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L Abstract Algebra

1-Sets:

Def. A collection of well-defined objects is called a set.
We used capital letters A,B,C,...to denote a set and small letters a,b,c,...
to denote the elements of a set. The symbol a € A means “a is an element
of the set A” and a ¢ A means “a is not an element of the set A” .

= Set Formulation:
(1)_The Tabulation Method:

We indicate a set by listing all its elements and enclosing them within

braces. For example,
A={12345}.
B ={a,b,c,d}.
Z ={0,£1,%2,...}.
(2) The Rule Method:

We state the characteristic property by which we can determine whether
or not a given object is an element of the set. We write A={x: x has p}
to say that ““ A is the set of all elements x for which a certain property p
holds “. For example,

A={x:x is a solutionof x* —5x+6=0}.
B ={x:x is an integer, x* <100}.
X ={x:xis prime number,1< x <10}.
A set A is called a subset of a set B if every element of A isan
element of B.
Symbolically we write A< B to say that A is a subset of B.
A is called proper subset of B and is denoted by A< B if there exists
in B at least an element which is not an element of A.
A subset which is not proper is said to be improper subset.

Examples:
1- If B be the set of all English alphabets , and A the set of all vowels ,

then AcB.

2-If Z={0,£1,%2,....£n,..}and N ={1,2,3,...,n,..},then Nc Z.
Two sets A and B are said to be equal iff every element of A isan

element of B and vice versa, i.e., A=B< AcBABcCA.
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Remark: The signs ” :, A, v, <> “are used to denote “ such that , and ,
or, iff .

Examples:

1-1If A={,234,5}and B={2,4,315}, then A=B.

2-1f A={1,2,34,5,6,7,8,9,10} and

B={I,1,H,IV,V,VI,VIL VIll, IX, X}, then A=B.

3- If A is the set of letters in the word “ calculate “ and
B={c,a,l,u,t,e}, then A=B.

A set consisting of only one element is said to be singleton set .

A set which contains no elements is called an empty (or null or void) set.
It is generally denoted by ¢.

A set which contains all element is said to be universal set It is generally
denoted by U .

Givenaset B and a subset A of B , we call the set of all elements of
B which are not elements of A the complement of A in B and denoted
by A" (or A°or B—A),i.e. A={x:xeB,x¢eA}.

Given two sets A and B, we define their intersection AN B as the set
of all elements which are common to both A and B. We say that A and
B are disjoint if AnB =¢. We also define the union of A and
B ,denote AUB as the set of all elements which belong to at least one of
the two sets A and B . The union of two disjoint sets A and B is denoted
by A+B and is called the sum of A and B.

Sometimes, a diagrammatical representation of sets helps in
understanding relationships between different sets. This is done by what
Is known as Venn'’s diagram. It is a diagram in which members of a set
are represented by the points of a plane enclosed by a curve drawn in the
plane.

Examples:

1- If A={0,£2,44,..}and B ={0,+1,43,...},

then AnB ={0}is a singleton set.

2- If A={x:x*=4,xisodd}, then A=¢.

3-1f N={1,23,.},A={,35...2n+1..},and B={2,46,....2n,...},
then AnB=¢ and AUB=A+B=N.

4- The set consisting of all students of a university forms a universal set,
whereas students of different faculties form subsets of this universal set.
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5- If B is the set of all natural numbers 1,2,3,... and A is the set of all

even natural numbers, then A’ is the set of all odd natural numbers.
The following properties of n and v for arbitrary sets A B,C

are satisfied:

(1) AB=BnA, AUB=BUA (commutative law).

2) (AnB)NnC=An(BNC), (AuB)uC=AU(BUC)
(associative law).

(3) An(BuC)=(AnB)U(ANC) , Au(BNnC)=(AuB)n(AUC)
(distributive law).

4) AnA=A, AUA=A (idempotent law).

B) AnU=A, Aug=A (identity law).

6) (AnB)Y=A'UB', (AUB)=A'"nB’ (De Morgan's law).
(7) (A=A (involution law).

Given X aset, then the set P(X) of all subsets of X is called

a power set of X .

The collection of all mutually disjoint subsets of a set X whose union
is the whole set X is called a partition of a set X .

The number of elements in a set X is called the order of the set X , and
denoted by O(X).

Given two sets A and B we define the Cartesian product AxB of A
and B to be the set of all ordered pairs (a,b) of elements a< A and

beB,ie. AxB={(a,b):aec ArbeB}.

By definition, two ordered pairs (a,b) and (c,d) are equal iff a=c and
b=d.When A=B=R the set of all real numbers, then

Ax B = Rx R = R? represent the real plane.

Examples:

1-1f X ={1,2,3} then P(X) ={¢.{1{2}.{3}.{1L.2},{1.3}.{2,3}, X}.
2-If A={1,2,3}, B={a,b} then:
AxB={(.a),(2,a),(3,a),(1,b),(2,b),(3,b)}.

3- A set {{1,2},{3,4},{5,6}, ...} form a partition of a set of all natural
numbers N, also a set {{1,4,7,..},{2,58,..},{3,6,9,..}},

but a set {{1,2},{2,3}.{3,4},...}is not a partition of N (verify that?).
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Exercises:

1- Give some examples of collections which is not considered Set
( by its mathematical Meaning)?.

2- Give an example for:

(1) A set contains two elements.

(2) A set contains only one element.

(3) An empty set.

(4) An infinite set.
3- By using the Tabulation Method. Represent each of the following
sets:

(1) X={x: x isa factor of 6 }.

(2) Y={y:y isasolution of y?=0}.

(3) A={ a:aeZ", ais odd number,1<a<10}.

(4) B={ b: b prime number,1<b<12}.

(5) S={x:xisamultiple of 3 }.

4- By using the Rule Method. Represent each of the following sets:
(1) S={a, e i,0,u}.

(2) S={10, 100, 1000, 10000, ...}.
(3) S={1, 1/2,1/3,1/4, ...}.

5- By using the Algebraic Symbols. Rewrite the following expression:
There exist only eight subsets of a set A={3,5,8,9} contains the
element 8 .

6- Let A={a,b,c}.Show that whether of the following is true,

and whether is false (Give reasons for your assertion):
(1) {a}eA (2) {ab}= P(A) (3) {¢}=P(A)
(4) AeP(A) (5) {ab}c A (6) {a}<= P(A)
(N {d}=P(A)  (8) {{b}}=P(A)

7- For an arbitrary sets A,B,C. Verify that:

(1) An(A°uB) = AnB

(2) Au(B-A) =AuUB

(3) Au(BNC) = (AuB)N(AULC)
(4) Ax(B-C) = (AxB)-(AxC)

(5) (AxA)N(BxC) = (AnB)x(ANC)
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2-Binary Relations:

Def.1 A subset R < Ax B is called a binary relation between a two sets
A, B.ANnd if (a,b) € R we say that the element a € A associates with the
element b € Bby arelation R and denoted aib.

Remark: When R < Ax A we say that R is a relation on a set A.
Def.2: For arelation R < Ax B we define two sets:

D, ={acA:aRb}c A, G, ={b e B:aRb}c B ,the set D, is called
the domain of R, and the set G,; is called the range of ‘R.

Def.3: If R, < AxBand R, = BxC we define a composite relation

R, R, ={(a,c):IbeB;(a,b) e R, A(b,c) e R,}.

Examples:
1- If R is arelation on aset X ={2,3,4,6}defined by:

(a,b)eR<=a\b Va,be X.(a\b means a divide b )
- R ={(22),(24),(26),(33),(36),(44),(66)} ,
D,, ={2,34,6}=G; =X .
2- If R isarelationonaset X ={1,2,3,4}defined by:
(a,bp)eR<=a>b VabeX.
~R={(21),31,(32),(4)),4,2),43}, D, ={234}, G, ={L2,3}.
3-If M, R, are two relations on a set X ={1,2,3};
R, ={(12),(13),(21),(2,2),(31),(33)}, R, ={(1L1),12),(2,2),(3D}.
R, 0, ={(11),(12),(2.2),(31).(3.2). 1)},
R, o R, ={(11),(13),(12),(2,2),(21),(31),(33)}.

Def.4: A binary relation R on aset X is called an equivalence relation
if it satisfies the following conditions:

(El) Vae X = (a,a) e®R (Reflexivity)

(E2) V(a,b)eR=(b,a) eR (Symmetry)

(E3) V(a,b),(b,c) e M= (a,c) €R (Transitivity)
Examples:

1- If R is arelation on a set of all natural numbers N ={1,2,3,...} defined
by (a,b)eR<=a=b VabeN
Then: (E1) VaeN;a=a=(a,a)eR
(E2) V(a,b)eR=a=b=b=a=(b,a)eR
(E3) V(a,b),(b,c)eR=a=b,b=c=a=c=(a,c)eR
So, fR is an equivalence relation.
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2- If R is arelation on a set of all integers Z ={0,+1,+2,...}defined by:

a-b

(a,b)eR <= eZ VabeZ,neN,n>2

Then: (E1) Vaez;%:OeZ = (a,a)eR

a-b b-a

(E2) V(a,b)eR= el >

eZ=(b,a)eR

a-b b-c
"'n
a-b b-c a-c
= + =
n n

So, R is an equivalence relation. This relation is called the congruent
modulo n and denoted by a =b(mod n).
Def.5: If R is an equivalence relation on a set X we define the
equivalence class of an element a e X to be a set
C(a) ={b e X :(a,b) e R}, the equivalence class of an element

(E3) V(a,b),(b,c) e R = Vi

eZ=(ac)eR

a e X may denoted by [a] or a .
The set of all equivalence classes of the relation a=b(mod n) is called

the set of residue classes, and is denoted by Z/n={0,1,2,..,n—1}

(orby Zz, ={0,1,2,...,n-13}).

The set of residue classes of the equivalence relation on a set X form

a partition of a set X .

Example: The equivalence classes of the relation a =b(mod 6)is:
c)={.,-12,-6,0,6,12..}, C()) ={....-11,-5,1,7,13...},
C(2)={..,-10,-4,2,8,14,..}, C(3)={...—9,-3,3,9,15,...},

Cc@4) ={.,-8-2,41016,.}, C>H)={.,-7,-151117,..}.
Proposition: The defining conditions (E1),(E2),(E3) of an equivalence
relation R are logically equivalent to the following two conditions:

(i) aRa. (ii) aRb AbRc=cRa.

Proof: We prove (E1),(E2),(E3) < (i),(ii):

Let (E1),(E2),(E3) hold. Then (E1) is the same (i), and

aRb Ab%Rc = aRc = cRa i.e. (ii) hold. ( from (E3),(E2) )

Conversely, let (i),(ii) hold. Then (i)=(E1) , a%hb = akb AbRb = bRa

i.e. (E2) hold. ( from (i),(ii) ) ,and

aRb Ab%Rc = cRa = aRc i.e. (E3) hold. ( from (ii),(E2) ).
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Exercises:
1- Let X ={0,1,2,3,4,5}. Define on X arelation R by:
@b ez vabeXx..

Write R as a set of ordered pairs ,Verify that R is an equivalence
relation, and characterize the equivalence classes.
2- Let X ={1,2,3}. Define on P(X) arelation R by:
(A/B) e R<=0O(A)=0(B) VA BeP(X).
Prove that R is an equivalence relation, and characterize the equivalence
classes.
3-Let X ={(a,b):a,beZ,b+=0}. Defineon X arelation R by:
(a,b)R(a,,b,) < ab, =ba, V(a,b) (a,b,)eX.
Prove that R is an equivalence relation, and characterize the equivalence
classes.
Solved Problem: Let R be an equivalence relation on a set S .
Show that for all a,beS:

(i) beC(a) < acC(b)

(i1) either C(a) nC(b) =¢ or C(a) =C(b)

Proof:
(i) beC(@) be{xeS:(a,x)eNR}
< (a,b)eRr
< (b,a)eR
< ae{xeS:(b,x)eR}
< aeC(b).

(ii) Suppose C(a) nC(b) = ¢,
let xeC(a) NC(b) < xeC(a) AxeC(b)
< (@, x)eRA(b,x)eR
< (a,X) eRA(X,D)eR
< (a,b) e R.
letyeC(a)=(a,y)eR, (a,b)eR
< (bh,a)eRAa(a,y)eR
< (b,y)eR
< yeC(b).
~.C(a)=C(b) QED.
(i.e. Two equivalence classes are either disjoint or identical ).
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3-Mappings:
Def.1: Given two non-empty sets A,B. A relation (or rule) f which

associates with each element a € A, a well-defined (or unique) element
b e B iscalled a mapping (or function) from A into B.

It is denoted by f : A— B (or A——B),the set A is called the domain
of f,theset B is called the co-domain of f,and the set f(A) is called
the range of f.

= Types of mappings:
Def.2: Amapping f: A— B iscalled onto (or surjective) if each
element of the co-domain B associates with element of the domain A
(i.,e., T(A)=B).
Def.3: Amapping f: A— B iscalled 1-1 (or injective) if Va,,a, € A,
fa)="f(a,)=a =a,.
Def.4: A mapping f:A— B iscalled 1-1 corresponding
(or bijective) if it is both onto and 1-1.
Def.5: Amapping f:A— B iscalled invertible
(or has inverse map f:B— A) ifitis 1-1 corresponding.

= Composition of mappings:
Def.6: Given two mappings f:A—>B,g:D—>C; f(A)cD.
The composite mapping go f : A— C is defined by:
(gof)(@=9(f(a) VacA.
If f:A—B, g:B—C the composite mapping go f : A—C is always
defined , and f o g is defined only when g(B) c A,
so itis not necessary fog=gof .
Examples:
1-1f f:R—>R; f(x)=x" VxeR (R isthe set of all real numbers),
then the domain of f is R, also the co-domain of f
is R, and the range of f is R"( is the set of all non-negative real

numbers ).
2-1f f:Z—>2Z; f(X)=2x-1VxeZ, then the domain of f is Z,

also the co-domain of f is Z ,and the range of f is the set of all odd
numbers, and we determine the type of f as follow:
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1) yeZ,y:f(x):>y:2x—1:>x:yT+1¢Z

. T is not onto.
(2) Vx,x,eZ, f(x)="1(X,)=>2x,-1=2%X,-1= X, =X,
S s l-1
3-If f:R>R; f(X)=2x+3VxeR, then

(1) VyeR,y= f(x):>y=2x+3:>x:y;35R

- T isonto.
(2) Vx,%, €R, f(x)="1f(X,)=>2x%+3=2X,+3=X%, =X,
oofis1-1.

From (1),(2) f is 1-1 corresponding, so f is invertible, and the inverse

mappingis f*:R—>R; f‘l(x):XT_3 vxeR.

4-1f f,g:R—>R; f(x)=2x-3,9(x) = x*+3x+1 VxeR, then:
(fog)(X) = f(g(x)) = f(X* +3x+1) =2(x* +3x+1) —3=2x* +6x -1,
(go £)(X)=g(f(X)=g(2x-3) =(2x—3)* +3(2x—3) +1=4x*> —6x +1.
Exercises:
1- Given the following relations R;,'R,,R,, R, onaset A={1,2,34}.
Explain in each case why the relation is or not a mapping,
(determine the type of a mapping):
s‘Rl :{(1’3)’ (2’4)’ (111)! (413)! (414)1 (311)}1
R, ={(24),(11),(31),(4.3)},
R, ={(23),(1,2),(34),(41)},
R, ={14).(2.2).(3.2)}.
2-1f f:N—>N; f(nN)=n+1VneN.
(i) determine the domain, the co-domain, and the range of f .
(i) Is f onto (1-1)?
3- Determine the type of each of the following mappings:
) f:Z2-52Z;f(x)=2x+1VxeZ

(i) f:R>R"; f(X)=x+VXx*+1 VxeR
E if x=0
(iii) f:R>R; f(X)= X ’ VxeR.
0 otherwise
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4- Determine each of the following mappings is invertible
(define the inverse mapping for the invertible mappings):

(i) f:N—>Z";f(n)=n-1VneN
(i) f:R>R; f(x)=2x-3 VxeR
(i) f:2—>2Z; f(x)=2x Vxel.
5-If f:R>R,g:R—>R; f(X)=1-x,g(X)=x* VxeR
compute (fog)(=1), (g f)(4)
Solved Problem: Let f : A—B , g: B —C two mappings

prove that:
(i) go fisontoifeachof f and g is onto.

(i) gofisl-lifeachof f and g is1-1.
Proof: (i) because each of f and g is onto, then
f(A)=B,g(B)=C,
~(ge F)(A) =g(f(A)=9(B)=C.
i.e. go fisonto.

(i1) because each of f and g is 1-1, then
f(a,))=f(a,)=>a =a, Va,,a, € A
g(b,)=9(b,)=b, =b, Vb,,b, €B.

(9o f)(a) =(g° f)(a,) = 9(f(a)) = 9(f(a,))

= f(a,) = f(a,)
—a =a, Va,a, A

i.e. gof isl-1.
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4-Binary Operations:

Def.1: Amapping b: AxA—> A;b(x,y)=ze€A V(X,y) e AXA

is called a binary operation on a set A.

We use symbols such as *,0,#,®,®,...etc for a binary operations.
Def.2: A binary operation * on aset A is called associative if:
(x*xy)*z=x*(y*z) VX V,zeA,anditis called commutative if:
X*y=y*xX VX yeA.

Def.3: If * isa binary operation on a set A, the element e € A is called
the identity element w.r.t. = if: x*e=exx=Xx VXe€A,

and the element y € A is called the inverse of the element x e Aw.r.t.
if: xxy=y*x=e.

Examples:

1- If *,® defined on a set of all nature numbers N by:

ax*b=a",a®b=a+b-2a’* Va,beN.
Then = is a binary operation on N, because a*b=a" €N VabeN,
but ® is not binary operation on N because,
a®b=a+b—2a’h’ ¢ N Va,beN (for example put a=1,b=2).
2- If = defined on a set of integers Z by:
X*y=X+y—-3VX,yeZ.
(i) Is = binary operation on Z ?
(it) Is * commutative? Is it associative?
(iii) Does * have an identity? Is exist an inverse w.r.t. = ?
(Give reasons for your answer).
The Answer:
(i) * is binary operation on Z because,
X*y=X+y-3e€ZVXyeZ
(i) x*y=x+y-3=y+x-3=y*xx VX, yeZ,ie * commutative,
(X*y)*xz=(X+y-3)*z=(X+y-3)+z-3=X+Yy+2-6,
X*(y*z)=x*(y+z-3)=x+(y+z-3)-3=x+y+z-6.
S(xxy)xz=x*(y*2) VX Vy,zeZ,l.e. * associative.
(iii) Let x*e=exx=x VxeZ
S X+e—-3=e+x-3=x=>e=3e”Z
i.e. * have an identity e =3,
let xxy=y*xx=e VX,yeZ
S X+Yy—-3=y+X-3=3=>y=6-xe”Z
i.e. 3 aninverse of xeZis 6-xeZw.r.t. *
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3- If ® defined onaset X = R—{1} ;R is the set of real numbers by:
XQ®Yy=X+y—xyVx,yeX.
(i) Is ® binary operation on X ?
(ii) Is ® commutative? Is it associative?
(iii) Does ® have an identity? Is exist an inverse w.r.t. ® ?
(Give reasons for your answer).
» Representation by tables:
If X ={-1,0,1} we can represent the ordinary operations “+ and “x” on
X by the following tables:

+1-1]0]1 x [-1]0|1
-11-21-11]0 -111]0]-1
0[-1/0]1 0(0]0|0
110(1]2 11-1/0]1

As it can be seen from the tables above:

If all elements in a table belongs to a set X , the operation is a binary
operation on a set X , and if all elements in a table are symmetric around
the diameter of the table , a binary operation is commutative. Otherwise it
IS not.

So, “x” is a commutative binary operation on X , but “+” is not binary
operationon X .

Remark: Only an operation defined on a finite set can be represented by
table.

Exercise: If = defined on aset X ={0,1,2,3,4} by:

X+Y if x+y<5,
X*Yy = ]
(x+y)-5 if x+y>5
(i) Represent = by table.
(i) Is = binary operation on X ?
(iii) Is * commutative? Is it associative?
(iv) Does * have an identity? Is exist an inverse w.r.t. *?
(Give reasons for your answer).

VX YyeX..

w.r.t. means: with respect to
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= Addition & Multiplication mod n:

We define addition and multiplicationon Z, ={0,1,2,..,n-1}
( Z,is aset of all equivalence classes of the equivalence relation
a=b(mod n) ) as follows:

a+b

a®, b is the remainder of — VabeZz, ,

axb

a®, b is the remainder of VabeZ, .

Example: we represent the two operations ©, and ®, on Z, ={0,1,2,3}
by the following tables:
@4 1

0
1
2
3

Exercises:
1- In each of the following * is the specified binary operation on the set
Z of integers.
Determine in each case whether the operation is commutative, whether is
associative , whether there is an identity for the operation , and whether
there is an inverse w.r.t. the operation?

(i) axb=Db

(i) axb=a+b+ab

(iii)) axb=2a+2b

(iv) axb=a+b-1

(v) axb=a+ab
2- Let P(X) be the power set of aset X ={1,2}.

(1) Is the binary operation mn on P(X) commutative?

Is it associative? Does it have an identity?.
(if) Answer the same questions for the binary operation U
on P(X).
(iii) Answer the same questions for the binary operation A
on P(X) (where AAB=(AUB)-(AnB) VA BeP(X)).

®4

3
0
3
2
1

W N = O]
N O N O N

2 |3 0
2 |3 0
310 0
0|1 0
1] 2 0

w| N k| O] O
w| N k| O

1
2
3
0
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5-Groups:

Def.1: Let G be non-empty set, and * binary operation on G .
The couple < G,* >is said to be a group if the following conditions are
satisfied:

(Gl) a*beG VabeG (closure).
(G2) (a*b)*c=ax*(b*c) Va,b,ceG (associative).
(G3) JeeG;a*e=e*a=a VaeG (existence of identity).

(G4) VaeGda'eG;a*a ' =a *a=e (existence of inverse).
If only the condition (G1) is satisfied, < G,* > is said to be groupoid , if
only the two conditions (G1),(G2) are satisfied, < G,* > is said to be semi-
group, and if only the three conditions (G1),(G2),(G3) are
satisfied, < G,* > is said to be monoid.
Def.2: A group < G,* > is said to be commutative (or abelian) if it satisfies
the commutative law: a*b=b*aVvabeG.
Def.3: By the order of a group < G,* >we mean the number of its distinct

elements, and denoted O(G) (or [G|).

A group < G,* >is said to be finite if its order is finite, and is said to be
infinite if its order is infinite.

Remark: We write G instead of < G,* >when a binary operation * is
the usual multiplication.

Examples:
1- Each of the following sets with the usual definition of addition of
numbers is a group:

Z the set of all integers.

Q the set of all rational numbers.

R the set of all real numbers.

C the set of all complex numbers.
2- Each of the following sets with the usual definition of multiplication of
numbers is a group:

Q" the set of all positive rational numbers.

R™ the set of all positive real numbers.
Q" =Q—-{0}.
R*=R—{0}.
C" =C-{0}.
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3-<Z,@®, >isabelian group ; Z, ={0,1,2,...,n—1} is the set of residue
classes, and @, the addition of residue classes.

The identity of this group is the residue class 0 and the inverse of any
class a; 0<a<n-1istheclass n—a.

If n=4 we prove that <Z,,®, > is abelian group as follows:
We represent < Z,,®, > by the following table:

@) 0| 123
ojo0o|1,2)3
111123 ]|0
2121301
313|012

(G1) @, is a binary operation on Z ,as it can be seen from the table above.
(G2) Associative law holds in general for the two operations @, ,&®,
onZ, .So @,is associativeon Z, .

(G3) 0 is the identity as it can be seen from the table above.
(G4)

The element 0 112 3
The inverse 0] 3] 2 1

@, is commutative as it can be seen from the table above.

5.<Z,,®, > isabelian group.

4- < Ax>is abelian group ; A={a:a=3",neZ}, and x the usual
multiplication of numbers.

The identity of this group is 3° =1, and the inverse of any element 3"
is 3.

5- <M(A),c >isagroup ; M(A) is the set of all 1-1 corresponding
mappings from A to A, and o the composition of mappings.

The identity of this group is the identity mapping 1 : A— A;l(a)=a
Vae A, and the inverse of any mapping f € M(A) is the mapping
freM(A);foft=f"of=1.

This group is not commutative, because in general fog=#go f .
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Properties: Let < G,* > be a group. The following properties are
satisfied:
(1) The identity element e is unique. For, if e ,e, are two identities in

<G,x>, then e, e, =¢ =e,.
(2) The inverse element a*is unique. For, if b,care two inverses of a,
then bxa=e,axc=e, b=b*xe=Db=*(a*c)=(b*a)*c=e*c=cC.
(3) (@) '=a.Forat+xa=axa'=e.
(4) axx=a*y=>x=Y, X*a=y*a= x=Yy (cancellation laws).
Proof: For asx=a*xy=x=Y.
a*x=ax*y=a *(@*x)=a’‘*(axy)

= (at*a)*x=(a " *a)*y

—SexX=exy

= X=Y.
Similarly, for xxa=y*a=x=Yy.
(5) The equations a*x=band y=*a =D have unique solutions
x=a'*band y=b*a™'in <Gx>.
Proof: For the equation a*x=Db.
LHS.=a*x=a*(a"*b)=(a*a")*b=exb=b=RH.S.,
let x,, X, are two solutions of the equation a*x=Db, then
axx, =b,a*x,=b, .a*x =a*Xx, =X =X,
i.e. the solution is unique. Similarly, for the equation y*a=Db.
Examples: The solution of the equation 2x=3 inagroup <Z,,&®, >
is 2@, x=3=>x=2"®,3=2®,3=1,
and the solution of the equation 5x =-2 inagroup <Z,*>;
Z the set of integers, a*xb=a+b—-3 Va,beZ
is 5%X=-2=>X=5"%(-2)=(6-5)*(-2) =1%(-2) =1+ (-2)-3=—4
(Verify that?).
(6) (a*b)*=b**a™ VabeG.
Proof:
(axb)*(b'*a')=ax(b=*(b " *xa™))

=a*((b*b™)*a™)
—a*(exa’)=a*a  =e.

~(a*b)*=b**a™ VabeG.
Similarly, we can prove that (b™ *a™)*(a*b)=e,
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~(b**a™) "t =axb Va,beG.
(7) a" =a*a*..*a (ntimes), a" =a**a " *..xa" (ntimes),
an *am :an+m1 (an)m :anm.
Remark: In the additive group< G,+ >,
na=a+a+..+a (ntimes), —na=(-a)+(-a)+...+(-a) (ntimes),
(n+m)a=na+ma, n(ma) =(nm)a.
Exercises:

1- Which of the following is group? Give reasons for your assertion.
(1) <Zx>; Z the set of integers.

(if) <Z,—>; Z the set of integers.

(i) < Zg,+>; Z, the set of all even integers.

(iv) <Zx>; Z the setof integers, axb=a+b+1.

(V) <Rx>; R the set of all real numbers, axb=a+b-5.

(Vi)<A,><>;A={(cl) Z’M? (')](‘Ol _OJ(_OI _Oij:i2=—1}.
(vii)<A,x>;A={{; ‘D(; _Olj[‘ol _OJG _11]}

(viii) < Ax> ;A={(; Sl:x,ye R,xy = 1.

. A d XY 2, .2

(ixX) < Ax> 'A_{(—y X).x,ye R,x“+y” =0}
2-Let X =R—{l}, a*b=a+b—-ab Va,be X .Verify that < X *>
is abelian group, and determine the solution of the equation 3x =5
in this group.
3- Inagroup < G,*> what is the element (a*b™ *c™)'equal to?
4- Show that a group < G,*> is commutative if x> =e VxeG.
5- Show that a group < G,*> is commutative if:
(xxy)t=xTtxy?t VX yeG.
6- Show that a group < G,*>of order 3 is abelian? .
7- Show that a group G is abelian iff (ab)> =a’b® VabeG.

8- If G is an abelian group, Prove that: (ab)" =a"b"Va,beG,nezZ”
(Hint: use the mathematical induction).
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6-Special types of groups:

1- Group of Permutations:

Def.1: A 1-1 mapping of a finite set S ={1,2,3,..., n} onto itself is said to
be permutation of degree n.

If « is apermutation of aset S ={1,2,3,..., n}, we write:

1 2 3 .. n
“Tlat) «@) a@) .. a(n)j (a(l)j sisn.
Example: If «, 8,y are permutations of a set S ={1,2,3,4},
1 2 3 4 1 2 3 4 1 2 3 4
““l3 21 4) (4123) (3412}
a, 3,y can represented by:
1 2 3 4 2 3 41 3 4 1 2 3
a=3214=(2143j£1 2}(4321}
=134 =123,
1 2 3 4 1 2 3 4
=[4 L 5 3):(1432), =(3 .1 2J=(13)(2 4).

Each of a representations (1 3),(1 4 3 2),(L 3)(2 4)is said to be a cycle

representation of a permutation.
The composition of the two permutations «, S is defined as follow:

(12341234 1234
“P=3 21441237432 1) ;

and the inverse of a permutation fis defined as follow:

L, (41 2 3 1 2 3 4
p = = =(1234).,
1 2 3 4 2 3 41

. 1 2 3 4), —
and the permutation | = is the identity.
1 2 3 4

We say that there is an inversion in a permutation

(1 2 3 .. ) i e have
_[a(l) «@ @ .. a(n)j , if for i < j we have:
a(i)—a(j)

<0 or, in other words, when a bigger number precedes a
i—]

smaller number in «, and the total number of inversions in « is denoted

by V, .
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Def.2: A permutation is called even (odd) permutation if the number of
its inversions is even (odd).

Examples:
. L ) 1 2 3 4
1- The number of inversions in a permutation « = 3 21 4

isV, =2+1+0+0=3 (odd), so it is odd,

4 1 2 3
is V, =3+0+0+0=23(odd), so it is also odd, and the number of
1 2 3 4
3 41 ZJ
isV, =2+2+0+0=4(even), so it is even.

2- A permutation:
1 2 3 456 78
p:

. L ) 1 2 3 4
the number of inversions in a permutation g =

inversions in a permutation y = (

4 52 8 3617
V,=3+3+1+4+1+1+0+0=13 (odd).

Def.3: A set of all permutations of a finite set S ={1,2,3,..., n} with the
operation of a composition form a group of order n!, it is called a group
of permutations (or substitution) of degree n, and it is denoted by P,

(or S,).
Example: A set S,of all permutations of a finite set S ={1,2,3} with the

operation of a composition form a group of order 6,
S;={1,223),132),12),713),(2 3}

(Verify that? Hint: represent < S,,o > by table).
Remarks:

(1) The identity permutation | is an even permutation.

(2) The composition of two even permutations is even permutation,
also the composition of two odd permutations is even permutation,
and the composition of two permutations one of them even and the
other odd is odd permutation,

(3) There are an equal number of even and odd permutations in a
group S, .

j:(l 4 8 7)(2 5 3)(6) is odd,;
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Exercises:
1- Given a permutations:

31 456 2 2 41 3 6 5
(i) Write each of «, 3,y by a cycle representation.
(ii) Compute axo B, @* o f3, aoyoar™
2- Determine which of the following is even (odd) permutation:

(i)123456789
4 6 9 7 2 5 8 1 3/

(i) @2 3)o(246)o(54 3 2).
3- Verify that< S5 ,0 >; S, is the set of all even permutations of degree 3

1 2 3 45 6 1 2 3 45 6 1 2 3 4 5 6
o= P = Y=

is an abelian group, but< S, ,o >; S; is the set of all odd permutations of
degree 3 is not a group?.

4- Verify that< X o >;

X={1,1234),13)(2 4,143 2}S,

is an abelian group?.

2- Cyclic Groups:

Def.1: We say that G is a cyclic group if it is generated by at least one
of itselements,,say ae G, ie. VxeGdneZ; x=a"

(or VxeG3aneZ; x=na when G is an additive group), and we denote
G=<a>.

Examples:
1- < Z,+> is cyclic group generated by 1,—1 .For,

(Gl) a+beZ VabeZ.

(G2) (a+b)+c=a+(b+c) Va,b,ceZ.

(G3) I0eZ;0+a=a+0=a VaeZ.

(G4) VaeZ d—aeZ;(-a)+a=a+(-a)=0 .
< Z,+> isagroup,
00)=0,10)=1,-)@®)=-1,2(0)=2,(-2)(1) =-2,...and so on,
0(-)=0,2-)=-1,(-H(-) =1,2(-) =-2,(-2)(-2) =2,...and so on.
~.<Z,+>iscyclic group generated by 1,-1 .

5 2 4 316

|
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2- <Gx>;G={L-1i,-i},i=+-1 is cyclic group generated by i,—i
For, the table of < G,x > is:

x | 1|10 |-
11 -1] 1 |-
oo N R A I
I -1 -1 1
o I B 1]-1

(G1) x is a binary operation on G as it can be seen from the table above.
(G2) Associative law holds in general for x.
(G3) 1 is the identity.

(G4)
The element 1 (-1 i -i
The inverse 1] -1 - i
.G isagroup,
i'=i,i*=-1,i*=-,i*=1 .G=<i>

() ==, =-1-)’=i,(-)*'=1 . G=<-i>

3- <Z,,8®, > iscyclic group generated by 1, 2 (verify that?).

4- <Z,—{0},®, > is cyclic group generated by 3,5 (verify that?).

5- < Xpo>; X={1,1234),013)(24),1432)}cS,

is cyclic group generated by (1 2 3 4),(1 4 3 2) (verify that?).

Remarks:

(1) The generator of a cyclic group is not unique. For example, the
additive group < Z,+ > is cyclic group generated by 1,-1 .

(2) Every cyclic group is abelian.
Proof: Let G=<a > and let g,,9,€G;g,=a"',9,=a°,r,seZ

~.g,0,=a'a’=a"=a""=a’a" =9,0;,.

(3) When G =< a > is of finite order, say n, then the distinct
elements of Gare: e=a°,a,a’ a’..,a"*,a" =e. For,

in this case, all powers of a can not be different, so we must have:
a"=a“:hkeZ,h=k.If h>kthen a"* =e.

(4) When G =< a > is of infinite order, then the elements of G are:
e=a’,a",a”?,..,a",...
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Def.2: By the order (or period) of an element a of a group G,

we mean the least positive integer msuch that a™ =e.
The order of all elements in a group <{1,—1,i,—i} x> is:

The element 1 (-1 i -i
The order 1|12 |4 4

Theorem: Given G =< a > acyclic group of order n.An element a™ for
1<m<n isagenerator of G iff (m,n)=1.

Proof:
Let G=<a" >.Then a=(@")";aeZ,
ie.a'=a" =a" ™ =a’=e=e/=@")’ =a™M;peZ
SAl-om= A =om+ =1
i.e. (m,n)=1.
Conversely, let (m,n)=1. Then 3, f € Z;am+ pn=1,
na=a'=a™"=a"a" =@")"“@")" =@")“E)’ =@")e=@")"
ie. G=<a" >.
Example: A group <G, x>;G ={l=0®,0,0° 0°,0",0°,0°, o'} of
order 8 is cyclic group; G =< w >, the other generators of this group are
®®,0°, " such that (38)=1,(58) =1,(7,8) =1.
Exercises:
1- Give an example to prove or disprove the following statements:

(i) Every abelian group is cyclic.

(ii) If G =< a > cyclic group. Then G=<a™* > .

(iii) Every element of a cyclic group generates the group.
2- Determine the order of all elements in a group< S;,0 >.

Is <S,,0> cyclic group?.
3- Find the generators of the cyclic group G =< a > of orders 7, 10
and 21.
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7-Subgroups:

Def.1: A non-empty subset H of a group G is said to be a subgroup
of G, if H itself is a group w.r.t. the same binary operation in G .

The fact that H is a subgroup of G will be denoted by H <G.

Every group G has two improper subgroups, namely, G itself and {e},

and any subgroup other than G and {e} is called proper sub- group.
Examples:

1- The set Z_ of all even integers forms a subgroup w.r.t. addition in the
additive group Z of all integers.

2- The set Q of all rational numbers is a group w.r.t. addition, and the set
Q" of all positive rational numbers is a group w.r.t. multiplication.

Although Q™ is a subset of Q ; we can not consider Q" as a subgroup of

Q, since the binary operations in Q and Q™are different.
3-If <Gx>;G={L,-Li,—i},<H, x> H, ={,-3,<H, x>;H, ={i,—i}
Then H, <G, but H, is not subgroup of a group G, since < H, x> is
not a group.
Theoreml: A non-empty subset H of a group G is a subgroup of G iff
the following two conditions are satisfied:
(i) VabeH = abeH.
(i) VvaeH=a'eH.
Proof: Suppose the conditions (i) and (ii) hold in H . Then
by (i) H closed w.r.t. multiplication in G i.e. (G1).
The associative law holds in H , since it holds in G i.e. (G2).
Since H=¢,letac H,thenby (i) a™* e H i.e. (G4).
And by (i) we get aa' =a'a=ecH ie. (G3).
Thus H is a group w.r.t. multiplicationin G, i.e. H <G.
The conditions are therefore sufficient.

Conversely, let H is a subgroup of G, the conditions (i),(ii) then follow
from the group conditions in H . Hence the conditions are necessary.
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Theorem?2: A non-empty subset H of a group G is a subgroup of G iff
VabeH =ab™ eH.

Proof: Let H isa subgroup of G. Then:
VabeH=a'b*eH=ab™" eH.

Conversely, let Va,pe H =ab™ eH. Since H #¢, let ac H , then
VacH =aa'=ecH ie(G3),Ve,acH =ea'=a"'ecH ie.(G4),
Va,beH=ab*eceH=ab"') '=abeH ie(Gl),

and the associative law holds in H , since it holds in G i.e.(G2).

Thus H is a group w.r.t. multiplicationin G, i.e. H <G.
Theorem3: Let H, <G, H, <G.Then H, nH, <G, but is not

necessary tobe H, UH, <G.
Proof:
VabeH nH,=abeH, ArabeH,
=ab'eH, rabt eH,
(From Theorem?2)
=ab™* eH,NH,
=H,nH, <G
For, is not necessary to be H, W H, <G we give an example:
H, ={l,Q 2)}, H, ={1,( 3)} are two subgroups of a group of
permutations S, but H, UH, ={I,(1 2),(1 3)} is not group
(verify that?).

= | attice diagram of a sub-groups:

Let H,, H,, H,are proper subgroups of a group G ,and H, is proper
subgroup of a group H, and of a group H,.

Then we can represent the set of all subgroups H,, H,, H, and the two
improper subgroups G,{e} by the following lattice diagram:

G

Hl\‘?‘/H
3
\ |

{e}

2
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Solved Problem: List all the subgroups of a group S, and represent it by

lattice diagram.
The Answer: The proper subgroups of S, are:

S; {I,@ 2)}.{1.@ 3)}{l,(2 3)}, and the two improper subgroups of S,
are: S, ,{I}. Thus the set of all subgroups of a group S, is:

{S; {1, 2}.{1,@ 3)}.{lI,(2 3)},S,,{l1}}and it represented by the
following lattice diagram:

/ 83\
Sy {1.a 2)} {.a 3} {1.@2 3}

= Decomposition of a group:

Def.1: Let H be a subgroup of agroup Gand aeG.
The set aH ={ah:h e H} is called a left coset of H in G generated

by a.
Similarly, the set Ha ={ha:h e H}is called a right coset of H in G

generated by a.

Examples:
1- The left coset and the right coset of a subgroup H ={1,-1}

inagroup G =<{,,—1,i,—i}x> generated by i € G are:
iH={ixLix(-)}={i,—i},
Hi ={1xi,(-) xi}={i,—i}.
2- The left coset of a subgroup S; inagroup <S,,o > generated by
L 2)esS;is:
1 2)S; ={(1 2)o1,1 2)o(1 2 3),(L 2)o(1 3 2)}
={1 2),(2 3),1 3)}.
and the right coset of a subgroup S; ina group <S,,o > generated by
L23eS,; is:
S;123)={l-(123),0123)-(123),132)0-(1223}
={@ 2 3),(1 3 2),1}.
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Propositionl: Every subgroup of an abelian group is abelian, but the
converse is not true in general

(e.9. S; <SS, ,S; isabelian but S, is not abelian).

Proposition2: If H <G then the identity element in H is the same
identity element in G , and the inverse of an element in H is the same
inversein G.

Proposition3: Two left cosets of a subgroup H inagroup G are either
disjoint or identical.

Proof: Suppose aH mnbH = ¢ and let

ceaHnbH =c=ah =bh; ;h,h; eH,

a=c(h;)" = (bh;)(h)™" =bh ;(h))(h)"=h eH,

-.aH = (bh,)H =b(h,H) =bH.

Lagrange's Theorem: Let H be a subgroup of a finite group G . Then
the order of H is a factor of the order of G .

Proof: Let G be a finite group of order n and H be a subgroup of G of
order m. Suppose eH,a H,a,H,...,a,_,H be the left cosets of a subgroup

H inagroup G. Then ah,ah,,..., ah, are the distinct elements of aH ,

. 0O(G)=0(eH)+0(a,H) +...+O(q, ,H)
=0O(H)+O(H)+...+O(H). (I —times)

sn=Im.

Remark: The reverse of Lagrange's Theorem is not true in general.

For example O(S,;) =12 (S, is the group of all even permutations of

degree 4 ), but there is no subgroup of S, of order6 .
Def.2: The number of left (or right) cosets of H in G is called the index
of H in G. Itisdenoted by (G:H) (i.e. (G: H):% ).

O(H)
Corollary.1: A finite group of prime order has no proper subgroup.
Corollary.2: The order of an element of a finite group is a factor of the
order of the group.
Corollary.3: Every finite group of prime order is cyclic.
Corollary.4: The number of all subgroups of a finite cyclic group G is
equal to the number of a positive factors of the order of G.
Example: <Z,,,®,, > is a cyclic group (verify that?), O(Z,,) =12, and
the positive factors of 12 are 1,2,3,4,6,12 Thus the number of all
subgroups of <Z,,,&®,, > is 6
(Itis <1><2><3><4><6><0>)
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Exercises:
1- Verifythat aH =Ha=H ,bH = Hb , for H={I,1 2)},

a=@02),b=@13)eS,
2- Determine all subgroups of a group <G =27, —{0,3,6},®, >,
and represent it by lattice diagram.

= Normal subgroups, Simple groups, and Factor groups:

Def.1: A subgroup H of agroup G is called a normal subgroup
(or invariant subgroup or self-conjugate subgroup) of G if:

aH =Ha VaeG.
i.e. if the left and right decompositions of G w.r.t. H are identical.
The fact that H is a normal subgroup of a group G will be denoted by
HAG
Def.2: An element aHa ™ where acGand heH is called a conjugate
of hinG.
The defining condition of a normal subgroup can be replaced by a weaker
condition:

aHa'cH VaeG.
Def.3: A group which has no proper normal subgroup is said to be
simple group.

Examples:
1- A subgroup {I,(@ 2)}is simple, but it is not normal subgroup of

agroup S, (verify that?).

2- A subgroup H ={1,—1} is simple, and it is normal subgroup of

agroup G ={1,-1,i,—i} w.r.t. x (verify that?).

3- A subgroup S, is a normal subgroup of a group S, (verify that?)
Is it simple?.

4- <Z,,®, >is not simple group, also <Z,+ > is not simple group
(verify that?).
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Givenagroup G and HAG. Let T" be the set of all cosets of H

in G . We define in T" a multiplication operation as follows:
(Ha)(Hb)=H(ab) VHa,HbeT .
The associativity in T is assured by the associativity in G .
The coset He = H is the identity in T".

Every coset Ha in T has Ha™ as its inverse.
So, the set I" of all cosets of H in G forms a group w.r.t. the above
definition of multiplication of cosets. It is called the factor group

(or the quotient group), and it is denoted by G/H .

Example: Let G =< a > be a cyclic group of order 10.
To determine the factor groups of G by Lagrange's theorem, if G has
any subgroups, then it would be of order 1,2,510 .

Being cyclic, G is abelian and so every subgroup of it is normal.
The two improper subgroups are:
G={eaa*a’,a*,a’,a%a’,a’ a’}, E={e}.

The two proper subgroups are:

H ={e,a’}of order 2 and K ={e,a®,a*,a® a’}of order 5
Therefore,

G/G ={[G]}, G/E ={[e] [a] [a°] [a"],[a"] [2°],[a"],[a"], [a°], [T}
are factor groups of order 1 and 10 respectively. Also,

G/H ={H,aH,a’H,a’H,a’H}={[e,a’],[a,a°],[a*,a"],[a°,a%],[a*,a’]}
and G/K ={K,aK}={[e,a* a*,a%a%][a,a% a",a’,a’]}.
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8-Homomorphism and Isomorphism between groups:

Def.1: Amapping f :G, > G, where <G, *>,<G,,#>two groups is
said to be a homomorphism if: f(a*b)= f(a)#f(b) Va,beG, .

If G, =G, f iscalled an endomorphism, a 1-1 homomorphism is called
monomorphism, and an onto homomorphism is called an epiomorphism .

Examples:
1- Amapping f <R,+>—>< X, x>; R the set of all real numbers,

X =R—{0}, f(n)=3" isahomomorphism. For:
f(m+n)=3""=3"x3"=f(mM)x f(n) vmneR.
2- Amapping f <Z+>—><Z,+>; Z thesetof integers, f(n)=n+1
is not homomorphism. For: f(m+n)= f(m)+ f(n) vmneZ
(verify that?).
3-Amapping f <Z+>><Ax>; A={L-1i,-i},
¢ 1 ifneven . h hism. For-
(n) = {_1 it nodg. 'S @ homomorphism. For:
let m,n e Z, we have the following three cases:
(1) If each of m,n even number, then m+n is even,
S fmy=f(n)=1, f(m+n)=1=1x1=f(m)x f(n).
(2) If each of m,n odd number, then m-+n is even,
f(m=fn)=-1, f(m+n)=1=(-Dx(-D)=f(m)x f(n).
(3) If one of m,n even and the other odd, then m-+n is odd,
S f(m)y=1,f(n)=-1v f(m)=-1, f(n) =1,
f(m+n)=-1=1x(-1) = f(m)x f(n),
f(m+n)=-1=(-)x1=f(m)x f(n).
ie. f(m+n)=f(m)x f(n) YmneZ. So, fisahomomorphism.
4- A mapping g <Z,+>—><Ax>; Z the set of integers,

. -1 if neven,
AL g(n)_{ 1 if nodd.
24eZ,wehave g(2)=9(4)=-1, g(2+4)=9(6)=-1,
9(2)>xg(4) =(-Dx(-1) =1 ..9(2+4) = g(2)xg(4).

0 ifaeven,
2 if a odd.

is not homomorphism. For:

5- Amapping f <S,;0>—<Z,®,>; f(a) :{ VaeS,

is a homomorphism (verify that?).
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Theoreml: Let f <G, *>—><G,,#>be a homomorphism, and let e ,e,
are the identities in G,,G, respectively. Then:

(i) f(e) =e,.
(i) F(x ) =[f(]" VxeG,.
Proof:

M) letxeG, , f(x)eG,.
LX) = f(xxe) = F(X)#He, = T (X)# T (e) = e,=T(e).
(i) (&) =,
S fxxx ) =e, = F(X)#TF(xT) =¢,
=[FOOIH#IE)# T (x)]=[f ()] #e,
= [LF OO # F O] £ () =[f ()]
= e, # f(x) =[f (0]
= f(xY)=[f(x)]™"
= The Kernel and Image of a Homomorphism:

Def.2: Let f :G, — G, be a homomorphism.

The set: ker f ={x:xeG,, f(x)=e,} <G, is called the kernel of the
homomorphism f . And the set:

Imf ={y:yeG,,3xeG,; f(x)=y}cG, is called the image of the
homomorphism f .

See the following diagram:

(4
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Examples:
1- The kernel, and the image of a homomorphism f <Z,+>—><Ax>;

A={L-Li-i}, f(n) :{ 1 Ifneven
-1 if nodd.

kerf ={n:neZ,n even}={0,£2,#4,..} c Z,

Imf ={,-}cA

2- The kernel, and the image of a homomorphism

0 ifaeven,

2 if aodd.

re:

f<S;0>><Z,®, >; f(a):{

ker f ={1,(123),132)}cS,,
Im f ={0,2}c Z,.
3- Let A={a,b}.Then < P(A),A > is an abelian group , and let
B={1-1,i,—1}.Then < B,x > is also an abelian group (verify that?).
A mapping f :P(A) > B; f(X)=1 VX eP(A) isahomomorphism,
and ker f =P(A), Im f ={1}.
Theorem2: Let f <G, *>—><G,,#>be a homomorphism, and let e, e,
are the identities in G,,G, respectively. Then:
(i) ker f is a subgroup of a group G, .
(if) Im f is a subgroup of a group G, .
Proof: We use the fact that a subset H of a group G is a subgroup of G
iff Va,beH = ab™* eH.
(i) let x,,x, eker f = f(x,) = f(x,)=e,,
) =[] =[e,]7 =¢,
SR ex) = F(x)#T (X)) =e,#e, =e,=> X, * X, eker f.
sker f <G,
@i)lety,y,elmf=3x,x,€G,;f(x)=y,, f(X,)=Y,,

yl#yz_l = f(xl)#[f (Xz)]_l =f (Xl)# f (Xz_l) = f (X1 * Xz_l) elm f.
~Imf <G,.
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Theorem3: Let f <G, *>—><G,,#>be a homomorphism, and let e, e,
are the identities in G,,G, respectively. Then f is 1-1iff ker f ={e }.
Proof: Let f is 1-1 we prove that ker f ={e,}as follows:
xekerf = f(x)=e,, f(e,)=¢,
= f(x)=1(e)
= X=e.
le. kerf ={e;}.
Conversely, let ker f ={e, } we prove that f is 1-1 as follows:
Xp % € Gy F00) = T06G) = FOORLT(x)] = T O )#LF ()1
= f(x)#f(x;") =e,
= f(x *Xz_l) =€,
= x, *X, eker f ={e;}
=X kX, =€
= X, = X,.
le. fisl-1.
Def.3: A homomorphism f :G, — G, is called an isomorphism if it is
1-1 corresponding (i.e. f is 1-1and f is onto), in this case we say that the
two groups G,,G, are isomorphic, and denote G, =G,

Def.4: An isomorphism of a group onto itself is called an auto- morphism
of the group.

= In order to show G, =G, we proceed as follows:
(Stepl): Define a mapping f i.e. describe the element f(x)in G,
forevery xeG,;.
(Step2): Show that f is 1-1.
(Step3): Show that f is onto.
(Step4): Show that f is.a homomorphism.
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Examples:
1- To show that < Z,+ >=<Z_,+ >where Z the set of integers, and Z_

the set of all even integers:
(Stepl): Define amapping f:Z —>Z_ by f(x)=2x VxeZ.
(Step2): x,, %, € Z, f(x)) = f(X,) = 2%, =2X, => X, =X, So f is1-1.

(Step3):yeZ.,y= f(x):>y:2x:>x:%ez So f isonto.

(Stepd): X, X, € Z, T (X, +X,) =2(X, + X,) = 2%, +2X, = F(x) + f(X,)

So f is.ahomomorphism.

Consequently, <Z,+>=<Z_+>.

2- Similarly, <R,+>=<R" x> where R the set of real numbers, and R*

the set of positive real numbers.

(Hint: Define amapping f :R—>R"by f(x)=¢€* VxeR).

3- Similarly, <Z,+ >=< Ax> where Z the set of integers,

and A={a:a=3",neZ}.

(Hint: Define amapping f:Z —->Aby f(n)=3" VneZ).

4- Let G be a multiplicative group. The mapping f :G — G defined by
f(x)=x" VxeG isnotan isomorphism. For,

although f is 1-1 and onto, it does not homomorphism ;

Foxy)=0y) " =y x = xy = T 0 f(y).

However, if G be a multiplicative abelian group, f is an auto-morphism

of G.
Theorem4: Every cyclic group of infinite order is isomorphic to the
additive group < Z,+ >.

Proof: Let G=<a>={a":neZ},

(Stepl): Define amapping f:G—Z by f(a")=n va" eG.
(Step2):a",a" €G,f(@")=f(@")=>n=m=a"=a" So f is1-1.
(Step3):VneZ da" G ;f(a")=n So f isonto.

(Stepd):a",a" €G, f(a"a")=f(@"™)=n+m=f(@")+ f(@")

So f isahomomorphism.

Consequently, <Gx>z=<Z,+>.
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Theoremb: Every cyclic group of finite order n is isomorphic to the
additive group <Z_,®, >.

Proof: Let G={e=a° a,a*,..,a"'}and Z, ={012,..,n—1},
(Stepl): Define amapping f:G—>Z by f(@")=r Va' G.
(Step2):a",a° G, f(a")=f(a’)=r=s(modn) i.e. r=nqg+s
So a"=a""* =a™a’=ea’=a’ ie. f isl-1.

(Step3):Vrez, 3Ja"eG;f(a")=r So f isonto.

(Stepd):a",a* G, f(a'a®)=f(@"®)=r+s=f(@")+ f(a°)

So f is.a homomorphism.

Consequently, <Gx>=<Z &, >.

Corollary: Any two cyclic groups of the same order are isomorphic.

Solved Problem(1): Verify that the two cyclic groups
<$§; ,0>and< Z,,®, > are isomorphic.

The Answer: We can represent < S; o >and<Z,,®, >
by the following table:

o | (123) (132)
®3
| | (123) (132
0
(123) (123) (132) |
1
(132) (132) | (123)
2

As it can be seen from the table above: the similar elements in the two
groups are neighboring in the table. So, S; =Z, .
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Solved Problem(2): Show that there exists no isomorphism between
<R+ >and< R,x >, where R the set of real numbers.

The Answer: Suppose that f is an isomorphism from < R,+ > to
<Rx>.Then f(x+0)=f(x)= f(X)x f(0)=f(x)= f(0) =1,

FOH(0) = 10 = T(0x F(-x) =12 (-0 = ——

fx)°

because f isan isomorphism it is onto,
ile. Vye<Rx>3dxe<R+>;y=f(X)),
thenfor 0e<Rx>3dxe<R,+>;0=f(x),
but f(-x)= % = f(-x)= % ¢ R which gives contradiction.
So, there exists no isomorphism between< R,+ >and< R,x >.
Exercises:
1- Which of the following is a homomorphism?
(Give reasons for your answer)
and determine ker f ,Im f for a homomorphism.
(i) f<Z+>—><Z+>;f(n)=n*Z the set of integers.
(i) f<ZA4A>><Z+>;f(n)=2n
(i) f <Z4+>><Z+>;f(nN)=n+1
(iv) f <Rx>—><Rx>;f(n)=n*R the set of real numbers.
(v) f <P{a,b},A>—><Z+>;f(X)=0(X) VX e P{a,b}.
2- Let f <Cx>—><R,x> beamapping ,where C the set of complex
numbers, and R the set of real numbers, defined by:

f(a+ib) =[a+ibj=+va®+b® . Verify that f isa homomorphism.
Is f anisomorphism?.
3-Let f < X,®>—><Y,®> beamapping defined by f(x)=-x
where:

a®b=a+b+ab Va,be X =R-{-1},

a®b=a+b-ab Va,beY =R-{1}.
Verify that X =Y .
4- Verify that the two cyclic groups < Z, —{0},&®, >and

: R the set of real numbers.




