], is

Every polynomial in Z[x] that is not the zero polynomial or a unit
in Z[x] can be written in the form b1b2 ? ? ? bs p1(x)p2(x) ? ? ? pm(x),
where the bi’s are irreducible polynomials of degree 0, and the pi(x)’s
are irreducible polynomials of positive degree. Furthermore, if

b1b2 ? ? ? bs p1(x)p2(x) ? ? ? pm(x) 5 c1c2 ? ? ? ct q1(x)q2(x) ? ? ? qn(x),

where the b’s and c’s are irreducible polynomials of degree 0, and the
p(x)’s and q(x)’s are irreducible polynomials of positive degree, then
s 5 t, m 5 n, and, after renumbering the c’s and q(x)’s, we have bi 5
6ci for i 5 1, . . . , s; and pi(x) 5 6qi(x) for i 5 1, . . . , m.
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primitive and deg f1(x) 5 deg f(x). Thus, to prove the existence portion
of the theorem, it suffices to show that a primitive polynomial f(x) of
positive degree can be written as a product of irreducible polynomials
of positive degree. We proceed by induction on deg f(x). If deg f(x) 5 1,
then f(x) is already irreducible and we are done. Now suppose that
every primitive polynomial of degree less than deg f(x) can be written
as a product of irreducibles of positive degree. If f(x) is irreducible,
there is nothing to prove. Otherwise, f(x) 5 g(x)h(x), where both g(x)
and h(x) are primitive and have degree less than that of f(x). Thus, by in-
duction, both g(x) and h(x) can be written as a product of irreducibles of
positive degree. Clearly, then, f(x) is also such a product.

To prove the uniqueness portion of the theorem, suppose that
f(x) 5 b1b2 ? ? ? bs p1(x)p2(x) ? ? ? pm(x) 5 c1c2 ? ? ? ct q1(x)q2(x) ? ? ?
qn(x), where the b’s and c’s are irreducible polynomials of degree 0, and
the p(x)’s and q(x)’s are irreducible polynomials of positive degree. Let
b 5 b1b2 ? ? ? bs and c 5 c1c2 ? ? ? ct. Since the p(x)’s and q(x)’s are
primitive, it follows from Gauss’s Lemma that p1(x)p2(x) ? ? ? pm(x) and
q1(x)q2(x) ? ? ? qn(x) are primitive. Hence, both b and c must equal plus
or minus the content of f(x) and, therefore, are equal in absolute value.
It then follows from the Fundamental Theorem of Arithmetic that s 5 t
and, after renumbering, bi 5 6ci for i 5 1, 2, . . . , s. Thus, by cancel-
ing the constant terms in the two factorizations for f(x), we have
p1(x)p2(x) ? ? ? pm(x) 5 6q1(x) q2(x) ? ? ? qn(x). Now, viewing the p(x)’s
and q(x)’s as elements of Q[x] and noting that p1(x) divides q1(x) ? ? ?
qn(x), it follows from Corollary 2 of Theorem 17.5 and induction (see
Exercise 27) that p1(x) | qi(x) for some i. By renumbering, we may as-
sume i 5 1. Then, since q1(x) is irreducible, we have q1(x) 5 (r/s)p1(x),
where r, s [ Z. However, because both q1(x) and p1(x) are primitive, we
must have r/s 5 61. So, q1(x) 5 6p1(x). Also, after canceling, we have
p2(x) ? ? ? pm(x) 5 6q2(x) ? ? ? qn(x). Now, we may repeat the argument
above with p2(x) in place of p1(x). If m , n, after m such steps we
would have 1 on the left and a nonconstant polynomial on the right.
Clearly, this is impossible. On the other hand, if m . n, after n steps we
would have 61 on the right and a nonconstant polynomial on the left—
another impossibility. So, m 5 n and pi(x) 5 6qi(x) after suitable
renumbering of the q(x)’s.

Weird Dice: An Application
of Unique Factorization

EXAMPLE 12 Consider an ordinary pair of dice whose faces are
labeled 1 through 6. The probability of rolling a sum of 2 is 1/36, the
probability of rolling a sum of 3 is 2/36, and so on. In a 1978 issue of
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Scientific American [1], Martin Gardner remarked that if one were to
label the six faces of one cube with the integers 1, 2, 2, 3, 3, 4 and the six
faces of another cube with the integers 1, 3, 4, 5, 6, 8, then the probabil-
ity of obtaining any particular sum with these dice (called Sicherman
dice) would be the same as the probability of rolling that sum with ordi-
nary dice (that is, 1/36 for a 2, 2/36 for a 3, and so on). See Figure 17.1.
In this example, we show how the Sicherman labels can be derived, and
that they are the only possible such labels besides 1 through 6. To do so,
we utilize the fact that Z[x] has the unique factorization property.

Figure 17.1

To begin, let us ask ourselves how we may obtain a sum of 6, say, with
an ordinary pair of dice. Well, there are five possibilities for the two faces:
(5, 1), (4, 2), (3, 3), (2, 4), and (1, 5). Next we consider the product of the
two polynomials created by using the ordinary dice labels as exponents:

(x6 1 x5 1 x4 1 x3 1 x2 1 x)(x6 1 x5 1 x4 1 x3 1 x2 1 x).

Observe that we pick up the term x6 in this product in precisely the fol-
lowing ways: x5 ? x1, x4 ? x2 , x3 ? x3, x2 ? x4, x1 ? x5. Notice the correspon-
dence between pairs of labels whose sums are 6 and pairs of terms
whose products are x6. This correspondence is one-to-one, and it is valid
for all sums and all dice—including the Sicherman dice and any other
dice that yield the desired probabilities. So, let a1, a2, a3, a4, a5, a6 and
b1, b2, b3, b4, b5, b6 be any two lists of positive integer labels for the faces
of a pair of cubes with the property that the probability of rolling any
particular sum with these dice (let us call them weird dice) is the same as
the probability of rolling that sum with ordinary dice labeled 1 through
6. Using our observation about products of polynomials, this means that

(x6 1 x5 1 x4 1 x3 1 x2 1 x)(x6 1 x5 1 x4 1 x3 1 x2 1 x)
5 (xa1 1 xa2 1 xa3 1 xa4 1 xa5 1 xa6) ?

(xb1 1 xb2 1 xb3 1 xb4 1 xb5 1 xb6). (1)

2 3 4 5
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Now all we have to do is solve this equation for the a’s and b’s. Here is
where unique factorization in Z[x] comes in. The polynomial x6 1 x5 1
x4 1 x3 1 x2 1 x factors uniquely into irreducibles as

x(x 1 1)(x2 1 x 1 1)(x2 2 x 1 1)

so that the left-hand side of Equation (1) has the irreducible factorization

x2(x 1 1)2(x2 1 x 1 1)2(x2 2 x 1 1)2.

So, by Theorem 17.6, this means that these factors are the only possible
irreducible factors of P(x) 5 xa1 1 xa2 1 xa3 1 xa4 1 xa5 1 xa6. Thus,
P(x) has the form

xq(x 1 1)r(x2 1 x 1 1)t(x2 2 x 1 1)u,

where 0 # q, r, t, u # 2.
To restrict further the possibilities for these four parameters, we eval-

uate P(1) in two ways. P(1) 5 1a1 1 1a2 1 ? ? ? 1 1a6 5 6 and 
P(1) 5 1q2r3t1u. Clearly, this means that r 5 1 and t 5 1. What about q?
Evaluating P(0) in two ways shows that q 2 0. On the other hand, if 
q 5 2, the smallest possible sum one could roll with the corresponding
labels for dice would be 3. Since this violates our assumption, we have
now reduced our list of possibilities for q, r, t, and u to q 5 1, r 5 1,
t 5 1, and u 5 0, 1, 2. Let’s consider each of these possibilities in turn.

When u 5 0, P(x) 5 x4 1 x3 1 x3 1 x2 1 x2 1 x, so the die labels
are 4, 3, 3, 2, 2, 1—a Sicherman die.

When u 5 1, P(x) 5 x6 1 x5 1 x4 1 x3 1 x2 1 x, so the die labels
are 6, 5, 4, 3, 2, 1—an ordinary die.

When u 5 2, P(x) 5 x8 1 x6 1 x5 1 x4 1 x3 1 x, so the die labels
are 8, 6, 5, 4, 3, 1—the other Sicherman die.

This proves that the Sicherman dice do give the same probabilities
as ordinary dice and that they are the only other pair of dice that have
this property.

Exercises

No matter how good you are at something, there’s always about a million
people better than you.

HOMER SIMPSON

1. Verify the assertion made in Example 2.
2. Suppose that D is an integral domain and F is a field containing D.

If f(x) [ D[x] and f(x) is irreducible over F but reducible over D,
what can you say about the factorization of f(x) over D?
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3. Show that a nonconstant polynomial from Z[x] that is irreducible
over Z is primitive. (This exercise is referred to in this chapter.)

4. Suppose that f(x) 5 xn 1 an21x
n21 1 ? ? ? 1 a0 [ Z[x]. If r is ra-

tional and x 2 r divides f(x), show that r is an integer.
5. Let F be a field and let a be a nonzero element of F.

a. If af(x) is irreducible over F, prove that f(x) is irreducible over F.
b. If f(ax) is irreducible over F, prove that f(x) is irreducible over F.
c. If f(x 1 a) is irreducible over F, prove that f(x) is irreducible

over F.
d. Use part c to prove that 8x3 2 6x 1 1 is irreducible over Q.
(This exercise is referred to in this chapter.)

6. Suppose that f(x) [ Zp[x] and is irreducible over Zp, where p is a
prime. If deg f(x) 5 n, prove that Zp[x]/� f(x)� is a field with pn ele-
ments.

7. Construct a field of order 25.
8. Construct a field of order 27.
9. Show that x3 1 x2 1 x 1 1 is reducible over Q. Does this fact con-

tradict the corollary to Theorem 17.4?
10. Determine which of the polynomials below is (are) irreducible

over Q.
a. x5 1 9x4 1 12x2 1 6
b. x4 1 x 1 1
c. x4 1 3x2 1 3
d. x5 1 5x2 1 1
e. (5/2)x5 1 (9/2)x4 1 15x3 1 (3/7)x2 1 6x 1 3/14

11. Show that x4 1 1 is irreducible over Q but reducible over R. (This
exercise is referred to in this chapter.)

12. Show that x2 1 x 1 4 is irreducible over Z11.
13. Let f(x) 5 x3 1 6 [ Z7[x]. Write f(x) as a product of irreducible

polynomials over Z7.
14. Let f(x) 5 x3 1 x2 1 x 1 1 [ Z2[x]. Write f(x) as a product of irre-

ducible polynomials over Z2.
15. Let p be a prime.

a. Show that the number of reducible polynomials over Zp of the
form x2 1 ax 1 b is p( p 1 1)/2.

b. Determine the number of reducible quadratic polynomials over Zp.
16. Let p be a prime.

a. Determine the number of irreducible polynomials over Zp of the
form x2 1 ax 1 b.

b. Determine the number of irreducible quadratic polynomials
over Zp.
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17. Show that for every prime p there exists a field of order p2.
18. Prove that, for every positive integer n, there are infinitely many

polynomials of degree n in Z[x] that are irreducible over Q.
19. Show that the field given in Example 11 in this chapter is isomor-

phic to the field given in Example 9 in Chapter 13.
20. Let f(x) [ Zp[x]. Prove that if f(x) has no factor of the form x2 1

ax 1 b, then it has no quadratic factor over Zp.
21. Find all monic irreducible polynomials of degree 2 over Z3.
22. Given that p is not the zero of a nonzero polynomial with rational

coefficients, prove that p 2 cannot be written in the form ap 1 b,
where a and b are rational.

23. Find all the zeros and their multiplicities of x5 1 4x4 1 4x3 2 x2 2
4x 1 1 over Z5.

24. Find all zeros of f(x) 5 3x2 1 x 1 4 over Z7 by substitution. Find
all zeros of f(x) by using the Quadratic Formula (2b 6 ) ?
(2a)21 (all calculations are done in Z7). Do your answers agree?
Should they? Find all zeros of g(x) 5 2x2 1 x 1 3 over Z5 by sub-
stitution. Try the Quadratic Formula on g(x). Do your answers
agree? State necessary and sufficient conditions for the Quadratic
Formula to yield the zeros of a quadratic from Zp[x], where p is a
prime greater than 2.

25. (Rational Root Theorem) Let

f (x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 [ Z[x]

and an 2 0. Prove that if r and s are relatively prime integers and
f (r/s) 5 0, then r | a0 and s | an.

26. Let F be a field and f(x) [ F[x]. Show that, as far as deciding upon
the irreducibility of f(x) over F is concerned, we may assume that
f(x) is monic. (This assumption is useful when one uses a computer
to check for irreducibility.)

27. Let F be a field and let p(x), a1(x), a2(x), . . . , ak(x) [ F[x], where
p(x) is irreducible over F. If p(x) | a1(x)a2(x) ? ? ? ak(x), show that
p(x) divides some ai(x). (This exercise is referred to in the proof of
Theorem 17.6.)

28. Explain how the Mod p Irreducibility Test (Theorem 17.3) can be
used to test members of Q[x] for irreducibility.

29. Show that x4 1 1 is reducible over Zp for every prime p. (This ex-
ercise is referred to in this chapter.)

30. If p is a prime, prove that xp21 2 xp22 1 xp23 2 ? ? ? 2 x 1 1 is
irreducible over Q.

"b224ac
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31. Let F be a field and let p(x) be irreducible over F. If E is a field
that contains F and there is an element a in E such that p(a) 5 0,
show that the mapping f: F[x] → E given by f(x) → f(a) is a ring
homomorphism with kernel �p(x)�. (This exercise is referred to in
Chapter 20.)

32. Prove that the ideal �x2 1 1� is prime in Z[x] but not maximal in Z[x].
33. Let F be a field and let p(x) be irreducible over F. Show that {a 1

� p(x)� | a [ F} is a subfield of F[x]/�p(x)� isomorphic to F. (This
exercise is referred to in Chapter 20.)

34. Suppose there is a real number r with the property that r 1 1/r is
an odd integer. Prove that r is irrational.

35. In the game of Monopoly, would the probabilities of landing on
various properties be different if the game were played with
Sicherman dice instead of ordinary dice? Why?

36. Carry out the analysis given in Example 12 for a pair of tetrahe-
drons instead of a pair of cubes. (Define ordinary tetrahedral dice
as the ones labeled 1 through 4.)

37. Suppose in Example 12 that we begin with n (n . 2) ordinary dice
each labeled 1 through 6, instead of just two. Show that the only
possible labels that produce the same probabilities as n ordinary
dice are the labels 1 through 6 and the Sicherman labels.

38. Show that one two-sided die labeled with 1 and 4 and another 18-
sided die labeled with 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8
yield the same probabilities as an ordinary pair of cubes labeled
1 through 6. Carry out an analysis similar to that given in Example
12 to derive these labels.

Computer Exercises

The experiment serves two purposes, often independent one from the
other: it allows the observation of new facts, hitherto either unsuspected,
or not yet well defined; and it determines whether a working hypothesis
fits the world of observable facts.

RENÉ J. DUBOS

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software implements the Mod p Irreducibility Test. Use it to
test the polynomials in the examples given in this chapter and the
polynomials given in Exercise 10 for irreducibility.
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2. Use software such as Mathematica, Maple, or GAP to express 
xn 2 1 as a product of irreducible polynomials with integer coeffi-
cients for n 5 4, 8, 12, and 20. On the basis of these data, make a
conjecture about the coefficients of the irreducible factors of xn 2 1.
Test your conjecture for n 5 105. Does your conjecture hold up?

3. Use software such as Mathematica, Maple, or GAP to express xpn
2 x

as a product of irreducibles over Zp for several choices of the prime
p and n. On the basis of these data, make a conjecture relating the
degrees of the irreducible factors of xpn

2 x and n.
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Serge Lang

Lang’s Algebra changed the way graduate
algebra is taught . . . . It has affected all
subsequent graduate-level algebra books. 

Citation for the Steele Prize

SERGE LANG was a prolific mathematician,
inspiring teacher, and political activist. He
was born near Paris on May 19, 1927. His
family moved to Los Angeles when he was a
teenager. Lang received a B.A. in physics
from Caltech in 1946 and a Ph.D. in mathe-
matics from Princeton in 1951 under Emil
Artin (see the biography in Chapter 19). His
first permanent position was at Columbia
University in 1955, but in 1971 Lang re-
signed his position at Columbia as a protest
against Columbia’s handling of Vietnam an-
tiwar protesters. He joined Yale University in
1972 and remained there until his retirement.

Lang made significant contributions to
number theory, algebraic geometry, differ-
ential geometry, and analysis. He wrote more
than 120 research articles and 60 books. His
most famous and influential book was his
graduate-level Algebra. Lang was a prize-

winning teacher known for his extraordinary
devotion to students. Lang often got into
heated discussions about mathematics, the
arts, and politics. In one incident, he threat-
ened to hit a fellow mathematician with a
bronze bust for not conceding it was self-
evident that the Beatles were greater musi-
cians than Beethoven.

Among Lang’s honors were the Steele
Prize for Mathematical Exposition from the
American Mathematcial Society, the Cole
Prize in Algebra (see Chapter 25), and elec-
tion to the National Academy of Sciences.
Lang died on September 25, 2005, at the
age of 78.

For more information about Lang, visit:

http://wikipedia.org/wiki/
Serge_Lang
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Divisibility in 
Integral Domains

Give me a fruitful error anytime, full of seeds, bursting with its own
corrections. You can keep your sterile truth for yourself.

VILFREDO PARETO

Irreducibles, Primes
In the preceding two chapters, we focused on factoring polynomials
over the integers or a field. Several of those results—unique factoriza-
tion in Z[x] and the division algorithm for F[x], for instance—are nat-
ural counterparts to theorems about the integers. In this chapter and the
next, we examine factoring in a more abstract setting.

Definition Associates, Irreducibles, Primes

Elements a and b of an integral domain D are called associates if
a 5 ub, where u is a unit of D. A nonzero element a of an integral
domain D is called an irreducible if a is not a unit and, whenever b,
c [ D with a 5 bc, then b or c is a unit. A nonzero element a of an
integral domain D is called a prime if a is not a unit and a | bc implies
a | b or a | c.

Roughly speaking, an irreducible is an element that can be factored
only in a trivial way. Notice that an element a is a prime if and only if
�a� is a prime ideal.

Relating the definitions above to the integers may seem a bit confus-
ing, since in Chapter 0 we defined a positive integer to be a prime if it
satisfies our definition of an irreducible, and we proved that a prime in-
teger satisfies the definition of a prime in an integral domain (Euclid’s
Lemma). The source of the confusion is that in the case of the integers,
the concepts of irreducibles and primes are equivalent, but in general, as
we will soon see, they are not.

The distinction between primes and irreducibles is best illustrated by
integral domains of the form Z[ ] 5 {a 1 b | a, b [ Z}, where d is
not 1 and is not divisible by the square of a prime. (These rings are of
fundamental importance in number theory.) To analyze these rings, we
need a convenient method of determining their units, irreducibles, and

"d"d
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18 | Divisibility in Integral Domains 323

primes. To do this, we define a function N, called the norm, from Z[ ]
into the nonnegative integers by N(a 1 b ) 5 |a2 2 db2|. We leave it
to the reader (Exercise 1) to verify the following four properties: N(x) 5 0
if and only if x 5 0; N(xy) 5 N(x)N(y) for all x and y; x is a unit if and
only if N(x) 5 1; and, if N(x) is prime, then x is irreducible in Z[ ].

EXAMPLE 1 We exhibit an irreducible in Z[ ] that is not prime.
Here, N(a 1 b ) 5 a2 1 3b2. Consider 1 1 . Suppose that we
can factor this as xy, where neither x nor y is a unit. Then N(xy) 5
N(x)N(y) 5 N(1 1 ) 5 4, and it follows that N(x) 5 2. But there are
no integers a and b that satisfy a2 1 3b2 5 2. Thus, x or y is a unit and
1 1 is an irreducible. To verify that it is not prime, we observe that
(1 1 )(1 2 ) 5 4 5 2 ? 2, so that 1 1 divides 2 ? 2. On the
other hand, for integers a and b to exist so that 2 5 (1 1 )(a 1
b ) 5 (a 2 3b) 1 (a 1 b) , we must have a 2 3b 5 2 and a 1
b 5 0, which is impossible.

Showing that an element of a ring of the form Z[ ] is irreducible is
more difficult when d . 1. The next example illustrates one method of
doing this. The example also shows that the converse of the fourth
property above for the norm is not true. That is, it shows that x may be
irreducible even if N(x) is not prime.

EXAMPLE 2 The element 7 is irreducible in the ring Z[ ]. To verify
this assertion, suppose that 7 5 xy, where neither x nor y is a unit. Then
49 5 N(7) 5 N(x) N(y), and since x is not a unit, we cannot have N(x) 5
1. This leaves only the case N(x) 5 7. Let x 5 a 1 b . Then there are
integers a and b satisfying |a2 2 5b2| 5 7. This means that a2 2 5b2 5
67. Viewing this equation modulo 7 and trying all possible cases for a
and b reveals that the only solutions are a 5 0 5 b. But this means that
both a and b are divisible by 7, and this implies that |a2 2 5b2| 5 7 is
divisible by 49, which is false.

Example 1 raises the question of whether or not there is an integral
domain containing a prime that is not an irreducible. The answer: no.

Theorem 18.1 Prime Implies Irreducible

In an integral domain, every prime is an irreducible.
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PROOF Suppose that a is a prime in an integral domain and a 5 bc.
We must show that b or c is a unit. By the definition of prime, we know
that a | b or a | c. Say at 5 b. Then 1b 5 b 5 at 5 (bc)t 5 b(ct) and,
by cancellation, 1 5 ct. Thus, c is a unit.

Recall that a principal ideal domain is an integral domain in which
every ideal has the form �a�. The next theorem reveals a circumstance
in which primes and irreducibles are equivalent.

Theorem 18.2 PID Implies Irreducible Equals Prime

PROOF Theorem 18.1 shows that primes are irreducibles. To prove the
converse, let a be an irreducible element of a principal ideal domain D
and suppose that a | bc. We must show that a | b or a | c. Consider the
ideal I 5 {ax 1 by | x, y [ D} and let �d� 5 I. Since a [ I, we can write
a 5 dr, and because a is irreducible, d is a unit or r is a unit. If d is a
unit, then I 5 D and we may write 1 5 ax 1 by. Then c 5 acx 1 bcy,
and since a divides both terms on the right, a also divides c.

On the other hand, if r is a unit, then �a� 5 �d� 5 I, and, because b [ I,
there is an element t in D such that at 5 b. Thus, a divides b.

It is an easy consequence of the respective division algorithms for Z
and F[x], where F is a field, that Z and F[x] are principal ideal domains
(see Exercise 41 in Chapter 14 and Theorem 16.3). Our next example
shows, however, that one of the most familiar rings is not a principal
ideal domain.

EXAMPLE 3 We show that Z[x] is not a principal ideal domain.
Consider the ideal I 5 { f(x) [ Z[x] | f(0) is even}. We claim that I is not
of the form �h(x)�. If this were so, there would be f(x) and g(x) in Z[x]
such that 2 5 h(x)f(x) and x 5 h(x)g(x), since both 2 and x belong to I.
By the degree rule (Exercise 17 in Chapter 16), 0 5 deg 2 5 deg h(x) 1
deg f(x), so that h(x) is a constant polynomial. To determine which
constant, we observe that 2 5 h(1)f(1). Thus, h(1) 5 61 or 62. Since
1 is not in I, we must have h(x) 5 62. But then x 5 62g(x), which is
nonsense.

We have previously proved that the integral domains Z and Z[x] have
important factorization properties: Every integer greater than 1 can be

In a principal ideal domain, an element is an irreducible if and only
if it is a prime.
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18 | Divisibility in Integral Domains 325

uniquely factored as a product of irreducibles (that is, primes), and
every nonzero, nonunit polynomial can be uniquely factored as a prod-
uct of irreducible polynomials. It is natural to ask whether all integral
domains have this property. The question of unique factorization in in-
tegral domains first arose with the efforts to solve a famous problem in
number theory that goes by the name Fermat’s Last Theorem.

Historical Discussion
of Fermat’s Last Theorem

There are infinitely many nonzero integers x, y, z that satisfy the equa-
tion x2 1 y2 5 z2. But what about the equation x3 1 y3 5 z3 or, more
generally, xn 1 yn 5 zn, where n is an integer greater than 2 and x, y, z
are nonzero integers? Well, no one has ever found a single solution of
this equation, and for more than three centuries many have tried to
prove that there is none. The tremendous effort put forth by the likes of
Euler, Legendre, Abel, Gauss, Dirichlet, Cauchy, Kummer, Kronecker,
and Hilbert to prove that there are no solutions to this equation has
greatly influenced the development of ring theory.

About a thousand years ago, Arab mathematicians gave an incorrect
proof that there were no solutions when n 5 3. The problem lay dor-
mant until 1637, when the French mathematician Pierre de Fermat
(1601–1665) wrote in the margin of a book, “. . . it is impossible to
separate a cube into two cubes, a fourth power into two fourth powers,
or, generally, any power above the second into two powers of the same
degree: I have discovered a truly marvelous demonstration [of this gen-
eral theorem] which this margin is too narrow to contain.”

Because Fermat gave no proof, many mathematicians tried to prove
the result. The case where n 5 3 was done by Euler in 1770, although
his proof was incomplete. The case where n 5 4 is elementary and was
done by Fermat himself. The case where n 5 5 was done in 1825 by
Dirichlet, who had just turned 20, and by Legendre, who was past 70.
Since the validity of the case for a particular integer implies the valid-
ity for all multiples of that integer, the next case of interest was n 5 7.
This case resisted the efforts of the best mathematicians until it was
done by Gabriel Lamé in 1839. In 1847, Lamé stirred excitement by
announcing that he had completely solved the problem. His approach
was to factor the expression xp 1 yp, where p is an odd prime, into

(x 1 y)(x 1 ay) ? ? ? (x 1 a p21y),
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where a is the complex number cos(2p/p) 1 i sin(2p/p). Thus, his
factorization took place in the ring Z[a] 5 {a0 1 a1a 1 ? ? ? 1
ap21a

p21 |ai [ Z}. But Lamé made the mistake of assuming that, in
such a ring, factorization into the product of irreducibles is unique. In
fact, three years earlier, Ernst Eduard Kummer had proved that this is
not always the case. Undaunted by the failure of unique factorization,
Kummer began developing a theory to “save” factorization by creat-
ing a new type of number. Within a few weeks of Lamé’s announce-
ment, Kummer had shown that Fermat’s Last Theorem is true for all
primes of a special type. This proved that the theorem was true for all
exponents less than 100, prime or not, except for 37, 59, 67, and 74.
Kummer’s work has led to the theory of ideals as we know it today.

Over the centuries, many proposed proofs have not held up under
scrutiny. The famous number theorist Edmund Landau received so many
of these that he had a form printed with “On page ____, lines ____ to
____, you will find there is a mistake.” Martin Gardner, “Mathematical
Games” columnist of Scientific American, had postcards printed to 
decline requests from readers asking him to examine their proofs.

Recent discoveries tying Fermat’s Last Theorem closely to modern
mathematical theories gave hope that these theories might eventually
lead to a proof. In March 1988, newspapers and scientific publications
worldwide carried news of a proof by Yoichi Miyaoka (see Figure 18.1).
Within weeks, however, Miyaoka’s proof was shown to be invalid. In
June 1993, excitement spread through the mathematics community
with the announcement that Andrew Wiles of Princeton University had
proved Fermat’s Last Theorem (see Figure 18.2). The Princeton math-
ematics department chairperson was quoted as saying, “When we
heard it, people started walking on air.” But once again a proof did not
hold up under scrutiny. This story does have a happy ending. The math-
ematical community has agreed on the validity of the revised proof
given by Wiles and Richard Taylor in September of 1994.

In view of the fact that so many eminent mathematicians were un-
able to prove Fermat’s Last Theorem, despite the availability of the
vastly powerful theories, it seems highly improbable that Fermat had a
correct proof. Most likely, he made the error that his successors made
of assuming that the properties of integers, such as unique factoriza-
tion, carry over to integral domains in general.
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Figure 18.1
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Figure 18.2 Andrew Wiles

Unique Factorization Domains
We now have the necessary terminology to formalize the idea of
unique factorization.

Definition Unique Factorization Domain (UFD)

An integral domain D is a unique factorization domain if

1. every nonzero element of D that is not a unit can be written as a
product of irreducibles of D, and

2. the factorization into irreducibles is unique up to associates and
the order in which the factors appear.

Another way to formulate part 2 of this definition is the following:
If p1

n1p2
n2 ? ? ? pr

nr and q1
m1q2

m2 ? ? ? qs
ms are two factorizations of some

element as a product of irreducibles, where no two of the pi’s are asso-
ciates and no two of the qj’s are associates, then r 5 s, and each pi is an
associate of one and only one qj and ni = mj .

Of course, the Fundamental Theorem of Arithmetic tells us that the
ring of integers is a unique factorization domain, and Theorem 17.6
says that Z[x] is a unique factorization domain. In fact, as we shall soon
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see, most of the integral domains we have encountered are unique fac-
torization domains.

Before proving our next theorem, we need the ascending chain con-
dition for ideals.

Lemma Ascending Chain Condition for a PID

PROOF Let I1 , I2 , ? ? ? be a chain of strictly increasing ideals in 
an integral domain D, and let I be the union of all the ideals in this chain.
We leave it as an exercise (Exercise 3) to verify that I is an ideal of D.

Then, since D is a principal ideal domain, there is an element a in D
such that I 5 �a�. Because a [ I and I 5 <Ik, a belongs to some mem-
ber of the chain, say a [ In. Clearly, then, for any member Ii of the
chain, we have Ii # I 5 �a� # In, so that In must be the last member of
the chain.

Theorem 18.3 PID Implies UFD

PROOF Let D be a principal ideal domain and let a0 be any nonzero
nonunit in D. We will show that a0 is a product of irreducibles (the
product might consist of only one factor). We begin by showing that
a0 has at least one irreducible factor. If a0 is irreducible, we are done.
Thus, we may assume that a0 5 b1a1, where neither b1 nor a1 is a unit
and a1 is nonzero. If a1 is not irreducible, then we can write a1 5 b2a2,
where neither b2 nor a2 is a unit and a2 is nonzero. Continuing in this
fashion, we obtain a sequence b1, b2, . . . of elements that are not units
in D and a sequence a0, a1, a2, . . . of nonzero elements of D with an 5
bn11an11 for each n. Hence, �a0� , �a1� , ? ? ? is a strictly increasing
chain of ideals (see Exercise 5), which, by the preceding lemma, must
be finite, say, �a0� , �a1� , ? ? ? , �ar�. In particular, ar is an irre-
ducible factor of a0. This argument shows that every nonzero nonunit
in D has at least one irreducible factor.

Now write a0 5 p1c1, where p1 is irreducible and c1 is not a unit. If c1
is not irreducible, then we can write c1 5 p2c2, where p2 is irreducible
and c2 is not a unit. Continuing in this fashion, we obtain, as before, a
strictly increasing sequence �a0� , �c1� , �c2� , ? ? ? , which must end

Every principal ideal domain is a unique factorization domain.

In a principal ideal domain, any strictly increasing chain of ideals
I1 , I2 , ? ? ? must be finite in length.
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in a finite number of steps. Let us say that the sequence ends with �cs�.
Then cs is irreducible and a0 5 p1p2 ? ? ? pscs, where each pi is also irre-
ducible. This completes the proof that every nonzero nonunit of a prin-
cipal ideal domain is a product of irreducibles.

It remains to be shown that the factorization is unique up to associ-
ates and the order in which the factors appear. To do this, suppose that
some element a of D can be written

a 5 p1p2 ? ? ? pr 5 q1q2 ? ? ? qs,

where the p’s and q’s are irreducible and repetition is permitted. We in-
duct on r. If r 5 1, then a is irreducible and, clearly, s 5 1 and p1 5 q1.
So we may assume that any element that can be expressed as a product
of fewer than r irreducible factors can be so expressed in only one way
(up to order and associates). Since p1 divides q1q2 ? ? ? qs, it must divide
some qi (see Exercise 29), say, p1 | q1. Then, q1 5 up1, where u is a unit
of D. Since

up1p2 ? ? ? pr 5 uq1q2 ? ? ? qs 5 q1(uq2) ? ? ? qs

and

up1 5 q1,

we have, by cancellation,

p2 ? ? ? pr 5 (uq2) ? ? ? qs.

The induction hypothesis now tells us that these two factorizations are
identical up to associates and the order in which the factors appear.
Hence, the same is true about the two factorizations of a.

In the existence portion of the proof of Theorem 18.3, the only
way we used the fact that the integral domain D is a principal ideal
domain was to say that D has the property that there is no infinite,
strictly increasing chain of ideals in D. An integral domain with this
property is called a Noetherian domain, in honor of Emmy Noether,
who inaugurated the use of chain conditions in algebra. Noetherian
domains are of the utmost importance in algebraic geometry. One
reason for this is that, for many important rings R, the polynomial
ring R[x] is a Noetherian domain but not a principal ideal domain.
One such example is Z[x]. In particular, Z[x] shows that a UFD need
not be a PID (see Example 3).

As an immediate corollary of Theorem 18.3, we have the follow-
ing fact.
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Corollary F[x] Is a UFD

PROOF By Theorem 16.3, F[x] is a principal ideal domain. So, F[x]
is a unique factorization domain, as well.

As an application of the preceding corollary, we give an elegant
proof, due to Richard Singer, of Eisenstein’s Criterion (Theorem 17.4).

EXAMPLE 4 Let

f (x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 [ Z[x],

and suppose that p is prime such that

p B an, p | an21, . . . , p | a0 and p2 B a0.

We will prove that f(x) is irreducible over Q. If f(x) is reducible over Q,
we know by Theorem 17.2 that there exist elements g(x) and h(x) in Z[x]
such that f(x) 5 g(x)h(x) and 1 # deg g(x) , n and 1 # deg h (x) , n. Let

, , and be the polynomials in Zp[x] obtained from f (x),
g(x), and h(x) by reducing all coefficients modulo p. Then, since p di-
vides all the coefficients of f (x) except an, we have nx

n 5 5
. Since Zp is a field, Zp[x] is a unique factorization domain. Thus, x |
and x | . So, (0) 5 (0) 5 0 and, therefore, p | g(0) and p | h(0).

But, then, p2 | g(0)h(0) 5 f(0) 5 a0, which is a contradiction.

Euclidean Domains
Another important kind of integral domain is a Euclidean domain.

Definition Euclidean Domain

An integral domain D is called a Euclidean domain if there is a
function d (called the measure) from the nonzero elements of D to
the nonnegative integers such that

1. d(a) # d(ab) for all nonzero a, b in D; and
2. if a, b [ D, b 2 0, then there exist elements q and r in D such

that a 5 bq 1 r, where r 5 0 or d(r) , d(b).

EXAMPLE 5 The ring Z is a Euclidean domain with d(a) 5 |a| (the
absolute value of a).

hgh(x)g(x)
h(x)

g(x)f (x)a

h(x)g(x)f (x)

Let F be a field. Then F[x] is a unique factorization domain.

16509_ch18_p322-342 pp4  11/15/08  12:13 PM  Page 331



332 Rings

EXAMPLE 6 Let F be a field. Then F[x] is a Euclidean domain with
d( f (x)) 5 deg f (x) (see Theorem 16.2).

Examples 5 and 6 illustrate just one of many similarities between the
rings Z and F[x]. Additional similarities are summarized in Table 18.1.

Table 18.1 Similarities Between Z and F[x]

Z F[x]

Form of elements: ↔ Form of elements:
an10n 1 an2110n21 1 ? ? ? 1 a110 1 a0 anx

n 1 an21x
n21 1 ? ? ? 1 a1x 1 a0

Euclidean domain: ↔ Euclidean domain:
d(a) 5 |a| d( f(x)) 5 deg f(x)
Units: Units:
a is a unit if and only if |a| 5 1 f(x) is a unit if and only if deg f(x) 5 0
Division algorithm: ↔ Division algorithm:
For a, b [ Z, b 2 0, there exist q, r [ Z For f(x), g(x) [ F[x], g(x) 2 0, there 

such that a 5 bq 1 r, 0 # r , |b| exist q(x), r(x) [ F[x] such that f(x) 
5 g(x)q(x) 1 r(x), 0 # deg r(x) ,
deg g(x) or r(x) 5 0

PID: ↔ PID:
Every nonzero ideal I 5 �a�, where Every nonzero ideal I 5 � f(x)�, where 

a 2 0 and |a| is minimum deg f(x) is minimum
Prime: ↔ Irreducible:
No nontrivial factors No nontrivial factors
UFD: ↔ UFD:
Every element is a “unique” product of Every element is a “unique” product of

primes irreducibles

EXAMPLE 7 The ring of Gaussian integers

Z[i] 5 {a 1 bi | a, b [ Z}

is a Euclidean domain with d(a 1 bi) 5 a2 1 b2. Unlike the previous
two examples, in this example the function d does not obviously sat-
isfy the necessary conditions. That d(x) # d(xy) for x, y [ Z[i] follows
directly from the fact that d(xy) 5 d(x)d(y) (Exercise 7). To verify that
condition 2 holds, observe that if  x, y [ Z[i] and y 2 0, then xy21 [
Q[i], the field of quotients of Z[i] (Exercise 57 in Chapter 15). Say
xy21 5 s 1 ti, where s, t [ Q. Now let m be the integer nearest s, and
let n be the integer nearest t. (These integers may not be uniquely
determined, but that does not matter.) Thus, |m 2 s| # 1/2 and |n 2 t|
# 1/2. Then

xy21 5 s 1 ti 5 (m 2 m 1 s) 1 (n 2 n 1 t)i
5 (m 1 ni) 1 [(s 2 m) 1 (t 2 n)i].
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So,

x 5 (m 1 ni)y 1 [(s 2 m) 1 (t 2 n)i]y.

We claim that the division condition of the definition of a Euclidean
domain is satisfied with q 5 m 1 ni and

r 5 [(s 2 m) 1 (t 2 n)i]y.

Clearly, q belongs to Z[i], and since r 5 x 2 qy, so does r. Finally,

d(r) 5 d([(s 2 m) 1 (t 2 n)i])d(y)
5 [(s 2 m)2 1 (t 2 n)2]d(y)

# d(y) , d(y).

Theorem 18.4 ED (Euclidean Domain) Implies PID

PROOF Let D be a Euclidean domain and I a nonzero ideal of D. Among
all the nonzero elements of I, let a be such that d(a) is a minimum. Then
I 5 �a�. For, if b [ I, there are elements q and r such that b 5 aq 1 r,
where r 5 0 or d(r) , d(a). But r 5 b 2 aq [ I, so d(r) cannot be less
than d(a). Thus, r 5 0 and b [ �a�. Finally, the zero ideal is �0�.

Although it is not easy to verify, we remark that there are principal
ideal domains that are not Euclidean domains. The first such example
was given by T. Motzkin in 1949. A more accessible account of
Motzkin’s result can be found in [2].

As an immediate consequence of Theorems 18.3 and 18.4, we have
the following important result.

Corollary ED Implies UFD

We may summarize our theorems and remarks as follows:

ED ⇒ PID ⇒ UFD
UFD ⇒/ PID ⇒/ ED

Every Euclidean domain is a unique factorization domain.

Every Euclidean domain is a principal ideal domain.

a1

4
 1  

1

4
b
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(You can remember these implications by listing the types alphabetically.)
In Chapter 17, we proved that Z[x] is a unique factorization domain.

Since Z is a unique factorization domain, the next theorem is a broad
generalization of this fact. The proof is similar to that of the special
case, and we therefore omit it.

Theorem 18.5 D a UFD Implies D[x] a UFD

We conclude this chapter with an example of an integral domain that
is not a unique factorization domain.

EXAMPLE 8 The ring Z[ ] 5 {a 1 b | a, b [ Z} is an inte-
gral domain but not a unique factorization domain. It is straightforward
that Z[ ] is an integral domain (see Exercise 9 in Chapter 13). To
verify that unique factorization does not hold, we mimic the method
used in Example 1 with N(a 1 b ) 5 a2 1 5b2. Since N(xy) 5

N(x)N(y) and N(x) 5 1 if and only if x is a unit (see Exercise 1), it fol-
lows that the only units of Z[ ] are 61.

Now consider the following factorizations:

46 5 2 ? 23,

46 5 (1 1 3 )(1 2 3 ).

We claim that each of these four factors is irreducible over Z[ ].
Suppose that, say, 2 5 xy, where x, y [ Z[ ] and neither is a unit.
Then 4 5 N(2) 5 N(x)N(y) and, therefore, N(x) 5 N(y) 5 2, which is
impossible. Likewise, if 23 5 xy were a nontrivial factorization, then
N(x) 5 23. Thus, there would be integers a and b such that a2 1 5b2 5
23. Clearly, no such integers exist. The same argument applies to 1 6
3 .

In light of Examples 7 and 8, one can’t help but wonder for which d , 0
is Z[ ] a unique factorization domain. The answer is only when d 5 21
or 22 (see [1, p. 297]). The case where d 5 21 was first proved, naturally
enough, by Gauss.

"d

"2 5

"2 5
"2 5

"2 5"2 5

"2 5

"2 5

"2 5

"2 5"2 5

If D is a unique factorization domain, then D[x] is a unique
factorization domain.
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Exercises

I tell them that if they will occupy themselves with the study of mathemat-
ics they will find in it the best remedy against lust of the flesh.

THOMAS MANN, The Magic Mountain

1. For the ring Z[ ] 5 {a 1 b | a, b [ Z}, where d 2 1 and d is
not divisible by the square of a prime, prove that the norm N(a 1
b ) 5 |a2 2 db2| satisfies the four assertions made preceding
Example 1. (This exercise is referred to in this chapter.)

2. In an integral domain, show that a and b are associates if and only
if �a� 5 �b�.

3. Show that the union of a chain I1 , I2 , ? ? ? of ideals of a ring R is
an ideal of R. (This exercise is referred to in this chapter.)

4. In an integral domain, show that the product of an irreducible and a
unit is an irreducible.

5. Suppose that a and b belong to an integral domain, b 2 0, and a is
not a unit. Show that �ab� is a proper subset of �b�. (This exercise is
referred to in this chapter.)

6. Let D be an integral domain. Define a , b if a and b are associates.
Show that this defines an equivalence relation on D.

7. In the notation of Example 7, show that d(xy) 5 d(x)d(y).

8. Let D be a Euclidean domain with measure d. Prove that u is a unit
in D if and only if d(u) 5 d(1).

9. Let D be a Euclidean domain with measure d. Show that if a and b
are associates in D, then d(a) 5 d(b).

10. Let D be a principal ideal domain and let p [ D. Prove that �p� is a
maximal ideal in D if and only if p is irreducible.

11. Trace through the argument given in Example 7 to find q and r in
Z[i] such that 3 2 4i 5 (2 1 5i)q 1 r and d(r) , d(2 1 5i).

12. Let D be a principal ideal domain. Show that every proper ideal of
D is contained in a maximal ideal of D.

13. In Z[ ], show that 21 does not factor uniquely as a product of
irreducibles.

14. Show that 1 2 i is an irreducible in Z[i].
15. Show that Z[ ] is not a unique factorization domain. (Hint:

Factor 10 in two ways.) Why does this show that Z[ ] is not a
principal ideal domain?

16. Give an example of a unique factorization domain with a subdo-
main that does not have a unique factorization.

"2 6
"2 6

"2 5

"d

"d"d
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17. In Z[i], show that 3 is irreducible but 2 and 5 are not.
18. Prove that 7 is irreducible in Z[ ], even though N(7) is not prime. 
19. Prove that if p is a prime in Z that can be written in the form a2 1 b2,

then a 1 bi is irreducible in Z[i]. Find three primes that have this
property and the corresponding irreducibles.

20. Prove that Z[ ] is not a principal ideal domain.
21. In Z[ ], prove that 1 1 3 is irreducible but not prime.
22. In Z[ ], prove that both 2 and 1 1 are irreducible but not

prime.
23. Prove that Z[ ] is not a unique factorization domain.
24. Let F be field. Show that in F[x] a prime ideal is a maximal ideal.
25. Let d be an integer less than 21 that is not divisible by the square

of a prime. Prove that the only units of Z[ ] are 11 and 21.
26. If a and b belong to Z[ ], where d is not divisible by the square

of a prime and ab is a unit, prove that a and b are units.
27. Prove or disprove that if D is a principal ideal domain, then D[x] is

a principal ideal domain.
28. Determine the units in Z[i].
29. Let p be a prime in an integral domain. If p | a1a2 ? ? ? an, prove that

p divides some ai. (This exercise is referred to in this chapter.)
30. Show that 3x2 1 4x 1 3 [ Z5[x] factors as (3x 1 2)(x 1 4) and 

(4x 1 1)(2x 1 3). Explain why this does not contradict the corol-
lary of Theorem 18.3.

31. Let D be a principal ideal domain and p an irreducible element of D.
Prove that D/�p� is a field.

32. Show that an integral domain with the property that every strictly 
decreasing chain of ideals I1 . I2 . ? ? ? must be finite in length is
a field.

33. An ideal A of a commutative ring R with unity is said to be finitely
generated if there exist elements a1, a2, . . . , an of A such that A 5
�a1, a2, . . . , an�. An integral domain R is said to satisfy the ascend-
ing chain condition if every strictly increasing chain of ideals I1 ,
I2 , ? ? ? must be finite in length. Show that an integral domain R
satisfies the ascending chain condition if and only if every ideal of
R is finitely generated.

34. Prove or disprove that a subdomain of a Euclidean domain is a
Euclidean domain.

35. Show that for any nontrivial ideal I of Z[i], Z[i]/I is finite.
36. Find the inverse of 1 1 in Z[ ]. What is the multiplicative

order of 1 1 ?"2
"2"2

"d
"d

"5

"5"5
"2 5"2 5

"2 3

"6
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37. In Z[ ], show that N(6 1 2 ) 5 N(1 1 3 ) but 6 1
2 and 1 1 3 are not associates.

38. Let R 5 Z % Z % ? ? ? (the collection of all sequences of integers
under componentwise addition and multiplication). Show that R
has ideals I1, I2, I3, . . . with the property that I1 , I2 , I3 , ? ? ?.
(Thus R does not have the ascending chain condition.)

39. Prove that in a unique factorization domain an element is irre-
ducible if and only if it is prime.

40. Let F be a field and let R be the integral domain in generated by
and . (That is, R is contained in every integral domain in that

contains and .) Show that R is not a unique factorization domain.
41. Prove that for every field F, there are infinitely many irreducible el-

ements in .

Computer Exercise

I never use a computer.
ANDREW WILES

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. In the ring Z[i] (where i2 5 21), this software determines when a pos-
itive integer n is a prime in Z[i]. Run the program for several cases and
formulate a conjecture based on your data.

Reference

1. H. M. Stark, An Introduction to Number Theory, Chicago, Ill.: Markham,
1970.

2. J. C. Wilson, “A Principal Ideal Ring That Is Not a Euclidean Ring,”
Mathematics Magazine 46 (1973): 74–78.

Suggested Readings

Oscar Campoli, “A Principal Ideal Domain That Is Not a Euclidean
Domain,” The American Mathematical Monthly 95 (1988): 868–871.

The author shows that {a 1 bu | a, b [ Z, u 5 (1 1 )/2} is a
PID that is not an ED.

"219

F 3x4
x3x2

F 3x4x3x2

F 3x4

"2 7"2 7
"2 7"2 7"2 7
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Gina Kolata, “At Last, Shout of ‘Eureka!’ in Age-Old Math Mystery,” The
New York Times, June 24, 1993.

This front-page article reports on Andrew Wiles’s announced proof of
Fermat’s Last Theorem.

C. Krauthhammer, “The Joy of Math, or Fermat’s Revenge,” Time, April 18,
1988; 92.

The demise of Miyaoka’s proof of Fermat’s Last Theorem is charm-
ingly lamented.

Sahib Singh, “Non-Euclidean Domains: An Example,” Mathematics Mag-
azine 49 (1976): 243.

This article gives a short proof that Z[ ] 5 {a 1 b | a, b [ Z} is
an integral domain that is not Euclidean when n . 2 and 2n mod 4 5 2
or 2n mod 4 5 3.

Simon Singh and Kenneth Ribet, “Fermat’s Last Stand,” Scientific Ameri-
can 277 (1997): 68–73.

This article gives an accessible description of Andrew Wiles’s proof of
Fermat’s Last Theorem.

Suggested Video

The Proof, Nova, http://shop.wgbh.org/product/show/7827
This documentary film shown on PBS’s NOVA program in 1997
chronicles the seven-year effort of Andrew Wiles to prove Fermat’s Last
Theorem. It can be viewed in five segments at www.youtube.com.

Suggested Websites

http://www.d.umn.edu/~jgallian

This website has images of postage stamps featuring Fermat’s Last
Theorem issued by France and the Czech Republic.

http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem

This website provides a concise history of the efforts to prove Fermat’s Last
Theorem. It includes photographs, references and links.

"2  n"2  n
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Sophie Germain

One of the very few women to overcome
the prejudice and discrimination that
tended to exclude women from the pursuit 
of higher mathematics in her time was
Sophie Germain.

SOPHIE GERMAIN was born in Paris on April 1,
1776. She educated herself by reading the
works of Newton and Euler in Latin and the
lecture notes of Lagrange. In 1804, Germain
wrote to Gauss about her work in number
theory but used the pseudonym Monsieur
LeBlanc because she feared that Gauss would
not take seriously the efforts of a woman.
Gauss gave Germain’s results high praise and
a few years later, upon learning her true iden-
tity, wrote to her:

But how to describe to you my admiration
and astonishment at seeing my esteemed cor-
respondent Mr. LeBlanc metamorphose him-
self into this illustrious personage who gives
such a brilliant example of what I would find
it difficult to believe. A taste for the abstract
sciences in general and above all the myster-
ies of numbers is excessively rare: it is not a
subject which strikes everyone; the enchant-
ing charms of this sublime science reveal

themselves only to those who have the
courage to go deeply into it. But when a
person of the sex which, according to our
customs and prejudices, must encounter
infinitely more difficulties than men to
familiarize herself with these thorny re-
searches, succeeds nevertheless in surmount-
ing these obstacles and penetrating the most
obscure parts of them, then without doubt she
must have the noblest courage, quite extraor-
dinary talents, and a superior genius.

Germain is best known for her work on
Fermat’s Last Theorem. She died on June
27, 1831, in Paris.

For more information about Germain,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history
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Andrew Wiles

For spectacular contributions to number
theory and related fields, for major
advances on fundamental conjectures,
and for settling Fermat’s Last Theorem.

Citation for the Wolf Prize

IN 1993, ANDREW WILES of Princeton electri-
fied the mathematics community by announc-
ing that he had proved Fermat’s Last Theorem
after seven years of effort. His proof, which
ran 200 pages, relied heavily on ring theory
and group theory. Because of Wiles’s solid
reputation and because his approach was
based on deep results that had already shed
much light on the problem, many experts in
the field believed that Wiles had succeeded
where so many others had failed. Wiles’s
achievement was reported in newspapers and
magazines around the world. The New York
Times ran a front-page story on it, and one TV
network announced it on the evening news.
Wiles even made People magazine’s list of the
25 most intriguing people of 1993! In San
Francisco a group of mathematicians rented a
1200-seat movie theater and sold tickets for

$5.00 each for public lectures on the proof.
Scalpers received as much as $25.00 a ticket
for the sold-out event.

The bubble soon burst when experts
had an opportunity to scrutinize Wiles’s
manuscript. By December, Wiles released a
statement saying he was working to resolve
a gap in the proof. In September of 1994, a
paper by Wiles and Richard Taylor, a former
student of Wiles, circumvented the gap in
the original proof. Since then, many experts
have checked the proof and have found no
errors. One mathematician was quoted as
saying, “The exuberance is back.” In 1997,
Wiles’s proof was the subject of a PBS Nova
program.

Wiles was born in 1953 in Cambridge,
England. He obtained his bachelor’s degree at
Oxford and his doctoral degree at Cambridge
University in 1980. He was a professor at Har-
vard before accepting his present position at
Princeton in 1982, and he has received many
prestigious awards.

To find more information about Wiles,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/

Postage stamp issued by the
Czech Republic in honor of
Fermat’s Last Theorem.
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Supplementary Exercises for Chapters 15–18

The intelligence is proved not by ease of learning, but by understanding
what we learn.

JOSEPH WHITNEY

True/false questions for Chapters 15–18 are available on the Web at

http://www.d.umn.edu/~jgallian/TF

1. Suppose that F is a field and there is a ring homomorphism from Z
onto F. Show that F is isomorphic to Zp for some prime p.

2. Let Q[ ] 5 {r 1 s | r, s [ Q}. Determine all ring automor-
phisms of Q[ ].

3. (Second Isomorphism Theorem for Rings) Let A be a subring of R
and let B be an ideal of R. Show that A > B is an ideal of A and that 
A/(A > B) is isomorphic to (A 1 B)/B. (Recall that A 1 B 5 {a 1
b | a [ A, b [ B}.)

4. (Third Isomorphism Theorem for Rings) Let A and B be ideals of
a ring R with B # A. Show that A/B is an ideal of R/B and
(R/B)/(A/B) is isomorphic to R/A.

5. Let f(x) and g(x) be irreducible polynomials over a field F. If f(x)
and g(x) are not associates, prove that F[x]/� f(x)g(x)� is isomorphic
to F[x]/� f(x)� % F[x]/�g(x)�.

6. (Chinese Remainder Theorem for Rings) If R is a commutative
ring and I and J are two proper ideals with I 1 J 5 R, prove that 
R/(I > J) is isomorphic to R/I % R/J. Explain why Exercise 5 is a
special case of this theorem.

7. Prove that the set of all polynomials all of whose coefficients are
even is a prime ideal in Z[x].

8. Let R 5 Z[ ] and let I 5 {a 1 b | a, b [ Z, a 2 b is
even}. Show that I is a maximal ideal of R.

9. Let R be a ring with unity and let a be a unit in R. Show that the map-
ping from R into itself given by x → axa21 is a ring automorphism.

10. Let a 1 b belong to Z[ ] with b 2 0. Show that 2 does not
belong to �a 1 b �.

11. Show that Z[i]/�2 1 i� is a field. How many elements does it have?
12. Is the homomorphic image of a principal ideal domain a principal

ideal domain?
13. In Z[ ] 5 {a 1 b | a, b [ Z}, show that every element of the

form (3 1 2 )n is a unit, where n is a positive integer."2
"2"2

"2 5
"2 5"2 5

"2 5"2 5

"2
"2"2
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14. Let p be a prime. Show that there is exactly one ring homomor-
phism from Zm to Zpk if pk does not divide m, and exactly two ring
homomorphisms from Zm to Zpk if pk does divide m.

15. Recall that a is an idempotent if a2 5 a. Show that if 1 1 k is an
idempotent in Zn, then n 2 k is an idempotent in Zn.

16. Show that Zn (where n . 1) always has an even number of idempo-
tents. (The number is 2d, where d is the number of distinct prime
divisors of n.)

17. Show that the equation x2 1 y2 5 2003 has no solutions in the
integers.

18. Prove that if both k and k 1 1 are idempotents in Zn and k 2 0, then 
n 5 2k.

19. Prove that x4 1 15x3 1 7 is irreducible over Q.
20. For any integers m and n, prove that the polynomial x3 1 (5m 1 1)x 1

5n 1 1 is irreducible over Z.
21. Prove that � � is a maximal ideal in Z[ ]. How many elements

are in the ring Z[ ]/� �?
22. Prove that Z[ ] and Z[ ] are unique factorization domains.

(Hint: Mimic Example 7 in Chapter 18.)
23. Is �3� a maximal ideal in Z[i]?
24. Express both 13 and 5 1 i as products of irreducibles from Z[i].
25. Let R 5 {a/b | a, b [ Z, 3 B b}. Prove that R is an integral domain.

Find its field of quotients.
26. Give an example of a ring that contains a subring isomorphic to Z

and a subring isomorphic to Z3.
27. Show that Z[i]/�3� is not ring-isomorphic to Z3 % Z3.

28. For any n . 1, prove that R 5 is ring-

isomorphic to Zn % Zn.
29. Suppose that R is a commutative ring and I is an ideal of R. Prove

that R[x]/I[x] is isomorphic to (R/I)[x].
30. Find an ideal I of Z8[x] such that the factor ring Z8[x]/I is a field.
31. Find an ideal I of Z8[x] such that the factor ring Z8[x]/I is an integral

domain but not a field.
32. For any f(x) [ Zp[x], show that f(xp) 5 ( f(x))p.
33. Find an ideal I of Z[x] such that Z[x]/I is ring-isomorphic to Z3.

e ca 0

0 b
d `  a, bPZn f

"2"22
"2"2

"2"2
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Vector Spaces

Still round the corner there may wait
A new road or a secret gate.

J. R. R. TOLKIEN, Lord of the Rings

345

19

Definition and Examples
Abstract algebra has three basic components: groups, rings, and fields.
Thus far we have covered groups and rings in some detail, and we have
touched on the notion of a field. To explore fields more deeply, we need
some rudiments of vector space theory that are covered in a linear alge-
bra course. In this chapter, we provide a concise review of this material.

Definition Vector Space

A set V is said to be a vector space over a field F if V is an Abelian
group under addition (denoted by 1) and, if for each a [ F and
v [ V, there is an element av in V such that the following conditions
hold for all a, b in F and all u, v in V.

1. a(v 1 u) 5 av 1 au
2. (a 1 b)v 5 av 1 bv
3. a(bv) 5 (ab)v
4. 1v 5 v

The members of a vector space are called vectors. The members of
the field are called scalars. The operation that combines a scalar a and
a vector v to form the vector av is called scalar multiplication. In gen-
eral, we will denote vectors by letters from the end of the alphabet,
such as u, v, w, and scalars by letters from the beginning of the alpha-
bet, such as a, b, c.
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EXAMPLE 1 The set Rn 5 {(a1, a2, . . . , an) | ai [ R} is a vector
space over R. Here the operations are the obvious ones.

(a1, a2, . . . , an) 1 (b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)

and

b(a1, a2, . . . , an) 5 (ba1, ba2, . . . , ban).

EXAMPLE 2 The set M2(Q) of 2 3 2 matrices with entries from Q is
a vector space over Q. The operations are

and

.

EXAMPLE 3 The set Zp[x] of polynomials with coefficients from Zp

is a vector space over Zp, where p is a prime.

EXAMPLE 4 The set of complex numbers C 5 {a 1 bi | a, b [ R}
is a vector space over R. The operations are the usual addition and mul-
tiplication of complex numbers.

The next example is a generalization of Example 4. Although it ap-
pears rather trivial, it is of the utmost importance in the theory of fields.

EXAMPLE 5 Let E be a field and let F be a subfield of E. Then E is a
vector space over F. The operations are the operations of E.

Subspaces
Of course, there is a natural analog of subgroup and subring.

Definition Subspace

Let V be a vector space over a field F and let U be a subset of V. We
say that U is a subspace of V if U is also a vector space over F under
the operations of V.

EXAMPLE 6 The set {a2x2 1 a1x 1 a0 | a0, a1, a2 [ R} is a sub-
space of the vector space of all polynomials with real coefficients 
over R.

b ca1 a2

a3 a4
d 5 cba1 ba2

ba3 ba4
d

ca1 a2

a3 a4
d 1 cb1 b2

b3 b4
d 5 ca1 1 b1 a2 1 b2

a3 1 b3 a4 1 b4
d
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EXAMPLE 7 Let V be a vector space over F and let v1, v2, . . . , vn be
(not necessarily distinct) elements of V. Then the subset

�v1, v2, . . . , vn� 5 {a1v1 1 a2v2 1 ? ? ? 1 anvn | a1, a2, . . . , an [ F}

is called the subspace of V spanned by v1, v2, . . . , vn. Any summand
of the form a1v1 1 a2v2 1 ? ? ? 1 anvn is called a linear combination
of v1, v2, . . . , vn. If �v1, v2, . . . , vn� 5 V, we say that {v1, v2, . . . , vn}
spans V.

Linear Independence
The next definition is the heart of the theory.

Definition Linearly Dependent, Linearly Independent

A set S of vectors is said to be linearly dependent over the field F if
there are vectors v1, v2, . . . , vn from S and elements a1, a2, . . . , an from
F, not all zero, such that a1v1 1 a2v2 1 ? ? ? 1 anvn 5 0. A set of vectors
that is not linearly dependent over F is called linearly independent
over F.

EXAMPLE 8 In R3 the vectors (1, 0, 0), (1, 0, 1), and (1, 1, 1) are lin-
early independent over R. To verify this, assume that there are real
numbers a, b, and c such that a(1, 0, 0) 1 b(1, 0, 1) 1 c(1, 1, 1) 5
(0, 0, 0). Then (a 1 b 1 c, c, b 1 c) 5 (0, 0, 0). From this we see that
a 5 b 5 c 5 0.

Certain kinds of linearly independent sets play a crucial role in the
theory of vector spaces.

Definition Basis

Let V be a vector space over F. A subset B of V is called a basis for V
if B is linearly independent over F and every element of V is a linear
combination of elements of B.

The motivation for this definition is twofold. First, if B is a basis for
a vector space V, then every member of V is a unique linear combina-
tion of the elements of B (see Exercise 19). Second, with every vector
space spanned by finitely many vectors, we can use the notion of basis
to associate a unique integer that tells us much about the vector space.
(In fact, this integer and the field completely determine the vector space
up to isomorphism—see Exercise 31.)

EXAMPLE 9 The set V 5

is a vector space over R (see Exercise 17). We claim that the set

e c a a 1 b

a 1 b b
d `  a, bPR f
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is a basis for V over R. To prove that the set 

B is linearly independent, suppose that there are real numbers a and b
such that

This gives , so that a 5 b 5 0. On the other 

hand, since every member of V has the form

we see that B spans V.

We now come to the main result of this chapter.

Theorem 19.1 Invariance of Basis Size

PROOF Suppose that m 2 n. To be specific, let us say that m , n.
Consider the set {w1, u1, u2, . . . , um}. Since the u’s span V, we
know that w1 is a linear combination of the u’s, say, w1 5 a1u1 1
a2u2 1 ? ? ? 1 amum, where the a’s belong to F. Clearly, not all the a’s are
0. For convenience, say a1 2 0. Then {w1, u2, . . . , um} spans V (see
Exercise 21). Next, consider the set {w1, w2, u2, . . . , um}. This time, w2

is a linear combination of , , . . . , , say, . . .

1 bmum, where the b’s belong to F. Then at least one of b2, . . . , bm is
nonzero, for otherwise the w’s are not linearly independent. Let us say
b2 2 0. Then w1, w2, u3, . . . , um span V. Continuing in this fashion, we
see that {w1, w2, . . . , wm} spans V. But then wm11 is a linear combina-
tion of w1, w2, . . . , wm and, therefore, the set {w1, . . . , wn} is not
linearly independent. This contradiction finishes the proof.

Theorem 19.1 shows that any two finite bases for a vector space have
the same size. Of course, not all vector spaces have finite bases.
However, there is no vector space that has a finite basis and an infinite
basis (see Exercise 25).

w2 5 b1w1 1 b2u2 1umu2w1

c a a 1 b

a 1 b b
d 5 a c1 1

1 0
d 1 b c0 1

1 1
d ,

c a a 1 b

a 1 b b
d 5 c0  0

0 0
d

a c1 1

1 0
d 1 b c0 1

1 1
d 5 c0 0

0 0
d .

B 5 e c1 1

1 0
d , c  0 1

1 1
d f

If {u1, u2, . . . , um} and {w1, w2, . . . , wn} are both bases of a vector
space V over a field F, then m 5 n.
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Definition Dimension

A vector space that has a basis consisting of n elements is said 
to have dimension n. For completeness, the trivial vector space {0} is
said to be spanned by the empty set and to have dimension 0.

Although it requires a bit of set theory that is beyond the scope of
this text, it can be shown that every vector space has a basis. A vector
space that has a finite basis is called finite dimensional; otherwise, it is
called infinite dimensional.

Exercises

Somebody who thinks logically is a nice contrast to the real world.
THE LAW OF THUMB

1. Verify that each of the sets in Examples 1–4 satisfies the axioms
for a vector space. Find a basis for each of the vector spaces in Ex-
amples 1–4.

2. (Subspace Test) Prove that a nonempty subset U of a vector space
V over a field F is a subspace of V if, for every u and u9 in U and
every a in F, u 1 u9 [ U and au [ U.

3. Verify that the set in Example 6 is a subspace. Find a basis for this
subspace. Is {x2 1 x 1 1, x 1 5, 3} a basis?

4. Verify that the set �v1, v2, . . . , vn� defined in Example 7 is a sub-
space.

5. Determine whether or not the set {(2, 21, 0), (1, 2, 5), (7, 21, 5)} is
linearly independent over R.

6. Determine whether or not the set

is linearly independent over Z5.
7. If {u, v, w} is a linearly independent subset of a vector space, show

that {u, u 1 v, u 1 v 1 w} is also linearly independent.
8. If S is a linearly dependent set of vectors, prove that one of the vec-

tors in S is a linear combination of the others.
9. (Every finite spanning collection contains a basis.) If {v1, v2, . . . , vn}

spans a vector space V, prove that some subset of the v’s is a basis
for V.

10. (Every independent set is contained in a basis.) Let V be a finite-
dimensional vector space and let {v1, v2, . . . , vn} be a linearly

e c2 1

1 0
d ,  c0 1

1 2
d ,  c1 1

1 1
d f
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independent subset of V. Show that there are vectors w1, w2, . . . , wm

such that {v1, v2, . . . , vn, w1, . . . , wm} is a basis for V.
11. If V is a vector space over F of dimension 5 and U and W are sub-

spaces of V of dimension 3, prove that U > W 2 {0}. Generalize.
12. Show that the solution set to a system of equations of the form

a11x1 1 ? ? ? 1 a1nxn 5 0
a21x1 1 ? ? ? 1 a2nxn 5 0

? ? ?
? ? ?
? ? ?

am1x1 1 ? ? ? 1 amnxn 5 0,

where the a’s are real, is a subspace of Rn.
13. Let V be the set of all polynomials over Q of degree 2 together

with the zero polynomial. Is V a vector space over Q?
14. Let V 5 R3 and W 5 {(a, b, c) [ V | a2 1 b2 5 c2}. Is W a sub-

space of V? If so, what is its dimension?
15. Let V 5 R3 and W 5 {(a, b, c) [ V | a 1 b 5 c}. Is W a subspace

of V? If so, what is its dimension?

16. Let V 5 Prove that V is a vector space 

over Q, and find a basis for V over Q.
17. Verify that the set V in Example 9 is a vector space over R.
18. Let P 5 {(a, b, c) | a, b, c [ R, a 5 2b 1 3c}. Prove that P is a sub-

space of R3. Find a basis for P. Give a geometric description of P.
19. Let B be a subset of a vector space V. Show that B is a basis for V

if and only if every member of V is a unique linear combination of
the elements of B. (This exercise is referred to in this chapter and
in Chapter 20.)

20. If U is a proper subspace of a finite-dimensional vector space V,
show that the dimension of U is less than the dimension of V.

21. Referring to the proof of Theorem 19.1, prove that {w1, u2, . . . , um}
spans V.

22. If V is a vector space of dimension n over the field Zp, how many
elements are in V?

23. Let S 5 {(a, b, c, d) | a, b, c, d [ R, a 5 c, d 5 a 1 b}. Find a
basis for  S.

24. Let U and W be subspaces of a vector space V. Show that U > W
is a subspace of V and that U 1 W 5 {u 1 w | u [ U, w [ W} is a
subspace of V.

e ca b

b c
d `  a, b, cPQ f .
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25. If a vector space has one basis that contains infinitely many ele-
ments, prove that every basis contains infinitely many elements.
(This exercise is referred to in this chapter.)

26. Let u 5 (2, 3, 1), v 5 (1, 3, 0), and w 5 (2, 23, 3). Since u 2
v 2 w 5 (0, 0, 0), can we conclude that the set {u, v, w} is lin-

early dependent over Z7?
27. Define the vector space analog of group homomorphism and ring

homomorphism. Such a mapping is called a linear transformation.
Define the vector space analog of group isomorphism and ring iso-
morphism.

28. Let T be a linear transformation from V to W. Prove that the image
of V under T is a subspace of W.

29. Let T be a linear transformation of a vector space V. Prove that 
{v [ V | T(v) 5 0}, the kernel of T, is a subspace of V.

30. Let T be a linear transformation of V onto W. If {v1, v2, . . . , vn}
spans V, show that {T(v1), T(v2), . . . , T(vn)} spans W.

31. If V is a vector space over F of dimension n, prove that V is iso-
morphic as a vector space to Fn 5 {(a1, a2, . . . , an) | ai [ F}. (This
exercise is referred to in this chapter.)

32. Let V be a vector space over an infinite field. Prove that V is not the
union of finitely many proper subspaces of V.

1
6

2
3

1
2
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Emil Artin

EMIL ARTIN was one of the leading mathe-
maticians of the 20th century and a major
contributor to linear algebra and abstract al-
gebra. Artin was born on March 3, 1898, in
Vienna, Austria, and grew up in what was
recently known as Czechoslovakia. He re-
ceived a Ph.D. in 1921 from the University
of Leipzig. From 1923 until he emigrated to
America in 1937, he was a professor at the
University of Hamburg. After one year at
Notre Dame, Artin went to Indiana
University. In 1946, he moved to Princeton,
where he stayed until 1958. The last four
years of his career were spent where it
began, at Hamburg.

Artin’s mathematics is both deep and
broad. He made contributions to number the-
ory, group theory, ring theory, field theory,
Galois theory, geometric algebra, algebraic

For Artin, to be a mathematician meant to
participate in a great common effort, to
continue work begun thousands of years
ago, to shed new light on old discoveries,
to seek new ways to prepare the develop-
ments of the future. Whatever standards
we use, he was a great mathematician.

RICHARD BRAUER, 
Bulletin of the American

Mathematical Society

352

topology, and the theory of braids—a field he
invented. Artin received the American
Mathematical Society’s Cole Prize in number
theory, and he solved one of the 23 famous
problems posed by the eminent mathemati-
cian David Hilbert in 1900.

Artin was an outstanding teacher of
mathematics at all levels, from freshman
calculus to seminars for colleagues. Many of
his Ph.D. students as well as his  son
Michael have become leading mathemati-
cians. Through his research, teaching, and
books, Artin exerted great influence among
his contemporaries. He died of a heart at-
tack, at the age of 64, in 1962.

For more information about Artin, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Olga Taussky-Todd

OLGA TAUSSKY-TODD was born on August 30,
1906, in Olmütz in the Austro-Hungarian
Empire. Taussky-Todd received her doctoral
degree in 1930 from the University of Vienna.
In the early 1930s she was hired as an assis-
tant at the University of Göttingen to edit
books on the work of David Hilbert. She also
edited lecture notes of Emil Artin and as-
sisted Richard Courant. She spent 1934 and
1935 at Bryn Mawr and the next two years
at Girton College in Cambridge, England.
In 1937, she taught at the University of
London. In 1947, she moved to the United
States and took a job at the National Bureau
of Standards’ National Applied Mathematics
Laboratory. In 1957, she became the first
woman to teach at the California Institute of
Technology as well as the first woman to
receive tenure and a full professorship in
mathematics, physics, or astronomy there.
Thirteen Caltech Ph.D. students wrote their
Ph.D. theses under her direction.

“Olga Taussky-Todd was a distinguished
and prolific mathematician who wrote
about 300 papers.”

EDITH LUCHINS AND MARY ANN MCLOUGHLIN,
Notices of the American 

Mathematical Society, 1996

353

In addition to her influential contribu-
tions to linear algebra, Taussky-Todd did
important work in number theory.

Taussky-Todd received many honors and
awards. She was elected a Fellow of the
American Association for the Advancement
of Science and vice president of the American
Mathematical Society. In 1990, Caltech estab-
lished an instructorship named in her honor.
Taussky-Todd died on October 7, 1995, at the
age of 89.

For more information about Taussky-
Todd, visit:

http://www-groups.dcs
.st-and.ac.uk/~history

http://www-scottlan
.edu/lriddle/women/women.html
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Extension Fields

In many respects this [Kronecker’s Theorem] is the 
fundamental theorem of algebra.

RICHARD A. DEAN, Elements of Abstract Algebra

20

The Fundamental Theorem
of Field Theory

In our work on rings, we came across a number of fields, both finite
and infinite. Indeed, we saw that Z3[x]/�x2 1 1� is a field of order 9,
whereas R[x]/�x2 1 1� is a field isomorphic to the complex numbers.
In the next three chapters, we take up, in a systematic way, the subject
of fields.

Definition Extension Field

A field E is an extension field of a field F if F # E and the operations
of F are those of E restricted to F.

Cauchy’s observation in 1847 that R[x]/�x2 1 1� is a field that con-
tains a zero of x2 1 1 prepared the way for the following sweeping gen-
eralization of that fact.

Theorem 20.1 Fundamental Theorem of Field Theory 
(Kronecker’s  Theorem, 1887)

Let F be a field and let f(x) be a nonconstant polynomial in F[x].
Then there is an extension field E of F in which f(x) has a zero.

PROOF Since F[x] is a unique factorization domain, f (x) has an irre-
ducible factor, say, p(x). Clearly, it suffices to construct an extension
field E of F in which p(x) has a zero. Our candidate for E is F[x]/�p(x)�.
We already know that this is a field from Corollary 1 of Theorem 17.5.
Also, since the mapping of f: F S E given by f(a) 5 a 1 �p(x)� is
one-to-one and preserves both operations, E has a subfield isomorphic

16509_ch20_p354-369 pp3  11/19/08  12:51 PM  Page 354



20 | Extension Fields 355

to F. We may think of E as containing F if we simply identify the coset
a 1 �p(x)� with its unique coset representative a that belongs to F [that
is, think of a 1 �p(x)� as just a and vice versa; see Exercise 33 in
Chapter 17].

Finally, to show that p(x) has a zero in E, write

p(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a0.

Then, in E, x 1 �p(x)� is a zero of p(x), because

p(x 1 � p(x)�) 5 an(x 1 � p(x)�)n 1 an21(x 1 � p(x)�)n21 1 ? ? ? 1 a0

5 an(xn 1 � p(x)�) 1 an21(xn21 1 � p(x)�) 1 ? ? ? 1 a0

5 anxn 1 an21xn21 1 ? ? ? 1 a0 1 � p(x)�
5 p(x) 1 � p(x)� 5 0 1 � p(x)�.

EXAMPLE 1 Let f (x) 5 x2 1 1 [ Q[x]. Then, viewing f (x) as an
element of E[x] 5 (Q[x]/�x2 1 1�)[x], we have

f (x 1 �x2 1 1�) 5 (x 1 �x2 1 1�)2 1 1
5 x2 1 �x2 1 1� 1 1
5 x2 1 1 1 �x2 1 1�
5 0 1 �x2 1 1�.

Of course, the polynomial x2 1 1 has the complex number as a
zero, but the point we wish to emphasize here is that we have con-
structed a field that contains the rational numbers and a zero for the
polynomial x2 1 1 by using only the rational numbers. No knowledge
of complex numbers is necessary. Our method utilizes only the field we
are given.

EXAMPLE 2 Let f (x) 5 x5 1 2x2 1 2x 1 2 [ Z3[x]. Then, the irre-
ducible factorization of f (x) over Z3 is (x2 1 1)(x3 1 2x 1 2). So, to find
an extension E of Z3 in which f (x) has a zero, we may take E 5 Z3[x]/
�x2 1 1�, a field with nine elements, or E 5 Z3[x]/�x3 1 2x 1 2�, a field
with 27 elements.

Since every integral domain is contained in its field of quotients
(Theorem 15.6), we see that every nonconstant polynomial with coef-
ficients from an integral domain always has a zero in some field con-
taining the ring of coefficients. The next example shows that this is not
true for commutative rings in general.

EXAMPLE 3 Let f (x) 5 2x 1 1 [ Z4[x]. Then f (x) has no zero in any
ring containing Z4 as a subring, because if b were a zero in such a ring,

"21
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then 0 5 2b 1 1, and therefore 0 5 2(2b 1 1) 5 2(2b) 1 2 5
(2 ? 2)b 1 2 5 0 ? b 1 2 5 2. But 0 2 2 in Z4.

Splitting Fields
To motivate the next definition and theorem, let’s return to Example 1 for
a moment. For notational convenience, in Q[x]/�x2 1 1�, let a 5
x 1 �x2 1 1�. Then, since a and 2a are both zeros of x2 1 1 in (Q[x]/
�x2 1 1�)[x], it should be the case that x2 1 1 5 (x 2 a)(x 1 a). Let’s
check this out. First note that

(x 2 a)(x 1 a) 5 x2 2 a2 5 x2 2 (x2 1 �x2 1 1�).

At the same time,

x2 1 �x2 1 1� 5 21 1 �x2 1 1�

and we have agreed to identify 21 and 21 1 �x2 1 1�, so

(x 2 a)(x 1 a) 5 x2 2 (21) 5 x2 1 1.

This shows that x2 1 1 can be written as a product of linear factors in
some extension of Q. That was easy and you might argue coincidental.
The polynomial given in Example 2 presents a greater challenge. Is
there an extension of Z3 in which that polynomial factors as a product
of linear factors? Yes, there is. But first a definition.

Definition Splitting Field

Let E be an extension field of F and let f(x) [ F[x]. We say that f (x)
splits in E if f(x) can be factored as a product of linear factors in E[x].
We call E a splitting field for f(x) over F if f(x) splits in E but in no
proper subfield of E.

Note that a splitting field of a polynomial over a field depends not
only on the polynomial but on the field as well. Indeed, a splitting field
of f (x) over F is just a smallest extension field of F in which f(x) splits.
The next example illustrates how a splitting field of a polynomial f (x)
over field F depends on F.

EXAMPLE 4 Consider the polynomial f (x) 5 x2 1 1 [ Q[x]. Since
x2 1 1 5 (x 1 )(x 2 ), we see that f(x) splits in C, but a splitting
field over Q is Q(i) 5 {r 1 si | r, s [ Q}. A splitting field for x2 1 1 over
R is C. Likewise, x2 2 2 [ Q[x] splits in R, but a splitting field over Q is
Q( ) 5 {r 1 s | r, s [ Q}."2"2

"21"21
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There is a useful analogy between the definition of a splitting field and
the definition of an irreducible polynomial. Just as it makes no sense to
say “f(x) is irreducible,” it makes no sense to say “E is a splitting field for
f(x).” In each case, the underlying field must be specified; that is, one must
say “f(x) is irreducible over F” and “E is a splitting field for f(x) over F.”

The following notation is convenient. Let F be a field and let a1,
a2, . . . , an be elements of some extension E of F. We use F(a1,
a2, . . . , an) to denote the smallest subfield of E that contains F
and the set {a1, a2, . . . , an}. It is an easy exercise to show that F(a1,
a2, . . . , an) is the intersection of all subfields of E that contain F and
the set {a1, a2, . . . , an}.

Notice that if f(x) [ F[x] and f(x) factors as

b(x 2 a1)(x 2 a2) ? ? ? (x 2 an)

over some extension E of F, then F(a1, . . . , an) is a splitting field for
f (x) over F in E.

This notation appears to be inconsistent with the notation that we
used in earlier chapters. For example, we denoted the set {a 1 b |
a, b [ Z} by Z[ ] and the set {a 1 b | a, b [ Q} by Q( ). The
difference is that Z[ ] is merely a ring, whereas Q( ) is a field. In
general, parentheses are used when one wishes to indicate that the set is
a field, although no harm would be done by using, say, Q[ ] to denote
{a 1 b | a, b [ Q} if we were concerned with its ring properties
only. Using parentheses rather than brackets simply conveys a bit more
information about the set.

Theorem 20.2 Existence of Splitting Fields

"2
"2

"2"2
"2"2"2

"2

Let F be a field and let f(x) be a nonconstant element of F[x]. Then
there exists a splitting field E for f(x) over F.

PROOF We proceed by induction on deg f (x). If deg f (x) 5 1, then
f (x) is linear. Now suppose that the statement is true for all fields and
all polynomials of degree less than that of f (x). By Theorem 20.1,
there is an extension E of F in which f(x) has a zero, say, a1. Then we
may write f (x) 5 (x 2 a1)g(x), where g(x) [ E[x]. Since deg g(x) ,
deg f (x), by induction, there is a field K that contains E and all the
zeros of g(x), say, a2, . . . , an. Clearly, then, a splitting field for f (x)
over F is F(a1, a2, . . . , an).

EXAMPLE 5 Consider

f (x) 5 x4 2 x2 2 2 5 (x2 2 2)(x2 1 1)
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over Q. Obviously, the zeros of f (x) in C are 6 and 6i. So a split-
ting field for f(x) over Q is

Q( , i) 5 Q( )(i) 5 {a 1 bi | a, b [ Q( )}

5 {(a 1 b ) 1 (c 1 d )i | a, b, c, d [ Q}.

EXAMPLE 6 Consider f (x) 5 x2 1 x 1 2 over Z3. Then Z3(i) 5
{a 1 bi | a, b [ Z3} (see Example 9 in Chapter 13) is a splitting field
for f(x) over Z3 because

f (x) 5 [x 2 (1 1 i)][x 2 (1 2 i)].

At the same time, we know by the proof of Kronecker’s Theorem that
the element x 1 �x2 1 x 1 2� of

F 5 Z3[x]/�x2 1 x 1 2�

is a zero of f(x). Since f(x) has degree 2, it follows from the Factor
Theorem (Corollary 2 of Theorem 16.2) that the other zero of f (x) must
also be in F. Thus, f (x) splits in F, and because F is a two-dimensional
vector space over Z3 we know that F is also a splitting field of f (x) over
Z3. But how do we factor f(x) in F? Factoring f(x) in F is confusing be-
cause we are using the symbol x in two distinct ways: It is used as a
placeholder to write the polynomial f(x), and it is used to create the coset
representatives of the elements of F. This confusion can be avoided by
simply identifying the coset 1 1 �x2 1 x 1 2� with the element 1 in Z3 and
denoting the coset x 1 �x2 1 x 1 2� by b. With this identification, the field
Z3[x]/�x2 1 x 1 2� can be represented as {0, 1, 2, b, 2b, b 1 1, 2b 1 1,
b 1 2, 2b 1 2}. These elements are added and multiplied just as polyno-
mials are, except that we use the observation that x2 1 x 1 2 1 �x2 1
x 1 2� 5 0 implies that b2 1 b 1 2 5 0, so that b2 5 2b 2 2 5 2b 1 1.
For example, (2b 1 1)(b 1 2) 5 2b2 1 5b 1 2 5 2(2b 1 1) 1 5b 1
2 5 9b 1 4 5 1. To obtain the factorization of f (x) in F, we simply long
divide, as follows:

So, x2 1 x 1 2 5 (x 2 b)(x 1 b 1 1). Thus, we have found two split-
ting fields for x2 1 x 1 2 over Z3, one of the form F(a) and one of the
form F[x]/�p(x)� [where F 5 Z3 and p(x) 5 x2 1 x 1 2].

  x 1 (b 1 1)

qx2 1 x 1 2                  
  x2 2 bx                       
(b 1 1)x 1 2
(b 1 1)x 2 (b 1 1)b

(b 1 1)b 1 2 5 b2 1 b 1 2 5 0.

"2"2

"2"2"2

"2

x 2 b
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The next theorem shows how the fields F(a) and F[x]/�p(x)� are
related in the case where p(x) is irreducible over F and a is a zero of
p(x) in some extension of F.

Theorem 20.3 F(a) < F[x]/�p(x)�

PROOF Consider the function f from F[x] to F(a) given by f( f (x)) 5
f (a). Clearly, f is a ring homomorphism. We claim that Ker f 5 �p(x)�.
(This is Exercise 31 in Chapter 17.) Since p(a) 5 0, we have �p(x)� #
Ker f. On the other hand, we know by Theorem 17.5 that �p(x)� is a
maximal ideal in F[x]. So, because Ker f 2 F[x] [it does not contain
the constant polynomial f (x) 5 1], we have Ker f 5 �p(x)�. At this
point it follows from the First Isomorphism Theorem for Rings and
Corollary 1 of Theorem 17.5 that f(F[x]) is a subfield of F(a). Noting
that f(F[x]) contains both F and a and recalling that F(a) is the small-
est such field, we have F[x]/�p(x)� < f(F[x]) 5 F(a).

The final assertion of the theorem follows from the fact that every
element of F[x]/�p(x)� can be expressed uniquely in the form

cn21xn21 1 ? ? ? 1 c0 1 �p(x)�,

where c0, . . . , cn21 [ F (see Exercise 23 in Chapter 16) and the
natural isomorphism from F[x]/�p(x)� to F(a) carries ckxk 1 �p(x)�
to ckak.

As an immediate corollary of Theorem 20.3, we have the following
attractive result.

Corollary F(a) < F(b)

Let F be a field and let p(x) [ F[x] be irreducible over F. If a is a
zero of p(x) in some extension E of F, then F(a) is isomorphic to
F[x] / �p(x)�. Furthermore, if deg p(x) 5 n, then every member of F(a)
can be uniquely expressed in the form

cn21an21 1 cn22an22 1 ? ? ? 1 c1a 1 c0,

where c0, c1, . . . , cn21 [ F.

Let F be a field and let p(x) [ F[x] be irreducible over F. If a is a
zero of p(x) in some extension E of F and b is a zero of p(x) in some
extension E9 of F, then the fields F(a) and F(b) are isomorphic.
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PROOF From Theorem 20.3, we have

F(a) < F[x]/�p(x)� < F(b).

Recall that a basis for an n-dimensional vector space over a field F
is a set of n vectors v1, v2, . . . , vn with the property that every member
of the vector space can be expressed uniquely in the form a1v1 1
a2v2 1 ? ? ? 1 anvn, where the a’s belong to F (Exercise 19 in Chapter 19).
So, in the language of vector spaces, the latter portion of Theorem 20.3 says
that if a is a zero of an irreducible polynomial over F of degree n, then the
set {1, a, . . . , an21} is a basis for F(a) over F.

Theorem 20.3 often provides a convenient way of describing the
elements of a field.

EXAMPLE 7 Consider the irreducible polynomial f (x) 5 x6 2 2
over Q. Since is a zero of f (x), we know from Theorem 20.3 that the
set {1, 21/6, 22/6, 23/6, 24/6, 25/6} is a basis for Q( ) over Q. Thus,

Q( ) 5 {a0 1 a121/6 1 a222/6 1 a323/6 1 a424/6 1 a525/6 | ai [ Q}.

This field is isomorphic to Q[x]/�x6 2 2�.

In 1882, Ferdinand Lindemann (1852–1939) proved that p is not the
zero of any polynomial in Q[x]. Because of this important result, Theo-
rem 20.3 does not apply to Q(p) (see Exercise 11).

In Example 6, we produced two splitting fields for the polynomial 
x2 1 x 1 2 over Z3. Likewise, it is an easy exercise to show that both
Q[x]/�x2 1 1� and Q(i) 5 {r 1 si | r, s [ Q} are splitting fields of the
polynomial x2 1 1 over Q. But are these different-looking splitting fields
algebraically different? Not really. We conclude our discussion of split-
ting fields by proving that splitting fields are unique up to isomorphism.
To make it easier to apply induction, we will prove a more general result.

We begin by observing first that any ring isomorphism f from F
to F9 has a natural extension from F[x] to F9[x] given by cnx n 1
cn21xn21 1 ? ? ? 1 c1x 1 c0 S f(cn)x n 1 f(cn21)x n21 1 ? ? ? 1
f(c1)x 1 f(c0). Since this mapping agrees with f on F, it is conve-
nient and natural to use f to denote this mapping as well.

Lemma

"6 2

"6 2
"6 2

Let F be a field, let p(x) [ F[x] be irreducible over F, and let a be a
zero of p(x) in some extension of F. If f is a field isomorphism from
F to F9 and b is a zero of f(p(x)) in some extension of F9, then there
is an isomorphism from F(a) to F9(b) that agrees with f on F and
carries a to b.
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PROOF First observe that since p(x) is irreducible over F, f(p(x)) is
irreducible over F9. It is straightforward to check that the mapping
from F[x]/�p(x)� to F9[x]/�f(p(x))� given by

f (x) 1 �p(x)� S f( f (x)) 1 �f(p(x))�

is a field isomorphism. By a slight abuse of notation, we denote this
mapping by f also. (If you object, put a bar over the f.) From the proof
of Theorem 20.3, we know that there is an isomorphism a from F(a) to
F[x]/�p(x)� that is the identity on F and carries a to x 1 �p(x)�. Simi-
larly, there is an isomorphism b from F9[x]/�f(p(x))� to F9(b) that is the
identity on F9 and carries x 1 �f(p(x))� to b. Thus, bfa is the desired
mapping from to . See Figure 20.1.

Figure 20.1

Theorem 20.4 Extending f: F → F9

φ

φ

φ

βα

F F'

F(a) F[x]/7 p(x)8 F'[x]/7   (p(x))8 F'(b)

F9(b)F(a)

Let f be an isomorphism from a field F to a field F9 and let
f (x) [ F[x]. If E is a splitting field for f(x) over F and E9 is a
splitting field for f(f(x)) over F9, then there is an isomorphism 
from E to E9 that agrees with f on F.

PROOF We induct on deg f (x). If deg f (x) 5 1, then E 5 F and E9 5
F9, so that f itself is the desired mapping. If deg f (x) . 1, let p(x) be
an irreducible factor of f (x), let a be a zero of p(x) in E, and let b be a
zero of f(p(x)) in E9. By the preceding lemma, there is an isomor-
phism a from F(a) to F9(b) that agrees with f on F and carries a to b.
Now write f (x) 5 (x 2 a)g(x), where g(x) [ F(a)[x]. Then E is a
splitting field for g(x) over F(a) and E9 is a splitting field for a(g(x))
over F9(b). Since deg g(x) , deg f (x), there is an isomorphism from E
to E9 that agrees with a on F(a) and therefore with f on F.
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Corollary Splitting Fields Are Unique

Let F be a field and let f(x) [ F[x]. Then any two splitting fields 
of f(x) over F are isomorphic.

PROOF Suppose that E and E9 are splitting fields of f (x) over F. The
result follows immediately from Theorem 20.4 by letting f be the
identity from F to F.

In light of the corollary above, we may refer to “the” splitting field
of a polynomial over F without ambiguity.

Even though x6 2 2 has a zero in Q( ), it does not split in Q( ).
The splitting field is easy to obtain, however.

EXAMPLE 8 The Splitting Field of xn 2 a over Q
Let a be a positive rational number and let v be a primitive nth root of
unity (see Example 2 in Chapter 16). Then each of

a1/n, va1/n, v2a1/n, . . . , vn21a1/n

is a zero of xn 2 a in Q( , v).

Zeros of an Irreducible Polynomial
Now that we know that every nonconstant polynomial over a field
splits in some extension, we ask whether irreducible polynomials must
split in some special way. Yes, they do. To discover how, we borrow
something whose origins are in calculus.

Definition

Let f(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0 belong to F[x]. The
derivative of f (x), denoted by f 9(x), is the polynomial nanxn21 1
(n 2 1)an21xn22 1 ? ? ? 1 a1 in F[x].

Notice that our definition does not involve the notion of a limit. The
standard rules for handling sums and products of functions in calculus
carry over to arbitrary fields as well.

Lemma Properties of the Derivative

n"a

"6 2"6 2

Let f(x) and g(x) [ F[x] and let a [ F. Then

1. ( f (x) 1 g(x))9 5 f 9(x) 1 g9(x)
2. (af (x))9 5 af 9(x)
3. ( f (x)g(x))9 5 f(x)g9(x) 1 g(x)f 9(x).
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PROOF Parts 1 and 2 follow from straightforward applications of the
definition. Using part 1 and induction on deg f (x), part 3 reduces to
the special case in which f (x) 5 anx n. This also follows directly from
the definition.

Before addressing the question of the nature of the zeros of an irre-
ducible polynomial, we establish a general result concerning zeros of
multiplicity greater than 1. Such zeros are called multiple zeros.

Theorem 20.5 Criterion for Multiple Zeros

PROOF If a is a multiple zero of f (x) in some extension E, then
there is a g(x) in E[x] such that f(x) 5 (x 2 a)2g(x). Since f 9(x) 5
(x 2 a)2g9(x) 1 2(x 2 a)g(x), we see that f 9(a) 5 0. Thus x 2 a is a fac-
tor of both f(x) and f 9(x) in the extension E of F. Now if f(x) and f 9(x)
have no common divisor of positive degree in F[x], there are polynomials
h(x) and k(x) in F[x] such that f(x)h(x) 1 f 9(x)k(x) 5 1 (see Exercise 41
in Chapter 16). Viewing f (x)h(x) 1 f 9(x)k(x) as an element of E[x], we
see also that x 2 a is a factor of 1. Since this is nonsense, f (x) and f 9(x)
must have a common divisor of positive degree in F[x].

Conversely, suppose that f (x) and f 9(x) have a common factor of posi-
tive degree. Let a be a zero of the common factor. Then a is a zero of f(x)
and f 9(x). Since a is a zero of f (x), there is a polynomial q(x) such that
f (x) 5 (x 2 a)q(x). Then f 9(x) 5 (x 2 a)q9(x) 1 q(x) and 0 5 f 9(a) 5
q(a). Thus, x 2 a is a factor of q(x) and a is a multiple zero of f(x).

Theorem 20.6 Zeros of an Irreducible

PROOF If f (x) has a multiple zero, then, by Theorem 20.5, f (x) and
f 9(x) have a common divisor of positive degree in F[x]. Since the only
divisor of positive degree of f (x) in F[x] is f(x) itself (up to associates),
we see that f(x) divides f 9(x). Because a polynomial over a field cannot
divide a polynomial of smaller degree, we must have f 9(x) 5 0.

A polynomial f (x) over a field F has a multiple zero in some
extension E if and only if f(x) and f 9(x) have a common factor of
positive degree in F[x].

Let f(x) be an irreducible polynomial over a field F. If F has
characteristic 0, then f(x) has no multiple zeros. If F has charac-
teristic p 2 0, then f(x) has a multiple zero only if it is of the 
form f(x) 5 g(xp) for some g(x) in F[x].
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Now what does it mean to say that f 9(x) 5 0? If we write f(x) 5 anxn 1
an21xn21 1 ? ? ? 1 a1x 1 a0, then f9(x) 5 nanxn21 1 (n 2 1)an21xn22 1
? ? ? 1 a1. Thus, f 9(x) 5 0 only when kak 5 0 for k 5 1, . . . , n.

So, when char F 5 0, we have f(x) 5 a0, which is not an irreducible
polynomial. This contradicts the hypothesis that f(x) is irreducible over
F. Thus, f(x) has no multiple zeros.

When char F 5 p 2 0, we have ak 5 0 when p does not divide k. Thus,
the only powers of x that appear in the sum anxn 1 ? ? ? 1 a1x 1 a0 are
those of the form xpj 5 (xp) j. It follows that f (x) 5 g(xp) for some 
g(x) [ F[x]. [For example, if f(x) 5 x4p 1 3x2p 1 xp 1 1, then g(x) 5
x4 1 3x2 1 x 1 1.]

Theorem 20.6 shows that an irreducible polynomial over a field of
characteristic 0 cannot have multiple zeros. The desire to extend this re-
sult to a larger class of fields motivates the following definition.

Definition

A field F is called perfect if F has characteristic 0 or if F has
characteristic p and Fp 5 {ap | a [ F} 5 F.

The most important family of perfect fields of characteristic p is the
finite fields.

Theorem 20.7 Finite Fields Are Perfect

PROOF Let F be a finite field of characteristic p. Consider the map-
ping f from F to F defined by f(x) 5 xp for all x [ F. We claim that 
f is a field automorphism. Obviously, f(ab) 5 (ab)p 5 a pb p 5

f(a)f(b). Moreover, f(a 1 b) 5 (a 1 b)p 5 ap 1 ap21b 1

ap22b2 1 ? ? ? 1 ab p21 1 b p 5 a p 1 b p, since each 

is divisible by p. Finally, since xp 2 0 when x 2 0, Ker f 5 {0}.

Thus, f is one-to-one and, since F is finite, f is onto. This proves that
Fp 5 F.

ap

i
b

a 
p

p 2 1
 bap

2
b

ap

1
b

Every finite field is perfect.
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Theorem 20.8 Criterion for No Multiple Zeros

PROOF The case where F has characteristic 0 has been done. So 
let us assume that f (x) [ F[x] is irreducible over a perfect field F of
characteristic p and that f (x) has multiple zeros. From Theorem 20.6
we know that f (x) 5 g(x p) for some g(x) [ F[x], say, g(x) 5 anx n 1
an21xn21 1 ? ? ? 1 a1x 1 a0. Since Fp 5 F, each ai in F can be written
in the form bi

p for some bi in F. So, using Exercise 45a in Chapter 13,
we have

f (x) 5 g(xp) 5 bn
px pn 1 bn21

pxp(n21) 1 ? ? ? 1 b1
pxp 1 b0

p

5 (bnxn 1 bn21xn21 1 ? ? ? 1 b1x 1 b0)p 5 (h(x))p

where h(x) [ F[x]. But then f(x) is not irreducible.

The next theorem shows that when an irreducible polynomial does
have multiple zeros, there is something striking about the multiplicities.

Theorem 20.9 Zeros of an Irreducible over a Splitting Field

PROOF Let a and b be distinct zeros of f(x) in E. If a has multiplicity m,
then in E[x] we may write f(x) 5 (x 2 a)mg(x). It follows from the
lemma preceding Theorem 20.4 and from Theorem 20.4 that there is a
field isomorphism f from E to itself that carries a to b and acts as the
identity on F. Thus,

f (x) 5 f( f (x)) 5 (x 2 b)mf(g(x))

and we see that the multiplicity of b is greater than or equal to the mul-
tiplicity of a. By interchanging the roles of a and b, we observe that the
multiplicity of a is greater than or equal to the multiplicity of b. So, we
have proved that a and b have the same multiplicity.

As an immediate corollary of Theorem 20.9 we have the following
appealing result.

If f(x) is an irreducible polynomial over a perfect field F, then f(x) has
no multiple zeros.

Let f(x) be an irreducible polynomial over a field F and let E be a
splitting field of f(x) over F. Then all the zeros of f(x) in E have the
same multiplicity.
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Corollary Factorization of an Irreducible over a Splitting Field

We conclude this chapter by giving an example of an irreducible
polynomial over a field that does have a multiple zero. In particular,
notice that the field we use is not perfect.

EXAMPLE 9 Let F 5 Z2(t) be the field of quotients of the ring Z2[t]
of polynomials in the indeterminate t with coefficients from Z2. (We
must introduce a letter other than x, since the members of F are going to
be our coefficients for the elements in F[x].) Consider f(x) 5 x2 2 t [
F[x]. To see that f (x) is irreducible over F, it suffices to show that it has
no zeros in F. Well, suppose that h(t)/k(t) is a zero of f(x). Then
(h(t)/k(t))2 5 t, and therefore (h(t))2 5 t(k(t))2. Since h(t), k(t) [ Z2[t],
we then have h(t2) 5 tk(t2) (see Exercise 45 in Chapter 13). But
deg h(t2) is even, whereas deg tk(t2) is odd. So, f(x) is irreducible over F.

Finally, since t is a constant in F[x] and the characteristic of F is 2, we
have f9(x) 5 0, so that f9(x) and f(x) have f(x) as a common factor. So, by
Theorem 20.5, f(x) has a multiple zero in some extension of F. (Indeed, it
has a single zero of multiplicity 2 in K 5 F[x]/�x2 2 t�.)

Exercises

I have yet to see any problem, however complicated, which, when you
looked at it in the right way, did not become still more complicated.

PAUL ANDERSON, New Scientist

1. Describe the elements of Q( ).
2. Show that Q( , ) 5 Q( 1 ).
3. Find the splitting field of x3 2 1 over Q. Express your answer in

the form Q(a).
4. Find the splitting field of x4 1 1 over Q.
5. Find the splitting field of

x4 1 x2 1 1 5 (x2 1 x 1 1)(x2 2 x 1 1)

over Q.

"3"2"3"2
"3 5

Let f(x) be an irreducible polynomial over a field F and let E 
be a splitting field of f(x). Then f(x) has the form

a(x 2 a1)n(x 2 a2)n ? ? ? (x 2 at)n

where a1, a2, . . . , at are distinct elements of E and a [ F.
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6. Let a, b [ R with b 2 0. Show that R(a 1 bi) 5 C.
7. Find a polynomial p(x) in Q[x] such that Q( ) is ring-

isomorphic to Q[x]/�p(x)�.
8. Let F 5 Z2 and let f (x) 5 x3 1 x 1 1 [ F[x]. Suppose that a is a

zero of f(x) in some extension of F. How many elements does F(a)
have? Express each member of F(a) in terms of a. Write out a
complete multiplication table for F(a).

9. Let F(a) be the field described in Exercise 8. Express each of a5,
a22, and a100 in the form c2a2 1 c1a 1 c0.

10. Let F(a) be the field described in Exercise 8. Show that a2 and a2 1 a
are zeros of x3 1 x 1 1.

11. Describe the elements in Q(p).
12. Let F 5 Q(p3). Find a basis for F(p) over F.
13. Write x7 2 x as a product of linear factors over Z3. Do the same for 

x10 2 x.
14. Find all ring automorphisms of Q( ).
15. Let F be a field of characteristic p and let f (x) 5 x p 2 a [ F[x].

Show that f (x) is irreducible over F or f (x) splits in F.
16. Suppose that b is a zero of f (x) 5 x4 1 x 1 1 in some field exten-

sion E of Z2. Write f (x) as a product of linear factors in E[x].
17. Find a, b, c in Q such that

(1 1 )/(2 2 ) 5 a 1 b 1 c .

Note that such a, b, c exist, since

(1 1 )/(2 2 ) [ Q( ) 5 {a 1 b 1 c | a, b, c [ Q}.

18. Express (3 1 4 )21 in the form a 1 b , where a, b [ Q.
19. Show that Q(4 2 i) 5 Q(1 1 i), where i 5 .
20. Let F be a field, and let a and b belong to F with a 2 0. If c

belongs to some extension of F, prove that F(c) 5 F(ac 1 b). 
(F “absorbs” its own elements.)

21. Let f (x) [ F[x] and let a [ F. Show that f(x) and f (x 1 a) have the
same splitting field over F.

22. Recall that two polynomials f (x) and g(x) from F[x] are said to be
relatively prime if there is no polynomial of positive degree in F[x]
that divides both f (x) and g(x). Show that if f (x) and g(x) are rela-
tively prime in F[x], they are relatively prime in K[x], where K is
any extension of F.

23. Determine all of the subfields of Q( )."2

"21
"2"2

"3 4"3 2"3 2"3 2"3 4

"3 4"3 2"3 2"3 4

"3 5

"11"_
5
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24. Let E be an extension of F and let a and b belong to E. Prove that 
F(a, b) 5 F(a)(b) 5 F(b)(a).

25. Write x3 1 2x 1 1 as a product of linear polynomials over some
field extension of Z3.

26. Express x8 2 x as a product of irreducibles over Z2.
27. Prove or disprove that Q( ) and Q( ) are ring-isomorphic.
28. For any prime p, find a field of characteristic p that is not perfect.
29. If b is a zero of x2 1 x 1 2 over Z5, find the other zero.
30. Show that x4 1 x 1 1 over Z2 does not have any multiple zeros in

any field extension of Z2.
31. Show that x21 1 2x8 1 1 does not have multiple zeros in any

extension of Z3.
32. Show that x21 1 2x9 1 1 has multiple zeros in some extension of Z3.
33. Let F be a field of characteristic p 2 0. Show that the polynomial

f(x) 5 xpn
2 x over F has distinct zeros.

34. Find the splitting field for f (x) 5 (x2 1 x 1 2)(x2 1 2x 1 2) over
Z3[x]. Write f (x) as a product of linear factors.

35. Let F, K, and L be fields with . If L is a splitting field
for some nonconstant polynomial over F, show that L is a
splitting field for over K.

36. If belongs to a field F and splits in some extension E
of F, prove that E contains all the nth roots of unity.

37. Suppose that is a fifth-degree polynomial that is irreducible
over . Prove that every nonidentity element is a generator of the
cyclic group *.(Z23x4> �f(x) �)

Z2

f(x)

xn 2 aa ? 0
f(x)

f(x)
F # K # L

"2 3"3
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Leopold Kronecker

LEOPOLD KRONECKER was born on December
7, 1823, in Leignitz, Prussia. As a schoolboy,
he received special instruction from the great
algebraist Kummer. Kronecker entered the
University of Berlin in 1841 and completed
his Ph.D. dissertation in 1845 on the units in a
certain ring.

Kronecker devoted the years 1845–1853 to
business affairs, relegating mathematics to a
hobby. Thereafter, being well-off financially,
he spent most of his time doing research in al-
gebra and number theory. Kronecker was one
of the early advocates of the abstract approach
to algebra. He innovatively applied rings and
fields in his investigations of algebraic num-
bers, established the Fundamental Theorem of
Finite Abelian Groups, and was the first math-
ematician to master Galois’s theory of fields.

He [Kronecker] wove together the three
strands of his greatest interests—the
theory of numbers, the theory of
equations and elliptic functions—into 
one beautiful pattern.

E. T. BELL

369

Kronecker advocated constructive meth-
ods for all proofs and definitions. He believed
that all mathematics should be based on rela-
tionships among integers. He went so far as
to say to Lindemann, who proved that p is
transcendental, that irrational numbers do
not exist. His most famous remark on the
matter was “God made the integers, all the
rest is the work of man.” Henri Poincaré
once remarked that Kronecker was able to
produce fine work in number theory and
algebra only by temporarily forgetting his
own philosophy.

Kronecker died on December 29, 1891,
at the age of 68.

For more information about Kronecker,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Characterization of Extensions
In Chapter 20, we saw that every element in the field Q( ) has the
particularly simple form a 1 b , where a and b are rational. On the
other hand, the elements of Q(p) have the more complicated form

(anp
n 1 an21p

n21 1 ? ? ? 1 a0)/(bmpm 1 bm21p
m21 1 ? ? ? 1 b0),

where the a’s and b’s are rational. The fields of the first type have a
great deal of structure. This structure is the subject of this chapter.

Definition Types of Extensions

Let E be an extension field of a field F and let a [ E. We call a
algebraic over F if a is the zero of some nonzero polynomial in F[x]. If
a is not algebraic over F, it is called transcendental over F. An exten-
sion E of F is called an algebraic extension of F if every element of E is
algebraic over F. If E is not an algebraic extension of F, it is called a
transcendental extension of F. An extension of F of the form F(a) is
called a simple extension of F.

Leonhard Euler used the term transcendental for numbers that are
not algebraic because “they transcended the power of algebraic meth-
ods.” Although Euler made this distinction in 1744, it wasn’t until 1844
that the existence of transcendental numbers over Q was proved by
Joseph Liouville. Charles Hermite proved that e is transcendental over
Q in 1873, and Lindemann showed that p is transcendental over Q in
1882. To this day, it is not known whether p 1 e is transcendental over Q.
With a precise definition of “almost all,” it can be shown that almost all
real numbers are transcendental over Q.

"2
"2

21 Algebraic Extensions

Banach once told me, “Good mathematicians see analogies between
theorems or theories, the very best ones see analogies between analogies.”

S. M. ULAM, Adventures of a Mathematician
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Theorem 21.1 shows why we make the distinction between elements
that are algebraic over a field and elements that are transcendental over
a field. Recall that F(x) is the field of quotients of F[x]; that is,

F(x) 5 {f (x)/g(x) | f (x), g(x) [ F[x], g(x) 2 0}.

Theorem 21.1 Characterization of Extensions

PROOF Consider the homomorphism f:F[x] S F(a) given by
f (x) S f (a). If a is transcendental over F, then Ker f 5 {0}, and so 
we may extend f to an isomorphism :F(x) S F(a) by defining 

( f(x)/g(x)) 5 f(a)/g(a).
If a is algebraic over F, then Ker f 2 {0}; and, by Theorem 16.4,

there is a polynomial p(x) in F[x] such that Ker f 5 �p(x)� and p(x) has
minimum degree among all nonzero elements of Ker f. Thus, p(a) 5 0
and, since p(x) is a polynomial of minimum degree with this property,
it is irreducible over F.

The proof of Theorem 21.1 can readily be adapted to yield the next
two results also. The details are left to the reader (see Exercise 1).

Theorem 21.2 Uniqueness Property

The polynomial with the property specified in Theorem 21.2 is
called the minimal polynomial for a over F.

Theorem 21.3 Divisibility Property

If E is an extension field of F, we may view E as a vector space over F
(that is, the elements of E are the vectors and the elements of F are the
scalars). We are then able to use such notions as dimension and basis in
our discussion.

Let a be algebraic over F, and let p(x) be the minimal polynomial for
a over F. If f(x) [ F[x] and f(a) 5 0, then p(x) divides f(x) in F[x].

If a is algebraic over a field F, then there is a unique monic irreduci-
ble polynomial p(x) in F[x] such that p(a) 5 0.

f
f

Let E be an extension field of the field F and let a [ E. If a is
transcendental over F, then F(a) < F(x). If a is algebraic over F, then
F(a) < F[x]/� p(x)�, where p(x) is a polynomial in F[x] of minimum
degree such that p(a) 5 0. Moreover, p(x) is irreducible over F.
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Finite Extensions
Definition Degree of an Extension

Let E be an extension field of a field F. We say that E has degree n
over F and write [E:F] 5 n if E has dimension n as a vector space
over F. If [E:F] is finite, E is called a finite extension of F; otherwise,
we say that E is an infinite extension of F.

Figure 21.1 illustrates a convenient method of depicting the degree
of a field extension over a field.

Figure 21.1

EXAMPLE 1 The field of complex numbers has degree 2 over the
reals, since {1, i} is a basis. The field of complex numbers is an infinite
extension of the rationals.

EXAMPLE 2 If a is algebraic over F and its minimal polynomial
over F has degree n, then, by Theorem 20.3, we know that {1, a, . . . ,
an21} is a basis for F(a) over F; and, therefore, [F(a):F] 5 n. In this
case, we say that a has degree n over F.

Theorem 21.4 Finite Implies Algebraic

PROOF Suppose that [E:F] 5 n and a [ E. Then the set {1, a, . . . , an}
is linearly dependent over F; that is, there are elements c0, c1, . . . , cn in F,
not all zero, such that

cna
n 1 cn21a

n21 1 ? ? ? 1 c1a 1 c0 5 0.

Clearly, then, a is a zero of the nonzero polynomial

f (x) 5 cnx
n 1 cn21x

n21 1 ? ? ? 1 c1x 1 c0.

If E is a finite extension of F, then E is an algebraic extension of F.

Q(√2) Q(√2)
3

Q(√2)
6

[Q(√2):Q] = 6
6

[Q(√2):Q] = 3
3

[Q(√2):Q] = 2

E

Q FQQ

[E:F] = n

2 3 6 n
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21 | Algebraic Extensions 373

The converse of Theorem 21.4 is not true, for otherwise, the de-
grees of the elements of every algebraic extension of E over F would
be bounded. But Q( , , , . . .) is an algebraic extension of Q
that contains elements of every degree over Q (see Exercise 3).

The next theorem is the field theory counterpart of Lagrange’s The-
orem for finite groups. Like all counting theorems, it has far-reaching
consequences.

Theorem 21.5 [K:F] 5 [K:E][E:F]

PROOF Let X 5 {x1, x2, . . . , xn} be a basis for K over E, and let
Y 5 {y1, y2, . . . , ym} be a basis for E over F. It suffices to prove that

YX 5 {yj xi | 1 # j # m, 1 # i # n}

is a basis for K over F. To do this, let a [ K. Then there are elements
b1, b2, . . . , bn [ E such that

a 5 b1x1 1 b2x2 1 ? ? ? 1 bnxn.

And, for each i 5 1, . . . , n, there are elements ci1, ci2, . . . , cim [ F
such that

bi 5 ci1y1 1 ci2y2 1 ? ? ? 1 cimym.

Thus,

This proves that YX spans K over F.
Now suppose there are elements cij in F such that

Then, since each [ E and X is a basis for K over E, we have

for each i. But each cij [ F and Y is a basis for E over F, so each cij 5 0.
This proves that the set YX is linearly independent over F.

Using the fact that for any field extension L of a field J, [L:J] 5 n if
and only if L is isomorphic to Jn as vector spaces (see Exercise 29), we
may give a concise conceptual proof of Theorem 21.5, as follows. Let

g
j

 
cijyj 5 0

g
j

 
cijyj

0 5 g
i,j

 cij(yjxi) 5 g
i
Ag

j
 (cijyj)Bxi.

a 5 a
n

i51
 bixi 5 a

n

i51
aa

m

j51
 cijyjb xi 5 a

i, j

 cij(yjxi).

Let K be a finite extension field of the field E and let E be a finite
extension field of the field F. Then K is a finite extension field 
of F and [K:F] 5 [K:E][E:F].

"4 2"3 2"2
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[K:E] 5 n and [E:F] 5 m. Then K < En and E < Fm, so that K < En <
(Fm)n < Fmn. Thus, [K:F] 5 mn.

The content of Theorem 21.5 can be pictured as in Figure 21.2. Ex-
amples 3, 4, and 5 show how Theorem 21.5 is often utilized.

EXAMPLE 3 Since {1, } is a basis for Q( , ) over Q( )
(see Exercise 7) and {1, } is a basis for Q( ) over Q, the proof of
Theorem 21.5 shows that {1, , , } is a basis for Q( , )
over Q. (See Figure 21.3.)

EXAMPLE 4 Consider Q( , ). Then [Q( , ) : Q] 5 12.

For, clearly, [Q( , ) : Q] 5 [Q( , ) : Q( )] [Q( ) : Q]

and [Q( , ) : Q] 5 [Q( , ) : Q( )] [Q( ) : Q] show that

both 3 5 [Q( ) : Q] and 4 5 [Q( ) : Q] divide [Q( , ) : Q].

Thus, [Q( , ) : Q] $ 12. On the other hand, [Q( , ) : Q( )]

is at most 4, since is a zero of x4 2 3 [ Q( )[x]. Therefore,

[Q( , ) : Q] 5 [Q( , ): Q( )][Q( ) : Q] # 4 ? 3 5 12.

(See Figure 21.4.)

"3 2"3 2"4 3"3 2"4 3"3 2

"3 2"4 3

"3 2"4 3"3 2"4 3"3 2

"4 3"3 2"4 3"3 2

"4 3"4 3"4 3"3 2"4 3"3 2

"3 2"3 2"4 3"3 2"4 3"3 2

"4 3"3 2"4 3"3 2

"5"3"15"5"3
"5"5

"5"5"3"3
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Q(√3) Q(√5)

2 2

2 2

4

Q

Q(√2, √3)

Q(√2) Q(√3)

4 3

3 4

12

Q

4

43

3

Figure 21.3 Figure 21.4

nm

n

m

K

E

F

[K:F ]  =  [K:E ][E:F ]

Figure 21.2
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Theorem 21.5 can sometimes be used to show that a field does not
contain a particular element.

EXAMPLE 5 Recall from Example 7 in Chapter 17 that h(x) 5 15x4 2
10x2 1 9x 1 21 is irreducible over Q. Let b be a zero of h(x) in some ex-
tension of Q. Then, even though we don’t know what b is, we can still
prove that is not an element of Q(b). For, if so, then Q , Q( ) #
Q(b) and 4 5 [Q(b) : Q] 5 [Q(b) : Q( )][Q( ) : Q] implies that
3 divides 4. Notice that this argument cannot be used to show that 
is not contained in Q(b).

EXAMPLE 6 Consider Q( , ). We claim that Q( , ) 5
Q( 1 ). The inclusion Q( 1 ) # Q( , ) is clear. 

Now note that since ( 1 )21 5 5

( 2 ), we know that 2 belongs to Q ( 1 ). It 

follows that [( 1 ) 1 ( 2 )]/2 5 and [( 1 )2
( 2 )]/2 5 both belong to Q( 1 ), and therefore
Q( , ) # Q( 1 ).

EXAMPLE 7 It follows from Example 6 and Theorem 20.3 that the
minimal polynomial for 1 over Q has degree 4. How can we
find this polynomial? We begin with x 5 1 . Then x2 5 3 1
2 1 5. From this we obtain x2 2 8 5 2 and, by squaring both
sides, x4 2 16x 1 64 5 60. Thus, 1 is a zero of x4 2 16x 1 4.
We know that this is the minimal polynomial of 1 over Q
since it is monic and has degree 4.

Example 6 shows that an extension obtained by adjoining two ele-
ments to a field can sometimes be obtained by adjoining a single 
element to the field. Our next theorem shows that, under certain condi-
tions, this can always be done.

Theorem 21.6 Primitive Element Theorem (Steinitz, 1910)

PROOF Let p(x) and q(x) be the minimal polynomials over F for a and
b, respectively. In some extension K of F, let a1, a2, . . . , am and b1, b2,
. . . , bn be the distinct zeros of p(x) and q(x), respectively, where a 5 a1

If F is a field of characteristic 0, and a and b are algebraic over F,
then there is an element c in F(a, b) such that F(a, b) 5 F(c).

"5"3
"5"3

"15"15
"5"3

"5"3

"5"3"5"3
"5"3"5"5"3

"5"3"3"5"3"5"3

"5"3"5"3"5"32
1

2

1

"3 1 "5
 ?

"3 2 "5

"3 2 "5
"5"3

"5"3"5"3"5"3
"5"3"5"3

"2
"3 2"3 2

"3 2"3 2
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and b 5 b1. Among the infinitely many elements of F, choose an
element d not equal to (ai 2 a)/(b 2 bj) for all i $ 1 and all j . 1. In
particular, ai 2 a 1 d(b 2 bj) for j . 1.

We shall show that c 5 a 1 db has the property that F(a, b) 5 F(c).
Certainly, F(c) # F(a, b). To verify that F(a, b) # F(c), it suffices to
prove that b [ F(c), for then b, c, and d belong to F(c) and a 5 c 2 bd.
Consider the polynomials q(x) and r (x) 5 p(c 2 dx) [that is, r (x) is
obtained by substituting c 2 dx for x in p(x)] over F(c). Since both 
q(b) 5 0 and r(b) 5 p(c 2 db) 5 p(a) 5 0, both q(x) and r(x) are divis-
ible by the minimal polynomial s(x) for b over F(c) (see Theorem 21.3).
Because s(x) [ F(c)[x], we may complete the proof by proving that
s(x) 5 x 2 b. Since s(x) is a common divisor of q(x) and r(x), the only
possible zeros of s(x) in K are the zeros of q(x) that are also zeros of
r (x). But r(bj) 5 p(c 2 dbj) 5 p(a 1db 2 dbj) 5 p(a 1 d(b 2 bj)) and
d was chosen such that a 1 d(b 2 bj) 2 ai for j . 1. It follows that b
is the only zero of s(x) in K[x] and, therefore, s(x) 5 (x 2 b)u. Since
s(x) is irreducible and F has characteristic 0, Theorem 20.6 guarantees
that u 5 1.

In the terminology introduced earlier, it follows from Theorem 21.6
and induction that any finite extension of a field of characteristic 0 is a
simple extension. An element a with the property that E 5 F(a) is
called a primitive element of E.

Properties of Algebraic Extensions
Theorem 21.7 Algebraic over Algebraic Is Algebraic

PROOF Let a [ K. It suffices to show that a belongs to some finite
extension of F. Since a is algebraic over E, we know that a is the zero
of some irreducible polynomial in E[x], say, p(x) 5 bnx

n 1 ? ? ? 1 b0.
Now we construct a tower of field extensions of F, as follows:

F0 5 F(b0),

F1 5 F0(b1), . . . , Fn 5 Fn21(bn).

In particular,

Fn 5 F(b0, b1, . . . , bn),

If K is an algebraic extension of E and E is an algebraic extension 
of F, then K is an algebraic extension of F.

376 Fields

16509_ch21_p370-381 pp3  11/18/08  1:35 AM  Page 376



21 | Algebraic Extensions 377

so that p(x) [ Fn[x]. Thus, [Fn(a):Fn] 5 n; and, because each bi is alge-
braic over F, we know that each [Fi11:Fi] is finite. So,

[Fn(a):F ] 5 [Fn(a):Fn][Fn:Fn21] ? ? ? [F1:F0][F0:F ]

is finite. (See Figure 21.5.)

Corollary Subfield of Algebraic Elements

PROOF Suppose that a, b [ E are algebraic over F and b 2 0. To
show that a 1 b, a 2 b, ab, and a/b are algebraic over F, it suffices to
show that [F(a, b):F] is finite, since each of these four elements be-
longs to F(a, b). But note that

[F(a, b):F] 5 [F(a, b):F(b)][F(b):F].

Also, since a is algebraic over F, it is certainly algebraic over F(b).
Thus, both [F(a, b):F(b)] and [F(b):F] are finite.

For any extension E of a field F, the subfield of E of the elements
that are algebraic over F is called the algebraic closure of F in E.

One might wonder if there is such a thing as a maximal algebraic
extension of a field F—that is, whether there is an algebraic extension E
of F that has no proper algebraic extensions. For such an E to exist, it is
necessary that every polynomial in E[x] splits in E. Otherwise, it follows
from Kronecker’s Theorem that E would have a proper algebraic exten-
sion. This condition is also sufficient. If every member of E[x] splits in E,
and K is an algebraic extension of E, then every member of K is a zero of

Let E be an extension field of the field F. Then the set of all elements
of E that are algebraic over F is a subfield of E.

K

Fn(a)

Fn

F1

F0

F

Fn21

E

Figure 21.5
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some element of E[x]. But the zeros of elements of E[x] are in E. A field
that has no proper algebraic extension is called algebraically closed. In
1910, Ernst Steinitz proved that every field F has a unique (up to isomor-
phism) algebraic extension that is algebraically closed. This field is
called the algebraic closure of F. A proof of this result requires a sophis-
ticated set theory background.

In 1799, Gauss, at the age of 22, proved that C is algebraically
closed. This fact was considered so important at the time that it was
called “The Fundamental Theorem of Algebra.” Over a 50-year period,
Gauss found three additional proofs of the Fundamental Theorem. To-
day more than 100 proofs exist. In view of the ascendancy of abstract
algebra in the 20th century, a more appropriate phrase for Gauss’s result
would be “The Fundamental Theorem of Classical Algebra.”

Exercises

It matters not what goal you seek
Its secret here reposes:
You’ve got to dig from week to week
To get Results or Roses.

EDGAR GUEST

1. Prove Theorem 21.2 and Theorem 21.3.
2. Let E be the algebraic closure of F. Show that every polynomial in

F[x] splits in E.

3. Prove that Q( , , , . . .) is an algebraic extension of Q but
not a finite extension of Q. (This exercise is referred to in this
chapter.)

4. Let E be an algebraic extension of F. If every polynomial in F[x]
splits in E, show that E is algebraically closed.

5. Suppose that F is a field and every irreducible polynomial in F[x]
is linear. Show that F is algebraically closed.

6. Suppose that f (x) and g(x) are irreducible over F and that deg f (x)
and deg g(x) are relatively prime. If a is a zero of f (x) in some ex-
tension of F, show that g(x) is irreducible over F(a).

7. Let a and b belong to Q with b 2 0. Show that Q( ) 5 Q( ) if
and only if there exists some c [ Q such that a 5 bc2.

8. Find the degree and a basis for Q( 1 ) over Q( ). Find
the degree and a basis for Q( , , ) over Q.

9. Suppose that E is an extension of F of prime degree. Show that, for
every a in E, F(a) 5 F or F(a) 5 E.

"4 2"3 2"2
"15"5"3

"b"a

"4 2"3 2"2
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10. Let a be a complex number that is algebraic over Q. Does your
argument work when is replaced by ? Show that is
algebraic over Q.

11. Suppose that E is an extension of F and a, b [ E. If a is algebraic
over F of degree m, and b is algebraic over F of degree n, where m
and n are relatively prime, show that [F(a, b):F] 5 mn.

12. Find an example of a field F and elements a and b from some
extension field such that F(a, b) 2 F(a), F(a, b) 2 F(b), and
[F(a, b):F] , [F(a):F][F(b):F].

13. Let K be a field extension of F and let a [ K. Show that
[F(a):F(a3)] # 3. Find examples to illustrate that [F(a):F(a3)] can
be 1, 2, or 3.

14. Find the minimal polynomial for 1 over Q.

15. Let K be an extension of F. Suppose that E1 and E2 are contained
in K and are extensions of F. If [E1:F] and [E2:F] are both prime,
show that E1 5 E2 or E1 > E2 5 F.

16. Find the minimal polynomial for over Q.

17. Let E be a finite extension of R. Use the fact that C is algebraically
closed to prove that E 5 C or E 5 R.

18. Suppose that [E:Q] 5 2. Show that there is an integer d such that
E 5 Q( ) where d is not divisible by the square of any prime.

19. Suppose that p(x) [ F[x] and E is a finite extension of F. If p(x) is
irreducible over F and deg p(x) and [E:F] are relatively prime,
show that p(x) is irreducible over E.

20. Let E be a field extension of F. Show that [E:F] is finite if and only
if E 5 F(a1, a2, . . . , an), where a1, a2, . . . , an are algebraic over F.

21. If a and b are real numbers and a and b are transcendental over Q,
show that either ab or a 1 b is also transcendental over Q.

22. Let f (x) be a nonconstant element of F[x]. If a belongs to some
extension of F and f (a) is algebraic over F, prove that a is alge-
braic over F.

23. Let f (x) 5 ax2 1 bx 1 c [ Q[x]. Find a primitive element for the
splitting field for f (x) over Q.

24. Find the splitting field for x4 2 x2 2 2 over Z3.

25. Let f (x) [ F[x]. If deg f (x) 5 2 and a is a zero of f (x) in some
extension of F, prove that F(a) is the splitting field for f (x) over F.

26. Let a be a complex zero of x2 1 x 1 1 over Q. Prove that 
Q( ) 5 Q(a).

27. If F is a field and the multiplicative group of nonzero elements of
F is cyclic, prove that F is finite.

"a

"d

"3 2 1 "3 4

"2"2 3

"a
n"a"a
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28. Let a be a complex number that is algebraic over Q and let r be a
rational number. Show that ar is algebraic over Q.

29. Prove that, if K is a field extension of F, then [K:F] 5 n if and only
if K is isomorphic to Fn as vector spaces. (See Exercise 27 in
Chapter 19 for the appropriate definition. This exercise is referred
to in this chapter.)

30. Let a be a positive real number and let n be an integer greater than 1.
Prove or disprove that [Q(a1/n):Q] 5 n.

31. Let a and b belong to some extension of F and let b be algebraic
over F. Prove that [F(a, b):F(a)] # [F(a, b):F].

32. Let f (x) and g(x) be irreducible polynomials over a field F and let
a and b belong to some extension E of F. If a is a zero of f (x) and
b is a zero of g(x), show that f (x) is irreducible over F(b) if and
only if g(x) is irreducible over F(a).

33. Let b be a zero of f(x) 5 x5 1 2x 1 4 (see Example 8 in Chapter 17).
Show that none of , , belongs to Q(b).

34. Prove that Q( , ) 5 Q( ).
35. Let a and b be rational numbers. Show that Q( , ) 5

Q( 1 ).
36. Let F, K and L be fields with . If L is a finite extension of

F and , prove that .
37. Let F be a field and K a splitting field for some nonconstant poly-

nomial over F. Show that K is a finite extension of F.
38. Prove that C is not the splitting field of any polynomial in .

39. Prove that is not an element of .
40. Let and . Prove that b

is not in .
41. Suppose that a is algebraic over a field F. Show that a and 

have the same degree over F.

Suggested Readings

R. L. Roth, “On Extensions of Q by Square Roots,” American Mathemati-
cal Monthly 78 (1971): 392–393.

In this paper, it is proved that if p1, p2, . . . , pn are distinct primes, then
[Q( , . . . , ):Q] 5 2n.

Paul B. Yale, “Automorphisms of the Complex Numbers,” Mathematics
Magazine 39 (1966): 135–141.

This award-winning expository paper is devoted to various results on
automorphisms of the complex numbers.

"pn"p1,"p2

1 1 a21

Q(a)
b 5  cos 2p

5 1 i sin 2p
5a 5  cos 2p

7 1 i sin 2p
7

Q(p)"2

Q3x4

F 5 K3L : F4 5 3L : K4 F 8 K 8 L
"b"a

"b"a
"6 2"3 2"2

"4 2"3 2"2
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Irving Kaplansky

He got to the top of the heap 
by being a first-rate doer and 
expositor of algebra.

PAUL R. HALMOS, I Have a 

Photographic Memory

IRVING KAPLANSKY was born on March 22,
1917, in Toronto, Canada, a few years after
his parents emigrated from Poland. Al-
though his parents thought he would pursue
a career in music, Kaplansky knew early on
that mathematics was what he wanted to do.
As an undergraduate at the University of
Toronto, Kaplansky was a member of the
winning team in the first William Lowell
Putnam competition, a mathematical contest
for United States and Canadian college stu-
dents. Kaplansky received a B.A. degree from
Toronto in 1938 and an M.A. in 1939. In
1939, he entered Harvard University to earn
his doctorate as the first recipient of a Putnam
Fellowship. After receiving his Ph.D. from
Harvard in 1941, Kaplansky stayed on as
Benjamin Peirce instructor until 1944. After
one year at Columbia University, he went to
the University of Chicago, where he remained
until his retirement in 1984. He then became
the director of the Mathematical Sciences
Research Institute at the University of Cali-
fornia, Berkeley.

Kaplansky’s interests were broad, includ-
ing areas such as ring theory, group theory,
field theory, Galois theory, ergodic theory,
algebras, metric spaces, number theory, sta-
tistics, and probability.

Among the many honors Kaplansky
received are election to both the National
Academy of Sciences and the American
Academy of Arts and Sciences, election to
the presidency of the American Mathemati-
cal Society, and the 1989 Steele Prize for
cumulative influence from the American
Mathematical Society. The Steele Prize cita-
tion says, in part, “. . . he has made striking
changes in mathematics and has inspired
generations of younger mathematicians.”
Kaplansky died on June 25, 2006 at the age
of 89.

For more information about Kaplansky,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/

16509_ch21_p370-381 pp3  11/18/08  1:35 AM  Page 381



382

Finite Fields

This theory [of finite fields] is of considerable interest in its own right and it
provides a particularly beautiful example of how the general theory of the
preceding chapters fits together to provide a rather detailed description of
all finite fields.

RICHARD A. DEAN, Elements of Abstract Algebra

22

Classification of Finite Fields
In this, our final chapter on field theory, we take up one of the most
beautiful and important areas of abstract algebra—finite fields. Finite
fields were first introduced by Galois in 1830 in his proof of the unsolv-
ability of the general quintic equation. When Cayley invented matrices a
few decades later, it was natural to investigate groups of matrices over
finite fields. To this day, matrix groups over finite fields are among the
most important classes of groups. In the past 50 years, there have been
important applications of finite fields in computer science, coding the-
ory, information theory, and cryptography. But, besides the many uses of
finite fields in pure and applied mathematics, there is yet another good
reason for studying them. They are just plain fun!

The most striking fact about finite fields is the restricted nature of
their order and structure. We have already seen that every finite field
has prime-power order (Exercise 47 in Chapter 13). A converse of sorts
is also true.

Theorem 22.1 Classification of Finite Fields

PROOF Consider the splitting field E of f (x) 5 xpn 2 x over Zp. We
will show that |E| 5 pn. Since f(x) splits in E, we know that f(x) has ex-
actly pn zeros in E, counting multiplicity. Moreover, by Theorem 20.5,
every zero of f(x) has multiplicity 1. Thus, f(x) has pn distinct zeros in E.

For each prime p and each positive integer n, there is, up to
isomorphism, a unique finite field of order pn.
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On the other hand, the set of zeros of f (x) in E is closed under addition,
subtraction, multiplication, and division by nonzero elements (see
Exercise 35), so that the set of zeros of f (x) is itself a field extension of
Zp in which f (x) splits. Thus, the set of zeros of f (x) is E and, therefore,
|E| 5 pn.

To show that there is a unique field for each prime-power, suppose
that K is any field of order pn. Then K has a subfield isomorphic to Zp
(generated by 1), and, because the nonzero elements of K form a multi-
plicative group of order pn 2 1, every element of K is a zero of f(x) 5
xpn

2 x (see Exercise 25). So, K must be a splitting field for f (x) over Zp.
By the corollary to Theorem 20.4, there is only one such field up to
isomorphism.

The existence portion of Theorem 22.1 appeared in the works of
Galois and Gauss in the first third of the 19th century. Rigorous proofs
were given by Dedekind in 1857 and by Jordan in 1870 in his classic
book on group theory. The uniqueness portion of the theorem was
proved by E. H. Moore in an 1893 paper concerning finite groups. The
mathematics historian E. T. Bell once said that this paper by Moore
marked the beginning of abstract algebra in America.

Because there is only one field for each prime-power pn, we may un-
ambiguously denote it by GF( pn), in honor of Galois, and call it the
Galois field of order pn.

Structure of Finite Fields
The next theorem tells us the additive and multiplicative group struc-
ture of a field of order pn.

Theorem 22.2 Structure of Finite Fields

PROOF Since GF( pn) has characteristic p (Theorem 13.3), every
nonzero element of GF( pn) has additive order p. Then by the Funda-
mental Theorem of Finite Abelian Groups, GF( pn) under addition is
isomorphic to a direct product of n copies of Zp.

As a group under addition, GF(pn) is isomorphic to

Zp % Zp % ? ? ? % Zp.

n factors

As a group under multiplication, the set of nonzero elements of
GF( pn) is isomorphic to Zpn21 (and is, therefore, cyclic).
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To see that the multiplicative group GF(pn)* of nonzero elements of
GF(pn) is cyclic, we first note that by the Fundamental Theorem of
Abelian Groups (Theorem 11.1), GF(pn)* is isomorphic to a direct
product of the form % % ? ? ? % . If the orders of these com-
ponents are pairwise relatively prime then it follows from Corollary 1
of Theorem 8.2 that GF(pn)* is cyclic. Hence we  may assume that
there is an integer d . 1 that divides the orders of two of the compo-
nents. From the Fundamental Theorem of Cyclic Groups (Theorem
4.3) we know that each of these components has a subgroup of order d.
This means that GF(pn)* has two distinct subgroups of order d, call
them H and K. But then  every element of H and K is a zero of xd 2 1,
which contradicts the fact that a polynomial of degree d over a field can
have at most d zeros (Corollary 3 of Theorem 16.2).

Since Zp % Zp % ? ? ? % Zp is a vector space over Zp with {(1, 0,
. . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} as a basis, we have the
following useful and aesthetically appealing formula.

Corollary 1

Corollary 2 GF(pn) Contains an Element of Degree n

PROOF Observe that [GF( p)(a):GF( p)] 5 [GF( pn):GF( p)] 5 n.

EXAMPLE 1 Let’s examine the field GF(16) in detail. Since x4 1
x 1 1 is irreducible over Z2, we know that

GF(16) < {ax3 1 bx2 1 cx 1 d 1 �x4 1 x 1 1� | a, b, c, d [ Z2}.

Thus, we may think of GF(16) as the set

F 5 {ax3 1 bx2 1 cx 1 d | a, b, c, d [ Z2},

where addition is done as in Z2[x], but multiplication is done modulo 
x4 1 x 1 1. For example,

(x3 1 x2 1 x 1 1)(x3 1 x) 5 x3 1 x2,

Let a be a generator of the group of nonzero elements of GF( pn)
under multiplication. Then a is algebraic over GF( p) of degree n.

[GF(pn):GF(p)] 5 n

Znm
Zn2

Zn1
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since the remainder upon dividing

(x3 1 x2 1 x 1 1)(x3 1 x) 5 x6 1 x5 1 x2 1 x

by x4 1 x 1 1 in Z2[x] is x3 1 x2. An easier way to perform the same
calculation is to observe that in this context x4 1 x 1 1 is 0, so

x4 5 2x 2 1 5 x 1 1,
x5 5 x2 1 x,

and

x6 5 x3 1 x2.

Thus,

x6 1 x5 1 x2 1 x 5 (x3 1 x2) 1 (x2 1 x) 1 x2 1 x 5 x3 1 x2.

Another way to simplify the multiplication process is to make use of
the fact that the nonzero elements of GF(16) form a cyclic group of
order 15. To take advantage of this, we must first find a generator of this
group. Since any element F* must have a multiplicative order that di-
vides 15, all we need to do is find an element a in F* such that a3 2 1
and a5 2 1. Obviously, x has these properties. So, we may think of
GF(16) as the set {0, 1, x, x2, . . . , x14}, where x15 5 1. This makes mul-
tiplication in F trivial, but, unfortunately, it makes addition more diffi-
cult. For example, x10 ? x7 5 x17 5 x2, but what is x10 1 x7? So, we face
a dilemma. If we write the elements of F* in the additive form ax3 1
bx2 1 cx 1 d, then addition is easy and multiplication is hard. On the
other hand, if we write the elements of F* in the multiplicative form xi,
then multiplication is easy and addition is hard. Can we have the best of
both? Yes, we can. All we need to do is use the relation x4 5 x 1 1 to
make a two-way conversion table, as in Table 22.1.

So, we see from Table 22.1 that

x10 1 x7 5 (x2 1 x 1 1)  1 (x3 1 x 1 1)
5 x3 1 x2 5 x6

and

(x3 1 x2 1 1)(x3 1 x2 1 x 1 1) 5 x13 ? x12

5 x25 5 x10 5 x2 1 x 1 1.

Don’t be misled by the preceding example into believing that the
element x is always a generator for the cyclic multiplicative group 
of nonzero elements. It is not. (See Exercise 17.) Although any two
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Table 22.1 Conversion Table for Addition and Multiplication in GF(16)

Multiplicative Additive Form to
Form to Multiplicative

Additive Form Form

1 1 1 1
x x x x
x2 x2 x 1 1 x4

x3 x3 x2 x2

x4 x 1 1 x2 1 x x5

x5 x2 1 x x2 1 1 x8

x6 x3 1 x2 x2 1 x 1 1 x10

x7 x3 1 x 1 1 x3 x3

x8 x2 1 1 x3 1 x2 x6

x9 x3 1 x x3 1 x x9

x10 x2 1 x 1 1 x3 1 1 x14

x11 x3 1 x2 1 x x3 1 x2 1 x x11

x12 x3 1 x2 1 x 1 1 x3 1 x2 1 1 x13

x13 x3 1 x2 1 1 x3 1 x 1 1 x7

x14 x3 1 1 x3 1 x2 1 x 1 1 x12

irreducible polynomials of the same degree over Zp[x] yield isomorphic
fields, some are better than others for computational purposes.

EXAMPLE 2 Consider f(x) 5 x3 1 x2 1 1 over Z2. We will show how
to write f(x) as the product of linear factors. Let F 5 Z2[x]/� f(x)� and let a
be a zero of f(x) in F. Then |F| 5 8 and |F*| 5 7. So, by  Corollary 2 to
Theorem 7.1, we know that |a| 5 7. Thus, by Theorem 20.3,

F 5 {0, 1, a, a2, a3, a4, a5, a6}
5 {0, 1, a, a 1 1, a2, a2 1 a 1 1, a2 1 1, a2 1 a}.

We know that a is one zero of f(x), and we can test the other elements
of F to see if they are zeros. We can simplify the calculations by using
the fact that a3 1 a2 1 1 5 0 to make a conversion table for the two
forms of writing the elements of F. Because char F 5 2, we know that
a3 5 a2 1 1. Then,

a4 5 a3 1 a 5 (a2 1 1) 1 a 5 a2 1 a 1 1,
a5 5 a3 1 a2 1 a 5 (a2 1 1) 1 a2 1 a 5 a 1 1,
a6 5 a2 1 a,
a7 5 1.

Now let’s see whether a2 is a zero of f(x).

f (a2) 5 (a2)3 1 (a2)2 1 1 5 a6 1 a4 1 1
5 (a2 1 a) 1 (a2 1 a 1 1) 1 1 5 0.

386 Fields
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So, yes, it is. Next we try a3.

f (a3) 5 (a3)3 1 (a3)2 1 1 5 a9 1 a6 1 1
5 a2 1 (a2 1 a) 1 1 5 a 1 1 2 0.

Now a4.

f (a4) 5 (a4)3 1 (a4)2 1 1 5 a12 1 a8 1 1 
5 a5 1 a 1 1 5 (a 1 1) 1 a 1 1 5 0.

So, a4 is our remaining zero. Thus, f (x) 5 (x 2 a)(x 2 a2)(x 2 a4) 5
(x 1 a)(x 1 a2)(x 1 a4), since char F 5 2.

Subfields of a Finite Field
Theorem 22.1 gives us a complete description of all finite fields. The
following theorem gives us a complete description of all the subfields
of a finite field. Notice the close analogy between this theorem and
Theorem 4.3, which describes all the subgroups of a finite cyclic group.

Theorem 22.3 Subfields of a Finite Field

PROOF To show the existence portion of the theorem, suppose that
m divides n. Then, since

pn 2 1 5 ( pm 2 1)( pn2m 1 pn22m 1 ? ? ? 1 pm 1 1),

we see that pm 2 1 divides pn 2 1. For simplicity, write pn 2 1 5
(pm 2 1)t. Let K 5 {x [ GF(pn)|xpm

5 x}. We leave it as an easy exer-
cise for the reader to show that K is a subfield of GF(pn). (Exercise 23).
Since the polynomial xpm

2 x has at most pm zeros in GF(pn), we have
|K| # pm. Let �a� 5 GF(pn)*. Then |at| 5 pm 2 1 and since (at) 5 1,
it follows that at [ K. So, K is a subfield of GF(pn) of order pm. 

The uniqueness portion of the theorem follows from the observation
that if GF(pn) had two distinct subfields of order pm, then the polyno-
mial x pm

2 x would have more than pm zeros in GF(pn). This contra-
dicts Corollary 3 of Theorem 16.2.

pm21

For each divisor m of n, GF( pn) has a unique subfield of order pm.
Moreover, these are the only subfields of GF( pn).
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Finally, suppose that F is a subfield of GF( pn). Then F is isomorphic
to GF( pm) for some m and, by Theorem 21.5,

n 5 [GF( pn):GF( p)]
5 [GF( pn):GF( pm)][GF( pm):GF( p)]
5 [GF( pn):GF( pm)]m.

Thus, m divides n.

Theorems 22.2 and 22.3, together with Theorem 4.3, make the task
of finding the subfields of a finite field a simple exercise in arithmetic.

EXAMPLE 3 Let F be the field of order 16 given in Example 1. Then
there are exactly three subfields of F, and their orders are 2, 4, and 16.
Obviously, the subfield of order 2 is {0, 1} and the subfield of order 16
is F itself. To find the subfield of order 4, we merely observe that the
three nonzero elements of this subfield must be the cyclic subgroup of
F* 5 �x� of order 3. So the subfield of order 4 is

{0, 1, x5, x10} 5 {0, 1, x2 1 x, x2 1 x 1 1}.

EXAMPLE 4 If F is a field of order 36 5 729 and a is a generator of
F*, then the subfields of F are
1. GF(3) 5 {0} < �a364� 5 {0, 1, 2}
2. GF(9) 5 {0} < �a91�
3. GF(27) 5 {0} < �a28�
4. GF(729) 5 {0} < �a�.

EXAMPLE 5 The subfield lattice of GF(224) is

GF(28)

GF(24)

GF(22)

GF(23)

GF(26)

GF(212)

GF(224)

GF(2)
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Exercises

No pressure, no diamonds.
MARY CASE

1. Find [GF(729):GF(9)] and [GF(64):GF(8)].
2. If m divides n, show that [GF(pn):GF( pm)] 5 n/m.
3. Draw the lattice of subfields of GF(64).
4. Let be a zero of in some extension of . Find the

multiplicative inverse of in .
5. Let be a zero of in some extension of .

Find the other zero of in .
6. Let be a zero of in some extension of .

Find the other zeros of in .
7. Let K be a finite extension field of a finite field F. Show that there

is an element a in K such that K 5 F(a).
8. How many elements of the cyclic group GF(81)* are generators?
9. Let f (x) be a cubic irreducible over Z2. Prove that the splitting field

of f (x) over Z2 has order 8.
10. Prove that the rings Z3[x]/�x2 1 x 1 2� and Z3[x]/�x2 1 2x 1 2� are 

isomorphic.
11. Show that the Frobenius mapping f:GF( pn) S GF( pn), given by 

a S ap, is a ring automorphism of order n (that is, n is the smallest
positive integer such that fn is the identity mapping). (This exer-
cise is referred to in Chapter 32.)

12. Determine the possible finite fields whose largest proper subfield is
GF(25).

13. Prove that the degree of any irreducible factor of x 8 2 x over Z2 is
1 or 3.

14. Find the smallest field that has exactly 6 subfields.
15. Show that x is a generator of the cyclic group (Z3[x]/�x3 1 2x 1 1�)*.
16. Suppose that is a fifth-degree polynomial that is irreducible

over . Prove that x is a generator of the cyclic group 
*.

17. Show that x is not a generator of the cyclic group (Z3[x]/�x3 1
2x 1 2�)*. Find one such generator.

18. If f (x) is a cubic irreducible polynomial over Z3, prove that either x
or 2x is a generator for the cyclic group (Z3[x]/� f (x)�)*.

19. Prove the uniqueness portion of Theorem 22.3 using a group-
theoretic argument.

�f(x) �)
(Z23x4>Z2

f(x)

Z23a4f(x)
Z2f(x) 5 x3 1 x 1 1a

Z23a4f(x)
Z3f(x) 5 x2 1 2x 1 1a

Z23a4a 1 1
Z2x3 1 x2 1 1a
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20. Suppose that a and b belong to GF(81)*, with |a| 5 5 and |b| 5
16. Show that ab is a generator of GF(81)*.

21. Construct a field of order 9 and carry out the analysis as in Exam-
ple 1, including the conversion table.

22. Show that any finite subgroup of the multiplicative group of a field
is cyclic.

23. Show that the set K in the proof of Theorem 22.3 is a subfield.
24. If g(x) is irreducible over GF( p) and g(x) divides x pn

2 x, prove
that deg g(x) divides n.

25. Use a purely group-theoretic argument to show that if F is a field
of order pn, then every element of F* is a zero of x pn

2 x. (This ex-
ercise is referred to in the proof of Theorem 22.1.)

26. Draw the subfield lattices of GF(318) and of GF(230).
27. How does the subfield lattice of GF(230) compare with the subfield

lattice of GF(330)?
28. If p(x) is a polynomial in Zp[x] with no multiple zeros, show that

p(x) divides xpn 2 x for some n.
29. Suppose that p is a prime and p 2 2. Let a be a nonsquare in

GF( p)—that is, a does not have the form b2 for any b in GF( p).
Show that a is a nonsquare in GF( pn) if n is odd and that a is a
square in GF(pn) if n is even.

30. Let f (x) be a cubic irreducible over Zp, where p is a prime. Prove
that the splitting field of f(x) over Zp has order p3 or p6.

31. Show that every element of GF( pn) can be written in the form ap

for some unique a in GF(pn).
32. Suppose that F is a field of order 1024 and F* 5 �a�. List the ele-

ments of each subfield of F.
33. Suppose that F is a field of order 125 and F* 5 �a�. Show that 

a62 5 21.
34. Show that no finite field is algebraically closed.
35. Let E be the splitting field of f (x) 5 x pn

2 x over Zp. Show that the
set of zeros of f (x) in E is closed under addition, subtraction, mul-
tiplication, and division (by nonzero elements). (This exercise is
referred to in the proof of Theorem 22.1.)

36. Suppose that L and K are subfields of GF(pn). If L has ps elements
and K has pt elements, how many elements does L > K have?

37. Give an example to show that the mapping a S ap need not be an
automorphism for arbitrary fields of prime characteristic p.

38. In the field , show that for every positive divisor d of n,
has an irreducible factor over of degree d.GF(p)xpn

2 x
GF(pn)
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Computer Exercises

Hardware: the parts of a computer that can be kicked.
JEFF PESIS

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software tests cubic polynomials over Zp for irreducibility. When
a polynomial f(x) is irreducible, the software finds a generator for the
cyclic group of nonzero elements of the field Zp[x]/� f(x)� and creates
a conversion table for addition and multiplication similar to Table
22.1. Run the program for and . Use the table to
write as a power of x. Use the
table to write in additive form.

2. This software tests fourth-degree polynomials over for 
or 3 for irreducibility. When a polynomial is irreducible, the
software finds a generator for the cyclic group of nonzero ele-
ments of the field � f(x)� and creates a conversion table
for addition and multiplication similar to Table 22.1 in the text.
Run the program for and . Use the table to write

as a power of x. Use the table to
write in additive form.

Suggested Reading

Judy L. Smith and J. A. Gallian, “Factoring Finite Factor Rings,”
Mathematics Magazine 58 (1985): 93–95.

This paper gives an algorithm for finding the group of units of the ring
F[x]/�g(x)m�.

x23
(x2 1 x) (x2 1 x 1 1) (x3 1 1)

x4 1 x 1 1p 5 2

Zp3x4>
f(x)

p 5 2Zp

x12
(x2 1 x) (x2 1 x 1 1) (x2 1 1)

x3 1 x 1 1p 5 2
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L .E. Dickson

One of the books [written by L. E. Dickson]
is his major, three-volume History of the

Theory of Numbers which would be a life’s
work by itself for a more ordinary man.

A. A. ALBERT, 
Bulletin of American 

Mathematical Society

LEONARD EUGENE DICKSON was born in
Independence, Iowa, on January 22, 1874.
In 1896, he received the first Ph.D. to be
awarded in mathematics at the University of
Chicago. After spending a few years at the
University of California and the University
of Texas, he was appointed to the faculty at
Chicago and remained there until his retire-
ment in 1939.

Dickson was one of the most prolific
mathematicians of the 20th century, writing
267 research papers and 18 books. His prin-
cipal interests were matrix groups, finite
fields, algebra, and number theory.

Dickson had a disdainful attitude toward
applicable mathematics; he would often say,
“Thank God that number theory is unsullied
by any applications.” He also had a sense of

humor. Dickson would often mention his
honeymoon: “It was a great success,” he
said, “except that I only got two research
papers written.”

Dickson received many honors in his
career. He was the first to be awarded the
prize from the American Association for the
Advancement of Science for the most notable
contribution to the advancement of science,
and the first to receive the Cole Prize in alge-
bra from the American Mathematical Society.
The University of Chicago has research in-
structorships named after him. Dickson died
on January 17, 1954.

For more information about Dickson, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Geometric
Constructions

At the age of eleven, I began Euclid. . . . This was one of the great events 
of my life, as dazzling as first love.

BERTRAND RUSSELL

393

Historical Discussion
of Geometric Constructions

The ancient Greeks were fond of geometric constructions. They were
especially interested in constructions that could be achieved using only a
straightedge without markings and a compass. They knew, for example,
that any angle can be bisected, and they knew how to construct an equi-
lateral triangle, a square, a regular pentagon, and a regular hexagon. But
they did not know how to trisect every angle or how to construct a regu-
lar seven-sided polygon (heptagon). Another problem that they at-
tempted was the duplication of the cube—that is, given any cube, they
tried to construct a new cube having twice the volume of the given one
using only an unmarked straightedge and a compass. Legend has it that
the ancient Athenians were told by the oracle at Delos that a plague
would end if they constructed a new altar to Apollo in the shape of a cube
with double the volume of the old altar, which was also a cube. Besides
“doubling the cube,” the Greeks also attempted to “square the circle”—to
construct a square with area equal to that of a given circle. They knew
how to solve all these problems using other means, such as a compass
and a straightedge with two marks, or an unmarked straightedge and a
spiral, but they could not achieve any of the constructions with a compass
and an unmarked straightedge alone. These problems vexed mathemati-
cians for over 2000 years. The resolution of these perplexities was made
possible when they were transferred from questions of geometry to ques-
tions of algebra in the 19th century.

The first of the famous problems of antiquity to be solved was that of
the construction of regular polygons. It had been known since Euclid that
regular polygons with a number of sides of the form 2k, 2k ? 3, 2k ? 5, and
2k ? 3 ? 5 could be constructed, and it was believed that no others were

23
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possible. In 1796, while still a teenager, Gauss proved that the 
17-sided regular polygon is constructible. In 1801, Gauss asserted that a
regular polygon of n sides is constructible if and only if n has the form
2kp1p2 ? ? ? pi, where the p’s are distinct primes of the form 22s

1 1. We
provide a proof of this statement in Theorem 33.5.

Thus, regular polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, and 20
sides are possible to construct, whereas those with 7, 9, 11, 13, 14,
18, and 19 sides are not. How these constructions can be effected is an-
other matter. One person spent 10 years trying to determine a way to
construct the 65,537-sided polygon.

Gauss’s result on the constructibility of regular n-gons eliminated
another of the famous unsolved problems because the ability to trisect
a 60° angle enables one to construct a regular 9-gon. Thus, there is no
method for trisecting a 60° angle with an unmarked straightedge and a
compass. In 1837, Wantzel proved that it was not possible to double
the cube. The problem of the squaring of a circle resisted all attempts
until 1882, when Ferdinand Lindemann proved that p is transcenden-
tal since, as we will show, all constructible numbers are algebraic.

Constructible Numbers
With the field theory we now have, it is an easy matter to solve the following
problem: Given an unmarked straightedge, a compass, and a unit length, what
other lengths can be constructed? To begin, we call a real number a con-
structible if, by means of an unmarked straightedge, a compass, and a line
segment of length 1, we can construct a line segment of length |a| in a finite
number of steps. It follows from plane geometry that if a and b (b 2 0) are
constructible numbers, then so are a 1 b, a 2 b, a ? b, and a/b. (See the
exercises for hints.) Thus, the set of constructible numbers contains Q and is a
subfield of the real numbers. What we desire is an algebraic characterization
of this field. To derive such a characterization, let F be any subfield of the
reals. Call the subset {(x, y)[ R2| x, y [ F} of the real plane the plane of F,
call any line joining two points in the plane of F a line in F, and call any circle
whose center is in the plane of F and whose radius is in F a circle in F. Then a
line in F has an equation of the form

ax 1 by 1 c 5 0, where a, b, c [ F,

and a circle in F has an equation of the form

x2 1 y2 1 ax 1 by 1 c 5 0, where a, b, c [ F.

In particular, note that to find the point of intersection of a pair of lines
in F or the points of intersection of a line in F and a circle in F, one
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need only solve a linear or quadratic equation in F. We now come to
the crucial question. Starting with points in the plane of some field F,
which points in the real plane can be obtained with an unmarked
straightedge and a compass? Well, there are only three ways to con-
struct points, starting with points in the plane of F.

1. Intersect two lines in F.
2. Intersect a circle in F and a line in F.
3. Intersect two circles in F.

In case 1, we do not obtain any new points, because two lines in F in-
tersect in a point in the plane of F. In case 2, the point of intersection is
the solution to either a linear equation in F or a quadratic equation in
F. So, the point lies in the plane of F or in the plane of F( ), where 
a [ F and a is positive. In case 3, no new points are obtained, because,
if the two circles are given by x2 1 y2 1 ax 1 by 1 c 5 0 and 
x2 1 y2 1 a9x 1 b9y 1 c9 5 0, then we have (a 2 a9)x 1 (b 2 b9)y 1 
(c 2 c9) 5 0, which is a line in F. So, the points of intersection are in F.

It follows, then, that the only points in the real plane that can be
constructed from the plane of a field F are those whose coordinates
lie in fields of the form F( ), where a [ F and a is positive. Of
course, we can start over with F1 5 F( ) and construct points
whose coordinates lie in fields of the form F2 5 F1( ), where b [
F1 and b is positive. Continuing in this fashion, we see that a real
number c is constructible if and only if there is a series of fields Q 5
F1 # F2 # ? ? ? # Fn # R such that Fi11 5 Fi ( i), where ai [ Fi
and c [ Fn. Since [Fi11:Fi] 5 1 or 2, we see by Theorem 21.5 that if
c is constructible, then [Q(c):Q] 5 2k for some nonnegative integer k.

We now dispatch the problems that plagued the Greeks. Consider dou-
bling the cube of volume 1. The enlarged cube would have an edge of
length . But [Q( ):Q] 5 3, so such a cube cannot be constructed. 

Next consider the possibility of trisecting a 60° angle. If it were pos-
sible to trisect an angle of 60°, then cos 20° would be constructible. (See
Figure 23.1.) In particular, [Q(cos 20°):Q] 5 2k for some k. Now, using
the trigonometric identity cos 3u 5 4 cos3 u 2 3 cos u, with u 5 20°, we

"3 2"3 2

"a

"b
"a

"a

"a

Figure 23.1

(0, 0) (1, 0)

(cos 20°, sin 20°)
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see that 1/2 5 4 cos3 20° 2 3 cos 20°, so that cos 20° is a zero of 
8x3 2 6x 2 1. But, since 8x3 2 6x 2 1 is irreducible over Q (see
Exercise 13), we must also have [Q(cos 20°):Q] 5 3. This contradiction
shows that trisecting a 60° angle is impossible.

The remaining problems are relegated to the reader as Exercises 14,
15, and 17.

Angle-Trisectors and Circle-Squarers
Down through the centuries, hundreds of people have claimed to have
achieved one or more of the impossible constructions. In 1775, the Paris
Academy, so overwhelmed with these claims, passed a resolution to no
longer examine these claims or claims of machines purported to exhibit
perpetual motion. Although it has been more than 100 years since the last
of the constructions was shown to be impossible, there continues to be a
steady parade of people who claim to have done one or more of them.
Most of these people have heard that this is impossible but have refused
to believe it. One person insisted that he could trisect any angle with a
straightedge alone [2, p. 158]. Another found his trisection in 1973 after
12,000 hours of work [2, p. 80]. One got his from God [2, p. 73]. In
1971, a person with a Ph.D. in mathematics asserted that he had a valid
trisection method [2, p. 127]. Many people have claimed the hat trick:
trisecting the angle, doubling the cube, and squaring the circle. Two men
who did this in 1961 succeeded in having their accomplishment noted in
the Congressional Record [2, p. 110]. Occasionally, newspapers and
magazines have run stories about “doing the impossible,” often giving
the impression that the construction may be valid. Many angle-trisectors
and circle-squarers have had their work published at their own expense
and distributed to colleges and universities. One had his printed in four
languages! There are two delightful books written by mathematicians
about their encounters with these people. The books are full of wit,
charm, and humor ([1] and [2]).

Exercises

Only prove to me that it is impossible, and I will set about it this very
evening.

Spoken by a member of the audience after De Morgan gave a

lecture on the impossibility of squaring the circle.

1. If a and b are constructible numbers and a $ b . 0, give a geomet-
ric proof that a 1 b and a 2 b are constructible.
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2. If a and b are constructible, give a geometric proof that ab is con-
structible. (Hint: Consider the following figure. Notice that all seg-
ments in the figure can be made with an unmarked straightedge and a
compass.)

3. Prove that if c is a constructible number, then so is . (Hint:
Consider the following semicircle with diameter 1 1 |c|.) (This ex-
ercise is referred to in Chapter 33.)

4. If a and b (b 2 0) are constructible numbers, give a geometric proof
that a/b is constructible. (Hint: Consider the following figure.)

5. Prove that sin u is constructible if and only if cos u is constructible.
6. Prove that an angle u is constructible if and only if sin u is con-

structible.
7. Prove that cos 2u is constructible if and only if cos u is con-

structible.
8. Prove that 30° is a constructible angle.
9. Prove that a 45° angle can be trisected with an unmarked straight-

edge and a compass.
10. Prove that a 40° angle is not constructible.
11. Show that the point of intersection of two lines in the plane of a

field F lies in the plane of F.

a

b

0
1

α

α

d

⏐c⏐1

"|c |

b

a

1
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12. Show that the points of intersection of a circle in the plane of a field
F and a line in the plane of F are points in the plane of F or in the
plane of F( ), where a [ F and a is positive. Give an example
of a circle and a line in the plane of Q whose points of intersection
are not in the plane of Q.

13. Prove that 8x3 2 6x 2 1 is irreducible over Q.
14. Use the fact that 8 cos3(2p/7) 1 4 cos2(2p/7) 2 4 cos(2p/7) 2 1 5 0

to prove that a regular seven-sided polygon is not constructible with
an unmarked straightedge and a compass.

15. Show that a regular 9-gon cannot be constructed with an unmarked
straightedge and a compass.

16. Show that if a regular n-gon is constructible, then so is a regular
2n-gon.

17. (Squaring the Circle) Show that it is impossible to construct, with
an unmarked straightedge and a compass, a square whose area
equals that of a circle of radius 1. You may use the fact that p is
transcendental over Q.

18. Use the fact that 4 cos2(2p/5) 1 2 cos(2p/5) 2 1 5 0 to prove that
a regular pentagon is constructible.

19. Can the cube be “tripled”?
20. Can the cube be “quadrupled”?
21. Can the circle be “cubed”?
22. If a, b, and c are constructible, show that the real roots of ax2 1

bx 1 c are constructible.

References
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Suggested Website

http://en.wikipedia.org/wiki/Squaring_the_circle

This website provides an excellent account of efforts to square the
circle, and links for articles about trisecting the angle and doubling
the cube.
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Supplementary Exercises for Chapters 19–23

Difficulties strengthen the mind, as labor does the body.
SENECA

True/false questions for Chapters 19–23 are available on the Web at

http://www.d.umn.edu/~jgallian/TF

1. Show that x50 2 1 has no multiple zeros in any extension of Z3.
2. Suppose that p(x) is a quadratic polynomial with rational coeffi-

cients and is irreducible over Q. Show that p(x) has two zeros in
Q[x]/�p(x)�.

3. Let F be a finite field of order q and let a be a nonzero element in
F. If n divides q 2 1, prove that the equation xn 5 a has either no
solutions in F or n distinct solutions in F.

4. Without using the Primitive Element Theorem, prove that if [K:F ]
is prime, then K has a primitive element.

5. Let a be a zero of x2 1 x 1 1. Express (5a2 1 2)/a in the form c 1
ba, where c and b are rational.

6. Describe the elements of the extension Q( ) over the field Q( ).
7. If [F(a):F] 5 5, find [F(a3):F]. Does your argument apply equally

well if a3 is replaced with a2 and a4?
8. If p(x) [ F[x] and deg p(x) 5 n, show that the splitting field for

p(x) over F has degree at most n!.
9. Let a be a nonzero algebraic element over F of degree n. Show that

a21 is also algebraic over F of degree n.
10. Prove that p2 2 1 is algebraic over Q(p3).
11. If ab is algebraic over F and b 2 0, prove that a is algebraic over F(b).
12. Let E be an algebraic extension of a field F. If R is a ring and E $

R $ F, show that R must be a field.
13. If a is transcendental over F, show that every element of F(a) that

is not in F is transcendental over F.
14. What is the order of the splitting field of x5 1 x4 1 1 5 (x2 1 x 1 1) ?

(x3 1 x 1 1) over Z2?
15. Show that a finite extension of a finite field is a simple extension.
16. Let R be an integral domain that contains a field F as a subring. If

R is finite-dimensional when viewed as a vector space over F,
prove that R is a field.

"2"4 2
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17. Show that it is impossible to find a basis for the vector space of 
n 3 n (n . 1) matrices such that each pair of elements in the basis
commutes under multiplication.

18. Let Pn 5 {anx
n 1 an21x

n21 1 ? ? ? 1 a1x 1 a0 | each ai is a real
number}. Is it possible to have a basis for Pn such that every ele-
ment of the basis has x as a factor?

19. Find a basis for the vector space { f [ P3|f (0) 5 0}. (See Exercise 18
for notation.)

20. Given that f is a polynomial of degree n in Pn, show that { f, f 9,
f 0, . . . , f (n)} is a basis for Pn. ( f (k) denotes the kth derivative of f.)

21. Suppose that K is a field extension of a field F of characteristic 
p 2 0. Let L 5 {a [ K |apn

[ F for some nonnegative integer n}.
Prove that L is a subfield of K that contains F.

22. In which fields does xn 2 x have a multiple zero?
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Sylow Theorems

Generally these three results are implied by the expression “Sylow’s
Theorem.” All of them are of fundamental importance. In fact, if the
theorems of group theory were arranged in order of their importance
Sylow’s Theorem might reasonably occupy the second place—coming next
to Lagrange’s Theorem in such an arrangement.

G. A. MILLER, Theory and Application 

of Finite Groups

403

24

Conjugacy Classes
In this chapter, we derive several important arithmetic relationships
between a group and certain of its subgroups. Recall from Chapter 7
that Lagrange’s Theorem was proved by showing that cosets of a sub-
group partition the group. Another fruitful method of partitioning the
elements of a group is by way of conjugacy classes.

Definition Conjugacy Class of a

Let a and b be elements of a group G. We say that a and b are
conjugate in G (and call b a conjugate of a) if xax21 5 b for some x
in G. The conjugacy class of a is the set cl(a) 5 {xax21 | x [ G}.

We leave it to the reader (Exercise 1) to prove that conjugacy is an
equivalence relation on G, and that the conjugacy class of a is the equiv-
alence class of a under conjugacy. Thus, we may partition any group into
disjoint conjugacy classes. Let’s look at one example. In D4 we have

cl(H) 5 {R0HR0
21, R90HR90

21, R180HR180
21, R270HR270

21,
HHH21, VHV21, DHD21, D9HD921} 5 {H, V}.

Similarly, one may verify that

cl(R0) 5 {R0},
cl(R90) 5 {R90, R270} 5 cl(R270),

cl(R180) 5 {R180},
cl(V) 5 {V, H} 5 cl(H),
cl(D) 5 {D, D9} 5 cl(D9).
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Theorem 24.1 gives an arithmetic relationship between the size of
the conjugacy class of a and the size of C(a), the centralizer of a.

Theorem 24.1 The Number of Conjugates of a

PROOF Consider the function T that sends the coset xC(a) to the
conjugate xax21 of a. A routine calculation shows that T is well de-
fined, is one-to-one, and maps the set of left cosets onto the conjugacy
class of a. Thus, the number of conjugates of a is the index of the cen-
tralizer of a.

Corollary 1 |cl(a)| Divides |G|

The Class Equation
Since the conjugacy classes partition a group, the following important
counting principle is a corollary to Theorem 24.1.

Corollary 2 The Class Equation

In finite group theory, counting principles such as this corollary are
powerful tools.† Theorem 24.2 is the single most important fact about
finite groups of prime-power order (a group of order pn, where p is a
prime, is called a p-group).

For any finite group G,

|G| 5 S |G:C(a)|,

where the sum runs over one element a from each conjugacy class of G.

In a finite group, |cl(a)| divides |G|.

Let G be a finite group and let a be an element of G. Then, 
|cl(a)| 5 |G:C(a)|.

404 Special Topics

†“Never underestimate a theorem that counts something.” John Fraleigh, A First
Course in Abstract Algebra.
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Theorem 24.2 p-Groups Have Nontrivial Centers

PROOF First observe that cl(a) 5 {a} if and only if a [ Z(G) (see
Exercise 4). Thus, by culling out these elements, we may write the
class equation in the form

|G| 5 |Z(G)| 1 S|G:C(a)|,

where the sum runs over representatives of all conjugacy classes with
more than one element (this set may be empty). But |G:C(a)| 5
|G|/|C(a)|, so each term in S|G:C(a)| has the form pk with k $ 1. Hence,

|G| 2 S|G:C(a)| 5 |Z(G)|,

where each term on the left is divisible by p. It follows, then, that p also
divides |Z(G)|, and hence |Z(G)| 2 1.

Corollary Groups of Order p2 Are Abelian

PROOF By Theorem 24.2 and Lagrange’s Theorem, |Z(G)| 5 p or p2.
If |Z(G)| 5 p2, then G 5 Z(G) and G is Abelian. If |Z(G)| 5 p, then
|G/Z(G)| 5 p, so that G/Z(G) is cyclic. But, then, by Theorem 9.3, G is
Abelian.

The Probability That Two 
Elements Commute

Before proceeding to the main goal of this chapter, we pause for an in-
teresting application of Theorem 24.1 and the class equation. (Our dis-
cussion is based on [1] and [2].) Suppose we select two elements 
at random (with replacement) from a finite group. What is the proba-
bility that these two elements commute? Well, suppose that G is a fi-
nite group of order n. Then the probability Pr(G) that two elements
selected at random from G commute is |K|/n2, where K 5 {(x, y) [
G % G | xy 5 yx}. Now notice that for each x [ G we have (x, y) [ K
if and only if y [ C(x). Thus,

0K 0 5 a
x[G

 0  C(x) 0 .

If |G| 5 p2, where p is prime, then G is Abelian.

Let G be a nontrivial finite group whose order is a power of a prime p.
Then Z(G) has more than one element.

24 | Sylow Theorems 405
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Also, it follows from Theorem 24.1 that if x and y are in the same 
conjugacy class, then |C(x)| 5 |C(y)| (see Exercise 53). If, for exam-
ple, cl(a) 5 {a1, a2, . . . , at}, then

|C(a1)| 1 |C(a2)| 1 ? ? ? 1 |C(at)| 5 t|C(a)|
5 |G:C(a)| |C(a)| 5 |G| 5 n.

So, by choosing one representative from each conjugacy class, say, x1,
x2, . . . , xm, we have

Thus, the answer to our question is mn/n2 5 m/n, where m is the num-
ber of conjugacy classes in G and n is the number of elements of G.

Obviously, when G is non-Abelian, Pr(G) is less than 1. But how much
less than 1? Clearly, the more conjugacy classes there are, the larger Pr(G)
is. Consequently, Pr(G) is large when the sizes of the conjugacy classes
are small. Noting that |cl(a)| 5 1 if and only if a [ Z(G), we obtain the
maximum number of conjugacy classes when |Z(G)| is as large as possi-
ble and all other conjugacy classes have exactly two elements in each.
Since G is non-Abelian, it follows from Theorem 9.3 that |G/Z(G)| $ 4
and, therefore, |Z(G)| # |G|/4. Thus, in the extreme case, we would have
|Z(G)| 5 |G|/4, and the remaining (3/4)|G| elements would be distributed
in conjugacy classes with two elements each. So, in a non-Abelian group,
the number of conjugacy classes is no more than |G|/4 1 (1/2)(3/4)|G|,
and Pr(G) is less than or equal to 5/8. The dihedral group D4 is an exam-
ple of a group that has probability equal to 5/8.

The Sylow Theorems
Now to the Sylow theorems. Recall that the converse of Lagrange’s
Theorem is false; that is, if G is a group of order m and n divides m,
G need not have a subgroup of order n. Our next theorem is a partial
converse of Lagrange’s Theorem. It, as well as Theorem 24.2, was first
proved by the Norwegian mathematician Ludwig Sylow (1832–1918).
Sylow’s Theorem and Lagrange’s Theorem are the two most important
results in finite group theory. The first gives a sufficient condition for
the existence of subgroups, and the second gives a necessary condition.

Theorem 24.3 Existence of Subgroups of Prime-Power Order 
(Sylow’s First Theorem, 1872)

Let G be a finite group and let p be a prime. If pk divides |G|, then G
has at least one subgroup of order pk.

0K 0 5 a
xPG

 0  C(x) 0 5 a
m

i51
0  G:C(xi) 0 0C(xi) 0 5 m # n.

406 Special Topics
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PROOF We proceed by induction on |G|. If |G| 5 1, Theorem 24.3 is
trivially true. Now assume that the statement is true for all groups of
order less than |G|. If G has a proper subgroup H such that pk divides
|H|, then, by our inductive assumption, H has a subgroup of order pk

and we are done. Thus, we may henceforth assume that pk does not
divide the order of any proper subgroup of G. Next, consider the class
equation for G in the form

|G| 5 |Z(G)| 1 S|G:C(a)|,

where we sum over a representative of each conjugacy class cl(a), where
a o Z(G). Since pk divides |G| 5 |G:C(a)| |C(a)| and pk does not divide
|C(a)|, we know that p must divide |G:C(a)| for all a o Z(G). It then fol-
lows from the class equation that p divides |Z(G)|. The Fundamental
Theorem of Finite Abelian Groups (Theorem 11.1), or Theorem 9.5, then
guarantees that Z(G) contains an element of order p, say x. Since x is in
the center of G, �x� is a normal subgroup of G, and we may form the fac-
tor group G/�x�. Now observe that pk21 divides |G/�x�|. Thus, by the
induction hypothesis, G/�x� has a subgroup of order pk21 and, by Exer-
cise 49 in Chapter 10, this subgroup has the form H/�x�, where H is a
subgroup of G. Finally, note that |H/�x�| 5 pk21 and |�x�| 5 p imply that
|H| 5 pk, and this completes the proof.

Let’s be sure we understand exactly what Sylow’s First Theorem
means. Say we have a group G of order 23 ? 32 ? 54 ? 7. Then Sylow’s
First Theorem says that G must have at least one subgroup of each
of the following orders: 2, 4, 8, 3, 9, 5, 25, 125, 625, and 7. On the
other hand, Sylow’s First Theorem tells us nothing about the possible
existence of subgroups of order 6, 10, 15, 30, or any other divisor of
|G| that has two or more distinct prime factors. Because certain sub-
groups guaranteed by Sylow’s First Theorem play a central role in the
theory of finite groups, they are given a special name.

Definition Sylow p-Subgroup

Let G be a finite group and let p be a prime divisor of |G|. If pk divides
|G| and pk11 does not divide |G|, then any subgroup of G of order pk

is called a Sylow p-subgroup of G.

So, returning to our group G of order 23 ? 32 ? 54 ? 7, we call any sub-
group of order 8 a Sylow 2-subgroup of G, any subgroup of or-
der 625 a Sylow 5-subgroup of G, and so on. Notice that a Sylow 
p-subgroup of G is a subgroup whose order is the largest power of
p consistent with Lagrange’s Theorem.

24 | Sylow Theorems 407
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Since any subgroup of order p is cyclic, we have the following gen-
eralization of Theorem 9.5, first proved by Cauchy in 1845. His proof
ran nine pages!

Corollary Cauchy’s Theorem

Sylow’s First Theorem is so fundamental to finite group theory that
many different proofs of it have been published over the years [our proof
is essentially the one given by Georg Frobenius (1849–1917) in 1895].
Likewise, there are scores of generalizations of Sylow’s Theorem.

Observe that the corollary to the Fundamental Theorem of Finite
Abelian Groups and Sylow’s First Theorem show that the converse of
Lagrange’s Theorem is true for all finite Abelian groups and all finite
groups of prime-power order.

There are two more Sylow theorems that are extremely valuable
tools in finite group theory. But first we introduce a new term.

Definition Conjugate Subgroups

Let H and K be subgroups of a group G. We say that H and K are
conjugate in G if there is an element g in G such that H 5 gKg21.

Recall from Chapter 7 that if G is a finite group of permutations on a
set S and i [ S, then orbG(i) 5 {f(i) | f [ G} and |orbG(i)| divides |G|.

Theorem 24.4 Sylow’s Second Theorem

PROOF Let K be a Sylow p-subgroup of G and let C 5 {K1, K2, . . . , Kn}
with K 5 K1 be the set of all conjugates of K in G. Since conjugation is an
automorphism, each element of C is a Sylow p-subgroup of G. Let SC
denote the group of all permutations of C. For each g [ G, define
fg:C S C by fg(Ki) 5 gKig

21. It is easy to show that each fg [ SC.
Now define a mapping T:G S SC by T(g) 5 fg. Since fgh(Ki) 5

(gh)Ki(gh)21 5 g(hKih
21)g21 5 gfh(Ki)g21 5 fg(fh(Ki)) 5

(fgfh)(Ki), we have fgh 5 fgfh, and therefore T is a homomorphism
from G to SC.

If H is a subgroup of a finite group G and |H| is a power of a prime p,
then H is contained in some Sylow p-subgroup of G.

Let G be a finite group and let p be a prime that divides the order
of G. Then G has an element of order p.

408 Special Topics
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Next consider T(H), the image of H under T. Since |H| is a power
of p, so is |T(H)| (see property 6 of Theorem 10.2). Thus, by the Orbit-
Stabilizer Theorem (Theorem 7.3), for each i, |orbT(H)(Ki)| divides
|T(H)|, so that |orbT(H)(Ki)| is a power of p. Now we ask: Under what
condition does |orbT(H)(Ki)| 5 1? Well, |orbT(H)(Ki)| 5 1 means that
fg(Ki) 5 gKig

21 5 Ki for all g [ H; that is, |orbT(H)(Ki)| 5 1 if and
only if H # N(Ki). But the only elements of N(Ki) that have orders that
are powers of p are those of Ki (see Exercise 9). Thus, |orbT(H)(Ki)| 5 1
if and only if H # Ki.

So, to complete the proof, all we need to do is show that for some i,
|orbT(H)(Ki)| 5 1. Analogous to Theorem 24.1, we have |C| 5 |G:N(K)|
(see Exercise 21). And since |G:K| 5 |G:N(K)||N(K):K| is not divisible
by p, neither is |C|. Because the orbits partition C, |C| is the sum of
powers of p. If no orbit has size 1, then p divides each summand and,
therefore, p divides |C|, which is a contradiction. Thus, there is an orbit
of size 1, and the proof is complete.

Theorem 24.5 Sylow’s Third Theorem

PROOF Let K be any Sylow p-subgroup of G and let C 5 {K1,
K2, . . . , Kn} with K 5 K1 be the set of all conjugates of K in G. We
first prove that n mod p 5 1.

Let SC and T be as in the proof of Theorem 24.4. This time 
we consider T(K), the image of K under T. As before, we have
|orbT(K)(Ki)| is a power of p for each i and |orbT(K)(Ki)| 5 1 if and only
if K # Ki. Thus, |orbT(K)(K1)| 5 1 and |orbT(K)(Ki)| is a power of p
greater than 1 for all i 2 1. Since the orbits partition C, it follows that,
modulo p, n 5 |C| 5 1.

Next we show that every Sylow p-subgroup of G belongs to C. To
do this, suppose that H is a Sylow p-subgroup of G that is not in C. Let
SC and T be as in the proof of Theorem 24.4, and this time consider
T(H). As in the previous paragraph, |C| is the sum of the orbits’ sizes
under the action of T(H). However, no orbit has size 1, since H is not
in C. Thus, |C| is a sum of terms each divisible by p, so that, modulo p,
n 5 |C| 5 0. This contradiction proves that H belongs to C, and that
n is the number of Sylow p-subgroups of G.

Finally, that n divides |G| follows directly from the fact that n 5
|G:N(K)| (see Exercise 21).

Let p be a prime and let G be a group of order pkm, where p does not
divide m. Then the number n of Sylow p-subgroups of G is equal to
1 modulo p and divides m. Furthermore, any two Sylow p-subgroups
of G are conjugate.

24 | Sylow Theorems 409
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It is convenient to let np denote the number of Sylow p-subgroups of
a group. Observe that the first portion of Sylow’s Third Theorem is a
counting principle.† As an important consequence of Sylow’s Third
Theorem, we have the following corollary.

Corollary A Unique Sylow p-Subgroup Is Normal

We illustrate Sylow’s Third Theorem with two examples.

EXAMPLE 1 Consider the Sylow 2-subgroups of S3. They are 
{(1), (12)}, {(1), (23)}, and {(1), (13)}. According to Sylow’s Third
Theorem, we should be able to obtain the latter two of these from the
first by conjugation. Indeed,

(13){(1), (12)}(13)21 5 {(1), (23)},
(23){(1), (12)}(23)21 5 {(1), (13)}.

EXAMPLE 2 Consider the Sylow 3-subgroups of A4. They are {a1,
a5, a9}, {a1, a6, a11}, {a1, a7, a12}, and {a1, a8, a10}. (See the table on
page 107.) Then,

a2{a1, a5, a9}a2
21 5 {a1, a7, a12},

a3{a1, a5, a9}a3
21 5 {a1, a8, a10},

a4{a1, a5, a9}a4
21 5 {a1, a6, a11}.

Thus, the number of Sylow 3-subgroups is 1 modulo 3, and the four
Sylow 3-subgroups are conjugate.

Figure 24.1 shows the subgroup lattices for S3 and A4. We have con-
nected the Sylow p-groups with dashed circles to indicate that they be-
long to one orbit under conjugation. Notice that the three subgroups of
order 2 in A4 are contained in a Sylow 2-group, as required by Sylow’s
Second Theorem. As it happens, these three subgroups also belong to
one orbit under conjugation, but this is not a consequence of Sylow’s
Third Theorem.

In contrast to the two preceding examples, observe that the 
dihedral group of order 12 has seven subgroups of order 2, but that
conjugating {R0, R180} does not yield any of the other six. (Why?)

A Sylow p-subgroup of a finite group G is a normal subgroup of G if
and only if it is the only Sylow p-subgroup of G.

410 Special Topics

†“Whenever you can, count.” Sir Francis Galton (1822–1911), The World of
Mathematics.
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Figure 24.1 Lattices of subgroups for S3 and A4.

Applications of Sylow Theorems
A few numerical examples will make the Sylow theorems come to life.
Say G is a group of order 40. What do the Sylow theorems tell us
about G? A great deal! Since 1 is the only divisor of 40 that is congru-
ent to 1 modulo 5, we know that G has exactly one subgroup of order 5,
and therefore it is normal. Similarly, G has either one or five subgroups
of order 8. If there is only one subgroup of order 8, it is normal. If there
are five subgroups of order 8, none is normal and all five can be ob-
tained by starting with any particular one, say H, and computing xHx21

for various x’s. Finally, if we let K denote the normal subgroup of
order 5 and let H denote any subgroup of order 8, then G 5 HK. (See
Exercise 7, Supplementary Exercises for Chapters 5–8.) If H happens
to be normal, we can say even more: G 5 H 3 K.

What about a group G of order 30? It must have either one or six
subgroups of order 5 and one or ten subgroups of order 3. However, G
cannot have both six subgroups of order 5 and 10 subgroups of order 3
(for then G would have more than 30 elements). Thus, G has one sub-
group of order 3 and one of order 5, and at least one of these is normal

A4

   2α 

   1α 

  3α 

   4α 

   7α 

   6α 

   5α 

   8α {  1,    2,    3,   4}α    α     α     α  

<     >

<     >

<      >

<      >

<      >

<      >

<     >

<      >

A3 = <(123)>

S3

<(1)>

<(12)>

<(23)>

<(13)>
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in G. It follows, then, that the product of a subgroup of order 3 and one
of order 5 is a group of order 15 that is both cyclic (Exercise 25) and
normal (Exercise 7 in Chapter 9) in G. [This, in turn, implies that both
the subgroup of order 3 and the subgroup of order 5 are normal in G
(Exercise 57 in Chapter 9).] So, if we let y be a generator of the cyclic
subgroup of order 15 and let x be an element of order 2 (the existence
of which is guaranteed by Cauchy’s Theorem), we see that

G 5 {xiy j | 0 # i # 1, 0 # j # 14}.

Note that in these two examples we were able to deduce all of this in-
formation from knowing only the order of the group—so many conclu-
sions from one assumption! This is the beauty of finite group theory.

In Chapter 7 we saw that the only group (up to isomorphism) of
prime order p is Zp. As a further illustration of the power of the Sylow
theorems, we next give a sufficient condition that guarantees that a
group of order pq, where p and q are primes, must be Zpq.

Theorem 24.6 Cyclic Groups of Order pq

PROOF Let H be a Sylow p-subgroup of G and let K be a Sylow 
q-subgroup of G. Sylow’s Third Theorem states that the number of Sylow
p-subgroups of G is of the form 1 1 kp and divides pq. So 1 1 kp is equal
to 1, p, q, or pq. From this and the fact that p B q 2 1, it follows that k 5 0,
and therefore H is the only Sylow p-subgroup of G.

Similarly, there is only one Sylow q-subgroup of G. Thus, by the
corollary to Theorem 24.5, H and K are normal subgroups of G. Let 
H 5 �x� and K 5 �y�. To show that G is cyclic, it suffices to show that x
and y commute, for then |xy| 5 |x||y| 5 pq. But observe that, since H
and K are normal, we have

xyx21y21 5 (xyx21)y21 [ Ky21 5 K

and

xyx21y21 5 x(yx21y21) [ xH 5 H.

Thus, xyx21y21 [ K > H 5 {e}, and hence xy 5 yx.

Theorem 24.6 demonstrates the power of the Sylow theorems in
classifying the finite groups whose orders have small numbers of prime
factors. Results along the lines of Theorem 24.6 exist for groups of or-
ders p2q, p2q2, p3, and p4, where p and q are prime.

If G is a group of order pq, where p and q are primes, p , q,
and p does not divide q 2 1, then G is cyclic. In particular, G is
isomorphic to Zpq.
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Figure 24.2 The number of groups of a given order up to 100.

For your amusement, Figure 24.2 lists the number of nonisomorphic
groups with orders at most 100. Note in particular the large number of
groups of order 64. Also observe that, generally speaking, it is not the size
of the group that gives rise to a large number of groups of that size but the
number of prime factors involved. In all, there are 1047 nonisomorphic
groups with 100 or fewer elements. Contrast this with the fact reported in
1989 that there are 2328 groups of order 128 and 56,092 of order 256 [3].
The number of groups of any order up to 1000, except 512, is given at
http://people.csse.uwa.edu.au/gordon/remote/cubcay/. Estimates put the
number of groups of order 512 at more than one million.

As a final application of the Sylow theorems, you might enjoy seeing
a determination of the groups of order 99, 66, and 255. In fact, our ar-
guments serve as a good review of much of our work in group theory.

EXAMPLE 3 Determination of the Groups of Order 99

Suppose that G is a group of order 99. Let H be a Sylow 3-subgroup
of G and let K be a Sylow 11-subgroup of G. Since 1 is the only posi-
tive divisor of 99 that is equal to 1 modulo 11, we know from Sylow’s
Third Theorem and its corollary that K is normal in G. Similarly,
H is normal in G. It follows, by the argument used in the proof of
Theorem 24.6, that elements from H and K commute, and therefore
G 5 H 3 K. Since both H and K are Abelian, G is also Abelian. Thus,
G is isomorphic to Z99 or Z3 % Z33.

EXAMPLE 4 Determination of the Groups of Order 66

Suppose that G is a group of order 66. Let H be a Sylow 3-subgroup of
G and let K be a Sylow 11-subgroup of G. Since 1 is the only positive
divisor of 66 that is equal to 1 modulo 11, we know that K is normal
in G. Thus, HK is a subgroup of G of order 33 (Exercise 55 in Chapter 9
and Exercise 7, Supplementary Exercises for Chapters 5–8). Since any

Order

Number

Order

Number

Order

Number

Order

Number

Order

Number

1 2 3 4 5 6 7 8 9 10

1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1 5

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

2 2 1 15 2 2 5 4 1 4 1 51 1 2 1 14 1 2 2 14

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

1 6 1 4 2 2 1 52 2 5 1 5  1 15 2 13 2 2 1 13

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

1 2 4 267 1 4 1 5 1 4 1 50 1 2 3 4 1 6 1 52

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

15 2 1 15 1 2 1 12 1 10 1 4 2 2 1 230 1 5 2 16

91 92 93 94 95 96 97 98 99 100
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group of order 33 is cyclic (Theorem 24.6), we may write HK 5 �x�.
Next, let y [ G and |y| 5 2. Since �x� has index 2 in G, we know it is
normal. So yxy21 5 xi for some i from 1 to 32. Then, yx 5 xiy and,
since every member of G is of the form xsyt, the structure of G is com-
pletely determined by the value of i. We claim that there are only four
possibilities for i. To prove this, observe that |xi| 5 |x| (Exercise 5, Sup-
plementary Exercises for Chapters 1–4). Thus, i and 33 are relatively
prime. But also, since y has order 2,

x 5 y21( yxy21)y 5 y21xiy 5 yxiy21 5 (yxy21)i 5 (xi)i 5 x i2.

So xi221 5 e and therefore 33 divides i2 2 1. From this it follows that
11 divides i 6 1, and therefore i 5 0 6 1, i 5 11 6 1, i 5 22 6 1, or
i 5 33 6 1. Putting this together with the other information we have
about i, we see that i 5 1, 10, 23, or 32. This proves that there are at
most four groups of order 66.

To prove that there are exactly four such groups, we simply observe
that Z66, D33, D11 % Z3, and D3 % Z11 each has order 66 and that no two
are isomorphic. For example, D11 % Z3 has 11 elements of order 2,
whereas D3 % Z11 has only three elements of order 2. (See Exercises
25–28 of the Supplementary Exercises for Chapters 5–8.)

EXAMPLE 5 The Only Group of Order 255 is Z
255

Let G be a group of order 255 5 3 ? 5 ? 17, and let H be a Sylow 17-sub-
group of G. By Sylow’s Third Theorem, H is the only Sylow 17-subgroup
of G, so N(H) 5 G. By Example 15 in Chapter 10, |N(H)/C(H)| divides
|Aut(H)| 5 |Aut(Z17)|. By Theorem 6.5, |Aut(Z17)| 5 |U(17)| 5 16. Since
|N(H)/C(H)| must divide 255 and 16, we have |N(H)/C(H)| 5 1. Thus,
C(H) 5 G. This means that every element of G commutes with every ele-
ment of H, and, therefore, H # Z(G). Thus, 17 divides |Z(G)|, which in
turn divides 255. So |Z(G)| is equal to 17, 51, 85, or 255 and |G/Z(G)| is
equal to 15, 5, 3, or 1. But the only groups of order 15, 5, 3, or 1 are the
cyclic ones, so we know that G/Z(G) is cyclic. Now the “G/Z theorem”
(Theorem 9.3) shows that G is Abelian, and the Fundamental Theorem of
Finite Abelian Groups tells us that G is cyclic.

Exercises

I have always grown from my problems and challenges, from the things that
don’t work out. That’s when I’ve really learned.

CAROL BURNETT

1. Show that conjugacy is an equivalence relation on a group.
2. Calculate all conjugacy classes for the quaternions (see Exercise 4,

Supplementary Exercises for Chapters 1–4).
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3. Show that the function T defined in the proof of Theorem 24.1 is
well defined, one-to-one, and maps the set of left cosets onto the
conjugacy class of a.

4. Show that cl(a) 5 {a} if and only if a [ Z(G).
5. If |G| 5 36 and G is non-Abelian, prove that G has more than one

Sylow 2-subgroup or more than one Sylow 3-subgroup.
6. Exhibit a Sylow 2-subgroup of S4. Describe an isomorphism from

this group to D4.
7. Suppose that G is a group of order 48. Show that the intersection

of any two distinct Sylow 2-subgroups of G has order 8.
8. Find all the Sylow 3-subgroups of S4.
9. Let K be a Sylow p-subgroup of a finite group G. Prove that if x [

N(K) and the order of x is a power of p, then x [ K. (This exercise
is referred to in this chapter.)

10. If a group of order has more than one Sylow 5-subgroup,
exactly how many does it have?

11. Suppose that G is a group and , where p is prime and
. Prove that a Sylow p-subgroup of G must be normal in G.

12. Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow 
p-subgroup of G contained in N(H).

13. Suppose that G is a group of order 168. If G has more than one
Sylow 7-subgroup, exactly how many does it have?

14. Show that every group of order 56 has a proper nontrivial normal 
subgroup.

15. What is the smallest composite (that is, nonprime and greater than 1)
integer n such that there is a unique group of order n?

16. Let G be a noncyclic group of order 21. How many Sylow 3-
subgroups does G have?

17. Prove that a noncyclic group of order 21 must have 14 elements of
order 3.

18. How many Sylow 5-subgroups of S5 are there? Exhibit two.
19. How many Sylow 3-subgroups of S5 are there? Exhibit five.
20. Prove that a group of order 175 is Abelian.
21. Let H be a subgroup of a group G. Prove that the number of conju-

gates of H in G is |G:N(H)|. Hint: Mimic the proof of Theorem 24.1.
(This exercise is referred to in this chapter and in Chapter 25.)

22. Generalize the argument given in Example 3 to obtain a theorem
about groups of order p2q, where p and q are distinct primes.

23. What is the smallest possible odd integer that can be the order of a
non-Abelian group?

p . m
ZG Z 5 pnm

52 ? 7 ? 11
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24. Prove that a group of order 375 has a subgroup of order 15.
25. Without using Theorem 24.6, prove that a group of order 15 is

cyclic. (This exercise is referred to in the discussion about groups
of order 30.)

26. Prove that a group of order 105 contains a subgroup of order 35.
27. Prove that a group of order 595 has a normal Sylow 17-subgroup.
28. Let G be a group of order 60. Show that G has exactly four ele-

ments of order 5 or exactly 24 elements of order 5. Which of these
cases holds for A5?

29. Show that the center of a group of order 60 cannot have order 4.
30. Suppose that G is a group of order 60 and G has a normal sub-

group N of order 2. Show that
a. G has normal subgroups of orders 6, 10, and 30.

b. G has subgroups of orders 12 and 20.

c. G has a cyclic subgroup of order 30.
31. Let G be a group of order 60. If the Sylow 3-subgroup is normal,

show that the Sylow 5-subgroup is normal.
32. Show that if G is a group of order 168 that has a normal subgroup

of order 4, then G has a normal subgroup of order 28.
33. Suppose that p is prime and |G| 5 pn. Show that G has normal sub-

groups of order pk for all k between 1 and n (inclusive).
34. Suppose that G is a group of order pn, where p is prime, and G has

exactly one subgroup for each divisor of pn. Show that G is cyclic.
35. Suppose that p is prime and |G| 5 pn. If H is a proper subgroup of G,

prove that N(H) . H. (This exercise is referred to in Chapter 25.)
36. Suppose that G is a finite group and that all its Sylow subgroups are

normal. Show that G is a direct product of its Sylow subgroups.
37. Let G be a finite group and let H be a normal Sylow p-subgroup

of G. Show that a(H) 5 H for all automorphisms a of G.
38. If H is a normal subgroup of a finite group G and |H| 5 pk

for some prime p, show that H is contained in every Sylow 
p-subgroup of G.

39. Let H and K denote a Sylow 3-subgroup and a Sylow 5-subgroup
of a group, respectively. Suppose that |H| 5 3 and |K| 5 5. If 3 di-
vides |N(K)|, show that 5 divides |N(H)|.

40. Let G be a group of order p2q2, where p and q are distinct primes,
q B p2 2 1, and p B q2 2 1. Prove that G is Abelian. List three pairs
of primes that satisfy these conditions.
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41. Let H be a normal subgroup of a group G. Show that H is the union
of the conjugacy classes of the elements of H. Is this true when H
is not normal in G?

42. Let p be prime. If the order of every element of a finite group G is
a power of p, prove that |G| is a power of p. (Such a group is called
a p-group.)

43. For each prime p, prove that all Sylow p-subgroups of a finite
group are isomorphic.

44. Suppose that K is a normal subgroup of a finite group G and S
is a Sylow p-subgroup of G. Prove that K > S is a Sylow p-
subgroup of K.

45. If G is a group of odd order and x [ G, show that x21 is not in cl(x).
46. Determine the groups of order 45.
47. Show that there are at most three nonisomorphic groups of order 21.
48. Prove that if H is a normal subgroup of index p2 where p is prime,

then G9 # H (see Exercise 3 in the Supplementary Exercises for
Chapters 5–8 for a description of G9).

49. Show that Z2 is the only group that has exactly two conjugacy
classes.

50. If H is a finite subgroup of a group G and , prove that
.

51. Let G be a group with . Show that the
Sylow 5-subgroup of G is normal in G and is contained in Z(G).

52. What is the probability that a randomly selected element from D4
commutes with V?

53. Prove that if x and y are in the same conjugacy class of a group,
then |C(x)| 5 |C(y)|. (This exercise is referred to in the discussion
on the probability that two elements from a group commute.)

54. Let G be a finite group and let a [ G. Express the probability that
a randomly selected element from G commutes with a in terms of
orders of subgroups of G.

55. Find Pr(D4), Pr(S3), and Pr(A4).
56. Prove that Pr(G % H) 5 Pr(G) ? Pr(H).
57. Let R be a finite noncommutative ring. Show that the probability

that two randomly chosen elements from R commute is at most .
[Hint: Mimic the group case and use the fact that the additive
group R/C(R) is not cyclic.]

5
8

ZG Z 5 595 5 5 ? 7 ? 17
0N(H) 0 5 0N(xHx21) 0 x [ G
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Computer Exercise

1. Use the website http://people.csse.uwa.edu.au/gordon/remote/
cubcay/ to look up the number of groups of order 4p, where p is an
odd prime up to 37. Make a conjecture about the exact number of
such groups.
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J. A. Gallian and D. Moulton, “When Is Zn the Only Group of Order n?”
Elemente der Mathematik 48 (1993): 118–120.

It is shown that Zn is the only group of order n if and only if n and f(n)
are relatively prime. The article can be downloaded at http://www
.d.umn.edu/~jgallian/pq.pdf.

W. H. Gustafson, “What Is the Probability That Two Group Elements
Commute?” The American Mathematical Monthly 80 (1973): 1031–1034.

This paper is concerned with the problem posed in the title. It is shown
that for all finite non-Abelian groups and certain infinite non-Abelian
groups, the probability that two elements from a group commute is at
most 5/8. The paper concludes with several exercises.

Desmond MacHale, “Commutativity in Finite Rings,” The American
Mathematical Monthly 83 (1976): 30–32.

In this easy-to-read paper, it is shown that the probability that two
elements from a finite noncommutative ring commute is at most 5/8.
Several properties of Pr(G) when G is a finite group are stated. For
example, if H # G, then Pr(G) # Pr(H). Also, there is no group G such
that 7/16 , Pr(G) , 1/2.
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Ludwig Sylow

Sylow’s Theorem is 100 years old. In the
course of a century this remarkable theo-
rem has been the basis for the construc-
tion of numerous theories.

L. A. SHEMETKOV

LUDWIG SYLOW (pronounced “SEE-loe”)
was born on December 12, 1832, in Chris-
tiania (now Oslo), Norway. While a student
at Christiania University, Sylow won a gold
medal for competitive problem solving. In
1855, he became a high school teacher; de-
spite the long hours required by his teaching
duties, Sylow found time to study the papers
of Abel. During the school year 1862–1863,
Sylow received a temporary appointment at
Christiania University and gave lectures
on Galois theory and permutation groups.
Among his students that year was the great
mathematician Sophus Lie (pronounced
“Lee”), after whom Lie algebras and Lie
groups are named. From 1873 to 1881,
Sylow, with some help from Lie, prepared a
new edition of Abel’s works. In 1902, Sylow
and Elling Holst published Abel’s corre-
spondence.

Sylow’s great discovery, Sylow’s Theo-
rem, came in 1872. Upon learning of

Sylow’s result, C. Jordan called it “one of
the essential points in the theory of permuta-
tions.” The result took on greater importance
when the theory of abstract groups flowered
in the late 19th century and early 20th cen-
tury.

In 1869, Sylow was offered a professor-
ship at Christiania University but turned it
down. Upon Sylow’s retirement from high
school teaching at age 65, Lie mounted a
successful campaign to establish a chair for
Sylow at Christiania University. Sylow held
this position until his death on September 7,
1918.

To find more information about Sylow,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history
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Finite Simple Groups

It is a widely held opinion that the problem of classifying finite simple
groups is close to a complete solution. This will certainly be one of the great
achievements of mathematics of this century.

NATHAN JACOBSON

25

Historical Background
We now come to the El Dorado of finite group theory—the simple
groups. Simple group theory is a vast and difficult subject; we call it
the El Dorado of group theory because of the enormous effort put forth
by hundreds of mathematicians over many years to discover and
classify all finite simple groups. Let’s begin our discussion with the
definition of a simple group and some historical background.

Definition Simple Group

A group is simple if its only normal subgroups are the identity
subgroup and the group itself.

The notion of a simple group was introduced by Galois about 180
years ago. The simplicity of A5, the group of even permutations on five
symbols, played a crucial role in his proof that there is not a solution by
radicals of the general fifth-degree polynomial (that is, there is no
“quintic formula”). But what makes simple groups important in the
theory of groups? They are important because they play a role in group
theory somewhat analogous to that of primes in number theory or the
elements in chemistry; that is, they serve as the building blocks for all
groups. These building blocks may be determined in the following way.
Given a finite group G, choose a proper normal subgroup G1 of G 5 G0
of largest order. Then the factor group G0/G1 is simple, and we next
choose a proper normal subgroup G2 of G1 of largest order. Then G1/G2
is also simple, and we continue in this fashion until we arrive at Gn 5
{e}. The simple groups G0/G1, G1/G2, . . . , Gn21/Gn are called the com-
position factors of G. More than 100 years ago, Jordan and Hölder
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proved that these factors are independent of the choices of the normal
subgroups made in the process described. In a certain sense, a group can
be reconstructed from its composition factors, and many of the proper-
ties of a group are determined by the nature of its composition factors.
This and the fact that many questions about finite groups can be reduced
(by induction) to questions about simple groups make clear the impor-
tance of determining all finite simple groups.

Just which groups are the simple ones? The Abelian simple groups
are precisely Zn, where n 5 1 or n is prime. This follows directly from the
corollary in Chapter 11. In contrast, it is extremely difficult to describe the
non-Abelian simple groups. The best we can do here is to give a few
examples and mention a few words about their discovery. It was Galois in
1831 who first observed that An is simple for all n $ 5. The next
discoveries were made by Jordan in 1870, when he found four infinite
families of simple matrix groups over the field Zp, where p is prime. One
such family is the factor group SL(n, Zp)/Z(SL(n, Zp)), except when n 5 2
and p 5 2 or p 5 3. Between the years 1892 and 1905, the American
mathematician Leonard Dickson (see Chapter 22 for a biography) gener-
alized Jordan’s results to arbitrary finite fields and discovered several new
infinite families of simple groups. About the same time, it was shown by
G. A. Miller and F. N. Cole that a family of five groups first described by
E. Mathieu in 1861 were in fact simple groups. Since these five groups
were constructed by ad hoc methods that did not yield infinitely many
possibilities, like An or the matrix groups over finite fields, they were
called “sporadic.”

The next important discoveries came in the 1950s. In that decade,
many new infinite families of simple groups were found, and the initial
steps down the long and winding road that led to the complete classifi-
cation of all finite simple groups were taken. The first step was Richard
Brauer’s observation that the centralizer of an element of order 2 was an
important tool for studying simple groups. A few years later, John
Thompson, in his Ph.D. dissertation, introduced the crucial idea of
studying the normalizers of various subgroups of prime-power order.

In the early 1960s came the momentous Feit-Thompson Theorem,
which says that a non-Abelian simple group must have even order. This
property was first conjectured around 1900 by one of the pioneers of
modern group-theoretic methods, the Englishman William Burnside
(see Chapter 29 for a biography). The proof of the Feit-Thompson
Theorem filled an entire issue of a journal [1], 255 pages in all (see
Figure 25.1). This result provided the impetus to classify the finite sim-
ple groups—that is, a program to discover all finite simple groups and
prove that there are no more to be found. Throughout the 1960s, the 
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Oh, what are the orders of all simple
groups?
I speak of the honest ones, not of the loops.
It seems that old Burnside their orders has

guessed
Except for the cyclic ones, even the rest.

CHORUS: Finding all groups that are sim-
ple is no simple task.

Groups made up with permutes will 
produce some more:

For An is simple, if n exceeds 4.
Then, there was Sir Matthew who came into

view
Exhibiting groups of an order quite new.

Still others have come on to study this thing. 
Of Artin and Chevalley now we shall sing. 
With matrices finite they made quite a list 
The question is: Could there be others 

they’ve missed?
Suzuki and Ree then maintained it’s the 

case 

Figure 25.1

That these methods had not reached the end 
of the chase. 

They wrote down some matrices, just four by
four. 

That made up a simple group. Why not make 
more?

And then came the opus of Thompson and
Feit
Which shed on the problem remarkable light.
A group, when the order won’t factor by two,
Is cyclic or solvable. That’s what is true.

Suzuki and Ree had caused eyebrows to raise,
But the theoreticians they just couldn’t faze.
Their groups were not new: if you added a 

twist,
You could get them from old ones with a 

flick of the wrist.

Still, some hardy souls felt a thorn in their 
side.
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methods introduced in the Feit-Thompson proof were generalized and
improved with great success by many mathematicians. Moreover, be-
tween 1966 and 1975, 19 new sporadic simple groups were discovered.
Despite many spectacular achievements, research in simple group the-
ory in the 1960s was haphazard, and the decade ended with many peo-
ple believing that the classification would never be completed. (The
pessimists feared that the sporadic simple groups would foil all at-
tempts. The anonymously written “song” in Figure 25.1 captures the
spirit of the times.) Others, more optimistic, were predicting that it
would be accomplished in the 1990s.

The 1970s began with Thompson receiving the Fields Medal for his
fundamental contributions to simple group theory. This honor is among
the highest forms of recognition that a mathematician can receive
(more information about the Fields Medal is given near the end of this
chapter). Within a few years, three major events took place that ulti-
mately led to the classification. First, Thompson published what is re-
garded as the single most important paper in simple group theory—the
N-group paper. Here, Thompson introduced many fundamental tech-
niques and supplied a model for the classification of a broad family of
simple groups. Second, Daniel Gorenstein produced an elaborate out-
line for the classification, which he delivered in a series of lectures at
the University of Chicago in 1972. Here a program for the overall
proof was laid out. The army of researchers now had a battle plan and
a commander-in-chief. But this army still needed more and better
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For the five groups of Mathieu all reason 
defied;

Not An, not twisted, and not Chevalley,
They called them sporadic and filed them 

away.

Are Mathieu groups creatures of heaven or 
hell?

Zvonimir Janko determined to tell.
He found out that nobody wanted to know:
The masters had missed 1 7 5 5 6 0.

The floodgates were opened! New groups
were the rage!

(And twelve or more sprouted, to greet the 
new age.)

By Janko and Conway and Fischer and Held
McLaughlin, Suzuki, and Higman, and Sims.

No doubt you noted the last lines don’t 
rhyme.

Well, that is, quite simply, a sign of the time.
There’s chaos, not order, among simple 

groups;
And maybe we’d better go back to the loops.   
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weapons. Thus came the third critical development: the involvement of
Michael Aschbacher. In a dazzling series of papers, Aschbacher com-
bined his own insight with the methods of Thompson, which had been
generalized throughout the 1960s, and a geometric approach pioneered
by Bernd Fischer to achieve one brilliant result after another in rapid
succession. In fact, so much progress was made by Aschbacher 
and others that by 1976, it was clear to nearly everyone involved that
enough techniques had been developed to complete the classification.
Only details remained.

The 1980s were ushered in with Aschbacher following in the foot-
steps of Feit and Thompson by winning the American Mathematical
Society’s Cole Prize in algebra (see the last section of this chapter).

A week later, Robert L. Griess made the spectacular announcement
that he had constructed the “Monster.”† The Monster is the largest of the
sporadic simple groups. In fact, it has vastly more elements than there
are atoms on the earth! Its order is

808,017,424,794,512,875,886,459,904,961,710,757,005,754,
368,000,000,000

(hence, the name). This is approximately 8 3 1053. The Monster is a
group of rotations in 196,883 dimensions. Thus, each element can be
expressed as a 196,883 3 196,883 matrix.

At the annual meeting of the American Mathematical Society in 1981,
Gorenstein announced that the “Twenty-five Years’War” to classify all the
finite simple groups was over. Group theorists at long last had a list of all
finite simple groups and a proof that the list was complete. The proof was
spread out over hundreds of papers—both published and unpublished—
and ran more than 10,000 pages in length. Because of the proof’s extreme
length and complexity, and the fact that some key parts of it had not been
published, there was some concern in the mathematics community that the
classification was not a certainty. By the end of the decade, group theorists
had concluded that there was indeed a gap in the unpublished work that
would be difficult to rectify. In the mid-1990s, Aschbacher and Stephen
Smith began work on this problem. In 2004, at the annual meeting of the
American Mathematical Society, Aschbacher announced that he and Smith
had completed the classification. Their paper is about 1200 pages in
length. Aschbacher concluded his remarks by saying that he would not bet
his house that the proof is now error-free. Several people who played a
central role in the classification are working on a “second generation”
proof that will be much shorter and more comprehensible.
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†The name was coined by John H. Conway.
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Nonsimplicity Tests
In view of the fact that simple groups are the building blocks for all
groups, it is surprising how scarce the non-Abelian simple groups are.
For example, A5 is the only one whose order is less than 168; there are
only five non-Abelian simple groups of order less than 1000 and only
56 of order less than 1,000,000. In this section, we give a few theorems
that are useful in proving that a particular integer is not the order of a
non-Abelian simple group. Our first such result is an easy arithmetic
test that comes from combining Sylow’s Third Theorem and the fact
that groups of prime-power order have nontrivial centers.

Theorem 25.1 Sylow Test for Nonsimplicity

PROOF If n is a prime-power, then a group of order n has a nontrivial
center and, therefore, is not simple. If n is not a prime-power, then
every Sylow subgroup is proper, and, by Sylow’s Third Theorem, we
know that the number of Sylow p-subgroups of a group of order n is
equal to 1 modulo p and divides n. Since 1 is the only such number, the
Sylow p-subgroup is unique, and therefore, by the corollary to Sylow’s
Third Theorem, it is normal.

How good is this test? Well, applying this criterion to all the non-
prime integers between 1 and 200 would leave only the following inte-
gers as possible orders of finite non-Abelian simple groups: 12, 24, 30,
36, 48, 56, 60, 72, 80, 90, 96, 105, 108, 112, 120, 132, 144, 150, 160,
168, 180, and 192. (In fact, computer experiments have revealed that
for large intervals, say, 500 or more, this test eliminates more than 90%
of the nonprime integers as possible orders of simple groups. See [2]
for more on this.)

Our next test rules out 30, 90, and 150.

Theorem 25.2 2 ? Odd Test

PROOF Let G be a group of order 2n, where n is odd and greater
than 1. Recall from the proof of Cayley’s Theorem (Theorem 6.1)

An integer of the form 2 ? n, where n is an odd number greater than 1,
is not the order of a simple group.

Let n be a positive integer that is not prime, and let p be a prime
divisor of n. If 1 is the only divisor of n that is equal to 1 modulo p,
then there does not exist a simple group of order n.
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that the mapping g S Tg is an isomorphism from G to a permutation
group on the elements of G [where Tg(x) 5 gx for all x in G]. Since
|G| 5 2n, Cauchy’s Theorem guarantees that there is an element g in
G of order 2. Then, when the permutation Tg is written in disjoint
cycle form, each cycle must have length 1 or 2; otherwise, |g| 2 2.
But Tg can contain no 1-cycles, because the 1-cycle (x) would mean x 5
Tg(x) 5 gx, so g 5 e. Thus, in cycle form, Tg consists of exactly n
transpositions, where n is odd. Therefore, Tg is an odd permutation.
This means that the set of even permutations in the image of G is a
normal subgroup of index 2. (See Exercise 19 in Chapter 5 and Exercise 7
in Chapter 9.) Hence, G is not simple.

The next theorem is a broad generalization of Cayley’s Theorem.
We will make heavy use of its two corollaries.

Theorem 25.3 Generalized Cayley Theorem

PROOF For each g [ G, define a permutation Tg of the left cosets
of H by Tg(xH) 5 gxH. As in the proof of Cayley’s Theorem, it is easy to
verify that the mapping of a:g S Tg is a homomorphism from G into S.

Now, if g [ Ker a, then Tg is the identity map, so H 5 Tg(H) 5 gH,
and, therefore, g belongs to H. Thus, Ker a # H. On the other hand, if
K is normal in G and K # H, then for any k [ K and any x in G, there
is an element k9 in K such that kx 5 xk9. Thus,

Tk(xH) 5 kxH 5 xk9H 5 xH

and, therefore, Tk is the identity permutation. This means that k [ Ker a.
We have proved, then, that every normal subgroup of G contained in H
is also contained in Ker a.

As a consequence of Theorem 25.3, we obtain the following very
powerful arithmetic test for nonsimplicity.

Corollary 1 Index Theorem

If G is a finite group and H is a proper subgroup of G such that |G|
does not divide |G:H|!, then H contains a nontrivial normal subgroup
of G. In particular, G is not simple.

Let G be a group and let H be a subgroup of G. Let S be the group
of all permutations of the left cosets of H in G. Then there is a
homomorphism from G into S whose kernel lies in H and contains
every normal subgroup of G that is contained in H.
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PROOF Let a be the homomorphism given in Theorem 25.3. Then
Ker a is a normal subgroup of G contained in H, and G/Ker a is
isomorphic to a subgroup of S. Thus, |G/Ker a| 5 |G|/|Ker a| divides
|S| 5 |G:H|!. Since |G| does not divide |G:H|!, the order of Ker a must
be greater than 1.

Corollary 2 Embedding Theorem

PROOF Let H be the subgroup of index n, and let Sn be the group
of all permutations of the n left cosets of H in G. By the Generalized
Cayley Theorem, there is a nontrivial homomorphism from G into Sn.
Since G is simple and the kernel of a homomorphism is a normal sub-
group of G, we see that the mapping from G into Sn is one-to-one, so
that G is isomorphic to some subgroup of Sn. Recall from Exercise 19
in Chapter 5 that any subgroup of Sn consists of even permutations only
or half even and half odd. If G were isomorphic to a subgroup of the
latter type, the even permutations would be a normal subgroup of in-
dex 2 (see Exercise 7 in Chapter 9), which would contradict the fact
that G is simple. Thus, G is isomorphic to a subgroup of An.

Using the Index Theorem with the largest Sylow subgroup for H
reduces our list of possible orders of non-Abelian simple groups still
further. For example, let G be any group of order 80 5 16 ? 5. We may
choose H to be a subgroup of order 16. Since 80 is not a divisor of 5!,
there is no simple group of order 80. The same argument applies to 12,
24, 36, 48, 96, 108, 160, and 192, leaving only 56, 60, 72, 105, 112,
120, 132, 144, 168, and 180 as possible orders of non-Abelian simple
groups up to 200. Let’s consider these orders. Quite often we may use
a counting argument to eliminate an integer. Consider 56. By Sylow’s
Theorem, we know that a simple group of order 56 5 8 ? 7 would con-
tain eight Sylow 7-subgroups and seven Sylow 2-subgroups. Now, any
two Sylow p-subgroups that have order p must intersect in only the
identity. So the union of the eight Sylow 7-subgroups yields 48 ele-
ments of order 7, and the union of any two Sylow 2-subgroups gives at
least 8 1 8 2 4 5 12 new elements. But there are only 56 elements in
all. This contradiction shows that there is not a simple group of order 56.
An analogous argument also eliminates the integers 105 and 132.

So, our list of possible orders of non-Abelian simple groups up to
200 is down to 60, 72, 112, 120, 144, 168, and 180. Of these, 60 and

If a finite non-Abelian simple group G has a subgroup of index n,
then G is isomorphic to a subgroup of An.
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168 do correspond to simple groups. The others can be eliminated with
a bit of razzle-dazzle.

The easiest case to handle is 112 5 24 ? 7. Suppose there were a sim-
ple group G of order 112. A Sylow 2-subgroup of G must have index 7.
So, by the Embedding Theorem, G is isomorphic to a subgroup of A7.
But 112 does not divide |A7|, which is a contradiction.

Another easy case is 72 5 23 ? 32. Recall from Exercise 21 in Chap-
ter 24 that the number of Sylow p-subgroups of G is np 5 |G: N(H)|,
where H is any Sylow p-subgroup of G. Now for a simple group G of
order 72, Sylow’s Third Theorem gives that n3|8 and n3 mod 3 5 1. So
n3 5 4. Since |G| 5 72 does not divide |G: N(H)|! 5 4! 5 24, the Index
Theorem gives that G is not simple.

Next consider the possibility of a simple group G of order 144 5 9 ? 16.
By the Sylow theorems, we know that n3 5 4 or n3 5 16 and n2 $ 3. The
Index Theorem rules out the case where n3 5 4, so we know that there are
16 Sylow 3-subgroups. Now, if every pair of Sylow 3-subgroups had only
the identity in common, the 16 ? 8 1 1 5 129 elements from these sub-
groups plus at least 16 more elements from two of the Sylow 2-subgroups
results in more than 144 elements. So, let H and H9 be a pair of Sylow
3-subgroups whose intersection has order 3. Then H > H9 is a subgroup
of both H and H9 and, by the corollary to Theorem 24.2 (or by Exercise 35
in Chapter 24), we see that N(H > H9) must contain both H and H9 and,
therefore, the set HH9. (HH9 need not be a subgroup.) Thus,

|N(H > H9)| $ |HH9| 5 5 27.

Now, we have three arithmetic conditions on k 5 |N(H > H9)|. We
know that 9 divides k; k divides 144; and k $ 27. Clearly, then, k $ 36,
and so |G :N(H > H9)| # 4. The Index Theorem now gives us the de-
sired contradiction.

Finally, suppose that G is a non-Abelian simple group of order 180 5
22 ? 32 ? 5. Then n5 5 6 or n5 5 36 and n3 5 10. First, assume that 
n5 5 36. Then G has 36 ? 4 5 144 elements of order 5. Now, if each pair
of the Sylow 3-subgroups intersects in only the identity, then there are 80
more elements in the group, which is a contradiction. So, we may as-
sume that there are two Sylow 3-subgroups L3 and L39 whose intersection
has order 3. Then, as was the case for order 144, we have

|N(L3 > L39)| $ |L3L39| 5 5 27.

Thus,

|N(L3 > L39)| 5 9 ? k,

9 . 9

3

0 H 0  0 Hr 0
0 H d  Hr 0 5

9 . 9

3
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where k $ 3 and k divides 20. Clearly, then,

|N(L3 > L39)| $ 36

and therefore

|G :N(L3 > L39)| # 5.

The Index Theorem now gives us another contradiction. Hence, we
may assume that n5 5 6. In this case, we let H be the normalizer of a
Sylow 5-subgroup of G. By Sylow’s Third Theorem, we have 6 5
|G:H|, so that |H| 5 30. In Chapter 24, we proved that every group of
order 30 has an element of order 15. On the other hand, since n5 5 6,
G has a subgroup of index 6 and the Embedding Theorem tells us that
G is isomorphic to a subgroup of A6. But A6 has no element of order 15.
(See Exercise 7 in Chapter 5.)

Unfortunately, the argument for 120 is fairly long and complicated.
However, no new techniques are required to do it. We leave this as an
exercise (Exercise 17). Some hints are given in the answer section.

The Simplicity of A5

Once 120 has been disposed of, we will have shown that the only inte-
gers between 1 and 200 that can be the orders of non-Abelian simple
groups are 60 and 168. For completeness, we will now prove that A5,
which has order 60, is a simple group. A similar argument can be used
to show that the factor group SL(2, Z7)/Z(SL(2, Z7)) is a simple group
of order 168. [This group is denoted by PSL(2, Z7).]

If A5 had a nontrivial proper normal subgroup H, then |H| is equal to
2, 3, 4, 5, 6, 10, 12, 15, 20, or 30. By Exercise 43 in Chapter 5, A5 has
24 elements of order 5, 20 elements of order 3, and no elements of or-
der 15. Now, if |H| is equal to 3, 6, 12, or 15, then |A5/H| is relatively
prime to 3, and by Exercise 59 in Chapter 9, H would have to contain
all 20 elements of order 3. If |H| is equal to 5, 10, or 20, then |A5/H|
is relatively prime to 5, and, therefore, H would have to contain the
24 elements of order 5. If |H| 5 30, then |An

5/H| is relatively prime to
both 3 and 5, and so H would have to contain all the elements of orders
3 and 5. Finally, if |H| 5 2 or |H| 5 4, then |A5/H| 5 30 or |A5/H| 5 15.
But we know from our results in Chapter 24 that any group of order 30
or 15 has an element of order 15. However, since A5 contains no such
element, neither does A5/H. This proves that A5 is simple.

The simplicity of A5 was known to Galois in 1830, although the first
formal proof was done by Jordan in 1870. A few years later, Felix
Klein showed that the group of rotations of a regular icosahedron is
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simple and, therefore, isomorphic to A5 (see Exercise 27). Since then it
has frequently been called the icosahedral group. Klein was the first to
prove that there is a simple group of order 168.

The problem of determining which integers in a certain interval are
possible orders for finite simple groups goes back to 1892, when
Hölder went up to 200. His arguments for the integers 144 and 180
alone used up 10 pages. By 1975, this investigation had been pushed 
to well beyond 1,000,000. See [3] for a detailed account of this en-
deavor. Of course, now that all finite simple groups have been classi-
fied, this problem is merely a historical curiosity.

The Fields Medal
Among the highest awards for mathematical achievement is the Fields
Medal. Two to four such awards are bestowed at the opening session of
the International Congress of Mathematicians, held once every four
years. Although the Fields Medal is considered by many mathemati-
cians to be the equivalent of the Nobel Prize, there are great differences
between these awards. Besides the huge disparity in publicity and mon-
etary value associated with the two honors, the Fields Medal is re-
stricted to those under 40 years of age.† This tradition stems from John
Charles Fields’s stipulation, in his will establishing the medal, that the
awards should be “an encouragement for further achievement.” This re-
striction precluded Andrew Wiles from winning the Fields Medal for his
proof of Fermat’s Last Theorem.

More details about the Fields Medal can be found at www
.wikipedia.com.

The Cole Prize
Approximately every five years, beginning in 1928, the American
Mathematical Society awards one or two Cole Prizes for research in
algebra and one or two Cole Prizes for research in algebraic number
theory. The prize was founded in honor of Frank Nelson Cole on the
occasion of his retirement as secretary of the American Mathematical
Society. In view of the fact that Cole was one of the first people inter-
ested in simple groups, it is interesting to note that no fewer than six
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†“Take the sum of human achievement in action, in science, in art, in literature—
subtract the work of the men above forty, and while we should miss great treasures,
even priceless treasures, we would practically be where we are today. . . . The effec-
tive, moving, vitalizing work of the world is done between the ages of twenty-five and
forty.” Sir William Osler (1849–1919), Life of Sir William Osler, vol. I, chap. 24 (The
Fixed Period).
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recipients of the prize—Dickson, Chevalley, Brauer, Feit, Thompson,
and Aschbacher—have made fundamental contributions to simple
group theory at some time in their careers.

Exercises

If you don’t learn from your mistakes, there’s no sense making them.
HERBERT V. PROCHNOW

1. Prove that there is no simple group of order 210 5 2 ? 3 ? 5 ? 7.
2. Prove that there is no simple group of order 280 5 23 ? 5 ? 7.
3. Prove that there is no simple group of order 216 5 23 ? 33.
4. Prove that there is no simple group of order 300 5 22 ? 3 ? 52.
5. Prove that there is no simple group of order 525 5 3 ? 52 ? 7.
6. Prove that there is no simple group of order 540 5 22 ? 33 ? 5.
7. Prove that there is no simple group of order 528 5 24 ? 3 ? 11.
8. Prove that there is no simple group of order 315 5 32 ? 5 ? 7.
9. Prove that there is no simple group of order 396 5 22 ? 32 ? 11.

10. Prove that there is no simple group of order n, where 201 #
n # 235.

11. Without using the Generalized Cayley Theorem or its corollaries,
prove that there is no simple group of order 112.

12. Without using the “2 ? odd” test, prove that there is no simple
group of order 210.

13. You may have noticed that all the “hard integers” are even. Choose
three odd integers between 200 and 1000. Show that none of these
is the order of a simple group unless it is prime.

14. Show that there is no simple group of order pqr, where p, q, and r
are primes ( p, q, and r need not be distinct).

15. Show that A5 does not contain a subgroup of order 30, 20, or 15.
16. Show that S5 does not contain a subgroup of order 40 or 30.
17. Prove that there is no simple group of order 120 5 23 ? 3 ? 5. (This

exercise is referred to in this chapter.)
18. Prove that if G is a finite group and H is a proper normal subgroup

of largest order, then G/H is simple.
19. Suppose that H is a subgroup of a finite group G and that |H| and 

(|G:H| 2 1)! are relatively prime. Prove that H is normal in G. What
does this tell you about a subgroup of index 2 in a finite group?

20. Suppose that p is the smallest prime that divides |G|. Show that
any subgroup of index p in G is normal in G.
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21. Prove that the only nontrivial proper normal subgroup of S5 is A5.
(This exercise is referred to in Chapter 32.)

22. Prove that a simple group of order 60 has a subgroup of order 6
and a subgroup of order 10.

23. Show that PSL(2, Z7) 5 SL(2, Z7)/Z(SL(2, Z7)), which has order
168, is a simple group. (This exercise is referred to in this chapter.)

24. Show that the permutations (12) and (12345) generate S5.
25. Suppose that a subgroup H of S5 contains a 5-cycle and a 2-cycle.

Show that H 5 S5. (This exercise is referred to in Chapter 32.)
26. Suppose that G is a finite simple group and contains subgroups H

and K such that |G:H| and |G:K| are prime. Show that |H| 5 |K|.
27. Show that (up to isomorphism) A5 is the only simple group of

order 60. (This exercise is referred to in this chapter.)
28. Prove that a simple group cannot have a subgroup of index 4.
29. Prove that there is no simple group of order , where p and q are

odd primes and .
30. If a simple group G has a subgroup K that is a normal subgroup of

two distinct maximal subgroups, prove that .
31. Show that a finite group of even order that has a cyclic Sylow 2-

subgroup is not simple.

Computer Exercises

They have computers, and they may have other weapons of mass destruction.
JANET RENO

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software uses a counter M to keep track of how many integers
Theorem 25.1 eliminates in any given interval. Run the program
for the following intervals: 1–100; 501–600; 5001–5100;
10,001–10,100. How does M seem to behave as the sizes of the inte-
gers grow?

2. This software uses a counter M to keep track of how many integers
the Index Theorem eliminates in any given interval of integers.
Run the program for the same intervals as in Exercise 1. How does
M seem to behave as the sizes of the integers grow?

K 5 5e6
q . p

p2q
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Michael Aschbacher

Fresh out of graduate school, he
[Aschbacher] had just entered the field,
and from that moment he became the
driving force behind my program. In rapid
succession he proved one astonishing
theorem after another. Although there
were many other major contributors to
this final assault, Aschbacher alone was
responsible for shrinking my projected 
30-year timetable to a mere 10 years.

DANIEL GORENSTEIN, Scientific American

MICHAEL ASCHBACHER was born on April 8,
1944, in Little Rock, Arkansas. Shortly after
his birth, his family moved to Illinois, where
his father was a professor of accounting
and his mother was a high school English
teacher. When he was nine years old, his fam-
ily moved to East Lansing, Michigan; six
years later, they moved to Los Angeles.

After high school, Aschbacher enrolled at
the California Institute of Technology. In ad-
dition to his schoolwork, he passed the first
four actuary exams and was employed for a
few years as an actuary, full-time in the sum-
mers and part-time during the academic year.
Two of the Caltech mathematicians who in-
fluenced him were Marshall Hall and Donald
Knuth. In his senior year, Aschbacher took
abstract algebra but showed little interest
in the course. Accordingly, he received a
grade of C.

In 1966, Aschbacher went to the Univer-
sity of Wisconsin for a Ph.D. degree. He

completed his dissertation in 1969, and, after
spending one year as an assistant professor
at the University of Illinois, he returned to
Caltech and quickly moved up to the rank of
professor.

Aschbacher’s dissertation work in the
area of combinatorial geometries had led
him to consider certain group-theoretic
questions. Gradually, he turned his attention
more and more to purely group-theoretic
problems, particularly those bearing on the
classification of finite simple groups. The
1980 Cole Prize Selection Committee said
of one of his papers, “[It] lifted the subject
to a new plateau and brought the classifica-
tion within reach.” Aschbacher has been
elected to the National Academy of Sci-
ences, the American Academy of Sciences,
and the vice presidency of the American
Mathematical Society.

434

16509_ch25_p420-436 pp4  11/15/08  12:14 PM  Page 434



Daniel Gorenstein

Gorenstein was one of the most influential
mathematicians of the last few decades.

MICHAEL ASCHBACHER, 
Notices of the American Mathematical

Society 39 (1992): 1190

435

DANIEL GORENSTEIN was born in Boston
on January 1, 1923. Upon graduating from
Harvard in 1943 during World War II,
Gorenstein was offered an instructorship at
Harvard to teach mathematics to army person-
nel. After the war ended, he began graduate
work at Harvard. He received his Ph.D. de-
gree in 1951, working in algebraic geometry
under Oscar Zariski. It was in his dissertation
that he introduced the class of rings that is
now named after him. In 1951, Gorenstein
took a position at Clark University in
Worcester, Massachusetts, where he stayed
until moving to Northeastern University in
1964. From 1969 until his death on August
26, 1992, he was at Rutgers University.

In 1957, Gorenstein switched from al-
gebraic geometry to finite groups, learning the
basic material from I. N. Herstein while col-
laborating with him over the next few years. A
milestone in Gorenstein’s development as a
group theorist came during 1960–1961, when
he was invited to participate in a “Group
Theory Year” at the University of Chicago.

It was there that Gorenstein, assimilating the
revolutionary techniques then being developed
by John Thompson, began his fundamental
work that contributed to the classification of
finite simple groups.

Through his pioneering research papers,
his dynamic lectures, his numerous personal
contacts, and his influential book on finite
groups, Gorenstein became the leader in the
25-year effort, by hundreds of mathemati-
cians, that led to the classification of the fi-
nite simple groups.

Among the honors received by Gorenstein
are the Steele Prize from the American
Mathematical Society and election to mem-
bership in the National Academy of Sciences
and the American Academy of Arts and
Sciences.

To find more information about Goren-
stein, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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There seemed to be no limit to his power.
DANIEL GORENSTEIN
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JOHN G. THOMPSON was born on October 13,
1932, in Ottawa, Kansas. In 1951, he entered
Yale University as a divinity student but
switched to mathematics in his sophomore
year. In 1955, he began graduate school at the
University of Chicago and obtained his Ph.D.
degree four years later. After one year on the
faculty at Harvard, Thompson returned to
Chicago. He remained there until 1968, when
he moved to Cambridge University in
England. In 1993, Thompson accepted an ap-
pointment at the University of Florida.

Thompson’s brilliance was evident early.
In his dissertation, he verified a 50-year-old
conjecture about finite groups possessing a
certain kind of automorphism. (An article
about his achievement appeared in The New
York Times.) The novel methods Thompson
used in his dissertation foreshadowed the
revolutionary ideas he would later introduce
in the Feit-Thompson paper and the classifi-
cation of minimal simple groups (simple
groups that contain no proper non-Abelian
simple subgroups). The assimilation and ex-
tension of Thompson’s methods by others
throughout the 1960s and 1970s ultimately

led to the classification of finite simple
groups.

In the late 1970s, Thompson made sig-
nificant contributions to coding theory, the
theory of finite projective planes, and the
theory of modular functions. His recent
work on Galois groups is considered the
most important in the field in the last half of
the 20th century.

Among Thompson’s many honors are the
Cole Prize in algebra and the Fields Medal.
He was elected to the National Academy of
Sciences in 1967, the Royal Society of
London in 1979, and the American Academy
of Arts and Sciences in 1998. In 2000,
President Clinton presented Thompson the
National Medal of Science. In 2008 he was a
co-winner of the $1,000,000 Abel Prize
given by the Norwegian Academy of Science
and Letters.

To find more information about Thompson,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history/

16509_ch25_p420-436 pp4  11/15/08  12:14 PM  Page 436



Generators 
and Relations

One cannot escape the feeling that these mathematical formulae have an
independent existence and an intelligence of their own, that they are
wiser than we are, wiser even than their discoverers, that we get more
out of them than we originally put into them.

HENRICH HERTZ
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Motivation
In this chapter, we present a convenient way to define a group with cer-
tain prescribed properties. Simply put, we begin with a set of elements
that we want to generate the group, and a set of equations (called rela-
tions) that specify the conditions that these generators are to satisfy.
Among all such possible groups, we will select one that is as large as
possible. This will uniquely determine the group up to isomorphism.

To provide motivation for the theory involved, we begin with a concrete
example. Consider D4, the group of symmetries of a square. Recall that 
R 5 R90 and H, a reflection across a horizontal axis, generate the group.
Observe that R and H are related in the following ways:

R4 5 H2 5 (RH)2 5 R0 (the identity). (1)

Other relations between R and H, such as HR 5 R3H and RHR 5 H,
also exist, but they can be derived from those given in Equation (1). For
example, (RH)2 5 R0 yields HR 5 R21H21, and R4 5 H2 5 R0 yields
R21 5 R3 and H21 5 H. So, HR 5 R3H. In fact, every relation between
R and H can be derived from those given in Equation (1).

Thus, D4 is a group that is generated by a pair of elements a and b
subject to the relations a4 5 b2 5 (ab)2 5 e and such that all other rela-
tions between a and b can be derived from these relations. This last
stipulation is necessary because the subgroup {R0, R180, H, V} of D4 is
generated by the two elements a 5 R180 and b 5 H that satisfy the rela-
tions  a4 5 b2 5 (ab)2 5 e. However, the “extra” relation a2 5 e satisfied by
this subgroup cannot be derived from the original ones (since R90

22 R0). It
is natural to ask whether this description of D4 applies to some other group
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as well. The answer is no. Any other group generated by two elements a
and b satisfying only the relations a4 5 b2 5 (ab)2 5 e, and those that can
be derived from these relations, is isomorphic to D4.

Similarly, one can show that the group Z4 % Z2 is generated by two el-
ements a and b such that a4 5 b2 5 e and ab 5 ba, and any other rela-
tion between a and b can be derived from these relations. The purpose of
this chapter is to show that this procedure can be reversed; that is, we
can begin with any set of generators and relations among the generators
and construct a group that is uniquely described by these generators and
relations, subject to the stipulation that all other relations among the
generators can be derived from the original ones.

Definitions and Notation
We begin with some definitions and notation. For any set S 5 {a, b, c, . . .}
of distinct symbols, we create a new set S21 5 {a21, b21, c21, . . .} by re-
placing each x in S by x21. Define the set W(S) to be the collection of all
formal finite strings of the form x1x2 ? ? ? xk, where each xi [ S < S21.
The elements of W(S) are called words from S. We also permit the string
with no elements to be in W(S). This word is called the empty word and
is denoted by e.

We may define a binary operation on the set W(S) by juxtaposition;
that is, if x1x2 ? ? ? xk and y1y2 ? ? ? yt belong to W(S), then so does x1x2
? ? ? xky1y2 ? ? ? yt. Observe that this operation is associative and the
empty word is the identity. Also, notice that a word such as aa21 is not
the identity, because we are treating the elements of W(S) as formal
symbols with no implied meaning.

At this stage we have everything we need to make a group out of
W(S) except inverses. Here a difficulty arises, since it seems reasonable
that the inverse of the word ab, say, should be b21a21. But abb21a21 is
not the empty word! You may recall that we faced a similar obstacle
long ago when we carried out the construction of the field of quotients
of an integral domain. There we had formal symbols of the form a/b
and we wanted the inverse of a/b to be b/a. But their product, ab/(ba),
was a formal symbol that was not the same as the formal symbol 1/1,
the identity. So, we proceed here as we did there—by way of equiva-
lence classes.

Definition Equivalence Classes of Words

For any pair of elements u and v of W(S), we say that u is related to v if v
can be obtained from u by a finite sequence of insertions or deletions of
words of the form xx21 or x21x, where x [ S.
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We leave it as an exercise to show that this relation is an equivalence
relation on W(S). (See Exercise 1.)

EXAMPLE 1 Let S 5 {a, b, c}. Then acc21b is equivalent to ab;
aab21bbaccc21 is equivalent to aabac; the word a21aabb21a21 is
equivalent to the empty word; and the word ca21b is equivalent to
cc21caa21a21bbca21ac21b21. Note, however, that cac21b is not equiv-
alent to ab.

Free Group
Theorem 26.1 Equivalence Classes Form a Group

Let S be a set of distinct symbols. For any word u in W(S), let 
denote the set of all words in W(S) equivalent to u (that is, is the
equivalence class containing u). Then the set of all equivalence
classes of elements of W(S) is a group under the operation 

? 5 .

PROOF This proof is left to the reader.

The group defined in Theorem 26.1 is called a free group on S.
Theorem 26.2 shows why free groups are important.

Theorem 26.2 The Universal Mapping Property

PROOF Let G be a group and let S be a set of generators for G. (Such
a set exists, because we may take S to be G itself.) Now let F be the free
group on S. Unfortunately, since our notation for any word in  W(S) also
denotes an element of G, we have created a notational problem for our-
selves. So, to distinguish between these two cases, we will denote the
word x1x2 ? ? ? xn in W(S) by (x1x2 ? ? ? xn)F and the product x1x2 ? ? ? xn in
G by (x1x2 ? ? ? xn)G. As before, denotes the equivalence class
in F containing the word (x1x2 ? ? ? xn)F in W(S). Notice that 
and (x1x2 ? ? ? xn)G are entirely different elements, since the operations
on F and G are different.

Now consider the mapping from F into G given by

f( ) 5 (x1x2 ? ? ? xn)G.x1x2 
. . . xn

x1x2 
. . . xn

x1x2 
. . . xn

Every group is a homomorphic image of a free group.

uvvu

u
u
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[All we are doing is taking a product in F and viewing it as a product in
G. For example, if G is the cyclic group of order 4 generated by a, then

f( ) 5 (aaaaa)G 5 a.]

Clearly, f is well defined, for inserting or deleting expressions of the
form xx21 or x21x in elements of W(S) corresponds to inserting or delet-
ing the identity in G. To check that f is operation-preserving, observe
that

f( ) ( ) 5 f( )
5 (x1x2 ? ? ? xny1y2 ? ? ? ym)G
5 (x1x2 ? ? ? xn)G(y1y2 ? ? ? ym)G.

Finally, f is onto G because S generates G.

The following corollary is an immediate consequence of Theorem 26.2
and the First Isomorphism Theorem for Groups.

Corollary Universal Factor Group Property

Generators and Relations
We have now laid the foundation for defining a group by way of gener-
ators and relations. Before giving the definition, we will illustrate the
basic idea with an example.

EXAMPLE 2 Let F be the free group on the set {a, b} and let N be
the smallest normal subgroup of F containing the set {a4, b2, (ab)2}. We
will show that F/N is isomorphic to D4. We begin by observing that the
mapping f from F onto D4, which takes a to R90 and b to H (horizontal
reflection), defines a homomorphism whose kernel contains N. Thus,
F/Ker f is isomorphic to D4. On the other hand, we claim that the set

K 5 {N, aN, a2N, a3N, bN, abN, a2bN, a3bN}

of left cosets of N is F/N itself. To see this, notice that every member
of F/N can be generated by starting with N and successively multiply-
ing on the left by various combinations of a’s and b’s. So, it suffices
to show that K is closed under multiplication on the left by a and b. It
is trivial that K is closed under left multiplication by a. For b, we will
do only one of the eight cases. The others can be done in a similar
fashion. Consider b(aN). Since b2, abab, a4 [ N and Nb 5 bN, we

Every group is isomorphic to a factor group of a free group.

x1x2 
. . . xny1y2

. . . ymy1y2 
. . . ymx1x2 

. . . xn

aaaaa
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have baN 5 baNb2 5 babNb 5 a21(abab)Nb 5 a21Nb = a21a4Nb 5
a3Nb 5 a3bN. Upon completion of the other cases (Exercise 3), we
know that F/N has at most eight elements. At the same time, we know
that F/Ker f has exactly eight elements. Since F/Ker f is a factor
group of F/N [indeed, F/Ker f < (F/N)/(Ker f/N)], it follows that F/N
also has eight elements and F/N 5 F/Ker f < D4.

Definition Generators and Relations

Let G be a group generated by some subset A 5 {a1, a2, . . . , an} and let
F be the free group on A. Let W 5 {w1, w2, . . . , wt} be a subset of F and
let N be the smallest normal subgroup of F containing W. We say that G
is given by the generators a1, a2, . . . , an and the relations w1 5 w2 5 ? ? ? 5
wt 5 e if there is an isomorphism from F/N onto G that carries aiN to ai .

The notation for this situation is

G 5 �a1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 e�.

As a matter of convenience, we have restricted the number of gen-
erators and relations in our definition to be finite. This restriction is
not necessary, however. Also, it is often more convenient to write a
relation in implicit form. For example, the relation a21b23ab 5 e is
often written as ab 5 b3a. In practice, one does not bother writing
down the normal subgroup N that contains the relations. Instead, one
just manipulates the generators and treats anything in N as the iden-
tity, as our notation suggests. Rather than saying that G is given by

�a1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 e�,

many authors prefer to say that G has the presentation

�a1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 e�.

Notice that a free group is “free” of relations; that is, the equivalence
class containing the empty word is the only relation. We mention in
passing the fact that a subgroup of a free group is also a free group.
Free groups are of fundamental importance in a branch of algebra
known as combinatorial group theory.

EXAMPLE 3 The discussion in Example 2 can now be summed up
by writing

D4 5 �a, b | a4 5 b2 5 (ab)2 5 e�.

EXAMPLE 4 The group of integers is the free group on one letter; that
is, Z < �a| �. (This is the only nontrivial Abelian group that is free.)
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The next theorem formalizes the argument used in Example 2 to
prove that the group defined there has eight elements.

Theorem 26.3 (Dyck, 1882)

Let

G 5 �a1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 e�

and let

5 �a1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5
wt11 5 ? ? ? 5 wt1k 5 e�.

Then is a homomorphic image of G.

PROOF See Exercise 5.

In words, Theorem 26.3 says that if you start with generators and rela-
tions for a group G and create a group by imposing additional 
relations, then is a homomorphic image of G.

Corollary Largest Group Satisfying Defining Relations

PROOF See Exercise 5.

EXAMPLE 5 QUATERNIONS Consider the group G 5 �a, b | a2 5
b2 5 (ab)2�. What does G look like? Formally, of course, G is isomor-
phic to F/N, where F is free on {a, b} and N is the smallest normal sub-
group of F containing b22a2 and (ab)22a2. Now, let H 5 �b� and S 5
{H, aH}. Then, just as in Example 2, it follows that S is closed under
multiplication by a and b from the left. So, as in Example 2, we have
G 5 H < aH. Thus, we can determine the elements of G once we know
exactly how many elements there are in H. (Here again, the three rela-
tions come in.) To do this, first observe that b2 5 (ab)2 5 abab implies
b 5 aba. Then a2 5 b2 5 (aba)(aba) 5 aba2ba 5 ab4a and therefore
b4 5 e. Hence, H has at most four elements, and therefore G has at most
eight—namely, e, b, b2, b3, a, ab, ab2, and ab3. It is conceivable, how-
ever, that not all of these eight elements are distinct. For example, Z2 % Z2
satisfies the defining relations and has only four elements. Perhaps it is

If K is a group satisfying the defining relations of a finite group G
and |K| $ |G|, then K is isomorphic to G.

G
G

G

G
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the largest group satisfying the relations. How can we show that the eight
elements listed above are distinct? Well, consider the group generated
by the matrices

and ,

where i 5 . Direct calculations show that in the elements e, B, B2,
B3, A, AB, AB2, and AB3 are distinct and that satisfies the relations 
A2 5 B2 5 (AB)2. So, it follows from the corollary to Dyck’s Theorem
that is isomorphic to G and therefore G has order 8.

The next example illustrates why, in Examples 2 and 5, it is neces-
sary to show that the eight elements listed for the group are distinct.

EXAMPLE 6 Let

G 5 �a, b | a3 5 b9 5 e, a21ba 5 b21�.

Once again, we let H 5 �b� and observe that G 5 H < aH < a2H. Thus,

G 5 {aib j | 0 # i # 2, 0 # j # 8},

and therefore G has at most 27 elements. But this time we will not be
able to find some concrete group of order 27 satisfying the same rela-
tions that G does, for notice that b21 5 a21ba implies

b 5 (a21ba)21 5 a21b21a.

Hence,

b 5 ebe 5 a23ba3 5 a22(a21ba)a2 5 a22b21a2

5 a21(a21b21a)a 5 a21ba 5 b21.

So, the original three relations imply the additional relation b2 5 e. But
b2 5 e 5 b9 further implies b 5 e. It follows, then, that G has at most
three distinct elements—namely, e, a, and a2. But Z3 satisfies the defin-
ing relations with a 5 1 and b 5 0. So, |G| 5 3.

We hope Example 6 convinces you of the fact that, once a list of the
elements of the group given by a set of generators and relations has
been obtained, one must further verify that this list has no duplications.
Typically, this is accomplished by exhibiting a specific group that satis-
fies the given set of generators and relations and that has the same size
as the list. Obviously, experience plays a role here.

Here is a fun example adapted from [1].

G

G
G"21

B 5 c0 i

i 0
dA 5 c 0 1

21 0
d

G
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EXAMPLE 7 Let G be the group with the 26 letters of the alphabet as
generators. For relations we take strings A 5 B, where A and B are
words in some fixed reference, say [2], and have the same pronuncia-
tion but different meanings (such words are called homophones). For
example, buy 5 by 5 bye, hour 5 our, lead 5 led, whole 5 hole. From
these strings and cancellation, we obtain u 5 e 5 h 5 a 5 w 5 /0 (/0 is
the identity string). With these examples in mind, we ask, What is the
group given by these generators and relations? Surprisingly, the answer
is the infinite cyclic group generated by v. To verify this, one must show
that every letter except v is equivalent to /0 and that there are no two ho-
mophones that contain a different number of v’s. The former can easily
be done with common words. For example, from inn 5 in, plumb 5
plum, and knot 5 not, we see that n 5 b 5 k 5 /0. From too 5 to
we have o 5 /0. That there are no two homophones in [2] that have a
different number of v’s can be verified by simply checking all cases. In
contrast, the reference Handbook of Homophones by W. C. Town-
send (available at the website http://members.peak.org/~jeremy/
dictionaryclassic/chapters/homophones.php) lists felt/veldt as homo-
phones. Of course, including these makes the group trivial.

Classification of Groups 
of Order up to 15

The next theorem illustrates the utility of the ideas presented in this
chapter.

Theorem 26.4 Classification of Groups of Order 8 (Cayley, 1859)

PROOF The Fundamental Theorem of Finite Abelian Groups takes
care of the Abelian cases. Now, let G be a non-Abelian group of order
8. Also, let G1 5 �a, b | a4 5 b2 5 (ab)2 5 e� and let G2 5 �a, b | a2 5
b2 5 (ab)2�. We know from the preceding examples that G1 is isomor-
phic to D4 and G2 is isomorphic to the quaternions. Thus, it suffices to
show that G must satisfy the defining relations for G1 or G2. It follows
from Exercise 35 in Chapter 2 and Lagrange’s Theorem that G has an
element of order 4; call it a. Then, if b is any element of G not in �a�, we
know that

G 5 �a� < �a�b 5 {e, a, a2, a3, b, ab, a2b, a3b}.

Up to isomorphism, there are only five groups of order 8: Z8, Z4 % Z2,
Z2 % Z2 % Z2, D4, and the quaternions.
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Consider the element b2 of G. Which of the eight elements of G can it
be? Not b, ab, a2b, or a3b, by cancellation. Not a, for b2 commutes with
b and a does not. Not a3, for the same reason. Thus, b2 5 e or b2 5 a2.
Suppose b2 5 e. Since �a� is a normal subgroup of G, we know that
bab21 [ �a�. From this and the fact that |bab21| 5 |a|, we then conclude
that bab21 5 a or bab21 5 a21. The first relation would mean that G is
Abelian, so we know that bab21 5 a21. But then, since b2 5 e, we have
(ab)2 5 e, and therefore G satisfies the defining relations for G1.

Finally, if b2 5 a2 holds instead of b2 5 e, we can use bab21 5 a21

to conclude that (ab)2 5 a(bab21)b2 5 aa21b2 5 b2, and therefore G sat-
isfies the defining relations for G2.

The classification of the groups of order 8, together with our results
on groups of order p2, 2p, and pq from Chapter 24, allow us to classify
the groups of order up to 15, with the exception of those of order 12. We
already know four groups of order 12—namely, Z12, Z6 % Z2, D6, and A4.
An argument along the lines of Theorem 26.4 can be given to show that
there is only one more group of order 12. This group, called the dicyclic
group of order 12 and denoted by Q6, has presentation �a, b | a6 5 e,
a3 5 b2, b21ab 5 a21�. Table 26.1 lists the groups of order at most 15.
We use Q4 to denote the quaternions (see Example 5 in this chapter).

Table 26.1 Classification of Groups of Order Up to 15

Order Abelian Groups Non-Abelian Groups

1 Z1
2 Z2
3 Z3
4 Z4, Z2 % Z2
5 Z5
6 Z6 D3
7 Z7
8 Z8, Z4 % Z2, Z2 % Z2 % Z2 D4, Q4
9 Z9, Z3 % Z3

10 Z10 D5
11 Z11
12 Z12, Z6 % Z2 D6, A4, Q6
13 Z13
14 Z14 D7
15 Z15
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Characterization of Dihedral Groups
As another nice application of generators and relations, we will now
give a characterization of the dihedral groups that has been known for
more than 100 years. For n $ 3, we have used Dn to denote the group of
symmetries of a regular n-gon. Imitating Example 2, one can show that
Dn < �a, b | an 5 b2 5 (ab)2 5 e� (see Exercise 9). By analogy, these
generators and relations serve to define D1 and D2 also. (These are also
called dihedral groups.) Finally, we define the infinite dihedral group 
D` as �a, b | a2 5 b2 5 e�. The elements of D` can be listed as e, a, b, ab,
ba, (ab)a, (ba)b, (ab)2, (ba)2, (ab)2a, (ba)2b, (ab)3, (ba)3, . . . .

Theorem 26.5 Characterization of Dihedral Groups

PROOF Let G be a group generated by a pair of distinct elements of
order 2, say, a and b. We consider the order of ab. If |ab| 5 `, then G is
infinite and satisfies the relations of D`. We will show that G is isomor-
phic to D`. By Dyck’s Theorem, G is isomorphic to some factor group
of D`, say, D`/H. Now, suppose h [ H and h 2 e. Since every element
of D` has one of the forms (ab)i, (ba)i, (ab)ia, or (ba)ib, by symmetry,
we may assume that h 5 (ab)i or h 5 (ab)ia. If h 5 (ab)i, we will show
that D`/H satisfies the relations for Di given in Exercise 9. Since (ab)i is
in H, we have

H 5 (ab)iH 5 (abH)i,

so that (abH)21 5 (abH)i21. But

(ab)21H 5 b21a21H 5 baH,

and it follows that

.

Thus,

D`/H 5 �aH, bH� 5 �aH, abH�

(see Exercise 7), and D`/H satisfies the defining relations for Di (use
Exercise 9 with x 5 aH and y 5 abH). In particular, G is finite—an
impossibility.

If h 5 (ab)ia, then

H 5 (ab)iaH 5 (ab)iHaH,

aHabHaH 5 a2HbHaH 5 eHbaH 5 baH 5 (abH)21

Any group generated by a pair of elements of order 2 is dihedral.
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and therefore

(abH)i 5 (ab)iH 5 (aH)21 5 a21H 5 aH.

It follows that

�aH, bH� 5 �aH, abH� # �abH�.

However,

(abH)2i 5 (aH)2 5 a2H 5 H,

so that D`/H is again finite. This contradiction forces H 5 {e} and G to
be isomorphic to D`.

Finally, suppose that |ab| 5 n. Since G 5 �a, b� 5 �a, ab�, we can
show that G is isomorphic to Dn by proving that b(ab)b 5 (ab)21, which
is the same as ba 5 (ab)21 (see Exercise 9). But (ab)21 5 b21a21 5 ba,
since a and b have order 2.

Realizing the Dihedral Groups 
with Mirrors

A geometric realization of D` can be obtained by placing two mirrors
facing each other in a parallel position, as shown in Figure 26.1. If we
let a and b denote reflections in mirrors A and B, respectively, then ab,
viewed as the composition of a and b, represents a translation through
twice the distance between the two mirrors to the left, and ba is the
translation through the same distance to the right.

Figure 26.1 The group D`—reflections in parallel mirrors

The finite dihedral groups can also be realized with a pair of mirrors.
For example, if we place a pair of mirrors facing each other at a 45°
angle, we obtain the group D4. Notice that in Figure 26.2, the effect of
reflecting an object in mirror A, then mirror B, is a rotation of twice the
angle between the two mirrors (that is, 90°).

aba bab babaab a b bae

A B

FF FF FF FF
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Figure 26.2 The group D4—reflections in mirrors at a 45° angle

In Figure 26.3, we see a portion of the pattern produced by reflections
in a pair of mirrors set at a 1° angle. The corresponding group is D180. In
general, reflections in a pair of mirrors set at the angle 180°/n correspond
to the group Dn. As n becomes larger and larger, the mirrors approach a
parallel position. In the limiting case, we have the group D`.

Figure 26.3 The group D180—reflections in mirrors at a 1° angle

We conclude this chapter by commenting on the advantages and dis-
advantages of using generators and relations to define groups. The prin-
cipal advantage is that in many situations—particularly in knot theory,
algebraic topology, and geometry—groups defined by way of genera-
tors and relations arise in a natural way. Within group theory itself, it is
often convenient to construct examples and counterexamples with gen-
erators and relations. Among the disadvantages of defining a group by
generators and relations is the fact that it is often difficult to decide
whether or not the group is finite, or even whether or not a particular
element is the identity. Furthermore, the same group can be defined with
entirely different sets of generators and relations, and, given two groups
defined by generators and relations, it is often extremely difficult to
decide whether or not these two groups are isomorphic. Nowadays,
these questions are frequently tackled with the aid of a computer.
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Exercises

It don’t come easy.
Title of a Song by RINGO STARR, May 1971

1. Let S be a set of distinct symbols. Show that the relation defined
on W(S) in this chapter is an equivalence relation.

2. Let n be an even integer. Prove that Dn /Z(Dn) is isomorphic to Dn/2.
3. Verify that the set K in Example 2 is closed under multiplication

on the left by b.
4. Show that �a, b | a5 5 b2 5 e, ba 5 a2b� is isomorphic to Z2.
5. Prove Theorem 26.3 and its corollary.
6. Let G be the group {61, 6i, 6j, 6k} with multiplication defined

as in Exercise 52 in Chapter 9. Show that G is isomorphic to �a, b |
a2 5 b2 5 (ab)2�. (Hence, the name “quaternions.”)

7. In any group, show that �a, b� 5 �a, ab�. (This exercise is referred
to in the proof of Theorem 26.5.)

8. Let a 5 (12)(34) and b 5 (24). Show that the group generated by
a and b is isomorphic to D4.

9. Prove that G 5 �x, y | x2 5 yn 5 e, xyx 5 y21� is isomorphic to Dn.
(This exercise is referred to in the proof of Theorem 26.5.)

10. What is the minimum number of generators needed for Z2 % Z2 %

Z2? Find a set of generators and relations for this group.
11. Suppose that x2 5 y2 5 e and yz 5 zxy. Show that xy 5 yx.
12. Let G 5 �a, b | a2 5 b4 5 e, ab 5 b3a�.

a. Express a3b2abab3 in the form bia j where 0 # i # 1 and 
0 # j # 3.

b. Express b3abab3a in the form biaj where 0 # i # 1 and 0 # j # 3.
13. Let G 5 �a, b | a2 5 b2 5 (ab)2�.

a. Express b2abab3 in the form bia j.
b. Express b3abab3a in the form bia j.

14. Let G be the group defined by the following table. Show that G is 
isomorphic to Dn.

1 2 3 4 5 6 ? ? ? 2n

1 1 2 3 4 5 6 ? ? ? 2n
2 2 1 2n 2n 2 1 2n 2 2 2n 2 3 ? ? ? 3
3 3 4 5 6 7 8 ? ? ? 2
4 4 3 2 1 2n 2n 2 1 ? ? ? 5
5 5 6 7 8 9 10 ? ? ? 4
6 6 5 4 3 2 1 ? ? ? 7
: : : : : : : : :

2n 2n 2n 2 1 2n 2 2 2n 2 3 2n 2 4 2n 2 5 ? ? ? 1
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15. Let G 5 �x, y | x8 5 y2 5 e, yxyx3 5 e�. Show that |G| # 16. As-
suming that |G| 5 16, find the center of G and the order of xy.

16. Confirm the classification given in Table 26.1 of all groups of
orders 1 to 11.

17. Let G be defined by some set of generators and relations. Show
that every factor group of G satisfies the relations defining G.

18. Let G 5 �s, t | sts 5 tst�. Show that the permutations (23) and (13)
satisfy the defining relations of G. Explain why this proves that G
is non-Abelian.

19. In D12 5 �x, y | x2 5 y12 5 e, xyx 5 y21�, prove that the subgroup 
H 5 �x, y3� (which is isomorphic to D4) is not a normal subgroup.

20. Let G 5 �x, y | x2n 5 e, xn 5 y2, y21xy 5 x21�. Show that Z(G) 5
{e, xn}. Assuming that |G| 5 4n, show that G/Z(G) is isomorphic
to Dn. (The group G is called the dicyclic group of order 4n.)

21. Let G 5 �a, b | a6 5 b3 5 e, b21ab 5 a3�. How many elements
does G have? To what familiar group is G isomorphic?

22. Let G 5 �x, y | x4 5 y4 5 e, xyxy21 5 e�. Show that |G| # 16. As-
suming that |G| 5 16, find the center of G and show that G/�y2� is
isomorphic to D4.

23. Determine the orders of the elements of D`.

24. Let . Prove that G is isomorphic  

to D4.
25. Let G 5 �a, b, c, d | ab 5 c, bc 5 d, cd 5 a, da 5 b�. Determine |G|.
26. Let . To what familiar

group is G isomorphic?
27. Let . To what familiar

group is G isomorphic?
28. Given an example of a non-Abelian group that has exactly three

elements of finite order.
29. Referring to Example 7 in this chapter, show as many letters as you

can that are equivalent to ~.
30. Suppose that a group of order 8 has exactly five elements of order 2.

Identify the group.
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Suggested Readings

Alexander H. Fran, Jr. and David Singmaster, Handbook of Cubik Math,
Hillside, N. J.: Enslow, 1982.

This book is replete with the group-theoretic aspects of the Magic
Cube. It uses permutation group theory and generators and relations to
discuss the solutions to the cube and related results. The book has nu-
merous challenging exercises stated in group-theoretic terms.

Lee Neuwirth, “The Theory of Knots,” Scientific American 240 (1979):
110–124.

This article shows how a group can be associated with a knotted string.
Mathematically, a knot is just a one-dimensional curve situated in
three-dimensional space. The theory of knots—a branch of topology—
seeks to classify and analyze the different ways of embedding such a
curve. Around the beginning of the 20th century, Henri Poincaré ob-
served that important geometric characteristics of knots could be de-
scribed in terms of group generators and relations—the so-called knot
group. Among other knots, Neuwirth describes the construction of the
knot group for the trefoil knot pictured. One set of generators and rela-
tions for this group is �x, y, z | xy 5 yz, zx 5 yz�.

The trefoil knot

David Peifer, “An Introduction to Combinatorial Group Theory and the
Word Problem,” Mathematics Magazine 70 (1997): 3–10.

This article discusses some fundamental ideas and problems regarding
groups given by presentations.
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Marshall Hall, Jr.

MARSHALL HALL, JR., was born on September
17, 1910, in St. Louis, Missouri. He demon-
strated interest in mathematics at the age of
11 when he constructed a seven-place table of
logarithms for the positive integers up to
1000. He completed a B.A. degree in 1932 at
Yale. After spending a year at Cambridge
University, where he worked with Philip
Hall, Harold Davenport, and G. H. Hardy, he
returned to Yale for his Ph.D. degree. At the
outbreak of World War II, he joined Naval
Intelligence and had significant success in de-
ciphering both the Japanese codes and the
German Enigma messages. These successes
helped to turn the tide of the war. After the
war, Hall had faculty appointments at the
Ohio State University, Caltech, and Emory
University. He died on July 4, 1990.

Hall’s highly regarded books on group
theory and combinatorial theory are classics.
His mathematical legacy includes more than

Professor Hall was a mathematician in the
broadest sense of the word but with a
predilection for group theory, geometry
and combinatorics.

HANS ZASSENHAUS, Notices of

the American Mathematical Society

452

120 research papers on group theory, coding
theory, and design theory. His 1943 paper on
projective planes ranks among the most cited
papers in mathematics. Several fundamental
concepts as well as a sporadic simple group
are identified with Hall’s name. One of Hall’s
most celebrated results is his solution to the
“Burnside Problem” for exponent 6—that is,
a finitely generated group in which the order
of every element divides 6 must be finite.
Hall influenced both John Thompson and
Michael Aschbacher, two of finite group the-
ory’s greatest contributors. It was Hall who
suggested Thompson’s Ph.D. dissertation
problem. Hall’s Ph.D. students at Caltech in-
cluded Donald Knuth and Robert McEliece.

To find more information about Hall,
visit:

http://www–groups.dcs.st–and
.ac.uk/~history/
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Isometries
In the early chapters of this book, we briefly discussed symmetry
groups. In this chapter and the next, we examine this fundamentally
important concept in some detail. It is convenient to begin such a dis-
cussion with the definition of an isometry (from the Greek isometros,
meaning “equal measure”) in Rn.

Definition Isometry

An isometry of n-dimensional space Rn is a function from Rn onto Rn

that preserves distance.

In other words, a function T from Rn onto Rn is an isometry if, for
every pair of points p and q in Rn, the distance from T(p) to T(q) is the
same as the distance from p to q. With this definition, we may now
make precise the definition of the symmetry group of an n-dimen-
sional figure.

Definition Symmetry Group of a Figure in Rn

Let F be a set of points in Rn. The symmetry group of F in Rn is the set
of all isometries of Rn that carry F onto itself. The group operation is
function composition.

It is important to realize that the symmetry group of an object de-
pends not only on the object, but also on the space in which we view it.
For example, the symmetry group of a line segment in R1 has order 2,
the symmetry group of a line segment considered as a set of points in
R2 has order 4, and the symmetry group of a line segment viewed as a
set of points in R3 has infinite order (see Exercise 9).

27 Symmetry Groups

I’m not good at math, but I do know that the universe is formed with
mathematical principles whether I understand them or not, and I am
going to let that guide me.

BOB DYLAN, Chronicles, Volume One
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Although we have formulated our definitions for all finite dimen-
sions, our chief interest will be the two-dimensional case. It has been
known since 1831 that every isometry of R2 is one of four types:
rotation, reflection, translation, and glide-reflection (see [1, p. 46]).
Rotation about a point in a plane needs no explanation. A reflection
across a line L is that transformation that leaves every point of L fixed
and takes every point Q, not on L, to the point Q9 so that L is the per-
pendicular bisector of the line segment from Q to Q9 (see Figure 27.1).
The line L is called the axis of reflection. In an xy-coordinate plane, the
transformation (x, y) S (x, 2y) is a reflection across the x-axis,
whereas (x, y) S (y, x) is a reflection across the line y 5 x. Some au-
thors call an axis of reflective symmetry L a mirror because L acts like
a two-sided mirror; that is, the image of a point Q in a mirror placed on
the line L is, in fact, the image of Q under the reflection across the line
L. Reflections are called opposite isometries because they reverse ori-
entation. For example, the reflected image of a clockwise spiral is a
counterclockwise spiral. Similarly, the reflected image of a right hand
is a left hand. (See Figure 27.1.)

Figure 27.1 Reflected images

A translation is simply a function that carries all points the same dis-
tance in the same direction. For example, if p and q are points in a plane
and T is a translation, then the two directed line segments joining p to
T( p) and q to T(q) have the same length and direction. A glide-reflection
is the product of a translation and a reflection across the line containing
the translation line segment. This line is called the glide-axis. In
Figure 27.2, the arrow gives the direction and length of the translation,
and is contained in the axis of reflection. A glide-reflection is also an op-
posite isometry. Successive footprints in wet sand are related by a
glide-reflection.

Figure 27.2 Glide-reflection

p T(p)

Axis of reflectionAxis of reflection

L

Q

Q'
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Classification of Finite Plane 
Symmetry Groups

Our first goal in this chapter is to classify all finite plane symmetry
groups. As we have seen in earlier chapters, the dihedral group Dn is
the plane symmetry group of a regular n-gon. (For convenience, call
D2 the plane symmetry group of a nonsquare rectangle and D1 the
plane symmetry group of the letter “V.” In particular, D2 < Z2 % Z2 and
D1 < Z2.) The cyclic groups Zn are easily seen to be plane symmetry
groups also. Figure 27.3 is an illustration of an organism whose plane
symmetry group consists of four rotations and is isomorphic to Z4. The
surprising fact is that the cyclic groups and dihedral groups are
the only finite plane symmetry groups. The famous mathematician
Hermann Weyl attributes the following theorem to Leonardo da Vinci
(1452–1519).

Figure 27.3 Aurelia Insulinda, an organism 
whose plane symmetry group is Z4

Theorem 27.1 Finite Symmetry Groups in the Plane

PROOF Let G be a finite plane symmetry group of some figure. We
first observe that G cannot contain a translation or a glide-reflection,
because in either case G would be infinite. Now observing that the
composition of two reflections preserves orientation, we know that
such a composition is a translation or rotation. When the two reflections

The only finite plane symmetry groups are Zn and Dn.

27 | Symmetry Groups 455
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have parallel axes of reflection, there is no fixed point (see Exercise 10
in the Supplementary Exercises for Chapters 1–4) so the composition
is a translation. Thus, every two reflections in G have reflection axes
that intersect in some point. Suppose that f and are two distinct re-
flections in G. Then because preserves orientation, we know that 
is a rotation. We use the fact from geometry [2; 366] that a finite group
of rotations must have a common center, say P. This means that their
axes of reflection must intersect at point P. So, we have shown that all
the elements of G have the common fixed point P.

For convenience, let us denote a rotation about P of s degrees
by Rs. Now, among all rotations in G, let b be the smallest positive
angle of rotation. (Such an angle exists, since G is finite and R360 be-
longs to G.) We claim that every rotation in G is some power of Rb.
To see this, suppose that Rs is in G. We may assume 0° , s # 360°.
Then, b # s and there is some integer t such that tb # s ,
(t 1 1)b. But, then Rs2tb 5 Rs(Rb)2t is in G and 0 # s 2 tb , b.
Since b represents the smallest positive angle of rotation among the
elements of G, we must have s 2 tb 5 0, and therefore, Rs 5 (Rb)t.
This verifies the claim.

For convenience, let us say that |Rb| 5 n. Now, if G has no reflec-
tions, we have proved that G 5 �Rb� < Zn. If G has at least one reflec-
tion, say f, then

f, fRb, f (Rb)2, . . . , f (Rb)n21

are also reflections. Furthermore, this is the entire set of reflections of G.
For if g is any reflection in G, then fg is a rotation, and so fg 5 (Rb)k for
some k. Thus, g 5 f21(Rb)k 5 f(Rb)k. So

G 5 {R0, Rb, (Rb)2, . . . , (Rb)n21, f, fRb, a(Rb)2, . . . , f(Rb)n21},

and G is generated by the pair of reflections f and fRb. Hence, by our
characterization of the dihedral groups (Theorem 26.5), G is the dihe-
dral group Dn.

Classification of Finite Groups 
of Rotations in R3

One might think that the set of all possible finite symmetry groups in
three dimensions would be much more diverse than is the case for two
dimensions. Surprisingly, this is not the case. For example, moving to
three dimensions introduces only three new groups of rotations. This
observation was first made by the physicist and mineralogist Auguste
Bravais in 1849, in his study of possible structures of crystals.

f f9f f9
f 9
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Theorem 27.2 Finite Groups of Rotations in R3

Theorem 27.2, together with the Orbit-Stabilizer Theorem (Theo-
rem 7.3), makes easy work of determining the group of rotations of an
object in R3.

EXAMPLE 1 We determine the group G of rotations of the solid in
Figure 27.4, which is composed of six congruent squares and eight con-
gruent equilateral triangles. We begin by singling out any one of the
squares. Obviously, there are four rotations that map this square to itself,
and the designated square can be rotated to the location of any of the
other five. So, by the Orbit-Stabilizer Theorem (Theorem 7.3), the rota-
tion group has order 4 ? 6 5 24. By Theorem 27.2, G is one of Z24, D12,
and S4. But each of the first two groups has exactly two elements of
order 4, whereas G has more than two. So, G is isomorphic to S4.

Figure 27.4

The group of rotations of a tetrahedron (the tetrahedral group) is iso-
morphic to A4; the group of rotations of a cube or an octahedron (the
octahedral group) is isomorphic to S4; the group of rotations of a do-
decahedron or an icosahedron (the icosahedral group) is isomorphic to
A5. (Coxeter [1, pp. 271–273] specifies which portions of the polyhedra
are being permuted in each case.) These five solids are illustrated in
Figure 27.5.

Up to isomorphism, the finite groups of rotations in R3 are Zn, Dn,
A4, S4, and A5.

27 | Symmetry Groups 457
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Figure 27.5 The five regular solids as depicted by Johannes Kepler 
in Harmonices Mundi, Book II (1619)

Exercises

Perhaps the most valuable result of all education is the ability to make 
yourself do the thing you have to do, when it ought to be done, whether you
like it or not.

THOMAS HENRY HUXLEY, Technical Education

1. Show that an isometry of Rn is one-to-one.
2. Show that the translations of Rn form a group.
3. Exhibit a plane figure whose plane symmetry group is Z5.
4. Show that the group of rotations in R3 of a 3-prism (that is, a prism

with equilateral ends, as in the following figure) is isomorphic to D3.

5. What is the order of the (entire) symmetry group in R3 of a 3-prism?
6. What is the order of the symmetry group in R3 of a 4-prism (a box

with square ends that is not a cube)?
7. What is the order of the symmetry group in R3 of an n-prism?
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8. Show that the symmetry group in R3 of a box of dimensions 20 3
30 3 40 is isomorphic to Z2 % Z2 % Z2.

9. Describe the symmetry group of a line segment viewed as
a. a subset of R1,
b. a subset of R2,
c. a subset of R3.
(This exercise is referred to in this chapter.)

10. (From the “Ask Marilyn” column in Parade Magazine, December 11,
1994.) The letters of the alphabet can be sorted into the following
categories:
1. FGJLNPQRSZ
2. BCDEK
3. AMTUVWY
4. HIOX
What defines the categories?

11. Exactly how many elements of order 4 does the group in Example 1
have?

12. Why is inversion [that is, ] not listed as one of
the four kinds of isometries in ?

13. Explain why inversion through a point in R3 cannot be realized by
a rotation in R3.

14. Reflection in a line L in R3 is the isometry that takes each point Q
to the point Q9 with the property that L is a perpendicular bisector
of the line segment joining Q and Q9. Describe a rotation that has
this same effect.

15. In R2, a rotation fixes a point; in R3, a rotation fixes a line. In R4,
what does a rotation fix? Generalize these observations to Rn.

16. Show that an isometry of a plane preserves angles.
17. Show that an isometry of a plane is completely determined by the

image of three noncollinear points.
18. Suppose that an isometry of a plane leaves three noncollinear

points fixed. Which isometry is it?
19. Suppose that an isometry of a plane fixes exactly one point. What

type of isometry must it be?
20. Suppose that A and B are rotations of 180° about the points a and b,

respectively. What is A followed by B? How is the composite mo-
tion related to the points a and b?

R2
f(x, y) 5 (2x, 2y)
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The Frieze Groups
In this chapter, we discuss an interesting collection of infinite symme-
try groups that arise from periodic designs in a plane. There are two
types of such groups. The discrete frieze groups are the plane symmetry
groups of patterns whose subgroups of translations are isomorphic
to Z. These kinds of designs are the ones used for decorative strips and
for patterns on jewelry, as illustrated in Figure 28.1. In mathematics,
familiar examples include the graphs of y 5 sin x, y 5 tan x, y 5 |sin x|,
and |y| 5 sin x. After we analyze the discrete frieze groups, we exam-
ine the discrete symmetry groups of plane patterns whose subgroups of
translations are isomorphic to Z % Z.

In previous chapters, it was our custom to view two isomorphic
groups as the same group, since we could not distinguish between them
algebraically. In the case of the frieze groups, we will soon see that, al-
though some of them are isomorphic as groups (that is, algebraically
the same), geometrically they are quite different. To emphasize this
difference, we will treat them separately. In each of the following
cases, the given pattern extends infinitely far in both directions.
A proof that there are exactly seven types of frieze patterns is given in
the appendix to [6].

28
Frieze Groups 
and Crystallographic
Groups

Symmetry, considered as a law of regular composition of structural objects,
is similar to harmony. More precisely, symmetry is one of its components,
while the other component is dissymmetry. In our opinion the whole
esthetics of scientific and artistic creativity lies in the ability to feel this
where others fail to perceive it.

A. V. SHUBNIKOV AND V. A. KOPTSIK, 
Symmetry in Science and Art
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Figure 28.1 Frieze patterns

The symmetry group of pattern I (Figure 28.2) consists of transla-
tions only. Letting x denote a translation to the right of one unit (that
is, the distance between two consecutive R’s), we may write the sym-
metry group of pattern I as

F1 5 {xn | n [ Z}.

Figure 28.2 Pattern I

R R R R
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The group for pattern II (Figure 28.3), like that of pattern I, is infi-
nitely cyclic. Letting x denote a glide-reflection, we may write the
symmetry group of pattern II as

F2 5 {xn | n [ Z}.

Figure 28.3 Pattern II

Notice that the translation subgroup of pattern II is just �x2�.
The symmetry group for pattern III (Figure 28.4) is generated by a

translation x and a reflection y across the dashed vertical line. (There
are infinitely many axes of reflective symmetry, including those mid-
way between consecutive pairs of opposite-facing R’s. Any one will
do.) The entire group (the operation is function composition) is

F3 5 {xnym | n [ Z, m 5 0 or 1}.

Figure 28.4 Pattern III

Note that the two elements xy and y have order 2, they generate F3,
and their product (xy)y 5 x has infinite order. Thus, by Theorem 26.5,
F3 is the infinite dihedral group. A geometric fact about pattern III
worth mentioning is that the distance between consecutive pairs of ver-
tical reflection axes is half the length of the smallest translation vector.

In pattern IV (Figure 28.5), the symmetry group F4 is generated by a
translation x and a rotation y of 180° about a point p midway between
consecutive R’s (such a rotation is often called a half-turn). This group,
like F3, is also infinite dihedral. (Another rotation point lies between a
top and bottom R. As in pattern III, the distance between consecutive
points of rotational symmetry is half the length of the smallest transla-
tion vector.) Therefore,

F4 5 {xnym | n [ Z, m 5 0 or m 5 1}.

Figure 28.5 Pattern IV

R R R RRRRR

p

RRRRRRRRRR

R R RRR R R
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Figure 28.6 Pattern V

The symmetry group F5 for pattern V (Figure 28.6) is yet another
infinite dihedral group generated by a glide-reflection x and a rotation y
of 180° about the point p. Notice that pattern V has vertical reflection
symmetry xy. The rotation points are midway between the vertical reflec-
tion axes. Thus

F5 5 {xnym | n [ Z, m 5 0 or m 5 1}.

The symmetry group F6 for pattern VI (Figure 28.7) is generated by
a translation x and a horizontal reflection y. The group is

F6 5 {xnym | n [ Z, m 5 0 or m 5 1}.

Note that, since x and y commute, F6 is not infinite dihedral. In fact, F6
is isomorphic to Z % Z2. Pattern VI is invariant under a glide-reflection
also, but in this case the glide-reflection is called trivial, since the axis
of the glide-reflection is also an axis of reflection. (Conversely, a glide-
reflection is nontrivial if its glide-axis is not an axis of reflective sym-
metry for the pattern.)

Figure 28.7 Pattern VI

The symmetry group F7 of pattern VII (Figure 28.8) is generated by
a translation x, a horizontal reflection y, and a vertical reflection z. It is
isomorphic to the direct product of the infinite dihedral group and Z2.
The product of y and z is a 180° rotation. Therefore,

F7 5 {xnymzk | n [ Z, m 5 0 or m 5 1, k 5 0 or k 5 1}.

Figure 28.8 Pattern VII

The preceding discussion is summarized in Figure 28.9. Figure 28.10
provides an identification algorithm for the frieze patterns.

In describing the seven frieze groups, we have not explicitly said
how multiplication is done algebraically. However, each group element
corresponds to some isometry, so multiplication is the same as function 

RR RR RR RRRR RR RR RR

R R R RR R R R

RRRR RR RRRR RR
p
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Figure 28.9 The seven frieze patterns and their groups of symmetries

composition. Thus, we can always use the geometry to determine the
product of any particular string of elements.

For example, we know that every element of F7 can be written in the
form xnymzk. So, just for fun, let’s determine the appropriate values for
n, m, and k for the element g 5 x21yzxz. We may do this simply by
looking at the effect that g has on pattern VII. For convenience, we will
pick out a particular R in the pattern and trace the action of g one step at
a time. To distinguish this R, we enclose it in a shaded box. Also, we
draw the axis of the vertical reflection z as a dashed line segment. See
Figure 28.11.

Now, comparing the starting position of the shaded R with its final
position, we see that x21yzxz 5 x22y. Exercise 7 suggests how one may
arrive at the same result through purely algebraic manipulation.

x =  translation

x =  glide-reflection

Z

Z

x =  translation
y =  vertical reflection

x =  translation
y =  rotation of 180°

x =  glide-reflection
y =  rotation of 180°

Generators

Group
isomorphism
classPattern

x =  translation
y =  horizontal reflection

x =  translation
y =  horizontal reflection
z =  vertical reflection

D

D

D

D

Z Z
2

Z
2
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R R R RI

x21 x2xe

II R R
R R

R
x22

x21 x

x2e

III RR RRRR
x21y  x21 xy xy  e

IV R R

R R R

R
x21

x2y xy

e x

y

V RRRR
RR

  x21y xy x2e

y x

  x21y

VI R R
R R R

R
x21

y

e x

xy

VII RRRR RR
RR RRRR

  x21zx21

  x21yz  x21y

xz xz e

xyz xyyz y
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Is there a vertical reflection?

Is there a horizontal reflection?

yes

yes no

no no no

yes

yes yes yes

no

no

Is there a horizontal reflection
or glide-reflection?

Is there a
half-turn?

Is there a
horizontal
reflection? 

Is there a
half-turn?

RRRRRR

RRRRRR

RRRRRR

RR

RR RR

R

RR

RR

R

R RR

RR R

RR R

RR

RRR

VII

III II I

V VI IV

Figure 28.10 Recognition chart for frieze patterns.
Adapted from [6, p. 83].  
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The Crystallographic Groups
The seven frieze groups catalog all symmetry groups that leave a
design invariant under all multiples of just one translation. However,
there are 17 additional kinds of discrete plane symmetry groups that
arise from infinitely repeating designs in a plane. These groups are the
symmetry groups of plane patterns whose subgroups of translations are
isomorphic to Z % Z. Consequently, the patterns are invariant under
linear combinations of two linearly independent translations. These
17 groups were first studied by 19th-century crystallographers and are
often called the plane crystallographic groups. Another term occasion-
ally used for these groups is wallpaper groups.

Our approach to the crystallographic groups will be geometric. It
is adapted from the excellent article by Schattschneider [5] and the
monograph by Crowe [1]. Our goal is to enable the reader to determine
which of the 17 plane symmetry groups corresponds to a given peri-
odic pattern. We begin with some examples.
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RRRR RRRR
RRRR RRRR

RRRR RRRR
RRRR RRRR
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RRRR RRRR
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RRRR RRRR

RRRR RRRR
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RRRR RRRR

z

x

z

y

x�1

Figure 28.11
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The simplest of the 17 crystallographic groups contains translations
only. In Figure 28.12, we present an illustration of a representative
pattern for this group (imagine the pattern repeated to fill the entire
plane). The crystallographic notation for it is p1. (This notation is ex-
plained in [5].)

The symmetry group of the pattern in Figure 28.13 contains transla-
tions and glide-reflections. This group has no (nonzero) rotational or
reflective symmetry. The crystallographic notation for it is pg.

Figure 28.14 has translational symmetry and threefold rotational
symmetry (that is, the figure can be rotated 120° about certain points
and be brought into coincidence with itself). The notation for this
group is p3.

Representative patterns for all 17 plane crystallographic groups,
together with their notations, are given in Figures 28.15 and 28.16.
Figure 28.17 uses a triangle motif to illustrate the 17 classes of sym-
metry patterns.

468 Special Topics

Figure 28.12 Study of Regular Division of the Plane with Fish and Birds, 1938.
Escher drawing with symmetry group p1. The arrows are translation vectors.
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Figure 28.13 Escher-like
tessellation by J. L. Teeters,
with symmetry group pg
(disregarding shading). The
solid arrow is a translation
vector. The dashed arrows are
glide-reflection vectors.

Figure 28.14
Study of Regular
Division of the
Plane with
Human Figures,
1938. Escher
drawing with
symmetry p3
(disregarding
shading). The
inserted arrows
are translation
vectors.
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Figure 28.15 The plane symmetry groups

All designs in Figures 28.15 and 28.16 except pm, p3, and pg are
found in [2]. The designs for p3 and pg are based on elements of
Chinese lattice designs found in [2]; the design for pm is based on a
weaving pattern from the Sandwich Islands, found in [3].  
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Figure 28.16 The plane symmetry groups
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Figure 28.17 The 17 plane periodic patterns formed using a triangle motif
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Identification of Plane 
Periodic Patterns

To decide which of the 17 classes any particular plane periodic pattern
belongs to, we may use the flowchart presented in Figure 28.18. This is
done by determining the rotational symmetry and whether or not the
pattern has reflection symmetry or nontrivial glide-reflection symmetry.
These three pieces of information will narrow the list of candidates to at
most two. The final test, if necessary, is to determine the locations of the
centers of rotation.

For example, consider the two patterns in Figure 28.19 generated in a
hockey-stick motif. Both patterns have a smallest positive rotational sym-
metry of 120°; both have reflectional and nontrivial glide-reflectional
symmetry. Now, according to Figure 28.18, these patterns must be of
type p3m1 or p31m. But notice that the pattern on the left has all its three-
fold centers of rotation on the reflection axis, whereas in the pattern on
the right the points where the three blades meet are not on a reflection
axis. Thus, the left pattern is p3m1, and the right pattern is p31m.

Table 28.1 (reproduced from [5, p. 443]) can also be used to deter-
mine the type of periodic pattern and contains two other features that
are often useful. A lattice of points of a pattern is a set of images of any
particular point acted on by the translation group of the pattern. A lat-
tice unit of a pattern whose translation subgroup is generated by u and
v is a parallelogram formed by a point of the pattern and its image
under u, v, and u 1 v. The possible lattices for periodic patterns in a
plane, together with lattice units, are shown in Figure 28.20. A generat-
ing region (or fundamental region) of a periodic pattern is the smallest
portion of the lattice unit whose images under the full symmetry group of
the pattern cover the plane. Examples of generating regions for the
patterns represented in Figures 28.12, 28.13, and 28.14 are given in
Figure 28.21. In Figure 28.21, the portion of the lattice unit with vertical
bars is the generating region. The only symmetry pattern in which the lat-
tice unit and the generating region coincide is the p1 pattern illustrated in
Figure 28.12. Table 28.1 tells what proportion of the lattice unit consti-
tutes the generating region of each plane periodic pattern.

Notice that Table 28.1 reveals that the only possible n-fold rotational
symmetries occur when n 5 1, 2, 3, 4, and 6. This fact is commonly
called the crystallographic restriction. The first proof of this was given
by an Englishman, W. Barlow. The information in Table 28.1 can also
be used in reverse to create patterns with a specific symmetry group.
The patterns in Figure 28.19 were made in this way.
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Is there a glide-reflection
whose glide-axis is not a
reflection axis?

Are all
rotation
centers on
reflection
axes?

Is there a glide-reflection?

Is there a glide-reflection?

Are there reflection axes in
two directions?

Are there reflection axes in
four directions?

Are all threefold
centers on reflection
axes?

(three of these)
Is there a
reflection?

(three of these)
Is there a
reflection?

(two of these)
Is there a
reflection?

(four of these)
Is there a
reflection?

(five of these)
Is there a
reflection?

What is the 
smallest angle
of rotation?

yes yes

no
no

yes

no

yes

no

yes

no
no

yes

no

yes

yes

no

yes

no

yes

no

yes

no

yes

no

none

180°

90°

120°

60°

p6

p3

p4

p6m

p3m1

pmg

p31m

p1

p2

pgg

p4g

pg

pm

pmm

cmm

cm

p4m

Figure 28.18 Identification flowchart for symmetries of plane periodic patterns
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p3m1 p31m

Figure 28.19 Patterns generated in a hockey-stick motif

Parallelogram

Square Hexagonal
(Equilateral triangles)

Rectangular Rhombic

Figure 28.20 Possible lattices for plane periodic patterns

In sharp contrast to the situation for finite symmetry groups, the transi-
tion from two-dimensional crystallographic groups to three-dimensional
crystallographic groups introduces a great many more possibilities, since
the motif is repeated indefinitely by three independent translations. Indeed,
there are 230 three-dimensional crystallographic groups (often called space
groups). These were independently determined by Fedorov, Schönflies, and
Barlow in the 1890s. David Hilbert, one of the leading mathematicians of
the 20th century, focused attention on the crystallographic groups in his
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Table 28.1 Identification Chart for Plane Periodic Patternsa

Highest Nontrivial Helpful
Order of Glide- Generating Distinguishing

Type Lattice Rotation Reflections Reflections Region Properties

p1 Parallelogram 1 No No 1 unit

p2 Parallelogram 2 No No unit

pm Rectangular 1 Yes No unit

pg Rectangular 1 No Yes unit

cm Rhombic 1 Yes Yes unit

pmm Rectangular 2 Yes No unit

pmg Rectangular 2 Yes Yes unit Parallel reflection

axes

pgg Rectangular 2 No Yes unit

cmm Rhombic 2 Yes Yes unit Perpendicular

reflection axes

p4 Square 4 No No unit

p4m Square 4 Yes Yes unit Fourfold centers

on reflection

axes

p4g Square 4 Yes Yes unit Fourfold centers

not on

reflection axes

p3 Hexagonal 3 No No unit

p3m1 Hexagonal 3 Yes Yes unit All threefold

centers on

reflection axes

p31m Hexagonal 3 Yes Yes unit Not all threefold

centers on

reflection axes

p6 Hexagonal 6 No No unit

p6m Hexagonal 6 Yes Yes unit

aA rotation through an angle of 360°/n is said to have order n. A glide-reflection is nontrivial if its glide-axis is not
an axis of reflective symmetry for the pattern.
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famous lecture in 1900 at the International Congress of Mathematicians in
Paris. One of 23 problems he posed was whether or not the number of
crystallographic groups in n dimensions is always finite. This was an-
swered affirmatively by L. Bieberbach in 1910. We mention in passing that
in four dimensions, there are 4783 symmetry groups for infinitely repeat-
ing patterns.

As one might expect, the crystallographic groups are fundamentally
important in the study of crystals. In fact, a crystal is defined as a rigid
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body in which the component particles are arranged in a pattern that re-
peats in three directions (the repetition is caused by the chemical bond-
ing). A grain of salt and a grain of sugar are two examples of common
crystals. In crystalline materials, the motif units are atoms, ions, ionic
groups, clusters of ions, or molecules.

Perhaps it is fitting to conclude this chapter by recounting two
episodes in the history of science in which an understanding of symme-
try groups was crucial to a great discovery. In 1912, Max von Laue, a
young German physicist, hypothesized that a narrow beam of x-rays di-
rected onto a crystal with a photographic film behind it would be
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Figure 28.21 A lattice unit and generating region for the patterns in 
Figures 28.12, 28.13, and 28.14. Generating regions are shaded with bars.   
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deflected (the technical term is “diffracted”) by the unit cell (made up of
atoms or ions) and would show up on the film as spots. (See Figure 1.3.)
Shortly thereafter, two British scientists, Sir William Henry Bragg and
his 22-year-old son William Lawrence Bragg, who was a student, noted
that von Laue’s diffraction spots, together with the known information
about crystallographic space groups, could be used to calculate the shape
of the internal array of atoms. This discovery marked the birth of mod-
ern mineralogy. From the first crystal structures deduced by the Braggs
to the present, x-ray diffraction has been the means by which the internal
structures of crystals are determined. Von Laue was awarded the Nobel
Prize in physics in 1914, and the Braggs were jointly awarded the
Nobel Prize in physics in 1915.

Our second episode took place in the early 1950s, when a handful of
scientists were attempting to learn the structure of the DNA molecule—
the basic genetic material. One of these was a graduate student named
Francis Crick; another was an x-ray crystallographer, Rosalind Franklin.
On one occasion, Crick was shown one of Franklin’s research reports
and an x-ray diffraction photograph of DNA. At this point, we let Horace
Judson [4, pp. 165–166], our source, continue the story.

Crick saw in Franklin’s words and numbers something just as important,
indeed eventually just as visualizable. There was drama, too: Crick’s
insight began with an extraordinary coincidence. Crystallographers distin-
guish 230 different space groups, of which the face-centered monoclinic
cell with its curious properties of symmetry is only one—though in biologi-
cal substances a fairly common one. The principal experimental subject of
Crick’s dissertation, however, was the x-ray diffraction of the crystals of a
protein that was of exactly the same space group as DNA. So Crick saw at
once the symmetry that neither Franklin nor Wilkins had comprehended,
that Perutz, for that matter, hadn’t noticed, that had escaped the theoretical
crystallographer in Wilkins’ lab, Alexander Stokes—namely, that the
molecule of DNA, rotated a half turn, came back to congruence with itself.
The structure was dyadic, one half matching the other half in reverse.

This was a crucial fact. Shortly thereafter, James Watson and Crick
built an accurate model of DNA. In 1962, Watson, Crick, and Maurice
Wilkins received the Nobel Prize in medicine and physiology for their
discovery. The opinion has been expressed that, had Franklin correctly
recognized the symmetry of the DNA molecule, she might have been
the one to unravel the mystery and receive the Nobel Prize [4, p. 172].

478 Special Topics
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Exercises

You can see a lot just by looking.
YOGI BERRA

1. Show that the frieze group F6 is isomorphic to Z % Z2.
2. How many nonisomorphic frieze groups are there?
3. In the frieze group F7, write x2yzxz in the form xnymzk.
4. In the frieze group F7, write x23zxyz in the form xnymzk.
5. In the frieze group F7, show that yz 5 zy and xy 5 yx.
6. In the frieze group F7, show that zxz 5 x21.
7. Use the results of Exercises 5 and 6 to do Exercises 3 and 4

through symbol manipulation only (that is, without referring to the
pattern). (This exercise is referred to in this chapter.)

8. Prove that in F7 the cyclic subgroup generated by x is a normal
subgroup.

9. Quote a previous result that tells why the subgroups �x, y� and
�x, z� must be normal in F7.

10. Look up the word frieze in an ordinary dictionary. Explain why the
frieze groups are appropriately named.

11. Determine which of the seven frieze groups is the symmetry group
of each of the following patterns.

a.

b.

c.

d.
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e.

f.

12. Determine the frieze group corresponding to each of the following 
patterns:
a. y 5 sin x,
b. y 5 |sin x|,
c. |y| 5 sin x,
d. y 5 tan x,
e. y 5 csc x.

13. Determine the symmetry group of the tessellation of the plane ex-
emplified by the brickwork shown.

14. Determine the plane symmetry group for each of the patterns in
Figure 28.17.

15. Determine which of the 17 crystallographic groups is the symme-
try group of each of the following patterns.

a. b.

c. d.

480 Special Topics
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16. In the following figure, there is a point labeled 1. Let a be the
translation of the plane that carries the point labeled 1 to the point
labeled a, and let b be the translation of the plane that carries the
point labeled 1 to the point labeled b. The image of 1 under the
composition of a and b is labeled ab. In the corresponding fash-
ion, label the remaining points in the figure in the form aib j.

17. The patterns made by automobile tire treads in the snow are frieze
patterns. An extensive study of automobile tires revealed that only
five of the seven frieze patterns occur. Speculate on which two pat-
terns do not occur and give a possible reason why they do not.

18. Locate a nontrivial glide-reflection axis of symmetry in the cm pat-
tern in Figure 28.16.

19. Determine which of the frieze groups is the symmetry group of
each of the following patterns.
a. ? ? ? D D D D ? ? ?
b. ? ? ? V V ? ? ?
c. ? ? ? L L L L ? ? ?
d. ? ? ? V V V V ? ? ?
e. ? ? ? N N N N ? ? ?
f. ? ? ? H H H H ? ? ?
g. ? ? ? L L ? ? ?

20. Locate a nontrivial glide-reflection axis of symmetry in the pattern
third from the left in the bottom row in Figure 28.17.
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Suggested Readings

S. Garfunkel et al., For All Practical Purposes, 7th ed., New York: W. H.
Freeman, 2006.

This book has a well-written, richly illustrated chapter on symmetry in
art and nature.

W. G. Jackson, “Symmetry in Automobile Tires and the Left-Right Prob-
lem,” Journal of Chemical Education 69 (1992): 624–626.

This article uses automobile tires as a tool for introducing and explain-
ing the symmetry terms and concepts important in chemistry.

This is a collection of Escher’s periodic drawings together with a math-
ematical discussion of each one.

D. Schattschneider, Visions of Symmetry, New York: Harry Abrams, 2002.

A loving, lavish, encyclopedic book on the drawings of M. C. Escher.

H. von Baeyer, “Impossible Crystals,” Discover 11(2) (1990): 69–78.

This article tells how the discovery of nonperiodic tilings of the plane led
to the discovery of quasicrystals. The x-ray diffraction patterns of qua-
sicrystals exhibit fivefold symmetry—something that had been thought to
be impossible.
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Suggested Websites

http://www.mcescher.com/

This is the official website for the artist M. C. Escher. It features many of
his prints and most of his 136 symmetry drawings.

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous ac-
tivities and links to many other sites on related topics. It is a wonderful
website for K–12 teachers and students.
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M. C. Escher

M. C. ESCHER was born on June 17, 1898, in
the Netherlands. His artistic work prior to
1937 was dominated by the representation
of visible reality, such as landscapes and
buildings. Gradually, he became less and
less interested in the visible world and be-
came increasingly absorbed in an inventive
approach to space. He studied the abstract
space-filling patterns used in the Moorish
mosaics in the Alhambra in Spain. He also
studied the mathematician George Pólya’s
paper on the 17 plane crystallographic
groups. Instead of the geometric motifs used
by the Moors and Pólya, Escher preferred to
use animals, plants, or people in his space-
filling prints.

Escher was fond of incorporating various
mathematical ideas into his works. Among
these are infinity, Möbius bands, stellations,

I never got a pass mark in math. The funny
thing is I seem to latch on to mathematical
theories without realizing what is happening.

M. C. ESCHER

484

deformations, reflections, Platonic solids,
spirals, and the hyperbolic plane.

Although Escher originals are now quite
expensive, it was not until 1951 that he de-
rived a significant portion of his income
from his prints. Today, Escher is widely
known and appreciated as a graphic artist.
His prints have been used to illustrate ideas
in hundreds of scientific works. Despite this
popularity among scientists, however,
Escher has never been held in high esteem
in traditional art circles. Escher died on
March 27, 1972, in Holland.

To find more information about Escher
and his art, visit the official website of M. C.
Escher:

http://www.mcescher.com/
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George Pólya

Thank you Professor Pólya for all your
beautiful contributions to mathematics, to
science, to education, and to humanity.

A toast from FRANK HARARY on the 

occasion of Pólya’s 90th birthday

485

GEORGE PÓLYA was born in Budapest,
Hungary, on December 13, 1887. He received
a teaching certificate from the University of
Budapest in languages before turning to phi-
losophy, mathematics, and physics.

In 1912, he was awarded a Ph.D. in math-
ematics. Horrified by Hitler and World War
II, Pólya came to the United States in 1940.
After two years at Brown University, he went
to Stanford University, where he remained
until his death in 1985 at the age of 97.

In 1924, Pólya published a paper in a crys-
tallography journal in which he classified the
plane symmetry groups and provided a full-
page illustration of the corresponding 17 peri-
odic patterns. B. G. Escher, a geologist, sent a
copy of the paper to his artist brother, M. C.
Escher, who used Pólya’s black-and-white
geometric patterns as a guide for making his
own interlocking colored patterns featuring
birds, reptiles, and fish.

Pólya contributed to many branches of
mathematics, and his collected papers fill four
large volumes. Pólya is also famous for his
books on problem solving and for his teach-
ing. One of his books has sold more than
1,000,000 copies. The Society for Industrial
and Applied Mathematics, the London Mathe-
matical Society, and the Mathematical Asso-
ciation of America have prizes named after
Pólya.

Pólya taught courses and lectured around
the country into his 90s. He never learned to
drive a car and took his first plane trip at
age 75. He was married for 67 years and had
no children.

For more information about Pólya, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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John H. Conway

“He’s definitely world class, yet he has this
kind of childlike enthusiasm.”

RONALD GRAHAM Speaking of John H. Conway
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JOHN H. CONWAY ranks among the most
original and versatile contemporary mathe-
maticians. Conway was born in Liverpool,
England, on December 26, 1937, and grew
up in a rough neighborhood. As a youngster,
he was often beaten up by older boys and
did not do well in high school. Nevertheless,
his mathematical ability earned him a schol-
arship to Cambridge University, where he
excelled.

A pattern that uses repeated shapes to
cover a flat surface without gaps or overlaps
is called a tiling. In 1975, Oxford physicist
Roger Penrose invented an important new
way of tiling the plane with two shapes.
Unlike patterns whose symmetry group is
one of the 17 plane crystallographic groups,
Penrose patterns can be neither translated nor
rotated to coincide with themselves. Many of
the remarkable properties of the Penrose pat-
terns were discovered by Conway. In 1993,

Conway discovered a new prism that can be
used to fill three-dimensional space without
gaps or overlaps.

Conway has made many significant con-
tributions to number theory, group theory,
game theory, knot theory, and combina-
torics. Among his most important discover-
ies are three simple groups, which are now
named after him. (Simple groups are the
basic building blocks of all groups.) Conway
is fascinated by games and puzzles. He in-
vented the game Life and the game Sprouts.
Conway has received numerous prestigious
honors. In 1987 he joined the faculty at
Princeton University, where his title is John
von Neumann Distinguished Professor of
Mathematics.

For more information about Conway,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Symmetry 
and Counting29

Motivation
Permutation groups naturally arise in many situations involving sym-
metrical designs or arrangements. Consider, for example, the task of
coloring the six vertices of a regular hexagon so that three are black

and three are white. Figure 29.1 shows the 5 20 possibilities.

However, if these designs appeared on one side of hexagonal ceramic
tiles, it would be nonsensical to count the designs shown in Figure
29.1(a) as different, since all six designs shown there can be obtained
from one of them by rotating. (A manufacturer would make only one of
the six.) In this case, we say that the designs in Figure 29.1(a) are
equivalent under the group of rotations of the hexagon. Similarly, the
designs in Figure 29.1(b) are equivalent under the group of rotations, as
are the designs in Figure 29.1(c) and those in Figure 29.1(d). And, since
no design from Figure 29.1(a)–(d) can be obtained from a design in a
different part by rotation, we see that the designs within each part of the
figure are equivalent to each other but nonequivalent to any design in
another figure. However, the designs in Figure 29.1(b) and (c) are equiv-
alent under the dihedral group D6, since the designs in Figure 29.1(b)
can be reflected to yield the designs in Figure 29.1(c). For example, for
purposes of arranging three black beads and three white beads to form a
necklace, the designs shown in Figure 29.1(b) and (c) would be consid-
ered equivalent.

In general, we say that two designs (arrangements of beads) A and B
are equivalent under a group G of permutations of the arrangements if
there is an element f in G such that f(A) 5 B. That is, two designs are
equivalent under G if they are in the same orbit of G. It follows, then,

a6

3
b

Let us pause to slake our thirst one last time at symmetry’s bubbling spring.
TIMOTHY FERRIS, Coming of Age in the Milky Way
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488 Special Topics

that the number of nonequivalent designs under G is simply the number
of orbits of designs under G. (The set being permuted is the set of all
possible designs or arrangements.)

Notice that the designs in Figure 29.1 divide into four orbits under
the group of rotations but only three orbits under the group D6, since
the designs in Figure 29.1(b) and (c) form a single orbit under D6. Thus,
we could obtain all 20 tile designs from just four tiles, but we could
obtain all 20 necklaces from just three of them.

Burnside’s Theorem
Although the problems we have just posed are simple enough to
solve by observation, more complicated ones require a more sophis-
ticated approach. Such an approach was provided by Georg Frobenius
in 1887. Frobenius’s theorem did not become widely known until it
appeared in the classic book on group theory by William Burnside
in 1911. By an accident of history, Frobenius’s theorem has come to
be known as “Burnside’s Theorem.” Before stating this theorem, we
recall some notation introduced in Chapter 7 and introduce new

(b)

(c)

(d)

Figure 29.1   

(a)
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notation. If G is a group of permutations on a set S and i [ S, then
stabG(i) 5 {f [ G | f(i) 5 i} and orbG(i) 5 {f(i) |
f [ G}. For any set X, we use |X| to denote the number of elements in X.

Definition Elements Fixed by 

For any group G of permutations on a set S and any f in G, we let
fix(f) 5 {i [ S | f(i) 5 i}. This set is called the elements fixed by f (or
more simply, “fix of f”).

Theorem 29.1 (Burnside)

f

If G is a finite group of permutations on a set S, then the number 
of orbits of elements of S under G is

1

0G 0  af[G

0 fix(f) 0 .

PROOF Let n denote the number of pairs (f, i), with f [ G, i [ S,
and f(i) 5 i. We begin by counting these pairs in two ways. First, for
each particular f in G, the number of such pairs is exactly |fix(f)|. So,

(1)

Second, for each particular i in S, observe that |stabG(i)| is exactly the
number of pairs (f, i) for which f(i) 5 i. So,

(2)

It follows from Exercise 33 in Chapter 7 that if s and t are in the same
orbit of G, then orbG(s) 5 orbG(t), and thus by the Orbit-Stabilizer The-
orem (Theorem 7.3) we have |stabG(s)| 5 |G|/|orbG(s)| 5 |G|/|orbG(t)| 5
|stabG(t)|. So, if we choose s [ S and sum over orbG(s), we have

(3)

Finally, by summing over all the elements of G, one orbit at a time, it
follows from Equations (1), (2), and (3) that

and the result follows.

a
fPG

0 fix(f) 0 5 a
iPS

0 stabG(i) 0 5 0G 0 # (number of orbits)

a
t[orbG(s)

0stabG(t) 0 5 0orbG(s) 0  0stabG(s) 0 5 0G 0 .

n 5 a
iPS

0stabG(i) 0 .

n 5 a
fPG

0  fix(f) 0 .
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Applications
To illustrate how to apply Burnside’s Theorem, let us return to the ceramic
tile and necklace problems. In the case of counting hexagonal tiles with
three black vertices and three white vertices, the objects being permutated
are the 20 possible designs, whereas the group of permutations is the
group of six rotational symmetries of a hexagon. Obviously, the identity
fixes all 20 designs. We see from Figure 29.1 that rotations of 60°, 180°,
or 300° fix none of the 20 designs. Finally, Figure 29.2 shows fix(f) for
the rotations of 120° and 240°. These data are collected in Table 29.1.

Figure 29.2 Tile designs fixed by 120°
rotation and 240° rotation

Figure 29.3 Bead arrangements fixed 
by the reflection across a diagonal

Table 29.1

Number of Designs
Element Fixed by Element

Identity 20
Rotation of 60° 0
Rotation of 120° 2
Rotation of 180° 0
Rotation of 240° 2
Rotation of 300° 0

So, applying Burnside’s Theorem, we obtain the number of orbits
under the group of rotations as

(20 1 0 1 2 1 0 1 2 1 0) 5 4.

Now let’s use Burnside’s Theorem to count the number of necklace
arrangements consisting of three black beads and three white beads. (For
the purposes of analysis, we may arrange the beads in the shape of a reg-
ular hexagon.) For this problem, two arrangements are equivalent if they
are in the same orbit under D6. Figure 29.3 shows the arrangements fixed

1

6
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by a reflection across a diagonal. Table 29.2 summarizes the information
needed to apply Burnside’s Theorem.

So, there are

(1 ? 20 1 1 ? 0 1 2 ? 2 1 2 ? 0 1 3 ? 4 1 3 ? 0) 5 3

nonequivalent ways to string three black beads and three white beads
on a necklace.

Now that we have gotten our feet wet on a few easy problems, let’s
try a more difficult one. Suppose that we have the colors red (R), white
(W), and blue (B) that can be used to color the edges of a regular tetra-
hedron (see Figure 5.1). First, observe that there are 36 5 729 colorings
without regard to equivalence. How shall we decide when two colorings
of the tetrahedron are nonequivalent? Certainly, if we were to pick up a
tetrahedron colored in a certain manner, rotate it, and put it back down,
we would think of the tetrahedron as being positioned differently rather
than as being colored differently ( just as if we picked up a die labeled in
the usual way and rolled it, we would not say that the die is now differ-
ently labeled). So, our permutation group for this problem is just the
group of 12 rotations of the tetrahedron shown in Figure 5.1 and is iso-
morphic to A4. (The group consists of the identity; eight elements of
order 3, each of which fixes one vertex; and three elements of order 2,
each of which fixes no vertex.) Every rotation permutes the 729 color-
ings, and to apply Burnside’s Theorem we must determine the size of
fix(f) for each of the 12 rotations of the group.

Clearly, the identity fixes all 729 colorings. Next, consider the ele-
ment (234) of order 3, shown in the bottom row, second from the left in
Figure 5.1. Suppose that a specific coloring is fixed by this element

1

12

Table 29.2

Number of Number of
Elements Arrangements
of This Fixed by Type

Type of Element Type of Element

Identity 1 20
Rotation of order 2 (180°) 1 0
Rotation of order 3 (120° or 240°) 2 2
Rotation of order 6 (60° or 300°) 2 0
Reflection across diagonal 3 4
Reflection across side bisector 3 0
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492 Special Topics

(that is, the tetrahedron appears to be colored the same before and after
this rotation). Since (234) carries edge 12 to edge 13, edge 13 to edge
14, and edge 14 to edge 12, these three edges must agree in color (edge
ij is the edge joining vertex i and vertex j). The same argument shows
that the three edges 23, 34, and 42 also must agree in color. So,
|fix(234)| 5 32, since there are three choices for each of these two sets
of three edges. The nine columns in Table 29.3 show the possible color-
ings of the two sets of three edges. The analogous analysis applies to
the other seven elements of order 3.

Now consider the rotation (12)(34) of order 2. (See the second tetra-
hedron in the top row in Figure 5.1.) Since edges 12 and 34 are fixed,
they may be colored in any way and will appear the same after the rota-
tion (12)(34). This yields 3 ? 3 choices for those two edges. Since edge
13 is carried to edge 24, these two edges must agree in color. Similarly,
edges 23 and 14 must agree. So, we have three choices for the pair of
edges 13 and 24 and three choices for the pair of edges 23 and 14. This
means that we have 3 ? 3 ? 3 ? 3 ways to color the tetrahedron that will
be equivalent under (12)(34). (Table 29.4 gives the complete list of 81
colorings.) So, |fix((12)(34))| 5 34, and the other two elements of order
2 yield the same results.

Now that we have analyzed the three types of group elements, we
can apply Burnside’s Theorem. In particular, the number of distinct

Table 29.3 Nine Colorings Fixed by (234)

Edge Colorings

12 R R R W W W B B B
13 R R R W W W B B B
14 R R R W W W B B B
23 R W B W R B B R W
34 R W B W R B B R W
24 R W B W R B B R W

Table 29.4 81 Colorings Fixed by (12)(34) (X and Y can be any of R, W, and B)

Edge Colorings

12 X X X X X X X X X
34 Y Y Y Y Y Y Y Y Y
13 R R R W W W B B B
24 R R R W W W B B B
23 R W B W R B B R W
14 R W B W R B B R W
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colorings of the edges of a tetrahedron with 3 colors is

(1 ? 36 1 8 ? 32 1 3 ? 34) 5 87.

Surely it would be a difficult task to solve this problem without Burn-
side’s Theorem.

Just as surely, you are wondering who besides mathematicians are in-
terested in counting problems such as the ones we have discussed. Well,
chemists are. Indeed, one set of benzene derivatives can be viewed as
six carbon atoms arranged in a hexagon with one of the three radicals
NH2, COOH, or OH attached at each carbon atom. See Figure 29.4 for
one example.

1

12

OH

OH

COOH

COOHCOOH

COOH

C

C

C

C

C

C

Figure 29.4 A benzene derivative

So Burnside’s Theorem enables a chemist to determine the number of
benzene molecules (see Exercise 4). Another kind of molecule consid-
ered by chemists is visualized as a regular tetrahedron with a carbon
atom at the center and any of the four radicals HOCH2 (hydroxymethyl),
C2H5 (ethyl), Cl (chlorine), or H (hydrogen) at the four vertices. Again,
the number of such molecules can be easily counted using Burnside’s
Theorem.

Group Action
Our informal approach to counting the number of objects that are con-
sidered nonequivalent can be made formal as follows. If G is a group
and S is a set of objects, we say that G acts on S if there is a homomor-
phism g from G to sym(S), the group of all permutations on S. (The
homomorphism is sometimes called the group action.) For conve-
nience, we denote the image of g under g as gg. Then two objects x and
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y in S are viewed as equivalent under the action of G if and only if
gg(x) 5 y for some g in G. Notice that when g is one-to-one, the ele-
ments of G may be regarded as permutations on S. On the other hand,
when g is not one-to-one, the elements of G may still be regarded as
permutations on S, but there are distinct elements g and h in G such
that gg and gh induce the same permutation on S [that is, gg(x) 5 gh(x)
for all x in S]. Thus, a group acting on a set is a natural generalization
of the permutation group concept.

As an example of group action, let S be the two diagonals of a square
and let G be D4, the group of symmetries of the square. Then gR0

, gR180
,

gD, gD9 are the identity; gR90
, gR270

, gH, gV interchange the two diagonals;
and the mapping g S gg from D4 to sym(S) is a group homomorphism.
As a second example, note that GL(n, F), the group of invertible n 3 n
matrices with entries from a field F, acts on the set S of n 3 1 column
vectors with entries from F by multiplying the vectors on the left by the
matrices. In this case, the mapping g S gg from GL(n, F) to sym(S) is a
one-to-one homomorphism.

We have used group actions several times in this text without calling
them that. The proof of Cayley’s Theorem ( Theorem 6.1) has a group G
acting on the elements of G; the proofs of Sylow’s Second Theorem and
Third Theorem ( Theorems 24.4 and 24.5) have a group acting on the set
of conjugates of a Sylow p-subgroup; and the proof of the Generalized
Cayley Theorem ( Theorem 25.3) has G acting on the left cosets of a
subgroup H.

Exercises

The greater the difficulty, the more glory in surmounting it.
EPICURUS

1. Determine the number of ways in which the four corners of a
square can be colored with two colors. (It is permissible to use a
single color on all four corners.)

2. Determine the number of different necklaces that can be made us-
ing 13 white beads and three black beads.

3. Determine the number of ways in which the vertices of an equilat-
eral triangle can be colored with five colors so that at least two col-
ors are used.

4. A benzene molecule can be modeled as six carbon atoms arranged
in a regular hexagon in a plane. At each carbon atom, one of three
radicals NH2, COOH, or OH can be attached. How many such
compounds are possible?
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5. Suppose that in Exercise 4 we permit only NH2 and COOH for the
radicals. How many compounds are possible?

6. Determine the number of ways in which the faces of a regular
dodecahedron (regular 12-sided solid) can be colored with three
colors.

7. Determine the number of ways in which the edges of a square can
be colored with six colors so that no color is used on more than
one edge.

8. Determine the number of ways in which the edges of a square can
be colored with six colors with no restriction placed on the number
of times a color can be used.

9. Determine the number of different 11-bead necklaces that can be
made using two colors.

10. Determine the number of ways in which the faces of a cube can be
colored with three colors.

11. Suppose a cake is cut into 6 identical pieces. How many ways can
we color the cake with n colors assuming that each piece receives
one color?

12. How many ways can the five points of a five-pointed crown be
painted if three colors of paint are available?

13. Let G be a finite group and let sym(G) be the group of all permuta-
tions on G. For each g in G, let fg denote the element of sym(G) de-
fined by fg(x) 5 gxg21 for all x in G. Show that G acts on itself under
the action g S fg. Give an example in which the mapping g S fg is
not one-to-one.

14. Let G be a finite group, let H be a subgroup of G, and let S be the
set of left cosets of H in G. For each g in G, let gg denote the ele-
ment of sym(S) defined by gg(xH) 5 gxH. Show that G acts on S
under the action g S gg.

15. For a fixed square, let L1 be the perpendicular bisector of the top
and bottom of the square and let L2 be the perpendicular bisector
of the left and right sides. Show that D4 acts on {L1, L2} and deter-
mine the kernel of the mapping g S gg.
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Suggested Readings

Norman Biggs, Discrete Mathematics, Oxford: Clarendon Press, 1989.
Chapter 20 of this book presents a more detailed treatment of the
subject of symmetry and counting.

Doris Schattschneider, “Escher’s Combinational Patterns,” Electronic
Journal of Combinatorics, 4(2) (1997): R17.

This article discusses a combinatorial problem concerning generating
periodic patterns that the artist M. C. Escher posed and solved in an
algorithmic way. The problem can also be solved by using Burnside’s
Theorem. The article can be downloaded free from the website 

http://www.combinatorics.org/
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William Burnside

WILLIAM BURNSIDE was born on July 2,
1852, in London. After graduating from
Cambridge University in 1875, Burnside
was appointed lecturer at Cambridge,
where he stayed until 1885. He then ac-
cepted a position at the Royal Naval Col-
lege at Greenwich and spent the rest of his
career in that post.

Burnside wrote more than 150 research
papers in many fields. He is best remem-
bered, however, for his pioneering work in
group theory and his classic book Theory of
Groups, which first appeared in 1897. Be-
cause of Burnside’s emphasis on the abstract
approach, many consider him to be the first
pure group theorist.

One mark of greatness in a mathemati-
cian is the ability to pose important and
challenging problems—problems that open
up new areas of research for future genera-
tions. Here, Burnside excelled. It was he

who first conjectured that a group G of odd
order has a series of normal subgroups,
G 5 G0 $ G1 $ G2 $ ? ? ? $ Gn 5 {e},
such that Gi /Gi11 is Abelian. This extremely
important conjecture was finally proved
more than 50 years later by Feit and Thomp-
son in a 255-page paper (see Chapter 25 for
more on this). In 1994, Efim Zelmanov
received the Fields Medal for his work on a
variation of one of Burnside’s conjectures.

Burnside was elected a Fellow of the
Royal Society and awarded two Royal
medals. He served as president of the Coun-
cil of the London Mathematical Society and
received its De Morgan medal. Burnside
died on August 21, 1927.

To find more information about Burn-
side, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/

In one of the most abstract domains of
thought, he [Burnside] has systematized
and amplified its range so that, there, his
work stands as a landmark in the widening
expanse of knowledge. Whatever be the
estimate of Burnside made by posterity, 
contemporaries salute him as a Master
among the mathematicians of his own
generation.

A. R. FORSYTH
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Cayley Diagraphs 
of Groups

The important thing in science is not so much to obtain new facts as to
discover new ways of thinking about them.

SIR WILLIAM LAWRENCE, Beyond Reductionism

30

Motivation
In this chapter, we introduce a graphical representation of a group given
by a set of generators and relations. The idea was originated by Cayley
in 1878. Although this topic is not usually covered in an abstract algebra
book, we include it for five reasons: It provides a method of visualizing
a group; it connects two important branches of modern mathematics—
groups and graphs; it has many applications to computer science; it
gives a review of some of our old friends—cyclic groups, dihedral
groups, direct products, and generators and relations; and, most impor-
tantly, it is fun!

Intuitively, a directed graph (or digraph) is a finite set of points,
called vertices, and a set of arrows, called arcs, connecting some of the
vertices. Although there is a rich and important general theory of di-
rected graphs with many applications, we are interested only in those
that arise from groups.

The Cayley Digraph of a Group
Definition Cayley Digraph of a Group

Let G be a finite group and let S be a set of generators for G. We define
a digraph Cay(S:G ), called the Cayley digraph of G with generating set
S, as follows.

1. Each element of G is a vertex of Cay(S:G).
2. For x and y in G, there is an arc from x to y if and only if xs 5 y for

some s [ S.

To tell from the digraph which particular generator connects two ver-
tices, Cayley proposed that each generator be assigned a color, and that the
arrow joining x to xs be colored with the color assigned to s. He called the
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resulting figure the color graph of the group. This terminology is still used
occasionally. Rather than use colors to distinguish the different generators,
we will use solid arrows, dashed arrows, and dotted arrows. In general, if
there is an arc from x to y, there need not be an arc from y to x. An arrow
emanating from x and pointing to y indicates that there is an arc from x to y.

Following are numerous examples of Cayley digraphs. Note that
there are several ways to draw the digraph of a group given by a partic-
ular generating set. However, it is not the appearance of the digraph that
is relevant but the manner in which the vertices are connected. These
connections are uniquely determined by the generating set. Thus, dis-
tances between vertices and angles formed by the arcs have no signifi-
cance. (In the digraphs below, a headless arrow joining two vertices x
and y indicates that there is an arc from x to y and an arc from y to x.
This occurs when the generating set contains both an element and its
inverse. For example, a generator of order 2 is its own inverse.)

EXAMPLE 1 Z6 5 �1�.

EXAMPLE 2 Z3 % Z2 5 �(1, 0), (0, 1)�.
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05

23

4 1

Cay ({1}: Z6)

0

1

2

3

4

5

1

Cay ({1}: Z6 )

(0, 1)(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

Cay({(1, 0), (0, 1)}: Z
3
 ⊕ Z

2
)

(0, 0)

(0, 1)

(2, 0) (1, 0)

(1, 0)

(1, 1)(2, 1)

Cay({(1, 0), (0, 1)}: Z
3
 ⊕ Z

2
)
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EXAMPLE 3 D4 5 �R90, H�.

EXAMPLE 4 S3 5 �(12), (123)�.

EXAMPLE 5 S3 5 �(12), (13)�.

500 Special Topics
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EXAMPLE 6 A4 5 �(12)(34), (123)�.

EXAMPLE 7 Q4 5 �a, b | a4 5 e, a2 5 b2, b21ab 5 a3�.

EXAMPLE 8 D` 5 �a, b | a2 5 b2 5 e�.

bab ba b e a

a b

ab aba abab

Cay({a, b}: D`)
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(123)(12)(34)

(123)

(1) (132)

(234)

(243)

(143)

(124) (14)(23)

(13)(24)

(142)

(12)(34)

(134)

Cay({(12)(34), (123)}: A
4
)

ba

b

a3

a2

a

e

ab

a2b

a3b

Cay({a, b}: Q4)
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The Cayley digraph provides a quick and easy way to determine the
value of any product of the generators and their inverses. Consider, for
example, the product ab3ab22 from the group given in Example 7. To re-
duce this to one of the eight elements used to label the vertices, we need
only begin at the vertex e and follow the arcs from each vertex to the next
as specified in the given product. Of course, b21 means traverse the b arc
in reverse. (Observations such as b23 5 b also help.) Tracing the product
through, we obtain b. Similarly, one can verify or discover other relations
among the generators.

Hamiltonian Circuits and Paths
Now that we have these directed graphs, what is it that we care to know
about them? One question about directed graphs that has been the object
of much research was popularized by the Irish mathematician 
Sir William Hamilton in 1859, when he invented a puzzle called
“Around the World.” His idea was to label the 20 vertices of a regular
dodecahedron with the names of famous cities. One solves this puzzle
by starting at any particular city (vertex) and traveling “around the
world,” moving along the arcs in such a way that each other city is
visited exactly once before returning to the original starting point. One
solution to this puzzle is given in Figure 30.1, where the vertices are
visited in the order indicated.

Obviously, this idea can be applied to any digraph; that is, one starts
at some vertex and attempts to traverse the digraph by moving along 

Figure 30.1 Around the World
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arcs in such a way that each vertex is visited exactly once before
returning to the starting vertex. (To go from x to y, there must be an arc
from x to y.) Such a sequence of arcs is called a Hamiltonian circuit in
the digraph. A sequence of arcs that passes through each vertex exactly
once without returning to the starting point is called a Hamiltonian
path. In the rest of this chapter, we concern ourselves with the existence
of Hamiltonian circuits and paths in Cayley digraphs.

Figures 30.2 and 30.3 show a Hamiltonian path for the digraph given
in Example 2 and a Hamiltonian circuit for the digraph given in
Example 7, respectively.

Is there a Hamiltonian circuit in

Cay({(1, 0), (0, 1)}: Z3 % Z2)?

More generally, let us investigate the existence of Hamiltonian circuits in

Cay({(1, 0), (0, 1)}: Zm % Zn),

where m and n are relatively prime and both are greater than 1. Visualize
the Cayley digraph as a rectangular grid coordinatized with Zm % Zn, as

Figure 30.2 Hamiltonian Path in Cay({(1, 0), (0, 1)}: Z3 % Z2) 
from (0, 0) to (2, 1).

Figure 30.3 Hamiltonian Circuit in Cay({a, b}: Q4).

b

ab

a2b

a3b

a2

a3

a

e

(0, 0) (0, 1)

(1, 1)(1, 0)

(2, 0) (2, 1)
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in Figure 30.4. Suppose there is a Hamiltonian circuit in the digraph and
(a, b) is some vertex from which the circuit exits horizontally. (Clearly,
such a vertex exists.) Then the circuit must exit (a 2 1, b 1 1) horizon-
tally also, for otherwise the circuit passes through (a, b 1 1) twice—see
Figure 30.5. Repeating this argument again and again, we see that the
circuit exits horizontally from each of the vertices (a, b), (a 2 1, b 1 1),
(a 2 2, b 1 2), . . . , which is just the coset (a, b) 1 �(21, 1)�. But when
m and n are relatively prime, �(21, 1)� is the entire group. Obviously,
there cannot be a Hamiltonian circuit consisting entirely of horizontal
moves. Let us record what we have just proved.

Figure 30.4 Cay({(1, 0), (0, 1)}: Zm % Zn).

Figure 30.5

Theorem 30.1 A Necessary Condition

What about when m and n are not relatively prime? In general, the
answer is somewhat complicated, but the following special case is easy
to prove.

Cay({(1, 0), (0, 1)}: Zm % Zn ) does not have a Hamiltonian circuit
when m and n are relatively prime and greater than 1.

(a, b)

(a 2 1, b 1 1)

(0, 1)

(1, 0)

(1, 1)(1, 0)

(m –1, 0) (m –1, 1) (m –1, 2) (m –1, n –1)

(1, n –1)(1, 2)

(0, 1)(0, 0) (0, 2) (0, n –1)
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Theorem 30.2 A Sufficient Condition

Figure 30.6 Cay({(1, 0), (0, 1)}: Z3k % Z3)

(0, 2 )(0, 1)(0, 0 )

(1, 0 )

(2, 0 ) (2, 1)

(3, 1)

(4, 1)

(5, 1)
(5, 2 )

(4, 0)

(5, 0)

(3, 0)

(0, 1)

(1, 0)

(1, 1)
(1, 2 )

(3, 2 )

(2, 2 )

(4, 2 )

First 3 3 3 block

kth 3 3 3 block

Repeat path used
in first block

Repeat path used
in first block

(3k – 1, 0)  (3k – 1, 1)  (3k – 1, 2)

Cay({(1, 0), (0, 1)}: Zm % Zn ) has a Hamiltonian circuit when n
divides m.
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PROOF Say, m 5 kn. Then we may think of Zm % Zn as k blocks of
size n 3 n. (See Figure 30.6 for an example.) Start at (0, 0) and cover
the vertices of the top block as follows. Use the generator (0, 1) to move
horizontally across the first row to the end. Then use the generator (1, 0)
to move vertically to the point below, and cover the remaining points in
the second row by moving horizontally. Keep this process up until the
point (n 2 1, 0)—the lower left-hand corner of the first block—has
been reached. Next, move vertically to the second block and repeat the
process used in the first block. Keep this up until the bottom block is
covered. Complete the circuit by moving vertically back to (0, 0).

Notice that the circuit given in the proof of Theorem 30.2 is easy to
visualize but somewhat cumbersome to describe in words. A much
more convenient way to describe a Hamiltonian path or circuit is to
specify the starting vertex and the sequence of generators in the order
in which they are to be applied. In Example 5, for instance, we may
start at (1) and alternate the generators (12) and (13) until we return to
(1). In Example 3, we may start at R0 and successively apply R90, R90,
R90, H, R90, R90, R90, H. When k is a positive integer and a, b, . . . , c is
a sequence of group elements, we use k p (a, b, . . . , c) to denote the
concatenation of k copies of the sequence (a, b, . . . , c). Thus, 2 p (R90,
R90, R90, H) and 2 p (3 p R90, H) both mean R90, R90, R90, H, R90, R90,
R90, H. With this notation, we may conveniently denote the Hamilton-
ian circuit given in Theorem 30.2 as

m p ((n 2 1) p (0, 1), (1, 0)).

We leave it as an exercise (Exercise 11) to show that if x1, x2, . . . , xn
is a sequence of generators determining a Hamiltonian circuit starting
at some vertex, then the same sequence determines a Hamiltonian cir-
cuit for any starting vertex.

From Theorem 30.1, we know that there are some Cayley digraphs
of Abelian groups that do not have any Hamiltonian circuits. But Theorem
30.3 shows that each of these Cayley digraphs does have a Hamiltonian
path. There are some Cayley digraphs for non-Abelian groups that do not
even have Hamiltonian paths, but we will not discuss them here.

Theorem 30.3 Abelian Groups Have Hamiltonian Paths

Let G be a finite Abelian group, and let S be any (nonempty†) gener-
ating set for G. Then Cay(S:G) has a Hamiltonian path.
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PROOF We induct on |S|. If |S| 5 1, say, S 5 {a}, then the digraph is
just a circle labeled with e, a, a2, . . . , am21, where |a| 5 m. Obviously,
there is a Hamiltonian path for this case. Now assume that |S| . 1.
Choose some s [ S. Let T 5 S 2 {s}—that is, T is S with s removed—
and set H 5 �s1, s2, . . . , sn21� where S 5 {s1, s2, . . . , sn} and s 5 sn.
(Notice that H may be equal to G.)

Because |T| , |S| and H is a finite Abelian group, the induction hy-
pothesis guarantees that there is a Hamiltonian path (a1, a2, . . . , ak) in
Cay(T:H). We will show that

(a1, a2, . . . , ak, s, a1, a2, . . . , ak, s, . . . , a1, a2, . . . , ak, s, a1, a2, . . . , ak),

where a1, a2, . . . , ak occurs |G|/|H| times and s occurs |G|/|H| 2 1
times, is a Hamiltonian path in Cay(S:G).

Because S 5 T < {s} and T generates H, the coset Hs generates the
factor group G/H. (Since G is Abelian, this group exists.) Hence, the
cosets of H are H, Hs, Hs2, . . . , Hsn, where n 5 |G|/|H| 2 1. Starting
from the identity element of G, the path given by (a1, a2, . . . , ak) visits
each element of H exactly once [because (a1, a2, . . . , ak) is a
Hamiltonian path in Cay(T:H)]. The generator s then moves us to some
element of the coset Hs. Starting from there, the path (a1, a2, . . . , ak)
visits each element of Hs exactly once. Then, s moves us to the coset
Hs2, and we visit each element of this coset exactly once. Continuing
this process, we successively move to Hs3, Hs4, . . . , Hsn, visiting each
vertex in each of these cosets exactly once. Because each vertex of
Cay(S:G) is in exactly one coset Hsi, this implies that we visit each ver-
tex of Cay(S:G) exactly once. Thus we have a Hamiltonian path.

We next look at Cayley digraphs with three generators.

EXAMPLE 9 Let

D3 5 �r, f | r3 5 f 2 5 e, rf 5 fr 2�.

Then a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}: D3 % Z6)

is given in Figure 30.7.

Figure 30.7

(f, 0)     (e, 0)     (f, 1)     (e, 1)     (f, 2)     (e, 2)     (f, 3)     (e, 3)     (f, 4)     (e, 4)     (f, 5)     (e, 5)

(rf, 0) (r, 5)

(r2f, 0) (r2, 5)
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Although it is not easy to prove, it is true that

Cay({(r, 0), ( f, 0), (e, 1)}: Dn % Zm)

has a Hamiltonian circuit for all n and m. (See [3].) Example 10 shows
the circuit for this digraph when m is even.

EXAMPLE 10 Let

Dn 5 �r, f | rn 5 f 2 5 e, rf 5 fr21�.

Then a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}: Dn % Zm)

with m even is traced in Figure 30.8. The sequence of generators that
traces the circuit is

m p [(n 2 1) p (r, 0), ( f, 0), (n 2 1) p (r, 0), (e, 1)].

508 Special Topics

Figure 30.8

Some Applications
Cayley graphs are natural models for interconnection networks in com-
puter designs, and Hamiltonicity is an important property in relation to
sorting algorithms on such networks. One particular Cayley graph that
is used to design and analyze interconnection networks of parallel ma-
chines is the symmetric group Sn with the set of all transpositions as the
generating set. Hamiltonian paths and circuits in Cayley digraphs arise

(e, 1)(e, 0)

(r, 0)(rf, 0)

(f, 0) (f, 1)

(r, 1)

(r2, 1)

(rn–1, 1)(rn –1f, 1)(rn –1, 0)(rn –1f, 0)

(r2 f, 0) (r2, 0)

...iterate
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in a variety of group theory contexts. A Hamiltonian path in a Cayley
digraph of a group is simply an ordered listing of the group elements
without repetition. The vertices of the digraph are the group elements, and
the arcs of the path are generators of the group. In 1948, R. A. Rankin
used these ideas (although not the terminology) to prove that certain bell-
ringing exercises could not be done by the traditional methods employed
by bell ringers. (See [1, Chap. 22] for the group-theoretic aspects of bell
ringing.) In 1981, Hamiltonian paths in Cayley digraphs were used in an
algorithm for creating computer graphics of Escher-type repeating pat-
terns in the hyperbolic plane [2]. This program can produce repeating
hyperbolic patterns in color from among various infinite classes of sym-
metry groups. The program has now been improved so that the user may
choose from many kinds of color symmetry. The 2003 Mathematics
Awareness Month poster featured one such image (see http://www.
mathaware.org/mam/03/index.html). Two Escher drawings and their
computer-drawn counterparts are given in Figures 30.9–30.12.

In this chapter, we have shown how one may construct a directed
graph from a group. It is also possible to associate a group—called
the automorphism group—with every directed graph. In fact, several
of the 26 sporadic simple groups were first constructed in this way.

Figure 30.9 M. C. Escher’s Circle Limit I
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Figure 30.10 A computer duplication of the pattern of M. C. Escher’s Circle 
Limit I [2]. The program used a Hamiltonian path in a Cayley digraph of the 
underlying symmetry group.

Figure 30.11 M. C. Escher’s Circle Limit IV
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Figure 30.12 A computer drawing inspired by the pattern of 
M. C. Escher’s Circle Limit IV [2]. The program used a Hamiltonian 
path in a Cayley digraph of the underlying symmetry group.

Exercises

A mathematician is a machine for turning coffee into theorems.
PAUL ERDÖS

1. Find a Hamiltonian circuit in the digraph given in Example 7 dif-
ferent from the one in Figure 30.3.

2. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: Q4 % Z2).

3. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: Q4 % Zm)

where m is even.
4. Write the sequence of generators for each of the circuits found in

Exercises 1, 2, and 3.
5. Use the Cayley digraph in Example 7 to evaluate the product

a3ba21ba3b21.
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6. Let x and y be two vertices of a Cayley digraph. Explain why two
paths from x to y in the digraph yield a group relation. That is, an
equation of the form a1a2 . . . am 5 b1b2 . . . bn where the ai’s and
bj’s are generators of the Cayley digraph.

7. Use the Cayley digraph in Example 7 to verify the relation
aba21b21a21b21 5 a2ba3.

8. Identify the following Cayley digraph of a familiar group.

9. Let D4 5 �r, f | r4 5 e 5 f 2, rf 5 fr21�. Verify that

6 p [3 p (r, 0), ( f, 0), 3 p (r, 0), (e, 1)]

is a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}: D4 % Z6).

10. Draw a picture of Cay({2, 5}: Z8).
11. If s1, s2, . . . , sn is a sequence of generators that determines a

Hamiltonian circuit beginning at some vertex, explain why the same
sequence determines a Hamiltonian circuit beginning at any point.
(This exercise is referred to in this chapter.)

12. Show that the Cayley digraph given in Example 7 has a
Hamiltonian path from e to a.

13. Show that there is no Hamiltonian path in

Cay({(1, 0), (0, 1)}: Z3 % Z2)

from (0, 0) to (2, 0).
14. Draw Cay({2, 3}: Z6). Is there a Hamiltonian circuit in this

digraph?
15. a. Let G be a group of order n generated by a set S. Show that a se-

quence s1, s2, . . . , sn21 of elements of S is a Hamiltonian path in
Cay(S:G) if and only if, for all i and j with 1 # i # j , n, we
have sisi11 ? ? ? sj 2 e.

b. Show that the sequence s1s2 ? ? ? sn is a Hamiltonian circuit if
and only if s1s2 ? ? ? sn 5 e, and that whenever 1 # i # j , n, we
have si si11 ? ? ? sj 2 e.
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16. Let D4 5 �a, b | a2 5 b2 5 (ab)4 5 e�. Draw Cay({a, b}: D4). Why
is it reasonable to say that this digraph is undirected?

17. Let Dn be as in Example 10. Show that 2 p [(n 2 1) p r, f ] is a
Hamiltonian circuit in Cay({r, f}: Dn).

18. Let Q8 5 �a, b | a8 5 e, a4 5 b2, b21ab 5 a21�. Find a Hamiltonian
circuit in Cay({a, b}: Q8).

19. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: Q8 % Z5).

20. Prove that the Cayley digraph given in Example 6 does not have a
Hamiltonian circuit. Does it have a Hamiltonian path?

21. Find a Hamiltonian circuit in

Cay({(R90, 0), (H, 0), (R0, 1)}: D4 % Z3).

Does this circuit generalize to the case Dn11 % Zn for all n $ 3?
22. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: Q8 % Zm) for all even m.

23. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: Q4 % Z3).

24. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: Q4 % Zm) for all odd m $ 3.

25. Write the sequence of generators that describes the Hamiltonian
circuit in Example 9.

26. Let Dn be as in Example 10. Find a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}: D4 % Z5).

Does your circuit generalize to the case Dn % Zn11 for all n $ 4?
27. Prove that Cay({(0, 1), (1, 1)}: Zm % Zn) has a Hamiltonian circuit

for all m and n greater than 1.
28. Suppose that a Hamiltonian circuit exists for Cay({(1, 0), (0, 1)}:

Zm % Zn) and that this circuit exits from vertex (a, b) vertically.
Show that the circuit exits from every member of the coset (a, b)
1 �(1, 21)� vertically.

29. Let D2 5 �r, f | r2 5 f 2 5 e, rf 5 fr21�. Find a Hamiltonian circuit
in Cay({(r, 0), ( f, 0), (e, 1)}: D2 % Z3).

30. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in Cay({(a, 0),
(b, 0), (e, 1)}: Q8 % Z3).
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31. In Cay({(1, 0), (0, 1)}: Z4 % Z5) find a sequence of generators that
visits exactly one vertex twice and all others exactly once and re-
turns to the starting vertex.

32. In Cay({(1, 0), (0, 1)}: Z4 % Z5) find a sequence of generators that
visits exactly two vertices twice and all others exactly once and re-
turns to the starting vertex.

33. Find a Hamiltonian circuit in Cay({(1, 0), (0, 1)}: Z4 % Z6).
34. (Factor Group Lemma) Let S be a generating set for a group G, let

N be a cyclic normal subgroup of G, and let

5 {sN | s [ S}.

If (a1N, . . . , ar N) is a Hamiltonian circuit in Cay( :G/N) and the
product a1 ? ? ? ar generates N, prove that

|N| p (a1, . . . , ar)

is a Hamiltonian circuit in Cay(S:G).
35. A finite group is called Hamiltonian if all of its subgroups are normal.

(One non-Abelian example is Q4.) Show that Theorem 30.3 can be
generalized to include all Hamiltonian groups.
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William Rowan 
Hamilton

WILLIAM ROWAN HAMILTON was born on
August 3, 1805, in Dublin, Ireland. At
three, he was skilled at reading and arith-
metic. At five, he read and translated Latin,
Greek, and Hebrew; at 14, he had mastered
14 languages, including Arabic, Sanskrit,
Hindustani, Malay, and Bengali.

In 1833, Hamilton provided the first
modern treatment of complex numbers. In
1843, he made what he considered his great-
est discovery—the algebra of quaternions.
The quaternions represent a natural general-
ization of the complex numbers with three
numbers i, j, and k whose squares are 21.

After Isaac Newton, the greatest mathe-
matician of the English-speaking peoples is
William Rowan Hamilton. 

SIR EDMUND WHITTAKER,
Scientific American
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With these, rotations in three and four di-
mensions can be algebraically treated. Of
greater significance, however, is the fact that
the quaternions are noncommutative under
multiplication. This was the first ring to be
discovered in which the commutative prop-
erty does not hold. The essential idea for the
quaternions suddenly came to Hamilton after
15 years of fruitless thought!

Today Hamilton’s name is attached to sev-
eral concepts, such as the Hamiltonian func-
tion, which represents the total energy in a
physical system; the Hamilton-Jacobi differ-
ential equations; and the Cayley-Hamilton
Theorem from linear algebra. He also coined
the terms vector, scalar, and tensor.

In his later years, Hamilton was plagued
by alcoholism. He died on September 2,
1865, at the age of 60.

For more information about Hamilton,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/

This stamp featuring the quaternions was
issued in 1983.
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Paul Erdös

Paul Erdös is a socially helpless Hungarian
who has thought about more mathemati-
cal problems than anyone else in history.

The Atlantic Monthly

PAUL ERDÖS (pronounced AIR-dish) was
one of the best-known and most highly re-
spected mathematicians of the 20th century.
Unlike most of his contemporaries, who
have concentrated on theory building, Erdös
focused on problem solving and problem
posing. The problems and methods of solu-
tion of Erdös—like those of Euler, whose
solutions to special problems pointed the
way to much of the mathematical theory
we have today—have helped pioneer new
theories, such as combinatorial and probabilis-
tic number theory, combinatorial geometry,
probabilistic and transfinite combinatorics,
and graph theory.

Erdös was born on March 26, 1913, in
Hungary. Both of his parents were high
school mathematics teachers. Erdös, a Jew,
left Hungary in 1934 at the age of 21 be-
cause of the rapid rise of anti-Semitism in
Europe. For the rest of his life he traveled
incessantly, rarely pausing more than a
month in any one place, giving lectures for

small honoraria and staying with fellow
mathematicians. He had little property and
no fixed address. All that he owned he car-
ried with him in a medium-sized suitcase,
frequently visiting as many as 15 places in a
month. His motto was, “Another roof, an-
other proof.” Even in his eighties, he put in
19-hour days doing mathematics.

Erdös wrote more than 1500 research pa-
pers. He coauthored papers with more than
500 people. These people are said to have
Erdös number 1. People who do not have
Erdös number 1, but who have written a
paper with someone who does, are said to
have Erdös number 2, and so on, induc-
tively. Erdös died of a heart attack on Sep-
tember 20, 1996, in Warsaw, Poland.

For more information about Erdös, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/

http://www.oakland.edu/~grossman/
erdoshp.html  
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Introduction
to Algebraic
Coding Theory

Damn it, if the machine can detect an error, why can’t it locate the position
of the error and correct it?

RICHARD W. HAMMING

31

Motivation
One of the most interesting and important applications of finite fields
has been the development of algebraic coding theory. This theory,
which originated in the late 1940s, was created in response to practical
communication problems. (Algebraic coding has nothing to do with
secret codes.) Algebraic codes are now used in compact disk and DVD
players, fax machines, digital televisions, and bar code scanners, and
are essential to computer maintenance.

To motivate this theory, imagine that we wish to transmit one of two
possible signals to a spacecraft approaching Mars. If the proposed
landing site appears unfavorable, we will command the craft to orbit
the planet; otherwise, we will command the craft to land. The signal for
orbiting will be a 0, and the signal for landing will be a 1. But it is pos-
sible that some sort of interference (called noise) could cause an incor-
rect message to be received. To decrease the chance of this happening,
redundancy is built into the transmission process. For example, if we
wish the craft to orbit Mars, we could send five 0s. The craft’s onboard
computer is programmed to take any five-digit message received and
decode the result by majority rule. So, if 00000 is sent and 10001 is re-
ceived, the computer decides that 0 was the intended message. Notice
that, for the computer to make the wrong decision, at least three errors
must occur during transmission. If we assume that errors occur
independently, it is less likely that three errors will occur than that two
or fewer errors will occur. For this reason, this decision process is fre-
quently called the maximum-likelihood decoding procedure. Our par-
ticular situation is illustrated in Figure 31.1. The general coding proce-
dure is illustrated in Figure 31.2.
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Figure 31.1 Encoding and decoding by fivefold repetition

Figure 31.2 General encoding-decoding

In practice, the means of transmission are telephone, radiowave,
microwave, or even a magnetic disk. The noise might be human error,
crosstalk, lightning, thermal noise, or deterioration of a disk. Through-
out this chapter, we assume that errors in transmission occur indepen-
dently. Different methods are needed when this is not the case.

Now, let’s consider a more complicated situation. This time, assume
that we wish to send a sequence of 0s and 1s of length 500. Further,
suppose that the probability that an error will be made in the transmis-
sion of any particular digit is .01. If we send this message directly, with-
out any redundancy, the probability that it will be received error free is
(.99)500, or approximately .0066.

On the other hand, if we adopt a threefold repetition scheme by
sending each digit three times and decoding each block of three digits
received by majority rule, we can do much better. For example, the se-
quence 1011 is encoded as 111000111111. If the received message is
011000001110, the decoded message is 1001. Now, what is the proba-
bility that our 500-digit message will be error free? Well, if a 1, say, is
sent, it will be decoded as a 0 if and only if the block received is 001,
010, 100, or 000. The probability that this will occur is

(.01)(.01)(.99) 1 (.01)(.99)(.01) 1 (.99)(.01)(.01) 1 (.01)(.01)(.01)

5 (.01)2[3(.99) 1 .01]

5 .000298 , .0003.

Thus, the probability that any particular digit in the sequence will be
decoded correctly is greater than .9997, and it follows that the proba-
bility that the entire 500-digit message will be decoded correctly is
greater than (.9997)500, or approximately .86—a dramatic improvement
over .0066.
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This example illustrates the three basic features of a code. There is a
set of messages, a method of encoding these messages, and a method of
decoding the received messages. The encoding procedure builds some
redundancy into the original messages; the decoding procedure corrects
or detects certain prescribed errors. Repetition codes have the advantage
of simplicity of encoding and decoding, but they are too inefficient. In a
fivefold repetition code, 80% of all transmitted information is redun-
dant. The goal of coding theory is to devise message encoding and
decoding methods that are reliable, efficient, and reasonably easy to
implement.

Before plunging into the formal theory, it is instructive to look at a
sophisticated example.

EXAMPLE 1 The Hamming (7, 4) Code

This time, our message set consists of all possible 4-tuples of 0s and 1s
(that is, we wish to send a sequence of 0s and 1s of length 4). Encod-
ing will be done by viewing these messages as 1 3 4 matrices with en-
tries from Z2 and multiplying each of the 16 messages on the right by
the matrix

(All arithmetic is done modulo 2.) The resulting 7-tuples are called
code words. (See Table 31.1.)

Table 31.1

Message Encoder G Code Word Message Encoder G Code Word

0000 → 0000000 0110 → 0110010
0001 → 0001011 0101 → 0101110
0010 → 0010111 0011 → 0011100
0100 → 0100101 1110 → 1110100
1000 → 1000110 1101 → 1101000
1100 → 1100011 1011 → 1011010
1010 → 1010001 0111 → 0111001
1001 → 1001101 1111 → 1111111

G 5 ≥
 1
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 0
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0

0
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1
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Notice that the first four digits of each code word constitute just the
original message corresponding to the code word. The last three digits
of the code word constitute the redundancy features. For this code, we
use the nearest-neighbor decoding method (which, in the case that the
errors occur independently, is the same as the maximum-likelihood de-
coding procedure). For any received word v, we assume that the word
sent is the code word v9 that differs from v in the fewest number of po-
sitions. If the choice of v9 is not unique, we can decide not to decode or
arbitrarily choose one of the code words closest to v. (The first option
is usually selected when retransmission is practical.) 

Once we have decoded the received word, we can obtain the message
by deleting the last three digits of v9. For instance, suppose that 1000
were the intended message. It would be encoded and transmitted as u 5
1000110. If the received word were v 5 1100110 (an error in the second
position), it would still be decoded as u, since v and u differ in only one
position, whereas v and any other code word would differ in at least two
positions. Similarly, the intended message 1111 would be encoded as
1111111. If, instead of this, the word 0111111 were received, our decod-
ing procedure would still give us the intended message 1111.

The code in Example 1 is one of an infinite class of important codes
discovered by Richard Hamming in 1948. The Hamming codes are the
most widely used codes.

The Hamming (7, 4) encoding scheme can be conveniently illus-
trated with the use of a Venn diagram, as shown in Figure 31.3. Begin
by placing the four message digits in the four overlapping regions I, II,
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Figure 31.3 Venn diagram of the message 1001 and the encoded 
message 1001101
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III, and IV, with the digit in position 1 in region I, the digit in position
2 in region II, and so on. For regions V, VI, and VII, assign 0 or 1 so that
the total number of 1s in each circle is even.

Consider the Venn diagram of the received word 0001101:

How may we detect and correct an error? Well, observe that each of the
circles A and B has an odd number of 1s. This tells us that something is
wrong. At the same time, we note that circle C has an even number of 1s.
Thus, the portion of the diagram that is in both A and B but not in C is
the source of the error. See Figure 31.4.

Quite often, codes are used to detect errors rather than correct them.
This is especially appropriate when it is easy to retransmit a message.
If a received word is not a code word, we have detected an error. For
example, computers are designed to use a parity check for numbers. In-
side the computer, each number is represented by a string of 0s and 1s.
If there is an even number of 1s in this representation, a 0 is attached to
the string; if there is an odd number of 1s in the representation, a 1
is attached to the string. Thus, each number stored in the computer
memory has an even number of 1s. Now, when the computer reads a 

Figure 31.4 Circles A and B but not C have wrong parity
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number from memory, it performs a parity check. If the read number
has an odd number of 1s, the computer will know that an error has been
made, and it will reread the number. Note that an even number of errors
will not be detected by a parity check.

The methods of error detection introduced in Chapters 0 and 5 are
based on the same principle. An extra character is appended to a string
of numbers so that a particular condition is satisfied. If we find that
such a string does not satisfy that condition, we know that an error has
occurred.

Linear Codes
We now formalize some of the ideas introduced in the preceding 
discussion.

Definition Linear Code

An (n, k) linear code over a finite field F is a k-dimensional subspace V
of the vector space

Fn 5 F % F % ? ? ? % F

n copies

over F. The members of V are called the code words. When F is Z2, the
code is called binary.

One should think of an (n, k) linear code over F as a set of n-tuples
from F, where each n-tuple has two parts: the message part, consisting
of k digits; and the redundancy part, consisting of the remaining n 2 k
digits. Note that an (n, k) linear code over a finite field F of order q has
qk code words, since every member of the code is uniquely expressible
as a linear combination of the k basis vectors with coefficients from F.
The set of qk code words is closed under addition and scalar multipli-
cation by members of F. Also, since errors in transmission may occur
in any of the n positions, there are qn possible vectors that can be
received. Where there is no possibility of confusion, it is customary to
denote an n-tuple (a1, a2, . . . , an) more simply as a1a2 ? ? ? an, as we
did in Example 1.

EXAMPLE 2 The set

{0000000, 0010111, 0101011, 1001101,
1100110, 1011010, 0111100, 1110001}

is a (7, 3) binary code. 
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EXAMPLE 3 The set {0000, 0101, 1010, 1111} is a (4, 2) binary
code.

Although binary codes are by far the most important ones, other
codes are occasionally used.

EXAMPLE 4 The set

{0000, 0121, 0212, 1022, 1110, 1201, 2011, 2102, 2220}

is a (4, 2) linear code over Z3. A linear code over Z3 is called a ternary
code.

To facilitate our discussion of the error-correcting and error-
detecting capability of a code, we introduce the following terminology.

Definitions Hamming Distance, Hamming Weight

The Hamming distance between two vectors in Fn is the number of com-
ponents in which they differ. The Hamming weight of a vector is the
number of nonzero components of the vector. The Hamming weight of a
linear code is the minimum weight of any nonzero vector in the code.

We will use d(u, v) to denote the Hamming distance between the
vectors u and v, and wt(u) for the Hamming weight of the vector u.

EXAMPLE 5 Let s 5 0010111, t 5 0101011, u 5 1001101, and v 5
1101101. Then, d(s, t) 5 4, d(s, u) 5 4, d(s, v) 5 5, d(u, v) 5 1; and
wt(s) 5 4, wt(t) 5 4, wt(u) 5 4, wt(v) 5 5.

The Hamming distance and Hamming weight have the following
important properties.

Theorem 31.1 Properties of Hamming Distance and Hamming Weight

PROOF To prove that d(u, v) 5 wt(u 2 v), simply observe that both
d(u, v) and wt(u 2 v) equal the number of positions in which u and v
differ. To prove that d(u, v) # d(u, w) 1 d(w, v), note that if u and v differ
in the ith position and u and w agree in the ith position, then w and v
differ in the ith position.

For any vectors u, v, and w, d(u, v) # d(u, w) 1 d(w, v) and d(u, v) 5
wt(u 2 v).

16509_ch31_p518-544 pp4  11/17/08  11:08 AM  Page 524



With the preceding definitions and Theorem 31.1, we can now
explain why the codes given in Examples 1, 2, and 4 will correct any
single error, but the code in Example 3 will not.

Theorem 31.2 Correcting Capability of a Linear Code

PROOF We will use nearest-neighbor decoding; that is, for any re-
ceived vector v, we will assume that the corresponding code word sent is
a code word v9 such that the Hamming distance d(v, v9) is a minimum.
(If there is more than one such v9, we do not decode.) Now, suppose that
a transmitted code word u is received as the vector v and that at most t
errors have been made in transmission. Then, by the definition of dis-
tance between u and v, we have d(u, v) # t. If w is any code word other
than u, then w 2 u is a nonzero code word. Thus, by assumption,

2t 1 1 # wt(w 2 u) 5 d(w, u) # d(w, v) 1 d(v, u) # d(w, v) 1 t,

and it follows that t 1 1 # d(w, v). So, the code word closest to the re-
ceived vector v is u, and therefore v is correctly decoded as u.

To show that the code can detect 2t errors, we suppose that a trans-
mitted code word u is received as the vector v and that at least one
error, but no more than 2t errors, was made in transmission. Because
only code words are transmitted, an error will be detected whenever a
received word is not a code word. But v cannot be a code word, since
d(v, u) # 2t, whereas we know that the minimum distance between dis-
tinct code words is at least 2t 1 1.

Theorem 31.2 is often misinterpreted to mean that a linear code with
Hamming weight 2t 1 1 can correct any t errors and detect any 2t or
fewer errors simultaneously. This is not the case. The user must choose
one or the other role for the code. Consider, for example, the Hamming
(7, 4) code given in Table 31.1. By inspection, the Hamming weight of
the code is 3 5 2 ? 1 1 1, so we may elect either to correct any single
error or to detect any one or two errors. To understand why we can’t do
both, consider the received word 0001010. The intended message
could have been 0000000, in which case two errors were made (like-
wise for the intended messages 1011010 and 0101110), or the intended
message could have been 0001011, in which case one error was made.
But there is no way for us to know which of these possibilities oc-
curred. If our choice were error correction, we would assume—perhaps

If the Hamming weight of a linear code is at least 2t 1 1, then the
code can correct any t or fewer errors. Alternatively, the same code
can detect any 2t or fewer errors.
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mistakenly—that 0001011 was the intended message. If our choice
were error detection, we simply would not decode. (Typically, one
would request retransmission.)

On the other hand, if we write the Hamming weight of a linear code
in the form 2t 1 s 1 1, we can correct any t errors and detect any t 1 s
or fewer errors. Thus, for a code with Hamming weight 5, our options
include the following:

1. Detect any four errors (t 5 0, s 5 4).
2. Correct any one error and detect any two or three errors (t 5 1,

s 5 2).
3. Correct any two errors (t 5 2, s 5 0).

EXAMPLE 6 Since the Hamming weight of the linear code given in
Example 2 is 4, it will correct any single error and detect any two errors
(t 5 1, s 5 1) or detect any three errors (t 5 0, s 5 3).

It is natural to wonder how the matrix G used to produce the Ham-
ming code in Example 1 was chosen. Better yet, in general, how can
one find a matrix G that carries a subspace V of Fk to a subspace of Fn

in such a way that for any k-tuple v in V, the vector vG will agree with
v in the first k components and build in some redundancy in the last
n 2 k components? Such a matrix is a k 3 n matrix of the form

where the aij’s belong to F. A matrix of this form is called the standard
generator matrix (or standard encoding matrix) for the resulting code.

Any k 3 n matrix whose rows are linearly independent will trans-
form Fk to a k-dimensional subspace of Fn that could be used to build
redundancy, but using the standard generator matrix has the advantage
that the original message constitutes the first k components of the
transformed vectors. An (n, k) linear code in which the k information
digits occur at the beginning of each code word is called a systematic
code. Schematically, we have

message message redundant digits

|←k digits→| |        k        ||          n 2 k          |

Encoder

1
0
?
?
?
0

0
1
?
?
?
0

0
0
?
?
?
1

a11
?
?
?
?
ak1

a1n 2 k
?
?
?
?
akn 2 k

?
?

?

?
?

?

?
?

?

?

?

?

?

?

?
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Notice that, by definition, a standard generator matrix produces a sys-
tematic code.

EXAMPLE 7 From the set of messages

{000, 001, 010, 100, 110, 101, 011, 111},

we may construct a (6, 3) linear code over Z2 with the standard gene-
rator matrix

The resulting code words are given in Table 31.2. Since the minimum
weight of any nonzero code word is 3, this code will correct any single
error or detect any double error.

Table 31.2

Message Encoder G Code Word

000 → 000000
001 → 001111
010 → 010101
100 → 100110
110 → 110011
101 → 101001
011 → 011010
111 → 111100

EXAMPLE 8 Here we take a set of messages as

{00, 01, 02, 10, 11, 12, 20, 21, 22},

and we construct a (4, 2) linear code over Z3 with the standard genera-
tor matrix

The resulting code words are given in Table 31.3. Since the minimum
weight of the code is 3, it will correct any single error or detect any
double error.
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Table 31.3

Message Encoder G Code Word

00 → 0000
01 → 0122
02 → 0211
10 → 1021
11 → 1110
12 → 1202
20 → 2012
21 → 2101
22 → 2220

Parity-Check Matrix Decoding
Now that we can conveniently encode messages with a standard gener-
ator matrix, we need a convenient method for decoding the received
messages. Unfortunately, this is not as easy to do; however, in the case
where at most one error per code word has occurred, there is a fairly
simple method for decoding. (When more than one error occurs in a
code word, our decoding method fails.)

To describe this method, suppose that V is a systematic linear 
code over the field F given by the standard generator matrix G 5
[Ik | A], where Ik represents the k 3 k identity matrix and A is the k 3
(n 2 k) matrix obtained from G by deleting the first k columns of G.
Then, the n 3 (n 2 k) matrix

where 2A is the negative of A and In2k is the (n 2 k) 3 (n 2 k) iden-
tity matrix, is called the parity-check matrix for V. (In the literature, the
transpose of H is called the parity-check matrix, but H is much more
convenient for our purposes.) The decoding procedure is:

1. For any received word w, compute wH.
2. If wH is the zero vector, assume that no error was made.
3. If there is exactly one instance of a nonzero element s [ F and a

row i of H such that wH is s times row i, assume that the sent word
was w 2 (0 . . . s . . . 0), where s occurs in the ith component. If
there is more than one such instance, do not decode.

39. When the code is binary, category 3 reduces to the following. If
wH is the ith row of H for exactly one i, assume that an error was

H5 c2 A

In2k

d ,
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made in the ith component of w. If wH is more than one row of H,
do not decode.

4. If wH does not fit into either category 2 or category 3, we know that
at least two errors occurred in transmission and we do not decode.

EXAMPLE 9 Consider the Hamming (7, 4) code given in Example
1. The generator matrix is

,

and the corresponding parity-check matrix is

.

Now, if the received vector is v 5 0000110, we find vH 5 110. Since this
is the first row of H and no other row, we assume that an error has been
made in the first position of v. Thus, the transmitted code word is as-
sumed to be 1000110, and the corresponding message is assumed to be
1000. Similarly, if w 5 1011111 is the received word, then wH 5 101,
and we assume that an error has been made in the second position. So,
we assume that 1111111 was sent and that 1111 was the intended mes-
sage. If the encoded message 1001101 is received as z 5 1001011 (with
errors in the fifth and sixth positions), we find zH 5 110. Since this
matches the first row of H, we decode z as 0001011 and incorrectly
assume that the message 0001 was intended. On the other hand, nearest-
neighbor decoding would yield the same incorrect result.

Notice that when only one error was made in transmission, the
parity-check decoding procedure gave us the originally intended mes-
sage. We will soon see under what conditions this is true, but first we
need an important fact relating a code given by a generator matrix and
its parity-check matrix.

H 5 G
1 1 0

1 0 1

1 1 1

0 1 1

1 0 0

0 1 0

0 0 1
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Lemma Orthogonality Relation

PROOF First note that, since H has rank n 2 k, we may think of H as
a linear transformation from F n onto F n2k. Therefore, it follows from
the dimension theorem for linear transformations that n 5
n 2 k 1 dim (Ker H), so that Ker H has dimension k. (Alternatively,
one can use a group theory argument to show that |Ker H| 5 |F|k.)
Then, since the dimension of C is also k, it suffices to show that

C # Ker H. To do this, let G 5 [Ik | A], so that H 5 . Then,

GH 5 [Ik | A] 5 2A 1 A 5 [0] (the zero matrix).

Now, by definition, any vector v in C has the form mG, where m is a
message vector. Thus, vH 5 (mG)H 5 m(GH) 5 m[0] 5 0 (the zero
vector).

Because of the way H was defined, the parity-check matrix method
correctly decodes any received word in which no error has been made.
But it will do more.

Theorem 31.3 Parity-Check Matrix Decoding

PROOF For simplicity’s sake, we prove only the binary case. In this
special situation, the condition on the rows is that they are nonzero and
distinct. So, let H be the parity-check matrix, and let’s assume that this
condition holds for the rows. Suppose that the transmitted code word w
was received with only one error, and that this error occurred in the ith
position. Denoting the vector that has a 1 in the ith position and 0s else-
where by ei, we may write the received word as w 1 ei. Now, using the
Orthogonality Lemma, we obtain

(w 1 ei)H 5 wH 1 eiH 5 0 1 eiH 5 eiH.

But this last vector is precisely the ith row of H. Thus, if there was ex-
actly one error in transmission, we can use the rows of the parity-check

Parity-check matrix decoding will correct any single error if and only
if the rows of the parity-check matrix are nonzero and no one row is
a scalar multiple of any other row.

c 2A

In2k

d
c 2A

In2k

d

Let C be a systematic (n, k) linear code over F with a standard
generator matrix G and parity-check matrix H. Then, for any vector v
in F n, we have vH 5 0 (the zero vector) if and only if v belongs to C.
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matrix to identify the location of the error, provided that these rows are
distinct. (If two rows, say, the ith and jth, are the same, we know that
the error occurred in either the ith position or the jth position, but we
do not know in which.)

Conversely, suppose that the parity-check matrix method correctly
decodes all received words in which at most one error has been made
in transmission. If the ith row of the parity-check matrix H were
the zero vector and if the code word u 5 0 ? ? ? 0 were received as ei,
we would find eiH 5 0 ? ? ? 0, and we would erroneously assume that
the vector ei was sent. Thus, no row of H is the zero vector. Now, sup-
pose that the ith row of H and the jth row of H are equal and i 2 j.
Then, if some code word w is transmitted and the received word is 
w 1 ei (that is, there is a single error in the ith position), we find

(w 1 ei)H 5 wH 1 eiH 5 ith row of H 5 jth row of H.

Thus, our decoding procedure tells us not to decode. This contradicts
our assumption that the method correctly decodes all received words in
which at most one error has been made.

Coset Decoding
There is another convenient decoding method that utilizes the fact that
an (n, k) linear code C over a finite field F is a subgroup of the additive
group of V 5 Fn. This method was devised by David Slepian in 1956
and is called coset decoding (or standard decoding). To use this
method, we proceed by constructing a table, called a standard array.
The first row of the table is the set C of code words, beginning in col-
umn 1 with the identity 0 ? ? ? 0. To form additional rows of the table,
choose an element v of V not listed in the table thus far. Among all the
elements of the coset v 1 C, choose one of minimum weight, say, v9.
Complete the next row of the table by placing under the column headed
by the code word c the vector v9 1 c. Continue this process until all the
vectors in V have been listed in the table. [Note that an (n, k) linear code
over a field with q elements will have |V:C| 5 qn2k rows.] The words
in the first column are called the coset leaders. The decoding procedure
is simply to decode any received word w as the code word at the head
of the column containing w.

EXAMPLE 10 Consider the (6, 3) binary linear code

C 5 {000000, 100110, 010101, 001011, 110011, 101101, 011110, 111000}.

The first row of a standard array is just the elements of C. Obviously,
100000 is not in C and has minimum weight among the elements of
100000 1 C, so it can be used to lead the second row. Table 31.4 is the
completed table.
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Table 31.4 A Standard Array for a (6, 3) Linear Code

Words
Coset

Leaders

000000 100110 010101 001011 110011 101101 011110 111000
100000 000110 110101 101011 010011 001101 111110 011000
010000 110110 000101 011011 100011 111101 001110 101000
001000 101110 011101 000011 111011 100101 010110 110000
000100 100010 010001 001111 110111 101001 011010 111100
000010 100100 010111 001001 110001 101111 011100 111010
000001 100111 010100 001010 110010 101100 011111 111001
100001 000111 110100 101010 010010 001100 111111 011001

If the word 101001 is received, it is decoded as 101101, since
101001 lies in the column headed by 101101. Similarly, the received
word 011001 is decoded as 111000.

Recall that the first method of decoding that we introduced was the
nearest-neighbor method; that is, any received word w is decoded as
the code word c such that d(w, c) is a minimum, provided that there is
only one code word c such that d(w, c) is a minimum. The next result
shows that in this situation, coset decoding is the same as nearest-
neighbor decoding.

Theorem 31.4 Coset Decoding Is Nearest-Neighbor Decoding

PROOF Let C be a linear code, and let w be any received word. Suppose
that v is the coset leader for the coset w 1 C. Then, w 1 C 5 v 1 C, so
w 5 v 1 c for some c in C. Thus, using coset decoding, w is decoded
as c. Now, if c9 is any code word, then w 2 c9 [ w 1 C 5 v 1 C, so
that wt(w 2 c9) $ wt(v), since the coset leader v was chosen as a vector
of minimum weight among the members of v 1 C. 

Therefore,

d(w, c9) 5 wt(w 2 c9) $ wt(v) 5 wt(w 2 c) 5 d(w, c).

So, using coset decoding, w is decoded as a code word c such that 
d(w, c) is a minimum.

Recall that in our description of nearest-neighbor decoding, we
stated that if the choice for the nearest neighbor of a received word v is

In coset decoding, a received word w is decoded as a code word c such
that d(w, c) is a minimum.
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not unique, then we can decide not to decode or to decode v arbitrarily
from among those words closest to v. In the case of coset decoding, the
decoded value of v is always uniquely determined by the coset leader
of the row containing the received word. Of course, this decoded value
may not be the word that was sent.

When we know a parity-check matrix for a linear code, coset decod-
ing can be considerably simplified.

Definition Syndrome

If an (n, k) linear code over F has parity-check matrix H, then, for any
vector u in Fn, the vector uH is called the syndrome† of u.

The importance of syndromes stems from the following property.

Theorem 31.5 Same Coset—Same Syndrome

PROOF Two vectors u and v are in the same coset of C if and only if
u 2 v is in C. So, by the Orthogonality Lemma, u and v are in the same
coset if and only if 0 5 (u 2 v)H 5 uH 2 vH.

We may now use syndromes for decoding any received word w:

1. Calculate wH, the syndrome of w.
2. Find the coset leader v such that wH 5 vH.
3. Assume that the vector sent was w 2 v.

With this method, we can decode any received word with a table that
has only two rows—one row of coset leaders and another row with the
corresponding syndromes.

EXAMPLE 11 Consider the code given in Example 10. The parity-
check matrix for this code is

.H 5 F
1 1 0

1 0 1

0 1 1

1 0 0

0 1 0

0 0 1

V

Let C be an (n, k) linear code over F with a parity-check matrix H.
Then, two vectors of Fn are in the same coset of C if and only if they
have the same syndrome.

†This term was coined by D. Hagelbarger in 1959.   
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The list of coset leaders and corresponding syndromes is

Coset leader 000000 100000 010000 001000 000100 000010 000001 100001

Syndromes 000 110 101 011 100 010 001 111

So, to decode the received word , we compute .
Since the coset leader has 100 as its syndrome, we assume that

was sent. If the received word is ,
we compute and assume was
sent because 100001 is the coset leader with syndrome 111. Notice that
these answers are in agreement with those obtained by using the standard-
array method of Example 10.

The term syndrome is a descriptive term. In medicine, it is used to
designate a collection of symptoms that typify a disorder. In coset de-
coding, the syndrome typifies an error pattern.

In this chapter, we have presented algebraic coding theory in 
its simplest form. A more sophisticated treatment would make substan-
tially greater use of group theory, ring theory, and especially finite-field
theory. For example, Gorenstein (see Chapter 25 for a biography) and
Zierler, in 1961, made use of the fact that the multiplicative subgroup
of a finite field is cyclic. They associated each digit of certain codes
with a field element in such a way that an algebraic equation would be
derived whose zeros determined the locations of the errors.

In some instances, two error-correcting codes are employed. The
European Space Agency space probe Giotto, which came within
370 miles of the nucleus of Halley’s Comet in 1986, had two error-
correcting codes built into its electronics. One code checked for
independently occurring errors, and another—a so-called Reed-
Solomon code—checked for bursts of errors. Giotto achieved an error-
detection rate of 0.999999. Reed-Solomon codes are also used on
compact discs. They can correct thousands of consecutive errors.

w9 2 100001 5 111000wrH 5 111
wr 5 011001w 2 000100 5 101101

v 5 000100
wH 5 100w 5 101001
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HISTORICAL NOTE

The Ubiquitous
Reed-Solomon
Codes

We conclude this chapter with an adapted version of an article by Barry A. Cipra about

the Reed-Solomon codes [1]. It was the first in a series of articles called “Mathematics

That Counts” in SIAM News, the news journal of the Society for Industrial and Applied

Mathematics. The articles highlight developments in mathematics that have led to

products and processes of substantial benefit to industry and the public.

Irving Reed and Gustave Solomon
monitor the encounter of Voyager II
with Neptune at the Jet Propulsion
Laboratory in 1989.

In this “Age of Information,” no one need be
reminded of the importance not only of
speed but also of accuracy in the storage, re-
trieval, and transmission of data. Machines
do make errors, and their non-man-made
mistakes can turn otherwise flawless pro-
gramming into worthless, even dangerous,
trash. Just as architects design buildings that
will remain standing even through an earth-
quake, their computer counterparts have
come up with sophisticated techniques capa-
ble of counteracting digital disasters.

The idea for the current error-correcting
techniques for everything from computer
hard disk drives to CD players was first in-
troduced in 1960 by Irving Reed and
Gustave Solomon, then staff members at
MIT’s Lincoln Laboratory. . . .

“When you talk about CD players and dig-
ital audio tape and now digital television, and
various other digital imaging systems that are
coming—all of those need Reed-Solomon
[codes] as an integral part of the system,” says
Robert McEliece, a coding theorist in the
electrical engineering department at Caltech.

Why? Because digital information, vir-
tually by definition, consists of strings of

“bits”—0s and 1s—and a physical device,
no matter how capably manufactured, may
occasionally confuse the two. Voyager II,
for example, was transmitting data at in-
credibly low power—barely a whisper—
over tens of millions of miles. Disk drives
pack data so densely that a read/write head
can (almost) be excused if it can’t tell where
one bit stops and the next 1 (or 0) begins.
Careful engineering can reduce the error
rate to what may sound like a negligible
level—the industry standard for hard disk
drives is 1 in 10 billion—but given the vol-
ume of information processing done these
days, that “negligible” level is an invitation
to daily disaster. Error-correcting codes are
a kind of safety net—mathematical insur-
ance against the vagaries of an imperfect
material world.

In 1960, the theory of error-correcting
codes was only about a decade old. The
basic theory of reliable digital communica-
tion had been set forth by Claude Shannon
in the late 1940s. At the same time, Richard
Hamming introduced an elegant approach to
single-error correction and double-error
detection. Through the 1950s, a number of
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researchers began experimenting with a
variety of error-correcting codes. But with
their SIAM journal paper, McEliece says,
Reed and Solomon “hit the jackpot.”

The payoff was a coding system based on
groups of bits—such as bytes—rather than 
individual 0s and 1s. That feature makes
Reed-Solomon codes particularly good at
dealing with “bursts” of errors: six consecu-
tive bit errors, for example, can affect at
most two bytes. Thus, even a double-error-
correction version of a Reed-Solomon code
can provide a comfortable safety factor. . . .

Mathematically, Reed-Solomon codes
are based on the arithmetic of finite fields.
Indeed, the 1960 paper begins by defining a
code as “a mapping from a vector space of
dimension m over a finite field K into a vec-
tor space of higher dimension over the same
field.” Starting from a “message” (a0, a1,
. . . , am21), where each ak is an element of
the field K, a Reed-Solomon code produces
(P(0), P(g), P(g2), . . . , P(gN21)), where N is
the number of elements in K, g is a genera-
tor of the (cyclic) group of nonzero ele-
ments in K, and P(x) is the polynomial a0 1
a1x 1 ? ? ? 1 am21x

m21. If N is greater than
m, then the values of P overdetermine the
polynomial, and the properties of finite
fields guarantee that the coefficients of P—
i.e., the original message—can be recov-
ered from any m of the values . . . .

In today’s byte-sized world, for example,
it might make sense to let K be the field of
order 28, so that each element of K corre-
sponds to a single byte (in computerese, there
are four bits to a nibble and two nibbles to a
byte). In that case, N 5 28 5 256, and hence
messages up to 251 bytes long can be recov-
ered even if two errors occur in transmitting

the values P(0), P(g), . . . , P(g255). That’s a
lot better than the 1255 bytes required by the
say-everything-five-times approach.

Despite their advantages, Reed-Solomon
codes did not go into use immediately—
they had to wait for the hardware technol-
ogy to catch up. “In 1960, there was no such
thing as fast digital electronics”—at least
not by today’s standards, says McEliece.
The Reed-Solomon paper “suggested some
nice ways to process data, but nobody knew
if it was practical or not, and in 1960 it
probably wasn’t practical.”

But technology did catch up, and nu-
merous researchers began to work on im-
plementing the codes. . . . Many other bells
and whistles (some of fundamental theo-
retic significance) have also been added.
Compact disks, for example, use a version
of a Reed-Solomon code.

Reed was among the first to recognize
the significance of abstract algebra as the
basis for error-correcting codes. “In hind-
sight it seems obvious,” he told SIAM News.
However, he added, “coding theory was not
a subject when we published that paper.”
The two authors knew they had a nice result;
they didn’t know what impact the paper
would have.

Three decades later, the impact is clear.
The vast array of applications, both current
and pending, has settled the question of the
practicality and significance of Reed-
Solomon codes. “It’s clear they’re practical,
because everybody’s using them now,” says
Elwyn Berkekamp. Billions of dollars in
modern technology depend on ideas that
stem from Reed and Solomon’s original
work. In short, says McEliece, “it’s been an
extraordinarily influential paper.”
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Exercises

The New Testament offers the basis for modern computer coding theory, in
the form of an affirmation of the binary number system.

“But let your communication be yea, yea; nay, nay: for whatsoever is
more than these cometh of evil.”

ANONYMOUS

1. Find the Hamming weight of each code word in Table 31.1.
2. Find the Hamming distance between the following pairs of vec-

tors: {1101, 0111}, {0220, 1122}, {11101, 00111}.
3. Referring to Example 1, use the nearest-neighbor method to de-

code the received words 0000110 and 1110100.
4. For any vector space V and any u, v, w in Fn, prove that the

Hamming distance has the following properties:
a. d(u, v) 5 d(v, u) (symmetry)
b. d(u, v) 5 0 if and only if u 5 v
c. d(u, v) 5 d(u 1 w, v 1 w) (translation invariance)

5. Determine the (6, 3) binary linear code with generator matrix

.

6. Show that for binary vectors, wt(u 1 v) $ wt(u) 2 wt(v) and
equality occurs if and only if for all i the ith component of u is 1
whenever the ith component of v is 1.

7. If the minimum weight of any nonzero code word is 2, what can
we say about the error-correcting capability of the code?

8. Suppose that C is a linear code with Hamming weight 3 and that
C9 is one with Hamming weight 4. What can C9 do that C can’t?

9. Let C be a binary linear code. Show that the code words of even
weight form a subcode of C. (A subcode of a code is a subset of
the code that is itself a code.)

10. Let

C 5 {0000000, 1110100, 0111010, 0011101, 1001110,
0100111, 1010011, 1101001}.

What is the error-correcting capability of C? What is the error-
detecting capability of C?

G 5 £
 1

 0

 0

  0

  1

  0

  0

  0

 1

  0

  1

  1

 1

 0

 1

1

1

0

§
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538 Special Topics

11. Suppose that the parity-check matrix of a binary linear code is

.

Can the code correct any single error?
12. Use the generator matrix

to construct a (4, 2) ternary linear code. What is the parity-check
matrix for this code? What is the error-correcting capability of this
code? What is the error-detecting capability of this code? Use parity-
check decoding to decode the received word 1201.

13. Find all code words of the (7, 4) binary linear code whose genera-
tor matrix is

Find the parity-check matrix of this code. Will this code correct
any single error?

14. Show that in a binary linear code, either all the code words end with
0, or exactly half end with 0. What about the other components?

15. Suppose that a code word v is received as the vector u. Show that
coset decoding will decode u as the code word v if and only if u 2 v
is a coset leader.

16. Consider the binary linear code

C 5 {00000, 10011, 01010, 11001, 00101, 10110, 01111, 11100}.

Construct a standard array for C. Use nearest-neighbor decoding
to decode 11101 and 01100. If the received word 11101 has ex-
actly one error, can we determine the intended code word? If the
received word 01100 has exactly one error, can we determine the
intended code word?

G 5 ≥
 1

 0

 0

 0

  0

  1

  0

  0

 0

 0

 1

 0

 0

 0

 0

 1

1

1

1

0

1

0

1

1

1

1

0

1

¥.

G 5 c 1
 0

  0

  1

 1

 2

1

1
d

H 5 E1 0

0 1

1 1

1 0

0 1

U
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17. Construct a (6, 3) binary linear code with generator matrix

Decode each of the received words

001001, 011000, 000110, 100001

by the following methods:
a. nearest-neighbor method,
b. parity-check matrix method,
c. coset decoding using a standard array,
d. coset decoding using the syndrome method.

18. Suppose that the minimum weight of any nonzero code word in a
linear code is 6. Discuss the possible options for error correction
and error detection.

19. Using the code and the parity-check matrix given in Example 9,
show that parity-check matrix decoding cannot detect any multiple
errors (that is, two or more errors).

20. Suppose that the last row of a standard array for a binary linear
code is

10000 00011 11010 01001 10101 00110 11111 01100.

Determine the code.
21. How many code words are there in a (6, 4) ternary linear code?

How many possible received words are there for this code?
22. If the parity-check matrix for a binary linear code is

will the code correct any single error? Why?

H 5 F
1 1 0

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

V,

G 5 £
 1

 0

 0

  0
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  0

 0

 0

 1

1
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0

1

1
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540 Special Topics

23. Suppose that the parity-check matrix for a ternary code is

Can the code correct all single errors? Give a reason for your
answer.

24. Prove that for nearest-neighbor decoding, the converse of Theo-
rem 31.2 is true.

25. Can a (6, 3) binary linear code be double-error-correcting using the
nearest-neighbor method? Do not assume that the code is systematic.

26. Prove that there is no 2 3 5 standard generator matrix G that will
produce a (5, 2) linear code over Z3 capable of detecting all possi-
ble triple errors.

27. Why can’t the nearest-neighbor method with a (4, 2) binary linear
code correct all single errors?

28. Suppose that one row of a standard array for a binary code is
000100 110000 011110 111101 101010 001001 100111 010011.

Determine the row that contains 100001.
29. Use the field F 5 Z2[x]/�x2 1 x 1 1� to construct a (5, 2) linear

code that will correct any single error.
30. Find the standard generator matrix for a (4, 2) linear code over Z3

that encodes 20 as 2012 and 11 as 1100. Determine the entire code
and the parity-check matrix for the code. Will the code correct all
single errors?

31. Assume that C is an (n, k) binary linear code and that, for each posi-
tion i 5 1, 2, . . . , n, the code C has at least one vector with a 1 in the
ith position. Show that the average weight of a code word is n/2.

32. Let C be an (n, k) linear code over F such that the minimum weight
of any nonzero code word is 2t 1 1. Show that not every vector of
weight t 1 1 in Fn can occur as a coset leader.

33. Let C be an (n, k) binary linear code over F 5 Z 2. If v [ Fn but
v o C, show that C < (v 1 C) is a linear code.

34. Let C be a binary linear code. Show that either every member of C
has even weight or exactly half the members of C have even
weight. (Compare with Exercise 19 in Chapter 5.)

35. Let C be an (n, k) linear code. For each i with 1 # i # n, let Ci 5
{v [ C | the ith component of v is 0}. Show that Ci is a subcode of C.

E2 1

2 2

1 2

1 0

0 1

U.
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Norman Levinson, “Coding Theory: A Counterexample to G. H. Hardy’s
Conception of Applied Mathematics,” The American Mathematical
Monthly 77 (1970): 249–258.

The eminent mathematician G. H. Hardy insisted that “real” mathemat-
ics was almost wholly useless. In this article, the author argues that
coding theory refutes Hardy’s notion. Levinson uses the finite field of
order 16 to construct a linear code that can correct any three errors.

T. M. Thompson, From Error-Correcting Codes Through Sphere Packing
to Simple Groups. Washington, D.C.: The Mathematical Association of
America, 1983.

Chapter 1 of this award-winning book gives a fascinating historical
account of the origins of error-correcting codes.
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Richard W. Hamming

For introduction of error-correcting codes,
pioneering work in operating systems and
programming languages, and the advance-
ment of numerical computation.

Citation for the Piore 

Award, 1979

RICHARD W. HAMMING was born in Chicago,
Illinois, on February 11, 1915. He graduated
from the University of Chicago with a B.S. de-
gree in mathematics. In 1939, he received an
M.A. degree in mathematics from the Univer-
sity of Nebraska and, in 1942, a Ph.D. in math-
ematics from the University of Illinois.

During the latter part of World War II,
Hamming was at Los Alamos, where he was
involved in computing atomic-bomb designs.
In 1946, he joined Bell Telephone Laborato-
ries, where he worked in mathematics, com-
puting, engineering, and science.

In 1950, Hamming published his famous
paper on error-detecting and error-correcting
codes. This work started a branch of informa-
tion theory. The Hamming codes are used in
many modern computers. Hamming’s work
in the field of numerical analysis has also
been of fundamental importance.

Hamming received numerous presti-
gious awards, including the Turing Prize
from the Association for Computing Mach-
inery, the Piore Award from the Institute of
Electrical and Electronics Engineers
(IEEE), and the Oender Award from the
University of Pennsylvania. In 1986 the IEEE
Board of Directors established the Richard
W. Hamming Medal “for exceptional con-
tributions to information sciences, systems
and technology” and named Hamming as
its first recipient. Hamming died of a heart
attack on January 7, 1998, at age 82.

To find more information about Ham-
ming, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Jessie MacWilliams

She was a mathematician who was instru-
mental in developing the mathematical
theory of error-correcting codes from its
early development and whose Ph.D. thesis
includes one of the most powerful theo-
rems in coding theory.

VERA PLESS, SIAM News

An important contributor to coding theory
was Jessie MacWilliams. She was born in
1917 in England. After studying at Cam-
bridge University, MacWilliams came to the
United States in 1939 to attend Johns
Hopkins University. After one year at Johns
Hopkins, she went to Harvard for a year.

In 1955, MacWilliams became a pro-
grammer at Bell Labs, where she learned
about coding theory. Although she made a
major discovery about codes while a pro-
grammer, she could not obtain a promotion
to a math research position without a Ph.D.
degree. She completed some of the require-
ments for the Ph.D. while working full-time
at Bell Labs and looking after her family.
She then returned to Harvard for a year
(1961–1962), where she finished her degree.
Interestingly, both MacWilliams and her

daughter Ann were studying mathematics at
Harvard at the same time.

MacWilliams returned to Bell Labs,
where she remained until her retirement in
1983. While at Bell Labs, she made many
contributions to the subject of error-correcting
codes, including The Theory of Error-
Correcting Codes, written jointly with Neil
Sloane. One of her results of great theoretical
importance is known as the MacWilliams
Identity. She died on May 27, 1990, at the
age of 73.

To find more information about
Mac Williams, visit:

http://www.awm-math.org/
noetherbrochure/

MacWilliams80.html
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Vera Pless

Vera Pless is a leader in the field of coding
theory.

VERA PLESS was born on March 5, 1931, to
Russian immigrants on the West Side of
Chicago. She accepted a scholarship to attend
the University of Chicago at age 15. The pro-
gram at Chicago emphasized great literature
but paid little attention to physics and mathe-
matics. At age 18, with no more than one pre-
calculus course in mathematics, she entered
the prestigious graduate program in mathe-
matics at Chicago, where, at that time, there
were no women on the mathematics faculty
or even women colloquium speakers. After
passing her master’s exam, she took a job as a
research associate at Northwestern Univer-
sity while pursuing a Ph.D. there. In 1957,
she obtained her degree.

Over the next several years, Pless stayed
at home to raise her children while teaching

part-time at Boston University. When she
decided to work full-time, she found that
women were not welcome at most colleges
and universities. One person told her out-
right, “I would never hire a woman.” Fortu-
nately, there was an Air Force Lab in the area
that had a group working on error-correcting
codes. Although she had never even heard of
coding theory, she was hired because of her
background in algebra. When the lab discon-
tinued basic research, she took a position as
a research associate at MIT in 1972. In 1975,
she went to the University of Illinois–Chicago,
where she remained until her retirement.

During her career, Pless wrote more than
100 research papers, authored a widely used
textbook on coding theory, and had 11 Ph. D.
students.   
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Fundamental Theorem of Galois Theory
The Fundamental Theorem of Galois Theory is one of the most elegant
theorems in mathematics. Look at Figures 32.1 and 32.2. Figure 32.1
depicts the lattice of subgroups of the group of field automorphisms of
Q( , i). The integer along an upward lattice line from a group H1 to
a group H2 is the index of H1 in H2. Figure 32.2 shows the lattice of
subfields of Q( , i). The integer along an upward line from a field
K1 to a field K2 is the degree of K2 over K1. Notice that the lattice in
Figure 32.2 is the lattice of Figure 32.1 turned upside down. This is
only one of many relationships between these two lattices. The Funda-
mental Theorem of Galois Theory relates the lattice of subfields of an
algebraic extension E of a field F to the subgroup structure of the group

"4 2

"4 2

32 An Introduction to
Galois Theory

Galois theory is a showpiece of mathematical unification, bringing together
several different branches of the subject and creating a powerful machine
for the study of problems of considerable historical and mathematical
importance.

IAN STEWART, Galois Theory

Figure 32.1 Lattice of subgroups of the group of field automorphisms of

Q( , i), where a : i S i and S 2i , b : i S 2i, and S "4 2"4 2"4 2"4 2"4 2

}

{e, a, a2, a3, b, ab, a2b, a3b}

e, a  , b, a b

e, a  be, b
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}

} }
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22 e, a  , ab, a b{ }32
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of automorphisms of E that send each element of F to itself. This rela-
tionship was discovered in the process of attempting to solve a polyno-
mial equation f(x) 5 0 by radicals.

Before we can give a precise statement of the Fundamental Theorem
of Galois Theory, we need some terminology and notation.

Definitions Automorphism, Galois Group, Fixed Field of H

Let E be an extension field of the field F. An automorphism of E is a
ring isomorphism from E onto E. The Galois group of E over F,
Gal(E/F), is the set of all automorphisms of E that take every element
of F to itself. If H is a subgroup of Gal(E/F ), the set

EH 5 {x [ E | f(x) 5 x for all f [ H}

is called the fixed field of H.

It is easy to show that the set of automorphisms of E forms a group
under composition. We leave as exercises (Exercises 3 and 5) the veri-
fications that the automorphism group of E fixing F is a subgroup of
the automorphism group of E and that, for any subgroup H of
Gal(E/F), the fixed field EH of H is a subfield of E. Be careful not to
misinterpret Gal(E/F) as something that has to do with factor rings or
factor groups. It does not.

The following examples will help you assimilate these definitions. In
each example, we simply indicate how the automorphisms are defined.
We leave to the reader the verifications that the mappings are indeed
automorphisms.

EXAMPLE 1 Consider the extension Q( ) of Q. Since

Q( ) 5 {a 1 b | a, b [ Q}"2"2

"2

546 Special Topics

Figure 32.2 Lattice of subfields of Q( , i)"4 2

2

2

2

2 2 2 2

2 2
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Q(√2)4
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and any automorphism of a field containing Q must act as the identity
on Q (Exercise 1), an automorphism f of Q( ) is completely deter-
mined by f( ). Thus,

2 5 f(2) 5 f( ) 5 (f( ))2

and therefore f( ) 5 6 . This proves that the group Gal(Q( )/Q)
has two elements, the identity mapping and the mapping that sends a 1
b to a 2 b .

EXAMPLE 2 Consider the extension Q( ) of Q. An automor-
phism f of Q( ) is completely determined by f( ). By an argu-
ment analogous to that in Example 1, we see that f( ) must be a
cube root of 2. Since Q( ) is a subset of the real numbers and 
is the only real cube root of 2, we must have f( ) 5 . Thus, f
is the identity automorphism and Gal(Q( )/Q) has only one ele-
ment. Obviously, the fixed field of Gal(Q( )/Q) is Q ( ).

EXAMPLE 3 Consider the extension Q( , i) of Q(i). Any auto-
morphism f of Q( , i) fixing Q(i) is completely determined by
f( ). Since

2 5 f(2) 5 f(( )4) 5 (f( ))4,

we see that f( ) must be a fourth root of 2. Thus, there are at most
four possible automorphisms of Q( , i) fixing Q(i). If we define an
automorphism a such that a(i) 5 i and a( ) 5 i , then a [
Gal(Q( , i)/Q(i)) and a has order 4. Thus, Gal(Q( , i)/Q(i)) is a
cyclic group of order 4. The fixed field of {e, a2} (where e is the identity
automorphism) is Q( , i). The lattice of subgroups of Gal(Q( , i)/
Q(i)) and the lattice of subfields of Q( , i) containing Q(i) are shown
in Figure 32.3. As in Figures 32.1 and 32.2, the integers along the lines

"4 2
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"4 2"4 2
"4 2"4 2

"4 2
"4 2

"4 2"4 2

"4 2
"4 2
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"3 2"3 2

"3 2
"3 2"3 2
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of the group lattice represent the index of a subgroup in the group
above it, and the integers along the lines of the field lattice represent
the degree of the extension of a field over the field below it.

EXAMPLE 4 Consider the extension Q( , ) of Q. Since

Q( , ) 5 {a 1 b 1 c 1 d | a, b, c, d [ Q},

any automorphism f of Q( , ) is completely determined by the
two values f( ) and f( ). This time there are four automorphisms:

e a b ab

S S 2 S S 2

S S S 2 S 2

Obviously, Gal(Q( , )/Q) is isomorphic to Z2 % Z2. The fixed
field of {e, a} is Q( ), the fixed field of {e, b} is Q( ), and
the fixed field of {e, ab} is Q( ). The lattice of subgroups of
Gal(Q( , )/Q) and the lattice of subfields of Q( , ) are shown
in Figure 32.4.

Figure 32.4 Lattice of subgroups of Gal(Q ( , )/Q) and lattice of subfields
of Q ( , )

Example 5 is a bit more complicated than our previous examples. In
particular, the automorphism group is non-Abelian.

EXAMPLE 5 Direct calculations show that v 5 21/2 1 i /2 satis-
fies the equations v3 5 1 and v2 1 v 1 1 5 0. Now, consider the
extension Q(v, ) of Q. We may describe the automorphisms of
Q(v, ) by specifying how they act on v and . There are six in all:

e a b b2 ab ab2

v S v v S v2 v S v v S v v S v2 v S v2

S S S v S v2 S v2 S v"3 2"3 2"3 2"3 2"3 2"3 2"3 2"3 2"3 2"3 2"3 2"3 2

"3 2"3 2
"3 2

"3

"5"3
"5"3

2

2 2 2

2 2

Q(√5 )

Q(√3,√5 )

Q (√3) Q(√3√5 )

Q

e, a, b, ab

{ }e, b { }e, ab{ }e, a

{ }e 

{ }

222

2 2 2

"5"3"5"3
"5"3

"3"5
"5"3
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Since ab 2 ba, we know that Gal(Q(v, )/Q) is isomorphic to S3.
(See Theorem 7.2.) The lattices of subgroups and subfields are shown
in Figure 32.5.

Figure 32.5 Lattice of subgroups of Gal(Q(v, )/Q) and lattice 
of subfields of Q(v, ), where v 5 21/2 1 i /2.

The lattices in Figure 32.5 have been arranged so that each nontrivial
proper field occupying the same position as some group is the fixed field
of that group. For instance, Q(v ) is the fixed field of {e, ab}.

The preceding examples show that, in certain cases, there is an inti-
mate connection between the lattice of subfields between E and F and
the lattice of subgroups of Gal(E/F). In general, if E is an extension of F,
and we let ^ be the lattice of subfields of E containing F and let & be
the lattice of subgroups of Gal(E/F), then for each K in ^, the group
Gal(E/K) is in &, and for each H in &, the field EH is in ^. Thus, we
may define a mapping g: ^ S & by g(K) 5 Gal(E/K) and a mapping
f :& S ^ by f (H) 5 EH. It is easy to show that if K and L belong to ^
and K # L, then g(K) $ g(L). Similarly, if G and H belong to & and
G # H, then f (G) $ f (H). Thus, f and g are inclusion-reversing map-
pings between ^ and &. We leave it to the reader to show that for any K
in ^, we have (fg)(K) $ K, and for any G in &, we have (gf )(G) $ G.
When E is an arbitrary extension of F, these inclusions may be strict.
However, when E is a suitably chosen extension of F, the Fundamental
Theorem of Galois Theory, Theorem 32.1, says that f and g are inverses

"3 2

"3"3 2
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3 3 32
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of each other, so that the inclusions are equalities. In particular, f and g
are inclusion-reversing isomorphisms between the lattices ^ and &.
A stronger result than that given in Theorem 32.1 is true, but our theo-
rem illustrates the fundamental principles involved. The student is
referred to [1, p. 285] for additional details and proofs.

Theorem 32.1 Fundamental Theorem of Galois Theory

Generally speaking, it is much easier to determine a lattice of sub-
groups than a lattice of subfields. For example, it is usually quite diffi-
cult to determine, directly, how many subfields a given field has, and it
is often difficult to decide whether or not two field extensions are the
same. The corresponding questions about groups are much more
tractable. Hence, the Fundamental Theorem of Galois Theory can 
be a great labor-saving device. Here is an illustration. [Recall from
Chapter 20 that if f (x) [ F[x] and the zeros of f (x) in some extension
of F are a1, a2, . . . , an, then F(a1, a2, . . . , an) is the splitting field of
f (x) over F.]

EXAMPLE 6 Let v 5 cos(2p/7) 1 i sin(2p/7), so that v7 5 1, and
consider the field Q(v). How many subfields does it have and what are
they? First, observe that Q(v) is the splitting field of x7 2 1 over Q, so
that we may apply the Fundamental Theorem of Galois Theory. A sim-
ple calculation shows that the automorphism f that sends v to v3 has
order 6. Thus,

[Q(v):Q] 5 |Gal(Q(v)/Q)| $ 6.

Let F be a field of characteristic 0 or a finite field. If E is the splitting
field over F for some polynomial in F[x], then the mapping from the
set of subfields of E containing F to the set of subgroups of Gal(E/F)
given by K S Gal(E/K) is a one-to-one correspondence. Further-
more, for any subfield K of E containing F,

1. [E:K] 5 |Gal(E/K)| and [K:F] 5 |Gal(E/F)| / |Gal(E/K)|. [The
index of Gal(E/K) in Gal(E/F) equals the degree of K over F.]

2. If K is the splitting field of some polynomial in F[x], 
then Gal(E/K) is a normal subgroup of Gal(E/F) and Gal(K/F)
is isomorphic to Gal(E/F)/Gal(E/K).

3. K 5 EGal(E/K). [The fixed field of Gal(E/K) is K.]
4. If H is a subgroup of Gal(E/F), then H 5 Gal(E/EH). [The

automorphism group of E fixing EH is H.]
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Also, since

x7 2 1 5 (x 2 1)(x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1)

and v is a zero of x7 2 1, we see that

|Gal(Q(v)/Q)| 5 [Q(v):Q] # 6.

Thus, Gal(Q(v)/Q) is a cyclic group of order 6. So, the lattice of sub-
groups of Gal(Q(v)/Q) is trivial to compute. See Figure 32.6.

Figure 32.6 Lattice of subgroups of Gal(Q(v)/Q), 
where v 5 cos(2p/7) 1 i sin(2p/7)

This means that Q(v) contains exactly two proper extensions of Q:
one of degree 3 corresponding to the fixed field of �f3� and one of de-
gree 2 corresponding to the fixed field of �f2�. To find the fixed field of
�f3�, we must find a member of Q(v) that is not in Q and that is fixed
by f3. Experimenting with various possibilities leads us to discover
that v 1 v21 is fixed by f3 (see Exercise 9), and it follows that Q ,
Q(v 1 v21) # Q(v)�f3�. Since [Q(v)�f3� : Q] 5 3 and [Q(v 1 v21) : Q]
divides [Q(v)�f3� : Q], we see that Q(v 1 v21) 5 Q(v)�f3�. A similar
argument shows that Q(v3 1 v5 1 v6) is the fixed field of �f2�. Thus,
we have found all subfields of Q(v).

EXAMPLE 7 Consider the extension E 5 GF(pn) of F 5 GF(p). Let
us determine Gal(E/F). By Corollary 2 of Theorem 22.2, E has the form
F(b) for some b where b is the zero of an irreducible polynomial p(x) of
the form xn 1 an21x

n21 1 ? ? ? 1 a1x 1 a0, where an21, an22, . . . , a0 be-
long to F. Since any field automorphism f of E must take 1 to itself, it
follows that f acts as the identity on F. Thus, p(b) 5 0 implies that
p(f(b)) 5 0. And because p(x) has at most n zeros, we know that there
are at most n possibilities for f(b). On the other hand, by Exercise 45 in
Chapter 13, we know that the mapping s (a) 5 ap for all a [ E is an
automorphism of E, and it follows from the fact that E* is cyclic
(Theorem 22.2) that the group �s� has order n (see Exercise 11 in
Chapter 22). Thus, Gal(GF(pn)/GF(p)) < Zn.
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Solvability of Polynomials by Radicals
For Galois, the elegant correspondence between groups and fields
given by Theorem 32.1 was only a means to an end. Galois sought to
solve a problem that had stymied mathematicians for centuries.
Methods for solving linear and quadratic equations were known thou-
sands of years ago (the Quadratic Formula). In the 16th century, Ital-
ian mathematicians developed formulas for solving any third- or
fourth-degree equation. Their formulas involved only the operations
of addition, subtraction, multiplication, division, and extraction of
roots (radicals). For example, the equation

x3 1 bx 1 c 5 0

has the three solutions

A 1 B,
2(A 1 B)/2 1 (A 2 B) /2,
2(A 1 B)/2 2 (A 2 B) /2,

where

and

The formulas for the general cubic x3 1 ax2 1 bx 1 c 5 0 and the gen-
eral quartic (fourth-degree polynomial) are even more complicated, but
nevertheless can be given in terms of radicals of rational expressions of
the coefficients.

Both Abel and Galois proved that there is no general solution of a
fifth-degree equation by radicals. In particular, there is no “quintic for-
mula.” Before discussing Galois’s method, which provided a group-
theoretic criterion for the solution of an equation by radicals and led to
the modern-day Galois theory, we need a few definitions.

Definition Solvable by Radicals

Let F be a field, and let f (x) [ F[x]. We say that f (x) is solvable by radi-
cals over F if f (x) splits in some extension F(a1, a2, . . . , an) of F and
there exist positive integers k1, . . . , kn such that a1

k1 [ F and ai
ki [

F(a1, . . . , ai21) for i 5 2, . . . , n.

So, a polynomial in F[x] is solvable by radicals if we can obtain all
of its zeros by adjoining nth roots (for various n) to F. In other words,

B 5
3Ç
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2
2 Å
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27
1
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4
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3Ç
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each zero of the polynomial can be written as an expression (usually a
messy one) involving elements of F combined by the operations of ad-
dition, subtraction, multiplication, division, and extraction of roots.

EXAMPLE 8 Let v 5 cos( ) 1 i sin( ) 5 1 i . Then
x8 2 3 splits in Q(v, ), v8 [ Q, and ( )8 [ Q , Q(v). Thus,
x8 2 3 is solvable by radicals over Q. Although the zeros of x8 2 3
are most conveniently written in the form , v, v2, . . . ,

v7, the notion of solvable by radicals is best illustrated by writing
them in the form

6 , 6 , 6 ( 1 ),

6 ( 2 ).

Thus, the problem of solving a polynomial equation for its zeros can
be transformed into a problem about field extensions. At the same time,
we can use the Fundamental Theorem of Galois Theory to transform a
problem about field extensions into a problem about groups. This is ex-
actly how Galois showed that there are fifth-degree polynomials that
cannot be solved by radicals, and this is exactly how we will do it. Be-
fore giving an example of such a polynomial, we need some additional
group theory.

Definition Solvable Group

We say that a group G is solvable if G has a series of subgroups

{e} 5 H0 , H1 , H2 , ? ? ? , Hk 5 G,

where, for each 0 # i , k, Hi is normal in Hi11 and Hi11/Hi is Abelian.

Obviously, Abelian groups are solvable. So are the dihedral groups
and any group whose order has the form pn, where p is a prime (see
Exercises 22 and 23).The monumental Feit-Thompson Theorem (see
Chapter 25) says that every group of odd order is solvable. In a certain
sense, solvable groups are almost Abelian. On the other hand, it
follows directly from the definitions that any non-Abelian simple
group is not solvable. In particular, A5 is not solvable. It follows from
Exercise 21 in Chapter 25 that S5 is not solvable. Our goal is to con-
nect the notion of solvability of polynomials by radicals to that of
solvable groups. The next theorem is a step in this direction.

"21"2
2

"2
2"8 3

"21"2
2

"2
2"8 3"8 3"2 1"8 3

"8 3
"8 3"8 3"8 3
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2p
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Theorem 32.2 Splitting Field of xn 2 a

PROOF We first handle the case where F contains a primitive nth root
of unity v. Let b be a zero of xn 2 a in E. Then the zeros of xn 2 a are
b, vb, v2b, . . . , vn21b, and therefore E 5 F(b). In this case, we claim
that Gal(E/F) is Abelian and hence solvable. To see this, observe that
any automorphism in Gal(E/F) is completely determined by its action
on b. Also, since b is a zero of xn 2 a, we know that any element of
Gal(E/F) sends b to another zero of xn 2 a. That is, any element
of Gal(E/F) takes b to vib for some i. Let f and s be two elements
of Gal(E/F). Then, since v [ F, f and s fix v and f(b) 5 v jb and
s (b) 5 v kb for some j and k. Thus,

(sf)(b) 5 s (f(b)) 5 s (v jb) 5 s (v j)s (b) 5 v jv kb 5 v j1kb,

whereas

(fs)(b) 5 f(s(b)) 5 f(v kb) 5 f(v k)f(b) 5 v kv jb 5 v k1jb,

so that sf and fs agree on b and fix the elements of F. This shows
that sf 5 fs, and therefore Gal(E/F) is Abelian.

Now suppose that F does not contain a primitive nth root of unity.
Let v be a primitive nth root of unity and let b be a zero of xn 2 a in E.
The case where a 5 0 is trivial, so we may assume that b ? 0. Since
vb is also a zero of xn 2 a, we know that both v and vb belong to E,
and therefore v 5 vb/b is in E as well. Thus, F(v) is contained in E,
and F(v) is the splitting field of xn 2 1 over F. Analogously to the
case above, for any automorphisms f and s in Gal(F(v)/F) we have
f(v) 5 v j for some j and s (v) 5 v k for some k. Then,

(sf)(v) 5 s (f(v)) 5 s (v j) 5 (s (v)) j 5 (v k) j

5 (v j) k 5 (f(v)) k 5 f(v k) 5 f(s (v)) 5 (fs)(v).

Since elements of Gal(F(v)/F) are completely determined by their ac-
tion on v, this shows that Gal(F(v)/F) is Abelian.

Because E is the splitting field of xn 2 a over F(v) and F(v) con-
tains a primitive nth root of unity, we know from the case we have al-
ready done that Gal(E/F(v)) is Abelian and, by Part 2 of Theorem 32.1,
the series

{e} # Gal(E/F(v)) # Gal(E/F)

Let F be a field of characteristic 0 and let a [ F. If E is the splitting
field of xn 2 a over F, then the Galois group Gal(E/F) is solvable.
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is a normal series. Finally, since both Gal(E/F(v)) and

Gal(E/F)/Gal(E/F(v)) < Gal(F(v)/F)

are Abelian, Gal(E/F) is solvable.

To reach our main result about polynomials that are solvable by rad-
icals, we need two important facts about solvable groups.

Theorem 32.3 Factor Group of a Solvable Group Is Solvable

PROOF Suppose that G has a series of subgroups

{e} 5 H0 , H1 , H2 , ? ? ? , Hk 5 G,

where, for each 0 # i , k, Hi is normal in Hi11 and Hi11/Hi is Abelian.
If N is any normal subgroup of G, then

{e} 5 H0N/N , H1N/N , H2N/N , ? ? ? , HkN/N 5 G/N

is the requisite series of subgroups that guarantees that G/N is solvable.
(See Exercise 25.)

Theorem 32.4 N and G/N Solvable Implies G Is Solvable

PROOF Let a series of subgroups of N with Abelian factors be

N0 , N1 , ? ? ? , Nt 5 N

and let a series of subgroups of G/N with Abelian factors be

N/N 5 H0 /N , H1/N , ? ? ? , Hs /N 5 G/N.

Then the series

N0 , N1 , ? ? ? , Nt 5 H0 , H1 , ? ? ? , Hs 5 G

has Abelian factors (see Exercise 27).

We are now able to make the critical connection between solvability
of polynomials by radicals and solvable groups.

Let N be a normal subgroup of a group G. If both N and G/N are
solvable, then G is solvable.

A factor group of a solvable group is solvable.
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Theorem 32.5 (Galois) Solvable by Radicals Implies Solvable Group

PROOF We induct on t. For the case t 5 1, we have F # E # F(a1). Let
a 5 a1

n1 and let L be a splitting field of xn1 2 a over F. Then F #
E # L, and both E and L are splitting fields of polynomials over F. By
Part 2 of Theorem 32.1, Gal(E/F) < Gal(L/F)/Gal(L/E). It follows from
Theorem 32.2 that Gal(L/F) is solvable, and from Theorem 32.3 we
know that Gal(L/F)/Gal(L/E) is solvable. Thus, Gal(E/F) is solvable.

Now suppose t . 1. Let a 5 a1
n1 [ F, let L be a splitting field of 

xn1 2 a over E, and let K # L be the splitting field of xn1 2 a over F.
Then L is a splitting field of (xn1 2 a) f (x) over F, and L is a splitting
field of f (x) over K. Since F(a1) # K, we know that f (x) splits in 
K(a2, . . . , at), so the induction hypothesis implies that Gal(L/K) is
solvable. Also, Theorem 32.2 asserts that Gal(K/F) is solvable, which,
from Theorem 32.1, tells us that Gal(L/F)/Gal(L/K) is solvable. Hence,
Theorem 32.4 implies that Gal(L/F) is solvable. So, by Part 2 of Theo-
rem 32.1 and Theorem 32.3, we know that the factor group
Gal(L/F)/Gal(L/E) < Gal(E/F) is solvable.

It is worth remarking that the converse of Theorem 32.3 is true also;
that is, if E is the splitting field of a polynomial f (x) over a field F of
characteristic 0 and Gal(E/F) is solvable, then f (x) is solvable by radi-
cals over F.

It is known that every finite group is a Galois group over some field.
However, one of the major unsolved problems in algebra, first posed
by Emmy Noether, is determining which finite groups can occur as
Galois groups over Q. Many people suspect that the answer is “all of
them.” It is known that every solvable group is a Galois group over Q.
John Thompson has recently proved that certain kinds of simple
groups, including the Monster, are Galois groups over Q. The article by
Ian Stewart listed among this chapter’s suggested readings provides
more information on this topic.

Insolvability of a Quintic
We will finish our introduction to Galois theory by explicitly exhibit-
ing a polynomial that has integer coefficients and that is not solvable
by radicals over Q.

Let F be a field of characteristic 0 and let f(x) [ F[x]. Suppose that
f(x) splits in F(a1, a2, . . . , at), where a1

n1 [ F and ai
ni [ F(a1, . . . ,

ai21) for i 5 2, . . . , t. Let E be the splitting field for f(x) over F in
F(a1, a2, . . . , at). Then the Galois group Gal(E/F) is solvable.

556 Special Topics

16509_ch32_p545-560 pp3  11/17/08  10:11 AM  Page 556



Consider g(x) 5 3x5 2 15x 1 5. By Eisenstein’s Criterion (Theorem
17.4), g(x) is irreducible over Q. Since g(x) is continuous and g(22) 5
261 and g(21) 5 17, we know that g(x) has a real zero between 22
and 21. A similar analysis shows that g(x) also has real zeros between
0 and 1 and between 1 and 2.

Each of these real zeros has multiplicity 1, as can be verified by long
division or by appealing to Theorem 20.6. Furthermore, g(x) has no
more than three real zeros, because Rolle’s Theorem from calculus
guarantees that between each pair of real zeros of g(x) there must be a
zero of g9(x) 5 15x4 2 15. So, for g(x) to have four real zeros, g9(x)
would have to have three real zeros, and it does not. Thus, the other two
zeros of g(x) are nonreal complex numbers, say, a 1 bi and a 2 bi.
(See Exercise 65 in Chapter 15.)

Now, let’s denote the five zeros of g(x) by a1, a2, a3, a4, a5. Since any
automorphism of K 5 Q(a1, a2, a3, a4, a5) is completely determined by its
action on the a’s and must permute the a’s, we know that Gal(K/Q) is iso-
morphic to a subgroup of S5, the symmetric group on five symbols. Since
a1 is a zero of an irreducible polynomial of degree 5 over Q, we know that
[Q(a1):Q] 5 5, and therefore 5 divides [K:Q]. Thus, the Fundamental
Theorem of Galois Theory tells us that 5 also divides |Gal(K/Q)|. So, by
Cauchy’s Theorem (corollary to Theorem 24.3), we may conclude that
Gal(K/Q) has an element of order 5. Since the only elements in S5 of or-
der 5 are the 5-cycles, we know that Gal(K/Q) contains a 5-cycle. The
mapping from C to C, sending a 1 bi to a 2 bi, is also an element of
Gal(K/Q). Since this mapping fixes the three real zeros and interchanges
the two complex zeros of g(x), we know that Gal(K/Q) contains a 2-cycle.
But, the only subgroup of S5 that contains both a 5-cycle and a 2-cycle is
S5. (See Exercise 25 in Chapter 25.) So, Gal(K/Q) is isomorphic to S5.
Finally, since S5 is not solvable (see Exercise 21), we have succeeded in
exhibiting a fifth-degree polynomial that is not solvable by radicals.

Exercises

Seeing much, suffering much, and studying much are the three pillars
of learning.

BENJAMIN DISRAELI

1. Let E be an extension field of Q. Show that any automorphism of E
acts as the identity on Q. (This exercise is referred to in this chapter.)

2. Determine the group of field automorphisms of GF(4).
3. Let E be a field extension of the field F. Show that the automor-

phism group of E fixing F is indeed a group. (This exercise is re-
ferred to in this chapter.)
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4. Given that the automorphism group of Q( , , ) is isomor-
phic to Z2 % Z2 % Z2, determine the number of subfields of Q( ,

, ) that have degree 4 over Q.
5. Let E be a field extension of a field F and let H be a subgroup of

Gal(E/F). Show that the fixed field of H is indeed a field. (This
exercise is referred to in this chapter.)

6. Let E be the splitting field of x4 1 1 over Q. Find Gal(E/Q). Find
all subfields of E. Find the automorphisms of E that have fixed
fields Q( ), Q( ), and Q(i). Is there an automorphism of E
whose fixed field is Q?

7. Let f (x) [ F[x] and let the zeros of f (x) be a1, a2, . . . , an. If K 5
F(a1, a2, . . . , an), show that Gal(K/F) is isomorphic to a group of
permutations of the ai’s. [When K is the splitting field of f (x) over F,
the group Gal(K/F) is called the Galois group of f (x).]

8. Show that the Galois group of a polynomial of degree n has order 
dividing n!.

9. Referring to Example 6, show that the automorphism f has order 6.
Show that v 1 v21 is fixed by f3 and v3 1 v5 1 v6 is fixed by f2.
(This exercise is referred to in this chapter.)

10. Let E 5 Q( , ). What is the order of the group Gal(E/Q)?
What is the order of Gal(Q( )/Q)?

11. Suppose that F is a field of characteristic 0 and E is the splitting
field for some polynomial over F. If Gal(E/F) is isomorphic to A4,
show that there is no subfield K of E such that [K:F] 5 2.

12. Determine the Galois group of x3 2 1 over Q and x3 2 2 over Q.
(See Exercise 7 for the definition.)

13. Suppose that K is the splitting field of some polynomial over a field
F of characteristic 0. If [K:F] 5 p2q, where p and q are distinct
primes, show that K has subfields L1, L2, and L3 such that [K:L1] 5
p, [K:L2] 5 p2, and [K:L3] 5 q.

14. Suppose that E is the splitting field of some polynomial over a field F
of characteristic 0. If Gal(E/F) is isomorphic to D5, draw the subfield
lattice for the fields between E and F.

15. Suppose that F , K , E are fields and E is the splitting field of
some polynomial in F[x]. Show, by means of an example, that K
need not be the splitting field of some polynomial in F[x].

16. Suppose that E is the splitting field of some polynomial over a field
F of characteristic 0. If [E:F] is finite, show that there is only a fi-
nite number of fields between E and F.

17. Suppose that E is the splitting field of some polynomial over a field
F of characteristic 0. If Gal(E/F) is an Abelian group of order 10,
draw the subfield lattice for the fields between E and F.

"10
"5"2

"2 2"2

"7"5
"2

"7"5"2
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18. Let v be a nonreal complex number such that v5 5 1. If f is the
automorphism of Q(v) that carries v to v4, find the fixed field of �f�.

19. Determine the isomorphism class of the group Gal(GF(64)/GF(2)).
20. Determine the isomorphism class of the group Gal(GF(729)/GF(9)).

Exercises 21, 22, and 23 are referred to in this chapter.

21. Show that S5 is not solvable.
22. Show that the dihedral groups are solvable.
23. Show that a group of order pn, where p is prime, is solvable.
24. Show that Sn is solvable when n # 4.
25. Complete the proof of Theorem 32.3 by showing that the given

series of groups satisfies the definition for solvability.
26. Show that a subgroup of a solvable group is solvable.
27. Let N be a normal subgroup of G and let K/N be a normal sub-

group of G/N. Prove that K is a normal subgroup of G. (This exer-
cise is referred to in this chapter.)

28. Show that any automorphism of GF( pn) acts as the identity on
GF( p).

Reference

1. G. Ehrlich, Fundamental Concepts of Abstract Algebra, Boston:
PWS-Kent, 1991.

Suggested Readings

Tony Rothman, “The Short Life of Évariste Galois,” Scientific American,
April (1982): 136–149.

This article gives an elementary discussion of Galois’s proof that the gen-
eral fifth-degree equation cannot be solved by radicals. The article also
goes into detail about Galois’s controversial life and death. In this regard,
Rothman refutes several accounts given by other Galois biographers.

Ian Stewart, “The Duelist and the Monster,” Nature 317 (1985): 12–13.
This nontechnical article discusses recent work of John Thompson per-
taining to the question of “which groups can occur as Galois groups.”

Suggested Website

To find more information about the history of quadratic, cubic, and quar-
tic equations, visit:

http://www-groups.dcs.st-and.ac.uk/~history/
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Philip Hall

He [Hall] was preeminent as a group theo-
rist and made many fundamental discover-
ies; the conspicuous growth of interest
in group theory in the 20th century owes
much to him.

J. E. ROSEBLADE

PHILIP HALL was born on April 11, 1904, in
London. Abandoned by his father shortly
after birth, Hall was raised by his mother, a
dressmaker. He demonstrated academic
prowess early by winning a scholarship to
Christ’s Hospital, where he had several out-
standing mathematics teachers. At Christ’s
Hospital, Hall won a medal for the best
English essay, the gold medal in mathemat-
ics, and a scholarship to King’s College,
Cambridge.

Although abstract algebra was a field ne-
glected at King’s College, Hall studied
Burnside’s book Theory of Groups and some
of Burnside’s later papers. After graduating in
1925, he stayed on at King’s College for fur-
ther study and was elected to a fellowship in
1927. That same year, Hall discovered a
major “Sylow-like” theorem about solvable
groups: If a solvable group has order mn,
where m and n are relatively prime, then
every subgroup whose order divides m is con-
tained in a group of order m and all subgroups
of order m are conjugate. Over the next three
decades, Hall developed a general theory of

finite solvable groups that had a profound in-
fluence on John Thompson’s spectacular
achievements of the 1960s. In the 1930s, Hall
also developed a general theory of groups of
prime-power order that has become a founda-
tion of modern finite group theory. In addi-
tion to his fundamental contributions to finite
groups, Hall wrote many seminal papers on
infinite groups.

Among the concepts that have Hall’s name
attached to them are Hall subgroups, Hall
algebras, Hall-Littlewood polynomials, Hall
divisors, the marriage theorem from graph
theory, and the Hall commutator collecting
process. Beyond his own discoveries, Hall
had an enormous influence on algebra
through his research students. No fewer than
one dozen have become eminent mathemati-
cians in their own right. Hall died on
December 30, 1982.

To find more information about Hall,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Cyclotomic Extensions

“. . . to regard old problems from a new angle requires creative imagination
and marks real advances in science.”

ALBERT EINSTEIN

33

Motivation
For the culminating chapter of this book, it is fitting to choose a topic
that ties together results about groups, rings, fields, geometric construc-
tions, and the history of mathematics. The so-called cyclotomic exten-
sions is such a topic. We begin with the history.

The ancient Greeks knew how to construct regular polygons of 3, 4,
5, 6, 8, 10, 12, 15, and 16 sides with a straightedge and compass. And,
given a construction of a regular n-gon, it is easy to construct a regular
2n-gon. The Greeks attempted to fill in the gaps (7, 9, 11, 13, 14,
17, . . .) but failed. More than 2200 years passed before anyone was
able to advance our knowledge of this problem beyond that of the
Greeks. Incredibly, Gauss, at age 19, showed that a regular 17-gon is
constructible, and shortly thereafter he completely solved the problem
of exactly which n-gons are constructible. It was this discovery of the
constructibility of the 17-sided regular polygon that induced Gauss to
dedicate his life to the study of mathematics. Gauss was so proud of
this accomplishment that he requested that a regular 17-sided polygon
be engraved on his tombstone.

Gauss was led to his discovery of the constructible polygons through
his investigation of the factorization of polynomials of the form xn 2 1
over Q. In this chapter, we examine the factors of xn 2 1 and show how
Galois theory can be used to determine which regular n-gons are con-
structible with a straightedge and compass. The irreducible factors of 
xn 2 1 are important in number theory and combinatorics.
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562 Special Topics

Cyclotomic Polynomials
Recall from Example 2 in Chapter 16 that the complex zeros of xn 2 1
are 1, v 5 cos( ) 1 i sin( ), v2, v3, . . . , vn21. Thus, the splitting
field of xn 2 1 over Q is Q(v). This field is called the nth cyclotomic
extension of Q, and the irreducible factors of xn 2 1 over Q are called
the cyclotomic polynomials.

Since v 5 cos( ) 1 i sin( ) generates a cyclic group of order 
n under multiplication, we know from Corollary 3 of Theorem 4.2 that
the generators of �v� are the elements of the form vk, where 1 # k # n
and gcd(n, k) 5 1. These generators are called the primitive nth roots
of unity. Recalling that we use f(n) to denote the number of positive
integers less than or equal to n and relatively prime to n, we see that for
each positive integer n there are precisely f(n) primitive nth roots of
unity. The polynomials whose zeros are the f(n) primitive nth roots 
of unity have a special name.

Definition

For any positive integer n, let v1, v2, . . . , vf(n) denote the primitive nth
roots of unity. The nth cyclotomic polynomial over Q is the polynomial
Fn(x) 5 (x 2 v1)(x 2 v2) ? ? ? (x 2 vf(n)).

In particular, note that Fn(x) is monic and has degree f(n). In
Theorem 33.2 we will prove that Fn(x) has integer coefficients, and in
Theorem 33.3 we will prove that Fn(x) is irreducible over Z.

EXAMPLE 1 F1(x) 5 x 2 1, since 1 is the only zero of x 2 1. F2(x) 5
x 1 1, since the zeros of x 2 2 1 are 1 and 21, and 21 is the only primitive
root. F3(x) 5 (x 2 v)(x 2 v2), where v 5 cos( ) 1 i sin( ) 5 (21 1
i )/2, and direct calculations show that F3(x) 5 x2 1 x 1 1. Since 
the zeros of x4 2 1 are 61 and 6i and only i and 2i are primitive, F4(x) 5
(x 2 i)(x 1 i) 5 x2 1 1.

In practice, one does not use the definition of Fn(x) to compute it.
Instead, one uses the formulas given in the exercises and makes recur-
sive use of the following result.

Theorem 33.1

For every positive integer n, xn 2 1 5 Pd|nFd (x), where the product
runs over all positive divisors d of n.
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33 | Cyclotomic Extensions 563

Before proving this theorem, let us be sure that the statement 
is clear. For n 5 6, for instance, the theorem asserts that x6 2 1 5
F1(x)F2(x)F3(x)F6(x), since 1, 2, 3, and 6 are the positive divisors of 6.

PROOF Since both polynomials in the statement are monic, it suffices
to show that they have the same zeros and that all zeros have multi-
plicity 1. Let v 5 cos( ) 1 i sin( ). Then �v� is a cyclic group of
order n, and �v� contains all the nth roots of unity. From Theorem 4.3 we
know that for each j, |v j| divides n so that (x 2 v j) appears as a factor in
F|v j |(x). On the other hand, if x 2 a is a linear factor of Fd(x) for some
divisor d of n, then ad 5 1, and therefore an 5 1. Thus, x 2 a is a factor
of xn 2 1. Finally, since no zero of xn 2 1 can be a zero of Fd(x) for two
different d’s, the result is proved.

Before we illustrate how Theorem 33.1 can be used to calculate
Fn(x) recursively, we state an important consequence of the theorem.

Theorem 33.2

PROOF The case n 5 1 is trivial. By induction, we may assume that
g(x) 5 Pd|n

d,n
Fd (x) has integer coefficients. From Theorem 33.1 we

know that xn 2 1 5 Fn(x)g(x), and, because g(x) is monic, we may
carry out the division in Z[x] (see Exercise 45 in Chapter 16). Thus,
Fn(x) [ Z[x].

Now let us do some calculations. If p is a prime, we have from The-
orem 33.1 that x p 2 1 5 F1(x)Fp(x) 5 (x 2 1)Fp(x), so that 
Fp(x) 5 (xp 2 1)/(x 2 1) 5 xp21 1 xp22 1 ? ? ? 1 x 1 1. From Theo-
rem 33.1 we have

x6 2 1 5 F1(x)F2(x)F3(x)F6(x),

so that F6(x) 5 (x6 2 1)/((x 2 1)(x 1 1)(x2 1 x 1 1)). So, by long 
division, F6(x) 5 x2 2 x 1 1. Similarly, F10(x) 5 (x10 2 1)/
((x 2 1)(x 1 1)(x4 1 x3 1 x2 1 x 1 1)) 5 x4 2 x3 1 x2 2 x 1 1.

The exercises provide shortcuts that often make long division unnec-
essary. The values of Fn(x) for all n up to 15 are shown in Table 33.1.
The software for Computer Exercise 1 provides the values for Fn(x) for
all values of n up to 1000. Judging from Table 33.1, one might be led
to conjecture that 1 and 21 are the only nonzero coefficients of the

For every positive integer n, Fn(x) has integer coefficients.

2p
n

2p
n
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cyclotomic polynomials. However, it has been shown that every integer
is a coefficient of some cyclotomic polynomial.

The next theorem reveals why the cyclotomic polynomials are 
important.

Theorem 33.3 (Gauss)

PROOF Let f (x) [ Z[x] be a monic irreducible factor of Fn(x).
Because Fn(x) is monic and has no multiple zeros, it suffices to show
that every zero of Fn(x) is a zero of f(x).

Since Fn(x) divides xn 2 1 in Z[x], we may write xn 2 1 5 f (x)g(x),
where g(x) [ Z[x]. Let v be a primitive nth root of unity that is a zero
of f (x). Then f (x) is the minimal polynomial for v over Q. Let p be any
prime that does not divide n. Then, by Corollary 3 of Theorem 4.2,
v p is also a primitive nth root of unity, and therefore 0 5 (v p)n 2 1 5
f (v p)g(v p), and so f (v p) 5 0 or g(v p) 5 0. Suppose f (v p) 2 0. Then
g(v p) 5 0, and so v is a zero of g(xp). Thus, from Theorem 21.3, f (x)
divides g(xp) in Q[x]. Since f (x) is monic, f (x) actually divides g(xp)
in Z[x] (see Exercise 45 in Chapter 16). Say g(xp) 5 f (x)h(x), where
h(x) [ Z[x]. Now let (x), (x), and (x) denote the polynomials in
Zp[x] obtained from g(x), f (x), and h(x), respectively, by reducing
each coefficient modulo p. Since this reduction process is a ring ho-
momorphism from Z[x] to Z p[x] (see Exercise 9 in Chapter 16), we

hf g

The cyclotomic polynomials Fn(x) are irreducible over Z.

Table 33.1 The Cyclotomic Polynomials Fn(x) up to n 5 15

n Fn(x)

1 x 2 1
2 x 1 1
3 x2 1 x 1 1
4 x2 1 1
5 x4 1 x3 1 x2 1 x 1 1
6 x2 2 x 1 1
7 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
8 x4 1 1
9 x6 1 x3 1 1

10 x4 2 x3 1 x2 2 x 1 1
11 x10 1 x9 1 x8 1 x7 1 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
12 x4 2 x2 1 1
13 x12 1 x11 1 x10 1 x9 1 x8 1 x7 1 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
14 x6 2 x5 1 x4 2 x3 1 x2 2 x 1 1
15 x8 2 x7 1 x5 2 x4 1 x3 2 x 1 1
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have (x p) 5 (x) (x) in Z p[x]. From Exercise 31 in Chapter 16 and
Corollary 5 of Theorem 7.1, we then have ( (x)) p 5 (xp) 5 (x) (x),
and since Z p[x] is a unique factorization domain, it follows that (x)
and (x) have an irreducible factor in Zp[x] in common; call it m(x).
Thus, we may write (x) 5 k1(x)m(x) and (x) 5 k2(x)m(x), where
k1(x), k2(x) [ Zp[x]. Then, viewing xn 2 1 as a member of Zp[x],
we have xn 2 1 5 (x) (x) 5 k1(x)k2(x)(m(x))2. In particular, xn 2 1
has a multiple zero in some extension of Z p. But because p does not
divide n, the derivative nx n21 of xn 21 is not 0, and so nx n21 and x n 2 1
do not have a common factor of positive degree in Zp[x]. Since this
contradicts Theorem 20.5, we must have f (v p) 5 0.

We reformulate what we have thus far proved as follows: If b is
any primitive nth root of unity that is a zero of f (x) and p is any prime
that does not divide n, then b p is a zero of f (x). Now let k be any inte-
ger between 1 and n that is relatively prime to n. Then we can write
k 5 p1 p2 ? ? ? pt, where each pi is a prime that does not divide n (repe-
titions are permitted). It follows then that each of v, v p1, (v p1) p2, . . . ,
(v p1 p2???pt–1) pt 5 vk is a zero of f (x). Since every zero of Fn(x) has the
form v k, where k is between 1 and n and is relatively prime to n, we
have proved that every zero of Fn(x) is a zero of f (x). This completes
the proof.

Of course, Theorems 33.3 and 33.1 give us the factorization of 
xn 2 1 as a product of irreducible polynomials over Q. But Theorem 33.1
is also useful for finding the irreducible factorization of xn 2 1 over Zp.
The next example provides an illustration. Irreducible factors of xn 2 1
over Zp are used to construct error-correcting codes.

EXAMPLE 2 We determine the irreducible factorization of x6 2 1 over
Z2 and Z3. From Table 33.1, we have x6 2 1 5 (x 2 1)(x 1 1)(x2 1
x 1 1)(x2 2 x 1 1). Taking all the coefficients on both sides mod 2, we
obtain the same expression, but we must check that these factors are ir-
reducible over Z2. Since x2 1 x 1 1 has no zeros in Z2, it is irreducible
over Z2 (see Theorem 17.1). Finally, since 21 5 1 in Z2, we have the
irreducible factorization x6 2 1 5 (x 1 1)2(x2 1 x 1 1)2. Over Z3,
we again start with the factorization x6 2 1 5 (x 2 1)(x 1 1)(x2 1
x 1 1)(x2 2 x 1 1) over Z and view the coefficients mod 3. Then 1 is
a zero of x2 1 x 1 1 in Z3, and by long division we obtain x2 1 x 1 1 5
(x 2 1)(x 1 2) 5 (x 1 2)2. Similarly, x2 2 x 1 1 5 (x 2 2)(x 1 1) 5
(x 1 1)2. So, the irreducible factorization of x6 2 1 over Z3 is (x 1 1)3

(x 1 2)3.

We next determine the Galois group of the cyclotomic extensions of Q.

gf 

gf 
f 

g
hf gg

hf g
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Theorem 33.4

PROOF Since 1, v, v2, . . . , v n21 are all the nth roots of unity, Q(v)
is the splitting field of x n 2 1 over Q. For each k in U(n), v k is a prim-
itive nth root of unity, and by the lemma preceding Theorem 20.4, there
is a field automorphism of Q(v), which we denote by fk, that carries v
to v k and acts as the identity on Q. Moreover, these are all the auto-
morphisms of Q(v), since any automorphism must map a primitive nth
root of unity to a primitive nth root of unity. Next, observe that for
every r, s [ U(n),

(frfs)(v) 5 fr(v
s ) 5 (fr (v))s 5 (v r )s 5 v rs 5 frs(v).

This shows that the mapping from U(n) onto Gal(Q(v)/Q) given by 
k S f k is a group homomorphism. Clearly, the mapping is an isomor-
phism, since v r 2 v s when r, s [ U(n) and r 2 s.

The next example uses Theorem 33.4 and the results of Chapter 8 to
demonstrate how to determine the Galois group of cyclotomic extensions.

EXAMPLE 3 Let a 5 cos( ) 1 i sin( ) and let b 5 cos( ) 1
i sin( ). Then

Gal(Q(a)/Q) < U(9) < Z6

and

Gal(Q(b)/Q) < U(15) < U(5) % U(3) < Z4 % Z2.

The Constructible Regular n-gons
As an application of the theory of cyclotomic extensions and Galois the-
ory, we determine exactly which regular n-gons are constructible with a
straightedge and compass. But first we prove a technical lemma.

Lemma

2p
15

2p
15

2p
9

2p
9

Let v be a primitive nth root of unity. Then Gal(Q(v)/Q) < U(n).

Let n be a positive integer and let v 5 cos 1 i sin . Then 
QAcos # Q(v).A2p

n B B
A2p

n BA2p
n B

PROOF Observe that from (cos( ) 1 i sin( ))(cos( ) 2 i sin( )) 5
cos2( ) 1 sin2( ) 5 1, we have cos( ) 2 i sin( ) 5 1/v. Moreover,
(v 1 1/v)/2 5 (2 cos( ))/2 5 cos( ). Thus, cos( ) [ Q(v).2p

n
2p
n
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Theorem 33.5 (Gauss, 1796)

PROOF If it is possible to construct a regular n-gon, then we can con-
struct the angle 2p/n and therefore the number cos( ). By the results of
Chapter 23, we know that cos( ) is constructible only if [Q(cos( )) : Q]
is a power of 2. To determine when this is so, we will use Galois theory.

Let v 5 cos( ) 1 i sin( ). Then |Gal(Q(v)/Q)| 5 [Q(v) : Q] 5
f(n). By the lemma on the preceding page, Q(cos( )) # Q(v), and by
Theorem 32.1 we know that

[Q(cos( )) : Q] 5 |Gal(Q(v)/Q)|/|Gal(Q(v)/Q(cos( )))|
5 f(n)/|Gal(Q(v)/Q(cos( )))|.

Recall that the elements s of Gal(Q(v)/Q) have the property that 
s(v) 5 vk for 1 # k # n. That is, s(cos( ) 1 i sin( )) 5 cos( ) 1
i sin( ). If such a s belongs to Gal(Q(v)/Q(cos( ))), then we must
have cos( ) 5 cos( ). Clearly, this holds only when k 5 1 and k 5
n 2 1. So, |Gal(Q(v)/Q(cos( )))| 5 2, and therefore [Q(cos( )) : Q] 5
f(n)/2. Thus, if an n-gon is constructible, then f(n)/2 must be a power
of 2. Of course, this implies that f(n) is a power of 2.

Write n 5 2kp1
n1p2

n 2 ? ? ? pt
nt, where k $ 0, the pi’s are distinct odd

primes, and the ni’s are positive. Then f(n)5|U(n)| 5 |U(2k)||U(p1
n1)|

|U(p2
n2)|? ? ? |U( pt

nt)| 5 2k21p1
n121( p1 2 1) p2

n221 ( p2 2 1) ? ? ?
pt

n t21( pt 2 1) must be a power of 2. Clearly, this implies that each ni 5
1 and each pi 2 1 is a power of 2. This completes the proof that the
condition in the statement is necessary.

To prove that the condition given in Theorem 33.5 is also sufficient,
suppose that n has the form 2kp1p2 ? ? ? pt , where the pi’s are distinct
odd primes of the form 2m 1 1, and let v 5 cos( ) 1 i sin( ). By
Theorem 33.3, Q(v) is a splitting field of an irreducible polynomial
over Q, and therefore, by the Fundamental Theorem of Galois Theory,
f(n) 5 [Q(v) : Q] 5 |Gal(Q(v)/Q)|. Since f(n) is a power of 2 and
Gal(Q(v)/Q) is an Abelian group, it follows by induction (see Exer-
cise 15) that there is a series of subgroups

H0 , H1 , ? ? ? , Ht 5 Gal(Q(v)/Q)

where H0 is the identity, H1 is the subgroup of Gal(Q(v)/Q) of order 2
that fixes cos( ), and |Hi11 : Hi| 5 2 for i 5 0, 1, 2, . . . , t 2 1. By the2p
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It is possible to construct the regular n-gon with a straightedge and
compass if and only if n has the form 2kp1 p2 ? ? ? pt, where k $ 0 and
the pi’s are distinct primes of the form 2m 1 1.
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Fundamental Theorem of Galois Theory, we then have a series of sub-
fields of the real numbers

Q 5 EHt
, EHt–1

, ? ? ? , EH1
5 Q(cos( )),

where [EHi21
: EHi

] 5 2. So, for each i, we may choose bi [ EHi21
such

that EHi21
5 EHi

(bi). Then bi is a zero of a polynomial of the form 
x 2 1 bi x 1 ci [ EHi

[x], and it follows that EHi21
5 EHi

( ).
Thus, it follows from Exercise 3 in Chapter 23 that every element of
Q(cos( )) is constructible.

It is interesting to note that Gauss did not use Galois theory in his
proof. In fact, Gauss gave his proof 15 years before Galois was born.

Exercises

Difficulties should act as a tonic. They should spur us to greater exertion.
B. C. FORBES

1. Determine the minimal polynomial for cos( ) 1 i sin( ) over Q.
2. Factor x12 2 1 as a product of irreducible polynomials over Z.
3. Factor x8 2 1 as a product of irreducible polynomials over Z2, Z3,

and Z5.
4. For any n . 1, prove that the sum of all the nth roots of unity is 0.
5. For any n . 1, prove that the product of the nth roots of unity is

(21)n11.
6. Let v be a primitive 12th root of unity over Q. Find the minimal

polynomial for v4 over Q.
7. Let F be a finite extension of Q. Prove that there are only a finite

number of roots of unity in F.
8. For any n . 1, prove that the irreducible factorization over Z of

xn21 1 xn22 1 ? ? ? 1 x 1 1 is PFd (x), where the product runs
over all positive divisors d of n greater than 1.

9. If 2n 1 1 is prime for some n $ 1, prove that n is a power of 2.
(Primes of the form 2n 1 1 are called Fermat primes.)

10. Prove that Fn(0) 5 1 for all n . 1.
11. Prove that if a field contains the nth roots of unity for n odd, then it

also contains the 2nth roots of unity.
12. Let m and n be relatively prime positive integers. Prove that the

splitting field of xmn 2 1 over Q is the same as the splitting field of
(xm 2 1)(xn 2 1) over Q.

p
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p
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13. Prove that F2 n(x) 5 Fn(2x) for all odd integers n . 1.
14. Prove that if p is a prime and k is a positive integer, then Fp k (x) 5

Fp(x
p k 21). Use this to find F8(x) and F27(x).

15. Prove the assertion made in the proof of Theorem 33.5 that there ex-
ists a series of subgroups H0 , H1 , ? ? ? , Ht with |Hi11 : Hi| 5 2
for i 5 0, 1, 2, . . . , t 2 1. (This exercise is referred to in this
chapter.)

16. Prove that x9 2 1 and x7 2 1 have isomorphic Galois groups over Q.
(See Exercise 7 in Chapter 32 for the definition.)

17. Let p be a prime that does not divide n. Prove that Fpn(x) 5
Fn(x

p)/ Fn(x).
18. Prove that the Galois groups of x10 2 1 and x 8 2 1 over Q are not 

isomorphic.
19. Let E be the splitting field of x 5 2 1 over Q. Show that there is a

unique field K with the property that Q , K , E.
20. Let E be the splitting field of x 6 2 1 over Q. Show that there is no

field K with the property that Q , K , E.
21. Let v 5 cos( ) 2 i sin( ). Find the three elements of Gal(Q(v)/Q)

of order 2.

Computer Exercises

Mathematics is not a deductive science—that’s a cliché. When you try to
prove a theorem, you don’t just list the hypotheses, and then start to rea-
son. What you do is trial and error, experimentation, guesswork.

PAUL HALMOS, I Want to Be a Mathematician.

Software for the first computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This program returns the nth cyclotomic polynomial. Enter several
choices for n of the form pq and p2q, where p and q are distinct
primes. Make a conjecture about the nonzero coefficients of Fn(x).

2. Use computer software such as Mathematica, Maple, or GAP to
find the irreducible factorization over Z of all polynomials of the
form x n 2 1, where n is between 2 and 100. On the basis of this
information, make a conjecture about the nature of coefficients of
the irreducible factors of x n 2 1 for all n. Then test your conjec-
ture for n 5 105.

2p
15

2p
15
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Carl Friedrich Gauss

He [Gauss] lives everywhere in
mathematics.

E. T. BELL, Men of Mathematics

CARL FRIEDRICH GAUSS, considered by many
to be the greatest mathematician who has ever
lived, was born in Brunswick, Germany, on
April 30, 1777. While still a teenager, he made
many fundamental discoveries. Among these
were the method of “least squares” for han-
dling statistical data, and a proof that a 
17-sided regular polygon can be constructed
with a straightedge and compass (this result

This stamp was issued by East Germany in
1977. It commemorates Gauss’s construc-
tion of a regular 17-sided polygon with a
straightedge and compass.

was the first of its kind since discoveries by the
Greeks 2000 years earlier). In his Ph.D. disser-
tation in 1799, he proved the Fundamental
Theorem of Algebra.

Throughout his life, Gauss largely ig-
nored the work of his contemporaries and, in
fact, made enemies of many of them. Young
mathematicians who sought encouragement
from him were usually rebuffed. Despite this
fact, Gauss had many outstanding students,
including Eisenstein, Riemann, Kummer,
Dirichlet, and Dedekind.

Gauss died in Göttingen at the age of 77 on
February 23, 1855. At Brunswick, there is a
statue of him. Appropriately, the base is in the
shape of a 17-point star. In 1989, Germany is-
sued a bank note (see page 112) depicting
Gauss and the Gaussian distribution.

To find more information about Gauss,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Manjul Bhargava

We are watching him [Bhargava] very
closely.
He is going to be a superstar.
He's amazingly mature mathematically.
He is changing the subject in a
fundamental way.

PETER SARNAK

MANJUL BHARGAVA was born in Canada on
August 8, 1974, and grew up in Long Island,
New York. After graduating from Harvard in
1996, Bhargava went to Princeton to pursue
his Ph.D. under the direction of Andrew
Wiles (see page 340). Bhargava investigated
a “composition law” first formulated by
Gauss in 1801 for combining two quadratic
equations (equations in a form such as 
x2 1 3xy 16y2 5 0) in a way that was very
different from normal addition and revealed
a lot of information about number systems.
Bhargava tackled an aspect of the problem in
which no progress had been made in more
than 200 years. He not only broke new
ground in that area but also discovered 13
more composition laws and developed a
coherent mathematical framework to explain
them. He then applied his theory of composi-
tion to solve a number of fundamental
problems concerning the distribution of
extension fields of the rational numbers and
of other, related algebraic objects. What
made Bhargava’s work especially remark-
able is that he was able to explain all his
revolutionary ideas using only elementary
mathematics. In commenting on Bhargava’s
results, Wiles said, “He did it in a way that

Gauss himself could have understood and
appreciated.”

Despite his youth, Bhargava already has
won many awards, including a Clay Research
Fellowship, the Clay Research Award, the
Blumenthal Award for the Advancement of
Research in Pure Mathematics, the SASTRA
Ramanujan Prize, and the 2008 Cole Prize in
number theory (see page 430). In 2002 he
was named one of Popular Science maga-
zine’s “Brilliant 10,” in celebration of scien-
tists who are shaking up their fields. In 2003,
Bhargava accepted a full professorship with
tenure at Princeton at the age of 28.

In addition to doing mathematics,
Bhargava is an accomplished tabla player
who has studied with the world’s most
distinguished tabla masters. He performs
extensively in the New York and Boston
areas. To hear him play the tabla, visit 

http://www.npr.org/templates/story/
story.php?storyId=4111253

To find more information about Bhargava,
visit 

www.Wikipedia.org and
www.d.umn.edu/~jgallian/

manjulMH4.pdf
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Supplementary Exercises for Chapters 24–33

True/false questions for Chapters 24–33 are available on the Web at

http://www.d.umn.edu/~jgallian/TF

1. Let G 5 �x, y | x 5 (xy)3, y 5 (xy)4�. To what familiar group is G
isomorphic?

2. Let G 5 �z | z6 5 1� and H 5 �x, y | x2 5 y3 5 1, xy 5 yx�. Show
that G and H are isomorphic.

3. Show that a group of order 315 5 32 ? 5 ? 7 has a subgroup of 
order 45.

4. Let G be a group of order p2q2, where p and q are primes and p . q.
If |G| 2 36, prove that G has a normal Sylow p-subgroup.

5. Let H denote a Sylow 7-subgroup of a group G and K a Sylow 
5-subgroup of G. Assume that |H| 5 49, |K| 5 5, and K is a sub-
group of N(H). Show that H is a subgroup of N(K).

6. Prove that no finite group of order greater than 6 has exactly three
conjugacy classes.

7. Suppose that K is a normal Sylow p-subgroup of H and that H is a
normal subgroup of G. Prove that K is a normal subgroup of G.
(Compare this with Exercise 53 in Chapter 9.)

8. Show that the polynomial x 5 2 6x 1 3 over Q is not solvable by 
radicals.

9. Let H and K be subgroups of G. Prove that HK is a subgroup of G
if H # N(K).

10. Suppose that H is a subgroup of a finite group G and that H con-
tains N(P), where P is some Sylow p-subgroup of G. Prove that
N(H) 5 H.

11. Prove that a simple group G of order 168 cannot contain an ele-
ment of order 21.

12. Prove that the only group of order 561 is Z561.
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33 | Supplementary Exercises for Chapters 24–33 573

13. Prove that the center of a non-Abelian group of order 105 has
order 5.

14. Let n be an odd integer that is at least 3. Prove that every Sylow
subgroup of Dn is cyclic.

15. Let G be the digraph obtained from Cay({(1, 0), (0, 1)}: Z3 % Z5)
by deleting the vertex (0, 0). [Also, delete each arc to or from 
(0, 0).] Prove that G has a Hamiltonian circuit.

16. Prove that the digraph obtained from Cay({(1, 0), (0, 1)}: Z4 % Z7)
by deleting the vertex (0, 0) has a Hamiltonian circuit.

17. Let G be a finite group generated by a and b. Let s1, s2, . . . , sn be
the arcs of a Hamiltonian circuit in the digraph Cay({a, b}: G). We
say that the vertex s1s2 ? ? ? si travels by a if si11 5 a. Show that if
a vertex x travels by a, then every vertex in the coset x�ab21� trav-
els by a.

18. Recall that the dot product u ? v of two vectors u 5 (u1, u2, . . . , un)
and v 5 (v1, v2, . . . , vn) from Fn is

u1v1 1 u2v2 1 ? ? ? 1 unvn

(where the addition and multiplication are those of F). Let C be an
(n, k) linear code. Show that

C> 5 {v [ Fn | v ? u 5 0 for all u [ C}

is an (n, n 2 k) linear code. This code is called the dual of C.
19. Find the dual of each of the following binary codes:

a. {00, 11},
b. {000, 011, 101, 110},
c. {0000, 1111},
d. {0000, 1100, 0011, 1111}.

20. Let C be a binary linear code such that C # C>. Show that wt(v) is
even for all v in C.

21. Let C be an (n, k) binary linear code. If v is a binary n-tuple, but 
v o C>, show that v ? u 5 0 for exactly half of the elements u in C.

22. Suppose that C is an (n, k) binary linear code and the vector 
11 ? ? ? 1 [ C >. Show that wt(v) is even for every v in C.

23. Suppose that C is an (n, k) binary linear code and C 5 C>. (Such a
code is called self-dual.) Prove that n is even. Prove that 11 ? ? ? 1
is a code word.
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24. If G is a finite solvable group, show that there exist subgroups of G

{e} 5 H0 , H1 , H2 , ? ? ? , Hn 5 G

such that Hi11/Hi has prime order.

The End.

Title of song by JOHN LENNON AND PAUL MCCARTNEY,
Abbey Road, side 2, October 1969
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Selected Answers
Don’t wait for answers 
Just take your chances 
Don’t ask me why

BILLY JOEL, “Don’t Ask Me Why,” Glass Houses

Many of the proofs given below are merely sketches. In these 
cases, the student should supply the complete proof.

Chapter 0

To make headway, improve your head.
B. C. FORBES

1. {1, 2, 3, 4}; {1, 3, 5, 7}; {1, 5, 7, 11}; {1, 3, 7, 9, 11, 13, 17, 19}; {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13,
14, 16, 17, 18, 19, 21, 22, 23, 24}

3. 12, 2, 2, 10, 1, 0, 4, 5.
5. 1942, June 18; 1953, December 13.
7. By using 0 as an exponent if necessary, we may write a 5 p1

m1 . . . pk
mk and b 5 p1

n1 . . . pk
nk,

where the p’s are distinct primes and the m’s and n’s are nonnegative. Then lcm (a, b) 5 p1
s1 . . . pk

sk,
where si 5 max(mi, ni), and gcd(a, b) 5 p1

t1 . . . pk
tk, where ti 5 min(mi, ni). Then lcm(a, b) ?

gcd(a, b) 5 p1
m11n1 . . . pk

mk1nk 5 ab.
9. Write a 5 nq1 1 r1 and b 5 nq2 1 r2, where 0 # r1, r2 , n. We may assume that r1 $ r2. Then 

a 2 b 5 n(q1 2 q2) 1 (r1 2 r2), where r1 2 r2 $ 0. If a mod n 5 b mod n, then r1 5 r2 and n
divides a 2 b. If n divides a 2 b, then by the uniqueness of the remainder, we have r1 2 r2 5 0.

11. Use Exercise 9.
13. Use the “GCD Is a Linear Combination” theorem (Theorem 0.2).
15. Let p be a prime greater than 3. By the Division Algorithm, we can write p in the form 6n 1 r,

where r satisfies 0 # r , 6. Now observe that 6n, 6n 1 2, 6n 1 3, and 6n 1 4 are not prime.
17. Since st divides a 2 b, both s and t divide a 2 b. The converse is true when gcd(s, t) 5 1.
19. Use Euclid’s Lemma and the Fundamental Theorem of Arithmetic.
21. Use proof by contradiction.
23. Let S be a set with n 1 1 elements and pick some a in S. By induction, S has 2n subsets that do not

contain a. But there is a one-to-one correspondence between the subsets of S that do not contain a
and those that do. So, there are 2 ? 2n 5 2n11 subsets in all.

25. Consider n 5 200! 1 2.
27. Say p1p2

. . . pr 5 q1q2
. . . qs, where the p’s and q’s are primes. By the Generalized Euclid’s

Lemma, p1 divides some qi, say q1 (we may relabel the q’s if necessary). Then p1 5 q1 and p2
. . .

pr 5 q2
. . . qs. Repeating this argument at each step, we obtain p2 5 q2, . . . , pr 5 qr and r 5 s.

29. Suppose that S is a set that contains a and whenever n $ a belongs to S, then n 1 1 [ S. We must
prove that S contains all integers greater than or equal to a. Let T be the set of all integers greater
than a that are not in S and suppose that T is not empty. Let b be the smallest integer in T (if T has
no negative integers, b exists because of the Well Ordering Principle; if T has negative integers, it
can have only a finite number of them so that there is a smallest one). Then b 2 1 [ S, and there-
fore b 5 (b 2 1) 1 1 [ S.
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31. The statement is true for any divisor of 84 2 4 5 4092.
33. 6 P.M.
35. Observe that the number with the decimal representation a9a8

. . . a1a0 is a9 ? 109 1 a8 ? 108 1 . . . 1
a1 ? 10 1 a0. Then use Exercise 11 and the fact that ai10i mod 9 5 ai mod 9 to deduce that the
check digit is (a9 1 a8 1 . . . 1 a1 1 a0) mod 9.

37. For the case in which the check digit is not involved, see the answer to Exercise 35. If a transpo-
sition involving the check digit c 5 (a1 1 a2 1 . . . 1 a10) mod 9 goes undetected, then a10 5
(a1 1 a2 1 . . . 1 a9 1 c) mod 9. Substitution yields 2(a1 1 a2 1 . . . 1 a9 ) mod 9 5 0. Therefore,
modulo 9, we have 10(a1 1 a2 1 . . . 1 a9) 5 a1 1 a2 1 . . . 1 a9 5 0. It follows that c 5 a10. 
In this case the transposition does not yield an error.

39. Say the number is a8a7 . . . a1a0 5 a8 ? 108 1 a7 ? 107 1 . . . 1 a1 ? 10 1 a0. Then the error is
undetected if and only if (ai10i 2 ai910i) mod 7 5 0. Multiplying both sides by 5i and noting that 
50 mod 75 1, we obtain (ai 2 ai9) mod 7 5 0.

41. 4
45. Cases where (2a 2 b 2 c) mod 11 5 0 are undetected.
47. The check digit would be the same.
49. 4302311568
51. 2. Since b is one-to-one, b(a (a1)) 5 b(a (a2)) implies that a(a1) 5 a (a2) and since a is one-to-

one, a1 5 a2.
3. Let c [ C. There is a b in B such that b(b) 5 c and an a in A such that a(a) 5 b. Thus, (ba)(a)

5 b(a(a)) 5 b(b) 5 c.
4. Since a is one-to-one and onto we may define a21(x) 5 y if and only if a( y) 5 x. Then

a21(a(a)) 5 a and a(a21(b)) 5 b.
53. No. (1, 0) [ R and (0, 21) [ R, but (1, 21) o R.
55. a belongs to the same subset as a. If a and b belong to the subset A, then b and a also belong to

A. If a and b belong to the subset A and b and c belong to the subset B, then A 5 B, since the
distinct subsets of P are disjoint. So, a and c belong to A.

57. Apply to both sides of 

Chapter 1

Think of what you’re saying, you can get it wrong and still think that it’s all right.
JOHN LENNON AND PAUL MCCARTNEY, 

“We Can Work It Out,” single

1. Three rotations: 08, 1208, 2408, and three reflections across lines from vertices to midpoints of
opposite sides.

3. no
5. Dn has n rotations of the form k(3608/n), where k 5 0, . . . , n 2 1. In addition, Dn has n reflections.

When n is odd, the axes of reflection are the lines from the vertices to the midpoints of the opposite
sides. When n is even, half of the axes of reflection are obtained by joining opposite vertices; the
other half, by joining midpoints of opposite sides.

7. A rotation followed by a rotation either fixes every point (and so is the identity) or fixes only the
center of rotation. However, a reflection fixes a line.

9. Observe that 1 ? 1 5 1; 1(21) 5 21; (21)1 5 21; (21)(21) 5 1. These relationships also hold
when 1 is replaced by “rotation” and 21 is replaced by “reflection.”

11. HD 5 DV but H 2 V.
13. R0, R180, H, V
15. See answer for Exercise 13.
17. In each case, the group is D6.
19. cyclic
21. Their only symmetry is the identity.
23. It would wobble violently.

ag 5 bg.g21
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Chapter 2

The noblest pleasure is the joy of understanding.
LEONARDO DA VINCI

1. Does not contain the identity; closure fails.
3. Under modulo 4, 2 does not have an inverse. Under modulo 5, each element has an inverse.

5.

7. a. 2a 1 3b; b. 22a 1 2(2b 1 c); c. 23(a 1 2b) 1 2c 5 0
9. e

11. Use the fact that det (AB) 5 (det A)(det B).
13. 29
15. (ab)n need not equal anbn in a non-Abelian group.
17. Use the Socks-Shoes Property.
19. For the case n . 0, use induction. For n , 0, note that e 5 (a21ba)n(a21ba)2n 5 (a21ba)n

(a21b2na) and solve for (a21ba)n.
21. {1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45}
23. Suppose x appears in a row labeled with a twice. Say x 5 ab and x 5 ac; then cancellation yields

b 5 c. But we use distinct elements to label the columns.
25. Use Exercise 23.
27. a21cb21; aca21

29. If x3 5 e and x 2 e, then (x21)3 5 e and x 2 x21. So, nonidentity solutions come in pairs. 
If x2 2 e, then x21 2 x and (x21)2 2 e. So solutions to x2 2 e come in pairs.

31. Observe that since RF is a reflection, we have (RF)(RF ) 5 R0. So, RFR 5 F21 5 F.
33. Observe that aa21b 5 ba21a.
35. Since a2 5 b2 5 (ab)2 5 e, we have aabb 5 abab. Now cancel on the left and right.
37. If n is not prime, the set is not closed under multiplication modulo n. If n is prime, the set is

closed and for every r in the set there are integers s and t such that 1 5 rs 1 nt 5 rs modulo n.

39. Closure follows from the definition of multiplication. The identity is . The inverse of 

is .

Chapter 3

The brain is as strong as its weakest think.
ELEANOR DOAN

1. |Z12| 5 12; |U(10)| 5 4; |U(12)| 5 4; |U(20)| 5 8; |D4| 5 8
In Z12, |0| 5 1; |1| 5 |5| 5 |7| 5 |11| 5 12; |2| 5 |10| 5 6; |3| 5 |9| 5 4; |4| 5 |8| 5 3; |6| 5 2.
In U(10), |1| 5 1; |3| 5 |7| 5 4; |9| 5 2.
In U(12), |1| 5 1; |5| 5 2; |7| 5 2; |11| 5 2.
In U(20), |1| 5 1; |3| 5 |7| 5 |13| 5 |17| 5 4; |9| 5 |11| 5 |19| 5 2.
In D4, |R0| 5 1; |R90| 5 |R270| 5 4; |R180| 5 |H| 5 |V| 5 |D| 5 |D9| 5 2.
In each case, notice that the order of the element divides the order of the group.

3. In Q, |0| 5 1 and all other elements have infinite order. In Q*, |1| 5 1, |21| 5 2, and all other
elements have infinite order.

5. Each is the inverse of the other.
7. Suppose that and Then This contradicts the assumption that

a has infinite order.
e 5 ana2m 5 an2m.am 5 an.m , n

c1> (4a) 1> (4a)

1> (4a) 1> (4a)
dca a

a a
d

c1>2 1>2
1>2 1>2 d

c 9 9

10 8
d

Selected Answers A3
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9. If a has infinite order, then e, a, a2, . . . are all distinct and belong to G, so G is infinite. 
If |a| 5 n, then e, a, a2, . . . , an 2 1 are distinct and belong to G.

11. By brute force, show that k4 5 1 for all k.
13. For any integer n $ 3, Dn contains elements a and b of order 2 with |ab| 5 n. In general, there is

no relationship among |a|, |b|, and |ab|.
15.
17. U4(20) 5 {1, 9, 13, 17}; U5(20) 5 {1, 11}; U5(30) 5 {1, 11}; U10(30) 5 {1, 11}. Uk(n) is closed

because (ab) mod k 5 (a mod k)(b mod k) 5 1 ? 1 5 1. H is not closed.
19. If x [ Z(G), then x [ C(a) for all a, so x [ >

a[G
C(a). If x [ >

a[G
C(a), then xa 5 ax for all a in G,

so x [ Z(G).
21. The case that is trivial. Let x [ If k is positive, then by induction on k,

The case where k is negative now follows from Exercise 20.
23. a. C(5) 5 G; C(7) 5 {1, 3, 5, 7}

b. Z(G) 5 {1, 5}
c. |2| 5 2; |3| 5 4. They divide the order of the group.

25. Mimic the proof of Theorem 3.5.
27. No. In D4, C(R180) 5 D4.
29. For the first part, see Example 4. For the second part, use D4.
31. Since the only elements of finite order in R* are 1 and 21, the only finite subgroups are {1} and

{1, 21}.
33. 2
35. First observe that (ad)n/d 5 an 5 e, so is at most n/d. Moreover, there is no positive integer

such that for otherwise 

37. Note that .

39. For any positive integer n, a rotation of 3608/n has order n. A rotation of ° has infinite order.
41. �R0�, �R90�, �R180�, �D�, �D9�, �H�, �V�. (Note that �R90� 5 �R270�). The subgroups {R0, R180, D, D9}

and {R0, R180, H, V} are not cyclic.
43. Nonidentity elements of odd order come in pairs. So, there must be some element a of even order,

say |a| 5 2m. Then |am| 5 2.
45. Let |g| 5 m and write m 5 nq 1 r where 0 # r , n. Then gr 5 gm2nq 5 gm(gn)2q 5 (gn)2q be-

longs to H. So, r 5 0.
47. 1 [ H. Let a, b [ H. Then (ab21)2 5 a2(b2)21, which is the product of two rationals. 2 can be

replaced by any positive integer.
49. |�3�| 5 4

51. Let and belong to H. It suffices to show that a 2 a9 1 b 2 b9 1 c 2 c9 1 d 2

d9 5 0. This follows from a 1 b 1 c 1 d 5 0 5 a9 1 b9 1 c9 1 d9. If 0 is replaced by 1, H is
not a subgroup.

53. If 2a and 2b [ K, then 2a(2b)21 5 2a2b [ K, since a 2 b [ H.

55. is not in H.

57. If a 1 bi and c 1 di [ H, then (a 1 bi)(c 1 di)21 5 (ac 1 bd) 1 (bc 2 ad)i and (ac 1 bd)2 1
(bc 2 ad)2 5 1, so that H is a subgroup. H is the unit circle in the complex plane.

59. a. ab 1 b2 2 a2; a, b [ R

b. a2 2 b2; a, b [ R

c. |a 2 0; a [ R

61. Use Theorem 0.2.

fe ca 0

0 a
d

fe ca b

b a
d 0

fe ca 1 b a

a b
d 0

c2 0

0 2
d21

5 c 1
2 0

0 1
2

d

ca9 b9

c9 d9
dca b

c d
d

"2

c1 1

0 1
d n

5 c1 n

0 1
d

0a 0 ? n.(ad) t 5 adt 5 e,t , n>d 0 ad 0

axak 5 aakx 5 ak11x.
xak11 5 xaak1C(a).k 5 0

�2�,�3�,�6�.
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Chapter 4

There will be an answer, let it be.
JOHN LENNON AND PAUL MCCARTNEY, “Let It Be,” single

1. For Z6, generators are 1 and 5; for Z8, generators are 1, 3, 5, and 7; for Z20, generators are 1, 3, 7,
9, 11, 13, 17, and 19.

3.
5. 3 5 {3, 9, 7, 1}; 7 5 {7, 9, 3, 1}
7. U(8) or D3.
9. Six subgroups; generators are the divisors of 20. Six subgroups; generators are ak, where k is a

divisor of 20.
11. By definition, [ So, By definition, [ So,

13. In the general case where 

k 5 1cm (m, n) mod 24.
15. |g| divides 12 is equivalent to g12 5 e. So, if a12 5 e and b12 5 e, then (ab21)12 5 a12(b12)21 5

ee21 5 e. The general result is given in Exercise 29 of Chapter 3.
17. is odd or infinite
19.
21. a. |a| divides 12. b. |a| divides m. c. By Theorem 4.3, |a| 5 1, 2, 3, 4, 6, 8, 12, or 24. If |a| 5 2,

then a8 5 (a2)4 5 e4 5 e. A similar argument eliminates all other possibilities except 24.
23. Yes, by Theorem 4.3. The subgroups of Z are of the form {0, 6n, 62n, 63n, . . .}, n 5 0,

1, 2, 3, . . . . The subgroups of are of the form for n 5 0, 1, 2, 3, . . . .
25. For the first part, use Theorem 4.4; Dn has n elements of order 2 when n is odd and n 1 1 ele-

ments of order 2 when n is even.
27. See Example 14 of Chapter 2.
29. 1000000, 3000000, 5000000, 7000000. By Theorem 4.3, 1000000 is the unique subgroup of or-

der 8, and only those on the list are generators; a1000000, a3000000, a5000000, a7000000. By Theorem 4.3,
is the unique subgroup of order 8, and only those on the list are generators.

31. Let G 5 {a1, a2, . . . , ak}. Now let |ai| 5 ni. Consider n 5 n1n2
. . . nk.

33. Mimic Exercise 32.
35. Mimic Exercise 34.
37. Suppose a and b are relatively prime positive integers and �a/b� 5 Q1. Then there is some positive in-

teger n such that (a/b)n 5 2. Clearly, n 2 0, 1, or 21. If n . 1, an 5 2bn, so that 2 divides a. But then
2 divides b as well. A similar contradiction occurs if n , 21.

39. For 6, use . For n, use Z2n21.
41. Let t 5 lcm(m, n) and |ab| 5 s. Then (ab)t 5 atbt 5 e, and therefore s divides t. Also, e 5

(ab)s 5 asbs, so that as 5 b2s, and therefore as and b2s belong to �a� > �b� 5 {e}. Thus, m divides
s and n divides s, and, therefore, t divides s. This proves that s 5 t. For the second part, try D3.

43. An infinite cyclic group does not have an element of prime order. A finite cyclic group can have
only one subgroup for each divisor of its order. A subgroup of order p has exactly p 2 1 elements
of order p. Another element of order p would give another subgroup of order p.

45. 1 ? 4, 3 ? 4, 7 ? 4, 9 ? 4; 
47. 1 of order 1; 33 of order 2; 2 of order 3; 10 of order 11; 20 of order 33
49. 1, 2, 10, 20
51. Say a and b are distinct elements of order 2. If a and b commute, then ab is a third element 

of order 2. If a and b do not commute, then aba is a third element of order 2.
53. Use Exercise 18 of Chapter 3 and Theorem 4.3.
55. 1 and 2
57. In a cyclic group there are at most n solutions to the equation xn 5 e.
59. 12 or 60; 48

x4,(x4)3, (x4)7, (x4)9.

Z25

�a1000000�

��

�an��a�
�n� 5

�1�, �7�, �11�, �17�, �19�, �29�

�am� > �an� 5 �ak�,�21� > �10� 5 �18� 5 �6�.

�a� # �a21�.�a21�.a 5 (a21)21�a21� # �a�.�a�.a21

����
�20� 5 520, 10, 06; �10� 5 510, 20, 06 �a20� 5 5a20, a10, a06; �a10� 5 5a10, a20, a06
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61. Observe that Thus is common divisor of 280 and 440, and therefore 
divides gcd(280, 440) 5 40.

63. Say b is a generator of the group. Since p and pn 2 1 are relatively prime, we know by Corollary
3 of Theorem 4.2 that bp also generates the group. Finally, observe that (bp)k 5 (bk)p.

65. Use the fact that a cyclic group of even order has a unique element of order 2.
67. G is a group because it is closed. It is not cyclic because every nonzero element has order 3.
69. Since m and n are relatively prime, it suffices to show both m and n divide k. By Corollary 2 of

Theorem 4.1, it is enough to show that Note that ak [ and since is a
subgroup of both and we know that must divide both and . Thus,

71. Observe that among the integers from 1 to pn the pn21 integers p, 2p, 3p, . . . , pn21p are exactly the
ones that are not relatively prime to p.

Supplementary Exercises for Chapters 1–4

Four short words sum up what has lifted most successful individuals above the crowd: a little bit
more. They did all that was expected of them and a little bit more.

A. LOU VICKERY

1. a. Let xh1x
21 and xh2x

21 belong to xHx21. Then (xh1x
21)(xh2x

21)21 5 xh1h2
21x21 [ xHx21 also.

b. Let �h� 5 H. Then �xhx21� 5 xHx21. c. (xh1x
21)(xh2x

21) 5 xh1h2x
21 5 xh2h1x

21 5
(xh2x

21)(xh1x
21)

3. Suppose cl(a) > cl(b) 2 f. Say xax21 5 yby21. Then (y21x)a(y21x)21 5 b. Thus, for any ubu21

in cl(b), we have ubu21 5 (uy21x)a(uy21x)21 [ cl(a). This shows that cl(b) # cl(a). By symme-
try, cl(a) # cl(b). Because a 5 eae21 [ cl(a), the union of the conjugacy classes is G.

5. Observe that (xax21)k 5 xakx21. Thus, (xax21)k 5 e if and only if ak 5 e.
7. Try D4.
9. By Exercise 5, for every x in G, |xax21| 5 |a|, so that xax21 5 a or xa 5 ax.

11. 1 of order 1, 15 of order 2, 8 of order 15, 4 of order 5, 2 of order 3.
13. Let |G| 5 5. Let a 2 e belong to G. If |a| 5 5, we are done. If |a| 5 3, then {e, a, a2} is a sub-

group of G. Let b be either of the remaining two elements of G. Then the set {e, a, a2, b, ab, a2b}
consists of six different elements, a contradiction. Thus, |a| 2 3. Similarly, |a| 2 4. We may now
assume that every nonidentity element of G has order 2. Pick a 2 e and b 2 e in G with a 2 b.
Then {e, a, b, ab} is a subgroup of G. Let c be the remaining element of G. Then {e, a, b, ab, c,
ac, bc, abc} is a set of eight distinct elements of G, a contradiction. It now follows that if a [ G
and a 2 e, then |a| 5 5.

15. an(bn)21 5 (ab21)n, so Gn is a subgroup. For the non-Abelian group, try D3.
17. Suppose G 5 H < K. Pick h [ H with h o K. Pick k [ K, but k o H. Then, hk [ G, but hk o H

and hk o K. U(8) is the union of the three subgroups.
19. If |a| 5 pk and |b| 5 pr with k # r, say, then |ab21| divides pr.
21. Note that ba2 5 ab and a3 5 b2 5 e imply ba 5 a2b. Thus, every member of the group can be

written in the form aib j. Therefore, the group is {e, a, a2, b, ab, a2b}. D3 satisfies these conditions.
23. xy 5 yx if and only if xyx21y21 5 e. But, (xy)x21y21 5 x21(xy)y21 5 ee 5 e.
25. Let x [ N(gHg21). Then x(gHg21)x21 5 gHg21. Thus g21xgHg21x21g 5 g21xgH(g21xg)21 5 H.

This means that g21xg [ N(H). So x [ gN(H)g21. Reverse the argument to show gN(H)g21 #
N(gHg21).

27. Look at D11.
29. Solution from Mathematics Magazine.† “Yes. Let a be an arbitrary element of S. The set {an | n 5

1, 2, 3, . . .} is finite, and therefore am 5 an for some m, n with m . n 9 1. By cancellation we

0 �a� > �b� 0 5 1.
0 �b� 00 �a� 00 �a� > �b� 0�b�,�a�

�a� > �b��a� > �b�,ak 5 e.

0a 00a 0a280 5 e 5 a440.

†Mathematics Magazine 63 (April 1990): 136.
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have ar(a) 5 a, where r(a) 5 m 2 n 1 1 . 1. If x is any element of S, then aar(a)21x 5 ar(a)x 5 ax,
and this implies that ar(a)21x 5 x. Similarly, we see that xar(a)21 5 x, and the element e 5 ar(a)21 is an
identity. The identity element is unique, for if e9 is another identity, then e 5 ee9 5 e9. If r(a) . 2
then ar(a)22 is an inverse of a, and if r(a) 5 2 then a2 5 a 5 e is its own inverse. Thus S is a group.”

31. 11 is rational so H 2 f. Say am and bn are rational. Then (ab21)mn 5 (am)n/(bn)m is rational.
33. Use det (AB) 5 (det A)(det B) to prove H is a subgroup. H is not a subgroup when det A is an integer,

since det A21 need not be an integer.
35. Choose x 2 e and y o �x�. Then G 5 �x� < �y�. But then xy [ �y�, so that �x� # �y� and therefore

G 5 �y�. To prove that |G| 5 pq or p3, use Theorem 4.3.
37. If T and U are not closed, then there are elements x and y in T and w and z in U such that xy is not

in T and wz is not in U. It follows that xy [ U and wz [ T. Then xywz 5 (xy)wz [ U and xywz 5
xy(wz) [ T, a contradiction.

39. Let G be the group of all polynomials with integer coefficients under addition. Let Hk be the sub-
group of polynomials of degree at most k together with the zero polynomial (the zero polynomial
does not have a degree).

41. Take g 5 a.
43. Let S 5 {s1, s2, s3, . . . , sk} and let g be any element in G. Then the set {gs1

21, gs2
21, gs3

21, . . . ,
gsk

21} and S have at least one element in common. Say gsi
21 5 sj. Then g 5 sjsi.

45. Let K 5 {x [ G | |x| divides d}. The sub test shows that K is a subgroup. Let x [ H. By Theorem
4.3, |x| divides d. So, H # K. Let y [ K, |y| 5 t, and d 5 tq. By Theorem 4.3, H has a subgroup
of order t and G has only one subgroup of order t. So, �y� # H.

47. To check associativity, note (a * b) * c 5 ((a 1 b) 2 1) * c 5 a 1 b 2 1 1 c 2 1 5 a 1 b 1
c 2 2 and a * (b * c) 5 a * (b 1 c 2 1) 5 a 1 (b 1 c 2 1) 2 1 5 a 1 b 1 c 2 2. To determine
the identity e, we observe that a * e 5 a if and only if a 1 e 2 1 5 a. Thus 1 is the identity (it is
obvious that the operation is commutative). If a21 exists, we have must a * a21 5 a 1
a21 2 1 5 1, and therefore a21 is To find a generator, observe that for any positive
integer k, ak 5 ka 2 (k 2 1). So, for positive k and a 5 2, we have 2k 5 k 1 1. One can also check
that 2k 5 k 1 1 when k 5 0 or negative. Thus 2 generates all integers.

Chapter 5

Mistakes are often the best teachers.
JAMES A. FROUDE

1. a. 2 b. 3 c. 5
3. a. 3 b. 12 c. 6 d. 6 e. 12 f. 2
5. 12
7. For S6, the possible orders are 1, 2, 3, 4, 5, 6; for A6, 1, 2, 3, 4, 5; for A7, 1, 2, 3, 4, 5, 6, 7.
9. a. even b. odd c. even d. odd e. even

11. even; odd
13. An even number of 2-cycles followed by an even number of 2-cycles gives an even number of 

2-cycles in all. So the finite subgroup test is verified.
15. Suppose that a can be written as a product of m 2-cycles and b can be written as a product of n

2-cycles. Then ab can be written as a product of m 1 n 2-cycles. Now observe that m 1 n is
even if and only if m and n are both even or both odd.

17. a. a21 5 

b. ba 5 

c. ab 5 c1 2 3 4 5 6

6 2 1 5 3 4
d

c1 2 3 4 5 6

1 6 2 3 4 5
d

c1 2 3 4 5 6

2 1 3 5 4 6
d

2a 1 2.
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19. Suppose H contains at least one odd permutation, say, s. Imitate the proof of Theorem 5.7 with s
in place of (12).

21. The identity is even; the set is not closed.
23. a. C(a3) 5 {a1, a2, a3, a4}; b. C(a12) 5 {a1, a7, a12}
25. 180; 75
27. b 5 (2457136)
29. (124586739), (142568793), (214856379).
31. Let a, b [ stab(a). Then ab(a) 5 a(b(a)) 5 a(a) 5 a. Also, a(a) 5 a implies a21(a(a)) 5

a21(a) or a 5 a21(a).
33. m is a multiple of 6 but not a multiple of 30.
35. 6!/5 5 144
37. 3, 7, 9
39. Let a 5 (123) and b 5 (145).
41. (123)(12) 2 (12)(123) in Sn (n $ 3).
43. Cycle decomposition shows that any nonidentity element of A5 is a 5-cycle, a 3-cycle, or a product of

a pair of disjoint 2-cycles. Then, observe that there are (5 ? 4 ? 3 ? 2 ? 1)/5 5 24 group elements of the
form (abcde), (5 ? 4 ? 3)/3 5 20 group elements of the form (abc), and (5 ? 4 ? 3 ? 2)/(2 ? 2 ? 2) 5
15 group elements of the form (ab)(cd).

45. One possibility is {(1), (12)(34), (56)(78), (12)(34)(56)(78)}.
47. Hint: (13)(12) 5 (123) and (12)(34) 5 (324)(132).
49. Verifying that a * s(b) 2 b * s(a) is done by examining all cases. To prove the general case,

observe that si(a) * si11(b) 2 s i(b) * s i11(a) can be written in the form si(a) * s(si(b)) 2
si(b) * s(si(a)), which is the case already done. If a transposition were not detected, then 
s(a1) * . . . * si(ai) * si11(ai11) * . . . * sn(an) 5 s(a1) * . . . * si(ai11) * si11(ai) * . . . * sn(an),
which implies si(ai) * si11(ai11) 5 si(ai11) * si11(ai).

51. Observe that (a1a2
. . . an) 5 (1a1)(1an)(1an21) . . . (1a1).

53. If a has odd order k and a is an odd permutation, then e 5 ak would be odd.
55. By case-by-case analysis, H is a subgroup for n 5 1, 2, 3 and 4. For n $ 5, observe that (12)(34)

and (12)(35) belong to H but their product does not.
57. The product of an element of Z(A4) of order 2 and an element of A4 of order 3 would have order 6.

The product of an element of Z(A4) of order 3 and an element of A4 of order 2 would have order 6.
59. Labeling the four tires 1, 2, 3, and 4 in clockwise order starting with 1 being the tire in the 

upper left-hand corner, we may represent the four patterns as
a 5 (1324) top left-hand pattern
b 5 (1423) top right-hand pattern
g 5 (14)(23) bottom right-hand pattern
d 5 (13)(24) bottom left-hand pattern
Notice that a21 5 b and that d 5 a2g. Thus, we need only find the smallest subgroup of S4 con-
taining a and g. To this end, observe that the set {e, a, a2, a3, g, ag, a2g, a3g} is closed under
multiplication on the left and right by both a and g. This implies that the set is closed under multi-
plication and is therefore a group. Since ag 2 ga, the subgroup is non-Abelian.

Chapter 6

Think and you won’t sink.
B. C. FORBES, Epigrams

1. Try n → 2n.
3. f(xy) 5 f(x)f(y)
5. Try 1 → 1, 3 → 5, 5 → 7, 7 → 11.
7. D12 has elements of order 12 and S4 does not.

"xy 5 "x "y 5
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9. Since Te(x) 5 ex 5 x for all x, Te is the identity. For the second part, observe that Tg 8 (Tg)
21 5 Te 5

Tgg21 5 Tg 8 Tg21 and cancel.
11. For any x in the group, we have (fgfh)(x) 5 fg(fh(x)) 5 fg(hxh21) 5 ghxh21g21 5 (gh)x(gh)21 5

fgh(x).
13. fR90

and fR0
disagree on H; fR90

and fH disagree on R90; fR90
and fD disagree on R90. The remain-

ing cases are similar.
15. Let a [ Aut(G). We show that a21 is operation-preserving: a21(xy) 5 a21(x)a21(y) if and only

if a(a21(xy)) 5 a(a21(x)a21(y)), that is, if and only if xy 5 a(a21(x))a(a21(y)) 5 xy. So a21 is
operation-preserving. That Inn(G) is a group follows from the equation fgfh 5 fgh.

17. That a is one-to-one follows from the fact that r21 exists modulo n. The operation-preserving condi-
tion is Exercise 11 in Chapter 0.

19. Use Part 2 of Theorem 6.2.
21. The inverse of a one-to-one function is one-to-one. To see that f21 is operation-preserving, let a and b

belong to . Then f21(ab) 5 f21(a) f21(b) if and only if ab 5 f(f21(a))f(f21(b)) 5 ab [we ob-
tained the first equality by applying f to both sides of f21(ab) 5 f21(a)f21(b)]. Finally, let g [ G.
Then f21(f(g)) 5 g, so that f21 is onto.

23. Tg(x) 5 Tg(y) if and only if gx 5 gy or x 5 y. This shows that Tg is a one-to-one function. Let y [
G. Then Tg(g

21y) 5 y, so that Tg is onto.
25. Apply the appropriate definitions.
27. Show that Q is not cyclic.

29. Try a 1 bi → .

31. Yes, by Cayley’s Theorem.
33. Observe that fg(y) 5 gyg21 and fzg(y) 5 zgy(zg)21 5 zgyg21z21 5 gyg21 since z [ Z(G). So,

fg 5 fzg.
35. fg 5 fh implies gxg21 5 hxh21 for all x. This implies h21gx(h21g)21 5 x, and therefore h21g [ Z(G).
37. Say |a| 5 n. Then fa

n(x) 5 anxa2n 5 x, so that fa
n is the identity. For the example, take 

a 5 R90 in D4.
39. Observe that D 5 R90V and H 5 R90D.
41. (R0R90R180R270)(H D9V D).
43. Consider the mapping f(x) 5 x2 and note that 2 is not in the image.
45. Use the fact that if a . 0, then a 5 . For the second part, use the first part together with

the fact that the inverse of an automorphism is an automorphism.
47. Say f is an isomorphism from Q to R1 and f takes 1 to a. It follows that the integer r maps to ar

and the rational r/s maps to ar/s. But ar/s 2 ap for any r/s.

Chapter 7

Use missteps as stepping stones to deeper understanding and greater achievement.
SUSAN TAYLOR

1. H 5 {a1, a2, a3, a4}, a5H 5 {a5, a8, a6, a7}, a9H 5 {a9, a11, a12, a10}
3. H, 1 1 H, 2 1 H
5. a. yes b. yes c. no
7. 8/2 5 4, so there are four cosets. Let H 5 {1, 11}. The cosets are H, 7H, 13H, 19H.
9. Since |a4| 5 15, there are two cosets: �a4� and a�a4�.

11. Suppose that h [ H and h , 0. Then hR1 # hH 5 H. But hR1 is the set of all negative real
numbers. Thus, H 5 R*.

13. 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
15. Use Lagrange’s Theorem (Theorem 7.1) and Corollary 3.
17. By Exercise 16, we have 56 mod 7 5 1 . So, using mod 7, we have 515 5 56 ? 56 ? 52 ? 5 5 1 ? 1 ?

4 ? 5 5 6; 713 mod 11 5 2.

"a"a

ca 2b

b a
d

G
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19. Use Corollary 4 of Lagrange’s Theorem (Theorem 7.1) together with Theorem 0.2.
21. By closure (234)(12) 5 (1342) belongs to H so that is divisible by 3 and 4 and divides 24. But if

then the even permutations in H would be a subgroup of of order 6, which does not exist
(see Example 5).

23. Since G has odd order, no element can have order 2. Thus, for each x 2 e, we know that x 2 x21.
So, we can write the product of all the elements in the form ea1a1

21a2a2
21 . . . anan

21 5 e.
25. Let H be the subgroup of order p and K be the subgroup of order q. Then H < K has p 1 q 2 1 ,

pq elements. Let a be any element in G that is not in H < K. By Lagrange’s Theorem, |a| 5 p, q,
or pq. But |a| 2 p, for if so, then �a� 5 H. Similarly, |a| 2 q.

27. 1, 3, 11, 33. If |x| 5 33, then |x11| 5 3. Elements of order 11 occur in multiples of 10.
29. No. Observe that by Lagrange’s Theorem, the elements of a group of order 55 must have orders

1, 5, 11, or 55; then use Theorem 4.4.
31. Observe that |G:H| 5 |G|/|H|, |G:K| 5 |G|/|K|, and |K:H| 5 |K|/|H|.
33. Certainly, a [ orbG(a). Now suppose that c [ orbG(a) > orbG(b). Then c 5 a(a) and c 5 b(b) for

some a and b, and therefore (b21a)(a) 5 b. So, if x [ orbG(b), then x 5 g(b) 5 (gb21a)(a) for
some g. This proves that orbG(b) # orbG(a). By symmetry, orbG(a) # orbG(b).

35. a. stabG(1) 5 {(1), (24)(56)}; orbG(1) 5 {1, 2, 3, 4}
b. stabG(3) 5 {(1), (24)(56)}; orbG(3) 5 {3, 4, 1, 2}
c. stabG(5) 5 {(1), (12)(34), (13)(24), (14)(23)}; orbG(5) 5 {5, 6}

37. Suppose that |Z(G)| 5 pn21 and let a be an element of G not in Z(G). Then C(a) contains both a
and Z(G). By Lagrange’s Theorem, we must have C(a) 5 G. But then a [ Z(G).

39. 2520
41. Consider the mapping from G to G defined by f(x) 5 x2 and let |G| 5 2k 1 1. Use the observa-

tion that x 5 xe 5 xx2k11 5 x2k12 5 (x2)k11 to prove that f is one-to-one and Exercise 10 of
Chapter 5 to show that f is onto.

43. Suppose that B [ G and det(B) 5 2. Then det(A21B) 5 1, so that A21B [ H and therefore B [
AH. Conversely, for any Ah [ AH we have det(Ah) 5 det(A)det(h) 5 2 ? 1 5 2.

45. It is the set of all permutations that carry face 2 to face 1.
47. aH 5 bH if and only if det (a) 5 6det (b).
49. 50

Chapter 8

There is always a right and a wrong way, and the wrong way always seems the more reasonable.
GEORGE MOORE, The Bending of The Bough

1. Closure and associativity in the product follow from the closure and associativity in each compo-
nent. The identity in the product is the n-tuple with the identity in each component. The inverse
of (g1, g2, . . . , gn) is (g1

21, g2
21, . . . , gn

21).
3. Use g → (g, eH) and h → (eG, h).
5. To show that Z % Z is not cyclic, note that (a, b 1 1) o �(a, b)�.
7. Use (g1, g2) → (g2, g1). In general, G1 % G2

. . . % Gn is isomorphic to the external direct product of
any rearrangement of .

9. Yes, by Theorem 8.2.
11. Observe by Theorem 4.4 that as long as d divides n, the number of elements of order  d in a

cyclic group depends only on d. So, in both Z8000000 and Z4 there are f(4) 5 2 elements of order
4 and f(2) 5 1 element of order 2. Similarly for Zm % Zn.

13. Try a 1 bi → (a, b).
15. Use Exercise 3 and Theorem 4.3.
17. .�m>r� % �n>s�

G1,G2, . . . ,Gn

A4|H| 5 12
|H|
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19. Since �(g, h)� # �g� % �h�, a necessary and sufficient condition for equality is that
. This is equivalent to .

21. , unless . In general, the order of every
nonidentity element of Zp % Zp % . . . % Zp, where p is prime, is p.

23. Map to (a, b, c, d). Let Rk denote 

R % R % ? ? ? % R (k factors). Then the 
group of m 3 n matrices under addition is isomorphic to Rmn.

25. (g, g)(h, h)21 5 (gh21, gh21) When G 5 R, G % G is the plane and H is the line y 5 x.
27. �(3, 0)�, �(3, 1)�, �(3, 2)�, �(0, 1)�
29. 60
31. {0, 400} % {0, 50, 100, 150}
33. Compare the number of elements of order 2 in each group.
35. The mapping is an isomorphism. The mapping 

is not well-defined since .
37. D24 has elements of order 24, whereas D3 % D4 does not.
39. 12
41. Aut(U(25)) < Aut(Z20) < U(20) < U(4) % U(5) < Z2 % Z4.
43. 2k 2 1; 2t 2 1, where t is the number of the n1, n2, . . . , nk that are even.
45. No. Z10 % Z12 % Z6 has 7 elements of order 2 whereas Z15 % Z4 % Z12 has only 3.
47. Using the fact that an isomorphism from Z12 is determined by the image of 1 and the fact that a

generator must map to a generator, we determine that there are 4 isomorphisms.
49. Since a [ Zm and b [ Zn, we know that |a| divides m and |b| divides n. So, |(a, b)| 5 lcm(|a|,

|b|) divides lcm(m, n).
51. Z, Z3, Z4, Z6
53. Observe that every nonidentity element of Zp % Zp has order p and each subgroup of order p

contains p 2 1 of them. So, there are exactly (p2 2 1)/(p 2 1) 5 p 1 1 subgroups of order p.
55. Look at Z % Z2.
57. U(165) < U(11) % U(15) < U(5) % U(33) < U(3) % U(55) < U(3) % U(5) % U(11)
59. Mimic the analysis for elements of order 

12 in U(720) in this chapter.
61. 60
63. They are both isomorphic to Z10 % Z4.
65. That U(n)2 is a subgroup follows from Exercise 15 of Supplementary Exercises 

for Chapters 1–4. 12 5 (n 2 1)2 shows that it is a proper subgroup.
67. 275
69. U(117) < U(9) % U(13) < Z6 % Z12, which contains �(2, 0)� % �(0, 4)�.
71. Consider U(49).
73. Consider U(65).
75. no

Supplementary Exercises for Chapters 5–8

All things are difficult before they are easy.
THOMAS FULLER

1. Consider the finite and infinite cases separately. In the finite case, note that |H| 5 |f(H)|. Now
use Theorem 4.3. For the infinite case, use Exercise 2 in Chapter 6.

3. Observe that f(x21y21xy) 5 (f(x))21(f(y))21f(x)f(y), so f carries the generators of G9 to the
generators of G9.

5. All nonidentity elements of G and H have order 3. G ] H.

f(3290) 5 f(30, 91)
f(3m9n) 5 (m, n)f(3m6n) 5 (m, n)

ca b

c d
d

a 5 b 5 c 5 e| (a,b,c)| 5 lcm5 |a|, |b|, |c|6 5 3
gcd( |g|, |h| ) 5 1|g| |h|lcm( |g|, |h| ) 5 | (g,h)| 5 |�g� % �h�| 5

A11 Selected Answers
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7. Certainly the set HK has |H||K| symbols. However, not all symbols need represent distinct group
elements. That is, we may have hk 5 h9k9 although h 2 h9 and k 2 k9. We must determine the
extent to which this happens. For every t in H > K, hk 5 (ht)(t21k), so each group element in HK
is represented by at least |H > K| products in HK. But hk 5 h9k9 implies t 5 h21h9 5 k(k9)21 [
H > K, so that h9 5 ht and k9 5 t21k. Thus each element in HK is represented by exactly |H >
K| products. So, |HK| 5 |H| |K|/|H > K|.

9. U(n), where n 5 4, 8, 3, 6, 12, 24.

11. Hint:

13. Suppose f: Q → R is an isomorphism. Let f(1) 5 x0. Show that f(a/b) 5 (a/b)x0 for all integers
a, b with b 2 0.

15. In Q, the equation 2x 5 a has a solution for all a. The corresponding equation x2 5 b in Q1 does
not have a solution for all b.

17. Suppose xp22 5 1. Since |U(p)| 5 p 2 1, we have that xp21 5 1 for all x [ U(p). So, by cancel-
lation, x 5 1.

19. �3� % �4�
21. Z18, Z2 % Z3 % Z3, D9, D3 % Z3.
23. Say a 5 a1a2

. . . an and b 5 b1
. . . bm, where the a’s and b’s are cycles. Then ab21 5 a1a2

. . .

anbm
21 . . . b1

21 is a finite number of cycles.
25. Count elements of order 2.
27. Count elements of order 2.
29. x 5 fa(x) 5 axa21, so that xa 5 ax. Conversely, if G is Abelian, fa is the identity.
31. U50(450)
33. (4, 10)
35. Count elements of order 2.
37. 20; (8, 7, (3251))
39. Let . Then and every nonidentity element of

has order p.
41. (12)(34)(56789)
43. 1260
45. b 5 (17395)(286)
47. Say the points in H lie on the line y 5 mx. Then (a, b) 1 H 5 {(a 1 x, b 1 mx) | x [ R}. This

set is the line y 2 b 5 m(x 2 a).
49. aH 5 bH implies a21b [ H. So (a21b)21 5 b21a [ H. Thus, Hb21a 5 H or Hb21 5 Ha21.

These steps are reversible.
51.
53.
55. By Theorem 8.3, U(pq) ; U(p) % U(q), so an element in corresponds to an element

. It follows from Corollary 4 of Theorem 7.1 that , the
identity of .

57. First observe that (n, n21, . . . 2,1)(12)(123 . . . n) 5 (1n). Also, (1n)(123 . . . n) 5 (123 . . . n 2 1).
So, by induction, and generate . This means that every 2-cycle not involving n
can be generated. Now note that (1k)(1n)(1k) 5 (kn), so all 2-cycles are generated.

59. Let b have order 2. In disjoint cycle form, b is a product of transpositions, so there must be some i
missing from this product. Thus, b(i) 5 i. Pick j such that b( j) 2 j. Since s is an n-cycle, some
power of s, say st, takes i to j. If b commutes with s, it commutes with st as well. Then 
(stb)(i) 5 st(b(i)) 5 st(i) 5 j, whereas (bst)(i) 5 b(st(i)) 5 b( j) 2 j. This proves that 
stb 2 bst.

Sn21(123 . . . n)(12)

U(p) % U(q)
(xn

1, x
n
2) 5 (1, 1)(xn

1, x
n
2) [ U(p) % U(q)

U(pq)xn
p(p 1 1)
p2 2 1

(Zp2 % Zp2)>H |H| 5 p2H 5 5x [ Zp2  %  Zp2|  x
p 5 (0, 0)6

3 1  2i 5  "13 a 3

"13
1  

2

"13
 ib
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Chapter 9

There’s a mighty big difference between good, sound reasons and reasons that sound good.
BURTON HILLIS

1. no
3. Say i , j and let h [ Hi > Hj. Then h [ H1H2

. . . Hi
. . . Hj21 > Hj 5 {e}.

5. Recall that if A and B are matrices, then 
det (ABA21) 5 (det A)(det B)(det A)21.

7. Let x [ G. If x [ H, then xH 5 H 5 Hx. If x o H, then xH is the set of elements in G, not in H.
But Hx is also the set of elements in G, not in H.

9. G/H < Z4
G/K < Z2 % Z2

11. No, look at D3.
13. This follows directly from (ab)h 5 a(bh) for all h [ H.
15. 2
17. H 5 {0 1 �20�, 4 1 �20�, 8 1 �20�, 12 1 �20�, 16 1 �20�}. G/H 5 {0 1 �20� 1 H, 1 1 �20� 1 H,

2 1 �20� 1 H, 3 1 �20� 1 H}.
19. 40/10 5 4
21. By Theorem 9.5, the group has an element a of order 3 and an element b of order 11. 

Then |ab| 5 33.
23. `; no, (6, 3) 1 �(4, 2)� has order 2.
25. Z8
27. yes; no
29. Mimic the argument given in Example 13 in this chapter.
31. Certainly, every nonzero real number is of the form 6r, where r is a positive real number. Real

numbers commute, and R1 > {1, 21} 5 {1}.
33. No. If G 5 H 3 K, then |g| 5 lcm(|h|, |k|) provided that |h| and |k| are finite. If |h| or |k| is infi-

nite, so is |g|.
35. For the first question, note that �3� > �6� 5 {1} and �3��6� > �10� 5 {1}. For the second ques-

tion, observe that 12 5 32162.
37. Say |g| 5 n. Then (gH)n 5 gnH 5 eH 5 H. Now use Corollary 2 to Theorem 4.1.
39. Let x [ C(H), g [ G, and h [ H. We must show that gxg21h 5 hgxg21. Note that in the expres-

sion (gxg21)h(gxg21)21 5 gxg21hgx21g21 the terms x and x21 cancel since g21hg [ H and x
commutes with every element of H. Then we have (gxg21)h(gxg21)21 5 gxg21hgx21g21 5
gg21hgg21 5 h. So, gxg21 [ C(H).

41. Take G 5 Z6, H 5 {0, 3}, a 5 1, and b 5 4.
43. Use Lagrange’s Theorem and Exercise 7 of this chapter.
45. Since N # NH # G, we have |G : N| 5 |G : NH| |NH : N|. Thus, |G : H| 5 1 or |NH : N| 5 1. 

It follows that G 5 NH or NH 5 N.
47. Use the “G/Z Theorem.”
49. If H is normal in G, then xNhN(xN)21 5 xhx21N [ H/N, so H/N is normal in G/N. Now assume

H/N is normal in G/N. Then xhx21N 5 xNhN(xN)21 [ H/N. Thus, xhx21N 5 h9N for h9 [ H. So,
xhx21 5 h9n for some n [ N.

51. Say H has index n. Then (R*)n 5 {x n | x [ R*} # H. If n is odd, then (R*)n 5 R*; if n is even,
then (R*)n 5 R1. So, H 5 R* or 
H 5 R1.

53. Use Exercise 7 and observe that VK 2 KV.
55. Suppose n1h1 and n2h2 [ NH. Then 

n1h1n2h2 5 n1n9h1h2 [ NH. Also (n1h1)
21 5 h1

21n1
21 5 nh1

21 [ NH.
57. Let N 5 �a�, H 5 �ak�, and x [ G. Then, x(ak)mx21 5 (xamx21)k 5 (ar)k 5 (ak)r [ H.
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59. gcd(|x|, |G/H|) 5 1 implies gcd(|xH|, |G/H|) 5 1. But |xH| divides |G/H|. Thus |xH| 5 1 and
therefore xH 5 H.

61. Note that G/N is a group and use Corollary 4 of Theorem 7.1.
63. Use Theorems 9.4 and 9.3.
65. Say |gH| 5 n. Then |g| 5 nt (by Exercise 37) and |gt| 5 n. For the second part, consider Z/�k�.
67. It is not a group table. No, because _ is not normal in D4.
69. Use Theorem 9.3 and Theorem 7.2.
71. By Exercise 70, A5 would have an element of the form (ab)(cd) that commutes with every ele-

ment of A5. Try (abc).
73. To see that H is normal, observe that . To verify the second part, note

that .
75. Since H has index 2 in G, is it a normal subgroup of G and |G/H| 5 2. It follows that for every a

in G we have If a is an element of G of order then 
Thus, a is in H.

Chapter 10

It’s always helpful to learn from your mistakes because then your mistakes seem worthwhile.
GARRY MARSHALL

1. Note that det(AB) 5 (det A)(det B).
3. Note that ( f 1 g)9 5 f9 1 g9.
5. Observe that (xy)r 5 xryr. Odd values of r yield an isomorphism.
7. (sf)(g1g2) 5 s(f(g1g2)) 5 s(f(g1)f(g2)) 5 s(f(g1))s(f(g2)) 5 (sf)(g1)(sf)(g2). 

Ker f is a normal subgroup of Ker sf. |H|/|K| 5 [Ker sf:Ker f]
9. f((g, h) (g9, h9)) 5 f((gg9, hh9)) 5 gg9 5 f((g, h))f((g9, h9)). The kernel is {(e, h)|h [ H}.

11. Consider f: Z % Z → Za % Zb given by f((x, y)) 5 (x mod a, y mod b) and use Theorem 10.3.
13. (a, b) → b is a homomorphism from A % B onto B with kernel A % {e}.
15. 3, 13, 23
17. Suppose f is such a homomorphism. By Theorem 10.3, Ker f 5 �(8, 1)�, �(0, 1)� or �(8, 0)�. In

these cases, (1, 0) 1 Ker f has order either 16 or 8. So, (Z16 % Z2) / Ker f is not isomorphic to Z4
% Z4.

19. Since |Ker f| is not 1 and divides 17, f is the trivial map.
21. �5�
23. a. The possible images are isomorphic to Z1, Z2, Z3, Z4, Z6, and Z12.

b. �1� < Z36, �2� < Z18, �3� < Z12, �4� < Z9, �6� < Z6, and �12� < Z3.
25. 4 onto; 10 to
27. For each k with 0 # k # n 2 1, the mapping 1 → k determines a homomorphism.
29. Use Theorem 10.3 and properties 5, 7, and 8 of Theorem 10.2.
31. f21(7) 5 7 Ker f 5 {7, 17}
33. 11 Ker f
35. f((a, b) 1 (c, d )) 5 f((a 1 c, b 1 d)) 5 (a 1 c) 2 (b 1 d ) 5 a 2 b 1 c 2 d 5 f((a, b)) 1

f((c, d)). Ker f 5 {(a, a) | a [ Z}. f21(3) 5 {(a 1 3, a) | a [ Z}.
37. f(xy) 5 (xy)6 5 x6y6 5 f(x)f(y). Ker f 5 �cos 60° 1 i sin 60°�.
39. Show that the mapping from K to KN/N given by k → kN is an onto homomorphism with kernel

K > N.
41. For each divisor d of k there is a unique subgroup of Zk of order d, and this subgroup is gener-

ated by f(d) elements. A homomorphism from Zn to a subgroup of Zk must carry 1 to a genera-
tor of the subgroup. Furthermore, the order of the image of 1 must divide n, so we need con-
sider only those divisors d of k that also divide n.

( (aH)2)naH 5 aH.
H 5 a2n11H 52n 1 1,(aH)2 5 H.

(gH)p 5 gpH 5 H
xgpx21 5 (xgx21)p
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43. D4, {e}, Z2, Z2 % Z2
45. It is divisible by 10.
47. It is infinite. Z
49. Let γ be the natural homomorphism from G onto G/N. Let be a subgroup of G/N and let

γ21( ) 5 H. Then H is a subgroup of G and H/N 5 γ (H) 5 γ (γ21( )) 5 .
51. The mapping g → fg is a homomorphism with kernel Z(G).
53. ( f 1 g)(3) 5 f(3) 1 g(3). The kernel is the set of elements in Z[x] whose graphs pass through the

point (3, 0).
55. Let g belong to G. Since belongs to Z2 % Z2 5 �1, 0� x �0, 1� x �1, 1�, it follows that

G 5 f21(�1, 0�) x f21(�0, 1�) x f21(�1, 1�). Moreover, each of these three subgroups is proper.
57. Use Exercise 54 in Chapter 9 and Exercise 39 above to prove the first assertion. To verify that

G/(H > K) is not cyclic, observe that it has two subgroups of order 2.
59. Mimic Example 16.
61. Suppose that H is a proper subgroup of G that is not properly contained in a proper subgroup of

G. Then G/H has no nontrivial, proper subgroup. It follows from Exercise 24 in Chapter 7 that
G/H is isomorphic to Zp for some prime p. But then for every coset g 1 H we have p(g 1 H) 5 H
so that pg [ H for all g [ G. But then G 5 pG # H. Both Q and R satisfy the hypothesis.

Chapter 11

Think before you think!
STANISLAW J. LEC, Unkempt Thoughts

1. n 5 4
Z4, Z2 % Z2

3. n 5 36
Z9 % Z4, Z3 % Z3 % Z4, Z9 % Z2 % Z2, Z3 % Z3 % Z2 % Z2

5. The only Abelian groups of order 45 are Z45 and Z3 % Z3 % Z5. In the first group, |3| 5 15; in the
second one, |(1, 1, 1)| 5 15. Z3 % Z3 % Z5 does not have an element of order 9.

7. Z9 % Z3 % Z4; Z9 % Z3 % Z2 % Z2
9. Z4 % Z2 % Z3 % Z5

11. By the Fundamental Theorem, any finite Abelian group G is isomorphic to some direct product of
cyclic groups of prime-power order. Now go across the direct product and, for each distinct prime
you have, pick off the largest factor of the prime-power. Next, combine all of these into one fac-
tor (you can do this, since the subscripts are relatively prime). Let us call the order of this new
factor n1. Now repeat this process with the remaining original factors and call the order of the
resulting factor n2. Then n2 divides n1, since each prime-power divisor of n2 is also a prime-
power divisor of n1. Continue in this fashion. Example: If 

G < Z27 % Z3 % Z125 % Z25 % Z4 % Z2 % Z2,

then

G < Z27 ? 125 ? 4 % Z3 ? 25 ? 2 % Z2.

Now note that 2 divides 3 ? 25 ? 2 and 3 ? 25 ? 2 divides 27 ? 125 ? 4.

13. Z2 % Z2
15. a. 1 b. 1 c. 1 d. 1 e. 1 f. There is a unique Abelian group of order n if and only if n is

not divisible by the square of any prime.
17. Z2 % Z2
19. Z3 % Z3
21. n is square-free (no prime factor of n occurs more than once).

f(g)

HHH
H
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23. Among the first 11 elements in the table, there are nine elements of order 4. None of the other
isomorphism classes has this many.

25. Z4 % Z2 % Z2; one internal direct product is �7� 3 �101� 3 �199�.
27. 3; 6; 12
29. Z4 % Z4
31. Use Theorems 11.1, 8.1, and 4.3.
33. |�a�K| 5 |a||K|/|�a� > K| 5 |a||K| 5 | || |p 5 | |p 5 |G|.
35. By the Fundamental Theorem of Finite Abelian Groups, it suffices to show that every group of the

form Zp1
n1 % Zp2

n2 % . . . % Zpk
nk is a subgroup of a U-group. Consider first a group of the form

Zp1
n1 % Zp2

n2 ( p1 and p2 need not be distinct). By Dirichlet’s Theorem, for some s and t there are
distinct primes q and r such that q 5 tp

1
n1 1 1 and r 5 sp

2
n2 1 1. Then U(qr) 5 U(q) % U(r) <

Ztp1
n1 % Zsp2

n2, and this latter group contains a subgroup isomorphic to Zp1
n1 % Zp2

n2. The general
case follows in the same way.

37. Look at D4.

Supplementary Exercises for Chapters 9–11

You cannot have success without the failures.
H. G. HASLER, The Observer

1. Say aH 5 Hb. Then a 5 hb for some h in H. Then Ha 5 Hhb 5 Hb 5 aH.

3. Suppose diag(G) is normal. Then (e, a)(b, b)(e, a)21 5 (b, aba21) [ diag(G). Thus b 5 aba21. If

G is Abelian, (g, h)(b, b) ? (g, h)21 5 (gbg21, hbh21) 5 (b, b). The index of diag(G) is |G|.

5. Let a [ Aut(G) and fa [ Inn(G). Then (afaa
21)(x) 5 (afa)(a

21(x)) 5 a(aa21(x)a21) 5
a(a)x(a(a))21 5 fa(a)(x).

7. R* (See Example 2 in Chapter 10.)

9. a. 

b. The mapping

→ b

is an isomorphism.
c. The mapping

→ (a, c)

is a homomorphism with Z(H) as the kernel.
d. The proofs are valid with R and Zp.

11. b(a/b 1 Z) 5 a 1 Z 5 Z
13. Use Exercise 5 of the Supplementary Exercises for Chapters 1–4. Such a set is possible only when n is

prime. For the first example, consider Dp, where p is a prime. For the second example, try D4.
15. Observe that hkh21k21 5 (hkh21)k21 [ K and hkh21k21 5 h(kh21k21) [ H.
17. Use Theorem 7.3 and Exercise 7 of Chapter 9.
19. First observe that f((4, 0, 0)) 5 f(4(1, 0, 0)) 5 4f(1, 0, 0) 5 (0, 0), so that Ker f 5 {(0, 0, 0),

(4, 0, 0)}. But then (Z8 % Z2 % Z2)/Ker f has more than three elements of order 2, whereas Z4 % Z4
has only three.

21. Use Theorem 7.2 together with the fact that S4 has no element of order 6.

 £  

1 

0 

0 

 a

 1

 0

   b

   c

   1

§

 £  

1 
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 0

 1

 0
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    0

    1
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0 

0 

 0

 1

 0

   b

   0

   1

§  †  b [  Q¶  

GKa
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23. The number is m in all cases.
25. The mapping g → gn is a homomorphism from G onto Gn with kernel Gn.
27. Let |H| 5 p. Exercise 7 of Supplementary Exercises for Chapters 5–8 shows that H is the only

subgroup of order p. But xHx21 is also a subgroup of order p. So, xHx21 5 H.
29. Say a and b are integers and a/b 1 Z has order n in Q/Z. Then na/b 5 m for some integer m.

Thus, a/b 1 Z 5 m/n 1 Z 5 m(1/n 1 Z) [ �1/n 1 Z�.
31. If (1, 0) → a and (0, 1) → b, then (x, 0) → ax and (0, y) → by.
33. First note that by Exercise 11, every element in Q/Z has finite order. For each positive integer n, let

Bn denote the set of elements of order n and suppose that f is an isomorphism from Q/Z to itself.
Then, by property 5 of Theorem 6.2, f(Bn) # Bn. By Exercise 29 we know that Bn is finite, and
since f preserves orders and is one-to-one, we must have f(Bn) 5 Bn. Since it follows from Exer-
cise 11 and Exercise 29 that Q/Z 5 < Bn, where the union is taken over all positive integers n, we
have f(Q/Z) 5 Q/Z.

35. If the group is not Abelian, for any element a not in the center, the inner automorphism induced by
a is not the identity; if the group is Abelian and contains an element a with |a| . 2, then x → x21

works; if every nonidentity element has order 2, then G is isomorphic to a group of the form
Z2 % Z2 % . . . % Z2 . In this case, the mapping that takes (a1, a2, a3, . . . , ak) to (a2, a1, a3, . . . , ak) is
not the identity.

37. G/H is isomorphic to Z2 % Z2. G/H is not isomorphic to a subgroup of G since G has only one
element of order 2.

39. Observe that 

so H is closed. Also,

which is in H. Thus, H is a subgroup of G.

Since belongs to H,

we have that H is normal in G.

41. Let g belong to G. Since , conjugation is an automorphism of K. Thus .

Chapter 12

Mistakes are the postals of discovery. 
JAMES JOYCE

1. For any n . 1, the ring M2(Zn) of 2 3 2 matrices with entries from Zn is a finite noncommutative
ring. The set M2(2Z ) of 2 3 2 matrices with even integer entries is an infinite noncommutative
ring that does not have a unity.

3. In R, consider 
5. The proofs given for a group apply to a ring as well.
7. In Zp, nonzero elements have multiplicative inverses. Use them.
9. If a and b belong to the intersection, then they belong to each member of the intersection. Thus

a 2 b and ab belong to each member of the intersection. So, a 2 b and ab belong to the
intersection.

11. Part 3: 0 5 0(2b) 5 (a 1 (2a))(2b) 5 a(2b) 1 (2a)(2b) 5 2(ab) 1 (2a)(2b). 
So, ab 5 (2a)(2b).
Part 4: a(b 2 c) 5 a(b 1 (2c)) 5 ab 1 a(2c) 5 ab 1 (2(ac)) 5 ab 2 ac.
Part 5: Use part 2.
Part 6: Use part 3.

5n"2 0  n [ Z 6.

gHg21 5 HgKg21 5 K

c1 b21x

0 1
dc1 a

0 b
d c1 x

0 1
d c1 2ab21

0 b21 d 5c1 a

0 b
d c1 x

0 1
d c1 a

0 b
d21

5

c1 x

0 1
d21

5 c1 2x

0 1
d ,

c1 x

0 1
d c1 y

0 1
d 5 c1 x 1 y

0 1
d ,
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13. Hint: Z is a cyclic group under addition, and every subgroup of a cyclic group is cyclic.
15. For positive m and n, observe that (m ? a)(n ? b) 5 (a 1 a 1 . . . 1 a)(b 1 b 1 . . . 1 b) 5

(ab 1 ab 1 . . . 1 ab), where the last term has mn summands. Similar arguments apply in the
remaining cases.

17. From Exercise 15, we have (n ? a)(m ? a) 5 (nm) ? a2 5 (mn) ? a2 5 (m ? a)(n ? a).
19. Let a, b belong to the center. Then (a 2 b)x 5 ax 2 bx 5 xa 2 xb 5 x(a 2 b). Also,

(ab)x 5 a(bx) 5 a(xb) 5 (ax)b 5 (xa)b 5 x(ab).
21. (x1, . . . , xn)(a1, . . . , an) 5 (x1, . . . , xn) for all xi in Ri if and only if xiai 5 xi for all xi in Ri and

i 5 1, . . . , n.
23. {1, 21, i, 2i}
25. f (x) 5 1 and g(x) 5 21.
27. If a is a unit, then b 5 a(a21b).
29. Consider a21 2 a22b.
31. Try the ring M2(Z).
33. Note that 2x 5 (2x)3 5 8x3 5 8x.
35. For Z6 use n 5 3. For Z10 use n 5 5. Say m 5 p2t where p is a prime. Then (pt)n 5 0 in Zm

since m divides (pt)n.
37. Every subgroup of Zn is closed under multiplication.
39. ara 2 asa 5 a(r 2 s)a. (ara)(asa) 5 ara2sa 5 arsa. a1a 5 a2 5 1, so 1 [ S.
41. The subring test is satisfied.
43. Look at (1, 0, 1) and (0, 1, 1).
45. Observe that n ? 1 2 m ? 1 5 (n 2 m) ? 1. Also, (n ? 1)(m ? 1) 5 (nm) ? ((1)(1)) 5 (nm) ? 1.
47. {m/2n | m [ Z, n [ Z1}
49. (a 1 b)(a 2 b) 5 a2 1 ba 2 ab 2 b2 5 a2 2 b2 if and only if ba 2 ab 5 0.
51. Z2 % Z2; Z2 % Z2 % . . . (infinitely many copies).

Chapter 13

Work now or wince later.
B. C. FORBES, Epigrams

1. The verifications for Examples 1–6 follow from elementary properties of real and complex num-
bers. For Example 7, note that

.

For Example 8, note that (1, 0)(0, 1) 5 (0, 0).
3. Let ab 5 0 and a 2 0. Then ab 5 a ? 0, so b 5 0.
5. Let k [ Zn. If gcd(k, n) 5 1, then k is a unit. If gcd(k, n) 5 d . 1, write k 5 sd. Then k(n/d) 5

sd(n/d) 5 sn 5 0.
7. Let s [ R, s 2 0. Consider the set S 5 {sr | r [ R}. If S 5 R, then sr 5 1 (the unity) for some r.

If S 2 R, then there are distinct r1 and r2 such that sr1 5 sr2. In this case, s(r1 2 r2) 5 0. To see
what happens when the “finite” condition is dropped, consider Z.

9. (a1 1 b1 ) 2 (a2 1 b2 ) 5 (a1 2 a2) 1 (b1 2 b2) ; (a1 1 b1 )(a2 1 b2 ) 5 
(a1a2 1 b1b2d) 1 (a1b2 1 a2b1) . Thus the set is a ring. Since Z[ ] is a subring of the 
ring of complex numbers, it has no zero-divisors.

11. The even integers.
13. (1 2 a)(1 1 a 1 a2 1 . . . 1 an21 ) 5 1 1 a 1 a2 1 . . . 1 an21 2 a 2 a2 2 . . . 2 an 5 1 2 an 5

1 2 0 5 1.
15. Suppose a 2 0 and an 5 0 (where we take n to be as small as possible). Then a ? 0 5 0 5 an 5

a ? an21, so by cancellation, an21 5 0.

"d"d
"d"d"d"d"d

c1 0

0 0
d c0 0

0 1
d 5 c0 0

0 0
d
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17. If and , then The other cases are similar.
19. Suppose that a is an idempotent and By the previous exercise,
21. (3 1 4i)2 5 3 1 4i.
23. a2 5 a implies a(a 2 1) 5 0. So if a is a unit, a 2 1 5 0 and a 5 1.
25. See Theorems 3.1 and 12.3.
27. Note that ab 5 1 implies aba 5 a. Thus 0 5 aba 2 a 5 a(ba 2 1). So, ba 2 1 5 0.
29. A subdomain of an integral domain D is a subset of D that is an integral domain under the opera-

tions of D. To show that P is a subdomain, show that it is a subring and contains 1. Every
subdomain contains 1 and is closed under addition and subtraction, so every subdomain
contains P. |P| 5 char D when char D is prime and |P| is infinite when char D is 0.

31. Use Theorems 13.3, 13.4, and 7.1 (Lagrange’s Theorem).
33. By Exercise 32, 1 is the only element of an integeral domain if and only if 1 5 21. This is true

only for fields of characteristic 2.
35. a. Since a3 5 b3, a6 5 b6. Then a 5 b because we can cancel a5 from both sides (since a5 5 b5).

b. Use the fact that there exist integers s and t such that 1 5 sn 1 tm, but remember that you
cannot use negative exponents in a ring.

37. (1 2 a)2 5 1 2 2a 1 a2 5 1 2 2a 1 a 5 1 2 a.
39. Z8
41. Let S 5 {a1, a2, . . . , an} be the nonzero elements of the ring. First show that S 5 {a1a1, a1a2, . . . ,

a1an}. Thus, a1 5 a1ai for some i. Then ai is the unity, for if ak is any element of S, we have 
a1ak 5 a1aiak, so that a1(ak 2 aiak) 5 0.

43. Say |x| 5 n and |y| 5 m with n , m. Consider (nx)y 5 x(ny).
45. a. Use the Binomial Theorem.

b. Use part a and induction.
c. Consider {0, 3, 6, 9} under addition and multiplication modulo 12.

47. Use Theorems 13.4 and 9.5 and Exercise 43.

49. n 5 for all members of M2(R) if and only if na 5 0 for all a in R.

51. Use Exercise 50.
53. a. 2 b. 2, 3 c. 2, 3, 6, 11 d. 2, 3, 9, 10
55. 2
57. See Example 10.
59. Use Exercise 25 and part a of Exercise 45.
61. Choose a 2 0 and a 2 1 and consider 1 1 a.
63. f(x) 5 f(x . 1) 5 f(x) . f(1) so f(1) 5 1. Also, 1 5 f(1) 5 f(xx21) 5 f(x) f(x21).
65. Since a field of order 27 has characteristic 3, we have 3a 5 0 for all a. From this, we have 

6a 5 0 and 5a 5 2a.

Chapter 14

Not one student in a thousand breaks down from overwork.
WILLIAM ALLAN NEILSON

1. Let r1a and r2a belong to �a�. Then r1a 2 r2a 5 (r1 2 r2)a [ �a�. If r [ R and r1a [ �a�, then
r(r1a) 5 (rr1)a [ �a�.

3. Clearly, I is not empty. Now observe that (r1a1 1 . . . 1 rnan) 2 (s1a1 1 . . . 1 snan) 5 (r1 2 s1)a1
1 . . . 1 (rn 2 sn)an [ I. Also, if r [ R, then r(r1a1 1 . . . 1 rnan) 5 (rr1)a1 1 . . . 1 (rrn)an [ I.
That I # J follows from closure under addition and multiplication by elements from R.

5. Let a 1 bi, c 1 di [ S. Then (a 1 bi) 2 (c 1 di) 5 a 2 c 1 (b 2 d)i and b 2 d is even. Also,
(a 1 bi)(c 1 di) 5 ac 2 bd 1 (ad 1 cb)i and ad 1 cb is even. Finally, (1 1 2i)(1 1 i) 5
21 1 3i o S.

c0 0

0 0
dca b

c d
d

a 5 0.an 5 0.
(ab)2 5 a2b2 5 ab.b2 5 ba2 5 a
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7. Since ar1 2 ar2 5 a(r1 2 r2) and (ar1)r 5 a(r1r), 4R 5 {. . . , 216, 28, 0, 8, 16, . . .}.
9. If n is prime, use Euclid’s Lemma (Chapter 0). If n is not prime, say n 5 st where s , n and t , n,

then st belongs to nZ but s and t do not.
11. a. a 5 1 b. a 5 3 c. a 5 gcd(m, n)
13. a. a 5 12

b. a 5 48. To see this, note that every element of �6��8� has the form 6t18k1 1 6t28k2 1 . . . 1
6tn8kn 5 48s [ �48�. So, �6��8� # �48�. Also, since 48 [ �6��8�, we have �48� # �6��8�.

c. a 5 mn
15. Let r [ R. Then r 5 1r [ A.
17. Let u [ I be a unit and let r [ R. Then r 5 r(u21u) 5 (ru21)u [ I.
19. Observe that �2� and �3� are the only nontrivial ideals of Z6, so both are maximal. More gener-

ally, Zpq , where p and q are distinct primes, has exactly two maximal ideals.
21. Clearly, I is closed under subtraction. Also, if b1, b2, b3, and b4 are even, then every 

entry of is even.

23. Use the observation that every member of R can be written in the form .

Then note that .

25. (br1 1 a1) 2 (br2 1 a2) 5 b(r1 2 r2) 1 (a1 2 a2) [ B; r9(br 1 a) 5 b(r9r) 1 r9a [ B.
27. Use Exercise 17.
29. Since every element of �x� has the form xg(x), we have �x� # I. If f(x) [ I, then f(x) 5 anx

n 1 . . . 1
a1x 5 x(anx

n21 1 . . . 1 a1) [ �x�.
31. Suppose f(x) 1 A 2 A. Then f(x) 1 A 5 f(0) 1 A and f(0) 2 0. Thus,

.

This shows that R/A is a field. Now use Theorem 14.4.
33. Since (3 1 i)(3 2 i) 5 10, 10 1 �3 1 i� 5 0 1 �3 1 i�. Also, i 1 �3 1 i� 5 23 1 �3 1 i� 5 7 1

�3 1 i�. So, Z[i]/�3 1 i� 5 {k 1 �3 1 i� | k 5 0, 1, . . . , 9}, since 1 1 �3 1 i� has additive order 10.
35. Use Theorems 14.3 and 14.4.
37. Since every f(x) in �x, 2� has the form f(x) 5 xg(x) 1 2h(x), we have f(0) 5 2h(0), so that f(x) [ I.

If f(x) [ I, then f(x) 5 anx
n 1 ? ? ? 1 a1x 1 2k 5 x(anx

n21 1 ? ? ? 1 a1) 1 2k [ �x, 2�. I is prime
and maximal. Z[x]/I has two elements.

39. 3x 1 1 1 I
41. Every ideal is a subgroup. Every subgroup of a cyclic group is cyclic.
43. Use Exercise 42.
45. Say b, c [ Ann(A). Then (b 2 c)a 5 ba 2 ca 5 0 2 0 5 0. Also, (rb)a 5 r(ba) 5 r ? 0 5 0.
47. a. �3� b. �3� c. �3�
49. Suppose (x 1 N(�0�))n 5 0 1 N(�0�). We must show that x [ N(�0�). We know that xn 1

N(�0�) 5 0 1 N(�0�), so that xn [ N(�0�). Then, for some m, (xn)m 5 0, and therefore x [ N(�0�).
51. The set Z2[x]/�x2 1 x 1 1� has only four elements and each of the nonzero ones has a multiplica-

tive inverse. For example,

(x 1 �x2 1 x 1 1�)(x 1 1 1 �x2 1 x 1 1�) 5 1 1 �x2 1 x 1 1�.
53. x 1 2 1 �x2 1 x 1 1� is not zero, but its square is.

55. If f and g [ A, then ( f 2 g)(0) 5 f (0) 2 g(0) is even and ( f ? g)(0) 5 f (0) ? g(0) is even. 

f(x) 5 [ R and g(x) 5 2 [ A, but f(x)g(x) o A.
57. Hint: Any ideal of R/I has the form A/I, where A is an ideal of R.
59. Use the fact that R/I is an integral domain to show that R/I 5 {I, 1 1 I}.

1
2

( f(x) 1  A)21 5  
1

f (0)
 1  A

c2q1 1 r1 2q2 1 r2

2q3 1 r3 2q4 1 r4
d  1 I 5 cr1 r2

r3 r4
d  1 I

c2q1 1 r1 2q2 1 r2

2q3 1 r3 2q4 1 r4
d

ca1 a2

a3 a4
d cb1 b2

b3 b4
d
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61. �x� , �x, 2n� , �x, 2n21� , . . . , �x, 2�
63. Taking r 5 1 and s 5 0 shows that a [ I. Taking r 5 0 and s 5 1 shows that b [ I. If J is any

ideal that contains a and b, then it contains I because of the closure conditions.

Supplementary Exercises for Chapters 12–14

If at first you don’t succeed, try, try, again. Then quit. There’s no use being a damn fool about it.
W. C. FIELDS

1. In Z10 they are 0, 1, 5, and 6. In Z20, they are 0, 1, 5, and 16. In Z30, they are 0, 1, 6, 10, 15, 16,
21, and 25.

3. We must show that an 5 0 implies a 5 0. First show this for the case when n is a power of 2. 
If n is not a power of 2, say 13, for example, note that a13 5 0 implies a16 5 0.

5. Suppose A s C and B s C. Pick a [ A and b [ B such that a, b o C. But ab [ C and C is
prime.

7. {0} % {0}, R % R, R % {0}, and {0} % R. The ideals of F % F are {0} % {0}, F % F,
F % {0}, and {0} % F.

9. Suppose that am mod n 5 0. Since n divides am, every prime p divisor of n divides am. By Euclid’s
Lemma (Chapter 0), p divides a, and since n is square-free, if follows that n divides a.

11. Suppose a1, a2 [ A but a1 o B and a2 o C. Use a1 1 a2 to derive a contradiction.
13. Clearly �a� contains the right-hand side. Now show that the right-hand side contains a and is an

ideal.
15. Since A is an ideal, ab [ A. Since B is an ideal, ab [ B. So ab [ A > B 5 {0}.
17. 6
19. Use Exercise 4.
21. Consider x2 1 1 1 �x4 1 x2�.
23. Consider Z8.
25. Say char R 5 p (remember p must be prime). Then char R/A 5 the additive order of 1 1 A.

But |1 1 A| divides |1| 5 p.
27. Use Theorems 13.2, 14.3, and 14.4.

29. Observe that [ Z2 but is not in A.

31. Z[i]/A has two elements. (From this it follows that A is maximal. See Theorem 14.4.)
33. A finite subset of a field is a subfield if it contains a nonzero element and is closed under addi-

tion and multiplication.
35. Observe that (a 1 bi) (a 2 bi) 5 a2 1 b2.
37. 5
39. The inverse is 2x 1 3.
41. Observe that Z5[x, y]/�x, y� < Z5 and use Theorem 14.4.
43. Say (a,b)n 5 (0, 0). Then an 5 0 and bn 5 0. If am 5 0 and bn 5 0, then (a, b)mn 5

((am)n, (bn)m) 5 (0, 0).
45. If a2 5 a, then pk|a(a 2 1). Since a and a 2 1 are relatively prime, pk|a or pk|(a 2 1). 

So, a 5 0 or a 5 1.
47. In Z3 , (a 1 b )21 5 (a 2 b )/(a2 2 2b2) 5 (a 2 b )/(a2 1 b2). In Z7 , (1 1 2 )

(1 1 5 ) 5 0.
49. If xn 5 0, then (rx)n 5 rnxn 5 0.

"2
"23"24"2"2"23"24

c1 1

1 1
d c1 0

0 0
d 5 c1 0

1 0
dfA 5 e ca b

0 0
d `  a, b
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Chapter 15

For every problem there is a solution which is simple, clean and wrong.
H. L. MENCKEN

1. Part 3: f(A) is a subgroup because f is a group homomorphism. Let s [ S and f(r) 5 s. Then
sf(a) 5 f(r)f(a) 5 f(ra) and f(a)s 5 f(a)f(r) 5 f(ar).
Part 4: Let a and b belong to f21(B) and r belong to R. Then f(a) and f(b) are in B. So,
f(a) 2 f(b) 5 f(a) 1 f(2b) 5 f(a 2 b) [ B. Thus, a 2 b [ B. Also, f(ra) 5 f(r)f(a) [ B
and f(ar) 5 f(a)f(r) [ B. So, ra and ar [ f21(B).

3. We already know the mapping is an isomorphism of groups. Let F(x 1 Ker f) 5 f(x). Note that
F((r 1 Ker f)(s 1 Ker f)) 5 F(rs 1 Ker f) 5 f(rs) 5 f(r)f(s) 5 F(r 1 Ker f) F(s 1 Ker f). 

5. f(2 1 4) 5 f(1) 5 5, whereas f(2) 1 f(4) 5 0 1 0 5 0.
7. Observe that (x 1 y)/1 5 x/1 1 y/1 and (xy)/1 5 x/1y/1.
9. a 5 f(1) 5 f(1·1) 5 f(1)f(1) 5 aa 5 a2.

11. If a and b (b 2 0) belong to every member of the collection, then so do a 2 b and ab21. Thus,
by Exercise 25 in Chapter 13, the intersection is a subfield.

13. Apply the definition.
15. Multiplication is not preserved.
17. yes
19. The set of all polynomials passing through the point (1, 0).
21. For Z6 to Z6, 1 S 0, 1 S 1, 1 S 3, and 1 S 4 each define a homomorphism. For Z20 to Z30, 1 S 0,

1 S 6, 1 S 15, and 1 S 21 each define a homomorphism.
23. The zero map and the identity map.
25. Use Exercise 24.
27. Say 1 is the unity of R. Let s 5 f(r) be any element of S. Then f(1)s 5 f(1)f(r) 5 f(1r) 5

f(r) 5 s. Similarly, sf(1) 5 s.
29. Observe that an idempotent must map to an idempotent. It follows that (a, b) → a, (a, b) → b,

and (a, b) → 0 are the only ring homomorphisms.
31. Say m 5 akak21

. . . a1a0 and n 5 bkbk21
. . . b1b0. Then m 2 n 5 (ak 2 bk)10k 1

(ak21 2 bk21)10k21 1 . . . 1 (a1 2 b1)10 1 (a0 2 b0). Now use the test for divisibility by 9.
33. Use the appropriate divisibility tests.
35. Mimic Example 8.
37. Use Exercise 35.
39. Look at both sides mod 2.
41. Observe that (2 ? 1075 1 2) mod 3 5 1 and (10100 1 1) mod 3 5 2 5 21 mod 3.
43. This follows directly from Theorem 13.3 and Theorem 10.1, part 3.
45. No. The kernel must be an ideal.
47. a. Suppose ab [ f21(A). Then f(a)f(b) [ A, so that a [ f21(A) or b [ f21(A).

b. Consider the natural homomorphism from R to S/A. Then use Theorems 15.3 and 14.4.
49. a. f((a, b) 1 (a9, b9)) 5 f((a 1 a9, b 1 b9)) 5 a 1 a9 5 f((a, b)) 1 f((a9, b9)) so f preserves

addition. Also, f((a, b)(a9, b9)) 5 f((aa9, bb9)) 5 aa9 5 f((a, b))f((a9, b9)).
b. f(a) 5 f(b) implies that (a, 0) 5 (b, 0), which implies that a 5 b. f(a 1 b) 5 (a 1 b, 0) 5

(a, 0) 1 (b, 0) 5 f(a) 1 f(b). Also, f(ab) 5 (ab, 0) 5 (a, 0)(b, 0) 5 f(a) f(b).
c. Use (r, s) → (s, r).

51. Observe that x4 5 1 has two solutions in R but four in C.
53. Use Exercises 46 and 52.
55. If a / b 5 a9/ b9 and c / d 5 c9 / d9, then ab9 5 ba9 and cd9 5 dc9. So, acb9d9 5 (ab9)(cd9) 5

(ba9)(dc9) 5 bda9c9. Thus, ac / bd 5 a9c9/ b9d9 and therefore (a / b)(c / d) 5 (a9/ b9)(c9/ d9).
57. First note that any field containing Z and i must contain Q[i]. Then prove (a 1 bi)/(c 1 di) [ Q[i].
59. The subfield of E is {ab21 | a, b [ D, b 2 0}.
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61. Reflexive and symmetric properties follow from the commutativity of D. For transitivity, assume
a/b ; c/d and c/d ; e/f. Then adf 5 (bc)f 5 b(cf ) 5 bde, and cancellation yields af 5 be.

63. Try ab21 → a/b.
65. The mapping a 1 bi → a 2 bi is a ring isomorphism of C.
67. Certainly the unity 1 is contained in every subfield. So, if a field has characteristic p, the subfield

{0, 1, . . . , p 2 1} is contained in every subfield. If a field has characteristic 0, then {(m ? 1)(n ? 1)21

| m, n [ Z, n 2 0} is a subfield contained in every subfield. This subfield is isomorphic to Q
[map (m ? 1)(n ? 1)21 to m/n].

69. The mapping f(x) 5 (x mod m, x mod n) from Zmn to Zm { Zn is a ring isomorphism.

Chapter 16

You know my methods. Apply them!
SHERLOCK HOLMES,

The Hound of the Baskervilles

1. f 1 g 5 3x4 1 2x3 1 2x 1 2
f ? g 5 2x7 1 3x6 1 x5 1 2x4 1 3x2 1 2x 1 2

3. 1, 2, 4, 5
5. Write f(x) 5 (x 2 a)q(x) 1 r(x). Since deg (x 2 a) 5 1, deg r(x) 5 0 or r(x) 5 0. So r(x) is a

constant. Also, f(a) 5 r(a).
7. Use Corollary 1 of Theorem 16.2.
9. Let f(x), g(x) [ R[x]. By inserting terms with the coefficient 0, we may write

f(x) 5 anx
n 1 . . . 1 a0

and
g(x) 5 bnx

n 1 . . . 1 b0.

Then

( f(x) 1 g(x)) 5 f(an 1 bn)x
n 1 . . . 1 f(a0 1 b0)

5 (f(an) 1 f(bn))x
n 1 . . . 1 f(a0) 1 f(b0)

5 (f(an)x
n 1 . . . 1 f(a0)) 1 (f(bn)x

n 1 . . . 1 f(b0))
5 ( f(x)) 1 (g(x)).

Multiplication is done similarly.
11. Quotient, 2x2 1 2x 1 1; remainder, 2
13. It is its own inverse.
15. No. See Exercise 17.
17. If f(x) 5 anx

n 1 . . . 1 a0 and g(x) 5 bmxm 1 . . . 1 b0, then f(x) ? g(x) 5 anbmxm1n 1 . . . 1 a0b0.
19. Let m be the multiplicity of b in q(x). Then we may write f(x) 5 (x 2 a)n (x 2 b)m q9(x), where

q9(x) is in F[x] and q9(b) Z 0. This means that b is a zero of f(x) of multiplicity at least m. 
If b is a zero of f(x) greater than m, then b is a zero of g(x) 5 f(x)/(x 2 b)m 5 (x 2 a)nq9(x).
But then 0 5 g(b) 5 (b 2 a)n q9(b), and therefore q9(b) 5 0.

21. Use Corollary 3 of Theorem 16.2.
23. If f(x) 2 g(x), then deg[f(x) 2 g(x)] , deg p(x). But the minimum degree of any member of

�p(x)� is deg p(x).
25. Start with (x 2 1/2)(x 1 1/3) and clear fractions.
27. “Long divide” x 2 a into f(x) and induct on deg f(x).
29. By Theorem 16.4, I 5 �x 2 1�.
31. Use Corollary 2 of Theorem 15.5 and Exercise 9 in this chapter.
33. For any a in U(p), ap21 5 1, so every member of U(p) is a zero of xp21 2 1. Now use the Factor

Theorem and a degree argument.
35. Use Exercise 34.

ff

f
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37. Observe that, modulo 101, (50!)2 5 (50!)(21)(22) . . . (250) 5 (50!)(100)(99) . . . (51) 5 100!
and use Exercise 34.

39. Take R 5 Z and I 5 �2�.
41. Hint: F[x] is a PID. So � f(x), g(x)� 5 �a(x)� for some a(x) [ F[x]. Thus a(x) divides both f(x) and

g(x). This means that a(x) is a constant.
43. Write f(x) 5 (x 2 a)g(x). Use the product rule to compute f 9(x).
45. Say deg g(x) 5 m, deg h(x) 5 n, and g(x) has leading coefficient a. Let k(x) 5 g(x) 2 axm2nh(x).

Then deg k(x) , deg g(x) and h(x) divides k(x) in Z[x] by induction. So, h(x) divides k(x) 1
axm2nh(x) 5 g(x) in Z[x].

47. Consider the remainder when x43 is divided by x2 1 x 1 1.
49. Observe that every term of f(a) has the form cia

i and cia
i mod m 5 cib

i mod m. To prove the sec-
ond statement, assume that there is some integer k such that f (k) 5 0. If k is even, then because
k mod 2 5 0, we have by the first statement 0 5 f(k) mod 2 5 f(0) mod 2 so that f(0) is even.
This shows that k is not even. If k is odd, then k mod 2 5 1, so by the first statement f(k) 5 0 is
odd. This contradiction completes the proof.

51. A solution to x25 2 1 5 0 in Z37 is a solution to x25 5 1 in U(37). So, by Corollary 2 of 
Theorem 4.1, |x| divides 25. Moreover, we must also have that |x| divides |U(37)| 5 36.

Chapter 17

Experience enables you to recognize a mistake when you make it again.
FRANKLIN P. JONES

1. Use Theorem 17.1.
3. If f(x) is not primitive, then f(x) 5 ag(x), where a is an integer greater than 1. Then a is not a unit

in Z[x] and f(x) is reducible.
5. a. If f(x) 5 g(x)h(x), then af(x) 5 ag(x)h(x).

b. If f(x) 5 g(x)h(x), then f(ax) 5 g(ax)h(ax).
c. If f(x) 5 g(x)h(x), then f(x 1 a) 5 g(x 1 a)h(x 1 a).
d. Try a 5 1.

7. Find an irreducible polynomial p(x) of degree 2 over Z5. Then Z5[x]/�p(x)� is a field of order 25.
9. Note that 21 is a zero. No, since 4 is not a prime.

11. Let f(x) 5 x4 1 1 and g(x) 5 f (x 1 1) 5 x4 1 4x3 1 6x2 1 4x 1 2. Then f (x) is irreducible over
Q if g(x) is. Eisenstein’s Criterion shows that g(x) is irreducible over Q. To see that x4 1 1 is
reducible over R, observe that

x8 2 1 5 (x4 1 1)(x4 2 1)

so any complex zero of x4 1 1 is a complex zero of x8 2 1. Also note that the complex zeros of
x4 1 1 must have order 8 (when considered as an element of C). Let v 5 /2 1 i /2.
Then Example 2 in Chapter 16 tells us that the complex zeros of x4 1 1 are v, v3, v5, and v7, so
x4 1 1 5 (x 2 v)(x 2 v3)(x 2 v5)(x 2 v7).

But we may pair these factors up as ((x 2 v) (x 2 v7))((x 2 v3)(x 2 v5)) 5 (x2 2 x 1 1)
(x2 1 x 11) to factor using reals (see DeMoivre’s Theorem, Example 7 in Chapter 0).

13. (x 1 3)(x 1 5)(x 1 6)
15. a. Consider the number of distinct expressions of the form (x 2 c)(x 2 d).

b. Reduce the problem to the case considered in part a.
17. Use Exercise 16, and imitate Example 10.
19. Map Z3[x] onto Z3[i] by f(x) → f (i). This is a ring homomorphism with kernel � x2 1 1�.
21. x2 1 1, x2 1 x 1 2, x2 1 2x 1 2
23. 1 has multiplicity 1, 3 has multiplicity 2.

"2
"2

"2"2

16509_Answers_pA1-A39 pp3  11/15/08  11:26 AM  Page 24



Selected Answers A25

25. We know that an(r/s)n 1 an21(r/s)n21 1 . . . 1 a0 5 0. So anr
n 1 san21r

n21 1 . . . 1 sna0 5 0.
This shows that s | anr

n and r | sna0. Now use Euclid’s Lemma and the fact that r and s are rela-
tively prime.

27. Use induction and Corollary 2 of Theorem 17.5.
29. If there is an a in Zp such that a2 5 21, then x4 1 1 5 (x2 1 a)(x2 2 a).

If there is an a in Zp such that a2 5 2, then x4 1 1 5 (x2 1 ax 1 1)(x2 2 ax 1 1).
If there is an a in Zp such that a2 5 22, then x4 1 1 5 (x2 1 ax 2 1)(x2 2 ax 2 1).
To show that one of these three cases must occur, consider the group homomorphism from Zp* to
itself given by x → x2. Since the kernel is {1, 21}, the image H has index 2 (we may assume that
p 2 2). Suppose that neither 21 nor 2 belongs to H. Then, since there is only one coset other
than H, we have 21H 5 2H. Thus, H 5 (21H)(21H) 5 (21H)(2H) 5 22H, so that 22 is in H.

31. Since ( f 1 g)(a) 5 f(a) 1 g(a) and ( f ? g)(a) 5 f(a)g(a), the mapping is a homomorphism.
Clearly, p(x) belongs to the kernel. By Theorem 17.5, � p(x)� is a maximal ideal, so the kernel
is � p(x)�.

33. The mapping a → a 1 � p(x)� is an isomorphism.
35. Although the probability of rolling any particular sum is the same with either pair of dice, the

probability of rolling doubles is different (1/6 with ordinary dice, 1/9 with Sicherman dice). Thus
the probability of going to jail is different. Other probabilities are also affected. For example, if
in jail one cannot land on Virginia by rolling a pair of 2’s with Sicherman dice, but one is twice
as likely to land on St. James with a pair of 3’s with the Sicherman dice as with ordinary dice.

37. The analysis is identical except that 0 # q, r, t, u # n. Now, just as when n 5 2, we have q 5 r 5
t 5 1, but this time 0 # u # n. However, when u . 2, P(x) 5 x(x 1 1) ? (x2 1 x 1 1)(x2 2 x 1 1)u

has (2u 1 2)x2u13 as one of its terms. Since the coefficient of x2u13 represents the number of dice
with the label 2u 1 3, the coefficient cannot be negative. Thus, u # 2, as before.

Chapter 18

He thinks things through very carefully, before going off half-cocked.
GENERAL CARL SPAATZ, in Presidents 

Who Have Known Me, GEORGE E. ALLEN

1. 1. |a2 2 db2| 5 0 implies a2 5 db2. Thus a 5 0 5 b, since otherwise d 5 1 or d is divisible by
the square of a prime.
2. N((a 1 b )(a9 1 b9 )) 5 N(aa9 1 dbb9 1 (ab9 1 a9b) ) 5 |(aa9 1 dbb9)2 2
d(ab9 1 a9b)2| 5 |a2a92 1 d 2b2b92 2 da2b92 2 da92b2| 5 |a2 2 db2||a92 2 db92| 5
N(a 1 b ) N(a9 1 b9 ).
3. If xy 5 1, then 1 5 N(1) 5 N(xy) 5 N(x)N(y) and N(x) 5 1 5 N(y). If N(a 1 b ) 5 1, then
61 5 a2 2 db2 5 (a 1 b ) (a 2 b ) and a 1 b is a unit.
4. This property follows directly from properties 2 and 3.

3. Let I 5 <Ii. Let a, b [ I and r [ R. Then a [ Ii for some i and b [ Ij for some j. Thus a, b [ Ik,
where k 5 max{i, j}. So, a 2 b [ Ik # I and ra and ar [ Ik # I.

5. Clearly, �ab� # �b�. If �ab� 5 �b�, then b 5 rab, so that 1 5 ra and a is a unit.
7. Say x 5 a 1 bi and y 5 c 1 di. Then

xy 5 (ac 2 bd ) 1 (bc 1 ad )i.
So

d(xy) 5 (ac 2 bd )2 1 (bc 1 ad )2 5 (ac)2 1 (bd )2 1 (bc)2 1 (ad )2.
On the other hand,

d(x)d(y) 5 (a2 1 b2)(c2 1 d2) 5 a2c2 1 b2d2 1 b2c2 1 a2d2.
9. Suppose a 5 bu, where u is a unit. Then d(b) # d(bu) 5 d(a). Also, d(a) # d(au21) 5 d(b).

11. m 5 0 and n 5 21 give q 5 2i, r 5 22 2 2i.
13. 3 ? 7 and . Mimic Example 8 to show that these are irreducible.(1 1 2"25) (1 2 2"25)

"d"d"d
"d

"d"d

"d"d"d
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15. Observe that 10 5 2 ? 5 and 10 5 and mimic Example 8. A PID
is a UFD.

17. Suppose 3 5 ab, where a, b [ Z[i] and neither is a unit. Then 9 5 d(3) 5 d(a)d(b), so that
d(a) 5 3. But there are no integers such that a2 1 b2 5 3. Observe that 2 5 2i(1 1 i)2 and 
5 5 (1 1 2i)(1 2 2i).

19. Use Exercise 1 with d 5 21. 5 and 1 1 2i; 13 and 3 1 2i; 17 and 4 1 i.
21. Mimic Example 1.

23. 5 4 5 2 ? 2. Now use Exercise 22.
25. Use the fact that x is a unit if and only if N(x) 5 1.
27. See Example 3.
29. p|(a1a2

. . . an21)an implies  that p|a1a2
. . . an21 or p|an. Thus, by induction, p divides some ai.

31. Use Exercise 10 and Theorem 14.4.
33. Suppose R satisfies the ascending chain condition and there is an ideal I of R that is not finitely

generated. Then pick a1 [ I. Since I is not finitely generated, �a1� is a proper subset of I, so
we may choose a2 [ I but a2 o �a1�. As before, �a1, a2� is proper, so we may choose a3 [ I
but a3 o �a1, a2�. Continuing in this fashion, we obtain a chain of infinite length �a1� ,
�a1, a2� , �a1, a2, a3� , . . ..

Now suppose every ideal of R is finitely generated and there is a chain I1 , I2 , I3 , . . ..
Let I 5 <Ii. Then I 5 �a1, a2, . . . , an�. Since I 5 <Ii, each ai belongs to some member of the
union, say Ii9. Letting k 5 max {i9 | i 5 1, . . . , n}, we see that all ai [ Ik. Thus, I # Ik and the
chain has length at most k.

35. Say I 5 �a 1 bi�. Then a2 1 b2 1 I 5 (a 1 bi)(a 2 bi) 1 I 5 I and a2 1 b2 [ I. For any 
c, d [ Z, let c 5 q1(a

2 1 b2) 1 r1 and d 5 q2(a
2 1 b2) 1 r2, where 0 # r1, r2 , a2 1 b2. Then 

c 1 di 1 I 5 r1 1 r2i 1 I.
37. . For the other part, use Exercise 25.
39. Theorem 18.1 shows that primes are irreducible. So, assume that a is an irreducible in a UFD R

and that a|bc in R. We must show that a|b or a|c. Since a|bc there is an element d in R such that 
bc 5 ad. Now replace b, c, and d by their factorizations as a product of irreducibles and use uniqueness.

41. See Exercise 21 in Chapter 0.

Supplementary Exercises for Chapters 15–18

Errors, like straws, upon the surface flow; 
He who would search for pearls must dive below.

JOHN DRYDEN

1. Use Theorem 15.3, Supplementary Exercise 8 for Chapters 12–14, Theorem 14.4, and
Example 13 in Chapter 14.

3. To show the isomorphism, use the First Isomorphism Theorem.
5. Use the First Isomorphism Theorem.
7. Consider the obvious homomorphism from Z[x] onto Z2[x]. Then use the First Isomorphism

Theorem and Theorem 14.3.
9. As in Example 7 in Chapter 6, the mapping is onto, is one-to-one, and preserves multiplication.

Also, a(x 1 y)a21 5 axa21 1 aya21, so that it preserves addition as well.
11. Z[i]/�2 1 i� 5 {0 1 �2 1 i�, 1 1 �2 1 i�, 2 1 �2 1 i�, 3 1 �2 1 i�, 4 1 �2 1 i�}. Note that

5 1 �2 1 i� 5 (2 1 i)(2 2 i) 1 �2 1 i�
5 0 1 �2 1 i�.

13. Observe that .
15. In Zn we are given (k 1 1)2 5 k 1 1. So, k2 1 2k 1 1 5 k 1 1 or k2 5 2k 5 n 2 k. 

Also, (n 2 k)2 5 n2 2 2nk 1 k2 5 k2, so (n 2 k)2 5 n 2 k.

(3 1 2"2) (3 2 2"2) 5 1

N(6 1 2"27) 5 64 5 N(1 1 3"27)

(21 1 "5)(1 1 "5)

(2 2 "26) (2 1 "26)
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17. Observe that for any integer a, a2 mod 4 5 0 or 1.
19. Use the Mod 2 Irreducibility Test.
21. Use Theorem 14.4. The factor ring has two elements.
23. Use Theorem 14.4.
25. Say a/b, c/d [ R. Then (ad 2 bc)/(bd) and ac/(bd) [ R by Euclid’s Lemma. The field of

quotients is Q.
27. Z[i]/�3� is a field and Z3 % Z3 is not.
29. Consider the mapping from R[x] to (R/I)[x] given by anx

n 1 . . . 1 a0 → (an 1 I)xn 1 . . . 1
(a0 1 I ).

31. Let I 5 �2�[x]. Then Z8[x]/I is isomorphic to Z2[x].
33. �x, 3�.

Chapter 19

When I was young I observed that nine out of every ten things I did were failures, so I did ten times
more work.

GEORGE BERNARD SHAW

1. Rn has basis {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}; M2(Q) has basis

;

Zp[x] has basis {1, x, x2, . . .}; C has basis {1, i}.
3. (a2x

2 1 a1x 1 a0) 1 (a29x
2 1 a19x 1 a09) 5 (a2 1 a29)x

2 1 (a1 1 a19)x 1 (a0 1 a09) and 
a(a2x

2 1 a1x 1 a0) 5 aa2x
2 1 aa1x 1 aa0. A basis is {1, x, x2}. Yes.

5. Linearly dependent, since 23(2, 21, 0) 2 (1, 2, 5) 1 (7, 21, 5) 5 (0, 0, 0).
7. Suppose au 1 b(u 1 v) 1 c(u 1 v 1 w) 5 0. Then (a 1 b 1 c)u 1 (b 1 c)v 1 cw 5 0. Since {u, v, w}

are linearly independent, we obtain c 5 0, b 1 c 5 0, and a 1 b 1 c 5 0. So, a 5 b 5 c 5 0.
9. If the set is linearly independent, it is a basis. If not, then delete one of the vectors that is a linear

combination of the others (see Exercise 8). This new set still spans V. Repeat this process until you
obtain a linearly independent subset. Since the set is finite, we will eventually obtain a linearly
independent set that still spans V.

11. Let u1, u2, u3 be a basis for U and w1, w2, w3 be a basis for W. Use the fact that u1, u2, u3, w1, w2,
w3 are linearly dependent over F. In general, if dim U 1 dim W . dim V, then U > W 2 {0}.

13. no
15. yes; 2

17. and

c .

19. Suppose B is a basis. Then every member of V is some linear combination of elements of B. If
a1v1 1 . . . 1 anvn 5 a 91 v1 1 . . . 1 a 9n vn, where vi [ B, then (a1 2 a 91)v1 1 . . . 1 (an 2 a 9n )vn 5 0
and ai 2 a 9i 5 0 for all i. Conversely, if every member of V is a unique linear combination of
elements of B, certainly B spans V. Also, if a1v1 1 . . . 1 anvn 5 0, then a1v1 1 . . . 1 anvn 5
0v1 1 . . . 1 0vn and ai 5 0 for all i.

21. Since w1 5 a1u1 1 a2u2 1 . . . 1 anun and a1 2 0, we have u1 5 a1
21(w1 2 a2u2 2 . . . 2 anun),

and therefore u1 [ �w1, u2, . . . , un�. Clearly, u2, . . . , un [ �w1, u2, . . . , un�. Hence every linear
combination of u1, . . . , un is in �w1, u2, . . . , un�.

23. {(1, 0, 1, 1), (0, 1, 0, 1)}.
25. Study the proof of Theorem 19.1.

c a a 1 b

a 1 b b
d 5 c ac ac 1 bc

ac 1 bc bc
d

c a 1 a9 a 1 b 1 a9 1 b9

a 1 b 1 a9 1 b9 b 1 b9
dc a a 1 b

a 1 b b
d 1 c a9 a9 1 b9

a9 1 b9 b9
d  5

e c1 0

0 0
d , c0 1

0 0
d , c0 0

1 0
d , c0 0

0 1
d f
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27. If V and W are vector spaces over F, then the mapping must preserve addition and scalar multi-
plication. That is, T: V → W must satisfy T(u 1 v) 5 T(u) 1 T(v) for all vectors u and v in V, and
T(au) 5 aT(u) for all vectors u in V and scalars a in F. A vector space isomorphism from V to W
is a one-to-one linear transformation from V onto W.

29. Suppose v and u belong to the kernel and a is a scalar. Then T(v 1 u) 5 T(v) 1 T(u) 5 0 1 0 5 0
and T(av) 5 aT(u) 5 a ? 0 5 0.

31. Let {v1, v2, . . . , vn} be a basis for V. Map a1v1 1 a2v2 1 . . . 1 anvn to (a1, a2,. . . , an).

Chapter 20

Well here’s another clue for you all.
JOHN LENNON AND PAUL MCCARTNEY, 
“Glass Onion,” The White Album

1. Compare with Exercise 24 in the Supplementary Exercises for Chapters 12–14.
3.

5.

7. Note that x 5 implies x4 2 2x2 2 4 5 0.
9. a5 5 a2 1 a 1 1; a22 5 a2 1 a 1 1; a100 5 a2

11. The set of all expressions of the form

(anp
n 1 an21p

n21 1 . . . 1 a0)/(bmpm 1 bm21p
m21 1 . . . 1 b0),

where bm 2 0.
13. x7 2 x 5 x(x6 2 1) 5 x(x3 1 1)(x3 2 1) 5 x(x 2 1)3(x 1 1)3; x10 2 x 5 x(x9 2 1) 5 x(x 2 1)9

(see Exercise 45 in Chapter 13).
15. Hint: Use Exercise 45 in Chapter 13.
17. a 5 4/3, b 5 2/3, c 5 5/6
19. Use the fact that 1 1 i 5 2(4 2 i) 1 5 and 4 2 i 5 5 2 (1 1 i).
21. If the zeros of f(x) are a1, a2, . . . , an, then the zeros of f(x 1 a) are a1 2 a, a2 2 a, . . . , an 2 a. Now

use Exercise 20.
23. Q and Q( )
25. Let F 5 Z3[x]/�x3 1 2x 1 1� and denote the cosets x 1 �x3 1 2x 1 1� by b and 2 1

�x3 1 2x 1 1� by 2. Then x3 1 2x 1 1 5 (x 2 b)(x 2 b 2 1)(x 1 2b 1 1).
27. Suppose that f: Q( ) → Q( ) is an isomorphism. Since f(1) 5 1, we have f(23) 5 23. 

Then 23 5 f(23) 5 f( ) 5 (f( ))2. This is impossible, since f( ) is a
real number.

29. Use long division.
31. Use Theorem 20.5.
33. Use Theorem 20.5.
35. Since L is a splitting field of f(x) over F, we may write f(x) 5 (x 2 a1)(x 2 a2) . . . (x 2 an), where the

coefficients of f(x) belong to F. But then these coefficients also belong to L.
37. Since |(Z2[x]/� f(x)�)*| 5 31, every nonidentity is a generator.

Chapter 21

Work is the greatest thing in the world, so we should always save some of it for tomorrow.
DON HERALD

1. It follows from Theorem 21.1 that if p(x) and q(x) are both monic irreducible polynomials in
F[x] with p(a) 5 q(a) 5 0, then deg p(x) 5 deg q(x). If p(x) 2 q(x), then ( p 2 q)(a) 5 p(a) 2
q(a) 5 0 and deg (p(x) 2 q(x)) , deg p(x), contradicting Theorem 21.1. To prove Theorem 21.3,
use the Division Algorithm (Theorem 16.2).

"23"23"23"23

"3"23

"2

"1 1 15

Q("23)

Q("23)
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3. Note that and use Theorem 21.5.
5. Use Exercise 4.
7. Suppose Q( ) 5 Q( ). If [ Q, then [ Q and we may take c 5 / . If o Q,

then o Q. Write 5 r 1 s . It follows that r 5 0 and a 5 bs2. The other direction
follows from Exercise 20 in Chapter 20.

9. Observe that [F(a):F] must divide [E:F].
11. Note that [F(a, b):F] is divisible by both m 5 [F(a):F] and n 5 [F(b):F] and  [F(a,b):F] # mn.
13. Note that a is a zero of x3 2 a3 over F(a3)[x]. For the second part, take F 5 Q, a 5 1; F 5 Q, a 5

.
15. Suppose E1 > E2 2 F. Then [E1:E1 > E2] ? [E1 > E2:F] 5 [E1:F] implies [E1:E1 > E2] 5 1, so

that E1 5 E1 > E2. Similarly, E2 5 E1 > E2.
17. E must be an algebraic extension of R, so that E # C. But then [C:E][E:R] 5 [C:R] 5 2.
19. Let a be a zero of p(x) in some extension of F. First note [E(a):E] # [F(a):F] 5 deg p(x). Then

observe that [E(a):F(a)][F(a):F ] 5 [E(a):E][E:F]. This implies that deg p(x) divides [E(a):E],
so deg p(x) 5 [E(a):E].

21. Hint: If a 1 b and ab are algebraic, then so is .
23.
25. Use the Factor Theorem.
27. Say a is a generator of F*. If char F 5 0, then the prime subfield of F is isomorphic to Q. Since Q*

is not cyclic, we have that F 5 Zp(a), and it suffices to show that a is algebraic over Zp. If a [ Zp, we
are done. Otherwise, 1 1 a 5 ak for some k 2 0. If k . 0, we are done. If k , 0, then a2k 1
a12k 5 1 and we are done.

29. If [K:F] 5 n, then there are elements v1, v2, . . . , vn in K that constitute a basis for K over F.
The mapping a1v1 1 . . . 1 anvn → (a1, . . . , an) is a vector space isomorphism from K to F n. If K is
isomorphic to Fn, then the n elements in K corresponding to (1, 0, . . . , 0), (0, 1, . . . , 0), . . . ,
(0, 0, . . . , 1) in F n constitute a basis for K over F.

31. Observe that [F(a,b) : F(a)] 5 [F(a)(b) : F(a)] # [F(b) : F] # [F(a)(b) : F(b)] [F(b) : F] 5
[F(a)(b) : F] 5 [F(a,b) : F].

33. Mimic Example 5.
35. Mimic Example 6.
37. Observe that K 5 F(a1, a2, . . . , an), where a1, a2, . . . , an are the zeros of the polynomial. Now

use Theorem 21.5.
39. Elements of Q(p) have the form (ampm 1 am21p

m21 1 . . . 1 a0)/(bnp
n 1 bn21p

n21 1 . . . 1 b0),

where the a’s and b’s are rational numbers. So, if , we have an expression of the form 

2(bnp
n 1 bn21p

n21 1 . . . 1 b0)
2 5 (ampm 1 am21p

m21 1 . . . 1 a0)
2. Equating the lead terms 

of both sides, we have . But then we have , and is equal to the rational

number .

41. Observe that 

Chapter 22

Tell me tell me tell me come on tell me the answer.
JOHN LENNON AND PAUL MCCARTNEY, 
“Helter Skelter,” The White Album

1. [GF(729):GF(9)] 5 3
[GF(64):GF(8)] 5 2

3. The lattice of subfields of GF(64) looks like Figure 21.3 with GF(2) at the bottom, GF(64) at the
top, and GF(4) and GF(8) on the sides.

5. 2a 1 1

F(a) 5 F(1 1 a21).

am>bn

"2m 5 n2b2
np

2n 5 a2
mp2m

"2 [ Q(p)

"b2 2 4ac
"(a 1 b)2 2 4ab

 F 5 Q, a 5
3"2(21 1 i"3) >2;

"b"a"a
"b"b"a"a"b"b"a

3Q("n
2): Q4 5 n
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7. Use Theorem 22.2.
9. The only possibilities for f(x) are x3 1 x 1 1 and x3 1 x2 1 1. See Exercise 8 in Chapter 20 for the

first case. See Example 2 in this chapter for the second case.
11. Use Exercise 44 in Chapter 15 and Corollary 4 of Lagrange’s Theorem (Theorem 7.1).
13. Use the fact that if g(x) is an irreducible factor of x8 2 x over Z2 and deg g(x) 5 m, then the field

Z2[x]/�g(x)� has order 2m and is a subfield of GF(8). Now use Theorem 22.3.
15. Direct calculations show that given x3 1 2x 1 1 5 0, we have x2 2 1 and x13 2 1.
17. Direct calculations show that x13 5 1, whereas (2x)2 2 1 and (2x)13 2 1. Thus, 2x is a generator.
19. First observe that for any field F the set F* is a group under multiplication. Now use Theorem

22.2 and Theorem 4.3.
21. Find a quadratic irreducible polynomial p(x) over Z3; then Z3[x]/�p(x)� is a field of order 9.

23. Let a, b [ K. Then, by Exercise 45b in Chapter 13, (a 2 b)pm
5 apm

2 bpm
5 a 2 b. Also,

(ab)pm
5 apm

bpm
5 ab. So, K is a subfield.

25. Consider xpn21 2 1 and use Corollary 3 of Lagrange’s Theorem (Theorem 7.1).
27. identical
29. Consider g(x) 5 x2 2 a. Note that |GF(p)[x]/�g(x)�| 5 p2, so that g(x) has a zero in GF(p2). Now

use Theorem 22.3.
31. Use Exercise 11.
33. Since F* is a cyclic group of order 124, it has a unique element of order 2.
35. Use Exercise 45 in Chapter 13.
37. Consider the field of quotients of Zp[x]. The polynomial f(x) 5 x is not the image of any element.

Chapter 23

Why, sometimes I’ve believed as many as six impossible things before breakfast.
LEWIS CARROLL

1. To construct a 1 b, first construct a. Then use a straightedge and compass to extend a to the
right by marking off the length of b. To construct a 2 b, use the compass to mark off a length of
b from the right end point of a line of length a.

3. Let y denote the length of the hypotenuse of the right triangle with base 1, and let x denote the
length of the hypotenuse of the right triangle with base |c|. Then y2 5 1 1 d2, y2 1 x2 5 (1 1 |c|)2,
and |c|2 1 d2 5 x2. So, 1 1 2|c| 1 |c|2 5 1 1 d2 1 |c|2 1 d2, which simplifies to |c| 5 d2.

5. Use sin2 u 1 cos2 u 5 1.
7. Use cos 2u 5 2 cos2 u 21.
9. Use sin(a 2 b) 5 sin a cos b 2 cos a sin b.

11. Solving two linear equations with coefficients from F involves only the operations of F.
13. Use Theorem 17.1 and Exercise 25 in Chapter 17.
15. If so, then an angle of 40° is constructible. Now use Exercise 10.
17. This amounts to showing that  is not constructible. But if is constructible, so is p.

However, [Q(p) : Q] is infinite.
19. No, since [Q( ):Q] 5 3.
21. No, since [Q( ):Q] is infinite.

Supplementary Exercises for Chapters 19–23

The things taught in colleges and schools are not an education, but the means of education.
RALPH WALDO EMERSON, Journals

1. Use Theorem 20.5.
3. Suppose b is one solution of xn 5 a. Since F* is a cyclic group of order q 2 1, it has a cyclic

subgroup of order n, say �c�. Then each member of �c� is a solution to the equation xn 5 1. It
follows that b�c� is the solution set of xn 5 a.

3"p

3"3

"p"p
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5. (5a2 1 2)/a 5 5a 1 2a21. Now observe that since a2 1 a 1 1 5 0, we know that 
a(2a 2 1) 5 1, and so a21 5 2a 2 1. Thus, (5a2 1 2)/a 5 22 1 3a.

7. 5
9. Since F(a) 5 F(a21), we have degree of a 5 [F(a):F] 5 [F(a21):F] 5 degree of a21.

11. If ab is a zero of cnx
n 1 . . . 1 c1x 1 c0 [ F[x], then a is a zero of cnb

nxn 1 . . . 1
c1bx 1 c0 [ F(b)[x].

13. Every element of F(a) can be written in the form f(a)/g(a), where f(x), g(x) [ F[x]. If f(a)/g(a) is
algebraic and not in F, then there is some h(x) [ F[x] such that h( f (a)/g(a)) 5 0. By clearing
fractions and collecting like powers of a, we obtain a polynomial in a with coefficients from F
equal to 0. But then a would be algebraic over F.

15. Use Corollary 2 to Theorem 22.2.
17. If the basis elements commute, then so would any combination of basis elements. However, the

entire space is not commutative.
19. {x, x2, x3}
21. Use Exercise 45 in Chapter 13.
23. By Theorem 20.5, the zeros of xn 2 a are distinct, say a1, a2, . . . , an. Then bi 5 ai /a1 for

i 5 1, 2, . . . , n are all the nth roots of unity.

Chapter 24

Difficulty, my brethren, is the nurse of greatness.
WILLIAM CULLEN BRYANT

1. a 5 eae21; cac21 5 b implies a 5 c21bc 5 c21b(c21)21; a 5 xbx21 and b 5 ycy21 imply 
a 5 xycy21x21 5 xyc(xy)21.

3. Observe that T(xC(a)) 5 xax21 5 yay21 5 T(yC(a)) if and only if y21xa 5 ay21x if and only if
y21x [ C(a) if and only if yC(a) 5 xC(a). This proves that T is well defined and one-to-one. 
T is onto by definition.

5. By way of contradiction, assume that H is the only Sylow 2-subgroup of G and that K is the only
Sylow 3-subgroup of G. Then H and K are normal and Abelian (corollary to Theorem 24.5 and
corollary to Theorem 24.2). So, G 5 H 3 K < H % K and, from Exercise 4 in Chapter 8, G is
Abelian.

7. Use Exercise 7 in Supplementary Exercises for Chapters 5–8.
9. Use Exercise 55 in Chapter 9 and Exercise 7 of the Supplementary Exercises for Chapters 5–8.

11. By Theorem 24.5, , the number of Sylow p-subgroups has the form and divides .
But if , does not divide . Thus . Now use the corollary to Theorem 24.5.

13. 8
15. 15
17. By Exercise 16, G has seven subgroups of order 3.
19. 10; �(123)�, �(234)�, �(134)�, �(345)�, �(245)�
23. 21
25. Sylow’s Third Theorem implies that the Sylow 3- and Sylow 5-subgroups are unique. Pick any x

not in the union of these. Then |x| 5 15.
27. By Sylow, n17 5 1 or 35. Assume n17 5 35. Then the union of the Sylow 17-subgroups has 561 

elements. By Sylow, n5 5 1. Thus, we may form a cyclic subgroup of order 85 (Exercise 55 in
Chapter 9 and Theorem 24.6). But then there are 64 elements of order 85. This gives too many
elements.

29. Use the “G/Z Theorem” (Theorem 9.3).
31. Let H be the Sylow 3-subgroup and suppose that the Sylow 5-subgroups are not normal. By

Sylow, there must be six Sylow 5-subgroups, call them K1, . . . , K6. These subgroups have 
24 elements of order 5. Also, each of the cyclic subgroups HK1, . . . , HK6 has eight generators.
Thus, there are 48 elements of order 15 which results in more than 60 elements in the group.

k 5 0|m|npk $ 1
|m|np1 1 kpnp
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33. Mimic the proof of Sylow’s First Theorem.
35. Pick x [ Z(G) such that |x| 5 p. If x [ H, by induction, N(H/�x�) . H/�x�, say y�x� [ N(H/�x�)

but not H/�x�. Now show y [ N(H) but not H. If x o H, then x [ N(H), so that N(H) . H.
37. Automorphisms preserve order.
39. Since 3 divides |N (K )|, we know that N (K ) has subgroup H1 of order 3. Now use the fact

that H1K is cyclic group of order 15 and Exercise 25 in the Supplementary Exercises for
Chapters 1– 4.

41. Normality of H implies cl(h) # H for h in H. Now observe that h [ cl(h). This is true only when
H is normal.

43. The mapping from H to xHx21 given by h → xhx21 is an isomorphism.
45. Say cl(x) 5 {x, g1xg1

21, g2xg2
21 , . . . , gkxgk

21}. If x21 5 gixgi
21, then for each gjxgj

21 in cl(x), we
have (gjxgj

21) 21 5 gjx
21gj

21 5 gj(gixgi
21)gj

21 [ cl(x). Because |G| has odd order, gjxgj
21 2

(gjxgj
21)21. It follows that |cl(x)| is even. But |cl(x)| divides |G|.

47. Mimic Example 4.
49. Say cl(e) and cl(a) are the only two conjugacy classes of a group G of order n. Then cl(a) has n 2 1

elements all of the same order, say m. If m 5 2, then it follows from Exercise 35 in Chapter 2 
that G is Abelian. But then cl(a) 5 {a} and so n 5 2. If m . 2, then cl(a) has at most n 2 2
elements since conjugation of a by e, a, and a2 each yields a.

51. Let H be a Sylow 5-subgroup. Since the number of Sylow 5-subgroups is 1 modulo 5 and divides
7 . 17, the only possibility is 1. So, H is normal in G. Then by the N/C Theorem (Example 15 of
Chapter 10), divides both 4 and . Thus .

53. This follows directly from Theorem 24.1.
55. Pr(D4) 5 5/8, Pr(S3) 5 1/2, Pr(A4) 5 1/3
57. Exactly as in the case for a group, we have for a ring R 5 {x1, x2, . . . , xn}, Pr(R) 5 |K|/n2, where

K 5 {(x, y)|xy 5 yx, x, y [ R}. Also, |K| 5 |C(x1)| 1 |C(x2)| 1 . . . 1 |C (xn)|. From Exercise 28
in the Supplementary Exercises for Chapters 12–14, we know that R/C(R) is not cyclic. Thus,
|R/C(R)| $ 4 and so |C(R)| # |R|/4. So, for at least 3/4 of the elements x of R, we have |C(x)| # |R|/2.
Then starting with the elements in the center and proceeding to the elements not in the center,
we have |K| # |R|/4 1 (1/2)(3/4)|R| 5 (5/8)|R|.

Chapter 25

Learn to reason forward and backward on both sides of a question.
THOMAS BLANDI

1. Use the 2 ? odd test.
3. Use the Index Theorem.
5. Suppose G is a simple group of order 525. Let L7 be a Sylow 7-subgroup of G. It follows from

Sylow’s theorems that |N(L7)| 5 35. Let L be a subgroup of N(L7) of order 5. Since N(L7) is
cyclic (Theorem 24.6), N(L) $ N(L7), so that 35 divides |N(L)|. But L is contained in a Sylow 
5-subgroup (Theorem 24.4), which is Abelian (see the Corollary to Theorem 24.2). Thus, 25
divides |N(L)| as well. It follows that 175 divides |N(L)|. The Index Theorem now yields a
contradiction.

7. n11 5 12. Use the N/C Theorem (Example 15 in Chapter 10) to show that there is an element of
order 22; then use the Embedding Theorem and observe that A12 has no element of order 22.

9. Suppose that there is a simple group of order 396 and L11 is a Sylow 11-subgroup. Use the N/C
Theorem given in Example 15 of Chapter 10 to show that C(L11) has an element of order 33
whereas A12 does not.

11. If we can find a pair of distinct Sylow 2-subgroups A and B such that |A > B| 5 8, then 
N(A > B) $ AB, so that N(A > B) 5 G. Now let H and K be any distinct pair of Sylow 2-subgroups.
Then 16 ? 16/|H > K| 5 |HK| # 112 (Supplementary Exercise 7 for Chapters 5–8), so that 

C(H) 5 G|G||G>C(H)|
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|H > K| is at least 4. If |H > K| 5 8, we are done. So, assume |H > K| 5 4. Then N(H > K)
picks up at least 8 elements from H and at least 8 from K (see Exercise 35 in Chapter 24). Thus,
|N(H > K)| $ 16 and is divisible by 8. So, |N(H > K)| 5 16, 56, or 112. Since the latter two cases
yield normal subgroups, we may assume |N(H > K)| 5 16. If N(H > K) 5 H, then |H > K| 5 8,
since N(H > K) contains at least 8 elements from K. So, we may assume that N(H > K) 2 H.
Then, we may take A 5 N(H > K) and B 5 H.

15. Use the Index Theorem.
17. n5 5 6 and n3 5 10 or 40. If there are two Sylow 2-subgroups L2 and L29 whose intersection has or-

der 4, show that N(L2 > L29) has index at most 5. Now use the Embedding Theorem. If n35 40, the
union of all the Sylow subgroups has more than 120 elements. If n35 10, use the N/C Theorem to
show that there is an element of order 6 and then use the Embedding Theorem and observe that A6
has no element of order 6.

19. Let a be as in the proof of the Generalized Cayley Theorem. Then Ker a # H and |G/Ker a|
divides |G:H|!. Now show |Ker a| 5 |H|. A subgroup of index 2 is normal.

21. If H is a proper normal subgroup of S5, then H > A5 5 A5 or {e}. But H > A5 5 A5 implies 
H 5 A5, whereas H > A5 5 {e} implies H 5 {e} or |H| 5 2. (See Exercise 19 in Chapter 5.)
Now use Exercise 70 in Chapter 9 and Exercise 48 in Chapter 5.

23. By direct computation, show that PSL(2, Z7) has more than four Sylow 3-subgroups, more than
one Sylow 7-subgroup, and more than one Sylow 2-subgroup. Hint:

Observe that has order 3. Now use conjugation to find four other subgroups of order 3; 

observe that and use conjugation to find another subgroup of order 7; 

observe that and use conjugation to find six more elements of order 4 (which guar-

antees that more than one Sylow 2-subgroup exists). Now argue as we did to show that A5 is
simple. In the cases that the supposed normal subgroup N has order 2 or 4, show that in G/N, the
Sylow 7-subgroup is normal. But then, G has a normal subgroup of order 14 or 28, which were
already ruled out.

25. Mimic Exercise 24.
27. Suppose there is a simple group of order 60 that is not isomorphic to A5. The Index Theorem

implies n2 2 1 or 3, and the Embedding Theorem implies n2 2 5. Thus, n2 5 15. Counting shows
that there must be two Sylow 2-subgroups whose intersection has order 2. Now mimic the argu-
ment used in showing that there is no simple group of order 144 to show that the normalizer of
this intersection has index 5, 3, or 1, but the Embedding Theorem and the Index Theorem rule
these out.

29. Suppose there is such a simple group G. Since the number of Sylow q-subgroups is 1 modulo q
and divides , it must be . Thus there are elements of order q in G. These elements,
together with the elements in one Sylow p-subgroup, account for all elements in G. Thus
there cannot be another Sylow p-subgroup. But then the Sylow p-subgroup is normal in G.

31. Consider the right regular representation of G. Let g be a generator of the Sylow 2-subgroup and
suppose that where n is odd. Then by Exercise 46 in Chapter 6 every cycle of the per-
mutation in the right regular representation of G has length . This means that there are ex-
actly n such cycles. Since each cycle is odd and there is an odd number of them, is odd. This
means that the set of even permutations in the regular representations has index 2 and is there-
fore normal. (See Exercise 19 in Chapter 5 and Exercise 7 in Chapter 9).

Tg

2kTg

|G| 5 2kn

p2qp2
p2(q 2 1)p2p2

` c5 1

3 5
d ` 5 4

` c5 5

1 4
d ` 5 7

c1 4

1 5
d
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Chapter 26

If you make a mistake, make amends.
LOU HOLTZ

1. u , u because u is obtained from itself by no insertions; if v can be obtained from u by insert-
ing or deleting words of the form xx21 or x21x, then u can be obtained from v by reversing the
procedure; if u can be obtained from v and v can be obtained from w, then u can be obtained
from w by obtaining first v from w and then u from v.

3. b(a2N) 5 b(aN)a 5 a3bNa 5 a3b(aN) 
5 a3a3bN
5 a6bN 5 a6Nb 5 a2Nb 5 a2bN

b(a3N) 5 b(a2N)a 5 a2bNa 5 a2b(aN) 
5 a2a3bN
5 a5bN 5 a5Nb 5 aNb 5 abN

b(bN) 5 b2N 5 N
b(abN) 5 baNb 5 a3bNb 5 a3b2N 5 a3N

b(a2bN) 5 ba2Nb 5 a2bNb 5 a2b2N 5 a2N
b(a3bN) 5 ba3Nb 5 abNb 5 ab2N 5 aN

5. Let F be the free group on {a1, a2, . . . , an}. Let N be the smallest normal group containing 
{w1, w2, . . . , wt} and let M be the smallest normal subgroup containing {w1, w2, . . . , wt,
wt11, . . . , wt1k}. Then F/N < G and F/M < . The homomorphism from F/N to F/M given by
aN → aM induces a homomorphism from G onto .

To prove the corollary, observe that the theorem shows that K is a homomorphic image of G,
so |K| # |G|.

7. Clearly, a and ab belong to �a, b�, so �a, ab� # �a, b�. Now show that a and b belong to �a, ab�.
9. Show that |G| # 2n and that Dn satisfies the relations that define G.

11. Since x2 5 y2 5 e, we have (xy)21 5 y21x21 5 yx. Also, xy 5 z21yz, so (xy)21 5 (z21yz)21 5
z21y21z 5 z21yz 5 xy.

13. a. b6 b. b7a
15. Center is �x2�. |xy| 5 8.
17. Use the fact that the mapping from G onto G/N given by x → xN is a homomorphism.
19. For H to be a normal subgroup we must have yxy21 [ H 5 {e, y3, y6, y9, x, xy3, xy6, xy9}. But

yxy21 5 yxy11 5 (yxy)y10 5 xy10.
21. 6; the given relations imply that a2 5 e. G is isomorphic to Z6.
23. 1, 2, and `
25. ab 5 c 1 abc21 5 e

cd 5 a 1 (abc21)cd 5 ae 1 bd 5 e 1 d 5 b21

da 5 b 1 bda 5 b2 1 ea 5 b2 1 a 5 b2

ab 5 c 1 b3 5 c
So G 5 �b�.
bc 5 d 1 bb3 5 b21 1 b5 5 e. So |G| 5 1 or 5.
But Z5 satisfies the defining relations with a 5 1, b 5 3, c 5 4, and d 5 2.

27. Z6

Chapter 27

If at first you don’t succeed—that makes you about average.
BRADENTON, Florida Herald

1. If T is a distance-preserving function and the distance between points a and b is positive, then
the distance between T(a) and T(b) is positive.

3. See Figure 1.5.

G
G
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5. 12
7. 4n
9. a. Z2

b. Z2 % Z2
c. G % Z2, where G is the plane symmetry group of a circle.

11. 6
13. An inversion in R3 leaves only a single point fixed, whereas a rotation leaves a line fixed.
15. In R4, a plane is fixed. In Rn, a hyperplane of dimension n 2 2 is fixed.
17. Create a coordinate system for the plane. Let T be an isometry; p, q, and r the three noncollinear

points; and s any other point in the plane. Then the quadrilateral determined by T( p), T(q), T(r),
and T(s) is congruent to the one formed by p, q, r, and s. Thus, T(s) is uniquely determined by
T ( p), T(q), and T (r).

19. a rotation

Chapter 28

The thing that counts is not what we know but the ability to use what we know.
LEO L. SPEARS

1. Try xnym → (n, m).
3. xy
5. Use Figure 28.9.
7. x2yzxz 5 x2yx21 5 x2x21y 5 xy

x23zxyz 5 x23x21y 5 x24y
9. A subgroup of index 2 is normal.

11. a. V b. I c. II d. VI e. VII f. III
13. cmm
15. a. p4m b. p3 c. p31m d. p6m
17. The principal purpose of tire tread design is to carry water away from the tire. Patterns I and III do

not have horizontal reflective symmetry. Thus these designs would not carry water away equally
on both halves of the tire.

19. a. VI b. V c. I d. III e. IV f. VII g. IV

Chapter 29

With every mistake we must surely be learning.
GEORGE HARRISON, “While My Guitar Gently Weeps,” The White Album

1. 6
3. 30
5. 13
7. 45
9. 126

11.

13. For the first part, see Exercise 11 in Chapter 6. For the second part, try D4.
15. The kernel is {R0, R180, H, V}.

1

6
(n6 1 2 ? n 1 2 ? n2 1 n3)
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Chapter 30

I am not bound to please thee with my answers.
SHAKESPEARE, The Merchant of Venice

1. 4 * (b, a)
3. (m/2) * {3 * [(a, 0), (b, 0)], (a, 0), (e, 1), 3 * (a, 0), (b, 0), 3 * (a, 0), (e, 1)}
5. a3b
7. Both yield paths from e to a3b.

11. Say we start at x. Then we know the vertices x, xs1, xs1s2, . . . , xs1s2
. . . sn21 are distinct and 

x 5 xs1s2
. . . sn. So if we apply the same sequence beginning at y, then cancellation shows that 

y, ys1, ys1s2, . . . , ys1s2
. . . sn21 are distinct and y 5 ys1s2

. . . sn.
13. If there were a Hamiltonian path from (0, 0) to (2, 0), there would be a Hamiltonian circuit in the

digraph, since (2, 0) 1 (1, 0) 5 (0, 0).
15. a. If s1, s2, . . . , sn21 traces a Hamiltonian path and sisi11

. . . sj 5 e, then the vertex s1s2
. . . si21

appears twice. Conversely, if sisi11
. . . sj 2 e, then the sequence e, s1, s1s2, . . . , s1s2

. . . sn21
yields the n vertices (otherwise, cancellation gives a contradiction).
b. This follows directly from part a.

17. The sequence traces the digraph in a clockwise fashion.
19. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, and 1, respectively. A circuit is 4 * (4 * 1, a), 3 * a, b,

7 * a, 1, b, 3 * a, b, 6 * a, 1, a, b, 3 * a, b, 5 * a, 1, a, a, b, 3 * a, b, 4 * a, 1, 3 * a, b, 3 * a, b,
3 * a, b.

21. Abbreviate (R90, 0), (H, 0), and (R0, 1) by R, H, and 1, respectively. A circuit is 3 * (R, 1, 1), H,
2 * (1, R, R), R, 1, R, R, 1, H, 1, 1.

23. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, and 1, respectively. A circuit is 2 * (1, 1, a), a, b,
3 * a, 1, b, b, a, b, b, 1, 3 * a, b, a, a.

25. Abbreviate (r, 0), ( f, 0), and (e, 1) by r, f, and 1, respectively. Then the sequence is r, r, f, r, r, 1,
f, r, r, f, r, 1, r, f, r, r, f, 1, r, r, f, r, r, 1, f, r, r, f, r, 1, r, f, r, r, f, 1.

27. m * ((n 2 1) * (0, 1), (1, 1))
29. Abbreviate (r, 0), ( f, 0), and (e, 1) by r, f, and 1, respectively. A circuit is 1, r, 1, 1, f, r, 1, r, 1, r,

f, 1.
31. 5*[3*(1, 0), (0, 1)], (1, 0)
33. 12*((1, 0), (0, 1)).
35. In the proof of Theorem 30.3, we used the hypothesis that G is Abelian in two places: We needed

H to satisfy the induction hypothesis, and we needed to form the factor group G/H. Now, if we
assume only that G is Hamiltonian, then H also is Hamiltonian and G/H exists.

Chapter 31

We must view with profound respect the infinite capacity of the human mind to resist the
introduction of useful knowledge.

THOMAS R. LOUNSBURY

1. wt(0001011) 5 3; wt(0010111) 5 4; wt(0100101) 5 3; etc.
3. 1000110; 1110100
5. 000000, 100011, 010101, 001110, 110110, 101101, 011011, 111000
7. Not all single errors can be detected.
9. Observe that a vector has even weight if and only if it can be written as a sum of an even number

of vectors of weight 1.
11. No, by Theorem 31.3.
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13. 0000000, 1000111, 0100101, 0010110, 0001011, 1100010, 1010001, 1001100, 0110011,
0101110, 0011101, 1110100, 1101001, 1011010, 0111000, 1111111;

;

yes.
15. Suppose that u is decoded as v and that x is the coset leader of the row containing u. Coset decod-

ing means v is at the head of the column containing u. So, x 1 v 5 u and x 5 u 2 v. Now suppose
u 2 v is a coset leader and u is decoded as y. Then y is at the head of the column containing u.
Since v is a code word, u 5 u 2 v 1 v is in the row containing u 2 v. Thus u 2 v 1 y 5 u
and y 5 v.

17. 000000, 100110, 010011, 001101, 110101, 101011, 011110, 111000

001001 is decoded as 001101 by all four methods.
011000 is decoded as 111000 by all four methods.
000110 is decoded as 100110 by all four methods.
Since there are no code words whose distance from 100001 is 1 and three whose distance is 2,
the nearest-neighbor method will not decode or will arbitrarily choose a code word; parity-check
matrix decoding does not decode 100001; the standard-array and syndrome methods decode
100001 as 000000, 110101, or 101011, depending on which of 100001, 010100, or 001010 is a
coset leader.

19. For any received word w, there are only eight possibilities for wH. But each of these eight possi-
bilities satisfies condition 2 or the first portion of condition 39 of the decoding procedure, so
decoding assumes that no error was made or one error was made.

21. There are 34 code words and 36 possible received words.
23. No; row 3 is twice row 1.
25. No. For if so, nonzero code words would be all words with weight at least 5. But this set is not

closed under addition.
27. Use Exercise 24, together with the fact that the set of code words is closed under addition.
29. Abbreviate the coset a 1 �x2 1 x 1 1� with a. The following generating matrix will produce the

desired code:

.

31. Use Exercise 14.
33. Let c, c9 [ C. Then, c 1 (v 1 c9) 5 v 1 c 1 c9 [ v 1 C and (v 1 c) 1

(v 1 c9) 5 c 1 c9 [ C, so the set C < (v 1 C) is closed under addition.

c1 0 1 1 x

0 1 x x 1 1 x 1 1
d

H 5 O
1 1 0

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

o

H 5 P
1 1 1

1 0 1

1 1 0

0 1 1

1 0 0

0 1 0

0 0 1

p
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35. If the ith component of both u and v is 0, then so is the ith component of u 2 v and au, where a is
a scalar.

Chapter 32

Wisdom rises upon the ruins of folly.
THOMAS FULLER, Gnomologia

1. Note that f(1) 5 1. Thus f(n) 5 n. Also, 1 5 f(1) 5 f(nn21) 5 f(n)f(n21) 5 nf(n21), so that
1/n 5 f(n21).

3. If a and b are automorphisms of E fixing F, so are a21 and ab.
5. If a and b are fixed by elements of H, so are a 1 b, a 2 b, a ? b, and a/b.
7. It suffices to show that each member of Gal(K/F) defines a permutation on the ai’s. Let 

a [ Gal(K/F) and write

f(x) 5 cnx
n 1 cn21x

n21 1 . . . 1 c0
5 cn(x 2 a1)(x 2 a2) 

. . . (x 2 an).

Then f(x) 5 a(f(x)) 5 cn(x 2 a(a1))(x 2 a(a2)) ? ? ? (x 2 a(an)). Thus, f(ai) 5 0 implies 
ai 5 a(aj) for some j, so that a permutes the ai’s.

9. f6(v) 5 v729 5 v.
f3(v 1 v21) 5 v27 1 v227 5 v21 1 v.
f2(v3 1 v5 1 v6) 5 v27 1 v45 1 v54 5 v6 1 v3 1 v5.

11. Recall that A4 has no subgroup of order 6. (See Example 13 in Chapter 9.)
13. Use Sylow’s Theorem.
15. Let v be a primitive cube root of 1. Then Q , Q( ) , Q(v, ) and Q( ) is not the split-

ting field of a polynomial in Q[x].
17. Use the lattice of Z10.
19. Z6 (Be sure you know why the group is cyclic.)
21. See Exercise 21 in Chapter 25.
23. Use Exercise 33 in Chapter 24.
25. Use Exercise 40 in Chapter 10.
27. Since K/N v G/N, for any x [ G and k [ K, there is a k9 [ K such that k9N 5 (xN)(kN) (xN)21 5

xNkNx21N 5 xkx21N. So, xkx21 5 k9n for some n [ N. And since N # K, we have k9n [ K.

Chapter 33

All wish to posses knowledge, but few, comparatively speaking, are willing to pay the price.
JUVENAL

1. x2 2 x 1 1.
3. Over Z, x8 2 1 5 (x 2 1)(x 1 1)(x2 1 1) (x4 1 1). Over Z2, x2 1 1 5 (x 1 1)2 and

x4 1 1 5 (x 1 1)4. So, over Z2, x8 2 1 5 (x 1 1)8. Over Z3, x2 1 1 is irreducible, but x4 1 1 fac-
tors into irreducibles as (x2 1 x 1 2) (x2 2 x 2 1). So, x8 2 1 5 (x 2 1)(x 1 1) (x2 1 1)(x2 1
x 1 2)(x2 2 x 2 1). Over Z5, x2 1 1 5 (x 2 2)(x 1 2), x4 1 1 5 (x2 1 2)(x2 2 2), and these last
two factors are irreducible. So, x8 2 1 5 (x 2 1)(x 1 1) (x 2 2)(x 1 2)(x2 1 2)(x2 2 2).

5. Let v be a primitive nth root of unity. We must prove vv2 . . . vn 5 (21)n11. Observe that 
vv2 . . . vn 5 vn(n11)/2. When n is odd, vn(n11)/2 5 (vn)(n11)/2 5 1(n11)/2 5 1. When n is even,
(vn/2)n11 5 (21)n11 5 21.

7. If [F : Q] 5 n and F has infinitely many roots of unity, then there is no finite bound on their
multiplicative orders. Let v be a primitive mth root of unity in F such that f(m) . n. Then 
[Q(v) : Q] 5 f(m). But F $ Q(v) $ Q implies [Q(v) : Q] # n.

"3 2"3 2"3 2
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9. Let 2n 1 1 5 q. Then 2 [ U(q) and 2n 5 q 2 1 5 21 in U(q) implies that |2| 5 2n. So, by
Lagrange’s Theorem, 2n divides |U(q)| 5 q 2 1 5 2n.

11. Let v be a primitive nth root of unity. Then 2nth roots of unity are 61, 6v, . . . , 6vn21. These
are distinct, since 21 5 (2vi)n, whereas 1 5 (v i)n.

13. First observe that deg F2n(x) 5 f(2n) 5 f(n) and deg Fn(2x) 5 deg Fn(x) 5 f(n). Thus, it suf-
fices to show that every zero of Fn(2x) is a zero of F2n(x). But the fact that v is a zero of
Fn(2x) means that |2v| 5 n, which in turn implies that |v| 5 2n.

15. Let G 5 Gal(Q(v)/Q) and H1 be the subgroup of G of order 2 that fixes cos( ). Then, by 
induction, G/H1 has a series of subgroups H1/H1 , H2/H1 , . . . , Ht/H1 5 G/H1, so that
|Hi11/H1 : Hi/H1| 5 2. Now observe that |Hi11/H1 : Hi/H1| 5 |Hi11/Hi|.

17. Instead, prove that Fn(x)Fpn(x) 5 Fn(x
p). Since both sides are monic and have degree pf(n), it

suffices to show that every zero of Fn(x)Fpn(x) is a zero of Fn(x
p). If v is a zero of Fn(x), then 

|v| 5 n. By Theorem 4.2, |vp| 5 n also. Thus, v is a zero of Fn(x
p). If v is a zero of Fpn(x), then

|v| 5 pn and therefore |vp| 5 n.
19. Use Theorem 33.4 and Theorem 32.1.
21. v → v4, v → v21, v → v24

Supplementary Exercises for Chapters 24–33

For those who keep trying, failure is temporary.
FRANK TYGER

1. Z6
3. Let |G| 5 315 and let H be a Sylow 3-subgroup and K a Sylow 5-subgroup. If H v G, then 

HK 5 45. If H is not normal, then by Sylow’s Third Theorem, |G/N(H)| 5 7, so that |N(H)| 5 45.
5. Observe that K # N(H) implies that HK is a group of order 245. Now, use Sylow’s Third Theorem.
7. Note that gKg21 # gHg21 5 H. Now use the corollary to Sylow’s Third Theorem.
9. Use the same proof as for Exercise 55 in Chapter 9.

11. Since n7 5 8, we know by the Embedding Theorem (Chapter 25) that G # A8. But A8 does not
have an element of order 21.

13. Let G be a non-Abelian group of order 105. By Theorem 9.3, G/Z(G) is not cyclic. So |Z(G)| 2 3,
7, 15, 21, or 35. This leaves only 1 or 5 for |Z(G)|. Let H, K, and L be Sylow 3-, Sylow 5-, and 
Sylow 7-subgroups of G, respectively. Now, counting shows that K v G or L v G. Thus,
|KL| 5 35 and KL is a cyclic subgroup of G. But, KL has 24 elements of order 35 (since 
|U(Z35)| 5 24). Thus, a counting argument shows that K v G and L v G. Now, |HK| 5 15 and
HK is a cyclic subgroup of G. Thus, HK # C(K) and KL # C(K). This means that 105 divides
|C(K)|. So K # Z(G).

15.

17. It suffices to show that x travels by a implies xab21 travels by a (for we may successively replace
x by xab21). If xab21 traveled by b, then the vertex xa would appear twice in the circuit.

19. a. {00, 11}
b. {000, 111}
c. {0000, 1100, 1010, 1001, 0101, 0110, 0011, 1111}
d. {0000, 1100, 0011, 1111}

21. The mapping Tv: Fn → {0, 1} given by Tv(u) 5 u ? v is an onto homomorphism. So |Fn/Ker Tv| 5 2.
23. It follows from Exercise 18 that if C is an (n, k) linear code, then C> is an (n, n 2 k) linear code.

Thus, in this problem, k 5 n 2 k. To prove the second claim, use Exercise 18, Exercise 21, the
definition of C>, and the hypothesis that C> 5 C.

2p
n
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Abel Prize, 39, 436
Abelian group, 32, 41
Addition modulo n, 7
Additive group of integers modulo n, 42
Algebraic

closure, 377, 378
element, 370
extension, 370

Algebraically closed field, 378
Alternating group, 106
Annihilator, 272
Arc, 498
Ascending chain condition, 329, 336
Associates, 322
Associativity, 32, 41
Automorphism(s)

Frobenius, 389
group, 131, 509 
group of E over F, 546
inner, 130
of a group, 130
Axioms
for a group, 41
for a ring, 237
for a vector space, 345

Basis for a vector space, 347
Binary

code, 523
operation, 40
strings, 161

Boolean ring, 245
Burnside’s Theorem, 489

Cancellation 
property for groups, 48
property for integral domains, 250

Cauchy’s Theorem, 187, 408
Cayley digraph, 498
Cayley table, 31
Cayley’s Theorem, 126

generalized, 426

Center
of a group, 62
of a ring, 243

Centralizer
of an element, 64
of a subgroup, 66

Characteristic of a ring, 252
Characteristic subgroup, 174
Check digit, 7
Check-digit scheme, 110
Chinese Remainder Theorem 

for Rings, 341
Circle in F, 394
Class equation, 404
Closure, 31, 40
Code

binary, 523
dual of, 573
Hamming, 520 
(n,k) linear, 523
self-dual, 573
systematic, 526
ternary, 524
word, 520, 523

Cole Prize, 321, 352, 392, 424, 430,
434, 436, 571 

Commutative diagram, 208
Commutative operation, 32
Commutator subgroup, 174
Composition of functions, 19
Composition factors, 420
Conjugacy class, 91, 403
Conjugate

elements, 403
subgroups, 91, 408

Conjugation, 126
Constant polynomial, 295
Constructible number, 394
Constructible regular n-gons, 566
Content of a polynomial, 306
Coset

decoding, 531

Index of Terms
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leader, 531
left, 138
representative, 138
right, 138

Crystallographic groups, 467
Crystallographic restriction, 473
Cube, rotation group of, 147
Cycle

m-, 98
notation, 98

Cyclic
group, 72
rotation group, 34
subgroup, 61

Cyclotomic 
extension, 562
polynomial, 310, 562

Decoding
coset, 531
maximum-likelihood, 518
nearest neighbor, 520
parity-check matrix, 528

Degree
of a over F, 372
of an extension, 372
of a polynomial, 295
rule, 301

DeMoivre’s Theorem, 13
Derivative, 362
Determinant, 43
Diagonal of G G, 168
Digital signatures, 165
Dihedral groups, 31, 32
Dimension of a vector space, 349
Direct product of groups

external, 155
internal, 188, 190

Direct sum
of groups, 192
of rings, 239

Dirichlet’s Theorem, 228
Discrete frieze group, 461
Distance between vectors, 524
Divides, 238, 298
Division algorithm

for F[x], 296
for Z, 3

Divisor, 3

Domain
Euclidean, 331
integral, 249
Noetherian, 330
unique factorization, 328

Doubling the cube, 393, 395
Dual code, 573

Eisenstein’s criterion, 309
Element(s)

algebraic, 370
conjugate, 403
degree of, 372
fixed by f, 489
idempotent, 255
identity, 31, 41, 238
inverse, 31, 41
nilpotent, 255
order of, 57
primitive, 376
square, 195
transcendental, 370

Embedding Theorem, 427
Empty word, 438
Equivalence class, 16
Equivalence relation, 16
Equivalent under group action, 487
Euclidean domain, 331
Euclid’s Lemma, 6

generalization of, 23
Euler phi-function, 79
Even permutation, 105
Exponent of a group, 175
Extension

algebraic, 370
cyclotomic, 562
degree, 372
field, 354
finite, 372
infinite, 372 
simple, 370
transcendental, 370

External direct product, 155

Factor
group, 180
of a ring element, 238
ring, 263

Factor Theorem, 298

%
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Feit-Thompson Theorem, 421, 423,
436, 497, 553

Fermat prime, 568
Fermat’s Last Theorem, 325–327 
Fermat’s Little Theorem, 143
Field

algebraic closure of, 377, 378
algebrically closed, 378
definition of, 250
extension, 354
fixed, 546
Galois, 383
of quotients, 285
perfect, 364
splitting, 356

Fields Medal, 423, 430, 436, 497
Finite dimensional vector space, 349
Finite extension, 372
First Isomorphism Theorem

for groups, 207
for rings, 283

Fixed field, 546
Free group, 439
Frieze pattern, 461
Frobenius map, 289, 389
Function

composition, 19
definition of, 18
domain, 18
image under, 18
one-to-one, 19
onto, 20
range, 18

Fundamental region, 473
Fundamental Theorem

of Algebra, 378
of Arithmetic, 6
of Cyclic Groups, 77
of Field Theory, 354
of Finite Abelian Groups, 218
of Galois Theory, 550
of Group Homomorphisms, 207
of Ring Homomorphisms, 284

GAP, 109
G/Z Theorem, 186
Galois

field, 383
group, 546, 558

Gaussian integers, 241, 332

Gauss’s Lemma, 307
Generating region of a pattern, 473
Generator(s)

of a cyclic group, 61, 72
of a group, 47
in a presentation, 441

Geometric constructions, 393
Glide-reflection, 454

nontrivial, 464
trivial, 464

Greatest common divisor, 5
Group

Abelian, 32, 41 
action, 493
alternating, 106
automorphism, 131, 509
automorphism of, 130
center of, 62
color graph of a , 499
commutative, 32
composition factors, 420
crystallographic, 467
cyclic 34, 61, 72
definition, 41
dicyclic, 445, 450
dihedral, 31, 32
discrete frieze group, 461
factor, 180
finite, 57
free, 439
frieze, 461
Galois, 546, 558
general linear, 43
generator(s), 47, 61, 72, 441
Hamiltonian, 514
Heisenberg, 54
homomorphism of, 200
icosahedral, 430, 457
infinite dihedral, 446
inner automorphism, 131
integers mod n, 42
isomorphic, 123
isomorphism, 123
non-Abelian, 32, 41
octahedral, 457
order of, 57
p- 404, 417
permutation, 95
presentation, 441
quarternions, 91, 196, 442
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quotient, 180
representation, 211
simple, 420
solvable, 553
space, 475
special linear, 45
symmetric, 97
symmetry, 33, 34, 453
tetrahedral, 457
of units, 243
wallpaper, 467

Half-turn, 463
Hamiltonian

circuit, 503
group, 514
path, 503

Hamming
code, 520
distance, 524
weight of a code, 524
weight of a vector, 524

Homomorphism(s)
Fundamental Theorem of, 207, 284
kernel of, 200
of a group, 200
natural, 210, 284
of a ring, 280

Ideal
annihilator, 272
definition of, 262
finitely generated, 336
generated by, 263
maximal, 267
nil radical of, 272
prime, 267
principal, 263
product of, 270
proper, 262
sum of, 270
test, 262
trivial, 263

Idempotent, 255
Identity element, 31, 41, 238
Index of a subgroup, 142
Index Theorem, 426
Induction

first principle of, 13
second principle of, 14

Inner automorphism, 130

Integral domain, 249
Internal direct product, 188, 190
International standard book

number, 24
Inverse element, 31, 41
Inverse image, 204
Inversion, 135
Irreducibility tests, 306, 308
Irreducible element, 322
Irreducible polynomial, 305
ISBN, 24
Isometry, 453
Isomorphism(s)

class, 218
First Theorem for groups, 207 
First Theorem for rings, 283
of groups, 123
of rings, 280
Second Theorem for 

groups, 214
Second Theorem for rings, 341
Third Theorem for groups, 214
Third Theorem for rings, 341

Kernel 
of a homomorphism, 200
of a linear transformation, 351

Key, 162
Kronecker’s Theorem, 354

Lagrange’s Theorem 141
Latin square, 53
Lattice 

diagram, 80 
of points, 473
unit, 473

Leading coefficient, 295
Least common multiple, 6
Left regular representation, 127
Line in F, 394
Linear

code, 523
combination, 347
transformation, 351

Linearly dependent vectors, 347
Linearly independent vectors, 347

Mathematical induction
First Principle, 13
Second Principle, 14

Mapping, 18
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Matrix
addition, 42
determinant of, 43
multiplication, 43
standard generator, 526

Maximal,
ideal, 267
subgroup, 232

Maximum-likelihood decoding, 518
Measure, 331
Minimal polynomial, 371
Mirror, 454
Mod p Irreducibility Test, 308
Modular arithmetic, 7
Monic polynomial, 295
Monster, 424, 556
Multiple, 3
Multiple zeros, 363
Multiplication modulo n, 7
Multiplicity of a zero, 298

Natural homomorphism, 210, 281, 284
Natural mapping, 208
N/C Theorem, 209
Nearest-neighbor decoding, 520
Nilpotent element, 255
Nil radical, 272
Noetherian domain, 330
Norm, 323
Normal subgroup, 178
Normal Subgroup Test, 179
Normalizer, 91

Odd permutation, 105
Operation

associative, 41
binary, 40
commutative, 32
preserving mapping, 123
table, 31

Opposite isometry, 454
Orbit of a point, 145
Orbit-Stabilizer Theorem, 146
Order

or a group, 57
of an element, 57

Orthogonality Relation, 530

PID, 299
Parity-check matrix, 528

Partition 
of a set, 17 
of an integer, 219

Perfect field, 364
Permutation

definition of, 95
even, 105
group, 95
odd, 105

p-group 404, 417
Phi-function, Euler, 79
Plane of F, 394
Plane symmetry, 33
Polynomial(s)

alternating, 106
constant, 295
content of, 306
cyclotomic, 310, 562
degree of, 295
derivative of, 362
Galois group of, 558
irreducible, 305
leading coefficient of, 295
minimal, 371
monic, 295
primitive, 306
reducible, 305
relatively prime, 303
ring of, 293
splits, 356
symmetric, 106
zero of, 298

Prime
element of a domain, 322
ideal, 267
integer, 3
relatively, 5, 303
subfield, 285

Primitive
element, 376
Element Theorem, 375
nth root of unity 299, 562
polynomial, 306

Principal ideal domain 
271, 299

Principal ideal ring, 290
Projection, 212
Proper ideal, 262
Proper subgroup, 58
Pullback, 204
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A50 INDEX OF TERMS

Quaternions, 91, 196, 442
Quotient, 4, 297
Quotient group, 180
Quotients, field of, 285

Range, 18
Rational Root Theorem, 318
Reducible polynomial, 305
Reflection, 34, 454
Relation

equivalence, 16
in a presentation, 441

Relatively prime, 5, 303
Remainder, 4, 297
Remainder Theorem, 298
Ring(s)

Boolean, 245
center of, 243
characteristic of, 252
commutative, 238
definition of, 237
direct sum of, 239
factor, 263
homomorphism of, 280
isomorphism of, 280
of polynomials, 293
with unity, 238

RSA public encryption, 164
Rubik’s cube, 110

Scalar, 345
Scalar multiplication, 345
Self dual code, 573
Sicherman dice, 315
Simple extension, 370
Simple group, 420
Socks-Shoes Property, 50
Solvable by radicals, 552
Solvable group, 553
Spanning set, 347
Splitting field, 356
Squaring the circle, 393, 396
Stabilizer of a point, 115, 145
Standard array, 531
Standard generator matrix, 526
Subcode, 537
Subfield Test, 256
Subgroup(s)

centralizer, 66
characteristic, 174

commutator, 174
conjugate, 91, 408
cyclic, 61
definition of, 58
diagonal, 168
Finite Test, 61
generated by a, 61
index of, 142
lattice, 80
maximal, 232
nontrivial, 58
normal, 178
One-Step Test, 59
proper, 58
Sylow p- , 407
torsion, 92
trivial, 58
Two-Step Test, 60

Subring
definition of, 240
Test, 240
Trivial, 241

Subspace, 346
Subspace spanned by vectors, 347 
Subspace Test, 349
Sylow p-subgroup, 407
Sylow test for nonsimplicity, 425
Sylow Theorems, 406, 408, 409
Symmetric group, 97
Symmetries of a square, 29
Symmetry group, 33, 34, 453
Syndrome of a vector, 533
Systematic code, 526

Torsion subgroup, 92
Transcendental element, 370
Transcendental extension, 370
Translation, 45, 454
Transposition, 103
Trisecting an angle, 393, 396

UFD, 328
Unique factorization domain, 328
Unique factorization theorem

for a PID, 329
for D[x], 334
for F[x], 331
for Z, 6
for Z[x], 313
in a Euclidean domain, 333
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Unity, 238
Universal Factor Group Property,

440
Universal Mapping Property, 439
Universal Product Code, 9

Vector, 345
Vector space 

basis of, 347
definition of, 345
dimension of, 349
finite dimensional, 349
infinite dimensional, 349
spanned by a set, 347
trivial, 349

Vertex of a graph, 498

Wallpaper groups, 467
Weight of a vector, 524
Weighting vector, 10
Weird dice, 315
Well-defined function, 201
Well-ordering principle, 3
Word

code, 520, 523
empty, 438
in a group, 438

Zero
multiple, 363
multiplicity of, 298
of a polynomial, 298

Zero-divisor, 249
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Essential Theorems in Abstract Algebra

Theorem 3.1 One-Step Subgroup Test
A nonempty subset H of a group G is a subgroup of G if ab�1 is in H whenever a and b are in H.

Theorem 4.3 Fundamental Theorem of Cyclic Groups
Every subgroup of a cyclic group is cyclic. If |�a�| = n, then for each positive divisor k of n, �a� has
exactly one subgroup of order k and no others.

Theorem 7.1 Lagrange’s Theorem
In a finite group the order of a subgroup divides the order of the group.

Theorem 9.1 Normal Subgroup Test
A subgroup H of G is normal in G if and only if xHx�1 # H for all x in G.

Theorem 10.3 First Isomorphism Theorem
If f is a group homomorphism from G to a group, then G/Ker f � f(G).

Theorem 11.1 Fundamental Theorem of Finite Abelian Groups
Every finite Abelian group is a direct product of cyclic groups of prime-power order.

Theorem 12.3 Subring Test
A nonempty subset S of a ring R is a subring if a � b and ab are in S whenever a and b are in S.

Theorem 13.4 Characteristic of an Integral Domain
The characteristic of an integral domain is 0 or prime.

Theorem 14.1 Ideal Test
A nonempty subset A of a ring R is an ideal if a � b [ A whenever a and b are in A; and ra and ar
are in A whenever a [ A and r [ R.

Theorem 14.4 R/A is a Field if and only if A is Maximal
Let R be a communitive ring with unity and let A be an ideal of R. Then R/A is a field if and only if
A is maximal.

Theorem 15.3 First Isomorphism Theorem for Rings
If f is a ring homomorphism from R to a ring, then R/Ker f � f(R).

Corollary 1 of Theorem 17.5 F[x]��p(x)� Is a Field
Let F be a field and p(x) an irreducible polynomial over F. Then F[x]��p(x)� is a field.

Theorem 21.5 [K : F] � [K : E][E : F]
If K is a finite extension field of the field E and E is a finite extension field of the field F, then  
[K : F] � [K : E][E : F].

Theorem 22.2 Structure of Finite Fields
The set of nonzero elements of a finite field is a cyclic group under multiplication.

Theorem 24.3 Sylow’s First Theorem
Let G be a finite group and p a prime. If pk divides |G|, then G has a subgroup of order pk.

Theorem 24.5 Sylow’s Third Theorem
The number of Sylow p-subgroups of G is equal to 1 modulo p and divides |G|. Furthermore, any
two Sylow p-subgroups of G are conjugate.
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Cayley Tables

Cayley Table for the Dihedral Group of Order 6

R0 R120 R240 F F� F 	

R0 R0 R120 R240 F F� F 	
R120 R120 R240 R0 F� F 	 F
R240 R240 R0 R120 F 	 F F�
F F F 	 F� R0 R240 R120

F� F� F F 	 R120 R0 R240

F 	 F 	 F� F R240 R120 R0

Cayley Table for the Dihedral Group of Order 8

R0 R90 R180 R270 H V D D�

R0 R0 R90 R180 R270 H V D D�
R90 R90 R180 R270 R0 D� D H V
R180 R180 R270 R0 R90 V H D� D
R270 R270 R0 R90 R180 D D� V H
H H D V D� R0 R180 R90 R270

V V D� H D R180 R0 R270 R90

D D V D� H R270 R90 R0 R180

D� D� H D V R90 R270 R180 R0

F

F' F"

D D'

H

V
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Notations
(The number after the item indicates the page where the notation is defined.)

SET THEORY >i[ISi intersection of sets Si , i [ I
<i[ISi union of sets Si , i [ I

[a] {x [ S | x , a}, equivalence class of S containing a, 16
|s| number of elements in the set of S

SPECIAL SETS Z integers, additive groups of integers, ring of integers
Q rational numbers, field of rational numbers

Q1 multiplicative group of positive rational numbers
F* set of nonzero elements of F
R real numbers, field of real numbers

R1 multiplicative group of positive real numbers
C complex numbers

FUNCTIONS f21 the inverse of the function f
AND ARITHMETIC t | s t divides s, 3

t B s t does not divide s, 3
gcd(a, b) greatest common divisor of the integers a and b, 5
lcm(a, b) least common multiple of the integers a and b, 6

f(a) image of a under f, 18
f: A → B mapping of A to B, 18

gf, ab composite function, 19

ALGEBRAIC SYSTEMS D4 group of symmetries of a square, dihedral group of
order 8, 31

Dn dihedral group of order 2n, 32
e identity element, 41

Zn group {0, 1, . . . , n 2 1} under addition modulo n, 42
det A the determinant of A, 43
U(n) group of units modulo n (that is, the set of integers

less than n and relatively prime to n under multiplica-
tion modulo n), 44

Rn {(a1, a2, . . . , an) U a1, a2, . . . , an [ R}, 45
SL(2, F) group of 2 3 2 matrices over F with 

determinant 1, 46
GL(2, F) 2 3 2 matrices of nonzero determinants with coeffi-

cients from the field F (the general linear group), 46
g21 multiplicative inverse of g, 49
2g additive inverse of g, 49
UGU order of the group G, 57
UgU order of the element g, 57

H # G subgroup inclusion, 58
H , G subgroup H 2 G, 58

kal {an U n [ Z}, cyclic group generated by a, 61
Z(G) {a [ G U ax 5 xa for all x in G}, the center of G, 62
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C(a) {g [ G U ga 5 ag}, the centralizer of a in G, 64
C(H) {x [ G U xh 5 hx for all h [ H}, the centralizer

of H, 66
f(n) Euler phi function of n, 79
N(H) {x [ G U xHx21 5 H} 5 {x [ G U Hx 5 xH}, the nor-

malizer of H in G, 91
cl(a) conjugacy class of a, 91

Gn {gn U g [ G}, 92
Sn group of one-to-one functions from 

{1, 2, ? ? ? , n} to itself, 97
An alternating group of degree n, 106

G < G and are isomorphic, 123
fa mapping given by fa(x) 5 axa21 for all x, 130

Aut(G) group of automorphisms of the group G, 131
Inn(G) group of inner automorphisms of G, 131

aH {ah U h [ H}, 138
aHa21 {aha21 | h [ H}, 138

UG:HU the index of H in G, 142
stabG(i) {f [ G U f(i) 5 i}, the stabilizer of i under the per-

mutation group G, 145
orbG(i) {f(i ) U f [ G}, the orbit of i under the 

permutation group G, 145
G1 % G2 % ? ? ? % Gn external direct product of groups G1, G2, . . . , Gn, 155

Uk(n) {x [ U(n) U x mod k 5 1}, 159
G9 commutator subgroup, 174

H v G H is a normal subgroup of G, 178
G/H factor group, 180
HK {hk U h [ H, k [ K}, 188

H 3 K internal direct product of H and K, 188
H1 3 H2 3 ? ? ? 3 Hn internal direct product of H1, . . . , Hn, 190

Ker f kernel of the homomorphism f, 200
f21(g9) inverse image of g9 under f, 202

f21( ) inverse image of under f, 203
Z[x] ring of polynomials with integer coefficients, 238

M2(Z) ring of all 2 3 2 matrices with integer entries, 238
R1 % R2 % ? ? ? % Rn direct sum of rings, 239

nZ ring of multiples of n, 241
Z[i] ring of Gaussian integers, 241

U(R) group of units of the ring R, 243
Zn[i] ring of Gaussian integers modulo n, 245

char R characteristic of R, 252
kal principal ideal generated by a, 263

ka1, a2, . . . , anl ideal generated by a1, a2, . . . , an, 263
R/A factor ring, 263

A 1 B sum of ideals A and B, 270
AB product of ideals A and B, 270

Ann(A) annihilator of A, 272
N(A) nil radical of A, 272
F(x) field of quotients of F[x], 286
R[x] ring of polynomials over R, 293

KK

GG
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deg f (x) degree of the polynomial, 295
Fp(x) pth cyclotomic polynomial, 310

M2(Q) ring of 2 3 2 matrices over Q, 346
kv1, v2, . . . , vnl subspace spanned by v1, v2, . . . , vn, 347

F(a1, a2, . . . , an) extension of F by a1, a2, . . . , an, 357
f 9(x) the derivative of f (x), 362
[E:F] degree of E over F, 372

GF( pn) Galois field of order pn, 383
GF( pn)* nonzero elements of GF( pn), 384

cl(a) {xax21 U x [ G}, the conjugacy class of a, 403
Pr(G) probability that two elements from G commute, 405

np the number of Sylow p-subgroups of a group, 410
W(S) set of all words from S, 438

ka1, a2, . . . , an U w1 5 w2 5 . . . 5 wtl group with generators a1, a2, . . . , an and relations w1

5 w2 5 . . . 5 wt , 441
Q4 quarternions, 445
Q6 dicyclic group of order 12, 445
D` infinite dihedral group, 446

fix(f) {i [ S U f(i) 5 i}, elements fixed by f, 489
Cay(S:G) Cayley digraph of the group G with generating set S,

498
k * (a, b, . . . , c) concatenation of k copies of (a, b, . . . , c), 506

(n, k) linear code, k-dimensional subspace of Fn, 523
Fn F % F % ? ? ? % F, direct product of n copies of the

field F, 523
d(u, v) Hamming distance between vectors u and v, 524
wt(u) the number of nonzero components of the vector u

(the Hamming weight of u), 524
Gal(E/F) the automorphism group of E fixing F, 546

EH fixed field of H, 546
Fn(x) nth cyclotomic polynomial, 562

C⊥ dual code of a code C, 573
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