
 

Introduction to the computer 

The computer was made to solve many problems. It initially solved mathematical and 

engineering problems. Then deal with the data for commercial purposes. Nowadays, it 

serves as a control tool in submarines, aircraft, and machinery production lines in factories. 

The computer does its work in all these areas by receiving data, processing it, and then 

outputting the output. 

Computer components: 

The computer consists of two main parts: 

1- Hardware 

2- Software A group of programs that control the work of the hard parts. 

The computer is characterized as a machine for multiple uses, unlike other machines that 

are designed to do only one job. This is due to the ability of a computer to be programmed 

with multiple and different programs to do multiple tasks. As well as to connect many other 

devices and equipment. 

Computer hardware: 

There are four types of computer hardware: 

1- Input units 

2- Output units 

3- Main memory 

4- The unit of therapy and logic 

Input and Output Units: 

Input devices insert data from the outside into the computer's memory. There are many 

input devices, including keyboard, disk drive, magnetic disk drive, scanner, and mouse. 

The output devices include: disk drive, magnetic drive, monitor, printer. 

Features of the computer: 

1- Its ability to perform in an automatic manner. 

2- Its ability to be programmed. 

Computers are divided according to their sizes into: 

1- Small size microcomputer 
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2- Medium size minicomputer 

3- Big size mainframe computer 

There are many problems in engineering and science that can be expressed in the form 

of differential equations such as problems of vibrational motion and problems of currents 

and voltages in circuits of alternating currents...and so on. However, the exact solution to 

such equations using differential laws may be difficult or non-existent in some cases. 

Therefore, we resort to solving these equations in approximate ways, by solving them 

numerically, which are long and time-consuming methods. So we use computer software. 

We will discuss here some of the mathematical methods used in the programs to solve these 

equations numerically. As well as some interpolation methods, i.e. supplementing what is 

missing from the data, and fitting, which is the conclusion of the best line or curve to pass 

through a set of data. 
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Introduction to Differences 
There is a branch of mathematics concerned with the differences between consecutive 

numbers in a series. The results of these differences are used in many applications, 

including calculating differential values that may be difficult to calculate by analytical 

methods. There are three types of differences:  

1. Forward differences 

2. Backward differences 

3. Central differences 

What is meant by forward differences? 

Suppose we have the equation Yn = 3n – 1 

Valid for values n = 1, 2, 3, ... , by substituting these values into the equation, we get 

the following values for the variable Y 2, 5, 8, 11, 14, .. 

The forward differences between the consecutive numbers in the results are: 

5 - 2 = 3, 8 - 5 = 3, 11-8 = 3, 14-11 = 3, .. 

The series of numbers and the series of differences are usually written as: 

2 5 8 11 19 results 

3 3 3 3 Front First Teams 

Also, suppose we have the equation: Yn = n2 – 3n –2 

For the values n = 1, 2, 3, .. the results and forward differences are in the following 

picture: 

– 4 – 4 – 2 2 8 16 results 

   0 2 4 6 8       front first teams 

   2 2 2 2 2nd front diff 

The numbers in the second row are the differences in the numbers in the first row, and 

the numbers in the third row are the differences in the numbers in the second row. The 

numbers of the second row are called the first difference of the first row, and the numbers of 

the third row are called its second differences. 

 

In general, if we assume that y1 , y2 , y3 , .. yn 
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are any consecutive numbers, the initial differences of which are given by the 

relationship 

∆yn = yn+1 - yn 

And its second differences are given by: ∆
2
yn = ∆yn+1 - ∆yn 

And its third difference is given by: ∆
3
yn = ∆

2
yn+1 - ∆

2
yn 

Thus, the table of numbers and their differences gives the first, second and third in the 

picture 

y1 y2 y3 y4 y5 

       ∆y1 ∆y2 ∆y3 ∆y4 ∆y5 

           ∆2y1 ∆2y2 ∆2y3 ∆2y4 ∆2y5 

               ∆3y1 ∆3y2 ∆3y3 ∆3y4 ∆3y5 

Etc 

Differentiation of a function related to the 

function of differences 

To calculate the differential of the function F (x) at a known value of (x), there are three 

ways to do this in an approximate way, by measuring the differential in terms of the 

differences between the values of this function. This process is called numerically function 

calculus. These methods are: 

1. Calculus in terms of the forward difference. 

2. Differential calculus in terms of posterior difference. 

3. Differential calculus in terms of central differences. 

What is differential? 

The differential of the function F(x) is defined in the following figure: 

 

      
x

xfxxf
xF

o 






)()(
lim)(1        →    (1) 

In order for this differential to be found numerically at a given value of x, ∆x must be made 

very small but not equal to zero. Differential is calculated by one of the three previous 

methods. 
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1- Forward difference approximation of the first 

derivative: 

We know that the differential of the function F'(x) is in the following form: 

 

x

xfxxf
xf

ox 






)(()(
lim)(  

  

And by making ∆x very small, then: 

  

x

xfxxf
xf


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

)()(
)(1      

 

 

 

 

 

 

 

 

 

Illustration of the first differential in terms of the forward difference 

    So if we want to find the value of f'(x) at x = xi, we choose another point that is ∆x 

forward at x = xi + 1 and thus: 

x

xifxxif
xf






)()(
)(1  

ii

i

xx

xifxf










1

1
)()(

  →    (2) 

∆x = xi+1 – xi   

 

x+∆x 

 

x 

F(x) 

x 
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2- Backward difference approximation of the first 

derivative  

We know from the above that 

 

x

xfxxf
xf

ox 






)()(
lim)(1  

As the value of ∆x is very small, then: 

x

xfxxf
xf






)()(
)(1  

If ∆x is chosen as a negative value (that is, a backward difference), then 

x

xfxxf
xf
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

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Illustration of the first differential in terms of the backward difference 

If we want to find F'(x) at x = xi, we can choose a point from which it returns 

by ∆x, which is x = xi - 1 and thus: 

x 
x 

F(x) 

x-∆x 
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where ∆x = x i – x i – 1 

Example1 

If the velocity of a missile is given by the following relationship: 

t
tX

X
tv 8.9

21001014

1014
ln2000)(

4

4











  ,                   300  t  

Use forward differential calculus to determine acceleration at t=16s, use a 

difference of ∆t=2s. 

The solution: 

From equation (2) 

t

tvtv
ta ii




  )()(

)( 1  

2

,16





t

ti
 

ti + 1 = ti + ∆t  

  = 16 + 2 = 18  

2

)16()18(
)16(

vv
a


  

Substitute for V(16) , V(18) 

)18(8.9
)18(21001014

1014
2000)18(

4

4











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= 453.02 m/s  

)16(8.9
)16(20001014

1014
2000)16(

4

4













 InV  

 = 392.07 m/s  

And therefore: 

2

)16()18(
)16(

vv
a


  

2

07.39202.453 
   = 30.475 m/s

2  

This is the approximate solution in terms of the speed difference 

To find the true value of the acceleration at 16s., a(16), we differentiate the 

equation: 

t
t

IntV 8.9
21001014
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2000)(

4
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This is as follows: 

 )()( tV
dt

d
ta   

It is known that: 
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t

t

3200

4.294040




  

)16(3200

)16(4.294040
)16(




a  

= 29.674 m/s
2 
 

By comparing the approximate value with the real value, the amount of 

error due to the approximation can be known. 

Example 2:  

If the speed of a missile is given by the relationship 

8.9
21001014

1014
2000)(

4

4















t
IntV        30 to  

Calculate using the backward difference approximation of the first differential 

the acceleration at t = 16s. , using a difference of ∆t = 2s. 

 

The solution: 

For relationship (3)   
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2/915.28
2

24.33407.392

2

)14()16(
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
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
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By knowing the true value of the differential, the error can be calculated. 
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Derivative of the forward difference approximation From 

Taylor series 

Taylor's theorem states that if the value of the function F (x) is known at the 

point xi and all its derivatives at that point, provided that the derivatives are 

continuous between xi and xi + 1, then the value of the function at xi + 1 is 

given by the following relationship: 

........)(
!2

)(
))(()()( 2

11

1

1

11

  iiiiiii xx
xif

xxxfxfxF  

To make it easier, we make up for  ∆x = xi + 1 – xi   

........)(
!2
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)()()( 2
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1   x
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..........)(
21

)()()(
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11

11
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xo
x

xfxf
xf

x
xf

x

xfxf
xf

ii
i
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i

















 

Where o (∆x) shows that the approximation error is a function of (∆x). It is 

noted that we used the = sign here instead of the previous one. It is also noted 

that the solution resulting from the forward difference is greater than the true 

value by an amount proportional to (∆x) as shown in Example (1). 
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Derivative of the backward difference 

approximation From Taylor series 

........)(
!3

)(
)(

!2

)(''
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1  x
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
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It is clear that the degree of accuracy is a function of x  therefore, the 

accuracy increases with a decrease x . 

Central difference approximation of the 

first derivative. 

We use the central difference instead of the front difference or the back difference in order 

to reach greater accuracy in determining the differential numerically. 

From the Taylor expansion, we know that in the case of forward derivative: 
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Also, in the case of background differences: 
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Subtracting Equation 2 from Equation 1 
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This equation is more accurate in the first calculus because the error is a 

function of the square of the small distance ∆ x. 

Example 

   If the speed of a missile is given by the relationship 

8.9
21001014

1014
2000)(

4

4















t
IntV        30 to  

Calculate the first differential using the central differences at t = 16s. , using a 

difference of ∆t = 2s. 

 

The solution: 
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
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2/659.29
4

24.33402.453
)16( sma 







 
  

A more accurate value than that obtained using the forward or backward 

differential. 

 

 

 

 

 

 

           

 

 An illustration of the first differential in terms of the central difference 

 

 

 

 

 

 

 

 

x x+∆x 
x 

F(x) 

x-∆x 
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Chapter Two 

Forward differences 
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Forward differences 

 
Forward differences are used when dealing with the beginnings of a data 

series. Assuming that there are known values at specific points of the 

independent variable xi [the values of xi are called indices], each value is 

assigned to yi as the dependent variable. Assuming that the indices xi are on 

equal dimensions such that xi + h - xi = h, the resulting differences in values for 

the dependent variable yi are given by the relationship: 

∆yi = yi+1 – yi    → (1)  

Putting the following formulas for ease, 

yi+1 = yr , yi+2 = y2r , yi+3 = y3r …  

The relationship between yi and xi can be drawn in the following figure: 

 

 

 

 

 

 

 
 

 

Therefore, equation (1) takes the following form: 

Y2r 

 
Yr 

 
Yi 

 

Xi          Xi+h Xi+2h 
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∆yi = yr – yi    → (0)  

It is called the primary forward difference equation. 

We note that we calculated the initial forward differences ∆yi in terms of the 

values of the dependent variable, (yi) (i) in this case it expresses the order of 

the number in the data series expressing the results. 

The differences of the first forward differences are called the second forward 

differences, and they are calculated as follows: 

∆
2
yi = ∆(∆yi) = ∆yi+1 - ∆yi  

   = ∆yr - ∆yi  

   = (y2r – yr ) – ( yr – yi)  

   = y2r – yr – yr + yi  

   = y2r – 2yr + yi       → (3)  

The third forward difference can also be calculated: 

∆
3
yi = ∆(∆

2
yi)  

 = ∆( y2r – 2yr + yi )  

 = ∆y2r - 2∆yr + ∆yi  

 = (y3r  - y2r ) – 2 ( y2r – yr ) + ( yr – yi )  

 = y3r – y2r – 2y2r + 2yr + yr – yi  

∆
3
yi = y3r – 3y2r + 3yr – yi     → (4) 

أو   r = i + 1لا تنسى بأن  i = r - 1 
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Similarly, the fourth forward difference can be calculated: 

∆
4
yi = ∆ ( ∆

3
yi )  

  = ∆( y3r – 3y2r + 3yr – yi )  

= ∆y3r - 3∆y2r + 3∆yr - ∆yi  

= ( y4r – y3r ) – 3( y3r – y2r ) + 3( y2r -  yr ) – ( yr – yi )  

= y4r – y3r – 3y3r + 3y2r + 3y2r – 3yr – yr + yi  

∆
4
yi = y4r – 4y3r + 6y2r – 4yr + yi    → (5)  

From the above, a general law can be developed for calculating the forward 

nth difference at any point (i) in the series, in the following form: 

∆
n
yi = ∆

n – 1
yi+1 - ∆

n-1
yi  

For example, ∆
3
yi, which is the third forward difference at point i, can be 

found as follows: 

∆
3
yi = ∆

2
yi+1 - ∆

2
yi                           → (0)  

Applying the law to the first term of the right-hand side, we find ∆
2
yi+1 = 

∆yi+2 - ∆yi+1  ……………………………*  

 **Applying the law to the second term on the right side, we find 

 ∆
2
yi = ∆yi+1 - ∆yi ……………………………………** 

From the equation (*), we get: 

∆
2
yi+1  = ( yi+3 – yi+2 ) – ( yi+2 – yi+1 )  

  = yi+3 – yi+2 – yi+2 + yi+1  
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  = yi+3 – 2yi+2 + yi+1  

From the equation (**), we get: 

∆
2
yi = ( yi+2 – yi+1 ) – ( yi+1 – yi )  

  = yi+2 – yi+1 – yi+1 + yi  

  = yi+2 – 2yi+1 + yi  

Substituting in equation (1) for ∆
2
yi , ∆

2
yi+1, then: 

∆
3
yi = ( yi+3 – 2yi+2 + yi+1 ) – ( yi+2 – 2yi+1 + yi )  

  = yi+ 3 – 2yi+2 + yi+1 – yi+2 + 2yi+1 – yi  

= yi+3 – 3yi+2 + 3yi+1 – yi  

If we want to calculate the third difference at point i = o, for example, which is 

the first point in the series of results, then: 

∆
3
yo = y3 – 3y2 + 3y1 – yo   

And that's by substituting for i = o in the previous ∆
3
yi. 

Also, the third difference at the fourth point, for example i = 3, then 

∆
3
y3 = y6 – 3y5 + 3y4 – y3  

Also, ∆
3
y8 at the ninth point is  

∆
3
y8 = y11 – 3y10 + 3y9 – y8  

And so on .... 

Example: 

prove that 
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∆
4
yo = y4 – 4y3 + 6y2 – 4y1 + yo  

The solution: 

from the definition 

∆
4
yo = ∆

3
y1 - ∆

3
y0      → (1) 

Whereas, ∆
3
yo is obtained which is equal to: 

∆
3
yo =  y3 – 3y2 + 3y1 – yo  

Then ∆
3
y1 is of the same form by increasing the lower evidence (as it 

progresses) by 1 . 

∆
3
y1 = y4 – 3y3 + 3y2 – y1  

Compensation in (1) 

∆
4
yo = y4 – 3y3 + 3y2 – y1 – y3 – 3y2 – 3y1 + yo  

 = y4 – 4y3 + 6y2 – 4y1 + yo  

which is required,,,, 

                    

Example: To calculate the forward variances 

Suppose we have the equation yn = n
2
 – 3n – 2 valid for the values of n = 1, 2, 

3, 4 , ... Find the first forward difference and the second forward difference at 

n = 3 

The solution: 

For values of n = 1 , 2 , 3 , 4 , 5 , ... yn has the following results 
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y1  y2  y3  y4  y5  

-4  -4  -2  2 8 

The equation for the first forward difference is 

∆yi  = yr – yi  

∆y3 = y4 – y3  

 = 2 – (-2) = 4  

The equation of the second forward difference 

∆
2
yi

 
  = y2r – 2yr + yi  

∆
2
y3

 
  = y5 – 2y4 + y3  

 = 8 – 2 (2) + (-2) = 8 – 4 – 2 = 2  

To verify this solution, we write the results series and the first two front 

difference series, respectively, as follows: 

y1  y2  y3  y4  y5    

-4 -4 -2 2 8  Results 

      0        2       4       6          first forward difference 

             2  2  2                 second forward difference 

From it, it is clear that the first forward difference at y3 is 

2 – (-2) = 4  

And that the second forward difference at y3 is  
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6 – 4 = 2  

The first, second and third forward differences and can be calculated by 

the following general rule: 

1

0

)1( 















  k

k

i

k

i

i

i

k yy  

This law gives the i term in the k . difference 

  That is, k is the order of the difference (first, second, third, .....) and i is the 

order of the term inside it. 

The term is a and is given as in the following table for values of k from 1 to 5, 

and values of I from 0 to .5 

5 4 3 2 0 1 i 

    0 0 0 

   0 2 0 2 

  0 3 3 0 3 

 0 4 6 4 0 4 

0 5 01 01 5 0 5 

for example                                                 

3
1*2

2*3

!2

3
,........3

1

3

!1

3
,.....4

1*2*3

2*3*4

!3

4 )2()1()3(

  

 

Example: using the law 1

0

)1( 















  k

k

i

k

i

i

i

k yy   

k 
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Calculate the first forward difference iy  

We put in the law k = 1, i changes from 0 to 1. 

First: by setting k=1 , i=0 

101

1

0

0

0 )1( yyy 












   

Then by setting k=1 , i=1 

00

1

1

1

1 )1( yyy 












  

Adding the two previous equations, 

01 yyyi   

This is the first forward difference. 

Second forward difference 

To calculate the second forward difference, the general law takes the 

following form: 

i

ii

i

i yy 















  2

22

0

2 )1(  

With i=0 it is 

  202

2

0

0

0

2 1 yyy 












   

With i=1 it is 
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  112

2

1

1

1

2 21 yyy 












   

With i=2 it is 

  022

2

2

2

2

2 1 yyy 












   

Adding the previous three equations, we get  

012

2 2 yyyyi   

In the same way, the third forward difference can be calculated 

Where the common law takes the following form: 

i

ii

i

i yy 















  3

33

0

3 )1(  

Putting i = 0 we get 

   303

3

0

0

0

3 1 yyy 












   

Putting i = 1 we get 

   213

3

1

1

1

3 31 yyy 












   

Putting i = 2 we get 

   123

3

2

2

2

3 31 yyy 












   

Putting i = 3 we get 
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  033

3

3

3

3

3 1 yyy 












   

Sum up the previous four equations  

0123

3 33 yyyyyi   

The fourth forward difference can also be calculated, 

Where the common law takes the following form: 

i

ii

i

i yy 















  4

44

0

4 )1(  

Putting i = 0 we get 

   404

4

0

0

0

4 1 yyy 












   

Putting i = 1 we get 

   314

4

1

1

1

4 41 yyy 












   

Putting i = 2 we get 

   224

4

2

2

2

4 61 yyy 












   

Putting i = 3 we get 

   1134

4

3

3

3

4 4
6

24
1 yyyy 













   

Putting i = 4 we get 
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   044

4

4

4

4

4 1 yyy 












   

Adding the previous five equations, we get  

01234

4 464 yyyyyyi   

The previous law can take the following form to calculate the forward 

difference 

mki

k

m

k

m

m

i

k yy 















 

0

)1(  

Where i expresses the term number in the original data series for which the 

forward difference is to be calculated, and it can take the values 0, 1, 2 .... for 

the first, second, third term ..... respectively. 

K expresses the rank of the front teams and takes the values 1, 2, 3, .... for the 

first, second, third, ... and so on. m  

The term number in the resulting difference equation takes values from 0 to 

k+1. 

Therefore, for the first frontal teams we have 

k=1 

m=0, 1 

So the first term from the first difference law we get by setting m=0 and k=1 
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01

1

0

0)1( 












 ii yy 

= 11*1*1   iii yyy 

The second term of the first difference law is obtained by setting m=1 and k=1 

11

1

1

1)1( 












 ii yy 

iii yyy  *1*1 

 

The law of the first forward difference is the sum of the previous two terms 

yiyy ii  1  

Second forward difference law 

In this case, k = 2 is set, so m = 0, 1, 2 

We get the first term by putting m = 0 into the law mi

mm

m

i yy 












  2

22
2 )1(  

We get the first term by putting m = 0 into the law, so it takes the following 

form 

2202

2

0

02 *1*1)1(  












 iiii yyyy 

Putting m = 1 we get the second term 

1112

2

1

12 2*2*1)1(  












 iiii yyyy 
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Putting m = 2, we get the third term 

iiii yyyy 












  2222

2

2

22 *1*1)1( 

iiii yyyy   12

2 2 

irri yyyy  22

2  
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Chapter Three 

Backward differences
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Backward differences  

~~~~~~~~~ 

We need to deal with backward differences when we're dealing with the end of 

the data series. If we assume that for every value of xi there is a value yi of the 

dependent variable, and assuming that the indices xi are on equal dimensions 

so that xi - xi-1 = h, then the differences of the resulting values of the 

dependent variable yi are given by: 

 yi = yi – yi-1                                                         → (1)  

This is called the first posterior difference 

Putting the following dye for ease 

Yi-1  =  yL , yi-2  =  y2L , yi-3  =  y3L , …  

The relationship between xi and yi can be drawn as follows: 

 

 

 

 

So we take equation (1) the following form: 

Yi 

 
YL 

 
Y2L 

 

Xi+2h  Xi-h          Xi 
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 yi = yi – yL    → (2)  

It is called the posterior-primary difference equation. i, as in the 

aforementioned frontal differences, expresses the order of the number in the 

series of results. 

The differences in the first backward differences are called the second 

background differences: 


2
yi  =   ( yi )  

 =   ( yi – yL )  

 =  yi -  yL  

 = ( yi – yL ) – ( yL – y2L )  

 = yi – yL – yL + y2L  

 = yi – 2yL + y2L     → (3)  

Notes that:L = i – 1  ,  2L = i – 2   ,   3L = i – 3  , …..  

The third backward difference can also be calculated 


3
yi =   (

2
yi )  

 =   ( yi – 2yL + y2L )  

 =  yi - 2 yL +  y2L  

 = ( yi – yL ) -2 ( yL – y2L ) + ( y2L – y3L )  

 = yi – yL – 2yL + 2y2L + y2L – y3L  

 = yi – 3yL + 3y2L – y3L     → (4)  
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The fourth backward difference can also be calculated: 


4
yi =   (

3
yi )  

 =   ( yi – 3yL + 3y2L – y3L )  

 =  yi - 3 yL + 3 y2L -  y3L  

 = ( yi – yL ) -3 ( yL – y2L ) +3 ( y2L – y3L ) – ( y3L – y4L )  

 = yi – yL – 3yL + 3y2L + 3y2L – 3y3L – y3L – y4L  

 = yi – 4yL + 6y2L – 4y3L + y4L    → (5)  

Examples of calculating backward variances: 

Suppose we have the equation  yn = n
2
 – 3n – 2   

Valid for n = 1, 2, 3, 4 , ... find the first backward difference and the second 

backward difference at n = 3 

The solution: 

For the values n = 1, 2, 3, 4, 5, the results for yn have the following sequence: 

y1  y2  y3  y4  y5  

-4  -4 -2 2 8  

The equation for the first backward difference is 

 yi  = yi – yL  

 = y3 – y2  

 = -2 – ( -4)  

 = 2  
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The second backward difference equation is 


2
yi  = yi – 2yL + y2L  

 where, i=3, L = i-1 = 2, 2L = i -2 = 1 

= y3 – 2y2 + y1                     

 = -2 -2 (-4) + (-4)  

 = -2 + 8 – 4  

 = 2  

To verify this solution, we write the results series and the first backward 

difference series, then the second backward difference series as follows 

y1  y2  y3  y4  y5  

-4  -4  -2  2 8    Output 

 0 2 4 6   First backward differences 

  2 2 2    second backward differences 

From it it is clear that the first backward difference at y3 is 

- 2 –(-4) = - 2 + 4 = 2  

and that the second backward difference at y3 is 

2 – 1 = 2  

Deduce backward variance formulas from the law: 

mi

k

m

k

m

m

i

k yy 















 

0

)1(  
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where i expresses the term number in the original data series for which the 

backward difference is to be calculated, and it can take the values 0, 1, 2 .... for 

the first, second, third term ..... respectively. 

K expresses the rank of the backward difference and takes the values 1, 2, 3, 

.... for the first, second, third, ... and so on. 

m is the number of the term in the resulting difference equation (formula) and 

takes the values from 0 to k+1. 

Example 1: Derive the formula for the first posterior difference from the 

relationship mi

k

m

k

m

m

i

k yy 















 

0

)1(  

The solution: 

Since what is required is to deduce the first posterior difference formula, k = 1 

and therefore m takes the values 0, 1. 

Substituting k = 1 and m = 0 into the relationship 

mi

k

m

k

m

m

i

k yy 















 

0

)1(  

then 

iiii yyyy 












  *1*1)1( 0

1

0

0  

Substituting for k=1 and m=1 we get 
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111

1

1

1 *1*1)1(  












 iiii yyyy  

Thus, the final formula for the first back difference is as follows: 

1 iii yyy  

You can write in the image: 

Lii yyy   

Example 2 

Derive the formula for the second back difference from the relationship 

mi

k

m

k

m

m

i

k yy 















 

0

)1(  

The solution: 

Since what is required is to derive the formula for the second back difference, 

then 

k=2, so m takes values of 0, 1, 2. 

Substituting k=2 and m=0 into the relationship, 

 mi

k

m

k

m

m

i

k yy 















 

0

)1(  

we get 

Substituting for k=2 and m=0 

iii yyy 












 0

2

0

02 )1(  

Substituting for k=2 and m=1 

11

2

1

12 2)1(  












 iii yyy  

Substituting for k=2 and m=2 
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22

2

2

22 )1(  












 iii yyy  

21

2 2   iiii yyyy  

This can be written in the formula 

LLii yyyy 2

2 2   
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Chapter Four 

Central Differences 
~~~~~~~~~ 

 
 

 



38 

 

Central Differences (Mean Central 

Differences) 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

The first central difference: 

2

1

2

1



ii

yyyi    →                         

The second central difference: 

)(2 yiyi    

Lir

Liir

ii

ii

yyy

yyyy

yy

yy













2

)(

)(

2

1

2

1

2

1

2

1





   →  

The third difference: 

yi 

yi+1/2 

yr 

yr+1/2 

yi-1/2 

yL 

yL-1/2 

Y 

X 
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 

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

23

33

22

2

2

2

)(






























































Liir

Liiiir

Liiiir

Lir

Lir

ii

yyyy

yyyyyy

yyyyyy

syyy

yyy

yy







 →  

Similarly the fourth, fifth, ....... central difference can be calculated. 

Deduce central difference formulas 

The formulas for central differences can be deduced from the following 

relationships: 

First: Formulas for central differences with even orders (second difference, 

fourth difference, sixth difference, ....) 

The even-order central difference formulas are derived from the following 

relationship: 

   mki

k

m

k

m

m

i

k yy 














22
2 )1(  

Where i expresses the number of the term in the original data series for which 

the central difference is to be calculated, and it can take the values 0, 1, 2 .... 

for the first, second, third terms ..... in order. 
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K expresses the rank of the central teams and takes the values 1, 2, 3, .... for 

the first, second, third, ... and so on. 

m is the number of the term in the resulting difference equation (formula) and 

takes the values from 0 to 2k. 

Example 1: 

Derive the second central difference formula from the relationship 

mki

k

m

k

m

m

i

k yy 














22
2 )1(  

Solution: To calculate the second central difference, k = 1 and therefore m 

takes the values 0, 1, 2  .  

We get the following relations 

With k=1 and m=0 

101

2

0

02 )1(  












 iii yyy  

With k=1 and m=1 

iii yyy 2)1( 11

2

1

12 












   

With k=1 and m=2 

121

2

2

22 )1(  












 iii yyy  
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11

2 2   iiii yyyy  

Liri yyyy  22  

In the same way, the formula for the fourth and sixth central difference can be 

deduced. 

Second: Forms of central differences with odd ranks (first difference, third 

difference, fifth difference, ....) 

The odd-order central difference formulas are derived from the following 

relationship: 

   mki

k

m

k

m

m

i

k yy 




















  1

1212

2

1

12 )1(  

Example: 

  Derive the first central difference formula from the relationship 

mki

k

m

k

m

m

i

k yy 




















  1

1212

2

1

12 )1(  

Solution: To calculate the first central difference, k = 0 and therefore m takes 

the values 0, 1. 

We get the following relations: 

With k=0 and m=0 . 

. 
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1010

1

0

0

2

1 )1( 















 ii

i
yyy  

With k=0 and m=1 . 

 ii
i

yyy 












 


110

1

12

1 1)1(  

Adding the previous terms 

 ii
i

yyy  


1

2

1  

Subtract ½ from the evidence  

2

1

2

1



ii

i yyy  

Example: 

Derive the formula for the third central difference from the relationship 

mki

k

m

k

m

m

i

k yy 




















  1

1212

2

1

12 )1(  

Solution: To calculate the third central difference, k = 1 and therefore m takes 

the values 0,1,2,3 

We get the following relations: 

With k=1 and m=0 . 

we get 

2011

3

0

0

2

1

3 )1( 















 ii

i
yyy  
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With k=1 and m=1 . 

1111

3

1

1

2

1

3 3)1( 















 ii

i
yyy  

 With k=1 and m=2 . 
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


 


  

With k=1 and m=3 . 
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
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





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i
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Add the previous limits 
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Subtracting ½ of the evidence 
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The mean value of the function 

From the previous figure, we find that it is the mean of yr + yi, that is , :  

 

We also find that: 

)(
2

1

2

1 Li
i

yyy 


 

If we take µ (the middle operator) or the mean operator, then: 

)(
2

1

2

1 ir
i

yyy 


   →  

like that        )(
2

1

2

1

2

1



ii

i yyy  

If we add this effect to the equation for the first difference: 

2

1

2

1



ii

i yyy  

)(
2

1

2

1

2

1

2

1

2

1

)]()[(
2

1

2

1

2

1

Lr

Liir

Liir

ii
i

yyyi

yyyy

yyyy

yyy














  →  

By adding this effect to the second mean difference equation: 

μ 2 yi = μ   (  yi)  

        = μ ( yr – 2yi + yL )  

 ir
i

yyy 
 2

1

2

1
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= μyr – 2μyi +μyL ) 

        =½ ( yr + ½ + yi + ½ ) – 2 * ½ ( yi+ ½ + yi - ½ ) + ½ ( yi -½ + yL -½ )  

 = ½ yr +½ + ½ yi +½ -yi + ½ - yi -½ + ½ yi - ½ +1/2 yL-1/2 

= ½ yr + ½ - ½ yi+½ - ½ yi - ½ +½ yL -½  

μ 2 yi = ½ ( yr + ½ - yi + ½ - yi - ½ + yL - ½ )                      → 3 

By adding this indicator to the third average difference equation: 

  μ 3 yi = μyr+ ½ - 3μyi +½ +3μyl - ½ - μyL-1/2 

= ½ (y2r+yr)-3/2(yr+yi)+3/2(yi+yL)- ½ ( yL+y2L) 

= ½ { y2r + yr – 3yr – 3yi + 3yi + 3yL– yL– y2L}  

= ½ { y2r – 2 yr + 2yL– y2L}     
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Chapter Five 

Interpolation 
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What is meant by Conclusion or 

Interpolation? 

1- Definition of Interpolation 

Interpolation is the process of finding a value y when a given value x  is not present in 

the given points table. 
 This process is called the issue of completion. Two types of issues must be 

distinguished: 
 First issue: 

    The required point is inside the points of the table and thus the process in this case is 

called an internal interpolation. 

The second issue: 

   That the required point is outside the points of the table, and thus the process is 

called in this case an external extrapolation. 

Assuming that there is a function y= f(x) defined only at certain points (x0,y0), (x1,y1), 

(x2,y2), ...(xn,yn) how can we find the value of the function at any value other than x those 

values? This can be done using a continuous function f (x) representing that data such that 

the function f(x) passes through n+ 1 point, where n is the degree of the function used. 

Thus, the value of the function can be calculated at any point, and this is called 

Interpolation. Of course, if x is outside the range of f(X), setting the value of the function at 

x in this case is called extrapolation.  

 

 

We then come to choose the type of function that should be used to represent 

the data. 
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It is common for polynomial functions to be used for the following 

adjectives: 

(0 ) Ease of computation. 

(2 ) Ease of differentiation. 

(3 ) Ease of integration. 

By comparing it with sin or exponential functions. 

How to work polynomial  Interpolation 

A polynomial can be done to represent a function in a number of ways, including: 

1. Direct method of Interpolation. 

2. Newton’s divided difference method. 

3. Lagrange interpolation method. 

4. Sterling method 

First: The direct method of making a polynomial: 

The direct method is based on that, assuming that we have (n+1) points, a 

polynomial of degree (n) can be done as follows: 

Y= a0 + a1 x + a2 x
2 

+…. an x
n 
 →   

 

across the data so that an ... , a1, a0 are n+1 real constants. Since we have n +1 

values of y and n+1 values of  x, we can do n+ 1 equation. Then, n+1 constants 

are calculated, which are a0, a1,a2..an. By knowing these constants, the 
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function expressing the data number   is known. By substituting the value of 

x in it, the value of y to be calculated is known. 

But what degree of polynomial will we use? Is it possible to use a polynomial 

of the first degree (which is called a linear equation), or of the second degree 

(a quadratic equation), or of the third degree (cubic), and what is the difference 

in the accuracy of the result? This can be illustrated by an example 

Example 1: The vertical velocity of a rocket is given as in the following table as a function 

of time 

 

30 22.5 20 15 10 0 ts 

901.67 602.97 517.35 362.78 227.04 0 Vm/s 

Determine the missile's velocity at t=l6s using the direct method and a first-order 

polynomial 

Solution: Since we are required to use an equation of first degree (linear equation), the 

velocity equation is in the next picture 

  

V(t) = a0 + a1 t  

And its graph is as follows: 
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Velocity versus time of the 
rocket 
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Since we are required to use an equation of the first degree (linear equation). 

The equation for velocity is in the following image: 

v(t) = a0+a1t 

Its graph is as follows: 

 

 

 

 

 

 

 

 

Since the equation is of first degree n = 1 we choose n + 1 Points any two 

points. These two points must surround the required point in order for that 

point to be within the scope of application of the deduced equation. 

Since the required point t = 16s l∆, the two points must be 

t1 = 20 , t0 = 15 

and where we have 

t0 = 15, v( t0) = 362.78 

Draw a straight line to represent the data for 
the missile 

x0,y0 

x1,y1 

f1(x) 

y 

X 
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t1= 20, v(t1) = 517.35  

We have two equations 

V (15) = a0+ a1(15) = 362.78  

V (20) = a0+ a1(20) = 517.35  

The two equations can be written in matrix form: 



























35.517

78.362

201

151

1

0

a

a
 

By solving the above two equations, you get: 

a0 = -100.91  

a1 = 30.913  

Thus, the proposed equation is: 

v(t) = -100.91 + 30.913            15 ≤ t ≤ 20  

To calculate the velocity at t= 16s, we substitute in this equation the value of t 

V(16) = 393.7 m/ s  

 

Example 2: 

The velocity of a missile is given vertically as in the following table: 

30 22.5 20 15 10 0 t= s 

901.67 602.97 517.35 362.78 227.04 0 v(t) m/s 

Determine the missile's velocity at t = 16 s using the direct method and a 

quadratic polynomial. 
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Solution: To make an equation of the second degree (a quadratic 

equation) that will be of the following form: 

v(t) = a0 + a1t + a2t
2
 

It is graphically depicted as:  

 

 

 

 

 

Since we want to deduce the missile's velocity at t = 16 s, we choose three 

points (n + 1) that include the value (16 s). These points are: 

T0=10 ,  t1 = 15 ,    t2 = 20  

The following equations are given for each point: 

v(10) = a0 + a1(10) + a2(10)
2
 = 227.04  

v(15) = a0 + a1(15) + a2(15)
2
 = 362.78  

v(20) = a0 + a1(20) + a2(20)
2
 = 517.35 

We put these equations in matrix form as follows: 



















































35.517

78.362

04.227

400201

225151

100101

2

1

0

a

a

a

 

x0,y0 

x1,y1 

 

y 

X 

x2,y2 
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This matrix can be solved by the Gaussian method for forward elimination and 

backward substitution or by the LU method. Then we get: 

a0 = 12.001  ,      a1 = 17.740  ,        a2 = 0.37637  

And the required equation is: 

v(t) = 12.001 + 17.790t + 0.37637 t
2
  10 ≤ t ≤  20  

Substituting the value of t = 16s into this equation, we get v(16): 

v(16)  = 12.001 + 17.790 (16) +0.37637 (16)
2 
  

            = 392.19   m/s  

From the two previous examples it is possible to calculate  :
c  the absolute 

relative approximate error arising from the transition from a first degree 

equation to a second degree equation: 

%38502.0

100
19.392

70.39319.392






c  
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Newton's Divided Difference Interpolating Polynomral Method 

To illustrate this method, we will start with linear and quadratic interpolation, then, the 

general form of the Newton’s Divided Difference Polynomial method will be presented.   

 

1.3.1. Linear interpolation 

 

Given ),,( 00 yx  ),,( 11 yx  fit a linear interpolant through the data.  Note taht )( 00 xfy   and 

)( 11 xfy  , assuming a linear interpolant means: 

 

)()( 0101 xxbbxf   

 

Since at 0xx  :  00010001 )()()( bxxbbxfxf  , 

and at 1xx  :   )()()( 0110111 xxbbxfxf  )()( 0110 xxbxf   

Then 

 
01

01
1

)()(

xx

xfxf
b




  

so 

)( 00 xfb   

 
01

01
1

)()(

xx

xfxf
b




  

And the linear interpolant, 

      

)()( 0101 xxbbxf   

 

Becomes:     )(
)()(

)()( 0

01

01
01 xx

xx

xfxf
xfxf 




  
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1.3.2. Quadratic interpolation 

 

Given ),,( 00 yx ),,( 11 yx  and ),,( 22 yx  fit a quadratic interpolant through the data.  Note that 

),(xfy  ),( 00 xfy  ),( 11 xfy   and ),( 22 xfy  assume the quadratic interpolant )(2 xf  

given by 

 ))(()()( 1020102 xxxxbxxbbxf   

 

At 0xx   

 ))(()()()( 100020010020 xxxxbxxbbxfxf   

     0b  

           )( 00 xfb   

At 1xx   

 ))(()()()( 110120110121 xxxxbxxbbxfxf   

    )()()( 01101 xxbxfxf   

then 

          
01

01
1

)()(

xx

xfxf
b




  

At 2xx   

 ))(()()()( 120220210222 xxxxbxxbbxfxf   

 ))(()(
)()(

)()( 1202202

01

01
02 xxxxbxx

xx

xfxf
xfxf 




  

then 

         
02

01

01

12

12

2

)()()()(

xx

xx

xfxf

xx

xfxf

b











  

 

Hence the quadratic interpolant is given by 
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 ))(()()( 1020102 xxxxbxxbbxf   

 

))((

)()()()(

)(
)()(

)()( 10

02

01

01

12

12

0

01

01

02 xxxx
xx

xx

xfxf

xx

xfxf

xx
xx

xfxf
xfxf 
















  

 

 

 

 

 

Figure Quadratic interpolation 

1.3.3. General Form of Newton’s Divided Difference Polynomial 

 

In the two previous cases, we found how linear and quadratic interpolation is derived by 

Newton’s Divided Difference polynomial method.  Let us analyze the quadratic polynomial 

interpolant formula 

 ))(()()( 1020102 xxxxbxxbbxf   

where 

      )( 00 xfb   
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01

01
1

)()(

xx

xfxf
b




  

      
02

01

01

12

12

2

)()()()(

xx

xx

xfxf

xx

xfxf

b











  

Note that ,0b ,1b  and 2b  are finite divided differences.  ,0b ,1b  and 2b  are first, second, 

and third finite divided differences, respectively.  Denoting first divided difference by 

 

 )(][ 00 xfxf   

 

the second divided difference by 

 

 
01

01
01

)()(
],[

xx

xfxf
xxf




  

 

and the third divided difference by 

 

 
02

0112
012

],[],[
],,[

xx

xxfxxf
xxxf




  

          
02

01

01

12

12 )()()()(

xx

xx

xfxf

xx

xfxf












  

where ],[ 0xf ],,[ 01 xxf and ],,[ 012 xxxf  are called bracketed functions of their variables 

enclosed in square brackets. 

 

 

We can write: 

 

 ))(](,,[)](,[][)( 1001200102 xxxxxxxfxxxxfxfxf   

 



58 

 

This leads to the general form of the Newton’s divided difference polynomial for )1( n  

data points,        nnnn yxyxyxyx ,,,,......,,,, 111100   as 

 

 

 ))...()((....)()( 110010  nnn xxxxxxbxxbbxf  

 

where 

 ][ 00 xfb   

 ],[ 011 xxfb   

 ],,[ 0122 xxxfb   

         

 ],....,,[ 0211 xxxfb nnn    

 ],....,,[ 01 xxxfb nnn   

where the definition of the thm  divided difference is 

 ],........,[ 0xxfb mm   

      
0

011 ],........,[],........,[

xx

xxfxxf

m

mm




   

 

From the above definition, it can be seen that the divided differences are calculated 

recursively.   

  

For an example of a third order polynomial, given ),,( 00 yx ),,( 11 yx ),,( 22 yx and ),,( 33 yx  

 
))()(](,,,[

))(](,,[)](,[][)(

2100123

1001200103

xxxxxxxxxxf

xxxxxxxfxxxxfxfxf




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    0b  

0x  )( 0xf     1b  

 ],[ 01 xxf   2b  

1x  )( 1xf  ],,[ 012 xxxf   3b   

 ],[ 12 xxf  ],,,[ 0123 xxxxf  

2x  )( 2xf  ],,[ 123 xxxf  

 ],[ 23 xxf  

3x   )( 3xf  

 

 

 

 

 

 

Example 1: 

The vertical missile velocity is given as a function of time, as shown in the 

following table: 

3- 22.5 20 15 10 0 T= s 

901.67 602.97 517.35 362.78 227.04 0 s 

Determine the value of the velocity at t = 16s using an equation of the 

first degree using the Newton's divided difference method. 

 

 

 

Example  

 
Use the same previous data of the upward velocity of a rocket, to determine the value of the 
velocity at t=16 s using third order polynomial interpolation using Newton’s Divided Difference 

polynomial.  
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Example 2: 

It gives a vertical missile velocity as in the previous table Determine the 

missile's velocity at t = 16 s using a quadratic equation using Newton's divisive 

difference method. 
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Chapter Six 

CURVE FITTING 

6.1 Linear Regression and Matrix Algebra 

 

 Error is inherent in data. When data exhibits substantial error rigorous techniques 

must be used to fit the "best" curve to the data. Otherwise prediction of intermediate values, 

or the derivatives of values, may yield unsatisfactory results. 

 

Visual inspection may be used to fit the "best" line through data points, but this 

method is very subjective.  Some criterion must be devised as a basis for the fit.  One 

criterion would be to derive a curve that minimizes the discrepancy between the data points 

and the curve.  Least-squares regression is one technique for accomplishing this objective. 

 

It is easiest to interpolate between data points, and to develop correlation, when the 

dependent variable is linearly related to the independent variable. While individual 

variables may not be linearly related, they may be grouped together or 

mathematically manipulated, such as having their log or square root taken, to yield a 

linear relationship. We wish to fit the "best" straight line to the set of paired data 

points:  (x1,Y1), (x2,Y2), …,(xi,Yi). The mathematical expression for the calculated 

values is: 

 

 yi = a1 + a2 xi 

 

where yi is the calculated (linear) value approximating the experimental value Yi.  The 

model error, or residual, ei can be represented as 

 

 ei = Yi - a1 - a2 xi 
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where ei is discrepancy between the measured value Yi and the approximated value yi as 

predicted by the linear equation. 

 

ei

Yi

yi

xi  

Figure Relationship between the model equation and the data 

 

We wish to find values for a1 and a2 to give the "best" fit for all the data. One 

strategy would be to select values for a1 and a2 to yield a straight line that minimizes the 

sum of the errors ei's. Since error is undesirable regardless of sign this criterion is 

inadequate because negative errors can cancel positive errors. The problem may be fixed if 

one selects a1 and a2 such that the absolute value of the sum of errors is minimized.  

However one may show that this criterion does not yield a unique "best" fit. A third 

criterion for fitting the "best" line is the minimax criterion. With this technique one selects a 

line that minimizes the maximum distance that an individual data point deviates from the 

calculated line. Unfortunately this strategy gives an undue influence to an outliner, a single 

point with a large error. 

 

A strategy that overcomes the shortcomings of these previous approaches is to 

minimize the sum of the squares of the errors or residuals, between the measured Yi's and 

the yi's calculated from the linear model. This criterion has a number of advantages. A 

unique line results for a given data set. This criterion also leads to the to the most likely a1 

and a2 from a statistical standpoint. 
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 Regression analysis is used to determine the constants in a relationship between 

variables. We only consider the simple case where y is a linear function of x. In other 

words we wish to find an equation y = a1 + a2x to best fit the obtained experimental data 

xi and Yi. At the values xi, the experimental values Yi are subject to random errors. Let’s 

define  

 

 ei = Yi - yi 

 

to be the difference between the experimental and predicted values. The least-squares 

criterion requires that S defined by Eq. (5.1-1) be a minimum 

 

 S = e1
2
 + e2

2
 + ..... + eN

2
 =  



N

1i

2
ie  (1) 

or 

 S = 


N

1i

{Yi - [a1 + a2 (xi)]}2 (2) 

 

Setting the derivative of this sum with respect to each coefficient equal to zero will result 

in a minimum for the sum. Thus the coefficients a1 and a2 must satisfy the conditions 

 

 
1a

S




=



N

1i

{-2}{Yi - [a1 + a2 (xi)]} = 0 (a) 

 
2a

S




=



N

1i

{-2(xi)}{Yi - [a1 + a2 (xi)]} = 0 (b) 

 

We have two equations in the two unknowns a1 and a2, so we may solve for a unique set of 

coefficients. Dividing Eqs. (5.1-3.a) and (5.1-3.b) by (-2) and rearranging 
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 a1
 
N    +  a2



N

1i

xi   = 


N

1i

Yi (a) 

  

 a1


N

1i

xi + a2


N

1i

 xixi  = 


N

1i

 xiYi (b) 

 

The system can be expressed in the matrix notation 

 

  A.a = B (a) 

 

or 

 




























N

1i

ii

N

1i

i

N

1i

i

xxx

xN

  








2

1

a

a
  = 




























N

1i

ii

N

1i

i

Yx

Y

 (b)  

The column vector a can be easily solved using the matrix capability of Matlab 

 

 a = A\B   (6)  

 

Example The  following data represent the concentration of reactant A in a constant 

volume reactor. (Ref. Module 3: Linear Regression by Bequette
4
 ) 

 

Time (min)  0 1 2 3 4 5 

CA, kmol/m3  8.47 5.00 2.95 1.82 1.05

 0.71 

 

If the reaction is first order, A --> B, determine the reaction rate constant k where 

rA(kmol/m3.min) = kCA. 
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Solution: 

 The material balance for reactant A in a constant volume batch reactor is 

 

 
dt

dCA  = -kCA 

 

 Separating variables and integrating: 

 

 
A

A

C

dC
 = -kdt 

 

 ln CA = ln CAo -kt  

 

where CAo is the initial concentration of A. 

 

 For this example: N = 6, y = ln CA, a1 = ln CAo, and x = t. The calculated values 

CAo and k can be obtained from the solution of Eqs. (6) by using the matrix algebra 

capability of Matlab. 

 

The coefficient matrix A and the column vector B can be determined by defining a new 

matrix w 

 

  

 w =  



















Nt

t

t

1

1

1

2

1


 

 

and the transpose of w  



66 

 

 

 wT = 








Nttt 



21

111
 

 

so that  

 

 A = wT*w and B = wT*Y 

 

Matrix A can be obtained by the following Matlab statements: 

 

>>  f1=ones(6,1); 

 

>>  f2=[0; 1; 2; 3; 4; 5]; 

 

>> w=[f1 f2] 

 

w = 

     1     0 

     1     1 

     1     2 

     1     3 

     1     4 

     1     5 

 

>> A=w'*w     Note: w' is the Matlab notation for the transpose of w 

 

A = 

     6    15 

    15    55 
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The right hand vector B is obtained by the following Matlab statements: 

 

>> Ca=[8.47; 5; 2.95; 1.82; 1.05; 0.71]; 

 

>> Y=log(Ca) 

 

Y = 

  2.1365e+000 

  1.6094e+000 

  1.0818e+000 

  5.9884e-001 

  4.8790e-002 

 -3.4249e-001 

 

>> B=w'*Y 

 

B = 

  5.1329e+000 

  4.0523e+000 

 

The solution vector a is then 

 

>> a=A\B 

 

a = 

  2.1098e+000 

 -5.0171e-001 

 

and the linear relationship between the variables is 
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 ln CA = 2.1098 - 0.50171t 

 

The same values for the parameters can also be obtained by using polyfit, a function 

provided by Matlab, to find the best linear fit of the data.  

  

% Matlab program for Example 5.1-1  

% Least square curve fitting of ln(Ca) = ln(Cao) - kt 

% 

t=[0 1 2 3 4 5]; 

Ca=[8.47 5 2.95 1.82 1.05 0.71]; 

Y=log(Ca); 

ap=polyfit(t,Y,1)  

 

 

ap = 

  -0.5017    2.1098 

 

You should notice that the first element in vector ap is the coefficient of the highest degree 

term. This is the convention used by Matlab in any polynomial functions. The experimental 

data and the best fitted line can be plotted by the following Matlab statements 

  

>> ycal=polyval(ap,t) 

 

ycal = 

  2.1098e+000 

  1.6081e+000 

  1.1063e+000 

  6.0463e-001 

  1.0291e-001 

 -3.9880e-001 
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>> plot(t,ycal,t,Y,'o') 

>> ylabel ('ln Ca'); xlabel ('t, min') 

 

The parameters ap(1) and ap(2) are converted back to the physical parameters: 

 

>> Cao_cal=exp(ap(2)) 

Cao_cal = 

  8.2464e+000 

k=-ap(1) 

k = 

  5.0171e-001 

 

The experimental data and the fitted model can also be compared on a time-concentration 

plot by the following Matlab statements. The results are presented in Figure 5.1-2 

 

>> t1=0:0.25:5; 

>> Ca_cal=Cao_cal*exp(-k*t1); 

>> plot(t1,Ca_cal,t,Ca,'o') 

>> ylabel('Ca');xlabel('t,min') 

 

A crude measure of the how well the data is fitted by a straight line is given by the linear 

correlation coefficient r, which is defined for two variables t and Y as 

 

 r = 
2/1

Yt

N

1i

N

1i

N

1i

iiii

)CC(

YtYtN  
  



 

where 

 Ct =  
 
















N

1i

2
N

1i

i
2
i tt  CY =  

 















N

1i

2
N

1i

i
2
i YYN  
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Values of r may range from (-1) to (1). The positive value indicates a positive correlation, 

i.e., the dependent variable is increasing with the independent variable. If |r| is exactly 1, the 

data is perfectly represented by the straight line.  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

C
a

t,min
 

 

Figure Experimental and fitted concentration as a function of time 

 

The correlation coefficient for the straight line 

 

 Y = ln CA = 2.1098 - 0.50171t 

 

can be evaluated by the following Matlab statements: 

 

% corre.m 
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% Evaluate the linear correlation coefficient r of two vector t and Y 

% 

t = [0; 1; 2; 3; 4; 5]; 

Ca = [8.47; 5; 2.95; 1.82; 1.05; 0.71]; 

Y = log(Ca); 

N = length(t); 

sumt = sum(t); sumY= sum(Y); 

sumts = t’*t; sumYs = Y’*Y; sumtY = t’*Y; 

ct = N*sumts - sumt*sumt; 

cy = N*sumYs - sumY*sumY; 

r = (N*sumtY - sumt*sumY)/sqrt(ct*cy) 

 

The linear correlation coefficient for this example is 

 

r = -9.9915e-001 

 

6.2.General Linear Least Squares 

 

We wish to fit the "best" curve to the set of paired data points:  (x1,Y1), (x2,Y2), …,(xN,YN). 

The mathematical expression for the calculated values is: 

 

 yi = a1 f1(xi) + a2 f2(xi) +  + an fn(xi) (6.2-1) 

 

where yi is the calculated value approximating the experimental value Yi.  The above 

expression is a general linear least squares model since the unknown parameters a1, a2, , 

an are linear combination of the known functions f1(xi), f2(xi), , fn(xi). The model error, or 

residual, ei can be represented as 

 

 ei = Yi  yi = Yi  [a1 f1(xi) + a2 f2(xi) +  + an fn(xi)] (6.2-2) 
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where ei is discrepancy between the measured value Yi and the approximated value yi as 

predicted by the model equation. 

 

ei

Yi

yi

xi x  

Figure Relationship between the model equation and the data 

 

We wish to find values for the parameters a1 to an to give the "best" fit for all the data. 

Regression analysis is used to determine the constants in a relationship between functions. 

The least-squares criterion requires that S defined by Eq. (5.2-3) be a minimum 

 

 S = e1
2
 + e2

2
 + ..... + eN

2
 =  



N

i

ie
1

2
 (6.2-3) 

or 

 S = 


N

i 1

{ Yi  [a1 f1(xi) + a2 f2(xi) +  + an fn(xi)]}2 (6.2-4) 

 

Setting the derivative of this sum with respect to each coefficient equal to zero will result 

in a minimum for the sum. Thus the coefficients a1, a2, and a3 must satisfy the conditions 

 

 
1a

S




=



N

i 1

{2}{ Yi  [a1 f1(xi) + a2 f2(xi) +  + an fn(xi)]}(  f1(xi)) = 0 (6.2-5.a) 
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2a

S




=



N

i 1

{2}{ Yi  [a1 f1(xi) + a2 f2(xi) +  + an fn(xi)]} (  f2(xi)) = 0 (6.2-5.b) 

    =    

 
na

S




=



N

i 1

{2}{ Yi  [a1 f1(xi) + a2 f2(xi) +  + an fn(xi)]} (  fn(xi)) = 0 (6.2-5.n) 

 

 

We can divide equations (5.2-5.a – 5.2-5.n) by (2) and rearrange them to obtain the 

following set 

 

a1


N

i

ixf
1

1 )(  f1(xi)  +  a2


N

i

ixf
1

1 )(  f2(xi) +   + an 


N

i

ixf
1

1 )( fn(xi) = 


N

i

ixf
1

1 )( Yi (6.2-6.a) 

  

a1


N

i

ixf
1

2 )(  f1(xi)  +  a2


N

i

ixf
1

2 )(  f2(xi) +   + an 


N

i

ixf
1

2 )( fn(xi) = 


N

i

ixf
1

2 )( Yi (6.2-6.b) 

                                                                                  =   

 

a1


N

i

in xf
1

)(  f1(xi)  +  a2


N

i

in xf
1

)(  f2(xi) +   + an 


N

i

in xf
1

)( fn(xi) = 


N

i

in xf
1

)( Yi (6.2-6.n) 

 

The system can be expressed in the matrix notation 

 

  A.a = B (6.2-7.a) 

 

or 
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

 (6.2-7.b)

  

The column vector a can be easily solved using the matrix capability of Matlab 

 

 a = A\B   (6.1-6)  

 

 

 

Example 6.2-1 

 

The following data represent the growth in height of a boy from 11 to 21 years of age. 

 

Elapsed time 

(year) 

0 

(age 11) 

1.4 3.2 4.8 8.0 10.0 

(age 21) 

Growth (cm) 0 2.25 15.0 26.25 33.0 35.0 

 

Determine a best fit using f1(ti) = sin
20

t
, f2(ti) = sin

20

3 t
, and f3(ti) = sin

20

5 t
 

 

Solution 

 

The model equation is y = a1 sin
20

t
 + a2 sin

20

3 t
 + a3 sin

20

5 t
 

 

 a = [a1  a2  a3]
T
, n = 3, N = 5 
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 Y = [2.25 15.0 26.25 33.0 35.0]
T 

 

The functions f1(ti), f2(ti), and f3(ti) can be evaluated 

  

i ti f1(ti) f2(ti) f3(ti) 

1 

2 

3 

4 

5 

1.4 

3.2 

4.8 

8.0 

10.0 

0.218 

0.482 

0.685 

0.951 

1.00 

0.613 

0.998 

0.771 

0.588 

1.00 

0.891 

0.588 

0.588 

0.00 

1.00 

 

Let W = 



















)()()(

)()()(

)()()(

321

232221

131211

NNN tftftf

tftftf

tftftf


 = 





























00.100.100.1

00.0588.0951.0

588.0771.0685.0

588.0998.0482.0

891.0613.0218.0

 

 

then W
T
 = 



















)()()(

)()()(

)()()(

21

22212

12111

Nnnn

N

N

tftftf

tftftf

tftftf









 = 





















00.100.0588.0588.0891.0

00.1588.0771.0998.0613.0

00.1951.0685.0482.0218.0

 

 

The matrix A is then evaluated 

 

 A = W
T
W = 
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

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
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

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1
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1
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1
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1
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1
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1
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1
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1
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1

11

 = 























484.2320.0075.1

321.0312.3416.0

075.1416.0653.2
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The right hand vector B can also be evaluated from W
T
 

 

 B = 







































N

i

in

N

i

i

N

i

i

Yf

Yf

Yf

1

1

2

1

1



 = W
T
Y  

 

 B = 





















00.100.0588.0588.0891.0

00.1588.0771.0998.0613.0

00.1951.0685.0482.0218.0























0.35

0.33

25.26

0.15

25.2

 = 



















389.30

816.17

08.92

 

 

The parameters a1, a2, and a3 are calculated 

 

 a1 = 35.94, a2 =  1.2067, and a3 =  3.5077 

 

The model equation is then 

 

 y = 35.94sin
20

t
  1.2067sin

20

3 t
 +  3.5077sin

20

5 t
 

Example 6.2-2 

 

Fit a second order polynomial to the following data 

 

xi 0.05 0.15 0.46 0.70 0.82 1.17 

Yi 0.956 0.832 0.571 0.378 0.306 0.104 

 

Solution 
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The model equation is y = a1 + a2 x + a3 x
2 

 

Therefore f1(xi) = 1, f2(xi) =  xi  and f3(ti) =  xi
2
, a = [a1  a2  a3]

T
, n = 3, N = 6 

 

 Y = 

























104.0

306.0

378.0

571.0

832.0

956.0

 

 

 

Let W  = 



























2

2

2

2

2

2

17.117.11

82.082.01

70.070.01

46.046.01

15.015.01

05.005.01

 

 

then  

 A = W
T
W = 

















6114.25968.27679.2

5968.27679.235.3

7679.235.36

 

 

The right hand vector B can also be evaluated from W
T
 

 

B = W
T
Y = 

















67527.0

07246.1

147.3
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The parameters a1, a2, and a3 are calculated 

 

 a1 = 0.998, a2 =  1.054, and a3 = 0.248 

 

The second polynomial is given as 

 

 y = 0.998  1.054x + 0.248x
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

  

 

 

Chapter Seven 

 

Errors Measurement 
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Errors and Uncertainty in Experimental Data 

 

Causes and Types of Errors 

 Conducting research in any science course is dependent upon obtaining measurements. No 

measure is ever exact due to errors in instrumentation and measuring skills. If you were to 

obtain the mass of an object with a digital balance, the reading gives you a measure with a 

specific set of values. We can assume that the actual measure lies either slightly above or 

slightly below that reading. The range is the uncertainly of the measurement taken. More 

accurate instruments have a smaller range of uncertainty. Whenever you take a 

measurement, the last recorded digit is your estimate. We call digits in a measurement 

significant figures.  

  

All measurements have inherent uncertainty. We therefore need to give some indication of 

the reliability of measurements and the uncertainties in the results calculated from these 

measurements. When processing your experimental results, a discussion of uncertainties 

should be included. When writing the conclusion to your lab report you should evaluate 

your experiment and its results in terms of the various types of errors. To better understand 

the outcome of experimental data an estimate of the size of the systematic errors compared 

to the random errors should be considered. Random errors are due to the accuracy of the 

equipment and systematic errors are due to how well the equipment was used or how well 

the experiment was controlled. We will focus on the types of experimental uncertainty, the 

expression of experimental results, and a simple method for estimating experimental 

uncertainty when several types of measurements contribute to the final result. 

          

1. Random errors: Precision (Errors inherent in apparatus.)  

  

A random error makes the measured value both smaller and larger than the true value. 

Chance alone determines if it is smaller or larger. Reading the scales of a balance, 

graduated cylinder, thermometer, etc. produces random errors. In other words, you can 

weigh a dish on a balance and get a different answer each time simply due to random 
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errors. They cannot be avoided; they are part of the measuring process. Uncertainties are 

measures of random errors. These are errors incurred as a result of making measurements 

on imperfect tools which can only have certain degree of accuracy. They are predictable, 

and the degree of error can be calculated. Generally they can be estimated to be half of the 

smallest division on a scale. For a digital reading such as an electronic balance the last 

digit is rounded up or down by the instrument and so will also have a random error of ± 

half the last digit.  

2. Systematic errors: Accuracy (Errors due to "incorrect" use of equipment or poor 

experimental design.)  

A systematic error makes the measured value 

always smaller or larger than the true value, but 

not both. An experiment may involve more than 

one systematic error and these errors may nullify 

one another, but each alters the true value in one 

way only. Accuracy (or validity) is a measure of 

the systematic error. If an experiment is accurate 

or valid then the systematic error is very small. 

Accuracy is a measure of how well an experiment 

measures what it was trying to measure. These 

are difficult to evaluate unless you have an idea 

of the expected value (e.g. a text book value or a calculated value from a data book). 

Compare your experimental value to the literature value. If it is within the margin of error 

for the random errors then it is most likely that the systematic errors are smaller than the 

random errors. If it is larger then you need to determine where the errors have occurred. 

Assuming that no heat is lost in a calorimetry experiment is a systematic error when a 

Styrofoam cup is used as a calorimeter. Thus, the measured value for heat gain by water 

will always be too low. When an accepted value is available for a result determined by 

experiment, the percent error can be calculated. 

 

  

Examples of Systemic errors: 

 Leaking gas syringes.  
 Calibration errors in pH 

meters.  
 Calibration of a balance  
 Changes in external 

influences such as 

temperature and 

atmospheric pressure 

affect the measurement of 

gas volumes, etc.  
 Personal errors such as 

reading scales incorrectly.  
 Unaccounted heat loss.  
 Liquids evaporating.  
 Spattering of chemicals  
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Categories of Systematic Errors and how to eliminate them:  

          

a. Personal errors: These errors are the result of ignorance, carelessness, prejudices, or 

physical limitations on the experimenter. This type of error can be greatly reduced if 

you are familiar with the experiment you are doing. Be sure to thoroughly read over 

every lab before you come to class and be familiar with the equipment you are using. Be 

Prepared!!! 

          

b. Instrumental Errors: Instrumental errors are attributed to imperfections in the tools 

with which the analyst works. For example, volumetric equipment such as burets, 

pipets, and volumetric flasks frequently deliver or contain volumes slightly different 

from those indicated by their graduations. Calibration can eliminate this type of error. 

          

c. Method Errors: This type of error many times results when you do not consider how 

to control an experiment. For any experiment, ideally you should have only one 

manipulated (independent) variable. Many times this is very difficult to accomplish. The 

more variables you can control in an experiment the fewer method errors you will have. 

  

Estimating and Reducing Errors through Proper Measurement Technique 

  

 Scientists make a lot of measurements.  They measure the masses, lengths, times, 

speeds, temperatures, volumes, etc.  

  

 When they report a number as a measurement the number of digits and the number of 

decimal places tell you how exact the measurement is  

o For example: 121 is less exact than 121.5  

o The difference between these two numbers is that a more precise tool was used to 

measure the 121.5.   

o If a scientist reports a number as 121.5 they are saying that they were able to 

measure that quantity up to the tenths place.   
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o If a scientist reports a number as 121 they are saying that they were able to measure 

that quantity up to the ones place.  

o The total number of digits and the number of decimal points tell you how precise a 

tool was used to make the measurement.   

  

 Reporting measurements:  

a. There are 3 parts to a measurement:  

         1.  The measurement 

         2.  The uncertainty 

         3.  The unit 

 

b. Example: 5.2 ± 0.5 cm  

         1. Which means you are reasonably sure the actual length is somewhere between 4.7 

and 5.7 

 

c. No measurement should be written without all three parts.  

 

d. The last digit in your measurement should be an estimate  

1. If the smallest marks on your tool are .001 apart (as they are on a meter stick that 

has millimeters marked) then your last digit should be in the ten-thousandths place 

(i.e. 0.0010)* 

  

*This is true for measurements that donít fluctuate.  If the tool you use fluctuates 

then your estimated digit will probably not be smaller than the smallest hash mark 

on the tool but should indicate how sure you are of the exactness of your 

measurement.  See below for how to deal with this situation. 
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2. Logic: 

 

In the above, you would report the length of the bar as 31.0 ± 0.5 cm (assuming the 

big marks are centimeters). The bar appears to line up with the 31st mark and you 

know itís more than 1/2 way from the 30 mark and less than 1/2 way from the 32nd 

mark.  So you can be reasonably sure the actual length of the bar is between 30.5 

and 31.5 cm.   

 

 

In the above, you would report the length of the bar as 31 ± 2 cm.  You know the bar 

is longer than 30 cm and the last digit is your best guess.  You are reasonably sure 

the actual bar length is between 30 and 33 cm.    

  

e. The uncertainty is 1/2 the amount between the smallest hash marks.  Notice in the 

above 2 examples that this is the case.  

       1. This rule may change depending on the book you look at or the teacher you work 

with.   

 2. Some uncertainties are determined by the manufacturer. (e.g. electronic balances, 

probes) 

       3. Some uncertainties are determined based on what you, as the experimenter decide: 
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In this case, the divisions between the mark = 0.2 cm which makes estimating a digit 

trickier.  If you say the measurement is right on the 6.2 mark than according to the 

above rules you should report the measurement as 6.20 cm. However, the 

uncertainty, according to the rules above is 1/2 the distance between the smallest 

two marks, or 0.2/2 = 0.1.  It doesn’t make sense to say 6.20 ± 0.1 cm because your 

uncertainty is so much bigger than the estimated digit (the zero).  So, we need to go 

back to the most important idea of reporting uncertainties.  We need to report a 

measurement that we are reasonably sure of.  I am reasonably sure that the blue bar 

is bigger than 6.1 cm and less than 6.3, in which case you would report the 

measurement as 6.2 ± 0.1 cm, but you could also argue that the blue bar is bigger 

than 6.15 and less than 6.25 cm.  In which case, you would report 6.20 ± 0.05 cm. 

This is where you, as the experimenter, have to make the decision.   Consider what 

another experimenter would get if he/she measured the blue bar again.  Consider the 

implications of stating a too precise number.   

  

f. from data provided by the manufacture (printed on the apparatus). 

Temperature probes for example state that the uncertainty is 0.2
o
C.  

  

g. from the last significant figure in a measurement (as for a digital 

balance). Since our digital balances measure to .01 g, (or 0.001 g) we 

assume that the unseen digit is rounded either up or down, so the 

uncertainty is ± 0.01 g (± 0.001 g)  

  

h. Measurements can sometimes be difficult to determine.  The 

following are some important techniques.   

   1. When measuring liquids that have a curve at the surface, measure 

1 

 

2 

 

3 
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from the bottom of the meniscus. The meniscus is the curve formed at the surface of a 

liquid due to attraction of the liquid for the sides of the container (adhesion).   

Measuring from the bottom ñ you should get 2.75 ± 0.05 mL (assuming the marks 

represent milliliters).   

  

 

2. Sometimes the measurement on an electronic balance will fluctuate.  Start with the 

numbers that are not fluctuating and then make your best guess as to what the next 

digit would be.  Say for example you are weighing something on a balance and you 

get the following readings: 

         

1.  12.345 

2.  12.320 

3.  12.349 

4.  12.357 

5.  12.327 

                                  

This should be reported as a measurement of 12.34 ± 0.05. If you use a balance 

containing a shield the fluctuations will be greatly reduced.  
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 Remember: when reporting measurements, you need to do 3 things 

1. give the measurement (the magnitude) 

2. tell how good a tool you used to measure it (this is given by the number of 

significant figures and uncertainty) 

3. State the units 

 

Dealing with Uncertainties 

  

Now you know the kinds of errors, random and systematic, that can occur with physical 

measurements and you should also have a very good idea of how to estimate the magnitude 

of the random error that occurs when making measurements. Now we can deal with the 

question, "what do we do with the uncertainties when we add or subtract two 

measurements? Or divide/multiply two measurements?"  

  

When you mathematically manipulate a measurement you must take into consider the 

precision. If you add two measurements the result CANNOT be more precise than your 

measures.  It just doesn’t make sense.  Here’s an example.   

  

Let’s say you make the following measurements for the mass of a copper weight in a small 

cylinder: 

 Mass of empty container: 2.3 g  

 Mass of container with copper: 22.54 g  

  

What is the mass of the copper?  22.54 - 2.3 = 20.24 g 

Answer to report: 20.2 g 

  

Why 20.2 g and not 20.24 g?  

  

Since you only measured the container to the tenths place then the 3 is really an estimate.  

Perhaps the actual value was 2.2 or 2.4 g, then the mass of copper could be (22.54-2.3 or 
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22.54-2.4) 20.34 or 20.14 g.  As you can see the difference in the tenths place is far more 

significant than the hundredths place.  So the mass you should report is 20.2 g 

  

Remember that when making measurements there are three parts to a measurement:  

  

 The measurement  

 The uncertainty  

 The unit  

  

To take into consideration precision 

1. For single measurements  

a. For the measurement ñ use significant figures  

b. For the uncertainty ñ use error propagation  

c. It doesn’t make sense to talk about a unit’s precision  

d. Once you have the determined the value and uncertainty, make sure the significant 

figures and uncertainty match.  

  

Resource: Significant figures & Uncertainties  

  

The uncertainty of a calculated value, and therefore the possible random error, can be 

estimated from uncertainties of individual measurements which are required for that 

particular calculation. In a calorimetry experiment, for example, the uncertainty in the 

amount of heat produced depends on the uncertainties in the mass, temperature and specific 

heat measurements. The estimation of an overall uncertainty from component parts is called 

Error Propagation. 

  

2. For a set of the trials for which you are finding the average  

a. Use the average and standard deviation for both the measurement and the 

uncertainty.  

  

http://lhs2.lps.org/staff/sputnam/LHS_IB/IBChemistry/Unit1%20Measurements/SigFigUncertainty.htm
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Another measure of uncertainty or precision arises when an experiment is repeated many 

times, yielding several results from which an average value can be calculated. The precision 

is a measure of how close the results are to the average value. The uncertainty (here called 

experimental uncertainty) is a measure of how far apart the results are from the average. 

This usually is calculated either as the average (and percent average) deviation or as the 

standard deviation compared to the average of the final results. The average value should 

always be the average of the final results calculated from each trial, rather than the average 

of the raw data or results of intermediate calculations. This uncertainty of an experiment is a 

measure of random error. If the uncertainty is low, then the random error is small. 

  

**You should never take the average of beginning measurements (raw data) or intermediate 

data.  Only final results should be averaged.   

  

  

Example 1: Standardization of NaOH by titration 

The following concentrations, in mol / dm
3
, were calculated from the results of three trials: 

         

        0.0945, 0.0953, 0.1050 

  

The average value is 0.0983 and the standard deviation is 0.0058  

Since uncertainties are meaningful only to one sig. fig., the results should be reported as 

follows:  

Concentration = 0.098 ± 0.006 mol / dm
3
   

  

   

Significant Figures and Rounding Answers: 

         Every physical measurement is subject to a degree of uncertainty that, at best, can be 

decreased only to an acceptable level. When numerical data are collected, the values cannot 

be determined exactly, regardless of the nature of the scale or instrument or the care taken 

by the operator. If the mass of an object is determined with a digital balance reading to 0.1 
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g, the actual value lies in a range above and below the reading. This range is the uncertainty 

of the measurement. Remember every time you take a measurement, the last digit recorded 

represents a guess. If the same object is measured on a balance reading to 0.001 g the 

uncertainty is reduced, but can never be completely eliminated. 

  

The term precision is used to describe the reproducibility of results. It can be defined as the 

agreement between the numerical values of two or more measurements that have been made 

in an identical fashion.  

The terms precision and reliability are inversely related to uncertainty. Where uncertainty is 

relatively low, precision is relatively high.  Every measurement you make in the lab should 

tell you the magnitude (size) of the object and the precision (reliability) of the instrument 

used to make the measurement. The number of subdivisions on the instrument can indicate 

the precision of the instrument. 
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Error Propagation 

  

In data collection, estimated uncertainties should be indicated for all measurements. These 

uncertainties may be estimated in different ways: 

1. from the smallest division (as for a measuring cylinder)  

2. from the last significant figure in a measurement (as for a digital balance)  

3. from data provided by the manufacture (printed on the apparatus)  

  

The amount of uncertainty attached to a reading is usually expressed in the same units as the 

reading. This is then called the Absolute uncertainty. eg. 25.4 ± 0.1 s.  The symbol for 

absolute uncertainty is dx, where x is the measurement: 

  

In the example: x =25.4 and dx = 0.1 

  

The absolute uncertainty is often converted to show a Percentage or Fractional uncertainty. 

For the above example, this would be: 25.4 ± 0.4% s (0.1 s / 25.4s x 100% = 0.4%).  The 

symbol for fractional uncertainty is: dx/x 

  

**Note that uncertainties are themselves approximate and are not given to more than one 

significant figure, so the percentage uncertainty here is 0.4%, not 0.39370%. 

  

Multiple Readings  

  

If more than one reading of a measurement is made, then the uncertainty increases with 

each reading.  
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Example 4: 

When using a burette ( 0.02 cm
3
), you subtract the initial volume from the final volume. 

The volume delivered is: 

 

Final volume = 38.46  0.05 cm
3
 

Initial volume = 12.15  0.05 cm
3
 

Total volume delivered = 26.31  0.04 cm
3 

 

Example 3: 

For example: 10.0 cm
3
 of acid is delivered from a 10cm

3
 pipette ( 0.1 cm

3
), repeated 3 

times. The total volumes delivered is 

 10.0  0.1 cm
3  

 10.0 . 0.1 cm
3  

 10.0  0.1 cm
3  

Total volume delivered = 30.0  0.3 cm
3
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Basic rules for propagation of uncertainties 

  

  Rule Example 

1 When adding or subtracting uncertain values, add 

the absolute uncertainties 

Initial temp. = 34.50
o
C (± 0.05) 

Final Temp. = 45.21
o
C (± 0.05) 

 T= 45.21 -34.5 =10.71
o
C  

        (± 0.05 + 0.05 = ± 0.1
o
C) 

 T should be reported as  

       10.7 ± 0.1
o
C 

  

2 When multiplying or dividing add the percentage 

uncertainties 

Mass = 9.24 g (±0.005g) 

Volume = 14.1cm3 (±0.05cm3) 

a Make calculations 
Density = 9.24/14.1 =0.655 

g/cm3 

b 
Convert absolute uncertainties to 

percentage/fractional/ relative uncertainties 

Mass: 0.005/9.24x100 = 0.054% 

Vol: 0.05/14.1 x 100 = 0.35 % 

c Add percentage uncertainties 
0.054 + 0.35 = 0.40 % 

Density = 0.655 g/cm
3
 (± 0.40%) 

d 
Convert total uncertainty back to absolute 

uncertainty 

0.655 *0.4/100 = 0.00262 

Density = 0.655 ± 0.003 g/cm3 

3 Multiplying or dividing by a pure (whole) number:  

multiply or divide the uncertainty by that number.  
4.95 ± 0.05 x 10 = 49.5 ±0.5 

4 Powers: 

…       When raising to the nth power, multiply the 

% uncertainty by n.  

…       When extracting the nth root, divide the % 

uncertainty by n. 

 

(4.3 ± .5 cm)
3
 = 4.33 ± (.5/4.3)*3 

= 79.5 cm
3
 (± 0.349%) 

= 79.5 ± 0.3 cm
3
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5  Formulas: 

Follow the order of operations: find uncertainties for numbers added and subtracted.  

Use that new uncertainty when calculating uncertainty for multiplication and division 

portion of formula, etc.  This can be very complex.  See example below.  

  

  Graphing 

Graphing is an excellent way to average a range of values. When a range of values is 

plotted each point should have error bars drawn on it. The size of the bar is calculated 

from the uncertainty due to random errors. Any line that is drawn should be within the 

error bars of each point. 

If it is not possible to draw a line of “best” fit within the error bars then the systematic 

errors are greater than the random errors. 
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Example of Error Propagation with Formula 

1. A student performs an experiment to determine the specific heat of a sample of 

metal.  212.01 g of the metal at 95.5
o
C was placed into 150.25 g of 25.2 

o
C water in the 

calorimeter.  The temperature of the water went to 27.5
o
C. Given: CH2O = 4.18 J/g-

o
C.  

The thermometer was marked in 1 
o
C increments and the balance was digital.  

a. Calculate the specific heat of the metal Cm using the following equation:  

b. Calculate the uncertainty in the  

             i.  Temperature  

(absolute uncertainty is ‡ distance between smallest mark, for this thermometer 

which measures to the nearest ƒC, uncertainty is 0.5
o
C) 

1.     Tf = 27.5 ± 0.5 
o
C   

2.     Ti (H2O) = 25.2 ± 0.5 
o
C 

3.     Ti (metal) = 95.5 ± 0.5 oC 

4.     T (H2O) = (27.5-25.2) ± (0.5 + 0.5) =  4.3 ± 1 
o
C     % =1/4.3*100 =23%  

5.     T (metal) = (95.5-27.5) ± (0.5 + 0.5) =  68 ± 1 
o
C     % =1/68*100 =1.5%  

              ii. Mass 

(absolute uncertainty for electronic balance half of smallest decimal place) 

1.     H2O = 150.25 ± 0.05 g                %=.033%  

2.     metal = 212.01 ± 0.05 g               %=.024% 

               iii. specific heat capacity 

1.     assume there is no uncertainty in numbers used as constants. So no 

uncertainty in water’s specific heat capacity. 

2.     (metal) add % uncertainties for all quantities involved in the calculation of 

the heat capacity 

0.033  + 23 + .024 + 1.5 = 24.6 % 

0.1002 J/g-
o
C (±24.6%) = .10 ± .02 J/g-

o
C 

  

c. Calculate the percent error if the literature value is 0.165 J/g-
o
C.  

 



96 

 

d. Comment on the error.  Is the uncertainty greater or less than the percent error?  Is 

the error random or systemic?  Explain  

  

Since percent error is much greater than the uncertainty and the literature value 

does not fall in the range of uncertainty (.10 ± 0.02 J/g-
o
C), than systematic 

errors is a problem.  Random error is estimated by the uncertainty and since this 

is smaller than the percent error, systematic errors are at work and are making 

the measured data inaccurate.   
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Measuring Errors 

 

 In any numerical analysis, errors will arise during the calculations.  To be able to 

deal with the issue of errors, we need to  

(A) identify where the error is coming from, followed by 

(B) quantifying the error, and lastly 

(C) minimize the error as per our needs.   

In this chapter, we will concentrate on item (B), that is, how to quantify errors. 

 

Q: What is true error? 

A: True error denoted by tE  is the difference between the true value (also called the exact 

value) and the approximate value. 

True Error   True value – Approximate value 

 

Example 1 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)(


  

 of )2(f   For xexf 5.07)(   and 3.0h , find 

 a) the approximate value of )2(f   

 b) the true value of )2(f   

 c) the true error for part (a) 
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Solution 

a)  
h

xfhxf
xf

)()(
)(


  

For 2x  and 3.0h ,  

3.0

)2()3.02(
)2(

ff
f


  

          
3.0

)2()3.2( ff 
  

                     
3.0

77 )2(5.0)3.2(5.0 ee 
  

          
3.0

028.19107.22 
  

                     265.10  

b) The exact value of )2(f  can be calculated by using our knowledge of differential 

calculus. 

xexf 5.07)(   

xexf 5.05.07)('   

          xe 5.05.3  

So the true value of )2('f  is 

)2(5.05.3)2(' ef   

           5140.9  

c) True error is calculated as 

 tE = True value – Approximate value 

                265.105140.9   

     75061.0  

The magnitude of true error does not show how bad the error is.  A true error of 

722.0tE  may seem to be small, but if the function given in the Example 1 

were ,107)( 5.06 xexf  the true error in calculating )2(f   with ,3.0h  would be 
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.1075061.0 6tE   This value of true error is smaller, even when the two problems are 

similar in that they use the same value of the function argument, 2x  and the step size, 

3.0h .  This brings us to the definition of relative true error. 

 

Q: What is relative true error? 

A:  Relative true error is denoted by t  and is defined as the ratio between the true error 

and the true value. 

Relative True Error 
Value True

Error True
  

Example 2 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(   and 3.0h , find the relative true error at 2x . 

Solution 

From Example 1,  

tE = True value – Approximate value 

                265.105140.9   

     75061.0  

Relative true error is calculated as 

Value True

Error True
t  
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5140.9

75061.0
  

                078895.0  

Relative true errors are also presented as percentages. For this example, 

%1000758895.0 t  

     %58895.7  

Absolute relative true errors may also need to be calculated. In such cases, 

|075888.0| t
 

                  = 0.0758895 

                  = %58895.7  

 

Q: What is approximate error? 

A: In the previous section, we discussed how to calculate true errors.  Such errors are 

calculated only if true values are known.  An example where this would be useful is when 

one is checking if a program is in working order and you know some examples where the 

true error is known.  But mostly we will not have the luxury of knowing true values as why 

you would want to find the approximate values if you know the true values.  So when we 

are solving a problem numerically, we will only have access to approximate values. We 

need to know how to quantify error for such cases. 

        Approximate error is denoted by aE  and is defined as the difference between the 

present approximation and previous approximation. 

       Approximate Error  Present Approximation – Previous Approximation 
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Example 3 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  and at 2x , find the following 

 a) )2(f   using 3.0h  

 b) )2(f   using 15.0h  

 c) approximate error for the value of )2(f   for part (b)  

Solution 

a) The approximate expression for the derivative of a function is 

 
h

xfhxf
xf

)()(
)('


 . 

For 2x  and 3.0h ,  

3.0

)2()3.02(
)2('

ff
f


  

           
3.0

)2()3.2( ff 
  

                      
3.0

77 )2(5.0)3.2(5.0 ee 
  

           
3.0

028.19107.22 
  

                      265.10  

b) Repeat the procedure of part (a) with ,15.0h  

h

xfhxf
xf

)()(
)(


  

    For 2x  and 15.0h ,  



012 

 

15.0

)2()15.02(
)2('

ff
f


  

          
15.0

)2()15.2( ff 
  

          
15.0

77 )2(5.0)15.2(5.0 ee 
  

          
15.0

028.1950.20 
  

          8799.9  

c) So the approximate error, aE is  

             aE Present Approximation – Previous Approximation 

                   265.108799.9   

                   38474.0  

The magnitude of approximate error does not show how bad the error is .  An approximate 

error of 38300.0aE  may seem to be small; but for xexf 5.06107)(  , the approximate 

error in calculating )2('f  with 15.0h  would be 
61038474.0 aE . This value of 

approximate error is smaller, even when the two problems are similar in that they use the 

same value of the function argument, 2x , and 15.0h  and 3.0h . This brings us to 

the definition of relative approximate error. 

 

Q: What is relative approximate error? 

A: Relative approximate error is denoted by a  and is defined as the ratio between the 

approximate error and the present approximation. 

             Relative Approximate Error 
ionApproximatPresent 

Error eApproximat
  
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Example 4 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  , find the relative approximate error in calculating )2(f  using values from 

3.0h  and 15.0h . 

Solution 

From Example 3, the approximate value of 263.10)2( f  using 3.0h  and 

8800.9)2(' f using 15.0h . 

aE Present Approximation – Previous Approximation 

                    265.108799.9   

                    38474.0  

The relative approximate error is calculated as  

a
ionApproximatPresent 

Error eApproximat
 

                 
8799.9

38474.0
  

                 038942.0  

Relative approximate errors are also presented as percentages. For this example, 

%100038942.0 a  

                 = %8942.3  

Absolute relative approximate errors may also need to be calculated.  In this example 

|038942.0| a  

                  038942.0  or 3.8942% 
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Q: While solving a mathematical model using numerical methods, how can we use 

relative approximate errors to minimize the error? 

A: In a numerical method that uses iterative methods, a user can calculate relative 

approximate error a  at the end of each iteration.  The user may pre-specify a minimum 

acceptable tolerance called the pre-specified tolerance, s .  If the absolute relative 

approximate error a  is less than or equal to the pre-specified tolerance s , that is, 

 || a s , then the acceptable error has been reached and no more iterations would be 

required. Alternatively, one may pre-specify how many significant digits they would 

like to be correct in their answer.  In that case, if one wants at least m  significant digits to 

be correct in the answer, then you would need to have the absolute relative approximate 

error, m

a

 2105.0|| %. 

Example 5 

If one chooses 6 terms of the Maclaurin series for xe  to calculate 7.0e , how many 

significant digits can you trust in the solution? Find your answer without knowing or using 

the exact answer. 

Solution 

.................
!2

1
2


x

xe x  

Using 6 terms, we get the current approximation as  

!5

7.0

!4

7.0

!3

7.0

!2

7.0
7.01

5432
7.0 e  

       0136.2  



015 

 

 Using 5 terms, we get the previous approximation as 

!4

7.0

!3

7.0

!2

7.0
7.01

432
7.0 e  

      0122.2  

The percentage absolute relative approximate error is 

100
0136.2

0122.20136.2



a  

      %069527.0  

Since %105.0 22a
, at least 2 significant digits are correct in the answer of  

 0136.27.0 e  

 

Q: But what do you mean by significant digits?   

A: Significant digits are important in showing the truth one has in a reported number. For 

example, if someone asked me what the population of my county is, I would respond, “The 

population of the Hillsborough county area is 1 million”.  But if someone was going to give 

me a $100 for every citizen of the county, I would have to get an exact count.  That count 

would have been 1,079,587 in year 2003.  So you can see that in my statement that the 

population is 1 million, that there is only one significant digit, that is, 1, and in the statement 

that the population is 1,079,587, there are seven significant digits.  So, how do we 

differentiate the number of digits correct in 1,000,000 and 1,079,587?  Well for that, one 

may use scientific notation. For our data we show 

6

6

10079587.1587,079,1

101000,000,1




 

to signify the correct number of significant digits. 
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Example 5 

Give some examples of showing the number of significant digits. 

Solution 

a) 0.0459 has three significant digits 

b) 4.590 has four significant digits 

c) 4008 has four significant digits 

d) 4008.0 has five significant digits 

e) 310079.1   has four significant digits 

f) 3100790.1   has five significant digits 

g) 31007900.1   has six significant digits 

 


