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Ch1: Classical Optimization Techniques 

 

SINGLE-VARIABLE OPTIMIZATION 

 
      A function of one variable 𝑓(𝑥) is said to have a relative or local minimum at  𝑥 = 𝑥∗ if 

𝑓(𝑥∗) < 𝑓(𝑥∗ + ℎ) for all sufficiently small positive and negative values of ℎ. 

 

 

                      Figure 1 

[Q1] (a) Write down the theorems that states the conditions for which 

the single variable optimization problem has its local optimum. 
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Theorem 1: Necessary Condition 

If a function  𝑓(x) is defined in the interval a <x <b and have a relative minimum at 𝑥 = 𝑥∗, 

where a < 𝑥∗ <b, and if the derivative df(x)/dx = 𝑓′(𝑥∗) exists as a finite number at 𝑥 = 𝑥∗, 

then 𝑓′(𝑥∗) = 0. 

Theorem 2: Sufficient Condition: 

Let 𝑓 '(𝑥∗) = 𝑓 "(𝑥∗) = …. =𝑓(𝑛−1)(𝑥∗) = 0, but𝑓(𝑛) (𝑥∗) ≠ 0. Then 𝑓(𝑥∗) is  

(i) a minimum value of 𝑓(𝑥∗) if 𝑓(𝑛) (𝑥∗) > 0 and n is even;  

(ii) a maximum value of 𝑓(𝑥∗) if 𝑓(𝑛)(𝑥∗)< 0 and n is even;  

(iii) neither a maximum nor a minimum if n is odd. 

 

(b) Use theorems in(a) to find the optimum values of  

𝑓(𝑥) = 12𝑥5 − 45𝑥4 + 40𝑥3 + 5 

Answer: 

𝑓′(𝑥) = 60𝑥4 − 3 ∗ 60𝑥3 + 60 ∗ 2 ∗ 𝑥2  

          = 60𝑥2(𝑥2 − 3𝑥 + 2)  

          = 60𝑥2(𝑥 − 1)(𝑥 − 2) = 0  

 The extreme points are 

𝑥 = 0, 𝑥 = 1 and 𝑥 = 2 

𝑥 = 0 𝑥 = 1 𝑥 = 2 

𝑓′′(𝑥)= 240𝑥3 − 540𝑥2 + 240𝑥 

𝑓 ′′(0) = 0 
We evaluate the next derivative 
𝑓′′′(𝑥)= 3 ∗ 240𝑥2 − 2 ∗ 540𝑥 + 240 

𝑓′′′(0)= +240, 

order of derivative is odd.  

So this point is neither 

maximum nor minimum 

𝑓 ′′(1) = −60 
this point is relative maximum 
𝑓𝑀𝑎𝑥 = 12(1) − 45 (1) + 40(1) + 5  

=12 

𝑓 ′′(2) = 240  
this point is relative minimum 

𝑓𝑀𝑖𝑛 = −11 

 

[6]Detect which of the following Mathematical statements is true and which is false.  Write 

the false one(s) in the correct case.  
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                      Figure 1 

 

In Figure 1,  

1 A1 is relative minimum × 

2 A2 is Global Maximum √ 

3 A3 is relative Maximum × 

4 B1 is Global minimum √ 
5 B2 is Global minimum × 

 

1 The necessary condition for a function  𝑓(x) to have a relative minimum at 𝑥 = 𝑥∗, is 

𝑓′(𝑥∗) = 0. 
√ 

2 The sufficient condition for a function  𝑓(x) to have a relative minimum at 𝑥 = 𝑥∗ 

depends on the order (even- or odd) of the first non zero derivative of 𝑓(x) 

√ 

3  × 
4  √ 
5  × 

 

[7]Select the correct word 

(1) A function of one variable 𝑓(𝑥) is said to have a relative or local minimum at  𝑥 = 𝑥∗ if 

𝑓(𝑥∗)…𝑓(𝑥∗ + ℎ) for all sufficiently small positive and negative values of ℎ. 

 (d) ≤ (c) ≥ (b) < (a) 

 

 

Consider using the necessary and sufficient condition to find the optimum values of  

𝑓(𝑥) = 12𝑥5 − 45𝑥4 + 40𝑥3 + 5.  Answer the following questions: 

 

𝑓′(𝑥) = 60𝑥2(𝑥 − 1)(𝑥 − 2) = 0  

 The extreme points are 

𝑥 = 0, 𝑥 = 1 and 𝑥 = 2 

𝑥 = 0 𝑥 = 1 𝑥 = 2 

𝑓′′(𝑥)= 240𝑥3 − 540𝑥2 + 240𝑥 

𝑓 ′′(0) = 0 
We evaluate the next derivative 
𝑓′′′(𝑥)= 3 ∗ 240𝑥2 − 2 ∗ 540𝑥 + 240 

𝑓′′′(0)= +240, 

order of derivative is odd.  

So this point is neither 

maximum nor minimum 

𝑓 ′′(1) = −60 

this point is relative maximum 
𝑓𝑀𝑎𝑥 = 12(1) − 45 (1) + 40(1) + 5  

=12 

𝑓 ′′(2) = 240  

this point is relative minimum 
𝑓𝑀𝑖𝑛 = −11 
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𝑓′(𝑥) = 𝑎𝑥2(𝑥 − 𝑏)(𝑥 − 𝑐) 

(1) 𝑎 = 

 (d)  (c)  (b) 60 (a) 

(1) 𝑏 = 

 (d)  (c) 1 (b)  (a) 

(1) 𝑐 = 

 (d)  (c)  (b) 2 (a) 

 

The extreme point 𝑥 = ⋯  is neither maximum nor minimum 

 (d)  (c)  (b) 0 (a) 

 

The extreme point 𝑥 = ⋯  is relative maximum 

 (d)  (c)  (b) 1 (a) 

 

The extreme point 𝑥 = ⋯  is relative minimum 

 (d) 2 (c)  (b)  (a) 

 

Excercises: 

 (3)Find the maxima and minima, if any, of the functions 
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2.3 MULTIVARIABLE OPTIMIZATION WITH NO CONSTRAINTS 

 

Definition: r_th Differential of  f : If all partial derivatives of the function f  through order r ≥1 

exist and are continuous at a point X*, the polynomial 

 

is called the r th differential of f at X*. 

For Example :  

 

when r = 1 and n = 3, we have 

 

𝑑𝑓(𝑋∗) = ∑ℎ𝑖

𝜕𝑓

𝜕𝑥𝑖

3

𝑖=1

= ℎ1

𝜕𝑓

𝜕𝑥1
+ ℎ2

𝜕𝑓

𝜕𝑥2
+ ℎ3

𝜕𝑓

𝜕𝑥3
 

Which corresponds 𝑑𝑓 =
𝜕𝑓

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑓

𝜕𝑥2
𝑑𝑥2 +

𝜕𝑓

𝜕𝑥3
𝑑𝑥3 

 

when r = 2 and n = 3, we have 

 

The Taylor's series expansion of a function f (X) near a point X* is given by 

 

Example 3 : Find the second-order Taylor's series approximation of the function 
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near the point  
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[Q2] (a) State and prove the theorems for which the 

multivariable unconstrained optimization problem has its local 

optimum. 

 
 

 
X=X*+h 
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=================================================== 
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[
 
 
 
 
 
 

𝜕2𝑓

𝜕𝑥1𝜕𝑥1

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥1𝜕𝑥3

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥3

𝜕2𝑓

𝜕𝑥3𝜕𝑥1

𝜕2𝑓

𝜕𝑥3𝜕𝑥2

𝜕2𝑓

𝜕𝑥3𝜕𝑥3]
 
 
 
 
 
 

 

 
=============================================================== 

Definition: 
[Q3] (a) State 2 different definitions for the positiveness of a square 

matrix. Then show which of them is suitable in application for Hessian 

Matrix. 
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A matrix A will be positive definite if all its eigenvalues are positive; 

that is, all the values of 𝜆 that satisfy the determinantal equation 
|𝐴 − 𝜆𝐼| = 0 

should be positive. Similarly, the matrix [A] will be negative definite if its 

eigenvalues are negative. 
 
Another test that can be used to find the positive definiteness of a matrix A 

of order n involves evaluation of the determinants 

 

 

 
A matrix A will be positive definite if and only if all its determinants are positive; 

A matrix A will be negative definite if and only if all its determinant 𝐴𝑘 satisfies: 

(−1)𝑘 , 𝑘 = 1,2, .. 
A matrix A will be semidefinite definite if some of its determinant are positive, and the 

remaining are zeros 
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Saddle Point 

 
In such a case, the point (x*,y*) is called a saddle point.  

 
The characteristic of a saddle point is that it corresponds to a relative minimum 

or maximum of f(x,y) with respect to one variable , say, x (the other variable 
being fixed at y = y*) and a relative maximum or minimum of f(x,y) with respect 

to the second variable y (the other variable being fixed at x*). 
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1 A matrix A will be positive definite if all its eigenvalues are positive; √ 

2 A matrix A will be positive definite if and only if all its determinants are 

positive; 
√ 

3 A matrix A will be negative definite if and only if all its determinant 𝐴𝑘 

satisfies: (−1)𝑘  

√ 

4 A matrix A will be semidefinite definite if some of its determinant are 

positive, and the remaining are zeros 

√ 

5 A saddle point is corresponds to a relative minimum of f(x,y) with 

respect to one variable and a relative maximum with respect to the 

second variable  

√ 

 

 (1) A matrix A will be negative definite if and only if all its determinant 𝐴𝑘 satisfies:  

else (d) (k)−1 (c) (1)𝑘
 (b) (−1)𝑘

 (a) 

[Q3] (a) Define: positive definiteness of a square matrix- 

Semidefinite Case- Saddle Point 

 
[Q3] (b) Example : Find the extreme points of the function 

 
𝑓(𝑥1, 𝑥2) = 𝑥1

3 + 𝑥2
3 + 2𝑥1

2 + 4𝑥2
2 + 6 

The necessary condition is 

 

 

So 

𝑥1(3𝑥1 + 4) = 0 

𝑥2(3𝑥2 + 8) = 0 
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𝑥1 = 0,
−4

3
,  𝑥2 = 0,

−8

3
 

Theses equations are satisfied at the points 

(0,0), (0,
−8

3
) , (

−4

3
, 0) , (

−4

3
,
−8

3
) 

 
To find the nature of these extreme points, we have to use the sufficiency conditions. The second-order partial derivatives of 𝑓are 
given by 

 

𝜕2𝑓

𝜕𝑥1
2
= 6𝑥1 + 4,

𝜕2𝑓

𝜕𝑥2
2
= 6𝑥2 + 8,

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
= 0  

[
 
 
 
 

𝜕2𝑓

𝜕𝑥1𝜕𝑥1

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2𝜕𝑥2]
 
 
 
 

 

The Hessian matrix of 𝑓 is given by [
6𝑥1 + 4 0

0 6𝑥2 + 8
] 

 
the nature of the extreme point are as given below. 

𝑓(𝑥1, 𝑥2) = 𝑥1
3 + 𝑥2

3 + 2𝑥1
2 + 4𝑥2

2 + 6 

 
Consider finding the extreme points of the function 𝑓(𝑥1, 𝑥2) = 𝑥1

3 + 𝑥2
3 +

2𝑥1
2 + 4𝑥2

2 + 6. Answer the following 
(1) The necessary condition yields 

(a) 𝑥1(3𝑥1 + 4) = 0, 𝑥2(3𝑥2 + 8) = 0 (b) 𝑥1(3𝑥1 − 4) = 0, 𝑥2(3𝑥2 + 8) = 0 

(c) 𝑥1(3𝑥1 + 4) = 0, 𝑥2(3𝑥2 − 8) = 0 (d) Else 

 

(2) The solutions of the necessary condition equations are 
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(a) 𝑥1 = 0,
4

3
,  𝑥2 = 0,

−8

3
 

(b) 𝑥1 = 0,
−4

3
,  𝑥2 = 0,

−8

3
 

(c) 𝑥1 = 0,
−4

3
,  𝑥2 = 0,

8

3
 

(d) Else 

 

 (3) The necessary condition equations are satisfied at the points 

(a) (0,0), (
−8

3
, 0) , (0,

−4

3
) , (

−4

3
,
−8

3
)   (b) (0,0), (0,

−8

3
) , (

−4

3
, 0) , (

−4

3
,
−8

3
) 

(c) (0,0), (
8

3
, 0) , (0,

4

3
) , (

4

3
,
8

3
)   (d) Else 

 

(3) The following point satisfies the necessary condition 

(a) (0,
−4

3
) (b)  (

−4

3
,
−8

3
) 

(c) (
−8

3
, 0) 

(d) (
4

3
,
8

3
) 

 

(4)To find the nature of these extreme points, we use the sufficiency conditions. 

The second-order partial derivatives of 𝑓are given by 

(a) 𝜕2𝑓

𝜕𝑥1
2

= 0,
𝜕2𝑓

𝜕𝑥2
2

= 6𝑥2 + 8,
𝜕2𝑓

𝜕𝑥1𝜕𝑥2
= 6𝑥1 + 4 

(b) 𝜕2𝑓

𝜕𝑥1
2

= 6𝑥1 + 4,
𝜕2𝑓

𝜕𝑥2
2

= 0,
𝜕2𝑓

𝜕𝑥1𝜕𝑥2
= 6𝑥2 + 8 

(c) 𝜕2𝑓

𝜕𝑥1
2

= 6𝑥1 + 4,
𝜕2𝑓

𝜕𝑥2
2

= 6𝑥2 + 8,
𝜕2𝑓

𝜕𝑥1𝜕𝑥2
= 0 

(d) Else 

 

(5) The Hessian matrix of 𝑓 is given by [
6𝑥1 + 4 0

0 6𝑥2 + 8
] 

(a) 
[
0 6𝑥1 + 4

0 6𝑥2 + 8
] 

(b) [
6𝑥1 + 4 0

0 6𝑥2 + 8
] 

(c) 
[
6𝑥1 + 4 0

6𝑥2 + 8 0
] 

(d) Else 

 

 
(6) The nature of the extreme point (0,0) is 

else (d) Relative maximum (c) Saddle point (b) Relative minimum (a) 

(7) The nature of the extreme point (0,
−8

3
) is 

else (d) Relative maximum (c) Saddle point (b) Relative minimum (a) 

 

(8) The nature of the extreme point (
−4

3
, 0) is  

else (d) Relative maximum (c) Saddle point (b) Relative minimum (a) 

 (9) The nature of the extreme point (
−4

3
,
−8

3
) is 
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else (d) Relative maximum (c) Saddle point (b) Relative minimum (a) 

 
(10) The Relative maximum of the function is 

else (d) 50/3 (c) 6 (b) 194/27 (a) 

 

 

[1] Answer whether each of the following quadratic forms is positive 

definite, negative definite, or neither. 

 

(2) Match the following equations and their characteristics. 

 

 (4) Determine whether each of the following matrices is positive 

definite, negative definite, or indefinite by finding its eigenvalues. 
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(5) Determine whether each of the following matrices is positive 

definite, negative definite, or indefinite by evaluating the signs of its 

submatrices. 

 

 
 

(6) Express the function 

𝑓(𝑥1, 𝑥2, 𝑥3) =  −𝑥1
2 − 𝑥2

2 + 2𝑥1𝑥2 − 𝑥3
2 + 6𝑥1𝑥3 + 4𝑥1 − 5𝑥3 + 2 

in matrix form as 
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𝑓(𝑋) =
1

2
 𝑋𝑇 [𝐴]𝑋 + 𝐵𝑇𝑋 + 𝐶  

and determine whether the matrix [A] is positive definite, negative 

definite, or indefinite. 

 
(7) The profit per acre of a farm is given by 

 

where x1 and x2 denote, respectively, the labor cost and the fertilizer 

cost. Find the values of X1 and X2 to maximize the profit. 

 

 

 

 
Multivariable Optimization With Equality Constraints 
 

In this section we consider the optimization of continuous functions subjected 
to equality constraints: 

 
Where  
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Here m is less than or equal to n; otherwise (if m > n), the problem becomes 
overdefined and, in general, there will be no solution. There are several methods 

available for the solution of this problem. The methods of direct substitution, 

constrained variation, and Lagrange multipliers are discussed in the 
following sections. 
 

Solution by Direct Substitution 

 

For a problem with n variables and m equality constraints, it is theoretically 

possible to solve simultaneously the m equality constraints and express any set 
of m variables in terms of the remaining n - m variables. When these expressions 

are substituted into the original objective function, there results a new 

objective function involving only n - m variables. The new objective function 
is not subjected to any constraint, and hence its optimum can be found by using 

the unconstrained optimization techniques discussed in Section 2.3. 
 

 

 

 
[Q4] Example 2.6  Find the dimensions of a box of largest volume that 

can be inscribed in a sphere of unit radius. 
 

 أوجد أبعاد صندوق بحيث يكون له أكبر حجم يمكن احتواؤه في كرة نصف قطرها الوحدة.

 



19 
 

                                                ←        2𝑥1       →  𝑃(𝑥1, 𝑥2, 𝑥3) 

 

 

 

 

                                                          

 

 ا
volume of the box is given by 𝑓(𝑥1,𝑥2, 𝑥3) = 8𝑥1𝑥2𝑥3 

 

 
𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 1 

 

 
𝑓(𝑥1,𝑥2) = 8𝑥1𝑥2√1 − 𝑥1

2 −𝑥2
2 
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For the sufficient condition, it is clear that the Hessian matrix is 

negative definite.  Hence the point X1 is maximum for the given 

function. 
1 In the equality constraints optimization problem, the number of 

constraints  must be less than or equal to the number of variable.  
√ 

2 If the number of constraints is greater than the number of variable in the 
equality constraints optimization problem, the problem becomes 

overdefined  

√ 

3 Max. 𝑓(𝑥1,𝑥2, 𝑥3) = 8𝑥1𝑥2𝑥3 subject to 𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 1 is equivalent to  

Max. 𝑓(𝑥1,𝑥2) = 8𝑥1𝑥2√1 − 𝑥1
2 − 𝑥2

2 

√ 

4  √ 
5  √ 

 

 

========================================= 

 
 [Q2] Consider the problem 
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Minimize 𝑓(𝑋) =
𝑥1

2+𝑥2
2+𝑥3

2

2
 

Subject to    

𝑔1(𝑋) = 𝑥1 − 𝑥2 = 0 

𝑔2(𝑋) = 𝑥1 + 𝑥2 + 𝑥3 = 1 

By 

(a) Direct substitution 

(b) [Q3]  find the value of x, y, and z that maximize the function  

 

(c) f(x, y, z) =  
6xyz

x+2y+2z
 

(d) When x, y, and z are restricted by the relation xyz = 16. 

------ 
 

Solution by the method of constrained variation 
[] (a)Discuss the basic idea of method of constrained variation for solving 
multivariable optimization with equality constraints. Then show when the variation 

dx1,dx2 form admissible variation.   

(b) Derive the necessary condition in order to have X* as an extreme point 
(minimum or maximum). 
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Define: admissible variation. 
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=========================== 
 [](c) Use the necessary condition derived in (b) to find the solution of the 

optimization problem 

Minimize 𝑓 = 𝑘/𝑥𝑦2 

Subject to 𝑥2 + 𝑦2 = 𝑎2 

 

 
Equation (2.25) gives 
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============================== 
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Solution by the Method of Lagrange Multipliers 

 
[](a) Derive the necessary condition for optimality in Lagrange multiplier method for a 

problem of two variables and one constraint. 

 

The basic features of the Lagrange multiplier method is given initially for a simple problem 

of two variables with one constraint. The extension of the method to a general problem of n 

variables with m constraints is given later. 
 

Problem with Two Variables and One Constraint.  

Consider the problem: 

 
For this problem, the necessary condition for the existence of an extreme point 

at X = X* was found in Section 2.4.2 to be 

 
Dividing by 

𝜕𝑔

𝜕𝑥2
≠ 0 
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Equations (2.38) can be seen to be same as Eqs. (2.34) to (2.36). The sufficiency 
conditions are given later 
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[q6](b) Example 2.9  

Find the solution of  

Minimize 𝑓 = 𝑘/𝑥𝑦2 
  

Subject to 𝑥2 + 𝑦2 = 𝑎2 
using the necessary condition of Lagrange multiplier method 

SOLUTION  
The Lagrange function is  

 
The necessary conditions for the minimum of f(x, y) [Eqs. (2.38)] give 

 
Equations (E1) and (E2) yield 

 
1

𝑥2
=

2

𝑦2
 

 

 
=============================== 
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[Q5] State the necessary and sufficiency conditions for optimality of a 

General Lagrange multiplier method. 
Necessary Conditions for a General Problem.  
 

The equations derived above can be extended to the case of a general problem with n 

variables and m equality constraints: 

 

 
𝐿(𝑋, 𝜆) = 𝑓(𝑋) + ∑ 𝜆𝑗𝑔𝑗(𝑋)

𝑚

𝑗=1
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Sufficiency Conditions for a General Problem 
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[Q5](b)Example 2.10 

 Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal 

to maximize its volume such that the total surface area is equal to A0 = 24 𝜋. 

 
Let the radius of the tin is 𝑟 = 𝑥1 and the length is ℎ = 𝑥2.  

 

 
𝐿(𝑋, 𝜆) = 𝑓(𝑋) + ∑ 𝜆𝑗𝑔𝑗(𝑋)

𝑚

𝑗=1
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Now since 

 

𝜕2𝐿

𝜕𝑥1𝜕𝜆
  

 
And since 

 

𝜕2𝐿

𝜕𝑥2𝜕𝜆
 

And since 

 
𝜕2𝐿

𝜕𝜆𝜕𝜆
= 0 

 

[
 
 
 
 
 
 

𝜕2𝐿

𝜕𝑥1𝜕𝑥1

𝜕2𝐿

𝜕𝑥1𝜕𝑥2

𝜕2𝐿

𝜕𝑥1𝜕𝜆

𝜕2𝐿

𝜕𝑥2𝜕𝑥1

𝜕2𝐿

𝜕𝑥2𝜕𝑥2

𝜕2𝐿

𝜕𝑥2𝜕𝜆

𝜕2𝐿

𝜕𝜆𝜕𝑥1

𝜕2𝐿

𝜕𝜆𝜕𝑥2

𝜕2𝐿

𝜕𝜆𝜕𝜆 ]
 
 
 
 
 
 

 

 

𝐻 = [
4𝜋 2𝜋 16𝜋
2𝜋 0 4𝜋
16𝜋 4𝜋 0

] 

 

𝐽1 = [4𝜋] = + 

𝐽2 = [
4𝜋 2𝜋

2𝜋 0] = −4𝜋
2
 

J is Indefinit 
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So the point is not max. nor min. 
------------------------------------------------------------------------------------------- 

 

Another method for test the positiveness of Hessian matrix: 

𝐻 = [
4𝜋 2𝜋 16𝜋
2𝜋 0 4𝜋
16𝜋 4𝜋 0

] 

 

|𝐻 − 𝜆𝐼| = 0 

[
4𝜋 − 𝜆 2𝜋 16𝜋

2𝜋 0 − 𝜆 4𝜋
16𝜋 4𝜋 0 − 𝜆

] = 0 

 

272𝜋2𝜆 + 192𝜋3 = 0 

𝜆 = −
12

17
𝜋 

Since the value of 𝜆 is negative, the point (𝑥1
∗, 𝑥2

∗)corresponds to the maximum 

Of 𝑓. 
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****************** 

=========================== 
 [Q5](c) Example 2.11  

Find the maximum of the function 

 
subject to 

 
using the Lagrange multiplier method. 

 

 
Sufficient condition is HomeWork 

=================== 
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 [Q6] Consider the problem 

Minimize 𝑓(𝑋) =
𝑥1

2+𝑥2
2+𝑥3

2

2
 

Subject to    

𝑔1(𝑋) = 𝑥1 − 𝑥2 = 0 

𝑔2(𝑋) = 𝑥1 + 𝑥2 + 𝑥3 = 1 

By 

(e) Constrained variation, and 

(f) Lagrange multipliers method. 

 

 

 

================================================ 

 

[Q7] (b) Minimize 𝑓(𝑋) =
𝑥1

2+𝑥2
2+𝑥3

2

2
 (1) 

Subject to    𝑔1(𝑋) = 𝑥1 − 𝑥2 = 0,  (2) 

                   𝑔2(𝑋) = 𝑥1 + 𝑥2 + 𝑥3 = 1 (3) 

By Lagrange multipliers method. 
Answer: 
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Substituting from 2 in 1 and 3, we obtain 

𝑓(𝑋) =
2𝑥1

2+𝑥3
2

2
 , , 𝑔(𝑋) = 2𝑥1 + 𝑥3 − 1 = 0 

 

=============================================== 

 

[Q8]  find the value of x, y, and z that maximize the function  

 

𝑓(𝑥, 𝑦, 𝑧) =  
6𝑥𝑦𝑧

𝑥 + 2𝑦 + 2𝑧
 

When x, y, and z are restricted by the relation xyz = 16. 
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Ch 2 
Unconstrained Multivariable Optimization Techniques 

 

 

 
As discussed in Chapter 1, a point X* will be a relative minimum of f (X) if the necessary conditions 

 

 
 



83 
 

Equations (6.2) and (6.3) can be used to identify the optimum point during numerical 

computations. However, if the function is not differentiate, Eqs. (6.2) and (6.3) cannot 

be applied to identify the optimum point. 

 
 
6.1.1 Classification of Unconstrained Minimization Methods 
Several methods are available for solving an unconstrained minimization problem. 

These methods can be classified into two broad categories as direct search methods and descent 

methods as indicated in Table 6.1. 
 

TABLE 6.1 Unconstrained Minimization Methods 
______________________________________________________________________________ 

Direct Search Methods a   Descent Methods b 
______________________________________________________________________________ 

 
______________________________________________________________________________ 

 
a Do not require the derivatives of the function. 
b Require the derivatives of the function. 
 

 

6.1.2 General Approach 

 

 
[Q1]Draw the flowchart of general iterative scheme of unconstrained 
multivariable optimization 



04 
 

 
6.1.3 Rate of Convergence 

Define 

Different iterative optimization methods have different rates of convergence. 

In general, an optimization method is said to have convergence of order p if 

 
If p = 1 and 0 ≤ k ≤ 1, the method is said to be linearly convergent (corresponds to slow convergence), 

If p = 2, the method is said to be quadratically convergent (corresponds to fast convergence). An 

optimization method is said to have superlinear convergence (corresponds to fast convergence) if 
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MCQ 

1 Some of the methods for solving constrained minimization 
problems require the use of unconstrained minimization 
techniques. 

√ 

2 The study of unconstrained minimization techniques provides the 
basic understanding necessary for the study of constrained 
minimization methods. 

√ 

3 All the unconstrained minimization methods are iterative in 
nature. 

√ 

4 Different iterative optimization methods have the same rates of 
convergence. 

x 

5 If we move along the gradient direction from any point in n-
dimensional space, the function value increases at the fastest rate. 

√ 

6 the gradient vector represents the direction of steepest descent. x 

7 the maximum rate of change of f at any point X is equal to the 
magnitude of the gradient vector at the same point. 

√ 

8 Unconstrained Minimization Methods can be classified into two 
categories as direct search methods and descent methods. 

√ 

9 Direct Search Methods require the derivatives of the function. x 

10 Descent Methods Require the derivatives of the function. √ 
 

 



 

4 Scaling of Design Variables 
The rate of convergence of most unconstrained minimization methods can be 

improved by scaling the design variables. For a quadratic objective function, the 

scaling of the design variables changes the condition number of the Hessian 

matrix. When the condition number of the Hessian matrix is 1, the steepest 

descent method, for example, finds the minimum of a quadratic objective 

function in one iteration. 

 

If 

 
denotes a quadratic term, a transformation of the form 

 
can be used to obtain a new quadratic term a 

 

 

 
the resulting matrix will be 1) by using the transformation 

 
where the matrix [S] is given by 

 

 
Thus the complete transformation that reduces the Hessian matrix of f to an 

identity matrix is given by 

 



 

 

 
where 

 

 
 

 

 

 
 

The condition number of an n Xn matrix, [A], is defined as 

 

 

 



 

 
If the condition number is close to 1, the round-off errors are expected to be small in 

dealing with the matrix H. For example, if condH is large, the solution vector X of 

the system of equations HX = B is expected to be very sensitive to small variations 

in [A] and B. If cond H is close to 1, the matrix [A] is said to be well behaved or well 

conditioned. On the other hand, if cond H  is significantly greater than 1, the matrix 

[A ] is said to be not well behaved or ill conditioned. 

MCQ 

 

 

Example 6.2 

 Find a suitable scaling (or transformation) of variables to reduce the 

condition number of the Hessian matrix of the following function to 1: 

 
 

SOLUTION  

The quadratic function can be expressed as 

 

 
where 

 

 
As indicated above, the desired scaling of variables can be accomplished in two stages. 

 

 



 

 

 
س

 
 

 

 

 



 

 

 

 
 

 

 



 

 

 

   

 



 

Part 2 
 

Indirect search (descent) methods 
Gradient of a function 
Define 

The gradient of a function is an n-component vector given by 

∇𝑓
𝑛 × 1

= [
𝜕𝑓

𝜕𝑥1
 

𝜕𝑓

𝜕𝑥2
 

𝜕𝑓

𝜕𝑥3
… 

𝜕𝑓

𝜕𝑥𝑛
]

𝑇

 

 

 

 



 

 
 
[Q1] Prove that the gradient vector represents the direction of 
steepest ascent. 

 

 

 



 

 

 

 
 
 
 
 
 
 
[Q2] Prove that the maximum rate of change of/at any point X is 
equal to the magnitude of the gradient vector at the same point. 
Then show what we can do if the Evaluation of the Gradient poses 
certain problem 

 
 



 

6.10.1 Evaluation of the Gradient 
[Q3]“The evaluation of the gradient poses certain problems”. Discuss this 

sentence. 
 
The evaluation of the gradient requires the computation of the partial derivatives 

, i = 1,2,. . .,ft. There are three situations where the evaluation of 
the gradient poses certain problems: 

 

 
 

6.11 steepest descent (Cauchy) method 
The use of the negative of the gradient vector as a direction for minimization was first 

made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X1 

and iteratively move along the steepest descent directions until the optimum point is 

found. The steepest descent method can be summarized by the following steps: 

[Q4](a)Summarize the steps of steepest descent method for 
Multivariable Unconstrained Minimization problem. 
 

 
The method of steepest descent may appear to be the best unconstrained minimization 

technique since each one-dimensional search starts in the "best" direction. However, 

owing to the fact that the steepest descent direction is a local property, the method is 

not really effective in most problems. 

 



 

 
[Q4](b)Use steepest descent method to  Minimize the 
following Multivariable Unconstrained Minimization problem 
starting from X= {0 0)T 

            𝑓(𝑥1, 𝑥2) = 𝑥1 − 𝑥2 + 2𝑥1
2 + 2𝑥1 𝑥2 + 𝑥2

2 

 

 

 

 



 

 

 

 

 

 

 

 



 

 
 
 

6.12 Conjugate Gradient (Fletcher-Reeves) Method 
The convergence characteristics of the steepest descent method can be improved 

greatly by modifying it into a conjugate gradient method (which can be considered 

as a conjugate directions method involving the use of the gradient of the function). 

We saw (in Section 6.7) that any minimization method that makes use of the 

conjugate directions is quadratically convergent. This property of quadratic 

convergence is very useful because it ensures that the method will minimize a 

quadratic function in n steps or less. Since any general function can be 

approximated reasonably well by a quadratic near the optimum point, any 

quadratically convergent method is expected to find the optimum point in a finite 

number of iterations. 

 
We have seen that Powell's conjugate direction method requires n single variable 

minimizations per iteration and sets up a new conjugate direction at the end of each 

iteration. Thus it requires, in general, n2 single-variable minimizations to find the 

minimum of a quadratic function. On the other hand, if we can evaluate the gradients 

of the objective function, we can set up a new conjugate direction after every one-

dimensional minimization, and hence we can achieve faster convergence. The 

construction of conjugate directions and development of the Fletcher-Reeves method 

are discussed in this section. 

 

6.12.1 Development of the Fletcher-Reeves Method 
[Q5] Develop the Fletcher-Reeves Method 

 

 



 

 

 

 

 

 

 



 

 

 

 
 



 

Part 2 
 

Indirect search (descent) methods 
Gradient of a function 
Define 

The gradient of a function is an n-component vector given by 

∇𝑓
𝑛 × 1

= [
𝜕𝑓

𝜕𝑥1
 

𝜕𝑓

𝜕𝑥2
 

𝜕𝑓

𝜕𝑥3
… 

𝜕𝑓

𝜕𝑥𝑛
]

𝑇

 

 

 

 



 

 
 
[Q1] Prove that the gradient vector represents the direction of 
steepest ascent. 

 

 

 



 

 

 

 
 
 
 
 
 
 
[Q2] Prove that the maximum rate of change of/at any point X is 
equal to the magnitude of the gradient vector at the same point. 
Then show what we can do if the Evaluation of the Gradient poses 
certain problem 

 
 



 

6.10.1 Evaluation of the Gradient 
[Q3]“The evaluation of the gradient poses certain problems”. Discuss this 

sentence. 
 
The evaluation of the gradient requires the computation of the partial derivatives 

, i = 1,2,. . .,ft. There are three situations where the evaluation of 
the gradient poses certain problems: 

 

 
 

6.11 steepest descent (Cauchy) method 
The use of the negative of the gradient vector as a direction for minimization was first 

made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X1 

and iteratively move along the steepest descent directions until the optimum point is 

found. The steepest descent method can be summarized by the following steps: 

[Q4](a)Summarize the steps of steepest descent method for 
Multivariable Unconstrained Minimization problem. 
 

 
The method of steepest descent may appear to be the best unconstrained minimization 

technique since each one-dimensional search starts in the "best" direction. However, 

owing to the fact that the steepest descent direction is a local property, the method is 

not really effective in most problems. 

 



 

 
[Q4](b)Use steepest descent method to  Minimize the 
following Multivariable Unconstrained Minimization problem 
starting from X= {0 0)T 

            𝑓(𝑥1, 𝑥2) = 𝑥1 − 𝑥2 + 2𝑥1
2 + 2𝑥1 𝑥2 + 𝑥2

2 

 

 

 

 



 

 

 

 

 

 

 

 



 

 
 
 

6.12 Conjugate Gradient (Fletcher-Reeves) Method 
The convergence characteristics of the steepest descent method can be improved 

greatly by modifying it into a conjugate gradient method (which can be considered 

as a conjugate directions method involving the use of the gradient of the function). 

We saw (in Section 6.7) that any minimization method that makes use of the 

conjugate directions is quadratically convergent. This property of quadratic 

convergence is very useful because it ensures that the method will minimize a 

quadratic function in n steps or less. Since any general function can be 

approximated reasonably well by a quadratic near the optimum point, any 

quadratically convergent method is expected to find the optimum point in a finite 

number of iterations. 

 
We have seen that Powell's conjugate direction method requires n single variable 

minimizations per iteration and sets up a new conjugate direction at the end of each 

iteration. Thus it requires, in general, n2 single-variable minimizations to find the 

minimum of a quadratic function. On the other hand, if we can evaluate the gradients 

of the objective function, we can set up a new conjugate direction after every one-

dimensional minimization, and hence we can achieve faster convergence. The 

construction of conjugate directions and development of the Fletcher-Reeves method 

are discussed in this section. 

 

6.12.1 Development of the Fletcher-Reeves Method 
[Q5] Develop the Fletcher-Reeves Method 

 

 



 

 

 

 

 

 

 



 

 

 

 
 



6.12.2 Fletcher-Reeves Method
[Q14](a)Summarize the steps of iterative procedure of Fletcher-Reeves method for Multivariable 
Unconstrained Minimization problem.

The iterative procedure of Fletcher-Reeves method can be stated as follows:

1



[Q14](b) Use Fletcher-Reeves Method to minimize 
the following multivariable Unconstrained Minimization problem 
starting from X= {0 0)T

Minimize  𝑓 𝑥1, 𝑥2 = 𝑥1 − 𝑥2 + 2𝑥1
2 + 2𝑥1 𝑥2 + 𝑥2

2

SOLUTION

Iteration 1

2



3



4



5

Thus the optimum point is reached in two iterations
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2



Indirect methods
3.1 Transformation techniques

3

[Q1] discuss transformation technique as an indirect method for solving  constrained optimization 
problem. 
If the constraints gj(X) are explicit functions of the variables xi- and have certain simple forms, it may be 

possible to make a transformation of the independent variables such that the constraints are satisfied 

automatically . Thus it may be possible to convert a constrained optimization problem into an unconstrained 

one by making change of variables. Some typical transformations are indicated below:

If lower and upper bounds on 𝒙
𝒊
are specified as

𝑎 ≤ 𝑥
𝑖
≤ 𝑏

𝑥
𝑖
= 𝑎 + (𝑏 − 𝑎) sin2 𝑦

𝑖

These can be satisfied by transformation of the variable 𝒙
𝒊
as
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𝑥
𝑖
= sin2 𝑦

𝑖
, 𝑥

𝑖
= cos2 𝑦

𝑖
,

𝑥
𝑖
=

𝑒𝑦𝑖

𝑒𝑦𝑖+𝑒
−𝑦

𝑖

, or 𝑥
𝑖
=

𝑦
𝑖

2

1+𝑦
𝑖

2
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4. If the variable is restricted to take values lying only in between -1 and

1, the transformation can be

Note the following aspects of transformation techniques:

1. The constraints gj(X) have to be very simple functions of x1.

2. For certain constraints it may not be possible to find the necessary 

transformation.
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3. If it is not possible to eliminate all the constraints by making change of

variables, it may be better not to use the transformation at all. The partial

transformation may sometimes produce a distorted objective function

which might be more difficult to minimize than the original function.

To illustrate the method of transformation of variables, we consider the

following problem.
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[Q2] Find the dimensions of a rectangular prism type box that has the largest 
volume when the sum of its length, width, and height is limited to a maximum 
value of 60 in. and its length is restricted to a maximum value of 36 in.

Maximize 𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥1𝑥2𝑥3



8
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Maximize 𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥1𝑥2𝑥3
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Ch 5 Dynamic Programming 

 Introduction 

sequential decision problems- multistage decision problems 

In most practical problems, decisions have to be made sequentially at 

different points in time, at different points in space, and at different 

levels, say, for a component, for a subsystem, and/or for a system. The 

problems in which the decisions are to be made sequentially are called 

sequential decision problems.  

Since these decisions are to be made at a number of stages, they are also 

referred to as multistage decision problems.    Dynamic programming is a 

mathematical technique well suited for the optimization of multistage 

decision problems. 
 

The dynamic programming technique, when applicable, represents or 

decomposes a multistage decision problem as a sequence of single-stage 

decision problems. 

 

Thus an N-variable problem is represented as a sequence of N single- 

variable problems that are solved successively. 
 
In most cases, these N subproblems are easier to solve than the original 

problem. 

 

The decomposition to N subproblems is done in such a manner that the 

optimal solution of the original N-variable problem can be obtained from 

the optimal solutions of the N one-dimensional problems. 
 
Multistage decision problems can also be solved by direct application of 

the classical optimization techniques.(MCQ TF) 
 
However, this requires the number of variables to be small, the functions 

involved to be continuous and continuously differentiable, and the 

optimum points not to lie at the boundary points. (MCQ TF) 
 
Further, the problem has to be relatively simple so that the set of resultant 

equations can be solved either analytically or numerically. 

 



The nonlinear programming techniques can be used to solve slightly more 

complicated multistage decision problems. 
 
But their application requires the variables to be continuous and prior 

knowledge about the region of the global minimum or maximum.  
 

Multistage decision processes 
 

Definition and Examples 
As applied to dynamic programming, a multistage decision process is one 

in which a number of single-stage processes are connected in series so 

that the output of one stage is the input of the succeeding stage. 
This type of process should be called a serial multistage decision process 
 

Serial multistage decision problems arise in many types of practical 

problems. A few  examples are given below 
[Q1] Discuss serial multistage decision process. Show how it can be 

represented schematically. Then represent the objective function as the 

composition of the individual stage returns. 

 

 2 Representation of a Multistage Decision Process 
A single-stage decision process (which is a component of the multistage 

problem) can be represented as a rectangular block(MCQ TF) 
 
A decision process can be characterized by certain input parameters, S (or 

data), certain decision variables (X), and certain output parameters (T) 

representing the outcome obtained as a result of making the decision. 

 
Figure 2 Single-stage decision problem. 



 
The input parameters are called input state variables, and the output 

parameters are called output state variables. 

 

Finally, there is a return or objective function R, which measures the 

effectiveness of the decisions made and the output that results from these 

decisions. 
 
For a single-stage decision process shown in Fig. 2, the output is related 

to the input through a stage transformation function denoted by 

 
Since the input state of the system influences the decisions we make, the 

return function can be represented as 

 
A serial multistage decision process can be represented schematically as 

shown in Fig. 3. 

 
Fig. 3: Multistage decision problem (initial value problem). 

 
the stages n, n — 1 , . . . , i , . . . , 2 , 1 are labeled in decreasing order. 

For the i th stage, the input state vector is denoted by Si+1, and the output 

state vector as Si Since the system is a serial one, the output from stage i 

+ 1 must be equal to the input to stage i. 
 
Hence the state transformation and return functions can be represented as 

 
where Xi- denotes the vector of decision variables at stage i. The state 

transformation equations (3) are also called design equations. 

 



The objective of a multistage decision problem is to find x1, x2 . . . , xn 

so as to optimize some function of the individual statge returns, say, 

f(R1,R2,. . ,Rn) and satisfy Eqs. (3) and (4). 

 
The nature of the n-stage return function, f, determines whether a given 

multistage problem can be solved by dynamic programming. 
 
we must be able to represent the objective function as the composition of 

the individual stage returns. This requirement is satisfied for additive 

objective functions: 

 
where Xi- are real, and for multiplicative objective functions, 

 
where xi- are real and nonnegative. On the other hand, the following 

objective function is not separable: 

 
Fortunately, there are many practical problems that satisfy the 

separability condition.  The objective function is said to be monotonic if 

for all values of a and b that make(MCQ TF) 

 
the following inequality is satisfied: 
 

 
 
 

 



3 Conversion of a Nonserial System to a Serial System 
According to the definition, a serial system is one whose components 

(stages) are connected in such a way that the output of any component is 

the input of the succeeding component.  

 

As an example of a nonserial system, consider a steam power plant 

consisting of a pump, a feedwater heater, a boiler, a superheater, a steam 

turbine, and an electric generator, as shown in Fig. 4.  

 

If we assume that some steam is taken from the turbine to heat the 

feedwater, a loop will be formed as shown in Fig. 4a. This nonserial 

system can be converted to an equivalent serial system by regrouping the 

components so that a loop is redefined as a single element as shown in 

Fig. 4b and c.  

 

Thus the new serial multistage system consists of only three components: 

the pump, the boiler and turbine system, and the electric generator. This 

procedure can easily be extended to convert multistage systems with 

more than one loop to equivalent serial systems. 

 

 

 

 

 
Figure 4 Serializing a nonserial system. 

 

 
 



4 Types of Multistage Decision Problems 

The serial multistage decision problems can be classified into three 

categories as follows. 

 

1. Initial Value Problem. If the value of the initial state variable, Sn+1, is 

prescribed, the problem is called an initial value problem.(MCQ MC) 

2. Final Value Problem. If the value of the final state variable S1 is 

prescribed, the problem is called a final value problem. .(MCQ MC) 

 

 Notice that a final value problem can be transformed into an initial value 

problem by reversing the directions of Si, i = 1, 2, . . . , n + 1. The details 

of this are given in Section 7. 

3. Boundary Value Problem. If the values of both the input and output 

variables are specified, the problem is called a boundary value problem. 

The three types of problems are shown schematically in Fig. 5, where 

the symbol  is used to indicate a prescribed state variable. 

 

 

 
Figure 5 Types of multistage problems: (a) initial value problem; (b) final value 

problem; (c) boundary value problem. 

 

 

 

 

1 Multistage decision problems can be solved by direct 

application of the classical optimization techniques. 
√ 

2 A single-stage decision process can be represented as a 

rectangular block 
√ 



3 The functions involved to be continuous and 

continuously differentiable, and the optimum points not 

to lie at the boundary points. 

√ 

4 there are many practical problems that satisfy the 

separability condition.  The objective function is said to 

be monotonic if for all values of a and b that make 

√ 

 
 
 
 
(4)In the Multistage decision problems, If the value of the initial state 

variable ……, is prescribed, the problem is called an initial value 

problem 

 𝑆𝑛−1  𝑆𝑛  𝑆𝑛+1  𝑆𝑛+2
 

(2) In the Multistage decision problems, If the value of the final state 

variable ………is prescribed, the problem is called a final value 

problem. 

 𝑆𝑛  𝑆1  𝑆2  𝑆𝑛−1
 

 

 
 

9.3 Concept Of Sub-optimization And Principle Of Optimality 
[Q] Show how a dynamic programming problem can be reformulated as a 

sequence of sub- optimization problems, then define the Recurrence 

Relationship that joins them and obtain the ith subproblem in general state. 

 
A dynamic programming problem can be stated as follows.  
 

Find x1, x2, . . . , xn, which optimizes 

 

 



The dynamic programming makes use of the concept of suboptimization 

and the principle of optimality in solving this problem. The concept of 

suboptimization and the principle of optimality will be explained through 

the following example of an initial value problem. 
Rem: In the subsequent discussion, the design variables X1 and state variables s, 

are denoted as scalars for simplicity, although the theory is equally applicable 

even if they are vectors. 

 
 

Example 9.1 

 Explain the concept of suboptimization in the context of the design of the 

water tank shown in Fig. 6a. The tank is required to have a capacity of 

100,000 liters of water and is to be designed for minimum cost 

 

 

 

 
Figure 6 Water tank system. 

 

 

SOLUTION 

 Instead of trying to optimize the complete system as a single 



unit, it would be desirable to break the system into components which 

could be optimized more or less individually. 

 

 For this breaking and component suboptimization, a logical procedure is 

to be used; otherwise, the procedure might result in a poor solution. This 

concept can be seen by breaking the system into three components: 

component i (tank), component j (columns), and component k 

(foundation).  

 

Consider the suboptimization of component j (columns) without a 

consideration of the other components. If the cost of steel is very high, 

the minimum cost design of component j may correspond to heavy 

concrete columns without reinforcement. Although this design may be 

acceptable for columns, the entire weight of the columns has to be carried 

by the foundation. This may result in a foundation that is prohibitively 

expensive. 

 

This shows that the suboptimization of component j has adversely 

influenced the design of the following component k. This example shows 

that the design of any interior component affects the designs of all the 

subsequent (downstream) components. As such, it cannot be 

suboptimized without considering its effect on the downstream 

components.  

 

The following mode of suboptimization can be adopted as a rational 

optimization strategy. Since the last component in a serial system 

influences no other component, it can be subopti-mized independently. 

Then the last two components can be considered together as a single 

(larger) component and can be suboptimized without adversely 

influencing any of the downstream components. This process can be 

continued to group any number of end components as a single (larger) 

end component and suboptimize them.  

 

This process of suboptimization is shown in Fig. 7. 

 

Since the suboptimizations are to be done in the reverse order, the 

components of the system are also numbered in the same manner for 

convenience (see Fig. 3). 



 
The process of suboptimization was stated by Bellman as the principle of 

optimality: 

An optimal policy (or a set of decisions) has the property that whatever 

the initial state and initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the 

first decision. 

 

 

 

 
Figure 7 Suboptimization (principle of optimality). 

 

 



Recurrence Relationship.  

 

Suppose that the desired objective is to minimize the n-stage objective 

function f which is given by the sum of the individual stage returns: 

 
where the state and decision variables are related as 

 

 
Consider the first subproblem by starting at the final stage, i = 1.  

If the input to this stage S2 is specified, then according to the principle of 

optimality, X1 must be selected to optimize R1. Irrespective of what 

happens to the other stages, X1  must be selected such that R1(x1,s2) is an 

optimum for the input S2.  

 

If the optimum is denoted as  , we have 

 
 

This is called a one-stage policy since once the input state S2 is specified, 

the optimal values of R1, X1, and S1 are completely defined.  

Thus Eq. (9.11) is a parametric equation giving the optimum  as a 

function of the input parameter S2. 

 

Next, consider the second subproblem by grouping the last two stages 

together. 

 

If  denotes the optimum objective value of the second subproblem 

for a specified value of the input S3, we have 

 
The principle of optimality requires that x1 be selected so as to optimize R1 for 

a given S2. Since S2 can be obtained once x2 and S3 are specified, Eq. (9.12) 



can be written as 

 

 

 

Thus  represents the optimal policy for the two-stage subproblem. It can be 

seen that the principle of optimality reduced the dimensionality of the problem 

from two [in Eq. (9.12)] to one [in Eq. (9.13)]. This can be seen more clearly 

by rewriting Eq. (9.13) using Eq. (9.10) as 

 

 

In this form it can be seen that for a specified input S3, the optimum is 

determined 

 

solely by a suitable choice of the decision variable x2. Thus the optimization 

problem stated in Eq. (9.12), in which both X2  and x1 are to be simultaneously 

varied to produce the optimum f*, is reduced to two subproblems 

defined by Eqs. (9.11) and (9.13). Since the optimization of each of these 

subproblems involves only a single decision variable, the optimization is, in 

general, much simpler. 

This idea can be generalized and the ith subproblem defined by 

 
can be written as 

 

 

 
 

 

 

 

 



 

 

4 computational procedure in dynamic Programming 
The use of the recurrence relationship derived in Section 3 in actual computations is discussed in this 

section. As stated, dynamic programming begins by suboptimizing the last component, numbered 1. 

This involves the determination of 

 
 

 

 

 
Figure 8 Suboptimization of component 1 for various settings of the input state variable s2. 

 
 
 
 
 
 
 
If the calculations are to be performed on a computer, the results of suboptimization have to be stored 

in the form of a table in the computer. Figure 8 shows a typical table in which the results obtained from 

the suboptimization of stage 1 are entered. 



Next we move up the serial system to include the last two components. In this two-stage 

suboptimization, we have to determine 

 

 

 

 
shown in Fig. 9. 

 

 

 
For each setting of s3, draw a graph as 
shown above to obtain the following: 

 

 
 (b) Summary of stages 2 and 1 

Figure 9 Suboptimization of components 1 and 2 for various settings of the input 

state variable S3. 

 

 

 

 



 

 

 

 

 

 
 (b) Summary of stages i, i-1 ...2, and 1 

Figure 10 Suboptimization of components 1, 2, . . . , i for various settings of the input state variable Si+1 

 

 



 
 
5 Example Illustrating The Calculus Method Of Solution 

 
Example 2 The four-bar truss shown in Fig. 11 is subjected to a vertical load of 

2 X 105 Ib at joint A as shown. Determine the cross-sectional areas of the 

members (bars) such that the total weight of the truss is minimum and the 

vertical deflection of joint A is equal to 0.5 in. Assume the unit weight as 0.01 

lb/in3 and the Young's modulus as 20 X 106 psi. 

 

 

 



 

 

 
 

 
Thus the optimization problem can be stated as: 

 

[Q] Consider the problem of four-bar truss, which is formulated 

mathematically as a non linear programming problem: 

 
Minimize 

 
subject to 
 

 
Show that the problem can be posed as a multistage decision problem. Then obtain the 

optimum solution of it 

 
------------------------------------------------------------------------ 
Answer: 

 



 
Figure 9.12 Example 9.2 as a four-stage decision problem. 

 

 

 

 

 
Hence, from Eq. (E4), we have 

 



 

 

 

 
 

 

 



 

 

 

 

 



 

 

 

 



 
 


