Geometry1l

Dr. Saad Shargawy

South Valley University

Geometry l:Lecture

Notes Prepared by

Liily aglell dys
Faculty of Science- Qena
Mathematics Department

Department of Mathematics Staff
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Cartesian & Polar Coordinates:
* The distance between two points B(x,,Y;),P,(X,,Y,) is:

\/(Xz - X1)2 + (yz - yl)2 .
Example: Find the lengths of the sides of the triangle whose
vertices are (5,1),(-3,7) and (8,5) ,and prove that one of the angles

IS a right angle.
Solution: Let P,(5), P,(-3,7),R,(8,5)

PP, =/(-3-5)% +(7-1)? =/64+36 =+/100 =10,
PP, =/(8-5)%+(5-1)? =+/9+16 =+/25 =5,
P_P:\/(8—(—3))2+(5—7)2 =121 +4 =125 =545,

- BP, +PP PP
Hence the angle at P, is a right angle.

» The coordinates of a point (x,y) which divides the straight line
joining two given points P(x,,Y,),P,(X,,Y,) internally” (externally’)
mX, £my%, My, tmy,

m+m, m+m,
Examplel: Find the coordinates of the point which divide the line
joining the points (2,-8) and (-5,6) internally in the ratio 3:4.
Solution:
(m X, + M, X, | my, +m2yl) (3( 5)+4(2) 3(6)+4(- 8)) (-1-2).

m, +m, m, +m, 3+4 3+4

Example2: Find the coordinates of the point P, which divides the
line joining the points PR, (-3-2),P,(12) externally from the side of
P, such that PP, = 2P,P, .

in the ratio m, :m, is: (X=

Solution:

[=h 2 P ) P,
PR,_m _3
PR m, 1

U

mX, —m,X, m,Y, —mzyl}ﬂs(l)—l(—s) 3(2)-1(-2)

] ] j=(3|4)-
m, —m, m, —m, 3-1 3-1
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Example3: Find the coordinates of the two points PR,, P, which
divides the line joining the points P,(2,-1),P,(-15) into three

equal parts.
Solution:
Pl T Pd T P4 T P2
PP, _m _1
PP m 2
p | MX £ MoX MY, +M,Y, z(l(—l)—i—Z(Z) 1(5)"'2(_1)):(11)
3 ' ’ ==/
m, +m, m, +m, 1+2 1+2
P, is the middle point between PR,(11),P,(-15) ,
-1+1 5+1

P ,— |=(0,3).

T ] (0.3)

H.W: In what ratio does the point (—1,—1) divide the join of
(-5,-3) and (5,2)?.




Geometryl Dr. Saad Shargawy

Coordinates System in a plane

(1)- Cartesian Coordinates:

From a fixed point O at the plane is called the origin point we draw
orthogonal straight lines OX,0Y they are called axis coordinates If
it is P at some point in the plane, P is completely determined by
two number quantities (X, y) called point coordinates in the plane,
where x represents the vertical dimension of the point P from the Y
axis, and y represents the vertical dimension of the point P from
the X (See figure):

Y,

P(x,y)

O X

(2)- Polar Coordinates:

Let O be a fixed point on the plane. From this fixed point we draw a straight
horizontal constant that applies to the OX axis

(See figure):

P(r,0)

0
O X

if P is a point in the plane, then P must be completely defined if we
know the distance OP (i.e. the the distance P from 0), and if we
also know ,the angle that the rectal OP makes with the OX axis .

A fixed point O is called the starting line.

The OP dimension is called the polar dimension and symbolized by
r, and the angle at which the OP straight from its original position

applied to the OX axis to the OP position is called the polar angle
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of point P and is denoted by the symbol 6. The polar coordinates of
point P in this case are the arranged two (r, 6).

The polar dimension OP is considered positive if measured from
the O electrode in the straight direction that defines the polar angle
0, and is considered negative if measured in the opposite direction.
The polar angle 0 is considered positive if measured in an anti-
clockwise direction, and is considered negative if measured in

clockwise direction, and is: (—7 <0< )

(3)-The relation between Cartesian and Polar Coordinates:
Let P be a point in the plane of its polar coordinates (r, )
and its Cartesian coordinates (X, y).as shone:

Y,
P(x,y)
r y
0
O X X
From the figure we see that: x =r cos 0 (1), y=rsin0d (@)

These two expressions X, y in terms of : (r, 6)

square the relations (1) and (2) and add them, we get:

> = x2+y" = 1= x4y 3).

dividing (2) by (1), we get: yix=tan® = 0 =tan’(y/x) (4)

These two relations (3), (4) express (r, 0)in terms of( X, y)

Example:1 Find the Polar Coordinates of the point: P (+/3,1)
And determine the position of this point

Solution:

The point is given in Cartesian coordinates (X, y) = (\/§,1) , SO:

r=yxX2+y?> =+/34+1=+/4=2 , x=rcosd, y=rsin @
J3=2c0sf,1=2sin 6
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cosezﬁ,sinﬁ:i,ezz then: (r,0)=|2,%
2 2 6 6

Then the angle 6 is in the first quadrant of the plane.

Example:?2
(i) Transform : x* + y* —2x+2y =0 into polar form.

(il) Transform :r =4acos @ into Cartesian form.
Solution:
() put:x=rcosé, y=rsin @

. (rcos8)® +(rsin 8)* —2(rcos @) + 2(rsin ) =0
= r?(cos® @ +sin® @) —2r(cos 6 —sin 6) =0

= r=2(cosd—sin 0).

(i) r=4acos@ = r>=4arcosd = x* + y* = 4ax.

Example:3
(i) Transform : r? =a’co0s26 into Cartesian form.

(i) Transform : X° = y2(2— X) into polar form.
Solution:
(i) r?=a’cos20=a’(cos’ @ —sin?§) =r'‘=a’(r*cos’ @ —r?sin’ )
:>(x2 - yz)2 = az(x2 — yz)
(i) put x=rcosd, y=rsing
- (rcos@)’ =(rsin 6)*(2—rcosb)
=r’cos’ & =r’sin’G(2—rcosh)
=r’cos’f+r’sin®*@cosd=2r’sin’ O
= r*cosd(cos? 6 +sin” @)= 2r’sin? @
= r’cosf=2r*sin*@ = r5cosd=2sin’*H
r=2tanédsin @

Exercises:

1- Find the coordinates of the point P, which divides the line joining
the points P,(0,-1),P,(2,3) externally from the side of P, such that
PP, =2P,P, .
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2- Find the coordinates of the two points P, , P, which divides the

line joining the points B, (11),P,(—2,-5) into three equal parts.
3- Prove that the medians of a triangle with vertices

. + X, + X +Y,+
P04 Y1), P 0, ¥2), Py, ¥s) s M2t R it de sy,

3 3
4- Show that the distance between the two points

P(X,,Y,),P,(X,,Y,) in polar coordinates is:
\/rlz +1,2—2rr,c0s(6, - 6,).

5- Find the Polar Coordinates for each of the following points::

Pl (—\/5,1) ) Pz (_11 \/g) ) Ps (_111) ) P4 (_3,3\/5) , Ps (11_\/5)

6- Find the Cartesian Coordinates for each of the following points:
T T T T T

P(2-—),P(1~-),RB,~—),P4~—),P(2——

) 2) ) ( 3) ( 4) s ( 3) 5 ( 6)

7- Transform the following equations to the polar Coordinate:
@ (c+yf=2axy (2 y*=x/(2a-x)

(3) x* +y* =a’xy (4) 2x* —2y* =9
8- Transform the following equations to the Cartesian Coordinate:
(1) r=1-cosé (2) r*=9cos20

(3) r=3/(2+3sing) (4) r(2—cosh)=2

Change axes in the plane:

The purpose of changing coordinate axes is to place curve
eguations in the simplest form so that they can know their type
and study their properties.

Below we will study three ways to change axes:

1-Transfer of the origin point (transfer of coordinate axes):

If : y=1f(X) itisthe equation of a curve in a plane, and (X, y) itis the
coordinates of a point P in the plane, and the origin point (0,0) is moved to

another point : (a, )




Geometryl Dr. Saad Shargawy

While maintaining the direction of the axes, if the point P coordinates for

the two new axes are: (X', y') , then it is of the form:

P(x',y)
P(x,y)

(a)|)

~
(]
(]
N—r

x=X'+a, y=y'+p, X=x-a,y=y-p4

The relation between the new coordinates (x',y') and the old one

(x,y) when the parallel axes are translated through the point
(a,p) is: x=X'+a, y=y'+f and X' =x—-a,y'=y-pf
Examplel:Find the new coordinates for the point : when the

parallel axes are translated through the point (2,-5)
Solution:

X=X+a, =>-3=X+2=x'=-5
y=y'+f=4=y -5=y'=9
Example2 :Transform to parallel axes through the point (1,0)
the equation : x> + xy + y* —2x—y—-5=0.
Solution: x=x"+1, y=y'+0
XD+ (X DY Yy -2(X +1D) -y -5=0
= (XP+2X+D)+ (XY +y)+y?-2x'-2-y'-5=0
= X%+ XYy +y?=6.
Example3: Transform to parallel axes through the point (2,—3)

the equation X*+Yy’—4X+6y=36.
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Solution: X=X'+2, y=y'-3
(X2 +(y =3) —4(X +2)+6(y' -3)=36
= X?+4X +4++y?6X +9-4X' -8+ 6y’ —18=36
= X2 +y"? =49,

2:Axes rotation
» The relation between the new coordinates (x',y') and the old one

(x,y) when the parallel axes are rotated through an angle 6 is:
x=x'cos@—-y'sin@, y=x'sin@+y'cosé .

X!
X
x=0ON =0ON"—- NN’ y=PN=PM'+MN
=ON'-MM =PM'+ MN’
=0OM cos@—-PMsin @ , =PM cos@+OM sin &
=x'cos@—y'sin 6. =y'cos@+x'sin g
=x'sin 8+ y'coso.
Then:
x=x'cos@—y'sin g, X 3_/,
X | cos@d | —sinéd

y=x'sin 8+ y'cosé.

y sin @ —sin @

Examplel: What does the equation
X2 +2xy+y?—242x+642y-6=0 become when

the parallel axes are rotated through an angle of % .
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Solution: x=x'cos@—y'sin@, y=x'sin @+ y'cosé,

/s . 1 1 1
f="=sinf@=cosf=—=x=—XX-Y),y=—(X+VY
n NG \/E( y),y ﬁ( y)

...%(XIZ _ 2X/yr+ y¢2) + (X¢2 _ y/2) +%(Xr2 + 2X!y/+ y!2) _2(XI_ y!)
+6(x'+y)-6=0
S 2X? 44X 48y —6=0=> X" +2X'+4y' -3=0
= (X' +1)*-1+4y'-3=0
= (X' +1)* =—4(y' -1).

Example2: What does the equation: 2xy =49 become when the
parallel axes are rotated through an angle of: %

Solution: x=Xx'cos@—-y'sin@d, y=x'sin@+y'cosd,

Vs . 1 1 1
O=—=sinf=cosf=—==>x=—1(X-VY),y=—"4+X+Y),
2 72 ﬁ( y).y ﬁ( y)

1 r__ /i ’ ’ — r2 r2 —
Z{ﬁ(x y)ﬁ(x+y)} 49 — (X y'?) =49

Example3 - What does the equation 2x*—-3xy+ y>=0 become
when the parallel axes are rotated through an
angle of @=tan™(1/2).

Solution:  x=x'cos@—y'sin@, y=x'sin@+y'cosé,

0=tan‘l(]/2):>sin9:i,cosé?:i:>x=i L

N BT EE TR
RN L (F SR SN [N I SN
Z{E(ZX y)} 3{\/§(x+2y)\/§(2x y)} +{£(x +2y)} 0

%(Zx' —y')? —S(ZX’ —y)(X'+2Y") +%(x’+ 2y')? =0

= 2(4x'? —4XYy' +y'?) =3(2x"* + 33Xy’ = 2y"?) + (X'* + 4Xy' + 4y'*) =0
= 3x'* -13x'y' +12y"* =0.

(x'+2y)

Exercises:

1- Transform to parallel axes through the point (3,5)
the equation x*+y*—6x—10y—2=0.




Geometryl Dr. Saad Shargawy

2- What does the equation 4x%+2+/3xy+2y? =1 become
when the parallel axes are rotated through an angle of %

3-Moving the axes and rotating them together:

If the point of origin is moved to the point («, ) and the axis
coordinates OX,Q0Y are rotated at an angled at the same time:
x=x'cosf@-y'sin 0+« ,
y=x'sin +y'cosf+ p.
Example (1): If the point of origin is moved to the point :(-1,2)
and the axes rotate at an angle :tan™*(1) Find the
new coordinates for the point (1,3) The new curve

equation: 4x*+y’+8x—4y+7=0

Solution: the relationship between the original coordinates x, y
and new coordinates: x',y" When the point of origin is

moved to the point: («, #) and the axes rotate an angledis:

x=x'cos@—-y'sin 0+« ,
y=x'sin @+ y'cosf+ p.

But from the data (e, f) =(-12), 8= % =sin@d=cosld=—

e

. _i g *
--X—ﬁ(x y) -1 (¥

1 ! ! % ¥
y—ﬁ(x +y)+2. (*9

To find the new coordinates of the point : (1,3) we substituting by
x =1,y =3 In the previous two relationships (*), (**) : we get:
1

1=—X-y)-1. 1
rz( y) @ _ X —y)=22. (3
1 xX"+y)=~2. (4)
3=—(XX"+y)+2 2
ﬁ( y) (2)
Solve the two equations (3),(4) together we get :
3 1 . .
Xx'=—,y'=—-—— so the new coordinates for the point : (1,3
NERAN point - (13)

(21
Is :( > 2).
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To find the new equation for the curve 4x* +y*+8x—4y+7=0 :
we substituting by x,y from (), (%) we get

4[%(%— y)-1J° +[%(x'+ y)+ 2 +8[%(x'— y)~1]

—4[i2(x'+ V) +2]+7=0.

72
S2(XP =2y +y'?) —i(x’— y')+4+£(x’2 +2x'y' +y'?)
V2 2
+i(x'+ y’)+4+i(x'— y’)—8—i(x'+ y)-8+7=0.
V2 V2 V2
5

5
=X =3y + 2yt —1=0.
2 y 2 y
S 5X'? —6Xy' +5y'% =2.

So this is the new curve equation required.

Various examples:
1- Find the new origin point that, if we move the axial coordinates,

the curve equation : 12x* —10xy +2y? +11x—5y+2=0
It becomes free from the absolute limit and first-class limits.
Solution : Let (a, B) Itis the new point of origin substituting by

x=X+a,y=Yy +A Inthe curve equation ™)

In order for the equation to be free of the absolute and first-
degree limits, we equate the coefficients of the first-degree

and absolute terms in the equation (*) Zero as follows:
24a-100+11=0 (1) , 10a+4b-5=0 (2)
12a®*-10ab+2b® +1la-5b+2=0  (3)
Solve the two equations (1),(2) together we get:

3 5

a——E "B__E
L * 3 5
substituting in eq.(*) by a== ,ﬁ:_a

we git:  12x"? -10xYy' +2y? =0
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2- If the coordinate axis has a sharp angle : 0 = tanl(%j Find the

new form to which the curve equation results :
2x> —3xy+Yy* =0

Solution: the relation between the original coordinates x, y and

new coordinates x’,y' when the axes rotate an angle 61s:
x=x'cos@—-y'sin@ , y=x'sind+y'coso.

then:6?:tanl(%):>sin49:i cosg =2

N J5
—Lx-y), y=tx+ay)
J5 ' J5 '
substituting by x,y in the curve equation we get:
%(ZX' —-y')? —g(ZX' —y) (X' +2Y") +é(x’ +2y)? =0

= 2(4x"? —4xX'y' +y'?) = 3(2x"* + 3Xy' = 2y"?) + (X"* + 4x'y' + 4y'*) =0
= 3x'* -13x'y' +12y'* =0.

3- If the axes revolve around an angle % Then the axes are then

moved to the point (-2,-6) For the axis after rotation, check
that the new form of the curve equation

X2—y?—42x-8J2y+4=0 is xy=14.
Solution: the relation between the original coordinates x,y and
new coordinates x’, y' when the axes rotate an angle @is:

x=x'cos@-y'singd , y=x'sin@+y'cosé.
Then from It is data : 0 == = sin @ =cos =——
‘ V2
1., 1 . .
X=—=X=-y),y=——7=X+Y).
ﬁ( y).y ﬁ( y)
substituting 1n the curve equation we get:

SX Y)Y - y)—“f( —y)—8f<x+y)+4 0

= (X? =2XY' +y?) = (X? + 22Xy + y*)-8(X' —y) -16(X' + y')+8=0




Geometryl Dr. Saad Shargawy

= —4xYy' -24x'-8y'+8=0
=Xy +6x +2y -2=0.
and substituting by x'=x-2,y'=y-6 we get

(x=2)(y—6)+6(x-2)+2(y—-6)-2=0.
=Xxy-14=0
= xy=14.

Exercises:

1-If the point of origin is moved to the point (1,—2) Find the new

coordinates for each of the following points:
P21, R(5-2), R((0))

2-Find the point where the origin point should be moved when:
a)- Until the point : (-5,2) movies to the point : (5,-2)

b)- Until the equation : (y —1)* = 4(x + 2)
becomes free from y and the absolute limit
3- If the point of origin is moved to the point : (1,—3)

3, .
and the axes rotate at an angle :tan ‘1(2) Find the

new coordinates for the point (2,—2) and the new curve

of equation: 36x* +24xy++29y° +150y +45=0

4-Find the coordinates of the point where the axes should be
moved in order to:

a)- The equation x> +4xy + y*> +2x+6y—8=0 turns to another
free from the limits of the first degree.

b)- The equation x? + y? +2x+6y+10=0 turns to another
free from X and the absolute limit.

6- What does the equation: X* +2+/3xy—y? =5 become

T
when the parallel axes are rotated through an angle of 5
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General 2nd degree Equ. & Pair of Lines:

1-The Condition for a general second degree equation :
ax’ + 2hxy + by’ + 2gx+2fy+c=0 to represent a pair of lines is:

a h g
=|lh b f|=abc+2fgh—af?-bg®-ch*=0.And the angle &
g f c
2
between these lines is given by:. tané :%
a+

From the previous relations, we can conclude that the two
straight lines are:
1)- Real and different if : h? > ab
2)- Imaginary if it was: h? < ab
3)- Parallel (or applicable) if: h? = ab
4)- Orthogonal ifitis:a+b=0
Examplel: Show that the equation x*+8xy+ y* +16Xx+4y+4=0
represents a pair of lines, and calculate the angle between
these lines.
Solution: a=b=1,h=4,9=8,f =2,c=4

a h g/ 1 4 8
h b fl=}4 1 2/=1(4-4)-4(16-16)+8(8-8)=0,
g f ¢ 8 2 4
[h2 /
_tan’l[2 h"- ’l& ]=tan"(J/15).

Example2: F|nd the value of 1 so that the equation
X® +2Axy + y* +6x+ 2y +9=0 may represent a pair of lines.
Solution: a=b=1,h=1,g=3,f =1,c=9

a h g
~lh b f|=abc+2fgh—af?-bg®-ch’=0=>9+641-1-9-94°=0
g f ¢

= 9P +61-1=0=94 -61+1=0= (31 -1)° :O:Mt:%.
Example2 :For what value of 4 does the equation
x> —xy+ Ay’ —3x—3y =0 represent a pair of lines,

and what is then the angle between these lines
Solution: a=1,b=1,h=-1/2,9=-3/2,f =-3/2,c=0
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a h g 1 -12 -3/2
“hob =32 2 —3/2:1(‘_9j+1(‘_9j_1(_§+ﬁ] 0
4) 204) 20 4 2
g f c| [-¥y2 -32 0
9 9,9 3% _g579% g 9 61-0m2=""
4 8 8 2 2
?— 2,1 2,/5/2
$=tan™ [M] tan™ [;3] =tan™(
a+b 1-3/2 —1/ 2

Example3: Show that the equation : y* + xy —2x* ~5x—y—-2=0
represents a pair of lines, and find them, and calculate the
angle between them, and find the point of their intersection.

Solution: a=-2 ,b=1,h=12,9=-5/2,f =-1 /2,c=-2
a h -2 2 -5/2
; Y / 1) -1 5 -5 1 5
h b fl=[12 1 -—12[=-2-2-=|+—=|-1-2|4| = |-=42
4) 2 4 2 4 2
g f c| |-52 -12 -2
36 9 45

"8 8 8
Then the equation represent a pair of lines.

To find a pair of lines we analysis the left side of a given equation:
y2 4+ xy—2x2 —5x—y—2=(y+2x+a)y—x+p)

Compeering coefficient x,yand absolute value we get:

—a+2f=-5,a+pf=-1,af=-2sothat a=1,=-

Then a pair of lines is: y+2x+1=0,y+2x+1=0 (*)

,1[2—th—ab] —tan *1[2—\*]/4+2] = tan(=3).
a+b 2+1

¢ =tan

by solving the equations (*) we get the intersection point
between these lines is :(~11)

Example4 :For what value of ¢ does the equation
12x* +19xy +4y* —-5x—-11y+c=0 represent a pair of lines,

Solution : a=12,b=4,h-19/2,g=-5/2,f =-11/2,c=c
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a h gl |12 19/2 -5/2 ) 6 (1
“hobofl=ji2 4 —np2 :12(4c-%)_1_[1_0_§j_
g f c

2\ 2 4
-5/2 -11/2 ¢
5( =309 20
—_) ——— | =
2 4 2

12(16c—121j_§(38c—55j_§(—309 +4oj 0
4 2\ 4 ) 2l 4

= 3(16c—121)—%(38c—55)—§(— 269 ) = 24(16¢ —121)—19(38¢ —55)+1345

=384c—2904 —722¢c +1045 +1345 = -388¢c—-514 =0=388c=-514 =c=-3
Another Solution:

by analysis the left side of a given equation;

12x% +19xy +4y® —5x —11y +C = (4x+ Y+ \3x+ 4y + )
Compeering coefficient x,y and absolute value we get:
3a+48=-5,4a+B=-11, af=c sothat a=-3,8=1
Then: c=apf=(-3)1)=-3

2-The equation of any straight line passing by the intersection

point of two known straight lines:
Let :

ax+hby+c, =0 1)
X +hy+c, =0 (2)
Be the equations of two straight lines and consider the

equation:(a;xy + byys + ¢1) + k(azxg + boy; +¢2,) =0 (€))
Where k is a constant.
It is clear that equation (3) is a first-degree equation in X, y
and therefore it represents a straight line equation in the plane
and if (x1, yl1) is the point of intersection of the two lines (1),
(2), it achieves both of them, and then it achieves the equation
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(3), and on this equation (3) represents a straight line that
passes by the point of intersection of the two lines (1), (2)
And by giving k different values, we get a group (bundle) of
straight lines, all of which pass through the intersection point of
the two straight lines (1), (2), which is called the head of the
beam.
Example (1): Find the equation of a straight line that passes by

the intersection point of the two lines:

3Xx+4y+5=0,2x-3y+4=0.

It passes the point of origin.
Solution: the equation of any straight line that passes the
intersection point of the known straight lines is as
follows :(3x + 4y +5) + k(2x -3y +4) =0 *)
Since the straight line (*) passes the point of origin (0,0),

it achieves its equation, so itis: 5+4k =0 = k=-5/4
Substituting k into the equation (*), we get:

(3x +4y +5) + (-5/4)(2x-3y+4)=0
-.2x+ 31y = 0. and this is the line equation.
Example (2): Find the equation of the straight line that passes

the intersection point of the two lines:
2X-4y+1=0 ,3x+5y-6=0

Itis parallel to the line :x +y + 2 =0.
Solution: the equation of any straight line that passes the

intersection point of the known straight lines is as follows:

(2x-4y+1)+ k(3x +5y-6) =0 *)
Since the straight (*) equals the straight x+y+2=0

(Whose inclination is -1) is equal, so:

-(2+3k)/(-445k) =-1 = k=3
This is the required line equation.

Example (3): Find the equation of the straight line that passes

the intersection point of the two lines:
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y+2x+1=0,y—-x-2=0
It is perpendicular to the straight line: 2x -y =0
Solution: the equation of any straight line that passes the intersection
point of the known straight lines is: (y + 2x +1) + k(y -x -2) =0
So the required line equation is :2x -y =0

(Whose slope is equal to 2)The product of their slope is (-1),

and then: [-(2-k)/(1+Kk)][2] =-1 = k=1
So the required line equation is:

(y+2x+1)+(y—x—-2)=0.Sothat: x+2y-1=0

3-The shortest distance between two straight lines is:

To find the shortest distance between the unbroken straight

lines:axx + by +c; =0, apx +byy+¢,=0.
We find the intersection of one of them with one of the

coordinate axes (Let OY hub beats.)

By putting x = 0), we find the value of y, and we get the
intersection point (0, y), then we find the length of the column
From this point it falls on the second straight line, so the length
of this column is the shortest distance between the two straight

lines given in the plane.

Y
a1X+b1y+01:O
aX+hy+c,=0
(0)0) X

Example: Find the length of the shortest dimension between the
two lines: 3x -4y -2=0,8y-6x—-9=0.
Solution: We find the point of intersection of the rectum
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3X - 4y - 2 = 0 With the y-axis, we put x =0, so y = -1/2, so
the point of intersection is (0, -1/2).

The length of the shortest distance between the two straight
lines equals the length of the column falling from this point on

the straight line :8y —6x—-9=0 is
1

8(-=)-6(0)-9

‘ J8? +6°

4-The angle between the two lines represented by the homogeneous

Equation:
Assume that the two straight lines represented by this equation

-

ax® +2hxy+by? =0. are: y=mXx , y=m,X.

Where m;,m,they are inclined, so the common equation for
them is as follows: (y —m,x)(y —m,x) = ax’ + 2hxy +by”.
a 2h
£y E = (Mg my )Xy (mm, )X = (X +C Xy + Y

Equal coefficients x?,xy at both side we get:

a 2h
m,m, =5 —(m1+m2):F.

If it is the angle between the two straight lines, then it is:

2h,, a
(=02 _ g2
tang = m, —m, _\/(ml+m2)2—4m1m2 _ ( b) (b):2 h® —ab

1+mm, 1+mm, 1.2 a+b

L= tan—l(th_—ab)
a+b

And ifitis : 0 :% Which :tan@ =« and This is when a+b=0
This is the condition of orthogonal linear straightness.

And if itis 8 =0 Whichtan8 =0 This is when

h® —ab =0 Which :h? =aband this is a condition of parallelism.
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5- Equation of the two straight lines which are fair to the two

angles between the two lines represented by the equation:

ax® +2hxy+by* =0.  (¥)
Assume that the two straight lines represented by this equation
are: y=mxX , y=m,x.where m,m,
Their inclination, so the equations of the two angles of these

mx __ y—myX

y_
\/1+ m12 \/1+ m22
The equation for them is:
—m,X —m,X —m,X —m,X
(y 12_y 22)(y 12+y 22):0-
1+m, \/l+ m, 1+m, \/1+ m,

(y_mlx)2 _ (y—mzx)z =0.
1+m° 1+m,’

two angles are:

s(my+my)(y? —x%) +2xy —2(m,m,)xy = 0.

And substituting by: m, +m, = —%h , mm, =% we get

2y -x)+ 29 -2y =0,
s h(x? —y®) = (a—b)xy.
Thus, the equation shared by the two angles of the two straight

lines represented by the homogeneous equation (*) in the form;

XZ _ y2 B ﬁ
a-b h
To find the common equation for the two angles of the two

straight lines represented by the equation:

ax® +2hxy +by? + 2gx+2fy+c=0.  (**)
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We transfer the axes of the coordinates to the intersection point
of the two lines represented by the equation (**), so this
eqguation turns into an image (*), and then we find the joint
equation for the two angles of the two angles represented by
the equation from the previous relationship. Then, back to the
point of origin, we obtain the joint equation for the two halves of
the two angles represented by the equation (**).
Example: Find the equation for the two equations between the
two angles represented by the equation:

2x% +3xy — 2y* - x +3y — 1 = 0.
Solution: First we find the two straight lines represented by the

given equation by analyzing the left side therein as follows:

2x2 +3xy — 2y% - X +3y — 1 = (2x - y + a)(X +2y + ).
Comparing the coefficients of x, y and the absolute term at
the two sides, we get :
a+2p=-1. (1)
20.- B =3. 2
aff =-1 @)
From (1), (2) we get, o =1, B =-1. This achieves equation (3).
So the two lines are:
2x-y+1=0. 4)
X+2y-1=0. (5)
By solving equations (4) and (5), we get their intersection
point (-1/5, 3/5).
By moving the axes to this point (i.e. placing x = x"-1/5,

y =y + 3/5), the new image of the given equation is:

2x2+3xy — 2y =0. (6)
The equation for the two straight lines between the two angles (6)
is given by the relationship: h(x'? —y'?) = (a—b)(x'y").
Substituting for a = 2, b = -2, h = 3/2 the equitable equation for

the two lines (6) is: 3x'2- 8x'y" — 3y2 = 0.




Geometryl Dr. Saad Shargawy

Returning to the original axes (i.e., X’ =x +1/5,y =y - 3/5), the
common equation for the two straight lines of the two angles
between the two lines represented by the given equation is:

3(x +1/5)? - 8(x +1/5)(y — 3/5) — 3(y — 3/5)* = 0.
That is: 3x? - 8xy — 3y” + 6x + 2y = 0.

Various examples:
1-Verify that the equation: x* + 6xy + 9y* + 4x + 12y - 5 = 0.
They represent two parallel straight lines, and find the shortest

length in between.
Solution: Requirement for representation of second degree
equation ax? +2hxy +by? +2gx +2fy +¢c = 0

Two parallel straight lines are:

a h g
A=h b f[=0, h*=ab.
g f ¢

In substitution of the given equation it is:

13 2
A=3 9 6|=1(-45-36)—3(-15-12)+2(18-18)=-81+81=0,
2 6 -5

h?=(3)°=9,ab=(1)(9)=9...h* =ab
So the given equation represents two parallel straight lines.

Solve the equation given as a second degree equation in the

following:

L —(6y+4)£(6y +4)° ~4W)9y” +12y -5)

2()
 —(By+4)++/36y> +48y +16 —36y> 48y + 20
- 2
_—(6y+4)£36
> .

So the two straight lines are: x+3y—-1=0, x+3y+5=0.




Geometryl Dr. Saad Shargawy

And the intersection point of the first straight line: x+3y-1=0
With the y-axis are. (0,%)

The length of the shortest distance h between the two lines
Is equal to the length of the falling column from this point

on the second straight line, which is: x+3y+5=0 where;
10)+3(1) +5

3 6
‘ V17 132 ‘ N

2 - Prove that equation: 3x* — 4xy — 4y* + 14x + 12y -5 =0
They represent two straight lines and find the common

h=

equation for the two halves between them.
Solution: The condition for the representation of the second
degree equation : ax? +2hxy +by? +2gx +2fy +c = 0
a h g
Two straight lines are: A=h b f|=0
g f c

And with compensation from the given equation be

3 -2 7
A=|-2 -4 6|=3(20-36)—(-2)(10 —42) + 7(~12 + 28) = 0.
7 6 -5

So the given equation represents two straight lines.

To find them, we analyze the left side of the given equation as
follows: 3x? — 4xy - 4y? + 14x + 12y — 5 = (3X + 2y + a)(X —2y + B).
and comparing the coefficients of x, y and the absolute term of

the two sides, we get:

o+ 3p = 14. (1)
20+28=12. =>-a+B=6. (2)
afp=-5 (3)
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From (1), (2) we get : o = -1, B = 5. This achieves equation (3). So the
two lines are:
3x+2y-1=0. 4)
X—2y+5=0. (5)
and by solving equations (4) and (5), we get their intersection point
(-1, 2).Also by moving the axes to this point (i.e., placing
Xx=X-1,y =y + 2), the new form of the given equation is:
324Xy —4y?=0. (6)
And the common equation for the two straight lines of the two

angles between the two lines (6) is given by the relation:

h(x* —y™®) = (a-b)(X'Y")
Substituting for a = 3, b = -4, h = -2, the equitable equation for the
straight lines (6) is: 2x™2 + 7X’y" — 2y"2 = 0.
Returning to the original axes (i.e., putinx’ =x+ 1,y =y-2), the
common equation for the two straight lines of the two angles between
the two lines represented by the given equation is:

2x + 1)* + 7(x + 1)(y - 2) - 2(y - 2)* = 0.

~.2x2 + 7xy — 2y? — 10x + 15y — 20 = 0.
3 - Prove that the righteous: ax* + 2h(a+b)xy + b%y? = 0. (1)

the%/ are equally inclined on the straight lines:

ax’ + 2hxy + by? = 0. (2)
Solution: If we prove that the joint equation of the two angles of the

two straight lines (1) is the same as the common equation of the
two halves of the two angles between the two straight lines (2)

then the two straight lines (1) are equally inclined over the two
straight lines (2). the common equation for the two halves of

the two angles represented by equation (1) is:

2 2 2,2
Xz yz = al , 1€ an— :ﬁ (3)
a‘—-b h(a-+b) a->b h

And the equation for the two equations in the two angles

2 2

-y Xy

represented by equation (2) is: X 0 " h
a —

That is, the common equation for the two equitable angles
between the two straight lines (1) is the same for the two

straight lines (2) and from that produces the required.




Geometryl Dr. Saad Shargawy

Exercises:
1- Verify that each of the following equations represents two
straight lines:

(i) X*—4y*-6x+16y-7=0.

(ii) 6x> + 5xy — 6y* — 3x + 28y — 30 = 0.

(iii) 15x% + 19xy — 10y* + 7x + 22y — 4 = 0.
and find the point of their intersection, and the

angle between them.
2-Find the value of k, which makes each of the following
eguations represent two straight lines:

(i) 12x>—13xy - 14y + 38x — 81y +k = 0.
(ii) x* - xy + ky> = 3x - 3y = 0.
(i) x> + kxy + y?-5x-7y +6 =0
3-Find the value of c that makes the equation:

6x° — 42xy + 60y — 11x + 10y +c =0

represents two straight lines. And prove that

the angle between them is equal :tanl(%j

4-Find the value of a, and ¢ to represent the equation:
ax?+3xy-2y*-x+3y+c =0
Two straight orthogonal lines
5-Find the equation of a straight line that passes by the
intersection point of the two lines:.

4 -y+1=0, 2x+5y-6 =0.
It is perpendicular to the straight line 4x + 3y =7

6-Find the equation of a line that passes the intersection point
of the two lines represented by the equation

10x> +19xy + 6y* + 16x +2y-8=0
It is perpendicular to the straight line: x -y = 0
7-Find the longest distance between the two straight lines:
2Xx+y-3=0, 4x+2y+1=0.

8 - Prove that equation :18x* - 48xy + 32y + 9x - 12y - 54 =0
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They represent two parallel straight lines, and find the shortest
length in between.

9- Find the equation for the two straight lines between the two
straight linesWith the equation :
2x*-xy-y* +4x+5y-6=0

10 - Find the equation for the two equations that are fair to the two

angles, between the two lines represented_by the equation;
X2 +5xy—6y? —Tx—4y+2=0

The conical Sections:

The parabola, ellipse, and hyperbola are cases of curves called
conic sections. The name is derived from the fact that they may

obtained as sections made by a plane with a double right circular
cone.

The kind of curve produced is determined by the angle at which
the plane intersects the surface.

circle ellipse parabola

g

Gz P

hyperbola
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Mathematical definition of conical Sections

Conic Section is the geometric place of a point moving in the plane
so that the ratio between its distance from a fixed point in the plane
and then from a straight line in the level is always a fixed amount.
The fixed point is called the focus of the conic and a straight line is
called directory and The fixed ratio is called eccentricity It is denoted
by the symbol e and the straight line passing through the focus and
perpendicular to the guide is called the cutoff axis, The straight line
is called the focal length and perpendicular to the axis of the focal
segment.

Oa)- Ifitis: e —» o« represents a pair of lines

b)- Ifitis: e=0 represents a circle.

C)-Ifitis: e=1 represents a parabola

d)-Ifitis:e<1l represents ellipse

f)-Ifitis:e>1 represents hyperbola
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The Parabola
Definition: The locus of a point which moves such that it is
equidistant from a fixed point and a fixed line is called a parabola.
The fixed point is called the focus and the fixed line the directrix.
The line passing through the focus and perpendicular to the
directrix is called the axis of the parabola.
The middle point between the focus and the direcrix is called
the vertex of the parabola.
The chord through focus paralled to the direcrix is called
the latus rectum.
The distance of any point on the parabola from its focus is called
the focal distance of the point.
Solved problem: Sketch, and then find the equation of the parabola
whose vertex is (0,0) and focus is(a,0) ?.

Solution:
According to the definition of a parabola:

D Y

@
K

C(-a,y) P(x,y)

a a F@0) X

PF =PC = /(x-2)? +(y-0)? =x+a.
= (x—a)*+(y-0)>=(x+a)’
= x? —2ax+a’+y’ =x*+2ax+a’
~y? =4dax.
This is the equation of the parabola whose vertex is (0,0) ,
focus is(a,0), direcrix x=-a, and
the length of the latus rectum is |4a].
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= Standard forms of parabola:

(1) The equation of the parabola with vertex at the origin O(0,0)
and focus at (a,0) is: y* =4ax

O
n
I~

»
D
=

X

(2) The equation of the parabola with vertex at the origin O(0,0)
and focus at (-a,0) is: y* =—4ax

Y

IO

T
A~
ke

D
N

%)
X
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(3) The equation of the parabola with vertex at the origin O(0,0)
and focus at (0,b) is: x*=4by

(4) The equation of the parabola with vertex at the origin O(0,0)
and focus at (0,-b) is: x* =—4by

Y

= The equation of parabola whose vertex («, f), and the axis
parallel to X —axis is: (y—)* =4a(x—a)
(with focus (a+«, ), and direcrix x=—-a+a ).

= The equation of parabola whose vertex («, ), and the axis
parallel to Y —axis is: (x—a)® =4b(y— )
(with focus (a,—b+ f), and direcrix y=b+ g ).
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= Remarks:

1- The parabola y* =4ax ( (y— ) =4a(x—a) ) opens to the right.
2- The parabola y* =—4ax ( (y— ) =—4a(x—a) ) opens to the left
3- The parabola x* =4by ((x—a)® =4b(y— ) ) opens to the
upward.

4- The parabola x* =—4by ((x—a)® =—4b(y— ) ) opens to the
downward.

= The General equation of parabola whose focus (h,k) and

2
direcrix ax+by+c=0 is: (x—h)2+(y—k)2=w-
+

Solved Problems:

1- Sketch, and then find the equation of the parabola whose:
(i) vertex is (0,0) and focus is (0,-2).

(i) vertex is (3,3) and focus is (-3,3).

(iii) vertex is (1,2) and focus is (3,2).

(iv) vertex is (1,2) and focus is (1,0).

2- Find the vertex, focus, direcrix, and length of the latus rectum of
the following parabolas:

(i) y*=12x (i) x> =-6y

3- Find the equation of the parabola whose:

() focus is (5,2) and direcrix is x—1=0.

(ii) focus is (4,4) and direcrixis y—5=0.

The answer:
1- (i) As shown in the following figure:
Y
D
€ X

H(0,-2)
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The form of the parabola is x* = —4by,
the focus (0,-b)=(0,-2) =>b=2
So, the equation of the parabola is x* =-8y.

(i) As shown in the following figure:

Y D
\
=( 2\ (2 D\
LI I \UrI)
) X
/

The form of the parabola is (y - f)* = -4a(x-a),
V(a,$)=B3) ,F(a+a,8)=(a+33)=(-33)=>a==6
So, the equation of the parabola is (y —3)* = -24(x—3).

(i) As shown in the following figure:

D Y

~
H>
L8}

£(2 2\
L N=ET oy )

The form of the parabola is (y—f)* = 4a(x—«a),
V(a,f)=12) ,F(a+a,B8)=(+12)=32)=>a=2
So, the equation of the parabola is (y—2)* =8(x—1).
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(iv) As shown in the following figure:

Y
/V 2)
b E1q) X

The form of the parabola is (x—a)* =—-4b(y - /),
V(a,)=12) ,F(a,-b+8)=10)=1-b+2)=b=2
So, the equation of the parabola is (x—1)* =-8(y—2).

2- (i) y* =12x comparing with the form y? = 4ax:

-.a=3 Hence y®=12x represents a parabola opens to the right,
and whose vertex is (0,0) ,

focus is (a,0) =(3,0), and the length of latus rectum is |4a| =12

2- (i) x* =—6y comparing with the form x* = —4by:

~.b =§ Hence x* =—6y represents a parabola opens to the

downward, and whose vertex is (0,0), focus is (0,—b) = (0,—2),

and the length of latus rectum is |4b| =

4- The General equation of parabola whose focus (h,k), and
(ax+ by +¢)?

direcrix ax+by+c=0 is: (x—h)*+(y—-k)* = 5
a’+b

(X 1)’

(): (x=5)"+(y-2)°= ol
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S (X2 =10X+25) + (Y2 —4y +4) = x> —2x +1
=y’ —4y=-8x+28

= (y-2)*-4=-8x+28
=(y-2)°=-8x+32

= (y-2)* =-8(x-4).

" —5)°

. _4 2 _4 2:(y

(i): (x=4)"+(y-4) E

s (X2 =8x+16) + (y* -8y +16) = y* —10y + 25

= X" -8x=-2y-7
= (x—4)’-16=-2y -7

= (x-4)*=-2y+9

Exercises:
1- Find the vertex, focus, direcrix, and length of the latus rectum

of the following parabolas: (i) y*> =8x (i) x* =12y
2- Find the equation of the parabola whose focus is (1,2) and
direcrix is x+2=0.
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Indefinite Integration

If F(x) is a function such that F’(x)= f(x) on the interval [a,b] Then
F(x) 1s called an anti-derivative or indefinite of f(x) . The indefinite
integral of the given function is not unique for example

x,x? +3,x2+5 are indefinite integral of f(x)=2x since

4 ?)=L (x? +3)="L (+* +5)=2x All of indefinite integral of
dx dx dx

f(x)=2x include in f(x)=2x+c where ¢ called the constant of
integration, 1s an arbitrary constant.
1.1- Fundamental Integration Formula:

(I)Iif(x)=f(x)+c
) (u+vydx=[ udx+| vdx
()| oudx=a| udx

xm+1

(4)" o dx=m+1

4+¢c m#-1

6] g=ln\x\+c
X
xdx ax
6 =
( )j a lna+c
(N[ e*du=e* +c

Integration of Trigonometric functions:
(8) [sinxdx=—cosx+c¢

(9)[cosxdx =sinx+c
(10) [ tan xdx = In|sec x|+ ¢
(11)[cot x dx =Incos x + ¢



(12)[secxdx=In|secx + tan x|+ ¢
(13)jcosec dx = ln|cscx - cotx‘ +c
(14)jseczxdx =tanx+c

(15) [ cosec Zix=—cotx+c

(16) [secx tan xdx = secx + ¢

a 7)Icosec xcot xdx =—cosecx+c¢

Integration tends to inverse of Trigonometric functions:

I’

—sm b—x+c
(18) I 2dx2 z=4b1 ab
a”—b"x “eos' e
L b a
’Ltan_lb—th:
dx
(19) ’[7=*ﬂb a
A+ |-l ybx
—ecot ' =+¢
| ab a
( -1 bx
dx ;sec :+c
(20)f dx = {
} 2.2 2 -
xNb"x" —a —lcosec b—x+c
a a
(1 b
i —bcoth'l—x+c
@y 5 —gde=1" ’
b*x* —a 1 In bx — a|
2ab " bx+a|
- ibtanh_lb—x+c
a a
22 —_— =
I e A
2ab a—bx|" €
I dx ln(x+\lx2+a2)+c
(23) —p
Vx? +4? sinh~! £+c
{ a




dx ln(x+\/x2—a2)+c

24)[———=
«sz _az cosh™! £+c

a

2
1
(25).[\/:12 -x* = Ex\/az —x? +%Sin_1 £+ c
a
2
1
(26)[Vx* +a? =Ex\/x2 +a? +%sinh_1 Yre
a
1 2
(27)[\/1'2 —a? = Ex\/xz —a? —%cosh_1£+c
a

In the following some lows witch we use to integrate the square of
trigonometric functions
2

(1)(:0s2 x+sin“ x=1,

) +tan? x =sec? X,

(3)cot2 x+1=csc? x

(4) sin? x = %(l—cos 2x)
2 1

(5)cos” x = E(l +cos2x)

(6)cos xcos y = %[cos(x + y)+cos(x — y)]

(7)sin xsin y = %[cos(x—y)—cos(x+ y)]

(8)sin xcos y = %[sin(x + y)+sin(x— y)]

Integration of square of trigonometric functions:

(1)_[sin2 xdx =%I(1 —c0s 2x)dx = %[x—%cosz.t)hc

) cos” xdx =%j’(1+c052x)dx =%(x+%c0s 2x)+c

3 sec? xdx =tan x+c,



@] cosec>xdx = —cot x +c¢
(5).[tan2 xdx =j(sec2—1)dx =tanx—x+c

©)[ cot? xdx = I(coseczx—l)dx =—cotx—x+c

(7)f cosax cosbx dx = %j [cos(a + b)x + cos(a — b)x |dx

_ l[sin(a +b)x + sin(a — b)x:| te
2 a+b (a—b)

(8) [sinaxsinbxdx = %f[cos(a —b)x —cos(a + b)x]dx

_ l[sin(a -b)x + sin(a + b)x:| te
2 a—b (a+b)

(9)[ sinax cosbx dx = %j‘[sin(a +b)x + sin(a — b)x]dx

-1 [cos(a +b)x cos(a- b)x]
=— + +c
2 (a+b) (a-b)

Solved Examples:

Exampl(1): jxsdx=%x6 +c
1 3 4
E}immpl(Z):_[%/;a’.:nc:j.xc3 dx=1x3 +c

. n _l(ax+b)n+1
Exampl(3): [(ax+b) dx_a—(n+1) +c

1 1
Exampl(4): I(ax+b)dx-;ln|(ax+b)|+c

1 . 1 (ax+b)™"1
E 1 : dx = by "dx=——""—""—+c¢ 1
xampl (5) I(ax+b)” [(ax+b) s D) +c, n#



2
ri \/ b+c
13 1 3 3 5

Exampl(7): I(l—x)\/;dx=.[(x5—xi)dx=fx5dx—l[xz dx=§x5—§x5+c

dx (iin)[Vx® +2 x*dx

Exampl (6): I

Exampl(8):Find (i)[(x* +2)°x%ax, (i)

e

let u=x>+2 ~du=3x2du

substitute in the integral we have

(f)f(x3+2)5x2dx=§fu5du=lu6+c——(x +2)%+¢

18 18
1.d 1, 4> 4 3
H T M 3 o
(u)_[ —j =—fud du=—ud=—(x"+2)% +c¢
/x +2 J— 3 9 9

(iii)jm (xzdx)=%j\/; du=§u%+c=§(x3+2)§+c
Exampl (9):
jx3\/ﬁdx=j(x3+x—x)mﬂix
=I(x3+x)m dx—j’x\/le-ldx
= [x(e? + W +1 dx = [xv/x? +1 dx
3

3 5
=Ix(x2 +1)2dx — [ xv/x? +1 .abc=i(x2 +1)2 -%(.\3 +1)2+c
1, 2dx

—ln‘Zx 3+¢
—3 272x-3 2
2 2
Exampl(11): j' X dx _—1j'_6x dx —ln(l 2xY)+¢
1-2x° 6
E 1(12): x+5 (x+1)+4 (x+1)dx 4 dx
xampl( )I(x+1) I (x +1) I(x+1) +I(x+l)

_J‘( ]=x+4ln\x+l|+c
(x+1)
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Example(13): Itan%xdx=2ln +c

1
sec—x
2

Example(14): jx(secxz)dx = %[sec x2(dx?) = %ln secx” +tan x|+ ¢

Example(15): Isinz x cosxdx = jsinz xd(sinx) = %sin3 x+c
Example(16):
I(1+x2)3 dx_I(1+x2)3 dx—j(l+3x2 +3xt+ x4
Jx Jx Jx
1 3x* 3t X6

BN PRI RN i

3 7 1
+ [3x2dx + [3x2dx+ [x 2dx

dx

Bl 9 13

I
2

6 6
=2Vx +ox2+oxl+—x2 +e
S 9 13

Example(17):[(e* +1)°e* dx = [(e* +1)°d(e* +1) = %(e" +1)0 +e

Example(18): Ia3xdx=lja3x (3dx) = > +e
3 Ina
e?* 1. .d@e** -1) 1
E le(19 dx:— 2 " v =—In(e?* -1
xample(19): | 1) 2 e 1) 5 n(e )+¢
X 1 ,d(e* - -n_1
Example(20): e—— —_—=— 2x -1 Sd ezx 1
ple( ”(9“_1)5 AT S J @ -17d( )
2x —4
_1Ee -y .
2 4

Example(21): [sin4xdx = _Tlcos 4x +c, (19) [ cos3xdx = %sin 3x+c

Example(22): [cos? x sinxdx=—[cos? x(—sin xdx)



Example(23): j'tan3 x sec? xdx = jtan3 x d(tan x) = %tan4 x+c
Example(24): [cot’ x cosec’xdx = —[cot® x (—cosec’ x)dx
= —.[cot5 x d(cotx)= —%cot6 x+c
Example(25): [cos® x sin®xdx = [cos* x sin®x(cos xdx)
=[1- sin? x)? sinZx (cos xdx)

=[ (1- 2sin? x +sin? x)sinZx(cos xdx)

=| (sin®x —2sin? x +sin® x)(cos xdx)
let y=sinx = dy=cosxdx

2 4, 6 1 3 25 17
sI=[ =2y My =Sy = Aoy e

1 2
= —sin> x——sin°> x+—sin7 X+c
3 5 7

Example(26): [cos® x sin®xdx = [cos® x sin®x(sin xdx)
= jcos4 x (1—cos?)(sin x dx)
=| (cos* x —cos® x)(sin xdx)
let y=cosx = dy=—sinxdx

4 6 1 5 174
nI=[ (' -y )dy=§y —o Y te

1 1
=§cos5 x——cos’ x+c

Try to solve [sin’ xcos® xdx

I sin? xcos? xdx



Example(27): jsec4 x tan xdx = _[sec3 x (sec x tan x)dx

1
= j'secs x d(secx)= Zsec4+ c

. . 1
Example(28): | sn;x dx=| Snx dx = [tan x secxdx =secx+c
cos” x COS X COS X
COS X CcoS 1
Example(29): [——dx=[— T dx = [cot x cosecxdx =—cotx+c
sin” x sin x sinx
dx 1—cos x)dx 1-cos x)dx
Example(30): | = I( 2) ! 5 )
1+cosx 1—cos” x sin” x
_.[ dx Icos xdx
sin? x sin® x
= jcoseczxdx — _[cot xcosec x dx
=—cot x+cosecx+c¢
2
sec x+tan sec” x+secxtan
Example(31): Isecxdx:jsec.\:#dx = a
sec x+tan x sec x+tan x

= ln|secx+tanx‘+c

Example(32): [cosec x dx = [cosec x cosec X —CotX e

cosec x—cotx

cosec’ x — cosec x cot x
=I dx=In|cosec x —cot x|+ ¢

cosec x —cotx
Example(33): FindThefolowing int egrals
@) 1 =jsinx (2+3cos x) dx,
sin x dx , (i) K=I sin x dx
\/(2+ 3cos x) (24 3cos x)"
let u=2+3cosx = du=-3sinx dx

(i) J =]

M| W

o) I=[sinx (2+3cosx)¢x=%1j\/5du=[%1).(§)u

3
=(%2)(2+3cos x)2 +c



(i) J = j\/(zsz;% _—lj'j‘i -1 2\/_+c——ﬂ/(2+3cosx)+c

(iif) K = [ Smxd "ljd“ —_[u du_—l(_—lu‘3)
(2+3cos x)* 3 \3

=%(2+300§x)-3 +c
Example(34):
f(1+tan x)? dx = [(1+2tan x+tan? x)dx
=_[(1+2tan x + (sec? x—l))dx =j(2tan:uc+sec2 x)dx
= 2]n‘secx|+tanx+c
Example(35): Find [(1+cotx)” dx
[+ cot x)? dx = [@+2cot x +cot? x)dx

=I(1 +2cot x+ (coseczx—l))dx

=_[(2 cot x + coseczx) dx =2In |sin x| —cosecx+c
Example(36):
I(tan 3x+sec 3;«:)2 dx =_[(tan2 3x+2tan3x sec3x+sec> 3x)dx

= j((secz 3x—1)+2tan3x sec3x+sec’ Sx) dx

=_|'(Zsec:2 3x+2tan3x sec3x—1)dx

= Etan3x+Esec&x— X+c
3 3
Example(37): IeSinx cos xdx =| S d(sin x) = 8" + ¢
Example(38): [a"™"* sec” xdx =[a™* d(tan x) = IL a®™ "t
na
Example(39): [ sin xdx =—[e“®* d(cos x) =—e“®* +¢
Example(40):[ (Insinx)cotxdx let y=Insinx = dy = cot xdx

K | =Iydy=%yz+c=%[lnsinx]2 +c

10



Example(41): [(1+secx)’ dx = J'(1+3§ecx+35f:c2 x +sec> x) dx

=j'(1+3sec.1\:+35ec2 x+V1+tan? x sec? x) dx
=j(dx+3 secx dx+3sec? x dx++1+tan® x d(tanx)) dx

1
= x+3]n‘secx+tanx‘+tanx+5tanx\ll+tan2x

1 [
+Eln(tanx+ 1+ tan? xX)+c

dx dx sin 2xdx

Example(42): '[ cosec2x —cot2x o = I 1 cos 2x '[ 1-cos2x

sin2x sin2x
let u=1—-cos2x = du=2sin2xdx

sin2xdx 1.,du 1 1
.'.Ii=—I—=—ln|u‘=—ln‘1—c052x +c
1—-cos2x 27 u 2
Example(43): find [(1+tan x)dx

2
[(1+tan x)dx = [A+3tanx+ 3tan? x + tan> x)dx

=_[(1+3tan;u:+3(sec2 x—1)+tan x tan> x) dx
=j(l+3tan.1|c+3sec2 x — 3+ tan x(sec’ x—l)) dx
=j(l+3tanx+3sec2 x —3+tan xsec’ x—tanx) dx

=j(—2+2tanx+3sec2 x +tan x sec? x) dx
=—j2dx+]2tanxdx+]3sec2xdx+_[tanxsec?' xdx

1
=—2x+2ln‘secx‘+3tanx+Etan2 X+c

Example(44): | B ge=sin!E 4o
9—x
dx 1 -1




Example(46):

[(1+cos x)dx = I(l+3c0sx+3cos2 X + cos> x)dx

=I[l+3c0sx+%(l+cost)+cosxcoszx)dx
3 3 . 2

= 1+3005x+5+50052x+cosx(1—sm x) | dx

=I(§+4cosx+%c052x—sin2xcosx)dx

5 3 1
=—.1|f+élsin.1|c+—sin2}|c——sin3 X+c
2 4 3

Example(47):

I(1+sinx)3dx =.[(1+35inx+35in2 x +sin3x)dx

= j[1+3sinx+%(1—cos 2x)+sin xsin? x] dx
. 3 3 . 2
= 1+35mx+5—50052x+smx(1—cos x) | dx

=I(%+4sinx+%cosz.x—sinxc0s2 x} dx

=§x—4cosx+§sin2x+lc053x+c
2 4 3
dx
Example(48): find [—
4x~+9
dx 1 dx 12 -12x -12
I4 > 9=Z 72 2=1.§tan ?+c=—tan —<c
+ 3
X X +(E)
Another solution:
dx 1 dx 1 dx 13 _42x 1 -12
4x° +9 9 X +1 (%x) +1
Another solution:
dx 1 2dx 11 -12x
I 5 =—Iﬁ=—.—tan —+c
4x“+9 27 (2x)"+3° 23

12



-12x

Example(49): | —sec ——+c
xV4x —9 2x1}(2x)
According to | f(x) = —sec_1 f(x) + ¢ where f(x)is linear

f(x)\/ ) -(a)® a
1 3x2dx 1 d(x) N

sin xdx _ d(cos X)

Example(51): | —[ =—tan" (cos x)+c
cos +1 cos +1

Example(50): j

cos xsinxdx 1 2cosxsmxdx -1 d(cos X)

Example(52): |

st+1 2 (cos x) +1 2 (cos x) +1
=tan™! ((:052 XxX)+c¢

Another solution: let u= c:os2 X = du=2cosxsin xdx

cosxsinxdx 1, du -1 -1
_[ = ?tan u+c—7tan (cos X)+c

cos?+1 T2 ut+1

Example(53): jL=lIL= 1
\/:zs—nsx2 47 s 2—(4;.;)2
il
Ja-(x+2)* 22 —(x+2)

3x7 —4x* +3 4
Example(55): | 3x xzjl-l- xdx=j((3x—4)+ x2+1)dx

-1 (x+2)

Example(54): |

x2 -1
=T—4x+4tan xX+c
dx dx _J. dx
+ax+13 (P +4x+4)+9 " (x+2)% +32
l’tan_1 (x;Z) +c

Example(56): | 2

13



Example(57):

dx ~ dx _ dx
V20+8x—x2 20— (x2-8x) 36— (x?—8x+16—16)
= dx =si _IL_A‘)_'_C
62 —(x—4)*
Example(58):
(x+3) _ -l (2x-4)-2
] dx=— ~dx
\/5 4x—x? \/S—4x—x \/5 4x—x
1, (=2x-2) -1 -2
=—] dx +— dx
2 '\/5—4x—x2 2 \/5—4.J|c—x2
-1, (=2x-2) 1
=— dx+I dx=
27 [5_4x—x2 J9-(x+2)?

=_71.2 5—4x—x? +sin'1 (x+2)+

Another solution i(s —4x— xz) =-2x—4
d 2
put x+3=A(E(S—4x—x )+ B=A(-2x-4)+ B

-1 -1
SnA=—,B=1, x+3=7(—2x—4)+1,

2
(x+3) j (—2x 4)+1
\JS 4x — x* V5—4x— x?
y 2(—Zx 4)dx dx _ -1, (2x—2)dx

5- 4x x? I\/S 4x — x2 2 \/5—4.%'—1«2

+f _—.2\!5—4x—x2+sin_1(x+2)+c
Jo—(x+2)? 2 3

Example(59): | 243 i

9x* —12x+8

put 2x+3=A(18x-12)+ B = A=%,B=3+12A=3—99
14



y 2x43 _1,(18x—12)+39
T ox2_12x+8 97 9x2_12x+8

dx

1.[ (18x—-12) I I
97 92 —12x+8 9 9x2 —12x+8
1.[ (18x—-12) _I 39 I
9x2 —12x+8 (9x —12x+4)+4
1 18x-12 39
_1;_08x-12) I o
9" 9x —12x+8 97 3x- 2) +4
—ln‘9x —12x +8‘+§ 1 % -1 —(3x2—2)+

Example(60): [ ——— \/7 put x+2=A4-2x)+B

-1

A= 7Jr:': 4, x+2——[(4 2x)+8]
- X*2 x+2 -1 [(4 2x)+8] j.(4 Zx) 1I 8 .
\J' \J' X - x \f \J xz
(4 2x)dx 1 8dx
\/4x 2 2 ,]4 (d—dx+x?)
_ 1 (4-2x)dx 1j 8dx __m__m a(x-2)
) \/4x—x2 2 \/4 —(x-— 2} 2 2
Exercise(1)
Integrate the following functions with respect to X
(1) 3-2x+4x%) 2)(x=3)(x+4) (3)(\/;+%x+%)
X
4 2)4 5)3x-1)° 61
4 (x+2) 5)Bx-1) ()m
(1) x(2x%+3) (8) x2(3x> —4)’ 9>+

x2+2x+4

15




(1++/x)?
Jx

x2+2x+2
x+2

(16)103*

(10)

(13)

(19) sin x(3+ 2cos Juc)S

xIn(x2+1)

2~
(x“+1)

(25)(cos x —sin Juc)2
(28)tan5 xsec? x

sin x
\J(1+cos x)

sec2 3x
(1+tan3x)>

31

(34)

(1 +cot x)°
1-sin2x

SECZ X

\l4—tan2x

tan x

\/cos2 x—4

1
\/x2+2x—8

X

V27 + 6x — x2

37)

(40)

(43)

(46)

(49)

2
X

3x2+1

(11)

(14)2”“;2
xX“+2x+2
(17)a*™™* cos x

sec2 X

J3-Stanx

(1+Inx)>
X

(20)

(23)

(26) sin® x cos x
(29) cot? cosec 2x

1+cos2x

32)—mM—
( )2x+sin2x

-
1—sin2x

(35)

(38)

1—cos2x

er

41—
(41) o

cotx

\sin? x —4
2x-3
xr+6x+13

2x -1

J12 +4x — x2

(44)

(47)

(30)

16

(1+tan)°

(lz)x__l
x+1

15)x>yJ(x* +2)

(18) 591 ec? x
e -2
e2* +3
(e* +e)2

Je*

(27) cos? xsin x

(21)

(24)

sin 8x
(30)——
9+sin" 4x

cot x((1+ cosec x)

(33)
cosec x

1

36)———
( )1—c052x

1
S5+x

(39)

2

(42) SIN X COS X

1+ cos2 2x

1

@5)—5———
xX“+2x-8

x-1
3xt—4x+3

(48)



Integration of Hyperbolic Functions

For x any real number we define Hyperbolic functions as follows:

(1) sinhx= 1(ex - ) (4)cosech x = L 2
2 inh X -X
sinn x (e —e )
(2) coshx = 1 (e*+e™) (5)sech x = L 2
2 coshx (e¥+e™)
. X -—X X -X
(3) tanh x = simhx _(e” —¢ ) , (6)coth x = 1 _(e+e7)

coshx (eX+e™) tanhx (% —¢™)

and hyperbolic functions satisfy the following lows:

(1) cosh? x—sinh? x =1
2) 1- tanh? x =sech®x

3) coth? x —1=cosech’x

(4) sinh(x+ y)=sinh xcosh y +cosh xsinh y
(5) sinh(x— y)=sinh xcosh y —cosh xsinh y
(6) cosh(x+ y)=cosh xcosh y+sinhxsinh y
(7) cosh(x— y)=cosh xcosh y—sinh xsinh y
(8) sinh2x =2sinh xcoshx

(9) cosh2x= cosh? x+sinh? x

(10) sinh?® x =%[cosh2x —1]

(11) cosh? x = %[cosh 2x +1]

(12) cosh x +sinh x = e*

(13) coshx—sinhx=¢*

2tanh x
1+ tanh2 X

we can proof this lows by using the definition

in the following we stat integration formula for hyperbolic functions
17

(14)tanh2x =




(1)fsinh xdx=coshx + ¢

(2)[ cosh xdx = sinh x + ¢

(3)tanh xdx =Incosh x +¢

(4)[ coth xdx = In|sinh x| + ¢

3 sech’xdx = tanh x + ¢

(6)[ cosech?xdx =— coth x+ ¢

(7)[ sech x tanh x dx =—sech x+ ¢

(8)] cosech x coth x dx =—cosech x+ ¢

9)—— —smh_1 b_x +c
\/bzxz + a?
bx
(IU)IW —cosh 17+c
'itanh_lb—+c
dx ab a
(11)]—2 5=
—b*x 1 a + bx
In +c
| 2ab a—bx
(1 _
—coth 1b—+c
dx ab a
(12)] 2.2 2 ]
b°x° —a 1 bx—a
In +c
(2ab bx+a
Solved Examples:
cosh x
1)|sechxdx = dx = dx=
™ ICOth Icoshzx /

cosh x

3 dx = tan_l(sinh X)+c

14sinh” x

(Z)I[sinh2 xdx = Ef(cosh 2x—1)dx = %sinh 2x - %x+ c

(S)Icosh3 2xdx=[(1+ sinh? 2x)cosh 2x dx =[cosh2x dx +jsinh2 2x cosh2x dx

1
=—sinh2x +—
2 2

18
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2x —-2x
(4)[e” cosh2x dx = Iex.%dx

= %_[(esx +e ¥ )dx = %(%e?’x —-e Y)+c

5x —Sx
(5)[ >~ sinh5x dx =Ie3xe+dx

=1j(98x —e ) dx = 1(138" +1e'2x)+ c
2 28 2

Solved Examples

Example(1): [sinh3xdx = %cosh 3x+c

Example(2): [sechx dx=| 1 dx = | COS]12x dx = Lh“‘;dx
cosh x cosh” x 1+sinh” x
= d(th) = tan" (sinh x) + ¢
1+4sinh” x

Example(3): [sinh’x dx = %I[cosh 2x-1])dx = %[%sinh 2x - x] +c

Example(4): [cosh’3x dx = %I[cosh 6x+1] dx = %[%sinh&\: + x] +c

]illfb{{:lmpl(f:(S):jtanh2 S5x dx =j|:1 - sechZSx] dx = l:x - %tanh Sx] +c
Example(6): Isech“x dx =j[l - tanhzx]sechzx dx

1
= jsechzxdx - Itanhzxsechzxdx= tanh x — Etanh"' xX+c

Example(7): [sinh®4xdx = [sinh”® 4x(sinh4.x)dx
= [(cosh? 4x —1)(sinh 4.x)dx

= [(cosh® 4x(sinh4x)dx — [ (sinh4x)dx
= icosh"' 4x — lc:osh 4x+c
12 4

19



X (e3x +ze_3x).‘ix =% ex(eiix +e—3x

4x —2x
=%I(e4x+e_2x)dx=l(e_+e ]+c

Example(8):[e* cosh3xdx = e

2

2x (e3x —-e

Example(9): [e’*sinh3xdx=[e

= 1jxexdx—1jxe_xdx
2 2

= xcoshx—-sinhx +¢

Try to solve Ixsinhx dx by parts

dx _
———=sinh 1£+¢:'
\Jx2+16 4

11X

Example(11): |

Example(13): [sinh® 4xdx = [sinh? 4x(sinh 4.x )dx
= [(cosh” 4x —1)(sinh 4x)dx
= j(coshz 4x(sinh4x)dx — [(sinh4x)dx

= icofsh3 4x —icosh 4x +c

20



Exercise(2)
Integrate the following functions:

(1)sinh 3x (2)cosesh>/x
(4) sinh? xcosh? x (5)e”* sinh3x
sech?x

(7) sinh x(3 + 2cosh x)°

8
( )\/S—Stanhx

(10)sinh” xcosh x (11)cosh* x sinh x
(13) coth? cosech Zx (14) %
9+sinh“4x
(16) sinh x a7 1+ co.sh 2x
\/(1+coshx) 2% +sinh2x
(19) sech23x );
(1+ tanh 3x)? | —sinh2x
3 5
(22) 1+ oY) (23) UL+ tanh)”
1-sinh2x 1-cosh2x

21

(3)x sinhx?

(15).(33 cosh3x
(9)(cosh x + sinh .m:)2

(12)t:amh5 x sech?x
sinh x cosh x

1+ cosh?2x
coth x((1+ cosech x)

cosech x

as)

(18)

1
14 cosh2x

S'EEC2 X

\/4 —tanh? x

(21

(24)




Methods of Integration:

(1) Integration by parts
When u and v are differentiable functions then
d(uv)=udv+vdu

udv=d(uv)—vdu

and by integrate [ wdv=[ d(uv)-| vdu 1)

to apply this rule we refer to our problem by the integral

| u dvand we must separate it into two parts one part being » and
the other being dv and we find du and v by differentiation » and
integrate dv .

Note that
It 1s very important how to chose the function to be integrated, and

the function to be differentiated such that the integration on the
right side in (1) is much easier to evaluate than the one on the left.

Solved Examples:

Example (1): Find [xe"dx

Solution:
If we chose u=e¢* to be differentiated and dv = xdx to be

integrated
.‘.Ixexdx = %xzex - j%xzexdx
and its clear that the integration in the R.H.S is more difficult than

the given integration then
we use the partation as follows

let u=x dv=e"dx
then du=dx v=e"
by substituting in the rule then [xe*dx=xe™ —[e"dx
Note that : The integral in the right side [e*dx is simple than the

integral [xe*dxFinally I=xe*-e*+c.

22



Example (2): Find: [x%Inxdx

Solution:
Consider the partition u=Inx  dv=x2dx
3
Then du = ldx y= x
X 3
Substitute in the rule we have:
x° x> 1 x> 1, » xS x>
Y | =—lnx—[——dx=—lnx——fx dx="—Inx-—+c¢
3 3 x 3 3 3 9

Trytosolve I, =[x"Inxdx, nell

Example (3): Find [xv1+xdx
Solution:
Let U=Xx dv =1+ xdx

3

sdu=dx v=§(1+.utc)E

by using partition rule
_[ udv= j d(uv)—_[ vdu
3 3 3 5

2x = 2 =~ 2x =~ 2.2 =
2 _ = 2 = 2 (= 2 .
(1+x) 3j(l+x) dx 3 (1+x) (3)(5)(1+x) +c

3
(try with thenew partation u =+/1+ x dv = xdx what hapen)

=

trytosolve [x (ax+b)"dx, nell

Example (4): Find [ xsinxdx

Solution:
Let u=x dv = sin xdx
sodu=dx y=—CO0S X

by using partition rule
j udv=j d(uv)—j vdu

o | =Ixsinxdx=—xcosx+[ cos xdx =—xcosx +sinx+c¢
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(try with thepartation u =sinx dv = xdx what hapen)

try to solve I, = _[x” sinxdx n is positive integer

Example (5): Find [xcosx dx

Solution:
let u=x dv =cos xdx

~odu=dx y=sinx

oI = xsinx—j sinxdx =xsinx—cosx+c¢

trytosolve I, =_[x" cos xdx n is positive integer

Example (6): Find [x?sinxdx

Solution:
let u= .Jnc2 dv = sin xdx
sodu=2xdx Y =—CO0S X

by substituting in the rule

nI=—x*cosx+ ZI xcos xdx (1)

we can solve _[ xcos xdx by parts as in example(5)

[xcosx dx let u=x dv = cos xdx
s du=dx v =sinx

s I=xsinx—| sinx dx=xsinx—cosx (2)

from(2) in (1)

nI=—x*cosx+ 2] xcosxdx =—x2cosx + 2(xsinx —cosx)+c

= —xz cosx+2xsinx—2cosx+c¢

Example (7): Find [x*cosxdx

Solution:
u= x2 dv = cos xdx
Sodu=2xdx y=sinx
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2 2

oI =x"sinx—2[ xsinx dx = x"sinx—2(—xcos x +sinx)+ ¢

=xzsinx+2xcosx—25inx+c

Example (8): Find [x%*dx

Solution:
u= x2 dv = e dx
s du = 2xdx y=e*

nI=x%e" —j 2xer dx = x2e* + 2(xe* —e¥)+c

tryto solve I, =]'xmexdx where m is apositive integer

Example (9): Find [sin~'xdx

Solution:
u=sin"!x dv =dx
sdu= dx let v=x
2
1-x
1, 2xdx
I=Iudv—uv Ivduxsm X — I\/i—xsm X — IF
—2xdx
= xsin_ x+ I = xsin~ x+ 241 - x +c
V11— x
try tosolve Ixsin- xdx where m is apositive integer
Example (10): Find [tan™" x dx
Solution
u=tan"!x dv =dx
dx
sdu= 3 let v=x
1+x
dx 1, 2xdx
Iudv—jtan xdx =xtan~ x Ix = xtan lx—— * 3
1+ x 21+ x
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1

=xtan x —%ln(1+ x2)+c

Example (11): Find 1=[e" sinbxdx, J =|e"™ cosbxdx

Solution:
These integrals are of importance in the theory of electric currents, 1f
each integral is evaluated by parts, the other one is obtained.

let u=e*™* dv = sin bx dx

~du=ae™dx y= _?lcosbx
I= je"x sin bx dx =_?1.<3‘""C cos bx — j(_?lcos bx](ae“xdx)

_eax

cos bx + %je“x cos bx dx

ax

s = ¢ cosbx +—J (1)
b b

where J = ]'eax cos bx dx
Similarly taking the second integral J

let w=e™ dv = cos bx dx

~du=ae™dx vy = —sinbx

oJ = %eax sin bx — j%sin bx.ae™dx = %e“x sin bx — %jeﬂx sin bx dx

J= Lo sinbe =21 (2)
b b
from (1),(2) we get
ax ax 2
I="% cosbx+2 le"x sinbx— 27 |= cosbx + % e®™ sinbx — L1
b b\ b b b2 X
a* —e™ a
I+—1I= cos bx + —e* sinbx

b? b b*
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2 2 2 ax
Ia+5 ) = 10 = coshe+-% o™ sinbx
b* b2 b b?

b2 —e™ a
~ I = 5 cosbx + —zeax sin bx
b

—b a )

=[ 5 2e"""coslm+ 5 2e‘”csml:v,lna:]+.f:
b"+a b —a

eﬂx

1':02+1312

I =[e™sinbxdx = [—bcosbx+asinbx]+c

ax

and from(2) J=1eaxsinbx—ﬁl=le"xsinbx—— coshx + 2 J
b b b b b

1 4 . ae™ a®
=—e" sinbx + coshx ——J
b? b2

az a2 .t12+}.’;v2 1 ae™
J+b—2.I=J 1+—|=J =Ee“xsinbx+ cos bx

b* b2 b?

ax

—2[bsinbx +acosbx]+c
a

s J=[e™ cosbxdx = >
b+

in the integrals 7 = [e® sinh bxdkx, J = [e™ cosh bxdx we use the
diffination of the hyperbolic functions sinh bx, cosh bx as a functions
of ¢* then

bx —bx
Ih = [e™ sinh bx dx =je‘“[“"2")dx =j(

(a+b)x _ (a=b)x
o ]dx

bx —bx (a+b)x (a=b)x
Jh = [e™ cosh bxdx=j'e“x(e4;}dx=j[e -;e }dx’

o dx
1+ xH)¥?
27

Example (12): Find 7=




Solution

I= j’ 5/2—_[(1+x2)_5/2dx
: dx 2.-3/2
consider J = | —————==|(1+x°)"“dx
I(l+x2)3/2 J
u=(1+x2)_3/2 dv =dx

Sdu=-3x(1+ xz)-sfzdx y=Xx
J=x(1+x3) V2 4 3[x2(1+ x2) 5 dx
= x(1+ )2 £ 3[ 1+ x = 1)1+ x2) 2 dx

= x(U+ ) 431 )V - )2 = x4 6P 430 -3

3 =x(1+xH) Y v20
L+ x2y Y2 2
x(1+x%) +

I= —J 1
3 3 )
To solve J = ILZ;”/Z consider K = I—zm with the partation
1+x7) 1+ x7)
M=(1+x2)-1/2 dv = dx
du=—x(1+x2)_3’/2dx V=X

K=x(1+x)"2+[x2 0+ x) ™ 2ax = x@+ )2+ [a+ xE -+ xH)Y

=x(1+x) ™2 4 A+ )2 14 ) = x(1+ x4 K- J
X

— 2172 _
J=x(1+x7) -(1+x2)1/2+c

Substitute in(1)

x(1+x2)_3/2 +£ h's

I= +c
3 3 (1+x2)1/2
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Example (13): Find [sec’ x dx
Solution:

Isec3 x dx = [secx sec? xdx

2
u=secx dv =sec” xdx

du=secxtanxdx v=tanx
jsec3 x dx =sec xtan x — j'sec.x't:«ln2 xdx =secxtan x — Isecx(secz x—1)dx

3

= sec xtanx — [(sec” x —secx)dx = *secxtan.anf—_[(sec3 xdx + [secxdx

2l['se|:3 xXdx = secxtanx+]secxdx = secxtanx+ln‘secx+ tanx‘ +c

1 1
jsec3 xdx = Esecxtanx+iln|secx+tanx‘ +c

Example (14): Find 7=[vVx*+a®dx

Solution:
A =[Vx*+a’dx et u=vx>+a> dv = dx
du= X b=
xz +a2

2 2 2
m j.(.)nf +a” —a”)dx

I= j\fx +aldx= x\(x +a’ Im—x \/x2+a2

_ \/f (x*+a )dx
e ’ I \/x +a I\Jx +a

=xm—lmﬁix+azginh_1£

a
ijdx =xm+a2sinh'1£
a
2

I\/mdx m+75mh 1—+c

a
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Example (15): Find 7=[vVa®-x?dx

Solution:
let u=+a*-x? dv =dx
du:i y=x
ﬂz —x2

I e \/f_ —xdx_ﬁ_(a—x—a)dx
Ix+a xaxj\/ixax.[ az_xz

=x\/r J-(a -X )dx a’dx

a —x \/a —x

=x\/a2—x I\/ 2 _ x2dx+a?sin -1X

a
L1 X
ZI az—Juc‘zd.anc=.1|c\/az—Jn:‘z+a2 sin”! =

a
2
X a“ ., _1x
I az—xzdx=5\/a2—x2+7sm 1—+.c
a

Exercise(3)

Integrate the following function with respect to x:

(1) (i) xsinx (ii) xsin3x (iii) x2sinx (iV)x3 cos x

(2) (i) xInx (i) x*Inx (i) x°Inx (iv)x" Inx

(3) @) xe** (i) x> (iii) xe ** (iv)e™ sin x

4) () xcos™! (ii) xsin~! (iii) xtan™! (iv);ncccot_1

(5) () xsin? x (ii) xsin xcos x (iii) xsec? x (iv)xsinh x

6) () x*sin'x (i) Vx? +4 (iii) l“—; (iv)sin xsin3x
X

(7) (i) xcos™! (ii) xsin™! (iii) xtan™! (iv)sin® x

(8) (i) sin? xcos® x (i) cos> x (iii) sec’ x (iv)cosec“"x
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Reduction Formula

A Reduction Formula succeeds if ultimately it produces an integral
which can be evaluated. We use the partition of integration to prove
the following reduction formulas:

(1) If I, =[sin™ xdx then show that I = _gisin""’_1 x cosx+$lm_2
proof:
I, =[sin™ xdx= _[sin"""1 x (sin xdx) = sin”~! x d(=cos x)
let u=sin"!x dv = d(—cos x)
du = (m —1)sin"2 x(cos x)dx, y=—C0SX

I, =—sin"! xcos x+(m— 1) sin” "2 x(cos® x)dx

1

=—sin""" xcos x+(m—1)| sin” =2 x(1-sin? x)dx

=—sin""! xcos x+(m — D sin™ 2 xdx—(m —1)[ sin™ xdx

I =—sin™]

m xcosx+(m—1)1,,_»,—(m—-1)I,

S(1+m=-1)1, = —sin”"! xcos x +(m -nI,,_,

I, = _;1sin"’”_1 X COS X + (m};l) )
similarly we can prove that
1 _ -1
(2) If 1, =[cos™ xdx then show that I =;cos"’ Ty sinx+m71m_2

3)If 1, =[x" e dx then show that 1 = L ym gax st
a a
1 ,, x m

=—x a —-——1I -
Ina Ina m-1

(3If 1, =[[logx]" dx then show that 1 =x[logx]" —mI,

(DIf 1, =[x"a*dx then show that I
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(6)If 1, =[x "sinaxdx

m
then show that I, = X cosa.uc+£2.!r"”_l sin ax — m(m=1)
a a a
m-1
(7)If 1, =[tan™ dx then show that I =ta";—_1x-lm_2

(8)1f 1, =[sec™ dx then show that I =

m-—1 m-—1
(9) If I, =[cosec™ x dx then show that
—cosec” x cotx m=—2
lm == + lm_z
m—1 m—1
(10) If I, =[x"cosbx dx ,J,=[x"sinbx dx
show that I, =x"sinbx—-nJ,. J,=x"cosbx-nlI,

Exercise(4)

(1) if 1,=[x"coshxdx and J,=[x"sinhxdx prove that
I,=x"sinhx—nJ,;, J,=x"coshx-nl,; find 1, J,
(2) Find the reduction formula connecting 1, ,and I,,_, ,.»

given that I, ,=[sin" x sin" xdx
(3)If I, =[cos" xdx ,J, =[sin" x dx
n n
Show that a1, =sinxcos" ! x+(n-1)I,_,.

nJ, =—cosxsin" ! x+(n—1)J,_,.

- 1
(4) provethat  [sin” 1y sin(n+1)x dx=—sin" xsinnx
n

(5)Find thereducion formula for [ x" [1 +x? ]Etlx,

m,n are positive integer.
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Definite integration

Area under the curve:

Given a continuous function f(x) on the interval [a,b] such that
f(x)>0 we can approximate the area enclosed by the curve of f(x) ,
x— axis and the two lines x=a,x=5b by dividing the interval [a,b]
into subintervals by the set of points p={x,,x,x,,..,x,} such that
a = x, <x, <x, <..<x, =b then the area given by:

»
Lt

S, =(x1=x0) f(x7)+ (x5 =x7) f(x3) + ee. + (x,, = X, f(x,,)
= 2 (x5 — x5 f(xp)
k=1

if we divide the interval into » equal subintervals with length
Ax; =(x; = x5_1),k=1,2,...,n

Then

S, =Ax f(x))+Ax, f(xp) + ...+ Ax, f(x,)

= X Ax; f(xy)
k=1

Upper and lower sum:
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To discuss the concept of integral of the function f(x), we must first

introduce some notation.
If 7=]a,b] is closed , bounded interval , then a partition of 7 is finite

order d set P :={xj,x;,....x,} of point of I such that

a=x,<x <X, <...<x, =b

The points of the partition P can be used to divide 7 into non-
overlapping subintervals [x,, x;1,[x;, X, ]5.es[X,_15 X,,] -

Let f(x) continuous function f(x) defined on the interval [a,b] and
let P a partition of 7 we let

m; =inf{ f(x):x€ [x;_;, x|}

M, =sup{f(x):xe[x,_;, x|}

The lower sum of f(x) corresponding to the partition P is defined to

be
L(P; f)= 3, my(x; — xp_q)
k=1
The upper sum of f(x) corresponding to the partition P is defined to
be

UP;f)= X My (x; —x;_1)
k=1

if f(x) 1s positive function then the lower sum L(P;f) can be
interpreted as the area of union of rectangles with base [x,_,, x,] and
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height m, ,Similarly the Upper sum U(P;f) can be interpreted as
the area of union of rectangles with base [x,_,, x;] and height M,

Riemann’s sum:
Let f(x) 1s real valued function defined on the interval [a,b], and let

P ={Xg,X|,X2,...,X,} 18 @ partition on [a, b]. into » subintervals
[x9s x;1,[x]5 X5 ]5ee0[x,_;» X, ], ChOOSE @ points &, &,, &,....&, such that
§k € [Xk_], X l, k= 1,2,3,...,”

We define Riemann’s sum in the form
S,(Ps )= f(&)Axy, Axp=x;— x5
k=l
=(x;—Xp) f(&)+(x3—x)) (&) + ..+ (x, —x,) f(&,)
Since m, < f(x,)< M, then

i myp(x, —x;_ )< kil f(fk )(xp =X ) S kil M (x; —x;_)

k=l
L(P; [)< S, (P; f)SU(P; f)

Upper and lower Integrals:
The lower integral of f(x) on I is the number

H—)co o L |

The Upper integral of f(x) on I is the number

I;= lim L(P; f)= lim [i my (X _xk—l)]

n
I,= lim U(P; f)= lim [Z M (x; —xk_l)]
n—>o00 n—dco| r_1

Riemann’s Integral: (Riemann’s Criterion for integral)
Let f(x) is a continuous function on the interval [a,b], and let p be a

partition on [a, b]. f(x) to be integrable on [a,b] if the limit
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Ip = lim S,(P; f)= lim f‘, f (&) Ax;, exist and independent on

n—yoo n—oo [ ]
choosing the points &, &, &,....&,.
And we write
b n
[f(x)dx=Ip=1lim ¥ f(£)Ax,

n—yeo j=]

Corollary:
If f(x) is continuous function on [a,b] the

lim S, (P; f)= lim S Ax, . ) i -
300 W (P 1) n_,e.,El f(5)Ax, is exist and independent on choosing

the points &, &, &,....¢,,and f(x) is integrable on [a,b].
Example(1):
Show that the function f(x)=4x-1 is integrable on the interval [0, 1]

and find the value of the integral.
Solution:
Since the function is continuous function on the interval [0, 1] thus it

integrable on the interval [0, 1]

Consider
P={x0=0, X5 X350y Xp_15 X;5-ees X, =1} be a partition to the interval v
into » subinterval with length b=a _1 ind

n n

Ll

x| je— 2
—

?a|---«14_~-3'<
-«

S |le [ &

~ - N
~ -
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xk=0+(b_a)k=£, 1<k<n and (xk—xk_1)=l, k=12,..,n
n n n
1 2 n

xg=0, xy=—, x3=—1u, X, =—=1
n n n

Choose & such that
gr =xk_1+xk =l (k—1)+£]= Zk—l

2 2 n n 2n
(2k -1 4k -2
f(fk)=4§k—l=4 )—1: -1
\ 2n n
k n1(4k-2
.'.Sn(P;f)= 2 (xp —xp—1) f(‘fk)= 2 —[ —1)
r=1 k=11 n
n n n n
=) %(41{—2)—1:(%2.1(—%22—121}
k=1 n n n- k= n- k=1 n =
_ iz.n(n+l)_ 12 2n—1)=(2"L2+1)—3-1
n 2 n n n

solim S, (P; f)= lim (M—E—1J=2—1=1
H—»c0

H—>00 nz n

Example(2):

Show that the function f(x)=4x-1 is integrable on the interval [1, 7]
and find the value of the integral.

Solution:

Since the function is continuous function on the interval [1, 7] thus it 1s
integrable on the interval [1, 7]

Consider p={xg =1, X{, X5,.0es X;_15 Xp5-es X, =7} be a partition to the
interval [1, 7] Then
(b-a)k 6k

=1+—, 1<k<n
n n

X =a+

(xk —xk_l) =E, k= 1,2,...,”
n
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6 6 6
x,=1, xl=1+;, x2=1+;-2,..., x"=1+;-n=7

Choose &, such that
xp_+x, 1], 6(k-1) 6k]_1+6k—3

="kl Tk =114 +1+—
4";- 2 2 n n

( —
FE) =48, —1=4 14 5% 3)_1=3+24k 12

\ n

=8P f)= Z(xk xi-1) f(&)= E‘. 6(34‘&—2)

k=11
n (18 144 72
=Z(_+—2k__zj

k=I\" n n
18 2 144
=— X 1+— Zk—— 51
n k= ﬂ n k=1
—18+ ﬂ E(n 1)——2 n _1s+72(1+1) n
n n n

llm S,(P; f)= lim [18+72[1+1] 72] 18+72=90

H—>co n n

Example(3):

Show that the function f(x)=4x?+3 is integrable on the interval

10
[2,10] and find the value of j(4x2 +3) dx .

Solution:
Since the function is continuous function on the interval [2,10] thus it
is integrable on the interval [2,10]
Let
P={X) =2, X5 Xgyeey Xp_15 Xps.es X, =20} be a partition on the interval
[2,10] into » subintervals with length 1s

b—a 10-2 8

n n n
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x0—2 x1—2+8, .X.'2—2'|'E "
n n
X1 =2+ S(k 1), k—2+ﬁ - X, —2+8:%l 10
Xo X X X3 Xy x5 Xg X7 Xg Xy Xy
I T T T S N T T N A
2 10
let
§r=M=2 %_%

p
f(&)=4 2+ﬁ—1] +3
\ n n

=4|4+ +—t——--
n2 n nz n nz

64k> 32k 16 16 64k]
+3

_19.'_@](2 6_: Ek_ﬁ_z_szﬁk
n n n n n

n n 8
S, (p:f)= Z (x; —x5_1) f(§k)=k21 ; f(‘fk)

n 152 2048 512 1024 512 2048
Z[ 3 i+ 3t k-~ 2 3 k]
k=1L 1 n n n n n

152 2048 1 1 512
= n+ 14— || 24— [+
n 6 n n) n?

1024 1 512 2048 1
+—14+— |- 1+—
2 n n 2n n
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where

1) ir:%n(n+l), (2)§r2=%n(n+l)(2n+l)
1 1

2
H 3 1
3)>r' = —n(n+1)
1 2
since
P ={Xgs X15 X000y X }
8
AX’k=—, Axk —0 as n—>oo
n

lim S, (p;f)=lim S, (p;f)=152+%(2)+512=%
Ax,—0 n—oo 3 3

k
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INTRODUCTION

he subject of Dynamics is generally divided into two branches:

Tthe first one, is called Kinematics, is concerned with the
geometry of motion apart from all considerations of force, mass or energy; the
second, is called Kinetics, is concerned with the effects of forces on the motion

of bodies.
In order to describe the motion of a particle (or point) two things are needed,

(i) a frame of reference,

(ii) a time-keeper.

It is not possible to describe absolute motion, but only motion relative to
surrounding objects; and a suitable frame of reference depends on the kind of
motion that it is desired to describe. Thus if the motion is rectilinear the
distance from a fixed point on the line is a sufficient description of the position
of the moving point; and in more general cases systems of two or of three
rectangular axes may be chosen as a frame of reference. For example, in the
case of a body projected from the surface of the Earth a set of axes with the
origin at the point of projection would be suitable for the description of motion
relative to the Earth. But, for the description of the motion of the planets, it
would be more convenient to take a frame of axes with an origin at the Sun's

center (Polar co-ordinates).

B Definitions

1. Mass: The mass of a body is the quantity of matter in the body. The unit of
mass used in England is a pound and is defined to be the mass of a certain

piece of platinum kept in the Exchequer Office.



Kinematics of a Particle 2

2. A Particle (point): is a portion of matter which is indefinitely small in size,
or which, for the purpose of our investigations, is so small that the distances
between its different parts may be neglected.

3. A Body: may be regarded as an indefinitely large number of indefinitely

small portions, or as a conglomeration of particles.

4. A Rigid Body is a body whose parts always preserve an invariable position

with respect to one another,

5. Space is the boundless, three-dimensional extent in which objects and events
occur and have relative position and direction. Two-dimensional space is

described with two coordinates (z,y) , while three-dimensional space (physical

reality) is described in three coordinates (z,y, z) .

6. Time is a part of the measuring system used to sequence events, to compare
the durations of events and the intervals between them, and to quantify rates of
change such as the motions of object (not related to analysis of statics

problems).

7. Force is any influence that causes an object to undergo a change in speed, a
change in direction, or in a change in shape. Force can also be described by
intuitive concepts such as a push or pull that can cause an object with mass to
change its velocity, i.e. accelerate. A force has both magnitude and direction,

which is a vector quantity.



KINEMATICS IN ONE DIMENSION

RECTILINEAR MOTION

Ithough motion in a straight line or rectilinear motion constitute

Athe simplest of dynamical problems, yet it is very important
because many physical problems reduce to this category, e.g., simple harmonic
motion, motion under inverse square law, motion in a resisting medium and
motion of a rocket. Therefore, in this chapter, we first proceed to determine the
solution of the one dimensional equation of motion with subject to initial
conditions. When a point (or particle) moves along a straight line, its motion is
said to be a rectilinear motion. Here in this chapter we shall discuss the motion
of a point (or particle) along a straight line which may be either horizontal or
vertical. When a point (or particle) moves along a straight line, its motion is
said to be a rectilinear motion. Here in this chapter we shall discuss the motion
of a point (or particle) along a straight line which may be either horizontal or

vertical.

B Velocity and Acceleration

Suppose a particle moves along a straight line OX where O represents a fixed
point on the line. Let P be the position of the particle at time ¢, where OP = x
and P' be the position of the particle at time ¢+ dt, with OP' = z + dz.
Therefore /8t represents the average rate of displacement or the average
velocity during the interval 6t . If this ratio be independent of the interval ¢,
i.e. if it has the same value for all intervals of time, then the velocity is constant
or uniform, and equal distances will be traversed in equal times. Whether the

ratio 6z / 6t be constant or not, its limiting value as &t tends to zero is

defined to be the measure of the velocity (also known as instantaneous
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velocity) of the moving point at time ¢. But this limiting value is the
differential coefficient of = with regard to ¢, so that if we denote the velocity

by v, we have

. Oz dx
v=lim —=—=
5t—0 Ot dt
- L — > o
~-—-——-——-——-——-—=-—-—=--= > X
] i+ e

Again, Acceleration is similarly defined as the rate of change of velocity. Thus,

if v, v+ dv denote the velocities of the moving point at times ¢, ¢ + d¢, then

dvis the change of velocity in time 6t and dv/dt is the average rate of change

of velocity during the interval 6t . If this ratio is independent of the interval 8¢ ,
then the acceleration is constant or uniform, or equal increments of velocity

take place in equal intervals. Whether the ratio dv/8t be constant or not, its

limiting value as &t tends to zero is defined to be the measure of the
acceleration of the moving point at time ¢. But this limiting value is the
differential coefficient of v with regard to ¢, so that if we denote the

acceleration by a , we have

. v _dv
a= lim =— = =—
5t—0 Ot dt

dt\ dt dt?

B Other Expression for Acceleration

Let v = % . We can write (using chain rule in Differentiation)

. _d*x _d|d=x

A = L — =—m— | —
de?  dt\dt
_dv _dv_dx _ dv
— — X — T ) —

T dt  de dt dx

v
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Therefore, d—f, D oand v are three expressions for representing the

dt?  dt dz
acceleration and any one of them can be used to suit the convenience in

working out the problems.

B Remember

The law of acceleration in a particular problem may be given by expressing the
acceleration as a function of the time ¢, or the distance z, or the velocity v.
The problem of further investigating the motion can then be solved as follows:

> If acceleration is given as a function of the time ¢ say ¢(¢) so

And then vov= fgo(t)dt +¢ === fcp(t)dt +c
=dz=[e@t)dt+c, dt

STo= f fcp(t)dt +¢ dt+ec,
> If acceleration is given as a function of the distance = say f(x) so

dv

a = f(x) = 'vd— = f(=z) = vdv = f(z)dx
x
= v’ = ZIf(m)dw +c
Further, vt = 2ff(m)dsc + ¢4
i%:q: ¢2ff(m)dw+c3
e dx — dt

4’2f_f(:c)d:c+c3
_ dx
T _q:f,’2ff(w)da:+c3
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» Again, Acceleration is given as a function of velocity v say ¢(v)

dv
a = v = — v
p(v) " ¢(v)
= v _ g by integrating
p(v
=>t= dv + ¢4
¢(v)

or we may connect velocity with distance by writing

dv vdv vdv
v—=p(v) = —=dx L= | —+4c
da o (v) J pv)  °

where, ¢, — ¢, are constants of integration.
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Il Example »

A car moves along a straight line such that its displacement = from a fixed
point on the line (origin) at time ¢ is given by z =t —9¢* + 24t + 6.
Determine the instant when the acceleration becomes zero, the position of the

car at this instant and the velocity of the particle then.

Il Solution »
Since, = = t3 — 9¢* + 24t + 6 . Differentiating with respect to time (w.r.t),

dx

the velocity v=—= 3t2 — 18t + 24,
and the acceleration is a= % = 6t — 18 é E —_— i

Now the acceleration vanishes i.e. a = 0 when 66 —18=0 =1¢t=3
Whent = 3, the position is given by z = 3% — 9(3%) + 24(3) + 6 = 24 units.
Again when ¢ = 3 the velocity is given by v = 3(3%) — 18(3) + 24 = —3, this

means that at ¢ =3 the velocity of the particle equals 3 units and in the
opposite direction of z .

Il Example »

If at time ¢ the displacement =z of a particle moving away from the origin is

given by z = Acost + Bsint, where A, B are constants. Find the velocity and

acceleration of the particle at in terms of time.

Il Solution »
Given that & = Acost + Bsint

Differentiating with respect to time (w.r.t), we obtain the velocity of the

particle
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v = dz = Bcost — Asint

Differentiating again, one get the acceleration at any time,

a = v = —Acost — Bsint

dt
= —(Acost + Bsint)

T
= —I

Note that the acceleration proportional to the displacement.

Il Example »
A man moves along a straight line where its distance = from a fixed point on

the line is given by = = Acos(ut + €) . Prove that its acceleration varies as the

distance measured from the origin and is directed towards the origin.

Il Solution » "

Since we have x = Acos(ut + )

Differentiating w.r.t x = Acos(ut + €), we get
dr . T X
— = —pAsin(ut + €)
dt
2
Differentiation again iz _ —p? Acos(pt + ¢) = —p’z

T

That is the acceleration varies as the distance = from the origin. The negative
sign “-“ indicates that it is in the negative sense of the z -axis, i.e., towards the

origin.
Il Example »

A truck moves along a straight line such that its distance = from a fixed point

on it and the velocity v are related by v* = u(b®> —x?). Prove that the

acceleration varies as the distance from the origin and is directed towards the

origin.



Il Solution »
Since we have v? = p(b? — z?) ﬂw
X~ —— =

Differentiating w.r.t =, we obtain

dv dv
20— = u(—2x V=— = a = —UT
= H(—2z) T H

Hence the acceleration varies as the distance = from the origin. The negative
sign “-*“ indicates that it is in the direction of =z decreasing, i.e., towards the

origin.
Il Example »

A particle moves along a straight line such that its distance = from a fixed
point on it and the time at any time ¢ are related by =z = 2(1 — e™*). Find the

velocity in terms of distance and the acceleration in terms of velocity.

Il Solution »
In order to obtain the velocity with differentiating the function of position =

with respect to time, we get

r=21—e! =wv= 9 _9et  Note dief(m) = f(x)ef®
x

_E_
cr—2=-2""¢ =v=2—=x

This equation illustrates the relation between velocity and distance.

Now to get the relation between acceleration and velocity

e = v@ =wv(—1)=—v  Note o _ -1 a=-—v
dz dx
Il Example »

A car moves along a straight line such that its acceleration at any time ¢ is

given by 6t + 2. Initially the mass at rest placed at the origin point. Determine
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the velocity and distance as a function of time. Determine the position of the
car after 5 sec.

Il Solution »
Since we have a = 6t + 2, a=% :@:Gt-i-z
dt dt
Thus, by separation of variables we get
dv= 6t+2 dt = [dv= [ 6t+2dt

Lv=3t+2t+¢

From initial conditions at ¢t =0, v =1then ¢, =0 X
Again, . v = 3t> 4+ 2t this equation gives the relation between velocity and

time. Since v = dz that is
dt

% =3t + 2t =dx = 3t +2t dt (Separation variables)

[do= [ 362 +2t at o  z=8++¢
From initial conditions at ¢ =0, = = 0then ¢, =0, i.e.

z =1t +1t
this equation gives the relation between distance and time.

The position at ¢ =5 is |, __ =5 +5° =150

Il Example »

A point moves along a straight line according t0 v = w + bz, where u,b are

constants. Find the velocity and acceleration in terms of time and the

acceleration in terms of distance and also as a function of velocity.

Il Solution »
Velocity and acceleration can be obtained by differentiation the function of

position and then velocity with respect to time, therefore
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v=1u+ bz éa:@—b@—

= = bv = b(u + bx) = a = b(u + bx)
dt dt

This equation gives the acceleration as a function of velocity a = bv and as a
function of distance a = b(u + bx)
Again to get the velocity and acceleration as functions of time

dx
u + bx

v =u+ bz #%:b(u+bw) = = bdt

Multiply the previous relation by & and then integrate

1l bdx =fb2dt = In(u + bz) = bt + C
u + bx

Where C is integration constant , the last relation can be rewritten as

“In(u+bz)=b*t+C =Ilv=0bt+C Or

= v=Ae", A=¢C
This is the relation between velocity and time, also the acceleration given by
a = bv = bAe

Il Example »
A plane flies along a straight line with retardation a = —2+*. Find the position
at any instance if the point starts from origin with initial velocity equals unity.

Il Solution »

The motion under retardation where a = —2v? but we knowa = % , SO

2 $@:—2’U2
dt A
—. "/

By separation of variables and integrate, we obtain ”

ca=—2v

—fd—::f2dt+cl :%:2t+cl
v
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The integration constant ¢, can be evaluated as » =1 when ¢ =0, hence
1=2(0)+¢, ..¢ =1 then the velocity can be obtained by

l=2t+1 but v:@ .'.ﬂ=2t+1 Or dt =
v dt dz 2t +1

Again by integrating we get

2dt =2dr =I(2t+1) =2x+c,
2t+1

From initial condition =0 when ¢=0 then ¢, =0 and the relation

between distance and time becomes

2 = %m(zt +1)

Il Example »
A particle starts from rest at a distance h from the origin O with retardation

—4x=%. Prove that the particle reach to distance ¢ from O in time

gx/hz — £% and then find its velocity at this position.

Il Solution »
Since we have been given the retardation as a = —16z=® and a = vj—v
L
therefore,
v@ = —4g73 = vdv = —4x 73 dx

dx
By integrating, we obtain
,'.f’vd’v:—f4a:_3 dx + c; Or %v2:%+cl Or v2:§+c

The integration constant ¢ can be evaluated as » =0 when z = h, hence

4 . 4
0= o) +cie ¢ = Y and then we get
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- b e =

2 _ 4 4 4R -2 2 Vh? — 2?
x>  h? z2h? h T

We will consider the minus sign since the motion of the particle towards the

L . dx
origin —in decreasing x - and use v = o
dx 2Vh? — 2? xdx 2
=2 = ————=—dt Or
dt h =z W _g2 h

xdx 2
p R
= Vh? — 2? :%t+c2

To obtain the constant ¢, when « = h as ¢ = 0 and then ¢, = 0 so

2

hz—a:2=ht Or t=g h? — 22

The spent time to reach to a distance ¢ from origin pointis ¢ = %«/iﬁ —

to determine the velocity at this position, we put = = £ in velocity relation,
that is

_2n - ¢
Ve = g

Il Example »

A car moves along a straight line according to the relationv = (1 + 2?)t . Find

the distance as a function of time if the point starts its motion from the origin.
Il Solution »

Since v = (1 + z?)t thus

A ..

= tdt
dt 1+ 2?2




Kinematics of a Particle 14

1
f da =ftdt+c1 étan_lar:Z—t2+c1
1+ 2? 2

From initial condition where the point starts its motion at origin

-'.tall_IOZ%()2+c1 =0=0+c¢c ..¢c, =0 .'.w:tan[étzl
Note that
s
fdm — tan_lf
1+ f2
Il Example »

If ¢t be regarded as a function of velocity v, prove that the rate of decrease of
Lo 5 d’t . .
acceleration is given by a — . a being the acceleration.
dv
Il Solution »

Let a be the acceleration at time ¢. Then a = % . Now the rate of decrease

. da
of acceleration = ——

at
d (dv d{dt)"
_——[— = ——|—| regarded t as a function of v
at | dt at | dv
_| () o _|(de) " dt |
av | dv dt dv dv? | dt
2 9 3 12 2
_|[do) @t |do _ (do)" dt _ o dt
dt) do?|dt dt) do? dv?

a

Il Example »

Prove that if a point moves with a velocity varying as any power (not less than
unity) of its distance from a fixed point which it is approaching, it will never
reach that point.
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Il Solution »

If  is the distance of the particle from the fixed point O at any time ¢, then its
speed wvat this time is given by v = kz™, where kis a constant and = is not
less than 1. Since the particle is moving towards the fixed point i.e., in the
direction decreasing, therefore

dr dr

— =—v or — = —kz" wee(1)
dt dt
Case 1. If n =1, then from (1), we have
dz = —kzx or dt= _ldz
dt k x
Integrating, t = —%lnm + A where A is a constant.

Putting = = 0 then the time ¢ to reach the fixed point O is given by
1
t=——In0+ A =c0
k

i.e., the particle will never reach the fixed point O

Case 2. If n > 1, then from (1), we have

dt = —la:_"da:
k

1—n
Integrating, ¢ = —~X 4 B where B is a constant.
kl—n
1
Or t=—  _+B
k(n — 1)zt

Putting = = 0 then the time ¢ to reach the fixed point O is given by
t=oc0+ B =00
i.e., the particle will never reach the fixed point O

Hence if n > 1, the particle will never reach the fixed point, it is approaching.
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PROBLEMS

O A particle moving in a straight line is subject to a resistance which produces

the retardation kv®, where v is the velocity and & is a constant. Show that »

and t (the time) are given in terms of =z (the distance) by the equations

u

v = b= Lia? 4 2 , Where w« is the initial velocity.
kux + 1 2 u

O If the relation between z and t is of the form ¢ = ba? + kx, find the

velocity v as a function of z, and prove that the retardation of the particle is

2003 .

O A particle is projected vertically upwards with speed u and moves in a
vertical straight line under uniform gravity with no air resistance. Find the
maximum height achieved by the particle and the time taken for it to return to

its starting point.
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Kinematics in Two Dimensions

B Velocity in Cartesian Coordinates

The velocity vector of a particle (or point) moving along a curve is the rate of

change of its displacement with respect to time.

Let P and Q be the positions of a particle moving along a curve at times ¢ and

t + ot respectively. With respect to O as the origin of vectors, let OP = r
and 0Q =r+6r Then PQ =0Q — OP = ér represents the displacement
of the particle in time &t and i—f indicates the average rate of displacement
(or average velocity) during the interval 6¢. The limiting value of the average
velocity (;—7-; as dttends to zero (6t — 0) is the velocity. Therefore if the

vector v represents the velocity of the particle at time ¢ then

. O0r dr
v=Ilm—=====7
5t—0 5t dt y

Where r is the position vector of the particle. A , ?.5'-

:,é 4 ﬂ.l'\ =
Now, if r=zi+yjJ S,X/// v

// //’ :
dr 4 dy JoeT
S dt dt dt Y " -
v, v,

Note that (z,y)are called the components or resolved parts of the velocity v

along the axes = and y respectively. The speed of the particle at P is given by

dz

2 2
d
+[_y] _ds
dt

dt dt

2] =

Also the angle @ which the direction of v makes with OX is
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B Acceleration in Cartesian Coordinates

The acceleration vector of a particle moving along a curve is defined as the rate

of change of its velocity vector.
if v and v+ dv are the velocities of a particle moving along a curve at times

t and t + dtrespectively, then dv is the change in velocity vector in time ot

and i—f is the average and then

. 0v dv g|dr d*r
a=lim—==—==—=|—=| = —=
= st—0 4t dt dt|dt dt?
Substituting for » = 9%7 4+ @j we have,
= dt dt
. . 2. . d?y - . .
= dtldt dt dt? dt?
Clm G/y

Here, (&,4)are called the components of the acceleration g along the axes =

and y respectively. The magnitude of the acceleration is given by

|e|=J

Again, the angle ¢ which the direction of ¢ makes with OX is

2 2
d’z

dt?

d2y
dt*

+

2 2
tanp = ﬁ / M
dt? = dt?
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( M Illustrative Examples W |

Il Example »
A point moves along the curve = = +1, y =1t> where, t is the time.

Determine the components of velocity and accelerationat ¢ =1

Il Solution »

Let r be the position vector of the particle at time ¢, therefore
2:mi+y5:(t3 +1)i+t2j

Then the velocity vector is

d o R o o o o
d—£=3t2i+2tj and o], =301%%+20)j=3i+2j
" _

I
Il

Again the vector of acceleration is

=6(1)i+25=6i+27

IS}

NPy d
_z_ t1+27 an gItZI

Il Example »

The position of a moving point at time ¢ is given by x = 3cost, y = 2sint

Find its path velocity and acceleration vectors.

Il Solution »

Since the parametric equations are = 3cost, y = 2sint then

2

2|+

3

2 2 2
[E] = cos’ t, [%] =sin’t = ﬂ] =1 or 4z +9y® = 36

3

2

This is a the path equation which represents an Ellipse

Velocity vector is v = —3sint i + 2cost j

While the acceleration vector is
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a = —3cost i —2sint j = —(3cost i + 2sint j) = —r

T

Il Example »

A particle moves along the curve y = 2z* such that its horizontal component

of velocity is constant and equals 2 . Calculate the components of acceleration
and velocity when y = 8.

Il Solution »
Since the horizontal component of velocity equals 2, i.e. & = 2, therefore by
differentiating w.r.t ¢ we get

t=0and y=22) = y=4xz=8x .. i§=8:=16

That is the acceleration vector is given by

a=16j
and the velocity components are & = 2 and y = 8=

Sinceas y = 8 gives = = +2 thus, v =21 +8(%2)j, |z| =260

Il Example »

A particle describes a plane curve such that its components of acceleration

equal (0,—u / y?)with initial velocity «f2,u/b parallel to X-axis and the

initial position (0,b) . Find the path equation.

Il Solution »

Here we are given that

d*x d’y 7

£, 2J__ £

dt? dt? 2

y
2 .
Note that &% = i[@] = i[ﬂ] x % — 5% chain rule
2 dt dy



21

Y Yy Yy
2p . dy]
2
= -4 Y = —
! [ dt
Initially = = 0 when y = b, thus (:1:—27”
y b y b y b) b y
Hence

dy __ 20—y
Ut E\/ y @

(Negative sign has been taken because the particle is moving in the direction of

y decreasing)

Again from dz_, dz_ cs
dt?
Initially when ¢ = 0, 4% = /2—“ thus ¢, = fz_“
dt b b
dz _ |21
) - 2
" dt b )

By dividing the two equations (1) and (2) we get

dy_ _|b-y = / dy = —dz , then by integrating
de Yy
[Sll’l \F \/;«f

Hint to get the integration f /bL dy let us use the transformation
-y

—x+c,




Kinematics of a Particle 22

y = bsin®? @ = dy = 2bsin B cos 0 dbO

. 2
f Ldy:f M%sin@cos@d@
\jb—y \Ab—bsinm
. 2
:f M%sin@cos@d@
\Abcos29

= f sin 0 2bsm9w(do = 2bfsin29d9

- sin? @ :l 1 — cos26

= 2bfsin29d9 = 2bf% 1 — cos20 d@

:bf 1— cos20 d9:b[9—
f —Y_dy = b|sin! \/Q
b—y b

sin 20
2

The initial conditionis ¢t =0 = = 0, y = b then from the equation

b sin_l\jg—\/g‘ll—g
b b b

~b

=—z+c, :>(:2:b1

2
1 \/ﬁ
b

sin™

_\/Qfl_y —pZ _

b b

jsin_ljz:ﬁ 1-&-’-1-2
b bJ b 2 b

Yy

= =sin 2pbt

Rt

= cos w—ﬁJl—g
b b
b\J b

y = bcos?
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B Relative motion of two particles

Motion does not happen in isolation. If you’re riding in a train moving at
10 ms™ east, this velocity is measured relative to the ground on which you’re
traveling. However, if another train passes you at 15 ms™ east, your velocity
relative to this other train is different from your velocity relative to the ground.
Your velocity relative to the other train is 5 ms™ west. To explore this idea

further, we first need to establish some terminology.

4 Reference Frames

To discuss relative motion in one or more dimensions, we first introduce the
concept of reference frames. When we say an object has a certain velocity, we
must state it has a velocity with respect to a given reference frame. In most
examples we have examined so far, this reference frame has been Earth. If you
say a person is sitting in a train moving at 10 m/s east, then you imply the
person on the train is moving relative to the surface of Earth at this velocity,
and Earth is the reference frame. We can expand our view of the motion of the
person on the train and say Earth is spinning in its orbit around the Sun, in
which case the motion becomes more complicated. In this case, the solar
system is the reference frame. In summary, all discussion of relative motion
must define the reference frames involved. We now develop a method to refer

to reference frames in relative motion.

For two particles A and B moving in plane as shown, we
considered the relative motion of B with respect to A, or

more precisely, with respect to a moving frame attached

to A and in translation with A. Denoting by rp , the

relative position vector of B with respect to A, we had

T =Ty +Tpa or Ty =Tp—Ty
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Denoting by vy ,and ap 4, respectively, the relative velocity and the relative

acceleration of B with respect to A, we also showed that
Differentiating previous equation with respect to time
drpa _dry dry,

dt  dt dt
Differentiating previous equation with respect to time

or UBja = Vg — Uy

dvps _ dvg  dy,
dt dt  dt

or  apy = A4 — Qy
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( M Ilustrative Examples W |

Il Example »

Two points A and B are moving along a straight line such that =, = ¢* — 2t

and z = 2t* +¢* — 5. Find the relative velocity v, and accelerationay, .

Il Solution »
Since the relative position of point B with respect to point A, Tpia is given by
Lpia = Lp — Ly
=z, =2+ —5)—(* —2t)=t" +1* +2t -5
Hence the relative velocity vy, is obtained by

dx
ZBIA _ 342 4 2t 4+ 2

Upja =
Again the relative acceleration ay, is given by

“a _ 6t + 2

Apla =

Il Example »

A car A is traveling south at a speed of 70 km/h toward an
intersection. A car B is traveling east toward the intersection at a
speed of 80 km/h, as shown. Determine the velocity of the car B
relative to the car A.

Il Solution »

According to the given data the velocity of car Ais v, = —70 j and velocity of
car Bis v = 804 then

Upja =Yg — Uy
= 805 — (—70)
= 80 + 705

= |vpa| = J(80)2 + (70)? = V11300 ~ 106.3 kmh!
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And make an angle @ with the velocity direction of car B obtained by

80 8 8
Il Example »

A pilot must fly his plane due north to reach his destination. The plane can fly
at 300 km/h in still air. A wind is blowing out of the northeast at 90 km/h.
Calculate the speed of the plane relative to the ground and in what direction

must the pilot head her plane to fly due north.

Il Solution »

The pilot must point her plane somewhat east of north to
compensate for the wind velocity. We need to construct a
vector equation that contains the velocity of the plane with
respect to the ground, the velocity of the plane with respect to
the air, and the velocity of the air with respect to the ground.
Since these last two quantities are known, we can solve for the

velocity of the plane with respect to the ground. We can graph

the vectors and use this diagram to evaluate the magnitude of
the plane’s velocity with respect to the ground. The diagram will also tell us
the angle the plane’s velocity makes with north with respect to the air, which is

the direction the pilot must head her plane.
From the given data the velocity of plane P is v, = 300(sin@i + cos6 5) and
velocity of air Ais v, = —90(cos45°% + sin45°j) and vp; = vp g J then

Vpic = Vpja T Vyc
= 300(sin 04 + cos8 j) + —90(cos 45°% + sin 45° 7)
= (300sin8 — 90 cos45° )i + (300 cos & — 90sin 45°);
= 300sin6 — 90cos 45" = 0

_a5\2

300

sin@ And vp; = 300cos6 — 90sin45° =~ 230 kmh!
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PROBLEMS

O The position of a moving point at time ¢ is given by = = at?, y = 2at

Find its velocity and acceleration

O A particle moves with constant velocity parallel to the axis of Y and a
velocity proportional to y parallel to the axis of X . Prove that it will describe

a parabola

O A particle is acted on by a force parallel to the axis of Y whose acceleration

is Ay and is initially projected with a velocity ax parallel to the axis of X at
a point where y=a. Prove that it will describe the catenary

y = acosh(z / a)

3 A boat heads north in still water at 4.5 ms™ directly across a river that is

running east at 3.0 ms™. Find the velocity of the boat with respect to Earth.



PROJECTILE MOTION

I et us consider that «,v denote the resolved parts of the velocity
of the particle parallel to the axes at time ¢ and u + du, v + dv
refer to the resolved parts at time ¢+ ot then the resolved parts of the

acceleration are given as

d’z

ou _ du d

st—0 5t dt  dt

dx

dt

dt?

The consideration of component velocities and accelerations is of great
importance when we have to deal with cases of motion where the path is not a

straight line.

Bl Equations of Motion of a Particle Moving in a Plane

The position of a point in a straight line being determined by one co-ordinate,
only one equation of motion is sufficient to determine the motion completely.
In the case of a particle moving in a plane, two equations of motion are
required in order to obtain the two co-ordinates which define the position of a
point in a plane. The two equations of motion are obtained by resolving the
forces in any two convenient directions at right angles to one another. If the
two directions are taken parallel to the co-ordinate axes the equations of

motion, as deduced from the second law of motion, will be of the form

2
’InM = Fz and M —— =
dt?
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where F,, F, are the sums of the resolved parts of the forces parallel to the

axesof z and y:

B Projectiles

As an example of motion in two dimension is the projectile motion. Recall that
a particle has a mass but negligible size and shape. Therefore, we must limit
application to those objects that have dimensions that are of no consequence in
the analysis of the motion. In most problems, we will be focused in bodies of
finite size, such as rockets, projectiles, or
vehicles. Each of these objects can be
considered as a particle, as long as the
motion is characterized by the motion of
its mass center and any rotation of the
The free-flight

motion of a projectile is often studied in

body is neglected.

terms of its rectangular components. The

acceleration is of  approximately

Each picture in this sequence is tnken
alter the same time interval, The red ball
falls from rest, whereas the yellow ball is

given o horizontal velocity when released
Both balls accelerate downward at the
same rote, nnd 50 they remain at the same
clevation at any instant. This ncceleration
causes the difference inelevation between
the balls (o increase botween successive

9.81 ms?or 32.2 fts™
We will discuss the motion of a particle

projected in the field of gravity. We now

photos. Also, note the horizontal distance
between successive photos of the yellow
ball is constant since the velocity in the
horizontal direction remains constant

consider the motion of a projectile, that
is, the motion of a body which is small
enough to be regarded as a particle and which is projected in a direction
oblique to the direction of gravity. A body that moves freely under uniform
gravity, and possibly air resistance, is called a projectile. Projectile motion is
very common. In ball games, the ball is a projectile, and controlling its
trajectory is a large part of the skill of the game. On a larger scale, artillery
shells are projectiles, but guided missiles, which have rocket propulsion, are

not.
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Note: Near the Earth’s surface, we assume that the downward acceleration due
to gravity is constant and the effect of air resistance is negligible.

We shall suppose the body to be projected in vacuum near the surface of the
earth or, in other words, we shall suppose the resistance due to air and the
slight variation in the force of gravity to be negligible. A particle of mass m is
projected into the air with velocity w, in a direction making an angle o with
the horizontal, to find its motion and the path described.

Let O, the point of projection, be taken as the origin and let the horizontal and
the vertical lines through be taken as the axes of X and Y . Again, let P be the
position of the moving point, after time ¢ . During the motion of the projectile,
the only force acting on it is its weight acting downwards. The equations of

motion, therefore, are

- 1
\
THG
D(_/_V _______________________ > -
2 2
m%Z — and m&Y - —mg
at? dt?
Or in other formula
2 2
dt? dt?
Integrating these equations, we get
2
dz _ ¢ and L_c g 1)
dt dt?

where C,,C, are integration constants
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Initially at O whent = 0, &L — ycosa and —=Z —usina  then

Equation (1) becomes

9L _ yeosa and ﬂ:usina—gt (2)

Integrating these equations again and applying initial conditions, viz., when

t=0, x =1y =0, weobtain

T =ucosxt and y:usinc\et—%gt2 3)

Equation (2) gives the components of the velocity and (3) the displacements of
the particle in the horizontal and vertical directions at any time ¢. These
equations could also be written down at once by regarding the particle to be
projected with a constant velocity ucosc in the horizontal direction and with
an initial velocity wsina under a retardation g in the vertical direction.

Eliminating the time t the two parts of Equation (3) we have,

2

1 qgx
Yy = ztan ¥ — = ——— 4
2 4% cos?

We now deduce the following facts from the five equations just obtained:

Bl The Path Equation of Projectile

Equation (4) is of the second degree and the second degree term z? is a perfect
square. It follow, therefore, that the path of the particle is a parabola.

Equation (4) can be re-written in the form

2

. u? sin? & _ —g [:v . u? sin 2cx
2g 2u? cos? a

2g

It shows that the latus-rectum of the parabolic path= 2u?cos’a / g.

In the particular case when the particle is projected horizontally, « =0, and

the Equation (4) of the path reduces to
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y= I

2u?
which is obviously a parabola the length of whose latus-rectum is 2u* / g. The

path of a projectile is called its trajectory.

Bl The Time of Flight

Let T, represents the time which the particle takes in reaching the horizontal
plane through the point of projection.
Putting v = 0, in the second part of Equation (3) we get either ¢ = 0(at O)
And ¢ = Zusine g _ Zusino

g g
B Greatest Height

This is also obtained either by finding by differentiation, the, maximum value
of y from the second part of Equation (3) or by the fact that at the greatest
height the vertical component of the velocity must vanish, i.e. from the second
part of Equation (2)

YW usina—gt=0 = ¢=usne

dt g
Substituting this in Equation (3) and simplifying we get

u? sin’ o

29

Y =

Bl Horizontal Range

The range R = OB, on the horizontal plane through the point of projection the
horizontal distance described by the particle in the time of flight T .

2Qusina _ u?sin2cx
R =wucosa.T = ucosa =

g g

R can also be obtained by putting y = 0 in Equation (4).
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; u? sin 2c : :
Since, R = ——=— s0 R can be obtained by two values of projected angles
g
because sin 2a = sin(7 — 2a) = sin 2 % — a] (c, % —a)

B Maximum Horizontal Range

The range R is maximum when sin2a =1, i.e.,, when o = Z Or o = 45°
4

u2

therefore, the maximum range R, = —.
9

For a given velocity of projection, the horizontal range is the greatest when the

angle of projection is 45°.

Bl Range on an Inclined Plane

Let a particle be projected from a point O on a plane of inclination 3, in the

vertical plane through OP, the line of greatest slope of the inclined plane.
Let the velocity of projection be w at an elevation « to the horizontal. The
equation to the path of the particle is
2
y::ctana—lL (10)

2 4% cos?

If the particle strikes the inclined Q plane at the point P, the distance, OP is
called the range on the inclined plane. If OP = R then the co-ordinates of P
(R cos 3, Rsin 3) must satisfy Equation (10).

1gr?cos’ 3

2

Rsin8 = RcosBtana —
2 42 cos’ o

Then the range r

R= 2u? (cosBtana —sinB)cos’ a 242 sin(a — B)cos

g cos’ B g cos’ 3
2
sin(2a — @) —sin 8

N gcos® B
The range down the plane may be obtained by putting —3 for 8 in this case

the slope of the inclined plane is downwards.
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B Maximum Range on an Inclined Plane

u and 8 being known, the range varies with «, and it will be maximum
when sin(2ac — @) is maximum. When 2o — 38 = % Or a—pfB= % —a
Hence for maximum range, the direction of projection must bisect the angle
between the vertical and the inclined plane. If OT be the direction of
projection, then OT is tangent to the path at O, and the vertical through is
perpendicular to the directrix. OT being equally inclined to OP and the vertical,
the focus to the path must, therefore, lie on the line OP of the inclined plane,
i.e., in the case of maximum range the focus lies in the range. The value of the

maximum range is

2 .
R :u(l—sm,6’)

max

gcos® 3

_ w1 —sinf)

g(1 — sin® B)

B u%l;si(ﬁ)

g(1 + sin B) (1L ==sin B3)

u2

- g(1 + sin B)
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Im 1llustrative Examples W

Il Example »

If the maximum height for a projectile is 900 ft and the horizontal range is
400 ft. Find the velocity and its direction.

Il Solution »

Since the maximum height and horizontal range are given by formulas

Y:uzsinza, R:uzsin2a
29 g

Then using given values we get

900 = uzsin2a’ 400 = 2u? sin cx cos o

29 g
Then by dividing these two equations

9 u’sin’a , 2u’sinacosa 9 tano 1
-= / =>-=—— .. .a=tan
2g g 4 4

9

which gives the angle of projection and the magnitude of the velocity of

projection by using first equation

2
81 1800 x 82 X 32.2
900 = L x 22 = 4 = Or u = 242.23 (g = 32.2 ftsec™?)
29 82 81
Il Example »

If the ratio between the magnitude of the velocity at maximum height and a

height equals half of maximum height is \E. Show that the angle of projection

is 30°.
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Il Example »

As it is obtained that y = (usina) t — % gt?

2 3.2
Let the point A be the maximum height and hence v, = 2=2= Szm a
g
And B be the point where its height equals half of maximum height i.e.,
Y, = lYA _ u? sin® o
2 4g

The time spent from the projection of the particle reach point B is given by
u? sin® o

. 1 .5
= (usina) t — =gt
4g ( ) 2

Rewrite this equation again as (multiply by 4g)
2(gt)? — 4(gt)usina + u® sin’> @ = 0 =gt = [I—JL_]usina
2

The components of velocity at point B are

. 1 .
usina = —=usina

J2

. . . . 1
Tp = ucoso, Yp = usina— gt = usina — [1 - —

V2

2

The resultant of the velocity at point B
Lusina = iv’l + cos’

vp = \Ep + U5 = \/(ucosa)z +
B B B \/E \/5
Since at the maximum height &, = ucosa, 3, = 0 then
v, =34 + 94 = ucosa

But as given 24 _ \/g therefore,

Up

\Eu Cos 6

uN'1 + cos? 7

COS (¢ 3

i_: -
V1 + cos?
2

3
 _csa _3

1+cos’ax 7

=

-3
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7cos’ a= 3 + 3cos’ = 4cos’a =3

Ny

icosa:? Or a=30"

Il Example »

A particle is projected with a velocity of 24 ft sec™ at an angle of elevation 60.
Find (a) the equation to its path, (b) the greatest height attained, (c) the time for
the range, (d) the length of the range.,

Il Solution »
Sinceu =24 and o = 60°, g =~ 32.2 ftsec?

() the equation to the path is

2
y:a:tana—lL, therefore y:x/ga;—la:2
2 u? cos® 9

u?sin’a _ 24x24 _ 3

(b) The maximum height = = X = =~ 6.71 ft
2g 2x322 4

() The time for the range = 2¥sine _ 2X24 NE 1.29 sec
g 32.2 2

3\3

(d) the length of the ran = ucosa T = 24 X % X e ~ 15.49 ft

Il Example »

Find the maximum horizontal range of cricket ball projected with a velocity of
48 ft. per sec. If the ball is to have a range of 363 ft., find the least angle of

projection and the least time taken (let g ~ 32 ftsec™2).

Il Solution »

We have u = 48 and o = 45°, g =~ 32 ftsec 2

R = — =R ~ 72 ft

max max

u? _48x48
32

&

2 3643 x 32
If R= Y sin2x g0 /o o Gog— e
g 48 x 48 2
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Then 2c¢ = 60° or 120° thatis a« =30° or 60°

Thus, the least angle of projection o = 30°

and the least time taken = 2usine _ 2x48 1

g 32

~ 1.5 sec

Il Example »

A ball is projected from a point on the ground distant a from the foot of a
vertical wall of height b, the angle of projection being « to the horizontal. If
the ball just clears the wall prove that the greatest height reached is

a’ tan? o
4(atanx — b)

Il Solution »

Let u be the velocity of projection, then since the ball passes through the top
of the wall, a point (a,b), we have

2 2
b=atana — —2& Or atana — b = ga

2u? cos? o 2u? cos®

2
a
-l = g

2(atan a — b)cos® o

Now the greatest height Y reached by the ball

2 302
U sim-
Y:_

2g
sin’ o ga’
29 2(atano — b)cos’ a
a’ tan’ o
4(atancx — b)

Il Example »

If T be the time taken to reach the other common point A of its path and 7’

the time to reach the horizontal plane through the point of projection. Find the
height of the point A.
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Il Solution »
2 .
Since z = wcosa t and the time of flight is T + T’ also R = %-32%
g
2 .
Hence wcosa (T + T') = Z¥cosasina .\ o = ég(T + 1)
g

: 1 2 1 N1 0 1 ,
vyl susima T —=gT* = y|, =-gT(T+T")—-gT" ==gTT
IA > 4T3 ( ) 5 >

Il Example »

A particle is projected with a velocity « so as just to pass over the highest
possible post at a horizontal distance ¢ from the point of projection O . Prove
that the greatest height above O attained by the particle in its flight is

uﬁ

2g(u* + g*£%)

Il Solution »
Taking 0 as the angle of projection and substituting ¢ for = the equation to

the path, we have

2 2
y = Ltan0 — gt :Etan@—i(1+tan20)
2u? cos? 2u?
2 2
. @ = Lsec’ 6 — ﬁtané’se(:zO = £sec29[1 —ﬂtanBJ
de 'u,2 uz

2 4
ﬂ=0=>tan49=u— or sinf = —t
do gﬂ u4+g2£2

y being positive and its minimum value being zero, the value of 6 given in
previous equation gives the maximum value of y. Now the greatest height

attained by the particle

2 22 2
u” sin” 0 u
Y:_:—

2g 29

u4

u4 + 92e2

uﬁ

- 29 ut + g€
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Il Example »

Two particles are projected from the same point in the same vertical plane with

equal velocities. If ¢, ¢ be the times taken to reach the common point of their

paths and T, T’ the times to the highest point, show that tT +¢'T’ is

independent of the directions of projection

Il Solution »
Let «, 3 be the directions of projection

T = T,_usin@
= ==, =

g g

If = isthe horizontal distance of the common point, then

I4
T =ucosaat, t =ucos3t

AT 4T = % usmaw usinB x40
ucosax g ucos3 g g
Now the equations of the two- paths arc
2 02 2 2
y:mtana—lgm sec a’ y:mtan@—lgm sec” B
u? 2
Subtracting we have,
1 gz’ 2 2 1 ga’ 2 2
z(tano — tan B) = ==— sec* o —sec* 3 = ==— tan‘ a — tan* 8
'LL2 2
2
Z(tana + tan B) = 2u
g g°

Hence from Equation (*)

2
S tT+ T = 2L2 which is independent of the directions of projection.

g
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Il Example »
A particle is projected with velocity » from a point on an inclined plate. If v,
be its velocity on striking the plane when the range up the plane is maximum

and v, the velocity on striking the plane when the range down the plane is

maximum, prove that u? = v,v,

Il Solution »

Let R be the maximum range up the plane and «be the inclination of the

plane, then
R = _U2 d v? = u? .2 Rsi
"~ g(l+sina)’ and o = u” — 29y = u” — 2gRsmo
2 _ .
'-"’12:U2—2gsina><u_: 2 1—sina
g(1 + sina) 1+ sina

Similarly, by changing the sign of «, we have

. vg = u? % ltsina Hence ut = ,v12,U; Or u?= vV,
1—sinox
Il Example »

A particle is projected and it paths through the two points (12,12) and (36,12)

Find its velocity and the direction of projection.

Il Solution »
. S gz’
The trajectory or path equation is y=ztanax — —2-——
2u? cos? o
The two points (12,12) and (36,12) lies on the path so that
2
With regard the point (36,12) 12 = 36tana — 936
2u? cos? o
2
With regard the point (12,12) 12 = 12tan o — _ 912"
2u? cos?

By multiplying the second equation by 9 then subtracting, we have
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96 = T2tanar = tanor = 20 = 4
2 3

which gives the direction of velocity of projection, and to obtain the magnitude

of the projection velocity, from first equation

= 36

=12 = 36[é] _ B8  _ g(36)°

3 2 2
Sl
5 5

= u’ =50g Or u =542g

2u?

Il Example »
A particle is projected and it paths through the two points (a,b) and (b,a)

2 2
where (a,b) and (b,a) Prove that the range is given by #.
a+
Il Solution »
2
The trajectory or path equation is y=ztana — — 3=
2u? cos?
The two points (a,b) and (b,a) lies on the path so that
2
With regard the point (a,b) a=btana——9°
2u? cos?
With regard the point (b,a) b=atano — —I
2u? cos? a

By multiplying the first equation by a and the second by b then subtracting,

we have
Y L — ) = a+b=—9%
—_— 2 2 T 9,2, 2
(a+b)(a=<B) ~ 2U” COS” 2u” cos” a
Or ab _ 2u*cos’ «
a+b g

Once again by multiplying the first equation by a* and the second by b2 then

subtracting, we have
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a® — b :abMtana = abtana = a® + ab + b*
(a® +ab+b?)(a~B)
. o 2 sin2
Since the range is given by R =2 %% therefore,
g
R= u? sin 2a _ 2u? cos asin o
g g
2u? cos® o ab a®’> + ab + b®
= ——tano = tan =
g a+b a+b
ab/(a+b)
“R= a® + ab + b*
a+b
Il Example »

A particle is projected to reach a certain object located in the same horizontal
plate of projection point, when it projected with angle « it falls down before
the object by distance £ and when it projected with angle 3 it falls down after

the object by distance £. Find the exact angle to reach the object.

Il Solution »
Let u be the velocity of projection and R is the exact range of the object then

the range in first case is R — £ and the range in second case is R + £ therefore

R_g¢-Wsin2a o oo, ulsin28
g g

By addition the two equations, we get

u2 . . ’U,2 . .
2R = — sin2a + sin23 = R = — sin2a + sin203

g 29

2 .

Now, let 6 be the exact angle to reach the object so R = u sin26

g
By comparing (or dividing) the last two equations then

u? sin 20 _ u_2
g 29

= sin2a + sin23

sin 2 + sin23
2

= sin20 = 1 .n_l[sm2a+sm26]

= 0 = =si
2 2
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B Projectiles with Resistance

We now proceed to include the effect of air resistance. From our earlier
discussion of fluid drag, it is evident that in most practical instances of
projectile motion through the Earth’s atmosphere, it is the quadratic law of
resistance that is appropriate. On the other hand, only the linear law of
resistance gives rise to linear equations of motion and simple analytical
solutions. This explains why mechanics textbooks contain extensive coverage
of the linear case, even though this case is almost never appropriate in practice;
the case that is appropriate cannot be solved! In the following example, we

treat the linear resistance case.

Now suppose that the motion is opposed by a force proportional to the

velocity. Thus if m denote the mass and v the velocity, let m~wv denote the

magnitude of the resistance. Therefore the components of the resistance
parallel to horizontal and vertical axesOX ,0Y are

—mﬁi', - mﬁ’:l)

Let « denote the initial velocity in a direction making an angle o with the

horizontal. The equations of motion give
t=—yx and Y=-—g-—7Y
By integrating we obtain

=c, — "t

Iné=e¢, —~t and 1n[y +2
4
since initially £ =y =0 and & = ucosa, y = usine,then ¢, = nucosa

usina + 2|, and hence

Y

and ¢, = In

et 9
84

usina+2
Y

= ucosax et and gy =
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Once again integrate the previous formula

ucosor 1
r=————¢€ " +¢c and y=——
Y 2l

usina-l—g

e 7t — gt +c,
Y

Y

Where, ¢,,c, are constant,and z = y = 0 at ¢t = 0 so that

_ucosa _
= . cy =—
Y Y

usino + e
Y

C3

So the last equation becomes

U Cos «x

r=—— 1—¢e and y=l usinoz+g 1—et — 94
B Y Y Y
» The time spent to reach the maximum height is
T = lln Yu sin o +1]
Y g
» The maximum height is
_ usina_iln 1+ ~u sin o
Y ~? g9
» The time of flight is
T — 1[yusine N 1] P
Y g
» The path equation is
— g ’)"U,Sll‘la+1m+£ln1_ Yr
Yu cos o g ~2 U cos o

For instance to evaluate the spent time to reach the maximum height

2 3
Since ln(1+$):x—m—+m—— .....
2 3
this is true for |m| < 1,and now let v — 0 in formula
T = lln Yu sin n 1]
y g

We get
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T = lm 1|yu sin o _ ~2u? sin? o n ~3u? sin® o g
=0yl g 2g° 3g
— im u sin o _ ~u? sin? o n ~u? sin® a 4ol= u sin o
=0 g 2g° 3g g9

This result obtained before when we neglected the resistance of air.

Il Example »
A particle of mass m is projected with initial velocity » at an angle of
elevation « through a resisting medium where its resistance proportional to v

and the proportional constant is pm . Prove that the direction of the velocity

makes an angle « with the horizontal Thal1+ PY (sina + cos )
M g

Il Solution »
By writing the equation of motion in OX, OY and then integrating and use the

initial conditions as illustrated before we obtain the components of velocity of

the particle at any instance

e M _ g
M

usin o +g
7

= ucosax e ¥ and gy =

Since the angle of projection is o and the angle that the direction of velocity
makes with the horizontal axis decreases until vanish at the highest position

then it reverse to be « again downwards after time ¢ which determines from

) usinoz+g]e_‘“t 9
tan—azgz s P~ _tan o
T ucosax e Mt
That is
usina+2]e_“t—£:—usina e = 2usina+g]e_“t =9
m m m "
2 i 1 2 i
[ pusin o +1]: ot _ ¢ = 1, [2pusine +1]
g H g
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PROBLEMS

O3 A body, projected with a velocity of 120 ft sec™ just clears a vertical wall

72 ft high and 360 ft. distant, find the two possible angles of projection and the

corresponding horizontal ranges.

O A particle is projected so as just to clear a wall of height b at a horizontal

distance a, and to have a range ¢ from the point of projection, show that the

velocity of projection V is given by

2v?  a’(c — a)’ + bc?

g ab(c — a)

3 A projectile is fired with an initial velocity of
Va = 150 m/s off the roof of the building.
Determine the range R where it strikes the

ground at B.

vy =150m/s

i

e

150 m
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O A stone is projected with velocity V and elevation from a point O on level
ground so as to hit a mark P on a wall whose distance from O is a, the height of

P above the ground being 6. Prove that

2V?%(asin6 cos@ — bcos® ) = ga’.

O A particle in projected with a velocity of 120 ft. per sec. at an angle of 60
with the horizontal from the foot of an inclined plane of inclination 30. Find

the time of flight and the range on the inclined plane.

O A particle is projected from a point on a plane of inclination B with

velocity u. Show that the maximum range down the plane is

11,2

g

1+ sin 3

cos? B3
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T O A ball is thrown from A. If it is required to
\/ clear the wall at B, determine the minimum
o 8ft
g" ' magnitude of its initial velocity Va.

Al L’_ \

3 A boy throws a ball at 0 in the air with a
speed Vo at an angle 6,. If he then throws
another ball with the same speed vy at an
angle 6, < 6, determine the time between

the throws so that the balls collide in midair
at B.

B




KINETICS OF A PARTICLE

his chapter is concerned with the foundations of dynamics and
Tgravitation. Kinematics is concerned purely with geometry of
motion, but dynamics seeks to answer the question as to what motion will
actually occur when specified forces act on a body. The rules that allow one to
make this connection are Newton’s laws of motion. These are laws of physics
that are founded upon experimental evidence and stand or fall according to the
accuracy of their predictions. In fact, Newton’s formulation of mechanics has
been astonishingly successful in its accuracy and breadth of application, and
has survived, essentially intact, for more than three centuries. The same is true
for Newton’s universal law of gravitation which specifies the forces that all

masses exert upon each other.

Taken together, these laws represent virtually the entire foundation of classical
mechanics and provide an accurate explanation for a vast range of motions

from large molecules to entire galaxies.

Bl Newton’s Laws

Isaac Newton’s* three famous laws of motion were laid down in Principia,
written in Latin and published in 1687. These laws set out the founding
principles of mechanics and have survived, essentially unchanged, to the
present day. Even when translated into English, Newton’s original words are
hard to understand, mainly because the terminology of the seventeenth century
is now archaic. Also, the laws are now formulated as applying to particles, a

concept never used by Newton. A particle is an idealized body that occupies
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only a single point of space and has no internal structure. True particles do not
exist in nature, but it is convenient to regard realistic bodies as being made up
of particles. Using modern terminology, Newton’s laws may be stated as
follows:

»First Law: When all external influences on a particle are removed, the
particle moves with constant velocity. {This velocity may be zero in which
case the particle remains at rest.}

»Second Law: When a force F acts on a particle of mass m , the particle
moves with instantaneous acceleration a given by the formula
F =ma

where the unit of force is implied by the units of mass and acceleration.

>Third Law: When two particles exert forces upon each other, these forces
are (i) equal in magnitude, (ii) opposite in direction, and (iii) parallel to the

straight line joining the two particles.

B The Law of Gravitation

Physicists recognize only four distinct kinds of interaction forces that exist in
nature. These are gravitational forces, electromagnetic forces and weak/strong
nuclear forces. The nuclear forces are important only within the atomic nucleus
and will not concern us at all. The electromagnetic forces include electrostatic
attraction and repulsion, but we will encounter them mainly as ‘forces of
contact” between material bodies. Since such forces are intermolecular, they
are ultimately electromagnetic although we will make no use of this fact! The
present section however is concerned with gravitation.

It is an observed fact that any object with mass attracts any other object with
mass with a force called gravitation. When gravitational interaction occurs
between particles, the Third Law implies that the interaction forces must be
equal in magnitude, opposite in direction and parallel to the straight line

joining the particles.
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The gravitational forces that two particles exert upon each other each have

magnitude

F (1)

where M,m are the particle masses, R is the distance between the particles,

and -, the constant of gravitation, is a universal constant. Since ~ is not

dimensionless, its numerical value depends on the units of mass, length and

force.

This is the famous inverse square law of gravitation originally suggested by

Robert Hooke, a scientific contemporary (and adversary) of Newton. In SI
units, the constant of gravitation is given approximately by

v = 6.67 x 107! Nm?kg~?2

this value being determined by observation and experiment. There is presently

no theory (general relativity included) that is able to predict the value of .

Indeed, the theory of general relativity does not exclude repulsion between

masses!

To give some idea of the magnitudes of the forces involved, suppose we have
two uniform spheres of lead, each with mass 5000 kg (five metric tons). Their
common radius is about 47 cm which means that they can be placed with their
centers 1 m apart. What gravitational force do they exert upon each other when
they are in this position? We will show later that the gravitational force
between uniform spheres of matter is exactly the same as if all the mass of each
sphere were concentrated at its center. Given that this result is true, we can find
the force that each sphere exerts on the other simply by substituting
M =m=5000 and R =1 into equation (1). This gives F = 0.00167N

approximately, the weight of a few grains of salt! Such forces seem
insignificant, but gravitation is the force that keeps the Moon in orbit around

the Earth, and the Earth in orbit around the Sun. The reason for this disparity is
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that the masses involved are so much larger than those of the lead spheres in

our example. For instance, the mass of the Sun is about 2 x 10% kg.

Bl Motion through a Resisting Medium

When a body moves in a medium like air or any other fluid, it experiences a
resistance to its motion. The resistance which we have been neglecting so far,
generally varies with the velocity. For small velocities the resistance is
approximately proportional to the velocity, for greater velocities it varies as the
square of the velocity and for still greater velocities, the resistance varies as the
cube or even a higher power of the velocity. The forces of resistance being
non-conservative, the principle of Conservation of Energy is not applicable to

such cases.

B Bodies Falling Vertically in a Resisting Medium

Suppose a particle with mass m is allowed to fall vertically subject to a
resistance proportional to some power of the velocity », e.g. a resistance force

wmw, then we have the equation of motion

m@—mg— muv Or @—g— v
dt H a_ ITH

where um is the constant of proportionality and g, the acceleration due to
gravity, is supposed to remain constant. The equation shows that the
acceleration of the particle decreases as its velocity increases and that it

vanishes when g / o . Separation of variables for the previous equation we get

dv = dt éldvz—udt
g—pv g—m

Integration we have

In(g — pv) = —pt + ¢
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If the initial velocity is « therefore, the constant ¢, may be obtained as

In(g — pu) = ¢ then

In(g — pv) = —pt + In(g — pu) =mI P = —put
g— pu
_ — (g — —put _g 1 —pit
= g — pv = (g — pue Or v= ; ;(g uue

The value £ is the greatest velocity attainable by the particle and is called the
7

limiting or terminal velocity.

To get the height since v = % then

dy _

1
g (9 — pu)e ™ = dy =L~ Z(g— pu)e ™ |dt
. p noop

1
y7i
And integrate we get

1
y=2¢+ — (g — pu)e™ +c,
b

Where ¢, = —%(g — pu) sine y = 0 when ¢ = 0 that is
7

1
y=Tt+ —(g—pu) e —1
H %

Subsequently the particle moves uniformly with this limiting velocity. The
velocity for the rain drops at the surface of the earth cannot, therefore, give us
any idea of the height from which they might have fallen, for after moving for
some time they acquire the terminal velocity and continue to move uniformly

with that velocity.
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Im lllustrative Examples |

Il Example »

A particle with mass m moves horizontally through a resisting medium where
its resistance proportional to » and the proportional constant is cm . If the
particle starts its motion from the origin point with initial velocity « . Find the

distance after time ¢ .

Il Solution »
The equation of motion of the particle is (horizontally)

m@ = —amv = @ = —adt
dt v

By integrating we have In(v) =¢, —at @)
The constant ¢, can be determined from the initial conditions, v = u at ¢ =0
, therefore ¢, = Imu and equation (1) becomes

In(v) =Inu — at Or v=ue™ (2)

Equation (2) gives the velocity of the particle at any instance, and the position
of the particle = can be obtained as follows

@ = ye ™ = dz = ue “dt
dt
v
= fdsc = fue_atdt +¢, Or
z=—Leat 4 c, 3)
a

Where ¢, is integration constant that can be calculated from the initial
conditions, = = 0 at ¢t = 0, therefore ¢, = % and equation (3) turns into
(84

u —at
r=—1—e
«
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Il Example »
A moving point with mass equals unity subject to a resistance v + uv?* If the
resisting force is the only force acting on the point. Find the distance where «

is the initial velocity of the point.

Il Solution »

Equation of motion is (m = 1) — Note resisting force is the only acting force-

v@: —(Av + po?) =>“—dv: —pdx
dx A+ po
By integration we get
In(A + pw) = ¢, — px @

Where ¢, represents integration constant and can be obtained from the initial

conditions, v = w at = = 0, therefore ¢, = In(A + pw) and equation (1) turns

into

A+ pu

= px 2
Nt o [z (2

In(A + pv) =In(A + pu) — pz Or ln[

Again from the last equation we can obtain the position of the point as the

velocity vanishes

Il Example »

Two equal particles with mass m projected downwards from the same point

and at the same instance with initial velocities u,, u, subject to a resistance
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pmo If u/, u, are the velocities of the particles after timeT . Prove that

w —uy = (4 — u2)e—uT

Il Solution »

With respect the first particle we suppose that its velocity at any time is v

therefore, the equation of motion is

m@=mg—umv = dv =dt Or —udv _

dt g— pv g— pv

By integration we have

In(g — pv) = c — pt
look ¢ indicates the integration constant which can be calculated from the
initial conditions, v = u, when ¢ = 0, therefore ¢ = In(g — pu,) and the last
equation become
In(g — pv) = In(g — pu,) —pt~ Or g — pv = (g — puy)e™
Now after time T', the velocity become «; that is

g— pu = (g — pu,)e " 1)

Now with respect the second particle we suppose that its velocity at any time is

v’ therefore, the equation of motion is

! ’ !
mdl =mg—pmv = v _ dt Or pdv
dt g— v g — mv

= —udt

7

By integration we have

In(g — ') = ¢’ — pt
where ¢ refers to the integration constant which can be obtained from the
initial conditions, v" = u,when ¢ =0, therefore ¢’ = In(g — pu,) and the
previous equation converted to

In(g — pv') =In(g — pu,) —pt ~ Or g —pov' = (g — puy)e ™
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Again, Now after time T', the velocity become w, that is
g — puy = (g — pu,)e " @
By subtracting Equations (1) and (2) we obtain

/ ’

pou —uy = p(u, —uy)e T Or u —uy = (u, —uy)e

Il Example »

A point with mass m is projected vertically upwards with initial velocity
grn~! and the resistance of air produces retardation per unit mass pv?

where v is the velocity and g is constant. Find the highest position and the

time spent to reach is

4 gp
Il Solution »

The equation of motion — let the projection point be the origin-then

L _=—dy Or ﬂd”z = —2udy
dy g+ pv g+ pv

By integration we get

In(g + pov?) = ¢, — 2py (6]

Note ¢, indicates the integration constant which can be obtained from the
initial conditions, v = «fg,u_l when y = 0, therefore ¢, = In2g and equation

(1) be

In(g + pv) =In2g —2puy  Or y:iln 29
2 g+ pv

O]

Equation (2) gives the position of the point at any instance ¢ and at highest

position the velocity is zero » = 0 and then

y:ilnz—g :>Y=i1n2

2 g 2p
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And this is the highest position and to evaluate the spent time to reach since

d \de
Y — g or V9

mﬁz—mg—umv2 = ;== gudt

dt g + pv’

By integration we obtain

Pv
g

Note ¢, is the integration constant which its value can be evaluated by the

tan™!

:c2—\/;t (3)

initial conditions, v = «/gu_l when ¢ = 0, therefore ¢, = % and equation (3)

turn into

JE”
g

This equation gives the velocity at any time ¢, and when » = 0 then ¢

tan™

I_Jgjt]

= 0= gtan
7 4

= [%— gut]:O Or t=———

Il Example »

A point with mass m is projected vertically upwards where the resistance of
air produces a retardation muwv where v is the velocity and p is constant. If
the velocity vanish at time 7 with a height £ from the point of projection
Show that the initial velocity of the pointis p€ + gT .

Il Solution »

The equation of motion —the point of projection is chosen to be the origin

point-
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d d
m—v=—mg—umv =>&=—udt
dt g+ pv

By integrating we get
In(g + yv) = ¢, — pt @
here ¢, gives the integration constant which can be obtained from the initial
conditions, v =« when ¢t =0, -we suppose that the initial velocity is «
which we need to obtain- therefore ¢, = In(g+ pu) and equation (1) takes the
following formula

In(g 4+ pv) =In(g + pu) —pt  Or g+pv = g+ pu e
at t=T, v=0 = g=g+pu e’ )

In order to determine the height of the point we have

pt

_ 1 _
g+ po = (g + pue Or wv== (g+pue " —g
7}
But v = dy then
dt
dy 1 —ut 1 —pt
—=—(g+tpu)e  —g =dy=— (g+pu)e =~ —g dt
a  p Iz
By integration we get
S (U ) L) S 3)

pl p

here ¢, gives the integration constant which can be obtained from the initial

conditions, y =0 when t =0, therefore ¢, = w and equation (2)
become
_9tpu_ 1[(g+pu) —u +gt

p? pl  p

Nowlet y =€ when t =T
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(- 9tpu_(g+pu) —ur gT

7 I 1%
:Me"” :L;w_ﬂ_e Or %:ﬁ#_ﬂ_e
M I M Iz Iz n

We use equation (2)

9 _g9tpu 9T _,

p’ p’ 1%

= u=gT+ pl

Il Example »

A point with mass m is projected vertically upwards with initial velocity u
and the resistance of air produces a retardation m~v®> where v is the velocity

and ~ is constant. Show that the velocity with which the point will return to
!
the point of projection is ——e—— where ' = y/g7".
2 12
u +u
Il Solution »
To determine the velocity with which the point will return to the point of
projection, we will consider the motion of the point upwards until it stop then it
return.
The equation of motion of the point — consider Y axis to be vertically and the

point of projection is chosen to be the origin point-

m’u@ = —mg — ymv® = 2yvdy. = —2~vdy
dy g+’
By integration we get
In(g +7v*) = ¢, — 27y 1)

Where ¢, points out integration constant which can be obtained from the
initial conditions, v =u at y = 0, therefore ¢, = In(g + ~y«?) and equation
(1) takes the following formula

2

g+ u
g+ ?

In(g + vv*) = In(g + yu®) — 27y Or yzziln
¥
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The point will stop as » = 0, therefore

1
=—1In
2

g+ yu?
g

1+ 2

1
y|v:0 =Y =_" u/2

27

Now by taking the motion where the point moves downwards, let the highest
position represents the new origin point and the Y axis is chosen to be
vertically downward. Moreover, the initial condition will be » = 0when

y = 0 where v is the velocity. The equation of motion

mv@ = mg — ’ymv2 = M = —2vdy
dy g — ’yvz
By integration we get
In(g — 7v*) = ¢, — 27y 3]

Constant of integration ¢, can be obtained from the initial conditions, v = 0

at y = 0, therefore ¢, = Ing and equation (2) becomes

1
In(g — ’YUZ) =Ing—2yy Or y-= 2_1n
Y

_ 9
g — v

And the velocity of the point with which the point will return to the point of

. . 1 2
projection is thatisat y = ¥ = —In|1 + 2 | hence
2~ u
2 2
iln 1+'u,_ :iln g Or 14— = g
2y 2 2y |g—v 2 g — 7t
2 2
u“+u
= 2 - 5 2
u g— v
2
u
=g -’ =
U +u
2
U
=>’7v2: — g
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u'
vl = u'? — ~ -
U+ u
4 14 7
~u(u'? + u?) u't
u? + u? u’? + u?
14
uu?
u'? + u?
uu
v = u'?=

:m
+ ~
:\
™
2 |
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PROBLEMS

O A particle of mass m is projected with velocity vV along a smooth

horizontal plane in a medium whose resistance per unit mass is vv, -~ is a

constant. Obtain the velocity » and the distance after atime ¢ .
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O A particle is projected vertically upwards with velocity « and the resistance
of the air produces a retardation kv where v is the velocity. Determine the

velocity with which the particle will return to the point of projection.
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O A particle P moving along a horizontal straight line has retardation pwv,

where v is the velocity at time ¢. Whent = 0, the particle is at O and has

velocity . Show that w — v is proportional to OP .
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O A particle subject to gravity describes a curved path in a resisting medium
which causes retardationhv. Show that the resultant acceleration has a

constant direction, and equals a,e™™ where q, is the acceleration when ¢ = 0





