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Chapter (1)

Vector calculas

1-1 Introduction :

Vectors are introduced in physics and mathematics courses , primarily in
the Cartesian coordinates system . Although cylindrical may be found in
calculus texts The spherical coordinates system is seldom presented . All three
coordinate systems must be used in electromagnetic .

In this chapter we study the concepts of vector functions of one or more
scalar variables and their applications and also study a vector differential
operators and various derivatives of vector functions .

1-2Vector function of a single variable :

If to each value of scalar variable t ,in certaininterval [a,b], there
corresponds by any law what is over , a unique value of a variable vector 7,
then 7 is called a vector function of the scalar variable t defined in
the interval [a, b]. If 7 is avector function of scalar variable ¢t ,

then we write 7 = f(t) , where f(t) indicates the law of correspondence .
Examples :
(1)- The function 7 =acost i +bsint j+ 0k isa vector equation of the

2 2
ellipse = +2 =1 , which represents acircle when a="b .
a b2




Electrostatics (ll) Dr.Mohamed Abd El-Aziz

(2)- The function 7 =at? i+2at j+ Ok isavectorequation of the
parabola y?=4ax .

1-3Limit of a vector function:

A vector function f(t) issaidtohavealimit L ast tendsto a ,if
foragiven € >0 , however small it may be , there existsa 6§ > 0 , such
that

|f(t)—L| <€ such 0<|t—a| <& .Thisfact, weexpress

symbolically as , lim £y =L,

Properties of a limit;:

Let f(0) = i(Di+ L(O)) + Dk & g = g1 + g2 () +
gs(Ok

Be two vector functions , ¢@(t) be ascalar functionof t ,and
L=Lyi+Lyj+Lsk &M =Mi+M,yj+Mk
As two constant vector such that :
tlinam =L s tlinam =M and tli—1>na<.0 ) =1
Then:

() MA@ =Ly, M0 = Ly, 47 £ () = Ls

lim

(id) Ha[ﬁ +tg(®|=L+M
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lim -y N
(i) t_)a[f(t). g(t)] ~L. M

@ " [F@A @] =T AN

@) Ime®f@ =10, @) | [F@| =[] .

1-4 Continuity of a vector function:

A vector function f(t) is said to be continuous at t=a if:
) f(a) isdefined (i) imfF() exists (iii) 2™ F () = f(a)

A vector function f(t) is said to be continuous in the

interval [a,b] ifitis continuous for every value of t in
[a,b] .

Remarks :

() If f(t) be continuous, then £,(t),£,(t) and f;(t) are also
continuous scalar functions and conversely is right .

@) If f© and g(t) beto continuous vector functions
and let ¢(t) be to continuous scalar function of ¢ then:

@) fO+g®) @) fO.9®) () FOAgE) (@) o®)f©
Are aIso continuous .

1-5 Derivative of a vector function:

4
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[a] Derivative

Let f(t) be to vector function then:

DG INE0)
5(t) s

t—a

If it exists , is called the differential coefficient of fF(t) with

: df —
respectto t ,andis denoted by 7 o 1O

A vector function f(t) is said to be differentiable if it has a
differential coefficient for all values of t belongs to its
interval of definition .

[b] Geometrical interpretation of derivative:

Let 7 = f(t) be acontinuous and single
valued vector function of the scalar
variable ¢ .

Let 0 be the origin. Let P&Q be tow
neighboring points on a continuous
curve . Corresponding to the values ¢

and ¢+ st of the scalar variable so that
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— —

OP =7and 0Q =7+ 6r , therefore
P_Q> = position vector of Q — position vector of P
= (?+Ej)— #and = or

80 _ PQ

Thus 50 — 3

When Q- P -0 ,thechord PQ— tangent PT to the curve at

—

P, thus geometrically , the derivative % of a vector

function represents a vector whose direction is that of the
tangent PT

To the curve AB at P in the sense of increasing t of the
slope of the tangent at p .

[c]_ Unit tangent vector to the curve :

Let P«Q be tow neighboring points

ona curve. Let 4 be any fixed on it

and s &s + ds be the arc lengths

measured along the curve from A to o

P and from A to Q respectively .
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Let r = f(s) be acontinuous and single valued scalar
function of the scalar variable s . Leto be the origin of

reference and let OP = ¥ and ﬁi = % + &r . Therefore

—

W=(F+§)—F = Or

5r PQ
Thus 6—Z=8—§ . when Q-P, 8- 0 ,thechord

PQ - PT, the tangent to the curve at P .

—

5_13 = E represents a vector
s ds P

whose direction is that of the tangent PT to the curve AB at
P in the sense of increasing s . Further :

Thus geometrically '™,

— lim |8r| — lim chord PQ=
Q=P arcPQ 2P arcPQ

8r
8s

dr
ds

—_ lim
— §5—0

1

—

Thus % IS a unit vector along the tangent PT at P in the

direction of increasing s, and we shall denote it by tor t.

. dr
That is g

[d] Successive derivatives:

dt . : .
In general d—z Is a function of t and if it possesses a
derivative,
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2—)

.. d ( dr d-t
then the derivative E( 5) denoted by Tz

Similarly , the higher derivatives of T is defended as :

dy¥ d (dn_lF

= dtl’l—l

- = = > 7
Freialben ) . forall n=>2

[e] General rules of differentiation:

If u(t) &v(t) be two differential vector functions of the
scalar t ,and «(t) be a differentiable function of t, then

N R
(I)E(uiv)_dtidt
o d = o - dv | - du

(11)E(u.v)—u.aiv.—t

o d o o .
(111)E(u/\v)=uA—+—/\v

(w)—(cpu)— cpdt_ - U

Examples :

(1)-Show that the derivative of a vector of constant
magnitude is perpendicular to the vector ,or show that the

necessary and sufficient condition for the vector v(t) to
dv(t)

have a constant magnitude is  v(t).
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The solution :

Let v(t) be a vector of constant magnitude v(t) . then:

2 d ﬁ)ﬁ
dv(t) — 0 dlv(t)] — 0 div(D)] — 0 (V \ ) -0
dt dt dt dt

o %(ﬁﬁ) -0 & v(t).%v(t)+%ﬁ.ﬁ

By rule (i) & 2v(t).5 v(t) =0 & v(t).5 v(t) =0

Thus , the derivative of a vector of constant magnitude is
perpendicular to the vector .

(2)-If ﬁ be the differential vector function of the scalar

s 2—)
t, prove that ( ) A dV(t)) = v A O

dt?
The solution :
d (—= . dv(®) _ d (dv(D) , dv(® dv(t)
(V@ A dt)—v(t)/\dt( dt)+ O A My rue

(iii) = ﬁAi(dm) +0 = (t)/\ (d U) (smceA A
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(3)-Prove that the necessary and sufficient condition for the
dv(t)

vector v(t) to have a constant direction is v(t) A
0

The solution :

Let v(t) = v(t) t where t isa unit vector in the direction
of the vector v(t) . Then:

dv(®) _ = dvt =
- dt - dt
n d dt =
0 Vt/\—vt+vtAv—‘=O<:>VU\t—+V tAS =
- de- -dt - S dt =" dt
0
@V(O)dt+v‘gAdt—O @VgAdt_O n =0

(this result becausethat t # 0) <
t is of constant direction & V is of constant direction .

10
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(4)-Prove that the necessary and sufficient condition for the

vector @ to be constant is %(tt) =0

The solution :

Let f(t) be a constant vector . Then we have f(t + 8t) =

G

so that
afit) o, fE+D-f _ ., 0 =
dt - §t—0 St — §t—0 g - 0
Conversely . Let f(t) = f;; + f;; + f3x and — = 0
.then:
d_fli i] d_k B:d_flz ’d_fzz ,d_f3:0.
dt - dt - dt = dt dt dt

= f; = constant ,f, = constant ,f; = constant

= f(t) = constant .

11
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1-6 Scalar and vector point function:

In this section we propose to study two types of functions . One is a scalar
function while the other is a vector function .

[a] Scalar point function:

If to each point P(x,y,z) ofaregionR ,there existsa
definite scalar denoted by ¢@(P) or ¢(x,y,z) , then ¢ is
said to be scalar point function for the region R .

The set of all points of the region R together with the set of
all values of the scalar function ¢ be is said to be a scalar
field R .

Example:

The temperature of a body at any instant, density of a body
and potential due to gravitationally matter are examples of
scalar point function .

[b] Vector point function:

If to each point P(x,y,z) ofaregionR ,thereexistsa

definite vector denoted by ?(P) or f(x, y,Z) ,then? IS
said to be vector point function for the region R .

12
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The set of all points of the region R together with the set of

all values of the vector function ?(P) Is said to be a vector
field R .

Example:

The velocity of a moving fluid at any instant, and the
gravitational intensity of force are examples of vector point
function .

1-7 Vector differential operator V-

Vector differential operator v (read as del or nabla) is
defined as :

= 0, _ .0 | .
V_EL-I__]-I_@_K:L +J

The operator V serves a vector differential operator .

[a] Gradient of a scalar point function:

Let @(x,y,z) be acontinuously differential scalar function

The gradient of ¢ , denoted by V@ or simply grade is
defined as :

13
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grad(p=V)(p=g—(£§+g—(;]_'+g—jK .

The V@ Is vector . If C iIsaconstant, then VCcp = Cv)q)

Geometrical significance of grad of scalar point function:

If ¢ is a scalar point function ,

then grad is a vector normal to 5

the surface @(x,y,z) = C , and ? o
has A magnitude equals to the rate
of change of ¢ along this normal .

[b] Divergence of a vector point function:

The divergence of a vector point function

?(x, y,z) = f i + fyj + fzk is denoted by V.f,or simply

div f . as:

The divf isscalar . If C isa constant . then V.Cf=

—

CV.f .

14
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Physical significance of div (in electrostatic ):

div f represents the amount of electric flux v per unit
volume per unit time . Generally the divergence is roughly &
measure of a vector field' increasing in the direction it
points.

But more accurately a measure of that field’ tendency to
converge on or repel from a point .

If the flux v entering any element of space is the same as

that leaving it (that is div f=0 ) everywhere , then such a
point function is called a solenoid vector function .

[c] Curl of a vector point function:

The curl of a vector point function

_f)(x, y,z) = fyi + f,,j + fk is denoted by V AT, or simply
curl f ,as:

i k

29 9 39

curl f = VA= [ox 0z

fy f £

15
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The curl f is vector. If C is a constant, then VACE=
C(VAf).

Physical significance of curl (in electrostatic ):

In vector calculus , the curl (or rotor) is a vector operator thai
describes the rotation of a vector field .The direction of the
curl is the axis of rotation ,as determined by the right-hand
role, and the magnitude of the curl is the magnitude of the

rotation .

[d] Some properties for the vector differential operator v

Let A &B are two differentiable vector functions of the
,and ¢&y are two differentiable scalar functions, and
If a&f as two arbitrary constants , then :

(D) V (ad + BY) = aVd + VY ,Va
2) V(b P) = ¢V + YV
BV (3) = W - 6T/

VB=10 .

16
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(4)V(A.B)
= (B.V)A+ (A.V)B+BA(VAA) +A
A (VAB)
(5)V.(x A+ BB) =x (V.A) + B(V.B)
©)V.(dA) = (Vd).A+ d(V.A)
(N V A (pA) = (V) AA+d(VAA)
(8)V A(x A+ BB) =x (VA A)+B(V A B)
(9)V.(AAB) =B.(VAA)— A (VAB)
(10)V A (AAB)
=B.(VAA)-B(V.A) - (A.V)B+A (V.B)

S (T4 — _ %0, ¢ 929
(ADV. (Vo) =V = 5+ oz ¥ o

5 0%¢p | 0% an)) :
Where (V ==t 772 +—-) Is called Laplace operator.

(12)V A (Vo) =0
(13)V.(VA A) =0

(14)V A (VA A) = V(V.A) — V2A

17
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Examples : Calculate :

-V £ (©) (i)-V . £ (iii)-V A ©
CRAGIG) WV A (Ff (D)
Where I =xi+yj+2zk
The solution :

(i)- ltisclearthat f(r) = f(\/xz T2 1 Zz) _
f(xy,2)

af(r) af(r) . . of(r)
Then Vf() = ay]_+ —k
of(r) df or 2x X g
But ox dT ax 2/ x2+y2%+22 f _ r f
.. of(r) Y of(r) Z
Similarly 7y 7 f'r & —==2f

(i)- V.t= (—z+—]+ k). (xi +yj + zk)

x| 0 | 92)
(ax+ay+az =3

18
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i j Kk
o 0 9
(iii)- VAR =[x ay oz[=0
X y Z

@V)- V(1) = 5 (cf ) + 55 (0 ) + 22 (2f )

=[O e+ xS+ fOZ+y T+ o +22

=3f(7‘)+(x2+3; +22)f', from (i)

=3f(r)+rf’
V- VAGFF@))=f@VAT+HV (@) AT
= f(r) 0+ ro(fOANT, from (i)&(ii)

=040=0, since g IT

19
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Chapter (2)

Vector Integration

1-1 Introduction :

Let 7 =x(t)i+y(t)j +z(t)k , be the position vector of a point
P(x,y.z). i

Forall valuesof t € [a,b] .Thepoint P. describesthecurve C.
The curve C is called smooth curve if 7(t) possesses a continuous first
derivative (not equal to zero vector) forall t € [a, b]

A curve which is made up of finite numbers of smooth curves is called
piecewise smooth curve . A curve is said to be closed curve if its initial and
terminal points

are same .

Throughout this chapter we shall consider only smooth curves unless
otherwise

mentioned .

Defi NItioN :A closed smooth curve which does not intersect itself

anywhere is known as simple closed curve .

21
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Examples : circle , ellipse ] OD

Simple closed curve Not a simple closed carve

Definition :a region is said to be simply connected if any closed

curve

lying entirely within the region can be constructed (or shrunk) continuously
for a

point without any portion of the curve passing out of the region .

A region which is not simply connected is called multiply connected region .

Examples : Regions inside the circle , cubes , sphere , ... , are simply

connected regions .

Definition :Asurface r = f(u,v) issaid to be smooth if it is

possesses continuous first order partial derivatives .

Throughout this chapter we shall consider only smooth surfaces unless

otherwise mentioned .

1-2 Line Inteqgral :

Let C be asmooth curve givenby 7 = f(t) :

r=x(t)i+ y(t)]_' + z(t)k , be the position vector of a point P(x,y.z).

22
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For all valuesof t € [a,b] .Thepoint P. describes the curve C .

Let ﬁ(r) be a continuous vector point functionon C . .

Let A beafixed pointon € andS be the length of the curve from A to

.

any point  P(x,y,z) on C .Thenwe have % Is the unit vector tangent ta

the curveat P . Thus, the component of ﬁ(r) along the tangentat P is

> dr

F.
ds
It is clearly a function of S for any point on the curve . Then :
= d? =1 >
ch-g or J F.dr
Is called the tangent line integral of ﬁ(r) along C .

Observations on line integral :

(1) Since the integrand of the above tangential line integral is scalar ,then it is
the

ordinary line integral of elementary calculus .

(2) If C isaclosed curve , then we denote the above tangential line integral
by putting a circle on the integral sign as : gﬁCF dr

(3) If C isajoin of finite smooth curves C,;,C,, ... ... ,C, ,then :
gﬁcF.dF=¢ch.dF+gﬁzF.df+ ...... +g§nF.dF= ?=1§ﬁCiF.d?

@) If F =F,(x,y,2)i+ F,(x,y,2)] + F3(x,y,z)k ,then :

23
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[ F.di = [ (Fi+Fyj+Fk) . (dxi + dyj + dzk)
= fC(Fldx+F2dy+F3dZ)

(5) The line integral fC?).dF can be also be written as f F.E dt

(6) The other types line integrals are [ C? Ad?  and [ o dr

(7) If F s the force acting on a particle to displace along the curve C ,
then

i . F .d7 , represents physically the total work done during the
displacement from AtoB .

(8) If F isthe velocity of a fluid particle along the curve C , then
55.:13 .dr, is called the circulation around the curve .

(9) If the circulation ﬁcﬁ .d7 =0 , around every closed curve C in the
region Rthen C ,then F iscalled irrotational in R .

Examples :

1) Evaluate DF 47 if  F=3xyi—y? alongthecurve C :
(00) -

y = 2x% ontheplane xy .

The solution :

1, 2) = —> (1,2) . . . .
f(o o Fdr = f(o,o) (Sxyg — yzj_) : (dxg + dy]) f(o 0 (3xydx —
yzdy)

24
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Along the line  y = 2x? thatis (dy = 4xdx) ,weget:
I = f01 3x (2x2) dx — (2x?)?(4xdx)

= (6% —16xS)dx = [P 28 7
= [y (6x* ~16xF)dx = |-~ %] =2~ 2=~

(2) Evaluate [, (x® +xy)dx + (x* + y*)dy , where C is the square
formed by the lines y=41 & x=+1.

The solution :

I= [, (% +xy)dx + (x* +y?)dy =

?=1fcl. (x? + xy)dx + (x* + y*)dy -1, l‘_E’_,lip.u
-1 rG

Equation to c,is y=-1 (~dy=0). [

{'Il'l] - =
C, (1. -13-.

Hence :

[, G2 +xy)dx+ (22 +yD)dy = [7(x* + x(—1))dx + (x +
(=1)%)(0)

Equation to c, is x=1 (- dx =0). Hence:

25
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1 311
8
J., G2 +xy)dx + (x* +y?dy =J (1+yHdy = [y+y?] =3

Equation to c;is y=1 (~dy=0). Hence:

-1 3 x2 -1 2
o0 4w+ G2y = [ e ndx= | =-5
1 1

Equation to c,is x=—1 (~dx =0). Hence:

-1 3 1
Jo, O +xy)dx + (x* + y?)dy = j (1+y?)dy == [y + y?]
1 -1

(3) Compute the line integral fc y?dx — x?dy , about the triangle whose
vertices are (1,0), (0,1) & (-1,0) .

The solution :

szcyzdx—xzdy=2l3=1fciy2 dx — x%dy

26
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- - -0 1-0 1
On ¢ wehave 2220 =220 Y0 - Y -t
X—X1 Xp—X1 x-1 0-1 x—-1 -1

> y=—x+1= (~dy=—dx).
Hence :
fcl y?dx — x*dy = flo(—x + 1)?(—dx) — x*(—dx)
0

=j0(2x2—2x+1)dx=[§x3—x2+x]1 =((0)—<§—1+1>>=—§

- - -1 0-1 -1
On ¢, wehave X2 =221 Y- =211
X—X1 Xp—X1 x-0 -1-0 x

> y=x+1= (~dy=dx).

Hence :
fcz (x + 1)%* dx — x%dx = fo_l(Zx +1)dx =[x2+x];1=0
y—Y1 V2—Y1 y—0 — 0-0 y

On c¢3 wehave c3is = = = =
X—X1 X2—X1 x+1 1+1 x+1

= y=0= (~dy=0).
Hence :

fc3 (0)2dx —x2(0) =0

Substation these result we g [ = —g +0+0=—

27
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@) If  F=3x2+6y)i— 14yzj + 20 xz%k , then evaluate

From (0,000 to (1,1,1) alongthepath x=ty=1t%z=1¢3

The solution :

On thepath x =t,y=1t%z=1t3 wehave:

dx =dt , dy=2tdt and dz=3t3dt
Also x=0tox=1= t=0 tot=1
Thus

fCT?).dF = [_(3x* + 6y)dx — 14 yz dy + 20 xz*dz

[ = f01(3t2 + 6t2) dt — 14(t?)(£3)(2 tdt) + 20(t) (t)(3t2dt)
1
I=f (9t2 — 28t +60t°)dt = [3t3 —4t”’ +6t1°]} =5
0

Exercises:

-

(1) Evaluate fc F.dr ,inthe following cases :
(i) F=@Bxy)i—y?% ,where Cisy=2x2from (0,0)to (1,2) .

(i) F=@G2+y)i-
2xyj ,where C is the rectangular in the xy — .

plane bounded by y=0,x =a,y =band x =0

28
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(iii) F=Qx+y)i—Qy-
xxy)j ,where C isthe cu xrve in the xy —

plane of the straight linefrom (0,0) to (2,0) to (3,2) .
(2) Evaluate fc(xy + z2)dx ,where C is arc of the helix

x =cost,y =sint,z = t which jions (1,0,0) and (—1,0,m)

1-3 Surface Integral :

Let by 7= f(x, y) be a smooth surface by S ,and by ﬁ(r) is a
continuous vector point function.Let n be unit vector outer normal to the

surface S , then the integral :

Evaluate fcf.ﬂ dS or ffsﬁ nds
Is called the surface integral or normal integral of ﬁ(r) over the region S .

Observations on surface inteqral :

(1) The other type of line integral are
J FAdS JspdS JSF dS
(2) If F= E.(x,y,2)i + E,(x, y,z)]_' + E,(x,y,z)k ,then :
J.F.dS = [[ F, dydz + E, dxdz + F, dxdy

(3) If S isaclosed surface then the surface integral is denoted by

29
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$ F.dS
4) If F represents the velocity of a fluid particle , then the total

outward

fluxof F acrossaclosed surface S is the surface integral 56575.59)

Further, if gﬁSTJ) dS=0 , across every closed surface Sinaregion R

’

then F is called solenoidal vector point functionin R .
(5) Surface integral can be used in estimation of gravitational field , electric

force and magnetic force .

Example :

Evaluate fST).ﬂ dS ,where F =2x%i—y%j+4zxk and S is

the surface  y? +2z2=9 ,boundedby x =0and x =2 inthe first
octant .

The solution

Surface S is projected along and xy — plane is and OCAB ,the

normal to the surface @ =y?+2z2—-9=0 s
Vo 2yj+2zk vj+zk

n= Vo|  Jay2+4zZ2  [yZ+z2
- _ = dx dy
yj+zk 7z
n.k ==—— .k =
- = W - y2+z22
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F.n= (2x21—y2]_'+4zx5) (W

Substitutingin (1) , we get :

J’i‘l'ZK) _ —y3+4z%x

— —y3+4z°%x

fSF.QdSz ffS ~ dx dy
3 2
3 ;2-y3 9—y?
- 7 R e ay

Py 4+ 2629 - y?) =2 y

) J [ Jo—y? ] g
_ f3 —2y* +8(9 —y?) dy

Putting y =3sinf ,so that dy =3cosf df , (2) reducesto =

f(?(—6 sin30 + 72 cos?0)dd = —6 E + 72%(%)] = —(4 + 108n)

(2)

1-4Green’ theorem in a plane:

Statement : If R isaclosed regionin  xy — plane bounded by a
simple closed curve Candif and P(x,y) and Q(x,y) are continuous
function having continuous partial derivatives in R , then:

9 oP
$Pdx+Qdy= [[, (Q—P,)dxdy where Rsza—Q B =5

X

Examples :

Verify Green theorem for  ¢(3x —8y?)dx + (4y — 6xy)dy where C
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Is the boundary of the region bounded by x =0and y=0andx+y =1

The solution

Here P=3x—8y%and Q =4y — 6xy
~ P, =—-16yand Q, = —6y

Now : C=c +c,+c3 Wwhere

c=04 :y=0,= dy=0,
c;=AB :y=-x+1, = dy=—dx and
cz=B0 :x=0,= dx=0

.°1=f Cq +f C2 +f C3
:j1(3x)dx+J0(3x—8(—x+1)2)dx

+(4(—x + 1) — 6x(—x + 1)) (—dx) + [, (4y ) dy

= 3f01xdx + flo(—14x2 +29x — 12) dx + 4f01ydy

_3_7 2 = S—LHS 1
2 6 - 3 D

Further = P, =—16yand Q, = —6y

Hence ffR (Qx — Py)dxdy = ffR (—6y + 16y)dxdy

y=1 prx=—y+1 1
=10j f ydxdylefy[x]o_y+1dy
0

y=0 Jx=0
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1 1
=10f y(=y+1) dy=10j y(=y*+y)dy
0 0
_ y3+y21—10[ 1+1]—1O[ =-2—RH 2
NN 372176 =-3=Ris (2
From %34_% (1) & (2) ,we see that the theorem is verified .

EXxercises:

(1) Verify Green’ theorem for ~ $(xy + y?)dx + x?> dy where C
is determined by x = y? and y = x?
(2) Verify Green’ theorem for the scalar line integral of
F=x2-ydi+ 2xyj over the rectangular region bounded by the
x=0,y=0x=aand y=b»b

1-5 Stoke’ theorem in a plane:

Statement : Let S bean open surface bounded by a simple closed
curve Candif F = F.i+ E,j+ F,k , beany continuously

differentiable vector point function then :

G}C?Ej = fs curl?.g ds (*)  Where n isthe
unit external normal vector at any pointon S .

Note : Stoke’ theorem is another relation between a line integral and a
surface integral .

Observations on Stoke’ theorem:
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(1) writing 7 =xi+yj+2zk sothat dr = dxi + dyj +dzk and
since the unit vector n can be writtenas: n = cosa i+ cosfj +

cosy k ,then

The relation () reduces to

i j Kk

9 9 9
gﬁcFX-I-Fy-I-FZ:fS 0x dy oz .n dS

Fy F, F,

9F, aFy) (apx 6FZ) (aFy
fS[(ay 0z cosa + 0z ox cos f + ox

%—l;‘) cos y] ds

(2) Let F= Pi + Qj be a vector function which is continuously

differentiable inaregion S of xy — plane bounded by a closed curve
C .Then:

—

$ F.dr =§, (Pi+0Qj).(dxi+dyj) = §Pdx+Qdy (1)

And

Q
Q
SMENES

Let ,curl F = |ox dy (g—g — g—i )K (% = 0)
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Hence fscurl?.g ds = fs (g—()‘g g—;)& k dxdy (*)
_ Q@ _ op
= s (Gx—3) &y @

(since n = k is a uint normal to xy — plane)

Expressions (1) & (2) implies that the Stoke theorem reduces to
Green

Theorem in this case . Hence Green theorem

In a plane is referred to as Stoke theorem (that is Green theorem is particular
case

of Stoke theorem in a plane) .

Exercises:

(1) Verify Stoke theorem for  F = (x? + y2)i — 2xyj taking around the
rectangular whose vertices are (—a,0),(a,0),(a,b),(—a,b) .

1-6 Gauss divergence’theorem:

Statement : If F isa continuously differentiable vector point function
in

the region E bounded by the closed surface S then:
¢ F.ndS= [, divF dv

Where n isthe unit external normal vector at any pointon S .
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Note :This theorem is a relation between a surface integral and volume
integral.

Example :

Verify Gauss divergence *theorem F = (x2 — y2)i + (y2 — zx)j +
(2 —xp)k ,

Taken over the rectangular parallelepiped 0<x<a, 0<y<b,0<
Z<c

$(3x —8y?)dx+ (4y—6xy)dy where C

Is the boundary of the region bounded by x =0and y=0andx+y =1

The solution
Substituting In the relation : g
1
- = + 2o
¢ F.ndS= [, div F dv 7l |
a—= -
We see That a ",/. g c
A ¢ B

div F=2x+2y=2z=2(x+y+2)

“fpdivFav==["[" ["2(x+y+2z) dxdydz

dydz

= Zfoc fob foa [x2_2+ (y + Z)x]:

=2 fob [a?z+ (y+z)a] dy dz
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=2a [, fob [%+ (y + z)] dy dz

=20 [ [2y+ (L +2y)| az

2ab (€
ZT [a+(b+22)]dz
0

2ab
= [az + (bz + z%)]§

= ablac + (bc + ¢?)]
=abcla+b+c]=R.H.S (D
Onthesurface S=S5,+S,+S3+S5,+S:+Ss ,wehave:

For S; = 0ABC :will be z=0,n=—-k , then:

—

11=f51 F.n dS=—fS1 (z2 —xy) dxdy

= —fsl (—xy) dx dy = —fob foa (—xy) dxdy = fob [x?z]z y dy

a’b?
4

_pad g @b a?fy?)’
- o?ydy_zfoydy_z[z]o_
Similarlyon S, =FGDE :willbe z=c,n=k , then: I, = abc?

b?c?

—i , then: I; = —

Andon S; =O0OCDE :willbe x=0,

IS
Il

2

b2c2

Andon S, = ABGF :willbe x

a,n=i ,then: I, =a’bc —

2.2

a“cC

Andon S; = OAFE :willbe y=0,n=—j , then: Iz =
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2C2

Andon Sg=BCDG :willbe y=c,n=j , then: I =ab*c—=

From all above we see that

[=Y%% .1, =abc(a+b+c) (2)
From (1) & (2) ,we getthat the theorem is verified .
Chapter (3)

Coordinate systems

3-1 The type of coordinates :

A problems which has cylindrical or spherical symmetry could be expressed
in the familiar Cartesian coordinate system . However , the solution fail to
show the symmetry and in most cases would be needlessly complex
.Therefore throughout this course , in addition to the Cartesian system , the
circular cylindrical and the spherical coordinate systems ,will be used . All
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three will examined together in order to illustrate the similarities and
differences .

A point P is described by three coordinates , in Cartesian (x,y.z) , in
circular cylindrical (p, ¢.z) , and in spherical (r,8.¢), as shown in fig. (1).
The angel ¢ is the same angle in both the cylindrical and spherical systems
,but in different order . The z coordinate is the same in both the cylindrical
and Cartesian systems in the same order . In the cylindrical coordinate p is
measures the distance from the z -axis while r in spherical coordinate
measures the distance from the origin to that point .

The component forms of a vector in three systems are
A=Ai+Aj+ Ak (Cartesian )
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-

A= A,potAypo + Ak, (cylindrical )
A= Aot Agby + Ay (Spherical )
It should be noted that the components A, A4,, Ay, ....., etc , are not

generally constants but more often are functions of the coordinates in that
particular system

,and the i, py, 6o, ....., etc  are unit vectors described in the fig. (2) below
I 1
r= consi. ? = com
2™ comst.
4 r
y )
¢ = conat.
x x ¥ r=comt,
# = comst.

3-2 Differential Volume , Surface and line Elements :

There are relatively few problems in electrostatic an electromagnetic that can
be solved without some sort of integration-along a curve , over a surface, or
throughout a volume . Hence the corresponding differential elements must be
clearly understood .

When the coordinates of pointP(x,y, z)are expanded to(x + dx,y + dy, z +
dz)

Or(p+dp,o+dp,z+dz) or (r+dr,0+db6,p+de) ,adifferential
volume dv is formed. To the first order in infinitesimal quantities the
differential volume is ,in all three coordinate system , a rectangular box . The
value of dv in each system is given in fig. (3) .
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From fig. (3) may also be read the areas of the surface elements that bound
the differential volume . For instance ,in spherical coordinates , the differentia

surface element perpendicular to 1, is

ds = (rd8)(rsinf dp) = r?sin0 do do

The differential line element, dl is the diagonal through P . Thus:

dl? = dx?* + dy? + dz*
dl? = dp? + r?de? + dz?

dl? = dr? + r?d6? + r? sin?0d¢?,

. P A
d /0

P2 -

& F

y
/ 7
x x

dv=dxdyd dv=rdrd¢ds
(a) Cartesian (5) Cylindrical

41
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(Spherical )

dv = 3in 0 dr d0 d¢

(c) Spherical
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Chapter (4)

Coulomb Forces

4-1 Coulomb’ Law:

There is a force between tow charges which is directly proportional to the
charge magnitudes and inversely proportional to the
square of the separation distance .

Qu
This coulomb law , in vector form stated as :
=2 QQ; L2
F= 41ed? a (1)

Q.
Where a is a unit vector in the direction

of R,; which is the vector from Q, to Q; and Q,d = |Ryy| .

e is the permittivity of the medium , with the units  C?/N2.m? ,or,
equivalently , Farads per meter (F/m) , where , the force F is Newton
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(N) ,the distance is in meters (m) and the desired unit of charge is the
Coulomb (C)

, those are in the Rational Sl units . For free space or vacuum we see That :
€ =¢€,=28.854 x107 2 F/m = (107°/36mn) F/m

For media other than free space € = €,C, , where C, isthe permittivity or
dielectric constant .

Free space is to be assumed in all problems and examples as well as the
approximate value for €, , unless there is a statement to contrary .

Because C isarather large, charges are often givenin :
Micro coulomb uC = 1076C
nano coulomb nC =107°C
pico coulomb pC = 10712C

In equation (1), the force F= a means the force produced by charge
the

Q,on the charge Q, ,sotheinverseis F;, = —F,; and Ry, = —R,; .

The equation (1) can be rewritten , by refers the vectors w.r.t. to reference
of coordinates system (oxyz) for example .
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This can be shown as in the front figure

To be
= _ Q1Q; -T2\ _
F21 = 4melt, —1, 3 (|?1—?2|) -
Q1Q; > 2
et 1,2 (f; — 1) (2)
Note that if there isa n charges Qy, Q,, ... ... ... , @, which have the position
vectors 1y, 7, .......,T, ,the force on the charge Q, with position vector r,
IS
o N Q1Q2 _=z
FSl2l (-i) O
Examples :

(1) Find the force on the charge Q, = 20 uC ,due to charge Q, = —300 uC
,where Qqisat (0,1,2) m while @Q, is at (2,0,0) m

The solution

Referring to the figure
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Ry = —2i+j+2k

N ST Y S
A== 3( 2£+]_+25)
Then '

F—) _ (20x1076)(—300x107°) (—2£+1+2E)
21 7 47(1079/36m)(3)2 3

6L = (142 2k) v

The force magnitude is 6 N and its direction is such that Q,is attracted to Q, .

(2) Tow point charges Q; = 50 uC and Q, = 10 uC are located at
(-1,1,-3) m and (3,1,0) m respectively .Find the force on the charge

Q: .
The solution

Referring to the figure
Ry, = —4i -3k

R21 _ _4£_3E 92(3-1'0)
|R21] 5

-
a =

Then

. = Q182 _ i =
4‘T[€|R21|
(50%107%)(10%x107°) (—4;—35)

41(1072/36m)(5)2 5
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= (0.18)(—0.8{ — 0.6k) N

The force magnitude is 0.18 N and its direction is given by the unit vector
Q,is=—0.8i — 0.6k

Exercises:

(1) Find the forceon 100 uC charge at (0,0,3) m as a result of existence
of four like charges of 20 uC whichlocatedon xandy at +4m

(2) A point charge Q = 300 uC located at (1,—1,—3) m experiences a
force F = (85’ —8j + 4&) N due to a point charge Q, at (3,—-3,—2)m .
Find Q, . (3) Find the force on a point charge of 50 uC at (0,0,5) m due
to a point charge of 500  uC thatis uniformly

distributed over the circular disk r < 5m, z =
Om .

In the region around an isolated point charge

there is a spherically symmetrically force field.

This is made evident when charge Q is fixed at
The origin ,as in Fig. (1) and a second charge

Qr , is moved about in the region . At each location a force acts along the line
joining the tow charges directed away from the origin if the charges are of
like sign. This can be expressed in spherical coordinates by
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F:z QlQT ar (4)

4Treqr2 —

It should be noted that unless Qr <« Q

The symmetrically field at Q is disturbed by Q.

At location 1 in Fig (2),the force l_?f Is seen to be the
vector sum F; = Fq + Fq,

This should come as no surprise , since if Q has a force field so also must

Qr.
When the tow charges are in same region , the resulting field will of necessity

be the point-by point vector sum of the two fields .This is the superposition
principle for coulomb forces , it extends to any number of charges .

4-2 Electric Field Intensity:

Suppose that ,in the above situation ,the test charge Qg is sufficiently small
as so not to disturb significantly the field of the fixed charge Q.Then the

electric field intensity E ,dueto Q is defined to be the force per unit
chargeon Qg :

E=—Fr=—a (5)
0
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E
(%7, ¥ 23}

-1y Iy
R"U;’I1‘l;""‘y2—,1;':+u} ]

{a) Spherical {#) Cartesizn

The expression for E isin spherical coordinates with
origin at the location of Q

(fig. (3 a)) . It may be transformed to other coordinate system . In an arbitrary
Cartesian coordinate system

Q
e R2 AR (6)

E=

Where the separation vector R isas givenin (fig. (3 b)).

The units of E are Newton per coulomb ( N/C) of the equivalent Volts per
meter (V/m).

4-3 Charge Distributions:

(1) Volume charge

When charge is distributed throughout a specified volume, each charge
element contributes to the electric field at an external point .

A summation or integration is then required to f’.f *
obtain the total electric field .

It is useful to consider continuous
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(in fact differentiable) charge distribution
and to define charge density by Py = 3—3 (C/m3) , then dQ = pdv

with reference to volume v in Fig (4) , each differential charge dQ
produces

a differential electric field :

dE: dQ dr

4T[EOR2 —_—

At the observation point P . Assuming that the only charge in the region is

contained within the volume, the total electric field at Pis obtained by
integration

over the volume is :

E=[ —®_ dvag (7)

(2) Sheet charge

When charge is distributed over a specified
surface or sheet , each differential charge

element dQ on the sheet results in a differential
electric field :

dE=——=a
41egR2 R
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at the point P see the Fig (5) . If the charge density is  pg (C/m?) and if
no other charge is present in the region , then the total electric field at P is

If charge is distributed with uniform density pg (C/m?) over an infinite
plane ,

Then the field is given by : pe
e I R i
260 —_— 2 m—

h’f ,I"

This field is of constant magnitude and has be

Mirror symmetry about the plane charge , and
the derivation of last equation by use the cylindrical

coordinates system , with the charge in the z = 0 plane as shown in Fig (7)

d E’ _ _psrdrde (_ﬁ"' Zﬁ)
T ameg(r2+2z2) \ Vr2+z2
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Symmetry about the z — axis results in cancellation of redial components

E =
2T (00 ps rzdrdo =
fO fO 41eo(r2+2z2)3/2 az E=
Ps Z [ -1 ]ooa — Ps Z a, = Ps Z k
260 \/1'2-|-Z2 0 —Z 260 —Z 260 =

This result is for points above the xy plane . Below
the xy plane the unit

vector changesto —a, = —k.

The generalized form may be written using unit normal vector a,, as

= Ps
E= -
2¢, &n

This eclectic field is everywhere normal to the plane of the charge and its
magnitude is independent of the distance from the plane .

(3) Infinite line charge:

If charge is distributed with uniform density %?
~a_r
p; (C/m) along an infinite straight line —which I
H___H
will be chosen as thez — axis , then the field is given by { -
P
= P ,
E= 2€,1 ar -

This is in cylindrical coordinates see Fig (8) This field has cylindrical
symmetry

and is inversely proportional to the first power of the distance from the line
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charge .

For derivation of this form of E , we will use cylindrical coordinates see Fig

9)

= dQ rar—rag
ALP dE = 4TegR2 ( VrZ+z2 )
Since for every dQ at z, there is another charged@ at —z,then the z
component  will canceled .Thus i
o j‘” prdz
E = ar
_o Amey(r2 4 z2)3/2 —

From Fig (9) we see that, tan 8 = z/r ,~. z=rtanf
,which tends to

dz =r sec’6d 6

Then | the field E will be

=_ P f”/z r?sec?6do
= a
4mey )y (12 4 r2tan?6)3/2 =
o f"/z r? sec’9d@
= d
dmey ) o/, r3(1 + tan?6)3/2 —
m/2  sec’0d 6 m/2
— f ———— a4, = a f cos0do a,
dmeer J_,,,  sec0 dmeor J_p /n —
— P . /2 _ P1 _ P
" 4meor [sin 9]_”/2 ar = 4Tt€EyT [1+1] ar = 2megr —L
Examples :

(1) A plane y = 3 m contains a uniform charge distribution of density
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Ps = £20 C/m? , determine E at all points .
The solution
For y>3m
- p (1078/6m) _
E= — a, = 30j V/m

2¢;, T 5109/36m) 1 7]

(2) Tow infinite uniform sheets of charge , each with density pg , are located
at x=ta ,determine E inall regions .

The solution

Only parts of the tow sheets results of

charge are in the front figure .

Both sheets resultin E fields that are

directed along x — axis, independent of the
distance , then :

Zeo( )+ (1) X< —a _%l L x < —g
0
E=E1+E2 260()+ (—1) r—a<<x<a = 0 |X|<a
Ps (1) .
k 260 ()+2€0 () X>a €o (l) 1X>a
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(3) Find E in example (2) in case of the sheet -1- has a density pg , while
the sheet -2- has a density —ps .

The solution

0 x< —a
E = Ps i) :xl<a

€

0 X>a

(4) A uniform sheet charge with p, = i NC/m? is located at z = 5m and
a uniform line charge with p; = _TZS NC/m which paths through the point

(x,3,—3)m and parallel to x — axis . Find E at the point (x, —1,0) m .

The solution

The two charge configuration are parallel {5 ra

to x — axis .Hence the view in the figure is eg, & _
P{#.'I.E}'"hll !

taken looking at the yz plane from positive x. o,

Due to the sheet charge pg = i NC = i 1076C

Sy P (0%/3m)
(Bs), = 2e, 07 2((1/36m)10-9) (=k)

= (107¢/3m)(36m/2)(10%)(—k) = —6kV/m
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Due to the line charge p; = _TZS NC/m = _TZS 107°C/m

(TZS 10~ ) (—41+ 3l_<> 36

Zneor T on((t06/36m5) \ 5 ) 9

(B, =

9
= 2(4j— 3k) = 8 — 6k

Then the total electric field is

Exercises:

(1) Determine E at (2,0,2) m due to three standard charge distributions as
follows :a uniform sheet at x = 0 m with pg; = i NC/m? , auniform sheet

at x = 4 m with pg, = ;—i NC/m? and a uniform lineatx = 6m,y = 0m
with p; = =2 NC/m .

(2) Determine E at(2,0,0) m duetoa charge distributed along the z — axis
Between z = +5 m with a uniform density p; = 20 NC/m in Cartesian

coordinates, then in cylindrical coordinates .

(3) Determine E at (2,0,0) m duetoa charge distributed fromz =5m
along the z — axis to co and from —oo to z = —5 m with a uniform density
p; = 20 NC/m in both Cartesian coordinates, and cylindrical coordinates .
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(4) What will happen if the charge configuration of problem (2) & (3) are
superimposed .

(5) Find the electric field intensity E at (0, @, h) m in cylindrical coordinates
due

to uniformly chargeddisk r <am,z=0m .whatisresultif a — oo .
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03.0

Chapter (5)

Electric flux and Gauss’Law

5-1Net charge in a region:

With charge density defined before , it is possible to obtain the net charge
contained in a specified volume by integration .From :

dQ= pdv C
it follows that

Q= Jpdv C

Of course, pneeds not be constant through the volume v .

5-2Electric flux:

By definition electric flux ;3 ,originates on positive charge and terminates on
negative charge.In the absence of negative charge, the flux terminates at infinity.
Also by definition , one coulomb of electric charge gives rise to one coulomb of

electric flux .Hence 3 = Q C
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In the above Fig (a) the flux leaves Q. and terminates on Q_ . This assum
that the tow charges of equal magnitude . the case of positive charge with no
negative charge in the region is illustrated in Fig (b) . Hence thefluxlines are

equally spaced throughout the solid angle , and reach out toward infinity .

5-3flux Density:

While the electric flux 1 is a scalar quantity , the density of electric flux D ,is

a vector field which takes its direction from the } —
lines of flux . g

If the neighborhood of point P the lines of flux have the direction of unit vector
a , see the front Fig. ,and if an amount of flux
dy crosses the differential area ds which is

normal to a ,then the direction flux density at P isS

- dy
D=—adc/m?
dSaC/m

Which means that the density of electric flux D is numbers of the flux lines
cross the unit area in normal direction (this is the definition of the density 3)

5-4Gauss’ Law:

A volume charge distribution of density p C/m?

Is shown enclosed by surface s as in Fig. beside .
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Since each coulomb of charge Q has, by definition,
One coulomb of flux v , it follows that the net flux

Crossing the closed surface s is an exact measure of the net charge enclosed.
However the density D may vary in magnitude and direction from point to point
of s , on general ,D makes an angle ¢ with the normal , the differential flux
crossing ds is given by :
dy=Dcos@=D.ds@ =D.ds

Where ds is the vector surface element , of magnitude ds and direction a .The
unit vector d is always taken to point out of s, so that dy is the amount of flux
passing from interior ofs to the exterior of s through ds .

Integration of the above expression for diy over the closed surface s gives:

y=[D.ds=Q .

This is Gauss’ Law , which states that the total flux out of a closed surface is
equal to the net charge within that surface . It will be seen that a great deal of
valuable information can be obtained from the application of Gauss’ Law

without actually carrying out the integration .
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5-5Relation between the flux denisty ﬁand

Electric field intensitvf'):

Consider a point charge Q (assumed positivef
For simplicity ) at the origin as shown in the front

Figure. If this is enclosed by a spherical surface of

Radius r , then, by symmetry , D duetoQ is of

Constant magnitude over the surface and is
everywhere normal to the surface .

Gauss’ Law then gives :
Q=[D.ds =D§ ds=D(nr?) (6=0).
From which D = Q/4nr? , therefore

Q . Q@ _
a =

a
47rr? 4ur2 T

D=

But, from (3), the electric field intensity E due to point charge Q is
Q _

a
Amegr? "

E =
It follows that
B == EoE')
More generally, for any electric field in an E isotropic medium of permittivity €

Then

w]]

Il
& m

tl
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Thus D and E fields will have exactly the same form , since they defers only

by a factor which is a constant of the medium .

While the electric fieldE due to a charge configuration is a function of the
permittivity e ,the flux densityﬁ is not . In problems involving multiple
dielectrics a distinct advantage will be found in first obtaining D then

converting to E within each dielectric .

Note: Special Gaussian surface:

The spherical surface used in derivation of section (5) was a special Gaussian
surface in that it satisfied the following defining conditions :

1 — The surface is closed .
2 —At each point of surface D either normal or tangential to thesurface .
3—D has the same value at all points of the surface whereD is normal.

Examples :

(1) Use a special Gaussian surface to findDdue to a uniform line charge p;(C/m)

The solution :

Takethe line charge as the a special z — axis

of cylindrical coordinates (see the Fig (1). By

cylindrical symmetry , D can only have an r
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component , and this component can only depends 1
onr . Thus, the special Gaussian surface for this
problem is a closed circular cylinder whose axis

Is the z — axis (see the Fig (2).

Appling Gauss’ Law :

—

Q = fle.dS +fSZD.ds +fS3D.ds :
Over surfaces s;,s, ,we note that D&ds are orthogonal and so the integrals

vanish (8 = m/2) .Over surface s; ,we note that D&ds are parallel ( or

antiparallel (6 = 0), if p; is negative) and D is constant because r is constant.
Thus

Q= fszﬁ ds = Dfsgds = D(2nrlL) .
Where Lis thelength of cylinder .But the enclosed charge is Q = p;L . Hence :

D =p/2nrand D = (p;/2nr)a, .

(2) Find the charge in the volume definedby 0 <x, y, z <1m if

p = 30x%y (uC/m?).What change occurs for the limit,—1 < y <0m?

The solution :

Since dQ =pdv

1 01,1
v Q= j j j 30x%y dxdydz =5uC hY
o Jo Jo -

6 o T
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For the change in the limiton y

1,0 (1
Q= J J fSOXZy dx dy dz = —5uC
0o J-1Jo

(3) Find the charge in the volume defined by 1 <r < 2m in spherical
coordinates if p = 30x%y (uC/m?).

5 cos?0
p =>——(C/m%).

The solution :

By integration we get :

Q= pdv—fznf f25cose Zsin@drdfdde =5nC

(4) Three pointcharge Q; =30nC,Q, =150nC &Q; = —-70nC are
enclosed by surface s .What net flux crosses s .

The solution :

Since the electric flux was defined as originates on positive charges and
terminates on the negative charges ,the part of the flux from the positive
chargesterminates on the negative charges.

Ynet = Qner =30+ 150—-70 =110nC .
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(5) What net flux crosses the closed surface s shown in the Fig. , which contains
a charge distribution in the form of a plane disk of radius 4 m with a density

i02
ps = 22 (C/m?) ?

The solution :

02
p=0= [ D rdrdp=2nC .

0 2r

(6) Two point charges of the same magnitude but opposite signs are enclosedby
a surface s. Can flux @ cross the surface ? .

The solution :

While the flux can cross the surface as shown
In the Fig. , the net flux out of vector s will be

Zero so long as the charges are of the same magnitude

(7) A circular disk of radius 4 m with acharge density pg =
12 sin ¢ (uC/m?) isenclosed by surface s . What net flux crosses s? .

The solution :

Y=Q= foznf:sin(p rdrdp=0ucC .
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Since the disk contains equal amounts of positive and negative charge
Q, sin(¢p + m) = —sin¢ . not net flux cross s .

(8) Give an electric flux D = 2x i+ 3j(C/m?), determine the net flux crossing

the surface of cube 2m on an edge centered at the origin .(the edge of the cube
are parallel to the coordinate axis) .

The solution :
p=[D.ds =/, (2i+3]).(dsi)+[,__, (-2i+3j) .(~dsi) .
+,, (2xg+ 3]_') .(ds;_') + (2xg+ 31) .(—dg;_')

+/,_, (Zx i+ 3]_) (dsk)+[,__, (2x i+ 3]_) (—dsk)

1/):_[51_)).%):2_[)(:1 dS+2fx=_1 ds .
+3f,,ds =3[, ds+0+0=16 C

(9) A uniform line charge of o7 = 3 (uC/m) lies along the z — axis, and a
concentric circular cylinder of radius 2 m hasog = (—1.5/4m)(uC/m?).Both

distributions are infinite in extent with z — axis . Use Gauss’ Lawto find D in
all regions.

The solution :

1 —Using the special Gaussian surface A As Shawn in
the Fig. ,and proceeding as in example (1), we get :




Electrostatics (ll) Dr.Mohamed Abd El-Aziz

Q=c511=>1_)’=;—1ilra7 0<r<?2
2 —Using the special Gaussian surface B
Q =0+ Q, =o0cyl +o,(2mrl) r>2
= (01 + 0'5(21'[1')) 1 r>2

From Gauss’ Law , we get :
Q = fsﬁg = Dgﬁsds =DQ2nrl) .
(0‘1 + O'S(ZT[I')) 1 = fsﬁ ds = Dgﬁsds =DQ2nrl) .

(01 + o (21Tr))

s~ D =

2Tr

. (01 + GS(ZHF))a_’

2
2Tr r r=
Now for all regions we have :
011 .
— 0<r<?
B 2T r
“ D=1(0o;+0.(2mr
( 1 s( ))a_r> r>2
2Tr
And for numerical data we have :
0477 _,
. a, 0<r<2
D={0239__
a, r>2
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