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Multiple Integrals 
 

 Introduction 
In Calculus I we moved on to the subject of integrals once we had finished the discussion of 
derivatives.  The same is true in this course.  Now that we have finished our discussion of 
derivatives of functions of more than one variable we need to move on to integrals of functions of 
two or three variables. 
 
Most of the derivatives topics extended somewhat naturally from their Calculus I counterparts 
and that will be the same here.  However, because we are now involving functions of two or three 
variables there will be some differences as well.  There will be new notation and some new issues 
that simply don’t arise when dealing with functions of a single variable.   
 
Here is a list of topics covered in this chapter. 
 
Double Integrals – We will define the double integral in this section. 
 
Iterated Integrals – In this section we will start looking at how we actually compute double 
integrals. 
 
Double Integrals over General Regions – Here we will look at some general double integrals. 
 
Double Integrals in Polar Coordinates – In this section we will take a look at evaluating double 
integrals using polar coordinates. 
 
Triple Integrals – Here we will define the triple integral as well as how we evaluate them. 
  
Triple Integrals in Cylindrical Coordinates – We will evaluate triple integrals using cylindrical 
coordinates in this section. 
 .  
Triple Integrals in Spherical Coordinates – In this section we will evaluate triple integrals 
using spherical coordinates. 
 
Change of Variables – In this section we will look at change of variables for double and triple 
integrals. 
 
Surface Area – Here we look at the one real application of double integrals that we’re going to 
look at in this material. 
 
Area and Volume Revisited – We summarize the area and volume formulas from this chapter. 
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 Double Integrals 
Before starting on double integrals let’s do a quick review of the definition of a definite integrals 
for functions of single variables.  First, when working with the integral, 

 ( )
b

a
f x dx∫  

we think of x’s as coming from the interval a x b≤ ≤ .  For these integrals we can say that we are 
integrating over the interval a x b≤ ≤ .  Note that this does assume that a b< , however, if we 
have b a<  then we can just use the interval b x a≤ ≤ . 
 
Now, when we derived the definition of the definite integral we first thought of this as an area 
problem.  We first asked what the area under the curve was and to do this we broke up the 
interval a x b≤ ≤  into n subintervals of width x∆  and choose a point, *

ix , from each interval as 
shown below, 
 

 
 

Each of the rectangles has height of ( )*
if x  and we could then use the area of each of these 

rectangles to approximate the area as follows. 
 ( ) ( ) ( ) ( )* * * *

1 2 i nA f x x f x x f x x f x x≈ ∆ + ∆ + + ∆ + + ∆   
To get the exact area we then took the limit as n goes to infinity and this was also the definition of 
the definite integral. 

 ( ) ( )*

1
lim

nb

ia n i
f x dx f x x

→∞
=

= ∆∑∫  

 
In this section we want to integrate a function of two variables, ( ),f x y .  With functions of one 
variable we integrated over an interval (i.e. a one-dimensional space) and so it makes some sense 
then that when integrating a function of two variables we will integrate over a region of 2

 (two-
dimensional space). 
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We will start out by assuming that the region in 2
  is a rectangle which we will denote as 

follows, 
 [ ] [ ], ,R a b c d= ×  
 
This means that the ranges for x and y are a x b≤ ≤  and c y d≤ ≤ . 
 
Also, we will initially assume that ( ), 0f x y ≥  although this doesn’t really have to be the case.  

Let’s start out with the graph of the surface S given by graphing ( ),f x y  over the rectangle R. 
 

 
 
Now, just like with functions of one variable let’s not worry about integrals quite yet.  Let’s first 
ask what the volume of the region under S (and above the xy-plane of course) is.   
 
We will first approximate the volume much as we approximated the area above.  We will first 
divide up a x b≤ ≤  into n subintervals and divide up c y d≤ ≤  into m subintervals.  This will 
divide up R into a series of smaller rectangles and from each of these we will choose a point 
( )* *,i jx y .  Here is a sketch of this set up. 
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Now, over each of these smaller rectangles we will construct a box whose height is given by 
( )* *,i jf x y .  Here is a sketch of that. 

 

 
 
Each of the rectangles has a base area of A∆  and a height of ( )* *,i jf x y  so the volume of each of 

these boxes is ( )* *,i jf x y A∆ .  The volume under the surface S is then approximately, 

 ( )* *

1 1
,

n m

i j
i j

V f x y A
= =

≈ ∆∑∑  

 
We will have a double sum since we will need to add up volumes in both the x and y directions. 
 
To get a better estimation of the volume we will take n and m larger and larger and to get the 
exact volume we will need to take the limit as both n and m go to infinity.  In other words, 
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 ( )* *

, 1 1
lim ,

n m

i jn m i j
V f x y A

→∞
= =

= ∆∑∑  

 
Now, this should look familiar.  This looks a lot like the definition of the integral of a function of 
single variable.  In fact this is also the definition of a double integral, or more exactly an integral 
of a function of two variables over a rectangle. 
 
Here is the official definition of a double integral of a function of two variables over a rectangular 
region R as well as the notation that we’ll use for it. 

 ( ) ( )* *

, 1 1
, lim ,

n m

i jn m i jR

f x y dA f x y A
→∞

= =

= ∆∑∑∫∫  

 
Note the similarities and differences in the notation to single integrals.  We have two integrals to 
denote the fact that we are dealing with a two dimensional region and we have a differential here 
as well.  Note that the differential is dA instead of the dx and dy that we’re used to seeing.  Note 
as well that we don’t have limits on the integrals in this notation.  Instead we have the R written 
below the two integrals to denote the region that we are integrating over. 
 
Note that one interpretation of the double integral of ( ),f x y  over the rectangle R is the volume 

under the function ( ),f x y  (and above the xy-plane).  Or, 
 

( )Volume ,
R

f x y dA= ∫∫  

 
We can use this double sum in the definition to estimate the value of a double integral if we need 
to.  We can do this by choosing ( )* *,i jx y  to be the midpoint of each rectangle.  When we do this 

we usually denote the point as ( ),i jx y .  This leads to the Midpoint Rule, 
 

 ( ) ( )
1 1

, ,
n m

i j
i jR

f x y dA f x y A
= =

≈ ∆∑∑∫∫  

 
In the next section we start looking at how to actually compute double integrals. 
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 Iterated Integrals 
In the previous section we gave the definition of the double integral.  However, just like with the 
definition of a single integral the definition is very difficult to use in practice and so we need to 
start looking into how we actually compute double integrals.  We will continue to assume that we 
are integrating over the rectangle 
 [ ] [ ], ,R a b c d= ×  
We will look at more general regions in the next section. 
 
The following theorem tells us how to compute a double integral over a rectangle. 
 
Fubini’s Theorem 
If ( ),f x y  is continuous on [ ] [ ], ,R a b c d= ×  then, 

 ( ) ( ) ( ), , ,
R

b dd b

c aa c
f x y dA f x y dy dx f x y dx dy= =⌠ ⌠

⌡ ⌡∫∫ ∫ ∫  

These integrals are called iterated integrals. 
 
Note that there are in fact two ways of computing a double integral and also notice that the inner 
differential matches up with the limits on the inner integral and similarly for the outer differential 
and limits.  In other words, if the inner differential is dy then the limits on the inner integral must 
be y limits of integration and if the outer differential is dy then the limits on the outer integral 
must be y limits of integration. 
 
Now, on some level this is just notation and doesn’t really tell us how to compute the double 
integral.  Let’s just take the first possibility above and change the notation a little. 
 

 ( ) ( ), ,
R

b d

ca
f x y dA f x y dy dx =   

⌠
⌡∫∫ ∫  

 
We will compute the double integral by first computing  

 ( ),
d

c
f x y dy∫  

and we compute this by holding x constant and integrating with respect to y as if this were a 
single integral.  This will give a function involving only x’s which we can in turn integrate. 
 
We’ve done a similar process with partial derivatives.  To take the derivative of a function with 
respect to y we treated the x’s as constants and differentiated with respect to y as if it was a 
function of a single variable.   
 
Double integrals work in the same manner.  We think of all the x’s as constants and integrate with 
respect to y or we think of all y’s as constants and integrate with respect to x. 
 
Let’s take a look at some examples. 
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Example 1  Compute each of the following double integrals over the indicated rectangles. 
(a) 26

R

xy dA∫∫ ,  [ ] [ ]2,4 1,2R = ×    [Solution] 

(b) 32 4
R

x y dA−∫∫ ,  [ ] [ ]5,4 0,3R = − ×    [Solution] 

(c) ( ) ( )2 2 cos sin
R

x y x y dAπ π+ +∫∫ ,  [ ] [ ]2, 1 0,1R = − − ×    [Solution] 

(d) 
( )2

1
2 3

R

dA
x y+

⌠⌠

⌡⌡

,  [ ] [ ]0,1 1,2R = ×    [Solution] 

(e) 
R

xyx dA∫∫ e ,  [ ] [ ]1,2 0,1R = − ×    [Solution] 

 
Solution 
(a) 26

R

xy dA∫∫ ,  [ ] [ ]2,4 1,2R = ×  

 
It doesn’t matter which variable we integrate with respect to first, we will get the same answer 
regardless of the order of integration.  To prove that let’s work this one with each order to make 
sure that we do get the same answer. 
 
Solution 1 
In this case we will integrate with respect to y first.  So, the iterated integral that we need to 
compute is, 

 2 2
4 2

12
6 6

R

xy dA xy dy dx= ⌠
⌡∫∫ ∫  

 
When setting these up make sure the limits match up to the differentials.  Since the dy is the inner 
differential (i.e. we are integrating with respect to y first) the inner integral needs to have y limits. 
 
To compute this we will do the inner integral first and we typically keep the outer integral around 
as follows, 

 

( ) 22 3

1

4

2

4

2
4

2

6 2

16 2

14

R

xy dA xy dx

x x dx

x dx

=

= −

=

⌠
⌡∫∫

∫

∫

 

 
Remember that we treat the x as a constant when doing the first integral and we don’t do any 
integration with it yet.  Now, we have a normal single integral so let’s finish the integral by 
computing this. 

 
42 2

2
6 7 84

R

xy dA x= =∫∫  
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Solution 2 
In this case we’ll integrate with respect to x first and then y.  Here is the work for this solution. 

 

( )

2 2

42 2

2

2

23

1

2 4

21

2

1
2

1

6 6

3

36

12

84

R

xy dA xy dx dy

x y dy

y dy

y

=

=

=

=

=

⌠
⌡

⌠
⌡

∫∫ ∫

∫  

 
Sure enough the same answer as the first solution. 
 
So, remember that we can do the integration in any order. 

[Return to Problems] 
 
(b) 32 4

R

x y dA−∫∫ ,  [ ] [ ]5,4 0,3R = − ×  

 
For this integral we’ll integrate with respect to y first. 

 

( )

( )

3 3

34

0

42

5

4 3

05

4

5
4

5

2 4 2 4

2

6 81

3 81

756

R

x y dA x y dy dx

xy y dx

x dx

x x
−

−

−

−

− = −

= −

= −

= −

= −

⌠
⌡

⌠
⌡

∫∫ ∫

∫  

 
Remember that when integrating with respect to y all x’s are treated as constants and so as far as 
the inner integral is concerned the 2x is a constant and we know that when we integrate constants 
with respect to y we just tack on a y and so we get 2xy from the first term. 

[Return to Problems] 
 
 
(c) ( ) ( )2 2 cos sin

R

x y x y dAπ π+ +∫∫ ,  [ ] [ ]2, 1 0,1R = − − ×  

 
In this case we’ll integrate with respect to x first. 
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( ) ( ) ( ) ( )

( ) ( )

( )

( )

2 2 2 2

1
3 2

2

2

1
3

0

1 1

20

1

0
1

0

cos sin cos sin

1 1 sin sin
3

7 sin
3

7 1 cos
9
7 2
9

R

x y x y dA x y x y dx dy

x y x x y dy

y y dy

y y

π π π π

π π
π

π

π
π

π

−

−

−

−
+ + = + +

 = + + 
 

= +

= −

= +

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫

 

 
Don’t forget your basic Calculus I substitutions! 

[Return to Problems] 
 

(d) 
( )2

1
2 3

R

dA
x y+

⌠⌠

⌡⌡

,  [ ] [ ]0,1 1,2R = ×  

 
In this case because the limits for x are kind of nice (i.e. they are zero and one which are often 
nice for evaluation) let’s integrate with respect to x first.   We’ll also rewrite the integrand to help 
with the first integration. 

 

( ) ( )

( )

( )

2 2

1
1

0

2

1

2 1

01

2

1
2

1

2 3 2 3

1 2 3
2

1 1 1
2 2 3 3

1 1 1ln 2 3 ln
2 3 3
1 ln8 ln 2 ln 5
6

R

x y dA x y dx dy

x y dy

dy
y y

y y

− −

−

+ = +

 = − + 
 

= − −
+

 = − + − 
 

= − − −

⌠
⌡

⌠

⌡

⌠

⌡

∫∫ ∫

 

[Return to Problems] 
 
 
(e) 

R

xyx dA∫∫ e ,  [ ] [ ]1,2 0,1R = − ×  

 
Now, while we can technically integrate with respect to either variable first sometimes one way is 
significantly easier than the other way.  In this case it will be significantly easier to integrate with 
respect to y first as we will see. 
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2 1

1 0
R

xy xyx dA x dy dx
−

=∫∫ ∫ ∫e e  

 
The y integration can be done with the quick substitution, 
 u xy du x dy= =  
which gives 

 ( )
( )

2 1

01

2

1
2

1

2 1

2 1

1

2 1

3

R

xy xy

x

x

x dA dx

dx

x

−

−

−

−

−

=

= −

= −

= − − +

= − −

∫∫ ∫

∫

e e

e

e

e e

e e

 

 
So, not too bad of an integral there provided you get the substitution.  Now let’s see what would 
happen if we had integrated with respect to x first. 

 
1 2

0 1
R

xy xyx dA x dx dy
−

=∫∫ ∫ ∫e e  

 
In order to do this we would have to use integration by parts as follows, 

 1

xy

xy

u x dv dx

du dx v
y

= =

= =

e

e
 

The integral is then, 

 

1 2

10
1 2

2
10

1

2 2
0

2 2

1

1

2 1 1 1

R

xy xy xy

xy xy

y y y y

xx dA dx dy
y y

x dy
y y

dy
y y y y

−

−

− −

 
= −  

 

 
= − 

 

   
= − − − −   

   

⌠ ⌠  ⌡⌡

⌠

⌡

⌠

⌡

∫∫ e e e

e e

e e e e

 

 
We’re not even going to continue here as these are very difficult integrals to do. 

[Return to Problems] 
 
As we saw in the previous set of examples we can do the integral in either direction.  However, 
sometimes one direction of integration is significantly easier than the other so make sure that you 
think about which one you should do first before actually doing the integral. 
 
The next topic of this section is a quick fact that can be used to make some iterated integrals 
somewhat easier to compute on occasion. 
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Fact 
If ( ) ( ) ( ),f x y g x h y=  and we are integrating over the rectangle [ ] [ ], ,R a b c d= ×  then, 

 ( ) ( ) ( ) ( )( ) ( )( ),
R R

b d

a c
f x y dA g x h y dA g x dx h y dy= =∫∫ ∫∫ ∫ ∫  

 
So, if we can break up the function into a function only of x times a function of y then we can do 
the two integrals individually and multiply them together. 
 
Let’s do a quick example using this integral. 
 

Example 2  Evaluate ( )2cos
R

x y dA∫∫ , [ ]2,3 0,
2

R π = − ×   
. 

Solution 
Since the integrand is a function of x times a function of y we can use the fact. 

 

( ) ( ) ( )

( )

( )

2 2

3
2

2

2

0

3
2

2 0

2
0

cos cos

1 1 1 cos 2
2 2

5 1 1 sin 2
2 2 2

5
8

R

x y dA x dx y dy

x y dy

y y

π

π

π

π

−

−

 
=  

 

  = +  
   

 
    = +        

 

=

∫∫ ∫ ∫

∫
  

 
We have one more topic to discuss in this section.  This topic really doesn’t have anything to do 
with iterated integrals, but this is as good a place as any to put it and there are liable to be some 
questions about it at this point as well so this is as good a place as any. 
 
What we want to do is discuss single indefinite integrals of a function of two variables.  In other 
words we want to look at integrals like the following. 
 

 
( )2

3

sec 2 4
x
y

x y xy dy

x dx
−

+

−⌠
⌡

∫

e
 

 
From Calculus I we know that these integrals are asking what function that we differentiated to 
get the integrand.  However, in this case we need to pay attention to the differential (dy or dx) in 
the integral, because that will change things a little.   
 
In the case of the first integral we are asking what function we differentiated with respect to y to 
get the integrand while in the second integral we’re asking what function differentiated with 
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respect to x to get the integrand.  For the most part answering these questions isn’t that difficult.  
The important issue is how we deal with the constant of integration. 
 
Here are the integrals. 

 
( ) ( ) ( )

( )

2 2

3 4

sec 2 4 tan 2 2
2

1
4

x x
y y

xx y xy dy y xy g x

x dx x y h y
− −

+ = + +

− = + +⌠

⌡

∫

e e
 

 
Notice that the “constants” of integration are now functions of the opposite variable.  In the first 
integral we are differentiating with respect to y and we know that any function involving only x’s 
will differentiate to zero and so when integrating with respect to y we need to acknowledge that 
there may have been a function of only x’s in the function and so the “constant” of integration is a 
function of x. 
 
Likewise, in the second integral, the “constant” of integration must be a function of y since we are 
integrating with respect to x.  Again, remember if we differentiate the answer with respect to x 
then any function of only y’s will differentiate to zero. 
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 Double Integrals Over General Regions 
In the previous section we looked at double integrals over rectangular regions.  The problem with 
this is that most of the regions are not rectangular so we need to now look at the following double 
integral, 
 ( ),

D

f x y dA∫∫  

where D is any region. 
 
There are two types of regions that we need to look at.  Here is a sketch of both of them. 
 

       
 

We will often use set builder notation to describe these regions.  Here is the definition for the 
region in Case 1 
 ( ) ( ) ( ){ }1 2, | ,D x y a x b g x y g x= ≤ ≤ ≤ ≤  
and here is the definition for the region in Case 2. 
 ( ) ( ) ( ){ }1 2, | ,D x y h y x h y c y d= ≤ ≤ ≤ ≤  
 
This notation is really just a fancy way of saying we are going to use all the points, ( ),x y , in 
which both of the coordinates satisfy the two given inequalities. 
 
The double integral for both of these cases are defined in terms of iterated integrals as follows. 
 
In Case 1 where ( ) ( ) ( ){ }1 2, | ,D x y a x b g x y g x= ≤ ≤ ≤ ≤  the integral is defined to be, 

 ( ) ( )
( )

( )2

1
, ,

D

b g x

g xa
f x y dA f x y dy dx= ⌠

⌡∫∫ ∫  

 
In Case 2 where ( ) ( ) ( ){ }1 2, | ,D x y h y x h y c y d= ≤ ≤ ≤ ≤  the integral is defined to be, 

 ( ) ( )
( )

( )2

1
, ,

D

d h y

h yc
f x y dA f x y dx dy= ⌠

⌡∫∫ ∫  
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Here are some properties of the double integral that we should go over before we actually do 
some examples.  Note that all three of these properties are really just extensions of properties of 
single integrals that have been extended to double integrals. 
 
Properties 
 
1. ( ) ( ) ( ) ( ), , , ,

D D D

f x y g x y dA f x y dA g x y dA+ = +∫∫ ∫∫ ∫∫  

 
2. ( ) ( ), ,

D D

cf x y dA c f x y dA=∫∫ ∫∫ , where c is any constant. 

 
3. If the region D can be split into two separate regions D1 and D2 then the integral can be written 

as 
( ) ( ) ( )

1 2

, , ,
D D D

f x y dA f x y dA f x y dA= +∫∫ ∫∫ ∫∫  

 
Let’s take a look at some examples of double integrals over general regions. 
 
Example 1  Evaluate each of the following integrals over the given region D. 

(a) 
x
y

D

dA⌠⌠
⌡⌡

e ,  ( ){ }3, |1 2,D x y y y x y= ≤ ≤ ≤ ≤    [Solution] 

(b) 34
D

xy y dA−∫∫ ,  D is the region bounded by y x=  and 3y x= .   [Solution] 

(c) 26 40
D

x y dA−∫∫ ,  D is the triangle with vertices ( )0,3 , ( )1,1 , and ( )5,3 .    

      [Solution] 
Solution 

(a)  
x
y

D

dA⌠⌠
⌡⌡

e ,  ( ){ }3, |1 2,D x y y y x y= ≤ ≤ ≤ ≤  

Okay, this first one is set up to just use the formula above so let’s do that. 

 

3
3

2

2

2
2

1
1

2 1

1

2
2 1 4 1

1

1 1 1 2
2 2 2

yx x x
y y y

D y

y

y

y

y

dA dx dy y dy

y y dy

y

= =

= −

 = − = − 
 

⌠⌠⌠⌠ ⌠ ⌡⌡ ⌡ ⌡ ⌡

∫

e e e

e e

e e e e

 

[Return to Problems] 
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(b) 34
D

xy y dA−∫∫ ,  D is the region bounded by y x=  and 3y x= . 

 
In this case we need to determine the two inequalities for x and y that we need to do the integral.  
The best way to do this is the graph the two curves.  Here is a sketch. 
 

 
 

So, from the sketch we can see that that two inequalities are, 
 30 1x x y x≤ ≤ ≤ ≤  
 
We can now do the integral, 

 
3

3

1
3 3

0

1

2 4

0

1
2 7 12

0

1
3 8 13

0

4 4

12
4

7 12
4 4

7 1 1 55
12 4 52 156

D

x

x

x

x
xy y dA xy y dy dx

xy y dx

x x x dx

x x x

− = −

 = − 
 

= − +

 = − + = 
 

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫

 

[Return to Problems] 
 
(c) 26 40

D

x y dA−∫∫ ,  D is the triangle with vertices ( )0,3 , ( )1,1 , and ( )5,3 . 

 
We got even less information about the region this time.  Let’s start this off by sketching the 
triangle. 
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Since we have two points on each edge it is easy to get the equations for each edge and so we’ll 
leave it to you to verify the equations. 
 
Now, there are two ways to describe this region.  If we use functions of x, as shown in the image 
we will have to break the region up into two different pieces since the lower function is different 
depending upon the value of x.  In this case the region would be given by 1 2D D D= ∪  where, 

 
( ){ }

( )

1

2

, | 0 1, 2 3 3

1 1, |1 5, 3
2 2

D x y x x y

D x y x x y

= ≤ ≤ − + ≤ ≤

 = ≤ ≤ + ≤ ≤ 
 

 

 
Note the ∪  is the “union” symbol and just means that D is the region we get by combing the two 
regions.  If we do this then we’ll need to do two separate integrals, one for each of the regions. 
 
To avoid this we could turn things around and solve the two equations for x to get, 

 

1 32 3
2 2

1 1 2 1
2 2

y x x y

y x x y

= − + ⇒ = − +

= + ⇒ = −
 

 
If we do this we can notice that the same function is always on the right and the same function is 
always on the left and so the region is, 

 ( ) 1 3, | 2 1, 1 3
2 2

D x y y x y y = − + ≤ ≤ − ≤ ≤ 
 

 

 
Writing the region in this form means doing a single integral instead of the two integrals we’d 
have to do otherwise. 
 
Either way should give the same answer and so we can get an example in the notes of splitting a 
region up let’s do both integrals. 
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Solution 1 

 
( ) ( )

( ) ( )

1 2

2 2 2

51 3 32 2
1 12 30 1 2 2

51 3 32 2 2 2
1 12 30 1 2 2

1 5 223 3 2 1 1
2 20 1

4 10
3

6 40 6 40 6 40

6 40 6 40

6 20 6 20

12 180 20 3 2 3 15 180 20

3 180 3

D D D

x x

x x

x y dA x y dA x y dA

x y dy dx x y dy dx

x y y dx x y y dx

x x dx x x x dx

x x

− + +

− + +

− = − + −

= − + −

= − + −

= − + − + − + − + +

= − − −

⌠⌠ ⌡ ⌡

⌠⌠ ⌡ ⌡

∫∫ ∫∫ ∫∫

∫ ∫

∫ ∫

( )( ) ( )( ) 51 33 4 33 40 1 1
4 3 2 2

0 1
2 5 180

935
3

x x x x x+ − + − + +

= −

 

 
That was a lot of work.  Notice however, that after we did the first substitution that we didn’t 
multiply everything out.  The two quadratic terms can be easily integrated with a basic Calc I 
substitution and so we didn’t bother to multiply them out.  We’ll do that on occasion to make 
some of these integrals a little easier. 
 
Solution 2 
This solution will be a lot less work since we are only going to do a single integral. 

 

( )

( ) ( )

( ) ( )( )

3 2 12 2
1 3

1 2 2

3 2 13
1 3

1 2 2
3 332 31

2 21
3442 3100 31 1

3 4 2 2
1

6 40 6 40

2 40

100 100 2 2 1 2

50 2 1

935
3

y

y
D

y

y

x y dA x y dx dy

x xy dy

y y y y dy

y y y y

−

− +

−

− +

− = −

= −

= − + − − − +

= − + − + − +

= −

⌠
⌡

⌠

⌡

∫∫ ∫

∫  

 
So, the numbers were a little messier, but other than that there was much less work for the same 
result.  Also notice that again we didn’t cube out the two terms as they are easier to deal with 
using a Calc I substitution. 

[Return to Problems] 
 
As the last part of the previous example has shown us we can integrate these integrals in either 
order (i.e. x followed by y or y followed by x), although often one order will be easier than the 
other.  In fact there will be times when it will not even be possible to do the integral in one order 
while it will be possible to do the integral in the other order. 
 
Let’s see a couple of examples of these kinds of integrals. 
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Example 2  Evaluate the following integrals by first reversing the order of integration. 

(a) 
3

2

3 9 3

0

y

x
x dy dx⌠

⌡ ∫ e    [Solution] 

(b) 
3

8 2 4

0
1

y
x dx dy+⌠

⌡ ∫    [Solution] 

 
Solution 

(a)  
3

2

3 9 3

0

y

x
x dy dx⌠

⌡ ∫ e  

First, notice that if we try to integrate with respect to y we can’t do the integral because we would 
need a y2 in front of the exponential in order to do the y integration.  We are going to hope that if 
we reverse the order of integration we will get an integral that we can do.    
 
Now, when we say that we’re going to reverse the order of integration this means that we want to 
integrate with respect to x first and then y.  Note as well that we can’t just interchange the 
integrals, keeping the original limits, and be done with it.  This would not fix our original 
problem and in order to integrate with respect to x we can’t have x’s in the limits of the integrals.  
Even if we ignored that the answer would not be a constant as it should be. 
 
So, let’s see how we reverse the order of integration.  The best way to reverse the order of 
integration is to first sketch the region given by the original limits of integration.  From the 
integral we see that the inequalities that define this region are, 

 2

0 3
9

x
x y
≤ ≤

≤ ≤
 

 
These inequalities tell us that we want the region with 2y x=  on the lower boundary and 9y =  
on the upper boundary that lies between 0x =  and 3x = .  Here is a sketch of that region. 
 

 
 
Since we want to integrate with respect to x first we will need to determine limits of x (probably 
in terms of y) and then get the limits on the y’s.  Here they are for this region. 
 

 0
0 9

x y
y

≤ ≤

≤ ≤
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Any horizontal line drawn in this region will start at 0x =  and end at x y=  and so these are 
the limits on the x’s and the range of y’s for the regions is 0 to 9. 
 
The integral, with the order reversed, is now, 

 
3 3

2

93 9 3 3

00 0

yy y

x
x dy dx x dx dy= ⌠⌠ ⌡ ⌡∫ ∫e e  

and notice that we can do the first integration with this order.  We’ll also hope that this will give 
us a second integral that we can do.  Here is the work for this integral. 

 

( )

3 3

3

3

3

2

93 9 3 3

00 0

9

4

00

9
2

0

9

0

729

1
4

1
4

1
12
1 1

12

yy y

y
y

y

y

x
x dy dx x dx dy

x dy

y dy

=

=

=

=

= −

⌠⌠ ⌡ ⌡

⌠

⌡

⌠
⌡

∫ ∫e e

e

e

e

e

 

[Return to Problems] 
 

(b) 
3

8 2 4

0
1

y
x dx dy+⌠

⌡ ∫  

 
 As with the first integral we cannot do this integral by integrating with respect to x first so we’ll 
hope that by reversing the order of integration we will get something that we can integrate.  Here 
are the limits for the variables that we get from this integral. 

 
3 2
0 8
y x

y
≤ ≤

≤ ≤
 

and here is a sketch of this region. 
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So, if we reverse the order of integration we get the following limits. 
 

 3

0 2
0

x
y x

≤ ≤

≤ ≤
 

The integral is then, 

 
3

3

3

28 2 4 4

00 0

2
4

00

32 3 4 2
0

1 1

1

11 17 1
6

x

x

y
x dx dy x dy dx

y x dx

x x dx

+ = +

= +

 
= + = − 

 

⌠⌠ 
⌡ ⌡

⌠
⌡

∫ ∫

∫

 

[Return to Problems] 
 
The final topic of this section is two geometric interpretations of a double integral.  The first 
interpretation is an extension of the idea that we used to develop the idea of a double integral in 
the first section of this chapter.  We did this by looking at the volume of the solid that was below 
the surface of the function ( ),z f x y=  and over the rectangle R in the xy-plane.  This idea can 
be extended to more general regions. 
 
The volume of the solid that lies below the surface given by ( ),z f x y=  and above the region D 
in the xy-plane is given by, 
 ( ),

D

V f x y dA= ∫∫  

 
Example 3  Find the volume of the solid that lies below the surface given by 16 200z xy= +  
and lies above the region in the xy-plane bounded by 2y x=  and 28y x= − .  
 
Solution 
Here is the graph of the surface and we’ve tried to show the region in the xy-plane below the 
surface. 

    
Here is a sketch of the region in the xy-plane by itself. 
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By setting the two bounding equations equal we can see that they will intersect at 2x =  and 

2x = − .  So, the inequalities that will define the region D in the xy-plane are, 

 2 2

2 2
8

x
x y x
− ≤ ≤

≤ ≤ −
 

 
The volume is then given by, 

 ( )
2

2

2

2

2 8

2
2 82

2
2 3 2

2
2

4 3 2

2

16 200

16 200

8 200

128 400 512 1600

400 1280032 256 1600
3 3

D

x

x

x

x

V xy dA

xy dy dx

xy y dx

x x x dx

x x x x

−

−

−

−

−

−

= +

= +

= +

= − − + +

 = − − + + = 
 

⌠
⌡

⌠
⌡

∫∫

∫

∫

 

 
Example 4  Find the volume of the solid enclosed by the planes 4 2 10x y z+ + = , 3y x= , 

0z = , 0x = . 
 
Solution This example is a little different from the previous one.  Here the region D is not 
explicitly given so we’re going to have to find it.  First, notice that the last two planes are really 
telling us that we won’t go past the xy-plane and the yz-plane when we reach them. 
 
The first plane, 4 2 10x y z+ + = , is the top of the volume and so we are really looking for the 
volume under, 

10 4 2z x y= − −  
and above the region D in the xy-plane.  The second plane, 3y x=  (yes that is a plane), gives one 
of the sides of the volume as shown below. 
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The region D will be the region in the xy-plane (i.e. 0z = ) that is bounded by 3y x= , 0x = , 
and the line where 4 2 10z x y+ + =  intersects the xy-plane.  We can determine where 

4 2 10z x y+ + =  intersects the xy-plane by plugging 0z =  into it. 
 
 0 4 2 10 2 5 2 5x y x y y x+ + = ⇒ + = ⇒ = − +  
 
So, here is a sketch the region D. 
 

 
 

The region D is really where this solid will sit on the xy-plane and here are the inequalities that 
define the region. 

 
0 1

3 2 5
x

x y x
≤ ≤

≤ ≤ − +
 

Here is the volume of this solid. 
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 ( )

1

0
1 2 52

30
1 2

0
1

3 2

0

2 5

3

10 4 2

10 4 2

10 4

25 50 25

25 2525 25
3 3

D

x

x

x

x

V x y dA

x y dy dx

y xy y dx

x x dx

x x x

− +

− +

= − −

= − −

= − −

= − +

 = − + = 
 

⌠
⌡

∫∫

∫ ∫

∫

 

 
The second geometric interpretation of a double integral is the following. 
 

Area of 
D

D dA= ∫∫  

 
This is easy to see why this is true in general.  Let’s suppose that we want to find the area of the 
region shown below. 

 
 
From Calculus I we know that this area can be found by the integral, 

 ( ) ( )2 1

b

a
A g x g x dx= −∫  

 
Or in terms of a double integral we have, 

 
( )

( )

( )
( ) ( ) ( )

2

1

2

1
2 1

Area of 
D

g x

g x

g x

g x

b

a

b b

a a

D dA

dy dx

y dx g x g x dx

=

=

= = −

⌠
⌡

∫∫

∫

∫ ∫

 

 
This is exactly the same formula we had in Calculus I. 
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 Double Integrals in Polar Coordinates 
To this point we’ve seen quite a few double integrals.  However, in every case we’ve seen to this 
point the region D could be easily described in terms of simple functions in Cartesian coordinates.  
In this section we want to look at some regions that are much easier to describe in terms of polar 
coordinates.  For instance, we might have a region that is a disk, ring, or a portion of a disk or 
ring.  In these cases, using Cartesian coordinates could be somewhat cumbersome.  For instance, 
let’s suppose we wanted to do the following integral, 
 
 ( ), ,  is the disk of radius 2

D

f x y dA D∫∫  

 
To this we would have to determine a set of inequalities for x and y that describe this region.  
These would be,  

 
2 2

2 2

4 4

x

x y x

− ≤ ≤

− − ≤ ≤ −
 

 
With these limits the integral would become, 

 ( ) ( )
2

2

2 4

42
, ,

x

x
D

f x y dA f x y dy dx
−

− −−
= ⌠
⌡∫∫ ∫  

 
Due to the limits on the inner integral this is liable to be an unpleasant integral to compute. 
 
However, a disk of radius 2 can be defined in polar coordinates by the following inequalities, 

 0 2
0 2r
θ π≤ ≤
≤ ≤

 

 
These are very simple limits and, in fact, are constant limits of integration which almost always 
makes integrals somewhat easier.   
 
So, if we could convert our double integral formula into one involving polar coordinates we 
would be in pretty good shape.  The problem is that we can’t just convert the dx and the dy into a 
dr and a dθ .  In computing double integrals to this point we have been using the fact that 
dA dx dy=  and this really does require Cartesian coordinates to use.  Once we’ve moved into 
polar coordinates dA dr dθ≠  and so we’re going to need to determine just what dA is under 
polar coordinates. 
 
So, let’s step back a little bit and start off with a general region in terms of polar coordinates and 
see what we can do with that.  Here is a sketch of some region using polar coordinates. 
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So, our general region will be defined by inequalities, 

 ( ) ( )1 2h r h
α θ β
θ θ

≤ ≤

≤ ≤
 

 
Now, to find dA let’s redo the figure above as follows, 
 

 
 
As shown, we’ll break up the region into a mesh of radial lines and arcs.  Now, if we pull one of 
the pieces of the mesh out as shown we have something that is almost, but not quite a rectangle.  
The area of this piece is A∆ .  The two sides of this piece both have length o ir r r∆ = −  where or  
is the radius of the outer arc and ir  is the radius of the inner arc.  Basic geometry then tells us that 
the length of the inner edge is ir θ∆  while the length of the out edge is or θ∆  where θ∆  is the 
angle between the two radial lines that form the sides of this piece. 
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Now, let’s assume that we’ve taken the mesh so small that we can assume that i or r r≈ =  and 
with this assumption we can also assume that our piece is close enough to a rectangle that we can 
also then assume that, 

A r rθ∆ ≈ ∆ ∆  
 
Also, if we assume that the mesh is small enough then we can also assume that, 
 dA A d dr rθ θ≈ ∆ ≈ ∆ ≈ ∆  
 
With these assumptions we then get dA r dr dθ≈ . 
 
In order to arrive at this we had to make the assumption that the mesh was very small.  This is not 
an unreasonable assumption.  Recall that the definition of a double integral is in terms of two 
limits and as limits go to infinity the mesh size of the region will get smaller and smaller.  In fact, 
as the mesh size gets smaller and smaller the formula above becomes more and more accurate and 
so we can say that, 
 

dA r dr dθ=  
 
We’ll see another way of deriving this once we reach the Change of Variables section later in this 
chapter.  This second way will not involve any assumptions either and so it maybe a little better 
way of deriving this. 
 
Before moving on it is again important to note that dA dr dθ≠ .  The actual formula for dA has 
an r in it.  It will be easy to forget this r on occasion, but as you’ll see without it some integrals 
will not be possible to do. 
 
Now, if we’re going to be converting an integral in Cartesian coordinates into an integral in polar 
coordinates we are going to have to make sure that we’ve also converted all the x’s and y’s into 
polar coordinates as well.  To do this we’ll need to remember the following conversion formulas, 
 2 2 2cos sinx r y r r x yθ θ= = = +  
 
We are now ready to write down a formula for the double integral in terms of polar coordinates. 
 

( ) ( )
( )

( )2

1

, cos , sin
h

h
D

f x y dA f r r r dr d
β θ

θα
θ θ θ= ⌠

⌡∫∫ ∫  

 
It is important to not forget the added r and don’t forget to convert the Cartesian coordinates in 
the function over to polar coordinates. 
 
Let’s look at a couple of examples of these kinds of integrals. 
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Example 1  Evaluate the following integrals by converting them into polar coordinates. 
(a) 2

D

x y dA∫∫ , D is the portion of the region between the circles of radius 2       

      and radius 5 centered at the origin that lies in the first quadrant.   [Solution] 
 

(b) 
2 2

D

x y dA+∫∫e , D is the unit circle centered at the origin.   [Solution] 

 
Solution 
(a) 2

D

x y dA∫∫ , D is the portion of the region between the circles of radius 2 and radius 5 

centered at the origin that lies in the first quadrant. 
 
First let’s get D in terms of polar coordinates.  The circle of radius 2 is given by 2r =  and the 
circle of radius 5 is given by 5r = .  We want the region between them so we will have the 
following inequality for r. 
 2 5r≤ ≤  
 
Also, since we only want the portion that is in the first quadrant we get the following range of 
θ ’s. 

 0
2
πθ≤ ≤  

 
Now that we’ve got these we can do the integral. 

 ( )( )
52

20
2 2 cos sin

D

x y dA r r r dr d
π

θ θ θ= ⌠⌡∫∫ ∫  

 
Don’t forget to do the conversions and to add in the extra r.  Now, let’s simplify and make use of 
the double angle formula for sine to make the integral a little easier. 

 

( )

( )

( )

( )

52 3

20

52
4

20

2

0

2

0

2 sin 2

1 sin 2
4

609 sin 2
4

609 cos 2
8

609
4

D

x y dA r dr d

r d

d

π

π

π

π

θ θ

θ θ

θ θ

θ

=

=

=

= −

=

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫

 

[Return to Problems] 
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(b) 
2 2

D

x y dA+∫∫e , D is the unit circle centered at the origin. 

 
In this case we can’t do this integral in terms of Cartesian coordinates.  We will however be able 
to do it in polar coordinates.  First, the region D is defined by, 

 0 2
0 1r
θ π≤ ≤
≤ ≤

 

 
In terms of polar coordinates the integral is then, 

 
2 2 22 1

00D

x y rdA r dr d
π

θ+ = ⌠⌡∫∫ ∫e e  

 
Notice that the addition of the r gives us an integral that we can now do.  Here is the work for this 
integral. 

 

( )

( )

2 2 2

2

2 1

00

2 1

00

2

0

1
2

1 1
2
1

D

x y r

r

dA r dr d

d

d

π

π

π

θ

θ

θ

π

+ =

=

= −

= −

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫e e

e

e

e

 

[Return to Problems] 
 
Let’s not forget that we still have the two geometric interpretations for these integrals as well. 
 
Example 2  Determine the area of the region that lies inside 3 2sinr θ= +  and outside 2r = . 
 
Solution 
Here is a sketch of the region, D, that we want to determine the area of. 
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To determine this area we’ll need to know that value of θ for which the two curves intersect.  We 
can determine these points by setting the two equations equal and solving. 
 

 
3 2sin 2

1 7 11sin ,
2 6 6

θ
π πθ θ

+ =

= − ⇒ =
 

 
Here is a sketch of the figure with these angles added. 
 

 
 
Note as well that we’ve acknowledged that 6

π−  is another representation for the angle 11
6
π .  This 

is important since we need the range of θ  to actually enclose the regions as we increase from the 
lower limit to the upper limit.  If we’d chosen to use 11

6
π  then as we increase from 7

6
π  to 11

6
π  we 

would be tracing out the lower portion of the circle and that is not the region that we are after. 
 
So, here are the ranges that will define the region. 

 
7

6 6
2 3 2sinr

π πθ

θ

− ≤ ≤

≤ ≤ +
 

 
To get the ranges for r the function that is closest to the origin is the lower bound and the function 
that is farthest from the origin is the upper bound. 
 
The area of the region D is then, 
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( )

( )

7 6 3 2sin

6 2

7 6 3 2sin
2

26

7 6
2

6

7 6

6

7
6

6

1
2

5 6sin 2sin
2
7 6sin cos 2
2

7 16cos sin 2
2 2

11 3 14 24.187
2 3

D

A dA

r drd

r d

d

d

π θ

π

π θ

π

π

π

π

π

π

π

θ

θ

θ θ θ

θ θ θ

θ θ θ

π

+

−

+

−

−

−

−

=

=

=

= + +

= + −

 = − − 
 

= + =

⌠

⌡

⌠
⌡

⌠
⌡

∫∫

∫ ∫

 
 
Example 3  Determine the volume of the region that lies under the sphere 2 2 2 9x y z+ + = , 
above the plane 0z =  and inside the cylinder 2 2 5x y+ = . 
 
Solution 
We know that the formula for finding the volume of a region is, 
 ( ),

D

V f x y dA= ∫∫  

In order to make use of this formula we’re going to need to determine the function that we should 
be integrating and the region D that we’re going to be integrating over. 
 
The function isn’t too bad.  It’s just the sphere, however, we do need it to be in the form 

( ),z f x y= .  We are looking at the region that lies under the sphere and above the plane  
0z =  (just the xy-plane right?) and so all we need to do is solve the equation for z and when 

taking the square root we’ll take the positive one since we are wanting the region above the xy-
plane.  Here is the function. 

 2 29z x y= − −  
 
The region D isn’t too bad in this case either.  As we take points, ( ),x y , from the region we need 
to completely graph the portion of the sphere that we are working with.  Since we only want the 
portion of the sphere that actually lies inside the cylinder given by 2 2 5x y+ =  this is also the 
region D.  The region D is the disk 2 2 5x y+ ≤  in the xy-plane.  
 
For reference purposes here is a sketch of the region that we are trying to find the volume of. 
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So, the region that we want the volume for is really a cylinder with a cap that comes from the 
sphere. 
 
We are definitely going to want to do this integral in terms of polar coordinates so here are the 
limits (in polar coordinates) for the region, 

 
0 2

0 5r

θ π≤ ≤

≤ ≤
 

and we’ll need to convert the function to polar coordinates as well. 

 ( )2 2 29 9z x y r= − + = −  
 
The volume is then, 

 ( )

2 2

2 5 2

00

2 53
2 2

00

2

0

9

9

1 9
3

19
3

38
3

D

V x y dA

r r dr d

r d

d

π

π

π

θ

θ

θ

π

= − −

= −

= − −

=

=

⌠
⌡

⌠

⌡

⌠
⌡

∫∫

∫
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Example 4  Find the volume of the region that lies inside 2 2z x y= +  and below the plane 
16z = . 

 
Solution 
Let’s start this example off with a quick sketch of the region. 

       
 
Now, in this case the standard formula is not going to work.  The formula 
 ( ),

D

V f x y dA= ∫∫  

finds the volume under the function ( ),f x y  and we’re actually after the area that is above a 
function.  This isn’t the problem that it might appear to be however.  First, notice that  
 16

D

V dA= ∫∫  

will be the volume under 16z =  (of course we’ll need to determine D eventually) while  
 2 2

D

V x y dA= +∫∫  

is the volume under 2 2z x y= + , using the same D. 
 
The volume that we’re after is really the difference between these two or, 
 ( )2 2 2 216 16

D D D

V dA x y dA x y dA= − + = − +∫∫ ∫∫ ∫∫  

Now all that we need to do is to determine the region D and then convert everything over to polar 
coordinates. 
 
Determining the region D in this case is not too bad.  If we were to look straight down the z-axis 
onto the region we would see a circle of radius 4 centered at the origin.  This is because the top of 
the region, where the elliptic paraboloid intersects the plane, is the widest part of the region. We 
know the z coordinate at the intersection so, setting 16z =  in the equation of the paraboloid 
gives,  
 2 216 x y= +  
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which is the equation of a circle of radius 4 centered at the origin. 
 
Here are the inequalities for the region and the function we’ll be integrating in terms of polar 
coordinates. 
 20 2 0 4 16r z rθ π≤ ≤ ≤ ≤ = −  
 
The volume is then, 

 

( )

( )

2 2

2 4 2

00

42
2 4

0 0
2

0

16

16

18
4

64

128

D

V x y dA

r r dr d

r r d

d

π

π

π

θ

θ

θ

π

= − +

= −

 = − 
 

=

=

⌠
⌡

⌠

⌡

∫∫

∫

∫

 

 
In both of the previous volume problems we would have not been able to easily compute the 
volume without first converting to polar coordinates so, as these examples show, it is a good idea 
to always remember polar coordinates. 
 
There is one more type of example that we need to look at before moving on to the next section.  
Sometimes we are given an iterated integral that is already in terms of x and y and we need to 
convert this over to polar so that we can actually do the integral.  We need to see an example of 
how to do this kind of conversion. 
 
Example 5  Evaluate the following integral by first converting to polar coordinates. 

 ( )
21 1 2 2

00
cos

y
x y dx dy

−
+⌠

⌡ ∫  

Solution 
First, notice that we cannot do this integral in Cartesian coordinates and so converting to polar 
coordinates may be the only option we have for actually doing the integral.  Notice that the 
function will convert to polar coordinates nicely and so shouldn’t be a problem. 
 
Let’s first determine the region that we’re integrating over and see if it’s a region that can be 
easily converted into polar coordinates.  Here are the inequalities that define the region in terms 
of Cartesian coordinates. 

 
2

0 1

0 1

y

x y

≤ ≤

≤ ≤ −
 

 
Now, the upper limit for the x’s is, 

21x y= −  
and this looks like the right side of the circle of radius 1 centered at the origin.  Since the lower 
limit for the x’s is 0x =  it looks like we are going to have a portion (or all) of the right side of 
the disk of radius 1 centered at the origin.  
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The range for the y’s however, tells us that we are only going to have positive y’s.  This means 
that we are only going to have the portion of the disk of radius 1 centered at the origin that is in 
the first quadrant. 
 
So, we know that the inequalities that will define this region in terms of polar coordinates are 
then, 

 0
2

0 1r

πθ≤ ≤

≤ ≤
 

 
Finally, we just need to remember that, 
 dx dy dA r dr dθ= =  
 and so the integral becomes, 

 ( ) ( )
21 1 12 2 22

0 0 00
cos cos

y
x y dx dy r r dr d

π

θ
−

+ =⌠
⌡ ∫ ∫ ∫  

 
Note that this is an integral that we can do.  So, here is the rest of the work for this integral. 

 

( ) ( )

( )

( )

2 11 21 2 2 2

00 00

2

0

1cos sin
2

1 sin 1
2

sin 1
4

y
x y dx dy r d

d

π

π

θ

θ

π

−
+ =

=

=

⌠⌠ ⌡ ⌡

⌠
⌡

∫
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 Triple Integrals 
Now that we know how to integrate over a two-dimensional region we need to move on to 
integrating over a three-dimensional region.  We used a double integral to integrate over a two-
dimensional region and so it shouldn’t be too surprising that we’ll use a triple integral to 
integrate over a three dimensional region.  The notation for the general triple integrals is, 
 ( ), ,

E

f x y z dV∫∫∫  

 
Let’s start simple by integrating over the box, 
 [ ] [ ] [ ], , ,B a b c d r s= × ×  
Note that when using this notation we list the x’s first, the y’s second and the z’s third. 
 
The triple integral in this case is, 

 ( ) ( ), , , ,
B

s d b

r c a
f x y z dV f x y z dx dy dz=∫∫∫ ∫ ∫ ∫  

 
Note that we integrated with respect to x first, then y, and finally z here, but in fact there is no 
reason to the integrals in this order.  There are 6 different possible orders to do the integral in and 
which order you do the integral in will depend upon the function and the order that you feel will 
be the easiest.  We will get the same answer regardless of the order however. 
 
Let’s do a quick example of this type of triple integral. 
 
Example 1  Evaluate the following integral. 
 8

B

xyz dV∫∫∫ ,    [ ] [ ] [ ]2,3 1,2 0,1B = × ×  

Solution 
Just to make the point that order doesn’t matter let’s use a different order from that listed above.  
We’ll do the integral in the following order. 

 

2 3 1

1 2 0

2 3 12

01 2

2 3

1 2

2 32

21

2

1

8 8

4

4

2

10 15

B

xyz dV xyz dz dx dy

xyz dx dy

xy dx dy

x y dy

y dy

=

=

=

=

= =

∫∫∫ ∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫

 

 
Before moving on to more general regions let’s get a nice geometric interpretation about the triple 
integral out of the way so we can use it in some of the examples to follow. 
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Fact 
The volume of the three-dimensional region E is given by the integral, 
 

E

V dV= ∫∫∫  

 
Let’s now move on the more general three-dimensional regions.  We have three different 
possibilities for a general region.  Here is a sketch of the first possibility. 
 

 
In this case we define the region E as follows, 
 ( ) ( ) ( ) ( ){ }1 2, , | , , , ,E x y z x y D u x y z u x y= ∈ ≤ ≤  

where ( ),x y D∈  is the notation that means that the point ( ),x y  lies in the region D from the 
xy-plane.  In this case we will evaluate the triple integral as follows, 

 ( ) ( )
( )

( )2

1

,

,
, , , ,

E D

u x y

u x y
f x y z dV f x y z dz dA =   

⌠⌠
⌡⌡∫∫∫ ∫  

where the double integral can be evaluated in any of the methods that we saw in the previous 
couple of sections.  In other words, we can integrate first with respect to x, we can integrate first 
with respect to y, or we can use polar coordinates as needed. 
 
Example 2  Evaluate 2

E

x dV∫∫∫  where E is the region under the plane 2 3 6x y z+ + =  that lies 

in the first octant. 
 
Solution 
We should first define octant.  Just as the two-dimensional coordinates system can be divided into 
four quadrants the three-dimensional coordinate system can be divided into eight octants.  The 
first octant is the octant in which all three of the coordinates are positive. 
 
Here is a sketch of the plane in the first octant. 
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We now need to determine the region D in the xy-plane.  We can get a visualization of the region 
by pretending to look straight down on the object from above.  What we see will be the region D 
in the xy-plane.  So D will be the triangle with vertices at ( )0,0 , ( )3,0 , and ( )0,2 .  Here is a 
sketch of D. 

 
 
Now we need the limits of integration.  Since we are under the plane and in the first octant (so 
we’re above the plane 0z = ) we have the following limits for z. 
 
 0 6 2 3z x y≤ ≤ − −  
 
We can integrate the double integral over D using either of the following two sets of inequalities. 

 
0 3 30 3

220 2 0 23

x x y
y x y

≤ ≤
≤ ≤ − +

≤ ≤ − + ≤ ≤
 

 
Since neither really holds an advantage over the other we’ll use the first one.  The integral is then, 
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( )

( )

6 2 3

0

6 2 3

0

23 2
3

00

23 22 2 3
00

3
3 2

0
3

4 3 2

0

2 2

2

2 6 2 3

12 4 3

4 8 12
3

1 8 6
3 3

9

x y

E D
x y

D

x

x

x dV x dz dA

xz dA

x x y dy dx

xy x y xy dx

x x x dx

x x x

− −

− −

− +

− +

 =   

=

= − −

= − −

= − +

 = − + 
 

=

⌠⌠
⌡⌡

⌠
⌡

⌠
⌡

⌠
⌡

∫∫∫ ∫

∫∫

∫

 

 
Let’s now move onto the second possible three-dimensional region we may run into for triple 
integrals.  Here is a sketch of this region. 

 
For this possibility we define the region E as follows, 
 ( ) ( ) ( ) ( ){ }1 2, , | , , , ,E x y z y z D u y z x u y z= ∈ ≤ ≤  
So, the region D will be a region in the yz-plane.  Here is how we will evaluate these integrals. 

 ( ) ( )
( )

( )2

1

,

,
, , , ,

E D

u y z

u y z
f x y z dV f x y z dx dA =   

⌠⌠
⌡⌡∫∫∫ ∫  

 
As with the first possibility we will have two options for doing the double integral in the yz-plane 
as well as the option of using polar coordinates if needed. 
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Example 3  Determine the volume of the region that lies behind the plane 8x y z+ + =  and in 

front of the region in the yz-plane that is bounded by 3
2z y=  and 3

4z y= . 
 
Solution 
In this case we’ve been given D and so we won’t have to really work to find that.  Here is a 
sketch of the region D as well as a quick sketch of the plane and the curves defining D projected 
out past the plane so we can get an idea of what the region we’re dealing with looks like. 

      
 
Now, the graph of the region above is all okay, but it doesn’t really show us what the region is.  
So, here is a sketch of the region itself. 
 

        
 
Here are the limits for each of the variables. 

 

0 4
3 3
4 2
0 8

y

y z y

x y z

≤ ≤

≤ ≤

≤ ≤ − −

 

 
The volume is then, 
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8

0

4 3 2

3 40
4 3

2
2

3
40

4 1 3
22 2

0
43 5

2 32 2

0

8

18
2

57 3 3312
8 2 32

57 3 11 498
16 5 32 5

y z

E D

y

y

y

y

V dV dx dA

y z dz dy

z yz z dy

y y y y dy

y y y y

− − = =   

= − −

 = − − 
 

= − − +

 
= − − + = 
 

⌠⌠
⌡⌡

⌠
⌡

⌠


⌡

⌠

⌡

∫∫∫ ∫

∫

 

 
We now need to look at the third (and final) possible three-dimensional region we may run into 
for triple integrals.  Here is a sketch of this region. 

 
In this final case E is defined as, 
 ( ) ( ) ( ) ( ){ }1 2, , | , , , ,E x y z x z D u x z y u x z= ∈ ≤ ≤  
and here the region D will be a region in the xz-plane.  Here is how we will evaluate these 
integrals. 

 ( ) ( )
( )

( )2

1

,

,
, , , ,

E D

u x z

u x z
f x y z dV f x y z dy dA =   

⌠⌠
⌡⌡∫∫∫ ∫  

where we will can use either of the two possible orders for integrating D in the xz-plane or we can 
use polar coordinates if needed. 
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Example 4  Evaluate 2 23 3
E

x z dV+∫∫∫  where E is the solid bounded by 2 22 2y x z= +  and 

the plane 8y = . 
 
Solution 
Here is a sketch of the solid E. 

         
 
The region D in the xz-plane can be found by “standing” in front of this solid and we can see that 
D will be a disk in the xz-plane.  This disk will come from the front of the solid and we can 
determine the equation of the disk by setting the elliptic paraboloid and the plane equal. 
 2 2 2 22 2 8 4x z x z+ = ⇒ + =  
 
This region, as well as the integrand, both seems to suggest that we should use something like 
polar coordinates.  However we are in the xz-plane and we’ve only seen polar coordinates in the 
xy-plane.  This is not a problem.  We can always “translate” them over to the xz-plane with the 
following definition. 
 cos sinx r z rθ θ= =  
 
Since the region doesn’t have y’s we will let z take the place of y in all the formulas.  Note that 
these definitions also lead to the formula, 
 2 2 2x z r+ =  
 
With this in hand we can arrive at the limits of the variables that we’ll need for this integral. 

 

2 22 2 8
0 2

0 2

x z y
r
θ π

+ ≤ ≤
≤ ≤
≤ ≤

 

 
The integral is then, 



Calculus III 

© 2007 Paul Dawkins 182 http://tutorial.math.lamar.edu/terms.aspx 
 

 ( )
( ) ( )( )

2 2

2 2

82 2 2 2

8
2 2

2 2

2 2 2 2

2 2
3 3 3 3

3 3

3 8 2 2

E D

x z
D

D

x z
x z dV x z dy dA

y x z dA

x z x z dA

+

+
 + = +  

= +

= + − +

⌠⌠
⌡⌡

⌠⌠

⌡⌡

∫∫∫ ∫

∫∫

 

 
Now, since we are going to do the double integral in polar coordinates let’s get everything 
converted over to polar coordinates.  The integrand is, 

( ) ( )( ) ( )
( )

( )

2 2 2 2 2 2

2

3

3 8 2 2 3 8 2

3 8 2

3 8 2

x z x z r r

r r

r r

+ − + = −

= −

= −

 

The integral is then, 

 

( )

( )

2 2 3

2 2 3

00

2 2
3 5

00

2

0

3 3 3 8 2

3 8 2

8 23
3 5

1283
15

256 3
15

E D

x z dV r r dA

r r r dr d

r r d

d

π

π

π

θ

θ

θ

π

+ = −

= −

 = − 
 

=

=

⌠
⌡

⌠

⌡

⌠
⌡

∫∫∫ ∫∫

∫
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 Triple Integrals in Cylindrical Coordinates 
In this section we want do take a look at triple integrals done completely in Cylindrical 
Coordinates.  Recall that cylindrical coordinates are really nothing more than an extension of 
polar coordinates into three dimensions.  The following are the conversion formulas for 
cylindrical coordinates. 
 
 cos sinx r y r z zθ θ= = =  
 
In order to do the integral in cylindrical coordinates we will need to know what dV will become in 
terms of cylindrical coordinates.  We will be able to show in the Change of Variables section of 
this chapter that, 

dV r dz dr dθ=  
 
The region, E, over which we are integrating becomes, 

 
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

1 2

1 2 1 2

, , | , , , ,

, , | , , cos , sin cos , sin

E x y z x y D u x y z u x y

r z h r h u r r z u r rθ α θ β θ θ θ θ θ θ

= ∈ ≤ ≤

= ≤ ≤ ≤ ≤ ≤ ≤
 

 
Note that we’ve only given this for E’s in which D is in the xy-plane.  We can modify this 
accordingly if D is in the yz-plane or the xz-plane as needed. 
 
In terms of cylindrical coordinates a triple integral is, 

( ) ( )( )
( )

( )
( )2 2

1 1

cos , sin

cos , sin
, , cos , sin ,

E

h u r r

h u r r
f x y z dV r f r r z dz dr d

β θ θ θ

α θ θ θ
θ θ θ=∫∫∫ ∫ ∫ ∫  

  
Don’t forget to add in the r and make sure that all the x’s and y’s also get converted over into 
cylindrical coordinates. 
 
Let’s see an example. 
 
Example 1  Evaluate 

E

y dV∫∫∫  where E is the region that lies below the plane 2z x= +  above 

the xy-plane and between the cylinders 2 2 1x y+ =  and 2 2 4x y+ = . 
 
Solution 
There really isn’t too much to do with this one other than do the conversions and then evaluate 
the integral. 
 
We’ll start out by getting the range for z in terms of cylindrical coordinates. 
 0 2 0 cos 2z x z r θ≤ ≤ + ⇒ ≤ ≤ +  
Remember that we are above the xy-plane and so we are above the plane 0z =  
 
Next, the region D is the region between the two circles 2 2 1x y+ =  and 2 2 4x y+ =  in the xy-
plane and so the ranges for it are, 
 0 2 1 2rθ π≤ ≤ ≤ ≤  
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Here is the integral. 

 

( )

( )

( )

( )

( )

( )

2 2

0 1 0

2 2 2

0 1

2 2 3 2

0 1

2 2
4 3

10
2

0
2

0

cos 2
sin

sin cos 2

1 sin 2 2 sin
2

1 2sin 2 sin
8 3

15 14sin 2 sin
8 3

15 14cos 2 cos
16 3

0

E

r
y dV r r dz dr d

r r dr d

r r dr d

r r d

d

π

π

π

π

π

π

θ
θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ

+
=

= +

= +

 = + 
 

= +

 = − − 
 

=

⌠

⌡

⌠
⌡

∫∫∫ ∫ ∫ ∫

∫ ∫

∫ ∫

 

 
Just as we did with double integral involving polar coordinates we can start with an iterated 
integral in terms of x, y, and z and convert it to cylindrical coordinates. 
 

Example 2  Convert 
2 2 2

2 2

1 1

1 0

y x y

x y
xyz dz dx dy

−

−

+

+∫ ∫ ∫  into an integral in cylindrical coordinates. 

 
Solution 
Here are the ranges of the variables from this iterated integral. 

 2

2 2 2 2

1 1

0 1

y

x y

x y z x y

− ≤ ≤

≤ ≤ −

+ ≤ ≤ +

 

 
The first two inequalities define the region D and since the upper and lower bounds for the x’s are 

21x y= −  and 0x =  we know that we’ve got at least part of the right half a circle of radius 1 
centered at the origin.  Since the range of y’s is 1 1y− ≤ ≤ we know that we have the complete 
right half of the disk of radius 1 centered at the origin.  So, the ranges for D in cylindrical 
coordinates are, 

 2 2
0 1r

π πθ− ≤ ≤

≤ ≤
 

 
All that’s left to do now is to convert the limits of the z range, but that’s not too bad. 
 2r z r≤ ≤  
On a side note notice that the lower bound here is an elliptic paraboloid and the upper bound is a 
cone.  Therefore E is a portion of the region between these two surfaces. 
 
The integral is, 
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( )( )

2 2 2

2 2 2

2

1 1 2 1

1 0 2 0

2 1 3

2 0

cos sin

cos sin

r

r

y x y

x y r

r

xyz dz dx dy r r r z dz dr d

zr dz dr d

π

π

π

π

θ θ θ

θ θ θ

−

− −

−

+

+
=

=

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫
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 Triple Integrals in Spherical Coordinates 
In the previous section we looked at doing integrals in terms of cylindrical coordinates and we 
now need to take a quick look at doing integrals in terms of spherical coordinates. 
 
First, we need to recall just how spherical coordinates are defined.  The following sketch shows 
the relationship between the Cartesian and spherical coordinate systems. 

 
 
Here are the conversion formulas for spherical coordinates. 
 

 2 2 2 2

sin cos sin sin cosx y z
x y z

ρ ϕ θ ρ ϕ θ ρ ϕ

ρ

= = =

+ + =
 

 
We also have the following restrictions on the coordinates. 
 0 0ρ ϕ π≥ ≤ ≤  
 
For our integrals we are going to restrict E down to a spherical wedge.  This will mean that we 
are going to take ranges for the variables as follows, 
 

 
a bρ
α θ β
δ ϕ γ

≤ ≤
≤ ≤
≤ ≤

 

 
Here is a quick sketch of a spherical wedge in which the lower limit for both ρ  and ϕ  are zero 
for reference purposes.  Most of the wedges we’ll be working with will fit into this pattern. 
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From this sketch we can see that E is really nothing more than the intersection of a sphere and a 
cone. 
 
In the next section we will show that  

2 sindV d d dρ ϕ ρ θ ϕ=  
 
Therefore the integral will become, 

( ) ( )2, , sin sin cos , sin sin , cos
E

b

a
f x y z dV f d d d

γ β

δ α
ρ ϕ ρ ϕ θ ρ ϕ θ ρ ϕ ρ θ ϕ=∫∫∫ ∫ ∫ ∫  

 
This looks bad, but given that the limits are all constants the integrals here tend to not be too bad. 
 
Example 1  Evaluate 16

E

z dV∫∫∫  where E is the upper half of the sphere 2 2 2 1x y z+ + = . 

Solution 
Since we are taking the upper half of the sphere the limits for the variables are, 

 
0 1
0 2

0
2

ρ
θ π

πϕ

≤ ≤
≤ ≤

≤ ≤

 

 
The integral is then, 



Calculus III 

© 2007 Paul Dawkins 188 http://tutorial.math.lamar.edu/terms.aspx 
 

 

( )

( )

( )

( )

( )

22

32

2

2

2
0

2 1

0 0 0

2 1

0 0 0

2

0 0

0

16 sin 16 cos

8 sin 2

2sin 2

4 sin 2

2 cos 2

4

E

z dV d d d

d d d

d d

d

π

π

π

π

π

π

π

π

ρ ϕ ρ ϕ ρ θ ϕ

ρ ϕ ρ θ ϕ

ϕ θ ϕ

π ϕ ϕ

π ϕ

π

=

=

=

=

= −

=

∫∫∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫

 

 

Example 2  Convert 
2 2 2

2 2

3 9 2 2 2

0 0

18y x y

x y
x y z dz dx dy

− −−

+
+ +∫ ∫ ∫  into spherical coordinates. 

Solution 
Let’s first write down the limits for the variables. 

 2

2 2 2 2

0 3

0 9

18

y

x y

x y z x y

≤ ≤

≤ ≤ −

+ ≤ ≤ − −

 

 
The range for x tells us that we have a portion of the right half of a disk of radius 3 centered at the 
origin.  Since we are restricting y’s to positive values it looks like we will have the quarter disk in 
the first quadrant.  Therefore since D is in the first quadrant the region, E, must be in the first 
octant and this in turn tells us that we have the following range for θ  (since this is the angle 
around the z-axis). 

 0
2
πθ≤ ≤  

Now, let’s see what the range for z tells us.  The lower bound, 2 2z x y= + , is the upper half of 
a cone.  At this point we don’t need this quite yet, but we will later.  The upper bound, 

2 218z x y= − − , is the upper half of the sphere, 

 2 2 2 18x y z+ + =  
and so from this we now have the following range for ρ  

 0 18 3 2ρ≤ ≤ =  
 
Now all that we need is the range for ϕ .  There are two ways to get this.  One is from where the 
cone and the sphere intersect.  Plugging in the equation for the cone into the sphere gives, 
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( )2
2 2 2

2 2

2

18

18
9
3

x y z

z z
z
z

+ + =

+ =

=
=

 

 
Note that we can assume z is positive here since we know that we have the upper half of the cone 
and/or sphere.  Finally, plug this into the conversion for z and take advantage of the fact that we 
know that 3 2ρ =  since we are intersecting on the sphere.  This gives, 

 

cos 3

3 2 cos 3

1 2cos
2 42

ρ ϕ

ϕ

πϕ ϕ

=

=

= = ⇒ =

 

 
So, it looks like we have the following range, 

 0
4
πϕ≤ ≤  

 
The other way to get this range is from the cone by itself.  By first converting the equation into 
cylindrical coordinates and then into spherical coordinates we get the following, 

 cos sin

1 tan
4

z r
ρ ϕ ρ ϕ

πϕ ϕ

=
=

= ⇒ =

 

 
So, recalling that 2 2 2 2x y zρ = + + , the integral is then, 

 
2 2 2

2 2

3 9 4 2 3 22 2 2 4

0 0 0 0 0

18
sin

y x y

x y
x y z dz dx dy d d d

π π
ρ ϕ ρ θ ϕ

− −−

+
+ + =∫ ∫ ∫ ∫ ∫ ∫  
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 Change of Variables 
Back in Calculus I we had the substitution rule that told us that, 

 ( )( ) ( ) ( ) ( )where   
b d

a c
f g x g x dx f u du u g x′ = =∫ ∫  

 
In essence this is taking an integral in terms of x’s and changing it into terms of u’s.  We want to 
do something similar for double and triple integrals.  In fact we’ve already done this to a certain 
extent when we converted double integrals to polar coordinates and when we converted triple 
integrals to cylindrical or spherical coordinates.  The main difference is that we didn’t actually go 
through the details of where the formulas came from.  If you recall, in each of those cases we 
commented that we would justify the formulas for dA and dV eventually.  Now is the time to do 
that justification. 
 
While often the reason for changing variables is to get us an integral that we can do with the new 
variables, another reason for changing variables is to convert the region into a nicer region to 
work with.  When we were converting the polar, cylindrical or spherical coordinates we didn’t 
worry about this change since it was easy enough to determine the new limits based on the given 
region.  That is not always the case however.  So, before we move into changing variables with 
multiple integrals we first need to see how the region may change with a change of variables.  
 
First we need a little notation out of the way.  We call the equations that define the change of 
variables a transformation.  Also we will typically start out with a region, R, in xy-coordinates 
and transform it into a region in uv-coordinates. 
 
Example 1  Determine the new region that we get by applying the given transformation to the 
region R. 

(a) R is the ellipse 
2

2 1
36
yx + =  and the transformation is 

2
ux = , 3y v= .   [Solution] 

(b) R is the region bounded by 4y x= − + , 1y x= + , and 
4

3 3
xy = −  and the  

                  transformation is ( )1
2

x u v= + , ( )1
2

y u v= − .   [Solution] 

 
Solution 

(a) R is the ellipse 
2

2 1
36
yx + =  and the transformation is 

2
ux = , 3y v= . 

 
There really isn’t too much to do with this one other than to plug the transformation into the 
equation for the ellipse and see what we get. 

 

( )22

2 2

2 2

3
1

2 36
9 1

4 36
4

vu

u v

u v

  + = 
 

+ =

+ =
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So, we started out with an ellipse and after the transformation we had a disk of radius 2. 
[Return to Problems] 

 

(b) R is the region bounded by 4y x= − + , 1y x= + , and 
4

3 3
xy = −  and the 

transformation is ( )1
2

x u v= + , ( )1
2

y u v= − . 

 
As with the first part we’ll need to plug the transformation into the equation, however, in this case 
we will need to do it three times, once for each equation.  Before we do that let’s sketch the graph 
of the region and see what we’ve got. 
 

 
 
So, we have a triangle.  Now, let’s go through the transformation.  We will apply the 
transformation to each edge of the triangle and see where we get. 
 
Let’s do 4y x= − +  first.  Plugging in the transformation gives, 

 

( ) ( )1 1 4
2 2

8
2 8

4

u v u v

u v u v
u
u

− = − + +

− = − − +
=
=

 

The first boundary transforms very nicely into a much simpler equation. 
 
Now let’s take a look at 1y x= + , 

 

( ) ( )1 1 1
2 2

2
2 2

1

u v u v

u v u v
v
v

− = + +

− = + +
− =

= −

 

Again, a much nicer equation that what we started with. 
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Finally, let’s transform 4
3 3
xy = − . 

 

( ) ( )1 1 1 4
2 3 2 3

3 3 8
4 2 8

2
2

u v u v

u v u v
v u

uv

 − = + − 
 

− = + −
= +

= +

 

So, again, we got a somewhat simpler equation, although not quite as nice as the first two. 
 
Let’s take a look at the new region that we get under the transformation. 

 
 
We still get a triangle, but a much nicer one. 

[Return to Problems] 
 
Note that we can’t always expect to transform a specific type of region (a triangle for example) 
into the same kind of region.  It is completely possible to have a triangle transform into a region 
in which each of the edges are curved and in no way resembles a triangle. 
 
Notice that in each of the above examples we took a two dimensional region that would have 
been somewhat difficult to integrate over and converted it into a region that would be much nicer 
in integrate over.  As we noted at the start of this set of examples, that is often one of the points 
behind the transformation.  In addition to converting the integrand into something simpler it will 
often also transform the region into one that is much easier to deal with. 
 
Now that we’ve seen a couple of examples of transforming regions we need to now talk about 
how we actually do change of variables in the integral.  We will start with double integrals.  In 
order to change variables in a double integral we will need the Jacobian of the transformation.  
Here is the definition of the Jacobian. 
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Definition 
The Jacobian of the transformation ( ),x g u v= , ( ),y h u v=  is 

 ( )
( )

,
,

x x
x y u v

y yu v
u v

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

 

 
The Jacobian is defined as a determinant of a 2x2 matrix, if you are unfamiliar with this that is 
okay.  Here is how to compute the determinant. 

 
a b

ad bc
c d

= −  

 
Therefore, another formula for the determinant is, 

 ( )
( )

,
,

x x
x y x y x yu v

y yu v u v v u
u v

∂ ∂
∂ ∂ ∂ ∂ ∂∂ ∂= = −

∂ ∂∂ ∂ ∂ ∂ ∂
∂ ∂

 

 
Now that we have the Jacobian out of the way we can give the formula for change of variables for 
a double integral. 
 
Change of Variables for a Double Integral 
Suppose that we want to integrate ( ),f x y  over the region R.  Under the transformation 

( ),x g u v= , ( ),y h u v=  the region becomes S and the integral becomes, 

 ( ) ( ) ( )( ) ( )
( )

,
, , , ,

,R
S

x y
f x y dA f g u v h u v du dv

u v
∂

=
∂

⌠⌠

⌡⌡

∫∫  

 
Note that we used du dv instead of dA in the integral to make it clear that we are now integrating 
with respect to u and v.  Also note that we are taking the absolute value of the Jacobian. 
 
If we look just at the differentials in the above formula we can also say that 

 ( )
( )

,
,

x y
dA du dv

u v
∂

=
∂

 

 
Example 2  Show that when changing to polar coordinates we have dA r dr dθ=  
 
Solution 
So, what we are doing here is justifying the formula that we used back when we were integrating 
with respect to polar coordinates.  All that we need to do is use the formula above for dA. 
 
The transformation here is the standard conversion formulas, 
 cos sinx r y rθ θ= =  
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The Jacobian for this transformation is, 

 

( )
( )

( )
( )

2 2

2 2

,
,

cos sin
sin cos

cos sin

cos sin

x x
x y r

y yr
r

r
r

r r

r

r

θ
θ

θ
θ θ
θ θ

θ θ

θ θ

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

−
=

= − −

= +

=

 

 
We then get, 

 ( )
( )

,
,

x y
dA dr d r dr d r dr d

r
θ θ θ

θ
∂

= = =
∂

 

 
So, the formula we used in the section on polar integrals was correct. 
 
Now, let’s do a couple of integrals. 
 
Example 3  Evaluate 

R

x y dA+∫∫  where R is the trapezoidal region with vertices given by 

( )0,0 , ( )5,0 , ( )5 5
2 2,  and ( )5 5

2 2,−  using the transformation 2 3x u v= +  and 2 3y u v= − . 
 
Solution 
First, let’s sketch the region R and determine equations for each of the sides. 
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Each of the equations was found by using the fact that we know two points on each line (i.e. the 
two vertices that form the edge).   
 
While we could do this integral in terms of x and y it would involve two integrals and so would be 
some work. 
 
Let’s use the transformation and see what we get.  We’ll do this by plugging the transformation 
into each of the equations above. 
 
Let’s start the process off with y x= . 

 
2 3 2 3

6 0
0

u v u v
v
v

− = +
=
=

 

 
Transforming y x= −  is similar. 

 
( )2 3 2 3

4 0
0

u v u v
u
u

− = − +

=
=

 

 
Next we’ll transform 5y x= − + . 

 
( )2 3 2 3 5

4 5
5
4

u v u v
u

u

− = − + +

=

=

 

 
Finally, let’s transform 5y x= − . 

 
2 3 2 3 5

6 5
5
6

u v u v
v

v

− = + −
− = −

=

 

The region S is then a rectangle whose sides are given by 0u = , 0v = , 5
4u =  and 5

6v =  and so 
the ranges of u and v are, 

 5 50 0
4 6

u v≤ ≤ ≤ ≤  

 
Next, we need the Jacobian. 

 ( )
( )

2 3,
6 6 12

2 3,
x y
u v

∂
= = − − = −

−∂
 

 
The integral is then, 
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( ) ( )( )
5 5
6 4

00

5 5
6 4

00

5 5
6 2 4

00

5
6

0

5
6

0

2 3 2 3 12

48

24

75
2

75
2

125
4

R

x y dA u v u v du dv

u du dv

u dv

dv

v

+ = + + − −

=

=

=

=

=

⌠
⌡

⌠
⌡

⌠
⌡

⌠
⌡

∫∫ ∫

∫

 

 
Example 4  Evaluate 2 2

R

x xy y dA− +∫∫  where R is the ellipse given by 2 2 2x xy y− + =  and 

using the transformation 2
32x u v= − , 2

32y u v= + . 
Solution 
The first thing to do is to plug the transformation into the equation for the ellipse to see what the 
region transforms into. 

 

2 2

2 2

2 2 2 2 2 2

2 2

2

2 2 2 22 2 2 2
3 3 3 3

4 2 2 4 22 2 2
3 3 33 3

2 2

x xy y

u v u v u v u v

u uv v u v u uv v

u v

= − +

      
= − − − + + +            
      

 = − + − − + + + 
 

= +

 

 
Or, upon dividing by 2 we see that the equation describing R transforms into 
 2 2 1u v+ =  
or the unit circle.  Again, this will be much easier to integrate over than the original region. 
 
Note as well that we’ve shown that the function that we’re integrating is 
 ( )2 2 2 22x xy y u v− + = +  
in terms of u and v so we won’t have to redo that work when the time to do the integral comes 
around. 
 
Finally, we need to find the Jacobian. 
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 ( )
( )

22, 2 2 43
, 3 3 322

3

x y
u v

−
∂

= = + =
∂

 

 
The integral is then, 

 ( )2 2 2 2 42
3R

S

x xy y dA u v du dv− + = +⌠⌠

⌡⌡∫∫  

 
Before proceeding a word of caution is in order.  Do not make the mistake of substituting 

2 2 2x xy y− + =  or 2 2 1u v+ =  in for the integrands.  These equations are only valid on the 
boundary of the region and we are looking at all the points interior to the boundary as well and 
for those points neither of these equations will be true! 
 
At this point we’ll note that this integral will be much easier in terms of polar coordinates and so 
to finish the integral out will convert to polar coordinates. 

 

( )

( )

2 2 2 2

2 1 2

00

2 1
4

00
2

0

42
3

8
3

8 1
43

8 1
43

4
3

R
S

x xy y dA u v du dv

r r dr d

r d

d

π

π

π

θ

θ

θ

π

− + = +

=

=

=

=

⌠⌠

⌡⌡

⌠
⌡

⌠

⌡

⌠
⌡

∫∫

∫

 

 
Let’s now briefly look at triple integrals.  In this case we will again start with a region R and use 
the transformation ( ), ,x g u v w= , ( ), ,y h u v w= , and ( ), ,z k u v w=  to transform the region 
into the new region S.  To do the integral we will need a Jacobian, just as we did with double 
integrals.  Here is the definition of the Jacobian for this kind of transformation. 

 ( )
( )

, ,
, ,

x x x
u v w

x y z y y y
u v w u v w

z z z
u v w

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
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In this case the Jacobian is defined in terms of the determinant of a 3x3 matrix.  We saw how to 
evaluate these when we looked at cross products back in Calculus II.  If you need a refresher on 
how to compute them you should go back and review that section.   
 
The integral under this transformation is, 

 ( ) ( ) ( ) ( )( ) ( )
( )

, ,
, , , , , , , , , ,

, ,R
S

x y z
f x y z dV f g u v w h u v w k u v w du dv dw

u v w
∂

=
∂

⌠⌠⌠

⌡⌡⌡

∫∫∫  

 
As with double integrals we can look at just the differentials and note that we must have 

 ( )
( )

, ,
, ,

x y z
dV du dv dw

u v w
∂

=
∂

 

 
We’re not going to do any integrals here, but let’s verify the formula for dV for spherical 
coordinates. 
 
Example 5  Verify that 2 sindV d d dρ ϕ ρ θ ϕ=  when using spherical coordinates. 
 
Solution 
Here the transformation is just the standard conversion formulas. 
 sin cos sin sin cosx y zρ ϕ θ ρ ϕ θ ρ ϕ= = =  
 
The Jacobian is, 

 

( )
( )

( ) ( )

2 3 2 2 2 2

2 3 2 2 2 2

2 3 2 2 2 2 2 2

2 3 2

sin cos sin sin cos cos
, ,

sin sin sin cos cos sin
, ,

cos 0 sin

sin cos sin cos sin 0
sin sin 0 sin cos cos

sin cos sin sin cos sin cos

sin sin

x y z
ϕ θ ρ ϕ θ ρ ϕ θ
ϕ θ ρ ϕ θ ρ ϕ θ

ρ θ ϕ
ϕ ρ ϕ

ρ ϕ θ ρ ϕ ϕ θ

ρ ϕ θ ρ ϕ ϕ θ

ρ ϕ θ θ ρ ϕ ϕ θ θ

ρ ϕ ρ

−
∂

=
∂

−

= − − +

− − −

= − + − +

= − −

( )
2

2 2 2

2

cos

sin sin cos

sin

ϕ ϕ

ρ ϕ ϕ ϕ

ρ ϕ

= − +

= −

 

Finally, dV becomes, 
 2 2sin sindV d d d d d dρ ϕ ρ θ ϕ ρ ϕ ρ θ ϕ= − =  
 
Recall that we restricted ϕ  to the range 0 ϕ π≤ ≤  for spherical coordinates and so we know that 
sin 0ϕ ≥  and so we don’t need the absolute value bars on the sine. 
 
We will leave it to you to check the formula for dV for cylindrical coordinates if you’d like to.  It 
is a much easier formula to check. 
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 Surface Area 
In this section we will look at the lone application (aside from the area and volume 
interpretations) of multiple integrals in this material.  This is not the first time that we’ve looked 
at surface area   We first saw surface area in Calculus II, however, in that setting we were looking 
at the surface area of a solid of revolution.  In other words we were looking at the surface area of 
a solid obtained by rotating a function about the x or y axis.  In this section we want to look at a 
much more general setting although you will note that the formula here is very similar to the 
formula we saw back in Calculus II. 
 
Here we want to find the surface area of the surface given by ( ),z f x y=  where ( ),x y  is a 
point from the region D in the xy-plane.  In this case the surface area is given by, 
 

[ ] 22 1x y

D

S f f dA = + + 
⌠⌠
⌡⌡

 

 
Let’s take a look at a couple of examples. 
 
Example 1  Find the surface area of the part of the plane 3 2 6x y z+ + =  that lies in the first 
octant. 
 
Solution 
Remember that the first octant is the portion of the xyz-axis system in which all three variables 
are positive.  Let’s first get a sketch of the part of the plane that we are interested in.   

    
 
We’ll also need a sketch of the region D. 
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Remember that to get the region D we can pretend that we are standing directly over the plane 
and what we see is the region D.  We can get the equation for the hypotenuse of the triangle by 
realizing that this is nothing more than the line where the plane intersects the xy-plane and we 
also know that 0z =  on the xy-plane.  Plugging 0z =  into the equation of the plane will give us 
the equation for the hypotenuse. 
 
Notice that in order to use the surface area formula we need to have the function in the form 

( ),z f x y=  and so solving for z and taking the partial derivatives gives, 

 6 3 2 3 2x yz x y f f= − − = − = −  
 
The limits defining D are, 

 30 2 0 3
2

x y x≤ ≤ ≤ ≤ − +  

 
The surface area is then, 

 

[ ] [ ]2 2

32 3
2

0 0

2

0

2
2

0

3 2 1

14

314 3
2

314 3
4

3 14

D

x

S dA

dy dx

x dx

x x

− +

= − + − +

=

= − +

 = − + 
 

=

∫∫

∫ ∫

∫  

 
Example 2  Determine the surface area of the part of z xy=  that lies in the cylinder given by 

2 2 1x y+ = . 
 
Solution 
In this case we are looking for the surface area of the part of z xy=  where ( ),x y  comes from 
the disk of radius 1 centered at the origin since that is the region that will lie inside the given 
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cylinder. 
 
Here are the partial derivatives, 
 x yf y f x= =  
 
The integral for the surface area is, 

 2 2 1
D

S x y dA= + +∫∫  

 
Given that D is a disk it makes sense to do this integral in polar coordinates. 

 ( )

2 2

2 1 2

0 0

2 13
2 2

00

2 3
2

0

3
2

1

1

1 2 1
2 3

1 2 1
3

2 2 1
3

D

S x y dA

r r dr d

r d

d

π

π

π

θ

θ

θ

π

= + +

= +

 = + 
 

 
= − 

 

 
= − 

 

⌠

⌡

⌠

⌡

∫∫

∫ ∫
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 Area and Volume Revisited 
This section is here only so we can summarize the geometric interpretations of the double and 
triple integrals that we saw in this chapter.  Since the purpose of this section is to summarize 
these formulas we aren’t going to be doing any examples in this section.   
 
We’ll first look at the area of a region.  The area of the region D is given by, 
 

Area of 
D

D dA= ∫∫  

 
Now let’s give the two volume formulas.  First the volume of the region E is given by, 
 

Volume of 
E

E dV= ∫∫∫  

 
Finally, if the region E can be defined as the region under the function ( ),z f x y=  and above 
the region D in xy-plane then, 
 

( )Volume of ,
D

E f x y dA= ∫∫  

 
Note as well that there are similar formulas for the other planes.  For instance, the volume of the 
region behind the function ( ),y f x z=  and in front of the region D in the xz-plane is given by, 
 

( )Volume of ,
D

E f x z dA= ∫∫  

 
Likewise, the the volume of the region behind the function ( ),x f y z=  and in front of the 
region D in the yz-plane is given by, 
 

( )Volume of ,
D

E f y z dA= ∫∫  
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Line Integrals 
 

 Introduction 
In this section we are going to start looking at Calculus with vector fields (which we’ll define in 
the first section).  In particular we will be looking at a new type of integral, the line integral and 
some of the interpretations of the line integral.  We will also take a look at one of the more 
important theorems involving line integrals, Green’s Theorem. 
 
Here is a listing of the topics covered in this chapter. 
 
Vector Fields – In this section we introduce the concept of a vector field. 
 
Line Integrals – Part I – Here we will start looking at line integrals.  In particular we will look 
at line integrals with respect to arc length. 
 
Line Integrals – Part II – We will continue looking at line integrals in this section.  Here we will 
be looking at line integrals with respect to x, y, and/or z. 
 
Line Integrals of Vector Fields – Here we will look at a third type of line integrals, line integrals 
of vector fields. 
 
Fundamental Theorem for Line Integrals – In this section we will look at a version of the 
fundamental theorem of calculus for line integrals of vector fields. 
 
Conservative Vector Fields – Here we will take a somewhat detailed look at conservative vector 
fields and how to find potential functions. 
 
Green’s Theorem – We will give Green’s Theorem in this section as well as an interesting 
application of Green’s Theorem. 
 
Curl and Divergence – In this section we will introduce the concepts of the curl and the 
divergence of a vector field.  We will also give two vector forms of Green’s Theorem. 
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 Vector Fields 
We need to start this chapter off with the definition of a vector field as they will be a major 
component of both this chapter and the next.  Let’s start off with the formal definition of a vector 
field. 
 
Definition 
A vector field on two (or three) dimensional space is a function F



 that assigns to each point 
( ),x y  (or ( ), ,x y z ) a two (or three dimensional) vector given by ( ),F x y



 (or ( ), ,F x y z


). 
 
That may not make a lot of sense, but most people do know what a vector field is, or at least 
they’ve seen a sketch of a vector field.  If you’ve seen a current sketch giving the direction and 
magnitude of a flow of a fluid or the direction and magnitude of the winds then you’ve seen a 
sketch of a vector field. 
 
The standard notation for the function F



 is, 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,

, , , , , , , ,

F x y P x y i Q x y j

F x y z P x y z i Q x y z j R x y z k

= +

= + +


 




 

 

depending on whether or not we’re in two or three dimensions.  The function P, Q, R (if it is 
present) are sometimes called scalar functions. 
 
Let’s take a quick look at a couple of examples. 
 
Example 1  Sketch each of the following vector fields. 

(a) ( ),F x y y i x j= − +


 

   [Solution] 

(b) ( ), , 2 2 2F x y z x i y j x k= − −



 

   [Solution] 
Solution 
(a) ( ),F x y y i x j= − +


 

 
 
Okay, to graph the vector field we need to get some “values” of the function.  This means 
plugging in some points into the function.  Here are a couple of evaluations. 

 

1 1 1 1,
2 2 2 2
1 1 1 1 1 1,
2 2 2 2 2 2
3 1 1 3,
2 4 4 2

F i j

F i j i j

F i j

  = − + 
 
   − = − − + = +   
   
  = − + 
 


 


   


 

 

 
So, just what do these evaluations tell us?  Well the first one tells us that at the point ( )1 1

2 2,  we 

will plot the vector 1 1
2 2i j− +
 

.  Likewise, the third evaluation tells us that at the point ( )3 1
2 4,  we 

will plot the vector 31
4 2i j− +
 

. 
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We can continue in this fashion plotting vectors for several points and we’ll get the following 
sketch of the vector field. 

 
 

 
If we want significantly more points plotted, then it is usually best to use a computer aided 
graphing system such as Maple or Mathematica.  Here is a sketch with many more vectors 
included that was generated with Mathematica. 

 
 [Return to Problems] 

 
(b) ( ), , 2 2 2F x y z x i y j x k= − −




 

 
 
In the case of three dimensional vector fields it is almost always better to use Maple, 
Mathematica, or some other such tool.  Despite that let’s go ahead and do a couple of evaluations 
anyway. 

 
( )
( )
1, 3,2 2 6 2

0,5,3 10

F i j k

F j

− = + −

= −




 




 

 
Notice that z only affect the placement of the vector in this case and does not affect the direction 
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or the magnitude of the vector.  Sometimes this will happen so don’t get excited about it when it 
does. 
 
Here is a couple of sketches generated by Mathematica.  The sketch on the left is from the “front” 
and the sketch on the right is from “above”. 

          
[Return to Problems] 

 
Now that we’ve seen a couple of vector fields let’s notice that we’ve already seen a vector field 
function.  In the second chapter we looked at the gradient vector.  Recall that given a function 
( ), ,f x y z  the gradient vector is defined by, 

, ,x y zf f f f∇ =  
This is a vector field and is often called a gradient vector field. 
  
In these cases the function ( ), ,f x y z  is often called a scalar function to differentiate it from the 
vector field. 
 
Example 2  Find the gradient vector field of the following functions. 

(a) ( ) ( )2, sin 5f x y x y=  

(b) ( ), , xyf x y z z −= e  
 
Solution 
(a)  ( ) ( )2, sin 5f x y x y=  
 
Note that we only gave the gradient vector definition for a three dimensional function, but don’t 
forget that there is also a two dimension definition.  All that we need to drop off the third 
component of the vector. 
 
Here is the gradient vector field for this function. 
 ( ) ( )22 sin 5 ,5 cos 5f x y x y∇ =  
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(b) ( ), , xyf x y z z −= e  
 
There isn’t much to do here other than take the gradient. 
 , ,xy xy xyf yz xz− − −∇ = − −e e e  
 
Let’s do another example that will illustrate the relationship between the gradient vector field of a 
function and its contours. 
 
Example 3  Sketch the gradient vector field for ( ) 2 2,f x y x y= +  as well as several contours 
for this function. 
Solution 
Recall that the contours for a function are nothing more than curves defined by, 
 ( ),f x y k=  
for various values of k.  So, for our function the contours are defined by the equation,  
 2 2x y k+ =  
and so they are circles centered at the origin with radius k . 
 
Here is the gradient vector field for this function. 
 ( ), 2 2f x y x i y j∇ = +

 

 
Here is a sketch of several of the contours as well as the gradient vector field. 

 
 

 
Notice that the vectors of the vector field are all perpendicular (or orthogonal) to the contours.  
This will always be the case when we are dealing with the contours of a function as well as its 
gradient vector field.   
 
The k’s we used for the graph above were 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, and 13.5. Now notice 
that as we increased k by 1.5 the contour curves get closer together and that as the contour curves 
get closer together the larger the vectors become.  In other words, the closer the contour curves 
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are (as k is increased by a fixed amount) the faster the function is changing at that point.  Also 
recall that the direction of fastest change for a function is given by the gradient vector at that 
point.  Therefore, it should make sense that the two ideas should match up as they do here. 
 
The final topic of this section is that of conservative vector fields.  A vector field F



 is called a 
conservative vector field if there exists a function f  such that F f= ∇



.  If F


 is a conservative 

vector field then the function, f, is called a potential function for F


. 
 
All this definition is saying is that a vector field is conservative if it is also a gradient vector field 
for some function. 
 
For instance the vector field F y i x j= +


 

 is a conservative vector field with a potential function 
of ( ),f x y xy=  because ,f y x∇ = .   
 
On the other hand, F y i x j= − +


 

 is not a conservative vector field since there is no function f 

such that F f= ∇


.  If you’re not sure that you believe this at this point be patient, we will be able 
to prove this in a couple of sections.  In that section we will also show how to find the potential 
function for a conservative vector field. 
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 Line Integrals – Part I 
In this section we are now going to introduce a new kind of integral.  However, before we do that 
it is important to note that you will need to remember how to parameterize equations, or put 
another way, you will need to be able to write down a set of parametric equations for a given 
curve.  You should have seen some of this in your Calculus II course.  If you need some review 
you should go back and review some of the basics of parametric equations and curves. 
 
Here are some of the more basic curves that we’ll need to know how to do as well as limits on the 
parameter if they are required. 
 

Curve Parametric Equations 
 

2 2

2 2 1x y
a b

+ =  

(Ellipse) 
 

          Counter-Clockwise                 Clockwise  
( )
( )

cos

sin
0 2

x a t

y b t
t π

=

=

≤ ≤

                 

( )
( )

cos

sin
0 2

x a t

y b t
t π

=

= −

≤ ≤

 

 
2 2 2x y r+ =  
(Circle) 

 

 
           Counter-Clockwise                 Clockwise  

( )
( )

cos

sin
0 2

x r t

y r t
t π

=

=

≤ ≤

                 

( )
( )

cos

sin
0 2

x r t

y r t
t π

=

= −

≤ ≤

 

( )y f x=  
 

( )
x t
y f t
=

=
 

( )x g y=  
 
( )x g t

y t
=

=
 

Line Segment From 
( )0 0 0, ,x y z   to ( )1 1 1, ,x y z  

 
( ) ( )

( )
( )
( )

0 0 0 1 1 1

0 1

0 1

0 1

1 , , , , , 0 1
or

1

1 , 0 1

1

r t t x y z t x y z t

x t x t x

y t y t y t

z t z t z

= − + ≤ ≤

= − +

= − + ≤ ≤

= − +



 

 
With the final one we gave both the vector form of the equation as well as the parametric form 
and if we need the two-dimensional version then we just drop the z components.  In fact, we will 
be using the two-dimensional version of this in this section. 
 
For the ellipse and the circle we’ve given two parameterizations, one tracing out the curve 
clockwise and the other counter-clockwise.  As we’ll eventually see the direction that the curve is 
traced out can, on occasion, change the answer.  Also, both of these “start” on the positive x-axis 
at 0t = . 
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Now let’s move on to line integrals.  In Calculus I we integrated ( )f x , a function of a single 

variable, over an interval [ ],a b .  In this case we were thinking of x as taking all the values in this 
interval starting at a and ending at b.  With line integrals we will start with integrating the 
function ( ),f x y , a function of two variables, and the values of x and y that we’re going to use 

will be the points, ( ),x y , that lie on a curve C.  Note that this is different from the double 
integrals that we were working with in the previous chapter where the points came out of some 
two-dimensional region. 
 
Let’s start with the curve C that the points come from.  We will assume that the curve is smooth 
(defined shortly) and is given by the parametric equations, 
 ( ) ( )x h t y g t a t b= = ≤ ≤  
We will often want to write the parameterization of the curve as a vector function.  In this case 
the curve is given by,  
 ( ) ( ) ( )r t h t i g t j a t b= + ≤ ≤

 

  
 
The curve is called smooth if ( )r t′  is continuous and ( ) 0r t′ ≠



 for all t. 
 
The line integral of ( ),f x y  along C is denoted by, 

( ),
C

f x y ds∫  

 
We use a ds here to acknowledge the fact that we are moving along the curve, C, instead of the x-
axis (denoted by dx) or the y-axis (denoted by dy).  Because of the ds this is sometimes called the 
line integral of f with respect to arc length. 
 
We’ve seen the notation ds before.  If you recall from Calculus II when we looked at the arc 
length of a curve given by parametric equations we found it to be, 

 
2 2

, where    
b

a

dx dyL ds ds dt
dt dt

   = = +   
   ∫  

 
It is no coincidence that we use ds for both of these problems.  The ds is the same for both the arc 
length integral and the notation for the line integral. 
 
So, to compute a line integral we will convert everything over to the parametric equations.  The 
line integral is then, 
 

( ) ( ) ( )( )
2 2

, ,
C

b

a

dx dyf x y ds f h t g t dt
dt dt

   = +   
   

⌠

⌡

∫  

 
Don’t forget to plug the parametric equations into the function as well. 
 
If we use the vector form of the parameterization we can simplify the notation up somewhat by 
noticing that, 
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 ( )
2 2dx dy r t

dt dt
    ′+ =   
   

  

where ( )r t′  is the magnitude or norm of ( )r t′ .  Using this notation the line integral becomes, 
 

( ) ( ) ( )( ) ( ), ,
C

b

a
f x y ds f h t g t r t dt′=∫ ∫



 

 
Note that as long as the parameterization of the curve C is traced out exactly once as t increases 
from a to b the value of the line integral will be independent of the parameterization of the curve. 
 
Let’s take a look at an example of a line integral. 
 
Example 1  Evaluate 4

C

xy ds∫  where C is the right half of the circle, 2 2 16x y+ =  rotated in the 

counter clockwise direction. 
 
Solution 
We first need a parameterization of the circle.  This is given by, 

4cos 4sinx t y t= =  
We now need a range of t’s that will give the right half of the circle.  The following range of t’s 
will do this. 

 
2 2

tπ π
− ≤ ≤  

 
Now, we need the derivatives of the parametric equations and let’s compute ds. 

 
2 2

4sin 4cos

16sin 16cos 4

dx dyt t
dt dt
ds t t dt dt

= − =

= + =

 

 
The line integral is then, 

 

( ) ( )
2 44

2

2 4

2

25

2

4cos 4sin 4

4096 cos sin

4096 sin
5

8192
5

C

xy ds t t dt

t t dt

t

π

π

π

π

π

π

−

−

−

=

=

=

=

∫ ∫

∫
 

 
Next we need to talk about line integrals over piecewise smooth curves.  A piecewise smooth 
curve is any curve that can be written as the union of a finite number of smooth curves, 1C ,…, nC  
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where the end point of iC  is the starting point of 1iC + .  Below is an illustration of a piecewise 
smooth curve. 
 

 
 
Evaluation of line integrals over piecewise smooth curves is a relatively simple thing to do.  All 
we do is evaluate the line integral over each of the pieces and then add them up.  The line integral 
for some function over the above piecewise curve would be, 
 
 ( ) ( ) ( ) ( ) ( )

1 2 3 4

, , , , ,
C C C C C

f x y ds f x y ds f x y ds f x y ds f x y ds= + + +∫ ∫ ∫ ∫ ∫  

 
Let’s see an example of this. 
 
Example 2  Evaluate 34

C

x ds∫  where C is the curve shown below. 

 
 
Solution 
So, first we need to parameterize each of the curves. 
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1

3
2

3

: , 1, 2 0
: , 1, 0 1
: 1, , 0 2

C x t y t
C x t y t t
C x y t t

= = − − ≤ ≤

= = − ≤ ≤
= = ≤ ≤

 

 
Now let’s do the line integral over each of these curves. 

 ( ) ( )
1

0 0 02 23 3 3 4

22 2
4 4 1 0 4 16

C

x ds t dt t dt t
−− −

= + = = = −∫ ∫ ∫  

 

 

( ) ( )

( )

2

1 223 3 2

0

1 3 4

0

1 33
4 22

0

4 4 1 3

4 1 9

1 2 21 9 10 1 2.268
9 3 27

C

x ds t t dt

t t dt

t

= +

= +

  = + = − =  
   

⌠
⌡∫

∫  

 

 ( ) ( ) ( )
3

2 23 2 23

0 0
4 4 1 0 1 4 8

C

x ds dt dt= + = =∫ ∫ ∫  

 
Finally, the line integral that we were asked to compute is, 

 
1 2 3

3 3 3 34 4 4 4

16 2.268 8
5.732

C C C C

x ds x ds x ds x ds= + +

= − + +
= −

∫ ∫ ∫ ∫
 

 
Notice that we put direction arrows on the curve in the above example.  The direction of motion 
along a curve may change the value of the line integral as we will see in the next section.  Also 
note that the curve can be thought of a curve that takes us from the point ( )2, 1− −  to the point 

( )1,2 .  Let’s first see what happens to the line integral if we change the path between these two 
points. 
 
Example 3  Evaluate 34

C

x ds∫  where C is the line segment from ( )2, 1− −  to ( )1,2 . 

 
Solution 
From the parameterization formulas at the start of this section we know that the line segment 
starting at ( )2, 1− −  and ending at ( )1,2  is given by, 

 
( ) ( )1 2, 1 1,2

2 3 , 1 3

r t t t

t t

= − − − +

= − + − +



 

for 0 1t≤ ≤ .  This means that the individual parametric equations are, 
 2 3 1 3x t y t= − + = − +  
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Using this path the line integral is, 

 

( )

( )( )

1 33

0

141
12 0

4 4 2 3 9 9

12 2 2 3

512 2
4

15 2 21.213

C

x ds t dt

t

= − + +

= − +

 = − 
 

= − = −

∫ ∫

 

 
When doing these integrals don’t forget simple Calc I substitutions to avoid having to do things 
like cubing out a term.  Cubing it out is not that difficult, but it is more work than a simple 
substitution. 
 
So, the previous two examples seem to suggest that if we change the path between two points 
then the value of the line integral (with respect to arc length) will change.  While this will happen 
fairly regularly we can’t assume that it will always happen.  In a later section we will investigate 
this idea in more detail. 
 
Next, let’s see what happens if we change the direction of a path. 
 
Example 4  Evaluate 34

C

x ds∫  where C is the line segment from ( )1,2  to ( )2, 1− − . 

 
Solution 
This one isn’t much different, work wise, from the previous example.  Here is the 
parameterization of the curve. 

 
( ) ( )1 1,2 2, 1

1 3 ,2 3

r t t t

t t

= − + − −

= − −



 

for 0 1t≤ ≤ .  Remember that we are switching the direction of the curve and this will also 
change the parameterization so we can make sure that we start/end at the proper point. 
 
Here is the line integral. 

 

( )

( )( )

1 33

0

141
12 0

4 4 1 3 9 9

12 2 1 3

512 2
4

15 2 21.213

C

x ds t dt

t

= − +

= − −

 = − 
 

= − = −

∫ ∫

 

 
So, it looks like when we switch the direction of the curve the line integral (with respect to arc 
length) will not change.  This will always be true for these kinds of line integrals.  However, there 
are other kinds of line integrals in which this won’t be the case.  We will see more examples of 
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this in the next couple of sections so don’t get it into your head that changing the direction will 
never change the value of the line integral. 
 
Before working another example let’s formalize this idea up somewhat.  Let’s suppose that the 
curve C has the parameterization ( )x h t= , ( )y g t= .  Let’s also suppose that the initial point 

on the curve is A and the final point on the curve is B. The parameterization ( )x h t= , ( )y g t=  
will then determine an orientation for the curve where the positive direction is the direction that 
is traced out as t increases.  Finally, let C−  be the curve with the same points as C, however in 
this case the curve has B as the initial point and A as the final point, again t is increasing as we 
traverse this curve.  In other words, given a curve C, the curve C−  is the same curve as C except 
the direction has been reversed. 
 
We then have the following fact about line integrals with respect to arc length. 
 
Fact 

( ) ( ), ,
C C

f x y ds f x y ds
−

=∫ ∫  

 
So, for a line integral with respect to arc length we can change the direction of the curve and not 
change the value of the integral.  This is a useful fact to remember as some line integrals will be 
easier in one direction than the other. 
 
Now, let’s work another example 
 
Example 5  Evaluate 

C

x ds∫  for each of the following curves. 

(a) 2
1 : , 1 1C y x x= − ≤ ≤    [Solution] 

(b) 2C : The line segment from ( )1,1−  to ( )1,1 .   [Solution] 

(c) 3C : The line segment from ( )1,1  to ( )1,1− .   [Solution] 
 
Solution 
Before working any of these line integrals let’s notice that all of these curves are paths that 
connect the points ( )1,1−  and ( )1,1 .  Also notice that 3 2C C= −  and so by the fact above these 
two should give the same answer. 
 
Here is a sketch of the three curves and note that the curves illustrating 2C  and 3C  have been 
separated a little to show that they are separate curves in some way even though they are the same 
line. 
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(a) 2
1 : , 1 1C y x x= − ≤ ≤  

 
Here is a parameterization for this curve. 
 2

1 : , , 1 1C x t y t t= = − ≤ ≤  
 
Here is the line integral. 

 ( )
1

131 2 2 2
1

1

11 4 1 4 0
12C

x ds t t dt t
−

−

= + = + =∫ ∫  

[Return to Problems] 
 
(b) 2C : The line segment from ( )1,1−  to ( )1,1 . 
 
There are two parameterizations that we could use here for this curve.  The first is to use the 
formula we used in the previous couple of examples.  That parameterization is, 

 
( ) ( )2 : 1 1,1 1,1

2 1,1

C r t t t

t

= − − +

= −



 

for 0 1t≤ ≤ .   
 
Sometimes we have no choice but to use this parameterization.  However, in this case there is a 
second (probably) easier parameterization.  The second one uses the fact that we are really just 
graphing a portion of the line 1y = .  Using this the parameterization is, 
 2 : , 1, 1 1C x t y t= = − ≤ ≤  
 
This will be a much easier parameterization to use so we will use this.  Here is the line integral 
for this curve. 

 
2

1
1 2

1
1

11 0 0
2C

x ds t dt t
−

−

= + = =∫ ∫  

 
Note that this time, unlike the line integral we worked with in Examples 2, 3, and 4 we got the 
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same value for the integral despite the fact that the path is different.  This will happen on 
occasion.  We should also not expect this integral to be the same for all paths between these two 
points.  At this point all we know is that for these two paths the line integral will have the same 
value.  It is completely possible that there is another path between these two points that will give 
a different value for the line integral. 

[Return to Problems] 
 
(c) 3C : The line segment from ( )1,1  to ( )1,1− . 
 
Now, according to our fact above we really don’t need to do anything here since we know that 

3 2C C= − .  The fact tells us that this line integral should be the same as the second part (i.e. 
zero).  However, let’s verify that, plus there is a point we need to make here about the 
parameterization. 
 
Here is the parameterization for this curve. 

 
( ) ( )3 : 1 1,1 1,1

1 2 ,1

C r t t t

t

= − + −

= −



 

for 0 1t≤ ≤ .   
 
Note that this time we can’t use the second parameterization that we used in part (b) since we 
need to move from right to left as the parameter increases and the second parameterization used 
in the previous part will move in the opposite direction. 
 
Here is the line integral for this curve. 

 ( ) ( )
3

11 2

0 0
1 2 4 0 2 0

C

x ds t dt t t= − + = − =∫ ∫  

 
Sure enough we got the same answer as the second part. 

[Return to Problems] 
 
To this point in this section we’ve only looked at line integrals over a two-dimensional curve.  
However, there is no reason to restrict ourselves like that.  We can do line integrals over three-
dimensional curves as well. 
 
Let’s suppose that the three-dimensional curve C is given by the parameterization, 

( ) ( ) ( ),x x t y y t z z t a t b= = = ≤ ≤  
then the line integral is given by, 

( ) ( ) ( ) ( )( )
2 2 2

, , , ,
C

b

a

dx dy dzf x y z ds f x t y t z t dt
dt dt dt

     = + +     
     

⌠

⌡

∫  

 
Note that often when dealing with three-dimensional space the parameterization will be given as a 
vector function. 
 ( ) ( ) ( ) ( ), ,r t x t y t z t=
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Notice that we changed up the notation for the parameterization a little.  Since we rarely use the 
function names we simply kept the x, y, and z and added on the ( )t  part to denote that they may 
be functions of the parameter.   
 
Also notice that, as with two-dimensional curves, we have, 

 ( )
2 2 2dx dy dz r t

dt dt dt
      ′+ + =     
     

  

and the line integral can again be written as, 

( ) ( ) ( ) ( )( ) ( ), , , ,
C

b

a
f x y z ds f x t y t z t r t dt′=∫ ∫



 

 
So, outside of the addition of a third parametric equation line integrals in three-dimensional space 
work the same as those in two-dimensional space.  Let’s work a quick example. 
 
Example 6  Evaluate 

C

xyz ds∫  where C is the helix given by, ( ) ( ) ( )cos ,sin ,3r t t t t=


, 

0 4t π≤ ≤ . 
 
Solution 
Note that we first saw the vector equation for a helix back in the Vector Functions section.  Here 
is a quick sketch of the helix. 

 
 
Here is the line integral. 
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( ) ( )

( )

( )

( ) ( )

4 2 2

0

4

0

4

0

4

0

3 cos sin sin cos 9

13 sin 2 1 9
2

3 10 sin 2
2

3 10 1 sin 2 cos 2
2 4 2

3 10

C

xyz ds t t t t t dt

t t dt

t t dt

tt t

π

π

π

π

π

= + +

 = + 
 

=

 = − 
 

= −

⌠

⌡

∫ ∫

∫  

 
You were able to do that integral right?  It required integration by parts.   
 
So, as we can see there really isn’t too much difference between two- and three-dimensional line 
integrals. 
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 Line Integrals – Part II 
In the previous section we looked at line integrals with respect to arc length.  In this section we 
want to look at line integrals with respect to x and/or y. 
 
As with the last section we will start with a two-dimensional curve C with parameterization, 
 ( ) ( )x x t y y t a t b= = ≤ ≤  
 
The line integral of f with respect to x is, 

 ( ) ( ) ( )( ) ( ), ,
C

b

a
f x y dx f x t y t x t dt′=∫ ∫  

 
The line integral of f with respect to y is, 

 ( ) ( ) ( )( ) ( ), ,
C

b

a
f x y dy f x t y t y t dt′=∫ ∫  

 
Note that the only notational difference between these two and the line integral with respect to arc 
length (from the previous section) is the differential.  These have a dx or dy while the line integral 
with respect to arc length has a ds.  So when evaluating line integrals be careful to first note 
which differential you’ve got so you don’t work the wrong kind of line integral. 
 
These two integral often appear together and so we have the following shorthand notation for 
these cases. 
 

( ) ( ), ,
C C C

Pdx Q dy P x y dx Q x y dy+ = +∫ ∫ ∫  

 
Let’s take a quick look at an example of this kind of line integral. 
 
Example 1  Evaluate ( ) 2sin

C

y dy yx dxπ +∫ where C is the line segment from ( )0,2  to ( )1,4 . 

 
Solution 
Here is the parameterization of the curve. 
 ( ) ( )1 0,2 1,4 ,2 2 0 1r t t t t t t= − + = + ≤ ≤

  
 
The line integral is, 

 

( ) ( )

( )( )( ) ( )( ) ( )

( )

2 2

1 1 2

0 0

11
3 4

0 0

sin sin

sin 2 2 2 2 2 1

1 2 1cos 2 2
3 2

7
6

C C C

y dy yx dx y dy yx dx

t dt t t dt

t t t

π π

π

π π
π

+ = +

= + + +

 = − + + + 
 

=

∫ ∫ ∫

∫ ∫
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In the previous section we saw that changing the direction of the curve for a line integral with 
respect to arc length doesn’t change the value of the integral.  Let’s see what happens with line 
integrals with respect to x and/or y. 
 
Example 2  Evaluate ( ) 2sin

C

y dy yx dxπ +∫ where C is the line segment from ( )1,4  to ( )0,2 . 

 
Solution 
So, we simply changed the direction of the curve.  Here is the new parameterization. 
 ( ) ( )1 1,4 0,2 1 ,4 2 0 1r t t t t t t= − + = − − ≤ ≤

  
 
The line integral in this case is, 

 

( ) ( )

( )( )( ) ( )( ) ( )

( )

2 2

1 1 2

0 0

11
4 3 2

0 0

sin sin

sin 4 2 2 4 2 1 1

1 1 8cos 4 2 5 4
2 3

7
6

C C C

y dy yx dx y dy yx dx

t dt t t dt

t t t t t

π π

π

π π
π

+ = +

= − − + − − −

 = − − − − + − + 
 

= −

∫ ∫ ∫

∫ ∫
 

 
So, switching the direction of the curve got us a different value or at least the opposite sign of the 
value from the first example.  In fact this will always happen with these kinds of line integrals. 
 
Fact 
If C is any curve then, 

( ) ( ) ( ) ( ), , and , ,
C C C C

f x y dx f x y dx f x y dy f x y dy
− −

= − = −∫ ∫ ∫ ∫  

With the combined form of these two integrals we get, 
 

C C

Pdx Q dy Pdx Q dy
−

+ = − +∫ ∫  

 
We can also do these integrals over three-dimensional curves as well.  In this case we will pick up 
a third integral (with respect to z) and the three integrals will be. 
 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

, , , ,

, , , ,

, , , ,

C

C

C

b

a

b

a

b

a

f x y z dx f x t y t z t x t dt

f x y z dy f x t y t z t y t dt

f x y z dz f x t y t z t z t dt

′=

′=

′=

∫ ∫

∫ ∫

∫ ∫

 

 where the curve C is parameterized by  
( ) ( ) ( )x x t y y t z z t a t b= = = ≤ ≤  
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As with the two-dimensional version these three will often occur together so the shorthand we’ll 
be using here is, 
 

( ) ( ) ( ), , , , , ,
C C C C

Pdx Q dy R dz P x y z dx Q x y z dy R x y z dz+ + = + +∫ ∫ ∫ ∫  

 
Let’s work an example. 
 
Example 3  Evaluate 

C

y dx x dy z dz+ +∫  where C is given by cosx t= , siny t= , 2z t= , 

0 2t π≤ ≤ . 
Solution 
So, we already have the curve parameterized so there really isn’t much to do other than evaluate 
the integral. 

 

( ) ( ) ( )

( )( ) ( )( )

( ) ( )

2 2 2 2

0 0 0

2 2 22 2 3

0 0 0

2 2 2 3

0 0 0

4

0

sin sin cos cos 2

sin cos 2

1 11 cos 2 1 cos 2 2
2 2

1 1 1 1 1sin 2 sin 2
2 2 2 2 2

C C C C

y dx x dy z dz y dx x dy z dz

t t dt t t dt t t dt

t dt t dt t dt

t dt t dt t dt

t t t t t

π π π

π π π

π π π

+ + = + +

= − + +

= − + +

= − − + + +

    = − − + + +        

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫
2

48

π

π=
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 Line Integrals of Vector Fields 
In the previous two sections we looked at line integrals of functions.  In this section we are going 
to evaluate line integrals of vector fields.  We’ll start with the vector field, 
 ( ) ( ) ( ) ( ), , , , , , , ,F x y z P x y z i Q x y z j R x y z k= + +




 

 
and the three-dimensional, smooth curve given by 
 
 ( ) ( ) ( ) ( )r t x t i y t j z t k a t b= + + ≤ ≤



 

  
 
The line integral of F



 along C is  
 

 ( )( ) ( )
C

b

a
F d r F r t r t dt′=∫ ∫
 

  

   

 
Note the notation in the left side.  That really is a dot product of the vector field and the 
differential really is a vector.  Also, ( )( )F r t





 is a shorthand for, 

 ( )( ) ( ) ( ) ( )( ), ,F r t F x t y t z t=
 

  
 
We can also write line integrals of vector fields as a line integral with respect to arc length as 
follows, 
 

C C

F d r F T ds=∫ ∫
  



   

where ( )T t


 is the unit tangent vector and is given by, 

 ( ) ( )
( )

r t
T t

r t
′

=
′







 

 
If we use our knowledge on how to compute line integrals with respect to arc length we can see 
that this second form is equivalent to the first form given above. 

 ( )( ) ( )
( ) ( )

( )( ) ( )

C C

b

a

b

a

F d r F T ds

r t
F r t r t dt

r t

F r t r t dt

=

′
′=

′

′=

⌠

⌡

∫ ∫

∫

  



 





 







 



 

 
In general we use the first form to compute these line integral as it is usually much easier to use.  
Let’s take a look at a couple of examples. 
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Example 1  Evaluate 
C

F d r∫




  where ( ) 2, , 8 5 4F x y z x y z i z j x y k= + −



 

 and C is the curve 

given by ( ) 2 3r t t i t j t k= + +


 



, 0 1t≤ ≤ . 
 
Solution 
Okay, we first need the vector field evaluated along the curve. 
 ( )( ) ( )( ) ( )2 2 3 3 2 7 3 38 5 4 8 5 4F r t t t t i t j t t k t i t j t k= + − = + −

 


   

  
 
Next we need the derivative of the parameterization. 
 ( ) 22 3r t i t j t k′ = + +



 

  
 
Finally, let’s get the dot product taken care of. 
 ( )( ) ( ) 7 4 58 10 12F r t r t t t t′ = + −



 

  
 
The line integral is then, 

 ( )

1 7 4 5

0

18 5 6

0

8 10 12

2 2

1

C

F d r t t t dt

t t t

= + −

= + −

=

∫ ∫






 

 
 
Example 2  Evaluate 

C

F d r∫




  where ( ), ,F x y z x z i y z k= −





 and C is the line segment from 

( )1,2,0−  and ( )3,0,1 . 
 
Solution 
We’ll first need the parameterization of the line segment.  We saw how to get the 
parameterization of line segments in the first section on line integrals.  We’ve been using the two 
dimensional version of this over the last couple of sections.  Here is the parameterization for the 
line. 

 
( ) ( )1 1,2,0 3,0,1

4 1,2 2 , , 0 1

r t t t

t t t t

= − − +

= − − ≤ ≤



 

 
So, let’s get the vector field evaluated along the curve. 

 
( )( ) ( )( ) ( )( )

( ) ( )2 2

4 1 2 2

4 2 2

F r t t t i t t k

t t i t t k

= − − −

= − − −












 

 
Now we need the derivative of the parameterization. 
 ( ) 4, 2,1r t′ = −

  
 
The dot product is then, 
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 ( )( ) ( ) ( ) ( )2 2 24 4 2 2 18 6F r t r t t t t t t t′ = − − − = −


 

  
 
The line integral becomes, 

 ( )

1 2

0

13 2

0

18 6

6 3

3

C

F d r t t dt

t t

= −

= −

=

∫ ∫






 

 
Let’s close this section out by doing one of these in general to get a nice relationship between line 
integrals of vector fields and line integrals with respect to x, y, and z. 
 
Given the vector field ( ), ,F x y z P i Q j R k= + +




 

 and the curve C parameterized by 

( ) ( ) ( ) ( )r t x t i y t j z t k= + +


 



, a t b≤ ≤  the line integral is, 
 

 

( ) ( )
C

C C C

C

b

a

b

a

b b b

a a a

F d r P i Q j R k x i y j z k dt

Px Qy Rz dt

Px dt Qy dt Rz dt

P dx Q dy R dz

P dx Q dy R dz

′ ′ ′= + + + +

′ ′ ′= + +

′ ′ ′= + +

= + +

= + +

∫ ∫

∫

∫ ∫ ∫
∫ ∫ ∫

∫

 


   



 

 

 
So, we see that, 

C C

F d r P dx Q dy R dz= + +∫ ∫




  

 
Note that this gives us another method for evaluating line integrals of vector fields. 
 
This also allows us to say the following about reversing the direction of the path with line 
integrals of vector fields. 
 
Fact 

C C

F d r F d r
−

= −∫ ∫
 

 

   

  
This should make some sense given that we know that this is true for line integrals with respect to 
x, y, and/or z and that line integrals of vector fields can be defined in terms of line integrals with 
respect to x, y, and z. 
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 Fundamental Theorem for Line Integrals 
In Calculus I we had the Fundamental Theorem of Calculus that told us how to evaluate definite 
integrals.  This told us, 

 ( ) ( ) ( )
b

a
F x dx F b F a′ = −∫  

 
It turns out that there is a version of this for line integrals over certain kinds of vector fields.  Here 
it is. 
 
Theorem 
Suppose that C is a smooth curve given by ( )r t , a t b≤ ≤ .  Also suppose that f is a function 
whose gradient vector, f∇ , is continuous on C.  Then, 

 ( )( ) ( )( )
C

f d r f r b f r a∇ = −∫
  

  

 
Note that ( )r a  represents the initial point on C while ( )r b  represents the final point on C.  
Also, we did not specify the number of variables for the function since it is really immaterial to 
the theorem.  The theorem will hold regardless of the number of variables in the function. 
 
Proof 
This is a fairly straight forward proof.   
 
For the purposes of the proof we’ll assume that we’re working in three dimensions, but it can be 
done in any dimension. 
 
Let’s start by just computing the line integral. 

 

( )( ) ( )
C

b

a

b

a

f d r f r t r t dt

f dx f dy f dz dt
x dt y dt z dt

′∇ = ∇

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

⌠

⌡

∫ ∫
  

 

 

 
Now, at this point we can use the Chain Rule to simplify the integrand as follows, 

 

( )( )

C

b

a

b

a

f dx f dy f dzf d r dt
x dt y dt z dt

d f r t dt
dt

 ∂ ∂ ∂
∇ = + + ∂ ∂ ∂ 

 =  

⌠

⌡

⌠
⌡

∫






 

 
To finish this off we just need to use the Fundamental Theorem of Calculus for single integrals. 
 ( )( ) ( )( )

C

f d r f r b f r a∇ = −∫
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Let’s take a quick look at an example of using this theorem. 
 
Example 1  Evaluate 

C

f d r∇∫


  where ( ) ( ) ( ), , cos sinf x y z x y xyzπ π= + −  and C is any 

path that starts at ( )1
21, , 2  and ends at ( )2,1, 1− . 

 
Solution 
First let’s notice that we didn’t specify the path for getting from the first point to the second point.  
The reason for this is simple.  The theorem above tells us that all we need are the initial and final 
points on the curve in order to evaluate this kind of line integral. 
 
So, let ( )r t , a t b≤ ≤  be any path that starts at ( )1

21, , 2  and ends at ( )2,1, 1− .  Then, 

 ( ) ( )11, , 2 2,1, 1
2

r a r b= = −
   

The integral is then, 

 

( )

( ) ( )( ) ( )

12,1, 1 1, , 2
2

1cos 2 sin 2 1 1 cos sin 1 2
2 2

4

C

f d r f f

ππ π π

 ∇ = − −  
 

    = + − − − + −        
=

∫




 

 
Notice that we also didn’t need the gradient vector to actually do this line integral.  However, for 
the practice of finding gradient vectors here it is, 
 ( ) ( )sin , cos ,f x yz y xz xyπ π π π∇ = − − − −  
 
The most important idea to get from this example is not how to do the integral as that’s pretty 
simple, all we do is plug the final point and initial point into the function and subtract the two 
results.  The important idea from this example (and hence about the Fundamental Theorem of 
Calculus) is that, for these kinds of line integrals, we didn’t really need to know the path to get 
the answer.  In other words, we could use any path we want and we’ll always get the same results. 
 
In the first section on line integrals (even though we weren’t looking at vector fields) we saw that 
often when we change the path we will change the value of the line integral.  We now have a type 
of line integral for which we know that changing the path will NOT change the value of the line 
integral. 
 
Let’s formalize this idea up a little.  Here are some definitions.  The first one we’ve already seen 
before, but it’s been a while and it’s important in this section so we’ll give it again.  The 
remaining definitions are new. 
 
Definitions 
First suppose that F



 is a continuous vector field in some domain D. 
1. F



 is a conservative vector field if there is a function f such that F f= ∇


.  The function 
f is called a potential function for the vector field.  We first saw this definition in the 
first section of this chapter. 
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2. 

C

F d r∫




  is independent of path if 
1 2C C

F d r F d r=∫ ∫
 

 

   for any two paths 1C  and 2C  in 

D with the same initial and final points. 
 

3. A path C is called closed if its initial and final points are the same point.  For example a 
circle is a closed path. 
 

4. A path C is simple if it doesn’t cross itself.  A circle is a simple curve while a figure 8 
type curve is not simple. 
 

5. A region D is open if it doesn’t contain any of its boundary points. 
 

6. A region D is connected if we can connect any two points in the region with a path that 
lies completely in D. 
 

7. A region D is simply-connected if it is connected and it contains no holes.  We won’t 
need this one until the next section, but it fits in with all the other definitions given here 
so this was a natural place to put the definition. 

 
 
With these definitions we can now give some nice facts. 
 
Facts 
1. 

C

f d r∇∫


  is independent of path. 

 
This is easy enough to prove since all we need to do is look at the theorem above.  The 
theorem tells us that in order to evaluate this integral all we need are the initial and final 
points of the curve.  This in turn tells us that the line integral must be independent of path. 
 

2. If F


 is a conservative vector field then 
C

F d r∫




  is independent of path. 

 
This fact is also easy enough to prove.  If F



 is conservative then it has a potential function, f, 
and so the line integral becomes 

C C

F d r f d r= ∇∫ ∫


 

  .  Then using the first fact we know that 

this line integral must be independent of path. 
 
 

3. If F


 is a continuous vector field on an open connected region D and if
C

F d r∫




  is 

independent of path (for any path in D) then F


 is a conservative vector field on D. 
 
 

4. If 
C

F d r∫




  is independent of path then 0
C

F d r =∫




  for every closed path C. 
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5. If 0
C

F d r =∫




  for every closed path C then 
C

F d r∫




  is independent of path. 

 
These are some nice facts to remember as we work with line integrals over vector fields.  Also 
notice that 2 & 3 and 4 & 5 are converses of each other. 
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 Conservative Vector Fields 

In the previous section we saw that if we knew that the vector field F


 was conservative then 

C

F d r∫




  was independent of path.  This in turn means that we can easily evaluate this line 

integral provided we can find a potential function for F


. 
 
In this section we want to look at two questions.  First, given a vector field F



 is there any way of 
determining if it is a conservative vector field?  Secondly, if we know that F



 is a conservative 
vector field how do we go about finding a potential function for the vector field? 
 
The first question is easy to answer at this point if we have a two-dimensional vector field.  For 
higher dimensional vector fields we’ll need to wait until the final section in this chapter to answer 
this question.  With that being said let’s see how we do it for two-dimensional vector fields. 
 
Theorem 
Let F P i Q j= +


 

 be a vector field on an open and simply-connected region D.  Then if P and Q 
have continuous first order partial derivatives in D and  

 P Q
y x

∂ ∂
=

∂ ∂
 

the vector field F


 is conservative. 
 
Let’s take a look at a couple of examples. 
 
Example 1  Determine if the following vector fields are conservative or not. 

(a) ( ) ( ) ( )2 2,F x y x yx i y xy j= − + −


 

   [Solution] 

(b) ( ) ( ) ( )2 3, 2 2xy xy xyF x y x x y i x y j= + + +e e e


 

   [Solution] 
 
Solution 
Okay, there really isn’t too much to these.  All we do is identify P and Q then take a couple of 
derivatives and compare the results. 
 
(a) ( ) ( ) ( )2 2,F x y x yx i y xy j= − + −


 

 
 
In this case here is P and Q and the appropriate partial derivatives. 

 

2

2

PP x yx x
y
QQ y xy y
x

∂
= − = −

∂
∂

= − = −
∂

 

So, since the two partial derivatives are not the same this vector field is NOT conservative. 
[Return to Problems] 
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(b) ( ) ( ) ( )2 3, 2 2xy xy xyF x y x x y i x y j= + + +e e e


 

 
 
Here is P and Q as well as the appropriate derivatives. 

 

2 2 2 3 2 3

3 2 3

2 2 3

2 3

xy xy xy xy xy xy xy

xy xy xy

PP x x y x x x y x x y
y
QQ x y x x y
x

∂
= + = + + = +

∂
∂

= + = +
∂

e e e e e e e

e e e
 

 
The two partial derivatives are equal and so this is a conservative vector field. 

[Return to Problems] 
 
Now that we know how to identify if a two-dimensional vector field is conservative we need to 
address how to find a potential function for the vector field.  This is actually a fairly simple 
process.  First, let’s assume that the vector field is conservative and so we know that a potential 
function, ( ),f x y  exists.  We can then say that, 
 

 f ff i j P i Q j F
x y
∂ ∂

∇ = + = + =
∂ ∂


   

 

 
Or by setting components equal we have, 
 

andf fP Q
x y
∂ ∂

= =
∂ ∂

 

 
By integrating each of these with respect to the appropriate variable we can arrive at the 
following two equations. 
 

( ) ( ) ( ) ( ), , or , ,f x y P x y dx f x y Q x y dy= =∫ ∫  

 
We saw this kind of integral briefly at the end of the section on iterated integrals in the previous 
chapter. 
 
It is usually best to see how we use these two facts to find a potential function in an example or 
two. 
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Example 2  Determine if the following vector fields are conservative and find a potential 
function for the vector field if it is conservative. 

(a) ( ) ( )3 4 4 32 2F x y x i x y y j= + + +


 

   [Solution] 

(b) ( ) ( ) ( )2 3, 2 2xy xy xyF x y x x y i x y j= + + +e e e


 

   [Solution] 
 
Solution 
(a) ( ) ( )3 4 4 32 2F x y x i x y y j= + + +


 

 
Let’s first identify P and Q and then check that the vector field is conservative.. 

 

3 4 3 3

4 3 3 3

2 8

2 8

PP x y x x y
y
QQ x y y x y
x

∂
= + =

∂
∂

= + =
∂

 

 
So, the vector field is conservative.  Now let’s find the potential function.  From the first fact 
above we know that, 

 3 4 4 32 2f fx y x x y y
x y
∂ ∂

= + = +
∂ ∂

 

 
From these we can see that 
 ( ) ( )3 4 4 3, 2 or , 2f x y x y x dx f x y x y y dy= + = +∫ ∫  
 
We can use either of these to get the process started.  Recall that we are going to have to be 
careful with the “constant of integration” which ever integral we choose to use.  For this example 
let’s work with the first integral and so that means that we are asking what function did we 
differentiate with respect to x to get the integrand.  This means that the “constant of integration” 
is going to have to be a function of y since any function consisting only of y and/or constants will 
differentiate to zero when taking the partial derivative with respect to x. 
 
Here is the first integral. 

 
( )

( )

3 4

4 4 2

, 2

1 1
2 2

f x y x y x dx

x y x h y

= +

= + +

∫
 

where ( )h y  is the “constant of integration”.  
 
We now need to determine ( )h y .  This is easier that it might at first appear to be.  To get to this 
point we’ve used the fact that we knew P, but we will also need to use the fact that we know Q to 
complete the problem.  Recall that Q is really the derivative of f with respect to y.  So, if we 
differentiate our function with respect to y we know what it should be. 
 
So, let’s differentiate f (including the ( )h y ) with respect to y and set it equal to Q since that is 
what the derivative is supposed to be. 
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 ( )4 3 4 32 2f x y h y x y y Q
y
∂ ′= + = + =
∂

 

 
From this we can see that, 
 ( )h y y′ =  

Notice that since ( )h y′  is a function only of y so if there are any x’s in the equation at this point 

we will know that we’ve made a mistake.  At this point finding ( )h y  is simple. 

 ( ) ( ) 21
2

h y h y dy y dy y c′= = = +∫ ∫  

 
So, putting this all together we can see that a potential function for the vector field is, 

 ( ) 4 4 2 21 1 1,
2 2 2

f x y x y x y c= + + +  

 
Note that we can always check our work by verifying that f F∇ =



.  Also note that because the c 
can be anything there are an infinite number of possible potential functions, although they will 
only vary by an additive constant. 

[Return to Problems] 
 
(b) ( ) ( ) ( )2 3, 2 2xy xy xyF x y x x y i x y j= + + +e e e


 

 
Okay, this one will go a lot faster since we don’t need to go through as much explanation.  We’ve 
already verified that this vector field is conservative in the first set of examples so we won’t 
bother redoing that. 
 
Let’s start with the following, 

 2 32 2xy xy xyf fx x y x y
x y
∂ ∂

= + = +
∂ ∂

e e e  

This means that we can do either of the following integrals, 
 ( ) ( )2 3, 2 or , 2xy xy xyf x y x x y dx f x y x y dy= + = +∫ ∫e e e  
 
While we can do either of these the first integral would be somewhat unpleasant as we would 
need to do integration by parts on each portion.  On the other hand the second integral is fairly 
simple since the second term only involves y’s and the first term can be done with the substitution 
u xy= .  So, from the second integral we get, 
 
 ( ) ( )2 2, xyf x y x y h x= + +e  
 
Notice that this time the “constant of integration” will be a function of x.  If we differentiate this 
with respect to x and set equal to P we get, 
 

 ( )2 22 2xy xy xy xyf x x y h x x x y P
x
∂ ′= + + = + =
∂

e e e e  

 
So, in this case it looks like, 
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 ( ) ( )0h x h x c′ = ⇒ =  
 
So, in this case the “constant of integration” really was a constant.  Sometimes this will happen 
and sometimes it won’t. 
 
Here is the potential function for this vector field. 
 ( ) 2 2, xyf x y x y c= + +e  

[Return to Problems] 
 
Now, as noted above we don’t have a way (yet) of determining if a three-dimensional vector field 
is conservative or not.  However, if we are given that a three-dimensional vector field is 
conservative finding a potential function is similar to the above process, although the work will 
be a little more involved. 
 
In this case we will use the fact that, 

 f f ff i j k P i Q j R k F
x y z
∂ ∂ ∂

∇ = + + = + + =
∂ ∂ ∂

 


   

 

 
Let’s take a quick look at an example. 
 
Example 3  Find a potential function for the vector field, 

3 4 2 2 4 2 3 32 3 4F xy z i x y z j x y z k= + +



 

 
 
Solution 
Okay, we’ll start off with the following equalities. 

 3 4 2 2 4 2 3 32 3 4f f fxy z x y z x y z
x y z
∂ ∂ ∂

= = =
∂ ∂ ∂

 

 
To get started we can integrate the first one with respect to x, the second one with respect to y, or 
the third one with respect to z.  Let’s integrate the first one with respect to x. 
 
 ( ) ( )3 4 2 3 4, , 2 ,f x y z xy z dx x y z g y z= = +∫  
 
Note that this time the “constant of integration” will be a function of both y and z since 
differentiating anything of that form with respect to x will differentiate to zero. 
 
Now, we can differentiate this with respect to y and set it equal to Q.  Doing this gives, 

 ( )2 2 4 2 2 43 , 3y
f x y z g y z x y z Q
y
∂

= + = =
∂

 

Of course we’ll need to take the partial derivative of the constant of integration since it is a 
function of two variables.  It looks like we’ve now got the following, 
 ( ) ( ) ( ), 0 ,yg y z g y z h z= ⇒ =  

Since differentiating ( ),g y z  with respect to y gives zero then ( ),g y z  could at most be a 
function of z.  This means that we now know the potential function must be in the following form. 
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 ( ) ( )2 3 4, ,f x y z x y z h z= +  
 
To finish this out all we need to do is differentiate with respect to z and set the result equal to R. 
 

 ( )2 3 3 2 3 34 4f x y z h z x y z R
z
∂ ′= + = =
∂

 

 
So, 
 ( ) ( )0h z h z c′ = ⇒ =  
 
The potential function for this vector field is then, 
 ( ) 2 3 4, ,f x y z x y z c= +  
 
Note that to keep the work to a minimum we used a fairly simple potential function for this 
example.  It might have been possible to guess what the potential function was based simply on 
the vector field.  However, we should be careful to remember that this usually won’t be the case 
and often this process is required. 
 
Also, there were several other paths that we could have taken to find the potential function.  Each 
would have gotten us the same result.   
 
Let’s work one more slightly (and only slightly) more complicated example. 
 
Example 4  Find a potential function for the vector field, 

( )( ) ( )( ) ( )3 2 2 22 cos 2 3 2 sin 6z zF x y z i y x y j y xz k= − + + − + −e e



 

 
 
Solution 
Here are the equalities for this vector field. 

 ( ) ( )3 2 2 22 cos 2 3 2 sin 6z zf f fx y z y x y y xz
x y z
∂ ∂ ∂

= − = + − = −
∂ ∂ ∂

e e  

 
For this example let’s integrate the third one with respect to z. 
 ( ) ( )2 2 2 3, , 6 2 ,z zf x y z y xz dz y xz g x y= − = − +∫ e e  
 
The “constant of integration” for this integration will be a function of both x and y. 
 
Now, we can differentiate this with respect to x and set it equal to P.  Doing this gives, 

 ( ) ( )3 32 , 2 cos 2x
f z g x y x y z P
x
∂

= − + = − =
∂

 

 
So, it looks like we’ve now got the following, 
 ( ) ( ) ( ) ( ) ( )2, 2 cos , cosxg x y x y g x y x y h y= ⇒ = +  
 
The potential function for this problem is then, 
 ( ) ( ) ( )2 3 2, , 2 coszf x y z y xz x y h y= − + +e  
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To finish this out all we need to do is differentiate with respect to y and set the result equal to Q. 
 

 ( ) ( ) ( )2 22 sin 3 2 sinz zf y x y h y y x y Q
y
∂ ′= − + = + − =
∂

e e  

So, 
 ( ) ( )3 3h y h y y c′ = ⇒ = +  
 
The potential function for this vector field is then, 
 ( ) ( )2 3 2, , 2 cos 3zf x y z y xz x y y c= − + + +e  
 
So, a little more complicated than the others and there are again many different paths that we 
could have taken to get the answer. 
 
We need to work one final example in this section. 
 
Example 5  Evaluate 

C

F d r∫




  where ( ) ( )3 4 4 32 2F x y x i x y y j= + + +


 

 and C is given by 

( ) ( )( )cos 1 sin
2
tr t t t i jππ  = − +  

 

 



, 0 1t≤ ≤ . 

Solution 
Now, we could use the techniques we discussed when we first looked at line integrals of vector 
fields however that would be particularly unpleasant solution. 
 
Instead, let’s take advantage of the fact that we know from Example 2a above this vector field is 
conservative and that a potential function for the vector field is, 

 ( ) 4 4 2 21 1 1,
2 2 2

f x y x y x y c= + + +  

 
Using this we know that integral must be independent of path and so all we need to do is use the 
theorem from the previous section to do the evaluation. 
 
 ( )( ) ( )( )1 0

C C

F d r f d r f r f r= ∇ = −∫ ∫


   

   

where, 
 ( ) ( )1 2,1 0 1,0r r= − = −

   
 
So, the integral is, 

 

( ) ( )2,1 1,0

21 1
2 2

10

C

F d r f f

c c

= − − −

   = + − +   
   

=

∫
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 Green’s Theorem 
In this section we are going to investigate the relationship between certain kinds of line integrals 
(on closed paths) and double integrals. 
 
Let’s start off with a simple (recall that this means that it doesn’t cross itself) closed curve C and 
let D be the region enclosed by the curve.  Here is a sketch of such a curve and region. 

 
First, notice that because the curve is simple and closed there are no holes in the region D.  Also 
notice that a direction has been put on the curve.  We will use the convention here that the curve 
C has a positive orientation if it is traced out in a counter-clockwise direction.  Another way to 
think of a positive orientation (that will cover much more general curves as well see later) is that 
as we traverse the path following the positive orientation the region D must always be on the left. 
 
Given curves/regions such as this we have the following theorem. 
 
Green’s Theorem 
Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region 
enclosed by the curve.  If P and Q have continuous first order partial derivatives on D then, 

 
C

D

Q PPdx Qdy dA
x y

 ∂ ∂
+ = − ∂ ∂ 

⌠⌠

⌡⌡

∫  

 
Before working some examples there are some alternate notations that we need to acknowledge.  
When working with a line integral in which the path satisfies the condition of Green’s Theorem 
we will often denote the line integral as, 
 
 or

C C

Pdx Qdy Pdx Qdy+ +∫ ∫ 

 

 
Both of these notations do assume that C satisfies the conditions of Green’s Theorem so be 
careful in using them. 
 
Also, sometimes the curve C is not thought of as a separate curve but instead as the boundary of 
some region D and in these cases you may see C denoted as D∂ . 
 
Let’s work a couple of examples. 
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Example 1  Use Green’s Theorem to evaluate 2 3

C

xy dx x y dy+∫  where C is the triangle with 

vertices ( )0,0 , ( )1,0 , ( )1,2  with positive orientation. 
 
Solution 
Let’s first sketch C and D for this case to make sure that the conditions of Green’s Theorem are 
met for C and will need the sketch of D to evaluate the double integral. 

 
 
So, the curve does satisfy the conditions of Green’s Theorem and we can see that the following 
inequalities will define the region enclosed. 
 
 0 1 0 2x y x≤ ≤ ≤ ≤  
 
We can identify P and Q from the line integral.  Here they are. 
 2 3P xy Q x y= =  
 
So, using Green’s Theorem the line integral becomes, 

 

2 3 3

1 2 3

00

1 2
4

00

1 5 2

0

1
6 3

0

2

2

1
2

8 2

4 2
3 3

2
3

C D

x

x

xy dx x y dy xy x dA

xy x dy dx

xy xy dx

x x dx

x x

+ = −

= −

 = − 
 

= −

 = − 
 

=

⌠
⌡

⌠

⌡

∫ ∫∫

∫

∫
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Example 2  Evaluate 3 3

C

y dx x dy−∫  where C is the positively oriented circle of radius 2 

centered at the origin. 
 
Solution 
Okay, a circle will satisfy the conditions of Green’s Theorem since it is closed and simple and so 
there really isn’t a reason to sketch it. 
 
Let’s first identify P and Q from the line integral. 

3 3P y Q x= = −  
 

Be careful with the minus sign on Q! 
 
Now, using Green’s theorem on the line integral gives, 
 3 3 2 23 3

C D

y dx x dy x y dA− = − −∫ ∫∫

 

where D is a disk of radius 2 centered at the origin.   
 
Since D is a disk it seems like the best way to do this integral is to use polar coordinates.  Here is 
the evaluation of the integral. 

 

( )3 3 2 2

2 2 3

00

2 2
4

00

2

0

3

3

13
4

3 4

24

C D

y dx x dy x y dA

r dr d

r d

d

π

π

π

θ

θ

θ

π

− = − +

= −

= −

= −

= −

⌠
⌡

⌠

⌡

∫ ∫∫

∫

∫



 

 
So, Green’s theorem, as stated, will not work on regions that have holes in them.  However, many 
regions do have holes in them.  So, let’s see how we can deal with those kinds of regions. 
 
Let’s start with the following region.  Even though this region doesn’t have any holes in it the 
arguments that we’re going to go through will be similar to those that we’d need for regions with 
holes in them, except it will be a little easier to deal with and write down. 
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The region D will be 1 2D D∪  and recall that the symbol ∪  is called the union and means that D 
consists of both D1 and D2.  The boundary of D1 is 1 3C C∪  while the boundary of D2 is 

( )2 3C C∪ −  and notice that both of these boundaries are positively oriented.  As we traverse 
each boundary the corresponding region is always on the left.  Finally, also note that we can think 
of the whole boundary, C, as, 
 ( ) ( )( )1 3 2 3 1 2C C C C C C C= ∪ ∪ ∪ − = ∪  
since both 3C  and 3C−  will “cancel” each other out. 
 
Now, let’s start with the following double integral and use a basic property of double integrals to 
break it up. 
 ( ) ( ) ( ) ( )

1 2 1 2

x y x y x y x y
D D D D D

Q P dA Q P dA Q P dA Q P dA
∪

− = − = − + −∫∫ ∫∫ ∫∫ ∫∫  

 
Next, use Green’s theorem on each of these and again use the fact that we can break up line 
integrals into separate line integrals for each portion of the boundary. 

 

( ) ( ) ( )

( )

1 2

1 3 2 3

1 3 2 3

x y x y x y
D D D

C C C C

C C C C

Q P dA Q P dA Q P dA

Pdx Qdy Pdx Qdy

Pdx Qdy Pdx Qdy Pdx Qdy Pdx Qdy

∪ ∪ −

−

− = − + −

= + + +

= + + + + + + +

∫∫ ∫∫ ∫∫

∫ ∫

∫ ∫ ∫ ∫

 

   

 

 
Next, we’ll use the fact that, 
 

3 3C C

Pdx Qdy Pdx Qdy
−

+ = − +∫ ∫ 

 

 
Recall that changing the orientation of a curve with line integrals with respect to x and/or y will 
simply change the sign on the integral.  Using this fact we get, 
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( )

1 3 2 3

1 2

x y
D C C C C

C C

Q P dA Pdx Qdy Pdx Qdy Pdx Qdy Pdx Qdy

Pdx Qdy Pdx Qdy

− = + + + + + − +

= + + +

∫∫ ∫ ∫ ∫ ∫

∫ ∫

   

 

 

 
Finally, put the line integrals back together and we get, 

 

( )
1 2

1 2

x y
D C C

C C

C

Q P dA Pdx Qdy Pdx Qdy

Pdx Qdy

Pdx Qdy
∪

− = + + +

= +

= +

∫∫ ∫ ∫

∫

∫

 





 

 
So, what did we learn from this?  If you think about it this was just a lot of work and all we got 
out of it was the result from Green’s Theorem which we already knew to be true.  What this 
exercise has shown us is that if we break a region up as we did above then the portion of the line 
integral on the pieces of the curve that are in the middle of the region (each of which are in the 
opposite direction) will cancel out.  This idea will help us in dealing with regions that have holes 
in them. 
 
To see this let’s look at a ring. 

 
 

Notice that both of the curves are oriented positively since the region D is on the left side as we 
traverse the curve in the indicated direction.  Note as well that the curve C2 seems to violate the 
original definition of positive orientation.  We originally said that a curve had a positive 
orientation if it was traversed in a counter-clockwise direction.  However, this was only for 
regions that do not have holes.  For the boundary of the hole this definition won’t work and we 
need to resort to the second definition that we gave above. 
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Now, since this region has a hole in it we will apparently not be able to use Green’s Theorem on 
any line integral with the curve 1 2C C C= ∪ .  However, if we cut the disk in half and rename all 
the various portions of the curves we get the following sketch. 
 

 
 
The boundary of the upper portion (D1)of the disk is 1 2 5 6C C C C∪ ∪ ∪  and the boundary on the 

lower portion (D2)of the disk is ( ) ( )3 4 5 6C C C C∪ ∪ − ∪ − .  Also notice that we can use Green’s 
Theorem on each of these new regions since they don’t have any holes in them.  This means that 
we can do the following, 

 
( ) ( ) ( )

( ) ( )

1 2

1 2 5 6 3 4 5 6

x y x y x y
D D D

C C C C C C C C

Q P dA Q P dA Q P dA

Pdx Qdy Pdx Qdy
∪ ∪ ∪ ∪ ∪ − ∪ −

− = − + −

= + + +

∫∫ ∫∫ ∫∫

∫ ∫ 

 

 
Now, we can break up the line integrals into line integrals on each piece of the boundary.  Also 
recall from the work above that boundaries that have the same curve, but opposite direction will 
cancel.  Doing this gives, 

 
( ) ( ) ( )

1 2

1 2 3 4

x y x y x y
D D D

C C C C

Q P dA Q P dA Q P dA

Pdx Qdy Pdx Qdy Pdx Qdy Pdx Qdy

− = − + −

= + + + + + + +

∫∫ ∫∫ ∫∫

∫ ∫ ∫ ∫   

 

 
But at this point we can add the line integrals back up as follows, 

 
( )

1 2 3 4

x y
D C C C C

C

Q P dA Pdx Qdy

Pdx Qdy

∪ ∪ ∪

− = +

= +

∫∫ ∫

∫
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The end result of all of this is that we could have just used Green’s Theorem on the disk from the 
start even though there is a hole in it.  This will be true in general for regions that have holes in 
them. 
 
Let’s take a look at an example. 
 
Example 3  Evaluate 3 3

C

y dx x dy−∫  where C are the two circles of radius 2 and radius 1 

centered at the origin with positive orientation. 
 
Solution 
Notice that this is the same line integral as we looked at in the second example and only the curve 
has changed.  In this case the region D will now be the region between these two circles and that 
will only change the limits in the double integral so we’ll not put in some of the details here. 
 
Here is the work for this integral. 

 

( )3 3 2 2

2 2 3

10

2 2
4

10

2

0

3

3

13
4

153
4

45
2

C D

y dx x dy x y dA

r dr d

r d

d

π

π

π

θ

θ

θ

π

− = − +

= −

= −

= −

= −

⌠
⌡

⌠

⌡

⌠
⌡

∫ ∫∫

∫



 

 
We will close out this section with an interesting application of Green’s Theorem.  Recall that we 
can determine the area of a region D with the following double integral. 
 

D

A dA= ∫∫  

 
Let’s think of this double integral as the result of using Green’s Theorem.  In other words, let’s 
assume that 
 1x yQ P− =  
and see if we can get some functions P and Q that will satisfy this.   
 
There are many functions that will satisfy this.  Here are some of the more common functions. 

 
0 2

0
2

yPP P y
Q x Q xQ

= −= = −
= =

=
 

 
Then, if we use Green’s Theorem in reverse we see that the area of the region D can also be 
computed by evaluating any of the following line integrals. 
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1
2C C C

A x dy y dx x dy y dx= = − = −∫ ∫ ∫  

 

  
where C is the boundary of the region D. 
 
Let’s take a quick look at an example of this. 
 
Example 4  Use Green’s Theorem to find the area of a disk of radius a. 
 
Solution 
We can use either of the integrals above, but the third one is probably the easiest.  So, 

 1
2 C

A x dy y dx= −∫  

where C is the circle of radius a.  So, to do this we’ll need a parameterization of C.  This is, 
 cos sin 0 2x a t y a t t π= = ≤ ≤  
 
The area is then, 

 

( ) ( )( )2 2

0 0

2 2 2 2 2

0

2 2

0

2

1
2
1 cos cos sin sin
2
1 cos sin
2
1
2

C

A x dy y dx

a t a t dt a t a t dt

a t a t dt

a dt

a

π π

π

π

π

= −

= − −

= +

=

=

∫

∫ ∫

∫

∫
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 Curl and Divergence 
In this section we are going to introduce a couple of new concepts, the curl and the divergence of 
a vector. 
 
Let’s start with the curl.  Given the vector field F P i Q j R k= + +




 

 the curl is defined to be, 

( ) ( ) ( )curl y z z x x yF R Q i P R j Q P k= − + − + −



 

 

 
There is another (potentially) easier definition of the curl of a vector field.  To use it we will first 
need to define the ∇  operator.  This is defined to be, 

i j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂



 

 

 
We use this as if it’s a function in the following manner. 

 f f ff i j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂



 

 

So, whatever function is listed after the ∇  is substituted into the partial derivatives.  Note as well 
that when we look at it in this light we simply get the gradient vector. 
 
Using the ∇  we can define the curl as the following cross product, 
 

curl

i j k

F F
x y z

P Q R

∂ ∂ ∂
= ∇× =

∂ ∂ ∂



 

 

 

  
We have a couple of nice facts that use the curl of a vector field. 
 
Facts 
1. If ( ), ,f x y z  has continuous second order partial derivatives then ( )curl 0f∇ =



.  This is 
easy enough to check by plugging into the definition of the derivative so we’ll leave it to you 
to check. 
 

2. If F


 is a conservative vector field then curl 0F =


.  This is a direct result of what it means 
to be a conservative vector field and the previous fact. 
 

3. If F


is defined on all of 3
  whose components have continuous first order partial derivative 

and curl 0F =


 then F


 is a conservative vector field.  This is not so easy to verify and so we 
won’t try. 
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Example 1  Determine if 2 2 2F x y i xyz j x y k= + −



 

 is a conservative vector field. 
 
Solution 
So all that we need to do is compute the curl and see if we get the zero vector or not. 

 
( )

( ) ( )

2 2 2

2 2 2

2 2 2

curl

2 2

2 2

0

i j k

F
x y z

x y xyz x y

x y i yz k xy j xy i x k

x y xy i xy j yz x k

∂ ∂ ∂
=

∂ ∂ ∂
−

= − + − − − −

= − + + + −

≠



 



 

  



 



 

 
So, the curl isn’t the zero vector and so this vector field is not conservative. 
 
Next we should talk about a physical interpretation of the curl.  Suppose that F



 is the velocity 
field of a flowing fluid.  Then curl F



 represents the tendency of particles at the point ( ), ,x y z  to 

rotate about the axis that points in the direction of curl F


.  If curl 0F =


 then the fluid is called 
irrotational. 
 
Let’s now talk about the second new concept in this section.  Given the vector field 
F P i Q j R k= + +




 

 the divergence is defined to be, 

div P Q RF
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂



 

 
There is also a definition of the divergence in terms of the ∇  operator.  The divergence can be 
defined in terms of the following dot product. 
 

div F F= ∇
 

  
 
Example 2  Compute div F



 for 2 2 2F x y i xyz j x y k= + −



 

 
 
Solution 
There really isn’t much to do here other than compute the divergence. 

 ( ) ( ) ( )2 2 2div 2F x y xyz x y xy xz
x y z
∂ ∂ ∂

= + + − = +
∂ ∂ ∂



 

 
We also have the following fact about the relationship between the curl and the divergence. 
 ( )div curl 0F =
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Example 3  Verify the above fact for the vector field 2F yz i xy j yz k= + +



 

. 
 
Solution 
Let’s first compute the curl. 

 

( )

2

2

2

curl

2

2

i j k

F
x y z

yz xy yz

z i yz j y k z k

zi yz j y z k

∂ ∂ ∂
=

∂ ∂ ∂

= + + −

= + + −



 



 

 



 

 

 
Now compute the divergence of this. 

 ( ) ( ) ( ) ( )2div curl 2 2 2 0F z yz y z z z
x y z
∂ ∂ ∂

= + + − = − =
∂ ∂ ∂



 

 
We also have a physical interpretation of the divergence.  If we again think of F



 as the velocity 
field of a flowing fluid then div F



 represents the net rate of change of the mass of the fluid 
flowing from the point ( ), ,x y z  per unit volume.  This can also be thought of as the tendency of 

a fluid to diverge from a point.  If div 0F =


 then the F


 is called incompressible. 
 
The next topic that we want to briefly mention is the Laplace operator.  Let’s first take a look at, 
 ( )div xx yy zzf f f f f∇ =∇ ∇ = + +  
The Laplace operator is then defined as, 

2∇ =∇ ∇  
The Laplace operator arises naturally in many fields including heat transfer and fluid flow. 
 
The final topic in this section is to give two vector forms of Green’s Theorem.  The first form 
uses the curl of the vector field and is, 
 

( )curl
C D

F d r F k dA=∫ ∫∫


 



 



 

  
where k



is the standard unit vector in the positive z direction. 
 
The second form uses the divergence.  In this case we also need the outward unit normal to the 
curve C.  If the curve is parameterized by  
 ( ) ( ) ( )r t x t i y t j= +

 

  
then the outward unit normal is given by, 

 ( )
( )

( )
( )

y t x t
n i j

r t r t
′ ′

= −
′ ′

 



 

 

Here is a sketch illustrating the outward unit normal for some curve C at various points. 
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The vector form of Green’s Theorem that uses the divergence is given by, 
 

div
C D

F n ds F dA=∫ ∫∫
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Surface Integrals 
 

 Introduction 
In the previous chapter we looked at evaluating integrals of functions or vector fields where the 
points came from a curve in two- or three-dimensional space.  We now want to extend this idea 
and integrate functions and vector fields where the points come from a surface in three-
dimensional space.  These integrals are called surface integrals. 
 
Here is a list of the topics covered in this chapter. 
 
Parametric Surfaces – In this section we will take a look at the basics of representing a surface 
with parametric equations.  We will also take a look at a couple of applications. 
 
Surface Integrals – Here we will introduce the topic of surface integrals.  We will be working 
with surface integrals of functions in this section. 
 
Surface Integrals of Vector Fields – We will look at surface integrals of vector fields in this 
section. 
 
Stokes’ Theorem – We will look at Stokes’ Theorem in this section. 
 
Divergence Theorem – Here we will take a look at the Divergence Theorem. 
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 Parametric Surfaces 
Before we get into surface integrals we first need to talk about how to parameterize a surface.  
When we parameterized a curve we took values of t from some interval [ ],a b  and plugged them 
into 
 ( ) ( ) ( ) ( )r t x t i y t j z t k= + +



 

  
and the resulting set of vectors will be the position vectors for the points on the curve. 
 
With surfaces we’ll do something similar.  We will take points, ( ),u v , out of some two-
dimensional space D and plug them into 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +



 

  
and the resulting set of vectors will be the position vectors for the points on the surface S that we 
are trying to parameterize.  This is often called the parametric representation of the parametric 
surface S. 
 
We will sometimes need to write the parametric equations for a surface.  There are really 
nothing more than the components of the parametric representation explicitly written down. 
 ( ) ( ) ( ), , ,x x u v y y u v z z u v= = =  
 
Example 1  Determine the surface given by the parametric representation 
 ( ), cos sinr u v u i u v j u v k= + +



 

  
Solution 
Let’s first write down the parametric equations. 
 cos sinx u y u v z u v= = =  
 
Now if we square y and z and then add them together we get, 
 ( )2 2 2 2 2 2 2 2 2 2 2cos sin cos siny z u v u v u v v u x+ = + = + = =  
 
So, we were able to eliminate the parameters and the equation in x, y, and z is given by, 

2 2 2x y z= +  
 
From the Quadric Surfaces section notes we can see that this is a cone that opens along the x-axis. 
 
We are much more likely to need to be able to write down the parametric equations of a surface 
than identify the surface from the parametric representation so let’s take a look at some examples 
of this. 
 
Example 2  Give parametric representations for each of the following surfaces. 

(a) The elliptic paraboloid 2 25 2 10x y z= + − .   [Solution] 
(b) The elliptic paraboloid 2 25 2 10x y z= + −  that is in front of the yz-plane.    
       [Solution] 
(c) The sphere 2 2 2 30x y z+ + = .   [Solution] 
(d) The cylinder 2 2 25y z+ = .   [Solution] 
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Solution 
(a) The elliptic paraboloid 2 25 2 10x y z= + − . 
 
This one is probably the easiest one of the four to see how to do.  Since the surface is in the form 

( ),x f y z=  we can quickly write down a set of parametric equations as follows, 

 2 25 2 10x y z y y z z= + − = =  
 
The last two equations are just there to acknowledge that we can choose y and z to be anything we 
want them to be.  The parametric representation is then, 
 ( ) ( )2 2, 5 2 10r y z y z i y j z k= + − + +



 

  
[Return to Problems] 

 
(b) The elliptic paraboloid 2 25 2 10x y z= + −  that is in front of the yz-plane. 
 
This is really a restriction on the previous parametric representation.  The parametric 
representation stays the same. 
 ( ) ( )2 2, 5 2 10r y z y z i y j z k= + − + +



 

  
 
However, since we only want the surface that lies in front of the yz-plane we also need to require 
that 0x ≥ .  This is equivalent to requiring, 
 2 2 2 25 2 10 0 or 5 2 10y z y z+ − ≥ + ≥  

[Return to Problems] 
 
(c) The sphere 2 2 2 30x y z+ + = . 
 
This one can be a little tricky until you see how to do it.  In spherical coordinates we know that 
the equation of a sphere of radius a is given by, 
 aρ =  
and so the equation of this sphere (in spherical coordinates) is 30ρ = .  Now, we also have the 
following conversion formulas for converting Cartesian coordinates into spherical coordinates. 
 sin cos sin sin cosx y zρ ϕ θ ρ ϕ θ ρ ϕ= = =  
 
However, we know what ρ  is for our sphere and so if we plug this into these conversion 
formulas we will arrive at a parametric representation for the sphere.  Therefore, the parametric 
representation is, 
 ( ), 30 sin cos 30 sin sin 30 cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +



 

  
 
All we need to do now is come up with some restriction on the variables.  First we know that we 
have the following restriction. 
 0 ϕ π≤ ≤  
This is enforced upon us by choosing to use spherical coordinates.  Also, to make sure that we 
only trace out the sphere once we will also have the following restriction. 
 0 2θ π≤ ≤  

[Return to Problems] 
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(d)  The cylinder 2 2 25y z+ = . 
 
As with the last one this can be tricky until you see how to do it.  In this case it makes some sense 
to use cylindrical coordinates since they can be easily used to write down the equation of a 
cylinder. 
 
In cylindrical coordinates the equation of a cylinder of radius a is given by 
 r a=  
and so the equation of the cylinder in this problem is 5r = . 
 
Next, we have the following conversion formulas. 
 sin cosx x y r z rθ θ= = =  
Notice that they are slightly different from those that we are used to seeing.  We needed to change 
them up here since the cylinder was centered upon the x-axis. 
 
Finally, we know what r is so we can easily write down a parametric representation for this 
cylinder. 
 ( ), 5sin 5cosr x x i j kθ θ θ= + +



 

  
 
We will also need the restriction 0 2θ π≤ ≤  to make sure that we don’t retrace any portion of 
the cylinder.  Since we haven’t put any restrictions on the “height” of the cylinder there won’t be 
any restriction on x. 

[Return to Problems] 
 
In the first part of this example we used the fact that the function was in the form ( ),x f y z=  to 
quickly write down a parametric representation.  This can always be done for functions that are in 
this basic form. 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,

, , ,

z f x y r x y x i y j f x y k

x f y z r y z f y z i y j z k

y f x z r x z x i f x z j z k

= ⇒ = + +

= ⇒ = + +

= ⇒ = + +



 





 





 



 

 
Okay, now that we have practice writing down some parametric representations for some surfaces 
let’s take a quick look at a couple of applications. 
 
Let’s take a look at finding the tangent plane to the parametric surface S given by, 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +



 

  
 
First, define 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

u

v

x y zr u v u v i u v j u v k
u u u
x y zr u v u v i u v j u v k
v v v

∂ ∂ ∂
= + +
∂ ∂ ∂
∂ ∂ ∂

= + +
∂ ∂ ∂



 





 



 

 



Calculus III 

© 2007 Paul Dawkins 253 http://tutorial.math.lamar.edu/terms.aspx 
 

Now, provided 0u vr r× ≠


 

 it can be shown that the vector u vr r× 

 will be orthogonal to the surface 
S.  This means that it can be used for the normal vector that we need in order to write down the 
equation of a tangent plane.  This is an important idea that will be used many times throughout 
the next couple of sections. 
 
Let’s take a look at an example. 
 
Example 3  Find the equation of the tangent plane to the surface given by 
 ( ) ( )2 2, 2r u v u i v j u v k= + + +



 

  

at the point ( )2,2,3 . 
 
Solution 
Let’s first compute u vr r× 

.  Here are the two individual vectors. 

 ( ) ( ), 2 , 4u vr u v i u k r u v v j k= + = +
 

 

   
 
Now the cross product (which will give us the normal vector n ) is, 

 1 0 2 8 4
0 4 1

u v

i j k
n r r u uv i j v k

v
= × = = − − +



 



 

    

 
Now, this is all fine, but in order to use it we will need to determine the value of u and v that will 
give us the point in question.  We can easily do this by setting the individual components of the 
parametric representation equal to the coordinates of the point in question.  Doing this gives, 

 2

2

2 2
2 2 1
3

u u
v v

u v

= ⇒ =

= ⇒ = ±

= +

 

 
Now, as shown, we have the value of u, but there are two possible values of v.  To determine the 
correct value of v let’s plug u into the third equation and solve for v.  This should tell us what the 
correct value is. 
 3 4 1v v= + ⇒ = −  
 
Okay so we now know that we’ll be at the point in question when 2u =  and 1v = − .  At this 
point the normal vector is, 

16 4n i j k= − −


 



 
The tangent plane is then, 

 
( ) ( ) ( )16 2 2 4 3 0

16 4 18
x y z

x y z
− − − − − =

− − =
 

 
You do remember how to write down the equation of a plane, right? 
 
The second application that we want to take a quick look at is the surface area of the parametric 
surface S given by, 
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 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +


 

  
and as we will see it again comes down to needing the vector u vr r× 

. 
 
So, provided S is traced out exactly once as ( ),u v  ranges over the points in D the surface area of 
S is given by, 

u v
D

A r r dA= ×∫∫
 

 

 
Let’s take a look at an example. 
 
Example 4  Find the surface area of the portion of the sphere of radius 4 that lies inside the 
cylinder 2 2 12x y+ =  and above the xy-plane. 
 
Solution 
Okay we’ve got a couple of things to do here.  First we need the parameterization of the sphere.  
We parameterized a sphere earlier in this section so there isn’t too much to do at this point.  Here 
is the parameterization. 
 ( ), 4sin cos 4sin sin 4cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +



 

  
 
Next we need to determine D.  Since we are not restricting how far around the z-axis we are 
rotating with the sphere we can take the following range for θ . 
 0 2θ π≤ ≤  
 
Now, we need to determine a range for ϕ .  This will take a little work, although it’s not too bad.  
First, let’s start with the equation of the sphere. 
 2 2 2 16x y z+ + =  
Now, if we substitute the equation for the cylinder into this equation we can find the value of z 
where the sphere and the cylinder intersect. 

 

2 2 2

2

2

16
12 16

4 2

x y z
z
z z

+ + =

+ =

= ⇒ = ±

 

 
Now, since we also specified that we only want the portion of the sphere that lies above the xy-
plane we know that we need 2z = .  We also know that 4ρ = .  Plugging this into the following 
conversion formula we get, 

 
cos

2 4cos
1cos
2 3

z ρ ϕ
ϕ

πϕ ϕ

=
=

= ⇒ =

 

So, it looks like the range of ϕ  will be, 

 0
3
πϕ≤ ≤  
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Finally, we need to determine r rθ ϕ×
 

.  Here are the two individual vectors. 

 
( )
( )

, 4sin sin 4sin cos

, 4cos cos 4cos sin 4sin

r i j

r i j k
θ

ϕ

θ ϕ ϕ θ ϕ θ

θ ϕ ϕ θ ϕ θ ϕ

= − +

= + −

 





 



 

 
Now let’s take the cross product. 

 

( )
2 2 2 2

2 2 2 2

2 2

4sin sin 4sin cos 0
4cos cos 4cos sin 4sin

16sin cos 16sin cos sin 16sin sin 16sin cos cos

16sin cos 16sin sin 16sin cos sin cos

16sin cos 16sin s

i j k
r r

i k j k

i j k

i

θ ϕ ϕ θ ϕ θ
ϕ θ ϕ θ ϕ

ϕ θ ϕ ϕ θ ϕ θ ϕ ϕ θ

ϕ θ ϕ θ ϕ ϕ θ θ

ϕ θ ϕ

× = −
−

= − − − −

= − − − +

= − −



 

 

 

 



 



in 16sin cosj kθ ϕ ϕ−




 

 
We now need the magnitude of this, 

 

( )
( )

4 2 4 2 2 2

4 2 2 2 2

2 2 2

2

256sin cos 256sin sin 256sin cos

256sin cos sin 256sin cos

256sin sin cos

16 sin
16 sin
16sin

r rθ ϕ ϕ θ ϕ θ ϕ ϕ

ϕ θ θ ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ
ϕ

× = + +

= + +

= +

=

=

=

 

 

We can drop the absolute value bars in the sine because sine is positive in the range of ϕ  that we 
are working with. 
 
We can finally get the surface area. 

 

2
3

0 0

2 3

00

2

0

16sin

16sin

16cos

8

16

D

A dA

d d

d

d

ππ

π π

π

ϕ

ϕ ϕ θ

ϕ θ

θ

π

=

=

= −

=

=

∫∫

∫ ∫

∫

∫
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 Surface Integrals 
It is now time to think about integrating functions over some surface, S, in three-dimensional 
space.  Let’s start off with a sketch of the surface S since the notation can get a little confusing 
once we get into it.  Here is a sketch of some surface S. 

 
The region S will lie above (in this case) some region D that lies in the xy-plane.  We used a 
rectangle here, but it doesn’t have to be of course.  Also note that we could just as easily looked at 
a surface S that was in front of some region D in the yz-plane or the xz-plane.  Do not get so 
locked into the xy-plane that you can’t do problems that have regions in the other two planes. 
 
Now, how we evaluate the surface integral will depend upon how the surface is given to us.  
There are essentially two separate methods here, although as we will see they are really the same. 
 
First, let’s look at the surface integral in which the surface S is given by ( ),z g x y= .  In this 
case the surface integral is, 
 

( ) ( )( )
22

, , , , , 1
S

D

g gf x y z dS f x y g x y dA
x y

 ∂ ∂ = + +  ∂ ∂   

⌠⌠

⌡⌡

∫∫  

  
Now, we need to be careful here as both of these look like standard double integrals.  In fact the 
integral on the right is a standard double integral.  The integral on the left however is a surface 
integral.  The way to tell them apart is by looking at the differentials.  The surface integral will 
have a dS while the standard double integral will have a dA. 
 
In order to evaluate a surface integral we will substitute the equation of the surface in for z in the 
integrand and then add on the often messy square root.  After that the integral is a standard double 
integral and by this point we should be able to deal with that. 
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Note as well that there are similar formulas for surfaces given by ( ),y g x z=  (with D in the xz-

plane) and ( ),x g y z=  (with D in the yz-plane).  We will see one of these formulas in the 
examples and we’ll leave the other to you to write down. 
 
The second method for evaluating a surface integral is for those surfaces that are given by the 
parameterization, 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +



 

  
In these cases the surface integral is, 
 

( ) ( )( ), , , u v
S D

f x y z dS f r u v r r dA= ×∫∫ ∫∫
  

 

where D is the range of the parameters that trace out the surface S. 
 
Before we work some examples let’s notice that since we can parameterize a surface given by 

( ),z g x y=  as, 

 ( ) ( ), ,r x y xi yj g x y k= + +


 

  
we can always use this form for these kinds of surfaces as well.  In fact it can be shown that, 

 
22

1x y
g gr r
x y

 ∂ ∂ × = + +  ∂ ∂   

   

for these kinds of surfaces.  You might want to verify this for the practice of computing these 
cross products. 
 
Let’s work some examples. 
 
Example 1  Evaluate 6

S

xy dS∫∫  where S is the portion of the plane 1x y z+ + =  that lies in the 

1st octant and is in front of the yz-plane. 
 
Solution 
Okay, since we are looking for the portion of the plane that lies in front of the yz-plane we are 
going to need to write the equation of the surface in the form ( ),x g y z= .  This is easy enough 
to do. 
 1x y z= − −  
Next we need to determine just what D is.  Here is a sketch of the surface S. 
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Here is a sketch of the region D. 
 

 
 
Notice that the axes are labeled differently than we are used to seeing in the sketch of D.  This 
was to keep the sketch consistent with the sketch of the surface.  We arrived at the equation of the 
hypotenuse by setting x equal to zero in the equation of the plane and solving for z.  Here are the 
ranges for y and z. 
 0 1 0 1y z y≤ ≤ ≤ ≤ −  
 
Now, because the surface is not in the form ( ),z g x y=  we can’t use the formula above.  
However, as noted above we can modify this formula to get one that will work for us.  Here it is, 

 ( ) ( )( )
2 2

, , , , , 1
S

D

g gf x y z dS f g y z y z dA
y z

 ∂ ∂ = + +   ∂ ∂  

⌠⌠

⌡⌡

∫∫  

The changes made to the formula should be the somewhat obvious changes.  So, let’s do the 
integral. 

 ( ) ( ) ( )2 26 6 1 1 1 1
S D

xy dS y z y dA= − − + − + −∫∫ ∫∫  

Notice that we plugged in the equation of the plane for the x in the integrand.  At this point we’ve 
got a fairly simple double integral to do.  Here is that work. 
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( )2

1 1 2

00

1 1
2 2

00

1
2 3

0

1
2 3 4

0

6 3 6

6 3

16 3
2

1 16 3
2 2

1 1 1 36 3
4 3 8 4

S D

y

y

xy dS y y zy dA

y y zy dz dy

yz zy z y dy

y y y dy

y y y

−

−

= − −

= − −

 = − − 
 

= − +

 = − + = 
 

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫∫

∫

 

 
Example 2  Evaluate 

S

z dS∫∫  where S is the upper half of a sphere of radius 2.  

Solution 
We gave the parameterization of a sphere in the previous section.  Here is the parameterization 
for this sphere. 
 ( ), 2sin cos 2sin sin 2cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +



 

  
Since we are working on the upper half of the sphere here are the limits on the parameters. 

 0 2 0
2
πθ π ϕ≤ ≤ ≤ ≤  

 
Next, we need to determine r rθ ϕ×

 

.  Here are the two individual vectors. 

 
( )
( )

, 2sin sin 2sin cos

, 2cos cos 2cos sin 2sin

r i j

r i j k
θ

ϕ

θ ϕ ϕ θ ϕ θ

θ ϕ ϕ θ ϕ θ ϕ

= − +

= + −

 





 



 

 
Now let’s take the cross product. 

 

( )
2 2 2 2

2 2 2 2

2 2

2sin sin 2sin cos 0
2cos cos 2cos sin 2sin

4sin cos 4sin cos sin 4sin sin 4sin cos cos

4sin cos 4sin sin 4sin cos sin cos

4sin cos 4sin sin 4si

i j k
r r

i k j k

i j k

i j

θ ϕ ϕ θ ϕ θ
ϕ θ ϕ θ ϕ

ϕ θ ϕ ϕ θ ϕ θ ϕ ϕ θ

ϕ θ ϕ θ ϕ ϕ θ θ

ϕ θ ϕ θ

× = −
−

= − − − −

= − − − +

= − − −



 

 

 

 



 

 

n cos kϕ ϕ


 

 
Finally, we need the magnitude of this, 
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( )
( )

4 2 4 2 2 2

4 2 2 2 2

2 2 2

2

16sin cos 16sin sin 16sin cos

16sin cos sin 16sin cos

16sin sin cos

4 sin
4 sin
4sin

r rθ ϕ ϕ θ ϕ θ ϕ ϕ

ϕ θ θ ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ
ϕ

× = + +

= + +

= +

=

=

=

 

 

 
We can drop the absolute value bars in the sine because sine is positive in the range of ϕ  that we 
are working with.  The surface integral is then, 
 ( )2cos 4sin

S D

z dS dAϕ ϕ=∫∫ ∫∫  

 
Don’t forget that we need to plug in for x, y and/or z in these as well, although in this case we just 
needed to plug in z.  Here is the evaluation for the double integral. 

 

( )

( )( )

2
2

0 0

2
2
00

2

0

4sin 2

2cos 2

4

8

S

z dS d d

d

d

ππ

ππ

π

ϕ ϕ θ

ϕ θ

θ

π

=

= −

=

=

∫∫ ∫ ∫

∫

∫

 

 
Example 3  Evaluate 

S

y dS∫∫  where S is the portion of the cylinder 2 2 3x y+ =  that lies 

between 0z =  and 6z = . 
 
Solution 
We parameterized up a cylinder in the previous section.  Here is the parameterization of this 
cylinder. 
 ( ), 3 cos 3 sinr z i j z kθ θ θ= + +



 

  
The ranges of the parameters are, 
 0 6 0 2z θ π≤ ≤ ≤ ≤  
 
Now we need zr rθ×

 

.  Here are the two vectors. 

 
( )
( )

,

, 3 sin 3 cos
zr z k

r z i jθ

θ

θ θ θ

=

= − +





 



 

 
Here is the cross product. 
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0 0 1

3 sin 3 cos 0

3 cos 3 sin

z

i j k
r r

i j

θ

θ θ

θ θ

× =

−

= − −



 

 

 

 

 
The magnitude of this vector is, 

 2 23cos 3sin 3zr rθ θ θ× = + =
   

 
The surface integral is then, 

 

( )

( )

2 6

0 0

2

0

2

0

3 sin 3

3 sin

3 6sin

18cos

0

S D

y dS dA

dz d

d

π

π

π

θ

θ θ

θ θ

θ

=

=

=

= −

=

∫∫ ∫∫

∫ ∫

∫  

 
Example 4  Evaluate 

S

y z dS+∫∫  where S is the surface whose side is the cylinder 2 2 3x y+ = , 

whose bottom is the disk 2 2 3x y+ ≤  in the xy-plane and whose top is the plane 4z y= − . 
 
Solution 
There is a lot of information that we need to keep track of here.  First, we are using pretty much 
the same surface (the integrand is different however) as the previous example.  However, unlike 
the previous example we are putting a top and bottom on the surface this time.  Let’s first start out 
with a sketch of the surface. 



Calculus III 

© 2007 Paul Dawkins 262 http://tutorial.math.lamar.edu/terms.aspx 
 

       
 
Actually we need to be careful here.  There is more to this sketch than the actual surface itself.  
We’re going to let 1S  be the portion of the cylinder that goes from the xy-plane to the plane.  In 
other words, the top of the cylinder will be at an angle.  We’ll call the portion of the plane that 
lies inside (i.e. the cap on the cylinder) 2S .  Finally, the bottom of the cylinder (not shown here) 

is the disk of radius 3  in the xy-plane and is denoted by 3S . 
 
In order to do this integral we’ll need to note that just like the standard double integral, if the 
surface is split up into pieces we can also split up the surface integral.  So, for our example we 
will have, 
 

1 2 3S S S S

y z dS y z dS y z dS y z dS+ = + + + + +∫∫ ∫∫ ∫∫ ∫∫  

 
We’re going to need to do three integrals here.  However, we’ve done most of the work for the 
first one in the previous example so let’s start with that. 
 

1S  : The Cylinder 
 
The parameterization of the cylinder and zr rθ×

 

 is, 

 ( ), 3 cos 3 sin 3zr z i j z k r rθθ θ θ= + + × =


 

    
 
The difference between this problem and the previous one is the limits on the parameters.  Here 
they are. 

 
0 2

0 4 4 3 sinz y

θ π

θ

≤ ≤

≤ ≤ − = −
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The upper limit for the z’s is the plane so we can just plug that in.  However, since we are on the 
cylinder we know what y is from the parameterization so we will also need to plug that in. 
 
Here is the integral for the cylinder. 

 

( )( )

( ) ( )

( )( )

( )

1

2 4 3sin

0 0

22

0

2 2

0

2

0

2

0

3 sin 3

3 3 sin

13 3 sin 4 3 sin 4 3 sin
2

33 8 sin
2
33 8 1 cos 2
4

29 33 sin 2
4 8

29 3
2

S D

y z dS z dA

z dz d

d

d

d

π θ

π

π

π

π

θ

θ θ

θ θ θ θ

θ θ

θ θ

θ θ

π

−

+ = +

= +

= − + −

= −

= − −

 = + 
 

=

∫∫ ∫∫

∫ ∫

∫

∫

∫

 

 
2S  : Plane on Top of the Cylinder 

 
In this case we don’t need to do any parameterization since it is set up to use the formula that we 
gave at the start of this section.  Remember that the plane is given by 4z y= − .   Also note that, 

for this surface, D is the disk of radius 3  centered at the origin. 
 
Here is the integral for the plane. 

 
( ) ( ) ( )

2

2 24 0 1 1

2 4
S D

D

y z dS y y dA

dA

+ = + − + − +

=

∫∫ ∫∫

∫∫
 

 
Don’t forget that we need to plug in for z!  Now at this point we can proceed in one of two ways.  
Either we can proceed with the integral or we can recall that 

D

dA∫∫  is nothing more than the area 

of D and we know that D is the disk of radius 3  and so there is no reason to do the integral.  
 
Here is the remainder of the work for this problem. 
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 ( )( )
2

2

4 2

4 2 3

12 2

S D

y z dS dA

π

π

+ =

=

=

∫∫ ∫∫

 

 
3S  : Bottom of the Cylinder 

 
Again, this is set up to use the initial formula we gave in this section once we realize that the 
equation for the bottom is given by ( ), 0g x y =  and D is the disk of radius 3  centered at the 
origin.  Also, don’t forget to plug in for z. 
 
Here is the work for this integral. 

 

( ) ( ) ( ) ( )
3

2 2 2

2 3 2

00
2 3

3

00
2

0
2

0

0 0 0 1

sin

1 sin
3

3 sin

3 cos

0

S D

D

y z dS y dA

y dA

r dr d

r d

d

π

π

π

π

θ θ

θ θ

θ θ

θ

+ = + + +

=

=

 =  
 

=

= −

=

⌠
⌡

⌠

⌡

∫∫ ∫∫

∫∫

∫

∫

 

 
We can now get the value of the integral that we are after. 

 

( )

1 2 3

29 3 12 2 0
2

29 3 24 2
2

S S S S

y z dS y z dS y z dS y z dS

π π

π

+ = + + + + +

= + +

= +

∫∫ ∫∫ ∫∫ ∫∫
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 Surface Integrals of Vector Fields 
Just as we did with line integrals we now need to move on to surface integrals of vector fields.  
Recall that in line integrals the orientation of the curve we were integrating along could change 
the answer.  The same thing will hold true with surface integrals.  So, before we really get into 
doing surface integrals of vector fields we first need to introduce the idea of an oriented surface.   
 
Let’s start off with a surface that has two sides (while this may seem strange, recall that the 
Mobius Strip is a surface that only has one side!) that has a tangent plane at every point (except 
possibly along the boundary).  Making this assumption means that every point will have two unit 
normal vectors, 1n  and 2 1n n= −

 

.  This means that every surface will have two sets of normal 
vectors.  The set that we choose will give the surface an orientation. 
 
There is one convention that we will make in regards to certain kinds of oriented surfaces.  First 
we need to define a closed surface.  A surface S is closed if it is the boundary of some solid 
region E.  A good example of a closed surface is the surface of a sphere.  We say that the closed 
surface S has a positive orientation if we choose the set of unit normal vectors that point outward 
from the region E while the negative orientation will be the set of unit normal vectors that point 
in towards the region E. 
 
Note that this convention is only used for closed surfaces. 
 
In order to work with surface integrals of vector fields we will need to be able to write down a 
formula for the unit normal vector corresponding to the orientation that we’ve chosen to work 
with.  We have two ways of doing this depending on how the surface has been given to us. 
 
First, let’s suppose that the function is given by ( ),z g x y= .  In this case we first define a new 
function, 

( ) ( ), , ,f x y z z g x y= −  

In terms of our new function the surface is then given by the equation ( ), , 0f x y z = .  Now, 

recall that f∇  will be orthogonal (or normal) to the surface given by  ( ), , 0f x y z = .  This 
means that we have a normal vector to the surface.  The only potential problem is that it might not 
be a unit normal vector.  That isn’t a problem since we also know that we can turn any vector into 
a unit vector by dividing the vector by its length.  In our case this is, 

 fn
f

∇
=

∇
  

 
In this case it will be convenient to actually compute the gradient vector and plug this into the 
formula for the normal vector.  Doing this gives, 

 
( ) ( )22 1

x y

x y

g i g j kfn
f g g

− − +∇
= =

∇ + +



 

  

 
Now, from a notational standpoint this might not have been so convenient, but it does allow us to 
make a couple of additional comments.   
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First, notice that the component of the normal vector in the z-direction (identified by the k


 in the 
normal vector) is always positive and so this normal vector will generally point upwards.  It may 
not point directly up, but it will have an upwards component to it. 
 
This will be important when we are working with a closed surface and we want the positive 
orientation.  If we know that we can then look at the normal vector and determine if the 
“positive” orientation should point upwards or downwards.  Remember that the “positive” 
orientation must point out of the region and this may mean downwards in places.  Of course if it 
turns out that we need the downward orientation we can always take the negative of this unit 
vector and we’ll get the one that we need.  Again, remember that we always have that option 
when choosing the unit normal vector. 
 
Before we move onto the second method of giving the surface we should point out that we only 
did this for surfaces in the form ( ),z g x y= .  We could just as easily done the above work for 

surfaces in the form ( ),y g x z=  (so ( ) ( ), , ,f x y z y g x z= − ) or for surfaces in the form 

( ),x g y z=  (so ( ) ( ), , ,f x y z x g y z= − ). 
 
Now, we need to discuss how to find the unit normal vector if the surface is given parametrically 
as, 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +



 

  
In this case recall that the vector u vr r× 

 will be normal to the tangent plane at a particular point.  
But if the vector is normal to the tangent plane at a point then it will also be normal to the surface 
at that point.  So, this is a normal vector.  In order to guarantee that it is a unit normal vector we 
will also need to divide it by its magnitude.   
 
So, in the case of parametric surfaces one of the unit normal vectors will be, 

 u v

u v

r rn
r r
×

=
×

 



 

 

 
As with the first case we will need to look at this once it’s computed and determine if it points in 
the correct direction or not.  If it doesn’t then we can always take the negative of this vector and 
that will point in the correct direction. 
 
Finally, remember that we can always parameterize any surface given by ( ),z g x y=  (or 

( ),y g x z=  or ( ),x g y z= ) easily enough and so if we want to we can always use the 
parameterization formula to find the unit normal vector. 
 
Okay, now that we’ve looked at oriented surfaces and their associated unit normal vectors we can 
actually give a formula for evaluating surface integrals of vector fields. 
 
Given a vector field F



 with unit normal vector n  then the surface integral of F


 over the surface 
S is given by, 
 

S S

F dS F n dS=∫∫ ∫∫
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where the right hand integral is a standard surface integral.  This is sometimes called the flux of 
F


 across S. 
 
Before we work any examples let’s notice that we can substitute in for the unit normal vector to 
get a somewhat easier formula to use.  We will need to be careful with each of the following 
formulas however as each will assume a certain orientation and we may have to change the 
normal vector to match the given orientation. 
 
Let’s first start by assuming that the surface is given by ( ),z g x y= .  In this case let’s also 

assume that the vector field is given by F P i Q j R k= + +



 

 and that the orientation that we are 

after is the “upwards” orientation.  Under all of these assumptions the surface integral of F


 over 
S is, 
 

 
( )

( ) ( )
( ) ( )

( ) ( )

22

22
1

1

S S

x y
x y

x y
D

x y
D

x y
D

F dS F n dS

g i g j k
P i Q j R k g g dA

g g

P i Q j R k g i g j k dA

Pg Qg R dA

=

 
− − + = + + + + 

 + + 

= + + − − +

= − − +

⌠⌠


⌡⌡

∫∫ ∫∫

∫∫

∫∫

 



 



 



 



 

   



 

 
Now, remember that this assumed the “upward” orientation.  If we’d needed the “downward” 
orientation, then we would need to change the signs on the normal vector.  This would in turn 
change the signs on the integrand as well.  So, we really need to be careful here when using this 
formula.  In general, it is best to rederive this formula as you need it. 
 
When we’ve been given a surface that is not in parametric form there are in fact 6 possible 
integrals here.  Two for each form of the surface ( ),z g x y= , ( ),y g x z=  and ( ),x g y z= .  
Given each form of the surface there will be two possible unit normal vectors and we’ll need to 
choose the correct one to match the given orientation of the surface.  However, the derivation of 
each formula is similar to that given here and so shouldn’t be too bad to do as you need to. 
 
Notice as well that because we are using the unit normal vector the messy square root will always 
drop out.  This means that when we do need to derive the formula we won’t really need to put this 
in.  All we’ll need to work with is the numerator of the unit vector.  We will see at least one more 
of these derived in the examples below.  It should also be noted that the square root is nothing 
more than, 

 ( ) ( )22 1x yg g f+ + = ∇  
so in the following work we will probably just use this notation in place of the square root when 
we can to make things a little simpler. 
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Let’s now take a quick look at the formula for the surface integral when the surface is given 
parametrically by ( ),r u v

.  In this case the surface integral is, 

 

( )

S S

u v
u v

u v
D

u v
D

F dS F n dS

r rF r r dA
r r

F r r dA

=

 ×
= ×  × 

= ×

⌠⌠

⌡⌡

∫∫ ∫∫

∫∫

 



 

 



 



 



 



 

 
Again note that we may have to change the sign on u vr r× 

 to match the orientation of the surface 
and so there is once again really two formulas here.  Also note that again the magnitude cancels 
in this case and so we won’t need to worry that in these problems either. 
 
Note as well that there are even times when we will use the definition, 

S S

F dS F n dS=∫∫ ∫∫
 



  , 

directly.  We will see an example of this below. 
 
Let’s now work a couple of examples. 
 
Example 1  Evaluate 

S

F dS∫∫


  where F y j z k= −





 and S is the surface given by the 

paraboloid 2 2y x z= + , 0 1y≤ ≤  and the disk 2 2 1x z+ ≤  at 1y = .  Assume that S has positive 
orientation. 
 
Solution 
Okay, first let’s notice that the disk is really nothing more than the cap on the paraboloid.  This 
means that we have a closed surface.  This is important because we’ve been told that the surface 
has a positive orientation and by convention this means that all the unit normal vectors will need 
to point outwards from the region enclosed by S.   
 
Let’s first get a sketch of S so we can get a feel for what is going on and in which direction we 
will need to unit normal vectors to point. 
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As noted in the sketch we will denote the paraboloid by 1S  and the disk by 2S .  Also note that in 
order for unit normal vectors on the paraboloid to point away from the region they will all need to 
point generally in the negative y direction.  On the other hand, unit normal vectors on the disk 
will need to point in the positive y direction in order to point away from the region. 
 
Since S is composed of the two surfaces we’ll need to do the surface integral on each and then 
add the results to get the overall surface integral.  Let’s start with the paraboloid.  In this case we 
have the surface in the form ( ),y g x z=  so we will need to derive the correct formula since the 
one given initially wasn’t for this kind of function.  This is easy enough to do however.  First 
define, 
 ( ) ( ) 2 2, , ,f x y z y g x z y x z= − = − −  
 
We will next need the gradient vector of this function. 
 2 ,1, 2f x z∇ = − −  
 
Now, the y component of the gradient is positive and so this vector will generally point in the 
positive y direction.  However, as noted above we need the normal vector point in the negative y 
direction to make sure that it will be pointing away from the enclosed region.  This means that we 
will need to use 

 
2 , 1, 2x zfn

f f
−−∇

= =
−∇ ∇

  

 
Let’s note a couple of things here before we proceed.  We don’t really need to divide this by the 
magnitude of the gradient since this will just cancel out once we actually do the integral.  So, 
because of this we didn’t bother computing it.  Also, the dropping of the minus sign is not a typo.  
When we compute the magnitude we are going to square each of the components and so the 
minus sign will drop out. 
 

1S  : The Paraboloid 
 
Okay, here is the surface integral in this case. 
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( )

( )

1

2

2 2 2

2 2

2 , 1, 2

2

2

3

S D

D

D

D

x z
F dS y j z k f dA

f

y z dA

x z z dA

x z dA

 −
= − ∇  ∇ 

= − −

= − + −

= − +

∫∫ ∫∫

∫∫

∫∫

∫∫




 

 

 
Don’t forget that we need to plug in the equation of the surface for y before we actually compute 
the integral.  In this case D is the disk of radius 1 in the xz-plane and so it makes sense to use 
polar coordinates to complete this integral.  Here are polar coordinates for this region. 

 cos sin
0 2 0 1
x r z r

r
θ θ

θ π
= =
≤ ≤ ≤ ≤

 

 
Note that we kept the x conversion formula the same as the one we are used to using for x and let 
z be the formula that used the sine.  We could have done it any order, however in this way we are 
at least working with one of them as we are used to working with. 
 
Here is the evaluation of this integral. 

 

( )

( )

( )( ) ( )( )

( )

( )( )

1

2 2

2 1 2 2 2 2

00

2 1 2 2 3

00

2 1
4

00

2

0

2

0

3

cos 3 sin

cos 3sin

1 3 11 cos 2 1 cos 2
2 2 4

1 4 2cos 2
8
1 4 sin 2
8

S D

F dS x z dA

r r r dr d

r dr d

r d

d

π

π

π

π

π

θ θ θ

θ θ θ

θ θ θ

θ θ

θ θ

π

= − +

= − +

= − +

  = − + + −  
  

= − −

= − −

= −

⌠
⌡

⌠
⌡

⌠

⌡

∫∫ ∫∫

∫

∫

∫





 

 
2S  : The Cap of the Paraboloid 

 
We can now do the surface integral on the disk (cap on the paraboloid).  This one is actually 
fairly easy to do and in fact we can use the definition of the surface integral directly.  First let’s 
notice that the disk is really just the portion of the plane 1y =  that is in front of the disk of radius 
1 in the xz-plane.   
 
Now we want the unit normal vector to point away from the enclosed region and since it must 
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also be orthogonal to the plane 1y =  then it must point in a direction that is parallel to the y-axis, 
but we already have a unit vector that does this.  Namely, 
 n j=



  
the standard unit basis vector.  It also points in the correct direction for us to use.  Because we 
have the vector field and the normal vector we can plug directly into the definition of the surface 
integral to get, 
 
 ( ) ( )

2 2 2S S S

F dS y j z k j dS y dS= − =∫∫ ∫∫ ∫∫


 

   

At this point we need to plug in for y (since 2S is a portion of the plane 1y =  we do know what it 
is) and we’ll also need the square root this time when we convert the surface integral over to a 
double integral.  In this case since we are using the definition directly we won’t get the canceling 
of the square root that we saw with the first portion.  To get the square root well need to 
acknowledge that  

( )1 ,y g x z= =  
and so the square root is, 

( ) ( )2 21x zg g+ +  
The surface integral is then, 

 2 2

1 0 1 0
S S

D D

F dS y dS

dA dA

=

= + + =

∫∫ ∫∫

∫∫ ∫∫





 

 
At this point we can acknowledge that D is a disk of radius 1 and this double integral is nothing 
more than the double integral that will give the area of the region D so there is no reason to 
compute the integral.  Here is the value of the surface integral. 
 

2S

F dS π=∫∫


  

 
Finally, to finish this off we just need to add the two parts up.  Here is the surface integral that we 
were actually asked to compute. 
 

1 2

0
S S S

F dS F dS F dS π π= + = − + =∫∫ ∫∫ ∫∫
    

    

 
Example 2  Evaluate 

S

F dS∫∫


  where 4F x i y j z k= + +



 

 and S is the upper half the sphere 

2 2 2 9x y z+ + =  and the disk 2 2 9x y+ ≤  in the plane 0z = .  Assume that S has the positive 
orientation. 
 
Solution 
So, as with the previous problem we have a closed surface and since we are also told that the 
surface has a positive orientation all the unit normal vectors must point away from the enclosed 
region.  To help us visualize this here is a sketch of the surface. 
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We will call 1S  the hemisphere and 2S  will be the bottom of the hemisphere (which isn’t shown 
on the sketch).  Now, in order for the unit normal vectors on the sphere to point away from 
enclosed region they will all need to have a positive z component.  Remember that the vector 
must be normal to the surface and if there is a positive z component and the vector is normal it 
will have to be pointing away from the enclosed region. 
 
On the other hand, the unit normal on the bottom of the disk must point in the negative z direction 
in order to point away from the enclosed region. 
 

1S  : The Sphere 
 
Let’s do the surface integral on 1S  first.  In this case since the surface is a sphere we will need to 
use the parametric representation of the surface.  This is, 

( ), 3sin cos 3sin sin 3cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +


 



 
 

Since we are working on the hemisphere here are the limits on the parameters that we’ll need to 
use. 

 0 2 0
2
πθ π ϕ≤ ≤ ≤ ≤  

Next, we need to determine r rθ ϕ×
 

.  Here are the two individual vectors and the cross product. 

 
( )
( )

, 3sin sin 3sin cos

, 3cos cos 3cos sin 3sin

r i j

r i j k
θ

ϕ

θ ϕ ϕ θ ϕ θ

θ ϕ ϕ θ ϕ θ ϕ

= − +

= + −

 





 



 

 

 

( )
2 2 2 2

2 2 2 2

2 2

3sin sin 3sin cos 0
3cos cos 3cos sin 3sin

9sin cos 9sin cos sin 9sin sin 9sin cos cos

9sin cos 9sin sin 9sin cos sin cos

9sin cos 9sin sin 9si

i j k
r r

i k j k

i j k

i j

θ ϕ ϕ θ ϕ θ
ϕ θ ϕ θ ϕ

ϕ θ ϕ ϕ θ ϕ θ ϕ ϕ θ

ϕ θ ϕ θ ϕ ϕ θ θ

ϕ θ ϕ θ

× = −
−

= − − − −

= − − − +

= − − −



 

 

 

 



 

 

n cos kϕ ϕ
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Note that we won’t need the magnitude of the cross product since that will cancel out once we 
start doing the integral.   
 
Notice that for the range of ϕ  that we’ve got both sine and cosine are positive and so this vector 
will have a negative z component and as we noted above in order for this to point away from the 
enclosed area we will need the z component to be positive.  Therefore, we will need to use the 
following vector for the unit normal vector. 

 
2 29sin cos 9sin sin 9sin cosr r i j kn

r r r r
θ ϕ

θ ϕ θ ϕ

ϕ θ ϕ θ ϕ ϕ× + +
= − =

× ×



 
 



   

 

Again, we will drop the magnitude once we get to actually doing the integral since it will just 
cancel in the integral. 
 
Okay, next we’ll need 
 ( )( ) 4, 3sin cos 3sin sin 81cosF r i j kθ ϕ ϕ θ ϕ θ ϕ= + +




 

  

Remember that in this evaluation we are just plugging in the x component of ( ),r θ ϕ

 into the 
vector field etc. 
 
We also may as well get the dot product out of the way that we know we are going to need. 

 
( )( ) ( ) 3 2 3 2 5

3 5

, 27sin cos 27sin sin 729sin cos

27sin 729sin cos

F r r rθ ϕθ ϕ ϕ θ ϕ θ ϕ ϕ

ϕ ϕ ϕ

× = + +

= +



  



 

 
Now we can do the integral. 

 ( )

1

2
3 52

00

2
2 52

00

2
2

3 6

00

2

0

27sin 729sin cos

27sin 1 cos 729sin cos

1 72927 cos cos cos
3 6

279
2

279

u v

S
D

r rF dS F r r dA
r r

d d

d d

d

d

θ ϕ
θ ϕ

π π

π π

ππ

π

ϕ ϕ ϕ ϕ θ

ϕ ϕ ϕ ϕ ϕ θ

ϕ ϕ ϕ θ

θ

π

 ×
 = ×
 × 

= +

= − +

  = − − +    

=

=

⌠⌠

⌡⌡

⌠
⌡

⌠
⌡

⌠


⌡

⌠
⌡

∫∫

∫

∫

 

 

 

 

 

 

 
1S  : The Bottom of the Hemi-Sphere 

 
Now, we need to do the integral over the bottom of the hemisphere.  In this case we are looking at 
the disk 2 2 9x y+ ≤  that lies in the plane 0z =  and so the equation of this surface is actually 

0z = .  The disk is really the region D that tells us how much of the surface we are going to use.  
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This also means that we can use the definition of the surface integral here with  
 n k= −



  
 
We need the negative since it must point away from the enclosed region. 
 
The surface integral in this case is, 

 
( ) ( )

2 2

2

4

4

S S

S

F dS x i y j z k k dS

z dS

= + + −

= −

∫∫ ∫∫

∫∫

 
 

 

 

 
Remember, however, that we are in the plane given by 0z =  and so the surface integral 
becomes, 
 

2 2 2

4 0 0
S S S

F dS z dS dS= − = =∫∫ ∫∫ ∫∫


  

 
The last step is to then add the two pieces up.  Here is surface integral that we were asked to look 
at. 
 

1 2

279 0 279
S S S

F dS F dS F dS π π= + = + =∫∫ ∫∫ ∫∫
    

    

 
We will leave this section with a quick interpretation of a surface integral over a vector field.  If 
v  is the velocity field of a fluid then the surface integral 
 

S

v dS∫∫




  

represents the volume of fluid flowing through S per time unit (i.e. per second, per minute, or 
whatever time unit you are using). 
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 Stokes’ Theorem 
In this section we are going to take a look at a theorem that is a higher dimensional version of 
Green’s Theorem.  In Green’s Theorem we related a line integral to a double integral over some 
region.  In this section we are going to relate a line integral to a surface integral.  However, before 
we give the theorem we first need to define the curve that we’re going to use in the line integral. 
 
Let’s start off with the following surface with the indicated orientation. 
 

 
 
Around the edge of this surface we have a curve C.  This curve is called the boundary curve.  
The orientation of the surface S will induce the positive orientation of C.  To get the positive 
orientation of C think of yourself as walking along the curve.  While you are walking along the 
curve if your head is pointing in the same direction as the unit normal vectors while the surface is 
on the left then you are walking in the positive direction on C. 
 
Now that we have this curve definition out of the way we can give Stokes’ Theorem. 
 
Stokes’ Theorem 
 
Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary curve 
C with positive orientation.  Also let F



 be a vector field then, 
 curl

C S

F d r F dS=∫ ∫∫
 



   

 
In this theorem note that the surface S can actually be any surface so long as its boundary curve is 
given by C.  This is something that can be used to our advantage to simplify the surface integral 
on occasion. 
 
Let’s take a look at a couple of examples. 
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Example 1  Use Stokes’ Theorem to evaluate curl
S

F dS∫∫


  where 2 3 33F z i xy j x y k= − +



 

 

and S is the part of 2 25z x y= − −  above the plane 1z = .  Assume that S is oriented upwards. 
 
Solution 
Let’s start this off with a sketch of the surface. 
 

 
In this case the boundary curve C will be where the surface intersects the plane 1z =  and so will 
be the curve 

 
2 2

2 2

1 5
4 at 1

x y
x y z

= − −

+ = =
 

 
So, the boundary curve will be the circle of radius 2 that is in the plane 1z = .  The 
parameterization of this curve is, 
 ( ) 2cos 2sin , 0 2r t t i t j k t π= + + ≤ ≤



 

  
 
The first two components give the circle and the third component makes sure that it is in the plane 

1z = . 
 
Using Stokes’ Theorem we can write the surface integral as the following line integral. 

 ( )( ) ( )
2

0
curl

S C

F dS F d r F r t r t dt
π

′= =∫∫ ∫ ∫
  

  

    

 
So, it looks like we need a couple of quantities before we do this integral.  Let’s first get the 
vector field evaluated on the curve.  Remember that this is simply plugging the components of the 
parameterization into the vector field. 

 
( )( ) ( ) ( )( ) ( ) ( )2 3 3

3 3

1 3 2cos 2sin 2cos 2sin

12cos sin 64cos sin

F r t i t t j t t k

i t t j t t k

= − +

= − +
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Next, we need the derivative of the parameterization and the dot product of this and the vector 
field. 

 
( )

( )( ) ( ) 2

2sin 2cos

2sin 24sin cos

r t t i t j

F r t r t t t t

′ = − +

′ = − −

 





 



 

 
We can now do the integral. 

 ( )

2 2

0

23

0

curl 2sin 24sin cos

2cos 8cos

0

S

F dS t t t dt

t t

π

π

= − −

= +

=

∫∫ ∫




 

 
Example 2  Use Stokes’ Theorem to evaluate 

C

F d r∫




  where 2 2F z i y j x k= + +



 

 and C is 

the triangle with vertices ( )1,0,0 , ( )0,1,0  and ( )0,0,1  with counter-clockwise rotation. 
 
Solution 
We are going to need the curl of the vector field eventually so let’s get that out of the way first. 

 ( )
2 2

curl 2 2 1

i j k

F z j j z j
x y z

z y x

∂ ∂ ∂
= = − = −
∂ ∂ ∂



 


  

 

 
Now, all we have is the boundary curve for the surface that we’ll need to use in the surface 
integral.  However, as noted above all we need is any surface that has this as its boundary curve.  
So, let’s use the following plane with upwards orientation for the surface. 
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Since the plane is oriented upwards this induces the positive direction on C as shown.  The 
equation of this plane is, 
 ( )1 , 1x y z z g x y x y+ + = ⇒ = = − −  
 
Now, let’s use Stokes’ Theorem and get the surface integral set up. 

 ( )

( )

curl

2 1

2 1

C S

S

D

F d r F dS

z j dS

fz j f dA
f

=

= −

∇
= − ∇

∇

∫ ∫∫

∫∫

∫∫

 



 










 

 
Okay, we now need to find a couple of quantities.  First let’s get the gradient.  Recall that this 
comes from the function of the surface. 

 
( ) ( ), , , 1f x y z z g x y z x y

f i j k

= − = − + +

∇ = + +


 

 

Note as well that this also points upwards and so we have the correct direction. 
 
Now, D is the region in the xy-plane shown below, 

 
 
We get the equation of the line by plugging in 0z =  into the equation of the plane.  So based on 
this the ranges that define D are, 
 0 1 0 1x y x≤ ≤ ≤ ≤ − +  
 
The integral is then, 

 
( ) ( )

( )
1 1

0 0

2 1

2 1 1

C D
x

F d r z j i j k dA

x y dy dx
− +

= − + +

= − − −

∫ ∫∫

∫ ∫




  



 

 

 
Don’t forget to plug in for z since we are doing the surface integral on the plane.  Finishing this 
out gives, 
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( )

1 1

0 0

11 2

0 0

1 2

0

1
3 2

0

1 2 2

2

1 1
3 2
1
6

x

C
x

F d r x y dy dx

y xy y dx

x x dx

x x

− +

− +

= − −

= − −

= −

 = − 
 

= −

∫ ∫ ∫

∫

∫







 

 
In both of these examples we were able to take an integral that would have been somewhat 
unpleasant to deal with and by the use of Stokes’ Theorem we were able to convert it into an 
integral that wasn’t too bad. 
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 Divergence Theorem 
In this section we are going to relate surface integrals to triple integrals.  We will do this with the 
Divergence Theorem. 
 
Divergence Theorem 
Let E be a simple solid region and S is the boundary surface of E with positive orientation.  Let 
F


 be a vector field whose components have continuous first order partial derivatives.  Then, 
div

S E

F dS F dV=∫∫ ∫∫∫
 

  

 
Let’s see an example of how to use this theorem. 
 
Example 1  Use the divergence theorem to evaluate 

S

F dS∫∫


  where 21
2F xy i y j z k= − +




 

 

and the surface consists of the three surfaces, 2 24 3 3z x y= − − , 1 4z≤ ≤  on the top, 
2 2 1x y+ = , 0 1z≤ ≤  on the sides and 0z =  on the bottom. 

 
Solution 
Let’s start this off with a sketch of the surface. 
 

 
The region E for the triple integral is then the region enclosed by these surfaces.  Note that 
cylindrical coordinates would be a perfect coordinate system for this region.  If we do that here 
are the limits for the ranges. 

 

20 4 3
0 1
0 2

z r
r
θ π

≤ ≤ −
≤ ≤
≤ ≤

 

 
We’ll also need the divergence of the vector field so let’s get that. 
 div 1 1F y y= − + =
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The integral is then, 

 

22 1 4 3

000

2 1 3

00

2 1
2 4

00

2

0

div

4 3

32
4

5
4

5
2

S E

r

F dS F dV

r dz dr d

r r dr d

r r d

d

π

π

π

π

θ

θ

θ

θ

π

−

=

=

= −

 = − 
 

=

=

⌠ ⌠ ⌡⌡

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫∫∫

∫

∫
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1-Sets: 

Def. A collection of well-defined objects is called  a set. 

We used capital letters A,B,C,…to denote a set and small letters a,b,c,… 

to denote the elements of a set. The symbol Aa  means “a is an element 

of the set A ” and Aa  means “a is not an element of the set A ” . 

 Set Formulation: 

(1) The Tabulation Method: 

   We indicate a set by listing all its elements and enclosing them within 

braces. For example, 

 

,....}.2,1,0{

}.,,,{

}.5,4,3,2,1{







Z

dcbaB

A

 

(2) The Rule Method: 

   We state the characteristic property by which we can determine whether 

or not a given object is an element of the set. We write }:{ phasxxA   

to say that “ A  is the set of all elements x  for which a certain property p  

holds “. For example, 

}.065:{ 2  xxofsolutionaisxxA  

xxB :{  is an integer }.100, 2 x   

}.101,:{  xnumberprimeisxxX  

   A set A  is called a subset of a set B  if every element of A  is an 

element of B . 

Symbolically we write BA  to say that A  is a subset of B . 

   A  is called  proper subset of B  and is denoted by BA  if there exists 

in B  at least an element which is not an element of A . 

A subset which is not proper is said to be improper subset. 

Examples: 

1- If B  be the set of all English alphabets , and A  the set of all vowels , 

then BA . 

2- If ,...},...,2,1,0{ nZ  and ,...},...,3,2,1{ nN  , then ZN  . 

   Two sets A  and B  are said to be equal iff every element of A  is an 

element of B  and vice versa, i.e., ABBABA   . 
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Remark: The signs ”  ,,,:  “ are used to denote “ such that , and , 

or , iff “ . 

Examples: 

1- If }5,4,3,2,1{A  and }5,1,3,4,2{B , then BA . 

2- If }10,9,8,7,6,5,4,3,2,1{A  and  

},,,,,,,,,{ XIXVIIIVIIVIVIVIIIIIIB  , then BA . 

3- If A  is the set of letters in the word “ calculate “ and 

},,,,,{ etulacB  , then BA . 

A set consisting of only one element is said to be singleton set . 

A set which contains no elements is called an empty (or null or void) set. 

It is generally denoted by  . 

A set which contains all element is said to be universal set ,It is generally 

denoted by U . 

   Given a set B  and a subset A  of B  , we call the set of all elements of 

B  which are not elements of A  the complement of A  in B  and denoted 

by A  (or CA or AB ), i.e. },:{ AxBxxA  .  

   Given two sets A  and B , we define their intersection BA  as the set 

of all elements which are common to both A  and B . We say that A  and 

B  are disjoint if BA . We also define the union of A  and 

B ,denote BA  as the set of all elements which belong to at least one of 

the two sets A  and B . The union of two disjoint sets A  and B is denoted 

by BA  and is called the sum of A  and B .  

Sometimes, a diagrammatical representation of sets helps in 

understanding relationships between different sets. This is done by what 

is known as Venn’s diagram. It is a diagram in which members of a set 

are represented by the points of a plane enclosed by a curve drawn in the 

plane.   

Examples: 

1- If ,...}4,2,0{ A and ,...}3,1,0{ B ,  

then }0{BA is a singleton set. 

2- If },4:{ 2 oddisxxxA  , then A . 

3- If ,...}3,2,1{N , ,...}12,...,5,3,1{  nA , and ,...}2,...,6,4,2{ nB  ,  

then BA  and NBABA  . 

4- The set consisting of all students of a university forms a universal set, 

whereas students of different faculties form subsets of this universal set. 
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5- If B  is the set of all natural numbers ,...3,2,1  and A  is the set of all 

even natural numbers, then A  is the set of all odd natural numbers. 

   The following properties of   and   for arbitrary sets CBA ,,   

are satisfied: 

(1) ABBAABBA  ,               (commutative law). 

(2) )()(,)()( CBACBACBACBA   

                                                     (associative law). 

(3) )()()(,)()()( CABACBACABACBA   

                                                     (distributive law). 

(4) AAAAAA  ,                           (idempotent law). 

(5) AAAUA  ,                           (identity law). 

(6) BABABABA  )(,)(      (De Morgan's law). 

(7) AA )(                                             (involution law). 

   Given X  a set , then the set )(XP  of all subsets of X is called  

a power set of X . 

The collection of all mutually disjoint subsets of a set X whose union  

is the whole set X is called a partition of a set X .    

The number of elements in a set X is called the order of the set X , and 

denoted by )(XO . 

   Given two sets A  and B  we define the Cartesian product BA of A  

and B  to be the set of all ordered pairs ),( ba  of elements Aa  and 

Bb , i.e. }:),{( BbAabaBA  . 

By definition, two ordered pairs ),( ba and ),( dc are equal iff ca   and 

db  . When RBA   the set of all real numbers, then 
2RRRBA  represent the real plane. 

Examples: 

1- If }3,2,1{X  then }},3,2{},3,1{},2,1{},3{},2{},1{,{)( XXP  . 

2- If },{,}3,2,1{ baBA   then: 

)},3(),,2(),,1(),,3(),,2(),,1{( bbbaaaBA  . 

3- A set ...}},6,5{},4,3{},2,1{{ form a partition of a set of all natural 

numbers N , also a set ,...}}9,6,3{,...},8,5,2{,...},7,4,1{{ , 

but a set ...}},4,3{},3,2{},2,1{{ is not a partition of N  (verify that?). 
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Exercises:  

1- Give some examples of collections which is not considered Set 

    ( by its mathematical Meaning)?. 

2- Give an example for: 

(1) A set contains two elements.           

(2) A set contains only one element.     

(3) An empty set.                                   

(4) An infinite set.                                  

3- By using the Tabulation Method. Represent each of the following 

sets: 

(1)  X={ x: x  is a factor of 6 }.                        

(2)  Y={ y: y  is a solution of  y
2
=0 }.              

(3)  A={ a: aZ
+
, a is odd number,1a10}.       

(4)  B={ b: b prime number,1b12}.              

(5)  S = { x : x is a multiple of 3 }.               

4- By using  the Rule Method. Represent each of the following sets: 

(1)  S={ a, e, i, o, u }.  

(2)  S={10, 100, 1000, 10000, ...}.  

(3)  S={ 1, 1/2, 1/3, 1/4, ...}.   

5- By using  the Algebraic Symbols. Rewrite the following expression: 

There exist only eight subsets of a set A={3,5,8,9} contains the 

element 8 . 

6- Let A={a,b,c}.Show that whether of the following is true,  

    and whether is false (Give reasons for your assertion):  

(1) {a}A               (2) {a,b} P(A)                 (3) {} P(A)   

(4) AP(A)             (5) {a,b} A                      (6) {a} P(A)   

(7) {d} P(A)         (8) {{b}} P(A)                  

7- For an arbitrary sets A,B,C. Verify that:  

     (1)  A(A
c
B) = AB     

     (2)  A(BA) = AB     

     (3)  A(BC) = (AB)(AC) 

(4)  A(BC) = (AB)(AC) 

(5)  (AA)(BC) = (AB)(AC)  
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2-Binary Relations: 

Def.1 A subset BA  is called a binary relation between a two sets 

BA, .And if ),( ba  we say that the element Aa  associates with the 

element Bb by a relation   and denoted ba . 

Remark: When AA  we say that   is a relation on a set A . 

Def.2: For a relation BA  we define two sets: 

BbaBbGAbaAaD   }:{,}:{  ,the set D  is called  

the domain of  , and the set G  is called the range of  . 

Def.3: If BA1 and CB2  we define a composite relation 

}),(),(;:),{( 2112  cbbaBbca . 

Examples: 

1- If   is a relation on a set }6,4,3,2{X defined by: 

    Xbababa  ,\),( . ( ba \  means a  divide b  ) 

)}6,6(),4,4(),6,3(),3,3(),6,2(),4,2(),2,2{(  ,   

XGD   }6,4,3,2{ . 

2- If   is a relation on a set }4,3,2,1{X defined by: 

    XbabaRba  ,),( . 

)}3,4(),2,4(),1,4(),2,3(),1,3(),1,2{(  , }3,2,1{,}4,3,2{   GD . 

3- If 21,  are two relations on a set }3,2,1{X ; 

   )}.1,3(),2,2(),2,1(),1,1{(,)}3,3(),1,3(),2,2(),1,2(),3,1(),1,1{( 21   

)}.3,3(),1,3(),1,2(),2,2(),2,1(),3,1(),1,1{(

)},1,2(),2,3(),1,3(),2,2(),2,1(),1,1{(

21

12








 

Def.4: A binary relation   on a set X is called an  equivalence relation  

if it satisfies the following conditions: 

(E1)  ),( aaXa                 (Reflexivity) 

(E2)  ),(),( abba            (Symmetry) 

(E3)  ),(),(),,( cacbba   (Transitivity) 

Examples: 

1- If   is a relation on a set of all natural numbers ,...}3,2,1{N defined 

by Nbababa  ,),(  

Then: (E1)  ),(; aaaaNa  

          (E2)  ),(),( ababbaba  

          (E3)  ),(,),(),,( cacacbbacbba  

So,   is an equivalence relation. 
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2- If   is a relation on a set of all integers ,...}2,1,0{ Z defined by: 

2,,,),( 


 nNnZbaZ
n

ba
ba  

Then: (E1) 


 ),(0; aaZ
n

aa
Za  

          (E2) 





 ),(),( abZ
n

ab
Z

n

ba
ba  

          (E3) Z
n

cb

n

ba
cbba 


 ,),(),,(  










 ),( caZ
n

ca

n

cb

n

ba
 

So,   is an equivalence relation. This relation is called the congruent 

modulo n  and denoted by )(mod nba  . 

Def.5: If   is an equivalence relation on a set X  we define the 

equivalence class of  an element Xa  to be a set 

}),(:{)(  baXbaC , the equivalence class of an element 

Xa may denoted by ][a  or a  . 

The set of all equivalence classes of the relation )(mod nba  is called 

the set of residue classes, and is denoted by }1...,,2,1,0{  nnZ  

(or by }1...,,2,1,0{  nZn ). 

The set of residue classes of the equivalence relation on a set X form  

a partition of a set X . 

Example: The equivalence classes of the relation )6(modba  is: 

,...}.17,11,5,1,7{...,)5(,...},16,10,4,2,8{...,)4(

,...},15,9,3,3,9{...,)3(,...},14,8,2,4,10{...,)2(

,...},13,7,1,5,11{...,)1(,...},12,6,0,6,12{...,)0(







CC

CC

CC

 

Proposition: The defining conditions (E1),(E2),(E3) of an equivalence 

relation   are logically equivalent to the following two conditions:   

(i) .aa      (ii) .accbba   

Proof: We prove (E1),(E2),(E3) (i),(ii): 

Let (E1),(E2),(E3) hold. Then (E1) is the same (i), and 

accacbba  i.e. (ii) hold. ( from (E3),(E2) ) 

Conversely, let (i),(ii) hold. Then (i)(E1) , abbbbaba   

i.e. (E2) hold. ( from (i),(ii) ) ,and 

caaccbba   i.e. (E3) hold. ( from (ii),(E2) ). 
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Exercises: 

1- Let }5,4,3,2,1,0{X . Define on X  a relation   by: 

.,
3

),( XbaZ
ba

ba 


 . 

Write   as a set of ordered pairs ,Verify that   is an equivalence 

relation, and characterize the equivalence classes. 

2- Let }3,2,1{X . Define on )(XP  a relation   by: 

)(,)()(),( XPBABOAOBA  . 

Prove that   is an equivalence relation, and characterize the equivalence 

classes. 

3- Let }0,,:),{(  bZbabaX . Define on X  a relation   by: 

Xbabaabbababa  ),(),,(),(),( 221121212211 . 

Prove that   is an equivalence relation, and characterize the equivalence 

classes. 

Solved Problem: Let   be an equivalence relation on a set S .  

Show that for all Sba , : 

        (i) )()( bCaaCb   

        (ii) )()()()( bCaCorbCaCeither    

Proof:  

        (i) }),(:{)(  xaSxbaCb  

 

).(

}),(:{

),(

),(

bCa

xbSxa

ab

ba









  

       (ii) Suppose  )()( bCaC , 

         

.)()(

).(

),(

),(),(

),(,),()(

.),(

),(),(

),(),(

)()()()(

QEDbCaC

bCy

yb

yaab

bayaaCylet

ba

bxxa

xbxa

bCxaCxbCaCxlet



















 

( i.e. Two equivalence classes are either disjoint or identical ). 
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3-Mappings: 

Def.1:  Given two non-empty sets BA, . A  relation (or rule) f which 

associates with each element Aa , a well-defined (or unique) element 

Bb  is called a  mapping (or function) from A  into B . 

It is denoted by BAf :  (or BA f ),the set A  is called the domain 

of f , the set B  is called the co-domain of f , and the set )(Af is called 

the range of f . 

 Types of mappings: 

Def.2:  A mapping BAf :  is called  onto (or surjective) if each 

element of the co-domain B  associates with element of the domain A  

(i.e., BAf )( ). 

Def.3:  A mapping BAf :  is called 1-1 (or injective) if Aaa  21 , , 

2121 )()( aaafaf   . 

Def.4:  A mapping BAf :  is called 1-1 corresponding  

(or bijective) if it is both onto and 1-1. 

Def.5:  A mapping BAf :  is called  invertible  

(or has inverse map ABf  :1 ) if it is 1-1 corresponding. 

 Composition of mappings: 

Def.6:  Given two mappings DAfCDgBAf  )(;:,: . 

The composite mapping CAfg :  is defined by: 

Aaafgafg  ))(())((  . 

If CBgBAf  :,:  the composite mapping CAfg :  is always 

defined , and gf   is defined  only when ABg )( ,  

so it is not necessary fggf    . 

Examples: 

1- If RxxxfRRf  2)(;:  ( R  is the set of all real numbers), 

then the domain of f is R , also the co-domain of f  

is R , and the range of f  is R ( is the set of all non-negative real 

numbers ). 

2- If ZxxxfZZf  12)(;: , then the domain of f  is Z ,  

also the co-domain of f  is Z ,and the range of f  is the set of all odd 

numbers, and we determine the type of f  as follow: 
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(1) Z
y

xxyxfyZy 



2

1
12)(,   

     f  is not onto. 

(2) Zxx  21 , , 212121 1212)()( xxxxxfxf   

     f  is 1-1. 

3- If RxxxfRRf  32)(;: , then 

(1) R
y

xxyxfyRy 



2

3
32)(,  

     f  is onto. 

(2) Rxx  21, , 212121 3232)()( xxxxxfxf   

      f  is 1-1. 

From (1),(2) f  is 1-1 corresponding, so f  is invertible, and the inverse 

mapping is Rx
x

xfRRf 


 

2

3
)(;: 11 . 

4- If RxxxxgxxfRRgf  13)(,32)(;:, 2 , then: 

.1641)32(3)32()32())(())((

,1623)13(2)13())(())((

22

222





xxxxxgxfgxfg

xxxxxxfxgfxgf




 

Exercises: 

1- Given the following relations 4321 ,,,   on a set }4,3,2,1{A . 

Explain in each case why the relation is or not a mapping,  

(determine the type of a mapping): 

)}.2,3(),2,2(),4,1{(

)},1,4(),4,3(),2,1(),3,2{(

)},3,4(),1,3(),1,1(),4,2{(

)},1,3(),4,4(),3,4(),1,1(),4,2(),3,1{(

4

3

2

1









 

2- If NnnnfNNf  1)(;: . 

    (i) determine the domain, the co-domain, and the range of f . 

    (ii) Is f  onto (1-1)? 

3- Determine the type of each of the following mappings: 

    (i) ZxxxfZZf  12)(;:  

    (ii) RxxxxfRRf   1)(;: 2  

    (iii) .

.0

,0
1

)(;:

2

Rx

otherwise

xif
x

x

xfRRf 
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4- Determine each of the following mappings is invertible  

    (define the inverse mapping for the invertible mappings): 

    (i) NnnnfZNf   1)(;:  

    (ii) RxxxfRRf  32)(;:  

    (iii) .2)(;: ZxxxfZZf   

5- If RxxxgxxfRRgRRf  2)(,1)(;:,:  

    compute )4)((,)1)(( fggf     

Solved Problem: Let CBgBAf  :,:  two mappings 

prove that: 

(i) fg  is onto if each of f  and g  is onto. 

(ii) fg  is 1-1 if each of f  and g  is 1-1. 

Proof: (i) because each of f  and g  is onto, then 

             CBgBAf  )(,)( , 

             .)())(())(( CBgAfgAfg    

             i.e. fg  is onto. 

          (ii) because each of f  and g  is 1-1, then 

             
.,)()(

,,)()(

212121

212121

Bbbbbbgbg

Aaaaaafaf




 

          

.,

)()(

))(())(())(())((

2121

21

2121

Aaaaa

afaf

afgafgafgafg





 

 

          i.e. fg   is 1-1. 

 



    Abstract Algebra                                                Dr. Saad Sharqawy 

______________________________________________ 

 

11 

4-Binary Operations: 

Def.1:  A mapping AAyxAzyxbAAAb  ),(),(;:  

is called a binary operation on a set A . 

We use symbols such as  etc...,,,#,,    for a binary operations. 

Def.2:  A binary operation   on a set A  is called associative if: 

Azyxzyxzyx  ,,)()( , and it is called commutative if: 

Ayxxyyx  , . 

Def.3:  If   is a binary operation on a set A , the element Ae  is called 

the identity element w.r.t.   if: Axxxeex  ,  

and the element Ay  is called the inverse of the element Ax w.r.t.   

if: exyyx  . 

Examples: 

1- If ,  defined on a set of all nature numbers N  by: 

    Nbabababaaba b  ,2, 22 . 

Then   is a binary operation on N , because Naba b   Nba  , , 

but   is not binary operation on N  because, 

NbaNbababa  ,2 22  (for example put 2,1  ba ). 

2- If   defined on a set of integers Z  by: 

    Zyxyxyx  ,3 . 

   (i) Is   binary operation on Z ? 

   (ii) Is   commutative? Is it associative? 

   (iii) Does   have an identity? Is exist an inverse w.r.t.  ? 

        (Give reasons for your answer). 

The Answer: 

   (i)   is binary operation on Z  because, 

      ZyxZyxyx  ,3  

  (ii) Zyxxyxyyxyx  ,33 , i.e.   commutative, 

        
.63)3()3()(

,63)3()3()(





zyxzyxzyxzyx

zyxzyxzyxzyx
 

       Zzyxzyxzyx  ,,)()( , i.e.   associative. 

  (iii) Let Zxxxeex   

       Zexxeex  333  

       i.e.   have an identity 3e , 

       let Zyxexyyx  ,  

      Zxyxyyx  6333  

      i.e.   an inverse of Zx is Zx6 w.r.t.   
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3- If   defined on a set }1{ RX  ; R  is the set of real numbers  by: 

    Xyxxyyxyx  , . 

   (i) Is   binary operation on X ? 

   (ii) Is   commutative? Is it associative? 

   (iii) Does   have an identity? Is exist an inverse w.r.t.  ? 

(Give reasons for your answer). 

 Representation by tables: 

If }1,0,1{X  we can represent the ordinary operations “  ” and “ ” on 

X  by the following tables: 

  

  -1 0 1    -1 0 1 

-1 -2 -1 0 -1 1 0 -1 

0 -1 0 1 0 0 0 0 

1 0 1 2 1 -1 0 1 

 

As it can be seen from the tables above: 

   If all elements in a table belongs to a set X , the operation is a binary 

operation on a set X , and if all elements in a table are symmetric around 

the diameter of the table , a binary operation is commutative. Otherwise it 

is not. 

So, “” is a commutative binary operation on X , but “ ” is not  binary 

operation on X . 

Remark: Only an operation defined on a finite set can be represented by 

table. 

Exercise: If   defined on a set }4,3,2,1,0{X  by: 

    .,
55)(

,5
Xyx

yxifyx

yxifyx
yx 








 . 

   (i)  Represent   by table. 

   (ii) Is   binary operation on X ? 

   (iii) Is   commutative? Is it associative? 

   (iv) Does   have an identity? Is exist an inverse w.r.t.  ? 

(Give reasons for your answer). 

 

w.r.t. means: with respect to 

 

 

 

 

 



    Abstract Algebra                                                Dr. Saad Sharqawy 

______________________________________________ 

 

13 

 Addition & Multiplication mod n: 

We define addition and multiplication on }1...,,2,1,0{  nZn  

( nZ is a set of all equivalence classes of the equivalence relation 

)(mod nba  ) as follows: 

ba n  is the remainder of 
n

ba 
    nZba  ,  , 

ba n  is the remainder of 
n

ba 
    nZba  ,  . 

Example: we represent the two operations 4  and 4  on }3,2,1,0{4 Z  

by the following tables:  

4 0 1 2 3  4 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 2 3 0 1 0 1 2 3 

2 2 3 0 1 2 0 2 0 2 

3 3 0 1 2 3 0 3 2 1 

Exercises: 

1- In each of the following   is the specified binary operation on the set 

Z of integers. 

Determine in each case whether the operation is commutative, whether is 

associative , whether there is an identity for the operation , and whether 

there is an inverse w.r.t. the operation? 

(i) bba   

(ii) abbaba   

(iii) baba 22   

(iv) 1 baba  

(v) ababa   

2- Let )(XP  be the power set of a set }2,1{X . 

(i) Is the binary operation   on )(XP  commutative? 

     Is it associative? Does it have an identity?. 

(ii) Answer the same questions for the binary operation   

     on )(XP . 

(iii) Answer the same questions for the binary operation   

      on )(XP  (where )(,)()( XPBABABABA  ). 
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5-Groups: 

Def.1: Let G  be non-empty set, and   binary operation on G . 

The couple  ,G is said to be a group if the following conditions are 

satisfied:  

(G1) GbaGba  ,                                (closure). 

(G2) Gcbacbacba  ,,)()(         (associative). 

(G3) GaaaeeaGe  ;            (existence of identity). 

(G4) eaaaaGaGa   111 ;   (existence of inverse). 

If only the condition (G1) is satisfied,  ,G is said to be groupoid , if 

only the two conditions (G1),(G2) are satisfied,  ,G is said to be semi-

group, and if only the three conditions (G1),(G2),(G3) are 

satisfied,  ,G is said to be monoid. 

Def.2: A group  ,G is said to be commutative (or abelian) if it satisfies 

the commutative law: Gbaabba  , . 

Def.3: By the order of a group  ,G we mean the number of its distinct 

elements, and denoted )(GO (or G ).  

A group  ,G is said to be finite if its order is finite, and is said to be 

infinite if its order is infinite. 

Remark: We write G  instead of  ,G when a binary operation   is 

the usual multiplication. 

Examples: 

1- Each of the following sets with the usual definition of addition of 

numbers is a group: 

Z  the set of all integers. 

Q  the set of all rational numbers. 

R  the set of all real numbers. 

C  the set of all complex numbers. 

2- Each of the following sets with the usual definition of multiplication of 

numbers is a group: 
Q  the set of all positive rational numbers. 
R  the set of all positive real numbers. 

}0{ QQ . 

}0{ RR . 

}0{ CC . 
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3-  nnZ , is abelian group ; }1...,,2,1,0{  nZn  is the set of residue 

classes, and n  the addition of residue classes. 

The identity of this group is the residue class 0  and the inverse of any 

class 10;  naa  is the class an  . 

If 4n  we prove that  44 ,Z  is abelian group as follows: 

We represent  44 ,Z by the following table: 

4 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

(G1) 4  is a binary operation on 4Z as it can be seen from the table above. 

(G2) Associative law holds in general for the two operations nn  ,    

on nZ . So 4 is associative on 4Z  . 

(G3) 0  is the identity as it can be seen from the table above. 

(G4)  

The element 0 1 2 3 

The inverse 0 3 2 1 

4  is commutative as it can be seen from the table above. 

  44 ,Z  is abelian group. 

4-  ,A is abelian group ; },3:{ ZnaaA n  , and   the usual 

multiplication of numbers. 

The identity of this group is 130  , and the inverse of any element n3   

is n3 .  

5-  ),(AM is a group ; )(AM  is the set of all 1-1 corresponding 

mappings from A  to A , and   the composition of mappings.  

The identity of this group is the identity mapping aaIAAI  )(;:  

Aa , and the inverse of any mapping )(AMf   is the mapping 

IffffAMf    111 ;)( . 

This group is not commutative, because in general fggf   . 
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Properties: Let  ,G  be a group. The following properties are 

satisfied: 

(1) The identity element e  is unique. For, if 21 ,ee  are two identities in 

 ,G , then 2121 eeee  . 

(2) The inverse element 1a is unique. For, if cb , are two inverses of a , 

then ccecabcabebbecaeab  )()(,, . 

(3) aa  11)( . For eaaaa   11 . 

(4) yxayaxyxyaxa  ,  (cancellation laws). 

Proof: For yxyaxa  . 

.

)()(

)()(

11

11

yx

yexe

yaaxaa

yaaxaayaxa













 

Similarly, for yxayax  . 

(5) The equations bxa  and bay  have unique solutions 

bax  1  and 
1 aby  in  ,G . 

Proof: For the equation bxa  . 

...)()(... 11 SHRbbebaabaaxaSHL   , 

let 21 , xx  are two solutions of the equation bxa  , then 

bxabxa  21 , , 2121 xxxaxa   

i.e. the solution is unique. Similarly, for the equation bay  .  

Examples: The solution of the equation 32 x  in a group  44 ,Z  

is 1323232 44

1

4  xx ,  

and the solution of the equation 25 x  in a group  ,Z ;  

Z  the set of integers, Zbababa  ,3  

is 43)2(1)2(1)2()56()2(525 1  xx  

(Verify that?). 

(6) Gbaabba   ,)( 111
. 

Proof:  

.)(

))((

))(()()(

11

11

1111

eaaaea

abba

abbaabba













 

.,)( 111 Gbaabba  
 

Similarly, we can prove that ebaab   )()( 11
, 
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.,)( 111 Gbabaab    

(7) )(... timesnaaaan  , )(... 111 timesnaaaa n   , 

     mnmn aaa  , nmmn aa )( . 

Remark: In the additive group  ,G ,  

),(... timesnaaana  ),()(...)()( timesnaaana   

.)()(,)( anmmanmanaamn   

Exercises: 

1- Which of the following is group? Give reasons for your assertion. 

(i)  ,Z ; Z  the set of integers. 

(ii)  ,Z ; Z  the set of integers. 

(iii)  ,EZ ; EZ  the set of all even integers. 

(iv)  ,Z ; Z  the set of integers, 1 baba . 

(v)  ,R ; R  the set of all real numbers, 5 baba . 

(vi) }.1:
0

0
,

10

01
,

0

0
,

10

01
{;, 2 








































 i

i

i

i

i
AA  

(vii) }.
11

10
,

10

01
,

10

01
,

10

01
{;, 






































 AA  

(viii) }.1,,:
0

0
{;, 








 xyRyx

y

x
AA  

(ix) }.0,,:{;, 22 









 yxRyx

xy

yx
AA  

2- Let }1{ RX , Xbaabbaba  , .Verify that  ,X   

is abelian group, and determine the solution of the equation 53 x   

in this group. 

3- In a group  ,G  what is the element 
111 )(   cba equal to? 

4- Show that a group  ,G  is commutative if Gxex 2
. 

5- Show that a group  ,G  is commutative if: 

Gyxyxyx   ,)( 111
. 

6- Show that a group  ,G of order 3  is abelian? . 

7- Show that a group G  is abelian iff Gbabaab  ,)( 222
. 

8- If G  is an abelian group, Prove that: 
 ZnGbabaab nnn ,,)(  

(Hint: use the mathematical induction).  
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6-Special types of groups: 
1- Group of Permutations: 

Def.1: A 1-1 mapping of a finite set },...,3,2,1{ nS   onto itself is said to 

be permutation of degree n . 

If   is a permutation of a set },...,3,2,1{ nS  , we write: 

.1;
)()(.....)3()2()1(

.....321
ni

i

i

n

n





















   

Example: If  ,,  are permutations of a set }4,3,2,1{S , 





























2143

4321
,

3214

4321
,

4123

4321
 . 

 ,,  can represented by: 

).42)(31(
2143

4321
,)2341(

3214

4321

),31()4)(2)(31(

1234

3214

2341

2143

3412

1432

4123

4321






























































Each of a representations )42)(31(,)2341(),31( is said to be a cycle 

representation of a permutation. 

The composition of the two permutations ,  is defined as follow: 

).32)(41(
1234

4321

3214

4321

4123

4321


























   , 

and the inverse of a permutation  is defined as follow: 

).4321(
1432

4321

4321

3214
1 

















 , 

and the permutation 









4321

4321
I is the identity. 

We say that there is an inversion in a permutation 











)(.....)3()2()1(

.....321

n

n


  , if for ji   we have: 

0
)()(






ji

ji 
 or, in other words, when a bigger number precedes a 

smaller number in  , and the total number of inversions in   is denoted 

by V . 
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Def.2: A permutation is called even (odd) permutation  if the number of 

its inversions is even (odd). 

Examples: 

1- The number of inversions in a permutation 









4123

4321
   

is 30012 V  (odd), so it is odd,  

the number of inversions in a permutation 









3214

4321
  

is 30003 V (odd), so it is also odd, and the number of 

inversions in a permutation 









2143

4321
  

is 40022 V (even), so it is even.  

2- A permutation: 

)6)(352)(7841(
71638254

87654321









  is odd; 

1300114133 V  (odd).  

Def.3: A set of all permutations of a finite set },...,3,2,1{ nS   with the 

operation of a composition form a group of order !n , it is called a group 

of permutations (or substitution) of degree n , and it is denoted by nP   

(or nS ). 

Example: A set 3S of all permutations of a finite set }3,2,1{S  with the 

operation of a composition form a group of order 6 , 

)}32(,)31(,)21(,)231(,)321(,{3 IS   

(Verify that? Hint: represent  ,3S by table). 

Remarks:  

(1) The identity permutation I  is an even permutation. 

(2) The composition of two even permutations is even permutation, 

also the composition of two odd permutations is even permutation, 

and the composition of two permutations one of them even and the 

other odd is odd permutation, 

(3) There are an equal number of even and odd permutations in a 

group nS . 
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Exercises: 

1- Given a permutations: 

.
613425

654321
,

563142

654321
,

265413

654321


























 

     (i) Write each of  ,,  by a cycle representation. 

     (ii) Compute 12 ,,    

2- Determine which of the following is even (odd) permutation: 

     (i) .
318527964

987654321








 

     (ii) ).2345()642()321(   

3- Verify that   ,3S ;


3S  is the set of all even permutations of degree 3  

is an abelian group, but   ,3S ;


3S is the set of all odd permutations of 

degree 3  is not a group?. 

4- Verify that  ,X ; 

4)}2341(,)42)(31(,)4321(,{ SIX   

 is an abelian group?. 

----------------------------------------------------------------------------------------- 

2- Cyclic Groups: 

Def.1: We say that G  is a cyclic group if it is generated by at least one  

of its elements , say Ga , i.e. 
naxZnGx  ;   

(or naxZnGx  ;  when G  is an additive group), and we denote 

 aG . 

Examples: 

1-  ,Z  is cyclic group generated by 1,1   .For, 

(G1) ZbaZba  , . 

(G2) Zcbacbacba  ,,)()( . 

(G3) ZaaaaZ  00;0 . 

(G4) 0)()(;  aaaaZaZa . 

 ,Z  is a group, 

...,2)1)(2(,2)1(2,1)1)(1(,1)1(1,0)1(0  and so on, 

...,2)1)(2(,2)1(2,1)1)(1(,1)1(1,0)1(0  and so on. 

 ,Z is cyclic group generated by 1,1   . 
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2- 1,},,1,1{;,  iiiGG  is cyclic group generated by ii ,  

For, the table of  ,G  is: 

 

  1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i i 

i i -i -1 1 

-i -i i 1 -1 

 

(G1)   is a binary operation on G as it can be seen from the table above. 

(G2) Associative law holds in general for  . 

(G3) 1 is the identity. 

(G4)  

The element 1 -1 i -i 

The inverse 1 -1 -i i 

     

G  is a group, 

    1,,1, 4321  iiiiii   iG  

   1)(,)(,1)(,)( 4321  iiiiii   iG  

3-  33 ,Z  is cyclic group generated by 2,1  (verify that?). 

4-  77 },0{Z  is cyclic group generated by 5,3  (verify that?). 

5-  ,X ; 4)}2341(,)42)(31(,)4321(,{ SIX   

 is cyclic group generated by )2341(,)4321(  (verify that?). 

Remarks: 

(1) The generator of a cyclic group is not unique. For example, the  

    additive group  ,Z  is cyclic group generated by 1,1   . 

(2) Every cyclic group is abelian. 

    Proof: Let  aG  and let ZsragagGgg sr  ,,,;, 2121   

             1221 ggaaaaaagg rsrssrsr  
. 

(3) When  aG  is of finite order, say n , then the distinct  

    elements of G are: eaaaaaae nn   ,...,,,,, 1320
. For,  

in this case, all powers of a  can not be different, so we must have:  

    khZkhaa kh  ,,; .If kh  then ea kh  . 

(4) When  aG  is of infinite order, then the elements of G are: 

    ...,...,,,, 210 naaaae  . 
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Def.2: By the order (or period) of an element a  of a group G ,  

we mean the least positive integer m such that eam  . 

The order of all elements in a group  ,},,1,1{ ii  is: 

The element 1 -1 i -i 

The order 1 2 4 4 

Theorem: Given  aG  a cyclic group of order n .An element ma  for 

nm 1  is a generator of G  iff 1),( nm . 

Proof:  

Let  maG . Then Zaa m   ;)( ,  

i.e. Zaaeeaaaa nnmm    ;)(011
 

11  nmnm   

i.e. 1),( nm . 

Conversely, let 1),( nm . Then 1;,  nmZ  , 
 )()()()()()(1 mmmnmnmnm aeaeaaaaaaaa    

i.e.  maG . 

Example: A group },,,,,,,1{;, 7654328  GG  of 

order 8  is cyclic group; G , the other generators of this group are 
753 ,,  such that .1)8,7(,1)8,5(,1)8,3(   

Exercises: 

1- Give an example to prove or disprove the following statements: 

(i) Every abelian group is cyclic. 

(ii) If  aG  cyclic group. Then  1aG  . 

(iii) Every element of a cyclic group generates the group. 

2- Determine the order of all elements in a group  ,3S . 

    Is  ,3S  cyclic group?. 

3- Find the generators of the cyclic group  aG  of orders 10,7  

    and 21. 
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7-Subgroups:  

Def.1: A non-empty subset H  of a group G  is said to be a subgroup  

of G , if H  itself is a group w.r.t. the same binary operation in G .  

The fact that H  is a subgroup of G  will be denoted by GH  . 

Every group G  has two improper subgroups, namely, G  itself and }{e , 

and any subgroup other than G and }{e  is called proper sub- group. 

 Examples: 

1- The set EZ of all even integers forms a subgroup w.r.t. addition in the 

additive group Z of all integers. 

2- The set Q  of all rational numbers is a group w.r.t. addition, and the set 
Q of all positive rational numbers is a group w.r.t. multiplication. 

Although Q  is a subset of Q ; we can not consider Q as a subgroup of 

Q , since the binary operations in Q  and Q are different. 

3- If },{;,},1,1{;,},,,1,1{;, 2211 iiHHHHiiGG    

Then GH 1 , but 2H  is not subgroup of a group G , since  ,2H  is 

not a group. 

Theorem1: A non-empty subset H  of a group G  is a subgroup of G  iff 

the following two conditions are satisfied: 

(i) ., HabHba   

(ii) .1 HaHa  
 

Proof: Suppose the conditions (i) and (ii) hold in H . Then 

by (i) H  closed w.r.t. multiplication in G  i.e. (G1). 

The associative law holds in H , since it holds in G  i.e. (G2). 

Since H , let Ha , then by (ii) Ha 1  i.e. (G4).  

And by (i) we get Heaaaa   11
 i.e. (G3).  

Thus H  is a group w.r.t. multiplication in G , i.e. GH  .  

The conditions are therefore sufficient. 

Conversely, let H  is a subgroup of G , the conditions (i),(ii) then follow 

from the group conditions in H . Hence the conditions are necessary. 
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Theorem2: A non-empty subset H  of a group G  is a subgroup of G  iff 

., 1 HabHba    

Proof: Let H  is a subgroup of G . Then: 

.,, 111 HabHbaHba    

Conversely, let ., 1 HabHba    Since H , let Ha , then 

HeaaHa  1  i.e.(G3) , HaeaHae   11,  i.e.(G4), 

HabbaHbaHba   111 )(,,  i.e.(G1) ,  

and the associative law holds in H , since it holds in G  i.e.(G2). 

Thus H  is a group w.r.t. multiplication in G , i.e. GH  . 

Theorem3: Let GHGH  21 , . Then GHH  21 , but is not 

necessary to be GHH  21 . 

Proof: 

         

.

,,,

21

21

1

2

1

1

1

2121

GHH

HHab

HabHab

HbaHbaHHba













 (From Theorem2) 

For, is not necessary to be GHH  21  we give an example: 

)}31(,{,)}21(,{ 21 IHIH   are two subgroups of a group of 

permutations 3S , but )}31(),21(,{21 IHH   is not group  

(verify that?). 

--------------------------------------------------------------------------------- 

 Lattice diagram of a sub-groups: 

Let 321 ,, HHH are proper subgroups of a group G ,and 3H  is  proper 

subgroup of a group 1H  and of a group 2H .  

Then we can represent the set of all subgroups 321 ,, HHH  and the two 

improper subgroups }{, eG  by the following lattice diagram: 

 

  

}{

3

21

e

H

HH

G
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Solved Problem: List all the subgroups of a group 3S  and represent it by 

lattice diagram. 

The Answer: The proper subgroups of 3S  are: 

)}32(,{,)}31(,{,)}21(,{,3 IIIS 
, and the two improper subgroups of 3S  

are: }{,3 IS . Thus the set of all subgroups of a group 3S  is: 

}}{,,)}32(,{,)}31(,{,)}21(,{,{ 33 ISIIIS 
and it represented  by the 

following lattice diagram: 

 

}{

)}32(,{)}31(,{)}21(,{3

3

I

IIIS

S



 

--------------------------------------------------------------------------------- 

 Decomposition of a group: 

Def.1: Let H  be a subgroup of a group G and Ga . 

The set }:{ HhahaH   is called a left coset of H  in G  generated  

by a . 

Similarly, the set }:{ HhhaHa  is called a right coset of H  in G  

generated by a . 

Examples: 

1- The left coset and the right coset of a subgroup }1,1{ H   

in a group  },,,1,1{ iiG generated by Gi  are: 

}.,{})1(,1{

,},{)}1(,1{

iiiiHi

iiiiiH




 

2- The left coset of a subgroup 


3S  in a group  ,3S generated by 

3)21( S  is: 

)}.31(),32(),21{(

)}231()21(),321()21(,)21{()21( 3



  IS
 

and the right coset of a subgroup 


3S  in a group  ,3S generated by 

3)321( S  is: 

}.),231(),321{(

)}321()231(),321()321(),321({)321(3

I

IS



 
 

 

 



    Abstract Algebra                                                Dr. Saad Sharqawy 

______________________________________________ 

 

26 

Proposition1: Every subgroup of an abelian group is abelian, but the 

converse is not true in general  

(e.g. 33 SS 
 ,



3S  is abelian but 3S  is not abelian). 

Proposition2: If GH   then the identity element in H  is the same 

identity element in G  , and the inverse of an element in H  is the same 

inverse in G . 

Proposition3: Two left cosets of a subgroup H  in a group G  are either 

disjoint or identical. 

Proof: Suppose bHaH  and let 

HhhbhahcbHaHc jiji  ,; , 

Hhhhbhhbhhca kijkiji   111 ))((;))(()( , 

.)()( bHHhbHbhaH kk   

Lagrange's Theorem: Let H  be a subgroup of a finite group G . Then 

the order of H  is a factor of the order of G . 

Proof: Let G  be a finite group of order n  and H  be a subgroup of  G  of 

order m . Suppose HaHaHaeH l 121 ,...,,,  be the left cosets of a subgroup 

H  in a group G . Then mahahah ,...,, 21  are the distinct elements of aH , 

 

.

)().(...)()(

)(...)()()( 11

lmn

timeslHOHOHO

HaOHaOeHOGO l





 

 

Remark: The reverse of  Lagrange's Theorem is not true in general.  

For example 12)( 4 SO  ( 

4S  is the group of all even permutations of 

degree 4 ), but there is no subgroup of 

4S of order 6 . 

Def.2: The number of left (or right) cosets of H  in G  is called the index 

of H  in G . It is denoted by ):( HG  ( i.e. 
)(

)(
):(

HO

GO
HG   ). 

Corollary.1: A finite group of prime order has no proper subgroup. 

Corollary.2: The order of an element of a finite group is a factor of the 

order of the group. 

Corollary.3: Every finite group of prime order is cyclic. 

Corollary.4: The number of all subgroups of a finite cyclic group G  is 

equal to the number of a positive factors of the order of G .  

Example:  1212 ,Z  is a cyclic group (verify that?), 12)( 12 ZO , and 

the positive factors of 12  are 12,6,4,3,2,1  Thus the number of all 

subgroups of  1212 ,Z  is 6   

( It is  0,6,4,3,2,1  ) 
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Exercises:  

1- Verify that HbbHHHaaH  ,  , for )}21(,{IH  ,  

   3)31(,)21( Sba    

2- Determine all subgroups of a group  99 },6,3,0{ZG , 

    and represent it by lattice diagram. 

--------------------------------------------------------------------------------- 

 Normal subgroups, Simple groups, and Factor groups: 

Def.1: A subgroup H  of a group G  is called a normal subgroup  

(or invariant subgroup or self-conjugate subgroup) of G  if:  

GaHaaH  . 

i.e. if the left and right decompositions of G  w.r.t. H  are identical. 

The fact that H  is a normal subgroup of a group G  will be denoted by 

GH  

Def.2: An element 1aHa  where Ga and Hh  is called a conjugate 

of h  in G . 

The defining condition of a normal subgroup can be replaced by a weaker 

condition: 

GaHaHa 1 . 

Def.3: A group which has no proper normal subgroup is said to be  

simple group. 

Examples:  

1- A subgroup )}21(,{I is simple , but it is not  normal subgroup of  

a group 3S  (verify that?). 

2- A subgroup }1,1{ H  is simple , and it is normal subgroup of  

a group },,1,1{ iiG   w.r.t.   (verify that?). 

3- A subgroup


3S  is a normal subgroup of a group 3S (verify that?) 

 Is it simple?. 

4-  44 ,Z is not simple group, also  ,Z  is not simple group 

 (verify that?).  
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Given a group G  and GH . Let   be the set of all cosets of H   

in G . We define in   a multiplication operation as follows: 

 HbHaabHHbHa ,)())(( . 

The associativity in   is assured by the associativity in G . 

The coset HHe  is the identity in  . 

Every coset Ha  in   has 1Ha  as its inverse. 

So, the set of all cosets of H  in G forms a group w.r.t. the above 

definition of multiplication of cosets. It is called the  factor group  

(or the quotient group), and it is denoted by HG . 

Example: Let  aG  be a cyclic group of order 10 . 

To determine the factor groups of G  by Lagrange's theorem, if G  has 

any subgroups, then it would be of order 10,5,2,1  .  

Being cyclic, G  is abelian and so every subgroup of it is normal.  

The two improper subgroups are: 

}{,},,,,,,,,,{ 98765432 eEaaaaaaaaaeG  . 

The two proper subgroups are: 

},{ 5aeH  of order 2  and },,,,{ 8642 aaaaeK  of order 5  

Therefore, 

]}[],[],[],[],[],[],[],[],[],{[,]}{[ 98765432 aaaaaaaaaeEGGGG   

are factor groups of order 1 and 10  respectively. Also, 

]},[],,[],,[],,[],,{[},,,,{ 94837265432 aaaaaaaaaeHaHaHaaHHHG 

and ]},,,,[],,,,,{[},{ 97538642 aaaaaaaaaeaKKKG  .  
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8-Homomorphism and Isomorphism between groups: 

Def.1: A mapping 21: GGf   where  #,,, 21 GG two groups is 

said to be a homomorphism  if: 1,)()#()( Gbabfafbaf   . 

If 21 GG   f  is called an endomorphism, a 1-1 homomorphism is called 

monomorphism, and an onto homomorphism is called an epiomorphism . 

Examples: 

1- A mapping  ,,: XRf ; R  the set of all real numbers, 

}0{ RX , nnf 3)(   is a homomorphism. For: 

Rnmnfmfnmf nmnm   ,)()(333)( . 

2- A mapping  ,,: ZZf ; Z  the set of integers , 1)(  nnf  

is not homomorphism. For: Znmnfmfnmf  ,)()()(  

(verify that?). 

3- A mapping  ,,: AZf ; },,1,1{ iiA   , 








.1

,1
)(

oddnif

evennif
nf  is a  homomorphism. For: 

let Znm , , we have the following three cases: 

(1) If each of nm,  even number, then nm  is even, 

1)()(  nfmf , )()(111)( nfmfnmf  . 

(2) If each of nm,  odd number, then nm  is even, 

1)()(  nfmf , )()()1()1(1)( nfmfnmf  . 

(3) If one of nm,  even and the other odd, then nm  is odd, 

1)(,1)(1)(,1)(  nfmfnfmf , 

).()(1)1(1)(

),()()1(11)(

nfmfnmf

nfmfnmf




 

i.e. Znmnfmfnmf  ,)()()( . So, f is a homomorphism. 

4- A mapping  ,,: AZg ; Z  the set of integers , 

},,1,1{ iiA   , 


 


.1

,1
)(

oddnif

evennif
ng  is not homomorphism. For: 

Z4,2 , we have 1)4()2(  gg , 1)6()42(  gg , 

1)1()1()4()2(  gg  )4()2()42( ggg  . 

5- A mapping  443 ,,: ZSf  ;





.2

,0
)(

oddaif

evenaif
af 3Sa  

    is a homomorphism (verify that?). 
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Theorem1: Let  #,,: 21 GGf be a homomorphism, and let 21,ee  

are the identities in 21,GG  respectively. Then: 

21)()( eefi  . 

1

11 )]([)()( Gxxfxfii   . 

Proof: 

).()()#()#()()(

.)(,)(

12121

21

efeefxfexfexfxf

GxfGxleti




 

.)]([)(

)]([)(#

)]([)()]#(#)]([[

#)]([)]()#([#)]([

)()#()(

)()(

11

11

2

111

2

111

2

1

2

1

21























xfxf

xfxfe

xfxfxfxf

exfxfxfxf

exfxfexxf

eefii 

  

 The Kernel and Image of a Homomorphism: 

Def.2: Let 21: GGf   be a homomorphism.  

The set: 121 })(,:{ker GexfGxxf   is called the kernel of  the 

homomorphism f . And the set: 

212 })(;,:{Im GyxfGxGyyf   is called the image of  the 

homomorphism f . 

See the following diagram: 

 
 

 

 

                                                                                                                                  

  G1                          f                             G2 

 

 

 

 

 

 

 

 

Ker f 
  Im f 
    e2 
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Examples: 

1- The kernel, and the image of a homomorphism  ,,: AZf ; 

},,1,1{ iiA   , 







.1

,1
)(

oddnif

evennif
nf  are: 

.}1,1{Im

,,...}4,2,0{},:{ker

Af

ZevennZnnf




       

2- The kernel, and the image of a homomorphism 

 443 ,,: ZSf  ;





.2

,0
)(

oddaif

evenaif
af   are: 

.}2,0{Im

,)}231(),321(,{ker

4

3

Zf

SIf




   

3- Let },{ baA  .Then  ),(AP  is an abelian group , and let 

},,1,1{ iiB  .Then  ,B  is also an abelian group (verify that?).  

A mapping BAPf )(: ; )(1)( APXXf   is a homomorphism, 

and }1{Im,)(ker  fAPf . 

Theorem2: Let  #,,: 21 GGf be a homomorphism, and let 21,ee  

are the identities in 21,GG  respectively. Then: 

fi ker)( is a subgroup of a group 1G . 

fii Im)( is a subgroup of a group 2G . 

Proof: We use the fact that a subset H  of a group G  is a subgroup of G  

iff ., 1 HabHba    

.ker#)()#()(

,][)]([)(

,)()(ker,)(

1

21222

1

21

1

21

2

1

2

1

2

1

2

22121

fxxeeexfxfxxf

eexfxf

exfxffxxleti









  

.ker 1Gf   

.Im)()()#()]([)#(#

,)(,)(;,Im,)(

1

21

1

21

1

21

1

21

221112121

fxxfxfxfxfxfyy

yxfyxfGxxfyyletii






 

.Im 2Gf   
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Theorem3: Let  #,,: 21 GGf be a homomorphism, and let 21,ee  

are the identities in 21,GG  respectively. Then f  is 1-1 iff }{ker 1ef  . 

Proof: Let f is 1-1 we prove that }{ker 1ef  as follows: 

.

)()(

)(,)(ker

1

1

212

ex

efxf

eefexffx







 

i.e. }{ker 1ef  . 

Conversely, let }{ker 1ef  we prove that f  is 1-1 as follows: 

.

}{ker

)(

)()#(

)]([)#()]([)#()()(,,

21

1

1

21

1

1

21

2

1

21

2

1

21

1

22

1

2121121

xx

exx

efxx

exxf

exfxf

xfxfxfxfxfxfGxx























 

i.e. f  is 1-1 . 

Def.3: A homomorphism 21: GGf   is called an isomorphism  if it is 

1-1 corresponding (i.e. f  is 1-1 and f is onto), in this case we say that the 

two groups 21,GG are isomorphic, and denote 21 GG   

Def.4: An isomorphism of a group onto itself is called an auto- morphism  

of the group. 

 In order to show 21 GG  we proceed as follows: 

(Step1): Define a mapping f  i.e. describe the element )(xf in 2G  

for every 1Gx . 

(Step2): Show that f  is 1-1. 

(Step3): Show that f  is onto. 

(Step4): Show that f  is a homomorphism. 
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Examples:  

1- To show that  ,, EZZ where Z  the set of integers, and EZ   

the set of all even integers: 

(Step1): Define a mapping EZZf :  by Zxxxf  2)( . 

(Step2): 21212121 22)()(,, xxxxxfxfZxx   So f  is 1-1. 

(Step3): Z
y

xxyxfyZy E 
2

2)(,  So f  is onto. 

(Step4): )()(22)(2)(,, 2121212121 xfxfxxxxxxfZxx   

So f  is a homomorphism. 

Consequently,  ,, EZZ . 

2- Similarly,   ,, RR  where R  the set of real numbers, and R   

the set of positive real numbers. 

(Hint: Define a mapping  RRf : by Rxexf x )( ). 

3- Similarly,  ,, AZ  where Z  the set of integers,  

and },3:{ ZnaaA n  . 

(Hint: Define a mapping AZf :  by Znnf n  3)( ). 

4- Let G  be a multiplicative group. The mapping GGf :  defined by 

Gxxxf  1)(  is not an isomorphism. For, 

although f  is 1-1 and onto, it does not homomorphism ; 

)()()()( 11111 yfxfyxxyxyxyf  
. 

However, if G  be a multiplicative abelian group, f  is an auto-morphism 

of G . 

Theorem4: Every cyclic group of infinite order is isomorphic to the 

additive group  ,Z . 

Proof: Let }:{ ZnaaG n  , 

(Step1): Define a mapping ZGf :  by Ganaf nn )( . 

(Step2):
mnmnmn aamnafafGaa  )()(,,  So f  is 1-1. 

(Step3): nafGaZn nn  )(;  So f  is onto. 

(Step4): )()()()(,, mnmnmnmn afafmnafaafGaa  
 

So f  is a homomorphism. 

Consequently,  ,, ZG . 
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Theorem5: Every cyclic group of finite order n  is isomorphic to the 

additive group  nnZ , . 

Proof: Let },...,,,{ 120  naaaaeG  and }1,...,2,1,0{  nZn , 

(Step1): Define a mapping nZGf : by Garaf rr )( . 

(Step2): )(mod)()(,, nsrafafGaa srsr   i.e. snqr    

So sssnqsnqr aeaaaaa    i.e. f  is 1-1. 

(Step3): rafGaZr rr

n  )(;  So f  is onto. 

(Step4): )()()()(,, srsrsrsr afafsrafaafGaa    

So f  is a homomorphism. 

Consequently,  nnZG ,, . 

Corollary: Any two cyclic groups of the same order are isomorphic. 

Solved Problem(1): Verify that the two cyclic groups 

  ,3S and  33 ,Z  are isomorphic. 

The Answer: We can represent   ,3S and  33 ,Z  

by the following table: 

   

       3  

I 

                0 

(1 2 3) 

                1 

(1 3 2) 

                2 

I 

                0 

I 

                0 

(1 2 3) 

                1 

(1 3 2) 

                2 

(1 2 3) 

                1 

(1 2 3) 

                1 

(1 3 2) 

                2 

I 

                0 

(1 3 2) 

                2 

(1 3 2) 

                2 

I 

                0 

(1 2 3) 

                1 

 

As it can be seen from the table above: the similar elements in the two 

groups are neighboring in the table. So, 33 ZS 
 . 
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Solved Problem(2): Show that there exists no isomorphism between 

 ,R and  ,R , where R  the set of real numbers. 

The Answer: Suppose that f  is an isomorphism from  ,R  to 

 ,R . Then 1)0()()0()()()0(  fxffxfxfxf , 

)(

1
)(1)()()0())((

xf
xfxfxffxxf  , 

because f  is an isomorphism it is onto, 

i.e. )(;,, xfyRxRy  ,  

then for )(0;,,0 xfRxR  , 

but  Rxf
xf

xf 
0

1
)(

)(

1
)(  which gives contradiction. 

So, there exists no isomorphism between  ,R and  ,R . 

Exercises: 

1- Which of the following is a homomorphism?  

(Give reasons for your answer)  

and determine ff Im,ker  for a homomorphism. 

(i) 
2)(;,,: nnfZZf  , Z  the set of integers. 

(ii) nnfZZf 2)(;,,:   

(iii) 1)(;,,:  nnfZZf  

(iv) 
2)(;,,: nnfRRf  , R  the set of real numbers. 

(v) }.,{)()(;,},,{: baPXXOXfZbaPf   

2- Let  ,,: RCf  be a mapping ,where C  the set of complex 

numbers, and R  the set of real numbers, defined by: 

22)( baibaibaf  . Verify that f  is a homomorphism. 

Is f  an isomorphism?. 

3- Let  ,,: YXf  be a mapping defined by xxf )(  

where: 

 
}.1{,

},1{,





RYbaabbaba

RXbaabbaba
   ; R  the set of real numbers. 

Verify that YX  . 

4- Verify that the two cyclic groups  55 },0{Z and 

 },1,,,1{ iiG  are isomorphic. 

==================================================== 

 

 


