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CHAPTER ONE 

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS 

1.1   Introduction 

      Most natural phenomena, whether in the domain of fluid dynamics, 

electricity, magnetism, mechanics, optics, heat flow, economy, biology 

can be described in general by partial differential equations (PDEs). For 

example, the natural laws of physics, such as Maxwell's equations, New-

ton's law of cooling, the Navier-Stokes equations, Newton's equations of 

motion, and Schrodinger's equation of quantum mechanics, are stated (or 

can be) in terms of PDEs, that is, these laws describe physical phenomena 

by relating space and time derivatives. Derivatives occur in these equa-

tions because the derivatives represent natural things (like velocity, accel-

eration, force, friction, flux, current). 

1.2  Basic Concepts and Definitions 
Definition 1.1 

    A partial differential equation (usually denoted by PDE) is an equation 

that contains in addition to the dependent variable and independent varia-

bles, one or more partial derivatives of the dependent variable with re-

spect to one or more independent variables.  In general, it may be written 

in the form: 

 , , , , , , , , , 0, (1.1)x y xx xyF x y u u u u u     

involving several independent variables , ,x y  , an unknown function 

( ), ,u x y   of these variables, and the partial derivatives , , ,x yu u   

, ,xx xyu u , of the unknown function. 

Definition 1.2 

      The general solution of a partial differential equation constitute of  

arbitrary functions of independent variables involved in (PDE) rather than 

on arbitrary constants. These arbitrary functions are defined on some do-

main nD   which is continuously differentiable such that all its partial 

derivatives involved in equation (1.1) exist and satisfy (1.1) identically. 

      We recall that in the case of ordinary differential equations, the first 

task is to find the general solution, and then a particular solution is deter-

mined by finding the values of arbitrary constants from the prescribed 

conditions. But, for partial differential equations, selecting a particular 

solution satisfying the additional conditions from the general solution of a 

partial differential equation may be as difficult as, or even more difficult 

than, the problem of finding the general solution itself. This is so because 

the general solution of a partial differential equation involves arbitrary 

functions; the specialization of such a solution to the particular form 

which satisfies supplementary conditions requires the determination of 

these arbitrary functions, rather than merely the determination of con-

stants.  
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      As indicated above, the general solution of a linear partial differential 

equation contains arbitrary functions. This means that there are infinitely 

many solutions and only by specifying the initial and/or boundary condi-

tions can we determine a specific solution of interest. 

    Usually, both initial and boundary conditions arise from the physical 

problems.  

      In the case of partial differential equations in which one of the inde-

pendent variables is the time t , an initial condition(s) specifies the physi-

cal state of the dependent variable ( , )u x t  at a particular time 0t t  or 

0.t   Often ( ,0)u x  and/or ( ,0)tu x  are specified to determine the function 

( , )u x t  at later times. Such conditions are called the Cauchy (or initial) 

conditions. It can be shown that these conditions are necessary and suffi-

cient for the existence of a unique solution. The problem of finding the 

solution of the initial-value problem with prescribed Cauchy data on the 

line 0t   is called the Cauchy problem or the initial-value problem. 
      In each physical problem, the governing equation is to be solved with-

in a given domain D  of space with prescribed values of the dependent 

variable (x, )u t  given on the boundary D  of D . Often, the boundary 

need not enclose a finite volume in which case, part of the boundary is at 

infinity. For problems with a boundary at infinity, boundedness condi-

tions on the behavior of the solution at infinity must be specified. This 

kind of problem is typically known as a boundary-value problem, and it 

is one of the most fundamental problems in applied mathematics and 

mathematical physics. 
      There are three important types of boundary conditions which arise 

frequently in formulating physical problems. 

(i) Dirichlet conditions 
In this case the solution u  is prescribed at each point of a boundary 

D of a domain D . The problem of finding the solution of a given 

equation partial differential equation inside D  with prescribed values 

of u  on D is called the Dirichlet boundary-value problem 

(ii) Neumann conditions  

In this case the values of normal derivative 
u

n




 of the solution on the 

boundary D are specified. Here, the problem is called the Neumann 

boundary-value problem 

(iii) Robin conditions 

where 
u

au
n

 
 

 
 is specified on D . The corresponding problem is 

called the Robin boundary-value problem. 
Definition 1.3 
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      The order of a partial differential equation is the order of the highest 

ordered partial derivative appearing in the equation. For example 

2 e ,y

xx xy yyu xu u    

is a second-order partial differential equation, and 

8 7 ,xxy yyu xu u y    

is a third-order partial differential equation, and  
4

4
0

u u

t x

 
 

 
, 

is a fourth-order partial differential equation. 
Definition 1.4 

       A partial differential equation is said to be linear if the function F  is 

linear function in the dependent variable and all its derivatives with coef-

ficients depending only on the independent variables, for example 

2 2( ) sin( ),
u u

x y x y yu x y
x y

 
    

 
 

is linear equation. While the equations  

2 2 2( ) 0
u u

x y x y yu
x y

 
   

 
, 

cos ,
u u

u x u
x y

 
 

 
 

are nonlinear equations. 

        In general, the linear partial differential equation of order n  in two 

independent variables has the form 

, 0

( , ) ( , ), (1.2)
i ji j n

ij i j
i j

u
A x y G x y

x y

 






 
  

where ( , )ijA x y , ( , )G x y are functions of the independent variables ,x y . 

Definition 1.5 

       A partial differential equation it is said to be quasi-linear if it is linear 

in the highest-ordered derivative of the dependent variable. That is the co-

efficients of terms involve functions of only lower order derivatives of the 

dependent variables. However, terms with lower order derivatives can occur 

in any manner. For example, the equation 

,x tuu u u   

is first-order quasi-linear partial differential equation., while the equation 

sin ,xxx yu u xuu y   

is a second-order quasi-linear partial differential equation.  
Definition 1.6 

      A quasi-linear partial differential equation it is said to be semi-linear 

if  the coefficients of highest derivatives are functions of the independent 

variables alone, for example 
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2 ,xx yyu u u   

Definition 1.7 

        The equation (1.2) is called homogeneous if the right hand side 

( , )G x y  is identically zero for all x  and y. If ( , )G x y  is not identically 

zero, then the equation is called nonhomogeneous. 
Definition 1.8 

       The linear partial differential equation is called of homogeneous 

terms if all the terms of the linear partial differential equation  have the 

same order, for example 
2 sin e .x y

xxx xyy yyyu xy u xu     

1.3  A Few well-known PDEs 
1.3.1 Heat equation  

       It is a partial differential equation gives the distribution of tempera-

ture in a specific region as a function of space and time when the temper-

ature at the boundaries, the initial distribution of temperature, and the 

physical properties of the medium are given. 

 (heat equation in one dimension)

 (heat equation in two dimensions)

,

.  

t xx

t xx yy

u u

u u u



 
 

1.3.2 Laplace's equation 

       It is satisfied by the potential fields in source-free domains. For ex-

ample, the Laplace equation is satisfied by the gravitational potential of 

the gravity force in domains free from attracting masses, the potential of 

an electrostatic field in a domain free from charges, etc. 

2

0, (Laplace sequation in Cartesian coordinates)

1 1
0. (Laplace sequation in polarcoordinates)

xx

rr

yy zz

r

u u u

u u u
r r



  

  
 

1.3.3 Wave equation 
       It is a partial differential equation describes various oscillatory pro-

cesses and processes of wave propagation: 

(wave equationin t. hreedimensions)xx yyt zt zu u u u    

1.3.4 Telegraph equation 

        It is a partial differential equation describes the voltage on an elec-

trical transmission line with distance and time: 

. (telegraph equation)xx tttu u u u    , 

1.3.5 Schrödinger equation 

       It is a partial differential equation that governs the wave function of a 

quantum-mechanical system 
2

.
2

u
i u Vu

t m


   


 

 1.4 Construction of Partial Differential Equations 

        There are two methods to form the partial differential equations:  
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 Elimination of arbitrary constants.  
   Elimination of arbitrary functions. 

1.4.1 Elimination of arbitrary constants  

       Consider a system of geometrical surfaces described by the equation 
( , , , , ) 0, (1.3)x y z a b   

where a   and b  are arbitrary parameters. We differentiate (1.3) with re-

spect to x  and y  to obtain 

0 , 0, (1.4)x z y zp q        

where 
z

p
x





 , 
z

q
y





. 

The set of two equations (1.3) and (1.4) involves two arbitrary parameters 

a   and b . In general, these two parameters can be eliminated from this 

set to obtain a first-order equation of the form 
( , , , , ) 0. (1.5)x y z p q   

Thus the system of surfaces (1.4) gives rise to a first-order partial differ-

ential equation (1.5). 

         In general, if the number of arbitrary constants to be eliminated is 

equal to the number of independent variables, then only one first-order 

partial differential equation arises. If the number of arbitrary constants to 

be eliminated is less than the number of independent variables, then more 

than one first-order partial differential equation  is obtained. If the num-

ber of arbitrary constants to be eliminated is more than the number of in-

dependent variables, the partial differential equations obtained are of se-

cond or higher order. 

Example (1.1) 

     Find the PDE corresponding to the family of spheres 
2 2 2 2( ) . (1.6)x y z c r     

Solution 

       Differentiating the equation (1.6) with respect to x  and y  gives 

( ) 0  and ( ) 0.x p z c y q z c       

Eliminating the arbitrary constant c   from these equations, we obtain the 

first-order, partial differential equation 
0.yp xq   

Example (1.2) 

Find the PDE corresponding to the family of spheres 
2 2 2 2( ) .( )x a y b z r      

Solution 

        We differentiate the equation of the family of spheres with respect to 

x  and y  to obtain 

( ) 0, ( ) 0.x a zp y b zq       
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Eliminating the two arbitrary constants a  and b , we find the nonlinear 

partial differential equation 

 2 2 2 21 .z p q r    

Example (1.3) 

Form the partial differential equation by eliminating the constants from 
. (1.7)z ax by ab    

Solution  

           Differentiating Eq. (1.8) partially with respect to x  and y , we ob-

tain 

,
z z

a p b q
x y

 
   

 
 

Substituting p  and q  for a  and b  in Eq. (1.7), we get the required PDE 

as 
.z px qy pq    

Example (1.4) 

      Find the partial differential equation of the family of planes, the sum 

of whose , ,x y z intercepts is equal to unity. 

Solution  

Let  

1,
x y z

a b c
    

be the equation of the plane in intercept form, so that 1a b c   . Thus, 

we have 

1, (1.8)
1

x y z

a b a b
  

 
 

Differentiating Eq. (1.8) with respect to x  and y , we have 

1 1
 and , (1.9)

1 1

p q

a b a a b b
   

   
 

From Eq. (1.9), we get 

. (1.10)
p b

q a
  

Also, from Eqs. (1.9) and (1.10), we get 

1 1 or 1 1.
p p

pa a b a a a p
q q

 
         

 
 

Therefore, 

. (1.11)
( )

q
a

p q pq


 
 

Similarly, from Eqs. (1.9) and (1.10), we find 
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, (1.12)
( )

p
b

p q pq


 
 

Substituting the values of a  and b  from Eqs. (1.11) and (1.12) respec-

tively to Eq. (1.8), we have 

1,
p q pq p q pq p q pq

x y z
q p pq

     
  


 

or 

1
,

y

q p pq pq

x z

p q
  

 
 

That is, 

,
pq

px qy z
p q pq

  
 

 

which is the required PDE. 

Example (1.5) 

Find the differential equation of all spheres of radius ,  having center in 

the xy -plane 

Solution 

Let  
2 2 2 2( ) ( ) , (1.13)x a y b z       

be the equation of the spheres having center at ( , ,0)a b  in the xy -plane. 

Differentiating Eq. (1.13) with respect to x  and y , we have 

2( ) 2 0 , 2( ) 2 0. (1.14)x a pz y b qz       

Substituting of ( )x a   and ( )y b   from Eq. (1.14) to Eq. (1.13), we 

have 

 2 2 2 21 ,z p q     

which is the required PDE. 
1.4.2 Elimination of arbitrary functions  

        Suppose u  and v  are any two given functions of ,x y and z . Let F  

be an arbitrary function of u   and v  of the form 
( , ) 0. (1.15)F u v   

We can form a differential equation by eliminating the arbitrary function 

F . For this, we differentiate Eq. (1.15) partially with respect to x  and y   

to get 

0, (1.16)
F u u F v v

p p
u x z v x z

        
              

 

and 

0, (1.17)
F u u F v v

q q
u y z v y z

        
      

        
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where 
z

p
x





 , 
z

q
y





. 

Now, eliminating / and /F u F v     from Eqs. (1.16) and (1.17), we 

obtain 

0,

u u v v
p p

x z x z

u u v v
q q

y z y z

   
 

   


   
 

   

 

which simplifies to 

( , ) ( , ) ( , )
, (1.18)

( , ) ( , ) ( , )

u v u v u v
p q

y z z x x y

  
 

  
 

where,  

( , )
,

( , )

u v

u v x x

u vx y

y y

 

  

 

 

 

Eq. (1.18) is a linear PDE of the type 
,Pp Qq R   

where 

( , ) ( , ) ( , )
, , .

( , ) ( , ) ( , )

u v u v u v
P Q R

y z z x x y

  
  
  

 

Eq. (1.18) is called Lagrange's PDE of first order.  

If z  is given in the form 
( ) ( ) (*)z u v    

where ,   are arbitrary functions of ,u v  respectively, and ,u v  are func-

tions of ,x y . Differentiating Eq. (*) with respect to x  and y , we have 

2 2

2 2

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) (**)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x x

y y y

xx x x xx xx

xy x y x y xy xy

yy y y yy yy

z u u v v

z u u v v

z u u v v u u v v

z u u u v v v u u v v

z u u v v u u v v

 

 

   

   

   

   


  


      
       

       

 

Now, eliminating ( ), ( ), ( ), ( )u u v v        from Eq. (**), we obtain 
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2 2

2 2

0 0

0 0

0 (***)

x x x

y y y

xx xx xx x x

xy xy xy x y x y

yy yy yy y y

z u v

z u v

z u v u v

z u v u u v v

z u v u v

  

Equation (***) is a second-order linear partial differential equation, can 

be written in the form  

xx xy yy x yPz Qz Rz Sz Tz W     , 

where , , , , ,P Q R S T W  are certain functions of ,x y . In general,  elimina-

tion of arbitrary functions of a relation of the form  

1

( )
n

k k

k

z f u


  

where 1 2, , , nf f f   are the arbitrary function, and  1 2, , , nu u u  are cer-

tain functions of ,x y , implies a thn -order linear partial differential equa-

tion. 

The following examples illustrate the idea of formation of PDEs. 

Example (1.6) 

Form the PDE by eliminating the arbitrary function from 

(i) ( ) ( ),where 1.z f x it g x it i        

(ii)  2 2 2, 0.f x y z x y z       

Solution 

(i) Given  
( ) ( ).z f x it g x it     

Differentiating it twice partially with respect to x  and t , we get 

2

2

( ) ( ),

( ) ( ). (1.19)

z
f x it g x it

x

z
f x it g x it

x


    




    



 

Here,  f   indicates derivative of f   with respect to ( )x it and g   indi-

cates derivative of g  with respect to  x it . Also, we have 

2

2

( ) ( ),

( ) ( ). (1.20)

z
if x it ig x it

t

z
f x it g x it

t


    




     



 

From Eqs. (1.19) and (1.20), we at once, find that 
2 2

2 2
0,

z z

x t

 
 

 
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which is the required PDE. 

(ii) The given relation can be written in the form 
( , ) 0,u v   

where 2 2 2,u x y z v x y z      .  Hence, the required PDE is of 

the form 
,  (Lagrange equation) Pp Qq R   

where 

1 2( , )
2( ),

1 2( , )

1 2( , )
2( ),

1 2( , )

u v

yu v y y
P z y

zy z u v

z z

u v

zu v z z
Q x z

u v xz x

x x

 

  
    
  

 

 

  
    

 

 

 

and 

1 2( , )
2( ).

1 2( , )

u v

xu v x x
R y x

u v yx y

v v

 

  
    

 

 

 

Hence, the required PDE is 
2( ) 2( ) 2( ),z y p x z q y x      

or 
( ) ( ) .z y p x z q y x      

Example (1.7) 

Eliminate the arbitrary function from the following and hence, obtain the 

corresponding partial differential equation: 

(i)  2 2z xy f x y     

(ii)  z f xy z   

Solution 

(i) Given  2 2z xy f x y   . Differentiating it partially with respect to 

x and y , we obtain 

 

 

2 2

2 2

2 , (1.21)

2 . (1.22)

z
y xf x y p

x

z
x yf x y q

y


   




   



 

Eliminating f   from Eqs. (1.21) and (1.22), we get 
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2 2 ,yp xq y x    

which is the required PDE. 

(ii) Given ( / )z f xy z . Differentiating it partially with respect to x  and 

y , we get 

2

2

( )
( / ) , (1.23)

( )
( / ) . (1.24)

z y z xp
f xy z p

x z

z x z yq
f xy z q

y z

 
 



 
 



 

Eliminating f   from Eqs. (1.23) and (1.24), we find 

0xp yq   

or 
px qy  

Which is the required PDE
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CHAPTER TWO 

PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER 

2.1 Introduction 

         Many problems in mathematical, physical, and engineering sciences 

deal with the formulation and the solution of first-order partial differential 

equations. From a mathematical point of view, first-order equations have 

the advantage of providing a conceptual basis that can be utilized for se-

cond-, third-, and higher-order equations. 

        This chapter is concerned with first-order, quasi-linear, linear and 

nonlinear partial differential equations and their solution by using the La-

grange method of characteristics and its generalizations. 

        A first-order partial differential equation with n  independent varia-

bles has the general form 

1 21 2 1 2( , , , , , , , , ) 0, ( , , , ) (2.1)
n

n

n x x x nF x x x z z z z x x x      

where 1 2( , , , )nz x x x is the unknown function and F  is a given function.       

         Equation (2.1) is called a quasi-linear partial differential equation if 

it is linear in first-partial derivatives of the unknown function 

1 2( , , , )nz x x x . So, the general quasi-linear equation must be of the form:  

1 2 1 2

1

( , , , , ) ( , , , , ), (2.2)
n

i

i

n n

i

z
a x x x z x x

x
f x z




 


  

where its coefficients ia  are functions of 1 2, , , nx x x  and z . The follow-

ing are examples of quasi-linear equations: 

     

 

2 2 2 2

2

2 2

,

0,

.

x y

x

x

y

y

x y z z y x z z x y z

zz z nz

y z z xyz xz

    

  

  

 

    Equation (2.1) is called a semi-linear partial differential equation if its 

coefficients ia  are independent of z , and hence, the semilinear equation 

can be expressed in the form 

2

1

1 1 2( , , , ) ( , , , , ). (2.3)
n

i

i

n n

i

z
a x x x x x xf z

x


 


  

Examples of semilinear equations are 
2 2

2 2 2

2

( 1) ( 1) (

,

,)

0,

x y

x y

t x

xz yz z x

x z y z x y z

z az z

  

    

  

 

where a  is a constant. 
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        Equation (2.1) is said to be linear if F  is linear in each of the varia-

bles z  and 
i

z

x




, and the coefficients of these variables are functions only 

of the independent variables 1 2, , , nx x x . The  general, first-order, linear 

partial differential equation has the form 

1 2 1 2 1 2

1

( , , , ) ( , , , ) ( , , , ). (2.4)n ni n

i

n

i

a b
z

x x x x x x z f x x x
x


   


  

Unless stated otherwise, the functions 1 2( , , , ) ,i na x x x  1 2( , , , ) ,nxb x x  

1 2( , , , )nf x x x  are assumed to be continuously differentiable. Equations 

of the form (2.4) are called homogeneous if 1 2( , , , ) 0nf x x x   or non-

homogeneous if 1 2( , , , ) 0nf x x x  . 

Obviously, linear equations are a special kind of the quasi-linear equation 

(2.2) if ,ia  are independent of z  and f   is a linear function in z . Similar-

ly, semilinear equation (2.3) reduces to a linear equation if f   is linear in 

z  .  

       Examples of linear equations are 

0,

( ) ,

,

( ) ( ) ( ) 0.

x y

x

x y

x y

x y z

xz yz nz

nz x y z z e

yz xz xy

y z u z x u x y u

  

   

 

     

 

      An equation which is not linear is often called a nonlinear equation. 

So, first-order equations are often classified as linear and nonlinear. 

2.2 Geometrical Interpretation of First-order Partial Differential 

Equations 
       Consider a first order quasi-linear PDE of the form 

( , , ) ( , , ) ( , , ), (2.5)
z z

P x y z Q x y z R x y z
x y

 
 

 
 

or simply 
, (2.6)Pp Qq R   

where x   and y  are independent variables. The solution of Eq. (2.5) is a 

surface S  lying in the  ,  ,  x y z  space, called an integral surface. If we 

are given that ( , )z f x y  is an integral surface of the PDE (2.6). Then, 

the normal to this surface will have direction cosines proportional 

( / , / , 1)z x z y       or ( , , 1)p q  . Therefore, the direction of the normal is 

given by { , , 1}n p q  .  

Clearly, Eq. (2.6) can be written as the dot product of two vectors 
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( , , ).( , , 1) 0, (2.7)P Q R p q  

From the PDE (2.7), we observe that the normal n  is perpendicular to the 

direction defined by the vector { , , }t P Q R . This clearly shows that the 

vector { , , }t P Q R  must be a tangent vector of the integral surface 

( , )z f x y   at the point ( , , )x y z , and hence, it determines a direction 

field called the the characteristic direction or Monge axis. This direction 

is of fundamental importance in determining a solution of equation (2.5), 

see Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A curve in ( , , )x y z -space, whose tangent at every point coincides with 

the characteristic direction field ( , , )P Q R , is called a characteristic curve. 

If the parametric equations of this characteristic curve are 
( ), ( ), ( ).x x t y y t z z t    

Then the tangent vector to this curve is , ,
dx dy dz

dt dt dt

 
 
 

 which must be 

equal to ( , , )P Q R . Therefore, the system of ordinary differential equa-

tions of the characteristic curve is given by 

( , , ), ( , , ), ( , , ). (2.8)x y z x y
dx dy dz

P Q R
dt dt t

z x y z
d

    

These are called the characteristic equations of the quasi-linear equation 

(2.5). Equivalently, the characteristic equations (2.8) in the nonparametric 

form are 

(2.9)
( , , ) ( , , ,

.
) ( , )x y z x y z

dx dy dz

P Q R x y z
   

2.3 Method of Characteristics and General Solutions 

        We can use the geometrical interpretation of first-order, partial dif-

ferential equations and the properties of characteristic curves to develop a 
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method for finding the general solution of quasi-linear equations. This is 

usually referred to as the method of characteristics due to Lagrange. This 

method of solution of quasi-linear equations can be described by the fol-

lowing result. 

Theorem 2.1  
The general solution of the linear PDE 

, (2.10)Pp Qq R   

can be written in the form ( , ) 0F u v   , where F   is an arbitrary function, 

and 1( , , )u x y z C  , 2( , , )v x y z C  are solution curves of the characteristic 

equations 

(2.11)
( , , ) ( , , ) ( , , )

dx dy dz

P x y z Q x y z R x y z
   

Proof  

Since 1( , , )u x y z C  and 2( , , )v x y z C  satisfy equations (2.11), then these 

equations must be compatible with the equations 

0,
u u u

du dx dy dz
x y z

  
   
  

 

and 

0.
v v v

dv dx dy dz
x y z

  
   
  

 

This is equivalent to the equations 

0,

(2.12)

0.

u u u
P dx Q dy R dz

x y z

v v v
P dx Q dy R dz

x y z

   
      


     

   

 

We now solve (2.12), for P , Q , and R  to obtain 

, 
u v u v u v u v u v u v

y z z y z x x z x y

P Q R

y x

 
           

  
           

 

which can be rewritten as 

. (2.13)
( , ) ( , ) ( , )

( , ) ( , ) ( , )

P Q R

u v u v u v

y z z x x y

 
  

  

 

Now, we may recall from Section 1.4 that the relation  ,  0,F u v   where 

F   is an arbitrary function, leads to the partial differential equation 

( , ) ( , ) ( , )
(2.14)

( , ) ( , ) ( , )

u v u v u v
p q

y z z x x y

  
 

  
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Substituting for
( , ) ( , )

,
( , ) ( , )

u v u v

y z z x

 

 
 , and 

( , )

( , )

u v

x y




 from (2.13) in (2.14), we 

find that  ,  0,F u v   is a solution of (2.10). This completes the proof. 

We shall illustrate this method through following examples: 

Example (2.1)  

Find the general integral of the following linear partial differential equa-

tions: 

(i) 2 ( 2 ),y p xyq x z y     

(ii) 2 2( ) .( )y zx p x yz q x y      

Solution 

(i) The integral surface of the given PDE is generated by the integral 

curves of the auxiliary equations 

2
. (2.15)

( 2 )

dx dy dz

y xy x z y
 
 

 

The first two members of the above Eq. (2.15) give us 

 or ,
dx dy

xdx ydy
y x
  


 

which on integration results in 
2 2

2 2

1 or . (2.16)
2 2

x y
C x y C      

The last two members of Eq. (2.15) give 

 or 2 ,
2

dy dz
zdy ydy ydz

y z y
   

 
 

that is, 
2 ,ydy ydz zdy   

which on integration yields 
2 2

2 2 or (2. ) . 17y yz C y yz C     

Hence, the curves given by Eqs. (2.16) and (2.17) generate the required 

integral surface as 

 2 2 2, 0.F x y y yz    

(ii) The integral surface of the given PDE is generated by the integral 

curves of the auxiliary equation 

2 2
.

( )

dx dy dz

y zx x yz x y
 

   
 

To get the first integral curve, let us consider the first combination as 

2 2 2 2
,

xdx ydy dz

xy zx xy y z x y




   
 

or 
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  2 22 2
.

xdx ydy dz

x yz x y





 

That is, 

 
.xdx ydy zdz   

On integration, we get  
2 2 2

2 2 2

1 or . (2.18 
2

)
2 2

x y z
C x y z C       

Similarly, for getting the second integral curve, let us consider the com-

bination such as 

2 2 2 2
,

ydx xdy dz

y xyz x xyz x y




   
 

or 
0,ydx xdy dz    

which on integration results in 

2 . (2.19)xy z C   

Thus, the curves given by Eqs. (2.18) and (2.19) generate the required in-

tegral surface as 

 2 2 2 , 0.F x y z xy z     

Example (2.2)  

Use Lagrange's method to solve the equation 

0,

1

x y z

z z

x y

  

 




 

 

where ( , )z z x y . 

Solution  

The given PDE can be written as 

0,
z z z z

x y z
y x y x

     
       
                  

 

or 

( ) ( ) .
z z

y z z x x y
x y

     
 

    
 

 

The corresponding auxiliary equations are 

. (2.20)
( ) ( ) ( )

dx dy dz

y z z x x y     
 

  
 

Using multipliers ,x y , and z  we find that each fraction is 
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onefraction.
0

xdx ydy zdz 
  

Therefore, 
0,xdx ydy zdz    

which on integration yields 
2 2 2

1 .x y z C    

Similarly, using multipliers ,   , and  , we find from Eq. (2.20) that 

each fraction is equal to 
0,dx dy dz      

which on integration gives 

2 .x y z C      

Thus, the general solution of the given equation is found to be 

 2 2 2 , 0.F x y z x y z        

Example (2.3) 

Find the general integrals of the following linear PDEs: 

(i) 2 2( ) ,pz qz z x y      

(ii)   2 2 2x yz p y zx q z xy     . 

Solution 

(i) The integral surface of the given PDE is generated by the integral 

curves of the auxiliary equation 

2 2
. (2.21)

( )

dx dy dz

z z z x y
 
  

 

The first two members of Eq. (2.21) give 
0,dx dy   

which on integration yields 

1 . (2.22)x y C   

Now, considering Eq. (2.22) and the first and last members of Eq. (2.21), 

we obtain 

2 2

1

2
2 ,

zdz
dx

z C



 

or 

2 2

1

,
zdz

dx
z C




 

which on integration yields 

 2 2

1 2l 2 ,n z C x C    

or 
2 2

2ln ( ) 2 . (2.23)z x y x C       
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Thus, the curves given by Eqs. (2.22) and (2.23) generates the integral 

surface for the given PDE as 

  2 2 2,ln 2 2 0.F x y x y z xy x       

(ii) The integral surface of the given PDE is given by the integral curves 

of the auxiliary equation 

2 2 2
, (2.24)

dx dy dz

x yz y zx z xy
 

  
 

Equation (2.24) can be rewritten as 

. (2.25)
( )( ) ( )( ) ( )( )

dx dy dy dz dz dx

x y x y z y z x y z z x x y z

  
 

        
 

Considering the first two terms of Eq. (2.25) and integrating, we get 

1ln( ) ln( ) ln ,x y y z C     

1 , (2.26)
x y

C
y z





 

Similarly, considering the last two terms of Eq. (2.25) and integrating, we 

obtain 

2 , (2.27)
y z

C
z x





 

Thus, the integral curves given by Eqs. (2.26) and (2.27) generate the in-

tegral surface 

, 0. 
x y y z

F
y z z x

  
 

  
 

2.4 Integral Surfaces Passing Through a Given Curve 

          In the previous section, we have seen how a general solution for a 

given linear PDE can be obtained. Now, we shall make use of this general 

solution to find an integral surface containing a given curve as explained 

below. 

Suppose, we have obtained two integral curves described by 

1

2

( , , )
, (2.28)

( , , )

u x y z C

v x y z C

 


 
 

from the auxiliary equations of a given PDE. Then, the solution of the 

given PDE can be written in the form 
( , ) 0. (2.29)F u v   

Suppose, we wish to determine an integral surface, containing a given 

curve C  described by the parametric equations of the form 
( ), ( ), ( ), (2.30)x x t y y t z z t    

where t  is a parameter. Then, the particular solution (2.28) must be like 
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1

2

,{ ( ), ( ), ( )}
(2.31)

{ ( ), ( ), ( )} .

u x t y t z t C

v x t y t z t C

 


 
 

Thus, we have two relations, from which we can eliminate the parameter 

t   to obtain a relation of the type 

 1 2, 0, (2.32)F C C   

which leads to the solution given by Eq. (2.29). For illustration, let us 

consider the following couple of examples. 

Example (2.4)  
Find the integral surface of the linear PDE 

     2 2 2 2 ,x y z p y x z q x y z      

containing the straight line 0,  1.x y z     

Solution  

The auxiliary equations for the given PDE are 

     2 2 2 2
, (2.32)

dx dy dz

x y z y x z x y z
 

   
 

Using the multiplier   ,x y z  we have 

0.yzdx zxdy xydz    

On integration, we get 

1 , (2.33)xyz C  

Using the multipliers ,x y  and z . Then  we find that each fraction in Eq. 

(2.32) is equal to 
0,xdx ydy zdz    

which on integration yields 
2 2 2

2 . (2.34)x y z C    

For the initial curve in question, we have the equations in parametric 

form as 
, , 1.x t y t z     

Substituting these values in Eqs. (2.33) and (2.34), we obtain 
2

1

2

2

.
2 1

t C

t C

 


  
 

Eliminating the parameter t , we find 

1 22 ,1 C C   

or 

1 22 1 0.C C    

Hence, the required integral surface is 
2 2 2 2 1 0x y z xyz      

Example (2.5)  
Find the integral surface of the linear PDE 
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,xp yq z   

which contains the circle defined by 
2 2 2 4, 2.x y z x y z       

Solution  
The integral surface of the given PDE is generated by the integral curves 

of the auxiliary equation 

. (2.35)
dx dy dz

x y z
   

Integration of the first two members of Eq. (2.35) gives 
ln ln ln ,x y C   

or 

1 . (2.36)
x

C
y
  

Similarly, integration of the last two members of Eq. (2.35) yields 

2 . (2.37)
y

C
z
  

Hence, the integral surface of the given PDE is 

, 0. (2.38)
x y

F
y z

 
 

 
 

If this integral surface also contains the given circle, then we have to find 

a relation between /x y   and /y z . 

       The equation of the circle is 
2 2 2 4 (2.39)

2 (2.40)

x y z

x y z

  

  
 

From Eqs. (2.36) and (2.37), we have 

1 2 1 2/ , / /y x C z y C x C C    

Substituting these values of y  and z  in Eqs. (2.39) and (2.40), we find 

2 2
2 2

2 2 2 2 2 2

1 1 2 1 1 2

1 1
4,  or 1 4, (2.41)

x x
x x

C C C C C C

 
      

 
 

and 

1 1 2 1 1 2

1 1
2,  or 1 2, (2.42)

x x
x x

C C C C C C

 
      

 
 

From Eqs. (2.41) and (2.42) we observe 
2

2 2 2

1 1 2 1 1 2

1 1 1 1
,1 1

C C C C C C

 
     

 
 

which on simplification gives us 
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2

1 1 2 1 2

2 2 2
0,

C C C C C
    

that is, 

1 2 1 1 0.C C C    

Now, replacing 1C   by /x y  and 2C  by /y z  , we get the required integral 

surface as 

1 0,
x y x

y z y
    

or 

1 0,
x x

z y
    

or 
0.xy xz yz    

2.5 The Cauchy Problem for First Order Equations 
         Many problems in applied mathematics, science, and engineering 

involve partial differential equations. We rarely try to find or discuss the 

properties of a solution to these equations in its most general form. In 

most cases of interest, we deal with those solutions of partial differential 

equations which satisfy certain supplementary conditions. In the case of a 

first-order partial differential equation, we determine the specific solution 

by formulating an initial-value problem or a Cauchy problem.  

Theorem 2.2 (The Cauchy Problem for a First-Order Partial Differential 

Equation).  

Suppose that C  is a given curve in the ( , )x y -plane with its parametric 

equations 

0 0( ), ( ), (2.43)x x t y y t   

where t  belongs to an interval I  , and the derivatives 0 0( ), ( ),x t y t  are 

piecewise continuous functions, such that 2 2

0 0( ) ( ) 0.x y    Also, suppose 

that 0( )z z t  is a given function on the curve C . Then, there exists a so-

lution ( , )z z x y  of the equation 

( , , , , ) 0, (2.44)F x y z p q   

in a domain 2D  containing the curve C  for all t I , and the solution 

( , )z z x y  satisfies the given initial data, that is, 

 0 0 0( ), ( ) ( ), (2.45)z x t y t z t  

for all values of t I . 

        In short, the Cauchy problem is to determine a solution of equation 

(2.44) in a neighborhood of C , such that the solution ( , )z z x y  takes a 

prescribed value 0 ( )z t  on C . The curve C  is called the initial curve of 
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the problem, and 0 ( )z t  is called the initial data. Equation (2.45) is called 

the initial condition of the problem. 

Theorem 2.3 (The Cauchy Problem for a Quasi-linear Equation).  

Suppose that 

(i) 0 0( ), ( )x t y t , and 0 ( ),z t are continuously differentiable functions of t  

in a closed interval, 0 1t  . 

(ii) ( , , )P x y z , ( , , )Q x y z , and ( , , )R x y z  are functions of x , y , and z  with 

continuous first-order partial derivatives with respect to their arguments 

in some domain D  of ( , , )x y z -space containing the initial curve 

0 0 0: ( ), ( ), ( ), (2.46)C x x t y y t z z t    

where 0 1t  .  

(iii)The functions P ,Q , 0x  and 0y  satisfying the condition 

   0 0 0 0 0 0 0 0( ) ( ) ( ) (, , , , 0, () ( ) ( ) ( ) ( ) 2.47)x t t t y t x tP y z Q y t t x tz    

Then there exists a unique solution  ,,z z x y  of the quasi-linear equa-

tion 
, (2.48)Pp Qq R   

in the neighborhood of  0 0: ( ), ( ) ,x x t y y t    and this solution satisfies 

the initial condition 

 0 0 0( ), ( ) ( ), for 0  1. (2.49)z x t y t z t t    

Note: The condition (2.47) excludes the possibility that   could be a 

characteristic. 

Example 2.6 

Show why there is no solution of the following partial differential equa-

tion  

, (2.50)x yz z z   

that passes through the straight line ( , ) 1?z x x   

Solution 

The initial curve in 3  can be given parametrically as  

0 0 0( ) ( ) 1),  (: ,  tC x t y t zt t    . 

The characteristic equations in parametric form are  

1 , 1 , . (2.51)
dx dy dz

P Q z R
ds ds ds

       

Using condition (2.47), we have 

0 0( ) ( ) (1)(1) (1)(1) 0Py t Qx t      

Hence, the problem has no solution.  

Example 2.7 

Discuss the following Cauchy problem 
2

0, ( , ) e , (2.52)y

x yz z z x x      

Solution 
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The initial curve in 3  can be given parametrically as  
2

0 0 0: ( ) , ( ) , ( ) e . (2.53)tC x t t y t t z t     

The characteristic equations in parametric form are  

1 , 1 , 0 . (2.54)
dx dy dz

P Q R
ds ds ds

       

Using condition (2.47), we have 

0 0( ) ( ) (1)(1) (1)( ) 1Py t Qx t         

If 1   , then Cauchy problem (2.52) has no solution. Otherwise ( 1  ), 

the solutions of characteristic equations (2.54) are  

1 2 3( , ) ,  ( , ) ,  ( , ) .x s t s c y s t s c z s t c      

Using the initial conditions (2.53), we have 
2

( , ) ,  ( , ) ,  ( , ) e , (2.55)tx s t s t y s t s t z s t       

which is the solution of (2.52) in the parametric form. To reach the solu-

tion of (2.52) in the Cartesian form, eliminating s  and t  form Eq. (2.55), 

-
- (1- )

1-

y x
y x t t


    

Thus, the solutions of Cauchy problem (2.52) is 
2

-
( , ) exp

1-

y x
z x y



     
  

 

Example 2.8  

Find the solution of the equation 
2 2( ) ( ) , (2.56)x yz x y z z x y z x y      

with the Cauchy data 0z    on 2y x . 

Solution 

The characteristic equations are 

2 2
.

( ) ( ) 0 0

dx dy dz ydx xdy zdz xdx ydy zdz

z x y z x y x y

   
   

  
 

Consequently, 

 2 2 2 21 1
0  and 0

2 2
d xy z d x y z
    

        
    

 

These give two integrals 
2 2 2 2

1 2 and 2 ,x y C xy Cz z      

where 1C  and 2C are arbitrary constants. Hence, the general solution is 
2 2 2 2( ,2 ) 0,f x y z xy z     

where f  is an arbitrary function. 

Using the Cauchy data in (2.56), we obtain 1 24 3C C . Therefore 

   2 2 2 24 3 2 .z x y xy z     
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Thus, the solution of equation (2.56) is given by 

 2 2 27 6 4 .z xy x y    

Example 2.9 

 Obtain the solution of the linear equation 

1, (2.57)x yz z   

with the Cauchy data 
2( ,0) .z x x  

Solution 

The characteristic equations are 

.
1 1 1

dx dy dz
 


 

Obviously, 

1  and 1.
dy dz

dx dx
    

Clearly, 

1 2 and .zx y C x C     

Thus, the general solution is given by 
( ),z x f x y    

where f   is an arbitrary function. 

We now use the Cauchy data to find 2( )f x x x  , and hence, the solu-

tion is 
2( , ) ( )z x y x y y   . 

Example 2.10  

Obtain the solution of the equation 

( ) ( ) , (2.58)x yy z z z x z x y      

with the condition 0z    on  1x y  . 

Solution 

The characteristic equations for equation (2.58) are 

dx dy dz

y z z x x y
 

  
 

The parametric forms of these equations are 

, , .
dx dy dz

y z z x x y
dt dt dt

       

These lead to the following equations: 
0  and 0, (2.59)x y z xx yy zz       

where the dot denotes the derivative with respect to t . 

Integrating (2.59), we obtain 
2 2 2

1 2 and .x y z C x y z C       

These equations represent circles. Using the Cauchy data, we find that 
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2 2 2 2

1 2( ) 2 2.C x y x y xy C        

Thus, the integral surface is described by 
2 2 2 2( ) 2.x y z x y z       

Hence, the solution is given by 

1
( , ) .

xy
z x y

x y





 

Example 2.11  

Solve the linear equation 

,x yyz xz z   

with the Cauchy data 
3 3( ,0)  and (0, ) .z x x z y y   

Solution 

The characteristic equations are 

dx dy z

y x z

d
   

or 

dz dx dy dx dy

y x y xz

 
 

 
 

Solving these equations, we obtain 

1
2( ),

C
z C x y

x y
  


 

or 

2 2 1
2

2

( ), .
C

z C x y x y C
C

      

Thus, the general solution is given by 

2 2, 0,
z

f x y
x y

 
  

 
 

or, equivalently, 

 2 2( , ) ( ) .z x y x y g x y    

Using the Cauchy data, we find that 
2 2( )g x x , that is ( )g x x . Conse-

quently, the solution becomes 
2 2( , ) ( )( ).z x y x y x y    

Example 2.12  

Determine the integral surfaces of the equation 

     2 2 2 2 ,x yx y z z y x z z x y z      

with the data 
0, 1.x y z    
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Solution 

The characteristic equations are 

     2 2 2 2
, (2.60)

dx dy dz

x y z y x z x y z
 

   
 

or 

     2 2 2 2
.

0
z

dy dx dy dzdx dz

y x y zx

y z x z x y

 

  
   

 

Consequently, 

1log( ) lo ,gxyz C  

or 

1.xyz C  

From (2.60), we obtain 

     2 2 2 2 2 2
,

0

xdx ydy du xdx ydy dz

x y z y x z x y u

 
  

   
 

whence we find that 
2 2

22 .x y z C    

Using the given data, we obtain 
2 2

1 2 and 2 2,C x C x     

so that 

 2 12 1 .C C    

Thus the integral surface is given by 
2 2 2 2 2 ,x y z xyz      

or 
2 22 2 2 0.xyz x y z      

Example 2.13 
Obtain the solution of the equation 

exp( ), (2.61)x yxz yz x z  

 
with the data 

20  on z y x   

Solution 

The characteristic equations are 

, (2.62)
exp( )

dx dy dz

x y x z
 


 

or 

1.
y

C
x
  
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We also obtain from (2.62) that ezdx dz  which can be integrated to find 

2e .z x C   

Thus, the general solution is given by 

e , 0,z y
f x

x

 
  

 
 

or, equivalently, 

e .z y
x g

x

 
   

 
 

Applying the Cauchy data, we obtain ( ) 1g x x  . Thus, the solution of 

(2.61) is given by 

e 1 ,z y
x

x
    

or 

ln 1 .
y

z x
x

 
   

 
 

Example 2.14  

Solve the initial-value problem 

, ( ,0) ( ),t xzz x x xz fz     

where (a) ( ) 1f x  and (b) ( )f x x . 

Solution 

The characteristic equations are 

( )
.

1

dt dx dz d x z

z x x z


  


 

Integration gives 

1ln( ln ,)t x z C    

or 

1( )e .tz x C   

Similarly, we get 
2 2

2 .z x C   

For case (a), we obtain 
2 2

1 2 2 1 11  and 1 ,  and hence 2 .x C x C C C C       

Thus, 
2 2 2 2( ) 2( )e ( ) et tz x z x z x       

or 
22e ( )e .t tz x z x      

A simple manipulation gives the solution 
( , ) tanh sech .z x t x t t   

Case (b) is left to the reader as an exercise. 
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Example 2.15  

Find the integral surface of the equation 

1, (2.63)x yzz z   

so that the surface passes through an initial curve represented parametri-

cally by 

0 0 0( ), ( ), ( ),x x s y y s z z s    

where s  is a parameter. 

Solution 

The characteristic equations for the given equations are 

,
1 1

dx dy dz

z
   

which are, in the parametric form 

, 1, 1, (2.64)
dx dy dz

z
d d d  

    

where   is a parameter. Thus the solutions of this parametric system in 

general depend on two parameters s  and  . We solve this system (2.64) 

with the initial data 

0 0 0( ,0) ( ), ( ,0) ( ), ( ,0) ( ).x s x s y s y s z s z s    

The solutions of (2.63) with the given initial data are 
2

0 0

0

0

( , ) ( ) ( )
2

( , ) ( ) .

( , ) ( )

x s z s x s

y s y s

u s z s


 

 

 


   


  

 



 

We choose a particular set of values for the initial data as 
2( ,0) 2 , ( ,0) 2 , ( ,0) 0, 0.x s s y s s z s s     

Therefore, the solutions are given by 

2 21
2 , 2 , . (2.65)

2
x s y s z        

Eliminating    and s  from (2.65) gives the integral surface 
2 2( ) 2z y z x    

or 

 
1

2 22 4 .z y x y    

The solution surface satisfying the data 0z    on 
2 2y x  is given by 

 
1

2 22 4 .z y x y    

This represents the solution surface only when
2 4y x . Thus, the solution 

does not exist for 
2 4y x  and is not differentiable when

2 4y x . 
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2.6 Canonical Forms of First-Order Linear Equations 

          It is often convenient to transform the more general first-order line-

ar partial differential equation 

( , ) ( , ) ( , ) ( , ), (2.66)x yP x y z Q x y z R x y z f x y    

into a canonical (or standard) form which can be easily integrated to find 

the general solution of (2.66). We use the characteristics of equation 

(2.66) to introduce a new transformation by equations 
( , ), ( , ), (2.67)x y x y      

where and  are once continuously differentiable and their Jacobian 

( , ) x y y xJ x y       is nonzero in a domain of interest so that x  and y  

can be determined uniquely from the equations (2.67). Thus, by chain 

rule, 

, , (2.68)x x x y y yz z z z z z           

we substitute these partial derivatives (2.68) into (2.66) to obtain the 

equation 
* * * * , (2.69)P z Q z R z f     

where 
* * * *, , . (2.70),x y x yP P Q Q P Q R R f f          

From (2.70) we see that * 0Q   if   is a solution of the first-order equa-

tion 

0. (2.71)x yP Q    

This equation has infinitely many solutions. We can obtain one of them 

by assigning initial condition on a non-characteristic initial curve and 

solving the resulting initial-value problem according to the method de-

scribed earlier. Since ( , )x y satisfies equation (2.71), the curves 

( , )x y C   are always characteristic curves of equation (2.66). Thus, one 

set of the new transformations are the characteristic curves of (2.66). The 

second set, ( , )x y C  , can be chosen to be any one parameter family 

of smooth curves such that 0( , ) x y y xJ x y      . Finally, since 

* 0Q   and 
* 0P   in D , we can divide (2.69) by 

*P   to obtain the ca-

nonical form 

( , ) ( , ), (2.72)zz         

where 
*

*
( , )

R

P
      and

*

*
( , )

f

P
    . 

Equation (2.72) represents an ordinary differential equation with  as the 

independent variable and   as a parameter which may be treated as con-

stant. This equation (2.72) is called the canonical form of equation (2.66) 

in terms of the coordinates ( , )  . Generally, the canonical equation 
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(2.72) can easily be integrated and the general solution of (2.66) can be 

obtained after replacing   and   by the original variables x  and y . In 

practice, it is convenient to choose ( , )x y   and ( , )x y y  or x   and 

( , )x y   such that 0J  . 

Example 2.16  

Reduce each of the following equations: 

, (2.73)

. (2.74)

x y

x y

z z z

yu u x

 

 
 

to canonical form, and obtain the general solution. 

Solution 

In (2.73), 1, 1, 1a b c      and 0d   . The characteristic equations are 

.
1 1

dx dy z

z

d
 


 

The characteristic curves are 1x y c    , and we choose 2y c    

where 1c   and 2c   are constants. Consequently, xz z  and yz z z    , 

and hence, equation (2.73) becomes 

z z    

Integrating this equation gives 
ln ( , ) ln ( ),z f       

where ( )f    is an arbitrary function of    only. Equivalently, 

( ( ., ) )z f e      

In terms of the original variables x   and y  , the general solution of equa-

tion (2.73) is 

( , ) ( ) yz x y f x y e   

where f  is an arbitrary function. 

The characteristic equations of (2.74) are 

.
1

dx dy du

y x
   

It follows from the first two equations that 
2

1( , )
2

y
x y x c    ; we 

choose 2( , )x y y c    . Consequently, xu u  and yu yu u     and 

hence, equation (2.74) reduces to 

21
.

2
u     

Integrating this equation gives the general solution 

31
( , ) ( ),

6
u f        

where f   is an arbitrary function. 
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Thus, the general solution of (2.74) in terms of x   and y   is 

2
31

( , ) .
3 2

y
u x y xy y f x

 
    

 
 

2.7 Method of Separation of Variables 

            During the last two centuries several methods have been devel-

oped for solving partial differential equations. Among these, a technique 

known as the method of separation of variables is perhaps the oldest sys-

tematic method for solving partial differential equations. Its essential fea-

ture is to transform the partial differential equations by a set of ordinary 

differential equations. The required solution of the partial differential 

equations is then exposed as a product ( , ) ( ) ( ) 0u x y X x Y y  , or as a 

sum ( , ) ( ) ( )u x y X x Y y  , where ( )X x   and ( )Y y   are functions of x   

and y , respectively. Many significant problems in partial differential 

equations can be solved by the method of separation of variables. This 

method has been considerably refined and generalized over the last two 

centuries and is one of the classical techniques of applied mathematics, 

mathematical physics and engineering science. 

          Usually, the first-order partial differential equation can be solved 

by separation of variables without the need for Fourier series. The main 

purpose of this section is to illustrate the method by examples. 

Example 2.17  

Solve the initial-value problem 
22 0, (0, ) 4 . (2.75)y

x yu u u y e    

Solution 
We seek a separable solution ( , ) ( ) ( ) 0u x y X x Y y    and substitute into 

the equation (2.75) to obtain 

( ) ( ) 2 ( ) ( ) 0.X x Y y X x Y y    

This can also be expressed in the form 

( ) ( )
, (2.76)

2 ( ) ( )

X x Y y

X x Y y

 
   

Since the left-hand side of this equation is a function of x   only and the 

right-hand is a function of y  only, it follows that (2.76) can be true if 

both sides are equal to the same constant value    which is called an arbi-

trary separation constant. Consequently, (2.76) gives two ordinary differ-

ential equations 

( ) 2 ( ) 0, ( ) ( ) 0.X x X x Y y Y y       

These equations have solutions given, respectively, by 
2( )  and ( ) ,x yX x Ae Y y Be    

Where A  and B  are arbitrary integrating constants. Consequently, the 

general solution is given by 
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( , ) exp(2 ) exp(2 ),u x y AB x y C x y        

where C AB  is an arbitrary constant. 

Using the initial condition in (2.75), we find 
24 (0, ) ,y ye u y Ce     

and hence, we deduce that 4C   and 2   . Therefore, the final solution 

is 
( , ) 4exp(4 2 ).u x y x y   

Example 2.18  
Solve the equation 

2 2 2 2 2( ) . (2.77)x yy u x u xyu   

Solution 

We assume ( , ) ( ) ( ) 0u x y f x g y   is a separable solution of (2.77), and 

substitute into the equation. Consequently, we obtain 

   
2 22 2 2 2 2( ) ( ) ( ) ( ) { ( ) ( )} ,y f x g y x f x g y x y f x g y    

or, equivalently, 
2 2

2 2

1 ( ) 1 ( )
1,

( ) ( )

f x g y

x f x y g y

    
    

   
 

or 
2 2

2

2 2

1 ( ) 1 ( )
1 ,

( ) ( )

f x g y

x f x y g y


    
     

   
 

where 
2  is a separation constant. Thus, 

21 ( ) ( )
 and 1 .

( ) ( )

f x g y

x f x yg y
 

 
    

Solving these ordinary differential equations, we find 

2 21
( ) exp  and ( ) exp 1 , 

2 2
f x A x g y B y




   
     

   
 

where A   and B   are arbitrary constant. Thus, the general solution is 

2 2 21
( , ) exp 1 . (2.78)

2 2
u x y C x y




 
   

 
 

Where  C A B  is an arbitrary constant. Using the initial condition 

 2( ,0) 3exp / 4u x x , we can determine both C  and   in (2.78). It turns 

out that 3C   and (1 / 2)   , and the solution becomes 

 2 21
( , ) 3exp 3

4
u x y x y

 
  

 
 

Example 2.19  

Use the separation of variables ( , ) ( ) ( )u x y f x g y    to solve the equa-

tion 
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2 2 1. (2.79)x yu u   

Solution 

Obviously, 

   
2 2 2( ) 1 ( )f x g y      where 2   is a separation constant. Thus, we 

obtain 
2( )  and ( ) 1 .f x g y      

Solving these ordinary differential equations, we find 
2( )  and ( ) 1 ,f x x A g y y B       

where A  and B  are constants of integration. Finally, the solution of 

(2.79) is given by 
2( , ) 1 ,u x y x y C      

where C A B   is an arbitrary constant. 

Example 2.20  

Use ( , ) ( ) ( )u x y f x g y    to solve the equation 
2 2 0. (2.80)x yu u x    

Solution 

Obviously, equation (2.80) has the separable form 

 
2 2 2( ) ( ) ,f x x g y       

where 
2   is a separation constant. Consequently, 

2 2 2( )  an  ( .d )f x x g y       

These can be integrated to obtain 
2 2 2 2

2
2 1

2

( ) cos ( sin )

1
sin 1 ,

2

f x x dx A d A x

x x x
A

     


  



     

  
     

   

 

  

and 
2( )g y y B    

Finally, the general solution is given by 

2 1 2 2 21
( , ) sin ,

2 2

x x
u x y x y C  



  
     

 
 

where C A B   is an arbitrary constant. 

Example 2.21  

Use lnv u   and ( ) ( )v f x g y    to solve the equation 
2 2 2 2 2. (2.81)x yx u y u u   

Solution 
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In view of 
1

ln , x xv u v u
u

    and
1

y yv u
u

  , and hence, equation (2.81) 

becomes 
2 2 2 2 1. (2.82)x yx v y v   

Substitute ( , ) ( ) ( )v x y f x g y    into (2.82) to obtain 

   
2 22 2( ) ( ) 1,x f x y g y    

or 

   
2 22 2 2( ) 1 ( ) ,x f x y g y      

where 
2  is a separation constant. Thus, we obtain 

21
( )  and ( ) 1 .f x g y

x y


     

Integrating these equations gives 
2( ) ln  and ( ) 1 ln ,f x x A g y y B       

where A   and B   are integrating constants. Therefore, the general solu-

tion of (2.82) is given by 

 22 1( , ) ln 1 ln ln lnv x y x y C x y C           

where lnC A B   . The final solution is 
21( , ) e ,vu x y C x y     

where C  is an integrating constant. 

2.6 Surfaces Orthogonal to A Given System Of Surfaces 

         One of the useful applications of the theory of linear first order PDE 

is to find the system of surfaces orthogonal to a given system of surfaces.  

         Let a one-parameter family of surfaces is described by the equation 
( , , ) . (2.83)F x y z C  

Then, the task is to determine the system of surfaces which cut each of 

the given surfaces orthogonally. Let ( , , )x y z  be a point on the surface 

given by Eq. (2.83), where the normal to the surface will have direction 

ratios ( / , / , / )F x F y F z       which may be denoted by P  , ,Q R . 

Let 
( , )z x y  

be the surface which cuts each of the given system orthogonally (see Fig. 

2). Then, its normal at the point ( , , )x y z  will have direction ratios 

( / , / , 1)z x z y       which, of course, will be perpendicular to the normal 

to the surfaces characterized by Eq. (2.83). As a consequence we have a 

relation 

0,
z z

P Q R
x y

 
  

 
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or 
, (2.84)Pp Qq R   

which is a linear PDE of Lagranges type, and can be recast into 

. (2.85)
F z F z F

x x y y z

    
 

    
 

Thus, any solution of the linear first order PDE of the type given by either 

Eq. (2.84) or (2.85) is orthogonal to every surface of the system described 

by Eq. (2.83). In other words, the surfaces orthogonal to the system (2.83) 

are the surfaces generated by the integral curves of the auxiliary equa-

tions 

.
/ / /

dx dy dz

F x F y F z
 

     
 

 

 
Example 2.22  

Find the surface perpendicularly intersecting the family of surfaces with a 

parameter given by the equation 
2 2( )x y z c   and passing through the 

curve 
2y x ,  0z  : Here c  is a parameter. 

Solution  

Let us write the given surface family as 
2 2( , , ) ( ) 0.f x y z x y z c     

Using xf  , yf  and zf   

2xf xz ,  2yf yz  , 
2 2 .zf x y   

The Lagrange system, which corresponds to the partial differential equa-

tion of orthogonal surfaces is given by 

2 2
.

2 2

dx dy dz

xz yz x y
 


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From this, two independent first integrals are as follows 

2 2 2

1 2, 2 .c x y
y

x
z c     

General equation of surfaces perpendicular to the given family of surfaces 

are given by 

2 2 2, 2 0,F x y z
y

x

 
   

 
 

or 

2 2 22x y z
y

g
x

 
    

 
 

where F   and g   are arbitrary functions. To find the special surface that 

passes through the curve 2 , 0y x z  , we write the parametric equation 

of curve as 
2, , 0.x t y t z    

From this, we obtain 
2 4 2 4

1 2 2 1 1 .,c t c t t c c c       

Thus, the desired surface has the equation 
4 2

2 2 2 .2x y z
y y

x x

   
      

   
 

Example 2.23  

Find the surface perpendicularly intersecting the family of surfaces with a 

parameter given by the equation  2 2z cxy x y   . Here c   is a parame-

ter. 

Solution  

Let's write the given surface family as 

 2 2
1

( , , ) .
xy x y

f x y z
z c


   

Using ,x yf f   and zf  , 

 2 22 3 2 3

2

3 3
, ,x y z

xy x yx y y y x x
f f f

z z z

 
     

The Lagrange system, which corresponds to the partial differential equa-

tion of orthogonal surfaces is given by 

 

2

2 3 2 3 2 2
.

3 3

zdx zdy z dz

x y y y x x xy x y


 

  
 

From this, we can write 
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     

2

2 2 2 2 2 2
,

3 3

xzdx yzdy z dz

xy x y xy x y xy x y

 


   
 

   

2

2 2 2 2
,

4 4

xzdx yzdy z dz

xy x y xy x y

 


 
 

24 ,xzdx yzdy z dz    

4 ,xdx ydy zdz    
2 2 2

14 .x y z c    

The second solution is 

3 3

3 3

22 2

( ) ( )

( ) ( )

( ) ( )

1 1

( ) ( )
.

zdx zdy zdx zdy

x y x y

d x y d x y

x y x y

c
x y x y

 
  

 

 
  

 

  
 

 

 
The general equation of surfaces perpendicular to the given family of sur-

faces are given by 

 

2 2 2

2 2

2 2 2

2 2

1 1
4 , 0,

( ) ( )

1 1
4 ,

( ) ( )

F x y z
x y x y

g x y z
x y x y

 
    

  

   
 

 

where F  and g   are arbitrary functions. 

Example 2.24  

Find the equation of the system of surfaces which cut orthogonally the 

cones of the system 
2 2 2 ,x y z cxy     c  being a parameter. 

Solution  

The given system of surfaces is 
2 2 2

( , , )
x y z

F x y z c
xy

 
   . The auxilia-

ry equations are 

2 2

2 2 2 2

,
21 1/ / /

dx dy dz dx dy dz

zy z x zF x F y F z

xyy x x y y x xy

    
     

    

 

i.e. 

2 2 2 2 2 2 2

xdx ydy dz

x y z x y z z
 

    
 . 
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It follows that 0xdx ydy zdz    and 
2 2

xdx ydy dz

x y z





  leading to the so-

lutions 
2 2

2 2 2

1 22
 and ,

x y
x y z c c

z


     

respectively, where 1c   and 2c   are arbitrary constants. Thus the general 

solution of the given equation is 
2 2

2 2 2

2
, 0
x y

x y z
z


 

   
 

  and the 

equation of the required system of surfaces is 
2 2

2 2 2

2

x y
x y z f

z

 
    

 
  

Example 2.25 

Find the surface which intersects the surfaces of the system 

( ) (3 1)z x y c z    orthogonally and passes through the cir-

cle 2 2 1, 1x y z   . 

Solution 

The given system of surfaces is 
( )

( , , ) ,
3 1

z x y
F x y z c

z


 


 c  being param-

eter. The auxiliary equations are 

2

,
/ / /

3 1 3 1 (3 1)

dx dy dz dx dy dz

z z x yF x F y F z

z z z

    
     

  

 

i.e. 

(3 1)
.

dx dy z dz

z z x y


 


 . 

It follows that 0dx dy    and  2( ) ( ) 6 2 0,x y d x y z z dz       

whose solutions are 
2 2

1 2 and ( ) 2 (2 1) ,x y c x y z z c       

where 1c   and 2c  are constants. 

Now the given circle has parametric equations cos , sin , 1x t y t z     

so that 1cos sint t c    and 
2

2(cos sin ) 6t t c    , i.e. 
2

1sin 2 1t c   as 

well as 2sin 2 5t c  . Eliminating t   between these two relations, we get 
2 2 2 2

1 2 4 0 ( ) ( ) 2 (2 1) 4 0,c c x y x y z z            

i.e. 
2 2 3 22 2x y z z     , 

which is the equation of the required surface. 

2.7 First Order Non-Linear Equations 
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           In this section, we will discuss the problem of finding the solution 

of first order non-linear partial differential equations (PDEs) in three var-

iables of the form 
( , , , , ) 0, (2.86)F x y z p q   

where 

, .
z z

p q
x y

 
 
 

 

We also assume that the function possesses continuous second order de-

rivatives with respect to its arguments over a domain    of ( , , , , )x y z p q -

space, and either pF  or qF  is not zero at every point such that 

2 2 0.p qF F   

The PDE (2.86) establishes the fact that at every point ( , , )x y z  of the re-

gion, there exists a relation between the numbers p  and q  such that 

( , ) 0p q  , which defines the direction of the normal { , , 1}n p q    to 

the desired integral surface ( , )z z x y   of Eq. (2.86). Thus, the direction 

of the normal to the desired integral surface at certain point ( , , )x y z  is not 

defined uniquely. However, a certain cone of admissible directions of the 

normals exist satisfying the relation ( , ) 0p q   (see Fig.3).  

 
Therefore, the problem of finding the solution of Eq. (2.86) reduces to 

finding an integral surface ( , )z z x y , which the normals at every point 

of it are directed along one of the permissible directions of the cone of 

normals at that point. 

Thus, the integral or the solution of Eq. (2.86) essentially depends on two 

arbitrary constants in the form 
( , , , , ) 0,f x y z a b   

which is called a complete integral. Hence, we get a two-parameter fami-

ly of integral surfaces through the same point. 

2.7.1 Cauchy's Method of Characteristics 
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          Here, we shall discuss the Cauchy's method for solving Eq. (2.86), 

which is based on geometrical considerations. Let ( , )z z x y  represents 

an integral surface S  of Eq. (2.86) in ( , , )x y z -space. Then, { , , 1}p q   are 

the direction ratios of the normal to S . Now, the differential equation 

(2.86) states that at a given point  0 0 0, ,P x y z   on S , the relationship be-

tween 0p and 0q , that is  0 0 0 0 0, , , ,F x y z p q , need not be necessarily linear. 

Hence, all the tangent planes to possible integral surfaces through P  form 

a family of planes enveloping a conical surface called Monge Cone with 

P  as its vertex. In other words, the problem of solving the PDE (2.86) is 

to find surfaces which touch the Monge cone at each point along a gener-

ator.  

       Since an integral surface is touched by a Monge cone along its gen-

erator, we must have a method to determine the generator of the Monge 

cone of the PDE (2.86) which is explained below: 

It may be noted that the equation of the tangent plane to the integral sur-

face ( , )z z x y  at the point  0 0 0, ,x y z  is given by 

0 0 0( ) ( ) ( ).p x x q y y z z      

Now, the given non-linear PDE (2.86) can be recasted into an equivalent 

form as 

 0 0 0, , , ,q q x y z p  

indicating that p   and q  are not independent at  0 0 0, ,x y z . At each point 

of the surface S , there exists a Monge cone which touches the surface 

along the generator of the cone. The lines of contact between the tangent 

planes of the integral surface and the corresponding cones, that is the 

generators along which the surface is touched, define a direction field on 

the surface S . These directions are called the characteristic directions, or 

Monge directions on S  and lie along the generators of the Monge cone. 

The integral curves of this field of directions on the integral surface S  de-

fine a family of curves called characteristic curves as shown in Fig.5. The 

Monge cone can be obtained by eliminating p  from the 

following equations: 

      0 0 0 0 0 0, , , ,p x x q x y z p y y z z      

and 

   0 0 0. (2.87)
dq

x x y y
dp

     

Observing that q  is a function of p  and differentiating Eq. (2.86) with 

respect to p  , we get 

0. (2.88)
dF F F dq

dp p q dp

 
  
 
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Now, eliminating ( / )dq dp  from Eqs. (2.87) and (2.88), we obtain 

 
 

0

0

0,
x xF F

p q y y

 
 

  
 

or 

0 0 .
p q

x x y y

F F

 
  

Therefore, the equations describing the Monge cone are given by 

 

     

0 0 0

0 0 0

0 0

(2.8

, , ,

)

,

9

.
p q

q q x y z p

x x p y y q z z

x x y y

F F












   





 


 

The second and third of Eqs. (2.89) define the generator of the Monge 

cone. Solving them for    0 0,x x y y    and 0z z  , we get 

0 0 0 . (2.90)
p q p q

x x y y z z

F F pF qF

  
 


 

Finally, replacing    0 0,x x y y    and  0z z   by ,dx dy  anddz  re-

spectively, which corresponds to infinitesimal movement from  0 0 0, ,x y z   

along the generator, Eq. (2.90) becomes 

. (2.91)
p q p q

dx dy dz

F F pF qF
 


 

Denoting the ratios in Eq. (2.91) by dt , we observe that the characteristic 

curves on S  can be obtained by solving the ordinary differential equa-

tions 

{ , , ( , ), ( , ), ( , )}, (2.92)p

dx
F x y z x y p x y q x y

dt
  

and 

{ , , ( , ), ( , ), ( , )}. (2.93)q

dy
F x y z x y p x y q x y

dt
  

Also, we note that 

.
dz z dx z dy dx dy

p q
dt x dt y dt dt dt

 
   
 

 

Therefore, 

.p q

dz
pF qF

dt
   

Along the characteristic curve, p   is a function of t , so that 
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.
dp p dx p dy

dt x dt y dt

 
 
 

 

Now, using Eqs. (2.92) and (2.93), the above equation becomes 

.
dp p F p F

dt x p y q

   
 
   

 

Since xy yxz z   or y xp q  , we have 

. (2.94)
dp p F q F

dt x p x q

   
 
   

 

Also, differentiating Eq. (2.86) with respect to x , we find 

0. (2.95)
F F F p F q

p
x z p x q x

     
   

     
 

Using Eq. (2.95), Eq. (2.94) becomes 

 .x z

dp
F pF

dt
    

Similarly, we can show that 

 .y z

dq
F qF

dt
    

Thus, given an integral surface, we have shown that there exists a family 

of characteristic curves along which , , ,x y z p  and q  vary according to the 

following equations 

 

 

(2.96)

  

p

q

p q

x z

y z

dx
F

dt

dy
F

dt

dz
pF qF

dt

dp
F pF

dt

dq
F qF

dt


 







  



   

  


 

These equations are known as characteristic equations of the given PDE 

(2.86). The last three equations of (2.96) are also called compatibility 

conditions. Without knowing the solution ( , )z z x y   of the PDE (2.86), 

it is possible to find the functions ( ), ( ), ( ), ( ), ( )x t y t z t p t q t  from Eqs. 

(2.96). That is, we can find the curves ( ), ( ), ( )x x t y y t z z t     called 

characteristics. For illustration, we consider the following examples: 

Example 2.26  
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Find the characteristics of the equation pq z  and determine the integral 

surface which passes through the straight line 1 ,x z y  . 

Solution  

The initial data curve is given in parametric form as 

0 0 0( ) 1, ( ) , ( ) ,x s y s s z s s    

then ordinarily the solution is sought in parametric form as 
( , ), ( , ), ( , ).x x t s y y t s z z t s    

Thus, using the given data, the differential equation becomes 

0 0( ) ( ) 0 ,p s q s s F    

and the strip condition gives 

0 0 0 0 0 0 0 0( ) ( ) ( ) (0) (1) 1  1.p x s q y s z s p q q          

Therefore, 

0 01, .  (unique initial strip) q p s   

Now, the characteristic equations for the given PDE are 

, , 2 , , .
dx dy dz dp dq

q p pq p q
dt dt dt dt dt

      

On integration, we get 

1 2 2 3

1 4 1 2 5

exp( ) , exp( ) , exp( )

exp( ) , exp(2 )

p c t q c t x c t c

y c t c z c c t c

    


    
 

Now, taking into account the initial conditions 

0 0 0 0 01 , , , , 1,x y s z s p s q      

we can determine the constants of integration and obtain 

(since 2 31, 0c c   ) 

exp( ), exp( ),p s t q t   

exp( ), exp( ), exp(2 ). (2.97)x t y s t z s t    

Consequently, the required integral surface is obtained from Eq. (2.97) as 
z xy   

Example 2.27  

Find the characteristics of the equation pq z   and hence, determine the 

integral surface which passes through the parabola 20 ,x y z  . 

Solution  

The initial data curve is 
2

0 0 0( ) 0, ( ) , ( ) .x s y s s z s s    

Using this data, the given PDE becomes 
2

0 0( ) ( ) 0 .p s q s s F    

The strip condition gives 

0 0 0 0 0 0 0 0( ) ( ) ( ) (0) (1) 2   2 .p x s q y s z s p q s q s          

Therefore, 
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2

0 0 0 02  and / / 2 .
2

s
q s p z q s s     

Now, the characteristic equations of the given PDE are given by 

, , 2 , , .
dx dy dz dp dq

q p pq p q
dt dt dt dt dt

      

On integration, we obtain 

1 2 2 3

1 4 1 2 5

,exp( ) , exp( ) , exp( )

exp( ) , exp( .2 )

p c t q c t x c t c

y c t c z c c t c

    


    
 

Taking into account the initial conditions 
2

0 0 0 0 00, , , / 2, 2 ,x y s z s p s q s      

we find 

1 2 3 4 5/ 2, 2 , 2 , / 2, 0.c s c s c s c s c       

Therefore, we have 

2

exp( ), 2 exp( )
2

2 [exp( ) 1], [exp( ) 1] (2.98)
2

exp(2 )

s
p t q s t

s
x s t y t

z s t


  




    


 



 

Eliminating s   and t   from the last three equations of (2.98), we get 
216 (4 )z y x   

This is the required integral surface. 

Example 2.28 

Find the characteristics of the PDE 
2 2 2,p q   

and determine the integral surface which passes through 0,x z y   . 

Solution  

The initial data curve is 

0 0 0( ) 0, ( ) , ( ) .x s y s s z s s    

Using this data, the given PDE becomes 
2 2

0 0 2 0 ,p q F     

and the strip condition gives 

0 0 0 0 0 0 0 0( ) ( ) ( ) (0) (1) 1   1.p x s q y s z s p q q         

Hence, 

0 01, 1.q p    

Now, the characteristic equations for the given PDE are given by 
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2 22 , 2 , 2 2 4,

0 , 0.

dx dy dz
p q p q

dt dt dt

dp dq

dt dt


     


 


 

On integration, we get 

1 2 1 3

2 4 5

, , 2

2 , 4

,

.

p c q c x c t c

y c t c z t c

    


    
 

Taking into account the initial conditions 

0 0 0 0 00, , , 1, 1,x y s z s p q       

we find 

1 , 1, 2 ,
(2.99)

2 , 4 .

p q x t

y t s z t s

     


    
 

The last-three equations of (6) are parametric equations of the desired in-

tegral surface. Eliminating the parameters s  and t , we get 
.z y x   

This is the required integral surface. 

2.7.2 Compatible Systems of First Order Equations 
        Two first order PDEs are said to be compatible, if they have a com-

mon solution. We shall now derive the necessary and sufficient condi-

tions for the two partial differential equations 
( , , , , ) 0, (2.100)f x y z p q   

and 
( , , , , ) 0, (2.101)g x y z p q   

to be compatible. Let 

( , )
0

( , )

f g
J

p q


 


 

Since Eqs. (2.100) and (2.101) have common solution, we can solve them 

and obtain explicit expressions for p   and q   in the form 

( , , ) , ( , , ), (2.102)p x y z q x y z    

and then, the differential relation 
,pdx qdy dz   

or 
( , , ) ( , , ) ,x y z dx x y z dy dz    

should be integrable, for which the necessary condition (Pafaffian condi-

tion) is 
( ) 0, (Pafaffian condition)n n    

where { , , 1}n    .That is, 
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ˆˆ ˆ

ˆˆ ˆ( ) / 0,

1

i j k

i j k l x l y z 

 

         



 

or 

    ,z z x y          

which can be rewritten as 

. (2.103)x z y z       

Now, differentiating Eq. (2.100) with respect to x   and z , we get 

0,x p q

p q
f f f

x x

 
  

 
 

and 

0.z p q

p q
f f f

z z

 
  

 
 

But, from Eq. (2.102), we have 

, . 
p q

x x x x

    
 

   
 

Using these results, the above equations can be recast into 

0,x p x q xf f f     

and 

0.z p z q zf f f     

Multiplying the second one of the above pair by   and adding to the first 

one, we readily obtain 

      0.x z p x z q x zf f f f           

Similarly, from Eq. (2.101) we can deduce that 

      0.x z p x z q x zg g g g           

Solving the above pair of equations for  x z   , we have 

 
   

1 1x z

p x z p x z q p q pf g g g f f f g g f J

 

 


 

   
 

Or 

   
1

1 ( , ) ( , )
, (2.104)

( , ) ( , )

p zx z px zp x p
f g g ff g g f

J

f g f g

J x p z p

  



    
 

  
  

  

 

where 
( , )

0
( , )

f g
J

p q


 


. Similarly, differentiating Eq. (2.100) with respect 

to y   and z   and using Eq. (2.102), we can show that 



CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER                         DR. AHMED YOUSEF 

48 

 

1 ( , ) ( , )
. (2.105)

( , ) ( , )
y z

f g f g

J y q z q
  

  
    

  
 

Finally, substituting the values of x z  and y z   from Eqs. (2.104) 

and (2.105) into Eq. (2.103), we obtain 

( , ) ( , ) ( , ) ( , )
.

( , ) ( , ) ( , ) ( , )

f g f g f g f g

x p z p y q z q
 

    
    

    
 

In view of Eqs. (2.102), we can replace    and    by p   andq  , respec-

tively to get 

( , ) ( , ) ( , ) ( , )
0. (2.106)

( , ) ( , ) ( , ) ( , )

f g f g f g f g
p q

x p z p y q z q

   
   

   
 

This is the desired compatibility condition. For illustration, let us consider 

the following example: 

Example 2.29  

Show that the following PDEs 
2 and ,xp yq x x p q xz     

are compatible and hence, find their solution. 

Solution  

Suppose, we have 
0, (2.107)f xp yq x     

and 
2 0. (2.108)g x p q xz     

Then, 

2 2 2 2 2

2

( 1)( , )
2 ,

(2 )( , )

p xf g
px x x p xz xz x p x

xp z xx p


       


 

2

2

0( , )
,

( , )

xf g
x

x xz p


 


 

( , )
,

0 1( , )

0( , )
,

1( , )

q yf g
q

y q

yf g
xy

xz q

 
  




  


 

and we find 

2 2 2

2

2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( )

0.

f g f g f g f g
p q xz x p x px q qxy

x p z p y q z q

xz q qxy x

xz q x qy x

xz q x p

   
        

   

   

   

   

 



CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER                         DR. AHMED YOUSEF 

49 

 

Hence, the given PDEs are compatible. 

Now, solving Eqs. (2.107) and (2.108) for p   and q , we obtain 

(1 ) 1
,

(1 ) 1

x yz yz
p

x xy xy

 
 

 
 

and 
2( ) ( )

,
(1 ) 1

x z x x z x
q

x xy xy

 
 

 
 

In order to get the solution of the given system, we have to integrate the 

equation 

(1 ) ( )
,

1 1

d

yz x z x
d

z

x dy
xy x

x q

y

pd dy

 
 

 

 

 

or 

( ) ( )
,

1 1

y z x x z x
dz dx dx dy

xy xy

 
  

 
 

or 

.
1

dz dx ydx xdy

z x xy

 


 
 

On integration, we get 
ln( ) ln(1 ) lnz x xy c     

That is, 
(1 )z x c xy    

Hence, the solution of the given system is found to be 
(1 ), z x c xy    

which is of one-parameter family. 

2.7.3 Charpit's Method 

        In this section, we will discuss a general method for finding the 

complete integral or complete solution of a nonlinear PDE of first order 

of the form 
( , , , , ) 0. (2.109)f x y z p q   

This method is known as Charpit's method. The basic idea in Charpit's 

method is the introduction of another PDE of first order of the form 
( , , , , ) , (2.110)g x y z p q a  

and then, solve Eqs. (2.109) and (2.110) for p   and q   and substitute in 

( , , , ) ( , , , ) . (2.111)dz p x y z a dx q x y z a dy   

Now, the solution of Eq. (2.111) if it exists is the complete integral of Eq. 

(2.109). The main task is the determination of the second equation 

(2.110) which is already discussed in the previous section. Now, what is 

required, is to seek an equation of the form 
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( , , , , ) ,g x y z p q a  

compatible with the given equation 
( , , , , ) 0,f x y z p q   

for which the necessary and sufficient condition is 

( , ) ( , ) ( , ) ( , )
0.

( , ) ( , ) ( , ) ( , )

f g f g f g f g
p q

x p z p y q z q

   
   

   
 

On expansion, we have 

0,

f g f g f g f g
p

x p p x z p p z

f g f g f g f g
q

y q q y z q q z

          
     

          

          
       

          

 

which can be recast into 

      0. (2.112)p q p q x z y z

g g g g g
f f pf qf f pf f qf

x y z p q

    
       

    
 

This is a linear PDE, from which we can determine g . The auxiliary 

equations of (2.112) are 

   
. (2.113) 

p q p q x z y z

dx dy dz dp dq

f f pf qf f pf f qf
   

    
 

These equations are called Charpit's equations. Any integral of Eqs. 

(2.113) involving p   or q  or both can be taken as the second relation 

(2.110). Then, the integration of Eq. (2.111) gives the complete integral 

as desired. It may be noted that all Charpit's equations need not be used, 

but it is enough to choose the simplest of them. This method is illustrated 

through the following examples: 

Example 2.30  

Find the complete integral of 

 2 2 . (2.114)p q y qz   

Solution  

Suppose 

 2 2 0,f p q y qz     

then, we have 
2 20, , , 2 , 2 . x y z p qf f p q f q f py f qy z         

Now, the Charpit's auxiliary equations are given by 

   
.

p q p q x z y z

dx dy dz dp dq

f f pf qf f pf f qf
   

    
 

That is, 
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 2 2 2 2 2
. (2.115)

2 2 2 2

dx dy dz dp dq

py qy z p y q y qz pq p q q
   

      
 

 

From the last two members of Eq. (2.115), we have 

2
,

dp dq

pq p



 

or 
0.pdp qdq   

On integration, we get 
2 2  (constant) . (2.116)p q a   

From Eqs. (2.114) and (2.116), we obtain 
0  or / ,ay qz q ay z    

and 

 
2

2 2 2 2/ .
ay

p a az a y z
z


 

     
  

 

Substituting these values of p   and q   in 

,dz pdx qdy   

we get 
2 2 2

,
az a y ay

dz dx dy
z z


   

or 
2 2 2 ,zdz aydy az a y dx    

which can be rewritten as 

 
1/2

2 2 2

.
d az a y

dx
a


  

On integration, we find 
2 2 2

,
az a y

x b
a


   

or 

 2 2 2( ) / .x b z a y    

Hence, the complete integral is 
2 2 2( ) / .x b y z a    

Example 2.31 

Find the complete integral of the PDE: 
2 .z pqxy  

Solution  

In this example, given 
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2 .f z pqxy   

Then, we have 

, , 2 ,

, .

x y z

p q

f pqy f pqx f z

f qxy f pxy

    

   
 

Now, the Charpit's auxiliary equations are given by 

   
.

p q p q x z y z

dx dy dz dp dq

f f pf qf f pf f qf
   

    
 

That is, 

. (2.117)
2 2 2

dx dy dz dp dq

qxy pxy pqxy pqy pz pqx qz
   

    
  

From Eq. (2.117), it follows that 

/ / / /
,

2 2

dp p dq q dx x dy y

qy z px z qy px
  

   
 

which can be rewritten as 

/ / / /
,

dp p dq q dx x dy y

qy px qy px

  


 
 

or 

.
dp dq dy dx

p q y x
    

On integration, we find 

,  (constant)
p x

c
q y

  

or 
/ .p cqy x  

From the given PDE, we have 
2 2 2 ,z pqxy cq y   

which gives 
2 2 2/  or / / ,q z cy q z cy az y    

where 1/a c  . Hence, 

/ .p z ax  

Substituting these values of p   and q   in 

,dz pdx qdy   

we get 

,
z az

dz dx dy
ax y

   

1
.

dz dx dy
a

z a x y
   
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On integration, we obtain 

1
ln ln ln ln ,z x a y b

a
    

or 
1/ ,a az bx y  

which is the complete integral of the given PDE. 

Example 2.32  

Find the complete integral of 
2 2 2 2 4 0,x p y q    

using Charpit's method. 

Solution  

The Charpit's equations for the given PDE can be written as 

 2 2 2 22 2 2 2
. (2.118)

2 2 2 22

dx dy dz dp dq

x p y q xp yqx p y q
   

 
 

Considering the first and last but one of Eq. (2.118), we have 

2 2
 or 0.

2 2

dx dp dx dp

x p xp x p
  


 

On integration, we get 
ln( ) ln  or . (2.119)xp a xp a   

From the given PDE and using the result (2.119), we get 
2 2 2 . (24 .120)y q a   

Substituting one set of p   and q  values from Eqs. (2.119) and (2.120) in 

,dz pdx qdy   

we find that 

24 .
dx dy

dz a a
x y

    

On integration, the complete integral of the given PDE is found to be 
2ln 4 ln .z a x a y b     

2.8 Special Types of First Order Equations 

Type I Equations Involving p   and q   only.  

That is, equations of the type 
( , ) 0.f p q   

Let 0z ax by c      is a solution of the given PDE, described by 

( , ) 0f p q  , 

then 

, .
z z

p a q b
x y

 
   
 

 

Substituting these values of p   and q   in the given PDE, we get 
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( , ) 0.f a b   

Solving for b  , we get, ( )b a  , say. Then, 

( )z ax a y c    

is the complete integral of the given PDE. 

Example 2.33  

Find a complete integral of the equation 

1. p q   

Solution  

The given PDE is of the form ( , ) 0f p q  . Therefore, let us assume the 

solution in the form 
,z ax by c    

where 
21  o ( .r 1 )a b b a     

Hence, the complete integral is found to be 
2(1 ) .z ax a y c     

Example 2.34  

Find the complete integral of the PDE 
1. pq   

Solution  

Since the given PDE is of the form ( , ) 0f p q  , we assume the solution in 

the form z ax by c   , where 1ab   or 1/b a . Hence, the complete 

integral is 

1
.z ax y c

a
    

Type II  

Equations Not Involving the Independent Variables. 

That is, equations of the type 
( , , ) 0.f z p q   

As a trial solution, let us assume that z   is a function of u x ay   , 

where a  is an arbitrary constant. Then, 

( ) ( ),

,

.

z f u f x ay

z dz u dz
p

x du x du

z dz u dz
q a

y du y du

  

 
   
 

 
   
 

 

Substituting these values of p  and q  in the given PDE, we get 

, , 0, (2.121)
dz dz

f z a
du du

 
 

 
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which is an ordinary differential equation of first order. 

Solving Eq. (2.121) for /dz du  , we obtain 

( , ),  (say) 
dz

z a
du

  

or 

. 
( , )

dz
du

z a
  

On integration, we find 

.
( , )

dz
u c

z a
   

That is, 
( , ) ,F z a u c x ay c      

which is the complete integral of the given PDE. 

Example 2.35  

Find the complete integral of 
(1 ) .p q qz   

Solution  

Let us assume the solution in the form 
( ) .z f u x ay    

Then, 

, .
dz dz

p q a
du du

   

Substituting these values in the given PDE, we get 

1 .
dz dz dz

a az
du du du

 
  

 
 

That is, 

1  or .
1

dz dz
a az a du

du az
  


 

On integration, we find 
ln( 1) .az u c x ay c       

which is the required complete integral. 

Example 2.36 

Find the complete integral of the PDE: 
2 2 2 1.p z q   

Solution  

Let us assume that ( )z f u x ay     is a solution of the given PDE. 

Then, 

, .
dz dz

p q a
du du

   

Substituting these values of p  and q  in the given PDE, we obtain 
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2 2

2 2 1.
dz dz

z a
du du

   
    

   
 

That is, 

 
2

2 2

2 2

1
1  or ,

dz dz
z a

du du z a

 
   

  
 

or 
2 2 .z a dz du   

On integration, we get 

2 2 2 2 2

ln ,
2 2

z z a a z z a
x ay b

a

   
    

  

 

which is the required complete integral of the given PDE. 

Type III Separable Equations. 

An equation in which z   is absent and the terms containing x   and p   

can be separated from those containing y   and q   is called a separable 

equation. That is, equations of the type 
( , ) ( , ).f x p F y q  

As a trial solution, let us assume that 
( , ) ( , ) . (say) f x p F y q a   

Now, solving them for p  and q , we obtain 

( , ), ( , ).p x a q y a    

Since 

,
z z

dz dx dy pdx qdy
x y

 
   
 

 

or 
( , ) ( , ) .dz x a dx y a dy    

On integration, we get the complete integral in the form 

( , ) ( , ) .z x a dx y a dy b      

Example 2.37  

Find the complete integral of the PDE: 

 2 2 2 .1p y x qx   

Solution  

The given PDE is of separable type and can be rewritten as 

 2 2

2

1
.  (say), an arbitrary constant. 

p x q
a

x y


   

Then, 
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2
, .

1

ax
p q ay

x
 


 

Substituting these values of p  and q  in 

,dz pdx qdy   

we get 

2
.

1

ax
dz dx aydy

x
 


 

On integration, we obtain 

2 21 ,
2

a
z a x y b     

which is the complete integral of the given PDE. 

Example 2.38  

Find the complete integral of 
2 2 .p q x y    

Solution  

The given PDE is of separable type and can be rewritten as 
2 2 ,  (say) p x y q a     

Then, 

, .p x a q y a     

Now, substituting these values of p  and q   in 

,dz pdx qdy   

we find 

.dz x adx y ady     

On integration, the complete integral is found to be 

3/2 3/22 2
( ) ( ) .

3 3
z x a y a b      

Type IV Clairaut's Form 

A first order PDE is said to be of Clairaut's form if it can be written as 
( , ).z px qy f p q    

The corresponding Charpit's equations are 

. (2.12 2)
p q p q

dx dy dz dp dq

x f y f px qy pf qf p p q q
   

      
 

The integration of the last two equations of (2.122) gives us 
, .p a q b   

Substituting these values of p   and q   in the given PDE, we get the re-

quired complete integral in the form 
( , ).z ax by f a b    

Example 2.39  
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Find the complete integral of the equation 
2 21 .z px qy p q      

Solution  

The given PDE is in the Clairaut's form. Hence, its complete integral is 
2 21 .z ax by a b      

Example 2.40  

Find the complete integral of 
( )( ) 1.p q z xp yq     

Solution  

The given PDE can be rewritten as 

1
,z xp yq

p q
  


 

which is in the Clairaut's form, 
( , ).z px qy f p q    

Hence, the complete integral of the given PDE is 

1
.z ax by

a b
  


 

Example 2.41 

In classical mechanics, the Hamilton-Jacobi equation for the problem of 

one-dimensional, Harmonic oscillator is given by the differential equation 

as  
2

21 1
0, (2.123)

2 2

S S
Kq

m q t

  
   

  
 

where ( , , ),
S

S S p q t p
q


 


 and K  is a constant. Using Charpits method, 

find S .  

Solution  

Following the notation of Eq. (2.123) we rewrite 

 
2

21 1
, , , , ,

2 2
t q

S S
f t q S S S Kq

m q t

  
   

  
 

which gives us 

0, , 0, 1, .
t q

q

t q S S S

S
f f Kq f f f

m
      

Then, the Charpits auxiliary equations assumes the following form: 

2
.

1 / / 0

qt

q t q

dSdt dq dS dS

S m S S m Kq
   

 
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Considering the second and last members, we have
/

q

q

dSdq

S m Kq



. 

On integration, we get 
2

21
 (constant of integration). 

2 2

qS
Kq a

m
   

Equation (2.123) then becomes 

2 22
, .t q

a
S a S Km q

K

 
    

 
 

Substituting tS and qS into 

,t qdS S dt S dq   

and integrating, we arrive at 

 

1/2

2

1/2
2 2

2
,

.

a
S at Km q dq C

K

S at Km q dq C

 
     

 

    





 

where 2 2a

K
    and C  is another constant of integration. 
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CHAPTER THREE 

PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER 

3.1 Introduction 

          An important ingredient of a systematic theory of partial differen-

tial equations is a classification scheme which identifies classes of equa-

tions with common properties. The “type” of an equation determines the 

nature of boundary and initial conditions which may be imposed, the na-

ture of singularities which solutions may have and the nature of methods 

which can be used to approximate a solution. In this chapter, we present 

the classification of linear partial differential equations of the second or-

der. Linear partial equations of the second order are divided into three 

main types.  They are hyperbolic equations, parabolic equations and ellip-

tic equations. Then we study the canonical forms of these main types. Af-

ter that, we present methods for solving these linear equations with con-

stant coefficients and generalize these methods to linear equations of 

higher orders than the second order. 

3.2 Classification of second order PDEs 

           The most general linear second order PDE, with one dependent 

function u  on a domain    of points  1 2, , , , 1 ,nX x x x n    is 

, 1 1

. (3.1)
n n

ij xi j i xi

i j i

a u x bu Fu G
 

     

The classification of a PDE depends only on the highest order derivatives 

present. The classification of PDE is motivated by the classification of the 

quadratic equation of the form 
2 2 0, (3.2)Ax Bxy Cy Dx Ey F       

which is elliptic, parabolic, or hyperbolic according as the discriminant 
2 4B AC   is negative, zero or positive. Thus, we have the following se-

cond order linear PDE in two variables x   and y : 

, (3.3)xx xy yy x yAu Bu Cu Du Eu Fu G       

where the coefficients , , ,A B C   are functions of x   and y . Equation 

(3.3) is elliptic, parabolic or hyperbolic at a point  0 0,x y  according as 

the discriminant 

     2

0 0 0 0 0 0, 4 , ,B x y A x y C x y  

is negative, zero or positive. If this is true at all points in a domain , 

then Eq. (3.3) is said to be elliptic, parabolic or hyperbolic in that domain. 

If the number of independent variables is two or three, a transformation 

can always be found to reduce the given PDE to a canonical form (also 

called normal form). In general, when the number of independent varia-

bles is greater than 3  , it is not always possible to find such a transfor-

mation except in certain special cases. The idea of reducing the given 
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PDE to a canonical form is that the transformed equation assumes a sim-

ple form so that the subsequent analysis of solving the equation is made 

easy. 

3.3 Canonical forms 

          Consider the most general transformation of the independent varia-

bles x  and y  of Eq. (3.3) to new variables ,  , where 

( , ), ( , ), (3.4)x y x y      

such that the functions   and   are continuously differentiable and the 

Jacobian 

 
( , )

0 ,
( , )

x y

x y y x

x y

J
x y

  
   

 


    


 

in the domain    where Eq. (3.3) holds. Using the chain rule of partial 

differentiation, the partial derivatives become 

 

2 2

2 2

, ,

,

,

2 .

2

x x x y y y

xx x x x x xx xx

xy x y x y y x x y xy xyy

yy y y y y yy yy

u u u u u u

u u u u u u

u u u u u u

u u u u u u

   

    

    

    

   

     

         

     

   

    

     

    

 

Substituting these expressions into the original differential equation (3.3), 

we get 

, (3.5)Au Bu Cu Du Eu Fu G           

where 

 

2 2

2 2

,

2 ,

,

,

,

2

(3.6)

, .

x x y y

x x x y y x y y

x x y y

xx xy yy x y

xx xy yy x y

A A B C

B A B C

C A B C

D A B C D E

E A B C D E

F F G G

   

       

   

    

    

  


    


   


     


     


  

 

It may be noted that the transformed equation (3.5) has the same form as 

that of the original equation (3.3) under the general transformation (3.4). 

Using Eq. (3.6) it can also be verified that 

   
2

2 24 4 ,x y y xB AC B AC        

and therefore we conclude that the transformation of the independent var-

iables does not modify the type of PDE. 

Since the classification of Eq. (3.3) depends on the coefficients ,A B  and 

C  we can also rewrite the equation in the form 
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 , , , , .xx xy yy x yAu Bu Cu H x y u u u    

It can be shown easily that under the transformation (3.4), Eq. (3.5) takes 

one of the following three canonical forms: 

(i) In the hyperbolic case 

   , , , , or  , , , , , . (3.7)u u u u u u u u u               

(ii) In the elliptic case 

 , , , , . (3.8)u u u u u        

(iii) In the parabolic case  

   , , , , , or , , , , . (3.9)u u u u u u u u             

We shall discuss in detail each of these cases separately. 

3.3.1 Canonical Form for Hyperbolic Equation 

Since the discriminant 2 4 0B AC   for hyperbolic case, we set 0A   

and 0C    in Eq. (3.6), which will give us the coordinates   and   that 

reduce the given PDE to a canonical form in which the coefficients of 

,u u    are zero. Thus we have 

2 2

2 2

0,

0,

x x y y

x x y y

A A B C

C A B C

   

   

   

   
 

which, on rewriting, become 
2

2

0,

0.

x x

y y

x x

y y

A B C

A B C

 

 

 

 

   
        

   

   
        

   

 

Solving these equations for  /x y    and  /x y   , we get 

2

2

,
4

2
.

4
.

2

(3.10)

x

y

x

y

B B AC

A

B B AC

A









  


 












 

The condition 
2 4B AC  implies that the slopes of the curves 

1( , ) ,x y C  2( , )x y C   are real. Thus, if
2 4B AC , then at any point 

( , )x y , there exists two real directions given by the two roots (3.10) along 

which the PDE (3.3) reduces to the canonical form. These are called 

characteristic equations. Though there are two solutions for each quadrat-
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ic, we have considered only one solution for each. Otherwise we will end 

up with the same two coordinates. Along the curve  1( , )x y c  , we have 

0.x yd dx dy      

Hence, 

. (3.11)x

y

dy

dx





 
   

 

 

Similarly, along the curve 2( , )x y c  , we have 

. (3.12)x

y

dy

dx





 
   

 

 

Integrating Eqs. (3.11) and (3.12), we obtain the equations of family of 

characteristics 1( , )x y c   and 2( , )x y c  , which are called the charac-

teristics of the PDE (3.3). Now to obtain the canonical form for the given 

PDE, we substitute the expressions of    and    into Eq. (3.3) which re-

duces to the second of (3.7). To make the ideas clearer, let us consider the 

following example: 

Example 3.1 

Classify and reduce the PDE 

3 10 3 0,xx xy yyu u u    

to a canonical form and solve it. 

Solution 
Comparing with the standard PDE (3.3), we have 3 ,A   

10 ,B  23 , 4 64 0C B AC    . Hence the given equation is a hyper-

bolic PDE. The corresponding characteristics are: 
2

2

4 1
,

2 3

4
3.

2

x

y

x

y

dy B B AC

dx A

dy B B AC

dx A









     
         

   

     
         

   

 

To find   and  , we first solve for y  by integrating the above equations. 

Thus, we get 

1 2

1
3 ,

3
,y x c y x c     

which give the constants as 

1 23 , / 3.c y x c y x     

Therefore, 

1 2

1
3 , .

3
y x c y x c        
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These are the characteristic lines for the given hyperbolic equation. In this 

example, the characteristics are found to be straight lines in the ( , )x y -

plane. To find the canonical equation, we substitute the expressions for   

and   into Eq. (3.6) to get 

 

2 2 23( 3) 10( 3)(1) 3 0,

2 2

1 1
2(3)( 3) 10 ( 3)(1) 1 2(3)(1)(1)

3 3

10 100 64
6 10 6 12

3 3 3

0, 0, 0, 0

,

.

x x y y

x x x y y x y y

A A B C

B A B C

C D E F

   

       

        

   

    
           

    

 
        

 

   

 

Hence, the required canonical form is 

64
0  or 0.

3
u u    

On integration, we obtain 
( , ) ( ) ( ),u f g      

where f  and g   are arbitrary. Going back to the original variables, the 

general solution is 
( , ) ( 3 ) ( / 3).u x y f y x g y x     

3.3.2 Canonical Form for Parabolic Equation 

      For the parabolic equation, the discriminant 2 4 0B AC  , which can 

be true if 0B   and A  or C   is equal to zero. Suppose we set first 0A    

in Eq. (3.6). Then we obtain 
2 2 0,x x y yA A B C        

or 
2

0,x x

y y

A B C
 

 

   
        

   

 

which gives 
2 4

.
2

x

y

B B AC

A





  
  

Using the condition for parabolic case, we get 

. (3.13)
2

x

y

B

A




   

Hence, to find the function ( , )x y   which satisfies Eq. (3.13), we set 
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,
2

x

y

dy B

dx A




    

and get the implicit solution 

1( , ) .x y C   

In fact, one can verify that 0A    implies 0B   as follows: 

  2 .2 x x x y y x y yB A B C            

Since 2 4 0B AC  , the above relation reduces to 

 

  

2 2 2

2 .

x x x y y x y y

x y x y

B A AC C

A C A C

       

   

   

  
 

However, 

2
.

2 2

x

y

B AC C

A A A




       

Hence, 

  2 0.x x x yB A A A C        

We therefore choose    in such a way that both A   and B   are zero. Then 

  can be chosen in any way we like as long as it is not parallel to the  -

coordinate. In other words, we choose   such that the Jacobian of the 

transformation is not zero. Thus we can write the canonical equation for 

parabolic case by simply substituting    and    into Eq. (3.3) which re-

duces to either of the forms (3.9). 

To illustrate the procedure, we consider the following example: 

Example 3.2 

Classify and reduce the PDE 
2 2 e ,2 x

xx xy yyx u xyu y u    

to a canonical form. 

Solution 

The discriminant 
2 2 2 2 24 4 4 0B AC x y x y    , and hence the given 

PDE is parabolic everywhere. The characteristic equation is 

2

2
.

2 2

X

y

dy B xy y

dx A x x




        

On integration, we have 
,xy c  

and hence xy    will satisfy the characteristic equation and we can 

choose y  . To find the canonical equation, we substitute the expres-

sions for    and    into Eq. (3.6) to get 
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2 2 2 2 2 2 2 2

2

2 0,

0, , 2 ,

0, 0, e .x

A Ay Bxy cx x y x y y x

B C y D xy

E F G

      

   

  

 

Hence, the transformed equation is 
2 2 e ,xy u xyu    

or 
2 /2 e .u u  

     

The canonical form is, therefore, 

/

2 2
.

2 1
eu u  

 



 
   

3.3.3 Canonical Form for Elliptic Equation 

Since the discriminant 2 4 0B AC  , for elliptic case, the characteristic 

equations 
2

2

4
,

2

4
,

2

dy B B AC

dx A

dy B B AC

dx A

 


 


 

give us complex conjugate coordinates, say    and  . Now, we make an-

other transformation from ( , )   to ( , )    so that 

, ,
2 2i

   
 

 
   

which give us the required canonical equation in the form (3.9). 

To illustrate the procedure, we consider the following example: 

Example 3.3 

Classify and reduce the PDE 
2 0,xx yyu x u   

to a canonical form. 

Solution 
The discriminant 2 24 4 0B AC x    . Hence, the given PDE is elliptic. 

The characteristic equations are 
2 2

2

4 4

2 2
,

4
.

2

dy B B AC x
ix

dx A

dy B B AC
ix

dx A

  
    

 
 

 

Integration of these equations yields 
2 2

1 2, .
2 2

x x
iy c iy c      
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Hence, we may assume that 

2 21 1
, .

2 2
x iy x iy      

Now, introducing the second transformation 

, ,
2 2i

   
 

 
   

we obtain 
2

, .
2

x
y    

The canonical form can now be obtained by computing 

   

2 2 2

2 2 2

,

,

,

,

2 2 0

1

0

0, 0.

,

x x y y

x x x y y x y y

x x y y

xx xy yy x y

xx xy yy x y

A A c x

B A B c

C A B c x

D A B c D E

E A B c D E

F G

   

       

   

    

    

   

    

   

     

     

 

 

Thus the required canonical equation is 
2 2 0,x u x u u      

or 

.
2

u
u u 
 


    

Example 3.3  
Classify and reduce the relation 

2 2
2 22 ,xx xy yy x y

y x
y u xyu x u u u

x y
     

to a canonical form and solve it. 

Solution  
The discriminant of the given PDE is 

2 2 2 2 24 4 4 0.B AC x y x y     

Hence the given equation is of a parabolic type. The characteristic equa-

tion is 

2

2
.

2 2

x

y

dy B xy x

dx A y y






       

Integration gives 
2 2

1x y c  . Therefore, 
2 2x y    satisfies the charac-

teristic equation. The  -coordinate can be chosen arbitrarily so that it is 

not parallel to  , i.e. the Jacobian of the transformation is not zero. Thus 

we choose 



CHAPTER THREE: PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER                DR. AHMED YOUSEF 

68 

 

2 2 2, .x y y     

To find the canonical equation, we compute 
2 2 2 2 2 2 2 2

2 2

4 8 4 0,

0, 4 ,

0.

x x y yA A B C x y x y x y

B C x y

D E F G

         

 

   

 

Hence, the required canonical equation is 
2 24 0  or 0.x y u u    

To solve this equation, we integrate it twice with respect to   to get 

( ), ( ) ( ),u f u f g        

where ( )f    and ( )g   are arbitrary functions of   . Now, going back to 

the original independent variables, the required solution is 

   2 2 2 2 2 .u y f x y g x y     

Example 3.4  

Reduce the following equation to a canonical form: 

   2 21 1 0.xx yy x yx u y u xu yu       

Solution  

The discriminant of the given PDE is 

  2 2 24 4 1 1 0.B AC x y       

Hence the given PDE is an elliptic type. The characteristic equations are 

  
 

2 2
2 2

22

2 2

2

4 1 14 1
,

2 12 1

4 1
.

2 1

x ydy B B AC y
i

dx A xx

dy B B AC y
i

dx A x

    
    



  
 



 

On integration, we get 

   

   

2 2

1

2 2

2

ln 1 ln 1

l n .n 1 l 1

,x x i y y c

x x i y y c





      

      

 

Introducing the second transformation 

, ,
2 2i

   
 

 
   

we obtain 

 

 

2

2

ln 1 ,

ln 1 .

x x

y y





  

  
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Then the canonical form can be obtained by computing 
2 2 1, 0, 1, 0.x x y yA A B C B C D E F G              

Thus the canonical equation for the given PDE is 

0.u u    

Example 3.5 

Reduce the following equation to a canonical form and hence solve it: 
22sin cos cos 0.xx xy yy yu xu xu xu     

Solution  

Comparing with the general second order PDE (3.3), we have 
21, 2sin , cos ,

0, cos , 0, 0

A B x C x

D E x F G

    

    
  

The discriminant  2 2 24 4 sin cos 4 0B AC x x     . Hence the given 

PDE is hyperbolic. The relevant characteristic equations are 
2

2

4
sin 1,

2

4
1 sin .

2

dy B B AC
x

dx A

dy B B AC
x

dx A

 
   

 
  

 

On integration, we get 

1 2cos , c .osy x x c y x x c       

Thus, we choose the characteristic lines as 

1 2co , c .s osx y x c x y x c           

In order to find the canonical equation, we compute 

 

2 2

2 2

0.

2 2

2(sin 1)(sin 1) 4sin 2cos 4.

0, 0, 0, 0

.

, 0.

x x y y

x x x y y x y y

A A B C

B A B C

x x x x

C D E F G

   

       

   

   

      

    

 

Thus, the required canonical equation is 

0.u   

Integrating with respect to , we obtain 

( ),u f   

where f  is arbitrary. Integrating once again with respect to  , we have 

( ) ( ),u f d g     

or 
( ) ( ),u g     
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where ( )g   is another arbitrary function. Returning to the old variables 

,x y  , the solution of the given PDE is 

( , ) ( cos ) ( cos ).u x y y x x g y x x       

 

Example 3.6  

Reduce the Tricomi equation 

0, 0xx yyu xu x    

for all ,x y  to a canonical form. 

Solution  

The discriminant 2 4 4B AC x   . Hence the given PDE is of mixed 

type: hyperbolic for 0x    and elliptic for 0x  . 

Case I 

 In the half-plane 0x  , the characteristic equations are 

 
2

2

4 2
,

2 2

4
.

2

x

y

x

y

dy B B AC x
x

dx A

dy B B AC
x

dx A









   
      

 
    

 

Integration yields 

3/2

1

3/2

2

2
( )

3

(
3

,

2
) .

y x c

y x c

  

   

 

Therefore, the new coordinates are 

3

1

3

2

3
( , ) ( )

2

3
( , ) ( )

2

,

,

x y y x c

x y y x c





   

   

 

which are cubic parabolas. In order to find the canonical equation, we 

compute 

2 2

1/2

9 9
0 0,

4 4

3
9 , 0, ( ) , 0.

4

x x y yA A B C x x

B x C D x E F G

   



       

        

 

Thus, the required canonical equation is 

1/2 1/23 3
9 ( ) ( ) 0,

4 4
xu x u x u  

       

or 
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 
1

.
6( )

u u u  
 

 


 

Case II  

In the half-plane 0,x   the characteristic equations are given by 

, .
dy dy

i x i x
dx dx

    

On integration, we have 

3 33 3
( , ) ( ) , ( , ) ( )

2 2
x y y i x x y y i x      

Introducing the second transformation 

, ,
2 2i

   
 

 
   

we obtain 

33
, (

2
.)y x     

The corresponding normal or canonical form is 

1
0.

3
u u u  


    

Example 3.7  
Find the characteristics of the equation 

22 sin ( ) 0,xx xy yy yu u x u u     

when it is of hyperbolic type. 

Solution  

The discriminant 2 2 24 4 4sin 4cosB AC x x    . Hence for all 

(2 1) / 2x n   , the given PDE is of hyperbolic type. The characteristic 

equations are 
2 4

1 cos .
2

dy B B AC
x

dx A


   

On integration, we get 

1 2sin , .siny x x c y x x c       

Thus, the characteristic equations are 
sin , sin .y x x y x x        

Example 3.8 

Reduce the following equation to a canonical form and hence solve it: 

( ) 0.xx xy yyyu x y u xu     

Solution  

The discriminant 
2 2 24 ( ) 4 ( ) 0B AC x y xy x y       . Hence the 

given PDE is hyperbolic everywhere except along the line y x  ; where-
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as on the line y x , it is parabolic. When y x , the characteristic equa-

tions are 
2 4 ( ) ( )

.
2 2

dy B B AC x y x y

dx A y

  
   

Therefore, 

1, .
dy dy x

dx dx y
   

On integration, we obtain 
2 2

1 2, .y x c y x c     

Hence, the characteristic equations are 
2 2, .y x y x      

These are straight lines and rectangular hyperbolas. The canonical form 

can be obtained by computing 
2 2 20, 2( ) ,

0, 0, 2( ), 0.

x x y yA A B C y x y x B x y

C D E x y F G

             

     
 

Thus, the canonical equation for the given PDE is 
22( ) 2( ) 0,x y u x y u       

or 
22 2( ) 0,u u       

or 

0.
u

u u  
 

  
   

  
 

Integration yields 

( ).
u

f 






 

Again integrating with respect to  , we obtain 

1
( ) ( ).u f d g  


   

Hence, 

   2 2 2 21
( ),u f y x d y x g y x

y x
    

   

is the general solution. 

Example 3.9  

Classify and transform the following equation to a canonical form: 
2 2sin ( ) sin(2 ) cos ( ) .xx xy yyx u x u x u x    

Solution  

The discriminant of the given PDE is 
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2 2 2 24 sin 2 4sin cos 0.B AC x x x     

Hence, the given equation is of parabolic type. The characteristic equa-

tion is 

cot .
2

dy B
x

dx A
   

Integration gives 

1lnsin .y x c   

Hence, the characteristic equations are: 
lnsin , ,y x y     

  is chosen in such a way that the Jacobian of the transformation is non-

zero. Now the canonical form can be obtained by computing 
20, 0, cos , 1A B C x D    , 

0, 0, .E F G x    

Hence, the canonical equation is 
2cos ( ) ,x u u x    

or 

 2( ) 11 e sin e .u u   

 

        

Example 3.10 

Show that the equation 

2

2 1
,xx x tt

N
u u u

x a
   

where N  and a  are constants, is hyperbolic and obtain its canonical 

form. 

Solution  

Comparing with the general PDE (3.3) and replacing y  by t , we 

have 21, 0 , 1 / , 2 /A B C a D N x      and 0E F G   . The discri-

minant 2 24 4 / 0B AC a    . Hence, the given PDE is hyperbolic. The 

characteristic equations are 
2 24 4 / 1

.
2 2

dt B B AC a

dx A a


    

Therefore, 

1 1
, .

dt dt

dx a dx a
    

On integration, we get 

1 2, .
x x

t c t c
a a

      

Hence, the characteristic equations are 
, .x at x at      
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The canonical form can be obtained by computing 

 

2 2 0,

2 2 4,

2 2
0, , .

x x t t

x x x t t x t t

x t x t

A A B C

B A B C

N N
C D D E E D E

x x

   

     

   

   

    

      

 

Thus, the canonical equation for the given PDE is 

 
2

4 0.
N

u u u
x

      

Expressing x   in terms of   and ,  the required canonical equation is 

  0.
N

u u u  
 

  


 

Example 3.11 

Transform the following differential equation to a canonical form: 

2 4 2 3 0.xx xy yy x yu u u u u      

Solution  

The discriminant 2 4 12 0B AC    . Hence, the given PDE is elliptic. 

The characteristic equations are 
2

2

4
1 3,

2

4
1 3.

2

dy B B AC
i

dx A

dy B B AC
i

dx A

 
   

 
   

 

Integration of these equations yields 

1 2(1 3) , (1 3 .)y i x c y i x c         

Hence, we may take the characteristic equations in the form 

(1 3) , (1 3) .y i x y i x        

In order to avoid calculations with complex variables, we introduce the 

second transformation 

, .
2 2i

   
 

 
   

Therefore, 

, 3 .y x x     

The canonical form can now be obtained by computing 



CHAPTER THREE: PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER                DR. AHMED YOUSEF 

75 

 

 

2 2

2 2

3,

2 2 0,

3,

1,

2 3 ,

0, 0.

x x y y

x x x y y x y y

x x y y

xx xy yy x y

xx xy yy x y

A A B C

B A B C

C A B C

D A B C D E

E A B C D E

F G

   

       

   

    

    

   

    

   

     

     

 

 

Thus the required canonical form is  

3 3 2 3 0,u u u u        

or 

 
1

.2 3
3

u u u u   
     
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CHAPTER FOUR  

ELLIPTIC DIFFERENTIAL EQUATIONS 

4.1 Introduction 

              In Chapter 3, we have seen the classification of second order par-

tial differential equation into elliptic, parabolic and hyperbolic types. In 

this chapter we shall consider various properties and techniques for solv-

ing Laplace and Poisson equations which are elliptic in nature. 

        Various physical phenomena are governed by the well-known La-

place and Poisson equations. A few of them, frequently encountered in 

applications are: steady heat conduction, seepage through porous media, 

irrotational flow of an ideal fluid, distribution of electrical and magnetic 

potential, torsion of prismatic shaft, bending of prismatic beams, distribu-

tion of gravitational potential, etc. 

4.2 Boundary Value Problems (BVPs) 

          The function u , satisfying the Laplace and Poisson equations in a 

bounded region  in 3R , should also satisfy certain boundary conditions 

on the boundary   of this region. Such problems are referred to as 

boundary value problems (BVPs) for Laplace and Poisson equations. We 

shall denote the set of all boundary points of   by  . By the closure of 

, we mean the set of all interior points of  together with its boundary 

points and is denoted by . Symbolically,   . 

        If a function ( )nf C , then all its derivatives of order n  are contin-

uous. If (0)f C , then we mean f   is continuous. 

        There are mainly three types of boundary value problems for La-

place equation. If (0)f C  and is specified on the boundary   of some 

finite region , the problem of determining a function ( , , )u x y z  such 

that 
2 0u    within  and satisfying u f   on    is called the bound-

ary value problem of first kind, or interior Dirichlet problem. For ex-

ample, finding the steady state temperature within the region  when no 

heat sources or sinks are present and when the temperature is prescribed 

on the boundary  , is a Dirichlet problem. Another example would be 

to find the potential inside the region  when the potential is specified 

on the boundary  . These two examples correspond to the interior Di-

richlet problem. Similarly, if 
(0)f C  and is prescribed on the boundary 

  of a finite simply connected region , determining a function 

( , , )u x y z  which satisfies 
2 0u   outside  and is such that u f  on 

 , is called an exterior Dirichlet problem. For example, determination 

of the distribution of the potential outside a body whose surface potential 

is prescribed, is an exterior Dirichlet problem. The second type of BVP is 

associated with von Neumann. The problem is to determine the function 
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( , , )u x y z  so that 2 0u   within  while 
u

g
n





  at every point of   ,  

where 
u

n




 denotes the normal derivative of the field variable ( , , )u x y z . 

This problem is called the Neumann problem. If ( , , )u x y z  is the temper-

ature, 
u

n




 is the heat flux representing the amount of heat crossing per 

unit volume per unit time along the normal direction, which is zero when 

insulated. The third type of BVP is concerned with the determination of 

the function ( , , )u x y z  such that 
2 0u    within , while a boundary 

condition of the form 
u

hu f
n


 


, where 0h   is specified at every 

point of   . This is called a mixed BVP or Churchill’s problem. If we 

assume Newton’s law of cooling, the heat lost ishu  , where u  is the tem-

perature difference from the surrounding medium and 0h    is a constant 

depending on the medium. The heat f  supplied at a point of the bounda-

ry is partly conducted into the medium and partly lost by radiation to the 

surroundings. Equating these amounts, we get the third boundary condi-

tion. 

4.3 Interior Dirichlet Problem for A Circle 

The Dirichlet problem for the circle is defined as follows: 
2PDE : 0, 0 , 0 2

BC: ( , ) ( ), 0 2
(4.1)

u r a

u a f

 

   

     

  
 

where ( )f    is a continuous function on .  The task is to find the value 

of u  an point in the interior of the circle   in terms of its values on   

such that u   is single valued and continuous on .   

            In view of circular geometry, it is natural to choose polar coordi-

nates to solve this problem and then use the variables separable method. 

The requirement of single-valuedness of u   in R   implies the periodicity 

condition, i.e., 
( , 2 ) ( , ), 0u r u r r a       

where 
2 0u   in polar coordinates can be written as 

2

2

1 1
0.rr ru u u u

r r
      

If ( , ) ( ) ( )u r R r H   , the above equation reduces to 

2

1 1
0.R H R H RH

r r
      

This equation can be rewritten as 
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2

,
r rR H

k
R

R

H

 
  


 

which means that a function of r  is equal to a function of   and, there-

fore, each must be equal to a constant k   (a separation constant). 

Case I  

Let 2k  . Then 
2 2 0,r R rR R     

which is a Euler type of equation and can be solved by setting ezr  . Its 

solution is 

1 2 1 2 .e ez zR c c c r c r         

Also, 
2 0,H H    

whose solution is 

3 4cos sin .H c c    

Therefore, 

  1 2 3 4( , ) cos sin . (4.2)u r c r c r c c       

Case II  

Let 
2k   . Then 

2 2 20, 0.r R rR R H H         

Their respective solutions are 

1 2

3 4

cos( ln ) sin( ln ),

.

R c r c r

H c e c e 

 


 

 
 

Thus 

  1 2 3 4( , ) cos( ln ) sin( ln ) . (4.3)u r c r c r c e c e        

Case III  

Let 0k  . Then we have 

0.rR R    

Setting ( ) ( )R r V r  , we obtain 

0,  i.e., 0.
dV dV dr

r V
dr V r

     

Integrating, we get  1ln lnVr c . Therefore, 

1 .
c dR

V
r dr

   

On integration, 

1 2ln .R c r c   

Also, 

0.H    

After integrating twice, we get 



CHAPTER FOUR: ELLIPTIC DIFFERENTIAL EQUATIONS                                                         DR. AHMED YOUSEF 

79 

 

3 4 .H c c   

Thus, 

  1 2 3 4( , ) ln . (4.4)u r c r c c c     

Now, for the interior problem, 0r   is a point in the domain  and since 

lnr  is not defined at 0r   , the solutions (4.3) and (4.4) are not accepta-

ble. Thus the required solution is obtained from Eq. (4.2). The periodicity 

condition in    implies 

3 4 3 4cos sin cos( ( 2 )) sin( ( 2 )),c c c c             

i.e. 

3 4[cos cos( 2 )] [sin sin( 2 )] 0,c c            

or 

 3 42sin sin( ) cos( ) 0.c c         

Implying sin 0, , ( 0,1,2, )n n n        . Using the principle of 

superposition and renaming the constants, the acceptable general solution 

can be written as 

  
0

( , ) cos sin .n n

n n n n

n

u r c r d r a n b n  






    

At 0r   , the solution should be finite, which requires 0nd  . Thus the 

appropriate solution assumes the form 

 
0

( , ) cos sin .

n

n n

n

r
u r A n B n

a
  





 
  

 
  

For 0n   , let the constant 0A  be 0 / 2A  . Then the solution is 

 0

1

( , ) cos sin , (4.5)
2

n

n n

n

A r
u r A n B n

a
  





 
   

 
  

which is a full-range Fourier series. Now we have to determine nA  and 

nB   so that the BC   : ( , ) ( )u a f   is satisfied, i.e., 

 0

1

( ) cos sin .
2

n n

n

A
f A n B n  





    

Hence, 
2

0

2

0

1
( )cos , 0,1,2,3,

(4.6)
1

( )sin , 1,2,3,

n

n

A f n d n

B f n d n





  


  



  


   






 

In Eqs. (4.6) we replace the dummy variable   by    to distinguish this 

variable from the current variable    in Eq. (4.5). Substituting Eq. (4.6) 

into Eq. (4.5), we obtain the relation 



CHAPTER FOUR: ELLIPTIC DIFFERENTIAL EQUATIONS                                                         DR. AHMED YOUSEF 

81 

 

2 2

0 0
1

2

0

1 cos
( , ) ( ) cos( ) ( )

2

sin
sin( ) ( ) .

n

n

n

nr
u r f d n f d

a

nr
n f d

a

 




     

 


  







 
   

 

 
  
  

 



 

Interchanging the order of summation and integration, we get 

2 2

0 0
1

2

0
1

1 1
( , ) ( ) ( ) {cos cos sin sin }

2

1
( ) 1 2 cos ( ) . (4.7)

2

n

n

n

n

r
u r f d f n n n n d

a

r
f n d

a

 



        
 

   










 
   

 

  
    

   

 



To obtain an alternative expression for ( , )u r   in closed integral form, we 

can proceed as follows: 

Since 

 ( ) ( )

( )

1 1

1

( )

( ) ( )

( ) ( )

1

e e

e e

1 2 cos ( ) ,

1 , ( )

1 ,
1

e e

e e1

n n

n n

n

in in

in in

i i

n

n n

i i

r r
n

a a

r

a

   

   

   

   

 

  

 

 

 

 



  

  

  

 









   
     

   

   

  
 

 

   

since , ( / ) 1r a r a      and ( )e 1.i     So, we have 

2

2
1

1
1 2 cos ( ) .

1 2 cos( )

n

n

n


  
   






  

  
   

Thus, the required solution takes the form 

 2 2
2

2 20

( )1
( , ) . (4.8)

2 2 cos( )

a r f
u r d

a ar r

 
 

  




    
  

This is known as Poisson's integral formula for a circle, which gives a 

unique solution for the Dirichlet problem. The solution (4.8) can be inter-

preted physically in many ways: It can be thought of as finding the poten-

tial ( , )u r   as a weighted average of the boundary potentials ( )f    

weighted by the Poisson kernel P , given by 
2 2

2 2
.

2 cos( )

a r
P

a ar r 



    

 

It can also be thought of as a steady temperature distribution ( , )u r    in a 

circular disc, when the temperature u  on its boundary    is given by 

( )u f    which is independent of time. 
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4.4 Exterior Dirichlet Problem for A Circle 

The exterior Dirichlet problem is described by 
2PDE: 0 ,

(4.9)
BC: ( , ) ( ),

u a r

u a f 

   


 

 
u  must be bounded as .r    

By the method of separation of variables, the general solution (4.2) of 
2 0u    in polar coordinates can be written as 

  
0

( , ) cos sin .n n

n n n n

n

u r c r d r a n b n  






    

Now as r   , we require u  to be bounded, and, therefore, 0nc  . Af-

ter adjusting the constants, the general solution now reads 

 
0

( , ) cos sin .n

n n

n

u r r A n B n  






   

With no loss of generality, it can also be written as 

 0

1

( , ) cos sin . (4.10)
2

n

n n

n

A r
u r A n B n

a
  





 
   

 
  

Using the BC: ( , ) ( )u a f  , we obtain 

 0

1

( ) cos sin .
2

n n

n

A
f A n B n  





    

This is a full-range Fourier series in ( )f   , where 

2

0

2

0

1
( )cos , 0,1,2,3,

(4.11)
1

( )sin , 1,2,3,

n

n

A f n d n

B f n d n





  


  



  


   






 

In Eq. (4.11) we replace the dummy variable    by   so as to distinguish 

it from the current variable  . We then introduce the changed variable 

into solution (4.10) which becomes 

2 2

0 0
1

2

0

1
( , ) ( ) cos cos( ) ( )

2

sin sin( ) ( ) ,

n n

n

n n

r a
u r f d n n f d

r a
n n f d

 



      
 

   









  




 



 



 

or 

2

0
1

1
( , ) ( ) 1 2 cos ( ) . (4.12)

2

n

n

a
u r f n d

r



    






  
    

   
  
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Thus the quantity in the square brackets on the right-hand side of Eq. 

(4.12) becomes 
2

2
1

1 2 cos ( ) .
2 cos( )

1

1

n

n

n


  
   






  
  


  

Therefore, the solution of the exterior Dirichlet problem reduces to that of 

an integral equation of the form 

 2 2
2

2 20

( )1
( , ) .

2 2 cos( )

r a f
u r d

r ar a

 
 

  




    

Example 2.4  

Find the steady state temperature distribution in a semi-circular plate of 

radius a , insulated on both the faces with its curved boundary kept at a 

constant temperature 0U  and its bounding diameter kept at zero tempera-

ture as described in Fig. 4.1. 

 
Solution  

The governing heat flow equation is 
2

tu u  

In the steady state, the temperature is independent of time; hence 0tu  , 

and the temperature satisfies the Laplace equation. The problem can now 

be stated as follows: To solve 

PDE: 
2

2

1 1
( , ) 0,rr ru r u u u

r r
      

0BCs : ( , ) , ( ,0) 0, ( , ) 0.u a U u r u r     

The acceptable general solution is 

 ( , ) ( cos sin )u r cr dr A B       

From the BC: ( ,0) 0u r   , we get 0A  ; however, the BC: ( , ) 0u r     

also gives 

 sin 0B cr dr     

implying either 0B   or sin 0.   0B   gives a trivial solution. For a 

non-trivial solution, we must have sin 0  , implying 
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, 0,1,2,n n    meaning thereby n  . Hence, the possible solu-

tion is 

 ( , ) sin . (4.13)u r B n cr dr      

In Eq. (4.13), we observe that as 0r   , the term r    . But the solu-

tion should be finite at 0r   , and so 0d  . Then after adjusting the con-

stants, it follows from the superposition principle that, 

1

( , ) sin .

n

n

n

r
u r B n

a
 





 
  

 
  

Finally, using the first BC: 0( , )u a U  , we get 

0

1

( , ) sin ,n

n

n

u a U B a n 




   

which is a half-range Fourier sine series. Therefore, 

0

0
0

4
,  for 1,3,2

sin

0,  for 2,4,
n

U
n

B U n d n

n



  



 

  
  

  

Hence, 

04
, 0,1,2,

(2 1)
n

U
B n

n 
  


 

With these values of nB , the required solution is 
2 1

0

 0 

4 1
( , ) sin(2 1) .

2 1

n

n

U r
u r n

n a
 







 
  

  
  




