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Chapter 1

Initial- Value Problems

1.1 Introduction

It’s well known that many differential equation, specially the nonlinear
type, has no analytical solution, therefore the numerical methods arise
for such cases.

In the current chapter, we will present some of those methods for the
ordinary differential equation of order one that has the following form:

y = j—i = f(z,y), y(a) = yo, and z € [a,b]. (1.1)

Equation (1.1), that has a given initial value, is well known as an
Initial value problem. In this equation the function f(x,y) in the
right hand side has to be continuous function in its domain. Before
we present the numerical methods for such type of equation, we shall
present some preliminaries that has to be verified from the mathemat-
ical analysis point of view.

Definition 1.1.1 — Lipschitz condition. A function f(z,y) is said to
K be Lipschitz in the variable y at a region I with I = {(z,y),a <

x < b,c <y <d},if there exist a constant L > 0 such that

|f(z,y1) — f(z,y2)| < Llyr —y2| Ve <y <y < d.
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Theorem 1.1.1 — Existence and uniqueness of the solution . The
initial value problem

y' = f(z,y) on [a,b],y(z0) = yo
has a unique solution in the interval [a, b] if
1. f(z,y) in continuous with respect to x,y
2. the function f in Lipschitz in the variable y.

The initial value problem

y/ = f(x,y),y(xo) =Y

has a unique solution if f(x,y) is differentiable with respect to y,
and |fy(z,y)| < L in the region I = {(z,y),a <z < b,c <y < d}.

m Example 1.1 Verify that the following initial value problem

/

V= ty).  y0)=1

2
has a unique solution. n
Solution.
fla,y) = 5(x+y)
fyla,y) = 3 (1.2)

f (zoy1) = f ()| < |fy(z,y) (v1 — 12)| = 5 |v1 — vol

this means that f(z,y) verifies the Lipschitz condition and it is a
polynomial of order one, thus it’s a continuous in x, y. Therefore, this
initial value problem has a unique solution. |

ferential equation with two initial conditions can be converted

Second order differential equation: The second order dif-
to two equations from the first order, for instance,

y// o CL‘yl o CL‘2y2 _ {E?’

y(0) = 1,4'(0) =2
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1.2 THE NUMERICAL SOLUTION FOR THE INITIAL
VALUE PROBLEM

using ¥’ = z, then, we can rewritten that equation in the
following system

y ==z
2 =xz +xy + 23
y(0) = 1,2(0) = 2

equivalent to the following form,
v\ _ z y(0) \ _ (1
2 ) T \zztaz+a23 )7\ 20) )\ 2

This remark could be generalized to n order differential equation with
n initial conditions in the form

any™ + an_1y"Y + - + agy = g()
y(m)(o) = y(()m)7m = 071727"' , o — 1

where, a,,a1,...,a, are functions of z,y only. The resulting system
will be n equations from the first order as

Y' = F(z,Y),Y(0) =Y,

.2 The numerical solution for the initial value
problem

Using the different numerical method, we are able to find an approxi-
mate value for the function y(x) at the points x1, o, x3, ..., x, which
divided the interval [a, b] into equal partitions. During this course, we
will present the numerical methods for solving a system of first order
differential equation as well as the higher order system of Ordinary
Differential Equations(ODEs).

The known methods that is used to solve the ODEs could be classified
into two main type, namely

e One-step methods

e Multi-step methods
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4 INITIAL-VALUE PROBLEMS

In the one-step methods, the value of the function at a point is de-
termined using only it’s value at the previous point. On the other
hand, for the multi-step methods it is calculated using the value of
the function at many points that which are known from the previous
steps.

Some of those methods(one-step methods)that used to solve the first
order ODEs are:

e Picard method
e Taylor method

e Runge-Kutta method

1.3 Single-step methods or One-step methods

As its mentioned above, in those method the value of the functions is
estimated at a point using only its value at the previous point, thus
using only one value to estimate the value of the function at another
point.

1.3.‘ Picard method \
B

One of the one-step method that is used to solve the ODEs of first
order and this method depends on the integration of the function as
we will see later.

Let ¢ = f(x,y) with the initial condition is y(x¢) = yo and we need
to find the value of the function at xg + h i.e. y(xzo + h) such that

y/ = f(x,y), y({L’o) =%Yo (13)

integrating the above equation from zg to x, we have

[t [ s

Y =10 +/x f(z,y)da (1.4)
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1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

then, the first approximation y; for y can be obtained by substitut-
ing yo instead of y in the right hand side of the last equation, i.e.,

Y1 = Yo + /z f(xv yo)d% <15)

the second approximation ¥, can be obtained also by substituting y;
instead of y in the right hand side of equation (1.4), i.e.,

Yo = yo + /x f(z,y1)dz, (1.6)

continuing with a similar way, then we cab obtained the following
repeated relations

s = (eo) + [ " f (@ (@), (L.7)

and this repeated relation can be stopped whenever the following con-
dition holds

[Yn+1 — yn| <, (1.8)

where, € is a small positive constant.

m Example 1.2 Using Picard method, find an approximate value of y
at £ = 0.2 if
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6 INITIAL-VALUE PROBLEMS

Solution.

s = (o) + [ " f (g (2))da
~ylan)+ [ (@)

xX
:1—i—/(az—yn)daj, n=0,1,2,...
Lo

T $2
yl(m):1+/ (x—Dde=1—2+ —
0

2
T 2 3
y2(1’):1+/ [a:—(l—x—l—x—)}dx:l—x—i-xz—x—
; 2 6
T 1’3 .’E3 .%'4
-1 [—1— 2——]d a2 -4
y3(z) +/0 r—(1-z+a 6) x Tt - =+ o
T 3 $4
y4(x):1+/0 [x—(l—x—FxQ—?—Fﬂ)}dx
2t 2P
-1 — 2_ T 4z 2
T T3 T T 10
3 .4 5 6
y5(x):1—:c+x2—x—+$——£+i

3 12 60 720

at £ = 0.2, we have
Yo = 1, y1 = 0.2, yo = 0.83867, ys = 0.83740,

ys = 0.83746,  y5 = 0.83746,

thus,
y(0.2) = 0.83746



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

m Example 1.3 Using Picard method, find the solution of the following
initial value problem

(Note that, the analytical solution is y(x) = ) n

Solution.

s = (e0) + [ foyn())da

T
= Yo +/ Yndx
ZTo

yl(x)zl—l—/ dr=1+=x
0

2

yg(a:):l—i-/ (1+x)dx:1+x+%
0

m Example 1.4 Using Picard method, find the solution of the following
initial value problem

then, find y(0.1),y(0.2), y(1)
(Note that, the analytical solution is y(z) = —In [1 — ﬁ]) "
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Solution.
xX
Yn+1 = y(z0) +/ f(@, yn(2))dz
xX o
=1 —|-/ relrdx
o
:0+/ xe¥rdz, n=20,1,2,...
0
T :E2
yi(z) = 0+/ zeldr = —
0 2
yo(z) =0 +/ [m(eT)}dx =ez2 —1
0
z2
ylz) =e=z —1
y(0.1) = 0.0050125
y(0.1) = 0.0202013

y(1) = 0.6487213

m Example 1.5 Using Picard method, find an approximate value for y
at £ =0.1,0.2,0.3 assuming that

dy
o + xy, y(0)



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

Solution. we use the repeated relations for the Picard which are

Yn+1 = Yo +/ f($7yn($))d$

y1(w) = yo + /m f(z,y0)dr =1+ /x(l + zyo)dzx

o
2

r x
:1+/ (1+17)d$:1+1'+?
0

Ya2(r) = yo + /w fz,y1)dx

=1 -l-/ (1+ zy;)dx
0

:1+/Oac [1+:c(1+:c+x22)}dx

2 23 2t

:1 — —_— E—
ot S+

y3(w) = yo + /w f(z,y2)dx

x
:1+/ (14 zy2)dx
0
x xQ 1.3 (L‘4
:1+/ L+a(ire+ T+ 5+ 5)|de
0 2 "3y

332 CC3 554 $5 356
~1 r T T
R T N TR

ya(w) = yo + /x f(z,y3)dx

=1 +/ (14 zy3)dx
0

x 1‘2 $3 334 :C5 :CG
—1 (14201 S+ T+ T+ +T)]a
+/O +x(+x+2+3+8+15—|—48)x

R A G A S AR
= €T _— _— _— —_— _— —_— —_—
2 "3 T8 1548 120 284

- First, in order to obtain the solution at z = 0.1, we put x = 0.1 in
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the above relations, then we have
y1 = 1.105, yo = 1.1053458, ys = 1.3551897, yg = 1.355192

- Similarly, in order to obtain the solution at x = 0.2, we put x = 0.2
in the above relations, then we have

yr =1.22,  y, = 1.2228667,  y3 = 1.2228804,  y4 = 1.2228895

thus, y(0.2) = 1.223
- Also, in order to obtain the solution at z = 0.3, we put z = 0.3 in
the above relations, then we have

y1 = 1.345, y2 = 1.35550125, y3 = 1.3551897, ya = 1.355192

thus, y(0.3) = 1.355 |

(Disadvantage of this method) Due to the integration that
exist in this method it is considered non practical method.
Also, it might be difficult to perform a programming code for
it.

1.3.2 Taylor serious method

This method depends in the derivatives of the function. Suppose that
y(z) is a solution for equation (1.1), then y(x) can be written using
Taylor expansion around the point x = xq as follows

(z — $0)2 " (x — x0)"

5 Yot Sy + R

y(x) =yo + (x — @0)y) + p

where,
(v — mo)" (n+1)(77)
(n+1)! ’

putting A = (x — z¢) then we can rewrite y(z) as

Rn+1 = ne (‘730’:13)

/ h? 1" h" (n)
y(x) = yo + hyy + oY T Yo+ B (1.9)



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

with

hn+1
(n+1)!
Now, in order to obtain the solution we have to determine the following
derivatives

y" (@), n e (x0,20 +h)

Rn+1 =

y'(20),y" (20), y" (o)

that can by performed as

y'(z) = fz,y) = f'(z,y)

fo(@,y) + fylz, )y (1.10)
= fa(z,y) + fy(2,9) f

similarly, for all the other higher order derivatives. thus all the deriva-

tives is going to be a function of f(x,y) and the derivatives of f(z,y).

Now, from (1.10) into (1.9) we have

y(xo + h) yo+hf0+ (fx"‘fyf) (z0,90)

h3
?(f:m: + Qfxy + fyyf2 + fl‘fy + fy2f)(ff07y0) +..

(1.11)

and the error in this case takes the following form
Rty (1) ()
(n+1)!

The following are the needed steps for performing the current method:

Error = , 0<n<h

e First: to obtain y(z1), we have to compute the following deriva-
tives; y'(x0), 4" (z0),y" (o), ... such that
-y is f(z,y) from the ODE,
- " can be obtained by by performing the derivative of vy’ with
respect to z,
-y"" can be obtained by by performing the derivative of y” with
respect to & and so on - This should be done each time with

substituting x with x¢ , thus we can write the following

2 3
///

h h
yl—y0+hyo+ yo+ TR

Doing so means that we have calculated y(z1) (x1 = o + h).

11
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e Second: to obtain y(z2), we have to compute the following deriva-
tives; y'(z1),y"(x1),y" (x1),.... Therefore, we can write the
following such that

2 3

h h
Y2 = y(wz)—y1+hy1+ ,y1+3, /1”+..-

where, xo =21+ h

e Third: to obtain y(z3), we have to compute the following deriva-
tives; ' (z2),y"(x2),y" (x2),.... Therefore, we can write the
following such that

2 3
"

. h h
vs = y(ws) = yo + hys + Srys + 598’ 4
where, x3 =22+ h

e Finally: we can easily repeat the above steps several times till we
obtain a value for y,, = y(z,,) at the pointsn = 0,1,2,3,...,z, =
xg + nh, and we have

/ h2 " h’3 n
Yn = Y(@n) = Y1+ M1+ St + Gr¥na oo

m Example 1.6 Using Taylor method to find the solution of the follow-
ing ODEs;

dy
— = — 0)=1 h=0.2
oy =y w0 =1
|
Solution. It’s easily to write
y=y(x) y(0) =1
M=ﬂ y)=z-y y'(0)= -1
=1- "(0) =2
y' y'(0) (1.12)

y'
Y

y" M’ Y (0) =2
ey



1.3 SINGLE-STEP METHODS OR ONE-STEP

METHODS
then, substituting from (1.12) in the following relations
/ h2 ! h3 "
yr=y(x1) = yo+hyo + 5% + 570 + -t
leads to
0.2)2 0.2)3
y(0.2) =y1 =1+ (0.2)(—1) + <(2|))(2) + ( 3') (—2)
; 1.13
(0.2)4 5 (0.2)5 ) (1.13)
+ 1 (2) + i (=2)+...
thus, y(0.2) = y; = 0.83746 [ |

m Example 1.7 Find the solution of the following ODE

dy
- 0) =2
o =Ty, y(0)

then, find y(0.1),y(0.2). n
Solution.

y=ylx), Y@=z+y, y' =1+,

b " v v

(1.14)
y'(z)=y",  yU=y", Y=y ...

First: In order to calculate y(0.1), we plug in = 0.1 in the right hand
side of relations (1.14), then

y(0)=2, Y 0)=0+2, ' (0)=1+2=3,

. | (1.15)
y'(0)=3,  y*(0) =3, y’(0) =3,...
thus,
2 3 4 5
y(1) = 1 = oty O)+ 50 (01 570" O+ 1y O+ 53" O+
h:xl—x():().l—(]:().l
2 3 4 5

n=01) = 2400+ G @)+ ) O ) O )

y1 =y(0.1) = 2.2

13
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Second: in order to calculate y(0.2), we plug in x = 0.2 in the right
hand side of relations (1.14), then

y(0.1) =22,  4(0.1)=0.1+22,  5'(0.1)=1+23=3.3,

y"(0.1) =33,  ¢"(0.1) = 3.3, y“(0.1) =3.3,. ..
(1.16)
thus,
/ h2 " h3 " h4 v h5 (
y(x2) = y2 = y(er)+hy (21)+ 5y (@) +5ry7 (@) + 4y @)+ oy @)+
hzl‘Q—l‘l =02-0.1=0.1
(0.1)2 (0.1)3 (0.1)% (0.1)5
yo = y(0.2) = 2.2+(0.1)(2.3)+ o1 (3.3)+ 3 (3.3)+ 1 (3.3)+ = (3.3)
y2 = y(0.2) = 2.21551275
[ |
m Example 1.8 Using Taylor method, find the solution for the following
ODE J
Y 2 2
= = 0) =1.
k()
]
f(:E?y) :$2+y27 Zo = 07 Yo = 1>
y =y(), y(0) =1,
y = f(z,y) =2 +y° y(0)=1 (1.17)
y" =2z + 2yy/ y"(0) =2
y/// =924 ny” + 2<y/)2 y///(o) -8
then using
2
T —x
9(@) = o+ (& — a0}y (20) + TPy ) 1

we conclude that 3
y(z) = 1+x+x2+§x3



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

® (Disadvantage of this method) It is clear that this method
is non practical method due to the various differentiations that
one have to compute during the solution. There for we present

here sor[e: other methods that we can practically deal with.

YR

1.3.3 Normal Euler method

This method is driven from Taylor method assuming that h << 1 in
the Taylor expansion. Assuming so leads to the possibility of taking
only three terms in the Taylor expansion, thus,

2
y(z) = y(vo+h) = y(930)+hy/($0)+%y"(§), g <& <wo+h (1.18)

The third term in the above equation represents the error in the
method and it becomes very small whenever h is small enough, thus,

y" ()
2

Error = F = = O(h?) (1.19)

Equation (1.18) represents the solution at a point z = x¢ + h with
the given solution at x = xg i.e., y(zg) is given as an initial value.
Similarly, we can find the solution at x = x¢ + 2h and repeating this
steps we can find also the solution at * = x¢9 + (n — 1)h. Thus, the
normal Euler can take the following form:;

Yn+l = Yn + hy% + O(h2)

Also, since
y;L = f(xﬂJ yn)v

then, Euler formula can be rewritten as

2
_

Ynt+1 = Yn + hf(xnvyn)y E= 2 Yy (5)7 Tn < f < Zp+41 (1-20)
m Example 1.9 Find the solution of the following ODE
d
Y — 24y, y(0)=1,in the interval [0,0.1] taking h = 0.02.
dx —_—

15
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16 INITIAL-VALUE PROBLEMS
Solution. Using the repeated relations (1.20)
Ynt1 = Yn + W f (T, yn)
9(0.02) = y1 = yo + hf(z0,90) = 1+ (0.02)(0 + 1) = 1.02
y(0.04) = y2 = y1 + hf(x1,z1) = 1.02 4 (0.02)(0.02 + 1.02) = 1.0408
y(0.06) = y3 = ya+hf(z2, x2) = 1.0408+(0.02)(0.0441.0408) = 1.0624
y(0.08) = y4 = y3 + hf(xs3, x3) = 1.0048

y(0.1) = y5 = yg + hf (x4, 24) = 1.1081

The analytical solution for the ODE in the previous example
at x = 0.1 is 1.1103, hence the numerical error is

s
F =1.1103 — 1.1081 = 0.0022
~———

1.3.4 A modified Euler method

The modified Euler method is driven also from Taylor serious with an
extra term compare to the normal Euler method, i.e.,

2

h
Yn+1 = Yn + h’y’;]/ + ?yg (1-21)

Since, yI = W (from the usual definition of the first derivative
of a function). Substituting in (1.21) for the value of y/!, we have

h2 / o
Yntl = Yn + hyprimen + ? <w>
1 1
=Yn + h(% + §ZJ;L+1 - 51/;1) (1.22)

h
=Yn + 5(% + Yni1)
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1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS 17

Hence, the final form of the modified Euler method is

hyn + Y
el

where, y;L = f(nYn), y;;+1 = f(xn—l-layn—l-l)

® Determining y;, , ;, that appears in the right hand side of equa-

tion (1.23), depends on the value of y,, 41, that is still unknown,

therefore the steps of for solving such case using the modiﬁed
Euler method are

e Determine y,+1, using the normal Euler method.

e Use the previous value to compute the value of y,  ; such
that

'y;+1 = f($n+1ayn+1)

e Substitute for the values of y,,y;,, ¥, in the right hand
side of equation (1.23) in order to obtain a value for ¥, 11
which is now obtained by the modified Euler method,
thus,this method is called Predictor Corrector method,
ie.,

P
y$ 7 = yo + hyl = yo + hf (0, o)
(P

U =0+ B Wh+90) = vo+ 5 [ £ (wo.0) + 7 (0,07

m Example 1.10 Find the numerical solution of the following ODEs

L) o o)
ﬂ\‘t Zz:$”+%y&%=l e
Q (AN

at x = 0.2, considering h = (.1, using the modified Euler method. =

Solution.

" =yo+hf (zo,50) =1+ (0.1)(0+1) = 1.1

yg(J) = 1Yo+ g [f (z0,50) + f (ml’ygp))]

:1+2;{m+1y+KeU?+LQ}=11%5

y€>}y=:11055
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18 INITIAL-VALUE PROBLEMS

s =y +nf (:chy‘({@)
= 1.1055 + (0.1) [(0.1)* + 1.1055]

= 1.22605
h
ySC) =Y + 5 |:f (xl)yl) + f (xQ)y§P)>j|
= 1.1055 + 02—1 {[(0.1)* + 1.1055] + [(0.2)* + 1.22605] }
= 1.224577

@ = 1.224577

A -

m Example 1.11 Using the modified Euler method, find the solution of
the following ODEs

dy
- _ 0)=1
ik A ()
at x = 0.04, considering h = 0.02. L]
Solution.
" = o+ hf (z0,50) = 1+ (0.02)(0 + 1) = 1.02
c h P
yg ) =7Yo + 5 f(x()?y()) + f (xbyg )>]

=1+ % {(0+1) +[(0.02) 4+ 1.02]} = 1.0204

4(0.02) = 1.0204
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1.3 SINGLE-STEP METHODS OR ONE-STEP
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yép) =y +hf (:61, y@)

= 1.0204 + 0.02(0.02 + 1.0204) = 1.041208
= 1.041208

h [f (r1,91) + f <$2,yép)>}

2
= 1.0204 + & {1(0.02) + 1.0204] + [(0.04) + 1.041208]}

c
yé )=y1+

= 1.0416
y$9 = 1.0416

m Example 1.12 Use the modified Euler method to find the solution of
the following ODEs

Y =z+y, y(0) =2

for obtaining the value of y(0.2) using the step size h = 0.025. ]

Solution. First, obtaining y,1, which means y(0.2), using the mod-
ified Euler method. we apply the following repeated relations

Ynt1 = Yn + hf (wm yn)
y(0.025) = y1 = yo + hf (z0, Yo )
=2+ (0.025)[(0)(4)]
y(0.05) = y2 = y1 + hf (z1,
=24 (0.025)[(0)(4)
y(0.075) = y3 = yo + hf (z2
—24 (0.025)[(0)(4)

y(0.100) = y(0.125) = y(0.150) = y(0.175) = 4(0.200) = 2
Yn+1 = y(0.2) =
Yo = — (@ar1) (¥241) = —(0.2)(4) = —0.8

)
y1)
]

(1.24)
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Now, we use the relation of the modified Euler equation, that is

(vt
Yn+1l = Yn + w, Yn = y(0175) =2
4) = —0.700
Yni1 = y(0.2) = —0.7 4 200708 _ g 7187

<
S~
I
|
—~
e
—_
N |
Tt
SN—
—~

1.3.5 Runge-Kutta method

It’s one of the most important methods for solving the differential
equations, which can be driven using Taylor expansion and the order
of this method depends on how many terms are considered from the
Taylor expansion, thus we have the following types of the method

Runge-Kutta method of second order (RK2)

It is used to obtain the solution of a differential equation of the form
dy
/ % = f($7y)7 y(iCo) = Yo, (125)

and it can be driven as follows; assume

Yn+l = Yn + aky + bka,
kl - hf(l"nﬁyn)? (126)
k2 = hf(a:n + ahvyn + Bkl),

where, a, b, o, 5 are constants that can be determined with the follow-

ing way;

-Using the Taylor expansion for eq. (1.25) at a point z,,, we have
Yn+1l = Yn + hf(xmyn) + af/(xmyn) + O(h )7 (127)

where,

dfn d
Pawm) =T = (ot 1, 9) = (ht gy
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Now, substituting in the above equation about the value of f/(x,,y,),
we have

2
Ynt1 = Yn + hf(Zn, Yn) +%(fz+fyf)n+0(h3)a (1.28)

the term ko which is used in RK2 can be rewritten in the following
form (using Taylor expansion for a two variable function)

ko = hf (mn + ah, Yn + /Bkl)
= hf (xna yn) + ahgfx (':Una yn) + Bhklfy (wn;yn)
= B (fo + alfy + Bkify), = h(fn+ahfe + Bhfyf), (since ki = hf)

Substituting in (1.25) for the value of ko, we have

Yn+l = Yn + ahf (l‘n, yn) +bh (f +ahfy + ﬁhfy)n )

which can be rewritten as,

Yn+1 = Yn + (@ +D)Rf (Tn, yn) + h? (abfy + ﬂbffy)n )

Thus,

1 1
a+ , Q,ﬂ 5

This equation has three relations in four variables, therefore the solu-
tion of is infinite number in which one can pick any value for one of
the variables to get the other three variables. Also, this equation can
be rewritten in the following form

ba—pB)=0,0#0 = a—-F=0 = a=0
Now,

e choose a = 3 = %, leads to @ = 0,b = 1, which is incorrect as
we should have (a # 0).

° Choosea:ﬁzl,leadstoa:b:%
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then substituting for the values of a, b, «, 3,then we achieve to our goal < \)

le., A \(“\’
v \ \ Ynt+1 = Yn +’k1 +\k2, with ..2 \,&—V 2 (
-

ki = hf(@n, yn), (1.29)
k2 == hf(xn + .hayn + k1)7

that is RK2.
m Example 1.13 Use RK2 method to find the solution of the following
ODEs

d

dl =2+ y(é) = -1

r >

at x = 2.3 using the step size h = 0.1. ‘—’\'/ ! "
Solution.

flz,y) =2+ ¢

k1 + ko
2 )

Y1 =19Yo +
k1 = hf(zo,y0) = hf(2,-1) =(0.1)(4+1)=0.5
ky = hf(zo+h,yo+k1) = hf(2+0.1,—-140.5) = hf(2.1,-0.5) = 0.466
1
y1=—1+ 5(0.5 +0.466) = —0.517

k1 + ko
2 )

Y2 =+

k1= hf(z1,y1)
=hf(xz1,y1) = hf1 = hf(2.1,-0.517)

= (0.0)[(2.1) + (~0.517)] = 0.468,
ko =hf(xy+ h,y1 + k1)
= (0.1)[(2:2) + (~0.049)?] = 0.484
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1
y2 = —0.517 4 5(0.468 +0.484) = —0.041

k1 + ko
Yz = Y2 + 5

ki = hf(zo, ) = hfs = hf(2.2, —0.041)
= (0.1) [(2.2)2 + (—0.041)2] = 0.484,

ky = hf(2.2+ 0.1, —0.041 + 0.484) = hf(2.3,0.443)
= (0.1) [(2.3)2 + (0.443)2] = 0.548

1
/3 = —0.041 + (0484 + 0.548) = 0.475

|
m Example 1.14 Let
dy 2
A — =1
o = =4 y(0)
find y(0.1),y(0.2) using RK2. "

Solution.
fla,y) =2 —y

o = 073/0 =1= f(x()ay()) = _17

Now, the RK2 method is
ki = hf(zo,y0) = ()0.1(0 — 1) = 0.1

ko = hf(xo+h,yo+k1) = hf(0.1,0.9) = (0.1)((0.1)* —0.9) = —0.089

1 1

K= 5(1{:1 + ko) = 5(—0.1 +0.089) = —0.0945
y1 =y(0.1) =yo+ K =1—0.0945 = 0.9055

For computing y(0.2) we take (z1,y1) = (0.1,0.9055) instead of (zo, yo),
then we repeat the method again

ki = hf (z1,91)

= h(z? —y) = (0.1) [(0.1)2 - 0.905} — —0.08955,
ko = hf(xo+ h,yo+ k1)

— (0.1)[(0.2)? - 0.81595} — 0.077595
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K = (k1 + ko) = $(—0.08955 — 0.077595) = —0.0835725
y2 = y(0.2) = y1 + k = 0.9055 — 0.0835725 = 0.821975

Rung-Kutta of fourth order (RK4)

This method is considered one of the most popular method as its is
more accurate compare to the Rung-Kutta of second order method.
This ,method could be driven in a similar way to that of RK2 increas-
ing. It takes the following form

1
Yn+l = Yn + é(kl + 2ko + 2k3 + k4)7

where, ’

kv = hf(zn,Yn),

ko = hf(zn + Sh,yn + 3k1),

ks = hf(xn + %h’yn + %]/@)7
\w = hf(@n + h,yn + k3),

m Example 1.15 Use the RK4 in order to solve the following ODE
f.(“,}"»\
dy

—fz+y| y0)=1

‘/\‘11\

at £ = 0.1, using,h = 0.1. [
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Solution.

Fy = hf (2 9n) = hF(0,1) = 0.1(0+1) = 0.1
ko = hf (2n+ Shyn + —k
2 = n 9 y Yn 9 1

0.1 0.1
—hf <0+2,1+2>

— hf(0.05,1.05)

— 0.1(0.05 + 1.05) = 0.11
ks = hf (00 + ~hoyn + ~k
3 — Tn 2 » Yn 9 2

0.1 (1.30)
=0.1 0.05+1.055 =0.11050
k4 = hf (xn + hayn + k3)

=0.1£(0.1,1.11050) = 0.12105

1
Yn+1 =Yn + gkl + 2kg + 2k3 + k4

1
y(0.1) = 1.0+ (0.1) +0.22 +0.221 + 01205

=1.11034
|
m Example 1.16 From the following ODE
dy 2
find y(0.1), y(0.2), using RK4. "
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Solution.
k1= hf (zn,yn) = hf(0,1) = 0.1(0 = 1) = =0.1
by = hf (20 hoyo + ok
2= Ln 2 » YUn 9 1
= hf (0.05,0.98)
= 0.1(0.05% — 0.95) = 0.09475
ks = hf (o0 + Shoyn + ok
3= n 92 » Yn 2 2

= 0.1f(0.052, 0.952625) = —0.0950125
ks = hf (mn + hyyn + k3)

= 0.1£(0.12 — 0.0950125) = 0.0894987

1
K :Ekl + 2k1 + 2ko + k3

1
:6[—0.1 + 2 —0.09475

+2 —0.0950125 — 0.0894987]
= —0.0948372

y1 =y(0.1) =y, + K =1 —0.0948372 = 0.9051627.

Now, to compute y(0.2) we take (z1,y1) = (0.1,0.9051627) instead
of (zg,y0) and repeat the method to get the following
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ki = hf (z1,y1) = hf(0.1,0.9051627)

= 0.1 [0.1% — 0.9051627] = —0.0895162

hf (3:1 o+ > = hf(0.15,0.8604046)
[

0.1[0.15% — 0. 8604046] = —0.837904

hf a1+ ,y1+ >:hf(0.15,0.8632674)

0.1 [0.15% — 0.8632674] = —0.0840767
ks =hf x1+hy + ks = hf(0.2,0.8210859)

= 0.1 [0.2% — 0.8210859] = —0.0781085

1
= 6k1+2k1 + 2ko + k3

1
= 6[—0.0895162 + 2 —0.0837904

+2 — 0.0840767 — 0.0781085]
= —0.0838931

Y2 =9y(02) =y + K
= 0.9051627 — 0.0838931

= 0.08212695

m Example 1.17 Suppose we have the following ODE
dy
dx
find y(0.1), y(0.2), using RK2. "

:xQ_ya y(O) = 17
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Solution.
k1 = hf (zo,y0) = 0.1[0 — 1] = —0.1
ko = hf (w0 + h,yo + k1)

= hf0.1,0.9 =0.1[0.1> — 0.9]
= —0.089

1 1
K = ikl + ky = 5~ 0.1 4 0.089 = —0.0945

y1 =y(0.1) = yo + k = 1 — 0.0945 = 0.9055

Then, to compute y(0.2), we take (z1,y1) = (0.1,0.9055) instead of
(z0,y0) and repeat the method to get the following
ki = hf (z1,91) = hai —
= 0.1 [0.1%> — 0.905] = —0.08955
ke = hf (zo+ h,yo + k1)
— 1f0.2,0.81595 = 0.1[0.2% — 0.81595]
= —0.077595
K= %kl + ko = % — 0.08955 — 0.077595 = —0.0835725

y2 = y(0.2) = y1 + k = 0.9055 — 0.0835725 = 0.821975

m Example 1.18 Use RK2 to solve the following ODE

dy

A 0) =2
2y =Y r, y(0) =2,

at x = 0.2, using h = 0.1. L]
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Solution.
kl = hf (x07y0) = h’f(ov 2)

—0.2[2—0] =04

h k
ko = hf (m + 500 + 21> = hf(0.1,2.2)

=0.2[2.2 —0.1] = 0.42

2 2
=0.2[2.21 — 0.1] = 0.422

ko =hf x4 h,yo+ ks = hf(0.2,2.422)
=0.2[2.422 — 0.2] = 0.4644

h k
ks =hf <x0 + =, yo+ 2) = hf(0.1,2.21)

1
y(02) =Y+ Ekl + 2ko + 2ks + k4

=2+ [0.4 + 20.42 + 20.422 + 0.4644]
= 2.4247266

Exercise 1.1 Use RK4 to find the values of y(0.1), y(0.2), y(0.3) of the

following ODE

dy 2
_ = = 1
o =y +ys y(0) =1,






Chapter 2

Numerical solution for
systems of ordinary
differential equation

2.1 Solving differential systems of first order

The general form of system of ordinary differential equation from the
first order is

yll :fl (xvylay%"' 7yn)
yé :f2 (x>ylay27"' 72/71,)

Y = [ (T, 91,92, 1 Yn)
with,

yl(wo) = Oél,yz(l‘o) = Q2,.. -,yn(iﬂo) = Qnp )

All the methods mentioned in the previous chapter for solving an
equation from the initial value problem type can be used to solve
system of ordinary differential equation as in (2.1). We are going to
show how those methods can be extended to solve a system of ODEs.
During our discussion, we are going to focus our attention to a system

of two equations and in order to make the picture more clear we will
31
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use alternative notations as;
y' = f(,y,2), 2" = ¢(z,y,2)

be a system formed of two equations with the following two initial
conditions

y(xo) = yo, 2(x0) = 20

2.1.1\ Picard method

Suppose

y/ = f(x7 Y, Z)
2 = qb(x’ya Z) (2 2)
with the initial condition ’
y(z0) = yo, 2(z0) = 20
the first approximation y1, z; can be obtained in a similar way to that
of the one differential equation, i.e.,

y1=yo+ [, f(x,0,20)dax
21 = 20 + f;; ¢($7y0720) dCC,

the second approximation is

y2 =yo + [, f(2,y1,21) dw
2 =20+ [ ¢(x,y1,21)da

m Example 2.1 Use Picard method to find an approximate vale for y, z

to solve p p
@ _ ., & _ 3
gy =5 =Wt 2)
with the initial conditions y(0) = 1,2(0) = 1. .

Solution. Since,

dz :f(x,y,z) =z

% = ¢($,y,2) = $3(y + Z)
y=yo+ [, flz,y,2)dx
z=2z9+ ffo o(x,y, z)dx
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The first approximation is

yi=vo+ [, f(x,90,20)de =1+ [{(1/2)dz =1+3%

21—z0+f$ (z, Y0, 20 dx—2+f ( )dx

P
3
2"’93

the second approximation is

x x 1 31,4
y2=y0+/ f(Iaylvzl)dle"’_/ <+>d$
20 0 2 8

1 v r 1 3zt
Z2 =20+ ¢(w,y1,Z1)dx—+/ P14+ +-+5 ) da
2 Jo 2 2 8

1 3z 2P 373:8

and, the third approximation is

* T /1 3t 25 328
= dr =1 — - R —\d
Ys yo+/ f(x,y2,22) dx +/O <2+ <t 64> T

n 3t n xP n 38 n Tx? + x12
2 8 10 64 360 256

therefore, at x = 0.1 we have

y1 = 1.05, y2 = 1.500008, y3 = 1.500008
z1 = 0.5000375, zg = 0.5000385, z3 = 0.5000385

33
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2.1.2 Taylor method

Let y(z),z(z) be the solution of the system (2.1), then by Taylor
expansion of y(z), z(z) around the point = = xg, we have

"

= yo + hylh + Loyl + Byl + -
(2.3)
=20+ hah+ B+ By
in order to obtain the solution, we have to determine the values of
Yo, Y6, Yo s - - - » also the values of z{, z(/, z(’, ..., which can be done by
differentiating vy = f(z,y,2),2 = ¢(x,y,z) with respect to x, then
substituting in (2.3), we have yi, 21 in the first step.
Similarly, in the second step we have

vy =1+ hyh + Sl + B+
(2.4)

zQ:zl—i—hzi—i-’;—?zf—i-g,z'l”—i----
where, y1, 21 and all its derivatives we obtained n the previous step.
Repeating this, we will be able to obtain the values for the other steps

m Example 2.2 Using Taylor method, find the solution for

B=zt+zy0)=2 g N %
=y 20)=1 7 sl

® ol
at the point z = 0.2 with A = 0.1.

Solution. Since,
y=x+z y0)=2

—
2=z z0)=1
we can evaluate the following derivatives

fy-z%—z Y == 70' Xb"'b‘
y

—1+z o4\l )\
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then, we use Taylor series to obtain y1, 21 as
ﬁ1=y0+hy6+§y3+%?y’”+'“
2
A1 :zo+hz6+%zg+]§—?z”’+---
at
xgzO,y():Q, Zozl,h:().l
we get
Yo = 19 + 20 = 1, Zh=mx9—yd=—4
=142 =1-4=-3\ 2 =1- 2y =1-2(2)(1) = -3
o= 2 2 = =2 [yoyy +y¢] = —2[2(-3)+1%] =10
substituting with those values in the Taylor series we get
0.1)2 0.1)3
y1 =24+ (0.1)(1) + ( 2‘) (—3)+ ( 3') (=3)+---
=2+0.1-0.015—-0.0005 = 2.0845
———
0.1)2 0.1)3
=1-04-0.01540.001667 = 0.5867
y(’O“l) = 2.0845
2(0.1) = 0.5867

Similarly, for obtaining y(0.2), 2(0.2), we can write

2 3
B2 =y ey eyl
Z2 =21+ b £
2 1 17T 21%1 T 3r*1
at,
Tr1 = 0.1, Y1 = 20845, Z1 = 0.5867

we get,

Yy = z1 + 21 = 0.06867, 2 = x — Yy} = —4.2451403
Yl =142 = —3.2451403, 2/ =1 —2y1y] = —1.8628523

"

Yy = 2 = —1.8628523, 2" = =2 [yiy! + y?] = 12.585876
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thus, \‘v o ‘1\

(0.1)2
2!

yo = 2.0845 + (0.1)(0.6867) + (—3.2451403)

0.1)3
+ (3')(—1.8628523) + -

— 2.13663\?V

25 = 0.5867 + (0.1)(—4.2451403) +

0.1)3
+ (?)')(12.585876) 4

(0.1)2
2!

(—1.8628523)

= 0.1549693

2.1.3 Runge-kutta method

Let,
d
ﬁ = fl(xay7 Z)7

with the initial conditions

dz
% - f2($7y7 Z)

y(zo0) = yo, 2(z0) = 20

The solution of the previous system using RK2, takes the following

form .
Yn+l = Yn + 2 (kl + kQ)
Zn+1 = Zn + % (ll + lg)
where,
kl :hfl(xayaz)a ll :h’fZ(xvyaZ)

kQthl(.%'—i-h,y-i-kl,Z-i-ll), lgzhfg(x—l—h,y—i-kl,z—i-ll)

The solution of the previous system using RK4, takes the following

form
Ynt1 = Yn + = (k1 + 2ka + 2k3 + ks)

Zntl = 2n + g (Ih + 2lg + 213 + 1y)
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where,

k1 = hf(xvyaz)a l= hfg(l',y, Z)

ko = hfy (m+g,y+%,z+%)

k4:hf1(x+h,y+k3,z+lg)

ly = hfo (x—i—h,y—i—kg,z—i—lg)
m Example 2.3 Using Rung-Kutta 4th find the solution for

Y =yzta,y0) =1

gi =zz+vy, 2(0)=-1

and then find y(0.2), 2(0.2) "

Solution. since
Ny, z)=yz+a, folz,y,z) =324y
o =0,90=1,20 = —1
B = Bfi (20,50, 20) = (01)[(1)(~1) + 0] = ~0.1

li = hfa (x0,90,20) = (0.-[(0)(=1) + 1] = 0.1
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h k l
ky = hfi (330 + 50 b0 + 51 20+ 21> = hf1(0.05,0.95, —0.95)

= (0.1)[(0.95)(—0.95) + 0.05] = —0.08525

h k l
Iy = hfs <:c0 + 500 + 51 20 + 21> = N f»(0.05,0.95, —0.95)

= (0.1)[(0.05)(—0.95) + 0.95] = 0.09025

- A
ks = hfi (900-1- 27y0+ 5 , 20 + 2)

= hf1(0.05,0.957375, —0.954875)
= (0.1)[(0.957375)(—0.954875) + 0.05] = —0.0864173

- h ke b
I3 ="hfs <96'0+ 5 Y0t ozt 2)

=hf2(0.05,0.957375, —0.954875)
=(0.1)[(0.05)(—0.954875) + 0.957375] = —0.0909631
ks =hfi(z+hy+ks z+13)

= hf1(0.1,0.9135827, —0.9090369)

— (0.1)[(0.9135827)(—0.9090369) + 0.1]

= —0.073048
la =hfo(x+h,y+ks z+13)

= hf2(0.1,0.9135827, —0.9090369)

— (0.1)[(0.1)(—0.9090369) + 0.9135827]

= 0.822679

1
k::g(k1+2k2+2k3+k4)

—_

= (0.1 +2(~0.08525) + 2(~0.0864173) — 0.073048]

= —0.0860637
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l=— (L + 2+ 23+ 1)

[ I

1
= 5[0.1+2(0.09025) + 2(0.0909631) — 0.0822679]

= —0.0907823
y1 =y(0.1) = yo + k=1 —0.0860637 = 0.9139363
21 =2(0.1) = 20 + 1 = —1+0.0907823 = —0.9092176

21 = 0.1,y, = 0.9139363, 2, — —0.9092176
and, to get y(0.2), 2(0.2), we perform the following

k1= hfi(x1,y1,21) = h(y121 + 1) = —0.0730966

= hfg (xl,yl, Zl) =h (xlzl + yl) = —0.08230145

- h kL
ko =hfi (131 tomt gt 2)
= hf1(0.15,0.877388, —0.8680669)

= (0.1)[(0.877388)(—0.8680669) + 0.15] = —0.0611631

B h kL
la = hfa (961-1- 2,:1/1-1- 5 21+ 2)

= hf»(0.15,0.877388, —0.8680669)

= (0.1)[(0.15)(—0.8680669) + 0.877388] = 0.0747177
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- h ke D
k3 = hfi (1131 + 5y + 504 + 2)

= hf1(0.15,0.8833547, —0.8718587)

= (0.1)[(0.8833547)(—0.8718587) + 0.15] = —0.062016

I3 ="hfs (1:1 + g,y1 + %,21 + l22>
= hf2(0.15,0.8833547, —0.8718587)
— (0.1)[(0.15)(—0.8718587) + 0.8833547] = 0.0750851
ks =hfi(x+h,y+ ks, z+13)
= hf1(0.2,0.8519203, —0.8341324)
— (0.1)](0.8519203)(—0.8341324) + 0.2]
= —0.0510614
ly="hfs(x+hy+ks,z+13)
— hfs(0.2,0.8519203, —0.8341324)

= (0.1)[(0.2)(—0.8341324) + 0.8519203]

= 0.0685093

_1
G

k (k1 + 2ko + 2k3 + k4)

1
= 6[—0.0730966 +2(—0.0611631)

+2(—0.062016) — 0.0510614]

= —0.0617527
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l=— (L +2lp+2l3+ 1)

D=

1
= [0.08230145 + 2(—0.0747177)

+2(0.0750851) + 0.0685093]
= 0.0750693

ya = y(0.2) = y1 + k = 0.9139363 — 0.0617527
= 0.8521836

20 = 2(0.2) = 21 + [ = —0.9092176 + 0.0750693

= —0.8341482

2.2 Ordinary differential equation of higher or-
der

The generalized form of ordinary differential equation of n order is

y™ = flz,y, v 0"y (2.5)

and the initial values are

y(zo) = ao, ¥ (x0) = a1,y (x0) = a2, ...,y V(x0) = 1.

This equation could be solved after converting it into a system of
ordinary differential equation of first order that had been discussed
before.

In order to convert equation (2.5) into a system of ordinary differential
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equation of first order, we let

=Y,
y2 =y
o
Y3 =Y (2.6)
yn =y,

differentiating this system, we have

yi = y/ = Y2,
Yo =9" =us3
r o
Y3 =Y =Ya (2.7)

y;l = y(n) = f(x7y1>y27y37y41 .. '7yn)>

This means that high order differential equation has been converted
into a system of first order. Here, it will be enough to solve a second
order differential equation using the previous mentioned methods.

2.2.1 Picard method for solving a second order differ-
ential equation

Consider the second order ordinary differential equation
y' = f(z,y,9) (2.8)
with the initial conditions
y(z0) = yo = a0,y (x0) = a1

we write this equation in a form of system of first order which can be
done by letting

y =z, 2=y = f(z,y,2)
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m Example 2.4 Using Picard method, find the solution of the following
second order differential equation

y' +22y +y=0
y(0) = 0.5, '(0) =0.1

at x = 0.1. -

Solution. let

thus, eq. (2.9) reads

dz dz
@+2xz+y—0 :>%——(2xz+y)

This means that eq. (2.9) can be rewritten in the follow system form

Yy ==z
V4

"= —(2z2 +y)
with the following initial conditions
y(0) =yo = 0.5,2(0) = 20 = 0.1

let

/

Yy :f(xvyaz) =%, z’:qb(x,y,z) :*(21‘Z+y)

Using Picard method, we get

y="Yo+ [, flz,y,2)dx
z=z20+ [, oy, 2)dx
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The first approximation reads

X
Y1 =y0+/ [ (x, 90, 20) dx
xo

:0.5+/ zodx:O.5+/ (0.1)dz

0 zo

= 0.5+ (0.1)z

xT
Z =Zo+/ ¢ (x, 90, 20) dx
xo

=0.1- / (2x20 + yo) dz = 0.1 — / (0.2x 4 0.5)dx

zo zo

= 0.1 - (0.5)z — (0.1)z>

the second approximation is

xT
Yo =y0+/ f(z,y1,21)de
xo

= 0.5+ /z zidz = 0.5 + /x (0.1 — (0.5)z — (0.1)2?) dz
(0.5)22  (0.1)a3

=0. 1)z — -
0.5+ (0.1)z . ;

X
29 = 2 +/ ¢ (x,y1,21) dz
zo

=0.1- / (2zz1 +y1) do

0

=0.1- /x [(22 (0.1 = 0.5z — 0.12%) + (0.5 + 0.12)] da
(0.3)x2  (2.5)z3  (0.2)z*

=0.1—(0.5)z — -
0.1— (0.5)z 5 T
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and, the third approximation is
xr
Y3 = Yo +/ f (%, y2, 22) dz
T

@ z 0.3 2.5 0.1
=05+ / 2odz = 0.5 +/ [0.1 — 050+ —g? — 258 4 Tt de
e} o 6 4

2
(0.5)x2  (0.1)z3 2  (0.1)a"

=0. 1)z — — —
0.5+ (0.1)x 5 3 +12+ 10

T
23 = 2p +/ ¢ (x,y2, 22) do
o

:O.l—/ (2z29 + y2) dx

0
(0.3)2%  (2.5)z%  (0.2)z*  22°  (0.1)a®
=0.1-(0.5)z — - At
01— (0:5)2 == 6 4 15 6

Now, at x = 0.1, we have
y1 = 0.51, yo = 0.50746667, y3 = 0.50745933,
Thus, y(0.1) = 0.5075. |

2.2.2 Taylor method

Suppose we have the following second order differential equation
y' = f(@,y.9)
with the initial conditions
y(z0) = yo = a0,y (x0) = a1

this equation can be converted into

2,

/
Yy
z’:f(w,y,z) :>y”:z/:f(x7yvz)

with the initial conditions

y(z0) = Yo,y (x0) = 20
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Now, using Taylor expansion for the last two equation, we have

B2 _im | h3 _m

21 = 20 + hag + G720 + Frag + -

2
i zyo+hy6+%2y6’+ 3,y6”+.--
:yo—&—hzo—i—%zé—i— 20+
where, 2, 2, 2(' can be obtained be differentiating the second equa-
tion of the system.
With a similar way, we can get the second approximation of ys, 2o as

h2 1 | k3 _m
?Zl‘i‘ 3,21 + -

"

2
y2=y1+hyit%yi’+ LT/
=y +ha + B+ B

z9 =21+ hz{ +

where, y1, 21 are know at this stage from the previous iterations. Fi-
nally, using the same manner, we can get approximate values for the
other intervals.

m Example 2.5 Using Taylor expansion at x = 0.1,0.2, find the solu-
tion of the following second order differential equation

o /N2 2 _
Y f%”*y 0 (2.10)

at x = 0.1. -

Solution. Putting
y/ == y// — Z/

Therefore, the differential equation takes the following form

/
=z
{020, (2.11)

with the initial conditions

(2.12)
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Using Taylor expansion

h? h3
21 :zo—l—hz(')—kazg—{—?zg'—k---
2 3 4
"

h h h* .
y1:y0+hy6+§yg+§yo T R

from the first equation, we have
2=y y'=z
2= 2% 4 2wz — 291/, Yy =z

/
zZ =Xz

=222 + 2 |aP2 4@ () 4 22|
-2 [yy” + (y’ﬂ : y=2"
thus,
2 = oz — Y3 = (0)(0)* — (1) = -1
2l = 22 + 2w0207) — 2yovlh
= (0)* +2(0)(0)(=1) — 2(1)(0) = 0
2 = 220% + 2 0702 + w0 ()" + 20%]
—2 [yoyé’ + (yé)g]
= 2(0)(=1) + 2 [(0)(0)(=1) + (0)(=1)* + (0)(~1)]
—2[(1)(~1) +(0)?] =2

substituting into the two equations of the system, we get

21 =04 (0.1)(=1) + '2! (0) + é! (2) +
= —0.0997
2 3 4
p=00) =1+ 00 + &)+ 0y B0y

= 0.9950083 ~ 0.995
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2 B3 4
y2 = y(0-2) = yi + hyy + Sron + 5ol e+
h2 h3 ht
=y1+ha+ 5 1+ 3 =2 + 7 1” + -
thus,

y1 = 0.995, 2 = —0.0997

2) =128 — y3 = (0.1)(—0.0997) — (0.995)>
= —0.9890309

2 =22 4 2w 212) — 2y1y) = —0.1687416

then,
0.1 0.1)2

Yo = 0.995 + (1)( 0.0997) + (0.1) (—0.9890309)

(0.1)3
+ 3 (—0.1687416) + - - - = 0.9801129 ~ 0.9801

h h? h3
zZo=12z1+ 21-|- £/+3' 24
1 1)2
= —0.0997 + %(—0.0997) + (02,) (—0.9890309)

0.1)3
+ ( 3,) (—0.1687416) = —0.1145871

2.2.3 Runge-Kutta

(2.13)

Suppose we have the following second order differential equation

y' = f(z,y,9)
with the initial conditions
y(xo) = yo = v,y (w0) = 1

let

y,:Z:>y,/:Z,



2.2 ORDINARY DIFFERENTIAL EQUATION OF
HIGHER ORDER

this equation now is converted into two equations from the first order
as

y = f (.CL’ Y,z )
y fg(l' Y,z )
y(z ) = 0, 2(z0) = 20

that can be solved numerically using Rung-Kutta method.

m Example 2.6 Using Runge-Kutta of fourth order method (RK4), find
the solution of the following second order differential equation

y'=ay —y
y(0) =3, ¥'(0) =0 (214)

at ¢ =0.1. [
Solution. Suppose

Y =z= fi(z,y,2)
-4 =Tz -y = f2(x,y,z)
y(0) =3,2(0) =0

here,
20 =0,90=3,20=0
Using RK4
k1 = hf1 (z0,v0,20) = h(20) = (0.1)(0) =0

li = hf2 (w0, Y0, 20) = h (z020 — Yo)
— (0.1)[(0)(0) — 3] = —0.3

h l
ko = hfi <x 520 + , 20 + 21) = hf1(0.05,3,—0.15)
(0.1)(—0.15) = —0.015
h A
lo="hfa|xo+ 500 + 0t )= hf2(0.05,3,—0.15)

= (0.1)[(0.05)(—0.15) — 3] = 0.030075

49



50 NUMERICAL SOLUTION FOR SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATION

h ko lo
ks = hfi <$0+2,yo+ 5 , 20 + 2>
= hf1(0.05,2.9925, —0.150375)
— (0.1)(—0.150375) = —0.0150375

2
= hf2(0.05,2.9925, —0.150375)
= (0.1)[(0.05)(—0.150375) — 2.9925] = —0.03000018
ks=hfi(x+hy+ks, z+13)
= hf1(0.1,2.9849624, —0.3000018)
— (0.1)(—0.3000018) = —0.03000018
la="hfo(x+h,y+ ks, z+13)
= hf2(0.1,2.9849624, —0.3000018)
= (0.1)[(0.1)(—0.3000018) — 2.9849624]
= —0.3014962

h ko [
I3 ="hfs <CE0+2,Z/0+ 20 + 2>

(k’l + 2ko + 2k3 + k4)

Ob\r—l

= 6[0 +2(—0.015) + 2(—0.0150375) — 0.03000018]

= —0.0150125

l= (l1 + 215 + 213 + l4)

>—*Cb\»—l

= 5[-03+2(~0.30075) + 2(~0.3000018) — 0.3014962]

= —0.3004999
y1 =y(0.1) = yo + k =3 — 0.0150125 = 2.9849875
= 2(0.1) = 29 + 1 = 0 — 0.3004999 = —0.3004999



Chapter 3

Multi-step methods

3.1 Introduction

In the previous chapters, we have studied the one-step methods which
require the information of the solution at only one point, say; = =
xp, to obtain the value of the solution at x = x,4+1. On the other
hand, the multi-step methods require the information of the solution
at many points to obtain the final solution and those methods need the
computation of y(z),y'(z) at the points xg, z1, 2, ..., x,. Moreover,
they depend on the integration of the differential equation.

3.2 Adam’s Bashforth method

This method is used to solve the differential equation of the following
form

y =f@y), ylx)=w (3.1)
by integrating the two sides of the above equation from z, to x,41,
we have
Tn+1 Tn+1
/ dy = / fz,y)dx
Tn Tn
or,

Tn+1
Yn+l = Yn + / f(ac,y)d:):
o 51
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in order to perform the integration of the right hand side of the above
equation, we approximate the function f(z,y) in the form of a poly-
nomial of second order using the Newton backward difference form,
ie.,

q+1)

2

Tn+1 (
Yn+1 :yn+/ [fn'f‘qvfn

N q(g+1)(g+2)

3l Vif,+ ... |dz

using the following change of variables

rT=x,=>q=0,

T =Tpy1 = q=1,(since zpy1 —xy = h)

then the previous integration reads

1
Q—i-l
Ynt1 =Yn +h 0 [fn+Qan ( )V2fn
+1 + 2
Q((];.(Q)V?’fwr...}dq
3 2
q #/3) + (¢?/2 1
por = ot hfafy+ Svg, + G @ g 1!
from which, we get
1 5 o
yn+1—yn+h[fn+§an+ﬁv fn]

then, substituting for V f,,, V2 f,, we have

vfn = fn - fnfl

Van = fon—2fn-1+ fn-2

Yt = Yo+ [ fo 5 (= fam1) + 5 (Fa = 2fa1 + fao2)]
Yn+1 = Yn + % (23fn —16fpn—1+5fn—2),n>2

this equation represents the Adam’s Bashforth method for solving a
differential equation of first order at a certain point.
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m Example 3.1 Using Adam’s Bashforth method, find the solution of
the following differential equation

v =9 y(0)=1, h=0.1 (3.2)

then, find y(0.3). "

Solution. The Adam’s Bashforth method of order three is

h
Yn+l = Yn T+ 5(23]% - 16fn—1 + 5fn—2)7 n>2

this means that we need to know the value of the function at three
constituting points, one of those needed values can be obtained from
the initial condition while the other two values can be computed using
one of the one-step methods.

In this example, we choose the Taylor method as a one-step method,
ie.,

/ h? " h? "
yn-l-l:yn"i_hyn_'_gyn—’_yyn T+

where,

/

Yn =~V
Yn = —2ynYn, = —2yn (—va) = 2y
Y = 6yyl, = 6y2 (—y2) = —6y}
it = o+ 0 (—y2) + B (203) + B (—6yl) + -
y1 = yo — hyg + P2y — hy5
=1-(0.1)(1)2+ (0.1)2(1)3 — (0.1)3(1)* = 0.909
Yo = —yi = i = —(0.909)* = —0.826281
o fi = —0.826281
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Y2 = y1 — hyt + W2y — b3y
= 0.909 — (0.1)(0.909)* + (0.1)%(0.909)* — (0.1)*(0.909)*
= 0.833200055

Sy = —ys = yh = —(0.833200055)>
= —0.69422233

~.fo = —0.69422233

Now, using Adam’s Bashforth method, we have

0.1
=yt 5 (23f2 — 16 f1 + 5f0)

0.1
= 0.83300054 + ' [23(~0.69422233)
— 16(—0.826281) + 5(—1)] = 0.7686449074

@zﬁ/ Adam’s Maulton method

This method is one of the multi-step method and its difference com-
pare to the Adam’s Bashforth method is that it is an implicit method
i.e., the expected method is corrected in the same step before moving
to the next step.

Consider the following differential equation

y = flz,y),  ylxo) =wo

Then, integrating the above equation from z, to z,41 leads to

Tn+t+1
Yn+1l = Yn + / f($7y)d$
Tn

and, in order to integrate the right hand side of that equation, we ap-
proximate the function f(x,y) as a polynomial using Newton formula
of backward interpolation.

Tn+1 + ]_
Yn+1l = Yn +/ [fn-i-l +qVfpt1 + q(q2' )Vanﬂ
Tn °

1 2
+—Q(Q+ 3)|(Q+ )V3fn+1—i—... da
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3.3 ADAM’S MAULTON METHOD
Now, using the following relation

T = Zp+1 + qh = dx = hdq
T=xp=>q=—1
T =Tpy1 = q=0,(since xpy1 —xy = h)

we get,

( 1)

Yntl = Yn + h/ [fn+1 +qV foi1 + =V fria

n q(¢+1)(g +2)

Performing the previous integration, we have

s (¢°/3) + (4/2)

qfn+1+ EvfnJrl + 51

0
Yntl =Yn +h V2fn+1] '
—1

Substituting the valued of V f,, 41, V2 fai1

Vi1 = fns1 — In
v2fn+1 = fn+1 - 2fn + fnfl

we get,

Yntl = Yn + h/|:fn+1 - %(fn—&—l — fn) — %(fn—i—l —2fn + fn—l)]

which concludes the following formula

h
Yn+l = Yn T+ ﬁ |:5fn+1 + 8fn - fn—l , n>1 (33)

that is the Adam’s Maulton method.

m Example 3.2 Using Adam’s Maulton method, find y(0.4) for the
following differential equation

v =z+vy, y(0)=1, h=0.1 (3.4)

95
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Solution. In order to determine y(0.4), using Adam’s Maulton method,
by eq. (3.3)

h
y4=y3+ﬁ[5f4+8f3—f2

and, to determine f4, it is required to use an explicit method; let’s
say Adam’s Bashforth method i.e.,

h
Y4 = Y3 + 5(23]% —16f2 + 5f1)

also,
h
Ys = yo + 5(23f2 —16f1 + 5fo)

the question now is to obtain f; and fs, that can be obtained with
the help of one-step method, for instance, RK4

y1 = yo + g (k1 + 2k + 2k3 + ka)

k1 = hf(zo,y0) = hlzo + yo] = (0.1)(1) = 0.1

ko = hf (xo + oy + %1) = (0.1)£(0.05,1.05)
= (0.1)[0.05 + 1.05] = 0.11

ks = hf (xo +h o+ %2) — hf(0.05,1.055)
= (0.1)[0.05 + 1.055] = 0.11050

ki=hf (l‘() + h,yo + k?g) = hf(O.l, 1.1105)
= (0.1)[0.1 + 1.1105] = 0.12105

thus,

1
Y1 =Yo + 6 (kl + 2ko + 2k3 + k4)

1
=10+ 6[0'1 +0.22 4+ 0.221 + 0.12105]
=1.11034

Similarly, we can use RK4 again to obtain y, = 1.2428

Yy =flz,y)=z+y
fi=a1+y1 =0.1+1.1034
—1.21034
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substituting, fi, fo, we obtain the value of ys3

h
Ys = Y2 + E (23f2 —16f1 + 5f0)
0.1
= 1.2428 + E[23(1.4428) — 16(1.21034) + 5(1)]
= 1.399624667
f3 = x3 4+ y3 = 0.3 + 1.399624667
= 1.699625

then, substituting for f3,y3 we have

h
yz(lp) =yt 5 (23f3 —16f2 +5/1)

0.1
= 1.30062447 + - [23(1.699635) — 16(1.4428) + 5(1.21034)]
= 1.583443599

fo=2a+ 7 = 0.4+ 1.583443899

= 1.98344
then, we have

0.1
i@ = 1.399624667 + < [5(1.98344) + 8(1.699625) — 1.4425]
— 1.58385045

We can obtain the value of y3, using RK4 instead of using
Adam’s Bashforth method.

3.4 Milne’s method

One of the multi-step method and it is different from the previous
methods in the following issues; (1) The expected value at a certain
step is corrected before moving to the next step and, (2) It’s required

o7
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to know the values of the function f(x,y) at four constitutive points
i.e., we need to know y at xn, Tn_1, Tn_2, Tn_3 to evaluate y at x,41.
Consider the following differential equation

y/ = f(xa y)v y($0) = Yo (35)

integrating this equation from x,_3 to x,41, we get

Tpn41 Tn+1
/ dy = / fla,y)da
Tn—3 Tn—3

As in Adam’s method, we approximate f(z,y) by a polynomial of
second order using Newton formula for backward interpolation, then
we can write,

Tn+1 + 1
Yn+1l — Yn-3 = / (fn+qvfn+ q(q2' )Van+E)
In—3 °

where,

q(¢+1)(g+2)

DD, mns <€ <ann

E =

using the following relation

T = Zp+1 + qgh = dx = hdq
T=Tp_3=>qg=—3
T =Zpy1 = q=1,(since r,41 — x, = h)

we get,

q(qg+1)

1
i =vna+ [ | avi,+ 1

v2fn+1 + E:| dq
performing the integration for the variable ¢, we get
2
Yokt = Yn-s + 4h(fo = Vfu + V2, + O(R)

Substitution for the vales of V£, V2f,, we have

4h
Ynt+l = Yn—3 + 3 <2fn — fo—1+ 2fn—2> + O(h°)
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Note that, the value of y,,41 obtained from the above equation is called
the predicted vale which denoted by yg‘:)l and in order to correct or
enhance this value, we may use Simpson rule for integration. Integrate
(3.5) from x,,—1 to x,41 and change the limits of the integration as

done before, we have

1
+1
yn+1=yn—1+h/ [fn+qun+(]((‘72')A2fn+..-]dq

substituting for Af, and A%f,, we have

h
Yn+l = Yn—1 + g (fnfl + 4fn_"|: fni) + O(hS)

which is called the corrected value and is denoted by y,fl(_’;)l.

For the purpose of applying the above method, it’s required
to know four values of the function and in case of they are not
known, we may use any method of the one-step methods.

m Example 3.3 let
dy 1

dr x4y’
y(0) = 2, 5(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493

find y(0.8) using Milne’s method. "
Solution.
P 4h
yy(H_)l = Yn—3 T ? (21/;1 - y;z—l + 2yfn—2)
since,

o = 0, Il = 0.2, xr3 = 0.6, h = 0.2,
Yo = 2, y1 = 2.0933, yo = 2.1755, y3 = 2.2493

Now, we have

P 4h
v ):yo+§(2yé—yé+2yi)
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and,
o1 ! = 0.4360528
N T 02420933
1 1
- - = (.3882741
Y2 st uys 04421755
A S ! = 0.3509633
B s tus  0.6+22493
thus,
4(0.2
g =2+ (02) (2(0.3509633) — (0.3882741) + 2(0.4360528))
= 2.3162022
Now, for the corrected values, we have
o h
y7(z+)1 =Yn-1+ 3 (?J;z—l + 4y, + Z/;L+1)
for the current case, we have n = 3 i.e.,
o h
U =yo + g(yé+4yé +yﬁ;)
and,
y{) = 2.3162022, 24 = 0.8
1 1 (3.6)
| = = = 0.3209034
Aty 08423162022
thus,

2
gl =2.1755 + %[0.3882741 +4(0.3509633) + 0.3209034]

= 2.3163687
- y(0.8) = yq = 2.3164

|
m Example 3.4 Find the solution of the following differential
dy
=@ +y)y, y(0)=1, h=01 (3.7)

using Milne’s method to obtain y(0.4). compute y at x = 0.1,0.2,0.3

using RK4
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Solution. First, we compute y(0.1), y(0.2) y(0.3) using RK4, this
computations are left to the reader, which lead to

y(0.1) = 1.11689, 5(0.2) = 1.27739, 5(0.3) = 1.50412,

Zo = 07 Yo = 1
1 =0.1, y; =1.11689

r3 =0.3, y3 =1.1.50412
Since,
P 4h
yy = o+ 5 (205 — v +21)
and,
y = (z+y)y
vy = (z1+y1)y1 = (0.1 + 1.11689)(1.11689) = 1.3591323 (3.9)
yh = (x2+ y2) y2 = (0.2 4+ 1.27739)(1.27739) = 1.8872032 '
yh = (23 + y3) ys = (0.3 + 1.50412)(1.50412) = 2.713613
Thus,
(P) 4(0.1)

Yy = 1+T (2(2.713613) — 1.8872032 + 2(1.3591323)) = 1.8344383
Now, the corrected value reads,

o h
u$ =y + = (vh + A0 + 1)

3
vh = (s + uiD)yl?) = (0.4 + 1.8344383)(1.8344383) = 4.0989392

Thus,

yf) = 1.27739—1—(0:'31) (1.8872.32 + 4(2.713613) + 4.0989392) = 1.8387431
|
m Example 3.5 Find for the following differential equation
% =(z+y), y(0)=1, h=01 (3.10)

the value of y(0.5). "
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Solution. Since Milne’s method for the predicted value reads

» Ah
y,(1+)1 =Yn—3+ 5 (2yn, — Yn_1 + 2y, _»)

we have to determine the value of y at four points, so we use RK for
this purpose, and we have the following results,

X |y Yy =flz,y) =r+y
0 Yn—3 = 1 fn—3 =1

0.1 | ypoo =111 | fo_o =1.210

0.2 | ypo1 = 1.242 | fo_q = 1.442

0.3 | y, = 1.399 n = 1.699

Therefore,

4(0.1
=14 (%) [2(1.699) — (1.442) + 2(1.210)] = 1.58364

Now, to compute yé(_’?l we need to find f,11

Furr = F@nrn, ) = £(0.4,1.584) = 1.984

and since,
c h
e =y + 3 (2 + 43+ ui)
we have,
(©) (0.1)

py” = 1.242 + 7 [1.984 + 4(1.699) + 1.442] = 1.58364

Note that, yg)r)l, yﬁgr)l have the same value i.e. there is no enhance-

ment in the value of y. Now, we have the values of f ready and we do
not have to use RK again. Thus,

) = (0.5) = 2.20742

) = y(0.5) = 2.29742



Boundary Value Problems

This chapter is devoted for the following items:

4.1 The Finite Difference Method for Linear
Problems

4.2 Solution of the Discretized Problem

63
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Boundary Value Problems
The Finite Difference Method for Linear Problems

In the previous chapters, we have considered the initial value problems for ordinary
differential equations which has the following form

y®)=fty ,t=a

y(@) =a

In many problems, however, there will be conditions on the solution given at more than one
point. For a single first order equation y'(t) = f(t,y), data at one point completely
determines the solution so that if conditions at more than one point are given, either higher
order equations or systems of equations must be treated.

Consider the second-order equation

y'(®) =f(t,yy)0<st<1 )
With the boundary conditions:
y(0) =ay()=p )

Equations (1) and (2) define a two-point boundary value problem.

[MCQ]The problem:[y"' (t) = f(t,y,¥"),0 < t < 1] is... for ordinary differential
equations.

- initial value problems-...
[MCQ]The problem:[y’(t) = f(t,y) ,t =a,y(a) = a,y(0) =a,y(1) =p]is... for
ordinary differential equations.
boundary value problem-

If the function f of Eq. (1) is nonlinear in either y(t) or y'(t), the boundary value problem is
nonlinear. Nonlinear boundary value problems are more difficult to solve, and we shall not
consider them.

In this chapter we treat only linear problems, in which Eq. (1) may be written in the form
y'@®)=b@®)y' @)+ c@®)y®)+d@®),0<t<1 (3)

where b, ¢, and d are given functions of t. The boundary conditions that we consider first will
be of form (2). Later, we shall treat other types of boundary conditions.

Equations (3) and (2) define a linear two-point boundary-value problem for the unknown
function y, and our task is to develop procedures to approximate the solution. We will assume
that the problem has a unique solution that is at least two times continuously differentiable.
We first consider the special case of (3) in which b(x) = 0, so we have the following
example:

Example

Consider the following boundary value problem

y'@®) =c®)y®)+d(),0<t<1

with the conditions,

y(0) =a,y(1) =8

Use finite difference approximation to obtain y** (t).

Obtain the resulting tridaigonal system. Find the coefficient matrix when c(t)=0.



Solution:

We will assume that c(t) > 0 for 0 <t < 1; this is a sufficient condition for the problem (4), (2) to have a
unique solution.

To begin the numerical solution we divide the interval [0,1] into a number of equal subintervals of length h,
as shown in Figure 3.1.

To obtain numerical solution for this problem , we divide the interval [0,1] into n+1 sub-interval using the
points
ti=to+ih=ih;ty=0,h= —i=12,. .ntl
h b R
> r—A =/
x A o LA

_L:;—o Ll £2 {:h_, an Ln_“-_-l

Figure 1: Grid Points

Using difference method to approximate y'' (t)

(tiy1) -2y () +y(ti-1)
y”(ti) _ Y€it1 }’hz Yy 1 (4)
Where tiyq1=t;+h
First , we write the given problemat  t=1¢;
y"(t:) = c(t)y(t) +d(ty), i=12,..,n (5)
y(t) =y(0) =« Y(t) =y(1) =B (6)

substituting from (4), Eq (5) becomes

Y(tiv1) — 2yt + y(ti—1)

nZ = c(t)y() +d(t) @)
For simplicity , we write y(t) =y
1 — 2V + Vi
Vi1 h};z Yic1 _ c;y; +d; i=12,.,n (8)
Yo=Q  Yn1 =P (9)

For (8) multiplying on h?
Yis1 — ZSA’i tYi-1 = hZCiJT'i + h?d;

Yir1 — 2y — thiy,- +yi.1 = hzdi

This equation can be rearranged to have the following scheme for all he values of i



— Yir1 — 2+ Ric)yi+yi.q = h®d;, i=12,..n (10)

1
| Yo=& | Y= B C))
— 1 Y, — (2 + hzcl) Y, = hzdl
— i=2 y3—(2+ hzcz)yz-%y1 =h2d2
' (€3 )
— i=n—-1| y - (2 + hzcn_l)yn_1 ty,., = hzdn_l
L i=n _.@— 2+ he)y, +y, , = h’d,
Y, — (2 + hzcl)y1 +a = hzdl
¥3— (2 + hzcz)y2 ty, = hzdz
: (12)
Vo~ (24 RPcnn)y, 1 +¥,, = Hduy
B- @2+ h*c))y, +y, , = h'd,
¥, —(2 + hzcl)y1 = hzdl -«
y;— (2 + hzcz)y2 ty, = h’d,
' (13)

Yo~ (Z + hzcn—l)yn_l + Vo2 = hzdn—l

- (2 + hzcn) Yot Vo, = h’d, — B
In matrix form AY=B

[ -2+ ki) 1 0 o o0 o0 0 0 ][y‘l h:z‘d_a
| 1 -2+ k%) 0 0 0 o 0 | 2
' ‘ an
| o 0 o 0 0 —(2+ h%c) || )
- ‘2 J Vn h2d
l 0 0 0 0 0 1 —(2+ h?c;) nIJ Ked, - B

The coefficient matrix A is tridiagonal Eq.4 is the resulting tridiagonal system which we must solve to
obtain the numerical solution.



[ —(2 + h%cy) 1 0 0 0 o 0 o
1 —(2+ h%c;) 0 0 0 o 0 0
0 0 0 0 0 0 —(2+ H?cy) 1
0 0 0 0 0 0 1 —(2 + h?%cy) |

When c(t) = 0 in the given problem the the coefficient matrix A is

1 -2 0 00 00O
-2 1 0 00 0O0O

o

0 0 O 0 0
00 0O0O0O0 1 -2

This is an important matrix which arises in many contexts, as we shall see.
Matrices of the form (3.1.9) or (3.1.10) are called #ridiagonal since only the
three main diagonals of the matrix have non-zero elements. Tridiagonal ma-
trices arise in a variety of applications in addition to the two-point boundary
value problems of this chapter.

[MCQ]The resulting algebraic system of applying difference methods in approximating BVP of ODE’s
is
Tridiagonal-diagonal-...

Example
Consider the boundary value problem
y'®=2,0<t<1 (1)

With the conditions,
y0)=0,y(1) =1 (2)



Use n=3 with difference approximation to y"" (t).
Obtain the resulting tridaigonal system.

Answer:
Consider the BVP y"(t) =2,0<t<1 (1)
y(0)=0y(1)=1 (2

t;=0+ih=ih; h=
B n+1
With n=3= h= 5 step between points

1 1 3
t0= tl—z t2=5 t3=z t4=1
Yo=0 =7 Y2 =7 y3 =7 ya=1
0 0.25 05 0.75 1
y'(t) =2

by integration
y’(t)zZJdt+c=2t+c
by integration
y(t) =2ftdt+ct+d

y() =t +ct+d
y(0)=0 —=> 0=0+0+dc—=>d=0
y(1)=1 ==> 1=1+c¢ =—> c¢=0

Hence the exact solution
y(t) = t?

Y(tir)-2y(t)+y(ti—1)
2

Y =23y"(t) =

)2Vt _ - 2
h 4

©)

So
16 [y(tip1) — 2y(t) +y(ti-)] =2
Subsitute in the given Eq.(1) , divide by 16
2 1

Yi+r = 2yi +¥io1 = =3

Yirr = 2¥i + Vi1 = ;i=1,2,3 ©))
The resulting tridiagonal system is

UDIHE:'



1
Y2 — 2y =3 ® ]
1
Y3—2y;+ ¥ = 8 @@ }
1
1-2y;+y, =3 (iii)J
-2 1 0
[1 -2 1]
0 1 -2
; =
“n
b/Iq/:""'\«»r \
"v," D, ’29, = A
‘/l.' 1‘,1 ‘ﬁ/\— A[oﬂ« .;“‘
wr (8 J

[MCQ]The resulting algebraic system of applying difference methods in approximating BVP of ODE’s
is

-diagonal-...
[MCQ]The resulting algebraic system of applying difference approximation to y"' (t) and
backward formula for y'(t) for the BVP:y" ' (t) =2,0 <t <1, y(0) = 0,y(1) = 1. with
h= % is
@13Y3 + @12Y3 + @111 = by, @p3Y3 + Q2,¥; + @21Y1 = by, A33Y3 + A32Y2 + @311 = bs
Answer the following 9 questions:

Dap=[01-23 @ ap=[0"-23] @ay=[01 2]

8
Dap=[01,-23 6 ap=[01 21 ©an=[01,-2]
Nau=[01 3] () an=[01-23] ©an=[,1-2]]

This is the resulting system of the equation which defines the unknowns y,, y, and y;

Solution of the Discretized Problem

In the previous section we saw that the use of finite difference discretization of the two-point boundary value
problem C.1.3) led to a system of linear equations. The exact form of this system depends on the boundary
conditions, but in all the cases we considered, except periodic boundary conditions, the system was of the
tridiagonal form

ay; a2 ty d;
g1 @z A3
@32 .. . = . (3‘21)
Gn—1n
Qp,n=-1 Enn Yy dn



Gaussian Elimination

We will solve the system (3.2.1) by the Gaussian elimination method. This
method, along with several variants, will be considered in detail for general
linear systems in the next chapter

[Q] Use Gaussian Elimination method to
obtain the numerical solution for the resulting
system of the previous problem

1
Y2 =20 = 3 (0]
1 g
Y3—2y;+ y1 = 8 @@
1
1-2y;+y, =3 (D)

To solve this system

2(i) + (if) ==>Eliminating y,

2(i) =—=> 2y, —4n =

(i) => y3 -2y, + y1 =

ya=3y =2 —— (V)

(ii) + 2(iii) ==> Eliminating y,

2(iii) ==> T — 4y; + 2y, =2
(i) => ¥3-20+n =,
-13
Bty = s (V)
3 .
Y3 =31 =3 (iv)
—-13
—3ys+ » = (v)

3(v) + (iv) ==> Eliminating y;

-39
(V) —>-9y;+3y; = e
.. 3
(i) =—> y3—3y; = s
—-36 18 9
= =TT

-9 9

3T 2@ 16
In (v)



-13 -13 9, _-26, 27 _ 1
Y1—T+3J/3 _T+3(E)_ 6 T 16

Yo =0= y(to) =y(0)

[

V1= 5 = yt) =yG)
1 1
2= = }’(tz)=Y(E)

e

ys = 1¢ = (ts) =y(%)

ya= 1= y(ty) =y()
Exact solution

So a=b=0
Ye(t) = t?
t YVa Ve Error
0 0 0 0
1 1 1 0
4 1= 16 16
1 1 1 0
2 2=y 1
3 9 9 0
1 737 16 16
1 1 1 0
[MCQ]Consider the application of Gaussian Elimination method for solving the resulting
algebraic system of applying difference approximation tocetain BVP:
1 1 1
Y2~ 2y, = g'}’3_2}’2 +y = 5:1_2)’3"‘}’2 =3
Answer the following 3 questions:
1 9 1 9 1 1
Dy =0l @y=[opii] @y=[og il

Home Work

[1] Consider the boundary value problem
y'®)+y'®=21+t),0<t<1 (1)
With the conditions,

y(0)=0y(1)=1 )

Use h = %with difference approximation to y** (t) and forward formula for y*. Obtain
the resulting tridaigonal system.



[1](b) Use Gaussian Elimination method to obtain the numerical solution for the
resulting system of the previous problem. If you know that the exact solution is y(t) =
t2 then obtain the numerical error.

[2a] Consider the boundary value problem
y' () +ty'(t) —2y(t) =2

With the conditions,

y(0)=0y(1)=1
Use n=3 with difference approximation of y** (t) and central difference approximation
of y' (t). Obtain the resulting tridaigonal system.

[2b] Use Gaussian Elimination method to obtain the numerical solution for the
resulting system of the previous problem. If you know that the exact solution is y(t) =
t2 then obtain the numerical error.

[3a] Consider the boundary value problem
y"(t) + 5ty (t) — 3y(t) = 7t* + 2

With the conditions,

y(0)=0y(1)=1
Use n=3 with difference approximation to y** (t) and y* (t). Obtain the resulting
tridaigonal system.

[3b] Use Gaussian Elimination method to obtain the numerical solution for the
resulting system of the previous problem. If you know that the exact solution is y(t) =
t2 then obtain the numerical error.

Answer of [1a]



=ince h= -Jq-_ v the interve l La,b\= [ o 13 5

-é =0, :-L ol P I
‘o L-( ‘I-J{'Z_I:?/{?:ij é .:1_
J":e’ I ? = |

ol

- / ?

2 . “
wrilling (b2)a+t =<, v=1,2,3 Jy
:’ J ;3

& - .

3: + W =2 Gety) V=12, )

30 = F 3q. = ) = (‘-f)
Differena Pormu la fov jf :J’((_-.') is

= ni"\;zzﬁi*_""‘-_‘__ (6[3i72 i
(3)

backward formula
! i—Yi-1 __

Yi=" = 4yi— ¥l (6)
Inserting (5), (6) in (3),
16y —2y; +yial +4lyi —yidl =201 + ¢)
16y;,1 —32y; + 16y; 1 + 4y; — 4y;_1 = (2 + 2¢;)
16y, + (4y; — 32y;) + (16y;_1 — 4y;_1) = (2 + 2¢;)

16}’i+1 — 283’1 + 12}’i—1 =2+ Ztl ,i = 1, 2,3 (7)
1
i=1==>16y, =28y, + 12y =2+ 2t; =2+ 2+

2
i=2==>16y; — 28y, + 12y, =2+ 2+

3
i=3==>16y,~ 28y3 + 12y, =2+ 2

Y0=0,y,=1
16y, — 28y, = 2 + 2, = 2%
16y; — 28y, + 12y, =3
—28y,; + 12y, = 3%— 16

the resulting tridaigonal system is

| o1

16y2 - 28y1 = 2

2



[MCQ]The resulting algebraic system of applying difference approximation to y"’(¢) and
backward formula for y'(¢t) for the BVP:y" (t) + y'(t) = 2(1+t),0<t <1, y(0) =
0,y(1) = Lwithh == is

A13y3 + A12Y2 + A11Y1 = by, A23Y3 + Az2Y2 + A21Y1 = by, az3ys + az;y; + az;y; = bs
Answer the following 9 questions:

1) a3 =[0,16,-28,12]  (2) ay, = [0,16,—28,12] (3) ay; = [0,16,—28,12]
4) ay; =[0,16,—-28,12]  (5) ay; = [0,16,—28,12] (6) ay;, = [0,16,—28,12]
7)az; =[0,16,-28,12]  (8) az, = [0,16,—28,12] (9) az; = [0,16,—28,12]

Answer of [3a]







Answer of [3b]
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1. (fomplex Numbers o

1.0. Introduction

We assume thal the reader is familiar with the properties of the real number systein R.
We observe that in the real number system the equation x2 + 1 = 0 has no solution. This
leads to the definition of complex numbers in which equations of the form x2 4+ a = 0,

]

whereu > 0, have solutions. In this chapter we develop the basic algebraic and geometric
nroperties of the complex number system C.

1.1. Complex Numbers

Definition. A complex number z is of the form x + iy where x and y are real numbers

and i is an imaginzry unit with the property i2 = —1, x and y are called the real and
imaginary parts of z and we write x = Re z and y=Imz

If x = 0 the complex number z is called purely imaginary_ If y = 0 then z is reai.

—Iwo complex numbers are said to be equal iff they have the same real parts and the
same imaginary parts, )

Let C denote the set of all complex numbers.
Thus C = (x +iy/x, y € R}
Definition. We definc addition and multiplication in C as follows
Let zi =x +iy; and 73 = X3 +iy;.

ta=uE+x)+ily +y,)
2122 = (X132 — Y1 »2) +i(x1 3 + xay)).

Thecrem 1.1.

I!

Cis a field under addition and multiplication defined above

roof.  Obviously z; + z; and 122 €C, ’
. Since addition of real numbers is assoc
in C is also associative and commutative.
0 = 0+i0is the additive identity and the additive inverse of z = xtiyis (—x)+i(—
Hence (C, +) is an abelian group,

iative and commutative it follows that addition

¥).
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set of nor zero complex numbers. Then zj = X1 + iy) where .

Let 21,22 € C'. the
x) and y; are not simultaneously zero and 22 = X2 +in where x3 and yp ase not
simultancously zero. : ‘
We claim thatz;z2 € C*.
We have z)22 = (x1Xx2 — yiy2) +i(xpy2 +x251)-
Suppose 2122 = 0.
Then xjx2—ny2=0 ... (D
s

; and Yy +xa2n= 0
x 2 2 =
Multiplying (1) by »2 and (23 by x7 and subtracting We get yi(y3 + %) = 0.

Either y; = 0or y:+ x; =0.

Either y; = 0or (y2 =0 and x2 = 0)-

Similarly either xy = 0or (2 = 0 and x3 = 0).
Thus (x1 = 0and y =0}0r(x3=0:md_-.? =0).
zy =00rzz = O whichisa contradiction. Hence 2y 22 67
be easily verified that multplication i
Jlement.

s associative and commutative.

It can
1 +i0 € Cisthe multiplicative identity €
Letz =x +iybeanof zero complex number.
Eitherx # 0ory #0. Hence x* + y? > 0.
x—iy

1 LA
Now. =iy~ GAmG— D)

24 ¥
)+ |75
T <2+ 24y
Thus ! e C* anaitisthe multiplicative inverse of z. ) .
. mplex numbers
Furtheritcan msilybcvcnﬁcd that 2y (2 +33) = 7122 +2183 forall comp

&

Ziv T i €

i
Hence (C, +, isafield: ;
, = xo+iy2 #0, the i
Remark 1. If 2y = X1+ and 23 = X2+ 2 ¥ " t
B o b QPP Lk o3 i
2. A=— 2,42 '
2 X3+ e

x4 -

.

Complex !unbers 3

e /
Remark 2. It is important to note that thers is no order structure in the complex number
system so that we cannot compare two complex numbers.

Remark 3. The complex number a -+ ib can also be represented by the ordered pair of

I
.o

real numbers (a, b).

Exercises.

. Verify the following.

() (V2—D)—itl+V2)=2(V2~10)
-G (Y =242

Giy (1—i'=-4

(iv) (2,=-3)+-2,1)= (-1,8)

1

vy GG =Dz =)=

o0 (3 )=

o i

vil)) ——=-—i

I+
=% Lis8
(viii) []_*P—'- = f=
T—7J 1 +i

2. Showithateachof thetwonumbersz = l:&isatisﬁé.sdiee-quaﬁon 22-2742=0.

1.2. Conjugation and Modulus

Let z = x + iy be a complex number. Then th iy i

: 2 e complex number x —

conjugate of z and it is denoted by Z. £ mber x = iy is called e
The mapping f : C — C defined by f(z) = % is called the complex conjugation.

Note. 1. zisrealiffz =73. =t F ==
2 B | —w KLz Eh
3 z+3=2Rc:solhalx=ﬂ.
2
4 z—'f=2:'1mzsodmy=-—-£.
o ”

22
The FoI.Iowmg theorem is an application of the above pmpctﬁcs of con'jug:iﬁnn.
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4  Complex Anclysis

T .corem 1.2 1f « is a root of the polynomial equation ;

[ =aol" +ay " H.anne 4a,_yz+an=0 ’
4 Othen @ is also a oot of f(z) =0. )
e b e | coefficients occur 10

(i ¥ The non-real roots of a polynomial equation with rea
conjugate pairs,
Proof. Sincea isaroot of f(z) =0 we have f(a) =0

=] =0
Hence agt” +ae"T A 4 Ay + 0y

agu"” oV U +a, =0.

a@ + @@ 4o $Ag_1 470 =0
ana’ -+ A dovaieys Aty @ 4ty = 0.

(since a; 1% real).
ag(@)" + ay @" 4ot a, -y (@) +an =0
; f(?i)f=0wnm¢‘?isalsozrootoff{z]=0.

.

f
Definition, letz =x 41y L a complex aumber. “The modulus or absolute ?aluel o
- denoted by |z] is definzd by 2] = ,/;7 + y-.
(x, y) and the origin 0 = (0,0).

jemark. || represents the distance between 2 =

Theorem 1.3, (i) Jz| = 0und |z =0iffz=0

(i) 27 =2
(i) 12yzal = 2y llz2]

(iv) |i|- = ‘:-Z—I:' provided 22 ¢ 0.
12 22 -
W) lzp ok 22 = (2 fzaf? 4 2 Re (2132)

(vi) 21 - 2l e |.:||.2 4 |222 =2 Re (1172)

v (2 4 (22 ?).
Wil 12 ol bz o 2l e 202 12l
1roof, The proof Is struight forwnrd and is lcft a8 un exercise,

Solved Problems.

- )
Problem 1, ¢find the ubsolute vilue © —a

’ _ Complex Numbers 5
Solution.
’(HSFJU -2r')| _ Pk 3in —2i) =
3440 13 4 4i| '
= Y104
5
=2

Problem 2. Find the condition under which the equaiion az 4+ bz + ¢ = 0in one com plex
unknown has exactly one solution and compete that solution,

Soluticn. az+ 674+ c=10 San
Taking conjugate we have

aitbz47= 3 (2
Eliminaling 7 between (1) and (2) we get -
z(aa — bb) = bt — ac.
s z(lal? — b1} = bE - Fe.

Hence, if |u| # |5 the given equaticn has unique solution and the solution is given-by
\

7= bc—ac \
laf? — 1b]? \
2 i ’ ’ i =
Proble; : 3 ¢ <ad ¢ are two complex numbers prove that Z—':—zl = ] if either
— T 1',

1211 = Forjza] = 1. What exception must be made if |zy] =1 and I;lr|~= 1.
Solution., S'UPPOSR‘: Iz1] = 1. Hence |21 = I and 23 = |7y 12 = I.

Now |L—f2l_ | Zi—
1-215 14 =112
1 — 2
Zi(z; — 22)
— ' ’ . crad oy
[l
=
HE (N e
Similarly if [T3] = | we have 21 _Zz _ -
: 1-%in

IT1211 = 1 and |z3] = 1, then the result is true provided | — 7,25 4 0.
ie, if z3—=25122 40,
e if zp ez,
i it :l'l‘..t;.

i e S————— %
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.6 Complex Analysis

Exeicises.

I. Find the modulus of

2= +1) L 2
(i) T (i) FINTET
2. Find the conjugale of
LV H2 542% 3-4 }
r 4 R s —_—
(i) ——_I-—“—J'Jz (")5_2F 4+ 3i i

1 +i

(i) ——

(V) Z+3i
3. Provethat 2z = 33 = x2 +252.
4. Find the canesian form of the - _.uion :

2 - 4% + jz+ 40P =34

5. If z; and z3 are complex numbers show that
l2y = 22l + |21 #2287 =202 + 12l

; 2
6. Ifz is a complex number such that 7T = 1 «ompute |1 +21” + 1=zl

Answers.

Giy =i Gii)—i (v)z— 3i

5 :
. Vs G- 2. O
(4. «2#y*=1 [6).4

1.3. Inequalities .
es which will be of constant use,

¢ important inequaliti Ak £
bers the inequalities are imong

he set of complex num
plex number.

In this section we shall prove som
Since there is no onder relation in t
real numbers associated with any com

1.4. For any threc complex numbers 2. ) and 22

"oe

Theorem
0] _|g|5‘Re:£|ll
(i) —lzl<Imzs= lzl
i) |+l sl
vy oy =22l 2 llal =12l

| (Triangle incquality)

S

—

1hpiT M

Complex Nur:th#rs

Proof. Letz =x+iy. Hence |2j = V32 + y2
Now—/x2 4y <x < /22 +yland —/x2 + y2 < y < Jx2 4 y2.

—|z| < Kez < [z] and —jz] < Im z < |z| proving (i) znd (ii).

(i) fz1 + 221* = (21 + 22)(z) + 22) Gsinwz [z = 22)
= (51 +22)(C1 +722)
=z;Z)+ 132+ 2122 + 2272
=gl + (2132 +Tj22) + 122/
=17)> +2Re (2172) + |22/ (since 2+ 7 =2Re 2)
<l ? + 221520+ 121  (since Re (2)7) < !21720)

= 10112 + 22117l + l22) N
= I + 21z4l1z2] + o P (since Jzal = [520) e
= (Iz1| + |22 ~

Thus  Jz) + 221 < (U] + lz2)%
21 + 221 < l21] + Iz2l.
i Writi = =
(v) Writing z; = (21 — 22) + 22 and 23 = (z3 — z1) + 2 and using (i)

we getlzy — 221+ [z2] = |21l and |21 — 23] + [21] = |23

H [
ence |21 — 23] = |z1] — [zzl and [z} — 23] > 22| — |21] = —(Iz1] = |zal).

Hence —|z; — d z
121 = 221 < |21] = lz2l = lzy — 23] s0 that [|z)] = |22]] < Iz} — 23]

Thus |2} — 23] = [lz3] = 2301

Note. For any complex numbers 2y, z3, ... , zy we have
l21vk 22 + -+ 4 24l < 17y + Jzal + - + |20

Exercise.

]_ -
If 2y and z3 are two complex numbers show that
G Hzil = lz2ll < 12y + 22l < 1250+ 1z

)l = lz2ll < |z = 23l < J24] + |22l

g
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_8 Complex Analy:=is

1.4. Square Root

::I:;:cﬂlon we descnibe an explicit method of finding the square root of a complex

Leta +ibbe a givea Oﬂrnplt.x number. Let x < iy be a square root of a + ib.
Then (x--1y)° = a +ib.

s Py 4 2ixy=a+ib.

s 2-yl=¢ -
2xy =6 . ()
Hence (x4 y9)2=(x? -y} +4x2 y? = a? + 17

- s R2ayi=Jalip e 3)

From (I) and (3) we get
1 1
7o ¥ 2 ] 2 2
x —2(a+v'a +b ]a.ncly —2( a+va +b |
12 I “qi/2
x=:l:[-]-(a +Jaz+b1)] andy=.+..[5(—a+\faz+b1)]] oo (8

nmvfmm(?,wcnmcclhaufbpﬂ xandymustbcol’samcs:gr. and if b < 0, x

and y must be of opposite signs.
Thus choosing appropriate signs for x and y we get two
If & = O then z is real and we get Iwo square roots as
+i/=aprovideda <0.

square roots of @ + ib.
4+ /a provided a > 0 and

Solved problem.

Problem 1. Find the square roots of | +i.
Solution. Let x + iy be a square root of 1 4. Then (x + iy)? =1+

Hence xz—y2=l e (D)
and 2y =1 - s (2)
- 2.2 _ (o2 y2)2 4 4x%y2
Now (x4 y%)° = (x*=y")" +4x%y
= 2. (Using (1) and )
' &)

.rl+yl=~/i ;

[- - ol ot Sl

Compiex Numbers 9

From (1) and (3) we get
—I-(l+vr_)andy '—-(-1+\/’_)

I\J

172
r=i[§(! -!--.5] ard y =+ [—{- i+ .,]

From (2) we notice that x and y are of same sign. Hence the two square roots of 1 +i

112

I - —

are given by | =(1 + v2) +i|=(—14++2)
= 2 2

and — [éu + Jf)]”z —i[%(-—l +Ji)]m.‘

1.5. Geometrical Representation of Complex Numbers

We can represent any complex number x + iy by a point (x, ) in R x R. The plane
R x R representing the complex numbers in this way is called the complex plane.

The x-axis is referred to as the real axis and the y - axis is referred to as the imaginary
axis. With this representation modulus of z represents the distance between z and the
origin.

The complex number z = « + iy can also be represented by the vector OP where

= (Xx. ¥).

Polar form of a complex number -

Consider any non zero complex number z = x + iy.
Lei (r, &) denote the polar coordinates of the point (x, y).

Hence x = rcosé and y = rsin8.
z=r(cos@ +isinf).

We notice that r = |z] = Jm which is the magnitude of the complex numb:r and
.0 is called the amplitude or argument of z and is denoted by arg z or amp z.

We note that the value of arg z is not unique. If § = arg z then 8 + 21 where n

is any integer is also # value of arg z. The value of arg z lying in the range (=, xr] is
called the principal value of arg z.

‘Theorem 1.5. If z and z; are m)' two non zero complex numbers then

(i) arg ..1 = nrg 3 i ' s
(i) arg l ] =arg 2 —arg 23.
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Proof. (i) Let 2y = ry(coslly +isinby).
Z1=ri(coséy —isin®))
' = ry[cos(—8y) + i sin(=H)).
Hencearg T) = —8, = - arg 7;
(i) Letzy = ri(cos#; +isinf)) and 22 = ra(cos # - i sin t2)
" Now zy23 = ryra(cos#ly + i sin0i)(cost + i sini 62)
= ryral(cos 0) cos B, — sinf) sinih) + i(sin 6y cost + €OS B 5in02)]

= ryrafcost) + 82) + i sin(d) + )]

=l arg zj2 =6 +th=2rg 4 + arg za.

e ) ry(cosf +isin_6‘£
L 73 r(cosfy+isinth) . .
[rl (crs 8 + i 5in0))(cos by —isinfy)
i

(cosfh + i sinfy)(cos6r — i sinfh)

ry ) tcos# +isin ¢)[cos(—6) + i sin(—=0)]
[EI cos2 6 + sin® )

= [’_‘] [cos(8) — B2) + i sin(@) — 623] by (ib)-
n

Z
o e [..'l:g, —th.
2

=arg 7 —arg 2.

non zero complex numbers represented by the points

23 i sented by the
nthesumz; +2215 represente
e nstructed with OP and OQ as

Jaw for vector addition,

Remark 1. Let 7 and 22 be two

P and Q respectively in the comp
point R which is the fourth vertex of the parallelogram co!

djacent sides. This isa consequence of the parallelogram ’
‘ i GinBryandizy = 0sﬂz+isiu91)bctwononzem
: 2, Let 2y = rilcos® +1si0 8;)and 22 = n2(c i oo
::t::;::t :u :l;cbcn: rcpnl.‘scmcd by the points P and n% rc;g;c:;;:gl 1:_ g;c ;{::(E:: 'mppoi i
72 has lus ryrz and u - Hen

omplex number 2122 has mpdult 2 ‘ ik

1::: trt,:ccminz the complex number 212215 obumcd as f_cl_lows. Rotate the line scg
or plhrough an angle 8 in the anticlockwise direction giving

the ray we choose R such that OR =nrn.

i si 5 com|
{ = = ricost! +18ID #) be any non Zero
(easnf! + i sinaf).

plex number and n be any
Theorer: .6. Le ;
integer. Then 2" =7

the line segment OP'. Oz _

e T T

Complex Niumbers 11

Prool. We first prl‘ ve this result for pesitive integers by induction on n.
The result is obviously true whenn = 1. o
Suppoze the rasult is trae (orv = m.

Hence 2" = r"(cos m8 + i sinm#) .

Now =™+l — M7 — " (cosmB + i sinmb)r(cosd + i sir 0)

= P *ces(m + 100 + i sin(m + 1)0).
Hence the result is true forn = m + 1.
Hence 2" = r"(cos @ + i sin nf) for ull positive integers 2.

The result is obviously true if n = 0.

Now, z7'= l = ! 3
z  r(cosf +isin@)
_ 1 cosd —isin@
r{cos# +isin@)(cosf® —icinf)

= r~'[cos(—8) + i sin(- 9)

.~ The result is true for n = —1. Hence it follows that the result is true for all negative
integers.

Hence " = r"(cosn@ + i sinn@) for all n € Z.
Corollary. (De-Movire’s theorem)
(cos8 + isin6)" = cosn@ +isinnb.

Solved Problem.

Troblem 1. For any three distinct complex numbers z, a, b the principal value of

. T—a .
arg oy S ] represents the angle between the line segment joining Z and a and the

iine segment juining z and b, taken in the appropriate sense.

SO_IUﬁpn. Let A, B. P be the points in the complex plane representing the complex
numbérsa, b, : respectively. Then the complex number z —a, = — b are represented by

e O TN
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12 Comples Analysis

the vectors AP and BP respe=tively. Hence the principz! value of arg l l B""c“
the angle between the line segment AP and B P taken in the appropriate sense.

Exercises .

I. Find one value of arg z, when

M g=—_ ) z=i i) z = -i)®
T (i) z=i (i) z=(V3-1)

Answers..

. 2m

) = (ip — (i) —

1.6.  n"™ Roots of Complex Numbers

De-Moivre's theorem can be used to calculate the #'% roots of any non zero complex

number.

Theorem 1.7. Letn be positive integer. Then any non zero complex number has n d?stinct

n'" roots.

Proof. Lelz = r(cos# +isinf) beanon zero complex number.

Let w = plcos ¢ + i sin p) be an n'" root of z.

Then o' = 2.

p"(cosng + i sinng) = rlcos8 +isinf).
p" =rand ng =6 + 2kx where k € Z.

g+%—whcmkez.
n

L S 1) will give
y arc given by

- p=r”"ﬂ.ﬂd¢=
However, only the values k = 0. 1, 2 different values of w.

Hence = has n distinct ' roots and the

2 2km _-
mxr”"[cos ?- JJT]+'5m[ + — ]_whcrc k=0, 1. 2 1.

-

1
The n'M roots of unity are given by

Corollary. _
k= [-——] wheie k=0, 1, 2.-"----5-1

cos

e ————— e

Complex Numbers 13

Prool. Whenz = 1 wehaver =; ! and 2 = 0. Hence the re,lsull follows. TS

3

Remarkl Letw = cosz-l + ISII‘I — Thcn the n a'M roots of unity are given by -
n

1, w, o ety ol

Remark 2. If = is any non zero complex number and zg is any onc n'M root of z then the

set of 211" roots of z are given by

- 0. ZoW. I0W 4 cee--- ., QW
Remark 3. Since |, w, el e "~ are the roots of the equation 2" = | we have
' — land | +‘_'J+w2 + et ™' =0
Exercises.

I. Findall the valuesof i) (—)'/®  @i) (20)"/* and exhibit them geometri-

cally.
1 V3 ol
2. Find2ilthe values of IE + = . Hence prove that the product of the values
is .
Answers. G) i, &B-iy2  Gi) £U+D

1.7. Circles and Straight Lines
Equation of circles and straight lines in the complex plane can be expressed in terms of
zand Z.
b (l}enenlal equation of circles. Equation of the circle with centre @ and radius r is given
ylz—al=r. :
(i) &-a)@-a@)=r.

(ie) zZ—az—az+ada—r?=0.

This equation is of the form zZ + @z + aZ + B = 0 where g is a real numbcr
Further any equation of the above form can be rewritten as
2z +a|® = a@ — B and hence represents a circle provided a& — g > 0.

It represents a circle with centre —a and radius Joa — B
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Thus the general €qualion of a circle is given by

T+artai4p =0where Sisrealandad — £ > 0.
G'cncral cquation of straight lines. To find the general cquation of the straight line
P-'I_Shmg through a and & we note that arg [ =2 ] represents the angle between the lines
Jloir:u:g;r 10 zana b to z where z is uny pofnfoﬁ the lir = joining @ and b. (reter problem

5 . . =u
. 12, a, b arz collinear then arg Ii_b =0or .
=

i—a -

-0 z=-b )’

. t=—a,
s o is 1eal. Hence

4]

Z—a
«—b

@—5)z—(a—b)i+(ab—ab)=0.

—a
7]

t4]

S @=B)z—(a—h)Z+2ilm(ab)=0.(sinccz —7=2iImz)
. i@ —b)z—i(a - b)7 —21Im (ab) =0.
This equatisn isof the ferm@ z+ o 74 p = 0 where o 4 0 and f is real.

Further any equation of the above form represents a straight line. This can be easily
secx by changing the above equation into cartcsian form.

.. The goac.ai wjuation of a straight line is given by
Tz4+aI+ B =0 where o+¢0and}p isreal
Theorem 1.8. Equation of the line joining a and b is
@ —b)z + (b — @)T + (ah —ab) = 0.

Theorem 1.9. 1fa and b are two distinct complex numbers where b ‘ 0, then the cquatiPn i
z = a+1b where  is a real parameter represents a straight line passing through the point |
a and pareilel io b. . :

Proof, Let z be any puint on the line passing through a and parallel to .
The vectors represented by z — a and b are parallel. f
Hence z — a = b for some real number r. '

Hence z = a + b, which is the equation of the required straight line

Definition. Two points P and Q are called reflection points for a given struight line [
ifT 1 is the perpendicular bisector of the segment P Q.

Comples Humbers 15

Theorem 1.10. Two points zj and z3 are reflection points for the line

Tr4ai+B=0ilGzy+aTa+p=0.

Proof. Letz; and z2 be reflection peints for the suraight line

Frtai+f=0. e )

For any point z on the line we have |z — z1| = Iz — z3|.
2
lz -zl =lz -2l
1-2)E-T)=(z-2)zZ-22)

( W -+ =)+ 217 — 172 =0 ... )

Since the equation is true for any point z on the given line it may be regarded as the

equation of the given line. : .

*. From (1) and (2) we get

3 a B

=k (say)

22— YL — 372

=1
Sooa=kizz—21); @ =k (T — %) and B = k(z)Z) — 2222)-

az+azp+ B=kln1(@2 - 7)) + 7222 — 1) + (2171 = 2272)
=0. I

Ccaversely, suppose @2y +a Ty + B =0. .- 3)
Subtracting (3) from (1) we geta(z — 21) + @(Z — 73) = 0.
(ie)a(z —zy) = —aT=T)).

@z =z = [ellT - 2l

le=z11=Z =%l = |Z=2z21 = |z - 22| for any point z on the givea line.

-

2y and z3 are reflection points for the line (1).

UFﬁnilion. Two points P and Q are said to be inverse points with respect to a circle
With centre O and radius r if Q lies on the ray OP and OP.0Q = r?,

Theorem 1.11. 2; and 2; are inverse points with respect to a circle

:E-iPE:-}-trE-!-ﬁ:OilT:]Ez-!-a'h+afz+ﬁ=0.

. — ——

- —
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I+TztaIi4+g=0.

16 Comp.’c.r Analysis

e (D)

R
L___T (1) can be rewritten as |z + a2 = a & — g.
’ > é The centre of the zircle is —a and radius is J@a =B

ince z i
L 21 and z3 are inverse points with respect 10 (1) we have
- arg (21 + @) = arg (22 + a) vee A2

and |z; + =aF—
o 21 +allzz tel=2T -8 ... (3)
B arg (z) +@)(za +a)=arg (z) +a) + arz (z3 + @)
=arg (z) +a) —arg (z2 + a)
4 :_I =0(by 2) —sizmiizsmpnresa
| .
o 4 e
. {2y +a)(zz + o) is a positive real number. - '

Hence using (3) we get (z1 +a)(zz +a) =a @ — B.

S Bk +aiz+B=0

|
b
-

Converse can be similaily proved.

Note 1. Let 2. z3, z3 and z4 be four distinct points which are either con-cyclic or
(=) — 2 = ; ; . -
fa1=5)(zs = 2n) is either 0 or 7 depending on the relative positions

collinear. Then arg
(21 —z4)(z2 — z3)

=

——

of the points.

(z1 —23)(z2 —z4) .
T

=

Note 2. The equation
N pri+a@z+ai+p=20 . e,
o where p and £ are real and @ @ — p f# = 0 can be taken as the joint cquation of the
tamily of circles and straight linc.

When p ¢ 0 it represents a circle.

When p = 0 it represents a straight linc.

Iurther =y and 23 are inverse points or reflection points w.r. (1) il

piyIaday +alr+f =)

Complex Numbers 17

Solved problems |

z —-— zl . -
Problem 1. Prove that the equation I — ) where A is a nopnegalive parameter
=3
rof

|
les such that zj and 73 are inverse points for every membe

represents a family of cire
e famnily.

Solution. Z_f] A. )
< — 32
23] (i— z'] 2
[’—zz] lE -T‘_; i
= () —A 1z F +{ml -z + (z2A° —21)T+ @ZTT — A 25) =0 m
.‘.(l)rcpresenlsaéirclc when i # 1. 1 L
i

Using theorem 1.11. Note 2, it can be verified that z; and z3 are inverse points w.r.t. ().

When X = 1 the given equation represents a straight line which is the pcrpendlcular
bisector of the Tine segment joining z) and 22.

Clearly z ard z3 are reflection points for this line.

T o

Problem 2. Prove that arg I 5

family of circles every member of which passes through a and b.
fz—a

= p where  is a real parameter, represents a

Solution. For any fixed value u, arg = p is the locus of a point z such that

the angle between the lines joining ato zand bto z is p.

Clearly this locus is the arc of a circle passing through a and b. The remaining part of the
-a
5 ] = pt + x. Hence the result follows.

circle is represented by the equation arg

z-—

Exercises:

1. Show that the inverse point of any point & with respect to the unit circel |z| = 1

is ] ks
a
2. Find the inverse point of —i with respect to the circle
223+ =Nz —(i+1)Z=0

3. Prove that the equation of the circle passing through three points z), 22, 23 I‘*I
given by

L ——
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e v G- -2z - = ‘ ‘

B t (_z':_z;]_(f{:"z": = g—-ﬂ’—&j—-—‘_z—) ' s vefinition. Let S € C. Then S is called 1 bounded set if there exists  real number &

v i C-2@-m = 1 such that jz| <k forall z € S.
B (Hint: 1f 2 i any poj : =2 -
L . < IS LY T i e e _ & - .
L, o ¥ PR Ihe Cice thei '('__T'}T,_:‘—:-z-) is purely real, Definition. “Let S C C. Then S is called a connected set if every pair of pointsin S

‘ ¥l the equation of the circle passing thrt;ugh llhe ;;)‘ointi'% i1 4  can be joined by a polygon whick: lies in S.

Answers: 2. 2 4 l,- Definition. A nonempty oﬁcn connected subset of C is called a region in C.

5+s3 42234+ = z—(G+1)i=0" )
Example 1. Let 5 = |z/|z =2 +i| < 1.

1.8. i i :
™ Regions in the Complex Plane (ie) D is the set of all complex numbers . y

satisfying |z —(2—0)| < I.
Clearly D represents the closed disc with

We have seen that the distance

. - . .
Lelween two points 2y and z3 in the complex plane is
|2y = 23|. Hence the ’

set C of complex numbers becomes a metric space with the metric

e centre 2 — i and radius 1. !
i  defined by di(z1. 29)= {21:522): Therefore we can talk about neighbourhood, interior Clearly D is a.connected and boTided et We=" —
potnt, open set, closed ses, limir point, connected set elc in the complex plane. Gl vl

i We now recall the relevant concepts with particular ) oTbsen;e th'a ‘ lielpfo mm:'.":h l = .Lhc C"Z” }:l:
reference to the complex plane. |z = (2 —i)] = 1 are not interior points of D.

r_i Hence D is not open. Hencer D is not a

L) Definition.  Let z9 be any complex number. Let & be region. ’ '

* a positive real number. Then the set of all points z sat- > ) . :
isfying |z — zy] < ¢ is called a neighbeurhood of zg : Example2. Let D = (z/[ Im z] > 1}

and is represented by Ne(2g) or S (zg, €).
Thus Ne(zg) = (z/]z — zg] < &).

’

letz=x +.|'_v.
D= [zfiyl > 1)
={z/y>1"or y<-—1}

We observe that |z — zg| < € represents the interior

I 7} of the circle with centre zg and radius e. ={z/y > 1jUzfy < —1}. k\\ \\
|| ' - . . RN
i Note. |z — zg| < < represents the set of points on and : ;.t.l_iarlybf :dl:c union of two half planes and
inside the circle with centre zg and radius & and is called the closed circular disc with : e i shown in the figure. .
' centre =g and radius . - Obviously if z) is any complex number with
ﬂ ﬂ. SEn Imz| > landz; is any complex number with
‘{ " Definition. Let5 C C.Let zg € §. Then zg is said to be an interior point of § if therz : Imz3 < =1 then 2) and z3 can not bcjoir:cd

exixts a neighbourhood Ng(zq) such that Ne(zg) € S- ; by a polygon entirely lying in D. Hence D is

= 5 4 I, o not connectad,
S is called an open set if every point of § is an interior poinz of S. <d

o |

. . . . e I{ e, -
Definition. L=t § € C. Let zg € C. Then zg is called a limit point 0. S if every e Dt ot 8 vegion.
neighbourhood of zq contains infinitely many points of 5. o
Tn S is called a closed set if it contains all its limit points. : o AR

Remark. It cun be verified that a set S is closed iff its complement C — 5 is open. .-

Example 3. Let D = (z/Re 2 > 1). Then D
1S a region in C, : B

; D

- e
N Definition. Let S € C. Let zg € C. Then zp is called nbound:nry point ?fSif:d isad.
—4 " limit point of both § and € — S. Thus ¢ is a boundary point of § |I:f¢ycry ncighbourhood -
of _y contains infinitely many paints of S and infinitely many poims of C — §.

Here Disthe hﬂlf plane as shown in the figure.

£

Y o I .

R L s
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Example 4. D = '
. = [z/0 - o g
region in C. (z/0 < arg T < wf4)isa

Example 5,
Leat D= (2/0 <arg = < /4 and |z]| > 1)

D is as shown in the figure. Clearly D is an
unbounded region in C. .

Example6. Let D= (z/l <|z] <2).

D is the region bounded by the circles |z] = 1
and |z|] = 2. Sucharegioniscalledanannulus
or annular region. 5

xercices,

1. For efach of the following subsets of C sketch the setand det e vinciheritis
aregion. . :
@lz—-2+il=<1
(c)imz > 1
(€)|z21>0,0<arg.z <m/4
Nlz—-4| = Jz|
' (2)0 < |z — zo] < & whiere zo is a fixed point and  is a positive number.” "
2. Sketh each of the following subsets of C determined by the given conditions.
(@) z=1+i=1 (b) |z 4il =3
@) lz—=f]=|z+i| @ReG=i)=2
(¢c)Rez=0
(g)Imz=0
- Catt 7 5
M <zl €2 i, 0)‘2- <jz=1] < 5

(b) 122+ 3| > 4
@imz|>1"

(hRez+Imz=0

" 3, Letr bea positive constunt and let 2zg be a fixed complex number. Show l(hnlhlhe‘ q

equation of the circle with centre at =2q and rudius r may be written us

" (DIRezl+mzl=1 N

|

-t 5
s Jl':' 4 et
B -

.._...._..._V_..,.q,_...

Complex Nwnbers 2.

|zI> +2 Re @ 2) + lzol2 = r?.

! .
4. 1f the points z), 22, 23 are the vertices of an equilateral triangle prove that
2+ +4=nnt+astan =

-4 ! e
5.  fzisa variable point and Re [ zi_—z;- ] = 0 prove that the locus of z 15 2 circle.

1.9. The Extended Complex Plane

The function w = 1 /z defines a one-one mapping of the complex plane onto itself with
1wo notable exceptions. The point z = 0 has no image and the point w = O has no
pre-image. To rectify this situation we extend the complex plane by adding_ a symb?l oo
called the point at infinity. Its connection with the cther complex numbers is established

by defining

(i) a+oé=oo+a=ooforallaECU[co]-_ : :
(ii) aco=o00a=ooforalla € C — (0} and fora = oo.

(i) — =0foralla € C— {0].
&
(iv) -6=ooforallaeC—[0].

C U [00) is called the extended complex plane.

We assurie that in the extended complex plane every straight line passes through oo.
The extended complex plane can be represented by points on a sphere. In the three
dimensional Euclidean space with coordinates (x, y, z), we identify the x-y plane with

the complex plane.
Let S denote the unit sphere with centre origin

given by the equation 4yt + =1
Let N =(0. 0. 1); P=(x, y, 0). }'I’

Let the line N P intersect the sphere S again at 0. Then Q is called the steriographic
projection of 2 on the sphere and is taken as the point representing the complex number
I = x +iy. !nthis way every point on the sphere except N represents a unique complex
number. We assign the point N 19 represent 0o. Thus we get a one-one correspondence
beétween the points on the sphere § and the extended complex plane.

“Solved problems.* . | X !
Problem 1. Find the complex number represcnted by the given point @ =(x. ;. X)) €S
where § is the unit sphere with centre origin.
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.22 Complex Analysic

Solution. Let N = 0,0, 1) and.Q =
The equation of the line Joining N and Q(;;lé:rilnxg))r
2otz
X ox3 I=x'
To find the pqint'ol' inlersection P :

i . (x, y,0) of this line with the x-y plane, we put

; 1 ]
Hencez = x +iy = =% (x) 4+ ix3).

This gives the complex number represented by Q = (xy, x7, X3).
I
Problem 2. Find the point Q = (x). x3, x3) on the sphere S that represents the complex
number z = x + iy.
Solution. Let P = (x, y,0)and N = (0,0, 1). - &
Since N. P and @ are collinear, as in problem 1, we have

=X iy = ] (x) +ix) e (D

=T
i :|z+122
T (1=x3)?
l—xg
= -n)?
I +x3
=

|22

(since .xll +x§ + x§ =1).

-|:__|

122+

Hence x3 =

2+1], < - 1
Mso.from(l)x|=x(!—x3)=-7_' ——__Izz+.l

1+3Z
T+

z—1

Similarly »2 = TR+ TS

¢ 2 is represented by the point @ = (x1, x2,.x3) where
2 I
;=% . . lkeIP=1

» = 0 x:‘-‘" L
e T L) 2R

Thus the complex numbe
) 1+

E R+

‘ta

-

1
!

Complex Numbers 23

f

Exercises. '\ ;

1. Find the points on the sphere S corresponding to the complex numlic“rs

Q)i Giy =i ) 1 i =i (M 2— 3i.

' 1 |
= poi — (109
2. Find the complex numbers represented hy the points (-./'2-' i 'J)
and (0,1,0). -
Answers..
f22 1N, 2 21 . 3_59_)

1. (i) (0.1,6) (ii) (0, =1, 0) (ii1) (3, 3. 5) (iv) 3 ~3'3 7733

(1+1) ;
2. —; ki

V2

AAEIRERREE

Scanned with CamScanner



)

2. Analytic Functions

2.0. Introduction

:!nct::: c;:aptcr.we study in dc!.nil the concepts u_af limit and continuity for functions of

plex var!able. We also introduce the notion of differentizbility for functions of
a c?mplez variable and see how the derivative of a complex function of one complex '
vanub_'le scr.r.eli mes tehaves like the derivative of a real function of one real variable znd
othertimes is comparable to the partial derivatives of a real function of two variables.

2.1. Functions of a Complex Variable

We use the letters z and w 1o denote complex variables. Thus to denote a complex valued
function of a complex variable we use the notation w = f(2). Throughout this chapter
we shall consider functions whose domain of definition i< a region of the complex plane.

The function w = iz + 3 is defined in the entire complex plane.

is defined at 21l points of the complex plane except al

The function v = -
2=+l

= =kf

The function w = |z| is defined in the entire complex plane and this is a real valued
function of the complex variable z. -

WWag.ajy ===+ , a,, are complex constants the function P(z) = ap+aiz+---+an ™
is defined in the entirc complex plane and is called a polynomial in Z.

P2 . . ” .
If P(2) and Q(z) are polynomials the quotient Q((z)] is called a rational function and

it is defined for all z with Q(2) # 0. _
The function f(2) = A+ y“ +i(x?+ yz) is defined over the entire complex plane.

In general if u(x, y)and u(x, y)arerea !
on a region § of the complex plane then f(z) = n(x, ¥)+iv
function defined on S.

Conversely each complex function w = f(2) can be putin the form

w= f(z2)=ulx, i+ iv(x.y)
where « and v are real valued functions of the real variables x and y.
u(x, y) iscalled the real part and v(x, y)is
S
Forexample, f(2) =2
and vix, y) = 2vy.

1 valued functions of two varjahlcs_bom defined
(x.y)}sa complex valued

. '(J Lip? = =) 2y 4 i(2xy) so that ulx. y) = Aty

oy o

called the imaginary part of the function

Analytic Fuyctions - 25

_ Thus a complex function w -={f{z) can be viewed as a fu_hction bf-lhc compnlex
variable z or as a function cf two real variables x and y. -'

To have a geomelric representation’ :

of the function w = f(z) itiscon; e
venient o draw separate complex I :
plancs for the variabhs z and @
so that corresponding to each point I
z=x +iyofthe z-planc there is &~ —

point w = u + iv in the w-plane. z-plane i
Exercises. _
1. Express each of the following functions in the form u(xl, y)+iv(x, y)
M w=2z () w=23+1 G} w= =

(iv) w=7% (v) w=z+% (vi) w=12%
Answers

Gi) @&x2-2y2+1)—i(4xy)

I _ iy @) E x?+.r+y2 IT)'
2 5t RS x+D2+y2 (x+ 1) +y?
x(x24y¢+1) _ylx+y-—1) - 2

ot “_2 +1 7 +)'2 (v x4+ yl

() (2 =3xy?) +i(3x%y — y)

(iii)

™

2.2. Limits

Letw = f()bea function defined in some région containing a point zg except perhaps
at the point zg. It may happen that as z approaches zg the value f(z) of the function is
arbitrarily close to a complex number I. Then we say that the limit of the function f(z) as
z upproaches g is I This idea is expressed in a precise form in the following definition.

Definition. A function w = f(z) is said to have the limit [ as z tends to zg if given

e Ot!mc:x.is:s_s > Osuchthat0 < |z — 29| < & = |f(z) —!| < &. In this case we
write Iim f(z) =1
=3 -
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26 Complex Analysis

Gmrncu-ica:ly "he definition states that

there exi ndi : .
the disclls:s...an ©opea disc With centre zg and radius § such that for every point z( # 2zg) in
2ol < 8 the image w = f(2) lies in the disc [ — 1] < z.

f mark 1. The above definition does ot give any method of determiing the limit/ d

it uni fuovides Bt 4 s
1Y Piovides a nezns of testing whothar { is the imitof f(Jacz -> 0.

Remark 2. The condition 0 < |z—zo| < 5 excludes the point z = 2o from consideration.
Hence the definition of limit employs only values of z in some disc [z — zg| < & other
m.'m 20- Therefore the value of f(z) at 2o is immaterial and in fact to consider the limit
Of f(z)as z — z4, f(z) nced not even be defined at zg. Evenif f(zg) is defined itis not
necessary that zl_ip;o_f(;_) = f(z0).

Le.mma. When the limit of 2 function S (2) exists as z tends to zg then the limit has a
unique value,
Proof. Suppose that Jim f(z) has two values !} and .
=30
Then given £ > 0 there exists §; and 83 > 0 such that

O<|z—2zl<d = 1f(z)-lil<e/2 and
O<lz—zgl<dh=|f(d—-h|<g/2. _ ) -

Now let 8 = min{é,, 83}.
Thenif0 < |z — z9] < § wehave .
dh=hl=1h) — f@)+ f2) - bl
2@ =hl+1f(D)—hl
T <gf24e/2=c¢

(using triangle ir;cquality)

Since £ > 0 is arbitrary |} — /2] = Oso that{) = I5.

s 22 ifzei
Example 1. Let f(2) = 0 ifz=i _
As z approaches i, f(2) approaches i = —1. Hence we expect hat Yim J(z) = .
To prove that we must show that given &£ > 0 there exists § > 0 such that
O<z—ij<d=|22+1] <& .
Now, |22 + 1l = Iz +i)z =)

)

= |z +illz =il esl(

A

Note that if we can find 2 8 > 0 satsifying the requirements of the definition lher_i\ln.-c
can choose another 8 < 1 satisfying the requirements of the definition.

given auy open disc with centre ! and radius e -

e R A

o b | =

Analytic Fuxctions 27

a0

Nowﬂ-cl;(-—il-:I=>|z+r'|=lz—"l'+21'|
: <lz—il+ 121
{I+2=3._' =
sole+i<3 -
Using this in (1) we obtain 0 < |z —i] < 1. _
' = |22+ 1] <3lz—i|
} o _
Henocifwechoosc6=mmll.§lwc:gel
O<lz—il<8=[22+1] <=

o lim (@) = -1

i d 4

Pauplel  lm Lt wa

iF m =4.

w s 7=2
2 _

Let f(z) = - :.Achoc f(2) is not defined at z = 2 and when z # 2 we have
z— : :

(z+2)(z—-2) _
f(Z)—?——

s f@-4=]z+2—4|=|z—-2jwhenz#2-

z+2.

Now givern € > 0, we choose § = ¢.
ThenO < |z—2|<é= |f(z) — 4] <e.
2 1 72)=4 .

e fe)

* Remark. For a function of one real variable there are only two directions along which
a point x can travel and tend to a point xg. Hence we distinguish between left limit and
right limit at a point xg and the limit at xg exists if and only if the left and right limit at
Xg exist and are equal.

For functions of a complex variable infinitely many modes of approaches are possible
for a point z tc terd to a point zq. If a function f(z) spproaches to two different values
as z tends to zg along two different paths then tl_'me f(z) does not exisL

E.:ng_mple 3. The function f(z) = i does not have a limit as z — 0.

<

]
T xiy

The i e f@)=

-

NNl

)
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28 Complex Analysis ?

Suopose z — Oalonglhcpalhy=m.r .

=

x+imx " Tyim =510
Hence if ; — Oalong the path y = . f(z) tends 1o b
1

Along this path f(z) = X=imx |_im

= ™ which is different for

B }iencc S(2) does not have a limitas z — 0.

2.2
Example 4, Let PLE ; :
_ P J) x+y1)3.z+0.1hen1(z)dm not have a limit as z — 0.
Along the parabola y? = mx we have f(z) = i =

Ct+mz)?  (l4+mp

Henca i .f z — O along the parabola y2 = mx., f(z} t2nds .
on m.

Hence f(2) ducs not have aljmitas z — 0,

& ¥ which depends

Exercises.

1. Use the definition of limit tc prove the following
(a) lin:, c=cwherecis any constant.

(b) Jim (az+b) =azg+ b

© hrn z1 =z
<+

(d) "lm Z — ED
T—+2g

(e) lim Rez=Reyq.

. @ f@)=

Y
= . z40
®) f(2) 16+y2 z

)
(c) f[z)“xz+y1- Z*D-

we now formulate the definition of lim f(r.) =1 whcre m or { is infinite,

Deﬂnlﬂon. We say lir ln-n f@ =i .r gwen s >0 therc exists a number m > Osuch
!hntlzl > m= |f(z)—ll <&

ﬂ

Analytic Functions 29
If .
We say that Ilm f(@) = ool f for given n > 0 there exists § > 0 such that

o4|z—zo|¢5=»lf(zllzn . ] .
We say that lim f(z) = 00 if for given m > O there exists m >0 such that
i =00

Iz} > m = | f(2)| > .

2.3. Theorems on Limit

We state without proof the following theorem on the limits of sum, product and quotient
of two functions. The proof is analogus to that cf real functions.

Theorem 2.1. Let f arnd g betwo functi_ons whose limits at zp exis'.
i D= d i =
Let :l_'.",}of(*) I an :_l-rrl:og(z) -
Then () [lim [f(2)+ g =1'+m
(i) Jim f(@)g(2) =1m
f(2)

(i) Jim == = ’ — provided m # 0.
: —wg(z) m

Theorem 2.2.
@) If lim f(z) =Ithen lim f{)=1. -
I—+Ip I—+ig; :
(i) If Zl_i'rngo f(z) =1, then zlj.mm 1f (2 =l
(iii) lim f(z)=1iff lim Re f(z) =Reland lim Im f(z) = Im(l)
=0 I—2g —+2

Prool. (i) Let € "> 0 be given. Then there exists § > O such l.hat
O<lz—z|<é=2|f() - <e.

Now /(D) =1l =[f@ =TI=1f) 1|
Hence 0 < |z — 29| < & = [f(2) —I| < e sothat zl-i-r?nm =1L

) 1) =1 = |1 f(2) = 1] and hence
O<|z—z0l <& =1f(D =Vl <e.

lim 1£(2)] = Il.
I

(i) Let lim f(2)]l=1.
=*Ip
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30 Comples Analysis

s ) e
ince Re f(z) = ;‘;!ﬂtJ + f(2)) we have
lim R -l =
il € fl2) 3 ['l_l.mm.ﬁ(:)+ll_i.rr._nn)'t:l]
.
e E“ + 1)
= Rel,

Similarly dim Im ft.z]'u It
i~z '

“Conversely, | i :
P y. let r'-LTe Re f(2) = Re ! and It ._u_n:E Im f(2) = Im[. Since
2) = Re f(z) 4 i Im f{z) it fcllows thai lim f(z) = Rel4{Imil={
=2 '

Renai k. ws | [
(T I\ follows immediately from the definition of limit that lim z = 29 and
1Zg

!'—Tzlot = ¢ where ¢ is any constant.
Hence using (i) and (ii)
of theorem 2.1 we see that for any ‘homi
PO =agtaiz+ay? 4. 4 a,” lim F(2) = Plzo). > el
129

Exercises.

I. Evaluate the following limits using theorems 2.1 and 2.2

@ lim (2 +iy?)? Gy him (5 4iQi+ )
< FEal B

Gii)  tim ‘(:3 —SEeuy G b R4

==+ :—o—!im

: T4l 1
" ‘ .
(v) ‘_n.rm =1 {v1) :l-f-'?e ;; 20 ¢ 0.
Answers.
(i) -—16 (i) 14i () S=N
2 23— 2i4+ 2
(iv) _u!.,._"-_' v) =!I (vi) i
51 - 2i) 3

24. Continuous Functions

Definltlon. Let £ be a complex valued function definad on & region D of the complex
planc. Let g € D. Then f is said to be continuous at 2 il lim f(z) = f(zg).
) ]

e e— — ——

Analytic Fuactions 31

‘n'n-}'ismllmu:gtl‘;ivcnr > :'umnimaa > 0 such that
|2 — 20l < &= 1f(2) = [(20)| < ¢

[ is said 10 be continuous in D if it is contin

The following are immediate conmequences ©
given in theorems 2.1 and 2.2.
If [ and g are continuous 3! :g(;h:nf+g. fgund 7 arccontinuous
o)’

wous at each pointof D.
[ the corresponding results on limits

Theorem 23, (i) :
st zp and [/ g is continuous 3t 2p il gl
(i) 11 £ is contiruous at 2g Ihen |1 is also continuous 3t Zg.

(iii) I f is continuous at zg iffRe fand Im [ o1t cominuout Bt .
(iv) An: polynomial P(2) is continuus at each poatd of the compiea plune and any
o) i+ continuous at 31l points where Q) ¢ 0.

raticnal functin -0—{:7'

2.5. DifTerentiability

Definition.  Let [ be 3 complex function defined in a region D and Je1 2 € D.Then f
M caists =nd is finite. This limit is

ix azid to be differentiable at ifll;u?o =
d.cm:mlm:ll:'y‘(‘l.-,lof“;-i asd is called the derivative of f{z) 2 2

Thclmioﬁ't‘lnid!obcdlﬂﬂtﬂubkiﬂDif'ﬂhlﬁﬂﬂ‘tﬂhiﬂtﬂl‘lminud L.
Example 1. The function f(2) = 2 is differentiable at every poini and f'(2) = 2:.

flz+ M- f@) (z+ 8P =2

Prooi. 3 A
= 2r+h
Hesce T LEZM 1B Lan (22 4 A)
A0 ] b0
= 2
=z = 2=

Example 2. The function f(z) = I nowtere differentiable.

Sle+h)— f(2) = (z+h)-1

Proof.
(] h .
_ i+k- R
¥ h ]
.limu.;doumtuh:(wfuuunpklofl‘.']. o !
— ? S

J. J(2) = ¥ is nowhere differentiable.
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Remark 1. If f(2) is differentiative at a point z then it is continuous at that point.

Proof.  lim|f(z+h) - f(2)] = lim [M’_‘f_‘”]
' ' = f(2)x0

: - B

l'!in'::'; (z -+ h) = f(z)sothat f is continuous at z.
The converse of the above result is not truc.

Forexample, f(z) = Tiscontinuous everywhere but it is nowhere differentiable (refer
example 2),

The definition of derivative for cdmplcx functions is identical 10 the definition fer real
functions and the follewing formal rules of differentiation are truz for complex functions
also and the proof is lefy as an exzrcise. 5 =

Theorem 2.4. Let f(2) and g(z) be differentiable at a point z. Then - !
)y (f+8))=/S)+g'@).

S (S8 = f5°6) + f(2)8(2).

i (){) e L(De2) — f(2)g'(2)

(z()
(iv) Suppose g is differentiable at z and f is differentiable at g(z).

Let F(o) = f(e(d] Then ) = f' (g("ng (2). (This is the usual chain rule
for the derivative of composite functions)™

provided g(z) # 0.

(v)  Let # be any positive integer. The function f(z) = z" is dlﬂ'eremlable al every
pointand f'(z) = nz""!,

(vi)  The polynomial P(z) =g +ayz+arz> + - - +a,=" is differentiable at every
point and P () =a; +2a3z 4 --- +na,2""!

i) If o in @ m:gullivc integer f(z) = 2" is differentiable a1 every point 2 # 0 and
Ty =ntt

Exercises.

!t Find the derivative of the following functions,

i 241 3 (2+
o+ 3 2t B el LR
M=+dz+1 (i) “+.4( ] 2/ (iii) — ._|l 1.

Prove that f(z) ='_

12

-1
+“ : -isﬁdil‘l‘cmnuablc utevery point 2 ¢ — 1 and find £'(z).
~,

-

Prove that f(z) = Re = is not differentiable nt any point.
4. v'rove that f(2) = Imz is not differentiable at any puiat.

P LT LT R S

i ("fn"-wl'

s v

“Answers. .

——— e g - am

——
Rt

L e -122-2) — 8

e,
1. (i) 2:-{_—3 (")-(-2_::-3)_2 (1i1) (:_ l}l!

2

2. Y
(z+1)?

2.6. The Cauchy-Riemann Equations geton & S
o7 !

The .cx istence of the derivative of acomplex ft fJncucm

M—& to approach 1o the same limitash — Oalong any palll " 18]

nces. In this section we derive some important properts

flz) =ulx,y) +w(.r

of acomplex vanable B

far rcdchu'.lg conseque
real and imaginary parts of the differentiable function

Theorem 2.5. Let f(z) = ulx,y) + iv(x, ¥} be duﬁ'erenunble a
m = xo + iyo. Then u(x.y) and v(x, y) have first order partial ¢
uz (X0, y0). iry(xo. ¥o). Ux (X0, yo) and v:(xg, yp) at (xo. yp) and these parual
satisfy tiie Cauchy-Riemanr equabons (C.R equations) given by -

iix (g, 303 = vy(x0, Y0) and uy(xo. 32) = —Vilxo. y0)

Also, f'(z0) = ux(xp. ¥a) + ivx(xg, yo)

= vy(x0. ¥0) = iuy(xo, o).

Proof. Since f(z) = uwlx,y) + ivlx,y) is differentiable at 20

lim M exists and hence the limit is independent of the path;
h—() It
h approahces zero, :

Leth =hy+iha.

fCo+h) — f(:n}

Now
h

J‘u-}-lh; .
ulzp +hy. .m+hz) u(:o.vn)] [v(m +4j, m+hﬂ
’ hi +ihy’

‘l
T e T

Suppose’h — 0 nlmﬁ\lhe n:ul axmsoth"th h.

S

1 e ML

TR IS S5t

o
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M Complex Analynis

a7 a1 [!(m“ﬂ—!lw)]
h)—0 hy

o ["(Xo +hyoyo) — H(Io.yo)]
hy—0 h|

o 1 T2+ 30) =0, 0]
M-‘*Ul. h _I
= 1, g Yu) + i e (x0. Y0)
Now, suppose h — 0 along the imaginary axis so that h = ih3.
. [ ftaa+ h2) = S(z0)
s )= I i
fGo “;30[ ihy
_ ;"mu [u(xo.m + hy) = u(xg, )‘o)]

iha
5 i [U(Io- Yo+ "lz) — u(xq, )'ol]
hy—0 iha

[H_v(xo. J’o)] " [v_v{xo. m)]
i i

i
— —iuy(x0. 35) + vy(x0. Yo)

uy(xo, yo) + vy(x0. yo)

From (1) and (2) we get
~ [(z0) = ux(x0. yo) + ivx(xo, yo) = vy(x0. o) — iuy(xa, )
Eguating real and imaginary parts we get
iy (xg. yo) = Vy(x0. Y0)

"}(IO' )‘D’ = —v(xp, m]
Remark 1. Since [*(z) = ux + ivg = vy = iuy we have .
forsld+d=d+d - O

2 . ™y
Also | [ = +uy = i+
Further |f&)‘2 = UgVy — MyUg

" = Uy My

axsb )~ i) . _ ! Vr - Vy
Upinp disk 2l - QB -0
g Dl P8

2 " ; :

£ W

x +7 ( 1

“*(Z-} -)-: = Ji 7

e b

it I S
—— e r—

o pteidt 1ne

Analytic Functions 15

'

vide a necessary condition for differen-

Remark 2 The Cauchy-Riemann equations pro :
fied for a coplex function at

tiability at 2 point. Hence if the C.R equations are net satis
any point then we can conclude that the function is not differentzable.

For example, consider the function

f{;}—...-‘f:x-—i;‘

Here u(x, y) =X and v(r.y) = =Y.

- ng(xoy) =1 and vy(x, y) = =1 ': g o
- uy # vesothat CR equntions are not satisfied at any point &. . s 5 e e e
Hence the function f(z) = T is nowhere differentiable. - e

;

Remurk 3. The C.R cquations are not sufficient for differcntiabitity at a point as she &7

in the iviiowing examples.

X ifz40
Example 1. Let f(2) = | ¥ +y
0 ifz=0

, 2 i () 0.0
Hereu(a. y) = { x°+
0 if (x,y)=1(0,0)"

and v(x, y) =0.

h—0 h

o-0 °] 0.

Now, 10,0 = jim [ 202202
[ h

= lim
h—0

Similarly uy(0,0) = 0. '

Also v, (0,0) = 0 and v,(0,0) =0.

Hence the C.R equations arc satisfiedat z = 0.

Now,almgthcpa!hy:m.f )
xmx m L

f= ---—-—-—-\'2 o e = eret ifxe0.

Hence if z — Oalong the path y = mx, f(2) - I‘:mz which is different for differcnt
values of m. ‘ .

Hence' f (z) does not’
z=0.

Thus f(z) is not differentiable at 2 = 0.

have a hmitas 2 — 00 that f(2) is not even continuous at
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36 Complex Analysis

Example 2. Let f(z) = /[xy]
Here u(x, y) = Vixy! and v(x,y) =0, *

Uy (0.0) = l!Lma [M] -

k 1
. =0 :
Similarly u (0, 0) =
Also v, (0,0) =0 and vy(0,0) = 0.
Hence the C.R equations are satisfied at z = 0.
We claim that f(z) is not d:"crcnnab]c at (0, 0).
Aleng ths roth y = mux,
f(z)—f{ﬁ) VIxm | Vim]
ifx#0.
z T x+imx 1 +im
Hence as z — O along the path y = ma, Iizl_-f_{fl) tends to II-: ml which depends
lﬂ'l'

on the path along which - — 0so that f is not dm‘emnl:able atz=0.

Note. Ir this example the functior f(z) is continuous and has partial derivatives which
satisfy Cauchy-Riemann en»~*ions at 0 but is not differenziable at 0.

In the following ihcorem we prove that C.R equations together with the continuity of
pantial derivatives give a sufficient condition for differentiability of complex functions.

Wt J@) = ilx, y) + iu(;r. y) be a function defined in a region D such
thal'l,'v and their first order partial derivatives are continuous in D. If the first order

partial derivatives of u, v satisfy the Cauchy-Riemann equations at a pomt (x, y) €D
then f is differentiable at z = x 4 iy.

Proof. Since u(x. y) and its first order partial derivatives are continuous at (x, y) we
have by the mean value theorem for functions of two variables

uiv L hyy + k) —uix, y) = hjug(x, ¥) + houy(x, y) +hiey + haea .o (1)
whuunmds:—»ﬂssh;mdbg—bn .
Similarly ’ -
v(x ALy +A2) — vl y) = hive( y) +havy () A gy Hhass .. )

where &3, 64 — Oas h; and b — 0.
Leth = k) +ih,.

Anglytic Functions 37

 Then f(z+h:—f(?.) e I[H(X'{'hl y+h1)-"(1oy) ‘t

+ivx+hy+h) —vln )] -
= —[lhm;u. ¥) +hauy(x, y) + Iy g + haga}
s+ il ve(x, y) + hauy(x, y)+hass+hzs4}]
— using (1) and (2).
;Il-[h {ux(x, y)+w,(x. ¥ + haluy(x, y}+w,(.t !
+ htifl 4 'EJ) + hay(ey +i€4)]

[(hy +:h2)u,(x ¥) —i(hy +:hz)uv{r ¥)

= E
+ hylgy +igz) + haley + i64))
(using C.R equations).

= -!— llm,(x. M —ihuyix, ))+h|(£|f +ie3)+ halea + :'sq)]

= uy(x, y) —iuy(x, y)+£;-(£‘;+l£‘3)+—(€z+l€4) .
: T \’ f re = 2

L Hj - £ =
-}!lisl,r'{s|+w3)—r(}ash-+0. ?/ Z TR

>

Now, since

in :
Similarly %(e; +ieg) = 0ash— 0.

I fz+h) - f(2)
m—-

- Jim = = ur(x,y) — iuy(x. y): Hence f is diiTerenll_iablc-

Example 1. Let f(z) = €"(cos y +isin y).
. u(x,y)=¢" cos yandu(x,y) =¢€* si-n'_y.
Then ux(x, y) = £ cos y = vy(x, )
and uy(x, y) = —€* sin y = —v(x, y)
. Thus the first order partial denvatwcs of w and v satisfy the Cauchy-Riemann equations

il every pOml
Fu:ther u(x, ) and v(x, y) and their first order partial derivativez are continuous al
every point. Hence f is differentiable at every point of the complex plane.

Let £(2) = Izl
. f(@) =ulx.y) +irfr,y)=x2+ ¥ | |
. u(x,y)=x*+y*andv(x.)) =0. ) ]

e PR 1

-
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- Cowmplex Analysis

Hence u, (x, J’) ="u; iv(x,y) =
Ur (X, y) = 2x = vy (x. y).
Clearly the Cauchy—R:crnann equations are satisfied at z = 0.

& n'_:‘-‘m'ﬂ'ﬂm;:::j::n‘g their first order pdrtial derivatives are continuous and hence f is

Also we notice that the C.R equations are not satisfied at any point z # 0 and hence f
) is not differentiable at z # 0. Thus [ is differentiable only at z = 0.

“

b

1 :3\ ‘Alternate forms of Cauchy - Riemann eguations
|

In the following theorem we express the Cauchy-Riemann equations in complex form.

' Theorem 2.7, (Complex form of C-R equations)

Let f(z) = u(x, y) + iv(x, y) be differentiable. Then the C.R equations can be put
in the complex form as f; = —ify-
Proof. Let f(2) = u(x. y) +iv(x, y).
Then f; = ue +iv;
and )f‘. =ty +ivy.
Hence f; = —if
& Uy +ivx = —"(H_r+l-vy)
& uy +ive = vy —iuy
4 ur = vy and vy = —uy.
Thus the two C.R equations arc cquivalent to the equation fr = —ify.
Inthe following theorem we express the Cauchy Riemann equations and the derivative
of a complex function in terms of it polar coordinates.
Theorem 2.8. (C.R equations in polar coordinates)
Let £(z) = u(r, 8) + iv(r, 0) be differcntiable at.z = re’® 0.
du lav dv 1 3u
and — = "
ar rad ar raf

on du
F h - . !
urther f‘(z) = = (ar +‘:—'lr)

Proof, Wchavcx-rmﬂandy-—rsmé‘
du 3udx Buoy

Heuoy .5: axar tay ay o
du ar
= — L= 8 .
I CUGB'I-ay sin )

II AnalyticFunctions 39

ot

. 9v dvax - ?321
Also o0 =2x96 = dyad #
v
= g—:(—r sin 8)+ E;(r cos 3)

ov
] o 6+a—J_cosB

rae ax

.8},
du
= — in l)
ar (using
du 1dv
Thus -5; = r-ae-.- i
v 10u

Similarly we can prove that = S

Now,

-r[(-—cos6‘+§—sm6‘} ..(——cosﬂ

du av
=rco¢59(—-+i5;)+r sm&(é-; By

du v ?_v__l_ﬂ)
=’(a T )”(ay 2

=xf () +iyf @)
=x+inf'@
=zf'(2)-

3 ie 3n+,av)
f‘:-Q ar lar)”

We now proceed to express C.R equations in yct another form.

Let f(z) = ulx. y) +iv(x, ).

z+3 z2—-1 .
Sincex=—2——:My=T_weMW S

= ?i sin 8 + %E cos € (using C.R equations)
= . =

{au Hv - [ 0udx Bua\) (avax Bvay)]
)’”[ PR ﬂyar 9x ar | dyor

dv
— sin 8
tay )]

',.-'-.-':-ai‘w’ — it € ¥
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& Compler Anatvsis

= . Solution. : '
W[mbelhouzblofaal’c' wction of 2 and = T?nughz:tdz:rcnclmdcpendcm - () flz)=Pez
d =
vmabh-cfmﬂ:mnldawumaaﬂd%anf:.:ﬂummd:p:rdﬂnmablﬂ. - u(x,y)=xand u(x, y) =0. - _'
VS 2 corendin wr have the following thenrem. £ coug=1landoe=0.

uy = Jand ve=9.

Theorem 2.9. 1 f(z) is a differemiable function, the CR cqualions czn be put in the ) . )
Since u, # vy the C.R equations are not satisfied 21 any point.

form —=0. - S

= 7 //“ Hen::z f(2) is nowhere differentiable.
Proof. 3}' 3)' ox LA 3)' 3)' pr‘_ ) (i) f(z) = (cos y —isin y)
© 37 dxd:  dyoi =& cos y—ic'siny.
' a; - ulx,y) =€ cos yandv(x,y) = —€" sin v.
al 3!( 2!) ;. uy=e cos yandr. =—c* sin y.
u af ; uy = —¢* sin yand vy = —¢* c0s .
2 \ax A 3y ' Clearly C.R equatior are not satisfied at any point and hence f(z) is nowhere
? differentiable.
Thn:ﬂ=0 -ai...-tg‘!-\vhldllsdlccomplufmnoﬂhcc -R equations. {refer o zRez 240
37 — 20EE 240 | )
r. L % | Problem S, = lz| is continuous at z = 0 but not
theorem 2.7) - - ot
Mdn(lﬂu;;mkmmbcpu:inﬁ:cfmm% =0. differentiable at z = 0.

Solution. First we shall prove that lirq‘ f(z)=0

zRez

= |Re zl.
Izl

Solved Problems Now [f(z) =0l =

mwﬂify Cauchy-Ricmann equations for the function f(2) = ol
Solution. f(2) =2’ = (x +iy)

Funther |Re z| < |z].
*, Forany given £ > 0 if we choose § = £ we get

lzl=1z=0] <&6=|f(z) -0 <&

= (2 =3xy)) +i(3xy — y) Hence f is continuousat z = 0. i
2 - . el y
‘. ulx, y)= 2> =3xy* and v(x, y) = 3x y-y ‘ p Now, we prove that j(z) is not differentiable at z = 0. Z SN
f@—f0) zRez Rez o
. 2 = = e
;. ug=3x2 =3yt and y, = 61y =0 28] Il e
u,n—ﬁl’lﬂ'ﬂﬂ,-hz—lvz. ﬂ__...x where z'=x+1i)y.
Here uy = vy and uy = —vy " x“+y
Hence the Cauchy-Riemann equations are statisfied. il A!ong the path y = mx, e

J@O-f@ __x o 1
2-0  Jed+miad J1+ml

Problem 2. Prove mul.hc following functions are nowhere djfferentiable. 1
() f2) =Rez (i) f(2) = ¢*(cos y —isin y)’ '
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42 Complex Analysis-

The value of the limit depends on m and hence on the path al=ng whizh z — 0.

f(2) 0
:I_l_r.l:]*—-:of—f—) docs rot exist.

" f(2) is not differentiable at z = 0.

@87 1oV at J(2) = z Im z is differcniiable unly ai z = G and find f7(0).
Solution. f{z) =zImz |
= (x +iy)y
% t.‘(x' ¥Y) =xyand u(x, y) = y2.
‘u_, =Yivx =0 uy =xand v, = 2y.
Clearly the C.R equation are satisfied onI\r\at 2=0.
I‘_tin_hc; il\:l'—lilc nrst order partial denvatwcs are coitinuous.
Hence f(z) is differentiable ;;t =4 ‘

Also f7(0) = u(0,0) + ive(0,0) = 0

2 "
Xy“(x +iy)
mshw that f(z) = | 3"2"'}’4_ if z#0 .
= L o

0 if z=0

is not differentiable at z = 0.

’ Solution, Z(3)—/(©) - xy*(x +iy) ( )
z-0 x2 4y x+iy
J.'\l'
__' xz + }.4
S AIOl'lg the palh X = n;y?'
f(Z) - f(O) _ myd — m
2=0  miyf4yt T m24l
. Th‘ value of the 1Imlt depends on m and hence depends on the path along which z — 0
f (2) - 7(0)
E ———— does not exist.
!—-0 z—0

<. f(2) is not differentiable at z = 0.

m-"d Prove lhn! the function f(z) =

C-R equations at the origin but f7(0) does not exist.”

S+ =y a-i)
x3+y2 if z#0
0" if z=0

satisfies

#(0,0) = v(0,0) = ' -

Analytic Functions 43
JI!‘
204+D=y =0

Solution. f(z) = ‘-1_',).2
il ifz=0 e ik

if z#+0

© e a e Ean b W |

it (x,)#(0,0; and

JJ—f ‘ I i Dk

x24 y?

-= u(x,y) =

i u(h 0} —u(O 0) »- !
Now, uz(0,0) = w3 i

o e )i -\

h—0

Slmllnrly uy(0,0) = —I;:(0,0) = and vy(0,0) = 1. (vcnfy)
Thus ux(0,0) = v,(0,0) = l and J

uy (0, 0)'= —vy(0,0) = —1, sothat

C.R. equations are satisfied at z = 0. . k

. f@-f@ __ -y £y
Now. = 0 @Dt tx1+y2)<x+w1

A]ongihcpal‘hy.—-ﬂ‘lxweha\_fe
3 +m3 3

1@ — f0) x> —m3s?
12 + mixzj{x + imx)

-0 (x2 + m2x2)(x + :m.r)
| —m? - 14+ m3
= ] =
U +md)(A+im) (1 +mB)(1+im)
Hence the value of the limit depends on the path along which z — 0.
Thus lim ____f{z) - /O does not exist.

=0 ;i ' . ]
Hence f is not differentiable at 0.

o mmime—— e e e

sinx cosh y + i cos xsinh y is differentiable at every

Solution. f(z) =Isinxcoshy+icosx'sinhy : 5 J
*. u(x,y) =sinxcoshy and v(x, y) =cosx sinh y |
uy =cosxcoshyand vy = —sinxsinhy

uy = sin x sinh y and vy = cosx cosh y

M T A
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44 Comples Analysis

LM =vyanduy = -y for allx, y.

Hence CR. equations are satisfied at every point
F‘unhcx all the first order partial derivatives are continuous,
Hence £(2) is differentiabic at every point.

Find constants nd 2 e
m:ucatmymi‘;: b 50 that the function f(z) = a(x "yz),q"b?"w

Solution. Here u(x, y) = a(x? —=y2) +cand v(x, y) = bxy.
b; =2ar vy = by. I
“y = —2cyand vy = br, _
Clearly u; = vy *nd ry = —p iff 20 = &,
<. T-R ey.ations are satisfied at all points iff 2a = b,
s Thc function f(2) is differentiable Jorall values of a, b with 2a = b.

mﬂm S(2) = /r(cos 6/2 +isin 6/2) where r > Dand 0 < @ < 2
% ble and fir? f'(2).

Solution. f(z) = /7 (cos 6/2 +i sin 0/2).

u = Jr cos (6/2) and v = /7 sin (6/2).

du 1
cos (0/2) and 2% = 1 sin 0/2)

T W
gg = —-5”/—; sin (6/2) and gg = -‘_‘{—F cos (6/2)
‘ Now, rl:—; = ;l— (-‘;—F cos {9{2))
= %F' cos (6/2)
-
ar
2215
Similarly a—u = —:8_;' '
= %? sin (9/2).

Hence the C-R equations (in polar form) are satisfied.
Further all the first order pantial derivatives are continuous. *

Analytic Funcrions 45 iﬂ
bl

Hence f'(z) exists.

Also f'(2) = - (?1+i-§3) (refer theorem 2.8)
z \3r or >
5( L (@ ! o 2))
- Zﬁm [2)+m:m(,f

P r =
-
= 2—: [Vr(cos 872 +isin 6/2))

(cos 8/2 +isin 6/2)

R ]
=2zl-/i]-=ﬁ

Hence f'(z) = 5

2/

Exercises.

I.  Verify C.R. equations for the following functions

(i) f()=az+b
(i) f(2)=¢e'
(i) f(2)=(1/z), 240
(iv) f(x)=iz+2
(V) f(2)=e*(cosy—i siny)
(vi) f(z) =cosxcoshy—isinxsinhy
vil)  f(2)=sinz
(viii) f(z) = ze™¢ .
2. Prove that the following are nowhere differentiable. _
0 f@=lk | G f@=lmz ..
(i)  f(z) =xy+iy (iv) fl=2-3
™) f(2) =2x+ixy? S - .
3. Prove that for the following functions the C.R. equations are satisfied ai 2 = 0,
ut the function is not differentiable at z = 0. .
2 . A el 1

. ol

xy ; .

: s f 240,

() f@={xT+y2 SR -
0 =m0 i
<

. H2PEHD o0

(i) flo)= -14.’.),!

' 0 ifz=0

!

M v
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46 Complex Analysis

Oyly—ix) . '
(i) f(z)=={_x‘+y1 a0

0 if z=0
5

(iv) S = lile
0 il' z:o

ifz¢+0

2. Prove that the following functions 2re differentiable at every point.

M) Sl =02 =3ny) +i0Gxly - )

(i) fl@=it+2
i) [z =22 =yt =2y +ile* - y2 +2xy)
(v) f(2)=2x =3y +i(3x+2).
5. Find constants a, b and c so that the following functions are di
every point.
(i) fl)=x+ay—ilbx +cy)
(i) f(2) =x+ay+ilbs+cy)
(i)  f(2) = ax? —by* +icxy

(iv) fl)=¢& cos ay +ic® sin(y+b)+¢
(v) f(:)=cmx(m$hy+asinhy)+l'sinx{ccshy-i»bsinh_y)

flerentiable at

Answers. -

5. ()a=

27, | A

Definition. A,function f defincd in a region D of the complex plane is sid to be
analytic at a pé-'n! a € D if [ is differentiable at every point of some neighbourhood

of a.
Thus f is analytic at a if there exists £ > Osuch that [ is differentiable at every point
of the disc S(a. €) = |=/lz —al < e). !
ll'_risnnal)aicumypoiatofarrgion
A function which is analytic at every point of
function or integral i
mcmpkmypf_yﬂigl an entire function. 5
g" 1 is analytic ata pointa then fisdurgmiib:ma,m
=

is ditcrentiable only at z = 0. (refer example 2 in theorem

b:c=—1 (ii)a= -bc=1 (iile=cf2=0b (va=-I =b.‘

D thea f is said 10 be analytic in D.
the complex plane is called an entire

xample. f(2) = Iz’

2. Hence f is differentiable stz =0 but not analyticat 2 = 0.

Am!yﬂ'c'r wnctions 47

analyticata then there exists £ > O suchthat f(z) is differentiable
). Now, let z € S(a.£). Then we can fird § > 0 such that

Remark 2. If f{2)is
[ is differentiable at every point of 5(z, 8) 50 that £ is analytic

at each point of S(a.£
$(z,8) € S(a.£). Hence
at z.
Thus J is analylic ai cvery peinzcf S(a. ) Hence f is analytic
analytic at each point of some neighbourhood of a. Hence the set ©
a given function is analytic forms an opei seL
In particular, if a function is analytic in an
then there exists an open st containing A in wh

mve shall later prove thatif f (2) is2na!
of a]! orders at that point in particular

['(@) = uxlx.y) Hivan ) = vy(x. y) — iug(x.)

flerentiable and herce fl(is continuous.

vy are all continuous-

Theorem 2.6 gives the following result.

only if the real and imaginary pars of f(z) have
that satisfy the Cauchy-Riemanns equations for

ata and if only if fis
f all points for which

arbitrary subsct A of the complex plane
ich the function i€ analytic.

ytic atapoint then f(2) hias derivatives

is funther di
Hence tix, Vr-Hxs
This together with

f(z) is analytic in a region D if and
continuous first order partial derivatives

all points in D. .
Ferther it follows that if f(2)is anaiytic in Dthenuand v

derivatives of all orders.

m. An analytic functionin 2 region D with
2in is a constant.

Proof. Lctf(:]=u{x.y)+iu(x.y)bcunlytkiandf'(;)=0forallze D.
Since f(z) = ux +ivs = vy — iuy we have uy = Uy =vy=vr=0.
- u(x,y)and v(x, y)are constant functions and hence f(z) is constanL

Remark 4. The above theorem
For example let D = [z/lz] < 1ulz/lzl > 2}
DisnmnconmdcdsubsdofCSoﬂu!Disumue;m

Let f : D — C be defined by

have continuous nartial

its d=rivative zerc al evey point

_ 1 ifjz] <!
ﬂ‘"’[z if )2l > 2

Clearly £'(z) = 0 for all points 2 € D and f is not a constant function in D.

78 Yeed nrablomd:

w0

AR YRR 4

oniaamgioowithoomn!modulmisconnm

Problem 1. An analytic functi
y) ~iv(z.y) be analytic in a domain D.

Solution. Let f(z) = u(x.

is not true if the Jomain of f(z) is not @ region.

L B WAL T
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Stmce | f(2)] s congtaat, we bave 2% + 8% = ¢ whers cis 2 constan .. .2
Diflremtizing pariially with respect 10 x we got 2uw, + 23y, =0, . P
(i) ux; -f—.n,=0 .. ()
Simetacty Sfferemtioniog parinlly with respect o y w= gt
ﬂzJ-}t'r'r=0 s e
Using CR ecmdions in (1) 20d (Z) == g= =
’ oy — Ta, =0 -2.o-(3)
uayZ-vuy =10 -
Bm&;-!fmﬁfzx:{qv:gﬂ(:+:3)z,=0.
Sisce sl 337 —cwepmu, =0.
Sembriywecmprove et s, = Osoth f(2) == +ie,=0.. ==

Hexce [ neoonuam e

-’@7 axdytic foncrioa f(2) = -'-Z—jrrk‘ha:g}f_z')m@iﬁ_a

contizm {Enciom
Sobstion. arg f(2) = ™ (3/u} = c. =Ezz c 5 3 Consa2.
- L=k whese b i 2 comma
o NP —
Sov=ka.
Hencep, = b, 20d 2, = ko,
Elminging } from the 2bove egmitons T 2 w08y = Brdy
= s}én}#& (ss2ng CR. egetions) - =
- wy =Uzed s, =0 zxd bemce u is comstaew.
Samitarly we com prove Gad ¥ 18 Commar
- [ =w4ivncomaam

gﬂfuj:ﬁ!wmmﬂ}ﬂ:h:qimbﬂmm,ﬂz)hmk

'J‘II’—U!"["—'O- 1 -2

Scigfion. Lot flz) =iz 3)+iviz. 2}
s &=z, y) =iz y)

= ste, y) +il—34z 7] - B
Su::f{:}ism&‘;{ﬁiﬁﬂic!znn,:p_.;m._,.—_—_.,‘_' ) =

-

ol L R

e

i

Anctwic Fowaors 4%

Si:::f(;}is::i)&i:iabw:hvé_~,=—;_,zx‘.a, = ;.
AdSng we ety =02adwy =0. A —
Hezcrw, =0=1%; -
o Gy =ey—ive=0
o f(2)iscomtztin D.
SRR -~ = o feacions () 2 JD) e siemsiimmeony smaytis
Sciution. Szppose f(2) = #{x, y) +ivis, y) se=lvic marmpoe D.
Thes ihe firg order partial desivatives of = 20d » 2= comtinuons and sy e CR
cgEations

. o~ - D
éx @y
v = P 4

éx oy
Now, f@ = slx.—y) — “lz. —3).
=wuylz, )+ iw (x.y) whem= wlx, y) = =iz, —2)
=d iz, ¥) = —wlr.—3).

2a; 3w _Fv_3m .

Hence — = — = — (==z 1)
8x @r oy 5]
-d‘-_ ﬂ'_gr 3‘!‘1
3y 3y @r  &x

.. The fint order penisl derivatives of oy 20d 7 2= comtimuons 2= sy the Camcy-
Ricmenn egrations i D.

Hemce [(C) is amzhytic ia D.
Similrdy if [(T) bzmlyticin Dhen f(z) Baboz=htc = D.
2 2 s & & N
e T T T R
Solation. laaz=x+ir - - -\-—3‘/')4""
.r=i(:+3mdy=—lfl:—fj - ¢J.,“ o=
= = %
8. 22z ¢ocey =
Hen‘.':-;fi=a:azfa—! =~ ~e 5
o4 1a 132 5
- T mmEy 2
1fa  _a@ =
=5(-E—‘-—l3;)
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B2 e # NN, AN (1)
*t 3z3T 2| \ax? ‘318)' kZ} Aydx: layz 2i

(a2 ), @ 1]

f=—

1
=3|\az T ay7) Faxay i ayax

L a2 + a2 L |)
=T - — —_— —_— i -
a|a2 Ty T axay\ i)

et 8
=i\ T2/
32 a2 at

ax? T ay? audr

Exercises.

I. Prove that an analytic function whose real part is constant is itself a'constant.

2. Prove that an analytic functiz whose imaginary part is const«nt is itself a constant.

tant in D then prove that

3. If f = u+ iv is analytic in a region D and uv is cons
f reduces to a consrant.

4.-If f = u+ivisenalyticir 2-.;1 w2 wadv = u?in D then prove that f
reduces to a constant. '

5 Determine the constants a and b in order that the function f(2) =

/ 2xy) +i(bx? — y2 + 2xy) should be analytic. Find f'(z).

(x2 +ay? —

6. Test whether the following functions are analytic
W) +z (i) e (cosy+isiny)

(iii) e (cosy —isiny) (iv) e *(cosy —isiny)

Answers. o L

Sa=—1: b=1fl)=+02 6 () yes(i) yes (i) no(v) yes.

Definition. Letwu(x,y)bea function of two real variabl
2 22y i L
—— = 0 and this equation 15

: ]
D.ulx, y) is said to be a harmonic function if P + 2
cnlled Laplace's equation,

les x and y defined in o region ©

Analytic Functions 51
. ;

Theorem 2.11. The real and imaginary pans of an znalytic function are harmonic
functions. ; - P

Proof. let f(z) = u(x, y) +iv(x;y) bean analytic function.
atinzcus pariz! derivatives of first order which catisfy the C.R
equations given by - 4 and i _3_:1'
ax 3y dy - ox
92 02u , 2%y %
dxdy = ayax = 3<dy . aydx

Thez i and v have ce

Further

Now f}i‘-‘ ) ﬁf— = i {?LU\‘ + —a— (_Ei\
a<2 3y ax\dy) 9y 8;.')
o - a2y %v

= :Tx@ B dydx

Lo :

Thus # is a harmonic function.
Similarly we can prove that v is a harmoric function.

Remark 1. Laplace’s equation provides a necessary condition for a function to be the
real or imaginary part of an analytic function.
For example if u(x. y) = x> + y we have

% _ Pu 3u
L =2 —=0and — +— =2
ax2 ay? an ax? 7 dy

Thus u(x. ¥) is not harmonic function and hence it cannot be the real part of any analytic
function.
Definition. Let f = u + iv be an analytic function in a region D. Then v is said to be
a conjugate harmonic function of u.
Theorem 2.12. Let f = « + iv be an analytic function in a region D. Then v is 2
harmonic conjugate of « if and only if u is a harmonic conjugate of —2,
Proof. Let v be 2 harmonic conjugate of u. Then f = u + iv is analytic,
oo if = iu = v is also analytic. ’
Hence u is a harmonic conjugate of —v.
The proof for the converse is similar.

"Theorem 2.13. Any two harmonic conjugdtes o1 given harmonic function « in 2 region
D differ by a real constant.

aTd WAy

o T ———— —y— o

Scanned with CamScanner



— W

52  Complex Amalvsy

Prool. Let o be 3 harmonic “enction, B ¢
Let v and ¢* be twg Rarmanic conjugates of u.
“4rvande 20" eranavicin D,
Hencr by the Cogda- Ricenz o ~qc2inn e hoic

da dr Iv°
éx  ay ay

nd f: = _2 _ _3v"
dy dx dx

-

-y o - a -
nen::z(r-r J-Oands:(v-_-v =0

. v=12T 4+ ¢ where ¢ is 2 real constant,
Remari.  The Caochy-Ricmann cquations can be used 10 obtain a harmonic conjugate
<’ 2 given harmonic function,
For example ket o(x, v) = £ — yi.
2 P

=3 7 -5 =2 —2 =0 sothat & 1s harmonic in the whole complex plane C,
éx=  3y? .
Noc it vix. y) be 2 harmonic conjugate of u. .
-a—”s-a—‘:-_-—?_r s ekl
dy ax
wd ¥ oy N )
ax ay

On integration of (1) with respectto y we getv = 2:y+¢(:r)whcm @(x) is a function
of x zlone. : :

@ du .
Now fmma}—ﬁ - pives2y + ¢'(x) = 2y
ax ay =

. ¢'(x) = 0sothat g(x) = ¢ (aconstant). - =
vr=2ry+c.

Thus the harmonic conjugate of u(x, y) = x° —__\-3 is given by v(x, ¥) = ?_xy +-ca{ld

the corresponding entire function is given by
f) = (= y?) +iQay + )
=7 +ic

Let u(x, ) and v(x. »} be given harmonic functions. We now describe a“rnclhod, due
to Milne-Thompson, of constructing an snalytic function whose, real part'is u(x. y) or
imaginary partis v(a. v).

Al rtee Fueer

.

Let u(x, y) be a given harmonic function.
Let £(2) = w(z. y) + iv(x, y) be an analytic fanction
Then f(2) = ue(x, y) + ivetx, y)
=w,(r, }‘) = "H"(I.y).

Let g (x. ) = wy(x. ¥) and g(x, y) = wyix. y).

14z -1

Wch.:\t.r=————2 and y =

%

T4+T -2 43I -7\

chl:‘!: D= —.-—‘)-" (—_.._'_ ¢
IS '( 2 ‘U B\ % )

Puiling z = I we obuain f'(2) = ¢(2,0) — iga(z. 0).
Hence fiz) = f [#1(2. 0) = patz: O) )z 4.

Twers S3

INotc. It can be proved in a similar way that the analytic function f(2) with 3 srven

harmonic function v(x, y) as imaginary pant is given by
Slz) = f[h(z. 0) +iy2(2.0))dz 4 ¢

where ¥ (x, ¥) = v, and y3(1, 3) = v,.

Solved Problems

Problem 1. Prove thatu = 2x — x3 4 3xy? is harmonic and find its harmonic conjuiste.

Also find the corresponding analytic function.
Solution. u = 2x — x3 4 3xy?.
L up=2-3:24 3y2; ury = —6r: uy = Gyl uyy = 6.
. ugg +uyy = 0. Hence u is harmonic.
Let.v be a harmonic conjugate of u.
o f(2) = u +ivis analytic.
By Cauchy-Riemann equations we have
vy = ug =2-3c243)% .
». Integrating with respect 1o y we get
v=2y—3xdy+y  +Ax)
where A(x) is an arbitrary function of x.
oug = —=6ry + A(x).

- (1)

e m et §
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. 54 Cemplex Analysis

Now v, = —lry gives —6xy 4 AMx) = —6xy.
Hence A'(x)

=S)sothall(x) = ¢ where ¢ is a constant.
Thus v =2y — 322y 4+ 33 4 ¢ [from (0]

New f(2) = (2r — & 430y i@y — 2:2y 5 53y 4.
=2(x +iy) = [(&* = 3xy?) +iBx2y — y?)] +ic

=22_-z3+ic.

1

S @D =222 4 icisthe required analytic function,

:cr:blem 2. Show that u = log V22 + y% is harmonic and determine its conjugate and
ce find the corresponding analytic function f(z). .

't I -
Solutivn. u = Iog‘[_ﬂ +y2 = 5 108(-"2 +J’2}-

SN Gk o o bt S it
2 L] xr = —
2 2 (12 i yZJZ (xl +'y2)2 3

x2—y2
(x? 4 o232
Obwously'un + uyy = 0 and hence « is harmonic.

Similarly uy, =

Let v be a harmonic conjugate of u.
S f@=u+ivisan analytic function.
By C.R. equations we have
x
24y

Uy =uy =

Integrating w.rt y we get v = tan™! G—’) + ¢(x) where ¢ (x) is an arbitrary fusction of
X. -

- ! = [
Now Ux.-— }.2 (—F)'+¢ (I.L

1
- =
x?

A .__ =, |
Fo +¢'(x) = = e sothat¢'(x) = 0.

Also vy = —uy = —
s

Hence ¢(x) =c.

s v=tan"! (%) +c

f(l‘.: =u+4in= Fog1fx2+y1+l'[tan"' (%) +'c].

Analytic Functions 55
/
Problem 3. Show that ' _
u(x, y) = sinx cosh y + 2cos xsiah y + x? — y? +4xy

is harmonic. Find an analytic function f(z) in terms of z with the givcli: for its real
part,
Solution. uy = cosxcoshy —2sinxsinli y + 2x +4y.
uyr = —sinxcoshy — 2cos xsinh y + 2.
uy = sinxsinhy 4 2cosx cosh y — 2y + 4x.
uyy =sinxcoshy +2cosxsinhy — 2.
. Uxx + uyy = 0. Hence u is harmonic.
Now let ¢; (x, y) = ur and da(x, y) = ty.
. $1(z,0)=coszeosh0 — 2sinzsiah 0 + 2z
=cosz+2z.

Similarly ¢2(z,0) = 2cosz + 4z.
s f@)= f {¢1(z, 0) — ig2(z. 0))dz (by Milne Thompson method)

=f[msz+2z-i(2cosz+4z)}dz
=sinz+422 —2isinz -2 +c.

Problem 4. If ,f(z) = u(x,y) + iv(x,y) is an analytic function and

sin2x
ATy &

Solution. It can be verified that u(x, y) is harmonic.
(cosh 2y + cos 2x)2cos 2x + 25in% 2x
(cosh2y + cos 2x)2

_ 2cosh2ycos2x +2
~ (cosh2y + cos2x)2
—2sinZx sinh2y

u(x.y) =

Now, ug =

Also.ty = (oh2y + cos 20 ,
Let gy (x,y) =uz ll:\ld_'h(xa y) =uy.
o ‘2082z c0sh 0+ 2 2.
i 0= e O cm?  THcos2z

and ¢2(z,0) = 0.

LTRSS GNTERCCT S v

e Rk e B e i B ST

R, T, T ] YU W R TN
et . e i e

T &
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56 Complex Analysis

Now, f(z) =f[¢|(z. 0) — i¢a(z.0))dz

=_f.3cczzdz, )

=lanzd c.
o f@=tanz+c.

sis 2x

Problem 5. Find the analytic function f(z) =u+ivifu +v= —v-—-—
4 . /@ “ cosh 2y — cos 2x

Solution.

u+v= Hu L (03]
" cosh2y — cos 2x | o
2(cosh 2y — cos 2x) cos 2x ~ 25in?2x
LUy Fur= 3 .. (@)
. {cosh2y — cos 1x)-
: —2sin 2x sinh 2y
and try + vy = ———— = )

(cosh 2y —cos 2x)2”

Since the required function -f(z) = u + iz is to be analytic, w-and v satisfy the C.R.
squalions Wy = vy and iy = —Uy.

‘Using these equations in (2) we get

2(cosh 2y — cos 2x) cos 2x — 2sin? 2x

e =ty (cosh 2y — cos 2x)?
2(1 — cos2z) cos 2z — 2sin® 2z
3 l(,-(z.O) "'“_]‘(-uoo)_ (I —COSZ:]Z
_ 2c0s2z - 2(cos? 2z 4 sin* 2z)
= (1 —cos2z)?

—2(1 — cos2z)

(1 —cos2z)?

= _22 = —cosec?z. .er (4)
2sin‘z :
Using C.R. equations in (3) weget = '
. —2sin2csinh2y
Myt 2y — s 2x) ]
oug(2.0)+ue(2.0) =0 v (5)

L5

Analytic Functions 57

/
Now adding (4) and (5) we get 2ux (2. 0) = —cosec?z.

- ug(z,0) = -icoscczz § ... (6)

Subtracting (4) from (5) we get 2uy(z.0) = cosec?z.

H z G
w oyl 0) = Ecos.ec z (1)

Now f(7) = u(z.0) +iv(z.0)
= f'(2) = ux(2.0) +iv2(2.0)
T o= uglZ, 0) "_l-il"r(zn 0)

- ._.%(] + i)cosec?z [using (6) and (7)]

lnlégrating w.r.t z we have
1+i
f@= (—2 )ootz-l-c.

Problem 6. Given v(x. ¥) =x* —ﬁx;yz+ y* find f(2) = u(x, y) +iv(x, y) such that
f(z) is analytic.

Solution. It can be easily verified that v(x, y) is harmonic.

" Now, vy = 4x3 — 121% and v, = —12x%y +4y>.

Let f(z) = u + iv be the required analytic function.

By Cauchy-Riemann equations uy = Vy.

. ug=—12x2y + 4y :
Integrating with respect to x we g

arbitrary function of y.

- uy =4 + 1207 +1'0) = v
o —(ax? — 12xy2) = —4x3 + 12xp2 ()
- A'(y) = 00 that A(y) = ¢ where ¢ is a constant.

etu = —4x3y + 4xy® + A(y) where A(y) is an

Thus u = —4x7y + 4x_v3 +c.

o f@)= (4 y +4xP + ) +Hi(* - 62 + il
=i — ey 4 ) i@y —4xy’N +e
=ix+ipt+e
= ;‘z" +ec.

T e Wk o e e e | TR L B A i v ot et it Bt i 1

e e |

A

LT N
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58. Complex Analysis

Abiter (Milne Thompson Methad).
Let ¢ (x, ¥) = by and yy(x, y) = v;.
o¥(n )= =12x%y + 4y and ¥a(x. y) = 427 — 12xy2.
© ¥lz.0)= D ana (s, 0) = 4. --

Lof= j (V1(2.0) + iya(z. 0))dz

=if4:3d:,_

4

=

+ e

Problem 7. Find the analytic function f(z) = n+iv giventhatu—v = e*(cos y—sin y).

- Solution. ¥ — v = £*(cos y —sin y).
My =ty =¢I(LOS_\‘—SEI'I}'J

and Uy —uvy = —e* (siny + cos y).

Since the required function is to be analytic it has 1o satisfy the C.R. equations.

*. Using CR. equations in (3) we get
—vy —uy - —e*(siny +cosy).
Solving (2) and (4) e get
w.=ecosy
and vy =e*siny
Integrating (6) with respect to x we get
v=e"siny+ f(3)
. yy=c“cosy+ f(y)
Using C_R. equations in (5) and (7) we get f'(y) = 0.
Hence f(y) = ¢| where ¢, is a constanL
. v=¢€"siny+¢. '
From(l)u = cosy 4+ ¢3. -

Now, f(z) =u+iv
=f(cosy+isiny+c)+iey
=ef(cosy +isiny)+ (¢ +icz)
= & ¢! 4+ a (where « is a complex constant).
=N 1 o

=e'+a.

wvs (1)
.. (2)
v (3)

o (4

... (5)
.. (6)

(D

1

Analytic Functic=1

59

Pioblem 8. Ifu 4 v = (x — y)(x2 4+ 4xy + y?) and f(2) = u + iv find the analytic

function f(z) in terms of z.
Solution. u + v = (x — y)(x + 4xy + y?)

Dilrfcrcmiating (1) partially w.r.t x we get’
ug + vy = (2 +4xy + ,vI} + (x — y)(2x +4y).
Differentiating (1) partially w.r.t y we get
Mo+ by = —(x? +azy + V1) + (x = yix +2y).
Since f = & +iv is analytic, « and v satisfy the C.R. equations
uy =vyanduy = —vy.

-. Using C.R. equations in (3) we get
—vy +up = —(x2 4+ dxy + y7) + (x — y)(@x +2y).
Adding (2) and (4) we get 2u, = (x — y)(bx + 6v).
. up =32 -y

Substracting (4) from (2) we get vy = bxy.
Using C.R. equations in (6) we getuy = —6xy.
Let ¢y (x, y) = uy and ¢a(x, y) = uy.

5. 91(2.0) = 32% and ¢2(z.0) = 0.

By Milne-Thompson method

f@@) = f[ﬂ(z.ﬂ) —i¢n(z,0)ldz = f 32dr =12 +¢.

. (1)

. (2)

. (3)

.ee (4)

vz )

- (6)

Problem 9. Find the real part of the analytic function whose imaginary part is

e “[2xycosy+ (3* — x) sin y). Construct the analytic function.

Solution. Letv = ¢~*[2xycos y-i—{y2 —x2)siny]and f(z) = u+ivbethe required

analytic function.

We can prove that v is harmonic. We use Milne Thompson method to find the harmonic

conjugate u of v.

Let ¥)(x,y) = vy = " (2xcosy — 2xysiny +2ysiny +0% = ) cos y)
and Ya(x, y) = vx = e F(—2xycosy — h — x?)siny + 2y cos y — 2x sin y).

o (2. 0) =e"%(2z - 2})und Y2(2,0) = 0.

2

- n—

'M“ . '-.I i -’-!

B
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By Milne Thompson method
_f(z) = f[wlq{z. 0) + iya(z, 0)ldz
= f e 32z — 22)dz

= }f 2ze 2dz — |:—z“ze"z +fe"32z dz]

=2l

= {xf '-y)ze-tr‘i-fyl '

= [(.1*2 -+ 2:‘.:)4] e *(cos y —isin ¥).
T2 .2 ; e

=e [(x -y)+ 2:.ty] {cos y — i sin ¥).

Real partof f(z) =" [(x2 — y?)cosy + 2xysin }-].
(ie)u=e* [(.r2 — y%)cos y + 2xysin y]‘

Problem 10. Find the constant a so that u(x, y) = ax? — ¥ + xy is harmonic. Find an
analytic function f(z) for which  is the real part. Also find its harmonic conjugate.

Solution. « = m:l‘—- ¥y +xy! ,
Pu %

Given that u is harmonic. Hence it satisfies Laplace’s equation —— + ——
ax ay

]

ou 3%u

Now, 3—: = 2ax + y and 2 =2a;
u 3%u
— =2y+xand — =—2
dy ¥ ay?
% 3w -
T2 =0=2a-2=0.
ax?  ay?

Hencea = 1.

u=x1—y1+xy-

Hence uy =2x+ yanduy = —2y + X,
Let ¢y (x, ¥) = ux =2x+ yand ¢(x, y) =uy = -2y + 1. :

- @i(z.0) =2z and ¢(z, 0} = <.

-

[La)
-

Anglytic Functions

- 1= [161@0 it 0Nd: .

=j¢1m¢ . =
. 2

== —=dcC
2

.02
(x+iy) g s

= (x+iy)?—i

L= {xz—y1+2ixy)- %(xz —y2+2:'xy)+c

. z_.2
=(xz-—y2-|-xy)+i(2xy+} - = )+c.

2 .2
- ov(x.y)=2xy+ () 2 Z ) is the harmonic conjugate of u(x, y)-
 du

—_—

Problem 11. Ifu(x, ¥) is a harmonic functionina region D prove that f(z) = ax '3y

is analytic in D.

Ju du
Solution. Let U = a and V = -5;- )
. f(z) = U +iV.Since u-is harmonic U and ¥ have continuous. first order partial
a2 :
derivatives and — -—-I_,i =0. )
ax?  9y?
U 9% a%u "
Also 5= 2 0 [using (1)]
_av
=%
au av
Hence 3_ = -37
au 2w 3% 3 (Bu) ‘av
'_NOW, — S — -_ e | —] = ——, =
dy dydx axdy dx \dy ax
H u _ v
s ?y  ax B

Thus the partial derivatives of U and V satisfy the Cauchy-Riemann equations. Hence
f is analytic in D. : - :

Prol.!em 12. If v and v are harmonic functions satisfying the Cauchy-Riemann equations

_in uregion D then f = u + iv is analytic in D.

Scanned with CamScanner



-_—

-

'

62 Complex Analysis

Solution. Since & and v are harmonic the first order partial derivatives of u and v are
continuous. Also ir and v satisfy the C.R. equalions in D.
Hence f = u + iwv is analytic in D.
Problem 13. Prove that the real (imaginary) part of an analytic function when expressed
in polar form satisfies thccyaation

% 13u 1 3%

a2 trar YR T
(This equation is the Laplace squation: in polar fonn.)

Solution. We know that Cauchy-Riemann equations in polar form are given by

du _ | dv 0

: 3 rad )
dv | du
g

and F = roe @

We eliminate v from (1) and (2).
Differentiating (1) partislly with respect to r and (2} partially with respca 10 # we have

%y ra'u £ du = Gi
Wl Tl B
ara® arr  or <
a2 .
a<v - Id i @
avar  roagt
Since ) 9P e au . du 19%
—_— = we f— — = ———.
300 doar 3l T ar | rae?

;12u+|au+|a- _ o Siriibist a:v+lav+lazu
arl  orar rldﬂz'_ -OIMBARY 572 Yrar T r2a02
!

=0.

Problem 14. ¢ and y are functions of x and y satisfying Laplace’s equation. If «
¢y — Yz and v = @ + Yy prove thatu +iv is analytic.
Solution. Given that ¢ and y satisfy Laplace's cquation.

Hence drr +@yy =U . - (1) :
and Yxx + Yyy = 0. s ¥ :
Alsou = ¢y — Vs and v = ¢ 1+ ¥y- . e
Huice uy = ey = ¥ax ' 'ﬁ

uy = dyy — ¥yx

A,

Analytic Functions 63

.".r = ¢ur + Yy
= —¢yy + Yiry [y (1)]

and vy = dys + ¥y
=¢sx = Wxs Thy (2)]

Thus uy = vy and uy = —Vx-

Since ¢ and ¥ are harmonic, all the partial derivatives are continuous.

Hence u + iv is analytic.
. the product uv is &

Problem 15. Show that if » and v are conjugate harmonic functions
harmonic function.

Solution. Sinzs u and v 2r~ ~~njugale harmonic tunctions We have

ﬂ_tj"'“'!‘)‘:o - (])

= o 2]
Ux:'i'u_l'_?"_ .

as =1y e

.- (4)

-

uy = -”J:

Now let ¢ = wv.
¢ = uvx + Vix.

(r = UUrr + 20 ¢ Vr + Vitxx

S:mllarly Pyy = Ulyy 4 2uyvy + viyy
= uu“ — Quyuy + Vityy [USiNg (3) and (4)).

Now ¢y + Pyv = U (vex + vay) + V(s + tyy)
= 0 [using (1) and (2)].

-, ¢ = uv is a harmonic function.

Problem 16. If f(z) is analytic prove that

.
."I

\M} ;}. \iroe =i

Solution. Let f(z2) =u +iv.
lf{.'.}l2 = u® +v? = ¢ (say) and f'(2) = uc +ivg.

ﬁwhu;-{-hu‘.
ax
'h'b = 2wy +:m,,+v‘.+uuu] Il ]

- dxz
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- ¢
Similarl 2 2
Y g = Ay +ustyy kv vyl = 2002 + ttayy + U2 +vipy] e (2)
Since u and v are harmonic
Myx -f'ﬂy,-w()nnd Ugx 'V U;-rnﬂ (3}

Adding (1) and (2) using (3) we get

a2 0%

iR, & s 1 2

ol T 5yt =4 (uf +4f)
=4 I“; + J.UJ I2
=47 @)

Hence the result.

Problem 17. If f(z2) = u 4 {v is analytic and f(z) ¢ O, prove that
(i) (iz— + _3_1_) lo
a1 Ty g1/f(2)] =0.
(i) v? amp f(z) = 0.
Solution. log f(z) = log |/ (&)l + i amp f(2).
Sirce f(2) ¢ 0, log | f(2)] exists.
Further since f(2) is analytic and £{2) ¢ 0, log £ (2) is also analytic.

log | f(2)] and : imagi
o ﬂf}!ﬂ ] and amp f(2) are the real and imaginary parts of the analytic function
Hence both log | f(2)] and amp f(z) satisfy the Laplace equation.

0 a? a!
5-;5(103 1D+ EFUOSU(:H] =0

- a! a! » 2
(ie) (55 + 5,—) log /()] =0. : .
{il) Kb 82 ' a!
gi-(ump.o'(z))+~é? (amp f(2)) =0

2 2
(ic) (3_13+$) amp f(2)=0

Ge) Viamp f(2)=0.

A g

oy

Aualytic Functions 65

(

! -
the function w= 2> where w = u+1
cquations. Prove that the families of curves
ogonal to each other.

Problem 18. Given
the Cauchy-Riemunn
and ¢3 are constants) are orth

2 o)
w=2z" =(.('1-I')']"

“;olution.
= (13 — 3::}_72) + 5(312)’ - )’3)-

w=x3=3xylandv =32y -y’

. uy =32 =3yt anduy = —6xY;

vy =6xyand vy = 3x2 = 3y%
We note that ug = vy and #ty = —Vx
Hence u and v satisfy the Cauchy-Riemann equations.
Now uxy = 6x and tyy = —6x.
Ugr +ltyy = 6x —6x =0.
lence u satisfies the Laplace equations.
Similarly ver + Vyy = 6y —6y=0.
Hence v satisfies the Lapiace equations.

-_

u=C|=$XJ—‘3X)’2=¢I

Differentiating w.r.t x we get ax2 =3 (2:)%1 + yz) =0
X

v. Show that u and v satisfy |
u=candv=ca(c

dy _ 3(x2 — v3) _ x2—y?
C o 6y |y
x! = yl
. Slope of the tangent at (xo, yg) for the curve u = €| is given by m) = —__gx 9,
Nowv:q:b}.rzj'-y:‘:cz. 030
Differentiating w.r.t x we gel
1y dy dy
3 2cy 3‘—')— 29) _ 0. Hence 2322 —3y?) = —6xy.
( y+x = 3y 7 ence dx(Sx 3y7) Gy
o dy  ~xy
“dx  x3—yt
Slope of the tangent to the curve i = ¢z at (xo. yo) is given by m2 = :fzfg')%
' . %~ Yo

Clesrly, myma = =1.

. The two families of curves arc orthogonal.
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Exercises.

I. Prove that t ine i i j
P he following functions are harmonic. Also ﬁr!d a harmonic conju-
() w=sinhxsiny
(i) u=3x2y+2x2 — y3 =22
(iii)) u= e cosy..
2. " = = =

?(w:_:hat lh? f?..ow1ng functions are harmonic. Also find a function v such that

Z) = u +ivis analyiic and express f(z) in tlerms of z,

() u=2x(1—y) (i) u=e"{xcosy— ysinj‘) .

- (iii) i = 1;.\' + 3'9 . {'i\r} u= ;- '.'_;
L e 2,52 2+ )7
. z) = u +iv such that f(z) is analytic given that
M u=x (i) u=eFcosy
Gii)) w= 3 —3x)y? (iv) u=eSsiny
(v) w=cosxcoshy (vi) u=e€"(xcosy—ysiny) ,

2cosxcoshy
cos2x + cosh 2y
(ix) v=x’—2xy?4+3x2-3y>+1
o) n=— 2sin 2x - ;
e 472 — 2cos2x wo,
4. Find the analytic function f(z) = u +ivif

(vil) @ = (vii) v=3xly—y3

() u—v=(x—y)x*+4xy+y?)
2sin2x
e2¥ 4 e=2¥ — 2cos2x
cosx+sinx —e ¥ |
T T given that f(x/2)

given that f(1) = 1.

(i) wtv=

(iii) w—v=

) e p e
: X242

5. I f(z) = u + iv is an analytic function prove that
AT P_ 2 =2, £ 2
2t ) £ = pElf " f (Z_)I .

6. I f(2) is an analytic function of z show that

a -\ [fa . \2 :
(ﬁ?"' “”) +($lf(z)l) Y

Analytic Functions 67

i ‘ |

Prove that the function u(z) and u(z) zre simultancously harmonic.

7.
8. Provethat the function u(x, y) and u(x?— y2, 2xy) are simultaneously harmonic.
9. Prove that u(x, y) = x2— y‘ and v(x,y) = -= :_ 7 arc.’both harmonic bu.t
v L i is not analvtic.
2 92u
10. From the Laplace’s equation for u(x, y) prove that 3207 = 0.
Answers. -
I. (i) v=—coshxcosy (i} v= 4xy -3+ 31)-3 (iii) v= e’ siny
2. () 22422 (i) ze® (i) —i{e? +32) (W) 1/2
3. (i) z Giy & (i) 23 (iv) —ie* (v) cosz (vi) ze~ (vii) secz (viil) 23
(ix) it +32) (x) cotz _
4. (i i Y e
. (i) c._ot._ (iii) i{ — col z i T 2
2.9. Conformal Mapping

In this section we study the geemetric consequences of the existence of the derivatives

of complex functions. In particul

ar we prove that if an analytic function f hasanon zeio
angle betwaen any 1wo

derivative at a point ¢g lyiug in a region then f preserves the ang
curves at zg both in magnitude and direction. We start with the necessary definitions.

Definition. A curve C in the complex plane is given by a continuous function
y:la.b]— C.
Ify(r) = x()+iy(r) then the curve C isdetermined by the two continuous real valued

functions of the real parameter 7 given by

x=.t(r)andy=y(l)whcrcn§r5b.Wc

also write z = z(r) = x(t) + iy(r) where a <t < b. The point z(a) is called the origin
of the curve and z(b) is called the terminus of the curve.

The curve C is said 1o be simple if 1] # 1 = z(n)) # z(f2). .

Equivalently C is simple if the function y is I-1.

The cunve C is called a closed curve if z{a) = 2(b) and C is called a simple closed ;
curve if (1) z(a@) = z(b) Gi) (1) # 2(12) for any other pair of distinct real numbers

fta € [a, b). ol
A simple closed curve is also called a Jordan curve.

-

A curve C issaid to be differentiable if ' (1) exists and is continuous. 1f further'(£) # 0
then the curve is said to be fegular (smooth). . . R

Geometrically the regular curve has a tangen

t wiose direction is determined by the

argument of ().
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68 Compler Analysis

If € is a curve determined by the ionz =
equation z = z(r) wherea < r < b then the oppasite
curve 1Hf C denoted by —C is given by the cquation z(1) = z2(b+a—1) wherea <t < b.

Example 1. The polygonal line given by
[ it if0 =<
)= r+x.r .I_ﬂ_ffl
r+i ifl<r<2

consisting of a line segment from 0to | +i y
followed by another line segment from | +i

10 2 + i is a simple curve. [
The c‘!ua:im of the curve automatically
determines an orientation for the curve as
shown in th= figure,

-\“»’c notice that the abave curve is differen-
uatzlcuc_cp(atl+f.Suchacurvciscalled o z-plane "

2 piecewise dilferentiable curve. &

.Dd?niﬁon.‘ A curve C given by z = z(1) is said io be piecewise dilferentiable if it
is differentiable except at a finite number of points and at any point where z(r) is not

differentiable it has a left derivative and right derivative.
Example 2.
@‘ - @

The equation given by z(f}=cos r+i sin r |
Pousivg Oircated o Neputives Ovicatstlon

where 0 < ¢ < 27 represents the unil
circle 'C with centre O and radius |
described in the anticlockwise direction.
The origin and terminus of the curve are
2(0) = | = z(2s). The orientation of the
circle as described in the figure is taken
as the positive orientation.

The same circle with negative orientation —C is given by the equation
(1) = cos (2x — 1) + i sin (2r — 1), This is a simple closed curve.

Example 3. In gencral the equation z(r) = a + r{cos ¢ +isin 1) where 0 <1 < 2

represents a positively oriented circle with centre a and radies r. This is also a simple

closed curve.

Example 4. The curve represented by'z(r} =cos 1+i sintwhere0 <t <4risa
closed curve. However it is not a simple closed curve, since z(1/2) = 2(5x/2). Actually

the equation represents a unit circle traversed twice.
Example 5. The curve represented by z(r) = cos f+1 sin 7 where 0 < t < represents

a sem! circular curve of unit ~dius above the real axis with the origin | and terminus

~1. This ix not a closed curve since z(0) ¢ z(r).

£

ChRTE L 1,

s,

Analytic Functions 69
Definition. Let f be an analytic function in a region D. Let C be a curve given by the

equation z = 2(r) wherea <1 < b and lying in D.
Then the equation w = w(r) = f(z(1)) defines another curve C’ in thew-plane and
1

is called the image of the curve C under f.

z(1)

— X

z-plane w-plane

J. L
Definition. Let f be 2 continuous function defined in the region D. Let zp € D. Let
C) and C3 be two regular curves passing through zg and lying in D. Let C; and C; be
the images of Ty and C3 respectively under f. If tic angle between C) and C; is equal
tc the angle between C| and C, both in magnitude and direction then f is said 1o be

conformal at -a. :
Thus a conformal mapping preserves angle both in magnitude and direction.
If the angle is preserved only in magnitude and direction is reversed then the ma-, .1

is said to be isogonal or indirectly conformal.

Theorem 2.14. Let f be an analytic function defined in 2 region D. Let zg € D. If

S'tzn) # O then f is conformal at zg.

Proof. Let C be a regular curve lying in the region D and passing thorugh zg € D.
Suppose the equation C is given by z = z(t) wherea <7 < b.

Letzg = ztrg) for to €[a,b].
The equation of the image curve C’ of C under f is given by w = w(r) = f(z(r)-
< w'(= f'e) ).

L wlg)= SN - -
= f(z0)2'(tg). ¢~ -

By hypothesis f'(z9) ¥ 0.
Also since C is regular 2/(rp) # 0.
Hence v-"wtp) # 0 and arg w'(sy) = arg S (z(f)) +arg 2

'(t0) ,' - (D
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70 Compicx Aralysis

Hence ¢ = ¢ 4 ¢ where erpw(ng) = ¢
arg f"(z0) = ¥

. and  argz’(rp) = 6.
: ¥ @ represents the angle mad i
dllcadm'im i }ﬁ: :-planr:;y the tangeat to the curve C at Zn with the positive

~——Eimilarly ¥ represents the angle : N
m’adc by the wngent 1o the curve T 7 £
- C at f(z5) withthe positivedirec-
tion of the «-axis in the w-plane.
Hence it follows from (1) that the Ao
: mngcn: 10 the regular curve C ar ' .
Z0 is rotated through the angle v : * v
by the transformation w = f(z). 2-plade ) w-plase
’Now. lEl C and C be two regular curves passing through 29 € D and lying in D and
C, and C; be their imuge curves under the map w = f(z). ;
Let {h and 6, bf:.lhc angles made by the tangents to the curves C; and C; respectively
at ﬁwnth the positive direction of the x-axis in the z-plane,
L1 and 23 be the ancles made by the tancs ' 4 Ji
e Yy g=nts to the curcs Cf and Cj at f(zq) in
@l =¥ +6rand 3 = ¢ 4+ 2.
S92 — 9 =6)—6).
. The angle 2 — ¢, from C! 10 CJ, is the same i i
2 / 2 in magnitude and sense as the angle
ty — 8 from Cj to Cy (refer figure). :
y G
4
6,-6,
o
> X
z-plane

Hence the function f preserves angle between the curves C; ard C3 at zg both in
magnitude and direction, !
Hence [ is conformal at 2,

- Analyric Fl.mcliu.ns 71
. {
Note 1. Under the conformal mapping w= f(2) angle of rotation ¥ at zg is arg w'(zq)
and the scale fuctor is | /' (zg)| ‘
. ; ) : 3, v)
Note 2. The condition for conformality at a point zg, can also be written as 3x. ) + 0.

Since f'(zg) # 0 we have | f'(zo)| # 0.

Iu, v)

dx, ¥)

Example 1. Consider the mapping w = 7. Geometrically it represents reﬁ‘ection abOlEl

the real axis and its preserves the angle in magnitide but reverses the direction. Hence it
is an isogonal mapping. ’

# 0 (refer remark | in theorem 2.?)

. Zonsider the mapping w = 22, Angle between any two curves passing

. Example =. T

through the origin is doubled by this mapping. :
Henc - the mupping is not conformal at z = 0. We notice that f (0 =0.

Definition. Let f(z) be an analytic function defined in D and let g € D. 29 1s called - -

a critical point of f(2) if f'(z0) = C.

Solved Problems

Problem: 1. Determine the angle of rotation and scale fo_.or at the point z = 1417 under
the mapping w = 2°.
Solution. We know that the angle of rotation at 1 + i under w = z? is given by arg

w'(1 + i) and the scale factor [w'(1 + i)l

Now w = 22 = w'(z) = 2z.

Sow(l+D)=2(1 +7).

s argw'(1 +i) =arg 201 + D] =~ (1) = /4.

. The angle of rotation at | i is /4.

Now the scale factorat z = 1 i is given by -

[w'(] 4731 = 201 + )| = 2V2.

Problem 2. Find the points where the following mappings are conformal. Also find the
critical points if any. - !

w =

H|—-

(i) w=z" (n positive intcger) (i)
(iii) w=z+4+- Gv) w=r¢e*

-
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(v) w=sing

(vi) w=coshz

(vi) w=az+bandas.

Solution. We know w =
f'(zg) # 0. u=

J(2) is confl i i i
con otTnaI ata point g if (a) w is analytic at zg and

AL‘(O we know 7 is a eritien] point of v = J(z) if
) w is analyzic at zg and (b) f(zg)=0 i

G)

Gi)

(iii)

(iv)

(v)

(vi)

(vii)

e T » a s
w=7z"(n ”s.a positive integer)
g(:) =" is analytic at all points.
ow [(z) = -1 .
) S @ =nz"""und f(z)=0ifandonlyifz =0
ence the mapping is conf .
o | poi i
Sl rmal a1 all poirts z # 0and 0 is the only <ritical point
|
w = —. The mappi z Ui i
z p;)mg J{2; = — is analytic at all puints except z =
wa'(2}=— & ; et
—=and f{z)#0rallz+0. =
Hence the rnappif‘ug is conf| s exceg ‘
ormal atall points except z = 0 and there is no critical

_point for the mapping.

ul==7-+ -
f ) = - = u.
(4 - + = 15 not annl}'“c d I' ¥ ni
LE 0. wiice 1L IS ol Can Z 0
oﬂ“alal
Naw.f(z’-‘l >

f'(z,a =" L =1=2z1=4]
The only critical points are 1 and —1
w=c. -
J(2) =’r is analytic at all points in the cumplex plane
Now f’(z) =e* and ¢° ¥ O forall z,
< J(2) is conformal in the entire complex plane and there is no critical poini

w = sinz.

Then f’(') = CO0§ ;. Clea
< . fly f'(:V=cosz =01
These are the criticai points and ri=} 2=0ifz=n/24 nx wheren €
easaie ntical points and 73z} is conformal at all other points. %
Hcm fry H . ,
and ‘Mgi;)uixs:l:h:o.n: mapping is not conformal at points where sinh z = 0
. - W i, =230 3 =
w'm az+b(a ¢ 0) X fy...and lhcsgpomtsarethecﬁlical points.

JR)=az+bi i
+ b is analytic everyw here. Now f'(z) =a¢0.

R A ) i i I
0 for all 2. Hence thi: mapping is conformal everywhere and there

are no critical points.

- Exercises

Auafyn':f’uncrfous 73

1
i ]

1. Find the angle of rotation and scale factor for}h;_mqsfommk}n: N
w'=-!-a:'.(i)z=land{ii)z=i. C '

2. Show that under the mapping w = 2% th
- —2+i istan™"(1/2) and the scale factor is24/5. -

3. Find the angle of rotation and scale factor for the mapping
w=z"‘+3|'za11$l-—i. )

4. Find the coefficent of magniﬁc.aiion and angle of rotaiipr_{ for

-‘(i} w==Jatl+iand{i)w= (1 — )z atany point Z.
ts a rotation through an angle wf2 and w =

e angle of rotaticn 2t

5. Show that w = iz represer —7a
. rotation through 7.
6. Find where the following map
if any.
(w=:  ()w=cosz

pings are conformal and also find the critical points

(iii) w = sinh z

Answers.

1. () = (i) O

3. wan”! (1); J&i

4
Z X T
() 6 = (ii) V2 =%

6. (i) Com:ormal at all points except 2 =
(ii) Conformal except z = 0, +x, 2, .......

0. Origin is a critical point-
These are the critical points.

—
-

(iii) Conformal exceptat z = = 2

AERIRIREEE

mi\ 3Imi s -
_. These are the critical points.

.
e —————
e e e e Yk s

PRI TOpRe i . e = =1

e ——

L 4 e i . s
| —— R MMBATIS A R -
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6. Complex Integration

6.0. Introduction

In this chapter we develop the theory of inzegrution for complex functions. We assume

that the reader is fumiliar with the Riemann integral of a function definedon [a, b). Using
this'we define the integeral of a complex valued function defined on [a, b and the integral

of afunction  : D — Cwherc Disa region in C, along a curve ¢ lying in D. We prove |

Cuuchy’s fundamental theorem and study the various censequences of this theorem.

6.1: Definite integral

We start with the definition of definite

integral for a continuous complex vaiued function
of a real variable.

Definition. Let f(r) = u(r) + iv(r) be a continuous complex valued function defined
on [u, b). J

A b b
We define'f f(1) dir = Suyde+i [ o) dr.
o o ]

Remark. The following properties of the definite integral can be easily verified

h b
I. Re ff[r)d::fﬂc[f(r)]d:
% /!
2. Im ff(:)dr=flm[f(:}]d:
u o
h b
3 L) + g(n)) dr = [ f()dr + [ &) dr

4,

By Sy

5
cf(t)dr = c [ f(r) dr where ¢ is any complex constant,
o .

Lemima.

] 1]
S f) dr' <[1fw)dr

i .
Proof. Let [ (1) dr = rei®,

Complex Integration 133

b
Cr=c f f@dr

b
l f @) de

lu

b
=Re (e'_*'?__f, (0 d!) (since r is real)

a
L

/ H]
~Re | f e f{t)d:'\) (using 4)
\2
h _ -
—.=ch (e_mf(l) dr) (using 1)
h
.‘Sfle'mf(r}!dr
b
= [l pisona

b . =
-_-f|f(r]'|dr

h .
< f1fnndr >
a

Thus l; Sl di

Deﬁllllloll. Lﬂt (: ‘m a plccewlsc (1] elBlluab e curve g by lhe quuon = Z(l‘)
i i ff l wen

Pl ) f(z} P X al f C n I g

W hc‘ ca <I < b; l‘t bc a continuous com| lc A { ucd unction dch d n arcgion

containing the curve C. We define

h
f f@dz= f fz ()2 @) ade .
c = . B ]

Example 1. Consider [ f@2) dz W=
[ iy

- = ré!
. : irclejz] = ris givenbyz=r

: S tric equation of the circ

in the positive sense. The paramc

where 0 < 1 < 2 and /(1) = ire”’

zre f(z) = ;and Cisthecircle|z| =
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Example 2. In general [ L

i et 2 .
freria Zri where C is the circle with cezire g radius r given

_ L 2
bylhecqualionz:a-i—re"'.osr < Zr.For —f£-= Qﬂd == 1
— o elt =i | dr =2rxi
(2 0 0
Theorem 6.1. [ f(2)dz = - [ f@dz. '
-C c

Proof. Suppose the equation of C is given
. L Y h =
that the equation of —C is given by : Ye T oM S 1 < b Ve kaow

2r)=z(b+a—r)wherea <r < b,

b
Now, ](:‘f{z) dz= | f(26 +a —1))2'(b+ a — 1)(~ds).
- o
Putb+a—r = uThen —dr =du.
Alsor=a=~u=bandr=b=$u=a

f £(2) da= f J )2 (w)du
-C b

b
== f S@(u))2 (u)du

= —fﬂz)d:.
c

Remark. The following results are immediate consequences of the definition.
l. Leta be a complex constant, Then faf(2Mz = a [ f(2)dz.
c

C
2. glf(Z) +&(@)dz = [ f()dz + [ g(z)dz
c c

Complex Integration 135

Definition. Let Cj be a differentiable curve with crigin 2 and terminus z3. Let 'Cg
be another difTerentiable curve with origin zz and terminus z3. :Ihcn lh_c cunfc_C which
consists of C; followed by Cz is a piecewise differentiable curve with origin z; and

wnaiis z3. This curve is denoted by C; + C2-
Remark. 1f C = Cj+ Czthen [ f{z)dz= Cf S@+ cf J(@)dz
C 1 2

In general if C = Cy + Ca+ .. + Ca then

[ rerz= [ rere+ [ rdes .+ [ 1
C ) (5} Cl"

C

Definition. LetCbea piu::\-wise differentiable curve given by the equation z = z(r)
where a < 1 < b. Then the length [ of C is defineu by

b
]= f |2’ ()\dr.

Example. Consider the circle C with centre a ana ad™z. . Tiw parametric equation
of Cis givenby z = a +re'* where 0 <t < 2.

=i reif

x x 2x
- =f|z'(l)Idr=jlirt"Idr =frd!
0 0 0

= Zur.

Theorem 6.2 l{f(z)d:' < M|l where M = maxl.lf[z][lz € C) and [ is the length of
2 '
Proof. Supose C is given by the equation z = 2(i) Where < 1 < b.
By definition of M we have ; '
IfzN| < Mforallriastr<b ... (1)
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b
== |f S (ndr

Nowt ! ! : f (2)dz

]
< f I f N (D)]dr

b
- f I (1) dr

o

< f M|z’ t1)d1 (using(1))

b
=Mf|.'.’{r)|dr
a

= Ml

<Ml

. fffz)dz
c

Solved Problems

Problem 1. Evaluate [ f(z)dz where f(2) = y —x — i3x? and C is the line segmen

C
fromz=0t0z=1+i.

Solution. The cqunl:nn of the' lme segment C joining z =0and z = | +i is given by

y=ax

.*. The prametric equation of Z canbetakenasr =rand y =t where0 <1 < I, chﬂ
..(!)-.r(r)+:y(r)-=:+u sothat 2'(r) = (1 +1). ‘

Now, f(z(t)) = ¢t —r — {362 '= —i3r2.

B

Rk 2

Complex Integration 237

]
7 f S(@)dz= f FUnZ (w)dr
c 0

=f_53:1(| +i)dr

0
NG
= =3i(1 +1i) £
A 0
=1=1i
dz Oifnel . . .
—_— here C is the circle with centre
Problem 2. Prove thatg oy At w

aandradiusrandn € Z.
Solution. The parameters equation of the circle C is givenby z—a

- Z’(I) — ire"

o .
N dz = ire! -
™ | @=ay ) ey
c 0

e‘“"’)'dr

A‘-"N :
= (] = prov:dadu ¢l
l —_

- __' a-mar _ ]
{1 —n)rn-! [" J

i

= e n-1
=0.

fn=1, j 92 2ni. (Refer example 2 of 6.1)
z2—a

¢
Hence the result.

—rei’, 0 <t < 2m.
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Probl z
em 3. Evaluate 7 dz fromz = Otoz = 4 +2i along the curve C consisting of

the iine segment rmrnr = =2 -
=449 2 =010z = 2i followed by the linc segment from z = 2j 1o

Solutior. LeiZ; dancie it < line seym

'Ill
joining 24 10 4 + 2i. Then C Ci+< Jm"mg Ut02f and C3 denote the line segment

Now the parametric equation of €y is given by x(r) = 0 and y)=rwhere0 <t <2
Henice z(1) = A (1) +iy(r) = i1 so that Z'(t) =i.
2’ 2
Heace [37dz = [(=inidt = [1dt = 2.
C 0 0

Now the p2rametric equation of C; is given by x(r) = 1 and Yy =2 whereQ<r <4

Hence 2(1) = r + 2i and 2'(1) = 1.

o
> fidz= f(r-::')d:
0

G
r2 .
“[5-]
- 0
=8-8i -
ffdz:f?dz+fidz=2+8fai= 10 — 8i.

C (] Cr
Problem 4. Evaluate f |21 Z dz where C i is the closed curve consisting of the upper
semicircle |z] = Iandlhcsegmcnt-l <x=<\

Solution. Let f(2) = |z]Z
.
ff(z}dz=j f(z)dz-ffflz)d:
s c &G

where C) is the upper semicircle
2] =1 and C; is the lmcscsmcnt .
-l=<xxl. -1 0 1

D e
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The parametric equation of C) is givenby 2= glo<r=<m.

Hence z'(1) = ic"'

x
- ff(r_)dz=f£‘hl'cﬁdf
G 0
=ni.

The parametric equation of Cpisgivenby y=0,x =1 where—1 <t = L.

Hence z(t) =rand 2'(r) = 1.

, —rif=1=<1<0
Al V=1 e 0<r <1
0 1
Hence [ |z2lZdz = [ —t-1dt+ [1-1dt
G -1 4

chccf\zl Ed:=flr.] Edz+f|zl Idz
C C Cz .

=mi.
0if C is the unitcircle |z] = 1
Problem 5. Provcfz 2=\ 41 if C s the circle |z — 3] =1

Solution. Let C be the umtcuclc lz2l=]1 ~ _
jven by z(r) = ¢/ where 0 <t < 2.

The parametric equation of Cisg
—2ir

Hence 2'(1) = ieffand [Z(1))? = ¢

Scanned with CamScanner



e I T Teme g VRN

140 Complex Analysis

\ 2
f Pdz= f 20122 () dr
C Q0

NW.Imec!hccirclclz-—H:!. i

The parametriz equation of C is given b :
= equz 2 =1+¢
o s g y . +¢'" where G _<, I <2mw,

2x
f Tdo= f (1 +e™)ieldr
& 0

2x

=I‘f(¢ﬂ' +e—“+2)df

Problem 6. Show that flzlldz = —1 + i where C is the square with vertices

c
0(0.0). A(1,0), B(1, 1) and C(0, 1).

Solution. C = C; +Cy + C3 + C¢ where

C).C2.C3 and Cy4 are the lire scgments B
OA,AB, BC and CO as shown in the fig- ¢
urc. The parametric equation of C) is given
by.:=ranay=0whem05:5l. i
Hence 2¢4) = rand 2'(r) = 1.

. o g A

Compfd Integration 141

‘ >
- X l
flzl’a'z= flzdf =3
G . 0 i

i = ]| wh : -~ 3. Herce
The parametric equation of C2 is givenby y = i and x = | where G <1 = i

2(t) = 1 +ir and ) =i.
1
f |2 dz= f |1 o iefPidt
Cz /0 :
1

=if{l+r2]dt _ |
0 A

: .
[+r3] 4j

=ilt+—=| =7"
3 0 3

is gi = —1-1,0<1<l
Thcpammcuicequationof(.‘;lsgwenbyy—-landx-l 1,01 <

Hence t(‘)-;'- (a-n +iand (0} =—1-
1
f lzi*dz= ftﬂ —n* +1)(=1)d:
G i)

' 4
=-f(r1-11+2)dr=—3-
]

The parametric equation of Cy is givenbyx =0,y =1 - 1,0 < t < I. Hence

() =i(l —1) and Z'(1) = —i.
: (-0 ' i
f|:12d2= ](1-:)2(—;')m=i[—-3——-]u=-—-§- -
Ca 0
W L S
Hmff{?-)dz=§+?—3—§— 141 )
e _ q
i lay = 2x? from
Problem 7. Evaluate the integral gqi — iy?)dz where C is the parabo ;;

(1,2)10(2,8). |
Solution. Let f(z) = x2 —iy%. The parametric equation of

ys?.r!when:lﬁlﬁz.

Cisgivenby x = 1 and
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SoU0) =xt) +iy(r) =1t +i2%and 2'(1) = | +4it.

[ f

% 2 S I 3 P -

= [ -.y’,c..:j (0% = 4ir*)(1 +4in)dr
C |

- f [(r2 + 16r5} +‘i(4:3 —4!4)jdf

0 ’ ; ,
Problem 8. Evnlua":f dz vhere C'is the semi circie z = 2¢/fwhere 0 <6 <nr.

c
Soluticn. Here £(0) = 2ie®so tha: d= = 2ie® 4.

x
:+2 28’3"‘2 . i
!Td:':f(_i?‘_ (2ie'"dR)

0

-

n
=2i fu +e'*)do
0

P wl)r S
=20+ ‘—,-] |
L ' Jo
. 2 S e \ 1ot
=2 ( — -I- — l ‘ .
N & ] i A
HAUIS LT BT RO THK! B @ TT L 1F (ISR
Cyrf — ; 2 |
= 2 idl 2] . i ':lé’f.‘.} i,
[ .-
= —4 4 2, i

! Complex Integration 143

Problem 9. Let C be the arc of thecircle z| = 2 fromz =210z =2 that lies in the

dz~ x
first quadrant Without actually evaluting the integral show that [ Za < 5
i !
: ; L

Solution Let f(z) = -—’z-_,__'_ T . 1

(0.2)

\

Sinre C is the circular are: of radius 2 lying in \
the ﬁ:-tr avardrant the lengtis of Cisgivenby  ° 5 (2.0}_—
i= i (2t x2)=n

1 . .
AlsoonC 12 +11 =12 = (=D z |2~ |-l =k ~1=3
Thus |22 + 112 3

b 4
o —
=

Hence by theorem 6.2

f dz
2241
c

Problem 10. Without evaluating the integral show that < 4v2 where C is the

j’ dz
&
C
line segment fromz=itoz=1I.
Solution. C is the line segment joining (0, 1)to (1,0) and its length is obviously V2.

As z varies on C, the minimum value of |z| is the perpendicular distance from the origin
to the line segment C.

|
1 45 _.
ThusnnC.IzIZ.?isol}mlzl = a

<4

1
A

<42

.. By thcorem 6.2 \f ‘-:—f—
C
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xercises

I, i ;
Evaluate f Xdz where C is the directed Jine segment from Oto | 4§
C

=
2. Evaluate
/
3. Show that r:a'z = '_Eand
J b1
C

xdz where C is the circle Izl =r.

and 0 < arg z < 7 with inital paintz = 1.

I+
4. Find the value of the integral f '(x —- y+ix?)d:
: 0

(i) along the straight line from z = 0 o 7 = | +i.

(ii) along the imaginary axis fi
romz =0toz =i and i
paraliel to the real oxis fromz =i toz = | + !'-l w1 e slong a e

5. - — - _— . =
Show that f Zdz = ni and f Zdz = —ni if Cy in the upper half of the circle
i C C»
Izi = 1 withz = | as the initial point and Cs « ici i
e pointand C; :s the same semicircle with z = —]
6. Evaluate :he integrals /) = / rdzand I = f 7'z along the following paths.
c C ‘ '

(i) along the radius vector of the pointz =2 4.
(ii) along the semicircle Iz =1,0 < arg z < with starting point J.
(iii) around the circle [z —a| =r.
7. Evaluate Cf Izldz along the following paths.

(i) around the sericircle |z) = 1,0 = z < m with starting point I.
- Jiza g Bomsi -,
(i) around the semicircle |z] = 1, —FSagzs ?_wrlh starting point —f

(iit) around the circle |z| = r.

8. Evlauate f I2[Zdz where C is the closed curve consisting of the upper semicircle

c
Izl = 1 and the segment —1 < x <1,y = 0.’
9. Compute f |z = 1|dz]
lzlm1

dr — T . ; ;
ydz = =) where C is the semi circle (7] = |

12.

Complex !ntegration 145

(2,4)
Evaluate [ (2y + x2)dx + (3x — y) dy along .
(0,3) ;

s ~. 2 .
() theparatolax =25, y=1"+3 )
(ii) the straight linc segments from (0, 3) to (2, 3) and then from (2, 3)to
2,4 —
(i) astraight line from (0, 3) t0 (2, 4).
Evaluale [(x + 2y)dx + (y — Zx)dy where C is the ellipse defined by

x = 4cos, y = 3sia and C is described in the anticlockwise direction.
(2.5)

Evlauate " [ (3x + y)dx + 2y — x)dy along

B (0.1 i ;

(i) thecurvey=x*+1
:(ii) the straight line joining (0, 1) and (2, 5)
(iii) the straight lines from (0, 1) to (0, 5) and then from (0,5)10(2.5)
(iv) the straight lines from (0, 1) to (2, 1) and then from (2, 1) to (2, 5)

Compute f de where C denotes
z
c

(i) the square described in the positive sense with sides pasallel to the axes
and of length 2a and having its centre at the origin.
(ii) the circle |z] = r described in the positive sense.

Evaluate [ |zldz where C is the circle |z — 1| = 1 in the positive sense.
C
If Cis the curve y = x° —3x2 +-4x— | joining the points (1,1) and (2,3) evaluate

f(lZ:_1 —4iz)dz.

C -

Find | 7"dz along the line joining the points z =0 and z = 2 +1i. Show that the
integral is independent of the path. -

(3.13 : .= =
Show that (i) [ (2¢y>— 2y2 —6y)dx+ (3x2y? —4xy — 6x)dy is independent
(2.1) . L.
of the patk jeining points (2, 1) and (3, 2). (i) Evaluate the integral in (i)

Show that the value of j _dz_z is 2nri if it is along the circle |z — 2] = 1or
; T—
along the circle |z — 2] = 4.
Evaluate f 22dz along C where
C

(i) C is the segment joining the points (1, 1) and (2, 4).
(i) Cisthecurvex =1,y = 12 joining (1, 1) and (2, 4).
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-
<

20." F.valufw.cf e Zd’r_ where C is
Cc

(2} the semicircle z = 2¢/° where x <8 < 2n
(ii) :Li'u.: ci.t;c =269 where —r < b<n -
2l. IfCis lhc boundary of the square with vertices at the points'z = 0,z = I,
T = 1+4i,z =i and the orientation of C is counter clockwise then show that
Bz + ydz =0. '
o
|<
|

f{'rz —iyhdz
c

(l) where C is the interval [=/, 7] on the - axis.
(ii) where C is the semi circle z = cos @ + i sin 6 —-af2 <8 <mnj2
23. Show that if C is the boundary of the triangle with vertices at the points z = 0,

22, Show that

Bl

2=3i, z=—4 and the orientation of C is anticlockwise then f(e’t - 7)dz| <60.
e

24. Evaluvate ff(:.jdz where f(z) = e*and C isthearc fromz = mitoz = I

C
consisting of the line segment joining these points,
’ 14i

25. Evaluate f (2% +2)dz by choosing two different paths of integration and show

0
that the results are same.

Answers

LA +i)/2 2. inF? 4. () (=143 (i) —@+d/6 6. (i) 2+i;
Q+i)/2 (i) inf2:~n/2 (i) inrdi—ne? 1. (@) —2 (i) 20 (iii) 0
8. xi 9. 8 10. (i_)? (ii) '%3 (iii) % 11, ~48x_ 12. (r‘,‘l-i—s (ii) 32
(fif) 40 (iv) 24 13. (i) 2ni (ii) 2wi 14, 8i/3 15. — 156+ 38i
17. Gi) 24 19. () -83—6-6;" (i) -g;—é-of 20. (i) 4+42ri (if) dri

5 2
24. | 25 =,
+e =3

6.2. Cauchy’s Theorem

In this section we prove the fundamental theorem of integration known as Cauchy's
theorem which forms the basis for the theory of complex integration

" [ f(z)dz 10 depend only on end points of C.
c

Cor iplex Integration 147

lued functions. Then the differcstial
ition. Let (.x,y)a:ndq(,t.y)bctworca]va ; - :
?::::i]o:];(x y)d;; +q(x, y)My= Qs said to be exact if there exists a function u(x, y)
u du
— =pand —=q.
such that = P 2y
‘we asawine the following theorem without proof.

Theorem 63. [ pdx + gdy depends only on the end points of C if and only if the
C

integrand is exacl. o
g are complex valved functions as well.

4 : i j d
Rerr!ark. The above theorem Is truc if pan Secnig

We now apply the above theorem for complex functions to getac

action defined on a region D.

x valued fu )
ous complex valu 6

5ol llnndey dpointsof C ifand only if there exists a

Then [ f(2)dz depends only on theen
C .
function F(z) such that F'(2)= f(@)in D.

Proof. f f(z)dz = f flz)dx + idy) (sincez = x +iy)
e c

_ [ fidr +if@ey
c

end points. of C if and only if there exists function

f f(2)dz depends only on the :
C
- 3F aF .
F(z) defined on D such that = f(z)and e if(2)-
of _ 1 ?ﬁ so that Ef. = —i a—‘i which is the complex form of the Cauchy-
x 3

i 3ly t'Jr th 331'2 T)
Riemann equation for F(z) (refer theorem = ]
lt-:Sim:::: ;?z) is continuous the partial derivatives of F (2) are also continuous and hence

F(z) is analytic in D and F'(z) = f(z). Hence the theorem. .
) be a continuous complex valued function defined on a region

Cotlgn Lot therg exists an analytic

then f f(z)dz = O for every closed curve C lying in D iff

C -
function F(z) such that F'(z) = f(2) in D. ‘
Corollary 2. J‘(z —a)"'dz = 0 for every closed curve C provided n 2 0.
C
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Proof. Let F(z) = (_7'_2):1-_'_ ’
Iﬂ +1
Clearly F’(z) =(z—a)"
= f(z).

.". By corollary (I),gf[z)dz =0. Hence [(z —a)"dz = 0forall 2 > 0.
: C .

—

Lerm!u. ) Let C be a simple closed curve. Let D denote the clused region cousisting of
all polrl.Ls interior to C together with the points on C. Lel f be a function analytic in D.
Then given = > 0 it is possible to cover D with a finite number of sauaies and partial
squares whose boundaries are denoted by C; such that there exists poirILs z; lying inside
or on each C; satisfying - == = !

f(2) = f(z))

== —{’"(z;) <e(=12,..,n) --- (1)

for all points 7 distinct from each 2 and lying inside or on C;.

Proof We subdivide the regioo D into ||
squares and partial squares by drawing equally
spaced lines paralle]l 1o the coordinate axes T
(reier figure). (A square is a closed region
consisting of all points on and interior to it. If
a panticular square contains points which are
not in D we remove those points and call what
remains a partial square. In this figure o is a N
square and o' is a partial squarc). This gives ,.zlc
a finite number of squares and partial squares N - ol
which cover the region D. )

Suppose the Lemma is false. Then in the covering constructed as above there exists a
subregion with boundary C; such that no point z exists satisfying (1).

Let ag denote that subregion if it is & square. If it is 2 partial square let o denote the
entire square of which it is a part.

We now subdivide og into four smaller squares by drawing line segments joining the
mid points of the opposite sides. At !zast one of the four smaller squares say o is such
that o} contains points of D and no point z; satisfying (1) exists.

Continuing this process we obtain a nested infinite sequence of squares
O], 03, «eesseey Op...... Such that for each o, no zj satisfying (1) exists.

Now there exists a point.z, common to each «; such that for any 'S > 0 the neigh-
bourhcod |z — zg] < & contains all the squares o, for_ all sufficiently large values of

n,

Complex Integration 149

Hence every neig hbourkood of zg contains points of D distinct from z9. Herce 2o is
a limit point of D. Since D is closed 9 € D.
Since f(2) is analytic at zg there =xists 8 > 0 such that

lz—z0l <8=> -!Lzz%{:i)f-f’(w] <t .- @2

Choose 7 such that the sguare oy is contained in the neighbourhood |z — zol < 8-

Then for every point z in gy (2) holds. o )
-_ 2q serves as the point z; staied i the lemma. This is a contradiction since there is

no z;j in oy satisfying (1).
This contradiction proves the lemma.
Theorem 6.5. (Cauchy’s theorem) Let | ve a function = hich is znalytic at all points
inside and on a simple closed curve C. Tren | f (z)dz =0.
c ]
Proof. Let D be the closed region consisting of all points interior to Z together with

the points on C.

Lete :-Dbe-gi\rl:n. .
Let Cj(j = 1,2, cueeey ) denote the boundaries of the squares and _pamal squares
- covering D such that there exists 2 poini z; lying inside of on Cj satisiving

_M-f{zﬁ‘cs - ... (D)
z—2j
for all z distinct from z; and lying within oron Cj.
IO =T@) _ g0y ifzez

Let8;(z) = z2-2
0 ifz=zj

Clearly &;( is a continuous function and
@ = fzp) =231 @) +zf' @)+ —2)%@-

ff(l)dt=]f(q)dz— rr;;f'{z;)dz+fzf'(q‘)dz+f(z—z_;){;(z]dz
C‘g ’ CJ é’ c)‘ - C,l

= f(z,)fd;—zjf(zJ)fdz-ff'(q)fzdz+f(:—z;]51(zldz
) s C Cy C;

=f(z—z;)a,(:)&:(smfdz-o.nd [ 2az=0
Cy Cj i (of]
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ff(z)dz-_zjtz—z,)x @dz @

=|
4 ’ i= 'C}

How, in the sun. fo(z;ﬂ" the
|

integrals along the common boundary
of every pair of adjacent subregions
cancel each other. (since the integral j =

is taken in-one direction. along that - : 5
line segment in one subregion and in 1
the opposite direction in the other) e
{refer figure) 2 i

it

Hence only the integrals 2long the arcs which are the parts of C remain,

j=l ff(z)az = ff(z)dz

n s
. From (2) /f{z)dz = Z f(z —z7)8;(2)dz.
c I=1 ¢,

f S (z)dz

__ <> [ I(z = 27)5(@)idz

i=! C

f(z —2;)8;(2)dz
}-I

n
=3 [zl
J=1 '€y

, [ e

<3 f e-ely@d: o
J=1 g

Complex Iniegration 151

Now if C; lsasquamandsjlsl.hclenglhoﬁlss:delhcnlz zjl-:y’?:rj forallzon Cj.

, Alwfrom(l}wchavcl&;(z)l -ctandhmcc o .

] Iz — z]IlZi r(z)ldz P (~ ....rjr)f-o: E(bv theorem 6.2)
- & g 0
- =4/2Ae T @
where A is the area of lh:squrc CJ,

Similarly for apamal square with boundary C; if I is the length of the arc of C which
forms a part of Cj. We have '

o f[z—zjﬂﬁ (2)|dz < Jis_,s(‘l:J ‘HJ
j ; as-
¢4J‘A s-:--fsy,» i e (5)

where § is the length cfa side of some square containing the entire region D as well as
all the squares orignially used incovering D. .

We observe that the sum of all A ;s that oceerin n the nght hand s:de of (4) and (5) do
not exceed 52 and the sum of all the 15 is equal to L (the length of C).

Using (4).and (5) in (3) we obtain _ - _

(@)dz| < @v2S? +V2SL) ¢

= ke wherc k =4«_/5.'i2 + +/2SL is a constant.

Thus < ke.

f f(z)a’z
c

Since £ is arbitary we have f f@dz=0.

Note. Cauchy’s theorem was first proved by using Green'’s theorem with the sddit'onal
hypothesis that f’(z) is continuous. Later Goursat proved the theorem’ without the
hypothésis that f”(z) is continuous. For this reason lhc du:ou:m is ‘somctimes kncwn

as Cluchy-Gouml theorem.

Definition.” A region D is smd to bc slmply mnneded if cvcry su'nple closed curve
lying in ‘D encluses only points of D. '

For example the interior of a simple closed curve is a snmply conected n:glon Thc
annular region enclosed by two concentric circles is not simply connected.
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A regiOﬂ‘ which is noi. a sim-
Ply connected is said to be a
mltiply connected region.

lnn:uivel Y a simply connected
region is one which does not have
any holes in it

Simply connected region

Maultipiy connectal regions

We observe that Cauchy's theorem can be restated as follows

Theorem 6.6. (Cauchy’s theorem for simply cor;nccted regions).

Let f be a function which is analytic in a simply connected region D. Let C be any
simple closed curve lying within D. Then [ f(z)dz = 0.
- €

We now extend Cauchy's theorem to certain types of multiply connected regions.

Theorem 6.7. (Cauchy's theorem for multiply connected regions)

Let C be a simple closed curve. Let C;(j = 1, 2, ... ....,n) bea finite number of
simple closed curves lying in the interior of C such that the interiors of C;'s are disjoint.
Let D be the closed region consisting of all points within and on C except the points
interior to each C;;. Let B denote the entire oriented boundary of D consisting of C and
all the C; described in a direction such that the points of D are to the leR of B. Let f be’
a function which is analytic in D. Then [ f(z)dz = 0. .

B

Complex Integration 153

C

Proofl. Let L) be a polygonal path
joining a point of C toapointof Cy; L2
a polygonal path joining a point of Cy
toapointof C; . ..... s Lyapolygonal
path joining a pointof Ci_) toapoi_mof
C; and L, 4 a polygonal path joining a
point of Cj, to a point of C such that no
iwo L} cross cach other (refer figure).

This divides the region D into two sim-
ply connected regions D and D5. Let
B, and B denote the boundaries of D)
and D5 respectively. -

By Cauchy’s theorem for simply connected region

f f(@dz =0and f f(2)dz=0.
BIl 32

Also [ findr+ [ f(2)dz = [ f(z)dzsince the integrals along L j are taken twice in
By By B =
the opposite directions and cancel each Iothcr.
f f@dz=0.
- B

Weobservethat BE=C—-C; —Ca —... . — Cp and hence the above theorem can also

be written in the form -

ff(z)dz = ff(z)dz + ff{z}dz +...+ ]__f(z)dz.
(2 * C: Cn

Gy

| i if Cisasi i i losed curve lying in
larif C is a simple closed curve and Cp is anot_her simplec sed cury
[L::l:p?r:go:rc:f C ;nd f ispnnalytic in the region D consisting of all points |_ns|dc and on
C excluding the points intesior to Co then g [z = L__f f@)dz. :
; Co
) l
i

6.3. Cauchy’s Integral Formula

In this scction we establish another fundamental result known as Cauchy’s integral

formula using Cauchy’s theorem. .

—-——
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curve C. Let zg be any point in the interior of C.

| Then Sz} = —— f Zf_‘”

Prcol.  Choose acircle Cg with
centre zg and radius rg sych that
Cy lies in the interior of C.

Now, zg is the only point inside
C at which the function __J_'{___ is
-

not analytic and hence is analytic
in the region D consisting of all
points inside and on C except the
points interior to Cq.

“enuff(z’df. f(!)dz

=g

n/(!i:)--— f(zo)+f(:o))dz
i)
Co

uf(fl:J-fl:uJ)d:+ I(zuid:
Ii=2 T—1p
Co

[ (B9 e 2

Co _
zf(f( )“flm))d{_'_j.“o)‘zx‘.].
Co
Thus —---——f(:)d: l=f f(ﬂ—!("o))d + 2nifzg
-2 -2

I L R e O g7 ——

We now claim that f (!_‘:L‘__f_(;t’_)\ 1z

=120
Co
Since f(z) is analytic inside and on C it is conlinuous nl zg.

Theorem 6.8. Let £(z) be a function which is analytic inside and on a simple closed

.. (1)

Cornplex Integration 155

. Given £ > 0 there exists § > 0 such that
le—z0l <8 = 1f(2) = f(z)] <&

If we choose rg < 8,then |z — zg]l <rp = |f(2) — f(z)| < &.

Hence f (M) dz| < (:_o) (23 rg)(by thevrein 6.2)

L=

=2nr

Thus f(-‘ﬁ%%)d: < 2me.
0

(2) — f(z0)
Since ¢ is arbitrary we have f (—!——-—) dz =0.

I—u
. From (1) we gclf f(:) dz = 2xif(z0)-
T f(:)
L f(w) = i UJ
&

Theorem 6.9. Let f(2) be analytic in a region D bounded by two concentric circles Cy
and C; and on the boundary. Let 2 be any point in D, Then

1 J(@) l f(l)
b ] et = ] e
C| Cl

Proofl. Letl)and L3 betwo du}mm line segments not paszing through zp bcghjomxg
u point of C) 1o a point of C3 as shown in the figure. This divides the r:gtonbwrl:]t:: o
simply connected regioas D) and D;. Let B and B) denote the oricnted ¥y

1
Dy and D; respectively. Then B, + B = C — C2 - (1)
We assume without loss of generality that zg € Dy.
By Cauchy's integral formula,
L [ L9 e @)
2ni ) -1 .
-1l
flr.)

Also is analytic in D; and hence by Cauchy's thcorem
-
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Proof,

|
.'r(xu) = Err_ f(z) iz

Example 1. Consider f £
C

. Hence by Cauchy’s integral formula I
C

r. Then f(a) = 2 : -

(i.2) The value of the fun
function on the circumference,

Now the equation of the circle C is given by z

156 Complex A nalysis

| [ f) ' '
mf?:z_ndz:'] - 0)

< Where C is the circle [z=2]=5.

-

Let f(z) =1
The point z = 3 Jjes inside C.

- d=
z—3

= 20if(3) = i

Example 2. Let C denote the unit circle [z] = |

‘_,-f C:
Then f —dr = f dz = 2mie® = 207
z z—-0
C <

Theorem 6.10, ic insi i -
L:!t S (2) be analytic inside and on the circle C with centre a and rdius

S f(2)ds y

-

where s is the arc length and [ is the circamference of lh'e

ction at the centre is equal io the mean of the value of the

dz

By Cauchy’s integral’s formula we have f(a) = —I—- _[t_z)_ ‘:
‘ : 2ni ) (z—a)

=a +r¢fowhcrcﬂs_952w.

{ Complex Integration 157
L]
. dz=irede. 2
1 ?f(a +rei?) 6 -
s f(ﬂ')= 2—-;-"7:’ 7;—-— (I'J’ rfﬁ)
- 0 g
- Ix

= % f f(d -i" ”59}49.
1]

Also we have s = r@ and s varics from O to f. .

= .oAN
-

L

1 .
= J@= E,;]'F f fla+re)ds
0
. 1 I
=1 [re
J ;
Hez-2 the theorem.

Theon m £ 17 {+ia.mum Modulus Theorem) Let f(z) be continuous in a closed zfnd
bounded region D and analytic and noriconstant in the interior of D. Then | f(2)| attains

* jts maximum value on the boundary of D and never in the interior of D.

Proof. Since f is continuous in a closed and bounded region D, | f (2)| is bounded and
atwins its bound.
.. There exists a positive real number M such that
|f(z)] < Mforallz € D o il

and equality holds for at least onc point z in D. Suppose that there exists an interior
point zg € D such that

IfGzo)l =M s

Choose a circle with cenire zg and radius r such that the circular disc |z — ol =ris
contained in D. Then we have >

2
flzo) = % f flzo+ re'®)e'®de. (refer proof of theorem 6.10)
0

- .
o 1f ol < % f 1/ (20 + r)do ' b
0
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Also from (1) zad (2) we have | £ (zg -+ rei®)! < 1f(z0)
2r
o [1/a+dide < 2m1 o
b

2
1 .
w1 f(z)l = Eflf(zc+rc‘°}id9 : ... (4)
. C

2
1 :
From (3) and (4) we get 1f o)l = = f | fzo + re'a)]do

[
-

2w
21 el = [ 1o+ reide.
0

2
flf(«to}ldﬂ =f|f(zo+rei9)|d9
0 0

2n

f [17Go) —1fza+ rei®)\jdo =o.
0

Since the integrand in the abow: expression is continuous and non- negative we have

1f o)l = | f(z0 + rei®)| =
Gie) | f (zo)| = | (20 + re“’,. for all z in the circular disc |z — zg| < r.
(ie) i f (z0)| = | £(2)| for all z in the circular disc.
<. f(z) is constant in a neighbourhood of zg.

Since f(z) is continuous it follows that f(z) is constant throughout D which is a
contradiction.

. The maximum of | f(z)] is not drained at any of the intcnor‘poinl.% of D. Hence

the theorem.
' Solved Problems
| Problem 1. Evaluate using Cauchy’s integral formula

| [2245 :
2:;;]‘;’3"2“’"“03 |z] = 4.
c

s

..Ry Cauchys-ntcgnl t'on'r-u!a o "f

Complex Integration 159

Solution. f(z) = 2+ 5is ana.ync mszdc and on lzl =4 and z = 3 lics inside it

dz=f3)=3t+5=14,

Problem 2. Evaluate f z_l-: where C is the positively oriented circle |zl =

o A L
Solution. zz-—l'=frf.+i)(z—-|)_-2(z—| +1/.

T i) z d_ljz )
"'f;z_l“"‘-zfz—l P ETE
C C C

fly=zis analytic and 1, —1 lie in the interior of C.
dl =2mif(1) = 2mi.

. By Cauchy’s integral formula

 Also [—1‘-15 = 2rif (=1) = ~2ni.

- f 243 =i5(2ui}-%(-2:n')=21ri.

21

& .
et e : . e

Problem 3. Evaluate f {7 dz where C is positively oriented cm;lc lz—il=2
i 1 1
Solution. o Sl T P 2i)
. ! ) (b ial fracuon}
= E (z - 'Zi z+ 20 y e

Now, 2i lies inside C and by Cauchy's integral formula we have f =
C

e . e
Also —2i lics outside C and hence ;-+—m- is analytic inside and on C.

Hence by Cauchy's theorem f — dz =0.
c L)
U

~ T
. ¢ 1= -I:(Zm‘e" —0)=e
o 244 4i

c

!,
2J‘,_dz =2rie¥,
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" Problem 5. Let € denote the boundary
X ==%2and y = 12 where C is describe

160 Complex A nalvsis

H 2 &
Problem 4. E\'aluatef M d is irclz |z] =
G-DiE—2) z where C is the circle |z] = 3.

Solution. Cy partial fractions — 1 ] I

(=1)2-2) -2 z=1

Let f(2) = sinx2? + cos x22. Then f(2) is ana

Iytic inside and on .
and 2 lie jusice on C and the points |

C. Hence by Cauchy’s integral formula,
/;{‘Ei: dz = 2mif(l)
iz

= 2mi(sin + cos )

= -2mi

)
Similarly f zf_‘{i e
C

= 2mi(cosdr +sindr)

= 2ni.

e /@)
H o e
Cf(z—mz—z; dz =2ni — (~2ni) = ax

of the square whose sides lie along the lines
d in the positive sense.

. zd: Goe
Eval : -
w(',‘:[k+l and (ii)

222 +8)°
c
Solution.
-I d: 1 d
@ frEa [
C "C Z+!

1

|
= 2(2_;(:')(—? (by.Cauchy's int~gral formula)

-Ji

2

” . cosz . . .- '
Gi) Let fez3= Bac The poinis where f(z) is not analytic are £/2+/2 and these

e :
points lic outside C, Hence J(z) is analytic inside and on C.

Complex Intcgration 161

-, By Cauchy's integral formula

:[11 4 8) z

. 1 wi
f e d;:fﬂdz=2.—.i)’(0)=2ni(§) =7
C

ELE where C is the circle [z] = 2 taken in the positive
Problem 6. Evz?luate m

Sense.

—_— i ic withinand on C.
4 ly - (2), is analytic within an
Solution. Let f(z) = S Clearly 3

-, By Cauchy’s integral formula

f £ dz !iz_) dz
€

-2z +D) =C Y

= 2rif(—i)

Exercises

: : - . - -
2de ‘ is the positively oriented circle |z|
1 Provelhmf?—_-—l-=2mwhemCls € pos’ :
C

2. Evalvate | —E— where C is |z —i| = 2 in the positive sense.
o 22 +4
Cc

.- e d: i i f radius 1 with centre at
- where C is the circle 0
3, Evaluate f = e
C
(i) z=iand
(i) z= -i.

' oiadu i le with vertices at (i)
Evaluate f -1 dz where C is & rectang

2&i,-2+i

C -
cand (ii)—i, 2 =i, 2+ 40,

h _‘_f edz _ .o oifr > Oand Cisthecircle 2] =3.
Show nl‘?-”ic 241

A

e
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g
6 Evalua 1 L4 . .
u"f:—m’ where C is the circle |z — 1] = 4.

=
7. Ewvaluate —13—:- he i i
/ z+Rf2w re C is the circle |z = 5.

£ Evaluate [

A i where C is
C

(i) the square bounda imzgi i
ands;;= : undzd by the real and Imaginary axis and the lines x = |
(1) the rectangle bounded b imagi
_ ¥ the real and imaginary axes and the i =
and y = 3 described in the anti-clockwise direction, e

9. Eval f dz St S 3
ualcc z_———ztz Y where C is (i) lz] = ~ (i) |z] = 3

10. Evaluate [35—
J A~
C

i, Evaluatcf d
2z —1)

1

—dzwhere Cis (i) [z] = -2'- (i) |z) = 2.

:
5

where Cis (i) 2] =2 (ii)]: = 1| =

>
12 EV-Iuatef___"'__ .
24y MhereCis

. ]
(i) ]zl=5 ) =1 (i) je-2i]=3
(V) Jz+2i1=3 (v) |z1=3.
13. Evaluate the i 2 i i
¢ the integral E-‘—Twh:r:CJSLhccuc]elz—Zl=2.
c

where C is

14.  Ewaluate _Ei-_i-ﬂz_

Cz‘+2-:+5
Old=1 " G)lz+1-ir=2  (Gii)lz+ 1 +i]=2

I15. Evaluate f z2dz s . )
0=+ Where C'is the circle || = 2.

16. P d: . e
. Prove T 0 where C is the positively oriented circle |» = 2.
c

2. % 3 (i) mlcos | +isin) (i) —afcos| —isinl)

Comples [niegronon 163

Answers.
4.(N0n) =mi 6 —2xi
10.6) 200 Gy O 1. G) =2xi (i) 7w
Al [ n (3 & ? )
13. -2— 14. (0 (m) = >

e 2 i
1.2xi o .()0Gi =i C.{)—2m (i

12. () 0 (i) 0 (i) 27 (iv) -2r (v)0

-3 i
g 2222 g5, -

6.4. Higher Derivatives
i i i It

i i nalvric function has dei, .wiives cf all ordess.
In this section we shall prove that an a _ b s

follows, in particuiar, that the derivative of an analytic

Junction. Letz € D.Let C e ey
ined in D. By Cauchy’s

Consider a function f(z) which i« analytic i.n a r'egirl:n D.
circle with centre z such that the circle and its interior is conta

integral formula we have
L A
)= — | — 1.
fRA= =l t—t
c

' Frev
-3

e
Wchliopmmatf'(z)=i;ié (?:T)i 's

! )
and in gencral f("’ (x) = 2,:! il c- :],..H' dg.
(%4

Theorem 6.12. Let f be analytic inside and on a simple closed curve C.
LR

—_— —

anil) ¢ =27
c

! fi .
Proof. By Cauchy’sintegral formula we have f(2) = e f Ej-z-f $

Let z b= any point inside C. Then f(2) =

Cc

' ©)
fatn=y@_ _L_[(_1O _1©) 4
h h@xi)! T-2-h (-2

| hf(E) ]dc
=t2nid lG-z2=-ME -2
% .
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. = '_[ S @¢)ds
ZJ”C C—z=h){-2) T (D)

Now[—__‘r..mL,_ ’.fLCldg
& @=z=-h)s-2) J C-22

_ J@) P4l
I ' Cf[(:—:—h}:c —z) (c—:)’]dg-
- [ f©) ( 1 |
- - d
c C-2)\¢—-z-k {-2) s

_ [ f®) [ h
Jo

L €-alG-2-nG-2)
=bj’ f{{}f’{'
(C-z=-h)(L—1)?
- i)y | [ S

2wi ey = :
i @=z=hG-h 2xi) ¢ -2? _

- "f S@)dg
2ni ] @ -z=h)g -2

fe+h -/ 1 J(§)dg
h 27i) (-2)?
c

- f (95
lec (;...;._,l,)(r_:):(“‘lﬂs(l)) edd)

Now, let M . i
denote th» maximum valve of | £(2)] on C. Let L be the length of C and

d be the shortest distance from z to any point on the curve C

.. For any point { on C we have

K=zlzdandf —z—h| 2|8 —2|—|h| > d — |h]

Complex Integration 165

fQ) l M
Hence |30 —z— |~ d2(d— 1hD
Froni: (2) we get i
fle+h—f@ _ V[ f@)dE cyz_l(__M )
h il =2k r d?(d — |hl)
E

. fa+mn—-f@ _ ! f(c}dc\ —0

e h 2rr:'c @ —z)lJ_'_

3 L(z+h)—-f(z)=_i_ [yt

© s h 2;:ic (¢ —2)?

b ) S@)dg
‘“z"’zm'c € — 22

Remark. By using induction on i we can prove that for any positive integer 11 v/¢ have
1

PR I
f_lz)—zﬂic (L’-—z)"""d;'

Note. Thus an analytic function has derivatives of all orders and the derivate of an

analytic function is again analytic.

: - where C is the circle |z] = 1.

et 2
Exmlcl.f—d = —
R cl” ¢ (n=1)

Let f(z) = ¢ Clearly f(z) is analytic and f)(z) = ¢* for all n.

By the formula for higher derivatives

v &t et i 0_
S e Y e ST
EL [emt= s o1

c c

Exam lcz.f-—Si"—zz——dz—-xiwhméismccircle|z|—|
’ c (z = /6)° S '

Solution.. Let f(2) = sinlz.Then f'(z) = 2 sin 2co8 2= sin 2z.

" f"(2) = 2cos2z. Also /6 lies inside C.
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. e c;: exl "(n/6
. !Iz—n;b}f o/ #/6)

= Zi(2cot =f3)

= mi

.~

Theorem 6.13. {Cauchy's inequality)
Let f(z) be analvtic inside and on the circle € with centre 2g and radius 7. Let M
denote the maximum of 1 £(2)] or: C. Then lf"“{zg}l =< 5-':—“—
I r

i
1
Proof. We have "' (z) = 2 [ I0d !
) i j (2 - zg)m*! -
(‘ - 3

(o). atf M "M
/ Lo:]: I (r*'*')(“"'_r"'

Hence

. n'M
ol = =
Theurer: 6.14. (Liouviile’s theorem)
A bounded entire function in the complex planc is conzar:

.

Prool. !~ “{z) be a bounded entire function. g
Since f(2) is boundad there exists » res! number M such that 1JC2)] = M for sl ¢
Let 2 be any complex number and r > 0 be any real number.
By Cauchy's inequality we have | f*(20)] < !
I
Taking the limit as r ~» 0o we pet f*(zg) = 0.
Since zg is arbitrary f*(z) = 0 for all ; in the complex plane.
. J(2) is a constamt function.
Theorem 6.14. (Fundamentsl theerem of algebru)
Every polynomial of degee > | has atleust one 2ero (roo) i C.
Prool. Let f(z) be » polynomial of degree > 1,
Supponef(:)hunominc.'l'\nnﬂz}vﬂlmall:,
Farther /(2) is an entire function in the comples plane. :
L : :
A m-ulhomMIMMAbonx — 02, f(z) — oo,
|

m—— = Oz — oo,

Jiz)

s -

Complex Integration 167

! ic 2 bounded function.

) i | ;
. function.
o ity theorem —— I8 3 constant L
s i fn:;’hcnu it is 3 polypomsa | of degree 150 which 1 @
; { function
% 2] 15 5 OOMECH
contradiction.
Hence [(2Vh
Hence the theorem

at at Jeast one root in C.

' " : - . D for cvery
rem 6,15, (Iorera’s ‘ f[ o
i i [ s in 2 simply cuanscted domain Dandif [/
If f(2) is continuoy J
: i nD.
simple closed curve C lying in D then Je m}yt‘}
*s theorem
(This theorem it the comvens of Cauchy l'l..

3 r such that
> 1‘uf6.2l!rltuhﬂmuul,m fascuca F(2)
Proof. By cofo..27Y
Fiz)= f(2)in D. |
Alse we bnow the derraatve ©
Hence F(2) 1 analytc D.

f12) is amalytic ia D.

30 amalytic fanction it 2a aalytx function

Solved Problems

"’n.l,l,f[“ l t ﬂ‘q 17 : d’ .kﬁ‘ ln the ‘w. b= ‘]l = 1
. ) sl

ki (-' _— ln)

c

f(z) = sin 2. Heace f‘(:lvm:.c\holnbumidcm =2

sing 4t
———-'-"-I"h‘r(’nl
Hesce (z—2/2)
c

Solution. Let

=2zilcosx/2)
=0

3 I
2t e C is the uoit circle.
Problem 2. Eﬂl““f m

c
33 dr ] r“:
€ Jlution. iy “t ) iy
) e "
C

Let fUz) = 2. Then [(2) = 32} and f7(2) = 62
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168 Complex Analysis

Also "i lies inside C.

Hence _-Z__-sz_ =_l_ & s [ _.f
e+ s \z) 772

[ &
— 2” I- .
= —1'6—(—3:}
_3x
B
Problem 3. (e* + zsinhz) dz
3. Evaluate a-[ TS where C s the circle ] = 4,

Solution. Let f(z) = €% 4 zsinhz
Therefore fi(z) = e* + zcoshz + sinhz
Also i lies inside C.

H [ f@ e
enceg ———(z g dz =2mif'(ni)
= 27i[e™ + micoshni + sichxi]
) = 2ni(—1 — i)

= =2ri(l + xi).
Problem 4. Show that when f is e : :
analytic within and i
() dz 3 ) de on a simple closed curve C and zg

is not on C then
i—2 & (z—20)?

f(2) '@
(z — 20)? and zZ—20

Solution. Case i. Suppose zg is in the exterior of C. Then bcth

are analytic inside and on C,

@) dz _
-2

Cuse ii. zg lies in the interior of C.

Then by Cauchy's i /') i
y's integral fonnula,!m dz=2nxi f (.20)'

f2)dz

ie By C.‘mchy 's theorem =
(7 — 2
20)

Ao by the formila s bi ettt [ f(2) -
r higher nvnu_vcsc mdz=2mf'(zo}.

J(2) & :

T — I i
5 (z—20)

Hcmcf‘r_'({!.d.=
P )

5 bounded region D and analy’

Complex Integration 169

= u(x,y) + iv {x, y) be continuous in a closed

ytic and not constant in the interior of D. Show that
the boundary ¢f D and never in the

Problem 5. Let the function f(z)
bounded region D and let it be anal
the function u(x, y) reaches its maximum value on
intericr <f O.

Solution. Consider the function e/

region D and nonconstant in the interior
tic and nonconstant in the interior of 1.

(2), Since f(2) is continuous in a closed bounded
of D, ef@ is also continuous in the closed

Now, the maximum value of |¢/ @] is anained only ata boundary point of D. (by theorem

5.11).
- Butle/\ = PSS

«(x.3) i attained only at a bonndary point of 5.

- Maximum value &
point of D.

. Maximum value of u{x, y) is attained only at a boundary

sin2z dz

Problem 6. Evaluate f — where Cislz] = 1.
. (z—mi/4)

Solution. Let f(z) = sin2z. Since f(2) is analytic and i /4 lies inside C.

sin2z 2mi i
R (o (z —i)? __Ffm(_‘_)

Now f'(z) = 2cos2z, f"(z) = —4sin2z f7(2) = —8cos2z.

Hence f" (i /4) = —8cos(x i/2)
= —8cosh (rrf2).
sinz_ % _ 3 oeh(nr2).

z—-ndt - 3
C

. 2 e e
Problem 7. Evaluse [ oy e wher C s el ] =2
& Bt e

Fle) =265 f7(0) = 4c¥: ["() =8l

BN 1 1T AN

LTy
I

2
t

Scanned with CamScanner



|

— |
—

==

|
o B W E W

1

170 Compler Analysis

By the formula for higher derivatives

Problem 8, Evaluate j = d- where Cis |z] = 3.

+2)(z [)2

' _GE+) -+
@+DE+D @+E+D?T

Solution.

T @A @G+
e 1
-(z-H}? il 712

e e T
— J
= (z+2)z+1) z+2 1 +C T+

We note that z = —2, —1 lie in the interior ofC.
Let f(2) = €*. tis analytic in C. Also f'(z) = ¢’

By Cauchy's integral formula

et
142 dr= 2"" f(_z} 2-7”6

ri f(—1)= 2rie™!

ﬁ!-....__..n

“

i _
f{z+l)’ z_( )f( 1) = 2nte”!.

. .
.. Fro 1 fe_ — £ _2— -1 -1
= )c Cr eI 2ni [ e e ]

— |
= 2rie ™

(D

Complex Integration 171

Exercises. g
Evaluzze the following
G+ A2 percCictrl= !
72
Sz A where Cis |z] =2
(z —rx/2)?
3 = 3
dz 3
3. [ (? = !)‘ where Cis 2| = >
I
f = whcra Lislzl=3
5. .fC is |z] = 2 prove the followmu
(0] f—-—-—- = 2mie
z—1
c -
s edr
o f @—1°
I‘ 2dz _ mie
(ai) _4)4 3
6. Evaluate f 3 dzwhere Cislz|=2
-———- where C is |z] =
7. Evaluate f 2e-3)
tanz.dz
8. Evaluate _'___'i' wher:C islz] =1
—n/4)
9. Evaluate the integral — l' -Ef—d—:— if the point lies inside the simple closed
’ 2rn (z-
curve C. 24
val tcmcmtcgrnlf € 2 when
0. S 2(1 —2)°

(i) thepoint® lics inside and the peint 1 is outside C.

(i) the point | lics inside and the point 0 is outside C.

(ii) the poinlsOmd 1 both lieinside C.
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172 Complex Analysis

”"Pm“:lhalf__.dt - ;
J G =g e Cislemil =
12, Evaluate f_ 22 dz ) o

E-,‘( — where Cisjzl =1

2z - 1)2

13. E\':Iualr:fm ‘ :
z Gr + 1)3 where Cis [2] = 1

z el dz

I4. Evaleate [ ———
4 (4z + mi)?

where Cis [z] =]

15. Eval sz de
- uatc‘ér :j -tz— where C is |z] _- 1 "
16. Evaluat femzd:
e zh+l-wthislzl=l
17. Evalvate M i |
J /6] where Cis |z] =1
18, Provetha ! €742 _1val,
] sl e Bty == .ifr > Oand Cis thecircle |z] =3
19. 1 Cisa closed o |
2 is a closed curve describ-~4 iz I _ posilive sense and
¢l = —(z‘+;) as how tha
7] s == i (
= ow that @(zg) = 12wiz3 when zg is inside C and

¢(zg) = 0 when zg lies outside C. -

Answers
1.2m4 2. =25 3. 2mie? 4 a'2xi
. o 3 .  nal.
& ol =i '
- i 7. 5 9.e7(1 +a/2) 0 (1) 27
(i) —mei (i) 2 — &)mi
i . i .
122E pB.=2E w2 [ o g
. e e —
2 27 7 +4+'(' ?)]
1s.2m 1 ED2xE g 20
. (2! T
PERRARREEY =

TN WSS

7. Series Expansions

7.0. Introduction

In this chapter we consider the problem of representing 2
series. We prove tiat if a function is analytic at a point 2o
a power series called Taylor's series consisting of non-ncga
the expansion is valid in some neighbourhood

which is unalytic inan annular regiona < [2—20
Laurent's series consisting of positive and negative powers of z—z0-
the concept of singular points of 2 function and classify the singu
the behaviour of the function in the nei ghbourhood of a singulanity.

7.1. Taylor’s Series
Theorem 7.1. (Taylor’s theorem)

Let f(z) be analytic ina region
power series inz — zo given by

D containing Zg-

f"(z0) 2
-—2-!'—{1-—10) -

F@ = [0+ !—‘If—"l(z- fo)ot

The expansion is valid in the Jargest open disc with centre zg contained in D.

Proof. Letr > 0Obe such that the disc [z — ol <ris contained jn D.

Let0 < ry < r-LetCy be the circle |z = 20l =1

By Cauchy's integrai formula we have

e
== i
G .
Also by theorem on higher derivatives we have
i (n) = _'_‘_!__ f(()d&'
= ?mc G-
]

(n) (-
+f——-%-']—}(z—zu\"+---

given function us @ power
then it can be expanded as
tive powers of Z — 20 and
of zg. We also prove that a furction f(z)

| < bcan be expanded asa series called
We also introduce

lar points and discuss

Then f(z) can be represented as a

e ()

Pa——— L
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