
C H A P T E R

1 Mathematical Preliminaries
and Error Analysis

Introduction
In beginning chemistry courses, we see the ideal gas law,

PV = NRT ,

which relates the pressure P, volume V , temperature T , and number of moles N of an
“ideal” gas. In this equation, R is a constant that depends on the measurement system.

Suppose two experiments are conducted to test this law, using the same gas in each
case. In the first experiment,

P = 1.00 atm, V = 0.100 m3,

N = 0.00420 mol, R = 0.08206.

The ideal gas law predicts the temperature of the gas to be

T = PV

NR
= (1.00)(0.100)

(0.00420)(0.08206)
= 290.15 K = 17◦C.

When we measure the temperature of the gas however, we find that the true temperature is
15◦C.

V1

V2

We then repeat the experiment using the same values of R and N , but increase the
pressure by a factor of two and reduce the volume by the same factor. The product PV
remains the same, so the predicted temperature is still 17◦C. But now we find that the actual
temperature of the gas is 19◦C.

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Clearly, the ideal gas law is suspect, but before concluding that the law is invalid in
this situation, we should examine the data to see whether the error could be attributed to
the experimental results. If so, we might be able to determine how much more accurate
our experimental results would need to be to ensure that an error of this magnitude did not
occur.

Analysis of the error involved in calculations is an important topic in numerical analysis
and is introduced in Section 1.2. This particular application is considered in Exercise 28 of
that section.

This chapter contains a short review of those topics from single-variable calculus that
will be needed in later chapters. A solid knowledge of calculus is essential for an understand-
ing of the analysis of numerical techniques, and more thorough review might be needed if
you have been away from this subject for a while. In addition there is an introduction to
convergence, error analysis, the machine representation of numbers, and some techniques
for categorizing and minimizing computational error.

1.1 Review of Calculus

Limits and Continuity

The concepts of limit and continuity of a function are fundamental to the study of calculus,
and form the basis for the analysis of numerical techniques.

Definition 1.1 A function f defined on a set X of real numbers has the limit L at x0, written

lim
x→x0

f (x) = L,

if, given any real number ε > 0, there exists a real number δ > 0 such that

|f (x)− L| < ε, whenever x ∈ X and 0 < |x − x0| < δ.

(See Figure 1.1.)

Figure 1.1

x

L � ε

L � ε
L

x0 � δ x0 � δx0

y

y � f (x)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

1.1 Review of Calculus 3

Definition 1.2 Let f be a function defined on a set X of real numbers and x0 ∈ X. Then f is continuous
at x0 if

lim
x→x0

f (x) = f (x0).

The function f is continuous on the set X if it is continuous at each number in X.

The set of all functions that are continuous on the set X is denoted C(X). When X is
an interval of the real line, the parentheses in this notation are omitted. For example, the
set of all functions continuous on the closed interval [a, b] is denoted C[a, b]. The symbol
R denotes the set of all real numbers, which also has the interval notation (−∞,∞). So
the set of all functions that are continuous at every real number is denoted by C(R) or by
C(−∞,∞).

The basic concepts of calculus
and its applications were
developed in the late 17th and
early 18th centuries, but the
mathematically precise concepts
of limits and continuity were not
described until the time of
Augustin Louis Cauchy
(1789–1857), Heinrich Eduard
Heine (1821–1881), and Karl
Weierstrass (1815 –1897) in the
latter portion of the 19th century.

The limit of a sequence of real or complex numbers is defined in a similar manner.

Definition 1.3 Let {xn}∞n=1 be an infinite sequence of real numbers. This sequence has the limit x (converges
to x) if, for any ε > 0 there exists a positive integer N(ε) such that |xn − x| < ε, whenever
n > N(ε). The notation

lim
n→∞ xn = x, or xn → x as n→∞,

means that the sequence {xn}∞n=1 converges to x.

Theorem 1.4 If f is a function defined on a set X of real numbers and x0 ∈ X, then the following
statements are equivalent:

a. f is continuous at x0;

b. If {xn}∞n=1 is any sequence in X converging to x0, then limn→∞ f (xn) = f (x0).

The functions we will consider when discussing numerical methods will be assumed
to be continuous because this is a minimal requirement for predictable behavior. Functions
that are not continuous can skip over points of interest, which can cause difficulties when
attempting to approximate a solution to a problem.

Differentiability

More sophisticated assumptions about a function generally lead to better approximation
results. For example, a function with a smooth graph will normally behave more predictably
than one with numerous jagged features. The smoothness condition relies on the concept
of the derivative.

Definition 1.5 Letf be a function defined in an open interval containing x0. The functionf is differentiable
at x0 if

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0

exists. The number f ′(x0) is called the derivative of f at x0. A function that has a derivative
at each number in a set X is differentiable on X.

The derivative of f at x0 is the slope of the tangent line to the graph of f at (x0, f (x0)),
as shown in Figure 1.2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

4 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Figure 1.2

x

y

y � f (x)(x0, f (x0))
f (x0)

x0

The tangent line has slope f �(x0)

Theorem 1.6 If the function f is differentiable at x0, then f is continuous at x0.

The next theorems are of fundamental importance in deriving methods for error esti-
mation. The proofs of these theorems and the other unreferenced results in this section can
be found in any standard calculus text.

The theorem attributed to Michel
Rolle (1652–1719) appeared in
1691 in a little-known treatise
entitled Méthode pour résoundre
les égalites. Rolle originally
criticized the calculus that was
developed by Isaac Newton and
Gottfried Leibniz, but later
became one of its proponents.

The set of all functions that have n continuous derivatives on X is denoted Cn(X), and
the set of functions that have derivatives of all orders on X is denoted C∞(X). Polynomial,
rational, trigonometric, exponential, and logarithmic functions are in C∞(X), where X
consists of all numbers for which the functions are defined. When X is an interval of the
real line, we will again omit the parentheses in this notation.

Theorem 1.7 (Rolle’s Theorem)
Suppose f ∈ C[a, b] and f is differentiable on (a, b). If f (a) = f (b), then a number c in
(a, b) exists with f ′(c) = 0. (See Figure 1.3.)

Figure 1.3

x

 f �(c) � 0

a bc

 f (a) � f (b)

y

y � f (x)

Theorem 1.8 (Mean Value Theorem)
If f ∈ C[a, b] and f is differentiable on (a, b), then a number c in (a, b) exists with (See
Figure 1.4.)

f ′(c) = f (b)− f (a)
b− a

.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

1.1 Review of Calculus 5

Figure 1.4
y

xa bc

Slope f �(c)

Parallel lines

Slope b � a
f (b) � f (a)

y � f (x)

Theorem 1.9 (Extreme Value Theorem)
If f ∈ C[a, b], then c1, c2 ∈ [a, b] exist with f (c1) ≤ f (x) ≤ f (c2), for all x ∈ [a, b].
In addition, if f is differentiable on (a, b), then the numbers c1 and c2 occur either at the
endpoints of [a, b] or where f ′ is zero. (See Figure 1.5.)

Figure 1.5
y

xa c2 c1 b

y � f (x)

Research work on the design of
algorithms and systems for
performing symbolic
mathematics began in the 1960s.
The first system to be operational,
in the 1970s, was a LISP-based
system called MACSYMA.

As mentioned in the preface, we will use the computer algebra system Maple whenever
appropriate. Computer algebra systems are particularly useful for symbolic differentiation
and plotting graphs. Both techniques are illustrated in Example 1.

Example 1 Use Maple to find the absolute minimum and absolute maximum values of

f (x) = 5 cos 2x − 2x sin 2xf (x)

on the intervals (a) [1, 2], and (b) [0.5, 1]
Solution There is a choice of Text input or Math input under the Maple C 2D Math option.
The Text input is used to document worksheets by adding standard text information in
the document. The Math input option is used to execute Maple commands. Maple input

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

6 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

can either be typed or selected from the pallets at the left of the Maple screen. We will
show the input as typed because it is easier to accurately describe the commands. For pallet
input instructions you should consult the Maple tutorials. In our presentation, Maple input
commands appear in italic type, and Maple responses appear in cyan type.

To ensure that the variables we use have not been previously assigned, we first issue
the command.

The Maple development project
began at the University of
Waterloo in late 1980. Its goal
was to be accessible to
researchers in mathematics,
engineering, and science, but
additionally to students for
educational purposes. To be
effective it needed to be portable,
as well as space and time
efficient. Demonstrations of the
system were presented in 1982,
and the major paper setting out
the design criteria for the
MAPLE system was presented in
1983 [CGGG].

restart

to clear the Maple memory. We first illustrate the graphing capabilities of Maple. To access
the graphing package, enter the command

with(plots)

to load the plots subpackage. Maple responds with a list of available commands in the
package. This list can be suppressed by placing a colon after the with(plots) command.

The following command defines f (x) = 5 cos 2x − 2x sin 2x as a function of x.

f := x→ 5 cos(2x)− 2x · sin(2x)

and Maple responds with

x→ 5 cos(2x)− 2x sin(2x)

We can plot the graph of f on the interval [0.5, 2] with the command

plot(f , 0.5 . . 2)

Figure 1.6 shows the screen that results from this command after doing a mouse click on
the graph. This click tells Maple to enter its graph mode, which presents options for various
views of the graph. We can determine the coordinates of a point of the graph by moving the
mouse cursor to the point. The coordinates appear in the box above the left of the plot(f ,
0.5 . . 2) command. This feature is useful for estimating the axis intercepts and extrema of
functions.

The absolute maximum and minimum values of f (x) on the interval [a, b] can occur
only at the endpoints, or at a critical point.

(a) When the interval is [1, 2] we have

f (1)= 5 cos 2− 2 sin 2= −3.899329036 and f (2)= 5 cos 4− 4 sin 4= −0.241008123.

A critical point occurs when f ′(x) = 0. To use Maple to find this point, we first define a
function fp to represent f ′ with the command

fp := x→ diff(f (x), x)

and Maple responds with

x→ d

dx
f (x)

To find the explicit representation of f ′(x) we enter the command

fp(x)

and Maple gives the derivative as

−12 sin(2x)− 4x cos(2x)

To determine the critical point we use the command

fsolve(fp(x), x, 1 . . 2)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.1 Review of Calculus 7

Figure 1.6

and Maple tells us that f ′(x) = fp(x) = 0 for x in [1, 2] when x is

1.358229874

We evaluate f (x) at this point with the command

f (%)

The % is interpreted as the last Maple response. The value of f at the critical point is

−5.675301338

As a consequence, the absolute maximum value of f (x) in [1, 2] is f (2) = −0.241008123
and the absolute minimum value is f (1.358229874) = −5.675301338, accurate at least to
the places listed.

(b) When the interval is [0.5, 1] we have the values at the endpoints given by

f (0.5)= 5 cos 1− 1 sin 1= 1.860040545 and f (1)= 5 cos 2− 2 sin 2= − 3.899329036.

However, when we attempt to determine the critical point in the interval [0.5, 1] with the
command

fsolve(fp(x), x, 0.5 . . 1)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Maple gives the response

f solve(−12 sin(2x)− 4x cos(2x), x, .5 . . 1)

This indicates that Maple is unable to determine the solution. The reason is obvious once
the graph in Figure 1.6 is considered. The function f is always decreasing on this interval,
so no solution exists. Be suspicious when Maple returns the same response it is given; it is
as if it was questioning your request.

In summary, on [0.5, 1] the absolute maximum value is f (0.5) = 1.86004545 and
the absolute minimum value is f (1) = −3.899329036, accurate at least to the places
listed.

The following theorem is not generally presented in a basic calculus course, but is
derived by applying Rolle’s Theorem successively to f , f ′, . . . , and, finally, to f (n−1).
This result is considered in Exercise 23.

Theorem 1.10 (Generalized Rolle’s Theorem)
Suppose f ∈ C[a, b] is n times differentiable on (a, b). If f (x) = 0 at the n + 1 distinct
numbers a ≤ x0 < x1 < . . . < xn ≤ b, then a number c in (x0, xn), and hence in (a, b),
exists with f (n)(c) = 0.

We will also make frequent use of the Intermediate Value Theorem. Although its state-
ment seems reasonable, its proof is beyond the scope of the usual calculus course. It can,
however, be found in most analysis texts.

Theorem 1.11 (Intermediate Value Theorem)
If f ∈ C[a, b] and K is any number between f (a) and f (b), then there exists a number c
in (a, b) for which f (c) = K .

Figure 1.7 shows one choice for the number that is guaranteed by the Intermediate
Value Theorem. In this example there are two other possibilities.

Figure 1.7

x

y

f (a)

f (b)

y � f (x)

K

(a, f (a))

(b, f (b))

a bc

Example 2 Show that x5 − 2x3 + 3x2 − 1 = 0 has a solution in the interval [0, 1].
Solution Consider the function defined by f (x) = x5 − 2x3 + 3x2 − 1. The function f is
continuous on [0, 1]. In addition,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.1 Review of Calculus 9

f (0) = −1 < 0 and 0 < 1 = f (1).
The Intermediate Value Theorem implies that a number x exists, with 0 < x < 1, for which
x5 − 2x3 + 3x2 − 1 = 0.

As seen in Example 2, the Intermediate Value Theorem is used to determine when
solutions to certain problems exist. It does not, however, give an efficient means for finding
these solutions. This topic is considered in Chapter 2.

Integration

The other basic concept of calculus that will be used extensively is the Riemann integral.

George Fredrich Berhard
Riemann (1826–1866) made
many of the important
discoveries classifying the
functions that have integrals. He
also did fundamental work in
geometry and complex function
theory, and is regarded as one of
the profound mathematicians of
the nineteenth century.

Definition 1.12 The Riemann integral of the function f on the interval [a, b] is the following limit,
provided it exists:

∫ b

a
f (x) dx = lim

max�xi→0

n∑
i=1

f (zi) �xi,

where the numbers x0, x1, . . . , xn satisfy a = x0 ≤ x1 ≤ · · · ≤ xn = b, where�xi = xi−xi−1,
for each i = 1, 2, . . . , n, and zi is arbitrarily chosen in the interval [xi−1, xi].

A function f that is continuous on an interval [a, b] is also Riemann integrable on
[a, b]. This permits us to choose, for computational convenience, the points xi to be equally
spaced in [a, b], and for each i = 1, 2, . . . , n, to choose zi = xi. In this case,

∫ b

a
f (x) dx = lim

n→∞
b− a

n

n∑
i=1

f (xi),

where the numbers shown in Figure 1.8 as xi are xi = a+ i(b− a)/n.

Figure 1.8
y

x

y � f (x)

a � x0 x1 x2 xi�1 xi xn�1 b � xn.

Two other results will be needed in our study of numerical analysis. The first is a
generalization of the usual Mean Value Theorem for Integrals.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

10 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Theorem 1.13 (Weighted Mean Value Theorem for Integrals)
Suppose f ∈ C[a, b], the Riemann integral of g exists on [a, b], and g(x) does not change
sign on [a, b]. Then there exists a number c in (a, b) with

∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

When g(x) ≡ 1, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives
the average value of the function f over the interval [a, b] as (See Figure 1.9.)

f (c) = 1

b− a

∫ b

a
f (x) dx.

Figure 1.9

x

y

 f (c)

y � f (x)

a bc

The proof of Theorem 1.13 is not generally given in a basic calculus course but can be
found in most analysis texts (see, for example, [Fu], p. 162).

Taylor Polynomials and Series

The final theorem in this review from calculus describes the Taylor polynomials. These
polynomials are used extensively in numerical analysis.

Theorem 1.14 (Taylor’s Theorem)

Suppose f ∈ Cn[a, b], that f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b],
there exists a number ξ(x) between x0 and x with

Brook Taylor (1685–1731)
described this series in 1715 in
the paper Methodus
incrementorum directa et inversa.
Special cases of the result, and
likely the result itself, had been
previously known to Isaac
Newton, James Gregory, and
others.

f (x) = Pn(x)+ Rn(x),

where

Pn(x) = f (x0)+ f ′(x0)(x − x0)+ f
′′(x0)

2! (x − x0)
2 + · · · + f

(n)(x0)

n! (x − x0)
n

=
n∑

k=0

f (k)(x0)

k! (x − x0)
k

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

1.1 Review of Calculus 11

and

Rn(x) = f
(n+1)(ξ(x))

(n+ 1)! (x − x0)
n+1.

Here Pn(x) is called the nth Taylor polynomial for f about x0, and Rn(x) is called
the remainder term (or truncation error) associated with Pn(x). Since the number ξ(x)
in the truncation error Rn(x) depends on the value of x at which the polynomial Pn(x) is
being evaluated, it is a function of the variable x. However, we should not expect to be
able to explicitly determine the function ξ(x). Taylor’s Theorem simply ensures that such a
function exists, and that its value lies between x and x0. In fact, one of the common problems
in numerical methods is to try to determine a realistic bound for the value of f (n+1)(ξ(x))
when x is in some specified interval.

Colin Maclaurin (1698–1746) is
best known as the defender of the
calculus of Newton when it came
under bitter attack by the Irish
philosopher, the Bishop George
Berkeley.

The infinite series obtained by taking the limit of Pn(x) as n→∞ is called the Taylor
series for f about x0. In the case x0 = 0, the Taylor polynomial is often called a Maclaurin
polynomial, and the Taylor series is often called a Maclaurin series.

Maclaurin did not discover the
series that bears his name; it was
known to 17th century
mathematicians before he was
born. However, he did devise a
method for solving a system of
linear equations that is known as
Cramer’s rule, which Cramer did
not publish until 1750.

The term truncation error in the Taylor polynomial refers to the error involved in
using a truncated, or finite, summation to approximate the sum of an infinite series.

Example 3 Let f (x) = cos x and x0 = 0. Determine

(a) the second Taylor polynomial for f about x0; and

(b) the third Taylor polynomial for f about x0.

Solution Since f ∈ C∞(R), Taylor’s Theorem can be applied for any n ≥ 0. Also,

f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, and f (4)(x) = cos x,

so

f (0) = 1, f ′(0) = 0, f ′′(0) = −1, and f ′′′(0) = 0.

(a) For n = 2 and x0 = 0, we have

cos x = f (0)+ f ′(0)x + f
′′(0)
2! x2 + f

′′′(ξ(x))
3! x3

= 1− 1

2
x2 + 1

6
x3 sin ξ(x),

where ξ(x) is some (generally unknown) number between 0 and x. (See Figure 1.10.)

Figure 1.10
y

x

y � cos x

y � P2(x) � 1 � x2

1

�

�π π

�
2

π
�
2

π

�
2

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

12 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

When x = 0.01, this becomes

cos 0.01 = 1− 1

2
(0.01)2 + 1

6
(0.01)3 sin ξ(0.01) = 0.99995+ 10−6

6
sin ξ(0.01).

The approximation to cos 0.01 given by the Taylor polynomial is therefore 0.99995. The
truncation error, or remainder term, associated with this approximation is

10−6

6
sin ξ(0.01) = 0.16× 10−6 sin ξ(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats indefinitely.
Although we have no way of determining sin ξ(0.01), we know that all values of the sine
lie in the interval [−1, 1], so the error occurring if we use the approximation 0.99995 for
the value of cos 0.01 is bounded by

| cos(0.01)− 0.99995| = 0.16× 10−6| sin ξ(0.01)| ≤ 0.16× 10−6.

Hence the approximation 0.99995 matches at least the first five digits of cos 0.01, and

0.9999483 < 0.99995− 1.6× 10−6 ≤ cos 0.01

≤ 0.99995+ 1.6× 10−6 < 0.9999517.

The error bound is much larger than the actual error. This is due in part to the poor
bound we used for | sin ξ(x)|. It is shown in Exercise 24 that for all values of x, we have
| sin x| ≤ |x|. Since 0 ≤ ξ < 0.01, we could have used the fact that | sin ξ(x)| ≤ 0.01 in the
error formula, producing the bound 0.16× 10−8.

(b) Since f ′′′(0) = 0, the third Taylor polynomial with remainder term about x0 = 0
is

cos x = 1− 1

2
x2 + 1

24
x4 cos ξ̃ (x),

where 0 < ξ̃(x) < 0.01. The approximating polynomial remains the same, and the ap-
proximation is still 0.99995, but we now have much better accuracy assurance. Since
| cos ξ̃ (x)| ≤ 1 for all x, we have∣∣∣∣ 1

24
x4 cos ξ̃ (x)

∣∣∣∣ ≤ 1

24
(0.01)4(1) ≈ 4.2× 10−10.

So

| cos 0.01− 0.99995| ≤ 4.2× 10−10,

and

0.99994999958 = 0.99995− 4.2× 10−10

≤ cos 0.01 ≤ 0.99995+ 4.2× 10−10 = 0.99995000042.

Example 3 illustrates the two objectives of numerical analysis:

(i) Find an approximation to the solution of a given problem.

(ii) Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the third Taylor
polynomial gave a much better answer to (ii) than the second Taylor polynomial.

We can also use the Taylor polynomials to give us approximations to integrals.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.1 Review of Calculus 13

Illustration We can use the third Taylor polynomial and its remainder term found in Example 3 to
approximate

∫ 0.1
0 cos x dx. We have∫ 0.1

0
cos x dx =

∫ 0.1

0

(
1− 1

2
x2

)
dx + 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx

=
[

x − 1

6
x3

]0.1

0

+ 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx

= 0.1− 1

6
(0.1)3 + 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx.

Therefore ∫ 0.1

0
cos x dx ≈ 0.1− 1

6
(0.1)3 = 0.09983.

A bound for the error in this approximation is determined from the integral of the Taylor
remainder term and the fact that | cos ξ̃ (x)| ≤ 1 for all x:

1

24

∣∣∣∣
∫ 0.1

0
x4 cos ξ̃ (x) dx

∣∣∣∣ ≤ 1

24

∫ 0.1

0
x4| cos ξ̃ (x)| dx

≤ 1

24

∫ 0.1

0
x4 dx = (0.1)5

120
= 8.3× 10−8.

The true value of this integral is∫ 0.1

0
cos x dx = sin x

]0.1

0

= sin 0.1 ≈ 0.099833416647,

so the actual error for this approximation is 8.3314 × 10−8, which is within the error
bound. �

We can also use Maple to obtain these results. Define f by

f := cos(x)

Maple allows us to place multiple statements on a line separated by either a semicolon or
a colon. A semicolon will produce all the output, and a colon suppresses all but the final
Maple response. For example, the third Taylor polynomial is given by

s3 := taylor(f , x = 0, 4) : p3 := convert(s3, polynom)

1− 1

2
x2

The first statement s3 := taylor(f , x = 0, 4) determines the Taylor polynomial about
x0 = 0 with four terms (degree 3) and an indication of its remainder. The second p3 :=
convert(s3, polynom) converts the series s3 to the polynomial p3 by dropping the remainder
term.

Maple normally displays 10 decimal digits for approximations. To instead obtain the
11 digits we want for this illustration, enter

Digits := 11

and evaluate f (0.01) and P3(0.01) with

y1 := evalf(subs(x = 0.01, f)); y2 := evalf(subs(x = 0.01, p3)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

14 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

This produces

0.99995000042

0.99995000000

To show both the function (in black) and the polynomial (in cyan) near x0 = 0, we enter

plot ((f , p3), x = −2 . . 2)

and obtain the Maple plot shown in Figure 1.11.

Figure 1.11

–2 −1 1
x

2

1

0.5

0

–0.5

–1

The integrals of f and the polynomial are given by

q1 := int(f , x = 0 . . 0.1); q2 := int(p3, x = 0 . . 0.1)

0.099833416647

0.099833333333

We assigned the names q1 and q2 to these values so that we could easily determine the error
with the command

err := |q1− q2|

8.3314 10−8

There is an alternate method for generating the Taylor polynomials within the Numer-
icalAnalysis subpackage of Maple’s Student package. This subpackage will be discussed
in Chapter 2.

E X E R C I S E S E T 1.1

1. Show that the following equations have at least one solution in the given intervals.

a. x cos x − 2x2 + 3x − 1 = 0, [0.2, 0.3] and [1.2, 1.3]
b. (x − 2)2 − ln x = 0, [1, 2] and [e, 4]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.1 Review of Calculus 15

c. 2x cos(2x)− (x − 2)2 = 0, [2, 3] and [3, 4]
d. x − (ln x)x = 0, [4, 5]

2. Find intervals containing solutions to the following equations.

a. x − 3−x = 0

b. 4x2 − ex = 0

c. x3 − 2x2 − 4x + 2 = 0

d. x3 + 4.001x2 + 4.002x + 1.101 = 0

3. Show that f ′(x) is 0 at least once in the given intervals.

a. f (x) = 1− ex + (e− 1) sin((π/2)x), [0, 1]
b. f (x) = (x − 1) tan x + x sin πx, [0, 1]
c. f (x) = x sin πx − (x − 2) ln x, [1, 2]
d. f (x) = (x − 2) sin x ln(x + 2), [−1, 3]

4. Find maxa≤x≤b |f (x)| for the following functions and intervals.

a. f (x) = (2− ex + 2x)/3, [0, 1]
b. f (x) = (4x − 3)/(x2 − 2x), [0.5, 1]
c. f (x) = 2x cos(2x)− (x − 2)2, [2, 4]
d. f (x) = 1+ e− cos(x−1), [1, 2]

5. Use the Intermediate Value Theorem 1.11 and Rolle’s Theorem 1.7 to show that the graph of
f (x) = x3 + 2x + k crosses the x-axis exactly once, regardless of the value of the constant k.

6. Suppose f ∈ C[a, b] and f ′(x) exists on (a, b). Show that if f ′(x) �= 0 for all x in (a, b), then there
can exist at most one number p in [a, b] with f (p) = 0.

7. Let f (x) = x3.

a. Find the second Taylor polynomial P2(x) about x0 = 0.

b. Find R2(0.5) and the actual error in using P2(0.5) to approximate f (0.5).

c. Repeat part (a) using x0 = 1.

d. Repeat part (b) using the polynomial from part (c).

8. Find the third Taylor polynomial P3(x) for the function f (x) = √x + 1 about x0 = 0. Approximate√
0.5,
√

0.75,
√

1.25, and
√

1.5 using P3(x), and find the actual errors.

9. Find the second Taylor polynomial P2(x) for the function f (x) = ex cos x about x0 = 0.

a. Use P2(0.5) to approximate f (0.5). Find an upper bound for error |f (0.5)− P2(0.5)| using the
error formula, and compare it to the actual error.

b. Find a bound for the error |f (x) − P2(x)| in using P2(x) to approximate f (x) on the interval
[0, 1].

c. Approximate
∫ 1

0 f (x) dx using
∫ 1

0 P2(x) dx.

d. Find an upper bound for the error in (c) using
∫ 1

0 |R2(x) dx|, and compare the bound to the actual
error.

10. Repeat Exercise 9 using x0 = π/6.

11. Find the third Taylor polynomial P3(x) for the function f (x) = (x − 1) ln x about x0 = 1.

a. Use P3(0.5) to approximate f (0.5). Find an upper bound for error |f (0.5)− P3(0.5)| using the
error formula, and compare it to the actual error.

b. Find a bound for the error |f (x) − P3(x)| in using P3(x) to approximate f (x) on the interval
[0.5, 1.5].

c. Approximate
∫ 1.5

0.5 f (x) dx using
∫ 1.5

0.5 P3(x) dx.

d. Find an upper bound for the error in (c) using
∫ 1.5

0.5 |R3(x) dx|, and compare the bound to the
actual error.

12. Let f (x) = 2x cos(2x)− (x − 2)2 and x0 = 0.

a. Find the third Taylor polynomial P3(x), and use it to approximate f (0.4).

b. Use the error formula in Taylor’s Theorem to find an upper bound for the error |f (0.4)−P3(0.4)|.
Compute the actual error.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

16 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

c. Find the fourth Taylor polynomial P4(x), and use it to approximate f (0.4).

d. Use the error formula in Taylor’s Theorem to find an upper bound for the error |f (0.4)−P4(0.4)|.
Compute the actual error.

13. Find the fourth Taylor polynomial P4(x) for the function f (x) = xex2
about x0 = 0.

a. Find an upper bound for |f (x)− P4(x)|, for 0 ≤ x ≤ 0.4.

b. Approximate
∫ 0.4

0 f (x) dx using
∫ 0.4

0 P4(x) dx.

c. Find an upper bound for the error in (b) using
∫ 0.4

0 P4(x) dx.

d. Approximate f ′(0.2) using P′4(0.2), and find the error.

14. Use the error term of a Taylor polynomial to estimate the error involved in using sin x ≈ x to
approximate sin 1◦.

15. Use a Taylor polynomial about π/4 to approximate cos 42◦ to an accuracy of 10−6.

16. Let f (x) = ex/2 sin(x/3). Use Maple to determine the following.

a. The third Maclaurin polynomial P3(x).

b. f (4)(x) and a bound for the error |f (x)− P3(x)| on [0, 1].
17. Let f (x) = ln(x2 + 2). Use Maple to determine the following.

a. The Taylor polynomial P3(x) for f expanded about x0 = 1.

b. The maximum error |f (x)− P3(x)|, for 0 ≤ x ≤ 1.

c. The Maclaurin polynomial P̃3(x) for f .

d. The maximum error |f (x)− P̃3(x)|, for 0 ≤ x ≤ 1.

e. Does P3(0) approximate f (0) better than P̃3(1) approximates f (1)?

18. Let f (x) = (1 − x)−1 and x0 = 0. Find the nth Taylor polynomial Pn(x) for f (x) about x0. Find a
value of n necessary for Pn(x) to approximate f (x) to within 10−6 on [0, 0.5].

19. Let f (x) = ex and x0 = 0. Find the nth Taylor polynomial Pn(x) for f (x) about x0. Find a value of n
necessary for Pn(x) to approximate f (x) to within 10−6 on [0, 0.5].

20. Find the nth Maclaurin polynomial Pn(x) for f (x) = arctan x.

21. The polynomial P2(x) = 1− 1
2 x2 is to be used to approximate f (x) = cos x in [− 1

2 , 1
2]. Find a bound

for the maximum error.

22. The nth Taylor polynomial for a function f at x0 is sometimes referred to as the polynomial of degree
at most n that “best” approximates f near x0.

a. Explain why this description is accurate.

b. Find the quadratic polynomial that best approximates a function f near x0 = 1 if the tangent
line at x0 = 1 has equation y = 4x − 1, and if f ′′(1) = 6.

23. Prove the Generalized Rolle’s Theorem, Theorem 1.10, by verifying the following.

a. Use Rolle’s Theorem to show that f
′
(zi) = 0 for n − 1 numbers in [a, b] with a < z1 < z2 <

· · · < zn−1 < b.

b. Use Rolle’s Theorem to show that f
′′
(wi) = 0 for n− 2 numbers in [a, b] with z1 < w1 < z2 <

w2 · · ·wn−2 < zn−1 < b.

c. Continue the arguments in a. and b. to show that for each j = 1, 2, . . . , n − 1 there are n − j
distinct numbers in [a, b] where f (j) is 0.

d. Show that part c. implies the conclusion of the theorem.

24. In Example 3 it is stated that for all x we have | sin x| ≤ |x|. Use the following to verify this statement.

a. Show that for all x ≥ 0 we have f (x) = x−sin x is non-decreasing, which implies that sin x ≤ x
with equality only when x = 0.

b. Use the fact that the sine function is odd to reach the conclusion.

25. A Maclaurin polynomial for ex is used to give the approximation 2.5 to e. The error bound in this
approximation is established to be E = 1

6 . Find a bound for the error in E.

26. The error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

1.2 Round-off Errors and Computer Arithmetic 17

gives the probability that any one of a series of trials will lie within x units of the mean, assuming that
the trials have a normal distribution with mean 0 and standard deviation

√
2/2. This integral cannot

be evaluated in terms of elementary functions, so an approximating technique must be used.

a. Integrate the Maclaurin series for e−x2
to show that

erf(x) = 2√
π

∞∑
k=0

(−1)kx2k+1

(2k + 1)k! .

b. The error function can also be expressed in the form

erf(x) = 2√
π

e−x2
∞∑

k=0

2kx2k+1

1 · 3 · 5 · · · (2k + 1)
.

Verify that the two series agree for k = 1, 2, 3, and 4. [Hint: Use the Maclaurin series for e−x2
.]

c. Use the series in part (a) to approximate erf(1) to within 10−7.

d. Use the same number of terms as in part (c) to approximate erf(1) with the series in part (b).

e. Explain why difficulties occur using the series in part (b) to approximate erf(x).

27. A function f : [a, b] → R is said to satisfy a Lipschitz condition with Lipschitz constant L on [a, b]
if, for every x, y ∈ [a, b], we have |f (x)− f (y)| ≤ L|x − y|.
a. Show that if f satisfies a Lipschitz condition with Lipschitz constant L on an interval [a, b], then

f ∈ C[a, b].
b. Show that if f has a derivative that is bounded on [a, b] by L, then f satisfies a Lipschitz condition

with Lipschitz constant L on [a, b].
c. Give an example of a function that is continuous on a closed interval but does not satisfy a

Lipschitz condition on the interval.

28. Suppose f ∈ C[a, b], that x1 and x2 are in [a, b].
a. Show that a number ξ exists between x1 and x2 with

f (ξ) = f (x1)+ f (x2)

2
= 1

2
f (x1)+ 1

2
f (x2).

b. Suppose that c1 and c2 are positive constants. Show that a number ξ exists between x1 and x2

with

f (ξ) = c1f (x1)+ c2f (x2)

c1 + c2
.

c. Give an example to show that the result in part b. does not necessarily hold when c1 and c2 have
opposite signs with c1 �= −c2.

29. Let f ∈ C[a, b], and let p be in the open interval (a, b).

a. Suppose f (p) �= 0. Show that a δ > 0 exists with f (x) �= 0, for all x in [p − δ, p + δ], with
[p− δ, p+ δ] a subset of [a, b].

b. Suppose f (p) = 0 and k > 0 is given. Show that a δ > 0 exists with |f (x)| ≤ k, for all x in
[p− δ, p+ δ], with [p− δ, p+ δ] a subset of [a, b].

1.2 Round-off Errors and Computer Arithmetic

The arithmetic performed by a calculator or computer is different from the arithmetic in
algebra and calculus courses. You would likely expect that we always have as true statements
things such as 2+2 = 4, 4 ·8 = 32, and (

√
3)2 = 3. However, with computer arithmetic we

expect exact results for 2+2 = 4 and 4 ·8 = 32, but we will not have precisely (
√

3)2 = 3.
To understand why this is true we must explore the world of finite-digit arithmetic.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

In our traditional mathematical world we permit numbers with an infinite number of
digits. The arithmetic we use in this world defines

√
3 as that unique positive number that

when multiplied by itself produces the integer 3. In the computational world, however, each
representable number has only a fixed and finite number of digits. This means, for example,
that only rational numbers—and not even all of these—can be represented exactly. Since√

3 is not rational, it is given an approximate representation, one whose square will not
be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in most
situations. In most cases, then, this machine arithmetic is satisfactory and passes without
notice or concern, but at times problems arise because of this discrepancy.

Error due to rounding should be
expected whenever computations
are performed using numbers that
are not powers of 2. Keeping this
error under control is extremely
important when the number of
calculations is large.

The error that is produced when a calculator or computer is used to perform real-
number calculations is called round-off error. It occurs because the arithmetic per-
formed in a machine involves numbers with only a finite number of digits, with the re-
sult that calculations are performed with only approximate representations of the actual
numbers. In a computer, only a relatively small subset of the real number system is used
for the representation of all the real numbers. This subset contains only rational numbers,
both positive and negative, and stores the fractional part, together with an exponential
part.

Binary Machine Numbers

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report called
Binary Floating Point Arithmetic Standard 754–1985. An updated version was published
in 2008 as IEEE 754-2008. This provides standards for binary and decimal floating point
numbers, formats for data interchange, algorithms for rounding arithmetic operations, and
for the handling of exceptions. Formats are specified for single, double, and extended
precisions, and these standards are generally followed by all microcomputer manufacturers
using floating-point hardware.

A 64-bit (binary digit) representation is used for a real number. The first bit is a sign
indicator, denoted s. This is followed by an 11-bit exponent, c, called the characteristic,
and a 52-bit binary fraction, f , called the mantissa. The base for the exponent is 2.

Since 52 binary digits correspond to between 16 and 17 decimal digits, we can assume
that a number represented in this system has at least 16 decimal digits of precision. The
exponent of 11 binary digits gives a range of 0 to 211−1 = 2047. However, using only posi-
tive integers for the exponent would not permit an adequate representation of numbers with
small magnitude. To ensure that numbers with small magnitude are equally representable,
1023 is subtracted from the characteristic, so the range of the exponent is actually from
−1023 to 1024.

To save storage and provide a unique representation for each floating-point number, a
normalization is imposed. Using this system gives a floating-point number of the form

(−1)s2c−1023(1+ f).

Illustration Consider the machine number

0 10000000011 10111001000100.

The leftmost bit is s = 0, which indicates that the number is positive. The next 11 bits,
10000000011, give the characteristic and are equivalent to the decimal number

c = 1 · 210 + 0 · 29 + · · · + 0 · 22 + 1 · 21 + 1 · 20 = 1024+ 2+ 1 = 1027.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight
adequate-مناسب

dr hussien
Highlight

1.2 Round-off Errors and Computer Arithmetic 19

The exponential part of the number is, therefore, 21027−1023 = 24. The final 52 bits specify
that the mantissa is

f = 1 ·
(

1

2

)1

+ 1 ·
(

1

2

)3

+ 1 ·
(

1

2

)4

+ 1 ·
(

1

2

)5

+ 1 ·
(

1

2

)8

+ 1 ·
(

1

2

)12

.

As a consequence, this machine number precisely represents the decimal number

(−1)s2c−1023(1+ f) = (−1)0 · 21027−1023

(
1+

(
1

2
+ 1

8
+ 1

16
+ 1

32
+ 1

256
+ 1

4096

))

= 27.56640625.

However, the next smallest machine number is

0 10000000011 10111001000011,

and the next largest machine number is

0 10000000011 1011100100010000000000000000000000000000000000000001.

This means that our original machine number represents not only 27.56640625, but also half
of the real numbers that are between 27.56640625 and the next smallest machine number,
as well as half the numbers between 27.56640625 and the next largest machine number. To
be precise, it represents any real number in the interval

[27.5664062499999982236431605997495353221893310546875,

27.5664062500000017763568394002504646778106689453125). �

The smallest normalized positive number that can be represented has s = 0, c = 1,
and f = 0 and is equivalent to

2−1022 · (1+ 0) ≈ 0.22251× 10−307,

and the largest has s = 0, c = 2046, and f = 1− 2−52 and is equivalent to

21023 · (2− 2−52) ≈ 0.17977× 10309.

Numbers occurring in calculations that have a magnitude less than

2−1022 · (1+ 0)

result in underflow and are generally set to zero. Numbers greater than

21023 · (2− 2−52)

result in overflow and typically cause the computations to stop (unless the program has
been designed to detect this occurrence). Note that there are two representations for the
number zero; a positive 0 when s = 0, c = 0 and f = 0, and a negative 0 when s = 1,
c = 0 and f = 0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

20 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Decimal Machine Numbers

The use of binary digits tends to conceal the computational difficulties that occur when a
finite collection of machine numbers is used to represent all the real numbers. To examine
these problems, we will use more familiar decimal numbers instead of binary representation.
Specifically, we assume that machine numbers are represented in the normalized decimal
floating-point form

±0.d1d2 . . . dk × 10n, 1 ≤ d1 ≤ 9, and 0 ≤ di ≤ 9,

for each i = 2, . . . , k. Numbers of this form are called k-digit decimal machine numbers.
Any positive real number within the numerical range of the machine can be normalized

to the form

y = 0.d1d2 . . . dkdk+1dk+2 . . .× 10n.

The floating-point form of y, denoted f l(y), is obtained by terminating the mantissa ofThe error that results from
replacing a number with its
floating-point form is called
round-off error regardless of
whether the rounding or
chopping method is used.

y at k decimal digits. There are two common ways of performing this termination. One
method, called chopping, is to simply chop off the digits dk+1dk+2 This produces the
floating-point form

f l(y) = 0.d1d2 . . . dk × 10n.

The other method, called rounding, adds 5 × 10n−(k+1) to y and then chops the result to
obtain a number of the form

f l(y) = 0.δ1δ2 . . . δk × 10n.

For rounding, when dk+1 ≥ 5, we add 1 to dk to obtain f l(y); that is, we round up. When
dk+1 < 5, we simply chop off all but the first k digits; so we round down. If we round down,
then δi = di, for each i = 1, 2, . . . , k. However, if we round up, the digits (and even the
exponent) might change.

Example 1 Determine the five-digit (a) chopping and (b) rounding values of the irrational number π .

Solution The number π has an infinite decimal expansion of the form π = 3.14159265. . . .
Written in normalized decimal form, we have

π = 0.314159265 . . .× 101.

(a) The floating-point form of π using five-digit chopping is

f l(π) = 0.31415× 101 = 3.1415.

(b) The sixth digit of the decimal expansion of π is a 9, so the floating-point form of
π using five-digit rounding is

f l(π) = (0.31415+ 0.00001)× 101 = 3.1416.

The following definition describes two methods for measuring approximation errors.

The relative error is generally a
better measure of accuracy than
the absolute error because it takes
into consideration the size of the
number being approximated.

Definition 1.15 Suppose that p∗ is an approximation to p. The absolute error is |p− p∗|, and the relative

error is
|p− p∗|
|p| , provided that p �= 0.

Consider the absolute and relative errors in representing p by p∗ in the following
example.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

dr hussien
Highlight

1.2 Round-off Errors and Computer Arithmetic 21

Example 2 Determine the absolute and relative errors when approximating p by p∗ when

(a) p = 0.3000× 101 and p∗ = 0.3100× 101;

(b) p = 0.3000× 10−3 and p∗ = 0.3100× 10−3;

(c) p = 0.3000× 104 and p∗ = 0.3100× 104.

Solution

(a) For p = 0.3000 × 101 and p∗ = 0.3100 × 101 the absolute error is 0.1, and the
relative error is 0.3333× 10−1.

(b) For p = 0.3000× 10−3 and p∗ = 0.3100× 10−3 the absolute error is 0.1× 10−4,
and the relative error is 0.3333× 10−1.

(c) For p = 0.3000× 104 and p∗ = 0.3100× 104, the absolute error is 0.1× 103, and
the relative error is again 0.3333× 10−1.

This example shows that the same relative error, 0.3333× 10−1, occurs for widely varying
absolute errors. As a measure of accuracy, the absolute error can be misleading and the
relative error more meaningful, because the relative error takes into consideration the size
of the value.

We often cannot find an accurate
value for the true error in an
approximation. Instead we find a
bound for the error, which gives
us a “worst-case” error.

The following definition uses relative error to give a measure of significant digits of
accuracy for an approximation.

Definition 1.16 The number p∗ is said to approximate p to t significant digits (or figures) if t is the largest
nonnegative integer for which

|p− p∗|
|p| ≤ 5× 10−t .

Table 1.1 illustrates the continuous nature of significant digits by listing, for the various
values of p, the least upper bound of |p− p∗|, denoted max |p− p∗|, when p∗ agrees with p
to four significant digits.

The term significant digits is
often used to loosely describe the
number of decimal digits that
appear to be accurate. The
definition is more precise, and
provides a continuous concept.

Table 1.1
p 0.1 0.5 100 1000 5000 9990 10000

max |p− p∗| 0.00005 0.00025 0.05 0.5 2.5 4.995 5.

Returning to the machine representation of numbers, we see that the floating-point
representation f l(y) for the number y has the relative error∣∣∣∣y− f l(y)

y

∣∣∣∣ .

If k decimal digits and chopping are used for the machine representation of

y = 0.d1d2 . . . dkdk+1 . . .× 10n,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

22 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

then ∣∣∣∣y− f l(y)

y

∣∣∣∣ =
∣∣∣∣0.d1d2 . . . dkdk+1 . . .× 10n − 0.d1d2 . . . dk × 10n

0.d1d2 . . .× 10n

∣∣∣∣
=
∣∣∣∣0.dk+1dk+2 . . .× 10n−k

0.d1d2 . . .× 10n

∣∣∣∣ =
∣∣∣∣0.dk+1dk+2 . . .

0.d1d2 . . .

∣∣∣∣× 10−k .

Since d1 �= 0, the minimal value of the denominator is 0.1. The numerator is bounded above
by 1. As a consequence, ∣∣∣∣y− f l(y)

y

∣∣∣∣ ≤ 1

0.1
× 10−k = 10−k+1.

In a similar manner, a bound for the relative error when using k-digit rounding arithmetic
is 0.5× 10−k+1. (See Exercise 24.)

Note that the bounds for the relative error using k-digit arithmetic are independent of the
number being represented. This result is due to the manner in which the machine numbers
are distributed along the real line. Because of the exponential form of the characteristic,
the same number of decimal machine numbers is used to represent each of the intervals
[0.1, 1], [1, 10], and [10, 100]. In fact, within the limits of the machine, the number of
decimal machine numbers in [10n, 10n+1] is constant for all integers n.

Finite-Digit Arithmetic

In addition to inaccurate representation of numbers, the arithmetic performed in a computer
is not exact. The arithmetic involves manipulating binary digits by various shifting, or
logical, operations. Since the actual mechanics of these operations are not pertinent to this
presentation, we shall devise our own approximation to computer arithmetic. Although our
arithmetic will not give the exact picture, it suffices to explain the problems that occur. (For
an explanation of the manipulations actually involved, the reader is urged to consult more
technically oriented computer science texts, such as [Ma], Computer System Architecture.)

Assume that the floating-point representations f l(x) and f l(y) are given for the real
numbers x and y and that the symbols⊕,�,⊗, ..� represent machine addition, subtraction,
multiplication, and division operations, respectively. We will assume a finite-digit arithmetic
given by

x ⊕ y = f l(f l(x)+ f l(y)), x ⊗ y = f l(f l(x)× f l(y)),

x � y = f l(f l(x)− f l(y)), x ..� y = f l(f l(x)÷ f l(y)).

This arithmetic corresponds to performing exact arithmetic on the floating-point repre-
sentations of x and y and then converting the exact result to its finite-digit floating-point
representation.

Rounding arithmetic is easily implemented in Maple. For example, the command

Digits := 5

causes all arithmetic to be rounded to 5 digits. To ensure that Maple uses approximate rather
than exact arithmetic we use the evalf. For example, if x = π and y = √2 then

evalf (x); evalf (y)

produces 3.1416 and 1.4142, respectively. Then f l(f l(x) + f l(y)) is performed using
5-digit rounding arithmetic with

evalf (evalf (x)+ evalf (y))

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

dr hussien
Highlight

1.2 Round-off Errors and Computer Arithmetic 23

which gives 4.5558. Implementing finite-digit chopping arithmetic is more difficult and
requires a sequence of steps or a procedure. Exercise 27 explores this problem.

Example 3 Suppose that x = 5
7 and y = 1

3 . Use five-digit chopping for calculating x + y, x − y, x × y,
and x ÷ y.

Solution Note that

x = 5

7
= 0.714285 and y = 1

3
= 0.3

implies that the five-digit chopping values of x and y are

f l(x) = 0.71428× 100 and f l(y) = 0.33333× 100.

Thus

x ⊕ y = f l(f l(x)+ f l(y)) = f l
(
0.71428× 100 + 0.33333× 100

)
= f l

(
1.04761× 100

) = 0.10476× 101.

The true value is x + y = 5
7 + 1

3 = 22
21 , so we have

Absolute Error =
∣∣∣∣22

21
− 0.10476× 101

∣∣∣∣ = 0.190× 10−4

and

Relative Error =
∣∣∣∣0.190× 10−4

22/21

∣∣∣∣ = 0.182× 10−4.

Table 1.2 lists the values of this and the other calculations.

Table 1.2
Operation Result Actual value Absolute error Relative error

x ⊕ y 0.10476× 101 22/21 0.190× 10−4 0.182× 10−4

x � y 0.38095× 100 8/21 0.238× 10−5 0.625× 10−5

x ⊗ y 0.23809× 100 5/21 0.524× 10−5 0.220× 10−4

x ..� y 0.21428× 101 15/7 0.571× 10−4 0.267× 10−4

The maximum relative error for the operations in Example 3 is 0.267 × 10−4, so the
arithmetic produces satisfactory five-digit results. This is not the case in the following
example.

Example 4 Suppose that in addition to x = 5
7 and y = 1

3 we have

u = 0.714251, v = 98765.9, and w = 0.111111× 10−4,

so that

f l(u) = 0.71425× 100, f l(v) = 0.98765× 105, and f l(w) = 0.11111× 10−4.

Determine the five-digit chopping values of x � u, (x � u) ..� w, (x � u)⊗ v, and u⊕ v.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Solution These numbers were chosen to illustrate some problems that can arise with finite-
digit arithmetic. Because x and u are nearly the same, their difference is small. The absolute
error for x � u is

|(x − u)− (x � u)| = |(x − u)− (f l(f l(x)− f l(u)))|

=
∣∣∣∣
(

5

7
− 0.714251

)
− (f l

(
0.71428× 100 − 0.71425× 100

))∣∣∣∣
= ∣∣0.347143× 10−4 − f l

(
0.00003× 100

)∣∣ = 0.47143× 10−5.

This approximation has a small absolute error, but a large relative error∣∣∣∣ 0.47143× 10−5

0.347143× 10−4

∣∣∣∣ ≤ 0.136.

The subsequent division by the small number w or multiplication by the large number v
magnifies the absolute error without modifying the relative error. The addition of the large
and small numbers u and v produces large absolute error but not large relative error. These
calculations are shown in Table 1.3.

Table 1.3
Operation Result Actual value Absolute error Relative error

x � u 0.30000× 10−4 0.34714× 10−4 0.471× 10−5 0.136
(x � u) ..� w 0.27000× 101 0.31242× 101 0.424 0.136
(x � u)⊗ v 0.29629× 101 0.34285× 101 0.465 0.136
u⊕ v 0.98765× 105 0.98766× 105 0.161× 101 0.163× 10−4

One of the most common error-producing calculations involves the cancelation of
significant digits due to the subtraction of nearly equal numbers. Suppose two nearly equal
numbers x and y, with x > y, have the k-digit representations

f l(x) = 0.d1d2 . . . dpαp+1αp+2 . . . αk × 10n,

and

f l(y) = 0.d1d2 . . . dpβp+1βp+2 . . . βk × 10n.

The floating-point form of x − y is

f l(f l(x)− f l(y)) = 0.σp+1σp+2 . . . σk × 10n−p,

where

0.σp+1σp+2 . . . σk = 0.αp+1αp+2 . . . αk − 0.βp+1βp+2 . . . βk .

The floating-point number used to represent x − y has at most k − p digits of significance.
However, in most calculation devices, x − y will be assigned k digits, with the last p being
either zero or randomly assigned. Any further calculations involving x−y retain the problem
of having only k−p digits of significance, since a chain of calculations is no more accurate
than its weakest portion.

If a finite-digit representation or calculation introduces an error, further enlargement of
the error occurs when dividing by a number with small magnitude (or, equivalently, when

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.2 Round-off Errors and Computer Arithmetic 25

multiplying by a number with large magnitude). Suppose, for example, that the number z
has the finite-digit approximation z + δ, where the error δ is introduced by representation
or by previous calculation. Now divide by ε = 10−n, where n > 0. Then

z

ε
≈ f l

(
f l(z)

f l(ε)

)
= (z + δ)× 10n.

The absolute error in this approximation, |δ| × 10n, is the original absolute error, |δ|, mul-
tiplied by the factor 10n.

Example 5 Let p = 0.54617 and q = 0.54601. Use four-digit arithmetic to approximate p − q and
determine the absolute and relative errors using (a) rounding and (b) chopping.

Solution The exact value of r = p− q is r = 0.00016.

(a) Suppose the subtraction is performed using four-digit rounding arithmetic. Round-
ing p and q to four digits gives p∗ = 0.5462 and q∗ = 0.5460, respectively, and
r∗ = p∗ − q∗ = 0.0002 is the four-digit approximation to r. Since

|r − r∗|
|r| = |0.00016− 0.0002|

|0.00016| = 0.25,

the result has only one significant digit, whereas p∗ and q∗ were accurate to four
and five significant digits, respectively.

(b) If chopping is used to obtain the four digits, the four-digit approximations to p, q,
and r are p∗ = 0.5461, q∗ = 0.5460, and r∗ = p∗ − q∗ = 0.0001. This gives

|r − r∗|
|r| = |0.00016− 0.0001|

|0.00016| = 0.375,

which also results in only one significant digit of accuracy.

The loss of accuracy due to round-off error can often be avoided by a reformulation of
the calculations, as illustrated in the next example.

Illustration The quadratic formula states that the roots of ax2 + bx + c = 0, when a �= 0, are

x1 = −b+√b2 − 4ac

2a
and x2 = −b−√b2 − 4ac

2a
. (1.1)

Consider this formula applied to the equation x2 + 62.10x + 1 = 0, whose roots are

The roots x1 and x2 of a general
quadratic equation are related to
the coefficients by the fact that

x1 + x2 = − b

a

and

x1x2 = c

a
.

This is a special case of Vièta’s
Formulas for the coefficients of
polynomials.

approximately

x1 = −0.01610723 and x2 = −62.08390.

We will again use four-digit rounding arithmetic in the calculations to determine the root. In
this equation, b2 is much larger than 4ac, so the numerator in the calculation for x1 involves
the subtraction of nearly equal numbers. Because√

b2 − 4ac =
√
(62.10)2 − (4.000)(1.000)(1.000)

= √3856.− 4.000 = √3852. = 62.06,

we have

f l(x1) = −62.10+ 62.06

2.000
= −0.04000

2.000
= −0.02000,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

a poor approximation to x1 = −0.01611, with the large relative error

| − 0.01611+ 0.02000|
| − 0.01611| ≈ 2.4× 10−1.

On the other hand, the calculation for x2 involves the addition of the nearly equal numbers
−b and −√b2 − 4ac. This presents no problem since

f l(x2) = −62.10− 62.06

2.000
= −124.2

2.000
= −62.10

has the small relative error

| − 62.08+ 62.10|
| − 62.08| ≈ 3.2× 10−4.

To obtain a more accurate four-digit rounding approximation for x1, we change the form of
the quadratic formula by rationalizing the numerator:

x1 = −b+√b2 − 4ac

2a

(
−b−√b2 − 4ac

−b−√b2 − 4ac

)
= b2 − (b2 − 4ac)

2a(−b−√b2 − 4ac)
,

which simplifies to an alternate quadratic formula

x1 = −2c

b+√b2 − 4ac
. (1.2)

Using (1.2) gives

f l(x1) = −2.000

62.10+ 62.06
= −2.000

124.2
= −0.01610,

which has the small relative error 6.2× 10−4.

The rationalization technique can also be applied to give the following alternative quadratic
formula for x2:

x2 = −2c

b−√b2 − 4ac
. (1.3)

This is the form to use if b is a negative number. In the Illustration, however, the mistaken use
of this formula for x2 would result in not only the subtraction of nearly equal numbers, but
also the division by the small result of this subtraction. The inaccuracy that this combination
produces,

f l(x2) = −2c

b−√b2 − 4ac
= −2.000

62.10− 62.06
= −2.000

0.04000
= −50.00,

has the large relative error 1.9× 10−1. �

• The lesson: Think before you compute!

Nested Arithmetic

Accuracy loss due to round-off error can also be reduced by rearranging calculations, as
shown in the next example.

Example 6 Evaluate f (x) = x3 − 6.1x2 + 3.2x + 1.5 at x = 4.71 using three-digit arithmetic.

Solution Table 1.4 gives the intermediate results in the calculations.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.2 Round-off Errors and Computer Arithmetic 27

Table 1.4
x x2 x3 6.1x2 3.2x

Exact 4.71 22.1841 104.487111 135.32301 15.072
Three-digit (chopping) 4.71 22.1 104. 134. 15.0
Three-digit (rounding) 4.71 22.2 105. 135. 15.1

To illustrate the calculations, let us look at those involved with finding x3 using three-
digit rounding arithmetic. First we find

x2 = 4.712 = 22.1841 which rounds to 22.2.

Then we use this value of x2 to find

x3 = x2 · x = 22.2 · 4.71 = 104.562 which rounds to 105.

Also,

6.1x2 = 6.1(22.2) = 135.42 which rounds to 135,

and

3.2x = 3.2(4.71) = 15.072 which rounds to 15.1.

The exact result of the evaluation is

Exact: f (4.71) = 104.487111− 135.32301+ 15.072+ 1.5 = −14.263899.

Using finite-digit arithmetic, the way in which we add the results can effect the final result.
Suppose that we add left to right. Then for chopping arithmetic we have

Three-digit (chopping): f (4.71) = ((104.− 134.)+ 15.0)+ 1.5 = −13.5,

and for rounding arithmetic we have

Three-digit (rounding): f (4.71) = ((105.− 135.)+ 15.1)+ 1.5 = −13.4.

(You should carefully verify these results to be sure that your notion of finite-digit arithmetic
is correct.) Note that the three-digit chopping values simply retain the leading three digits,
with no rounding involved, and differ significantly from the three-digit rounding values.

The relative errors for the three-digit methods are

Chopping:

∣∣∣∣−14.263899+ 13.5

−14.263899

∣∣∣∣ ≈ 0.05, and Rounding:

∣∣∣∣−14.263899+ 13.4

−14.263899

∣∣∣∣ ≈ 0.06.

Illustration As an alternative approach, the polynomial f (x) in Example 6 can be written in a nested
manner as

Remember that chopping (or
rounding) is performed after each
calculation.

f (x) = x3 − 6.1x2 + 3.2x + 1.5 = ((x − 6.1)x + 3.2)x + 1.5.

Using three-digit chopping arithmetic now produces

f (4.71) = ((4.71− 6.1)4.71+ 3.2)4.71+ 1.5 = ((−1.39)(4.71)+ 3.2)4.71+ 1.5

= (−6.54+ 3.2)4.71+ 1.5 = (−3.34)4.71+ 1.5 = −15.7+ 1.5 = −14.2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

In a similar manner, we now obtain a three-digit rounding answer of−14.3. The new relative
errors are

Three-digit (chopping):

∣∣∣∣−14.263899+ 14.2

−14.263899

∣∣∣∣ ≈ 0.0045;

Three-digit (rounding):

∣∣∣∣−14.263899+ 14.3

−14.263899

∣∣∣∣ ≈ 0.0025.

Nesting has reduced the relative error for the chopping approximation to less than 10%
of that obtained initially. For the rounding approximation the improvement has been even
more dramatic; the error in this case has been reduced by more than 95%. �

Polynomials should always be expressed in nested form before performing an evalu-
ation, because this form minimizes the number of arithmetic calculations. The decreased
error in the Illustration is due to the reduction in computations from four multiplications
and three additions to two multiplications and three additions. One way to reduce round-off
error is to reduce the number of computations.

E X E R C I S E S E T 1.2

1. Compute the absolute error and relative error in approximations of p by p∗.
a. p = π , p∗ = 22/7 b. p = π , p∗ = 3.1416
c. p = e, p∗ = 2.718 d. p = √2, p∗ = 1.414
e. p = e10, p∗ = 22000 f. p = 10π , p∗ = 1400
g. p = 8!, p∗ = 39900 h. p = 9!, p∗ = √18π(9/e)9

2. Find the largest interval in which p∗ must lie to approximate p with relative error at most 10−4 for
each value of p.

a. π b. e
c.
√

2 d. 3
√

7

3. Suppose p∗ must approximate p with relative error at most 10−3. Find the largest interval in which
p∗ must lie for each value of p.

a. 150 b. 900
c. 1500 d. 90

4. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii)
using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).

a.
4

5
+ 1

3
b.

4

5
· 1

3

c.
(

1

3
− 3

11

)
+ 3

20
d.

(
1

3
+ 3

11

)
− 3

20
5. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error

and relative error with the exact value determined to at least five digits.

a. 133+ 0.921 b. 133− 0.499
c. (121− 0.327)− 119 d. (121− 119)− 0.327

e.
13
14 − 6

7

2e− 5.4
f. −10π + 6e− 3

62

g.
(

2

9

)
·
(

9

7

)
h.

π − 22
7

1
17

6. Repeat Exercise 5 using four-digit rounding arithmetic.

7. Repeat Exercise 5 using three-digit chopping arithmetic.

8. Repeat Exercise 5 using four-digit chopping arithmetic.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.2 Round-off Errors and Computer Arithmetic 29

9. The first three nonzero terms of the Maclaurin series for the arctangent function are x − (1/3)x3 +
(1/5)x5. Compute the absolute error and relative error in the following approximations of π using the
polynomial in place of the arctangent:

a. 4

[
arctan

(
1

2

)
+ arctan

(
1

3

)]

b. 16 arctan

(
1

5

)
− 4 arctan

(
1

239

)
10. The number e can be defined by e =∑∞n=0(1/n!), where n! = n(n− 1) · · · 2 · 1 for n �= 0 and 0! = 1.

Compute the absolute error and relative error in the following approximations of e:

a.
5∑

n=0

1

n! b.
10∑

n=0

1

n!
11. Let

f (x) = x cos x − sin x

x − sin x
.

a. Find limx→0 f (x).

b. Use four-digit rounding arithmetic to evaluate f (0.1).

c. Replace each trigonometric function with its third Maclaurin polynomial, and repeat part (b).

d. The actual value is f (0.1) = −1.99899998. Find the relative error for the values obtained in
parts (b) and (c).

12. Let

f (x) = ex − e−x

x
.

a. Find limx→0(ex − e−x)/x.

b. Use three-digit rounding arithmetic to evaluate f (0.1).

c. Replace each exponential function with its third Maclaurin polynomial, and repeat part (b).

d. The actual value is f (0.1) = 2.003335000. Find the relative error for the values obtained in
parts (b) and (c).

13. Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate
approximations to the roots of the following quadratic equations. Compute the absolute errors and
relative errors.

a.
1

3
x2 − 123

4
x + 1

6
= 0

b.
1

3
x2 + 123

4
x − 1

6
= 0

c. 1.002x2 − 11.01x + 0.01265 = 0

d. 1.002x2 + 11.01x + 0.01265 = 0

14. Repeat Exercise 13 using four-digit chopping arithmetic.

15. Use the 64-bit long real format to find the decimal equivalent of the following floating-point machine
numbers.

a. 0 10000001010 1001001100

b. 1 10000001010 1001001100

c. 0 01111111111 0101001100

d. 0 01111111111 010100110001

16. Find the next largest and smallest machine numbers in decimal form for the numbers given in Exer-
cise 15.

17. Suppose two points (x0, y0) and (x1, y1) are on a straight line with y1 �= y0. Two formulas are available
to find the x-intercept of the line:

x = x0y1 − x1y0

y1 − y0
and x = x0 − (x1 − x0)y0

y1 − y0
.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

a. Show that both formulas are algebraically correct.

b. Use the data (x0, y0) = (1.31, 3.24) and (x1, y1) = (1.93, 4.76) and three-digit rounding arith-
metic to compute the x-intercept both ways. Which method is better and why?

18. The Taylor polynomial of degree n for f (x) = ex is
∑n

i=0(x
i/i!). Use the Taylor polynomial of degree

nine and three-digit chopping arithmetic to find an approximation to e−5 by each of the following
methods.

a. e−5 ≈
9∑

i=0

(−5)i

i! =
9∑

i=0

(−1)i5i

i!
b. e−5 = 1

e5
≈ 1∑9

i=0
5i

i!
.

c. An approximate value of e−5 correct to three digits is 6.74 × 10−3. Which formula, (a) or (b),
gives the most accuracy, and why?

19. The two-by-two linear system

ax + by = e,

cx + dy = f ,

where a, b, c, d, e, f are given, can be solved for x and y as follows:

set m = c

a
, provided a �= 0;

d1 = d − mb;

f1 = f − me;

y = f1

d1
;

x = (e− by)

a
.

Solve the following linear systems using four-digit rounding arithmetic.

a. 1.130x − 6.990y = 14.20
1.013x − 6.099y = 14.22

b. 8.110x + 12.20y = −0.1370
−18.11x + 112.2y = −0.1376

20. Repeat Exercise 19 using four-digit chopping arithmetic.

21. a. Show that the polynomial nesting technique described in Example 6 can also be applied to the
evaluation of

f (x) = 1.01e4x − 4.62e3x − 3.11e2x + 12.2ex − 1.99.

b. Use three-digit rounding arithmetic, the assumption that e1.53 = 4.62, and the fact that enx = (ex)n

to evaluate f (1.53) as given in part (a).

c. Redo the calculation in part (b) by first nesting the calculations.

d. Compare the approximations in parts (b) and (c) to the true three-digit result f (1.53) = −7.61.

22. A rectangular parallelepiped has sides of length 3 cm, 4 cm, and 5 cm, measured to the nearest
centimeter. What are the best upper and lower bounds for the volume of this parallelepiped? What
are the best upper and lower bounds for the surface area?

23. Let Pn(x) be the Maclaurin polynomial of degree n for the arctangent function. Use Maple carrying
75 decimal digits to find the value of n required to approximate π to within 10−25 using the following
formulas.

a. 4

[
Pn

(
1

2

)
+ Pn

(
1

3

)]
b. 16Pn

(
1

5

)
− 4Pn

(
1

239

)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.2 Round-off Errors and Computer Arithmetic 31

24. Suppose that f l(y) is a k-digit rounding approximation to y. Show that∣∣∣∣y− f l(y)

y

∣∣∣∣ ≤ 0.5× 10−k+1.

[Hint: If dk+1 < 5, then f l(y) = 0.d1d2 . . . dk × 10n. If dk+1 ≥ 5, then f l(y) = 0.d1d2 . . . dk × 10n +
10n−k .]

25. The binomial coefficient (
m

k

)
= m!

k! (m− k)!
describes the number of ways of choosing a subset of k objects from a set of m elements.

a. Suppose decimal machine numbers are of the form

±0.d1d2d3d4 × 10n, with 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, if i = 2, 3, 4 and |n| ≤ 15.

What is the largest value of m for which the binomial coefficient
(m

k

)
can be computed for all k

by the definition without causing overflow?

b. Show that
(m

k

)
can also be computed by(

m

k

)
=
(m

k

)(m− 1

k − 1

)
· · ·
(

m− k + 1

1

)
.

c. What is the largest value of m for which the binomial coefficient
(m

3

)
can be computed by the

formula in part (b) without causing overflow?

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of possible
5-card hands in a 52-card deck. Compute the actual and relative errors.

26. Let f ∈ C[a, b] be a function whose derivative exists on (a, b). Suppose f is to be evaluated at x0

in (a, b), but instead of computing the actual value f (x0), the approximate value, f̃ (x0), is the actual
value of f at x0 + ε, that is, f̃ (x0) = f (x0 + ε).
a. Use the Mean Value Theorem 1.8 to estimate the absolute error |f (x0)− f̃ (x0)| and the relative

error |f (x0)− f̃ (x0)|/|f (x0)|, assuming f (x0) �= 0.

b. If ε = 5× 10−6 and x0 = 1, find bounds for the absolute and relative errors for

i. f (x) = ex

ii. f (x) = sin x

c. Repeat part (b) with ε = (5× 10−6)x0 and x0 = 10.

27. The following Maple procedure chops a floating-point number x to t digits. (Use the Shift and Enter
keys at the end of each line when creating the procedure.)

chop := proc(x, t);
local e, x2;
if x = 0 then 0
else

e := ceil (evalf (log10(abs(x))));
x2 := evalf (trunc (x · 10(t−e)) · 10(e−t));

end if
end;

Verify the procedure works for the following values.

a. x = 124.031, t = 5 b. x = 124.036, t = 5
c. x = −124.031, t = 5 d. x = −124.036, t = 5
e. x = 0.00653, t = 2 f. x = 0.00656, t = 2
g. x = −0.00653, t = 2 h. x = −0.00656, t = 2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dr hussien
Highlight

32 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

28. The opening example to this chapter described a physical experiment involving the temperature of a
gas under pressure. In this application, we were given P = 1.00 atm, V = 0.100 m3, N = 0.00420 mol,
and R = 0.08206. Solving for T in the ideal gas law gives

T = PV

NR
= (1.00)(0.100)

(0.00420)(0.08206)
= 290.15 K = 17◦C.

In the laboratory, it was found that T was 15◦C under these conditions, and when the pressure was
doubled and the volume halved, T was 19◦C. Assume that the data are rounded values accurate to the
places given, and show that both laboratory figures are within the bounds of accuracy for the ideal
gas law.

1.3 Algorithms and Convergence

Throughout the text we will be examining approximation procedures, called algorithms,
involving sequences of calculations. An algorithm is a procedure that describes, in an
unambiguous manner, a finite sequence of steps to be performed in a specified order. The
object of the algorithm is to implement a procedure to solve a problem or approximate a
solution to the problem.

The use of an algorithm is as old
as formal mathematics, but the
name derives from the Arabic
mathematician Muhammad
ibn-Mŝâ al-Khwarârizmî
(c. 780–850). The Latin
translation of his works begins
with the words “Dixit Algorismi”
meaning “al-Khwarârizmî says.”

We use a pseudocode to describe the algorithms. This pseudocode specifies the form
of the input to be supplied and the form of the desired output. Not all numerical procedures
give satisfactory output for arbitrarily chosen input. As a consequence, a stopping technique
independent of the numerical technique is incorporated into each algorithm to avoid infinite
loops.

Two punctuation symbols are used in the algorithms:

• a period (.) indicates the termination of a step,

• a semicolon (;) separates tasks within a step.

Indentation is used to indicate that groups of statements are to be treated as a single entity.
Looping techniques in the algorithms are either counter-controlled, such as,

For i = 1, 2, . . . , n

Set xi = a+ i · h
or condition-controlled, such as

While i < N do Steps 3–6.

To allow for conditional execution, we use the standard

If . . . then or If . . . then

else

constructions.
The steps in the algorithms follow the rules of structured program construction. They

have been arranged so that there should be minimal difficulty translating pseudocode into
any programming language suitable for scientific applications.

The algorithms are liberally laced with comments. These are written in italics and
contained within parentheses to distinguish them from the algorithmic statements.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 Algorithms and Convergence 33

Illustration The following algorithm computes x1 + x2 + · · · + xN =
N∑

i=1

xi, given N and the numbers

x1, x2, . . . , xN .

INPUT N , x1, x2, . . . , xn.

OUTPUT SUM =∑N
i=1 xi.

Step 1 Set SUM = 0. (Initialize accumulator.)

Step 2 For i = 1, 2, . . . , N do
set SUM = SUM+ xi. (Add the next term.)

Step 3 OUTPUT (SUM);
STOP. �

Example 1 The N th Taylor polynomial for f (x) = ln x expanded about x0 = 1 is

PN (x) =
N∑

i=1

(−1)i+1

i
(x − 1)i,

and the value of ln 1.5 to eight decimal places is 0.40546511. Construct an algorithm to
determine the minimal value of N required for

| ln 1.5− PN (1.5)| < 10−5,

without using the Taylor polynomial remainder term.

Solution From calculus we know that if
∑∞

n=1 an is an alternating series with limit A whose
terms decrease in magnitude, then A and the N th partial sum AN =∑N

n=1 an differ by less
than the magnitude of the (N + 1)st term; that is,

|A− AN | ≤ |aN+1|.
The following algorithm uses this bound.

INPUT value x, tolerance TOL, maximum number of iterations M.
OUTPUT degree N of the polynomial or a message of failure.
Step 1 Set N = 1;

y = x − 1;
SUM = 0;
POWER = y;
TERM = y;
SIGN = −1. (Used to implement alternation of signs.)

Step 2 While N ≤ M do Steps 3–5.

Step 3 Set SIGN = −SIGN; (Alternate the signs.)
SUM = SUM+ SIGN · TERM; (Accumulate the terms.)
POWER = POWER · y;
TERM = POWER/(N + 1). (Calculate the next term.)

Step 4 If |TERM| < TOL then (Test for accuracy.)
OUTPUT (N);
STOP. (The procedure was successful.)

Step 5 Set N = N + 1. (Prepare for the next iteration.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Step 6 OUTPUT (‘Method Failed’); (The procedure was unsuccessful.)
STOP.

The input for our problem is x = 1.5, TOL = 10−5, and perhaps M = 15. This choice
of M provides an upper bound for the number of calculations we are willing to perform,
recognizing that the algorithm is likely to fail if this bound is exceeded. Whether the output
is a value for N or the failure message depends on the precision of the computational
device.

Characterizing Algorithms

We will be considering a variety of approximation problems throughout the text, and in each
case we need to determine approximation methods that produce dependably accurate results
for a wide class of problems. Because of the differing ways in which the approximation
methods are derived, we need a variety of conditions to categorize their accuracy. Not all
of these conditions will be appropriate for any particular problem.

One criterion we will impose on an algorithm whenever possible is that small changes
in the initial data produce correspondingly small changes in the final results. An algorithm
that satisfies this property is called stable; otherwise it is unstable. Some algorithms are
stable only for certain choices of initial data, and are called conditionally stable. We will
characterize the stability properties of algorithms whenever possible.

The word stable has the same
root as the words stand and
standard. In mathematics, the
term stable applied to a problem
indicates that a small change in
initial data or conditions does not
result in a dramatic change in the
solution to the problem.

To further consider the subject of round-off error growth and its connection to algorithm
stability, suppose an error with magnitude E0 > 0 is introduced at some stage in the
calculations and that the magnitude of the error after n subsequent operations is denoted by
En. The two cases that arise most often in practice are defined as follows.

Definition 1.17 Suppose that E0 > 0 denotes an error introduced at some stage in the calculations and En

represents the magnitude of the error after n subsequent operations.

• If En ≈ CnE0, where C is a constant independent of n, then the growth of error is
said to be linear.

• If En ≈ CnE0, for some C > 1, then the growth of error is called exponential.

Linear growth of error is usually unavoidable, and when C and E0 are small the results
are generally acceptable. Exponential growth of error should be avoided, because the term Cn

becomes large for even relatively small values of n. This leads to unacceptable inaccuracies,
regardless of the size of E0. As a consequence, an algorithm that exhibits linear growth of
error is stable, whereas an algorithm exhibiting exponential error growth is unstable. (See
Figure 1.12.)

Illustration For any constants c1 and c2,

pn = c1

(
1

3

)n

+ c23n,

is a solution to the recursive equation

pn = 10

3
pn−1 − pn−2, for n = 2, 3,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 Algorithms and Convergence 35

Figure 1.12
En

E0

n

Unstable exponential error growth
En � CnE0

Stable linear error growth
En � CnE0

1 2 3 4 5 6 7 8

This can be seen by noting that

10

3
pn−1 − pn−2 = 10

3

[
c1

(
1

3

)n−1

+ c23n−1

]
−
[

c1

(
1

3

)n−2

+ c23n−2

]

= c1

(
1

3

)n−2 [10

3
· 1

3
− 1

]
+ c23n−2

[
10

3
· 3− 1

]

= c1

(
1

3

)n−2 (1

9

)
+ c23n−2(9) = c1

(
1

3

)n

+ c23n = pn.

Suppose that we are given p0 = 1 and p1 = 1
3 . This determines unique values for the

constants as c1 = 1 and c2 = 0. So pn =
(

1
3

)n
for all n.

If five-digit rounding arithmetic is used to compute the terms of the sequence given by
this equation, then p̂0 = 1.0000 and p̂1 = 0.33333, which requires modifying the constants
to ĉ1 = 1.0000 and ĉ2 = −0.12500× 10−5. The sequence {p̂n}∞n=0 generated is then given
by

p̂n = 1.0000

(
1

3

)n

− 0.12500× 10−5(3)n,

which has round-off error,

pn − p̂n = 0.12500× 10−5(3n),

This procedure is unstable because the error grows exponentially with n, which is reflected
in the extreme inaccuracies after the first few terms, as shown in Table 1.5 on page 36.

Now consider this recursive equation:

pn = 2pn−1 − pn−2, for n = 2, 3,

It has the solution pn = c1 + c2n for any constants c1 and c2, because

2pn−1 − pn−2 = 2(c1 + c2(n− 1))− (c1 + c2(n− 2))

= c1(2− 1)+ c2(2n− 2− n+ 2) = c1 + c2n = pn.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

36 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Table 1.5
n Computed p̂n Correct pn Relative Error

0 0.10000× 101 0.10000× 101

1 0.33333× 100 0.33333× 100

2 0.11110× 100 0.11111× 100 9× 10−5

3 0.37000× 10−1 0.37037× 10−1 1× 10−3

4 0.12230× 10−1 0.12346× 10−1 9× 10−3

5 0.37660× 10−2 0.41152× 10−2 8× 10−2

6 0.32300× 10−3 0.13717× 10−2 8× 10−1

7 −0.26893× 10−2 0.45725× 10−3 7× 100

8 −0.92872× 10−2 0.15242× 10−3 6× 101

If we are given p0 = 1 and p1 = 1
3 , then constants in this equation are uniquely determined

to be c1 = 1 and c2 = − 2
3 . This implies that pn = 1− 2

3 n.

If five-digit rounding arithmetic is used to compute the terms of the sequence given by this
equation, then p̂0 = 1.0000 and p̂1 = 0.33333. As a consequence, the five-digit rounding
constants are ĉ1 = 1.0000 and ĉ2 = −0.66667. Thus

p̂n = 1.0000− 0.66667n,

which has round-off error

pn − p̂n =
(

0.66667− 2

3

)
n.

This procedure is stable because the error grows grows linearly with n, which is reflected
in the approximations shown in Table 1.6. �

Table 1.6
n Computed p̂n Correct pn Relative Error

0 0.10000× 101 0.10000× 101

1 0.33333× 100 0.33333× 100

2 −0.33330× 100 −0.33333× 100 9× 10−5

3 −0.10000× 101 −0.10000× 101 0
4 −0.16667× 101 −0.16667× 101 0
5 −0.23334× 101 −0.23333× 101 4× 10−5

6 −0.30000× 101 −0.30000× 101 0
7 −0.36667× 101 −0.36667× 101 0
8 −0.43334× 101 −0.43333× 101 2× 10−5

The effects of round-off error can be reduced by using high-order-digit arithmetic such
as the double- or multiple-precision option available on most computers. Disadvantages in
using double-precision arithmetic are that it takes more computation time and the growth
of round-off error is not entirely eliminated.

One approach to estimating round-off error is to use interval arithmetic (that is, to
retain the largest and smallest possible values at each step), so that, in the end, we obtain

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 Algorithms and Convergence 37

an interval that contains the true value. Unfortunately, a very small interval may be needed
for reasonable implementation.

Rates of Convergence

Since iterative techniques involving sequences are often used, this section concludes with a
brief discussion of some terminology used to describe the rate at which convergence occurs.
In general, we would like the technique to converge as rapidly as possible. The following
definition is used to compare the convergence rates of sequences.

Definition 1.18 Suppose {βn}∞n=1 is a sequence known to converge to zero, and {αn}∞n=1 converges to a
number α. If a positive constant K exists with

|αn − α| ≤ K|βn|, for large n,

then we say that {αn}∞n=1 converges to α with rate, or order, of convergence O(βn). (This
expression is read “big oh of βn”.) It is indicated by writing αn = α + O(βn).

Although Definition 1.18 permits {αn}∞n=1 to be compared with an arbitrary sequence
{βn}∞n=1, in nearly every situation we use

βn = 1

np
,

for some number p > 0. We are generally interested in the largest value of p with αn =
α + O(1/np).

Example 2 Suppose that, for n ≥ 1,

αn = n+ 1

n2
and α̂n = n+ 3

n3
.

Both limn→∞ αn = 0 and limn→∞ α̂n = 0, but the sequence {α̂n} converges to this limit
much faster than the sequence {αn}. Using five-digit rounding arithmetic we have the values
shown in Table 1.7. Determine rates of convergence for these two sequences.

Table 1.7
n 1 2 3 4 5 6 7

αn 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327
α̂n 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155

There are numerous other ways
of describing the growth of
sequences and functions, some of
which require bounds both above
and below the sequence or
function under consideration.
Any good book that analyzes
algorithms, for example [CLRS],
will include this information.

Solution Define the sequences βn = 1/n and β̂n = 1/n2. Then

|αn − 0| = n+ 1

n2
≤ n+ n

n2
= 2 · 1

n
= 2βn

and

|α̂n − 0| = n+ 3

n3
≤ n+ 3n

n3
= 4 · 1

n2
= 4β̂n.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

38 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Hence the rate of convergence of {αn} to zero is similar to the convergence of {1/n} to zero,
whereas {α̂n} converges to zero at a rate similar to the more rapidly convergent sequence
{1/n2}. We express this by writing

αn = 0+ O

(
1

n

)
and α̂n = 0+ O

(
1

n2

)
.

We also use the O (big oh) notation to describe the rate at which functions converge.

Definition 1.19 Suppose that limh→0 G(h) = 0 and limh→0 F(h) = L. If a positive constant K exists with

|F(h)− L| ≤ K|G(h)|, for sufficiently small h,

then we write F(h) = L + O(G(h)).

The functions we use for comparison generally have the form G(h) = hp, where p > 0.
We are interested in the largest value of p for which F(h) = L + O(hp).

Example 3 Use the third Taylor polynomial about h = 0 to show that cos h+ 1

2
h2 = 1+ O(h4).

Solution In Example 3(b) of Section 1.1 we found that this polynomial is

cos h = 1− 1

2
h2 + 1

24
h4 cos ξ̃ (h),

for some number ξ̃ (h) between zero and h. This implies that

cos h+ 1

2
h2 = 1+ 1

24
h4 cos ξ̃ (h).

Hence ∣∣∣∣
(

cos h+ 1

2
h2

)
− 1

∣∣∣∣ =
∣∣∣∣ 1

24
cos ξ̃ (h)

∣∣∣∣ h4 ≤ 1

24
h4,

so as h→ 0, cos h + 1
2 h2 converges to its limit, 1, about as fast as h4 converges to 0. That

is,

cos h+ 1

2
h2 = 1+ O(h4).

Maple uses the O notation to indicate the form of the error in Taylor polynomials and
in other situations. For example, at the end of Section 1.1 the third Taylor polynomial for
f (x) = cos(x) was found by first defining

f := cos(x)

and then calling the third Taylor polynomial with

taylor(f , x = 0, 4)

Maple responds with

1− 1

2
x2 + O(x4)

to indicate that the lowest term in the truncation error is x4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 Algorithms and Convergence 39

E X E R C I S E S E T 1.3

1. a. Use three-digit chopping arithmetic to compute the sum
∑10

i=1(1/i
2) first by 1

1 + 1
4 + · · · + 1

100
and then by 1

100 + 1
81 + · · · + 1

1 . Which method is more accurate, and why?

b. Write an algorithm to sum the finite series
∑N

i=1 xi in reverse order.

2. The number e is defined by e = ∑∞
n=0(1/n!), where n! = n(n − 1) · · · 2 · 1 for n �= 0 and 0! = 1.

Use four-digit chopping arithmetic to compute the following approximations to e, and determine the
absolute and relative errors.

a. e ≈
5∑

n=0

1

n! b. e ≈
5∑

j=0

1

(5− j)!

c. e ≈
10∑

n=0

1

n! d. e ≈
10∑

j=0

1

(10− j)!
3. The Maclaurin series for the arctangent function converges for −1 < x ≤ 1 and is given by

arctan x = lim
n→∞Pn(x) = lim

n→∞

n∑
i=1

(−1)i+1 x2i−1

2i − 1
.

a. Use the fact that tan π/4 = 1 to determine the number of n terms of the series that need to be
summed to ensure that |4Pn(1)− π | < 10−3.

b. The C++ programming language requires the value of π to be within 10−10. How many terms
of the series would we need to sum to obtain this degree of accuracy?

4. Exercise 3 details a rather inefficient means of obtaining an approximation to π . The method can
be improved substantially by observing that π/4 = arctan 1

2 + arctan 1
3 and evaluating the series

for the arctangent at 1
2 and at 1

3 . Determine the number of terms that must be summed to ensure an
approximation to π to within 10−3.

5. Another formula for computing π can be deduced from the identity π/4 = 4 arctan 1
5 − arctan 1

239 .
Determine the number of terms that must be summed to ensure an approximation to π to within 10−3.

6. Find the rates of convergence of the following sequences as n→∞.

a. lim
n→∞ sin

1

n
= 0 b. lim

n→∞ sin
1

n2
= 0

c. lim
n→∞

(
sin

1

n

)2

= 0 d. lim
n→∞[ln(n+ 1)− ln(n)] = 0

7. Find the rates of convergence of the following functions as h→ 0.

a. lim
h→0

sin h

h
= 1 b. lim

h→0

1− cos h

h
= 0

c. lim
h→0

sin h− h cos h

h
= 0 d. lim

h→0

1− eh

h
= −1

8. a. How many multiplications and additions are required to determine a sum of the form

n∑
i=1

i∑
j=1

aibj?

b. Modify the sum in part (a) to an equivalent form that reduces the number of computations.

9. Let P(x) = anxn + an−1xn−1 + · · · + a1x + a0 be a polynomial, and let x0 be given. Construct an
algorithm to evaluate P(x0) using nested multiplication.

10. Equations (1.2) and (1.3) in Section 1.2 give alternative formulas for the roots x1 and x2 of
ax2 + bx + c = 0. Construct an algorithm with input a, b, c and output x1, x2 that computes
the roots x1 and x2 (which may be equal or be complex conjugates) using the best formula for each
root.

11. Construct an algorithm that has as input an integer n ≥ 1, numbers x0, x1, . . . , xn, and a number x and
that produces as output the product (x − x0)(x − x1) · · · (x − xn).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

40 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

12. Assume that

1− 2x

1− x + x2
+ 2x − 4x3

1− x2 + x4
+ 4x3 − 8x7

1− x4 + x8
+ · · · = 1+ 2x

1+ x + x2
,

for x < 1, and let x = 0.25. Write and execute an algorithm that determines the number of terms
needed on the left side of the equation so that the left side differs from the right side by less than 10−6.

13. a. Suppose that 0 < q < p and that αn = α + O
(
n−p

)
. Show that αn = α + O

(
n−q

)
.

b. Make a table listing 1/n, 1/n2, 1/n3, and 1/n4 for n = 5, 10, 100, and 1000, and discuss the
varying rates of convergence of these sequences as n becomes large.

14. a. Suppose that 0 < q < p and that F(h) = L + O (hp). Show that F(h) = L + O (hq).

b. Make a table listing h, h2, h3, and h4 for h = 0.5, 0.1, 0.01, and 0.001, and discuss the varying
rates of convergence of these powers of h as h approaches zero.

15. Suppose that as x approaches zero,

F1(x) = L1 + O(xα) and F2(x) = L2 + O(xβ).

Let c1 and c2 be nonzero constants, and define

F(x) = c1F1(x)+ c2F2(x) and

G(x) = F1(c1x)+ F2(c2x).

Show that if γ = minimum {α,β}, then as x approaches zero,

a. F(x) = c1L1 + c2L2 + O(xγ)

b. G(x) = L1 + L2 + O(xγ).

16. The sequence {Fn} described by F0 = 1, F1 = 1, and Fn+2 = Fn+Fn+1, if n ≥ 0, is called a Fibonacci
sequence. Its terms occur naturally in many botanical species, particularly those with petals or scales
arranged in the form of a logarithmic spiral. Consider the sequence {xn}, where xn = Fn+1/Fn.
Assuming that limn→∞ xn = x exists, show that x = (1 +√5)/2. This number is called the golden
ratio.

17. The Fibonacci sequence also satisfies the equation

Fn ≡ F̃n = 1√
5

[(
1+√5

2

)n

−
(

1−√5

2

)n]
.

a. Write a Maple procedure to calculate F100.

b. Use Maple with the default value of Digits followed by evalf to calculate F̃100.

c. Why is the result from part (a) more accurate than the result from part (b)?

d. Why is the result from part (b) obtained more rapidly than the result from part (a)?

e. What results when you use the command simplify instead of evalf to compute F̃100?

18. The harmonic series 1 + 1
2 + 1

3 + 1
4 + · · · diverges, but the sequence γn = 1 + 1

2 + · · · + 1
n − ln n

converges, since {γn} is a bounded, nonincreasing sequence. The limit γ = 0.5772156649 . . . of the
sequence {γn} is called Euler’s constant.

a. Use the default value of Digits in Maple to determine the value of n for γn to be within
10−2 of γ .

b. Use the default value of Digits in Maple to determine the value of n for γn to be within
10−3 of γ .

c. What happens if you use the default value of Digits in Maple to determine the value of n for γn

to be within 10−4 of γ ?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.4 Numerical Software 41

1.4 Numerical Software

Computer software packages for approximating the numerical solutions to problems are
available in many forms. On our web site for the book

http://www.math.ysu.edu/∼faires/Numerical-Analysis/Programs.html

we have provided programs written in C, FORTRAN, Maple, Mathematica, MATLAB,
and Pascal, as well as JAVA applets. These can be used to solve the problems given in the
examples and exercises, and will give satisfactory results for most problems that you may
need to solve. However, they are what we call special-purpose programs. We use this term
to distinguish these programs from those available in the standard mathematical subroutine
libraries. The programs in these packages will be called general purpose.

The programs in general-purpose software packages differ in their intent from the algo-
rithms and programs provided with this book. General-purpose software packages consider
ways to reduce errors due to machine rounding, underflow, and overflow. They also de-
scribe the range of input that will lead to results of a certain specified accuracy. These are
machine-dependent characteristics, so general-purpose software packages use parameters
that describe the floating-point characteristics of the machine being used for computations.

Illustration To illustrate some differences between programs included in a general-purpose package
and a program that we would provide for use in this book, let us consider an algorithm that
computes the Euclidean norm of an n-dimensional vector x = (x1, x2, . . . , xn)

t . This norm
is often required within larger programs and is defined by

||x||2 =
[

n∑
i=1

x2
i

]1/2

.

The norm gives a measure for the distance from the vector x to the vector 0. For example,
the vector x = (2, 1, 3,−2,−1)t has

||x||2 = [22 + 12 + 32 + (−2)2 + (−1)2]1/2 = √19,

so its distance from 0 = (0, 0, 0, 0, 0)t is
√

19 ≈ 4.36.
An algorithm of the type we would present for this problem is given here. It includes

no machine-dependent parameters and provides no accuracy assurances, but it will give
accurate results “most of the time.”

INPUT n, x1, x2, . . . , xn.

OUTPUT NORM.

Step 1 Set SUM = 0.

Step 2 For i = 1, 2, . . . , n set SUM = SUM+ x2
i .

Step 3 Set NORM = SUM1/2.

Step 4 OUTPUT (NORM);
STOP. �

A program based on our algorithm is easy to write and understand. However, the pro-
gram could fail to give sufficient accuracy for a number of reasons. For example, the magni-
tude of some of the numbers might be too large or too small to be accurately represented in

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.math.ysu.edu/%E2%88%BCfaires/Numerical-Analysis/Programs.html

42 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

the floating-point system of the computer. Also, this order for performing the calculations
might not produce the most accurate results, or the standard software square-root routine
might not be the best available for the problem. Matters of this type are considered by algo-
rithm designers when writing programs for general-purpose software. These programs are
often used as subprograms for solving larger problems, so they must incorporate controls
that we will not need.

General Purpose Algorithms

Let us now consider an algorithm for a general-purpose software program for computing
the Euclidean norm. First, it is possible that although a component xi of the vector is within
the range of the machine, the square of the component is not. This can occur when some |xi|
is so small that x2

i causes underflow or when some |xi| is so large that x2
i causes overflow.

It is also possible for all these terms to be within the range of the machine, but overflow
occurs from the addition of a square of one of the terms to the previously computed sum.

Accuracy criteria depend on the machine on which the calculations are being performed,
so machine-dependent parameters are incorporated into the algorithm. Suppose we are
working on a hypothetical computer with base 10, having t ≥ 4 digits of precision, a
minimum exponent emin, and a maximum exponent emax. Then the set of floating-point
numbers in this machine consists of 0 and the numbers of the form

x = f · 10e, where f = ±(f110−1 + f210−2 + · · · + ft10−t),

where 1 ≤ f1 ≤ 9 and 0 ≤ fi ≤ 9, for each i = 2, . . . , t, and where emin ≤ e ≤ emax.
These constraints imply that the smallest positive number represented in the machine is
σ = 10emin−1, so any computed number x with |x| < σ causes underflow and results in
x being set to 0. The largest positive number is λ = (1 − 10−t)10emax, and any computed
number x with |x| > λ causes overflow. When underflow occurs, the program will continue,
often without a significant loss of accuracy. If overflow occurs, the program will fail.

The algorithm assumes that the floating-point characteristics of the machine are de-
scribed using parameters N , s, S, y, and Y . The maximum number of entries that can be
summed with at least t/2 digits of accuracy is given by N . This implies the algorithm will
proceed to find the norm of a vector x = (x1, x2, . . . , xn)

t only if n ≤ N . To resolve the
underflow-overflow problem, the nonzero floating-point numbers are partitioned into three
groups:

• small-magnitude numbers x, those satisfying 0 < |x| < y;

• medium-magnitude numbers x, where y ≤ |x| < Y ;

• large-magnitude numbers x, where Y ≤ |x|.

The parameters y and Y are chosen so that there will be no underflow-overflow prob-
lem in squaring and summing the medium-magnitude numbers. Squaring small-magnitude
numbers can cause underflow, so a scale factor S much greater than 1 is used with the result
that (Sx)2 avoids the underflow even when x2 does not. Summing and squaring numbers
having a large magnitude can cause overflow. So in this case, a positive scale factor s much
smaller than 1 is used to ensure that (sx)2 does not cause overflow when calculated or
incorporated into a sum, even though x2 would.

To avoid unnecessary scaling, y and Y are chosen so that the range of medium-
magnitude numbers is as large as possible. The algorithm that follows is a modification
of one described in [Brow, W], p. 471. It incorporates a procedure for adding scaled compo-
nents of the vector that are small in magnitude until a component with medium magnitude

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.4 Numerical Software 43

is encountered. It then unscales the previous sum and continues by squaring and summing
small and medium numbers until a component with a large magnitude is encountered. Once
a component with large magnitude appears, the algorithm scales the previous sum and
proceeds to scale, square, and sum the remaining numbers.

The algorithm assumes that, in transition from small to medium numbers, unscaled
small numbers are negligible when compared to medium numbers. Similarly, in transition
from medium to large numbers, unscaled medium numbers are negligible when compared to
large numbers. Thus, the choices of the scaling parameters must be made so that numbers
are equated to 0 only when they are truly negligible. Typical relationships between the
machine characteristics as described by t, σ , λ, emin, emax, and the algorithm parameters
N , s, S, y, and Y are given after the algorithm.

The algorithm uses three flags to indicate the various stages in the summation process.
These flags are given initial values in Step 3 of the algorithm. FLAG 1 is 1 until a medium or
large component is encountered; then it is changed to 0. FLAG 2 is 0 while small numbers
are being summed, changes to 1 when a medium number is first encountered, and changes
back to 0 when a large number is found. FLAG 3 is initially 0 and changes to 1 when a
large number is first encountered. Step 3 also introduces the flag DONE, which is 0 until
the calculations are complete, and then changes to 1.

INPUT N , s, S, y, Y , λ, n, x1, x2, . . . , xn.

OUTPUT NORM or an appropriate error message.

Step 1 If n ≤ 0 then OUTPUT (‘The integer n must be positive.’);
STOP.

Step 2 If n ≥ N then OUTPUT (‘The integer n is too large.’);
STOP.

Step 3 Set SUM = 0;
FLAG1 = 1; (The small numbers are being summed.)
FLAG2 = 0;
FLAG3 = 0;
DONE = 0;
i = 1.

Step 4 While (i ≤ n and FLAG1 = 1) do Step 5.

Step 5 If |xi| < y then set SUM = SUM+ (Sxi)
2;

i = i + 1
else set FLAG1 = 0. (A non-small number encountered.)

Step 6 If i > n then set NORM = (SUM)1/2/S;
DONE = 1

else set SUM = (SUM/S)/S; (Scale for larger numbers.)
FLAG2 = 1.

Step 7 While (i ≤ n and FLAG2 = 1) do Step 8. (Sum the medium-sized numbers.)
Step 8 If |xi| < Y then set SUM = SUM+ x2

i ;
i = i + 1

else set FLAG2 = 0. (A large number has been encountered.)

Step 9 If DONE = 0 then
if i > n then set NORM = (SUM)1/2;

DONE = 1
else set SUM = ((SUM)s)s; (Scale the large numbers.)

FLAG3 = 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

44 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Step 10 While (i ≤ n and FLAG3 = 1) do Step 11.

Step 11 Set SUM = SUM +(sxi)
2; (Sum the large numbers.)

i = i + 1.

Step 12 If DONE = 0 then
if SUM1/2 < λs then set NORM = (SUM)1/2/s;

DONE = 1
else set SUM = λ. (The norm is too large.)

Step 13 If DONE = 1 then OUTPUT (‘Norm is’, NORM)
else OUTPUT (‘Norm ≥’, NORM, ‘overflow occurred’).

Step 14 STOP.

The relationships between the machine characteristics t, σ , λ, emin, emax, and the
algorithm parameters N , s, S, y, and Y were chosen in [Brow, W], p. 471, as:

N = 10eN , where eN = �(t − 2)/2�, the greatest integer less than or equal to
(t − 2)/2;

s = 10es , where es = �−(emax + eN)/2�;
S = 10eS , where eS = �(1− emin)/2�, the smallest integer greater than or equal

to (1− emin)/2;

y = 10ey , where ey = �(emin+ t − 2)/2�;
Y = 10eY , where eY = �(emax − eN)/2�.

The reliability built into this algorithm has greatly increased the complexity compared to
the algorithm given earlier in the section. In the majority of cases the special-purpose and
general-purpose algorithms give identical results. The advantage of the general-purpose
algorithm is that it provides security for its results.

The first portable computer was
the Osborne I, produced in 1981,
although it was much larger and
heaver than we would currently
think of as portable.

Many forms of general-purpose numerical software are available commercially and in
the public domain. Most of the early software was written for mainframe computers, and
a good reference for this is Sources and Development of Mathematical Software, edited by
Wayne Cowell [Co].

The system FORTRAN
(FORmula TRANslator) was the
original general-purpose
scientific programming language.
It is still in wide use in situations
that require intensive scientific
computations.

The EISPACK project was the
first large-scale numerical
software package to be made
available in the public domain
and led the way for many
packages to follow.

Now that personal computers are sufficiently powerful, standard numerical software
is available for them. Most of this numerical software is written in FORTRAN, although
some packages are written in C, C++, and FORTRAN90.

ALGOL procedures were presented for matrix computations in 1971 in [WR]. A pack-
age of FORTRAN subroutines based mainly on the ALGOL procedures was then developed
into the EISPACK routines. These routines are documented in the manuals published by
Springer-Verlag as part of their Lecture Notes in Computer Science series [Sm,B] and [Gar].
The FORTRAN subroutines are used to compute eigenvalues and eigenvectors for a variety
of different types of matrices.

LINPACK is a package of FORTRAN subroutines for analyzing and solving systems
of linear equations and solving linear least squares problems. The documentation for this
package is contained in [DBMS]. A step-by-step introduction to LINPACK, EISPACK, and
BLAS (Basic Linear Algebra Subprograms) is given in [CV].

The LAPACK package, first available in 1992, is a library of FORTRAN subroutines
that supercedes LINPACK and EISPACK by integrating these two sets of algorithms into
a unified and updated package. The software has been restructured to achieve greater effi-
ciency on vector processors and other high-performance or shared-memory multiprocessors.
LAPACK is expanded in depth and breadth in version 3.0, which is available in FORTRAN,
FORTRAN90, C, C++, and JAVA. C, and JAVA are only available as language interfaces

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.4 Numerical Software 45

or translations of the FORTRAN libraries of LAPACK. The package BLAS is not a part of
LAPACK, but the code for BLAS is distributed with LAPACK.

Other packages for solving specific types of problems are available in the public domain.
As an alternative to netlib, you can use Xnetlib to search the database and retrieve software.
More information can be found in the article Software Distribution using Netlib by Dongarra,
Roman, and Wade [DRW].

Software engineering was
established as a laboratory
discipline during the 1970s and
1980s. EISPACK was developed
at Argonne Labs and LINPACK
there shortly thereafter. By the
early 1980s, Argonne was
internationally recognized as a
world leader in symbolic and
numerical computation.

These software packages are highly efficient, accurate, and reliable. They are thor-
oughly tested, and documentation is readily available. Although the packages are portable,
it is a good idea to investigate the machine dependence and read the documentation thor-
oughly. The programs test for almost all special contingencies that might result in error and
failures. At the end of each chapter we will discuss some of the appropriate general-purpose
packages.

Commercially available packages also represent the state of the art in numerical meth-
ods. Their contents are often based on the public-domain packages but include methods in
libraries for almost every type of problem.

IMSL (International Mathematical and Statistical Libraries) consists of the libraries
MATH, STAT, and SFUN for numerical mathematics, statistics, and special functions, re-
spectively. These libraries contain more than 900 subroutines originally available in FOR-
TRAN 77 and now available in C, FORTRAN90, and JAVA. These subroutines solve the
most common numerical analysis problems. The libraries are available commercially from
Visual Numerics.

In 1970 IMSL became the first
large-scale scientific library for
mainframes. Since that time, the
libraries have been made
available for computer systems
ranging from supercomputers to
personal computers.

The packages are delivered in compiled form with extensive documentation. There is an
example program for each routine as well as background reference information. IMSL con-
tains methods for linear systems, eigensystem analysis, interpolation and approximation,
integration and differentiation, differential equations, transforms, nonlinear equations, opti-
mization, and basic matrix/vector operations. The library also contains extensive statistical
routines.

The Numerical Algorithms Group (NAG) has been in existence in the United Kingdom
since 1970. NAG offers more than 1000 subroutines in a FORTRAN 77 library, about 400
subroutines in a C library, more than 200 subroutines in a FORTRAN 90 library, and an
MPI FORTRAN numerical library for parallel machines and clusters of workstations or
personal computers. A useful introduction to the NAG routines is [Ph]. The NAG library
contains routines to perform most standard numerical analysis tasks in a manner similar to
those in the IMSL. It also includes some statistical routines and a set of graphic routines.

The Numerical Algorithms
Group (NAG) was instituted in
the UK in 1971 and developed
the first mathematical software
library. It now has over 10,000
users world-wide and contains
over 1000 mathematical and
statistical functions ranging
from statistical, symbolic,
visualisation, and numerical
simulation software, to compilers
and application development
tools.

The IMSL and NAG packages are designed for the mathematician, scientist, or engineer
who wishes to call high-quality C, Java, or FORTRAN subroutines from within a program.
The documentation available with the commercial packages illustrates the typical driver
program required to use the library routines. The next three software packages are stand-
alone environments. When activated, the user enters commands to cause the package to solve
a problem. However, each package allows programming within the command language.

MATLAB was originally written
to provide easy access to matrix
software developed in the
LINPACK and EISPACK
projects. The first version was
written in the late 1970s for use
in courses in matrix theory, linear
algebra, and numerical analysis.
There are currently more than
500,000 users of MATLAB in
more than 100 countries.

MATLAB is a matrix laboratory that was originally a Fortran program published by
Cleve Moler [Mo] in the 1980s. The laboratory is based mainly on the EISPACK and
LINPACK subroutines, although functions such as nonlinear systems, numerical integration,
cubic splines, curve fitting, optimization, ordinary differential equations, and graphical tools
have been incorporated. MATLAB is currently written in C and assembler, and the PC
version of this package requires a numeric coprocessor. The basic structure is to perform
matrix operations, such as finding the eigenvalues of a matrix entered from the command
line or from an external file via function calls. This is a powerful self-contained system that
is especially useful for instruction in an applied linear algebra course.

The second package is GAUSS, a mathematical and statistical system produced by Lee
E. Ediefson and Samuel D. Jones in 1985. It is coded mainly in assembler and based primarily

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

46 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

on EISPACK and LINPACK. As in the case of MATLAB, integration/differentiation, non-
linear systems, fast Fourier transforms, and graphics are available. GAUSS is oriented less
toward instruction in linear algebra and more toward statistical analysis of data. This package
also uses a numeric coprocessor if one is available.

The third package is Maple, a computer algebra system developed in 1980 by the
Symbolic Computational Group at the University of Waterloo. The design for the original
Maple system is presented in the paper by B.W. Char, K.O. Geddes, W.M. Gentlemen, and
G.H. Gonnet [CGGG].

The NAG routines are compatible
with Maple beginning with
version 9.0.

Maple, which is written in C, has the ability to manipulate information in a symbolic
manner. This symbolic manipulation allows the user to obtain exact answers instead of
numerical values. Maple can give exact answers to mathematical problems such as integrals,
differential equations, and linear systems. It contains a programming structure and permits
text, as well as commands, to be saved in its worksheet files. These worksheets can then
be loaded into Maple and the commands executed. Because of the properties of symbolic
computation, numerical computation, and worksheets, Maple is the language of choice for
this text. Throughout the book Maple commands, particularly from the NumericalAnalysis
package, will be included in the text.

Although we have chosen Maple
as our standard computer algebra
system, the equally popular
Mathematica, released in 1988,
can also be used for this purpose.

Numerous packages are available that can be classified as supercalculator packages for
the PC. These should not be confused, however, with the general-purpose software listed
here. If you have an interest in one of these packages, you should read Supercalculators on
the PC by B. Simon and R. M. Wilson [SW].

Additional information about software and software libraries can be found in the books
by Cody and Waite [CW] and by Kockler [Ko], and in the 1995 article by Dongarra and
Walker [DW]. More information about floating-point computation can be found in the book
by Chaitini-Chatelin and Frayse [CF] and the article by Goldberg [Go].

Books that address the application of numerical techniques on parallel computers in-
clude those by Schendell [Sche], Phillips and Freeman [PF], Ortega [Or1], and Golub and
Ortega [GO].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R

2 Solutions of Equations in One Variable

Introduction
The growth of a population can often be modeled over short periods of time by assuming that
the population grows continuously with time at a rate proportional to the number present at
that time. Suppose that N(t) denotes the number in the population at time t and λ denotes the
constant birth rate of the population. Then the population satisfies the differential equation

dN(t)

dt
= λN(t),

whose solution is N(t) = N0eλt , where N0 denotes the initial population.

Birth rate

N()

3000

2000

1000

1564
1435

Po
pu

la
tio

n
(t

ho
us

an
ds

)

1

N() � 1000e � (e � 1)
435

�

�

�

� �

λ

This exponential model is valid only when the population is isolated, with no im-
migration. If immigration is permitted at a constant rate v, then the differential equation
becomes

dN(t)

dt
= λN(t)+ v,

whose solution is

N(t) = N0eλt + v
λ
(eλt − 1).

47

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

48 C H A P T E R 2 Solutions of Equations in One Variable

Suppose a certain population contains N(0) = 1,000,000 individuals initially, that
435,000 individuals immigrate into the community in the first year, and that N(1) =
1,564,000 individuals are present at the end of one year. To determine the birth rate of
this population, we need to find λ in the equation

1,564,000 = 1,000,000eλ + 435,000

λ
(eλ − 1).

It is not possible to solve explicitly for λ in this equation, but numerical methods discussed in
this chapter can be used to approximate solutions of equations of this type to an arbitrarily
high accuracy. The solution to this particular problem is considered in Exercise 24 of
Section 2.3.

2.1 The Bisection Method

In this chapter we consider one of the most basic problems of numerical approximation,
the root-finding problem. This process involves finding a root, or solution, of an equation
of the form f (x) = 0, for a given function f . A root of this equation is also called a zero
of the function f .

The problem of finding an approximation to the root of an equation can be traced back
at least to 1700 b.c.e. A cuneiform table in the Yale Babylonian Collection dating from that
period gives a sexigesimal (base-60) number equivalent to 1.414222 as an approximation to√

2, a result that is accurate to within 10−5. This approximation can be found by applying
a technique described in Exercise 19 of Section 2.2.

BisectionTechnique

The first technique, based on the Intermediate Value Theorem, is called the Bisection, or
Binary-search, method.

In computer science, the process
of dividing a set continually in
half to search for the solution to a
problem, as the bisection method
does, is known as a binary search
procedure.

Suppose f is a continuous function defined on the interval [a, b], with f (a) and f (b)
of opposite sign. The Intermediate Value Theorem implies that a number p exists in (a, b)
with f (p) = 0. Although the procedure will work when there is more than one root in the
interval (a, b), we assume for simplicity that the root in this interval is unique. The method
calls for a repeated halving (or bisecting) of subintervals of [a, b] and, at each step, locating
the half containing p.

To begin, set a1 = a and b1 = b, and let p1 be the midpoint of [a, b]; that is,

p1 = a1 + b1 − a1

2
= a1 + b1

2
.

• If f (p1) = 0, then p = p1, and we are done.

• If f (p1) �= 0, then f (p1) has the same sign as either f (a1) or f (b1).

• If f (p1) and f (a1) have the same sign, p ∈ (p1, b1). Set a2 = p1 and b2 = b1.

• If f (p1) and f (a1) have opposite signs, p ∈ (a1, p1). Set a2 = a1 and b2 = p1.

Then reapply the process to the interval [a2, b2]. This produces the method described in
Algorithm 2.1. (See Figure 2.1.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.1 The Bisection Method 49

Figure 2.1

x

y

 f (a)
 f (p2)

 f (p1)

 f (b)

y � f (x)

a � a1 b � b1
p p1p2

p3

a1 b1p1

p2a2 b2

p3a3 b3

ALGORITHM

2.1
Bisection

To find a solution to f (x) = 0 given the continuous function f on the interval [a, b], where
f (a) and f (b) have opposite signs:

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1;
FA = f (a).

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = a+ (b− a)/2; (Compute pi.)
FP = f (p).

Step 4 If FP = 0 or (b− a)/2 < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.

Step 6 If FA · FP > 0 then set a = p; (Compute ai, bi.)
FA = FP

else set b = p. (FA is unchanged.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

Other stopping procedures can be applied in Step 4 of Algorithm 2.1 or in any of
the iterative techniques in this chapter. For example, we can select a tolerance ε > 0 and
generate p1, . . . , pN until one of the following conditions is met:

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

50 C H A P T E R 2 Solutions of Equations in One Variable

| pN − pN−1| < ε, (2.1)

| pN − pN−1|
| pN | < ε, pN �= 0, or (2.2)

|f (pN)| < ε. (2.3)

Unfortunately, difficulties can arise using any of these stopping criteria. For example,
there are sequences { pn}∞n=0 with the property that the differences pn − pn−1 converge to
zero while the sequence itself diverges. (See Exercise 17.) It is also possible for f (pn) to
be close to zero while pn differs significantly from p. (See Exercise 16.) Without additional
knowledge about f or p, Inequality (2.2) is the best stopping criterion to apply because it
comes closest to testing relative error.

When using a computer to generate approximations, it is good practice to set an upper
bound on the number of iterations. This eliminates the possibility of entering an infinite
loop, a situation that can arise when the sequence diverges (and also when the program is
incorrectly coded). This was done in Step 2 of Algorithm 2.1 where the bound N0 was set
and the procedure terminated if i > N0.

Note that to start the Bisection Algorithm, an interval [a, b] must be found with f (a) ·
f (b) < 0. At each step the length of the interval known to contain a zero of f is reduced
by a factor of 2; hence it is advantageous to choose the initial interval [a, b] as small as
possible. For example, if f (x) = 2x3 − x2 + x − 1, we have both

f (−4) · f (4) < 0 and f (0) · f (1) < 0,

so the Bisection Algorithm could be used on [−4, 4] or on [0, 1]. Starting the Bisection
Algorithm on [0, 1] instead of [−4, 4] will reduce by 3 the number of iterations required to
achieve a specified accuracy.

The following example illustrates the Bisection Algorithm. The iteration in this example
is terminated when a bound for the relative error is less than 0.0001. This is ensured by
having

| p− pn|
min{|an|, |bn|} < 10−4.

Example 1 Show that f (x) = x3 + 4x2 − 10 = 0 has a root in [1, 2], and use the Bisection method to
determine an approximation to the root that is accurate to at least within 10−4.

Solution Because f (1) = −5 and f (2) = 14 the Intermediate Value Theorem 1.11 ensures
that this continuous function has a root in [1, 2].

For the first iteration of the Bisection method we use the fact that at the midpoint of
[1, 2]we have f (1.5) = 2.375 > 0. This indicates that we should select the interval [1, 1.5]
for our second iteration. Then we find that f (1.25) = −1.796875 so our new interval
becomes [1.25, 1.5], whose midpoint is 1.375. Continuing in this manner gives the values
in Table 2.1. After 13 iterations, p13 = 1.365112305 approximates the root p with an error

| p− p13| < |b14 − a14| = |1.365234375− 1.365112305| = 0.000122070.

Since |a14| < | p|, we have

| p− p13|
| p| <

|b14 − a14|
|a14| ≤ 9.0× 10−5,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.1 The Bisection Method 51

Table 2.1 n an bn pn f (pn)

1 1.0 2.0 1.5 2.375
2 1.0 1.5 1.25 −1.79687
3 1.25 1.5 1.375 0.16211
4 1.25 1.375 1.3125 −0.84839
5 1.3125 1.375 1.34375 −0.35098
6 1.34375 1.375 1.359375 −0.09641
7 1.359375 1.375 1.3671875 0.03236
8 1.359375 1.3671875 1.36328125 −0.03215
9 1.36328125 1.3671875 1.365234375 0.000072

10 1.36328125 1.365234375 1.364257813 −0.01605
11 1.364257813 1.365234375 1.364746094 −0.00799
12 1.364746094 1.365234375 1.364990235 −0.00396
13 1.364990235 1.365234375 1.365112305 −0.00194

so the approximation is correct to at least within 10−4. The correct value of p to nine decimal
places is p = 1.365230013. Note that p9 is closer to p than is the final approximation p13.
You might suspect this is true because |f (p9)| < |f (p13)|, but we cannot be sure of this
unless the true answer is known.

The Bisection method, though conceptually clear, has significant drawbacks. It is rel-
atively slow to converge (that is, N may become quite large before | p− pN | is sufficiently
small), and a good intermediate approximation might be inadvertently discarded. However,
the method has the important property that it always converges to a solution, and for that
reason it is often used as a starter for the more efficient methods we will see later in this
chapter.

Theorem 2.1 Suppose that f ∈ C[a, b] and f (a) ·f (b) < 0. The Bisection method generates a sequence
{ pn}∞n=1 approximating a zero p of f with

| pn − p| ≤ b− a

2n
, when n ≥ 1.

Proof For each n ≥ 1, we have

bn − an = 1

2n−1
(b− a) and p ∈ (an, bn).

Since pn = 1
2 (an + bn) for all n ≥ 1, it follows that

| pn − p| ≤ 1

2
(bn − an) = b− a

2n
.

Because

| pn − p| ≤ (b− a)
1

2n
,

the sequence { pn}∞n=1 converges to p with rate of convergence O
(

1
2n

)
; that is,

pn = p+ O

(
1

2n

)
.

It is important to realize that Theorem 2.1 gives only a bound for approximation error
and that this bound might be quite conservative. For example, this bound applied to the
problem in Example 1 ensures only that

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

52 C H A P T E R 2 Solutions of Equations in One Variable

| p− p9| ≤ 2− 1

29
≈ 2× 10−3,

but the actual error is much smaller:

| p− p9| = |1.365230013− 1.365234375| ≈ 4.4× 10−6.

Example 2 Determine the number of iterations necessary to solve f (x) = x3 + 4x2 − 10 = 0 with
accuracy 10−3 using a1 = 1 and b1 = 2.

Solution We we will use logarithms to find an integer N that satisfies

| pN − p| ≤ 2−N (b− a) = 2−N < 10−3.

Logarithms to any base would suffice, but we will use base-10 logarithms because the toler-
ance is given as a power of 10. Since 2−N < 10−3 implies that log10 2−N < log10 10−3 = −3,
we have

−N log10 2 < −3 and N >
3

log10 2
≈ 9.96.

Hence, ten iterations will ensure an approximation accurate to within 10−3.
Table 2.1 shows that the value of p9 = 1.365234375 is accurate to within 10−4. Again,

it is important to keep in mind that the error analysis gives only a bound for the number of
iterations. In many cases this bound is much larger than the actual number required.

Maple has a NumericalAnalysis package that implements many of the techniques we
will discuss, and the presentation and examples in the package are closely aligned with this
text. The Bisection method in this package has a number of options, some of which we will
now consider. In what follows, Maple code is given in black italic type and Maple response
in cyan.
Load the NumericalAnalysis package with the command

with(Student[NumericalAnalysis])

which gives access to the procedures in the package. Define the function with

f := x3 + 4x2 − 10

and use

Bisection (f , x = [1, 2], tolerance = 0.005)

Maple returns

1.363281250

Note that the value that is output is the same as p8 in Table 2.1.
The sequence of bisection intervals can be output with the command

Bisection (f , x = [1, 2], tolerance = 0.005, output = sequence)

and Maple returns the intervals containing the solution together with the solution

[1., 2.], [1., 1.500000000], [1.250000000, 1.500000000], [1.250000000, 1.375000000],
[1.312500000, 1.375000000], [1.343750000, 1.375000000], [1.359375000, 1.375000000],
[1.359375000, 1.367187500], 1.363281250

The stopping criterion can also be based on relative error by choosing the option

Bisection (f , x = [1, 2], tolerance = 0.005, stoppingcriterion = relative)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.1 The Bisection Method 53

Now Maple returns

1.363281250

The option output = plot given in

Bisection (f , x = [1.25, 1.5], output = plot, tolerance = 0.02)

produces the plot shown in Figure 2.2.

Figure 2.2
4 iteration(s) of the bisection method applied to

f (x) � x3 � 4 x2 �10
with initial points a = 1.25 and b = 1.5

f(b)

f(p4)
p4a b

f(a)

f (x)

We can also set the maximum number of iterations with the option maxiterations = .
An error message will be displayed if the stated tolerance is not met within the specified
number of iterations.

The results from Bisection method can also be obtained using the command Roots. For
example,

Roots

(
f , x = [1.0, 2.0], method = bisection, tolerance = 1

100
, output = information

)
uses the Bisection method to produce the information⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n an bn pn f (pn) relative error

1 1.0 2.0 1.500000000 2.37500000 0.3333333333

2 1.0 1.500000000 1.250000000 −1.796875000 0.2000000000

3 1.250000000 1.500000000 1.375000000 0.16210938 0.09090909091

4 1.250000000 1.375000000 1.312500000 −0.848388672 0.04761904762

5 1.312500000 1.375000000 1.343750000 −0.350982668 0.02325581395

6 1.343750000 1.375000000 1.359375000 −0.096408842 0.01149425287

7 1.359375000 1.375000000 1.367187500 0.03235578 0.005714285714

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

54 C H A P T E R 2 Solutions of Equations in One Variable

The bound for the number of iterations for the Bisection method assumes that the cal-
culations are performed using infinite-digit arithmetic. When implementing the method on
a computer, we need to consider the effects of round-off error. For example, the computation
of the midpoint of the interval [an, bn] should be found from the equation

pn = an + bn − an

2
instead of pn = an + bn

2
.

The first equation adds a small correction, (bn−an)/2, to the known value an. When bn−an

is near the maximum precision of the machine, this correction might be in error, but the
error would not significantly affect the computed value of pn. However, when bn−an is near
the maximum precision of the machine, it is possible for (an + bn)/2 to return a midpoint
that is not even in the interval [an, bn].

As a final remark, to determine which subinterval of [an, bn] contains a root of f , it is
better to make use of the signum function, which is defined as

sgn(x) =

⎧⎪⎨
⎪⎩
−1, if x < 0,

0, if x = 0,

1, if x > 0.

The Latin word signum means
“token” or “sign”. So the signum
function quite naturally returns
the sign of a number (unless the
number is 0).

The test

sgn (f (an)) sgn (f (pn)) < 0 instead of f (an)f (pn) < 0

gives the same result but avoids the possibility of overflow or underflow in the multiplication
of f (an) and f (pn).

E X E R C I S E S E T 2.1

1. Use the Bisection method to find p3 for f (x) = √x − cos x on [0, 1].
2. Let f (x) = 3(x + 1)(x − 1

2)(x − 1). Use the Bisection method on the following intervals to find p3.

a. [−2, 1.5] b. [−1.25, 2.5]
3. Use the Bisection method to find solutions accurate to within 10−2 for x3 − 7x2 + 14x − 6 = 0 on

each interval.

a. [0, 1] b. [1, 3.2] c. [3.2, 4]
4. Use the Bisection method to find solutions accurate to within 10−2 for x4 − 2x3 − 4x2 + 4x + 4 = 0

on each interval.

a. [−2,−1] b. [0, 2] c. [2, 3] d. [−1, 0]
5. Use the Bisection method to find solutions accurate to within 10−5 for the following problems.

a. x − 2−x = 0 for 0 ≤ x ≤ 1

b. ex − x2 + 3x − 2 = 0 for 0 ≤ x ≤ 1

c. 2x cos(2x)− (x + 1)2 = 0 for −3 ≤ x ≤ −2 and −1 ≤ x ≤ 0

d. x cos x − 2x2 + 3x − 1 = 0 for 0.2 ≤ x ≤ 0.3 and 1.2 ≤ x ≤ 1.3

6. Use the Bisection method to find solutions, accurate to within 10−5 for the following problems.

a. 3x − ex = 0 for 1 ≤ x ≤ 2

b. 2x + 3 cos x − ex = 0 for 0 ≤ x ≤ 1

c. x2 − 4x + 4− ln x = 0 for 1 ≤ x ≤ 2 and 2 ≤ x ≤ 4

d. x + 1− 2 sin πx = 0 for 0 ≤ x ≤ 0.5 and 0.5 ≤ x ≤ 1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.1 The Bisection Method 55

7. a. Sketch the graphs of y = x and y = 2 sin x.

b. Use the Bisection method to find an approximation to within 10−5 to the first positive value of
x with x = 2 sin x.

8. a. Sketch the graphs of y = x and y = tan x.

b. Use the Bisection method to find an approximation to within 10−5 to the first positive value of
x with x = tan x.

9. a. Sketch the graphs of y = ex − 2 and y = cos(ex − 2).

b. Use the Bisection method to find an approximation to within 10−5 to a value in [0.5, 1.5] with
ex − 2 = cos(ex − 2).

10. Let f (x) = (x+ 2)(x+ 1)2x(x− 1)3(x− 2). To which zero of f does the Bisection method converge
when applied on the following intervals?

a. [−1.5, 2.5] b. [−0.5, 2.4] c. [−0.5, 3] d. [−3,−0.5]
11. Let f (x) = (x+ 2)(x+ 1)x(x− 1)3(x− 2). To which zero of f does the Bisection method converge

when applied on the following intervals?

a. [−3, 2.5] b. [−2.5, 3] c. [−1.75, 1.5] d. [−1.5, 1.75]
12. Find an approximation to

√
3 correct to within 10−4 using the Bisection Algorithm. [Hint: Consider

f (x) = x2 − 3.]
13. Find an approximation to 3

√
25 correct to within 10−4 using the Bisection Algorithm.

14. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation
with accuracy 10−3 to the solution of x3+x−4 = 0 lying in the interval [1, 4]. Find an approximation
to the root with this degree of accuracy.

15. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation
with accuracy 10−4 to the solution of x3−x−1 = 0 lying in the interval [1, 2]. Find an approximation
to the root with this degree of accuracy.

16. Let f (x) = (x − 1)10, p = 1, and pn = 1+ 1/n. Show that |f (pn)| < 10−3 whenever n > 1 but that
| p− pn| < 10−3 requires that n > 1000.

17. Let { pn} be the sequence defined by pn =∑n
k=1

1
k . Show that { pn} diverges even though limn→∞(pn−

pn−1) = 0.

18. The function defined by f (x) = sin πx has zeros at every integer. Show that when −1 < a < 0 and
2 < b < 3, the Bisection method converges to

a. 0, if a+ b < 2 b. 2, if a+ b > 2 c. 1, if a+ b = 2

19. A trough of length L has a cross section in the shape of a semicircle with radius r. (See the accom-
panying figure.) When filled with water to within a distance h of the top, the volume V of water is

V = L
[
0.5πr2 − r2 arcsin(h/r)− h(r2 − h2)1/2

]
.

h hr
�

Suppose L = 10 ft, r = 1 ft, and V = 12.4 ft3. Find the depth of water in the trough to within 0.01 ft.

20. A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate

dθ

dt
= ω < 0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

56 C H A P T E R 2 Solutions of Equations in One Variable

At the end of t seconds, the position of the object is given by

x(t) = − g

2ω2

(
ewt − e−wt

2
− sinωt

)
.

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10−5, the rate ω at which θ changes.
Assume that g = 32.17 ft/s2.

x(t)

 (t)�

2.2 Fixed-Point Iteration

A fixed point for a function is a number at which the value of the function does not change
when the function is applied.

Definition 2.2 The number p is a fixed point for a given function g if g(p) = p.

In this section we consider the problem of finding solutions to fixed-point problems
and the connection between the fixed-point problems and the root-finding problems we
wish to solve. Root-finding problems and fixed-point problems are equivalent classes in the
following sense:

• Given a root-finding problem f (p) = 0, we can define functions g with a fixed point at
p in a number of ways, for example, as

g(x) = x − f (x) or as g(x) = x + 3f (x).

• Conversely, if the function g has a fixed point at p, then the function defined by

f (x) = x − g(x)

has a zero at p.

Fixed-point results occur in many
areas of mathematics, and are a
major tool of economists for
proving results concerning
equilibria. Although the idea
behind the technique is old, the
terminology was first used by the
Dutch mathematician
L. E. J. Brouwer (1882–1962) in
the early 1900s.

Although the problems we wish to solve are in the root-finding form, the fixed-point
form is easier to analyze, and certain fixed-point choices lead to very powerful root-finding
techniques.

We first need to become comfortable with this new type of problem, and to decide
when a function has a fixed point and how the fixed points can be approximated to within
a specified accuracy.

Example 1 Determine any fixed points of the function g(x) = x2 − 2.

Solution A fixed point p for g has the property that

p = g(p) = p2 − 2 which implies that 0 = p2 − p− 2 = (p+ 1)(p− 2).

A fixed point for g occurs precisely when the graph of y = g(x) intersects the graph of
y = x, so g has two fixed points, one at p = −1 and the other at p = 2. These are shown in
Figure 2.3.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Fixed-Point Iteration 57

Figure 2.3
y

x�3 �2 2 3

1

�3

2

3

4

5 y � x2 � 2

y � x

The following theorem gives sufficient conditions for the existence and uniqueness of
a fixed point.

Theorem 2.3 (i) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at least one fixed
point in [a, b].

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b),

then there is exactly one fixed point in [a, b]. (See Figure 2.4.)

Figure 2.4
y

x

y � x

y � g(x)

p � g(p)

a p b

a

b

Proof

(i) If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then
g(a) > a and g(b) < b. The function h(x) = g(x)−x is continuous on [a, b], with

h(a) = g(a)− a > 0 and h(b) = g(b)− b < 0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

58 C H A P T E R 2 Solutions of Equations in One Variable

The Intermediate Value Theorem implies that there exists p ∈ (a, b) for which
h(p) = 0. This number p is a fixed point for g because

0 = h(p) = g(p)− p implies that g(p) = p.

(ii) Suppose, in addition, that |g′(x)| ≤ k < 1 and that p and q are both fixed points
in [a, b]. If p �= q, then the Mean Value Theorem implies that a number ξ exists
between p and q, and hence in [a, b], with

g(p)− g(q)

p− q
= g′(ξ).

Thus

| p− q| = |g(p)− g(q)| = |g′(ξ)|| p− q| ≤ k| p− q| < | p− q|,

which is a contradiction. This contradiction must come from the only supposition,
p �= q. Hence, p = q and the fixed point in [a, b] is unique.

Example 2 Show that g(x) = (x2 − 1)/3 has a unique fixed point on the interval [−1, 1].
Solution The maximum and minimum values of g(x) for x in [−1, 1] must occur either
when x is an endpoint of the interval or when the derivative is 0. Since g′(x) = 2x/3, the
function g is continuous and g′(x) exists on [−1, 1]. The maximum and minimum values
of g(x) occur at x = −1, x = 0, or x = 1. But g(−1) = 0, g(1) = 0, and g(0) = −1/3,
so an absolute maximum for g(x) on [−1, 1] occurs at x = −1 and x = 1, and an absolute
minimum at x = 0.

Moreover

|g′(x)| =
∣∣∣∣2x

3

∣∣∣∣ ≤ 2

3
, for all x ∈ (−1, 1).

So g satisfies all the hypotheses of Theorem 2.3 and has a unique fixed point in [−1, 1].

For the function in Example 2, the unique fixed point p in the interval [−1, 1] can be
determined algebraically. If

p = g(p) = p2 − 1

3
, then p2 − 3p− 1 = 0,

which, by the quadratic formula, implies, as shown on the left graph in Figure 2.4, that

p = 1

2
(3−√13).

Note that g also has a unique fixed point p = 1
2 (3 +

√
13) for the interval [3, 4].

However, g(4) = 5 and g′(4) = 8
3 > 1, so g does not satisfy the hypotheses of Theorem 2.3

on [3, 4]. This demonstrates that the hypotheses of Theorem 2.3 are sufficient to guarantee
a unique fixed point but are not necessary. (See the graph on the right in Figure 2.5.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Fixed-Point Iteration 59

Figure 2.5

y

x

y �
3

x2 � 1
y �

3
x2 � 1

1

2

3

4

1 2 3 4

�1

y � x

y

x

1

2

3

4

1 2 3 4

�1

y � x

Example 3 Show that Theorem 2.3 does not ensure a unique fixed point of g(x) = 3−x on the interval
[0, 1], even though a unique fixed point on this interval does exist.

Solution g′(x) = −3−x ln 3 < 0 on [0, 1], the function g is strictly decreasing on [0, 1]. So

g(1) = 1

3
≤ g(x) ≤ 1 = g(0), for 0 ≤ x ≤ 1.

Thus, for x ∈ [0, 1], we have g(x) ∈ [0, 1]. The first part of Theorem 2.3 ensures that there
is at least one fixed point in [0, 1].

However,

g′(0) = − ln 3 = −1.098612289,

so |g′(x)| �≤ 1 on (0, 1), and Theorem 2.3 cannot be used to determine uniqueness. But g is
always decreasing, and it is clear from Figure 2.6 that the fixed point must be unique.

Figure 2.6

x

y

1

1

y � x

y � 3�x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

60 C H A P T E R 2 Solutions of Equations in One Variable

Fixed-Point Iteration

We cannot explicitly determine the fixed point in Example 3 because we have no way to
solve for p in the equation p = g(p) = 3−p. We can, however, determine approximations
to this fixed point to any specified degree of accuracy. We will now consider how this can
be done.

To approximate the fixed point of a function g, we choose an initial approximation p0

and generate the sequence { pn}∞n=0 by letting pn = g(pn−1), for each n ≥ 1. If the sequence
converges to p and g is continuous, then

p = lim
n→∞ pn = lim

n→∞ g(pn−1) = g
(

lim
n→∞ pn−1

)
= g(p),

and a solution to x = g(x) is obtained. This technique is called fixed-point, or functional
iteration. The procedure is illustrated in Figure 2.7 and detailed in Algorithm 2.2.

Figure 2.7

x x

yy y � x

p2 � g(p1)

p3 � g(p2)

p1 � g(p0)

(p1, p2)
(p2, p2)

(p0, p1)

y � g(x)

(p1, p1)

p1 p3 p2 p0

(a) (b)

p0 p1 p2

y � g(x)

(p2, p2)

(p0, p1)

(p2, p3)

p1 � g(p0)

p3 � g(p2)

y � x

p2 � g(p1)

(p1, p1)

ALGORITHM

2.2
Fixed-Point Iteration

To find a solution to p = g(p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = g(p0). (Compute pi.)

Step 4 If | p− p0| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Fixed-Point Iteration 61

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The following illustrates some features of functional iteration.

Illustration The equation x3+ 4x2− 10 = 0 has a unique root in [1, 2]. There are many ways to change
the equation to the fixed-point form x = g(x) using simple algebraic manipulation. For
example, to obtain the function g described in part (c), we can manipulate the equation
x3 + 4x2 − 10 = 0 as follows:

4x2 = 10− x3, so x2 = 1

4
(10− x3), and x = ±1

2
(10− x3)1/2.

To obtain a positive solution, g3(x) is chosen. It is not important for you to derive the
functions shown here, but you should verify that the fixed point of each is actually a solution
to the original equation, x3 + 4x2 − 10 = 0.

(a) x = g1(x) = x − x3 − 4x2 + 10
(b) x = g2(x) =

(
10

x
− 4x

)1/2

(c) x = g3(x) = 1

2
(10− x3)1/2 (d) x = g4(x) =

(
10

4+ x

)1/2

(e) x = g5(x) = x − x3 + 4x2 − 10

3x2 + 8x

With p0 = 1.5, Table 2.2 lists the results of the fixed-point iteration for all five choices of g.

Table 2.2 n (a) (b) (c) (d) (e)

0 1.5 1.5 1.5 1.5 1.5
1 −0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1.367376372 1.365262015
3 −469.7 (−8.65)1/2 1.345458374 1.364957015 1.365230014
4 1.03× 108 1.375170253 1.365264748 1.365230013
5 1.360094193 1.365225594
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012

10 1.365410062 1.365230014
15 1.365223680 1.365230013
20 1.365230236
25 1.365230006
30 1.365230013

The actual root is 1.365230013, as was noted in Example 1 of Section 2.1. Comparing the
results to the Bisection Algorithm given in that example, it can be seen that excellent results
have been obtained for choices (c), (d), and (e) (the Bisection method requires 27 iterations
for this accuracy). It is interesting to note that choice (a) was divergent and that (b) became
undefined because it involved the square root of a negative number. �

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

62 C H A P T E R 2 Solutions of Equations in One Variable

Although the various functions we have given are fixed-point problems for the same
root-finding problem, they differ vastly as techniques for approximating the solution to the
root-finding problem. Their purpose is to illustrate what needs to be answered:

• Question: How can we find a fixed-point problem that produces a sequence that reliably
and rapidly converges to a solution to a given root-finding problem?

The following theorem and its corollary give us some clues concerning the paths we
should pursue and, perhaps more importantly, some we should reject.

Theorem 2.4 (Fixed-Point Theorem)
Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x in [a, b]. Suppose, in addition, that
g′ exists on (a, b) and that a constant 0 < k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b).

Then for any number p0 in [a, b], the sequence defined by

pn = g(pn−1), n ≥ 1,

converges to the unique fixed point p in [a, b].

Proof Theorem 2.3 implies that a unique point p exists in [a, b] with g(p) = p. Since g
maps [a, b] into itself, the sequence { pn}∞n=0 is defined for all n ≥ 0, and pn ∈ [a, b] for all
n. Using the fact that |g′(x)| ≤ k and the Mean Value Theorem 1.8, we have, for each n,

| pn − p| = |g(pn−1)− g(p)| = |g′(ξn)|| pn−1 − p| ≤ k| pn−1 − p|,
where ξn ∈ (a, b). Applying this inequality inductively gives

| pn − p| ≤ k| pn−1 − p| ≤ k2| pn−2 − p| ≤ · · · ≤ kn| p0 − p|. (2.4)

Since 0 < k < 1, we have limn→∞ kn = 0 and

lim
n→∞ | pn − p| ≤ lim

n→∞ kn| p0 − p| = 0.

Hence { pn}∞n=0 converges to p.

Corollary 2.5 If g satisfies the hypotheses of Theorem 2.4, then bounds for the error involved in using pn

to approximate p are given by

| pn − p| ≤ kn max{ p0 − a, b− p0} (2.5)

and

| pn − p| ≤ kn

1− k
| p1 − p0|, for all n ≥ 1. (2.6)

Proof Because p ∈ [a, b], the first bound follows from Inequality (2.4):

| pn − p| ≤ kn| p0 − p| ≤ kn max{ p0 − a, b− p0}.
For n ≥ 1, the procedure used in the proof of Theorem 2.4 implies that

| pn+1 − pn| = |g(pn)− g(pn−1)| ≤ k| pn − pn−1| ≤ · · · ≤ kn| p1 − p0|.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Fixed-Point Iteration 63

Thus for m > n ≥ 1,

| pm − pn| = | pm − pm−1 + pm−1 − · · · + pn+1 − pn|
≤ | pm − pm−1| + | pm−1 − pm−2| + · · · + | pn+1 − pn|
≤ km−1| p1 − p0| + km−2| p1 − p0| + · · · + kn| p1 − p0|
= kn| p1 − p0|

(
1+ k + k2 + · · · + km−n−1

)
.

By Theorem 2.3, limm→∞ pm = p, so

| p− pn| = lim
m→∞ | pm − pn| ≤ lim

m→∞ kn| p1 − p0|
m−n−1∑

i=0

ki ≤ kn| p1 − p0|
∞∑

i=0

ki.

But
∑∞

i=0 ki is a geometric series with ratio k and 0 < k < 1. This sequence converges to
1/(1− k), which gives the second bound:

| p− pn| ≤ kn

1− k
| p1 − p0|.

Both inequalities in the corollary relate the rate at which { pn}∞n=0 converges to the bound
k on the first derivative. The rate of convergence depends on the factor kn. The smaller the
value of k, the faster the convergence, which may be very slow if k is close to 1.

Illustration Let us reconsider the various fixed-point schemes described in the preceding illustration in
light of the Fixed-point Theorem 2.4 and its Corollary 2.5.

(a) For g1(x) = x − x3 − 4x2 + 10, we have g1(1) = 6 and g1(2) = −12, so g1 does
not map [1, 2] into itself. Moreover, g′1(x) = 1 − 3x2 − 8x, so |g′1(x)| > 1 for all x
in [1, 2]. Although Theorem 2.4 does not guarantee that the method must fail for this
choice of g, there is no reason to expect convergence.

(b) With g2(x) = [(10/x)− 4x]1/2, we can see that g2 does not map [1, 2] into [1, 2], and
the sequence { pn}∞n=0 is not defined when p0 = 1.5. Moreover, there is no interval
containing p ≈ 1.365 such that |g′2(x)| < 1, because |g′2(p)| ≈ 3.4. There is no reason
to expect that this method will converge.

(c) For the function g3(x) = 1
2 (10− x3)1/2, we have

g′3(x) = −
3

4
x2(10− x3)−1/2 < 0 on [1, 2],

so g3 is strictly decreasing on [1, 2]. However, |g′3(2)| ≈ 2.12, so the condition
|g′3(x)| ≤ k < 1 fails on [1, 2]. A closer examination of the sequence { pn}∞n=0 starting
with p0 = 1.5 shows that it suffices to consider the interval [1, 1.5] instead of [1, 2]. On
this interval it is still true that g′3(x) < 0 and g3 is strictly decreasing, but, additionally,

1 < 1.28 ≈ g3(1.5) ≤ g3(x) ≤ g3(1) = 1.5,

for all x ∈ [1, 1.5]. This shows that g3 maps the interval [1, 1.5] into itself. It is also
true that |g′3(x)| ≤ |g′3(1.5)| ≈ 0.66 on this interval, so Theorem 2.4 confirms the
convergence of which we were already aware.

(d) For g4(x) = (10/(4+ x))1/2, we have

|g′4(x)| =
∣∣∣∣ −5√

10(4+ x)3/2

∣∣∣∣ ≤ 5√
10(5)3/2

< 0.15, for all x ∈ [1, 2].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

64 C H A P T E R 2 Solutions of Equations in One Variable

The bound on the magnitude of g′4(x) is much smaller than the bound (found in (c))
on the magnitude of g′3(x), which explains the more rapid convergence using g4.

(e) The sequence defined by

g5(x) = x − x3 + 4x2 − 10

3x2 + 8x

converges much more rapidly than our other choices. In the next sections we will see
where this choice came from and why it is so effective. �

From what we have seen,

• Question: How can we find a fixed-point problem that produces a sequence that reliably
and rapidly converges to a solution to a given root-finding problem?

might have

• Answer: Manipulate the root-finding problem into a fixed point problem that satisfies the
conditions of Fixed-Point Theorem 2.4 and has a derivative that is as small as possible
near the fixed point.

In the next sections we will examine this in more detail.
Maple has the fixed-point algorithm implemented in its NumericalAnalysis package.

The options for the Bisection method are also available for fixed-point iteration. We will
show only one option. After accessing the package using with(Student[NumericalAnalysis]):
we enter the function

g := x − (x
3 + 4x2 − 10)

3x2 + 8x

and Maple returns

x − x3 + 4x2 − 10

3x2 + 8x

Enter the command

FixedPointIteration(fixedpointiterator = g, x = 1.5, tolerance = 10−8, output = sequence,
maxiterations = 20)

and Maple returns

1.5, 1.373333333, 1.365262015, 1.365230014, 1.365230013

E X E R C I S E S E T 2.2

1. Use algebraic manipulation to show that each of the following functions has a fixed point at p precisely
when f (p) = 0, where f (x) = x4 + 2x2 − x − 3.

a. g1(x) =
(
3+ x − 2x2

)1/4
b. g2(x) =

(
x + 3− x4

2

)1/2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2 Fixed-Point Iteration 65

c. g3(x) =
(

x + 3

x2 + 2

)1/2

d. g4(x) = 3x4 + 2x2 + 3

4x3 + 4x − 1

2. a. Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let p0 = 1
and pn+1 = g(pn), for n = 0, 1, 2, 3.

b. Which function do you think gives the best approximation to the solution?

3. The following four methods are proposed to compute 211/3. Rank them in order, based on their
apparent speed of convergence, assuming p0 = 1.

a. pn = 20pn−1 + 21/p2
n−1

21
b. pn = pn−1 − p3

n−1 − 21

3p2
n−1

c. pn = pn−1 − p4
n−1 − 21pn−1

p2
n−1 − 21

d. pn =
(

21

pn−1

)1/2

4. The following four methods are proposed to compute 71/5. Rank them in order, based on their apparent
speed of convergence, assuming p0 = 1.

a. pn = pn−1

(
1+ 7− p5

n−1

p2
n−1

)3

b. pn = pn−1 − p5
n−1 − 7

p2
n−1

c. pn = pn−1 − p5
n−1 − 7

5p4
n−1

d. pn = pn−1 − p5
n−1 − 7

12

5. Use a fixed-point iteration method to determine a solution accurate to within 10−2 for x4−3x2−3 = 0
on [1, 2]. Use p0 = 1.

6. Use a fixed-point iteration method to determine a solution accurate to within 10−2 for x3− x− 1 = 0
on [1, 2]. Use p0 = 1.

7. Use Theorem 2.3 to show that g(x) = π + 0.5 sin(x/2) has a unique fixed point on [0, 2π]. Use
fixed-point iteration to find an approximation to the fixed point that is accurate to within 10−2. Use
Corollary 2.5 to estimate the number of iterations required to achieve 10−2 accuracy, and compare
this theoretical estimate to the number actually needed.

8. Use Theorem 2.3 to show that g(x) = 2−x has a unique fixed point on [13 , 1]. Use fixed-point iteration
to find an approximation to the fixed point accurate to within 10−4. Use Corollary 2.5 to estimate the
number of iterations required to achieve 10−4 accuracy, and compare this theoretical estimate to the
number actually needed.

9. Use a fixed-point iteration method to find an approximation to
√

3 that is accurate to within 10−4.
Compare your result and the number of iterations required with the answer obtained in Exercise 12
of Section 2.1.

10. Use a fixed-point iteration method to find an approximation to 3
√

25 that is accurate to within 10−4.
Compare your result and the number of iterations required with the answer obtained in Exercise 13
of Section 2.1.

11. For each of the following equations, determine an interval [a, b] on which fixed-point iteration will
converge. Estimate the number of iterations necessary to obtain approximations accurate to within
10−5, and perform the calculations.

a. x = 2− ex + x2

3
b. x = 5

x2
+ 2

c. x = (ex/3)1/2 d. x = 5−x

e. x = 6−x f. x = 0.5(sin x + cos x)
12. For each of the following equations, use the given interval or determine an interval [a, b] on which

fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approxima-
tions accurate to within 10−5, and perform the calculations.

a. 2+ sin x − x = 0 use [2, 3] b. x3 − 2x − 5 = 0 use [2, 3]
c. 3x2 − ex = 0 d. x − cos x = 0

13. Find all the zeros of f (x) = x2+10 cos x by using the fixed-point iteration method for an appropriate
iteration function g. Find the zeros accurate to within 10−4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

66 C H A P T E R 2 Solutions of Equations in One Variable

14. Use a fixed-point iteration method to determine a solution accurate to within 10−4 for x = tan x, for
x in [4, 5].

15. Use a fixed-point iteration method to determine a solution accurate to within 10−2 for 2 sin πx+x = 0
on [1, 2]. Use p0 = 1.

16. Let A be a given positive constant and g(x) = 2x − Ax2.

a. Show that if fixed-point iteration converges to a nonzero limit, then the limit is p = 1/A, so the
inverse of a number can be found using only multiplications and subtractions.

b. Find an interval about 1/A for which fixed-point iteration converges, provided p0 is in that
interval.

17. Find a function g defined on [0, 1] that satisfies none of the hypotheses of Theorem 2.3 but still has a
unique fixed point on [0, 1].

18. a. Show that Theorem 2.2 is true if the inequality |g′(x)| ≤ k is replaced by g′(x) ≤ k, for all
x ∈ (a, b). [Hint: Only uniqueness is in question.]

b. Show that Theorem 2.3 may not hold if inequality |g′(x)| ≤ k is replaced by g′(x) ≤ k. [Hint:
Show that g(x) = 1− x2, for x in [0, 1], provides a counterexample.]

19. a. Use Theorem 2.4 to show that the sequence defined by

xn = 1

2
xn−1 + 1

xn−1
, for n ≥ 1,

converges to
√

2 whenever x0 >
√

2.

b. Use the fact that 0 < (x0−
√

2)2 whenever x0 �=
√

2 to show that if 0 < x0 <
√

2, then x1 >
√

2.

c. Use the results of parts (a) and (b) to show that the sequence in (a) converges to
√

2 whenever
x0 > 0.

20. a. Show that if A is any positive number, then the sequence defined by

xn = 1

2
xn−1 + A

2xn−1
, for n ≥ 1,

converges to
√

A whenever x0 > 0.

b. What happens if x0 < 0?

21. Replace the assumption in Theorem 2.4 that “a positive number k < 1 exists with |g′(x)| ≤ k” with
“g satisfies a Lipschitz condition on the interval [a, b] with Lipschitz constant L < 1.” (See Exercise
27, Section 1.1.) Show that the conclusions of this theorem are still valid.

22. Suppose that g is continuously differentiable on some interval (c, d) that contains the fixed point
p of g. Show that if |g′(p)| < 1, then there exists a δ > 0 such that if |p0 − p| ≤ δ, then the
fixed-point iteration converges.

23. An object falling vertically through the air is subjected to viscous resistance as well as to the force
of gravity. Assume that an object with mass m is dropped from a height s0 and that the height of the
object after t seconds is

s(t) = s0 − mg

k
t + m2g

k2
(1− e−kt/m),

where g = 32.17 ft/s2 and k represents the coefficient of air resistance in lb-s/ft. Suppose s0 = 300 ft,
m = 0.25 lb, and k = 0.1 lb-s/ft. Find, to within 0.01 s, the time it takes this quarter-pounder to hit the
ground.

24. Let g ∈ C1[a, b] and p be in (a, b)with g(p) = p and |g′(p)| > 1. Show that there exists a δ > 0 such
that if 0 < |p0 − p| < δ, then |p0 − p| < |p1 − p| . Thus, no matter how close the initial approximation
p0 is to p, the next iterate p1 is farther away, so the fixed-point iteration does not converge if p0 �= p.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Newton’s Method and Its Extensions 67

2.3 Newton’s Method and Its Extensions

Newton’s (or the Newton-Raphson) method is one of the most powerful and well-known
numerical methods for solving a root-finding problem. There are many ways of introducing
Newton’s method.

Newton’s Method

If we only want an algorithm, we can consider the technique graphically, as is often done in
calculus. Another possibility is to derive Newton’s method as a technique to obtain faster
convergence than offered by other types of functional iteration, as is done in Section 2.4. A
third means of introducing Newton’s method, which is discussed next, is based on Taylor
polynomials. We will see there that this particular derivation produces not only the method,
but also a bound for the error of the approximation.

Isaac Newton (1641–1727) was
one of the most brilliant scientists
of all time. The late 17th century
was a vibrant period for science
and mathematics and Newton’s
work touched nearly every aspect
of mathematics. His method for
solving was introduced to find
a root of the equation
y3 − 2y− 5 = 0. Although he
demonstrated the method only for
polynomials, it is clear that he
realized its broader applications.

Suppose that f ∈ C2[a, b]. Let p0 ∈ [a, b] be an approximation to p such that f ′(p0) �=
0 and | p− p0| is “small.” Consider the first Taylor polynomial for f (x) expanded about p0

and evaluated at x = p.

f (p) = f (p0)+ (p− p0)f
′(p0)+ (p− p0)

2

2
f ′′(ξ(p)),

where ξ(p) lies between p and p0. Since f (p) = 0, this equation gives

0 = f (p0)+ (p− p0)f
′(p0)+ (p− p0)

2

2
f ′′(ξ(p)).

Newton’s method is derived by assuming that since | p−p0| is small, the term involving
(p− p0)

2 is much smaller, so

0 ≈ f (p0)+ (p− p0)f
′(p0).

Solving for p gives

p ≈ p0 − f (p0)

f ′(p0)
≡ p1.

This sets the stage for Newton’s method, which starts with an initial approximation p0

and generates the sequence { pn}∞n=0, by

pn = pn−1 − f (pn−1)

f ′(pn−1)
, for n ≥ 1. (2.7)

Joseph Raphson (1648–1715)
gave a description of the method
attributed to Isaac Newton in
1690, acknowledging Newton as
the source of the discovery.
Neither Newton nor Raphson
explicitly used the derivative in
their description since both
considered only polynomials.
Other mathematicians,
particularly James Gregory
(1636–1675), were aware of the
underlying process at or before
this time.

Figure 2.8 on page 68 illustrates how the approximations are obtained using successive
tangents. (Also see Exercise 15.) Starting with the initial approximation p0, the approx-
imation p1 is the x-intercept of the tangent line to the graph of f at (p0, f (p0)). The
approximation p2 is the x-intercept of the tangent line to the graph of f at (p1, f (p1)) and
so on. Algorithm 2.3 follows this procedure.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

68 C H A P T E R 2 Solutions of Equations in One Variable

Figure 2.8

xx

y

(p0, f (p0))

(p1, f (p1))

p0

p1
p2

p Slope f �(p0)

y � f (x)Slope f �(p1)

ALGORITHM

2.3
Newton’s

To find a solution to f (x) = 0 given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p0 − f (p0)/f
′(p0). (Compute pi.)

Step 4 If | p− p0| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The stopping-technique inequalities given with the Bisection method are applicable to
Newton’s method. That is, select a tolerance ε > 0, and construct p1, . . . pN until

| pN − pN−1| < ε, (2.8)

| pN − pN−1|
| pN | < ε, pN �= 0, (2.9)

or

|f (pN)| < ε. (2.10)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Newton’s Method and Its Extensions 69

A form of Inequality (2.8) is used in Step 4 of Algorithm 2.3. Note that none of the inequal-
ities (2.8), (2.9), or (2.10) give precise information about the actual error | pN − p|. (See
Exercises 16 and 17 in Section 2.1.)

Newton’s method is a functional iteration technique with pn = g(pn−1), for which

g(pn−1) = pn−1 − f (pn−1)

f ′(pn−1)
, for n ≥ 1. (2.11)

In fact, this is the functional iteration technique that was used to give the rapid convergence
we saw in column (e) of Table 2.2 in Section 2.2.

It is clear from Equation (2.7) that Newton’s method cannot be continued if f ′(pn−1) =
0 for some n. In fact, we will see that the method is most effective when f ′ is bounded away
from zero near p.

Example 1 Consider the function f (x) = cos x−x = 0. Approximate a root of f using (a) a fixed-point
method, and (b) Newton’s Method

Solution (a) A solution to this root-finding problem is also a solution to the fixed-point
problem x = cos x, and the graph in Figure 2.9 implies that a single fixed-point p lies in
[0,π/2].

Figure 2.9
y

x

y � x

y � cos x

1

1

Table 2.3 shows the results of fixed-point iteration with p0 = π/4. The best we could
conclude from these results is that p ≈ 0.74.

Table 2.3

n pn

0 0.7853981635
1 0.7071067810
2 0.7602445972
3 0.7246674808
4 0.7487198858
5 0.7325608446
6 0.7434642113
7 0.7361282565

Note that the variable in the
trigonometric function is in
radian measure, not degrees. This
will always be the case unless
specified otherwise.

(b) To apply Newton’s method to this problem we need f ′(x) = − sin x − 1. Starting
again with p0 = π/4, we generate the sequence defined, for n ≥ 1, by

pn = pn−1 − f (pn−1)

f (p′n−1)
= pn−1 − cos pn−1 − pn−1

− sin pn−1 − 1
.

This gives the approximations in Table 2.4. An excellent approximation is obtained with
n = 3. Because of the agreement of p3 and p4 we could reasonably expect this result to be
accurate to the places listed.

Table 2.4
Newton’s Method

n pn

0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Convergence using Newton’s Method

Example 1 shows that Newton’s method can provide extremely accurate approximations
with very few iterations. For that example, only one iteration of Newton’s method was
needed to give better accuracy than 7 iterations of the fixed-point method. It is now time to
examine Newton’s method more carefully to discover why it is so effective.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

70 C H A P T E R 2 Solutions of Equations in One Variable

The Taylor series derivation of Newton’s method at the beginning of the section points
out the importance of an accurate initial approximation. The crucial assumption is that the
term involving (p − p0)

2 is, by comparison with | p − p0|, so small that it can be deleted.
This will clearly be false unless p0 is a good approximation to p. If p0 is not sufficiently
close to the actual root, there is little reason to suspect that Newton’s method will converge
to the root. However, in some instances, even poor initial approximations will produce
convergence. (Exercises 20 and 21 illustrate some of these possibilities.)

The following convergence theorem for Newton’s method illustrates the theoretical
importance of the choice of p0.

Theorem 2.6 Let f ∈ C2[a, b]. If p ∈ (a, b) is such that f (p) = 0 and f ′(p) �= 0, then there exists a
δ > 0 such that Newton’s method generates a sequence { pn}∞n=1 converging to p for any
initial approximation p0 ∈ [p− δ, p+ δ].

Proof The proof is based on analyzing Newton’s method as the functional iteration scheme
pn = g(pn−1), for n ≥ 1, with

g(x) = x − f (x)

f ′(x)
.

Let k be in (0, 1). We first find an interval [p− δ, p+ δ] that g maps into itself and for which
|g′(x)| ≤ k, for all x ∈ (p− δ, p+ δ).

Since f ′ is continuous and f ′(p) �= 0, part (a) of Exercise 29 in Section 1.1 implies
that there exists a δ1 > 0, such that f ′(x) �= 0 for x ∈ [p − δ1, p + δ1] ⊆ [a, b]. Thus g is
defined and continuous on [p− δ1, p+ δ1]. Also

g′(x) = 1− f
′(x)f ′(x)− f (x)f ′′(x)

[f ′(x)]2 = f (x)f ′′(x)
[f ′(x)]2 ,

for x ∈ [p− δ1, p+ δ1], and, since f ∈ C2[a, b], we have g ∈ C1[p− δ1, p+ δ1].
By assumption, f (p) = 0, so

g′(p) = f (p)f ′′(p)

[f ′(p)]2 = 0.

Since g′ is continuous and 0 < k < 1, part (b) of Exercise 29 in Section 1.1 implies that
there exists a δ, with 0 < δ < δ1, and

|g′(x)| ≤ k, for all x ∈ [p− δ, p+ δ].
It remains to show that g maps [p− δ, p+ δ] into [p− δ, p+ δ]. If x ∈ [p− δ, p+ δ],

the Mean Value Theorem implies that for some number ξ between x and p, |g(x)−g(p)| =
|g′(ξ)||x − p|. So

|g(x)− p| = |g(x)− g(p)| = |g′(ξ)||x − p| ≤ k|x − p| < |x − p|.
Since x ∈ [p− δ, p+ δ], it follows that |x− p| < δ and that |g(x)− p| < δ. Hence, g maps
[p− δ, p+ δ] into [p− δ, p+ δ].

All the hypotheses of the Fixed-Point Theorem 2.4 are now satisfied, so the sequence
{ pn}∞n=1, defined by

pn = g(pn−1) = pn−1 − f (pn−1)

f ′(pn−1)
, for n ≥ 1,

converges to p for any p0 ∈ [p− δ, p+ δ].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Newton’s Method and Its Extensions 71

Theorem 2.6 states that, under reasonable assumptions, Newton’s method converges
provided a sufficiently accurate initial approximation is chosen. It also implies that the con-
stant k that bounds the derivative of g, and, consequently, indicates the speed of convergence
of the method, decreases to 0 as the procedure continues. This result is important for the
theory of Newton’s method, but it is seldom applied in practice because it does not tell us
how to determine δ.

In a practical application, an initial approximation is selected and successive approx-
imations are generated by Newton’s method. These will generally either converge quickly
to the root, or it will be clear that convergence is unlikely.

The Secant Method

Newton’s method is an extremely powerful technique, but it has a major weakness: the need
to know the value of the derivative of f at each approximation. Frequently, f ′(x) is far more
difficult and needs more arithmetic operations to calculate than f (x).

To circumvent the problem of the derivative evaluation in Newton’s method, we intro-
duce a slight variation. By definition,

f ′(pn−1) = lim
x→pn−1

f (x)− f (pn−1)

x − pn−1
.

If pn−2 is close to pn−1, then

f ′(pn−1) ≈ f (pn−2)− f (pn−1)

pn−2 − pn−1
= f (pn−1)− f (pn−2)

pn−1 − pn−2
.

Using this approximation for f ′(pn−1) in Newton’s formula gives

pn = pn−1 − f (pn−1)(pn−1 − pn−2)

f (pn−1)− f (pn−2)
. (2.12)

The word secant is derived from
the Latin word secan, which
means to cut. The secant method
uses a secant line, a line joining
two points that cut the curve, to
approximate a root.

This technique is called the Secant method and is presented in Algorithm 2.4. (See
Figure 2.10.) Starting with the two initial approximations p0 and p1, the approximation p2 is
the x-intercept of the line joining (p0, f (p0)) and (p1, f (p1)). The approximation p3 is the
x-intercept of the line joining (p1, f (p1)) and (p2, f (p2)), and so on. Note that only one
function evaluation is needed per step for the Secant method after p2 has been determined.
In contrast, each step of Newton’s method requires an evaluation of both the function and
its derivative.

Figure 2.10

x

y

p0

p1

p2 p
p3

p4

y � f (x)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

72 C H A P T E R 2 Solutions of Equations in One Variable

ALGORITHM

2.4
Secant

To find a solution to f (x) = 0 given initial approximations p0 and p1:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2;
q0 = f (p0);
q1 = f (p1).

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p1 − q1(p1 − p0)/(q1 − q0). (Compute pi.)

Step 4 If | p− p1| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p1; (Update p0, q0, p1, q1.)
q0 = q1;
p1 = p;
q1 = f (p).

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The next example involves a problem considered in Example 1, where we used New-
ton’s method with p0 = π/4.

Example 2 Use the Secant method to find a solution to x = cos x, and compare the approximations
with those given in Example 1 which applied Newton’s method.

Solution In Example 1 we compared fixed-point iteration and Newton’s method starting
with the initial approximation p0 = π/4. For the Secant method we need two initial ap-
proximations. Suppose we use p0 = 0.5 and p1 = π/4. Succeeding approximations are
generated by the formula

pn = pn−1 − (pn−1 − pn−2)(cos pn−1 − pn−1)

(cos pn−1 − pn−1)− (cos pn−2 − pn−2)
, for n ≥ 2.

These give the results in Table 2.5.

Table 2.5
Secant

n pn

0 0.5
1 0.7853981635
2 0.7363841388
3 0.7390581392
4 0.7390851493
5 0.7390851332

Newton
n pn

0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Comparing the results in Table 2.5 from the Secant method and Newton’s method, we
see that the Secant method approximation p5 is accurate to the tenth decimal place, whereas
Newton’s method obtained this accuracy by p3. For this example, the convergence of the
Secant method is much faster than functional iteration but slightly slower than Newton’s
method. This is generally the case. (See Exercise 14 of Section 2.4.)

Newton’s method or the Secant method is often used to refine an answer obtained by
another technique, such as the Bisection method, since these methods require good first
approximations but generally give rapid convergence.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Newton’s Method and Its Extensions 73

The Method of False Position

Each successive pair of approximations in the Bisection method brackets a root p of the
equation; that is, for each positive integer n, a root lies between an and bn. This implies that,
for each n, the Bisection method iterations satisfy

| pn − p| < 1

2
|an − bn|,

which provides an easily calculated error bound for the approximations.
Root bracketing is not guaranteed for either Newton’s method or the Secant method.

In Example 1, Newton’s method was applied to f (x) = cos x− x, and an approximate root
was found to be 0.7390851332. Table 2.5 shows that this root is not bracketed by either p0

and p1 or p1 and p2. The Secant method approximations for this problem are also given in
Table 2.5. In this case the initial approximations p0 and p1 bracket the root, but the pair of
approximations p3 and p4 fail to do so.

The term Regula Falsi, literally a
false rule or false position, refers
to a technique that uses results
that are known to be false, but in
some specific manner, to obtain
convergence to a true result. False
position problems can be found
on the Rhind papyrus, which
dates from about 1650 b.c.e.

The method of False Position (also called Regula Falsi) generates approximations
in the same manner as the Secant method, but it includes a test to ensure that the root is
always bracketed between successive iterations. Although it is not a method we generally
recommend, it illustrates how bracketing can be incorporated.

First choose initial approximations p0 and p1 with f (p0) · f (p1) < 0. The approxi-
mation p2 is chosen in the same manner as in the Secant method, as the x-intercept of the
line joining (p0, f (p0)) and (p1, f (p1)). To decide which secant line to use to compute p3,
consider f (p2) · f (p1), or more correctly sgn f (p2) · sgn f (p1).

• If sgn f (p2) · sgn f (p1) < 0, then p1 and p2 bracket a root. Choose p3 as the x-intercept
of the line joining (p1, f (p1)) and (p2, f (p2)).

• If not, choose p3 as the x-intercept of the line joining (p0, f (p0)) and (p2, f (p2)), and
then interchange the indices on p0 and p1.

In a similar manner, once p3 is found, the sign of f (p3) · f (p2) determines whether we
use p2 and p3 or p3 and p1 to compute p4. In the latter case a relabeling of p2 and p1 is
performed. The relabeling ensures that the root is bracketed between successive iterations.
The process is described in Algorithm 2.5, and Figure 2.11 shows how the iterations can
differ from those of the Secant method. In this illustration, the first three approximations
are the same, but the fourth approximations differ.

Figure 2.11

y y
y � f (x) y � f (x)

p0 p1

p2 p3

p4p0 p1

p2 p3

p4

Secant Method Method of False Position

xx

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

74 C H A P T E R 2 Solutions of Equations in One Variable

ALGORITHM

2.5
False Position

To find a solution to f (x) = 0 given the continuous function f on the interval [p0, p1]
where f (p0) and f (p1) have opposite signs:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2;
q0 = f (p0);
q1 = f (p1).

Step 2 While i ≤ N0 do Steps 3–7.

Step 3 Set p = p1 − q1(p1 − p0)/(q1 − q0). (Compute pi.)

Step 4 If | p− p1| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1;
q = f (p).

Step 6 If q · q1 < 0 then set p0 = p1;
q0 = q1.

Step 7 Set p1 = p;
q1 = q.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure unsuccessful.)
STOP.

Example 3 Use the method of False Position to find a solution to x = cos x, and compare the approx-
imations with those given in Example 1 which applied fixed-point iteration and Newton’s
method, and to those found in Example 2 which applied the Secant method.

Solution To make a reasonable comparison we will use the same initial approximations as
in the Secant method, that is, p0 = 0.5 and p1 = π/4. Table 2.6 shows the results of the
method of False Position applied to f (x) = cos x−x together with those we obtained using
the Secant and Newton’s methods. Notice that the False Position and Secant approximations
agree through p3 and that the method of False Position requires an additional iteration to
obtain the same accuracy as the Secant method.

Table 2.6 False Position Secant Newton
n pn pn pn

0 0.5 0.5 0.7853981635
1 0.7853981635 0.7853981635 0.7395361337
2 0.7363841388 0.7363841388 0.7390851781
3 0.7390581392 0.7390581392 0.7390851332
4 0.7390848638 0.7390851493 0.7390851332
5 0.7390851305 0.7390851332
6 0.7390851332

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Newton’s Method and Its Extensions 75

The added insurance of the method of False Position commonly requires more calcula-
tion than the Secant method, just as the simplification that the Secant method provides over
Newton’s method usually comes at the expense of additional iterations. Further examples
of the positive and negative features of these methods can be seen by working Exercises 17
and 18.

Maple has Newton’s method, the Secant method, and the method of False Position
implemented in its NumericalAnalysis package. The options that were available for the
Bisection method are also available for these techniques. For example, to generate the
results in Tables 2.4, 2.5, and 2.6 we could use the commands

with(Student[NumericalAnalysis])

f := cos(x)− x

Newton
(
f , x = π

4.0
, tolerance = 10−8, output = sequence, maxiterations = 20

)
Secant

(
f , x =

[
0.5,

π

4.0

]
, tolerance = 10−8, output = sequence, maxiterations = 20

)
and

FalsePosition
(
f , x =

[
0.5,

π

4.0

]
, tolerance=10−8, output=sequence, maxiterations=20

)

E X E R C I S E S E T 2.3

1. Let f (x) = x2 − 6 and p0 = 1. Use Newton’s method to find p2.

2. Let f (x) = −x3 − cos x and p0 = −1. Use Newton’s method to find p2. Could p0 = 0 be used?

3. Let f (x) = x2 − 6. With p0 = 3 and p1 = 2, find p3.

a. Use the Secant method.

b. Use the method of False Position.

c. Which of a. or b. is closer to
√

6?

4. Let f (x) = −x3 − cos x. With p0 = −1 and p1 = 0, find p3.

a. Use the Secant method. b. Use the method of False Position.

5. Use Newton’s method to find solutions accurate to within 10−4 for the following problems.

a. x3 − 2x2 − 5 = 0, [1, 4] b. x3 + 3x2 − 1 = 0, [−3,−2]
c. x − cos x = 0, [0,π/2] d. x − 0.8− 0.2 sin x = 0, [0,π/2]

6. Use Newton’s method to find solutions accurate to within 10−5 for the following problems.

a. ex + 2−x + 2 cos x − 6 = 0 for 1 ≤ x ≤ 2

b. ln(x − 1)+ cos(x − 1) = 0 for 1.3 ≤ x ≤ 2

c. 2x cos 2x − (x − 2)2 = 0 for 2 ≤ x ≤ 3 and 3 ≤ x ≤ 4

d. (x − 2)2 − ln x = 0 for 1 ≤ x ≤ 2 and e ≤ x ≤ 4

e. ex − 3x2 = 0 for 0 ≤ x ≤ 1 and 3 ≤ x ≤ 5

f. sin x − e−x = 0 for 0 ≤ x ≤ 1 3 ≤ x ≤ 4 and 6 ≤ x ≤ 7

7. Repeat Exercise 5 using the Secant method.

8. Repeat Exercise 6 using the Secant method.

9. Repeat Exercise 5 using the method of False Position.

10. Repeat Exercise 6 using the method of False Position.

11. Use all three methods in this Section to find solutions to within 10−5 for the following problems.

a. 3xex = 0 for 1 ≤ x ≤ 2

b. 2x + 3 cos x − ex = 0 for 0 ≤ x ≤ 1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

76 C H A P T E R 2 Solutions of Equations in One Variable

12. Use all three methods in this Section to find solutions to within 10−7 for the following problems.

a. x2 − 4x + 4− ln x = 0 for 1 ≤ x ≤ 2 and for 2 ≤ x ≤ 4

b. x + 1− 2 sin πx = 0 for 0 ≤ x ≤ 1/2 and for 1/2 ≤ x ≤ 1

13. Use Newton’s method to approximate, to within 10−4, the value of x that produces the point on the
graph of y = x2 that is closest to (1, 0). [Hint: Minimize [d(x)]2, where d(x) represents the distance
from (x, x2) to (1, 0).]

14. Use Newton’s method to approximate, to within 10−4, the value of x that produces the point on the
graph of y = 1/x that is closest to (2, 1).

15. The following describes Newton’s method graphically: Suppose that f ′(x) exists on [a, b] and that
f ′(x) �= 0 on [a, b]. Further, suppose there exists one p ∈ [a, b] such that f (p) = 0, and let p0 ∈ [a, b]
be arbitrary. Let p1 be the point at which the tangent line to f at (p0, f (p0)) crosses the x-axis. For
each n ≥ 1, let pn be the x-intercept of the line tangent to f at (pn−1, f (pn−1)). Derive the formula
describing this method.

16. Use Newton’s method to solve the equation

0 = 1

2
+ 1

4
x2 − x sin x − 1

2
cos 2x, with p0 = π

2
.

Iterate using Newton’s method until an accuracy of 10−5 is obtained. Explain why the result seems
unusual for Newton’s method. Also, solve the equation with p0 = 5π and p0 = 10π .

17. The fourth-degree polynomial

f (x) = 230x4 + 18x3 + 9x2 − 221x − 9

has two real zeros, one in [−1, 0] and the other in [0, 1]. Attempt to approximate these zeros to within
10−6 using the

a. Method of False Position

b. Secant method

c. Newton’s method

Use the endpoints of each interval as the initial approximations in (a) and (b) and the midpoints as
the initial approximation in (c).

18. The function f (x) = tan πx − 6 has a zero at (1/π) arctan 6 ≈ 0.447431543. Let p0 = 0 and
p1 = 0.48, and use ten iterations of each of the following methods to approximate this root. Which
method is most successful and why?

a. Bisection method

b. Method of False Position

c. Secant method

19. The iteration equation for the Secant method can be written in the simpler form

pn = f (pn−1)pn−2 − f (pn−2)pn−1

f (pn−1)− f (pn−2)
.

Explain why, in general, this iteration equation is likely to be less accurate than the one given in
Algorithm 2.4.

20. The equation x2−10 cos x = 0 has two solutions,±1.3793646. Use Newton’s method to approximate
the solutions to within 10−5 with the following values of p0.

a. p0 = −100 b. p0 = −50 c. p0 = −25

d. p0 = 25 e. p0 = 50 f. p0 = 100

21. The equation 4x2 − ex − e−x = 0 has two positive solutions x1 and x2. Use Newton’s method to
approximate the solution to within 10−5 with the following values of p0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3 Newton’s Method and Its Extensions 77

a. p0 = −10 b. p0 = −5 c. p0 = −3

d. p0 = −1 e. p0 = 0 f. p0 = 1

g. p0 = 3 h. p0 = 5 i. p0 = 10

22. Use Maple to determine how many iterations of Newton’s method with p0 = π/4 are needed to find
a root of f (x) = cos x − x to within 10−100.

23. The function described by f (x) = ln(x2 + 1)− e0.4x cosπx has an infinite number of zeros.

a. Determine, within 10−6, the only negative zero.

b. Determine, within 10−6, the four smallest positive zeros.

c. Determine a reasonable initial approximation to find the nth smallest positive zero of f . [Hint:
Sketch an approximate graph of f .]

d. Use part (c) to determine, within 10−6, the 25th smallest positive zero of f .

24. Find an approximation for λ, accurate to within 10−4, for the population equation

1,564,000 = 1,000,000eλ + 435,000

λ
(eλ − 1),

discussed in the introduction to this chapter. Use this value to predict the population at the end of the
second year, assuming that the immigration rate during this year remains at 435,000 individuals per
year.

25. The sum of two numbers is 20. If each number is added to its square root, the product of the two sums
is 155.55. Determine the two numbers to within 10−4.

26. The accumulated value of a savings account based on regular periodic payments can be determined
from the annuity due equation,

A = P

i
[(1+ i)n − 1].

In this equation, A is the amount in the account, P is the amount regularly deposited, and i is the rate
of interest per period for the n deposit periods. An engineer would like to have a savings account
valued at $750,000 upon retirement in 20 years and can afford to put $1500 per month toward this
goal. What is the minimal interest rate at which this amount can be invested, assuming that the interest
is compounded monthly?

27. Problems involving the amount of money required to pay off a mortgage over a fixed period of time
involve the formula

A = P

i
[1− (1+ i)−n],

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, P is the
amount of each payment, and i is the interest rate per period for the n payment periods. Suppose that a
30-year home mortgage in the amount of $135,000 is needed and that the borrower can afford house
payments of at most $1000 per month. What is the maximal interest rate the borrower can afford to
pay?

28. A drug administered to a patient produces a concentration in the blood stream given by c(t) = Ate−t/3

milligrams per milliliter, t hours after A units have been injected. The maximum safe concentration
is 1 mg/mL.

a. What amount should be injected to reach this maximum safe concentration, and when does this
maximum occur?

b. An additional amount of this drug is to be administered to the patient after the concentration falls
to 0.25 mg/mL. Determine, to the nearest minute, when this second injection should be given.

c. Assume that the concentration from consecutive injections is additive and that 75% of the amount
originally injected is administered in the second injection. When is it time for the third injection?

29. Let f (x) = 33x+1 − 7 · 52x .

a. Use the Maple commands solve and fsolve to try to find all roots of f .

b. Plot f (x) to find initial approximations to roots of f .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

78 C H A P T E R 2 Solutions of Equations in One Variable

c. Use Newton’s method to find roots of f to within 10−16.

d. Find the exact solutions of f (x) = 0 without using Maple.

30. Repeat Exercise 29 using f (x) = 2x2 − 3 · 7x+1.

31. The logistic population growth model is described by an equation of the form

P(t) = PL

1− ce−kt
,

where PL , c, and k > 0 are constants, and P(t) is the population at time t. PL represents the limiting
value of the population since limt→∞ P(t) = PL . Use the census data for the years 1950, 1960, and
1970 listed in the table on page 105 to determine the constants PL , c, and k for a logistic growth model.
Use the logistic model to predict the population of the United States in 1980 and in 2010, assuming
t = 0 at 1950. Compare the 1980 prediction to the actual value.

32. The Gompertz population growth model is described by

P(t) = PLe−ce−kt
,

where PL , c, and k > 0 are constants, and P(t) is the population at time t. Repeat Exercise 31 using
the Gompertz growth model in place of the logistic model.

33. Player A will shut out (win by a score of 21–0) player B in a game of racquetball with probability

P = 1+ p

2

(
p

1− p+ p2

)21

,

where p denotes the probability A will win any specific rally (independent of the server). (See
[Keller, J], p. 267.) Determine, to within 10−3, the minimal value of p that will ensure that A will shut
out B in at least half the matches they play.

34. In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when attempting
to negotiate two types of obstacles. One type of failure is called hang-up failure and occurs when the
vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The
other type of failure is called nose-in failure and occurs when the vehicle descends into a ditch and
its nose touches the ground.

The accompanying figure, adapted from [Bek], shows the components associated with the nose-
in failure of a vehicle. In that reference it is shown that the maximum angle α that can be negotiated by
a vehicle when β is the maximum angle at which hang-up failure does not occur satisfies the equation

A sin α cosα + B sin2 α − C cosα − E sin α = 0,

where

A = l sin β1, B = l cosβ1, C = (h+ 0.5D) sin β1 − 0.5D tan β1,

and E = (h+ 0.5D) cosβ1 − 0.5D.

a. It is stated that when l = 89 in., h = 49 in., D = 55 in., and β1 = 11.5◦, angle α is approximately
33◦. Verify this result.

b. Find α for the situation when l, h, and β1 are the same as in part (a) but D = 30 in.

l

h

D/2

� �
�1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.4 Error Analysis for Iterative Methods 79

2.4 Error Analysis for Iterative Methods

In this section we investigate the order of convergence of functional iteration schemes and,
as a means of obtaining rapid convergence, rediscover Newton’s method. We also consider
ways of accelerating the convergence of Newton’s method in special circumstances. First,
however, we need a new procedure for measuring how rapidly a sequence converges.

Order of Convergence

Definition 2.7 Suppose { pn}∞n=0 is a sequence that converges to p, with pn �= p for all n. If positive constants
λ and α exist with

lim
n→∞
| pn+1 − p|
| pn − p|α = λ,

then { pn}∞n=0 converges to p of order α, with asymptotic error constant λ.

An iterative technique of the form pn = g(pn−1) is said to be of order α if the sequence
{ pn}∞n=0 converges to the solution p = g(p) of order α.

In general, a sequence with a high order of convergence converges more rapidly than a
sequence with a lower order. The asymptotic constant affects the speed of convergence but
not to the extent of the order. Two cases of order are given special attention.

(i) If α = 1 (and λ < 1), the sequence is linearly convergent.

(ii) If α = 2, the sequence is quadratically convergent.

The next illustration compares a linearly convergent sequence to one that is quadrati-
cally convergent. It shows why we try to find methods that produce higher-order convergent
sequences.

Illustration Suppose that { pn}∞n=0 is linearly convergent to 0 with

lim
n→∞
| pn+1|
| pn| = 0.5

and that { p̃n}∞n=0 is quadratically convergent to 0 with the same asymptotic error constant,

lim
n→∞
|p̃n+1|
|p̃n|2 = 0.5.

For simplicity we assume that for each n we have

| pn+1|
| pn| ≈ 0.5 and

|p̃n+1|
|p̃n|2 ≈ 0.5.

For the linearly convergent scheme, this means that

| pn − 0| = | pn| ≈ 0.5| pn−1| ≈ (0.5)2| pn−2| ≈ · · · ≈ (0.5)n| p0|,
whereas the quadratically convergent procedure has

|p̃n − 0| = |p̃n| ≈ 0.5|p̃n−1|2 ≈ (0.5)[0.5|p̃n−2|2]2 = (0.5)3|p̃n−2|4

≈ (0.5)3[(0.5)|p̃n−3|2]4 = (0.5)7|p̃n−3|8

≈ · · · ≈ (0.5)2
n−1|p̃0|2n

.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

80 C H A P T E R 2 Solutions of Equations in One Variable

Table 2.7 illustrates the relative speed of convergence of the sequences to 0 if | p0| = |p̃0| = 1.

Table 2.7 Linear Convergence Quadratic Convergence
Sequence { pn}∞n=0 Sequence { p̃n}∞n=0

n (0.5)n (0.5)2
n−1

1 5.0000× 10−1 5.0000× 10−1

2 2.5000× 10−1 1.2500× 10−1

3 1.2500× 10−1 7.8125× 10−3

4 6.2500× 10−2 3.0518× 10−5

5 3.1250× 10−2 4.6566× 10−10

6 1.5625× 10−2 1.0842× 10−19

7 7.8125× 10−3 5.8775× 10−39

The quadratically convergent sequence is within 10−38 of 0 by the seventh term. At least
126 terms are needed to ensure this accuracy for the linearly convergent sequence. �

Quadratically convergent sequences are expected to converge much quicker than those
that converge only linearly, but the next result implies that an arbitrary technique that
generates a convergent sequences does so only linearly.

Theorem 2.8 Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x ∈ [a, b]. Suppose, in addition, that g′ is
continuous on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b).

If g′(p) �= 0, then for any number p0 �= p in [a, b], the sequence

pn = g(pn−1), for n ≥ 1,

converges only linearly to the unique fixed point p in [a, b].

Proof We know from the Fixed-Point Theorem 2.4 in Section 2.2 that the sequence con-
verges to p. Since g′ exists on (a, b), we can apply the Mean Value Theorem to g to show
that for any n,

pn+1 − p = g(pn)− g(p) = g′(ξn)(pn − p),

where ξn is between pn and p. Since { pn}∞n=0 converges to p, we also have {ξn}∞n=0 converging
to p. Since g′ is continuous on (a, b), we have

lim
n→∞ g′(ξn) = g′(p).

Thus

lim
n→∞

pn+1 − p

pn − p
= lim

n→∞ g′(ξn) = g′(p) and lim
n→∞
| pn+1 − p|
| pn − p| = |g

′(p)|.

Hence, if g′(p) �= 0, fixed-point iteration exhibits linear convergence with asymptotic error
constant |g′(p)|.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.4 Error Analysis for Iterative Methods 81

Theorem 2.8 implies that higher-order convergence for fixed-point methods of the form
g(p) = p can occur only when g′(p) = 0. The next result describes additional conditions
that ensure the quadratic convergence we seek.

Theorem 2.9 Let p be a solution of the equation x = g(x). Suppose that g′(p) = 0 and g′′ is continuous
with |g′′(x)| < M on an open interval I containing p. Then there exists a δ > 0 such that,
for p0 ∈ [p − δ, p + δ], the sequence defined by pn = g(pn−1), when n ≥ 1, converges at
least quadratically to p. Moreover, for sufficiently large values of n,

| pn+1 − p| < M

2
| pn − p|2.

Proof Choose k in (0, 1) and δ > 0 such that on the interval [p−δ, p+δ], contained in I , we
have |g′(x)| ≤ k and g′′ continuous. Since |g′(x)| ≤ k < 1, the argument used in the proof
of Theorem 2.6 in Section 2.3 shows that the terms of the sequence { pn}∞n=0 are contained
in [p− δ, p+ δ]. Expanding g(x) in a linear Taylor polynomial for x ∈ [p− δ, p+ δ] gives

g(x) = g(p)+ g′(p)(x − p)+ g′′(ξ)
2

(x − p)2,

where ξ lies between x and p. The hypotheses g(p) = p and g′(p) = 0 imply that

g(x) = p+ g′′(ξ)
2

(x − p)2.

In particular, when x = pn,

pn+1 = g(pn) = p+ g′′(ξn)

2
(pn − p)2,

with ξn between pn and p. Thus,

pn+1 − p = g′′(ξn)

2
(pn − p)2.

Since |g′(x)| ≤ k < 1 on [p− δ, p+ δ] and g maps [p− δ, p+ δ] into itself, it follows from
the Fixed-Point Theorem that { pn}∞n=0 converges to p. But ξn is between p and pn for each
n, so {ξn}∞n=0 also converges to p, and

lim
n→∞
| pn+1 − p|
| pn − p|2 =

|g′′(p)|
2

.

This result implies that the sequence { pn}∞n=0 is quadratically convergent if g′′(p) �= 0 and
of higher-order convergence if g′′(p) = 0.

Because g′′ is continuous and strictly bounded by M on the interval [p− δ, p+ δ], this
also implies that, for sufficiently large values of n,

| pn+1 − p| < M

2
| pn − p|2.

Theorems 2.8 and 2.9 tell us that our search for quadratically convergent fixed-point
methods should point in the direction of functions whose derivatives are zero at the fixed
point. That is:

• For a fixed point method to converge quadratically we need to have both g(p) = p, and
g′(p) = 0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

82 C H A P T E R 2 Solutions of Equations in One Variable

The easiest way to construct a fixed-point problem associated with a root-finding prob-
lem f (x) = 0 is to add or subtract a multiple of f (x) from x. Consider the sequence

pn = g(pn−1), for n ≥ 1,

for g in the form

g(x) = x − φ(x)f (x),
where φ is a differentiable function that will be chosen later.

For the iterative procedure derived from g to be quadratically convergent, we need to
have g′(p) = 0 when f (p) = 0. Because

g′(x) = 1− φ′(x)f (x)− f ′(x)φ(x),
and f (p) = 0, we have

g′(p) = 1− φ′(p)f (p)− f ′(p)φ(p) = 1− φ′(p) · 0− f ′(p)φ(p) = 1− f ′(p)φ(p),

and g′(p) = 0 if and only if φ(p) = 1/f ′(p).
If we let φ(x) = 1/f ′(x), then we will ensure that φ(p) = 1/f ′(p) and produce the

quadratically convergent procedure

pn = g(pn−1) = pn−1 − f (pn−1)

f ′(pn−1)
.

This, of course, is simply Newton’s method. Hence

• If f (p) = 0 and f ′(p) �= 0, then for starting values sufficiently close to p, Newton’s
method will converge at least quadratically.

Multiple Roots

In the preceding discussion, the restriction was made that f ′(p) �= 0, where p is the solution
to f (x) = 0. In particular, Newton’s method and the Secant method will generally give
problems if f ′(p) = 0 when f (p) = 0. To examine these difficulties in more detail, we
make the following definition.

Definition 2.10 A solution p of f (x) = 0 is a zero of multiplicity m of f if for x �= p, we can write
f (x) = (x − p)mq(x), where limx→p q(x) �= 0.

In essence, q(x) represents that portion of f (x) that does not contribute to the zero of
f . The following result gives a means to easily identify simple zeros of a function, those
that have multiplicity one.

For polynomials, p is a zero
of multiplicity m of f if
f (x) = (x − p)mq(x), where
q(p) �= 0.

Theorem 2.11 The function f ∈ C1[a, b] has a simple zero at p in (a, b) if and only if f (p) = 0, but
f ′(p) �= 0.

Proof If f has a simple zero at p, then f (p) = 0 and f (x) = (x − p)q(x), where
limx→p q(x) �= 0. Since f ∈ C1[a, b],

f ′(p) = lim
x→p

f ′(x) = lim
x→p
[q(x)+ (x − p)q′(x)] = lim

x→p
q(x) �= 0.

Conversely, if f (p) = 0, but f ′(p) �= 0, expand f in a zeroth Taylor polynomial about p.
Then

f (x) = f (p)+ f ′(ξ(x))(x − p) = (x − p)f ′(ξ(x)),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.4 Error Analysis for Iterative Methods 83

where ξ(x) is between x and p. Since f ∈ C1[a, b],
lim
x→p

f ′(ξ(x)) = f ′
(

lim
x→p

ξ(x)
)
= f ′(p) �= 0.

Letting q = f ′ ◦ ξ gives f (x) = (x− p)q(x), where limx→p q(x) �= 0. Thus f has a simple
zero at p.

The following generalization of Theorem 2.11 is considered in Exercise 12.

Theorem 2.12 The function f ∈ Cm[a, b] has a zero of multiplicity m at p in (a, b) if and only if

0 = f (p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p), but f (m)(p) �= 0.

The result in Theorem 2.12 implies that an interval about p exists where Newton’s
method converges quadratically to p for any initial approximation p0 = p, provided that p
is a simple zero. The following example shows that quadratic convergence might not occur
if the zero is not simple.

Example 1 Let f (x) = ex − x− 1. (a) Show that f has a zero of multiplicity 2 at x = 0. (b) Show that
Newton’s method with p0 = 1 converges to this zero but not quadratically.

Solution (a) We have

f (x) = ex − x − 1, f ′(x) = ex − 1 and f ′′(x) = ex,

so

f (0) = e0 − 0− 1 = 0, f ′(0) = e0 − 1 = 0 and f ′′(0) = e0 = 1.

Theorem 2.12 implies that f has a zero of multiplicity 2 at x = 0.

(b) The first two terms generated by Newton’s method applied to f with p0 = 1 are

p1 = p0 − f (p0)

f ′(p0)
= 1− e− 2

e− 1
≈ 0.58198,

and

p2 = p1 − f (p1)

f ′(p1)
≈ 0.58198− 0.20760

0.78957
≈ 0.31906.

The first sixteen terms of the sequence generated by Newton’s method are shown in Table
2.8. The sequence is clearly converging to 0, but not quadratically. The graph of f is shown
in Figure 2.12.

Table 2.8

n pn

0 1.0
1 0.58198
2 0.31906
3 0.16800
4 0.08635
5 0.04380
6 0.02206
7 0.01107
8 0.005545
9 2.7750× 10−3

10 1.3881× 10−3

11 6.9411× 10−4

12 3.4703× 10−4

13 1.7416× 10−4

14 8.8041× 10−5

15 4.2610× 10−5

16 1.9142× 10−6

Figure 2.12

x�1 1

1

e � 2

e�1

f (x) � ex � x � 1

f (x)

(�1, e�1)

(1, e � 2)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

84 C H A P T E R 2 Solutions of Equations in One Variable

One method of handling the problem of multiple roots of a function f is to define

μ(x) = f (x)

f ′(x)
.

If p is a zero of f of multiplicity m with f (x) = (x − p)mq(x), then

μ(x) = (x − p)mq(x)

m(x − p)m−1q(x)+ (x − p)mq′(x)

= (x − p)
q(x)

mq(x)+ (x − p)q′(x)

also has a zero at p. However, q(p) �= 0, so

q(p)

mq(p)+ (p− p)q′(p)
= 1

m
�= 0,

and p is a simple zero of μ(x). Newton’s method can then be applied to μ(x) to give

g(x) = x − μ(x)

μ′(x)
= x − f (x)/f ′(x)

{[f ′(x)]2 − [f (x)][f ′′(x)]}/[f ′(x)]2
which simplifies to

g(x) = x − f (x)f ′(x)
[f ′(x)]2 − f (x)f ′′(x) . (2.13)

If g has the required continuity conditions, functional iteration applied to g will be
quadratically convergent regardless of the multiplicity of the zero of f . Theoretically, the
only drawback to this method is the additional calculation of f ′′(x) and the more laborious
procedure of calculating the iterates. In practice, however, multiple roots can cause serious
round-off problems because the denominator of (2.13) consists of the difference of two
numbers that are both close to 0.

Example 2 In Example 1 it was shown that f (x) = ex − x− 1 has a zero of multiplicity 2 at x = 0 and
that Newton’s method with p0 = 1 converges to this zero but not quadratically. Show that the
modification of Newton’s method as given in Eq. (2.13) improves the rate of convergence.

Solution Modified Newton’s method gives

p1 = p0 − f (p0)f
′(p0)

f ′(p0)2 − f (p0)f ′′(p0)
= 1− (e− 2)(e− 1)

(e− 1)2 −(e− 2)e
≈ −2.3421061× 10−1.

This is considerably closer to 0 than the first term using Newton’s method, which was
0.58918. Table 2.9 lists the first five approximations to the double zero at x = 0. The results
were obtained using a system with ten digits of precision. The relative lack of improvement
in the last two entries is due to the fact that using this system both the numerator and the
denominator approach 0. Consequently there is a loss of significant digits of accuracy as
the approximations approach 0.

Table 2.9

n pn

1 −2.3421061× 10−1

2 −8.4582788× 10−3

3 −1.1889524× 10−5

4 −6.8638230× 10−6

5 −2.8085217× 10−7

The following illustrates that the modified Newton’s method converges quadratically
even when in the case of a simple zero.

Illustration In Section 2.2 we found that a zero of f (x) = x3 + 4x2 − 10 = 0 is p = 1.36523001.
Here we will compare convergence for a simple zero using both Newton’s method and the
modified Newton’s method listed in Eq. (2.13). Let

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.4 Error Analysis for Iterative Methods 85

(i) pn = pn−1 − p3
n−1 + 4p2

n−1 − 10

3p2
n−1 + 8pn−1

, from Newton’s method

and, from the Modified Newton’s method given by Eq. (2.13),

(ii) pn = pn−1 − (p3
n−1 + 4p2

n−1 − 10)(3p2
n−1 + 8pn−1)

(3p2
n−1 + 8pn−1)2 − (p3

n−1 + 4p2
n−1 − 10)(6pn−1 + 8)

.

With p0 = 1.5, we have

Newton’s method

p1 = 1.37333333, p2 = 1.36526201, and p3 = 1.36523001.

Modified Newton’s method

p1 = 1.35689898, p2 = 1.36519585, and p3 = 1.36523001.

Both methods are rapidly convergent to the actual zero, which is given by both methods as
p3. Note, however, that in the case of a simple zero the original Newton’s method requires
substantially less computation. �

Maple contains Modified Newton’s method as described in Eq. (2.13) in its Numerical-
Analysis package. The options for this command are the same as those for the Bisection
method. To obtain results similar to those in Table 2.9 we can use

with(Student[NumericalAnalysis])

f := ex − x − 1

ModifiedNewton
(
f , x = 1.0, tolerance = 10−10, output = sequence, maxiterations = 20

)
Remember that there is sensitivity to round-off error in these calculations, so you might

need to reset Digits in Maple to get the exact values in Table 2.9.

E X E R C I S E S E T 2.4

1. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.

a. x2 − 2xe−x + e−2x = 0, for 0 ≤ x ≤ 1

b. cos(x +√2)+ x(x/2+√2) = 0, for −2 ≤ x ≤ −1

c. x3 − 3x2(2−x)+ 3x(4−x)− 8−x = 0, for 0 ≤ x ≤ 1

d. e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3 = 0, for −1 ≤ x ≤ 0

2. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.

a. 1− 4x cos x + 2x2 + cos 2x = 0, for 0 ≤ x ≤ 1

b. x2 + 6x5 + 9x4 − 2x3 − 6x2 + 1 = 0, for −3 ≤ x ≤ −2

c. sin 3x + 3e−2x sin x − 3e−x sin 2x − e−3x = 0, for 3 ≤ x ≤ 4

d. e3x − 27x6 + 27x4ex − 9x2e2x = 0, for 3 ≤ x ≤ 5

3. Repeat Exercise 1 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 1?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

86 C H A P T E R 2 Solutions of Equations in One Variable

4. Repeat Exercise 2 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 2?

5. Use Newton’s method and the modified Newton’s method described in Eq. (2.13) to find a solution
accurate to within 10−5 to the problem

e6x + 1.441e2x − 2.079e4x − 0.3330 = 0, for − 1 ≤ x ≤ 0.

This is the same problem as 1(d) with the coefficients replaced by their four-digit approximations.
Compare the solutions to the results in 1(d) and 2(d).

6. Show that the following sequences converge linearly to p = 0. How large must n be before |pn − p| ≤
5× 10−2?

a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

7. a. Show that for any positive integer k, the sequence defined by pn = 1/nk converges linearly to
p = 0.

b. For each pair of integers k and m, determine a number N for which 1/Nk < 10−m.

8. a. Show that the sequence pn = 10−2n
converges quadratically to 0.

b. Show that the sequence pn = 10−nk
does not converge to 0 quadratically, regardless of the size

of the exponent k > 1.

9. a. Construct a sequence that converges to 0 of order 3.

b. Suppose α > 1. Construct a sequence that converges to 0 zero of order α.

10. Suppose p is a zero of multiplicity m of f , where f (m) is continuous on an open interval containing
p. Show that the following fixed-point method has g′(p) = 0:

g(x) = x − mf (x)

f ′(x)
.

11. Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges linearly
to 0.

12. Suppose that f has m continuous derivatives. Modify the proof of Theorem 2.11 to show that f has
a zero of multiplicity m at p if and only if

0 = f (p) = f ′(p) = · · · = f (m−1)(p), but f (m)(p) �= 0.

13. The iterative method to solve f (x) = 0, given by the fixed-point method g(x) = x, where

pn = g(pn−1) = pn−1 − f (pn−1)

f ′(pn−1)
− f ′′(pn−1)

2f ′(pn−1)

[
f (pn−1)

f ′(pn−1)

]2

, for n = 1, 2, 3, . . . ,

has g′(p) = g′′(p) = 0. This will generally yield cubic (α = 3) convergence. Expand the analysis of
Example 1 to compare quadratic and cubic convergence.

14. It can be shown (see, for example, [DaB], pp. 228–229) that if { pn}∞n=0 are convergent Secant
method approximations to p, the solution to f (x) = 0, then a constant C exists with |pn+1 − p| ≈
C |pn − p| |pn−1 − p| for sufficiently large values of n. Assume { pn} converges to p of order α, and
show that α = (1+√5)/2. (Note: This implies that the order of convergence of the Secant method
is approximately 1.62).

2.5 Accelerating Convergence

Theorem 2.8 indicates that it is rare to have the luxury of quadratic convergence. We now
consider a technique called Aitken’s �2 method that can be used to accelerate the conver-
gence of a sequence that is linearly convergent, regardless of its origin or application.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.5 Accelerating Convergence 87

Aitken’s �2 Method
Alexander Aitken (1895-1967)
used this technique in 1926 to
accelerate the rate of convergence
of a series in a paper on algebraic
equations [Ai]. This process is
similar to one used much earlier
by the Japanese mathematician
Takakazu Seki Kowa
(1642-1708).

Suppose { pn}∞n=0 is a linearly convergent sequence with limit p. To motivate the construction
of a sequence {p̂n}∞n=0 that converges more rapidly to p than does { pn}∞n=0, let us first assume
that the signs of pn − p, pn+1 − p, and pn+2 − p agree and that n is sufficiently large that

pn+1 − p

pn − p
≈ pn+2 − p

pn+1 − p
.

Then

(pn+1 − p)2 ≈ (pn+2 − p)(pn − p),

so

p2
n+1 − 2pn+1p+ p2 ≈ pn+2pn − (pn + pn+2)p+ p2

and

(pn+2 + pn − 2pn+1)p ≈ pn+2pn − p2
n+1.

Solving for p gives

p ≈ pn+2pn − p2
n+1

pn+2 − 2pn+1 + pn
.

Adding and subtracting the terms p2
n and 2pnpn+1 in the numerator and grouping terms

appropriately gives

p ≈ pnpn+2 − 2pnpn+1 + p2
n − p2

n+1 + 2pnpn+1 − p2
n

pn+2 − 2pn+1 + pn

= pn(pn+2 − 2pn+1 + pn)− (p2
n+1 − 2pnpn+1 + p2

n)

pn+2 − 2pn+1 + pn

= pn − (pn+1 − pn)
2

pn+2 − 2pn+1 + pn
.

Aitken’s �2 method is based on the assumption that the sequence { p̂n}∞n=0, defined by

p̂n = pn − (pn+1 − pn)
2

pn+2 − 2pn+1 + pn
, (2.14)

converges more rapidly to p than does the original sequence { pn}∞n=0.

Example 1 The sequence { pn}∞n=1, where pn = cos(1/n), converges linearly to p = 1. Determine the
first five terms of the sequence given by Aitken’s �2 method.

Solution In order to determine a term p̂n of the Aitken’s �2 method sequence we need to
have the terms pn, pn+1, and pn+2 of the original sequence. So to determine p̂5 we need
the first 7 terms of { pn}. These are given in Table 2.10. It certainly appears that { p̂n}∞n=1
converges more rapidly to p = 1 than does { pn}∞n=1.

Table 2.10

n pn p̂n

1 0.54030 0.96178
2 0.87758 0.98213
3 0.94496 0.98979
4 0.96891 0.99342
5 0.98007 0.99541
6 0.98614
7 0.98981

The� notation associated with this technique has its origin in the following definition.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

88 C H A P T E R 2 Solutions of Equations in One Variable

Definition 2.13 For a given sequence { pn}∞n=0, the forward difference �pn (read “delta pn”) is defined by

�pn = pn+1 − pn, for n ≥ 0.

Higher powers of the operator � are defined recursively by

�kpn = �(�k−1pn), for k ≥ 2.

The definition implies that

�2pn = �(pn+1 − pn) = �pn+1 −�pn = (pn+2 − pn+1)− (pn+1 − pn).

So�2pn = pn+2 − 2pn+1 + pn, and the formula for p̂n given in Eq. (2.14) can be written as

p̂n = pn − (�pn)
2

�2pn
, for n ≥ 0. (2.15)

To this point in our discussion of Aitken’s�2 method, we have stated that the sequence
{p̂n}∞n=0, converges to p more rapidly than does the original sequence { pn}∞n=0, but we have
not said what is meant by the term “more rapid” convergence. Theorem 2.14 explains and
justifies this terminology. The proof of this theorem is considered in Exercise 16.

Theorem 2.14 Suppose that { pn}∞n=0 is a sequence that converges linearly to the limit p and that

lim
n→∞

pn+1 − p

pn − p
< 1.

Then the Aitken’s�2 sequence {p̂n}∞n=0 converges to p faster than { pn}∞n=0 in the sense that

lim
n→∞

p̂n − p

pn − p
= 0.

Steffensen’s Method

Johan Frederik Steffensen
(1873–1961) wrote an influential
book entitled Interpolation in
1927.

By applying a modification of Aitken’s �2 method to a linearly convergent sequence ob-
tained from fixed-point iteration, we can accelerate the convergence to quadratic. This
procedure is known as Steffensen’s method and differs slightly from applying Aitken’s
�2 method directly to the linearly convergent fixed-point iteration sequence. Aitken’s �2

method constructs the terms in order:

p0, p1 = g(p0), p2 = g(p1), p̂0 = {�2}(p0),

p3 = g(p2), p̂1 = {�2}(p1), . . . ,

where {�2} indicates that Eq. (2.15) is used. Steffensen’s method constructs the same
first four terms, p0, p1, p2, and p̂0. However, at this step we assume that p̂0 is a better
approximation to p than is p2 and apply fixed-point iteration to p̂0 instead of p2. Using this
notation, the sequence is

p(0)0 , p(0)1 = g(p(0)0), p(0)2 = g(p(0)1), p(1)0 = {�2}(p(0)0), p(1)1 = g(p(1)0),

Every third term of the Steffensen sequence is generated by Eq. (2.15); the others use
fixed-point iteration on the previous term. The process is described in Algorithm 2.6.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.5 Accelerating Convergence 89

ALGORITHM

2.6
Steffensen’s

To find a solution to p = g(p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p1 = g(p0); (Compute p(i−1)
1 .)

p2 = g(p1); (Compute p(i−1)
2 .)

p = p0 − (p1 − p0)
2/(p2 − 2p1 + p0). (Compute p(i)0 .)

Step 4 If | p− p0| < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(Procedure completed unsuccessfully.)
STOP.

Note that �2pn might be 0, which would introduce a 0 in the denominator of the next
iterate. If this occurs, we terminate the sequence and select p(n−1)

2 as the best approximation.

Illustration To solve x3 + 4x2 − 10 = 0 using Steffensen’s method, let x3 + 4x2 = 10, divide by x+ 4,
and solve for x. This procedure produces the fixed-point method

g(x) =
(

10

x + 4

)1/2

.

We considered this fixed-point method in Table 2.2 column (d) of Section 2.2.

Applying Steffensen’s procedure with p0 = 1.5 gives the values in Table 2.11. The iterate
p(2)0 = 1.365230013 is accurate to the ninth decimal place. In this example, Steffensen’s
method gave about the same accuracy as Newton’s method applied to this polynomial.
These results can be seen in the Illustration at the end of Section 2.4. �

Table 2.11 k p(k)0 p(k)1 p(k)2

0 1.5 1.348399725 1.367376372
1 1.365265224 1.365225534 1.365230583
2 1.365230013

From the Illustration, it appears that Steffensen’s method gives quadratic convergence
without evaluating a derivative, and Theorem 2.14 states that this is the case. The proof of
this theorem can be found in [He2], pp. 90–92, or [IK], pp. 103–107.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

90 C H A P T E R 2 Solutions of Equations in One Variable

Theorem 2.15 Suppose that x = g(x) has the solution p with g′(p) �= 1. If there exists a δ > 0 such
that g ∈ C3[p − δ, p + δ], then Steffensen’s method gives quadratic convergence for any
p0 ∈ [p− δ, p+ δ].

Steffensen’s method can be implemented in Maple with the NumericalAnalysis pack-
age. For example, after entering the function

g :=
√

10

x + 4

the Maple command

Steffensen(fixedpointiterator = g, x = 1.5, tolerance = 10−8, output = information,
maxiterations = 20)

produces the results in Table 2.11, as well as an indication that the final approximation has
a relative error of approximately 7.32× 10−10.

E X E R C I S E S E T 2.5

1. The following sequences are linearly convergent. Generate the first five terms of the sequence {p̂n}
using Aitken’s �2 method.

a. p0 = 0.5, pn = (2− epn−1 + p2
n−1)/3, n ≥ 1

b. p0 = 0.75, pn = (epn−1/3)1/2, n ≥ 1

c. p0 = 0.5, pn = 3−pn−1 , n ≥ 1

d. p0 = 0.5, pn = cos pn−1, n ≥ 1

2. Consider the function f (x) = e6x+3(ln 2)2e2x−(ln 8)e4x−(ln 2)3. Use Newton’s method with p0 = 0
to approximate a zero of f . Generate terms until | pn+1 − pn| < 0.0002. Construct the sequence {p̂n}.
Is the convergence improved?

3. Let g(x) = cos(x − 1) and p(0)0 = 2. Use Steffensen’s method to find p(1)0 .

4. Let g(x) = 1+ (sin x)2 and p(0)0 = 1. Use Steffensen’s method to find p(1)0 and p(2)0 .

5. Steffensen’s method is applied to a function g(x) using p(0)0 = 1 and p(0)2 = 3 to obtain p(1)0 = 0.75.
What is p(0)1 ?

6. Steffensen’s method is applied to a function g(x) using p(0)0 = 1 and p(0)1 =
√

2 to obtain p(1)0 = 2.7802.
What is p(0)2 ?

7. Use Steffensen’s method to find, to an accuracy of 10−4, the root of x3 − x− 1 = 0 that lies in [1, 2],
and compare this to the results of Exercise 6 of Section 2.2.

8. Use Steffensen’s method to find, to an accuracy of 10−4, the root of x − 2−x = 0 that lies in [0, 1],
and compare this to the results of Exercise 8 of Section 2.2.

9. Use Steffensen’s method with p0 = 2 to compute an approximation to
√

3 accurate to within 10−4.
Compare this result with those obtained in Exercise 9 of Section 2.2 and Exercise 12 of Section 2.1.

10. Use Steffensen’s method with p0 = 3 to compute an approximation to 3
√

25 accurate to within 10−4.
Compare this result with those obtained in Exercise 10 of Section 2.2 and Exercise 13 of Section 2.1.

11. Use Steffensen’s method to approximate the solutions of the following equations to within 10−5.

a. x = (2− ex + x2)/3, where g is the function in Exercise 11(a) of Section 2.2.

b. x = 0.5(sin x + cos x), where g is the function in Exercise 11(f) of Section 2.2.

c. x = (ex/3)1/2, where g is the function in Exercise 11(c) of Section 2.2.

d. x = 5−x , where g is the function in Exercise 11(d) of Section 2.2.

12. Use Steffensen’s method to approximate the solutions of the following equations to within 10−5.

a. 2+ sin x − x = 0, where g is the function in Exercise 12(a) of Section 2.2.

b. x3 − 2x − 5 = 0, where g is the function in Exercise 12(b) of Section 2.2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Zeros of Polynomials and Müller’s Method 91

c. 3x2 − ex = 0, where g is the function in Exercise 12(c) of Section 2.2.

d. x − cos x = 0, where g is the function in Exercise 12(d) of Section 2.2.

13. The following sequences converge to 0. Use Aitken’s�2 method to generate {p̂n} until |p̂n| ≤ 5×10−2:

a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

14. A sequence { pn} is said to be superlinearly convergent to p if

lim
n→∞
| pn+1 − p|
| pn − p| = 0.

a. Show that if pn → p of order α for α > 1, then { pn} is superlinearly convergent to p.

b. Show that pn = 1
nn is superlinearly convergent to 0 but does not converge to 0 of order α for any

α > 1.

15. Suppose that { pn} is superlinearly convergent to p. Show that

lim
n→∞
| pn+1 − pn|
| pn − p| = 1.

16. Prove Theorem 2.14. [Hint: Let δn = (pn+1 − p)/(pn − p)− λ, and show that limn→∞ δn = 0. Then
express (p̂n+1 − p)/(pn − p) in terms of δn, δn+1, and λ.]

17. Let Pn(x) be the nth Taylor polynomial for f (x) = ex expanded about x0 = 0.

a. For fixed x, show that pn = Pn(x) satisfies the hypotheses of Theorem 2.14.

b. Let x = 1, and use Aitken’s �2 method to generate the sequence p̂0, . . . , p̂8.

c. Does Aitken’s method accelerate convergence in this situation?

2.6 Zeros of Polynomials and Müller’s Method

A polynomial of degree n has the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where the ai’s, called the coefficients of P, are constants and an �= 0. The zero function,
P(x) = 0 for all values of x, is considered a polynomial but is assigned no degree.

Algebraic Polynomials

Theorem 2.16 (Fundamental Theorem of Algebra)
If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then P(x) = 0
has at least one (possibly complex) root.

Although the Fundamental Theorem of Algebra is basic to any study of elementary
functions, the usual proof requires techniques from the study of complex function theory.
The reader is referred to [SaS], p. 155, for the culmination of a systematic development of
the topics needed to prove the Theorem.

Example 1 Determine all the zeros of the polynomial P(x) = x3 − 5x2 + 17x − 13.

Solution It is easily verified that P(1) = 1− 5+ 17− 13 = 0. so x = 1 is a zero of P and
(x − 1) is a factor of the polynomial. Dividing P(x) by x − 1 gives

P(x) = (x − 1)(x2 − 4x + 13).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

92 C H A P T E R 2 Solutions of Equations in One Variable

To determine the zeros of x2 − 4x + 13 we use the quadratic formula in its standard form,
which gives the complex zeros

−(−4)±√(−4)2 − 4(1)(13)

2(1)
= 4±√−36

2
= 2± 3i.

Hence the third-degree polynomial P(x) has three zeros, x1 = 1, x2 = 2 − 3i, and
x2 = 2+ 3i.

Carl Friedrich Gauss
(1777–1855), one of the greatest
mathematicians of all time,
proved the Fundamental Theorem
of Algebra in his doctoral
dissertation and published it in
1799. He published different
proofs of this result throughout
his lifetime, in 1815, 1816, and as
late as 1848. The result had been
stated, without proof, by Albert
Girard (1595–1632), and partial
proofs had been given by Jean
d’Alembert (1717–1783), Euler,
and Lagrange.

In the preceding example we found that the third-degree polynomial had three distinct
zeros. An important consequence of the Fundamental Theorem of Algebra is the following
corollary. It states that this is always the case, provided that when the zeros are not distinct
we count the number of zeros according to their multiplicities.

Corollary 2.17 If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then there exist
unique constants x1, x2, . . ., xk , possibly complex, and unique positive integers m1, m2, . . .,
mk , such that

∑k
i=1 mi = n and

P(x) = an(x − x1)
m1(x − x2)

m2 · · · (x − xk)
mk .

By Corollary 2.17 the collection of zeros of a polynomial is unique and, if each zero
xi is counted as many times as its multiplicity mi, a polynomial of degree n has exactly n
zeros.

The following corollary of the Fundamental Theorem of Algebra is used often in this
section and in later chapters.

Corollary 2.18 Let P(x) and Q(x) be polynomials of degree at most n. If x1, x2, . . . , xk , with k > n, are
distinct numbers with P(xi) = Q(xi) for i = 1, 2, . . . , k, then P(x) = Q(x) for all values
of x.

This result implies that to show that two polynomials of degree less than or equal to n
are the same, we only need to show that they agree at n+ 1 values. This will be frequently
used, particularly in Chapters 3 and 8.

Horner’s Method

To use Newton’s method to locate approximate zeros of a polynomial P(x), we need to
evaluate P(x) and P′(x) at specified values. Since P(x) and P′(x) are both polynomials,
computational efficiency requires that the evaluation of these functions be done in the nested
manner discussed in Section 1.2. Horner’s method incorporates this nesting technique, and,
as a consequence, requires only n multiplications and n additions to evaluate an arbitrary
nth-degree polynomial.

William Horner (1786–1837) was
a child prodigy who became
headmaster of a school in Bristol
at age 18. Horner’s method for
solving algebraic equations
was published in 1819 in the
Philosophical Transactions of the
Royal Society.

Theorem 2.19 (Horner’s Method)
Let

P(x) = anxn + an−1xn−1 + · · · + a1x + a0.

Define bn = an and

bk = ak + bk+1x0, for k = n− 1, n− 2, . . . , 1, 0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Zeros of Polynomials and Müller’s Method 93

Then b0 = P(x0). Moreover, if

Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,

then

P(x) = (x − x0)Q(x)+ b0.

Paolo Ruffini (1765–1822) had
described a similar method which
won him the gold medal from the
Italian Mathematical Society for
Science. Neither Ruffini nor
Horner was the first to discover
this method; it was known in
China at least 500 years earlier.

Proof By the definition of Q(x),

(x − x0)Q(x)+ b0 = (x − x0)(bnxn−1 + · · · + b2x + b1)+ b0

= (bnxn + bn−1xn−1 + · · · + b2x2 + b1x)

− (bnx0xn−1 + · · · + b2x0x + b1x0)+ b0

= bnxn + (bn−1 − bnx0)x
n−1 + · · · + (b1 − b2x0)x + (b0 − b1x0).

By the hypothesis, bn = an and bk − bk+1x0 = ak , so

(x − x0)Q(x)+ b0 = P(x) and b0 = P(x0).

Example 2 Use Horner’s method to evaluate P(x) = 2x4 − 3x2 + 3x − 4 at x0 = −2.

Solution When we use hand calculation in Horner’s method, we first construct a table,
which suggests the synthetic division name that is often applied to the technique. For this
problem, the table appears as follows:

Coefficient Coefficient Coefficient Coefficient Constant
of x4 of x3 of x2 of x term

x0 = −2 a4 = 2 a3 = 0 a2 = −3 a1 = 3 a0 = −4
b4x0 = −4 b3x0 = 8 b2x0 = −10 b1x0 = 14

b4 = 2 b3 = −4 b2 = 5 b1 = −7 b0 = 10

So,

P(x) = (x + 2)(2x3 − 4x2 + 5x − 7)+ 10.
The word synthetic has its roots
in various languages. In standard
English it generally provides the
sense of something that is “false”
or “substituted”. But in
mathematics it takes the form of
something that is “grouped
together”. Synthetic geometry
treats shapes as whole, rather
than as individual objects, which
is the style in analytic geometry.
In synthetic division of
polynomials, the various powers
of the variables are not explicitly
given but kept grouped together.

An additional advantage of using the Horner (or synthetic-division) procedure is that,
since

P(x) = (x − x0)Q(x)+ b0,

where

Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,

differentiating with respect to x gives

P′(x) = Q(x)+ (x − x0)Q
′(x) and P′(x0) = Q(x0). (2.16)

When the Newton-Raphson method is being used to find an approximate zero of a polyno-
mial, P(x) and P′(x) can be evaluated in the same manner.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

94 C H A P T E R 2 Solutions of Equations in One Variable

Example 3 Find an approximation to a zero of

P(x) = 2x4 − 3x2 + 3x − 4,

using Newton’s method with x0 = −2 and synthetic division to evaluate P(xn) and P′(xn)

for each iterate xn.

Solution With x0 = −2 as an initial approximation, we obtained P(−2) in Example 1 by

x0 = −2 2 0 −3 3 −4
−4 8 −10 14

2 −4 5 −7 10 = P(−2).

Using Theorem 2.19 and Eq. (2.16),

Q(x) = 2x3 − 4x2 + 5x − 7 and P′(−2) = Q(−2),

so P′(−2) can be found by evaluating Q(−2) in a similar manner:

x0 = −2 2 −4 5 −7
−4 16 −42

2 −8 21 −49 = Q(−2) = P′(−2)

and

x1 = x0 − P(x0)

P′(x0)
= x0 − P(x0)

Q(x0)
= −2− 10

−49
≈ −1.796.

Repeating the procedure to find x2 gives

−1.796 2 0 −3 3 −4
−3.592 6.451 −6.197 5.742

2 −3.592 3.451 −3.197 1.742 = P(x1)

−3.592 12.902 −29.368

2 −7.184 16.353 −32.565 = Q(x1) = P′(x1).

So P(−1.796) = 1.742, P′(−1.796) = Q(−1.796) = −32.565, and

x2 = −1.796− 1.742

−32.565
≈ −1.7425.

In a similar manner, x3 = −1.73897, and an actual zero to five decimal places is−1.73896.
Note that the polynomial Q(x) depends on the approximation being used and changes

from iterate to iterate.

Algorithm 2.7 computes P(x0) and P′(x0) using Horner’s method.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Zeros of Polynomials and Müller’s Method 95

ALGORITHM

2.7
Horner’s

To evaluate the polynomial

P(x) = anxn + an−1xn−1 + · · · + a1x + a0 = (x − x0)Q(x)+ b0

and its derivative at x0:

INPUT degree n; coefficients a0, a1, . . . , an; x0.

OUTPUT y = P(x0); z = P′(x0).

Step 1 Set y = an; (Compute bn for P.)
z = an. (Compute bn−1 for Q.)

Step 2 For j = n− 1, n− 2, . . . , 1
set y = x0y+ aj; (Compute bj for P.)

z = x0z + y. (Compute bj−1 for Q.)

Step 3 Set y = x0y+ a0. (Compute b0 for P.)

Step 4 OUTPUT (y, z);
STOP.

If the N th iterate, xN , in Newton’s method is an approximate zero for P, then

P(x) = (x − xN)Q(x)+ b0 = (x − xN)Q(x)+ P(xN) ≈ (x − xN)Q(x),

so x − xN is an approximate factor of P(x). Letting x̂1 = xN be the approximate zero of P
and Q1(x) ≡ Q(x) be the approximate factor gives

P(x) ≈ (x − x̂1)Q1(x).

We can find a second approximate zero of P by applying Newton’s method to Q1(x).
If P(x) is an nth-degree polynomial with n real zeros, this procedure applied repeatedly

will eventually result in (n−2) approximate zeros of P and an approximate quadratic factor
Qn−2(x). At this stage, Qn−2(x) = 0 can be solved by the quadratic formula to find the last
two approximate zeros of P. Although this method can be used to find all the approximate
zeros, it depends on repeated use of approximations and can lead to inaccurate results.

The procedure just described is called deflation. The accuracy difficulty with deflation
is due to the fact that, when we obtain the approximate zeros of P(x), Newton’s method is
used on the reduced polynomial Qk(x), that is, the polynomial having the property that

P(x) ≈ (x − x̂1)(x − x̂2) · · · (x − x̂k)Qk(x).

An approximate zero x̂k+1 of Qk will generally not approximate a root of P(x) = 0 as well
as it does a root of the reduced equation Qk(x) = 0, and inaccuracy increases as k increases.
One way to eliminate this difficulty is to use the reduced equations to find approximations x̂2,
x̂3, . . . , x̂k to the zeros of P, and then improve these approximations by applying Newton’s
method to the original polynomial P(x).

Complex Zeros: Müller’s Method

One problem with applying the Secant, False Position, or Newton’s method to polynomials
is the possibility of the polynomial having complex roots even when all the coefficients are

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

96 C H A P T E R 2 Solutions of Equations in One Variable

real numbers. If the initial approximation is a real number, all subsequent approximations
will also be real numbers. One way to overcome this difficulty is to begin with a complex
initial approximation and do all the computations using complex arithmetic. An alternative
approach has its basis in the following theorem.

Theorem 2.20 If z = a+bi is a complex zero of multiplicity m of the polynomial P(x)with real coefficients,
then z = a − bi is also a zero of multiplicity m of the polynomial P(x), and (x2 − 2ax +
a2 + b2)m is a factor of P(x).

A synthetic division involving quadratic polynomials can be devised to approximately
factor the polynomial so that one term will be a quadratic polynomial whose complex roots
are approximations to the roots of the original polynomial. This technique was described
in some detail in our second edition [BFR]. Instead of proceeding along these lines, we
will now consider a method first presented by D. E. Müller [Mu]. This technique can be
used for any root-finding problem, but it is particularly useful for approximating the roots
of polynomials.

Müller’s method is similar to the
Secant method. But whereas the
Secant method uses a line
through two points on the curve
to approximate the root, Müller’s
method uses a parabola through
three points on the curve for the
approximation.

The Secant method begins with two initial approximations p0 and p1 and determines
the next approximation p2 as the intersection of the x-axis with the line through (p0, f (p0))

and (p1, f (p1)). (See Figure 2.13(a).) Müller’s method uses three initial approximations,
p0, p1, and p2, and determines the next approximation p3 by considering the intersection
of the x-axis with the parabola through (p0, f (p0)), (p1, f (p1)), and (p2, f (p2)). (See
Figure 2.13(b).)

Figure 2.13

x x

y y

f f
p0 p1 p2p0 p1 p2 p3

(a) (b)

The derivation of Müller’s method begins by considering the quadratic polynomial

P(x) = a(x − p2)
2 + b(x − p2)+ c

that passes through (p0, f (p0)), (p1, f (p1)), and (p2, f (p2)). The constants a, b, and c
can be determined from the conditions

f (p0) = a(p0 − p2)
2 + b(p0 − p2)+ c, (2.17)

f (p1) = a(p1 − p2)
2 + b(p1 − p2)+ c, (2.18)

and

f (p2) = a · 02 + b · 0+ c = c (2.19)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Zeros of Polynomials and Müller’s Method 97

to be

c = f (p2), (2.20)

b = (p0 − p2)
2[f (p1)− f (p2)] − (p1 − p2)

2[f (p0)− f (p2)]
(p0 − p2)(p1 − p2)(p0 − p1)

, (2.21)

and

a = (p1 − p2)[f (p0)− f (p2)] − (p0 − p2)[f (p1)− f (p2)]
(p0 − p2)(p1 − p2)(p0 − p1)

. (2.22)

To determine p3, a zero of P, we apply the quadratic formula to P(x) = 0. However, because
of round-off error problems caused by the subtraction of nearly equal numbers, we apply
the formula in the manner prescribed in Eq (1.2) and (1.3) of Section 1.2:

p3 − p2 = −2c

b±√b2 − 4ac
.

This formula gives two possibilities for p3, depending on the sign preceding the radical term.
In Müller’s method, the sign is chosen to agree with the sign of b. Chosen in this manner,
the denominator will be the largest in magnitude and will result in p3 being selected as the
closest zero of P to p2. Thus

p3 = p2 − 2c

b+ sgn(b)
√

b2 − 4ac
,

where a, b, and c are given in Eqs. (2.20) through (2.22).
Once p3 is determined, the procedure is reinitialized using p1, p2, and p3 in place of p0,

p1, and p2 to determine the next approximation, p4. The method continues until a satisfactory
conclusion is obtained. At each step, the method involves the radical

√
b2 − 4ac, so the

method gives approximate complex roots when b2 − 4ac < 0. Algorithm 2.8 implements
this procedure.

ALGORITHM

2.8
Müller’s

To find a solution to f (x) = 0 given three approximations, p0, p1, and p2:

INPUT p0, p1, p2; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f (p1)− f (p0))/h1;
δ2 = (f (p2)− f (p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = 3.

Step 2 While i ≤ N0 do Steps 3–7.

Step 3 b = δ2 + h2d;
D = (b2 − 4f (p2)d)1/2. (Note: May require complex arithmetic.)

Step 4 If |b− D| < |b+ D| then set E = b+ D
else set E = b− D.

Step 5 Set h = −2f (p2)/E;
p = p2 + h.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

98 C H A P T E R 2 Solutions of Equations in One Variable

Step 6 If |h| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 7 Set p0 = p1; (Prepare for next iteration.)
p1 = p2;
p2 = p;
h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f (p1)− f (p0))/h1;
δ2 = (f (p2)− f (p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = i + 1.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

Illustration Consider the polynomial f (x) = x4 − 3x3 + x2 + x + 1, part of whose graph is shown in
Figure 2.14.

Figure 2.14
y

x

1

2

3

1 2 3

�1

�1

y � x � 3x � x � x � 1 4 3 2

Three sets of three initial points will be used with Algorithm 2.8 and TOL = 10−5 to
approximate the zeros of f . The first set will use p0 = 0.5, p1 = −0.5, and p2 = 0. The
parabola passing through these points has complex roots because it does not intersect the
x-axis. Table 2.12 gives approximations to the corresponding complex zeros of f .

Table 2.12 p0 = 0.5, p1 = −0.5, p2 = 0
i pi f (pi)

3 −0.100000+ 0.888819i −0.01120000+ 3.014875548i
4 −0.492146+ 0.447031i −0.1691201− 0.7367331502i
5 −0.352226+ 0.484132i −0.1786004+ 0.0181872213i
6 −0.340229+ 0.443036i 0.01197670− 0.0105562185i
7 −0.339095+ 0.446656i −0.0010550+ 0.000387261i
8 −0.339093+ 0.446630i 0.000000+ 0.000000i
9 −0.339093+ 0.446630i 0.000000+ 0.000000i

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Zeros of Polynomials and Müller’s Method 99

Table 2.13 gives the approximations to the two real zeros of f . The smallest of these uses
p0 = 0.5, p1 = 1.0, and p2 = 1.5, and the largest root is approximated when p0 = 1.5,
p1 = 2.0, and p2 = 2.5.

Table 2.13 p0 = 0.5, p1 = 1.0, p2 = 1.5 p0 = 1.5, p1 = 2.0, p2 = 2.5
i pi f (pi) i pi f (pi)

3 1.40637 −0.04851 3 2.24733 −0.24507
4 1.38878 0.00174 4 2.28652 −0.01446
5 1.38939 0.00000 5 2.28878 −0.00012
6 1.38939 0.00000 6 2.28880 0.00000

7 2.28879 0.00000

The values in the tables are accurate approximations to the places listed. �

We used Maple to generate the results in Table 2.12. To find the first result in the table,
define f (x) with

f := x→ x4 − 3x3 + x2 + x + 1

Then enter the initial approximations with

p0 := 0.5; p1 := −0.5; p2 := 0.0

and evaluate the function at these points with

f 0 := f (p0); f 1 := f (p1); f 2 := f (p2)

To determine the coefficients a, b, c, and the approximate solution, enter

c := f 2;

b :=
(
(p0− p2)2 · (f 1− f 2)− (p1− p2)2 · (f 0− f 2)

)
(p0− p2) · (p1− p2) · (p0− p1)

a := ((p1− p2) · (f 0− f 2)− (p0− p2) · (f 1− f 2))

(p0− p2) · (p1− p2) · (p0− p1)

p3 := p2− 2c

b+
(

b
abs(b)

)√
b2 − 4a · c

This produces the final Maple output

−0.1000000000+ 0.8888194418I

and evaluating at this approximation gives f (p3) as

−0.0112000001+ 3.014875548I

This is our first approximation, as seen in Table 2.12.
The illustration shows that Müller’s method can approximate the roots of polynomials

with a variety of starting values. In fact, Müller’s method generally converges to the root of a
polynomial for any initial approximation choice, although problems can be constructed for

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100 C H A P T E R 2 Solutions of Equations in One Variable

which convergence will not occur. For example, suppose that for some i we have f (pi) =
f (pi+1) = f (pi+2) �= 0. The quadratic equation then reduces to a nonzero constant
function and never intersects the x-axis. This is not usually the case, however, and general-
purpose software packages using Müller’s method request only one initial approximation
per root and will even supply this approximation as an option.

E X E R C I S E S E T 2.6

1. Find the approximations to within 10−4 to all the real zeros of the following polynomials using
Newton’s method.

a. f (x) = x3 − 2x2 − 5

b. f (x) = x3 + 3x2 − 1

c. f (x) = x3 − x − 1

d. f (x) = x4 + 2x2 − x − 3

e. f (x) = x3 + 4.001x2 + 4.002x + 1.101

f. f (x) = x5 − x4 + 2x3 − 3x2 + x − 4

2. Find approximations to within 10−5 to all the zeros of each of the following polynomials by first
finding the real zeros using Newton’s method and then reducing to polynomials of lower degree to
determine any complex zeros.

a. f (x) = x4 + 5x3 − 9x2 − 85x − 136

b. f (x) = x4 − 2x3 − 12x2 + 16x − 40

c. f (x) = x4 + x3 + 3x2 + 2x + 2

d. f (x) = x5 + 11x4 − 21x3 − 10x2 − 21x − 5

e. f (x) = 16x4 + 88x3 + 159x2 + 76x − 240

f. f (x) = x4 − 4x2 − 3x + 5

g. f (x) = x4 − 2x3 − 4x2 + 4x + 4

h. f (x) = x3 − 7x2 + 14x − 6

3. Repeat Exercise 1 using Müller’s method.

4. Repeat Exercise 2 using Müller’s method.

5. Use Newton’s method to find, within 10−3, the zeros and critical points of the following functions.
Use this information to sketch the graph of f .

a. f (x) = x3 − 9x2 + 12 b. f (x) = x4 − 2x3 − 5x2 + 12x − 5

6. f (x) = 10x3 − 8.3x2 + 2.295x− 0.21141 = 0 has a root at x = 0.29. Use Newton’s method with an
initial approximation x0 = 0.28 to attempt to find this root. Explain what happens.

7. Use Maple to find a real zero of the polynomial f (x) = x3 + 4x − 4.

8. Use Maple to find a real zero of the polynomial f (x) = x3 − 2x − 5.

9. Use each of the following methods to find a solution in [0.1, 1] accurate to within 10−4 for

600x4 − 550x3 + 200x2 − 20x − 1 = 0.

a. Bisection method

b. Newton’s method

c. Secant method

d. method of False Position

e. Müller’s method

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Zeros of Polynomials and Müller’s Method 101

10. Two ladders crisscross an alley of width W . Each ladder reaches from the base of one wall to some
point on the opposite wall. The ladders cross at a height H above the pavement. Find W given that
the lengths of the ladders are x1 = 20 ft and x2 = 30 ft, and that H = 8 ft.

x1

x2

H

W

11. A can in the shape of a right circular cylinder is to be constructed to contain 1000 cm3. The circular
top and bottom of the can must have a radius of 0.25 cm more than the radius of the can so that the
excess can be used to form a seal with the side. The sheet of material being formed into the side of
the can must also be 0.25 cm longer than the circumference of the can so that a seal can be formed.
Find, to within 10−4, the minimal amount of material needed to construct the can.

r � 0.25

r

h

12. In 1224, Leonardo of Pisa, better known as Fibonacci, answered a mathematical challenge of John of
Palermo in the presence of Emperor Frederick II: find a root of the equation x3+ 2x2+ 10x = 20. He
first showed that the equation had no rational roots and no Euclidean irrational root—that is, no root

in any of the forms a±√b,
√

a±√b,
√

a±√b, or
√√

a±√b, where a and b are rational numbers.
He then approximated the only real root, probably using an algebraic technique of Omar Khayyam
involving the intersection of a circle and a parabola. His answer was given in the base-60 number
system as

1+ 22

(
1

60

)
+ 7

(
1

60

)2

+ 42

(
1

60

)3

+ 33

(
1

60

)4

+ 4

(
1

60

)5

+ 40

(
1

60

)6

.

How accurate was his approximation?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

102 C H A P T E R 2 Solutions of Equations in One Variable

2.7 Survey of Methods and Software

In this chapter we have considered the problem of solving the equation f (x) = 0, where
f is a given continuous function. All the methods begin with initial approximations and
generate a sequence that converges to a root of the equation, if the method is successful.
If [a, b] is an interval on which f (a) and f (b) are of opposite sign, then the Bisection
method and the method of False Position will converge. However, the convergence of these
methods might be slow. Faster convergence is generally obtained using the Secant method
or Newton’s method. Good initial approximations are required for these methods, two for
the Secant method and one for Newton’s method, so the root-bracketing techniques such
as Bisection or the False Position method can be used as starter methods for the Secant or
Newton’s method.

Müller’s method will give rapid convergence without a particularly good initial approx-
imation. It is not quite as efficient as Newton’s method; its order of convergence near a root
is approximately α = 1.84, compared to the quadratic, α = 2, order of Newton’s method.
However, it is better than the Secant method, whose order is approximately α = 1.62, and
it has the added advantage of being able to approximate complex roots.

Deflation is generally used with Müller’s method once an approximate root of a poly-
nomial has been determined. After an approximation to the root of the deflated equation has
been determined, use either Müller’s method or Newton’s method in the original polynomial
with this root as the initial approximation. This procedure will ensure that the root being
approximated is a solution to the true equation, not to the deflated equation. We recom-
mended Müller’s method for finding all the zeros of polynomials, real or complex. Müller’s
method can also be used for an arbitrary continuous function.

Other high-order methods are available for determining the roots of polynomials. If
this topic is of particular interest, we recommend that consideration be given to Laguerre’s
method, which gives cubic convergence and also approximates complex roots (see [Ho],
pp. 176–179 for a complete discussion), the Jenkins-Traub method (see [JT]), and Brent’s
method (see [Bre]).

Another method of interest, Cauchy’s method, is similar to Müller’s method but avoids
the failure problem of Müller’s method when f (xi) = f (xi+1) = f (xi+2), for some i. For
an interesting discussion of this method, as well as more detail on Müller’s method, we
recommend [YG], Sections 4.10, 4.11, and 5.4.

Given a specified function f and a tolerance, an efficient program should produce an
approximation to one or more solutions of f (x) = 0, each having an absolute or relative
error within the tolerance, and the results should be generated in a reasonable amount
of time. If the program cannot accomplish this task, it should at least give meaningful
explanations of why success was not obtained and an indication of how to remedy the cause
of failure.

IMSL has subroutines that implement Müller’s method with deflation. Also included
in this package is a routine due to R. P. Brent that uses a combination of linear interpolation,
an inverse quadratic interpolation similar to Müller’s method, and the Bisection method.
Laguerre’s method is also used to find zeros of a real polynomial. Another routine for finding
the zeros of real polynomials uses a method of Jenkins-Traub, which is also used to find
zeros of a complex polynomial.

The NAG library has a subroutine that uses a combination of the Bisection method,
linear interpolation, and extrapolation to approximate a real zero of a function on a
given interval. NAG also supplies subroutines to approximate all zeros of a real poly-
nomial or complex polynomial, respectively. Both subroutines use a modified Laguerre
method.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.7 Survey of Methods and Software 103

The netlib library contains a subroutine that uses a combination of the Bisection and
Secant method developed by T. J. Dekker to approximate a real zero of a function in the
interval. It requires specifying an interval that contains a root and returns an interval with
a width that is within a specified tolerance. Another subroutine uses a combination of the
bisection method, interpolation, and extrapolation to find a real zero of the function on the
interval.

MATLAB has a routine to compute all the roots, both real and complex, of a polynomial,
and one that computes a zero near a specified initial approximation to within a specified
tolerance.

Notice that in spite of the diversity of methods, the professionally written packages
are based primarily on the methods and principles discussed in this chapter. You should be
able to use these packages by reading the manuals accompanying the packages to better
understand the parameters and the specifications of the results that are obtained.

There are three books that we consider to be classics on the solution of nonlinear
equations: those by Traub [Tr], by Ostrowski [Os], and by Householder [Ho]. In addition,
the book by Brent [Bre] served as the basis for many of the currently used root-finding
methods.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R

3 Interpolation and Polynomial Approximation

Introduction
A census of the population of the United States is taken every 10 years. The following
table lists the population, in thousands of people, from 1950 to 2000, and the data are also
represented in the figure.

Year 1950 1960 1970 1980 1990 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)

P(t)

t1950

Year

Po
pu

la
tio

n

1 � 108

2 � 108

3 � 108

1960 1970 1980 1990 2000

In reviewing these data, we might ask whether they could be used to provide a rea-
sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of
this type can be obtained by using a function that fits the given data. This process is called
interpolation and is the subject of this chapter. This population problem is considered
throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of
Section 3.5.

105

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

106 C H A P T E R 3 Interpolation and Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where n is a nonnegative integer and a0, . . . , an are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close” to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1
y

xa b

y � f (x)

y � f (x) � ε

y � f (x) � ε

y � P (x)

Theorem 3.1 (Weierstrass Approximation Theorem)
Suppose that f is defined and continuous on [a, b]. For each ε > 0, there exists a polynomial
P(x), with the property that

|f (x)− P(x)| < ε, for all x in [a, b].

The proof of this theorem can be found in most elementary texts on real analysis (see,
for example, [Bart], pp. 165–172).

Another important reason for considering the class of polynomials in the approximation
of functions is that the derivative and indefinite integral of a polynomial are easy to determine
and are also polynomials. For these reasons, polynomials are often used for approximating
continuous functions.

Karl Weierstrass (1815–1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demonstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demonstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.

The Taylor polynomials were introduced in Section 1.1, where they were described
as one of the fundamental building blocks of numerical analysis. Given this prominence,
you might expect that polynomial interpolation would make heavy use of these functions.
However this is not the case. The Taylor polynomials agree as closely as possible with
a given function at a specific point, but they concentrate their accuracy near that point.
A good interpolation polynomial needs to provide a relatively accurate approximation
over an entire interval, and Taylor polynomials do not generally do this. For example,
suppose we calculate the first six Taylor polynomials about x0 = 0 for f (x) = ex.
Since the derivatives of f (x) are all ex, which evaluated at x0 = 0 gives 1, the Taylor
polynomials are

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Interpolation and the Lagrange Polynomial 107

P0(x) = 1, P1(x) = 1+ x, P2(x) = 1+ x + x2

2
, P3(x) = 1+ x + x2

2
+ x3

6
,

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
, and P5(x) = 1+ x + x2

2
+ x3

6
+ x4

24
+ x5

120
.

Very little of Weierstrass’s work
was published during his lifetime,
but his lectures, particularly on
the theory of functions, had
significant influence on an entire
generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the

higher-degree polynomials, the error becomes progressively worse as we move away from
zero.)

Figure 3.2
y

x

5

10

15

20

1�1 2 3

y � P2(x)

y � P3(x)

y � P4(x)

y � P5(x)

y � P1(x)

y � P0(x)

y � ex

Although better approximations are obtained for f (x) = ex if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f (x) = 1/x expanded about x0 = 1 to
approximate f (3) = 1/3. Since

f (x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,

f (k)(x) = (−1)kk!x−k−1,

the Taylor polynomials are

Pn(x) =
n∑

k=0

f (k)(1)

k! (x − 1)k =
n∑

k=0

(−1)k(x − 1)k .

To approximate f (3) = 1/3 by Pn(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f (3) = 1/3 by Pn(3) for larger
values of n, the approximations become increasingly inaccurate.

Table 3.1 n 0 1 2 3 4 5 6 7

Pn(3) 1 −1 3 −5 11 −21 43 −85

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

108 C H A P T E R 3 Interpolation and Polynomial Approximation

For the Taylor polynomials all the information used in the approximation is concentrated
at the single number x0, so these polynomials will generally give inaccurate approximations
as we move away from x0. This limits Taylor polynomial approximation to the situation in
which approximations are needed only at numbers close to x0. For ordinary computational
purposes it is more efficient to use methods that include information at various points. We
consider this in the remainder of the chapter. The primary use of Taylor polynomials in
numerical analysis is not for approximation purposes, but for the derivation of numerical
techniques and error estimation.

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct
points (x0, y0) and (x1, y1) is the same as approximating a function f for which f (x0) = y0

and f (x1) = y1 by means of a first-degree polynomial interpolating, or agreeing with, the
values of f at the given points. Using this polynomial for approximation within the interval
given by the endpoints is called polynomial interpolation.

Define the functions

L0(x) = x − x1

x0 − x1
and L1(x) = x − x0

x1 − x0
.

The linear Lagrange interpolating polynomial through (x0, y0) and (x1, y1) is

P(x) = L0(x)f (x0)+ L1(x)f (x1) = x − x1

x0 − x1
f (x0)+ x − x0

x1 − x0
f (x1).

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, and L1(x1) = 1,

which implies that

P(x0) = 1 · f (x0)+ 0 · f (x1) = f (x0) = y0

and

P(x1) = 0 · f (x0)+ 1 · f (x1) = f (x1) = y1.

So P is the unique polynomial of degree at most one that passes through (x0, y0) and
(x1, y1).

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
and (5, 1).

Solution In this case we have

L0(x) = x − 5

2− 5
= −1

3
(x − 5) and L1(x) = x − 2

5− 2
= 1

3
(x − 2),

so

P(x) = −1

3
(x − 5) · 4+ 1

3
(x − 2) · 1 = −4

3
x + 20

3
+ 1

3
x − 2

3
= −x + 6.

The graph of y = P(x) is shown in Figure 3.3.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Interpolation and the Lagrange Polynomial 109

Figure 3.3

x

y

y � P(x) = �x � 6

1

1

2

3

4

2 3 4 5

(2,4)

(5,1)

To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most n that passes through the n+ 1 points

(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)).

(See Figure 3.4.)

Figure 3.4
y

xx0 x1 x2 xn

y � P(x)

y � f (x)

In this case we first construct, for each k = 0, 1, . . . , n, a function Ln,k(x) with the
property that Ln,k(xi) = 0 when i �= k and Ln,k(xk) = 1. To satisfy Ln,k(xi) = 0 for each
i �= k requires that the numerator of Ln,k(x) contain the term

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn).

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this same term but evaluated at
x = xk . Thus

Ln,k(x) = (x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

A sketch of the graph of a typical Ln,k (when n is even) is shown in Figure 3.5.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

110 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.5

xx0 x1 xk�1 xk xk�1 xn�1 xn

Ln,k(x)

1

.

The interpolating polynomial is easily described once the form of Ln,k is known. This
polynomial, called the nth Lagrange interpolating polynomial, is defined in the following
theorem.

The interpolation formula named
for Joseph Louis Lagrange
(1736–1813) was likely known
by Isaac Newton around 1675,
but it appears to first have been
published in 1779 by Edward
Waring (1736–1798). Lagrange
wrote extensively on the subject
of interpolation and his work had
significant influence on later
mathematicians. He published
this result in 1795.

Theorem 3.2 If x0, x1, . . . , xn are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f (xk) = P(xk), for each k = 0, 1, . . . , n.

This polynomial is given by

P(x) = f (x0)Ln,0(x)+ · · · + f (xn)Ln,n(x) =
n∑

k=0

f (xk)Ln,k(x), (3.1)

where, for each k = 0, 1, . . . , n,

Ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(3.2)

=
n∏

i=0
i �=k

(x − xi)

(xk − xi)
.

The symbol
∏

is used to write
products compactly and parallels
the symbol

∑
, which is used for

writing sums.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Example 2 (a) Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the second
Lagrange interpolating polynomial for f (x) = 1/x.

(b) Use this polynomial to approximate f (3) = 1/3.

Solution (a) We first determine the coefficient polynomials L0(x), L1(x), and L2(x). In
nested form they are

L0(x) = (x − 2.75)(x − 4)

(2− 2.5)(2− 4)
= 2

3
(x − 2.75)(x − 4),

L1(x) = (x − 2)(x − 4)

(2.75− 2)(2.75− 4)
= −16

15
(x − 2)(x − 4),

and

L2(x) = (x − 2)(x − 2.75)

(4− 2)(4− 2.5)
= 2

5
(x − 2)(x − 2.75).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Interpolation and the Lagrange Polynomial 111

Also, f (x0) = f (2) = 1/2, f (x1) = f (2.75) = 4/11, and f (x2) = f (4) = 1/4, so

P(x) =
2∑

k=0

f (xk)Lk(x)

= 1

3
(x − 2.75)(x − 4)− 64

165
(x − 2)(x − 4)+ 1

10
(x − 2)(x − 2.75)

= 1

22
x2 − 35

88
x + 49

44
.

(b) An approximation to f (3) = 1/3 (see Figure 3.6) is

f (3) ≈ P(3) = 9

22
− 105

88
+ 49

44
= 29

88
≈ 0.32955.

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about x0 = 1 could be used to reasonably approximate f (x) = 1/x
at x = 3.

Figure 3.6

x

y

1

2

3

4

51 2 3 4

y � f (x)

y � P(x)

The interpolating polynomial P of degree less than or equal to 3 is defined in Maple
with

P := x→ interp([2, 11/4, 4], [1/2, 4/11, 1/4], x)

x→ interp

([
2,

11

4
, 4

]
,

[
1

2
,

4

11
,

1

4

]
, x

)

To see the polynomial, enter

P(x)

1

22
x2 − 35

88
x + 49

44

Evaluating P(3) as an approximation to f (3) = 1/3, is found with

evalf(P(3))

0.3295454545

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

112 C H A P T E R 3 Interpolation and Polynomial Approximation

The interpolating polynomial can also be defined in Maple using the CurveFitting package
and the call PolynomialInterpolation.

The next step is to calculate a remainder term or bound for the error involved in
approximating a function by an interpolating polynomial.

Theorem 3.3 Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b] and f ∈ Cn+1[a, b]. Then,
for each x in [a, b], a number ξ(x) (generally unknown) between x0, x1, . . . , xn, and hence
in (a, b), exists with

f (x) = P(x)+ f
(n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn), (3.3)

where P(x) is the interpolating polynomial given in Eq. (3.1).There are other ways that the
error term for the Lagrange
polynomial can be expressed, but
this is the most useful form and
the one that most closely agrees
with the standard Taylor
polynomial error form.

Proof Note first that if x = xk , for any k = 0, 1, . . . , n, then f (xk) = P(xk), and choosing
ξ(xk) arbitrarily in (a, b) yields Eq. (3.3).

If x �= xk , for all k = 0, 1, . . . , n, define the function g for t in [a, b] by

g(t) = f (t)− P(t)− [f (x)− P(x)] (t − x0)(t − x1) · · · (t − xn)

(x − x0)(x − x1) · · · (x − xn)

= f (t)− P(t)− [f (x)− P(x)]
n∏

i=0

(t − xi)

(x − xi)
.

Since f ∈ Cn+1[a, b], and P ∈ C∞[a, b], it follows that g ∈ Cn+1[a, b]. For t = xk , we have

g(xk) = f (xk)− P(xk)− [f (x)− P(x)]
n∏

i=0

(xk − xi)

(x − xi)
= 0− [f (x)− P(x)] · 0 = 0.

Moreover,

g(x) = f (x)− P(x)− [f (x)− P(x)]
n∏

i=0

(x − xi)

(x − xi)
= f (x)− P(x)− [f (x)− P(x)] = 0.

Thus g ∈ Cn+1[a, b], and g is zero at the n + 2 distinct numbers x, x0, x1, . . . , xn. By
Generalized Rolle’s Theorem 1.10, there exists a number ξ in (a, b) for which g(n+1)(ξ) = 0.
So

0= g(n+1)(ξ)= f (n+1)(ξ)−P(n+1)(ξ)−[f (x)−P(x)] d
n+1

dtn+1

[
n∏

i=0

(t− xi)

(x− xi)

]
t=ξ

. (3.4)

However P(x) is a polynomial of degree at most n, so the (n+1)st derivative, P(n+1)(x),
is identically zero. Also,

∏n
i=0[(t − xi)/(x − xi)] is a polynomial of degree (n+ 1), so

n∏
i=0

(t − xi)

(x − xi)
=
[

1∏n
i=0(x − xi)

]
tn+1 + (lower-degree terms in t),

and

dn+1

dtn+1

n∏
i=0

(t − xi)

(x − xi)
= (n+ 1)!∏n

i=0(x − xi)
.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Interpolation and the Lagrange Polynomial 113

Equation (3.4) now becomes

0 = f (n+1)(ξ)− 0− [f (x)− P(x)] (n+ 1)!∏n
i=0(x − xi)

,

and, upon solving for f (x), we have

f (x) = P(x)+ f
(n+1)(ξ)

(n+ 1)!
n∏

i=0

(x − xi).

The error formula in Theorem 3.3 is an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and integration
methods. Error bounds for these techniques are obtained from the Lagrange error formula.

Note that the error form for the Lagrange polynomial is quite similar to that for the Tay-
lor polynomial. The nth Taylor polynomial about x0 concentrates all the known information
at x0 and has an error term of the form

f (n+1)(ξ(x))

(n+ 1)! (x − x0)
n+1.

The Lagrange polynomial of degree n uses information at the distinct numbers x0, x1, . . . ,
xn and, in place of (x − x0)

n, its error formula uses a product of the n + 1 terms (x − x0),
(x − x1), . . . , (x − xn):

f (n+1)(ξ(x))

(n+ 1)! (x − x0)(x − x1) · · · (x − xn).

Example 3 In Example 2 we found the second Lagrange polynomial for f (x) = 1/x on [2, 4] using the
nodes x0 = 2, x1 = 2.75, and x2 = 4. Determine the error form for this polynomial, and
the maximum error when the polynomial is used to approximate f (x) for x ε [2, 4].
Solution Because f (x) = x−1, we have

f ′(x) = −x−2, f ′′(x) = 2x−3, and f ′′′(x) = −6x−4.

As a consequence, the second Lagrange polynomial has the error form

f ′′′(ξ(x))
3! (x−x0)(x−x1)(x−x2) = −(ξ(x))−4(x−2)(x−2.75)(x−4), for ξ(x) in (2, 4).

The maximum value of (ξ(x))−4 on the interval is 2−4 = 1/16. We now need to determine
the maximum value on this interval of the absolute value of the polynomial

g(x) = (x − 2)(x − 2.75)(x − 4) = x3 − 35

4
x2 + 49

2
x − 22.

Because

Dx

(
x3 − 35

4
x2 + 49

2
x − 22

)
= 3x2 − 35

2
x + 49

2
= 1

2
(3x − 7)(2x − 7),

the critical points occur at

x = 7

3
, with g

(
7

3

)
= 25

108
, and x = 7

2
, with g

(
7

2

)
= − 9

16
.

Hence, the maximum error is

f ′′′(ξ(x))
3! |(x − x0)(x − x1)(x − x2)| ≤ 1

16 · 6
∣∣∣∣− 9

16

∣∣∣∣ = 3

512
≈ 0.00586.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

114 C H A P T E R 3 Interpolation and Polynomial Approximation

The next example illustrates how the error formula can be used to prepare a table of
data that will ensure a specified interpolation error within a specified bound.

Example 4 Suppose a table is to be prepared for the function f (x) = ex, for x in [0, 1]. Assume the
number of decimal places to be given per entry is d ≥ 8 and that the difference between
adjacent x-values, the step size, is h. What step size h will ensure that linear interpolation
gives an absolute error of at most 10−6 for all x in [0, 1]?
Solution Let x0, x1, . . . be the numbers at which f is evaluated, x be in [0,1], and suppose
j satisfies xj ≤ x ≤ xj+1. Eq. (3.3) implies that the error in linear interpolation is

|f (x)− P(x)| =
∣∣∣∣f (2)(ξ)2! (x − xj)(x − xj+1)

∣∣∣∣ = |f (2)(ξ)|2
|(x − xj)||(x − xj+1)|.

The step size is h, so xj = jh, xj+1 = (j + 1)h, and

|f (x)− P(x)| ≤ |f
(2)(ξ)|
2! |(x − jh)(x − (j + 1)h)|.

Hence

|f (x)− P(x)| ≤ maxξ∈[0,1] eξ

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|

≤ e

2
max

xj≤x≤xj+1
|(x − jh)(x − (j + 1)h)|.

Consider the function g(x) = (x − jh)(x − (j + 1)h), for jh ≤ x ≤ (j + 1)h. Because

g′(x) = (x − (j + 1)h)+ (x − jh) = 2

(
x − jh− h

2

)
,

the only critical point for g is at x = jh+ h/2, with g(jh+ h/2) = (h/2)2 = h2/4.
Since g(jh) = 0 and g((j + 1)h) = 0, the maximum value of |g′(x)| in [jh, (j + 1)h]

must occur at the critical point which implies that

|f (x)− P(x)| ≤ e

2
max

xj≤x≤xj+1
|g(x)| ≤ e

2
· h2

4
= eh2

8
.

Consequently, to ensure that the the error in linear interpolation is bounded by 10−6, it is
sufficient for h to be chosen so that

eh2

8
≤ 10−6. This implies that h < 1.72× 10−3.

Because n = (1 − 0)/h must be an integer, a reasonable choice for the step size is
h = 0.001.

E X E R C I S E S E T 3.1

1. For the given functions f (x), let x0 = 0, x1 = 0.6, and x2 = 0.9. Construct interpolation polynomials
of degree at most one and at most two to approximate f (0.45), and find the absolute error.

a. f (x) = cos x

b. f (x) = √1+ x

c. f (x) = ln(x + 1)

d. f (x) = tan x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Interpolation and the Lagrange Polynomial 115

2. For the given functions f (x), let x0 = 1, x1 = 1.25, and x2 = 1.6. Construct interpolation polynomials
of degree at most one and at most two to approximate f (1.4), and find the absolute error.
a. f (x) = sin πx

b. f (x) = 3
√

x − 1

c. f (x) = log10(3x − 1)

d. f (x) = e2x − x

3. Use Theorem 3.3 to find an error bound for the approximations in Exercise 1.

4. Use Theorem 3.3 to find an error bound for the approximations in Exercise 2.

5. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

6. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate
each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

7. The data for Exercise 5 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = x ln x

b. f (x) = x3 + 4.001x2 + 4.002x + 1.101

c. f (x) = x cos x − 2x2 + 3x − 1

d. f (x) = sin(ex − 2)

8. The data for Exercise 6 were generated using the following functions. Use the error formula to find a
bound for the error, and compare the bound to the actual error for the cases n = 1 and n = 2.

a. f (x) = e2x

b. f (x) = x4 − x3 + x2 − x + 1

c. f (x) = x2 cos x − 3x

d. f (x) = ln(ex + 2)

9. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). The coefficient
of x3 in P3(x) is 6. Find y.

10. Let f (x) = √x − x2 and P2(x) be the interpolation polynomial on x0 = 0, x1 and x2 = 1. Find the
largest value of x1 in (0, 1) for which f (0.5)− P2(0.5) = −0.25.

11. Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno-
mial approximation to f (1.09). The function being approximated is f (x) = log10(tan x). Use this
knowledge to find a bound for the error in the approximation.

f (1.00) = 0.1924 f (1.05) = 0.2414 f (1.10) = 0.2933 f (1.15) = 0.3492

12. Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic
to approximate cos 0.750 using the following values. Find an error bound for the approximation.

cos 0.698 = 0.7661 cos 0.733 = 0.7432 cos 0.768 = 0.7193 cos 0.803 = 0.6946

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the
actual error and the error bound.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

116 C H A P T E R 3 Interpolation and Polynomial Approximation

13. Construct the Lagrange interpolating polynomials for the following functions, and find a bound for
the absolute error on the interval [x0, xn].
a. f (x) = e2x cos 3x, x0 = 0, x1 = 0.3, x2 = 0.6, n = 2

b. f (x) = sin(ln x), x0 = 2.0, x1 = 2.4, x2 = 2.6, n = 2

c. f (x) = ln x, x0 = 1, x1 = 1.1, x2 = 1.3, x3 = 1.4, n = 3

d. f (x) = cos x + sin x, x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 1.0, n = 3

14. Let f (x) = ex , for 0 ≤ x ≤ 2.

a. Approximate f (0.25) using linear interpolation with x0 = 0 and x1 = 0.5.

b. Approximate f (0.75) using linear interpolation with x0 = 0.5 and x1 = 1.

c. Approximate f (0.25) and f (0.75) by using the second interpolating polynomial with x0 = 0,
x1 = 1, and x2 = 2.

d. Which approximations are better and why?

15. Repeat Exercise 11 using Maple with Digits set to 10.

16. Repeat Exercise 12 using Maple with Digits set to 10.

17. Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm
function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 10−6.
Determine a bound for the step size for this table. What choice of step size would you make to ensure
that x = 10 is included in the table?

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use Lagrange interpolation to approximate the population in the years 1940, 1975,
and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28
days after birth. The first sample was reared on young oak leaves, whereas the second sample was
reared on mature leaves from the same tree.

a. Use Lagrange interpolation to approximate the average weight curve for each sample.

b. Find an approximate maximum average weight for each sample by determining the maximum
of the interpolating polynomial.

Day 0 6 10 13 17 20 28

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74
Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89

20. In Exercise 26 of Section 1.1 a Maclaurin series was integrated to approximate erf(1), where erf(x) is
the normal distribution error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt.

a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10−4 for erf(xi),
where xi = 0.2i, for i = 0, 1, . . . , 5.

b. Use both linear interpolation and quadratic interpolation to obtain an approximation to erf(1
3).

Which approach seems most feasible?

21. Prove Taylor’s Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let

g(t) = f (t)− P(t)− [f (x)− P(x)] · (t − x0)
n+1

(x − x0)n+1
,

where P is the nth Taylor polynomial, and use the Generalized Rolle’s Theorem 1.10.]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.2 Data Approximation and Neville’s Method 117

22. Show that max
xj≤x≤xj+1

|g(x)| = h2/4, where g(x) = (x − jh)(x − (j + 1)h).

23. The Bernstein polynomial of degree n for f ∈ C[0, 1] is given by

Bn(x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k ,

where
(n

k

)
denotes n!/k!(n − k)!. These polynomials can be used in a constructive proof of the

Weierstrass Approximation Theorem 3.1 (see [Bart]) because lim
n→∞Bn(x) = f (x), for each x ∈ [0, 1].

a. Find B3(x) for the functions
i. f (x) = x ii. f (x) = 1

b. Show that for each k ≤ n, (
n− 1

k − 1

)
=
(

k

n

)(
n

k

)
.

c. Use part (b) and the fact, from (ii) in part (a), that

1 =
n∑

k=0

(
n

k

)
xk(1− x)n−k , for each n,

to show that, for f (x) = x2,

Bn(x) =
(

n− 1

n

)
x2 + 1

n
x.

d. Use part (c) to estimate the value of n necessary for
∣∣Bn(x)− x2

∣∣ ≤ 10−6 to hold for all x in
[0, 1].

3.2 Data Approximation and Neville’s Method

In the previous section we found an explicit representation for Lagrange polynomials and
their error when approximating a function on an interval. A frequent use of these polynomials
involves the interpolation of tabulated data. In this case an explicit representation of the
polynomial might not be needed, only the values of the polynomial at specified points. In
this situation the function underlying the data might not be known so the explicit form of
the error cannot be used. We will now illustrate a practical application of interpolation in
such a situation.

Illustration Table 3.2 lists values of a function f at various points. The approximations to f (1.5)
obtained by various Lagrange polynomials that use this data will be compared to try and
determine the accuracy of the approximation.

Table 3.2

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

The most appropriate linear polynomial uses x0 = 1.3 and x1 = 1.6 because 1.5 is between
1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

P1(1.5) = (1.5− 1.6)

(1.3− 1.6)
f (1.3)+ (1.5− 1.3)

(1.6− 1.3)
f (1.6)

= (1.5− 1.6)

(1.3− 1.6)
(0.6200860)+ (1.5− 1.3)

(1.6− 1.3)
(0.4554022) = 0.5102968.

Two polynomials of degree 2 can reasonably be used, one with x0 = 1.3, x1 = 1.6, and
x2 = 1.9, which gives

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

118 C H A P T E R 3 Interpolation and Polynomial Approximation

P2(1.5) = (1.5− 1.6)(1.5− 1.9)

(1.3− 1.6)(1.3− 1.9)
(0.6200860)+ (1.5− 1.3)(1.5− 1.9)

(1.6− 1.3)(1.6− 1.9)
(0.4554022)

+ (1.5− 1.3)(1.5− 1.6)

(1.9− 1.3)(1.9− 1.6)
(0.2818186) = 0.5112857,

and one with x0 = 1.0, x1 = 1.3, and x2 = 1.6, which gives P̂2(1.5) = 0.5124715.
In the third-degree case, there are also two reasonable choices for the polynomial. One

with x0 = 1.3, x1 = 1.6, x2 = 1.9, and x3 = 2.2, which gives P3(1.5) = 0.5118302.
The second third-degree approximation is obtained with x0 = 1.0, x1 = 1.3, x2 = 1.6,

and x3 = 1.9, which gives P̂3(1.5) = 0.5118127. The fourth-degree Lagrange polynomial
uses all the entries in the table. With x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2,
the approximation is P4(1.5) = 0.5118200.

Because P3(1.5), P̂3(1.5), and P4(1.5) all agree to within 2 × 10−5 units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation, since it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

|P1(1.5)− f (1.5)| ≈ 1.53× 10−3,

|P2(1.5)− f (1.5)| ≈ 5.42× 10−4,

|P̂2(1.5)− f (1.5)| ≈ 6.44× 10−4,

|P3(1.5)− f (1.5)| ≈ 2.5× 10−6,

|P̂3(1.5)− f (1.5)| ≈ 1.50× 10−5,

|P4(1.5)− f (1.5)| ≈ 7.7× 10−6.

Although P3(1.5) is the most accurate approximation, if we had no knowledge of the actual
value of f (1.5), we would accept P4(1.5) as the best approximation since it includes the
most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be
applied here because we have no knowledge of the fourth derivative of f . Unfortunately,
this is generally the case. �

Neville’s Method

A practical difficulty with Lagrange interpolation is that the error term is difficult to apply,
so the degree of the polynomial needed for the desired accuracy is generally not known
until computations have been performed. A common practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in
the previous Illustration. However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate the third approximation;
nor is the fourth approximation easier to obtain once the third approximation is known,
and so on. We will now derive these approximating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 3.4 Let f be a function defined at x0, x1, x2, . . . , xn, and suppose that m1, m2, . . ., mk are k
distinct integers, with 0 ≤ mi ≤ n for each i. The Lagrange polynomial that agrees with
f (x) at the k points xm1 , xm2 , . . . , xmk is denoted Pm1,m2,...,mk (x).

Example 1 Suppose that x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6, and f (x) = ex. Determine the
interpolating polynomial denoted P1,2,4(x), and use this polynomial to approximate f (5).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.2 Data Approximation and Neville’s Method 119

Solution This is the Lagrange polynomial that agrees with f (x) at x1 = 2, x2 = 3, and
x4 = 6. Hence

P1,2,4(x) = (x − 3)(x − 6)

(2− 3)(2− 6)
e2 + (x − 2)(x − 6)

(3− 2)(3− 6)
e3 + (x − 2)(x − 3)

(6− 2)(6− 3)
e6.

So

f (5) ≈ P(5) = (5− 3)(5− 6)

(2− 3)(2− 6)
e2 + (5− 2)(5− 6)

(3− 2)(3− 6)
e3 + (5− 2)(5− 3)

(6− 2)(6− 3)
e6

=− 1

2
e2 + e3 + 1

2
e6 ≈ 218.105.

The next result describes a method for recursively generating Lagrange polynomial
approximations.

Theorem 3.5 Let f be defined at x0, x1, . . . , xk , and let xj and xi be two distinct numbers in this set. Then

P(x) = (x − xj)P0,1,...,j−1,j+1,...,k(x)− (x − xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)

is the kth Lagrange polynomial that interpolates f at the k + 1 points x0, x1, . . . , xk .

Proof For ease of notation, let Q ≡ P0,1,...,i−1,i+1,...,k and Q̂ ≡ P0,1,...,j−1,j+1,...,k . Since Q(x)
and Q̂(x) are polynomials of degree k − 1 or less, P(x) is of degree at most k.

First note that Q̂(xi) = f (xi), implies that

P(xi) = (xi − xj)Q̂(xi)− (xi − xi)Q(xi)

xi − xj
= (xi − xj)

(xi − xj)
f (xi) = f (xi).

Similarly, since Q(xj) = f (xj), we have P(xj) = f (xj).
In addition, if 0 ≤ r ≤ k and r is neither i nor j, then Q(xr) = Q̂(xr) = f (xr). So

P(xr) = (xr − xj)Q̂(xr)− (xr − xi)Q(xr)

xi − xj
= (xi − xj)

(xi − xj)
f (xr) = f (xr).

But, by definition, P0,1,...,k(x) is the unique polynomial of degree at most k that agrees with
f at x0, x1, . . . , xk . Thus, P ≡ P0,1,...,k .

Theorem 3.5 implies that the interpolating polynomials can be generated recursively.
For example, we have

P0,1 = 1

x1 − x0
[(x − x0)P1 − (x − x1)P0], P1,2 = 1

x2 − x1
[(x − x1)P2 − (x − x2)P1],

P0,1,2 = 1

x2 − x0
[(x − x0)P1,2 − (x − x2)P0,1],

and so on. They are generated in the manner shown in Table 3.3, where each row is completed
before the succeeding rows are begun.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

120 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.3 x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4

The procedure that uses the result of Theorem 3.5 to recursively generate interpolating
polynomial approximations is called Neville’s method. The P notation used in Table 3.3
is cumbersome because of the number of subscripts used to represent the entries. Note,
however, that as an array is being constructed, only two subscripts are needed. Proceeding
down the table corresponds to using consecutive points xi with larger i, and proceeding to
the right corresponds to increasing the degree of the interpolating polynomial. Since the
points appear consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation.

Eric Harold Neville (1889–1961)
gave this modification of the
Lagrange formula in a paper
published in 1932.[N]

To avoid the multiple subscripts, we let Qi,j(x), for 0 ≤ j ≤ i, denote the interpolating
polynomial of degree j on the (j + 1) numbers xi−j, xi−j+1, . . . , xi−1, xi; that is,

Qi,j = Pi−j,i−j+1,...,i−1,i.

Using this notation provides the Q notation array in Table 3.4.

Table 3.4 x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4

Example 2 Values of various interpolating polynomials at x = 1.5 were obtained in the Illustration at
the beginning of the Section using the data shown in Table 3.5. Apply Neville’s method to
the data by constructing a recursive table of the form shown in Table 3.4.

Table 3.5

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution Let x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, then Q0,0 = f (1.0),
Q1,0 = f (1.3), Q2,0 = f (1.6), Q3,0 = f (1.9), and Q4,0 = f (2.2). These are the five
polynomials of degree zero (constants) that approximate f (1.5), and are the same as data
given in Table 3.5.

Calculating the first-degree approximation Q1,1(1.5) gives

Q1,1(1.5) = (x − x0)Q1,0 − (x − x1)Q0,0

x1 − x0

= (1.5− 1.0)Q1,0 − (1.5− 1.3)Q0,0

1.3− 1.0

= 0.5(0.6200860)− 0.2(0.7651977)

0.3
= 0.5233449.

Similarly,

Q2,1(1.5) = (1.5− 1.3)(0.4554022)− (1.5− 1.6)(0.6200860)

1.6− 1.3
= 0.5102968,

Q3,1(1.5) = 0.5132634, and Q4,1(1.5) = 0.5104270.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.2 Data Approximation and Neville’s Method 121

The best linear approximation is expected to be Q2,1 because 1.5 is between x1 = 1.3
and x2 = 1.6.

In a similar manner, approximations using higher-degree polynomials are given by

Q2,2(1.5) = (1.5− 1.0)(0.5102968)− (1.5− 1.6)(0.5233449)

1.6− 1.0
= 0.5124715,

Q3,2(1.5) = 0.5112857, and Q4,2(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown in
Table 3.6.

Table 3.6 1.0 0.7651977
1.3 0.6200860 0.5233449
1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, Q4,4, was not sufficiently accurate, another node, x5, could
be selected, and another row added to the table:

x5 Q5,0 Q5,1 Q5,2 Q5,3 Q5,4 Q5,5.

Then Q4,4, Q5,4, and Q5,5 could be compared to determine further accuracy.
The function in Example 2 is the Bessel function of the first kind of order zero, whose

value at 2.5 is −0.0483838, and the next row of approximations to f (1.5) is

2.5 − 0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry, 0.5118277, is correct to all seven decimal places.
The NumericalAnalysis package in Maple can be used to apply Neville’s method for

the values of x and f (x) = y in Table 3.6. After loading the package we define the data
with

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
Neville’s method using this data gives the approximation at x = 1.5 with the command

p3 := PolynomialInterpolation(xy, method = neville, extrapolate = [1.5])
The output from Maple for this command is

POLYINTERP([[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]],
method = neville, extrapolate = [1.5], INFO)

which isn’t very informative. To display the information, we enter the command

NevilleTable(p3, 1.5)

and Maple returns an array with four rows and four columns. The nonzero entries corre-
sponding to the top four rows of Table 3.6 (with the first column deleted), the zero entries
are simply used to fill up the array.

To add the additional row to the table using the additional data (2.2, 0.1103623) we
use the command

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

122 C H A P T E R 3 Interpolation and Polynomial Approximation

p3a := AddPoint(p3, [2.2, 0.1103623])
and a new array with all the approximation entries in Table 3.6 is obtained with

NevilleTable(p3a, 1.5)

Example 3 Table 3.7 lists the values of f (x) = ln x accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximatef (2.1) = ln 2.1 by completing the Neville
table.Table 3.7

i xi ln xi

0 2.0 0.6931
1 2.2 0.7885
2 2.3 0.8329

Solution Because x − x0 = 0.1, x − x1 = −0.1, x − x2 = −0.2, and we are given
Q0,0 = 0.6931, Q1,0 = 0.7885, and Q2,0 = 0.8329, we have

Q1,1 = 1

0.2
[(0.1)0.7885− (−0.1)0.6931] = 0.1482

0.2
= 0.7410

and

Q2,1 = 1

0.1
[(−0.1)0.8329− (−0.2)0.7885] = 0.07441

0.1
= 0.7441.

The final approximation we can obtain from this data is

Q2,1 = 1

0.3
[(0.1)0.7441− (−0.2)0.7410] = 0.2276

0.3
= 0.7420.

These values are shown in Table 3.8.

Table 3.8 i xi x − xi Qi0 Qi1 Qi2

0 2.0 0.1 0.6931
1 2.2 −0.1 0.7885 0.7410
2 2.3 −0.2 0.8329 0.7441 0.7420

In the preceding example we have f (2.1) = ln 2.1 = 0.7419 to four decimal places,
so the absolute error is

|f (2.1)− P2(2.1)| = |0.7419− 0.7420| = 10−4.

However, f ′(x) = 1/x, f ′′(x) = −1/x2, and f ′′′(x) = 2/x3, so the Lagrange error formula
(3.3) in Theorem 3.3 gives the error bound

|f (2.1)− P2(2.1)| =
∣∣∣∣f ′′′(ξ(2.1))

3! (x − x0)(x − x1)(x − x2)

∣∣∣∣
=
∣∣∣∣ 1

3 (ξ(2.1))3
(0.1)(−0.1)(−0.2)

∣∣∣∣ ≤ 0.002

3(2)3
= 8.3× 10−5.

Notice that the actual error, 10−4, exceeds the error bound, 8.3× 10−5. This apparent
contradiction is a consequence of finite-digit computations. We used four-digit rounding
arithmetic, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This
caused our actual errors to exceed the theoretical error estimate.

• Remember: You cannot expect more accuracy than the arithmetic provides.

Algorithm 3.1 constructs the entries in Neville’s method by rows.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.2 Data Approximation and Neville’s Method 123

ALGORITHM

3.1
Neville’s Iterated Interpolation

To evaluate the interpolating polynomial P on the n+ 1 distinct numbers x0, . . . , xn at the
number x for the function f :

INPUT numbers x, x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as the first column
Q0,0, Q1,0, . . . , Qn,0 of Q.

OUTPUT the table Q with P(x) = Qn,n.

Step 1 For i = 1, 2, . . . , n
for j = 1, 2, . . . , i

set Qi,j = (x − xi−j)Qi, j−1 − (x − xi)Qi−1, j−1

xi − xi−j
.

Step 2 OUTPUT (Q);
STOP.

The algorithm can be modified to allow for the addition of new interpolating nodes.
For example, the inequality

|Qi,i − Qi−1,i−1| < ε

can be used as a stopping criterion, where ε is a prescribed error tolerance. If the inequality is
true, Qi,i is a reasonable approximation to f (x). If the inequality is false, a new interpolation
point, xi+1, is added.

E X E R C I S E S E T 3.2

1. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

3. Use Neville’s method to approximate
√

3 with the following functions and values.

a. f (x) = 3x and the values x0 = −2, x1 = −1, x2 = 0, x3 = 1, and x4 = 2.

b. f (x) = √x and the values x0 = 0, x1 = 1, x2 = 2, x3 = 4, and x4 = 5.

c. Compare the accuracy of the approximation in parts (a) and (b).

4. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). Use Neville’s
method to find y if P3(1.5) = 0.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

124 C H A P T E R 3 Interpolation and Polynomial Approximation

5. Neville’s method is used to approximate f (0.4), giving the following table.

x0 = 0 P0 = 1
x1 = 0.25 P1 = 2 P01 = 2.6
x2 = 0.5 P2 P1,2 P0,1,2

x3 = 0.75 P3 = 8 P2,3 = 2.4 P1,2,3 = 2.96 P0,1,2,3 = 3.016

Determine P2 = f (0.5).

6. Neville’s method is used to approximate f (0.5), giving the following table.

x0 = 0 P0 = 0
x1 = 0.4 P1 = 2.8 P0,1 = 3.5
x2 = 0.7 P2 P1,2 P0,1,2 = 27

7

Determine P2 = f (0.7).

7. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = 2x + 1, P0,2(x) = x + 1, and P1,2,3(2.5) = 3.

Find P0,1,2,3(2.5).

8. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = x + 1, P1,2(x) = 3x − 1, and P1,2,3(1.5) = 4.

Find P0,1,2,3(1.5).

9. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was understated by 2 and f (1) was overstated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

10. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was overstated by 2 and f (1) was understated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

11. Construct a sequence of interpolating values yn to f (1 + √10), where f (x) = (1 + x2)−1 for
−5 ≤ x ≤ 5, as follows: For each n = 1, 2, . . . , 10, let h = 10/n and yn = Pn(1+

√
10), where Pn(x)

is the interpolating polynomial for f (x) at the nodes x(n)0 , x(n)1 , . . . , x(n)n and x(n)j = −5 + jh, for each

j = 0, 1, 2, . . . , n. Does the sequence {yn} appear to converge to f (1+√10)?

Inverse Interpolation Suppose f ∈ C1[a, b], f ′(x) �= 0 on [a, b] and f has one zero p in [a, b].
Let x0, . . . , xn, be n + 1 distinct numbers in [a, b] with f (xk) = yk , for each k = 0, 1, . . . , n. To
approximate p construct the interpolating polynomial of degree n on the nodes y0, . . . , yn for f −1.
Since yk = f (xk) and 0 = f (p), it follows that f −1(yk) = xk and p = f −1(0). Using iterated
interpolation to approximate f −1(0) is called iterated inverse interpolation.

12. Use iterated inverse interpolation to find an approximation to the solution of x − e−x = 0, using the
data

x 0.3 0.4 0.5 0.6

e−x 0.740818 0.670320 0.606531 0.548812

13. Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Divided Differences 125

Suppose that Pn(x) is the nth Lagrange polynomial that agrees with the function f at
the distinct numbers x0, x1, . . . , xn. Although this polynomial is unique, there are alternate
algebraic representations that are useful in certain situations. The divided differences of f
with respect to x0, x1, . . . , xn are used to express Pn(x) in the form

Pn(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)+ · · · + an(x − x0) · · · (x − xn−1), (3.5)

for appropriate constants a0, a1, . . . , an. To determine the first of these constants, a0, note
that if Pn(x) is written in the form of Eq. (3.5), then evaluating Pn(x) at x0 leaves only the
constant term a0; that is,

a0 = Pn(x0) = f (x0).

Similarly, when P(x) is evaluated at x1, the only nonzero terms in the evaluation of
Pn(x1) are the constant and linear terms,

f (x0)+ a1(x1 − x0) = Pn(x1) = f (x1);

so

a1 = f (x1)− f (x0)

x1 − x0
. (3.6)

As in so many areas, Isaac
Newton is prominent in the study
of difference equations. He
developed interpolation formulas
as early as 1675, using his �
notation in tables of differences.
He took a very general approach
to the difference formulas, so
explicit examples that he
produced, including Lagrange’s
formulas, are often known by
other names.

We now introduce the divided-difference notation, which is related to Aitken’s �2

notation used in Section 2.5. The zeroth divided difference of the function f with respect
to xi, denoted f [xi], is simply the value of f at xi:

f [xi] = f (xi). (3.7)

The remaining divided differences are defined recursively; the first divided difference
of f with respect to xi and xi+1 is denoted f [xi, xi+1] and defined as

f [xi, xi+1] = f [xi+1] − f [xi]
xi+1 − xi

. (3.8)

The second divided difference, f [xi, xi+1, xi+2], is defined as

f [xi, xi+1, xi+2] = f [xi+1, xi+2] − f [xi, xi+1]
xi+2 − xi

.

Similarly, after the (k − 1)st divided differences,

f [xi, xi+1, xi+2, . . . , xi+k−1] and f [xi+1, xi+2, . . . , xi+k−1, xi+k],
have been determined, the kth divided difference relative to xi, xi+1, xi+2, . . . , xi+k is

f [xi, xi+1, . . . , xi+k−1, xi+k] = f [xi+1, xi+2, . . . , xi+k] − f [xi, xi+1, . . . , xi+k−1]
xi+k − xi

. (3.9)

The process ends with the single nth divided difference,

f [x0, x1, . . . , xn] = f [x1, x2, . . . , xn] − f [x0, x1, . . . , xn−1]
xn − x0

.

Because of Eq. (3.6) we can write a1 = f [x0, x1], just as a0 can be expressed as a0 =
f (x0) = f [x0]. Hence the interpolating polynomial in Eq. (3.5) is

Pn(x) = f [x0] + f [x0, x1](x − x0)+ a2(x − x0)(x − x1)

+ · · · + an(x − x0)(x − x1) · · · (x − xn−1).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

126 C H A P T E R 3 Interpolation and Polynomial Approximation

As might be expected from the evaluation of a0 and a1, the required constants are

ak = f [x0, x1, x2, . . . , xk],
for each k = 0, 1, . . . , n. So Pn(x) can be rewritten in a form called Newton’s Divided-
Difference:

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1). (3.10)

The value of f [x0, x1, . . . , xk] is independent of the order of the numbers x0, x1, . . . , xk , as
shown in Exercise 21.

The generation of the divided differences is outlined in Table 3.9. Two fourth and one
fifth difference can also be determined from these data.

Table 3.9

First Second Third
x f (x) divided differences divided differences divided differences

x0 f [x0]
f [x0, x1] = f [x1] − f [x0]

x1 − x0

x1 f [x1] f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

f [x1, x2] = f [x2] − f [x1]
x2 − x1

f [x0, x1, x2, x3] = f [x1, x2, x3] − f [x0, x1, x2]
x3 − x0

x2 f [x2] f [x1, x2, x3] = f [x2, x3] − f [x1, x2]
x3 − x1

f [x2, x3] = f [x3] − f [x2]
x3 − x2

f [x1, x2, x3, x4] = f [x2, x3, x4] − f [x1, x2, x3]
x4 − x1

x3 f [x3] f [x2, x3, x4] = f [x3, x4] − f [x2, x3]
x4 − x2

f [x3, x4] = f [x4] − f [x3]
x4 − x3

f [x2, x3, x4, x5] = f [x3, x4, x5] − f [x2, x3, x4]
x5 − x2

x4 f [x4] f [x3, x4, x5] = f [x4, x5] − f [x3, x4]
x5 − x3

f [x4, x5] = f [x5] − f [x4]
x5 − x4

x5 f [x5]

ALGORITHM

3.2
Newton’s Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1)
distinct numbers x0, x1, . . . , xn for the function f :

INPUT numbers x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as F0,0, F1,0, . . . , Fn,0.

OUTPUT the numbers F0,0, F1,1, . . . , Fn,n where

Pn(x) = F0,0 +
n∑

i=1

Fi,i

i−1∏
j=0

(x − xj). (Fi,i is f [x0, x1, . . . , xi].)
Step 1 For i = 1, 2, . . . , n

For j = 1, 2, . . . , i

set Fi,j = Fi,j−1 − Fi−1,j−1

xi − xi−j
. (Fi,j = f [xi−j, . . . , xi].)

Step 2 OUTPUT (F0,0, F1,1, . . . , Fn,n);
STOP.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Divided Differences 127

The form of the output in Algorithm 3.2 can be modified to produce all the divided
differences, as shown in Example 1.

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and
reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.Table 3.10

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution The first divided difference involving x0 and x1 is

f [x0, x1] = f [x1] − f [x0]
x1 − x0

= 0.6200860− 0.7651977

1.3− 1.0
= −0.4837057.

The remaining first divided differences are found in a similar manner and are shown in the
fourth column in Table 3.11.

Table 3.11 i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, . . . , xi] f [xi−4, . . . , xi]
0 1.0 0.7651977

−0.4837057
1 1.3 0.6200860 −0.1087339

−0.5489460 0.0658784
2 1.6 0.4554022 −0.0494433 0.0018251

−0.5786120 0.0680685
3 1.9 0.2818186 0.0118183

−0.5715210
4 2.2 0.1103623

The second divided difference involving x0, x1, and x2 is

f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

= −0.5489460− (−0.4837057)

1.6− 1.0
= −0.1087339.

The remaining second divided differences are shown in the 5th column of Table 3.11.
The third divided difference involving x0, x1, x2, and x3 and the fourth divided difference
involving all the data points are, respectively,

f [x0, x1, x2, x3] = f [x1, x2, x3] − f [x0, x1, x2]
x3 − x0

= −0.0494433− (−0.1087339)

1.9− 1.0

= 0.0658784,

and

f [x0, x1, x2, x3, x4] = f [x1, x2, x3, x4] − f [x0, x1, x2, x3]
x4 − x0

= 0.0680685− 0.0658784

2.2− 1.0

= 0.0018251.

All the entries are given in Table 3.11.
The coefficients of the Newton forward divided-difference form of the interpolating

polynomial are along the diagonal in the table. This polynomial is

P4(x) = 0.7651977− 0.4837057(x − 1.0)− 0.1087339(x − 1.0)(x − 1.3)

+ 0.0658784(x − 1.0)(x − 1.3)(x − 1.6)

+ 0.0018251(x − 1.0)(x − 1.3)(x − 1.6)(x − 1.9).

Notice that the value P4(1.5) = 0.5118200 agrees with the result in Table 3.6 for Example
2 of Section 3.2, as it must because the polynomials are the same.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

128 C H A P T E R 3 Interpolation and Polynomial Approximation

We can use Maple with the NumericalAnalysis package to create the Newton Divided-
Difference table. First load the package and define the x and f (x) = y values that will be
used to generate the first four rows of Table 3.11.

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
The command to create the divided-difference table is

p3 := PolynomialInterpolation(xy, independentvar = ‘x’, method = newton)

A matrix containing the divided-difference table as its nonzero entries is created with the

DividedDifferenceTable(p3)

We can add another row to the table with the command

p4 := AddPoint(p3, [2.2, 0.1103623])
which produces the divided-difference table with entries corresponding to those in
Table 3.11.

The Newton form of the interpolation polynomial is created with

Interpolant(p4)

which produces the polynomial in the form of P4(x) in Example 1, except that in place of
the first two terms of P4(x):

0.7651977− 0.4837057(x − 1.0)

Maple gives this as 1.248903367− 0.4837056667x.
The Mean Value Theorem 1.8 applied to Eq. (3.8) when i = 0,

f [x0, x1] = f (x1)− f (x0)

x1 − x0
,

implies that when f ′ exists, f [x0, x1] = f ′(ξ) for some number ξ between x0 and x1. The
following theorem generalizes this result.

Theorem 3.6 Suppose that f ∈ Cn[a, b] and x0, x1, . . . , xn are distinct numbers in [a, b]. Then a number ξ
exists in (a, b) with

f [x0, x1, . . . , xn] = f (n)(ξ)

n! .

Proof Let

g(x) = f (x)− Pn(x).

Since f (xi) = Pn(xi) for each i = 0, 1, . . . , n, the function g has n+1 distinct zeros in [a, b].
Generalized Rolle’s Theorem 1.10 implies that a number ξ in (a, b) exists with g(n)(ξ) = 0,
so

0 = f (n)(ξ)− P(n)n (ξ).

Since Pn(x) is a polynomial of degree n whose leading coefficient is f [x0, x1, . . . , xn],
P(n)n (x) = n!f [x0, x1, . . . , xn],

for all values of x. As a consequence,

f [x0, x1, . . . , xn] = f (n)(ξ)

n! .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Divided Differences 129

Newton’s divided-difference formula can be expressed in a simplified form when the
nodes are arranged consecutively with equal spacing. In this case, we introduce the notation
h = xi+1 − xi, for each i = 0, 1, . . . , n − 1 and let x = x0 + sh. Then the difference x − xi

is x − xi = (s− i)h. So Eq. (3.10) becomes

Pn(x) = Pn(x0 + sh) = f [x0] + shf [x0, x1] + s(s− 1)h2f [x0, x1, x2]
+ · · · + s(s− 1) · · · (s− n+ 1)hnf [x0, x1, . . . , xn]

= f [x0] +
n∑

k=1

s(s− 1) · · · (s− k + 1)hkf [x0, x1, . . . , xk].

Using binomial-coefficient notation,(
s

k

)
= s(s− 1) · · · (s− k + 1)

k! ,

we can express Pn(x) compactly as

Pn(x) = Pn(x0 + sh) = f [x0] +
n∑

k=1

(
s

k

)
k!hkf [x0, xi, . . . , xk]. (3.11)

Forward Differences

The Newton forward-difference formula, is constructed by making use of the forward
difference notation � introduced in Aitken’s �2 method. With this notation,

f [x0, x1] = f (x1)− f (x0)

x1 − x0
= 1

h
(f (x1)− f (x0)) = 1

h
�f (x0)

f [x0, x1, x2] = 1

2h

[
�f (x1)−�f (x0)

h

]
= 1

2h2
�2f (x0),

and, in general,

f [x0, x1, . . . , xk] = 1

k!hk
�kf (x0).

Since f [x0] = f (x0), Eq. (3.11) has the following form.

Newton Forward-Difference Formula

Pn(x) = f (x0)+
n∑

k=1

(
s

k

)
�kf (x0) (3.12)

Backward Differences

If the interpolating nodes are reordered from last to first as xn, xn−1, . . . , x0, we can write
the interpolatory formula as

Pn(x) = f [xn] + f [xn, xn−1](x − xn)+ f [xn, xn−1, xn−2](x − xn)(x − xn−1)

+ · · · + f [xn, . . . , x0](x − xn)(x − xn−1) · · · (x − x1).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

130 C H A P T E R 3 Interpolation and Polynomial Approximation

If, in addition, the nodes are equally spaced with x = xn+ sh and x = xi+ (s+n− i)h,
then

Pn(x) = Pn(xn + sh)

= f [xn] + shf [xn, xn−1] + s(s+ 1)h2f [xn, xn−1, xn−2] + · · ·
+ s(s+ 1) · · · (s+ n− 1)hnf [xn, . . . , x0].

This is used to derive a commonly applied formula known as the Newton backward-
difference formula. To discuss this formula, we need the following definition.

Definition 3.7 Given the sequence {pn}∞n=0, define the backward difference ∇pn (read nabla pn) by

∇pn = pn − pn−1, for n ≥ 1.

Higher powers are defined recursively by

∇kpn = ∇(∇k−1pn), for k ≥ 2.

Definition 3.7 implies that

f [xn, xn−1] = 1

h
∇f (xn), f [xn, xn−1, xn−2] = 1

2h2
∇2f (xn),

and, in general,

f [xn, xn−1, . . . , xn−k] = 1

k!hk
∇kf (xn).

Consequently,

Pn(x) = f [xn] + s∇f (xn)+ s(s+ 1)

2
∇2f (xn)+ · · · + s(s+ 1) · · · (s+ n− 1)

n! ∇nf (xn).

If we extend the binomial coefficient notation to include all real values of s by letting

(−s

k

)
= −s(−s− 1) · · · (−s− k + 1)

k! = (−1)k
s(s+ 1) · · · (s+ k − 1)

k! ,

then

Pn(x) = f [xn]+(−1)1
(−s

1

)
∇f (xn)+(−1)2

(−s

2

)
∇2f (xn)+· · ·+(−1)n

(−s

n

)
∇nf (xn).

This gives the following result.

Newton Backward–Difference Formula

Pn(x) = f [xn] +
n∑

k=1

(−1)k
(−s

k

)
∇kf (xn) (3.13)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Divided Differences 131

Illustration The divided-difference Table 3.12 corresponds to the data in Example 1.

Table 3.12
First divided Second divided Third divided Fourth divided
differences differences differences differences

1.0 0.7651977
−0.4837057

1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

1.6 0.4554022 −0.0494433
��������
0.0018251

−0.5786120
���������
0.0680685

1.9 0.2818186
��������
0.0118183

����������
−0.5715210

2.2
��������
0.1103623

Only one interpolating polynomial of degree at most 4 uses these five data points, but we
will organize the data points to obtain the best interpolation approximations of degrees 1,
2, and 3. This will give us a sense of accuracy of the fourth-degree approximation for the
given value of x.

If an approximation to f (1.1) is required, the reasonable choice for the nodes would
be x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2 since this choice makes the
earliest possible use of the data points closest to x = 1.1, and also makes use of the fourth
divided difference. This implies that h = 0.3 and s = 1

3 , so the Newton forward divided-
difference formula is used with the divided differences that have a solid underline () in
Table 3.12:

P4(1.1) = P4(1.0+ 1

3
(0.3))

= 0.7651977+ 1

3
(0.3)(−0.4837057)+ 1

3

(
−2

3

)
(0.3)2(−0.1087339)

+ 1

3

(
−2

3

)(
−5

3

)
(0.3)3(0.0658784)

+ 1

3

(
−2

3

)(
−5

3

)(
−8

3

)
(0.3)4(0.0018251)

= 0.7196460.

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, we
would again like to make the earliest use of the data points closest to x. This requires using
the Newton backward divided-difference formula with s = − 2

3 and the divided differences
in Table 3.12 that have a wavy underline (

����
). Notice that the fourth divided difference

is used in both formulas.

P4(2.0) = P4

(
2.2− 2

3
(0.3)

)

= 0.1103623− 2

3
(0.3)(−0.5715210)− 2

3

(
1

3

)
(0.3)2(0.0118183)

− 2

3

(
1

3

)(
4

3

)
(0.3)3(0.0680685)− 2

3

(
1

3

)(
4

3

)(
7

3

)
(0.3)4(0.0018251)

= 0.2238754. �

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

132 C H A P T E R 3 Interpolation and Polynomial Approximation

Centered Differences

The Newton forward- and backward-difference formulas are not appropriate for approximat-
ing f (x)when x lies near the center of the table because neither will permit the highest-order
difference to have x0 close to x. A number of divided-difference formulas are available for
this case, each of which has situations when it can be used to maximum advantage. These
methods are known as centered-difference formulas. We will consider only one centered-
difference formula, Stirling’s method.

For the centered-difference formulas, we choose x0 near the point being approximated
and label the nodes directly below x0 as x1, x2, . . . and those directly above as x−1, x−2,
With this convention, Stirling’s formula is given by

Pn(x) = P2m+1(x) = f [x0] + sh

2
(f [x−1, x0] + f [x0, x1])+ s2h2f [x−1, x0, x1] (3.14)

+ s(s2 − 1)h3

2
f [x−2, x−1, x0, x1] + f [x−1, x0, x1, x2])

+ · · · + s2(s2 − 1)(s2 − 4) · · · (s2 − (m− 1)2)h2mf [x−m, . . . , xm]

+ s(s2 − 1) · · · (s2 − m2)h2m+1

2
(f [x−m−1, . . . , xm] + f [x−m, . . . , xm+1]),

if n = 2m + 1 is odd. If n = 2m is even, we use the same formula but delete the last line.
The entries used for this formula are underlined in Table 3.13.

James Stirling (1692–1770)
published this and numerous
other formulas in Methodus
Differentialis in 1720.
Techniques for accelerating the
convergence of various series are
included in this work.

Table 3.13 First divided Second divided Third divided Fourth divided
x f (x) differences differences differences differences

x−2 f [x−2]
f [x−2, x−1]

x−1 f [x−1] f [x−2, x−1, x0]
f [x−1, x0] f [x−2, x−1, x0, x1]

x0 f [x0] f [x−1, x0, x1] f [x−2, x−1, x0, x1, x2]
f [x0, x1] f [x−1, x0, x1, x2]

x1 f [x1] f [x0, x1, x2]
f [x1, x2]

x2 f [x2]

Example 2 Consider the table of data given in the previous examples. Use Stirling’s formula to approx-
imate f (1.5) with x0 = 1.6.

Solution To apply Stirling’s formula we use the underlined entries in the difference
Table 3.14.

Table 3.14 First divided Second divided Third divided Fourth divided
x f (x) differences differences differences differences

1.0 0.7651977
−0.4837057

1.3 0.6200860 −0.1087339
−0.5489460 0.0658784

1.6 0.4554022 −0.0494433 0.0018251
−0.5786120 0.0680685

1.9 0.2818186 0.0118183
−0.5715210

2.2 0.1103623

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Divided Differences 133

The formula, with h = 0.3, x0 = 1.6, and s = − 1
3 , becomes

f (1.5) ≈ P4

(
1.6+

(
−1

3

)
(0.3)

)

= 0.4554022+
(
−1

3

)(
0.3

2

)
((−0.5489460)+ (−0.5786120))

+
(
−1

3

)2

(0.3)2(−0.0494433)

+ 1

2

(
−1

3

)((
−1

3

)2

− 1

)
(0.3)3(0.0658784+ 0.0680685)

+
(
−1

3

)2
((
−1

3

)2

− 1

)
(0.3)4(0.0018251) = 0.5118200.

Most texts on numerical analysis written before the wide-spread use of computers have
extensive treatments of divided-difference methods. If a more comprehensive treatment of
this subject is needed, the book by Hildebrand [Hild] is a particularly good reference.

E X E R C I S E S E T 3.3

1. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

3. Use Newton the forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

b. f (0.25) if f (0.1) = −0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

4. Use the Newton forward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

5. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (−1/3) if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,
f (0) = 1.10100000

b. f (0.25) if f (0.1) = −0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

134 C H A P T E R 3 Interpolation and Polynomial Approximation

6. Use the Newton backward-difference formula to construct interpolating polynomials of degree one,
two, and three for the following data. Approximate the specified value using each of the polynomials.

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

7. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree three for the unequally
spaced points given in the following table:

x f (x)

−0.1 5.30000
0.0 2.00000
0.2 3.19000
0.3 1.00000

b. Add f (0.35) = 0.97260 to the table, and construct the interpolating polynomial of degree four.

8. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree four for the unequally
spaced points given in the following table:

x f (x)

0.0 −6.00000
0.1 −5.89483
0.3 −5.65014
0.6 −5.17788
1.0 −4.28172

b. Add f (1.1) = −3.99583 to the table, and construct the interpolating polynomial of degree five.

9. a. Approximate f (0.05) using the following data and the Newton forward-difference formula:

x 0.0 0.2 0.4 0.6 0.8

f (x) 1.00000 1.22140 1.49182 1.82212 2.22554

b. Use the Newton backward-difference formula to approximate f (0.65).

c. Use Stirling’s formula to approximate f (0.43).

10. Show that the polynomial interpolating the following data has degree 3.

x −2 −1 0 1 2 3

f (x) 1 4 11 16 13 −4

11. a. Show that the cubic polynomials

P(x) = 3− 2(x + 1)+ 0(x + 1)(x)+ (x + 1)(x)(x − 1)

and

Q(x) = −1+ 4(x + 2)− 3(x + 2)(x + 1)+ (x + 2)(x + 1)(x)

both interpolate the data

x −2 −1 0 1 2

f (x) −1 3 1 −1 3

b. Why does part (a) not violate the uniqueness property of interpolating polynomials?

12. A fourth-degree polynomial P(x) satisfies �4P(0) = 24, �3P(0) = 6, and �2P(0) = 0, where
�P(x) = P(x + 1)− P(x). Compute �2P(10).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Divided Differences 135

13. The following data are given for a polynomial P(x) of unknown degree.

x 0 1 2

P(x) 2 −1 4

Determine the coefficient of x2 in P(x) if all third-order forward differences are 1.

14. The following data are given for a polynomial P(x) of unknown degree.

x 0 1 2 3

P(x) 4 9 15 18

Determine the coefficient of x3 in P(x) if all fourth-order forward differences are 1.

15. The Newton forward-difference formula is used to approximate f (0.3) given the following data.

x 0.0 0.2 0.4 0.6

f (x) 15.0 21.0 30.0 51.0

Suppose it is discovered that f (0.4) was understated by 10 and f (0.6) was overstated by 5. By what
amount should the approximation to f (0.3) be changed?

16. For a function f , the Newton divided-difference formula gives the interpolating polynomial

P3(x) = 1+ 4x + 4x(x − 0.25)+ 16

3
x(x − 0.25)(x − 0.5),

on the nodes x0 = 0, x1 = 0.25, x2 = 0.5 and x3 = 0.75. Find f (0.75).

17. For a function f , the forward-divided differences are given by

x0 = 0.0 f [x0]
f [x0, x1]

x1 = 0.4 f [x1] f [x0, x1, x2] = 50
7

f [x1, x2] = 10
x2 = 0.7 f [x2] = 6

Determine the missing entries in the table.

18. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use appropriate divided differences to approximate the population in the years
1940, 1975, and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

19. Given

Pn(x) = f [x0] + f [x0, x1](x − x0)+ a2(x − x0)(x − x1)

+ a3(x − x0)(x − x1)(x − x2)+ · · ·
+ an(x − x0)(x − x1) · · · (x − xn−1),

use Pn(x2) to show that a2 = f [x0, x1, x2].
20. Show that

f [x0, x1, . . . , xn, x] = f (n+1)(ξ(x))

(n+ 1)! ,

for some ξ(x). [Hint: From Eq. (3.3),

f (x) = Pn(x)+ f
(n+1)(ξ(x))

(n+ 1)! (x − x0) · · · (x − xn).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

136 C H A P T E R 3 Interpolation and Polynomial Approximation

Considering the interpolation polynomial of degree n+ 1 on x0, x1, . . . , xn, x, we have

f (x) = Pn+1(x) = Pn(x)+ f [x0, x1, . . . , xn, x](x − x0) · · · (x − xn).]
21. Let i0, i1, . . . , in be a rearrangement of the integers 0, 1, . . . , n. Show that f [xi0 , xi1 , . . ., xin] =

f [x0, x1, . . ., xn]. [Hint: Consider the leading coefficient of the nth Lagrange polynomial on the
data {x0, x1, . . . , xn} = {xi0 , xi1 , . . . , xin }.]

3.4 Hermite Interpolation

Osculating polynomials generalize both the Taylor polynomials and the Lagrange polyno-
mials. Suppose that we are given n+ 1 distinct numbers x0, x1, . . . , xn in [a, b] and nonneg-
ative integers m0, m1, . . . , mn, and m = max{m0, m1, . . . , mn}. The osculating polynomial
approximating a function f ∈ Cm[a, b] at xi, for each i = 0, . . . , n, is the polynomial of
least degree that has the same values as the function f and all its derivatives of order less
than or equal to mi at each xi. The degree of this osculating polynomial is at most

M =
n∑

i=0

mi + n

because the number of conditions to be satisfied is
∑n

i=0 mi + (n+ 1), and a polynomial of
degree M has M + 1 coefficients that can be used to satisfy these conditions.

The Latin word osculum, literally
a “small mouth” or “kiss”, when
applied to a curve indicates that it
just touches and has the same
shape. Hermite interpolation has
this osculating property. It
matches a given curve, and its
derivative forces the interpolating
curve to “kiss” the given curve.

Definition 3.8 Let x0, x1, . . . , xn be n + 1 distinct numbers in [a, b] and for i = 0, 1, . . . , n let mi be a
nonnegative integer. Suppose that f ∈ Cm[a, b], where m = max0≤i≤n mi.

The osculating polynomial approximating f is the polynomial P(x) of least degree
such that

dkP(xi)

dxk
= dkf (xi)

dxk
, for each i = 0, 1, . . . , n and k = 0, 1, . . . , mi.

Note that when n = 0, the osculating polynomial approximating f is the m0th Taylor
polynomial for f at x0. When mi = 0 for each i, the osculating polynomial is the nth
Lagrange polynomial interpolating f on x0, x1, . . . , xn.

Charles Hermite (1822–1901)
made significant mathematical
discoveries throughout his life in
areas such as complex analysis
and number theory, particularly
involving the theory of equations.
He is perhaps best known for
proving in 1873 that e is
transcendental, that is, it is not
the solution to any algebraic
equation having integer
coefficients. This lead in 1882 to
Lindemann’s proof that π is also
transcendental, which
demonstrated that it is impossible
to use the standard geometry
tools of Euclid to construct a
square that has the same area as a
unit circle.

Hermite Polynomials

The case when mi = 1, for each i = 0, 1, . . . , n, gives the Hermite polynomials. For a given
function f , these polynomials agree with f at x0, x1, . . . , xn. In addition, since their first
derivatives agree with those of f , they have the same “shape” as the function at (xi, f (xi)) in
the sense that the tangent lines to the polynomial and the function agree. We will restrict our
study of osculating polynomials to this situation and consider first a theorem that describes
precisely the form of the Hermite polynomials.

Theorem 3.9 If f ∈ C1[a, b] and x0, . . . , xn ∈ [a, b] are distinct, the unique polynomial of least degree
agreeing with f and f ′ at x0, . . . , xn is the Hermite polynomial of degree at most 2n + 1
given by

H2n+1(x) =
n∑

j=0

f (xj)Hn, j(x)+
n∑

j=0

f ′(xj)Ĥn, j(x),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Hermite Interpolation 137

where, for Ln, j(x) denoting the jth Lagrange coefficient polynomial of degree n, we have

Hn, j(x) = [1− 2(x − xj)L
′
n, j(xj)]L2

n, j(x) and Ĥn, j(x) = (x − xj)L
2
n, j(x).

Hermite gave a description of a
general osculatory polynomial in
a letter to Carl W. Borchardt in
1878, to whom he regularly sent
his new results. His
demonstration is an interesting
application of the use of complex
integration techniques to solve a
real-valued problem.

Moreover, if f ∈ C2n+2[a, b], then

f (x) = H2n+1(x)+ (x − x0)
2 . . . (x − xn)

2

(2n+ 2)! f (2n+2)(ξ(x)),

for some (generally unknown) ξ(x) in the interval (a, b).

Proof First recall that

Ln, j(xi) =
{

0, if i �= j,

1, if i = j.

Hence when i �= j,

Hn, j(xi) = 0 and Ĥn, j(xi) = 0,

whereas, for each i,

Hn,i(xi) = [1− 2(xi − xi)L
′
n,i(xi)] · 1 = 1 and Ĥn,i(xi) = (xi − xi) · 12 = 0.

As a consequence

H2n+1(xi) =
n∑

j=0
j �=i

f (xj) · 0+ f (xi) · 1+
n∑

j=0

f ′(xj) · 0 = f (xi),

so H2n+1 agrees with f at x0, x1, . . . , xn.
To show the agreement of H ′2n+1 with f ′ at the nodes, first note that Ln, j(x) is a factor

of H ′n, j(x), so H ′n, j(xi) = 0 when i �= j. In addition, when i = j we have Ln,i(xi) = 1, so

H ′n,i(xi) = −2L′n,i(xi) · L2
n,i(xi)+ [1− 2(xi − xi)L

′
n,i(xi)]2Ln,i(xi)L

′
n,i(xi)

= −2L′n,i(xi)+ 2L′n,i(xi) = 0.

Hence, H ′n, j(xi) = 0 for all i and j.

Finally,

Ĥ ′n, j(xi) = L2
n, j(xi)+ (xi − xj)2Ln, j(xi)L

′
n, j(xi)

= Ln, j(xi)[Ln, j(xi)+ 2(xi − xj)L
′
n, j(xi)],

so Ĥ ′n, j(xi) = 0 if i �= j and Ĥ ′n,i(xi) = 1. Combining these facts, we have

H ′2n+1(xi) =
n∑

j=0

f (xj) · 0+
n∑

j=0
j �=i

f ′(xj) · 0+ f ′(xi) · 1 = f ′(xi).

Therefore, H2n+1 agrees with f and H ′2n+1 with f ′ at x0, x1, . . . , xn.
The uniqueness of this polynomial and the error formula are considered in

Exercise 11.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

138 C H A P T E R 3 Interpolation and Polynomial Approximation

Example 1 Use the Hermite polynomial that agrees with the data listed in Table 3.15 to find an approx-
imation of f (1.5).

Table 3.15 k xk f (xk) f ′(xk)

0 1.3 0.6200860 −0.5220232
1 1.6 0.4554022 −0.5698959
2 1.9 0.2818186 −0.5811571

Solution We first compute the Lagrange polynomials and their derivatives. This gives

L2,0(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
= 50

9
x2 − 175

9
x + 152

9
, L′2,0(x) =

100

9
x − 175

9
;

L2,1(x) = (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
= −100

9
x2 + 320

9
x − 247

9
, L′2,1(x) =

−200

9
x + 320

9
;

and

L2,2 = (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
= 50

9
x2 − 145

9
x + 104

9
, L′2,2(x) =

100

9
x − 145

9
.

The polynomials H2,j(x) and Ĥ2,j(x) are then

H2,0(x) = [1− 2(x − 1.3)(−5)]
(

50

9
x2 − 175

9
x + 152

9

)2

= (10x − 12)

(
50

9
x2 − 175

9
x + 152

9

)2

,

H2,1(x) = 1 ·
(−100

9
x2 + 320

9
x − 247

9

)2

,

H2,2(x) = 10(2− x)

(
50

9
x2 − 145

9
x + 104

9

)2

,

Ĥ2,0(x) = (x − 1.3)

(
50

9
x2 − 175

9
x + 152

9

)2

,

Ĥ2,1(x) = (x − 1.6)

(−100

9
x2 + 320

9
x − 247

9

)2

,

and

Ĥ2,2(x) = (x − 1.9)

(
50

9
x2 − 145

9
x + 104

9

)2

.

Finally

H5(x) = 0.6200860H2,0(x)+ 0.4554022H2,1(x)+ 0.2818186H2,2(x)

− 0.5220232Ĥ2,0(x)− 0.5698959Ĥ2,1(x)− 0.5811571Ĥ2,2(x)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Hermite Interpolation 139

and

H5(1.5) = 0.6200860

(
4

27

)
+ 0.4554022

(
64

81

)
+ 0.2818186

(
5

81

)

− 0.5220232

(
4

405

)
− 0.5698959

(−32

405

)
− 0.5811571

(−2

405

)

= 0.5118277,

a result that is accurate to the places listed.

Although Theorem 3.9 provides a complete description of the Hermite polynomials, it
is clear from Example 1 that the need to determine and evaluate the Lagrange polynomials
and their derivatives makes the procedure tedious even for small values of n.

Hermite Polynomials Using Divided Differences

There is an alternative method for generating Hermite approximations that has as its basis
the Newton interpolatory divided-difference formula (3.10) at x0, x1, . . . , xn, that is,

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1).

The alternative method uses the connection between the nth divided difference and the nth
derivative of f , as outlined in Theorem 3.6 in Section 3.3.

Suppose that the distinct numbers x0, x1, . . . , xn are given together with the values of
f and f ′ at these numbers. Define a new sequence z0, z1, . . . , z2n+1 by

z2i = z2i+1 = xi, for each i = 0, 1, . . . , n,

and construct the divided difference table in the form of Table 3.9 that uses z0, z1, . . ., z2n+1.
Since z2i = z2i+1 = xi for each i, we cannot define f [z2i, z2i+1] by the divided difference

formula. However, if we assume, based on Theorem 3.6, that the reasonable substitution in
this situation is f [z2i, z2i+1] = f ′(z2i) = f ′(xi), we can use the entries

f ′(x0), f
′(x1), . . . , f

′(xn)

in place of the undefined first divided differences

f [z0, z1], f [z2, z3], . . . , f [z2n, z2n+1].
The remaining divided differences are produced as usual, and the appropriate divided differ-
ences are employed in Newton’s interpolatory divided-difference formula. Table 3.16 shows
the entries that are used for the first three divided-difference columns when determining
the Hermite polynomial H5(x) for x0, x1, and x2. The remaining entries are generated in the
same manner as in Table 3.9. The Hermite polynomial is then given by

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . , zk](x − z0)(x − z1) · · · (x − zk−1).

A proof of this fact can be found in [Pow], p. 56.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

140 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.16 First divided Second divided
z f (z) differences differences

z0 = x0 f [z0] = f (x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2] = f [z1, z2] − f [z0, z1]
z2 − z0

f [z1, z2] = f [z2] − f [z1]
z2 − z1

z2 = x1 f [z2] = f (x1) f [z1, z2, z3] = f [z2, z3] − f [z1, z2]
z3 − z1

f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1) f [z2, z3, z4] = f [z3, z4] − f [z2, z3]
z4 − z2

f [z3, z4] = f [z4] − f [z3]
z4 − z3

z4 = x2 f [z4] = f (x2) f [z3, z4, z5] = f [z4, z5] − f [z3, z4]
z5 − z3

f [z4, z5] = f ′(x2)

z5 = x2 f [z5] = f (x2)

Example 2 Use the data given in Example 1 and the divided difference method to determine the Hermite
polynomial approximation at x = 1.5.

Solution The underlined entries in the first three columns of Table 3.17 are the data given
in Example 1. The remaining entries in this table are generated by the standard divided-
difference formula (3.9).

For example, for the second entry in the third column we use the second 1.3 entry in
the second column and the first 1.6 entry in that column to obtain

0.4554022− 0.6200860

1.6− 1.3
= −0.5489460.

For the first entry in the fourth column we use the first 1.3 entry in the third column and the
first 1.6 entry in that column to obtain

−0.5489460− (−0.5220232)

1.6− 1.3
= −0.0897427.

The value of the Hermite polynomial at 1.5 is

H5(1.5) = f [1.3] + f ′(1.3)(1.5− 1.3)+ f [1.3, 1.3, 1.6](1.5− 1.3)2

+ f [1.3, 1.3, 1.6, 1.6](1.5− 1.3)2(1.5− 1.6)

+ f [1.3, 1.3, 1.6, 1.6, 1.9](1.5− 1.3)2(1.5− 1.6)2

+ f [1.3, 1.3, 1.6, 1.6, 1.9, 1.9](1.5− 1.3)2(1.5− 1.6)2(1.5− 1.9)

= 0.6200860+ (−0.5220232)(0.2)+ (−0.0897427)(0.2)2

+ 0.0663657(0.2)2(−0.1)+ 0.0026663(0.2)2(−0.1)2

+ (−0.0027738)(0.2)2(−0.1)2(−0.4)

= 0.5118277.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Hermite Interpolation 141

Table 3.17 1.3 0.6200860
−0.5220232

1.3 0.6200860 −0.0897427
−0.5489460 0.0663657

1.6 0.4554022 −0.0698330 0.0026663
−0.5698959 0.0679655 −0.0027738

1.6 0.4554022 −0.0290537 0.0010020
−0.5786120 0.0685667

1.9 0.2818186 −0.0084837
−0.5811571

1.9 0.2818186

The technique used in Algorithm 3.3 can be extended for use in determining other
osculating polynomials. A concise discussion of the procedures can be found in [Pow],
pp. 53–57.

ALGORITHM

3.3
Hermite Interpolation

To obtain the coefficients of the Hermite interpolating polynomial H(x) on the (n + 1)
distinct numbers x0, . . . , xn for the function f :

INPUT numbers x0, x1, . . . , xn; values f (x0), . . . , f (xn) and f ′(x0), . . ., f ′(xn).

OUTPUT the numbers Q0,0, Q1,1, . . . , Q2n+1,2n+1 where

H(x) = Q0,0 + Q1,1(x − x0)+ Q2,2(x − x0)
2 + Q3,3(x − x0)

2(x − x1)

+Q4,4(x − x0)
2(x − x1)

2 + · · ·
+Q2n+1,2n+1(x − x0)

2(x − x1)
2 · · · (x − xn−1)

2(x − xn).

Step 1 For i = 0, 1, . . . , n do Steps 2 and 3.

Step 2 Set z2i = xi;
z2i+1 = xi;
Q2i,0 = f (xi);
Q2i+1,0 = f (xi);
Q2i+1,1 = f ′(xi).

Step 3 If i �= 0 then set

Q2i,1 = Q2i,0 − Q2i−1,0

z2i − z2i−1
.

Step 4 For i = 2, 3, . . . , 2n+ 1

for j = 2, 3, . . . , i set Qi, j = Qi, j−1 − Qi−1, j−1

zi − zi−j
.

Step 5 OUTPUT (Q0,0, Q1,1, . . . , Q2n+1,2n+1);
STOP

The NumericalAnalysis package in Maple can be used to construct the Hermite coef-
ficients. We first need to load the package and to define the data that is being used, in this
case, xi, f (xi), and f ′(xi) for i = 0, 1, . . . , n. This is done by presenting the data in the form
[xi, f (xi), f ′(xi)]. For example, the data for Example 2 is entered as

xy := [[1.3, 0.6200860,−0.5220232], [1.6, 0.4554022,−0.5698959],
[1.9, 0.2818186,−0.5811571]]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

142 C H A P T E R 3 Interpolation and Polynomial Approximation

Then the command

h5 := PolynomialInterpolation(xy, method = hermite, independentvar = ′x′)
produces an array whose nonzero entries correspond to the values in Table 3.17. The Hermite
interpolating polynomial is created with the command

Interpolant(h5))

This gives the polynomial in (almost) Newton forward-difference form

1.29871616− 0.5220232x − 0.08974266667(x− 1.3)2 + 0.06636555557(x−1.3)2(x − 1.6)
+ 0.002666666633(x − 1.3)2(x − 1.6)2 − 0.002774691277(x − 1.3)2(x − 1.6)2(x − 1.9)

If a standard representation of the polynomial is needed, it is found with

expand(Interpolant(h5))

giving the Maple response

1.001944063− 0.0082292208x − 0.2352161732x2 − 0.01455607812x3

+ 0.02403178946x4 − 0.002774691277x5

E X E R C I S E S E T 3.4

1. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.

a. x f (x) f ′(x)

8.3 17.56492 3.116256
8.6 18.50515 3.151762

b. x f (x) f ′(x)

0.8 0.22363362 2.1691753
1.0 0.65809197 2.0466965

c. x f (x) f ′(x)

−0.5 −0.0247500 0.7510000
−0.25 0.3349375 2.1890000

0 1.1010000 4.0020000

d. x f (x) f ′(x)

0.1 −0.62049958 3.58502082
0.2 −0.28398668 3.14033271
0.3 0.00660095 2.66668043
0.4 0.24842440 2.16529366

2. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data.
a. x f (x) f ′(x)

0 1.00000 2.00000
0.5 2.71828 5.43656

b. x f (x) f ′(x)

−0.25 1.33203 0.437500
0.25 0.800781 −0.625000

c. x f (x) f ′(x)

0.1 −0.29004996 −2.8019975
0.2 −0.56079734 −2.6159201
0.3 −0.81401972 −2.9734038

d. x f (x) f ′(x)

−1 0.86199480 0.15536240
−0.5 0.95802009 0.23269654

0 1.0986123 0.33333333
0.5 1.2943767 0.45186776

3. The data in Exercise 1 were generated using the following functions. Use the polynomials constructed
in Exercise 1 for the given value of x to approximate f (x), and calculate the absolute error.

a. f (x) = x ln x; approximate f (8.4).

b. f (x) = sin(ex − 2); approximate f (0.9).

c. f (x) = x3 + 4.001x2 + 4.002x + 1.101; approximate f (−1/3).

d. f (x) = x cos x − 2x2 + 3x − 1; approximate f (0.25).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Hermite Interpolation 143

4. The data in Exercise 2 were generated using the following functions. Use the polynomials constructed
in Exercise 2 for the given value of x to approximate f (x), and calculate the absolute error.

a. f (x) = e2x; approximate f (0.43).

b. f (x) = x4 − x3 + x2 − x + 1; approximate f (0).

c. f (x) = x2 cos x − 3x; approximate f (0.18).

d. f (x) = ln(ex + 2); approximate f (0.25).

5. a. Use the following values and five-digit rounding arithmetic to construct the Hermite interpolating
polynomial to approximate sin 0.34.

x sin x Dx sin x = cos x

0.30 0.29552 0.95534
0.32 0.31457 0.94924
0.35 0.34290 0.93937

b. Determine an error bound for the approximation in part (a), and compare it to the actual error.

c. Add sin 0.33 = 0.32404 and cos 0.33 = 0.94604 to the data, and redo the calculations.

6. Let f (x) = 3xex − e2x .

a. Approximate f (1.03) by the Hermite interpolating polynomial of degree at most three using
x0 = 1 and x1 = 1.05. Compare the actual error to the error bound.

b. Repeat (a) with the Hermite interpolating polynomial of degree at most five, using x0 = 1,
x1 = 1.05, and x2 = 1.07.

7. Use the error formula and Maple to find a bound for the errors in the approximations of f (x) in parts
(a) and (c) of Exercise 3.

8. Use the error formula and Maple to find a bound for the errors in the approximations of f (x) in parts
(a) and (c) of Exercise 4.

9. The following table lists data for the function described by f (x) = e0.1x2
. Approximate f (1.25) by

using H5(1.25) and H3(1.25), where H5 uses the nodes x0 = 1, x1 = 2, and x2 = 3; and H3 uses the
nodes x̄0 = 1 and x̄1 = 1.5. Find error bounds for these approximations.

x f (x) = e0.1x2
f ′(x) = 0.2xe0.1x2

x0 = x0 = 1 1.105170918 0.2210341836
x̄1 = 1.5 1.252322716 0.3756968148
x1 = 2 1.491824698 0.5967298792
x2 = 3 2.459603111 1.475761867

10. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a Hermite polynomial to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the Hermite polynomial to determine whether the car ever exceeds a
55 mi/h speed limit on the road. If so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

11. a. Show that H2n+1(x) is the unique polynomial of least degree agreeing with f and f ′ at x0, . . . , xn.
[Hint: Assume that P(x) is another such polynomial and consider D = H2n+1 − P and D′ at
x0, x1, . . . , xn.]

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

144 C H A P T E R 3 Interpolation and Polynomial Approximation

b. Derive the error term in Theorem 3.9. [Hint: Use the same method as in the Lagrange error
derivation, Theorem 3.3, defining

g(t) = f (t)− H2n+1(t)− (t − x0)
2 · · · (t − xn)

2

(x − x0)2 · · · (x − xn)2
[f (x)− H2n+1(x)]

and using the fact that g′(t) has (2n+ 2) distinct zeros in [a, b].]
12. Let z0 = x0, z1 = x0, z2 = x1, and z3 = x1. Form the following divided-difference table.

z0 = x0 f [z0] = f (x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2]
f [z1, z2] f [z0, z1, z2, z3]

z2 = x1 f [z2] = f (x1) f [z1, z2, z3]
f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1)

Show that the cubic Hermite polynomial H3(x) can also be written as f [z0] + f [z0, z1](x − x0) +
f [z0, z1, z2](x − x0)

2 + f [z0, z1, z2, z3](x − x0)
2(x − x1).

3.5 Cubic Spline Interpolation1

The previous sections concerned the approximation of arbitrary functions on closed intervals
using a single polynomial. However, high-degree polynomials can oscillate erratically, that
is, a minor fluctuation over a small portion of the interval can induce large fluctuations
over the entire range. We will see a good example of this in Figure 3.14 at the end of this
section.

An alternative approach is to divide the approximation interval into a collection of
subintervals and construct a (generally) different approximating polynomial on each sub-
interval. This is called piecewise-polynomial approximation.

Piecewise-Polynomial Approximation

The simplest piecewise-polynomial approximation is piecewise-linear interpolation, which
consists of joining a set of data points

{(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}
by a series of straight lines, as shown in Figure 3.7.

A disadvantage of linear function approximation is that there is likely no differ-
entiability at the endpoints of the subintervals, which, in a geometrical context, means
that the interpolating function is not “smooth.” Often it is clear from physical condi-
tions that smoothness is required, so the approximating function must be continuously
differentiable.

An alternative procedure is to use a piecewise polynomial of Hermite type. For example,
if the values of f and of f ′ are known at each of the points x0 < x1 < · · · < xn, a cubic
Hermite polynomial can be used on each of the subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn]
to obtain a function that has a continuous derivative on the interval [x0, xn].

1The proofs of the theorems in this section rely on results in Chapter 6.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 145

Figure 3.7

y � f (x)

x0 x1 x2 xj xj�1 xj�2 xn�1 xn.

y

x

To determine the appropriate Hermite cubic polynomial on a given interval is simply
a matter of computing H3(x) for that interval. The Lagrange interpolating polynomials
needed to determine H3 are of first degree, so this can be accomplished without great
difficulty. However, to use Hermite piecewise polynomials for general interpolation, we
need to know the derivative of the function being approximated, and this is frequently
unavailable.

The remainder of this section considers approximation using piecewise polynomials
that require no specific derivative information, except perhaps at the endpoints of the interval
on which the function is being approximated.

Isaac Jacob Schoenberg
(1903–1990) developed his work
on splines during World War II
while on leave from the
University of Pennsylvania to
work at the Army’s Ballistic
Research Laboratory in
Aberdeen, Maryland. His original
work involved numerical
procedures for solving
differential equations. The much
broader application of splines to
the areas of data fitting and
computer-aided geometric design
became evident with the
widespread availability of
computers in the 1960s.

The simplest type of differentiable piecewise-polynomial function on an entire interval
[x0, xn] is the function obtained by fitting one quadratic polynomial between each successive
pair of nodes. This is done by constructing a quadratic on [x0, x1] agreeing with the function
at x0 and x1, another quadratic on [x1, x2] agreeing with the function at x1 and x2, and so
on. A general quadratic polynomial has three arbitrary constants—the constant term, the
coefficient of x, and the coefficient of x2—and only two conditions are required to fit the
data at the endpoints of each subinterval. So flexibility exists that permits the quadratics to
be chosen so that the interpolant has a continuous derivative on [x0, xn]. The difficulty arises
because we generally need to specify conditions about the derivative of the interpolant at
the endpoints x0 and xn. There is not a sufficient number of constants to ensure that the
conditions will be satisfied. (See Exercise 26.)

The root of the word “spline” is
the same as that of splint. It was
originally a small strip of wood
that could be used to join two
boards. Later the word was used
to refer to a long flexible strip,
generally of metal, that could be
used to draw continuous smooth
curves by forcing the strip to pass
through specified points and
tracing along the curve.

Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
each successive pair of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants, so there is sufficient flexibility in the cubic spline pro-
cedure to ensure that the interpolant is not only continuously differentiable on the interval,
but also has a continuous second derivative. The construction of the cubic spline does not,
however, assume that the derivatives of the interpolant agree with those of the function it is
approximating, even at the nodes. (See Figure 3.8.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

146 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.8

x0 x1 x2 xj xj�1 xj�2 xn�1 xn.

S(x)

xxn�2

S0

S1
Sj Sj�1

Sn�1

Sn�2

Sj(xj�1) � f (xj�1) � Sj�1(xj�1)
Sj(xj�1) � Sj�1(xj�1)� �

�Sj (xj�1) � Sj�1(xj�1)�

Definition 3.10 Given a function f defined on [a, b] and a set of nodes a = x0 < x1 < · · · <
xn = b, a cubic spline interpolant S for f is a function that satisfies the following
conditions:

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj, xj+1] for each
j = 0, 1, . . . , n− 1;

(b) Sj(xj) = f (xj) and Sj(xj+1) = f (xj+1) for each j = 0, 1, . . . , n− 1;

(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n− 2; (Implied by (b).)

(d) S′j+1(xj+1) = S′j(xj+1) for each j = 0, 1, . . . , n− 2;

(e) S′′j+1(xj+1) = S′′j (xj+1) for each j = 0, 1, . . . , n− 2;

(f) One of the following sets of boundary conditions is satisfied:

(i) S′′(x0) = S′′(xn) = 0 (natural (or free) boundary);

(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

A natural spline has no conditions
imposed for the direction at its
endpoints, so the curve takes the
shape of a straight line after it
passes through the interpolation
points nearest its endpoints. The
name derives from the fact that
this is the natural shape a flexible
strip assumes if forced to pass
through specified interpolation
points with no additional
constraints. (See Figure 3.9.)

Figure 3.9

Although cubic splines are defined with other boundary conditions, the conditions given
in (f) are sufficient for our purposes. When the free boundary conditions occur, the spline is
called a natural spline, and its graph approximates the shape that a long flexible rod would
assume if forced to go through the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}.

In general, clamped boundary conditions lead to more accurate approximations because
they include more information about the function. However, for this type of boundary
condition to hold, it is necessary to have either the values of the derivative at the endpoints
or an accurate approximation to those values.

Example 1 Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 5).

Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

S0(x) = a0 + b0(x − 1)+ c0(x − 1)2 + d0(x − 1)3,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 147

and the other for [2, 3], denoted

S1(x) = a1 + b1(x − 2)+ c1(x − 2)2 + d1(x − 2)3.

There are 8 constants to be determined, which requires 8 conditions. Four conditions come
from the fact that the splines must agree with the data at the nodes. Hence

2 = f (1) = a0, 3 = f (2) = a0 + b0 + c0 + d0, 3 = f (2) = a1, and

5 = f (3) = a1 + b1 + c1 + d1.

Two more come from the fact that S′0(2) = S′1(2) and S′′0 (2) = S′′1 (2). These are

S′0(2) = S′1(2) : b0 + 2c0 + 3d0 = b1 and S′′0 (2) = S′′1 (2) : 2c0 + 6d0 = 2c1

The final two come from the natural boundary conditions:

S′′0 (1) = 0 : 2c0 = 0 and S′′1 (3) = 0 : 2c1 + 6d1 = 0.

Solving this system of equations gives the spline

S(x) =
{

2+ 3
4 (x − 1)+ 1

4 (x − 1)3, for x ∈ [1, 2]
3+ 3

2 (x − 2)+ 3
4 (x − 2)2 − 1

4 (x − 2)3, for x ∈ [2, 3]

Construction of a Cubic Spline

As the preceding example demonstrates, a spline defined on an interval that is divided into n
subintervals will require determining 4n constants. To construct the cubic spline interpolant
for a given function f , the conditions in the definition are applied to the cubic polynomials

Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3,

for each j = 0, 1, . . . , n − 1. Since Sj(xj) = aj = f (xj), condition (c) can be applied to
obtain

aj+1 = Sj+1(xj+1) = Sj(xj+1) = aj + bj(xj+1 − xj)+ cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3,

for each j = 0, 1, . . . , n− 2.

Clamping a spline indicates that
the ends of the flexible strip are
fixed so that it is forced to take a
specific direction at each of its
endpoints. This is important, for
example, when two spline
functions should match at their
endpoints. This is done
mathematically by specifying the
values of the derivative of the
curve at the endpoints of the
spline.

The terms xj+1 − xj are used repeatedly in this development, so it is convenient to
introduce the simpler notation

hj = xj+1 − xj,

for each j = 0, 1, . . . , n− 1. If we also define an = f (xn), then the equation

aj+1 = aj + bjhj + cjh
2
j + djh

3
j (3.15)

holds for each j = 0, 1, . . . , n− 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

148 C H A P T E R 3 Interpolation and Polynomial Approximation

In a similar manner, define bn = S′(xn) and observe that

S′j(x) = bj + 2cj(x − xj)+ 3dj(x − xj)
2

implies S′j(xj) = bj, for each j = 0, 1, . . . , n− 1. Applying condition (d) gives

bj+1 = bj + 2cjhj + 3djh
2
j , (3.16)

for each j = 0, 1, . . . , n− 1.
Another relationship between the coefficients of Sj is obtained by defining cn =

S′′(xn)/2 and applying condition (e). Then, for each j = 0, 1, . . . , n− 1,

cj+1 = cj + 3djhj. (3.17)

Solving for dj in Eq. (3.17) and substituting this value into Eqs. (3.15) and (3.16) gives,
for each j = 0, 1, . . . , n− 1, the new equations

aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1) (3.18)

and

bj+1 = bj + hj(cj + cj+1). (3.19)

The final relationship involving the coefficients is obtained by solving the appropriate
equation in the form of equation (3.18), first for bj,

bj = 1

hj
(aj+1 − aj)− hj

3
(2cj + cj+1), (3.20)

and then, with a reduction of the index, for bj−1. This gives

bj−1 = 1

hj−1
(aj − aj−1)− hj−1

3
(2cj−1 + cj).

Substituting these values into the equation derived from Eq. (3.19), with the index reduced
by one, gives the linear system of equations

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 = 3

hj
(aj+1 − aj)− 3

hj−1
(aj − aj−1), (3.21)

for each j = 1, 2, . . . , n− 1. This system involves only the {cj}nj=0 as unknowns. The values

of {hj}n−1
j=0 and {aj}nj=0 are given, respectively, by the spacing of the nodes {xj}nj=0 and the

values of f at the nodes. So once the values of {cj}nj=0 are determined, it is a simple matter

to find the remainder of the constants {bj}n−1
j=0 from Eq. (3.20) and {dj}n−1

j=0 from Eq. (3.17).

Then we can construct the cubic polynomials {Sj(x)}n−1
j=0 .

The major question that arises in connection with this construction is whether the values
of {cj}nj=0 can be found using the system of equations given in (3.21) and, if so, whether
these values are unique. The following theorems indicate that this is the case when either of
the boundary conditions given in part (f) of the definition are imposed. The proofs of these
theorems require material from linear algebra, which is discussed in Chapter 6.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 149

Natural Splines

Theorem 3.11 If f is defined at a = x0 < x1 < · · · < xn = b, then f has a unique natural spline interpolant
S on the nodes x0, x1, . . ., xn; that is, a spline interpolant that satisfies the natural boundary
conditions S′′(a) = 0 and S′′(b) = 0.

Proof The boundary conditions in this case imply that cn = S′′(xn)/2 = 0 and that

0 = S′′(x0) = 2c0 + 6d0(x0 − x0),

so c0 = 0. The two equations c0 = 0 and cn = 0 together with the equations in (3.21)
produce a linear system described by the vector equation Ax = b, where A is the (n+ 1)×
(n+ 1) matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 .

.

0

h0 2(h0 + h1) h1

...........

0 .

h1 .

2(h1

+ h2) h2 .
0

hn−2 2(hn−2 + hn−1) hn−1

0 .0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and b and x are the vectors

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
3

h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

The matrix A is strictly diagonally dominant, that is, in each row the magnitude of the
diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A linear
system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to have a
unique solution for c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′′(x0) =
S′′(xn) = 0 can be obtained by applying Algorithm 3.4.

ALGORITHM

3.4
Natural Cubic Spline

To construct the cubic spline interpolant S for the function f , defined at the numbers
x0 < x1 < · · · < xn, satisfying S′′(x0) = S′′(xn) = 0:

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

150 C H A P T E R 3 Interpolation and Polynomial Approximation

Step 2 For i = 1, 2, . . . , n− 1 set

αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 3 Set l0 = 1; (Steps 3, 4, 5, and part of Step 6 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0;
z0 = 0.

Step 4 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.

Step 5 Set ln = 1;
zn = 0;
cn = 0.

Step 6 For j = n− 1, n− 2, . . . , 0
set cj = zj − μjcj+1;

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;
dj = (cj+1 − cj)/(3hj).

Step 7 OUTPUT (aj, bj, cj, dj for j = 0, 1, . . . , n− 1);
STOP.

Example 2 At the beginning of Chapter 3 we gave some Taylor polynomials to approximate the expo-
nential f (x) = ex. Use the data points (0, 1), (1, e), (2, e2), and (3, e3) to form a natural
spline S(x) that approximates f (x) = ex.

Solution We have n = 3, h0 = h1 = h2 = 1, a0 = 1, a1 = e, a2 = e2, and a3 = e3. So the
matrix A and the vectors b and x given in Theorem 3.11 have the forms

A =

⎡
⎢⎢⎣

1 0 0 0
1 4 1 0
0 1 4 1
0 0 0 1

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
3(e2 − 2e+ 1)
3(e3 − 2e2 + e)

0

⎤
⎥⎥⎦ , and x =

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ .

The vector-matrix equation Ax = b is equivalent to the system of equations

c0 = 0,

c0 + 4c1 + c2 = 3(e2 − 2e+ 1),

c1 + 4c2 + c3 = 3(e3 − 2e2 + e),

c3 = 0.

This system has the solution c0 = c3 = 0, and to 5 decimal places,

c1 = 1

5
(−e3+ 6e2− 9e+ 4) ≈ 0.75685, and c2 = 1

5
(4e3− 9e2+ 6e− 1) ≈ 5.83007.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 151

Solving for the remaining constants gives

b0 = 1

h0
(a1 − a0)− h0

3
(c1 + 2c0)

= (e− 1)− 1

15
(−e3 + 6e2 − 9e+ 4) ≈ 1.46600,

b1 = 1

h1
(a2 − a1)− h1

3
(c2 + 2c1)

= (e2 − e)− 1

15
(2e3 + 3e2 − 12e+ 7) ≈ 2.22285,

b2 = 1

h2
(a3 − a2)− h2

3
(c3 + 2c2)

= (e3 − e2)− 1

15
(8e3 − 18e2 + 12e− 2) ≈ 8.80977,

d0 = 1

3h0
(c1 − c0) = 1

15
(−e3 + 6e2 − 9e+ 4) ≈ 0.25228,

d1 = 1

3h1
(c2 − c1) = 1

3
(e3 − 3e2 + 3e− 1) ≈ 1.69107,

and

d2 = 1

3h2
(c3 − c1) = 1

15
(−4e3 + 9e2 − 6e+ 1) ≈ −1.94336.

The natural cubic spine is described piecewise by

S(x)=

⎧⎪⎨
⎪⎩

1+ 1.46600x + 0.25228x3, for x ∈ [0, 1],
2.71828+ 2.22285(x −1)+ 0.75685(x −1)2 +1.69107(x −1)3, for x ∈ [1, 2],
7.38906+ 8.80977(x −2)+ 5.83007(x −2)2 −1.94336(x −2)3, for x ∈ [2, 3].

The spline and its agreement with f (x) = ex are shown in Figure 3.10.

Figure 3.10

x

y

1

1 2 3

e

e

e

3

2

y = S(x)

y = e x

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

152 C H A P T E R 3 Interpolation and Polynomial Approximation

The NumericalAnalysis package can be used to create a cubic spline in a manner similar
to other constructions in this chapter. However, the CurveFitting Package in Maple can also
be used, and since this has not been discussed previously we will use it to create the natural
spline in Example 2. First we load the package with the command

with(CurveFitting)

and define the function being approximated with

f := x→ ex

To create a spline we need to specify the nodes, variable, the degree, and the natural end-
points. This is done with

sn := t→ Spline([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t, degree = 3,
endpoints = ‘natural’)

Maple returns

t→ CurveFitting:-Spline([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t,
degree = 3, endpoints = ’natural’)

The form of the natural spline is seen with the command

sn(t)

which produces

⎧⎪⎨
⎪⎩

1.+ 1.465998t2 + 0.2522848t3 t < 1.0

0.495432+ 2.22285t + 0.756853(t − 1.0)2 + 1.691071(t − 1.0)3 t < 2.0

−10.230483+ 8.809770t + 5.830067(t − 2.0)2 − 1.943356(t − 2.0)3 otherwise

Once we have determined a spline approximation for a function we can use it to
approximate other properties of the function. The next illustration involves the integral
of the spline we found in the previous example.

Illustration To approximate the integral of f (x) = ex on [0, 3], which has the value

∫ 3

0
ex dx = e3 − 1 ≈ 20.08553692− 1 = 19.08553692,

we can piecewise integrate the spline that approximates f on this integral. This gives

∫ 3

0
S(x) =

∫ 1

0
1+ 1.46600x + 0.25228x3 dx

+
∫ 2

1
2.71828+ 2.22285(x − 1)+ 0.75685(x − 1)2 + 1.69107(x − 1)3 dx

+
∫ 3

2
7.38906+ 8.80977(x − 2)+ 5.83007(x − 2)2 − 1.94336(x − 2)3 dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 153

Integrating and collecting values from like powers gives

∫ 3

0
S(x) =

[
x + 1.46600

x2

2
+ 0.25228

x4

4

]1

0

+
[

2.71828(x−1)+ 2.22285
(x−1)2

2
+ 0.75685

(x−1)3

3
+1.69107

(x−1)4

4

]2

1

+
[

7.38906(x−2)+ 8.80977
(x−2)2

2
+ 5.83007

(x−2)3

3
−1.94336

(x−2)4

4

]3

2

= (1+ 2.71828+ 7.38906)+ 1

2
(1.46600+ 2.22285+ 8.80977)

+ 1

3
(0.75685+ 5.83007)+ 1

4
(0.25228+ 1.69107− 1.94336)

= 19.55229.

Because the nodes are equally spaced in this example the integral approximation is
simply∫ 3

0
S(x) dx = (a0+a1+a2)+ 1

2
(b0+b1+b2)+ 1

3
(c0+c1+c2)+ 1

4
(d0+d1+d2). (3.22)

�

If we create the natural spline using Maple as described after Example 2, we can then
use Maple’s integration command to find the value in the Illustration. Simply enter

int(sn(t), t = 0 .. 3)

19.55228648

Clamped Splines

Example 3 In Example 1 we found a natural spline S that passes through the points (1, 2), (2, 3),
and (3, 5). Construct a clamped spline s through these points that has s′(1) = 2 and
s′(3) = 1.

Solution Let

s0(x) = a0 + b0(x − 1)+ c0(x − 1)2 + d0(x − 1)3,

be the cubic on [1, 2] and the cubic on [2, 3] be

s1(x) = a1 + b1(x − 2)+ c1(x − 2)2 + d1(x − 2)3.

Then most of the conditions to determine the 8 constants are the same as those in Example
1. That is,

2 = f (1) = a0, 3 = f (2) = a0 + b0 + c0 + d0, 3 = f (2) = a1, and

5 = f (3) = a1 + b1 + c1 + d1.

s′0(2) = s′1(2) : b0 + 2c0 + 3d0 = b1 and s′′0(2) = s′′1(2) : 2c0 + 6d0 = 2c1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

154 C H A P T E R 3 Interpolation and Polynomial Approximation

However, the boundary conditions are now

s′0(1) = 2 : b0 = 2 and s′1(3) = 1 : b1 + 2c1 + 3d1 = 1.

Solving this system of equations gives the spline as

s(x) =
{

2+ 2(x − 1)− 5
2 (x − 1)2 + 3

2 (x − 1)3, for x ∈ [1, 2]
3+ 3

2 (x − 2)+ 2(x − 2)2 − 3
2 (x − 2)3, for x ∈ [2, 3]

In the case of general clamped boundary conditions we have a result that is similar to
the theorem for natural boundary conditions described in Theorem 3.11.

Theorem 3.12 If f is defined at a = x0 < x1 < · · · < xn = b and differentiable at a and b, then f has a
unique clamped spline interpolant S on the nodes x0, x1, . . . , xn; that is, a spline interpolant
that satisfies the clamped boundary conditions S′(a) = f ′(a) and S′(b) = f ′(b).

Proof Since f ′(a) = S′(a) = S′(x0) = b0, Eq. (3.20) with j = 0 implies

f ′(a) = 1

h0
(a1 − a0)− h0

3
(2c0 + c1).

Consequently,

2h0c0 + h0c1 = 3

h0
(a1 − a0)− 3f ′(a).

Similarly,

f ′(b) = bn = bn−1 + hn−1(cn−1 + cn),

so Eq. (3.20) with j = n− 1 implies that

f ′(b) = an − an−1

hn−1
− hn−1

3
(2cn−1 + cn)+ hn−1(cn−1 + cn)

= an − an−1

hn−1
+ hn−1

3
(cn−1 + 2cn),

and

hn−1cn−1 + 2hn−1cn = 3f ′(b)− 3

hn−1
(an − an−1).

Equations (3.21) together with the equations

2h0c0 + h0c1 = 3

h0
(a1 − a0)− 3f ′(a)

and

hn−1cn−1 + 2hn−1cn = 3f ′(b)− 3

hn−1
(an − an−1)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 155

determine the linear system Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2h0 h0 0 .

.

0

h0 2(h0 + h1) h1

...........

0 .

h1 .

2(h1

+ h2) h2 .
0

hn−2 2(hn−2 + hn−1) hn−1

0 .0 hn−1 2hn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h0
(a1 − a0)− 3f ′(a)

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

3f ′(b)− 3
hn−1

(an − an−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for
c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′(x0) = f ′(x0)

and S′(xn) = f ′(xn) can be obtained by applying Algorithm 3.5.

ALGORITHM

3.5
Clamped Cubic Spline

To construct the cubic spline interpolant S for the function f defined at the numbers x0 <

x1 < · · · < xn, satisfying S′(x0) = f ′(x0) and S′(xn) = f ′(xn):

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn); FPO = f ′(x0);
FPN = f ′(xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.

Step 2 Set α0 = 3(a1 − a0)/h0 − 3FPO;
αn = 3FPN− 3(an − an−1)/hn−1.

Step 3 For i = 1, 2, . . . , n− 1

set αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 4 Set l0 = 2h0; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0.5;
z0 = α0/l0.

Step 5 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

156 C H A P T E R 3 Interpolation and Polynomial Approximation

Step 6 Set ln = hn−1(2− μn−1);
zn = (αn − hn−1zn−1)/ln;
cn = zn.

Step 7 For j = n− 1, n− 2, . . . , 0
set cj = zj − μjcj+1;

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;
dj = (cj+1 − cj)/(3hj).

Step 8 OUTPUT (aj, bj, cj, dj for j = 0, 1, . . . , n− 1);
STOP.

Example 4 Example 2 used a natural spline and the data points (0, 1), (1, e), (2, e2), and (3, e3) to form
a new approximating function S(x). Determine the clamped spline s(x) that uses this data
and the additional information that, since f ′(x) = ex, so f ′(0) = 1 and f ′(3) = e3.

Solution As in Example 2, we have n = 3, h0 = h1 = h2 = 1, a0 = 0, a1 = e, a2 = e2,
and a3 = e3. This together with the information that f ′(0) = 1 and f ′(3) = e3 gives the
the matrix A and the vectors b and x with the forms

A =

⎡
⎢⎢⎣

2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

3(e− 2)
3(e2 − 2e+ 1)
3(e3 − 2e2 + e)

3e2

⎤
⎥⎥⎦ , and x =

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ .

The vector-matrix equation Ax = b is equivalent to the system of equations

2c0 + c1 = 3(e− 2),

c0 + 4c1 + c2 = 3(e2 − 2e+ 1),

c1 + 4c2 + c3 = 3(e3 − 2e2 + e),

c2 + 2c3 = 3e2.

Solving this system simultaneously for c0, c1, c2 and c3 gives, to 5 decimal places,

c0 = 1

15
(2e3 − 12e2 + 42e− 59) = 0.44468,

c1 = 1

15
(−4e3 + 24e2 − 39e+ 28) = 1.26548,

c2 = 1

15
(14e3 − 39e2 + 24e− 8) = 3.35087,

c3 = 1

15
(−7e3 + 42e2 − 12e+ 4) = 9.40815.

Solving for the remaining constants in the same manner as Example 2 gives

b0 = 1.00000, b1 = 2.71016, b2 = 7.32652,

and

d0 = 0.27360, d1 = 0.69513, d2 = 2.01909.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 157

This gives the clamped cubic spine

s(x) =

⎧⎪⎨
⎪⎩

1+ x + 0.44468x2 + 0.27360x3, if 0 ≤ x < 1,

2.71828+ 2.71016(x −1)+ 1.26548(x −1)2 + 0.69513(x −1)3, if 1 ≤ x < 2,

7.38906+ 7.32652(x −2)+ 3.35087(x −2)2 + 2.01909(x −2)3, if 2 ≤ x ≤ 3.

The graph of the clamped spline and f (x) = ex are so similar that no difference can be
seen.

We can create the clamped cubic spline in Example 4 with the same commands we
used for the natural spline, the only change that is needed is to specify the derivative at the
endpoints. In this case we use

sn := t→ Spline ([[0., 1.0], [1.0, f (1.0)], [2.0, f (2.0)], [3.0, f (3.0)]], t, degree = 3,
endpoints = [1.0, e3.0

])
giving essentially the same results as in the example.

We can also approximate the integral of f on [0, 3], by integrating the clamped spline.
The exact value of the integral is∫ 3

0
ex dx = e3 − 1 ≈ 20.08554− 1 = 19.08554.

Because the data is equally spaced, piecewise integrating the clamped spline results in the
same formula as in (3.22), that is,∫ 3

0
s(x) dx = (a0 + a1 + a2)+ 1

2
(b0 + b1 + b2)

+ 1

3
(c0 + c1 + c2)+ 1

4
(d0 + d1 + d2).

Hence the integral approximation is∫ 3

0
s(x) dx = (1+ 2.71828+ 7.38906)+ 1

2
(1+ 2.71016+ 7.32652)

+ 1

3
(0.44468+ 1.26548+ 3.35087)+ 1

4
(0.27360+ 0.69513+ 2.01909)

= 19.05965.

The absolute error in the integral approximation using the clamped and natural splines are

Natural : |19.08554− 19.55229| = 0.46675

and

Clamped : |19.08554− 19.05965| = 0.02589.

For integration purposes the clamped spline is vastly superior. This should be no surprise
since the boundary conditions for the clamped spline are exact, whereas for the natural
spline we are essentially assuming that, since f ′′(x) = ex,

0 = S′′(0) ≈ f ′′(0) = e1 = 1 and 0 = S′′(3) ≈ f ′′(3) = e3 ≈ 20.

The next illustration uses a spine to approximate a curve that has no given functional
representation.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

158 C H A P T E R 3 Interpolation and Polynomial Approximation

Illustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.

Figure 3.11

Table 3.18

x 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3

f (x) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25

Figure 3.12
f (x)

x

1

2

3

4

6 7 8 91 32 4 5 10 11 12 13

Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 159

Table 3.19
j xj aj bj cj dj

0 0.9 1.3 5.40 0.00 −0.25
1 1.3 1.5 0.42 −0.30 0.95
2 1.9 1.85 1.09 1.41 −2.96
3 2.1 2.1 1.29 −0.37 −0.45
4 2.6 2.6 0.59 −1.04 0.45
5 3.0 2.7 −0.02 −0.50 0.17
6 3.9 2.4 −0.50 −0.03 0.08
7 4.4 2.15 −0.48 0.08 1.31
8 4.7 2.05 −0.07 1.27 −1.58
9 5.0 2.1 0.26 −0.16 0.04

10 6.0 2.25 0.08 −0.03 0.00
11 7.0 2.3 0.01 −0.04 −0.02
12 8.0 2.25 −0.14 −0.11 0.02
13 9.2 1.95 −0.34 −0.05 −0.01
14 10.5 1.4 −0.53 −0.10 −0.02
15 11.3 0.9 −0.73 −0.15 1.21
16 11.6 0.7 −0.49 0.94 −0.84
17 12.0 0.6 −0.14 −0.06 0.04
18 12.6 0.5 −0.18 0.00 −0.45
19 13.0 0.4 −0.39 −0.54 0.60
20 13.3 0.25

Figure 3.13
f (x)

x

1

2

3

4

6 7 8 931 2 54 10 11 12 13

For comparison purposes, Figure 3.14 gives an illustration of the curve that is generated using
a Lagrange interpolating polynomial to fit the data given in Table 3.18. The interpolating
polynomial in this case is of degree 20 and oscillates wildly. It produces a very strange
illustration of the back of a duck, in flight or otherwise.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

160 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.14
f (x)

x

1

2

3

4

8 96 731 2 4 5 10 1211

To use a clamped spline to approximate this curve we would need derivative approxima-
tions for the endpoints. Even if these approximations were available, we could expect little
improvement because of the close agreement of the natural cubic spline to the curve of the
top profile. �

Constructing a cubic spline to approximate the lower profile of the ruddy duck would
be more difficult since the curve for this portion cannot be expressed as a function of x, and
at certain points the curve does not appear to be smooth. These problems can be resolved
by using separate splines to represent various portions of the curve, but a more effective
approach to approximating curves of this type is considered in the next section.

The clamped boundary conditions are generally preferred when approximating func-
tions by cubic splines, so the derivative of the function must be known or approximated
at the endpoints of the interval. When the nodes are equally spaced near both end-
points, approximations can be obtained by any of the appropriate formulas given in
Sections 4.1 and 4.2. When the nodes are unequally spaced, the problem is considerably
more difficult.

To conclude this section, we list an error-bound formula for the cubic spline with
clamped boundary conditions. The proof of this result can be found in [Schul], pp. 57–58.

Theorem 3.13 Let f ∈ C4[a, b] with maxa≤x≤b |f (4)(x)| = M. If S is the unique clamped cubic spline
interpolant to f with respect to the nodes a = x0 < x1 < · · · < xn = b, then for all x in
[a, b],

|f (x)− S(x)| ≤ 5M

384
max

0≤j≤n−1
(xj+1 − xj)

4.

A fourth-order error-bound result also holds in the case of natural boundary conditions,
but it is more difficult to express. (See [BD], pp. 827–835.)

The natural boundary conditions will generally give less accurate results than the
clamped conditions near the ends of the interval [x0, xn] unless the function f happens

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 161

to nearly satisfy f ′′(x0) = f ′′(xn) = 0. An alternative to the natural boundary condition
that does not require knowledge of the derivative of f is the not-a-knot condition, (see
[Deb2], pp. 55–56). This condition requires that S′′′(x) be continuous at x1 and at xn−1.

E X E R C I S E S E T 3.5

1. Determine the natural cubic spline S that interpolates the data f (0) = 0, f (1) = 1, and f (2) = 2.

2. Determine the clamped cubic spline s that interpolates the data f (0) = 0, f (1) = 1, f (2) = 2 and
satisfies s′(0) = s′(2) = 1.

3. Construct the natural cubic spline for the following data.
a. x f (x)

8.3 17.56492
8.6 18.50515

b. x f (x)

0.8 0.22363362
1.0 0.65809197

c. x f (x)

−0.5 −0.0247500
−0.25 0.3349375

0 1.1010000

d. x f (x)

0.1 −0.62049958
0.2 −0.28398668
0.3 0.00660095
0.4 0.24842440

4. Construct the natural cubic spline for the following data.
a. x f (x)

0 1.00000
0.5 2.71828

b. x f (x)

−0.25 1.33203
0.25 0.800781

c. x f (x)

0.1 −0.29004996
0.2 −0.56079734
0.3 −0.81401972

d. x f (x)

−1 0.86199480
−0.5 0.95802009

0 1.0986123
0.5 1.2943767

5. The data in Exercise 3 were generated using the following functions. Use the cubic splines constructed
in Exercise 3 for the given value of x to approximate f (x) and f ′(x), and calculate the actual error.

a. f (x) = x ln x; approximate f (8.4) and f ′(8.4).

b. f (x) = sin(ex − 2); approximate f (0.9) and f ′(0.9).

c. f (x) = x3 + 4.001x2 + 4.002x + 1.101; approximate f (− 1
3) and f ′(− 1

3).

d. f (x) = x cos x − 2x2 + 3x − 1; approximate f (0.25) and f ′(0.25).

6. The data in Exercise 4 were generated using the following functions. Use the cubic splines constructed
in Exercise 4 for the given value of x to approximate f (x) and f ′(x), and calculate the actual error.

a. f (x) = e2x; approximate f (0.43) and f ′(0.43).

b. f (x) = x4 − x3 + x2 − x + 1; approximate f (0) and f ′(0).
c. f (x) = x2 cos x − 3x; approximate f (0.18) and f ′(0.18).

d. f (x) = ln(ex + 2); approximate f (0.25) and f ′(0.25).

7. Construct the clamped cubic spline using the data of Exercise 3 and the fact that

a. f ′(8.3) = 3.116256 and f ′(8.6) = 3.151762

b. f ′(0.8) = 2.1691753 and f ′(1.0) = 2.0466965

c. f ′(−0.5) = 0.7510000 and f ′(0) = 4.0020000

d. f ′(0.1) = 3.58502082 and f ′(0.4) = 2.16529366

8. Construct the clamped cubic spline using the data of Exercise 4 and the fact that

a. f ′(0) = 2 and f ′(0.5) = 5.43656

b. f ′(−0.25) = 0.437500 and f ′(0.25) = −0.625000

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

162 C H A P T E R 3 Interpolation and Polynomial Approximation

c. f ′(0.1) = −2.8004996 and f ′(0) = −2.9734038

d. f ′(−1) = 0.15536240 and f ′(0.5) = 0.45186276

9. Repeat Exercise 5 using the clamped cubic splines constructed in Exercise 7.

10. Repeat Exercise 6 using the clamped cubic splines constructed in Exercise 8.

11. A natural cubic spline S on [0, 2] is defined by

S(x) =
{

S0(x) = 1+ 2x − x3, if 0 ≤ x < 1,

S1(x) = 2+ b(x − 1)+ c(x − 1)2 + d(x − 1)3, if 1 ≤ x ≤ 2.

Find b, c, and d.

12. A clamped cubic spline s for a function f is defined on [1, 3] by

s(x) =
{

s0(x) = 3(x − 1)+ 2(x − 1)2 − (x − 1)3, if 1 ≤ x < 2,

s1(x) = a+ b(x − 2)+ c(x − 2)2 + d(x − 2)3, if 2 ≤ x ≤ 3.

Given f ′(1) = f ′(3), find a, b, c, and d.

13. A natural cubic spline S is defined by

S(x) =
{

S0(x) = 1+ B(x − 1)− D(x − 1)3, if 1 ≤ x < 2,

S1(x) = 1+ b(x − 2)− 3
4 (x − 2)2 + d(x − 2)3, if 2 ≤ x ≤ 3.

If S interpolates the data (1, 1), (2, 1), and (3, 0), find B, D, b, and d.

14. A clamped cubic spline s for a function f is defined by

s(x) =
{

s0(x) = 1+ Bx + 2x2 − 2x3, if 0 ≤ x < 1,

s1(x) = 1+ b(x − 1)− 4(x − 1)2 + 7(x − 1)3, if 1 ≤ x ≤ 2.

Find f ′(0) and f ′(2).
15. Construct a natural cubic spline to approximate f (x) = cosπx by using the values given by f (x) at

x = 0, 0.25, 0.5, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to
∫ 1

0 cosπx dx =
0. Use the derivatives of the spline to approximatef ′(0.5) and f ′′(0.5). Compare these approximations
to the actual values.

16. Construct a natural cubic spline to approximate f (x) = e−x by using the values given by f (x) at x = 0,
0.25, 0.75, and 1.0. Integrate the spline over [0, 1], and compare the result to

∫ 1
0 e−x dx = 1 − 1/e.

Use the derivatives of the spline to approximate f ′(0.5) and f ′′(0.5). Compare the approximations to
the actual values.

17. Repeat Exercise 15, constructing instead the clamped cubic spline with f ′(0) = f ′(1) = 0.

18. Repeat Exercise 16, constructing instead the clamped cubic spline with f ′(0) = −1, f ′(1) = −e−1.

19. Suppose that f (x) is a polynomial of degree 3. Show that f (x) is its own clamped cubic spline, but
that it cannot be its own natural cubic spline.

20. Suppose the data {xi, f (xi))}ni=1 lie on a straight line. What can be said about the natural and clamped
cubic splines for the function f ? [Hint: Take a cue from the results of Exercises 1 and 2.]

21. Given the partition x0 = 0, x1 = 0.05, and x2 = 0.1 of [0, 0.1], find the piecewise linear interpolating
function F for f (x) = e2x . Approximate

∫ 0.1
0 e2x dx with

∫ 0.1
0 F(x) dx, and compare the results to the

actual value.

22. Let f ∈ C2[a, b], and let the nodes a = x0 < x1 < · · · < xn = b be given. Derive an error estimate
similar to that in Theorem 3.13 for the piecewise linear interpolating function F. Use this estimate to
derive error bounds for Exercise 21.

23. Extend Algorithms 3.4 and 3.5 to include as output the first and second derivatives of the spline at the
nodes.

24. Extend Algorithms 3.4 and 3.5 to include as output the integral of the spline over the interval [x0, xn].
25. Given the partition x0 = 0, x1 = 0.05, x2 = 0.1 of [0, 0.1] and f (x) = e2x:

a. Find the cubic spline s with clamped boundary conditions that interpolates f .

b. Find an approximation for
∫ 0.1

0 e2x dx by evaluating
∫ 0.1

0 s(x) dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Cubic Spline Interpolation 163

c. Use Theorem 3.13 to estimate max0≤x≤0.1 |f (x)− s(x)| and∣∣∣∣
∫ 0.1

0
f (x) dx −

∫ 0.1

0
s(x) dx

∣∣∣∣ .

d. Determine the cubic spline S with natural boundary conditions, and compare S(0.02), s(0.02),
and e0.04 = 1.04081077.

26. Let f be defined on [a, b], and let the nodes a = x0 < x1 < x2 = b be given. A quadratic spline
interpolating function S consists of the quadratic polynomial

S0(x) = a0 + b0(x − x0)+ c0(x − x0)
2 on [x0, x1]

and the quadratic polynomial

S1(x) = a1 + b1(x − x1)+ c1(x − x1)
2 on [x1, x2],

such that

i. S(x0) = f (x0), S(x1) = f (x1), and S(x2) = f (x2),

ii. S ∈ C1[x0, x2].
Show that conditions (i) and (ii) lead to five equations in the six unknowns a0, b0, c0, a1, b1, and c1.
The problem is to decide what additional condition to impose to make the solution unique. Does the
condition S ∈ C2[x0, x2] lead to a meaningful solution?

27. Determine a quadratic spline s that interpolates the data f (0) = 0, f (1) = 1, f (2) = 2 and satisfies
s′(0) = 2.

28. a. The introduction to this chapter included a table listing the population of the United States from
1950 to 2000. Use natural cubic spline interpolation to approximate the population in the years
1940, 1975, and 2020.

b. The population in 1940 was approximately 132,165,000. How accurate do you think your 1975
and 2020 figures are?

29. A car traveling along a straight road is clocked at a number of points. The data from the observations
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is
in feet per second.

Time 0 3 5 8 13

Distance 0 225 383 623 993

Speed 75 77 80 74 72

a. Use a clamped cubic spline to predict the position of the car and its speed when t = 10 s.

b. Use the derivative of the spline to determine whether the car ever exceeds a 55-mi/h speed limit
on the road; if so, what is the first time the car exceeds this speed?

c. What is the predicted maximum speed for the car?

30. The 2009 Kentucky Derby was won by a horse named Mine That Bird (at more than 50:1 odds)
in a time of 2:02.66 (2 minutes and 2.66 seconds) for the 1 1

4 -mile race. Times at the quarter-mile,
half-mile, and mile poles were 0:22.98, 0:47.23, and 1:37.49.

a. Use these values together with the starting time to construct a natural cubic spline for Mine That
Bird’s race.

b. Use the spline to predict the time at the three-quarter-mile pole, and compare this to the actual
time of 1:12.09.

c. Use the spline to approximate Mine That Bird’s starting speed and speed at the finish line.

31. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter
moth (Operophtera bromata L., Geometridae) larvae that extensively damage these trees in certain
years. The following table lists the average weight of two samples of larvae at times in the first 28 days
after birth. The first sample was reared on young oak leaves, whereas the second sample was reared
on mature leaves from the same tree.

a. Use a natural cubic spline to approximate the average weight curve for each sample.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

164 C H A P T E R 3 Interpolation and Polynomial Approximation

b. Find an approximate maximum average weight for each sample by determining the maximum
of the spline.

Day 0 6 10 13 17 20 28

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74

Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89

32. The upper portion of this noble beast is to be approximated using clamped cubic spline interpolants.
The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 to construct the
three clamped cubic splines.

x5 10 15 20 25 30

8
7
6
5
4
3
2
1

Slope 3 Slope �4f (x) Slope �

Slope

Slope �

Slope 1

Curve 1 Curve 2 Curve 3 3
2

2
3

1
3

Curve 1 Curve 2 Curve 3

i xi f (xi) f ′(xi) i xi f (xi) f ′(xi) i xi f (xi) f ′(xi)

0 1 3.0 1.0 0 17 4.5 3.0 0 27.7 4.1 0.33
1 2 3.7 1 20 7.0 1 28 4.3
2 5 3.9 2 23 6.1 2 29 4.1
3 6 4.2 3 24 5.6 3 30 3.0 −1.5
4 7 5.7 4 25 5.8
5 8 6.6 5 27 5.2
6 10 7.1 6 27.7 4.1 −4.0
7 13 6.7
8 17 4.5 −0.67

33. Repeat Exercise 32, constructing three natural splines using Algorithm 3.4.

3.6 Parametric Curves

None of the techniques developed in this chapter can be used to generate curves of the form
shown in Figure 3.15 because this curve cannot be expressed as a function of one coordinate
variable in terms of the other. In this section we will see how to represent general curves
by using a parameter to express both the x- and y-coordinate variables. Any good book

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.6 Parametric Curves 165

on computer graphics will show how this technique can be extended to represent general
curves and surfaces in space. (See, for example, [FVFH].)

Figure 3.15
y

x1

1

�1

�1

A straightforward parametric technique for determining a polynomial or piecewise
polynomial to connect the points (x0, y0), (x1, y1), . . ., (xn, yn) in the order given is to use
a parameter t on an interval [t0, tn], with t0 < t1 < · · · < tn, and construct approximation
functions with

xi = x(ti) and yi = y(ti), for each i = 0, 1, . . . , n.

The following example demonstrates the technique in the case where both approximat-
ing functions are Lagrange interpolating polynomials.

Example 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15,
using the data points shown on the curve.

Solution There is flexibility in choosing the parameter, and we will choose the points
{ti}4i=0 equally spaced in [0,1], which gives the data in Table 3.20.

Table 3.20 i 0 1 2 3 4

ti 0 0.25 0.5 0.75 1
xi −1 0 1 0 1
yi 0 1 0.5 0 −1

This produces the interpolating polynomials

x(t) = (((64t − 352
3

)
t + 60

)
t − 14

3

)
t−1 and y(t) = (((− 64

3 t + 48
)

t − 116
3

)
t + 11

)
t.

Plotting this parametric system produces the graph shown in blue in Figure 3.16. Although
it passes through the required points and has the same basic shape, it is quite a crude ap-
proximation to the original curve. A more accurate approximation would require additional
nodes, with the accompanying increase in computation.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

166 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.16
y

x1

1

�1

�1

(x(t), y(t))

Parametric Hermite and spline curves can be generated in a similar manner, but these
also require extensive computational effort.

Applications in computer graphics require the rapid generation of smooth curves that
can be easily and quickly modified. For both aesthetic and computational reasons, changing
one portion of these curves should have little or no effect on other portions of the curves.
This eliminates the use of interpolating polynomials and splines since changing one portion
of these curves affects the whole curve.

The choice of curve for use in computer graphics is generally a form of the piece-
wise cubic Hermite polynomial. Each portion of a cubic Hermite polynomial is completely
determined by specifying its endpoints and the derivatives at these endpoints. As a conse-
quence, one portion of the curve can be changed while leaving most of the curve the same.
Only the adjacent portions need to be modified to ensure smoothness at the endpoints. The
computations can be performed quickly, and the curve can be modified a section at a time.

A successful computer design
system needs to be based on a
formal mathematical theory so
that the results are predictable,
but this theory should be
performed in the background so
that the artist can base the design
on aesthetics.

The problem with Hermite interpolation is the need to specify the derivatives at
the endpoints of each section of the curve. Suppose the curve has n + 1 data points
(x(t0), y(t0)), . . . , (x(tn), y(tn)), and we wish to parameterize the cubic to allow complex
features. Then we must specify x′(ti) and y′(ti), for each i = 0, 1, . . . , n. This is not as
difficult as it would first appear, since each portion is generated independently. We must
ensure only that the derivatives at the endpoints of each portion match those in the adjacent
portion. Essentially, then, we can simplify the process to one of determining a pair of cubic
Hermite polynomials in the parameter t, where t0 = 0 and t1 = 1, given the endpoint data
(x(0), y(0)) and (x(1), y(1)) and the derivatives dy/dx (at t = 0) and dy/dx (at t = 1).

Notice, however, that we are specifying only six conditions, and the cubic polynomials
in x(t) and y(t) each have four parameters, for a total of eight. This provides flexibility
in choosing the pair of cubic Hermite polynomials to satisfy the conditions, because the
natural form for determining x(t) and y(t) requires that we specify x′(0), x′(1), y′(0), and
y′(1). The explicit Hermite curve in x and y requires specifying only the quotients

dy

dx
(t = 0) = y′(0)

x′(0)
and

dy

dx
(t = 1) = y′(1)

x′(1)
.

By multiplying x′(0) and y′(0) by a common scaling factor, the tangent line to the curve
at (x(0), y(0)) remains the same, but the shape of the curve varies. The larger the scaling

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.6 Parametric Curves 167

factor, the closer the curve comes to approximating the tangent line near (x(0), y(0)). A
similar situation exists at the other endpoint (x(1), y(1)).

To further simplify the process in interactive computer graphics, the derivative at an
endpoint is specified by using a second point, called a guidepoint, on the desired tangent
line. The farther the guidepoint is from the node, the more closely the curve approximates
the tangent line near the node.

In Figure 3.17, the nodes occur at (x0, y0) and (x1, y1), the guidepoint for (x0, y0) is
(x0 + α0, y0 + β0), and the guidepoint for (x1, y1) is (x1 − α1, y1 − β1). The cubic Hermite
polynomial x(t) on [0, 1] satisfies

x(0) = x0, x(1) = x1, x′(0) = α0, and x′(1) = α1.

Figure 3.17

x

y

(x0, y0)

(x1, y1)

(x0 � α0, y0 � β0)

(x1 � α1, y1 � β1)

The unique cubic polynomial satisfying these conditions is

x(t) = [2(x0 − x1)+ (α0 + α1)]t3 + [3(x1 − x0)− (α1 + 2α0)]t2 + α0t + x0. (3.23)

In a similar manner, the unique cubic polynomial satisfying

y(0) = y0, y(1) = y1, y′(0) = β0, and y′(1) = β1

is

y(t) = [2(y0 − y1)+ (β0 + β1)]t3 + [3(y1 − y0)− (β1 + 2β0)]t2 + β0t + y0. (3.24)

Example 2 Determine the graph of the parametric curve generated Eq. (3.23) and (3.24) when the end
points are (x0, y0) = (0, 0) and (x1, y1) = (1, 0), and respective guide points, as shown in
Figure 3.18 are (1, 1) and (0, 1).

Solution The endpoint information implies that x0 = 0, x1 = 1, y0 = 0, and y1 = 0, and
the guide points at (1, 1) and (0, 1) imply that α0 = 1, α1 = 1, β0 = 1, and β1 = −1. Note
that the slopes of the guide lines at (0, 0) and (1, 0) are, respectively

β0

α0
= 1

1
= 1 and

β1

α1
= −1

1
= −1.

Equations (3.23) and (3.24) imply that for t ∈ [0, 1] we have

x(t) = [2(0− 1)+ (1+ 1)]t3 + [3(0− 0)− (1+ 2 · 1)]t2 + 1 · t + 0 = t

y

x

(1, 1)

(1, 1)(0, 0)

(0, 1)

Nodes

Guidepoints

Figure 3.18

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

168 C H A P T E R 3 Interpolation and Polynomial Approximation

and

y(t) = [2(0− 0)+ (1+ (−1))]t3 + [3(0− 0)− (−1+ 2 · 1)]t2 + 1 · t + 0 = −t2 + t.

This graph is shown as (a) in Figure 3.19, together with some other possibilities of curves
produced by Eqs. (3.23) and (3.24) when the nodes are (0, 0) and (1, 0) and the slopes at
these nodes are 1 and −1, respectively.

Figure 3.19

y

x1 2

1(1, 1)(0, 1)

y

x1 2

(0.75, 0.25)

(1, 1)

(2, 2)

(2, �1) (2, �1)

(0.5, 0.5)

(a) (b)

y

x1 2

1

y

x2

(c) (d)

1

�1

1

2 2

1

�1

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.6 Parametric Curves 169

The standard procedure for determining curves in an interactive graphics mode is to first
use a mouse or touchpad to set the nodes and guidepoints to generate a first approximation
to the curve. These can be set manually, but most graphics systems permit you to use your
input device to draw the curve on the screen freehand and will select appropriate nodes and
guidepoints for your freehand curve.

The nodes and guidepoints can then be manipulated into a position that produces an
aesthetically pleasing curve. Since the computation is minimal, the curve can be determined
so quickly that the resulting change is seen immediately. Moreover, all the data needed to
compute the curves are imbedded in the coordinates of the nodes and guidepoints, so no
analytical knowledge is required of the user.

Pierre Etienne Bézier
(1910–1999) was head of design
and production for Renault
motorcars for most of his
professional life. He began his
research into computer-aided
design and manufacturing in
1960, developing interactive tools
for curve and surface design, and
initiated computer-generated
milling for automobile modeling.

The Bézier curves that bear his
name have the advantage of being
based on a rigorous mathematical
theory that does not need to be
explicitly recognized by the
practitioner who simply wants to
make an aesthetically pleasing
curve or surface. These are the
curves that are the basis of the
powerful Adobe Postscript
system, and produce the freehand
curves that are generated in most
sufficiently powerful computer
graphics packages.

Popular graphics programs use this type of system for their freehand graphic representa-
tions in a slightly modified form. The Hermite cubics are described as Bézier polynomials,
which incorporate a scaling factor of 3 when computing the derivatives at the endpoints.
This modifies the parametric equations to

x(t) = [2(x0 − x1)+ 3(α0 + α1)]t3 + [3(x1 − x0)− 3(α1 + 2α0)]t2 + 3α0t + x0, (3.25)

and

y(t) = [2(y0 − y1)+ 3(β0 + β1)]t3 + [3(y1 − y0)− 3(β1 + 2β0)]t2 + 3β0t + y0, (3.26)

for 0 ≤ t ≤ 1, but this change is transparent to the user of the system.
Algorithm 3.6 constructs a set of Bézier curves based on the parametric equations in

Eqs. (3.25) and (3.26).

ALGORITHM

3.6
Bézier Curve

To construct the cubic Bézier curves C0, . . . , Cn−1 in parametric form, where Ci is repre-
sented by

(xi(t), yi(t)) = (a(i)0 + a(i)1 t + a(i)2 t2 + a(i)3 t3, b(i)0 + b(i)1 t + b(i)2 t2 + b(i)3 t3),

for 0 ≤ t ≤ 1, as determined by the left endpoint (xi, yi), left guidepoint (x+i , y+i), right
endpoint (xi+1, yi+1), and right guidepoint (x−i+1, y−i+1) for each i = 0, 1, . . . , n− 1:

INPUT n; (x0, y0), . . . , (xn, yn); (x
+
0 , y+0), . . . , (x

+
n−1, y+n−1); (x

−
1 , y−1), . . . , (x

−
n , y−n).

OUTPUT coefficients {a(i)0 , a(i)1 , a(i)2 , a(i)3 , b(i)0 , b(i)1 , b(i)2 , b(i)3 , for 0 ≤ i ≤ n− 1}.
Step 1 For each i = 0, 1, . . . , n− 1 do Steps 2 and 3.

Step 2 Set a(i)0 = xi;

b(i)0 = yi;

a(i)1 = 3(x+i − xi);

b(i)1 = 3(y+i − yi);

a(i)2 = 3(xi + x−i+1 − 2x+i);

b(i)2 = 3(yi + y−i+1 − 2y+i);

a(i)3 = xi+1 − xi + 3x+i − 3x−i+1;

b(i)3 = yi+1 − yi + 3y+i − 3y−i+1;

Step 3 OUTPUT (a(i)0 , a(i)1 , a(i)2 , a(i)3 , b(i)0 , b(i)1 , b(i)2 , b(i)3).

Step 4 STOP.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

170 C H A P T E R 3 Interpolation and Polynomial Approximation

Three-dimensional curves are generated in a similar manner by additionally specifying
third components z0 and z1 for the nodes and z0+γ0 and z1−γ1 for the guidepoints. The more
difficult problem involving the representation of three-dimensional curves concerns the loss
of the third dimension when the curve is projected onto a two-dimensional computer screen.
Various projection techniques are used, but this topic lies within the realm of computer
graphics. For an introduction to this topic and ways that the technique can be modified for
surface representations, see one of the many books on computer graphics methods, such as
[FVFH].

E X E R C I S E S E T 3.6

1. Let (x0, y0) = (0, 0) and (x1, y1) = (5, 2) be the endpoints of a curve. Use the given guide-
points to construct parametric cubic Hermite approximations (x(t), y(t)) to the curve, and graph the
approximations.
a. (1, 1) and (6, 1)

b. (0.5, 0.5) and (5.5, 1.5)

c. (1, 1) and (6, 3)

d. (2, 2) and (7, 0)

2. Repeat Exercise 1 using cubic Bézier polynomials.

3. Construct and graph the cubic Bézier polynomials given the following points and guidepoints.

a. Point (1, 1) with guidepoint (1.5, 1.25) to point (6, 2) with guidepoint (7, 3)

b. Point (1, 1) with guidepoint (1.25, 1.5) to point (6, 2) with guidepoint (5, 3)

c. Point (0, 0)with guidepoint (0.5, 0.5) to point (4, 6)with entering guidepoint (3.5, 7) and exiting
guidepoint (4.5, 5) to point (6, 1) with guidepoint (7, 2)

d. Point (0, 0) with guidepoint (0.5, 0.5) to point (2, 1) with entering guidepoint (3, 1) and exiting
guidepoint (3, 1) to point (4, 0) with entering guidepoint (5, 1) and exiting guidepoint (3,−1)
to point (6,−1) with guidepoint (6.5,−0.25)

4. Use the data in the following table and Algorithm 3.6 to approximate the shape of the letter N .

i xi yi αi βi α′i β ′i

0 3 6 3.3 6.5
1 2 2 2.8 3.0 2.5 2.5
2 6 6 5.8 5.0 5.0 5.8
3 5 2 5.5 2.2 4.5 2.5
4 6.5 3 6.4 2.8

5. Suppose a cubic Bézier polynomial is placed through (u0, v0) and (u3, v3) with guidepoints (u1, v1)

and (u2, v2), respectively.

a. Derive the parametric equations for u(t) and v(t) assuming that

u(0) = u0, u(1) = u3, u′(0) = u1 − u0, u′(1) = u3 − u2

and

v(0) = v0, v(1) = v3, v′(0) = v1 − v0, v′(1) = v3 − v2.

b. Let f (i/3) = ui, for i = 0, 1, 2, 3 and g(i/3) = vi, for i = 0, 1, 2, 3. Show that the Bernstein
polynomial of degree 3 in t for f is u(t) and the Bernstein polynomial of degree three in t for g
is v(t). (See Exercise 23 of Section 3.1.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.7 Survey of Methods and Software 171

3.7 Survey of Methods and Software

In this chapter we have considered approximating a function using polynomials and piece-
wise polynomials. The function can be specified by a given defining equation or by pro-
viding points in the plane through which the graph of the function passes. A set of nodes
x0, x1, . . . , xn is given in each case, and more information, such as the value of various
derivatives, may also be required. We need to find an approximating function that satisfies
the conditions specified by these data.

The interpolating polynomial P(x) is the polynomial of least degree that satisfies, for
a function f ,

P(xi) = f (xi), for each i = 0, 1, . . . , n.

Although this interpolating polynomial is unique, it can take many different forms. The
Lagrange form is most often used for interpolating tables when n is small and for deriving
formulas for approximating derivatives and integrals. Neville’s method is used for eval-
uating several interpolating polynomials at the same value of x. Newton’s forms of the
polynomial are more appropriate for computation and are also used extensively for deriv-
ing formulas for solving differential equations. However, polynomial interpolation has the
inherent weaknesses of oscillation, particularly if the number of nodes is large. In this case
there are other methods that can be better applied.

The Hermite polynomials interpolate a function and its derivative at the nodes. They
can be very accurate but require more information about the function being approximated.
When there are a large number of nodes, the Hermite polynomials also exhibit oscillation
weaknesses.

The most commonly used form of interpolation is piecewise-polynomial interpolation.
If function and derivative values are available, piecewise cubic Hermite interpolation is
recommended. This is the preferred method for interpolating values of a function that is
the solution to a differential equation. When only the function values are available, natural
cubic spline interpolation can be used. This spline forces the second derivative of the spline
to be zero at the endpoints. Other cubic splines require additional data. For example, the
clamped cubic spline needs values of the derivative of the function at the endpoints of the
interval.

Other methods of interpolation are commonly used. Trigonometric interpolation, in
particular the Fast Fourier Transform discussed in Chapter 8, is used with large amounts
of data when the function is assumed to have a periodic nature. Interpolation by rational
functions is also used.

If the data are suspected to be inaccurate, smoothing techniques can be applied, and
some form of least squares fit of data is recommended. Polynomials, trigonometric functions,
rational functions, and splines can be used in least squares fitting of data. We consider these
topics in Chapter 8.

Interpolation routines included in the IMSL Library are based on the book A Practical
Guide to Splines by Carl de Boor [Deb] and use interpolation by cubic splines. There
are cubic splines to minimize oscillations and to preserve concavity. Methods for two-
dimensional interpolation by bicubic splines are also included.

The NAG library contains subroutines for polynomial and Hermite interpolation, for
cubic spline interpolation, and for piecewise cubic Hermite interpolation. NAG also contains
subroutines for interpolating functions of two variables.

The netlib library contains the subroutines to compute the cubic spline with various
endpoint conditions. One package produces the Newton’s divided difference coefficients for

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

172 C H A P T E R 3 Interpolation and Polynomial Approximation

a discrete set of data points, and there are various routines for evaluating Hermite piecewise
polynomials.

MATLAB can be used to interpolate a discrete set of data points, using either nearest
neighbor interpolation, linear interpolation, cubic spline interpolation, or cubic interpola-
tion. Cubic splines can also be produced.

General references to the methods in this chapter are the books by Powell [Pow] and
by Davis [Da]. The seminal paper on splines is due to Schoenberg [Scho]. Important books
on splines are by Schultz [Schul], De Boor [Deb2], Dierckx [Di], and Schumaker [Schum].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R

4 Numerical Differentiation and Integration

Introduction
A sheet of corrugated roofing is constructed by pressing a flat sheet of aluminum into one
whose cross section has the form of a sine wave.

A corrugated sheet 4 ft long is needed, the height of each wave is 1 in. from the center
line, and each wave has a period of approximately 2π in. The problem of finding the length
of the initial flat sheet is one of determining the length of the curve given by f (x) = sin x
from x = 0 in. to x = 48 in. From calculus we know that this length is

L =
∫ 48

0

√
1+ (f ′(x))2 dx =

∫ 48

0

√
1+ (cos x)2 dx,

so the problem reduces to evaluating this integral. Although the sine function is one of
the most common mathematical functions, the calculation of its length involves an elliptic
integral of the second kind, which cannot be evaluated explicitly. Methods are developed in
this chapter to approximate the solution to problems of this type. This particular problem
is considered in Exercise 25 of Section 4.4 and Exercise 12 of Section 4.5.

We mentioned in the introduction to Chapter 3 that one reason for using alge-
braic polynomials to approximate an arbitrary set of data is that, given any continuous
function defined on a closed interval, there exists a polynomial that is arbitrarily close to
the function at every point in the interval. Also, the derivatives and integrals of polyno-
mials are easily obtained and evaluated. It should not be surprising, then, that many
procedures for approximating derivatives and integrals use the polynomials that
approximate the function.

173

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

174 C H A P T E R 4 Numerical Differentiation and Integration

4.1 Numerical Differentiation

The derivative of the function f at x0 is

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

This formula gives an obvious way to generate an approximation to f ′(x0); simply compute

f (x0 + h)− f (x0)

h

for small values of h. Although this may be obvious, it is not very successful, due to our
old nemesis round-off error. But it is certainly a place to start.

To approximate f ′(x0), suppose first that x0 ∈ (a, b), where f ∈ C2[a, b], and that
x1 = x0+h for some h �= 0 that is sufficiently small to ensure that x1 ∈ [a, b]. We construct
the first Lagrange polynomial P0,1(x) for f determined by x0 and x1, with its error term:

f (x) = P0,1(x)+ (x − x0)(x − x1)

2! f ′′(ξ(x))

= f (x0)(x − x0 − h)

−h
+ f (x0 + h)(x − x0)

h
+ (x − x0)(x − x0 − h)

2
f ′′(ξ(x)),

for some ξ(x) between x0 and x1. Differentiating gives

f ′(x) = f (x0 + h)− f (x0)

h
+ Dx

[
(x − x0)(x − x0 − h)

2
f ′′(ξ(x))

]

= f (x0 + h)− f (x0)

h
+ 2(x − x0)− h

2
f ′′(ξ(x))

+ (x − x0)(x − x0 − h)

2
Dx(f

′′(ξ(x))).

Deleting the terms involving ξ(x) gives

f ′(x) ≈ f (x0 + h)− f (x0)

h
.

One difficulty with this formula is that we have no information about Dxf
′′(ξ(x)), so the

truncation error cannot be estimated. When x is x0, however, the coefficient of Dxf
′′(ξ(x))

is 0, and the formula simplifies to

f ′(x0) = f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ). (4.1)

Difference equations were used
and popularized by Isaac Newton
in the last quarter of the 17th
century, but many of these
techniques had previously been
developed by Thomas Harriot
(1561–1621) and Henry Briggs
(1561–1630). Harriot made
significant advances in navigation
techniques, and Briggs was the
person most responsible for the
acceptance of logarithms as an
aid to computation.

For small values of h, the difference quotient [f (x0 + h) − f (x0)]/h can be used to
approximate f ′(x0) with an error bounded by M|h|/2, where M is a bound on |f ′′(x)| for x
between x0 and x0+ h. This formula is known as the forward-difference formula if h > 0
(see Figure 4.1) and the backward-difference formula if h < 0.

Example 1 Use the forward-difference formula to approximate the derivative of f (x) = ln x at x0 = 1.8
using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

f (1.8+ h)− f (1.8)

h

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Numerical Differentiation 175

Figure 4.1
y

xx0

Slope f �(x0)

Slope h
f (x0 � h) � f (x0)

x0 � h

with h = 0.1 gives

ln 1.9− ln 1.8

0.1
= 0.64185389− 0.58778667

0.1
= 0.5406722.

Because f ′′(x) = −1/x2 and 1.8 < ξ < 1.9, a bound for this approximation error is

|hf ′′(ξ)|
2

= |h|
2ξ 2

<
0.1

2(1.8)2
= 0.0154321.

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar
manner and the results are shown in Table 4.1.

Table 4.1
h f (1.8+ h)

f (1.8+ h)− f (1.8)

h

|h|
2(1.8)2

0.1 0.64185389 0.5406722 0.0154321
0.05 0.61518564 0.5479795 0.0077160
0.01 0.59332685 0.5540180 0.0015432

Since f ′(x) = 1/x, the exact value of f ′(1.8) is 0.555, and in this case the error bounds are
quite close to the true approximation error.

To obtain general derivative approximation formulas, suppose that {x0, x1, . . . , xn} are
(n + 1) distinct numbers in some interval I and that f ∈ Cn+1(I). From Theorem 3.3 on
page 112,

f (x) =
n∑

k=0

f (xk)Lk(x)+ (x − x0) · · · (x − xn)

(n+ 1)! f (n+1)(ξ(x)),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

176 C H A P T E R 4 Numerical Differentiation and Integration

for some ξ(x) in I , where Lk(x) denotes the kth Lagrange coefficient polynomial for f at
x0, x1, . . . , xn. Differentiating this expression gives

f ′(x) =
n∑

k=0

f (xk)L
′
k(x)+ Dx

[
(x − x0) · · · (x − xn)

(n+ 1!)
]
f (n+1)(ξ(x))

+ (x − x0) · · · (x − xn)

(n+ 1)! Dx[f (n+1)(ξ(x))].

We again have a problem estimating the truncation error unless x is one of the numbers
xj. In this case, the term multiplying Dx[f (n+1)(ξ(x))] is 0, and the formula becomes

f ′(xj) =
n∑

k=0

f (xk)L
′
k(xj)+ f

(n+1)(ξ(xj))

(n+ 1)!
n∏

k=0
k �=j

(xj − xk), (4.2)

which is called an (n + 1)-point formula to approximate f ′(xj).
In general, using more evaluation points in Eq. (4.2) produces greater accuracy, al-

though the number of functional evaluations and growth of round-off error discourages this
somewhat. The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.
Because

L0(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
, we have L′0(x) =

2x − x1 − x2

(x0 − x1)(x0 − x2)
.

Similarly,

L′1(x) =
2x − x0 − x2

(x1 − x0)(x1 − x2)
and L′2(x) =

2x − x0 − x1

(x2 − x0)(x2 − x1)
.

Hence, from Eq. (4.2),

f ′(xj) = f (x0)

[
2xj − x1 − x2

(x0 − x1)(x0 − x2)

]
+ f (x1)

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]

+ f (x2)

[
2xj − x0 − x1

(x2 − x0)(x2 − x1)

]
+ 1

6
f (3)(ξj)

2∏
k=0
k �=j

(xj − xk), (4.3)

for each j = 0, 1, 2, where the notation ξj indicates that this point depends on xj.

Three-Point Formulas

The formulas from Eq. (4.3) become especially useful if the nodes are equally spaced, that
is, when

x1 = x0 + h and x2 = x0 + 2h, for some h �= 0.

We will assume equally-spaced nodes throughout the remainder of this section.
Using Eq. (4.3) with xj = x0, x1 = x0 + h, and x2 = x0 + 2h gives

f ′(x0) = 1

h

[
−3

2
f (x0)+ 2f (x1)− 1

2
f (x2)

]
+ h2

3
f (3)(ξ0).

Doing the same for xj = x1 gives

f ′(x1) = 1

h

[
−1

2
f (x0)+ 1

2
f (x2)

]
− h2

6
f (3)(ξ1),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Numerical Differentiation 177

and for xj = x2,

f ′(x2) = 1

h

[
1

2
f (x0)− 2f (x1)+ 3

2
f (x2)

]
+ h2

3
f (3)(ξ2).

Since x1 = x0 + h and x2 = x0 + 2h, these formulas can also be expressed as

f ′(x0) = 1

h

[
−3

2
f (x0)+ 2f (x0 + h)− 1

2
f (x0 + 2h)

]
+ h2

3
f (3)(ξ0),

f ′(x0 + h) = 1

h

[
−1

2
f (x0)+ 1

2
f (x0 + 2h)

]
− h2

6
f (3)(ξ1),

and

f ′(x0 + 2h) = 1

h

[
1

2
f (x0)− 2f (x0 + h)+ 3

2
f (x0 + 2h)

]
+ h2

3
f (3)(ξ2).

As a matter of convenience, the variable substitution x0 for x0+ h is used in the middle
equation to change this formula to an approximation for f ′(x0). A similar change, x0 for
x0 + 2h, is used in the last equation. This gives three formulas for approximating f ′(x0):

f ′(x0) = 1

2h
[−3f (x0)+ 4f (x0 + h)− f (x0 + 2h)] + h2

3
f (3)(ξ0),

f ′(x0) = 1

2h
[−f (x0 − h)+ f (x0 + h)] − h2

6
f (3)(ξ1),

and

f ′(x0) = 1

2h
[f (x0 − 2h)− 4f (x0 − h)+ 3f (x0)] + h2

3
f (3)(ξ2).

Finally, note that the last of these equations can be obtained from the first by simply replacing
h with −h, so there are actually only two formulas:

Three-Point Endpoint Formula

• f ′(x0) = 1

2h
[−3f (x0)+ 4f (x0 + h)− f (x0 + 2h)] + h2

3
f (3)(ξ0), (4.4)

where ξ0 lies between x0 and x0 + 2h.

Three-Point Midpoint Formula

• f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f (3)(ξ1), (4.5)

where ξ1 lies between x0 − h and x0 + h.
Although the errors in both Eq. (4.4) and Eq. (4.5) are O(h2), the error in Eq. (4.5) is

approximately half the error in Eq. (4.4). This is because Eq. (4.5) uses data on both sides of
x0 and Eq. (4.4) uses data on only one side. Note also that f needs to be evaluated at only two
points in Eq. (4.5), whereas in Eq. (4.4) three evaluations are needed. Figure 4.2 on page 178
gives an illustration of the approximation produced from Eq. (4.5). The approximation in
Eq. (4.4) is useful near the ends of an interval, because information about f outside the
interval may not be available.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

178 C H A P T E R 4 Numerical Differentiation and Integration

Figure 4.2
y

x

Slope
2h [f (x0 � h) � f (x0 � h)]
1

Slope f �(x0)

x0 � h x0 � hx0

Five-Point Formulas

The methods presented in Eqs. (4.4) and (4.5) are called three-point formulas (even though
the third point f (x0) does not appear in Eq. (4.5)). Similarly, there are five-point formulas
that involve evaluating the function at two additional points. The error term for these for-
mulas is O(h4). One common five-point formula is used to determine approximations for
the derivative at the midpoint.

Five-Point Midpoint Formula

• f ′(x0) = 1

12h
[f (x0 − 2h)− 8f (x0 − h)+ 8f (x0 + h)− f (x0 + 2h)] + h4

30
f (5)(ξ),

(4.6)

where ξ lies between x0 − 2h and x0 + 2h.

The derivation of this formula is considered in Section 4.2. The other five-point formula is
used for approximations at the endpoints.

Five-Point Endpoint Formula

• f ′(x0) = 1

12h
[−25f (x0)+ 48f (x0 + h)− 36f (x0 + 2h)

+ 16f (x0 + 3h)− 3f (x0 + 4h)] + h4

5
f (5)(ξ), (4.7)

where ξ lies between x0 and x0 + 4h.

Left-endpoint approximations are found using this formula with h > 0 and right-endpoint
approximations with h < 0. The five-point endpoint formula is particularly useful for the
clamped cubic spline interpolation of Section 3.5.

Example 2 Values forf (x) = xex are given in Table 4.2. Use all the applicable three-point and five-point
formulas to approximate f ′(2.0).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Numerical Differentiation 179

Solution The data in the table permit us to find four different three-point approximations.
We can use the endpoint formula (4.4) with h = 0.1 or with h = −0.1, and we can use the
midpoint formula (4.5) with h = 0.1 or with h = 0.2.

Table 4.2

x f (x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Using the endpoint formula (4.4) with h = 0.1 gives

1

0.2
[−3f (2.0)+ 4f (2.1)− f (2.2] = 5[−3(14.778112)+ 4(17.148957)

− 19.855030)] = 22.032310,

and with h = −0.1 gives 22.054525.
Using the midpoint formula (4.5) with h = 0.1 gives

1

0.2
[f (2.1)− f (1.9)] = 5(17.148957− 12.7703199) = 22.228790,

and with h = 0.2 gives 22.414163.
The only five-point formula for which the table gives sufficient data is the midpoint

formula (4.6) with h = 0.1. This gives

1

1.2
[f (1.8)− 8f (1.9)+ 8f (2.1)− f (2.2)] = 1

1.2
[10.889365− 8(12.703199)

+ 8(17.148957)− 19.855030]
= 22.166999

If we had no other information we would accept the five-point midpoint approximation using
h = 0.1 as the most accurate, and expect the true value to be between that approximation
and the three-point mid-point approximation that is in the interval [22.166, 22.229].

The true value in this case is f ′(2.0) = (2+ 1)e2 = 22.167168, so the approximation
errors are actually:

Three-point endpoint with h = 0.1: 1.35× 10−1;

Three-point endpoint with h = −0.1: 1.13× 10−1;

Three-point midpoint with h = 0.1: −6.16× 10−2;

Three-point midpoint with h = 0.2: −2.47× 10−1;

Five-point midpoint with h = 0.1: 1.69× 10−4.

Methods can also be derived to find approximations to higher derivatives of a function
using only tabulated values of the function at various points. The derivation is algebraically
tedious, however, so only a representative procedure will be presented.

Expand a function f in a third Taylor polynomial about a point x0 and evaluate at x0+h
and x0 − h. Then

f (x0 + h) = f (x0)+ f ′(x0)h+ 1

2
f ′′(x0)h

2 + 1

6
f ′′′(x0)h

3 + 1

24
f (4)(ξ1)h

4

and

f (x0 − h) = f (x0)− f ′(x0)h+ 1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3 + 1

24
f (4)(ξ−1)h

4,

where x0 − h < ξ−1 < x0 < ξ1 < x0 + h.
If we add these equations, the terms involving f ′(x0) and −f ′(x0) cancel, so

f (x0 + h)+ f (x0 − h) = 2f (x0)+ f ′′(x0)h
2 + 1

24
[f (4)(ξ1)+ f (4)(ξ−1)]h4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

180 C H A P T E R 4 Numerical Differentiation and Integration

Solving this equation for f ′′(x0) gives

f ′′(x0) = 1

h2
[f (x0 − h)− 2f (x0)+ f (x0 + h)] − h2

24
[f (4)(ξ1)+ f (4)(ξ−1)]. (4.8)

Suppose f (4) is continuous on [x0 − h, x0 + h]. Since 1
2 [f (4)(ξ1) + f (4)(ξ−1)] is between

f (4)(ξ1) and f (4)(ξ−1), the Intermediate Value Theorem implies that a number ξ exists
between ξ1 and ξ−1, and hence in (x0 − h, x0 + h), with

f (4)(ξ) = 1

2

[
f (4)(ξ1)+ f (4)(ξ−1)

]
.

This permits us to rewrite Eq. (4.8) in its final form.

Second Derivative Midpoint Formula

• f ′′(x0) = 1

h2
[f (x0 − h)− 2f (x0)+ f (x0 + h)] − h2

12
f (4)(ξ), (4.9)

for some ξ , where x0 − h < ξ < x0 + h.

If f (4) is continuous on [x0 − h, x0 + h] it is also bounded, and the approximation is O(h2).

Example 3 In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of
f (x) = xex at x = 2.0. Use the second derivative formula (4.9) to approximate f ′′(2.0).

Table 4.3

x f (x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Solution The data permits us to determine two approximations for f ′′(2.0). Using (4.9)
with h = 0.1 gives

1

0.01
[f (1.9)− 2f (2.0)+ f (2.1)] = 100[12.703199− 2(14.778112)+ 17.148957]

= 29.593200,

and using (4.9) with h = 0.2 gives

1

0.04
[f (1.8)− 2f (2.0)+ f (2.2)] = 25[10.889365− 2(14.778112)+ 19.855030]

= 29.704275.

Because f ′′(x) = (x + 2)ex, the exact value is f ′′(2.0) = 29.556224. Hence the actual
errors are −3.70× 10−2 and −1.48× 10−1, respectively.

Round-Off Error Instability

It is particularly important to pay attention to round-off error when approximating deriva-
tives. To illustrate the situation, let us examine the three-point midpoint formula Eq. (4.5),

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f (3)(ξ1),

more closely. Suppose that in evaluating f (x0 + h) and f (x0 − h) we encounter round-off
errors e(x0 + h) and e(x0 − h). Then our computations actually use the values f̃ (x0 + h)
and f̃ (x0 − h), which are related to the true values f (x0 + h) and f (x0 − h) by

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Numerical Differentiation 181

f (x0 + h) = f̃ (x0 + h)+ e(x0 + h) and f (x0 − h) = f̃ (x0 − h)+ e(x0 − h).

The total error in the approximation,

f ′(x0)− f̃ (x0 + h)− f̃ (x0 − h)

2h
= e(x0 + h)− e(x0 − h)

2h
− h2

6
f (3)(ξ1),

is due both to round-off error, the first part, and to truncation error. If we assume that the
round-off errors e(x0 ± h) are bounded by some number ε > 0 and that the third derivative
of f is bounded by a number M > 0, then∣∣∣∣∣f ′(x0)− f̃ (x0 + h)− f̃ (x0 − h)

2h

∣∣∣∣∣ ≤ ε

h
+ h2

6
M.

To reduce the truncation error, h2M/6, we need to reduce h. But as h is reduced, the round-
off error ε/h grows. In practice, then, it is seldom advantageous to let h be too small, because
in that case the round-off error will dominate the calculations.

Illustration Consider using the values in Table 4.4 to approximate f ′(0.900), where f (x) = sin x. The
true value is cos 0.900 = 0.62161. The formula

f ′(0.900) ≈ f (0.900+ h)− f (0.900− h)

2h
,

with different values of h, gives the approximations in Table 4.5.

Table 4.4 x sin x x sin x

0.800 0.71736 0.901 0.78395
0.850 0.75128 0.902 0.78457
0.880 0.77074 0.905 0.78643
0.890 0.77707 0.910 0.78950
0.895 0.78021 0.920 0.79560
0.898 0.78208 0.950 0.81342
0.899 0.78270 1.000 0.84147

Table 4.5 Approximation
h to f ′(0.900) Error

0.001 0.62500 0.00339
0.002 0.62250 0.00089
0.005 0.62200 0.00039
0.010 0.62150 −0.00011
0.020 0.62150 −0.00011
0.050 0.62140 −0.00021
0.100 0.62055 −0.00106

The optimal choice for h appears to lie between 0.005 and 0.05. We can use calculus to
verify (see Exercise 29) that a minimum for

e(h) = ε

h
+ h2

6
M,

occurs at h = 3
√

3ε/M, where

M = max
x∈[0.800,1.00]

|f ′′′(x)| = max
x∈[0.800,1.00]

| cos x| = cos 0.8 ≈ 0.69671.

Because values of f are given to five decimal places, we will assume that the round-off
error is bounded by ε = 5× 10−6. Therefore, the optimal choice of h is approximately

h = 3

√
3(0.000005)

0.69671
≈ 0.028,

which is consistent with the results in Table 4.6. �

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

182 C H A P T E R 4 Numerical Differentiation and Integration

In practice, we cannot compute an optimal h to use in approximating the derivative, since
we have no knowledge of the third derivative of the function. But we must remain aware
that reducing the step size will not always improve the approximation. �

We have considered only the round-off error problems that are presented by the three-
point formula Eq. (4.5), but similar difficulties occur with all the differentiation formulas.
The reason can be traced to the need to divide by a power of h. As we found in Section 1.2
(see, in particular, Example 3), division by small numbers tends to exaggerate round-off
error, and this operation should be avoided if possible. In the case of numerical differenti-
ation, we cannot avoid the problem entirely, although the higher-order methods reduce the
difficulty.

Keep in mind that difference
method approximations might be
unstable.

As approximation methods, numerical differentiation is unstable, since the small values
of h needed to reduce truncation error also cause the round-off error to grow. This is the first
class of unstable methods we have encountered, and these techniques would be avoided if it
were possible. However, in addition to being used for computational purposes, the formulas
are needed for approximating the solutions of ordinary and partial-differential equations.

E X E R C I S E S E T 4.1

1. Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a. x f (x) f ′(x)

0.5 0.4794
0.6 0.5646
0.7 0.6442

b. x f (x) f ′(x)

0.0 0.00000
0.2 0.74140
0.4 1.3718

2. Use the forward-difference formulas and backward-difference formulas to determine each missing
entry in the following tables.

a. x f (x) f ′(x)

−0.3 1.9507
−0.2 2.0421
−0.1 2.0601

b. x f (x) f ′(x)

1.0 1.0000
1.2 1.2625
1.4 1.6595

3. The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exer-
cise 1, and find error bounds using the error formulas.

a. f (x) = sin x b. f (x) = ex − 2x2 + 3x − 1

4. The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exer-
cise 2, and find error bounds using the error formulas.

a. f (x) = 2 cos 2x − x b. f (x) = x2 ln x + 1

5. Use the most accurate three-point formula to determine each missing entry in the following tables.

a. x f (x) f ′(x)

1.1 9.025013
1.2 11.02318
1.3 13.46374
1.4 16.44465

b. x f (x) f ′(x)

8.1 16.94410
8.3 17.56492
8.5 18.19056
8.7 18.82091

c. x f (x) f ′(x)

2.9 −4.827866
3.0 −4.240058
3.1 −3.496909
3.2 −2.596792

d. x f (x) f ′(x)

2.0 3.6887983
2.1 3.6905701
2.2 3.6688192
2.3 3.6245909

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Numerical Differentiation 183

6. Use the most accurate three-point formula to determine each missing entry in the following tables.

a. x f (x) f ′(x)

−0.3 −0.27652
−0.2 −0.25074
−0.1 −0.16134

0 0

b. x f (x) f ′(x)

7.4 −68.3193
7.6 −71.6982
7.8 −75.1576
8.0 −78.6974

c. x f (x) f ′(x)

1.1 1.52918
1.2 1.64024
1.3 1.70470
1.4 1.71277

d. x f (x) f ′(x)

−2.7 0.054797
−2.5 0.11342
−2.3 0.65536
−2.1 0.98472

7. The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exer-
cise 5, and find error bounds using the error formulas.

a. f (x) = e2x b. f (x) = x ln x
c. f (x) = x cos x − x2 sin x d. f (x) = 2(ln x)2 + 3 sin x

8. The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exer-
cise 6, and find error bounds using the error formulas.

a. f (x) = e2x − cos 2x b. f (x) = ln(x + 2)− (x + 1)2

c. f (x) = x sin x + x2 cos x d. f (x) = (cos 3x)2 − e2x

9. Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.

a. x f (x) f ′(x)

2.1 −1.709847
2.2 −1.373823
2.3 −1.119214
2.4 −0.9160143
2.5 −0.7470223
2.6 −0.6015966

b. x f (x) f ′(x)

−3.0 9.367879
−2.8 8.233241
−2.6 7.180350
−2.4 6.209329
−2.2 5.320305
−2.0 4.513417

10. Use the formulas given in this section to determine, as accurately as possible, approximations for each
missing entry in the following tables.

a. x f (x) f ′(x)

1.05 −1.709847
1.10 −1.373823
1.15 −1.119214
1.20 −0.9160143
1.25 −0.7470223
1.30 −0.6015966

b. x f (x) f ′(x)

−3.0 16.08554
−2.8 12.64465
−2.6 9.863738
−2.4 7.623176
−2.2 5.825013
−2.0 4.389056

11. The data in Exercise 9 were taken from the following functions. Compute the actual errors in Exer-
cise 9, and find error bounds using the error formulas and Maple.

a. f (x) = tan x b. f (x) = ex/3 + x2

12. The data in Exercise 10 were taken from the following functions. Compute the actual errors in Exer-
cise 10, and find error bounds using the error formulas and Maple.

a. f (x) = tan 2x b. f (x) = e−x − 1+ x

13. Use the following data and the knowledge that the first five derivatives of f are bounded on [1, 5] by
2, 3, 6, 12 and 23, respectively, to approximate f ′(3) as accurately as possible. Find a bound for the
error.

x 1 2 3 4 5

f (x) 2.4142 2.6734 2.8974 3.0976 3.2804

14. Repeat Exercise 13, assuming instead that the third derivative of f is bounded on [1, 5] by 4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

184 C H A P T E R 4 Numerical Differentiation and Integration

15. Repeat Exercise 1 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 3.

16. Repeat Exercise 5 using four-digit chopping arithmetic, and compare the errors to those in
Exercise 7.

17. Repeat Exercise 9 using four-digit rounding arithmetic, and compare the errors to those in
Exercise 11.

18. Consider the following table of data:

x 0.2 0.4 0.6 0.8 1.0

f (x) 0.9798652 0.9177710 0.808038 0.6386093 0.3843735

a. Use all the appropriate formulas given in this section to approximate f ′(0.4) and f ′′(0.4).

b. Use all the appropriate formulas given in this section to approximate f ′(0.6) and f ′′(0.6).

19. Let f (x) = cosπx. Use Eq. (4.9) and the values of f (x) at x = 0.25, 0.5, and 0.75 to approximate
f ′′(0.5). Compare this result to the exact value and to the approximation found in Exercise 15 of
Section 3.5. Explain why this method is particularly accurate for this problem, and find a bound for
the error.

20. Let f (x) = 3xex − cos x. Use the following data and Eq. (4.9) to approximate f ′′(1.3) with h = 0.1
and with h = 0.01.

x 1.20 1.29 1.30 1.31 1.40

f (x) 11.59006 13.78176 14.04276 14.30741 16.86187

Compare your results to f ′′(1.3).

21. Consider the following table of data:

x 0.2 0.4 0.6 0.8 1.0

f (x) 0.9798652 0.9177710 0.8080348 0.6386093 0.3843735

a. Use Eq. (4.7) to approximate f ′(0.2).

b. Use Eq. (4.7) to approximate f ′(1.0).

c. Use Eq. (4.6) to approximate f ′(0.6).

22. Derive an O(h4) five-point formula to approximate f ′(x0) that uses f (x0 − h), f (x0), f (x0 + h),
f (x0 + 2h), and f (x0 + 3h). [Hint: Consider the expression Af (x0 − h) + Bf (x0 + h) + Cf (x0 +
2h)+Df (x0 + 3h). Expand in fourth Taylor polynomials, and choose A, B, C, and D appropriately.]

23. Use the formula derived in Exercise 22 and the data of Exercise 21 to approximate f ′(0.4) and f ′(0.8).

24. a. Analyze the round-off errors, as in Example 4, for the formula

f ′(x0) = f (x0 + h)− f (x0)

h
− h

2
f ′′(ξ0).

b. Find an optimal h > 0 for the function given in Example 2.

25. In Exercise 10 of Section 3.4 data were given describing a car traveling on a straight road. That
problem asked to predict the position and speed of the car when t = 10 s. Use the following times and
positions to predict the speed at each time listed.

Time 0 3 5 8 10 13

Distance 0 225 383 623 742 993

26. In a circuit with impressed voltage E(t) and inductance L, Kirchhoff’s first law gives the relationship

E(t) = L
di

dt
+ Ri,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.2 Richardson’s Extrapolation 185

where R is the resistance in the circuit and i is the current. Suppose we measure the current for several
values of t and obtain:

t 1.00 1.01 1.02 1.03 1.0

i 3.10 3.12 3.14 3.18 3.24

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the
resistance is 0.142 ohms. Approximate the voltage E(t) when t = 1.00, 1.01, 1.02, 1.03, and 1.04.

27. All calculus students know that the derivative of a function f at x can be defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

Choose your favorite function f , nonzero number x, and computer or calculator. Generate approxi-
mations f ′n(x) to f ′(x) by

f ′n(x) =
f (x + 10−n)− f (x)

10−n
,

for n = 1, 2, . . . , 20, and describe what happens.

28. Derive a method for approximating f ′′′(x0)whose error term is of order h2 by expanding the function
f in a fourth Taylor polynomial about x0 and evaluating at x0 ± h and x0 ± 2h.

29. Consider the function

e(h) = ε

h
+ h2

6
M,

where M is a bound for the third derivative of a function. Show that e(h) has a minimum at 3
√

3ε/M.

4.2 Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while using low-
order formulas. Although the name attached to the method refers to a paper written by
L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique is much older.
An interesting article regarding the history and application of extrapolation can be found
in [Joy].

Lewis Fry Richardson
(1881–1953) was the first person
to systematically apply
mathematics to weather
prediction while working in
England for the Meteorological
Office. As a conscientious
objector during World War I, he
wrote extensively about the
economic futility of warfare,
using systems of differential
equations to model rational
interactions between countries.
The extrapolation technique that
bears his name was the
rediscovery of a technique with
roots that are at least as old as
Christiaan Hugyens
(1629–1695), and possibly
Archimedes (287–212 b.c.e.).

Extrapolation can be applied whenever it is known that an approximation technique
has an error term with a predictable form, one that depends on a parameter, usually the step
size h. Suppose that for each number h �= 0 we have a formula N1(h) that approximates an
unknown constant M, and that the truncation error involved with the approximation has the
form

M − N1(h) = K1h+ K2h2 + K3h3 + · · · ,

for some collection of (unknown) constants K1, K2, K3,
The truncation error is O(h), so unless there was a large variation in magnitude among

the constants K1, K2, K3, . . . ,

M − N1(0.1) ≈ 0.1K1, M − N1(0.01) ≈ 0.01K1,

and, in general, M − N1(h) ≈ K1h .
The object of extrapolation is to find an easy way to combine these rather inaccu-

rate O(h) approximations in an appropriate way to produce formulas with a higher-order
truncation error.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

186 C H A P T E R 4 Numerical Differentiation and Integration

Suppose, for example, we can combine the N1(h) formulas to produce an O(h2)

approximation formula, N2(h), for M with

M − N2(h) = K̂2h2 + K̂3h3 + · · · ,

for some, again unknown, collection of constants K̂2, K̂3, Then we would have

M − N2(0.1) ≈ 0.01K̂2, M − N2(0.01) ≈ 0.0001K̂2,

and so on. If the constants K1 and K̂2 are roughly of the same magnitude, then the N2(h)
approximations would be much better than the corresponding N1(h) approximations. The
extrapolation continues by combining the N2(h) approximations in a manner that produces
formulas with O(h3) truncation error, and so on.

To see specifically how we can generate the extrapolation formulas, consider the O(h)
formula for approximating M

M = N1(h)+ K1h+ K2h2 + K3h3 + · · · . (4.10)

The formula is assumed to hold for all positive h, so we replace the parameter h by half its
value. Then we have a second O(h) approximation formula

M = N1

(
h

2

)
+ K1

h

2
+ K2

h2

4
+ K3

h3

8
+ · · · . (4.11)

Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving K1 and gives

M = N1

(
h

2

)
+
[

N1

(
h

2

)
− N1(h)

]
+ K2

(
h2

2
− h2

)
+ K3

(
h3

4
− h3

)
+ · · · . (4.12)

Define

N2(h) = N1

(
h

2

)
+
[

N1

(
h

2

)
− N1(h)

]
.

Then Eq. (4.12) is an O(h2) approximation formula for M:

M = N2(h)− K2

2
h2 − 3K3

4
h3 − · · · . (4.13)

Example 1 In Example 1 of Section 4.1 we use the forward-difference method with h = 0.1 and
h = 0.05 to find approximations to f ′(1.8) for f (x) = ln(x). Assume that this formula has
truncation error O(h) and use extrapolation on these values to see if this results in a better
approximation.

Solution In Example 1 of Section 4.1 we found that

with h = 0.1: f ′(1.8) ≈ 0.5406722, and with h = 0.05: f ′(1.8) ≈ 0.5479795.

This implies that

N1(0.1) = 0.5406722 and N1(0.05) = 0.5479795.

Extrapolating these results gives the new approximation

N2(0.1) = N1(0.05)+ (N1(0.05)− N1(0.1)) = 0.5479795+ (0.5479795− 0.5406722)

= 0.555287.

The h = 0.1 and h = 0.05 results were found to be accurate to within 1.5 × 10−2 and
7.7×10−3, respectively. Because f ′(1.8) = 1/1.8 = 0.5, the extrapolated value is accurate
to within 2.7× 10−4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.2 Richardson’s Extrapolation 187

Extrapolation can be applied whenever the truncation error for a formula has the form

m−1∑
j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. Many formulas used
for extrapolation have truncation errors that contain only even powers of h, that is, have the
form

M = N1(h)+ K1h2 + K2h4 + K3h6 + · · · . (4.14)

The extrapolation is much more effective than when all powers of h are present because the
averaging process produces results with errors O(h2), O(h4), O(h6), . . . , with essentially
no increase in computation, over the results with errors, O(h), O(h2), O(h3),

Assume that approximation has the form of Eq. (4.14). Replacing h with h/2 gives the
O(h2) approximation formula

M = N1

(
h

2

)
+ K1

h2

4
+ K2

h4

16
+ K3

h6

64
+ · · · .

Subtracting Eq. (4.14) from 4 times this equation eliminates the h2 term,

3M =
[

4N1

(
h

2

)
− N1(h)

]
+ K2

(
h4

4
− h4

)
+ K3

(
h6

16
− h6

)
+ · · · .

Dividing this equation by 3 produces an O(h4) formula

M = 1

3

[
4N1

(
h

2

)
− N1(h)

]
+ K2

3

(
h4

4
− h4

)
+ K3

3

(
h6

16
− h6

)
+ · · · .

Defining

N2(h) = 1

3

[
4N1

(
h

2

)
− N1(h)

]
= N1

(
h

2

)
+ 1

3

[
N1

(
h

2

)
− N1(h)

]
,

produces the approximation formula with truncation error O(h4):

M = N2(h)− K2
h4

4
− K3

5h6

16
+ · · · . (4.15)

Now replace h in Eq. (4.15) with h/2 to produce a second O(h4) formula

M = N2

(
h

2

)
− K2

h4

64
− K3

5h6

1024
− · · · .

Subtracting Eq. (4.15) from 16 times this equation eliminates the h4 term and gives

15M =
[

16N2

(
h

2

)
− N2(h)

]
+ K3

15h6

64
+ · · · .

Dividing this equation by 15 produces the new O(h6) formula

M = 1

15

[
16N2

(
h

2

)
− N2(h)

]
+ K3

h6

64
+ · · · .

We now have the O(h6) approximation formula

N3(h) = 1

15

[
16N2

(
h

2

)
− N2(h)

]
= N2

(
h

2

)
+ 1

15

[
N2

(
h

2

)
− N2(h)

]
.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

188 C H A P T E R 4 Numerical Differentiation and Integration

Continuing this procedure gives, for each j = 2, 3, . . . , the O(h2 j) approximation

Nj(h) = Nj−1

(
h

2

)
+ Nj−1(h/2)− Nj−1(h)

4 j−1 − 1
.

Table 4.6 shows the order in which the approximations are generated when

M = N1(h)+ K1h2 + K2h4 + K3h6 + · · · . (4.16)

It is conservatively assumed that the true result is accurate at least to within the agreement
of the bottom two results in the diagonal, in this case, to within |N3(h)− N4(h)|.

Table 4.6 O(h2) O(h4) O(h6) O(h8)

1: N1(h)

2: N1(
h
2) 3: N2(h)

4: N1(
h
4) 5: N2(

h
2) 6: N3(h)

7: N1(
h
8) 8: N2(

h
4) 9: N3(

h
2) 10: N4(h)

Example 2 Taylor’s theorem can be used to show that centered-difference formula in Eq. (4.5) to
approximate f ′(x0) can be expressed with an error formula:

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

120
f (5)(x0)− · · · .

Find approximations of order O(h2), O(h4), and O(h6) for f ′(2.0) when f (x) = xex and
h = 0.2.

Solution The constants K1 = −f ′′′(x0)/6, K2 = −f (5)(x0)/120, · · · , are not likely to be
known, but this is not important. We only need to know that these constants exist in order
to apply extrapolation.

We have the O(h2) approximation

f ′(x0) = N1(h)− h2

6
f ′′′(x0)− h4

120
f (5)(x0)− · · · , (4.17)

where

N1(h) = 1

2h
[f (x0 + h)− f (x0 − h)].

This gives us the first O(h2) approximations

N1(0.2) = 1

0.4
[f (2.2)− f (1.8)] = 2.5(19.855030− 10.889365) = 22.414160,

and

N1(0.1) = 1

0.2
[f (2.1)− f (1.9)] = 5(17.148957− 12.703199) = 22.228786.

Combining these to produce the first O(h4) approximation gives

N2(0.2) = N1(0.1)+ 1

3
(N1(0.1)− N1(0.2))

= 22.228786+ 1

3
(22.228786− 22.414160) = 22.166995.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.2 Richardson’s Extrapolation 189

To determine an O(h6) formula we need another O(h4) result, which requires us to find the
third O(h2) approximation

N1(0.05) = 1

0.1
[f (2.05)− f (1.95)] = 10(15.924197− 13.705941) = 22.182564.

We can now find the O(h4) approximation

N2(0.1) = N1(0.05)+ 1

3
(N1(0.05)− N1(0.1))

= 22.182564+ 1

3
(22.182564− 22.228786) = 22.167157.

and finally the O(h6) approximation

N3(0.2) = N2(0.1)+ 1

15
(N2(0.1)− N1(0.2))

= 22.167157+ 1

15
(22.167157− 22.166995) = 22.167168.

We would expect the final approximation to be accurate to at least the value 22.167 because
the N2(0.2) and N3(0.2) give this same value. In fact, N3(0.2) is accurate to all the listed
digits.

Each column beyond the first in the extrapolation table is obtained by a simple av-
eraging process, so the technique can produce high-order approximations with minimal
computational cost. However, as k increases, the round-off error in N1(h/2k) will generally
increase because the instability of numerical differentiation is related to the step size h/2k .
Also, the higher-order formulas depend increasingly on the entry to their immediate left in
the table, which is the reason we recommend comparing the final diagonal entries to ensure
accuracy.

In Section 4.1, we discussed both three- and five-point methods for approximating
f ′(x0) given various functional values of f . The three-point methods were derived by
differentiating a Lagrange interpolating polynomial for f . The five-point methods can be
obtained in a similar manner, but the derivation is tedious. Extrapolation can be used to
more easily derive these formulas, as illustrated below.

Illustration Suppose we expand the function f in a fourth Taylor polynomial about x0. Then

f (x) =f (x0)+ f ′(x0)(x − x0)+ 1

2
f ′′(x0)(x − x0)

2 + 1

6
f ′′′(x0)(x − x0)

3

+ 1

24
f (4)(x0)(x − x0)

4 + 1

120
f (5)(ξ)(x − x0)

5,

for some number ξ between x and x0. Evaluating f at x0 + h and x0 − h gives

f (x0 + h) =f (x0)+ f ′(x0)h+ 1

2
f ′′(x0)h

2 + 1

6
f ′′′(x0)h

3

+ 1

24
f (4)(x0)h

4 + 1

120
f (5)(ξ1)h

5 (4.18)

and

f (x0 − h) =f (x0)− f ′(x0)h+ 1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3

+ 1

24
f (4)(x0)h

4 − 1

120
f (5)(ξ2)h

5, (4.19)

where x0 − h < ξ2 < x0 < ξ1 < x0 + h.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

190 C H A P T E R 4 Numerical Differentiation and Integration

Subtracting Eq. (4.19) from Eq. (4.18) gives a new approximation for f ′(x).

f (x0 + h)− f (x0 − h) = 2hf ′(x0)+ h3

3
f ′′′(x0)+ h5

120
[f (5)(ξ1)+ f (5)(ξ2)], (4.20)

which implies that

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

240
[f (5)(ξ1)+ f (5)(ξ2)].

If f (5) is continuous on [x0 − h, x0 + h], the Intermediate Value Theorem 1.11 implies that
a number ξ̃ in (x0 − h, x0 + h) exists with

f (5)(ξ̃) = 1

2

[
f (5)(ξ1)+ f (5)(ξ2)

]
.

As a consequence,we have the O(h2) approximation

f ′(x0) = 1

2h
[f (x0 + h)− f (x0 − h)] − h2

6
f ′′′(x0)− h4

120
f (5)(ξ̃). (4.21)

Although the approximation in Eq. (4.21) is the same as that given in the three-point for-
mula in Eq. (4.5), the unknown evaluation point occurs now in f (5), rather than in f ′′′.
Extrapolation takes advantage of this by first replacing h in Eq. (4.21) with 2h to give the
new formula

f ′(x0) = 1

4h
[f (x0 + 2h)− f (x0 − 2h)] − 4h2

6
f ′′′(x0)− 16h4

120
f (5)(ξ̂), (4.22)

where ξ̂ is between x0 − 2h and x0 + 2h.

Multiplying Eq. (4.21) by 4 and subtracting Eq. (4.22) produces

3f ′(x0) = 2

h
[f (x0 + h)− f (x0 − h)] − 1

4h
[f (x0 + 2h)− f (x0 − 2h)]

− h4

30
f (5)(ξ̃)+ 2h4

15
f (5)(ξ̂).

Even if f (5) is continuous on [x0 − 2h, x0 + 2h], the Intermediate Value Theorem 1.11
cannot be applied as we did to derive Eq. (4.21) because here we have the difference of
terms involving f (5). However, an alternative method can be used to show that f (5)(ξ̃) and
f (5)(ξ̂) can still be replaced by a common value f (5)(ξ). Assuming this and dividing by 3
produces the five-point midpoint formula Eq. (4.6) that we saw in Section 4.1

f ′(x0) = 1

12h
[f (x0 − 2h)− 8f (x0 − h)+ 8f (x0 + h)− f (x0 + 2h)] + h4

30
f (5)(ξ). �

Other formulas for first and higher derivatives can be derived in a similar manner. See,
for example, Exercise 8.

The technique of extrapolation is used throughout the text. The most prominent appli-
cations occur in approximating integrals in Section 4.5 and for determining approximate
solutions to differential equations in Section 5.8.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.2 Richardson’s Extrapolation 191

E X E R C I S E S E T 4.2

1. Apply the extrapolation process described in Example 1 to determine N3(h), an approximation to
f ′(x0), for the following functions and stepsizes.

a. f (x) = ln x, x0 = 1.0, h = 0.4

b. f (x) = x + ex , x0 = 0.0, h = 0.4

c. f (x) = 2x sin x, x0 = 1.05, h = 0.4

d. f (x) = x3 cos x, x0 = 2.3, h = 0.4

2. Add another line to the extrapolation table in Exercise 1 to obtain the approximation N4(h).

3. Repeat Exercise 1 using four-digit rounding arithmetic.

4. Repeat Exercise 2 using four-digit rounding arithmetic.

5. The following data give approximations to the integral

M =
∫ π

0
sin x dx.

N1(h) = 1.570796, N1

(
h

2

)
= 1.896119, N1

(
h

4

)
= 1.974232, N1

(
h

8

)
= 1.993570.

Assuming M = N1(h) + K1h2 + K2h4 + K3h6 + K4h8 + O(h10), construct an extrapolation table to
determine N4(h).

6. The following data can be used to approximate the integral

M =
∫ 3π/2

0
cos x dx.

N1(h) = 2.356194, N1

(
h

2

)
= −0.4879837,

N1

(
h

4

)
= −0.8815732, N1

(
h

8

)
= −0.9709157.

Assume a formula exists of the type given in Exercise 5 and determine N4(h).

7. Show that the five-point formula in Eq. (4.6) applied to f (x) = xex at x0 = 2.0 gives N2(0.2) in Table
4.6 when h = 0.1 and N2(0.1) when h = 0.05.

8. The forward-difference formula can be expressed as

f ′(x0) = 1

h
[f (x0 + h)− f (x0)] − h

2
f ′′(x0)− h2

6
f ′′′(x0)+ O(h3).

Use extrapolation to derive an O(h3) formula for f ′(x0).

9. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h)+ K1h+ K2h2 + K3h3 + · · · ,

for some constants K1, K2, K3, Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h3)

approximation to M.

10. Suppose that N(h) is an approximation to M for every h > 0 and that

M = N(h)+ K1h2 + K2h4 + K3h6 + · · · ,

for some constants K1, K2, K3, Use the values N(h), N
(

h
3

)
, and N

(
h
9

)
to produce an O(h6)

approximation to M.

11. In calculus, we learn that e = limh→0(1+ h)1/h.

a. Determine approximations to e corresponding to h = 0.04, 0.02, and 0.01.

b. Use extrapolation on the approximations, assuming that constants K1, K2, . . . exist with
e = (1 + h)1/h + K1h + K2h2 + K3h3 + · · · , to produce an O(h3) approximation to e, where
h = 0.04.

c. Do you think that the assumption in part (b) is correct?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

192 C H A P T E R 4 Numerical Differentiation and Integration

12. a. Show that

lim
h→0

(
2+ h

2− h

)1/h

= e.

b. Compute approximations to e using the formula N(h) = (2+h
2−h

)1/h
, for h = 0.04, 0.02, and 0.01.

c. Assume that e = N(h)+K1h+K2h2 +K3h3 + · · · . Use extrapolation, with at least 16 digits of
precision, to compute an O(h3) approximation to e with h = 0.04. Do you think the assumption
is correct?

d. Show that N(−h) = N(h).

e. Use part (d) to show that K1 = K3 = K5 = · · · = 0 in the formula

e = N(h)+ K1h+ K2h2 + K3h3K4h4 + K5h5 + · · · ,

so that the formula reduces to

e = N(h)+ K2h2 + K4h4 + K6h6 + · · · .

f. Use the results of part (e) and extrapolation to compute an O(h6) approximation to e with
h = 0.04.

13. Suppose the following extrapolation table has been constructed to approximate the number M with
M = N1(h)+ K1h2 + K2h4 + K3h6:

N1(h)

N1

(
h

2

)
N2(h)

N1

(
h

4

)
N2

(
h

2

)
N3(h)

a. Show that the linear interpolating polynomial P0,1(h) through (h2, N1(h)) and (h2/4, N1(h/2))
satisfies P0,1(0) = N2(h). Similarly, show that P1,2(0) = N2(h/2).

b. Show that the linear interpolating polynomial P0,2(h) through (h4, N2(h)) and (h4/16, N2(h/2))
satisfies P0,2(0) = N3(h).

14. Suppose that N1(h) is a formula that produces O(h) approximations to a number M and that

M = N1(h)+ K1h+ K2h2 + · · · ,

for a collection of positive constants K1, K2, Then N1(h), N1(h/2), N1(h/4), . . . are all lower
bounds for M. What can be said about the extrapolated approximations N2(h), N3(h), . . .?

15. The semiperimeters of regular polygons with k sides that inscribe and circumscribe the unit circle
were used by Archimedes before 200 b.c.e. to approximate π , the circumference of a semicircle.
Geometry can be used to show that the sequence of inscribed and circumscribed semiperimeters {pk}
and {Pk}, respectively, satisfy

pk = k sin
(π

k

)
and Pk = k tan

(π
k

)
,

with pk < π < Pk , whenever k ≥ 4.

a. Show that p4 = 2
√

2 and P4 = 4.

b. Show that for k ≥ 4, the sequences satisfy the recurrence relations

P2k = 2pkPk

pk + Pk
and p2k =

√
pkP2k .

c. Approximate π to within 10−4 by computing pk and Pk until Pk − pk < 10−4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 Elements of Numerical Integration 193

d. Use Taylor Series to show that

π = pk + π
3

3!
(

1

k

)2

− π
5

5!
(

1

k

)4

+ · · ·

and

π = Pk − π
3

3

(
1

k

)2

+ 2π 5

15

(
1

k

)4

− · · · .

e. Use extrapolation with h = 1/k to better approximate π .

4.3 Elements of Numerical Integration

The need often arises for evaluating the definite integral of a function that has no explicit
antiderivative or whose antiderivative is not easy to obtain. The basic method involved in
approximating

∫ b
a f (x) dx is called numerical quadrature. It uses a sum

∑n
i=0 aif (xi) to

approximate
∫ b

a f (x) dx.
The methods of quadrature in this section are based on the interpolation polynomials

given in Chapter 3. The basic idea is to select a set of distinct nodes {x0, . . . , xn} from the
interval [a, b]. Then integrate the Lagrange interpolating polynomial

Pn(x) =
n∑

i=0

f (xi)Li(x)

and its truncation error term over [a, b] to obtain∫ b

a
f (x) dx =

∫ b

a

n∑
i=0

f (xi)Li(x) dx +
∫ b

a

n∏
i=0

(x − xi)
f (n+1)(ξ(x))

(n+ 1)! dx

=
n∑

i=0

aif (xi)+ 1

(n+ 1)!
∫ b

a

n∏
i=0

(x − xi)f
(n+1)(ξ(x)) dx,

where ξ(x) is in [a, b] for each x and

ai =
∫ b

a
Li(x) dx, for each i = 0, 1, . . . , n.

The quadrature formula is, therefore,∫ b

a
f (x) dx ≈

n∑
i=0

aif (xi),

with error given by

E(f) = 1

(n+ 1)!
∫ b

a

n∏
i=0

(x − xi)f
(n+1)(ξ(x)) dx.

Before discussing the general situation of quadrature formulas, let us consider formulas
produced by using first and second Lagrange polynomials with equally-spaced nodes. This
gives the Trapezoidal rule and Simpson’s rule, which are commonly introduced in calculus
courses.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

194 C H A P T E R 4 Numerical Differentiation and Integration

TheTrapezoidal Rule

To derive the Trapezoidal rule for approximating
∫ b

a f (x) dx, let x0 = a, x1 = b, h = b− a
and use the linear Lagrange polynomial:

P1(x) = (x − x1)

(x0 − x1)
f (x0)+ (x − x0)

(x1 − x0)
f (x1).

Then ∫ b

a
f (x) dx =

∫ x1

x0

[
(x − x1)

(x0 − x1)
f (x0)+ (x − x0)

(x1 − x0)
f (x1)

]
dx

+ 1

2

∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx. (4.23)

The product (x− x0)(x− x1) does not change sign on [x0, x1], so the Weighted Mean Value
Theorem for Integrals 1.13 can be applied to the error term to give, for some ξ in (x0, x1),∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx = f ′′(ξ)
∫ x1

x0

(x − x0)(x − x1) dx

= f ′′(ξ)
[

x3

3
− (x1 + x0)

2
x2 + x0x1x

]x1

x0

= −h3

6
f ′′(ξ).

Consequently, Eq. (4.23) implies that∫ b

a
f (x) dx =

[
(x − x1)

2

2(x0 − x1)
f (x0)+ (x − x0)

2

2(x1 − x0)
f (x1)

]x1

x0

− h3

12
f ′′(ξ)

= (x1 − x0)

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ).

Using the notation h = x1 − x0 gives the following rule:

Trapezoidal Rule: ∫ b

a
f (x) dx = h

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ).

This is called the Trapezoidal rule because when f is a function with positive values,

When we use the term trapezoid
we mean a four-sided figure that
has at least two of its sides
parallel. The European term for
this figure is trapezium. To further
confuse the issue, the European
word trapezoidal refers to a
four-sided figure with no sides
equal, and the American word for
this type of figure is trapezium.

∫ b
a f (x) dx is approximated by the area in a trapezoid, as shown in Figure 4.3.

Figure 4.3
y

xa � x0 x1 � b

y � f (x)

y � P1(x)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 Elements of Numerical Integration 195

The error term for the Trapezoidal rule involves f ′′, so the rule gives the exact
result when applied to any function whose second derivative is identically zero, that is, any
polynomial of degree one or less.

Simpson’s Rule

Simpson’s rule results from integrating over [a, b] the second Lagrange polynomial with
equally-spaced nodes x0 = a, x2 = b, and x1 = a + h, where h = (b − a)/2. (See
Figure 4.4.)

Figure 4.4
y

xa � x0 x2 � bx1

y � f (x)

y � P2(x)

Therefore∫ b

a
f (x) dx =

∫ x2

x0

[
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0)+ (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1)

+ (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f (x2)

]
dx

+
∫ x2

x0

(x − x0)(x − x1)(x − x2)

6
f (3)(ξ(x)) dx.

Deriving Simpson’s rule in this manner, however, provides only an O(h4) error term involv-
ing f (3). By approaching the problem in another way, a higher-order term involving f (4)

can be derived.
To illustrate this alternative method, suppose that f is expanded in the third Taylor

polynomial about x1. Then for each x in [x0, x2], a number ξ(x) in (x0, x2) exists with

f (x) = f (x1)+f ′(x1)(x−x1)+ f
′′(x1)

2
(x−x1)

2+ f
′′′(x1)

6
(x−x1)

3+ f
(4)(ξ(x))

24
(x−x1)

4

and ∫ x2

x0

f (x) dx =
[
f (x1)(x − x1)+ f

′(x1)

2
(x − x1)

2 + f
′′(x1)

6
(x − x1)

3

+ f
′′′(x1)

24
(x − x1)

4

]x2

x0

+ 1

24

∫ x2

x0

f (4)(ξ(x))(x − x1)
4 dx. (4.24)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

196 C H A P T E R 4 Numerical Differentiation and Integration

Because (x − x1)
4 is never negative on [x0, x2], the Weighted Mean Value Theorem for

Integrals 1.13 implies that

1

24

∫ x2

x0

f (4)(ξ(x))(x − x1)
4 dx = f (4)(ξ1)

24

∫ x2

x0

(x − x1)
4 dx = f (4)(ξ1)

120
(x − x1)

5

]x2

x0

,

for some number ξ1 in (x0, x2).
However, h = x2 − x1 = x1 − x0, so

(x2 − x1)
2 − (x0 − x1)

2 = (x2 − x1)
4 − (x0 − x1)

4 = 0,

whereas

(x2 − x1)
3 − (x0 − x1)

3 = 2h3 and (x2 − x1)
5 − (x0 − x1)

5 = 2h5.

Consequently, Eq. (4.24) can be rewritten as

∫ x2

x0

f (x) dx = 2hf (x1)+ h3

3
f ′′(x1)+ f

(4)(ξ1)

60
h5.

If we now replace f ′′(x1) by the approximation given in Eq. (4.9) of Section 4.1, we
have∫ x2

x0

f (x) dx = 2hf (x1)+ h3

3

{
1

h2
[f (x0)− 2f (x1)+ f (x2)] − h2

12
f (4)(ξ2)

}
+ f

(4)(ξ1)

60
h5

= h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

12

[
1

3
f (4)(ξ2)− 1

5
f (4)(ξ1)

]
.

It can be shown by alternative methods (see Exercise 24) that the values ξ1 and ξ2 in this
expression can be replaced by a common value ξ in (x0, x2). This gives Simpson’s rule.

Simpson’s Rule:
∫ x2

x0

f (x) dx = h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

90
f (4)(ξ).

Thomas Simpson (1710–1761)
was a self-taught mathematician
who supported himself during his
early years as a weaver. His
primary interest was probability
theory, although in 1750 he
published a two-volume calculus
book entitled The Doctrine and
Application of Fluxions.

The error term in Simpson’s rule involves the fourth derivative of f , so it gives exact
results when applied to any polynomial of degree three or less.

Example 1 Compare the Trapezoidal rule and Simpson’s rule approximations to
∫ 2

0
f (x) dx when f (x)

is
(a) x2 (b) x4 (c) (x + 1)−1

(d)
√

1+ x2 (e) sin x (f) ex

Solution On [0, 2] the Trapezoidal and Simpson’s rule have the forms

Trapezoid:
∫ 2

0
f (x) dx ≈ f (0)+ f (2) and

Simpson’s:
∫ 2

0
f (x) dx ≈ 1

3
[f (0)+ 4f (1)+ f (2)].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 Elements of Numerical Integration 197

When f (x) = x2 they give

Trapezoid:
∫ 2

0
f (x) dx ≈ 02 + 22 = 4 and

Simpson’s:
∫ 2

0
f (x) dx ≈ 1

3
[(02)+ 4 · 12 + 22] = 8

3
.

The approximation from Simpson’s rule is exact because its truncation error involves f (4),
which is identically 0 when f (x) = x2.

The results to three places for the functions are summarized in Table 4.7. Notice that
in each instance Simpson’s Rule is significantly superior.

Table 4.7 (a) (b) (c) (d) (e) (f)

f (x) x2 x4 (x + 1)−1
√

1+ x2 sin x ex

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

Measuring Precision

The standard derivation of quadrature error formulas is based on determining the class of
polynomials for which these formulas produce exact results. The next definition is used to
facilitate the discussion of this derivation.

The improved accuracy of
Simpson’s rule over the
Trapezoidal rule is intuitively
explained by the fact that
Simpson’s rule includes a
midpoint evaluation that provides
better balance to the
approximation.

Definition 4.1 The degree of accuracy, or precision, of a quadrature formula is the largest positive integer
n such that the formula is exact for xk , for each k = 0, 1, . . . , n.

Definition 4.1 implies that the Trapezoidal and Simpson’s rules have degrees of preci-
sion one and three, respectively.

Integration and summation are linear operations; that is,∫ b

a
(αf (x)+ βg(x)) dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

and

n∑
i=0

(αf (xi)+ βg(xi)) = α
n∑

i=0

f (xi)+ β
n∑

i=0

g(xi),

for each pair of integrable functions f and g and each pair of real constants α and β. This
implies (see Exercise 25) that:

• The degree of precision of a quadrature formula is n if and only if the error is zero for
all polynomials of degree k = 0, 1, . . . , n, but is not zero for some polynomial of degree
n+ 1.

The Trapezoidal and Simpson’s rules are examples of a class of methods known as Newton-
Cotes formulas. There are two types of Newton-Cotes formulas, open and closed.

The open and closed terminology
for methods implies that the open
methods use as nodes only points
in the open interval, (a, b) to
approximate

∫ b

a f (x) dx. The
closed methods include the points
a and b of the closed interval
[a, b] as nodes.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

198 C H A P T E R 4 Numerical Differentiation and Integration

Closed Newton-Cotes Formulas

The (n+1)-point closed Newton-Cotes formula uses nodes xi = x0+ ih, for i = 0, 1, . . . , n,
where x0 = a, xn = b and h = (b − a)/n. (See Figure 4.5.) It is called closed because the
endpoints of the closed interval [a, b] are included as nodes.

Figure 4.5
y

xxn�1a � x0 x1 x2 xn � b

y = Pn(x)
y = f (x)

The formula assumes the form∫ b

a
f (x) dx ≈

n∑
i=0

aif (xi),

where

ai =
∫ xn

x0

Li(x) dx =
∫ xn

x0

n∏
j=0
j �=i

(x − xj)

(xi − xj)
dx.

Roger Cotes (1682–1716) rose
from a modest background to
become, in 1704, the first
Plumian Professor at Cambridge
University. He made advances in
numerous mathematical areas
including numerical methods for
interpolation and integration.
Newton is reputed to have said of
Cotes …if he had lived we might
have known something.

The following theorem details the error analysis associated with the closed Newton-
Cotes formulas. For a proof of this theorem, see [IK], p. 313.

Theorem 4.2 Suppose that
∑n

i=0 aif (xi) denotes the (n + 1)-point closed Newton-Cotes formula with
x0 = a, xn = b, and h = (b− a)/n. There exists ξ ∈ (a, b) for which

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+3f (n+2)(ξ)

(n+ 2)!
∫ n

0
t2(t − 1) · · · (t − n) dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+2f (n+1)(ξ)

(n+ 1)!
∫ n

0
t(t − 1) · · · (t − n) dt,

if n is odd and f ∈ Cn+1[a, b].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 Elements of Numerical Integration 199

Note that when n is an even integer, the degree of precision is n + 1, although the
interpolation polynomial is of degree at most n. When n is odd, the degree of precision is
only n.

Some of the common closed Newton-Cotes formulas with their error terms are listed.
Note that in each case the unknown value ξ lies in (a, b).

n = 1: Trapezoidal rule

∫ x1

x0

f (x) dx = h

2
[f (x0)+ f (x1)] − h3

12
f ′′(ξ), where x0 < ξ < x1. (4.25)

n = 2: Simpson’s rule

∫ x2

x0

f (x) dx = h

3
[f (x0)+ 4f (x1)+ f (x2)] − h5

90
f (4)(ξ), where x0 < ξ < x2.

(4.26)

n = 3: Simpson’s Three-Eighths rule

∫ x3

x0

f (x) dx = 3h

8
[f (x0)+ 3f (x1)+ 3f (x2)+ f (x3)] − 3h5

80
f (4)(ξ), (4.27)

where x0 < ξ < x3.

n = 4:

∫ x4

x0

f (x) dx = 2h

45
[7f (x0)+ 32f (x1)+ 12f (x2)+ 32f (x3)+ 7f (x4)] − 8h7

945
f (6)(ξ),

where x0 < ξ < x4. (4.28)

Open Newton-Cotes Formulas

The open Newton-Cotes formulas do not include the endpoints of [a, b] as nodes. They use
the nodes xi = x0+ ih, for each i = 0, 1, . . . , n, where h = (b− a)/(n+ 2) and x0 = a+ h.
This implies that xn = b − h, so we label the endpoints by setting x−1 = a and xn+1 = b,
as shown in Figure 4.6 on page 200. Open formulas contain all the nodes used for the
approximation within the open interval (a, b). The formulas become

∫ b

a
f (x) dx =

∫ xn+1

x−1

f (x) dx ≈
n∑

i=0

aif (xi),

where

ai =
∫ b

a
Li(x) dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

200 C H A P T E R 4 Numerical Differentiation and Integration

Figure 4.6

y

xa � x�1 xn�1 � bx0 x1 x2 xn

y = Pn(x)

y = f (x)

The following theorem is analogous to Theorem 4.2; its proof is contained in [IK],
p. 314.

Theorem 4.3 Suppose that
∑n

i=0 aif (xi) denotes the (n + 1)-point open Newton-Cotes formula with
x−1 = a, xn+1 = b, and h = (b− a)/(n+ 2). There exists ξ ∈ (a, b) for which

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+3f (n+2)(ξ)

(n+ 2)!
∫ n+1

−1
t2(t − 1) · · · (t − n) dt,

if n is even and f ∈ Cn+2[a, b], and

∫ b

a
f (x) dx =

n∑
i=0

aif (xi)+ hn+2f (n+1)(ξ)

(n+ 1)!
∫ n+1

−1
t(t − 1) · · · (t − n) dt,

if n is odd and f ∈ Cn+1[a, b].

Notice, as in the case of the closed methods, we have the degree of precision compar-
atively higher for the even methods than for the odd methods.

Some of the common open Newton-Cotes formulas with their error terms are as
follows:

n = 0: Midpoint rule

∫ x1

x−1

f (x) dx = 2hf (x0)+ h3

3
f ′′(ξ), where x−1 < ξ < x1. (4.29)

n = 1:

∫ x2

x−1

f (x) dx = 3h

2
[f (x0)+ f (x1)] + 3h3

4
f ′′(ξ), where x−1 < ξ < x2. (4.30)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 Elements of Numerical Integration 201

n = 2:

∫ x3

x−1

f (x) dx = 4h

3
[2f (x0)− f (x1)+ 2f (x2)] + 14h5

45
f (4)(ξ), (4.31)

where x−1 < ξ < x3.

n = 3:

∫ x4

x−1

f (x) dx = 5h

24
[11f (x0)+ f (x1)+ f (x2)+ 11f (x3)] + 95

144
h5f (4)(ξ), (4.32)

where x−1 < ξ < x4.

Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as (4.25)–(4.28)
and (4.29)–(4.32) when approximating∫ π/4

0
sin x dx = 1−√2/2 ≈ 0.29289322.

Solution For the closed formulas we have

n = 1 :
(π/4)

2

[
sin 0+ sin

π

4

]
≈ 0.27768018

n = 2 :
(π/8)

3

[
sin 0+ 4 sin

π

8
+ sin

π

4

]
≈ 0.29293264

n = 3 :
3(π/12)

8

[
sin 0+ 3 sin

π

12
+ 3 sin

π

6
+ sin

π

4

]
≈ 0.29291070

n = 4 :
2(π/16)

45

[
7 sin 0+ 32 sin

π

16
+ 12 sin

π

8
+ 32 sin

3π

16
+ 7 sin

π

4

]
≈ 0.29289318

and for the open formulas we have

n = 0 : 2(π/8)
[
sin

π

8

]
≈ 0.30055887

n = 1 :
3(π/12)

2

[
sin

π

12
+ sin

π

6

]
≈ 0.29798754

n = 2 :
4(π/16)

3

[
2 sin

π

16
− sin

π

8
+ 2 sin

3π

16

]
≈ 0.29285866

n = 3 :
5(π/20)

24

[
11 sin

π

20
+ sin

π

10
+ sin

3π

20
+ 11 sin

π

5

]
≈ 0.29286923

Table 4.8 summarizes these results and shows the approximation errors.

Table 4.8 n 0 1 2 3 4

Closed formulas 0.27768018 0.29293264 0.29291070 0.29289318
Error 0.01521303 0.00003942 0.00001748 0.00000004
Open formulas 0.30055887 0.29798754 0.29285866 0.29286923
Error 0.00766565 0.00509432 0.00003456 0.00002399

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

202 C H A P T E R 4 Numerical Differentiation and Integration

E X E R C I S E S E T 4.3

1. Approximate the following integrals using the Trapezoidal rule.

a.
∫ 1

0.5
x4 dx b.

∫ 0.5

0

2

x − 4
dx

c.
∫ 1.5

1
x2 ln x dx d.

∫ 1

0
x2e−x dx

e.
∫ 1.6

1

2x

x2 − 4
dx f.

∫ 0.35

0

2

x2 − 4
dx

g.
∫ π/4

0
x sin x dx h.

∫ π/4

0
e3x sin 2x dx

2. Approximate the following integrals using the Trapezoidal rule.

a.
∫ 0.25

−0.25
(cos x)2 dx b.

∫ 0

−0.5
x ln(x + 1) dx

c.
∫ 1.3

0.75

(
(sin x)2 − 2x sin x + 1

)
dx d.

∫ e+1

e

1

x ln x
dx

3. Find a bound for the error in Exercise 1 using the error formula, and compare this to the actual error.

4. Find a bound for the error in Exercise 2 using the error formula, and compare this to the actual error.

5. Repeat Exercise 1 using Simpson’s rule.

6. Repeat Exercise 2 using Simpson’s rule.

7. Repeat Exercise 3 using Simpson’s rule and the results of Exercise 5.

8. Repeat Exercise 4 using Simpson’s rule and the results of Exercise 6.

9. Repeat Exercise 1 using the Midpoint rule.

10. Repeat Exercise 2 using the Midpoint rule.

11. Repeat Exercise 3 using the Midpoint rule and the results of Exercise 9.

12. Repeat Exercise 4 using the Midpoint rule and the results of Exercise 10.

13. The Trapezoidal rule applied to
∫ 2

0 f (x) dx gives the value 4, and Simpson’s rule gives the value 2.
What is f (1)?

14. The Trapezoidal rule applied to
∫ 2

0 f (x) dx gives the value 5, and the Midpoint rule gives the value 4.
What value does Simpson’s rule give?

15. Find the degree of precision of the quadrature formula∫ 1

−1
f (x) dx = f

(
−
√

3

3

)
+ f

(√
3

3

)
.

16. Let h = (b − a)/3, x0 = a, x1 = a + h, and x2 = b. Find the degree of precision of the quadrature
formula ∫ b

a
f (x) dx = 9

4
hf (x1)+ 3

4
hf (x2).

17. The quadrature formula
∫ 1
−1 f (x) dx = c0f (−1) + c1f (0) + c2f (1) is exact for all polynomials of

degree less than or equal to 2. Determine c0, c1, and c2.

18. The quadrature formula
∫ 2

0 f (x) dx = c0f (0) + c1f (1) + c2f (2) is exact for all polynomials of
degree less than or equal to 2. Determine c0, c1, and c2.

19. Find the constants c0, c1, and x1 so that the quadrature formula∫ 1

0
f (x) dx = c0f (0)+ c1f (x1)

has the highest possible degree of precision.

20. Find the constants x0, x1, and c1 so that the quadrature formula∫ 1

0
f (x) dx = 1

2
f (x0)+ c1f (x1)

has the highest possible degree of precision.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Composite Numerical Integration 203

21. Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of
the approximations consistent with the error formulas? Which of parts (d) and (e) give the better
approximation?

a.
∫ 0.1

0

√
1+ x dx b.

∫ π/2

0
(sin x)2 dx

c.
∫ 1.5

1.1
ex dx d.

∫ 10

1

1

x
dx

e.
∫ 5.5

1

1

x
dx +

∫ 10

5.5

1

x
dx f.

∫ 1

0
x1/3 dx

22. Given the function f at the following values,

x 1.8 2.0 2.2 2.4 2.6

f (x) 3.12014 4.42569 6.04241 8.03014 10.46675

approximate
∫ 2.6

1.8 f (x) dx using all the appropriate quadrature formulas of this section.

23. Suppose that the data of Exercise 22 have round-off errors given by the following table.

x 1.8 2.0 2.2 2.4 2.6

Error in f (x) 2× 10−6 −2× 10−6 −0.9× 10−6 −0.9× 10−6 2× 10−6

Calculate the errors due to round-off in Exercise 22.

24. Derive Simpson’s rule with error term by using∫ x2

x0

f (x) dx = a0f (x0)+ a1f (x1)+ a2f (x2)+ kf (4)(ξ).

Find a0, a1, and a2 from the fact that Simpson’s rule is exact for f (x) = xn when n = 1, 2, and 3.
Then find k by applying the integration formula with f (x) = x4.

25. Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of
precision n if and only if the error E(P(x)) = 0 for all polynomials P(x) of degree k = 0, 1, . . . , n,
but E(P(x)) �= 0 for some polynomial P(x) of degree n+ 1.

26. Derive Simpson’s three-eighths rule (the closed rule with n = 3) with error term by using
Theorem 4.2.

27. Derive the open rule with n = 1 with error term by using Theorem 4.3.

4.4 Composite Numerical Integration

The Newton-Cotes formulas are generally unsuitable for use over large integration inter-
vals. High-degree formulas would be required, and the values of the coefficients in these
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola-
tory polynomials that use equally-spaced nodes, a procedure that is inaccurate over large
intervals because of the oscillatory nature of high-degree polynomials.

In this section, we discuss a piecewise approach to numerical integration that uses the
low-order Newton-Cotes formulas. These are the techniques most often applied.

Piecewise approximation is often
effective. Recall that this was
used for spline interpolation.

Example 1 Use Simpson’s rule to approximate
∫ 4

0 ex dx and compare this to the results obtained

by adding the Simpson’s rule approximations for
∫ 2

0 ex dx and
∫ 4

2 ex dx. Compare these

approximations to the sum of Simpson’s rule for
∫ 1

0 ex dx,
∫ 2

1 ex dx,
∫ 3

2 ex dx, and
∫ 4

3 ex dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

204 C H A P T E R 4 Numerical Differentiation and Integration

Solution Simpson’s rule on [0, 4] uses h = 2 and gives∫ 4

0
ex dx ≈ 2

3
(e0 + 4e2 + e4) = 56.76958.

The exact answer in this case is e4 − e0 = 53.59815, and the error −3.17143 is far larger
than we would normally accept.

Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] uses h = 1 and gives∫ 4

0
ex dx =

∫ 2

0
ex dx +

∫ 4

2
ex dx

≈ 1

3

(
e0 + 4e+ e2

)+ 1

3

(
e2 + 4e3 + e4

)
= 1

3

(
e0 + 4e+ 2e2 + 4e3 + e4

)
= 53.86385.

The error has been reduced to −0.26570.
For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4]we use Simpson’s rule four times with

h = 1
2 giving∫ 4

0
ex dx =

∫ 1

0
ex dx +

∫ 2

1
ex dx +

∫ 3

2
ex dx +

∫ 4

3
ex dx

≈ 1

6

(
e0 + 4e1/2 + e

)+ 1

6

(
e+ 4e3/2 + e2

)
+ 1

6

(
e2 + 4e5/2 + e3

)+ 1

6

(
e3 + 4e7/2 + e4

)
= 1

6

(
e0 + 4e1/2 + 2e+ 4e3/2 + 2e2 + 4e5/2 + 2e3 + 4e7/2 + e4

)
= 53.61622.

The error for this approximation has been reduced to −0.01807.

To generalize this procedure for an arbitrary integral
∫ b

a
f (x) dx, choose an even

integer n. Subdivide the interval [a, b] into n subintervals, and apply Simpson’s rule on
each consecutive pair of subintervals. (See Figure 4.7.)

Figure 4.7
y

xa � x0 x2 b � xn

y � f (x)

x2j�2 x2j�1 x2j

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Composite Numerical Integration 205

With h = (b− a)/n and xj = a+ jh, for each j = 0, 1, . . . , n, we have

∫ b

a
f (x) dx =

n/2∑
j=1

∫ x2 j

x2 j−2

f (x) dx

=
n/2∑
j=1

{
h

3
[f (x2 j−2)+ 4f (x2 j−1)+ f (x2 j)] − h5

90
f (4)(ξj)

}
,

for some ξj with x2 j−2 < ξj < x2 j, provided that f ∈ C4[a, b]. Using the fact that for each
j = 1, 2, . . . , (n/2)− 1 we have f (x2 j) appearing in the term corresponding to the interval
[x2 j−2, x2 j] and also in the term corresponding to the interval [x2 j, x2 j+2], we can reduce
this sum to

∫ b

a
f (x) dx = h

3

⎡
⎣f (x0)+ 2

(n/2)−1∑
j=1

f (x2 j)+ 4
n/2∑
j=1

f (x2 j−1)+ f (xn)

⎤
⎦− h5

90

n/2∑
j=1

f (4)(ξj).

The error associated with this approximation is

E(f) = − h5

90

n/2∑
j=1

f (4)(ξj),

where x2 j−2 < ξj < x2 j, for each j = 1, 2, . . . , n/2.
If f ∈ C4[a, b], the Extreme Value Theorem 1.9 implies that f (4) assumes its maximum

and minimum in [a, b]. Since

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

we have

n

2
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤ n

2
max

x∈[a,b]
f (4)(x)

and

min
x∈[a,b]

f (4)(x) ≤ 2

n

n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x).

By the Intermediate Value Theorem 1.11, there is a μ ∈ (a, b) such that

f (4)(μ) = 2

n

n/2∑
j=1

f (4)(ξj).

Thus

E(f) = − h5

90

n/2∑
j=1

f (4)(ξj) = − h5

180
nf (4)(μ),

or, since h = (b− a)/n,

E(f) = − (b− a)

180
h4f (4)(μ).

These observations produce the following result.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

206 C H A P T E R 4 Numerical Differentiation and Integration

Theorem 4.4 Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n.
There exists a μ ∈ (a, b) for which the Composite Simpson’s rule for n subintervals can
be written with its error term as∫ b

a
f (x) dx = h

3

⎡
⎣f (a)+ 2

(n/2)−1∑
j=1

f (x2 j)+ 4
n/2∑
j=1

f (x2 j−1)+ f (b)
⎤
⎦− b− a

180
h4f (4)(μ).

Notice that the error term for the Composite Simpson’s rule is O(h4), whereas it was
O(h5) for the standard Simpson’s rule. However, these rates are not comparable because for
standard Simpson’s rule we have h fixed at h = (b − a)/2, but for Composite Simpson’s
rule we have h = (b − a)/n, for n an even integer. This permits us to considerably reduce
the value of h when the Composite Simpson’s rule is used.

Algorithm 4.1 uses the Composite Simpson’s rule on n subintervals. This is the most
frequently used general-purpose quadrature algorithm.

ALGORITHM

4.1
Composite Simpson’s Rule

To approximate the integral I = ∫ b
a f (x) dx:

INPUT endpoints a, b; even positive integer n.

OUTPUT approximation XI to I .

Step 1 Set h = (b− a)/n.

Step 2 Set XI0 = f (a)+ f (b);
XI1 = 0; (Summation of f (x2i−1).)
XI2 = 0. (Summation of f (x2i).)

Step 3 For i = 1, . . . , n− 1 do Steps 4 and 5.

Step 4 Set X = a+ ih.

Step 5 If i is even then set XI2 = XI2+ f (X)
else set XI1 = XI1+ f (X).

Step 6 Set XI = h(XI0+ 2 · XI2+ 4 · XI1)/3.

Step 7 OUTPUT (XI);
STOP.

The subdivision approach can be applied to any of the Newton-Cotes formulas. The
extensions of the Trapezoidal (see Figure 4.8) and Midpoint rules are given without proof.
The Trapezoidal rule requires only one interval for each application, so the integer n can be
either odd or even.

Theorem 4.5 Let f ∈ C2[a, b], h = (b − a)/n, and xj = a + jh, for each j = 0, 1, . . . , n. There exists
a μ ∈ (a, b) for which the Composite Trapezoidal rule for n subintervals can be written
with its error term as∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦− b− a

12
h2f ′′(μ).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Composite Numerical Integration 207

Figure 4.8
y

xa � x0 b � xn

y � f (x)

xj�1 xjx1 xn�1

For the Composite Midpoint rule, n must again be even. (See Figure 4.9.)

Figure 4.9

x

y

a � x�1 x0 x1 xnx2j�1 xn�1x2j x2j�1 b � xn�1

y � f (x)

Theorem 4.6 Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)h for each
j = −1, 0, . . . , n + 1. There exists a μ ∈ (a, b) for which the Composite Midpoint rule
for n+ 2 subintervals can be written with its error term as

∫ b

a
f (x) dx = 2h

n/2∑
j=0

f (x2 j)+ b− a

6
h2f ′′(μ).

Example 2 Determine values of h that will ensure an approximation error of less than 0.00002 when
approximating

∫ π
0 sin x dx and employing

(a) Composite Trapezoidal rule and (b) Composite Simpson’s rule.

Solution (a) The error form for the Composite Trapezoidal rule for f (x) = sin x on [0,π]
is ∣∣∣∣πh2

12
f ′′(μ)

∣∣∣∣ =
∣∣∣∣πh2

12
(− sinμ)

∣∣∣∣ = πh2

12
| sinμ|.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

208 C H A P T E R 4 Numerical Differentiation and Integration

To ensure sufficient accuracy with this technique we need to have

πh2

12
| sinμ| ≤ πh2

12
< 0.00002.

Since h = π/n implies that n = π/h, we need

π3

12n2
< 0.00002 which implies that n >

(
π3

12(0.00002)

)1/2

≈ 359.44.

and the Composite Trapezoidal rule requires n ≥ 360.

(b) The error form for the Composite Simpson’s rule for f (x) = sin x on [0,π] is∣∣∣∣πh4

180
f (4)(μ)

∣∣∣∣ =
∣∣∣∣πh4

180
sinμ

∣∣∣∣ = πh4

180
| sinμ|.

To ensure sufficient accuracy with this technique we need to have

πh4

180
| sinμ| ≤ πh4

180
< 0.00002.

Using again the fact that n = π/h gives

π5

180n4
< 0.00002 which implies that n >

(
π5

180(0.00002)

)1/4

≈ 17.07.

So Composite Simpson’s rule requires only n ≥ 18.
Composite Simpson’s rule with n = 18 gives

∫ π

0
sin x dx ≈ π

54

⎡
⎣2

8∑
j=1

sin

(
jπ

9

)
+ 4

9∑
j=1

sin

(
(2 j − 1)π

18

)⎤⎦ = 2.0000104.

This is accurate to within about 10−5 because the true value is− cos(π)− (− cos(0)) = 2.

Composite Simpson’s rule is the clear choice if you wish to minimize computation.
For comparison purposes, consider the Composite Trapezoidal rule using h = π/18 for the
integral in Example 2. This approximation uses the same function evaluations as Composite
Simpson’s rule but the approximation in this case

∫ π

0
sin x dx ≈ π

36

⎡
⎣2

17∑
j=1

sin

(
jπ

18

)
+ sin 0+ sin π

⎤
⎦= π

36

⎡
⎣2

17∑
j=1

sin

(
jπ

18

)⎤⎦= 1.9949205.

is accurate only to about 5× 10−3.
Maple contains numerous procedures for numerical integration in the NumericalAnal-

ysis subpackage of the Student package. First access the library as usual with

with(Student[NumericalAnalysis])

The command for all methods is Quadrature with the options in the call specifying the
method to be used. We will use the Trapezoidal method to illustrate the procedure. First
define the function and the interval of integration with

f := x→ sin(x); a := 0.0; b := π

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Composite Numerical Integration 209

After Maple responds with the function and the interval, enter the command

Quadrature(f (x), x = a..b, method = trapezoid, partition = 20, output = value)

1.995885973

The value of the step size h in this instance is the width of the interval b− a divided by the
number specified by partition = 20.

Simpson’s method can be called in a similar manner, except that the step size h is
determined by b − a divided by twice the value of partition. Hence, the Simpson’s rule
approximation using the same nodes as those in the Trapezoidal rule is called with

Quadrature(f (x), x = a..b, method = simpson, partition = 10, output = value)

2.000006785

Any of the Newton-Cotes methods can be called using the option

method = newtoncotes[open, n] or method = newtoncotes[closed, n]
Be careful to correctly specify the number in partition when an even number of divisions
is required, and when an open method is employed.

Round-Off Error Stability

In Example 2 we saw that ensuring an accuracy of 2× 10−5 for approximating
∫ π

0 sin x dx
required 360 subdivisions of [0,π] for the Composite Trapezoidal rule and only 18 for
Composite Simpson’s rule. In addition to the fact that less computation is needed for the
Simpson’s technique, you might suspect that because of fewer computations this method
would also involve less round-off error. However, an important property shared by all the
composite integration techniques is a stability with respect to round-off error. That is, the
round-off error does not depend on the number of calculations performed.

Numerical integration is expected
to be stable, whereas numerical
differentiation is unstable.

To demonstrate this rather amazing fact, suppose we apply the Composite Simpson’s
rule with n subintervals to a function f on [a, b] and determine the maximum bound for the
round-off error. Assume that f (xi) is approximated by f̃ (xi) and that

f (xi) = f̃ (xi)+ ei, for each i = 0, 1, . . . , n,

where ei denotes the round-off error associated with using f̃ (xi) to approximate f (xi). Then
the accumulated error, e(h), in the Composite Simpson’s rule is

e(h) =
∣∣∣∣∣∣
h

3

⎡
⎣e0 + 2

(n/2)−1∑
j=1

e2 j + 4
n/2∑
j=1

e2 j−1 + en

⎤
⎦
∣∣∣∣∣∣

≤ h

3

⎡
⎣|e0| + 2

(n/2)−1∑
j=1

|e2 j| + 4
n/2∑
j=1

|e2 j−1| + |en|
⎤
⎦ .

If the round-off errors are uniformly bounded by ε, then

e(h) ≤ h

3

[
ε + 2

(n

2
− 1
)
ε + 4

(n

2

)
ε + ε

]
= h

3
3nε = nhε.

But nh = b− a, so

e(h) ≤ (b− a)ε,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

210 C H A P T E R 4 Numerical Differentiation and Integration

a bound independent of h (and n). This means that, even though we may need to divide
an interval into more parts to ensure accuracy, the increased computation that is required
does not increase the round-off error. This result implies that the procedure is stable as h
approaches zero. Recall that this was not true of the numerical differentiation procedures
considered at the beginning of this chapter.

E X E R C I S E S E T 4.4

1. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following
integrals.

a.
∫ 2

1
x ln x dx, n = 4 b.

∫ 2

−2
x3ex dx, n = 4

c.
∫ 2

0

2

x2 + 4
dx, n = 6 d.

∫ π

0
x2 cos x dx, n = 6

e.
∫ 2

0
e2x sin 3x dx, n = 8 f.

∫ 3

1

x

x2 + 4
dx, n = 8

g.
∫ 5

3

1√
x2 − 4

dx, n = 8 h.
∫ 3π/8

0
tan x dx, n = 8

2. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following
integrals.

a.
∫ 0.5

−0.5
cos2 x dx, n = 4 b.

∫ 0.5

−0.5
x ln(x + 1) dx, n = 6

c.
∫ 1.75

.75
(sin2 x − 2x sin x + 1) dx, n = 8 d.

∫ e+2

e

1

x ln x
dx, n = 8

3. Use the Composite Simpson’s rule to approximate the integrals in Exercise 1.

4. Use the Composite Simpson’s rule to approximate the integrals in Exercise 2.

5. Use the Composite Midpoint rule with n+ 2 subintervals to approximate the integrals in Exercise 1.

6. Use the Composite Midpoint rule with n+ 2 subintervals to approximate the integrals in Exercise 2.

7. Approximate
∫ 2

0 x2 ln(x2 + 1) dx using h = 0.25. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

8. Approximate
∫ 2

0 x2e−x2
dx using h = 0.25. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

9. Suppose that f (0) = 1, f (0.5) = 2.5, f (1) = 2, and f (0.25) = f (0.75) = α. Find α if the
Composite Trapezoidal rule with n = 4 gives the value 1.75 for

∫ 1
0 f (x) dx.

10. The Midpoint rule for approximating
∫ 1
−1 f (x) dx gives the value 12, the Composite Midpoint rule

with n = 2 gives 5, and Composite Simpson’s rule gives 6. Use the fact that f (−1) = f (1) and
f (−0.5) = f (0.5)− 1 to determine f (−1), f (−0.5), f (0), f (0.5), and f (1).

11. Determine the values of n and h required to approximate∫ 2

0
e2x sin 3x dx

to within 10−4. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.4 Composite Numerical Integration 211

12. Repeat Exercise 11 for the integral
∫ π

0 x2 cos x dx.

13. Determine the values of n and h required to approximate∫ 2

0

1

x + 4
dx

to within 10−5 and compute the approximation. Use

a. Composite Trapezoidal rule.

b. Composite Simpson’s rule.

c. Composite Midpoint rule.

14. Repeat Exercise 13 for the integral
∫ 2

1 x ln x dx.

15. Let f be defined by

f (x) =

⎧⎪⎨
⎪⎩

x3 + 1, 0 ≤ x ≤ 0.1,

1.001+ 0.03(x − 0.1)+ 0.3(x − 0.1)2 + 2(x − 0.1)3, 0.1 ≤ x ≤ 0.2,

1.009+ 0.15(x − 0.2)+ 0.9(x − 0.2)2 + 2(x − 0.2)3, 0.2 ≤ x ≤ 0.3.

a. Investigate the continuity of the derivatives of f .

b. Use the Composite Trapezoidal rule with n = 6 to approximate
∫ 0.3

0 f (x) dx, and estimate the
error using the error bound.

c. Use the Composite Simpson’s rule with n = 6 to approximate
∫ 0.3

0 f (x) dx. Are the results more
accurate than in part (b)?

16. Show that the error E(f) for Composite Simpson’s rule can be approximated by

− h4

180
[f ′′′(b)− f ′′′(a)].

[Hint:
∑n/2

j=1 f
(4)(ξj)(2h) is a Riemann Sum for

∫ b
a f

(4)(x) dx.]

17. a. Derive an estimate for E(f) in the Composite Trapezoidal rule using the method in Exercise 16.

b. Repeat part (a) for the Composite Midpoint rule.

18. Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 12.

19. Use the error estimates of Exercises 16 and 17 to estimate the errors in Exercise 14.

20. In multivariable calculus and in statistics courses it is shown that∫ ∞
−∞

1

σ
√

2π
e−(1/2)(x/σ)

2
dx = 1,

for any positive σ . The function

f (x) = 1

σ
√

2π
e−(1/2)(x/σ)

2

is the normal density function with mean μ = 0 and standard deviation σ . The probability that a
randomly chosen value described by this distribution lies in [a, b] is given by

∫ b
a f (x) dx. Approximate

to within 10−5 the probability that a randomly chosen value described by this distribution will lie in
a. [−σ , σ] b. [−2σ , 2σ] c. [−3σ , 3σ]

21. Determine to within 10−6 the length of the graph of the ellipse with equation 4x2 + 9y2 = 36.

22. A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is determined
by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the
following table.

Time 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84

Speed 124 134 148 156 147 133 121 109 99 85 78 89 104 116 123

How long is the track?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

212 C H A P T E R 4 Numerical Differentiation and Integration

23. A particle of mass m moving through a fluid is subjected to a viscous resistance R, which is a function
of the velocity v. The relationship between the resistance R, velocity v, and time t is given by the
equation

t =
∫ v(t)

v(t0)

m

R(u)
du.

Suppose that R(v) = −v√v for a particular fluid, where R is in newtons and v is in meters/second. If
m = 10 kg and v(0) = 10 m/s, approximate the time required for the particle to slow to v = 5 m/s.

24. To simulate the thermal characteristics of disk brakes (see the following figure), D. A. Secrist and
R. W. Hornbeck [SH] needed to approximate numerically the “area averaged lining temperature,” T ,
of the brake pad from the equation

T =

∫ r0

re

T(r)rθp dr∫ r0

re

rθp dr
,

where re represents the radius at which the pad-disk contact begins, r0 represents the outside radius
of the pad-disk contact, θp represents the angle subtended by the sector brake pads, and T(r) is the
temperature at each point of the pad, obtained numerically from analyzing the heat equation (see
Section 12.2). Suppose re = 0.308 ft, r0 = 0.478 ft, θp = 0.7051 radians, and the temperatures given
in the following table have been calculated at the various points on the disk. Approximate T .

r (ft) T(r) (◦F) r (ft) T(r) (◦F) r (ft) T(r) (◦F)

0.308 640 0.376 1034 0.444 1204
0.325 794 0.393 1064 0.461 1222
0.342 885 0.410 1114 0.478 1239
0.359 943 0.427 1152

Brake disk

Brake
pad

ro
re

θp

25. Find an approximation to within 10−4 of the value of the integral considered in the application opening
this chapter: ∫ 48

0

√
1+ (cos x)2 dx.

26. The equation ∫ x

0

1√
2π

e−t2/2 dt = 0.45

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 Romberg Integration 213

can be solved for x by using Newton’s method with

f (x) =
∫ x

0

1√
2π

e−t2/2 dt − 0.45

and

f ′(x) = 1√
2π

e−x2/2.

To evaluate f at the approximation pk , we need a quadrature formula to approximate∫ pk

0

1√
2π

e−t2/2 dt.

a. Find a solution to f (x) = 0 accurate to within 10−5 using Newton’s method with p0 = 0.5 and
the Composite Simpson’s rule.

b. Repeat (a) using the Composite Trapezoidal rule in place of the Composite Simpson’s rule.

4.5 Romberg Integration

In this section we will illustrate how Richardson extrapolation applied to results from the
Composite Trapezoidal rule can be used to obtain high accuracy approximations with little
computational cost.

In Section 4.4 we found that the Composite Trapezoidal rule has a truncation error of
order O(h2). Specifically, we showed that for h = (b− a)/n and xj = a+ jh we have

∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦− (b− a)f ′′(μ)

12
h2.

for some number μ in (a, b).
By an alternative method it can be shown (see [RR], pp. 136–140), that if f ∈ C∞[a, b],

the Composite Trapezoidal rule can also be written with an error term in the form

∫ b

a
f (x) dx = h

2

⎡
⎣f (a)+ 2

n−1∑
j=1

f (xj)+ f (b)
⎤
⎦+ K1h2 + K2h4 + K3h6 + · · · , (4.33)

where each Ki is a constant that depends only on f (2i−1)(a) and f (2i−1)(b).
Recall from Section 4.2 that Richardson extrapolation can be performed on any

approximation procedure whose truncation error is of the form

m−1∑
j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. In that section we
gave demonstrations to illustrate how effective this techniques is when the approximation
procedure has a truncation error with only even powers of h, that is, when the truncation
error has the form.

m−1∑
j=1

Kjh
2 j + O(h2m).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

214 C H A P T E R 4 Numerical Differentiation and Integration

Because the Composite Trapezoidal rule has this form, it is an obvious candidate for
extrapolation. This results in a technique known as Romberg integration.

Werner Romberg (1909–2003)
devised this procedure for
improving the accuracy of the
Trapezoidal rule by eliminating
the successive terms in the
asymptotic expansion in 1955.

To approximate the integral
∫ b

a f (x) dx we use the results of the Composite Trapezoidal
rule with n = 1, 2, 4, 8, 16, . . . , and denote the resulting approximations, respectively, by
R1,1, R2,1, R3,1, etc. We then apply extrapolation in the manner given in Section 4.2, that is,
we obtain O(h4) approximations R2,2, R3,2, R4,2, etc., by

Rk,2 = Rk,1 + 1

3
(Rk,1 − Rk−1,1), for k = 2, 3, . . .

Then O(h6) approximations R3,3, R4,3, R5,3, etc., by

Rk,3 = Rk,2 + 1

15
(Rk,2 − Rk−1,2), for k = 3, 4,

In general, after the appropriate Rk, j−1 approximations have been obtained, we determine
the O(h2 j) approximations from

Rk, j = Rk, j−1 + 1

4 j−1 − 1
(Rk, j−1 − Rk−1, j−1), for k = j, j + 1, . . .

Example 1 Use the Composite Trapezoidal rule to find approximations to
∫ π

0 sin x dx with n = 1, 2, 4,
8, and 16. Then perform Romberg extrapolation on the results.

The Composite Trapezoidal rule for the various values of n gives the following approx-
imations to the true value 2.

R1,1 = π
2
[sin 0+ sin π] = 0;

R2,1 = π
4

[
sin 0+ 2 sin

π

2
+ sin π

]
= 1.57079633;

R3,1 = π
8

[
sin 0+ 2

(
sin

π

4
+ sin

π

2
+ sin

3π

4

)
+ sin π

]
= 1.89611890;

R4,1 = π

16

[
sin 0+ 2

(
sin

π

8
+ sin

π

4
+ · · · + sin

3π

4
+ sin

7π

8

)
+ sin π

]
= 1.97423160;

R5,1 = π

32

[
sin 0+ 2

(
sin

π

16
+ sin

π

8
+ · · · + sin

7π

8
+ sin

15π

16

)
+ sin π

]
= 1.99357034.

The O(h4) approximations are

R2,2 =R2,1 + 1

3
(R2,1 − R1,1) = 2.09439511; R3,2 =R3,1 + 1

3
(R3,1 − R2,1) = 2.00455976;

R4,2 =R4,1 + 1

3
(R4,1 − R3,1) = 2.00026917; R5,2 =R5,1 + 1

3
(R5,1 − R4,1) = 2.00001659;

The O(h6) approximations are

R3,3 = R3,2 + 1

15
(R3,2 − R2,2) = 1.99857073; R4,3 = R4,2 + 1

15
(R4,2 − R3,2) = 1.99998313;

R5,3 = R5,2 + 1

15
(R5,2 − R4,2) = 1.99999975.

The two O(h8) approximations are

R4,4 = R4,3+ 1

63
(R4,3−R3,3) = 2.00000555; R5,4 = R5,3+ 1

63
(R5,3−R4,3) = 2.00000001,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 Romberg Integration 215

and the final O(h10) approximation is

R5,5 = R5,4 + 1

255
(R5,4 − R4,4) = 1.99999999.

These results are shown in Table 4.9.

Table 4.9 0
1.57079633 2.09439511
1.89611890 2.00455976 1.99857073
1.97423160 2.00026917 1.99998313 2.00000555
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999

Notice that when generating the approximations for the Composite Trapezoidal rule
approximations in Example 1, each consecutive approximation included all the functions
evaluations from the previous approximation. That is, R1,1 used evaluations at 0 and π , R2,1

used these evaluations and added an evaluation at the intermediate point π/2. Then R3,1

used the evaluations of R2,1 and added two additional intermediate ones at π/4 and 3π/4.
This pattern continues with R4,1 using the same evaluations as R3,1 but adding evaluations
at the 4 intermediate points π/8, 3π/8, 5π/8, and 7π/8, and so on.

This evaluation procedure for Composite Trapezoidal rule approximations holds for an
integral on any interval [a, b]. In general, the Composite Trapezoidal rule denoted Rk+1,1

uses the same evaluations as Rk,1 but adds evaluations at the 2k−2 intermediate points.
Efficient calculation of these approximations can therefore be done in a recursive manner.

To obtain the Composite Trapezoidal rule approximations for
∫ b

a f (x) dx, let hk =
(b− a)/mk = (b− a)/2k−1. Then

R1,1 = h1

2
[f (a)+ f (b)] = (b− a)

2
[f (a)+ f (b)];

and

R2,1 = h2

2
[f (a)+ f (b)+ 2f (a+ h2)].

By reexpressing this result for R2,1 we can incorporate the previously determined approxi-
mation R1,1

R2,1 = (b− a)

4

[
f (a)+ f (b)+ 2f

(
a+ (b− a)

2

)]
= 1

2
[R1,1 + h1f (a+ h2)].

In a similar manner we can write

R3,1 = 1

2
{R2,1 + h2[f (a+ h3)+ f (a+ 3h3)]};

and, in general (see Figure 4.10 on page 216), we have

Rk,1 = 1

2

⎡
⎣Rk−1,1 + hk−1

2k−2∑
i=1

f (a+ (2i − 1)hk)

⎤
⎦ , (4.34)

for each k = 2, 3, . . . , n. (See Exercises 14 and 15.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

216 C H A P T E R 4 Numerical Differentiation and Integration

Figure 4.10

y

x

yy

y � f (x)R1,1 R2,1

a b a b a bx x

R3,1
y � f (x) y � f (x)

Extrapolation then is used to produce O(h2 j
k) approximations by

Rk, j = Rk, j−1 + 1

4 j−1 − 1
(Rk, j−1 − Rk−1, j−1), for k = j, j + 1, . . .

as shown in Table 4.10.

Table 4.10 k O
(
h2

k

)
O
(
h4

k

)
O
(
h6

k

)
O
(
h8

k

)
O
(
h2n

k

)
1 R1,1

2 R2,1 R2,2

3 R3,1 R3,2 R3,3

4 R4,1 R4,2 R4,3 R4,4

...
...

...
...

...
. . .

n Rn,1 Rn,2 Rn,3 Rn,4 · · · Rn,n

The effective method to construct the Romberg table makes use of the highest order
of approximation at each step. That is, it calculates the entries row by row, in the order
R1,1, R2,1, R2,2, R3,1, R3,2, R3,3, etc. This also permits an entire new row in the table to be
calculated by doing only one additional application of the Composite Trapezoidal rule. It
then uses a simple averaging on the previously calculated values to obtain the remaining
entries in the row. Remember

• Calculate the Romberg table one complete row at a time.

Example 2 Add an additional extrapolation row to Table 4.10 to approximate
∫ π

0 sin x dx.

Solution To obtain the additional row we need the trapezoidal approximation

R6,1 = 1

2

⎡
⎣R5,1 + π

16

24∑
k=1

sin
(2k − 1)π

32

⎤
⎦ = 1.99839336.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 Romberg Integration 217

The values in Table 4.10 give

R6,2 = R6,1 + 1

3
(R6,1 − R5,1) = 1.99839336+ 1

3
(1.99839336− 1.99357035)

= 2.00000103;

R6,3 = R6,2 + 1

15
(R6,2 − R5,2) = 2.00000103+ 1

15
(2.00000103− 2.00001659)

= 2.00000000;

R6,4 = R6,3 + 1

63
(R6,3 − R5,3) = 2.00000000;

R6,5 = R6,4 + 1

255
(R6,4 − R5,4) = 2.00000000;

and R6,6 = R6,5 + 1
1023 (R6,5 − R5,5) = 2.00000000. The new extrapolation table is shown

in Table 4.11.

Table 4.11 0
1.57079633 2.09439511
1.89611890 2.00455976 1.99857073
1.97423160 2.00026917 1.99998313 2.00000555
1.99357034 2.00001659 1.99999975 2.00000001 1.99999999
1.99839336 2.00000103 2.00000000 2.00000000 2.00000000 2.00000000

Notice that all the extrapolated values except for the first (in the first row of the second
column) are more accurate than the best composite trapezoidal approximation (in the last row
of the first column). Although there are 21 entries in Table 4.11, only the six in the left column
require function evaluations since these are the only entries generated by the Composite
Trapezoidal rule; the other entries are obtained by an averaging process. In fact, because
of the recurrence relationship of the terms in the left column, the only function evaluations
needed are those to compute the final Composite Trapezoidal rule approximation. In general,
Rk,1 requires 1+ 2k−1 function evaluations, so in this case 1+ 25 = 33 are needed.

Algorithm 4.2 uses the recursive procedure to find the initial Composite Trapezoidal
Rule approximations and computes the results in the table row by row.

ALGORITHM

4.2
Romberg

To approximate the integral I = ∫ b
a f (x) dx, select an integer n > 0.

INPUT endpoints a, b; integer n.

OUTPUT an array R. (Compute R by rows; only the last 2 rows are saved in storage.)

Step 1 Set h = b− a;
R1,1 = h

2 (f (a)+ f (b)).
Step 2 OUTPUT (R1,1).

Step 3 For i = 2, . . . , n do Steps 4–8.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

218 C H A P T E R 4 Numerical Differentiation and Integration

Step 4 Set R2,1 = 1

2

⎡
⎣R1,1 + h

2i−2∑
k=1

f (a+ (k − 0.5)h)

⎤
⎦.

(Approximation from Trapezoidal method.)

Step 5 For j = 2, . . . , i

set R2, j = R2, j−1 + R2, j−1 − R1, j−1

4 j−1 − 1
. (Extrapolation.)

Step 6 OUTPUT (R2,j for j = 1, 2, . . . , i).

Step 7 Set h = h/2.

Step 8 For j = 1, 2, . . . , i set R1,j = R2,j. (Update row 1 of R.)

Step 9 STOP.

Algorithm 4.2 requires a preset integer n to determine the number of rows to be gen-
erated. We could also set an error tolerance for the approximation and generate n, within
some upper bound, until consecutive diagonal entries Rn−1,n−1 and Rn,n agree to within
the tolerance. To guard against the possibility that two consecutive row elements agree
with each other but not with the value of the integral being approximated, it is common to
generate approximations until not only |Rn−1,n−1 − Rn,n| is within the tolerance, but also
|Rn−2,n−2 − Rn−1,n−1|. Although not a universal safeguard, this will ensure that two differ-
ently generated sets of approximations agree within the specified tolerance before Rn,n, is
accepted as sufficiently accurate.

Romberg integration can be performed with the Quadrature command in the Numeri-
calAnalysis subpackage of Maple’s Student package. For example, after loading the package
and defining the function and interval, the command

Quadrature(f (x), x = a..b, method = romberg6, output = information)

produces the values shown in Table 4.11 together with the information that 6 applications
of the Trapezoidal rule were used and 33 function evaluations were required.

Romberg integration applied to a function f on the interval [a, b] relies on the assump-
tion that the Composite Trapezoidal rule has an error term that can be expressed in the
form of Eq. (4.33); that is, we must have f ∈ C2k+2[a, b] for the kth row to be generated.
General-purpose algorithms using Romberg integration include a check at each stage to
ensure that this assumption is fulfilled. These methods are known as cautious Romberg
algorithms and are described in [Joh]. This reference also describes methods for using the
Romberg technique as an adaptive procedure, similar to the adaptive Simpson’s rule that
will be discussed in Section 4.6.

The adjective cautious used in
the description of a numerical
method indicates that a check is
incorporated to determine if the
continuity hypotheses are likely
to be true.

E X E R C I S E S E T 4.5

1. Use Romberg integration to compute R3,3 for the following integrals.

a.
∫ 1.5

1
x2 ln x dx b.

∫ 1

0
x2e−x dx

c.
∫ 0.35

0

2

x2 − 4
dx d.

∫ π/4

0
x2 sin x dx

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 Romberg Integration 219

e.
∫ π/4

0
e3x sin 2x dx f.

∫ 1.6

1

2x

x2 − 4
dx

g.
∫ 3.5

3

x√
x2 − 4

dx h.
∫ π/4

0
(cos x)2 dx

2. Use Romberg integration to compute R3,3 for the following integrals.

a.
∫ 1

−1
(cos x)2 dx b.

∫ 0.75

−0.75
x ln(x + 1) dx

c.
∫ 4

1

(
(sin x)2 − 2x sin x + 1

)
dx d.

∫ 2e

e

1

x ln x
dx

3. Calculate R4,4 for the integrals in Exercise 1.

4. Calculate R4,4 for the integrals in Exercise 2.

5. Use Romberg integration to approximate the integrals in Exercise 1 to within 10−6. Compute the
Romberg table until either |Rn−1,n−1 − Rn,n| < 10−6, or n = 10. Compare your results to the exact
values of the integrals.

6. Use Romberg integration to approximate the integrals in Exercise 2 to within 10−6. Compute the
Romberg table until either |Rn−1,n−1 − Rn,n| < 10−6, or n = 10. Compare your results to the exact
values of the integrals.

7. Use the following data to approximate
∫ 5

1 f (x) dx as accurately as possible.

x 1 2 3 4 5

f (x) 2.4142 2.6734 2.8974 3.0976 3.2804

8. Romberg integration is used to approximate

∫ 1

0

x2

1+ x3
dx.

If R11 = 0.250 and R22 = 0.2315, what is R21?

9. Romberg integration is used to approximate

∫ 3

2
f (x) dx.

If f (2) = 0.51342, f (3) = 0.36788, R31 = 0.43687, and R33 = 0.43662, find f (2.5).

10. Romberg integration for approximating
∫ 1

0 f (x) dx gives R11 = 4 and R22 = 5. Find f (1/2).

11. Romberg integration for approximating
∫ b

a f (x) dx gives R11 = 8, R22 = 16/3, and R33 = 208/45.
Find R31.

12. Use Romberg integration to compute the following approximations to

∫ 48

0

√
1+ (cos x)2 dx.

[Note: The results in this exercise are most interesting if you are using a device with between seven-
and nine-digit arithmetic.]

a. Determine R1,1, R2,1, R3,1, R4,1, and R5,1, and use these approximations to predict the value of the
integral.

b. Determine R2,2, R3,3, R4,4, and R5,5, and modify your prediction.

c. Determine R6,1, R6,2, R6,3, R6,4, R6,5, and R6,6, and modify your prediction.

d. Determine R7,7, R8,8, R9,9, and R10,10, and make a final prediction.

e. Explain why this integral causes difficulty with Romberg integration and how it can be reformu-
lated to more easily determine an accurate approximation.

13. Show that the approximation obtained from Rk,2 is the same as that given by the Composite Simpson’s
rule described in Theorem 4.4 with h = hk .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

220 C H A P T E R 4 Numerical Differentiation and Integration

14. Show that, for any k,

2k−1−1∑
i=1

f

(
a+ i

2
hk−1

)
=

2k−2∑
i=1

f

(
a+

(
i − 1

2

)
hk−1

)
+

2k−2−1∑
i=1

f (a+ ihk−1).

15. Use the result of Exercise 14 to verify Eq. (4.34); that is, show that for all k,

Rk,1 = 1

2

⎡
⎣Rk−1,1 + hk−1

2k−2∑
i=1

f

(
a+

(
i − 1

2

)
hk−1

)⎤⎦ .

16. In Exercise 26 of Section 1.1, a Maclaurin series was integrated to approximate erf(1), where erf(x)
is the normal distribution error function defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt.

Approximate erf(1) to within 10−7.

4.6 Adaptive Quadrature Methods

The composite formulas are very effective in most situations, but they suffer occasionally
because they require the use of equally-spaced nodes. This is inappropriate when integrating
a function on an interval that contains both regions with large functional variation and regions
with small functional variation.

Illustration The unique solution to the differential equation y′′ +6y′ +25 = 0 that additionally satisfies
y(0) = 0 and y′(0) = 4 is y(x) = e−3x sin 4x. Functions of this type are common in
mechanical engineering because they describe certain features of spring and shock absorber
systems, and in electrical engineering because they are common solutions to elementary
circuit problems. The graph of y(x) for x in the interval [0, 4] is shown in Figure 4.11.

Figure 4.11

x

1

2 3 4

0.5

0.4

0.3

0.2

0.1

�

�0.1

�3x
sin 4x

y

y (x) = e

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.6 Adaptive Quadrature Methods 221

Suppose that we need the integral of y(x) on [0, 4]. The graph indicates that the integral on
[3, 4]must be very close to 0, and on [2, 3]would also not be expected to be large. However,
on [0, 2] there is significant variation of the function and it is not at all clear what the integral
is on this interval. This is an example of a situation where composite integration would be
inappropriate. A very low order method could be used on [2, 4], but a higher-order method
would be necessary on [0, 2]. �

The question we will consider in this section is:

• How can we determine what technique should be applied on various portions of the
interval of integration, and how accurate can we expect the final approximation to be?

We will see that under quite reasonable conditions we can answer this question and also
determine approximations that satisfy given accuracy requirements.

If the approximation error for an integral on a given interval is to be evenly distributed,
a smaller step size is needed for the large-variation regions than for those with less variation.
An efficient technique for this type of problem should predict the amount of functional vari-
ation and adapt the step size as necessary. These methods are called Adaptive quadrature
methods. Adaptive methods are particularly popular for inclusion in professional software
packages because, in addition to being efficient, they generally provide approximations that
are within a given specified tolerance.

In this section we consider an Adaptive quadrature method and see how it can be used to
reduce approximation error and also to predict an error estimate for the approximation that
does not rely on knowledge of higher derivatives of the function. The method we discuss
is based on the Composite Simpson’s rule, but the technique is easily modified to use other
composite procedures.

Suppose that we want to approximate
∫ b

a f (x) dx to within a specified tolerance ε > 0.
The first step is to apply Simpson’s rule with step size h = (b − a)/2. This produces (see
Figure 4.12)

∫ b

a
f (x) dx = S(a, b)− h5

90
f (4)(ξ), for some ξ in (a, b), (4.35)

where we denote the Simpson’s rule approximation on [a, b] by

S(a, b) = h

3
[f (a)+ 4f (a+ h)+ f (b)].

Figure 4.12

x

y

y � f (x)

a b
hh

 S(a, b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

222 C H A P T E R 4 Numerical Differentiation and Integration

The next step is to determine an accuracy approximation that does not require f (4)(ξ).
To do this, we apply the Composite Simpson’s rule with n = 4 and step size (b−a)/4 = h/2,
giving∫ b

a
f (x) dx = h

6

[
f (a)+ 4f

(
a+ h

2

)
+ 2f (a+ h)+ 4f

(
a+ 3h

2

)
+ f (b)

]

−
(

h

2

)4
(b− a)

180
f (4)(ξ̃), (4.36)

for some ξ̃ in (a, b). To simplify notation, let

S

(
a,

a+ b

2

)
= h

6

[
f (a)+ 4f

(
a+ h

2

)
+ f (a+ h)

]

and

S

(
a+ b

2
, b

)
= h

6

[
f (a+ h)+ 4f

(
a+ 3h

2

)
+ f (b)

]
.

Then Eq. (4.36) can be rewritten (see Figure 4.13) as∫ b

a
f (x) dx = S

(
a,

a+ b

2

)
+ S

(
a+ b

2
, b

)
− 1

16

(
h5

90

)
f (4)(ξ̃). (4.37)

Figure 4.13

x

y

y � f (x)

a b

2
h

2
a � b

2
a � b

S ((, b
2

a � b
S ((,a �

The error estimation is derived by assuming that ξ ≈ ξ̃ or, more precisely, thatf (4)(ξ) ≈
f (4)(ξ̃), and the success of the technique depends on the accuracy of this assumption. If it
is accurate, then equating the integrals in Eqs. (4.35) and (4.37) gives

S

(
a,

a+ b

2

)
+ S

(
a+ b

2
, b

)
− 1

16

(
h5

90

)
f (4)(ξ) ≈ S(a, b)− h5

90
f (4)(ξ),

so

h5

90
f (4)(ξ) ≈ 16

15

[
S(a, b)− S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)]
.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.6 Adaptive Quadrature Methods 223

Using this estimate in Eq. (4.37) produces the error estimation

∣∣∣∣
∫ b

a
f (x) dx − S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ ≈ 1

16

(
h5

90

)
f (4)(ξ)

≈ 1

15

∣∣∣∣S(a, b)− S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ .
This implies that S(a, (a+b)/2)+S((a+b)/2, b) approximates

∫ b
a f (x) dx about 15 times

better than it agrees with the computed value S(a, b). Thus, if∣∣∣∣S(a, b)− S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ < 15ε, (4.38)

we expect to have ∣∣∣∣
∫ b

a
f (x) dx − S

(
a,

a+ b

2

)
− S

(
a+ b

2
, b

)∣∣∣∣ < ε, (4.39)

and

S

(
a,

a+ b

2

)
+ S

(
a+ b

2
, b

)

is assumed to be a sufficiently accurate approximation to
∫ b

a f (x) dx.

Example 1 Check the accuracy of the error estimate given in (4.38) and (4.39) when applied to the
integral ∫ π/2

0
sin x dx = 1.

by comparing

1

15

∣∣∣S (0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣ to

∣∣∣∣
∫ π/2

0
sin x dx − S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣∣ .
Solution We have

S
(

0,
π

2

)
= π/4

3

[
sin 0+ 4 sin

π

4
+ sin

π

2

]
= π

12
(2
√

2+ 1) = 1.002279878

and

S
(

0,
π

4

)
+ S

(π
4

,
π

2

)
= π/8

3

[
sin 0+ 4 sin

π

8
+ 2 sin

π

4
+ 4 sin

3π

8
+ sin

π

2

]

= 1.000134585.

So∣∣∣S (0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣ = |1.002279878− 1.000134585| = 0.002145293.

The estimate for the error obtained when using S(a, (a+b))+S((a+b), b) to approximate∫ b
a f (x) dx is consequently

1

15

∣∣∣S (0,
π

2

)
− S

(
0,
π

4

)
− S

(π
4

,
π

2

)∣∣∣ = 0.000143020,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

224 C H A P T E R 4 Numerical Differentiation and Integration

which closely approximates the actual error∣∣∣∣
∫ π/2

0
sin x dx − 1.000134585

∣∣∣∣ = 0.000134585,

even though D4
x sin x = sin x varies significantly in the interval (0,π/2).

When the approximations in (4.38) differ by more than 15ε, we can apply the Simpson’s
rule technique individually to the subintervals [a, (a + b)/2] and [(a + b)/2, b]. Then we
use the error estimation procedure to determine if the approximation to the integral on each
subinterval is within a tolerance of ε/2. If so, we sum the approximations to produce an
approximation to

∫ b
a f (x) dx within the tolerance ε.

If the approximation on one of the subintervals fails to be within the tolerance ε/2, then
that subinterval is itself subdivided, and the procedure is reapplied to the two subintervals to
determine if the approximation on each subinterval is accurate to within ε/4. This halving
procedure is continued until each portion is within the required tolerance.

Problems can be constructed for which this tolerance will never be met, but the tech-
nique is usually successful, because each subdivision typically increases the accuracy of
the approximation by a factor of 16 while requiring an increased accuracy factor of only 2.

Algorithm 4.3 details this Adaptive quadrature procedure for Simpson’s rule, although
some technical difficulties arise that require the implementation to differ slightly from the
preceding discussion. For example, in Step 1 the tolerance has been set at 10ε rather than
the 15ε figure in Inequality (4.38). This bound is chosen conservatively to compensate for
error in the assumption f (4)(ξ) ≈ f (4)(ξ̃). In problems where f (4) is known to be widely
varying, this bound should be decreased even further.

It is a good idea to include a
margin of safety when it is
impossible to verify accuracy
assumptions.

The procedure listed in the algorithm first approximates the integral on the leftmost
subinterval in a subdivision. This requires the efficient storing and recalling of previously
computed functional evaluations for the nodes in the right half subintervals. Steps 3, 4,
and 5 contain a stacking procedure with an indicator to keep track of the data that will be
required for calculating the approximation on the subinterval immediately adjacent and to
the right of the subinterval on which the approximation is being generated. The method is
easier to implement using a recursive programming language.

ALGORITHM

4.3
Adaptive Quadrature

To approximate the integral I = ∫ b
a f (x) dx to within a given tolerance:

INPUT endpoints a, b; tolerance TOL; limit N to number of levels.

OUTPUT approximation APP or message that N is exceeded.

Step 1 Set APP = 0;
i = 1;
TOLi = 10 TOL;
ai = a;
hi = (b− a)/2;
FAi = f (a);
FCi = f (a+ hi);
FBi = f (b);
Si = hi(FAi + 4FCi + FBi)/3; (Approximation from Simpson’s

method for entire interval.)
Li = 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.6 Adaptive Quadrature Methods 225

Step 2 While i > 0 do Steps 3–5.

Step 3 Set FD = f (ai + hi/2);
FE = f (ai + 3hi/2);
S1 = hi(FAi + 4FD+ FCi)/6; (Approximations from Simpson’s

method for halves of subintervals.)
S2 = hi(FCi + 4FE+ FBi)/6;
v1 = ai; (Save data at this level.)
v2 = FAi;
v3 = FCi;
v4 = FBi;
v5 = hi;
v6 = TOLi;
v7 = Si;
v8 = Li.

Step 4 Set i = i − 1. (Delete the level.)
Step 5 If |S1+ S2− v7| < v6

then set APP = APP+ (S1+ S2)
else

if (v8 ≥ N)
then

OUTPUT (‘LEVEL EXCEEDED’); (Procedure fails.)
STOP.

else (Add one level.)
set i = i + 1; (Data for right half subinterval.)

ai = v1 + v5;
FAi = v3;
FCi = FE;
FBi = v4;
hi = v5/2;
TOLi = v6/2;
Si = S2;
Li = v8 + 1;

set i = i + 1; (Data for left half subinterval.)
ai = v1;
FAi = v2;
FCi = FD;
FBi = v3;
hi = hi−1;
TOLi = TOLi−1;
Si = S1;
Li = Li−1.

Step 6 OUTPUT (APP); (APP approximates I to within TOL.)
STOP.

Illustration The graph of the function f (x) = (100/x2) sin(10/x) for x in [1, 3] is shown in Figure
4.14. Using the Adaptive Quadrature Algorithm 4.3 with tolerance 10−4 to approximate∫ 3

1 f (x) dx produces−1.426014, a result that is accurate to within 1.1×10−5. The approxi-
mation required that Simpson’s rule with n = 4 be performed on the 23 subintervals whose

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

226 C H A P T E R 4 Numerical Differentiation and Integration

endpoints are shown on the horizontal axis in Figure 4.14. The total number of functional
evaluations required for this approximation is 93.

Figure 4.14

x1.0 1.25 1.5 1.75 2.0 2.25 2.5

2.75 3.0

60

50

40

30

20

10

�10

�20

�30

�40

�50

�60

x2

100
sin ((x

10

y

y = f (x) =

The largest value of h for which the standard Composite Simpson’s rule gives 10−4 accuracy
is h = 1/88. This application requires 177 function evaluations, nearly twice as many as
Adaptive quadrature. �

Adaptive quadrature can be performed with the Quadrature command in the Numerical-
Analysis subpackage of Maple’s Student package. In this situation the option adaptive =
true is used. For example, to produce the values in the Illustration we first load the package
and define the function and interval with

f := x→ 100

x2
· sin

(
10

x

)
; a := 1.0; b := 3.0

Then give the NumericalAnalysis command

Quadrature(f (x), x = a..b, adaptive = true, method = [simpson, 10−4], output =
information)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.6 Adaptive Quadrature Methods 227

This produces the approximation −1.42601481 and a table that lists all the intervals
on which Simpson’s rule was employed and whether the appropriate tolerance was satisfied
(indicated by the word PASS) or was not satisfied (indicated by the word fail). It also
gives what Maple thinks is the correct value of the integral to the decimal places listed, in
this case −1.42602476. Then it gives the absolute and relative errors, 9.946 × 10−6 and
6.975× 10−4, respectively, assuming that its correct value is accurate.

E X E R C I S E S E T 4.6

1. Compute the Simpson’s rule approximations S(a, b), S(a, (a + b)/2), and S((a + b)/2, b) for the
following integrals, and verify the estimate given in the approximation formula.

a.
∫ 1.5

1
x2 ln x dx b.

∫ 1

0
x2e−x dx

c.
∫ 0.35

0

2

x2 − 4
dx d.

∫ π/4

0
x2 sin x dx

e.
∫ π/4

0
e3x sin 2x dx f.

∫ 1.6

1

2x

x2 − 4
dx

g.
∫ 3.5

3

x√
x2 − 4

dx h.
∫ π/4

0
(cos x)2 dx

2. Use Adaptive quadrature to find approximations to within 10−3 for the integrals in Exercise 1. Do not
use a computer program to generate these results.

3. Use Adaptive quadrature to approximate the following integrals to within 10−5.

a.
∫ 3

1
e2x sin 3x dx b.

∫ 3

1
e3x sin 2x dx

c.
∫ 5

0

(
2x cos(2x)− (x − 2)2

)
dx d.

∫ 5

0

(
4x cos(2x)− (x − 2)2

)
dx

4. Use Adaptive quadrature to approximate the following integrals to within 10−5.

a.
∫ π

0
(sin x + cos x) dx b.

∫ 2

1
(x + sin 4x) dx

c.
∫ 1

−1
x sin 4x dx d.

∫ π/2

0
(6 cos 4x + 4 sin 6x)ex dx

5. Use Simpson’s Composite rule with n = 4, 6, 8, . . . , until successive approximations to the following
integrals agree to within 10−6. Determine the number of nodes required. Use the Adaptive Quadrature
Algorithm to approximate the integral to within 10−6, and count the number of nodes. Did Adaptive
quadrature produce any improvement?

a.
∫ π

0
x cos x2 dx b.

∫ π

0
x sin x2 dx

c.
∫ π

0
x2 cos x dx d.

∫ π

0
x2 sin x dx

6. Sketch the graphs of sin(1/x) and cos(1/x) on [0.1, 2]. Use Adaptive quadrature to approximate the
following integrals to within 10−3.

a.
∫ 2

0.1
sin

1

x
dx b.

∫ 2

0.1
cos

1

x
dx

7. The differential equation

mu′′(t)+ ku(t) = F0 cosωt

describes a spring-mass system with mass m, spring constant k, and no applied damping. The term
F0 cosωt describes a periodic external force applied to the system. The solution to the equation when
the system is initially at rest (u′(0) = u(0) = 0) is

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

228 C H A P T E R 4 Numerical Differentiation and Integration

u(t) = F0

m(ω2
0 − ω2)

(cosωt − cosω0t) , where ω0 =
√

k

m
�= ω.

Sketch the graph of u when m = 1, k = 9, F0 = 1, ω = 2, and t ∈ [0, 2π]. Approximate
∫ 2π

0 u(t) dt
to within 10−4.

8. If the term cu′(t) is added to the left side of the motion equation in Exercise 7, the resulting differential
equation describes a spring-mass system that is damped with damping constant c �= 0. The solution
to this equation when the system is initially at rest is

u(t) = c1er1t + c2er2 t + F0

c2ω2 + m2(ω2
0 − ω2)2

(
cω sinωt + m

(
ω2

0 − ω2
)

cosωt
)

,

where

r1 =
−c+

√
c2 − 4ω2

0m2

2m
and r2 =

−c−
√

c2 − 4ω2
0m2

2m
.

a. Let m = 1, k = 9, F0 = 1, c = 10, and ω = 2. Find the values of c1 and c2 so that
u(0) = u′(0) = 0.

b. Sketch the graph of u(t) for t ∈ [0, 2π] and approximate
∫ 2π

0 u(t) dt to within 10−4.

9. Let T(a, b) and T(a, a+b
2) + T(a+b

2 , b) be the single and double applications of the Trapezoidal rule

to
∫ b

a f (x) dx. Derive the relationship between

∣∣∣∣T(a, b)− T

(
a,

a+ b

2

)
− T

(
a+ b

2
, b

)∣∣∣∣
and ∣∣∣∣

∫ b

a
f (x) dx − T

(
a,

a+ b

2

)
− T

(
a+ b

2
, b

)∣∣∣∣ .
10. The study of light diffraction at a rectangular aperture involves the Fresnel integrals

c(t) =
∫ t

0
cos

π

2
ω2 dω and s(t) =

∫ t

0
sin

π

2
ω2 dω.

Construct a table of values for c(t) and s(t) that is accurate to within 10−4 for values of t = 0.1,
0.2, . . . , 1.0.

4.7 Gaussian Quadrature

The Newton-Cotes formulas in Section 4.3 were derived by integrating interpolating poly-
nomials. The error term in the interpolating polynomial of degree n involves the (n + 1)st
derivative of the function being approximated, so a Newton-Cotes formula is exact when
approximating the integral of any polynomial of degree less than or equal to n.

All the Newton-Cotes formulas use values of the function at equally-spaced points.
This restriction is convenient when the formulas are combined to form the composite rules
we considered in Section 4.4, but it can significantly decrease the accuracy of the approx-
imation. Consider, for example, the Trapezoidal rule applied to determine the integrals of
the functions whose graphs are shown in Figure 4.15.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.7 Gaussian Quadrature 229

Figure 4.15

y

x

yy

xa � x1 a � x1 a � x1x2 � b x2 � b x2 � bx

y � f (x)
y � f (x)

y � f (x)

The Trapezoidal rule approximates the integral of the function by integrating the linear
function that joins the endpoints of the graph of the function. But this is not likely the best
line for approximating the integral. Lines such as those shown in Figure 4.16 would likely
give much better approximations in most cases.

Figure 4.16

yyy

x x xa x1 bx2 a x1 bx2 a x1 bx2

y � f (x)

y � f (x)
y � f (x)

Gauss demonstrated his method
of efficient numerical integration
in a paper that was presented to
the Göttingen Society in 1814.
He let the nodes as well as the
coefficients of the function
evaluations be parameters in the
summation formula and found
the optimal placement of the
nodes. Goldstine [Golds],
pp 224–232, has an interesting
description of his development.

Gaussian quadrature chooses the points for evaluation in an optimal, rather than equally-
spaced, way. The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients c1, c2, . . . , cn, are
chosen to minimize the expected error obtained in the approximation

∫ b

a
f (x) dx ≈

n∑
i=1

cif (xi).

To measure this accuracy, we assume that the best choice of these values produces the exact
result for the largest class of polynomials, that is, the choice that gives the greatest degree
of precision.

The coefficients c1, c2, . . . , cn in the approximation formula are arbitrary, and the nodes
x1, x2, . . . , xn are restricted only by the fact that they must lie in [a, b], the interval of
integration. This gives us 2n parameters to choose. If the coefficients of a polynomial are

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

230 C H A P T E R 4 Numerical Differentiation and Integration

considered parameters, the class of polynomials of degree at most 2n − 1 also contains
2n parameters. This, then, is the largest class of polynomials for which it is reasonable to
expect a formula to be exact. With the proper choice of the values and constants, exactness
on this set can be obtained.

To illustrate the procedure for choosing the appropriate parameters, we will show how
to select the coefficients and nodes when n = 2 and the interval of integration is [−1, 1]. We
will then discuss the more general situation for an arbitrary choice of nodes and coefficients
and show how the technique is modified when integrating over an arbitrary interval.

Suppose we want to determine c1, c2, x1, and x2 so that the integration formula∫ 1

−1
f (x) dx ≈ c1f (x1)+ c2f (x2)

gives the exact result whenever f (x) is a polynomial of degree 2(2) − 1 = 3 or less, that
is, when

f (x) = a0 + a1x + a2x2 + a3x3,

for some collection of constants, a0, a1, a2, and a3. Because∫
(a0 + a1x + a2x2 + a3x3) dx = a0

∫
1 dx + a1

∫
x dx + a2

∫
x2 dx + a3

∫
x3 dx,

this is equivalent to showing that the formula gives exact results when f (x) is 1, x, x2,
and x3. Hence, we need c1, c2, x1, and x2, so that

c1 · 1+ c2 · 1 =
∫ 1

−1
1 dx = 2, c1 · x1 + c2 · x2 =

∫ 1

−1
x dx = 0,

c1 · x2
1 + c2 · x2

2 =
∫ 1

−1
x2 dx = 2

3
, and c1 · x3

1 + c2 · x3
2 =

∫ 1

−1
x3 dx = 0.

A little algebra shows that this system of equations has the unique solution

c1 = 1, c2 = 1, x1 = −
√

3

3
, and x2 =

√
3

3
,

which gives the approximation formula

∫ 1

−1
f (x) dx ≈ f

(
−√3

3

)
+ f

(√
3

3

)
. (4.40)

This formula has degree of precision 3, that is, it produces the exact result for every poly-
nomial of degree 3 or less.

Legendre Polynomials

The technique we have described could be used to determine the nodes and coefficients for
formulas that give exact results for higher-degree polynomials, but an alternative method
obtains them more easily. In Sections 8.2 and 8.3 we will consider various collections of
orthogonal polynomials, functions that have the property that a particular definite integral
of the product of any two of them is 0. The set that is relevant to our problem is the Legendre
polynomials, a collection {P0(x), P1(x), . . . , Pn(x), . . . , } with properties:

(1) For each n, Pn(x) is a monic polynomial of degree n.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.7 Gaussian Quadrature 231

(2)
∫ 1

−1
P(x)Pn(x) dx = 0 whenever P(x) is a polynomial of degree less than n.

Recall that monic polynomials
have leading coefficient 1.

The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = x2 − 1

3
,

P3(x) = x3 − 3

5
x, and P4(x) = x4 − 6

7
x2 + 3

35
.

Adrien-Marie Legendre
(1752–1833) introduced this set
of polynomials in 1785. He had
numerous priority disputes with
Gauss, primarily due to Gauss’
failure to publish many of his
original results until long after he
had discovered them.

The roots of these polynomials are distinct, lie in the interval (−1, 1), have a symmetry
with respect to the origin, and, most importantly, are the correct choice for determining the
parameters that give us the nodes and coefficients for our quadrature method.

The nodes x1, x2, . . . , xn needed to produce an integral approximation formula that
gives exact results for any polynomial of degree less than 2n are the roots of the nth-degree
Legendre polynomial. This is established by the following result.

Theorem 4.7 Suppose that x1, x2, . . . , xn are the roots of the nth Legendre polynomial Pn(x) and that for
each i = 1, 2, . . . , n, the numbers ci are defined by

ci =
∫ 1

−1

n∏
j=1
j �=i

x − xj

xi − xj
dx.

If P(x) is any polynomial of degree less than 2n, then∫ 1

−1
P(x) dx =

n∑
i=1

ciP(xi).

Proof Let us first consider the situation for a polynomial P(x) of degree less than n. Rewrite
P(x) in terms of (n− 1)st Lagrange coefficient polynomials with nodes at the roots of the
nth Legendre polynomial Pn(x). The error term for this representation involves the nth
derivative of P(x). Since P(x) is of degree less than n, the nth derivative of P(x) is 0, and
this representation of is exact. So

P(x) =
n∑

i=1

P(xi)Li(x) =
n∑

i=1

n∏
j=1
j �=i

x − xj

xi − xj
P(xi)

and

∫ 1

−1
P(x) dx =

∫ 1

−1

⎡
⎢⎢⎣

n∑
i=1

n∏
j=1
j �=i

x − xj

xi − xj
P(xi)

⎤
⎥⎥⎦ dx

=
n∑

i=1

⎡
⎢⎢⎣
∫ 1

−1

n∏
j=1
j �=i

x − xj

xi − xj
dx

⎤
⎥⎥⎦P(xi) =

n∑
i=1

ciP(xi).

Hence the result is true for polynomials of degree less than n.
Now consider a polynomial P(x) of degree at least n but less than 2n. Divide P(x) by

the nth Legendre polynomial Pn(x). This gives two polynomials Q(x) and R(x), each of
degree less than n, with

P(x) = Q(x)Pn(x)+ R(x).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

232 C H A P T E R 4 Numerical Differentiation and Integration

Note that xi is a root of Pn(x) for each i = 1, 2, . . . , n, so we have

P(xi) = Q(xi)Pn(xi)+ R(xi) = R(xi).

We now invoke the unique power of the Legendre polynomials. First, the degree of the
polynomial Q(x) is less than n, so (by Legendre property (2)),∫ 1

−1
Q(x)Pn(x) dx = 0.

Then, since R(x) is a polynomial of degree less than n, the opening argument implies that∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi).

Putting these facts together verifies that the formula is exact for the polynomial P(x):∫ 1

−1
P(x) dx =

∫ 1

−1
[Q(x)Pn(x)+ R(x)] dx =

∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi) =
n∑

i=1

ciP(xi).

The constants ci needed for the quadrature rule can be generated from the equation
in Theorem 4.7, but both these constants and the roots of the Legendre polynomials are
extensively tabulated. Table 4.12 lists these values for n = 2, 3, 4, and 5.

Table 4.12 n Roots rn,i Coefficients cn,i

2 0.5773502692 1.0000000000
−0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
−0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
−0.3399810436 0.6521451549
−0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889
−0.5384693101 0.4786286705
−0.9061798459 0.2369268850

Example 1 Approximate
∫ 1
−1 ex cos x dx using Gaussian quadrature with n = 3.

Solution The entries in Table 4.12 give us∫ 1

−1
ex cos x dx ≈ 0.5e0.774596692 cos 0.774596692

+ 0.8 cos 0+ 0.5e−0.774596692 cos(−0.774596692)

= 1.9333904.

Integration by parts can be used to show that the true value of the integral is 1.9334214, so
the absolute error is less than 3.2× 10−5.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.7 Gaussian Quadrature 233

Gaussian Quadrature on Arbitrary Intervals

An integral
∫ b

a f (x) dx over an arbitrary [a, b] can be transformed into an integral over
[−1, 1] by using the change of variables (see Figure 4.17):

t = 2x − a− b

b− a
⇐⇒ x = 1

2
[(b− a)t + a+ b].

Figure 4.17
t

x

�1

1

a b

(a, �1)

(b, 1)

2x � a � b
t � b � a

This permits Gaussian quadrature to be applied to any interval [a, b], because∫ b

a
f (x) dx =

∫ 1

−1
f

(
(b− a)t + (b+ a)

2

)
(b− a)

2
dt. (4.41)

Example 2 Consider the integral
∫ 3

1
x6 − x2 sin(2x) dx = 317.3442466.

(a) Compare the results for the closed Newton-Cotes formula with n = 1, the open
Newton-Cotes formula with n = 1, and Gaussian Quadrature when n = 2.

(b) Compare the results for the closed Newton-Cotes formula with n = 2, the open
Newton-Cotes formula with n = 2, and Gaussian Quadrature when n = 3.

Solution (a) Each of the formulas in this part requires 2 evaluations of the function f (x) =
x6 − x2 sin(2x). The Newton-Cotes approximations are

Closed n = 1 :
2

2
[f (1)+ f (3)] = 731.6054420;

Open n = 1 :
3(2/3)

2
[f (5/3)+ f (7/3)] = 188.7856682.

Gaussian quadrature applied to this problem requires that the integral first be transformed
into a problem whose interval of integration is [−1, 1]. Using Eq. (4.41) gives∫ 3

1
x6 − x2 sin(2x) dx =

∫ 1

−1
(t + 2)6 − (t + 2)2 sin(2(t + 2)) dt.

Gaussian quadrature with n = 2 then gives∫ 3

1
x6−x2 sin(2x) dx ≈ f (−0.5773502692+2)+f (0.5773502692+2) = 306.8199344;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

234 C H A P T E R 4 Numerical Differentiation and Integration

(b) Each of the formulas in this part requires 3 function evaluations. The Newton-Cotes
approximations are

Closed n = 2 :
(1)

3
[f (1)+ 4f (2)+ f (3)] = 333.2380940;

Open n = 2 :
4(1/2)

3
[2f (1.5)− f (2)+ 2f (2.5)] = 303.5912023.

Gaussian quadrature with n = 3, once the transformation has been done, gives∫ 3

1
x6 − x2 sin(2x) dx ≈ 0.5f (−0.7745966692+ 2)+ 0.8f (2)

+ 0.5f (0.7745966692+ 2) = 317.2641516.

The Gaussian quadrature results are clearly superior in each instance.

Maple has Composite Gaussian Quadrature in the NumericalAnalysis subpackage of
Maple’s Student package. The default for the number of partitions in the command is 10,
so the results in Example 2 would be found for n = 2 with

f := x6 − x2 sin(2x); a := 1; b := 3:
Quadrature(f (x), x = a..b, method = gaussian[2], partition = 1, output = information)

which returns the approximation, what Maple assumes is the exact value of the integral, the
absolute, and relative errors in the approximations, and the number of function evaluations.

The result when n = 3 is, of course, obtained by replacing the statement method =
gaussian[2] with method = gaussian[3].

E X E R C I S E S E T 4.7

1. Approximate the following integrals using Gaussian quadrature with n = 2, and compare your results
to the exact values of the integrals.

a.
∫ 1.5

1
x2 ln x dx b.

∫ 1

0
x2e−x dx

c.
∫ 0.35

0

2

x2 − 4
dx d.

∫ π/4

0
x2 sin x dx

e.
∫ π/4

0
e3x sin 2x dx f.

∫ 1.6

1

2x

x2 − 4
dx

g.
∫ 3.5

3

x√
x2 − 4

dx h.
∫ π/4

0
(cos x)2 dx

2. Repeat Exercise 1 with n = 3.

3. Repeat Exercise 1 with n = 4.

4. Repeat Exercise 1 with n = 5.

5. Determine constants a, b, c, and d that will produce a quadrature formula∫ 1

−1
f (x) dx = af (−1)+ bf (1)+ cf ′(−1)+ df ′(1)

that has degree of precision 3.

6. Determine constants a, b, c, and d that will produce a quadrature formula∫ 1

−1
f (x) dx = af (−1)+ bf (0)+ cf (1)+ df ′(−1)+ ef ′(1)

that has degree of precision 4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 235

7. Verify the entries for the values of n = 2 and 3 in Table 4.12 on page 232 by finding the roots of the
respective Legendre polynomials, and use the equations preceding this table to find the coefficients
associated with the values.

8. Show that the formula Q(P) = ∑n
i=1 ciP(xi) cannot have degree of precision greater than 2n − 1,

regardless of the choice of c1, . . . , cn and x1, . . . , xn. [Hint: Construct a polynomial that has a double
root at each of the xi’s.]

9. Apply Maple’s Composite Gaussian Quadrature routine to approximate
∫ 1
−1 x2ex dx in the following

manner.

a. Use Gaussian Quadrature with n = 8 on the single interval [−1, 1].
b. Use Gaussian Quadrature with n = 4 on the intervals [−1, 0] and [0, 1].
c. Use Gaussian Quadrature with n = 2 on the intervals [−1,−0.5], [−0.5, 0], [0, 0.5] and [0.5, 1].
d. Give an explanation for the accuracy of the results.

4.8 Multiple Integrals

The techniques discussed in the previous sections can be modified for use in the approxi-
mation of multiple integrals. Consider the double integral∫∫

R

f (x, y) dA,

where R = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d }, for some constants a, b, c, and d, is a
rectangular region in the plane. (See Figure 4.18.)

Figure 4.18
z

z � f (x, y)

a

b

c
d

R
x

y

The following illustration shows how the Composite Trapezoidal rule using two subin-
tervals in each coordinate direction would be applied to this integral.

Illustration Writing the double integral as an iterated integral gives∫∫
R

f (x, y) dA =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

236 C H A P T E R 4 Numerical Differentiation and Integration

To simplify notation, let k = (d−c)/2 and h = (b−a)/2. Apply the Composite Trapezoidal
rule to the interior integral to obtain

∫ d

c
f (x, y) dy ≈ k

2

[
f (x, c)+ f (x, d)+ 2f

(
x,

c+ d

2

)]
.

This approximation is of order O
(
(d − c)3

)
. Then apply the Composite Trapezoidal rule

again to approximate the integral of this function of x:

∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≈

∫ b

a

(
d − c

4

)[
f (x, c)+ 2f

(
x,

c+ d

2

)
+ f (d)

]
dx

= b− a

4

(
d − c

4

)[
f (a, c)+ 2f

(
a,

c+ d

2

)
+ f (a, d)

]

+ b− a

4

(
2

(
d − c

4

)[
f

(
a+ b

2
, c

)

+ 2f

(
a+ b

2
,

c+ d

2

)
+
(

a+ b

2
, d

)])

+ b− a

4

(
d − c

4

)[
f (b, c)+ 2f

(
b,

c+ d

2

)
+ f (b, d)

]

= (b− a)(d − c)

16

[
f (a, c)+ f (a, d)+ f (b, c)+ f (b, d)

+ 2

(
f

(
a+ b

2
, c

)
+ f

(
a+ b

2
, d

)
+ f

(
a,

c+ d

2

)

+f
(

b,
c+ d

2

))
+ 4f

(
a+ b

2
,

c+ d

2

)]

This approximation is of order O
(
(b− a)(d − c)

[
(b− a)2 + (d − c)2

])
. Figure 4.19

shows a grid with the number of functional evaluations at each of the nodes used in the
approximation. �

Figure 4.19

x

y

a (a � b) b

c

d
2

2 2

1 1

4

1 12

1
2

(c � d) 1
2

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 237

As the illustration shows, the procedure is quite straightforward. But the number of
function evaluations grows with the square of the number required for a single integral. In
a practical situation we would not expect to use a method as elementary as the Composite
Trapezoidal rule. Instead we will employ the Composite Simpson’s rule to illustrate the
general approximation technique, although any other composite formula could be used in
its place.

To apply the Composite Simpson’s rule, we divide the region R by partitioning both
[a, b] and [c, d] into an even number of subintervals. To simplify the notation, we choose
even integers n and m and partition [a, b] and [c, d] with the evenly spaced mesh points
x0, x1, . . . , xn and y0, y1, . . . , ym, respectively. These subdivisions determine step sizes h =
(b− a)/n and k = (d − c)/m. Writing the double integral as the iterated integral

∫∫
R

f (x, y) dA =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx,

we first use the Composite Simpson’s rule to approximate

∫ d

c
f (x, y) dy,

treating x as a constant.
Let yj = c+ jk, for each j = 0, 1, . . . , m. Then

∫ d

c
f (x, y) dy = k

3

⎡
⎣f (x, y0)+ 2

(m/2)−1∑
j=1

f (x, y2 j)+ 4
m/2∑
j=1

f (x, y2 j−1)+ f (x, ym)

⎤
⎦

− (d − c)k4

180

∂4f

∂y4
(x,μ),

for some μ in (c, d). Thus

∫ b

a

∫ d

c
f (x, y) dy dx = k

3

[∫ b

a
f (x, y0) dx + 2

(m/2)−1∑
j=1

∫ b

a
f (x, y2 j) dx

+ 4
m/2∑
j=1

∫ b

a
f (x, y2 j−1) dx +

∫ b

a
f (x, ym) dx

]

− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx.

Composite Simpson’s rule is now employed on the integrals in this equation. Let xi = a+ih,
for each i = 0, 1, . . . , n. Then for each j = 0, 1, . . . , m, we have

∫ b

a
f (x, yj) dx = h

3

[
f (x0, yj)+ 2

(n/2)−1∑
i=1

f (x2i, yj)+ 4
n/2∑
i=1

f (x2i−1, yj)+ f (xn, yj)

]

− (b− a)h4

180

∂4f

∂x4
(ξj, yj),

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

238 C H A P T E R 4 Numerical Differentiation and Integration

for some ξj in (a, b). The resulting approximation has the form

∫ b

a

∫ d

c
f (x, y) dy dx ≈ hk

9

{[
f (x0, y0)+ 2

(n/2)−1∑
i=1

f (x2i, y0)

+ 4
n/2∑
i=1

f (x2i−1, y0)+ f (xn, y0)

]

+ 2

[(m/2)−1∑
j=1

f (x0, y2 j)+ 2
(m/2)−1∑

j=1

(n/2)−1∑
i=1

f (x2i, y2 j)

+ 4
(m/2)−1∑

j=1

n/2∑
i=1

f (x2i−1, y2 j)+
(m/2)−1∑

j=1

f (xn, y2 j)

]

+ 4

[m/2∑
j=1

f (x0, y2 j−1)+ 2
m/2∑
j=1

(n/2)−1∑
i=1

f (x2i, y2 j−1)

+ 4
m/2∑
j=1

n/2∑
i=1

f (x2i−1, y2 j−1)+
m/2∑
j=1

f (xn, y2 j−1)

]

+
[
f (x0, ym)+ 2

(n/2)−1∑
i=1

f (x2i, ym)+ 4
n/2∑
i=1

f (x2i−1, ym)+ f (xn, ym)

]}
.

The error term E is given by

E = −k(b− a)h4

540

[
∂4f

∂x4
(ξ0, y0)+ 2

(m/2)−1∑
j=1

∂4f

∂x4
(ξ2 j, y2 j)+ 4

m/2∑
j=1

∂4f

∂x4
(ξ2 j−1, y2 j−1)

+ ∂
4f

∂x4
(ξm, ym)

]
− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx.

If ∂4f/∂x4 is continuous, the Intermediate Value Theorem 1.11 can be repeatedly
applied to show that the evaluation of the partial derivatives with respect to x can be replaced
by a common value and that

E = −k(b− a)h4

540

[
3m
∂4f

∂x4
(η,μ)

]
− (d − c)k4

180

∫ b

a

∂4f

∂y4
(x,μ) dx,

for some (η,μ) in R. If ∂4f/∂y4 is also continuous, the Weighted Mean Value Theorem for
Integrals 1.13 implies that∫ b

a

∂4f

∂y4
(x,μ) dx = (b− a)

∂4f

∂y4
(η̂, μ̂),

for some (η̂, μ̂) in R. Because m = (d − c)/k, the error term has the form

E = −k(b− a)h4

540

[
3m
∂4f

∂x4
(η,μ)

]
− (d − c)(b− a)

180
k4 ∂

4f

∂y4
(η̂, μ̂)

which simplifies to

E = − (d − c)(b− a)

180

[
h4 ∂

4f

∂x4
(η,μ)+ k4 ∂

4f

∂y4
(η̂, μ̂)

]
,

for some (η,μ) and (η̂, μ̂) in R.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 239

Example 1 Use Composite Simpson’s rule with n = 4 and m = 2 to approximate∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx,

Solution The step sizes for this application are h = (2.0 − 1.4)/4 = 0.15 and k =
(1.5 − 1.0)/2 = 0.25. The region of integration R is shown in Figure 4.20, together with
the nodes (xi, yj), where i = 0, 1, 2, 3, 4 and j = 0, 1, 2. It also shows the coefficients wi,j of
f (xi, yi) = ln(xi + 2yi) in the sum that gives the Composite Simpson’s rule approximation
to the integral.

Figure 4.20

x

y

1.40 1.55 1.70 1.85 2.00

1.00

1.25

1.50
14 2

4

1

4

16 8 16

41

4

2

4

1

The approximation is

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx ≈ (0.15)(0.25)

9

4∑
i=0

2∑
j=0

wi,j ln(xi + 2yj)

= 0.4295524387.

We have

∂4f

∂x4
(x, y) = −6

(x + 2y)4
and

∂4f

∂y4
(x, y) = −96

(x + 2y)4
,

and the maximum values of the absolute values of these partial derivatives occur on R when
x = 1.4 and y = 1.0. So the error is bounded by

|E| ≤ (0.5)(0.6)

180

[
(0.15)4 max

(x,y)inR

6

(x + 2y)4
+ (0.25)4 max

(x,y)inR

96

(x + 2y)4

]
≤ 4.72× 10−6.

The actual value of the integral to ten decimal places is∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx = 0.4295545265,

so the approximation is accurate to within 2.1× 10−6.

The same techniques can be applied for the approximation of triple integrals as well as
higher integrals for functions of more than three variables. The number of functional evalu-
ations required for the approximation is the product of the number of functional evaluations
required when the method is applied to each variable.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

240 C H A P T E R 4 Numerical Differentiation and Integration

Gaussian Quadrature for Double Integral Approximation

To reduce the number of functional evaluations, more efficient methods such as Gaussian
quadrature, Romberg integration, or Adaptive quadrature can be incorporated in place of the
Newton-Cotes formulas. The following example illustrates the use of Gaussian quadrature
for the integral considered in Example 1.

Example 2 Use Gaussian quadrature with n = 3 in both dimensions to approximate the integral

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx.

Solution Before employing Gaussian quadrature to approximate this integral, we need to
transform the region of integration

R = { (x, y) | 1.4 ≤ x ≤ 2.0, 1.0 ≤ y ≤ 1.5 }

into

R̂ = { (u, v) | −1 ≤ u ≤ 1,−1 ≤ v ≤ 1 }.

The linear transformations that accomplish this are

u = 1

2.0− 1.4
(2x − 1.4− 2.0) and v = 1

1.5− 1.0
(2y− 1.0− 1.5),

or, equivalently, x = 0.3u+ 1.7 and y = 0.25v+ 1.25. Employing this change of variables
gives an integral on which Gaussian quadrature can be applied:

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx = 0.075

∫ 1

−1

∫ 1

−1
ln(0.3u+ 0.5v + 4.2) dv du.

The Gaussian quadrature formula for n = 3 in both u and v requires that we use the nodes

u1 = v1 = r3,2 = 0, u0 = v0 = r3,1 = −0.7745966692,

and

u2 = v2 = r3,3 = 0.7745966692.

The associated weights are c3,2 = 0.8 and c3,1 = c3,3 = 0.5. (These are given in Table 4.12
on page 232.) The resulting approximation is

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx ≈ 0.075

3∑
i=1

3∑
j=1

c3,ic3,j ln(0.3r3,i + 0.5r3,j + 4.2)

= 0.4295545313.

Although this result requires only 9 functional evaluations compared to 15 for the Composite
Simpson’s rule considered in Example 1, it is accurate to within 4.8 × 10−9, compared to
2.1× 10−6 accuracy in Example 1.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 241

Non-Rectangular Regions

The use of approximation methods for double integrals is not limited to integrals with
rectangular regions of integration. The techniques previously discussed can be modified to
approximate double integrals of the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx (4.42)

or

∫ d

c

∫ b(y)

a(y)
f (x, y) dx dy. (4.43)

In fact, integrals on regions not of this type can also be approximated by performing appro-
priate partitions of the region. (See Exercise 10.)

To describe the technique involved with approximating an integral in the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx,

we will use the basic Simpson’s rule to integrate with respect to both variables. The
step size for the variable x is h = (b − a)/2, but the step size for y varies with x (see
Figure 4.21) and is written

k(x) = d(x)− c(x)

2
.

Figure 4.21

z

x

y

z � f (x, y)

y � d(x)

y � c(x)

y � c(x)

y � d(x)

k(b)
k(a)

k(a � h)

a ba � h

a

b R

A(x)

d(b)

c(a)
c(b)

x

y

d(a)

(a) (b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

242 C H A P T E R 4 Numerical Differentiation and Integration

This gives∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx ≈

∫ b

a

k(x)

3
[f (x, c(x))+ 4f (x, c(x)+ k(x))+ f (x, d(x))] dx

≈ h

3

{
k(a)

3
[f (a, c(a))+ 4f (a, c(a)+ k(a))+ f (a, d(a))]

+ 4k(a+ h)

3
[f (a+ h, c(a+ h))+ 4f (a+ h, c(a+ h)

+ k(a+ h))+ f (a+ h, d(a+ h))]

+ k(b)

3
[f (b, c(b))+ 4f (b, c(b)+ k(b))+ f (b, d(b))]

}
.

Algorithm 4.4 applies the Composite Simpson’s rule to an integral in the form (4.42).
Integrals in the form (4.43) can, of course, be handled similarly.

ALGORITHM

4.4
Simpson’s Double Integral

To approximate the integral

I =
∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx :

INPUT endpoints a, b: even positive integers m, n.

OUTPUT approximation J to I .

Step 1 Set h = (b− a)/n;
J1 = 0; (End terms.)
J2 = 0; (Even terms.)
J3 = 0. (Odd terms.)

Step 2 For i = 0, 1, . . . , n do Steps 3–8.

Step 3 Set x = a+ ih; (Composite Simpson’s method for x.)
HX = (d(x)− c(x))/m;
K1 = f (x, c(x))+ f (x, d(x)); (End terms.)
K2 = 0; (Even terms.)
K3 = 0. (Odd terms.)

Step 4 For j = 1, 2, . . . , m− 1 do Step 5 and 6.

Step 5 Set y = c(x)+ jHX;
Q = f (x, y).

Step 6 If j is even then set K2 = K2 + Q
else set K3 = K3 + Q.

Step 7 Set L = (K1 + 2K2 + 4K3)HX/3.(
L ≈

∫ d(xi)

c(xi)

f (xi, y) dy by the Composite Simpson’s method.

)

Step 8 If i = 0 or i = n then set J1 = J1 + L
else if i is even then set J2 = J2 + L
else set J3 = J3 + L.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 243

Step 9 Set J = h(J1 + 2J2 + 4J3)/3.

Step 10 OUTPUT (J);
STOP.

To apply Gaussian quadrature to the double integral∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx,

first requires transforming, for each x in [a, b], the variable y in the interval [c(x), d(x)] into
the variable t in the interval [−1, 1]. This linear transformation gives

f (x, y) = f
(

x,
(d(x)− c(x))t + d(x)+ c(x)

2

)
and dy = d(x)− c(x)

2
dt.

Then, for each x in [a, b], we apply Gaussian quadrature to the resulting integral∫ d(x)

c(x)
f (x, y) dy =

∫ 1

−1
f

(
x,
(d(x)− c(x))t + d(x)+ c(x)

2

)
dt

The reduced calculation makes it
generally worthwhile to apply
Gaussian quadrature rather than a
Simpson’s technique when
approximating double integrals.

to produce∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx≈

∫ b

a

d(x)−c(x)

2

n∑
j=1

cn,jf

(
x,
(d(x)− c(x))rn,j + d(x)+ c(x)

2

)
dx,

where, as before, the roots rn,j and coefficients cn,j come from Table 4.12 on page 232.
Now the interval [a, b] is transformed to [−1, 1], and Gaussian quadrature is applied
to approximate the integral on the right side of this equation. The details are given in
Algorithm 4.5.

ALGORITHM

4.5
Gaussian Double Integral

To approximate the integral ∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx :

INPUT endpoints a, b; positive integers m, n.
(The roots ri,j and coefficients ci,j need to be available for i = max{m, n}
and for 1 ≤ j ≤ i.)

OUTPUT approximation J to I .

Step 1 Set h1 = (b− a)/2;
h2 = (b+ a)/2;
J = 0.

Step 2 For i = 1, 2, . . . , m do Steps 3–5.

Step 3 Set JX = 0;
x = h1rm,i + h2;
d1 = d(x);
c1 = c(x);
k1 = (d1 − c1)/2;
k2 = (d1 + c1)/2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

244 C H A P T E R 4 Numerical Differentiation and Integration

Step 4 For j = 1, 2, . . . , n do
set y = k1rn,j + k2;

Q = f (x, y);
JX = JX + cn,jQ.

Step 5 Set J = J + cm,ik1JX.

Step 6 Set J = h1J .

Step 7 OUTPUT (J);
STOP.

Illustration The volume of the solid in Figure 4.22 is approximated by applying Simpson’s Double
Integral Algorithm with n = m = 10 to

∫ 0.5

0.1

∫ x2

x3
ey/x dy dx.

This requires 121 evaluations of the function f (x, y) = ey/x and produces the value
0.0333054, which approximates the volume of the solid shown in Figure 4.22 to nearly
seven decimal places. Applying the Gaussian Quadrature Algorithm with n = m = 5 re-
quires only 25 function evaluations and gives the approximation 0.03330556611, which is
accurate to 11 decimal places. �

Figure 4.22

(0.1, 0.001, e0.01)

(0.1, 0.01, e0.1) (0.5, 0.25, e0.5)

(0.5, 0.125, e0.25)

(0.5, 0.125, 0)

(0.5, 0.25, 0)

0.125

0.25

0.1

0.5

R

x

y

z

1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 245

Triple Integral Approximation

Triple integrals of the form

The reduced calculation makes it
almost always worthwhile to
apply Gaussian quadrature rather
than a Simpson’s technique when
approximating triple or higher
integrals.

∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)
f (x, y, z) dz dy dx

(see Figure 4.23) are approximated in a similar manner. Because of the number of calcu-
lations involved, Gaussian quadrature is the method of choice. Algorithm 4.6 implements
this procedure.

Figure 4.23

y

z

y � c(x)
y � d(x)

a

b R

x

x

z � β(x, y)

z � α(x, y)

ALGORITHM

4.6
GaussianTriple Integral

To approximate the integral∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)
f (x, y, z) dz dy dx :

INPUT endpoints a, b; positive integers m, n, p.
(The roots ri,j and coefficients ci,j need to be available for i = max{n, m, p}
and for 1 ≤ j ≤ i.)

OUTPUT approximation J to I .

Step 1 Set h1 = (b− a)/2;
h2 = (b+ a)/2;
J = 0.

Step 2 For i = 1, 2, . . . , m do Steps 3–8.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

246 C H A P T E R 4 Numerical Differentiation and Integration

Step 3 Set JX = 0;
x = h1rm,i + h2;
d1 = d(x);
c1 = c(x);
k1 = (d1 − c1)/2;
k2 = (d1 + c1)/2.

Step 4 For j = 1, 2, . . . , n do Steps 5–7.

Step 5 Set JY = 0;
y = k1rn, j + k2;
β1 = β(x, y);
α1 = α(x, y);
l1 = (β1 − α1)/2;
l2 = (β1 + α1)/2.

Step 6 For k = 1, 2, . . . , p do
set z = l1rp, k + l2;

Q = f (x, y, z);
JY = JY+ cp,kQ.

Step 7 Set JX = JX+ cn, jl1JY.

Step 8 Set J = J + cm,ik1JX.

Step 9 Set J = h1J .

Step 10 OUTPUT (J);
STOP.

The following example requires the evaluation of four triple integrals.

Illustration The center of a mass of a solid region D with density function σ occurs at

(x, y, z) =
(

Myz

M
,

Mxz

M
,

Mxy

M

)
,

where

Myz =
∫∫∫

D
xσ(x, y, z) dV , Mxz =

∫∫∫
D

yσ(x, y, z) dV

and

Mxy =
∫∫∫

D
zσ(x, y, z) dV

are the moments about the coordinate planes and the mass of D is

M =
∫∫∫

D
σ(x, y, z) dV .

The solid shown in Figure 4.24 is bounded by the upper nappe of the cone z2 = x2+ y2 and
the plane z = 2. Suppose that this solid has density function given by

σ(x, y, z) =
√

x2 + y2.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 247

Figure 4.24

x

y

z

1
2 1

2

1

2

Applying the Gaussian Triple Integral Algorithm 4.6 with n = m = p = 5 requires 125
function evaluations per integral and gives the following approximations:

M =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx

= 4
∫ 2

0

∫ √4−x2

0

∫ 2

√
x2+y2

√
x2 + y2 dz dy dx ≈ 8.37504476,

Myz =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

x
√

x2 + y2 dz dy dx ≈ −5.55111512× 10−17,

Mxz =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

y
√

x2 + y2 dz dy dx ≈ −8.01513675× 10−17,

Mxy =
∫ 2

−2

∫ √4−x2

−
√

4−x2

∫ 2

√
x2+y2

z
√

x2 + y2 dz dy dx ≈ 13.40038156.

This implies that the approximate location of the center of mass is

(x, y, z) = (0, 0, 1.60003701).

These integrals are quite easy to evaluate directly. If you do this, you will find that the exact
center of mass occurs at (0, 0, 1.6). �

Multiple integrals can be evaluated in Maple using the MultInt command in the Multi-
variateCalculus subpackage of the Student package. For example, to evaluate the multiple
integral

∫ 4

2

∫ x+6

x−1

∫ 4+y2

−2
x2 + y2 + z dz dy dx

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

248 C H A P T E R 4 Numerical Differentiation and Integration

we first load the package and define the function with

with(Student[MultivariateCalculus]): f := (x, y, z)→ x2 + y2 + z

Then issue the command

MultiInt(f (x, y, z), z = −2..4+ y2, y = x − 1.. x + 6, x = 2..4)

which produces the result

1.995885970

E X E R C I S E S E T 4.8

1. Use Algorithm 4.4 with n = m = 4 to approximate the following double integrals, and compare the
results to the exact answers.

a.
∫ 2.5

2.1

∫ 1.4

1.2
xy2 dy dx b.

∫ 0.5

0

∫ 0.5

0
ey−x dy dx

c.
∫ 2.2

2

∫ 2x

x
(x2 + y3) dy dx d.

∫ 1.5

1

∫ x

0
(x2 +√y) dy dx

2. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the integrals in
Exercise 1 to within 10−6 of the actual value.

3. Use Algorithm 4.4 with (i) n = 4, m = 8, (ii) n = 8, m = 4, and (iii) n = m = 6 to approximate the
following double integrals, and compare the results to the exact answers.

a.
∫ π/4

0

∫ cos x

sin x
(2y sin x + cos2 x) dy dx b.

∫ e

1

∫ x

1
ln xy dy dx

c.
∫ 1

0

∫ 2x

x
(x2 + y3) dy dx d.

∫ 1

0

∫ 2x

x
(y2 + x3) dy dx

e.
∫ π

0

∫ x

0
cos x dy dx f.

∫ π

0

∫ x

0
cos y dy dx

g.
∫ π/4

0

∫ sin x

0

1√
1− y2

dy dx h.
∫ 3π/2

−π

∫ 2π

0
(y sin x + x cos y) dy dx

4. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the integrals in
Exercise 3 to within 10−6 of the actual value.

5. Use Algorithm 4.5 with n = m = 2 to approximate the integrals in Exercise 1, and compare the
results to those obtained in Exercise 1.

6. Find the smallest values of n = m so that Algorithm 4.5 can be used to approximate the integrals in
Exercise 1 to within 10−6. Do not continue beyond n = m = 5. Compare the number of functional
evaluations required to the number required in Exercise 2.

7. Use Algorithm 4.5 with (i) n = m = 3, (ii) n = 3, m = 4, (iii) n = 4, m = 3, and (iv) n = m = 4 to
approximate the integrals in Exercise 3.

8. Use Algorithm 4.5 with n = m = 5 to approximate the integrals in Exercise 3. Compare the number
of functional evaluations required to the number required in Exercise 4.

9. Use Algorithm 4.4 with n = m = 14 and Algorithm 4.5 with n = m = 4 to approximate∫∫
R

e−(x+y) dA,

for the region R in the plane bounded by the curves y = x2 and y = √x.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.8 Multiple Integrals 249

10. Use Algorithm 4.4 to approximate ∫∫
R

√
xy+ y2 dA,

where R is the region in the plane bounded by the lines x + y = 6, 3y− x = 2, and 3x − y = 2. First
partition R into two regions R1 and R2 on which Algorithm 4.4 can be applied. Use n = m = 6 on
both R1 and R2.

11. A plane lamina is a thin sheet of continuously distributed mass. If σ is a function describing the
density of a lamina having the shape of a region R in the xy-plane, then the center of the mass of the
lamina (x, y) is

x̄ =
∫∫
R

xσ(x, y) dA∫∫
R

σ(x, y) dA
, ȳ =

∫∫
R

yσ(x, y) dA∫∫
R

σ(x, y) dA
.

Use Algorithm 4.4 with n = m = 14 to find the center of mass of the lamina described by R =
{(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ √1− x2 } with the density function σ(x, y) = e−(x2+y2). Compare the
approximation to the exact result.

12. Repeat Exercise 11 using Algorithm 4.5 with n = m = 5.

13. The area of the surface described by z = f (x, y) for (x, y) in R is given by∫∫
R

√
[fx(x, y)]2 + [fy(x, y)]2 + 1 dA.

Use Algorithm 4.4 with n = m = 8 to find an approximation to the area of the surface on the
hemisphere x2 + y2 + z2 = 9, z ≥ 0 that lies above the region in the plane described by R = { (x, y) |
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }.

14. Repeat Exercise 13 using Algorithm 4.5 with n = m = 4.

15. Use Algorithm 4.6 with n = m = p = 2 to approximate the following triple integrals, and compare
the results to the exact answers.

a.
∫ 1

0

∫ 2

1

∫ 0.5

0
ex+y+z dz dy dx b.

∫ 1

0

∫ 1

x

∫ y

0
y2z dz dy dx

c.
∫ 1

0

∫ x

x2

∫ x+y

x−y
y dz dy dx d.

∫ 1

0

∫ x

x2

∫ x+y

x−y
z dz dy dx

e.
∫ π

0

∫ x

0

∫ xy

0

1

y
sin

z

y
dz dy dx f.

∫ 1

0

∫ 1

0

∫ xy

−xy
ex2+y2

dz dy dx

16. Repeat Exercise 15 using n = m = p = 3.

17. Repeat Exercise 15 using n = m = p = 4 and n = m = p = 5.

18. Use Algorithm 4.6 with n = m = p = 4 to approximate∫∫∫
S

xy sin(yz) dV ,

where S is the solid bounded by the coordinate planes and the planes x = π , y = π/2, z = π/3.
Compare this approximation to the exact result.

19. Use Algorithm 4.6 with n = m = p = 5 to approximate∫∫∫
S

√
xyz dV ,

where S is the region in the first octant bounded by the cylinder x2+y2 = 4, the sphere x2+y2+z2 = 4,
and the plane x + y+ z = 8. How many functional evaluations are required for the approximation?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

250 C H A P T E R 4 Numerical Differentiation and Integration

4.9 Improper Integrals

Improper integrals result when the notion of integration is extended either to an interval
of integration on which the function is unbounded or to an interval with one or more
infinite endpoints. In either circumstance, the normal rules of integral approximation must
be modified.

Left Endpoint Singularity

We will first consider the situation when the integrand is unbounded at the left endpoint
of the interval of integration, as shown in Figure 4.25. In this case we say that f has a
singularity at the endpoint a. We will then show how other improper integrals can be
reduced to problems of this form.

Figure 4.25

x

y � f (x)

y

a b

It is shown in calculus that the improper integral with a singularity at the left endpoint,∫ b

a

dx

(x − a)p
,

converges if and only if 0 < p < 1, and in this case, we define

∫ b

a

1

(x − a)p
dx = lim

M→a+
(x − a)1−p

1− p

∣∣∣∣
x=b

x=M

= (b− a)1−p

1− p
.

Example 1 Show that the improper integral
∫ 1

0

1√
x

dx converges but
∫ 1

0

1

x2
dx diverges.

Solution For the first integral we have∫ 1

0

1√
x

dx = lim
M→0+

∫ 1

M
x−1/2 dx = lim

M→0+
2x1/2

∣∣x=1

x=M = 2− 0 = 2,

but the second integral∫ 1

0

1

x2
dx = lim

M→0+

∫ 1

M
x−2 dx = lim

M→0+
−x−1

∣∣x=1

x=M

is unbounded.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.9 Improper Integrals 251

If f is a function that can be written in the form

f (x) = g(x)

(x − a)p
,

where 0 < p < 1 and g is continuous on [a, b], then the improper integral∫ b

a
f (x) dx

also exists. We will approximate this integral using the Composite Simpson’s rule, provided
that g ∈ C5[a, b]. In that case, we can construct the fourth Taylor polynomial, P4(x), for g
about a,

P4(x) = g(a)+ g′(a)(x − a)+ g′′(a)
2! (x − a)2 + g′′′(a)

3! (x − a)3 + g(4)(a)

4! (x − a)4,

and write ∫ b

a
f (x) dx =

∫ b

a

g(x)− P4(x)

(x − a)p
dx +

∫ b

a

P4(x)

(x − a)p
dx. (4.44)

Because P(x) is a polynomial, we can exactly determine the value of

∫ b

a

P4(x)

(x − a)p
dx =

4∑
k=0

∫ b

a

g(k)(a)

k! (x−a)k−p dx =
4∑

k=0

g(k)(a)

k!(k + 1− p)
(b−a)k+1−p. (4.45)

This is generally the dominant portion of the approximation, especially when the Taylor
polynomial P4(x) agrees closely with g(x) throughout the interval [a, b].

To approximate the integral of f , we must add to this value the approximation of∫ b

a

g(x)− P4(x)

(x − a)p
dx.

To determine this, we first define

G(x) =
{

g(x)−P4(x)
(x−a)p , if a < x ≤ b,

0, if x = a.

This gives us a continuous function on [a, b]. In fact, 0 < p < 1 and P(k)4 (a) agrees with
g(k)(a) for each k = 0, 1, 2, 3, 4, so we have G ∈ C4[a, b]. This implies that the Composite
Simpson’s rule can be applied to approximate the integral of G on [a, b]. Adding this
approximation to the value in Eq. (4.45) gives an approximation to the improper integral of
f on [a, b], within the accuracy of the Composite Simpson’s rule approximation.

Example 2 Use Composite Simpson’s rule with h = 0.25 to approximate the value of the improper
integral ∫ 1

0

ex

√
x

dx.

Solution The fourth Taylor polynomial for ex about x = 0 is

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
,

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

252 C H A P T E R 4 Numerical Differentiation and Integration

so the dominant portion of the approximation to
∫ 1

0

ex

√
x

dx is

∫ 1

0

P4(x)√
x

dx =
∫ 1

0

(
x−1/2 + x1/2 + 1

2
x3/2 + 1

6
x5/2 + 1

24
x7/2

)
dx

= lim
M→0+

[
2x1/2 + 2

3
x3/2 + 1

5
x5/2 + 1

21
x7/2 + 1

108
x9/2

]1

M

= 2+ 2

3
+ 1

5
+ 1

21
+ 1

108
≈ 2.9235450.

For the second portion of the approximation to
∫ 1

0

ex

√
x

dx we need to approximate∫ 1

0
G(x) dx, where

G(x) =
⎧⎨
⎩

1√
x
(ex − P4(x)), if 0 < x ≤ 1,

0, if x = 0.

Table 4.13 lists the values needed for the Composite Simpson’s rule for this approximation.Table 4.13

x G(x)

0.00 0
0.25 0.0000170
0.50 0.0004013
0.75 0.0026026
1.00 0.0099485

Using these data and the Composite Simpson’s rule gives

∫ 1

0
G(x) dx ≈ 0.25

3
[0+ 4(0.0000170)+ 2(0.0004013)+ 4(0.0026026)+ 0.0099485]

= 0.0017691.

Hence ∫ 1

0

ex

√
x

dx ≈ 2.9235450+ 0.0017691 = 2.9253141.

This result is accurate to within the accuracy of the Composite Simpson’s rule approximation
for the function G. Because |G(4)(x)| < 1 on [0, 1], the error is bounded by

1− 0

180
(0.25)4 = 0.0000217.

Right Endpoint Singularity

To approximate the improper integral with a singularity at the right endpoint, we could
develop a similar technique but expand in terms of the right endpoint b instead of the left
endpoint a. Alternatively, we can make the substitution

z = −x, dz = − dx

to change the improper integral into one of the form

∫ b

a
f (x) dx =

∫ −a

−b
f (−z) dz, (4.46)

which has its singularity at the left endpoint. Then we can apply the left endpoint singularity
technique we have already developed. (See Figure 4.26.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.9 Improper Integrals 253

Figure 4.26

x z

y yFor z � �x

y � f (�z)y � f (x)

a b �a�b

An improper integral with a singularity at c, where a < c < b, is treated as the sum of
improper integrals with endpoint singularities since

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

Infinite Singularity

The other type of improper integral involves infinite limits of integration. The basic integral
of this type has the form ∫ ∞

a

1

xp
dx,

for p > 1. This is converted to an integral with left endpoint singularity at 0 by making the
integration substitution

t = x−1, dt = −x−2 dx, so dx = −x2 dt = −t−2 dt.

Then ∫ ∞
a

1

xp
dx =

∫ 0

1/a
− tp

t2
dt =

∫ 1/a

0

1

t2−p
dt.

In a similar manner, the variable change t = x−1 converts the improper integral∫∞
a f (x) dx into one that has a left endpoint singularity at zero:

∫ ∞
a
f (x) dx =

∫ 1/a

0
t−2f

(
1

t

)
dt. (4.47)

It can now be approximated using a quadrature formula of the type described earlier.

Example 3 Approximate the value of the improper integral

I =
∫ ∞

1
x−3/2 sin

1

x
dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

254 C H A P T E R 4 Numerical Differentiation and Integration

Solution We first make the variable change t = x−1, which converts the infinite singularity
into one with a left endpoint singularity. Then

dt = −x−2 dx, so dx = −x2 dt = − 1

t2
dt,

and

I =
∫ x=∞

x=1
x−3/2 sin

1

x
dx =

∫ t=0

t=1

(
1

t

)−3/2

sin t

(
− 1

t2
dt

)
=
∫ 1

0
t−1/2 sin t dt.

The fourth Taylor polynomial, P4(t), for sin t about 0 is

P4(t) = t − 1

6
t3,

so

G(t) =

⎧⎪⎨
⎪⎩

sin t − t + 1
6 t3

t1/2
, if 0 < t ≤ 1

0, if t = 0

is in C4[0, 1], and we have

I =
∫ 1

0
t−1/2

(
t − 1

6
t3

)
dt +

∫ 1

0

sin t − t + 1
6 t3

t1/2
dt

=
[

2

3
t3/2 − 1

21
t7/2

]1

0

+
∫ 1

0

sin t − t + 1
6 t3

t1/2
dt

= 0.61904761+
∫ 1

0

sin t − t + 1
6 t3

t1/2
dt.

The result from the Composite Simpson’s rule with n = 16 for the remaining integral is
0.0014890097. This gives a final approximation of

I = 0.0014890097+ 0.61904761 = 0.62053661,

which is accurate to within 4.0× 10−8.

E X E R C I S E S E T 4.9

1. Use Simpson’s Composite rule and the given values of n to approximate the following improper
integrals.

a.
∫ 1

0
x−1/4 sin x dx, n = 4 b.

∫ 1

0

e2x

5
√

x2
dx, n = 6

c.
∫ 2

1

ln x

(x − 1)1/5
dx, n = 8 d.

∫ 1

0

cos 2x

x1/3
dx, n = 6

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.9 Improper Integrals 255

2. Use the Composite Simpson’s rule and the given values of n to approximate the following improper
integrals.

a.
∫ 1

0

e−x

√
1− x

dx, n = 6 b.
∫ 2

0

xex

3
√
(x − 1)2

dx, n = 8

3. Use the transformation t = x−1 and then the Composite Simpson’s rule and the given values of n to
approximate the following improper integrals.

a.
∫ ∞

1

1

x2 + 9
dx, n = 4 b.

∫ ∞
1

1

1+ x4
dx, n = 4

c.
∫ ∞

1

cos x

x3
dx, n = 6 d.

∫ ∞
1

x−4 sin x dx, n = 6

4. The improper integral
∫∞

0 f (x) dx cannot be converted into an integral with finite limits using the
substitution t = 1/x because the limit at zero becomes infinite. The problem is resolved by first
writing

∫∞
0 f (x) dx = ∫ 1

0 f (x) dx+ ∫∞1 f (x) dx. Apply this technique to approximate the following
improper integrals to within 10−6.

a.
∫ ∞

0

1

1+ x4
dx b.

∫ ∞
0

1

(1+ x2)3
dx

5. Suppose a body of mass m is traveling vertically upward starting at the surface of the earth. If all
resistance except gravity is neglected, the escape velocity v is given by

v2 = 2gR
∫ ∞

1
z−2 dz, where z = x

R
,

R = 3960 miles is the radius of the earth, and g = 0.00609 mi/s2 is the force of gravity at the earth’s
surface. Approximate the escape velocity v.

6. The Laguerre polynomials {L0(x), L1(x) . . .} form an orthogonal set on [0,∞) and satisfy∫∞
0 e−xLi(x)Lj(x) dx = 0, for i �= j. (See Section 8.2.) The polynomial Ln(x) has n distinct

zeros x1, x2, . . . , xn in [0,∞). Let

cn,i =
∫ ∞

0
e−x

n∏
j=1
j �=i

x − xj

xi − xj
dx.

Show that the quadrature formula

∫ ∞
0
f (x)e−x dx =

n∑
i=1

cn,if (xi)

has degree of precision 2n− 1. (Hint: Follow the steps in the proof of Theorem 4.7.)

7. The Laguerre polynomials L0(x) = 1, L1(x) = 1 − x, L2(x) = x2 − 4x + 2, and L3(x) = −x3 +
9x2 − 18x + 6 are derived in Exercise 11 of Section 8.2. As shown in Exercise 6, these polynomials
are useful in approximating integrals of the form∫ ∞

0
e−xf (x) dx = 0.

a. Derive the quadrature formula using n = 2 and the zeros of L2(x).

b. Derive the quadrature formula using n = 3 and the zeros of L3(x).

8. Use the quadrature formulas derived in Exercise 7 to approximate the integral∫ ∞
0

√
xe−x dx.

9. Use the quadrature formulas derived in Exercise 7 to approximate the integral∫ ∞
−∞

1

1+ x2
dx.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

256 C H A P T E R 4 Numerical Differentiation and Integration

4.10 Survey of Methods and Software

In this chapter we considered approximating integrals of functions of one, two, or three
variables, and approximating the derivatives of a function of a single real variable.

The Midpoint rule, Trapezoidal rule, and Simpson’s rule were studied to introduce the
techniques and error analysis of quadrature methods. Composite Simpson’s rule is easy to
use and produces accurate approximations unless the function oscillates in a subinterval
of the interval of integration. Adaptive quadrature can be used if the function is suspected
of oscillatory behavior. To minimize the number of nodes while maintaining accuracy, we
used Gaussian quadrature. Romberg integration was introduced to take advantage of the
easily applied Composite Trapezoidal rule and extrapolation.

Most software for integrating a function of a single real variable is based either on the
adaptive approach or extremely accurate Gaussian formulas. Cautious Romberg integration
is an adaptive technique that includes a check to make sure that the integrand is smoothly
behaved over subintervals of the integral of integration. This method has been successfully
used in software libraries. Multiple integrals are generally approximated by extending good
adaptive methods to higher dimensions. Gaussian-type quadrature is also recommended to
decrease the number of function evaluations.

The main routines in both the IMSL and NAG Libraries are based on QUADPACK:
A Subroutine Package for Automatic Integration by R. Piessens, E. de Doncker-Kapenga,
C. W. Uberhuber, and D. K. Kahaner published by Springer-Verlag in 1983 [PDUK].

The IMSL Library contains an adaptive integration scheme based on the 21-point
Gaussian-Kronrod rule using the 10-point Gaussian rule for error estimation. The Gaussian
rule uses the ten points x1, . . . , x10 and weights w1, . . . ,w10 to give the quadrature formula∑10

i=1wif (xi) to approximate
∫ b

a f (x) dx. The additional points x11, . . . , x21, and the new

weights v1, . . . , v21, are then used in the Kronrod formula
∑21

i=1 vif (xi). The results of the
two formulas are compared to eliminate error. The advantage in using x1, . . . , x10 in each
formula is that f needs to be evaluated only at 21 points. If independent 10- and 21-point
Gaussian rules were used, 31 function evaluations would be needed. This procedure permits
endpoint singularities in the integrand.

Other IMSL subroutines allow for endpoint singularities, user-specified singularities,
and infinite intervals of integration. In addition, there are routines for applying Gauss-
Kronrod rules to integrate a function of two variables, and a routine to use Gaussian quadra-
ture to integrate a function of n variables over n intervals of the form [ai, bi].

The NAG Library includes a routine to compute the integral of f over the interval
[a, b] using an adaptive method based on Gaussian Quadrature using Gauss 10-point and
Kronrod 21-point rules. It also has a routine to approximate an integral using a family of
Gaussian-type formulas based on 1, 3, 5, 7, 15, 31, 63, 127, and 255 nodes. These interlacing
high-precision rules are due to Patterson [Pat] and are used in an adaptive manner. NAG
includes many other subroutines for approximating integrals.

MATLAB has a routine to approximate a definite integral using an adaptive Simpson’s
rule, and another to approximate the definite integral using an adaptive eight-panel Newton-
Cotes rule.

Although numerical differentiation is unstable, derivative approximation formulas are
needed for solving differential equations. The NAG Library includes a subroutine for the
numerical differentiation of a function of one real variable with differentiation to the four-
teenth derivative being possible. IMSL has a function that uses an adaptive change in step
size for finite differences to approximate the first, second, or third, derivative of f at x to
within a given tolerance. IMSL also includes a subroutine to compute the derivatives of a
function defined on a set of points using quadratic interpolation. Both packages allow the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.10 Survey of Methods and Software 257

differentiation and integration of interpolatory cubic splines constructed by the subroutines
mentioned in Section 3.5.

For further reading on numerical integration we recommend the books by Engels [E]
and by Davis and Rabinowitz [DR]. For more information on Gaussian quadrature see
Stroud and Secrest [StS]. Books on multiple integrals include those by Stroud [Stro] and
by Sloan and Joe [SJ].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

