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Part I

Topics in Linear Algebra





1. Linear transformations

The central objective of linear algebra is the analysis of linear functions
defined on a finite-dimensional vector space.In this chapter, we define the
concept of a linear function or transformation.

Definition 1.0.1 Let V and W be real vector spaces (their dimensions
can be different), and let T be a function with domain V and range in W
(written T : V →W ). We say T is a linear transformation if
(i) For all x,y ∈V,T (x+y) = T (x)+T (y)(T is additive )
(ii) For all x ∈V,r ∈K,T (rx) = rT (x)(T is homogeneous).

R If V =W , then T can be called a linear operator.

R The homogeneity and additivity properties of a linear transforma-
tion T : V →W can be used in combination to show that if x and y
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are vectors in V and r and s are any scalars, then

T (rx+ sy) = rT (x)+ sT (y).

� Example 1.1 Show that T : R2→ R2, defined by

T ((x1,x2)) = (x1 + x2,x1− x2)

is a linear transformation.
Solution:
Let u = (x1,x2), v = (y1,y2) ∈ R2, then

(i)T (u+ v) = T ((x1 + y1,x2 + y2))

= (x1 + y1 + x2 + y2,x1 + y1− x2− y2)

= (x1 + x2,x1− x2)+(y1 + y2,y1− y2)

= T (u)+T (v).
(ii)T (ru) = T (r(x1,x2 + y))

= (rx1 + rx2,rx1− rx2)

= r(x1 + x2,x1− x2).

= rT (u).
Therefore, T is linear transformation. �

� Example 1.2 Show that T : R2→ R2, defined by

T ((x1,x2)) = (x1 + x2,x1− x2 +1)

is not linear transformation.
Solution: let (0,0),(1,1) ∈ R2, then

T ((0,0)+(1,1)) = T (1,1) = (2,1) 6= (2,2).

Therefore, T is not linear transformation. �

Theorem 1.0.1 If T : V →W is a linear transformation, then:
(a) T (0) = 0.
(b)T (u−v) = T (u)−T (v) for all u and v in V .
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Proof. Let u be any vector in V . Since 0u = 0, it follows from the homo-
geneity property in Definition 1 that

T (0) = T (0u) = 0T (u) = 0

which proves (a) We can prove part (b) by rewriting T (u−v) as

T (u−v) = T (u+(−1)v)
= T (u)+(−1)T (v)
= T (u)−T (v)

We leave it for you to justify each step. �

� Example 1.3 Show that T : V →W , defined by T (v) = 0 for every v in
V is a linear transformation called the zero transformation.
Solution:

T (u+ v) = 0, T (u) = 0, T (v) = 0, and T (ku) = 0.

Therefore,

T (u+ v) = T (u)+T (v) and T (ku) = kT (u).

�

� Example 1.4 Show that T : V →V , defined by T (v) = v for every v in V
is a linear transformation called the identity operator on V .
Solution:

T (u+ v) = u+ v, T (u) = u, T (v) = v, and T (ku) = ku.

Therefore,

T (u+ v) = T (u)+T (v) and T (ku) = kT (u).

�

� Example 1.5 Show that T : V →V , defined by T (v) = kv for every v in
V and k any scalar is a linear transformation.
Solution:
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T (u+ v) = k(u+ v) = ku+ kv = T (u)+T (v),

and,

T (ru) = k(ru) = rku = rT (u).

�

R In the above Example 1.5. If 0 < k < 1, then T is called the
contraction of V with factor k, and if k > 1, it is called the dilation
of V with factor k.

� Example 1.6 Let Mnn be the vector space of n×n matrices. In each part
determine whether the transformation is linear.
(a) T1(A) = AT .
(b) T2(A) = det(A).

Solution:
(a)

(i)T1(A+B) = (A+B)T = AT +BT = T1(A)+T1(B).
(ii)T1(kA) = (kA)T = kAT = kT1(A),

so T1 is linear.
(b) T2 is not linear for

T2(A+B) = det(A+B) 6= det(A)+det(B) = T2(A)+T2(B).

�
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1.1 Finding linear transformations from images of basis
vectors
In this section, we show how to find the linear transformations from images
of basis vectors.

If TA : Rn → Rm is multiplication by A, and if e1,e2, . . . ,en are the
standard basis vectors for Rn, then A can be expressed as

A = [T (e1) |T (e2)| · · · | T (en)]

and we say A is a matrix transformation.
It follows from this that the image of any vector v = (c1,c2, . . . ,cn) in Rn

under multiplication by A can be expressed as

TA(v) = c1TA (e1)+ c2TA (e2)+ · · ·+ cnTA (en)

This formula tells us that for a matrix transformation the image of any
vector is expressible as a linear combination of the images of the standard
basis vectors. This is a special case of the following more general result.

Theorem 1.1.1 Let T : V →W be a linear transformation, where V is
finite-dimensional. If S = {v1,v2, . . . ,vn} is a basis for V, | then the
image of any vector v in V can be expressed as

T (v) = c1T (v1)+ c2T (v2)+ · · ·+ cnT (vn)

where c1,c2, . . . ,cn are the coefficients required to express v as a linear
combination of the vectors in the basis S.

Proof. we write v as v = c1v1 + c2v2 + · · ·+ cnvn and use the linearity of
T �

� Example 1.7 Let T : R3→ R2 be the linear transformation for which

T (v1) = (1,0), T (v2) = (2,−1), T (v3) = (4,3).

Find a formula for T (x1,x2,x3) , and then use that formula to compute
T (2,−3,5) by using the basis S = {v1,v2,v3} for R3, where

v1 = (1,1,1), v2 = (1,1,0), v3 = (1,0,0).
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Solution:
We first need to express x = (x1,x2,x3) as a linear combination of v1,v2,
and v3. If we write

(x1,x2,x3) = c1(1,1,1)+ c2(1,1,0)+ c3(1,0,0)

then on equating corresponding components, we obtain

c1 + c2 + c3 = x1
c1 + c2 = x2
c1 = x3

which yields c1 = x3,c2 = x2− x3,c3 = x1− x2, so
(x1,x2,x3) = x3(1,1,1)+(x2− x3)(1,1,0)+(x1− x2)(1,0,0)

= x3v1 +(x2− x3)v2 +(x1− x2)v3

Thus

T (x1,x2,x3) = x3T (v1)+(x2− x3)T (v2)+(x1− x2)T (v3)

= x3(1,0)+(x2− x3)(2,−1)+(x1− x2)(4,3)
= (4x1−2x2− x3,3x1−4x2 + x3)

From this formula we obtain

T (2,−3,5) = (9,2,3).

�
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1.2 Kernel and range

In this section, we define and study the kernel and range of linear transfor-
mations.

Recall that if A is an m×n matrix, then the null space of A consists of
all vectors x in Rn such that Ax = 0, and the column space of A consists of
all vectors b in Rm for which there is at least one vector x in Rn such that
Ax = b. From the viewpoint of matrix transformations, the null space of
A consists of all vectors in Rn that multiplication by A maps into 0, and
the column space of A consists of all vectors in Rm that are images of at
least one vector in Rn under multiplication by A. The following definition
extends these ideas to general linear transformations.

Definition 1.2.1 If T : V →W is a linear transformation, then the set of
vectors in V that T maps into 0 is called the kernel of T and is denoted
by ker(T ). The set of all vectors in W that are images under T of at
least one vector in V is called the range of T and is denoted by R(T )

� Example 1.8 Let T : V →W be the zero transformation. Find Ker(T )
and R(T ).

Solution:
Since T maps every vector in V into 0, it follows that ker(T ) =V . Moreover,
since 0 is the only image under T of vectors in V , it follows that R(T ) = {0}.
�

� Example 1.9 Let I : V → V be the identity operator. Find Ker(T ) and
R(T ).

Solution:
Since I(v) = v for all vectors in V, every vector in V is the image of some
vector (namely, itself); thus R(I) = V . Since the only vector that I maps
into 0 is 0, it follows that ker(I) = {0}. �

1.2.1 Properties of kernel and range

Theorem 1.2.1 If T : V →W is a linear transformation, then:
(a) The kernel of T is a subspace of V .
(b) The range of T is a subspace of W .
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Proof. (a) To show that ker(T ) is a subspace, we must show that it contains
at least one vector and is closed under addition and scalar multiplication.
Let v1 and v2 be vectors in ker(T ), and let k be any scalar. Then

T (v1 +v2) = T (v1)+T (v2) = 0+0 = 0

so v1 +v2 is in ker(T ). Also,

T (kv1) = kT (v1) = k0 = 0

so kv1 is in ker(T ).
(b) To show that R(T ) is a subspace of W, we must show that it contains

at least one vector and is closed under addition and scalar multiplication.
However, it contains at least the zero vector of W since T (0) = (0). To
prove that it is closed under addition and scalar multiplication, we must
show that if w1 and | w2 are vectors in R(T ), and if k is any scalar, then
there exist vectors a and b in V for which

T (a) = w1 +w2 and T (b) = kw1

But the fact that w1 and w2 are in R(T ) tells us there exist vectors v1 and
v2 in V such that

T (v1) = w1 and T (v2) = w2

The following computations complete the proof by showing that the vectors
a = v1 +v2 and b = kv1 satisfy the equations in (4):

T (a) = T (v1 +v2) = T (v1)+T (v2) = w1 +w2
T (b) = T (kv1) = kT (v1) = kw1

�
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1.3 Rank and nullity of linear transformations
In this section, we defined the notions of rank and nullity for an m×n matrix.
Also, we proved that the sum of the rank and nullity is n.

Definition 1.3.1 Let T : V →W be a linear transformation. If the range
of T is finite dimensional, then its dimension is called the rank of T ;
and if the kernel of T is finite-dimensional, then its dimension is called
the nullity of T . The rank of T is denoted by rank (T ) and the nullity of
T by nullity (T ).

Theorem 1.3.1 If T : V →W is a linear transformation from a finite-
dimensional vector space V to a vector space W, then the range of T is
finite-dimensional, and

rank(T )+nullity(T ) = dim(V ).

Proof. Assume that V is n -dimensional. We must show that

dim(R(T ))+dim(ker(T )) = n

We will give the proof for the case where 1≤ dim(ker(T ))< n. The cases
where dim(ker(T )) = 0 and dim(ker(T )) = n are left as exercises. As-
sume dim(ker(T )) = r and let v1, . . . ,vr be a basis for the kernel. Since
{v1, . . . ,vr} is linearly independent, Theorem 4.5.5(b) states that there are
n−r vectors, vr+1, . . . ,vn, such that the extended set {v1, . . . ,vr,vr+1, . . . ,vn}
is a basis for V . To complete the proof, we will show that the n− r vectors
in the set S = {T (vr+1) , . . . ,T (vn)} form a basis for the range of T . It will
then follow that

dim(R(T ))+dim(ker(T )) = (n− r)+ r = n

First we show that S spans the range of T. If b is any vector in the range of
T, then b = T (v) for some vector v in V. Since {v1, . . . ,vr,vr+1, . . . ,vn} is
a basis for V, the vector v can be written in the form

v = c1v1 + · · ·+ crvr + cr+1vr+1 + · · ·+ cnvn
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Since v1, . . . ,vr lie in the kernel of T , we have T (v1) = · · ·= T (vr) = 0,
so

b = T (v) = cr+1T (vr+1)+ · · ·+ cnT (vn)

Thus S spans the range of T . Finally, we show that S is a linearly indepen-
dent set and consequently forms a basis for the range of T . Suppose that
some linear combination of the vectors in S is zero; that is,

kr+1T (vr+1)+ · · ·+ knT (vn) = 0 (1.1)

We must show that kr+1 = · · ·= kn = 0. Since T is linear, (3.5) can be
rewritten as

T (kr+1vr+1 + · · ·+ knvn) = 0

which says that kr+1vr+1 + · · ·+ knvn is in the kernel of T . This vector can
therefore be written as a linear combination of the basis vectors {v1, . . . ,vr} ,
say

kr+1vr+1 + · · ·+ knvn = k1v1 + · · ·+ krvr

Thus,
k1v1 + · · ·+ krvr− kr+1vr+1−·· ·− knvn = 0

Since {v1, . . . ,vn} is linearly independent, all of the k ’s are zero; in particu-
lar, kr+1 = · · ·= kn = 0, which completes the proof. �

R In the special case where A is an m×n matrix and TA : Rn→ Rm

is multiplication by A, the kernel of TA is the null space of A, and
the range of TA is the column space o A. Thus, it follows from
Theorem 1.3.1 that

rank(TA)+nullity(TA) = n

.
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1.4 Composition linear transformations
In this section, we define one to one and onto linear transformations. Also,
we discussed composition linear transformations.

Definition 1.4.1 If T : V →W is a linear transformation from a vector
space V to a vector space W , then T is said to be one-to-one if T maps
distinct vectors in V into distinct vectors in W , i.e.,

∀u,v ∈V,T (u) = T (v)⇒ u = v.

Definition 1.4.2 If T : V →W is a linear transformation from a vector
space V to a vector space W, then T is said to be onto (or onto W ) if
every vector in W is the image of at least one vector in V .

� Example 1.10 Let T : R2→ R2 be a linear transformation define as

T (x,y) = (x,x+ y).

(1) Find Ker T?
(2) Is T one-one?
(3) Is T onto?
Solution:
(1) Let u = (x,y) ∈ KerT , then

T (u) = O⇒ (x,x+ y) = (0,0)
⇒ x = 0,x+ y = 0
⇒ x = y = 0,

thus, KerT = {(0,0)}.
(2) Let u = (x,y),v = (s, t) ∈ R2 and

T (u) = T (v)⇒ (x,x+ y) = (s,s+ t)

⇒ x = s,x+ y = s+ t

⇒ x = s,y = t

⇒ (x,y) = (s, t).
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thus, T is one-one.
(3) Let v = (s, t) ∈ R2 and v = T (u) for all u = (x,y) ∈ R2, then

v = T (u)⇒ (s, t) = T (x,y)

⇒ (s, t) = (x,x+ y)

⇒ x = s,y = t− s

⇒ (x,y) ∈ R2.

thus, T is onto. �

� Example 1.11 Let T : R2→ R3 be a linear transformation define as

T (x,y) = (x,x+ y,x− y).

(1) Find Ker T?
(2) Is T one-one?
(3) Is T onto?
Solution:
(1) Let u = (x,y) ∈ KerT , then

T (u) = O⇒ (x,x+ y,x− y) = (0,0,0)
⇒ x = 0,x+ y = 0,x− y = 0
⇒ x = y = 0,

thus, KerT = {(0,0)}.
(2) Let u = (x,y),v = (s, t) ∈ R2 and

T (u) = T (v)⇒ (x,x+ y,x− y) = (s,s+ t,s− t)

⇒ x = s,x+ y = s+ t,x− y = s− t

⇒ x = s,y = t

⇒ (x,y) = (s, t)

⇒ u = v.

thus, T is one-one.
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(3) Let v = (s, t,e) ∈ R3 and v = T (u) for all u = (x,y) ∈ R2, then

v = T (u)⇒ (s, t,e) = T (x,y)

⇒ (s, t,e) = (x,x+ y,x− y)

⇒ x = s,y = t− s,y = s− e,

i.e., y has two values. Thus, T is not onto. �

Theorem 1.4.1 If T : V →W is a linear transformation, then the follow-
ing statements are equivalent.
(a) T is one-to-one.
(b) ker(T ) = {0}.

Proof. (a)⇒ (b) Since T is linear, we know that T (0) = 0. Since T is one-
to-one, there can be no other vectors in V that map into 0, so ker(T ) = {0}.
(b)⇒ (a) Assume that ker(T ) = {0}. If u and v are distinct vectors in V,
then u−v 6= 0. This implies that T (u−v) 6= 0, for otherwise ker(T ) would
contain a nonzero vector. Since T is linear, it follows that

T (u)−T (v) = T (u−v) 6= 0

so T maps distinct vectors in V into distinct vectors in W and hence is
one-to-one. �

Definition 1.4.3 If T1 : U → V and T2 : V →W are linear transforma-
tions, then the composition of T2 with T1, denoted by T2 ◦T1 (which is
read " T2 circle T1

′′) , is the function defined by the formula

(T2 ◦T1)(u) = T2 (T1(u))

where u is a vector in U .

Theorem 1.4.2 Let T1 : U →V and T2 : V →W be a linear transforma-
tions, then (T2 ◦T1) : U →W is also a linear transformation.
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Proof. Suppose that u and v are vectors in U and c is a scalar, then it
follows from (1) and the linearity of T1 and T2 that

(T2 ◦T1)(u+v) = T2 (T1(u+v)) = T2 (T1(u)+T1(v))
= T2 (T1(u))+T2 (T1(v))
= (T2 ◦T1)(u)+(T2 ◦T1)(v)

and
(T2 ◦T1)(cu) = T2 (T1(cu)) = T2 (cT1(u))

= cT2 (T1(u)) = c(T2 ◦T1)(u)

Thus, T2 ◦T1 satisfies the two requirements of a linear transformation. �

� Example 1.12 Let T1 : P1→ P2 and T2 : P2→ P2 be the linear transfor-
mations given by the formulas

T1(p(x)) = xp(x) and T2(p(x)) = p(2x+4)

Then find (T2 ◦T1).
Solution:
The composition (T2 ◦T1) : P1→ P2 is given by the formula

(T2 ◦T1)(p(x)) = T2 (T1(p(x))) = T2(xp(x)) = (2x+4)p(2x+4)

In particular, if p(x) = c0 + c1x, then

(T2 ◦T1)(p(x)) = (T2 ◦T1)(c0 + c1x) = (2x+4)(c0 + c1(2x+4))

= c0(2x+4)+ c1(2x+4)2.

�
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1.5 Exercises

1. Suppose that T is a mapping whose domain is the vector space M22.
In each part, determine whether T is a linear transformation, and if
so, find its kernel.

(a) T (A) = A2.
(b) T (A) = tr(A).
(c) T (A) = A+AT .
(d) T (A) = (A)11
(e ) T (A) = 02×2
(f) T (A) = cA

2. Determine whether the mapping T is a linear transformation, and if
so, find its kernel.

(a) T : R3→ R, where T (u) = ‖u‖.
(b) T : R3→ R3, where v0 is a fixed vector in R3 and T (u) = u×v0.
(c) T : M22→M23, where B is a fixed 2×3 matrix and T (A) = AB.
(d) T : M22→ R, where

(i) T
([

a b
c d

])
= 3a−4b+ c−d

(ii) T
([

a b
c d

])
= a2 +b2

(e ) T : P2→ P2, where
(i) T

(
a0 +a1x+a2x2

)
= a0 +a1(x+1)+a2(x+1)2

(ii) T
(
a0 +a1x+a2x2

)
= (a0 +1)+(a1 +1)x+(a2 +1)x2

(f) T : F(−∞,∞)→ F(−∞,∞), where (a) T ( f (x)) = 1+ f (x) (b)
T ( f (x)) = f (x+1)

3. Let T : P2→ P3 be the linear transformation defined by T (p(x)) =
xp(x). Which of the following are in ker(T )?
(a) x2

(b) 0
(c) 1+ x
(d) −x

4. Let T : M22→M22 be the dilation operator with factor k = 3.

(a) Find T
([

1 2
−4 3

])
.

(b) Find the rank and nullity of T .
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5. Let T : P2→ P2 be the contraction operator with factor k = 1/4
(a) Find T

(
1+4x+8x2

)
.

(b) Find the rank and nullity of T .
6. Determine whether the linear transformation is one-to-one and onto

by finding its kernel:
(a) T : R2→ R2, where T (x,y) = (y,x).
(b) T : R2→ R3, where T (x,y) = (x,y,x+ y).
(c) T : R3→ R2, where T (x,y,z) = (x+ y+ z,x− y− z).
(d) T : R2→ R3, where T (x,y) = (x− y,y− x,2x−2y).
(e) T : R2→ R2, where T (x,y) = (0,2x+3y).
(f) T : R2→ R2, where T (x,y) = (x+ y,x− y).



2. Eigenvalues and Eigenvectors

In this chapter, we’ll look at the "eigenvalues" and "eigenvectors" of scalars
and vectors, words derived from the German word eigen, which means
"own," "peculiar to," "characteristic," or "individual." The fundamental
definition was first used in the study of rotational motion, but it was later
applied to distinguish various types of surfaces and to explain solutions to
differential equations.

Definition 2.0.1 If A is an n×n matrix, then a nonzero vector x in Rn

is called an eigenvector of A (or of the matrix operator TA ) if Ax is a
scalar multiple of x; that is,

Ax = λx

for some scalar λ . The scalar λ is called an eigenvalue of A (or of TA ),
and x is said to be an eigenvector corresponding to λ .
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Computing Eigenvalues and Eigenvectors
Our next goal is to establish a general method for determining the

eigenvalues and eigenvectors of an n× n matrix A. We will begin with
the problem of finding the eigenvalues of A. Note first that the equation
Ax = λx can be rewritten as Ax = λ Ix, or equivalently, as

(λ I−A)x = 0

For λ to be an eigenvalue of A this equation must have a nonzero solution
for x. The coefficient matrix λ I−A has a zero determinant. Thus, we have
the following result.

Theorem 2.0.1 If A is an n×n matrix, then λ is an eigenvalue of A if
and only if it satisfies the equation

det(λ I−A) = 0 (2.1)

This is called the characteristic equation of A.

� Example 2.1 Finding eigenvalues of the matrix

A =

[
3 0
8 −1

]
.

Solution:
The eigenvalues of A are the solutions of the equation

det(λ I−A) = 0,

which we can write as ∣∣∣∣ λ −3 0
−8 λ +1

∣∣∣∣= 0,

from which we obtain

(λ −3)(λ +1) = 0.

Thus, the eigenvalues of A are λ = 3 and λ =−1. �
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When the determinant det(λ I−A) in (2.1) is expanded, the characteristic
equation of A takes the form

λ
n + c1λ

n−1 + · · ·+ cn = 0 (2.2)

where the left side of this equation is a polynomial of degree n in which
the coefficient of λ n is 1. The polynomial

p(λ ) = λ
n + c1λ

n−1 + · · ·+ cn (2.3)

is called the characteristic polynomial of A.

� Example 2.2 Recall Example (4.3), the characteristic polynomial of the
2×2 matrix is

p(λ ) = (λ −3)(λ +1) = λ
2−2λ −3

which is a polynomial of degree 2 . �

Since a polynomial of degree n has at most n distinct roots, it follows
from (2.2) that the characteristic equation of an n×n matrix A has at most
n distinct solutions and consequently the matrix has at most n distinct
eigenvalues. Since some of these solutions may be complex numbers, it is
possible for a matrix to have complex eigenvalues, even if that matrix itself
has real entries.

� Example 2.3 Find the eigenvalues of

A =

 0 1 0
0 0 1
4 −17 8


Solution:

The characteristic polynomial of A is

det(λ I−A) = det

 λ −1 0
0 λ −1
−4 17 λ −8

= λ
3−8λ

2 +17λ −4

The eigenvalues of A must therefore satisfy the cubic equation

λ
3−8λ

2 +17λ −4 = 0,
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and we can be rewritten the above equation as

(λ −4)(λ 2−4λ +1) = 0,

Thus, the eigenvalues of A are

λ = 4,λ = 2+
√

3, and λ = 2−
√

3.

�

� Example 2.4 Find the eigenvalues of the upper triangular matrix

A =


a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

 .
Solution:
The determinant of a triangular matrix is the product of the entries on the
main diagonal, we obtain

det(λ I−A) = det


λ −a11 −a12 −a13 −a14

0 λ −a22 −a23 −a24
0 0 λ −a33 −a34
0 0 0 λ −a44


= (λ −a11)(λ −a22)(λ −a33)(λ −a44)

Thus, the characteristic equation is

(λ −a11)(λ −a22)(λ −a33)(λ −a44) = 0

and the eigenvalues are

λ = a11, λ = a22, λ = a33, λ = a44

which are precisely the diagonal entries of A. �
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Theorem 2.0.2 If A is an n×n triangular matrix (upper triangular, lower
triangular, or diagonal), then the eigenvalues of A are the entries on the
main diagonal of A

Theorem 2.0.3 If A is an n× n matrix, the following statements are
equivalent.
(a) λ is an eigenvalue of A.
(b) λ is a solution of the characteristic equation det(λ I−A) = 0.
(c) The system of equations (λ I−A)x = 0 has nontrivial solutions.
(d) There is a nonzero vector x such that Ax = λx.

Finding Eigenvectors and Bases for Eigenspaces:
Now that we know how to find the eigenvalues of a matrix, we will consider
the problem of finding the corresponding eigenvectors. By definition, the
eigenvectors of A corresponding to an eigenvalue λ are the nonzero vectors
that satisfy

(λ I−A)x = O.

Thus, we can find the eigenvectors of A corresponding to λ by finding the
nonzero vector x which it is a solution of the system (λ I−A)x = O.

� Example 2.5 Find bases for the eigenvectors of the matrix

A =

[
−1 3

2 0

]
.

Solution:
The characteristic equation of A is∣∣∣∣ λ +1 −3

−2 λ

∣∣∣∣= λ (λ +1)−6 = (λ −2)(λ +3) = 0

so the eigenvalues of A are λ = 2 and λ =−3.
Thus, there are two eigenvectors of A, one for each eigenvalue. By definition,
suppose that

x =

[
x1
x2

]
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is an eigenvector of A corresponding to an eigenvalue λ if and only if
(λ I−A)x = 0, that is,[

λ +1 −3
−2 λ

][
x1
x2

]
=

[
0
0

]
In the case where λ = 2 this equation becomes[

3 −3
−2 2

][
x1
x2

]
=

[
0
0

]
whose general solution is

x1 = t, x2 = t.

Since this can be written in matrix form as[
x1
x2

]
=

[
t
t

]
= t
[

1
1

]
it follows that [

1
1

]
is a basis for the eigenvectors corresponding to λ = 2. We leave it for you
to follow the pattern of these computations and show that[

− 3
2
1

]
is a basis for the eigenspace corresponding to λ =−3. �

� Example 2.6 Find bases for the eigenvectors of

A =

 0 0 −2
1 2 1
1 0 3

 .
Solution:
The characteristic equation of A is

λ
3−5λ

2 +8λ −4 = 0,
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or in factored form,
(λ −1)(λ −2)2 = 0.

Thus, the distinct eigenvalues of A are λ = 1 and λ = 2, so there are two
eigenvectors of A. By definition,

x =

 x1
x2
x3


is an eigenvector of A corresponding to λ if and only if x is a nontrivial
solution of (λ I−A)x = 0, or in matrix form, λ 0 2

−1 λ −2 −1
−1 0 λ −3

 x1
x2
x3

=

 0
0
0


In the case where λ = 2, the above equation becomes 2 0 2

−1 0 −1
−1 0 −1

 x1
x2
x3

=

 0
0
0


Solving this system using Gaussian elimination yields

x1 =−s, x2 = t, x3 = s

Thus, the eigenvectors of A corresponding to λ = 2 are the nonzero vectors
of the form

x =

 −s
t
s

=

 −s
0
s

+
 0

t
0

= s

 −1
0
1

+ t

 0
1
0


Sin  −1

0
1

 and

 0
1
0


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are linearly independent (why?), these vectors form a basis for the eigen-
vector corresponding to λ = 2.
If λ = 1, then (λ I−A)x = O becomes 1 0 2

−1 −1 −1
−1 0 −2

 x1
x2
x3

=

 0
0
0


Solving this system yields (verify)

x1 =−2s, x2 = s, x3 = s

Thus, the eigenvectors corresponding to λ = 1 are the nonzero vectors of
the form  −2s

s
s

= s

 −2
1
1

 so that

 −2
1
1


is a basis for the eigenspace corresponding to λ = 1. �

The next theorem establishes a relationship between the eigenvalues
and the invertibility of a matrix.

Theorem 2.0.4 A square matrix A is invertible if and only if λ = 0 is
not an eigenvalue of A.

Proof. Assume that A is an n×n matrix and observe first that λ = 0 is a
solution of the characteristic equation

λ
n + c1λ

n−1 + · · ·+ cn = 0

if and only if the constant term cn is zero. Thus, it suffices to prove that A
is invertible if and only if cn 6= 0. But

det(λ I−A) = λ
n + c1λ

n−1 + · · ·+ cn

or, on setting λ = 0,

det(−A) = cn or (−1)n det(A) = cn

It follows from the last equation that det(A) = 0 if and only if cn = 0, and
this in turn implies that A is invertible if and only if cn 6= 0. �
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2.1 Exercises

A- Find eigenvalue and eigenvectors of the following:

1. A =

[
1 2
3 2

]
.

2. A =

[
5 −1
1 3

]
.

3. A =

 4 0 1
2 3 2
1 0 4

 .
4. A =

 2 −1 −1
−1 2 −1
−1 −1 2

 .
B- Find the characteristic equation, the eigenvalues, and bases for the
eigenvectors of the matrix.

(a)
[

1 4
2 3

]
.

(b)
[
−2 −7

1 2

]
.

(c)
[

1 0
0 1

]
.

(d)
[

1 −2
0 1

]
.

(e)
[

2 1
1 2

]
.

(f)
[

2 −3
0 2

]
.

(i)
[

2 0
0 2

]
.

(u)
[

1 2
−2 −1

]
.

C- Find the characteristic equation, the eigenvalues, and bases for the
eigenvectors of the matrix.
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1.

 4 0 1
−2 1 0
−2 0 1

 .
2.

 1 0 −2
0 0 0
−2 0 4

 .
3.

 6 3 −8
0 −2 0
1 0 −3

 .
4.

 0 1 1
1 0 1
1 1 0

 .
5.

 4 0 −1
0 3 0
1 0 2

 .
6.

 1 −3 3
3 −5 3
6 −6 4

 .
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2.2 Diagonalization

Definition 2.2.1 If A and B are square matrices, then we say that B is
similar to A if there is an invertible matrix P such that

B = P−1AP.

Note that if B is similar to A, then it is also true that A is similar to B
since we can express A as A = Q−1BQ by taking Q = P−1. This being the
case, we will usually say that A and B are similar matrices if either is similar
to the other.

Definition 2.2.2 A square matrix A is said to be diagonalizable if it is
similar to some diagonal matrix; that is, if there exists an invertible
matrix P such that P−1AP is diagonal. In this case the matrix P is said
to diagonalize A.

Theorem 2.2.1 (a) If λ1,λ2, . . . ,λk are distinct eigenvalues of a matrix A,
and if v1,v2, . . . ,vk are corresponding eigenvectors, then {v1,v2, . . . ,vk}
is a linearly independent set.
(b) An n×n matrix with n distinct eigenvalues is diagonalizable.

A Procedure for Diagonalizing an n×n Matrix

Step 1 . Determine first whether the matrix is actually diagonalizable by
searching for n linearly independent eigenvectors. One way to do this is
to find a basis for each eigenvector and count the total number of vectors
obtained. If there is a total of n vectors, then the matrix is diagonalizable,
and if the total is less than n, then it is not.
Step 2. If you ascertained that the matrix is diagonalizable, then form the
matrix P = [p1 p2....pn] whose column vectors are the n basis vectors you
obtained in Step 1.
Step 3. P−1 AP will be a diagonal matrix whose successive diagonal entries
are the eigenvalues λ1,λ2, . . . ,λn that correspond to the successive columns
of P.
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� Example 2.7 Find a matrix P that diagonalizes

A =

 0 0 −2
1 2 1
1 0 3

 .
Solution:
The characteristic equation of A to be

(λ −1)(λ −2)2 = 0

and we found the following bases for the eigenvalues:

λ = 2 : p1 =

 −1
0
1

 , P2 =

 0
1
0

 : λ = 1 : p3 =

 −2
1
1


There are three basis vectors in total, so the matrix

P =

 −1 0 −2
0 1 1
1 0 1


diagonalizes A. As a check, you should verify that

P−1AP=

 1 0 2
1 1 1
−1 0 −1

 0 0 −2
1 2 1
1 0 3

 −1 0 −2
0 1 1
1 0 1

=

 2 0 0
0 2 0
0 0 1


In general, there is no preferred order for the columns of P. Since the i
th diagonal entry of P−1AP is an eigenvalue for the i th column vector of
P, changing the order of the columns of P just changes the order of the
eigenvalues on the diagonal of P−1AP. Thus, had we written

P =

 −1 −2 0
0 1 1
1 1 0

 .
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in the preceding example, we would have obtained

P−1AP =

 2 0 0
0 1 0
0 0 2


�

� Example 2.8 Show that the following matrix is not diagonalizable:

A =

 1 0 0
1 2 0
−3 5 2

 .
Solution:
The characteristic polynomial of A is

det(λ I−A) =

∣∣∣∣∣∣
λ −1 0 0
−1 λ −2 0
3 −5 λ −2

∣∣∣∣∣∣= (λ −1)(λ −2)2

so the characteristic equation is

(λ −1)(λ −2)2 = 0

and the distinct eigenvalues of A are λ = 1 and λ = 2. We leave it for you
to show that bases for the eigenvalues are

λ = 1 : p1 =

 1
8
− 1

8
1

 ; λ = 2 : p2 =

 0
0
1


Since A is a 3×3 matrix and there are only two basis vectors in total A is
not diagonalizable. �

2.2.1 Eigenvalues of Powers of a Matrix
Suppose that λ is an eigenvalue of A and x is a corresponding eigenvector.
Then

A2x = A(Ax) = A(λx) = λ (Ax) = λ (λx) = λ
2x

which shows not only that λ 2 is a eigenvalue of A2 but that x is a correspond-
ing eigenvector. In general, we have the following result.
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Theorem 2.2.2 If k is a positive integer, λ is an eigenvalue of a matrix
A, and x is a corresponding eigenvector, then λ k is an eigenvalue of Ak

and x is a corresponding eigenvector.

� Example 2.9 In Example 2.8 we found the eigenvalues and corresponding
eigenvectors of the matrix

A =

 1 0 0
1 2 0
−3 5 2


Do the same for A7.
Solution:
We know from Example 2.8 that the eigenvalues of A are λ = 1 and λ = 2,
so the eigenvalues of A7 are λ = 17 = 1 and λ = 27 = 128. The eigenvectors
p1 and p2 obtained in Example 2.8 corresponding to the eigenvalues λ = 1
and λ = 2 of A are also the eigenvectors corresponding to the eigenvalues
λ = 1 and λ = 128 of A7. �

Computing Powers of a Matrix;

Suppose that A is a diagonalizable n×n matrix, that P diagonalizes A, and
that

P−1AP =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

= D

Squaring both sides of this equation yields

(
P−1AP

)2
=


λ 2

1 0 · · · 0
0 λ 2

2 · · · 0
...

...
...

0 0 · · · λ 2
n

= D2

We can rewrite the left side of this equation as(
P−1AP

)2
= P−1APP−1AP = P−1AIAP = P−1A2P
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from which we obtain the relationship P−1A2P = D2. More generally, if k
is a positive integer, then a similar computation will show that

P−1AkP = Dk =


λ k

1 0 · · · 0
0 λ k

2 · · · 0
...

...
...

0 0 · · · λ k
n


which we can rewrite as

Ak = PDkP−1 = P


λ k

1 0 · · · 0
0 λ k

2 · · · 0
...

...
...

0 0 · · · λ k
n

P−1.

� Example 2.10 Find A13, where

A =

 0 0 −2
1 2 1
1 0 3

 .
Solution:
Recall Example 2.7 that the matrix A is diagonalized by

P =

 −1 0 −2
0 1 1
1 0 1


and that

D = P−1AP =

 2 0 0
0 2 0
0 0 1

 .
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Thus, it follows that

A13 = PD13P−1 =

 −1 0 −2
0 1 1
1 0 1

 213 0 0
0 213 0
0 0 113

 1 0 2
1 1 1
−1 0 −1


=

 −8190 0 −16382
8191 8192 8191
8191 0 16383

 .
�
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2.3 Exercise
A- Show that A and B are not similar matrices

1. A =

[
1 1
3 2

]
. B =

[
1 0
3 −2

]
2. A =

[
4 −1
2 4

]
,B =

[
4 1
2 4

]
3. A =

 1 2 3
0 1 2
0 0 1

 ,B =

 1 2 0
1
2 1 0
0 0 1


4. A =

 1 0 1
2 0 2
3 0 3

 ,B =

 1 1 0
2 2 0
0 1 1

 B- Find a matrix P that diago-

nalizes A, and check your work by computing P−1AP.

5. A =

[
1 0
6 −1

]
6. A =

[
−14 12
−20 17

]
.

7.A =

 2 0 −2
0 3 0
0 0 3

 . 8. A =

 1 0 0
0 1 1
0 1 1

 .
9. Let

A =

 4 0 1
2 3 2
1 0 4

 .
(a) Find the eigenvalues of A.
(b) For each eigenvalue λ , find the rank of the matrix λ I−A.
(c) Is A diagonalizable? Justify your conclusion.
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3. Differential Equations

Many laws of physics, chemistry, biology, engineering, and economics are
described in terms of “differential equations”—that is, equations involving
functions and their derivatives. In this section we will illustrate one way in
which matrix diagonalization can be used to solve systems of differential
equations.
Recall from calculus that a differential equation is an equation involving
unknown functions and their derivatives. The order of a differential equation
is the order of the highest derivative it contains. The simplest differential
equations are the first-order equations of the form

y′ = ay (3.1)

where y = f (x) is an unknown differentiable function to be determined,
y′ = dy/dx is its derivative, and a is a constant. As with most differential
equations, this equation has infinitely many solutions; they are the functions
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of the form
y = ceax (3.2)

where c is an arbitrary constant. That every function of this form is a
solution of 3.1 follows from the computation

y′ = caeax = ay

and that these are the only solution is shown in the exercises. Accordingly,
we call 3.2 the general solution of 3.1. As an example, the general solution
of the differential equation y′ = 5y is

y = ce5x (3.3)

Often, a physical problem that leads to a differential equation imposes some
conditions that enable us to isolate one particular solution from the general
solution. For example, if we require that solution 3.3 of the equation y′ = 5y
satisfy the added condition

y(0) = 6 (3.4)

(that is, y = 6 when x = 0 ), then on substituting these values in 3.3, we
obtain 6 = ce0 = c, from which we conclude that

y = 6e5x

is the only solution y′ = 5y that satisfies 3.4.
A condition such as 3.4, which specifies the value of the general solution

at a point, is called an initial condition, and the problem of solving a
differential equation subject to an initial condition is called an initial-value
problem.
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3.1 First-Order Linear Systems
A systems of differential equations of the form

y′1 = a11y1 +a12y2 + · · ·+a1nyn

y′2 = a21y1 +a22y2 + · · ·+a2nyn

:
y′n = an1y1 +an2y2 + · · ·+annyn

(3.5)

where y1 = f1(x),y2 = f2(x), . . . ,yn = fn(x) are functions to be determined,
and the ai j s are constants.

By using matrix notation, (3.5) can be written as
y′1
y′2
...

y′n

=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann




y1
y2
...

yn


or

y′ = Ay (3.6)

where the notation y′ denotes the vector obtained by differentiating each
component of y.

We call (3.5) or its matrix form (3.6) a constant coefficient first-order
homogeneous linear system. It is of first order because all derivatives are of
that order, it is linear because differentiation and matrix multiplication are
linear transformations, and it is homogeneous because

y1 = y2 = · · ·= yn = 0

is a solution regardless of the values of the coefficients As expected, this is
called the trivial solution.

� Example 3.1 Write the following system in matrix form:

y′1 = 3y1
y′2 =−2y2
y′3 = 5y3
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Solution:  y′1
y′2
y′3

=

 3 0 0
0 −2 0
0 0 5

 y1
y2
y3


or

y′ =

 3 0 0
0 −2 0
0 0 5

 y

�

� Example 3.2 Solve the system in the above Example (3.1)
Solution:
Since the above system involves only one unknown function, we can solve
the equations individually. then the solutions are

y1 = c1etx

y2 = c2e−2x

y3 = c3esx

or, in matrix notation,

y =

 y1
y2
y3

=

 c1esx

c2e−2

cse4x


�

� Example 3.3 Find a solution of the system in the above Example (3.1)
that satisfies the initial conditions y1(0) = 1, y2(0) = 4, and y3(0) =−2
Solution:
From the given initial conditions, we obtain

1 = y1(0) = c1e0 = c1

4 = y2(0) = c2e0 = c2

−2 = y3(0) = cse0 = c3

so the solution satisfying these conditions is

y1 = e3x, y2 = 4e−2x, y3 =−2e4x
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or, in matrix notation,

y =

 y1
y2
y3

=

 e3x

4e−2x

−2e4x

 .
�
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3.2 Solve First-Order Linear System by Diagonalization

The basic idea for solving a system

y′ = Ay

whose coefficient matrix A is not diagonal is to introduce a new unknown
vector u that is related to the unknown vector y by an equation of the form

y = Pu

in which P is an invertible matrix that diagonalizes A. Of course, such a
matrix may or may not exist, but if it does, then we can rewrite the equation

y′ = Ay

as

Pu′ = A(Pu)

or alternatively as

u′ =
(
P−1AP

)
u

Since P is assumed to diagonalizes A, this equation has the form

u′ = Du

where D is diagonal. We can now solve this equation for u using the method
of Example (3.1), and then obtain y by matrix multiplication using the
relationship y = Pu.

In summary, we have the following procedure for solving a system
y′ = Ay in the case were A is diagonalizable.
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A Procedure for Solving y′ = Ay If A Is Diaganalizable

Step 1. Find a matrix P that dizgonalizes A.
Step 2. Make the substitutions y = Pu and y′ = Pu′ to obtain a new
"diagonal system"

u′ = Du,

where D = P−1AP.
Step 3. Solve u′ = Du.
Step 4. Determine y from the equation y = Pu.

� Example 3.4 Let a system

y′1 = y1 + y2
y′2 = 4y1−2y2

then
(a) Solve this system.
(b) Find the solution that satisfies the initial conditions y1(0) = 1,y2(0) = 6.
Solution:
(a) The coefficient matrix for the system is

A =

[
1 1
4 −2

]
.

Since A will be diagonalized by any matrix P whose columns are linearly
independent eigenvectors of A.
Now

det(λ l−A) =
∣∣∣∣ λ −1 −1
−4 λ +2

∣∣∣∣
= λ

2 +λ −6
= (λ +3)(λ −2),

the eigenvalues of A are λ = 2 and λ =−3.
By definition,

x =

[
x1
x2

]
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is an eigenvector of A corresponding to λ if and only if x is a nontrivial
solution of [

λ −1 −1
−4 λ +2

][
x1
x2

]
=

[
0
0

]
If λ = 2, this system becomes[

1 −1
−4 4

][
x1
x2

]
=

[
0
0

]
Solving this system yields x1 = t,x2 = t, so[

x1
x2

]
=

[
t
t

]
= t
[

1
1

]
Thus,

P1 =

[
1
1

]
is a basis for the eigenvector corresponding to λ = 2.
Similarly, you can show that

P2 =

[
− 1

4
1

]
is a basis for the eigenvector corresponding to λ =−3. Thus,

P =

[
1 −1
1 1

]
diagonalizes A, and

D = P−1AP =

[
2 0
0 −3

]
Thas, as noted in Step 2 of the procedure stated above, the substitution

y = Pu and y′ = P′u
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yields the diagonal system"

u′ = Du

=

[
2 0
0 −3

][
u1
u2

]
,

or
u′1 = 2u1
u′2 =−3u2

and the solution of this system is

u1 = c1e2x

u2 = c2e−1a or u =

[
c1e2x

c2e−3x

]
so the equation y = Pu yields, as the solution for y,

y =

[
y1
y2

]
=

[
1 − 1

4
1 1

][
c1e2x

c2e−3x

]
=

[
c1e2x− 1

4 c2e−3x

c1e2x + c2e−3x

]
or

y1 = c1e2x− 1
4 c2e−3x

y2 = c1e2x + c2e−3x

(b) If we substitute the given initial conditions in the above system, we
obtain

c1− 1
4 c2 = 1

c1 + c2 = 6

Solving this system, we obtain c1 = 2,c2 = 4, so the solution with the initial
conditions is

y1 = 2e2x− e−3x

y2 = 2e2x +4e−3x

�
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3.3 Exercises
1. (a) Solve the system

y′1 = y1 +4y2
y′2 = 2y1 +3y2

(b) Find the solution that satisfies the initial conditions y1(0) = 0,y2(0) = 0
2. (a) Solve the system

y′1 = y1 +3y2
y′2 = 4y1 +5y2

(b) Find the solution that satisfies the conditions y1(0) = 2, y2(0) = 1
3. (a) Solve the system

y′1 = 4y1 + y3
y′2 =−2y1 + y2
y′3 =−2y1 + y3

(b) Find the solution that satisfies the initial conditions y1(0) =−1,y2(0) =
1,y3(0) = 0



4. Graph Theory

4.1 Directed Graphs

Definition 4.1.1 A directed graph is a finite set of elements, {P1,P2, ...,Pn},
together with a finite collection of ordered pairs (Pi,Pj) of distinct el-
ements of this set, with no ordered pair being repeated. The elements
of the set are called vertices, and the ordered pairs are called directed
edges, of the directed graph.

We use the notation Pi → Pj (which is read “Pi is connected to Pj”) to
indicate that the directed edge (Pi,Pj) belongs to the directed graph. Geo-
metrically, we can visualize a directed graph by representing the vertices as
points in the plane and representing the directed edge Pi→ Pj by drawing a
line or arc from vertex Pi to vertex Pj, with an arrow pointing from Pi to Pj.
If both Pi→ Pj and Pj→ Pi hold (denoted Pi↔ Pj), we draw a single line
between Pi and Pj with two oppositely pointing arrows. See Figure (4.1)
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Figure 4.1:

With a directed graph having n vertices, we may associate an n×n
matrix M = [mi j] , called the vertex matrix of the directed graph.
Its elements are defined by

mi j =

{
1, if Pi→ Pj
0, otherwise

R Vertex matrices have the following two properties:
(i) All entries are either 0 or 1.
(ii) All diagonal entries are 0.
Conversely, any matrix with these two properties determines a
unique directed graph having the given matrix as its vertex matrix.

� Example 4.1 Find the corresponding vertex matrices for directed graphs
in Figure (4.2)
Solution:
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Figure 4.2:

(a)

M =


0 1 0 0
0 0 1 0
0 1 0 1
0 0 0 0


(b)

M =


0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 1 0 0 1
0 1 1 0 0


(c)

M =


0 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

 .
�

� Example 4.2 Let M be the vertex matrix define as follow

M =


0 1 1 0
0 0 1 0
1 0 0 1
0 0 0 0

 .
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Find the corresponding directed graphs for M.
Solution:
the corresponding directed graphs for M explain in Figure (4.3). �

Figure 4.3:

� Example 4.3 A certain family consists of a mother, father, daughter, and
two sons. The family members have influence, or power, over each other in
the following ways: the mother can influence the daughter and the oldest
son; the father can influence the two sons; the daughter can influence the
father; the oldest son can influence the youngest son; and the youngest son
can influence the mother. Find the directed graph and vertex matrix of this
model.
Solution:
Figure (4.4) is the resulting directed graph, where we have used obvious
letter designations for the five family members.

The vertex matrix of this directed graph is
0 0 1 1 0
0 0 0 1 1
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0

 .
�
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Figure 4.4:

In Example (4.3) the father cannot directly influence the mother; that is,
F →M is not true. But he can influence the youngest son, who can then
influence the mother. We write this as F → Y S→M and call it a 2-step
connection from F to M. Analogously, we call M→ D a 1-step connection,
F → OS→ Y S→M a 3-step connection, and so forth.

Now we show a technique for finding the number of all possible r-step
connections (r = 1,2, . . .) from one vertex Pi to another vertex Pj of an
arbitrary directed graph.

The number of 1-step connections from Pi to Pj is simply mi j. That
is, there is either zero or one 1-step connection from Pi to Pj, depending
on whether mi j is zero or one. For the number of 2 -step connections, we
consider the square of the vertex matrix. If we let m(2)

i j be the (i, j) -th
element of M2, we have

m(2)
i j = mi1m1 j +mi2m2 j + · · ·+minmn j. (4.1)

If mi1 = m1 j = 1, there is a 2 -step connection Pi → P1 → Pj from Pi
to Pj. But if either mi1 or m1 j is zero, such a 2 -step connection is not
possible. Thus Pi→ P1→ Pj is a 2 -step connection if and only if mi1m1 j =
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1. Similarly, for any k = 1,2, . . . ,n, Pi → Pk → Pj is a 2-step connection
from Pi to Pj if and only if the term mikmk j on the right side of (4.1) is one;
otherwise, the term is zero. Thus, the right side of (4.1) is the total number
of two 2 -step connections from Pi to Pj.

In general, we have the following result.

Theorem 4.1.1 Let M be the vertex matrix of a directed graph and let
m(r)

i j be the (i, j) -th element of Mr. Then m(r)
i j is equal to the number of

r -step connections from Pi to Pj.

� Example 4.4 Figure 4.5 is the route map of a small airline that services
the four cities P1,P2,P3, P4. Find a vertex matrix and r -step connections
from P4 to P3.

Figure 4.5:

Solution:
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As a directed graph, its vertex matrix is

M =


0 1 1 0
1 0 1 0
1 0 0 1
0 1 1 0

 .
We have that

M2 =


2 0 1 1
1 1 1 1
0 2 2 0
2 0 1 1

 ,
and

M3 =


1 3 3 1
2 2 3 1
4 0 2 2
1 3 3 1


If we are interested in connections from city P4 to city P3, by using Theorem
4.1.1 we find their number.
since m43 = 1, there is one 1-step connection; because m(2)

43 = 1, there is one

2-step connection; and because m(3)
43 = 3, there are three 3-step connections.

Now we verify this, from Figure 3.5 we find
1-step connections from P4 to P3 : P4→ P3.
2-step connections from P4 to P3 : P4→ P2→ P3.
3-step connections from P4 to P3 :

P4→ P3→ P4→ P3.
P4→ P2→ P1.→ P3
P4→ P3→ P1.→ P3.

�
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4.2 cliques
Definition 4.2.1 A subset of a directed graph is called a clique if it
satisfies the following three axioms:
(i) The subset contains at least three vertex.
(ii) For each pair of vertices Pi and Pj in the subset, both Pi→ Pj and
Pj→ Pi are true.
(iii) The subset is as large as possible; that is, it is not possible to add
another vertex the subset and still satisfy condition (ii).

� Example 4.5 The directed graph illustrated in Figure 4.6 which might
represent the route map of an airline. Find the set of cliques.

Figure 4.6:

Solution:
The directed graph has two cliques:

{P1,P2,P3,P4},

and
{P3,P4,P6}.

�



4.2 cliques 63

Cliques can be identified by inspecting simple directed graphs. However, a
systematic method for detecting cliques in large directed graphs would be
ideal. For this reason, t it will be helpful to define a matrix

S = [si j] ,

related to a given directed graph as follows:

si j =

{
1, if Pi↔ Pj
0, otherwise

The matrix S determines a directed graph that is the same as the given
directed graph, with the exception that the directed edges with only one
arrow are deleted.

The matrix S may be obtained from the vertex matrix M of the
original directed graph by setting si j = 1 if mi j = m ji = 1 and
setting si j = 0 otherwise.

The following theorem, which uses the matrix S, is helpful for identify-
ing cliques.

Theorem 4.2.1 Let s(3)i j be the (i, j)-th element of S3. Then a vertex Pi

belongs to some clique if and only if s(3)ii 6= 0

Proof. If s(3)ii 6= 0, then there is at least one 3-step connection from Pi
to itself in the modified directed graph determined by S. Suppose it is
Pi→ Pj → Pk → Pi. In the modified directed graph, all directed relations
are two-way, so we also have the connections Pi↔ Pj↔ Pk↔ Pi. But this
means that

{
Pi,Pj,Pk

}
is either a clique or a subset of a clique. In either

case, Pi must belong to some clique. The converse statement, "if Pi belongs
to a clique, then s(3)ii 6= 0,” follows in a similar manner. �
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� Example 4.6 Suppose that a directed graph has as its vertex matrix

M =


0 1 1 1
1 0 1 0
0 1 0 1
1 0 0 0

 .
Find S and show that the directed graph has not clique.
Solution:

S =


0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

 ,
and

S3 =


0 3 0 2
3 0 2 0
0 2 0 1
2 0 1 0

 .
Because all diagonal entries of S3 are zero, it follows from Theorem 4.2.1
that the directed graph has no cliques. �

� Example 4.7 Suppose that a directed graph has as its vertex matrix

M =


0 1 0 1 1
1 0 0 1 0
1 1 0 1 0
1 1 0 0 0
1 0 0 1 0


Find S and show that the directed graph has not clique.
Solution:

S =


0 1 0 1 1
1 0 0 1 0
0 0 0 0 0
1 1 0 0 0
1 0 0 0 0

 ,
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and

S3 =


2 4 0 4 3
4 2 0 3 1
0 0 0 0 0
4 3 0 2 1
3 1 0 1 0

 .
The nonzero diagonal entries of S3 are s(3)11 ,s

(3)
22 , and s(3)44 . Consequently, in

the given directed graph, P1,P2, and P4 belong to cliques. Because a clique
must contain at least three vertices, the directed graph has only one clique,
{P1,P2,P4} . �
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4.3 Dominance-Directed Graphs
Definition 4.3.1 A dominance-directed graph is a directed graph such
that for any distinct pair of vertices Pi and Pj, either Pi→ Pj or Pj→ Pi,
but not both.

An example of a directed graph satisfying this definition is a league of
n sports teams that play each other exactly one time, as in one round of a
round-robin tournament in which no ties are allowed. If Pi→ Pj means that
team Pi beat team Pj in their single match, it is easy to see that the definition
of a dominance-directed group is satisfied. For this reason, dominance-
directed graphs are sometimes called tournaments.

Theorem 4.3.1 In any dominance-directed graph, there is at least one
vertex from which there is a 1-step or 2 -step connection to any other
vertex.

Proof. Suppose that a vertex (there may be several) with the largest total
number of 1-step and 2-step connections to other vertices in the graph. By
renumbering the vertices, we may assume that P1 is such a vertex. Suppose
there is some vertex Pi such that there is no 1-step or 2-step connection
from P1 to Pi. Then, in particular, P1→ Pi is not true, so that by definition
of a dominance-directed graph, it must be that Pi→ P1. Next, let Pk be any
vertex such that P1 → Pk is true. Then we cannot have Pk → Pi, as then
P1 → Pk → Pi would be a 2-step connection from P1 to Pi. Thus, it must
be that Pi → Pk. That is, Pi has 1-step connections to all the vertices to
which P1 has 1-step connections. The vertex Pi must then also have 2-step
connections to all the vertices to which P1 has 2-step connections.
But because, in addition, we have that Pi→ P1, this means that Pi has more
l-step and 2-step connections to other vertices than does P1. However, this
contradicts the way in which P1 was chosen. Hence, there can be no vertex
Pi to which P1 has no 1-step or 2-step connection. �
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The sum of the entries in the ith row of M is the total number of 1-
step connections from Pi to other vertices, and the sum of the entries
of the i th row of M2 is the total number of 2 -step connections from
Pi to other vertices. Consequently, the sum of the entries of the i th
row of the matrix

A = M+M2,

is the total number of 1-step and 2-step connections from Pi to other
vertices. In other words, a row of

A = M+M2,

with the largest row sum identifies a vertex having the property
stated in Theorem 4.3.1

� Example 4.8 Suppose that five baseball teams play each other exactly
once, and the results are as indicated in the dominance-directed graph of
Figure 4.7. Find M and A of the graph.

Figure 4.7:

Solution:
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The vertex matrix of the graph is

M =


0 0 1 1 0
1 0 1 0 1
0 0 0 1 0
0 1 0 0 0
1 0 1 1 0

 ,
so

A = M+M2 =


0 0 1 1 0
1 0 1 0 1
0 0 0 1 0
0 1 0 0 0
1 0 1 1 0

+


0 1 0 1 0
1 0 2 3 0
0 1 0 0 0
1 0 1 0 1
0 1 1 2 0



=


0 1 1 2 0
2 0 3 3 1
0 1 0 1 0
1 1 1 0 1
1 1 2 3 0

 .
Then the row sums of A are

1st row sum = 4
2nd row sum = 9
3rd row sum = 2
4th row sum = 4
5th row sum = 7

Since the second row has the largest row sum, the vertex P2 must have a
1-step or 2-step connection to any other vertex. This is easily verified from
Figure 3.7. �

Definition 4.3.2 The power of a vertex of a dominance-directed graph
is the total number of 1-step and 2-step connections from it to other
vertices. Alternatively, the power of a vertex Pi is the sum of the entries
of the i th row of the matrix A = M+M2, where M is the vertex matrix
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of the directed graph.

� Example 4.9 Let us rank the five baseball teams in Example 4.8 accord-
ing to their powers. From the calculations for the row sums in that example,
we have

Power of team P1 = 4.
Power of team P2 = 9.
Power of team P3 = 2.
Power of team P4 = 4.
Power of team P5 = 7

Thus, the ranking of the teams according to their powers would be

First P2.
Second P5.
Third P1.

And tied for thrird P4.
Last P3.

�
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4.4 Exercises
A- Draw a diagram of the directed graph corresponding to each of the
following vertex matrices.

(a)


0 1 1 0
1 0 0 0
0 0 0 1
1 0 1 0

 .

(b)


0 0 1 0 0
1 0 0 0 1
0 1 0 1 1
0 0 0 0 0
1 1 1 0 0

 .
B- Five baseball teams play each other one time with the following results:

A beats B, C, D
B beats C, E
C beats D, E

D beats B
E beats A, D

Rank the five baseball teams in accordance with the powers of the vertices
they correspond to in the dominance-directed graph representing the out-
comes of the games.
C- For the dominance-directed graph illustrated in Figure 4.8 construct the
vertex matrix and find the power of each vertex
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Figure 4.8:





5. Cryptography

In this chapter, we introduce a method of encoding and decoding mes-
sages. Also, we examine modular arithmetic and explaine how Gaussian
elimination can sometimes be used to break an opponent’s code.

5.1 Ciphers
Secret codes date to the earliest days of written communication, there
has been a recent surge of interest in the subject because of the need
to maintain the privacy of information transmitted over public lines of
communication.

Definition 5.1.1 Cryptography is study encoding and decoding of se-
cret messages.
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R In the language of cryptography:
(i) Codes are called ciphers.
(ii) Uncoded messages are called plaintext.
(iii) Coded messages are called ciphertext.
(iv) The process of converting from plaintext to ciphertext is called
enciphering.
(v) The reverse process of converting from ciphertext to plaintext
is called deciphering.

The simplest ciphers, called substitution ciphers, are those that
replace each letter of the alphabet by a different letter.

For example, in the substitution cipher

Plain A B C D E F J H I J K L M
Cipher D E F G H I J K L M N O P

Plain N O P Q R S T U V W X Y Z
Cipher Q R S T U V W X Y Z A B C

.

the plaintext letter A is replaced by D, the plaintext letter B by E, and so
forth. With this cipher the plaintext message

ROME WAS NOT BUILT IN A DAY

becomes

URPH ZDV QRW EXLOW LQ D GDB



5.2 Hill Ciphers 75

5.2 Hill Ciphers
In this section we will study a class of polygraphic systems based on matrix
transformations.
Now, we assume that each plaintext and ciphertext letter except Z is assigned
the numerical value that specifies its position in the standard alphabet (Table
5.1). For reasons that will become clear later, Z is assigned a value of zero.

Plain A B C D E F J H I J K L M
Cipher 1 2 3 4 5 6 7 8 9 10 11 12 13

Plain N O P Q R S T U V W X Y Z
Cipher 14 15 16 17 18 19 20 21 22 23 24 25 0

.

Table 5.1:

R Whenever an integer greater than 25 occurs, it will be replaced
by the remainder that results when this integer is divided by 26.
Because the remainder after division by 26 is one of the integers
0,1,2, . . . ,25, this procedure will always yield an integer with an
alphabet equivalent.

In the simplest Hill ciphers, successive pairs of plaintext are transformed
into ciphertext by the following procedure:
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Step 1. Choose a 2×2 matrix with integer entries

A =

[
a11 a12
a21 a22

]
to perform the encoding. Certain additional conditions on A will be
imposed later.
Step 2. Group successive plaintext letters into pairs, adding an
arbitrary “dummy” letter to fill out the last pair if the plaintext has
no odd number of letters, and replace each plaintext letter by its
numerical value.
Step 3. Successively convert each plaintext pair

P =

[
p1
p2

]
into a column vector and form the product AP. We will call P a
plaintext vector and AP the corresponding ciphertext vector.
Step 4. Convert each ciphertext vector into its alphabetic equivalent.

� Example 5.1 Use the matrix [
1 2
0 3

]
,

to obtain the Hill cipher for the plaintext message

I AM HIDING

Solution:
If we group the plaintext into pairs and add the dummy letter G to fill out
the last pair, we obtain

IA MH ID IN GG

Form Table 5.1, we find

9 1 13 8 9 4 9 14 7 7
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To encipher the pair IA, we form the matrix product[
1 2
0 3

][
9
1

]
=

[
11

3

]
.

From Table 5.1 , yields the ciphertext KC. To encipher the pair MH, we
form the product [

1 2
0 3

][
13

8

]
=

[
29
24

]
However, there is a problem here, because the number 29 has no alphabet
equivalent (Table 5.1). To resolve this problem, we use the above remark.
Thus, we replace 29 by 3, which is the remainder after dividing 29 by 26. It
now follows from Table 5.1 that the ciphertext for the pair MH is CX . The
computations for the remaining ciphertext vectors are[

1 2
0 3

][
9
4

]
=

[
17
12

]
[

1 2
0 3

][
9

14

]
=

[
37
42

]
or
[

11
16

]
[

1 2
0 3

][
7
7

]
=

[
21
21

]
These correspond to the ciphertext pairs QL,KP, and UU, respectively.
Therefore, the entire ciphertext message is

KC CX QL KP UU

which, in most situations, will be sent as a single string with no spaces:

KCCXQLKPUU

�

R
• The Hill cipher in Example 5.1 is referred to as a Hill 2-

cipher because the plaintext was grouped in pairs and enci-
phered by a 2×2 matrix.
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• The plaintext can also be divided into triples and enciphered
using a 3×3 matrix of integer entries, which is known as a
Hill 3-cipher.

• In general, for a Hill n-cipher, plaintext is grouped into sets
of n letters and enciphered by an n×n matrix with integer
entries.
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5.3 Modular Arithmetic
A positive integer m is called the modulus in modular arithmetic, and any
two integers whose difference is an integer multiple of the modulus are
treated as "equal" or "equivalent" with respect to the modulus. To be more
specific, we include the following definition.

Definition 5.3.1 If m is a positive integer and a and b are any integers,
then we say that a is equivalent to b modulo m, written

a = b (mod m),

if a−b is an integer multiple of m.

� Example 5.2
7 = 2 (mod 5)

19 = 3 (mod 2)
−1 = 25 (mod 26)
12 = 0 (mod 4)

�

For any modulus m it ean be proved that every integer a is equivalent,
modulo m, to exactly one of the integers

0,1,2, . . . ,m−1

We call this integer the residue of a modulo m, and we write

Zn = {0,1,2, . . . ,m−1}

to denote the set of residues modulo m. If a is a non-negative integer, then
its residue modulo m is simply the remainder that results when a is divided
by m.
The residue can be found using the following theorem for any integer a.
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Theorem 5.3.1 For any integer a and modulus m, let

R = remainder of
|a|
m

Then the residue r of a modulo m is given by

r =

 R if a≥ 0
m−R if a < 0 and R 6= 0
0 if a < 0 and R = 0

� Example 5.3 Find the residue modulo 26 of
(a) 87,
(b)−38,
(c)−26.
Solution:
(a) Dividing |87|= 87 by 26 yields a remainder of R = 9, so r = 9. Thus,

87 = 9 (mod 26).

(b) Dividing | − 38| = 38 by 26 yields a remainder of R = 12, so r =
26−12 = 14. Thus

−38 = 14(mod 26).

(c) Dividing |−26|= 26 by 26 yields a remainder of R = 0. Thus,

−26 = 0 (mod 26).

�

The next definition explain the multiplicative inverse.

Definition 5.3.2 If a is a number in Zm , then number Zm is called a
reciprocal or multiplicative inverse of a modulo m if aa−1 = a−1a = 1
(mod m).

R It can be proved that if a and m have no common prime factors,
then a has a unique reciprocal modulo m; conversely, if a and m
have a common prime factor, then a has no reciprocal modulo m.
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� Example 5.4 The number 3 has multiplicative inverse in modulo 26
because 3 and 26 have no common prime factors. This multiplicative
inverse can be obtained by finding the number x in Z26 that satisfies the
modular equation

3x = 1 (mod 26).

Although there are general methods for solving such modular equations, it
would take us too far afield to study them. However, because 26 is relatively
small, this equation can be solved by trying the possible solutions, 0 to 25,
one at a time. With this approach we find that x = 9 is the solution, because

3 ·9 = 27 = 1 (mod 26).

Thus,
3−1 = 9 (mod.

�

� Example 5.5 The number 4 has no multiplicative inverse in modulo 26,
because 4 and 26 have 2 as a common prime factor �

For future reference, in Table 5.2 we provide the following multiplicative
inverse in modulo 26:

a 1 3 5 7 9 11 15 17 19 21 23 25
a−1 1 9 21 15 3 19 7 23 11 5 17 25

Table 5.2: multiplicative inverse in Modulo 26
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5.4 Deciphering

Every useful cipher must have a procedure for decipherment. In the case of
a Hill cipher, decipherment uses the inverse (mod 26) of the enciphering
matrix. To be precise, if m is a positive integer, then a square matrix A with
entries in Zm is said to be invertible modulo m if there is a matrix B with
entries in Zm such that

AB = BA = I (mod m).

Assume that

A =

[
a11 a12
a21 a22

]
,

is invertible modulo 26 and this matrix is used in a Hill 2-cipher. If

p =

[
p1
p2

]
,

is a plaintext vector, then

c = Ap(mod 26),

is the corresponding ciphertext vector and

p = A−1c(mod 26).

Thus, each plaintext vector can be recovered from the corresponding
ciphertext vector by multiplying it on the left by A−1(mod 26).

It’s crucial to know which matrices are modulo 26 invertible and how to
get their inverses in cryptography. We’re now looking into these questions.

In ordinary arithmetic, a square matrix A is invertible if and only if
det(A) 6= 0.
Now, the following theorem is the analog of this result in modular arith-
metic.



5.4 Deciphering 83

Theorem 5.4.1 A square matrix A with entries in Zm is invertible modulo
m if and only if the residue of det(A) modulo m has a multiplicative
inverse in modulo m.

Since the residue of det(A) modulo m will have a multiplicative inverse
in modulo m if and only if this residue and m have no common prime
factors, then we have the following corollary.

Corollary 5.4.2 A square matrix A with entries in Zm is invertible
modulo m if and only if m and the residue of det(A) modulo m have no
common prime factors.

The following corollary is useful in cryptography since the only prime
factors of m = 26 are 2 and 13.

Corollary 5.4.3 A square matrix A with entries in Z26 is invertible
modulo 26 if and only if the residue of det(A) modulo 26 is not divisible
by 2 or 13.

It easy to verify that if

A =

[
a b
c d

]
,

has entries in Z26 and the residue of det(A) = ad−bc modulo 26 is
not divisible by 2 or 13, then the inverse of A (mod 26) is given by

A−1 = (ad−bc)−1
[

a b
c d

]
(mod 26), (5.1)

where (ad−bc)−1 is the inverse of the residue of ad−bc (mod 26).

� Example 5.6 Find the inverse of

A =

[
5 6
2 3

]
,
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modulo 26.
Solution:

det(A) = ad−bc = 5 ·3−6 ·2 = 3

so from Table 5.2.

(ad−bc)−1 = 3−1 = 9(mod 26)

Thus, from (5.1),

A−1 = 9
[

3 −6
−2 5

]
=

[
27 −54
−18 45

]
=

[
1 24
8 19

]
(mod 26).

As a check,

AA−1 =

[
5 6
2 3

][
1 24
8 19

]
=

[
53 234
26 105

]
=

[
1 0
0 1

]
(mod26).

Similarly, A−1A = I. �

� Example 5.7 Decode the following Hill 2 -cipher, which was enciphered
by the matrix in Example 5.6

GTNKGKDUSK

Solution: From Table 5.1 the numerical equivalent of this ciphertext is

7 20 14 11 7 11 4 21 19 11

To obtain the plaintext pairs, we multiply each ciphertext vector by the
inverse of (obtained in Example 5.6 ):
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Figure 5.1:

From Table 5.1, the alphabet equivalents of these vectors are

ST RI KE NO WW

which yields the message

STRIKE NOW

�
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5.5 Breaking a Hill Cipher
Cryptographers are concerned with the security of their ciphers—that is,
how easily they can be broken—because the aim of encrypting messages
and information is to prevent “opponents” from knowing their contents
(deciphered by their opponents). We’ll wrap up this section with a look at
one approach for cracking Hill ciphers.

Assume you can able to obtain any associated plaintext and ciphertext
from an opponent’s message. Examining any intercepted ciphertext, for
example, you may be able to deduce that the message is a letter that starts
with DEAR SIR. We’ll demonstrate how, given a small amount of such
data, it’s possible to deduce a Hill code’s deciphering matrix and thus gain
access to the rest of the message.

The fact that a linear transformation is absolutely determined by its
values at a basis is a fundamental result in linear algebra. According to this
theory, if we have a Hill n-cipher, and if

P1 P2 ... Pn

are linearly independent plaintext vectors whose corresponding ciphertext
vectors

AP1 AP2 ... APn

are known, then there is enough information available to determine the
matrix A and hence A−1 (mod m).

The next theorem tells us that to find the transpose of the deciphering
matrix A−1, we must find a sequence of row operations that reduces C to I
and then perform this same sequence of operations on P.
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Theorem 5.5.1 Let p1,p2, . . . ,pn be linearly independent plaintext vec-
tors, and let c1,c2, . . . ,cn be the corresponding ciphertext vectors in a
Hill n-cipher. If

P =


pT

1
pT

2
...

pT
n


is the n×n matrix with row vectors pT

1 ,p
T
2 , . . . ,p

T
n and if

C =


cT

1
cT

2
...

cT
n


is the n×n matrix with row vectors cT

1 ,c
T
2 , . . . ,c

T
n , then the sequence of

elementary row operations that reduces C to I transforms P to
(
A−1

)T
.

The following example illustrates a simple algorithm for doing this.

� Example 5.8 The following Hill 2-cipher is intercepted:

IOSBTGXESPXHOPDE

Decipher the message, given that it starts with the word DEAR.
Solution:
Since the numerical equivalent of the known plaintext is

D E A R
4 5 1 18

and the numerical equivalent of the corresponding ciphertext is

I O S B
9 15 19 2
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so the corresponding plaintext and ciphertext vectors are

p1 =

[
4
5

]
↔ c1 =

[
9

15

]
p2 =

[
1

18

]
↔ c2 =

[
19

2

]
We want to reduce

C =

[
cT

1
cT

2

]
=

[
9 15

19 2

]
to I by elementary row operations and simultaneously apply these operations
to

P =

[
pT

1
pT

2

]
=

[
4 5
1 18

]
to obtain

(
A−1

)T . It is possible to do this.by adjoining P to the right of C
and applying row operations to the resulting matrix [C | P] until the left side
is reduced to I. The final matrix will then have the form[

I |
(
A−1)T

]
.

The computations can be carried out as follows:[
9 15 4 5

19 2 1 18

]
9−1r1=3r1→

[
1 45 12 15

19 2 1 18

]
→

We replaced 45 by its residue modulo 26.[
1 19 12 15

19 2 1 18

]
−19r1+r2→

[
1 19 12 15
0 −359 −227 −267

]
→
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[
1 19 12 15
0 1 147 399

]
5−1r2=21r2→[

1 19 12 15
0 1 17 9

]
−19r2+r2→[

1 0 −311 −156
0 1 17 9

]
→[

1 0 1 0
0 1 17 9

]
.

Thus, (
A−1)T

=

[
1 0

17 9

]
,

so the deciphering matrix is

A−1 =

[
1 17
0 9

]
,

To decipher the message, we first group the ciphertext into pairs and find
the numerical equivalent of each letter:

IO SB T G XE SP XH OP DE
915 192 207 245 1916 248 1516 45

Next, we multiply successive ciphertext vectors on the left by A−1 and find
the alphabet equivalents of the resulting plaintext pairs:
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Figure 5.2:

Finally, we construct the message from the plaintext pairs:

DE AR IK ES EN DT AN KS
DEARIKE SEND TANKS

�
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5.6 Exercise
1. Obtain the Hill cipher of the message

DARK NIGHT

for each of the following enciphering matrices:

(a)
[

1 3
2 1

]
.

(b)
[

4 3
1 2

]
.

2. In each part determine whether the matrix is invertible modulo 26. If so,
find its inverse modulo 26 and check your work by verifying that

AA−1 = A−1A = I(mod 26)

(a) A =

[
9 1
7 2

]
(b) A =

[
3 1
5 3

]
(c) A =

[
8 11
1 9

]
(d) A =

[
2 1
1 7

]
(e) A =

[
3 1
6 2

]
(f) A =

[
1 8
1 3

]
3. Decode the message

SAKNOXAOJX

given that it is a Hill cipher with enciphering matrix[
4 1
3 2

]
4. A Hill 2 -cipher is intercepted that starts with the pairs

SLHK
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Find the deciphering and enciphering matrices, given that the plaintext is
known to start with the word ARMY .
5. Decode the following Hill 2 -cipher if the last four plaintext letters are
known to be ATOM.

LNGIHGYBVRENJYQO
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Wish you all the best, Dr. A. Elrawy
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