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Important topics in special relativity

e The failure of the Galilean transformations.
e Lorentz transformations.

eTime and Space in special relativity.

e Relativistic momentum and Energy.

Course Objectives

After completion of this course, student will be able to

eDemonstrate knowledge and broad understanding of Special Relativity.

e Explain the meaning and significance of the postulate of Special Relativity.
e Recall the setup and significance of Michelson-Morley experiment.

e Time dilation: moving clocks run (tick) slower. (Proper Time).

e|_ength contraction: moving rods contract. (Proper Length).

e|_0ss of simultaneity.

e\What causes the Doppler shift for light? Time dilation, together with

geometrical effects.
e\/elocity transformation between inertial reference frames.
e Explain true nature of Lorentz transformation and Doppler effect.

e Explain relativistic momentum and Einstein field equations.
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Chapter (1)
Pre-Relativistic Physics

1-1 : Galilean-Newton Relativity
In order to study General Relativity one starts discussing Special Relativity. To this end,

it is important to briefy look at pre-relativistic Physics to see how Special Relativity

arose.
The starting point of Special Relativity is the study of motion. For this one
needs the following ingredients :

e Frames of reference. These consist of an origin in space, 3 orthogonal axes and a

clock.
i uurﬂiuglt =yvsicm | clock = Framne of relvrenee
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e Events. : This notion denotes a single point in space together with a single point
in time. Thus, events are characterized by 4 real numbers: an ordered triple (X; y; 2)
giving the location in space relative to a _xed coordinate system and a real number
giving the Newtonian time. One denotes the event by E = (t; X; y; 2).

There are an infinite number of frames of reference. Motion relative to each frame
looks, in principle, different. Hence, it is natural to ask: is there a subset of these frames

which are in some sense simple, preferred or natural? The answer to this question is yes.




These are the so-called inertial frames. In an inertial frame an isolated, non-
rotating, un-accelerated body moves on a straight line and uniformly.

Inertial frames are not unique. There are actually an infinite number of these. This
raises the question: can one tell in which inertial frame are we in? It turns out that
within the framework of Newtonian Mechanics this is not possible. More precisely, one
has the following :

Galilean Principle of Relativity : Laws of mechanics cannot distinguish between
inertial frames. This implies that there is no absolute rest. In other words, the laws of
Mechanics retain the same form in different inertial frames. In this sense, Relativity

predates Einstein.

1.2 : Laws of Newton

The three Laws of Newtonian Mechanics4 are :

(1) Any material body continues in its state of rest or uniform motion (in a straight line)
unless it is made to change the state by forces acting on it. This principle is equivalent
to the statement of existence of inertial frames.

(2) The rate of change of momentum is equal to the force.

(3) Action and reaction are equal and opposite.

These laws or principles, together with the following fundamental assumptions
(some of which are implicitly assumed in Newton's laws) amount to the Newtonian
framework:

1- Absolute time, motion and space as defined in Newton's "Philosophiae Principia
Mathematica"

2- Space and time are continuous [i.e. not discrete. This is necessary to make use
of the Calculus. There is no limit to the accuracy with which quantities such as

time and space can be measured.




3- There is a universal (absolute) time. Different observers in different frames
measure the same time. In fact, Newton also regarded space to be absolute as
well.

However, the absoluteness of space is not necessary for the development of the
Newtonian framework, as space intervals turn out to be invariant under Galilean
transformations. Historically, Newton demanded this for subjective reasons.

Mass remains invariant (absolute) as viewed from different inertial frames.

The Geometry of space is Euclidean. For example, the sum of angles in any
triangle equals 180 degrees.

lengths or distances are absolute no matter what is the velocity.

Infinitely many inertial frames of reference, each one in relative motion to
absolute space.

Universal time throughout space where all inertial frames share this universal
time.

All laws of physics are the same in all inertial frames of reference whether at rest
or in motion relative to absolute space.

10-Speed of light is instantaneous (information transmission is instantaneous).

11- All possibilities of unbounded, relative motion.

12-Newton's Law of Universal Gravitation holds as derived from Newton's
"Axioms, or Laws of Motion".

13- Inertial frames of reference are related by Galilean rules of transformation - i.e.,
simple vector addition and subtraction .

14- Action at a distance - corpuscular theory of the ( luminiferous ) aether.

15-Euclidean geometry of space - Cartesian or polar coordinates systems.

16- Conservation Laws of energy, mass and momentum.

17-Gravity attraction is directly related to mass and inversely to absolute distance.




18-Bodies or objects are constituted of matter whose measure is the amount of (
inertial ) mass.
19-Energy and mass are distinct entities as is force

4-Galileo’s relativity

Newton’s laws of motion must be implemented relative to some reference
frame.

A reference frame is called an inertial frame if
Newton’ s laws are valid in that frame.

Such a frame is established when a body, not
subjected to net external forces, moves in
rectilinear motion at constant velocity.

If Newton's laws are valid in one reference frame, then they are also valid in
another reference frame moving at a uniform velocity relative to the first
system.

- P=(xy 2t
K (x, v )

This is referred to as the Galilean invariance. V o
- P:(X./y"z”t')
Galilean transformation: for a point P
Inone frame K: P=(x,y, z, 1)
Inanother frame K: P=(x", y', z’, ')
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Galilean Transformation

Conditions of the Galilean Transformation

B Parallel axes

B O’ has a constant relative velocity in the X-direction with respect to O

B Time (t) for all observers is a Fundamental invariant, i.e., the same for all inertial
observers

B Time is universal, so therefore t =1t’.

Galilean transformation

V]

Galilean transformation Inverse Galilean transformation

'

x=x"+v Ar x-= X=v Ar

The corresponding velocity transformations are
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Accelerations are the same in both Kand K frames!
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Note that for two inertial frames, the a, =a, , a, =a, ,and a, =a, .

Sucesse Or Advanteges of Galilean Transformation:

Galileo Transformation has proved several of physics' laws such as conservation of
mass , energy, momentum, and second newton's law.

Frailer of Galilean Transformation :
Maxwell's equations, which summaries electricity and magnetism, cause the Galilean

Transformation to fail on following :
. Galilean Transformation failed to explain the actual result of Michelson-
Morley experiment.
. They are not invariant under the Galilean Transformation.
. Galilean Transformation failed to prove unchanged of electromagnetism's

laws , specially the rectilinear theory of light.
. They predict the speed of light is independent of the inertial reference frames
d=c+uv
instead of ( ) as required by Galilean Relativity.

Example : The nature of rectilinear propagation of light
Assume there is a signal of light moves by a velocity (C) in Either medium , if there is

an observer exist in this medium and measures the light speed as (C). If there is




another observer exist in another inertial frame reference and moves with relative

velocity (v) with respect to the first inertial reference frame. This observer will

measure light velocity given by C — v , if he moves in the same direction of light
propagation and he will measures it by C + v , if he was moves in opposite direction

of the propagation of light as shown in the following Fig.

> >

C+v

This means that, the speed of light not constant , it differ from reference frame to
another, and it only has constant value at inertial reference frame , it is the Either
medium.

The Transition to Modern Relativity

eAlthough Newton’s laws of motion had the same form under the Galilean
transformation, Maxwell’s equations did not.
eln 1905, Albert Einstein proposed a fundamental connection between space and time

and that Newton’s laws are only an approximation.
1: The Need for Ether

eThe wave nature of light suggested that there existed a propagation medium called

the /luminiferous etheror just ether.

L Ether had to have such a low density that the planets could move through

it without loss of energy




Q It also had to have an elasticity to support the high velocity of light waves

Maxwell’s Equations

eIn Maxwell’s theory the speed of light, in terms of the permeability and permittivity of

free space, was given by

v=c=1/\J14ph5q

e Thus the velocity of light between moving systems must be a constant

An Absolute Reference System

eEther was proposed as an absolute reference system in which the speed of light was
this constant and from which other measurements could be made.
e The Michelson—Morley experiment was an attempt to show the existence of ether.

2.2: The Michelson-Morxley Experiment
B Albert Michelson (1852-1931) was the first U.S. citizen to receive the Nobel

Prize for Physics (1907), and built an extremely precise device called an
interferometer to measure the minute phase difference between two light
waves traveling in mutually orthogonal directions.

The Michelson Interferometer
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1-AC is parallel to the motion of the Earth inducing an “ether wind”
2. Light from source S is split by mirror A and travels to mirrors C and D in
mutually perpendicular directions

3. After reflection the beams recombine at A slightly out of phase due to the

“ether wind” as viewed by telescope E.

Typical interferometer fringe pattern expected when the system is
rotated by 90°

The Analysis

Assuming the Galilean Transformation
Time t; from A to C and back:
£, N £, 2cd, _261[ 1 ]

f, = = =
! 1—v*/¢c?

Cc+v CcC—Vv 02—V2 C

Time t2 from A to D and back:

2¢, 20, 1

_\/02—v2 c _\/1—v2/02

So that the change in time is:

At —t,—t, =2 iz — ‘1
> e \/1—v2/02 \/l—vz/c2

Upon rotating the apparatus, the optical path lengths £, and £, are interchanged

75

producing a different change in time: (note the change in denominators)




[ s | " Ez _
~ _tz_tl_z[l—vz/cz \/l—v2/02]

Thus a time difference between rotations is given by:

2( £, + /¢ b, + 4
Af'— Af = = 1 2 £ 2 j
c(l—vz/c2 1—v2/c?

and upon a binomial expansion, assuming v/c << 1, this reduces to

AL'— At =Vv3(L,+£5)/C

Because v2/c? « 1, this expression can be simplified by using the following binomial
expansion after dropping all terms higher than second order:

(1 —x)"=1-nx (forx<<1)

2
In our case, x = —, and we find
[

The time difference between the two light beams gives rise to a phase difference
between the beams, producing the interference fringe pattern when they combine at the
position of the telescope. A difference in the pattern (Fig. 1.6) should be detected by
rotating the interferometer through 90° in a horizontal plane, such that the two beams
exchange roles. Then

Ad=cAt ~ 107"m for L=10mand (v/c)*~ 1073,

Fixed spacing
| (one fringe) |

Fixed
marker




Figure 1.6: Interference fringe schematic showing (a) fringes before rotation
and (b) expected fringe shift after a rotation of the interferometer by 90°.

The corresponding fringe shift is equal to this path difference divided by the wavelength
of light ,A , because a change in path of 1 wavelength corresponds to a shift of 1 fringe.

< 2
Shift — ==Y
)Li'"_
Specifically, using light of wavelength 500 nm, and Ad = 2.2 X 1077m we find a
fringe shift for rotation through 90° of
Ad 2.2 % 1077 m

Shift — — o 0.40
! A 5.0 % 107 m

Result: The precision instrument designed by Michelson and Morley had the capability
of detecting a shift in the fringe pattern as small as 0.01 fringe. However, they detected
no shift in the fringe pattern.

Results

OUsing the Earth’s orbital speed as: V=3x10"m/s

etogether with £:1=€,=12m

oS0 that the time difference becomes At’'- At = vz(Bl + 82)/63 =8x10"s

OAlthough a very small number, it was within the experimental range of measurement
for light waves.

Michelson’s Conclusion

eMichelson noted that he should be able to detect a phase shift of light due to
the time difference between path lengths but found none.

eHe thus concluded that the hypothesis of the stationary ether must be
incorrect.

e After several repeats and refinements with assistance from Edward Morley
(1893-1923), again a null result.

e Thus, ether does not seem to exist!




Possible Explanations

eMany explanations were proposed but the most popular was the ether drag
hypothesis.

O This hypothesis suggested that the Earth somehow “dragged” the ether
along as it rotates on its axis and revolves about the sun.

This was contradicted by stellar abberation wherein telescopes had to be tilted to

observe starlight due to the Earth’s motion. If ether was dragged along, this tilting
would not exist. The Michelson-Morley experiment has been refined and repeated
many times. Several of these results from the period 1881-1930 are summarized in
figure (6). On the vertical axis we plot the observed fringe shift and on the horizontal
axis we plot the expected fringe shift as calculated from the Galilean transformation. If
the speed of light is constant, then zero fringe shift is expected. In practice a small
fringe shift is observed due to the finite precision of the experimental apparatus.

1.2

Obeserved
fringe
shift

1887 experiment

L B o ] - ] Special
0.2 0.4 0.6 0.8 . ) relativity

Expected fringe shift
(Galilean transformation)

The difficulties raised by this null result were tremendous, not only implying that light
waves were a new kind of wave propagating without a medium but that the Galilean

transformations were flawed for inertial frames moving at high relative speeds. The
stage was set for Albert Einstein, who solved these problems in 1905 with his special

theory of relativity.
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Chapter (2) : Relativity (1)

Special Relativity ‘

Difference between the special and general theories of

The special theory of relativity

* The special theory of relativity is based on two ideas: all observers measure the same
speed of light in a vacuum, regardless of their speed relative to the light source; and
there is no absolute frame of reference.

* To a stationary observer watching an object travelling at close to the speed of light:
time appears to slow down; mass appears to increase, and length in the direction of
travel appears to decrease.

* Because all motion is relative, an observer travelling at close to the speed of light
(relative to a ‘stationary’ observer) will see that time, mass and length for a stationary
observer have all changed.

* Objects with mass cannot reach or exceed the speed of light.

* Energy and mass are equivalent (E = mc2).

The General theory of relativity

*Space and time merge into four-dimensional spacetime.

* Large masses distort spacetime.

* Gravity results from the distortion of spacetime.

* Gravity causes light to bend towards large masses because of the distortion of
spacetime.

* Time runs slower in areas where the gravitational field is stronger. Einstein versus
Newton

in areas where the gravitational field is stronger. Einstein versus Newton




Postulates of special relativity:

1. The Principle of Relativity: All the laws of physics have the same form
in all inertial reference frames.

In other words, covariance applies to electromagnetism (there is no ether)
as well as to mechanics.

. The Constancy of the Speed of Light: The speed of light in vacuum has
the same value, ¢ = 3.00 x 10% m/s, in all inertial frames, regardless of
the velocity of the observer or the velocity of the source emitting the
light.

This postulate is in fact more or less required by the first postulate. If the
speed of light was different in different frames, the Maxwell equations
governing the propagation of light would have to be frame-dependent.

In fact, Einstein said he was completely unaware of the MM experiment
at the time he proposed his postulates. He was just thinking about the
theory of light as being absolute and frame independent.

These two apparently simple postulates imply dramatic changes in how we
must visualize length, time and simultaneity.

1. The distance between two points and the time interval between two events
both depend on the frame of reference in which they are measured.

2. Events at different locations that occur simultaneously in one frame are
not simultaneous in another frame moving uniformly with respect to the
first.

To see what exactly is true, we need to first think about how an
inertial reference frame is defined. We use a coordinate grid and a set of
synchronized clocks throughout all space.

As an aside, we should note that we are already questioning that such a
picture actually exists when looking at very tiny distance scales where
effects of quantum gravity are expected to enter.

An inertial reference frame is probably only an effective description that
is only valid up to the Planck mass scale.




Figure 3: Picture of an inertial reference frame.

Success or Advantages of Special Relativity Postulates:

1. No absolute time, motion or space, rather ( space - time ) spacetime

2. Lengths contract at velocities approaching c relative to stationary observers.

3. Infinitely many inertial frames of reference, each one in relative motion to each other
4. Each inertial frame has its own time dilation

5. All laws of physics are the same in all inertial frames of reference which leads to the
invariance of the speed of light, ¢

6. Speed of light is finite ( information is finite transmitted )

7. All possibilities of unbounded, relative motion with upper limit of velocities of
bodies and particles held at c, speed of light

8. Newton's Law of Universal Gravitation is only true as an approximation of physical
reality for relative velocities v << ¢

9. Inertial frames of reference are related by (Fitzgerald -) Lorentz Transformation rules




10. Conservation Laws of energy, mass and momentum are maintained but in

relativistic terms with finite ¢

11. Energy and mass are equivalent, force being a manifestation of energy
Let’s return to the concept of time.
Example A
Suppose time were uniquely definable and the same in all frames.

Consider a (small) plane moving at speed v (and very close to ground)
in the +x direction relative to someone on the ground.

The whole (P) plane picture above is moving with velocity v relative to the ground (G).

Figure 4: The frame for a plane moving relative to the earth.

When the plane is at ’ = 0 someone at ' = —D flashes a light (these
are the plane’s coordinates). If time is universal then both P (plane) and
GG (ground) agree that the light flashes at a certain time, say t = ¢’ = 0.

The time at which P thinks the light arrives at 2’ = 0 (the plane never
moves from x’ = 0 — he is at rest in his coordinate system) is t' = D/c
(assuming light travels with velocity c).

The time at which GG thinks the light arrives at the plane would also be
t = t'’ = D/c if time is universal. However, since the plane has moved




by an amount

extra distance = v—
c

according to G while the light has been traveling, the G observer
concludes that the velocity of light is

distance D + 'v%

tame )
C

= v + c. (10)

Well, this contradicts Einstein’s postulates of relativity. It has to be that
the clocks in the G and P frames are not synchronized in the manner we
assumed or that distance scales are not the same in the two frames. In
fact, both apply.

Example B

e Consider 2 observers A and B that pass one another, with, say, B moving
with velocity v in the x direction relative to A who we envision is at rest
in “our” frame.

A burst of light is emitted as they pass one another. Each claims that the
light travels outward in spherical waves with velocity ¢, with the spheres
centered on themselves.

A modern day application is that a terrorist dropping a bomb (that
immediately detonates) from a fast moving car might hope to quickly
leave behind the destruction and explosion. But, to the extent that
electromagnetic radiation was the only consideration, he would always be
at the center of the explosion no matter how fast he was moving in some
other frame.

This is completely different from what one would conclude if light traveled
in a medium like water.

Consider two boats, one (A) at rest in a pond, the other (B) moving
rapidly (but without creating any wake) relative to the first boat.




B drops a rock in the pond as he passes A.

Because A is at rest in the pond, the ripples spread out in concentric
circles from his position and B, looking back, agrees. Indeed, he could
even go faster than the ripples, in which case they would never catch up
to him.

Putting Einstein’s visualization into mathematical language, we would say

that the expanding spheres of electromagnetic radiation should obey

e’ +y? + 22 = for Ay 2?4y 4+ 2% =27 for B, (11)

These are the equations defining how each sees the light fronts (in his
own frame) emanating from the initial flash.

Demanding that the transformation from the unprime to prime system
be a linear transformation! with coefficients determined only by the
fundamental constant ¢ and by the relative velocity of the two frames v,
and requiring that ’ = 0 must correspond to = = vt (see Fig. 1), there
is only one solution, the so-called Lorentz transformation:




Transformation between systems

The constancy of the speed of light is net compatible with Galilean
transformations. Consider a wave front starting at the origin of two frames
whose origin coincide at # = 0. In terms of the coordinates of the two frames

2 2 2 2,2
X+ vz =0t
P 2 2 2 2
xr+ ez =0t
According to the Galilean transformation

X =x-Vt

!

y =Y.

I 2,2y, 2, .2 22
m x4y 4+ = (X -2xVt+ V) 4y +27 #Ct

\ (A6)

There are a couple of extra
is not compatible with the constancy of terms (-2xvt +v2#) in the
the speed of light primed frame.

Therefore the Galilean transformation

4. Lorentz Transformation

Now we wish to derive the transformation equations for the displacement and velocity of an
object—the relativistic version of the Galilean fransformation equations. In what follows, we’ll

. 1
be setting y =-———.

-1

\' c




a. Two frames
Consider two mertial reference frames. S & S’ and assume that O =0’ at 1" =0

Al

g 1 9

What 1s the x-distance from O to the pomnt P, as measured in the S° frame?

In effect, then, we'll have Ar=r and A" =1".
C=x"4v'

- X o~
In the S frame. / = x.so (" =— also. Set ‘em equal.
4

\- ’ ’
—=X +VvI

Y
X= }/(,\" -+ 17')

’

: > X
On the other hand. as measured 1n the S frame. x =vr+—. Set them equal.
Y

Lorentz Transformation can be written as :

o X"+ WVt
J1i—wvz2/c?z

4

Inverse

= -
y =Yy
z =2z’ relations

. t'+Vx/C?
J1i—wvz2/c?z

t




Lorentz Transformation for velocity can be written as :
=dx/dt , u, =dy/dt , u, =dz/dt

dx = p(dx +Vvdt) . ux +V
dt  p|dt +(v2/C?)dx |

1+uU X >

dy dy _ uy

dt ~ y[dt +(v2/C?)dx ] caruxY)
C

dz dz B uz
dt  y|dt +(v2/C?)dx |

V4
7L +u XCZ)

The Inverse Lorentz velocity transformation

7>7A—uUu \ /C?)
dz u, —V

dt > (@A —u Vv /C?)

Note that if v/e¢ < 1, then v+ — 1 and we get back the Galilean
approximation.

But, if v/e — 1, then v > 1 and there are big changes.

9]
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properties of ¥

Recall 8 = v/c < 1 for all observers.

(o))

1) ¥V 21 equals 1 only when v =0.
2) Graph of 8: (note v #¢)

Relativistic factor y
N

= N
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An important consequence

Using the Lorentz transform equations, we can easily show that x? — %1% =
x’? — ¢*t’? | for any choices of .t and the corresponding values of x’.1’.

xy - x4 = *t* — 22 — y* — 22 In the prime frame, x| = (ct’,2',y’, 2’) and
! ! 2412 o I = ;-
X Eg = CH =B =Y~

We see that a restatement of the Lorentz transformation equations,
equivalently Einstein’s frame-independent for the velocity of light, is to say

that the square of a 4-vector is frame-independent.

C. 4-vectors

Suppose that when O = O°, a flash of light is emutted from the origin O. In the S frame, the
distance the light wave front travels in time 7is 7> = x* + v> + =% =¢%r?. Measured in the S
frame, it’s #"? = x"? + 1'% + 2’ = ¢’1"?. Subtract the second expression from the first and
collect the S frame on one side of the equal sign, the S* frame on the other side.

re=r"* =c’t* -c*t"*
’ y ” Y
re—ct=r--cr-
There 1s this quantity, a generalized displacement (call 1t 5) which 1s the same in the two inertial
reference frames.

> )

$ST =5
We see that the quantity (icr) “acts like™ a component of displacement along a fourth axis. The

- . N . Y b 2y Y » b °
interval between any two events in space-time i1s As~ = Av™ + Ay~ + A" —¢c"Ar”. The interval
1s invariant under the Lorentz Transformation. That is, as measured in any two inertial frames,

’ 2 . . . ~ . . ~ . .
As® = As”. This is an extension of the invariance of lengths under a rotation of the coordinate
axes.

example:

4, =—0.5c and #z = —0.8c. both as measured in the S frame. The S” frame rides along with

spaceship B. Therefore, v =iy .




Uy =V _ —0.5¢ —(—0.8¢) _

- 08
l-—u, 1-——0.5c

c c
Be careful with the directions of the velocities.

Vi -
Note that when # << ¢ and v<<c, then — — 0 and #" = —v . On the other hand. if  =c.

P
r i ‘-
41——1

-v | c)

[

c c

Important sucsseses of the special relativity

1- Time dilation

The most important outcome of Lorentz transformation that ( t =t) . isTh means that,

iIf we put a clock inside different coordinates, the rate of its rotation will changes .

To explain the mean of time dilation using Einstein train experiment , if there is a
light signal emits from a bulb light exist at train's car surface and incident on a mirror
fixed at top roof of the car and reflected back the surface. The train moves with
velocity (V) .

Event : Is the Light Signal , studding its propagation from the starting point of its
emission until it reflection from the fixed mirror at roof of the train's car surface .
Observers O and O : Suppose there are two observers, one exist at fixed inertial

reference frame (O). and the other exist inside the train's car (O).

The observer (O). Measures the travel of time by dividing the resultant distance by the

speed of light .
The O observer will measure the time of this event by dividing resultant distance by

the speed of light .




NGIES : The O™ observer is fixed with respect to

i s Mirror
the event , its position coordinates doesn't change

between the starting and ending the event as shown
in the drown fighter.

Travel distance equals twice height of roof of the

train's car (2 L') and the event time period with

respect to O observer calculated as :

- - -

The O observer carried out his measurements, but he moves with respect to the
event ( or the event moves with respect to him) . Here, the initial and final point of
event occurs at two different positions with respect to the O observer as shown in a
given fig. During this time period of the event , the train travel forward to the right a
distance (vt), wheret is event time measured by the O observer.

This Fig. illustrate the path of light signal with respect to the O observer , here the
path length of the light signal is greater than its path with respect to the O™ observer.

From the second postulate of special relativity, the velocity of the light signal is
constant (not change) with respect to the tow observers and equals the speed of light
(c) . Because the path of the light signal with respect to the O observer is longer than




that of the O observer, then the measured time by O observer is greater than that of O~
observer.

Mathmatical Forms btween the measurements of the two observers O and O

Consider the bold line represents the path of Top of traim (with mirror)

X,

signal light which measured by O™ observer, and Light puke
going mp

~ Light pnke
b goinge down

dashed line represents the path of light measured

i W

by O observer . In order to the light travel the

Train Height

Bottom of traim

distance from the surface of train's car to the =
totion of train (v = 0LG o)

mirror in the roof of the car , it spend a half (t/2) of total time. Using mathematical
Fesajorse theory on the left triangle. Considering L' is the height of the train's car as

2 2
DR
2 2

follow :

from...Eq(2)

We got the relation between time measurements of each observer




Note : Equation (3) represents the measured time dilation according to special

relativity. Always the parameter, (y) >1 , This leads to &t >4t e.g : this mean that

the time which measured by a fixed observer is greater, while the moving watch its
measured time seems to be delay with respect to a fixed observer.

The studies of time dilation are important in the emission of radiation processes,
nuclear diffusion and interaction of primary particles, because their velain is

smallerocities are much greater , because it close to the speed of light. This cause the

changes in (y) parameter values of are greater.

Important Notes :

1- Because the velocity of the train is smaller than the speed of light , this leads

to > 1. For this reason, time measurementsof O >0 e.g: t<t .

2- For velocities v << ¢, such as velocities of cars, train, rock . These velocities

are smaller compared to light speed. This mack the calculation of the
dominator in Eq (3) = 1. This mack the measurements are equal fro the two
observers, This means that dilation of time can not measured except at high
velocities compared to light speed .

3- At high velocities , the moving observer watch with respect to the event , it

measure long time than that of the fixed observer with respect to the event.




4- The proper Time, it is the measured time by the fixed observer with respect

to the event.

Example

The lifetime of a pion in its own rest frame is A" = 2.6x10 *sec. Consider a pion moving with
speed v=0.95¢ m a lab—what will be measured as its lifetime in the lab?

i -
>
mn

o

”

Ar” 2.6x10 ®sec  2.6x10 °sec
v A1-0.0952 0.312

i
Vit

The lifetime of a fast-moving particle 1s measured by noting how far 1t travels before decaying.

AT =

In this example £ = vA7 =0.95¢-8.33x10 ™ sec = 23.7m. In practice, we measure / and compute
At

C. Proper time
The proper time 1s the time interval measured by an observer for whom the two events occur at
the same place, so that Av'=Ay' =Az"=0.

Space contraction

Consider the time for a pulse parallel to the system velocity to do a round trip:

Stationary clock WO dock:

_
L L

L [= +
i C—V C+V

An observer moving along an object will find it
shorter than it would be if the observer was
standing still.




Length Contraction (Lorentz Contraction)

+ Suppose that a rod lies at rest along the x -axis of frame S. Let the left end of the
rod be at x; and the right end at x . so that the length of the rod as measured in
frame § 1s L' = x — x; . What is the length of the rod as measured in frame 5?

Fram Lorntze transformation
X — ut

v 1—u?/c?
we find that

, ] (x2 —x1) —u(ta — ny)
Xy — X =

} V1—u?/c?

and with # = 5 (naturally both ends of the rod
are measured at the same time in frame S)

L

V1 —u?/c?

Which is shorter, L or I ?

x'=

L' =

Length Contraction and Proper Length

¢ Once again. we are sumply applying an additional postulate to Newtonian physics.
that is Einstein’s 2™ postulate.

Consider the light clock described before. but now with one clock oriented
orthogonal to and the other clock parallel to the direction of motion of the &
frame. Thev must both tick at the same rate as measured by an observer in the §
frame (as time can only run at one rate in a given reference frame). although
suffering from the effect of time dilation.

According to the observer in the S frame. if there
is no length contraction. the light pulse of the
orthogonally-oriented clock makes a round trip in ¢
a shorter time interval than the light pulse of the
parallel-oriented clock. (Imagine that the S
frame 1s stationary and the S frame is being
carried to the left by a river: the cross-stream
swinuner makes a round trip faster than the
upstream-downstream swimmer.) This cannot
happen as both clocks tick at the same rate.
implying that the parallel-oriented clock mms
suffer length contraction. z

y
A




« Let us return to the derivation for the length of a rod in frame S as measured by
an observer in frame S where the rod aligned in the direction of motion:

L= L 1-u?/c?

o Letuscall L' = L as the rod is at rest in frame §". Letus cal L= Ly, as the
rod 1s moving in frame S. Then __ y

\ )
f S'A
mering = LrestV 1 — ”2/C2- 54

¢ Lengths (distances) are therefore measured
differently by two observers in relative motion.
Who measures the longer length. an observer at
rest or moving with respect to the object?

+ Note that only lengths (distances) parallel to the
direction of relative motion are affected by
length contraction. Lengths (distances)
perpendicular to the direction of
relative motion remain unchanged

Simultaneity

a. Space-time

Each event has associated with it four numbers: x, v, = coordinates and a “value of time” which
we read off a clock located at that spatial location. There 1s no central umversal clock. rather
there 1s a clock at every point in space.

b. Synchronization

We would like all clocks 1n a reference frame to display exactly the same reading
simultaneously, but can this be arranged? Only by the exchange of signals, which is another wa
of saying only in terms of intervals. However, as we have seen, intervals are not the same for
observers m different mertial reference frames. Therefore, the concept of two events being
simultaneous has no absolute meaning.

c. Non-simultaneity

Two events viewed as simultaneous 1 one frame will not be seen as occurring simultaneously
another frame.




example: a tram moving with constant velocity on a straight, smooth track. One observer rides
on the train, the other observer stands beside the track.

0

Flashes of light are emutted at the points C; and C, when the origins (O & O") of the two frames
comcide. To the trackside observer at O. the flashes are simultaneous. To the observer on the
train, however, the flash emitted at C’; 1s received before the flash emitted at C’;. Yet both
observers measure the same speed of light. c.

Twin Paradox
The Set-up

Twins Mary and Frank at age 30 decide on two career paths: Mary decides to become
an astronaut and to leave on a trip 8 light years (ly) from the Earth at a great speed
and to return; Frank decides to reside on the Earth.

The Problem : Upon Mary’s return, Frank reasons that her clocks measuring her age
must run slow. As such, she will return younger. However, Mary claims that it is Frank
who is moving and consequently his clocks must run slow.

The Paradox : Who is younger upon Mary’s return?

The Resolution

1) Frank’s clock is in an inertial system during the entire trip; however, Mary’s

clock is not. As long as Mary is traveling at constant speed away from Frank,
both of them can argue that the other twin is aging less rapidly.
2) When Mary slows down to turn around, she leaves her original inertial system

and eventually returns in a completely different inertial system.




3) Mary’s claim is no longer valid, because she does not remain in the same

inertial system. There is also no doubt as to who is in the inertial system. Frank
feels no acceleration during Mary’s entire trip, but Mary does.

Frank’s clock is in an inertial system during the entire trip; however, Mary’s
clock is not. As long as Mary is traveling at constant speed away from Frank,
both of them can argue that the other twin is aging less rapidly.

When Mary slows down to turn around, she leaves her original inertial system
and eventually returns in a completely different inertial system.

Mary’s claim is no longer valid, because she does not remain in the same
inertial system. There is also no doubt as to who is in the inertial system. Frank
feels no acceleration during Mary’s entire trip, but Mary does.

Spacetime

e\When describing events in relativity, it is convenient to represent events on a
spacetime diagram.

eln this diagram one spatial coordinate x, to specify position, is used and instead of
time £ ct is used as the other coordinate so that both coordinates will have
dimensions of length.

eSpacetime diagrams were first used by H. Minkowski in 1908 and are often called

Minkowski diagrams. Paths in Minkowski spacetime are called worldlines.

Spacetime Interval

Since all observers “see” the same speed of light, then all observers, regardless of

their velocities, must see spherical wave fronts.
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2
elf we consider two events, we can determine the quantity As between the two

events, and we find that it is invariant in any inertial frame. The quantity As is known
as the spacetime interval between two events.
There are three possibilities for the invariant quantity As*:

1) As’ = 0: AX¥ = & AF, and the two events can be connected only by a light

signal. The events are said to have a lightlike separation.

2) As® > 0: AX > & Af, and no signal can travel fast enough to connect the two

events. The events are not causally connected and are said to have a
spacelike separation.
3) As® < (6 AX < ¢ AF, and the two events can be causally connected. The

interval is said to be timelike.




relativistic Doppler shift.

This is a particularly important application as it is the Doppler “red’” -shift
that we use to tell us that the universe is expanding from something like
an initial big bang.

You are all familiar with the usual Doppler shift in which the pitch of sound
for a whistle on a train headed towards you has a higher pitch than the
whistle sound when the train is moving away.

This is because successive waves emitted by a source moving towards you
are closer together than normal because of the advance of the source —
and since their separation is the wavelength of sound, the corresponding
frequency is higher.

The formula in the case of sound is probably something you have derived

in an earlier course.
1+ %
J = o 1_v )" (32)

C
where fj is the frequency of the sound as measured by the source itself,
f is the frequency as measured by the observer, c is the speed of sound,
v is the speed of the observer (4 for motion toward source), and V is
the speed of the source (4 for motion toward the observer).

This classical Doppler effect evidently varies depending upon whether the
source, the observer, or both are moving.

e This does not violate relativity because sound does travel in a medium
— unlike light.

e Since light does not travel in a medium, the light wave Doppler effect
will be different.
It can be derived using the concepts of time dilation. My derivation is
an alternative approach to that given in the book. Note, in particular,
that the book assumes that the source is moving towards the observer.

Imagine a light source as a clock that ticks f, times per second and emits
a light wave peak at each tick. The proper time in the source rest frame
between ticks is t, = 1/ fo.

Consider a source at rest and an observer moving away from it with
velocity v. The interval between ticks as seen by this observer is given
by time dilation: ¢ = ~i,

As viewed by the observer, he travels the distance vt away from the
source between ticks.

Thus, each tick takes a time wvt/c longer to reach him than the simple




time t between ticks.

The total time between the arrival of successive peaks (successive ticks)
is then

vt
t+— =1+ )—’Yt0(1+ =)
1—0——

U
1/1— 1—

The corresponding frequency of the ticks or wave peaks is just the inverse:

(33)

f (receding case) = - = = fo /15 G
receding case) — — : :
) T4

Now, although | derived this for an observer moving away from the
source, the same result applies if the source moves away from the
observer.

You should also note that the frequency shift depends only on the
relative velocity of the source and observer. One does not need to
reference any medium in which light travels.

e Since wavelength and frequency are inversely related, fA = ¢, the shift
in A obeys the inverse formula.

Example:
Determining the speed of recession of the Galaxy Hydra.

A certain absorption line that would be at Ay = 394 nm were Hydra at
rest, is shifted to A = 475 nm according to observations on earth.

We use

1
A= 1+ Ao (35)

to find that

2
21
— 0

Therefore, Hydra is receding from us with a velocity of v = 0.185
5.54 x 10" m/s.

***Show tape #42 on space-time diagram starting at 20 min mark. *¥*¥

= 0.185. (36)

=




Solved Problems

Problem (1) : The time age for nuclear particle befor transferring to another form
equals 1.8 x 10® sec, when it at rest in laboratory research. What the time age of
this particle when its velocity becomes 0.95 of light speed?

Solution

IN this case , v=0.95¢ Then:

-3
1.8%10 _
At' = x = 576x10"° Sec.

el

The result shows that the time age of the particle equals three time its time age

when it becomes at rest

Problem (2) : what is the speed of the airplane, which has a clock rotates by
one second delay with another clock exist on Earth frame ?.
Solution

Put: At=3600 Sec g At"'=3601 Sec

3601 = ﬂ

(o) _3600 _ (v)'_ (3600}
c) 3601 e 3601
v= - L=7.1x10" m/Sec
36[}1

Problem (3) : If the average age time of the Meson particle () which moves

-6
by a velocity 0.9 ¢ is %10 ~ Sec  cajculate its average age in a steady frame

reference.
Solution

i

At'=6x10 ~ Sec , uv=09c




= .J0.19 x6x107°

—2.62%x107°% Sec

Problem (4) : Airplane moves with respect to the Erath's frame reference by a
velocity 600 m/Sec jts orignal length equals 50 m . what is the decrease in length ,
which seems to be less with respect to an observer exist on the inerial Earth's surface
frame .

Solution

v=600 m/Sec , c=3x10°m/Sec, L=50m

, v’ 600 ~13 AL 10710 m
L'=L1-|—| =50.11- = 50+1-4=10 .
kA
c 310

Problem (5) : A particle has a mass of 5 Kgm , How much its mass when it
moves by a velocity 0.6 c. ?

solution
m=5Kg, 6 wv=06c

m

3 50

SME e = > = == =f;25 Kg
1|1_ ET \/1_[[}_5)2 Jo6d4 8 ' '
C

1]

Problem (6) : Particle has a mass 100 Kg, it moves by a velocity 0.8 c. How
much its resident mass

Solution
m=100Kg., uv=0.8¢




: \
] = -m, =100 -/1- (0.8)°

=06 kg =100=0.4

Problem (7)
Time Dilation (“Moving Clocks Run Slow™)

oAt what speed does a clock move if it runs at a rate which is one-half the rate of a clock at rest?

Solution

We assume that the clock is at rest in S’. As observed by stationary observers in S, the clock moves in the
positive z-direction with speed v. Text Eq. (1.30):

t=7 r’+LT’
—"} CQ

relates the time t measured in S with the time ¢’ measured in S’ where

1

¥ =
I

and
B=v/c

Let At' be a time interval measured by an observer at rest in S’. (At’ is a proper time. At’ is measured

when Az’ =0.)




Let At be the time interval measured by observers at rest in .S.

Then
At = yAt

2
At
F=y\t- (E)

It follows from Eq. (5) that § = 0.866 when At = 2At’.

Eq. (4) indicates that the time interval At measured by observers at rest in S is larger than the time interval
At' measured by an observer at rest with respect to the clock. That is, “moving clocks run slow”.

and therefore

It is important to note that Eq. (4) relates clock readings on a single clock in S’ with clock readings on two
separate clocks in S.

"Moving clocks run slow” is illustrated by the LIght Pulse Clock. For this clock, a light pulse is directed
along the positive y' axis and reflected back to its starting point. The traversal time is recorded as At'. In S,
the clock moves along the positive = axis with speed v. A stationary observer records the time the light pulse
starts and a second stationary observer, farther to the right along the z axis, records the time when the light
pulse returns to its starting point. This traversal time is recorded as Atf. Because of the sideways motion, the
light pulse travels farther in S than in S’. Since the speed of light is the same in both frames, it follows that
the At is larger than At’. The moving clock runs slow.

Problem (8)
Length Contraction (“Moving Rods Contract™)

e At what speed does a meter stick move if its length is observed to shrink to 0.5 m?7

Solution

We assume that the meter stick is at rest in §’. As observed by stationary observers in S, the meter stick
moves in the positive z-direction with speed v. Text Eq. (1.25):

e ) )

relates the position ' measured in S” with the position z measured in S.

Let Az’ be the length of the meter stick measured by an observer at rest in . (Az’ is the proper length
of the meter stick.)

The meter stick is moving with speed v along the r axis in S. To determine its length in S, the positions

of the front and back of the meter stick are observed by two stationary observers in S at the same time. The
length of the meter stick as measured in S is the distance Az between the two stationary observers at At = (.




Then

where 7 is given by Eq. (2). It follows that

It follows from Eq. (8) that 3 = 0.866 when Az = Az'/2.
Eq. (7) indicates that the length Az of an object measured by observers at rest in S is smaller than the
length Az’ measured by an observer at rest with respect to the meter stick. That is, “moving rods contract”.
It is important to note that Eq. (7) compares an actual length measurement in S’ (a proper length) with a
length measurement determined at equal times on two separate clocks in S.

Problem (9)

Time Dilation for a Slow Moving Object (“Moving Clocks Run Slow™)

An atomic clock is placed in a jet airplane. The clock measures a time interval of 3600 s when the jet moves

with speed 400 m/s.

oHow much larger a time mterval does an identical clock held by an observer at rest on the ground measure?

Solution

We take the S frame to be attached to the Earth and the S’ frame to be the rest frame of the atomic clock.

It follows from Eq. (2) that
Y1452

and from Eq. (4) that

6t = At - At ~ F* A1 2

It follows that dt = 3.2 1s when v =400 m/s and At' = 3600 s.




Problem (10)

Muon Decay: Time Dilation (“Moving Clocks Run Slow™)

The muon is an unstable particle that spontaneously decays into an electron and two neutrinos. If the
number of muons at t = 0 is Ny, the number N at time £ is

N = Noe7t/7 (11)

where 7 = 2.20us is the mean lifetime of the muon. Suppose the muons move at speed 0.95¢.
o What is the observed lifetime of the muons?

¢ How many muons remain after traveling a distance of 3.0 km?

Solution

We take the S frame to be attached to the Earth and the S’ frame to be the rest frame of the muon.
It follows from Eq. (4) that At = 7.046 us when At' = 2.2 us and 3 = 0.95.
A muon at this speed travels 3.0 km in 10.53 us. After travelling this distance, N muons remain from an

initial population of Ny muons where

N = Noe /7 = Noe  10-53/7046 — 0 225, (12)

Problem (11)

Length Contraction and Rotation

A rod of length Ly moves with speed v along the horizontal direction. The rod makes an angle 6 with
respect to the z’ axis.

o Determine the length of the rod as measured by a stationary observer,

¢ Determine the angle @ the rod makes with the z axis,

Solution

We take the S’ frame to be the rest frame of the rod.

A rod of length Ly in S' makes an angle 6 with the 2’ axis. Its projected lengths Az’ and Ay’ are

Az’ = Ly cosfy (13)

Ay' = Lysinty (14)




In a frame S in which the rod moves at speed v along the r axis, the projected lengths Az and Ay are given
(15)

Ay' = Ay

by Eq. (7) and
(16)

which equation follows from text Eq. (1.26):
y=y
The length L of the rod as measured by a stationary observer in S is

b= sz Lo (1- 3 cos® 04))1"‘2.

The rod makes an angle # with the z axis in S where
tanf = Ay/Ar = ytanfy.

The rod in S appears contracted and rotated. See also text Fig. (1.14) on page 19 of the text.

Problem (12)
Relativistic Doppler Shift

o How fast and i what direction must galaxy A be moving if an absorption line found at wavelength 550nm

(green) for a stationary galaxy is shifted to 450 nm (blue) (a "blue-shift”) for galaxy A?
¢ How fast and in what direction is galaxy B moving if it shows the same line shifted to 700 nm (red) (a
"red shift")?
Solution

Galaxy A is approaching since an ahsorption line with wavelength 550 nm for a stationary galaxy is shifted

to 450 nm. To find the speed v at which A is approaching, we use text Eq. (1.13):

(19)

[1+7

Jobs = \I.' - .'if source

R

and A = ¢/ f to write
1-8

}‘r:h:r = L'II m }l_-m.grﬁ '




from which
source ;bs

§=2s .
X2 + A2

source 0bs

2N
i;_

It follows that 3 = 0.198 when A.ouree = 550 nm and A, = 450 nm.

Galaxy B is receding since the same absorption line is shifted to 700 nm. Proceeding as above,

2 _ )2
— “obs source

ok AR

obs source

It follows that 3 = 0.237 when A....r. = 550 nm and A.x. = 700 nm.

Problem (13)

Lorentz Velocity Transformation

Two spaceships approach each other, each moving with the same speed as measured by a stationary observer
on the Earth. Their relative speed is 0.70c,

¢ Determine the velocities of each spaceship as measured by the stationary observer on Earth.

Solution
Text Eq. (1.32) gives the Lorentz velocity transformation:

, Uy —
U

* T T )3 23

where u, is the velocity of an object measured in the S frame, u/, is the velocity of the object measured in the
S’ frame and v is the velocity of the S’ frame along the x axis of S.

We take the S frame to be attached to the Earth and the S frame to be attached to the spaceship moving
to the right with velocity v. The other spaceship has velocity u, = —v in S and velocity u/, = —0.70¢ in S’

It follows from Eq. (23) that

26
0.70 = —— 24
1+ (24

solving which yields 8 = 0.41. As measured by the stationary observer on Earth, the spaceships are moving
with velocities £0.41¢.

Problem (14)

Lorentz Velocity Transformation

A stationary observer on Earth observes spaceships A and B moving in the same direction toward the
Earth. Spaceship A has speed 0.5¢ and spaceship B has speed 0.80c.

¢ Determine the velocity of spaceship A as measured by an observer at rest in spaceship B.




Solution

We take the S frame to be attached to the Earth and the S” frame to be attached to spaceship B moving
with velocity v = —0.8¢ along the x axis. Spaceship A has velocity u, = —0.50c in S.

It follows from Eq. (23) that spaceship A has velocity u/ = 0.50c in S’. Spaceship A moves with velocity
(0.5¢ as measured by an observer at rest in spaceship B.

Problem (15)
Speed of Light in a Moving Medium

The motion of a medium such as water influences the speed of light. This effect was first observed by Fizeau
in 1851.

Consider a light beam passing through a horizontal column of water moving with velocity v.

¢ Determine the speed w of the light measured in the lab frame when the beam travels in the same direction

as the flow of the water.
¢ Determine an approximation to this expression valid when v is small.

Solution

‘We assume that the light beam and the tube carrying water are oriented along the positive z-direction of
the lab frame. The speed of light u in the lab frame is related to the speed of light ' in a frame moving with
the water by text Eq. (1.34):

! 7
u +v (25)

YTTE u'v/c?

where v is the speed of the water in the lab frame.
Now u' = ¢/n, where n is the index of refraction of water, so

u_c(l—i—n,ﬁ) (26)

T a\1+8/n

Using
(1+8/n)" '~ (1-8/n) (27)

w=ru(i-2). (28)

it follows that

n n

This equation agrees with Fizeau'’s experimental result. The equation shows that the Lorentz velocity trans-
formation and not the Galilean velocity is correct for light.

Problem (16)

Lorentz Velocity Transformations for Two Components




As seen from Earth, two spaceships A and B are approaching along perpendicular directions.

e If A is observed by a stationary Earth observer to have velocity u, = —0.90c and B to have velocity
u, = $0.90¢, determine the speed of ship A as measured by the pilot of ship B.

Solution

We take the S frame to be attached to the Earth and the S’ frame to be attached to spaceship B moving
with 3 = 0.90 along the = axis. Spaceship A has velocity components u, = 0,u, = —0.90c in S.
Eq. (23) and text Eq. (1.33):
;o Uy 29
Yy Y1 — uzv/c?) (29)
give the velocity components of spaceship A in S’, from which

ul, = —v = —0.90¢ (30)

u; =u,/v=—0.39% (31)

(32)

Problem (17)

Lorentz Velocity Transformation

A spaceship moves away from Earth with speed v and fires a shuttle craft in the forward direction at a
speed v relative to the spaceship. The pilot of the shuttle craft launches a probe in the forward direction at
speed v relative to the shuttle craft.

e Determine the speed of the shuttle craft relative to the Earth.

e Determine the speed of the probe relative to the Earth.

Solution

We take the S frame to be attached to the Earth and the S’ frame to be attached to the spaceship moving
with speed v along the x axis. The shuttle craft has speed u/. = v in S’. Text Eq. (1.34):

, .

- U, +1
$ = T— 73
1 +ulv/c?

gives its speed u, in S as
‘)l'

~

U, = =
1+ 3¢

We now take the S’ frame to be attached to the shuttle craft moving with speed




along the r axis. The probe has speed u, = v in S’. Its speed u, in S is given by Eq. (112) with v replaced

by v from which
3+ 32 2
Uy = (l +3Ji) t (115)

It follows from Eq. (115) that u, — 3v when 3 < 1 and u, — ¢ when 3 — 1.

Problem (18)

Lorentz Velocity Transformation, Length Contraction., Time Dilation

Two powerless rockets are heading towards each other on a collision course. As measured hy Liz, a stationary
Earth observer, Rocket 1 has speed 0.800¢, Rocket 2 has speed 0.600¢, both rockets are 50.0 m in length, and
they are initially 2.52 Tm apart.

o What are their respective proper lengths?

o What is the length of each rocket as observed by a stationary observer in the other rocket?
e According to Liz, how long before the rockets collide?

o According to Rocket 1, how long before they collide?

¢ According to Rocket 2, how long before they collide?

o If the crews are able to evacuate their rockets safely within 50 min (their own time), will they be able to
do so before the collision?

Solution

Eq. (7) relates a rocket’s proper length Az’ with its length Az when moving with speed v as measured a
stationary observer. It follows that the proper length of Rocket 1 is 83.3 m and the proper length of Rocket 2
62.5 m.

We take the S frame to be attached to the Earth with the rockets moving along the r axis; the velocity of
Rocket 1 is 0.800¢, the velocity of Rocket 2 is -0.600c. To determine the velocity of Rocket 1 as measured by
a stationary observer in Rocket 2, we take the S” frame to be attached to Rocket 2. In S, the velocity u, of
Rocket 1 is 0.800c, the velocity v of S" is -0.600c. It follows from Eq. (23) that the velocity u), of Rocket 1 in S’
is 0.946¢. Similarly, the velocity of Rocket 2 as measured by a stationary observer in Rocket 1 is —(.946¢. In




hoth cases, y = 3.083. It follows from Eq. (7) that the length of Rocket 1 as measured by a stationary observer
in Rocket 2 1s 27.0 m and the length of Rocket 2 as measured by a stationary observer in Rocket 1 is 20.3 m.

Liz observes that, m a time At, Rocket 1 travels a distance (.800cAt and Rocket 2 travels a distance
0.600cAt. The total distance traveled by the two rockets is 2.52 Tm. It follows that At=100 min.

Eq. (4) relates the proper time At' in a rocket with the time At when moving with speed v as measured by
a stationary observer. It follows that the time hefore collision as measured by a stationary observer in Rocket
1 15 60 min and the time before collision as measured by a stationary observer in Rocket 2 1s 80 min. The
crews are able to evacuate their rockets safely before collision.
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Chapter (3)
Relativistic Kinematic

Relativistic mass (changing mass with velocity)

One of the important outcomes of special relativity is the effect of velocity on mass

of the moving object. From Newtonian mechanics, the velocity of any object has a
mass (m) ,increases under a continuous affecting force according to the following
equation :

F
v =vg+at=v, +—1
m

Yo = velocity at any moment (t)

F

a
a = acceleration of the object m

This tell us that , ©; increased to infinity after an infinite time . This result not
true , if we consider from the postulate of the special relativity that there is a
maximum velocity , it is the light speed. To solve this problem, consider the mass
of the object increases by increasing the velocity of the object according the

following equation :

m, = Rest mass of the object

m = Mass of the object when it moves by a velocity (v)

Mass of the object given by :

(3)

This equation indicates as the velocity of the object close to the light speed , the

mass of the object highly increases until it becomes infinite value, if v close to C.




The mass becomes infinity , it need big force to moves, and this force not exist in
nature.

Note : According to Newtonian mechanics, the mass of the object is constant,
and it doesn't depend on the its velocity. This not agree with special relatively,

because the mass increases by increasing its velocity,

1
m=m./(1-v?/c?)2

m, = Rest mass of the body with respect to the velocity observer

m = Effective mass of the moving body with velocity (v)

The above relativistic mas equation tell us , in the direction of the motion, the mass of
a body in any moving inertial reference frame increases with increasing its velocity and

reach infinity when (v) close to(C) . But at very low velocity (v),compared to (C), the

term [ B = vz/c2 ] can be neglected, in this case the mass of the body still as itis, as

it was described in classical mechanics.




Energy and Momentum

We require that all the “Laws™ of Physics be the same in all inertial reference frames. We
require further that when v << ¢, we recover the familiar Newtonian forms of the “Laws.” The
latter requirement is called a Correspondence Principle. What are those “Laws™?

1. Conservation of Momentum

We define a relativistic momentum so that the two conditions above are satisfied.
p =i
Thus m 1s the rest mass—the mass measured by an observer at rest with respect to the object.
This quantity should be the same in all inertial reference frames. With this definition,
Piiial = P sina W all inertial reference frames.

2. Relativistic Energy

a. Work-energy theorem (one dimensional)
The work done by a force on an object changes its kinetic energy, thus

AK =W, = xiFdr.

Integrate by parts.




Recall that udu = dfo“ .

g
m di

dx :
Look up the form I—x in a math tables book.

va+bx

}'HHE + ?3}{?2 — .?‘H.Hz




. - 2 -~
Now. if we started from rest, then #; =0 and #, = # and AK = ———mc". Therefore, we

define the relativistic kinetic energy to be

The quantity mc is called the rest energy, because it’s independent of . The rotal relativistic
energy is E =K + mc* + V, where V is the potential energy, if any. If 7'=0, then

E=K+me’ = }mcz.

b. Energy-momentum relation
Take a look at the quantity (V= 0)

2 2.4 _ 2 2
E-—m°c' =cp
E* =02p2 +m*c?

For photons, n =0 and E = pc.

C. Units of mass-energy

It 1s convenient to express energy in units of electron-volts (eV). An electron-volt 1s the energy
gained by an electron upon being accelerated through a one Volt potential difference. Thus 1 eV
= 1.60x10™"Joules. The rest energy of an electron is

)
me? =9.11x10 k35108 m /sec) =8.205104J = 0.511x10%eV = 051 1heV .
Often, mass is expressed in terms of MeV/c” so that the electron mass is 0.511MeV/c".

Sometimes, the ¢* is dropped, but it’s understood to still be there. Similarly, momentum is
expressed m terms of MeV/c, since pc = units of MeV/.




Relativistic Mechanics

a. Force

We want the “Laws” of Mechanics to be mvariant under the Lorentz Transformation. Also. we

want to recover the classical result when # << ¢. So. we define the relativistic force component
mi

d
tobe F, :ﬁ, where p=—7—
dt |

du d

—+ i —

Solve for the acceleration.

du_F 'j%

"-

dt m ¢’

) dt )
The result 1s, that as # — ¢, 7 — 0. no matter how large the applied force. At the other
I

 du F
extreme, when v << ¢, — = —

dt  m




b. Collisions—conservation of momentum

Consider the collision of two billiard balls. They have equal masses, m. Let’s say that one ball
1s initially at rest while the second ball has momentum p, and energy £, before the collision.
After the collision. both balls have the same energy. £, and mass. m. It’s an elastic collision.
Momentum and energy are conserved.

]G
O— 9 e

In the x direction, p, =2pcosé. Substitute for p, and p using E =p’c +m’ct.

1l 5 >4 2
—N.'Ef —m*e* =ZNE? —m’c* cosé
c c
Conservation of energy allows us to eliminate £, since i1t was given that £ + mc* =2F . Keep
i mind that £, 1s the relativistic total energy of the second ball. while mc” is the rest energy of
the first (target) ball. At the same time, we solve for cos@ . the cosine of the scattering angle.

cosf = \'IIIrEj et _ ||'|. (Eo +’”‘-’2XEO —mcz)
\u'III(E +me? )2 —4m?c* \ (Eo +3me? XEO - mcz)

| E, +mc’
cosf = [ —F——
\ E, +3mc

In the classical limit, £, = mc” and therefore

|' - —

|2 .2 |-1
cosf = |'LC_ = .'l— = 6 =45°. But, as E, >>
Vame® V2

mct. cos —1=>6 —0°!

C. Decay of a high-energy particle
An unidentitied high-energy particle 1s observed to

decay into two pions (77 mesons), as shown.




Knowing the momenta and masses of the decay products, we determine the mass of the incident
particle, hoping to identify it.

MeV MeV . 2
Py —91025 . P, =323 ° . myc’ =myc® =me? =139.6Mev .
c c

The energy and momenta are conserved. The total energy is

E,=E +E, = \."{plzcz +m?ct +\|."p§c2 +m?c?

E, =921MeV +352MeV =1273MeV

The quickest way to obtain the magnitude of the incident momentum is to use the law of cosines:

/) g

~
~
-~

~

pic® = ple’ + pict —2p, p,c’ cos@ =10342290M eV *
p,c=1017Mel
Now that we have the total energy and the kinetic energy. the mass is obtained from

2 _ 2.2 2 4
E; =plc” +m,c

m,c’ = \,"IEf —plc® =765MeV

Evidently, the incident particle was a p meson. What was its speed before it decayed? Well,
mict

the total energy is also Ef = . so solve that for .

M

1——
2

d. Mass-energy equivalence
When we speak of the total energy being conserved that includes the total rest energy. For
instance, consider the decay of a neutron that 1s nitially at rest.

n—pt+e+v
The neutron decays into a proton, an electron and an anti-neutrino. The three product particles
are observed to have total kinetic energy of K = 0.781 MeV. The initial energy is just the rest
energy of the neutron, £; = 939.57 Mel". The total final energy is

E, = f?rpc’2 +M.!ch?2 + K =938.28Mel +0.511MeV +0.781Mel =939.57MeV

Notes: 1) The rest energy of the anfi-neutrino is too small to bother with.
1) Keep in mind the rounding of numbers and significant digits when substituting
numerical values into the formulae.

i1) Notice that m, #m , +m,. A portion of the neutron’s rest energy has been

converted into Kinetic energy.




Solved Problems
Problem (1) : If a resident particle splits into two moving parts in opiate
direction , their masses and velocities respectively are 3 Kg and 5.33 Kg and (0.6 ¢

and (0.8 c. How much the mass of the original particle ?

Solution

m,=333Kg, m_,=3EKg, v =08c, uv,=006¢
Initial Energy = Final Energy

2 2
2 mg € myz €

2 2
0.6¢ 0.6¢
GRS
c C
_ 333 N 3 _5_33+3
 Jl-064  f1-036 06 0.8

I =

=12.63 Kg

Problem (2) : Calculate the momentum of electron with kinetic energy equals
one Million electron volt .

Solution

E= Ifmc+Pc
Ez 2 4 2

=m,c¢ + P’c
ergynergyE Kintic Energy + Potental = Total En

E=m, ¢+ K
~(mg c? +1MeV) = m2 ¢t + P2 c?
(0.511 + )2 = (0.511)% + P* ¢*
1+ 2(0.511 + (0.511)% = (0.511)% + P%¢?
1+1.022 = P2 ¢*

2.022

CE

P=




Problem (3) : An electron was accelerated from its rest position with velocity
0.5c . Calculate the change in its kinetic energy.
Solution
E,=m, ¢’ =0.511 MeV
At the speed 0.5 c :

my,c® 0511 MeV 0511

2 = = =
J1-(vic)f  A1-025 0.5
E = 0.59 MeV

K =0.59 - 0.511 = 0.079 MeV
Problem (4) : Calculate the Kinetic energy of the electron which its momentum

E=mc

equals (2/c) Mev

Solution

E‘- (mn cz)z + (Pc)?

(K+mnc2)z = (mncz)z + (Pc)2

2 MeV
C
K =1.55 MeV
Problem (5) : Calculate the velocity of an electron its kinetic energy 2 MeV

P
xc] + (0.511)°

(K +0511)* = [

Solution




Problem (6) :
a— Calculate the mass and the velocity, if its kinetic energy equals 1.5 MeV
b— What is the energy by the unit of electron volt which required for the electron
to transfer from its rest position to a velocity equals (0.9 C)
Solution
K=(m-m,) ¢?

1,

11 =

Ji- (v o)’

2
Frome Eq. (1) : m=m, +K/c

-31
The electron mass : M, =9.1x10 " Kg

Light speed : €= 3x10° m/Sec

K =1.5MeV =1.5x10° ev=1.5x10" (1.6 x10™"%)
K=15x1.6x10""" Toule
1.5x1.6x10""
+ 16
(9x10°")
m=(9.11x10" 1)+ (26.7 x107*})

m=(9.11x107°1)

3l

m=358x10""" Kg

The value of moving mass equals four time it’s a rest mass

The velocity of the electron from Eq (2)

m,

Ji- (v )2

Squaring the both side of this equation :

1- (u/¢)* = [m, /m)*

111 =




:1_[m

C
m 2 Q
v=rc. 1 (_0] =3%10°% % 1|2
m 3

1y
S.EJ
v=3x10" x /1- 0.065 = 3x10° x ,/0.935
v=3x10% x 0.968 = 2.9x10" m/Sec
(b) : Required energy for transferring the electron from rest to 0.9 ¢ si :

K= (m—mﬂ)nc:2

S (v 62
e 2
{ﬂ— (v/c)? mu] :
L’l— (v/ )’ } i

v=0.9c¢ ~(uic)t =0.81
1 ==
-/0.19

2

in =
m

m,
D J—
-1

K
K

1 1
-0 f-o08L
K=(229-1)m,c’ =129 m,c
K =1.29x9.11x10" "' x9x10'°

10.6x10 14
1.6x10717

2.29

K =10.6x10" 1 Toule = — 6.63x10° eV

Problem (7)

Relativistic Form of Newton's Second Law




Consider the relativistic form of Newton’s Second Law.

02
F= 1 -2
(1)

where m is the mass of the object and » is its speed.

e Show that when F is parallel to v

Solution

The force F on a particle with rest mass m is the rate of change its momentum p as given by text Eq. (1.36):
dp
F == 34
7 (34)
where as given by text Eq. (1.35):
p="mv (35)

where 1

V1—v?/c?
where v is the velocity of the particle. Eq. (34) with p given by Eq. (35) is the relativistic generalization of
Newton’s Second Law.

Now

=
l

(36)

v = vy (37)

where 11; is a unit vector along the tangent of the particle’s trajectory, and the acceleration a of the particle is

dv dv )2
Y _ _b]_].f + t—un (38)
p

a——
dt dt
where 1u,, i3 a unit vector orthogonal to u; directed towards the centre of curvature of the trajectory and p is
the radius of curvature of the trajectory, so
(39)
‘When
(40)

that is, when F is parallel to v, if follows that
(41)

That 1s, the particle moves in a straight line, and
(42)

where

(43)

(44)

Problem (8)

Relativistic Form of Newton’s Second Law: Particle in an Flectric Field




A charged particle moves along a straight line in a uniform electric field E with speed v.
e If the motion and the electric field are both in the x direction, show that the magnitude of the acceleration
of the charge q is given by
dv gFE v2\*?
a=—=—|(1—-— (45)
dt  m c2
e Discuss the significance of the dependence of the acceleration on the speed.
e If the particle starts from rest = 0 at ¢t = 0, find the speed of the particle and its position after a time
t has elapsed.

e Comment of the limiting values of v and = as t — oc.

Solution

When a particle of charge ¢ moves in an electric field E, the force F on the particle is F = qE. If the
particle moves in the direction of E, then F and v are parallel. Accordingly, Eq. (42) holds with @ = gE /m.

It follows from Eq. (42) that @ — 0 as v — ¢ and also that

F ~ma whenv<e (46)

which is the nonrelativistic result.
When F'is constant and the particle starts from rest at t = 0, its speed v(t) is found by integrating Eq. (42):

v(t) duv’
f Gt (47)
o

1—0'2/c2)3/2

at
0= Ar @

It follows that v(¢) — ¢ as ¢ — oo and also that

(48)

v(t) = at when at < ¢

which is the non-relativistic result.
The position z(t) of the particle is found by integrating v = dz/dt:

2(t) = f; o(thdt' = (v1+ (/e — 1) &/a.




It follows that  — ¢t as t — oc and also that

1.
x(t) ~ §&t2 when at < ¢

which is the nonrelativistic result.
The position z(v) is found by integrating a(v) = dv/dt = vdv/da:
U _de_b‘f 2
z(v) — z(0) z/ = (y—1)c/a.
2(0) a(?')
It follows that z(v) — 2(0) — oo as v — ¢ and also that
v? ~ 2afz(v) — 2(0)] when v < ¢

which 1s the nonrelativistic result.

Problem (9)

Relativistic Form of Newton’s Second Law: Particle in a Magnetic Field

The force F on a particle with rest mass mm and charge ¢ moving with velocity v in a magnetic field B is

F = gv x B. (54)
e If the particle moves in a circular orbit with a fixed speed v in the presence of a constant magnetic field,

use Newton’s Second Law to show that the frequency of its orbital motion is

B 2 /2
F=(1-% (55)

T 2am c2

Solution

When a particle moves with constant speed, that is, when

dv
= 56
T (56)
it follows from Egs. (34) and (39) that

Lp = v (57)
where Bsing
o =225 (58)
m
where @ is the angle that v makes with B. For a proton moving perpendicular to a 1.00 T magnetic field,
& = 95.8 MHz.
The right side of Eq. (57) is constant. Accordingly, the radius of curvature p of the particle’s trajectory
changes to accommodate changes in the magnetic field B.
When B is constant (that is, time-independent and homogeneous), it follows from Eq. (57) that the particle
moves in a circle with radius
r=yv/@ (59)
and speed
wr

V1Tt (@r/e)?

The angular frequency w = v/r of the circular motion is

v=wr/y =

[#5)

YT AT Grer




as above.

It follows that » — oo as v — ¢ and and also that
v~ wr whenv < ¢

which 1s the nonrelativistic result.

It follows also that
w~w when wr < c (63)

For a proton moving perpendicular to a 1.00 T magnetic field, this requires that r < 3.13 m.

The above results limit the range of speeds attainable in a conventional particle-accelerating cyclotron
which relies, as with Eq. (63), on a constant-frequency accelerating potential to increase particle speeds and a
time-independent homogeneous magnetic field to make particles move in circles.

This limitation is overcome at the TRIUMF cyclotron on the UBC campus which accelerates protons to
520 MeV (0.75¢), and has a diameter of 17.1 m. This is accomplished by increasing the magnetic field with

H

radius to accommodate the Lorentz factor 4. For more information on TRIUMF, see http://www.triumf.ca.

Problem (10)

Relativistic Form of Newton’s Second Law: Particle in a Magnetic Field

e Show that the momentum of a particle having charge e moving in a circle of radius R is given by p = 300BR
where p is in MeV /e, B is in teslas and R is in meters.

Solution

It follows from Egs. (35) and (59) that the momentum p of a particle of charge e moving perpendicular to
a constant magnetic field B is

p=eBR (64)

where R is the radius of the circular orbit. Using e = 1.602 x 107" C, MeV = 1.602 x 107 J and ¢ =
3.00 x 10% m/s, it follows that
p=300BR (65)

where p is in MeV /e, B is in teslas and R is in meters.

Problem (11)

Relativistic Kinematics: Energy-Momentum Relationship

e Show that the energy-momentum relationship E? = pZc? + m?2c? follows from E = ymc? and p = vmo.

Solution

See also Notes on a Few Topics in Special Relativity by Malcolm MceMillan.
It follows from p = v and Eq. (36) that

i

V' 1+ (me/p)?
¥ =1+ (p/me)?

and

which with F = ~vmc? yields
E = p2e? 4+ et

It follows from Eq. (66) that a particle with rest mass m = 0 travels at the speed of light c.




It follows from Eq. (68) that the energy E and momentum p of a particle with rest mass m = 0 are related

(69)

Problem (12)

Relativistic Kinematics for an Electron

Electrons in projection television sets are accelerated through a potential difference of 50 kV.

e Calculate the speed of the electrons using the relativistic form of kinetic energy assuming the electrons
start from rest.

e Calculate the speed of the electrons using the classical form of kinetic energy.
o [s the difference in speed significant in the design of this set?
Solution

A particle with rest mass m moving with speed v has kinetic energy K given by text Eq. (1.42):

K =(y-1)mc

where v is given by Eq. (36) from which it follows that

v=cy/1-[1+(K/mc?)-2.

It follows from Eq. (70) that

|
K ~ Em’l-‘z

when v < ¢, which 1s the nonrelativistic result.

An electron (rest energy 511keV) moving through a potential difference V' = 50kV acquires a kinetic energy
K =50keV.

It follows from Eq. (71) that v = 0.413c. The nonrelativistic expression Eq. (72) yields v = 0.442¢ which is
6% greater than the correct relativistic result.

Does it make a difference which number is used when building a TV set? If the distance between the
filament off which electrons are hoiled and the phosphor screen of a TV set is 50 cm, then the difference in
travel times calculated relativistically and nonrelativistically is 26 ns. This time difference is too small to make
a significant difference in the operation of a TV set.




Problem (13)

Relativistic Kinematics: Lorentz Invariant

The quantity E? — p?c? is an invariant quantity in Special Relativity. This means that E? — p?c? has the
same value in all inertial frames even though E and p have different values in different frames.

o Show this explicitly by considering the following case: A particle of mass m is moving in the +z direction
with speed u and has momentum p and energy E in the frame S. If S is moving at speed v in the standard
way, determine the momentum p’ and energy E’ observed in S’, and show that E”2 — p"2¢? = E? — p?c?.

Solution

See also Notes on a Few Topics in Special Relativity by Malcolm McMillan.

In frame S, a particle of rest mass m has velocity u. Its momentum p and energy E are given by text
Eqs. (1.35) and (1.44):
mu

v 1—u?/c*

p= (73)

2 me? o
E = ——m———. (74)
\/l - uc/jc”
In frame S, which moves along the x-axis of S with speed v, the velocity of the particle is u’ and its momentum
p’ and energy E’ are
: mu'

P

f
| 2,92
\,’ 1 —u' /c*

3
mec~

V 1 —u?/e?

E =
It follows from Eqs. (73) to (76) that

~r2 2.2 ~2 2.2 2.4 s
E®=p°c" =FE°—p°cc =m’c. (77)

The relationship between the momentum and energy in S and S’ follows from the Lorentz velocity trans-
formations given by text Eqgs. (1.32) to (1.34):

(78)
(79)

(80)

where v is given by Eq. (2). It follows that

1 _orl= gyt fe?)

a . . f D]
"l.-"lfl —uw?fe2 v 1=u?fc

vl = vips — Bpo)

P, =p.

o = 1(Po — Bpa)

o= E/fc.




Zqe. (82) and (85) may be written as
P = pecoshu — pysinhu

, .
Py = pproshw — pesinh u

vhere u is the rapidity:
tanhu = 3

w coshu = and sinh uw = G, from which
pe = p.coshu + pysinh u
o = phcoshu + p’ sinh u

We note that the first and fourth Lorentz spacetime transformations text Egs. (1.25) to (1.28):

]

T =[x — Frg)

Problem (14)

Einstein Mass-Energy Relationship for the Decay of the Neutron

The free neutron is known to decay into a proton, an electron and an antineutrino (of zero rest mass)
according to

n—p+e +70. (102)

This is called beta decay. The decay products are measured to have a total kinetic energy of (0.781 +
0.005) MeV.

e Show that this observation is consistent with the Einstein mass-energy relationship.

Solution

Using mass values given in text Appendix A (m,,=939.5656 MeV/c?, m,=938.2723 MeV /c?, m.=0.5110
MeV/c?), it follows that
Am =m, — (m, +m.- +m;) =0.7823 MeV /c%. (103)

By conservation of mass-energy, this decrease in rest mass energy is converted into total kinetic energy () of the
decay products as per text Eq. (1.50): Q = Ame? = 0.7823 MeV. This result is consistent with the observed
value of (0.781 £ 0.005) MeV.

Problem (15)

Conservation of Energy and Momentum in Electron-Positron Annihilation




An electron e~ with kinetic energy 1.000 MeV makes a head-on collision with a positron e at rest. (A
positron is an antimatter particle that has the same mass as the electron but opposite charge.)

In the collision the two particles annihilate each other and are replaced by two photons of equal energy,
each traveling at angles # with the electron’s direction of motion. (A photon v is a massless particle of
electromagnetic radiation having energy E = pe.) The reaction is

e +et — 2y (104)

e Determine the energy F , momentum p and angle of emission f of each photon.

Solution

The incident electron, with rest mass m = 0.511MeV /c?, has momentum p along the positive r-axis and
kinetic energy K. It follows from Eqgs. (67) and (70) that

p=vVK(K+2m?)/c (105)

from which p = 1.422 MeV /e when K = 1.000 MeV.

The total energy E of the electron and the stationary positron before the collision is
E =K + 2me* = 2.022 MeV. (106)

The two photons emerge from the collision each with energy

1
E, = §E = 1.011 MeV (107)

as given by conservation of energy, and, using Eq. (69), each with magnitude of momentum
py = E,/c=1.011MeV/e. (108)

The momentum vectors of the photons make angles +6 with the z-axis. Conservation of momentum in the
z-direction is
p = 2pycost (109)

from which 8 = 45.3°,

Problem (16)

Conservation of Energy and Momentum in Neutral Kaon Decay

The K meson decays into two charged pions according to
K% — gt + 7~ (110)

The pions have equal and opposite charges as indicated and the same rest mass m, = 140 MeV/c%.

Suppose that a K at rest decays into two pions in a bubble chamber in which a magnetic field B=2.0 T
1s present.

e If the radius of curvature of the pions is 34.4 cm, determine the momenta and speeds of the pions and
the rest mass of the KU,




Solution

It follows from Eq. (65) that the momentum of each pion is p = 206 MeV/c.
It follows from Eq. (66) that the speed of each pion is v = 0.827c.
It follows from Eq. (68) that the energy of each pion is E' = 249 MeV.

Comnservation of energy:
m Kcz =2F

yields my = 498 MeV/c2.




Chapter (4)

General Relativity




Chapter (4)
General Relativity

Newton's law of gravitation
L mym,

m, m, FaG=ll

r

2 I

F\

We know there are 4 forces of nature:
+ Gravity, Electromagnetism, Weak & Strong Nuclear forces
* Gravity is by far the weakest force, but it is also the most obvious: it's
universal, acting the same on all forms of matter

Einstein realized there that is an equivalence
between gravity and acceleration: you are weightless
in a plummeting elevator. This is the equivalence
principle.

Another form of Einstein's equivalence principle: an
observer inside an enclosed box cannot tell the
difference between being at rest on Earth's
surface (a) or being accelerated in outer space (b).

Equivalence

In Special Relativity 1t 1s asserted that all nertial reference frames are equivalent—the “laws” of
physics are the same i all inertial reference frames. No experiment done in one frame can
detect its uniform motion relative to another frame. Can the same be said for reference frames
that have a relative acceleration?




a. Elevator

Recall the past discussion of a person standing in an
elevator. If the elevator moves perfectly smoothly and
there are no floor indicator lights, then the person inside
will have no perception of the elevator’s motion, except
for feeling perhaps the elevator floor pressing upward
on his or her feet. [Keep in mind: the person gets no
information from any source outside the reference frame
of the elevator.] Contrast this situation with that of
another person standing in a similar elevator. but this
elevator 1s sumply resting level on the Earth’s surface.
The person in this elevator also feels the floor pressing
upward on his or her feet, also has no perception of the
elevator’s motion. We. as omniscient external
observers. know that this second elevator is resting on the surface of a planet. and that what the
person inside 1s experiencing is the gravitational force exerted by that planet. The point 1s that
there 1s no experiment that either of the persons inside the elevators could perform that would
distinguish between the two situations. Pendula would swing back and forth just the same:
projectiles would follow the same kinds of arcs. etc.

b. Light and gravity

Imagine ourselves as observers far from any source of gravitational force. Nearby, we observe a
closed “elevator” which 1s accelerating, relative to us, at a constant rate, @ . A person standing

inside the “elevator” sends a series of light pulses
toward one wall—he or she and we see the light pulses
dropping toward the floor as they approach the wall.
The light follows a curved path inside the elevator.

The Postulate of General Relativity asserts that the
“laws” of physics have the same form for observers in
any frame of reference, regardless of 1ts acceleration
relative to another frame. We have seen that an
accelerated frame 1s equivalent to one in a gravitational
field. It follows that the force of gravity must affect a
beam of light just as 1t affects the motion of a massive
projectile. Indeed, experiment has shown that 1t does.
But, light has no mass.




Curvature

Classically, we would say that a mass, such as a planet, exerts a gravitational force on another
mass, such as a moon or a person. However, a person in an “elevator” cannot determine whether
his or her “elevator” 1s in the gravitational field of a planet or 1s being accelerated at a constant
rate by, say rocket motors. If the “elevator” is m a gravitational field, we can nonetheless
mathematically transform the “laws” of physics into versions of the same mathematical form that
do not include gravity yet which make equally accurate predictions of the motions of particles
and of light beams.

What Einstein did was fo formulate such a version of the “laws” of motion. Objects and light
beams move always 1n straight lines, but m a curved space-time. Empty space-time is flat, but
the presence of mass at any location curves space-time to a degree proportional to the amount of
mass that 1s present.

In 1916 Einstein published the final form of the General Theory of Relativity.

We can think of gravity as a feature of the background in which we live. This
background is space and time: spacetime

What we experience as gravity is actually the curvature of spacetime

In general relativity (6R), matter warps
space-time, so that the straightest and
shortest path (geodesic) looks like a curve
to us.

Mass tells space how to curve.

Space tells matter how to move.

The figure shows an analogy: weight on a
tight rubber sheet depresses it (a) , so a
ball is deflected around it (b). That is how
GR describes the motion of a planet
around the Sun, and not by means of a
force, as implied by Newton's
gravitational force, Eq. (A.25). However,
Einstein showed us that Newton's law is a
limit of GR for small masses.




We know how to describe motion of objects exactly (remember rocket science)
using MNewton's gravitational law. There must be a way describe exactly the
motion without forces, according to GR.

Well, it is complicated.

I will give a very short tour of GR next.

The space-time interval, As defined as
As? = Ax2 + Ay2 + Az2 — 2APR (A.26)

is Lorentz invariant. That is, if we use the Lorentz transformations with Eq. (A.
13), with Ax = dx Ar = dt, etc., we get As 2= As?.

This interval can be written in terms of the space-time metric
—
[-1 0 0llcArl
, 0O 1 0 0| Ax
As® =[cAt Ax Ay Az]
1 Ay
0

&Z
The space-time metric

We can rewrite the expression for the space-time interval

2’ o AYTAXT (A 28)
v=0.., 3

(A.29) :
(A.30)
It is economical to use the Summation Notation: the summed indices occur once
as subscripts and again as superscripts:

Use of Greek letters
meansv=0,1,2,3

As® = Z Z 1, AX“AX” ] /
PP O B e As™ =1, AX“AX”

(A.31)

When the same index appears as a superscript and a subscript, summation is
assumed, and we can omit the summation symbols.

(A.32)




Tensors

In General Relativity, space is curved, and the space-time metric can be more
complex. The more general metric coefficients of general relativity (which may

not be -1's, O's, and 1's) are denoted by Gy -

As® =g, AX"Ax"  (a33

Example: An expanding (flat) universe

As? = a(r)” [Ax? + Av? + AzZ?] — AP
(A.34)
where a(t) — t9

Values of g range from 1/2 (in a radiation-dominated universe) to 2/3 (in a
matter-dominated universe). (See Lecture 4).

9. is an tensor. A tensor is a function of one or more vectors that yields a real
number. g,, takes two input vectors and yields a number: the interval As*

Because g, operates on two vectors, we say it's a tensor of rank 2.

Example: a vector can undergo dot products with other vectors to yield a
number, so it' s a tensor of rank 1. Scalars have rank zero.

The rank is also the number of indices on the tensor and the dimension of the
matrix necessary to write it down.

Geodesics

GR distinguishes between vectors and tensors that are covariant (with lower
indices) and contravariant (with upper indices). To raise or lower an index,
simply multiply by the metric:

X, =&8uX  (A35) r, =2, (A36)

Ordinarily, we don't usually have to worry about this because our metric is simple,
and covariant and contravariant tensors are essentially the same.

To raise the indices of the metric g, itself, just take its inverse

gh = [g]‘lm’ (A37)

In Newtonian space, geodesics are straight lines, and ocne way of saying this is
that acceleration is zero

d*x“
dr’

=0 (A.38)

where t is proper time (i.e., the time measured in the frame of reference of the
particle) , and x“is the position vs. T of the particle.




Curved Spaces

In curved space, this expression generalizes to

d*x“ dx? dx”
= _re &YX 9XY (439
dr’ Prodr dr

where Fafj-;, is called a Christoffel symbol, given by

g I’ =1 s + Qe — s
= dx’” dx” dx”

The curvature of space-time is complicated because there are
several dimensions, and the curvature at each point can be
different in each dimension (including time). Think of a saddle
in two dimensions for which the curvature depends on the
direction.

(A.40)

The curvature of space-time is given by the Ricei Tensor

ar’_,  dr7, o o "
Rafﬁ = o - (fxﬁ + raﬁ r},é — raﬁ F,B,!’ (A. )

Einstein Tensor

The Einstein tensor can be written in ferms of the Ricci tensor as

G,=R,-3Rg, (A42)

v y7a%

where R is the trace (i.e., the sum R,) of the Ricci tensor

_o [energy) momentum
¢~*{density) density
Matter's effect on space-time -

occurs through the stress- B * 7]
energy tensor, T. 701 7oz 03
Too = T is the mass-energy 710 ! shear

density 7720 2 | stress
Tio=Ta. Tzo=T,and Ty = T30

T.; are how fast the matter is —

pressure
moving — its momentum momentum  momentum
density flux (A43)

Ti1= Tew., Tzz= T,,and T3; = T, are the pressures in each of the three
directions T,. =T, ,6 T,;= T, ,and T,; = T are the stresses in the matter.




Einstein Field Equations

The following set of coupled nonlinear partial differential equations (one for
each element) relates the curvature of space, &,,., to the energy-momentum
tensor, T,.:

G = 87T GT Only six component equations are

v ot v (A.44) independent.

where & is the usual gravitational constant.

The goal is to solve for g,,, for all values of pand v. In free space, where

Tlm_ = 0, this reduces to

R, =0 (A.45)

f73!

One can show that Einstein’ s Field Equations reduce to Mewton's law of
gravity in the weak-field and slow-motion limit.

As mentioned in Lecture 3, Einstein introduced the Cosmelogical constant by
modifying his equation to

ST
G, +g, A= FG z,. (A.46)

Ex: The Schwarzschild Solution

Using spherical coordinates, p. 6. ¢, and spherical symmetry, we can solve
Einstein’ s Field Equations (with A = O0) for the metric to find

2GM

rc

2GM

2

rc

As? = (1—

-1
) Ar? + PAQ* — (1—

) Ar? (A47)

The other elements of g, are zero, and AQ* = AG® + sin” 6 ,ﬁqf?j
Note that, when R, = 26M/¢? (called the Schwarzschild radius), this becomes

As® = o Ar® + 1PAQ° — 0 AfF° (A48)

When a star’ s thermonuclear fuel is depleted, no heat is left to counteract
the force of gravity, which becomes dominant. The star’ s mass collapses into
an incredibly dense ball that could warp space-time enough to not allow light to
escape. The point at the center is called a singularity. /1.,:"

A collapsing star greater than 3 solar masses will - -
distort space-time in this way to create a black hole. / \\
|' . "

Schwarzschild determined the radius of a black hole, .
known as the event horizon. The Schwarzschild radius /
is given by Eq. (4.24) in Lecture 4. ~~

-
— Sy

Singularity




Gravitational Waves

When a charge accelerates, the electric
field surrounding the charge redistributes
itself. This change in the electric field
produces an electromagnetic wave, which is
easily detected. Similarly, an accelerated
mass should also produce gravitational
waves.

Gravitational waves carry energy and
momentum, travel at the speed of light, and
are characterized by frequency and
wavelength.

As gravitational waves pass through space-time, they cause small ripples. The
stretching and shrinking is on the order of 1 part in 102! even due to a strong
gravitational wave source.

Due to their small magnitude, gravitational waves are difficult to detect. Large

astronomical events could create measurable space-time waves such as the
collapse of a neutron star, a black hole or the Big Bang.
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