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Statics Notes

Chapter 4

Friction

Introduction

If a body lies on the rough horizontal plane and is pushed by force, the plane (floor)
opposes the possible motion by providing a distributed reaction force. The component
of this reaction force parallel to the floor is the distributed friction force F., and the

component normal to the floor is the distributed normal force N. =R.

Friction is the contact resistance exerted by one body when the second body moves or
tends to move past the first body. Friction is a retarding force that always acts opposite
to the motion or to the tendency to move.

Types of Friction

Dry Friction

Dry friction, also called Coulomb friction, occurs when un-lubricated surfaces of two
solids are in contact and slide or tend to slide from each other. If lubricant separates
these two surfaces, the friction created is called lubricated friction. This section will
deal only with dry friction.

Fluid Friction

Fluid friction occurs when layers of two viscous fluids moves at different velocities.
The relative velocity between layers causes frictional forces between fluid elements,
thus, no fluid friction occurs when there is no relative velocity.

Skin friction
Skin friction also called friction drag is a component of the force resisting the motion of
a solid body through a fluid.

Internal Friction

Internal friction is associated with shear deformation of the solid materials subjected to
cyclical loading. As deformation undergo during loading, internal friction may
accompany this deformation.

Angle of Friction
Angle of friction is defined as the angle made by the resultant of frictional force and the
normal reaction with the normal reaction.
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From the Figure
R =R'cosA, uR=R'sinA — HR _R'sink — u=tanl

R R'cosA

Example:1 Determine the minimum force required to move a block on a rough
horizontal plane?

Solution
We draw free body diagram as shown
R
A
F g Fsinf — . Direction move
\
Fceosf
/
UR
Y
Tp‘
When the body is impending move, we get
SF=0 - R=W+Fsing (1)
>F,=0 — uR=Fcosp (2)
From Eq. (1) into Eq. (2), we have
uW +Fsing)=Fcosfp — uW =F(cosp—-usinf) - F= all _ (3) But
cosp—usinp
u=tan 2, then Eq. (3)
W sinA
3 HW 3 W tan A 3 cosA 3 WsinA
- cos/i’—,usinﬂ_ cosp—sinftan A - sind cosAcosf—singsini

cosp-sinf——
cosA




__Wsin2_ The value of F is minimum if the denominator is maximum. The
cos(A+ )

denominator is maximum, if cos(1+ ) =1.
So the minimum force required to move block on a rough horizontal plane is
Frin =WsinA

Example:2 Determining the minimum force required to move a block upward on a
rough inclined plane ?

Solution
We draw free body diagram as shown

Impending move

When the body is impending move, we get

YF=0 - R =W cosa +Fsing (1)
> F,=0 — Fcosf=uR+Wsing (2)
From Eg. (1) into Eq. (2), we have

F cosf = u(W cosa + F sin 8)+W sina

F (cosfp— u sin )= uW cosa +Wsina - F =W cosa+Wsina

: 3)
cosp—using
But x=tan 1, then Eq. (3)
. W cosa sinA +Wsina . .
r_ Wcosa tan A +Wsina _ CosA _ W(cosa sinA+sinacosi)
cosp— sinftan A cos 3 — sinﬁsmi COSfCcoSA+—singsinA
CcoS

_Wsin(@+4) 1he value of F is minimum if the denominator is maximum. The
cos(fB+ A1)

denominator is maximum, if cos(8+A4) =1.

So the minimum force required to move block on a rough horizontal plane is
Frin =Wsin(a + 1)




Example:3 A uniform ladder hasa 800 N and length 7 m rests on a horizontal

ground and leans against a smooth vertical wall. The angle made by ladder with
the horizontal is 60°. When a man of weight 600 N stands on the ladder 4 m from
the top of the ladder, the ladder is at the point of slipping. Determine the

coefficient of friction between the ladder and floor?

Solution
We draw free body diagram as shown and apply equilibrium conditions

Motion impending:

YF,=0 — R, = 600+800=1400 1)
R, =44R, =1400y YFR=0 - (2)
Z M.=0 — R (AB)— R (CA)—600(A"E'= AE)-800(A'D’ = AD) =0
R, (AB) — 24 R, (CA) —600(AB — EB) —-800(AB — DB) =0 (3)
- \\
\
\
c R, o Tm
%m
D}
A
A"
AC =T7sm607.
4B =Tcos60° DB|=35 cos 60°
EB =3 cos60° (;:0 .
A o & B~ ~
8003\!' Hi R Motion impending
600N

R, (7 c0s60°) — s, R, (7 sin60°) —600(7 cos60° —3 cos60°) —
800(7 cos60° —3.5 c0s60°) =0
(1400) (7 cos60°) — (1400) 14, (7 sin60°) —600(4 cos60°) —800(3.5 c0s60°) =0
(1400) (7) — (1400) 14 (7 tan60°) —600(4) —800(3.5) =0
_ (1400)(7)-600(4) —800(3.5) _9200-2400-2800 4000
= (1400) (7 tan 60°) © (9200)(1.732) 15934987
Other Solution > M, =0 — R,(CA)—-800(DB)—-600(EB) =0
140024, (7) (sin 60°) —800(3.5) (cos 60°) —600(3) (cos 60°) = 0
1400(6.063) 4, —400(3.5) —300(3) =0 1400(6.063) 24, —800(3.5) (0.5) —600(3) (0.5) =0 —
23
)
14(6.063)

0.251

14(6.063) 1, —4(3.5)—3(3) =0 —> 14(6.063) 11, =14+9 —> 11, =




Example:4 A uniform ladder whose weight is 400 N and whose length is 5 m rests on a

horizontal ground and leans against a smooth (frictionless) vertical wall. If the
coefficient of friction between the ladder and floor is 0.46. What is the greatest distance
can be placed from the base of the wall without the ladder immediately slipping?

Solution
We draw free body diagram as shown and apply equilibrium conditions
Motion impending:
YF=0 —> R=uR (1)
dYF=0 (2

) AC x
sing=——, cos=—
2

HF" F=1; Ry Motion impending

From Egs. (1) and (2), we get

R
R, =W — M= 3)
> Mg=0 —R,(CA)-W(DB)=0
R, (5sina) -W (2.5cosa) =0
R, _ 2.5 cosa @
W 5 sina
Substitution from Eq. (4) into Eq. (3), we get
= 2'—5c0t05 - 0.46:2'—5i - 0.46:2'5 X

5 5 Ac 5 JE)?*-x

(0.46) (5)vV25—x> =2.5x — (25) (0.2116) (25— x*) =6.25%>
25— x*=1.1815x"> — 2.1815x* =25 — x’=11.46,then x=3.4 m




Exercises

Exercise:1 A uniform ladder whose weight is W and whose length is L rests on a
horizontal ground and leans against a smooth vertical wall. If the coefficient of
friction between the ladder and floor is 0.46. What is the greatest distance can be
placed from the base of the wall without the ladder immediately slipping?
Exercise:2 A ladder 6 m long has a mass of 18 kg and its center of gravity is 2.4 m
from the bottom. The ladder is placed against a vertical wall so that it makes an
angle of 60° with the ground. How far up the ladder can a 72-kg man climb before
the ladder is on the verge of slipping? The angle of friction at all contact surfaces is

15°

Exercise:3 The 180-1b man climbs up the ladder and stops at the position shown
after he senses that the ladder is on the verge of slipping. Determine the inclination of
the ladder if the coefficient of static friction between the friction pad A and the
ground is .Assume the wall at B is smooth. The center of gravity for the man is at G.

Neglect the weight of the ladder.

Exercise:4 The uniform 20-1b ladder rests on the rough floor or which the coefficient
of static friction is and against the smooth wall at B. Determine the horizontal force P

the man must exert on the ladder in order to cause it to move.




Slipping and Tipping

Imagine a box sitting on a rough surface as shown in the figure below. Now imagine
that we start pushing on the side of the box. Initially the friction force will resist the
pushing force and box will sit still. As we increase the force pushing the box however,
one of two things will occur.

The pushing force will exceed the maximum static friction force and the box will begin
to slide across the surface (slipping).

Or, the pushing force and the friction force will create a strong enough couple that the
box will rotate and fall on it's side (tipping).

Fy Fn

When we look at cases where either slipping or tipping may occur, we are usually
interested in finding which of the two options will occur first. To determine this, we
usually determine both the pushing force necessary to make the body slide and the
pushing force necessary to make the body tip over. Whichever option requires less force
is the option that will occur first.

Determining the Force Required to Make an Object "Slip":

A body will slide across a surface if the pushing force exceeds the maximum static
friction force that can exist between the two surfaces in contact. As is all dry friction
problems, this limit to the friction force is equal to the static coefficient of friction times
the normal force between the body. If the pushing force exceeds this value then the
body will slip.

Fpush e Frmax) = Hs * F

- |

F'push = Ff(max)
P Then the box will
begin to slide




Determining the Force Required to Make an Object "Tip":

The normal forces supporting bodies are distributed forces. These forces will not only
prevent the body from accelerating into the ground due to gravitational forces, but they
can also redistribute themselves to prevent a body rotating when forces cause a moment
to act on the body. This redistribution will result in the equivalent point load for the
normal force shifting to one side or the other. A body will tip over when the normal
force can no longer redistribute itself to any further to resist the moment exerted by
other forces (such as the pushing force and the friction force).

A I B I C
I-'E F]JI.:IS['. I-'S 1"'1}'.15'.1 FE
F'F P FF -
—_— || l

| Mg/n = Fy + %
l"”l,_,, lFr. Mpushff = Fpush +
= If
E Mpus]ljf = Mg;’.\'
. L F ) Then the box will
| ! 1 begin to tip over

Fy

The easiest way to think about the shifting normal force and tipping is to imagine the
equivalent point load of the distributed normal force. As we push or pull on the body,
the normal force will shift to the left or right. This normal force and the gravitational
force create a couple that exerts a moment. This moment will be countering the moment
exerted by the couple formed by the pushing force and the friction force.

Because the normal force is the direct result of physical contact, we cannot shift the
normal force beyond the surfaces in contact (aka the edge of the box). If countering the
moment exerted by the pushing force and the friction force requires shifting the normal

10




force beyond the edge of the box, then the normal force and the gravity force will not be
able to counter the moment and as a result the box will begin to rotate (aka tip over).

Example:1:

The box shown below is pushed as shown. If we keeping increasing the pushing force,
will the box first begin to Slipping or will it Tipping over?

F]:l-ush

am

Solution

We draw free body diagram as shown and apply equilibrium conditions
Slipping Case

Slipping case

FMh :F.S‘hp =

3m

/F,

R=588N

FPush = I:SIip = FF :ILI R = (0'66) (588)_) I:Push = FSIip :364.56 N (1)
Tipping Case

The moment at pint A

Fosn () =(BBYS) = Foy =Fry =2 ~204.56N )

11




From Eqgs. (1) and (2), we note that F, =294.56N < F,,, =364.56N .
So the box will tipping first.

Tipping case

F

push = FT!'p -.'_‘

3m

AV avaeys

W =588N R=3588N

Check x:> M, =0 — 364.56(3)-588(x)=0 — x=1.86>1.5
Not Slipping

Example: 2. What is the maximum value of d that will allow the box to slipping
along the surface before tipping over?

Fpush

am '_[5 = 62

Im

Solution
We draw free body diagram (FBD) as shown and apply equilibrium conditions
Slipping Case Fo, = Fgip = Fr =R =(0.66) (588) >  Fy,, =364.56N (1)

lip

12




R =588N

Slipping case

Fousn =1

Slip

S S S FARS S S

W =60(9.81) =588 N

Tipping Case

Tipping case

Fpush :FTi'p -l—

S S S

W =588 N R =388N

588(1.5) 882
P (€) =(B88)0.5) > Fogy=Fry = o) <252 @

The box slipping along the surface before tipping over, if Fgi, < Fr, .

From Egs. (1) and (2), we find that

364 < % - d 882 d<%:2.423m.

<— >
364 364
So the box will Slipping first if d=2.42m,

13




Example3: The refrigerator has a weight of 180ib and rests on a tile floor for
which x=0.25.Also, the man has a weight of of coefficient the and 1501b
static friction between the floor and his shoes is . =0.6. If he pushes
horizontally on the refrigerator, determine if he can move it. If so, does the
refrigerator slipping or tipping?

C)‘ I
Man Push (P)

!

Af

Solution

We consider the man can able to move the refrigerator (slipping or tipping case) and we
study the case of refrigerator and man everyone alone

The case of refrigerator

(a) The slipping case

3fi

FP y =P L
| l_ 15 fi
4 fi
W =1801b A
3 i
-—
F.=1,R, X 1 A

Assuming that the refrigerator is on the verge of slipping, so

YF =0 — R =W=180lb 1)

14




YF=0 -

I:Push - I:Slipping = I:F :/ur Rr = (0'25) (180)_) I:Push - I:Slipping :45 Ib (2)
(b) The tipping case
3t
I [ ]
Fowsn :Pﬁp
IR
an W =1801b
3/t
A
R
Assuming that the refrigerator is on the verge of tipping, so
YF =0 - R =W=180lb (3)
> M, =0 - P(4)-180(1.5)=0 — P, =P, =67.5 (4)

From Egs. (2) and (4), we note that Fejipping =49 < Fripping =67+9.
So the refrigerator does not tipping, but it slipping .
Check x: > M, =0 — 45(4)-180(x)=0 — x=1 ft<1.5

Since x<1.5. Again this confirms that the refrigerator does not tipping, but it slipping.

Therefore, the correct assumption is that, the refrigerator slipping.
So Fo, =F =451b

Slipping

The case of man

P =451D

o= |
e =i R

man Soman™ "man

R W =1501D

15




ZFV -0 - Rman =W =1501b (3)

YF=0 —> F,=451Ib 4)
BUt (Fman )max = (Fman)friction :luman Rman = (0'6) (150) = 90 Ib (5)
Since (Foan ) igion =90 > Fran =45, s0 the man does not slip. Thus the man is capable of

moving refrigerator.

Example:4 A regular square plane rest with one of its sides on a rough inclined
plane of inclination %. A gradually increased force acts upwards at higher point of the

plate. Prove that the plate will tipping before slipping if the coefficient of friction is

3-43
reater than :
g 7++/3
Solution
We draw free body diagram (FBD) as shown and apply equilibrium conditions
F cos30°
309

W sin 30°

W cos30°

w

Slipping Case

0 a0 . V3 1
> F, =0 - Fg;,c0830° = uR++Wsin30° — > S,ip:,uR++§W (1)
> F, =0 - R=F,sin30° +W cos30° — R:%Fs”p+§w (2)

From Eq. (2) into Eq. (2)

16




ﬁanp:ﬂ{lFslip—"ﬁW}"'%W - \/§F - %3 =

—Fy. ——=uF,, =—W u+=W

2 2 2 2 Slip 2/'1 Slip 2 ,Ll 2
\/§+1

<\/§_ﬂ)anp:<ﬂ\/§+l)W - FSIip:[/j/_— W (3)
3-u

Tipping Case
2a 30 F
/ Fsin 30°

7 sin 30¢

W cos30°

w

> F,=0 - R=F,sin30° +W c0s30° - R=ZF ﬁw

tip 2 tip
The moment at pint A
> M, =0 — Wsin30°(a)+W cos30°(a) = F;;, c0s30°(2a)

%w (a)+§(a)w _ Fﬂpg(za) S L+3)w=2J3F,

1+ \/—
2\/_ ®)

The plate tipping over before slipping if . F <Fg,, then

I:Tip

1;‘//_— [i‘/‘_/_;ljw S (V3= )3 )< 243 (uv3 +1)

— 343—u—Bu<bu+243 > J3+3-\3u<7u+23

- 3—\/§<(7+\/§),u - $+\/\/:

(4)

17




Problem: The drum has a weight of 1001b and rests on the floor for which the

coefficient of static friction is z, = 0.5 as shown in Figure. If a=3 ft and b=4 ft

determine the smallest magnitude of the force P that will cause impending motion of

the Drum?

18




Chapter 5
Center of Gravity, Center of Mass and Centroids
Introduction

Center of Gravity. A body is composed of an infinite number of particles of differential
size, and so if the body is located within a gravitational field, then each of these
particles will have a weightdw , Fig. 1(a). These weights will form an approximately
parallel force system, and the resultant of this system is the total weight of the body,

which passes through a single point called the center of gravity, G, Fig. 1(b).

(a) (b) (c)

It well known that, the weight of the body is the sum of the weights of all of its
particles, that is

F.=> F, Or W = [ dw

The location of the center of gravity, measured from the y axis, is determined by
equating the moment of w about the y axis, Fig.1(b), to the sum of the moments of the
weights of the particles about this same axis. If dw is located at point (x, y, z), Fig.1(a)
, then

(Mp), =DM,  Or XW = [ xdw

Similarly, if moments are summed about the y axis,
(My), =DM, Or ywzjydw

Also:

(Mg), =DM, Or ZW = [zdw

Therefore, the location of the center of gravity G with respect to the x, y, z axes
becomes

19




X dW ydw Zdw
J J J
 E— y=—, ZI=— .

[ dw [ dw [ dw

X, ¥, Z are the coordinates of each particle in the body .
X, ¥, Z are the coordinates of the center of gravity G.

The Center of mass

In order to study the dynamic response or accelerated motion of a body, it becomes
important to locate the body’s center of mass (Cm) .

This location can be determined by substituting dw = gdm . Since g is constant, it

cancels out, and so
JX dm jydm _[de

X:E1 jdm J’dm.

dm S

AN
-
AN

=z

X

Definition: The Center of gravity

The Center of gravity, that point in a body (or system) around which its mass or weight
is evenly distributed (or balanced) and through which the force of gravity acts

The definition of center of gravity is the place in a system or body where the weight is
evenly dispersed and all sides are in balance.

Center of Gravity: point locates the resultant weight

Centroid:

20




point defines the geometric center
If the material composing a body is uniform or homogeneous, the density or specific

weight will be constant throughout the body, then the centroid is the same as the center
of gravity or center of mass.

Line Centroid:

The coordinates of the Centroid of Line given by

]

~1
e
t\

deL jydL

)—(:L , y:L
Jd fdu
L L

Area Centroid

The coordinates of the Centroid of Area given by

0

Area centroid

21




Volume Centroid:

The coordinates of the Centroid of Volume of a body with volume Vv are given by

jde jydv _[de
X=r—, y=r—o-, 7="

jdv jdv jdv

\ \ \Y
Remark:

For a homogeneous body ( o =const), the center of mass and the centroid
of the volume coincide.
Examples

Example 1: Determine the Center of Mass of a thin uniform Rod?

Solution

Let AB =L be the length of a uniform rod or a uniform strip with its middle pointG. The
mass per unit length of this rod or strip is uniform at all points. For any elemental
mass (dm) at any point located at distance (x) from the end (beginning) of Rod as shown

in Figure.

4 —x—a G B

22




The Centre of Mass of a thin uniform Rod is given by

J'Y(dm
)_(:—1
Idm
where dm=pdx,
Then
L L L L 1 1
v 2
)_(z'([x dm_!x,odx '([xdx X ozz(Lz_O)zz Z_EL
L L L L
_[dm Ipdx Idx X|0 L-0 L2
0 0 0
1 _ _
Then X=§L, y =0, Z=0.

Example:2 Determine the center of mass for Rod of non-uniform density, where

the density varies from one end to the other?

Solution

Let AB =L be the length of a uniform rod or a uniform strip with its middle pointG. The
mass per unit length of this rod or strip is uniform at all points. For any elemental

mass (dm) at any point located at distance (x) from the end (beginning) of Rod as shown
in Figure.

Al
I
SN

[
ol
~

.

)

1
L

The Centre of Mass of a thin uniform Rod is given by

If the density varies as a function of distance from end (beginning) of the Rod p=1x
anddm=pdx — dm=Axdx then

23




L L L
jx dm Ix(ﬂx)dx Ixz dx Ly
0 _ 0 2

__O _
X =2 =

L L -
_[dm jixdx jxdx 1x2
0 0 2

o

Example 3: Determine the center of mass of a uniform square Plate (one of the
Uniform (regular- symmetric) Shapes) ?

Solution
Y
Square plate
| “’""m A=a®, di=drdy
a 1 : ¥=x, j=y

1

L =X

I-_"II' -

We consider the square Plate as in upper Figure and we select an small strip at distance
y from the y-axis, and it has dx length and dy wide.

Where the shape is homogenous (uniform), then Centre of Mass maybe given by

deA jydA
A TTa
2 a
X dA a pa X}
Then >—<=IX jj d dy:{z O[ytzl 3:1a
A a’ a’ 2a> 2

24




Also

_ v
Jyan [ ]y dxdy [Xt{z} 12 1
i - = =52
A a a 2a 2

y:

Then (x,7)=(2, 2
(X,y) (2 2)
Exercise: : Determine the Centre of Mass of a uniform Rectangular Plate?

Example 4: Determine the Center of Gravity of a uniform (is uniform thickness and
constant density) right Triangular Plate ?

Solution

We consider the right Triangular Plate as in Figure and we select an small element at
any point located at distance (x, y) from the x-axis and y —axis, respectively.

Right-Tringale

41(0,7) X=X _ y-W N x—a y-0
X=X VTN O-a h-0

Ly = f.r(l—i) or x=a(l —l)
a I

Y P
(0.0) 0 & (@.0)
The Centre of Mass is given by

IX dm J.ydm
y=——, z=0.

K=

Idm Idm

Note that, for the triangle §+ % -1

a(l H)
g = J;de _ thoa(l_ry]’x/)dxdy _ .[oh{le dy ) ; joh[az(l_z)z —O}dy
ERTE T T =
A

25




h
Ly Y 2y* y° 2h p’
2 M1-22+2 |d _EY LY _2h* b
y _2 2 h _2 hZ
I[ h}y {y Zh}o { 2h }
[h—h+h} h
g2 3)_a3_a
2 [, h] 2h 3
2 2
" Then

Similarly, we can prove that y=3
vy @ h
x9=G 3)

Example 5: Determine the center of mass of right Triangular Plate (uniform thickness
and constant density) as is in the below Figure ?

.‘1 :

)
Right-Triangle

o = X
¢
Solution
J;
i
(a.h)
Right-Triangy T
a—x —=
X t dv
I h
L
(0,0) 0 _ Ja,O)—'\

26




The Centre of Mass is givenby x= : y= :
[ dA [dA
A A
[x dA
Xy dx a a 2
X =4 Ll d = 11 J.xh(l—gjdx:iajo (X_ij dx
A
2 3\ 2 2 2
=£ X _x =£ a_& =2a (3—2)=za
al 2 3a), al 2 3 6a
Also,
[yaa ["Ly(yax)
y=~= =22 1 La ZdX:LJ‘: hzﬂl—é) dx
jdA 2 ah ah ah a

2 1
Then (x,y)=(=a, =h
(X,y) (3 a3 )
Example 6: Determine the Center of Mass of arc of Circular arc ?
Solution
We consider the Circular arc as in Figure and we select an small element at any point

located at distance (x, y) from the origin point or (r,8). From the figure one can see that,

the center of gravity will be point on x —axis. So the center of gravity will be given as

do

adf

L0 )
& Jxy=acosf

2/




J'X dL _[x (add) T(acose) ade Tcosede
X = = = —a—~ =
fdu  Jade [ade Td@

. (94
_singf, sina —sin(-a) _sina+sin(a) _2sina _sina
X=a =a =a =a =a

o, a-(-a) a+a 20t a
Then, the Center of Mass of a Circular arc isx = as‘iﬂ
a

Example 7: Determine the Center of Mass of a uniform Quarter-circular arc (Wire
segment as Quarter-circular) ?

Solution

We consider the uniform Quarter arc of circle (wire) as in Figure and we select an
small element at any point located at distance (x, y) from the origin point or (r,0). The

Center of Mass will be given as

(@]

/4

I)‘( dm jx(padé?) j'(acose) do
X = = =2 =a
J.dm jpadé’

do Td@
0

O v [ N

z . T .

sing |2 :as'”(g)‘s'”(o) 02
o

o %—(0) ;’ 4

X=a

Similarly,
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a

jydm jY(PadQ) j.(asine) ado

y:

m 1 B 1 1
—(2ra - -
4( 0) > >
coseg 7y _
. |0 ) cos(z) cos(0) 0.1 2
y=-a =-a =-a =—a
4 42 T
2 2 2

Then, the Center of Mass of a uniform Quarter arc of circle is(x, y) = (ga, ga)
T Vi

Exercise: Determine the center of Mass of a uniform semi-circular arc (uniform

Semicircle wire)? ................ The center of Mass of a uniform Semicircle wire is

e Exercis . Prove that? [0, z], where the integral will be in the interval (x, y) = (0, ia)
T

:Determine the center of gravity of a uniform circular arc?
Example 8: Determine the Center of Mass of a Circular sector?
Solution

We consider the uniform a Circular sector as in Figure and select an small element .

)
| e
Triangle
h‘\‘ P adf
a f \a"
=
il 1V
a3 -
‘) 0
e, ¥
oy :
\
—acosf
3

The Centroid of Area (Center of Mass) for this element will be given as
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2 1 1 % r
j)“( dA j—acose(—a(ade)) fajcose do Icosﬁde
3 2 3 4

_ 2a g
X = 1 = :? a
[ dA I(Ea(ade)) [do Lde
. o
)_(_Es'nm_a _2asing-sin(-a) _2asina+sin(a) _ 2a 2sina
3 9|f¥a 3 a—(—a) 3 a+a 3 2a
_ 2asina
X=—=——"
3 «

Then the Centroid of Area (Center of Mass) of a uniform Circular sector given by
gz v|-[2asina
(X’ yH o)

Example 9: Determine the Center of Mass of a Semicircle area?

Solution

We consider the uniform Semicircle area as in Figure and we select an small element at
any point

The Centroid of Area (Center of Mass) will give as

IXdA jydA
X =A , y=2

[ dA [da

A A

Form the Figure one can see that,,x =0
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2

a L@ a L
IydA j—(ydx) = Iyzdx J'(az—xz)dx a X—E
A a _ 23 _a

y: = = = — — -a
2 2
IdA A l(ﬂaz) ra ra
’ 2
, a , al 2a° 2a° 433
a—-— || -a’+— e —
o 3 3) 3 3) 3 ) 4a
y= ra’ B ra’ - za®  3x
Then (x, y)z(o, ﬂj
3

Example 10: Determine the Center of Mass of a Quarter Circle area?

Solution

We consider the uniform Quarter Circle area as in Figure and we select an small
element at any point

We known that, the Centroid of area (Center of Mass ) of a body with area A are given
by be given as

j)“(dA jydA
g — A ’ y=24
[ dA [da
" a Aa a a
J'ydA Ig(ydx) ;Jyz dx J‘(a2 —x%)dx Lazx—ij
goa 0 _20 0 °Jlo
IdA A l(ﬂ_az) ra ra

31




J_2 3)_ ,03) (3) 4

ra’ ra’ ra’ 3z
Similarly, we can prove that x = g_a
T
4a 4a
Then (X, y)=| —, —
(*.9) (3ﬂ' 3%)

Examplell:Determine the Center of Mass of a uniform Hollow hemisphere?

Solution

The Center of Mass is given by

ydm Zdm

J J

y=——, I=—.
_fdm jdm

IX dm
X=—-,
jdm

—= ad6

N

It is well-known that,

dm=2zx (add) p=2racosd (adb) p

T
3

y (2racosd (add) p) [y cosodo
0

O'—;N‘§

Iydm Iydm

y:

T
2
= I asin@ cos@déo
1 0

[am " (4ra’p)
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y=a| sing d(sind)=a

O'—.N‘Q
—
<2
5
N
)
N—"
N
Il
TN
Q.
5
NN
N~
N
|
VY
.,
>
o
N—"
N
[l
o}
—~
l_\
A ——
N
|
—
o
N—"
N
Il

Then a;y,a=(qg,m

Example 12: Determine the Center of Mass of a uniform Solid hemisphere?
Solution

.'.-—‘
S

dev jydv jZdv
X=Y y= v 7=V
fav [dv [dv
\ \ \
Due to the axisymmetric geometry, we find that
[xdv [zdv
X =Y = 7=V =0
[av [av
\ \

Also, we canput dvV=zx*dy and x=acosa, y=asina, dy=acosa da
Then

T

2
(7 x? dy) I(asina)(ﬂazcosza acosa da) Ia4cos3a sinada
y V

<
<(
o
<

<
=<

1.4 2 .
E(g”a) (ga)
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V4

3 2 3 2 cos’ a2
=—aI cos’ a d(—cosw):——aj'cos%g d(cosa)=-—a ——%
2 - 2 4
3 g . 3 { 4 4} 3 3
=—= =) - 0 =——as(0)"' -1 == =—a
8a{(COS(Z)) (COS()):} 4a.( ) - (@) g2 V=g

Then (x, v, z)=(0,§a, 0)

Example 13: Determine the Center of Mass of a solid and right circular cone of
height h and the base radius a?

Solution

It is clear that the Centroid of Volume (Center of Mass) is given by

[xdv [yadv [zdv

)—(:V , y:V ’ z:V )
[av fav [dv
\Y \Y \

We consider the circular cone as in Figure and we select an small element at any point
located at distance x from the origin point and its thickness is dx.

dx "Volu me

h h h h
- a 1
'[de J-X(ﬂ'yde) jx(ﬁx)zdx Ix3dx Zx4 l(h“—O) 3
)_(:V :0 :O :O = 0 :4 = —
h , h a , h ) 1 3h 1(h3_0) 4
Jdv !(;zy dx) !(hx)dx !xdx X 3
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3

Then, the center of gravity of a solid is x =" referenced from the origin point or

the center of gravity of a solid is x :%h referenced from the base .

Exercise: Determine the Center of Mass of a Hollow and right circular cone of height

h and the base radius a?

Example 14: Determine the Centroid of the area shown in below Figure ?

y

Solution

The centroid of area (Center of Mass) is given by

ij jydA

Where dA=y dx, X=X, y:%y.Then

IX dA }(x y dx ](x x? dx )j(xadx
X= =% =% =X = =%
IdA J'ydx Ixzdx J'xzdx
0 0 0

—'-| |-'— dx
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X1 X X X 1
ydA [Zvy ydx x? x?dx x* dx x*dx  =xS
- .[ .([Zyy 1.([ ]_-([ 12[ 15 |, 3.,
e SPREE I IPURR ST SR o
J'dA Iydx Ixzdx szdx J.xzdx =%
0 0 0 0 3 0
3.3 323
Then (%, ¥)=Cx, —x*)=(Cy?, —y?
(X, y)=(; 0 )=y 10y)

Example 15: Determine the Centroid of the area shown in below Figure ?

2m

Solution
We select the small strip as in below Figure

-

4 T 2m

d4 vdx A ) l
/ | l X

dx
~2m —
[xdA [yda
The centroid of area given by x=—, y=—
[ dA [ dA
Where dA=y dx, X=X, y:%y. Then
[% dA Tx v (x025x)ax [x'ax L
. =!)(xy le'zx 25X ngx X=5Xg=f(2)j=§=1_6m
_fdA _[ydx j(0.25x3)dx Ix3 dx 411)(4 5(2)
0 0 0 0
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3 X 1 2 2 2
y:jydAzg(iy)yclxzdfy)zclle{025x _ngxﬁd 025&81
2 2 2 7(2

d d 0.25 *d

jdA !y X '[y X '([ x) {x X

7
g_0254(2) 0254(2] 258 _252_ ..o,

2 7(2 171 1007 257

Example 16: Determine the Centroid of the area shown in below Figure?

\
|
I
—
I
o |—
-
[

== X
Solution
We select the small strip as in below Figure
jx dA jydA
The centroid of area givenby x=—, y=——
[ da [ da
Where dA=x dy, )“(=%x, y=y. Then
3
Y y =
) 8

dy

? - X Sm

A

~Am

3/




y 1 4 l 4 1 4 1
J.)? dA j( xj xdy J( Xj X( XZdXJ Jx“dx { XS} Z4°
)—(_ _02 _02 _10 _15 0_15
- - y - 4 54 5 47 5] il
3., 2 ¢ 5 211 211 4
dA xdy x( X dxj x*dx { x“} [ 4
T I I T PR
4
x=15-8 16m
21 5
4
X 8 1 g 4 (3 %_8
ydA xd y |2y |dy 3d Zy 7
e Do Dol bl [ g,
y: :X = 5 E :8 l == 1_827 —5278
jdA jxdy j(zwjdy jy3dy §y3 83
0 0 0 _4 1o
4 32
Vy=— (8)=—=4.5714
=2 ®)=3

Example 17: Determine the Centroid of the area shown in below Figure?

Solution
We select an small strip as in below Figure
}:
A
v=1- l x°
4
4
/ .
T
dy h
d4 =2xdy l
- X
- b L b -
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jx dA jydA
The centroid of area givenby x=——, y=——.
[ da [ da
Where dA=2xdy, Xx=x, y=y. Then
« b 1 b
J'y( dA jx (2x)dy J 2x° (_ZXde .|.x3dx
X = =L == -b

Jaa  [oxdy IbZX(—;xdxj ?

x|
Il
[
O
w

b*-b* 3 0
b 4 b _(b) 4 §=0 (Due to symmetry)

y = =0 =

X b b
Joa  Jaxay | x[—xdx} [ x* dx
0 b b

y b
i IVdA jy(2xdy I(l—X)X(—xdxj jb(xz—ix“)dx

b 2
1 b
(1x3—1x5j (1(b3+b3)—1(b5+b5)j (—
3 20 ), \3 20

3 20] 8o g 3,

Ly (l(b3+b3)J ) ﬁ Tt T
(3XL 3 3
Then (X, y):(o,l—isz
20

If b=2cm — (X, Y) =(o, 1—3(4)j (o 1—£j —(o, 20_12) =(o, i) =(o, 3).
20 20 20 20 5
Example 18: Determine the Centroid of the area shown in below Figure ?

v‘.
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Solution
We select an small strip as in below Figure

. Y
=

dv

- X
- 1om -
[x dA [yda
The centroid of area givenby x=—, y=——
[ da [ da

Where dA=x dy, Xz%x, y=y, x=y°. Then

4 4

X d 1) 2),,2 4 y
)_(_J'x A_-([(ZX xdy_l}[(y )y dy_lgy dy_150 ae
B - X 2 4 24 2 30 1048

dA x dy 24 24 ¥

J ! !y y !y v
c_316_24 , 4

10 1 5

y 4 4 y
Jyda Jyxdy [yy'dy [y'dy -
y= _0 _0 _ 0 =l

- X 4 4
Jaa  [xdy  [yray [ ydy y3
0 0 0

Then (X, y)=(4.8m,3m)

40




Chapter 6

Virtual Work
Work by Force

If we consider sU =work, F = Force that done the work, dr = displacement
F

The work define by sU = F.dr =Fdrcosd
What is Virtual Work?

Virtual Work (sU = 0) is imaginary work done when a particle subject to a number of

forces is move a small imaginary distance(du).

Virtual Work Utilization
Virtual Work

1- Utilize the principle of virtual work

2- To determine active forces that maintain the system in equilibrium,
3- To determine the equilibrium positions,

4-To relate the work done by conservative forces with potential energy.

Example:1 The ladder has a weight W and rests against the floor and a smooth vertical

wall. Using the principle of virtual work to determine the friction force acting on the

ladder at the point of contact between the ladder and floor?
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Solution

Draw free body diagram as shown Apply the principle of virtual work, where

W
A B,

——
The normal forces B, and C, do no work because they are perpendicular to the

displacement of point B and C. Thus B, and C, are not an active force.
The force w does work because the point D’ moves up, so W is an active force.
The force B, does work as point B moves to the lift, so B, is an active force.

The principle of virtual work says that the total work done by all forces acting on a
system in static equilibrium is zero for any possible virtual displacement..sU =0

W &y, +B,, =0 (1)
Form the Figure, we note that

L L .
Y. =Lcosd, vy, =yC—ECOSH=ECOSl9, X, =Lsinéd (2)
C /\1@ level of Measurement
5“1": 6
C S~ .
Ye =
dp 1
Yo
A B B'
The level of Measurement x,{ O:\‘A

From Figs. (1) and (2)
W 5(%c030) +B, o(Lsing)=0

—V% sin@o6+B, cosfod=0 - {—V?V sind+B, cose}w:o
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sin@
cosd

00+0. Then BX:VEV - BX:VEVtane.

Example:2 Use the principle of virtual work to determine the force P required to keep
the two rods in equilibrium when the angle =30° and weight w =301b. The rods are each
of length L and of negligible weight.

C

Solution
Draw free body diagram as shown
P N
C

.7 W

A D 1u=90 B
Motion impending
Apply the principle of virtual work, where
The normal force R, does no work because it is perpendicular to the displacement of

point A. Thus R, is not an active force.

The forces R, and R, do no work because the point B does not move. Thus R, and R,
are not an active force.

The force wdoes work because the point C moves up, so W s an active force.

The principle of virtual work says that the total work done by all forces acting on a
system in static equilibrium is zero for any possible virtual displacement.. U =0

W 5(DC) + PS(AB) =0 (1)
From the Figure as shown
AB=2Lcosf, DC=Lsing, (2)

From Eqgs. (1) and (2)
W S(Lsin®) +Ps5(2Lcosd) =0

W cos@ 66—2P sin@ 66=0 - {W cos@ —2P sin@ }50:0

W cos@ —2P sind =0, 00+%0,
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P:V—v C(_)—SH - P= W cotd
2 sin@ 2
Then, P = V?V cot30° =5?0 (1.732) — P=43.31b.

Example:3 Use the principle of virtual work to determine the value of the weight w
required to maintain the mechanism in the position shown, if P=50N .

3m 3m 2 A—ee——3m —%
/LI/
D ¥ —y F
E
P
A ]Li‘L( b
B
H"'
Solution

Draw free body diagram as shown

—3m——p——3Mm— f
Vr
D F
¥p
B, P
Bx | _ - - - (3‘. c
A - =
(S'l 4 - - B (-
1

Apply the principle of virtual work, where

The force w does work if A moves vertically, so w is an active force.

The reaction forces at B and E do no work because B and E do not move; thus the
reactions are not active forces.

The force P does work as point F moves vertically, so P is an active force.

The principle of virtual work says that the total work done by all forces acting on a
system in static equilibrium is zero for any possible virtual displacement.suU =0

~W &y, +Pd, =0 (1) From the
Figure as shown
tana:%:% — WHa =N (2)
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tanﬂ:%=% - ¥p =V

3 3
Also,
Ve =Wp
From Egs. (2) -(4)
Na :%éy,:
Substitution from Eq. (5) into Eq. (1), we get
—W(%&ijJrP&yF =0 — (—%W +Pj5yF=O
—%W + P =0, oy %0,
2 3

-ZW +P=0 > W=—P=§(50)-
3 2 2

Then WwW=75 N

Examples

©)

(4)

()

Example:1 Rotating the threaded rod Ac of the automobile jack causes joints A and

C to move closer together, thus raising the weight w . Determine the axial force in the

rod, if 6=30°and W =2kN..

150 mm

150 mun

Solution

Draw free body diagram as shown

150 mm

150 mm

The effect of the rod is then represented by the two forces F.. One can see that, w and

the two F, forces are the active forces.
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W

Introduce coordinates measured from fixed points to the points of application of the
active forces
lw

|BXA XA Xc Bxcl
The principle of virtual work says that the total work done by all forces acting on a

system in static equilibrium is zero for any possible virtual displacement.suU =0
W yg —F dyy—F ;=0 (1)

From the Figure as shown
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l —
E _r_af
150 mm 150 mm
¥B
|
- X, - Xc -
X, = X. =150c0s0, y, =DE + EB =2(150sin6) + a (2)

~W &(2(150sin6) + a)—F, 5(150c0s60)— F,5(150c0s6) =0
~W (300c0s8)56+ F. (150sin0)56 + F, (150sin ) 56 =0

{—w (300cos8)+ F, (300sin8) }59 =0

F =W %%\ coto =W cot30°=2(1.732) =3.464. Then F. =3.464 KN

sin@

Example2: Determine the vertical reaction at support C, if P=2KN

C
N

N

N

P I~
N, 3

N

N

B X “\\

3m 1

v 7 7 7 7 7
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Solution
Draw free body diagram as shown
One can see that, C, and P are the active forces Cy and P are active forces for the
displacements
The normal force C,does no work because it is perpendicular to the displacement of
point C. Thus C, is not an active force.
The forces A, and A, do no work because the point A does not move. Thus A, and A,

are not an active force,
The force P does work because the point B moves up, so B is an active force.
C

v

C c

‘x

ov,

30

&g

4

h
The principle of virtual work says that the total work done by all forces acting on a
system in static equilibrium is zero for any possible virtual displacement..sU =0
_P&/B_}_Cy@C:O (1)
From the Figure as shown, we find that

3m

D

4m

Yg =5C0s6 — &g =-5singdo (2)
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Yo =Yg +CD=5c080+3J/2c0sp — &, =-5sind dd—3/2sing dop (3)
From Egs. (1)-(3)

— P(~5sin0dg) +C, (-5sin6 dg)—3v2sing dp)=0 (4)
Again, From the third Figure we find that,

. BD . BD . .
singd =—, sing=—— — 5sin@=3/2sin
5 ¢ 32 ¢

do-32 00 4, (5)

5cosé d9=3\/§cos¢ de¢ -
5 cosé

From Eq. (5) into Eq. (4), we get

_P(-5siné) {% % d¢J+Cy {(—sshc,ine)[?"/E cosg d¢}—3\/§sin(p dco)}:O

5 cosé

{Ptan@—cy (tan9+tango ]}d(]ﬁ:O — Ptand-C, (tan6?+tan(p J:O

3
C,=P o _ -4 _2-5_o.857knN
tan @ + tan o §+1 77

Then C,=0.857 KN

Example:3 Two symmetric rods AB andare smoothly mgand weight 2L length of BC

jointed at B and placed in a vertical plane such that Aand C touch a smooth horizontal
plane to. If the group is kept in equilibrium by an elastic string joining the points of the

two rods. Using the principle of virtual work, find the tension in the string and show

that the coefficient of elasticity in the string is gw if the equilibrium takes place when

the inclination of the two rods on the horizontal is coslg.

Solution
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A A " B " (" r C

w w
The principle of virtual work says that the total work done by all forces acting on a

system in static equilibrium is zero for any possible virtual displacement..sU =0
W S(A'A")+W §(C'C")+TS(B'C)+TS(AB)=0 (1)

Form the Figure, we note that

A'A"=C'C"=Lsing, B'C'=AB'=Lcosd (2)

From Figs. (1) and (2)

2W 6(Lsin@)+2To(Lcosd) =0

W cos@ 660—T sin@ 66=0 - {W cos@d —T sind }60=0

W cos@ —T sind=0, 00+0,

Then T=w £ =35 5 T=3w .
sing 514 4
From Hawke's law we note that
3 3, 3

B 2Lcosfd——L 2L(=)—--L
[ 4 -5 4 5, 8 1, 3w 5 Au3w

L 3 3 5 4 577 4

0 L L

4 4
A=>w
4

o0




Exercises

Exercisel: A ladder of mass m has its ends on a smooth wall and floor. The foot of the

ladder is tied by an inextensible rope of negligible mass to the base of the wall so the
ladder makes an angle « with the floor. Using the principle of virtual work, find the

magnitude of the tension in the rope?

Exercise2: Determine the force exerted by the vice on the block when a given force p

is applied at ¢ . Assume that there is no friction

ol
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aIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION

Oscillations are a particularly important part of mechanics and
indeed of physics as a whole. This is because of their

widespread occurrence and the practical importance of oscillation problems.

Most engineering materials are nearly elastic under working conditions. And,
of course, all real things have mass. These ingredients, elasticity and mass, are
what make vibration possible. Even structures which are fairly rigid will
vibrate if encouraged to do so by the shaking of a rotating motor, the rough
rolling of a truck, or the ground motion of an earthquake. The vibrations of a
moving structure can also excite oscillations in flowing air which can in turn
excite the structure further. This mutual excitement of fluids and solids is the
cause of the vibrations in a clarinet reed, and may have been the source of the
wild oscillations in the famous collapse of the Tacoma Narrows bridge.
Mechanical vibrations are not only the source of most music but also of most
annoying sounds. They are the main function of a vibrating massager, and the
main defect of a squeaking hinge. Mechanical vibrations in pendulum or quartz
crystals are used to measure time. Vibrations can cause a machine to go out of
control, or a building to collapse. So, the study of vibrations, for better or for

worse, is not surprisingly one of the most common applications of dynamics.

When an engineer attempts to understand the oscillatory motion of a machine
or structure, she undertakes a vibration analysis. A vibration analysis is a study
of the motions that are associated with vibrations. Study of motion is what

dynamics is all about, so vibration analysis is just a part of dynamics. A



Simple Harmonic Motion 2

vibration analysis could mean the making of a dynamical model of the
structure one is studying, writing equations of motion using the momentum
balance or energy equations and then looking at the solution of these equations.
But, in practice, the motions associated with vibrations have features which are
common to a wide class of structures and machines. For this reason, a special
vocabulary and special methods of approach have been developed for vibration
analysis. For example, one can usefully discuss resonance, normal modes, and
frequency response, concepts which we will soon discuss, without ever writing
down any equations of motion. We will first approach these concepts within
the framework of the differential equations of motion and their solutions. But
after the concepts have been learned, we can use them without necessarily

referring directly to the governing differential equations.

H Definition
A particle is said to execute Simple Harmonic Motion if it moves such that its
acceleration is always directed towards a fixed point, and is proportional to

the distance of the particle from the faced point.

A1 O(-

The expressions for velocity and position of the particle at any instant are
obtained as follows:

Suppose O be the fixed point in the line A;OA and let P denote the particle
after time ¢ from moving with a velocity v in the positive direction from O to

A. Let OP = z, then the acceleration is kx where k is a constant. Since the




acceleration is in the direction opposite to that in which z increases, the
equation of motion of the particle is given as
2
mM = —kx
at’
Rearranging this equation, we get one of the most famous and useful

differential equations of all time:

df+£m:0

m
This equation appears in many contexts both in and out of dynamics. In non-
mechanical contexts the variable x and the parameter combination k/m are
replaced by other physical gquantities. In an electrical circuit, for example, x
might represent a voltage and the term corresponding to k/m might be 1/LC,
where C is a capacitance and L an inductance. But even in dynamics the
equation appears with other physical quantities besides k/m multiplying the X,
and x itself could represent rotation, say, instead of displacement. In order to
avoid being specific about the physical system being modeled, the harmonic

oscillator equation is often written as

4+ wix =0
The constant in front of the x is called w? instead of just, say, w, for two
reasons:

(i) This convention shows that w? is positive,

(ii) In the solution we need the square root of this coefficient, so it is
convenient to have vw? =w .

For the spring-block system, w? is k/m and in other problems w? is some

other combination of physical quantities.



Simple Harmonic Motion 4

B Solution of harmonic oscillator differential equation

2
N o —wlz or 02— s = vdv = —wzdz

Cdt? dx
Integrating previous equation, we have

1 5 1 9 9
=v? = ¢, —=w'z
2 “a 2

where ¢, is an integral constant. As P is supposed to be moving in the

direction OA and as the acceleration is given to be taking place in the opposite
direction, the particle P must come to rest at some point in OA say at A, i.e.,
suppose v = 0 where = = a, SO that

0=c 1 9 9 |

Therefore
v’ = w?a® — w’z’ = w?(a® — 2?) or v = +una? — ?
This equation gives the value of the velocity v for any displacement z

As P is moving in the positive direction v = wva? — 2

ﬂzu)\laZ—:cz L:wdt

dt a? — 2
By integrating
[—=E—=wit = s |E|=wt+c Or
a? — x? a

x = asin(wt + ¢)
where ¢ is integration constant to be determined from the initial conditions. If
t is measured from the instant when P is at O, i.e., if z = 0 when ¢ = 0, then
e=0.
» Note 1 Velocity in terms of time t can be obtained by differentiating any of
these equations involving x and t.

» Note 2 When the particle is on the left-hand side of O, the equation of

motion is # = —w?x acceleration in the direction of P;A= w?OP;



= w?(—z) = —w?z Hence the same equation that holds on the right-hand side

of O, holds also on the left hand side.

The Equation +una? — 2? gives the velocity of P in terms of its distance
from O. Initially, when x = 0 at the point O, the velocity is maximum and
equal to wa . As As the particle proceeds towards A, the acceleration being
towards O, the velocity goes on decreasing as z increases. At A where = = a,
it vanishes and the particle is, for an instant, at rest. Then owing to the
acceleration towards O the particle moves in the negative direction with a
velocity which increases numerically as « decreases and is the greatest at O
where it is —wa. Due to this velocity, the particle proceeds further to the
negative side of O, the velocity remaining negative and decreasing gradually in
magnitude till the particle comes to rest at A,where = = —a. The acceleration
being towards O, the particle then starts and moves towards O with a positive
velocity which increases gradually till it is again maximum at O. The same
motion is repeated again and again and the particle goes on oscillating

indefinitely between A and A4, the two positions of momentary rest.

The motion of the particle is oscillatory. All oscillatory motions are, however,
not necessarily simple harmonic. In fact, simple harmonic motion is the
simplest and most important case of oscillatory motion which occurs in nature

and it is always dominated by the differential equation

dzfli _ 2
— — WXL
dt?
The distance OA or OA, i.e., the distance of the center from one of the

positions of rest is called the Amplitude.
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B The Periodic time of Motion

The equation x = asinwt gives the time form in terms of z, the distance of

the particle measured from O. Since

x = asinwt = asin(wt + 27) = asin| wt + 2_7r]
w
And % = awcoswt = aw cos(wt + 27) = awcos['wt + 2_7r]
w

the particle has the same position, velocity and direction after time t + 2—7’,
w

t 44 etc., as it had at the time t, i.e., the particle has a periodic motion, its
w

periodic time = being 2z
w

B The Frequency

The frequency of SHM is the number of complete oscillations in one second,
so that if n denotes the frequency and = the periodic time of the motion,

nTt =1 :n:l T

T 27

Bl Simple Pendulum

If a heavy particle is tied to one end of a light o o

inextensible string with length and the other
end of which is fixed, and oscillates in a
vertical circle, we have what is called a Simple
Pendulum. We now obtain the time of [ p

oscillation of such a pendulum when it is

allowed to oscillate through a small angle only.

Let O be the fixed point, A the lowest position Y
of the particle, and P any position such that
£ZYOP=0

The equations of motion in horizontal direction is (resolve the tension)



mi = —T'sinf and T cos® = mg

Here we suppose that the motion of mass m in X direction only. Now, when
the angle @ is small enough so the approximations cos@ =~ 1 and sinf = 6

can be applied and the equation of motion, m& = —T sin @ becomes

.. x .. g
mr = —mg=— or L =—=I
L L

which is similar to # = —w?2 with w? = % Or w:J%

So, a simple pendulum moves like a SHM with periodic time of motion equals
271'\/Z
g

We have illustrated that the motion of a simple pendulum is simple harmonic

Bl The Cycloid Pendulum

motion only when the angle of swing is so small that sin@ is very nearly equal
to 0 and the amplitude to the motion is so small that it may be treated as
infinitesimal. If, however, the amplitude of motion is not small and the particle
supposed to be constrained to move under gravity, along the arc of a smooth

cycloid in a vertical plane, the equation of motion of the particle along the
"

tangent to the curve is

2
oy —mgsin 1) (D)
dt?

0
where 1 is the angle which the tangent to the curve makes with the horizontal

and S the length of its arc measured from the vertex, the cycloid being placed
with its vertex downwards and axis vertical. We know by the Calculus that the
intrinsic equation of the cycloid is

S = 4asinp 2
Note S being measured from the vertex where 1 = 0, and a being the radius

of the generating circle. From equations (1) and (2), we have
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2
a5 __9g 3)
di? 4a

this formula shows that the motion represents simple harmonic no matter how
great the amplitude. The time of a complete oscillation is given as 2m/4a /g

which is constant for oscillations, small or large. Thus, if a particle is
constrained to move along a smooth cycloid curve, its period of motion is
absolutely independent of the amplitude. (This is an answer to the question
which interested the mathematicians of the 18™ century in what curve should
that the bob of a pendulum swing in order that the period of oscillation may be
absolutely independent of the amplitude?)

The oscillations on a cycloid are called isochronous because the period is the
same for large or small oscillations. This important property of a cycloid finds
its application in the formation of clocks. A cycloid pendulum may be
constructed by causing the cord of the pendulum to wind and unwind itself on

the evaluate of the path.

In order to find the pressure of the curve on the particle, we write its equation

of motion in the direction of the normal at the point, namely

o?
m— = R — mgcosy
P

where p is the radius of curvature of the curve, R the normal pressure and v
the velocity of the particle obtained from equation (3) by integration.

Note (i). The students acquainted with elements of differential equation will
note that

S = Acoswt + Bsinwt wWhere w =g/ 4a

is the most general solution of differential equation (3).

Note a. Since S = 4asiny = 4(1% = §? = 8ay, yand S being measured
S

from the vertex of the cycloid



B Hooke's Law

The ' extension' of a stretched elastic string means the ratio of the increment in
length to the unstretched length. Thus if £, is the natural or unstretched length
and the stretched length is ¢’ then the extension is (¢ — £) / £.

Hooke's Law is that the tension of the string is proportional to the extension. If

T denote the tension and we state the law in the form

e

L

where X is called the modulus of elasticity of the string.

The extension or compression of a spiral spring follows the same law, but in
this' case the length is measured along the axis of the helix and not along the
wire that forms the spring; and when the spring is extended or compressed the
force exerted by the spring is a tension or a thrust in the direction of the axis.
The formula above may be used for compression as well as extension provided
we regard a negative tension as a thrust. For when the spring is compressed the

length ¢’ is less than the natural length £, so that the formula would give a

/
negative tension, i.e. a thrust of magnitude T = )\[e —£ ]

Bl Motion of a Particle Attached to an Elastic String

Elastic Strings. If an elastic string or wire or a spiral spring is fixed at one
point and pulled within limits at the other, it is found to increase in length, the

extension being proportional to the tension of the string.

If different wires of the same material are considered, the extension is directly
proportional to the product of the tension and the natural length and inversely
as the area A of the cross-section. Thus if x denotes the extension, ! the natural

length and T the tension (in absolute units), then,

m:ﬂ Or T:)\ﬂ
AA £
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where X is a constant depending on the material of the wire. If we take A =unit

area, we have T = A%

If ¢ is the natural length of an elastic string and i’ the stretched length, then
T==%=(L"—14)

i.e., tension of an elastic string or a spring is proportional to the extension of

the spring beyond its natural length. This is Hooke's law of elastic string and A

is called the Modulus of Elasticity.

When z = £, T = X, so that X for a string of unit cross-section is equal to the
amount of force which would stretch it to twice its natural length.

Let one end of an elastic string be fixed to a point O on a smooth horizontal
table and let OA=¢ be its natural length.

B A 0 I A o0p B

If a particle of mass m is attached to the other end and if the particle is
displaced along the line OA, a distance AB=b and P be position of the particle

at any subsequent time so that AP=x, then the tension in the string is T = A%;

which acts in the direction PA and is directed towards A. The tension of the
string being the only force which tends to move the particle, its equation of

motion is

2 2

dt? £ dt? £m

which shows that the motion about A is simple harmonic, the constant w

equals fi . The periodic time of oscillation is 2 !e_m
£m A

The particle will further move through to a point B' at an equal distance on the

other side of and then back again and so on. The distance from A to A'
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(OA= OA") and back to A is moved with the velocity which the particle
acquires at A. The string being slack this velocity remains the same throughout
this part. The periodic time obtained above refers to the time which the particle
takes in moving from B to A, from A' to B' and then from B' to A" and from A
to B. This is the only part where motion is simple harmonic.

B Vertical Elastic string

Suppose that a particle of mass m is suspended from a fixed
point by a string (or spring) OA of a natural length £. Let
OB be the length of the string when the mass hangs in
equilibrium, then AB(=e), the extension of the string is

given by

mg:)\ﬂz)\ﬁ
£ £

Now if the particle is displaced vertically from B it will

oscillate in a vertical line about B and it will execute SHM

which can be proved as follows:
Let P be the displaced position of the particle during its motion and let PB = =z,

then the tension, T, of the string in this position is given by
T = %(BA +z) =mg+ %:c (from previous equation)

Then the resultant force acting on the particle in the direction BP

A A

=mg—T = 'm,g—(mg+z:l:) = —=z
Hence the equation of motion of the particle
2 2
mﬁ:—)\z OI' ﬁ:—LmE_wzm
dt? £ dt? £m

which shows that the particle moves with simple harmonic motion having B,

the position of equilibrium, as the center of oscillation. The period of motion is

2wff_m=2w e
A g
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e being the extension of the string in the equilibrium position of the particle.

AB

By Equation mg = AT = =

%, e being proportional to X the A period

depends on the weight which is hung on, and on the stiffness of the string or
spring to which the particle is attached.

Note (i). At B, the ultimate position of equilibrium of the particle, the forces
acting on it, viz., its weight and the tension of the string, balance. In all
problems of this typo the position of this point must be obtained first.

Note (ii). The particle moves with Simple Harmonic motion only so long as the
particle is below A, i.e., so long as the string remains stretched. If the particle
rises above A (it will do so, for example when it is pulled down below, B, a
distance greater than AB) the string will become slack and the part of the
motion above A will be simply free vertical motion under gravity.
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M ILLUSTRATIVE EXAMPLES W

Il Example »
A point moves along a straight line such that its distance given by

x = 3cos2t + 4sin2t . Prove that the motion of the point is simple harmonic
motion and find its periodic time and amplitude.

Il Solution »

Since the position of the point is given by x = 3cos2t + 4sin2t and by
differentiating w.r.t ¢ we get

& = —65sin 2t + 8 cos 2t,
again differentiating ... £ = —12cos2t — 16sin 2¢

Or .. & = —4(3cos2t + 4sin2t) = —2%x

T

This equation represents a simple harmonic motion with «w =2 since the

acceleration varies with distance, where the periodic time is = and given by

T==="=w and the amplitude may be calculated as

3cos2t + 4sin2t =5 §c052t +§sin2t

=5 sinecos2t + cosesin2t = 5sin(2¢ + ¢)

that is the amplitude is a = 5

Il Example »

A moving particle along a straight line where p, £ = @ — pcos2t is constant.
Show that the motion of the point is simple harmonic motion and find its
periodic time and amplitude.

Il Solution »

Since the position of the point is given by z =p —pcos2t and by
differentiating twice w.r.t ¢ we get

dz . d’x
— = 2pusin2t and =—— =4pcos2t=4(pu —zx)=—4(x —
Pl b (1 — ) (z - p)

pn—x
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This equation indicates a simple harmonic motion (SHM) with center = =

and w? = 4. The periodic time is ~ and given by + = 2% = 2% — - .

w 2
(Hint: Let y = = — u then the previous equation turn into § = —2*y, which
represents a simple harmonic motion with center y = 0 (z = u)).

(Readers have to calculate the amplitude)

Il Example »

A particle moves with SHM in a straight line. In the first second after starting
from rest, it travels a distance a and in the next second it travels a distance b
in the same direction. Prove that the amplitude of the motion is 2a® / (3a — b)
?

Il Solution »

Measuring time t from the starting point and the distance x of the particle from
the center of motion and denoting the amplitude by A, we have

T = acoswt

Now by the questionwhen t =1, z=A—a
Andwhent=2, z=A—a—0»
A—a = Acosw and A—a—b=Acos2w=A 2cos>w —1

From these two equations we have

(A—a)

A2

A—a—b:A[2 —1

= l[A2 —4aA + 2a2]
A

A? —aA —bA = A? —4aA +2a®> Or (3a —b)A = 2a°

2a*

A=
3a—b
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Il Example »
A point executing SHM has velocities w,u’and positions in two of its

positions b,b’ respectively. Show that the periodic time of motion is

2 12
o |2 b
w'? — 2
Il Solution »
Let a be the amplitude of the simple harmonic motion then
’1)2 — ,w2(a2 _$2)
Therefore,
u? = w?(a® — b?) and u'? = w’(a® — b'?)
By subtracting
u'? —u? = w(b? —b'?) = w = uwrou Or w= u?
b2 b/2 b2 b/2
2 12
Since T = 2% = r=ox |2 b
w u/2 _ u2

Il Example »

A body moving with SHM has an amplitude a and period T'. Show that the
velocity » at a distance x from the mean position is given by
V*T? = 4n?(a? — 2?)

Il Solution »

As we have v* = w?(a* — z*) where a represents the amplitude

Also T =2 s w =22
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Il Example »

The speed v of a particle moving along the axis of z is given by the relation
v?* = n?(8bx — 2 — 12b?). Show that the motion is simple harmonic with its
center at = 4b and amplitude 25 . Find the time from = = 5bto or = = 6b.

Il Solution »

A particle is said to be its motion as simple harmonic motion if
I = —w'x

From the question we have v* = n?(8bx — > — 12b?) thus by differentiation

2vﬂ: n?(8b — 2x) Or v@ = —n?(x — 4b)
dr dz

So the particle moves as a SHM with center = = 4b

v=0 . 8x—2x*—120> =0 = (z—6b)(x—2b) =0
Therefore x=6b and = =2b

which gives the ended points of SHM and the amplitude is 2b .

Il Example »

At the ends of three successive seconds, the distances of a point moving with
SHM, from its mean position, measured in the same direction are X, X,, X, .
Find the periodic time of motion.

Il Solution »

As known the general solution of simple harmonic motion is z = asin(wt + ¢)

Let the time to reach position X, is ¢ and thus the time to reach position X,
is t+1 and ¢ + 2 is the time to reach position X, and therefore,

X, = asin(wt + ¢)
X, = asin(w(t +1) + ¢)
X, = asin(w(t +2) +¢)
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From previous equations — by adding first and third equations- we have
X, + X, = a sin(wt + ¢) + sin(w(t + 2) +¢)
= 2asin(w(t + 1) + €) cosw

XZ
= 2X, cosw

Here we use the triangle relation

sinz 4 siny = ZSin[m Y |cos m; y]
X, +X X, +X
v X, + X; =2X, cosw = CoSw = ———2  Or w=cos !|———-=i
2X, 2X,
But the periodic time is given by = = Eus therefore,
w
27
T =
cos— | 2T Xs
2X,

Where —2X, < X, + X, < 2X,

Il Example »

An elastic string supporting a heavy particle with mass m hangs in equilibrium.
The particle is now pulled down below the equilibrium position through a
small distance and let go then the particle done n complete oscillations per
second. If £ represents the natural length of the string in the case of
equilibrium. Find the natural length of string and evaluate the tension when the
equals natural length.

Il Solution »

Suppose that ¢, represents natural length of string and T gives the tension in

equilibrium after hangs mass m, in equilibrium case and from Hooke's law

mg=T=2(L—¢,) (1)
EO
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After particle is pulled down below the equilibrium position a distance z then

equation of motion becomes

. Y] A [P
mx =mg—T
Where T/ = i(ﬁ +z—£,) \ | r
£, T
A I3 I3
mm:mg—7(£+m—£0)
0
:mg—i(ﬂ—ﬂo)—iw:—im ny Ej
£, £, £, P Y
[ —
mg vﬁlj mig
'
i:—Lm=—w2m ey

Which shows that the motion about a point of equilibrium is simple harmonic

. C e . £.m
motion, the constant w equals 2 The periodic time is 27, [ ——
me A
Nowsince n = & = n = 4= [ = 4n2n2m = 2
27 2w\ mt 0

Therefore, from Equation (1)

shg = 20— ,) = 4minP (L — L) oL L, = —I—
i 4mn

Or ¢, = £——2
4mn

Which evaluate the natural length of string. To obtain the tension from Hooke's

2

law
= 2 0 = 47\'2n2m£0 = 47T2n2m[£ ) =m 4n’n*l — g
£, 47in?
Il Example »

A heavy particle is supported in equilibrium by two equal elastic strings with
their other ends attached to two points in a horizontal plane and each inclined

at an angle of 60° to the vertical. The modulus of elasticity is such that when



19

the particle is suspended from any portion of the string its extension is equal to

its natural length. The particle is displaced vertically a small distance and then

released. Prove that the period of its small oscillations is 27n/2£ / 5g , Where ¢

is the stretched length of either string in equilibrium.

Il Solution »

Let m be the mass of the particle and X\ the

}é"
]

modulus of elasticity. Then by supposing the
particle to be suspended from any portion of the
string, since the extended length is double the
natural length we find

that A = mg.

If ¢, be the natural length of either string, we have, in

the equilibrium position,

L—Z L—¢
2 cos60° = A\ !

0 0

mg = 2\

but X = mg, therefore ¢, = %e

Let y denote the vertical displacement and L the length of either string
at time ¢ . To find the period of small oscillations we want to obtain an
equation of the form

¥ = —wlz

where w is a constant. It will therefore be sufficient for our purpose to
write down the equation of motion at time ¢ and neglect all powers of =
higher than the first.

We have

L—-¢

miy = mg — 2\ % cos ZOPA

0

where P is the particle at time ¢, O is its equilibrium position and

PA=PB = L are the strings.
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Now
1, .3
_ﬁ:[y+-4 +50 =8 4+ Ly + 9y’
2 4
1/2 1
Therefore L=£[1+%] =£+5y

correct to the first power of z, and

l£+y %£+y

cos ZOPA=2 ;
04
2'!1
A4
2 £ 2L
2 20
to the first power of y . And hence
2AP+1y—14 ,
my = mg — 2 2 X 1 1+ _y]
1, 20
2

Therefore,

.. Yy 3y .. 5g
=qg—gqg|l+=||14+ == Or = ==
y=9 g[ K][ 26] Yy Y

which represents a simple harmonic motion of period 2m/213 / 59 .
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PROBLEMS

O A point executing SHM has velocities u and v and accelerations a and b in
two of its positions. Find the distance between the two positions and that the

periodic time of motion

3 If the displacement, velocity and acceleration at a particular instant of a
particle describing SHM are respectively 3 in., 3 in./sec. and 3 in./sec’, Find

the greatest velocity of the particle and the period of motion.

O A point moving with SHM has a period of oscillation of x sec. and its
greatest acceleration is 5 ft. /sec’. Find the amplitude and the velocity when the

particle is at a distance 1 ft. from the center of oscillation.

O A nparticle describing simple harmonic motion executes 100 complete
Vibrations per minute and its speed at its mean position is 15 ft. per sec. What

is the length of its path?
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O A particle oscillates in a cycloid under gravity the amplitude of the motion
being @ and the periodic time being 7. Show that its velocity at a time t

measured from a position of rest is w = %ﬂsinm

T

O A body is suspended from a fixed point by a light elastic string of natural
length ¢ whose modulus of elasticity is equal to the weight of the body and
makes vertical oscillations of amplitude a. Show that, if as the body rises
through its equilibrium position it picks up another body of equal weight, the

1/4
amplitude of the oscillation becomes [122 + %(f




IMPACT AND COLLISION OF ELASTIC BODIES

n this section we will integrate the equation of motion with respect

I to time and thereby obtain the principle of impulse and momentum.

The resulting equation will be useful for solving problems involving force,
velocity, and time. Using kinematics, the equation of motion for a particle of

mass m can be written as

where aeand v are both measured from an inertial frame of reference.

Rearranging the terms and integrating between the limits v = v, at ¢ = ¢, and

v=w,,at t = ¢, we have

t. v t.
E]th:mjdv iZdet:mvz—mvl ™
4 U 4

This equation is referred to as the principle of linear impulse and momentum.
From the derivation it can be seen that it is simply a time integration of the

equation of motion. It provides a direct means of obtaining the particle's final

velocity v, after a specified time period when the particle's initial velocity is

known and the forces acting on the particle are either constant or can be

expressed as functions of time. By comparison, if v, was determined using the

equation of motion, a two-step process would be necessary; i.e., apply

> F = mato obtain a, then integrate a = % to obtain w,
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B Linear Momentum

Each of the two vectors of the form L = mw in Equation (*) is referred to as
the particle's linear momentum. Since m is a positive scalar, the linear-
momentum vector has the same direction as » and its magnitude mv has units

of mass-velocity, e.g., kg.m/s, or slug. ft/s.

B Linear Impulse

The integral I = det in Equation (0) is referred to as the linear impulse.

This term is a vector quantity which measures the effect of a force during the
time the force acts. Since time is a positive scalar, the impulse acts in the same
direction as the force, and its magnitude has units of force-time, e.g., N.s or
Ib-s. If the force is expressed as a function of time, the impulse can be
determined by direct evaluation of the integral. In particular, if the force is
constant in both magnitude and direction, the resulting impulse becomes

t

1= [Fdt=F(t—1)

4
B Impact
This action occurs when two bodies collide with each other during a very short
period of time, causing relatively large (impulsive) forces to be exerted
between the bodies. The striking of a hammer on a nail, or a golf club on a ball,
are common examples of impact loadings. In general, there are two types of
impact. Central impact occurs when the direction of motion of the mass centers
of the two colliding particles is along a line passing through the mass centers of
the particles. This line is called the line of impact, which is perpendicular to the
plane of contact. When the motion of one or both of the particles makes an

angle with the line of impact, the impact is said to be oblique impact.

» Elasticity If we drop a ball of glass on to a marble floor, it rebounds almost
to its original height but if the same ball were dropped on to a wooden floor,

the distance through which it rebounds is much smaller. If further we allow an
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ivory ball and a wooden ball to drop from the same height upon a hard floor
the heights through which they rebound are quite different. The velocities of
these balls are the same when they reach the floor but since they rebound to
different heights their velocities on leaving the floor are different.

Again, when a ball strikes against a floor or when two balls of any hard
material collide, the balls are slightly compressed and when "they tend to
recover their original shape, they rebound. The property of the bodies which
causes these differences in velocities and which makes them rebound after
collision is called Elasticity. If a body does not tend to return to its original

shape and does not rebound after collision, it is said to be Inelastic.

In considering impact of elastic bodies, we suppose that they are smooth, so
that the mutual action between them takes place only in the direction of their
common normal at the point where they meet, there being no force in the
direction perpendicular to their common normal.

B Definitions

When the, direction of each body R oERoumct

is along the common normal at the A B

. i YA vy Line of impact
point where they touch, the impact — —™

is said to be direct.
Central impact
When the direction of motion of

Planc of contact
either or both, is not along the

i A B
common normal at the point of Line of impact
contact the impact is said to be p QQ\ ,,;
oblique. / N

\J Yu

Oblique impact
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B Direct Impact of two Smooth Spheres

Suppose two smooth spheres of masses mand m’ moving in the same

straight line with velocities « and «’, collide and stick together. The forces

which act between them during the collision act equally but in opposite

directions on the two spheres so that the total momentum of the spheres remain

unaltered by the impact. If U be the common velocity of the spheres after the

collision and if the velocities are all measured in the same direction, we have
(m+m U = mu + m'u’

This equation is sufficient to determine the one unknown quantity U .

But we know, as a matter of ordinary experience, that when two bodies of any
hard material impinge on each other, they separate almost immediately and a
finite change of velocity is generated in each by their mutual action depending
on the material of the bodies. Hence the spheres, if free to move, will have after
impact, different velocities say » and v’ .

The equation of momentum now becomes

mv +m'v' = mu + m/v’ @

This single equation is not sufficient to determine the two unknown quantities

v and v’ .

Another relation between the velocities is supplied by Newton's Experimental
Law which states that when two bodies impinge directly, their relative velocity
after impact is in a constant ratio to their relative velocity before impact, and

is in the opposite direction.
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If bodies impinge obliquely, the same fact holds for their component velocities
along the common nominal at the point of contact. The equation derived from
this law for the above spheres is,

/
'u;’ul =—e Or v—v = —e(u—u) (2)
u—u

v, v/, wand «’ being all measured in the same direction.

The constant ratio, e is called the co-efficient of elasticity or restitution. It
depends on the substances of which the bodies are made and is independent of
the masses of the bodies and their velocities before impact. The value of e
differs considerably for different bodies and varies from 0 to 1.

(i) When e = 0, the bodies are said to be inelastic (Plastic impact). In this case
we have from Equation (2) v = v’ i.e., if two inelastic spheres impinge they
move with the same velocity after impact.

(if) When e = 1 the bodies are said to be perfectly elastic.

Both these are ideal eases never actually realized in nature.

In order to evaluate the velocities of the spheres after direct impact we solve
Equations (1) and (2) and get
mu +m'u’ —em/(u — u’) ,  mu+m'u + em(u —u)

v = - and ' = -
m+m m+m

When m =m’and e=1, we have v=«'and ' = wui.e, if two equal
perfectly elastic spheres impinge directly they interchange their velocities after

impact.

B Kinetic energy lost by direct impact

In general, there is always a loss of kinetic energy whenever two bodies

impinge. Since we have by algebra
(m+ m')(mu? + m'u?) = (mu + m'u’)? + mm/(u —u’)?

And (m + m)(mv? + m'v?) = (mv + mv')? + mm/(v — v')?

Subtracting these two equations and divide by 2(m + m’) and using
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mv +m'v' = mu+m'u and v — v’ = —e(u —u’)
Therefore, Loss in K.E. is

/
=lmu? 1 i | Lome? 4 Lo | = lﬂl(u —u')?(1 — €?)
2 2 2 2 2m+m

Bl Obligue Impact of two smooth spheres

Suppose that at the moment of impact the direction of motion of the spheres is

not along the line joining their centers. Let m, m’ be the masses of the two
spheres with centers A and B at the time of impact, «, «’ the velocities just
before impact, a, 3 the angles the directions of motion make with AB before
impact, v, v’ the velocities after impact, and 6, ¢ angles the directions of
motion make with AB after impact.

Since the spheres are smooth, there is no impulse perpendicular to the line of
centers and hence the resolved parts of velocities of the two spheres in the
direction perpendicular to AB remain unaltered.
vsin@ = usin and v'sing = u'sin 3 3)
Since the impulsive forces acting during the collision on the two spheres along
their line of centers are equal and opposite, the total momentum along AB
remains unchanged.

muwcos @ + m/'v’ cos p = macos o + m’u’ cos B (@)
By Newton's experimental law for relative velocities resolved along the
common normal AB, we have

vcos@ — v’ cosp = —e(ucosa — u’ cos 3) (5)
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We deduce the following particular cases from the above equations:
(i) If w’ =0, from Equation (3) ¢ =0, (- v" = 0), i.e., if the sphere of mass

m’ were at rest, it will move along the line of centers after impact.

(i) If »’ =0 and m = em’ from Equation (3) ¢ = 0 and then 8 = 90° , so
that if a sphere of mass m impinges obliquely on a sphere of mass m’ at rest,
the directions of motion of the spheres after impact will be at right angles if
m = em’ . This evidently holds true when the spheres are equal and perfectly

elastici.e.,when v/ =0, e=1and m =m’.
(iii) If m = m’ and e =1 then, we have
veos® = u'cos3 and v cosp = ucosa

i.e., if two equal-and perfectly elastic spheres impinge they interchange their
velocities in the direction of their line of centers. Also in this case, by using
Equation (3), we get: tan 8 tany = tan atan 3

It follows that if two equal and perfectly elastic spheres impinge at right
angles, their directions after impact will still be at right angles.

The students advised to prove this particular case independently.

Obtain the relation that describes the loss of kinetic energy in Oblique Impact

’
mm

.. LossK.E. = 1
2m+m

- (ucos ¢ — u’ cos B)°(1 — €?)

B Impact against a Fixed Plane

Suppose a smooth sphere (or particle) of mass m,

moving with a velocity u, strikes a smooth fixed plane in

~ P

a direction making an angle « with the normal to the Sa_
plane, and that it rebounds with velocity » making an pN

angle 6 with the normal. Then, since the plane is smooth, \

s
7’
4
7/
L T
\a
.\ 3
N \\‘

the component of the velocity along the plane must

remain unaltered

N

i
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;. vsinf = usina (6)

The plane being fixed its velocity is taken as zero. by Newton's experimental
law for relative velocity along the common normal AN, we have

. veosf — 0= —e(—ucosaa —0) = wvcosf = eucosc (7)

Squaring and adding (6) and (7), we get
- 02 = u?(sin® a + €2 cos? @)
Dividing (7) by (6) we have: cot8 = ecotx
These equations give the velocity and direction of motion of the sphere after

impact. The following facts may be noted:

(1) If @ =0 then by Equation (6), @ = 0 and by Equation (7), v = eu i.e.,
when the impact is direct, the direction of motion of the sphere is reversed after

impact and its velocity is reduced in the ratio e : 1.

(2) If e =1, therefore o = 0 and then u = v, i.e., when the plane is perfectly
elastic, the angle of reflection is equal to the angle of incidence, and the

velocity remains unchanged in magnitude.

(3) If e=0, thus 8 =90° and then v = usin«, i.e., when the plane i
perfectly inelastic, the sphere simply slides along the plane, its velocity parallel
to the plane remaining unaltered.

(4) Loss of Kinetic energy AE

AFE = lmu2 — %mv2

2
= %mu2 — %m’uz(sin2 o + €2 cos

= %muz(l —e?)cos’

Za)
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M 1LLUSTRATIVE EXAMPLES W

Il Example »
A ball of mass8 Ib moving with a velocity of 4 ftsec™ is overtaken by a ball,
of mass 12 Ib moving with a velocity of 9 ftsec™, (i) in the same direction as

the first, (ii) in the opposite direction. If e = 0.2 find the velocities of the balls

after impact. Find also the loss of Kinetic energy in the first case.

Il Solution »

(i) Let the direction of motion of the first ball be taken as positive and let v, v’

be the velocities after impact, then with consideration conservation of
momentum.

8v+12v' =8X4+12x9 =140 and v — v’ = —0.24—9)=1
which give v = 7.6 ft./s. and v’ = 6.6 ft./s.
(i) 8v+120' =8x4—12x9 =—76 and v — o' = —§(4 —(=9))= —2.6

which give v = —5.36 ft./s. and v’ = —2.76 ft/s

e

, /’F\.\

\ % %

In this case the first ball turns back after impact. It should be noted that the
velocities are measured algebraically, that is, all velocities in one direction cert

taken as positive while those in the opposite direction as negative.
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Il Example »

A ball A, moving with velocity » impinges directly on an equal ball B moving

with velocity v in the opposite direction. If A be brought to rest by the impact,

show that & = i*‘—e where e is the co-efficient of restitution.
v — e

Il Solution »

Let V be the velocity of B after impact and let m be the mass of each, then
since A is reduced to rest after the impact, according to Conservation of
momentum we obtain

mxX0+mXxXV =mu+m(—) Or V =u—vand

0—V = —e(u —(—v)) Or V =e(u+v)
cu—v=V=eu+v) Or 1—eu=01+e)

Hence ¥ =1te
v 1—e
Il Example »

A ball with mass nm moving with velocity ua™' impinges directly on
another ball with mass m moving with velocity « in the same direction. If the
ball with mass m be brought to rest by the impact, determine the co-efficient

of restitution.

Il Solution »
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Let V be the velocity of the mass nm after impact (along the impact line
since the balls impinge directly). According to the principle of the momentum
along the impact line, we get

m(0) + nmV = mu + nm 2] inV:[1+2u (1)
a a

From Newton’s Experimental Law, we obtain

V—-0=—e E—u] = V=cul1-1L )
a a
From these two equations (1) and (2)
mdh_l=%1+ﬁﬁ e 0t
a a n(a — 1)

Il Example »
Let my, m, be the masses of two spheres impinge directly with velocities

u;, U, in the same direction. If e be the co-efficient of restitution. Prove that

(1—e*)m;m,
2(m, + m,)

the loss of kinetic energy by impact is (u, — u,)?

Il Solution »

From the figure and according to the principle of the momentum along the
impact line, we get Let u;,u, be the velocities of the spheres after impact.
My + myuy = My + myu, (D)
By Newton’s experimental law

I_

u; u2' = —e(u, —u,) 2
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Squaring equations (1) and (2) and multiply equation (2) by m m, then
adding we get

mu + myu, ? mm, u —u, 7 = mu, + myu, g mym,e*(u, —u,)’
By adding and subtracting the value mm,(u, —u,)* to the R.H.S. of
previous equation

(m; + m,) mlu’llz + m2u2/2 = myu, +myu,

+ mym,(u, — u,)?* + mm,e(u, — u,)*

Or
(my +my) myu® +myuy? =
(m, + my) mu? + myul —mm, 1—ée* (u, —u,)’
Dividing the last equation by 1 m, + m, , We have
2
mm, 1—ée® (u, —u,)’
lmlul'2 + 1m2u2'2 = 1m1'u,12 + 1mzug - . 2
2(m, +m,)
m, 1—é€® (u, —u,)’
AFE = 1m1u12+1m2u22] [1m1u1'2 +lm2u;2 :7n1 Z - -
2 2(m, +m,)

This relation illustrates that the total of kinetic energies of the two spheres after

impact is less that the total of kinetic energies before impact by the value

mym, 1— e (u, —u,)® . N
and this values represents the loss of the kinetic

2(m, + m,)

energy by collision.
Il Example »

A ball weighting one pound and moving with a velocity 8 ftsec™, impinges on

a smooth fixed horizontal plane in a direction making 60° with the plane; find
its velocity and direction of motion after impact, the co-efficient of restitution

being 0.5. Find also the loss in Kinetic energy due to the impact.
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Il Solution »

The direction of motion of the ball makes an angle of 30° with the normal to
the plane. If after impact the ball moves in a direction making an angle 6 with

the normal with velocity v, then

vecosf = eucosax = % X 8 X cos30 = 2\/5

'~

vsinfd = usina = 8 X sin30 = 4

e
|
)

= v =12+16 =28 = v =5.29 ftsec!

and

/

4

//’x/\
//
//':.;

S - JR
2

N

&S N

i
/
/
\
\.

3

cotd = Y i.e. 0 =49°¢’

Loss of K.E. AE is

AE =1mu? —lm =l xs —28) =18 (m=1)
2 2 2
Il Example »

A smooth ball A, collides Obliquely with an equal smooth ball B. Just before
impact B is stationary and A makes an angle of a with the line joining the
centers of the spheres with velocity » in a direction making an angle of « at
the instant of impact. If e is the co-efficient of restitution, find the resulting
motion of the sphere A?

Il Solution »

Since the momentum after impact along the line of centers = momentum before

impact, we have, let be the velocity of the rest ball after collision
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mu’cos® + mV = mucosa+0 .. u'cos@+V =ucosc (D)

Again by Newton's experimental law

u'cos@ —V = —e(ucosa — 0) (2
By adding the equations (1) and (2)

. 2u’cos8 = (1 — e)ucos (3)
Now since the velocity of the sphere A perpendicular to AB remains the same,
we have

u'sin@ = usin 4)

By dividing the equations (3) and (4) therefore

ltangztana =>tan0=2hﬂ Or 9=tan_1[2tana]
2 1—e 1—e
Il Example »
A sphere A, impinges obliquely on another sphere B at rest. If the direction of
ball A after impact is perpendicular to the direction of ball B and the balls are

perfectly elastic. Prove that the masses of the spheres are equivalent.

Il Solution »

S TiE

-

Let m’ be the mass of the sphere B and hence its motion after impact will be
along the line of impact and suppose its velocity will be V. Since the
directions after impact make right angle, that is the velocity of the sphere A
will be perpendicular to the line of impact. Let the sphere has a mass m and
velocity « with an angle of « before the impact and has velocity «’ after
impact (perpendicular to the line of impact). According to the principle of

constant of momentum along the line of impact we have
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mu’cos90 + m'V = mucosa+0 = m'V = mucosa 1)

According to Newton's experimental law

u' cos90 — V = —e(ucosa —0) =V =ucosa (e =1) (2)
Substituting Equation (1) into Equation (2) we have Lom=m
Il Example »

A smooth sphere A moving with speed u, collides with an identical smooth

sphere B which is moving in a perpendicular direction with the same speed u

The line of centers at the instant of impact is perpendicular to the direction of

motion of sphere B. If the coefficient of restitution between the spheres is

1+e

e . Prove that tanp = [ ],Where o is the angle through which sphere

B is turned as a result of the impact.

Il Solution »

Let V,u’ be the velocities of the spheres after impact. From the figure and

according to the principle of the momentum along the line of impact, we have,

mV — mu’cos® = mucos90 +mu =V —u'cosd =u 1)

Again from Newton's experimental law

V — (—u'cos8) = —e(u —ucos90) =V +u'cosf = —eu )
Subtracting Equations (1) and (2)

o 2u'cosO = (1+ e)u (3)
Since the resolved parts of velocities of the two spheres in the direction
perpendicular to the line of impact remain unaltered.

u'sinf = u (4)
Now by dividing the equations (3) and (4)

2
1+e

tan @ =
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In order to determine the deviates of the velocity at an angle say ¢ where

¢ = g — 0 therefore
1+e
2

tan = tan Z_ 9] = cotf =

1+e]

tan =

1-;_6 Or ¢ = tan!
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PROBLEMS

O A smooth sphere A of mass 5 kg is moving on a smooth horizontal surface
with velocity (2i+3j) m s1. Another smooth sphere B of mass 3 kg and the
same radius as A is moving on the same surface with velocity (4i-2j) m s1. The
spheres collide when their line of centres is parallel to j. The coeffi cient of
restitution between the spheres is 3/5. Find the velocities of both spheres after
the impact.

O A smooth sphere P, of mass 5 kg, moving with a speed of

2 m/s collides directly with a smooth sphere Q, of mass 3 kg,

moving in the opposite direction with a speed of u m/s on a

smooth horizontal table. The coefficient of restitution for the

sec? u m sec™

collision is 0.5. As a result of the collision, sphere P is e
brought to rest. ( F\ ( F\
(i) Find the value of u.

(if) Find the speed of Q after the collision.
O An imperfectly elastic sphere whose elasticity is equal to tan 30 impinges
upon a plane with a velocity such that the velocity after impact equals the
velocity before impact x sin 45. Calculate the angles of incidence and

reflection.

O If the masses of two balls be as 2:1 and their respective velocities before
impact be as 1 : 2 in opposite directions. Evaluate the co-efficient of restitution,

each ball moves back, after impact, with 5 / 6 of its original velocity.

sphere impinges directly on an equal sphere at rest; if the coefficient of

restitution is e show that their velocities after the impact are as l—e.

+ e
O Two bodies A and B whose elasticity is e, moving in opposite directions
with velocities a and b, impinge directly upon each other ; determine their

distance at time t after impact.
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O Two equal balls moving with equal speeds impinge, their directions bring
inclined at 30 and 60 to the line of centers at the time of impact; show that if
e =1, the balls move in parallel directions after the impact, inclined at 45 to
the line of centers

O body of moss M moving with a velocity » collides with another of mass m
which rests on a table. Both are perfectly elastic and smooth and the body m is
driven in a direction making an angle @ with the previous line of motion of the

vcos@

body M, show that its velocity is
M+m

OTwo equal smooth spheres moving along parallel lines in opposite directions
with velocities u and v. collide with the line of centers at an angle « with their

direction of motion. If after impact their lines of motion are at right angles to

)2
one another, show that (v = sin? a + € cos?
(u + v)?
O Two smooth disks A and E, having a "

(V) = 1 mss

mass of 1 kg and 2 kg, respectively,
collide with the velocities shown in the

Figure. If the coefficient of restitution for —
”l = "‘” )
the disks is e = 0.75, determine the x and /

(I‘.l'l =13 m/s

y components of the final velocity of ~Plane of cantact

each disk just after collision.

O Determine the coefficient of restitution e between ball A and ball B. The

velocities of A and B before and after the collision are shown

2 m/s 1 m/s Om/s
< —_—

Q9 0O

Before callision After collision

v

* Line of impact



ORBITAL MOTION

We have already illustrated the motion of a particle in a plane
by writing down its equations of motion either in the

directions of two fixed co-ordinate axes or in the direction of the tangent and
normal to the path described by the particle. However a large number of
dynamical problems, where a particle moves under a central force, are readily
solved, as already pointed out, by writing the equations of motion in the
direction of the radius vector and in a direction perpendicular to it. These
equations are of the form (using polar coordinates)

2 2
FT = m ﬂ_r d_a]
at’ dt
2
and FB =m rrd—0+2£d_0 = mli rzd_e]
dt? dt dt r dt dt

where m is the mass of the particle and F, and F, denote the sums of the

components of the forces in the radial and transverse directions

Now, if a particle is moving only under the influence of a force having a line of
action which is always directed toward a fixed point called the centre of force,
the motion is called central-force motion. The path described by the particle is
called a central orbit. This type of motion is commonly caused by electrostatic
and gravitational forces. The position of the particle at any instant is defined by
the polar co-ordinates = and € referred to the centre of force O as the origin

and any fixed line OX through O as the initial line.
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¢ Definitions:

Central force. A force whose line of action always passes through a fixed

point, is called a central force. The fixed point is known as the center of force

Central orbit. A central orbit is the path described by a particle moving under
the action of a central force. The motion of a planet about the sun is an

important example of a central orbit.
O Theorem. A central orbit is always a plane curve.

Proof.

Take the center of force O as the origin of vectors. Let P be the position of a
particle moving in a central orbit at any time ¢ and let OP = r.Then is the
expression for the acceleration vector of the particle at the point P. Since the
particle moves under the action of a central force with center at O, therefore
the only force acting on the particle at P is along the line OP or PO. So the

acceleration vector of P is parallel to the vector OP

- %7 s parallel to
dtz -
A
d? v "
=SZAr=
at’
iﬁ/\r]:o ﬂ/\ﬁ_o]
dt\ dt dt dt
Integration we have % A r = Const vector = h (say) (1)

Taking dot product of both sides of Eq. (1) with the vector r, we get

ﬁ/\7"]='r'Oh

dt

re

But the left hand member is a scalar triple product involving two equal vectors,
and so it vanishes
reh =0
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Which shows that = is always perpendicular to a constant vectorh . Thus the
radius vector OP is always perpendicular to a fixed direction and hence lies in

a plane. Therefore the path of P is a plane curve

M Differential Equation of Orbital Path

In order to find the differential equation of the path of a particle moving in a
plane under a force which is directed to a fixed centre, we will consider the
particle P shown in Fig. 1, which has a mass m and is acted upon only by the
central force F. The free-body diagram for the particle is shown in Fig. 2.

Using polar coordinates (r,8)the equations of motion are

N

dAd = ! ridf
n

)5

3
4]
Fig. 1 Fig. 2
2 2

F. =ma, —F=m|&l_» d_O] (1)

dt* dt

2
F, =ma,, 0=m ra9 + 2£d—9] «(2)
dt? dt dt

The Equation (2) may be re-written in the form

=
dt dt

1
r

so that integrating yields

7’2d—0:h

- (3)

Here h represents the constant of integration.
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To obtain the path of motion, » = £(8), the independent variable ¢ must be
eliminated from Equations (1) and (2). Using the chain rule of calculus and
Equation (3), the time derivatives of Equations (1) and (2) may be replaced by

dr _drdo _ hdr
dt dodt 2d6

Substituting a new dependent variable » = »~! into the Equation (2), we have

dr _drdudd _ _, du

dt  dudo dt de
2 2
AT _prpdu cee(4)
dt? de?

As well as, the square of Equation (3) becomes

[Z_‘i]z — Byl (5)

Substituting these two Equations (4) and (5) into Equation (1) yields

—h2u? dz_’u — h2ud = F

de? m

Or F = mh*u?

2
Loy u] ..... (6)
a6

This differential equation defines the path over which the particle travels when
it is subjected to the central force 46 . Equation (6) is important for the solution
of two problems:

(i) Given the orbit, to determine the law of central force.

(ii) Given the law of central force, to determine the orbit.
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B Velocity Law

Since, v, = ﬂ, vy = % then v, = —hﬂ, v, = h*u®
dt dt dae
d 2
Therefore, the velocity law describes as v* = h? [d—Z] +ul| (7)

which gives the velocity when the path is known.

B Areal Velocity
When a particle moves along a plane curve, the

rate of change of the area traced out by the radius
vector joining the particle to a fixed point is
called the areal velocity of the particle. Let the

particle moves along the curve APQ and let it

Fig. 3

describes the arc PQ= 4s in time &t.

Let (r,0) be the co-ordinates of P and (r + dr,6 + 6) be those of Q, therefore
the areal velocity A at P is given by

A=dA_ , 00PQ _ L 17(r+ Or)sindf

dt &—0 St 5t—02 ot
2 .
= Jim 151000 _ 1,2, 36 ™
6t—02 Ot 2 6t—0 5t
= 17'2@:17'29‘ :E
2 dt 2, 2

From Fig. 3 notice that the shaded area described by the radiusr, as » moves
through an angle &6. In other words, the particle will sweep out equal

segments of area per unit of time as it travels along the path.

B Apse and Apsidal Distance

An apse is a point on central orbit at which the radius vector drawn from the
center of a force is a maximum or minimum. The length of the radius vector at
such a point is known as the apsidal distance. The analytical condition for a

maximum or minimum value of the length of the radius vector is that du/d0
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shall vanish and that the first differential co-efficient which does not vanish
shall be of an even order.

Now if ¢ be the angle between the radius vector and the tangent to the curve,
then by the Calculus,

do du
tanyp = —u— Or — = —ucot
® du do ®

so that when ﬂ:();(p:g

dae
Hence the tangent at an apse is perpendicular to the radius vector. In the case of
a planet moving round the sun in an ellipse, the ends of the major axis are the
two apses, the one nearer to the sun is called, perihelion and the further one is

called aphelion.

B Conservation of Angular Momentum

The angular of momentum about the center of O

represents by the moment of linear momentum about O

— remember that v = (,70) -

m7#(0) + mrO(r) = mr?0 = mh = constant
h

That is the angular of momentum about O remains constant during the motion,

this called the principle of Conservation of Momentum

B Planetary Motion (Three Kepler’s Laws)

The laws according to which planets move round the sun are stated as follows:
(i) The orbit of a planet round the sun is an ellipse, in one focus of which the
center of the sun is situated.

(ii) The radius vector, drawn from the center of the sun to the planet describes
equal areas in equal times.

(iii) The square of the periodic times of the various planets are proportional
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to the cubes of the semi-major axes of their orbits.

These three laws were discovered by Kepler (1571-1630) and were deduced by
him entirely from observations of the movements of the planets without any

reference to the nature of the forces which control these movements.

For application, the force of gravitational f,ff;fl'('ﬁi"

attraction will be considered. Some common \\"‘N

examples of central-force systems which depend £ /\ fawmw

on gravitation include the motion of the moon (,f‘;:;,“c,.mgh.
and artificial satellites about the earth, and the / 'j;u T

motion of the planets about the sun. As a typical
problem in space mechanics, consider the “Launching

trajectory of a space satellite or space vehicle launched into free-flight orbit
with an initial velocity Vy, see the figure. It will be assumed that this velocity
is initially parallel to the tangent at the surface of the earth, as shown in the
figure. Just after the satellite is released into free flight, the only force acting on
it is the gravitational force of the earth. (Gravitational attractions involving
other bodies such as the moon or sun will be neglected, since for orbits close to
the earth their effect is small in comparison with the earth's gravitation.)
According to Newton's law of gravitation, force F will always act between the
mass centers of the earth and the satellite, Figure 3. From Equation 1, this force

of attraction has a magnitude of
M m
F=G—=
,',,2
where M, and m represent the mass of the earth and the satellite,

respectively, G is the gravitational constant, and r is the distance between the

mass centers. To obtain the orbital path, we set » = «~! in the foregoing

equation and substitute the result into Equation 6. We get

dz’ll, + _ GMe

do? h?
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This second-order differential equation has constant coefficients and is
nonhomogeneous. The solution is the sum of the complementary and particular

solutions given by

1 GM,
u === Ccos(@ — ¢) + —=
r h?2

This equation represents the free-flight trajectory of the satellite. It is the

equation of a conic section expressed in terms of polar coordinates.

The type of path traveled by the satellite is Hyperioht tikjectoty
determined from the value of the - o
Parabolic trajectory
eccentricity of the conic section as o et
= Elliptical trajectory
ChZ < = D<e< |

vi A
GI 13 Circular
trajectory 4
e=0

Crash
trajectory

e = 0 free-flight trajectory is a circle,
e = 1 free-flight trajectory is a parabola

e < 1 free-flight trajectory is an ellipse ! ’

e > 1 free-flight trajectory is a hyperbola
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( M llustrative Examples W ]

Il Example »

A particle describes the path » = atan@ under a force to the origin. Find its

acceleration and velocity in terms of r.

Il Solution »
Since, » = atan® and let us consider » = i then au = cot @
By differentiation with respect to 0
a,ﬂ =—csc’@ =— 1+cot’0 =— 1+ a’u®
Again
a,ﬂ = 2csc? Bcot@ = 2au 1+ a’u?®

do?
.+ F = mh?u? d2_u +u

do?

~F=mh*? 2u 14 d*u? +u = mh*u® 2a*u? +3 =

Also to get the velocity law

2
du )’ 1+ a’u®
v? = h? [—] + u? = v? = h?
do a?
h2
v = a* + 3a’r* + r*
a’rt
Il Example »

+ u?

2
3+ 32
1,,2

h2
2

r

Determine the law of force in the following orbits, the pole being the centre of

attraction

(i) r* = a®cos20

(i) r = =2
0 +b
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Il Solution »

(i) Due to r* = a® cos28 and let us choose r = w~* therefore lz = a® cos20
u

Now differentiate with respect to 6

—Zlﬂ = —éaz sin20 = ﬂ = a’u® sin 20
us do de
Again
2
QU _ 9423 cos 20 + 3a%u? U 020 = 20 a2 cos 20 + 3a%u’® % sin 20

d92 de l/uz

a?u® sin 20

2
", { 1; = 2u + 3a*u® sin® 20 = 2u + 3a'u® 1 — cos® 26
do
= 2u + 3a*u® — 3a*u’® cos? 20
= 2u + 3(1,4’11,5 — 3u = 3(],4’11,5 —Uu
2
du + u = 3atu’
do?

3ma’h?

,r,7

. F = mh*u? 3a*u® = 3ma*h?u’ =

(ii) In the similar manner, we have » = assume that » = «~* hence

0% +b
l: a :}—iﬂ:——zae
u  6°+b wrdf gy
dd a AL a dd a

Now differentiate again with respect to variable 6

&2
" de*  a

C d*u 2
—_tu

" de? a
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F — mh2u2

2
M+u]

de?
2
- F = mh®u? [2 +u]= M 27‘ +1]
a rd la

Il Example »

If a particle describes the cardioid r = a(1 — cos6) under a force to the pole,

show that the force is proportional to the inverse fourth power of the distance.

If P be the force at the apse (6 = =) and V' represents the velocity, prove that

3V? = 4aP.

Il Solution »
Since we have r = a(1 — cos8) and let us choose r = u™! therefore

1_ a(l — cos0)
u

Now differentiate with respect to 6

—lﬂ = asinf = ﬂ = —au®sinf
2
u
Once again
2
M = —2auﬂsin0 — au? cos O = 2a’u?® sin? @ — au® cos O
de? do
. d’u _ 2 s 2 _ 2 2
,=— = —au’ cosf —2ausin“0 = —au® cosO — 2au 1 — cos” 0
de?
2
du = —au® cosO + 2au 1 — cos’ @
d6*
= —au®|cos® —2ua 1—cosd (1+ cosb)
———
1/u
= —au® cos® — 2(1 + cosH)
= —au?(—2 — cos#) = —au®(—3 + 1 — cosb)
1/au

=3au’ —u
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2
. du + u = 3au’®
de?
2 92 d2u
o F = mh*u’|——+u
de*
2
. F = mh*u? 3au® = 3mah*u? = m
r
At apse we have
. du 2 R
7 =0 Or E:O = —au“sin@ =0 s.sin0=0 =60==«
> h =7 = (rf)r = 2aV Note 'rl = a(l — cos ) = 2a
v O=m
But we derived the law of force
2 3ma(2aV)?
. p=3mah - p _p = 3maeV)y v —ep
ri = (2a)*
Il Example »

Show that the curve »™ = a™ cosn@ can be described under a force to the pole

varying inversely as 2n + 3 power of the distance

Il Solution »

Since, ¥ = a™ cosn® and let us take r» = u™! thus == = a™ cos nd

n

u

Now differentiate with respect to 6

_ ﬁ% = _fa"sinnd = % = a"u"*' sinnd
un

Once again

2
U _ pgmum cosn + (n + a"u" U g
de? dao

= nu"*! a" cosnf + (n + 1)a™u" & Ginng

l/u"

nun+1

a sinnf
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. du
do?
= nu + (n + 1)a2nu2n+1
2
- ﬂ =nu + (n + 1)a2nu2n+1
do?
2
. d’u +u=(n+ 1)aznu2n+1
do?
d’u
o F=mh?ul | =—=+u
do?

- F = mhzuz (,n + 1)02"u2"+1

Il Example »

= nu + (n + a’"u* ' sin’ n0 = nu + (n + 1)a®"u’" (1 — cos® nh)

— (n + Du*"*! a®" cos® n@
e et
1/u2n

—(n+1u = (n+1)a* " —u

_ 3ma’®"h?

— (n + 1)ma2nh2u2n+3
,’,2n+3

A particle moves under the action of a force to a fixed point varying inversely

as the square of the distance r. Prove that the orbit is a conic section with one

focus at the center of force.

Il Solution »
Since, F = £ = pu? then
,’,2
2 2
mh?u®  d6? de?
2
. du +u=2A
de?

This is a differential equation wh

mh?u? mh?

ich its general solution is

w=21= w1+ ecos(6 — a))
r

Where e and arepresent the constants of integration.

Il Example »

A particle with mass 1gr moves under an attractive force varies inversely as r3

where the force equals 1 Dyne

whenr =1 cm. Find the path equation if
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. | o
0 = 0 when » =2 cm and velocity 5 cmsec™! with direction makes an angle

of % with constant line.

Il Solution »

Since the attractive force varies inversely as cub of r,i.e. F = % where p
r

is constant of proportional which can be evaluated from the condition F =1

when r=1 then u =1, therefore F = 1
s

and the path differential

equation is
2, 2| d’u 3 2| d’u d’u 1
hu | —+u|l=v" =h|l—4+u|=u Or —+|[1—=—|u =0 (1)
do? do? do?

The constant h can be obtained from the principle of conservation of angular

momentum about the attractive point and then

1 . T 1
= h ==(2sin—=) = —
2( 4) V2 C
Substituting in differential equation (1) we obtain / !
du_, g ~
de?
du d d_u]_uzﬂ or [ d[ﬂ]_udu:
do du\ do de de
Then by integration
2
du 2
—_| =u"+c 2
[de] ! @

Where ¢, is constant of integration and to determine ¢, we have to evaluate

Z—Z as » = 2 which can be evaluated from velocity law

[du]2 2 du)’ 9
—| tu +u
do

do

1

v = h? =
2
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Since v = % when u = 1 then

[\

o
+_
4

du

= 1j|du
do

1
4 2

du2

1

That is as u :% we have = therefore, the value of integration

constant ¢, = 0 and from equation (2)

du )’ d

[—u]:u2 =28 - _y Or — = —df

deo dae u
Then by integration we have
Inu =—60+c,

Now from the initial condition » = % as @ =0 weget c, = ln% Or
¢, = —In2 and then

Inu=-—-6—In2 =khr=60+mI2 Or r=2¢
Which gives the path equation.

Il Example »

If the ratio between the maximum value of angular velocity of a planet and the

minimum value is ~2. Prove that eccentricity of the planet trajectory is r=1

Il Solution »
According Kepler’s law the planet moves around the sun in an ellipse path, in

one focus of which the center of the sun is situated, where
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It’s clear that the angular velocity @ varies inversely as the square of distance

of the sun r, therefore the greatest angular velocity occurs as r» be smallest

say r =1, where = OA = a —ae and again the lowest angular velocity

occursas r» = r, where n, = OB = a + ae

; 2
:>Q—A=’y2=rl2
0g 7
_(1+e)2
1—e)?
=>f7=1+¢'3 Or e=7—1
1—e v+1

Il Example »
If a particle moves under the effect of a detractive central force to outside such
that its path equation is @ = 6(r). Prove that the force law is given by

_ mh?(20" + r0” + r?6'?)

4
r°9’3

where ' indicates differentiations with respect to .

Il Solution »

The law of detractive force is given by

d*u
de*

F = —mh*u? +u

from the path equation @ is a function of » let as usual » = L hence

u
0 = 0(r) Q:Qﬁzg’_i
du drdu u?
0/
du _ _u
deo e’

Once time differentiate we have



57

du_d| uldu
de> dul 0')do
2ub’ — u?|— L|o”
=— u?) du g7 — 420
6" do dr?
__2ub’+ 0" WP
- 9’2 o’
_ 2030 4+ 426"
= —0,3
3’/ 2”7
. F = —mh*u® ud tub +u u=1
0’ r
— —mh? 20" + r0” + r?0"
- 59’3
Il Example »

Prove that the areal velocity in Cartesian coordinate is %(az'y — yz).

Il Solution »

Since the relation between Cartesian (z,y) and Polar (,6) coordinates are

tanB:g, r? = x? 4+ 9?

xTr

1

And the areal velocity is givenby A = =h = §r2é

N =

Then differentiating

tan0:£ 20'sec29:u
T ;132
:}é:ucosze
z2
2
but cos? § = —=
a:2+y2
. 1 . 1 III—.’I! 1:2
A:-r29:-(a:2+y2)y - Y - -
2 2 T  +y
=1 yxr — TY
2
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PROBLEMS

O A particle is attracted to a point by a central force, and it is observed that the

orbit of the particle is the spiral » = e . Determine the force that is acting.

O A particle moving under the influence of a central force, describes a circle
through the center of the force. Prove that the force is attractive and inversely
proportional to the fifth power of the distance

[Hint. Equation of the circle is » = 2acos@].
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3 If in a central orbit under the force (pu®(3 + 2a?u?)), a particle be projected

at a distance a with a velocity «/5;; / a in a direction making tan_lé with the

radius, show that the equation to the path is » = acot

0+3].
4

£
1+ ecos@
pole varying inversely as 2 power of the distance.

O Show that the curve r = can be described under a force to the



