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    Introduction to ODEs 
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Objectives of Lesson  - 
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History of  differential equations: - 

 

:Definition of DEs and some properties - 
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Example 2: 
 
 
 
 

 
 :Differential EquationOrder of a  - 

The order of an ordinary differential equation is the order of the 

highest order derivative        
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: Linear ODE - 

An ODE is linear if the unknown function and its derivatives  

appear to power one. No product of the unknown function and/or  

its derivatives. 

 
:Nonlinear ODE - 
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:Auxiliary Conditions - 
 

 

 

 

:Value and Initial value Problems-Boundary- 
 

 

:Classification of ODEs - 
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Solutions of Ordinary Differential Equations - 

 For example, this function  

 

olutionUniqueness of a S - 
In order to uniquely specify a solution to an n

th
 order differential 

equation we need n conditions 
 
 
 
 
 
 

Classification of ODEs 
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:Applications of Differential equations -  

 Electric Circuits:-  

 Biological Systems:- 
The SIR epidemic model is one of the simplest compartmental models, and 

many models are derivations of this basic form. The model consists of three 

compartments–S for the number susceptible, I for the number of infectious, and 

R for the number recovered (or immune).  
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Chapter 2 

   

First-Order 

Differential Equations 
 
 

 

 
 

 



OOrrddiinnaarryy  DDiiffffeerreennttiiaall  EEqquuaattiioonnss  ((OODDEEss))  
Chapter 2   

 

First-order differential equations 
Separable Differential Equations 

 
Objectives of  Lesson  - 

 Definition of DE of first order 

 
 

 

 

 
 Separation of Variables 
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Example 7 
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Reducible to Variable Separable Form 
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EquationsHomogenous Differential  
 

 -Homogeneous Function: 
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Example 2 
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Example 3 
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Exact Differential Equations & Integrating Factors 
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Integrating Factors 
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-:Examples 
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Linear & and Bernoulli Differential Equations 

-:Integration Factor 
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equations Differential Bernoulli 
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oefficientsEquations with Linear C 

 

Equations with linear coefficients that is, equations of the form 
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Riccati Differential Equation 

  Solution: 
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Chapter Summary: 
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CHAPTER 3 

FIRST-ORDER DIFFERENTIAL EQUATIONS OF HIGHER DEGREE 

3.1 Equations of the First-order and not of First Degree 

3.2 First-Order Equations of Higher Degree Solvable for Derivative p
dx

dy
  

3.3 Equations Solvable for y 

3.4 Equations Solvable for x 

3.5 Equations of the First Degree in x and y - Lagrange and Clairant  

3.6 Exercises  

 

3.1 Equations of the first-Order and not of First Degree  

In this Chapter we discuss briefly basic properties of differential equations of first-order 

and higher degree. In general such equations may not have solutions. We confine 

ourselves to those cases in which solutions exist.  

The most general form of a differential equation of the first order and of higher degree 

say of nth degree can be written as  
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where 
dx

dy
p   and a1, a2, . . , an  are functions of x and y. 

  (3.1) can be written as 

 F(x, y, p) = 0       (3.2) 

3.2 First-Order Equations of Higher Degree Solvable for p 

Let (3.2) can be solved for p and can be written as 

              (p-q1(x,y))  (p-q2(x,y))  ………. (p-qn(x,y)) = 0 

Equating each factor to zero we get equations of the first order and first degree. One can 

find solutions of these equations by the methods discussed in the previous chapter. Let 

their solution be given as: 

                i(x,y,ci)=0, i=1,2,3 ………n     (3.3) 

Therefore the general solution of (3.1) can be expressed in the form  

                1(x,y,c) 2(x,y,c)………n(x,y,c)  = 0   (3.4) 

where c in any arbitrary constant.  

It can be checked that the sets of solutions represented by (3.3) and (3.4) are identical 

because the validity of (3.4) in equivalent to the validity of (3.3) for at least one i with a 

suitable value of c, namely c=ci 

Example 3.1    Solve 0)( 22
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xy

dx

dy
yx

dx
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xy   (3.5) 

Solution:  This is first-order differential equation of degree 2. Let   
dx

dy
p   
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Equation (3.5) can be written as  

                   xy p2+(x2+y2) p+xy=0                (3.6) 

                      (xp+y)(yp+x)=0 

This implies that  

                  xp+y=0, yp+x=0              (3.7) 

By solving equations in (3.7) we get 

                       xy=c1    and   x2+y2=c2 , respectively  

                              ,0y
x

1

dx

dy
or0y

dx

dy
x  Integrating factor  

                               .)( log

1

x
dx

x eex 


     

This gives  

                   y.x  = o.x dx +c1 or xy=c1 

                     
0xdxydyor,0x

dx

dy
y 

 

By integration we get    cxy  2
2
12

2

1
 

                                                 or     x2+y2 = c2, c2 >0,   22 cxc    

The general solution can be written in the form  

                     (x2+y2-c2) (xy-c1)=0                                         (3.8) 
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It can be seen that none of the nontrivial solutions belonging to xy=c1 or x2+y2=c2 is 

valid on the whole real line.  

3.3      Equations Solvable for y 

Let the differential equation given by (3.2) be solvable for y. Then y can be expressed 

as a function x and p, that is,  

                        y= f ),( px                           (3.9) 

Differentiating (3.9) with respect to x we get  

                  
dx

dp
.

p

f

x

f

dx

dy









      (3.10) 

(3.10) is a first order differential equation of first degree in x and p. It may be solved by 

the methods of Chapter 2. Let solution be expressed in the form  

                     0),,( cpx       (3.11) 

The solution of equation (3.9) is obtained by eliminating p between (3.9) and (3.11). If 

elimination of p is not possible then (3.9) and (3.11) together may be considered 

parametric equations of the solutions of (3.9) with p as a parameter. 

Example 3.2:  Solve     y2-1-p2=o 

Solution:  It is clear that the equation is solvable for y, that is  

             21 py                 (3.12) 

By differentiating (3.12) with respect to x we get  
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dx

dp
p

p
dx

dy
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        or   
dx

dp

p

p
p

21

  

or  0
21

1
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dx

dp

p

p                            (3.13) 

(3.13) gives  p=o   or  0
21

1 




dx

dp

p

p
 

By solving p=0 in (3.12) we get  y=1 

By                       0
dx

dp

p1

1
1

2



  

we get a separable equation in variables p and x. 

                         21 p
dx

dp
  

By solving this we get 

                p=sinh (x+c)         (3.14) 

By eliminating p from (3.12) and (3.14) we obtain  

                 y=cos h (x+c)                        (3.15) 

(3.15) is a general solution. 

Solution y=1 of the given equation is a singular solution as it cannot be obtained by 

giving a particular value to c in (3.15). 

3.4      Equations Solvable for x 

Let equation (3.2) be solvable for x, that is  
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                              x=f(y,p)                        (3.16) 

Then as argued in the previous section for y we get a function  such that  

                     (y, p, c) = 0                  (3.17) 

By eliminating p from (3.16) and (3.17) we get a general solution of (3.2). If elimination 

of p with the help of (3.16) and (3.17) is cumbersome then these equations may be 

considered parametric equations of the solutions of (3.16) with p as a parameter. 

Example 3.3  Solve 0812
3










dx

dy

dx

dy
x  

Solution:   Let  then
dx

dy
p ,   xp3-12p-8=0 

It is solvable for x, that is, 

                  
3

8

2

12

3

812

ppp

p
x 


             (3.18) 

Differentiating (3.18) with respect to y, we get 

3 4

12 8
2 3

dx dp dp

dy p dy p dy
    

3 4

1 24 24
or

dp dp

p p dy p dy
    dp

pp
dyor
















3

24

2

24  

                    c
pp

yor 
2

1224
                   (3.19) 

(3.18) and (3.19) constitute parametric equations of solution of the given differential 

equation. 
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3.5  Equations of the First Degree in x and y – Lagrange’s  

 and Clairaut’s Equation. 

 
Let Equation (3.2) be of the first degree in x and y, then 

              y = x1(p) + 2 (p)               (3.20) 

Equation (3.20) is known as Lagrange’s equation. If 1(p) = p then the equation 

          y = xp + 2 (p)            (3.21) 

is known as Clairaut’s equation. By differentiating (3.20) with respect to x, we get  

           
' '

1 1 2
( ) ( ) ( )

dy dp dp
p x p p

dx dx dx
      

             or  
' '

1 1 2( ) ( ( ) ( ))
dp

p p x p p
dx

            (3.22) 

From (3.22) we get 

             0
dx

dp
))p('

2
x(     for    1(p)=p 

This gives 

                 0
dx

dp
 or   x+ '

2
(p) =0 

                  0
dx

dp
 gives p = c and 

by putting this value in (3.21) we get 

                           y=cx+2(c)  
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This is a general solution of Clairaut’s equation. The elimination of p between 

 x+ '
2

(p) = 0  and (3.21) gives a singular solution. If 1(p)  p for any p, then we 

observe from (3.22) that  0
dx

dp
 everywhere. Division by  

        
dx

dp
)]p(p[ 1  in (3.22) gives x

)p(
1

p

'
1

dp

dx




  = 

)p(
1

p

)p('
2




 

which is a linear equation of first order in x and thus can be solved for x as a function of 

p, which together with (3.20) will form a parametric representation of the general 

solution of (3.20). 

Example 3.4  Solve 
dx

dy

dx

dy
xy

dx

dy


















1  

Solution:  Let 
dx

dy
p   then, (p-1)(y-xp)=p 

This equation can be written as  

                  
1


p

p
xpy  

Differentiating both sides with respect to x we get  

             0
2)1(

1



















p
x

dx

dp
  

Thus either  0
dx

dp
 or   0

2)1(

1





p
x  
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0
dx

dp
 gives p=c . 

Putting p=c in the equation we get 

1

c
y cx

c
  


 (y-cx)(c-1)=c 

which is the required solution. 

3.6 Exercises 

Solve the following differential equations 

1. xe
dx

dy

dx

dy 2
3








  

2. y(y-2)p2  -  (y-2x+xy)p+x=0 

3. 024
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Multiple Integrals



OVERVIEW In this chapter we consider the integral of a function of two variables ƒ(x, y)
over a region in the plane and the integral of a function of three variables ƒ(x, y, z) over a
region in space. These integrals are called multiple integrals and are defined as the limit of
approximating Riemann sums, much like the single-variable integrals presented in
Chapter 5. We can use multiple integrals to calculate quantities that vary over two or three
dimensions, such as the total mass or the angular momentum of an object of varying den-
sity and the volumes of solids with general curved boundaries.

1067

MULTIPLE INTEGRALS

C h a p t e r

15

Double Integrals

In Chapter 5 we defined the definite integral of a continuous function ƒ(x) over an interval
[a, b] as a limit of Riemann sums. In this section we extend this idea to define the integral
of a continuous function of two variables ƒ(x, y) over a bounded region R in the plane. In
both cases the integrals are limits of approximating Riemann sums. The Riemann sums for
the integral of a single-variable function ƒ(x) are obtained by partitioning a finite interval
into thin subintervals, multiplying the width of each subinterval by the value of ƒ at a point

inside that subinterval, and then adding together all the products. A similar method of
partitioning, multiplying, and summing is used to construct double integrals. However,
this time we pack a planar region R with small rectangles, rather than small subintervals.
We then take the product of each small rectangle’s area with the value of ƒ at a point inside
that rectangle, and finally sum together all these products. When ƒ is continuous, these sums
converge to a single number as each of the small rectangles shrinks in both width and height.
The limit is the double integral of ƒ over R. As with single integrals, we can evaluate multiple
integrals via antiderivatives, which frees us from the formidable task of calculating a double
integral directly from its definition as a limit of Riemann sums. The major practical problem
that arises in evaluating multiple integrals lies in determining the limits of integration. While
the integrals of Chapter 5 were evaluated over an interval, which is determined by its two
endpoints, multiple integrals are evaluated over a region in the plane or in space. This gives
rise to limits of integration which often involve variables, not just constants. Describing the
regions of integration is the main new issue that arises in the calculation of multiple integrals.

Double Integrals over Rectangles

We begin our investigation of double integrals by considering the simplest type of planar
region, a rectangle. We consider a function ƒ(x, y) defined on a rectangular region R,

R: a … x … b, c … y … d.

ck

15.1
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We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes
(Figure 15.1). The lines divide R into n rectangular pieces, where the number of such pieces
n gets large as the width and height of each piece gets small. These rectangles form a
partition of R. A small rectangular piece of width and height has area 
If we number the small pieces partitioning R in some order, then their areas are given by
numbers where is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point in the kth small rectangle,
multiply the value of ƒ at that point by the area and add together the products:

Depending on how we pick in the kth small rectangle, we may get different values
for 

We are interested in what happens to these Riemann sums as the widths and heights of
all the small rectangles in the partition of R approach zero. The norm of a partition P,
written is the largest width or height of any rectangle in the partition. If 
then all the rectangles in the partition of R have width at most 0.1 and height at most 0.1.
Sometimes the Riemann sums converge as the norm of P goes to zero, written 
The resulting limit is then written as

As and the rectangles get narrow and short, their number n increases, so we can
also write this limit as

with the understanding that as and .
There are many choices involved in a limit of this kind. The collection of small rec-

tangles is determined by the grid of vertical and horizontal lines that determine a rectangu-
lar partition of R. In each of the resulting small rectangles there is a choice of an arbitrary
point at which ƒ is evaluated. These choices together determine a single Riemann
sum. To form a limit, we repeat the whole process again and again, choosing partitions
whose rectangle widths and heights both go to zero and whose number goes to infinity.

When a limit of the sums exists, giving the same limiting value no matter what
choices are made, then the function ƒ is said to be integrable and the limit is called the
double integral of ƒ over R, written as

It can be shown that if ƒ(x, y) is a continuous function throughout R, then ƒ is integrable,
as in the single-variable case discussed in Chapter 5. Many discontinuous functions are
also integrable, including functions which are discontinuous only on a finite number of
points or smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When ƒ(x, y) is a positive function over a rectangular region R in the xy-plane, we may
interpret the double integral of ƒ over R as the volume of the 3-dimensional solid region
over the xy-plane bounded below by R and above by the surface (Figure 15.2).
Each term in the sum is the volume of a verticalSn = g  ƒsxk, ykd¢Akƒsxk, ykd¢Ak

z = ƒsx, yd

6
R

 ƒsx, yd dA or 6
R

 ƒsx, yd dx dy.

Sn

sxk, ykd

7P 7 : 0n : q¢Ak : 0

lim
n: q

 a
n

k = 1
 ƒsxk, ykd ¢Ak .

7P 7 : 0

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
 ƒsxk, ykd ¢Ak .

7P 7 : 0.

7P 7 = 0.17P 7 ,

Sn.
sxk, ykd

Sn = a
n

k = 1
 ƒsxk, ykd ¢Ak .

¢Ak,
sxk, ykd

¢Ak¢A1, ¢A2, Á , ¢An,

¢A = ¢x¢y.¢y¢x
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x

y

0 a

c

b

d

R

�yk

�xk

�Ak

(xk, yk)

FIGURE 15.1 Rectangular grid
partitioning the region R into small
rectangles of area ¢Ak = ¢xk ¢yk.
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rectangular box that approximates the volume of the portion of the solid that stands di-
rectly above the base The sum thus approximates what we want to call the total
volume of the solid. We define this volume to be

where as 
As you might expect, this more general method of calculating volume agrees with the

methods in Chapter 6, but we do not prove this here. Figure 15.3 shows Riemann sum
approximations to the volume becoming more accurate as the number n of boxes increases.

n : q .¢Ak : 0

Volume = lim
n: q

 Sn = 6
R

 ƒsx, yd dA,

Sn¢Ak.
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z

y
d

a

b

x
R

(xk , yk ) ∆ Ak

f (xk , yk )

z � f (x, y)

FIGURE 15.2 Approximating solids with
rectangular boxes leads us to define the
volumes of more general solids as double
integrals. The volume of the solid shown
here is the double integral of ƒ(x, y) over
the base region R.

(a) n � 16 (b) n � 64 (c) n � 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total
volume of the solid shown in Figure 15.2.

Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane over the
rectangular region in the xy-plane. If we apply the method of slic-
ing from Section 6.1, with slices perpendicular to the x-axis (Figure 15.4), then the volume is

(1)

where A(x) is the cross-sectional area at x. For each value of x, we may calculate A(x) as
the integral

(2)

which is the area under the curve in the plane of the cross-section at x. In
calculating A(x), x is held fixed and the integration takes place with respect to y. Combin-
ing Equations (1) and (2), we see that the volume of the entire solid is

(3) = c7
2

 x -

x 2

2
d

0

2

= 5.

 = L
x = 2

x = 0
 c4y - xy -

y 2

2
d

y = 0

y = 1

 dx = L
x = 2

x = 0
 a7

2
- xb  dx

 Volume = L
x = 2

x = 0
 Asxd dx = L

x = 2

x = 0
 aL

y = 1

y = 0
s4 - x - yddyb  dx

z = 4 - x - y

Asxd = L
y = 1

y = 0
s4 - x - yd dy,

L
x = 2

x = 0
 Asxd dx,

R: 0 … x … 2, 0 … y … 1
z = 4 - x - y

y

z

x

x
1

2

4

z � 4 � x � y

A(x) �
 

          
(4 � x � y) dy

y � 1

y � 0

 ⌠
⌡

 

FIGURE 15.4 To obtain the cross-
sectional area A(x), we hold x fixed and
integrate with respect to y.
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If we just wanted to write a formula for the volume, without carrying out any of the
integrations, we could write

The expression on the right, called an iterated or repeated integral, says that the volume
is obtained by integrating with respect to y from to holding x
fixed, and then integrating the resulting expression in x with respect to x from to

The limits of integration 0 and 1 are associated with y, so they are placed on the
integral closest to dy. The other limits of integration, 0 and 2, are associated with the vari-
able x, so they are placed on the outside integral symbol that is paired with dx.

What would have happened if we had calculated the volume by slicing with planes
perpendicular to the y-axis (Figure 15.5)? As a function of y, the typical cross-sectional area is

(4)

The volume of the entire solid is therefore

in agreement with our earlier calculation.
Again, we may give a formula for the volume as an iterated integral by writing

The expression on the right says we can find the volume by integrating with
respect to x from to as in Equation (4) and integrating the result with respect
to y from to In this iterated integral, the order of integration is first x and
then y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the
double integral

over the rectangle The answer is that both iterated integrals
give the value of the double integral. This is what we would reasonably expect, since the
double integral measures the volume of the same region as the two iterated integrals. A
theorem published in 1907 by Guido Fubini says that the double integral of any continuous
function over a rectangle can be calculated as an iterated integral in either order of integra-
tion. (Fubini proved his theorem in greater generality, but this is what it says in our setting.)

R: 0 … x … 2, 0 … y … 1?

6
R

s4 - x - yd dA

y = 1.y = 0
x = 2x = 0

4 - x - y

Volume = L
1

0
 L

2

0
s4 - x - yd dx dy.

Volume = L
y = 1

y = 0
 As yd dy = L

y = 1

y = 0
s6 - 2yd dy = C6y - y2 D01 = 5,

As yd = L
x = 2

x = 0
s4 - x - yd dx = c4x -

x2

2
- xy d

x = 0

x = 2

= 6 - 2y.

x = 2.
x = 0

y = 1,y = 04 - x - y

Volume = L
2

0
 L

1

0
s4 - x - yd dy dx.
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y

z

x

y
1

2

4

z � 4 � x � y

A(y) �
 

          
(4 � x � y) dx

x � 2

x � 0

 ⌠
⌡

 

FIGURE 15.5 To obtain the cross-
sectional area A(y), we hold y fixed and
integrate with respect to x.

HISTORICAL BIOGRAPHY

Guido Fubini
(1879–1943)

THEOREM 1 Fubini’s Theorem (First Form)
If ƒ(x, y) is continuous throughout the rectangular region 

then

6
R

 ƒsx, yd dA = L
d

c
 L

b

a
 ƒsx, yd dx dy = L

b

a
 L

d

c
 ƒsx, yd dy dx.

c … y … d,
R: a … x … b,
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Fubini’s Theorem says that double integrals over rectangles can be calculated as
iterated integrals. Thus, we can evaluate a double integral by integrating with respect to
one variable at a time.

Fubini’s Theorem also says that we may calculate the double integral by integrating in
either order, a genuine convenience, as we see in Example 3. When we calculate a volume
by slicing, we may use either planes perpendicular to the x-axis or planes perpendicular to
the y-axis.

EXAMPLE 1 Evaluating a Double Integral

Calculate for

Solution By Fubini’s Theorem,

Reversing the order of integration gives the same answer:

 = L
2

0
2 dx = 4.

 = L
2

0
[s1 - 3x2d - s -1 - 3x2d] dx

 L
2

0
 L

1

-1
s1 - 6x2yd dy dx = L

2

0
 Cy - 3x2y2 D y = -1

y = 1
 dx

 = L
1

-1
s2 - 16yd dy = C2y - 8y2 D

-1
1

= 4.

 6
R

 ƒsx, yd dA = L
1

-1
 L

2

0
s1 - 6x2yd dx dy = L

1

-1
 Cx - 2x3y D x = 0

x = 2
  dy

ƒsx, yd = 1 - 6x2y and R: 0 … x … 2, -1 … y … 1.

4R ƒsx, yd dA
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USING TECHNOLOGY Multiple Integration

Most CAS can calculate both multiple and iterated integrals. The typical procedure is to
apply the CAS integrate command in nested iterations according to the order of integra-
tion you specify.

Integral Typical CAS Formulation

If a CAS cannot produce an exact value for a definite integral, it can usually find an ap-
proximate value numerically. Setting up a multiple integral for a CAS to solve can be a
highly nontrivial task, and requires an understanding of how to describe the boundaries
of the region and set up an appropriate integral.

int sint sx * cos s yd, x = 0 . . 1d, y = -Pi>3 . . Pi>4d;L
p>4

-p>3
 L

1

0
 x cos y dx dy

int sint sx ¿ 2 * y, xd, yd ;6x2y dx dy
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Double Integrals over Bounded Nonrectangular Regions

To define the double integral of a function ƒ(x, y) over a bounded, nonrectangular region
R, such as the one in Figure 15.6, we again begin by covering R with a grid of small
rectangular cells whose union contains all points of R. This time, however, we cannot
exactly fill R with a finite number of rectangles lying inside R, since its boundary is
curved, and some of the small rectangles in the grid lie partly outside R. A partition of R
is formed by taking the rectangles that lie completely inside it, not using any that are
either partly or completely outside. For commonly arising regions, more and more of R
is included as the norm of a partition (the largest width or height of any rectangle used)
approaches zero.

Once we have a partition of R, we number the rectangles in some order from 1 to n
and let be the area of the kth rectangle. We then choose a point in the kth
rectangle and form the Riemann sum

As the norm of the partition forming goes to zero, the width and height of
each enclosed rectangle goes to zero and their number goes to infinity. If ƒ(x, y) is a con-
tinuous function, then these Riemann sums converge to a limiting value, not dependent on
any of the choices we made. This limit is called the double integral of ƒ(x, y) over R:

The nature of the boundary of R introduces issues not found in integrals over an inter-
val. When R has a curved boundary, the n rectangles of a partition lie inside R but do not
cover all of R. In order for a partition to approximate R well, the parts of R covered by
small rectangles lying partly outside R must become negligible as the norm of the partition
approaches zero. This property of being nearly filled in by a partition of small norm is
satisfied by all the regions that we will encounter. There is no problem with boundaries
made from polygons, circles, ellipses, and from continuous graphs over an interval, joined
end to end. A curve with a “fractal” type of shape would be problematic, but such curves
are not relevant for most applications. A careful discussion of which type of regions R can
be used for computing double integrals is left to a more advanced text.

Double integrals of continuous functions over nonrectangular regions have the same
algebraic properties (summarized further on) as integrals over rectangular regions. The do-
main Additivity Property says that if R is decomposed into nonoverlapping regions and

with boundaries that are again made of a finite number of line segments or smooth
curves (see Figure 15.7 for an example), then

If ƒ(x, y) is positive and continuous over R we define the volume of the solid region
between R and the surface to be as before (Figure 15.8).

If R is a region like the one shown in the xy-plane in Figure 15.9, bounded “above”
and “below” by the curves and and on the sides by the lines

we may again calculate the volume by the method of slicing. We first calcu-
late the cross-sectional area

Asxd = L
y = g2sxd

y = g1sxd
ƒsx, yd dy

x = a, x = b,
y = g1sxdy = g2sxd

4R ƒsx, yd dA,z = ƒsx, yd

6
R

 ƒsx, yd dA = 6
R1

 ƒsx, yd dA + 6
R2

 ƒsx, yd dA.

R2

R1

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
 ƒsxk, ykd ¢Ak = 6

R

 ƒsx, yd dA.

7P 7 : 0,Sn

Sn = a
n

k = 1
 ƒsxk, ykd ¢Ak.

sxk, ykd¢Ak
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�yk

�Ak

(xk, yk)

FIGURE 15.6 A rectangular grid
partitioning a bounded nonrectangular
region into rectangular cells.

0
x

y

R1

R2

R

R � R1 ∪ R2

 ⌠
⌡
⌠
⌡

  

R1

f (x, y) dA � ⌠
⌡
⌠
⌡

  f (x, y) dA �

R2

 ⌠
⌡
⌠
⌡

  f (x, y) dA

FIGURE 15.7 The Additivity Property for
rectangular regions holds for regions
bounded by continuous curves.
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and then integrate A(x) from to to get the volume as an iterated integral:

(5)

Similarly, if R is a region like the one shown in Figure 15.10, bounded by the curves
and and the lines and then the volume calculated by

slicing is given by the iterated integral

(6)

That the iterated integrals in Equations (5) and (6) both give the volume that we de-
fined to be the double integral of ƒ over R is a consequence of the following stronger form
of Fubini’s Theorem.

Volume = L
d

c
 L

h2s yd

h1s yd
 ƒsx, yd dx dy.

y = d,y = cx = h1s ydx = h2s yd

V = L
b

a
 Asxd dx = L

b

a
 L

g2sxd

g1sxd
 ƒsx, yd dy dx.

x = bx = a
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z

y

x

R

0

Volume � lim � f (xk, yk) �Ak ���
R  

 f (x, y) dA

�Ak(xk , yk)

Height � f (xk, yk)

z � f (x, y)

FIGURE 15.8 We define the volumes of solids
with curved bases the same way we define the
volumes of solids with rectangular bases.

z

yx

0

R

x
a

b

R

y � g2(x)

y � g1(x)

z � f (x, y)

A(x)

FIGURE 15.9 The area of the vertical
slice shown here is

To calculate the volume of the solid, we
integrate this area from to x = b.x = a

Asxd = L
g2sxd

g1sxd
 ƒsx, yd dy.

z

y

y
d

c

x

z � f (x, y)
A(y)

x � h1( y)

x � h2( y)

FIGURE 15.10 The volume of the solid
shown here is

L
d

c
 As yd dy = L

d

c
 L

h2syd

h1syd
 ƒsx, yd dx dy.

THEOREM 2 Fubini’s Theorem (Stronger Form)
Let ƒ(x, y) be continuous on a region R.

1. If R is defined by with and continu-
ous on [a, b], then

2. If R is defined by with and continuous
on [c, d ], then

6
R

 ƒsx, yd dA = L
d

c
 L

h2s yd

h1s yd
 ƒsx, yd dx dy.

h2h1c … y … d, h1syd … x … h2syd,

6
R

 ƒsx, yd dA = L
b

a
 L

g2sxd

g1sxd
 ƒsx, yd dy dx.

g2g1a … x … b, g1sxd … y … g2sxd,
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EXAMPLE 2 Finding Volume

Find the volume of the prism whose base is the triangle in the xy-plane bounded by the 
x-axis and the lines and and whose top lies in the plane

Solution See Figure 15.11 on page 1075. For any x between 0 and 1, y may vary from
to (Figure 15.11b). Hence,

When the order of integration is reversed (Figure 15.11c), the integral for the volume is

The two integrals are equal, as they should be.

Although Fubini’s Theorem assures us that a double integral may be calculated as an
iterated integral in either order of integration, the value of one integral may be easier to
find than the value of the other. The next example shows how this can happen.

EXAMPLE 3 Evaluating a Double Integral

Calculate

where R is the triangle in the xy-plane bounded by the x-axis, the line and the line

Solution The region of integration is shown in Figure 15.12. If we integrate first with
respect to y and then with respect to x, we find

If we reverse the order of integration and attempt to calculate

L
1

0
 L

1

y
 
sin x

x  dx dy,

 = -cos s1d + 1 L 0.46.

 L
1

0
 aL

x

0
 
sin x

x  dyb  dx = L
1

0
 ay 

sin x
x d

y = 0

y = xb  dx = L
1

0
sin x dx

x = 1.
y = x ,

6
R

 
sin x

x  dA,

 = L
1

0
 a5

2
- 4y +

3
2

 y 2b  dy = c5
2

 y - 2y2
+

y3

2
d

y = 0

y = 1

= 1.

 = L
1

0
 a3 -

1
2

- y - 3y +

y 2

2
+ y 2b  dy

 V = L
1

0
 L

1

y
s3 - x - yd dx dy = L

1

0
 c3x -

x2

2
- xy d

x = y

x = 1

 dy

 = L
1

0
 a3x -

3x2

2
b  dx = c3x2

2
-

x3

2
d

x = 0

x = 1

= 1.

 V = L
1

0
 L

x

0
s3 - x - yd dy dx = L

1

0
 c3y - xy -

y 2

2
d

y = 0

y = x

 dx

y = xy = 0

z = ƒsx, yd = 3 - x - y.

x = 1y = x
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we run into a problem, because cannot be expressed in terms of elemen-
tary functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good one
in circumstances like these. If the order you first choose doesn’t work, try the other. Some-
times neither order will work, and then we need to use numerical approximations.

1sssin xd>xd dx
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FIGURE 15.11 (a) Prism with a triangular base in the xy-plane. The volume of this prism is
defined as a double integral over R. To evaluate it as an iterated integral, we may integrate first with
respect to y and then with respect to x, or the other way around (Example 2).
(b) Integration limits of

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate
from left to right to include all the vertical lines in R.
(c) Integration limits of

If we integrate first with respect to x, we integrate along a horizontal line through R and then
integrate from bottom to top to include all the horizontal lines in R.

L
y = 1

y = 0
 L

x = 1

x = y
 ƒsx, yd dx dy.

L
x = 1

x = 0
 L

y = x

y = 0
 ƒsx, yd dy dx.

(a)

y

z

x
R

(0, 0, 3)

(1, 0, 2)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

y � x

x � 1

z � f (x, y)
   � 3 � x � y

(c)

y

x
0 1

R

x � 1

y � x

x � y

x � 1

(b)

y

x

R

0 1

y � x

y � x

x � 1

y � 0

R

x

y

0 1

1

x � 1

y � x

FIGURE 15.12 The region of integration
in Example 3.
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Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in
the plane. Regions that are more complicated, and for which this procedure fails, can often
be split up into pieces on which the procedure works.

When faced with evaluating integrating first with respect to y and then
with respect to x, do the following:

1. Sketch. Sketch the region of integration and label the bounding curves.

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the di-
rection of increasing y. Mark the y-values where L enters and leaves. These are the
y-limits of integration and are usually functions of x (instead of constants).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines
through R. The integral shown here is

Leaves at
y � �1 � x2

Enters at
y � 1 � x

x

y

0 1x

L

1
R

Smallest x
is x � 0

Largest x
is x � 1

L
x = 1

x = 0
 L

y =21 - x2

y = 1 - x
 ƒsx, yd dy dx.

6
R

 ƒsx, yd dA =

x

y

0 1x

L

1
R

Leaves at
y � �1 � x2

Enters at
y � 1 � x

x

y

0 1

R

1 x2 � y2 � 1

x � y � 1

4R ƒsx, yddA,
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To evaluate the same double integral as an iterated integral with the order of integra-
tion reversed, use horizontal lines instead of vertical lines in Steps 2 and 3. The integral is

EXAMPLE 4 Reversing the Order of Integration

Sketch the region of integration for the integral

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities and
It is therefore the region bounded by the curves and between

and (Figure 15.13a).x = 2x = 0
y = 2xy = x20 … x … 2.

x2
… y … 2x

L
2

0
 L

2x

x2
s4x + 2d dy dx

x

y

Leaves at
x � �1 � y2

Enters at
x � 1 � y

0 1

y

1
R

Smallest y
is y � 0

Largest y
is y � 1

6
R

 ƒsx, yd dA = L
1

0
 L
21 - y 2

1 - y
 ƒsx, yd dx dy.
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0 2

(a)

4 (2, 4)

0 2

(b)

4 (2, 4)

y
2

y y

xx

y � 2x

y � x2

x � �yx �

FIGURE 15.13 Region of integration for Example 4.

To find limits for integrating in the reverse order, we imagine a horizontal line passing
from left to right through the region. It enters at and leaves at To
include all such lines, we let y run from to (Figure 15.13b). The integral is

The common value of these integrals is 8. 

L
4

0
 L
2y

y>2
s4x + 2d dx dy.

y = 4y = 0
x = 2y.x = y>2
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Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic properties
that are useful in computations and applications.

1078 Chapter 15: Multiple Integrals

Properties of Double Integrals
If ƒ(x, y) and g(x, y) are continuous, then

1. Constant Multiple:

2. Sum and Difference: 

3. Domination:

(a)

(b)

4. Additivity:

if R is the union of two nonoverlapping regions and (Figure 15.7).R2R1

6
R

 ƒsx, yd dA = 6
R1

 ƒsx, yd dA + 6
R2

 ƒsx, yd dA

6
R

 ƒsx, yd dA Ú 6
R

 gsx, yd dA if ƒsx, yd Ú gsx, yd on R

6
R

 ƒsx, yd dA Ú 0 if ƒsx, yd Ú 0 on R

6
R

sƒsx, yd ; gsx, ydd dA = 6
R

 ƒsx, yd dA ; 6
R

 gsx, yd dA

6
R

 cƒsx, yd dA = c6
R

 f (x, yd dA sany number cd

The idea behind these properties is that integrals behave like sums. If the function
ƒ(x, y) is replaced by its constant multiple cƒ(x, y), then a Riemann sum for ƒ

is replaced by a Riemann sum for cƒ

Taking limits as shows that and 
are equal. It follows that the constant multiple property carries over from sums to double
integrals.

The other properties are also easy to verify for Riemann sums, and carry over to
double integrals for the same reason. While this discussion gives the idea, an actual
proof that these properties hold requires a more careful analysis of how Riemann sums
converge.

limn:q cSn = 4R cf dAc limn:q Sn = c4R f dAn : q

a
n

k = 1
 cƒsxk, ykd ¢Ak = ca

n

k = 1
 ƒsxk, ykd ¢Ak = cSn .

Sn = a
n

k = 1
 ƒsxk, ykd ¢Ak
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15.1 Double Integrals 1079

EXERCISES 15.1

Finding Regions of Integration and
Double Integrals
In Exercises 1–10, sketch the region of integration and evaluate the
integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, integrate ƒ over the given region.

11. Quadrilateral over the region in the first quad-
rant bounded by the lines 

12. Square over the square 

13. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

14. Rectangle over the rectangle 

15. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

16. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 17–20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

17.

18.

19.

20.

Reversing the Order of Integration
In Exercises 21–30, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.

L
3

0
 L

4 - 2u

1
 
4 - 2u

y2  dy du sthe uy-planed

L
p>3

-p>3
 L

sec t

0
3 cos t du dt sthe tu-planed

L
1

0
 L
21 - s2

0
8t dt ds sthe st-planed

L
0

-2
 L

-y

y

2 dp dy sthe py-planed

t = 2t = 1
s = ln t

ƒss, td = es ln t

u + y = 1y

ƒsu, yd = y - 2u

0 … y … 1
0 … x … p,ƒsx, yd = y cos xy

ƒsx, yd = x2
+ y2

1 … y … 2
1 … x … 2, ƒsx, yd = 1>sxyd

y = x, y = 2x, x = 1, x = 2
ƒsx, yd = x>y

L
4

1
 L
2x

0
 
3
2

 ey>2x dy dxL
1

0
 L

y2

0
3y3exy dx dy

L
2

1
 L

y2

y
 dx dyL

ln 8

1
 L

ln y

0
 ex + y dx dy

L
p

0
 L

sin x

0
 y dy dxL

p

0
 L

x

0
 x sin y dy dx

L
2p

p

 L
p

0
ssin x + cos yddx dyL

0

-1
  L

1

-1
sx + y + 1ddx dy

L
3

0
 L

0

-2
sx2y - 2xyd dy dxL

3

0
 L

2

0
s4 - y2ddy dx

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Evaluating Double Integrals
In Exercises 31–40, sketch the region of integration, reverse the order
of integration, and evaluate the integral.

31. 32.

33. 34.

35. 36.

37.

38.

39. Square region where R is the region

bounded by the square  

40. Triangular region where R is the region bounded 

by the lines and 

Volume Beneath a Surface 
41. Find the volume of the region bounded by the paraboloid

and below by the triangle enclosed by the lines
and in the xy-plane.

42. Find the volume of the solid that is bounded above by the cylinder
and below by the region enclosed by the parabola

and the line in the xy-plane.

43. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola and the line

while the top of the solid is bounded by the plane

44. Find the volume of the solid in the first octant bounded by the
coordinate planes, the cylinder and the plane
z + y = 3.

x2
+ y2

= 4,

z = x + 4.
y = 3x,

y = 4 - x2

y = xy = 2 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2

+ y2

z = ƒsx, yd

x + y = 2y = x, y = 2x,
4R  xy dA

ƒ x ƒ + ƒ y ƒ = 1
4R s y - 2x2d dA

L
8

0
 L

223 x
 

dy dx

y4
+ 1

L
1>16

0
 L

1>2
y1>4  cos s16px5d dx dy

L
3

0
 L

12x>3
  e

y3

 dy dxL
22ln 3

0
 L
2ln 3

y>2
 ex2

 dx dy

L
2

0
 L

4 - x2

0
 

xe2y

4 - y
 dy dxL

1

0
 L

1

y
 x2e xy dx dy

L
2

0
 L

2

x
2y2 sin xy dy dxL

p

0
 L
p

x
 
sin y

y  dy dx

L
2

0
 L
24 - x2

-24 - x2
 6x dy dxL

1

0
 L
21 - y2

-21 - y2
 3y dx dy

L
2

0
 L

4 - y2

0
 y dx dyL

3>2
0

 L
9 - 4x2

0
16x dy dx

L
ln 2

0
 L

2

ex
 dx dyL

1

0
 L

ex

1
 dy dx

L
1

0
 L

1 - x2

1 - x
 dy dxL

1

0
 L
2y

y
 dx dy

L
2

0
 L

0

y - 2
 dx dyL

1

0
 L

4 - 2x

2
 dy dx
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45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2

+ s y - 3d2
= 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L a
n

k = 1
 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx + 2yd dx dy

L
q

-q

  L
q

-q

 
1

sx2
+ 1ds y2

+ 1d
 dx dy

L
1

-1
  L

1>21 - x2

-1>21 - x2
 s2y + 1ddy dxL

q

1
 L

1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2
- y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral

L
1

0
 L

3

0
 

x2

s y - 1d2>3 dy dx.

 = 4 aL
q

0
 e-x2

 dxb2

.

 L
q

-q

 L
q

-q

 e-x 2
- y2

 dx dy = lim
b: q 

 L
b

-b
  L

b

-b
 e-x2

- y2

 dx dy

6
R

sx2
+ y2

- 9d dA?

6
R

s4 - x2
- 2y2d dA?

L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2

+ y2d dx dy + L
2

1
 L

2 - y

0
sx2

+ y2d dx dy.

z = x2
+ y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2

- xdsy - 1d2>3]
u = p>2.

u = p>6x2
+ y2

… 4
ƒsx, yd = 24 - x2
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COMPUTER EXPLORATIONS

Evaluating Double Integrals Numerically
Use a CAS double-integral evaluator to estimate the values of the inte-
grals in Exercises 67–70.

67. 68.

69.

70. L
1

-1
  L
21 - x2

0
321 - x2

- y2 dy dx

L
1

0
 L

1

0
 tan-1 xy dy dx

L
1

0
 L

1

0
 e-sx2

+ y2d dy dxL
3

1
 L

x

1
 
1
xy dy dx

Use a CAS double-integral evaluator to find the integrals in Exercises
71–76. Then reverse the order of integration and evaluate, again with a
CAS.

71. 72.

73.

74.

75. 76. L
2

1
 L

8

y3
 

12x2
+ y2

 dx dyL
2

1
 L

x2

0
 

1
x + y dy dx

L
2

0
 L

4 - y2

0
 exy dx dy

L
2

0
 L

422y

y3
 sx2y - xy2d dx dy

L
3

0
 L

9

x2
 x cos sy2d dy dxL

1

0
 L

4

2y
 ex2

 dx dy
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15.2 Area, Moments, and Centers of Mass 1081

Area, Moments, and Centers of Mass

In this section, we show how to use double integrals to calculate the areas of bounded regions
in the plane and to find the average value of a function of two variables. Then we study the
physical problem of finding the center of mass of a thin plate covering a region in the plane.

Areas of Bounded Regions in the Plane

If we take in the definition of the double integral over a region R in the pre-
ceding section, the Riemann sums reduce to

(1)

This is simply the sum of the areas of the small rectangles in the partition of R, and
approximates what we would like to call the area of R. As the norm of a partition of R ap-
proaches zero, the height and width of all rectangles in the partition approach zero, and the
coverage of R becomes increasingly complete (Figure 15.14). We define the area of R to
be the limit

(2)Area = lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
 ¢Ak = 6

R

 dA

Sn = a
n

k = 1
 ƒsxk, ykd ¢Ak = a

n

k = 1
 ¢Ak .

ƒsx, yd = 1

15.2

R
�yk

�xk

�Ak

(xk, yk)

FIGURE 15.14 As the norm of a partition
of the region R approaches zero, the sum
of the areas gives the area of R
defined by the double integral 4R dA.

¢Ak

DEFINITION Area
The area of a closed, bounded plane region R is

A = 6
R

 dA.

As with the other definitions in this chapter, the definition here applies to a greater
variety of regions than does the earlier single-variable definition of area, but it agrees with
the earlier definition on regions to which they both apply. To evaluate the integral in the
definition of area, we integrate the constant function over R.ƒsx, yd = 1
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EXAMPLE 1 Finding Area

Find the area of the region R bounded by and in the first quadrant.

Solution We sketch the region (Figure 15.15), noting where the two curves intersect,
and calculate the area as

Notice that the single integral obtained from evaluating the inside
iterated integral, is the integral for the area between these two curves using the method of
Section 5.5. 

EXAMPLE 2 Finding Area

Find the area of the region R enclosed by the parabola and the line 

Solution If we divide R into the regions and shown in Figure 15.16a, we may cal-
culate the area as

On the other hand, reversing the order of integration (Figure 15.16b) gives

A = L
2

-1
  L

x + 2

x2
 dy dx.

A = 6
R1

 dA + 6
R2

 dA = L
1

0
 L
2y

-2y
 dx dy + L

4

1
 L
2y

y - 2
 dx dy.

R2R1

y = x + 2.y = x2

sx - x2d dx,11
0

 = L
1

0
sx - x2d dx = cx2

2
-

x3

3
d

0

1

=
1
6

.

 A = L
1

0
 L

x

x2
 dy dx = L

1

0
cy d

x2

x

 dx

y = x2y = x
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(1, 1)

0

y � x

y � x2

y � x 2

1

1

x

y

y � x 

FIGURE 15.15 The region in Example 1.

(2, 4)

y

x
0

(a)

  dx dy

(2, 4)

y

x
0

(b)

(–1, 1)
R1

R2

y � x � 2 y � x � 2

y � x 2 y � x2

 ⌠
⌡  

⌠
⌡

  1

0

�y

–�y

  dx dy ⌠
⌡  

⌠
⌡

  4

1

�y

y – 2

   dy dx ⌠
⌡  

⌠
⌡

  2

–1

x � 2

x2
(–1, 1)

FIGURE 15.16 Calculating this area takes (a) two double integrals if the first integration is
with respect to x, but (b) only one if the first integration is with respect to y (Example 2).
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This second result, which requires only one integral, is simpler and is the only one we
would bother to write down in practice. The area is

Average Value

The average value of an integrable function of one variable on a closed interval is the inte-
gral of the function over the interval divided by the length of the interval. For an integrable
function of two variables defined on a bounded region in the plane, the average value is the
integral over the region divided by the area of the region. This can be visualized by think-
ing of the function as giving the height at one instant of some water sloshing around in a
tank whose vertical walls lie over the boundary of the region. The average height of the
water in the tank can be found by letting the water settle down to a constant height. The
height is then equal to the volume of water in the tank divided by the area of R. We are led
to define the average value of an integrable function ƒ over a region R to be

A = L
2

-1
cy d

x2

x + 2

 dx = L
2

-1
sx + 2 - x2d dx = cx2

2
+ 2x -

x3

3
d

-1

2

=

9
2

.

15.2 Area, Moments, and Centers of Mass 1083

(3)Average value of ƒ over R =
1

area of R
 6

R

 ƒ dA.

If ƒ is the temperature of a thin plate covering R, then the double integral of ƒ over R
divided by the area of R is the plate’s average temperature. If ƒ(x, y) is the distance from
the point (x, y) to a fixed point P, then the average value of ƒ over R is the average distance
of points in R from P.

EXAMPLE 3 Finding Average Value

Find the average value of over the rectangle 

Solution The value of the integral of ƒ over R is

The area of R is The average value of ƒ over R is   

Moments and Centers of Mass for Thin Flat Plates

In Section 6.4 we introduced the concepts of moments and centers of mass, and we saw
how to compute these quantities for thin rods or strips and for plates of constant density.
Using multiple integrals we can extend these calculations to a great variety of shapes with
varying density. We first consider the problem of finding the center of mass of a thin flat
plate: a disk of aluminum, say, or a triangular sheet of metal. We assume the distribution of

2>p.p.

 = L
p

0
ssin x - 0d dx = -cos x d

0

p

= 1 + 1 = 2.

 L
p

0
 L

1

0
 x cos xy dy dx = L

p

0
csin xy d

y = 0

y = 1

 dx

0 … y … 1.
R: 0 … x … p,ƒsx, yd = x cos xy

L  x cos xy dy = sin xy + C
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mass in such a plate to be continuous. A material’s density function, denoted by is
the mass per unit area. The mass of a plate is obtained by integrating the density function
over the region R forming the plate. The first moment about an axis is calculated by inte-
grating over R the distance from the axis times the density. The center of mass is found
from the first moments. Table 15.1 gives the double integral formulas for mass, first
moments, and center of mass.

dsx, yd,

1084 Chapter 15: Multiple Integrals

TABLE 15.1 Mass and first moment formulas for thin plates covering a region R
in the xy-plane

Center of mass: x =

My

M
, y =

Mx

M

First moments: Mx = 6
R

 ydsx, yddA, My = 6
R

 xdsx, yddA

Mass: M = 6
R

dsx, yddA is the density at (x, y)dsx, yd

EXAMPLE 4 Finding the Center of Mass of a Thin Plate of Variable Density

A thin plate covers the triangular region bounded by the x-axis and the lines and
in the first quadrant. The plate’s density at the point (x, y) is 
Find the plate’s mass, first moments, and center of mass about the coordinate

axes.

Solution We sketch the plate and put in enough detail to determine the limits of inte-
gration for the integrals we have to evaluate (Figure 15.17).

The plate’s mass is

The first moment about the x-axis is

 = c7x4
+ 4x3 d

0

1

= 11.

 = L
1

0
 c3xy2

+ 2y3
+ 3y2 d

y = 0

y = 2x

 dx = L
1

0
s28x3

+ 12x2d dx

 Mx = L
1

0
 L

2x

0
 ydsx, yd dy dx = L

1

0
 L

2x

0
s6xy + 6y2

+ 6yd dy dx

 = L
1

0
s24x2

+ 12xd dx = c8x3
+ 6x2 d

0

1

= 14.

 = L
1

0
 c6xy + 3y2

+ 6y d
y = 0

y = 2x

 dx

 M = L
1

0
 L

2x

0
dsx, yd dy dx = L

1

0
 L

2x

0
s6x + 6y + 6d dy dx

6y + 6.
dsx, yd = 6x +y = 2x

x = 1

(1, 2)

0 1

2

x

y

y � 2x

x � 1

FIGURE 15.17 The triangular region
covered by the plate in Example 4.
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A similar calculation gives the moment about the y-axis:

The coordinates of the center of mass are therefore

Moments of Inertia

A body’s first moments (Table 15.1) tell us about balance and about the torque the body
exerts about different axes in a gravitational field. If the body is a rotating shaft, however,
we are more likely to be interested in how much energy is stored in the shaft or about how
much energy it will take to accelerate the shaft to a particular angular velocity. This is
where the second moment or moment of inertia comes in.

Think of partitioning the shaft into small blocks of mass and let denote the
distance from the kth block’s center of mass to the axis of rotation (Figure 15.18). If the
shaft rotates at an angular velocity of radians per second, the block’s center of
mass will trace its orbit at a linear speed of

yk =

d
dt

 srkud = rk 
du
dt

= rkv.

v = du>dt

rk¢mk

x =

My

M
=

10
14

=

5
7, y =

Mx

M
=

11
14

.

My =L
1

0
 L

2x

0
 xdsx, yd dy dx = 10.
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yk

Axis of rotation

∆mk
rk�

�rk

FIGURE 15.18 To find an integral for the amount of energy stored in
a rotating shaft, we first imagine the shaft to be partitioned into small
blocks. Each block has its own kinetic energy. We add the contributions
of the individual blocks to find the kinetic energy of the shaft.

The block’s kinetic energy will be approximately

The kinetic energy of the shaft will be approximately

a  
1
2

 v2rk
2 ¢mk .

1
2

 ¢mkyk
2

=
1
2

 ¢mksrkvd2
=

1
2

 v2rk
2 ¢mk .
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The integral approached by these sums as the shaft is partitioned into smaller and smaller
blocks gives the shaft’s kinetic energy:

(4)

The factor

is the moment of inertia of the shaft about its axis of rotation, and we see from Equation (4)
that the shaft’s kinetic energy is

The moment of inertia of a shaft resembles in some ways the inertia of a locomotive.
To start a locomotive with mass m moving at a linear velocity y, we need to provide a
kinetic energy of To stop the locomotive we have to remove this amount
of energy. To start a shaft with moment of inertia I rotating at an angular velocity we
need to provide a kinetic energy of To stop the shaft we have to take this
amount of energy back out. The shaft’s moment of inertia is analogous to the locomotive’s
mass. What makes the locomotive hard to start or stop is its mass. What makes the shaft
hard to start or stop is its moment of inertia. The moment of inertia depends not only on
the mass of the shaft, but also its distribution.

The moment of inertia also plays a role in determining how much a horizontal metal
beam will bend under a load. The stiffness of the beam is a constant times I, the moment of
inertia of a typical cross-section of the beam about the beam’s longitudinal axis. The
greater the value of I, the stiffer the beam and the less it will bend under a given load. That
is why we use I-beams instead of beams whose cross-sections are square. The flanges at
the top and bottom of the beam hold most of the beam’s mass away from the longitudinal
axis to maximize the value of I (Figure 15.19).

To see the moment of inertia at work, try the following experiment. Tape two coins to
the ends of a pencil and twiddle the pencil about the center of mass. The moment of inertia
accounts for the resistance you feel each time you change the direction of motion. Now
move the coins an equal distance toward the center of mass and twiddle the pencil again.
The system has the same mass and the same center of mass but now offers less resistance
to the changes in motion. The moment of inertia has been reduced. The moment of inertia
is what gives a baseball bat, golf club, or tennis racket its “feel.” Tennis rackets that weigh
the same, look the same, and have identical centers of mass will feel different and behave
differently if their masses are not distributed the same way.

Computations of moments of inertia for thin plates in the plane lead to double integral
formulas, which are summarized in Table 15.2. A small thin piece of mass is equal to
its small area multiplied by the density of a point in the piece. Computations of mo-
ments of inertia for objects occupying a region in space are discussed in Section 15.5.

The mathematical difference between the first moments and and the
moments of inertia, or second moments, and is that the second moments use the
squares of the “lever-arm” distances x and y.

The moment is also called the polar moment of inertia about the origin. It is calcu-
lated by integrating the density (mass per unit area) times the square
of the distance from a representative point (x, y) to the origin. Notice that 
once we find two, we get the third automatically. (The moment is sometimes called forIz,I0

I0 = Ix + Iy;
r2

= x2
+ y2,dsx, yd

I0

IyIx

MyMx

¢A
¢m

KE = s1>2dIv2.
v,

KE = s1>2dmy2.

KEshaft =
1
2

 Iv2.

I = L  r2 dm

KEshaft = L  
1
2

 v2r2 dm =
1
2

 v2 L  r2 dm.
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Beam B

Beam A

Axis

Axis

FIGURE 15.19 The greater the polar
moment of inertia of the cross-section of a
beam about the beam’s longitudinal axis,
the stiffer the beam. Beams A and B have
the same cross-sectional area, but A is
stiffer.
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moment of inertia about the z-axis. The identity is then called the
Perpendicular Axis Theorem.)

The radius of gyration is defined by the equation

It tells how far from the x-axis the entire mass of the plate might be concentrated to
give the same The radius of gyration gives a convenient way to express the moment
of inertia in terms of a mass and a length. The radii and are defined in a similar
way, with

We take square roots to get the formulas in Table 15.2, which gives the formulas for
moments of inertia (second moments) as well as for radii of gyration.

Iy = MRy
2 and I0 = MR0

2.

R0Ry

Ix .

Ix = MRx
2.

Rx

Iz = Ix + Iy
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TABLE 15.2 Second moment formulas for thin plates in the xy-plane

Moments of inertia (second moments):

About the x-axis:

About the y-axis:

About a line L:

About the origin 

(polar moment):

Radii of gyration: About the x-axis:

About the y-axis:

About the origin: R0 = 2I0>M
Ry = 2Iy>M
Rx = 2Ix>M

I0 = 6sx2
+ y2ddsx, yd dA = Ix + Iy

where rsx, yd = distance from  sx, yd to L

IL = 6 r 2sx, yddsx, yd dA, 
Iy = 6 x2dsx, yd dA

Ix = 6 y2dsx, yd dA

EXAMPLE 5 Finding Moments of Inertia and Radii of Gyration

For the thin plate in Example 4 (Figure 15.17), find the moments of inertia and radii of
gyration about the coordinate axes and the origin.

Solution Using the density function given in Example 4, the
moment of inertia about the x-axis is

 = C8x5
+ 4x4 D01 = 12.

 = L
1

0
 c2xy3

+

3
2

 y4
+ 2y3 d

y = 0

y = 2x

 dx = L
1

0
s40x4

+ 16x3d dx

 Ix = L
1

0
 L

2x

0
 y2dsx, yd dy dx = L

1

0
 L

2x

0
s6xy2

+ 6y3
+ 6y2d dy dx

dsx, yd = 6x + 6y + 6
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Similarly, the moment of inertia about the y-axis is

Notice that we integrate times density in calculating and times density to find 
Since we know and we do not need to evaluate an integral to find we can use

the equation instead:

The three radii of gyration are

Moments are also of importance in statistics. The first moment is used in computing
the mean of a set of data, and the second moment is used in computing the variance

and the standard deviation Third and fourth moments are used for computing
statistical quantities known as skewness and kurtosis.

Centroids of Geometric Figures

When the density of an object is constant, it cancels out of the numerator and denominator
of the formulas for and in Table 15.1. As far as and are concerned, might as well
be 1. Thus, when is constant, the location of the center of mass becomes a feature of the
object’s shape and not of the material of which it is made. In such cases, engineers may
call the center of mass the centroid of the shape. To find a centroid, we set equal to 1
and proceed to find and as before, by dividing first moments by masses.

EXAMPLE 6 Finding the Centroid of a Region

Find the centroid of the region in the first quadrant that is bounded above by the line 
and below by the parabola 

Solution We sketch the region and include enough detail to determine the limits of
integration (Figure 15.20). We then set equal to 1 and evaluate the appropriate formulas
from Table 15.1:

 My = L
1

0
 L

x

x2
 x dy dx = L

1

0
cxy d

y = x2

y = x

 dx = L
1

0
sx 2

- x 3d dx = cx3

3
-

x4

4
d

0

1

=
1
12

.

 = L
1

0
 ax 2

2
-

x 4

2
b  dx = cx 3

6
-

x 5

10
d

0

1

=
1
15

 Mx = L
1

0
 L

x

x2
 y dy dx = L

1

0
 cy 2

2
d

y = x2

y = x

 dx

 M = L
1

0
 L

x

x2
1 dy dx = L

1

0
cy d

y = x2

y = x

 dx = L
1

0
sx - x2d dx = cx 2

2
-

x3

3
d

0

1

=
1
6

d

y = x2.
y = x

yx
d

d

dyxyx

Ag B .Ag2 B m

 R0 = 2I0>M = B a99
5 b>14 = 299>70 L 1.19.

 Ry = 2Iy>M = B a39
5 b>14 = 239>70 L 0.75

 Rx = 2Ix>M = 212>14 = 26>7 L 0.93

I0 = 12 +

39
5 =

60 + 39
5 =

99
5 .

I0 = Ix + Iy

I0;Iy,Ix

Iy.x2Ixy2

Iy = L
1

0
 L

2x

0
 x2dsx, yd dy dx =

39
5 .
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0 1

1

x

y

y � x2

y � x

FIGURE 15.20 The centroid of this
region is found in Example 6.
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From these values of and we find

The centroid is the point (1 2, 2 5).>>
x =

My

M
=

1>12

1>6 =
1
2
 and y =

Mx

M
=

1>15

1>6 =
2
5 .

My,M, Mx,
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15.2 Area, Moments, and Centers of Mass 1089

EXERCISES 15.2

Area by Double Integration
In Exercises 1–8, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line 

2. The lines and 

3. The parabola and the line 

4. The parabola and the line 

5. The curve and the lines and 

6. The curves and and the line in the first
quadrant

7. The parabolas and 

8. The parabolas and 

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 9–14 give the areas of
regions in the xy-plane. Sketch each region, label each bounding curve
with its equation, and give the coordinates of the points where the
curves intersect. Then find the area of the region.

9. 10.

11. 12.

13.

14.

Average Values
15. Find the average value of over

a. the rectangle 

b. the rectangle 

16. Which do you think will be larger, the average value of
over the square or the aver-

age value of ƒ over the quarter circle in the first
quadrant? Calculate them to find out.

x2
+ y2

… 1
0 … x … 1, 0 … y … 1,ƒsx, yd = xy

0 … x … p, 0 … y … p>2
0 … x … p, 0 … y … p

ƒsx, yd = sin sx + yd

L
2

0
 L

0

x2
- 4

 dy dx + L
4

0
 L
2x

0
 dy dx

L
0

-1
 L

1 - x

-2x
 dy dx + L

2

0
 L

1 - x

-x>2
 dy dx

L
2

-1
 L

y + 2

y2
 dx dyL

p>4
0

 L
cos x

sin x
 dy dx

L
3

0
 L

xs2 - xd

-x
 dy dxL

6

0
 L

2y

y2>3
 dx dy

x = 2y2
- 2x = y2

- 1

x = 2y - y2x = y2

x = e,y = 2 ln xy = ln x

x = ln 2y = 0, x = 0,y = ex

y = -xx = y - y2

y = x + 2x = -y2

y = 4x = 0, y = 2x ,

x + y = 2

17. Find the average height of the paraboloid over the
square 

18. Find the average value of over the square

Constant Density
19. Finding center of mass Find a center of mass of a thin plate of

density bounded by the lines and the
parabola in the first quadrant.

20. Finding moments of inertia and radii of gyration Find the
moments of inertia and radii of gyration about the coordinate axes
of a thin rectangular plate of constant density bounded by the
lines and in the first quadrant.

21. Finding a centroid Find the centroid of the region in the first
quadrant bounded by the x-axis, the parabola and the line

22. Finding a centroid Find the centroid of the triangular region
cut from the first quadrant by the line 

23. Finding a centroid Find the centroid of the semicircular region
bounded by the x-axis and the curve 

24. Finding a centroid The area of the region in the first quadrant
bounded by the parabola and the line is
125 6 square units. Find the centroid.

25. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle 

26. Finding a centroid Find the centroid of the region between the
x-axis and the arch 

27. Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density bounded by the circle

Then use your result to find and for the plate.

28. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 
bounded by the curve and the interval

of the x-axis.

29. The centroid of an infinite region Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve (Use improper integrals in the mass-
moment formulas.)

y = ex.

p … x … 2p
y = ssin2 xd>x2

d = 1

I0Iyx2
+ y2

= 4.
d = 1

y = sin x, 0 … x … p.

x2
+ y2

= a2.

>
y = xy = 6x - x2

y = 21 - x2.

x + y = 3.

x + y = 4.
y2

= 2x,

y = 3x = 3
d

y = 2 - x2
x = 0, y = x,d = 3

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.
ƒsx, yd = 1>sxyd

0 … x … 2, 0 … y … 2.
z = x2

+ y2
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30. The first moment of an infinite plate Find the first moment
about the y-axis of a thin plate of density covering the
infinite region under the curve in the first quadrant.

Variable Density
31. Finding a moment of inertia and radius of gyration Find the

moment of inertia and radius of gyration about the x-axis of a thin
plate bounded by the parabola and the line

if 

32. Finding mass Find the mass of a thin plate occupying the
smaller region cut from the ellipse by the
parabola if 

33. Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines and

if 

34. Finding a center of mass and moment of inertia Find the
center of mass and moment of inertia about the x-axis of a thin
plate bounded by the curves and if the den-
sity at the point (x, y) is 

35. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin rectangular plate cut from the
first quadrant by the lines and if 

36. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the line

and the parabola if the density is 

37. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the x-axis, the
lines and the parabola if 

38. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the x-axis of a thin rectangular plate bounded by
the lines and if 

39. Center of mass, moments of inertia, and radii of gyration
Find the center of mass, the moment of inertia and radii of gyra-
tion about the coordinate axes, and the polar moment of inertia
and radius of gyration of a thin triangular plate bounded by the
lines and if 

40. Center of mass, moments of inertia, and radii of gyration
Repeat Exercise 39 for 

Theory and Examples
41. Bacterium population If 

represents the “population density” of a certain bacterium on
the xy-plane, where x and y are measured in centimeters, find
the total population of bacteria within the rectangle

and -2 … y … 0.-5 … x … 5

ƒsx, yd = s10,000e yd>s1 + ƒ x ƒ>2d

dsx, yd = 3x2
+ 1.

dsx, yd = y + 1.y = 1y = x, y = -x,

sx>20d.
dsx, yd = 1 +y = 1x = 0, x = 20, y = -1,

dsx, yd = 7y + 1.y = x2x = ;1,

dsx, yd = y + 1.y = x2y = 1

y + 1.
dsx, yd = x +y = 1x = 6

dsx, yd = y + 1.
x = 2y - y2x = y2

dsx, yd = 6x + 3y + 3.y = 2 - x
y = x

dsx, yd = 5x.x = 4y2
x2

+ 4y2
= 12

dsx, yd = x + y.x + y = 0
x = y - y2

y = e-x2>2
dsx, yd = 1

42. Regional population If represents the
population density of a planar region on Earth, where x and y are
measured in miles, find the number of people in the region
bounded by the curves and 

43. Appliance design When we design an appliance, one of the
concerns is how hard the appliance will be to tip over. When
tipped, it will right itself as long as its center of mass lies on the
correct side of the fulcrum, the point on which the appliance is
riding as it tips. Suppose that the profile of an appliance of ap-
proximately constant density is parabolic, like an old-fashioned
radio. It fills the region in the
xy-plane (see accompanying figure). What values of a will guar-
antee that the appliance will have to be tipped more than 45° to
fall over?

44. Minimizing a moment of inertia A rectangular plate of con-
stant density occupies the region bounded by the
lines and in the first quadrant. The moment of iner-
tia of the rectangle about the line is given by the integral

Find the value of a that minimizes 

45. Centroid of unbounded region Find the centroid of the infinite
region in the xy-plane bounded by the curves 

and the lines 

46. Radius of gyration of slender rod Find the radius of gyration
of a slender rod of constant linear density and length L
cm with respect to an axis

a. through the rod’s center of mass perpendicular to the rod’s
axis.

b. perpendicular to the rod’s axis at one end of the rod.

47. (Continuation of Exercise 34.) A thin plate of now constant den-
sity occupies the region R in the xy-plane bounded by the curves

and 

a. Constant density Find such that the plate has the same
mass as the plate in Exercise 34.

b. Average value Compare the value of found in part (a)
with the average value of over R.dsx, yd = y + 1

d

d

x = 2y - y2.x = y2
d

d gm>cm

x = 0, x = 1.y = -1>21 - x2,

y = 1>21 - x2,

Ia.

Ia = L
4

0
 L

2

0
s y - ad2 dy dx.

y = aIa

y = 2x = 4
dsx, yd = 1

0

Fulcrum

1–1

a

c.m.

c.m.

x

y

y � a(1 � x2)

0 … y … as1 - x2d, -1 … x … 1,

x = 2y - y2.x = y2

ƒsx, yd = 100 sy + 1d
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48. Average temperature in Texas According to the Texas
Almanac, Texas has 254 counties and a National Weather Service
station in each county. Assume that at time each of the 254
weather stations recorded the local temperature. Find a formula that
would give a reasonable approximation to the average temperature
in Texas at time Your answer should involve information that you
would expect to be readily available in the Texas Almanac.

The Parallel Axis Theorem
Let be a line in the xy-plane that runs through the center of mass
of a thin plate of mass m covering a region in the plane. Let L be a line
in the plane parallel to and h units away from . The Parallel Axis
Theorem says that under these conditions the moments of inertia 
and of the plate about L and satisfy the equation

This equation gives a quick way to calculate one moment when
the other moment and the mass are known.

49. Proof of the Parallel Axis Theorem

a. Show that the first moment of a thin flat plate about any line
in the plane of the plate through the plate’s center of mass is
zero. (Hint: Place the center of mass at the origin with the
line along the y-axis. What does the formula then
tell you?)

b. Use the result in part (a) to derive the Parallel Axis Theorem.
Assume that the plane is coordinatized in a way that makes

the y-axis and L the line Then expand the
integrand of the integral for to rewrite the integral as the
sum of integrals whose values you recognize.

50. Finding moments of inertia

a. Use the Parallel Axis Theorem and the results of Example 4
to find the moments of inertia of the plate in Example 4 about
the vertical and horizontal lines through the plate’s center of
mass.

b. Use the results in part (a) to find the plate’s moments of
inertia about the lines and 

Pappus’s Formula
Pappus knew that the centroid of the union of two nonoverlapping
plane regions lies on the line segment joining their individual cen-
troids. More specifically, suppose that and are the masses of
thin plates and that cover nonoverlapping regions in the xy-
plane. Let and be the vectors from the origin to the respective
centers of mass of and Then the center of mass of the union

of the two plates is determined by the vector

(5)

Equation (5) is known as Pappus’s formula. For more than two
nonoverlapping plates, as long as their number is finite, the formula

c =

m1 c1 + m2 c2

m1 + m2
.

P1 ´ P2

P2.P1

c2c1

P2P1

m2m1

y = 2.x = 1

IL

x = h.Lc.m.

x = My>M

IL = Ic.m. + mh2.

Lc.m.Ic.m.

IL

Lc.m.

Lc.m.

t0.

t0,

generalizes to

(6)

This formula is especially useful for finding the centroid of a plate of
irregular shape that is made up of pieces of constant density whose
centroids we know from geometry. We find the centroid of each piece
and apply Equation (6) to find the centroid of the plate.

51. Derive Pappus’s formula (Equation (5)). (Hint: Sketch the plates
as regions in the first quadrant and label their centers of mass as

and What are the moments of about the
coordinate axes?)

52. Use Equation (5) and mathematical induction to show that Equa-
tion (6) holds for any positive integer 

53. Let A, B, and C be the shapes indicated in the accompanying
figure. Use Pappus’s formula to find the centroid of

a. b.

c. d.

54. Locating center of mass Locate the center of mass of the car-
penter’s square, shown here.

55. An isosceles triangle T has base 2a and altitude h. The base lies
along the diameter of a semicircular disk D of radius a so that the
two together make a shape resembling an ice cream cone. What
relation must hold between a and h to place the centroid of 
on the common boundary of T and D? Inside T?

56. An isosceles triangle T of altitude h has as its base one side of a
square Q whose edges have length s. (The square and triangle do
not overlap.) What relation must hold between h and s to place the
centroid of on the base of the triangle? Compare your
answer with the answer to Exercise 55.

T ´ Q

T ´ D

0

12

24

1.5 in.

2
x (in.)

y (in.)

x

y

0 2

(7, 2)

4

1
2
3
4
5

7

C

B

A

A ´ B ´ C.B ´ C

A ´ CA ´ B

n 7 2.

P1 ´ P2sx2, y2d.sx1, y1d

c =

m1 c1 + m2 c2 +
Á

+ mn cn

m1 + m2 +
Á

+ mn
.
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� � ��

� � �
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FIGURE 15.21 The region is contained in the fan-
shaped region The partition of Q by circular arcs and rays
induces a partition of R.

Q: 0 … r … a, a … u … b.
R: g1sud … r … g2sud, a … u … b,

Double Integrals in Polar Form

Integrals are sometimes easier to evaluate if we change to polar coordinates. This section
shows how to accomplish the change and how to evaluate integrals over regions whose
boundaries are given by polar equations.

Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane, we
began by cutting R into rectangles whose sides were parallel to the coordinate axes.
These were the natural shapes to use because their sides have either constant x-values or
constant y-values. In polar coordinates, the natural shape is a “polar rectangle” whose
sides have constant r- and 

Suppose that a function is defined over a region R that is bounded by the rays
and and by the continuous curves and Suppose also that

for every value of between and Then R lies in a fan-shaped
region Q defined by the inequalities and See Figure 15.21.a … u … b.0 … r … a

b.au0 … g1sud … g2sud … a
r = g2sud.r = g1sudu = bu = a

ƒsr, ud
u-values.

15.3

We cover Q by a grid of circular arcs and rays. The arcs are cut from circles centered
at the origin, with radii where The rays are given by

where The arcs and rays partition Q into small patches called “polar
rectangles.”

We number the polar rectangles that lie inside R (the order does not matter), calling
their areas We let be any point in the polar rectangle whose
area is We then form the sum

Sn = a
n

k = 1
 ƒsrk, ukd ¢Ak.

¢Ak.
srk, ukd¢A1, ¢A2, Á , ¢An.

¢u = sb - ad>m¿.

u = a, u = a + ¢u, u = a + 2¢u, Á , u = a + m¿¢u = b,

¢r = a>m.¢r, 2¢r, Á , m¢r,
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If ƒ is continuous throughout R, this sum will approach a limit as we refine the grid to
make and go to zero. The limit is called the double integral of ƒ over R. In symbols,

To evaluate this limit, we first have to write the sum in a way that expresses in
terms of and For convenience we choose to be the average of the radii of the in-
ner and outer arcs bounding the kth polar rectangle The radius of the inner arc
bounding is then (Figure 15.22). The radius of the outer arc is

The area of a wedge-shaped sector of a circle having radius r and angle is

as can be seen by multiplying the area of the circle, by the fraction of the cir-
cle’s area contained in the wedge. So the areas of the circular sectors subtended by these
arcs at the origin are

Therefore,

Combining this result with the sum defining gives

As and the values of and approach zero, these sums converge to the double
integral

A version of Fubini’s Theorem says that the limit approached by these sums can be evalu-
ated by repeated single integrations with respect to r and as

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for
polar coordinates. To evaluate over a region R in polar coordinates, integrat-
ing first with respect to r and then with respect to take the following steps.u,

4R ƒsr, ud dA

6
R

 ƒsr, ud dA = L
u=b

u=a

 L
r = g2sud

r = g1sud
 ƒsr, ud r dr du.

u

lim
n: q

 Sn = 6
R

 ƒsr, ud r dr du.

¢u¢rn : q

Sn = a
n

k = 1
 ƒsrk, ukdrk ¢r ¢u.

Sn

 =

¢u
2

 c ark +
¢r
2
b2

- ark -
¢r
2
b2 d =

¢u
2

 s2rk ¢rd = rk ¢r ¢u.

 ¢Ak = area of large sector - area of small sector

Inner radius:
1
2

 ark -
¢r
2
b2

 ¢u

Outer radius:
1
2

 ark +
¢r
2
b2

 ¢u.

u>2p,pr2,

A =
1
2

 u # r2,

u

rk + s¢r>2d.
rk - s¢r>2d¢Ak

¢Ak.
rk¢u .¢r

¢AkSn

lim
n: q

 Sn = 6
R

 ƒsr, ud dA.

¢u¢r
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Small sector

Large sector

O

�Ak

��

�r

�r
2







rk

rk �
�r
2





rk �

FIGURE 15.22 The observation that

leads to the formula ¢Ak = rk ¢r ¢u.

¢Ak = a area of

large sector
b - a area of

small sector
b
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1. Sketch: Sketch the region and label the bounding curves.

2. Find the r-limits of integration: Imagine a ray L from the origin cutting through R in
the direction of increasing r. Mark the r-values where L enters and leaves R. These are
the r-limits of integration. They usually depend on the angle that L makes with the
positive x-axis.

3. Find the of integration: Find the smallest and largest that bound R.
These are the of integration.

The integral is

EXAMPLE 1 Finding Limits of Integration

Find the limits of integration for integrating over the region R that lies inside the
cardioid and outside the circle 

Solution

1. We first sketch the region and label the bounding curves (Figure 15.23).

2. Next we find the r-limits of integration. A typical ray from the origin enters R where
and leaves where r = 1 + cos u.r = 1

r = 1.r = 1 + cos u

ƒsr, ud

6
R

 ƒsr, ud dA = L
u=p>2
u=p>4

 L
r = 2

r =22 csc u

 ƒsr, ud r dr du.

y

x
0

2
R

L

Largest � is .�
2

Smallest � is .�
4

y � x

�2

u-limits
u-valuesu-limits

y

x
0

2
R

L

�

Enters at r � �2 csc �

Leaves at r � 2

r sin � � y � �2
or

r � �2 csc �

u

y

x
0

2
R

x2 � y2 � 4

y � �2
�2 �2, �2







1094 Chapter 15: Multiple Integrals

4100 AWL/Thomas_ch15p1067-1142  8/25/04  2:57 PM  Page 1094

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


3. Finally we find the of integration. The rays from the origin that intersect R run
from to The integral is

If is the constant function whose value is 1, then the integral of ƒ over R is the
area of R.

ƒsr, ud

L
p>2

-p>2
  L

1 + cos u

1
 ƒsr, ud r dr du.

u = p>2.u = -p>2 u-limits
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1 2

L

�

Enters
at
r � 1

Leaves at
r � 1 � cos �

r � 1 � cos �

y

x

� �
�
2

� � – �
2

FIGURE 15.23 Finding the limits of
integration in polar coordinates for the
region in Example 1.

Area in Polar Coordinates
The area of a closed and bounded region R in the polar coordinate plane is

A = 6
R

 r dr du.

This formula for area is consistent with all earlier formulas, although we do not prove
this fact.

EXAMPLE 2 Finding Area in Polar Coordinates

Find the area enclosed by the lemniscate 

Solution We graph the lemniscate to determine the limits of integration (Figure 15.24)
and see from the symmetry of the region that the total area is 4 times the first-quadrant
portion.

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral into a polar integral has
two steps. First substitute and and replace dx dy by in the
Cartesian integral. Then supply polar limits of integration for the boundary of R.

The Cartesian integral then becomes

where G denotes the region of integration in polar coordinates. This is like the substitu-
tion method in Chapter 5 except that there are now two variables to substitute for
instead of one. Notice that dx dy is not replaced by but by A more general
discussion of changes of variables (substitutions) in multiple integrals is given in
Section 15.7.

r dr du.dr du

6
R

 ƒsx, yd dx dy = 6
G

 ƒsr cos u, r sin ud r dr du,

r dr duy = r sin u,x = r cos u
4R ƒsx, yd dx dy

 = 4L
p>4

0
2 cos 2u du = 4 sin 2u d

0

p>4
= 4.

 A = 4L
p>4

0
 L
24 cos 2u

0
 r dr du = 4L

p>4
0

 cr2

2
d

r = 0

r =24 cos 2u

 du

r2
= 4 cos 2u.

y

x

Enters at
r � 0

r2 � 4 cos 2�
– �

4

�
4

Leaves at
r � �4 cos 2�

FIGURE 15.24 To integrate over the
shaded region, we run r from 0 to

and from 0 to 
(Example 2).

p>4u24 cos 2u
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EXAMPLE 3 Changing Cartesian Integrals to Polar Integrals

Find the polar moment of inertia about the origin of a thin plate of density 
bounded by the quarter circle in the first quadrant.

Solution We sketch the plate to determine the limits of integration (Figure 15.25). In
Cartesian coordinates, the polar moment is the value of the integral

Integration with respect to y gives

an integral difficult to evaluate without tables.
Things go better if we change the original integral to polar coordinates. Substituting

and replacing dx dy by we get

Why is the polar coordinate transformation so effective here? One reason is that 
simplifies to Another is that the limits of integration become constants.

EXAMPLE 4 Evaluating Integrals Using Polar Coordinates

Evaluate

where R is the semicircular region bounded by the x-axis and the curve 
(Figure 15.26).

Solution In Cartesian coordinates, the integral in question is a nonelementary integral
and there is no direct way to integrate with respect to either x or y. Yet this integral
and others like it are important in mathematics—in statistics, for example—and we need
to find a way to evaluate it. Polar coordinates save the day. Substituting 

and replacing dy dx by enables us to evaluate the integral as

The r in the was just what we needed to integrate Without it, we would have
been unable to proceed.

er2

.r dr du

 = L
p

0
 
1
2

 se - 1d du =

p
2

 se - 1d.

 6
R

 ex2
+ y2

 dy dx = L
p

0
 L

1

0
 er2

 r dr du = L
p

0
 c1

2
 er2 d

0

1

 du

r dr dur sin u

x = r cos u, y =

ex2
+ y2

y = 21 - x2

6
R

 ex2
+ y2

 dy dx,

r2.
x2

+ y2

 = L
p>2

0
 cr4

4
d

r = 0

r = 1

 du = L
p>2

0
 
1
4

 du =

p
8

.

 L
1

0
 L
21 - x2

0
sx 2

+ y 2d dy dx = L
p>2

0
 L

1

0
sr 2d r dr du

r dr du,x = r cos u, y = r sin u

L
1

0
 ax221 - x2

+

s1 - x2d3>2
3

b  dx,

L
1

0
 L
21 - x2

0
sx2

+ y2d dy dx.

x2
+ y2

= 1
dsx, yd = 1
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y

x
0 1

1 x2 � y2 � 1, r � 1

� � 0

� �
�
2

FIGURE 15.25 In polar coordinates, this
region is described by simple inequalities:

(Example 3).

0 … r … 1 and 0 … u … p>2

0 1

1

y

x
–1

r � 1

� � 0� � �

y � �1 � x2

FIGURE 15.26 The semicircular region
in Example 4 is the region

0 … r … 1, 0 … u … p.
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15.3 Double Integrals in Polar Form 1097

EXERCISES 15.3

Evaluating Polar Integrals
In Exercises 1–16, change the Cartesian integral into an equivalent
polar integral. Then evaluate the polar integral.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11.

12.

13.

14.

15.

16.

Finding Area in Polar Coordinates
17. Find the area of the region cut from the first quadrant by the curve

18. Cardioid overlapping a circle Find the area of the region that
lies inside the cardioid and outside the circle 

19. One leaf of a rose Find the area enclosed by one leaf of the rose

20. Snail shell Find the area of the region enclosed by the positive
x-axis and spiral The region looks like a
snail shell.

21. Cardioid in the first quadrant Find the area of the region cut
from the first quadrant by the cardioid 

22. Overlapping cardioids Find the area of the region common to
the interiors of the cardioids and r = 1 - cos u.r = 1 + cos u

r = 1 + sin u.

r = 4u>3, 0 … u … 2p.

r = 12 cos 3u.

r = 1.r = 1 + cos u

r = 2s2 - sin 2ud1>2.

L
1

-1
  L
21 - x 2

-21 - x 2
 

2
s1 + x2

+ y2d2 dy dx

L
1

-1
  L
21 - y2

-21 - y2
 ln sx2

+ y2
+ 1d dx dy

L
2

0
 L

0

-21 - sy- 1d2
 xy2 dx dy

L
2

0
 L
21 - sx - 1d2

0
 

x + y

x2
+ y2 dy dx

L
1

0
 L
21 - x2

0
 e-sx2

+ y2d dy dx

L
ln 2

0
 L
2sln 2d2

- y2

0
 e2x2

+ y2

 dx dy

L
1

-1
  L

0

-21 - y2
 
42x2

+ y2

1 + x2
+ y2 dx dy

L
0

-1 
  L

0

-21 - x2
 

2

1 + 2x2
+ y2

 dy dx

L
2

0
 L

x

0
 y dy dxL

6

0
 L

y

0
 x dx dy

L
2

0
 L
24 - y2

0
sx2

+ y2d dx dyL
a

-a
  L
2a2

- x2

-2a2
- x2

 dy dx

L
1

-1
  L
21 - y2

-21 - y2
 sx2

+ y2d dy dxL
1

0
 L
21 - y2

0
sx2

+ y2d dx dy

L
1

-1
  L
21 - x2

-21 - x2
 dy dxL

1

-1
  L
21 - x2

0
 dy dx

Masses and Moments
23. First moment of a plate Find the first moment about the x-axis

of a thin plate of constant density bounded below by
the x-axis and above by the cardioid 

24. Inertial and polar moments of a disk Find the moment of iner-
tia about the x-axis and the polar moment of inertia about the origin
of a thin disk bounded by the circle if the disk’s den-
sity at the point (x, y) is k a constant.

25. Mass of a plate Find the mass of a thin plate covering the
region outside the circle and inside the circle if
the plate’s density function is 

26. Polar moment of a cardioid overlapping circle Find the polar
moment of inertia about the origin of a thin plate covering the
region that lies inside the cardioid and outside the
circle if the plate’s density function is 

27. Centroid of a cardioid region Find the centroid of the region
enclosed by the cardioid 

28. Polar moment of a cardioid region Find the polar moment of
inertia about the origin of a thin plate enclosed by the cardioid

if the plate’s density function is 

Average Values
29. Average height of a hemisphere Find the average height of the

hemisphere above the disk 
in the xy-plane.

30. Average height of a cone Find the average height of the (single) 

cone above the disk in the xy-plane.

31. Average distance from interior of disk to center Find the av-
erage distance from a point P(x, y) in the disk to
the origin.

32. Average distance squared from a point in a disk to a point in
its boundary Find the average value of the square of the dis-
tance from the point P(x, y) in the disk to the
boundary point A(1, 0).

Theory and Examples
33. Converting to a polar integral Integrate 

over the region 

34. Converting to a polar integral Integrate 
over the region 

35. Volume of noncircular right cylinder The region that lies in-
side the cardioid and outside the circle is
the base of a solid right cylinder. The top of the cylinder lies in the
plane Find the cylinder’s volume.z = x.

r = 1r = 1 + cos u

1 … x2
+ y2

… e2.[ln sx2
+ y2d]>sx2

+ y2d
ƒsx, yd =

1 … x2
+ y2

… e.[ln sx2
+ y2d]>2x2

+ y2

ƒsx, yd =

x2
+ y2

… 1

x2
+ y2

… a2

x2
+ y2

… a2z = 2x2
+ y2

x2
+ y2

… a2z = 2a2
- x2

- y2

dsx, yd = 1.r = 1 + cos u

r = 1 + cos u.

dsx, yd = 1>r2.r = 1
r = 1 - cos u

dsx, yd = 1>r.
r = 6 sin ur = 3

dsx, yd = ksx2
+ y2d,

x2
+ y2

= a2

r = 1 - cos u.
dsx, yd = 3,
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36. Volume of noncircular right cylinder The region enclosed by
the lemniscate is the base of a solid right cylinder

whose top is bounded by the sphere Find the
cylinder’s volume.

37. Converting to polar integrals

a. The usual way to evaluate the improper integral
is first to calculate its square:

Evaluate the last integral using polar coordinates and solve
the resulting equation for I.

b. Evaluate

38. Converting to a polar integral Evaluate the integral

39. Existence Integrate the function 
over the disk Does the integral of ƒ(x, y) over
the disk exist? Give reasons for your answer.

40. Area formula in polar coordinates Use the double integral in
polar coordinates to derive the formula

for the area of the fan-shaped region between the origin and polar
curve 

41. Average distance to a given point inside a disk Let be a
point inside a circle of radius a and let h denote the distance from

P0

r = ƒsud, a … u … b.

A = L
b

a

 
1
2

 r2 du

x2
+ y2

… 1
x2

+ y2
… 3>4 .

ƒsx, yd = 1>s1 - x2
- y2d

L
q

0
 L

q

0
 

1
s1 + x2

+ y2d2 dx dy.

lim
x: q

 erf sxd = lim
x: q

 L
x

0
  
2e-t22p  dt.

I 2
= aL

q

0
 e-x2

 dxb aL
q

0
 e-y2

 dyb = L
q

0
 L

q

0
 e-sx2

+ y2d dx dy.

I = 1q

0  e-x2

 dx

z = 22 - r2.

r2
= 2 cos 2u

to the center of the circle. Let d denote the distance from an ar-
bitrary point P to Find the average value of over the region
enclosed by the circle. (Hint: Simplify your work by placing the
center of the circle at the origin and on the x-axis.)

42. Area Suppose that the area of a region in the polar coordinate
plane is

Sketch the region and find its area.

COMPUTER EXPLORATIONS

Coordinate Conversions
In Exercises 43–46, use a CAS to change the Cartesian integrals into
an equivalent polar integral and evaluate the polar integral. Perform
the following steps in each exercise.

a. Plot the Cartesian region of integration in the xy-plane.

b. Change each boundary curve of the Cartesian region in part
(a) to its polar representation by solving its Cartesian
equation for r and 

c. Using the results in part (b), plot the polar region of
integration in the 

d. Change the integrand from Cartesian to polar coordinates.
Determine the limits of integration from your plot in part (c)
and evaluate the polar integral using the CAS integration
utility.

43. 44.

45. 46. L
1

0
 L

2 - y

y
2x + y dx dyL

1

0
 L

y>3
-y>3

 
y2x2
+ y2

 dx dy

L
1

0
 L

x>2
0

 
x

x2
+ y2 dy dxL

1

0
 L

1

x
 

y

x2
+ y2 dy dx

ru-plane.

u.

A = L
3p>4
p>4

 L
2 sin u

csc u

 r dr du.

P0

d2P0.
P0
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1098 Chapter 15: Multiple Integrals

Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be handled
by single integrals, triple integrals enable us to solve still more general problems. We use
triple integrals to calculate the volumes of three-dimensional shapes, the masses and
moments of solids of varying density, and the average value of a function over a three-
dimensional region. Triple integrals also arise in the study of vector fields and fluid flow
in three dimensions, as we will see in Chapter 16.

Triple Integrals

If F(x, y, z) is a function defined on a closed bounded region D in space, such as the region
occupied by a solid ball or a lump of clay, then the integral of F over D may be defined in

15.4
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the following way. We partition a rectangular boxlike region containing D into rectangu-
lar cells by planes parallel to the coordinate axis (Figure 15.27). We number the cells that
lie inside D from 1 to n in some order, the kth cell having dimensions by by 
and volume We choose a point in each cell and form the
sum

(1)

We are interested in what happens as D is partitioned by smaller and smaller cells, so
that and the norm of the partition the largest value among

all approach zero. When a single limiting value is attained, no matter how
the partitions and points are chosen, we say that F is integrable over D. As
before, it can be shown that when F is continuous and the bounding surface of D is formed
from finitely many smooth surfaces joined together along finitely many smooth curves,
then F is integrable. As and the number of cells n goes to the sums 
approach a limit. We call this limit the triple integral of F over D and write

The regions D over which continuous functions are integrable are those that can be
closely approximated by small rectangular cells. Such regions include those encountered
in applications.

Volume of a Region in Space

If F is the constant function whose value is 1, then the sums in Equation (1) reduce to

As and approach zero, the cells become smaller and more numerous
and fill up more and more of D. We therefore define the volume of D to be the triple
integral

lim
n: q

 a
n

k = 1
 ¢Vk = 9

D

 dV.

¢Vk¢zk¢xk, ¢yk,

Sn = a  Fsxk, yk, zkd ¢Vk = a1 #
¢Vk = a  ¢Vk .

lim
n: q

 Sn = 9
D

Fsx, y, zd dV or lim
ƒ ƒP ƒ ƒ :0

 Sn = 9
D

 Fsx, y, zd dx dy dz.

Snq ,7P 7 : 0

sxk, yk, zkd
¢xk, ¢yk, ¢zk,

7P 7 ,¢xk, ¢yk, ¢zk

Sn = a
n

k = 1
 Fsxk, yk, zkd ¢Vk.

sxk, yk, zkd¢Vk = ¢xk¢yk¢zk.
¢zk¢yk¢xk
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z

y
x

D

(xk, yk, zk)

�zk

�xk
�yk

FIGURE 15.27 Partitioning a solid with
rectangular cells of volume ¢Vk .

DEFINITION Volume
The volume of a closed, bounded region D in space is

V = 9
D

 dV.

This definition is in agreement with our previous definitions of volume, though we omit
the verification of this fact. As we see in a moment, this integral enables us to calculate the
volumes of solids enclosed by curved surfaces.
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Finding Limits of Integration

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theorem
(Section 15.1) to evaluate it by three repeated single integrations. As with double integrals,
there is a geometric procedure for finding the limits of integration for these single integrals.

To evaluate

over a region D, integrate first with respect to z, then with respect to y, finally with x.

1. Sketch: Sketch the region D along with its “shadow” R (vertical projection) in the xy-
plane. Label the upper and lower bounding surfaces of D and the upper and lower
bounding curves of R.

2. Find the z-limits of integration: Draw a line M passing through a typical point (x, y) in
R parallel to the z-axis. As z increases, M enters D at and leaves at

These are the z-limits of integration.

z

y

x

D

R

b

a

M

y � g2(x)(x, y)

y � g1(x)

Leaves at
z � f2(x, y)

Enters at
z � f1(x, y)

z = ƒ2sx, yd.
z = ƒ1sx, yd

z

y

x

D

R

b

a

z � f2(x, y)

z � f1(x, y)

y � g2(x)

y � g1(x)

9
D

 Fsx, y, zd dV
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3. Find the y-limits of integration: Draw a line L through (x, y) parallel to the y-axis. As y
increases, L enters R at and leaves at These are the y-limits of
integration.

4. Find the x-limits of integration: Choose x-limits that include all lines through R paral-
lel to the y-axis ( and in the preceding figure). These are the x-limits of
integration. The integral is

Follow similar procedures if you change the order of integration. The “shadow” of
region D lies in the plane of the last two variables with respect to which the iterated
integration takes place.

The above procedure applies whenever a solid region D is bounded above and below
by a surface, and when the “shadow” region R is bounded by a lower and upper curve. It
does not apply to regions with complicated holes through them, although sometimes
such regions can be subdivided into simpler regions for which the procedure does apply.

EXAMPLE 1 Finding a Volume

Find the volume of the region D enclosed by the surfaces and 

Solution The volume is

the integral of over D. To find the limits of integration for evaluating the
integral, we first sketch the region. The surfaces (Figure 15.28) intersect on the elliptical
cylinder or The boundary of the region
R, the projection of D onto the xy-plane, is an ellipse with the same equation: 
The “upper” boundary of R is the curve The lower boundary is the curve
y = -1s4 - x2d>2.

y = 1s4 - x2d>2.
x2

+ 2y2
= 4.

x2
+ 2y2

= 4,  z 7 0.x2
+ 3y2

= 8 - x2
- y2

Fsx, y, zd = 1

V = 9
D

 dz dy dx,

8 - x2
- y2.

z =z = x2
+ 3y2

L
x = b

x = a
 L

y = g2sxd

y = g1sxd
 L

z = ƒ2sx, yd

z = ƒ1sx, yd
 Fsx, y, zd dz dy dx.

x = bx = a

y

x

D

R

b

a

M

L

x

z

(x, y)

Enters at
y � g1(x)

Leaves at
y � g2(x)

y = g2sxd.y = g1sxd
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Leaves at
z � 8 � x2 � y2 

(2, 0, 4)

(2, 0, 0)
x

z

yL

(–2, 0, 0)

R

x

D

(–2, 0, 4)

The curve of intersection

z � 8 � x2 � y2

x2 � 2y2 � 4

Leaves at
y � �(4 � x2)/2

z � x2 � 3y2

M

(x, y)

Enters at
z � x2 � 3y2

Enters at
y � –�(4 � x2)/2

FIGURE 15.28 The volume of the region enclosed by two paraboloids,
calculated in Example 1.

Now we find the z-limits of integration. The line M passing through a typical point (x, y)
in R parallel to the z-axis enters D at and leaves at 

Next we find the y-limits of integration. The line L through (x, y) parallel to the y-axis

enters R at and leaves at 
Finally we find the x-limits of integration. As L sweeps across R, the value of x varies

from at to at (2, 0, 0). The volume of D is

 = 8p22.

 = L
2

-2
 c8 a4 - x 2

2
b3>2

-

8
3

 a4 - x 2

2
b3>2 d  dx =

422
3

 L
2

-2
s4 - x 2d3>2 dx

 = L
2

-2
 a2s8 - 2x 2dB4 - x 2

2
-

8
3

 a4 - x 2

2
b3>2b  dx

 = L
2

-2
 cs8 - 2x 2dy -

4
3

 y3 d
y = -2s4 - x2d>2
y =2s4 - x2d>2

 dx

 = L
2

-2 
 L
2s4 - x2d>2

-2s4 - x2d>2
s8 - 2x2

- 4y2d dy dx

 = L
2

-2 
 L
2s4 - x2d>2

-2s4 - x2d>2
  L

8 - x2
- y2

x2
+ 3y2

 dz dy dx

 V = 9
D

 dz dy dx

x = 2s -2, 0, 0dx = -2

y = 2s4 - x2d>2.y = -2s4 - x2d>2
z = 8 - x2

- y2.z = x2
+ 3y2

After integration with the substitution x = 2 sin u .
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In the next example, we project D onto the xz-plane instead of the xy-plane, to show
how to use a different order of integration.

EXAMPLE 2 Finding the Limits of Integration in the Order dy dz dx

Set up the limits of integration for evaluating the triple integral of a function F(x, y, z) over
the tetrahedron D with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 1, 1).

Solution We sketch D along with its “shadow” R in the xz-plane (Figure 15.29). The
upper (right-hand) bounding surface of D lies in the plane The lower (left-hand)
bounding surface lies in the plane The upper boundary of R is the line

The lower boundary is the line 
First we find the y-limits of integration. The line through a typical point (x, z) in R

parallel to the y-axis enters D at and leaves at 
Next we find the z-limits of integration. The line L through (x, z) parallel to the z-axis

enters R at and leaves at 
Finally we find the x-limits of integration. As L sweeps across R, the value of x varies

from to The integral is

EXAMPLE 3 Revisiting Example 2 Using the Order dz dy dx

To integrate F(x, y, z) over the tetrahedron D in the order dz dy dx, we perform the steps in
the following way.

First we find the z-limits of integration. A line parallel to the z-axis through a typical
point (x, y) in the xy-plane “shadow” enters the tetrahedron at and exits through the
upper plane where (Figure 15.29).

Next we find the y-limits of integration. On the xy-plane, where the sloped side
of the tetrahedron crosses the plane along the line A line through (x, y) parallel to
the y-axis enters the shadow in the xy-plane at and exits at 

Finally we find the x-limits of integration. As the line parallel to the y-axis in the pre-
vious step sweeps out the shadow, the value of x varies from to at the point
(1, 1, 0). The integral is

For example, if we would find the volume of the tetrahedron to be

 =
1
6

.

 = c1
2

 x -
1
2

 x 2
+

1
6

 x 3 d
0

1

 = L
1

0
 a1

2
- x +

1
2

 x 2b  dx

 = L
1

0
 c1

2
 y 2

- xy d
y = x

y = 1

 dx

 = L
1

0
 L

1

x
s y - xd dy dx

 V = L
1

0
 L

1

x
 L

y - x

0
 dz dy dx

Fsx, y, zd = 1 ,

L
1

0
 L

1

x
 L

y - x

0
 Fsx, y, zd dz dy dx.

x = 1x = 0

y = 1.y = x
y = x .

z = 0,
z = y - x

z = 0

L
1

0
 L

1 - x

0
 L

1

x + z
 Fsx, y, zd dy dz dx.

x = 1.x = 0

z = 1 - x.z = 0

y = 1.y = x + z

z = 0.z = 1 - x.
y = x + z.

y = 1.
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z

y

x

x

R

DL

M

(0, 1, 0)

(1, 1, 0)
1

1

(x, z)

Line
x � z � 1

(0, 1, 1)

y � 1

y � x � z

Leaves at
y � 1Enters at

y � x � z

FIGURE 15.29 Finding the limits of
integration for evaluating the triple integral
of a function defined over the tetrahedron
D (Example 2).
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We get the same result by integrating with the order dy dz dx,

As we have seen, there are sometimes (but not always) two different orders in which
the iterated single integrations for evaluating a double integral may be worked. For triple
integrals, there can be as many as six, since there are six ways of ordering dx, dy, and dz.
Each ordering leads to a different description of the region of integration in space, and to
different limits of integration.

EXAMPLE 4 Using Different Orders of Integration

Each of the following integrals gives the volume of the solid shown in Figure 15.30.

(a) (b)

(c) (d)

(e) (f)

We work out the integrals in parts (b) and (c):

Also,

 = L
1

0
cx - zx d

x = 0

x = 2

 dz

 = L
1

0
 L

2

0
s1 - zd dx dz

 V = L
1

0
 L

2

0
 L

1 - z

0
 dy dx dz

 = 1.

 = L
1

0
2s1 - yd dy

 = L
1

0
c2z d

z = 0

z = 1 - y

 dy

 = L
1

0
 L

1 - y

0
2 dz dy

 V = L
1

0
 L

1 - y

0
 L

2

0
 dx dz dy

L
2

0
 L

1

0
 L

1 - y

0
 dz dy dxL

1

0
 L

2

0
 L

1 - y

0
 dz dx dy

L
2

0
 L

1

0
 L

1 - z

0
 dy dz dxL

1

0
 L

2

0
 L

1 - z

0
 dy dx dz

L
1

0
 L

1 - y

0
 L

2

0
 dx dz dyL

1

0
 L

1 - z

0
 L

2

0
 dx dy dz

V = L
1

0
 L

1 - x

0
 L

1

x + z
 dy dz dx =

1
6

.
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1

2

1

y

z

x

y � z � 1

FIGURE 15.30 Example 4 gives six
different iterated triple integrals for the
volume of this prism. Integral in part (b)

Integral in part (c)
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The integrals in parts (a), (d), (e), and (f ) also give  

Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the formula

(2)

For example, if then the average value of F over D is the
average distance of points in D from the origin. If F(x, y, z) is the temperature at (x, y, z) on
a solid that occupies a region D in space, then the average value of F over D is the average
temperature of the solid.

EXAMPLE 5 Finding an Average Value

Find the average value of over the cube bounded by the coordinate planes
and the planes and in the first octant.

Solution We sketch the cube with enough detail to show the limits of integration
(Figure 15.31). We then use Equation (2) to calculate the average value of F over the
cube.

The volume of the cube is The value of the integral of F over the cube
is

With these values, Equation (2) gives

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible
orders would have done as well.

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals.

Average value of
xyz over the cube

=
1

volume
 9
cube

 xyz dV = a1
8
b s8d = 1.

 = L
2

0
 cy2z d

y = 0

y = 2

 dz = L
2

0
4z dz = c2z2 d

0

2

= 8.

 L
2

0
 L

2

0
 L

2

0
 xyz dx dy dz = L

2

0
 L

2

0
 cx2

2
 yz d

x = 0

x = 2

 dy dz = L
2

0
 L

2

0
2yz dy dz

s2ds2ds2d = 8.

z = 2x = 2, y = 2,
Fsx, y, zd = xyz

Fsx, y, zd = 2x2
+ y2

+ z2,

Average value of F over D =
1

volume of D
 9

D

 F dV.

V = 1.

 = 1.

 = L
1

0
s2 - 2zd dz
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z

y
2

x

2

2

FIGURE 15.31 The region of integration
in Example 5.
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Properties of Triple Integrals
If and are continuous, then

1. Constant Multiple:

2. Sum and Difference:

3. Domination:

(a)

(b)

4. Additivity:

if D is the union of two nonoverlapping regions and D2.D1

9
D

 F dV = 9
D1

 E dV + 9
D2

 F dV

9
D

 F dV Ú 9
D

 G dV if F Ú G on D

9
D

 F dV Ú 0 if F Ú 0 on D

9
D

sF ; Gd dV = 9
D

 F dV ; 9
D

 G dV

9
D

 kF dV = k9
D

 F dV sany number  kd

G = Gsx, y, zdF = Fsx, y, zd
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EXERCISES 15.4

Evaluating Triple Integrals in Different
Iterations
1. Evaluate the integral in Example 2 taking to find

the volume of the tetrahedron.

2. Volume of rectangular solid Write six different iterated triple
integrals for the volume of the rectangular solid in the first octant
bounded by the coordinate planes and the planes 
and Evaluate one of the integrals.

3. Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by
the plane Evaluate one of the integrals.

4. Volume of solid Write six different iterated triple integrals for
the volume of the region in the first octant enclosed by the cylinder

and the plane Evaluate one of the integrals.

5. Volume enclosed by paraboloids Let D be the region bounded
by the paraboloids and Write six
different triple iterated integrals for the volume of D. Evaluate
one of the integrals.

6. Volume inside paraboloid beneath a plane Let D be the re-
gion bounded by the paraboloid and the plane

Write triple iterated integrals in the order dz dx dy and 
dz dy dx that give the volume of D. Do not evaluate either integral.
z = 2y.

z = x2
+ y2

z = x2
+ y2.z = 8 - x2

- y2

y = 3.x2
+ z2

= 4

6x + 3y + 2z = 6.

z = 3.
x = 1, y = 2,

Fsx, y, zd = 1

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 7–20.

7.

8. 9.

10. 11.

12.

13. 14.

15. 16.

17.

18.

19. L
p>4

0
 L

ln sec y

0
 L

2t

-q

 ex dx dt dy styx-spaced

L
e

1
 L

e

1
 L

e

1
ln r ln s ln t dt dr ds srst-spaced

L
p

0
 L
p

0
 L
p

0
 cos su + y + wd du dy dw suyw-spaced

L
1

0
 L

1 - x2

0
 L

4 - x2
- y

3
 x dz dy dxL

1

0
 L

2 - x

0
 L

2 - x - y

0
 dz dy dx

L
2

0
 L
24 - y2

-24 - y2
  L

2x+ y

0
 dz dx dyL

3

0
 L
29 - x2

0
 L
29 - x2

0
 dz dy dx

L
1

-1
  L

1

-1
  L

1

-1
sx + y + zd dy dx dz

L
1

0
 L
p

0
 L
p

0
 y sin z dx dy dzL

1

0
 L

3 - 3x

0
 L

3 - 3x - y

0
 dz dy dx

L
e

1
 L

e

1
 L

e

1
 

1
xyz dx dy dzL

22

0
 L

3y

0
 L

8 - x2
- y2

x2
+ 3y2

 dz dx dy

L
1

0
 L

1

0
 L

1

0
sx2

+ y2
+ z2d dz dy dx
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20.

Volumes Using Triple Integrals
21. Here is the region of integration of the integral

Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

22. Here is the region of integration of the integral

Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

Find the volumes of the regions in Exercises 23–36.

23. The region between the cylinder and the xy-plane that is
bounded by the planes 

z

x

y

x = 0, x = 1, y = -1, y = 1
z = y2

0

z

y

x
1

1

(1, –1, 0)

(1, –1, 1)

(0, –1, 1)

z � y2

L
1

0
 L

0

-1 
  L

y2

0
 dz dy dx.

11

1

(1, 1, 0)

y

x

z

Top:  y � z � 1

(–1, 1, 0)

Side:
y � x2

–1

L
1

-1
  L

1

x2
  L

1 - y

0
 dz dy dx .

L
7

0
 L

2

0
 L
24 - q2

0
 

q

r + 1
 dp dq dr spqr-spaced

24. The region in the first octant bounded by the coordinate planes
and the planes 

25. The region in the first octant bounded by the coordinate planes,
the plane and the cylinder 

26. The wedge cut from the cylinder by the planes
and 

27. The tetrahedron in the first octant bounded by the coordinate
planes and the plane passing through (1, 0, 0), (0, 2, 0), and
(0, 0, 3).

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)

z

y

x

z = 0z = -y
x2

+ y2
= 1

z

y

x

x = 4 - y2y + z = 2 ,

z

y

x

x + z = 1, y + 2z = 2
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28. The region in the first octant bounded by the coordinate planes,
the plane and the surface 

29. The region common to the interiors of the cylinders 
and one-eighth of which is shown in the accompa-
nying figure.

30. The region in the first octant bounded by the coordinate planes
and the surface 

31. The region in the first octant bounded by the coordinate planes,
the plane and the cylinder 

z

y

x

y2
+ 4z2

= 16x + y = 4 ,

z

y

x

z = 4 - x2
- y

z

y
x

0

x2 � z2 � 1

x2 � y2 � 1

x2
+ z2

= 1 ,
x2

+ y2
= 1

z

y

x

0 … x … 1
z = cos spx>2d,y = 1 - x,

32. The region cut from the cylinder by the plane 
and the plane 

33. The region between the planes and 
in the first octant

34. The finite region bounded by the planes 
and 

35. The region cut from the solid elliptical cylinder by
the xy-plane and the plane 

36. The region bounded in back by the plane on the front and
sides by the parabolic cylinder on the top by the pa-
raboloid and on the bottom by the xy-plane

Average Values
In Exercises 37–40, find the average value of F(x, y, z) over the given
region.

37. over the cube in the first octant bounded by
the coordinate planes and the planes and 

38. over the rectangular solid in the first
octant bounded by the coordinate planes and the planes

and 

39. over the cube in the first octant
bounded by the coordinate planes and the planes 
and 

40. over the cube in the first octant bounded by the
coordinate planes and the planes and 

Changing the Order of Integration
Evaluate the integrals in Exercises 41–44 by changing the order of in-
tegration in an appropriate way.

41.

42.

43.

44. L
2

0
 L

4 - x2

0
 L

x

0
 
sin 2z
4 - z

 dy dz dx

L
1

0
 L

1

32z
  L

ln 3

0
 
pe2x sin py2

y2  dx dy dz

L
1

0
 L

1

0
 L

1

x2
12xze zy2

 dy dx dz

L
4

0
 L

1

0
 L

2

2y
 
4 cos sx2d

22z
 dx dy dz

z = 2x = 2, y = 2,
Fsx, y, zd = xyz

z = 1
x = 1, y = 1,

Fsx, y, zd = x2
+ y2

+ z2

z = 2x = 1, y = 1,

Fsx, y, zd = x + y - z

z = 2x = 2, y = 2,
Fsx, y, zd = x2

+ 9

z = x2
+ y2,

x = 1 - y2,
x = 0,

z = x + 2
x2

+ 4y2
… 4

z = 0.y = 8,
z = x, x + z = 8, z = y, 

z = 4
2x + 2y +x + y + 2z = 2

z

y

x

x + z = 3
z = 0x2

+ y2
= 4
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Theory and Examples
45. Finding upper limit of iterated integral Solve for a:

46. Ellipsoid For what value of c is the volume of the ellipsoid
equal to 

47. Minimizing a triple integral What domain D in space mini-
mizes the value of the integral

Give reasons for your answer.

48. Maximizing a triple integral What domain D in space maxi-
mizes the value of the integral

Give reasons for your answer.

9
D

s1 - x2
- y2

- z2d dV ?

9
D

s4x2
+ 4y2

+ z2
- 4d dV ?

8p?x2
+ sy>2d2

+ sz>cd2
= 1

L
1

0
 L

4 - a - x2

0
 L

4 - x2
- y

a
 dz dy dx =

4
15

.

COMPUTER EXPLORATIONS

Numerical Evaluations
In Exercises 49–52, use a CAS integration utility to evaluate the triple
integral of the given function over the specified solid region.

49. over the solid cylinder bounded by
and the planes and 

50. over the solid bounded below by the paraboloid
and above by the plane 

51. over the solid bounded below by

the cone and above by the plane 

52. over the solid sphere 
z2

… 1
x2

+ y2
+Fsx, y, zd = x4

+ y2
+ z2

z = 1z = 2x2
+ y2

Fsx, y, zd =

z

sx2
+ y2

+ z2d3>2

z = 1z = x2
+ y2

Fsx, y, zd = ƒ xyz ƒ

z = 1z = 0x2
+ y2

= 1
Fsx, y, zd = x2y2z
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15.5 Masses and Moments in Three Dimensions 1109

Masses and Moments in Three Dimensions

This section shows how to calculate the masses and moments of three-dimensional objects
in Cartesian coordinates. The formulas are similar to those for two-dimensional objects.
For calculations in spherical and cylindrical coordinates, see Section 15.6.

Masses and Moments

If is the density of an object occupying a region D in space (mass per unit volume),
the integral of over D gives the mass of the object. To see why, imagine partitioning the
object into n mass elements like the one in Figure 15.32. The object’s mass is the limit

We now derive a formula for the moment of inertia. If r(x, y, z) is the distance from the
point (x, y, z) in D to a line L, then the moment of inertia of the mass 

about the line L (shown in Figure 15.32) is approximately 
The moment of inertia about L of the entire object is

If L is the x-axis, then (Figure 15.33) and

Ix = 9
D

s y2
+ z2d d dV.

r2
= y2

+ z2

IL = lim
n: q

 a
n

k = 1
 ¢Ik = lim

n: q

 a
n

k = 1
 r2sxk, yk, zkd dsxk, yk, zkd ¢Vk = 9

D

 r2d dV.

r2sxk, yk, zkd¢mk.
¢Ik =dsxk, yk, zkd¢Vk

¢mk =

M = lim
n: q

 a
n

k = 1
 ¢mk = lim

n: q

 a
n

k = 1
dsxk, yk, zkd ¢Vk = 9

D

dsx, y, zd dV.

d

dsx, y, zd

15.5

x

z

y

L

D

r

(xk, yk, zk)

�mk � �(xk, yk, zk) �Vk

FIGURE 15.32 To define an object’s
mass and moment of inertia about a line,
we first imagine it to be partitioned into a
finite number of mass elements ¢mk.
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Similarly, if L is the y-axis or z-axis we have

Likewise, we can obtain the first moments about the coordinate planes. For example,

gives the first moment about the yz-plane.
The mass and moment formulas in space analogous to those discussed for planar re-

gions in Section 15.2 are summarized in Table 15.3.

Myz = 9
D

 xdsx, y, zd dV

Iy = 9
D

sx2
+ z2d d dV and Iz = 9

D

sx2
+ y2d d dV.
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FIGURE 15.33 Distances from dV to the
coordinate planes and axes.

z

y

x

x

y

x

y

z
x

dV

0

�y2 � z2

�x2 � z2

�x2 � y2

TABLE 15.3 Mass and moment formulas for solid objects in space

Mass:

First moments about the coordinate planes:

Center of mass:

Moments of inertia (second moments) about the coordinate axes:

Moments of inertia about a line L:

Radius of gyration about a line L:

RL = 2IL>M

IL = 9 r2 d dV srsx, y, zd = distance from the point  sx, y, zd to line Ld

 Iz = 9sx2
+ y2d d dV

 Iy = 9sx2
+ z2d d dV

 Ix = 9s y2
+ z2d d dV

x =

Myz

M
, y =

Mxz

M
, z =

Mxy

M

Myz = 9
D

 x d dV, Mxz = 9
D

 y d dV, Mxy = 9
D

 z d dV

M = 9
D

d dV sd = dsx, y, zd = densityd

EXAMPLE 1 Finding the Center of Mass of a Solid in Space

Find the center of mass of a solid of constant density bounded below by the disk
in the plane and above by the paraboloid 

(Figure 15.34).
z = 4 - x2

- y2z = 0R: x2
+ y2

… 4
d

4100 AWL/Thomas_ch15p1067-1142  9/2/04  11:13 AM  Page 1110

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce15.html?2_7_l


Solution By symmetry To find we first calculate

A similar calculation gives

Therefore and the center of mass is  

When the density of a solid object is constant (as in Example 1), the center of mass is called
the centroid of the object (as was the case for two-dimensional shapes in Section 15.2).

EXAMPLE 2 Finding the Moments of Inertia About the Coordinate Axes

Find for the rectangular solid of constant density shown in Figure 15.35.

Solution The formula for gives

We can avoid some of the work of integration by observing that is an even
function of x, y, and z. The rectangular solid consists of eight symmetric pieces, one in
each octant. We can evaluate the integral on one of these pieces and then multiply by 8 to
get the total value.

Similarly,

Iy =
M
12

 sa2
+ c2d and Iz =

M
12

 sa2
+ b2d.

 = 4ad ab3c
48

+

c3b
48
b =

abcd
12

 sb2
+ c2d =

M
12

 sb2
+ c2d.

 = 4adL
c>2

0
 ab3

24
+

z2b
2
b  dz

 = 4adL
c>2

0
 cy3

3
+ z2y d

y = 0

y = b>2
 dz

 Ix = 8L
c>2

0
 L

b>2
0

 L
a>2

0
s y 2

+ z 2d d dx dy dz = 4adL
c>2

0
 L

b>2
0

s y 2
+ z 2d dy dz

s y2
+ z2dd

Ix = L
c>2

-c>2
  L

b>2
-b>2

  L
a>2

-a>2
s y2

+ z2d d dx dy dz.

Ix

dIx, Iy, Iz

sx, y, zd = s0, 0, 4>3d.z = sMxy>Md = 4>3
M = 6

R
L

4 - x2
- y2

0
d dz dy dx = 8pd.

 =
d
2

 L
2p

0
 c- 1

6
 s4 - r 2d3 d

r = 0

r = 2

 du =

16d
3

 L
2p

0
 du =

32pd
3

.

 =
d
2

 L
2p

0
 L

2

0
s4 - r 2d2 r dr du

 =
d
2

 6
R

s4 - x 2
- y 2d2 dy dx

 Mxy = 6
R
L

z = 4 - x2
- y2

z = 0
 z d dz dy dx = 6

R

 cz2

2
d

z = 0

z = 4 - x2
- y2

d dy dx

z,x = y = 0.
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z

y

x

0
R

c.m.

x2 � y2 � 4

z � 4 � x2 � y2

FIGURE 15.34 Finding the center of
mass of a solid (Example 1).

Polar coordinates

b

a

c

Center of 
block

x

y

z

FIGURE 15.35 Finding and for
the block shown here. The origin lies at the
center of the block (Example 2).

IzIx, Iy,
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EXERCISES 15.5

Constant Density
The solids in Exercises 1–12 all have constant density 

1. (Example 1 Revisited.) Evaluate the integral for in Table 15.3
directly to show that the shortcut in Example 2 gives the same an-
swer. Use the results in Example 2 to find the radius of gyration
of the rectangular solid about each coordinate axis.

2. Moments of inertia The coordinate axes in the figure run
through the centroid of a solid wedge parallel to the labeled
edges. Find and if and 

3. Moments of inertia Find the moments of inertia of the rectan-
gular solid shown here with respect to its edges by calculating

and 

4. a. Centroid and moments of inertia Find the centroid and the
moments of inertia and of the tetrahedron whose ver-
tices are the points (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

b. Radius of gyration Find the radius of gyration of the
tetrahedron about the x-axis. Compare it with the distance
from the centroid to the x-axis.

5. Center of mass and moments of inertia A solid “trough” of
constant density is bounded below by the surface above
by the plane and on the ends by the planes and

Find the center of mass and the moments of inertia with
respect to the three axes.

6. Center of mass A solid of constant density is bounded below
by the plane on the sides by the elliptical cylinder

and above by the plane (see the ac-
companying figure).

z = 2 - xx2
+ 4y2

= 4,
z = 0,

x = -1.
x = 1z = 4,

z = 4y2,

IzIx, Iy,

z

y

x

c

b

a

Iz.Ix, Iy,

z

y

x b

a

Centroid
at (0, 0, 0)

c b
3

a
2

c
3

c = 4.a = b = 6IzIx , Iy,

Ix

d = 1.

a. Find and 

b. Evaluate the integral

using integral tables to carry out the final integration with
respect to x. Then divide by M to verify that 

7. a. Center of mass Find the center of mass of a solid of con-
stant density bounded below by the paraboloid 
and above by the plane 

b. Find the plane that divides the solid into two parts of
equal volume. This plane does not pass through the center of
mass.

8. Moments and radii of gyration A solid cube, 2 units on a side,
is bounded by the planes and 
Find the center of mass and the moments of inertia and radii of
gyration about the coordinate axes.

9. Moment of inertia and radius of gyration about a line A
wedge like the one in Exercise 2 has and 
Make a quick sketch to check for yourself that the square of the
distance from a typical point (x, y, z) of the wedge to the line

is Then calculate the mo-
ment of inertia and radius of gyration of the wedge about L.

10. Moment of inertia and radius of gyration about a line A
wedge like the one in Exercise 2 has and 
Make a quick sketch to check for yourself that the square of the
distance from a typical point (x, y, z) of the wedge to the line

is Then calculate the mo-
ment of inertia and radius of gyration of the wedge about L.

11. Moment of inertia and radius of gyration about a line A
solid like the one in Exercise 3 has and 
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y, z) of the solid and the line

is Then find the moment of
inertia and radius of gyration of the solid about L.

r2
= s y - 2d2

+ z2.L: y = 2, z = 0

c = 1.a = 4, b = 2,

r2
= sx - 4d2

+ y2.L: x = 4, y = 0

c = 3.a = 4, b = 6,

r2
= s y - 6d2

+ z2.L: z = 0, y = 6

c = 3.a = 4, b = 6,

y = 5.x = ;1, z = ;1, y = 3,

z = c

z = 4.
z = x2

+ y2

z

y

x

1

2

2

z � 2 � x

x � –2

x 2 � 4y2 � 4

z = 5>4.Mxy

Mxy = L
2

-2
 L

s1>2d24 - x2

-s1>2d24 - x2
 L

2 - x

0
 z dz dy dx

y.x

4100 AWL/Thomas_ch15p1067-1142  8/25/04  2:57 PM  Page 1112

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu1505a.html
tcu1505a.html
tcu1505a.html


12. Moment of inertia and radius of gyration about a line A
solid like the one in Exercise 3 has and 
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y, z) of the solid and the line

is Then find the moment
of inertia and radius of gyration of the solid about L.

Variable Density
In Exercises 13 and 14, find

a. the mass of the solid.

b. the center of mass.

13. A solid region in the first octant is bounded by the coordinate
planes and the plane The density of the solid is

14. A solid in the first octant is bounded by the planes and
and by the surfaces and (see the

accompanying figure). Its density function is a
constant.

In Exercises 15 and 16, find

a. the mass of the solid.

b. the center of mass.

c. the moments of inertia about the coordinate axes.

d. the radii of gyration about the coordinate axes.

15. A solid cube in the first octant is bounded by the coordinate
planes and by the planes and The density of
the cube is 

16. A wedge like the one in Exercise 2 has dimensions 
and The density is Notice that if the
density is constant, the center of mass will be (0, 0, 0).

17. Mass Find the mass of the solid bounded by the planes

and the surface The
density of the solid is dsx, y, zd = 2y + 5.

y = 2z.x + z = 1, x - z = -1, y = 0

dsx, y, zd = x + 1.c = 3.
a = 2, b = 6,

dsx, y, zd = x + y + z + 1.
z = 1.x = 1, y = 1,

z

y

x

2

4

x � y2

(2, �2, 0)

z � 4 � x2

dsx, y, zd = kxy, k
x = y2z = 4 - x2z = 0

y = 0

dsx, y, zd = 2x.
x + y + z = 2.

r2
= sx - 4d2

+ y2.L: x = 4, y = 0

c = 1.a = 4, b = 2,
18. Mass Find the mass of the solid region bounded by the para-

bolic surfaces and if the
density of the solid is 

Work
In Exercises 19 and 20, calculate the following.

a. The amount of work done by (constant) gravity g in moving the
liquid filling in the container to the xy-plane. (Hint: Partition
the liquid into small volume elements and find the work
done (approximately) by gravity on each element. Summation
and passage to the limit gives a triple integral to evaluate.)

b. The work done by gravity in moving the center of mass down
to the xy-plane.

19. The container is a cubical box in the first octant bounded by the
coordinate planes and the planes and The
density of the liquid filling the box is 
(see Exercise 15).

20. The container is in the shape of the region bounded by
and The density of the liquid

filling the region is k a constant (see
Exercise 14).

The Parallel Axis Theorem
The Parallel Axis Theorem (Exercises 15.2) holds in three dimensions
as well as in two. Let be a line through the center of mass of a
body of mass m and let L be a parallel line h units away from The
Parallel Axis Theorem says that the moments of inertia and of
the body about and L satisfy the equation

(1)

As in the two-dimensional case, the theorem gives a quick way to
calculate one moment when the other moment and the mass are
known.

21. Proof of the Parallel Axis Theorem

a. Show that the first moment of a body in space about any
plane through the body’s center of mass is zero. (Hint: Place
the body’s center of mass at the origin and let the plane be
the yz-plane. What does the formula then tell
you?)

z

x

y
c.m.

L

D

v � xi � yj

(x, y, z)

Lc.m.

hi

v � hi

(h, 0, 0)

x = Myz >M

IL = Ic.m. + mh2.

Lc.m.

ILIc.m.

Lc.m..
Lc.m.

dsx, y, zd = kxy,
x = y2.y = 0, z = 0, z = 4 - x2,

z + 1dsx, y, zd = x + y +

z = 1.x = 1, y = 1,

¢Vi

dsx, y, zd = 2x2
+ y2 .

z = 2x2
+ 2y2z = 16 - 2x2

- 2y2
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b. To prove the Parallel Axis Theorem, place the body with its
center of mass at the origin, with the line along the z-axis
and the line L perpendicular to the xy-plane at the point 
(h, 0, 0). Let D be the region of space occupied by the body.
Then, in the notation of the figure,

Expand the integrand in this integral and complete the proof.

22. The moment of inertia about a diameter of a solid sphere of constant
density and radius a is where m is the mass of the sphere.
Find the moment of inertia about a line tangent to the sphere.

23. The moment of inertia of the solid in Exercise 3 about the z-axis
is 

a. Use Equation (1) to find the moment of inertia and radius of
gyration of the solid about the line parallel to the z-axis
through the solid’s center of mass.

b. Use Equation (1) and the result in part (a) to find the moment
of inertia and radius of gyration of the solid about the line

24. If and the moment of inertia of the solid
wedge in Exercise 2 about the x-axis is Find the mo-
ment of inertia of the wedge about the line (the
edge of the wedge’s narrow end).

Pappus’s Formula
Pappus’s formula (Exercises 15.2) holds in three dimensions as well as
in two. Suppose that bodies and of mass and respec-
tively, occupy nonoverlapping regions in space and that and are
the vectors from the origin to the bodies’ respective centers of mass.
Then the center of mass of the union of the two bodies is
determined by the vector

As before, this formula is called Pappus’s formula. As in the two-
dimensional case, the formula generalizes to

for n bodies.

c =

m1 c1 + m2 c2 +
Á

+ mn cn

m1 + m2 +
Á

+ mn

c =

m1 c1 + m2 c2

m1 + m2
.

B1 ´ B2

c2c1

m2 ,m1B2B1

y = 4, z = -4>3
Ix = 208.

c = 4,a = b = 6

x = 0, y = 2b.

Iz = abcsa2
+ b2d>3.

s2>5dma2,

IL = 9
D

ƒ v - hi ƒ
2 dm.

Lc.m.

25. Derive Pappus’s formula. (Hint: Sketch and as nonoverlap-
ping regions in the first octant and label their centers of mass

and Express the moments of about
the coordinate planes in terms of the masses and and the
coordinates of these centers.)

26. The accompanying figure shows a solid made from three rectan-
gular solids of constant density Use Pappus’s formula to
find the center of mass of

a. b.

c. d.

27. a. Suppose that a solid right circular cone C of base radius a and
altitude h is constructed on the circular base of a solid hemi-
sphere S of radius a so that the union of the two solids resem-
bles an ice cream cone. The centroid of a solid cone lies one-
fourth of the way from the base toward the vertex. The
centroid of a solid hemisphere lies three-eighths of the way
from the base to the top. What relation must hold between h
and a to place the centroid of in the common base of the
two solids?

b. If you have not already done so, answer the analogous
question about a triangle and a semicircle (Section 15.2,
Exercise 55). The answers are not the same.

28. A solid pyramid P with height h and four congruent sides is built
with its base as one face of a solid cube C whose edges have
length s. The centroid of a solid pyramid lies one-fourth of the
way from the base toward the vertex. What relation must hold
between h and s to place the centroid of in the base of the
pyramid? Compare your answer with the answer to Exercise 27.
Also compare it with the answer to Exercise 56 in Section 15.2.

P ´ C

C ´ S

z

(2, 0, 0)

x

y

3
2

2

1

1

2
1

4B

C

A

(3, 6, –2)

(–1, 6, –2)

(–1, 6, 1)
(0, 3, 2)

(2, 0, 2)

A ´ B ´ C.B ´ C

A ´ CA ´ B

d = 1.

m2m1

B1 ´ B2sx2, y2, z2d.sx1, y1, z1d

B2B1
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Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or
sphere, we can often simplify our work by using cylindrical or spherical coordinates,
which are introduced in this section. The procedure for transforming to these coordinates
and evaluating the resulting triple integrals is similar to the transformation to polar coordi-
nates in the plane studied in Section 15.3.

15.6
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Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane
with the usual z-axis. This assigns to every point in space one or more coordinate triples of
the form as shown in Figure 15.36.sr, u, zd,

15.6 Triple Integrals in Cylindrical and Spherical Coordinates 1115

O

r
x

z

y
y

z

x

P(r, �, z)

�

FIGURE 15.36 The cylindrical
coordinates of a point in space are r, 
and z.

u,

DEFINITION Cylindrical Coordinates
Cylindrical coordinates represent a point P in space by ordered triples 
in which

1. r and are polar coordinates for the vertical projection of P on the xy-plane

2. z is the rectangular vertical coordinate.

u

sr, u, zd

The values of x, y, r, and in rectangular and cylindrical coordinates are related by the
usual equations.

u

Equations Relating Rectangular (x, y, z) and Cylindrical Coordinates

 r2
= x2

+ y2, tan u = y>x
 x = r cos u, y = r sin u, z = z,

sr, U, zd

In cylindrical coordinates, the equation describes not just a circle in the xy-
plane but an entire cylinder about the z-axis (Figure 15.37). The z-axis is given by 
The equation describes the plane that contains the z-axis and makes an angle 
with the positive x-axis. And, just as in rectangular coordinates, the equation de-
scribes a plane perpendicular to the z-axis.

z = z0

u0u = u0

r = 0.
r = a

z

y

x

O

a

r � a,
whereas � and z vary

z � z0,
whereas r and � vary

� � �0,
whereas r and z vary

z0

�0

FIGURE 15.37 Constant-coordinate equations in
cylindrical coordinates yield cylinders and planes.
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Cylindrical coordinates are good for describing cylinders whose axes run along the
z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces
like these have equations of constant coordinate value:

When computing triple integrals over a region D in cylindrical coordinates, we parti-
tion the region into n small cylindrical wedges, rather than into rectangular boxes. In the
kth cylindrical wedge, and z change by and and the largest of these
numbers among all the cylindrical wedges is called the norm of the partition. We define
the triple integral as a limit of Riemann sums using these wedges. The volume of such a
cylindrical wedge is obtained by taking the area of its base in the and
multiplying by the height (Figure 15.38).

For a point in the center of the kth wedge, we calculated in polar coordi-
nates that So and a Riemann sum for ƒ over D
has the form

The triple integral of a function ƒ over D is obtained by taking a limit of such Riemann
sums with partitions whose norms approach zero

.

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the
following example.

EXAMPLE 1 Finding Limits of Integration in Cylindrical Coordinates

Find the limits of integration in cylindrical coordinates for integrating a function 
over the region D bounded below by the plane laterally by the circular cylinder

and above by the paraboloid 

Solution The base of D is also the region’s projection R on the xy-plane. The boundary
of R is the circle Its polar coordinate equation is

The region is sketched in Figure 15.39.
We find the limits of integration, starting with the z-limits. A line M through a

typical point in R parallel to the z-axis enters D at and leaves at

Next we find the r-limits of integration. A ray L through from the origin enters
R at and leaves at r = 2 sin u.r = 0

sr, ud
z = x2

+ y2
= r2.

z = 0sr, ud

 r = 2 sin u.

 r2
- 2r sin u = 0

 x2
+ y2

- 2y + 1 = 1

 x2
+ s y - 1d2

= 1

x2
+ s y - 1d2

= 1.

z = x2
+ y2.x2

+ s y - 1d2
= 1,

z = 0,
ƒsr, u, zd

lim
n: q

 Sn = 9
D

 ƒ dV = 9
D

 ƒ dz r dr du

Sn = a
n

k = 1
 ƒsrk, uk, zkd ¢zk rk ¢rk ¢uk.

¢Vk = ¢zk rk ¢rk ¢uk¢Ak = rk ¢rk ¢uk.
srk, uk, zkd

¢z
ru-plane¢Ak¢Vk

¢zk,¢rk, ¢uk,r, u

 z = 2.

 u =
p
3

.

 r = 4.
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Cylinder, radius 4, axis the z-axis

Plane containing the z-axis

Plane perpendicular to the z-axis

∆z

r ∆�
r ∆r ∆�

r

z

∆r

∆�

FIGURE 15.38 In cylindrical coordinates
the volume of the wedge is approximated
by the product ¢V = ¢z r ¢r ¢u.

x

y

z

M D

2

R L

Cartesian: x2 � ( y � 1)2 � 1
Polar:       r � 2 sin �

(r, �)
�

Top
Cartesian:    z � x2 � y2

Cylindrical: z � r 2

FIGURE 15.39 Finding the limits of
integration for evaluating an integral in
cylindrical coordinates (Example 1).
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Finally we find the of integration. As L sweeps across R, the angle it makes
with the positive x-axis runs from to The integral is

Example 1 illustrates a good procedure for finding limits of integration in cylindrical
coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

over a region D in space in cylindrical coordinates, integrating first with respect to z, then
with respect to r, and finally with respect to take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces and curves that bound D and R.

2. Find the z-limits of integration. Draw a line M through a typical point of R par-
allel to the z-axis. As z increases, M enters D at and leaves at

These are the z-limits of integration.

z

y

x

D

R

M

r � h1(�)

r � h2(�)

z � g1(r, �)

z � g2(r, �)

(r, �)

z = g2sr, ud.
z = g1sr, ud

sr, ud

z

y

x

D

R

r � h1(�)

r � h2(�)

z � g1(r, �)

z � g2(r, �)

u,

9
D

 ƒsr, u, zd dV

9
D

 ƒsr, u, zd dV = L
p

0
 L

2 sin u

0
 L

r2

0
 ƒsr, u, zd dz r dr du.

u = p.u = 0
uu-limits
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3. Find the r-limits of integration. Draw a ray L through from the origin. The ray
enters R at and leaves at These are the r-limits of integration.

4. Find the of integration. As L sweeps across R, the angle it makes with the
positive x-axis runs from to These are the of integration. The
integral is

EXAMPLE 2 Finding a Centroid

Find the centroid of the solid enclosed by the cylinder bounded
above by the paraboloid and bounded below by the xy-plane.

Solution We sketch the solid, bounded above by the paraboloid and below by
the plane (Figure 15.40). Its base R is the disk in the xy-plane.

The solid’s centroid lies on its axis of symmetry, here the z-axis. This makes
To find we divide the first moment by the mass M.

To find the limits of integration for the mass and moment integrals, we continue with
the four basic steps. We completed our initial sketch. The remaining steps give the limits
of integration.

The z-limits. A line M through a typical point in the base parallel to the z-axis
enters the solid at and leaves at 

The r-limits. A ray L through from the origin enters R at and leaves at

The As L sweeps over the base like a clock hand, the angle it makes with
the positive x-axis runs from to The value of is

 = L
2p

0
 L

2

0
 
r5

2
 dr du = L

2p

0
 c r6

12
d

0

2

 du = L
2p

0
 
16
3

 du =

32p
3

.

 Mxy = L
2p

0
 L

2

0
 L

r2

0
 z dz r dr du = L

2p

0
 L

2

0
 cz2

2
d

0

r2

 r dr du

Mxyu = 2p.u = 0
uu-limits.

r = 2.
r = 0sr, ud

z = r2.z = 0
sr, ud

Mxyz ,x = y = 0 .
sx, y, zd

0 … r … 2z = 0
z = r2

z = x2
+ y2,

x2
+ y2

= 4,sd = 1d

9
D

 ƒsr, u, zd dV = L
u=b

u=a

 L
r = h2sud

r = h1sud
 L

z = g2sr, ud

z = g1sr, ud
 ƒsr, u, zd dz r dr du.

u-limitsu = b.u = a

uu-limits

z

y

x

D

R

M

L

� � � � � �
r � h1(�)

r � h2(�)

z � g1(r, �)

z � g2(r, �)

(r, �)

�

� �

r = h2sud.r = h1sud
sr, ud
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z

M4

c.m.

R

L

x y

x2 � y2 � 4
r � 2

z � x2 � y2

  � r2

(r, �)

�

FIGURE 15.40 Example 2 shows how to
find the centroid of this solid.

4100 AWL/Thomas_ch15p1067-1142  9/2/04  11:13 AM  Page 1118

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce15.html?2_8_l
bounce15.html?3_2_l


The value of M is

Therefore,

and the centroid is (0, 0, 4 3). Notice that the centroid lies outside the solid.

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown in
Figure 15.41. The first coordinate, is the point’s distance from the origin.
Unlike r, the variable is never negative. The second coordinate, is the angle 
makes with the positive z-axis. It is required to lie in the interval The third coordi-
nate is the angle as measured in cylindrical coordinates.u

[0, p].
OP§f,r

r = ƒ OP§ ƒ ,

>
z =

Mxy

M
=

32p
3

 
1

8p
=

4
3

,

 = L
2p

0
 L

2

0
 r3 dr du = L

2p

0
 cr4

4
d

0

2

 du = L
2p

0
4 du = 8p.

M = L
2p

0
 L

2

0
 L

r2

0
 dz r dr du = L

2p

0
 L

2

0
cz d

0

r2

 r dr du
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y

z

O

r

x

x

y

P(�, �, �)

z � � cos �

�

�

�

FIGURE 15.41 The spherical coordinates
and and their relation to x, y, z, and r.ur, f,

DEFINITION Spherical Coordinates
Spherical coordinates represent a point P in space by ordered triples in
which

1. is the distance from P to the origin.

2. is the angle makes with the positive z-axis 

3. is the angle from cylindrical coordinates.u

s0 … f … pd.OP§f

r

sr, f, ud

On maps of the Earth, is related to the meridian of a point on the Earth and to its
latitude, while is related to elevation above the Earth’s surface.

The equation describes the sphere of radius a centered at the origin (Figure 15.42).
The equation describes a single cone whose vertex lies at the origin and whose
axis lies along the z-axis. (We broaden our interpretation to include the xy-plane as the
cone ) If is greater than the cone opens downward. The equa-
tion describes the half-plane that contains the z-axis and makes an angle with
the positive x-axis.

u0u = u0

f = f0p>2,f0f = p>2.

f = f0

r = a
r

fu

� � �0, whereas �
and � vary

� � a, whereas �
and � vary

y

z

x

�0

�0

P(a, �0, �0)

� � �0, whereas �
and � vary

FIGURE 15.42 Constant-coordinate
equations in spherical coordinates yield
spheres, single cones, and half-planes.

Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

(1)

r = 2x 2
+ y 2

+ z2
= 2r 2

+ z 2.

 z = r cos f, y = r sin u = r sin f sin u,

 r = r sin f, x = r cos u = r sin f cos u,

4100 AWL/Thomas_ch15p1067-1142  8/25/04  2:58 PM  Page 1119

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


EXAMPLE 3 Converting Cartesian to Spherical

Find a spherical coordinate equation for the sphere 

Solution We use Equations (1) to substitute for x, y, and z:

1

1

See Figure 15.43.

EXAMPLE 4 Converting Cartesian to Spherical

Find a spherical coordinate equation for the cone (Figure 15.44).

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the
first quadrant of the yz-plane along the line The angle between the cone and the
positive z-axis is therefore radians. The cone consists of the points whose spherical
coordinates have equal to so its equation is 

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z we obtain
the same result:

Spherical coordinates are good for describing spheres centered at the origin, half-planes
hinged along the z-axis, and cones whose vertices lie at the origin and whose axes lie along
the z-axis. Surfaces like these have equations of constant coordinate value:

When computing triple integrals over a region D in spherical coordinates, we partition
the region into n spherical wedges. The size of the kth spherical wedge, which contains a
point is given by changes by and in and Such a spher-
ical wedge has one edge a circular arc of length another edge a circular arc ofrk ¢fk,

f.r, u,¢fk¢rk, ¢uk,srk, fk, ukd,

 u =
p
3

.

 f =
p
3

 r = 4

 f =

p
4

.

 cos f = sin f

 r cos f = r sin f

 r cos f = 2r2 sin2 f

 z = 2x2
+ y2

f = p>4.p>4,f

p>4 z = y.

z = 2x2
+ y2

 r = 2 cos f .

 r2
= 2r cos f

(''')'''*

 r2ssin2 f + cos2 fd = 2r cos f

(''')'''*

 r2 sin2 fscos2 u + sin2 ud + r2 cos2 f - 2r cos f + 1 = 1

 r2 sin2 f cos2 u + r2 sin2 f sin2 u + sr cos f - 1d2
= 1

 x2
+ y2

+ sz - 1d2
= 1

x2
+ y2

+ sz - 1d2
= 1.
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y

x

z

2

1

�
�

x2 � y2 � (z � 1)2 � 1
� � 2 cos �

FIGURE 15.43 The sphere in Example 3.

y

z

x

�
4

� �

�
4

� �

z � �x2 � y2 

FIGURE 15.44 The cone in Example 4. Example 3

r Ú 0, sin f Ú 0

0 … f … p

Sphere, radius 4, center at origin

Cone opening up from the origin, making an
angle of radians with the positive z-axisp>3
Half-plane, hinged along the z-axis, making an
angle of radians with the positive x-axisp>3

Equations (1)
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length and thickness The spherical wedge closely approximates a cube
of these dimensions when and are all small (Figure 15.45). It can be shown
that the volume of this spherical wedge is for

a point chosen inside the wedge.
The corresponding Riemann sum for a function is

As the norm of a partition approaches zero, and the spherical wedges get smaller, the
Riemann sums have a limit when F is continuous:

In spherical coordinates, we have

To evaluate integrals in spherical coordinates, we usually integrate first with respect to 
The procedure for finding the limits of integration is shown below. We restrict our atten-
tion to integrating over domains that are solids of revolution about the z-axis (or portions
thereof) and for which the limits for and are constant.

How to Integrate in Spherical Coordinates

To evaluate

over a region D in space in spherical coordinates, integrating first with respect to then
with respect to and finally with respect to take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces that bound D.

x

y

z

R

D

� � g2(�, �)

� � g1(�, �)

u,f,
r,

9
D

 ƒsr, f, ud dV

fu

r.

dV = r2 sin f dr df du.

lim
n: q

 Sn = 9
D

 Fsr, f, ud dV = 9
D

 Fsr, f, ud r2 sin f dr df du.

Sn = a
n

k = 1
 Fsrk, fk, ukd rk

2 sin fk ¢rk ¢fk ¢uk .

Fsr, f, ud
srk, fk, ukd

¢Vk = rk
2 sin fk ¢rk ¢fk ¢uk¢Vk

¢fk¢rk, ¢uk,
¢rk.rk sin fk ¢uk,
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O
�

�

� sin �

� sin � ∆�

∆�

�
� � ∆�

� ∆�

y

z

x

FIGURE 15.45 In spherical coordinates

 = r2 sin f dr df du.

 dV = dr # r df # r sin f du
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2. Find the of integration. Draw a ray M from the origin through D making an
angle with the positive z-axis. Also draw the projection of M on the xy-plane (call
the projection L). The ray L makes an angle with the positive x-axis. As increases,
M enters D at and leaves at These are the of
integration.

3. Find the of integration. For any given the angle that M makes with the
z-axis runs from to These are the of integration.

4. Find the of integration. The ray L sweeps over R as runs from to These
are the of integration. The integral is

EXAMPLE 5 Finding a Volume in Spherical Coordinates

Find the volume of the “ice cream cone” D cut from the solid sphere by the cone

Solution The volume is the integral of 

over D.
To find the limits of integration for evaluating the integral, we begin by sketching D

and its projection R on the xy-plane (Figure 15.46).
The of integration. We draw a ray M from the origin through D making an an-

gle with the positive z-axis. We also draw L, the projection of M on the xy-plane, along
with the angle that L makes with the positive x-axis. Ray M enters D at and leaves
at 

The of integration. The cone makes an angle of with the posi-
tive z-axis. For any given the angle can run from to f = p>3.f = 0fu,

p>3f = p>3f-limits
r = 1.

r = 0u

f

r-limits

ƒsr, f, ud = 1V = 7D
r2 sin f dr df du,

f = p>3.
r … 1

9
D

 ƒsr, f, ud dV = L
u=b

u=a

 L
f=fmax

f=fmin

 L
r= g2sf, ud

r= g1sf, ud
 ƒsr, f, ud r2 sin f dr df du.

u-limits
b.auu-limits

f -limitsf = fmax.f = fmin

fu,f-limits

x

y

z

R

D

L

θ

M

� � g2(�, �)

� � g1(�, �)

� � �
� � �

�max

�min
�

r-limitsr = g2sf, ud.r = g1sf, ud
ru

f

r-limits
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x y

z

R

L

M

D

�

Sphere � � 1

Cone � � �
3

FIGURE 15.46 The ice cream cone in
Example 5.
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The of integration. The ray L sweeps over R as runs from 0 to The
volume is

EXAMPLE 6 Finding a Moment of Inertia

A solid of constant density occupies the region D in Example 5. Find the solid’s
moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

In spherical coordinates, 
Hence,

For the region in Example 5, this becomes

 =
1
5 L

2p

0
 a- 1

2
+ 1 +

1
24

-
1
3
b  du =

1
5 L

2p

0
 

5
24

 du =
1
24

 s2pd =

p
12

.

 =
1
5 L

2p

0
 L
p>3

0
s1 - cos2 fd sin f df du =

1
5 L

2p

0
 c-cos f +

cos3 f

3
d

0

p>3
 du

 Iz = L
2p

0
 L
p>3

0
 L

1

0
r4 sin3 f dr df du = L

2p

0
 L
p>3

0
 cr5

5 d0
1

 sin3 f df du

Iz = 9sr2 sin2 fd r2 sin f dr df du = 9r4 sin3 f dr df du .

x2
+ y2

= sr sin f cos ud2
+ sr sin f sin ud2

= r2 sin2 f .

Iz = 9sx2
+ y2d dV .

d = 1

 = L
2p

0
 c- 1

3
 cos f d

0

p>3
 du = L

2p

0
 a- 1

6
+

1
3
b  du =

1
6

 s2pd =
p
3

.

 = L
2p

0
 L
p>3

0
 cr3

3
d

0

1

 sin f df du = L
2p

0
 L
p>3

0
 
1
3

 sin f df du

 V = 9
D

r2 sin f dr df du = L
2p

0
 L
p>3

0
 L

1

0
r2 sin f dr df du

2p.uu-limits

15.6 Triple Integrals in Cylindrical and Spherical Coordinates 1123

Coordinate Conversion Formulas

CYLINDRICAL TO SPHERICAL TO SPHERICAL TO

RECTANGULAR RECTANGULAR CYLINDRICAL

Corresponding formulas for dV in triple integrals:

 = r2 sin f dr df du

 = dz r dr du

 dV = dx dy dz

 u = u z = r cos f z = z

 z = r cos f y = r sin f sin u y = r sin u

 r = r sin f x = r sin f cos u x = r cos u
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In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.
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1124 Chapter 15: Multiple Integrals

EXERCISES 15.6

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 1–6.

1.

2.

3.

4.

5.

6.

Changing Order of Integration in
Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred or-
ders of integration for cylindrical coordinates, but other orders usually
work well and are occasionally easier to evaluate. Evaluate the inte-
grals in Exercises 7–10.

7.

8.

9.

10.

11. Let D be the region bounded below by the plane above
by the sphere and on the sides by the cylin-
der Set up the triple integrals in cylindrical coor-
dinates that give the volume of D using the following orders of
integration.

a.

b.

c. du dz dr

dr dz du

dz dr du

x2
+ y2

= 1.
x2

+ y2
+ z2

= 4,
z = 0 ,

L
2

0
 L
24 - r2

r - 2
 L

2p

0
sr sin u + 1d r du dz dr

L
1

0
 L
2z

0
 L

2p

0
sr2 cos2 u + z2d r du dr dz

L
1

-1
 L

2p

0
 L

1 + cos u

0
4r dr du dz

L
2p

0
 L

3

0
 L

z>3
0

 r3 dr dz du

L
2p

0
 L

1

0
 L

1>2
-1>2

sr2 sin2 u + z2d dz r dr du

L
2p

0
 L

1

0
 L

1>22 - r 2

r
3 dz r dr du

L
p

0
 L
u>p

0
 L

324 - r 2

-24 - r 2
 z dz r dr du

L
2p

0
 L
u>2p

0
 L

3 + 24r 2

0
 dz r dr du

L
2p

0
 L

3

0
 L
218 - r 2

r 2>3
 dz r dr du

L
2p

0
 L

1

0
 L
22 - r 2

r
 dz r dr du

12. Let D be the region bounded below by the cone 
and above by the paraboloid Set up the triple
integrals in cylindrical coordinates that give the volume of D
using the following orders of integration.

a.

b.

c.

13. Give the limits of integration for evaluating the integral

as an iterated integral over the region that is bounded below by the
plane on the side by the cylinder and on top by
the paraboloid 

14. Convert the integral

to an equivalent integral in cylindrical coordinates and evaluate
the result.

Finding Iterated Integrals in Cylindrical
Coordinates
In Exercises 15–20, set up the iterated integral for evaluating

over the given region D.

15. D is the right circular cylinder whose base is the circle 
in the xy-plane and whose top lies in the plane 

16. D is the right circular cylinder whose base is the circle
and whose top lies in the plane z = 5 - x.r = 3 cos u

z

y

x

z � 4 � y

r � 2 sin �

z = 4 - y.
r = 2 sin u

7D ƒsr, u, zd dz r dr du

L
1

-1
 L
21 - y2

0
 L

x

0
sx2

+ y2d dz dx dy

z = 3r2 .
r = cos u ,z = 0 ,

9 ƒsr, u, zd dz r dr du

du dz dr

dr dz du

dz dr du

z = 2 - x2
- y2.

z = 2x2
+ y2
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17. D is the solid right cylinder whose base is the region in the xy-
plane that lies inside the cardioid and outside the
circle and whose top lies in the plane 

18. D is the solid right cylinder whose base is the region between the
circles and and whose top lies in the plane

19. D is the prism whose base is the triangle in the xy-plane bounded
by the x-axis and the lines and and whose top lies in
the plane 

y

z

x

2

1
y � x

z � 2 � y

z = 2 - y.
x = 1y = x

z

y

x

r � 2 cos �

r � cos �

z � 3 � y

z = 3 - y.
r = 2 cos ur = cos u

z

y

x

4

r � 1 � cos �

r � 1

z = 4.r = 1
r = 1 + cos u

z

y

x

z � 5 � x

r � 3 cos �

20. D is the prism whose base is the triangle in the xy-plane bounded
by the y-axis and the lines and and whose top lies in
the plane 

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 21–26.

21.

22.

23.

24.

25.

26.

Changing Order of Integration
in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders are possible and occa-
sionally easier to evaluate. Evaluate the integrals in Exercises 27–30.

27.

28.

29.

30.

31. Let D be the region in Exercise 11. Set up the triple integrals in
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

a. b. df dr dudr df du

L
p>2
p>6

 L
p/2

-p/2  
 L

2

csc f

5r4 sin3 f dr du df

L
1

0
 L
p

0
 L
p>4

0
12r sin3 f df du dr

L
p>3
p>6

 L
2 csc f

csc f

 L
2p

0
r2 sin f du dr df

L
2

0
 L

0

-p

   L
p>2
p>4
r3 sin 2f df du dr

L
2p

0
 L
p>4

0
 L

sec f

0
sr cos fd r2 sin f dr df du

L
2p

0
 L
p>3

0
 L

2

sec f

3r2 sin f dr df du

L
3p>2

0
 L
p

0
 L

1

0
5r3 sin3 f dr df du

L
2p

0
 L
p

0
 L

s1 - cos fd>2
0

r2 sin f dr df du

L
2p

0
 L
p>4

0
 L

2

0
sr cos fd r2 sin f dr df du

L
p

0
 L
p

0
 L

2 sin f

0
r2 sin f dr df du

y

z

x

2

1

y � x

z � 2 � x

z = 2 - x.
y = 1y = x
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32. Let D be the region bounded below by the cone 
and above by the plane Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following
orders of integration.

a. b.

Finding Iterated Integrals in Spherical
Coordinates
In Exercises 33–38, (a) find the spherical coordinate limits for the in-
tegral that calculates the volume of the given solid and (b) then evalu-
ate the integral.

33. The solid between the sphere and the hemisphere

34. The solid bounded below by the hemisphere and
above by the cardioid of revolution 

35. The solid enclosed by the cardioid of revolution 

36. The upper portion cut from the solid in Exercise 35 by the xy-
plane

37. The solid bounded below by the sphere and above by
the cone 

38. The solid bounded below by the xy-plane, on the sides by the
sphere and above by the cone f = p>3r = 2,

z

yx

� � 2 cos �

z � �x2 � y2

z = 2x2
+ y2

r = 2 cos f

r = 1 - cos f

z

yx

� � 1

� � 1 � cos �

r = 1 + cos f

r = 1, z Ú 0,

z

yx

� � cos �

� � 2

r = 2, z Ú 0
r = cos f

df dr dudr df du

z = 1 .
z = 2x2

+ y2

Rectangular, Cylindrical, and Spherical
Coordinates
39. Set up triple integrals for the volume of the sphere in

(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by
the cone and above by the sphere Express the
volume of D as an iterated triple integral in (a) cylindrical and
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by
a plane 1 unit from the center of the sphere. Express the volume
of D as an iterated triple integral in (a) spherical, (b) cylindrical,
and (c) rectangular coordinates. Then (d) find the volume by eval-
uating one of the three triple integrals.

42. Express the moment of inertia of the solid hemisphere
as an iterated integral in (a) cylindri-

cal and (b) spherical coordinates. Then (c) find 

Volumes
Find the volumes of the solids in Exercises 43–48.

43. 44.

45. 46. z

yx

z � �x2 � y2

r � –3 cos �

z

y

x

r � 3 cos �

z � –y

z

y

x

z � 1 � r

z � ��1 � r2

z

yx

z � 4 � 4 (x2 � y2)

z � (x2 � y2)2 �1

Iz.
x2

+ y2
+ z2

… 1, z Ú 0,
Iz

r = 3.f = p>4

r = 2

z

yx

� �
�
3

� � 2
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47. 48.

49. Sphere and cones Find the volume of the portion of the solid
sphere that lies between the cones and

50. Sphere and half-planes Find the volume of the region cut from
the solid sphere by the half-planes and in
the first octant.

51. Sphere and plane Find the volume of the smaller region cut
from the solid sphere by the plane 

52. Cone and planes Find the volume of the solid enclosed by the
cone between the planes and 

53. Cylinder and paraboloid Find the volume of the region
bounded below by the plane laterally by the cylinder

and above by the paraboloid 

54. Cylinder and paraboloids Find the volume of the region
bounded below by the paraboloid laterally by the
cylinder and above by the paraboloid 

55. Cylinder and cones Find the volume of the solid cut from the
thick-walled cylinder by the cones 

56. Sphere and cylinder Find the volume of the region that lies in-
side the sphere and outside the cylinder

57. Cylinder and planes Find the volume of the region enclosed by
the cylinder and the planes and 

58. Cylinder and planes Find the volume of the region enclosed by
the cylinder and the planes and

59. Region trapped by paraboloids Find the volume of the region
bounded above by the paraboloid and below by
the paraboloid 

60. Paraboloid and cylinder Find the volume of the region
bounded above by the paraboloid below by the
xy-plane, and lying outside the cylinder 

61. Cylinder and sphere Find the volume of the region cut from
the solid cylinder by the sphere 

62. Sphere and paraboloid Find the volume of the region bounded
above by the sphere and below by the parabo-
loid z = x2

+ y2.
x2

+ y2
+ z2

= 2

z2
= 4.x2

+ y2
+x2

+ y2
… 1

x2
+ y2

= 1.
z = 9 - x2

- y2,

z = 4x2
+ 4y2.

z = 5 - x2
- y2

x + y + z = 4.
z = 0x2

+ y2
= 4

y + z = 4.z = 0x2
+ y2

= 4

x2
+ y2

= 1.
x2

+ y2
+ z2

= 2

;2x2
+ y2.

z =1 … x2
+ y2

… 2

x2
+ y2

+ 1.
z =x2

+ y2
= 1,

z = x2
+ y2,

z = x2
+ y2.x2

+ y2
= 1,

z = 0 ,

z = 2.z = 1z = 2x2
+ y2

z = 1.r … 2

u = p>6u = 0r … a

f = 2p>3.
f = p>3r … a

x y

z

r � cos �

z � 3�1 � x2 � y2

z

y
x

z � �1 � x2 � y2

r � sin �

Average Values
63. Find the average value of the function over the re-

gion bounded by the cylinder between the planes 
and 

64. Find the average value of the function over the solid
ball bounded by the sphere (This is the sphere

)

65. Find the average value of the function over the
solid ball 

66. Find the average value of the function over
the solid upper ball 

Masses, Moments, and Centroids
67. Center of mass A solid of constant density is bounded below

by the plane above by the cone and on the
sides by the cylinder Find the center of mass.

68. Centroid Find the centroid of the region in the first octant that

is bounded above by the cone below by the plane
and on the sides by the cylinder and the

planes and 

69. Centroid Find the centroid of the solid in Exercise 38.

70. Centroid Find the centroid of the solid bounded above by the
sphere and below by the cone 

71. Centroid Find the centroid of the region that is bounded above
by the surface on the sides by the cylinder and
below by the xy-plane.

72. Centroid Find the centroid of the region cut from the solid ball
by the half-planes and

73. Inertia and radius of gyration Find the moment of inertia and
radius of gyration about the z-axis of a thick-walled right circular
cylinder bounded on the inside by the cylinder on the out-
side by the cylinder and on the top and bottom by the
planes and (Take )

74. Moments of inertia of solid circular cylinder Find the mo-
ment of inertia of a solid circular cylinder of radius 1 and
height 2 (a) about the axis of the cylinder and (b) about a line
through the centroid perpendicular to the axis of the cylinder.
(Take )

75. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius 1 and height 1 about an axis
through the vertex parallel to the base. (Take )

76. Moment of inertia of solid sphere Find the moment of inertia
of a solid sphere of radius a about a diameter. (Take )

77. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius a and height h about its axis.
(Hint: Place the cone with its vertex at the origin and its axis
along the z-axis.)

78. Variable density A solid is bounded on the top by the parabo-
loid on the bottom by the plane and on the sides byz = 0,z = r2,

d = 1.

d = 1.

d = 1.

d = 1.z = 0.z = 4
r = 2,

r = 1,

u = p>3, r Ú 0.
u = -p>3, r Ú 0,r2

+ z2
… 1

r = 4,z = 2r,

f = p>4.r = a

y = 0.x = 0
x2

+ y2
= 4z = 0,

z = 2x2
+ y2,

r = 1.
z = r, r Ú 0,z = 0,

r … 1, 0 … f … p>2.
ƒsr, f, ud = r cos f

r … 1.
ƒsr, f, ud = r

x2
+ y2

+ z2
= 1.

r2
+ z2

= 1.
ƒsr, u, zd = r

z = 1.
z = -1r = 1

ƒsr, u, zd = r
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the cylinder Find the center of mass and the moment of
inertia and radius of gyration about the z-axis if the density is

a.

b.

79. Variable density A solid is bounded below by the cone
and above by the plane Find the center of

mass and the moment of inertia and radius of gyration about the
z-axis if the density is

a.

b.

80. Variable density A solid ball is bounded by the sphere 
Find the moment of inertia and radius of gyration about the z-axis
if the density is

a.

b.

81. Centroid of solid semiellipsoid Show that the centroid of the
solid semiellipsoid of revolution 
lies on the z-axis three-eighths of the way from the base to the top.
The special case gives a solid hemisphere. Thus, the cen-
troid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base to the top.

82. Centroid of solid cone Show that the centroid of a solid right
circular cone is one-fourth of the way from the base to the vertex.
(In general, the centroid of a solid cone or pyramid is one-fourth
of the way from the centroid of the base to the vertex.)

83. Variable density A solid right circular cylinder is bounded by
the cylinder and the planes and Find
the center of mass and the moment of inertia and radius of gyra-
tion about the z-axis if the density is dsr, u, zd = z + 1.

z = h, h 7 0.z = 0r = a

h = a

sr2>a2d + sz2>h2d … 1, z Ú 0,

dsr, f, ud = r = r sin f.

dsr, f, ud = r2

r = a.

dsr, u, zd = z2.

dsr, u, zd = z

z = 1.z = 2x2
+ y2

dsr, u, zd = r.

dsr, u, zd = z

r = 1. 84. Mass of planet’s atmosphere A spherical planet of radius R
has an atmosphere whose density is where h is the
altitude above the surface of the planet, is the density at sea
level, and c is a positive constant. Find the mass of the planet’s
atmosphere.

85. Density of center of a planet A planet is in the shape of a
sphere of radius R and total mass M with spherically symmetric
density distribution that increases linearly as one approaches its
center. What is the density at the center of this planet if the den-
sity at its edge (surface) is taken to be zero?

Theory and Examples
86. Vertical circular cylinders in spherical coordinates Find an

equation of the form for the cylinder 

87. Vertical planes in cylindrical coordinates

a. Show that planes perpendicular to the x-axis have equations
of the form in cylindrical coordinates.

b. Show that planes perpendicular to the y-axis have equations
of the form 

88. (Continuation of Exercise 87.) Find an equation of the form
in cylindrical coordinates for the plane 

89. Symmetry What symmetry will you find in a surface that has
an equation of the form in cylindrical coordinates? Give
reasons for your answer.

90. Symmetry What symmetry will you find in a surface that has
an equation of the form in spherical coordinates? Give
reasons for your answer.

r = ƒsfd

r = ƒszd

c Z 0.
ax + by = c,r = ƒsud

r = b csc u.

r = a sec u

x2
+ y2

= a2.r = ƒsfd

m0

m = m0 e-ch,
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1128 Chapter 15: Multiple Integrals

Substitutions in Multiple Integrals

This section shows how to evaluate multiple integrals by substitution. As in single
integration, the goal of substitution is to replace complicated integrals by ones that are
easier to evaluate. Substitutions accomplish this by simplifying the integrand, the limits
of integration, or both.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.3 is a special case of a more general sub-
stitution method for double integrals, a method that pictures changes in variables as trans-
formations of regions.

Suppose that a region G in the uy-plane is transformed one-to-one into the region R in
the xy-plane by equations of the form

as suggested in Figure 15.47. We call R the image of G under the transformation, and G
the preimage of R. Any function ƒ(x, y) defined on R can be thought of as a function

x = gsu, yd, y = hsu, yd,

15.7
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The Jacobian is also denoted by

to help remember how the determinant in Equation (2) is constructed from the partial
derivatives of x and y. The derivation of Equation (1) is intricate and properly belongs to a
course in advanced calculus. We do not give the derivation here.

For polar coordinates, we have r and in place of u and y. With and
the Jacobian is

Hence, Equation (1) becomes

(3)

which is the equation found in Section 15.3.
Figure 15.48 shows how the equations transform the rectan-

gle into the quarter circle R bounded by in the
first quadrant of the xy-plane.

x2
+ y2

= 1G: 0 … r … 1, 0 … u … p>2 x = r cos u, y = r sin u

 = 6
G

 ƒsr cos u, r sin ud r dr du,

 6
R

 ƒsx, yd dx dy = 6
G

 ƒsr cos u, r sin ud ƒ r ƒ dr du

Jsr, ud = 4 0x
0r

0x
0u

0y
0r

0y
0u

4 = ` cos u -r sin u

sin u r cos u
` = rscos2 u + sin2 ud = r.

y = r sin u ,
x = r cos uu

Jsu, yd =

0sx, yd
0su, yd

ƒ(g(u, y), h(u, y)) defined on G as well. How is the integral of ƒ(x, y) over R related to the
integral of ƒ(g(u, y), h(u, y)) over G?

The answer is: If g, h, and ƒ have continuous partial derivatives and J(u, y) (to be
discussed in a moment) is zero only at isolated points, if at all, then

(1)

The factor J(u, y), whose absolute value appears in Equation (1), is the Jacobian of
the coordinate transformation, named after German mathematician Carl Jacobi. It meas-
ures how much the transformation is expanding or contracting the area around a point in G
as G is transformed into R.

6
R

 ƒsx, yd dx dy = 6
G

 ƒsgsu, yd, hsu, ydd ƒ Jsu, yd ƒ du dy.
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v

u
0

0

y

x

G

R

(u, v)

(x, y)

Cartesian uv-plane

x � g(u, v)
y � h(u, v)

Cartesian xy-plane

FIGURE 15.47 The equations
and allow us to

change an integral over a region R in the
xy-plane into an integral over a region G in
the uy-plane.

y = hsu, ydx = gsu, yd

HISTORICAL BIOGRAPHY

Carl Gustav Jacob Jacobi
(1804–1851)

Definition Jacobian
The Jacobian determinant or Jacobian of the coordinate transformation

is

(2)Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 =

0x
0u 

0y
0y

-

0y
0u 

0x
0y

 .

x = gsu, yd, y = hsu, yd

If r Ú 0
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Notice that the integral on the right-hand side of Equation (3) is not the integral of
over a region in the polar coordinate plane. It is the integral of the

product of and r over a region G in the Cartesian
Here is an example of another substitution.

EXAMPLE 1 Applying a Transformation to Integrate

Evaluate

by applying the transformation

(4)

and integrating over an appropriate region in the uy-plane.

Solution We sketch the region R of integration in the xy-plane and identify its bound-
aries (Figure 15.49).

u =

2x - y
2

, y =

y
2

L
4

0
 L

x = sy>2d + 1

x = y>2
 
2x - y

2
 dx dy

ru-plane.ƒsr cos u, r sin ud
ƒsr cos u, r sin ud
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�

r
0

0

1

y

x
1

1

R

G

R

Cartesian r�-plane

�
2

�
2

x � r cos �
y � r sin �

� �

� � 0

Cartesian xy-plane

FIGURE 15.48 The equations 
transform G into R.r cos u, y = r sin u

x =

v

u
0

y

x
01

2

G

1

4

R

v � 0

v � 2

u � 1u � 0

x � u � v
y � 2v

y � 0

y � 2x � 2

y � 4

y � 2x

FIGURE 15.49 The equations and transform G into
R. Reversing the transformation by the equations and

transforms R into G (Example 1).y = y>2
u = s2x - yd>2

y = 2yx = u + y

To apply Equation (1), we need to find the corresponding uy-region G and the
Jacobian of the transformation. To find them, we first solve Equations (4) for x and y in
terms of u and y. Routine algebra gives

(5)

We then find the boundaries of G by substituting these expressions into the equations for
the boundaries of R (Figure 15.49).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

y = 22y = 4y = 4
y = 02y = 0y = 0
u = 1u + y = s2y>2d + 1 = y + 1x = s y>2d + 1
u = 0u + y = 2y>2 = yx = y>2

x = u + y y = 2y.
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The Jacobian of the transformation (again from Equations (5)) is

We now have everything we need to apply Equation (1):

EXAMPLE 2 Applying a Transformation to Integrate

Evaluate

Solution We sketch the region R of integration in the xy-plane and identify its bound-
aries (Figure 15.50). The integrand suggests the transformation and

Routine algebra produces x and y as functions of u and y:

(6)

From Equations (6), we can find the boundaries of the uy-region G (Figure 15.50).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

The Jacobian of the transformation in Equations (6) is

Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 = 4 13 -
1
3

2
3

1
3

4 =
1
3

.

y = -2u
2u
3

+
y
3

= 0y = 0

y = u
u
3

-
y
3

= 0x = 0

u = 1au
3

-
y
3
b + a2u

3
+
y
3
b = 1x + y = 1

x =

u
3

-
y
3

, y =

2u
3

+
y
3

.

y = y - 2x.
u = x + y

L
1

0
 L

1 - x

0
2x + y s y - 2xd2 dy dx.

 = L
2

0
 L

1

0
suds2d du dy = L

2

0
 cu2 d

0

1

 dy = L
2

0
 dy = 2.

 L
4

0
 L

x = sy>2d + 1

x = y>2
 
2x - y

2
 dx dy = L

y= 2

y= 0
 L

u = 1

u = 0
 u ƒ Jsu, yd ƒ du dy

Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 = 4 00u su + yd 0

0y
 su + yd

0

0u s2yd 0

0y
 s2yd

4 = ` 1 1

0 2
` = 2.
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v

u
0

y

x
0 1

1

R

1

1G

v � –2u

v � u

u � 1

–2

x � y � 1
x � 0

y � 0

u
3

v
3

x� �

2u
3

v
3

y � �

FIGURE 15.50 The equations 
and 

transform G into R. Reversing the
transformation by the equations 
and transforms R into G
(Example 2).
y = y - 2x

u = x + y

y = s2u>3d + sy>3dsu>3d - sy>3d
x =
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Applying Equation (1), we evaluate the integral:

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions in Section 15.6 are special cases of a
substitution method that pictures changes of variables in triple integrals as transformations
of three-dimensional regions. The method is like the method for double integrals except
that now we work in three dimensions instead of two.

Suppose that a region G in uyw-space is transformed one-to-one into the region D in
xyz-space by differentiable equations of the form

as suggested in Figure 15.51. Then any function F(x, y, z) defined on D can be thought of
as a function

defined on G. If g, h, and k have continuous first partial derivatives, then the integral of
F(x, y, z) over D is related to the integral of H(u, y, w) over G by the equation

(7)9
D

 Fsx, y, zd dx dy dz = 9
G

 Hsu, y, wd ƒ Jsu, y, wd ƒ du dy dw.

Fsgsu, y, wd, hsu, y, wd, ksu, y, wdd = Hsu, y, wd

x = gsu, y, wd, y = hsu, y, wd, z = ksu, y, wd,

=
1
9

 L
1

0
 u1>2su3

+ 8u3d du = L
1

0
 u7>2 du =

2
9

 u9/2 d
0

1

=
2
9

.

= L
1

0
 L

u

-2u
 u1>2 y2 a1

3
b  dy du =

1
3

 L
1

0
 u1>2 c1

3
 y3 d

y= -2u

y= u

 du

 L
1

0
 L

1 - x

0
2x + y s y - 2xd2 dy dx = L

u = 1

u = 0
 L
y= u

y= -2u
 u1>2 y2

ƒ Jsu, yd ƒ dy du
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w

G

u

z

D

x

y

x � g(u, y, w)
y � h(u, y, w)
z � k(u, y, w)

y

Cartesian uyw-space Cartesian xyz-space

FIGURE 15.51 The equations and
allow us to change an integral over a region D in Cartesian

xyz-space into an integral over a region G in Cartesian uyw-space.
z = ksu, y, wd

x = gsu, y, wd, y = hsu, y, wd,
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The factor J(u, y, w), whose absolute value appears in this equation, is the Jacobian
determinant

This determinant measures how much the volume near a point in G is being expanded or
contracted by the transformation from (u, y, w) to (x, y, z) coordinates. As in the two-
dimensional case, the derivation of the change-of-variable formula in Equation (7) is com-
plicated and we do not go into it here.

For cylindrical coordinates, and z take the place of u, y, and w. The transforma-
tion from Cartesian to Cartesian xyz-space is given by the equations

(Figure 15.52). The Jacobian of the transformation is

The corresponding version of Equation (7) is

We can drop the absolute value signs whenever 
For spherical coordinates, and take the place of u, y, and w. The transforma-

tion from Cartesian to Cartesian xyz-space is given by

(Figure 15.53). The Jacobian of the transformation is

Jsr, f, ud = 6
0x
0r

0x
0f

0x
0u

0y
0r

0y
0f

0y
0u

0z
0r

0z
0f

0z
0u

6 = r2 sin f

x = r sin f cos u, y = r sin f sin u, z = r cos f

rfu-space
ur, f ,

r Ú 0 .

9
D

 Fsx, y, zd dx dy dz = 9
G

 Hsr, u, zd ƒ r ƒ dr du dz.

 = r cos2 u + r sin2 u = r.

Jsr, u, zd = 6
0x
0r

0x
0u

0x
0z

0y
0r

0y
0u

0y
0z

0z
0r

0z
0u

0z
0z

6 = 3 cos u -r sin u 0

sin u   r cos u 0

0   0 1

3
x = r cos u, y = r sin u, z = z

ruz-space
r, u ,

Jsu, y, wd = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 =

0sx, y, zd
0su, y, wd

.
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z

G

r

z

D

x

y

Cube with sides
parallel to the
coordinate axes

�

Cartesian r�z-space

x � r cos �
y � r sin �
z � z

z � constant

r � constant

� � constant

Cartesian xyz-space

FIGURE 15.52 The equations
and 

transform the cube G into a cylindrical
wedge D.

z = zx = r cos u, y = r sin u ,
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Here is an example of another substitution. Although we could evaluate the integral in
this example directly, we have chosen it to illustrate the substitution method in a simple
(and fairly intuitive) setting.

EXAMPLE 3 Applying a Transformation to Integrate

Evaluate

by applying the transformation

(8)

and integrating over an appropriate region in uyw-space.

Solution We sketch the region D of integration in xyz-space and identify its boundaries
(Figure 15.54). In this case, the bounding surfaces are planes.

To apply Equation (7), we need to find the corresponding uyw-region G and the
Jacobian of the transformation. To find them, we first solve Equations (8) for x, y, and z in
terms of u, y, and w. Routine algebra gives

(9)

We then find the boundaries of G by substituting these expressions into the equations for
the boundaries of D:

x = u + y, y = 2y, z = 3w.

u = s2x - yd>2, y = y>2, w = z>3

L
3

0
 L

4

0
 L

x = sy>2d + 1

x = y>2
 a2x - y

2
+

z
3
b  dx dy dz

(Exercise 17). The corresponding version of Equation (7) is

We can drop the absolute value signs because is never negative for 
Note that this is the same result we obtained in Section 15.6.

0 … f … p.sin f

9
D

 Fsx, y, zd dx dy dz = 9
G

 Hsr, f, ud ƒ p2 sin f ƒ dr df du.
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G

z D

x

y

Cube with sides
parallel to the
coordinate axes

Cartesian ���-space

�

�

�

x � � sin � cos �
y � � sin � sin �
z � � cos �

Cartesian xyz-space

�

�

�

� � constant

� � constant
� � constant

(x, y, z)

FIGURE 15.53 The equations and
transform the cube G into the spherical wedge D.z = r cos f

x = r sin f cos u, y = r sin f sin u,

w

2

u

z

x

y
4

1

1

G

D

3

1

y

x � u � y
y � 2y
z � 3w

Rear plane:

x �    , or y � 2x
y
2

Front plane:

x �     � 1, or y � 2x � 2
y
2

FIGURE 15.54 The equations
and 

transform G into D. Reversing the
transformation by the equations

and 
transforms D into G (Example 3).

w = z>3u = s2x - yd>2, y = y>2,

z = 3wx = u + y, y = 2y,
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xyz-equations for Corresponding uYw-equations Simplified
the boundary of D for the boundary of G uYw-equations

The Jacobian of the transformation, again from Equations (9), is

We now have everything we need to apply Equation (7):

The goal of this section was to introduce you to the ideas involved in coordinate transfor-
mations. A thorough discussion of transformations, the Jacobian, and multivariable substi-
tution is best given in an advanced calculus course after a study of linear algebra.

 = 6 Cw + w2 D01 = 6s2d = 12.

 = 6L
1

0
 L

2

0
 a1

2
+ wb  dy dw = 6L

1

0
 cy

2
+ yw d

0

2

 dw = 6L
1

0
s1 + 2wd dw

 = L
1

0
 L

2

0
 L

1

0
su + wds6d du dy dw = 6L

1

0
 L

2

0
 cu2

2
+ uw d

0

1

 dy dw

 = L
1

0
 L

2

0
 L

1

0
su + wd ƒ Jsu, y, wd ƒ du dy dw

 L
3

0
 L

4

0
 L

x = sy>2d + 1

x = y>2
 a2x - y

2
+

z
3
b  dx dy dz

Jsu, y, wd = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 = 3 1 1 0

0 2 0

0 0 3

3 = 6.

w = 13w = 3z = 3
w = 03w = 0z = 0
y = 22y = 4y = 4
y = 02y = 0y = 0
u = 1u + y = s2y>2d + 1 = y + 1x = s y>2d + 1
u = 0u + y = 2y>2 = yx = y>2
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EXERCISES 15.7

Finding Jacobians and Transformed Regions
for Two Variables
1. a. Solve the system

for x and y in terms of u and y. Then find the value of the
Jacobian 

b. Find the image under the transformation u = x - y,

0sx, yd>0su, yd.

u = x - y, y = 2x + y

of the triangular region with vertices (0, 0),
(1, 1), and in the xy-plane. Sketch the transformed
region in the uy-plane.

2. a. Solve the system

for x and y in terms of u and . Then find the value of the
Jacobian 0sx, yd>0su, yd.

y

u = x + 2y, y = x - y

s1, -2d
y = 2x + y
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b. Find the image under the transformation 
of the triangular region in the xy-plane bounded

by the lines and Sketch the
transformed region in the uy-plane.

3. a. Solve the system

for x and y in terms of u and y. Then find the value of the
Jacobian 

b. Find the image under the transformation
of the triangular region in the xy-

plane bounded by the x-axis, the y-axis, and the line
Sketch the transformed region in the uy-plane.

4. a. Solve the system

for x and y in terms of u and y. Then find the value of the
Jacobian 

b. Find the image under the transformation 
of the parallelogram R in the xy-plane with

boundaries and Sketch
the transformed region in the uy-plane.

Applying Transformations to Evaluate
Double Integrals
5. Evaluate the integral

from Example 1 directly by integration with respect to x and y to
confirm that its value is 2.

6. Use the transformation in Exercise 1 to evaluate the integral

for the region R in the first quadrant bounded by the lines
and 

7. Use the transformation in Exercise 3 to evaluate the integral

for the region R in the first quadrant bounded by the lines
and 

8. Use the transformation and parallelogram R in Exercise 4 to eval-
uate the integral

6
R

2sx - yd dx dy.

-s1>4dx + 1.
y =y = -s3>2dx + 1, y = - s3>2dx + 3, y = -s1>4dx ,

6
R

s3x2
+ 14xy + 8y2d dx dy

y = x + 1.y = -2x + 4, y = -2x + 7, y = x - 2 ,

6
R

s2x2
- xy - y2d dx dy

L
4

0
 L

x= s y>2d + 1

x= y>2
 
2x - y

2
 dx dy

y = x + 1 .x = -3, x = 0, y = x ,
y = -x + y

u = 2x - 3y,

0sx, yd>0su, yd.

u = 2x - 3y, y = -x + y

x + y = 1.

u = 3x + 2y, y = x + 4y

0sx, yd>0su, yd.

u = 3x + 2y, y = x + 4y

x + 2y = 2 .y = 0, y = x ,
y = x - y

u = x + 2y, 9. Let R be the region in the first quadrant of the xy-plane bounded
by the hyperbolas and the lines 
Use the transformation with and 
to rewrite

as an integral over an appropriate region G in the uy-plane. Then
evaluate the uy-integral over G.

10. a. Find the Jacobian of the transformation and
sketch the region in the uy-plane.

b. Then use Equation (1) to transform the integral

into an integral over G, and evaluate both integrals.

11. Polar moment of inertia of an elliptical plate A thin plate of
constant density covers the region bounded by the ellipse

in the xy-plane. Find the
first moment of the plate about the origin. (Hint: Use the transfor-
mation )

12. The area of an ellipse The area of the ellipse
can be found by integrating the function

over the region bounded by the ellipse in the xy-plane.
Evaluating the integral directly requires a trigonometric substitu-
tion. An easier way to evaluate the integral is to use the transfor-
mation and evaluate the transformed integral over
the disk in the uy-plane. Find the area this way.

13. Use the transformation in Exercise 2 to evaluate the integral

by first writing it as an integral over a region G in the uy-plane.

14. Use the transformation to evaluate the
integral

by first writing it as an integral over a region G in the uy-plane.

Finding Jacobian Determinants
15. Find the Jacobian for the transformation

a.

b.

16. Find the Jacobian of the transformation

a.

b.

17. Evaluate the appropriate determinant to show that the Jacobian of
the transformation from Cartesian to Cartesian xyz-
space is r2 sin f .

rfu-space

x = 2u - 1, y = 3y - 4, z = s1>2dsw - 4d.
x = u cos y, y = u sin y, z = w

0sx, y, zd>0su, y, wd
x = u sin y, y = u cos y.

x = u cos y, y = u sin y

0sx, yd>0su, yd

L
2

0
 L

sy + 4d>2
y>2

 y3s2x - yde s2x - yd2

 dx dy

x = u + s1>2dy, y = y

L
2>3

0
 L

2 - 2y

y
sx + 2yde sy - xd dx dy

G: u2
+ y2

… 1
x = au, y = by

ƒsx, yd = 1
x2>a2

+ y2>b2
= 1

pab

x = ar cos u, y = br sin u .

x2>a2
+ y2>b2

= 1, a 7 0, b 7 0 ,

L
2

1
 L

2

1
 
y
x dy dx

G: 1 … u … 2, 1 … uy … 2
x = u, y = uy,

6
R

 aAy
x + 2xyb  dx dy

y 7 0u 7 0x = u>y, y = uy
y = x, y = 4x.xy = 1, xy = 9
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18. Substitutions in single integrals How can substitutions in
single definite integrals be viewed as transformations of
regions? What is the Jacobian in such a case? Illustrate with an
example.

Applying Transformations to Evaluate
Triple Integrals
19. Evaluate the integral in Example 3 by integrating with respect to

x, y, and z.

20. Volume of an ellipsoid Find the volume of the ellipsoid

(Hint: Let and Then find the volume of
an appropriate region in uyw-space.)

21. Evaluate

over the solid ellipsoid

(Hint: Let and Then integrate over an
appropriate region in uyw-space.)

z = cw .x = au, y = by,

x2

a2 +

y2

b2 +

z2

c2 … 1 .

9 ƒ xyz ƒ dx dy dz

z = cw .x = au, y = by,

x2

a2 +

y2

b2 +

z2

c2 = 1.

22. Let D be the region in xyz-space defined by the inequalities

Evaluate

by applying the transformation

and integrating over an appropriate region G in uyw-space.

23. Centroid of a solid semiellipsoid Assuming the result that
the centroid of a solid hemisphere lies on the axis of symmetry
three-eighths of the way from the base toward the top, show, by
transforming the appropriate integrals, that the center of mass
of a solid semiellipsoid 

lies on the z-axis three-eighths of the way from the base
toward the top. (You can do this without evaluating any of the
integrals.)

24. Cylindrical shells In Section 6.2, we learned how to find the
volume of a solid of revolution using the shell method; namely, if
the region between the curve and the x-axis from a to b

is revolved about the y-axis, the volume of the
resulting solid is Prove that finding volumes by
using triple integrals gives the same result. (Hint: Use cylindrical
coordinates with the roles of y and z changed.)

1a
b 2pxƒsxd dx .

s0 6 a 6 bd
y = ƒsxd

z Ú 0,
sx2>a2d + sy2>b2d + sz 2>c2d … 1,

u = x, y = xy, w = 3z

9
D

sx2y + 3xyzd dx dy dz

1 … x … 2, 0 … xy … 2, 0 … z … 1.

1137
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Chapter 15 Additional and Advanced Exercises

Volumes
1. Sand pile: double and triple integrals The base of a sand pile

covers the region in the xy-plane that is bounded by the parabola
and the line The height of the sand above the

point (x, y) is Express the volume of sand as (a) a double inte-
gral, (b) a triple integral. Then (c) find the volume.

2. Water in a hemispherical bowl A hemispherical bowl of ra-
dius 5 cm is filled with water to within 3 cm of the top. Find the
volume of water in the bowl.

3. Solid cylindrical region between two planes Find the volume
of the portion of the solid cylinder that lies between
the planes and 

4. Sphere and paraboloid Find the volume of the region bounded
above by the sphere and below by the parabo-
loid 

5. Two paraboloids Find the volume of the region bounded above
by the paraboloid and below by the paraboloid

6. Spherical coordinates Find the volume of the region enclosed
by the spherical coordinate surface (see accompanying
figure).

r = 2 sin f

z = 2x2
+ 2y2 .

z = 3 - x2
- y2

z = x2
+ y2 .

x2
+ y2

+ z2
= 2

x + y + z = 2 .z = 0
x2

+ y2
… 1

x2 .
y = x .x2

+ y = 6

7. Hole in sphere A circular cylindrical hole is bored through a
solid sphere, the axis of the hole being a diameter of the sphere.
The volume of the remaining solid is

a. Find the radius of the hole and the radius of the sphere.

b. Evaluate the integral.

8. Sphere and cylinder Find the volume of material cut from the
solid sphere by the cylinder r = 3 sin u .r2

+ z2
… 9

V = 2L
2p

0
 L
23

0
 L
24 - z 2

1
 r dr dz du .

z

x

y

� � 2 sin �
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9. Two paraboloids Find the volume of the region enclosed by the
surfaces and 

10. Cylinder and surface Find the volume of the region in
the first octant that lies between the cylinders and 
and that is bounded below by the xy-plane and above by the
surface 

Changing the Order of Integration
11. Evaluate the integral

(Hint: Use the relation

to form a double integral and evaluate the integral by changing
the order of integration.)

12. a. Polar coordinates Show, by changing to polar coordinates,
that

where and 

b. Rewrite the Cartesian integral with the order of integration
reversed.

13. Reducing a double to a single integral By changing the order
of integration, show that the following double integral can be
reduced to a single integral:

Similarly, it can be shown that

14. Transforming a double integral to obtain constant limits
Sometimes a multiple integral with variable limits can be changed
into one with constant limits. By changing the order of integra-
tion, show that

Masses and Moments
15. Minimizing polar inertia A thin plate of constant density is to

occupy the triangular region in the first quadrant of the xy-plane

 =

1
2

 L
1

0
 L

1

0
 gs ƒ x - y ƒ dƒsxdƒsyd dx dy.

 = L
1

0
 ƒsyd aL

1

y
 gsx - ydƒsxd dxb  dy

 L
1

0
 ƒsxd aL

x

0
 gsx - ydƒsyd dyb  dx

L
x

0
 L
y

0
 L

u

0
 emsx - td ƒstd dt du dy = L

x

0
 
sx - td2

2
 emsx - td ƒstd dt.

L
x

0
 L

u

0
 emsx - td ƒstd dt du = L

x

0
sx - tdemsx - td ƒstd dt .

0 6 b 6 p>2.a 7 0

L
a sin b

0
 L
2a2

- y2

y cot b
 ln sx2

+ y2d dx dy = a2b aln a -

1
2
b ,

e-ax
- e-bx

x = L
b

a
 e-xy dy

L
q

0
 
e-ax

- e-bx

x  dx.

z = xy.

r = 2r = 1
z = xy

z = sx2
+ y2

+ 1d>2.z = x2
+ y2

having vertices (0, 0), (a, 0), and (a, 1 a). What value of a will
minimize the plate’s polar moment of inertia about the origin?

16. Polar inertia of triangular plate Find the polar moment of in-
ertia about the origin of a thin triangular plate of constant density

bounded by the y-axis and the lines and in
the xy-plane.

17. Mass and polar inertia of a counterweight The counter-
weight of a flywheel of constant density 1 has the form of the
smaller segment cut from a circle of radius a by a chord at a
distance b from the center Find the mass of the coun-
terweight and its polar moment of inertia about the center of the
wheel.

18. Centroid of boomerang Find the centroid of the boomerang-
shaped region between the parabolas and

in the xy-plane.

Theory and Applications
19. Evaluate

where a and b are positive numbers and

20. Show that

over the rectangle is

21. Suppose that ƒ(x, y) can be written as a product
of a function of x and a function of y. Then

the integral of ƒ over the rectangle can
be evaluated as a product as well, by the formula

(1)

The argument is that

(i)

(ii)

(iii)

(iv) = a L
b

a
 Fsxd dxbL

d

c
 Gsyd dy .

 = L
d

c
 a L

b

a
 Fsxd dxbGsyd dy

 = L
d

c
 aGsydL

b

a
 Fsxd dxb  dy

 6
R

 ƒsx, yd dA = L
d

c
 a L

b

a
 FsxdGsyd dxb  dy

6
R

 ƒsx, yd dA = a L
b

a
 Fsxd dxb a L

d

c
 Gsyd dyb .

R: a … x … b, c … y … d
ƒsx, yd = FsxdGsyd

Fsx1, y1d - Fsx0, y1d - Fsx1, y0d + Fsx0, y0d.

x0 … x … x1, y0 … y … y1 ,

6 
0

2Fsx, yd
0x 0y  dx dy

max sb2x2, a2y2d = e b2x2 if b2x2
Ú a2y2

a2y2 if b2x2
6 a2y2.

L
a

0
 L

b

0
 emax sb2x2, a2y2d dy dx,

y2
= -2sx - 2d

y2
= -4sx - 1d

sb 6 ad .

y = 4y = 2xd = 3

>

Chapter 15 Additional and Advanced Exercises 1141

4100 AWL/Thomas_ch15p1067-1142  8/25/04  2:58 PM  Page 1141

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


a. Give reasons for steps (i) through (v).

When it applies, Equation (1) can be a time saver. Use it to
evaluate the following integrals.

b. c.

22. Let denote the derivative of in the di-
rection of the unit vector 

a. Finding average value Find the average value of over
the triangular region cut from the first quadrant by the line

b. Average value and centroid Show in general that the
average value of over a region in the xy-plane is the
value of at the centroid of the region.

23. The value of The gamma function,

extends the factorial function from the nonnegative integers to
other real values. Of particular interest in the theory of differen-
tial equations is the number

(2)

a. If you have not yet done Exercise 37 in Section 15.3, do it
now to show that

b. Substitute in Equation (2) to show that

24. Total electrical charge over circular plate The electrical
charge distribution on a circular plate of radius R meters is

(k a constant). Integrate 
over the plate to find the total charge Q.

sssr, ud = krs1 - sin ud coulomb>m2

≠s1>2d = 2I = 1p.
y = 1t

I = L
q

0
 e-y2

 dy =

2p
2

.

≠ a1
2
b = L

q

0
 t s1>2d - 1 e-t dt = L

q

0
 
e-t2t

 dt.

≠sxd = L
q

0
 t x - 1 e-t dt,

Ωs1>2d
Du ƒ

Du ƒ

x + y = 1.

Du ƒ

u = u1 i + u2 j .
ƒsx, yd = sx2

+ y2d>2Du ƒ
L

2

1
 L

1

-1
 
x

y2 dx dyL
ln 2

0
 L
p>2

0
 ex cos y dy dx

25. A parabolic rain gauge A bowl is in the shape of the graph of
from to in. You plan to calibrate the

bowl to make it into a rain gauge. What height in the bowl would
correspond to 1 in. of rain? 3 in. of rain?

26. Water in a satellite dish A parabolic satellite dish is 2 m wide
and 1 2 m deep. Its axis of symmetry is tilted 30 degrees from the
vertical.

a. Set up, but do not evaluate, a triple integral in rectangular
coordinates that gives the amount of water the satellite dish
will hold. (Hint: Put your coordinate system so that the
satellite dish is in “standard position” and the plane of the
water level is slanted.) (Caution: The limits of integration are
not “nice.”)

b. What would be the smallest tilt of the satellite dish so that it
holds no water?

27. An infinite half-cylinder Let D be the interior of the infinite
right circular half-cylinder of radius 1 with its single-end face sus-
pended 1 unit above the origin and its axis the ray from (0, 0, 1) to

Use cylindrical coordinates to evaluate

28. Hypervolume We have learned that is the length of the
interval [a, b] on the number line (one-dimensional space),

is the area of region R in the xy-plane (two-dimensional
space), and is the volume of the region D in three-
dimensional space (xyz-space). We could continue: If Q is a re-
gion in 4-space (xyzw-space), then is the “hypervol-
ume” of Q. Use your generalizing abilities and a Cartesian
coordinate system of 4-space to find the hypervolume inside the
unit 4-sphere x2

+ y2
+ z2

+ w2
= 1.

|Q 1 dV

7D 1 dV
4R 1 dA

1a
b 1 dx

9
D

 zsr2
+ z2d-5>2 dV.

q .

>

z = 10z = 0z = x2
+ y2
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Chapter 15 Practice Exercises

Planar Regions of Integration
In Exercises 1–4, sketch the region of integration and evaluate the
double integral.

1. 2.

3. 4.

Reversing the Order of Integration
In Exercises 5–8, sketch the region of integration and write an equiva-
lent integral with the order of integration reversed. Then evaluate both
integrals.

5. 6.

7. 8.

Evaluating Double Integrals
Evaluate the integrals in Exercises 9–12.

9. 10.

11. 12.

Areas and Volumes
13. Area between line and parabola Find the area of the region

enclosed by the line and the parabola in
the xy-plane.

14. Area bounded by lines and parabola Find the area of the “tri-
angular” region in the xy-plane that is bounded on the right by the
parabola on the left by the line and above by
the line 

15. Volume of the region under a paraboloid Find the volume
under the paraboloid above the triangle enclosed by
the lines and in the xy-plane.

16. Volume of the region under parabolic cylinder Find the vol-
ume under the parabolic cylinder above the region
enclosed by the parabola and the line in the
xy-plane.

Average Values
Find the average value of over the regions in Exercises
17 and 18.

17. The square bounded by the lines in the first quadrant

18. The quarter circle in the first quadrantx2
+ y2

… 1

x = 1, y = 1

ƒsx, yd = xy

y = xy = 6 - x2
z = x2

x + y = 2y = x, x = 0 ,
z = x2

+ y2

y = 4 .
x + y = 2 ,y = x2 ,

y = 4 - x2y = 2x + 4

L
1

0
 L

123 y
 
2p sin px2

x2  dx dyL
8

0
 L

223 x
  

dy dx

y4
+ 1

L
2

0
 L

1

y>2
 ex2

 dx dyL
1

0
 L

2

2y
4 cos sx2d dx dy

L
2

0
 L

4 - x2

0
2x dy dxL

3>2

0
 L
29 - 4y2

-29 - 4y2
 y dx dy

L
1

0
 L

x

x2
2x dy dxL

4

0
 L

sy - 4d>2

-24 - y
 dx dy

L
1

0
 L

2 -2y2y
 xy dx dyL

3>2

0
 L
29 - 4t2

-29 - 4t2
 t ds dt

L
1

0
 L

x3

0
 ey>x dy dxL

10

1
 L

1>y

0
 yexy dx dy

Masses and Moments
19. Centroid Find the centroid of the “triangular” region bounded by

the lines and the hyperbola in the xy-plane.

20. Centroid Find the centroid of the region between the parabola
and the line in the xy-plane.

21. Polar moment Find the polar moment of inertia about the ori-
gin of a thin triangular plate of constant density bounded
by the y-axis and the lines and in the xy-plane.

22. Polar moment Find the polar moment of inertia about the cen-
ter of a thin rectangular sheet of constant density bounded
by the lines

a. in the xy-plane

b. in the xy-plane.

(Hint: Find Then use the formula for to find and add the
two to find ).

23. Inertial moment and radius of gyration Find the moment of
inertia and radius of gyration about the x-axis of a thin plate of
constant density covering the triangle with vertices (0, 0), (3, 0),
and (3, 2) in the xy-plane.

24. Plate with variable density Find the center of mass and the
moments of inertia and radii of gyration about the coordinate axes
of a thin plate bounded by the line and the parabola 
in the xy-plane if the density is 

25. Plate with variable density Find the mass and first moments
about the coordinate axes of a thin square plate bounded by the
lines in the xy-plane if the density is 

26. Triangles with same inertial moment and radius of gyration
Find the moment of inertia and radius of gyration about the x-axis
of a thin triangular plate of constant density whose base lies
along the interval [0, b] on the x-axis and whose vertex lies on the
line above the x-axis. As you will see, it does not matter
where on the line this vertex lies. All such triangles have the same
moment of inertia and radius of gyration about the x-axis.

Polar Coordinates
Evaluate the integrals in Exercises 27 and 28 by changing to polar
coordinates.

27.

28.

29. Centroid Find the centroid of the region in the polar coordinate
plane defined by the inequalities 0 … r … 3, -p>3 … u … p>3.

L
1

-1
 L
21 - y2

-21 - y2
 ln sx2

+ y2
+ 1d dx dy

L
1

-1
 L
21 - x2

-21 - x2
 

2 dy dx

s1 + x2
+ y2d2

y = h

d

x2
+ y2

+ 1>3.
dsx, yd =x = ;1, y = ;1

dsx, yd = x + 1 .
y = x2y = x

d

I0

IyIxIx .

x = ;a, y = ;b

x = ;2, y = ;1

d = 1

y = 4y = 2x
d = 3

x + 2y = 0x + y2
- 2y = 0

xy = 2x = 2, y = 2
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30. Centroid Find the centroid of the region in the first quadrant
bounded by the rays and and the circles 
and 

31. a. Centroid Find the centroid of the region in the polar coordi-
nate plane that lies inside the cardioid and out-
side the circle 

b. Sketch the region and show the centroid in your sketch.

32. a. Centroid Find the centroid of the plane region defined by
the polar coordinate inequalities 

How does the centroid move as 

b. Sketch the region for and show the centroid in
your sketch.

33. Integrating over lemniscate Integrate the function 
over the region enclosed by one loop of the

lemniscate 

34. Integrate over

a. Triangular region The triangle with vertices (0, 0), (1, 0), 

b. First quadrant The first quadrant of the xy-plane.

Triple Integrals in Cartesian Coordinates
Evaluate the integrals in Exercises 35–38.

35.

36.

37.

38.

39. Volume Find the volume of the wedge-shaped region enclosed
on the side by the cylinder on
the top by the plane and below by the xy-plane.

40. Volume Find the volume of the solid that is bounded above by
the cylinder on the sides by the cylinder 

and below by the xy-plane.y2
= 4,

x2
+z = 4 - x2 ,

y
x

z

–

x � –cos y

z � –2x

�
2

�
2

z

y

x
x2 � y2 � 4

z � 4 � x2

z = -2x ,
x = -cos y, -p>2 … y … p>2,

L
e

1
 L

x

1
 L

z

0
 
2y

z3  dy dz dx

L
1

0
 L

x2

0
 L

x + y

0
s2x - y - zd dz dy dx

L
ln 7

ln 6
 L

ln 2

0
 L

ln 5

ln 4
 e sx + y + zd dz dy dx

L
p

0
 L
p

0
 L
p

0
 cos sx + y + zd dx dy dz

A1, 23 B .
ƒsx, yd = 1>s1 + x2

+ y2d2

sx2
+ y2d2

- sx2
- y2d = 0.

1>s1 + x2
+ y2d2

ƒsx, yd =

a = 5p>6
a: p- ?s0 6 a … pd.
-a … u … a 0 … r … a,

r = 1.
r = 1 + cos u

r = 3.
r = 1u = p>2u = 0

41. Average value Find the average value of 

over the rectangular solid in the first octant
bounded by the coordinate planes and the planes 

42. Average value Find the average value of over the solid sphere
(spherical coordinates).

Cylindrical and Spherical Coordinates
43. Cylindrical to rectangular coordinates Convert

to (a) rectangular coordinates with the order of integration 
dz dx dy and (b) spherical coordinates. Then (c) evaluate one of
the integrals.

44. Rectangular to cylindrical coordinates (a) Convert to cylin-
drical coordinates. Then (b) evaluate the new integral.

45. Rectangular to spherical coordinates (a) Convert to spherical
coordinates. Then (b) evaluate the new integral.

46. Rectangular, cylindrical, and spherical coordinates Write an
iterated triple integral for the integral of over
the region in the first octant bounded by the cone

the cylinder and the coordinate
planes in (a) rectangular coordinates, (b) cylindrical coordinates,
and (c) spherical coordinates. Then (d) find the integral of ƒ by
evaluating one of the triple integrals.

47. Cylindrical to rectangular coordinates Set up an integral in
rectangular coordinates equivalent to the integral

Arrange the order of integration to be z first, then y, then x.

48. Rectangular to cylindrical coordinates The volume of a solid is

a. Describe the solid by giving equations for the surfaces that
form its boundary.

b. Convert the integral to cylindrical coordinates but do not
evaluate the integral.

49. Spherical versus cylindrical coordinates Triple integrals
involving spherical shapes do not always require spherical coordi-
nates for convenient evaluation. Some calculations may be
accomplished more easily with cylindrical coordinates. As a case
in point, find the volume of the region bounded above by the

L
2

0
 L
22x - x2

0
 L
24 - x2

- y2

-24 - x2
- y2

 dz dy dx .

L
p>2

0
 L
23

1
 L
24 - r2

1
 r3ssin u cos udz2 dz dr du .

x2
+ y2

= 1 ,z = 2x2
+ y2 ,

ƒsx, y, zd = 6 + 4y

L
1

-1
 L
21 - x2

-21 - x2
 L

12x2
+ y2

 dz dy dx

L
1

0
 L
21 - x2

-21 - x2
 L

sx2
+ y2d

-sx2
+ y2d

21xy2 dz dy dx

L
2p

0
 L
22

0
 L
24 - r 2

r
3 dz r dr du, r Ú 0

r … a
r

z = 1.
x = 1, y = 3,

30xz 2x2
+ y

ƒsx, y, zd =
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sphere and below by the plane by using
(a) cylindrical coordinates and (b) spherical coordinates.

50. Finding in spherical coordinates Find the moment of inertia
about the z-axis of a solid of constant density that is
bounded above by the sphere and below by the cone

(spherical coordinates).

51. Moment of inertia of a “thick” sphere Find the moment of in-
ertia of a solid of constant density bounded by two concentric
spheres of radii a and about a diameter.

52. Moment of inertia of an apple Find the moment of inertia
about the z-axis of a solid of density enclosed by the spher-
ical coordinate surface The solid is the red curve
rotated about the z-axis in the accompanying figure.

z

y

x

� = 1 � cos �

r = 1 - cos f .
d = 1

b sa 6 bd
d

f = p>3
r = 2

d = 1
Iz

z = 2x2
+ y2

+ z2
= 8 Substitutions

53. Show that if and then

54. What relationship must hold between the constants a, b, and c to
make

(Hint: Let and where 
Then )ax2

+ 2bxy + cy2
= s2

+ t2.ac - b2.
sad - bgd2

=t = gx + dy ,s = ax + by

L
q

-q

 L
q

-q

 e-sax2
+ 2bxy + cy2d dx dy = 1?

L
q

0
 L

x

0
 e-sx ƒsx - y, yd dy dx = L

q

0
 L

q

0
 e-ssu +yd ƒsu, yd du dy.

y = y,u = x - y
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Chapter 15 Questions to Guide Your Review 1137

Chapter 15 Questions to Guide Your Review

1. Define the double integral of a function of two variables over a
bounded region in the coordinate plane.

2. How are double integrals evaluated as iterated integrals? Does the
order of integration matter? How are the limits of integration de-
termined? Give examples.

3. How are double integrals used to calculate areas, average values,
masses, moments, centers of mass, and radii of gyration? Give
examples.

4. How can you change a double integral in rectangular coordinates
into a double integral in polar coordinates? Why might it be
worthwhile to do so? Give an example.

5. Define the triple integral of a function ƒ(x, y, z) over a bounded
region in space.

6. How are triple integrals in rectangular coordinates evaluated?
How are the limits of integration determined? Give an example.

7. How are triple integrals in rectangular coordinates used to calcu-
late volumes, average values, masses, moments, centers of mass,
and radii of gyration? Give examples.

8. How are triple integrals defined in cylindrical and spherical coor-
dinates? Why might one prefer working in one of these coordinate
systems to working in rectangular coordinates?

9. How are triple integrals in cylindrical and spherical coordinates
evaluated? How are the limits of integration found? Give examples.

10. How are substitutions in double integrals pictured as transforma-
tions of two-dimensional regions? Give a sample calculation.

11. How are substitutions in triple integrals pictured as transforma-
tions of three-dimensional regions? Give a sample calculation.
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1142 Chapter 15: Multiple Integrals

Chapter 15 Technology Application Projects

Mathematica Maple Module
Take Your Chances: Try the Monte Carlo Technique for Numerical Integration in Three Dimensions
Use the Monte Carlo technique to integrate numerically in three dimensions.

Mathematica Maple Module
Means and Moments and Exploring New Plotting Techniques, Part II.
Use the method of moments in a form that makes use of geometric symmetry as well as multiple integration.

/

/
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