

Syllabus of Computational Physics –402

Degree : 4th year students (physics)

Responsible Department: Physics

Academic year: 2022_2023 (2nd semester)

Teaching Languages: English

 Class: 402

Course Coordinator: Dr. Abdelsalam Foad Abdelhady (A.F. Elhady)

 Coordinator Email: abdelsalam.mohamed@sci.svu.edu.eg

Coordinator Office Hours: sunday : 2:4

Teaching Staff: Dr. Abdelsalam Foad

Course description: An introductory course to Computational Physics. Includes

Mathematical background, algorithms and major Physical applications. Exercises

using MATLAB

Course aims: Basic knowledge and experience in Computational Physics .

Learning outcomes - On successful completion of this module, students should

be able to :

- Examine physical problem and various methods for computational solution.

To implement different algorithms for solving physical problems .

- Consider various properties of numerical solution such as accuracy, stability

and efficiency .

mailto:abdelsalam.mohamed@sci.svu.edu.eg

- Check correctness of computed solution .

- Examine feasibility of various options of parallel computation for solving

physical problem .

Teaching arrangement and method of instruction: lecture notes for self learning

lectures and exercises

Course Content :

- interpolation

- round off errors, accuracy and stability

- numerical differentiation

- numerical integration of functions

- root finding in one dimension

- solution of a set of linear equations

- Eigen vectors and Eigen values

- root finding in multi dimensions

- minimum finding

- Ordinary Differential Equations

- Partial Differential Equations

- initial value problems

- diffusion equation

- advection equation

- Monte-Carlo methods

- introduction to parallel computing

Required Reading :

 Additional Reading Material :

 Course/Module evaluation :

 End of year written examination: 70

oral examination : 10

 Midterm : 10

Project work: 5

 Quizzes: 5

1

1. General Idea of interpolation

Suppose we are given data at discrete points only, and we wish to

estimate values between these known points, Figure (1)

Figure 1

. The most common method used for this purpose is fitting or

interpolation.

◼ Interpolation: passes through each datum

◼ Fitting: seeks to produce a curve that approximates the data, see

Figure (2)

Figure 2

2

◼ Global versus piecewise interpolation: We can fit a single polynomial

of degree n to n+1 data points, this is called global interpolation.

Alternatively we can use a series of polynomials to link points together –

frequently called splines.

polynomial interpolation: Recall that the general formula for an nth

order polynomial is

For n+1 data points, there is one and only one polynomial of order n that

passes through all the points. For example, there is only one straight line

(that is, a first-order polynomial) that connects two points (figure 2.(a)).

Similarly, only one parabola connects a set of three points (figure 2.(b),

fig. 2(c)). Polynomial Interpolation consists of determining the unique

nth order polynomial that fits n+1 data points. This polynomial then

provides a formula to compute intermediate values.

Figure 3: Examples of interpolating polynomials: (a) first-order (linear) connecting two points, (b)
second-order (quadratic or parabolic) connecting three points, and (c) third-order (cubic) connecting
four points.

Although there is one and only one nth-order polynomial that fits n + 1

points, there are a variety of mathematical formats in which this

polynomial can be expressed. In this chapter, we will describe two

3

alternatives that are well-suited for computer implementation: the

Newton and the Lagrange polynomials.

2. NEWTON’S DIVIDED-DIFFERENCE INTERPOLATING POLYNOMIALS

2.1.Linear Interpolation

The simplest form of interpolation is to connect two data points

with a straight line. Using similar triangles,

𝑓1(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
=

𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
= 𝑠𝑙𝑜𝑝𝑒 (2)

then

The notation 𝑓1(𝑥) designates that this is a first-order interpolating
polynomial. In general, the smaller the interval between the data
points, the better the approximation.

Figure 4: Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used to
derive the linear-interpolation formula [Eq.2]

4

Example 18.1:
Estimate the natural logarithm of 2 using linear interpolation. First,

perform the computation by interpolating between ln1 = 0 and

 ln6 = 1.791759. Then, repeat the procedure, but use a smaller interval

from ln1 to ln4 (1.386294). Note that the true value of ln 2 is 0.6931472.

Solution:

We use the previous equation and a linear interpolation for ln(2) from
x0 = 1 to x1 = 6 to give

Which represents an error of 𝜀𝑡 = 48.3%. Using the smaller interval
from 𝑥0 = 1 to 𝑥1 = 4 yields

Thus, using the shorter interval reduces the percent relative error to
 𝜀𝑡 = 33.3%. Both interpolations are shown in the next figure, along
with the true function.

Figure 5: Two linear interpolations to estimate ln 2. Note how the smaller interval provides a better
estimate.

5

2.2. Quadratic Interpolation

If three data points are available, the estimate is improved by introducing
some curvature into the line connecting the points. If three data points
are available, this can be accomplished with a second-order polynomial
(also called a quadratic polynomial, or a parabola). A particularly
convenient form for this purpose is

A simple procedure can be used to determine the values of the
coefficients.

02

01

01

12

12

22

0

01
11

000

)()()()(

)()(

)(

xx

xx

xfxf

xx

xfxf

bxx

xx

xfxf
bxx

xfbxx

−

−

−
−

−

−

==

−

−
==

==

Notice that, as was the case with linear interpolation, 𝑏1 still represents
the slope of the line connecting points 𝑥0 and 𝑥1. Thus, the first two
terms of Eq. (4) are equivalent to linear interpolation from 𝑥0 to 𝑥1 . The
last term, 𝑏2(𝑥 – 𝑥0)(𝑥 – 𝑥1), introduces the second-order curvature
into the formula.
Example 18.2: Fit a second-order polynomial to the three points used in

example 18.1:

6

Substituting these values into Eq. (4) yields the quadratic formula

which represents a relative error of 𝜀1 = 18.4%. Thus, the curvature introduced

by the quadratic formula (Fig. 6) improves the interpolation compared with the

result obtained using straight lines in Example 18.1 and Fig. 5.

Figure 6

7

2.3. General Form of Newton’s Interpolating Polynomials

The preceding analysis can be generalized to fit an nth order
polynomial to n+1 data points. The nth-order polynomial is

𝑓𝑛(𝑥) = 𝑏0 + 𝑏1(𝑥 − 𝑥 0) + 𝑏2(𝑥 − 𝑥0)(𝑥 − 𝑥1) + ⋯

+ 𝑏𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1)

02

01

01

12

12

22

0

01
11

000

)()()()(

)()(

)(

xx

xx

xfxf

xx

xfxf

bxx

xx

xfxf
bxx

xfbxx

−

−

−
−

−

−

==

−

−
==

==

 𝑥 = 𝑥𝑛−1 𝑏𝑛 =

𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)
𝑥𝑛 − 𝑥𝑛−1

− ⋯
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑥𝑛 − 𝑥0

which is called Newton’s divided-difference interpolating polynomial. It

should be noted that it is not necessary that the data points used in the

previous equation be equally spaced or that the abscissa values

necessarily be in ascending order.

Errors of Newton’s Interpolating Polynomials:

Structure of interpolating polynomials is similar to the Taylor series

expansion in the sense that finite divided differences are added

sequentially to capture the higher order derivatives.

Example 18.3:

In Example 18.2, data points at 𝑥0 = 1, 𝑥1 = 4, and 𝑥2 = 6 were used

to estimate ln2 with a parabola. Now, adding a fourth point, [𝑥3 = 5;

8

𝑓(𝑥3) = 1.609438], estimate ln2 with a third-order Newton’s

interpolating polynomial

Solution

𝑥0 = 1, 𝑥1 = 4, 𝑥2 = 6, 𝑥3 = 5

𝑓(𝑥0) = ln(1) = 0

𝑓(𝑥1) = ln(4) = 1.386294

𝑓(𝑥2) = ln(6) = 1.791759

𝑓(𝑥3) = ln(5) = 1.609438

𝑏0 = 𝑓(𝑥0) = ln(1) = 0

𝑏1 =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
= 1.386294

𝑏2 =

𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1

−
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0

𝑥2 − 𝑥0
= −0.05187311

𝑏3 =

𝑓(𝑥3) − 𝑓(𝑥2)
𝑥3 − 𝑥2

−
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
−

𝑓(𝑥1) − 𝑓(𝑥0)
𝑥1 − 𝑥0

𝑥3 − 𝑥0
== 0.007865529

Then

9

Figure 7

3. Lagrange interpolation

Lagrange interpolating polynomial can be represented concisely as

Where

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

𝑥 − 𝑥1

𝑥𝑖 − 𝑥1

𝑛

𝑗=0
𝑗≠𝑖

𝑥 − 𝑥2

𝑥𝑖 − 𝑥2
…

𝑥 − 𝑥𝑛

𝑥𝑖 − 𝑥𝑛
 (6)

where Π designates the “product of”. For example, the linear (first
order) version (n=1) is

10

𝑓1(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1)

𝐿0(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

1

𝑗=0
𝑗≠0

𝑥 − 𝑥1

𝑥0 − 𝑥1

 𝐿1(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

1

𝑗=0
𝑗≠0

=
𝑥 − 𝑥0

𝑥1 − 𝑥0

And the second-order version is
(n=2)
𝑓2(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) + 𝐿2(𝑥)𝑓(𝑥2)

𝐿0(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

2

𝑗=0
𝑗≠0

(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)

 𝐿1(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

2

𝑗=0
𝑗≠1

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)

, 𝐿2(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
=

2

𝑗=0
𝑗≠2

(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)

the rationale underlying the Lagrange formulation can be grasped directly by

realizing that each term 𝐿𝑖(𝑥) will be 1 at 𝑥 = 𝑥𝑖 and 0 at all other sample points

(Fig. 4). Thus, each product 𝐿𝑖(𝑥)𝑓(𝑥𝑖) takes on the value of 𝑓(𝑥𝑖) at the sample

point 𝑥𝑖 . Consequently, the summation of all the products designated by Eq. (5) is

the unique nth-order polynomial that passes exactly through all n + 1 data points.

11

Figure 8: A visual depiction of the rationale behind the Lagrange polynomial. This figure shows a second-order
case. Each of the three terms in Eq. (8) passes through one of the data points and is zero at the other two. The
summation of the three terms must, therefore, be the unique second-order polynomial f2(x) that passes exactly
through the three points.

Note that:

1- The factors 𝐿𝑖(𝑥) weights must obey the normalization rule:

∑ 𝐿𝑖(𝑥)

∞

𝑖=0

= 1

2- Lagrange interpolation just reduces to the linear interpolation de-
scribed above.

3- The Lagrange interpolation has no constraints that the data be evenly

spaced.

4- The difference between the value of the polynomial evaluated at

some x and that of the actual function is equal to the remainder:

12

5- Lagrangian interpolation is typically used to fit only local data, though
it can be use to fit the data globally. However, there are better ways
to fit nonlinear global data ⟹polynomial least square fitting (which
we are not going to have time to cover in this class).

Example 18.4 :

Solution

For the first order

𝑓1(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1)

𝐿0(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1
=

2 − 4

1 − 4
 , 𝐿1(𝑥) =

𝑥 − 𝑥0

𝑥1 − 𝑥0
=

2 − 1

4 − 1

For the second order

𝑓2(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) + 𝐿2(𝑥)𝑓(𝑥2)

𝐿0(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1

𝑥 − 𝑥2

𝑥0 − 𝑥2
=

(2 − 4)

(1 − 4)

(2 − 6)

(1 − 6)
 ,

 𝐿1(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
=

(2 − 1)(2 − 6)

(4 − 1)(4 − 6)

𝐿2(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
=

(2 − 1)(2 − 4)

(6 − 1)(6 − 4)

13

3.2 Coefficients of an Interpolating Polynomial
Although “Lagrange” polynomials are well suited for determining intermediate
values between points, they do not provide a polynomial in conventional form:

Since n+1 data points are required to determine n+1 coefficients, simultaneous

linear systems of equations can be used to calculate “a”s.

Where “x”s are the knowns and “a”s are the unknowns.

Extrapolation is the process of estimating a value of f(x) that lies outside the

range of the known base points, x0, x1, . . . , xn (Fig. 9). In a previous section,

we mentioned that the most accurate interpolation is usually obtained when

the unknown lies near the center of the base points. Obviously, this is

violated when the unknown lies outside the range, and consequently, the

error in extrapolation can be very large. As depicted in Fig. 9, the open-ended

nature of extrapolation represents a step into the unknown because the

process extends the curve beyond the known region. As such, the true curve

could easily diverge from the prediction. Extreme care should, therefore, be

exercised whenever a case arises where one must extrapolate.

14

Figure 9

3.3 Problems with polynomial interpolation
I- As the number of points increases so does the degree of the

polynomial. This leads to:

• Occurring of many turns and a lot of “structure” between
interpolation points in high order polynomials

• High order polynomials will have a lot of “wiggles” and if points
do not change smoothly they can “overshoot” in between
datums.

4. Spline interpolation

Alternative approach is to apply lower-order polynomials to subsets of

data points. Such connecting polynomials are called spline functions.

The first order splines for a group of ordered data points can be defined

as a set of linear functions:

15

Figure 10 6th order polynomial fit

 Figure 11: Piecewise linear fit

 4.1 Linear spline
The first order splines for a group of ordered data points can be defined as a set

of linear functions:

Example18.8
Fit the following data with first order splines. Evaluate the function at x = 5.

Solution
The data can be substituted to generate the linear spline
functions. For example, for the second interval from x = 4.5 to x = 7, the function is

Figure 12

16

𝑓(𝑥) = 1.0 +
2.5 − 1

7 − 4.5
(𝑥 − 4.5)

𝑓(5) = 1.0 +
2.5 − 1

7 − 4.5
(5 − 4.5) = 1.3

The equations for the other intervals can be generated, and the resulting first-
order splines are plotted in Fig. 12.

The main disadvantage of linear spline is that they are not smooth. At the data

points where two splines meets called (a knot), the slope changes abruptly. The

first derivative of the function is discontinuous at these points. This deficiency is

overcome using higher order polynomial splines ensure smoothness at the knots

by equating derivatives at these points.

4.1 Quadratic spline

Using higher order polynomial splines ensure smoothness at the knots by equating derivatives

at these points. Because the derivation of cubic splines is somewhat involved, we have decided

to first illustrate the concept of spline interpolation using second-order polynomials. These

“quadratic splines” have continuous first derivatives at the knots. Although quadratic splines are

not of practical importance, they serve nicely to demonstrate the general approach for

developing higher-order splines.

The objective in quadratic splines is to derive a second-order polynomial for each interval

between data points. The polynomial for each interval can be represented generally as

𝑓𝑖(𝑥) = 𝑎𝑖𝑥2 + 𝑏𝑖𝑥 + 𝑐 (7)

17

For 𝑖 = 0, 1, 2, … . 𝑛) there are 𝑛 + 1 data point and 𝑛 interval and 3𝑛 unknown

constant (three, a, b,c, for each polynomial). Therefore 3𝑛 equations or conditions

are required to evaluate the unknowns. These can be developed as follows:

1. The function values of adjacent polynomials must be equal at the interior

knots, 2(𝑛 − 1). This condition can be written as;

2. The first and last functions must pass through the end points, 2.

3. The first derivatives at the interior knots must be equal (n-1).

𝑓𝑖−1
′ (𝑥𝑖−1) = 𝑓𝑖

′(𝑥𝑖−1)

𝑓𝑖−1
′ (𝑥𝑖−1) = 2𝑎𝑖−1𝑥𝑖−1 + 𝑏𝑖−1

𝑓𝑖
′(𝑥𝑖−1) = 2𝑎𝑖𝑥𝑖−1 + 𝑏𝑖

Then

2𝑎𝑖−1𝑥𝑖−1 + 𝑏𝑖−1 = 2𝑎𝑖𝑥𝑖−1 + 𝑏𝑖

4. Assume that the second derivative is zero at the first point (the first two

point will connect by straight line);

𝑎𝑖 = 0

Example 18.9

Fit quadratic splines to the same data employed in Example 18.8

. Use the results to estimate the value of the function at x = 5

Solution

We have (i=0,1,2,3), there are 4 points so there are 3 intervals (n=3), 9

unknowns.

18

19

20

The total quadratic spline fit is depicted in Fig. b. Notice that there are two

shortcomings that detract from the fit:

(1) the straight line connecting the first two points and

(2) the spline for the last interval seems to swing too high. The cubic splines

in the next section do not exhibit these shortcomings and, as a consequence,

are better methods for spline interpolation.

4.2 Cubic Splines

 Cubic splines are preferred because they provide the simplest representation that

exhibits the desired appearance of smoothness.

The objective with cubic splines is to derive a third-order polynomial for
each interval between knots as represented generally by

𝑓𝑖(𝑥) = 𝑎𝑖𝑥3 + 𝑏𝑖𝑥2 + 𝑐𝑖𝑥 + 𝑑𝑖 (8)
Thus, for n+1 data points (i =0, 1, 2, . . . , n), there are n intervals and 4n unknown

coefficients to evaluate. Consequently, 4n conditions are required for their

evaluation (a’s, b’s ,c’s and d’s). These conditions are the following.

• The function values must be equal at the interior knots (2n-2).

• The first and last functions must pass through the end points (2).

• The first derivatives at the interior knots must be equal (n-1).

• The second derivatives at the interior knots must be equal (n-1).

21

• The second derivatives at the end knots are zero (2), (the 2nd derivative function

becomes a straight line at the end points).

Once the additional end conditions are specified, we would have the 4n
conditions needed to evaluate the 4n unknown coefficients.

• Alternative technique to get Cubic Splines
The second derivative within each interval [xi-1,xi] is a straight line. (the 2nd
derivatives can be represented by first order Lagrange interpolating polynomials.

The second derivative at any point x within the interval
The last equation can be integrated twice
2 unknown constants of integration can be evaluated by
applying the boundary conditions:

This equation result with n-1 unknown second derivatives where, for

boundary points:

Example :

Fit cubic splines to the same data used in Examples 18.8 and 18.9. Utilize the
results to estimate the value of the function at x = 5.
Solution:

22

23

4.3 Matlab interpolates
Interp1
 Matlab has its own interpolation routine interp1 which does the things

discussed in the previous two sections automatically. Suppose you have a set of

data points {x, y} and you have a different set of x-values {xi} for which you want

to find the corresponding {yi} values by interpolating in the {x, y} data set. You

simply use any one of these three forms of the interp1 command:

yi= interp1 (x,y,xi,'linear')

yi= interp1 (x,y,xi,'pchip')

yi= interp1 (x,y,xi,'spline')

We haven’t talked about spline interpolation yet. It is a piece-wise polynomial

fit that typically does an excellent job of matching smooth functions.

Here is an example of how each of these three types of interpolation works on

a crude data set representing the sine function.

24

4.4 Two-dimensional interpolation
Matlab also knows how to do 2-dimensional interpolation on a data set of

 {x, y, z} to find approximate values of z(x, y) at points {xi , yi } which don’t lie on the data

points {x, y}. In the completely general situation where your data points {x, y, z} don’t fall on

a regular grid, you can use the command TriScatteredInterp to interpolate your function

onto an arbitrary new set of points {xi , yi }, such as an evenly spaced 2-dimensional grid for

plotting. Examine the code below to see how TriScatteredInterp works, and play with the

value of N and see how the interpolation quality depends on the number of points.

25

The TriScatteredInterp command is very powerful in the sense that you
can ask it to estimate z(x, y) for arbitrary x and y (within your data range).
However, for large data sets it can be slow. In the case that your data set is
already on a regular grid, its much faster to use the interpn command, like this:

26

In this example our grids were created using ndgrid. If you choose to use the meshgrid command to

create your grids, you’ll need to use the command interp2 instead of intern.

1

Chapter2: Numerical Integration and Differentiation

PART I: Numerical Integration

2

PART I: Numerical Integration
Newton-Cotes Integration Formulas
The idea of Newton-Cotes formulas is to replace a complicated function or

tabulated data with an approximating function that is easy to integrate

1. The Trapezoidal Rule

Using the first order Taylor series to approximate f(x),

𝐼 = (𝑏 − 𝑎)
𝑓(𝑎) + 𝑓(𝑏)

2

3

The trapezoidal rule is equivalent to approximating the area of the trapezoidal

under the straight line connecting f(a) and f(b). An estimate for the local truncation

error of a single application of the trapezoidal rule can be obtained using Taylor

series as

where 𝜉 is a value between a and b.

Example: Use the trapezoidal rule to numerically integrate

Example: Use the trapezoidal rule to numerically integrate

4

Multiple-application trapezoidal rule:

Using smaller integration interval can reduce the approximation error. We can

divide the integration interval from a to b into a number of segments and apply the

trapezoidal rule to each segment. Divide (a; b) into n segments of equal width. Then

𝐼 =
ℎ

3
[𝑓(𝑥0) + 2∑𝑓(𝑥𝑖)

𝑛−1

𝑖=1

+ 𝑓(𝑥𝑛)]

5

Example: Use the 2-segment trapezoidal rule to numerically integrate

2. Simpson’s Rules
Aside from using the trapezoidal rule with finer segmentation, another way to

improve the estimation accuracy is to use higher order polynomials.

6

Simpson’s 1/3 rule:

Given function values at 3 points as (x0; f(x0)), (x1; f(x1)), and (x2; f(x2)), we can

estimate f(x) using Lagrange polynomial interpolation. Then

𝐼 =
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1) + 𝑓(𝑥2)]

It can be proved that single segment application of Simpson’s 1=3 rule has a

truncation error of

Where 𝜉 is between a and b.

Simpson’s 1/3 rule yields exact results for third order polynomials even though it is

derived from parabola.

7

Example: Use Simpson’s 1/3 rule to integrate

• Multiple-application Simpson’s 1/3 rule

8

𝐼 =
ℎ

3
[𝑓(𝑥0) + 4 ∑ 𝑓(𝑥𝑖) +

𝑛−1

𝑖=1,3,…

2 ∑ 𝑓(𝑥𝑖)

𝑛

𝑖=2,4,…

++𝑓(𝑥𝑛)]

𝐼 =
ℎ

3
[𝑓(𝑥0) + 4 ∑ 𝑓(𝑥𝑖) +

𝑛−1

𝑖=1,3,

2 ∑ 𝑓(𝑥𝑖)

𝑛

𝑖=2,4

+ 𝑓(𝑥𝑛)]

𝐼 =
ℎ

3
[𝑓(𝑥0) + 𝑓(𝑥𝑛) + 4[𝑓(𝑥1) + 𝑓(𝑥3)] + 2𝑓(𝑥2)]

𝐼 =
0.5

3
[0.2 + 94.2 + 4[13.575 + 54.575] + 2 × 30.2] = 71.2333

9

Simpson’s 3/8 rule

𝐼 =
3ℎ

8
[𝑓(𝑥0) + 3𝑓(𝑥1) + 3𝑓(𝑥2) + 𝑓(𝑥3)]

10

PART II: Numerical differentiation:
 Finite Divided Difference

11

12

13

14

15

1

3- Differential Equations

2

The following are some differential equations:

Def. Order of differential equation: If 𝑦(𝑘) is the highest order derivative in a

differential equation, the equation is said to be 𝑘𝑡ℎ order differential equation.

Def. A solution to the differential equation: is the value of 𝑦 which satisfies the

differential equation.

Example:

Numerical Solution

3

The initial Value problem

Euler’s Method
Consider the initial value problem:

𝑦 is a function of 𝑥 , so we shall write the function as 𝑦(𝑥)

Using Taylor series expansion

4

Therefore, Taylor’s expansion up to the first order term, gives

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓𝑖

5

Assignment: Implement the above in any programming language

Example:

Solution

6

7

Backward Euler’s Method

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓𝑖+1

Solution

Therefore;

Hence

Or

8

Now putting 𝜃 =
1

2
, we obtain

9

𝑦𝑖+1 = 𝑦𝑖 + 𝑑2

10

Example

Solution

11

12

1

Chapter 4

Root Finding in one-dimension

2

This involves searching for solutions to equations of the form: 𝑓(𝑥) = 0

The various methods include:

1. Bisection Method

This is the simplest method of finding a root to an equation. Here we need two

initial guesses 𝑥𝑎 and 𝑥𝑏 which bracket the root.

Figure 1:Graphical representation of the bisection method showing two initial
guesses (𝑥𝑎 and 𝑥𝑏)

3

Clearly, if 𝐹𝑎𝐹𝑏 = 0 then one or both of 𝑥𝑎 and 𝑥𝑏 must be a root of 𝐹(𝑥) = 0

The basic algorithm for the bisection method relies on repeated applications of:

Let 𝑥𝑐 =
(𝑥𝑎+𝑥𝑏)

2

If Fc = f(c) = 0 then, x =xc is an exact solution,

Else if 𝐹𝑎𝐹𝑏 < 0 then the root lies in the interval (𝑥𝑎, 𝑥𝑐)

Else the root lies in the interval (𝑥𝑐 , 𝑥𝑏)

By replacing the interval (𝑥𝑎, 𝑥𝑏) with either (𝑥𝑎, 𝑥𝑐) or (𝑥𝑐 , 𝑥𝑏) (whichever

brackets the root), the error in our estimation of the solution to 𝐹(𝑥) = 0 is on

the average, halved. We repeat this interval halving until either the exact root

has been found or the interval is smaller than some specified tolerance.

Hence, the root bisection is a simple but slowly convergent method for finding a

solution of 𝐹(𝑥) = 0, assuming the function 𝑓 is continuous. It is based on the

intermediate value theorem, which states that if a continuous function 𝑓 has

opposite signs at some x = a and x = b(>a) that is, either 𝑓(𝑎) < 0, 𝑓(𝑏) > 0, or

𝑓(𝑎) > 0, 𝑓(𝑏) < 0 then 𝑓 must be 0 somewhere on [a,b].

We thus obtain a solution by repeated bisection of the interval and in each

iteration, we pick that half which also satisfies that sign condition.

In conclusion we can consider the following steps:

4

5

Example 2:

1. Assume x1 =12 and x2=16

𝑓(𝑥1) = 6.067 𝑎𝑛𝑑 𝑓(𝑥2) = −2.269

6

𝑓(𝑥1)𝑓(𝑥2) < 0

2. The root: 𝑦 = (𝑥1 + 𝑥2)/2 = 14

𝑓(14) = 1.569

3. 𝐶ℎ𝑒𝑐𝑘 𝑓(12). 𝑓(14) = 6.067 × 1.569 = 9.517 > 0;

the root lies between 14 and 16.

4. Set 𝑥1 = 14 and 𝑥2 = 16, thus the new root

𝑦 = (14 + 16)/2 = 15

𝑓(15) = −0.425

5. Check 𝑓(14). 𝑓(15) = 1.569 × −0.425 = −0.666 < 0;

And so on

7

2. The Newton-Raphson Method

This is another iteration method for solving equations of the form: F(x) = 0, where

f is assumed to have a continuous derivative f‘. The method is commonly used

because of its simplicity and great speed. The idea is that we approximate the

graph of f by suitable tangents. Using an approximate value x0 obtained from the

graph of f, we let 𝑥 be the point of intersection of the x – axis and the tangent to

the curve of f at x0.

8

9

10

11

Example :

Find the root of the equation 𝑥2 − 4𝑥 − 7 near 𝑥 = 5 to nearest thousands

Solution

12

v

13

