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- Examine physical problem and various methods for computational solution.
To implement different algorithms for solving physical problems.

- Consider various properties of numerical solution such as accuracy, stability
and efficiency.
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- Check correctness of computed solution.
- Examine feasibility of various options of parallel computation for solving
physical problem.

Teaching arrangement and method of instruction: lecture notes for self learning
lectures and exercises

Course Content:

interpolation

- round off errors, accuracy and stability
- numerical differentiation

- numerical integration of functions
- root finding in one dimension

- solution of a set of linear equations
- Eigen vectors and Eigen values

- root finding in multi dimensions

- minimum finding

- Ordinary Differential Equations

- Partial Differential Equations

- initial value problems

- diffusion equation

- advection equation

- Monte-Carlo methods

- introduction to parallel computing

Required Reading:

Additional Reading Material:

Course/Module evaluation:



End of year written examination: 70
oral examination : 10

Midterm : 10

Project work: 5

Quizzes: 5



1. General Idea of interpolation

Suppose we are given data at discrete points only, and we wish to
estimate values between these known points, Figure (1)
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. The most common method used for this purpose is fitting or
interpolation.

M Interpolation: passes through each datum

B Fitting: seeks to produce a curve that approximates the data, see

Figure (2)
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B Global versus piecewise interpolation: We can fit a single polynomial
of degree n to n+l data points, this is called global interpolation.
Alternatively we can use a series of polynomials to link points together —
frequently called splines.

polynomial interpolation: Recall that the general formula for an nth
order polynomial is

f(x) = ap+ a;x+ ax* + ..+ a,x™

For n+1 data points, there is one and only one polynomial of order n that

passes through all the points. For example, there is only one straight line

(that is, a first-order polynomial) that connects two points (figure 2.(a)).
Similarly, only one parabola connects a set of three points (figure 2.(b),
fig. 2(c)). Polynomial Interpolation consists of determining the unique
nth order polynomial that fits n+1 data points. This polynomial then
provides a formula to compute intermediate values.

(a) (b) (c)

Figure 3: Examples of interpolating polynomials: (a) first-order (linear) connecting two points, (b)
second-order (quadratic or parabolic) connecting three points, and (c) third-order (cubic) connecting
four points.

Although there is one and only one nth-order polynomial that fits n + 1
points, there are a variety of mathematical formats in which this

polynomial can be expressed. In this chapter, we will describe two



alternatives that are well-suited for computer implementation: the
Newton and the Lagrange polynomials.

2. NEWTON'’S DIVIDED-DIFFERENCE INTERPOLATING POLYNOMIALS
2.1.Linear Interpolation
The simplest form of interpolation is to connect two data points
with a straight line. Using similar triangles,

f1(x) — f(xo) _ f(x1) — f(xo)

¥~ xo X = x, = slope (2)
then
fi(x) = f(xo) + f(x;z:iixo) (X = xo) @

The notation f; (x) designates that this is a first-order interpolating
polynomial. In general, the smaller the interval between the data
points, the better the approximation.
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Figure 4: Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used to
derive the linear-interpolation formula [Eq.2]



Example 18.1:
Estimate the natural logarithm of 2 using linear interpolation. First,

perform the computation by interpolating between Inl1 =0 and
In6 = 1.791759. Then, repeat the procedure, but use a smaller interval
from In1 to In4 (1.386294). Note that the true value of In 2 is 0.6931472.
Solution:

We use the previous equation and a linear interpolation for In(2) from
xo=1to x1=61to give

fi(@) = 0+ =222 (2 - 1) = 0.3583519

Which represents an error of & = 48.3%. Using the smaller interval
from xy = 1to x; = 4 yields

1.386294 — 0
fi(2)= 0+ ——— (2—1) = 0.4620981
Thus, using the shorter interval reduces the percent relative error to
g = 33.3%. Both interpolations are shown in the next figure, along
with the true function.

fx)
2 Jf@) =Inx
; True
val<&: fl(x)
- Linear estimates
0 () l -
0 5 X

Figure 5: Two linear interpolations to estimate In 2. Note how the smaller interval provides a better
estimate.



2.2. Quadratic Interpolation

If three data points are available, the estimate is improved by introducing
some curvature into the line connecting the points. If three data points
are available, this can be accomplished with_a second-order polynomial
(also called a quadratic polynomial, or a parabola). A particularly
convenient form for this purpose is

fo(x) = by + b1(x — x0) + ba(x — x0)(x — x1) @

A simple procedure can be used to determine the values of the
coefficients.

X=Xo b, = T(X,)
TR
0
F(x) = F (%) f(x)— (%)
X=X, bz— X, — X X — X

Xz _Xo

Notice that, as was the case with linear interpolation, b; still represents
the slope of the line connecting points x, and x;. Thus, the first two
terms of Eq. (4) are equivalent to linear interpolation from x, to x; . The
last term, b2(x - x¢)(x - x1), introduces the second-order curvature

into the formula.
Example 18.2: Fit a second-order polynomial to the three points used in

example 18.1:

Xp = 1 f(xg) =0
=4  flx,) = 1.386294
X, =6 flx,) = 1.791759

Use the polynomial to evaluate In 2.



Solution.  Applying Eq. (18.4) yields

bl) = 0
Equation (18.5) yields
1.386294 — 0

= 0.4620981

4-1
and Eq. (18.6) gives

1.791759 — 1.386294
6_4 — 0.4620981

b, = = —0.0518731
2 6—1

Substituting these values into Eq. (4) yields the quadratic formula
fo(x) =0+ 0.4620981(x — 1) — 0.0518731(x — 1) (x — 4)
which can be evaluated at x = 2 to give

£(2) = 0.5658444

which represents a relative error of ¢ = 18.4%. Thus, the curvature introduced
by the quadratic formula (Fig. 6) improves the interpolation compared with the
result obtained using straight lines in Example 18.1 and Fig. 5.
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Figure 6



2.3. General Form of Newton’s Interpolating Polynomials

The preceding analysis can be generalized to fit an nthorder
polynomial to n+1 data points. The nth-order polynomial is

fa(x) = by + bi(x —x ) + by(x — x0)(x — x1) + -
+ by (x — x0) (x — x1) o (x — Xp_1)

X=Xo b, = (%)
iex b f(xlx)—xf(xo)
20
f(Xz)_ f(x1) _ f(X1)_ f(xo)
X = X, b2= Xa =% X = %o

Xz _Xo

fOR) = fOa) . fOa) = fxo)

Xn — Xn-1 X1 — Xo

Xn — Xo
which is called Newton’s divided-difference interpolating polynomial. It
should be noted that it is not necessary that the data points used in the

X = Xn-1 b, =

previous equation be equally spaced or that the abscissa values
necessarily be in ascending order.

Errors of Newton’s Interpolating Polynomials:

Structure of interpolating polynomials is similar to the Taylor series
expansion in the sense that finite divided differences are added
sequentially to capture the higher order derivatives.

Example 18.3:
In Example 18.2, data pointsat x, = 1, x; = 4, and x, = 6 were used
to estimate In2 with a parabola. Now, adding a fourth point, [x3 = 5;
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f(x3) = 1.609438], estimate In2 with a third-order Newton’s
interpolating polynomial

Solution

The third-order polynomial with n=3, is

f3(x) = by + by (x — x¢) + by(x — x0)(x — x1)
+ bs(x — xp)(x — x1)(x — x3)

Xo=1, x;=4, x,=6, x3=5
f(xo) =In(1) =0

f(x;) =In(4) = 1.386294

f(x,) =1In(6) =1.791759

f(x3) =1In(5) = 1.609438

by = f(xo) =In(1) =0
_ f(x) = f(x0)

b, = 1.386294
X1 — Xp

f(xz) = fxq) . f(x1) = f(xp)

b, =—22" 1 17 % _ 005187311
Xy — X

f(x3) — f(x) _f(xz) — f(xy) _f(x1) — f(x0)

by = — 23 X2 X2 — % X17%  _— 0.007865529
X3 — Xp

Then

fa(x) = 0+ 0.4620981 (x — 1) — 0.05187311 (x — 1)(x — 4)
+0.007865529 (x — 1)(x —4)(x — 6)
which can be used to evaluate f3(2) = 0.6287686, which represents a
relative error of € = 9.3%. The complete cubic polynomial is shown in the

next figure.
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3. Lagrange interpolation
Lagrange interpolating polynomial can be represented concisely as

fa(x) = ZoLi()f ()

Where
nox-—-x; X—X1 X — Xy X—X
L;(x) =1_[ L= . (6)

-=O _—
ini Xi—Xj Xj—X1Xi— Xy Xi—Xp

where I1 designates the “product of”. For example, the linear (first
order) version (n=1) is



fi1(x) = Lo(x) f (x0) + Ly (x)f (x1)

j#0
1 x—x X —X
L) = 1_[1'=° X; —xj- T x —xo
j#0 l J 1 0
x_ xl x_ xO
= 7
filx) —— f(xo) + e flxy) @

And the second-order version is
(n=2)
f2(x) = Lo(x)f(x0) + L1 () f (x1) + Ly (x) f (x2)

Lo() = 17'2 x—x (0 —x)(x —x3)

jzg Xi — Xj (xo — x1) (%0 — x32)

2 X=X _ (x — x0) (x — x3)

52(1) Xi — Xj (1 — x0) (%1 — x3)
[T, 2= Gt

jz(z) Xi — Xj (X3 — x0)(x2 — x1)

Li(x) = |

- X— X X— X X— X X— X X— X X— X
fZ(x) - (ﬂio—xi;Exo—;z) f(xO) + (il—xggxl—i) f(xl) + (iz—nggxz—;i) f(xZ)
the rationale underlying the Lagrange formulation can be grasped directly by
realizing that each term L;(x) will be 1 at x = x; and 0 at all other sample points
(Fig. 4). Thus, each product L;(x)f (x;) takes on the value of f(x;) at the sample
point x; . Consequently, the summation of all the products designated by Eq. (5) is
the unique nth-order polynomial that passes exactly through all n + 1 data points.

10
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b= Third term
100 Summation
of three
terms = f5(x)
50
First term
0
30
-50
Second term
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—150 —

Figure 8: A visual depiction of the rationale behind the Lagrange polynomial. This figure shows a second-order
case. Each of the three terms in Eq. (8) passes through one of the data points and is zero at the other two. The
summation of the three terms must, therefore, be the unique second-order polynomial f2(x) that passes exactly
through the three points.

Note that:
1- The factors L;(x) weights must obey the normalization rule:

;Lim =1

2- Lagrange interpolation just reduces to the linear interpolation de-

scribed above.
3- The Lagrange interpolation has no constraints that the data be evenly

spaced.
4- The difference between the value of the polynomial evaluated at
some x and that of the actual function is equal to the remainder:

n
Rn =f[x9 Xps Xp—1s « 2+ 5x0] l_[ (x - .x}-)
i=0

11



5- Lagrangian interpolation is typically used to fit only local data, though
it can be use to fit the data globally. However, there are better ways
to fit nonlinear global data =polynomial least square fitting (which
we are not going to have time to cover in this class).

Example 18.4 :
Lagrange Interpolating Polynomials

Problem Statement. Use a Lagrange interpolating polynomial of the first and second
order to evaluate In 2 on the basis of the data given in Example 18.2:

x=1 Jx) =0

x =4 f(x;) = 1.386294

X, =6 f(xp) = 1.791760

Solution
For the first order
f1(x) = Lo(x)f (x0) + Ly (x)f (x4)
XxX—x1 2-—4 X—x9 2-—1

L - == , L = =
O(x) xo_xl 1_4 l(x) xl_xo 4‘_1

1.386294 = 0.4620981

g
2)="0+
M =173+

For the second order
f2(x) = Lo(x)f (xo) + L1 () f (x1) + Lo (x)f (x2)
L) = X=X X=X _ 2-4)(2-06)
° Xo—X1X—%X; (1-4)(1-6)"
bt 2 BTG _@2-DE-6)
. (X1 —x0)(x1 —x2) (4—1(4—-6)
L) = r—x)x—x) @2-1)2—-4)
T e x)l —x)  (6-1(6-4)

12



2-4)(2-06) 2-1)(2-06)
H(2) = (1—4)(1—6)0+(4—1)(4—6)1'386294
2-1)2-4)

(6-1)(6-4)

1.791760 = 0.5658444

3.2 Coefficients of an Interpolating Polynomial
Although “Lagrange” polynomials are well suited for determining intermediate
values between points, they do not provide a polynomial in conventional form:

2 i
f(X)=a,+ax+a,x" +---+a.x
Since n+1 data points are required to determine n+1 coefficients, simultaneous
linear systems of equations can be used to calculate “a”s.

f(x,)=a,+ax,+a,x; +a x|

2 '
f(x)=a,+ax; +ax; - +a,x

- — - .ﬂz P ﬂ”
f(}"r? _ a’(} + a’l‘ln + a’2‘ln + a’n‘ln

Where “Xx”s are the knowns and “a’s are the unknowns.

Extrapolation is the process of estimating a value of f(x) that lies outside the
range of the known base points, Xo, X1, . . ., Xn (Fig. 9). In a previous section,
we mentioned that the most accurate interpolation is usually obtained when
the unknown lies near the center of the base points. Obviously, this is
violated when the unknown lies outside the range, and consequently, the
error in extrapolation can be very large. As depicted in Fig. 9, the open-ended
nature of extrapolation represents a step into the unknown because the
process extends the curve beyond the known region. As such, the true curve
could easily diverge from the prediction. Extreme care should, therefore, be
exercised whenever a case arises where one must extrapolate.

13
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3.3 Problems with polynomial interpolation
- As the number of points increases so does the degree of the
polynomial. This leads to:
e Occurring of many turns and a lot of “structure” between
interpolation points in high order polynomials
e High order polynomials will have a lot of “wiggles” and if points
do not change smoothly they can “overshoot” in between
datums.
4. Spline interpolation
Alternative approach is to apply lower-order polynomials to subsets of

data points. Such connecting polynomials are called spline functions.
The first order splines for a group of ordered data points can be defined
as a set of linear functions:

14
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Figure 11: Piecewise linear fit

4.1 Linear spline
The first order splines for a group of ordered data points can be defined as a set
of linear functions:

f(x)zf(xo)""mo(x_xo) Xg S X=X,

fx)=f(x)+m(x—x) X, Sx <X,

f(.?C) :f(xn—l) +nin—1(x_xn—1) Y1 SXxs L

) = S ()= f(x)

i

Xigp =X

Example18.8
Fit the following data with first order splines. Evaluate the function at x = 5.

X f(x)

f(x) .
Flr:t-l?r:'ger

30 25 , °

4.5 1.0

7.0 2.5 gt [} '

2 4 6 8 10 «x

9.0 0.5 (a)

Solution Figure 12

The data can be substituted to generate the linear spline
functions. For example, for the second interval from x = 4.5 to x = 7, the function is

15



2.5 —
f(x) = 1O+7 (x—45)

5) =1.0 25— 5—45)=13
f(5) =10+ 45< )

The equations for the other intervals can be generated, and the resulting first-
order splines are plotted in Fig. 12.

The main disadvantage of linear spline is that they are not smooth. At the data
points where two splines meets called (a knot), the slope changes abruptly. The
first derivative of the function is discontinuous at these points. This deficiency is
overcome using higher order polynomial splines ensure smoothness at the knots
by equating derivatives at these points.

4.1 Quadratic spline
Using higher order polynomial splines ensure smoothness at the knots by equating derivatives
at these points. Because the derivation of cubic splines is somewhat involved, we have decided
to first illustrate the concept of spline interpolation using second-order polynomials. These
“quadratic splines” have continuous first derivatives at the knots. Although quadratic splines are
not of practical importance, they serve nicely to demonstrate the general approach for
developing higher-order splines.

The objective in quadratic splines is to derive a second-order polynomial for each interval
between data points. The polynomial for each interval can be represented generally as

filx) =a;x®*+ bjx +c (7)

Jf(x) aX> + byx + cy

UsX" + box + 5
ax® +bx+c,

j.(—‘] )
S (xy)

Interval 1 Interval 2 Interval 3

16



Fori=0,1,2,...n) there are n + 1 data point and n interval and 3n unknown
constant ( three, a, b,c, for each polynomial). Therefore 3n equations or conditions
are required to evaluate the unknowns. These can be developed as follows:
1. The function values of adjacent polynomials must be equal at the interior
knots, 2(n — 1). This condition can be written as;

2
- = - — el . — 2
a_x._, +b_x_ +c_ =f(x_) i=2,34,..,n

2
ax,, +bx,  +c = f(x. ) i=2,3,4,..,n

2. The first and last functions must pass through the end points, 2.
) _ o
a,x, +bx,+c, = f(x,)
2
anxn + bn‘}"n + Cn — tf(‘}";i)

3. The first derivatives at the interior knots must be equal (n-1).
fisa (xiz1) = fi (xi-1)
fi(x)=2ax+b,
fita(xim1) = 2a;_1x;—4 + bi_4
fi (i) = 2a;x;_1 + b;
Then
2a;_1X;—q1 + bj—y = 2a;x;1 + b;
4. Assume that the second derivative is zero at the first point ( the first two
point will connect by straight line);
a, =0

Example 18.9
Fit quadratic splines to the same data employed in Example 18.8

x | 30 | 45 | 7.0 | 9.0
fix) | 25 | 10 | 25 | 05

. Use the results to estimate the value of the function at x=5

Solution

We have ( i=0,1,2,3), there are 4 points so there are 3 intervals (n=3), 9
unknowns.

17



1. Equal interior points:

» For first interior point (4.5, 1.0)
The 1t equation:

2
xXya +xlbl +Cl :f(xl)

(4.5)%ay +4.5b + ¢, = [(45) = [2025a,+4.5b,+¢,=1.0

The 2" equation:
2
X{dy+x1by +¢3 = fxq)

(4.5)%ay + 4.5by + ¢5 = f(4.5) =»[20.25a; +4.5b, +¢, =1.0

» For second interior point (7.0, 2.5)

The 3 equation:
xya, +x,b, +¢, = f(x,)
(1Vay+7h, +¢, = f(7) = |49ay+7by +cy =2.5

The 4th equation:

3&‘2203 +x,b,+¢c, = f(x,)

(7)a,+7b, +c, = [(T) — [49a3+7hs+c3=2.5|

» First and last functions pass the end points

For the start point (3.0, 2.5)

xpa, +x,b +c, = f(x,) — |9a1 +3b + ¢ =2.5|

For the end point (9, 0.5)

X305 +x3by + ¢35 = f(x3) — |Sla3 +9b3+¢c3 =05

18



» Equal derivatives at the interior knots.

For first interior point (4.5, 1.0)

2x1 G] +b1 = 2'1‘1 02 +b2 - 901 +bl = 9(72 +]72

For second interior point (7.0, 2.5)

23’202 +b2 = 23’303 +b3 — 1402 +b2 = 140'.3 +b3

» Second derivative at the first pointis 0

f"(xo)=al =0
451] 0 0 0 0o 0 0o 5] ‘1 |
0 02025451 0 0 0 |e
0 0[@ 7 1] 0 0 0 |[a
00 0 0 0 49 7 1 ||| |25
00 0 0 0 0 [lef [Z5]
0 00 0 0 8 9 1 |a| |05
I 09 =T 0] 0 00 |b| 0]
0 014 1 0 -14-10 Je| [0
as 18] 1 by =-1
{ 3 JLJ _{2.5} - Ll—ﬁ.ﬁ}
2025 45 1[ay] [1 a, = 0.64
9 7 1|b|=|25|=|b=-676
9 1 0fc,| |1 c, =18.46

19



Solving these 8 equations with 8 unknowns
fx)

a,=0, b=-1. ¢=55
a,=0.64, b, =—06.76,c, =18.46
a; =—1.6,b, =246, ¢;=-913

Second-order
spline

2
fi(x)

0 |

filx)=—=x+525, 3.0<x<45
f>(x) = 0.64x% —6.76x +18.46, 45<x<7.0

fi(x)=-1.6x"+24.6x-913,  7.0<x<9.0

The total quadratic spline fit is depicted in Fig. b. Notice that there are two
shortcomings that detract from the fit:

(1) the straight line connecting the first two points and

(2) the spline for the last interval seems to swing too high. The cubic splines
in the next section do not exhibit these shortcomings and, as a consequence,
are better methods for spline interpolation.

4.2 Cubic Splines
Cubic splines are preferred because they provide the simplest representation that
exhibits the desired appearance of smoothness.

The objective with cubic splines is to derive a third-order polynomial for
each interval between knots as represented generally by

fi(x) = a;x3® + b;x? + ¢;x + d; (8)
Thus, for n+1 data points (i=0, 1, 2, ..., n), there are n intervals and 4n unknown
coefficients to evaluate. Consequently, 4n conditions are required for their
evaluation (a’s, b’s ,c’s and d’s). These conditions are the following.
e The function values must be equal at the interior knots (2n-2).
e The first and last functions must pass through the end points (2).
e The first derivatives at the interior knots must be equal (n-1).
» The second derivatives at the interior knots must be equal (n-1).

20



e The second derivatives at the end knots are zero (2), (the 2nd derivative function
becomes a straight line at the end points).

Once the additional end conditions are specified, we would have the 4n
conditions needed to evaluate the 4n unknown coefficients.

e Alternative technique to get Cubic Splines
The second derivative within each interval [xi.1,xi] is a straight line. (the 2nd
derivatives can be represented by first order Lagrange interpolating polynomials.

3(1 A e AR

Xiog =& R S

/

The second derivative at any point x within the interval
The last equation can be integrated twice

2 unknown constants of integration can be evaluated by
applying the boundary conditions:

1. fix)= f(x;)atx;,
2. f{x)= f(x)atx;

f(x)= ():(";1_)1)( —2‘)3 + 6(1 (\x?_l)(l X; L) Unknowns:
N fx) S G x ) (x,— x) U
| XX 6 o S (xy)
WA 1=0,1,....,n
4| Ll S A A i-1 :|(x—x,._1)
XX 6
This equation result with n-1 unknown second derivatives where, for
boundary points:
f(x,)=rf(x,)=0
Example :

Fit cubic splines to the same data used in Examples 18.8 and 18.9. Utilize the
results to estimate the value of the function at x = 5.

Solution:
» Natural Spline:

[ )= (3)=0, f(x)=F(9=0

21



157" 3)+2x4f (4.5)+2.5F (7) = %(2.5 —1)+%(2.5—1)
Since [ (3)=0

8F (45)+25f(7)=96 ...........(eq.])

#For 2nd interior point (x,=7)

X 3.0 | 45 9.0
fix) | 2.5 | 1.0 0.5

XX, =x,—x=7-45=25

X~ X, =x,—x=9-45=45

X, —X=x-x,=9-7=2
Apply the following equation:

(5, =3xS () 205 =3 ) (6 + (=) (5)
O ) S )] — [ )~ £ )]

"\f—l _xf -

i i-1
251(4.5)+2x45F () +217(9) :g(o.s - 2.5)+%(1—2.5)
Since f(9)=0

25 (4549F(7)=-96 .oocve.. (equ 2)

Solve the two equations:

81/ (4.5)+25((7)=9.6

/ (‘. ) ff..( : veild f'(4.5)=1.67909, f"(7)=—1.53308
25£ (4.5)+9£(7)=-9.6

The first interval (i=1), apply for the equation:

f:(‘) :M(x! —xf + j: (rf) (X—-\'H)s

6(x, —x,,) 6(x, —x,_,)
REACHE A )gc,- = ]}[.\3 _ x-){ filx) A (x,-)(;-,. — )}(" v

ey, 167909 3y 25 0(L5) B TL71.6T909(1.5) 3
[i(x)=0(x,-3)" + 615 (x—3) J{I.S ‘ }(4.5 X)Jr'_l.ﬁ e }(\ 3)

f(x)=0.186566(x —3)> +1.6667 (4.5 — x) +0.24689(x — 3)
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The 2"d interval (/ =2), apply for the equation:

167909 5 153308 5 [ 1 —1679092.5)].
fH(x) = 625) (7-x) + 623) (x—4.5) +{2_5 . }(7 x)
+{E_—1.53308(2.5)}@(_45)
25 6

£,(x)=0.111939(7 - x)* = 0.102205 (x — 4.5)* —0.29962(7 — x) +1.638783 (x —4.5)
The 3" interval (/ =3),
£,(x)=—-0.127757(9 —x)* +1.761027 (9 —x) +0.25(x — 7)

For x=5: fr(x)=f,(5)=1.102886

4.3 Matlab interpolates
Interp1
Matlab has its own interpolation routine interpl which does the things

discussed in the previous two sections automatically. Suppose you have a set of
data points {x, y} and you have a different set of x-values {x;} for which you want
to find the corresponding {yi} values by interpolating in the {x, y} data set. You
simply use any one of these three forms of the interpl command:

yi=interp1 (x,y,xi, linear’)

yi=interp1 (x,y,xi,'pchip’)

yi=interp1 (x,y,xi, spline’)

We haven’t talked about spline interpolation yet. It is a piece-wise polynomial
fit that typically does an excellent job of matching smooth functions.

Here is an example of how each of these three types of interpolation works on
a crude data set representing the sine function.
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Listing 10.1 (ch10ex1.m)

clear; close all;

% make the crude data set with dx too big for
% good accuracy

dx=pi/5;

X¥=0:dx:2%pi:

y=s5in(x);

% make a fine x-grid
xi=0:dx/20: 2%pi;

% interpolate on the coarse grid to
% obtain the fine yi values

% linear interpolation
yi=zinterpl(x,y,xi, 'linear');

% plot the data and the interpolation
plot(x,y, 'b*" xi,yi, 'r-")
title('Linear Interpolation')

% cubic interpolation
yi=interpl (x,y,xi, 'pchip');

% plot the data and the interpolation
figure

plot(x,y, 'bx" ,xi,yi, 'r-")
title('Cubic Interpolation')

% spline interpolation
yizinterpl(x,y,xi, 'spline');

% plot the data and the interpolation
figure

plot(x,y, 'b*" xi,yi, 'r-")
title('Spline Interpolation')

4.4 Two-dimensional interpolation
Matlab also knows how to do 2-dimensional

{x, y, z} to find approximate values of z(x, y) at points {xi, yi } which don’ t lie on the data
points {x, y}. In the completely general situation where your data points {x, y, z} don’t fall on
a regular grid, you can use the command TriScatteredInterp to interpolate your function
onto an arbitrary new set of points {xi, yi }, such as an evenly spaced 2-dimensional grid for
plotting. Examine the code below to see how TriScatteredInterp works, and play with the
value of N and see how the interpolation quality depends on the number of points.
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Listing 10.2 (ch10ex2.m)

clear; close all;

% Make some "data" at random points x,y points
=200;

(rand(N,1)-0.5)*6;

(rand(N,1)-0.5)*6;

cos((x.*2+y.*2)/2);

Mo 2 =

% Create an interpolating function named F
F = TriScatteredInterp(x,y,z, 'natural');

% Create an evenly spaced grid to interpolate onto
xe = -3:.1:3;

ye = xe;

[XE,YE] = ndgrid(xe,ye);

% Evaluate the interpolation function on the even grid
ZE = F(XE,YE);

% plot the interpolated surface
surf(XE,YE,ZE);

% overlay the "data" as dots
hold on;

plot3(x,y,z,".");

axis equal

The TriScatteredInterp command is very powerful in the sense that you

can ask it to estimate z(x, y) for arbitrary x and y (within your data range).
However, for large data sets it can be slow. In the case that your data set is
already on a regular grid, its much faster to use the interpn command, like this:
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Listing 10.3 (ch10ex3.m)

clear; close all;
x=-3:.4:3; y=x;

% build the full 2-d grid for the crude x and y data
% and make a surface plot

[X,Y]=ndgrid(x,y);

Z=cos((X."2+4Y.*2)/2);

surf(X,Y,Z);

title( 'Crude Data')

% now make a finer 2-d grid, interpolate linearly to
% build a finer z(x,y) and surface plot it.

% Because the interpolation is linear the mesh is finer
% but the crude corners are still there

xf=-3:.1:3;

yf=xf;

[XF,YF1=ndgrid(xf,yf);

ZF=interpn(X,Y,Z,XF,YF, "linear');

figure

surf(XF,YF,ZF);

title('Linear Interpoclation')

% Now use cubic interpolation to round the corners. Note that
% there is still trouble near the edge because these points
% only have data on one side, so interpolation doesn't work well

ZF=interpn(X,Y,Z,XF,YF, "cubic');
figure

surf(XF,YF,ZF);

title('Cubic Interpolation’)

% Now use spline interpolation to also round the corners and
% see how it is different from cubic. You should notice that
% it looks better, especially near the edges. Spline

% interpolation is often the best.

ZF=interpn(X,Y,Z,XF,YF, "spline");
figure

surf(XF,YF,ZF);

title('Spline Interpoclation')

In this example our grids were created using ndgrid. If you choose to use the meshgrid command to

create your grids, you'll need to use the command interp2 instead of intern.
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Chapter2: Numerical Integration and Differentiation

PART I: Numerical Integration



PART I: Numerical Integration
Newton-Cotes Integration Formulas

The idea of Newton-Cotes formulas is to replace a complicated function or
tabulated data with an approximating function that is easy to integrate

b b
! :/ f(z)dz ~ f ful)da

where f,,(z) = ap + ayz + {121'2 + ...+ a,r"

1. The Trapezoidal Rule

Using the first order Taylor series to approximate f(x),

b b
fz/ flf_:f‘_‘,ld;ra-f/ filz)dx

where F(b) = fla)
- . I‘ JI — I‘{'I- ], .
filz) = fla)+— b —(r — a
— {1

Then
6 ‘ I:"b" _ r .\.:I l \
I =~ / [f(a} + %{1‘ — a.jn} dr
a —a

f(a) +f(b)
2

I=(b—-a)

fx)




The trapezoidal rule is equivalent to approximating the area of the trapezoidal
under the straight line connecting f(a) and f(b). An estimate for the local truncation

error of a single application of the trapezoidal rule can be obtained using Taylor
series as

1 L 3
Ei = —Ef Il_g_JI |._b — )
where £ is a value between a and b.
Example: Use the trapezoidal rule to numerically integrate
flr)=02+ 25z
froma=0tobh=2,
Solution: f(a)= f(0)=0.2,and f(b) = f(2) = 50.2,
fb)+ fla) .02
—_— — |
2 " /

e}

I =(b—a)
The true solution is
2
f flz)dr = (0.22 + 12.52%)|2 = (0.2 x 24+ 12.5 x 2%) — 0 = 50.4
0

Because f(x) is a linear function, using the trapezoidal rule gets the exact solu-
tion.

Example: Use the trapezoidal rule to numerically integrate

f(z) = 0.2 4+ 25z + 322

froma=0tob=2.

Solution: f(0) = 0.2, and f(2) = 62.2.

f(b)+ fla)
i:,.

)

I[=(b—a) =(2-0) x

0.2462.2
— = 62.4

The true solution is

2
/ flx)de = (022 + 12522 + 2¥)3 = (0.2 x 2+ 12.5 x 224 2%) — 0 = 584
0



The relative error 1s

58.4 — 62.4
58.4

le| = x 100% = 6.85%

Multiple-application trapezoidal rule:

Using smaller integration interval can reduce the approximation error. We can
divide the integration interval from a to b into a number of segments and apply the
trapezoidal rule to each segment. Divide (a; b) into n segments of equal width. Then

b T 9 Iy
I = ] flz)dr = f flx)dr —|—/ flz)dr + ...+ flx)dx
a Iy rq Tn—1
wherea =z < < ... <x,=bandz,—z,_1=h = b?‘—l"',fori =1,2,....n.

Substituting the Trapezoidal rule for each integral yields

flzo) + flx1) flxy)+ fla2) flen—1) + flan)
I = h 5 +h 5 +...+h 5

)

n n—1
I =§[f(xo) + Zzlf(xl) +f(xn)]

The approximation error using the multiple trapezoidal rule is a sum of the indi-
vidual errors, i.e.,

Let ' = w Then the approximate error is
(b—a)

Be=— 12n? f



Jix)

&

(a)

f)

(h)

% %5

,
=
=
=

i

2

5 5
(©)

fi)

2
-
-

()

Example: Use the 2-segment trapezoidal rule to numerically integrate

froma=0tobh=2.

f(x) = 0.2 4 25z + 32°

Solution: n = 2, h=(a—b)/n=(2—ﬂ)/2=1
F(0)=0.2, f(1)=28.2,and f(2) = 62.2
0 211 2 0.24+2 x 2824622
I:(b_a)f(w fO+1@)_, 02+ -
2n 4
The relative error 1s
Hhd.4 — H9.4
o] = |———| x 100% = 1.71%
h8.4

2. Simpson’s Rules

Aside from using the trapezoidal rule with finer segmentation, another way to

improve the estimation accuracy is to use higher order polynomials.



Jx) fx) y

\\\Q

(a) (b)

Simpson’s 1/3 rule:

Given function values at 3 points as (xo; f(xo)), (x1; f(x1)), and (x2; f(x2)), we can
estimate f(x) using Lagrange polynomial interpolation. Then

(r — x1)(x — 29)
f|;1|d1 = —flxp)
|ID— Illlilo—:?_gl

|;1—:r0||;1—:r2| _ |;1—;rg||1—;1'1|
—flxy1) + - ~flxa) | dr
Ill—l‘ﬂllll—lzl ITE—Tglllz—lll

Whena=2g.b=20. (a+b)/2 =z, and h = (b — a)/2,
3 ! . M

h
I = 3 [f (xo) + 4f(x1) + f(xz)]

It can be proved that single segment application of Simpson’s 1=3 rule has a

truncation error Of
By = ——h g
¥ 90 &/

Where ¢ is between a and b.

Simpson’s 1/3 rule yields exact results for third order polynomials even though it is
derived from parabola.



Example: Use Simpson’s 1/3 rule to integrate
f(z) = 0.2+ 25z + 322 4 823
froma=0to b= 2.
Solution: f(0) = 0.2, f(1) =36.2, and f(2) = 126.2.
FO)+AF(L) + F(2) 0.2+ 4 % 36.2+ 126.2
|

' 6 6

The exact integral is

I=(b—a

2
[ flz)dr = (0.22+12.52°+2°+22Y) 5 = (0.2 2412.5x 2242242 2")—0 = 90.4
j

Example: Use Simpson’s 1/3 rule to integrate
f(z) = 0.2+ 25z + 322 + 224
froma=0tob=2
Solution: f(0) = 0.2, f(1) =30.2, and f(2) = 94.2.
:lf[(}‘jl + 4ff|:flfj| + f(2) oy 0.24 4 x .'20.24— 94.2 _ 7173
) I

I=({b—-a
The exact integral is
/2 f(x)dr = (0.204+12.52°+a34+0.42°)|2 = (0.2x2412.5x2242340.4x2%)—0 = 71.2
0
The relative error 1s

1.2 —="71.73

= 0.7
71.2 ‘ ¢

et =

e Multiple-application Simpson’s 1/3 rule

Dividing the integration interval into n segments of equal width, we have
T2 L4 Tn
I = f fla)dr + f fle)yde +... + fla)dx
el L2 Tp—2
where a = 29 < 7y < ... <, = b,and ; — ;1 = h = (b — a)/n, for

i=1,2 n. Substituting the Simpson’s 1/3 rule for each integral yields

4 D ooy



7~ ghf'iil‘ol' +4f(x1)+ flae) n Eh_f'l_il‘z ) + 4f'l_f1‘3 )+ flxa)
P G " r " ()
flep o) +4f(r, 1)+ flx,)

Hoo o+ 2h ;
G

h n—1 n
I=§ f(xy) +4 Z f(x;)+2 Z f(xi)++f(xn)]

i=1,3,... i=24,..

Example: Use 4-segment Simpson’s 1/3 rule to integrate
f(z) =02+ 252 + 32% + 22*
froma =0tob=2.
Solution: n =4, h =(b—a)/n=0.5.
flzo) = f(0) = 0.2, f(r1) = f(0.5) = 13.575, f(x2) = f(1) = 30.2, f(xs3) =

f(1.5) = 54.575, and f(xy) = f(2) = 94.2.

n n-1 n
= §[f(xo) +4 ) fG)+2 ) flx) +f(xn)]

i=1,3, i=2,4

h
I = 3 [f (xo) + f(xp) +4[f (xq) + f(x3)] + 2f (x2)]

0.5
I =—-[0.2 +94.2 + 4[13.575 + 54.575] + 2 x 30.2] = 71.2333

The exact integral is
2
/ flz)dz = (020412502427 +0.42%))2 = (0.2x 24125224 2°40.4x2°) =0 = T1.2
0
The relative error is
1.2 —71.2333

1.2

et =

‘ = 0.047%



Simpson’s 3/8 rule

This is to use a third-order Lagrange polynomial to fit to four points of f(x) and
yields

—~ T

3h
I'= = [f (o) +3f (1) + 3f (x2) + f (x3)]

where h = (b — a)/3. The approximation error using this rule is
3 = (b—a) 4
Ef S '~4)|f I _ _ A / (cLJI:- I
80 SR 6430 FE
where £ is between a and b.

3 Integration of Equations

Newton-Cotes algorithms for equations

Compare the following two Pseudocodes for multiple applications of the trape-
zoidal rule.

Pseudocode 1: Algorithm for multiple applications of the trapezoidal rule
function Trapm(h,n, £)

sum=1£0

for i=l:n-1

sum=sum+2+fi

end

sum=sum+£fn

Trapm=h+sum/2

Pseudocode 2: Algorithm for multiple application of the trapezoidal rule when
function f(x) is available
function TrapEqg(n,a,b)

h=(b-a) /n
X=a
sum==£ (x)

for i=1l:n-1



®x=x+h
sum=sum+2+If (x)
end
sum=sum+I (k)
TraEg=(b-a) *sum/ (2+n)

Pseudocode 1 can be used when only a limited number of points are given or the
function is available. Pseudocode 2 is for the case where the analytical function
is available. The difference between the two pseudocodes 1s that in Pseudocode
2 neigher the independent nor the dependent variable values are passed into the
function via its argument as in Pseudocode 1. When the analytical function is
available, the function values are computed using calls to the function being
analyzed, f(x).

PART lI: Numerical differentiation:
Finite Divided Difference

First Order Derivatives:

The first forward finite divided difference
Using Taylor series,
L .
, \ f o Teoy flz), o 3
flx_jt‘:-_H_Jl = flz;)+ f [T Vh + Th + Olt_h )
where h = x;.1 — x;. Then f (x;) can be found as
o flag) = fla)
£l = =
The first forward finite divided difference is
oo Hrgy) — flog)
flr) =~ :
' h
The first backward finite divided difference
Using Taylor series,

+ O(h)

"o

, : o b (x;) o a,
flzic) = floy) — f(xi)h + %hz + O(h?)

il

10



where h = 7, — 7;_1. Then f'(z;) can be found as

: f(mz-) — f(zi 1)

flz;) = ; + O(h)
and f'(z;) can also be approximated as
/ (z;) — flzi_
£l ~ flzi) hf\ 1)

which 1s called the first backward finite divided difference.

e The first centered finite divided difference

Flzip1) — flziey) = 2f (2i)h + O(R®)

and f ) can be found as
fe N f(i?«bq_l) — fl.':ilfg'_ﬂ T
f(2) = — — O(r?)
and f'(z;) can also be approximated as
v flrap) — flzi)
flai)~ 2h

which is called the first centered finite divided difference.

Notice that the truncation error is of the order of A in contrast to the forward
and backward approximations that are of the order of h. Therefore, the centered
difference 1s a more accurate representation of the derivative.

{ixl firl

f oy X -y
(@) (1] e

Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference approximations of the first derivative
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Example: Estimate the first derivative of

flz) = =012 = 0.152" — 0.52° — 0.252 + 1.2

at x = 0.5 using a step size h = 0.5. Repeat the computation using i = 0.25.

Solution:
The problem can be solved analytically

F(z) = —0.42% — 0.452% — x — 0.25

and f'(0.5) = —0.9125.

When h = 0.5, 7, 1 =2; —h=0,and f(x; 1) = 1.2; 2, = 0.5, f(z;) = 0.925,

Tig1=x;+h=1,and f(z;41) = 0.2,
The forward divided difference:
15) & flrig) — flz;)  0.2—0.925

r,
(0.5) = = =—1.45
f ' Tyl — Iy 0.5
The percentage relative error:
(—0.9125) — (—1.45)

x 100% = 58.9%

|fz| =

—0.9125
The backward divided difference:
flxy) — flziy) 0925 -1.2

(0.5) ~ = —0.55
110:5) T, — T 0.5 -
The percentage relative error:
(—0.9125) — (—=0.55)
L ) — ) o e =0
le:| = 001 x 100% = 39.7%
The centered divided difference:
foo (iv1) — flzi1) 025 —1.2
Flo5) ~ dEFr) — floi) _0925-12_
Tiy1 — T 2x 0.5
The percentage relative error:
(—0.9125) — (—1.0)
= |- — -| x 100% = 9.6Y
< ~0.9125 %o =9.6%
When h = 0.25, 7,1 = x; — h = 0.25, and f(zr;_1) = 1.1035; x;

flo;) = 0925, 2501 = 2, + h = 0.75, and f(x;11) = 0.6363.
The forward divided difference:
fl.;f()_s‘j. - flxigr) — flz;) _ 0.6363 — 0.925
Titl — T 0.25
The percentage relative error:
(—0.9125) — (—1.155)
—0.9125

= —1.155

x 100% = 26.5%

|Ef| =

12

0.5,



The backward divided difference:
flz,) — f(z;—y) 0.925 — 1.1035
r—7y 0.25
The percentage relative error:
(—0.9125) — (—0.714)
—0.9125
The centered divided ditference:
f’(U.S‘J - fleigg) — fleig) _ 0.6363 — 1.1035
' } Tigl — Tio1 2 x 0.25
The percentage relative error:
(—0.9125) — (—0.934)
—0.9125

£(0.5) ~ — _0.714

x 100% = 21.7%

€] =

= —0.934

x 100% = 2.4%

|ft| =

Using centered finite divided difference and small step size achieves lower ap-
proximation error.

Higher Order Derivatives:
e The second forward finite divided difference

o

o N (i) o 0 o

flrige) = flo) + flz:)(2h) + f o [_2?1_]2 +O(hY) (2)
) \ P P ! |:: ;?.“HJ ‘ iy .

florigr) = floz) + flz)h + o iy ()l'ﬁ.g_;l (3)

(2)-(3)x2:
f(zig2) = 2f(zi1) = —flz:) + f (xo)h® + O(RY)
f ! (x;) can be found as

() flzipe) — 2f(zia) + flx;)
(i) = .
' h?

+ O(h)
. 3 .
and f (x;) can be approximated as

flrigo) = 2f(zip) + flay)
h2

"
P
f lr;) ~=

This 1s the second forward finite divided difference.

13



e The second backward finite divided difference
" . f':T:II —_— gfl:i‘_l :II + fll::l‘:'_z‘:l 7
flzi) = & ?2 ' - +O(h)
(L " .
and [ (z;) can be approximated as
fla) = 2f(zi_1) + flzi_2)
h?

1s the second backward finite divided difference.

L "
[ .| o
[l =~

e The second centered finite divided difference
M R (3) . .\1
[ ey e a A
/ ——h? 4 / _3", R oY) @)

reoy (3)(n\
;) \r;) A -
f 5: B f -3i R ()[_h.J‘_j (3)

floi) = flr) + f!(:c‘:-‘_‘,u'z +

flzi 1) = flx) — flljf;r‘,-]h +
(d)+(5): , ‘
floip) + floiy) =2f(x) + f If;ré‘jlh.z + O[h‘L] (6)

Then f ! () can be solved from (6) as
v flraa) = 2f(x) + flzi)

h

+ O h? )

and ) . o ) .
f” ()~ flaeip) — 2f(x) + flzi)
R h?

is the second centered finite divided difference.

High-Accuracy Numerical Differentiation
e The second forward finite divided difference

"

£ () = L) = ) _ 1 h 4 O = f '*-5‘“*1-*';_ H&) L o)
1 4 1
" (riia) — 2 (x; ) (x;) I
fir) = f(zive) = 2f(xip1) + f(2:) + O(h) (8)

h?
Substitute (8) into (7),
) = fleipr) — flzi)  flwiga) = 2f(zip1) + o)
te) — -

72
. oh +O(h%) (9)

Then we have
—flzig2) + 4f':1'é+1\.‘-' - 3f':3':'\:'
2h

flay) = + O(h?) (10)

14



e The second backward finite divided difference

ro o 3f(x) —Af (i) + flzia) o
fix) = il f"?'h D+ e + O(h?) (11)
e The second centered finite divided difference
oo —Flrige) + 8f(zig) — 8f(xim1) + f(xiia)
fla) = — _ '
' 12h

+ORY (1)

Example: f(z)= —0.12% — 0.152% — 0.522 — 0.252 4+ 1.2, 2; = 0.5, h = 0.25.

r;=05 2, =2, —h=025r,_ o=0,7, 1 =2, +h=0.75,2;,0=1

flz;) = 0.925, f(x;_y) = 1.1035, f(z,_9) = 1.2, f(x;41) = 0.6363, and f(zyq) =
0.2.

Using the forward f.d.d., 1 ; ) = —1 155, ¢ = —26.5%

Using the backward f.d.d., f () = 0.714, & = 21.7%

Using the centered f.d.d., f (x;) = —0.934, ¢, = —2.4%

Using the second forward f.d.d.,

ooy = flwiga) HF (i1 —3F(2) _ —0.244x0.6363—3x0.925 _ Y
fleg) = T = 3058 = —0.8594
| —0.8594—(—0.9125)| | yrnor = o0
€ = | UBUCON) | 100, — 5,82
. - fo : N—d ) OO
Using the second backward f.d.d., f'(z;) = 2z J‘f";; Hwioa) 8781, €, =
3.77%
. . P _ PR q—8 1) o) .
Using the second centered f.d.d., f (z;) = f(x-+3"+°f(x-+112h”ﬂx- UHfEizg) . _().9125,
e = 0%.

Richardson Extrapolation

This is to use two derivative estimates to compute a third, more accurate one.

4 1 /

D = =D(hy) = 3D(hy), hy = L (13)
Example: f(z) = —0.1z* — 0.152% — 0.52% — 0.252 + 1.2, 2, = 0.5, hy = 0.5,
ho = 0.25.
Solution:
With Ay, 201 = 1, 2,0 = 0, D(hy) = f(x’*l;{m‘” = 0'2;1'2 = —1.0, ¢ =
—9.6%.
With hy, 2,4 = 0.75, z;_; = 0.25, D(hy) = % = —0.934375,
€ = —Q—L%

D =3D(hy) — 2D(hy) = § x (—0.934575) — 1 x (—1) = —0.9125, ¢ = 0.
For centered difference approximations with O(h?), using (13) yields a new es-

timate of O(h%).
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3- Differential Equations



The following are some differential equations:

y' = (x*+y)e*
y' =y'x +xy?
xy" + (1 —=x?)yy" +y = (x*—1e#

Def. Order of differential equation: If y® is the highest order derivative in a
differential equation, the equation is said to be k" order differential equation.
Def. A solution to the differential equation: is the value of y which satisfies the
differential equation.

Example:

Consider the differential equation: y"” = 6x + 4

This 1s a second order differential equation. The function:
y=x34+2x2-1

satisfies the differential equation, hence, y = x% + 2x? — 1 is a solution to the differential

equation.

Numerical Solution
Consider the equation: y" = 6x + 4

Asolutionis y = x3 + 2x? — 1, however. instead of writing the solution as a function of x,
we can find the numerical values of y for various pivotal values of x. The solution from x =

0 to x = 1 can be expressed as follows:

X 0 0.2 0.4 0.6 0.8 1.0

v -1 —0.912 —-0.616 0.064 0.792 2.0

The values are got by the function y = x2 + 2x2 — 1. This table of numerical values of y is

said to be a numerical solution to the differential equation.




The initial Value problem

Consider the differential equation: y' = f(x,v); y(xo) = ¥,

This 1s a first order differential equation. Here, the y value at x, = y,. The solution y at x 15
given, We must assume a small incrementh. 1.e.

X, =Xxp+h

xZ=x1+h

le =x£+h,

Yo Y1 =7 Y2 =7 Yz =7 Yy =?
Xo X1 X2 X3 X4
Let us denote the y values at xq, X, ... .... a8 ¥4, ¥ .... respectively.y,is given and so we must find

vy, Vo ... This differential equation 1s called an nitial value problem.

Euler’s Method

Consider the initial value problem:
y'=Fxy): y(xo) =y
y is a function of x , so we shall write the function as y(x)

Using Taylor series expansion

2

y(xo+h) = y(xo) + %y’(xo) +%y”(:r0) + o
Here. y(x, + h) denotes y value at x, + h
y'(xy)denotesy’ value at x, + h. e.t.c.

Given;

y(xo) = yo




y(xo+ h) = y(xy) =y, (say)
y'(xo) = y" at xg
But, y' = f(x,y)
= ¥'(x0) = f(x0,¥0)
Now, let
y'(x0) = f(x0,¥0) = fo
hence,y'(xo) = fo

Therefore, Taylor’s expansion up to the first order term, gives

Y1 ="Yo + hfy

Similarly, we can derive:

y2 =y1+hf;
V3 =Yy2 + hf;
In general,

Yir1 = Yi T hf;

This 1s called the Euler’s formula to solve an initial value problem.



Algorithm for Euler’s method

1. Define f(x,y)

2. Read x,,yy,n,h
fori=0ton—1Do
4 X =x;+h

(S

LA

Yisr = Vi T hf (X, 54)

0. Print xit1,Vis1

7. nextli

8. End
Assignment: Implement the above in any programming language
Example:

Solve the 1nitial value problem: y' = x% + y2%;y(1) = 0.8; x = 1(0.5)3

Solution

Given: f(x,y) =x?+y%,x,=1,,=08h=05x=1to3

Yo =0.8 vy =7 Vo =7 ys =7 Yy =7

X =1 x; = 1.5 X, =2 Xy =2.5 X, =3




Y1 = Yo+ hfo
But fo = f(xg,y0) = f(1,0.8) = 1.64

Therefore, y; = 0.8 + (0.5)(1.64) = 1.62

y2 =y +hf

But f, = f(x,,y,) = f(1.5,1.62) = 4.8744

Therefore, y, = 1.62 + (0.5)(4.8744) = 4.0572

V3 =y, + hf;

But f, = f(x,,v,) = f(2,4.0572) = 20.460871

Therefore, y; = 4.0572 + (0.5)(20.460871) = 14.287635

Vi =Yzt hf3

But 5 = f(xs,vs) = £(2.5,14.287635) = 210.38651
Therefore. y, = 14.287635 + (0.5)(210.38651) = 11

So the numerical solution got by Euler’s method is:

9.48088

Vo= 038 Y, = 1.62 v, = 4.0572 | y, = 14.287635 | y, = 119.48088
XO=1 X1=1.5 X2=2 X3=2.5 X4_=3
. . > d
Assignment: Using Euler’s method, solve: 5 s_y = 3x3y;y(0) =1
ax

For the mterval 0 < x < 0.3, with h = 0.1




Backward Euler’s Method

The formula for backward Euler’s method is given by:
Yir1 = Vi + hfisq
Where. fi11 = f(Xi41, Vie1)
For example. consider the initial value problem:
y'=2x3y;y(0) = 1;x = 0(0.2)0.4

Solution

fx,y) =2x%y
Xo=0,y90=1h=0.2
The backward Euler’s method formula is: y; .1 = y; + hfi11
= Yigr = Vi T h(2x75 * Vi)
Therefore;

Yit1 — th'ijﬂ *Vitr = Vi

Hence

Vi =Yi+1(1— thzjjﬂ)

Or
. Vi
Yirr = - 2hx;,
Yo=1 vy =7 y, =7
X =0 x; =0.2 x, = 0.4




Now, put i = 0 in the formula:

Yo 1
= — = — = 1.0032102
NTA 2nd) T 1-2(02)(0.2)°
Put i = 1 in the formula:
Vi 1.0032102
V2 = 1.0295671

T (1 -2hx3)  1—2(0.2)(0.4)3

Therefore, the numerical solution to the problem is:

Yo =1 y; = 1.0032102 | y, = 1.0295671
Xg = O X1 = 02 Xy = 04

The Runge - Kutta Methods

Consider the mnitial value problem:

y' = fy); y(xe) = yo
Sincey 1s a function of x, and 1t can be written as y(x)
Then by mean value theorem,

y(x; + h) = y(x;) + hy'(x; + 6h)
Where. 0 <8 < 1

In our usual notation. this can be written as:

Vie1 = Vi + hf(xf + 0h,y(x; + Hh))

Now putting 8 = %, we obtain



h h
Yi+1 = Yi T hf (xi TS5Vt —ff)
2 2
And since Euler’s method with spacing % , this formula may be expressed as:
d; = hf(x;,y)
dy = hf i+ g+
2= hf @+, Y+ )

Therefore.
Vit1 =Yi +d;

This 1s called the second order Runge — Kutta formula.
The third order formula 1s:
dy = hf(x;, 1)
dy = hf(r oy + 2
L= hf G+, Y+ )

Therefore.

1
Yiv1r = Vi +E(d1 + 4d, + d3)



The fourth order Runge — Kutta formula 1s given as:
dy = hf(x;, 1)

h d,
dy = hf (xi+5 31 +3)

2
h d,
= (b + 2)

dy = hf(x;+h,y; +d3)

Therefore,

1
Yit+1 = Vi +€(d1 + 2d, +3d; + dy)

Example

Solve the initial value problem value using the Runge — Kutta second order method.

dy

o (14+x®)y; y(0)=1; x=10(0.2)0.6

Solution
fO,y) =0 +x%)y; xg=0,y0=1h=0.2
Yo =1 v =7 yy =? y3 =?
JCO = 0 x-]_ = 02 .'XZ = 04 XS = 06

10



To find y,;
dy =hf(x;,y) =02(1+x5)y,

=0.2(1)(1) =0.2

h d,
d, = hf (x =,y +—) = hf(0.1,1.1) = 0.2(1 + 0.01)1.1

2 2
= 0.2222
Therefore,
yvi=y,+d, = 1+0.2222
= 1.2222
To find y,:

d, = hf(xy,y,) =02(1+x2)y, =02(1+0.04)(1.2222)

= 0.2542222
h d, - _
d, = hf (x1 tont 7) = hf(0.3,1.349333) = 0.2(1 + 0.09)(1.34933)

= 0.2941546
Then, y, =y, +d, = 1.2222+ 0.2941546 =1.5163768
To find y,
dy = hf(x,,y,) =021+ x3)y, =0.2(1+0.16)(1.5163768)
= 0.3517994

h d,
d, = hf (x2 +5.92 +7) = hf(0.5,1.6922785)

= 0.4230691
Then, ys =y, +d, = 1.5163768 + 0.4230691

= 1.9394459

11



Assignment

Solve the problem given below, using the Runge — Kutta fourth order method:

d
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Chapter 4

Root Finding in one-dimension



This involves searching for solutions to equations of the form: f(x) =0

The various methods include:
1. Bisection Method

This is the simplest method of finding a root to an equation. Here we need two
initial guesses x, and x;, which bracket the root.

Let Iy, = f(xg) and Fy, = f(xp) such that F, F, < 0 (see fig 1)

Jo

Figure 1:Graphical representation of the bisection method showing two initial
guesses (x, and x)



Clearly, if F,F;, = 0 then one or both of x,; and x;, must be a root of F(x) = 0

The basic algorithm for the bisection method relies on repeated applications of:

Let x, = (xa‘;xb)

If Fe= f(c) = 0 then, x =x. is an exact solution,
Else if F,F;, < 0 then the root lies in the interval (x,, x.)
Else the root lies in the interval (x,, x;)

By replacing the interval (x,, x;,) with either (x4, x.) or (x., x3) (Whichever
brackets the root), the error in our estimation of the solution to F(x) = 0 ison
the average, halved. We repeat this interval halving until either the exact root

has been found or the interval is smaller than some specified tolerance.

Hence, the root bisection is a simple but slowly convergent method for finding a
solution of F(x) = 0, assuming the function f is continuous. It is based on the
intermediate value theorem, which states that if a continuous function [ has

opposite signs at some x = a and x = b(>a) that is, either f(a) < 0, f(b) > 0, or
f(a) >0, f(b) <0 then f must be 0 somewhere on [a,b].

We thus obtain a solution by repeated bisection of the interval and in each
iteration, we pick that half which also satisfies that sign condition.

In conclusion we can consider the following steps:

Full Algorithm
I. Define F(x)
2. Read x;, x2, values of x such that F(x;)F(xz) <0
3. Read convergence term, s = 10°, say.
4. Calculate F(y), vy = (x;+x2) / 2
5. If abs(xz-x;) <s. then vy is a root. Go to 9
6. Ifabs(x,-x;) >s, Goto7

It F(x;)F(xz) <0, (x1,V) contains a root, set X; =y and return to step 4
If not, (v. x2) contains a root, set x; = y and return to step 4
Write the root A

G0 ~

N=l



Example:

Given thatF (x) = x — 2.44. solve using the method of root bisection. the form

F(x)= 0.
Solution:

Giventhat F(x) = x —2.44 =10

Theretore,

But by root bisection;

x—244=0
Direct method gives x = 2.44
Let the trial value of x = -1
X F(x) = x-2.44
Trial value -1 |-3.44
0 |-2.44
| |-1.44
2 [-0.44
3 | +0.56

It 1s clear from the table that the solution lies between x =2 and x = 3.

Now choosing x = 2.5, we obtain F(x) = 0.06, we thus discard x = 3 since F(x) must lie

between 2.5 and 2. Bisecting 2 and 2.5, we have x = 2.25 with F(x) = -0.19.

Obviously now, the answer must lie between 2.25 and 2.5.

The bisection thus continues until we obtain F(x) very close to zero, with the two values

of x having opposite signs.



X F(x) = x-2.44
2.25 -0.19
2.375 _0.065
2.4375 -0.0025
2.50 0.06

When the above 1s implemented 1n a computer program. it may be instructed to stop at
say, |F(x)| < 10~*, since the computer may not get exactly to zero.

Example 2:

5

* The parachutist velocity is ~ ,, — mg (I—e ™)

C
* Whatis the drag coefficient c needed to reach a velocity of 40

m/sif m=68.1kg,t=10s, g= 9.8 m/s?

1c)

_

fle)= l em)—

667 38

f(C) 0.14684&:) _40

1. Assume x1 =12 and x>=16

f(x;) =6.067 and f(x,) = —2.269



fO)f(xz) <0
2. Theroot:y = (x; +x,)/2 = 14

f(14) = 1.569

3.Check f(12).f(14) = 6.067 X 1.569 = 9.517 > 0;
the root lies between 14 and 16.

4.Setx; = 14 and x, = 16, thus the new root
y=(14+16)/2 = 15

f(15) = —-0.425

5. Check f(14).f(15) = 1.569 x —0.425 = —0.666 < 0;

And so on

;f(X)

(f12).§(14)>0): x,= 14




2. The Newton-Raphson Method

This is another iteration method for solving equations of the form: F(x) = 0, where
f is assumed to have a continuous derivative f’. The method is commonly used
because of its simplicity and great speed. The idea is that we approximate the
graph of f by suitable tangents. Using an approximate value xo obtained from the
graph of f, we let x be the point of intersection of the x — axis and the tangent to
the curve of f at xo.

Y
A

f(x)

F(x)

k 4

Figure 4: Illustration of the tangents to the curve in Newton-Raphson method



Then,

_ _ Sf(x0)
tanff = f (x,) = pa—
Hence.
f(Xo)
XM =Xg— 77,
LT ey
, . ) . _ f(x1)
In the second step. we compute:; X, = x; — FTER
1

And generally,

f ()

Xk41 = X — =
f(xk)
Example:

Evaluate a real root of x3 + 2.1x2 + 13.1x + 22.2 = 0. using the Newton Raphson’s

method, correct to three decimal places.
Solution;

F(x)= x®+ 2.1x% + 13.1x + 22.2
F(0) = 22.2 (positive)

Now. since all the coefficients are positive, we note that f(1). f{2), -—---- are all positive. So

the equation has no positive root.

We thus search in the negative side:
F (-1) = 20.2 (positive)

F(-2)=+ve=1(-3) - f(-11). But £ (-12) 1s negative, so we can choose xo = -11.



Iteration 1

F(x) fx3+ 2.1x% + 13.1x + 22.2
F (x)=f3x?+24.2x + 13.1
Now, withx, =-11
F(xo)=F(-11)=11.2

F (x0) =F(-11) = f3(=11)% + 24.2(—=11) + 13.1 =109.9

Therefore,

_S0) o 99 222 11019

X; = X —
1 0 fixp) 109.9

Iteration 2

X, =-11.1019

F(x;)=f(-11.1019) = -0.2169

F (x;) =F (-11.1019)=114.1906
Theretore..

-0.2169)

[ 17019 - 292299 14 100001
f(x1) 114.1906

XZ=X1_



Iteration 3
X, =-11.100001
F(x)=F(-11.100001)=-0.0001131

F (x;) =F (-11.100001)=114.1101

Therefore,
Xy = x, — 222 = 11100001 — =229 — 11 1000000
[ (x2) 114.1101

Now, correct to three decimal places. x; = x3. and so, the real root 1s x = -11.1000.

Example 2

Set up a Newton-Raphson iteration for computing the square root x of a given positive
number ¢ and apply it to ¢ =2

Solution

We have x = +/c. hence

FX)=x2—c=0

f') =2x
Newton-Raphson formula becomes:
e _ -0
o “ f(xx) ‘ 2x
_ 2xf{—x,%+c _ x;zc+c
- 2xy 2xp
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Therefore,
For ¢ = 2. choosing xo = 1. we obtain:
X; = 1.500000, x, = 1.416667, x5 = 1.414216, x4 = 1.414214, ... ...

Now, x4 1s exact to 6 decimal places.
Now. what happens iff (x,) = 0?

Recall, if f(x) = 0,and f'(x) = 0 . we have repeated roots or multiplicity (multiple roots).
The sign 1n this case will not change: the method hence breaks down. The method also fails
for a complex solution (ie. x2 + 1 = 0)

Example :

Find the root of the equation x? — 4x — 7 near x = 5 to nearest thousands

Solution

We have our £y = 5. In order to use Newton's method, we also need to know the derivative of f. In this case, f(m) =
4z — 7,and f'(z) = 2z — 4.

Using Newton's method, we get the following sequence of approximations:

52 —4x5—7 -2 16
T =50——F—""""—=5—| — :?%5.33333

2x5—4 6
16 (B)’-4(8)-7 16 § 16 1 319 _
R TE R g_?_%_awasmfa?
_319 () -4(R) -7 319 my

We can stop now, because the thousandth and ten-thousandth digits of £5 and x3 are the same. If we were to continu
they would remain the same because we have gotten sufficiently close to the root:

(5.3362)2 — 4(5.3362) — 7

— 5.31662 —
@4 = 5.3166 2(5.3362) — 4

= 5.31662.
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Perform four iterations of the Newton's method to find the
smallest positive root of the equation f(z) = 2% —5x +1 = 0.

Solution: We have f(0) =1, f(1) = —3. Since, f(0)f(1) < 0,
the smallest positive root lies in the interval (0,1). Applying
the Newton's method, we obtain

R {0 N _ap—brp 1l
ThHL T Sk () K 3;1?%—5
227 — 1
. k=0,1,2. ..
3;1’;—5

Let 29 = 0.5. We have the following results.

o 2a5—1 2(05)% -1

T = = — 0.176471,
U325 30525 R
207 —1  2(0.176471)% — 1
g = —1 _ 20176 _)9 — 0.201568,
322 — 5 3(0.176471)2 — 5
225 — 1 2(0.201568)3 — 1
vy — 2ra =L 20201568 71 041640,
3x3—5  3(0.201568)2 — 5
223 — 1 2(0.201640, )3 — 1 i
T4 = = — (0.201640.

322 -5 3(0.201640,)2 —5

Therefore, the root correct to six decimal places is
r = 0.201640.
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Using Newton-Raphson method solve xlogy x = 12.34 with
xg = 10.

Solution: Here f(z) = xlogigx — 12.34. Then
() =loggx + = logg & + 0.434294. Applying the
log, 10

Newton's method, we obtain

o flek) o mplogggay — 1234
AT T Pl T T loggo ay + 0.434294

0.434294 )x 12.34

( Jor F1234 o

logyg o1, + 0.434294 L5 25

Let xp = 10. We have the following results.

(0.434294) 20 + 12.34  (0.434204)(10) + 12.34

T = = =

Y7 Tlogyg 7o + 0.434294 log1o 10 + 0.434294

11.631465.
(0.434294) 71 41234
loggxy +0.434294
0.434294)(11.631465) + 12.34
( 4)( ) + — 11.594870.
log g (11.631465) | 0.434294
(0.434294) 25 + 12.34
r p— p—
7 Togyo w2 + 0.434294

0.434294)(11.594870) + 12.34
( J(11.594870) + — 11.594854.

log,o(11.594870) + 0.434294
We have |3 — zg| = |11.594854 — 11.594870| = 0.000016.
Therefore, We may take x = 11.594854 as the root correct to
four decimal places.

To =
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