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Degree : 4th  year students (physics) 

Responsible Department: Physics 

Academic year: 2022_2023 ( 2nd semester) 

Teaching Languages: English 

       Class: 402 

Course Coordinator: Dr. Abdelsalam Foad Abdelhady (A.F. Elhady) 
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Coordinator Office Hours: sunday : 2:4 
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Course description: An introductory course to Computational Physics. Includes 

Mathematical background, algorithms and major Physical applications. Exercises 

using MATLAB 

Course aims: Basic knowledge and experience in Computational Physics . 

Learning outcomes - On successful completion of this module, students should 

be able to : 

- Examine physical problem and various methods for computational solution. 

To implement different algorithms for solving physical problems . 

- Consider various properties of numerical solution such as accuracy, stability 

and efficiency . 
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- Check correctness of computed solution . 

- Examine feasibility of various options of parallel computation for solving 

physical problem . 

Teaching arrangement and method of instruction: lecture notes for self learning 

lectures and exercises 

Course Content : 

-  interpolation 

- round off errors, accuracy and stability 

- numerical differentiation 

- numerical integration of functions 

- root finding in one dimension 

- solution of a set of linear equations 

- Eigen vectors and Eigen values 

- root finding in multi dimensions 

- minimum finding 

- Ordinary Differential Equations 

- Partial Differential Equations 

- initial value problems 

- diffusion equation 

- advection equation 

- Monte-Carlo methods 

- introduction to parallel computing 

Required Reading : 

 Additional Reading Material : 

   

 

 Course/Module evaluation : 



 End of year written examination: 70 

oral examination : 10 

 Midterm : 10 

Project work: 5 

   Quizzes: 5   
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1. General Idea of interpolation 

Suppose we are given data at discrete points only, and we wish to 

estimate values between these known points, Figure (1) 

 

Figure 1 

. The most common method used for this purpose is  fitting or 

interpolation. 

◼ Interpolation:  passes through each datum 

◼ Fitting:  seeks to produce a curve that approximates the data, see 

Figure (2) 

 

 

Figure 2 
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◼ Global versus piecewise interpolation: We can fit a single polynomial 

of degree n to n+1 data points, this is called global interpolation. 

Alternatively we can use a series of polynomials to link points together – 

frequently called splines.  

 

polynomial interpolation: Recall that the general formula for an nth   

order polynomial is 

 

For n+1 data points, there is one and only one polynomial of order n that 

passes through all the points. For example, there is only one straight line 

(that is, a first-order polynomial) that connects two points (figure 2.(a)). 

Similarly, only one parabola connects a set of three points (figure 2.(b), 

fig. 2(c)). Polynomial Interpolation consists of determining the unique 

nth order polynomial that fits n+1 data points. This polynomial then 

provides a formula to compute intermediate values. 

 
Figure 3: Examples of interpolating polynomials: (a) first-order (linear) connecting two points, (b) 
second-order (quadratic or parabolic) connecting three points, and (c) third-order (cubic) connecting 
four points. 
 

Although there is one and only one nth-order polynomial that fits n + 1 

points, there are a variety of mathematical formats in which this 

polynomial can be expressed. In this chapter, we will describe two 
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alternatives that are well-suited for computer implementation: the 

Newton and the Lagrange polynomials. 

 

2. NEWTON’S DIVIDED-DIFFERENCE INTERPOLATING POLYNOMIALS 

2.1.Linear Interpolation 

The simplest form of interpolation is to connect two data points 

with a straight line. Using similar triangles, 

𝑓1(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
=

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
= 𝑠𝑙𝑜𝑝𝑒            (2) 

then 

 

The notation 𝑓1(𝑥) designates that this is a first-order interpolating 
polynomial. In general, the smaller the interval between the data 
points, the better the approximation. 

 
Figure 4: Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used to 
derive the linear-interpolation formula [Eq.2] 
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Example 18.1: 
Estimate the natural logarithm of 2 using linear interpolation. First, 

perform the computation by interpolating between ln1 = 0 and 

 ln6 = 1.791759. Then, repeat the procedure, but use a smaller interval 

from ln1 to ln4 (1.386294). Note that the true value of ln 2 is 0.6931472. 

Solution: 

We use the previous equation and a linear interpolation for ln(2) from 
x0 = 1 to x1 = 6 to give 

 

Which represents an error of 𝜀𝑡 = 48.3%. Using the smaller interval 
from 𝑥0 = 1 to 𝑥1 = 4 yields 

 

Thus, using the shorter interval reduces the percent relative error to 
 𝜀𝑡 = 33.3%. Both interpolations are shown in the next figure, along 
with the true function. 

 
Figure 5: Two linear interpolations to estimate ln 2. Note how the smaller interval provides a better 
estimate. 
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2.2. Quadratic Interpolation 

If three data points are available, the estimate is improved by introducing 
some curvature into the line connecting the points. If three data points 
are available, this can be accomplished with a second-order polynomial 
(also called a quadratic polynomial, or a parabola). A particularly 
convenient form for this purpose is 
 

 

A simple procedure can be used to determine the values of the 
coefficients. 
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Notice that, as was the case with linear interpolation, 𝑏1 still represents 
the slope of the line connecting points 𝑥0 and 𝑥1. Thus, the first two 
terms of Eq. (4) are equivalent to linear interpolation from 𝑥0 to 𝑥1 . The 
last term, 𝑏2(𝑥 – 𝑥0)(𝑥 – 𝑥1), introduces the second-order curvature 
into the formula. 
Example 18.2:  Fit a second-order polynomial to the three points used in 

example 18.1: 

 



6 
 

 

Substituting these values into Eq. (4) yields the quadratic formula 

 

which represents a relative error of 𝜀1 = 18.4%. Thus, the curvature introduced 

by the quadratic formula (Fig. 6) improves the interpolation compared with the 

result obtained using straight lines in Example 18.1 and Fig. 5. 

 

Figure 6 
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2.3. General Form of Newton’s Interpolating Polynomials 

The preceding analysis can be generalized to fit an nth order 
polynomial to n+1 data points. The nth-order polynomial is 

𝑓𝑛(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥 0) + 𝑏2(𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯

+ 𝑏𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1) 
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 𝑥 = 𝑥𝑛−1                   𝑏𝑛 =

𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)
𝑥𝑛 − 𝑥𝑛−1

− ⋯
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑥𝑛 − 𝑥0
 

which is called Newton’s divided-difference interpolating polynomial. It 

should be noted that it is not necessary that the data points used in the 

previous equation be equally spaced or that the abscissa values 

necessarily be in ascending order. 

 

Errors of Newton’s Interpolating Polynomials: 

Structure of interpolating polynomials is similar to the Taylor series 

expansion in the sense that finite divided differences are added 

sequentially to capture the higher order derivatives. 

 

Example 18.3:  

In Example 18.2, data points at 𝑥0  =  1, 𝑥1 = 4, and 𝑥2 = 6 were used 

to estimate ln2 with a parabola. Now, adding a fourth point, [𝑥3 = 5; 
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𝑓(𝑥3)  =  1.609438], estimate ln2 with a third-order Newton’s 

interpolating polynomial 

Solution 

 
𝑥0 = 1,     𝑥1 = 4,      𝑥2 = 6,      𝑥3 = 5 

𝑓(𝑥0) = ln(1) = 0 

𝑓(𝑥1) = ln(4) = 1.386294 

𝑓(𝑥2) = ln(6) = 1.791759 

𝑓(𝑥3) = ln(5) = 1.609438 

 

𝑏0 = 𝑓(𝑥0) = ln(1) = 0 

𝑏1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
= 1.386294 

𝑏2 =

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑥2 − 𝑥0
= −0.05187311 

𝑏3 =

𝑓(𝑥3) − 𝑓(𝑥2)
𝑥3 − 𝑥2

−
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
−

𝑓(𝑥1) − 𝑓(𝑥0)
𝑥1 − 𝑥0

𝑥3 − 𝑥0
== 0.007865529 

Then  
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Figure 7 

3. Lagrange interpolation 

Lagrange interpolating polynomial can be represented concisely as 

 

Where   

𝐿𝑖(𝑥) = ∏  
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

𝑥 − 𝑥1

𝑥𝑖 − 𝑥1

𝑛

𝑗=0
𝑗≠𝑖

𝑥 − 𝑥2

𝑥𝑖 − 𝑥2
… 

𝑥 − 𝑥𝑛

𝑥𝑖 − 𝑥𝑛
      (6) 

 
where Π designates the “product of”. For example, the linear (first 
order) version (n=1) is 
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𝑓1(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) 
 

𝐿0(𝑥) = ∏  
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

1

𝑗=0
𝑗≠0

 
𝑥 − 𝑥1

𝑥0 − 𝑥1
 

  𝐿1(𝑥) = ∏  
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

1

𝑗=0
𝑗≠0

=
𝑥 − 𝑥0

𝑥1 − 𝑥0
 

 
And the second-order version is 
(n=2) 
𝑓2(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) + 𝐿2(𝑥)𝑓(𝑥2) 

𝐿0(𝑥) = ∏  
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

2

𝑗=0
𝑗≠0

(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
  

     𝐿1(𝑥) = ∏  
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

2

𝑗=0
𝑗≠1

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
   

, 𝐿2(𝑥) = ∏  
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

2

𝑗=0
𝑗≠2

(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

 

 

the rationale underlying the Lagrange formulation can be grasped directly by 

realizing that each term 𝐿𝑖(𝑥) will be 1 at 𝑥 = 𝑥𝑖 and 0 at all other sample points 

(Fig. 4). Thus, each product 𝐿𝑖(𝑥)𝑓(𝑥𝑖) takes on the value of 𝑓(𝑥𝑖) at the sample 

point 𝑥𝑖 . Consequently, the summation of all the products designated by Eq. (5) is 

the unique nth-order polynomial that passes exactly through all n + 1 data points. 
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Figure 8: A visual depiction of the rationale behind the Lagrange polynomial. This figure shows a second-order 
case. Each of the three terms in Eq. (8) passes through one of the data points and is zero at the other two. The 
summation of the three terms must, therefore, be the unique second-order polynomial f2(x) that passes exactly 
through the three points. 

 

Note that: 

1- The factors  𝐿𝑖(𝑥) weights must obey the normalization rule: 

 

∑ 𝐿𝑖(𝑥)

∞

𝑖=0

= 1 

2- Lagrange interpolation just reduces to the linear interpolation de-
scribed above. 

3-  The Lagrange interpolation has no constraints that the data be evenly 

spaced. 

4- The difference between the value of the polynomial evaluated at 

some x and that of the actual function is equal to the remainder: 
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5- Lagrangian interpolation is typically used to fit only local data, though 
it can be use to fit the data globally. However, there are better ways 
to fit nonlinear global data ⟹polynomial least square fitting (which 
we are not going to have time to cover in this class). 

Example 18.4 : 

 

Solution 

For the first order 

𝑓1(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) 

𝐿0(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1
=

2 − 4

1 − 4
        ,      𝐿1(𝑥) =

𝑥 − 𝑥0

𝑥1 − 𝑥0
=

2 − 1

4 − 1
 

 

 
For the second order 

𝑓2(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) + 𝐿2(𝑥)𝑓(𝑥2) 

𝐿0(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1

𝑥 − 𝑥2

𝑥0 − 𝑥2
=  

(2 − 4)

(1 − 4)

(2 − 6)

(1 − 6)
  , 

      𝐿1(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
=

(2 − 1)(2 − 6)

(4 − 1)(4 − 6)
  

𝐿2(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
=

(2 − 1)(2 − 4)

(6 − 1)(6 − 4)
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3.2 Coefficients of an Interpolating Polynomial 
Although “Lagrange” polynomials are well suited for determining intermediate 
values between points, they  do not provide a polynomial in conventional form: 
 

 

Since n+1 data points are required to determine n+1  coefficients, simultaneous 

linear systems of equations  can be used to calculate “a”s. 

 

Where “x”s are the knowns and “a”s are the unknowns. 

Extrapolation is the process of estimating a value of f(x) that lies outside the 

range  of the known base points, x0, x1, . . . , xn (Fig. 9). In a previous section, 

we mentioned  that the most accurate interpolation is usually obtained when 

the unknown lies near the  center of the base points. Obviously, this is 

violated when the unknown lies outside the  range, and consequently, the 

error in extrapolation can be very large. As depicted in Fig. 9, the open-ended 

nature of extrapolation represents a step into the unknown  because the 

process extends the curve beyond the known region. As such, the true curve  

could easily diverge from the prediction. Extreme care should, therefore, be 

exercised  whenever a case arises where one must extrapolate.   
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Figure 9 

 

3.3 Problems with polynomial interpolation 
I- As the number of points increases so does the degree of the 

polynomial. This leads to: 

• Occurring of many turns and a lot of “structure” between 
interpolation points in high order polynomials 

• High order polynomials will have a lot of “wiggles” and if points 
do not change smoothly they can “overshoot” in between 
datums. 

4. Spline interpolation 

Alternative approach is to apply lower-order  polynomials to subsets of 

data points. Such  connecting polynomials are called spline functions. 

The first order splines for a group of ordered data  points can be defined 

as a set of linear functions: 
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Figure 10  6th order polynomial fit    

                                                                                                                              Figure 11: Piecewise linear fit 

 4.1 Linear spline  
The first order splines  for a group of ordered data points can be defined as a set 

of linear functions: 

 

 
Example18.8 
Fit the following data with first order splines. Evaluate the function at x = 5. 

 
Solution 
The data can be substituted to generate the linear spline 
functions. For example, for the second interval from x = 4.5 to x = 7, the function is 

Figure 12 
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𝑓(𝑥) = 1.0 +
2.5 − 1

7 − 4.5
(𝑥 − 4.5) 

𝑓(5) = 1.0 +
2.5 − 1

7 − 4.5
(5 − 4.5) = 1.3 

The equations for the other intervals can be generated, and the resulting first-
order splines are plotted in Fig. 12.  

The main disadvantage of linear spline is that they are not smooth. At the data 

points where two splines meets called (a knot), the slope changes abruptly. The 

first derivative of the function is discontinuous at these points. This deficiency is 

overcome using higher order polynomial splines ensure smoothness at the knots 

by equating derivatives at these points. 

4.1 Quadratic spline 

Using higher order polynomial splines ensure smoothness at the knots by equating derivatives 

at these points. Because the derivation of cubic splines is somewhat involved, we have decided 

to first illustrate the concept of spline interpolation using second-order polynomials. These 

“quadratic splines” have continuous first derivatives at the knots. Although quadratic splines are 

not of practical importance, they serve nicely to demonstrate the general approach for 

developing higher-order splines.  

The objective in quadratic splines is to derive a second-order polynomial for each interval 

between data points. The polynomial for each interval can be represented generally as 

𝑓𝑖(𝑥) = 𝑎𝑖𝑥2 + 𝑏𝑖𝑥 + 𝑐                        (7) 
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For 𝑖 = 0, 1, 2, … . 𝑛)  there are 𝑛 + 1 data point and 𝑛 interval and 3𝑛 unknown 

constant ( three, a, b,c, for each polynomial). Therefore 3𝑛  equations or conditions 

are required to evaluate the unknowns. These can be developed as follows: 

1. The function values of adjacent polynomials must be equal at the interior 

knots, 2(𝑛 − 1). This condition can be written as; 

 

2. The first and last functions must pass through the end points, 2. 

 

3. The first derivatives at the interior knots must be equal (n-1).  

𝑓𝑖−1
′ (𝑥𝑖−1) = 𝑓𝑖

′(𝑥𝑖−1) 

 

𝑓𝑖−1
′ (𝑥𝑖−1) = 2𝑎𝑖−1𝑥𝑖−1 + 𝑏𝑖−1 

𝑓𝑖
′(𝑥𝑖−1) = 2𝑎𝑖𝑥𝑖−1 + 𝑏𝑖 

Then 

2𝑎𝑖−1𝑥𝑖−1 + 𝑏𝑖−1 = 2𝑎𝑖𝑥𝑖−1 + 𝑏𝑖  

4. Assume that the second derivative is zero at the first point ( the first two 

point will connect by straight line); 

𝑎𝑖 = 0 
 ______________________ 

Example 18.9  

Fit quadratic splines to the same data employed in Example 18.8 

 
. Use the results to estimate the value of the function at x = 5 

Solution 

We have ( i=0,1,2,3), there are 4 points so there are  3 intervals (n=3), 9 

unknowns. 
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The total quadratic spline fit is depicted in Fig. b. Notice that there are two 

shortcomings that detract from the fit:  

(1) the straight line connecting the first two points and  

(2) the spline for the last interval seems to swing too high. The cubic splines 

in the next section do not exhibit these shortcomings and, as a consequence, 

are better methods for spline interpolation. 

 

4.2 Cubic Splines 

   Cubic splines are preferred because they provide the simplest representation that 

exhibits the desired appearance of smoothness. 

The objective with cubic splines is to derive a third-order polynomial for 
each interval between knots as represented generally by 

𝑓𝑖(𝑥) = 𝑎𝑖𝑥3 + 𝑏𝑖𝑥2 + 𝑐𝑖𝑥 + 𝑑𝑖                        (8) 
Thus, for n+1 data points (i =0, 1, 2, . . . , n), there are n intervals and 4n  unknown 

coefficients to evaluate. Consequently, 4n conditions are required for their 

evaluation (a’s, b’s ,c’s and d’s). These conditions are the following. 

• The function values must be equal at the interior knots (2n-2). 

• The first and last functions must pass through the end points (2). 

• The first derivatives at the interior knots must be equal (n-1). 

• The second derivatives at the interior knots must be equal (n-1). 
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• The second derivatives at the end knots are zero (2), (the 2nd derivative function 

becomes a straight line at the end points).  

 

Once the additional end conditions are specified, we would have the 4n 
conditions needed to evaluate the 4n unknown coefficients. 

• Alternative technique to get Cubic Splines 
The second derivative within each interval [xi-1,xi] is a straight line. (the 2nd 
derivatives can be represented by first order Lagrange interpolating polynomials. 

 

The second derivative at any point x within the interval 
The last equation can be integrated twice 
2 unknown constants of integration can be evaluated by 
applying the boundary conditions: 

 
This equation result with n-1 unknown second derivatives where, for 

boundary points: 

 
Example : 

Fit cubic splines to the same data used in Examples 18.8 and 18.9. Utilize the 
results to estimate the value of the function at x = 5. 
Solution: 
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4.3  Matlab interpolates 
Interp1 
    Matlab has its own interpolation routine interp1 which does the things 

discussed in the previous two sections automatically. Suppose you have a set of 

data points {x, y} and you have a different set of x-values {xi} for which you want 

to find the  corresponding {yi} values by interpolating in the {x, y} data set. You 

simply use any one of these three forms of the interp1 command: 

 

yi= interp1 (x,y,xi,'linear') 

yi= interp1 (x,y,xi,'pchip') 

yi= interp1 (x,y,xi,'spline') 

We haven’t talked about spline interpolation yet. It is a piece-wise polynomial 

fit that typically does an excellent job of matching smooth functions. 

Here is an example of how each of these three types of interpolation works on 

a crude data set representing the sine function. 
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4.4 Two-dimensional interpolation 
Matlab also knows how to do 2-dimensional interpolation on a data set of 

 {x, y, z} to find approximate values of z(x, y) at points {xi , yi } which don’t lie on the data 

points {x, y}. In the completely general situation where your data points {x, y, z} don’t fall on 

a regular grid, you can use the command TriScatteredInterp to interpolate your function 

onto an arbitrary new set of points {xi , yi }, such as an evenly spaced 2-dimensional grid for 

plotting. Examine the code below to see how TriScatteredInterp works, and play with the 

value of N and see how the interpolation quality depends on the number of points. 
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The TriScatteredInterp command is very powerful in the sense that you 
can ask it to estimate z(x, y) for arbitrary x and y (within your data range). 
However, for large data sets it can be slow. In the case that your data set is 
already on a regular grid, its much faster to use the interpn command, like this: 
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In this example our grids were created using ndgrid. If you choose to use the meshgrid command to 

create your grids, you’ll need to use the command interp2 instead of intern. 
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Chapter2: Numerical Integration and Differentiation 

PART I: Numerical Integration 
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PART I: Numerical Integration 
Newton-Cotes Integration Formulas 
The idea of Newton-Cotes formulas is to replace a complicated function or 

tabulated data with an approximating function that is easy to integrate 

 

 

1. The Trapezoidal Rule 

Using the first order Taylor series to approximate f(x), 

 

 

𝐼 = (𝑏 − 𝑎)
𝑓(𝑎) + 𝑓(𝑏)

2
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The trapezoidal rule is equivalent to approximating the area of the trapezoidal 

under the straight line connecting f(a) and f(b). An estimate for the local truncation 

error of a single application of the trapezoidal rule can be obtained using Taylor 

series as 

 

where 𝜉 is a value between a and b. 

Example: Use the trapezoidal rule to numerically integrate 

 

Example: Use the trapezoidal rule to numerically integrate 
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Multiple-application trapezoidal rule: 

Using smaller integration interval can reduce the approximation error. We can 

divide the integration interval from a to b into a number of segments and apply the 

trapezoidal rule to each segment. Divide (a; b) into n segments of equal width. Then 

 

 

𝐼 =
ℎ

3
[𝑓(𝑥0) + 2∑𝑓(𝑥𝑖)

𝑛−1

𝑖=1

+ 𝑓(𝑥𝑛)] 
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Example: Use the 2-segment trapezoidal rule to numerically integrate 

 

 

2.  Simpson’s Rules 
Aside from using the trapezoidal rule with finer segmentation, another way to 

improve the estimation accuracy is to use higher order polynomials. 
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Simpson’s 1/3 rule: 

Given function values at 3 points as (x0; f(x0)), (x1; f(x1)), and (x2; f(x2)), we can 

estimate f(x) using Lagrange polynomial interpolation. Then 

 

𝐼 =
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)] 

It can be proved that single segment application of Simpson’s 1=3 rule has a 

truncation error of 

 

Where 𝜉  is between a and b. 

Simpson’s 1/3 rule yields exact results for third order polynomials even though it is 

derived from parabola. 
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Example: Use Simpson’s 1/3 rule to integrate 

 

 

 

• Multiple-application Simpson’s 1/3 rule 
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𝐼 =
ℎ

3
[𝑓(𝑥0) + 4 ∑ 𝑓(𝑥𝑖) +

𝑛−1

𝑖=1,3,…

2 ∑ 𝑓(𝑥𝑖)

𝑛

𝑖=2,4,…

++𝑓(𝑥𝑛)] 

 

 

𝐼 =
ℎ

3
[𝑓(𝑥0) + 4 ∑ 𝑓(𝑥𝑖) +

𝑛−1

𝑖=1,3,

2 ∑ 𝑓(𝑥𝑖)

𝑛

𝑖=2,4

+ 𝑓(𝑥𝑛)] 

𝐼 =
ℎ

3
[𝑓(𝑥0) + 𝑓(𝑥𝑛) + 4[𝑓(𝑥1) + 𝑓(𝑥3)] + 2𝑓(𝑥2)] 

𝐼 =
0.5

3
[0.2 + 94.2 + 4[13.575 + 54.575] + 2 × 30.2] = 71.2333 
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Simpson’s 3/8 rule 

 

𝐼 =
3ℎ

8
[𝑓(𝑥0) + 3𝑓(𝑥1) + 3𝑓(𝑥2) + 𝑓(𝑥3)] 
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PART II: Numerical differentiation: 
  Finite Divided Difference 
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3- Differential Equations 
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The following are some differential equations: 

 

Def. Order of differential equation: If 𝑦(𝑘)  is the highest order derivative in a 

differential equation, the equation is said to be 𝑘𝑡ℎ order differential equation. 

Def.  A solution to the differential equation: is the value of 𝑦 which satisfies the 

differential equation. 

Example: 

 

Numerical Solution 
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The initial Value problem 

 

 

 

 
 

Euler’s Method 
Consider the initial value problem: 

 

𝑦 is a function of 𝑥 , so we shall write the function as 𝑦(𝑥) 

Using Taylor series expansion  
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Therefore, Taylor’s expansion up to the first order term, gives 

 

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓𝑖 
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Assignment: Implement the above in any programming language 

Example: 

 

Solution 
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Backward Euler’s Method 

 

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓𝑖+1 

 

 

 

Solution 

 

Therefore; 

 

Hence  

 

Or 
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Now putting 𝜃 =
1

2
, we obtain 
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𝑦𝑖+1 = 𝑦𝑖 + 𝑑2 
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Example 

 

 

Solution 
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Chapter 4 

Root Finding in one-dimension 
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This involves searching for solutions to equations of the form: 𝑓(𝑥) = 0 

The various methods include: 

1. Bisection Method 

This is the simplest method of finding a root to an equation. Here we need two 

initial guesses 𝑥𝑎 and 𝑥𝑏 which bracket the root. 

 

Figure 1:Graphical representation of the bisection method showing two initial 
guesses (𝑥𝑎 and 𝑥𝑏) 
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Clearly, if 𝐹𝑎𝐹𝑏 = 0 then one or both of 𝑥𝑎 and 𝑥𝑏 must be a root of 𝐹(𝑥) = 0 

The basic algorithm for the bisection method relies on repeated applications of: 

Let  𝑥𝑐 =
(𝑥𝑎+𝑥𝑏)

2
 

If Fc = f(c) = 0 then, x =xc is an exact solution, 

Else if 𝐹𝑎𝐹𝑏 < 0 then the root lies in the interval (𝑥𝑎, 𝑥𝑐) 

Else the root lies in the interval (𝑥𝑐 , 𝑥𝑏) 

By replacing the interval (𝑥𝑎, 𝑥𝑏)  with either (𝑥𝑎, 𝑥𝑐) or (𝑥𝑐 , 𝑥𝑏) (whichever 

brackets the root), the error in our estimation of the solution to 𝐹(𝑥) = 0  is on 

the average, halved. We repeat this interval halving until either the exact root 

has been found or the interval is smaller than some specified tolerance. 

Hence, the root bisection is a simple but slowly convergent method for finding a 

solution of 𝐹(𝑥) = 0, assuming the function 𝑓 is continuous. It is based on the 

intermediate value theorem, which states that if a continuous function 𝑓 has 

opposite signs at some x = a and x = b(>a) that is, either 𝑓(𝑎) < 0, 𝑓(𝑏) > 0, or 

𝑓(𝑎) > 0,  𝑓(𝑏) < 0 then 𝑓 must be 0 somewhere on [a,b]. 

We thus obtain a solution by repeated bisection of the interval and in each 

iteration, we pick that half which also satisfies that sign condition. 

In conclusion we can consider the following steps: 
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Example 2:  

 

 

 

1. Assume x1 =12 and x2=16 

𝑓(𝑥1) = 6.067 𝑎𝑛𝑑 𝑓(𝑥2) = −2.269 
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𝑓(𝑥1)𝑓(𝑥2) < 0 

2. The root: 𝑦 = (𝑥1 + 𝑥2)/2 =  14 

𝑓(14) = 1.569 

3. 𝐶ℎ𝑒𝑐𝑘 𝑓(12). 𝑓(14)  =  6.067 ×  1.569 = 9.517 > 0; 

the root lies between 14 and 16. 

4. Set 𝑥1  =  14 and 𝑥2 = 16, thus the new root 

𝑦 = (14 + 16)/2 =  15 

𝑓(15) = −0.425 

5. Check 𝑓(14). 𝑓(15)  =  1.569 × −0.425 = −0.666 < 0; 

And so on  
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2. The Newton-Raphson Method 

This is another iteration method for solving equations of the form: F(x) = 0, where 

f is assumed to have a continuous derivative f‘. The method is commonly used 

because of its simplicity and great speed. The idea is that we approximate the 

graph of f by suitable tangents. Using an approximate value x0 obtained from the 

graph of f, we let 𝑥 be the point of intersection of the x – axis and the tangent to 

the curve of f at x0. 
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Example : 

Find the root of the equation 𝑥2 − 4𝑥 − 7 near 𝑥 = 5 to nearest thousands 

Solution 
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