Calculus II

FIIst Year

second Semester



Definite Integrals

I Definite Integral

Sometimes in geometrical and other applications of integral calculus it becomes
necessary to find the difference in the values of an integral of a function f(x) for
two given values of the variable x, say a and b. This difference is called the definite
integral of f(x) from a to b or between the limits a and b.

This definite integral is denoted by
b
[ e
a

and is read as “the integral of f(x) with respect to x between the limits a and b”.

It is often written thus:
b
[ rwdr=1Fe1; = Fo) - F),

where F(x)is an integral of f(x),F(b)is the value of F(x)atx = b, and F(a)is the value of
F(x)at x=a.

The number a is called the lower limit and the number b, the upper limit of integration.
The interval (a,b) is called the range of integration.
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A )

Fundamental Theorem of Integral Calculus: Let fe R[a,b] and let ¢ be a
differentiable function on [a, b] such that ¢’(x) = f(x) for all x € [4,b]. Then

b
[ rdr=o0)- oo.

2 Fundamental Properties of Definite Integrals

b b
Property 1: We havej f(x)dx = I f(@t)dt, ic., the value of a definite integral does not
a a

change with the change of variable of integration (also called ‘argument’) provided the limits of
integration remain the same.

Proof: Let J f(x)dr = F(x); then j F(t)de = F().
b b
Now L fx)dv=[F0 = F(b) - F(a), (1)
b b
and L F)de = [FO)]L = F(b) - Fla), (2
b b
From (1) and (2), we see that.[ f(x)dx :J f(t)dt.

b a
Property2: We hm/eJ. f(x)dx = _J.b f(x) dx,i.c.interchanging the limits of a definite
a

integral does not change the absolute value but changes only the sign of the integral.
Proof : Let j f(x)dx = F (x). Then

b
[ £ ax=1Fw1; = Fo) - Faa (1)
Also - j: F(x)dr=—[F(x)]¢ = [F(a) - F(b)]= F(b) - F(a). (2)

From (1) and (2), we see that Lh ) dx:—j: F(x) d.

b c b
Property 3:  We have L f(x)dx = L f(x)dx + L f(x)dx.

Proof: Let j Fx) de = E(x).
Then the R.H.S.
=[F()], + [F(x)]? = { F(c) - F(a)} + { F(b) - F(c))

[
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Note 1: This property also holds true even if the point ¢ is exterior to the interval
(a,b) .

Note 2: In place of one additional point ¢ ,we can take several points. Thus

J':f(x)dxzj:l f(x)oix+J.:12 f(x)dmj;g Fx)d+ ...

cr b
+j f(x)dx+...+j £ () d.
Cr-1 n
Property 4: We have J.af(x) dx = Jaf(a —x)dx
perty «: o “Jo .
a
Proof: Let I-= _[ f(x) d.
0
Put x = a — ¢, so that dx = — dt.
When x=0,t=a and when x =a,t =0.
0 a
I= _[ Ffla—-1t)(-de)= J fla—1)dt, [by property 2]
a 0
= J.ﬂ fla—x)dx. [by property 1]
0

a a
Property 5: (x)dx =0 or (x) dx, according as f (x) is an odd or an even
perty » o g

function of x .

Proof: Odd and even functions. A function f (x) is said to be
(i) an odd function of x if f(—x)=— f(x),
(ii) an even function of x if f(- x)= f(x).

a 0 a
Now J f(x)de = J. f(x)de + JO f(x) dx, by property 3. (1)

0
Letu= f(x) dx.In the integral u, put x = — ¢ so that dx = — dt.
—a

Also t =a,when x=—a and t =0 when x=0.

O a
u= L S0 (=dt) = JO f(=1t)dt, [by property 2]
- J.(} f(=x) dx, [by property 1]
- ,[0” f(x) dx, if f (x)is an odd function of x,

or = fﬂ f(x)dy,if f (x)is an even function of x.
0
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A s )
-~ from (1), we get

j” f(x)dx=—j(jf(x)dx+‘..;f(x)dx=0,

—a

if f (x)is an odd function of x
and L Fl) dr = _[O Fx)det jo Fx)de=2 JO F() d,
if f (x)is an even function of x.

Property 6: Joza Fxydr =2 j: () dx, if f(2a-x) = £(x)
2a
and _[O F(x)x =0, if f(2a-x) = —f(x).
2a a 2a
Proof : We have JO f(x)de = JO f(x) dx+j f(x)dx

a 0
= J, f@de= [ f@a- )y,
[putting x =2a — y in the second integral and changing the limits]
a a
- JO F(x) di + jo F2a-y)dy,
interchanging the limits in the second integral
- J” Fl)de+ j” FQa - x)dx
0 0 ’
changing the argument from y to x in the second integral
a
- 2j0 ) dv,if f (2a—-x)= f (x)

or =0,if f(2a—-x)=— f(x).

2a a a
Corollary: -[0 f(x)dxy = -[0 f(x)dx + IO f2a - x)dx.

Remember:

m/2 ) /2 )
(i) J_n/z f(smx)dx=2j0 f(sinx)dx or=0

as if, f (sin x) is an even or an odd function respectively.

/2
(ii) .[()n f(sinx)dx=2 Jon f(sin x) dx, [by property 6, becausesin (1 — x) = sin x|

o m/2 /2
(iii) J—n/Q f(cosx)dy=2 o f(cos x) dx, [by property 5]
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n /2
(iv) _[0 f(cos x)dxzz_[o f(cos x) dx or =0,

as if, f (cos x) is an even or an odd function respectively.

/2 ) /2 (1
(v) JO f(sin x) dx = o f{sm (5 T - x)} dx, [by property 4]
/2
=J f(cos x) dx.
T /2
(vi) J sin” x cos” x dx =2 sin” x cos” x dxor =0,
0 0

according as n is an even or an odd integer, (by property 6).

[llustrative Examrles

I
Example 1: Evaluate J cos®" x dv.
0

T 9 n/2 9
Solution: We have J. cos”  xdr =2 cos”" x dx,
0 0

[ IOZ” flyae=2 [ f)drif f2a 0= fo).

Here taking f(x) = cos?” x, we see that

2n

f(m - x) =cos®" (m - x) = (- cos x)*" = cos?" x = f(x):|

Cn-1)@2n-3)...... 31 =
M 2n-2)2n-4)...4.2 2
@n-)@n-3)..31
2" n!

, by Walli’s formula

T 3
Example 2: Evaluate I 0 sin” 0 d0.
0
T 3
Solution: Let I :J 0 .sin” 0 d6. (1)
0
B 3
Then I = J (Tt —0)sin” (m —0) 46,
0
a a
J fx)de = J f(a — x) dx, refer prop. 4
0 0

=J.n(n—9)sin39d6. -(2)
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A s
Adding (1) and (2), we get

T 3 3 T 3
21=J' [0 5in® 6 + (1 — 0) sin> 0] d6 =J' 0+ 1 —6) sin® 0 40
0 0
T T
=J. nsingedeznj sin> 0 d0
0 0

n/2
=2n J sin® 6 d6, by a property of definite integrals; refer prop. 6
0

=27 % I, by Walli’s formula

=4r/3.
2

I==m.
3

Example 3: Prove without performing integration that
2a  ydy J.2ﬂ x dx
—a XZ + pz - a xz + p2

Solution: We have

2a  x dx J‘ 2a xdx . (1)
—-a x2+p2 —a)(2+pz a pz
-x
But if f (x ,then =—F=— f(x).
f ()= x+f S = f+f f(x)
Therefore f (x)is an odd function of x .
-[—a )cz+pz
2a  ydy 2a  xdx
So from (1), we etJ. = .
(Wweget) 2o 77) 2572
T
Example 4: Emluatej 5 dez 7
0 a” cos® x+ b~ sin” x (Kumaun 2012)
n x dx
Solution: Let I = . (1
0 a’ cos® x+b® sin® x ()
T —
Then Y ik L :
0 a“ cos” (m—x)+b” sin” (1w — x)
a
dy = -
Ly se-nad
n (T —x)dx
= . (2
jo a’ cos® x + b? sin® x 2)

Adding (1) and (2), we get
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X+ (m—x) T dx
9 = dv=m _[
0 a’ cos® x+b” sin® x 0 a’ cos® x+b® sin” x
/2
=27 J 2 2 a 2 2
0 a® cos” x+b” sin” x
by a property of definite integrals, refer prop. 6.
n/2 dx n2  sec? xdx
I:“J. 7 2 ) :“I T 32 a7
0 a”cos” x+b”sin” x 0 a”+b° tan” x
dividing the numerator and the denominator by cos? x.
Now put b tan x =t . Then b sec” x dv=dt .
Also when x =0 ,t=0 and when x = ©/2,t = oo.
I:E - 2dt2:£l|:tan_1£:|
b Jo a~ +t b a aljp
i -1 -1 nT|rw nz
=—[tan" o —tan 0] :—[——O]:—-
ab ab |2 2ab
n/2 _ ¢f
Example 5: Evaluate J M dx.
0 1+ sinxcosx
n/2 — g
Solution: Let I = de.
0 l+sinxcosx
1 .
x/2 COS En—x —sin En—x
Then I :J dx [Refer prop. 4]

0 1+sin(ln—x)cos (ln—x)
2 2

/2 sin x —cos x T/2 cos x —sin x
—j —dx——J — dx=-1.

0 Il+cosxsinx

0 l+sinxcosx

2 =0 or I=0.

X dx

T
Example 6: Evaluate j —-
0 I+sinx

Solution: Let I =

T xdx _J‘Tf (m— x) dx

, Ref 4
0 1+sin (- x) [Referprop. 4]

0 l+sinx

T —_ T T
e e i
0 l+sinx 0 l+sinx 0 I+sinx

T 1
:nJ ——dv - 1.
0 l+sinx

T dx 2y
2] = =2 Ref .
n.[o 1+sinx nJ. [Refer prop. 6]

0 l+sinx’
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ACo)
/2 n/2
or I= n_[ L = n.[ L, [Refer prop. 4]
0 I+sinx 0 1+sin(l1t—x)
2

n/2 dx n/2 dx n/2 1 51
=TEJ. =n'[ —=n.[ —sec” —xdx
0 l+cosx 0 2 2

1 1'5/2 1
=n[tan—x] =n[tan—n—tan0}=n(l—0)=n.
2 o 4

/2
Example 7:  Show that J.O log sin x dx = — 21 nt log2 or 21 n log 21

/2
Solution: Let I:J log sin x dx. (1)
0
Th 1= ™ tog sin [ dx C =" dx
en _-[0 0g51n(§n—x) , 'J-O f(x) x—J-O fla—-x)
/2
=j log cos x dkx. ..(2)
0

g (l) alld‘ (2)’ g
J‘75/2 11:/2
2J = 10 Slnxdx+ | ]O Osxdx
0 g 0 gC

n/2
= J. log(sin x cos x) dx (Note)
0

/2 i /2
= J: log {stZx} dy = Jon (log sin 2x — log 2) dx

n/2 /2
=j logsin2xdx—J log 2 dx
0 0
n/2
- J log sin 2 dv - (log 2) [x]7"*
0
"% og sin 2 de — Elog 2
_J.() og sin 2x ) og 2.
Now put 2x =t,s0 that 2dr=dt . Alsot =0 when x=0 and t=n whenx:%n.
J b
21=—J log sin ¢ df — = log 2
5o og sin 3 og
—ljn log sin x dv — = log 2 [Refer prop. 1]
2 )0 g D) g 4 prop.

Lo ™ tog sinvdv— E log 2 Ref 6
=3 -[0 og sin x ) og 2, [Refer prop. 6]

1
=] -—mlog?2.
2Tcog
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(111 ]L;q\
Therefore 20 -1 =— %  log 2

or I=—%n10g2=21nlog(2)_l=%nlog%-

/2
Example 8:  Show that I X cot x dx = % 7 log 2.
0

/2
Solution: Let | ='[ xcot x dr. Integrating by parts taking cot x as the second
0

function, we get

/9 /2
I =[x log sin x]{; —J 1.log sin x dx
0

" og 1 - lim xlog si " og sinx dv
—|:§ Og — l1im x OgSlnx:|—JO OgSlnx

x—0

n/2
=0 - lim xlogsinx—J. log sin x dkx.
0

x—0
Now lim xlogsinx = lim log sin ¥ [ form = :|
x—0 =0 1/x oo
. (I/sinx)cosx . —x*cosx oo
= lim = lim — form —
x—0 —l/x2 r—0 sinx oo
. —2xcosx++2sinx O
= lim =—=0.
x—0 CcoS X 1

/2 n/2
I=0—J logsinxdx=—J log sin x dx.
0 0
n/2
Now let u= J. log sin x dx.
0

Then proceeding as in Example 7, we have u = - 21 7 log 2.
I=-u= 1 n log 2
PR
n/4 T
Example 9:  Show that j log (1 + tan ©) d6 = 3 log 2.
0
n/4
Solution: Letl = J. log (1 + tan 6) d6.
0

Then I :J-OEM log {1+tan(£n—9)} de, |:J.ﬂ f(x)dxzj‘d f(a—x)dx:|

/4 — /4
:In log |1+ 1= tn® de:jn log {—2—\ 48
0 (1+ tan ) 0 1+ tan©
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/4 n/4
:IO 10g2.de—j0 log (1+ tan 8) d6
=log2.[0]}"* ~ 1.
2I:lnlog2 or I:lnlogZ.
1 8

/2
Example 10:  Show that J. _Sinxdv _m

0 sinx+cosx 4 (Lucknow 2014)

n/2 i
Solution: Let = sin x d (1)

0 Sinx+cosx

/2 sin (% T — x)
Then I =J‘ [Refer prop. 4]
0 (1 1
sin ETC—X + COS ETE—X

_J'“/Z cos x dx
0 COSX+sinx

..(2)
Adding (1) and (2), we get

n/2 3 n/2
2I=J' sin x dx +J’ CoS x dx
0

sin x + cos x 0 sinx+cosx

/2 sin x Cos X
= . + — dx
0 |sinx+cosx sinx+coswx

n/2 .
=j 1.d =[] =§

@mprehensive Exercise 1

Evaluate the following integrals :

1. 3 jon cos® x dr. (i) jon sin3 x d.
. I 2sin!y .. a 9
2. (i) L T (ii) Ll o\ (@ - x%) dr.
oo (U xsinTlx
(iii) Jll mdx
. n dx o [T dx
3 0 J.O a+bcosx (i) J-o a+bhcosx+esiny
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§ 7. Methods of Integration.

There are various methods of integration by which we can reduce
the given integral to one of the fundamental or known integrals.
Following are the four principal methods of integration :

(i) Integration by substitution,

(ii) Integration by parts,

(iii) Integration by decomposition into sum,

(iv) Integration by successive reduction.

(i) Integration by substitution. A change in the variable of
integration often reduces an integral to one of the fundamental
integrals. The method in which we change the variable to some other
variable is called the Method of substitution.

Let I = [ f(x)dx; then by differentiation w.r.t. x, we have

dl ; o ar A _
4 =/ @) Now putx =g (1), 50 that - = ¢’ ().
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Then = - 2-=fx) 9" (1) =f{g (O} ¢’ (), forx=¢ (1).
This gives, I = [ f{¢ (t)}.¢' () dt.

Rule to remember.
To evaluate | f{g (x)}. ¢’ (x) dx,
put ¢(x)=t and ¢'(x)dx=dt,

where ¢’ (x) is the differential coefficient of ¢ (x) w.r.t. x.

Important. The success of the method of substitution depends

on choosing the substitution x = ¢ (f) so that the new integrand
fig (©)}. @' (t) is of a form whose integral is known. This is done by
guess rather than in according with some rule. However, try to put that
expression of x equal to ¢ whose differential coefficient is multiplied
with dx.

Solved Examples
Ex. I. Evaluate [ xsec?x?dx.
Sol. Putx?=1,s50 that 2xdx =dt or xdx = 1di.
J xsec?x2dr=1.f sec?tdt=1tant = ltanx2.

cos— lx
Ex. 2. Evaluate — m
1
Sol. Put cos~ lx =¢, so that - —————dx = dt.
V(1 -1x?%)

the given integral = [ ¢1di = 112 = § (cos™ 1x)2
Ex.3. Evaluate [ [1/(cx + d)¥dx.
Sol. Putcx+d=t;then cdr =dt,ordv =dt/c.
Thus the given integral

dr 1 1 =3
- . -4 4y = —-44 _1 SR I PR B
J (ex+d)y~4dx fz = Cfr dt=—-"—3
1
T 3c(ar+d)

Ex. 4. Evaluate [ 205 dx.

Sol. Put 5x =t; then 5dx =df or dx = }dr.
I=/f 205"dx=f%-20'dt

_1 200 1 20%
T 510g20 " 510g20

dx .
V{1 — (cx + d)?}
Sol. Putcx+d=t,s50 that cdv =dt. .

Ex. 5. Evaluate
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Hence the given integral

1_ a1 1,_ l -1

<V - 12) p =sin~ 't ==sin" ! (ax + d).
Ex. 6. Evaluate [ {1/(c2 + b%2)} dy.
Sol. Putby=t; .. bdy=dr or dy=(1/b)dt.

bJ 2+12 bc
Ex. 7. Evaluate [ {(cos ax)/(sin? ax)} dx.
Sol. We have I = f nacdr_ [ _cosacd
sin? ax sin ax sin ax
= [ cotax .cosec ax dx. '
Now put ax =t¢; .. adx =dt or dx = (1/a) dt.

¢ bc L c

1 1 1
Then I=;f cot £ cosecdf = — —-cosect = — —cosecax.

cosec?x
V(cor:x — 16)
Sol. Put cotx =, so that — cosec?x dx = dr.

dt t , cotx
Hence I = f—=C05h_1—=COSh_1 (_) ;
V(2 - 16) 4 4

Ex. 9. Evaluate | e*cos e* dx.
Sol. Put & =1, so that eXdx =dt.
s I=/[ eXcoseXdr = [ costdt =sint = sine”.
Ex. 10. Evaluate [ sin?x cosxdx.
Sol. Putsinx =7, so that cosxdx =dt. -

I'=[ sin?xcosxdx = [ 2dt =1 = 1sin’x.
Ex. 11. Evaluate [ [4x3/(1 + x8)] dx.
Sol. Putx? =1 so that 4x3dx = dr.

I=[ [43/(1 + x8))dx = [ [1/(1 + ¥)]dt = tan— 1 ¢

‘ = tan~ 1 x4,

Ex. 8. Evaluate

§ 8. Three important forms of integrals.

f—ﬁ%ldx-— log f (x).
Put f(x) =1¢; dlfferentiating we have f' (x)dx =dt.

Ly | 8 jogr =
5] logr =logf(x).
Thus (Remember)
the integral of a fraction whose numerator is the exact derivative of
its denominator is equat to the logarithm of its denominator.
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N &3
For exa lf— = +x4),
or example 1+x4dt log (1 +x%)

as in this case numerator is the exact derivative of the denominator.
L e’
Similarl f—dx = log (1 + ¢&).
. 1+e° 8 ( )

Integrals of tan x, cot x, sec x and cosec x.

(i) [ tanxdx= smxdx__f_(__)_smx dx,

cosx cosx
adjusting the numerator as the exact diff. coeffi. of the denominator

= —logcosx = l(.)f(cosx)' ! = log (sec x).

(i) Similarly, / cotxdx = %:;ix = log (sinx).

21 -
o > sece s x dx
(iii) J coseexdx = f sinx f 2sinlxcoslx f 2tanlx

[dividing Nr. and Dr. by cos? 1x]

= log (tan } x), (. 3sec?1x is the diff. coeffi. of tan {x].
(iv) J secxdr= [ cosec (ix +x)dx.
Now proceeding as in the case of J cosecxdxi, we have
X
J secxdx = log tan (2 + 4] .
*Alternative Method.

secx (secx + tanx
J seexdx = f ( )dr,
secx + tanx

JJWe have multiplied the Nr. and Dr. both by (secx + tanx)]

e 2
pogrlant 4 SO0 [Here Nr. is the diff. coeffi. of Dr.]

secx + tanx
= log (sec x + tan x).
: [f o)) * !
=2 [ [f(x)]"f' (x)dx = iy Whemn= -1

(Power formula)
Putting f (x) = ¢, so that ' (x) dx = dr, we get
Fer+t.

1
S U@PT @de=f ma=""2 orn= -1y =20

Thus Remember : If the integrand consists of the product of a
constant power of a function f (x) and the derivative f' (x) of f (x), to
obtain the integral we increase the index by unity and then divide by the
increased index. This is known as Power formula. The students are
advised 10 have a lot of practice of applying this formula.



ELEMENTARY INTEGRATION

13

3 [ (ax+byax="_ a":" :

Solved Examples

ax +b ax" 1
Ex. 1. Int 1 i R, TR E— iii -
X megrate. @) o amxre W ynyp
ax+ b

Sol. (i) Let I= f

——dr
Cax?+ 2x +c¢

[Put ax? + 25x + ¢ =1, so that (2ax + 2b) dx = di].

I= lfﬂ 1logf—llog(axz+2b):+c)

2
fom fw:""ldr 1."@,
Y+b o n t

(i) Let

[Putting x* + 5 =1, so that nx" ~ L dx = di]

= (a/n) .log (t) = (a/n) .log X" + b).

 et—emx 1027 + 10*. log, 10
Ex. 2. Integrate (i) "T,:_"_:"' (i) 10 + x10 '

Sol. (i) Let I= f
- e‘+e &
Now putting e* + e~ ¥ =1, so that (& —e~ *)dx = dt,

we have I = [ (1/t)dt = logt = log (¢* + e~ ¥).

10x? + 10*. log, 10
(ii) Herel = dx
10 + x10

Now putting 10* + x10 =7, and (10* log, 10 + 10x%) dx = dt,

we have = [ (1/1)dr = logt = log (10* + x19),

| cosec? x i 1
1+ cotx r (D)
Sol. (i) Here I= [ {cosecZx/(1 + cotx)} dx.
Putting 1 + cotx =1, so that — cosec?x dx =dt,

we have I = — [ (1/t)dt = — logt = — log (1 + cotx).

dx
Y
(i e (1 +x2) tan- 1x

Ex. 3. Integrdle (i)

Putting tan~ 'x =17, so that [1/(1 + x%)] dx = dr, we have

I'=[ (1/)dt = logt = log (tan~ ' x).
Ex. 4. Integrate
. sin x , - sinxcosx
@ a+bcosx (i)

(1 +x¥tan—1x

acos®x + b sin2x
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sinx dx 1 — bsinx
Sl ) Hewi= fa +boosx _Ffa + bcosx
Putting a + b cosx =1, so that — b sinx dx = dr, we have
I=(=1/b)f (1/t)dt
= — (1/b) log (¥) = — (1/b) .log (a + b cos x).
.. sin.x cos x
My Letd= f {.a cos?x + b sinzx)
Put acos?x + bsin?x =1,
so that (- 2a cosxsinx + 2b sinx cosx) dx = dt,

or {2 (b — a) sinx cosx} dx =dt.
1 dt 1
W eflz—m———o | = ———
e have | = 2(b—a)ft 2(b__a)log‘!
S S T ind
It -a) log (a cos“x + b sin“x).
Ex. 5. [Integrate i
. sinx . sin(a+biogx)
® 1 + cos?x G X
Sol. (i) Herel= f —OE__ g
1 + cos?x

Putting cosx = ¢, so that — sinx dx = dt, we have
I=—[dt/(1+3)=—tan~ 17 = —1an~ ! (cosx).

(i) Here I = [ [{sin (a + b logx)}/x] dx.

Putting a + b logx =1, so that (b/x) dx = dt, we have
I =%f sinrdt = — %cost = - %cos (a +blogx).

Ex. 6. [Integrate

i 1 s 1

@ xcos? (1 + logx) (i) x (1 + logx)m .

Sol. (i) Here I = [ dx/{xcos? (1 + logx)}.

Putting 1 + logx =1, so that (l/J.)ab. dt, we have
I=f dt/costt = [ sec?tdr = tant = tan (1 + logx).

(i) Here I = [ dx/{x (1 + logxy"}.

Putting 1 + logx = ¢, so that (1/x) dx = dt, we have

szgt__ (—m+1 _(l+l0gx)""+1

tm  —-m+1 1-m)
= —lm) (1 +logx)! =
¢ efan™lx

Ex. 7. Integrate i) =
B ( 1 +x- (Meerut 1986 S, 88)
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sin (tan— 2
1+x2
Sol. (i) Putting tan~lx =1, so that [1/(1 +x%)]dx =dt, we

have

etan~ lx -1
1=f---———-dx= el.dt = et = etan
1+x2 / ¢

(i) Putting tan~ !x = so that [1/(1 + x?)] dx = dr, we have
-1 ) _

f_(_)_m ]t:fl = 2 gx = f sintdt = — cost = — cos (tan~ 1 x).
Ex. 8. Integrate (i) xcos3xZ.sinx?2 (i) x3tan*x*.sec?x.
Sol. (i) Here I = [ xcos3x2sinx?dx.
First, putting x2 = ¢, so that 2x dx = dt, we have

I= ;f cos3tsinzde.

Now patting cosr = u, so that —sintdt = du, we have

4 1
3 L. SN
=—- | uwdu=—- =——Uu
f ~4 8
- 1costt = — 1 cost x2 vop o 2
gCos*t = — ccos®xs [t =x4]

Note. The students should also solve this problem by making the
single substitution cosxZ =1.
(i) Here I = [ x3tan?x? sec?x* dx.
Putting tanx? =, so that (sec?x?).4x3dx = dr, we have
f r =1l ﬁ _ (tanx?)’
20
ran~ ‘).4 ]

Ex. 9. [ntegrate
& 1428

- 43 dx = dr, we have

Sol. Putting tan~ x4 = so that |
1428

1=f%dx—lfzdt 12 =1 (tan— Lat)2,

Ex. 10. Evaluate f ﬂl_t‘l)_

nZ (xet) (Meerut 1982)
Sol. Putting xe* = r so that (e* + xe*) dx = dt
or e* (1 +x)dx = dt, we have

dt ,
— - 2 = - = -— ad IS
1 ey J cosec?tdt cott cot (xe*)

Ex. 11. [Integrate (i) @+ (i) (e — 1) ’

(Meerut 1972)
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-X
Sol. () Herel= | -& =f £ &,
&+ 1 1+ex

[Multiplying Nr. and Dr. both by e~ *]

f_e_xdx log (1 + e—*
== J TrerZ="loa(l+e™),

[".* Nr. is diff. coeffi. of Dr.]

L e o [log (1 +e¥) — loge¥]

= —log

=xloge —log (1 + &%) =x —log (1 +&%).
(i) Similarly % =log (1 — e~ ).

. corx . tanx
Ex. 12. [Integrate (i) —!og (in D) (i) oF Goc )
" d s 1 __ )
Sol. (i) Here i (logsinx) = Sing 05X = cotx.
cotx dx .
I= logsinx log (log sinx),

[ Nr. is diff. coeffi. of Dr.]
(ii) Similarly, we have .
tan x dx

logsecx log (log secx).
**Ex. 13. Integrate (i) V(1 +sinx), (ii) m
(Meel;llt 1984 P)

Sol. (i) We have
I=[ V(1 +sinx)dr = [ V{1 —cos (37 +x)} dx

= [ V[2sin? 3z + ix)]dx = V2 [ sin (3x + {7) dx.
Now putting %x +§:n; =t, so that %dx =dt or dx = 2 dt, we have
I=v2[ 2sintdt = —2V2cost = —2V2cos (3x + ;).

(ii) Here I = Im = -‘/1—2f cosec (3x + ) dx,
[Proceeding as in part (i)]
Now putting %x + {7 =150 that dx = 2 dt, we have
I= %f cosecrdf = v2logtan (3¢)
=V2logtan (3x + 3 7).
sin x

Ex 14. Integrate () 7~ an (Meerut 1985)
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(ii) V(1 - cosx).
_ sinxdr [ (1 +sinx) -1
_ Sol. (i) Herel= f V(1 +sinx) Y(1 + sinx)
1
V(1 + sinx) &
=—2V2cos (3x + ;) — V2logtan (3x + 3 7),
[Proceeding as in Ex. 13 parts (i) and (ii)].
(i) Here I= [ V(1 - cosx)dx =2 [ sinlxdx

=- \/Zﬂl‘;’;/—zl= — 22 cos (x/2).

= [ V(1 +sinx)dx — f

Ex. 15. Integrate

) sec x ‘ i) sec x
a+btanx ( V3+tanx  (Meerut 1989)

Sol. (i) Letl-_-f&m:f#-
a+btanx acosx + bsinx
Now let a =rsin¢ and b =rcos ¢. This gives
r=v(a%+b2), and ¢ = tan— ! (a/b).

dx 1 A
l=frsin(x+¢) = \/(a2+b2)'r PSRN RhiE

-1 1y 41
= V@ + 59 logtan 3x + 3 ¢)

1. +lan-19).
Iogtan(2x+2tan b)

secxdx secx dx
V3 +tanx ~ J V3 + (sinx/cosx)

g kel B
© 7 J V3cosx+sinx  J 2[(V3/2)cosx + Lsinx]

dx 1 Ly ,
i — e = & -
f i %n) 2_[ cosec (x + 3 7r) dx
= %log tan [%x + (n/6)].

Ex. 16. Integrate

_ 1
" V(@ +b?
(ii) We have

o=

cos 2x _ cosx
@ sinx (ii) e
= Tadads
St () F= | B | 122500,
sinx sinx

[ cos 2r = 1 — 2sin?x]
= [ (cosecx — 2sinx) dv = log tan (1x) + 2 cosx.
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.. L
(i) Heml=fde=fw_idx’
COS x

Cos x
[ cos 2x = 2 cos?x ~ 1]
= J (2cosx — secx)dr = 2sinx — logtan (x + 7).
Ex. 17. Integrate 1/(1 + 3sin2x).
Sol. Dividing Nr. and Dr. by cos?x, we have

f dx f sec2 x dx
I'n i
1 + 3sin2x sec2x + 3 tanx

sec? x dx
(1 + tanZx) + 3 tan?x

_f sectxdy
1 + 4 1an2x

Now puttir:fZ tanx =1 so that 2sec?xdx = dt, we have

dt
I=31 =itan~lz=ltan"! 2tanx
*J 1+ ( )-
Ex. 18. Evaluate the following integrals :
@ db
a?sin?6 + b2 cos26 (Meerut 1985 P)
- f dx
(i) - =
4sin?x + 5cos?x (Meerut 1989)

Sol. (i) Dividing Nr. and Dr. by cos26, we have

1‘f do _J‘ sec? 0 do
~J a2sin20 + b2cos?26  J a?tan26 + b2

_1 f sec? 6 df
a’J tan?8 + (b%/a?)

_1 _d ; — = cpp2
== f 2+ (b2 [Putting ¢ = tan 8, so that dt = sec* 6 db)]
_1 a 1 = iy — :

= —2 5 tan™— (b/ J = tan (b tan 6)

dx
ii) Let = f
(i) 4sin?x + 5 cos?x

secix dx
= | ——==——" dividing the Nr. and Dr. by cos?x
f4tan2x+5 pcing "

= f 4;2d:_ 5 » putting tanx = ¢ so that sec?x dx = dt

=1 f dt =1 1 tan— 1 -
1J 2+ (V5722 1 (V5/2) v5/2
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e 121 . 2tanx

ST VT sttt s

Ex. 19. Evaluate [ [(cosx)/(a* + b?sin?x))dx.

Sol. Putting bsinx = ¢ so that b cosxdx dt, we have

-

I= . Cosxdx f
@2+b%sin2x bJ a2+ R

_ 1 _(bsinx)

=g ()

Ex. 20. Evaluate fﬂ"—(ii’mdx.

Sol. Putting logx =1¢ so that (1/x)dx =dt, we have the given
integral
1= [ cottdt =logsint = log {sin (logx)}.
§ 9. Some more standard Integrals.
(i) To evaluate [ [1/V(a2 + x2)] dx.
For complete solution of this problem see § 6, page 7. The result

is
_dx (X - 24 a2
f\/(az+x2) sinh (a) log {x + V(x2 + a?)}.
; __d&x
(ii) To evaluate V@ —xd)
For complete solution of this problem see § 6, page 7. The result
is

f Vat-x) " (3)

(iii) To evaluate

\’(xz— uz)
Put x = a cosh 6 so that dr = a sinh 6d6.
Then the given integral = dx _ a sinh 6 d6
a sinh 8 d6 fsinhedo
fa\/(coshw— 1) siho =7 cosh™" (x/a)
2 2. g2
Sy B A
a a a

= log {x + Y(x2 — a?)} — loga = log {x + V(x2 — a?)},
because the constant term — loga may be added to the constant of
integration ¢ which we usually do not write.
& -1 = 2 _ g2
Thus f Vo2 —ad) cosh™ ! (x/a) = log {x + V(x2 — a?)}.
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(iv) To evaluate [ V(x2 + a2) dx.

Put x = a sinh 6 so that dr = a cosh 8d6.

Then the given integral = [ V(aZ?sinh? 6 + a2) .a cosh 6 d6
= a2cosh?0d6 = [ 1a2(1 + cosh 26)d6,

[ cosh 28 = 2 coshZ6 — 1]
af (1+cosh26)d6-~a2[6+ 1sinh 26]

a [0 + sinh 6 cosh 8], [ sinh 26 = 2 sinh 6 cosh 0]
a% |6 + sinh 6 V(1 + sinhZ 8)]

iy

2
—%—smh‘l [ ) +7 “\/(az+x2)

Thus [ V(o2 + 82 dx = V(2 + u2) + 3 sinh= 1 (%)

ul-n role= HI.—-
NI 2

=%\/(x2+az) +-'2—2Iog{x+ V(x% + a?)}.

(v) To evaluate [ V(a2 — x2) dx. (Kashmir 1983)
Put x = asin 8 so that dxr = a cos 0d6.
Then the given integral = [ a cos 6 .a cos 6 df

= [ a%cos20d6 = 1a? [ 2cos?6df = 1a? [ (1 + cos 26) d6
= 1a% (6 + }sin 26) = 1 a2 (6 + sin 6 cos 6)
=1a2[0 +sin6 V(1 — sin? 6)]

1 o (X lz.ff_.\/ _x3) .
=3 sin (a)+2a s 1 az]

Thus [ V(a2 — x2) dx = 1x V(a2 — x?) + 1a?sin~! (x/a).
(vi) To evaluate [ V(x2 — a2) dx.
Put x =acosh @ so that dr = asinh0d6.
Then the given integral = [ V(a2 cosh?6 — a2) a sinh 6 d6
= [ a?sinh20d6 = [ a? (cosh 26-— 1) d6,
[~ 2sinh26 = cosh 26 — 1]
a? [1sinh 28 — 6] = 1a? [sinh 6 cosh 6 — 6]
a2 [V(coshZ8 — 1) cosh 8 — 6]

ot [\/[_‘1 "—mh“';] [-'.'coslm:%]
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Thus [ V(x? — a?) dx = }x V(x? — a?) — ; a? cosh~ ! (x/a)

= IxV(x? - az)-- satlog {x + V(x2 — a?)}.
Solved Examples

Ex. }. Evaluate f el
V(1 + %)

Sol. Put e¥=1so that e¥dy =dt.

the given integral
= [ {1/V(1 + 1)} dt = sinh= !¢ = sinh~ ! ().
Ex. 2. Evaluate [ cosx V(4 — sinx)dx.
Sol. Put sinx =1 so that cosxdx =dt.
Then the given integral = [ V(4 — 2)dt = [ V(22 ='12) dt

1 2y 4 2
5! V-1 + 5 sin (t72)
= isinx.V(4 —sin2x) + 2sin~ ! (3sinx).
Ex. 3. Evaluate [ secxtanx V(sec?x + 1) dx.
Sol. Put secx =t so that secx tanxdx = dr.
Then the given integral = [ V(2 + 1)dt
=1tVY(2 + 1) + 1sinh— 17
}secx V(secZx + 1) + 1sinh— ! (secx).

)

Ex. 4. Evaluat f;dx.
vaiuate \/(x4+4)
Sol. Putx2=ry; 2xdx =dt.

the given integral = § f mdt

= 1sinh~ 1 (t/2) = 1sinh~ 1 (x2/2).
Ex. 5. Evaluate [ {x2/V(x® — 9)} dx.
Sol. Putx3=r, I2dx =dr.

the given integral =% f 7‘(,‘:{_9)

= jcosh= 1 (¢/3) = Jcosh— ! (x3/3).
Ex. 6. Evaluate [ x V(x* + 9) dx.
Sol. Putx?2=r; 2xdx =dt.

the given integral =1 [ V(2 + 3%)dt
= 1[GtV +9) + 3sinh~ 1 (1/3)]
= 1x2V(t + 9) + Isinh— 1 (12/3).
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Ex. 7. Evaluate [ x2V(x® — 1) dx.
Sol. Putx3=¢; .. 32dx=ds.
the given integral = -;-f V(@2 -1)de

=11ty 1y~ Loosh-1(E
=3 [5VE@ - 1) - 3 cosh 1(1)]
=12 1 osh—1,3
_3-[2\/(x6—1)—2msh 1x]
=13 V(x6 - 1) — Lcosh~ 143,

§ 10.Integral of the product of two functions.
Integration by parts. Let u and v be two functions of x. Then
we have from differential calculus

d dv du

E(uv)=u-a+lf'z (1)
Integrating both sides of (1) with respect to x, we have

dv du

uv= Ju-_ dc+ v ax dx.

By transposition, we have
dv , - du
udxdx—uv—fvdtdr. «(2)

Now put u =f; (x) and v = [ f;, (x) dx, so that %:fz @®).
Then from (2), we have
S )G ax=16x).J f(x)dx

‘f H':; f (’F)} - X d"] dx

ie., the integral of the product of two functions

= first function X integral of second function
— integral of {diff. coeffi. of first function X Integral of second
function} .
Note 1. Care must be taken in choosing the first function and
the second function. Obviously we must take that function as the second
function whose integral is well known to us. Thus to evaluate
J xlogxdx we shall take x as the second function because we so far do
not know the integral of logx. But to evaluate [ xsinxdr we must
take sinx as the second function and x as the first function. Here if we
take x as the second function, then the new integral will become more
complicated. Thus to evaluate integrals of the type [ x2e*dx
J x3 cosx dx etc., the function of the type x” must be taken as the first
function. In certain cases we can take unity (i.e., 1) as the second
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function. Thus to evaluate [ logxdr we shall take 1 as the second
function. To evaluate [ ¥ sinx dx we can take either * or sinx as the
second function.

Note 2. The formula of integration by parts can be applied more
than once if necessary.

Note 3. Integration by parts as applied to the functions of the
type & [ () + 1 ()]

Let I=[ e[f(r)+f @)dr=[ efx)dv+ [ ef’ (x)dr.

Integrating the first integral by parts regarding e* as the 2nd
function, we have

I= e~ [ @etde + [ [ () evde = e5f o).
[Note that we have left the other integral unchanged because the
last two integrals cancel each other].

§ 11.Successive integration by parts.

If u is a function of the type
agx" +ap ~ Ly .+ a, _,x +a,, where n is a positive integer, the
following formula for successive integration by parts can be applied.
While writing this formula the successive differential coefficients of u
have been denoted by u’,u’’, u’'"’ etc., while the ;uccessive integrals of
v have been denoted by v,, v,, v5 etc. Thus

f uwde=uvi—u'vy+u''vy—u'""'vy +.

The process of successive integration by pdrts w1ll be continued
till on being differentiated successively the differential coefficient of u
becomes zero. The following examples will make the process clear.

Example 1. Evaluate [ x5¢*dx.

Sol. Here e* will be successively integrated and x5 will be
successively differentiated. Thus applying successive integration by
parts, the given integral

I =x%* — (5x*) e* + (20x3) e¥ — (60x2) e* + (120x) €¥ — 120e*,
the process of successive integration by parts terminates because the
differential coefficient of 120 is zero.

. I=e5 (¥ — 5% + 2023 — 60x2 + 120x — 120).-

Example 2. Evaluate [ xsinxdx.

Sol. Applying successive integration by parts, the given integral

I =x% (- cosx) — (4x3). (- sinx) + (12x2) .. (cos x)

— (24x) . (sinx) + (24) . (— cosx)

= —xtcosx + 4x3sinx + 12x2cosx — 24 xsinx — 24 cos x.

Remark. While applying successive integration by parts the
successive differential coefficients and the successive integrals must at
the first stage be put within brackets.
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Example 3. Evaluate [ x3e=*dx.

Sol. Applying successive integration by parts, the given integral
I=@).(-e) - (). (e +(&).(—e™ )= (6).(7
=—x3e % —3xZe~ ¥ — 6xe~ X — Ge~~.
=—(3+W2+6c+6)e*,

§ 12.Integrals of e™ cos bx and e?* sin bx.

Let I= [ e sinbxdx.

Integrating by parts taking sin bx as the second function, we get
j= _gZcosbx | oa (__ cosb,\J

b N
= —M+%f €2 cos bx dx.

dr

b
Again integrating by parts taking cos bx as the second function,
we get .
L X i - ci -
[= _eE cosbx+£ ev sm[u —faea‘bmb"‘dx
b b b
a?
or 1=—““°:S”x+b2eaxsmm 5 J emsinbrax
2
or I—f—(asmbx—bcosbx) g I. [f exsinbrde=1]

Transposing the term — ﬁl to the left hand side, we get

[ b2] I= ﬂ 7 (asinbx — b cos bx)

or ;]i(az+b2)1=;2~e‘“(asinbx—bcosbx).
ex ;
I = ——— (asinbx — b cos bx).
a2+ 52 )
Thus [ e sin bxdx:—‘ (a sin bx — b cos bx).
aZ + b?

Similarly | e cos bx dx = ﬁ (a cos bx + b sin b).l) ,

Alternative forms of | e%* sin bx dx and J e%* cos bx dx.
o Bl s e (i b3 i

We have [ €% sin bx di = 3 4 52 (@sinbx — b cos bx).

Put a=rcos@ and b =rsin6. Then
r=v(@+b% and 6=tan"!(b/a).

Now we have
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J e®sin bx dx =%(rcosesinbx — rsin 6 cos bx)

=5—::sin (bx—B).
X

. R
Thus f € sin bx dx = V@ b

sin [hx — tan— ! -E) .

Similarly [ e2* cos bx dx = cos [bx — tan~! E] .

&

V(aZ + b?)
Solved Examples

Ex.l. Integrate (i) x logx, (ii) (logx)/x%, (iii) x" logx.

Sol. (i) Here x should be taken as the second function because

the integral of logx cannot be easily written down.
We have [ xlogxdy = [ (logx)xdx

= (logx) - 1x2 — [ (1/x) - 12, (Integrating by parts)
=12logx — 1 [ xdv = 1x2logx — 1 - (*/2)

- 1x2logx2 — YxZloge, [-loge=1] Note
= 1x%log (x*/e).

(i) We have [ [(logx)/x?]dx = [ (logx) (1/x%)dx
= (logx) (= 1/x) = [ (1/x) .(= 1/x) dx,

[Integrating by parts taking 1/x2 as the second function]
= — (1/x) logx — (1/x) = — (1/x) (logx + loge) Note .
= — (1/x)log (xve).
(iii) We have [ " logxdx = [ (logx) .\ dx

A+ f] _rn+ldx
_(Iogl)'n+l— x n+17"

|Integrating by parts taking x" as the second function]

1 xn+ 1 f X d
=logn) -\ q-Jnri®
mt1 A+l
= (logx) : - .
(ogy) - 3= = 72

Ex. 2. [Integrate (i) tan—'x, (ii) cor~ lx, (iii) sin— lx.

Sol. (i) As there is only one function here, unity should be
taken as the 2nd function. We have [ tan~lxdx = [ (tan~ 'x).1dx.

Integrating by parts regarding 1 as the second function, we have

J (tan=1x).1dx = (tlan~'x).x — [ {1/(1 +x2)} xdx

2x

=xtan~ lx -1 " ~dv =xtan~ 1x — log (1 +x2),
: = :
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(.- Nr. 2x is the diff. coeffi. of the Dr. 1 + x?)
(ii) We have [ cot=lxdx = [ (cot~lx).1dx
= (cot~ lx).x = [ {=1/(1 + x})}.xdx,
|Integrating by parts taking unity as the second function]
=xcot™lx+1f {2/(1 + x2)} dx =xcot~ Ix + Llog (1 +x2).
(iii) We have [ sin~lxdx = [ (sin—1x).1dx
=(sin~1x).x = [ {(1/V(1 —x?)} xdx _
=xsin~lx+1f (1 -x2)~ V2(- x)ax Note
— x2y172
=xsin~ lx +—;-Ll;—2L—'
|By power formula; see § 8 on page 12]
=xsin~ lx + (1 —x2)V/2
Ex. 3. Integrate (i) x2e™~, (ii) x2sinx, (jii) x2 cos 2x.
Sol. (i) Intcgrating by parts taking ™" as the sccond function,

X
we havefxze”“dr=x2-ﬂ—f2x-£dx
m m
2 -2
=x_em\-_lfx'emrdx=l_emx_llx.£_ l.ﬂdx]’
m m m m m m
[Again integrating by parts}
x2 2 2
=—™ — —ye™+ —eM™
m m=-

=e™m~3 (m2x2 - 2mx + 2).
(ii) Integrating by parts taking sinx as second function, we have

J x2sinxdx = —x2cosx — [ 2x (- cosx)dx
= —x2cosx + 2 [ xcosxdx
= —x2cosx + 2rsinx — 2 [ sinxdx
= —x2cosx + 2vsinx + 2cosx.
‘Similarly f x2cosxdx = x2sinx + 2x cosx — 2sinx.
(iii) Integrating by parts taking cos 2x as second function, we
have
J x2cos 2xdx = x2. (}sin 2x) — [ 2x.1sin 2cdx
= 1x2sin 2v — [ xsin 2vdx
= 1x2sin 2x — {x .} (— cos 2x) + 1 [ cos 2rdx},
(Again integrating by parts taking sin 2r as the 2nd function)
= 1xZsin 2v + Jxcos 2c — 1 [ cos 2vdx

= 1x2sin 2r + 1x cos 2r — 1sin v
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=1 (2 — ) sin 2x + x cos 2x.
Ex. 4. Integrate (i) logx, (M.U. 81)
(i) (logx)?, (iii) x" (logx)?.
Sol. (i) As there is only one function here, unity should be
taken as the second function. We have [ logxdx = f (logx) .1dx
= (logx).x— [ (1/x).xdx =xlogx — [ 1.dx =xlogx —x
=x (logx — 1) =xlog (x/e).
(i) We have [ (logx)2dx= [ (logx)2. 1dx
= (logx)2x — [ {(2logx).(1/x)}.xdx,
[Integrating by parts taking 1 as the second function]
=r(logx)?2 — 2 [ (logx).1dx

=x (logx)2 -2 [(Iogx) X —f% -xdx] ’

|Again integrating by parts taking 1 as the 2nd function]
=x(logx)? — 2xlogx + 2 [ 1.dx
=x (logx)? — 2xlogx + 2x.
(ili) We have J‘ 1" (logx)2dx = [ (logx)2 x" dx

f i+l

{(z logx) - } L

[Integrating by parts taking x” as the second function]
2

7+ 1 N i NP

x (logx) n 1 J (logx) a7 dx

(log 22"

T (n+1)
_ 1
T(n+1)

X+ 1 (log x)?

2 s Mt J' 1 o+l
“w+n |V ) el
[Again integrating by parts taking »” as the second function]

2
T 1)"" +1 (logx)? - P (logx) .an+1
2 2y
+ n+ 1)2‘['\ dx
= 1 xt+1 2 2 1 A+l g 2 s+ 1
Swrny (080" (ogx) x m+ip

g (logx)?  2logx 2 )
m+1) @+1)2 (n+1)>

Ex. 5. Integrate (i) e*sinx (ii) e*cosx,
(iii) eXsinx, (iv) e¥cos 4r.
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Sol. (i) Integrating by parts taking sinx as the second function,
we have :
Jetsinxde = —e“cosx + [ e cosxdrx.
Now taking cos x as the second function we again apply integration
by parts to the integral on the right hand side. Thus, we get
J e'sinvdr = — efcosx + e¥sinx — [ esinxdr.
_Transposing the last term on the right hand side to the left and
dividing by 2, we get
J e"sinxdy = e* (sinx — cosx).
(i) Here [ e*cosxdx = e sinx — [ etsinxdr,
[Integrating by parts taking cosx as the second function]
= e¥sinx — [e%. (- cosx) — [ ¥ (— cosx)dy],
|Again integrating by parts taking sinx as the second function]
=e¥(sinx + cosx) — [ e¥cosxdy.
Transposing the last term on the right hand side o the left and
dividing by 2, we get
J e¥cosxdx = e* (sinx + cosx).
(iii) We have
J e¥sinxdx = e2. (— cosx) — [ 2e%. (- cosx)dx,
[Integrating by parts taking sinx as the second function]
—excosx + 2 [ e cosxdy
= — e cosx + 2 [e2.siny — [ 2e2sin x dy]
= —eXcosx + 2¢2sinx — 4 [ eXsinxdr.
Transposing and dividing by 5, we get
J e¥sinxdx = 1e2¥[2sinx — cosx].

(iv) Integrating by parts taking cos 4v as the second function, we
have

J e*cos dvdv + e, S'“‘h)_f(;exr) (Sm'b']dx

% “sin v — 2 [ €3 sin 4vdv

1 3 31 % cos 4x f 2 cos 4x\
+ — 2 e, (- S | 3 (-

G sin 4x 4[e [ 3 ] e [ n )dx]
=1eMsindr + 2 e3cos v — - [ €3 cos dv dv.

Transposing the Iasl lerm on the nghl hand side to the left, we
have

(1 +|—9,,)f e cos drdy = 1 e sin dv + ¥ cos dv
or 2 [ e cos dr dx = e3'sm4J. +2 e3”cos4).
.or J e3‘cos4xdr=;e3xs:n41+3e3‘cos4r
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=L e (dsin4x + 3cos dr).
Alternative solution. [ €3 cos 4vdx is of the form
J e* cosbxdx, where a = 3 and b = 4.

Now [ e cos bxdx = cos [b —tan—! —]

S
V(a? + b?)
|See § 12, page 24]

J e¥Xcosdvdy = ——-ﬁ—-—cos (4x —tan~! i]
V(9 + 16) 3
e3x :
=5 c0s (4 — tan~ 1.
Ex. 6. Evaluate f e¥ (ncosx + sinx)dx. (Meerut 1977, 86)

J e(ncosx +sinx)dv =n [ etcosxdy + [ e¥sinxdr.
Now using results of Ex.'5 (i), and (ii), we get the required value
of the given integral
= 1ne® (cosx + sinx) + 1ev (sinx — cosx).

xe*
Ex. 7 (a). Evaluate f G+ 1)
(Kashnlr 1983; Delhi 80, Meerut §2, 84 P, 90)

Sol. We‘ have s 1)2 f( xe¥) o 1)2

1 .
—? as the second function and

(x+1

Integrating by parts taking

xe* as the first function, we have

f(xfxl)ld‘_("x)( 1) f(‘““‘-’")( ) 4

Note that the integral of L S is — 1
(x+ 1)~ xr+1
_ __Xxet £ re 1
= x+l+fe().+l) +ldx
xe* xe*
=- gt ed=-7+e
x ] etx+1—x er

=ex{1_

x+1 x+1 r+1
Alternative solutlon
We have f @+n-1
x+ 1)2 x+1)?

-J el
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=J 1) +1" @]dr, where f (1) = — 7

=fef@a+ [ &f @) de

=efe) - Jef' @dr+ [ &f () dr,

applying integration by parts to the first integral taking e* as the
second function

=ef)= exx +1
2
. Ex. 7 (b). Evaluate fe" M

(x+1)2
+
Sol. Wchavcfe‘%—;—i—;%

f a2-1)+2 f C+DE-DH+2
(Jc+l)2 (x+l)2
1—1 2

“ (x+1)2]

((x +1)—2 2
fe" x+1 +(x+1)2 o

—f i{l_xi1}+(x+21)2]dr

=fef@) +f'(x)]dx,wheref(x)=l—x 2 150 that

Yoy = — 2
0=y
2 x—-1
=exf(x)=ex[l_x+1]=exx+1'
Ex. 7 (¢). Evaluate fe‘z(l——:g)—zdx
1+x9) -2
Sol. We have fe‘(1+x2)2 f -(TF_)IT)Z—

=fex[1:x2_ (1 iz)z}dx

=J €[f@) +1" ()] dx, where f (x) =

1+x2

-
and ' (x) = = a+22

. 1 -
1+x2

=ef (1) = e
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2
Ex. 7 (d). Evaluate f e‘x—ﬂﬁ
(x + 2)?
2
Sol. We have f e Erusa
@ +2)?
(x+2)(x+ 1)+ 1

](x+2)2
=fex[i12+(x+lz)2]d"

= [ &[f(x) +f (x)]dx, where

x+1_@x+2)—-1_ . 1 P 0
O =332 x+2 "l Traz oS ®) (x +2)2
x+1
TV
x3—x+2
Ex. 7 (¢). Evaluate fe‘m
x+2
Sel. Wehavefe"(2+1)2

fex@2+1)L+1)—12 241

o2 + 1)
— ol
=fe, xz+l Iy - | P
241 @2+1)2
= [ &[f ) +f () dr, where f(x)=;‘2‘:11 50 that
o L2+ -—2@+1) 12—
f (X)— (x2+1)2 (1'2+1)2
x+1
=¥ =¥ .
@ =5
log x
7. Eval f_g_
Ex. 7 (f). Evaluate a +logx)2dx

Sol. Putlogr=t...x=¢ and dx =¢€'di.
Then the given integral

- s+ -1
'“f(1+z)2 (1+1)? dr

=fe‘[1+t (1+;)2]d'

= E1f@ +f" O)dt, where (1) = T




32 INTEGRAL CALCULUS

- x -
“f@)= etl+t 1+ logx

Ex. 8 (a). Evaluate IM

1+ cosx
L etdx e'sinxdr
Sol. The given integral | = f ¥ COR e (1 + cosx)

_ f edr J' ev 2sin (v/2) cos (¥/2)
2 cos? (x/2) 2 cos? (x/2)

=1J e'sec2(x/2)dx + [ e¥tan (x/2) dx

= e lranX l 2X)
fe[lanz-t-zseczdx.

Since fx—(tan %x) = 1sec 22+ therefore this integral is of the type

2
J e [f(x) + £ (x)] dx.

To evaluate this integral, integrating e* tan (x/2) by parts regarding
e* as the second function, we get

-_— —_ - l t = X f 2 X —_
I—e"tan2 fz sec dx+ e"sec zdx e‘mn2
- because the last two integrals cancel each other.

Ex. 8 (b). Evaluate fe"-—ﬂdx.
1—cosx (Meerut 1980, 83, 87)
Sol. We have

f 1-siny f & sinx ]
1 - cosx cos.f 1 —cosx
f . 1 2 sin . 3X cosix e

= e —

2 sin? lx 2sin? %x

= J e¥[Lcosec? 1x — cot 1x] dx

= J e*|(~ cot ix) + 1 cosec? x| dx
= [ e [f @) +f' (¥)] dx, where

f@®) = —cotix so that f’ (x) = } cosec? 3 x
= e f (x) = e (— cot }x) = — e¥ cot 1 x.
2 +sin 2x
, ¢ 2 +5sin2x
Ex. 8 (¢). Evaluate | ¢ e
2 +sin 2x

Sol. Wehavef exl+cos?.t
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_ 2 sin 2x
"fer[1+co52z 1+cos?x]dx

2 2 sinx cosx
_f er[20052x+ 2 cos?x ]dr
= [ e [sec?x + tanx] dx
= [ e [tanx + sec?x] dx
= [ & [f(x) +f’ (x)]dx, where f(x) = tanx
=e'f(x) = e tanx.
Ex. 8 (d). Evaluate [ e* (cotx+ log sinx)dx.
Sol. We have [ e* (cotx + logsinx) dx
= [ ¢*(logsinx + cotx) dx
= [ &[f(x) +f' (x)] dx, where
f(x) = logsinx so that f’ (x) = (1/sinx) cosx = cotx
=e*f(x) =e*logsinx.
Ex. 8 (¢). Evaluate [ e [log (secx + tanx) + secx] dx.
Sol. The given integral
I=][ esecxdr + [ e log (secx + tanx)dx
= e*log (secx + tanx) — [ e log (secx + tanx) dx
+ [ e*log (secx + tanx)dx,

(applying integration by parts to the first integral taking e* as the
second function and keeping the second integral as it is)

= e*log (secx + tanx).

dx.

1+ V(1 —x%)sin—x
Ex. 8 (f). Evaluate f [ V(1 —x2) ]

Sol. The given integral

I=fe”[—\/(ll—_x2)+sin—‘x]dx

. 1
=fe"[sm ’x+—\/(1_x2)]dx
= [ e [f(x) +f' (x)]dx, where

: 1
=sin—1 ') = ————
f () =sin™ lx so that f’ (x) VA -23
X f - ]
=e'f(x)=e"- ‘/(1 xz)
Ex. 9. Evaluate xsin” 1 x

V(1 —-x?%)
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Sol. Put sin~ lx =1 (or'x =Sil‘lf); it ﬁd{ =dt.
xsin~ .
———-—dx sint).tdf = ) tsintdt
V-0 T | ) aa =] tiinte

=1.(—xcost) — [ 1.(—cost).dt = —tcost + sint

= —t V(1. —sin2t) +sint
= —sin~ lx.vV(1 —x2) +x.

2 -1
Ex. 10. Evaluate f ran X .
1+x2 (Meerut 1990 S)
Sol. Puttan~!x=¢ (orx = tany); .. :
1422
xZtan~ lx
————dr={f ttantdt = [ t(sec2t — 1)dt [Note
f e f S )dt  [Note]

= tsecttdt — [ tdt
=ttanz — [ tantdt -
—ttant—logsect—-‘tz—ttant—log\/(l+tan21) i

=xtan~ lx — log V(1 +x2) — 1 (tan~ 1 x)2, [x=tan{].
sin— 1x dx
Ex. 11. Evaluate fm
Sol. Putsin—lx=1t,ie.,x =sint so that dx = costdt.
sin~ lxdx t _ 2
f(l—x2)3/2 o031 costdt = [t.sec2tdt
=¢tant— [ l.tanzdt
=rtant + logcos?, [ f tantdt = — log cos 1]
sin? .sint .
bl cost =t ————— + log {V(1 — sin?1¢
o8 Va1 —sinzg) 108 1V( »
= (sin~ 1x) - ‘/(1 )+I0gw/(1—x2) [-x=sin{]
« xsin—lx
=——+—lo 1—1x2).
1 (2
Ex. 12. Find IM
V(1 -4
Sol. Put sin™ 1x2 = ¢, so that Té‘% =dt.
the given integral = [ rdr =112 = 1 (sin~ 1x2)2

xtan—1x

Ex. 13. Evaluate ﬁ—_z)i/—z
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Sol. Put tan—lx =1¢, so that x = tanz. Also dx = sec2tdt.

P —— f (tan?) tsec?tdt _ fttantsecztdz
5 B (1 + tan?1)%2 sec31

= | 180 [ tsinrar.
sec !
Now integrating by parts regarding sin s as the second function,
the given integral = —tcost + [ costdt = —tcost + sint

__ tan~lx P =x—lan"x‘
V1 +x2) V(1 +x3) V(1 +x?
Ex. 14. Evaluate | x3e* dx.
Sol. The given integral / = f x2.eX.xd.
Put x2 =t 50 that 2xdx = dt or xdx = 1dt.

the given integral / =1 [¢.¢'dt.

Now integrating by parts regarding &' as the 2nd function, we have
I=ite—1f edr=1t.¢—1e
=le@-1) =102 -1).

x%dx )
(xsinx + cosx)2  (Delhi 1979; Meerut 84 S)
2
(xsinx + cosx)
= [ x2 (xsinx + cosx)~ 2dx.

Ex. 15. Evaluate f

Sol. Let

d . . .
Here a(x sinx + cosx) = sinx + x cOsx — sinx =X COS.x.

So we adjust the given integral in the form

A
x<
1= inx + r)— 2 dx
fx St {(xsinx + cosx)™ “ (x cosx)}

= . {(xsinx + cosx)~ 2 (x cosx)} dx.
=

COs x

Now by power formula, the integral of
(xsinx + cosx)~ 2 (xcosx) is {(xsinx + cosx)~1}/(— 1)
ie., — 1/(xsinx + cosx). So applying to I integration by parts taking
(xsinx + cosx)~ Z (x cosx) as the second function, we get

I'= (c;st (_xsinxl-l- cosx)

S &) - rats]] @
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Integration by Partial Fractions

11 Rational Fractions

fraction whose numerator and denominator are both rational and algebraic functions is
efined as a rational algebraic fraction or simply a rational fraction.

-1
Thus f) ap " +a x" T L ta, g xta,

o) by +b X" V4. +b, x+b,
0 n n

in which ag, ay,...,a,,, by, by, ..., b, are constants and m and n are positive integers, is a
rational algebraic fraction.

If degree f(x)< degree ¢(x), then {; ((Z)) is called a proper rational fraction.
x

If degree f(x)= degree ¢(x), then % is called an improper rational fraction.

O(x
il )
D(x)

S )

£—— as the sum of a polynomial and a proper rational fraction.

o(x)

is an improper rational fraction, then by dividing f(x) by ¢(x), we can express
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12 Partial Fractions

Any proper rational fraction f (x)/§(x)can be expressed as the sum of rational fractions, each
having a simple factor of §(x). Each such fraction is called a partial fraction and the process of
obtaining them is called the decomposition or resolution of the given fraction into partial fractions.

The resolution of f(x)/¢(x) into partial fractions will depend upon the nature of
factors of ¢(x). According to these factors, we obtain the corresponding partial
fractions. The following table gives an idea what kind of partial fractions are to be
taken for what kind of factors in the denominator :

Factor in the denominator Form of the partial fraction
(i) (x—a) A
(x—a)
(i) (x—ay A ,_B
(x—a) (x- a)2
(iii) (x—a)’ 4 8 _, ¢
(x—a) (x—aP (x—a)
(iv) (ax’ +bx +c) Ax+ B
ax’ +bx+c
(v) (ax® + bx + ¢ Ax+B G+ D
o +bx+c (axz+bx+c)2

Note: There are as many constants to be determined as the degree of the
denominator.

We explain the method of partial fraction decomposition through some examples.

[llustrative Examrles \

-1
Example 1: Resolve (=1 into partial fractions.

(r=3)(x-2)
Solution: Let x -l -4 ,_ B _Ax-2)+ Blx-3)
' (x=3)(x-2) (x=-3) (x-2) (x=3)(x=2)
Clearly x—1=A(x-2)+ B(x -3). ..(1)

Comparing the coefficients of x and the constant terms on both sides of (1), we
get

1=A+B (2)
and ~1=-2A-3B .(3)
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Solving (2) and (3), we get A=2,B= -1
(x=1) 2 1

(x=3)(x=2) (x=3) (x-2)

Note: An easy way to find the constants Aand B etc. corresponding to linear
non-repeated factors is like this : The factor below Ais (x — 3) . The equationx —3 =0

(x—1)

gives x = 3.Now suppress (x — 3)in the given fraction and putx = 3in the

(=3)(x-2)
remaining fraction (-1 to get A. Thus, A= ﬂ =2.
(x=2) 3-2
Similarly p=2=1__,
2-3

¥ —6x% +10x -2

Example 2: Resolve
v ¥ —5x+6

into partial fractions.

Solution: Here since numerator is not of a lower degree than the denominator, we
tirst divide the numerator by the denominator.

3— —_— —
We have ¥ =62 +10x 2:x—l+§x—+4)~
X —5r+6 P -5x+6
-x+4 -x+4 A B
Now let = = + .
P -5r+6 (x-3)(x-2) (x-3) (x-2)
Then —x+4=A(x-2)+ B(x-3). (1)

Putting x =3 in (1), we get A=1.
Putting x =2 in (1), we get B=-2.
-x+4 1 2
2-5¢46 (r-3) (x-2)

¥ —6x° +10x-2 1 2
Hence, =x-1+ - .
¥ —5x+6 (x=3) (x-2)
Example 3: Resolve into partial fractions.
P ) (o o partialf
Solution: Let 16 > = A + B + ¢ =
(x=2)(x+2y (x=2) (x+2) (x+2)
Then 165A(x+2)2+B(x+2)(x—2)+C(x—2). ..(1)

Putting x =2 in (1), we get A=1.

Comparing the coefficients of ¥ and constant terms on both sides of (1), we get
A+B=0 and 4 A-4 B-2C=16.

These give B=-1,C=-4.
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3

16 1 1 4
Hence, > = - - 7
(x=2)(x+2) (x=2) (x+2) (x+2)
2x -1 . . .
Example 4: Resolve ———————— into partial fractions.
(x+1) (% +2)
2y -1 A Bx +C

Solution: Let

G+D (2 +2) (x+]) x2 +2)

Then 2x-1= A +2)+ (Br+ C) (x +1).
Putting x =—1in (1), we get A=-

Comparing the coefficients of x*> and x on both sides of (1), we get

A+B=0 and B+C=2.
These give B=-—A=1C=2-B=1

3x—1 1 x+1
T+ (242 (x+1 Ty
2x-3) . ) ,
Example 5: Resolve ————————— into partial fractions.
P (x=1) @ +17 partial

(2x-3) A Bx+C+ Dx+E‘
D@+ o) 2D (Pl

Solution: Let

Then 2x—3EA(x2 +12 +(Br+C) (x=1) (x> + 1) + (Dx + E) (x - ]).

Putting x =1in (1), we getA:_i

Comparing the coefficients of x*, x>, x* and x on both sides of (1), we get

A+B=0, C-B=0, 2A+B-C+D=0 and -B+C-D+E=2.

Putting A = - % and solving these equations, we get

=L c-L p_1 4 E=2.
4 4 2 2
2x - 3) 1 (x+1) (x +5)

D212 A a2+ 2217

Example 6: Resolve = tatl

into partial fractions.
(="

Solution: Let (x—1)= y. Thenx=(y+1).

x2+x+l_(y+l)2+(y+l)+l_y2+3y+3
(x- 1 v i

1 3 1 3 3
= +— -+ +

7 =17 (xr-1

J

\:w| w
<

N

|

(1)
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15 Integration of Rational Fractions by Partial Fraction

We can use the method of partial fraction decomposition to integrate rational
fractions. The following examples illustrate the procedure.

[llustrative Examlales

(x+1)dx

O —6x

Solution: Here — x-{rl il
B2 _6r x(x-2)(x+3)

A B C

xr (x=2) (x+3)

Example 7: Evaluate I

, (say).

To find A suppress x in the given fraction and put x =0 in the remaining fraction.
0+1 1

Thus, A=—o - .
0-2)(0+3) 6

To find Bsuppress (x — 2)in the given fraction and put x = 2 in the remaining fraction.

Thus, B:i:i.
22+3) 10
Similarly C=$=_l.
-3(-3-2) 15
Thus, x——i-lz_i_’_ 3 _ 2 .
x(x=2)(x+3) 6x 10 (x-2) 15(x+3)
Obviously J'—(x+l)ﬂlx = Idx J. J.
x(x=2)(x+3) 10 (x 15 x+3

=—élog|x|+mlog|x—2|—ﬁlog|x+3|+c.
x3

dx
(r=D(x-2)(x-3)

Solution: Here since the numerator is not of a lower degree than the denominator, we

Example 8: Evaluate j

divide the numerator by the denominator till the remainder is of lesser degree than the
denominator. We orally see that the quotient is 1.

We need not find out the actual value of the remainder because ultimately we have to
break the fraction into partial fractions. Note that the denominators of the partial
fractions depend only upon the denominator of the given fraction. So let

P B A B C
=]+ + + .
(x=-D)(x=2)(x=3) x=1) (x-2) (x-=3)
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3 3
We have A:l—:l7B: 2 =_8
1-2)1-3) 2 2-HE2-3)
and C—L—z_f
S B3-1D3-2) 2
e e L8 27
(x=-1)(x=2)(x-3) 2(x=-1) (x=-2) 2(x-3)
3
Hence, j X dx
(r=1(x-2)(x-3)

:ILM+ijil_jx 2) Iz2mﬁ

=x+= log|x—l|—810g|x 2|+—710g|x 3| +ec.

2

Example 9: Evaluate | ———— dx
g Ju?+2)u2+$
Solution: Let y = 2.
Then 5 i = J = A + B ,(say).
(2 +2) (2 +3) (y+2)(y+3) (y+2) (y+3)
We have A = the value of J ,when yis -2,
y+3

=-2

and B = the value of J 5 ,when yis -3,
+
=3.
ﬁ =2 3 -2 3

Thus,

(%+2H%+a_y+2+y+3_f+2+%+3'

% _
-[(x2+2)(x2+3)dx_ g x2+2 3-";52+?>

=—2-Ltam_l +3- Ltan]—+c

X
\2 N2 V3 \3

1 x o ox
= V2tan ' V3 tan !t o

V2 \3

Note: In the above example, the substitution was made only for the partial fraction
part and not for the integration part.
8

(x+2)u2+4fh

Example 10: Evaluate : J
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\_ 1-9 __i],“
8 A Bx+C
Solution: Let
(x+2) x2+4 x+2 x2+4
or 8=A(? +4)+(Br+C)(x+2). (1)

Then A = the value of ,whenxis-2=1

214
Comparing the coefficients of x* and x on both sides of (1), we get

A+B=0 and 2B+C=0 = B=-A=-1,C=-2B=2.
8 I, (x+2)
(x +2) (F +4) TTN 244

Jx+2 2 +4) dx:jxizdﬁj(;;:j)dx

=J-xi2dx—J‘x2 +4dx+zszdi4

:log|x+2|—llog|x2 +4|+2-ltan_1£+c
2 2 2

Thus,

=log|x+2|—%log|x2 +4|+tan_] %+c.
(C+DEE+2)

Example 11: Evaluate J _—_
r (X’ +3) (+ +4)

2 +1) (% +2) _(+h(y+2)
(2 +3) (2 +4) (y+3)(y+4)

D)+ A
(y+3)(y+4 y+3 y+4
(—3+1)(—3+2)_2 B_(—4+1)(—4+2)

,where y = .

Solution: We have

Now let

, resolving into partial fractions.

We have A= =2, B= =_6.
(-3+4) (-4+3)
();+1)();+2):1+ 2 6
(y+3)(y+4 y+3 y+4
2 6
.. the given integral I = 1+ —— dx
5 & J|: x2+3 x2+4]
dx
=| dc+2 -6
J ) -[x2+3 J-xz+4
1 1 x 1 1 X
=x+2.—t — —6.—t —
ST N R R

Example 12: Integrate x / {(x — 1)® (x—2)).

Solution: Putting (x—1)= yorx= y+1, we get




A 10)

X _ y+1 __ +1 I+y
G- (-2 P (y1-2) S (-1 51ty
[Note that we have arranged the Nr. and the Dr. in
ascending powers of y]

3
= L3 {_ 1-2y- 2J72 + Ly , by actual division

y -1+
.1 2 2, 2
>ty (=)
_ 2 2 + 2 [vyp=x—-1]
G- -1 @-D x-2)° -
Hence the required integral of the given fraction
:_J' dx _J‘ 2 dx _I 2dx+J' 2 dx
(x-17° (x =17 (x-1) (x—2)
_x(x—l)2+(x—1) 2log (x -1 +2log (x-2).
@mprehensive Exercise 1
Integrate the following :
I (P +D)/ (2=,
2. P /{x+D)(x=-2)(x+3)}
3. 2/ {(x-1)Bx-1)(Bx-2)}.
4. x/{(x—a)(x=Db)(x—c)}.
5. {(x=a)(x=Db)(x=c}/{(x—0)(x=B) (x =)}
6. (Z+x+2)/{(x=2)(x=D)}.
dr , (x2+x+1dx.
7’Jx 2 +4) SI( +177 (x+2)
dx ) _ 3
9. j T 10. (2 +2)/ {(x =1 (x—2)%).
13 _dr
11, Bx+1)/{(x=1° (x+1)}. 12.jx(xn+1)

F o

Qﬁfnswers 1

1. x+logi—l 2, %log(x+3)+%log(x—2)—élog(x+l)




GO

3. %log (x—l)+%log (3x—1)—%10g Bx-2)
4. E[M} 5. x+ZX (a_ﬂ)(a_h)(a_c)log(x—oc)]
(@a=Db)(a-c) (@—B)-v)
6. x+4log {(x—27 /(x-1)}
1 1 ] 3 1 X
7. —-=1 -1)- +—log (¥ +4) - —t =
55 108 (=) s s leg (A mgptan TS
3
8. log br +2)2 L
(x+1¥ x+1
1 1 7 1 1
9. 21 —— =1 -1)- ——1 +1
08¥ =T 5Ty og (x=1) a1 3 og (¥ +1)
3 2
10. - + +3log (x-2)-3log (x-1
(x—2)2 x-2) g ( ) g ( )
11. _12— ! +llogx+1
(x=1" 2@x-1) 4 x-1
12. llog|x”|—llog|x”+l|+c
n n
F
( Objective Type Questions
o T
Multiple Choice Questions
Indicate the correct answer for each question by writing the corresponding letter from
(a), (b), (c) and (d).
1. If degree of f(x) < degree of ¢(x), then the fraction % is called
x
(a) proper fraction (b) improper fraction
(¢) unit fraction (d) None of these
2. If the function has a factor in the denominator (x — a)g, then the form of the
partial fraction is
A B A Bx+C
(a) . . (b) + =
(x—a)” (x-a) (x—a) (x-a)
c A + B 7+ ¢ 3 (d) None of these
(x—a) (x—a) (x—a)
3. Afterresolving the function _ =D into partial fractions, we get the value
(x=3)(x=-2)
of A and B as
(a) A=2,B=1 (by A=-2,B=1

(c) A=2,B=-1 (d) None of these
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Integration of Rational Functions

21 Integration of 1 / (ax? + bx + c)

o evaluate such integrals put the denominator in the form a {(x + o) +B%} and
then integrate.

lllustrative Examrles

Example 1: Integrate 1/ (95> —12x +8).

Solution: We havej L=1J‘ L
8 -12xr+8 94 2 4 8
39
making the coeff. of +* in the denominator as 1
_IJ‘ dx _II dx
== == | ————
o i) p e
3 9 9 9 3 9
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13 _13x=-2
=—.—-.tan =—tan .
9 2 2/3 6 2
1
Example 2: EmluateJ. {l/(l—x+x2)}dx.
0
2 2
Solution:Dr.=1—x+x2=(x—l) + \/—3 .
2 2
1 dx 1 dx
.[o 1— 22.[
X+ x \3

<
Gl

< - -
Sl Gl Sl

@mprehensive Exercise 1

1. Integratel/ (2)(2 +x+1).

dx

2. Evaluatej —
2x° +3x+5

3. Integratel/ (2)(2 +x-1).
4. Integratel/ ()c2 -3x+2).

X

——dx.
Gl

5. Evaluate j
i

nswers 1

o

1 itan_1 (4x+1) 2 L-tan_l |:_4x+3]
N7 \7 KT V31
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(15

3. llog{(zx—l)/(x—l)} 4. log[x_ﬂ
3 x—1

1 (24 +1
5. — tan _—
\3 [ \3 )

22 Integration of (px + q) / (ax® + bx + ¢

To integrate such integrals break the given fraction into two fractions such that in one
the numerator is the differential coefficient of the denominator, and in the other the
numerator is merely a constant. Thus
[ ek (p/20Cesh a2,
a +bhr+c ax® +bx + ¢

L[ b [ asUhe),
20 ax* +bhr+c ax’ +bhx+c

log ux2+bx+c J de.
+bx+c

The 2nd integral can now be easily evaluated.

[llustrative Examlales

Example 3: Integrate x / ()f2 +x-0).

Solution: Let I = J —dx.
P rx—6

Here 4 (denominator) = 4 (x2 +x-6)=2x+1.
dx dx

1 1
2x+1) - 1 2r+1 ] dx
| ==

P A L
J. P +x—6 2 P2 ix-6 2

=%log()c2 +x—6)—%.[

211 (x* —6)—1 o
2og +x 2J. (X+%)2_%
log x2+x—6)——J dx
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Example 4: Integrate 3x +1) / 2% -2x+3).
Solution: Here % (2)(2 —-2x+3)=4x-2.
3 3
—(@dx-2)+1+=
= J‘ 3x+1 x=J- 4 5 2 Iy (Note)
22 —2x+3 @2x% —2x +3)

J dr -2 v + J dx
1) 97 o s 2x+3 2J 242 9x+3

—X+

:Zlog(2x2—2x+3)+%_[ -
(x—%) +(3/2)=(1/4)

=%1og(2x2-2x+3)+%j dx

zilog(2x2—2x+3)+£;tan i
4 4 (N5/2) (5/2)

=%log(2x2—2x+3)+\/2—5tan_l (2’\‘/;1)

@mprehensive Exercise 2

1. Integrate 3x / (x2 -x-2).
2. Integrate (5x—2) / (1+2x +3x%).

3. Integratex /(x + 17 +1).

1 _
4. Evaluate J M
0 x* +2x—-4
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25 Integration of Rational Functions by Substitution

The integration of rational functions by substitution is explained by the following
examples.

[llustrative Examlales \

Example 7: Integrate (x2 +1)/ (x4 +1).

2
1
4l

Solution: Let I =J i
X +1

Here both the numerator and the denominator do not contain odd powers of x . Also
the numerator is of degree 2 and the denominator is of degree 4. So dividing the
numerator and the denominator by 2, we get

- REUESIY

241/
:I L/Xz)dx, [Notethati{x—l}:l+i]-
[x=(1/ 0P +2 dx X I
Now put x — (1/ x) = £ so that {1+ (1/ x*)} dx = dt.

] e () Y
1 (2=
T (W]

Example 8: Integrate (x2 -1/ (x4 +2°+ D).

2 [—
Solution: Wehave I :J 4x—x211 dx , [Note the form of the integrand]
X +x+
_ I 1-(1/ %)

2 Hl+(1/ 5
dividing the numerator and the denominator by I

:I 1-(1/ %)

d
Gra/aE [Notethata{x+(l/x)} _1—(1/;2)}
Now put x + (1/ x) = , 50 that {1 (1/ x%)} dr = dt.

dt 1 -1
I=| 2 o 2
J 21 2 ogt+1
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\_ 1-21'__i] \
1 x+(1/x) -1
=—log 1D~
2 x+(1/x)+1
1 xz—x+1‘

O —_—
2 %% 2 ax+l
Example 9: Integrate 2/t +aty.

2

Solution: We have I = J- ﬂlx J ;dx

{x +a/)c2

X+ﬂ

dividing the numerator and the denominator by ¥

dx

J‘ {1-( a> /x J+ {1+ a2/x2)}
x2+a /x2

_ 2
J{ 1- (a® /x) . 1+2(a /f) Z}dx
) {x+( a’ /x} —24° {(x=(a” / x)})" +2a
In the first integral, put
{(x+@® /x))=tsothat {1- (a® / ¥*)} dr = dt,

and in the second integral, put

—(a2 /x)=z sothat{1+(a2 /XZ)}dX=dZ.

;oL ,[ dt +,[ dz
2 2 —24° 22 +24%

o t—u\/2+ L -l 2
212442 2 traN2  av2 N2

_ . {x+(a2/x)—a\/2}+ 1 tan_l{x—(aZ/x)}
22 S| v @ 0 +av2y| 2av2 a2
\/2 o ¥ = 2ax + a® \/2 tan-! 2 —d .
" 8a V2wt 2| da V 2ax
Example 10: Integrate 1 / {x (x5 +D}
5—1
Solution: Wehavel = j—dx J—dx. (Note)
x +1) x +1)

Now put ©* =tso that 5x° ! dv=dt .

! }dt
t(t+1) (t+1)

(1/5)[logt—log (t+1)]=(1/5).log {t/(t+1)}
=(1/5).log {x* / (x° +1)}, [ot=x]

1 dt 1 1
. ired integral [ == | ——— == [-—
required integra s J. ; = J. [t
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Example 11: Evaluate '[ s‘m L v
sin 4x
. sin x sin x dx
Solution: We have I = I dr=] ————
sin 4x 2sin2x cos 2x
B sin x dx B J‘ dx 1 cos x dx
4sinxcos xcos2x 4Jd cosxcos2x 4J cos2xcos® x
J‘ cos x dx I (Note)
T3] 15 x) (1-2sin” x)
Now put sin x =t so that cos x dx = dt .
I Y S— | N
4 q1-Aa-202) 4 @ -nel-)
1 2 . . .
== > -— dt ,resolving into partial fractions
4 -1 @ -1
1 ,[ dt 1 f dt
= 5 S
4] -1 4 tz_(i)
2
:l.llog —t_l _1 ! log t-(/32) (Note)
4 2 t+1) 4 2.(1/2) 1+ (t/N2)

R e A I tN2-1
8 B\ Tr1) ave B2+

8 sinx+1] 442

n /4
Example 12: Evaluate '[ V (cot ©) d.
0

n/4
Solution: Let I = J (cot 0) d6.

Put cot 8 = z2 so that — cosec> 0 d0 = 2z

—llo sinx—1 B 1 o \/25inx—1‘
5 5 V2sin x+1

(Meerut 1982 S; Delhi 74)

dz

-2zdz -2zdz —ZZdz.

or de = = =
cosec> 8 1+cot” 0 1+2z%

Also when 8=0 ,z =co and when®=7n/4,z=1.
1 _ oo 2
I:J‘ z( ZZ)dz:J‘ 2z i@,
oo 1

441 41

© 9
= *d
L 22 +(1/2%) :

|: Lh f(x)de=- ! f(x) dx:|

dividing the numerator and the denominator by 22
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r{1+<l/z2>}+{1—a/z2>}
- dz
1 22 +(1/2%)

Jw (1+(1/z%)} dz r (1-(1/z*)) dz
L {z-(1/2)P¥+2 N z+0/2)P -2

In the first integral putz —(1/z)=tso that[1+ 1/ 22)] dz = dt. The corresponding

limits for t are O to o= . In the second integral put z + (1 / z) = u so that
[1—=(/ zz)] dz = du. The limits for u are from 2 to o . Hence

At +J‘°° du

2 b 49
—L[tan_1 L]m+ ! lo u=v2 )
12 V2lo T2z | Pt ez,

1

o~ tan"! 0]+ ——| lim 1og”‘V2—1og2‘\/2
2V2|usoe T u+2 2+42

_ 1l (n_ Uy 1-(2/w| V2 (N2 -1)
_Tz(i 3)+Mbﬂlog{1+(@/u)} log{wmn)H

=— [tan”

<—4
S

=T 4 log 1 - log Y2
~5%5 " 5| gw
T 1 N2-DEH2-1) n 1 9
= - 1 - log (V2 -1
22 22 8 {(V2+ )(V2—1)} Vo vz cetEh
V2 V2
1 2-1 ——1 V2 -1).
wz V og (V2 -1 = g(V2-1)
Example 13: Integrate 1 / (sin x + sin 2x).
Solution: We haveI:J - dx' =J. - oix
sin x + sin 2x sin x + 2 sin x cos x

_J‘ dx
sin x (1+ 2 cos x)

sin x dx

(Note)

J‘ sin x dx J‘ _
sin® x (1+2cos x) 1- cos’ x) (14 2 cos x)

Now putting cos x = ¢, so that —sin x dx = dt , we get

o a dt
= J.(l—tz)(1+2t) J.(I—t)(l+t)(l+2t)

- J I 1 + 4 dt, [by partial fractions]
6(1-t) 20+t 3(1+2¢)
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—llo (1—t)+llo (1+t)—zlo (I+2¢)
65 5% 3%
1 1 2
=—log (1 -cos x)+§10g (1+cos x)—glog (1+2cos x).
/4 dx
Example 14: Evaluate J- ) > > T
0 cos™ X+ cos” x Sin” x +sin’ x
/4 dx
Solution: Let I = J
cos* x +cos® xsin® x +sin* x
B J"‘/4 sect x dx
0 1+ tan® x + tan® x~
dividing the numerator and the denominator by cost x
/4 (] 2 2 .
:j ( +Zan x)se; de, ['.'1+tanlx=se<:2 x].
0 tan” x + tan” x +1
Now put tan x = £ so that sec” x dx = dt .

Also when x =0 ,t=tan0 =0 andwhenx=n/4,t=tan%n=l.

1 2
1= J 41+—§ dt, [Note the form of the integrand]
4+l

Jl [1+(1/¢)]de
0 t2+1+(1/t2)7

dividing the numerator and the denominator by £

:J-l N+1/))dt (Note)
0 {t—(1/6)) +3

Now put t — (1/ ) = y so that {1+ (1/ )} dt = dy .
Alsowhent=0, y=—-eand whent=1, y=0.

—1J’0
= me +3 \/B[tan @}_

=(1/V3)[tan™' 0 = tan~! (= &0)]

=%[O_(_%nﬂ 233 %3

Example 15: Evaluate J e log (1 - xz) dx and deduce that

1 1 8 2
— —+...==—=—=log2.
1.5 2.7 39 2 3
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Solution: Integrating by parts regarding ¥ as the second function, we get
3 3
-2x.x
log (1- ¥2)1.x2 dr = {log (1- %)) -2 - | 252 4p
| tlog a2y {log ( )}3 I(l—xz)S
=§x log (1- x> 3j - 1_ (Note)

L toga- 2 311_)(2 31 e

1 I3 o+l o2 3
_3x 10g(1+x)+3x log (1 x)+310g{(1+x)/(1 x)} 3{x+(x /3)}
=%(x3 1) log (l+x)+%(x3 —l)log(l—x)—%{x+(x3 /3)).

jol 2 log (I—xz)dx:[%(xg +1) log (1+ x)

0
2 8
==log2-—- 1
3108275 (1)
Note that lim (x3 - D)log (1-x)
x—1
= lim (22 + x +1)- lim (x - I log (1 - x)
x—1 x—1
=3 hmlog(—) [formi]
=11/ (x=1) oo
=3.1ile"x)2=3-nm(1—x)=o.
x—>l—l/(x—l) x—1
1 1 4 6
. 2 _ _ 2 X
Again '[Ox log (1 X% dx JOXQ[ e 73 )dx
1 6 8
=—J (x4+x—+—+ )dx
0 2
s 7 9 !
S ——lii+L L+ ] (2)
5 27 3 N 1.5 2.1 39
Equating the two values of the given integral from (1) and (2), we get
1 1 1 8 2
—+—+—+...=——-=log 2
1. 7 39 9 3
. .
Example 16: Evaluate J 4)62—4-21 dx, and deduce that
0 x"+x +1
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Jr,r 1 1 ®
5°7 11 13 7293
Solution: Let I = Ixz—zldx: L/XZ)Z
P+l x2+1+(l/x)

Now putting x — (1 / x) =z so that{1+(1/x2)}dx=dz

and P l/x2 I/x)} +3=2%+3, we get
dz 1 .1 z 1 1 {x=01/x)}
I = —_ =t _ _—
I Zr3 V3o 3Tyt 3
= tan~! -1
V3 xV3
J'l X2+1 _L 1 X —11
0o Fed+1 V3 xV3 )

Again

1
=j A=+ 0+ 2+ ) dr
0

1
:J. (1—x4+x6—xlo+x12 —...)dx
0

@mprehensive Exercise 4

1. Integrate I/ (1+3¢* +2¢%)
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12.

13.

14.
15.

16.
17.

18.

-1

Integrate —;

_o+l
Ao
Integrate 1/ (x4 +8x° + 9).

o
Gt

Integrate

Evaluate J

Integrate 1 / {x (> +1)° }
Integrate 1/ (x4 + a4) .
Integrate 1/ (x4 +1).

Integrate 1 / {x (x" +1)}.

2
EvaluateJ‘ LZ
I x (1+2x)

/4
. Evaluate J \ (tan 6) d6.
0

COS x dx

n/2
Evaluate J .
0 (I+sin x) (2 + sin x)
CoS x dx

/2
Evaluate J .
0 (I+sin x) (2 +sin x) (3 +sin x)

Integrate (I1+sin x) / {sin x (1 +cos x)}.

Integrate 1/ {sin x (3 + cos® x)}.

Integrate sec x / (1 + cosec x).
Show that
2 dy T

-[0 ( +a®) (F +b%) (2 +c) (a+h)(b+c)(c+a)'

Show that the sum of the infinite series
1 1 1 1

- + - +..,a>0,b>0)
a a+b a+2b a+3b
a-1
can be expressed in the formJ. ;— and hence prove that
I+¢

1 1 1 1 1 1
l-— - —+——-—+...= |: +log2:|
4 7 10 13 16 V3

(7
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( nswers 4

1. log(+e*)—2log (1+2¢)+x

1 P oN2x+1
log
292 T P aN2x+1

3. tan ' {x—(1/x)}
1 4P -3 1 2 +3

4. t. - t.
614 T T 12 642 T TR
s L oaxX-l 1 —xd]
© o3 V3x 4 5 2 c41
6 ! + ! +llo L
T4 ) 202+ 2 82
7 1 tan-! - a? 3 1 o ¥ = 2ax + a?
Co24%42 N2 | 4342 2 ot a
g R B P —xV2+1

_t —_
Vo T2 a2 B v+l

1 x"
9. —1
n °5 [x” + l]

10. —£+ log (é)
15 5

V2 N2
“4 + 5 log (N2-1)

12. log (4/3)

11.

5 3
13. =log2-=1log3

2 %6779 %
14. —llog(cotlx)+lse02lx+tanlx
2 2 4 2 2

15. %log (tan%x)— {1/(4/3)} tan™! {(cos x) / 3}

16. leog {(I+sinx)/(I-sinx)}+1/{2 (1+sinx)}.
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( Objective Type Questions
O

Multiple Choice Questions

Indicate the correct answer for each question by writing the corresponding letter from
(a), (b), (¢) and (d).

1. Toevaluatetheintegral ofl/ (ax2 + bx + ¢), we put the denominator in the form

(a) b{(x + o) +p*} (b) a{(x+a)” £p*}
(©) c{(x + ) £ B*} (d) None of these
2. The value of'[L i
9x* —12x +8)
1 -13x-2 “13x-2
(a )6 an 5 (b) 6 tan 5
(c) é an”! 3x2+ 2 (d) None of these

Cos x dx

n/2
3. The value of .[ is
0 (I+sinx)(2 +sinx)

(a) log 4 (b) log%
4
(c) log 3 (d) log 3
Fill in the Blank(s)
Fill in the blanks “...... 7 s0 that the following statements are complete and correct.
1. The value of the integral J. deis .........
S

2. The value of the integral I— i ...
& x(xS +1
dx
3. The value of the integral | ————1is .........
5 j@%+x

True or False
Write “T" for true and “F’ for false statement.

1. The integral J‘ﬁ is evaluated by the method of successive reduction.
+

Ld)(ls2l o xt]

2. The value of thej = ) xz T
x +x° + +x+

n
3. The value of the J.L is l log a .
{x(x"+D} n " +1
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Multiple Choice Questions
1. (b) 2. (a) 3. (o)

Fill in the Blank(s)
-1 _l l xS
1. tan {x x} 2. = log{x5 +1}
3. llog {(Zx _ l)}
3 (x=1)

True or False
1. T 2. F 3. T
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Integration of Irrational
Functions

a1 Integration by Rationalization

In many problems rationalization is brought about by multiplying a similar quantity
both in numerator and denominator. Sometimes this quantity may differin sign.

lllustrative Examlnles

Example 1: EmluateJ. \/[11+ x )dx

- X

Solution: Multiplying the numerator and the denominator by \ (1 + x) ,we have the
given integral

V(A + x) \/1+x) B (I+x)
I \/(l— 1+x)dx_-" V(1-1)

o el s SRR e

=sin”! x—EJ. (1—)(2)_1/2 (= 2x) dx
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= (sin™! x) — % {d- x2)1/2 1}/ (1/2), [By power formula]
=sin™! x—\/(l—xz).
Example 2:  Integrate 1/ [x + * -1].

Solution: Rationalizing the denominator, we have

dx (r=V (> =1}
J[xw(xz—l -[ (=) o
=j —1)]dx=J xdx-j V(2 -
=% 2—%x\/(xz—1)+§llog{x+\/(x2—l)}.

1
(ax+b)V(ex +d)

32 Integration of

In such problems, put cx +d = t2, so that ¢ dx = 2t dt ; then the fraction reduces to a

form which can be easily integrated.

lllustrative Examlales

Example 3: Integrate 1 / [(x +2) Vx+1)].

Solution: Put(x+1)=t 2 so that dv =2t dt .

dx _ 2tdt dt
j(x+2)V(x+l)_j (t2+l).t_2j t2+1

=2tan" ' t=2tan"! N(x+1].

2
Example 4:  Evaluate J _ ode
(x=DV (x+2)

Solution: Put (x+2)= t2 sothatdy=2tdt Alsox=t>-2.

Lae ¢ (222 2¢edr ¢ ottt -4t? 44
J-(x—l)\/(x+2)_-.. (t?-3).t _2J t? -3 a

—2J 2 141/ (2 =3))dt,

dividing the numerator by the denominator
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A0

=

1 1
Vu+1) n
1

Again lim #, =lim — =0.

Nn

Hence by Leibnitz’s test, the given series £ [(~ )"~ /v n] is convergent.

—1 n-1
% =X \]Lis divergent because £ (1/ n")is divergentif p < land here
n n

= U, <u, foralln.

Now Xz

- 1 5
2
Hence the given series is semi-convergent or conditionally convergent.
Example 43:  Examine the convergence and absolute convergence of the series

- (_ l)r:+] n

o (Kashi 2013)
n=lp= 41

Solution: Obviously the given series is an alternating series
H — Uy + Uy —uy +...,u, >0 for all n.

2’ > 0 for all n.

Here u,, =
n” +1

n+1 n 0t —n+l

Also u = - -
m+D% +1 n2+1 2 +D[n+D? +]1

—u < 0 for all n.

n+1 i

Thus u,, ., < u, foralln.
Again  lim u, = lim 2” = lim 1 5= =0.
n® +1 n[l+(1/n")|

Hence by Leibnitz’s test, the given series converges.
Now we shall test the given series for absolute convergence.

Consider the series Zu,,” of positive terms, where

. ,_‘(—I)”Jr] ”|_ " - | |
S I e T )
Take v, = 3, Then lim 22 = lim % =1 which is finite and non-zero.
n v, L+ (1/n")

Hence by comparison test Zu,” and Zv, are either both convergent or both
divergent. But for v, p = 1so that Zr, is divergent. Hence Z u,,” is divergent.
Hence the given series is not absolutely convergent i.e., it is conditionally
convergent.

Example44: Show that theseries L (- 1) [\ (712 + 1) = nlisconditionally convergent.

Solution: The given series is an alternating series £ (- 1)" u,,, u, > O for all n.

. N2 + )= n)[N@n? +1) +n]

\f(u2 +1)+n

Here u, = n? +1) -
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(53
ZQEN —t+{1/2 \/3)}10g{(t—\/3)/(t+\/3)}}
T2 1 V(r+2)-3]
—zf_if___V“+2y+2V3bgVQ+2)+J3Y

55) Integration of 1 / {(ax9 + bx + c) \/(Ax + B)}

Such fractions are integrated by putting Ax + B = £

[llustrative Examlales

Example 5:  Integrate 1/ {(x> —4)\ (x +1)).

Solution: Putx+l:t2,so that dy =2t dt . Also x> =t% — 1.

J' dx =f 2t dt
-V (xr+]) (t?-1> =2% 1t

dt dt

t2-1+2)(t2 —1—2)_2-[ 2+ (@t?-3)

1
,[ [( 21 3) _( 21 1)J dt , by partial fractions
t” = £+

1 Var+D=vV3] 1
1g{\/(x+l)+\/3} Etan (V(x+1)}.

@mprehensive Exercise 1

1. Integrate Vx/(1+x).
Integrate V[(x=1)/(x+D].
dx
Eval _—
valuste [ T+ x) +Vx
dx

4. EvaluateJ- o +\/(x+b).

5. EvaluateJ- i\/(x_l]dx.

x+1
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dx

6. Evaluate J m .
dx

7. Evaluate j m .

8. Integrate 1/ [(x-3) V(x+2)].

9. Integrate1/[(2x +1) \(4x+3)].
x+1

(x=DV(x+2) e
11. Integrate e /{(x =D (x=2)).

10. Evaluate I

12. Integratel/{(x2 +1)Vx).
13. Integrate 1/ {x2 V(x+1))
14. Integrate (x +2) / {(x* +3x +3)V (x + )}.

("’—_—‘"

(f\nswers 1

. 2Vx—2tan ' Vx
2. \/(x2 —1)—COSh_1 X

3. 2.qenp2_2pn

3 3

2 3/2 3/2
4. 3(b—u)[(x+b) (x+a)y’=]
5. cosh ! x—sec ! x

V(x+3)-1

6. logm

2 S IN@E-pl
7. \/3tan L 73 J

1 [V@+2)-A5
. \/_slog{x/(x+2)+\/5}

1, V@x+3)-1
% s Ta T

V(x+2)-V3]

1
— log —— " 2
V3 8 V(xr+2)+ V3

11. %(x—Z)S/Z+%(x—2)3/2—6(x—2)1/2 +22 tan” ! (¥ (x = 2)}

10. 2{\/(x+2)+

1 aqx=1 1 rx—\/(Zx)+ﬂ
12 e T 2x/2log[x+\/(2x)+1
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13, _\/(x+l)+llog{\/(x+l)+l}
X 2 Vr+D)-1
2 _1[_ X _l

34 Integration of 1/ \/(ax? +bx +¢)

Wecanexpressax2 +Dbx+c¢ asa{x2+(b/a)x+(c/a)}

l 2a a  4a* ]
or a{(x+%)2 4”;;2172}

This is of the form a {(x + OL)2 + [32 ).

Thus the given integral can be reduced to one of the standard forms

d dx d
J.\/(xzia2)7-.. (xz—az)orj V& —-2)

So it can be easily evaluated.

[llustrative Examlales

Example 6: Integrate 1 / N (2 + x — 342).

Solution: We have I ﬁ = \/% I dx
+x—

3736

S T

)
x__
=_—sin”! ( 6 :Lsirf1 (6x_1)~

V3 5/6 V3

Note: Remember that I 7 ”i" 5 —sin~! (x - b)'
a’ —(x - 4
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Example 7: Integrate 1/ VA-x- x2).
dx dx
Solution: We h =
oo e avej V(- x-2?) J‘\/{l—(xz—irx)}

35 Integration of \/(ax? +bx +¢)

\/ (ax2 + bx + ¢) can be integrated by reducing ax* + bx + ¢ to the forma {(x+ oc)2 + |32 1.

The given integral can then be easily evaluated by applying one of the following
standard results.

'[ \/(x2 +a2)dx=%x(x2 +a2)+%a2 sinh™! (x/a)

=%x\/(x2+a2)+%a2 log {x+ V(2 + a®)}:
| \/(xz—uQ)dx=%x\/(x2—aZ)—%aZ cosh™! (x / a)
=%X\/(x2—a2)—%a2 log [x + (% —a?)];

and | \/(az—xz)dx=%x\/(a2—x2)+%azsin_1(x/a).

Note that in each result the sign before a? in the second term is the same as the sign

before a* in the expression under the radical sign.

[llustrative Examlales

Example 8:  Integrate \ (x2 —x+1).

2
Solution: We haveJ \ (x2 —x+1)de= J {(x - %) + %} dx, [formj (x2 + a2) dx |

otV |(s-a] <2 (B {(-2) /(345

(x_l)wﬁ —x+l)+§sinh_1 (@x-1)/V3)
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Example 9:  Integrate \ (4 — 3x — 2:2%).
Solution: We have [ (4= 3x-2) dv =2 | V(Z—%x—xz)dx
_ 2.3 _ 9 _2:3..2
sz V(2 (x2+ ¥} dx dzJ‘ 12+ (x2+2x+16)}dx

—\/2J\/{ ( )}dx [form [ V(@ - %) ]

41 . 3
_\/2.[ \/(R_tz)dt,puttmgx+z—tsothatdx-dt
41 41 . _
—yo.L (__tz) V2. —sin {r/(V41/4
2\/ = 4 32sm {t/( /4)}
x+§ 2 x+§
2| ﬂ_(HE) 2 A 4
2 16 4 32 V41/4

L ENPRPIPEIN 41V2 1 (4r+3)
8 32 V41

=+2.

@)mprehensive Exercise 2

1. Integrate 1/V(2x* —x +2). 2. Integrate 1/ vV (2x% +3x+4).
3. Integrate m . 4. Integratel/ V(4 +3x- 2x2) .
5. Integrate 1/ (3x - K- 2). 6. Evaluate J V{(x=1)(2—-x)}dx.

/-——‘

( Answers 2

1 . 1 [4x-1] 1 4x+3
1. \/—Zsmh L\/ISJ 2. \/—Zsmh {\/23}

| 2x +1 ) SR 4x -3
3. Slnh ( \/3 ) 4. \/—25111 (WJ

6. l(2x—3 - -2+ +Lgin @2x-3)
4 8
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(For Trigonometric Functions)

Reduction Formulae

51 Reduction Formulae

A reduction formula is a formula which connects an integral, which cannot
therwise be evaluated, with another integral of the same type but of lower

degree. It is generally obtained by applying the rule of integration by parts.

52 Reduction Formulae for jsinn xdx and jcosn xc]x, n

being a +ive integer

(a) Let In=J.sin"xdxorlnzjsin"_lxsinxdx. (Note)
Integrating by parts regarding sin x as the 2nd function, we have
I,=sin""!x.(=cos x)—J.(n —1)sin”"? x.cos x.(- cos x) dx

2

=—sin" ! x.cosx+ (-1 Jsin "=2 y cos® x dx
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=—sin" ! x.cosx+ (-1 J-sin =2y (I-sin® x) dx (Note)

=—sin""! x.cosx+(n—l)J‘sin"_2 xdx—(n—l)Jsin"xdx

=—sin”"! x.(:osx+(n—l)J.s.in"_2 xde—m-11,.

Transposing the last term to the left, we have

or

or

I,(0+n-T)==sin" "V x.cosx+(n—-11, 5,

[ 1,-o =J sin "2 x dx]

nl,=—sin" "V xcosx+m-1)1I, 5
sin” ! xcosx n-1
Inz_ + In—2'
n n
. ) n-1¢. ,_
Jsm”xdx=——sm" I x.cos x+ jsm" 2 x dx.
n n

(Bundelkhand 2008; Agra 2014)

(b) Let I, =Jcos " xdx or 1,1:"‘Cos”_l x.cos x dx.

Integrating by parts regarding cos x as the 2nd function, we have

"=2 x .(sin x).sin x dx

Inzcos"_lx.sinx—'[(n—l)cos
_ n-—1 . n-2 .2
=Cos x.sinx+ (n—1) | cos X .sin” x dx
=cos "~ x.sinx+(n—l)j cos "2 x (1-cos® x) dx

=cos ! x.sir1x+(n—l)'..cos”_2 xdx—(n—l)‘[cos"xdx

=cos" N xsinx+(n-01I,_o—(m-11,

Transposing the last term to the left, we have

or

n—1

I,(1+n-1)=cos x.sinx+(m-11,_9

nl,=cos" ' x.sinx+(n-01I, o.

cos "1 xsin x + n-1

'[cos"xdx= J.cos"_2 x dx.

n n

55 Walli’s Formula

n/2
To evaluate J

n/2
sin” x dx andj cos " x dx.
0 0

Proceeding as in the previous article, we have
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sin” x dv = —

.on—1
sin xcosx n-1 o
J. + J. sin” "2 x dv.

n n

1

n/2
n/2 sin” ! xcos x n—1 n/2
J sin” x dx = — + '[ sin” "2 x dx
0 n o n 0

—1 ¢m/2
—0+2 IJ sin” =2 x d. (D)
n 0

Putting (n — 2) in place of n in (1), we have

n/2 -3 /2
J. sin" 2 ydr=2 2J‘ sin” =% x dv.
0 n-— 0

Substituting this value in (1), we have

/2 —1 — n/2
'[ sin” x dr =2 2 3 . sin~% x dy
0 n n-2 Jo
—1 — _ n/2
. =3 s sin” =0 x dr. .(2)

n n—2 n—4'0

Now two cases arise viz,, n is even or odd.
Case I: When n is odd.

In this case by the repeated application of the reduction formula (1), the last integral
of (2) is

n/2
'[ sin x dx =[—cosx]g/2=l.
0

Hence when 7 is odd, from (2), we have

n/2 _ _ _ n/2
J- sin" xde=" Lop=3 n->5 gJ. sin x dx
0 n n-2 n-4 3Jo
_n—l.n—S‘n—S.m.Z.l

n n-2 n-4 3
_(m=)(m=-3)...... 4.2.1

nn-2)...3.1

Case II. When 7 is even.

In this case the last integral of (2) is

/2 /2
J sinoxdxzj dx:[x]g/2:£~
0 0 2

Hence when 7 is even, from (2), we have

. n->5
sin” x dx = . )
0 n n-2 n-4

/2 —_ —_ /2
j nol n=3 I sin” x dx
0

M| —

EN
»
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_noln=3 w5 3 1ox
n n-2 n-4""4 2 2
_(m=-)(®n-3)..3.1 ©
nn-2)...4.2 2
/2
If we evaluate J cos " x dv, we get the same results.
0
/2 /2
J- sin"xdx:J- cos” x dx. (Note)
0 0

Note: Walli’s formula is applicable only when the limits are from 0 to % .

Illustrative Examl)les

Example 1: Establish a reduction formula forj sin ™ (2x) dx.
Solution: Let I, = j sin” 2x)dx or I, = J sin "~ (2x) sin (2x) dx.
Integrating by parts regarding sin 2x as the 2nd function, we have
I,=sin""' 2x) |:— %COS 2le - I {(n=1)sin”""2 2x-cos 2x.2 }.(— %cos 2x)dx
= —%sim”_1 2x.cos 2x + (n — l)'[ sin” ™2 2x.cos? 2x dx
= —%sinn_1 2x.cos 2x + (n — I)J sin =2 2x . (1 - sin® 2x) dx
:—%sinn_1 2x.cos2x+(n—l)J sin 72 2xdx—(n—l)J. sin” 2x dx
= —%sin 1oy cos2x+ (=101, 9 —(n-11,

Transposing the last term to the left, we have

nIn=—2lSinn_l 2x.cos2x+m—-1)1,_9

sin” ' 2x . cos2x n-1

or I,=- + I, _5,is the reduction formula.
2n n
/2 . |
Example 2:  Prove that I sin® ™ x dx = % I
0 (2" mly 2

Solution: Here 2m is even. Hence from article 5.3 (Case II), we get

/2 _ -
J‘“ 2m @m—1) 2m 3)..31 & (Walli’s formula)

sin”" x dx =
0 @Cm)y@2m-2)...4.2 2
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2m@2m-1)@2m-2)..3.2.1 n
(2m@2m—-2)...4.2) 2

|_ 1-83 '__i} \

[Multiplying Nr. & Dr. by 2m 2m - 2) 2m - 4)...4 .2]

_ 2m)! n
2" mm-)(m-2)....2.17% 2
_ (2m)! 53
2" my 2
2a 9/2
Example 3: Emluatej. T
0 V(@2a-x)

Solution: Put x = 2a sin” 0 ,so that dx =2a.2 sin 0 cos 0 46.
Also when x =0, sin? 9 =0 ie.,0=0

and when x =2a, sin? 0=1lie,0=m/2.

Then

J‘2” 72 dx J‘“/Z (2a sin® 0)°/?.4a sin © cos 6 dO
0 V(Q2a-ux)

- 0 V(2a-2a sin” 0)

_ J‘"/2 (2a)9/2.4a sin'” 0. cos 0 40
0 (2@)1/2.Cose

n/2
- 2a)* . 4a j sin'® 0 4o

(=)

2
10

63a° 1 '

—64a° - I
2 8

N
W
N | —

z
8

54 Reduction Formulae for J. tan" xdxand I cot” xdx

(a) Wehave.[ tan”xdx:J. tan" "% x.tan® x dr
:J. tan” "2 x.(sec? x — 1) dx

=J tan "2 x . sec? xdx—J tan "2 x dx

-2 +1
tan x)" _
J(tanx) 7 )2 1 —J.tannzxdx
n—2+
-1
tan” 7 x _
or J.tan"xdx= . —J.tan" 2 ydx,

n_

which is the required reduction formula.

Application: Evaluate J tan® x dx .

Putting n = 4 in the above reduction formula, we have

(Note)




Kaiafwe's T.B. Integral Calculus

ra!': !i 1'84‘
'[tan4xdx=%tan3 x—jtan2 xdx=étan3 )(—J-(sec2 x—1)dx

I 3
=§tan x—tanx+ x.

(b) We haveJ.COt ”xdx=jcot "=2 x .cot” x dv
=Jcot "=2 x (cosec? x — 1) dx

:I cot =2 x . cosec 2 xdx—fcot =2y dy

1

cot x)"~ _
=—%—J‘C0t" 2y dv
1
-1
cot " _
or cot" x dv = - N —Jcot" 2 x dx,
n_

which is the required reduction formula.

Application: Putting n=5 in the above reduction formula and applying it
repeatedly, we have

jcots xdx=—21c0t4 x—jcot3 x dx
1 4 I 9
=——cot” x—[-=cot x—.[cotxdx]
4 2

2

1 1 ‘
= —cot* x+=cot x+.[cotxdx

2

1 4 1 .
=——cot” x+—cot” x +logsinx.

55 Reduction Formulae for .[ sec” xdx and_[ cosec” x dx

(Bundelkhand 2011)

(a) We have I, =J'sec‘l xdx=Jsecn_2 x.sec? x dv. (Note)

Integrating by parts regarding sec 2 v as the 2nd function, we have

I,,zsec“_2 xtanx—J(n—Z) sec "3 x sec x tan? x dr
=sec" 2 xtanx—(}4—2)‘[56:0“_2 x (sec” x — 1) dx (Note)
= sec " 72 xtanx—(n—Z)Jsecnxdx+(n—2)J.secn_2 x dx.

Transposing the term containing J. sec " x dx to the left, we have
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(n—2+l)Jsecnxdx:secn_2 xtanx+(n—2)Jsecn_2 x dx
or (n—I)J‘secnxdxzsec“_2 xtar1x+(n—2)jsec“_2 x dx.

Dividing both sides by (n — 1), we have

sec "2 ytan x +n—2

n-1 n-1

2

sec " 7% x dx,

J sec " xdx =
which is the required reduction formula.
(b) Tofind the reduction formula forj cosec ' x dx ,proceed exactly in the same way

as in part (a). Thus, we get

n-2
cosec X cot x n-2 _
J-cosec Txdy = — I + J.cosec n-2 y dy,
n— n—

as the required reduction formula for Jcosec " x dx.

5.6 Reduction Formula for J sin” xcos” xdx

(Kanpur 2014)

Let Imnz.[sin"’xcos"xdx
:Jsin " xcos " xcos xdx:Jcos =1y (sin™ x cos x) dx.

Integrating by parts taking sin " x cos x as the second function, we get

s om+l
sin X _ n-1 . - .
I, ,=———cos" ! x+ J. sin”*! x cos "2 xsin x dx
’ m+1 m+1
sin” !y 1 n—1 9 9
=——cos" T x+ Jsin”’xcos”’ xsin” x dx
m+1 m+1
sin” !y 1 n—1 9 9
=—— cos" x+ Jsin”’xcos’i_ x.(1-cos” x)dx
m+1 m+1
sin”*xcos” ' x n-1 n-1
= + Jsin’"xcos"_Exdx— I, .
m+1 m+1 m+1 77

Transposing the last term to the left, we have

n-1 sin”*! x.cos” 'y n-1
Im n 1 = + mn—2
’ m+1 m+1 7

m+1

or
mn—2-
1

m+1 m+

m+n sin”* ycos" My n-1
m,n = +
m+1
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Thus the required reduction formula is

sin” ! x cos " x N (m=D1, ,_o

m+n m+n

I

mn =
Note: 1f we write I,,, , = J. sin”" xcos " x dx
:Jsirl"’_1 x.(cos” xsin x) dx,

then integrating by parts regarding cos " x sin x as the 2nd function, the reduction

formula can be obtained as
sin” ! x. cos™” 1 x m—1
I = - + Im_2 n-
m+n m+n 7

Similarly other four reduction formulae forj sin™ x cos " x dvmay be obtained as

sinm+1xcos’1+1x+m+n+2
n+1 n+1

Im,n:_ m,n+2.

[To obtain this reduction formula put (n + 2) in place of » in the reduction
formula obtained in 5.6 and adjust the result accordingly]

sin " *! x cos " *! x+m+n+2

Im,n= m+2,n
m+1 m+1
sin” ™ xcos" ' x m-1
Im, n= " + m-2,n+2
n+1 n+1l
sin” ! xcos" 'x -1
Im,n = + Im+2,n—2 .
m+1 +1

[This reduction formula has been obtained in 5.6 at the stage
we applied integration by parts]

lllustrative Examl)les

Example 4: EmluateJ. _d4o_

sint =@
2

Solution: We have j L = J cosec 4 9 o
sin? 5 0 2

=2J‘ cosec xdx,putting®=2x.

n-2
cosec xcotx n-—2 -
But Jcosecnxdxz— 1 + l-[ cosec "2 x dx.
n-— n-—

[Derive this formula here]
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Putting n =4, we get
2
J. cosec 4 ch)c=—LXC0tx+%J‘cosec2 x dx
3 3
= —lcosec2 xcotx+g(—cot x).
3 3
Hence the given integral
=2J cosec ¥ xdx=—§cosec2 x cot x—%cot x
=—gcoseczlﬁcotle—icotle. [ x=0/2]
3 2 2 3 2
Example 5:  Evaluate J 1+ )(2)3/2 dx.
Solution: Put x=tan,so that dx = sec 204d0.
Then J (l+x2)3/2dx=J sec2esec39d9=J sec” 6 d.

Now we shall form a reduction formula forj sec " 0 d6.

Proceeding as in article 5.5 (a), we get

sec“_26t3n9+n—2

J.sec“9d9= J.secn_z()de.

n-1 n-—
J sec” Gdezlsecg’etan9+gj sec> 0 do
4 4
:lsec3Gtan6+§[lsec6tan9+lj secede]
4 412 2

=—sec’ 9tan9+%secetan6+%log (sec 6 + tan 0)

AN = ] —

[(1+x2)32 .x]+%x(l+x2)l/2 +%log N1+ )

@mprehensive Exercise 1

Evaluate the following integrals :

6 n/2 6
1. '[ sin” x dx. 2. J. sin” x dx.
0
n/2 n/2
J cos’ x dv. 4. j cos' x dr.
0 0
/4 a
5, J' tan® 0 do. 6. _[ P 2ad -2 dv.
0 0
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7. J-SCCBXdX
/4 3
8. J sec ~x dx.
0
“ 9 25/2
9, j @ + 21" d.
0
/4
10. _[0 sin 0 cos* 0 d6.
11. jtan6xdx.
a 4 4
12. Showthat [ —5— =20 T
0 V(a" - x7) 16
/4 1
13. Ifl,= J tan " x dx, show that [, + I, = — and deduce the value of I5.
0 —
(Kanpur 2005, 12; Avadh 06, 11; Bundelkhand 06; Purvanchal 14)
n/4
14. IfI =J- tan” x dx, prove that n(I,,_; + 1 =1.
" P it + L) (Kanpur 2005; Avadh 06)
r"’—_—‘"
( Answers 1
b SR
1 .5 5 .3 5 . 5
1. ——sin’ xcos x — —sin” X cos x — — sin x cos x + — x
6 24 16 16
2 2 3,128 PRLEL
32 315 512
1 1 1 1
5. —{log2-— 6. —|log 2 — —
2[°g 2} 2[0g 2}
7. lsecxtanx+%log(secx+tar1x)
1 1 a® 3
8. —V2+—log(N2+]) 9. —[67V2+15log tan | ==
2 2 48 8
10. i+l ll.ltansx—ltan3x+tanx—x
48 64 5 3
1 1
13. —|log2—-—
2( s )

57 Gamma Function

The definite integral Jw e " x" Uiy is called the second Eulerian integral and is
0

denoted by the symbol T (1) [read as Gamma n].




( Chapter )

Improper Integrals
(Infinite Integrals)

1  Some Definitions

1. Infinite Interval: The interval whose length (range) is infinite is said to be an
infinite interval. Thus the intervals (a,e0), (—eo,b) and (— oo, ) are infinite
intervals.

2. Bounded Functions: A function f (x)is said to be bounded over the interval I if
there exist two real numbers a and b (b > a) such that

a< f(x)<bforallxel.
Afunction f (x)is said to be unbounded at a point, if it becomes infinite at that point.
Thus the function

S @=x/{x-1)x=-2)}
is unbounded at each of the points x =land x =2.
3. Monotonic functions: A real valued function f defined on an interval I is said
to be monotonically increasing if

>y=f@)>f(y) ¥ xyel
and monotonically decreasing if

»>y=f)< f(y)V¥x, pel.
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A function f defined on an interval I is said to be a monotonic function if it is either
monotonically decreasing or monotonically increasing on 1.

For example the function f defined by f (x) = sin x is monotonically increasing in the

. 1 . L. .
interval 0 < x < 5 n and monotonically decreasing in the interval 5 n<x< T

b
4. Proper Integral: The definite integral J f (x) dx is said to be a proper integral if
a

the range of integration is finite and the integrand f (x) is bounded. The integral
1 sinx

2
J-(;t/ sin x dx is a proper integral. Also JO

dx is an example of a proper integral
x

lim sinx

1.
-0 x

because

b
5. Improper Integrals: The definite integral j f (x) dx is said to be an improper
a

integral if (i) the interval (a,b) is not finite (i.c., is infinite) and the function f (x) is
bounded over this interval; or (ii) the interval (a, b) is finite and f (x)is not bounded over
this interval; or (iii) neither the interval (4, b) is finite nor f (x) is bounded over it.

6. Improper integrals of the first kind or infinite integrals: A definite integral
b

J f (x) dx in which the range of integration is infinite (i.e., either b = e or a = — e or
a

both) and the integrand f (x)is bounded, is called an improper integral of the first kind

or an infinite integral. Thus JO —— Isanimproper integral of the first kind since the
I+ x

upper limit of integration is infinite and the integrand 1 / (1 + x2) isbounded. Similarly

0 :
J._ ¢ * dris an example of an improper integral of the first kind because here the lower

limit of integration is infinite. Also I is an improper integral of the first kind.

dx
1+ 22
In case the interval (a, b)isinfinite and the integrand f (x) is bounded, we define

@ [T f@ar= [ fway

X —> oo

provided that the limit exists finitelyi.e.,the limit is equal to a definite real number.
y b 3 b

(i) [ f()de= [ Fwax

provided that the limit exists finitely.

i) [ f(x)dv= jfxl f(x) dx +

lim
X—> oo

lim
X9 —> o

lim &)
X] —> c f (X) dx
provided that both these limits exist finitely.
b
7. Improperintegrals of the second kind: A definite integralj f (x) dxinwhich
a

the range of integration is finite but the integrand f (x) is unbounded at one or more
points of the interval a < x < b, is called an improper integral of the second kind.
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Thus j b de
0 (x=2)(x-3)
1
and JO xiz dx are improper integrals of the second kind.

In the case of the definite integral

[} f(0de

if the range of integration (a, b) is finite and the integrand f (x) is unbounded at one
or more points of the given interval, we define the value of the integral as follows :

(i) If f (x)isunbounded atx = bonlyi.c.,if f (x) - e as x — bonly, thenwe define

[} f@ac= "m0 170 p

e—0

provided that the limit exists finitely. Here € is a small positive number.

(ii) If f (x) > eoas x — a only, then we define

[ r@ae= "0 p @

e—>0 Ja+e

provided that the limit exists finitely.

(iii) If f (x) = eoas x — ¢ only, where a < ¢ < b, then we define

_ lim e-e lim b
[ r@a= 0 @ S p s

provided that both these limits exist finitely.

(iv) If f (x)is unbounded at both the points a and b of the interval (4,b) and is
bounded at each other point of this interval, we write

[} foyae=[ fdes ['f (de

where a < ¢ < b and the value of the integral exists only if each of the integrals on the
right hand side exists.

2 Convergence of Improper Integrals

When the limit of an improper integral as defined above, is a definite finite number, we
say that the given integral is convergent and the value of the integral is equal to the
value of that limit. When the limitis eo or— oo, the integral is said to be divergent i.c.,the
value of the integral does not exist.

In case the limit is neither a definite number nor e or — e, the integral is said to be
oscillatory and in this case also the value of the integral does not exist i.¢.,the integral is

not convergent. We can define the convergence of the infinite integral J f (x) dx as

follows :
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Definition: The integral J-oo f (x) dx is said to converge to the value I, if for any arbitrarily
a

chosen positive number €, however small but not zero, there exists a corresponding positive number
N such that

j:f(x)dx—l

< efor all values of b= N.

Similarly we can define the convergence of an integral, when the lower limit is infinite,
or when the integrand becomes infinite at the upper or lower limit.

[llustrative Examl)les

Example 1: Discuss the convergence of the following integrals by evaluating them

. o dx [ dx
(l) J‘I W: (ll) Jll X3/2 :
Solution: (i) We have

< dr  lim X ﬁ
-[1 Nx x> oo -[1 \/x,(Bydef.)

. . 1/27%
_ lim o2 g lime e
X— oo J1 X—>o |1/2 |

= im0
X — oo

Thus the limit does not exist finitely and therefore the given integral is divergent (i.e.,
the integral does not exist).

(i) We have

© dr _ lim x o dx
-[l xg/z_xﬁoo 1 x3/2’ (BYdﬁf)
X

_lim X _3/2 5, lim 12 _lim [ 2:|x

= X dx = = -
x— oo J1 Xeo | —1/2| x> e Vaxh

T

- [—l+2]=2.

X —> o0 \x

Thus the limit exists and is unique and finite; therefore the given integral is convergent
and its value is 2.

Example 2:  Test the convergence of JON ¢ " de, (m>0).

Solution: 'We have jow eV dy = xlin Ooo ¢ dy, (by def.)

X
_ lim |e™* _ lim _l(gfmx_l)
X—> oo —m o X —> oo m
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Thus the limit exists and is unique and finite, therefore the given integral is convergent.

4a dx

Example 3: Test the convergence of j() )
+4a’

o e 4adx lim * 4adx
Solution: We have IO T a7 T e J0 T (By def.)

. X . X
= lim [451 . i tan~! i:| =2 lim l:tarfl i]
X —> o 2a 2a ]y X —> o0 2a ]

_g lm [tan—ll—o]=2.[tan w]=2. T
2a 2

Thus the limit exists and is unique and finite; therefore the given integral is convergent.

0 0
Example 4:  Test the convergence of (i) J._ e dx; (i) J_ e dx.

Solution: (i) We have
0 . i 0
[ efar= lim ¢* dv, (By def.)

X —> o0 J—x

lim x0 _  lim X T_M_01—
= e]_x_x—wo[l et ]=[1-0]=1

Thus the limit exists and is unique and finite; therefore the given integral is convergent.

( li ) )
(i) We havej L xl_)m O dv, (By def.)
— oo oo J—x
. _ .10 .
= hm |:€ k:| = — hm [b’o —Ex ]:oo,
X—> oo | —] X —> oo
X

Thus the limit does not exist finitely and therefore the given integral is divergent(i.e.,

the integral does not exist).

Example 5:  Test the convergence of J.jo li

.
T (Kanpur 2008; Gorakhpur 11)
Solution: We have

oo

e 1+xZ j“’ 1+ 42 '[ 1+x

lim 0 dx lim J-
x— o0 Jox 1442 x—>oo 0

1+;(2

-1 ]0 lim 1

lim - X
= tan ~ x|Z . + tan "~ x
= oo [ X ¥ —> oo [ ]O

im0 —tan ' = 9]+ ™ [an~! x-0]

x> oo X — oo
-(-n/2)+n/2=m.
Thus the limit exists and is unique and finite; therefore the given integral is convergent.

1
Example 6: EmluﬂteJ‘ LS
0~y (Gorakhpur 2010)
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Solution: Inthe givenintegral, theintegrandl / v xbecomes infinite at the lower limit

x =0. Therefore we have

I dx lim ! dx lim 1
= —_— = 2
-[0 Vx €20 Jo+e |y e—>0[\/x]8
lim
= T 2-2Ve=2

Hence the given integral is convergent and its value is 2.

1
Example 7: Evaluate JO e

V(- x)
Solution: Here the integrand i.c.,1/ (1 - x) becomes unbounded i.c., infinite at the

upper limit (ie.,x =1).
J‘l de  _ lim pl-e  dr
0N1-x) &€—0Jo V(- x)

_ lim _al-eo limo _
—8_)0[ 21 )l 8—)0[ 2Ve+2]=2,

which is a definite real number. Hence the given integral is convergent and its value is 2.

1
Example 8: Emluatej | i;
-y

Solution: Here the integrand becomes infinite at x =0 and —1<0 < L.

= +

-1 42 e—0 J-1 x2 g >0
_ lim |:_1:|_F’+ lim |:_1:|1
e=>0[ x]_| &€-0L| xlg

lim |1 lim 1
= — =1+ -1+— -
e—0 |:s ] s’—>0[ s’]

Since both the limits do not exist finitely, therefore the integral does not exist and is

J‘l dc _ lim (-¢& dv  lim jgl %

divergent.

@)mprehensive Exercise 1

Evaluate the following integrals and discuss their convergence :

oo dx oo dx

1. jl = 2. j3 oo
® 2x oo dx

3- J.O 6 dx. 0 m'

5. " sinhds, 6. [ coshxds.
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—® Nk =

[

53 N

Jmo cos x dv. 8. I e Y dv
0 — oo
o0 dx 1 dx
—_— . 10. —
J. —o 2 +2x+2 J. 0 4
1 1
I 0 = 12. I ! de§3 '
I-x - (Gorakhpur 2011)
@swers 1
o, divergent 2. 1, convergent 3. oo, divergent
oo, divergent 5. —oo, divergent 6. oo, divergent

Oscillates and so not convergent

oo, divergent 9. =, convergent
12. 6, convergent

oo, divergent

10. o, divergent

Multiple Choice Questions

@Djective Type Questions

Indicate the correct answer for each question by writing the corresponding letter from (a),

(b), (¢) and (d).
The integral joo ﬁ is
N

(a) convergent
(c) uniformly convergent

0
The integral j_ etdx is

(a) convergent
(c) uniformly convergent

Value of the integral jio % is
(a) /2

(c) m

Value of the integral JOI \/(ldx—x) is
(a) 2

(b) divergent
(d) none of these

(b) divergent
(d) none of these
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Fill in the Blank(s)
Fill in the blanks “...... ” so that the following statements are complete and correct.
b
1. The definite integral J f (x)dxissaid tobea ...... if the range of integration
a

(a,b) is finite and the integrand f (x) is bounded over (4, b).
b
2. 'The definite integralj f (x) dx is said to be an improper integral if the interval
a

(a,b) is finite and f (x)is not ...... over this interval.

b
3. The definite integral J f (x) dx is said to be an ...... if the interval (a, D) is not
a

finite and f (x) is bounded over (a, b).

True or False
Write “T” for true and “F’ for false statement.

b
1. Adefinite integral _[ f (x) dx in which the range of integration (a, b) is finite but
a

the integrand f (x)is unbounded at one or more points of the intervala < x< b,
is called an improper integral of the second kind.

2. The integral j(;o IA is an improper integral of the second kind.
+

xz

4
3. The integral jO ( is an improper integral of the first kind.
x —_—

2) (x=3)

@HSWGI’S

Multiple Choice Questions
1. (b) 2. (a) 3. (o) 4. (a)

Fill in the Blank(s)

1. proper integral 2. bounded
improper integral of the first kind

True or False
1. T 2. F 3. T
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21 Infinite Series

A 7/t expression of the form wy + uy + ...+ u, +... in which every term is followed by
nother according to some definite law is called a series.

The series is called a finite series, if the number of terms is finite. Symbolically, the

n
finite series u; + uy + ...+ u, having n terms is denoted by X u, .
r=1

The series is called an infinite series, if the number of terms is infinite.

Symbolically, the infinite series u; + uy +...+ u, +...is denoted by I u, or
n=1

simply by Z u,,.
Since we are going to deal with infinite series only, therefore we shall simply use the
term ‘series’ fo denote an infinite serics.
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292 Convergence and Divergence of Series

Convergent Series : (Kashi 2014)
A series T u,, is said to be convergent if S
limit S as n tends to infinity.

We write S= lim §,.

H—) oo

the sum of its first n terms, tends to a definite finite

n*

The finite limit S to which S,, tends is called the sum of the series.
Divergent Series: A series X u,, is said to be divergent if S, , the sum of its first n terms,

tends to either + oo or — oo as n tends to infinity,

ie., if lim S, = e or — oo
H— oo

Oscillatory Series: A series Z u,, is said to be an oscillatory series if S, the sum of its first
n terms, neither tends to a definite finite limit nor to + oo or — oo as n tends to o.

The series is said to escillate finitely, if the value of 5, as n — e fluctuates within a
finite range. It is said to oscillate infinitely, if S, tends to infinity and its sign is
alternately positive and negative.

Sequence of Partial Sums of a Series :

If S, denotes the sum of the first n terms of the series X u,,, so that

-
S,=u +uy +...+u,,

then S, is called the partial sum of the first n terms of the series and the sequence

<§5,>=<5,5,,...,S, ,...>is called the sequence of partial sums of the given

series. We can define the convergent, divergent and oscillatory series in terms of

the sequence of partial sums.

Definition: A series £ u,, is said to be convergent, divergent or oscillatory according as the

sequence < S, > of its partial sums is convergent, divergent or oscillatory.

If the sequence< S, >of partial sums of a series X u, converges to S then S is said to be the sum

of the series Zu,,.

Note: Since thelimits for infinite series will be taken asn — e, so throughout this

chapter we shall write lim as ‘lim’ only.

Hlustration 1: o

9 9 2 9 n-1
The series 1 + 3 + [§] Foen (g) +...1is convergent.

Here the given series is a geometric series with common ratio 2/3 < L
_1.41 -2/3)"}
Y 1={2/8)
Now, limS, =lim3{1-2/3)"}= 3(1-0) [ 2/3<]]
=3, a definite finite number.
Consequently the given series is convergent.

=3{1-@2/3)"}
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Hlustration 2:
The series 1 + 2 + 3 + ...+ n +...1s divergent.

Here, S, =l+2+3+...+n=%n(n+l).
lim S, = lim2ln (n+1) = co.

Consequently the given series is divergent.
Ilustration 3:
The series 2 -2 + 2 - 2 + ...is oscillatory.
Here, S, =0 ifnis even,
=2,if n is odd.
Therefore, the sequence < S, > of partial sums of the series, and consequently the
given series, is oscillatory.
Belowwe give some results which will be found useful and can be easily proved.
1. The nature of a series remains unaltered if
(i) the signs of all the terms are changed;
(ii) a finite number of terms are added or omitted;
(iii) each term of the series is multiplied or divided by the same fixed
number ¢ which is not zero.

2. If Zu, converges to A and X r, converges to B, then X (1, + v, ) converges

to A+ B.
3. IfZu, converges to A and ¢ € R, then I cu, converges to cA.

If X u, convergestoA and Z v, convergestoBandp,q € R, thenZ ( pu, + qv,)
converges to pA + gB.
If X u, diverges and ¢ € R, ¢ # 0, then Z cu,, diverges.

If Zu, and Z v, are two divergent series having all terms positive, then
Z (u, + v,) also diverges.

23 A Necessarg Condition for Convergence

For a series T u,, to be convergent, it is necessary that lim u, = 0.

Or  For every convergent series Z u,, we must have lim u, = 0.

n?
Let the series X u, be convergent. Let S, denote the sum of # terms of the series X u,,.
Then Sy=u +uy +..+uyand S, = Fuy o Huy, .
=8,-5,_1- sal(il)
Since the series X u,, is convergent, therefore, S, and S, _; both will tend to the
same finite limit, say S, as n — oo,

u

nn n

Taking limits of both sides of (1), we get
limu,=lmS, -limS, | =5S-5=0.
Hence for a convergent series, it is necessary that lim u,, = 0.
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Note: 1t is to be noted that the above condition is only necessary but not
sufficient for a series to be convergenti.e, if lim u, = 0, then the series £ u, may or
may not be convergent.

For example, consider the series

PRI I IV I
V2 N3 N4 T N T
Here u,, = V'L ,so that lim #,, = lim % = 0. But the series does not converge as
n n

shown below.

| I 1 1 1 | 1 n
We have S, =1+ —+ —+..+ —> —+ —+ —+...+ —=—=4n,
V2 <3 Vn An An An Vn vn

i.e., S, > \'n, which tends to infinity as n tends to infinity. Hence the series is
divergent.

2 3
Again consider the geometric series 2l+[%) +(%) +..., for which

. . Iy Lo
lim u, = lim (— = 0 and the series is convergent.

Thus if u,, — 0, we cannot say anything about the behaviour of the series butif u,,
does not tend to zero, the series definitely does not converge. The more useful form
of the above test is as follows:

Ifaseries Zu,, be such that u,, does not tend to zero as n tends to infinity, then the series does not
converge.

24 Cauchg 's General Principle of Convergence for Series

Sometimes it is either impossible or difficult to find the sequence of partial sums of
agiven series and yet we want to know whether the series converges or not. Now we
shall establish a fundamental principle, for dealing with the convergence of such
series, known as Cauchy’s general principle of convergence.
Theorem: A necessary and sufficient condition for a series T u,, to converge is that for each
e > 0, there exists a positive integer m, such that

|ty ) + Uy o+t | <eforalln>m
Or [ty o1 + 100+t uy|<eforallqz pzm

Or |, ) U, o+t |<eforallnzm p>0.

n+ H+P

Proof: Let< S, > be the sequence of partial sums of the series Zu,, . The series
Zu, will converge, iff the sequence < S, > of its partial sums converges. By
Cauchy’s general principle of convergence for sequences, we know that anecessary
and sufficient condition for the convergence of < S, > is that for each £ > 0, there
exists m € N such that

S, - S,l<eforalln>m

ie., [thy 1 + Uy +...+ 1, < eforall n>m.

Hence the result.
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Illustrative Examrles

Example 1: Discuss the convergence of a geometric series.

Solution: Consider the geometric series

a+ar+ax® +ax® 4 vax 4+ (1)
Let S, be the sum of first # terms of the seires (1).
a(l-x"), a(x" =1,
S =¥rf_r< land §,, = (—)1Fx> L
-x x -

Case I: When|x|<lie, -1<x<l

If |x|< 1 thenx"” = 0 asn— oo

lim S, = lim 2 -7 =il -0 =4
" —-x l-x l-x

which is a definite finite number and therefore the series is convergent.

CaseIll: Whenx=1

If x =1, then each term of the series (1) is a.
S,=a+a+..tonterms= nd.

lim §,, = e or — e according as a is positive or negative. Hence the series is
divergent.

Case III: When x> L

If x>1 then x" — e asn — oo
) Coa(x" =1 .
lim S, = lim -1 =" or — e according as a > or <0.
X~
Hence the series is divergent.

CaseIV: Whenx=-1

If x = — 1, then the series (1) becomes a—-a+a—a+.....
The sum of n terms of the series is @ or 0 according as n is odd or even.
Hence the series is an oscillatory series, the oscillation being finite.

Case V: Whenx< -1

Ifxr<-1 then—x>1

Letr=—x,thenr>land sor” — e asn — oo,
l*, n 1# L n
Now S,,="( ) _all-(=n") o]
I—x 1-(-7r)
1+ 7" [— "
= a0+ or g~ ),according as n is odd or even.
1+r 1+ r
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in this case lim S, is eoor — e according as 1 is odd or even, provided a > 0 and if
a < 0 the results are reversed.

Therefore in this case the series is an oscillatory series, the oscillation being
infinite.
Hence a geometric series whose common ratio is xis convergent if | x | < 1, divergent if x = land

oscillatory if x < — 1.

Example 2:  Prove that the series £ L converges to 4,
4 n 3

Solution: Here S, =— —,+f+...+—=—=—(li]-

lim S, = lim A (I - LJ "y [ lim L 0:|
3 4” 3 41!
the sequence < S, > converges to é and hence X i, converges to % :

Example 3: Test the convergence of the series

log, 2 + log, % + log, % + log, % + ..

1
Solution: Here, S, =log, 2 + log, %-1— log, %+ ...+ log, (n i )

= log, {2 - % - ;—1 nr l} =log, (n+1).

n

lim S, =1lim log (n + 1) = log e = e=.
Hence the given series is divergent.

Example 4:  Show that the series

V U (n+ l
does not converge.
\/21:+1 \f2\ u+l \/2 I+l/n)}

lim u, 7—;&0

N— oo \4’2

Hence the given series does not converge.

Solution: Here,
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Example 5: Show that the series Y, — does not converge.
n

z ; ; 1 ;
Solution: Let the given series converge. Then for & = iy by Cauchy’s general

principle of convergence, we can find a positive integer m such that

1 1 I 1
+ —+...+—< —forall n>m.
m+1 m+2 il

Taking i = 2m, we see that

| 1 1 1 1 |
+ +t—= + sitbe—s
m+1 m+2 n o m+1l m+2 2m

1 1

B M i,

2m 2

Thus we get a contradiction. Hence the given series does not converge.

25 Series of Positive Terms

If X u, is a series of positive terms then u, > O for all n e N.
The importantaspectof this series is that its sequence of partial sums is increasing.
Wehave S, =u +uy +...+u, thenS, -S,_ | =u, .
Sinceu,, > 0 foralln, thereforewegetS, - S,_; > Oforalln,ie, S, > S, _, foralln
i.e., the sequence < S, > is a monotonically increasing sequence.
Now a monotonic sequence can either converge or diverge but cannot oscillate.
Hence, we have only two possibilities for a series of positive terms, either the series
converges or it diverges.
We give some fundamental results for series of positive terms.
Theorem 1: A series £ u,, of positive terms converges iff there exists a number K such that
u + Uy + .ot u, < K for all n.
Proof: First, suppose that there exists a number K such that
u +uy +...+u, <K, ¥n ie, S,<K, ¥n
This shows that the sequence < S, > of partial sums of the series X u,, is bounded
above. Also, the sequence< §,, >is an increasing sequence, since the series X u,, is of
positive terms. We know that every bounded monotonic sequence converges.
Therefore < S,, > converges and hence X u,, converges.
Conversely, we assume that Zu, converges. Then, the sequence < S, > of partial
sums of the series converges. We know that every convergent sequence is bounded.

Therefore< S, >is bounded and hence there exist real numbers k and K such that
k<SS, <K, forall n.

It gives S, < Ki.e.,up +uy +...+ u, < K, for all n.
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Note: In thelight of the above theorem, we conclude that to show that a series of
positive terms converges, it is sufficient to show that the sequence of its partial
sums is bounded. On the other hand, to show that a series of positive terms
diverges, we have to show that the sequence of its partial sums is not bounded, i.¢.,
for any real number A, there exists a positive integer m such that S,, > A.

Theorem 2: A series of positive terms is divergent if each term after a fixed stage is greater
than some fixed positive number.

Proof: Leteach term of the series be greater than a fixed positive number. We can
assume so because the convergence or divergence of the series is not affected by
omitting a finite number of terms.

So let Zu, be the given series of positive terms and let u,, > k (a fixed positive
number) for all n.
Now S,=u +uy +...+u, > nk.
But lim nk = c.
lim S, = ee.
Hence the series Zu,, is divergent.

Corollary: A series of positive terms is divergent if lim u, > 0.

Proof: Let lim u, =/, where [ > 0. Then for a given £ > 0, there exists a positive
integer m such that
|u, —1|<e forallnzm
L., l—e<u,<l+g forallnzm.
Let! — € = a. Thena is a fixed positive number because e can be taken as small as we

please. For example take € = % [

Thus u,, > a for all n 2 m. Hence the given series is divergent.

Theorem 3: If cach term of a series X u, of positive terms, does not exceed the
corresponding term of a convergent series L v, of positive terms, then X u,, is convergent.
While, if each term of Z u,, exceeds (or equals) the corresponding term of a divergent series of
positive terms, then Zu,, is divergent.

Proof: Letu, <v, foralln.

Let S, and S,’ be the sums of first n terms of the two series Zu, and Z v,
respectively.

Then S, = +uy +...+u,and S, " =v +vy +...+7v

Since u, <v, ¥ n,therefore, §,<5,".

n— n -

n-

But Z v, is convergent, therefore S,” — S’ (a finite quantity) as n — oo.
lim §, <8’ (a finite quantity).
S, itself tends to a finite limit as n — .

Hence the series X1, is convergent.
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Now ifu, =2 v, foralln, then S, 2 S "
But Zv, is divergent, therefore S,,” — o= as n — o and hence S, = o as n — oo,
Consequently Z u,, is divergent.

26 The Auxiliary Series X 1/1"

The infinite series

Zii.e. L+ ! - 1 +...+L+...

T TR nt
is convergent if p> land divergent if p< 1. (Kumaun 2001; Avadh 05; Kanpur 07;
Kashi 13; Rohilkhand 14; Agra 14)

Proof:
Casel: Letp> L Since the terms of the given series are all positive, we can group
them as we like. Hence we write the given series

1 1 1 1 [1 l) (I 1 1 ]J
—t—tFt—t ==t | =t — |+ | —=F =+ =+ —
v 2F 37 17 4P 57 6 7P

+[L+L+,,,+ 1 )-!— (l)

Now since p> 1,
3>2=3>2F =1/37 <1/27,
1 4 1 1 1

TAETRSTAET

1 | 2
or _t g —
2]’) 3]? 21}
Similarly L+L+L+L L L L L=i1
4P 5P P TP 4P 4P 4P 4P 4F
1 1 1 8
— et —F ot — < —,
8y g’ 157 87
and so on.

Thus we observe that on being grouped as mentioned in (1), the given series is term
by term

But the series on the R.H.S. of the above inequality is a geometric series and is
convergent since its common ratio is 2/2 " =1/2" =" which is less than I as p> L

Thus the given series on being grouped as in (1) is term by term less than a
convergent series.

Consequently the gi\f'ﬂﬂ series is Convergent when 14 sl

Case II: Let p=1 Then we group terms of the given series as
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I 1 1
I+—+—+—+
2 3
=1+i+(l 1]+(i ok l]J,[l L3 +_]+ (2)
2 \3 4 5 6 7 8 9 10 16
Nowas3 <4, so l>l or l+l>l+l
3 4 3 4 4 4
I 1_2 I 1.1
or —+->= je, —+-—>_—-
3 4 4 3 4 2
- 11 1 1_1 1 1 1 4 1
Similarly, — 4 -t —F—->—F+—F—F+—=—=— ,
‘ 5 6 7 8 8 8 8 8 8 2
1 1 1 1
—+—+...+—>—,and so on.
9 10 16
Thuswe observe that on being groupedasin (2), the given series is term by term
>]+l+l+l+....
2 Z 2 ..(3)
The series on the R.HLS. of (3) is divergent as the sum of the first # terms of the series

=l+n-1)- 1 = % (n + 1), which tends to infinity as n — ee.
Thus the given series on being grouped as in (2) is term by term greater than a
divergent series.
Consequently the given series is divergent when p = L
Case III: Let p< 1 Then

L> lf()rn:2,5’),4,....

n? n
In this case the given series

1 1 1 1
— 4+ —+—+—+
17 2r 30 47

is term by term greater than the series

I 1 1
I+ —+=-+—+...,
2 3 4

which is a divergent series, as proved in case II.
Consequently the given series is divergent when p< 1.
Hence the proof is complete.

Now we shall give some tests to know whether the given series of positive terms is
convergent or divergent without actually finding out the sum of its n terms.

21 Comparison Test

Theorem: First form: Let Zu, and Zv, be two series of positive terms such that

u, < Kv, foralln, where Kis a fixed positive number. Then if £ v, converges, so does T, ,
and if T u, diverges, then v, also diverges.
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Proof: Since u, < Kv, for all n,

iy o +u, <K@y +v+...+v,), ¥ n (1)
Nowif X v, converges, then there mustexist a positive real number A, such that

oy v, <A Vo - (2)
From (1) and (2), we get

u +uy .o +u, <IKA ¥ on

Thus the sequence of partial sums of the series £ u,, is bounded above and hence
X u, converges.

To prove the other result, we assume that X u,, diverges. Then for any positive real
number B, there must exist a positive integer m such that

u + iy +...+u, > BI, for all n> m. .(3)
From (1) and (3), we get

v+ vy +...+ v, > B, foralln>m.
Hence the series Z v, diverges.
Second form: Let X u, and X v, be two series of positive terms and let kand K be positive
real numbers such that

kv, <u, < Kv,, forall n.

Then the series £ u,, and Z v, converge or diverge together.

n?

Proof: From kv, < u, < Kr, ,for all n,we get

n?

kv, <u, or v, < [%) u,, for all n.

Now applying the result proved in the first form of the comparison test, we
conclude that

(i) if Zu, converges, then X v, also converges.

(ii) if Z v, diverges, then Zu, also diverges.

Again, applying the result of the first form of the comparison test for the inequality

u, < Kv,, we conclude that

s
(iii) if £ v, converges, then X u, also converges.

(iv) if Zu, diverges, then Z v, also diverges.

The desired result now follows from (i), (ii), (iii) and (iv).

Third form: Let X u, and v, be two series of positive terms and let K be a positive
number such that u,, < Kv,, for all n> m, m being a fixed positive integer. Then if the series
Y v, be convergent, then the series T u,, is also convergent and if the series £ u,, is divergent,
then the series, L v, is also divergent.

Proof: The above result follows from the result of the first form of the
comparison test because the convergence or the divergence of a series remains
unaffected by omitting a finite number of terms of the series.
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Fourth form: Let X u, and X v, be two series of positive terms and let k and K be positive

real numbers such that kv, < u, < Kv, for all n > m, m being a fixed positive integer. Then
the series Z u, and Z v, converge or diverge together.

Proof: Since the omission of a finite number of terms of a series has no effect on
its convergence or divergence, therefore,

(i) the series iy + uy +...and the series u,, .| +u, ,» +...converge or diverge
together ;

and (ii) the series »; + vy +... and the series v, | + 7, o +... converge or

m+
diverge together.

Again, kv, <u, < Ky, foralln>m = kv u < Kv forall pe N,

map <Hysp m+p
therefore, by the result of the second form of the comparison test, we have
(iii) the series u

| + Uy +...and the series v, .| + v, .o +... converge or

m+ nm+

diverge together.

Hence from (i), (ii) and (iii), we conclude that the series £ i, and X v, converge or
diverge together.

Fifth form: (Important from the point of view of application to the
solution of problems): Let Z u, and Z v, be two scries of positive terms such that

2 u v
lim 2 =/ (finite and non-zero);
H—) oo ]’”
then both the series converge or diverge together i.e., the two series L u, and Z v, areeither both
convergent or both divergent.
i

Proof: We have - > 0 for all n, therefore

VJI'

. u .
lim —2£>20 ie, [20.
n— e P,

Since I # 0 (given), therefore, I > 0.

Choose £ >0 in such a way that [ — > 0.

> u :
Now lim —£ = [ = there exists m € N such that
H— oo ])"
u,
[—e< L <]+g forallu>m (1)

7
]J!

Since v, >0 ¥ n, hence multiplying (1) throughout by r,, we get
for all n> m. ..(2)

Nowif Z v, is convergent then X (/ + €) v, is also convergent. In this case from (2),

(l-e)v,<u,<(l+¢vr,

we see that Zu, is term by term less than a convergent series X (I + €) v, except
possibly fora finite number of terms. Therefore the series Z ,, is also convergent.
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Againif £ v, isdivergent thenX (I — ¢) v, is also divergent. In this case from (2), we
see that X, is term by term greater than a divergent series X (/ — €) v, except
possibly for a finite number of terms. Therefore the series Zu,, is also divergent.
Hence the series Zu, and Z v, converge or diverge together.
Sixth form: Let Zu, and Z v, be two series of positive terms such that

u

vV
—> " forall nzm.

u Vit

n+l
Then L v, converges = X u,, converges and I u,, diverges = v, diverges.

7
]ll

u
Proof: We have —— > for all n = m.

Uyl Vsl
Puttingn=m + 1, m+2,...,n — lin the above inequality, we get

Hy 41 Vin+1 M2 Vin+2 Hy Vu-1
= > > :

Hy 42 Vin+2 Uy 43 Vi3 Iy, Yy

Multiplying the corresponding sides of these inequalities, we get

Uyl Vgl

for all n> m,
u v

n n

u
m+1
" v, for all n>m.

Vin +1

EBs u

Now the result follows from the third form.

Note 1: From the pointof view of applications, the third and the fifth forms of the

comparison test are the most useful.

. . 1 e . I

Note 2: The geometric series £ — and the auxiliary series X — will play a
r n

prominent role for comparison.
Working rule for applying comparison test:
Thev,-method: Comparison test is usually applied when the nth term u, of the
given series X u,, contains the powers of n only which may be positive or negative,
integral or fractional. The auxiliary series £ (1/n?)is chosen as the series £ v,,.From
article 2.6, we know that X (1/n”)is convergent if p> 1 and divergent if p< L

Now the question arises that how to choose v, ? For applying comparison test, it is

.ou 5 A &
necessary that lim —* should be finite and non-zero. It will be so if we take
V”

1 . . .. .
v, = ———, where p and 4 are respectively the hlghest indices of n in the
”P—q of

denominator and numerator of i, when it is in the form of a fraction. If u,,can be

n?

expanded in ascending powers of 1/ 1, then to get v,, we should retain only the
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lowest power of 1/ n. After making a proper choice of v, ,we find lim (u,, /v,)which
should come out to be finite and non-zero. Then the series Z i, and X v, are either
both convergent or both divergent. The whole procedure will be clear from the
examples that follow article 2.8.

lllustrative Examl)les

Example 6: Test for convergence the series

1 1 1 1
I+ —4+ —4—+—+...+—+.......

22 3¢ gt n'"

s . 1 1
Solution: Since n” > 2" for all n > 2, therefore, o
i 2

1
Here uy = — - Letv, = —
n

Since u, < v, foralln>2 and X v, is a convergent series (a geometric series with

| ; . .
common ratio 5), therefore, by the comparison test, the given series converges.

Example 7:  Test for convergence the series whose nth terms are

(i’) 2\)‘}!

ne o+ 1

By — =

(Kumaun 2002; Kanpur 06; Meerut 13B; Agra 14)

(ii) Gt ot (Kanpur 2009; Meerut 13)
P
(iii) .
1+ m)?
Solution: (i) Hereu, = 2\fn
n® +1
Vn 1
Take Vy = — = —5
n nz ”3/2
ie, the auxiliary seriesisZv, =X —3]7

2
.U ; Vn : , n
Now lim —* = lim { _”3/2} =lim —

v, n? +1 n? +1
1 s
= lim —————— = |, which is finite and non-zero.
1+ (1/n")

Since the auxiliary seriesZ v, = Z (1/ n3'? )is convergent (p = % > 1] , therefore, by

comparison test the given series Z u,, is also convergent.
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0 Here m = @n? —1)!/3 _ n23 (2 = 1/ n2)\/3
! @i + 20+ 5" B3 3+2/0% +5/03)13
o @ —1/n2)'3
W12 (34+2/n® +5/n3)14
1
Take v = -
m N2
v B+2/n* +5/n*)
u HE
lim £ = = which is finite and non-zero.
3 g1/

n

Hence, by comparison test, Zu, and X, are either both convergent or both

divergent.
But the auxiliary series Z v, is divergent because p=1/12 < L. Hence Z u,, is also
divergent.
n?
(iii) Hereu, = :
(n+ 11
nt 1

17
Now lim 22 = lim {2~ 427 = |im — B 1, which is finite and
(n+ D1 (1+1/n)1

Vy

non-zero.

Therefore, by comparison test, X, and Z v, are either both convergent or both

divergent.

But the auxiliary series Zv, = X is convergentif g — p>lie if p— g +1<0

nd="v

and divergent if g — p< lie. if p— g +120.

Hence by comparison test the given series £ u,, is convergent if p— g + 1< 0 and
divergent if p— g +12 0.

Example 8: Test for convergence the series whose nth terms are

O—
L+1/n (Avadh 2012)
.. !
ii in —
) s n (Kanpur 2012)
1
(iii) tan~! =

n (Kanpur 2008)
1

Solution: (i) Herew,=-——
1+1/n
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: : 1 5.5
We have, lim u, = lim ———— =1, which is> 0.
= o n— e |+ (1/n)

the given series is divergent.
1 1 11

(ii) Here, 1, =sin — = — -

1
n o on 33

L
i

Take v, =1/n, since the lowest power of 1/n in u,, is 1/n. The auxiliary series

Zy, = X (1/n)is divergent as here p=1

2
vy, ! n- n4

Now lim”i:]im l—i- 1 +i-i—... =il
3 51

which is finite and non-zero.

Hence by comparison test the given series is divergent.

(1 1 1 |
iii) Here, u, = tan I [—J=_—_'+__'__
i I n no 3n®  5p°

—1 ,t'j .1‘5
wtan r=X——+—=—-...
3 5

The lowest power of 1 / ninu,, is 1/ n. Therefore, to apply the comparison test, the
auxiliary series is taken as Zv, = Z (1/n).

.U ; | | Ty
Now, lim - = lim (1 -t — = ] =1, which is finite and non-zero.
2 4
Vu 3?1 511‘

But the auxiliary series Zv, = X (1/n) is divergent as here p=1
Hence by comparison test the given series is divergent.
Example 9:  Test the convergence of the series

2 & 3 4 4 4 5

17 o2r 3P 4y T (Kumaun 2000; Avadh 10)
n+1 1
Solution: Here u, = -Takev, = —=——-
n r ”P HP -
n+1
Now lim 2% = fim ( .nf’_l] = lim (l + l) =],
Yy nt n

which is finite and non-zero.

Hence by comparison test Zu, and X v, are either both convergent or both
divergent.

But the auxiliary series Zv, =X is convergent if p-1>1lie, p>2, and

np—l

divergent if p — < lie if p< 2.

Hence the given series X u,, is convergent if p> 2 and divergent if p< 2.
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Example 10: Test the convergence of the following series

; 1 9 g &

(i) I+ +5+p+—<+..
2 3 4 5° (Avadh 2014)
1 2 3

ii + + + ...
(i) 1+Vv2 1+2V3 1+3+v4

Solution: (i) Omittingthe first term, if the given seriesis denoted by X u,,, then

2 3 4 n
1 2 3 - n
By =g tog ot g te = By
2 3 4 5 (n+ D"+
n n
n n 1

Here, u, = - Takeyy = —->=—-

(n+ 1" i n

n
v u 2 n

Now lim -2 = lim ——

v, (” + .I.)”+

1

o |
—
—_—
=
=
=]
R ¥
[

+
= |
—
Il
o
—_

= lim
{(I +1/n)" . 1+ l/n)}

which is finite and non-zero.

But the auxiliary series v, = Z (I/n) is divergent as here p=1 Hence by

comparison test the given series is divergent.
n

ii) Here, uw,=—+7"——-
i) 1+ nN(n+1)

n

Take v, = =

Now 1imHJ: lim é-nllz
v, L+ nV(n+1)

= lim 5 I =1, which is finite and non-zero.
1/ N 1+1/n)

Since the auxiliary series £v, =X (I/n'?) is divergent as here p=1/2<],
therefore, by comparison test the given series is divergent.

Example 11: Test the following series for convergence whose nth terms are given by

@ o+ (Meerut 2013)

(i) N + D=V @* -1,
(Kanpur 2006; Avadh 06, 14; Meerut 13B; Kashi 14)

Solution: (i) Here, u, = 2 + DB —n=)B a+1/83)3 —n
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1/3 ~|=-

=n [l+l3j | Y  FRE R A Ly o1
n n 21 n’

R

3% 9n’

Taking the lowest power of 1/n inu

v, =2 (1/n%).

Now lim ic J lim {(lz - LS + ...).112}2 lim (l— 13 + ) = i
v, 3n 9n 3 9y 3

which is finite and non-zero.

»» the auxiliary series is given by

Since the auxiliary seriesZr, = X (1/n?)is convergent as here p =2 > 1, therefore

by comparison test the given series Zu,, is also convergent.
(i) Hereu, =+ (n4 +) -+ (114 -1
=n? [(1+1/aH)2 - -1/ %))

5 | b 1 %(%_'J 1+%(2l_1)(2l_2) !

1
=n E= I . T e
2 gt 21 n® 31 n'?
11 %(%_IJ 1 %G_lJG_z) 1
PP - oo
2 114 21 118 3! ”12

=n® |:2{L+;+ H:L.FL.,.
wmt  1en'? n? o 8pl0 T

The lowest power of 1/ nin u,, is 1/ n* . Therefore to apply the comparison test we

take the auxiliary series as Zv, = X1/ n?, which is convergent as p=2> L

Now lim Hn lim “% - +U - ..}.112:|
Vy I 81‘1

= lim {1 + 8% + } = |, which is finite and non-zero.
n

Therefore, by comparison test, Z u,, and Z r, converge or diverge together. Since
L v, is convergent, therefore, X u, is also convergent.
Alternate solution: We haveu, =V (n* + 1) =V (n* - 1)
Nt +D=~v@t =DV @ + )+ vt -]
\f(nd‘ +1)+ \1'(114 - 1)
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_ (”4_,_1),(”4,]) 3 2
N DV o) et eVt o))
1. 2 .
n? N[+ (/a1 = 1/ n)]
Take v, =”—2-
Then i, 2

P

NI+ /D] V0= a/nh)]

L u
lim — = 1which is finite and non-zero.

n—e 1,

Hence by comparison test £ u, and Z v, are either both convergent or both
divergent.

But for v, =L2:—,p=2>l.

X v, is convergent and hence X u, is also convergent.

Example 12: Test for convergence of the following series :

n

= & 1 =5 1 (n+2
i =  — ii) L — .
G n=1 n“‘”’/” R n=12" 4+ 37 - n=l p3 (Jr +3]

- . 1 1
Solution: (i) Here, u, = mrESTE = T - Letw, = ?
Now lim 22 = lim ;b 0" =lim (%)

vy n®  nbn nt/n
lim
= lim ; = L ”]/n -1
(Hl/”)b (l)].l n—> oo

=1, which is finite and non-zero.
We know that v, = £ (I/n") is convergent if a > 1and divergent if a < L.
Hence by comparison test the given series Z u,, is convergentif a > land divergent if
asl
1 1

(ii) Here, u, = 5 =

n +3H n
g [ 1+ (2) }
3

1
n - ?
WeknowthatZ v, = Z (1/3")isageometricseries with commonratiol /3 < |,
hence it is convergent.

Take v

Now hm =lim —— =1, [~ 1limr"=0,0<r<l]

v, 1+ (:’EJ”
3

which is finite and non-zero.
Hence by comparison test the given series X u,, is convergent.




Krishna's Algebra (Unified)

A2

1 (n+2)"
(iii) Here, u,, = — ‘

”3 n+3

Take v, = LB -ThenZv, =% L} is convergent as p=3> 1L
n n

2 n 2 n
™ . n" (l + —J (I - —)
u 1 (n+2 3 (n+2 n n
Now L = n = = .
3 . 3 n 3 i
n" 1+ = 1+ =
n n

v, n\n+3 n+3

n
We know that lim (l + i] =¢g¥,

n
.u 1 e s
lim £ = — ==, which is finite and non-zero.

Hence by comparison test, £ i, is convergent.

Example 13: Test for convergence the series

] 2 3 4

+ — + — + + ...
1+270 14272 14273 14274

H )
142-"

Solution: Here, u, =

: ; n
lim #, = lim ————— = oo,

I n

which is > 0. Also Z u,, is a series of positive terms.

Hence the given series Z i, is divergent.

@m prehensive Exercise 1

Test for convergence the following series :
1 1 1 1

1. (i) —+ + + + .
2.3 3.4 4.5 5.6
(i) 1.2 . 3-4 . 5.6
W) o T = F s
2 2 2 2 2 2
3“4 5.6~ 7°-8 (Kumaun 2002; Meerut 12B)
| 3 5
(iii) + - + ..
1.2.3 2-3.4 3.4.5 (Avadh 2011; Meerut 12)
(i (I+a)y(d+b) CL+a)@2+b) G+a)3+Db)
v — T iuse

+ +
1.2.3 2.3.4 3.4.5
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1 1 1
V1+¥2 V2443 N3+44

¢2_1+¢3_1+v4_1+¢5_1+

321 4 -1 3%-1" 8*-1
1 1 ]

3 9I/I00 T 3 gI/I00 T 4 LI/I00 T

(ii)

(iii) 1+

y 1
(iv) 2 C()b;.

i) ZNm+D)-Anl

(i) T[N@* +1-n)
(i) TN@® + -V
(iv) T[N@E* +D-n?].

o BB

.. . . I .1
(ii) The series whose nth term is  — sin —-

(253

(Kanpur 2007)

(Kanpur 2005)

n n
@nswers 1
i) Convergent (ii) Convergent
iii) Convergent (iv) Divergent
i) Divergent (ii) Convergent

(

(

(

(iii) Convergent

(i) Convergent

(ii) Convergent if p>1, divergent if p<1

(iii) Convergent (iv) Divergent
(i) Divergent (ii)  Divergent
(iii) Convergent (iv) Convergent
(i)  Divergent (i)  Convergent
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28 Cauchy 's Root Test

Theorem 1: Let X u, be a series of positive terms such that lim u,l,/ "=1 Then

(i)  Zu, converges, if [ <1, (ii) Zu, diverges, if [> 1;
(iii)  the test fails and the series may either converge or diverge, if [ = 1.
(Here u,l,/" stands for positive nth root of u,).
(umaun 2001; Kanpur 04, 07; Avadh 06; Meerut 12)

1/n

Proof: Since u,, > 0, for all n, and (u,)"'" stands for positive nth root of u,,,

lim u./" =1>0.
1/n

Since lim #,,

= [, therefore for € > 0 there exists a positive integer i, such that

|u,',/” —l|<eg forall u>m,

ie., [-¢e< u!,/" <l +e¢ forall n>m,
ie., (I-e)"<u,<(+e)", foralln>m. (1)
(i) Leti<l

Choose e >0, such thatr=[+¢e< L

ThenO<l<r<l

From (1), we getu,, < (I +¢)" foralln>m i.c, u, <r" for all n>m.

Since X r" is a geometric series with common ratio r less than unity, X r" is
convergent. Therefore, by comparison test, £ u, is convergent.

(ii) Let/>1L

Choose e >0, such thatr=1-¢> 1.

From (1), we get (I - €)" < u, foralln>m ie, u, > r" forall n>m.

Since £r" is a geometric series with common ratio greater than unity, Zr" is
divergent. Therefore, by comparison test, L u, is divergent.

(iii) Letl=1

Consider the series Zu,,, where u, =1/n.

n?

1/n
Then ul/m = (l) , so that lim u!/" = 1. [Note that lim »'/" = 1].

n no
n

Since X (1/n) diverges, hence, we observe that if

lim ul/" = |, the series £ u,, may diverge.

Now, consider the series X u,,, where u, = 1/n”.
io engealso. i 1/n _
In this case also, lim u," =1

SinceX (1/n” Jconverges, hence, we observe thatif lim ”}:/" = I, theseries X 1, may

converge.
Thus the above two examples show that Cauchy’s root test fails to decide the
nature of the series when [ = 1.

Note 1: In general the Root test is used when powers are involved.
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Another form of Cauchy’s Root Test: The root test can also be stated in the form
given below :
)l /n

A series X u,, of positive terms is convergent if for every value of n = m, mbeing finite, (u,,)"'" is

less than a fixed number which is less than unity.

1/n

The series is divergent if (u,)" " 2 1for every value of n 2 m.

Proof: Case 1: Given (u,,)l/” <r, ¥nzm where ris a fixed positive number

such that r < L
" for all n = m.
Since X" is a geometric series with common ratio r less than unity, X r" is

convergent. Therefore, by comparison test, Zu,, is convergent.
Case 2: Given (u,,)”” 2LV nzm

u,2L¥nzm

P -
Omitting the first m - 1terms of the series because it will not affect the convergence

or divergence of the series, we have

u,2L,¥neN
= S,=uy +..+u,2n = lim§, =
= the series is divergent.

Theorem 2: Let X u,, be a series of positive terms such that u/™ — oo as n — oo, Then

Z u, diverges.

Proof: Letr> 1. Smceu””

msuch that «!/">r foralluzm = u,>r"forallnzm.

— eoasn — oo, therefore, there exists a positive integer

For r> 1, the geometric series £ 7" is divergent.
Hence, by comparison test, Z u,, is divergent.

Some important limits to be remembered:

1. lim »'" =1
n— oo
|
2. lim 8 M _ 0.
H—3 oo

3. lim

1= oo

pet] =
4. lim (1+
(

] =L, if pis finite Le., if pis a fixed real number.
H— oo

5. lim
n— o

P JH—p
1+ _) *,if pis finite.
n
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agn? a7t +agnt 2 t+..tay_ | nta,
6. lim i >
n=se hont + bn?™" + by n17° +...+bq_, u+bq

i T lag +a (/) +ay 1/n)? +....]
noe by + by (1/n) +by (1/0)* +...]
HO /[J(),if p=q

=40,ifg>p
oo, if p>q and ay >0,by > 0.

lllustrative Examrles

I/n

Example 14:  Assumingthatn''™ — lasn — e, show by applying Cauchy’s nth root test

that the series = (n'"

- 1)" converges.
n=1

Solution: Here, u, = (n'/" = 1)".
M},/” L L

lim «!/" = lim """ -1)=0<1

Hence, by Cauchy’s root test, the given series converges.

Example 15: Test the convergence of the following series
2

1 —H'_ xll
(i) X (1 4 ;) (i) X 5
P 9% 33 48 "
(iii) —+3—2 5—3 3—4+... ?+

Solution: (i) Hereu, = (1 + —)

—n
u:r/” = (1 + %] .

lim !/ :lim¥:1<l. [+ 2<e<3]

n n
()
n

Hence by Cauchy’s root test the given series is convergent.
.l-”
(ii) Hereu, = —-
n!
#
”l/n _

SN

» - " (”n 1/n 1‘
},/":lin1f:lim et | |~ i —
(n1) /n (n) - (n!) n oy

lim
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nyLim N
. n x .X . 7
= lim || — Zl=e.lim = o lim | — =g
n! n n nl
=¢.0=0<1
Hence by Cauchy’s root test, the given series is convergent.
"
(iii) Here u,=—"
n 3”
1/n _ ”3/"
u, = '
3
; 1 1 .. : 1
lim )" = lim — 3" = ~ lim (') = = . 1<
3 3 3

Hence bV Cauchy’s root test the given series is convergent.

Example 16: Test the convergence of the series

. - . -2 y -3
22 2) (3] (4_4),
¢ 1 99 2 3%t 3

(Kumaun 2001; Meerut 13B)

n+1 -n
Solution: Hereu, = |:(” D T 1] .

ntt 1 n

-1 -1
S (n-i—l)"” _n+l _(n+])'l (u+l)"_1
S I n L n n
-1 n -1
() (e 2)
n n
1

limut" =1+0)7! e-D)7! = Lot L [+2<e<3]
c_

Hence by Cauchy’s root test the given series is convergent.

Example 17: Test for convergence T gra-El7,

g—# -l if n is even
. »

Solution: Hereu, =37""" = o
37" .3, if n is odd.

gL gl :lL if nis even
”l/u 3 3””
" B = n l n
g~ gkt 25.3” ., if n is odd.
lim !/ = é( 1. [ lima'" =1if a> 0]

Hence by Cauchy’s root test the given series is convergent.
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Example 18:  Test for convergence X (”

n
2, (x> 0). (Meerut 2013)
n+2

n
n+1
Solution: Here u, = ( ] 2"

n+2
n+1
W ol " g
n+2
1
(1]
lim «!/" = lim |[~— " x| =x.

n
)
n

By Cauchy’s root test, Zu, converges if x <land Zu, diverges if x> L

n
For x =1, the test fails. Whenx =1, u, = [n £l 1] .

n+2
(1+)
n e

limu, =lim — =

n 2
()
n

The series X 1, diverges when x = 1.

> 0.

™|

Hence the given series converges if x < 1and diverges if x> L

Example 19: Test for convergence £

(log n)"
Solution: Here u, = _L
(log n)"
Ll},/ = _l :
log n
lim u},/” = lim =0, which is< L
log n

Hence by Cauchy’s root test the given series is convergent.

@mprehensive Exercise 2

Test for convergence the following series :

; 1
1. (l) Z ”]+(l/r1)'

(i ¥ [1+1J"2

n

(Kanpur 2008; Avadh 12)
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"
2. (i) 2[ ! }
n+l (Avadh 2013; Kashi 14)
372
l —-H
(ii (l+—)
> Vi
3. (i) 2+§,\ +§.Y2 +%x3+...,wherex>0.
= 3n+l
ii r>0
(i) ”z:“l 4n+3
z 3. n"
4 ?; +33x"‘+4x5+ Ll
1 ”u+l
: -2 3
5. (i) 14242 42 4w, x50,
2 32 45

(i) x+2x2 +323 +4x* +....

2 3
(iii) l+ (g] _1:+(§J x? +(4—) X3 + ..o, x>0,
2 3 4 5

@nswers 2

i) Divergent

ii) Divergent

(
(
2. (i) Convergent
(ii) Convergent
(i) Convergent if x < 1and divergent if x> 1

(ii) Convergent if x< land divergent if v=1
Convergent if x <1 and divergent if x=1

oo

(i) Convergent
(i) Convergent if x <1 and divergent if x>1
(iii) Convergent if x<1 and divergent if x>1

29 D' Alembert's Ratio Test

(Avadh 2003, 05; Kanpur 05; Meerut 12B; Kashi 14)

Uyt

= [ Then

Theorem 1: Let X u, be a series of positive terms such that lim

u,

(i) Zu, converges if [ <1 (ii) Zu, diverges if [ > 1
and (iii)  the test fails to decide the nature of the series if [ = 1
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Proof: Since u, > 0, for all n, therefore

Hy 4 u,

. +1
>0 = lim =[20.
”H Mll
. . Hyvl . .. .
Sincelim = [, therefore, for € > 0, there exists a positive integer m such that
u,
Uyt
—ll<g forallnzm
u,
. Uyl
ie., l—e< <Il+e¢g forall n=m.
7

n
Puttingn = m, m + 1,..., n — lin succession in the above inequality and multiplying
the corresponding sides of the (n — m) inequalities thus obtained, we get

(I-¢)"" "< M o (I+¢)" " foralln>m

”HT

u u
ie., (I-¢)" —" _—<u,<(l+&" —2 _foralln>m. +2(L)
(I _ E)m 1 (l + E)m

(i) Let/<l

Choose e>0 such thatr=/+e< L
Then O0<l<r<l

HJH

From (1), we get u,, < [7) r" forall n>m
r

; I
ic, u,<or"foralln>mwhereo=—"eR".

Since £ r" is a geometric series with common ratio less than unity, £ r" is
convergent. Hence by comparison test, X, is convergent.

(ii) Let/>1.

Choose e>0 such thatr=7—-¢e> L

u
r" <y, forall n>m

From (1), we get

: u
ie, u,>pr" foralln>mwheref = "¢ R".
"

Since Tr" is a geometric series with common ratio greater than unity, '
divergent. Therefore, by comparison test, Zu, is divergent.

(iii) Let /=1

Consider the series X u, where u, =1/n>.

U 2
. n+1 . n . 1
Here lim =lim - =lim ———=1

u, (n+1)° (1 L1 )'3

In
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(ro1

Since the series  (1/n%) converges, we observe that if [ = I, the series may be
convergent.

Now, consider the series Zu,, where u, = 1/n.

n»
: Uy ) i : 1
Here lim = lim = lim =1

u n+1 I+i

n

n

Since the series X (1/n)diverges, we observe thatif/ = 1, the series m ay be divergent.
Thus the above two examples show that the test fails to decide the nature when
I=1

Note I: Taking the reciprocals, the ratio test can also be stated in the form given

below.
3 g u P u 3 rys u
Theseries £ u,, of positive termsis convergent iflim —"— > land divergent if lim —"— < 1.
Iy Uy
. i, .
If lim =], the test fails.
Myt

We shall usually apply the ratio test in this form which will in the later part of this

chapter be more convenient for further investigation in case the ratio test fails.

The ratio test is generally applied when the nth term of the series involves
factorials, products of several factors, or combinations of powers and factorials.

Another form of D’ Alembert’s Ratio Test: The ratio test can also be stated in

the form given below :

An infinite series of positive terms is convergent if from and after some term the ratio of each
term to the preceding term is less than a fixed number which is less than unity.

The series is divergent if the above ratio is greater than or equal to unity.
Proof: Case 1: It is given that

Hyy

< rforall uzm, (1)

u,

where r is a fixed positive number such that r < 1

To prove £ u, is convergent.

Putting n=m,m+1...,n—=1 in succession in (1) and multiplying the
corresponding sides of the n — m inequalities thus obtained, we get

u U . U .
m+1 m+2 m+3 u _
. . o B pnom
Uy Hpypv1 Hp42 LT

U —m i

= L <" = u, < 2"
m
oy
Uy, 2

eR

= iy <o r”, forall n>mwhere o= —
i«
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Since T r" is a geometric series with common ratio less than unity, X r" is

convergent. Hence by comparison test, I u,, is also convergent.

Case 2: It is given that

Hy s

> 1for all n= m. (2]

u n

Putting n=m,m+1,...,n -1 in succession in (2) and multiplying the

corresponding sides of the n — m inequalities thus obtained, we get

U, :
—=1 = u,=u, forall n>m.

n =
i m

Omitting the first m terms of the series because it will not affect the convergence or
divergence of the series, we have

i, 2 u, forallne N

= S,=u +..+u,2nu,
= lim S, =
= the series is divergent.

Hyy1

Theorem 2:  Let u,, be a series of positive terms such that — ooas it — oo Then

uJi’

X u,, diverges.

; Un+l ; R
Proof: Since — eoasn — oo, therefore, there exists a positive integer m such
Uy,
that
Myt ;
>2forallnzm ie, u, ;>2u, forallnzm.
u

n

Replacingn bym,m +1,m + 2,...,n — land multiplying the (n — m) inequalities, we

get
w, >2""" oy, forall n>m
: i
ie., i, > (% 2" for all n > m.
2

Since the geometricseries £ 2" diverges, hence, by comparison test X u,, diverges.

Note: In a similar manner it can be proved that X u, is convergent if

. u
im — = oo,

N U,

210 Remarks on the Ratio Test

It should be noted that D’ Alembert’s ratio test does not tell us anything about the convergence

. : u
of the series Z u,, if we only know that —*— > 1¥ n.
Uyl
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1 u 1 ; ; o
If u, = — ,then —— =1+ — > Ifor all # while the series X u,, is divergent. Also, for
n u n
n+1

. o u
the convergence of the series Zu, it is not necessary that —*— should have a

Uy

definite limit. For a change in the order of the terms of a series of positive terms may

. u
affect the value of lim —%

but it does not affect the convergence of the series.
Uyy1

For example, let us consider the series
% o o3

I+ x+x" +x" +...where0O<x<L (1)
Changing the order of terms, the series becomes
x+l+ 2 v+ vat vl (2

Since the series (1) is convergent, therefore, the series (2) is also convergent. But in
the series (2), the ratio u, /u,,, is alternately x and 1/+* and consequently

lim (u,, /u,,, ;) is not definite.

In comparison with Cauchy’s root test, D’Alembert’s ratio test is more useful since
it is easier to apply than the root test because generally u, /u, | is a simpler
fraction than u,. However the root test is stronger than the ratio test. To be

more precise, whenever the ratio test indicates the nature of the series, the root test
does too. But sometimes the ratio test does not apply while the root test succeeds.

lllustrative Examl)les

Example 20: Test for convergence the following series :
4 r P
@ 1+ 2 + 3 + il
21 31 4! (Bundelkhand 2006)
L ,_2
1+2 1+22 1+23

(ii) 3

Floen

|f1
Solution: (i) Hereu, = ’L]
n!

m+1N?

l TN c—
(n+1)!

fiy1 =

Now wy _nt' 4Dl (n+1) ' on+l

Uypr  nl m+ ) )P (A+1/n)?
n+1

LUy, .
lim 2 =lim ——— = oo,
Uy (1+1/m?

which is > I for all values of p.

Hence by ratio test the series Zu,, is convergent.
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(ii) Hereu, =

1+2"
_on+l
LS| —W'
”” B n I+2H+] B n -2H+] (1+1/2Jl+1)

Now =
u,p L+2" n+l 2" 1+ 1/2"y . n(1+1/n)

2 (1+1/2"h

(L+1/2") (1 +1/n)
i, . (1+0)

lim =2 =2, whichis> L

Uyt (I+0)(1+0)

Therefore, by ratio test, the given series converges.

Example 21:  Test for convergence the series whose nth term is

) n +a _nl "]
(i) i (ii) — , (Purvanchal 2014) (iii) .
2" +a n" 31 _
3 3
n> +a n+1)” +a
Solution: (i) Hereu, = ¢ TR y Upy] = # .
2" +a TERS g
u _l13 a2 gy

n

Hypp 2" +a (n+ D3 +a

o (+a/ny 2" Qra/2mt)y

g A+a/2"). 12 (A+1/n)? +a/n?)
HETTA IO D ity

A+a/2{ Q+1/m)? +a/n’ }-

. (1+0)(1+0)

Now lim B9, 5 =2, which is > L
Uy g (1+0){(1+0)" +0}

s

Therefore, by ratio test the given series converges.

! + !
(ii) Hereu, = %’ so that Uy, = L)[ :
n' (n+ D"
w, _nl (4D @+t [1 N 1)"
T L ORI T ) n)

u I n
Iim — = lim (l + _] =¢, whichis> L

oy n

Therefore, by ratio test the given series converges.
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g _] 2n+]
(iii) Here [3” i LTS 3””
Now s 2 _ 31:+] _ 2;1 1/211 n (3 _ 1/311)
Uy, 3n _ zu+] _ 3" 1_1/311 DL (2_1/211)
(1-1/2") (3 -1/3"
J{1—1/3" 1/2”}

lim e S () which is > L
Hyi 2

Therefore, by ratio test the given series converges.

2N

Example 22:  Show that the series
+OL+1+ o+1) 2a+1) & o+ 1) 2o+ 1) Ba+ 1)
B+1 @B+D@B+D) @E+D@B+DHEB+D

converges if B > o> 0 and diverges ifo. 2 >0 [o> 0,3 > 0].

Solution: Here,
y z((x+1)(20c+l). [(n—l)oc+I]
"B+ DE@B A (=B +]]
o+ 2a+]..... [(mn=Do+1] (no+1)
TR D @B (- DB+ B +])
v u, :n[3+l:[3+1/u_
ypp no+l o+l/n

L:]imM:E.

ey oa+l/n o

so that u

lim

Hence by ratio test the series is convergent if B > 1 ie, if B>o >0, divergent if
o

B

—< Lie, ifa>p >0, and the test fails ifE =lie, iff=o.
o o

When B = o, then the given series becomes
L1 % L, :
S, = the sum of n terms of this series = n.
Since lim S, = o, hence the series is divergent.
Thus the given series is convergent if B > o> 0 and divergent ifa > > 0.
Example 23:  Test for convergence the following series :
P

() 1+3x+5x2 +7x° +... (i) 1+ 5+ s+ 2
22 32 4
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Solution: (i) Hereu, = 2n—-1)x""" u, | =@n+1) x".

w, _@n-Dx""' @-1/m 1

T @n+1x" 2+1/n) x

. u 1 1
lim 2 ==._-
L X x

IR

Hence by ratio test the series is convergent if 1/x > li.e. if

I>x or x<l,
the series is divergent if 1/x < Lie. if x> 1 and the test failsif 1/ x =lie ifx =1
When x = |, then the given series becomes

1+43+5+7+...

S

. . n '
, = sum of n terms of this series = ) (+2n-1)=n’

Since lim S, = o, hence this series is divergent.

Thus the given series converges if x < 1 and diverges if x> L
n-1 n
; 4

s X 3
(ii) Herewu, = 5 SO thatu, | = —
n (m+1)
Wy N+ )2 (1 IR
u - 2 n - n ¥
n+l 1 X
2
. u . 1 I 1
llm#:]lm(l-b-—] s e
| n X X

Hence by ratio test the series converges if1/x > lie if ¥ < Ldiverges if 1/ x < li.e. if
x> land the test fails if I/ x =lie if x =1

When x = L then u, =1/ 7. We know that £ 1/ " ) is convergent because here
p=2>1
Thus the given series converges if x < 1 and diverges if x> L

Example 24:  Test for convergence the series whose nth term is

. 1 . a"
(E) n -n’ (”) n n
X" 4+ x X +da
1
3 1 v ;i
Solution: (i) Here u, = =_" u =
t n _ v R TES| v
x4 1_2 | ,1’2 (n+1) |
", " sz (n+1) +1 X.2n+2 +1 1
u T2 1 ’ n+1 In 1 T
n+l X + X x“" + 3

Now (u, /u, ) can be found only if we know that
xr<l or x>l
Let x< 1
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i u 3
Then lim —— = lim 5 R
| el ox

= l [ lim +2"*2 =0 = lim x*" if x< 1]
X

Butifx<l thenl/x>1L

ifx < I, we have lim (u,, /u, ) > land hence by ratio test the series converges in
this case.

Now let x> 1

2n+2 2n+2 2n+2
X | I1+1/x
Then lim 2 = Tim 12—+ l =lim * ) Akl “2 )l
U, "+l x " (1+1/x7") x
. (l+ 1/1_2114'2 )
=lim e
(L+1/x°™")
=x [+ lim 1/x?"*2 =0 if x>

if x> 1, we have lim (u,, /u, ;) = xie >1and hence by ratio test the series is

convergent in this case also.

| ]
Again, if x =1 thenu, = — = —,
5 "I 2
: . I 1 1
i.e., the series becomes — + — + — + ...

2
S

. 1
p = sum of its n terms = 5 C .

Since lim S, = =, hence, the series is divergent if x = 1

Thus the given series is convergent if x > lor x < l and divergent if x = L

n n+l
.. a a
(ii) Here u, = Mpyl = =77
¥ n +a n xﬂ + +a n+
", (l” _‘_n-i-l + arH—l .‘(”+l + [I"+l
i1 ,\'" + (i" (l”+l a (.k‘” +a n)
Let x> a.
n+1 n+1l n+l n+l
] u LK +a X [T+ (a/x)" "]
Then lim —— = lim - — = lim - -
Uy a(x" +a") ax” [1+ (a/x)"]

¥ [+ (a/x)"*! ] _

X
a [+ (a/x)" ] a

= lim , which is>1las x> a.

Hence by ratio test the given series converges if ¥ > a.

Let x < a.
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)
.(l”+l [I + (X/[I)”-H] ' [l + (.1’/(1)”+l]

Then lim —2 = lim =lim =]
Uy a.a” [1+(x/a)"] [T+ (x/a)"]

the ratio test fails in this case.
a n H”
But in this case, lim #, = lim —— = lim ———— =1, which is> 0.
. n n n
" +a a 1+ (x/a)"]
the given series diverges if v < a.

Now, if x = a, the series is 21 + % + ..., which diverges.

Hence the given series is convergent if x > a and divergent if x < a.

Example 25:  Test for convergence the following series

(i) ] + i + ¥ + + +
241 3V2 443 544
2
; - 1
(i) x+—12+£x3+214+ +”2 x" +
10 17 e +1 (Avadh 2012)
5 - 1:21:—2 ‘,2n
olution: (i ereu, =—— I, - - @ .
®) : (n+1n b n+2)VN(m+1
w, _ x¥"2 m+2)N@m+) (1+2/n) (1+1]- 1
u,,, (m+hVn 2 (I+1/n) n) 2
TSI ) P
Hy iy 1 X X

by ratio test the given series is convergent if 1/x* > li.c., if v* < L, divergent if

1/x% < lie., if x2 > land the test fails if x* = L

When 12 = L, we have u, = ; -Take v, = 1 :
(n+)Vn nvn
\
lim o 5 lim _ N = lim # =1
Vi (n+1)\n (I+1/n)

which is finite and non-zero. Hence by comparison test Zu, and Zv, are either

both convergent or both divergent.
Since Zv,, = Z (1/ n3?yis convergent as p=3/2 > 1, therefore the given series is

also convergent if =1

Thus the given series is convergent if x’< land divergent if x> 1

2 2

—] +0)° -1
(ii) Here U, = ”2_ .‘('", T (” )2 IH+] )
ne +1 (n+1° +1
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u (n+ I)2 +1 ]

" Hz =l " )
u 2 o 2 I n+l
nel no+1 (n+1D)” -1 x

1-1/n* 1+2/n+2/0* 1

T 1+2/n X
lin‘\&:l.
4 X

by ratio test the given series is convergent if 1/x> 1i.e., if x <1, divergent if
1/x<lie., if x> land the test fails if x = L.
n* -1 _1-1/n"
W2 +1 1+1/n2

_ 2
% = |, which is > 0.

Whenx=1Lu, =

lim #, = lim
1+1/n

the given series is divergent if x = 1.

Thus the given series is convergent if x < land divergent if x> 1

@mprehensive Exercise.3

Test for convergence the following series :

3x2  4x? (n+1) x"
— s ———
8 27 n?

(Kumaun 2003; Kanpur 11; Meerut 12,12B)

2 3 -4
- X X X
i) —+ ———— + =+ ... x> 0.
W itz v
. 2 3
Gi) 1+ L+ +X 4+ . x>0.
1 21 31

[2.92 92 .32 g2 42

2. + +
1! 21 31!
. 2 3 n
3. (i) et 8% gt s
2 5 10 o+ 1
e 2]1_2
(i) 1+=x 9.1 +E.rj -+ L .




Krishna's Algebra (Unified)

¥ x* x>
4, -+ —+ ...
1 3 3.4
1 1.2 1.2.3 1.2.3.4
S = + + + ...
3 3.0 B3:3:7  Badsd Y
n!3" "
6. (i . ii ;
i Y o (i) Y —
3n-1 "
7. (i il 5
& Z ( 2" ] ) Z {.\'+n]
x" n'"
8. (i) (ii) —nk
2 a+n !
9. Test for convergence the series whose n th term is
2 2 n
. n(n+1) e 2]
(i) ——— (ii)
n! 3" +1
3
(i) — Y (> 0) (iv) S ", (x> 0)
Vn? +1) n’ 41
—_ ] 371 _ 2
(v) J; (x> 0) (vi) 2" (x> 0).
n” +1 3" +1
‘.H
(vii) ﬁ,x>0,a> 0.
" +a
10. Examine the convergence of the series
1 x X
O B SR DAL
¥ 3 5 77
@nswers 3
1. (i) Convergent if x < land divergent if x> |
(ii) Convergent if x <l and divergent if x> 1
(iii) Convergent for all real values of x
2. Convergent
3. (i) Convergent if x < 1and divergent if x > 1
(ii) Convergent if x < I and divergent if x> 1
4. Convergent if x < l and divergent if x> 1
5. Convergent 6. (i) Divergent (ii)  Convergent
7. (i) Convergent (ii) Convergent if x < l and divergent if x> 1
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8. (i) Convergent if x < land divergent if x> 1
ii) Divergent
9. (i) Convergent

(
(
(
(ii) Convergent
(iii) Convergent if x < I and divergent if x > 1
(iv) Convergent if x < 1and divergent if x> 1
(v) Convergent if x < I and divergent if x = |
(vi) Convergent if x < I and divergent if x = 1
(vii) Convergent if x < 4 and divergent if x> a

10. Convergent if x < 1and divergent if x > 1

In case x = I, then convergent if p> land divergent if p< L

211 Cauchy 's Condensation Test

(Avadh 2012)
Theorem: If the function f (n) is positive for all positive integral values of n and
continually decreases as n increases, then the two infinite series
T+ F@Y+f Q)+t f () #
and a f(a)+ a’ f (a*) + {13 f @) +..+a" f(a)+...
are either both convergent or both divergent, a being a positive integer greater than unity.
Proof: The terms in the series  f (1) can be arranged as
{f(D+f2)+ f3B)+...+ f (1))
+{f@+h+ f@a+2)+..+ f (@)}
+{f(n2 +l)-¢-f(a2 +2)+...+f(n3

+{f @ +D+f @ +2)+..+ f@" " +.... ..

The terms in the (m + 1) th group are
F@™+0)+ f (@ +2)+...+ f@"*h. (2)
The number of terms in this group is (@ *' — a™)ie, a™ (a - 1).Also f (a"*)is

the smallest term in this group since the terms go on decreasing.

f (am +1)+f m +2 +f m+l ) > a™ (fl’- I)f( m+l)
or f(ﬂm +1)+f M +2) + +f( m+l { m+1 f(”i11+1)}_ .(3)
a

Putting m =0, 1,2, 3, .. successively in (3), we have

F@Q+f@) +.t fla)>— : {a f (n)}
fa+h+f@+2)+ +fﬂ )> L7 (a2 f (@®)
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f@@+)+ f@+2+..+f(@)> _]{n3 f (@)
Adding all the above inequalities, we get
1
SFm-f)s>Z 5" f @)

Thisshows thatiftheseriesE a” f (a")isdivergent,soalsoistheseriesX f (n).

m

Again, each term of the (m + 1) th group given by (2) is less than f (a™).Hence, we

have

f@a™+h+ f@" +2)+..+ f@"*h
<f@)+ f@+..+ f@"=a"(@a-1) f (a")
ie. f@" +D)+ f@" +2)+...+ f (a a" Y <(a-1){a™ f @™} (4)
Puttingm =0, 1,2, 3, ...successively in (4), we have
f@+fB)+..+ f(a)<(a- 1) {fQ
f(zz+l+fn+2 +f a )<(u—l){af()}

f@+h)+f@+2+..+ f@)<@-0{a> f ()}

Adding all these inequalities, we get
Efm-f<@a-DfD+@-D)Za" f(@").
This shows that if Z a” f (a ") is convergent, so also is X f ().
Note: For the validity of the above theorem it is sufficient if f (1) be positive and

constantly decreases for values of n greater than a fixed positive integer .

1

C2 IQ T]:le AIIXIIIG.I'I:] Sel’leS 2
n(logn)’

Theorem: The series
1 1 1

+ +oenk +
2 (log 2)! 3 (log 3)" n (log m)?
is convergent if p> land divergent if p< 1.
Proof: Case 1: Let p<0.

1+

Then — > S for all n = 2.
n(log m)  n

: ; 5 g ; 1 ;
Since the series X (1/n) is divergent, therefore by comparison test L ——— is

n (log n)?
also divergent.
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n (log n)f

Obviously f (n)> 0 for all n 2 2.

Now the given series £ 1 =X f (n).
n (log n)?

Case 2: Let p>0.Let f (n) =

Since < n (log n)” > is an increasing sequence, therefore < f (1) > is a decreasing
sequence. Hence by Cauchy’s condensation test given in article 2.11, the series
¥ f (n)is convergent or divergent according as the series £ a” f (a")is convergent
or divergent.

Now a’ f(a")= & = ) P T

a" (loga”™)!  (mloga)? (log )l n?

. 1. . . .
Since oz a7 is a constant, hence the seriesZ a” f (a")is convergent or divergent
og a

according as the seriesZ (1/ n ")is convergent or divergent. But the series £ 1/ n” is
convergent if p> land divergent if p< 1.

Hence by Cauchy’s condensation test the given series is also convergent if p > land
divergent if p< 1

lllustrative Examrles

Example 26:  Test the convergence of the following series :
log2 log3 log4
: + 1 * ! ; (if) EZ § B R,
log?2 log3 log4 2 3 4
1 1

+ +ot——+
(log )7 (log 3)" (log m)?
Solution: (i) Here f (n)=

(iif)

>0 for all n22. Also f (n) decreases

log n

continually as n increases.
ﬂ'” a n
Now a" f (a") = = ,a being taken as some positive integer > 1.

log (a™y nloga
Consider the series £ a” f (a")=Z {a" /(nlog a) } = Z v,, (say).

n n+1

,sothaty, | = R
nlog a (n+1)loga

Vi =”_+1.l=(1+1].1.
Vsl n a n a

V”

Here v, =

1 P ;
= — which is < 1 as by our choice a > L
v a
n+l

by ratio test the series Z v, =X a" f (a") is divergent.
Consequently by Cauchy’s condensation test the given series
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]
log2 log3

Zfm

+ ..., is also divergent.

log n

(i) Here  f (n)= >0 forallnz2.

H
Also f (n) decreases continually as n increases.

. log a" . .
Nowa" f (a")=a" { g” = n log a, a being taken as some + ive integer > 1.

da

Now the series Z a” f (a")=Z (nlog a)=loga.Zn
is divergent because the series L is divergent.

1
Hence by Cauchy’s condensation test the given series £ f (n) =X %8 % is also
n
divergent.
(iii) If p< 0, the given series is obviously divergent. So let us consider the case
when p> 0. Here f (n) = _+ >0foralln=2.
(log m)?
Also f (n) decreases continually as n increases.
n n
Now a" f (a")= 4 - : , a being taken > 1
(log a™)?  n? (log a)?
1
Consider the series £ a” f (a")=Z LS v, say.
n? (log a)?
n n+l1
Here v, = a ,sothatr, | = “ :
n? (log a)? (n+1? (loga)?
v, a" (n+ 1P (loga)? [] . l)p

i TP (log a) ¥ ' at! - n a

y v, | I

lim =—whichis<lasa> 1L

Vit a

by ratio test the series Zv, = Za" f (a")is divergent.
Therefore by Cauchy’s condensation test the given seriesZ f (n)is also divergent.

Example 27:  Test for convergence the following series
o (log2)?*  (log3)* (log 4)* (log n)*
1 - + - + - FunF - +
W 4 g4 42 n?
1 1 1
+ Fob— 4
(2 log 2)P (3 log 3)F (n log m)?
Solution: (i) Here we can take the first term of the series as
(log 1)
12

because log 1 =0.

. log 1)?
u, = nth term of the series = & = f (n), say.
n* ’
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It is positive for all n = 2 and decreases continually as n increases.

Now a” f (") = a" (log a")* _ a" n? (log a)* _ n” (log a)*
((1”)2 (an)Z n
be a +ive integer > 1.

Consider the series Za” f (a") = Z{n* (log a)* /a" } = Zv,, (say).

,a being taken to

B ———— L4 =
n n * P+l n+
a 1+1

2 2 9 9
Here Y, = i ([Og ”) (” + 1) (IOg {I) .

v #e (log a)? gt a

n

— a" (+1% (loga)®> (1+1/n)?

lim

v i a 3 ;
"_ = lim y=a> I since by our choice a > 1.
Y+l (1+ 1/”)

by ratio test the series £ v, is convergent.
Hence by Cauchy’s condensation test the given series £ f (n) is also convergent.

(ii) If p< 0, obviously the given series is divergent. So it remains to discuss the

case when p> 0.

When p> 0,wehave f (n) = 1 > Oforalln = 2and itdecreases continually

(n log n)?
as n increases.
a” 1

Nowa” f (a")= = l , ato be taken > 1.
@" loga™? a"?=Y ul (log a)”

CaseI: Let p>1 Thena"'’ VY >lasa>1

a’ f(a")= : < l o, (1)

a"w-b e (log )’ (log a)l n’

Now 1/(log a)’ is a fixed positive real number and the series Z (1/n” ) is
convergent because p> L
Hence from (1), by comparison test (second form) given in article 2.7, the series
Za" f (a")is convergent.
Now by Cauchy’s condensation test it follows that the given series X f (n) is also
convergent.
Case II: Let p< L Thena"?~Y <lasa>1

a (;1")2;-L- w:(2)

(log a)t nt

Now 1/ (log a)" is a fixed +ive real number and the series £(1/ n” ) is divergent, p
being < L

Hence from (2), by comparison test the series £ a” f (a") is divergent.
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Now by Cauchy’s condensation test it follows that the given series £ f (n) is also
divergent.

Hence the given series is convergent ifp > land divergent if pP<l

215 Raabe'’s Test

Theorem: The series Z u,, of positive terms is convergent or divergent according as

lim {n [ M _ l] ] >lor<l
sl

e l] } =k, where k > L.

Proof: Case I: Let lim {n
Uyl

Choose a number p such thatk > p> 1

Compare the series Z u,, with the auxiliary series £ v, = X — ,which is convergent

n

since p> L

By article 2.7, sixth form of comparison test, Zu, is convergent if after some

particular term

HH > V!l
Wy Vi1
", 1/n? [u+l)‘” ( l]l’"
or > = =|1+=
ity 41 1/(11 + I).U iz n
-1
=l+p.i+—P(P )-L,+...
n 2! ”2
-1
or n| 2 | >p+m-l+... (1)
U, 2 n

If 7 be taken sufficiently large the L.H.S and R.H.S. of (1) respectively approach k
and p. Also k is greater than p. Therefore (1) is satisfied for sufficiently large values
of n. Hence X i, is convergent if

lim {n[ Mo l] } > 1.
Uyi

Case II: Let lim {n [ Un  _ I] } =1, where /<1

Hyp

Choose a number p such that [ < p<1.

Compare the series  u,, with the auxiliary seriesZ v, = X (1/ »” )which is divergent

since p< L

The series Zu,, is divergent if after some particular term
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u v . . .
LI - [By article 2.7, sixth form of comparison test]
”n+l Vu+l
u -1 1
or n n__1 <;J+M.—+...
U, . 2! n ...(2)

(Proceeding as in case I)
If n be taken sufficiently large the L.H.S. and R.H.S. of (2) respectively approach [
and p. Also! < p. Thus (2) is satistied for sufficiently large values of n. Hence Z u, is

lim {n L—l < 1
Hy il

However, if lim n [ M _ 1] = |, the Raabe’s test fails.
u

divergent if

n+l

Note: Rabbe’s test is to be applied when D’Alembert’s ratio test fails.

Illustrative Examrles

Example 28:  Test the convergence of the series
x" -
0 = nlx iy § 1
3D s Towes @2 1) n=1 1+ logn

nlx"
3.5.7...8n+1])
(m+ 1) x"!
T3S 7. @n+])@n+3)
Now u, =(2”+3).l|'=2”+3.l=[2+3/”].1.
m+D! x n+l «x 1+1/n) x

Solution: (i) Hereu, =

so that u

HH +1

. u . 243/n) 1 2
lim —— =lim =
T § 1+1/n) x «x

-

Hence by D” Alembert’s ratio test the series converges if —> lie., if x<2 and
5

diverges if 2 /x < li.e,, if x > 2 and the test fails when 2/ x = li.e., when x = 2.

In case x = 2, we apply Raabe’s test.

2
Wheny=2, - =" ch
U, 2m+1

LR . 2n+3_1_ no 1 .
W 2n +2 2(n+1) 2(1+1/n)
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lim o | —2 ] zlim;:l<L
M, . 2(0+1/n) 2
Hence by Raabe’s test X u,, is divergent if x = 2.

Thus the given series Zu,, is convergent if x < 2 and divergent if x 2 2.

1 1

(ii) Here Uy =————— Uy =7
1+ log n 1+ log (n +1)
N w, _l+log (n+1)
Uy 1+ log n

_l+log{n(+1/nm} 1+logn+log (L+1/n)

1+ log n 1+ log n

:log(er1)+log(l+l/n):]+ 1 log (1+1/n)

log (en) log (en)

1 (l 1 1 J
=]+ —or= + e

log (en) \n 24> 34°

1 1

=1+ Fopus

n log (en) 22 log (en)

. u , .
lim —£— =1, and so the ratio test fails.

Uy

Now we apply Raabe’s test. We have

. I . 1 1
lim n " —1l=limn - +...
Wyt1 nlog (en)  2n* log (en)

. 1 1
= lim -
I:log (en)  2nm log (en)

Hence by Raabe’s test the given series is divergent.

+..]=0<l.

Example 29:  Test the convergence of the series
2

) 12 +12 .52 . 2 .52 .92 N *, 5% 9% 1%® N (Mcerut 2615)
1 — - 7 - - r - eeru
42 4% 82 4% 8% 122 4% 8% .12% .162
3.6 , 3.69 4 3.6.9.12
+ x° + X7+ X
7.10 7.10.13 7.10.13.16
B 5% 92 L ldn—3)P

4% g2 122 ....@4n)

(i) 1+ % % + ... (Meerut 2013B)

Solution: (i) Hereu, =

[Note that the nth term of the sequence 12 , 52 , 92 ,eo. 18
(1+ (=14} ie, (4n-3)*

and the nth term of the sequence
4% 82,122, is{4+(m-D4)? ic, @n)?* 1.
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12.5%2 .9%......an-3)% .(an+1)?
Then Wyl =53 5 7 e
4% 82 127 ....(4n)* .(4n+4)
w, (@n+4* (@+4/n)?’
Now = = .

Wyor  (@n+ )2 @+1/m)?

. It ; :
lim —2— =1, so that the ratio test fails.
i
n+l

Now we apply Raabe’s test. We have

i , (4n + 4)° _ 24n +15
- _JIl=limn|————1|{=limn|——
Uy (4n + l)z (4n + 1)"“

. 24 +15/n 24 3 C
=lim i i ,which is> 1
@ +1/n) 4 2

lim n

Hence by Raabe’s test the series is convergent.
(ii) Omitting the first term of the series, we have
nth term of the sequence 3,6, 9, ...is3 + (n—-1)3 =3n

and nth term of the sequence 7, 10, 13, ... is7+ (n-1)3 =3n + 4.
3.6.9...3n

u, = 3
" 7.10.18......3n + 4)
q 3.6.9....3n.3n+3)
an I = J
T 71013 B0 +4) Bn + 7)

w, _(3n+7) 1 _(3+7/n) 1
“;.+1_ 3mn+3) x 3+3/n) x

. u, o (3+7/nY 1 31 1
lim = lim i Dot o e
u 3+3/n) x 3 x «x

n

n+1

n+l
Hence by ratio test, the series is convergent if 1/x>li.e., if x <1, divergent

if I/x<lie, if x>1and the test failsifl/x=1lie, ifx=1
B Sn+7

3n+3

If x = |, then M
u

n+l

Now we apply Raabe’s test. We have

. U ; 3n+7 ; 4n
limn|——-1|=limn —1|=1lim
Uy 3n+3 3n+3

= 4— which is > L
3

=lim

3+3/n

Hence the series is convergent when x = 1.

Thus the given series is convergent if x < land divergent if x> L
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Example 30: Test for convergence the following series
l+a+a (a+l)+rr (@a+1)(a +2)+
1.2 1.2.3

Solution: Leaving the first term, we have
_afa+(@a+2)...(a+n-1
e 1.2.3..n ’
ala+D)(a+2)...(a+n-1) (a+n)
1.2.3...n(n+1) '

u n+l 1+4+1/n

and then  w,,, =

|

Now = =
U d+n a/n+1

n+l

. u , .
lim —— =1, so that the ratio test fails.

Uy 4

Now we apply Raabe’s test. We have

+ 1 1-

lim n e I|=limn " —1|=lim %=
T a+n a+n

(1-a)

l+a/n

= lim =l-a

Hence by Raabe’s test, the given series is convergent if 1—a>1ie., if a <0,
divergent if 1 — a < li.e., if a > 0 and the test fails if | - a = li.e.,ifa =0

In case a = 0, the given series becomes 1+0 +0 +0 + ...

The sum of n terms of this series is always 1. Therefore the series is convergent if
a=0.

Thus the given series is convergent if # < 0 and divergent if a > 0.

@mprehensive Exercise 4

Test for convergence the following series :

I 1+2x+ ta x* o+ buithe 3 x’
2 2.4 2.4.6

X
T4
2.4.6 8 2.4.6.8.10 12
s 92 4 2.4 o o 22 .42 .62

3. x + X+ o
34 3456 3.4.56.7.8 (Kanpur 2014)
3 1.3 1.3.
B ) Tsledd g 0F 2o
['2 3 245 2467 (Kashi 2014)
ox 1 ¥ 1.3 1.3.5 4
(i) ~+=-—+ —+ L
I "2 3 2.4 5 2.4.6 7
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ox 1 x2 1.3 ¥ 1.3.5 44

(i) -+ - —+ — —+ =+ ...,x>0.
1 2 3 2.4 5 2.4.6 7

a a(a+2) afa+2)(a+4) 9

5. + X+ X
a+3 (a+3)(a+)5) (@a+3)(a+5) (a+7)

7. Apply Cauchy’s condensation test to discuss the convergence of the series
z : -
n=2n log n (log log n)?

@nswers 4

Convergent if x <1 and divergent if x>1
Convergent if x* <1 and divergent if x* > 1

Convergent if +* <1 and divergent if s

ol -

(i) Convergent if x* <1 and divergent if x* > 1
(ii) Convergent if +? <land divergent if 1% >1

(iii) Convergent if ¥<1 and divergent if x> 1
Convergent if x <1 and divergent if x> 1

ok

Convergent if x<1/3 and divergent if x=1/3

7. Convergent if p>1 and divergent if p<1

214 Logarithmic Test

Theorem: The series X u,, of positive terms is convergent or divergent according as

lim {11 log “ } >lor<l

Wi

Proof: First suppose that

lim {n log o } =k, where k > 1.
Hyiq

Choose a number p such thatk > p> 1

Compare the given series with the auxiliary series X v, where v, =1/ n”, which is

convergent as p> 1.

The series X u,, is convergent if after some particular term
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B o Y , [by article 2.7, sixth form of comparison test.|
Uyl L
. + 1) p
or .. 1 > D = (l 4 1]
Uy nt n
u 1}* 1 1 1 1
or log —— > lo [1+—) =yplo (1+_)= [___+_____}
> Uy g n RS n J no 20 3n3
u, p p
or nlog ——>p— — + - — |
5 Uyt ? 2n 3p? (1)

If n is taken sufficiently large the L.H.S. and R.H.S. of (1) respectively approach k
and p. Also k > p.

Thus (1) is satisfied for sufficiently large values of n. Hence the series Zu, is
convergent if

lim Jln log Un }> 1
4

Similarly, it can be proved that X u,, is divergent if

lim {n log ””} <1l
My 4y

[The procedure of proof will be the same as given in the proof of Raabe’s test]

Uyt

However, if lim {n log “n } = |, the test fails.

Note: This test is an alternative to Raabe’s test and is to be applied when
D’Alembert’s ratio test fails and when either

: : Iy o : Uy
(i) moccurs as an exponent in so that it is not convenient to find —— — |
Uyt Hyi
. . . u, . . .
(ii) taking logarithm of makes the evaluation of limits easier.
u

n+l

Illustrative Examrles

Example 31:  Test for convergence the series
25 32 4% 43 ,% 51
+ s +

Fowwins
21 31 4! 51 (Kashi 2013;Avadh14)
n-1 n
n+l
Solution: Heren, =" x""!, Uyy) = m+h x"
n! (n+1!

NOW = n - = n
Uyt n! m+1)" x (n+1

w, w" Vw1 A"l 1
X
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n-1
[P . YO S
n+1 2 (ixlfn ¥

SN T ’(1+l/n)-l-
(L+1/m" x
lim -2 = lim M Ay [ lim (1+1/n)" =¢]
e +Un" x o«

by ratio test the series X 1, converges if 1/ ex> lie, if x<1/e¢,

diverges if 1/ex < li.e., if x> 1/¢ and the test fails if 1 /ex = lie. ifx=1/e.

1+1
Now if x=1/¢, Mu o Q+1in) - Applying log test, we get
Uy g (l+1/”)”

. u . e(l+1/n)
lim|nlog ——|=lim n log { ———
Sy (] + 1/”)”

=limn[loge+log (1+1/n) —nlog (1+1/n)]

—umn[1+[l-i+L ]_;1(1_L+L H
noo2m® 3 w2 33
. 1y 1 I 1y 1
= lim n[(l+)-+(——)+..]
2 n 2 3 ;12
. [3 5 3 .
=lim|=-—+..|== ie, >1L
2 6n 2
Therefore the series X u,, converges when x=1/e.

Hence the given series is convergent if x < 1/¢and divergent if x> 1/e¢.

Example 32:  Test for convergence the series
. .2 3
(a+x) i (a + 2x) . (a + 3x)

11 21 3!
i + K n + +Dx n+l
Solution: Hereu, = M Uy = b+ s D :
nl (m+1D!
u, (a + nx)" (n+1)! (a+n)" (n+1)
Now = - -= l
i} n! [a+m+Dx]""" [a+ @m+1)x]"

mx)" (a/nx+ D" n(l+1/n)
D2 2 [t D+
W't U+ a/m)" 1+1/n)

a1/ )" L+ a/ (e + 1) !

/2]
1 n
_‘. " f n+l '
BERREE

n n+1

2o
X




Krishna's Algebra (Unified)

) i, 1 ¢ alx lim x i .
lim = l1+=| =e¢
u X g g%/x n— oo n

n+l

(o4 ]

=1
ex
Hence by ratio test the given series is convergent if 1/ex>1 ie, if x<l1/e
divergent if 1/ex < li.e., if x> 1/¢ and the test fails if 1 /ex =1ie., if x =1/
u

i n
n
If x=1/e, .=

By o - n+l
' (1 + i] [l i I }
n n+1

Applying logarithmic test, we get
¢ [l + E] "
I

1 n n+l
(1+f) {H = }
n n+1
=limn |:10ge+u log (l-i——)—u log (]+ )—(n-i—l) log [1+ FIH
n+
. ea f2r12 S a’ (1 1 1 )
=limunl|l+n - 5 == ST e T
n 20 3:1 no 29 3’
2.3
—(n+1) = ——"2” 7+
n+l 2(n+1)
. ¢’ a’ 1)1 e a’ ea’ 1) 1
=limn||- +—|—+ + = | o g
2 2)n 2(m+1)) 3 3] n?

. e a’ 1 2 a’ Ead -1
=lim (|- +— |+ + F s
2 2 2(L+1/n) 3n

2 9 2 52
__¢a +1+‘” :i,whichis<].
2 2 2

the series is divergent if v =1/e.

#J = lim n log

Hy vl

lim [n log

Thus the given series is convergent if x < 1/ ¢ and divergentif x> 1/ e

@mprehensive Exercise 5

Test for convergence the following series :

1. x* (log 2)7 +x* (log 3)7 + x* (log 4)7 +

T
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2 1 + 1 + +—1 +
" (log2)?  (log3)”  (logm?
3. () x+ 92 2 . 33 3 . 4% 44 . 57 0
e 21 31 41 51
(ii) l+22 ¥ + 37 v +44 v + 5% x° -+
21 31! 41 51 7

D 2 31 41,
2 B 4%~ 5t (Kanpur 2014)

@nswers 5

Convergent if x < ] and divergent if x> 1

2. Divergent for all values of p
3. (i) Convergent if x < 1/¢ and divergent if x> 1/e

(ii) Convergent if x < 1/e and divergent if x = 1/¢

4. Convergent if x < ¢ and divergent if x> ¢

215 DeMorgan’s and Bertrand's Test

Theorem: The series ¥ u,, of positive terms is convergent or divergent according as

tim [dn | 22 1| =10 tog | > lor< 1.
Hyy
Proof: Letlim Hn (L - l] - 1} log H} =k, where k > L
Hu+l

Take a number p such thatk > p> L.

Compare the series £ u, with the auxiliary series X v, ,wherer, = ————— which

n (log n)?
is convergent as p> 1.

The series X u,, is convergent if after some particular term
u v

— —, [By article 2.7, sixth form of comparison test]
iy Vytl

: H” l ] I

ie., > m+D{logn+1}?, | v v,=——m—
u,,1 n(log n)! n (log n)?

P
ie., s, (” + 1) log {n(1+1/n)}
L n log n

n+l
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i ", - [I . l) log n+log (1+1/n) F
I, n)| log n
_I 1 1 4
og n+— - +...
ie. SLTENN (I + l) ’ n_ on’
' i g n log n
: P
Le., % >(I+l) P - 1 + i
My, n/|  nlogn 20’ log n
ke, bn >(1+1) L —E .,
By 1 n/|  nlogn
Le., L>l+l+ P_4..
Iy 1 n  nlogn
LEs n| 2 _qs1+ 2 4.
Uy log n
ie., n “n -1|=-1> P + ...
U, 4 log n
Le., {n {L - 1} - l} log n> p + terms containing n or log n
ty 41

in the denominator.

(1)

Now as n becomes sufficiently large the L.H.S. and R.H.S. of (1) respectively

approach k and p. Also k > p.

Thus (1) is satisfied for sufficiently large values of .

Hence the series X u,, is convergent if

iy

lim

n
Hy 4

Similarly, it can be

u,

lim
u

{,,

n+l

Note:
test fail.

-1

> 1

- l} log n

proved as in the case of Raabe’s test that  u,, is divergent if

— l} log n

1 <L

This test is to be applied when both D* Alembert’s ratio test and Raabe’s

216 An Alternative to Bertrand's Test

Theorem: The series X u,, of positive terms is convergent or divergent according as
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lim || nlog il RS logn|>1lor<1
Iyt

Proof: Let lim [[n log Pn 1] log nj| =k, where k > L

A87 iy

Hyt1

Take a number p such that k> p> 1

s x 2 5 i 1
Compare the given series X i, with the auxiliary series £ v, wherer, = —
' n (log n)

which is convergent since p > L The series £ u,, is convergent if after some particular

term
il Un , by article 2.7, sixth form of comparison test
Iy Yyt
: iy I 14
e . L E H = n log n W (Proceeding as in article 2.15)
ie. log L>Iog I+{l+ F +]
Uy n  nlogn
9
Le. log . >{l+ lp +]21[l+ ]‘u +] P
. \n nlogn n  nlogn
ie. n log Y P 1, + .
oy no nlogn 2xn°
ie. n log LN SO P S
My, logn 2n
ie., nlog L N P —L+...
Uy, logn 2n
. u, | [log n
ie., nlog ———1l|logn>p-— +... (1)
Uy 21 n

Now as n becomes sufficiently large the L.H.S. and R.H.S. of (1) respectively
approach k and p. Also k > p. Thus (1) is satisfied for sufficiently large values of n.

Hence the series X u,, is convergent if

lim {n log . l} log n|>1

Uyl

Similarly, it can be proved that X u,, is divergent if

lim {n log e 1} log n|< 1

Uy v
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Note: This test is to be applied when the log test of article 2.14 fails i.c., when

. u u
lim —2 =1

= land also lim n log
My 41 W

n+l

]llustrative Examl)les

Example 33:  Test for convergence the following series :
2 12,32 il
= x +

O) st tor 7 2
2 2° .47 2 .47 .6 (Bundelkhand 2014)
1y’ L2 y(y+1)

a@+)@+2)B(B+H(B+2) 5
1.2.3.y(y+)(y+2)
P 8% 0 00
22 .42 .. 2n)
12.32 . ..@2n-1% . 2n+1)?
27 4% . @2n? 2n+2)?

w,  (2n+2) 1_{2+2/;,}2 1

n-1

Solution: (i) Hereu, =

— Wi
and Uy =

uyp1  @n+D? x

wy . [2e2/m)” 1] 22 1 0
lim —— = lim o= 2=
Uy, .1 2+1/n x| 22 x =
by ratio test the given series Zu, is convergent if 1/ x > lie., x < 1, divergent if
1/x<lie, x>1and the test fails if 1 /x =1lie, x=1

2+1/n| x

When x = 1, we have
_(2n+2)?
= -

U,

Wyl (2” + 1)
N . (2u+2)‘2_ _n@n+3)  4+3/n
By i1 2n + 1)? Cn+ )% 2+1/n)?

4+3
lilnn{u" —}:]in"[(-'_—/”:i:l.

=

W i1 2+1/n? 27

Raabe’s test also fails when x = land so we shallnow apply De Morgan’s test.

4 -n-1
Now R —]:M_]: " -
2n+1) (2n+1)

lim Hn (L - 1] - l} log n}
Uy
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= lim [L_l)] log | = lim | — e 1/”1 logn
1(2n + l)-f @+1/n?> n

—_ l l .
=7 0=0<1 [Note thiat i o]

n

by De Morgan’s test £ u,, is divergent when x =L
Hence the given series X u, is convergent if x < land divergent if x> L.

(ii) Omitting the first term, we have
o (o & Ip{ora 2o (=1 BB+]) G+ 2w Prr=1}

= 1 2. 1y +)(+2) .. (y+n-] T
o+l ...@+n-—D@+n)pPB+D.B+n-0)B+n) L

L.2...n(m+D) . y(y+D...(y+n=D(y+n)

Hyvy =

N w, _(m+Dy+n) 1_ A+Un)(y/n+] 1
ow = s — = (R
uypyp @+m)B+n) x (@/n+)B/n+l) x
LMy 1.1 1 1 ) o ) .
lim ——= 113 —so that by ratio test the seriesis convergentifl/ x > li.e.,
Hy i : X X

x < land divergent if 1 / x < 1i.e., x> land the test fails if 1 /x =1ie, x=1
When x = 1, we have

w, (m+l)(y+n) n2+('y+l)n+7 .

Uyt (@+m)@+n) w4 (0 +B)n+ 0B

[”” J {:12+(Y+l)n+7
n|l———1|=n 3 -
i, e+ o+ p)n+off
=11{(Y+]—0t—l3)"+('¥—(1[3)}
112+(cx+]3)n+0t[3
(7+l—a—B)+(y—aB)/n.
l-r(cxc-rB)/n+0L[3/n2

(-
limn[”” —-1]=Y+ Iu B:-Y+1_a_ﬁ.
u

n+1
if x = 1, then by Raabe’s test, the series is convergent if y + 1 — o — B > li.e., if
y>o+p, divergent if y+l-oa-pf<lie, if y<a+B, and the test fails if
Yy+l-a-B=1ic,ify=0+p.
When y = o + B, we have

[u” ] n{n+o+pB-af}
n -1|= -

2

u e+ o+ P)n+of

n+l

Now we shall apply De Morgan’s test.
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We have

. u, ) n(n+o+p-op)
lim Hn [If;,ﬂ - l] - 1} log n] = lim an FrS—— = l} log n:|

= lim |:”2 —ai - op -log n]

+ (ot +B) n+ o

_ lim [ —of (I+1/n) _ log n‘|

1+ (@ +B)/n+ap/n’ n

_oB
1
by De-Morgan’s test the series is divergent if y = o0 + .

-0 =0, whichis< L [Note that lim log = O]

n

Thus the given series is convergentifx < 1, divergent if ¥ > land forx = 1, the seriesis
convergent if y > o0 + B and divergent if y < o + B.

Example 34: Test for convergence the series

oy (1.3)Y (135)F
1! +[7 +—| +|——| +
2 2.4 2.4.6
Solution: Omitting the first term 17, we have

1.3.5.....2n-1) a
u, = ,
"l2.4.6.....2n

and then

Lo _[r3sen-p@Ee+]”
" 2.4.6...2n0) @26 +2)

o\ P NP
Now Uy _ 2n+2 _ 1+1/n .
W 2n+1 1+1/2n

.U Iyé .. . .
lim — = [7) = li.e., the ratio test fails.
Uy

Now we apply logarithmic test.

‘ P S\
Wetlave Tog 2= g (1] " g LI 8
u 2n+1 1+1/2n

n+l

=pllog (1+1/n)—log (1+1/2n)]

- (l__I_JrL_ ]_ Ao r v
nooom® 3 2n 2,222 3.2343 7
111 1 17 1 | 171 1
= [y = 24 Ao T pe il bopadpe il .
PH 2} n 2 { 4} w3 { 8} " ]
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(o1

2n 8u? 240

nlog 1 = [l—i+ o ]
. Hyy : 2 8n 24)12

HH p

lim n log = —, so that the series is convergent if p/2>1lie, if p>2,

Hy 1

divergent if p/2 < li.e, if p< 2 and the test fails if p/2 = lie, if p=2.
If p=2, we have

alogt gl 3 @ | 4 3, T
gu 2 8n 92452 4n 1242

*n+1

lim (| n logL—l log n| =lim —i+ 7, —...p.log n
w, dn 1252

:IimH—§+L—...}-m} 2{—5} .0 =0, whichis< L
4 12n i ¢

Hence by Alternative to Bertrand’s test given in article 2.16, the series is divergent
when p=2.

Thus the given series is convergent if p> 2 and divergent if p< 2.

@mprehensive Exercise 6

Test for convergence the following series :

92 22 .42 22 42 @2
1. 1+=—

+

2 2 2 2 2 2

3 3.5 3°.5°.7 (Kashi 2013; Meerut 13)
B 123 P.g.s?

2, —+———t+——+—+
r XA FAE (Kumaun 2003)

3 q+rz((r+l)+n(rz+l)(a+2)

b b+l bh+1)(bh+2)

a(l—-a) (I+a)a(l-a)2-a)
4. 1+ 12 i 12 92
+(2+H)(l+(r)ﬂ(l—a)(2—a)(3—a)+
. 25,3
g 1. O o (o + 1) 5, o+ (@+27?

+ —Xx+ X
1B~ 1.2B(B+) 1.2.3B(B+D(B+2)

| 2/3 1.3 2/3 1.3.5 2/3
6. 1 —— + +d— +
2.4 2.4.6 2.4.6.8

xl+I//l +x1+l/.2+i/3 xl+l/.2+l/3+l/4 o

7. x+ +
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@nswers 6

Divergent

Divergent
Convergent if b —a>1 and divergent if b —a<1

Divergent
Convergent if v <1, divergent if ¥>1 and when x =1 then

convergent if B> 2o and divergent if B<2 o
Divergent
Convergent if x <1/¢ and divergent if x>1/¢

207 Summary of Tests

Let the given series of positive terms be X u,,. Then to test the series for convergence
we proceed as follows :

1.

Find lim u,: (a) If lim u, > 0, the series is divergent.

(b) Iflim u, =0, then the series may or may not be convergent. In this case
we apply further tests to decide the nature of the series.

If lim #,, =0 and u, can be arranged as an algebraic fraction in »n, then

usually comparison test should be applied.
If n occurs as an exponent in u, and lim («,)"" can be easily evaluated,

then Cauchy’s root test should be applied.
Cauchy’s condensation test is generally applied when u,, involves log n.

In case all the above tests are not applicable then we adopt the following
scheme of testing in the given order.

. . . . u . .
D’ Alembert’s ratio test: For this we find lim —— The series is
Hy sl

convergent or divergent according as this limitis> lor < 1 In case this limitis
equal to I (unity), this test fails. Then we proceed to apply either test 6 (a) or 6
(b) or 6(c) given below depending upon the nature of u,, and u,, /u,, ;.
(a) Comparisontest: Insome caseswhenD’Alembert’s ratio test fails,
the convergence of the series may be decided by comparison test.

. : : u -
(b) Raabe’s test: For this we find lim » Z_ — 1| The series is
Uyl

convergent or divergent according as this limit is> lor< 1 In case the limit is
equal to 1, this test fails and we apply test 7 (a).
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- . u ’ :
(c) Logarithmictest: If—"— — Icannotbe evaluated easily while

Uyvl

u,

can be easilv evaluated then we applylogarithmic test. Here we find

log

Uyt

u

lim | n log —*— [ If this limit> 1, the series is convergent and if this limit< I,

Uyl

the seriesis divergent. In case the limit= 1, this test fails and we apply test 7 (b).
7. (a) De Morgan’s and Bertrand’s test:

u,

Find lim |{n -1|-1} log n

Uy

The series is convergentordivergent according asthis limitis> lor< L

Note: When thistestis applied, we shall generally find that the limit
comes out to be equal to zero and since 0 < 1, the series is divergent.

(b) Alternative to Bertrand’s test:

u,

To apply this test we find lim || n log —-1|log n

L |

The seriesis convergent or divergent according as thislimitis> lor< 1.

218 Kummer's Test

Theorem: Let Zu, and Z (1/d,) be two series of positive terms and let

vy =d, (u, [ u,.1)—d, . Then
(i) ifafixed positive number k can be found so that after a certain stage, say forn = m,
v, =k, the series, Zu, is convergent;
(it) ifv,<0fornzmand L (1/d,)is divergent, Zu,, is divergent.
Proof: (i) From the condition given in the statement of the theorem forZ u, to

be convergent, we have for n > m, where m is a fixed +ive integer,

i = Mii’ A
v,2k>0 ie, d, -d, . 2k
Uy
ie., Aty =id g Wy g 2 kw, (1)

[Note that u,,, is positive]
Replacing n by m, m +1,m+ 2 ,...,n - lin succession in (1), we get

&y Ty dm+l Uy g 2 k Up 415

de Hp 41 _dm+2 Uy 42 e k”m+2’

dy_y Upy_y — 8y Uy 2 ku,.
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Adding the corresponding sides of these inequalities, we get

dln Uy — du u, 2k (Mm +1 J'l- My o+t HM’)
or Uppp Ty ottty < ; (dm Hy — dn M”) [ k> 0]
+ + . { 2
or Hpyp] ¥ Uy o+t iy <Ef,,,u,,, - (2)
S, -S, <vd
or n Pm < I m lt”,,
where S,=wm+...+uy, +upy g+, =S, +u, . +...+u,
1 .
or S5,<8, + = d,u,, using (2).

Since §,, is less than a fixed number, hence the series X u,, is convergent.
(i) We have v, <0 for n = m (given)

u

. n ’

Le., d, —d, ., <0fornzm
Uy

ie, da, <d, .y u,,, fornzm.

Putting n = m, m + 1, m+ 2,..., n — lin succession, we have

dln”m < dm+] Up 1 < dm +2 Wy yn SamiinS du”n
ie., dyu, <du,
or Uy, 2 ('dm Hm) /du'

Nowd,,u,, is a fixed number and the series  (1/4,,)is divergent (given), hence, by
comparison test the series X u,, is also divergent.

219 Gauss's Test

Theorem: Let X u,, be a series of positive terms and u,, / u,, | can beexpressed in the form

iy, =l+£+ bi!
I n ot

n+l
where p> land|b, | < afived number kor (in particular) b, tends to a finite limit asn — oo,
then Zu,, converges if a > land diverges ifa < 1.

Proof: It is given that

u a b . u
" =l+—+-L e, n " —I|l=a+ —
u no ot Uy nt~

n+1

limn|-22 —1|=a [ p>Tland|b, | < k]
I

Ly 1

Hence by Raabe’s test Zu,, converges if @ > L and diverges if @ < 1. The test fails if
a =land then we apply Kummer’s test to find the convergence of Zu,,.
When a = 1, we have

T I b

=l+-—+-2.
nnf
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| | ; .
+... is divergent, we take

+ T
2log2 3log3 nlog n
d, =nlog nforall n 2 2 in Kummer’s test. Then we have
u

== n
v,=d, —"—-d
u

Since the series

n+l
n+l

= (n log n). (l + ! + 1%] —(n+1)log (n+1)

n n

=n (l - l) log n + 5]” I log n—(n+1)log (n+1)
n nt'~
=m+l{logn-log(n+1}+ f’il log n
n
=n+1)lo " +Llo n
8 n+1 ”P—] 5
] log n
= 1) log [1- b
(n+1 og[ u+l]+n-'"l a
|
P IR S S YL
n+1l 2m+1)° n?~
1 log n
=|-1- — |+ b sl
|: 2 (” + l) :| 11;571 n ( )
. logn .
Now lim e 0 as p>1land< b, >is a bounded sequence because |b, | < k.
n
lim [10‘5 - b:| <i(). . (2)
nt !

Hence taking limit when i — o, we get from (1) with the help of (2)

lim v, = - 1+ 0 = — 1, which shows that after a certain stage v, < 0. Also Z (1/4d,,)
ie., Z (1/nlog n)isdivergent. Hence by Kummer’s test the series X u,, isdivergent.

Thus the series X u,, is convergent if 2 > 1 and divergent if a < 1.

220 Cauchy-Maclaurin's Integral Test

Improper integrals: Integrals of the form J. - f (x) dx where a € R are called

improper integrals.

Let F(f)= j : f () dvforast<es,
a

lim -
Ift . F (t)existsandisequalto/ e R, theimproperintegralj l f (x) drissaid to

converge to [, otherwise it is called a divergent integral.
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Theorem: Let f (x)be a non-negative monotonically decreasing integrable function on

[L, eo[. Then the series 5 f (n) and the improper mt.:gmlj f (x) dx converge or diverge

n=1

together i.c., the series T f (n) converges or diverges according as the integral Lm f (x) dy

tends to a finite limit or diverges to = as n — ee.

Proof: Since f (x)is non-negative on [l, e[ , therefore

f®z20 ¥xz1

ie, the series X [ (n) is of non-negative terms.
n=1

For any x € [1, e[, we can find n € Nsuch that n< x<n +1

Since f is monotonically decreasing on [1, e[, therefore, we have
fmzf (.r)>f(n+ ) if n<x<n+l
j”“f ez [" a7 feend

n+l
or f(n)EJ‘” f)dez f(n+1 - (1)
Puttingn = 1,2, ..., (n — 1)in (1) in succession and then adding all the results, we get

F+F @+t fn-1)2 j fx de f(x ,n-+...+j:_]f(x)dr

zf @)+ f B) +.t f (). (2}
Let s —f )+ f 2+ + f (n)
and j (0 dv +j St " fde=]"f @

Then (2) can be written as
-fm=zI,zs,- f (1)
or —fnZI —s,2— f (1)
or fmss, —1,< f (1) ..(3)
The result (3) is true for all ne N.
Letu, =5, -1, forallne N

Now U1 = s = pi1 —dpit) = G = L) = Gpn = 8a) — Uyqq —13)
n+l
=f(n+ I)—J . f (x) dv <0, using (1).
u, . <u,forallne N

ie, <u, >isamonotonically decreasing sequence.
Also by (3), 1, = f (1) = 0 for all # and hence < u, > is bounded below. Thus the

)| R

sequence < u,, > is convergent i.e., < u, > tends to a finite limit as n — ee.
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Sinces, = u, + I, and< u, >is convergent, it follows that the sequences< s, >and
<1, > converge or diverge together. Consequently the series £ f (n) and the

integral Lm f (%) dx converge or diverge together.

Note: TheseriesZ f (n)and the integralj h f (x) dxconverge or diverge together
o

foraz=1

Illustrative Examr)les

Example 35: Test the convergence of the series
2 12.32 123252
—+ — + — v — +
22 924?92 4% 6%
12.3%4.5%...0n - 1Y
2%2.4% 6%...2n)°
158" 5% .00 — 11 O s 1
22 .42 62...2nY° @2n +2)?
Kz u, _ 2n + 2)'2 '
Uyt (Zn + I)z

Solution: Here, u

n -

and Uy =

. u
lim —2—=1
u

n+l

Hence D’Alembert’s ratio test fails. Now we apply Raabe’s test. We have

" 2 ] .
lim n [ U _ 1] =lim n {—(2” *2) - li = lim i e (o +3) =1

T 2n + 1)? 2n + 1)?

i.e. Raabe’s test also fails. Now we apply Gauss test. We can write

Z 2 -2
(] (15
T n 2n

=(l+g+%J(l—2.i+3.%—...J
n n 2n 4n

a b 1
=l+—+ 2 whereh, 5 — —asn— e,
n n 4

Since a = 1, hence by Gauss’s test, the series Zu,, is divergent.
Example 36: Test for convergence the series

2 27.4% 2°.4%.6° N

3% 3257 325777

1+
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22 4% 62%...... 2n — 2)*
Selution: Here, u i )

32,52, 7%......2n - 1
2242 6%......2n - 2)* 2n)*

e

and i =

" g25272  on-12 @ n+1)>2
2 1
lim o lim (2 +2) = lso that ratio test fails.
Uyt (2n)

Now we apply Raabe’s test. We have
n+ )2 ] n(4n +1)

2
L—l =lim n (—2—1 :lim—zz
My 4n 4n

Hence Raabe’s test also fails. Now we apply Gauss test. We can write

u, _4112‘ +4u+1_1+ 1 " 1 1+ 8y b,
", 4n® no 4n® nopt

lim n L.

Herea =10, = % p =2 > 1. Consequently the series is divergent by Gauss’s test.

Example 37:  Show by Cauchy’s integral test that the series
L
n=2 p (log n) ¥
converges if p> Land diverges if 0 < p< 1.

Solution: Let f (x)= ; p>0 and xe[2,e[. Then f (x)>0 and is
x(log x) ¥
monotonically decreasing for 2 < x < e,
Let Fe={, M S
2 x (log v)¥
l—p
Then I, lm} when p #1
I-p |
2
= ——[(log )" ¥ = (log 2)' "
2

and when p =1, we have I, =[log log x]; = log log n - log log 2.

Hence when n — <, we have

i e = o5, 8f p<l, and = log 2) -7 if.
”_)MJ. fx)dv=ece if p<1 an ——I_p(og) i

Thus the mtegralj f (x) dx converges if p> 1 and diverges if 0 < p< L.

Hence by Cauchy’s integral test the series

1
Z W= % S —
n=2 S n=2 " pn(logn)?

converges if p>1and diverges if 0 < p< 1L
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Example 38:  Show by integral test that the series £ % ( p>0)converges if p> land
n

diverges if 0 < p< 1. (Agra 2014)
Solution: Let f (x) = Lp ,p>0and x € [1,e].
x

Then f (x) >0 and is monotonically decreasing on [1, = [.

no ] n
= a— Far—] 4 ixX
Let I L p dx L x7F dy
1-p
_ |2 et , ifpzl
=1l-p 1-p
log n, if p=1
Now, when i — oo, n' 77 = ! - 0if p>1 n' " 5 wif p<land log n — .

n p—1

lim B

B I

1
mIH l
n— -p p-1

ifp>land lim/J, =eif p<l

Thus the integral Lm f (x) dv converges if p> land diverges if p < 1and hence by

Cauchy’sintegral test the series X —isconvergent if p > land divergentif p < 1.
n

li
Example 39: Show that " (l + L + L] +ot L log HJ exists.
H—> 2 3 n

Solution: Let f (x)= 1 where [ € x < oo,
X

Then f (x) >0 and monotonically decreasing on [1, eo[.

Takes, = f (114 F@ & f (n)=1+2i+...+i,

n
and I, = J]” f(x)dv= L” L drx = log n.
=

Then proceeding as in article 2.20 and thus here using condition (3) of article 2.20,
we get

fmss,-1I,< f(1)foralln, or 0<’]—ISSH—I”Slforallu.

This shows that the sequence < s, — I, > is bounded below.

Also as shown in article 2.20,< s, — I, > is a monotonically decreasing sequence
and hence it converges.

We call the limit of this sequence Euler’s constant and denote it by y which is
0 -577 approximately.

Hence lim {1 + L Fioon 1. log n} exists and is equal to y, where yis called Euler’s
n

constant.
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@mprehensive Exercise 7

1. Apply integral test to check the convergence of the following series :

n=1 n n=l (n+1) n=l (u= +1)
2. Apply Cauchy’s integral test to prove the convergence of the series
1 1 1
(i) — (i) T ———, (i) L ———— .
n? +1 nn+1) " ﬂ(nz T

3. If f (x)is positive and monotonically decreasing when x 2 1, then prove that
the sequence whose nth term is

fO+ f@+.+ f) - | 1“ f (%) dx

converges to a finite limit.

@nswers 7

1. (i) Divergent (ii) Convergent (iii) Convergent

221 Alternating Series

So farwe have mainly dealt with series of positive terms. We have seen that a series
of positive terms either converges or diverges and cannot oscillate. But a series
which contains an infinite number of positive and an infinite number of negative
terms may either converge or diverge or oscillate.

Alternating Series: Definition: A series whose terms are alternately positive and
negative is called an alternating series. Thus an alternating series is of the form

Uy — Uy + Uy — ity +o¥ (=D u, w

where 1, > 0 for all n. It is denoted as

oo

T =P e

n=1

The following are some examples of an alternating series.

i l-=+=-——-—+
2 3 4

(ii) 1—§+§—§+£—7+ +—(_])'H (H+])+
4 6 8 10 12 7 2n

(iii) 1- 2 3 4

v - +
log2 log3 log4
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Theorem: Alternating Series Test (Leibnitz’s Test): An infinite series
= (- D", in which the terms are alternately positive and negative is convergent if each
term is numerically less than the preceding term and lim u, = 0.
Symbeolically, the alternating series
wy =ty + iy — sty 4.+ (= D", + o, (u, >0 for all n)

converges if

(1) Wy Suyforallnie, u, 2uy 2uq 2uy 2 ...
and (i) limuw, =01ie,u, — 0asn— oo,

Proof: Let S, =u —uy +us —uy +...+(=1)""" u, so that <S,> is the

n
sequence of partial sums of the given series.
We shall prove the theorem in two steps.

(i) First we shall prove that the subsequences < S, , > and < §,,,, > of the
sequence < S, > converge to the same limit, say S.

We have Sy, = —uy +..¥ Uy, _| — Uy,
and Sousa T — Uy oty )~ Uy, F g,y = Uy
Sonsa — Soy =Hgyyy — Ug,,o 2 Oforallnbecauseitis given thatu, | < u, for

all n.
84,49 2 8,, forallnand so the sequence< S, >is monotonically increasing.
Again for all n,
So,=up —[(ug —ug) + (g —ug)+ ..o+ (Ug ;9 — Uy, _y) + Us,]
=1, —some positive number because uy, — ug, ... 0y, o — Uy, |, Uy,

are all positive
Su.

Thus S,,, < u; for all n and so the sequence < §,, > is bounded above.
Since the sequence < S,, > is monotonically increasing and bounded above,
therefore it converges. Let lim S, , = S.
Now 52u+l = ‘SZM + Uy
lim Sy, =lim Sy, + lim uy,,
=5+0 [ limu, =0]
=8S.
the sequence < S, , | > also converges to S.
Thus the subsequences< Sy, >and< S,,,.; > of the sequence < §, > converge to
the same limit S.
(ii) Now we shall show that the sequence < §,, > also converges to S.
Let £ > 0 be given. Since the sequences< S,, >and< S,, ., >both converge to S,
therefore there exist +ive integers nm; and m., such that
|Sy, — S|<eforallnzm,
and | Sy,1 —S|<eforallnzm,.

Let m = max (m, m,).
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Then |S, =S |<eforallnz=2m.
the sequence < S, > converges to S.

Hence the given series T (- 1)" ™! u, converges.

Note I: The above test is equally applicable to the series X (- )" u,, u,, > 0 forall
n, provided both the conditions (i) and (ii) are satisfied.
Note 2: 1f in the case of an alternating series

Hy =ty + Uz —uy +...... (u, >0 forall n),
the terms continually decrease, we cannot say that the series is convergent unless
lim u, = 0.Because iflim u, # 0, thenlim §,, and lim S, , ,; will differ and so the
series will not be convergent. Such a series is an oscillatory series.

For example, consider the series

Here the terms are alternately positive and negative and each term is numerically

less than the preceding term because

2>§>i>i>.......

2 3 4

: . : 1 . i
But here lim u, = lim = lim (1 + ;) =1#0. Hence the given series is not

n n

convergent. As a matter of fact it is an oscillatory series.

lllustrative ExamFles

Example40:  Show that the series ] — 21 + % - i + .. converges. (Avadh2012)

Solution: The given series is an alternating series
W =ty + g =ty +o+ (= D" u, + L, (u, > 0 forall ).

n

Here u, =1/ n> 0 for all n.
-y = 1 l:n#n~l: ~1 < 0 for all n.

We have u,, =
n+l n nm+l) nm+1l)

Thusu, . < u, forallni.e. each termisnumericallyless than the preceding term.

Also lim i, =lim L 0.
n

Hence by Leibnitz’s test for alternating series, the given series is convergent.

Example 41: Show that the following series are convergent.
(i) 177 =270 4370 — _when p> 0.

. 1 1 | . o
(ii) - + — ... except when x is a negative integer.
x+1 x+2 x+3
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Solution: (i) The given series is an alternating series

W =ty + ity — ity + .+ (= D"V, + ., (u, >0 for all n).

Here u, =1/ n? >0 for all n.

Also since p> 0, we have i >, L >
¥ 27 3F
Thus u, ., < u, for all n.
1 ;
Also lim u, =lim — =0, since p> 0.

nt
Hence by alternating series test the given series is convergent for p> 0.

(i) The given series is
1 | 1

- + — ..., Xis not a —ive integer.
r+1 x+2 x+3

If v > — I, then the terms are alternately positive and negative from the beginning. If
x < - |, excluding —ive integers, then the terms are ultimately alternating in sign.
Since the removal of a finite number of terms does not affect the convergence of the
series, therefore we may assume the series to be alternating in sign in both the cases.
Obviouslyu; > uy > uy > u, >...i.e., eachterm of the series is numerically less than
the preceding term.

; ; 1
Also lim , = lim =0.
X +n

Hence by alternating series test, the given series is convergent.

@mprehensive Exercise 8

1. Examine the convergence of the series
1 1 1 1
— + - +
1.2 3.4 5.6 7.8

2. Show that the series
log2 log3 log4
i = & S
22 32 4.2
3. Examine the convergence of the series

1 |
- I+—+—+...+—
E(_l)n 2 3 n

1 n

. converges.

n

I
) = I ) 1 H+
4. Test the convergence of the series X -+ % :
n=l n n
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@nswers 8

1. Convergent 3. Convergent

4. Divergent

222 Absolute Convergence and Conditional Convergence

(Meerut 2012B)
Absolutely Convergent Series:
Definition: A series Zu,, is said to be absolutely convergent if the series X |u,, | is
COHI’-‘.’Fgf’JTf.

If X u,, is a series of positive terms, then £ u,, and Z |u,,| are the same series and so if
2 u, is convergent, it is also absolutely convergent. Hence for a series of positive
terms the concepts of convergence and absolute convergence are the same.

But if a series X u,, contains an infinite number of positive and an infinite number of
negative terms, then X i, is absolutely convergent only if the series Z | i, | obtained
from X u, by making all its terms positive is convergent.

For example the series

Y, :l—l+i,)—i+
2 22 2°
is absolutely convergent. Here we see that the series
Z|u, |=1+l+i+i+...
2 22 2

is an infinite geometric series of positive terms with common ratio 3 which is< 1

and so it is convergent. Hence the given series £ u,, is absolutely convergent.

Non-absolutely convergent or semi-convergent or conditionally convergent
series:

Definition: A series Zu,, is said to be semi-convergent or conditionally con-

vergent or non-absolutely convergent if £ u,, is convergent but X | u,, | is

divergent.
For example, consider the series
1 1 |
T, =l-—+--—+
2 3 4

Itis an alternating series in which each term is numerically less than the preceding
term and lim u, = lim (1/#) =0. Hence by alternating series test, Zu, is a
convergent series.

But the series X | u, | =1+ % + é + al— +...1s the series Z (1/n"), for p=1, and we

know that it is divergent. Thus here X u, is convergent while X |u,,|is divergent.
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Hence X u, is a semi-convergent or conditionally convergent or non-absolutely
convergent series.

Tests for absolute convergence: To test the absolute convergence of the series
X u,,, we have to simply test the convergence of the series X | u,, |which is a series of
positive terms. Hence the various tests given for the series of positive terms are
precisely the tests which we are to apply to check the absolute convergence of the
series Zu,. We have to simply replace u, by |u, | in these tests. For example by
Cauchy’s root test, the series Tu, is absolutely convergent if lim |u, |/ <1-
Similarly by D’Alembert’s ratio test the series X u,, is absolutely convergent if

|

N
= lim |[—— > L
|”u+l| ‘un+l‘

Ilm Hl

Similarly comparison test or other tests may be used.

However these tests cannot give any information about the conditional
convergence of the series.

223 Some Important Theorems on Absolutely Convergent

Series

Theorem 1: Every absolutely convergent series is convergent but the converse is not
necessarily true i.e., convergence need not imply absolute convergence.

Theorem 2:  Inan absolutely convergent series, the series formed by its positive terms alone
is convergent and the series formed by its negative terms alone is convergent.

Theorem 3: Re-arrangement of terms of an absolutely convergent series:

If the terms of an absolutely convergent series are re-arranged the series remains convergent
and its sum unaltered.

Or  The sum of an absolutely convergent series is independent of the order of terms.

]llustrative Examrles

Example 42:  Show that the series
1 1 1 1

ﬁ‘ﬁ"'ﬁ‘ﬁ"'...

is conditionally convergent.

(Meerut 2012)

Solution: 'The given series is an alternating series

w =ty ¥y — ot (D" w, 4., (w, >0 forall n).

|

Here u, = > 0 for all n.

2

n

Also forall n, N (n + 1)> v n






