Analytic geometry

1 polar coordinates

A polar coordinate system in a plane consists of a fixed point O, called the pole (or origin),
and a ray emanating from the pole, called the polar axis. In such a coordinate system we
can associate with each point P in the plane a pair of polar coordinates (r, 6), where r
is the distance from P to the pole and # is an angle from the polar axis to the ray OP
(Figure 11.1.1). The number r is called the radial coordinate of P and the number 6 the
angular coordinate (or polar angle) of P. In Figure 11.1.2, the points (6, 457), (5, 1207),
(3,2257), and (4, 330°) are plotted in polar coordinate systems. If P is the pole, thenr = 0,
but there is no clearly defined polar angle. We will agree that an arbitrary angle can be used

in this case; that is, (0, #) are polar coordinates of the pole for all choices of 6.
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Relationship between polar and rectanqular coordinates

Frequently, it will be useful to superimpose a rectangular xy-coordinate system on top of a
polar coordinate system, making the positive x-axis coincide with the polar axis. If this is
done, then every point P will have both rectangular coordinates (x, y) and polar coordinates

(r,8). As suggested by Figure 11.1.5, these coordinates are related by the equations

X =rcosf,

These equations are well suited for finding x and y when r and 6 are known. However, to

y =rsinf

(1)

find r and # when x and y are known, it is preferable to use the identities sin” # +cos” 6 = 1
and tan & = sin#/ cos @ to rewrite (1) as

,
r’=x+)7%

tan-f)':”‘i

X

(2)




Example 1 Find the rectangular coordinates of the point P whose polar coordinates are
(6,27/3).

Solution. Substituting the polar coordinates r = 6 and # = 27/3 in (1) yields

x:Gcosz?H:ﬁ(—l):—E;

2
2 3
y:Gsin—Hzﬁ £ =33
3 2
Thus, the rectangular coordinates of P are (—3, 34/3) (Figure 11.1.6). «

1 - 0

Example 2 Find polar coordinates of the point P whose rectangular coordinates are

(—2,2V3).

Solution. We will find the polar coordinates (r, @) of P that satisfy the conditions r > 0
and 0 < 6 < 2x. From the first equation in (2),

P=x24+y2=(-22+@QV3)>=4+12=16

so r = 4. From the second equation in (2),

From this and the fact that (—2, 24/3) lies in the second quadrant, it follows that the angle
satisfying the requirement 0 < 6 < 2 is @ = 27/3. Thus, (4, 271/3) are polar coordinates
of P. All other polar coordinates of P are expressible in the form

2 S5
(4_. =% + 2n7r) or (—4, T + 2n7r)

where n is an integer. > |



Graphs in polar coordinates

We will now consider the problem of graphing equations of the form r = f(#) in polar
coordinates, where @ is assumed to be measured in radians.

Example 3 Sketch the graph of the equation » = sin# in polar coordinates by plotting
points.
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r=sin#f

Observe that the points in Figure - appear to lie on a circle. We can confirm that
this is so by expressing the polar equation r = sin# in terms of x and y. To do this, we
multiply the equation through by r to obtain

r? =rsin#
which now allows us to apply Formulas (1) and (2) to rewrite the equation as

yi=y
Rewriting this equation as x? + y?> — y = 0 and then completing the square yields

2 1y2 _ 1
X+ (y-3) =3

which is a circle of radius % centered at the point (0, 1) in the xy-plane.



[Q] Transform the polar equation r = sin@ into Cartesian coordinates.

Exercises

1-Sketch the graph of r = cos 20 in polar coordinates, € [0, 7r].

r varies from r varies from r varies from r varies from

ltoOas @ Oto-1as@ ~lto0Oasé® Otolas#
varies from varies from varies from varies from
0 to m/4. wf4 to /2. /2 to 3m/4. 3w/4 to .

2-Sketch the graph of r = a(1 — cos 0 ) in polar coordinates, assuming a to be a
positive constant, 6€ [0, r].

r=a(l —cosf)

3-Sketch the curves (a) r=1 (b) 0 =n/4 (¢c) r =0 (0 > 0) in polar coordinates.
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2 tangent lines and arc length
for parametric and polar curves

Tangent lines to parametric curves

We will be concerned in this section with curves that are given by parametric equations

x=f(t), y=g()

in which f(7) and g(r) have continuous first derivatives with respect to ¢. It can be proved
that if dx/dt # 0, then y is a differentiable function of x, in which case the chain rule

implies that

dy _ dy/di "
dx  dx/dt

This formula makes it possible to find dy/dx directly from the parametric equations without
eliminating the parameter.

Example 1 Find the slope of the tangent line to the unit circle
X =cost, y=sint 0=t <2m

at the point where t = /6
1

/6 |\

<)

Y=

A




Solution. From (1), the slope at a general point on the circle is

dy dy/dt  cost

— = = = —cott 2

dx _ dx/di  —sint  © @
Thus, the slope at t = /6 is

d

& = —cotl = —+/3 <4

d‘x t=n/6 6

Example 2 Inadisastrous first flight, an experimental paper airplane follows the trajectory
x=1t-3sint, y=4-3cost (r=0)
but crashes into a wall at time r = 10

(a) At what times was the airplane flying horizontally?
(b) At what times was it flying vertically?

[Q]A butterfly flies between branches, following the path described by the two
parametric equations
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Solution (a). The airplane was flying horizontally at those times when dy/dt = 0 and
dx/dt # 0. From the given trajectory we have

d d

—y=3sint and —x=1—3cosr (3)
dt dt

Setting dy/dt = 0 yields the equation 3sint = 0, or, more simply, sin ¢ = 0. This equation

has four solutions in the time interval 0 < ¢ < 10:

t=0, t=mn, =2 =37

Since dx/dt = 1 — 3cost # 0 for these values of ¢ (verify), the airplane was flying
horizontally at times

t=0, t=n~314, t=2r~628, and t=3r~942

Solution (b). The airplane was flying vertically at those times when dx/dt = 0 and
dy/dt # 0. Setting dx/dt = 0 in (3) yields the equation

1 —3cost=0 or cosr:%

This equation has three solutions in the time interval 0 < ¢ < 10 (Figure 11.2.4):

t =cos™! % t =27 —cos™! % t =2+ cos”! %

Since dy/dt = 3sint is not zero at these points (why?), it follows that the airplane was
flying vertically at times

t=cos"' 1~ 123, 1~2r—123~505 ~21+123~75l

Tangent lines to polar curves

Our next objective is to find a method for obtaining slopes of tangent lines to polar curves
of the form r = f(#) in which r is a differentiable function of 8. We showed in the last
section that a curve of this form can be expressed parametrically in terms of the parameter
¢ by substituting f(#) for r in the equations x = r cos @ and y = r sin 6. This yields

x = f(@)cosB, y= f(A)sind

from which we obtain

d d
ax —f(@)sinf + f'(@)cosf = —rsinf + —rcoséi
de deo
(6)
dy _ f(@)cosO + f(0)sinf = rcosb + d—rsine
do o do

Thus, if dx/d® and dy/df are continuous and if dx/df # 0, then y is a differentiable
function of x, and Formula (1) with € in place of r yields

dr

d_y _ dy/dg _ J"COSE?-l—SinE?@
dx  dx/d@

(7

dr
—rsinf 4 cosd —
rsing 4 cost o



Example 5 Find the slope of the tangent line to the circle » = 4 cos @ at the point where

0 = /4.
/2
Tangent

/4
0
4
r=4cos#f
dr
dy dy/dg FCOSQ+Sin9E
dx - dr
dx  dx/df —rsinf 4+ cos @ —
de
Solution. From (7) with r = 4 cos # we obtain (verify)
dy 4cos’6 —4sin’6  4cos26
— = - — - = —cot260
dx —8sinf cos —4sin 260
Thus, at the point where 6 = /4 the slope of the tangent line is
d '
m = ol A = —cot s 0
dx O=n/4 2

which implies that the circle has a horizontal tangent line at the point where 6 = /4

Example 6 Find the points on the cardioid r = 1 — cos@ at which there is a horizontal
tangent line, a vertical tangent line, or a singular point.

Solution. A horizontal tangent line will occur where dy/d6 = 0and dx/d6 # 0, avertical
tangent line where dy/df # 0 and dx/d® = 0, and a singular point where dy/d6 = 0
and dx/df = 0. We could find these derivatives from the formulas in (6). However, an
alternative approach is to go back to basic principles and express the cardioid parametrically



by substituting r = 1 — cos # in the conversion formulas x = rcosé and y = r sin6. This
yields

x = (1l —cosf)cosf, y=(l—cosh)sinb (0<6 <2m)

Differentiating these equations with respect to 6 and then simplifying yields (verify)

d d
£ =sinf@(2cosf — 1), % = (1 —cosB)(1l +2cosfH)

a2

2)
J" ",
N o)

r=1—-cos#

Thus, dx/d6 = 0if sin® = 0 or cos® = 3, and dy/d® = 0if cos® = 1 or cos) = —1.
We leave it for you to solve these equations and show that the solutions of dx/df = 0 on
the interval 0 < @ < 27 are

dx T 5t

—=0: =0, —, m, —, 27w
do 3 3
and the solutions of dy/d® = 0 on the interval 0 < 6 < 27 are
ﬁ =0: 6=0, Z—H, 4—}?, 21
do 3 3

Thus, horizontal tangent lines occur at = 27/3 and & = 47/3; vertical tangent lines occur
at @ = m/3, m, and 57/3; and singular points occur at @ = 0 and § = 27 |

Note, however, that r = 0 at both singular points, so there is really only one singular point
on the cardioid—the pole. <

Arc length of a polar curve

If no segment of the polar curve
r = f(0) is traced more than once as ¢ increases from « to 8, and if dr/d# is continuous
foro < 6 < B, then the arc length L fromf =« tof = B is

B 5 dr\?
L=j‘ﬂf r +(£) do ®)



/2 7]

Example 8 Find the arc length of the spiral r = ¢” in between ¢ = 0 and

0 =

Solution.

= o 0 B dr 2 T
(m, e™) (1,0 L=[ 2+ (L dB:f V(@) ¥ ()2 de
o do 0
=[ \/Eegdé?:\/feg} =2(e" — 1)~ 31.3
0 0

Example 9 Find the total arc length of the cardioid r = 1 + cos@.

/2 e 14cost Solution. The cardioid is traced out once as @ varies from 8 = 0 to 8 = 2. Thus,
A dr\’ 2m
L=[ 24— ) do = V(1 4 cos8)? + (—sin#)2 do
o df 1]
0 =J5[ 1+ cos8db
0
( = 1 Identity (45)
= 2£ y cos? 59 dé oprpyendixE
2 l

-~

Since cos 16 changes sign at 77, we must split the last integral into the sum of two integrals:
the integral from O to & plus the integral from 7 to 27r. However, the integral from 7 to 27
is equal to the integral from 0 to m, since the cardioid is symmetric about the polar axis

Thus,
L= 2[
0

cos —HI df
2

1 T 1 1 7
cos —f a’9=4f cos —0df = 8sin-0| =8 |
2 . 2 27|,




3 area in polar coordinates

Area in polar coordinates

Suppose that « and 8 are angles
that satisfy the condition

a<f<a+2n

and suppose that f(f) is continuous for @ < # < B. Find the area of the region R
enclosed by the polar curve r = f(f) and therays = ¢ and # =

r=f(#)

0=p 0=a

In polar coordinates it is better to divide the
region into wedges by using rays

0=01,0=00,..., 0 =0,_4
such that

x<b<bh<---<b,1<8

As shown in that figure, the rays divide the region R into n wedges with
areas Ay, A,, ..., A, and central angles A@;, A6,, ..., Af,. The area of the entire region
can be written as

A=A,+A2+o--+A”=ZAk (1)
k=1

If A6, is small, and if we assume for simplicity that f(6) is nonnegative, then we can
approximate the area A; of the kth wedge by the area of a sector with central angle A6,
and radius f(6;), where 6 = 6 is any ray that lies in the kth wedge Thus,
from (1) and Formula (5) of Appendix E for the area of a sector, we obtain

n

n 1 )
A= ; A & Z. E[f(eznzaek (2)

k=



If we now increase n in such a way that max Af; — 0, then the sectors will become better
and better approximations of the wedges and it is reasonable to expect that (2) will approach
the exact value of the area A : that s,

"1 5 B
A= dim 3 FG)PAG = / SLFO)F o
k=1 o

max Af, —0

If @ and B are angles that satisfy the condition

a<f<a+2n

and if f(@) is continuous for « < & < f, then the area A of the region R enclosed by
the polar curve r = f(f) and therays @ = o and f = B is

A= ﬁl 01> do = ﬁl?de 3
_fal_’[f()] —]ﬂ o 3)

The hardest part of applying (3) is determining the limits of integration. This can be done
as follows:

Step 1.  Sketch the region R whose area is to be determined.

Step 2. Draw an arbitrary “radial line” from the pole to the boundary curve
r = f(6).

Step 3.  Ask, “Over what interval of values must 8 vary in order for the radial
line to sweep out the region R?”

Step4. Your answer in Step 3 will determine the lower and upper limits of
integration.



Example 1 Find the area of the region in the first quadrant that is within the cardioid
r=1-—coséb.

r=1-cos @ /2

The shaded region is swept
out by the radial line as @
varies from 0 to /2.

Solution. The region and a typical radial line are shown in Figure 11.3.5. For the radial

line to sweep out the region, & must vary from 0 to 7r/2. Thus, from (3) with @ = 0 and
B = m/2, we obtain

er"Zl l /2 , 1 /2
A=f —r? do = -[ (1 —cos8)? do = -f (1 —2cos® + cos>9) do
o 2 2 Jo 2 Jo

With the help of the identity cos26 = 1(1 + cos 26), this can be rewritten as

1 (72 /3 1 173 1 ©2 3
A=§£ (5—2c059+5c0s28)d6=5[58—2sin9+zsin29]n =§JT—1 <

Example 2 Find the entire area within the cardioid of Example 1.

Solution. For the radial line to sweep out the entire cardioid, & must vary from 0 to 2.
Thus, from (3) with @ = 0 and 8 = 2,

2:1'!'1 5 1 2x
A =j; ,:)rda =3/ (1 — cos8)*do
If we proceed as in Example 1, this reduces to

| [ /3 1 3
A=—f (——2c:os9+—f:<)s2.si)d9=—Jr
2 ), \2 2 2



4 conic sections in calculus

Conic sections

Circles, ellipses, parabolas, and hyperbolas are called conic sections or conics because
they can be obtained as intersections of a plane with a double-napped circular cone

. If the plane passes through the vertex of the double-napped cone, then the
intersection is a point, a pair of intersecting lines, or a single line. These are called degen-
erate conic sections.

Circle Ellipse Parabola Hyperbola

A pair of

A poi : R
Sl intersecting lines

A single line




Definitions of the conic sections

DEFINITION. A parabola is the set of all points in the plane that are equidistant
from a fixed line and a fixed point not on the line.

The line is called the directrix of the parabola, and the point is called the focus
A parabola is symmetric about the line that passes through the focus at right
angles to the directrix. This line, called the axis or the axis of symmetry of the parabola,
intersects the parabola at a point called the vertex.

All points on the
parabola are equidistant
from the focus
and directrix.

I Axis
( Focus
Vertex

Directrix

DEFINITION. An ellipse is the set of all points in the plane, the sum of whose
distances from two fixed points is a given positive constant that is greater than the distance
between the fixed points.

The two fixed points are called the foci (plural of “focus™) of the ellipse, and the midpoint
of the line segment joining the foci is called the center (Figure a). To help visualize
Definition 2, imagine that two ends of a string are tacked to the foci and a pencil traces
a curve as it is held tight against the string (Figure b). The resulting curve will be
an ellipse since the sum of the distances to the foci is a constant, namely the total length
of the string. Note that if the foci coincide, the ellipse reduces to a circle. For ellipses
other than circles, the line segment through the foci and across the ellipse is called the
major axis (Figure ¢), and the line segment across the ellipse, through the center, and
perpendicular to the major axis is called the minor axis. The endpoints of the major axis
are called vertices.



The sum of the distances
to the foci is constant.

. -
Focu Center Focus

(a) (b) (c)

DEFINITION. A hyperbola is the set of all points in the plane, the difference
of whose distances from two fixed distinct points is a given positive constant that is less
than the distance between the fixed points.

Equations of parabolas in standard position

To illustrate how the equations are obtained, we will derive the equation
for the parabola with focus (p, 0) and directrix x = —p. Let P(x, y) be any point on the
parabola. Since P is equidistant from the focus and directrix, the distances PF and PD in
Figure are equal; that is,

PF = PD (1)

LR




where D(—p, y) is the foot of the perpendicular from P to the directrix. From the distance
formula, the distances PF and PD are

PF=\/(x—p)?+y* and PD=./(x+ p)? (2)
Substituting in (1) and squaring yields
@—p’+y =@+p)’ (3)

and after simplifying

y* =4px

PARABOLAS IN STANDARD POSITION

Y AY A ¥
y=r
x x b
(pa 0} (_pa 0} p X ’
t=-r =P y=-p

y? = dpx P = —dpx x* = dpy x* = —dpy

Y=

A\
~
e
=

o
—_
=]
|
=
S

Equations of ellipses in standard position

It 1s traditional in the study of ellipses to denote the length of the major axis by 2a, the
length of the minor axis by 2b, and the distance between the foci by 2¢ (Figure

The number a is called the semimajor axis and the number b the semiminor axis (standard
but odd terminology, since a and b are numbers, not geometric axes).

% C :|"
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There is a basic relationship between the numbers a, b, and ¢ that can be obtained by
examining the sum of the distances to the foci from a point P at the end of the major axis

and from a point Q at the end of the minor axis (Figure From Definition 2,
these sums must be equal, so we obtain

2vbr+ct=(@—-c)+(a+c)

"\..|'.!:|'2+r:2 0] "\..|'.!:|'2+r:2

from which it follows that

a=+vVb*+c?

(6)
or, equivalently,
c=+va*-b? (7)
From (6), the distance from a focus to an end of the minor axis is a which

implies that for all points on the ellipse the sum of the distances to the foci is 2a.

Tt also follows from (6) thata = b with the equality holding only when ¢ = 0. Geomet-
rically, this means that the major axis of an ellipse is at least as large as the minor axis and

that the two axes have equal length only when the foci coincide, in which case the ellipse
is a circle.



The equation of an ellipse is simplest if the center of the ellipse is at the origin and the foci
are on the x-axis or y-axis. The two possible such orientations are shown in Figure
These are called the standard positions of an ellipse, and the resulting equations are called
the standard equations of an ellipse.

ELLIPSES IN STANDARD POSITION

AY AY
il
) ! (0, ¢)
- - - - : >
b 140, -¢)
—dl
2 2 .2
L + ﬁ =1 * + X = ]
at b b2

we will derive the equation
for the ellipse with foci on the x-axis. Let P(x, y) be any point on that ellipse. Since the
sum of the distances from P to the foci is 2a, it follows that

PF'4+ PF = 2a

SO

Va+e?+y+/(x—c+y*=2a



P(x, y)

/

F'(=c.0) Fic,0)

Y =

Transposing the second radical to the right side of the equation and squaring yields

(X + 0+ =4da> —4a/(x — P2+ + (x =) +

and, on simplifying,

V=04 =a—=x ®)

Squaring again and simplifying yields

%2 32

a2 2

which, by virtue of (6), can be written as

X2 42
Conversely, it can be shown that any point whose coordinates satisfy (9) has 2a as the sum
of its distances from the foci, so that such a point is on the ellipse.

;=1

a= —c

Equations of hyperbolas in standard position

It is traditional in the study of hyperbolas to denote the distance between the vertices by 2a,
the distance between the foci by 2c¢ | , and to define the quantity b as

b = Cz_az (10)

This relationship, which can also be expressed as

c=+a?+b? (11)



A
&

the asymptotes pass through the corners of a box extending b units on
each side of the center along the conjugate axis and a units on each side of the center along
the focal axis. The number a is called the semifocal axis of the hyperbola and the number
b the semiconjugate axis. (As with the semimajor and semiminor axes of an ellipse, these
are numbers, not geometric axes).

If V is one vertex of a hyperbola, then, the distance from
V' to the farther focus minus the distance from V to the closer focus is

[(c —a)+2a] — (c —a) =2a

Vv

- (] —|— (] —

— - — -
C—d C—d

The equation of a hyperbola is simplest if the center of the hyperbola is at the origin
and the foci are on the x-axis or y-axis. The two possible such orientations are shown in
Figure These are called the standard positions of a hyperbola, and the resulting
equations are called the standard equations of a hyperbola.



HYPERBOLAS IN STANDARD POSITION

The derivations of these equations are similar to those already given for parabolas and
ellipses, so we will leave them as exercises. However, to illustrate how the equations of the
asymptotes are derived, we will derive those equations for the hyperbola

X2 y? _,
a’>  br
We can rewrite this equation as
b2
2 2 2
y=36"—a)

which is equivalent to the pair of equations

y = E\/Jt:2 —a? and y= —Ev‘xz —a?
a

a



Y=

Thus, in the first quadrant, the vertical distance between the line y = (b/a)x and the hyper-
bola can be written as

b b
—x — —/x2 — g2
a a
But this distance tends to zero as x — 4o since

b b b
lim (—x—— xz—az)z lim —(x —vx%2—a?)

X = 4w 1 vl x—+=

é(x —Vx2—a?)(x ++vVx*—a?)

= lim
x— 4= x"‘ /xg_ag
. ab
= lim ———==0

e Ve —a

The analysis in the remaining quadrants is similar.

A quick way to find asymptotes

There is a trick that can be used to avoid memorizing the equations of the asymptotes of
a hyperbola. They can be obtained, when needed, by substituting O for the 1 on the right

side of the hyperbola equation, and then solving for y in terms of x. For example, for the
hyperbola

,
2 o |
al b2
we would write
2 2 2
Y Y20 o =T o y=tox
a b a a

which are the equations for the asymptotes.



Translated conics

Equations of conics that are translated from their standard positions can be obtained by
replacing x by x — h and y by y — k in their standard equations. For a parabola, this
translates the vertex from the origin to the point (4, k); and for ellipses and hyperbolas, this

translates the center from the origin to the point (4, k).

Parabolas with vertex (h, k) and axis parallel to x-axis
(y—k)?= 4p(x—h) [Opens right]
(y — k)z = —4p(x — h) [Opens left]

Parabolas with vertex (h, k) and axis parallel to y-axis
(x —h)>= 4p(y—k)  [Opensup]
(){' — h)z = —4p(y — k) [Opens down]

Ellipse with center (h, k) and major axis parallel to x-axis

(x—h?  (y—k)?
a2 i b2

=1 [b<al

Ellipse with center (h, k) and major axis parallel to y-axis

— h)? — k)2
(xbz) +(yaz) —1 [b<al

Hyperbola with center (h, k) and focal axis parallel to x-axis
x—h? (y—k?

a? b2 !

Hyperbola with center (h, k) and focal axis parallel to y-axis

G-k x=h?_

a? b? I

(12)
(13)

(14)
(15)

(16)

(17)

(18)

(19)

Example 7 Find an equation for the parabola that has its vertex at (1, 2) and its focus at

4,2).



Solution. Since the focus and vertex are on a horizontal line, and since the focus is to the
right of the vertex, the parabola opens to the right and its equation has the form

(y—k)?=4p(x —h)

Since the vertex and focus are 3 units apart, we have p = 3, and since the vertex is at
(h,k) = (1, 2), we obtain

(y =2 =12(x — 1) <

Sometimes the equations of translated conics occur in expanded form, in which case we
are faced with the problem of identifying the graph of a quadratic equation in x and y:

Ax2+Cy2+Dx+Ey+F=O (20)

The basic procedure for determining the nature of such a graph is to complete the squares
of the quadratic terms and then try to match up the resulting equation with one of the forms
of a translated conic.

Example 8 Describe the graph of the equation
y2—8x —6y—23=0

Solution. The equation involves quadratic terms in y but none in x, so we first take all of
the y-terms to one side:

y2 — 6y = 8x + 23

Next, we complete the square on the y-terms by adding 9 to both sides:
(y—3)> =8x+32

Finally, we factor out the coefficient of the x-term to obtain
(v =3 =8(x +4)

This equation is of form (12) with h = —4, k = 3, and p = 2, so the graph is a parabola
with vertex (—4, 3) opening to the right. Since p = 2, the focus is 2 units to the right of the
vertex, which places it at the point (—2, 3); and the directrix is 2 units to the left of the vertex,
which means that its equation is x = —6. The parabola is shown in Figure 11.4.27. <



Directrix
x=-6

y2—8x—6y-23=0

Example 9 Describe the graph of the equation
16x* +9y* —64x — 54y +1=0

Solution. This equation involves quadratic terms in both x and y, so we will group the
x-terms and the y-terms on one side and put the constant on the other:

(16x% — 64x) 4 (9y* — 54y) = —1

Next, factor out the coefficients of x? and y? and complete the squares:
16(x* —4x +4) +9(y* —6y +9) = —1 + 64 + 81

or
16(x —2)2 +9(y —3)? = 144

Finally, divide through by 144 to introduce a 1 on the right side:

(x—=2%  (y=3)7 _
9 + 16

1

Y 10
This is an equation of form (17), with h = 2,k = 3, a’> = 16, and b* = 9. Thus, the graph



of the equation is an ellipse with center (2, 3) and major axis parallel to the y-axis. Since
a = 4, the major axis extends 4 units above and 4 units below the center, so its endpoints
are (2,7) and (2, —1) . Since b = 3, the minor axis extends 3 units to the
left and 3 units to the right of the center, so its endpoints are (—1, 3) and (5, 3). Since

= a2 =16 —-9=+7

the foci lie ﬁ units above and below the center, placing them at the points (2,3 + +/7)
and (2,3 — /7). <

Ay
(2,7
¢ | : (2.3 +47)
.
i )
e [
|
B |
- I
1 [ | |+‘I ] 1 ;
C G- (2.3-7)

1652+ 9y2 — 64x — 54y + 1 =0

Example 10 Describe the graph of the equation
2 y?—4x+8y—-21=0

Solution. This equation involves quadratic terms in both x and y, so we will group the
x-terms and the y-terms on one side and put the constant on the other:

(x* — 4x) — (y* — 8y) =21
We leave it for you to verify by completing the squares that this equation can be written as

(x=2° (-4?
9 9

—1 1)



x2—y?—4x+8y-21=0

This is an equation of form (18) withh = 2, k = 4, a’> =9, and b* = 9. Thus, the equation
represents a hyperbola with center (2, 4) and focal axis parallel to the x-axis. Since a = 3,
the vertices are located 3 units to the left and 3 units to the right of the center, or at the points
(—1,4) and (5, 4). From (11), ¢ = va? + b> = 9+ 9 = 3+/2, so the foci are located
34/2 units to the left and right of the center, or at the points (2 — 34/2, 4) and (24 3+/2, 4).

The equations of the asymptotes may be found using the trick of substituting O for 1 in
(21) to obtain

(x—2?% (y—4?
9 9
This can be written as y — 4 = +(x — 2), which yields the asymptotes

0

y=x4+2 and y=-x4+6

With the aid of a box extending @ = 3 units left and right of the center and b = 3 units
above and below the center, we obtain the sketch in Figure 11.4.29. |



5 rotation of axes; second-degree equations

Quadratic equations in x and y

We saw in Examples 8-10 of the preceding section that equations of the form
Ax*+Cy*+Dx+Ey+F=0 (1)

can represent conic sections. Equation (1) is a special case of the more general equation
Ax> + Bxy+Cy* + Dx + Ey+ F =0 (2)

which, if A, B, and C are not all zero, is called a second-degree equation or quadratic
equation in x and y. We will show later in this section that the graph of any second-degree
equation is a conic section (possibly a degenerate conic section). If B = 0, then (2) reduces
to (1) and the conic section has its axis or axes parallel to the coordinate axes. However, if
B # 0, then (2) contains a “cross-product” term Bxy, and the graph of the conic section
represented by the equation has its axis or axes “tilted” relative to the coordinate axes. As
an illustration, consider the ellipse with foci £ (1, 2) and F>(—1, —2) and such that the sum
of the distances from each point P (x, y) on the ellipse to the foci is 6 units. Expressing this

condition as an equation, we obtain

Va—1D2+0-22+/x+ 12+ (r+2)?2=6

Squaring both sides, then isolating the remaining radical,

then squaring again ultimately yields

812 —dxy + 35> =36
as the equation of the ellipse.

This is of form (2) with A = 8, B = —4,
C=5D=0,F=0,F=-36.

Rotation of axes

(a) (b)



In Figure a the axes of an xy-coordinate system have been rotated about the origin
through an angle 6 to produce a new x'y’-coordinate system. As shown in the figure, each
point P in the plane has coordinates (x’, y") as well as coordinates (x, y). To see how the
two are related, let r be the distance from the common origin to the point P, and let o be

the angle shown in Figure b. It follows that

x=rcos(@+a), y=rsin(@+a) (3)
and

x'=rcosa, y =rsina 4)

Using familiar trigonometric identities, the relationships in (3) can be written as

X =rcosfcosa —rsinfsina
y =rsinfcosa + rcosfsina

and on substituting (4) in these equations we obtain the following relationships called the
rotation equations:

x =x'cosf — y'sin6

5
y = x"sin@ + y'cos 6 ©)

Example 1 Suppose that the axes of an xy-coordinate system are rotated through an angle
of @ = 45° to obtain an x"y’-coordinate system. Find the equation of the curve

x2—xy+y —6=0

in x"y’-coordinates.

Solution. Substituting sinf = sin45° = 1/4/2 and cosf = cos45° = 1/4/2 in (5)
yields the rotation equations

f
y
xX=-—=—-"—= and y=

2

-

2
2
S =
<=
S



X2—xy+y’-6=0

Substituting these into the given equation yields

' ! ' ’ N

r 2 ' ' 2
X y X Y X y )
— =] — — + +|—=+—=) —6=0
(ﬁ «/E) (ﬁ \/i) (ﬁ «/E) (ﬁ Jﬁ)
or
er _ zx#yf + yrz _ er + yJE + x12 + zxryr + ny iy
5 =
or
xf2 ,!_,:2
[P
which is the equation of an ellipse <

If the rotation equations (5) are solved for x" and y’ in terms of x and y, one obtains
(Exercise 14):

x" = xcosf + ysiné

6
y' = —xsinf + ycos# (©)

Example 2 Find the new coordinates of the point (2, 4) if the coordinate axes are rotated
through an angle of 6 = 30°.



Solution. Using the rotation equations in (6) with x =2,y =4, cosf = cos30° =
V3/2., and sinf = sin 30° = 1/2, we obtain

X' =2(V3/2) +4(1/2) =342
y = =2(1/2) + 4(/3/2) = =14 2/3

Thus, the new coordinates are (ﬁ +2, -1+ 2\/5 ). <

Eliminating the cross-product term

THEOREM. If the equation
Ax* + Bxy+Cy*+Dx +Ey+ F=0 (7

is such that B # 0, and if an x'y'-coordinate system is obtained by rotating the xy-axes
through an angle 6 satisfying

cot2g = A=C (8)
B

then, in x'y'-coordinates, Equation (7) will have the form

A;xxz + nyfz + D!xf_'_ E:yr + F.r -0

Proof. Substituting (5) into (7) and simplifying yields
AIIIE + BIII}TF _I_Cr}?wl + Dfxr + Eryf + Ff —0

where
A" = Acos’*# + Bcosf sind + Csin’6
B’ = B(cos? @ — sin’ ) + 2(C — A) sin6 cos 6
C’' = Asin’@ — Bsinf cosf + C cos? 6
D" = Dcosf + E sinf
E' = —Dsinf + E cosf
F'=F



To complete the proof we must show that B’ = 0 if

A-C

cot2 = ——
or equivalently,

cos 26 A-C
sin2¢ B

However, by using the trigonometric double-angle formulas, we can rewrite B’ in the form
B' = Bcos20 — (A — C)sin26
Thus, B’ = 0if @ satisfies (10). i

* REMARK. Itis always possible to satisfy (8) with an angle 6 in the range 0 < 6§ < /2.
We will always use such a value of .

Example 3 Identify and sketch the curve xy = 1.

Solution. As a first step, we will rotate the coordinate axes to eliminate the cross-product
term. Comparing the given equation to (7), we have

A=0, B=il, €C=0

Thus, the desired angle of rotation must satisfy

A-C 0-0
cot26 = = =0
B |
This condition can be met by taking 260 = 7/2 or § = /4 = 45°. Substituting cos§ =

c0s45° = 1/+/2 and sinf = sin45° = 1/+4/2 in (5) yields

’

* Y and x’-l-"vl
X = — ) == —— _
NG Y= AT/

Substituting these in the equation xy = 1 yields
Substituting these in the equation xy = 1 yields
/ ' ’ / 12 12
X y * y x y
- + =1 and — =1
(JE V2 ) (ﬁ V2 ) 2 2

which is the equation in the x'y’-coordinate system of an equilateral hyperbola with ver-
tices at (v/2, 0) and (—+/2, 0) in that coordinate system | <




In problems where it is inconvenient to solve

cot26 = ﬁ
B

for A, the values of sin # and cos # needed for the rotation equations can be obtained by first
calculating cos 26 and then computing sin# and cos # from the identities

sinf = 1.‘—1 _020526 and cosf =,/ —l +C20529

Example 4 Identify and sketch the curve
153x% — 192xy + 97y* — 30x — 40y — 200 = 0

ALY

25

~

_7|

24

¥ =




Solution. We have A = 153, B = —192, and C = 97, so

A — 56 7
cot26 = C=——=——
B 192 24
Since 6 is to be chosen in the range 0 < # < /2, this relationship is represented by the
triangle in Figure 11.5.5. From that triangle we obtain cos 26 = — % which implies that

[1+ cos?26 [1—L 3

6: = 25 = -
CcOs 2 2 5
[1—cos20 [14+% 4

1 9: — 25:—
Sin 2 2 5
v o 1 ) .

Substituting these values in (5) yields the rotation equations

=3 — 4y — 4,4 3y
x=zx'—zy and y=3zx +3y

and substituting these in turn in the given equation yields

B3(Bx" —4y)? — L2(3x" —4y")(dx' +3y') + Z(4x' +3y)?

—P@x" —4y") — L(4x' +3y") —200 =0
which simplifies to
25x"% 4225y — 505" —200 =0
or
X 49y?—2x'—8=0
Completing the square yields
(' —1)°

12
=1
g TV



L F

.r_l 2
{—I ) 4+

=1
9 o

which is the equation in the x’y’-coordinate system of an ellipse with center (1, 0) in that
coordinate system and semiaxesa = 3 and b = 1 <

The discriminant

It is possible to describe the graph of a second-degree equation without rotating coordinate
axes.

THEOREM. Consider a second-degree equation
Ax* 4+ Bxy+Cy*+Dx + Ey+ F =0 (11)
(a) If B> —4AC < 0, the equation represents an ellipse, a circle, a point, or else has
no graph.

(b) If B> —4AC > 0, the equation represents a hyperbola or a pair of intersecting
lines.

(c) If B> —4AC = 0, the equation represents a parabola, a line, a pair of parallel
lines, or else has no graph.



The quantity B> — 4AC in this theorem is called the discriminant of the quadratic
equation. To see why Theorem is true, we need a fact about the discriminant. It can
be shown (Exercise 19) that if the coordinate axes are rotated through any angle 8, and if

Ax?+ Bx'y +Cy*+Dx' +Ey +F =0 (12)

is the equation resulting from (11) after rotation, then
B> —4AC = B —4A'C’ (13)

In other words, the discriminant of a quadratic equation is not altered by rotating the co-
ordinate axes. For this reason the discriminant is said to be invariant under a rotation of
coordinate axes. In particular, if we choose the angle of rotation to eliminate the cross-
product term, then (12) becomes

AX?*4+Cy*+ DX +EYy +F =0 (14)
and since B = 0, (13) tells us that
B> —4AC = —4A'C’ (15)

Example 5 Use the discriminant to identify the graph of
8x2 —3xy+5y2=Tx+6=0

Solution. We have
B? —4AC = (-3)* = 4(8)(5) = —151

Since the discriminant is negative, the equation represents an ellipse, a point, or else has no
graph. (Why can’t the graph be a circle?) D |

In cases where a quadratic equation represents a point, a line, a pair of parallel lines,
a pair of intersecting lines, or has no graph, we say that equation represents a degenerate
conic section. Thus, if we allow for possible degeneracy, it follows from Theorem
that every quadratic equation has a conic section as its graph.



