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Introduction

Education Is Not The Learning of Facts; I’s Rather The
Traininig Of The Mind To Think (Albert Einstein)

1 Review

2 Force

2.1 What is force

A force represents the action on one body into another and is generally charec-
traized by its point of application, its magnitude and its direction. Forces acting
on a given particle, have the same point of application. The direction of the
force is defined by the line of action and the sense of force. The sense of the

force should be indicated by an arrwohead. It’s unite is Newton (V)

2.2 Resolutant of several current forces

A concurrent forces acted upon a particle A contained in the same plane, all
pass through A. The resultant force R of the given concurrent forces is obtained
by addition using polygon rule. The resultant force R has the same effect on

the particle A as the given forces.

2.3 Resolution of a forces into componenets

In the next section, we sayed that two or more forces acting on sa particle
may be replaced by a single foce which has the same effect on the particle.

Conversely, a single force F acting on a particle may be replaced by two or




more forces which have together the same effect on a particle. These forces
called the components of the original force F. The process of substituting the
components for F is called resolving the force F into components.
For

F=Fi+F,

F, = |ﬁ | cos 6 represents the z-component of the force F while, F,= \ﬁ | sin @
represents the y-component of the force F.

Magnitude of force







As Fisa vector, so it follows the law computing the magnitude of vector, as

F|=/F2+ F?

Example: A two forces P and Cj acting on a bolt A. Determine their resultant.

SOLUTION

We use the traingle rule, two sides and the included angle are known. We apply

the law of cosines:

R* = P> 4+ Q> — 2PQ cosé
R? = (40)* + (60)% — 2(40)(60)cos155° = 97.73N
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Now applying the law of sines, we write
sin ¢ _ sin N sin ¢ _ sin 155
Q R 60 97.73
Solving ([2.1]) for sin ¢, we have
(60) sin 155°
97.73

(2.1)

— ¢ = 15.04°

sin ¢ =

This means

a = 207 4 15.04° = 35.04°

Example: A force of 800N is exerted on a bolt A as shown in the figure.

Determine the horizontal and vertical componenets of the force.

F=800N

SOLUTION

Using the expressions of F components

F, = Fcost
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(b)

F, = Fsin6
Where o = 34°. From the figure, we note that /' — x will be in negative

direction of z-axis, while F), in positive direction of y-axis, so
F, = —F cosa = —(800) cos 35 = —655N

— F, = +Fsina = +(800) sin 35° = +459N

The vector components of F are
F\, = —6557 F —y = 459§
and we may write F in the form
F = —6550 + 4597

Example: A force F =3.1kNi + 6.7kN7 is applied to a bolt A as shown in

the figure. Determine the magnitude of the force and the angle 6 it forms with

the horizontal.
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SOLUTION

From the figure we note that the components of the force F represented com-
pletely by the the two neighnouring arms of the rectangle, so, we apply the law

of sines to obtain the angle 6 as

F, 6.7kEN
p— p— p— .1 0
tan 6 F 31N = 0 =65.17

To determine the the magnitude of the force F , using the relation

F 6.7
F, = Fsinf F=—L - — AN
v ” Snf  sin65.17°

2.4 Resultant force by adding X and Y components

Another method to obtain the resultant force is to resolving the forces into their

x- and y-componenets, then adding the corresponding components to obtain
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the conponents of the resultant force. For example, the three forces ﬁ, Cj and

S acting on a particle A. Their resultant is defined by the relation
Ryi+ Ryj = Pyi+ Pyj + Qi+ Qyj + Syi + 5,5
= (P + Qo+ Sp)i+ (P, +Q,+S,)7
From which it follows that
Ry=Pi+ Qe+ Se=) F, Ry=DP,+Qy+8,=)» F,

Example: Four forces act on a particle A as shown. Determine the resultant

of the forces on the particle.
SOLUTION

Resolving the forces into their x- and y-componenets as shown, then summing

the corresponding forces, we obtain
R= RJ—i—RJ = (F} cos 30°+ Fy cos 15°— Fy sin 200);+(F2 cos 20°+ F7 sin 30°— F)

= 199.17 + 14.37

The magnitude and direction of the resultant force é, can be determined from

the traiangle rule as

; R, 143 N 41
“T R, 1991 “
While the magnitude is obtained as
14.3
R=—=199.6N
sin o

12
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F,=150N
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— F5 sin 20°)i
(F, cos 15°)i

—(F 4 sin 15°)j

~F3]

3 Centroids and center of gravity

3.1 Center of gravity of a two-dimentional bady (Areas and lines)

Let us consider a flat horizontal plate. We can divide the plate into n small
elements. The coordinates of the first element denoted by x1, 1, of the second
element by x9, 19, etc. The forces exerted by the earth on the elements of the
plate are weights AW5, AW, ..., AW, and directed twowrds the center of the
earth; however, for all practical purposes they can be assumed to be parallel.

Their resultant is W, i.e.,
W =AW —1+ AWy +--- 4+ AW,

To obtain the coordinates Z, ¢ of the point G where the resultant I is acting,

we take the moments of W about the x and y axes which are equal to the sum

14




\W

W

0 0

of the corresponding moments of the elemental weigts,
W = 2 AW + 2AWy + - + 2, AW, = Y 2AW

gW = AW + AW, + -+ + 5, AW, = Y~ yAW
This means that
Yoz AW
W

If we increase the number of elements into which the plate is divided and

T =

simaltaneousely derease the size of each element, we obtain in the limit the

following expressions

| yaw
W

We can write the previous equations for areas and lines, respectively as

for lines, with length [
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for area, with erea A

dA dA
podrdd g Jwdd
A A
In three dimensions, for volums, with volum v,
d d
. [z v7 g = [ ydov
v v

3.2 Examples

Example: Find the center of gravity of an area of triangle of height of b and

base of a.

SOLUTION

A (52/3 )

&— >

Wy

To solve, we notice from the figure that

Cy+ Y+
T = —— a xr = ——
by Y by

Now

foa xdW _ foa xpydx
Jodw o J§ pydz
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~ Jo zl(=b/a)x + a]dx
i pl(=b/a)z + a)dx

. foa ydW _ an ypxdy
foa dW foa pxdy
fo b/a y + aldy

3 pl(=b/a)y + aldy
Example: Find the center of gra\nty of an area of a semi ellipse.

=a/3
Also

—b/3

SOLUTION

b dﬂ=yd%

"y Y

From ellipse equation we have

2 2
L Y
——|—§:1 — oy = 1—— a? — x?

Then . .
[l xdW B I° xpyda

JoodW 7, pyde
[* x[2Va? — 2?)dx

a [* 2Va? — 2?]da
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If we substitute
xr = acos, dr = —asinfdf, at r=—a—>0=m, at xt=a—0=0

This means that

—a f: cos 0 sin’ 6d6 _—a f: sin? fd sin 0

T =

[Psinzod0 [0 U2 gy
B —[sin” 62 0
N 6/2]9 + [(1/4) cos 260]Y N

Also ) ,
Jo ydW [y yprdy

foa aw fob prdy
o yle/ = ydy

)l Py

oy —ydy

fob \/mdy

Put y = bcos — dy = —bsinfdd,y =0— 0 =7/2,y=0— 0 =20

y:

Then we have .
) b fﬂ/Q cos 0 sin 8d0O
y _— _—
Sy sin? 66

3lsin’ 0] - —b/3 4b

I, + (1 A)los 28, [(—n/4) + (/A1 —1)] 37

Example: Find the center of gravity of an area of a quarter ellipse.

SOLUTION

Example: Find the center of gravity of the wire as shown.
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e, A= Ry
) \

e

av

[
X = cos" 6

0

IA

)

IA
1oy

y =a sin® @

e |

SOLUTION

We divide the wire into small elements of length di where from the figure, we

notice

dl = \/dx? + dy* = \/(—Ba cos? 0sin 0)2 + (3asin® 6 cos 0)2dH
= 3asin # cos 0d0,

From the defination, we known

foﬂ/2 xdW foﬂm xpgdl  a foﬂ/Q cos* 0 sin Hdf

fow/Q dw N fOW/Q pgdl - foﬁ/2 sin @ cos d6

T =

. /2
2 cos” 0 , 2
- /2
cos? 0 .
0
From symmetry;,
_ 2a
YT




4 Friction

When two surfaces are in contact, tangential forces, called friction forces, will

always develop if one attempts to move one surface with respect to the other.

4.1 The Laws of Dry Friction. Coefficients of Friction

e Block of weight W placed on horizontal surface. Forces acting on block are

its weight and reaction of surface V.

W

N

e Small horizontal force P applied to block. For block to remain stationary, in
equilibrium, a horizontal component F' of the surface reaction is required.

F' is a static-friction force.

e As P increases, the static-friction force F increases as well until it reaches

a maximum value F,.

ﬁm = us N

21
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e Further increase in P causes the block to begin to move as F' drops to a

smaller kinetic-friction force Fj.
Fr = N
4.2 Angles of Friction

It is sometimes convenient to replace normal force N and friction force F' by

their resultant R:

P P W
Py |
| -
P.

R =N
F=P,
(a) No friction (b) No motion
, P lw ) K lw
L____ I
P L — o

(¢) Motion impending ——— (d ) Motion .

23




e If no horizontal force is applied to the block, the resultant R reduces to the

normal force N

e If the applied force P has a horizontal component P, which tends to move
the block, the force R will have a horizontal component F' and, thus, will

form an angle ¢ with the normal to the surface.

e [f P, is increased until motion becomes impending, the angle between R
and the vertical grows and reaches a maximum value. This value is called
the angle of static friction and is denoted by ¢, we note that

I psN

tan ¢, =
an ¢ i N

:/’LS

e If motion actually takes place, the magnitude of the friction force drops
to Fy; similarly, the angle ¢ between R and N drops to a lower value ¢y,
called the angle of kinetic friction, we write

t —
an @y, N N

Mk

4.3 Examples

Example: A 100-1b force acts as shown on a 300-1b block placed on an inclined

plane. The coefficients of friction between the block and the plane are pu, = 0.25
and pp = 0.20. Determine whether the block is in equilibrium, and find the

value of the friction force.

Solution

Force Required for Equilibrium: We first determine the value of the

friction force required to maintain equilibrium. Assuming that F' is directed

24
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down and to the left, we draw the free-body diagram of the block and write

3
+ /Y Fo=0: 100 Ib — =(300 Ib) — F =0 (4.1)
F=20l F=80l ~ (4.2)

4
F,=0: N — =(300 1b) =0 4.3
+N D) F, = ) (4.3)

N = 1240 Ib N = 240 1b K

The force F' required to maintain equilibrium is an 80-1b force directed up and
300 1b

S g

3

100 1b
F =48 1b
N = 240 1b

to the right; the tendency of the block is thus to move down the plane.
Maximum Friction Force: The magnitude of the maximum friction force

which may be developed is
F,, = usN F,, = 0.25(240 1Ib) = 60 1b

Since the value of the force required to maintain equilibrium (80 1b) is larger
than the maximum value which may be obtained (60 1b), equilibrium will not
be maintained and the block will slide down the plane.

26




Actual Value of Friction Force: The magnitude of the actual friction

force is obtained as follows:
Factual = Fk = ,ukN = 020<240 lb) =48 1b

The sense of this force is opposite to the sense of motion; the force is thus

directed up and to the right:

F, actual — 48 1b /(

It should be noted that the forces acting on the block are not balanced; the

resultant is

3
Z(3001b) = 100 1b — 48 1 = 321/

Example: The movable bracket shown may be placed at any height on the

3-in.-diameter pipe. If the coefficient of static friction between the pipe and
bracket is 0.25, determine the minimum distance x at which the load W can

be supported. Neglect the weight of the bracket.

T —x—  fW
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Solution

Free-Body Diagram. We draw the free-body diagram of the bracket. When
W is placed at the minimum distance x from the axis of the pipe, the bracket
is just about to slip, and the forces of friction at A and B have reached their
maximum values:

Fi=pusNg=0.25Ny4

Fp=usNp =0.25Np

Equilibrium Equations:

32&:0: Ng— Ny =0

Ng = Ny
+1Y F,=0: Fo+Fg—W =
0.25N4 4 0.25N5 = W

28




And, since N has been found equal to Ny,

0.50N + A=W
N+ A=2W
+Y Mp=0: Nu(6in.) — Fa(3in.) — W(z — 1.5in.) = 0

6N4 —3(0.25N4) — Wax + 1.5W =0
6(2W) — 0.75(2W) — Wx + 1.5W =0
Dividing through by W and solving for z,

r =12 in.
5 Method of Virtual Work

Principle of virtual work is another method for solving certain types of equilib-

rium problems.
5.1 PRINCIPLE OF VIRTUAL WORK

Consider a particle acted upon by several forces Fi, Fb, ..., F,,. We can imagine
that the particle undergoes a small displacement from A to A’. This displace-
ment is possible, but it will not necessarily take place. The forces may be
balanced and the particle at rest, or the particle may move under the action of
the given forces in a direction different from that of AA’. Since the displace-
ment considered does not actually occur, it is called a virtual displacement and
is denoted by dr.

The virtual work of all the forces acting on the particle of is

SU=F -0F+F, - 0F+ ..+ F, - 0r = (Fi+ Fo+ ...+ F,) - 07

29




or

SU = R - 67
where R is the resultant of the given forces. Thus, the total virtual work of

| S

A
{ .
—

the forces Fi, I, ..., F}, is equal to the virtual work of their resultant R.

5.2 Examples

Example: Using the method of virtual work, determine the magnitude of the

couple M required to maintain the equilibrium of the mechanism shown.
Solution

Choosing a coordinate system with origin at £, we write

xp = 3l cos b dxp = —3lsin 056

Principle of Virtual Work. Since the reactions fY, E,, and E, will do no work

during the virtual displacement, the total virtual work done by M and P must

30




be zero. Noting that P acts in the positive z direction and M acts in the

positive @ direction, we write
U =0: + MO + Poxp =0

+ M6 + P(—3lsinhéf) =0
M = 3Plsin6

5.3 Examples

Example: Determine the expressions for # and for the tension in the spring

which correspond to the equilibrium position of the mechanism. The un-
stretched length of the spring is h, and the constant of the spring is k. Neglect

the weight of the mechanism.

Solution
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With the coordinate system shown
yp = lsinf yo = 2lsinf
dyp = Lcos 006 Oyc = 2l cos 006

The elongation of the spring is s = yo — h = 2lsinf — h
The magnitude of the force exerted at C' by the spring is

F =ks=Fk(2lsinf — h)

Principle of Virtual Work. Since the reactionsA,, A,, and C' do no work, the

total virtual work done by P and F' must be zero.

oU=0: Péyg — Foyc =0
P(lcos00) — k(2lsinf — h)(2] cos060) = 0
0 P +2kh
sind = — - —

Substituting this expression, we obtain
1
F=-P
2

32
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Introduction

6 Newton’s second law of motion

Newton’s second law of motion can be stated as follows:

If the resultant force acting on a particle is not zero, the particle will have an
acceleration proportional to the magnitude of the resultant force and in the
direction of this resultant force.

To uderstand Newton’s second law, imagin a particle subjected to a force f: of
constant direction and constant magnitude f;. Under the action of that force,
the particle is observed to move in a straight line in the direction of the force.
By determining the position of the particle at various instants, we find that
its acceleration has a constant magnitude. Repeating this action with forces
f;, fg ..., of different magnitudes or directions, we find that the particle moves
each time in the direction of the force acting on it and that the magnitudes
ai,as, ... of the acceleration are proportional to the magnitudes fi, fo,... of
the corresponding forces. f —1/a; = fo/as = -+ = const.

The constsnt value is the mass of the particle and is denoted by m. When a
particle of mass m is acted upon by force f, the force F' and the acceleration
a of the particle satisfy the relation:

f = ma

Note that the vectors f and a@ have the same direction.

When a particle is subjected simaltaneousely to several forces, we have

> f=ma

where > f represents the sum of the forces acting on the particle.
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4
(a)
}_12
Fs
(b)

* Equation of motion

Consider a particle of mass m acted upon by several forces. Newton’s second
law can be expressed as

> f=mi

which relates the forces acting on the particle and the vector ma. Using the
components of both vectors f = (fz, fys f2) and @ = (ay, ay, a;), we have

S foi + fo] + [-K) = m(agi + ay) + a.k),

from which it follows that:

fo:max; ny:mayv ZfZ:ma’Z7

where

a, = d*z/dt* =7, a,=d*y/dt* =1, a,=dz/dt*=:%.
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F =ma

ma

|1

# Example: A 90.7kg block rests on a horizontal plane. Find the magnitude
of the force P required to give the block an acceleration of 3m/s* to the
right. The coefficient of kinetic fraction between the block and the plane
15 1= 0.25

Solution

The mass of the block is, weight of the block, W = mg = 890N, m = 90.7¢
Note that:
f = muR = 0.25R and that a = 3m/s*. expressing that the forces acting on
the block are equivalent to the vector ma, we write
(+) — Z fe=ma — Pcos30—0.25R = (90.7kg)(3m/s?)

37




W=890 N

P cos30 — 0.25R = 272N (1)

(+) 1) f,=0— R — Psin30 = 890N = 0(2)
Solving (2) for R and substituting the result into (1), we see
R = Psin 30 + 890
then
P cos 30 — 0.25( P sin 30 4 890) = 272

then
P =667.3N
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* Tangential and Normal components

Resolving the forces and acceleration of the particle into two components along
the tangent to the path (in the direction of motion) and the normal (towards

the inside of the path), we obtain
> ft = ma; = mdv/dt S fu = ma, = mv*/p. Example 2 The

n\ n\
2F, /t may /t

may

g
e
[l

bob of a 2-m pendulum describes an arc of a circle in a vertical plane. If the
tension in the cord is 2.5 times the weight of the bob for the position shown,

find the velocity and acceleration of the bob in that position.

Solution
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The weight of the bob is W = mg, the tension in the cord is thus 2.5mg.
Recalling that a,, is directed toward o and assuming a; as shown, we apply

Newton’s second law and obtain

ma,

(+) Z fr = may mgsin 30 = may
(+) Z Jn = may, 2.5mg — mg cos 30 = ma,,
a, = 1.634g = 16.01m/s*

since a,, = v?/p, we have v = pa,, = (2)(16.03m/s?)
then
v = £5.66m/s

7 Curvilinear motion of particles
7.1 Position, velocity, and acceleration
When a particle moves along a curve other than straight line, we say that the

particle curivlinear motion (motion in a plane). We can define the position of
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the particle by replacing the distance z in straight line by the vector 7, and
follow the same procedure for defining the velocity v and acceleration @ at any
time t. So, we find
Lo dt L du
U= — a=—
dt’ dt
In this case both velocity ¥ and acceleration @ have two components, one in

x-axis direction and other in y-axis direction.

— dF - > i .2
v:%:vggz%—vy]:azﬁ—yj
L dv - T
azazaxz+ayj=xz+yj
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8 Motion of projectile

Applying the equation of curvilinear motion on a projectile case, we have

Denoting by, xg, yo the coordinates of the projectiler, (v, )o, (v,)o the compo-

nents of initial velocity vy of the projectile, on integrating twice , we obtain

Vp =T = (Ux)()a Uy = y = (Uy)O — gt
1
r = xo+ (v3)ot, Y =10+ (vy)o — §gt2

8.1 Examples

Example 1 A projectile is fired from the edge of a 150 —m cliff with an initial

velocity of 180m /s at angle of 30 with the horizontal. Neglecting air resistance,
find (a) the horizontal distance from the gun to the point where the projectile
stricke the ground (b) the greatest elevation above the ground reached by the

projectile.
Solution

The vertical motion:
Choosing the positive sense of the y axis upward and placing the origin at the

gun, we have:

(vy)o = (180m/s) sin 30 = +90m /s
a = —9.81m/s”
Substituting into the equation of uniformaly accelerated motion, we have:

vy = (v —y)o+at = v, =90 — 9.81¢
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y = (v,)ot + (1/2)at® — y = 90t — 4.90t*  (2)
vy = (vy)o + 2ay — v, = 8100 — 19.62y

Horizontal motion:

Choosing the positive sense of the x axis to the right, we have
(V)0 = (180m/s) cos 30 = +155.9m/ s

Substituting into the equation of uniform motion, we obtain
x = (vy)ot = x = 155.9¢ (4)

Horizontal distance:

When the projectile strickes the ground, we have
y = —150m
carrying this value into Eq (2) for the vertical motion, we write
— 150 = 90t — 4.90t* — t62 — 18.37t — 30.6 = 0

t =1991s

Carrying t = 19.91s into Eq (4) for the horizontal motion, we obtain
z = 155.9(19.91) = 3100m

Greatest elevation: When the projectile reaches its greatest elevation, we have

v, = 0, carrying this value into Eq (3) for the vertical motion, we write
0 = 8100 — 19.62y — y = 413m

The greatest elevation above ground = 150m + 413m = 563m Example 2 A

projectile is fired with an initial velocity of 240m /s at a target B located 600m
above the gun A and a horizontal distance of 3600m. Neglecting air resistance,
determine the value of the firing angle a.
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Solution

The horizontal and vertical motion will be considered seoarately.
Horizontal motion: Placing the origin of the coordinate axes at the gun,

we have

(vg)o = 240 cos

Substituting into the equation of uniform horizontal motion, we obtain
x = (v)ot r = (240 cos a)t

the time required for the projectile to move through a horizontal distance of
3600m is obtianed by setting x equal to 3600m, then

2600 15
3600 = (240 t = t = —
( o8 a) 240cos ¢ cos«

Vertical motion:
(vy)o = 2408in o a = —9.80m/s*

Substituting into the equation of uniformally accelerated vertical motion, we
obtain

1
y = (vy)ot + §at2 y = (240sin )t — 4.9t

Projectile hits target: When z = 3600m, we must have y = 600m.

Substituting for y and setting ¢ equal to the value found above, we have

1
600 = 240 sin « >

— 4.9(15 2
— (15/ cos )

2

Since 1/ cos® a = sec’ a = 1 + tan® o, we have

600 = 240(15) tan o — 4.9(15)%(1 + tan* o)
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This means

1103 tan® o — 3600 tan o + 1703 = 0

Solving for tan a;, we have

tana = 0, 565 and tana = 2.75
Which means tha

a = 29.5° and a = 70.0°

Then the target will be hit if either of these two firing angles is used. Example 3

A motorist is traviling on a curved section of highway of radius 750m at the
speed of 100km /h. The motorist suddenly applies the brakes, causing the au-
tomobile to slow down at a constant rate. Knowing that after 8s the speed
has been reduced to 75km/h, determine the acceleration of the automobile

immediatley after the brakes have been applied.
Solution

Tangential components of acceleration: First the speeds are expressed
inm/s

100km/h = (100km/h)(1000m /1km)(1h/3600s)
=27.8 m/s Similarly 75km/h = 20.8m/s

Since the automobile slows down at a constant rate, we have

A 20.8 — 27.8
a; = averagea; = v = —0.875m/ s

At 8

Normal components of acceleration: Immediately after the brakes have

been applied, the speed is still 27.8m /s, and we have

(27.8)?
750
45
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Magnitude and direction of acceleration: The magnitude and direction

of acceleration of the resultant @ of the components a,, and a; are

a,, 1.03
= — = — — 4 . 0
tan o o - 0875 = 9.7
. 1.03 B
a=d=— =  a=|d|=135m/s

sina sind9.7
Example 4 Determine the rated speed of a highwaycurve of radius p = 120m

banked through an angle # = 18°. The rated speed of a banked highway curve
is the speed at which a car should travel if no leteral friction force is to be

exerted on its wheels.
Solution

Suppose that the car mass m = W/g, where W is the car weight. Since
there is no friction force is exerted on the car, the reaction R of the road is
perpendicular to the road way. Using the normal and tangential components
of the acceleration with Newton’s second law, we obtain

mg

+T2Fy:() —  Rcos—mg=0 — R=

cos 6
+ .
— g F, = ma, — Rsinf = ma,

Substituting for R, using a, = v?/p, we obtain

mg v?

sinf = m— — v?=gptanh
cos 6 0

Substituting p = 120 and 6 = 18° into this equation, we obtain
v? = (9.8)(120) tan 18°
1
— v=19.6m/s = 19.6(m)(3600) = 70.6km/h
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9 Work and energy

Consider a particle which moves from a point A to a point A’. If 7 denotes the
position vector corresponding to point A, the small vector joining A and A’ can
be denoted by the differential dr, the vector dr is called the displacement of

the particle. Let us assume that a force F corresponding to the displacement

dr’is defined as
dU = F - dF (1)
obtained by forming the scalar product of the foce F and the displacement dr".

Recalling the scalar product definition, we write
dU = Fds cos a

We can express the dU in terms of the rectangular components of the force and
desplacement

dU = Fydz + F,dy + F.dz
The work of F during a finite displacement of the particle from A; and Ay is
obtained by integrating eq (1) along the path. This work, denoted by U;_.s is

Ao B
Ay

obtaining that F'cos « represents the tangential component F; of the force, we

can express the work Uj_y9 as

Ao $9
U1_>2:/ (Fcosoz)ds:/ Fids

Al S1
In terms of the rectangular component, we have

Ag
Uiy = / (Fpdx + F,dy + F.dz)
Al
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9.1 Kinetic energy of a particle: Priciple of work and energy

Consider a particle of mass m acted upon by a force F and moving alone a
path which is either rectangular or curved. Expressing Newton’s seconf law in

terms of the tangential components of the force and of acceleration, we write
F, = may or  Fy=mdv/dt

where v is the speed of the particle.
Then
F; = mdv/dsds/dt = mvdv/ds

Then
Fids = mudvu

integrating from A; where s = s; and v = v; to A, wher s = s9 and v = vy

59 v2
/ F —tds = m/ vdv = (1/2)mwvs — (1/2)mwv?
S1 U1

The Lh.s. represnets the work Uy_s of the force F. The expression (1/2)mu?
is the kinetic energy of the particle and denoted by T, i.e.,

T = (1/2)mwv?

this means

Uio =15 — T

which epresses that "when a particle moves from A; to A under the action of
a force F , the work of the force Fis equal to the change in the kinetic energy

of the particle”. This is known as the principle of work and energy.
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9.1.1 Potential energy

Let us consider a body of weight w which moves along a curved path from
point A; of elevation y; to a point A, of elevation yo. We know the work of

the force of gravity w during this displacement is
Uy = Wy, = W),

The function W is called the potential energy of the body with respect to the

force of gravity w and is denoted by
Uiz = (Vo) — (Vy)awithVy = W,

Note, if (V)2 > (V,)1, if the potential energy increases during the displacement,
the work U;_,9 is negative. If on the other hand, the work of w is positive, the
potential energy decreases. Therefore, the potential energy V, of the body

provides a measure of the work of the work which can be done its weight w.

9.1.2 Conservation force

As previous, a force Fona particle is said to be conservative if its work U;_,9
is independent of the path followed by the particle as it moves from point A to
B.

We can write:

Uio =V (21,51, 21) — V(x2, Y2, 22)

or, for short,

Ui = Vi = Vs

As we know, the function V(x, y, z) is the potential energy of potential function.
If A is coincide with B, we have V; = V5 and the work is zero. Thus for any
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conservation force F' we have,

]{ﬁ-dF:O

where the circle on the integral sign indicates that the path is closed.
For two neighboring points A(z,y, z) and B(z + dx,y + dy, z + dz), the ele-

mentary work dU corresponding to the displacement dr from A to B is
dU =V (z,y,z) — V(z +dx,y + dy, z + dz)

or

dU = —dV (z,vy, 2) (1)

we know that
dU = Fydx + F,dy + F.dz (2)
Using (1) and (2), we obtain
Fodx + F,dy + F.dz = —[(0V/0z)dx + (0V/0y)dy + (0V/0z)dz]

this means

F, = -0V /o, F,= -0V /0y, F,=-0V/0z
this means that the force F' can be expressed as

F = F,i+ F,j+ F.k = —[(0V/0x)i + (OV/dy)] + (OV/D2)k]

The vector in parantheses is known as the gradient of the scalar function V'

and is denoted by gradV. For any conservative force
F = —gradV
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9.2 Examples

Example 1 A 9 kg collar slides without friction along a vertical rod. The

spring attached to the collar has an undeformed length of 10 cm and a constant
of 525 N/m. If the collar is released from rest in position 1, determine its velocity
after it has moved 15 em to position 2. % position 1: Potential energy

The elnogation og the spring is
1 = 20cm — 10cm = 10em
and we have
V. = (1/2)kx? = (1/2)(525)(0.1)* = 2.625N.m
Choosing the datum we have V;, = 0, therefore,
Vi=V.+V,=2625N.m

Kinetic energy:
Since the velocity in position 1 is zero, T1 = 0 % position 2: Potential energy

The elongation of the spring is
To = 25cm — 10cm = 1dem
and we have
V. = (1/2)kxs = (1/2)(525)(0.15)* = 5.9N.m

Therefore,

Vo=V, +V,=59-13.25=—735N.m

Kinetic energy:
Ty = (1/2)mui = (1/2)(9)vi = 4.5v3
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Conservation of energy: Applying the principle of conservation of energy be-

tween position 1 and position 2 we obtain
T+ Vi=T+ V1,

this means

0+ 2.625N.m = 4.503 — 7.35N.m

we obtain

vy = +1.5m/s
9.2.1 Kinematics of rigid bodies

In the following we investigate the relation existing between the time, the posi-
tions, the velocities, and the accelerations of the variuos particles forming the

rigid body:

1. Translation: A motion is said to be a translation if any straight line
inside the body keeps the same direction during the motion. It can also
be observed that along parallel paths. If these paths are straight lines,
the motion is said to be a rectiline transition, if the paths are curved

lines, the motion is a curvilinear translation.

2. Rotation about a fixed axis: In this motion, the particles forming the
rigid body move in parallel planes along circles centered on the same
fixed axis. If this axis, called the axis of rotation, intersects the rigid
body, the particles located on the axis have zero velocity and zero

acceleration.

3. Central plane motion: There are many other types of planes motion
that is, motions in which all the particles of the body move in parallel
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planes. Any plane motion which is neither a rotation nor a translation

is referred to as a general plane motion.

4. Motion about a fixed point: The three-dimensional motion of a rigid
body attached at a fixed point O, for example, the motion of a top on

a rough floor, is known as motion about fixed point.

5. General motion: Any motion of a rigid body which does not fall in any

of the categories above is referred to as a general motion.

(1) Translation: Consider a rigid body in translation (either rectilinear or

curvilinear translation), and let A and B by any two of its particles.
Denoting, respectively, by 74 and 7 the position vectors of A and B with
respect to a fixed frame of reference and by 745. the vector joining A and
B, we write

TB =174+ TAB
Let us differentiate this relation with respect to ¢, bearing im mind that

T'4p 1s constsnt in direction and magnitude, we have

— —

b b

Differentiating once more, we write

— —

B = AA

Thus, when a rigid body is in translation, all the points of the body have

the same velocity and the same acceleration at any given instant.

(2) Rotation about a fixed axis: Consider a rigid body which rotates about

a fixed axis AA’. The angle 6 is known as the angular coordinate of the
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body and is defined as positive when viewed as counter clockwise from A’.
0 denotes the time derivative of 6. The velocity v is perpendicular to the
plane containinig AA" and 7. The vector & = 6k which formed the vector

product & x 7, we thus write
v=dr/dt=0J X1

The vector & = wk = HE, is called the angular velocity of the body. The

acceleration @ is obtained by
a=dv/dt =d/dt(J x T)
= did/dt X 7+ x dr/dt
=dd/dt X 7"+ x U

The vector di /dt is denoted by @ and is called the angular acceleration of the
body.

Substituting for v = & X r, we have

also

(3) Equations defining the rotation of a rigid body about a fixed axis: The
motion of rigid body rotating about a fixed AA’ is said to be known when

its angular coordinate 6 can be expressed as a known that
w=df/dt (1)

o = dw/dt = d*0/dt* (2)
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or, solving (1) for dt and substituting into (2)
a = wdw/dt
Two particular cases of rotation are

(i) uniformaly accelerated rotation: In this case, the angular acceleration

is costant. It is appeared that
w = wy+ at
0 = 0y + wot + (1/2)at?
w? = wj + 2a(0 — )

# Example: Load B is connected to a double pulley by one of two inextensible
cables. The motion of the pulley is controlled by cable C', which has a
constant acceleration of 0.25m/s* and an initial velocity of 0.3 m/s, both
directed to the right. Determine
(1) The number of revolutions executed by the pulley in 2 s.

(2) The velocity and change in position of the load B after 2 s, and

(3) The acceleration of point D on the rim of the inner pulley at t = 0
Solution

(1) Motion of the pulley: Since the cable is inextensible, the velocity of point
D is equal to the velocity of D is equal to the acceleration of C'.

(vp)o — (Ve)o = 0.3m/s

(ap); = a. = 0.25m/s*
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since the distance from D to the center of the pulley is 3 in, we write
(vp)o = rwy — 0.3 = (0.1)wy = wy = 3rad/s

(ap); = ra — 0.25 = (0.1)a — a = 2.5rad/s*

Using the equations of uniformaly accelerated motion, we obtain, for t = 2

S

w=wy+at =34 (2.5)(2) =8rad/s
0 = wot + (1/2)at® = (3)(0.25) + (1/2)(2.5)(2)* = 11rad
Number of revolution = 11(1 rev/27 rad) = 1.75 rev.

(2) Motion of load B: Using the following relation between linear and angular

motion, with » = 0.15 in., we write
vp =rw = (0.15 m)(8 rad/s) =12 m/s - vp =12 m/s
Ayp =168 = (0.15 m)(11 rad) = 1.65c¢m

(3) Acceleration of point D at t = 0: The tangential component of the accel-
eration is (ap); = a. = 0.25 m/s>

since, at t = 0, wy = 4 rad/s, the normal component of the acceleration is
(ap)n = rpws = (0.1 m)(3 rad/s*) = 0.9 m/s”

The magnitude and directiion of the total acceleration can be obtained by
writing
tan ¢ = (0.9)(0.25) — ¢ = 74.48°

apsin74.48° = 0.9m/s* — ap = 0.93m/s”
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Chapter 23 Simple Harmonic Motion

...Indeed it is not in the nature of a simple pendulum to provide equal and
reliable measurements of time, since the wide lateral excursions often
made may be observed to be slower than more narrow ones, however, we
have been led in a different direction by geometry, from which we have
found a means of suspending the pendulum, with which we were
previously unacquainted, and by giving close attention to a line with a
certain curvature, the time of the swing can be chosen equal to some
calculated value and is seen clearly in practice to be in wonderful
agreement with that ratio. As we have checked the lapses of time
measured by these clocks after making repeated land and sea trials, the
effects of motion are seen to have been avoided, so sure and reliable are
the measurements; now it can be seen that both astronomical studies and
the art of navigation will be greatly helped by them...'

Christian Huygens

23.1 Introduction: Periodic Motion

There are two basic ways to measure time: by duration or periodic motion. Early clocks
measured duration by calibrating the burning of incense or wax, or the flow of water or
sand from a container. Our calendar consists of years determined by the motion of the
sun; months determined by the motion of the moon; days by the rotation of the earth;
hours by the motion of cyclic motion of gear trains; and seconds by the oscillations of
springs or pendulums. In modern times a second is defined by a specific number of
vibrations of radiation, corresponding to the transition between the two hyperfine levels
of the ground state of the cesium 133 atom.

Sundials calibrate the motion of the sun through the sky, including seasonal
corrections. A clock escapement is a device that can transform continuous movement into
discrete movements of a gear train. The early escapements used oscillatory motion to stop
and start the turning of a weight-driven rotating drum. Soon, complicated escapements
were regulated by pendulums, the theory of which was first developed by the physicist
Christian Huygens in the mid 17" century. The accuracy of clocks was increased and the
size reduced by the discovery of the oscillatory properties of springs by Robert Hooke.
By the middle of the 18™ century, the technology of timekeeping advanced to the point
that William Harrison developed timekeeping devices that were accurate to one second in
a century.

23.1.1 Simple Harmonic Motion: Quantitative

! Christian Huygens, The Pendulum Clock or The Motion of Pendulums Adapted to Clocks By Geometrical
Demonstrations, tr. Ian Bruce, p. 1.
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One of the most important examples of periodic motion is simple harmonic
motion (SHM), in which some physical quantity varies sinusoidally. Suppose a function
of time has the form of a sine wave function,

y(t)= Asin(27t/ T) (23.1.1)

where A >0 is the amplitude (maximum value). The function y(¢) varies between A
and —A4, because a sine function varies between +1 and —1. A plot of y(¢) vs. time is
shown in Figure 23.1.

+ A
(1)

LA

Figure 23.1 Sinusoidal function of time

The sine function is periodic in time. This means that the value of the function at
time ¢ will be exactly the same at a later time " =7+ 7, where T is the period. That the
sine function satisfies the periodic condition can be seen from

y(t+T)= Asin[%(t+]’)} = Asin‘:%t+2ﬂ} = Asin[%t} =y(t). (23.1.2)

The frequency, f,is defined to be
f=1T. (23.1.3)

The SI unit of frequency is inverse seconds, [571], or hertz[Hz]. The angular frequency

of oscillation is defined to be
o,=2n/T=2rf, (23.1.4)

and is measured in radians per second. (The angular frequency of oscillation is denoted

by o, to distinguish from the angular speed @ =|d6/dt|.) One oscillation per second,

1Hz, corresponds to an angular frequency of 27 rad-s™'. (Unfortunately, the same
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symbol @ is used for angular speed in circular motion. For uniform circular motion the
angular speed is equal to the angular frequency but for non-uniform motion the angular
speed is not constant. The angular frequency for simple harmonic motion is a constant by
definition.) We therefore have several different mathematical representations for
sinusoidal motion

W(1)= Asin(2mt | T) = Asin(27 f )= Asin(@,?) . (23.1.5)

23.2 Simple Harmonic Motion: Analytic

Our first example of a system that demonstrates simple harmonic motion is a spring-
object system on a frictionless surface, shown in Figure 23.2

eq
— A
i
—
x=0
equilibrium position
10

— x(1)

stretched position

Figure 23.2 Spring-object system

The object is attached to one end of a spring. The other end of the spring is attached to a
wall at the left in Figure 23.2. Assume that the object undergoes one-dimensional motion.

The spring has a spring constant & and equilibrium length leq. Choose the origin at the

equilibrium position and choose the positive x -direction to the right in the Figure 23.2.
In the figure, x >0 corresponds to an extended spring, and x <0 to a compressed spring.
Define x(7) to be the position of the object with respect to the equilibrium position. The

force acting on the spring is a linear restoring force, F. =—kx (Figure 23.3). The initial
conditions are as follows. The spring is initially stretched a distance /, and given some
initial speed v, to the right away from the equilibrium position. The initial position of the
stretched spring from the equilibrium position (our choice of origin) is x, = ([, — leq) >0

and its initial x -component of the velocity is v_, =v,>0.

0
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force diagram
om |

—x(1)
Fs :—Fﬁ =—kxi

Figure 23.3 Free-body force diagram for spring-object system

Newton’s Second law in the x -direction becomes

2
—%x:m%%. (23.2.1)

This equation of motion, Eq. (23.2.1), is called the simple harmonic oscillator equation
(SHO). Because the spring force depends on the distance x, the acceleration is not
constant. Eq. (23.2.1) is a second order linear differential equation, in which the second
derivative of the dependent variable is proportional to the negative of the dependent
variable,

2
%%z—gx. (23.2.2)

In this case, the constant of proportionality is k/m ,

Eq. (23.2.2) can be solved from energy considerations or other advanced techniques but
instead we shall first guess the solution and then verify that the guess satisfies the SHO
differential equation (see Appendix 22.3.A for a derivation of the solution).

We are looking for a position function x(z) such that the second time derivative position
function is proportional to the negative of the position function. Since the sine and cosine

functions both satisfy this property, we make a preliminary ansatz (educated guess) that
our position function is given by
x(t)= Acos((2r / T)t)= Acos(w, ), (23.2.3)

where @, is the angular frequency (as of yet, undetermined).

We shall now find the condition that the angular frequency @, must satisfy in order to

insure that the function in Eq. (23.2.3) solves the simple harmonic oscillator equation, Eq.
(23.2.1). The first and second derivatives of the position function are given by
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% =-,Asin(@t)
s (23.24)
T = —a)gA cos(w, ) = —(ugx.

Substitute the second derivative, the second expression in Eq. (23.2.4), and the position
function, Equation (23.2.3), into the SHO Equation (23.2.1), yielding

k
—; Acos(w,t) = —— Acos(w, 1) . (23.2.5)
m
Eq. (23.2.5) is valid for all times provided that

@, =4~ . (23.2.6)

2
r="Z_2r /2. (23.2.7)
o, k

One possible solution for the position of the block is

x(t) = Acos[\/E t], (23.2.8)
m

and therefore by differentiation, the x -component of the velocity of the block is

v (1)= —\/% Asin[\/% z}. (23.2.9)

Note that at =0, the position of the object is x, = x(t =0) = 4 since cos(0) =1 and the
=v (t=0)=0 since sin(0)=0. The solution in (23.2.8) describes an

The period of oscillation is then

velocity is v,

object that is released from rest at an initial position 4 = x, but does not satisty the initial

velocity condition, v (t=0)=v_, #0. We can try a sine function as another possible

x(t) = Bsin[\/zr). (23.2.10)
m

This function also satisfies the simple harmonic oscillator equation because

solution,
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2
4x_ kgl JE =0 x, (23.2.11)
dr’ m m 0

where @, =+k/m.The x-component of the velocity associated with Eq. (23.2.10) is

vx(t)zgz\/%Bcos(\/%t). (23.2.12)

The proposed solution in Eq. (23.2.10) has initial conditions x, =x(¢#=0)=0 and
Vo=V, (t=0)=Wk/m)B,thus B=v_ /~Nk/m.This solution describes an object that

is initially at the equilibrium position but has an initial non-zero x -component of the
velocity, v_; #0.

23.2.1 General Solution of Simple Harmonic Oscillator Equation

Suppose x,(¢) and x,(¢) are both solutions of the simple harmonic oscillator equation,

2
4 =—"x0)
dtz 1 m 1
p ; (23.2.13)
?xz(t) = —sz(l‘).

Then the sum x(¢)=x,(¢)+x,(¢) of the two solutions is also a solution. To see this,
consider

d’x(t) d* d’x (1) d’x(t)
g DT RO)=TE

(23.2.14)

Using the fact that x,(¢) and x,(z) both solve the simple harmonic oscillator equation
(23.2.13), we see that

Lty =2 x 0+ -L o=~ E 0+ 3,0
dt m m m (23.2.15)

= —ix(t).
m

Thus the linear combination x(t) = x,(t)+x,(¢) is also a solution of the SHO equation,

Eq. (23.2.1). Therefore the sum of the sine and cosine solutions is the general solution,
x(t) = Ccos(w, t)+ Dsin(w, 1), (23.2.16)
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where the constant coefficients C and D depend on a given set of initial conditions

X, =x(t=0) and v_ =v (t=0) where x, and v_, are constants. For this general

0 0

solution, the x -component of the velocity of the object at time ¢ is then obtained by
differentiating the position function,

d
v (1) = ?’: = —,Csin(, 1) + ©,Dcos(, 7). (23.2.17)

To find the constants C and D, substitute =0 into the Egs. (23.2.16) and (23.2.17).
Because cos(0) =1 and sin(0) =0, the initial position at time =0 is

x,=x(t=0)=C. (23.2.18)

The x -component of the velocity at time # =0 is

v, =, (t=0)=-0,Csin(0)+ o Dcos(0) =D . (23.2.19)
Thus
%
C=x, and D=—2. (23.2.20)
w

0

The position of the object-spring system is then given by

k vx,O . &
x(1)=x, cos[\/;t]+ msm( mt] (23.2.21)

and the x -component of the velocity of the object-spring system is

v (1) = —\/%x0 sin[\/%t] +V., cos(\/%t) . (23.2.22)

Although we had previously specified x, >0 and v_ >0, Eq. (23.2.21) is seen to be a

valid solution of the SHO equation for any values of x, and v .

Example 23.1: Phase and Amplitude

Show that x(f) = Ccos@t + Dsinw,t = Acos(wt+¢), where 4=(C*+D*)"*>0, and
¢=tan"'(-D/C).
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Solution: Use the identity Acos(w+ @)= Acos(wt)cos(¢)— Asin(w,t)sin(¢) . Thus
Ccos(w,t)+ Dsin(wt) = Acos(wt)cos(¢) — Asin(w,t)sin(¢) . Comparing coefficients
we see that C = Acos¢ and D =—Asin¢ . Therefore

(C*+D*)"* = £2(cos’ ¢ +sin’§) = 4* .
We choose the positive square root to ensure that 4 >0, and thus

A=(C*+D*"? (23.2.23)
tan¢g = sing = —D/4 :_2’
cosp C/ A C

¢=tan” (=D /C). (23.2.24)

Thus the position as a function of time can be written as
x(t) = Acos(wt+¢) . (23.2.25)

In Eq. (23.2.25) the quantity @ +¢ is called the phase, and ¢ is called the phase

constant. Because cos(@+¢) varies between +1 and —1, and 4>0, 4 is the

amplitude defined earlier. We now substitute Eq. (23.2.20) into Eq. (23.2.23) and find
that the amplitude of the motion described in Equation (23.2.21), that is, the maximum
value of x(¢), and the phase are given by

A=x2+ (v, o). (23.2.26)
o=tan"(~v,, / 0.x,). (23.2.27)

A plot of x(¢) vs. t is shown in Figure 23.4a with the values 4=3, T=x, and
¢p=mn/4 . Note that x(r)= Acos(wi+¢) takes on its maximum value when
cos(wjt+¢)=1. This occurs when @it+¢=2nn where n=0,+1,£2,--- . The
maximum value associated with n=0 occurs when @ ¢t+¢=0 or t=-¢/®,. For the
case shown in Figure 23.4a where ¢ =x /4, this maximum occurs at the instant
t=-T/8. Let’s plot x(¢)= Acos(wt+¢) vs. ¢t for ¢ =0 (Figure 23.4b). For ¢ >0,
Figure 23.4a shows the plot x(¢) = Acos(w,+¢) vs. t. Notice that when ¢ >0, x(¢) is
shifted to the left compared with the case ¢ =0 (compare Figures 23.4a with 23.4b). The
function x(7) = Acos(w,t + @) with ¢ >0 reaches its maximum value at an earlier time
than the function x(7) = Acos(w,t). The difference in phases for these two cases is

(wjt+¢9)—wit=¢ and ¢ is sometimes referred to as the phase shift. When ¢ <0, the
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function x(7) = Acos(w,t + @) reaches its maximum value at a later time t=7/8 than

the function x(7) = Acos(w,t) as shown in F
b dak

\

y(2)
t=-11/8

igure 23.4c.

p=-m/4
\ /\ Imes

-2.5T

(b)

-1

0

=251

()

Figure 23.4 Phase shift of x(¢) = Acos(w,+ ¢) (a) to the left by ¢ =7 /4, (b) no shift

¢ =0, (c) to the right ¢ =

/4

23-9



Example 23.2: Block-Spring System

A block of mass m is attached to a spring with spring constant k£ and is free to slide
along a horizontal frictionless surface. At ¢=0, the block-spring system is stretched an

amount x, >0 from the equilibrium position and is released from rest, v, =0. What is

the period of oscillation of the block? What is the velocity of the block when it first
comes back to the equilibrium position?

Solution: The position of the block can be determined from Eq. (23.2.21) by substituting

the initial conditions x, >0, and v_, =0 yielding

x(t) =x, cos[\/Et J, (23.2.28)
m

and the x -component of its velocity is given by Eq. (23.2.22),

v (1)= —\/% X, sin[\/% z] : (23.2.29)

The angular frequency of oscillation is @, =+k/m and the period is given by

Eq. (23.2.7),
2
r=""_ 271\/E . (23.2.30)
o, k
The block first reaches equilibrium when the position function first reaches zero. This
occurs at time ¢, satisfying
T
Ly II:E\/E:__ (23.2.31)
m 2 2 4

The x -component of the velocity at time ¢, is then

v (t)= —\/Exo sin[\/ztl) = —\/Ex0 sin(r/2)= —\/Exo =-m,x, (23.2.32)
m m m m

Note that the block is moving in the negative x -direction at time ¢,; the block has moved
from a positive initial position to the equilibrium position (Figure 23.4(b)).
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23.3 Energy and the Simple Harmonic Oscillator

Let’s consider the block-spring system of Example 23.2 in which the block is initially
stretched an amount x, >0 from the equilibrium position and is released from rest,

v_, =0. We shall consider three states: state 1, the initial state; state 2, at an arbitrary

time in which the position and velocity are non-zero; and state 3, when the object first
comes back to the equilibrium position. We shall show that the mechanical energy has
the same value for each of these states and is constant throughout the motion. Choose the
equilibrium position for the zero point of the potential energy.

State 1: all the energy is stored in the object-spring potential energy, U, = (1/2)k x; . The
object is released from rest so the kinetic energy is zero, K, =0. The total mechanical

energy is then

E :Ulzékxj. (23.3.1)

1

State 2: at some time ¢, the position and x -component of the velocity of the object are

given by
x(1) = x, cos(1 fﬁtj
m

(23.3.2)
k k
v ()= —\/:x0 sin[\/:tj.
m m
The kinetic energy is
K, =lmv2 =lkx§ sin’ \/Et , (23.3.3)
2 2 m
and the potential energy is
U, . =lkx§ cos?| [t |. (23.3.4)
2 2 m

The mechanical energy is the sum of the kinetic and potential energies
1L .. 1. 5
E, =K +U,=—mv " +—kx
2 7 2

:lkxg[cosz[\/;tJ+sin2{\/;t]] (23.3.5)
2 m m

1
=§kx§,
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where we used the identity that cos’@+sin’@¢=1, and that @,=vk/m (Eq.
(23.2.6)).

The mechanical energy in state 2 is equal to the initial potential energy in state 1, so the
mechanical energy is constant. This should come as no surprise; we isolated the object-
spring system so that there is no external work performed on the system and no internal
non-conservative forces doing work.

l_.>

x=0
equilibrium position

Figure 23.5 State 3 at equilibrium and in motion

State 3: now the object is at the equilibrium position so the potential energy is zero,
U, =0, and the mechanical energy is in the form of kinetic energy (Figure 23.5).

E. =K, =%mv§q. (23.3.6)
Because the system is closed, mechanical energy is constant,
E =E.. (23.3.7)
Therefore the initial stored potential energy is released as kinetic energy,
lkxg =lmv2 , (23.3.8)
2 2 0"

and the x -component of velocity at the equilibrium position is given by

k
v = J_r\/% X, (23.3.9)

Note that the plus-minus sign indicates that when the block is at equilibrium, there are
two possible motions: in the positive x -direction or the negative x -direction. If we take

x, >0, then the block starts moving towards the origin, and v_ o will be negative the first

time the block moves through the equilibrium position.
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We can show more generally that the mechanical energy is constant at all times as
follows. The mechanical energy at an arbitrary time is given by

E:K+U:%mvx2+%kx2 . (23.3.10)
Differentiate Eq. (23.3.10)
d 2
9E oy Doy X, md—f+kx . (23.3.11)
dt *dt dt* t

Now substitute the simple harmonic oscillator equation of motion, (Eq. (23.2.1) ) into Eq.

(23.3.11) yielding
9aE_y . (23.3.12)
dr

demonstrating that the mechanical energy is a constant of the motion.
23.3.1 Simple Pendulum: Force Approach

A pendulum consists of an object hanging from the end of a string or rigid rod pivoted
about the point P . The object is pulled to one side and allowed to oscillate. If the object
has negligible size and the string or rod is massless, then the pendulum is called a simple
pendulum. Consider a simple pendulum consisting of a massless string of length / and a
point-like object of mass m attached to one end, called the bob. Suppose the string is
fixed at the other end and is initially pulled out at an angle 6, from the vertical and

released from rest (Figure 23.6). Neglect any dissipation due to air resistance or frictional

forces acting at the pivot.
pivot P \

object released from rest
Figure 23.6 Simple pendulum

Let’s choose polar coordinates for the pendulum as shown in Figure 23.7a along with the
free-body force diagram for the suspended object (Figure 23.7b). The angle 6 is defined
with respect to the equilibrium position. When 6 > 0, the bob is has moved to the right,
and when 0 <0, the bob has moved to the left. The object will move in a circular arc
centered at the pivot point. The forces on the object are the tension in the string
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T=-T+ and gravity mg . The gravitation force on the object has r - and 6 -
components given by
mg = mg(cosOf —sin69) . (23.3.13)

D>
3
0Q
[«»})

r IRC) ;
Figure 23.7 (a) Coordinate system Figure 23.7 (b) free-body force diagram
Our concern is with the tangential component of the gravitational force,
F,=—-mgsin6. (23.3.14)

The sign in Eq. (23.3.14) is crucial; the tangential force tends to restore the pendulum to
the equilibrium value 8=0. If 6>0, F, <0 and if 6 <0, F, >0, where we are that
because the string is flexible, the angle 6 is restricted to the range —n/2<0<m /2. (For
angles |0 > 7 /2, the string would go slack.) In both instances the tangential component

of the force is directed towards the equilibrium position. The tangential component of
acceleration is

aG:la:lfi_j‘?' (23.3.15)

Newton’s Second Law, F, = ma,, yields
—mglsinO:mlzfi—??. (23.3.16)

We can rewrite this equation is the form
‘;—?:—%me. (23.3.17)

This is not the simple harmonic oscillator equation although it still describes periodic
motion. In the limit of small oscillations, sinf =0 , Eq. (23.3.17) becomes
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7=_%9 (23.3.18)

This equation is similar to the object-spring simple harmonic oscillator differential
equation

Ix k
E%:_Zx' (23.3.19)

By comparison with Eq. (23.2.6) the angular frequency of oscillation for the pendulum is
approximately

W, = rE (23.3.20)

T:2—ﬂ=27r\/z. (23.3.21)
o, 8

The solutions to Eq. (23.3.18) can be modeled after Eq. (23.2.21). With the initial

with period

conditions that the pendulum is released from rest, %(t:O):O , at a small angle

0(t =0)=6,, the angle the string makes with the vertical as a function of time is given by

0(t)=06,cos(w,t)=0, cos(zTntj =0, cos{\/%tj . (23.3.22)
The z-component of the angular velocity of the bob is
do g, . g
w_(1)= E(t) = —\/;90 sm( 7 t] . (23.3.23)

Keep in mind that the component of the angular velocity w_= d6/dt changes with time
in an oscillatory manner (sinusoidally in the limit of small oscillations). The angular
frequency @, is a parameter that describes the system. The z-component of the angular
velocity @ _(t), besides being time-dependent, depends on the amplitude of oscillation 6, .
In the limit of small oscillations, @, does not depend on the amplitude of oscillation.

The fact that the period is independent of the mass of the object follows algebraically
from the fact that the mass appears on both sides of Newton’s Second Law and hence
cancels. Consider also the argument that is attributed to Galileo: if a pendulum,
consisting of two identical masses joined together, were set to oscillate, the two halves
would not exert forces on each other. So, if the pendulum were split into two pieces, the
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pieces would oscillate the same as if they were one piece. This argument can be
extended to simple pendula of arbitrary masses.

23.3.2 Simple Pendulum: Energy Approach

We can use energy methods to find the differential equation describing the time evolution
of the angle 6. When the string is at an angle 8 with respect to the vertical, the
gravitational potential energy (relative to a choice of zero potential energy at the bottom
of the swing where 6 =0 as shown in Figure 23.8) is given by

U = mgl(1-cos6) (23.3.24)

The 6 -component of the velocity of the object is given by v, =1(d6/dt) so the kinetic

energy is
2
K= lmv2 = lm(lﬁ) . (23.3.25)
2 2 dt
[cosO

Figure 23.8 Energy diagram for simple pendulum

The mechanical energy of the system is then

1 o\’
E:K+U:§m IE +mgl(1-cosh). (23.3.26)

Because we assumed that there is no non-conservative work (i.e. no air resistance or
frictional forces acting at the pivot), the energy is constant, hence

2
:d—E:lm212ﬁQ+mglsin9d—0
t 2 dt dt dt

2
P10 8 e,
dr\ dt” 1

(23.3.27)

23-16



There are two solutions to this equation; the first one d6/dt =0 is the equilibrium
solution. That the z-component of the angular velocity is zero means the suspended
object is not moving. The second solution is the one we are interested in

2
;fu%ine:o, (23.3.28)

which is the same differential equation (Eq. (23.3.16)) that we found using the force
method.

We can find the time ¢, that the object first reaches the bottom of the circular arc by

setting 6(¢,)=0 in Eq. (23.3.22)
0=86, COSL\/%ZI) : (23.3.29)

This zero occurs when the argument of the cosine satisfies

?rl - % (23.3.30)

The z-component of the angular velocity at time ¢, is therefore

LU N I L 2 I
(t) \/; smi\/;tlJ \/zeosm(z) \/;90. (23.3.31)

Note that the negative sign means that the bob is moving in the negative 6 -direction
when it first reaches the bottom of the arc. The 6 -component of the velocity at time ¢, is
therefore

vy(t)= v, =1— (t)——\/; s1n£\fJ \/_QSIH(j ~\ig 6, .(23.3.32)

We can also find the components of both the velocity and angular velocity using energy
methods. When we release the bob from rest, the energy is only potential energy

2
E=U,=mgl(1-cosb,)= mgl% (23.3.33)

where we used the approximation that cos6, =1- 95 /2. When the bob is at the bottom
of the arc, the only contribution to the mechanical energy is the kinetic energy given by
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1
Ky=mw. (23.3.34)

Because the energy is constant, we have that U, = K, or
1
mgl— = Emv1 . (23.3.35)

We can solve for the 8 -component of the velocity at the bottom of the arc

vy, =gl 6,. (23.3.36)

The two possible solutions correspond to the different directions that the motion of the
bob can have when at the bottom. The z-component of the angular velocity is then

do v, g
—(t)=—=%,/=06,, 23.3.37
5 =7 ;Yo ( )

in agreement with our previous calculation.

If we do not make the small angle approximation, we can still use energy techniques to
find the 6 -component of the velocity at the bottom of the arc by equating the energies at
the two positions

1
mgl(1- cos6,)= Emvf, (23.3.38)

Vo, =*428l(1-cos6,) . (23.3.39)
23.4 Worked Examples

Example 23.3: Rolling Without Slipping Oscillating Cylinder

Attach a solid cylinder of mass M and radius R to a horizontal massless spring with
spring constant £ so that it can roll without slipping along a horizontal surface. At time ¢,

the center of mass of the cylinder is moving with speed ¥, and the spring is compressed

a distance x from its equilibrium length. What is the period of simple harmonic motion
for the center of mass of the cylinder?
S

ANNNINNNN

Al

Figure 23.9 Example 23.3
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Solution: At time ¢, the energy of the rolling cylinder and spring system is

2
E= lefm +llcm (d—e) Ly (23.4.1)
2 2 dt 2

where x is the amount the spring has compressed, /., = (1/2)MR’, and because it is
rolling without slipping

40 _ Yo . (23.4.2)
dt R
Therefore the energy is
2
E:lMVjﬁlMRz(Qj +lkx2:§Mvjn+lkx2. (23.4.3)
2 4 R) 2 4 2

The energy is constant (no non-conservative force is doing work on the system) so

2
0=9E _3opy P Lio &y 339X 44y (23.4.4)
di 4 dr 2 dr 2" dr

Because V, is non-zero most of the time, the displacement of the spring satisfies a

simple harrhonic oscillator equation
2
d—f+2—kx:o . (23.4.5)
dt© 3M

T:2—ﬂ=27r«f3—M . (23.4.6)
W, 2k

Hence the period is

Example 23.4: U-Tube

A U-tube open at both ends is filled with an incompressible fluid of density p. The
cross-sectional area A of the tube is uniform and the total length of the fluid in the tube
is L. A piston is used to depress the height of the liquid column on one side by a distance
X,, (raising the other side by the same distance) and then is quickly removed (Figure
23.10). What is the angular frequency of the ensuing simple harmonic motion? Neglect
any resistive forces and at the walls of the U-tube.

23-19



L = fotal
lena;(‘f‘t\

2k = (3:/-\ X0 g X u=o
== ] A L =
13 31653 ) U
Figure 23.10 Example 23.4 Figure 23.11 Energy diagram for water

Solution: We shall use conservation of energy. First choose as a zero for gravitational
potential energy in the configuration where the water levels are equal on both sides of the
tube. When the piston on one side depresses the fluid, it rises on the other. At a given
instant in time when a portion of the fluid of mass Am= pAx is a height x above the

equilibrium height (Figure 23.11), the potential energy of the fluid is given by

U = Amgx = (pAx)gx = pAgx” . (23.4.7)
At that same instant the entire fluid of length L and mass m = pAL is moving with
speed v, so the kinetic energy is

K= lmv2 = lpALv2 . (23.4.8)
2 2

Thus the total energy is

E:K+U:%pALv2+pAgx2 . (23.4.9)

By neglecting resistive force, the mechanical energy of the fluid is constant. Therefore

dE dv dx
0= _ oA 12 pa0x ™ 23.4.10
g PO g TPy, ( )

If we just consider the top of the fluid above the equilibrium position on the right arm in
Figure 23.13, we rewrite Eq. (23.4.10) as

dE dv dx
0= _ surv L iopger 23.4.11
g PO TePAS ( )

where v_=dx / dt . We now rewrite the energy condition using dv_/dt=d *x / dt* as
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2
0:vpr(L%+2ng . (23.4.12)
t

This condition is satisfied when v_=0, i.e. the equilibrium condition or when

2
O:L%+2gx . (23.4.13)
t
This last condition can be written as
2
d_j:_z_gx _ (23.4.14)
dt L

This last equation is the simple harmonic oscillator equation. Using the same
mathematical techniques as we used for the spring-block system, the solution for the
height of the fluid above the equilibrium position is given by

x(t) = Beos(w,f) + Csin(o,f) , (23.4.15)

o, :«/%g (23.4.16)

is the angular frequency of oscillation. The x -component of the velocity of the fluid on
the right-hand side of the U-tube is given by

where

v (1)= % = —, Bsin(w,1) + ©,Ccos(®,1) . (23.4.17)

The coefficients B and C are determined by the initial conditions. At ¢ =0, the height of
the fluid is x(r=0)=B=x,. At t=0, the speed is zero so v (t=0)=w,C =0, hence
C =0. The height of the fluid above the equilibrium position on the right hand-side of
the U-tube as a function of time is thus

x(t) = x, cos(\/%t] . (23.4.18)

23.5 Damped Oscillatory Motion

Let’s now consider our spring-block system moving on a horizontal frictionless surface
but now the block is attached to a damper that resists the motion of the block due to
viscous friction. This damper, commonly called a dashpot, is shown in Figure 23.13. The
viscous force arises when objects move through fluids at speeds slow enough so that
there is no turbulence. When the viscous force opposes the motion and is proportional to
the velocity, so that
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f_=-bv, (23.5.1)

the dashpot is referred to as a linear dashpot. The constant of proportionality b depends
on the properties of the dashpot.

/
2
/{44 2/

Figure 23.12 Spring-block system connected to a linear dashpot

Choose the origin at the equilibrium position and choose the positive x -direction to the
right in the Figure 23.13. Define x(¢) to be the position of the object with respect to the
equilibrium position. The x -component of the total force acting on the spring is the sum
of the linear restoring spring force, and the viscous friction force (Figure 23.13),

=—kx bﬂ (23.5.2)
dt
4 e .
7. Bl e
'/}7///// 4 // CYET TR0
l s 4

Figure 23.13 Free-body force diagram for spring-object system with linear dashpot

Newton’s Second law in the x -direction becomes

2
kx— b= d—f. (23.5.3)
dt di
We can rewrite Eq. (23.5.3) as
2
dx bdr koo, (23.5.4)

When (b/m)* <4k /m, the oscillator is called underdamped, and the solution to Eq.
(23.5.4) is given by
x(t)=x_e “ cos(yt+¢) (23.5.5)
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where 7 =(k/m—(b/2m)*)"* is the angular frequency of oscillation, & =b/2m is a
parameter that measured the exponential decay of the oscillations, x_ is a constant and ¢
is the phase constant. Recall the undamped oscillator has angular frequency
— / ;

w,=(k/ m)"?, so the angular frequency of the underdamped oscillator can be expressed
as

Y =(0, -a*)". (23.5.6)
In Appendix 23B: Complex Numbers, we introduce complex numbers and use them to
solve Eq.(23.5.4) in Appendix 23C: Solution to the Underdamped Simple Harmonic

Oscillator Equation.

The x -component of the velocity of the object is given by
v (1)=dx/dt =(-yx, sin(yt+@) - ax, cos(yt+¢))e . (23.5.7)

The position and the x -component of the velocity of the object oscillate but the
amplitudes of the oscillations decay exponentially. In Figure 23.14, the position is plotted
as a function of time for the underdamped system for the special case ¢ =0. For that case

x(t)=x_e " cos(yt). (23.5.8)
and
v (1) = dx/dt =(—yx, sin(yt)— ax, cos(yt))e ™ . (23.5.9)

x(1)

0

VA

Figure 23.14 Plot of position x(¢) of object for underdamped oscillator with ¢ =0

Because the coefficient of exponential decay o = b/2m is proportional to the b, we see

that the position will decay more rapidly if the viscous force increases. We can introduce
a time constant

t=1/a=2m/b. (23.5.10)
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When ¢ =7, the position is
x(t=7)=x_cos(yr)e". (23.5.11)

The envelope of exponential decay has now decreases by a factor of e, i.e. the
amplitude can be at most xme"l. During this time interval [0,7], the position has

undergone a number of oscillations. The total number of radians associated with those
oscillations is given by

yr=(k/m—(b/2m)*)"*(2m/ b). (23.5.12)
The closest integral number of cycles is then

n=[yr/2m]=](k/m=(b/2m)")"*(m/xb)]|. (23.5.13)

If the system is very weakly damped, such that (b/m)* <<4k/m, then we can
approximate the number of cycles by

n=[yr/2n]=|(k/m)”(m/ xb)|=[ w,(m/xb)], (23.5.14)
where @, = (k/m)"? is the angular frequency of the undamped oscillator.

We define the quality, O, of this oscillating system to be proportional to the number of
integral cycles it takes for the exponential envelope of the position function to fall off by
a factor of ¢”'. The constant of proportionality is chosen to be 7. Thus

O=nr. (23.5.15)
For the weakly damped case, we have that
Q=w,(m/b). (23.5.16)
23.5.1 Energy in the Underdamped Oscillator

For the underdamped oscillator, (b/m)><4k/m , y=(k/m—(b/2m)*)"* , and
o =b/2m . Let’s choose ¢ =0 such that the phase shift is zero ¢ =0. The stored energy

in the system will decay due to the energy loss due to dissipation. The mechanical energy
stored in the potential and kinetic energies is then given by

E:%kxz+%mv2. (23.5.17)
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where the position and the x -component of the velocity are given by Egs. (23.5.8) and
(23.5.9). The mechanical energy is then

E= %kxmz cos’(yt)e ™ + %m(—yxm sin(yt)—ax_ cos()/t))2 e, (23.5.18)
Expanding this expression yields

—2at

E= %(k +mo?)x,_*cos’(yr)e™ + myoux, *sin(yt)cos(yt)e " + % my*x _*sin’(yt)e”* (23.5.19)

The kinetic energy, potential energy, and mechanical energy are shown in Figure 23.15.

E()

kinetic energy
potential energy

mechanical energy

Figure 23.15 Kinetic, potential and mechanical energy for the underdamped oscillator

The stored energy at time =0 is
E(t:O):%(k+m052)xm2 (23.5.20)
The mechanical energy at the conclusion of one cycle, with y7' =2rm, is
Et=T)= é(k+ma2)xmze_2‘” (23.5.21)
The change in the mechanical energy for one cycle is then
E=T)-E(t=0)= —%(k+ mo?)x *(1—e?*"). (23.5.22)
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Recall that o® = b*/4m? . Therefore

E(t=T)-E(t=0)= —%(k+ b [4m)x 2(1—-e?7). (23.5.23)

We can show (although the calculation is lengthy) that the energy dissipated by the
viscous force over one cycle is given by the integral

T_» bz X 2
E . =|F -vdt=—| k+— |2 (1-¢7"). 23.5.24
dis J). vis v ( 4mj 2 ( e ) ( )

By comparison with Eq. (23.5.23), the change in the mechanical energy in the
underdamped oscillator during one cycle is equal to the energy dissipated due to the
viscous force during one cycle.

23.6 Forced Damped Oscillator

Let’s drive our damped spring-object system by a sinusoidal force. Suppose that the x -
component of the driving force is given by

F (1)= F,cos(wr) , (23.6.1)

where F, is called the amplitude (maximum value) and w is the driving angular

frequency. The force varies between F, and —F| because the cosine function varies
between +1 and —1. Define x(¢) to be the position of the object with respect to the
equilibrium position. The x -component of the force acting on the object is now the sum

dx

F = Focos(cot)—kx—bE . (23.6.2)
Newton’s Second law in the x -direction becomes
dx d*x
F oN—lkx—-b—=m—— . 23.6.3
, cos(wr) % m o7 ( )
We can rewrite Eq. (23.6.3) as
d*x dx
F cos(wt)=m——+b—+kx . 23.6.4
peos(@)=m- s +boy, (23.64)
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We derive the solution to Eq. (23.6.4) in Appendix 23E: Solution to the forced Damped
Oscillator Equation. The solution to is given by the function

x(t) = x,cos(wt +¢) , (23.6.5)
where the amplitude x; is a function of the driving angular frequency @ and is given by

Fo/m

((b/ m)’ @’ +(w,* - wz)z)

x, (@) = (23.6.6)

V2 "

The phase constant ¢ is also a function of the driving angular frequency @ and is given
by

¢(w):tan-l(M] . (23.6.7)
0’ -,
In Egs. (23.6.6) and (23.6.7)
o, = |~ (23.6.8)
m

is the natural angular frequency associated with the undriven undamped oscillator. The x
-component of the velocity can be found by differentiating Eq. (23.6.5),

v (1)= %(z) = —x, sin(wt +9) , (23.6.9)

where the amplitude x (@) is given by Eq. (23.6.6) and the phase constant ¢(®) is given
by Eq. (23.6.7).

23.6.1 Resonance

When b/ m<<2m, we say that the oscillator is /ightly damped. For a lightly-damped
driven oscillator, after a transitory period, the position of the object will oscillate with the
same angular frequency as the driving force. The plot of amplitude x (@) vs. driving
angular frequency @ for a lightly damped forced oscillator is shown in Figure 23.16. If
the angular frequency is increased from zero, the amplitude of the x (@) will increase
until it reaches a maximum when the angular frequency of the driving force is the same
as the natural angular frequency, @,, associated with the undamped oscillator. This is
called resonance. When the driving angular frequency is increased above the natural
angular frequency the amplitude of the position oscillations diminishes.
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x,(®)

0- :
CUZCOO

Figure 23.16 Plot of amplitude x (@) vs. driving angular frequency @ for a lightly
damped oscillator with b/ m << 2w,

We can find the angular frequency such that the amplitude x (@) is at a maximum by
setting the derivative of Eq. (23.6.6) equal to zero,

F (2 b 22w —w*
0= s (@)= D020 _(b/my —2(e, ~a7) (23.6.10)
dt 2m ((b/m)2w2+(w02—a)2)2)
This vanishes when
a)=(co02—(b/m)2/2)”2 ) (23.6.11)

For the lightly-damped oscillator, @, >>(1/2)b/m, and so the maximum value of the

amplitude occurs when

o=0,=0k/m" . (23.6.12)
The amplitude at resonance is then
F,oo.
x(w=w,)= o (lightly damped) . (23.6.13)

0

The plot of phase constant ¢(®@) vs. driving angular frequency @ for a lightly damped
forced oscillator is shown in Figure 23.17.
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|

—-mw/2 4

Figure 23.17 Plot of phase constant ¢(®) vs. driving angular frequency @ for a lightly
damped oscillator with b/ m <<2w,

The phase constant at resonance is zero,
d(w=w,)=0. (23.6.14)
At resonance, the x -component of the velocity is given by
d F . .
v ()= ?);(t) = —?0 sin(w,t)  (lightly damped) . (23.6.15)
When the oscillator is not lightly damped (b/m=®,), the resonance peak is shifted to

the left of @ =w, as shown in the plot of amplitude vs. angular frequency in Figure

23.18. The corresponding plot of phase constant vs. angular frequency for the non-lightly
damped oscillator is shown in Figure 23.19.

XU(CU)

|
|
|
|
|
| |
|
|
|
|

N+ -=--

w, w=2w

% 0 0

Figure 23.18 Plot of amplitude vs. angular frequency for lightly-damped driven oscillator
where b/ m=a,
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¢(w)

= TF S = RS =

Figure 23.19 Plot of phase constant vs. angular frequency for lightly-damped driven
oscillator where b/ m =,

23.6.2 Mechanical Energy

The kinetic energy for the driven damped oscillator is given by
1 2 1 2.2 .2
K(t):Emv (t):Emco x, sin" (@t +¢) . (23.6.16)
The potential energy is given by
1 2 1 2 2
U(t)=5/cx (t):EkxO cos (wt+9) . (23.6.17)
The mechanical energy is then
E(t)= %mvz(t) + % K (t) = %mwzxo2 sin® (@t +¢) + %kxo2 cos’(wt+¢) .(23.6.18)

Example 23.5: Time-Averaged Mechanical Energy

The period of one cycle is given by 7 =27 / @ . Show that

(i) %Esinz(a)ﬁqb)dt :% : (23.6.19)
(i) %zcosz(a}t+(p)dt :% , (23.6.20)
(iii) %J.sin(wt)cos(a)t)dt =0 . (23.6.21)
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Solution: (i) We use the trigonometric identity
. 2 1
sin“(wt+¢)) = > (I—-cos(2(wt +¢))

to rewrite the integral in Eq. (23.6.19) as

%E';sinz(a)t +¢))dt = %!(1 —cos(2(wt +¢))dt

Integration yields

sin(2(i + ¢))J e

20

%{(1—00s(2(wt+¢))dt = %—(

T=0

1
2 20 20 ) 2

1 ( Sin(47 +2¢) _ sin(2¢) j
where we used the trigonometric identity that

sin(4m + 2¢) = sin(4x)cos(2¢9) + sin(2¢) cos(4r) = sin(29) ,
proving Eq. (23.6.19).

(i1) We use a similar argument starting with the trigonometric identity that

cos’(wt +¢)) = %(1 +cos(2(wt +9)) .
Then
%!cosz(a)t +¢))dt = % ! (1+ cos(2(wt + @) dt .

Integration yields

%{(1 T cos(2(wr +9)) di = %+ (%{;”’DJ -
1 N sin(4m +2¢) sin(2¢) ) _ 1
2 20 20 ) 2

(ii1) We first use the trigonometric identity that

(23.6.22)

(23.6.23)

(23.6.24)

(23.6.25)

(23.6.26)

(23.6.27)

(23.6.28)
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sin(wt)cos(wt) = %sin(a)t) . (23.6.29)
Then

T T
%.O[sin(a)t)cos(wt) dt = %J.sin(a)t) dt

0

; (23.6.30)
_lcos((ut)| _ 1

T 20 | 2o

0

—(1-1=0.

The values of the integrals in Example 23.5 are called the time-averaged values. We
denote the time-average value of a function f(¢#) over one period by

(f)= %if(t)dz . (23.631)

In particular, the time-average kinetic energy as a function of the angular frequency is
given by

1
(K(w))= 20 (23.6.32)
The time-averaged potential energy as a function of the angular frequency is given by
1, >
(U@)) =7k (23.6.33)

The time-averaged value of the mechanical energy as a function of the angular frequency
is given by

1 1
<E(a))> = 1 mw2x02 +—kx

1
y OZ:Z(m(o2+k)x02. (23.6.34)

We now substitute Eq. (23.6.6) for the amplitude into Eq. (23.6.34) yielding
2

F (0> +w%)
E(w))=—- : 0N -
< (D> 4m((b/m)2w2+(6002—(02))

(23.6.35)

A plot of the time-averaged energy versus angular frequency for the lightly-damped case
(b/ m<<2w,) is shown in Figure 23.20.
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mFU2
2b
(E(w))
4b*
0 10}
0=, =20,

Figure 23.20 Plot of the time-averaged energy versus angular frequency for the
lightly-damped case (b/ m << 2m,)

We can simplify the expression for the time-averaged energy for the lightly-damped case
by observing that the time-averaged energy is nearly zero everywhere except where

®=0,, (see Figure 23.20). We first substitute @ =@, everywhere in Eq. (23.6.35)

except the term w02 — " that appears in the denominator, yielding

F2 2
(E(@)) =22 (@) , (23.6.36)
2m 2,02 22\
(b/m) w, +(a)0 ® )
We can approximate the term
o, -0’ =(0,-0)o,+0)=20,(0,-0) (23.6.37)
Then Eq. (23.6.36) becomes
F? 1 .
(E(w))=="- (lightly damped) . (23.6.38)

2m (b m)’ +4(0, - ©)’)

The right-hand expression of Eq. (23.6.38) takes on its maximum value when the
denominator has its minimum value. By inspection, this occurs when w=w, .

Alternatively, to find the maximum value, we set the derivative of Eq. (23.6.35) equal to
zero and solve for @,
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d d F’ 1
0—%<E(0))>_%E((b/m)2+4(w0_w)2)

23.6.39
aE (@,-0) (23:6:39)
(b1 my + 40, ~ o))
The maximum occurs when occurs at @ = o, and has the value
mFE?
<E (a)o)> = 2b‘; (underdamped) . (23.6.40)

23.6.3 The Time-averaged Power

The time-averaged power delivered by the driving force is given by the expression

. L F? t)sin(wt +
<P(w)>:% [Ev, dt:—% L @COS@NSINOITY) 4 (93641
s 2 m((b/ m) @’ +(@," - 0)’)

where we used Eq. (23.6.1) for the driving force, and Eq. (23.6.9) for the x -component
of the velocity of the object. We use the trigonometric identity

sin(wt + @) = sin(wt) cos(P) + cos(wt) sin(¢) (23.6.42)

to rewrite the integral in Eq. (23.6.41) as two integrals

T

1 Foza) cos(wt)sin(wt)cos(¢)

Plw))=—— 12 dt
(@) Tl!.m((b/m)za)2+(w02 -~y
] i i . (23.6.43)
1 F,"ocos”(wt)sin(¢)

- —dt.
o m((b/ my0’ +(, -0’))

Using the time-averaged results from Example 23.5, we see that the first term in Eq.
(23.6.43) is zero and the second term becomes

Flosin(9)
2m((b/m)’ o +(0," - 0°)’)

(P(w))= (23.6.44)

172

For the underdamped driven oscillator, we make the same approximations in Eq.
(23.6.44) that we made for the time-averaged energy. In the term in the numerator and the
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term on the left in the denominator, we set @ =, and we use Eq. (23.6.37) in the term
on the right in the denominator yielding

F2sin(9)
2m((b/ my +2(0,~ @)

(P(w))= (underdamped) . (23.6.45)

The time-averaged power dissipated by the resistive force is given by

T T T FZ 2 2 {4+ dt
<]3di§(w)>:lJ.(Fr)disvx dt:_l_l.b"f dt=lj : Vo’ sin® (0 ;P) -
: T Ty T Tym((b/mie’ +(o, -0))

(23.6.46)
Flo’dt

2m* ((b/ my'e’ + (0, - 0*))

where we used Eq. (23.5.1) for the dissipative force, Eq. (23.6.9) for the x -component of
the velocity of the object, and Eq. (23.6.19) for the time-averaging.

23.6.4 Quality Factor

The plot of the time-averaged energy vs. the driving angular frequency for the
underdamped oscullator has a width, Aw (Figure 23.20). One way to characterize this

width is to define Aw =w, —w_, where @, are the values of the angular frequency such

that time-averaged energy is equal to one half its maximum value

(E(w,))= %<E(w0)> = %. (23.6.47)

The quantity Aw is called the line width at half energy maximum also known as the
resonance width. We can now solve for @, by setting

F’ 1 mF,’
= =2 23.6.48

yielding the condition that
(b/m)’ =4o,-0,)". (23.6.49)

Taking square roots of Eq. (23.6.49) yields
F(b/2m)y=w,-,. (23.6.50)
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Therefore
0)

+

za)oi(b/2m). (23.6.51)
The half-width is then

Aw =0, —0_=(0,+(b/2m)— (0, ~(b/2m)=b/m . (23.6.52)

We define the quality O of the resonance as the ratio of the resonant angular frequency
to the line width,

_0, 0,
Q_E_ b im (23.6.53)
mFo2
2b’
<E(w)> /b/m:wo /20
mFo2
4b
bim=w,/10
bim=wm,/6
0 : . 0]
0=, w¥2wo

Figure 23.21 Plot of time-averaged energy vs. angular frequency for different values of
b/ m

In Figure 23.21 we plot the time-averaged energy vs. angular frequency for several
different values of the quality factor Q =10, 5, and 3. Recall that this was the same result

that we had for the quality of the free oscillations of the damped oscillator, Eq. (23.5.16)
(because we chose the factor 7 in Eq. (23.5.16)).

23.7 Small Oscillations

Any object moving subject to a force associated with a potential energy function that is
quadratic will undergo simple harmonic motion,

U(x)=U, +%k(x—xeq)2. (23.7.1)

where k is a “spring constant”, x, is the equilibrium position, and the constant U just

depends on the choice of reference point x, . for zero potential energy, U(x, )=0,

¢
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1
O:U(xref):Uo +Ek(xref —xeq)2. (23.7.2)
Therefore the constant is
1
U,= _Ek(xreff - xeq)z. (23.7.3)

The minimum of the potential x, corresponds to the point where the x -component of the
force is zero,
dU

T =2k(x, - xeq) =0=x,= X, (23.7.4)

%o

corresponding to the equilibrium position. Therefore the constant is U(x,)=U, and we
rewrite our potential function as

U(x)=U(x,) + %k(x ~x,). (23.7.5)

Now suppose that a potential energy function is not quadratic but still has a minimum at
x, . For example, consider the potential energy function

U(x)=-U, [1] —[ij , (23.7.6)
xl xl

(Figure 23.22), which has a stable minimum at x, .

U(x) unstable maxima

I
1
. |
E —— ]

: 1 X
x, =0 x =(2/3)x,

3
stable minima

Figure 23.22 Potential energy function with stable minima and unstable maxima

When the energy of the system is very close to the value of the potential energy at the
minimum U(x,), we shall show that the system will undergo small oscillations about the
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minimum value x,. We shall use the Taylor formula to approximate the potential

function as a polynomial. We shall show that near the minimum x_, we can approximate
the potential function by a quadratic function similar to Eq. (23.7.5) and show that the
system undergoes simple harmonic motion for small oscillations about the minimum x, .

We begin by expanding the potential energy function about the minimum point using the
Taylor formula

, 1dU
ST ~

=X,

1 d*U
21 dx?

U(x)zU(x0)+6;—i]‘ (x—x,)+ (x—x0)3+---(23.7.7)

X=X0

1 d°U : : . . :
where P (x—x, )’ is a third order term in that it is proportional to (x — X, Y, and
: x X:XO
d°U d’U U : . :
3 y T and — are constants. If x, is the minimum of the potential
dx dx x| .
-0

X:XO .X=X0 >

energy, then the linear term is zero, because

dUu
=0 (23.7.8)
dx -,
and so Eq. ((23.7.7)) becomes
1d°U 1 d°U
U(x)= U(x0)+5 2 3 (x—xo)2 -|-5 = - (x_xo)s 4. (23.7.9)

For small displacements from the equilibrium point such that ‘x - x0| is sufficiently small,

the third order term and higher order terms are very small and can be ignored. Then the
potential energy function is approximately a quadratic function,

1d°U
Ux)=U(x,)+—
(x)=U(x,) P

(x—xo)2 =U(xo)+%keﬁ.(x—xo)2 (23.7.10)

.X'—.XO

where we define &

. » the effective spring constant, by

(23.7.11)
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Because the potential energy function is now approximated by a quadratic function, the
system will undergo simple harmonic motion for small displacements from the minimum
with a force given by

dU
F. :—E:—kgﬁ,(x—xo). (23.7.12)
At x = x,, the force is zero
dU
F;(xo):g(xo):o. (23.7.13)

We can determine the period of oscillation by substituting Eq. (23.7.12) into Newton’s
Second Law
d’x

g (23.7.14)

—kqﬂ,(x—xo) =m

where m,, is the effective mass. For a two-particle system, the effective mass is the

reduced mass of the system.
mm
=———=u_, (23.7.15)

m =
o m +m,

Eq. (23.7.14) has the same form as the spring-object ideal oscillator. Therefore the
angular frequency of small oscillations is given by

W, = (23.7.16)
Example 23.6: Quartic Potential
A system with effective mass m has a potential energy given by
2 4
U(x)=U, —2{ij +(i] , (23.7.17)
xO xO

where U, and x, are positive constants and U(0)=0. (a) Find the points where the
force on the particle is zero. Classify these points as stable or unstable. Calculate the
value of U(x)/U, at these equilibrium points. (b) If the particle is given a small
displacement from an equilibrium point, find the angular frequency of small oscillation.

Solution: (a) A plot of U(x)/U, as a function of x/x, is shown in Figure 23.23.
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Figure 22.23 Plot of U(x)/ U, as a function of x/ x,

The force on the particle is zero at the minimum of the potential energy,

2 4
Ozd—UzUO —4 1 x+4 1 x°
dx X, X,

2 2
1
= —4U0x(—] 1—(1j = x’=x," and x=0.
X X

0 0

(23.7.18)

The equilibrium points are at x = £x, which are stable and x =0 which is unstable. The
second derivative of the potential energy is given by

2 4
? 1 1
‘”f: oAl = +12l —| x|, (23.7.19)
dx X, X,
If the particle is given a small displacement from x = x, then
dU AEER) 8
- =U| A — | +12]— | x |=U,— . (23.7.20)
dx”| _ X, X, X,

(b) The angular frequency of small oscillations is given by

/ 2 /SU
®,= d (2] /m= —g ) (23.7.21)
dx . mx,
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Example 23.7: Lennard-Jones 6-12 Potential

A commonly used potential energy function to describe the interaction between two atoms is the
Lennard-Jones 6-12 potential

U(r)=U,[ (1, /1) =20,/ 1) |: >0, (23.7.22)

where 7 is the distance between the atoms. Find the angular frequency of small oscillations
about the stable equilibrium position for two identical atoms bound to each other by the Lennard-
Jones interaction. Let m denote the effective mass of the system of two atoms.

Solution: The equilibrium points are found by setting the first derivative of the potential
energy equal to zero,

6
0=—-=U, [—121*0127f13 + 12r06r’7 J = U012r06f7 [_(’”oj + 1] . (23.7.23)

r

The equilibrium point occurs when » =7, . The second derivative of the potential energy
function is
d’U

dr?

=U,[+(12)13), " = A2)(Tr " ] (23.7.24)

Evaluating this at » = r, yields

=720, . (23.7.25)

/ m =./72U0/mr02 . (23.7.26)
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Appendix 23A: Solution to Simple Harmonic Oscillator Equation

In our analysis of the solution of the simple harmonic oscillator equation of motion,
Equation (23.2.1),
d’x
—kx=m——, 23.A.1
dr’ ( )

we assumed that the solution was a linear combination of sinusoidal functions,

x(t) = Acos(w, t)+ Bsin(w, 1), (23.A.2)

where @, =k /m.We shall now derive Eq. (23.A.2).

Assume that the mechanical energy of the spring-object system is given by the constant
E . Choose the reference point for potential energy to be the unstretched position of the
spring. Let x denote the amount the spring has been compressed (x <0) or stretched
(x>0) from equilibrium at time ¢ and denote the amount the spring has been

compressed or stretched from equilibrium at time =0 by x(t=0)=x,. Let v_=dx/dt
denote the x-component of the velocity at time ¢ and denote the x -component of the

velocity at time =0 by v (f=0)=v_, . The constancy of the mechanical energy is then

,0
expressed as

E:K+U:lkx2+lmv2. (23.A.3)
2 2
We can solve Eq. (23.A.3) for the square of the x -component of the velocity,

2o 2E K E(ILJ (23.A4)

m m m 2F

ﬂz,/z—E‘/l—ix2 . (23.A.5)
dt m 2F

(why we take the positive square root will be explained below).

Taking square roots, we have

Let a, =v2E/m and a,=k/2E . It’s worth noting that @, has dimensions of velocity
and w has dimensions of [length]™”. Eq. (23.A.5) is separable,
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il l—a,x
dc (23.A.6)
=a,dt.
l-a, x’
We now integrate Eq. (23.A.6),
a dt . (23.A.7)

The integral on the left in Eq. (23.A.7) is well known, and a derivation is presented here.
We make a change of variables cosf = \/Z x with the differentials d0 and dx related

by —sinf do = \/Z dx . The integration variable is

6 = cos! (\/Z x). (23.A.8)

Eq. (23.A.7) then becomes
[—= —sin6d6 = [a, a,ar. (23.A.9)

\J1-cos’0

This is a good point at which to check the dimensions. The term on the left in Eq.

(23.A.9) is dimensionless, and the product \/Z a, on the right has dimensions of inverse
time, [length]'[length - time™]=[time™'], so \/a_z a, dt is dimensionless. Using the
trigonometric identity 4/1—cos’6 =sin8, Eq. (23.A.9) reduces to

fao=-[a, a, ar. (23.A.10)

Although at this point in the derivation we don’t know that \/a_2 a, , which has

dimensions of frequency, is the angular frequency of oscillation, we’ll use some foresight
and make the identification
— f k /2E / k
a) = = —_— _— = —_— N 23.A. 11
0 “ 4 2EN m m ( )

T dez—jwodt. (23.A.12)

and Eq. (23.A.10) becomes
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After integration we have
0-0 =-o,t, (23.A.13)

0 0

where 6 =—¢ is the constant of integration. Because 60 = cos™ (\/Z x(t)), Eq. (23.A.13)

becomes

cos™ (\/Z x(t)) = —(@,1+9). (23.A.14)

Take the cosine of each side of Eq. (23.A.14), yielding

1 2FE
x(t) = ——=cos(—(w,t+¢))= \/:cos(a)o t+9). (23.A.15)
Ja, k
At t=0,
X, =x(t=0)= 27E cos¢. (23.A.16)

The x -component of the velocity as a function of time is then

dx(t f2E
v.()= () ==y | —sin(®, 1+ ). (23.A.17)
! dt k
At =0,
2F
Vo va(t:O):—a)MITSin(p. (23.A.18)

We can determine the constant ¢ by dividing the expressions in Egs. (23.A.18) and
(23.A.16),

1%
— 0 —tang. (23.A.19)
a)OxO

Thus the constant ¢ can be determined by the initial conditions and the angular
frequency of oscillation,

\%
¢ =tan”' [— 0 } . (23.A.20)
w0x0
Use the identity
cos(w, +¢) = cos(@,t)cos(¢) — sin(w, ) sin(¢) (23.A.21)

to expand Eq. (23.A.15) yielding
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x(t)= 27E cos(m,t)cos(¢)— 27E sin(@,t)sin(¢), (23.A.22)
and substituting Egs. (23.A.16) and (23.A.18) into Eq. (23.A.22) yields

\%
x(t)=x,cos @t +—sinwt, (23.A.23)
(00

agreeing with Eq. (23.2.21).

So, what about the missing £ that should have been in Eq. (23.A.5)? Strictly speaking,
we would need to redo the derivation for the block moving in different directions.
Mathematically, this would mean replacing ¢ by w—¢ (or ¢ —m ) when the block’s

velocity changes direction. Changing from the positive square root to the negative and
changing ¢ to w —¢ have the collective action of reproducing Eq. (23.A.23).

Appendix 23B: Complex Numbers

A complex number z can be written as a sum of a real numberx and a purely imaginary

number iy where i = \/—_1 ,
z=x+1iy. (23.B.1)

The complex number can be represented as a point in the x-y plane as show in Figure
23B.1.

+y
v |- - == z=xtiy

|z

)9

g1 kX

Figure 23B.1 Complex numbers
The complex conjugate z of a complex number z is defined to be

Z=x-1iy. (23.B.2)
The modulus of a complex number is

4 =(2)" =+ )= )* = (2 + 7). (23B3)
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where we used the fact that i =—1. The modulus ‘z‘ represents the length of the ray

from the origin to the complex number z in Figure 23B.1. Let ¢ denote the angle that
the ray with the positive x -axis in Figure 23B.1. Then

x =|z|cosg, (23.B.4)
y=|zsing. (23.B.5)

Hence the angle ¢ is given by
p=tan"'(y/x). (23.B.6)

The inverse of a complex number is then

1_Z_xb (23.B.7)
z zz (X" +y°)

The modulus of the inverse is the inverse of the modulus;
1 1 1
A== 23.B.8
z (xz+y2)l/2 ‘z‘ ( )

The sum of two complex numbers, z =x, +iy, and z, = x, + iy, , is the complex number

z,=z,+z,=(x, +x,)+i(y, +y,)=x,+1iy,, (23.B.9)

where x, =x,+x,, y,=y +»,. We can represent this by the vector sum in Figure
23B.2,

Z|+ZQ
2, =X, +y,

z, =x+y

Figure 23B.2 Sum of two complex numbers

The product of two complex numbers is given by
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z, =2z, =(x, +iy)(x, +iy,) = (xx,— yy,)+i(xy, +x,y) = x, +iy,, (23.B.10)
where x, =xx,—yy,,and y,=xy,+x,,.
One of the most important identities in mathematics is the Euler formula,
e” =cos¢+ising. (23.B.11)

This identity follows from the power series representations for the exponential, sine, and
cosine functions,

=0 2 3 4 5
e :;%(igb)” = 1+i¢—%—i%+ﬁ—!+i%..., (23.B.12)
¢* ¢
COS¢:1_?+$_“'9 (23B13)
: ¢ ¢
Sln¢:¢)—§+§—.... (23B14)

We define two projection operators. The first one takes the complex number e and
gives its real part,

Ree” =cosg . (23.B.15)

The second operator takes the complex number e and gives its imaginary part, which is
the real number

Ime” =sing . (23.B.16)

A complex number z = x+iy can also be represented as the product of a modulus ‘Z‘ and

a phase factor e”,

e (23.B.17)

Z:|Z

The inverse of a complex number is then
1 1 1

—=—¢=—e’i¢, (23.B.18)
z |z e ‘Z|
where we used the fact that
L@ =, (23.B.19)
e

In terms of modulus and phase, the sum of two complex numbers, z, = ‘zl ‘ ¢’ and

— 9,
22 —‘zz‘e , 1S
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z, +z, =|Zl‘€i¢l +|Z2|ei¢2 . (23.B.20)

A special case of this result is when the phase angles are equal, ¢, = ¢,, then the sum

z, + z, has the same phase factor e’ as z, and z,,
z,+2, =|z]e" +]z,] e =(|z]+]z,] )" (23.B.21)

The product of two complex numbers, z, = ‘zl‘e@‘ ,and z, = ‘zz‘e’% is

0, _

A (23.B.22)

_ iy
2z, _|Zl|e |Zz|e ‘ZIHZZ

When the phases are equal, the product does not have the same factor as z, and z,,

i, _

2z, = |Zl| e |Zz| e ‘ZIHZZ| e (23.B.23)

Appendix 23C: Solution to the Underdamped Simple Harmonic
Oscillator

Consider the underdamped simple harmonic oscillator equation (Eq. (23.5.4)),

2
d—f+3@+ﬁx=o. (23.C.1)
dt mdt m

When (b/ m)* <4k /m, we show that the equation has a solution of the form
x(t)=x_e “cos(yt+¢). (23.C.2)
Solution: Let’s suppose the function x(¢) has the form
x(t)= ARe(e™) (23.C.3)
where z is a number (possibly complex) and 4 is a real number. Then

dx

= (23.C.4)
2
% = 22 4" (23.C.5)
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We now substitute Egs. (23.C.3), (23.C.4), and (23.C.5), into Eq. (23.C.1) resulting in

z*Ae” +£erZt +£Ae2’ =0. (23.C.6)
m m

Collecting terms in Eq. (23.C.6) yields

(22 +ﬁz+ﬁjAeﬂ =0 (23.C.7)
m m

The condition for the solution is that

L (23.C.8)

m m

This quadratic equation has solutions

- —(b/m)x((b/ m)’ —4k/m)‘/2
2 )

(23.C.9)

When (b/m)* <4k /m , the oscillator is called underdamped, and we have two solutions
for z, however the solutions are complex numbers. Let

y =k /m=(b/2m)")"; (23.C.10)
and
a=b2m. (23.C.11)

Recall that the imaginary number i =+/—1. The two solutions are then z, =—o +iyt and
z, =—0 —iyt . Because our system is linear, our general solution is a linear combination
of these two solutions,

x(t)=Ae M+ 4, = (4" + A e ™, (23.C.12)

where 4, and A4, are constants. We shall transform this expression into a more familiar
equation involving sine and cosine functions with help from the Euler formula,

™" = cos(yt) £ isin(y?). (23.C.13)
Therefore we can rewrite our solution as

x(t) = (A4 (cos(y?)+isin(yt))+ 4, (cos(yt)— isin(y1))Je ™ . (23.C.14)
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A little rearrangement yields
x(t)=((4, + 4,)cos(yt) +i( 4, — 4,)sin(yt))e ™. (23.C.15)
Define two new constants C= 4 + 4, and D =i(A4, — A,). Then our solution looks like

x(¢t)=(Ccos(yt)+ Dsin(yt))e ™. (23.C.16)
Recall from Example 23.5 that we can rewrite

Ccos(yt)+ Dsin(yt)=x_cos(yt+¢) (23.C.17)

b

where
x_ =(C*+D*", and ¢=tan™(D/C).

Then our general solution for the underdamped case (Eq. (23.C.16)) can be written as

x(t)=x_e “ cos(yt+). (23.C.18)

There are two other possible cases which we shall not analyze: when (b/m)* >4k /m, a

case referred to as overdamped, and when (b/m)*=4k/m, a case referred to as
critically damped.

Appendix 23D: Solution to the Forced Damped Oscillator Equation

We shall now use complex numbers to solve the differential equation

d’x dx
F o)=m—-+b—+kx . 23.D.1
peos@n=m- s +b (23.D.1)

We begin by assuming a solution of the form
x(t)=x,cos(wr+9) . (23.D.2)

where the amplitude x, and the phase constant ¢ need to be determined. We begin by
defining the complex function
z(t) = x, " . (23.D.3)

Our desired solution can be found by taking the real projection
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x(t) = Re(z(1)) = x, cos(i + ) . (23.D.4)

Our differential equation can now be written as
Fe™ =m—+bz+kz . (23.D.5)

We take the first and second derivatives of Eq. (23.D.3),

d )
?j(t) = iox ¢ = iz . (23.D.6)
2

%(r) =-’x, """ =-0’z . (23.D.7)

We substitute Egs. (23.D.3), (23.D.6), and (23.D.7) into Eq. (23.D.5) yielding

Fe” =(-’m+bio + k)z = (-0 m+ biw + k)x e . (23.D.8)

We divide Eq. (23.D.8) through by ¢ and collect terms using yielding

_ F/
N e — . (23.D.9)
(w,” —0")+i(b/ m)w)
where we have used a)02 =k / m . Introduce the complex number
z,=(0,—0*)+i(b/mo . (23.D.10)
Then Eq. (23.D.9) can be written as
I O
xe? =— . (23.D.11)
my

Multiply the numerator and denominator of Eq. (23.D.11) by the complex conjugate
zZ, = (a)o2 -0*)—i(b/ m)w yielding

FZ _F (0] -0)-ib/mw) _

ip __ 0”1 =
mzz, —m ((6002 —0*) +(b/ m)w?)

u+iv . (23.D.12)

where

E) (Coo2 _wz)

m (0 -0°) +(b/mie’)’

(23.D.13)
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S W L) R— (23.D.14)
m(w,”—o") +(b/m)" )

Therefore the modulus x, is given by

12 _ Fo/m

= (1P +1 , 23.D.15
%o =) = =) + (b my ) ( )
and the phase is given by
o= tan (v/uy= 2/ MO (23.D.16)
(0)0 - )
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