Pure 12 ( PDEs) : _iall aud

Cya) Aa d,,\QLA.u\ o JJ&A.“ At

A . A3 4l

(Math) ale clualy 1) ; &l

SN il 32 Jeaadl




Q D%TER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

CHAPTER ONE
INTRODUCTION TO EAIWENTIAL EQUATIONS
1.1 Introduction
Most natural phenomena, whether in the domain of fluid dynamics,
electricity, magnetism, mechanics, optics, heat flow, economy, biology
can be described in general by partial differential equations (PDES). For
example, the natural laws of physics, such as Maxwell's equations, New-
ton's law of cooling, the Navier-Stokes equations, Newton's equations of
motion, and Schrodinger's equation of quantum mechanics, are stated (or
can be) in terms of PDE, that is, these laws describe physical phenomena
by relating space and time derivatives. Derivatives occur in these equa-
tions because the derivatives represent natural things (like velocity, accel-
eration, force, friction, flux, current).
1.2 Basic Concepts and Definitions
Definition 1.1
A partial differential equation (usually denoted by PDE) is an equation
that contains in addition to the dependent variable and independent varia-
bles, one or more partial derivatives of the dependent variable with re-
spect to one or more independent variables. In general, it may be written

in the form:
F(L){L!dﬂyu\_uy) 0, (L.1)

involving several independent variables x,y,..., an unknown function
u(x,y,...) of these variables, and the partial derivatives u,,u,,
u,,u

w1 Uy - -, OF the unknown function.

Definition 1.2

The general solution of a partial differential equation constitute of
arbitrary functions of independent variables involved in (PDE) rather than
on arbitrary constants. These arbitrary functions are defined on some do-

main D < R" which is continuously differentiable such that all its partial
derivatives involved in equation (1.1) exist and satisfy (1.1) identically.

We recall that in the case of ordinary differential equations, the first
task is to find the general solution, and then a particular solution is deter-
mined by finding the values of arbitrary constants from the prescribed
conditions. But, for partial differential equations, selecting a particular
solution satisfying the additional conditions from the general solution of a
partial differential equation may be as difficult as, or even more difficult
than, the problem of finding the general solution itself. This is so because
the general solution of a partial differential equation involves arbitrary
functions; the specialization of such a solution to the particular form
which satisfies supplementary conditions requires the determination of
these arbitrary functions, rather than merely the determination of con-
stants.
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

As indicated above, the general solution of a linear partial differential
equation contains arbitrary functions. This means that there are infinitely
many solutions and only by specifying the initial and/or boundary condi-
tions can we determine a specific solution of interest.

Usually, both initial and boundary conditions arise from the physical
problems.

In the case of partial differential equations in which one of the inde-
pendent variables is the time t , an initial condition(s) specifies the physi-
cal state of the dependent variable u(x,t) at a particular time t =t, or

t =0. Often u(x,0) and/or u,(x,0) are specified to determine the function
u(x,t) at later times. Such conditions are called the Cauchy (or initial)

conditions. It can be shown that these conditions are necessary and suffi-
cient for the existence of a unique solution. The problem of finding the
solution of the initial-value problem with prescribed Cauchy data on the
line t =0 is called the Cauchy problem or the initial-value problem.

In each physical problem, the governing equation is to be solved with-
in a given domain D of space with prescribed values of the dependent
variable u(x,t) given on the boundary 6D of D . Often, the boundary

need not enclose a finite volume in which case, part of the boundary is at
infinity. For problems with a boundary at infinity, boundedness condi-
tions on the behavior of the solution at infinity must be specified. This
kind of problem is typically known as a houndary-value problem, and it
iIs one of the most fundamental problems in applied mathematics and
mathematical physics.
There are three important types of boundary conditions which arise
frequently in formulating physical problems.
(i) Dirichlet conditions
In this case the solution u is prescribed at each point of a boundary
oD of a domain D . The problem of finding the solution of a given
equation partial differential equation inside D with prescribed values
of u on D is called the Dirichlet boundary-value problem
(i) Neumann conditions
In this case the values of normal derivative g—: of the solution on the
boundary oD are specified. Here, the problem is called the Neumann
boundary-value problem
(ii1) Robin conditions

where (Z—E+au) Is specified ondD . The corresponding problem is

called the Robin boundary-value problem.
Definition 1.3
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

The order of a partial differential equation is the order of the highest

ordered partial derivative appearing in the equation. For example
LU, +2xu, +u, =¢€’ ;}

Is a second-order partial differential equation, and

Uy + XUy, +8U=7Y, |
Is a third-order partial differemti TOTT,

sl =0, (1.1)

XX

Is a fourth-order partial differential equa

Definition 1.4

A partial differentigl, equation is said to be linear if the function F is
. s S\ i . . .
linear function in the@ependent variable and all its derivatives with coef-

ficients depending only on the independent variables, for example

2

X2y

is linear equation. While the equations

xzy@—XUJL(X—yz)l%y@o,

i+j<n 6I+JU
(X, _
; A S

(1.2)

where A; (X,Y)

|_Definition 1.5 |

A partial differential equation it is said to be quasi-linear if it is linear
in the highest-ordered derivative of the dependent variable. That is the co-
efficients of terms involve functions of only lower order derivatives of the
dependent variables. However, terms with lower order derivatives can occur
in any manner. For example, the equation‘_\ -_ Y

USN+- U, = U,

Is first-order quasi-linear partial differential equation., while the equation

<« uxu$CX +Xuu, =siny,>
is a second-order quasi-linear partral differential equation.

| Definition 1.6 |
A quasi-linear partial differential equation it is said to be semi-linear
if the coefficients of highest derivatives are functions of the independent
variables alone, for example

ndependent variables X,y .
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

oy
uxx + Uyy =Uu-, Z:O/»(X,y)femy,zt?(x,y), (12)

where A, (x,y), G(x,y)are functions of the independent variables x, y.

Definition 1.7
The equation (1.2) is called homogeneous if the right hand side
G (x,y) is identically zero for all x andy. If G(x,y) is not identically

zero, then the equation is called nonhomogeneous.

C [ Definition }&))
e linear partial differential equation is called of homogeneous

terms if all the terms of the linear partial differential equation have the

- ¥ same order, for example \
/P,Zb\ @XyZUXW—sinng:e/”D, )_,_/-?CJ

\’9 1.3 A Few well-known PDEs —
1.3.1 Heat equation

It is a partial differential equation gives the distribution of tempera-
ture in a specific region as a function of space and time when the temper-
ature at the boundaries, the initial distribution of temperature, and the
physical properties of the medium are given.

V[

A u =u,,, (heat equation in one dimension)
avA J U =U, +U,. (heat equation in two dimensions)

1.3.2 Laplace's equation

It is satisfied by the potential fields in source-free domains. For ex-
ample, the Laplace equation is satisfied by the gravitational potential of
the gravity force in domains free from attracting masses, the potential of
an electrostatic field in a domain free from charges, etc.

U +Uy, U, =0, (Laplace’sequationin Cartesian coordinates)

1 1 I :
+ +=U +—=U, =0. (Laplace’sequationinpolarcoordinates)
r r

\ \
Q_)))' 1.3.3 Wave equation

It is a partial differential equation describes various oscillatory pro-
cesses and processes of wave propagation:
U, =u, +u, +u,.  (wave equationin threedimensions)

1.3.4 Telegraph equation
It is a partial differential equation describes the voltage on an elec-
trical transmission line with distance and time:
u, =u, +au, + Su. (telegraphequation),
\AS.S Schrédinger equation
It is a partial differential equation that governs the wave function of a

quantum-mechanical ‘s,\cstem\/7k
ou

iIh—=———Au+Vu.
2m

\ 1.4 Construction of Partial Differential Equations
\(95' There are two methods to form the partial differential equations:

4
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

\/> Elimination of arbitrary constants.
\/> Elimination of arbitrary functions.
1.4.1 Elimination of arbitrary constants

Consider a system of geometrical surfaces described by the equation
(X, Y,2,a,b) =0, 1.3)
where g8 and b are arbitrary parameters. We differentiate (1.3) with re-
spectto x and y to obtain

¢+ pg, =0, ¢ +0ag, =0, (1.4)
0z 0z
where p=— ,q=—.
OX oy
The set of two equations (1.3) and (1.4) involves two arbitrary parameters
a and b. In general, these two parameters can be eliminated from this
set to obtain & first-order equation of the form
w(%Y,z,p,q)=0. (1.5)
Thus the system of surfaces (1.4) gives rise to a first-order partial differ-
ential equation (1.5).
In general, if the number of arbitrary constants to be eliminated is
. lr . .
equal to the number of independent variables, then only one first-order
partial differential equation arises. If the number of arbitrary constants to
be eliminated is less than the number of independent variables, then more
than one first-order partial differential equatjon is obtained. If the num-
ber of arbitrary constants to be eliminated is more than the number of in-
dependent variables, the partial differential equations obtained are of se-

cond or higher order.
® Example (1.1)
Find the PDE correspondi | heres
( X*+y* +(z-c)’=r") (1.6)

Solution
2 Differentiating the equation (1.6) with respect to x and y gives
E XN X+p(z-c)=0 and Yy +q(z—-c)=0.
-1

a-¢v¢ Eliminating the arbitrary constant ¢ from these equations, we obtain the
‘, . _ . . . .
first-order, partial differential equation

v
iT"‘vL@@mpﬁﬁ)

L ?-‘L\:‘ Find the PDE corresponding to the family of spheres —= 1

yp —xq =0.

vx—a)y+(y-)’+ 2% =r2
Solution Y
We differentigt€ the equation of the family of spheres with respect to

X and y to obtai
—b)+zq =0.

(x —a)+zp=0, (
/
l/ \.. ;-'1V

Lot~ EN 5


lab
Highlight

lab
Highlight

lab
Pencil

lab
Highlight

lab
Highlight

lab
Pencil

lab
Highlight

lab
Highlight

lab
Highlight

lab
Highlight

lab
Highlight

lab
Highlight

lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil

ismail.masci
Pencil


CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

Eliminating the two arbitrary constants a and b, we find the nonlinear
partial differential equation
22(p2 +q° +1)=r2.
./Example (1.3)
Form the partial differential equation by eliminating the constants from
Z=ax+bhy+ab. 1.7)

Solution

Differentiating Eq. (15j) partially with respectto x and y , we ob-
tain

% —a=p, Z=b=g

OX oy
Substituting p and g for a and b in Eq. (1.7), we get the required PDE
as
Z=px+qy+ pq.
Example (1.4)
Find the partial differential equation of the family of planes, the sum
of whose x,y,z intercepts is equal to unity.

Solution
Let
5 + X + E :1'
a b c
be the equation of the plane in intercept form, so that a+b +c¢ =1. Thus,
we have

X Y, =1, 1.8)
a b 1-a-b

D‘lgerentiating Eq. (1.8) with respectto x and y , we have

e ' \1—:—b :_i and 1—2—b :_%’ (1.9)
From Eq. (1.9), we get N—0n-bo - - o'\
f “?“/\“\’ A g . (1.10)
Also, from Egs. (1.9) and (1.10), we ;et
pg:a+b—1=zi_+§a_—10r a£1+§— p}:l.
Therefore,
a=— 4 3 (1.12)

Similarly, from Egs. (1.9) and (1.10), we find
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

(1.12)

Substituting the values of a and b from Egs. (1.11) and (1.12) respec-
tively to Eq. (1.8), we have

P+d-pd, P+d-pd,  P+d—pq, _,
q p —pq
or
xy z_ 1
g p pd p+q-pq’
That is,
px+qy—z=—F9
pP+q-pqg

which is the required PDE.

L _Example (1.5) /
: Find the differential equation of all spheres of radius -i_ having center in

the xy -plang
. e
Solution =
Let Qa 2 2 2 ?
=a) +(y-b) +z2° =4~ 1.13)

be the equation of the spheres having center at (a,b,0) in the xy -plane.
Differentiating Eq. (1.13) with respectto x and y , we have
2(x—a)+2pz=0,2(y—b)+2qz=0. 1.14)
Substituting of (x —a) and (y —b) from Eq. (1.14) to Eq. (1.13), we
have - —
22 (p?+0° +1)= 2%,

which is the required PDE.

\'0' p 1.4.2 Elimination of arbitrary functions

b\i 2 1\ Suppose u and v are any two given functions of x,y and z . Let F
W be an arbitrary function of u andv of the form
7 F(u,v)=0. (1.15)

We can form a differential equation by eliminating the arbitrary function
F . For this, we differentiate Eq. (1.15) partially with respectto x and y

/E to get

. *?3' d oul| ox oz X oz

$N an
oF 6_u+6_uq +|8_F @+@q =0, (1.17)
aul oy ez | avll oy ez

7
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

0z 0z
where p=—,q=—.
OX oy
Now, eliminating oF /ouandoF /ov from Egs. (1.16) and (1.17), we
obtain
OF ou du | OFov ov |_ ou 8u 8v8v
811[6)( 6Zp} 6V[ax ézp} 0, — P —+=0P
ax 0z 8x 0z 0
aF{@ @} GF{@/ @/}_0 ou ou_ v ov |
ou| dy 0z ov|dy oz ’ 8}/ an 5 an

which simplifies to

15
d(u,v)  o(u,v) m—v)\
p +4 Toy) ) u(ﬁS)

o(y,2) o(z,x)

where, “.) ~ “%‘ J/-
o= ~ S u  ov
ol E’: ?ﬁ o(u,v) _|ox o

o(x,y) |ou  ovf
o oy
Eq. (1.18) is a linear PDE of the type
Pp+Qq=R,

where
_o(uy) Q- ou,v) R - ou,v)
Cay.z)’ o(z,x)’ a(x,y)
,ﬁ 74& 2- Eq. (1.18) is called Lagrange's PDE of first order.

If z is given in the form
« W)+ () )

where ¢, i are arbitrary functions of u,v respectively, and u,v are func-
tions of x,y . Differentiating Eq. (*) with respectto x and y , we have
rzx =g (W)u, +y'(V)v,
=¢'(uu, +¥'(V)v,
Zy = 9" (WU + Y " (VI + G (WU, +3 (VY ()
sz =g"(Wuu, +y"(V)vv, + 4" Uu,, +yw'(V)V,,
=¢"(U)uy +y " (V)vy + @' (WU, +y V)V,
Now, eliminating ¢(u) ¢"(u), w'(v), w"(v) from Eqg. (**), we obtain
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

FoWu +y'(v)

C g, +v' ()%, U v, 0 g
2P E WO g vy, ¢n Z,0 U, v, 00

=" ey, +y" (v, +Fu, +y' (Vv z.| u, v, ui Vf -0 (***)
=¢" (W, +y" (V. + ¢ (wu, +y' (M),
7 g g ” . Z u v uu, V.V
_-\ i a4 h x Xy
— Nz | u v uz V2
yy yy yy y y

Equation (***) is a second-order linear partial differential equation, can
be written in the form

Pz, +Qz, +Rz  +Sz, +Tz =W,
where P,Q,R,S, T W are certain functions of x,y . In general, elimina-
tion of arbitrary functions of a relation of the form

z :ifk(uk)

are the arbitrary function, and u,,u,,---,u, are cer-

tain functions of x,y , implies a n” -order linear partial differential equa-
tion.
The following examples illustrate the idea of formation of PDEs.

where f,,f,,---f

n

‘/7Example (1.6)

Form the PDE by eliminating the arbitrary function from
(i) z= f(x+it)+g(x—it), where i = v-1.
(ii) f (x +y +z,x2+y2+22):0.
Solution
(i) Given
z=f(x+it)+g(x—it).
Differentiating it twice partially with respectto x and t , we get

@: f'(x+it)+g'(x—it),
OX

azz 14 H " H
Pl f'(x+it)+g"(x —it). (1.19)
Here, f ' indicates derivative of f with respectto (x +it)and g’ indi-

cates derivative of g with respect to (x —it). Also, we have
o7 . N ,
— =If'(x+it) —ig'(x —it),
o =TI —igi(x =)

822 " H " H
E:—f (x+1t) —g"(x —it). (1.20)
From Egs. (1.19) and (1.20), we at once, find that
0’z 0z
—2t =0,
ox- ot

9
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

which is the required PDE.

(if) The given relation can be written in the form | s s
¢(UV)=O (11)f(x+y+z,x +y +z ):0.

where u=x +y +z ,v =x2+y2+z?%. Hence, the required PDE is of
the form
Pp +Qq =R, (Lagrange equation)

where
u o
p_ 0uY) _[oy ay:‘l 2y‘:2(z_y)’
o(y,z) |ou ov| 1 2z
oz oz
ou ov
00UV _|a 52‘1 22 o2
o(z,x) |ou ov| {1 2x
X ox
and
ou ov
n_ 0V _|ox &:‘1 2| _ oy ).
o(x,y) |ou ov| [L 2y
N v

Hence, the required PDE is
2(z-y)p+2(x-2)q=2(y—Xx),
or
(z-y)p+(x-2)q=y-x.

Example (1.7)
Eliminate the arbitrary function from the following and hence, obtain the
corresponding partial differential equation:

(i) z =xy +f (x2+y2)

(i) z =f (xy/z)
Solution
(i) Given z =xy +f (x*+y?). Differentiating it partially with respect to
x and y , we obtain

0z

_— = 2 f’ 2 2 = y 121
~ =Y (X y?)=p (1.21)
0z 1(v2 | 12

5:x+2yf (x +y )=q. 2.22)

Eliminating f " from Eqgs. (1.21) and (1.22), we get

10
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CHAPTER ONE: INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS DR. AHMED YOUSEF

yp-xq=y - x*,
which is the required PDE.
(ii) Given z =f (xy /z). Differentiating it partially with respect to x and
y , we get

2 _Y@ZXP) iy 7y p, (1.23)
OX i
%:@ f(xyl2)=q. (1.24)
Eliminating f ' from Egs. (1.23) and (1.24), we find
Xp—yq =0
or
pX =qy

Which is the required PDE

11



CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

CHAPTER TWO
PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

2.1 Introduction

Many problems in mathematical, physical, and engineering sciences
deal with the formulation and the solution of first-order partial differential
equations. From a mathematical point of view, first-order equations have
the advantage of providing a conceptual basis that can be utilized for se-
cond-, third-, and higher-order equations.

This chapter is concerned with first-order, quasi-linear, linear and
nonlinear partial differential equations and their solution by using the La-
grange method of characteristics and its generalizations.

A first-order partial differential equation with n independent varia-

bles has the general form
F O X X0 202,52 500002, ) =0, (%, %500, %) © R” (2.2)

where z(X;, X,,...,X,)is the unkno n function and F is a given function.

Equation (2.1) is called a quasi-linear partial differential equation if
it is linear in first-partial derivatives of the unknown function
Z(X,, Xy,..., X, ) . S0, the general quasi-linear equation must be of the form:

iai(xl’xz’ ¥ n,Z)——f(x1 Xpyees Xy Z), (2.2)

where its coefficients a, are functions of x,X,,...,x, and z. The follow-
ing are examples of quasi-linear equations:

x(y*+2)z,-y(xX* +2)z, =(x* - y*)z,

2
2z, +2,+NZ =0,

(y>—2%)z, —xyz, = xz.
Equation (2.1) is called a semi-linear partial differential equation if its
coefficientsa, are independent of z, and hence, the semilinear equation

can be expressed in the form
Za(xl Xpoo n)ax £ (X X100 X, 2). 2.3)

Examples of semlllnear equations are
Xz, + Yz, =7"+X*,

(x+D°z, +(y-1)’z, = (x+y)z%,

z,+az, +2° =0,
where a is a constant.

12
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

Equation (2.1) is said to be linear if F is linear in each of the varia-

bles z and @, and the coefficients of these variables are functions only
i

of the independent variables x,X,,...,X,. The general, first-order, linear

partial differential equation has the form

: 0
Zai(xl,xz,...,xn)a—i+b(x1,x2,...,xn)z = f (X, %Xp0.0 0 X). (2.4)
i=1 i

Unless stated otherwise, the functions a,(x,X,,...,X,), b(X,X,,...,X,),
f(Xx,X,,...,X,) are assumed to be continuously differentiable. Equations
of the form (2.4) are called homogeneous if f(x;,X,,...,X,)=0 or non-
homogeneous if f(x,X,,...,X,)#0.

Obviously, linear equations are a special kind of the quasi-linear equation
(2.2) if &, , are independent of z and f isa linear function inz. Similar-

ly, semilinear equation (2.3) reduces to a linear equation if f is linear in
Z.
Examples of linear equations are
Xz, +yz,—nz=0,
nz, +(x+y)z,—z=¢",
Yz, + Xz, =Xy,
(y—2)u, +(z=x)u, +(x—y)u, =0.
An equation which is not linear is often called a nonlinear equation.
So, first-order equations are often classified as linear and nonlinear.
2.2 Geometrical Interpretation of First-order Partial Differential

Equations
Consider a first order quasi-linear PDE of the form

Py Z Q. D2 =R0y,2) (25)

or simply /
Pp+Qq=R, (2.6)

where x and y are independent variables. The solution of Eq. (2.5) is a
surface S lying in the(x, y, z)—space, called an integral surface. If we
are given that z= f(x,y) is an integral surface of the PDE (2.6). Then,

the normal to this surface will have direction cosines proportional
(6z/ox,0z10y,-1) or (p,q,—1). Therefore, the direction of the normal is

given by ri={p,q,-1}.
Clearly, Eq. (2.6) can be written as the dot product of two vectors

13
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

(P.QR).(p,q,-1)=0, (2.7)
From the PDE (2.7), we observe that the normal i is perpendicular to the
direction defined by the vector t ={P,Q,R}. This clearly shows that the
vector t ={P,Q, R} must be a tangent vector of the integral surface
z=f(x,y) atthe point (x,y,z), and hence, it determines a direction

field called the the characteristic direction or Monge axis. This direction
Is of fundamental importance in determining a solution of equation (2.5),
see Fig. 1.

Fig. 1

A curve in (X,Y,z)-space, whose tangent at every point coincides with
the characteristic direction field (P,Q,R), is called a characteristic curve.

If the parametric equations of this characteristic curve are
x=x(t),y=y(t),z=z(t).

Then the tangent vector to this curve is (% dy Ej which must be

dt ' dt’ dt

equal to (P,Q,R). Therefore, the system of ordinary differential equa-
tions of the characteristic curve is given by

dx dy dz

ot P(x,y,2), it Q(x,y,2), ot R(x,Y,2). (2.8)
These are called the characteristic equations of the quasi-linear equation
(2.5). Equivalently, the characteristic equations (2.8) in the nonparametric
form are

dx dy dz

P(x,y,2) Q(x,y,2) R(xY,2)
2.3 Method of Characteristics and General Solutions

We can use the geometrical interpretation of first-order, partial dif-
ferential equations and the properties of characteristic curves to develop a

(2.9)

14
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

method for finding the general solution of quasi-linear equations. This is
usually referred to as the method of characteristics due to Lagrange. This
method of solution of quasi-linear equations can be described by the fol-
lowing result.

Theorem 2.1
The general solution of the linear PDE

Pp+Qq=R, (2.10)

can be written in the form F(u,v) =0 , where F is an arbitrary function,
F(,C‘\ . [;‘ nd u(x,y,z)=C,, v(X,Y,2z)=C,| are solution curves of the characteristic

equations 3’ \y

dx _ dy _ dz
P(x,y.z2) Q(xy.z2) R(xy,2)

(2.11)

f
Incedu(x,y,z)=C, and v(Xx,y,z) =C, satisfy equations (2.11), then these
equations must be compatible with the equations

du :a—udx+a—udy+a—udz =0,
OX oy 0z

and
dv:@dx+@dy+@dz=0.
OX oy 0z
This is equivalent to the equations
Pa—udx+Q8—udy+ Ra—udz=0,
OX oy 0z (2.12)
P@dx+Q@dy+ R@dz =0.
OX oy 0z
We now solve (2.12), for P, Q, and R to obtain
P Q R
UV OUOV OUOV OUN OUOV QU oV’
dyor ozdy orox oxér oxody oy ox
which can be rewritten as
P Q R (2.13)

o(u,v) N o(u,v) N o(u,v)

o(y,z)  o(z,x)  o(x,y)
Now, we may recall from Section 1.4 that the relation F(u, v)=0, where
F is an arbitrary function, leads to the partial differential equation

IO6(u,V) L qouy) _ o(uy) (2.14)
o(y,z) “o(z,x) o(xy)

15
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

o(u,v) ’6(u,v) , and owuv) from (2.13) in (2.14), we
oy, z) o(z,x) a(x,y)
find that F(u, v)=0, is a solution of (2.10). This completes the proof.

We shall illustrate this method through following examples:
vExample (2.1)
Find the general integral of the following linear partial differential equa-

Qti-)%ns -—Q\/\ ) B:

))y*p—xyq =x(z-2y), 2
(i) (y + 2x) p— (x+ yz)q = X* — y°. \{

Solution
(i) Th of the given PDE is generated by the integral

curves of the auxiliary equ \
az__ (2.15)
X(z—2Y)

Eq. (2.15) give us

Substituting for

The first two members of t

dxZdy or xdx=-ydy,
y —X
which on integration results in
2 2
X?:—y?+c or x*+y*=C,. (2.16)
The last two members of Eq. (2.15) give
ﬂ: az or zdy-—2ydy=-ydz,
-y z-2y
that is, M et

2ydy = ydz + zdy,
which on integration yields
y’=yz+C, or y*-yz=C,. (2.17)
Hence, the curves given by Egs. (2.16) and (2.17) generate the required
integral surface as /
F(x2 + yz,yz—yz):
(if) The integral surface of the given PDE is generated by the integral
curves of the auxiliary equation
\1 Adx & Mdy  dz
y+zx —(x+yz) xX2—y?
To get the first integral curve, let us consider the first combination as
xdx + ydy . az

Xy + x> —xy—y’z  x*—y?’

or

16
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

xdx+ydy  dz

2 2"

z(xz—yz)_x —y

That is,

xdx + ydy = zdz.

On integration, we get
Xyt 7z’ 2,2 52
— = or X +y -z"=C,. 2.18
>t 55 y 1 (2.18)
Similarly, for getting the second integral curve, let us consider the com-

bination such as

ydx + xdy . az
v +xyz—xi—xyz xX2—y?'

or

ydx + xdy +dz =0,
which on integration results in

xy+z=C,. (2.19)

Thus, the curves given by Egs. (2.18) and (2.19) generate the required in-
tegral surface as

\_/éxample (2.2)

Use Lagrange's method to solve the equation
e — =

F(x2+y2—zz,xy+z):0.

X 'y z
aa P 7o
2
ox oy

where z=12(x,Y).

Solution
The given PDE can be written as

X{—ﬁ—ﬂf%}—){—a—ﬂf%} {a%—ﬂax} ,

oz 0z
(yy—ﬂZ)&+ (az —7X)5 =px-ay.
The corresponding auxiliary equations are
* dx N dy ¥ a
(ry-pz) (az-yx) (Bx-ay)

Using multipliersx,y, and z we find that each fraction is

A ¢

17
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

)
£
&

NVl

-

A%
R

xdX + ygy +zdz :@@

xdx + ydy + zdz =0,

which on integration yields
X +y’+2°=C,.

Similarly, using multipliers «, , and y, we find from Eq. (2.20) that
each fraction is equal to

adx + Sdy + ydz =0,
which on integration gives

ax+ py+yz=C,.
Thus, the general solution of the given equation is found to be

F(x2 +yi+ zz,ax+,6’y+7/z):0.

Therefore,

Example (2.3)
Find the general integrals of the following linear PDEs:

(i) pz—az=2"+(x+Yy)",

(ii)(x2 —~ yz) p+(y2 —~ zx)q =2"—xy.

Solution

(i) The integral surface of the given PDE is generated by the integral

curves of the auxiliary equation
o _dy  dz

z -z *+(x+y)* (22
The first two members of Eq. (2.21) give
dx+dy =0,
which on integration yields
X+y=C,. (2.22)

Now, considering Eq. (2.22) and the first and last members of Eq. (2.21),
we obtain
220z

= 2dx,
2 +C/
or
dx = szz _
z°+C;

which on integration yields
In(z* +C})=2x+C,,
or
In| 2%+ (x+y)* |-2x=C,. (2.23)

18
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

Thus, the curves given by Egs. (2.22) and (2.23) generates the integral
surface for the given PDE as
F(x+ y,In{x2 +y*+7° +2xy}—2x)=0.

(if) The integral surface of the given PDE is given by the integral curves
of the auxiliary equation
dx dy dz

- =— =— : (2.24)
X“—yz Yy -zXx Z°-xy
Equation (2.24) can be rewritten as
dx —dy dy —dz dz —dx (2.25)

(x=Y)x+y+2) (Y-2)(x+y+2) (Z-X)(x+y+2)
Considering the first two terms of Eq. (2.25) and integrating, we get
In(x—-y)=In(y-2)+InC,,

I _c, (2.26)
y—12
Similarly, considering the last two terms of Eq. (2.25) and integrating, we
obtain
Y72 _¢, (2.27)
Z—X
Thus, the integral curves given by Egs. (2.26) and (2.27) generate the in-

tegral surface
(ory)
y—2 z—X

2.4 Integral Surfaces Passing Through a Given Curve

In the previous section, we have seen how a general solution for a
given linear PDE can be obtained. Now, we shall make use of this general
solution to find an integral surface containing a given curve as explained
below.
Suppose, we have obtained two integral curves described by

u(x,y,z)=C,
v(x,y,2)=C, |’
from the auxiliary equations of a given PDE. Then, the solution of the
given PDE can be written in the form
F(u,v)=0. (2.29)
Suppose, we wish to determine an integral surface, containing a given
curve C described by the parametric equations of the form

x=x(t), y=y@), z=z(), (2.30)
where t is a parameter. Then, the particular solution (2.28) must be like

(2.28)

19
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

u{x(t), y (1), 2(t)} =C, } (2.31)

vix(0), y(), ()} =C,.
Thus, we have two relations, from which we can eliminate the parameter
t to obtain a relation of the type

F(C.C,)=0, (2.32)
which leads to the solution given by Eq. (2.29). For illustration, let us
consider the following couple of examples.

Example (2.4)
Find the integral surface of the linear PDE

x(y2 + z) p— y(x2 + z)q =(x2 - yz)z,
containing the straight line x+y=0, z=1.

Solution
The auxiliary equations for the given PDE are

e e @®

x(y +z) —y(x +z) (x -y )z
Using the multiplier x y z, we have
yzdx + zxdy + xydz = 0.
On integration, we get
xyz=C,, (2.33)

Using the multipliers X,y and z. Then we find that each fraction in Eq.
(2.32) is equal to

xdx + ydy + zdz =0,
which on integration yields

X +y*+2°=C,. (2.34)

For the initial curve in question, we have the equations in parametric
form as

x=t, y=-t, z=1
Substituting these values in Egs. (2.33) and (2.34), we obtain

~t* =C,
t*+1=C,[j
Eliminating the parameter t, we find
1-2C, =C5;
or
2C,+C,-1=0.

Hence, the required integral surface is
X>+y*+2°+2xyz-1=0

Example (2.5)

Find the integral surface of the linear PDE

20
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

Xp+yq=2z,
which contains the circle defined by
X +y +2°=4, X+y+z1=2.
Solution
The integral surface of the given PDE is generated by the integral curves
of the auxiliary equation

b _dy_dz %)
X 'y z
Integration of the first two members of Eq. (2.35) gives
Inx=Iny+InC,
or
§= C,. (2.36)
Similarly, integration of the last two members of Eq. (2.35) yields
Y_c, (2.37)
4
Hence, the integral surface of the given PDE is
F (E,XJ -0. (2.38)
y zZ

If this integral surface also contains the given circle, then we have to find
a relation between x/y andy/z.

The equation of the circle is
X +y +2°=4 (2.39)
X+y+z2=2 (2.40)
From Egs. (2.36) and (2.37), we have
y=x/C, z=y/C,=x/CC,
Substituting these values of y and z in Egs. (2.39) and (2.40), we find

2 2
e Xy X 4o w1 2t |oa, (24
C} CZXC: C, GG
and
wi XX =2, or x(1+i+ L ]:2, (2.42)
C, CgGC, 1 12

From Eqgs. (2.41) and (2.42) we observe

2
1+i2+%: 1+i+ L :
C:1 C1C2 Cl C1C2

which on simplification gives us

21
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

2 2 2
—+ +——=0,
C GG, GG,

that is,

CC,+C,+1=0.
Now, replacing C, by x/y and C, byy/z , we get the required integral
surface as

i1+5+1:0,
yz.y

or
5+§+1=0,
Zy

or
Xy +xz+yz=0.

2.5 The Cauchy Problem for First Order Equations
Many problems in applied mathematics, science, and engineering
involve partial differential equations. We rarely try to find or discuss the
properties of a solution to these equations in its most general form. In
most cases of interest, we deal with those solutions of partial differential
equations which satisfy certain supplementary conditions. In the case of a
first-order partial differential equation, we determine the specific solution
y formulating an initial-value problem or a Cauchy problem.
‘/')I'heorem 2.2 (The Cauchy Problem for a First-Order Partial Differential
Equation).
Suppose that C is a given curve in the (x,y)-plane with its parametric
equations
X=X (1), ¥ = Yo(0), (2.43)
where t belongs to an interval | — R, and the derivatives x;(t), y,(t), are
piecewise continuous functions, such that(x})* +(y;)* = 0. Also, suppose
that z=2z,(t) is a given function on the curve C. Then, there exists a so-
lution z=1z(x,y) of the equation
F(x,Y,z,p,q) =0, (2.44)
in adomain D — IR containing the curve C forall te |, and the solution
z=12(x,y) satisfies the given initial data, that is,
z [Xo v, Yo (t)] =1, (1), (2.45)
for all valuesof tel.

In short, the Cauchy problem is to determine a solution of equation
(2.44) in a neighborhood of C, such that the solution z=1z(x,y) takes a

prescribed value z,(t) on C. The curve C is called the initial curve of

22
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

the problem, and z,(t) is called the initial data. Equation (2.45) is called

the initial condition of the problem.

Theorem 2.3 (The Cauchy Problem for a Quasi-linear Equation).
Suppose that

(1) x, (1), y,(t) , and z,(t), are continuously differentiable functions of t

in a closed interval, 0<t<1.
(i) P(x,y,2),Q(x,y,2), and R(x,y,z) are functions of x,y, and z with

continuous first-order partial derivatives with respect to their arguments
in some domain D of (X,Y,Zz)-space containing the initial curve

C: X=X0(t), y:yo(t)’ Z:Zo(t)’ (2.46)
where 0<t<1.
(ii1)The functions P,Q,x, andy, satisfying the condition
P (1), Yo (1), 2, )] Yo (1) = Q[ X5 (1), Yo (1), ()] % () 0, (2.47)
Then there exists a unique solution z=z(x,y), of the quasi-linear equa-
tion
Pp+Qq=R, (2.48)
in the neighborhood of T': x=Xx,(t), y=Y,(t), and this solution satisfies
the initial condition

Z[%, (1), Yo(D)]=27,(t), for O <t< 1L (2.49)
Note: The condition (2.47) excludes the possibility that I" could be a
characteristic. e |

Example 2.6
Show why there is no solution of the following partial differential equa-
tion
z,+2,=1, (2.50)
that passes through the straight line z(x,x) =1?
Solution
The initial curve in R® can be given parametrically as
C:x,(t)=t, y,(t)=t, z,(t) =1.
The characteristic equations in parametric form are
dx dy dz
—=1=P, —==1=Q, —=z=R. 2.51
ds ds Q ds (25D
Using condition (2.47), we have
Pyo () —Qx, (1) = M@ - D(@) =0

Hence, the problem has no solution.

Example 2.7
Discuss the following Cauchy problem

z,+2,=0, zZ(ax,x)=e¢" , aeR (2.52)
Solution

23
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

The initial curve in R® can be given parametrically as

C:x,(t)=at, y,t)=t, z,(t)=e"". (2.53)
The characteristic equations in parametric form are
dx dy dz
—=1=P, —==1=Q, —=0=R. 2.54
ds ds Q ds (2.54)

Using condition (2.47), we have

Pyo (1) —Qx (1) = (@) - W)(a) =1-«
If =1, then Cauchy problem (2.52) has no solution. Otherwise (« #1),
the solutions of characteristic equations (2.54) are

X(s,t)=s+c, y(s,t)=s+c,, z(s,t)=c,.

Using the initial conditions (2.53), we have

x(s,t)=s+at, y(s,t)=s+t, z(s,t)=e",  (2.55)
which is the solution of (2.52) in the parametric form. To reach the solu-
tion of (2.52) in the Cartesian form, eliminating s and t form Eq. (2.55),

y-x=Q1-a)t = t=3°%
l-a

Thus, the solutions of Cauchy problem (2.52) is

2
zZ(x,y) = exp{_(u) }
l1-a
Example 2.8

Find the solution of the equation
Z(X+VY)z, +2
with the Cauchy data z=0 o
Solution
The characteristic equations are
dx  dy  dz
2(x+y) z(x—y) X2+y?
Consequently,

o1

These give two integrals
L -x*+y*=C, and 2xy-z°=C,,
where C, and C, are arbitrary constants. Hence, the general solution is
f(x*—y®—12%2xy-12?)=0,
where f is an arbitrary function.
Using the Cauchy data in (2.56), we obtain4C, =3C, . Therefore

4(22 — X+ yz):3(2xy— 22).

X=y)z, =X+ Y7, (2.56)

ydx + xdy — zdz _ xdx — ydy — zdz

24
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

Thus, the solution of equation (2.56) is given by
77° =6xy + 4(x2 - yz).

Example 2.9
Obtain the solution of the linear equation

z, -z, =1, (2.57)
with the Cauchy data -
Solution

The characteristic equations ar,

Obviously,
Clearly,
x+y=C, and z-x=C,. 2. QC-V
Thus, the general solution is given by C gl-’:q
z=x+ f(x+vy), -)\', \
i(’_) where f isan arbitrary function. \?'\:/j ’*..*({
h.)",\-) /“»We now use the Cauchy data to find f (x) = xzjx, and hence, the solu- )[« (&\
tion is (2 kf L
0N = 0y Yy et
Example 2.10 AN oA Y- Kf AN
Obtain the solution of the equation
(Y-2)z,+(z—X)z,=X~Y, (2.58)
with the condition z=0 on xy=1.
Solution
The characteristic equations for equation (2.58) are
dx dy dz

y—7 Z-X X-Y
The parametric forms of these equations are

&y, W, G
dt ot ot
These lead to the following equations:
X+y+2=0 and xx+yy+2z2=0, (2.59)

where the dot denotes the derivative with respect to t.
Integrating (2.59), we obtain

X+y+z=C, and x*+y’+2z*=C,.
These equations represent circles. Using the Cauchy data, we find that

25
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

Cl=(x+y)Y’=x"+y*+2xy=C, +2.
Thus, the integral surface is described by
(X+y+2)°=x>+y*+2°+2.
Hence, the solution is given by

z(x,y) = =%
X+Y

Example 2.11
Solve the linear equation

yZ, + X2, =1,
with the Cauchy data

z(x,00=x*> and z(0,y) =Y’

Solution
The characteristic equations are

dx dy dz

y X z
or

dz _dx-dy _dx+dy
z y — X Y+ X
Solving these equations, we obtain

L= S =C,(x+Y),
X=y

or

z=C,(x+Y), xz—yZ:&:C.
C,

Thus, the general solution is given by
f ( yA ,X2 _ yZJ — O,
X+Y

2(x,y) = (x+y)g(x* - y*).
Using the Cauchy data, we find that g(x*) =x?, that is g(x) = x. Conse-
quently, the solution becomes
z(x,y) = (x+ y)(x* = y*).

or, equivalently,

Example 2.12
Determine the integral surfaces of the equation

x(y2 + z)zX - y(x2 + z)zy :(x2 - yz)z,
with the data
Xx+y=0, z=1.

26
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Solution
The characteristic equations are
dx _ dy _ dz | (2.60)
x(y2 + z) —y(x2 + z) (x2 - yz)z
or
dx dy ¢z dx dy dz
x _ Y 7z X y z
(v +z) —(X+z) (¥-y?) 0 '
Consequently,
log(xyz) =logC,,
or
xXyz =C,.
From (2.60), we obtain
xdx ydy B du _ Xdx + ydy —dz
X(y'+z) -y’ (X+z) (x¥*-y*)u 0 ’
whence we find that
x> +y?-2z=C,.
Using the given data, we obtain
C,=—x* and C,=2x"-2,
so that
C,=-2(C,+1).
Thus the integral surface is given by
X +y?—271=-2-2xyz,
or
2Xyz + x> +y*—2z+2=0.
Example 2.13
Obtain the solution of the equation
Xz, +Yyz, = Xexp(-2), (2.61)
with the data
z=0 on y=x°
Solution
The characteristic equations are
oy & (2.62)
X y xexp(-z)
or
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We also obtain from (2.62) that dx =e’dz which can be integrated to find
e’ =x+C,.
Thus, the general solution is given by

f(eZ —x,l):o,
X
e’ :x+g(lj.
X

Applying the Cauchy data, we obtain g(x)=1-x. Thus, the solution of
(2.61) is given by

or, equivalently,

or

Example 2.14
Solve the initial-value problem
Z,+22, =X, Z(X,0)= f(x),
where (a) f(x)=21and (b) f (x) =x.
Solution
The characteristic equations are
dt _dx dz d(x+2z)

1 z X X+Z
Integration gives
t=In(x+2z)-InC,,
or
(z+x)e™ =C..
Similarly, we get

For case (a), we obtain
1+x=C, and 1-x*=C,, andhence C,=2C —-C.
Thus,
(2" =x*)=2(z+x)e" —(z+x)’e™

or

z—x=2e"—(z+x)e?.
A simple manipulation gives the solution

z(x,t) = xtanht + secht.
Case (b) is left to the reader as an exercise.
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xample 2.15
Find the integral surface of the equation
2z, +2, =1, (2.63)
so that the surface passes through an initial curve represented parametri-
cally by
X=X%X(5),  Y=Yo(5), z=2,(s),
where s is a parameter.

Solution
The characteristic equations for the given equations are
&x_gy_oz
z 1 1°

which are, in the parametric form
% =7 ﬂ _— 1’ E =
dr dr dr
where 7 is a parameter. Thus the solutions of this parametric system in
general depend on two parameters s and z. We solve this system (2.64)
with the initial data
X(S’O) = Xo(s)’ Y(S’O) = yo(s)’ Z(S’O) = Zo(S)-

The solutions of (2.63) with the given initial data are
2 3

X(s,7) = % +7Z,(S) + X, (9)

1, (2.64)

y(s,7) =7+ Y,(s)
u(s,z) =7+ z,(s)

We choose a particular set of values for the initial data as
X(s,0)=2s% y(s,00=2s, z(s,00=0, s>0.
Therefore, the solutions are given by

x:%r2+252, y=7t+2s, I=rt. (2.65)

Eliminating = and s from (2.65) gives the integral surface
(z-y)* + 2% = 2x
or

1
27 = yi(4x— y2)5.
The solution surface satisfying the data z=0 on y®=2x is given by
1
27 = y—(4x— yz)i.
This represents the solution surface only when y? < 4x. Thus, the solution
does not exist for y* > 4x and is not differentiable when y* = 4x .
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B9 A e Adadl) e alaall Ll ) ) gl
2.6 Canonical Forms of First-Order Linear Equations
It is often convenient to transform the more general first-order line-
ar partial differential equation
P(X,¥)z, +Q(X,¥)z, + R(X,¥)z= (X, Y), (2.66)
into a canonical (or standard) form which can be easily integrated to find
the general solution of (2.66). We use the characteristics of equation
(2.66) to introduce a new transformation by equations
&=4(xy), n=n(xy) (2.67)
where£and nare once continuously differentiable and their Jacobian
JOGY) =&, —&,m, is nonzero in a domain of interest so that x and y

can be determined uniquely from the equations (2.67). Thus, by chain
rule,

z, =25, +7n, 7,=12.5,+771,, (2.68)
we substitute these partial derivatives (2.68) into (2.66) to obtain the
equation

Pz.+Qz,+Rz=1", (2.69)
where

*

P"=P&+Q&, Q =Pn+Qn, R'=R, f'=f. (270
From (2.70) we see that Q" =0 if 7 is a solution of the first-order equa-
tion re_t) <-:.— S
Pn, +Qn, =0. (2.71)
This equation has infinitely many solutions. We can obtain one of them
by assigning initial condition on a non-characteristic initial curve and

solving the resulting initial-value problem according to the method de-
scribed earlier. Since 7(x,y) satisfies equation (2.71), the curves

n(x,y)=C are always characteristic curves of equation (2.66). Thus, one

set of the new transformations are the characteristic curves of (2.66). The
second set, £(x,y)==C, can be chosen to be any one parameter family

of smooth curves such that J(x,y)=¢&n, —&n,=0. Finally, since

Q' =0and P %0 in D, we can divide (2.69) by P" to obtain the ca-
nonical form

z.+a(§,n)z=pB(En) (2.72)
where (&) = and (&n) =

Equation (2.72) represents an ordinary differential equation with £as the
independent variable and 7 as a parameter which may be treated as con-

stant. This equation (2.72) is called the canonical form of equation (2.66)
in terms of the coordinates(&,7). Generally, the canonical equation
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

(2.72) can easily be integrated and the general solution of (2.66) can be
obtained after replacing & and 7 by the original variables x and y. In

practice, it is convenient to choose & = £(x, y) and n(x, r/) =yoré=x and

n=n(x,y) suchthatJ #0.
Example 2.16
Reduce each of the following equations:
(1) (2.73)
) yu, +u, =X. 74)
to canonical form, and obtain the general solution.
Solution
In (2.73), a=1,b=-1,c=-1and d =0 . The characteristic equations
dx dy dz
z =z, +2), z,=2¢5 +z0, 1 177

The characteristic curves are £ =x+Yy=c,, and we choose n=Yy=c,
where ¢, and c, are constants. Consequently, z, =z, and z, =2, +z
and hence, equation (2. 73) becomes

S e By o )
Integrating this eguation glvs
ék, Inz(&m)=-n+Inf(

where f (&) is an arbitrary function of &£ . Equivalently,
(&) =1(8)e™".
In terms of the original variables x and y , the general solution of equa-
tion (2.73) is
z(x,y)=f(x+y)e”’
where f is an arbitrary function.
Q.] The characteristic equations of are

2

It follows from the first two equations that £(X, y):x—y7:c1; we

choose 7(x,y)=y=c, . Consequently, u, =u, and u =-yu,+u, and
hence, equation (2.74) reduces to
1,
Uﬂ = é +§77 .
Integrating this equation gives the general solution
1
u(§m=cn+em+ 1)
where f is an arbitrary function.
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

Thus, the general solution of (2.74) interms of x and y is

1, y2
u(X,y)=xy—=y°+ f| x—=—|.
(X, y) =xy 37 ( 2}

2.7 Method of Separation of Variables

During the last two centuries several methods have been devel-
oped for solving partial differential equations. Among these, a technique
known as the method of separation of variables is perhaps the oldest sys-
tematic method for solving partial differential equations. Its essential fea-
ture is to transform the partial differential equations by a set of ordinary
differential equations. The required solution of the partial differential
equations is then exposed as a product u(x,y)=X(x)Y(y)#0, or as a

sum u(Xx,y)=X(x)+Y(y), where X(x) and Y(y) are functions of x
and vy, respectively. Many significant problems in partial differential

equations can be solved by the method of separation of variables. This
method has been considerably refined and generalized over the last two
centuries and is one of the classical techniques of applied mathematics,
mathematical physics and engineering science.

Usually, the first-order partial differential equation can be solved
by separation of variables without the need for Fourier series. The main
purpose of this section is to illustrate the method by examples.

Example 2.17
Solve the initial-value problem
-2
u,+2u,=0, u(0,y)=4e". (2.75)
Solution

We seek a separable solution u(x,y)= X (x)Y(y)=#0 and substitute into
the equation (2.75) to obtain
X'(X)Y (y) +2X(x)Y'(y)=0.

This can also be expressed in the form

X' __Y'(y) (2.76)

2X(x)  Y(y)
Since the left-hand side of this equation is a function of x only and the
right-hand is a function of y only, it follows that (2.76) can be true if
both sides are equal to the same constant value 4 which is called an arbi-
trary separation constant. Consequently, (2.76) gives two ordinary differ-
ential equations

X'(X)=2AX(x)=0, Y'(y)+AY(y)=0.
These equations have solutions given, respectively, by
X(x)=Ae*™ and Y(y)=Be™,

Where A and B are arbitrary integrating constants. Consequently, the
general solution is given by
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

u(x,y) = ABexp(2ix — 1y) = Cexp(2Ax — 1Y),

where C = AB is an arbitrary constant.
Using the initial condition in (2.75), we find

4e7® =u(0,y) =Ce ™,
and hence, we deduce that C =4 and A =2 . Therefore, the final solution
IS

u(x,y) =4exp(4x—2y).
Example 2.18
Solve the equation

y?ug +x%us = (xyu)?. (2.77)

Solution
We assume u(x,y)= f(x)g(y) =0 is a separable solution of (2.77), and

substitute into the equation. Consequently, we obtain

VA E gL + X2 F ()9’ (N =y ()g(y)¥

or, equivalently,
i{f'(x)}2+i{g'(y)}zzl
L F) ) y2 gy ’

2 2
i{f’(x)} :1_i{g’(y)} @
x* [ f(x) y* La(y)
where A% is a separation constant. Thus,

1T ) ana SW i
x £(x) yg(y)
Solving these ordinary differential equations, we find

f(x)= Aexp(%ﬁj and g(y)= Bexp(%y /1_/12}
where A and B are arbitrary constant. Thus, the general solution is
u(x,y)= Cexp(gx2 +%y2\/1—/12 j (2.78)

Where C=AB is an arbitrary constant. Using the initial condition
u(x,0) =3exp(x*/ 4), we can determine both C and A in (2.78). It turns

outthat C=3 andA =(1/2) , and the solution becomes
u(x, y) :3expE(x2 + yzﬁ)}

or

Use the separation of variables u(x,y)= f(x)+g(y) to solve the equa-
tion
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Solution

g u? +u? =1, (2.79)
Obviously,

{f’(x)}2 -{g’ (y)} /_)/vhere A% is a separation constant. Thus, we

obtain
f'(x)=4 and g'(y)=+1-A4%.
Solving these ordinary differential equations, we find
f(X)=Ax+A and g(y)=yvJ1-1*+B,
where A and B are constants of integration. Finally, the solution of
(2.79) is given by

u(x,y)=Ax+ yv1-1* +C,

where C = A+ B is an arbitrary constant.

Example 2.20
Use u(x,y)= f(x)+g(y) tosolve the equation

u; +u, +x*=0. (2.80)
Solution

Obviously, equation (2.80) has the separable form
(P00} +x*==g'(y)= 2",
where A is a separation constant. Consequently,

f'(x)=4A*=x* and g'(y) =-A°

These can be integrated to obtain
f(x)=[VA? =x*dx+ A=2%[cos’0dO+ A  (x=Asinb)

2
EyL sin-l(fj 1-2 |+ A
2 2) N2

and
g(y)=-A"y+B
Finally, the general solution is given by

u(x, y) :%ﬂzsin‘l(§J+gx//12 —x* - A%y +C,

where C = A+ B is an arbitrary constant.

Example 2.21
Use v=Inu and v=f(x)+g(y) to solve the equation
2,,2 2,,2 2
XU, +yu, =u”. (2.82)
Solution
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In view of v=Inu,v, :luX andv, :luy , and hence, equation (2.81)
u u
becomes
2,,2 2,,2
XV +yv, =1 (2.82)

Substitute v(x,y) = f(x)+g(y) into (2.82) to obtain
X{E0) +y {gW)} =L,

or

X{H00) =1-y* {g'()} = 2%,
where A% is a separation constant. Thus, we obtain

fx)=2 and  g'(y)=2i- A2
X y
Integrating these equations gives
f(x)=AInx+A and g(y)=v1-A°Iny+B,
where A and B are integrating constants. Therefore, the general solu-
tion of (2.82) is given by
V(X,y) =AInXx++1-2%Iny+InC = In(x* : le’7 -C)

where InC = A+ B . The final solution is

u(x,y)=e' =Cx*-y™*,

where C is an integrating constant.
2.6 Surfaces Orthogonal to A Given System Of Surfaces
One of the useful applications of the theory of linear first order PDE
Is to find the system of surfaces orthogonal to a given system of surfaces.
Let a one-parameter family of surfaces is described by the equation
F(x,y,z)=C. (2.83)
Then, the task is to determine the system of surfaces which cut each of
the given surfaces orthogonally. Let (x,y,z) be a point on the surface

given by Eqg. (2.83), where the normal to the surface will have direction
ratios (0oF / ox,0F / oy,0F | 6z) which may be denoted by P ,Q,R.
Let

z=¢(x,y)
be the surface which cuts each of the given system orthogonally (see Fig.
2). Then, its normal at the point (x,y,z) will have direction ratios

(oz/ox,0z 1 oy,—1) which, of course, will be perpendicular to the normal

to the surfaces characterized by Eq. (2.83). As a consequence we have a
relation

PngQ@—R:O,
OX oy
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or
Pp+Qq=R, (2.84)
which is a linear PDE of Lagranges type, and can be recast into
oF 8z+8F o0z oF
oxOx oyoy oz
Thus, any solution of the linear first order PDE of the type given by either
Eq. (2.84) or (2.85) is orthogonal to every surface of the system described
by Eq. (2.83). In other words, the surfaces orthogonal to the system (2.83)
are the surfaces generated by the integral curves of the auxiliary equa-
tions

(2.85)

dx _ dy _ dz
oFIox oOFley oF 1oz

Z = ¢hlx. 1)

Fig. 2 Orthogonal surface to a givemn
svstem of surfaces.

Example 2.22
Find the surface perpendicularly intersecting the family of surfaces with a

parameter given by the equation (x*+y?*)z=c and passing through the
curve y>=x, z=0: Here ¢ is a parameter.

Solution
Let us write the given surface family as

f(x,y,2)=(x*+y*)z-c=0.
Using f,, f, and f,
fo=2xz, f,=2yz, f,=x+y’.
The Lagrange system, which corresponds to the partial differential equa-
tion of orthogonal surfaces is given by
dx dy  dz
2xz  2yz X' +y?
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From this, two independent first integrals are as follows

X:cl , Xe+yi-2z2
X

General equation of surfaces perpendicular to the given family of surfaces

are given by
F(l,x2 +y° —ZZZJ:O,
X

?=g,.

or
X2 +y?-27° = g(X]
X
where F and g are arbitrary functions. To find the special surface that
passes through the curve y® = x, z=0, we write the parametric equation
of curve as
x=t, y=t* z=0.
From this, we obtain
¢ =t, ¢, =t*+t* =¢c,=c’+c,.
Thus, the desired surface has the equation

4 2
X? +y? —27° :(lj +(1j .
X X
Example 2.23

Find the surface perpendicularly intersecting the family of surfaces with a
parameter given by the equation z :cxy(x2 + y2) . Here ¢ is a parame-

ter.
Solution
Let's write the given surface family as
xy(x? +y?
f(X,y,Z):MIE.
z c

Using fx,fy and f, ,
33Xy +y° ‘ 3y +x° ‘¢ _ xy(x*+y?)
x - _ ) y_— ) Z__—Z

f
z 4 z
The Lagrange system, which corresponds to the partial differential equa-
tion of orthogonal surfaces is given by

zdx  zdy | -7%z
Ay +y° 3y x+x* xy(X*+y?)

From this, we can write
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xzdx + yzdy =7z
xy(3x2 + y2)+ xy(x2 +3y2) - xy(x2 + y2) ’
xzdx +yzdy = —z%dz

xy(4x2 +4y2) - xy(x2 + yz)’
xzdx + yzdy = —4z°dz,
xdx + ydy =—4zdz,
x> +y° +42° =c,.
The second solution is
zdx+zdy  zdx—zdy

= =
(x+y)’ (x—y)’
_dix+y) __d(x-y)
(x+y)?®  (x-y)’
1 1
f— 2+ 2:C2'
(X+y)" (x-y)

The general equation of surfaces perpendicular to the given family of sur-
faces are given by

F(x2+y2+422, 1 >+ ! 2]:O,
(x+y)" (x-y)

1
CRTE + oY) = g(x2 +y? +422),
where F and g are arbitrary functions.

Example 2.24
Find the equation of the system of surfaces which cut orthogonally the

cones of the system x*+ Yy +z°=cxy, c being a parameter.
Solution

2 2 2
The given system of surfaces is F(x,Yy,z) = X+y+z . The auxilia-
ry equations are
dx dy dz dx dy dz
= = = 2 = 2 = H3A-
oF/ox oFloy oFloz 1 'y z x 1 2z 2z

y x* Xy oyt ox o oxyt Xy

xdx _ ydy :g
X2 —y?—z7*2 x*+y*-7* 27
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It follows that xdx + ydy + zdz =0 and Xxdx - ydy = @z leading to the so-

X-y*  z

lutions
2 2

X" —
x> +y?+2*=c, and _2y
z

respectively, where ¢, and c, are arbitrary constants. Thus the general

:CZ’

2 2
solution of the given equation is ¢[x2+y2+zz,xz—2yj=0 and the

22
equation of the required system of surfaces is x>+ y*+z° = f [X 2y ]

z

Example 2.25
Find the surface which intersects the surfaces of the system
z(x+y)=c(3z+1) orthogonally and passes through the cir-

clex’? +y*=1,z=1.

Solution
The given system of surfaces is F(x,y,z) = 2(x+y) =C, C being param-
Z+
eter. The auxiliary equations are
dx_dy_dz:dx_dy dz
OF Iox oF loy oF loz z z X+y

3z+1 3z+1 (3z+1)°

dx dy (3z+1)dz

z oz x+y
It follows that dx—dy=0 and (x+y)d(x+y)—(62"+2z)dz=0,
whose solutions are

x—-y=c, and (x+Yy)*-2z°(2z+1) =c,,
where ¢, and c, are constants.
Now the given circle has parametric equations x=cost, y=sint,z=1
so that cost—sint=c, and (cost+sint)’-6=c, , i.e. sin2t=1-c’ as
well as sin2t =5+c,. Eliminating t between these two relations, we get
Cl+C,+4=0=(Xx—y)’ +(x+Yy)*-27°(22+1) +4=0,

e

X*+y*=22+7"-2,
which is the equation of the required surface.
2.7 First Order Non-Linear Equations
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In this section, we will discuss the problem of finding the solution
of first order non-linear partial differential equations (PDES) in three var-
iables of the form

F(x,y,z,p,0)=0, (2.86)
where
oz oz
P=a 97 oy

We also assume that the function possesses continuous second order de-
rivatives with respect to its arguments over a domain Q of (x,y,z, p,q) -

space, and either F_ or F, is not zero at every point such that
F’+F=0.

The PDE (2.86) establishes the fact that at every point (x,y,z) of the re-

gion, there exists a relation between the numbers p and q such that

#(p,q) =0, which defines the direction of the normal ri={p,q,-1} to

the desired integral surface z=1z(x,y) of Eq. (2.86). Thus, the direction

of the normal to the desired integral surface at certain point (x,y,z) is not

defined uniquely. However, a certain cone of admissible directions of the
normals exist satisfying the relation ¢(p,q) =0 (see Fig.3).

A

RY

Fig. 3 Cones of normals to the integral surface.

Therefore, the problem of finding the solution of Eq. (2.86) reduces to
finding an integral surface z =z(x,y), which the normals at every point
of it are directed along one of the permissible directions of the cone of
normals at that point.
Thus, the integral or the solution of Eq. (2.86) essentially depends on two
arbitrary constants in the form

f(x,y,z,a,b)=0,
which is called a complete integral. Hence, we get a two-parameter fami-
ly of integral surfaces through the same point.
2.7.1 Cauchy's Method of Characteristics
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Here, we shall discuss the Cauchy's method for solving Eqg. (2.86),
which is based on geometrical considerations. Let z=1z(x,y) represents

an integral surface S of Eq. (2.86) in (x,Yy,z)-space. Then, {p,q,—1} are
the direction ratios of the normal toS. Now, the differential equation
(2.86) states that at a given point P(XO, yo,zo) on S, the relationship be-

tween p,anda,, that is F (X,, Yo, Zy, Py, ), Need not be necessarily linear.

Hence, all the tangent planes to possible integral surfaces through P form
a family of planes enveloping a conical surface called Monge Cone with
P as its vertex. In other words, the problem of solving the PDE (2.86) is
to find surfaces which touch the Monge cone at each point along a gener-
ator.

Since an integral surface is touched by a Monge cone along its gen-
erator, we must have a method to determine the generator of the Monge
cone of the PDE (2.86) which is explained below:

It may be noted that the equation of the tangent plane to the integral sur-

face z=1z(x,y) at the point (X,,¥,.Z,) is given by

p(X - Xo) + q(y - yo) = (Z - Zo)-
Now, the given non-linear PDE (2.86) can be recasted into an equivalent
form as

A =0(Xo Yo: 2o, P),

indicating that p and q are not independent at (X, Y,,Z,). At each point
of the surfaceS, there exists a Monge cone which touches the surface
along the generator of the cone. The lines of contact between the tangent
planes of the integral surface and the corresponding cones, that is the
generators along which the surface is touched, define a direction field on
the surface S. These directions are called the characteristic directions, or
Monge directions on S and lie along the generators of the Monge cone.
The integral curves of this field of directions on the integral surface S de-
fine a family of curves called characteristic curves as shown in Fig.5. The
Monge cone can be obtained by eliminating p from the

following equations:
p(X_Xo)"‘q(Xo’yo’zov p)(y_ yo):(z_zo)’
and
dg
(x—x0)+(y—y0)$:0. (2.87)
Observing that q is a function of p and differentiating Eq. (2.86) with
respectto p , we get

dF _oF oFdg_,

= (2.88)
dp Jp oqgdp
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Now, eliminating (dq/dp) from Egs. (2.87) and (2.88), we obtain
oF oF (Xx—%,)
o aq(y-Yo)

-0,

or
X=% _ Y=Y
F F

p q
Therefore, the equations describing the Monge cone are given by

0 =0(%y Yo:Zo: P),
(x=%)p+(y-¥,)a=(z-12,) (2.89)
X

_Xo:y_yo
F Fo

p q
The second and third of Eqgs. (2.89) define the generator of the Monge
cone. Solving them for (x—x,),(y—Y,) and(z-z,) , we get

25 Yo 274 (2.90)
Fp Fq pr + qu
Finally, replacing (x—x%,).(y—Y,) and (z-z,) by dx,dy anddz re-
spectively, which corresponds to infinitesimal movement from (X, Yy, Z,)

along the generator, Eq. (2.90) becomes

o _dy__de @
F, F PR, +aF

Denoting the ratios in Eq. (2.91) by dt, we observe that the characteristic
curves on S can be obtained by solving the ordinary differential equa-
tions

dx

5 = Floyzen pey).ae )k (2.92)
and

% =Ry z(xy) p(xy).axy)}y (293

Also, we note that
dz ozdx ozdy dx dy
—=—— 4 ——=p—+q—.
dt oxdt oydt dt dt
Therefore,
dz
pran pF, +gF,.
Along the characteristic curve, p is a function of t, so that
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dp_opdx pdy
dt oxdt oy dt
Now, using Egs. (2.92) and (2.93), the above equation becomes
dp_apoF  opoF
dt oxop oy dq
Since z,, =z, orp,=q, ,we have
dp_opoF  oqok

= : (2.94)
dt oxadp oOx dq
Also, differentiating Eq. (2.86) with respect to x, we find
FLEERFA_5 (295

_+_
oX 0z g op OX 0 OX
Using Eq. (2.95), Eq. (2.94) becomes

dp
-+ - _(F F).
dt (X+p )

Similarly, we can show that

d
d_?:_(Fy +0F,).
Thus, given an integral surface, we have shown that there exists a family

of characteristic curves along which x,y,z, p and q vary according to the
following equations

dx

—~-F

dat P

dy _

dt *

dz _ 2.96
E_pr+qu (2.96)
d

d—i)z—(FX+pFZ)

dq

E:—(Fy+sz)

These equations are known as characteristic equations of the given PDE
(2.86). The last three equations of (2.96) are also called compatibility
conditions. Without knowing the solution z=2z(x,y) of the PDE (2.86),

it is possible to find the functions x(t),y(t),z(t), p(t),q(t) from Egs.
(2.96). That is, we can find the curves x=x(t),y=y(t),z=1z(t) called

characteristics. For illustration, we consider the following examples:
Example 2.26
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Find the characteristics of the equation pqg=z and determine the integral
surface which passes through the straight linex=1, z=vy.

Solution
The initial data curve is given in parametric form as
%(8)=1 Yyy(s)=s, Zz,(s)=s,
then ordinarily the solution is sought in parametric form as
x=x(t,s), y=y(t,s), z=z(t,s).
Thus, using the given data, the differential equation becomes
Po(s)qp(s) —s=0=F,
and the strip condition gives
pox(’)(s)+q0yg(s):z(’)(s) = p0(0)+q0(1)=1 = o =1.
Therefore,
0, =1 p,=s. (unique initial strip)
Now, the characteristic equations for the given PDE are

dx d dz d d
E:q’ _y:p’ —=2pq, _p:p, —q—Q-

dt dt dt dt
On integration, we get
p=c.exp(t), gq=c,exp(t) , x=c,exp(t) +c,
y=c,exp(t)+c,, z=cc,exp(2t) +c,
Now, taking into account the initial conditions
X =1, Yy,=S, 2,=S, p, =S, Q, =1,
we can determine the constants of integration and obtain
(sincec, =1,¢c,=0)
p=sexp(t), g=exp(t),
x=exp(t), y=sexp(t), z=sexp(2t). (2.97)
Consequently, the required integral surface is obtained from Eq. (2.97) as
Z=Xy
Example 2.27
Find the characteristics of the equation pgq=z and hence, determine the
integral surface which passes through the parabola x =0, y* =z.
Solution
The initial data curve is
Xo(s) =0, yo(s) =S, Zo(s) =5,
Using this data, the given PDE becomes
Po(s)0(8) —8° =0=F.
The strip condition gives
pOX(')(S) + qoy(,) (s)= Z() (s) = Po (0) + do (1) =2s = Q, = 2s.
Therefore,
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q,=2s and pO:ZO/qozszlzszg_

Now, the characteristic equations of the given PDE are given by

dx dy dz dp dqg
= , —— = y, —— = 2 y, —— = , —— = .
g o Pra M P e

On integration, we obtain

p=cexp(t), g=c,exp(t), x=c,exp(t)+c;,

y=c.exp(t)+c,, z=cgc,exp(2t)+c;. }
Taking into account the initial conditions

X,=0,Y,=5,2,=5", p,=5/2,q, =25,
we find
c,=s/2,c,=2s,¢c,=-2s,¢,=s/2,¢c,=0.

Therefore, we have

p= %exp(t), = 2sexp(t)

x=2s[exp(t) -1], y= %[exp(t) 11! (2.98)

z =s”exp(2t)

Eliminating s and t from the last three equations of (2.9é), we get
162 = (4y + x)°
This is the required integral surface.

Example 2.28
Find the characteristics of the PDE
p*+q° =2,
and determine the integral surface which passes through x=0,z=y .
Solution

The initial data curve is
XO(S) =0, yo(s) =S, Zo(s) =S.
Using this data, the given PDE becomes
P +05 —2=0=F,
and the strip condition gives
pox(’) (s)+ qoy(’) (s)= Z(,) (s) = Po (0) + do D=1 = do =1
Hence,
d, =1 p, =+1.
Now, the characteristic equations for the given PDE are given by
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dx dy dz ) )
—=2p, —=2q,—=2 2q° =4,
g Pra Mg P
do_o da_g

dt dt

On integration, we get
p=cC,Q=cC,, X=2Ct+C,,
y=2ct+c,,z=4t+c..
Taking into account the initial conditions
X =0,Y¥,=S,2,=5, p, =11, q, =1,
we find
=11, q=1, x==2t,
P==1, 1 (2.99)
y=2t+s, z=4t+s.
The last-three equations of (6) are parametric equations of the desired in-
tegral surface. Eliminating the parameters s and t, we get
Z=Yy+X.
This is the required integral surface.
2.7.2 Compatible Systems of First Order Equations
Two first order PDEs are said to be compatible, if they have a com-
mon solution. We shall now derive the necessary and sufficient condi-
tions for the two partial differential equations

f(x,y,2,p,q)=0, (2.100)
and
9(xy,z,p,q) =0, (2.101)
to be compatible. Let
J= ot.9) =0
o(p,a)

Since Egs. (2.100) and (2.101) have common solution, we can solve them
and obtain explicit expressions for p and q in the form

p=#(Xy,2), d=w(X,Y,2), (2.102)
and then, the differential relation
pdx +qdy =dz,

or
o(x,y,2)dx +w(x,Yy,z)dy =dz,
should be integrable, for which the necessary condition (Pafaffian condi-
tion) is
n-(vn)=0, (Pafaffian condition)
where n={¢,w,—1}.That is,
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o ~ ~

i j K
(4 +y]-K)-lolox aloy o/oz|=0,
9 v -1

or
(—v,)+v(s)=v.— 9,
which can be rewritten as
W+ PV, =, +vd,. (2.103)
Now, differentiating Eq. (2.100) with respectto x and z, we get
et Pyg Mg,
OX OX
and
et Py Mg
oz Yoz
But, from Eq. (2.102), we have
o _0¢ N_0oy
oX ox  ox  ox
Using these results, the above equations can be recast into
fo+ 4+ fy =0,
and
f,+f¢,+fw,=0.
Multiplying the second one of the above pair by ¢ and adding to the first
one, we readily obtain
(fo+of, )+, (d +08,)+ Ty (v, +oy,)=0.
Similarly, from Eq. (2.101) we can deduce that
(9, +69,)+9, (¢ +88,)+ 9, (v, + oy, ) =

Solving the above pair of equations for (v, + ¢y, ) , we have
(v, +ov,) 1 1

f.(0,+69,)-0,(f,+¢f,) f.9,-9g,f,

Or
1
Vx +¢l//z :_|:( fpgx_gpfx)+¢(fpgz _gpfz)]
F(f -0) ¢a(f’g)}, (2.104)
ox,p) ~ o(z,p)
where J = 8((]; g)) # 0. Similarly, differentiating Eq. (2.100) with respect

to y and z and using Eq. (2.102), we can show that
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__1ljo(f,9) ,  a(f,9)
¢ﬁw@_3{d%®+wﬂam} (2.105)

Finally, substituting the values of y, + ¢y, and ¢, + v, from Egs. (2.104)
and (2.105) into Eqg. (2.103), we obtain

o(f.9) , a(f,g):_{a(f,g)wa(f,g)}

o(x,p) * d(z,p) o(y,q) ~ d(z,q)
In view of Egs. (2.102), we can replace ¢ and w by p andq , respec-
tively to get

ot.9)  pate) af.0)  af.0) o 510p
ox,p) ~ a(z,p) o(y.a) o(z,0)
This is the desired compatibility condition. For illustration, let us consider
the following example:
Example 2.29
Show that the following PDEs
Xp—-yg=x and X°p+q=xz,
are compatible and hence, find their solution.
Solution
Suppose, we have

f=xp—yg—x=0, (2.107)
and
g=xp+q—xz=0. (2.108)
Then,
o(f,g) | (p-1) x

_ =px2—x2=2X’p+xz=x2—X*p—X?,
o(x,p) |(2xp—-2) X P P+ P

o(f,g) |0 x 2
oz, p) |-x x|
of.0) |4 y|__,
o(y,q) [0 1 ’
o(f,g) _|0 _y:—xy
o(z,q) |-x 1 ’

and we find

o(f.9)  a(f.g)_ a(f.g)  a(f.g) _

ox,p) ~ az,p) o(y.q)  0d(z,q)
=Xz —q—Qgxy — X
=XZ—q—x(qy +X)
=xz—-q-x*p=0.

XZ — X*p — x>+ px* —q—gxy
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Hence, the given PDEs are compatible.
Now, solving Egs. (2.107) and (2.108) for p and g, we obtain

_X(@+yz) 1+yz
X(L+xy) 1+xy’

and

_X(z-x) _ x(z-X)

Cx(+xy)  1+xy
In order to get the solution of the given system, we have to integrate the
equation

dz = pdx +qdy
:(1+ yz)dx+x(z—x)dy’
1+ xy 1+xy
or
dz —dx = y(Z_X)dx+x(z_x)dy,
1+ xy 1+ xy
or

dz—dx  ydx+ xdy
Z—X 1+xy

On integration, we get
In(z—x)=In(L+xy)+Inc

That is,
Z—X=c(l+xy)

Hence, the solution of the given system is found to be
Z=Xx+c(d+xy),

which is of one-parameter family.
2.7.3 Charpit's Method

In this section, we will discuss a general method for finding the
complete integral or complete solution of a nonlinear PDE of first order
of the form

f(x,y,z,p,q)=0. (2.109)

This method is known as Charpit's method. The basic idea in Charpit's
method is the introduction of another PDE of first order of the form

9(x,y,z,p,q) =a, (2.110)
and then, solve Egs. (2.109) and (2.110) for p and g and substitute in
dz = p(x,y,z,a)dx+q(x,Yy,z,a)dy. (2.111)

Now, the solution of Eq. (2.111) if it exists is the complete integral of Eq.
(2.109). The main task is the determination of the second equation
(2.110) which is already discussed in the previous section. Now, what is
required, is to seek an equation of the form
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CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

g(x,y,z,p,0q) =2,
compatible with the given equation
f(x,y,2,p,9)=0,
for which the necessary and sufficient condition is
of.g), jaf.g) af.g) a9 _,

ox,p) ~ d(z,p) o(y,a) o(z,0)
On expansion, we have

oX op Op oX ozop opoz
(g _dtag) (dfag ofdg)_ o
oy 6q oq oy 0z 0q 0q o0z

which can be recast into
9 ¢ 9 g og g _
fooe fq5+(pfp +qfq)5—(fx+ pfz)%—(fy +qu)£_o. (2.112)

This is a linear PDE, from which we can determine g. The auxiliary

equations of (2.112) are

o _dy @ d____dg (2.113)

f, f, pf,+af, —(f,+pf,) —(f,+qf,)
These equations are called Charpit's equations. Any integral of Egs.
(2.113) involving p or g or both can be taken as the second relation

(2.110). Then, the integration of Eqg. (2.111) gives the complete integral
as desired. It may be noted that all Charpit's equations need not be used,
but it is enough to choose the simplest of them. This method is illustrated
through the following examples:

Example 2.30

Find the complete integral of

(p*+9°)y=qz. (2.114)

Solution

Suppose

f=(p’+q*)y-gz=0,
then, we have
f,.=0, f,=p*+q’, f,=—q, f =2py, f,=2qy-z.
Now, the Charpit's auxiliary equations are given by
dx _dy  dz dp dq

f f, pf,+af, —(f,+ pfz)_—(fy+qu)'

That is,
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o __dy _ az _dp _ dq . (2.115)
2py 20y-z 2p’y+29°y-qz pa —{(p°+q’)-q’ |
From the last two members of Eq. (2.115), we have
dp _ dq
pqg —p*
or
pdp +qdg =0.
On integration, we get
p° +q° =a (constant) . (2.116)

From Egs. (2.114) and (2.116), we obtain
ay—qz=0 or qg=ay/z,

p—\/@_\/(azz—azyﬂ/f}

Substituting these values of p and q in

and

dz = pdx +qdy,
we get
dZ:—Vazz_azyzdx+ﬂdy,
Z Z
or

zdz — aydy = /az® —a’y*dx,
which can be rewritten as
d(az’ - azyz)y2

=dx.
a
On integration, we find
2 a2,2
vaz'-alyt oy

a
or

(x+b)*=(z"/a)-y’.
Hence, the complete integral is
(x+b)*+y*=z7"/a.

Example 2.31
Find the complete integral of the PDE:

2% = poxy.
Solution

In this example, given
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f =z — poxy.
Then, we have
fx =—pqy, fy =—pagx, fz =2z,
f,=—axy, f,=—pxy.
Now, the Charpit's auxiliary equations are given by
dx dy  dz dp dg

f, f, pf,+af, —(f,+pf,) —(f, +af,)

That is,
dx dy dz  dp  dg
—OXy —pxy —2pgxy paqy—2pz pox-—20z
From Eq. (2.117), it follows that
dp/p dg/qg _dx/x _dyl/y
qQy—-2z px—-2z —qy —pXx
which can be rewritten as
dp/p-dq/q —dx/x+dy/y

(2.117)

qy — px qy — px
or
gp_dq_dy dx
P a4 vy x
On integration, we find
PX_ c, (constant)
qy

or
p=cqy/X.
From the given PDE, we have
z° = paxy =cq°y”,
which gives
Q?=z2/cy? or q=z/Jcy=azly,
wherea=1/+/c . Hence,
p=z/ax
Substituting these values of p and g in
dz = pdx + qdy,
we get
dz = idx - Edy,
ax y
dz 1ldx _dy
=——+

z ax y
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On integration, we obtain

1
Inz==Inx+alny+Inb,
a

or

z =bx"?y?,
which is the complete integral of the given PDE.
Example 2.32

Find the complete integral of
X2p2 + quZ _420’
using Charpit's method.
Solution
The Charpit's equations for the given PDE can be written as
dx dy dz _dp _ dg

2X°p  2y*q 2(x*p’+yiq’) -2xp® -2yq

Considering the first and last but one of Eq. (2.118), we have
d>2< = dp > or %+d—p=0.
2X°p  =2Xp X p

On integration, we get

_.(2.118)

In(xp)=Ina or xp=a. (2.119)
From the given PDE and using the result (2.119), we get
y’g°=4-a’. (2.120)
Substituting one set of p and g values from Egs. (2.119) and (2.120) in
dz = pdx +qdy,

dz =a%+\/4—a2 ﬂ.
X y
On integration, the complete integral of the given PDE is found to be

z=alnx+v4—-a’Iny+b.

2.8 Special Types of First Order Equations
Type | Equations Involving p and g only.

That is, equations of the type

we find that

f(p,a)=0.
Let z=ax+by+c=0 isasolution of the given PDE, described by
f(p,a)=0,
then
P—@—a q—g—b
ox oy

Substituting these values of p and q in the given PDE, we get

53


ismail.masci
Highlight

ismail.masci
Highlight


CHAPTER TWO: PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER DR. AHMED YOUSEF

f(a,b)=0.
Solving for b , we get, b=¢(a) , say. Then,
Z=ax+g¢(a)y+c
Is the complete integral of the given PDE.

Example 2.33
Find a complete integral of the equation

\/B + \/a =1.
Solution

The given PDE is of the form f (p,q) =0. Therefore, let us assume the

solution in the form
z=ax+hy+c,

Ja++b=1 or b=(@1-a)’.

Hence, the complete integral is found to be
z=ax+(1—+a)’y+c.

where

Example 2.34

Find the complete integral of the PDE
pg=1.

Solution

Since the given PDE is of the form f (p,q) =0, we assume the solution in
the form z=ax+by+c, where ab=1 orb=1/a. Hence, the complete
integral is

1
Z=ax+—-Yy+C.
a

Type 11
Equations Not Involving the Independent Variables.
That is, equations of the type

f(z,p,q)=0.

As a trial solution, let us assume that z is a function of u=x+ay ,
where a is an arbitrary constant. Then,
z=f ()= f(x+ay),
0z dz ou dz
P T d
0z dz ou dz
q=—=—-—=a—.
oy du oy du
Substituting these values of p and q in the given PDE, we get

f(z,z,agjzo, (2.121)
du du
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which is an ordinary differential equation of first order.
Solving Eq. (2.121) fordz / du , we obtain

dz
d—=¢(z,a), (say)
u
or
az = du.
¢(z,a)
On integration, we find
J' dz _
u+c
¢(z,a)

That is,

F(z,a)=u+c=x+ay+c,
which is the complete integral of the given PDE.
Example 2.35
Find the complete integral of

p(+0a)=0z.

Solution
Let us assume the solution in the form

z="f(u)=x+ay.
Then,

_dz _a dz

P T %

Substituting these values in the given PDE, we get

dz( dz} dz
—|1+a— |=az—.

du du du
That is,
aE:az—l or a dz =du.
du az-1

On integration, we find
In(az—1)=u+c=x+ay+c.
which is the required complete integral.

Example 2.36

Find the complete integral of the PDE:
p’z*+q°=1.

Solution

Let us assume that z=f(u)=x+ay is a solution of the given PDE.

Then,
_dz dz

p ' q - '
du du
Substituting these values of p and g in the given PDE, we obtain
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CREE
du du '

That is,
dz \’ 2 dz 1
— | (z°+a)=1 or —= :
(dUJ ( ) du z%+3a?
or

Jz? +a%dz =du.
{z+\/zz+a2

On integration, we get
NP +a® a’

which is the required complete integral of the given PDE.
Type 11 Separable Equations.
An equation in which z is absent and the terms containing x and p

can be separated from those containing y and q is called a separable

equation. That is, equations of the type
f(x,p)=F(y,q).
As a trial solution, let us assume that
f(x,p) =F(y,q) =a. (say)
Now, solving them for p and g, we obtain
p=d(x,a), q=w(y.a).

}:x+ay+b,
a

Since
oz 0z
dz = —dx+—dy = pdx +qdy,
X +8y y = pax +qay

or
dz = ¢(x,a)dx +y(y,a)dy.
On integration, we get the complete integral in the form
Z= j¢(x, a)dx + jw(y, a)dy +Db.
Example 2.37
Find the complete integral of the PDE:
2

pzy(1+ x2) =Ox°.

Solution
The given PDE is of separable type and can be rewritten as
p? (1+ x2) q _
————==—=a. (say), an arbitrary constant.
X y
Then,
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p= L gy
N

Substituting these values of p and q in
dz = pdx +qdy,

Jax

NED'S
On integration, we obtain

z=+aV1+x? +%y2+b,

which is the complete integral of the given PDE.
Example 2.38
Find the complete integral of

PP+Q° =X+Y.

we get

dz =

dx + aydy.

Solution
The given PDE is of separable type and can be rewritten as

p’-x=y-qg*=a, (say)

Then,
p=Vx+a, g=yy+a.
Now, substituting these values of p and g in
dz = pdx + qdy,
we find

dz =+/x+adx +./y +ady.
On integration, the complete integral is found to be

3/2

2 2 32
Z=—(X+a)""+=(y+a)” +b.
gra)T o ly+a)

Type IV Clairaut's Form
A first order PDE is said to be of Clairaut's form if it can be written as

z=px+ay+ f(p.a).
The corresponding Charpit's equations are
dx ~ dy dz _dp _ dq
x+f, y+f, px+ay+pf +af, p-p q-q
The integration of the last two equations of (2.122) gives us
p=a, q=b.
Substituting these values of p and g in the given PDE, we get the re-

quired complete integral in the form
z=ax+by+ f(a,b).

(2.122)

Example 2.39
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Find the complete integral of the equation

Z=pxX+qy++/1+p>+q°.
Solution

The given PDE is in the Clairaut's form. Hence, its complete integral is
z=ax+by++1+a*+b’.
Example 2.40

Find the complete integral of
(p+a)z—xp-yq)=L1

Solution

The given PDE can be rewritten as

Z=Xp+Yy(q+

p+q’
which is in the Clairaut's form,

z=px+qy+ f(p,q).
Hence, the complete integral of the given PDE is

1
Z=ax+hby+—.
a+b

Example 2.41
In classical mechanics, the Hamilton-Jacobi equation for the problem of
one-dimensional, Harmonic oscillator is given by the differential equation

as
2
L8 gz B, (2.123)
2m\ oq 2 ot

where S=S(p,q,t), p= % and K is a constant. Using Charpits method,

findS.
Solution
Following the notation of Eq. (2.123) we rewrite

2
f(t.,5,5,.8 ):i I
7 2m oq 2 ot
which gives us

S
f,=0,f,=Kq, f; =0, f, =1, f, =—.
t q m
Then, the Charpits auxiliary equations assumes the following form:
d¢  dg _dS ds, ds,

1 s,/m S+S2/m 0 -Kg
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dS
Considering the second and last members, we have dq =—1,
S,/m —Kq

On integration, we get
2

L 1 Kq® = a (constant of integration).
2m 2

Equation (2.123) then becomes
2 2a
St:—a, Sq:Km(?—q )

Substituting S,and S, into
dS =S,dt + S,dq,
and integrating, we arrive at

1/2
S:—at+\/ij(%—q2) dg+C,

S=—at+\/m.|'(a2—q2)ﬂ2dq+c.

2 : : :
where o :?a and C is another constant of integration.
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CHAPTER THREE

PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER
3.1 Introduction

An important ingredient of a systematic theory of partial differen-
tial equations is a classification scheme which identifies classes of equa-
tions with common properties. The “type” of an equation determines the
nature of boundary and initial conditions which may be imposed, the na-
ture of singularities which solutions may have and the nature of methods
which can be used to approximate a solution. In this chapter, we present
the classification of linear partial differential equations of the second or-
der. Linear partial equations of the second order are divided into three
main types. They are hyperbolic equations, parabolic equations and ellip-
tic equations. Then we study the canonical forms of these main types. Af-
ter that, we present methods for solving these linear equations with con-
stant coefficients and generalize these methods to linear equations of
higher orders than the second order.
3.2 Classification of second order PDEs

The most general linear second order PDE, with one dependent

function u on a domain Q of points X =(x,X,,...,X,), n>1, is

D auX; + > bu, +Fu=G. (3.1
i,j=1 i=1
The classification of a PDE depends only on the highest order derivatives
present. The classification of PDE is motivated by the classification of the
guadratic equation of the form
Ax® +Bxy +Cy* + Dx+Ey+ F =0, (3.2)

which is elliptic, parabolic, or hyperbolic according as the discriminant
B? —4AC is negative, zero or positive. Thus, we have the following se-
cond order linear PDE in two variables x and y:

Au,, +Bu, +Cu +Du, +Eu +Fu=G, (3.3)
where the coefficients A B,C,... are functions of x and y. Equation
(3.3) is elliptic, parabolic or hyperbolic at a point (X,, y,) according as
the discriminant

BZ(XO’YO)_4A(Xo’y0)C(Xo’y0)
IS negative, zero or positive. If this is true at all points in a domainQ,
then Eq. (3.3) is said to be elliptic, parabolic or hyperbolic in that domain.
If the number of independent variables is two or three, a transformation
can always be found to reduce the given PDE to a canonical form (also
called normal form). In general, when the number of independent varia-
bles is greater than 3 , it is not always possible to find such a transfor-
mation except in certain special cases. The idea of reducing the given
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PDE to a canonical form is that the transformed equation assumes a sim-
ple form so that the subsequent analysis of solving the equation is made
easy.
3.3 Canonical forms

Consider the most general transformation of the independent varia-

bles x and y of Eq. (3.3) to new variables &,7, where

&=4(xy), n=n(xy), (3.4)
such that the functions & and » are continuously differentiable and the
Jacobian

o(&,m) Sx gy
J == = —_ O ,
ox.y) |mc 1y (61, =¢m.)

in the domain Q where Eq. (3.3) holds. Using the chain rule of partial
differentiation, the partial derivatives become

u, = uégx + u7777X ! Uy - Uéfy + uﬂny '
2 2
Uy = ufe‘gx + zuéﬂgxnx + u’7'777x + ufgxx + unnxx ’
uxy = ué?gxgy + uén (§x77y + §y77x ) + unnnxﬂy * uégxy + UUUXW '

Uy, = ufﬁfj +2U,6,1, + urmnj UGy, U7,
Substituting these expressions into the original differential equation (3.3),
we get

Au,. +Bu,, +Cu, +Du,+Eu, +Fu=G, (3.5)
where
A= AL +BE S +CE),
B =2AS,7, +B(&m, +&,n,)+2CE,,
C = Ayj; +Bn,n, +Crpy, (3.6)
D=A, +B¢, +C&, +DE +EE,
E = An, +Bn,, +Cn, +Dn,+En,,
F=F, G=0G.

It may be noted that the transformed equation (3.5) has the same form as
that of the original equation (3.3) under the general transformation (3.4).
Using Eq. (3.6) it can also be verified that

B2 -4AC =(&n, —&m,) (B2 —4AC),

and therefore we conclude that the transformation of the independent var-
lables does not modify the type of PDE.
Since the classification of Eq. (3.3) depends on the coefficients A,B and

C we can also rewrite the equation in the form
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Au, +Bu, +Cu, =H (x, y,u,ux,uy).
It can be shown easily that under the transformation (3.4), Eq. (3.5) takes
one of the following three canonical forms:
(i) In the hyperbolic case
U, —u, =¢(&muuu,) or U, =¢(&nuuu,). (37)
(ii) In the elliptic case
U +U,, =¢(&muu.u, ). (3.8)
(iii) In the parabolic case
u.=¢(&muu,u,), or u, =4(Enuuy,) (3.9
We shall discuss in detail each of these cases separately.
3.3.1 Canonical Form for Hyperbolic Equation
Since the discriminant B2 —4AC >0 for hyperbolic case, we set A=0
and C =0 in Eq. (3.6), which will give us the coordinates & and 7 that
reduce the given PDE to a canonical form in which the coefficients of
u. ,u, arezero. Thus we have
A=Asl+BEE, +CE =0,

C = Ay, +Bnz, +Cry =0,
which, on rewriting, become

A S +B é]+C=O,
Sy Sy

2
A un +B iJ+C=O.

Solving these equations for (£, /&,) and (7, /n,) , we get

&, —B+VB’-4AC
3 2A ’
! (3.10).
7, —B-VB*-4AC
1y 2A '

The condition B”>4AC implies that the slopes of the curves
E(x,y)=C,, n(x,y)=C, are real. Thus, ifB>>4AC, then at any point
(X,y), there exists two real directions given by the two roots (3.10) along

which the PDE (3.3) reduces to the canonical form. These are called
characteristic equations. Though there are two solutions for each quadrat-
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ic, we have considered only one solution for each. Otherwise we will end
up with the same two coordinates. Along the curve &(X,y)=c,, we have

dé=¢dx+¢&,dy=0.

Yy_ |4
o (s) s

Similarly, along the curvern(x,y)=c,, we have

gy =—(i]. (3.12)

Hence,

dx 1,

Integrating Egs. (3.11) and (3.12), we obtain the equations of family of
characteristics £(x,y)=c, and 7(X,y)=c,, which are called the charac-
teristics of the PDE (3.3). Now to obtain the canonical form for the given
PDE, we substitute the expressions of & and 7 into Eq. (3.3) which re-
duces to the second of (3.7). To make the ideas clearer, let us consider the
following example:
Example 3.1
Classify and reduce the PDE

3u,, +10u,, +3u,, =0,
to a canonical form and solve it.
Solution
Comparing with the standard PDE (3.3), we haveA=3,

B=10, C=3,B*-4AC =64>0. Hence the given equation is a hyper-
bolic PDE. The corresponding characteristics are:

dy _[& | [-B+VB’-4AC | 1
dx ¢ 2A 3’
dy _ [m|_ [-B-VB°-4AC|_,
dx  », 2A '

To find & and 77, we first solve for y by integrating the above equations.
Thus, we get

1
y=3X+CcC, y:§x+c2,

which give the constants as
c,=y-3X, ¢c,=y—-x/3.
Therefore,

1
E=y-3X=c¢, n:y—gx:cz.
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These are the characteristic lines for the given hyperbolic equation. In this
example, the characteristics are found to be straight lines in the (x,y)-

plane. To find the canonical equation, we substitute the expressions for &
and » into Eq. (3.6) to get
A=AE+ BSS, + nyz =3(-3)* +10(-3)(1) +3=0,

B=2A%n, + B(é‘cxny + fynX)—i_ 2Ccy

= 2(3)(—3)(—%] + 10{(—3)(1) + 1(—%)} +2(3))(@)

:6+1O(—Ej+6=12—@:—%,
3 3 3

C=0, D=0, E=0, F=0.
Hence, the required canonical form is

—u. =0 or u. =0.

én
On integration, we obtain

u(g,m=f(5)+a9m),
where f and g are arbitrary. Going back to the original variables, the
general solution is
u(x,y)=f(y-3x)+g(y—x/3).
3.3.2 Canonical Form for Parabolic Equation
For the parabolic equation, the discriminant B> —4AC =0, which can

be true if B=0 and A or C is equal to zero. Suppose we set first A=0
in Eq. (3.6). Then we obtain

A= AZ +BEE +CE =0,

or
2
A ox + B Sx +C =0,
Sy Sy
which gives
[ —B++/B*-4AC
g, 2A '
Using the condition for parabolic case, we get
S__ B (3.13)
g, 2A

Hence, to find the function & =£&(x,y) which satisfies Eq. (3.13), we set
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dy & B

dx £ 2A
and get the implicit solution

s(xy)= Cl'
In fact, one can verify that A=0 implies B =0 as follows:
B=2Asn, +B(&n, +&n,)+2CE,.
Since B> —4AC =0, the above relation reduces to
B =2A%1, + 2VAC (&, +&,1,) +2CE, n,

2B, B, VB, +E, )

& B 2JAC __ﬁ
g 2A 2A A

B =2(VAg, ~VAZ )(VAn, +/Cn, ) =0.

We therefore choose & in such a way that both A and B are zero. Then
n can be chosen in any way we like as long as it is not parallel to the &-
coordinate. In other words, we choose 7 such that the Jacobian of the
transformation is not zero. Thus we can write the canonical equation for
parabolic case by simply substituting £ and 7 into Eq. (3.3) which re-
duces to either of the forms (3.9).

To illustrate the procedure, we consider the following example:

Example 3.2

Classify and reduce the PDE

X°U,, — 2Xyu,, + y°u, =e*,

However,

Hence,

to a canonical form.
Solution
The discriminant B? —4AC =4x’y* —4x’y*=0, and hence the given
PDE is parabolic everywhere. The characteristic equation is
dy_ & _B__ 2y

dx & 2A  2X X
On integration, we have
Xy =C,
and hence £=xy will satisfy the characteristic equation and we can
choose n=y. To find the canonical equation, we substitute the expres-
sions for & and » into Eq. (3.6) to get
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A= Ay? + Bxy + cx® = x°y* = 2x%y? + y*x* =0,
B

2 _AX
yu,, —2xyu, =e",
or
2 _ &ln
nu,, =28u. +e-".
The canonical form is, therefore,

2& 1
_ 5 = Aéln
Um]— 2u§+ €.

n n
3.3.3 Canonical Form for Elliptic Equation

Since the discriminant B> —4AC <0, for elliptic case, the characteristic

equations
dy B-+B*—4AC
dx 2A !
dy B++/B*-4AC
dx 2A

give us complex conjugate coordinates, say £ and 7. Now, we make an-
other transformation from (&,7) to (e, ) so that

c+n ﬂzé—ln

2 2i
which give us the required canonical equation in the form (3.9).
To illustrate the procedure, we consider the following example:
Example 3.3
Classify and reduce the PDE

2, —
U, +x7u, =0,

to a canonical form.

Solution

The discriminant B> —4AC =-4x* <0. Hence, the given PDE is elliptic.
The characteristic equations are

dy B-+B’-4AC _ -4x’
2

X,
dx 2A
dy B++B*-4AC _ix
dx 2A
Integration of these equations yields
2 X2

X :
y+==0, —ly+==¢,
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Hence, we may assume that
1., . 1., .
==X"+1y, np==Xx"-1ly.
¢ S X, n=ox-ly
Now, introducing the second transformation
c+n c—1n
a:—l :—.’
2 p 21
we obtain
2

X
a—?, ﬂ—y

The canonical form can now be obtained by computing
A=Ad’ + pa,a, +Ca§ =X,
B=2Aa,B +B(a,B, +a,B)+2c(a,pB,)=0,
C=AB; +BBB, +cp; =X,
D=Aax,+ Ba,, +cCa,, +Da, +Ea, =1,
E=AB,+Bp,+cf,+Dp +EpS, =0,
F=0, G=0.

Thus the required canonical equation is

X*U,, + XUz, +U, =0,

or
uOl
Uy, +Upgp “on
Example 3.3
Classify and reduce the relation
2 2
X
YU, — 2Xyu,, + XU, = yyux +7Uy ,

to a canonical form and solve it.
Solution
The discriminant of the given PDE is
B —4AC =4x’y* —4x*y* =0.
Hence the given equation is of a parabolic type. The characteristic equa-
tion is

dx & T2A 2y

Integration gives x*+ y® =c,. Therefore, &£ = x* + y* satisfies the charac-
teristic equation. The 7-coordinate can be chosen arbitrarily so that it is
not parallel to &, i.e. the Jacobian of the transformation is not zero. Thus
we choose

dy & B _2xy X
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E=x"+y, n=y°.
To find the canonical equation, we compute
A=A +BEE, +CET =4ax7y? —8x*y? +4x%y? =0,
B=0, C=4x%?
D=E=F=G=0.
Hence, the required canonical equation is
4x*y?u, =0 or u, =0.
To solve this equation, we integrate it twice with respect to » to get
u,=f(5), u="=1(n+9(s)),
where f (&) and g(&) are arbitrary functions of £ . Now, going back to
the original independent variables, the required solution is
u=y*f (x2 + y2)+ g(x2 + yz).
Example 3.4
Reduce the following equation to a canonical form:
(1+ xz)uXX +(1+ yz)uyy +xu, +yu, =0.
Solution
The discriminant of the given PDE is
B® —4AC =—4(1+x*)(1+y*)<0.
Hence the given PDE is an elliptic type. The characteristic equations are

dy B-+B’—4AC _ J4a )1+ y?) ey
- e

dx 2A 2(1+ x2)

dy B++vB?-4AC _i\/1+ %
dx 2A 1+x2
On integration, we get

g=In(x+5¢+1)-in(y+ ¥ +1)=c,,
n=In(x+ Vo +1)+iln(y+yF+1) =c,.

Introducing the second transformation
ctn L, _n-¢
2 P

we obtain

a:In(XJrM),
ﬂzln(y+\/m>.
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Then the canonical form can be obtained by computing
K=Aaf+Baxay+Cay2 =1, B=0, C=1 D=E=F=G=0.
Thus the canonical equation for the given PDE is
U, +U, =0.

Example 3.5
Reduce the following equation to a canonical form and hence solve it:

- 2 _
u, —2sinxu, —cos” xu, —cosxu, =0.

Solution
Comparing with the general second order PDE (3.3), we have

A=1, B=-2sinx, C=-cos’x,

D=0, E=-cosx, F=0, G=0

The discriminant B> —4AC = 4(sin2 X + C0S° x) =4>0. Hence the given
PDE is hyperbolic. The relevant characteristic equations are

dy _B-+B’-4AC

=-sinx -1,
dx 2A
dy B++B?—4AC )
— = =1-sinXx.
dx 2A

On integration, we get
Yy =C0SX—X+C;, Y=COSX+X+C,.

Thus, we choose the characteristic lines as
&=X+Yy—-C0SX=C, 1n=-X+Yy—-COSX=C,.
In order to find the canonical equation, we compute
A=AL+BEE, +CE =0,
B=2A%n, +B(&m, +&m,)+2CEn,.
= 2(sinx +1)(sin x —1) — 4sin® x — 2cos’ x = —4.
C=0, D=0, E=0, F=0, G=0.
Thus, the required canonical equation is
u, =0.
Integrating with respect to £, we obtain
u77 = f (77)’
where f is arbitrary. Integrating once again with respect tor , we have
u=[fm)dn+g(d),
or
u=y(n)+9(S),
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where g(<&) is another arbitrary function. Returning to the old variables
X,y , the solution of the given PDE is
u(x,y) =w(y —x—cosx)+g(y+X—Ccosx).

Example 3.6
Reduce the Tricomi equation
U, +xu, =0, x=0
for all x,y to a canonical form.
Solution
The discriminant B> —4AC =—4x. Hence the given PDE is of mixed
type: hyperbolic for x <0 and elliptic forx>0.

Case |
In the half-plane x <0, the characteristic equations are

— 2_ — —
dy & _B-+B*-4AC _ 2!7:_\/3’

dx &, 2A
d_y__i_ B+\/BZ—4AC _\/;
dx 7, 2A '

Integration yields

y=2(X" +a,

2
y= _5(_)()3/2 +C;.
Therefore, the new coordinates are

:(x,y):gy—(ﬁ)%c,
n(x,y)=§y+<ﬁ)3=cz,

which are cubic parabolas. In order to find the canonical equation, we
compute

K:A§f+B§X§y+C§f=—%x+0+%x=0,

B=9x C=0, D=—7(X"=-E F=G-0.
Thus, the required canonical equation is
3 _ 3 .
9xu,, —Z(—x) Y, +Z(—x) Y20, =0,

or
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u,, = 1 (u,—u,).
6(S—-1n)
Case Il
In the half-plane x > 0, the characteristic equations are given by

Wik, Yo
dx dx
On integration, we have
3 . 3 .
Sy =2y =i nlxy) =Zy +i(X)’

Introducing the second transformation
+n /]
o=, —
2 p 21
we obtain

3
a=2y, B=-().
The corresponding normal or canonical form is
1
Uy, +Upg +3—uﬁ =0.

Example 3.7
Find the characteristics of the equation

a2
U, +2u,, +sin“(xu,, +u, =0,
when it is of hyperbolic type.
Solution

The discriminant B*—-4AC =4-4sin’x=4cos’x. Hence for all
X#(2n—=1)x /2, the given PDE is of hyperbolic type. The characteristic

equations are
dy _ BF+/B*-4AC
dx 2A
On integration, we get
y=X-sinx+c, Y=X+SIinX+c,.
Thus, the characteristic equations are
E=y—-Xx+sinx, np=y-—-x-sinx.

=1F COSX.

Example 3.8

Reduce the following equation to a canonical form and hence solve it:
YU, + (X+ y)u,, +xu, =0.

Solution

The discriminant B®—4AC =(x+Yy)* —4xy =(x—Yy)*>0. Hence the

given PDE is hyperbolic everywhere except along the line y =x ; where-
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as on the liney =x, it is parabolic. When y = x, the characteristic equa-
tions are

dy _BFVB’-4AC _(x+Y)F(X-Y)
A .

dx 2 2y
Therefore,
dy_, dy_x
dx — dx vy’

On integration, we obtain
y=X+¢, Yy’=X+C,.
Hence, the characteristic equations are
§=y-%x, n=y -x".
These are straight lines and rectangular hyperbolas. The canonical form
can be obtained by computing
A=AL+BEE, +CE =y —x—y+x=0, B=-2(x—-y)%,
C=0, D=0, E=2(x-y), F=G=0.
Thus, the canonical equation for the given PDE is
—2(x—Yy)*u,, +2(x—y)u, =0,
or
—2&%,, +2(=&)u, =0,

of( .0u
Su,, +U, —%Léa] =0.

or

Integration yields
ou
—=f(n).
¢ o ()
Again integrating with respect to 77, we obtain

u=J o+ o)

Hence,
1
u T f(y?=x*)d(y*=x*)+g(y-x),
Is the general solution.
Example 3.9

Classify and transform the following equation to a canonical form:
sin”(X)u,, +sin(2x)u,, +cos*(x)u,, = X.

Solution
The discriminant of the given PDE is
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B® —4AC =sin®2x —4sin®xcos’ x =0.
Hence, the given equation is of parabolic type. The characteristic equa-
tion is
dy = B =Cot X.
dx 2A

Integration gives
y=Insinx+c,.

Hence, the characteristic equations are:

E=y—Insinx, n=y,
n is chosen in such a way that the Jacobian of the transformation is non-
zero. Now the canonical form can be obtained by computing

A=0, B=0, C=cos’x, D=1,

E=0, F=0, G=x.

Hence, the canonical equation is
cos*(X)u,, +U, =X,

or
[1—e2"7‘5)]um7 :sin‘l(e’“‘)—ugy.
Example 3.10
Show that the equation
u +2—Nu :iu
XX X X az tt?

where N and a are constants, is hyperbolic and obtain its canonical
form.

Solution

Comparing with the general PDE (3.3) and replacing y by t, we

have A=1,B=0,C=-1/a>,D=2N/x and E=F =G =0. The discri-

minant B> —4AC =4/a*>0 . Hence, the given PDE is hyperbolic. The
characteristic equations are

dt _ BF+B*-4AC :$\/4/a2
2

dx 2A

1
=F—.
a
Therefore,
a¢__1 d_1
dx a dx a
On integration, we get

X X
t=——+¢, t=—+c¢,.
a a

Hence, the characteristic equations are
E=x+at, np=x-—at.
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The canonical form can be obtained by computing
A= AL +BEE +CE =0,
B =2A%n, +B(&, +&m, ) +2CEm, =4,

C-0, D-D¢+Ec=2N E_pp +En-2N
X X

Thus, the canonical equation for the given PDE is

4u,, +ﬂ(u§ +un):0.

X
Expressing x interms of & and 7, the required canonical equation is
u., + §+77(u§ +u,7)=0.

Example 3.11

Transform the following differential equation to a canonical form:
U, +2u, +4u, +2u, +3u, =0.

Solution

The discriminant B> —4AC =-12 <0. Hence, the given PDE is elliptic.
The characteristic equations are

dy B-+B*-4AC .
— = A :+1—|\/§,

dx

dy B++/B2—4AC .
o n =+1+i+/3.
X

Integration of these equations yields
y=+1-iv3)x+¢, y=+1+iv3)x+c,.
Hence, we may take the characteristic equations in the form
E=y-@L-iV3)x, n=y-(L+iV3)x.
In order to avoid calculations with complex variables, we introduce the
second transformation

_¢+n &7
a== PE

Therefore,
a=y-X, f= J3x.

The canonical form can now be obtained by computing
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A=Aa’ + Ba,a, +Ca§ =3,

B=2Aa,B, +B(a,B,+a,p,)+2Ca,p, =0,
C=AB:+BBS, +CH2=3,

D=Ax, + Ba,, +Ca, +Da, + Ea, =1,

E=AB, +Bp,+CpB,+Dp +Ep, =23,
F=0, G=0.
Thus the required canonical form is
3u,, +3u[,ﬂ +U, +2\/§uﬁ =0,
or

Uy, +Upgp :—%(ua + 2\/§uﬂ).
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CHAPTER FOUR
ELLIPTIC DIFFERENTIAL EQUATIONS
4.1 Introduction
In Chapter 3, we have seen the classification of second order par-
tial differential equation into elliptic, parabolic and hyperbolic types. In
this chapter we shall consider various properties and techniques for solv-
ing Laplace and Poisson equations which are elliptic in nature.

Various physical phenomena are governed by the well-known La-
place and Poisson equations. A few of them, frequently encountered in
applications are: steady heat conduction, seepage through porous media,
irrotational flow of an ideal fluid, distribution of electrical and magnetic
potential, torsion of prismatic shaft, bending of prismatic beams, distribu-
tion of gravitational potential, etc.

4.2 Boundary Value Problems (BVPs)

The function u, satisfying the Laplace and Poisson equations in a
bounded region R in R?, should also satisfy certain boundary conditions
on the boundary JR of this region. Such problems are referred to as
boundary value problems (BVPs) for Laplace and Poisson equations. We
shall denote the set of all boundary points of R by JR . By the closure of
R, we mean the set of all interior points of R together with its boundary
points and is denoted by R . Symbolically, R=R UdR.

If a function f eC ™, then all its derivatives of order n are contin-

uous. If f eC©@ then we mean f is continuous.

There are mainly three types of boundary value problems for La-
place equation. If f €C© and is specified on the boundary dR of some
finite region R, the problem of determining a function u(x,y,z) such

that V?u=0 within R and satisfying u=f on &R is called the bound-

ary value problem of first kind, or interior Dirichlet problem. For ex-
ample, finding the steady state temperature within the region R when no
heat sources or sinks are present and when the temperature is prescribed
on the boundary JR, is a Dirichlet problem. Another example would be
to find the potential inside the region R when the potential is specified
on the boundary JR . These two examples correspond to the interior Di-

richlet problem. Similarly, if f eC© and is prescribed on the boundary
OR of a finite simply connected region R, determining a function
u(x,y,z) which satisfies V?u=0 outside R and is such that u=f on

JR , is called an exterior Dirichlet problem. For example, determination
of the distribution of the potential outside a body whose surface potential
Is prescribed, is an exterior Dirichlet problem. The second type of BVP is
associated with von Neumann. The problem is to determine the function
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u(x,y,z) so that V?u=0 within R while g—u: g atevery point of oR ,
n

where Z—U denotes the normal derivative of the field variable u(x,y,z).
n

This problem is called the Neumann problem. If u(x,y,z) is the temper-

ature, g_u Is the heat flux representing the amount of heat crossing per
n

unit volume per unit time along the normal direction, which is zero when
insulated. The third type of BVP is concerned with the determination of

the function u(x,y,z) such that V’u=0 within R, while a boundary

condition of the form Z—u+hu: f, where h>0 is specified at every
n

point of JR . This is called a mixed BVP or Churchill’s problem. If we
assume Newton’s law of cooling, the heat lost ishu , where u is the tem-
perature difference from the surrounding medium and h>0 is a constant
depending on the medium. The heat f supplied at a point of the bounda-
ry is partly conducted into the medium and partly lost by radiation to the
surroundings. Equating these amounts, we get the third boundary condi-
tion.
4.3 Interior Dirichlet Problem for A Circle
The Dirichlet problem for the circle is defined as follows:
PDE:V?u =0, 0<r<a, 0<0<2r
BC:u(a,f)=1(0), 0<0<2x
where f(8) is a continuous function on JR. The task is to find the value
of u an point in the interior of the circle R in terms of its values on JR

such that u is single valued and continuous on R.

In view of circular geometry, it is natural to choose polar coordi-
nates to solve this problem and then use the variables separable method.
The requirement of single-valuedness of u in R implies the periodicity
condition, i.e.,

4.1

u(r,@+2x)=u(r,d), 0<r<a
where V2u =0 in polar coordinates can be written as

1 1
Viu=u, +=>u, +=u, =0.

r r
If u(r,8)=R(r)H(O) , the above equation reduces to
R"H +1R’H +i2RH”:O.
r r

This equation can be rewritten as
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r'R"+rR" _ H” K
R H
which means that a function of r is equal to a function of & and, there-
fore, each must be equal to a constant k (a separation constant).

Case |
Let k = A%. Then

r’R"+rR' - A*°R =0,

which is a Euler type of equation and can be solved by setting r =e’. Its
solution is

R=ce”+ce ™ =cri+c,r,
Also,

H"+A*H =0,
whose solution is
H =c,cosi6 +c,sin 6.
Therefore,
u(r,0)=(cr* +c,r*)(c,cos A0 +c,sin160).  (4.2)
Case Il
Let k =—A%. Then
r’R"+rR'+ A*R=0, H"-A*H =0.

Their respective solutions are

R=c,cos(4Inr)+c,sin(AInr),

10 -0
H=ce" +ce™.

Thus
u(r,8) =[c,cos(AInr) +c,sin(AIn r)](cge” + c4e‘”). (4.3)

Case Il
Let k =0. Then we have

rR"+R’'=0.
Setting R'(r) =V (r), we obtain

rd—V+V =0, ie, d—V+£:O.
dr V. r

Integrating, we get InVr =Inc,. Therefore,

v_a_ R

r dr

On integration,

R=c/Inr+c,.
Also,

H"=0.

After integrating twice, we get
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H=c0+c,.
Thus,
u(r,0)=(c,Inr +c,)(c,0+c,). (4.4)

Now, for the interior problem, r =0 is a point in the domain R and since
Inr is not defined at r =0 , the solutions (4.3) and (4.4) are not accepta-
ble. Thus the required solution is obtained from Eq. (4.2). The periodicity
condition in @ implies

C,C0S A0 +c,sin 16 =c,cos(A(0 + 2x)) + ¢, sin(A(0 + 27x)),
I.e.

C,[cos A0 —coS(A0 + 2Ax)]+c,[SINA6 —sin(A6 +2Ax)] =0,
or

2sin Az [c,sin(A0 + Ax) —c,cos(A0 + Ax)]=0.

Implying sinAz =0, Az=nz, A=n(n=0,12,...). Using the principle of
superposition and renaming the constants, the acceptable general solution
can be written as

u(r,0) = i(cnr” +d,r")(a, cosnd +h,sinng).
n=0

At r =0, the solution should be finite, which requires d_, =0. Thus the
appropriate solution assumes the form

u(r,0) = Z( j A, cosnd + B, sinng).
Forn=0, let the constant A, be A, /2 . Then the solution is
u(r,0) = i+Z( j (A, cosné + B, sinng), (4.5)

which is a full-range Fourier series. Now we have to determine A, and
B, sothatthe BC : u(a,d)= f(0) is satisfied, i.e.,

f(0)= AO+Z (A, cosnd + B, sinng).

Hence,

A1:1j2”f(9)cosn6?d0, n=0,123,...
T 0

1 oo (4.6)
an—j f (0)sinnodo, n=1,2,3,...

T 0

In Egs. (4.6) we replace the dummy variable 8 by ¢ to distinguish this

variable from the current variable & in Eq. (4.5). Substituting Eq. (4.6)
into Eq. (4.5), we obtain the relation
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uro) = [ F@)dg+ > {(gj S [ cos(ng) f (¢)dg

n=1

+(£jn sir;[ne IOZHSin(n¢) f (¢)d¢:|

a
Interchanging the order of summation and integration, we get

u(r, 0) =% [ (¢)d¢+% [ (¢)i(£)n{cos ngcosnd +sin ngsinndldg

:%LZ” f (¢){1+ Zi(gj cosn(¢—6’)}d¢. (4.7)

To obtain an alternative expression for u(r,8) in closed integral form, we

can proceed as follows:
Since

1+ 22(2) cosn(¢—0) = Z(éj (g0 4 g-in(4-0)),
n=1 n=1

-1+ zpn eln(¢—9) + an e—m(¢—9)’ (,0 — g)
n=1 n=1

i(¢-0) —i(¢-0)

pe pe
1- pe@0 " 1_ e i0)

since r<a, (r/a)=p<1 and | ”|<1. So, we have

=1+

0 l_p2
1+2 "cosn(g—6) = .
HZ:;P =0 = T oost—0) + o7

Thus, the required solution takes the form
. a’-r?)f
OO T B 0 LLC R
27% &’ —2arcos(¢—0)+r° ]
This is known as Poisson's integral formula for a circle, which gives a
unique solution for the Dirichlet problem. The solution (4.8) can be inter-

preted physically in many ways: It can be thought of as finding the poten-
tial u(r,0) as a weighted average of the boundary potentials f (¢)

weighted by the Poisson kernel P, given by
a’—r?
|a® —2arcos(¢-0)+r° |
It can also be thought of as a steady temperature distribution u(r,6) ina

circular disc, when the temperature u on its boundary JR is given by
u= f(¢) which is independent of time.

(4.8)
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4.4 Exterior Dirichlet Problem for A Circle
The exterior Dirichlet problem is described by

PDE:Vu=0, a<r<wo

(4.9)
BC:u(a,8) = f(0),

u must be bounded as r — .
By the method of separation of variables, the general solution (4.2) of

V?u =0 in polar coordinates can be written as
u(r,0)=>"(c,r" +d,r")(a,cosnd +b,sinng).
n=0

Now as r —oo , we require u to be bounded, and, therefore, ¢, =0. Af-
ter adjusting the constants, the general solution now reads

u(r,0) = ir‘”(A] cosné + B, sinnd).
n=0

With no loss of generality, it can also be written as

n

U(r,e)Z%-i-i(gj_ (A, cosnd + B, sinng). (4.10)
Using the BC:u(a,f) = f(H)n,_lwe obtain
f (0) :%ﬁ-i(ph cosnd + B, sinnd).
This is a full-range Fourier serirg; in f (@) , where

A :ljohf(e)cosnede, n=0,1223,...

’1’ y (4.11)
an—j f(0)sinnodo, n=1,2,3,...

T 0

In Eq. (4.11) we replace the dummy variable & by ¢ so as to distinguish
it from the current variable 4. We then introduce the changed variable
into solution (4.10) which becomes

u(r,0) =%j§” f (¢)d¢+i{

n

r'"a
T

COoS né?joh cos(ng) f (¢)dg

+

" Ginng [sin(ng) 1 (¢)d¢},
T 0

or

u(r, o) =i joz” f(4) {1+ 25:(%) cos n(¢5—49)}d¢. (4.12)
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Thus the quantity in the square brackets on the right-hand side of Eq.
(4.12) becomes

© 2
n p -1
1+2 cosn(¢g—0) = :
;'D (#=0) p° —2pcos(¢—6)+1
Therefore, the solution of the exterior Dirichlet problem reduces to that of
an integral equation of the form

1 (rF-a%)f(9)

2799 r?—2arcos(¢—6)+a’

u(r,) = dg.

Example 2.4

Find the steady state temperature distribution in a semi-circular plate of
radius a, insulated on both the faces with its curved boundary kept at a
constant temperature U, and its bounding diameter kept at zero tempera-

ture as described in Fig. 4.1.
Ao=x2

= Uy

A

u=>0 0

I
1

Fig. 4.1 Semi-circular plate.

Solution
The governing heat flow equation is

u, =V
In the steady state, the temperature is independent of time; hence u, =0,

and the temperature satisfies the Laplace equation. The problem can now
be stated as follows: To solve

PDE: V?u(r,0) =u,_ +%ur +ri2u99 =0,

BCs:u(a,0)=U,, u(r,0)=0, u(r,7)=0.
The acceptable general solution is

u(r,0) = (cr’ +dr*)(Acos A6 + Bsin A6)
From the BC:u(r,0) =0 , we get A=0 ; however, the BC:u(r,z)=0
also gives

BsinAz(cr’ +dr™)=0

implying either B=0 or sinAz=0. B=0 gives a trivial solution. For a
non-trivial ~ solution, we must have sinAz=0, implying
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Az =nz, n=0,12,... meaning thereby A =n. Hence, the possible solu-
tion is
u(r,0) = Bsin n@(cr“rdr‘*). (4.13)

In Eq. (4.13), we observe that as r — 0 , the term r* — oo . But the solu-
tion should be finite at r=0, and so d =0. Then after adjusting the con-
stants, it follows from the superposition principle that,

u(r,@):ZBn(Lj sinné.

n=1 a

Finally, using the first BC:u(a,8) =U,, we get
u(a,6)=U,=> B,a"sinng,

n=1
which is a half-range Fourier sine series. Therefore,
4,
T , forn=13,...
B, = EJ. U,sinnfd@ =4 nrx
790
0, forn=2/4,...
Hence,
B-—  h_012,.
2n+)x

With these values of B, , the required solution is

. & 1 (r\™
u(r,0) =—2 — sin(2n +1)6.
(r.6) T n;;2n+1(aj ( )
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