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Ch1l: Classical Optimization Techniques

SINGLE-VARIABLE OPTIMIZATION

A function of one variable f(x) is said to have a relative or local minimumat x = x™ if
f(x*) < f(x* + h) for all sufficiently small positive and negative values of h.

fix)
A f(x)
x*, Minimum of fix)
! @
1x -
0 i X

A1, As, Az = Relative maxima

Ao = Global maximum

B,,B> = Relative minima

ftx) B1 = Global minimum

= X

Figure 1
[Q1] (a) Write down the theorems that states the conditions for which
the single variable optimization problem has its local optimum.



Theorem 1: Necessary Condition

If a function f(x) is defined in the interval a <x <b and have a relative minimum at x = x*,
where a < x* <b, and if the derivative df(x)/dx = f'(x™) exists as a finite number at x = x”,
then f'(x*) = 0.

Theorem 2: Sufficient Condition:

Let f'(x*) = f "(x*) = .... =f @ D(x*) = 0, butf ™ (x*) # 0. Then f(x*) is

(i) a minimum value of £ (x*) if £ (x*) > 0and n is even;

(i) a maximum value of f(x*) if f ™ (x*)< 0 and n is even;

(ii1) neither a maximum nor a minimum if n is odd.

(b) Use theorems in(a) to find the optimum values of
f(x) =12x5 — 45x* + 40x3 + 5

Answer:
f'(x) = 60x* — 3 % 60x3 + 60 * 2 x x?

= 60x%(x% —3x + 2)

=60x*(x —1D)(x—-2)=0
The extreme points are
x=0x=1landx =2

x=0 x=1 x =72
£ (x)=240x3 — 540x2 + 240x (1) = —60 £"(2) = 240
f"(0)=0 this point is relative maximumy| this point is relative minimum
We evaluate the next derivative | fiax = 12(1) —45 (1) +40(1) +5 fum=—11
f""(x)=3 * 240x? — 2 * 540x + 240| =12

£ (0)= 4240,

order of derivative is odd.
So this point is neither
maximum nor minimum

[6]Detect which of the following Mathematical statements is true and which is false. Write
the false one(s) in the correct case.

flx)




Figure 1

In Figure 1,

A is relative minimum

A, is Global Maximum

Az is relative Maximum

B, is Global minimum

GOl B|WIN -

B, is Global minimum

X[ [ X [ | X

f'(x*)=0.

The necessary condition for a function f(x) to have a relative minimum at x = x*, is

The sufficient condition for a function f(x) to have a relative minimum at x = x*
depends on the order (even- or odd) of the first non zero derivative of f(X)

< <

w

1SN

X <X

[7]Select the correct word

(1) A function of one variable f(x) is said to have a relative or local minimumat x = x* if
f(x*) ... f(x* + h) for all sufficiently small positive and negative values of h.

<

(a) (b)

=

(©)

(d)

<

Consider using the necessary and sufficient condition to find the optimum values of
f(x) = 12x° — 45x* + 40x3 + 5. Answer the following questions:

f'(x) =60x*(x — 1) (x—2) =0

The extreme points are
x=0,x=1landx =2

x=0 x=1 x =2
£ (x)= 240x3 — 540x% + 240x (1) = —60 £"(2) = 240
f"(0)=0 this point is relative maximum| this point is relative minimum
We evaluate the next derivative | fi., = 12(1) —45 (1) +40(1) +5 fum=—11

"' (x)=3 * 240x? — 2 » 540x + 240
£""(0)= +240,

order of derivative is odd.

So this point is neither
maximum nor minimum
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f'(x) = ax*(x — b)(x —¢)

Da=

(a) 60 (b) (c) (d)
b=

(2) (b) 1 ©) (d)
D=

(a) 2 (b) (©) (d)
The extreme point x = --- is neither maximum nor minimum

(a) 0 (b) (c) (d)
The extreme point x = --- is relative maximum

(a) 1 (b) (© (d)
The extreme point x = --- is relative minimum

(a) (b) (€) 2 (d)
Excercises:

(3)Find the maxima and minima, if any, of the functions

xd

x = Dx - 3)°

fx) =

fO) = 4x® — 18x% + 27x — 7

fx) = 10x® — 48x" + 15x* + 200x® — 120x% — 480x + 100




2.3 MULTIVARIABLE OPTIMIZATION WITH NO CONSTRAINTS

Definition: r_th Differential of f: If all partial derivatives of the function f through order r >1
exist and are continuous at a point X*, the polynomial

n n fl r. *
oy Wy K= x; dxj = = - A, (5 @)

\_.-—-—“vﬁu....-/

r summations

is called the r th differential of f at X*.

For Example :

whenr =1 and n = 3, we have

f_ aof aof aof
df(X*) = zhla g o hag

Which corresponds df = af d +-- af d +o= 2 dx3
whenr =2 and n = 3, we have
a*f(X*)
d*f(X*) =d’fe ¥, x¥ xF E Ehh
2 2 2

9 d , 8
= hi—3 (X¥) + 5 —5 (X*) + h3 —5 (X*
h'ﬁx%(x ) hzax%(x ) 39 ;( )

&f *f O
X*) + 2hh X*) + 2hh
Bxlﬂxg( )+ ,0x 3( )+ * 9x, 0x;

(X*)

The Taylor's series expansion of a function f (X) near a point X* is given by

1
£X) = FOX%) + dfOK") + oo dFK) + 5 dFOK)
oo+ J—V—'d”f(x*) + Ry(X*,h) (2.7)

Example 3 : Find the second-order Taylor's series approximation of the function



Fx1.X2,X3) = x35x3 + x;€°

near the point

1
X* = 0
-2

SOLUTION The second-order Taylor’s series approximation of the function
Jfabout point X* is given by

fXy=f o|+dfl O0)+=d*> O
_ _ 2! 5

| 1 1 1

P
gl ol=n2Ll o)+ o)+nX{ o
-2 3.1:, _ sz -2 313 )

|
= [he™ + hy(2x2X3) + Haxs + hyx €] 0 | = he™ + hye™*
-2

1 2 1 2 2 2
d
d’fl 0]=2 2 hh LA =(h%af+hzaf+h§ﬂ;
-2

i=1lj=1 Bx,-axj -2 E 2% 3.1'3

+ 2h,h,

1
f of o°f )

+ 2hyh + 2hh 0
0x; 0x; 3 3x, Axs : 3ﬂx| ax3/ \ _9



= [h} (0) + K3(2x3) + M3(x,€™) + 2 hy(0) + 2hy hs(2x)

1
+2h hy(e™]| O] = —4h}+ e %h5 + 2h hae?
-2

Thus the Taylor’s series approximation is given by

1 _ .
fX) =e 2 + e Xh + hy) + o (—4h3 + e R + 2h hye ™)

[Q2] (a) State and prove the theorems for which the
multivariable unconstrained optimization problem has its local
optimum.

Theorem 2.3: Necessary Condition If f(X) has an extreme point (maxi-

mum or minimum) at X = X* and if the first partial derivatives of f(X) exist
at X* then

f(X*)- —ﬁ(x*)-a (2.9)
ax,

2 (0 =

Proof: The proof given for Theorem 2.1 can easily be extended to prove the
present theorem. However, we present a different approach to prove this theo-
rem. Suppose that one of the first partial derivatives, say the kth one, does not
vanish at X*. Then, by Taylor’s theorem,

X=X*+h

fIX* + h) = f(X* + L h; a—f (X*) + — dﬂk’* + 6h),

that 1s,



d
f(X* + h) — f(X¥) = »"hai (X*) + — dﬂx* + 6h), 0<b <1

Since d’f(X* + 6h) is of order A7, the terms of order h will dominate the
higher-order terms for small h. Thus the sign of f(X* + h) — f(X*) is decided
by the sign of k, df(X*)/dx;. Suppose that 3f(X*)/dx, > 0. Then the sign of
fX* + h) — f(X*) will be positive for A, > 0 and negative for b, < 0. This
means that X* cannot be an extreme point. The same conclusion can be ob-
tained even if we assume that 3f(X*)/dx, < 0. Since this conclusion is in
contradiction with the original statement that X* is an extreme point, we may
say that df/dx;, = 0 at X = X*, Hence the theorem is proved.

Theorem 2.4: Sufficient Condition A sufficient condition for a stationary
point X* to be an extreme point is that the matrix of second partial derivatives
(Hessian matrix) of f(X) evaluated at X* is (i) positive definite when X* is a
relative minimum point, and (ii) negative definite when X* is a relative max-
imum point.

Proof: From Taylor’s theorem we can write

af(x*)+—-2 Ehh s

%
a 2' i=1j=1 a.x ax st*+ﬂh

FX* + h) = f(X*) + 2 h;

0< <1 (2.10)
Since X* is a stationary point, the necessary conditions give (Theorem 2.3)

K

—0, i=12,..n
axl‘

Thus Eq. (2.10) reduces to



1 f
FX* + h) — f(X*¥) = — 22 2 bk . 0<f<1

. : L
2! i=1j=1 3x5 axj X=X*+0h

Therefore, the sign of
SX* + h) — f(X¥)

will be same as that of

il 62

S 3wk 2T

i=1j=1 0x; O%;ly _x« 4 on

Q= ; ihh- oy (2.11)
VT ! 0x; 01y xe .

is positive. This quantity @ is a quadratic form and can be written in matrix
form as

Q = h'Jh|x_xx 2.12)
where
_[_9F ]
Jx=x+ = [ s (2.13)

[ 0% f 0% f 0%f
0x,0x; 0x;0x, 0x10x3
0% f 0% f 0% f
0x,0x; 0x,0x, 0x,0x;
0% f 0% f 0%f

[ 0x30x; 0x30x, 0Jx30x3]

is the matrix of second partial derivatives and is called the Hessian matrix of

JX).

Definition:

[Q3] (a) State 2 different definitions for the positiveness of a square
matrix. Then show which of them is suitable in application for Hessian
Matrix.



A matrix A will be positive definite if all its eigenvalues are positive;
that is, all the values of A that satisfy the determinantal equation
|JA—AIl =0
should be positive. Similarly, the matrix [A] will be negative definite if its
eigenvalues are negative.

Another test that can be used to find the positive definiteness of a matrix A
of order n involves evaluation of the determinants

A - ﬂnl,
a ap
Az — .
dy dy

ay dp dp dj,
dry dxy adxn dyy
A, = |ay ap ay 0 ay,
a, 4dp dpn e am:

The matrix A will be positive definite if and only if all the values A4,, 4,, A5,
..., A, are positive. The matrix A will be negative definite if and only if the
sign of 4; is (—1)’ for j = 1,2,. . . n. If some of the 4; are positive and the
remaining A; are zero, the matrix A will be positive semidefinite.

A matrix A will be positive definite if and only if all its determinants are positive;

A matrix A will be negative definite if and only if all its determinant A, satisfies:
(D% k=1,2,.

A matrix A will be semidefinite definite if some of its determinant are positive, and the
remaining are zeros

10



Saddle Point

In the case of a function of two variables, f(x,y), the Hessian matrix may be
neither positive nor negative definite at a point (x*,y*) at which

In such a case, the point (x*,y*) is called a saddle point.

The characteristic of a saddle point is that it corresponds to a relative minimum
or maximum of f(x,y) with respect to one variable , say, x (the other variable
being fixed at y = y*) and a relative maximum or minimum of f(x,y) with respect
to the second variable y (the other variable being fixed at x*).

flx,y)
A

Figure 2.5 Saddle point of the function f(x,y) = x* — y*.

11



1 | A matrix A will be positive definite if all its eigenvalues are positive;

2 | A matrix A will be positive definite if and only if all its determinants are
positive;

3 | A matrix A will be negative definite if and only if all its determinant A,

satisfies: (—1)*

4 | A matrix A will be semidefinite definite if some of its determinant are

positive, and the remaining are zeros

5 | A saddle point is corresponds to a relative minimum of f(x,y) with
respect to one variable and a relative maximum with respect to the
second variable

< X Y L=

(1) A matrix A will be negative definite if and only if all its determinant A, satisfies:

(a)

(=D*

(b)

(D"

(©

Gl

(d)

else

[Q3] (a) Define: positive definiteness of a square matrix-
Semidefinite Case- Saddle Point

[Q3] (b) Example : Find the extreme points of the function

flx,x) =x3 +x3 +2xf +4x5+ 6
The necessary condition is

LA
BX|

f

3x2

=37 +4x, =x,3x, +4) =0

=3x3+ 8 =x,(3x, + 8 =0

So

X1(3X1 + 4) =0
xZ(ng + 8) =0

12




—4 -8
X1 = 0,?, Xy = 0,_

Theses equations are satisfied at the points ’
—8\ (—4 -4 -8
©00.(0.5).(39).(57)

0,0), ©,-3, (-%0), and (-%-H

To find the nature of these extreme points, we have to use the sufficiency conditions. The second-order partial derivatives of fare
given by

2O _ 2Or _ %f  _

Ef" = 3x2| + 4.1'] 0x4? B 6x1 + 4’ 9x2 B 6x2 + 8’ 0x,0x; =0
3.7C|

d
g _ 3x3 + 8x,
axQ

02 02 6x, +4 0
I[ax Ofx 9% Ofx ]| The Hessian matrix of f is given by[ 10 6x- + 8
2

I 612f 1 alzf 2|

0x,0%4 axzasz

6x, + 4 0
0 6x,+8
the nature of the extreme point are as given below.
flx,x,) =x3 +x3 +2xf +4x5+ 6

1IfJ, = |6x; + 4| and J, = l, the values of J; and J, and

Value  Value
Point X of J, of J, Nature of J Nature of X FX)
(0,0) +4 +32 Positive definite Relative minimum 6
©0,-% +4 ~32  Indefinite Saddle point 418/27
(-%,0) -4 -32 Indefinite Saddle point 194/27
-3 =3 —4 +32 Negative definite ~ Relative maximum 50/3

Consider finding the extreme points of the function f(xy,x,) = x3 + x5 +
2x2 + 4x% + 6. Answer the following
(1) The necessary condition yields

@) x(Bx; +4)=0,x,3x,+8)=0 |(B)| xBx;—4)=0,x03x,+8)=0

)| x,(3x;+4)=0,x,3x,—8)=0](d) | Else

(2) The solutions of the necessary condition equations are

13




(a) xlzorgv x2=0;_?8 (b) x1=0,%4, x2 =0,%8
(c) X, = 0’_?4’ X, = 0’2 (d) | Else

(3) The necessary condition equations are satisfied at the points

@ | 0o,(30).05).(57) ®) | o, (o _?8) (_—4, 0), (%4%8)

3
©) ] 00),(%,0),(03),(5.5) (d) | Else

3 3°3

(3) The following point satisfies the necessary condition

@ = (b) E

)

-~
w|»{>°"|-{>
w|

(©) (‘_8 0) (d)

3 )

3)

(4)To find the nature of these extreme points, we use the sufficiency conditions.
The second-order partial derivatives of fare given by

@ | f __ 0f _ f _ ) | 9% _ 0%f _ f _
Ix? 0, i 6x, + 8, Ixiox, 6x, +4 Ix? 6xq + 4, FI 0, Ixi0x, 6x, + 8
© | 2% _ o*f _ *f _ | (d) [Else
6x2 6x1+4a > 6x2+8'6x16x2_0

(5) The Hessian matrix of f is given by [6"1 +4 0 ]

6x, + 8
(a) [0 6x; + 4] (b) [6x1 + 4 0 ]
[0 6x, + 8 0 6x, + 8
(c) [6x; +4 0] (d) | Else
|6x, +8 0]

(6) The nature of the extreme point (0,0) is

(a) Relative minimum (b) Saddle point (c) Relative maximum (d) | else

(7) The nature of the extreme point (O, _?8) is

(a) Relative minimum (b) Saddle point (C) Relative maximum (d) else

(8) The nature of the extreme point (_?4 0) is

(a) Relative minimum (b) Saddle point (C) Relative maximum (d) else

(9) The nature of the extreme point (_?4_?8) is

14




Relative maximum

(a) Relative minimum (b) Saddle point (C) (d) else
(10) The Relative maximum of the function is

[1] Answer whether each of the following quadratic forms is positive
definite, negative definite, or neither.

@ f=xi—x;
(b) f = 4x,x;

(©) f=xi+ 25
(d) f= —x7 + 4x,x, + dx3
@ f= —x7 + 4x;x; — 93 + 2x,x; + 8x,x3 — 41:%

(2) Match the following equations and their characteristics.

(@) f=4dx; — 3x;, + 2

b) f=2x; — 2 + (x; — 2)°
© f=—0 — 1) = (x; =2y
d f=xx

(&) f=x*

Relative maximum at (1, 2)
Saddle point at origin

No minimum

Inflection point at origin
Relative minimum at (1, 2)

(4) Determine whether each of the following matrices is positive
definite, negative definite, or indefinite by finding its eigenvalues.

[4]

[B]

Il

3
1

1

3
—1

-1
—1

15




-1 -2 -3
~14 30
a1=| 3 -1 4
0 42

(5) Determine whether each of the following matrices is positive
definite, negative definite, or indefinite by evaluating the signs of its
submatrices.

T3 1 =1
M= 1 3 -1
-1 -1 5.

4 2 -4

Bl=| 2 4 -2
-4 -2 4
S
[Cl=|-1 -2 -2
-1 -2 -3

4 -3 0]
[41=|-3 0 4
0 4 2]

(6) Express the function

f(x1,%0,%3) = —x2 — x5 4+ 2x,%, — x5 + 6x;x3 + 4x; — 5x3 + 2

In matrix form as

16



fX) = % XT[A]IX+ BTX +C

and determine whether the matrix [A] is positive definite, negative
definite, or indefinite.

(7) The profit per acre of a farm is given by
20.1‘| + '2613 + 4.1';.1'2 - 4,1[‘% - 3,.‘(%

where x; and x, denote, respectively, the labor cost and the fertilizer
cost. Find the values of x; and x, to maximize the profit.

where x1 and x2 denote, respectively, the labor cost and the fertilizer
cost. Find the values of X1 and X2 to maximize the profit.

Multivariable Optimization With Equality Constraints

In this section we consider the optimization of continuous functions subjected
to equality constraints:

Minimize f = f(X)
subject to (2.16)
gj(x) = 0> f 1,2,. . .M

Where

17



Here m is less than or equal to n; otherwise (if m > n), the problem becomes
overdefined and, in general, there will be no solution. There are several methods
available for the solution of this problem. The methods of direct substitution,
constrained variation, and Lagrange multipliers are discussed in the

following sections.

Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is theoretically
possible to solve simultaneously the m equality constraints and express any set
of m variables in terms of the remaining n - m variables. When these expressions
are substituted into the original objective function, there results a new

objective function involving only n - m variables. The new objective function

IS not subjected to any constraint, and hence its optimum can be found by using
the unconstrained optimization techniques discussed in Section 2.3,

[Q4] Example 2.6 Find the dimensions of a box of largest volume that
can be inscribed in a sphere of unit radius.

SOLUTION Let the origin of the Cartesian coordinate system xy, x», x5 be
at the center of the sphere and the sides of the box be 2x,, 2x,, and 2x;. The

3o gl la jhd Caai 3 S A og) sial (Say ana 5T Al ()5S Cuny (§ 520 eyl aa

18



< 2x1 - P(x1»x2;x3)

A

v

\

volume of the box is given by f(x; x,,x3) = 8x;x,x5

Since the corners of the box lie on the surface of the sphere of unit radius, x,,
X,, and x3 have to satisfy the constraint

x2+xi+xi=1

This problem has three design variables and one equality constraint. Hence
the equality constraint can be used to eliminate any one of the design variables
from the objective function. If we choose to eliminate x3;, Eq. (E;) gives

x=(1—-xi-x)"” (Es)
Thus the objective function becomes

flxx) = 8xx(l — x7 — x3)'”? (Ey)

f(xl‘xZ) = 8x,x, ’1 — x% — x%

which can be maximized as an unconstrained function in two variables.
The necessary conditions for the maximum of f give

2 -
1

d by

3_-;’; = 8x, [(l —xi — x)'" — 1 —x2— )7 =0 (Es)
ﬁ _ 2 2,172 x% | .

ax, = 8x, {(l X X3) (1 — I? — I%)uz— =0 (Ee)

19



Equations (Es) and (Eg) can be simplified to obtain
1 —2x7 —x3=0
1 —x3—2x5=0

from which it follows that x¥ = x¥ = 1/v/3 and hence x¥ = 1/+/3. This
solution gives the maximum volume of the box as

8

fmax = m
For the sufficient condition, it is clear that the Hessian matrix is

negative definite. Hence the point X; is maximum for the given
function.

1 | In the equality constraints optimization problem, the number of V
constraints must be less than or equal to the number of variable.

2 | If the number of constraints is greater than the number of variable inthe |
equality constraints optimization problem, the problem becomes
overdefined

3 | Max. f(x1 x,,%3) = 8x,x,%; subject to X7 + x5 + x3 = 1 is equivalent to v
MB.X. f(x]_’xz) = 8x1x2 1 - X% - X%
4 V
5 V
. . - 2
2.48 Minimize f = 9 — 8x; — 6x;, — 4x; + 2x;

+ 203 + x3 + 0% + 20, x;
subject to
X+ X+ 253 =3
by (a) direct substitution,

[Q2] Consider the problem

20




x2+x2+x3

Minimize f(X) = .
Subject to
g1(X) =x1—x,=0
GX)=x1+x,+x3=1
By

(a) Direct substitution
(b) [Q3] find the value of x, y, and z that maximize the function

_ 6xXyz
(C) f(X' Y Z) o X+2y+2z

(d)When x, y, and z are restricted by the relation xyz = 16.

Solution by the method of constrained variation

[1 (a)Discuss the basic idea of method of constrained variation for solving
multivariable optimization with equality constraints. Then show when the variation
dx1,dx2 form admissible variation.

(b) Derive the necessary condition in order to have X* as an extreme point
(minimum or maximum).

The basic idea used in the method of constrained variation is to find a closed-
form expression for the first-order differential of f(df) at all points at which
the constraints g;(X) = 0, j = 1,2,. . .,m, are satisfied. The desired optimum
points are then obtained by setting the differential df equal to zero. Before
presenting the general method, we indicate its salient features through the fol-
lowing simple problem withr = 2 and m = 1.

Minimize f(x,,x;) (2.17)

subject to
glx1,x) = 0 (2.18)
A necessary condition for f to have a minimum at some point (x{,x3) is that

the total derivative of f(x;,x,) with respect to x; must be zero at (x§,x3). By
setting the total differential of f(x;,x,) equal to zero, we obtain

21



d d
Y e+ L =0 (2.19)
ax, ax,

df

Since g(x{,x¥) = 0 at the minimum point, any variations dx, and dx, taken
about the point (xF.x¥) are called admissible variations provided that the new
point lies on the constraint:

Define: admissible variation.

X1,x2

gxF + dx), x5 + dx) =0 (2.20)

The Taylor’s series expansion of the function in Eq. (2.20) about the point
(xi,x5) gives

gt + dxy, x¥ + dxy)

d d
= gt xD) + 2 (FaDdg + 2 GhaHdn =0 (2.21)
ox; 0x,

where dx; and dx, are assumed to be small. Since g(x},x3) = 0, Eq. (2.21)
reduces (o

dg = -ig—dx, + % de, =0 at (xf.x)) (2.22)
31?] axz

Thus Eq. (2.22) has to be satisfied by all admissible variations. This is illus-
trated in Fig. 2.6, where PQ indicates the curve at each point of which Eq.

22



gx1x2)=0

'i-xl

(2.18) is satisfied. If A4 is taken as the base point (x{,x7), the variations in x;,
and x, leading to points B and C are called admissible variations. On the other
hand, the variations in x,; and x, representing point D are not admissible since
point D does not lie on the constraint curve, g(x,,x,) = 0. Thus any set of
variations (dx;, dx,) that does not satisfy Eq. (2.22) lead to points such as D
which do not satisfy constraint Eq. (2.18).
dg = 98 dx, + 98 de, =0 at (xf.x)) (2.22)
0x, 0x,

Assuming that 9g/dx, # 0, Eq. (2.22) can be rewritten as

o 08loxy |, 4
dx, = dg/ox, (x1,x2) dx (2.23)
This relation indicates that once the variation in x,; (dx,) is chosen arbitrarily,
the variation in x, (dx,) is decided automatically in order to have dx, and dx,
as a set of admissible variations. By substituting Eq. (2.23) in Eq. (2.19), we
obtain

—g—dx,+—‘3-f-dx2=0 (2.19)

df - 3x| 3):2
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df = of aglax, of
B dx, 0g/dx, dx,

*® -
(xi,x2)

The expression on the left-hand side is called the constrained variation of f.
Note that Eq. (2.24) has to be satisfied for all values of dx,. Since dx, can be

chosen arbitrarily, Eq. (2.24) leads to

(ﬂf g o 33)

3x| axz 3.1'2 3.1’1 - O (225)

* *
(x1,x2)

Equation (2.25) represents a necessary condition in order to have (x{,x5) as
an extreme point (minimum or maximum).

[1(c) Use the necessary condition derived in (b) to find the solution of the
optimization problem

Minimize f = k/xy?
Subject to x% + y2 = a?

This problem has two variables and one constraint; hence Eq. (2.25) can be
applied for finding the optimum solution. Since

f=hely™? (E)
g=x*+y'-d (Ey)
we have
9 _ ~2,,-2
ax —kx
of _ 13
ay —2kxy
ag
—= = 2x
dox
ag
2 =2
ay Y

Equation (2.25) gives
24



=0 (2.23)

* *
(x1,x2)

(6f g of ag)

6x| aX2 3x2 8x|

—kx 7y 72y) + 2k 'y @) =0 at (x*,y¥%)
that is,

y* = V2 (Es)

Thus The optimum values of x and y can be obtained from
Egs. (E;) and (E,) as

= a’ (E,)
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Solution by the Method of Lagrange Multipliers

[1(@) Derive the necessary condition for optimality in Lagrange multiplier method for a
problem of two variables and one constraint.

The basic features of the Lagrange multiplier method is given initially for a simple problem
of two variables with one constraint. The extension of the method to a general problem of n
variables with m constraints is given later.

Problem with Two Variables and One Constraint.
Consider the problem:

Minimize f(x,.x,)

subject to
gx1x) =0

For this problem, the necessary condition for the existence of an extreme point
at X = X*was found in Section 2.4.2 to be

(af dg _ of 38)

8x, aX2 0x2 axl

=0 (2-25)

Dividing by > = 0
2

(Bf _ dflax, og )
ﬂx1 agfaxl ﬂxi

=0 (2.32)

L.r:.,x;}

By defining a quantity A, called the Lagrange multiplier, as

_ affaxg
Equation (2.32) can be expressed as
d )
(—f- + A —3) =0 (2.34)
ox, Oxy /e 23y
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aﬂax;_)
A= —( (2.33)
ag/axz (x;..x;]
and Eq. (2.33) can be written as
af )
= 0 (2.35)
(B.Ig ox, {x1,x2)

In addition, the constraint equation has to be satisfied at the extreme point,
that is,

g(-xlr IE)i(xT.x;} =0 (2'36]

Thus Egs. (2.34) to (2.36) represent the necessary conditions for the point
(x7,x3) to be an extreme point.

Notice that the partial derivative (9g/dx,)|(,} .3 has to be nonzero to be able
to define A by Eq. (2.33). This is because the variation dx, was expressed in
terms of dx, in the derivation of Eq. (2.32) [see Eq. (2.23)]. On the other
hand, if we choose to express dx, in terms of dx,, we would have obtained the
requirement that (g/dx,)|; .5 be nonzero to define \. Thus the derivation of
the necessary conditions by the method of Lagrange multipliers requires that
at least one of the partial derivatives of g(x,,x,) be nonzero at an extreme point.

The necessary conditions given by Eqs. (2.34) to (2.36) are more cnmfnnnly
generated by constructing a function L, known as the Lagrange function, as

Lx.x0,N) = f(x.x) + Ag(x,x;) (2.37)

By treating L as a function of the three variables x,, x,, and A, the necessary
conditions for its extremum are given by

oL d dg
&x, (x1,x2,N) = 3_{ (x;,02) + A 3_| (x1,x) =0
EIL d dg
X1 X2,N) = f (x1,x7) + }\ 28 (x1.x2) =0 (2.38)
a X2 'a X2 2
BL

(«Ilrxz*k) gxixy) =0

Equations (2.38) can be seen to be same as Egs. (2.34) to (2.36). The sufficiency
conditions are given later
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[06](b) Example 2.9
Find the solution of

Minimize f = k/xy?

Subject to x% + y? = a*
using the necessary condition of Lagrange multiplier method
SOLUTION

The Lagrange function is

Lx,y,N) = fxy) + Ngx,y) = kx™'y™? + Mx? + ¥y — @)
The necessary conditions for the minimum of f(x, y) [Egs. (2.38)] give
aL

o 22 —
E» kx 74 20 = 0 (E,)
% - -1,,=3 —
% 2kx”'yr + 23N =0 (Ep)
oL
a—h=xz+y2—az=ﬁ (E;)
Equations (E1) and (E2) yield
k 2k
Py Ty
1 2
x 2 yZ

from which the relation x* = (INE) y* can be obtained. This relation, along
with Eq. (E;), gives the optimum solution as
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[Q5] State the necessary and sufficiency conditions for optimality of a
General Lagrange multiplier method.
Necessary Conditions for a General Problem.

The equations derived above can be extended to the case of a general problem with n
variables and m equality constraints:

Minimize f(X)

subject to (2.39)

gj(x) = 01 j = 1,2,. R (3

The Lagrange function, L, in this case is defined by introducing one Lagrange
multiplier A; for each constraint g;(X) as

L(xlrxl'.!' - osKps hlshzv' ' whm)
= fX) + Mgi(X) + MgoX) + 0+ AgnX) (2.40)

LG = 00 + ) g,
j=1

By treating L as a function of the » + m unknowns, x;, X5, . .., X,, A, Ay,
. » Am, the necessary conditions for the extremum of L, which also corre-

spond to the solution of the original problem stated in Eq. (2.39), are given
by

L S ;
L _F s \%_o ic1a. . .n .41

oL
_ = gJ(X) = 0’ j = 1,2.,+ . .M (242)
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Equations (2.41) and (2.42) represent n + m equations in terms of the n + m
unknowns, x; and A;. The solution of Egs. (2.41) and (2.42) gives

E *

X }\1

x3 A

X* = . and A\* = .
¥ ¥

X, N

The vector X* corresponds to the relative constrained minimum of f(X) (suf-
ficient conditions are to be verified) while the vector A* provides the sensitivity
information, as discussed in the next subsection.

Sufficiency Conditions for a General Problem

Theorem 2.6: Sufficient Condition A sufficient condition for f(X) to have
a relative minimum at X* is that the quadratic, Q, defined by

o L
Q=2 X dx; dx, (2.43)

evaluated at X = X* must be positive definite for all values of dX for which
the constraints are satisfied.
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[Q5](b)Example 2.10

Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal
to maximize its volume such that the total surface area is equal to Ao = 24 .

&
-----------------

y
Let the radius of the tin is r = x; and the length is h = x,.
respectively, the problem can be stated as:

Maximize f(x;,x;) = wX1X;

subject to
2ax} + 2mxyx, = Ay = 247

The Lagrange function is
LG = £OO + ) 49,00
j=1

L(x;x3\) = ®xix, + ?\(2fo + 27x,x, — Ap)

and the necessary conditions for the maximum of f give
oL
Fy = 27X X + 47Ax; + 27wAx; =0 (E)D
1
oL
— = x7 + 27Ax; = 0 (E,)
a'xz
aL
ﬁ = 27['.1% + 2Tx]x:; - AO =0 (Eg)

31



Equations (E,) and (E,) lead to

that is,

Xp = 3% (E4)

and Eqs. (E;) and (E,) give the desired solution as

AQ 172 Mﬂ)]ﬂ A(} )”Z
* _ (20 * o T2 ¥ = — —
ol (6«) X2 (31 , and A 2Ar

This gives the maximum value of f as

B A_a 172
7= (541)

If Ay = 24w, the optimum solution becomes

x{ =2, x¥=4, M= —1, and f* = l67

To see that this solution really corresponds to the maximum of f, we apply the
sufficiency condition of Eq. (2.44). In this case

2
L, = -3—12' = 2wx; + 4wA* = 4dn
Xt g+ )
L rL Ly, = 27x{ + 27 * =2
12 = = 1 = 27x T = 27
Oy Al xe sy |
L
Ly = 7= =0
3+t2 {X*, }‘*]
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Now since

dL
aA

L ' {x*' )‘*}
dx102

And since

dL
aA

21 WX* A%)
dx,0
And since

dL

aA

J is Indefinit

— = 2mx] + 27X, X,

= 27x}

—A0=0

= dmx¥ + 2mxF = 16n

o= 211'3:% + ZTxl.IQ i Ag =0

= 47

o= 211'3:% + ZTxl.IQ i Ag =0

0L
o107~ "

- 0%L 0%L 0%L
0x,0x; 0x;0x, 0Jx,01
0%L 0%L 0%L
0x,0x; 0x,0x, 0Jx,01
0%L 0%L 0%L
| 0Adx; 0Adx, 0A0A

4t  2m 1lé6m
H=|2r 0 477]
16mr 4m O
=+

Ji = [
12—[ 0

ol

—41

2



So the point is not max. nor min.

Another method for test the positiveness of Hessian matrix:

47 2w 161
H=|2n 0 41
16w 4n 0

|H— Al =0
[MZ; ! Oz—nl 146:] =0

167 41 0—21

272m% A+ 19273 =0

L
TR

Since the value of 4 is negative, the point (x;*, x,*)corresponds to the maximum
Of f.
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[Q5](c) Example 2.11
Find the maximum of the function

Xy = 2x; + x, + 10

subject to

gX) =x +2x5=3

using the Lagrange multiplier method.
SOLUTION The Lagrange function is given by

LX)\ =2x +x + 10 + M3 — x; — 2xd) (Ey)

The necessary conditions for the solution of the problem are

JL

_— = —_ :0

o, 2 —-A

oL

— =] —4}\xz=0 (Ez)
3x2

aL

-(ﬁ=3ux|—2x%=0

The solution of Egs. (E,) is

(L
X3 0.13 (ES)

A* =20

Sufficient condition 1Is HomeWork
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2.33 Find the admissible and constrained variations at the point X = zgj

for the following problem:

Minimize f = T+ (x — 1)

subject to
—2x3 +x, = 4
2.48 Minimize f = 9 — 8x; — 6x, — 4x; + 2x3
+ 2x3 4+ x3 + 2x,x) + 2xx;
subject to

x1+x2+2x3=3

by (a) direct substitution, (b) constrained variation, and (c¢) Lagrange
multiplier method.

[Q6] Consider the problem

2 2 2
Minimize f(X) = ’“Jr’;&
Subject to
g1(X) =x1—x, =0
gz(X) =x1+x2 +X3 = 1
By

(e) Constrained variation, and
(f) Lagrange multipliers method.

[Q7] (b) Minimize f(x) = “22+x4 (1)
Subjectto g;(X) =x; —x, =0, (2)
g2(X) =x; +x, +x3 =1(3)

By Lagrange multipliers method.
Answer:
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Substituting from 2 in 1 and 3, we obtain

2x2+x2

f&) =

,,g(X)=2x1+x3—1=0

2

[Q8] find the value of X, y, and z that maximize the function

( ) = 6xyz
fey,2) = X+ 2y+2z
When X, y, and z are restricted by the relation xyz = 16.
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Ch 2
Unconstrained Multivariable Optimization Techniques

This chapter deals with the various methods of solving the unconstrained min-
imization problem:

X
Find X = { . p which minimizes f(X) (6.1)

xl‘l
It is true that rarely a practical design problem would be unconstrained; still,
a study of this class of problems is important for the following reasons:

1. The constraints do not have significant influence in certain design prob-
lems.

2. Some of the powerful and robust methods of solving constrained min-
imization problems require the use of unconstrained minimization tech-
nigues.

3. The study of unconstrained minimization techniques provide the basic
understanding necessary for the study of constrained minimization meth-
ods.

4. The unconstrained minimization methods can be used to solve certain
complex engineering analysis problems. For example, the displacement

response (linear or nonlinear) of any structure under any specified load
condition can be found by minimizing its potential energy. Similarly,
the eigenvalues and eigenvectors of any discrete system can be found by
minimizing the Rayleigh quotient.

As discussed in Chapter 1, a point X* will be a relative minimum of f (X) if the necessary conditions
af

—X=X¥=0, i=12,...,n (6.2)
o0x;

are satisfied. The point X* is guaranteed to be a relative minimum if the Hes-
sian matrix is positive definite, that is,

2
Jxe = [y = [ aj ‘;x {K*)] = positive definite (6.3)
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Equations (6.2) and (6.3) can be used to identify the optimum point during numerical
computations. However, if the function is not differentiate, Egs. (6.2) and (6.3) cannot
be applied to identify the optimum point.

6.1.1 Classification of Unconstrained Minimization Methods

Several methods are available for solving an unconstrained minimization problem.

These methods can be classified into two broad categories as direct search methods and descent
methods as indicated in Table 6.1.

TABLE 6.1 Unconstrained Minimization Methods

Direct Search Methods - Descent Methods °
Random search method Steepest descent (Cauchy) method
Grid search method Fletcher-Reeves method
Univariate method Newton’s method
Pattern search methods Marquardt method
Powell’s method Quasi-Newton methods
Hooke—Jeeves method Davidon-Fletcher-Powell method
Rosenbrock’s method Broyden-Fletcher-Goldfarb-Shanno method

Simplex method

= Do not require the derivatives of the function.
® Require the derivatives of the function.

6.1.2 General Approach

All the unconstrained minimization methods are iterative in nature and hence
they start from an initial trial solution and proceed toward the minimum point
in a sequential manner. The general iterative scheme is shown in Fig. 6.3 as
a flow diagram. It is important to note that all the unconstrained minimization
methods (1) require an initial point X, to start the iterative procedure, and (2)
differ from one another only in the method of generating the new point X, |
(from X;) and in testing the point X; , ; for optimality.

[Q1]Draw the flowchart of general iterative scheme of unconstrained

multivariable optimization
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Start with a trial point X,

l

Seti=1

Y

Find f{X:}

'

Generate a new point % + 1 [

;

Find fiX; . 1)
! Seti=i+1
(Is convergence satisf ieﬂ?} T _+
Yeg
¥

Take Koy =X, )
and stop

Figure 6.3 General iterative scheme of optimization,

6.1.3 Rate of Convergence

Define

Different iterative optimization methods have different rates of convergence.

In general, an optimization method is said to have convergence of order p if
IX51 — X*I

X, — X+ =k, k=0, p=l (6.4)

where X, and X, , denote the points obtained at the end of iterations i and
i + 1, respectively, X* represents the optimum point, and |X|| denotes the
length or norm of the vector X:

IXI = ¥x7 + 22 + - - - + x2 (6.5)

Ifp=21and 0 <k <1, the method is said to be linearly convergent (corresponds to slow convergence),
If p = 2, the method is said to be quadratically convergent (corresponds to fast convergence). An
optimization method is said to have superlinear convergence (corresponds to fast convergence) if

Xy — XH
lim — ) (6.6
e X, - X1 3’
The definitions of rates of convergence given in Egs. (6.4) and (6.6) are ap-
plicable to single-variable as well as multivariable optimization problems. In
the case of single-variable problems, the vector, X;, for example, degenerates
to a scalar, x;.
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MCQ

1 | Some of the methods for solving constrained minimization \/
problems require the use of unconstrained minimization
techniques.

2 | The study of unconstrained minimization techniques provides the \/
basic understanding necessary for the study of constrained
minimization methods.

3 | All the unconstrained minimization methods are iterative in \/
nature.

4 | Different iterative optimization methods have the same rates of X
convergence.

5 | If we move along the gradient direction from any point in n- \/
dimensional space, the function value increases at the fastest rate.

6 | the gradient vector represents the direction of steepest descent. X

7 | the maximum rate of change of f at any point X is equal to the \/
magnitude of the gradient vector at the same point.

8 | Unconstrained Minimization Methods can be classified into two \/
categories as direct search methods and descent methods.

9 | Direct Search Methods require the derivatives of the function. X

10 | Descent Methods Require the derivatives of the function. \/
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4 Scaling of Design Variables

The rate of convergence of most unconstrained minimization methods can be
improved by scaling the design variables. For a quadratic objective function, the
scaling of the design variables changes the condition number of the Hessian
matrix. When the condition number of the Hessian matrix is 1, the steepest
descent method, for example, finds the minimum of a quadratic objective
function in one iteration.

If
f=3:X"4X

denotes a quadratic term, a transformation of the form

X1 u T2 |\ W
X = [R]Y or = [ ] 6.7)
X2 oy Il (2

can be used to obtain a new quadratic term a

$ YTA1Y = Y [RYAIRTY (6.8)

The matrix [R] can be selected to make [4] = [R1'[A1[R] diagonal (i.c., to
eliminate the mixed quadratic terms). For this, the columns of the matrix [R)
are to be chosen as the eigenvectors of the matrix [A]. Next the diagonal ele-
ments of the matrix [4] can be reduced to 1 (so that the condition number of

the resulting matrix will be 1) by using the transformation

y s O Z
Y={S]Z or " {= [ ! ] ' 6.9)
Y2 0 spllz

where the matrix [S] is given by

PR .
511 _‘jﬁhn
[S] = | (6.10)

0 Sy =
. 27 Vay |

Thus the complete transformation that reduces the Hessian matrix of f to an
identity matrix is given by

X = [RI[S1Z = [T1Z (6.11)




so that the quadratic term 3X'[4]X reduces to 5Z'[I1Z.

If the objective function is not a quadratic, the Hessian matrix and hence
the transformations vary with the design vector from iteration to iteration. For
example, the second-order Taylor’s series approximation of a general nonlin-
ear function at the design vector X; can be expressed as

fX) = ¢ + B'X + X"41X (6.12)
where
c = fX)) (6.13)
o
3x1 ;
B = : (6.14)
9
ax,

B A
ax3 Ix dx, dx,
[4] = : : (6.15)
o o
_Bx,, Gx, Bxf, X; -—

The transformations indicated by Eqs. (6.7) and (6.9) can be applied to the
matrix [4] given by Eq. (6.15). The procedure of scaling the design variables
is illustrated with the following example.

The condition number of an n Xn matrix, [A], is defined as

cond({A]) = [ifA1ll 417" =

where [|[4]]| denotes a norm of the matrix [4]. For example, the infinite norm of [A4] is defined

as the maximum row sum given by
"

Al = max 2 |a,l

lsisnj=I




If the condition number is close to 1, the round-off errors are expected to be small in dealing
with the matrix [4]. For example, if cond[4] is large, the solution vector X of the system of
equations [A]X = B is expected to be very sensitive to small variations in [4] and B. If cond[4]
is close to 1, the matrix [A] is said to be well behaved or well conditioned. On the other hand,
if cond[A] is significantly greater than 1, the matrix [A] is said to be not well behaved or ill
conditioned.

If the condition number is close to 1, the round-off errors are expected to be small in
dealing with the matrix H. For example, if condH is large, the solution vector X of
the system of equations HX = B is expected to be very sensitive to small variations
in [A] and B. If cond H is close to 1, the matrix [A] is said to be well behaved or well
conditioned. On the other hand, if cond H is significantly greater than 1, the matrix
[A ] is said to be not well behaved or ill conditioned.

MCQ

Example 6.2
Find a suitable scaling (or transformation) of variables to reduce the
condition number of the Hessian matrix of the following function to 1:

[, x) = 6x] — 6xx; + 2x3 — x; — 2x, (E))

SOLUTION
The quadratic function can be expressed as

fX) = B'X + 3X"[41X (E»)
where

X —1 12 _6
X=4 't B= , and [d] =

.x-z _2 _'6 4

As indicated above, the desired scaling of variables can be accomplished in two stages.

Stage 1: Reducing [A] to a Diagonal Form, [4]
The eigenvectors of the matrix [A] can be found by solving the eigenvalue
problem

(4] — N1l w; = 0 (E5)

where A, is the ith eigenvalue and w; is the corresponding eigenvector. In the
present case, the eigenvalues, A;, are given by
‘12 - N ~6

=N-16N+12=0 E
—64—)\,-! (Es)



which vield \, = 8 + /52 = 15.2111 and \, = 8 — /52 = 0.7889. The
eigenvector u; corresponding to A; can be found by solving Eq. (E;):

(4] — NUJTw; = 0

O
[12—7\. -—6] wi) (0 N o 0
—6 4 -1 ", = 0 or ( Dty 21 =
or U, = _0.5332!!”
Uy 1.0
ul —_ —
Us, ~0.5332
and
{12 -\ —6} {uu} {0} 12— %) p 0
= or — Ny, — =
—6 4 — N Luy, 0 i Dl
or u,, = 1.8685u,,
that is,

{u,z} [ 10 }
u —_ —
Y 1.8685

Thus the transformation that reduces [A4] to a diagonal form is given by

I L) (y
X = [R]Y = Y = E
[RIY = [n wl [—0-5352 1.8685} LJ (Es)



that is,
XI=yr+t»
Xy = ‘“0.5352}’1 + 1.8685}’2

This yields the new quadratic term as 5Y'[4]Y, where

19.5682 0.0 ]

i1 — T —_
[4] = [RT'[4][R] {0,0 3.5432

and hence the quadratic function becomes

fi, y2) = BIRIY + 3YT[A]Y
= 0.0704y, — 4.7370y, + 5 (19.5682)y7 + 3 (3.5432)y5 (Es)

Stage 2: Reducing [A] to a Unit Matrix
The transformation is given by Y = [S]Z, where

[ 1
(51 V19.5682 0 [0.2262 0.0 }
1 0.0 0.5313
| v3.5432 _
Stage 3: Complete Transformation
The total transformation is given by
X = [R]Y = [R][S]1Z = [T]Z (Eq)
where
(T] = [RY[S] = 1 | | I:0.2262 0 ]
B " -0.5352 1.8685] |0 0.5313
[ 0.2262 0.5313 ]
= (Eg)
| —0.1211 0.9927 |




or

x; = 0.2262z, + 0.5313z,
x, = —0.1211z, + 0.9927z,

With this transformation, the quadratic function of Eq. (E,) becomes

f@, ) = BITIZ + 3 Z"[T)[ANITZ
= 0.0160z, — 2.5167z, + 3 23 + 1 23 (Es)

The contours of the quadratic functions given by Eqs. (E,), (E¢), and (Eg) are
shown in Fig. 6.4a, b, and c, rcspcctivcly.




Part 2

Indirect search (descent) methods

Gradient of a function
Define
The gradient of a function is an n-component vector given by

o[y
nx1 l0x; dx, dx3 " ox,
The gradient has a very important property. If we move along the gradient
direction from any point in n-dimensional space, the function value increases
at the fastest rate. Hence the gradient direction is called the direction of
steepest ascent. Unfortunately, the direction of steepest ascent is a local prop-
erty and not a global one. This is illustrated in Fig. 6.15, where the gradient
vectors Vf evaluated at points 1, 2, 3, and 4 lie along the directions 11°, 22',
33’, and 44', respectively. Thus the function value increases at the fastest rate
in the direction 11’ at point 1, but not at point 2. Similarly, the function value
increases at the fastest rate in direction 22’ (33") at point 2(3), but not at point
3 (4). In other words, the direction of steepest ascent generally varies from
point to point, and if we make infinitely small moves along the direction of
steepest ascent, the path will be a curved line like the curve 1-2-3-4 in Fig.

6.15.
Since the gradient vector represents the direction of steepest ascent, the

negative of the gradient vector denotes the direction of steepest descent. Thus
any method that makes use of the gradient vector can be expected to give the
minimum point faster than one that does not make use of the gradient vector.
All the descent methods make use of the gradient vector, either directly or

Figure 6.15 Steepest ascent directions.



indirectly, in finding the search directions. Before considering the descent
methods of minimization, we prove that the gradient vector represents the di-
rection of steepest ascent.

[Q1] Prove that the gradient vector represents the direction of
steepest ascent.

Theorem 6.3 The gradient vector represents the direction of steepest ascent.
Proof: Consider an arbitrary point X in the n-dimensional space. Let f denote

the value of the objective function at the point X. Consider a neighboring point
X + dX with

dx,
dx,
dX = . (6.57)
dx,
where dx,, dx,, ... , dx, represent the components of the vector dX. The
magnitude of the vector dX, ds, is given by
dX" dX = (ds)* = _EI (dx,)’ (6.58)

If f + df denotes the value of the objective function at X + dX, the change
in f, df, associated with dX can be expressed as

df = ;I g_ dx, = VfT dX (6.59)

If u denotes the unit vector along the direction dX and ds the length of dX,
we can write

dX = uds (6.60)



The rate of change of the function with respect to the step length ds is given

by Eq. (6.59) as

rdX
ds

M=

=VfTu (6.61)

>

of dx; _
31‘,— ds - Vf

The value of df/ds will be different for different directions and we are inter-
ested in finding the particular step dX along which the value of df/ds will be
maximum. This will give the direction of steepest ascent.’ By using the defi-
nition of the dot product, Eq. (6.61) can be rewritten as

dr

o IV£1 Nlall cos 6 (6.62)

'In general, if df/ids = VfT u > 0 along a vector dX, it is called a direction of ascent, and if
dfids < 0, it is called a direction of descen:.

where [[Vf]| and [lu|| denote the lengths of the vectors ¥V and u, respectively,
and @ indicates the angle between the vectors Vf and u. It can be seen that
df/ds will be maximum when & = 0° and minimum when & = 180°. This
indicates that the function value increases at a maximum rate in the direction
of the gradient (i.e., when u is along Vf).

[Q2] Prove that the maximum rate of change of/at any point X is
equal to the magnitude of the gradient vector at the same point.
Then show what we can do if the Evaluation of the Gradient poses
certain problem

Theorem 6.4 The maximum rate of change of f at any point X is equal to
the magnitude of the gradient vector at the same point.

Proof: The rate of change of the function f with respect to the step length s
along a direction u is given by Eq. (6.62). Since df/ds is maximum when ¢ =
0° and u is a unit vector, Eq. (6.62) gives

(@)

= |Vrl

max

which proves the theorem.



6.10.1 Evaluation of the Gradient
[Q3]“The evaluation of the gradient poses certain problems”. Discuss this
sentence.

The evaluation of the gradient requires the computation of the partial derivatives

af !axf , i=1,2,.. . ft. There are three situations where the evaluation of
the gradient poses certain problems:

1. The function is differentiable at all the points, but the calculation of the
components of the gradient, df/dx;, is either impractical or impossible.

2. The expressions for the partial derivatives df/dx; can be derived, but they
require large computational time for evaluation.

3. The gradient Vf is not defined at all the points.

In the first case, we can use the forward finite-difference formula

X+ Axw) — f(X,)
axl - Ax; ’

=12,...,n (6.63)

6.11 steepest descent (Cauchy) method

The use of the negative of the gradient vector as a direction for minimization was first
made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X1
and iteratively move along the steepest descent directions until the optimum point is
found. The steepest descent method can be summarized by the following steps:

[Q4](a)Summarize the steps of steepest descent method for
Multivariable Unconstrained Minimization problem.

1. Start with an arbitrary initial point X,. Set the iteration number as i =
1.

2. Find the search direction S; as
S; = =Vf, = =VfX) (6.69)
3. Determine the optimal step length A} in the direction S; and set

Xipt =X £ NS =X, = N Vf, (6.70)

4. Test the new point, X, , for optimality. If X;,, is optimum, stop the
process. Otherwise, go to step 5.

5. Set the new iteration number i = i + 1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained minimization
technique since each one-dimensional search starts in the "best™ direction. However,
owing to the fact that the steepest descent direction is a local property, the method is
not really effective in most problems.



[Q4](b)Use steepest descent method to Minimize the

following Multivariable Unconstrained Minimization problem
starting from X={0 0)T

flxy,x) =x; —x, +2x% + 2x; x, + x%

SOLUTION

Iteration 1
The gradient of fis given by

vf df/ox, 1 + 4x; + 2x,
Clafex,) =1+ 2x + 2x,

1

e ]

To find X,, we need to find the optimal step length A{". For this, we minimize
FX; 4+ NS) = f(—=N, A) = A] — 2\, with respect to \;. Since df/d\, = 0
at A} = 1, we obtain

X, = X, + M\, = {3} 1 {_3 ) [_j

As V;, = VI(X,) = [:3 * gg}, X, is not optimum.

Iteration 2
1
S, = ~Vf, = ]

FXs + A8 = f(—=1 + M, 1+ Ay
=5\ — 25\ — 1

Therefore,

S,

To minimize



we set df/d\, = 0. This gives Ay’ = %, and hence

" -1 1(1 —-0.8
x40

Since the components of the gradient at X, Vfz = {__gg], are not zero, we

proceed to the next iteration.

Iteration 3

S v —0.2
Y
As
fXs + MS3) = f(—0.8 — 0.2\, 1.2 + 0.2)\y)
= 0.04\] —~ 0.08\; — 1.20, %f} =0atA = 1.0

Therefore,
<. + 2'S -0.8 10 -0.2 -1.0
= + = + 1. =
R = B TS 1.2 0.2 1.4
The gradient at X, is given by

Since Vfy # g , X, is not optimum and hence we have to proceed to the next

Vi, =

iteration. This process has to be continued until the optimum point, X* =

-1.0] .
{ l.SI’ is found.



Convergence Criteria. The following criteria can be used to terminate the it-
erative process:

1. When the change in function value in two consecutive iterations is small:

fXi1) — fX)
%) < g (6.71)

6.12 Conjugate Gradient (Fletcher-Reeves) Method

The convergence characteristics of the steepest descent method can be improved
greatly by modifying it into a conjugate gradient method (which can be considered
as a conjugate directions method involving the use of the gradient of the function).
We saw (in Section 6.7) that any minimization method that makes use of the
conjugate directions is quadratically convergent. This property of quadratic
convergence is very useful because it ensures that the method will minimize a
quadratic function in n steps or less. Since any general function can be
approximated reasonably well by a quadratic near the optimum point, any
quadratically convergent method is expected to find the optimum point in a finite
number of iterations.

We have seen that Powell's conjugate direction method requires n single variable
minimizations per iteration and sets up a new conjugate direction at the end of each
iteration. Thus it requires, in general, nz single-variable minimizations to find the
minimum of a quadratic function. On the other hand, if we can evaluate the gradients
of the objective function, we can set up a new conjugate direction after every one-
dimensional minimization, and hence we can achieve faster convergence. The
construction of conjugate directions and development of the Fletcher-Reeves method
are discussed in this section.

6.12.1 Development of the Fletcher-Reeves Method

[Q5] Develop the Fletcher-Reeves Method
Consider the development of an algorithm by modifying the steepest descent
method applied to a quadratic function f(X) = 1X"AX + B’X + C by impos-
ing the condition that the successive directions be mutually conjugate. Let X,
be the starting point for the minimization and let the first search direction be
the steepest descent direction:

S, = -Vf, = -AX, - B (6.74)
X, = X, + \'S, (6.75)

or
S, = X, — X (6.76)

AT



where A} is the minimizing step length in the direction S, so that
ST Vflx, = 0 (6.77)
Equation (6.77) can be expanded as
SITAX, + A\/S) + B] =0 (6.78)
from which the value of AT can be found as

—-ST(AX, + B) S vf,

A = -5V ,
! STAS, ST AS, (6.79)

Now express the second search direction as a linear combination of S; and
-V

S, = =V + 8,8, (6.80)
where (3, is to be chosen so as to make S, and S, conjugate. This requires that
STAS, =0 (6.81)
Substituting Eq. (6.80) into Eq. (6.81) leads to
SIA (~Vf, + B:S) =0 (6.82)
Equations (6.76) and (6.82) yield

X, - X'
~E =R A s - Sy = 0 (6.83)
1

The difference of the gradients (Vf; — Vf;) can be expressed as
(Vfy — Vfi) = (AX; + B) — (AX, + B) = AX; — X;) (6.84)
With the help of Eq. (6.84), Eq. (6.83) can be written as

(Vf — VH(VH — B,S) =0 (6.85)

where the symmetricity of the matrix A has been used. Equation (6.85) can be
expanded as

VAIVE -V VAR =B V18 + B, V18 =0 (6.86)
Since Vf1 Vf, = -ST Vf, = 0 from Eq. (6.77), Eq. (6.86) gives

_VfIVhE _VfiVh

b=~ 9Ts, T vy,

(6.87)



Next we consider the third search direction as a linear combination of §,, S,,
and —Vf, as

Sy = =Vfi + 5.8, + 65, (6.88)

where the values of 83 and 8, can be found by making S; conjugate to S, and
S,. By using the condition §|AS, = 0, the value of §; can be found to be zero
(see Problem 6.40). When the condition S1AS; = 0 is used, the value of 3,
can be obtained as (see Problem 6.41)

_ VIV
By = vy, (6.89)
so that Eq. (6.88) becomes
S = =-VhH + 5.5, (6.90)

where 35 is given by Eq. (6.89). In fact, Eq. (6.90) can be generalized as

Sj = _v‘f: + ﬁjS‘:_| {6.9]]
where
vf! VS,
= 6.92
7T (6.9

Equations (6.91) and (6.92) define the search directions used in the Fletcher—
Reeves method [6.13].



Part 2

Indirect search (descent) methods

Gradient of a function
Define
The gradient of a function is an n-component vector given by

o[y
nx1 l0x; dx, dx3 " ox,
The gradient has a very important property. If we move along the gradient
direction from any point in n-dimensional space, the function value increases
at the fastest rate. Hence the gradient direction is called the direction of
steepest ascent. Unfortunately, the direction of steepest ascent is a local prop-
erty and not a global one. This is illustrated in Fig. 6.15, where the gradient
vectors Vf evaluated at points 1, 2, 3, and 4 lie along the directions 11°, 22',
33’, and 44', respectively. Thus the function value increases at the fastest rate
in the direction 11’ at point 1, but not at point 2. Similarly, the function value
increases at the fastest rate in direction 22’ (33") at point 2(3), but not at point
3 (4). In other words, the direction of steepest ascent generally varies from
point to point, and if we make infinitely small moves along the direction of
steepest ascent, the path will be a curved line like the curve 1-2-3-4 in Fig.

6.15.
Since the gradient vector represents the direction of steepest ascent, the

negative of the gradient vector denotes the direction of steepest descent. Thus
any method that makes use of the gradient vector can be expected to give the
minimum point faster than one that does not make use of the gradient vector.
All the descent methods make use of the gradient vector, either directly or

Figure 6.15 Steepest ascent directions.



indirectly, in finding the search directions. Before considering the descent
methods of minimization, we prove that the gradient vector represents the di-
rection of steepest ascent.

[Q1] Prove that the gradient vector represents the direction of
steepest ascent.

Theorem 6.3 The gradient vector represents the direction of steepest ascent.
Proof: Consider an arbitrary point X in the n-dimensional space. Let f denote

the value of the objective function at the point X. Consider a neighboring point
X + dX with

dx,
dx,
dX = . (6.57)
dx,
where dx,, dx,, ... , dx, represent the components of the vector dX. The
magnitude of the vector dX, ds, is given by
dX" dX = (ds)* = _EI (dx,)’ (6.58)

If f + df denotes the value of the objective function at X + dX, the change
in f, df, associated with dX can be expressed as

df = ;I g_ dx, = VfT dX (6.59)

If u denotes the unit vector along the direction dX and ds the length of dX,
we can write

dX = uds (6.60)



The rate of change of the function with respect to the step length ds is given

by Eq. (6.59) as

rdX
ds

M=

=VfTu (6.61)

>

of dx; _
31‘,— ds - Vf

The value of df/ds will be different for different directions and we are inter-
ested in finding the particular step dX along which the value of df/ds will be
maximum. This will give the direction of steepest ascent.’ By using the defi-
nition of the dot product, Eq. (6.61) can be rewritten as

dr

o IV£1 Nlall cos 6 (6.62)

'In general, if df/ids = VfT u > 0 along a vector dX, it is called a direction of ascent, and if
dfids < 0, it is called a direction of descen:.

where [[Vf]| and [lu|| denote the lengths of the vectors ¥V and u, respectively,
and @ indicates the angle between the vectors Vf and u. It can be seen that
df/ds will be maximum when & = 0° and minimum when & = 180°. This
indicates that the function value increases at a maximum rate in the direction
of the gradient (i.e., when u is along Vf).

[Q2] Prove that the maximum rate of change of/at any point X is
equal to the magnitude of the gradient vector at the same point.
Then show what we can do if the Evaluation of the Gradient poses
certain problem

Theorem 6.4 The maximum rate of change of f at any point X is equal to
the magnitude of the gradient vector at the same point.

Proof: The rate of change of the function f with respect to the step length s
along a direction u is given by Eq. (6.62). Since df/ds is maximum when ¢ =
0° and u is a unit vector, Eq. (6.62) gives

(@)

= |Vrl

max

which proves the theorem.



6.10.1 Evaluation of the Gradient
[Q3]“The evaluation of the gradient poses certain problems”. Discuss this
sentence.

The evaluation of the gradient requires the computation of the partial derivatives

af !axf , i=1,2,.. . ft. There are three situations where the evaluation of
the gradient poses certain problems:

1. The function is differentiable at all the points, but the calculation of the
components of the gradient, df/dx;, is either impractical or impossible.

2. The expressions for the partial derivatives df/dx; can be derived, but they
require large computational time for evaluation.

3. The gradient Vf is not defined at all the points.

In the first case, we can use the forward finite-difference formula

X+ Axw) — f(X,)
axl - Ax; ’

=12,...,n (6.63)

6.11 steepest descent (Cauchy) method

The use of the negative of the gradient vector as a direction for minimization was first
made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X1
and iteratively move along the steepest descent directions until the optimum point is
found. The steepest descent method can be summarized by the following steps:

[Q4](a)Summarize the steps of steepest descent method for
Multivariable Unconstrained Minimization problem.

1. Start with an arbitrary initial point X,. Set the iteration number as i =
1.

2. Find the search direction S; as
S; = =Vf, = =VfX) (6.69)
3. Determine the optimal step length A} in the direction S; and set

Xipt =X £ NS =X, = N Vf, (6.70)

4. Test the new point, X, , for optimality. If X;,, is optimum, stop the
process. Otherwise, go to step 5.

5. Set the new iteration number i = i + 1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained minimization
technique since each one-dimensional search starts in the "best™ direction. However,
owing to the fact that the steepest descent direction is a local property, the method is
not really effective in most problems.



[Q4](b)Use steepest descent method to Minimize the

following Multivariable Unconstrained Minimization problem
starting from X={0 0)T

flxy,x) =x; —x, +2x% + 2x; x, + x%

SOLUTION

Iteration 1
The gradient of fis given by

vf df/ox, 1 + 4x; + 2x,
Clafex,) =1+ 2x + 2x,

1

e ]

To find X,, we need to find the optimal step length A{". For this, we minimize
FX; 4+ NS) = f(—=N, A) = A] — 2\, with respect to \;. Since df/d\, = 0
at A} = 1, we obtain

X, = X, + M\, = {3} 1 {_3 ) [_j

As V;, = VI(X,) = [:3 * gg}, X, is not optimum.

Iteration 2
1
S, = ~Vf, = ]

FXs + A8 = f(—=1 + M, 1+ Ay
=5\ — 25\ — 1

Therefore,

S,

To minimize



we set df/d\, = 0. This gives Ay’ = %, and hence

" -1 1(1 —-0.8
x40

Since the components of the gradient at X, Vfz = {__gg], are not zero, we

proceed to the next iteration.

Iteration 3

S v —0.2
Y
As
fXs + MS3) = f(—0.8 — 0.2\, 1.2 + 0.2)\y)
= 0.04\] —~ 0.08\; — 1.20, %f} =0atA = 1.0

Therefore,
<. + 2'S -0.8 10 -0.2 -1.0
= + = + 1. =
R = B TS 1.2 0.2 1.4
The gradient at X, is given by

Since Vfy # g , X, is not optimum and hence we have to proceed to the next

Vi, =

iteration. This process has to be continued until the optimum point, X* =

-1.0] .
{ l.SI’ is found.



Convergence Criteria. The following criteria can be used to terminate the it-
erative process:

1. When the change in function value in two consecutive iterations is small:

fXi1) — fX)
%) < g (6.71)

6.12 Conjugate Gradient (Fletcher-Reeves) Method

The convergence characteristics of the steepest descent method can be improved
greatly by modifying it into a conjugate gradient method (which can be considered
as a conjugate directions method involving the use of the gradient of the function).
We saw (in Section 6.7) that any minimization method that makes use of the
conjugate directions is quadratically convergent. This property of quadratic
convergence is very useful because it ensures that the method will minimize a
quadratic function in n steps or less. Since any general function can be
approximated reasonably well by a quadratic near the optimum point, any
quadratically convergent method is expected to find the optimum point in a finite
number of iterations.

We have seen that Powell's conjugate direction method requires n single variable
minimizations per iteration and sets up a new conjugate direction at the end of each
iteration. Thus it requires, in general, nz single-variable minimizations to find the
minimum of a quadratic function. On the other hand, if we can evaluate the gradients
of the objective function, we can set up a new conjugate direction after every one-
dimensional minimization, and hence we can achieve faster convergence. The
construction of conjugate directions and development of the Fletcher-Reeves method
are discussed in this section.

6.12.1 Development of the Fletcher-Reeves Method

[Q5] Develop the Fletcher-Reeves Method
Consider the development of an algorithm by modifying the steepest descent
method applied to a quadratic function f(X) = 1X"AX + B’X + C by impos-
ing the condition that the successive directions be mutually conjugate. Let X,
be the starting point for the minimization and let the first search direction be
the steepest descent direction:

S, = -Vf, = -AX, - B (6.74)
X, = X, + \'S, (6.75)

or
S, = X, — X (6.76)

AT



where A} is the minimizing step length in the direction S, so that
ST Vflx, = 0 (6.77)
Equation (6.77) can be expanded as
SITAX, + A\/S) + B] =0 (6.78)
from which the value of AT can be found as

—-ST(AX, + B) S vf,

A = -5V ,
! STAS, ST AS, (6.79)

Now express the second search direction as a linear combination of S; and
-V

S, = =V + 8,8, (6.80)
where (3, is to be chosen so as to make S, and S, conjugate. This requires that
STAS, =0 (6.81)
Substituting Eq. (6.80) into Eq. (6.81) leads to
SIA (~Vf, + B:S) =0 (6.82)
Equations (6.76) and (6.82) yield

X, - X'
~E =R A s - Sy = 0 (6.83)
1

The difference of the gradients (Vf; — Vf;) can be expressed as
(Vfy — Vfi) = (AX; + B) — (AX, + B) = AX; — X;) (6.84)
With the help of Eq. (6.84), Eq. (6.83) can be written as

(Vf — VH(VH — B,S) =0 (6.85)

where the symmetricity of the matrix A has been used. Equation (6.85) can be
expanded as

VAIVE -V VAR =B V18 + B, V18 =0 (6.86)
Since Vf1 Vf, = -ST Vf, = 0 from Eq. (6.77), Eq. (6.86) gives

_VfIVhE _VfiVh

b=~ 9Ts, T vy,

(6.87)



Next we consider the third search direction as a linear combination of §,, S,,
and —Vf, as

Sy = =Vfi + 5.8, + 65, (6.88)

where the values of 83 and 8, can be found by making S; conjugate to S, and
S,. By using the condition §|AS, = 0, the value of §; can be found to be zero
(see Problem 6.40). When the condition S1AS; = 0 is used, the value of 3,
can be obtained as (see Problem 6.41)

_ VIV
By = vy, (6.89)
so that Eq. (6.88) becomes
S = =-VhH + 5.5, (6.90)

where 35 is given by Eq. (6.89). In fact, Eq. (6.90) can be generalized as

Sj = _v‘f: + ﬁjS‘:_| {6.9]]
where
vf! VS,
= 6.92
7T (6.9

Equations (6.91) and (6.92) define the search directions used in the Fletcher—
Reeves method [6.13].



6.12.2 Fletcher-Reeves Method

[Q14](a)Summarize the steps of iterative procedure of Fletcher-Reeves method for Multivariable
Unconstrained Minimization problem.

The iterative procedure of Fletcher-Reeves method can be stated as follows:

1. Start with an arbitrary initial point X,.
2. Set the first search direction 8§, = -Vf(X,) = —Vf,.
3. Find the point X, according to the relation

x: = X| + }HITS|

where A{ is the optimal step length in the direction S,. Set i = 2 and go
to the next step.

4. Find Vf, = V£(X,), and set

VA I*

S, = —vf + il
S A/

Si- (6.93)

5. Compute the optimum step length A in the direction S;, and find the
new point

K‘-...| —_ K,- + }\:FS, (6'94}

6. Test for the optimality of the point X; , ;. If X, ., is optimum, stop the
process. Otherwise, set the value of § = i + 1 and go to step 4.



[Q14](b) Use Fletcher-Reeves Method to minimize
the following multivariable Unconstrained Minimization problem

starting from X= {0 0)'
Minimize f(x{,%;) = x; —x, +2x% + 2x; x, + x5

SOLUTION
Iteration 1

of {aﬂaﬂ - [ 1 + 4x, + sz}
/= aflax,) (=1 + 2x, + 2x,
1
Vi = V(X)) = [_1]

The search direction is taken as §;, = =V/f, = {_ }J To find the optimal step

length A} along S,, we minimize f(X; + \;S,) with respect to ;. Here
Xy + NS = f(=Ni, +X) = N — 2\,

df *
Y0 at NF=1
N, a M



Therefore,

X, = X, + NS, = [3 * ‘I_:J ) {"3

o [&ﬂ&xll [ | + 4x, + 212]
Caflax,) (=1 + 2%, + 2x
Iteration 2 f1ox, | ’

Since Vf, = VA(X,) = [ 1} Eq. (6.93) gives the next search direction as

l?fﬂl
= -V
R 7Tk
where
VAP =2 and |VA|* =2
Therefore,



fxx) = x — x + 20 + 205 + X3
To find Ay, we minimize

JXy + M 8) =f(—1,1 +2N\)
= =1 = (1 4+20) +2=2(1 +2\) + (1 + 2)\,)°
=4:\§_2h2_1

with respect to \,. As df/dh; = 8\, — 2 = 0 at \J' = 3, we obtain

N -1 1 (0 -1
xﬁxgﬂzsz{ IEWL}:{ IJ

[&ﬂ&xll_[ l+4.r|+21'2] I~ 0
3}3"3.1‘; - -1 4+ 2%, + 2x, fj_ f( 3)_ ﬂa

Il

vf



" _[aﬂaxl}'[ e ”I?] - W= Vi) = |
/= af/dx; - =1 + 2x; + 2x, X3={ 1.51 3 3 ﬂ-:

Thus the optimum point is reached in two iterations



Ch3: Constrained optimization techniques
7.1 INTRODUCTION

This chapter deals with techniques that are applicable to the solution of the
constrained optimization problem:

Find X which minimizes f(X)
subject to

gj(x} = 05 j — 1,2“ . .._,J'ﬂ
hWX) =0, k=12,..p (7.1)

There are many techniques available for the solution of a constrained nonlinear
programming problem. All the methods can be classified into two broad cat-
egories: direct methods and indirect methods, as shown in Table 7.1. In the
direct methods, the constraints are handled in an explicit manner, whereas in
most of the indirect methods, the constrained problem is solved as a sequence
of unconstrained minimization problems. We discuss in this chapter all the
methods indicated in Table 7.1.




TABLE 7.1 Constrained Optimization Techniques

Direct Methods Indirect Methods
Random search methods Transformation of variables technique
Heuristic search methods Sequential unconstrained minimization
Complex method techniques
Objective and constraint approximation Intenior penalty function method
methods Exterior penalty function method
Sequential linear programming Augmented Lagrange multiphier
method method
Sequential quadratic programming
method

—— Methods of feasible directions —
Zoutendijk’s method
Rosen’s gradient projection method
Generalized reduced gradient method




Indirect methods
3.1 Transformation techniques

[Q1] discuss transformation technique as an indirect method for solving constrained optimization
problem.

If the constraints gj(X) are explicit functions of the variables x- and have certain simple forms, it may be
possible to make a transformation of the independent variables such that the constraints are satisfied
automatically . Thus it may be possible to convert a constrained optimization problem into an unconstrained
one by making change of variables. Some typical transformations are indicated below:

If lower and upper bounds on x_are specified as

a<x<b t',-ﬂ.r,-ﬂu;

These can be satisfied by transformation of the variable X as
. -2
x=a+(b_a) Slnzy. x;p = & + (u; — 1) sin” y;
' where y, is the new variable, which can take any value.

2. If a variable x; is restricted to lie in the interval (0,1), we can use the
transformation:




2. If a vanable x; is restricted to lie in the interval (0,1)., we can use the

transformation:
e ain 2 _ 2
X =sin“y , X = Cos°y ,
i eyl-l i y_z i
x = —,0or X =——
i ey +e Y, i 1+y

3. If the vanable x; is constrained to take only positive values, the trans-
formation can be

x;=abs(y), x, =y or x;=¢" (7.151)




4. If the variable is restricted to take values lying only in between -1 and
1, the transformation can be

+ i
X; =8my, X;=C08y, Of X =-—; 1.152
y y L+ (7.152)

Note the following aspects of transformation techniques:
1. The constraints gj(X) have to be very simple functions of x..
2. For certain constraints it may not be possible to find the necessary

transformation.

R




3. If it is not possible to eliminate all the constraints by making change of
variables, it may be better not to use the transformation at all. The partial
transformation may sometimes produce a distorted objective function
which might be more difficult to minimize than the original function.

To illustrate the method of transformation of variables, we consider the
following problem.

R




[Q2] Find the dimensions of a rectangular prism type box that has the largest
volume when the sum of its length, width, and height is limited to a maximum
value of 60 in. and its length is restricted to a maximum value of 36 in.

SOLUTION Let x;, x5, and x; denote the length, width, and height of the
box, respectively. The problem can be stated as follows: !

Maximize f(xl, XZ,Xg) = X1X2X3 %
subject to E,
Xpt X +x < 60

x = 36 (Es)
X; > 0,- | = 1,2,3 (Ed)

By introducing new variables as







I|+.1'3+If3560

I|536

=20, i=123

|

Vi =X, Y2=X, Yya=x1 +x +x3 (Es)

oT
Xy =YV, X2 =Y, X3 =Y3 =Y — W (Es)
the constraints of Eqgs. (E,) to (E;) can be restated as

0=y =36 0=<y, <60, 0=y, <60 (E,)

where the upper bound, for example, on y, is obtained by setting x;, = x; = ()
in Eq. (E;). The constraints of Eq. (E;) will be satisfied automatically if we
define new variables z;, 1 = 1,2,3, as




Xy =Y, X2 = Y2, X3 = Y3 — Y — W
the constraints of Eqs. (E;) to (E4) can be restated as

0=y, =36, 0=y, =60, 0=y; =060

where the upper bound, for example, on y; is obtained by setting x;, = x3 = 0
in Eq. (E,). The constraints of Eq. (E;) will be satisfied automatically if we
define new variables z;, ¢ = 1,2.,3, as

y, = 36sin’z;, y, = 60 sin’zy, y; = 60 sin’z, (Ey)

Thus the problem can be stated as an unconstrained problem as follows:

3/7/2023 10




Maximize f(xq1,X5,X3) = X1X5X3

Xy =¥V, X2= Y2, X3 = Y3 — Y1 — W

y, = 36 sinzzl, y, = 60 sinzzz.. y; = 60 sin2z3

Maximize f(z,,23.23)

= yAys — Y1 — ) (Es)

= 2160 sin’z;sin’z,(60 sin’z; — 36 sin’z; — 60 sin’z
| 2 3 | 2

3/7/2023 11




Maximize f(z,,2,23)

= 2160 sin’z;sin’z,(60 sin°z; — 36 sin’z, — 60 sin’zy)

The necessary conditions of optimality yield the relations

% = 259,200 sin z; cos z; sin’z, (sin’z; — % sin’z, — sin’zy) = 0
1
(Eso)
d L . | |
a—f = 518,400 smzzl SIn 2y COS 2, (551n123 -~ ,-f’]smiz, - smzzz) = ()
&)

(Ei)

3/7/2023 12




d . : . . .
ﬂ_f = 259,200 sin z, cos z; smlzg (51“233 - gsmzz. - smzzz} =0
g

of

P = 518,400 sin’z, sin z, cos z, (gsinlzg, - %sinlz. - §in'z,) = 0
%)

o

333

= 259,200 sin’z, sin’z sin z; cos 23 = 0 (Ein)

3/7/2023 13




of af

%, = 259,200 sin 2, cos z, sinz, (sin’zy — & sin’z; — sin’zy) = 0 5. = 518,400 sin’z, sin z, cos z (3sin’z; — fgsin’z, — sin’z;) = 0
21 (%
of
of = =
32. 2
259,200 sin z, cos z; Sin222 =0 51&4% Sinzzl sin HC0SZ = ()
. . . l ' ' .
(sin’zy — gsmzz. — sin’zy) = 0 (gsm2z3 - ,%smzz, - smzzz) = ()
sin 2y €0s 7, $in"z, = 0 sin’zy $in 2> €08 2, = (

. 6 . . | . : ;
sin’zy — § sin’zy — sin’z, =0 ssin'z; = =sinz, = sin’z, = 0

3/7/2023 14




sin Z) COS Z, Sin2Z2 =0 Sin22| Sin 7, C0S ) = O

(Eyo) 3

: : . E
ssin'zy = msin'z, = sin'z, = 0 En)

sin’zy — ¢ sin’z; — sin’z, = 0

sin‘z sin‘z sin 73 cos 3 = 0 (Ey)

Equation (E,,) gives the nontrivial solution as cos z; = 0 or sin’z; = 1. Hence
Egs. (E,o) and (E,)) yield sinz, = % and SiHZZQ = % Thus the optimum solution
is given by x; =20 1n., x3 = 20 in., x3 = 20 in., and the maximum volume
= 8000 in’.
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Ch 5 Dynamic Programming
Introduction

sequential decision problems- multistage decision problems

In most practical problems, decisions have to be made sequentially at
different points in time, at different points in space, and at different
levels, say, for a component, for a subsystem, and/or for a system. The
problems in which the decisions are to be made sequentially are called
sequential decision problems.

Since these decisions are to be made at a number of stages, they are also
referred to as multistage decision problems. Dynamic programming is a
mathematical technique well suited for the optimization of multistage
decision problems.

The dynamic programming technique, when applicable, represents or
decomposes a multistage decision problem as a sequence of single-stage
decision problems.

Thus an N-variable problem is represented as a sequence of N single-
variable problems that are solved successively.

In most cases, these N subproblems are easier to solve than the original
problem.

The decomposition to N subproblems is done in such a manner that the
optimal solution of the original N-variable problem can be obtained from
the optimal solutions of the N one-dimensional problems.

Multistage decision problems can also be solved by direct application of
the classical optimization techniques.(MCQ TF)

However, this requires the number of variables to be small, the functions
involved to be continuous and continuously differentiable, and the
optimum points not to lie at the boundary points. (MCQ TF)

Further, the problem has to be relatively simple so that the set of resultant
equations can be solved either analytically or numerically.



The nonlinear programming techniques can be used to solve slightly more
complicated multistage decision problems.

But their application requires the variables to be continuous and prior
knowledge about the region of the global minimum or maximum.

Multistage decision processes

Definition and Examples

As applied to dynamic programming, a multistage decision process is one
in which a number of single-stage processes are connected in series so
that the output of one stage is the input of the succeeding stage.

This type of process should be called a serial multistage decision process

Serial multistage decision problems arise in many types of practical
problems. A few examples are given below
[Q1] Discuss serial multistage decision process. Show how it can be

represented schematically. Then represent the objective function as the
composition of the individual stage returns.

2 Representation of a Multistage Decision Process
A single-stage decision process (which is a component of the multistage
problem) can be represented as a rectangular block(MCQ TF)

A decision process can be characterized by certain input parameters, S (or
data), certain decision variables (X), and certain output parameters (T)
representing the outcome obtained as a result of making the decision.

Return, R =r(X, S)

f

Stage
Input § —» transformation »Output T
T=1t(X,S)

T

Decision X

Figure 2 Single-stage decision problem.



The input parameters are called input state variables, and the output
parameters are called output state variables.

Finally, there is a return or objective function R, which measures the
effectiveness of the decisions made and the output that results from these
decisions.

For a single-stage decision process shown in Fig. 2, the output is related
to the input through a stage transformation function denoted by

T = t(X,S) 9.1)

Since the input state of the system influences the decisions we make, the
return function can be represented as

R = r(X,S) 9.2)

A serial multistage decision process can be represented schematically as
shown in Fig. 3.

R,q Rn =1 RI‘. R2 Rl
Sl ! Sn t Sn-1 Si+1 t S; 83 t S2 S
_|_.- n - 71— ]. e o0 o el l': P. b 2 - 1 ———
Xn An-1 X X2 X3
Stagen  Stagen-1 Stage i Stage 2 Stage 1

Fig. 3: Multistage decision problem (initial value problem).

the stagesn,n—1,...,i,...,2,1are labeled in decreasing order.

For the i th stage, the input state vector is denoted by Si+1, and the output
state vector as Si Since the system is a serial one, the output from stage i
+ 1 must be equal to the input to stage i.

Hence the state transformation and return functions can be represented as
Si = ti(8i+1,X)) (9.3)
R; = ri(s;+1,X) (9.4)

where Xi- denotes the vector of decision variables at stage i. The state
transformation equations (3) are also called design equations.



The objective of a multistage decision problem is to find x1, x2 ..., xn
S0 as to optimize some function of the individual statge returns, say,
f(R1,R2,. . ,Rn) and satisfy Eqgs. (3) and (4).

Si = ti(8;41,X)

R; = ri(si+1,X)

The nature of the n-stage return function, f, determines whether a given
multistage problem can be solved by dynamic programming.

we must be able to represent the objective function as the composition of
the individual stage returns. This requirement is satisfied for additive
objective functions:

f= 2R = 2 RS (9.5)

i=l
where Xi- are real, and for multiplicative objective functions,

n n
f=11 R =TI Rxs:10) (9.6)
where Xxi- are real and nonnegative. On the other hand, the following
objective function is not separable:

S = [R{(X,,82) + Ry(x,,83)][R3(X3,8y) + Ry(x4,85)] 9.7)

Fortunately, there are many practical problems that satisfy the
separability condition. The objective function is said to be monotonic if
for all values of a and b that make(MCQ TF)

R(x; = a, 8;41) = R(X; = b, 8;,,)
the following inequality is satisfied:

FEy Xty oo X, X = A X, w5 Xy, Spyy)

:zf(xn, Xy« -« X0 X = b, Xi—ga--0s Xy, Sn+|), i= 1,2,. I ¢

(9.8)



3 Conversion of a Nonserial System to a Serial System

According to the definition, a serial system is one whose components
(stages) are connected in such a way that the output of any component is
the input of the succeeding component.

As an example of a nonserial system, consider a steam power plant
consisting of a pump, a feedwater heater, a boiler, a superheater, a steam
turbine, and an electric generator, as shown in Fig. 4.

If we assume that some steam is taken from the turbine to heat the
feedwater, a loop will be formed as shown in Fig. 4a. This nonserial
system can be converted to an equivalent serial system by regrouping the
components so that a loop is redefined as a single element as shown in
Fig. 4b and c.

Thus the new serial multistage system consists of only three components:
the pump, the boiler and turbine system, and the electric generator. This
procedure can easily be extended to convert multistage systems with
more than one loop to equivalent serial systems.

Y |
Feed "Electric
—»! Pump }+{ water j| Boiler > I?ugier [ tSt%a.m —»| gener- |
heater eater urbine ator

(a)
7
/Féed/ / / 7/// f s /
. water :é,/w /r?:;n:rr /
L heater , ,/
S A 2

(b)

\}_\\&l

Yz
[ Steam ]
Lturbine J

(L
77

Electric
gener-  ferim
ator

—»] Pump

NN
SO

AN

Electric
gener- |
ator

'

Y

—» Pump

Boiler and turbine system

(e)
Figure 4 Serializing a nonserial system.



4 Types of Multistage Decision Problems
The serial multistage decision problems can be classified into three
categories as follows.

1. Initial Value Problem. If the value of the initial state variable, Sn+1, is
prescribed, the problem is called an initial value problem.(MCQ MC)

2. Final Value Problem. If the value of the final state variable S1 is
prescribed, the problem is called a final value problem. .(MCQ MC)

Notice that a final value problem can be transformed into an initial value
problem by reversing the directions of Si, 1 =1, 2, ..., n+ 1. The details
of this are given in Section 7.

3. Boundary Value Problem. If the values of both the input and output
variables are specified, the problem is called a boundary value problem.
The three types of problems are shown schematically in Fig. 5, where

the symbol L Is used to indicate a prescribed state variable.

S S S; ) S, S
SR I I L3N P R 21 N G $)

+ Xn +xn—1 * X; +x1

{a)

$n+1__._ {Sa b _Eif.L ; i",__f.z. 1 —|—>81
Xy b, box tx
®
sn+1_|+ n Bl S+l f:ﬁﬁ. I Hes
b x, } %o b ox ba
()

Figure 5 Types of multistage problems: (a) initial value problem; (b) final value
problem; (c) boundary value problem.

1 | Multistage decision problems can be solved by direct
application of the classical optimization techniques.

2 | Asingle-stage decision process can be represented as a
rectangular block




3 | The functions involved to be continuous and Vv
continuously differentiable, and the optimum points not
to lie at the boundary points.

4 | there are many practical problems that satisfy the Vv
separability condition. The objective function is said to
be monotonic if for all values of a and b that make

(4)In the Multistage decision problems, If the value of the initial state

variable ...... , 1s prescribed, the problem is called an initial value
problem
O] Spy 1©] S [ O] Sy O] S

(2) In the Multistage decision problems, If the value of the final state

variable ......... i1s prescribed, the problem is called a final value
problem.
® s (8 5 [O] 5 [©O] s,

9.3 Concept Of Sub-optimization And Principle Of Optimality
[Q] Show how a dynamic programming problem can be reformulated as a
sequence of sub- optimization problems, then define the Recurrence
Relationship that joins them and obtain the ith subproblem in general state.

A dynamic programming problem can be stated as follows.

Find x1, x2, . .., Xn, which optimizes

f(xl’xzs- . rxn) = Z R Z r('g:-f—lyx;)

and satisfies the design equations

I

§; = f;(5j+|,x,'), 192:' - R



The dynamic programming makes use of the concept of suboptimization
and the principle of optimality in solving this problem. The concept of
suboptimization and the principle of optimality will be explained through
the following example of an initial value problem.

Rem: In the subsequent discussion, the design variables X1 and state variables s,
are denoted as scalars for simplicity, although the theory is equally applicable
even if they are vectors.

Example 9.1

Explain the concept of suboptimization in the context of the design of the
water tank shown in Fig. 6a. The tank is required to have a capacity of
100,000 liters of water and is to be designed for minimum cost

Water tank to carry 100,000 liters
a— of water (rectangular or circular)

«+—— Columns (RCC or steel)

g 7 M.—Foundation (Mat or pile)

(a)
Weight of

(R,) Weight of (R;) water + (Rp)
Weight of (cost)  water + (cost)  tank + (cost)  weight of
water . tank + . columns | water + tank +
——— i Tank »{ j Columns |———=k Foundation p-———p=

columns +
+ * f foundation
X xX; Xp

(®)
Figure 6 Water tank system.

SOLUTION
Instead of trying to optimize the complete system as a single



unit, it would be desirable to break the system into components which
could be optimized more or less individually.

For this breaking and component suboptimization, a logical procedure is
to be used; otherwise, the procedure might result in a poor solution. This
concept can be seen by breaking the system into three components:
component i (tank), component j (columns), and component k
(foundation).

Consider the suboptimization of component j (columns) without a
consideration of the other components. If the cost of steel is very high,
the minimum cost design of component j may correspond to heavy
concrete columns without reinforcement. Although this design may be
acceptable for columns, the entire weight of the columns has to be carried
by the foundation. This may result in a foundation that is prohibitively
expensive.

This shows that the suboptimization of component j has adversely
influenced the design of the following component k. This example shows
that the design of any interior component affects the designs of all the
subsequent (downstream) components. As such, it cannot be
suboptimized without considering its effect on the downstream
components.

The following mode of suboptimization can be adopted as a rational
optimization strategy. Since the last component in a serial system
influences no other component, it can be subopti-mized independently.
Then the last two components can be considered together as a single
(larger) component and can be suboptimized without adversely
influencing any of the downstream components. This process can be
continued to group any number of end components as a single (larger)
end component and suboptimize them.

This process of suboptimization is shown in Fig. 7.
Since the suboptimizations are to be done in the reverse order, the

components of the system are also numbered in the same manner for
convenience (see Fig. 3).



1

X, Xn -1 X2 %1
Stagen  Stagen -1 Stage 2 Stage 1

The process of suboptimization was stated by Bellman as the principle of
optimality:

An optimal policy (or a set of decisions) has the property that whatever
the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the
first decision.

| Component & Component j _ | Component:
(tank) (columns) | (foundation) '
Original system
I ————————————
| |
| Component & Component j ! .| Componenti | |
(tank) {(columns) i | (foundation) I‘ '
- |
I

T T

Component j
(columns)

Componen { l
(foundation)

A
Y

[

|

| | Component & i
(tank) :

1

Component j
(columns}

Component i i
(foundation)

(tank)

Suboptimize components k, j and i (complete system)

Figure 7 Suboptimization (principle of optimality).



Recurrence Relationship.

Suppose that the desired objective is to minimize the n-stage objective
function f which is given by the sum of the individual stage returns:

Minimich= Rn(xmsn+l) + RH—I(x -I"Sn) + 00+ Rl(xl?SZ) (9°9)
where the state and decision variables are related as

§; = r,'(35+1,x;), i = 1529' - .5l (9'10)

Consider the first subproblem by starting at the final stage, i = 1.

If the input to this stage S2 is specified, then according to the principle of
optimality, X1 must be selected to optimize R1. Irrespective of what
happens to the other stages, X1 must be selected such that R1(x1,s2) is an
optimum for the input S2.

*
If the optimum is denoted as fi , we have

f1(s2) = opt[R,(x},5,)] 9.11)

This is called a one-stage policy since once the input state S2 is specified,
the optimal values of R1, X1, and S1 are completely defined.

*
Thus Eq. (9.11) is a parametric equation giving the optimum fi asa
function of the input parameter S2.

Next, consider the second subproblem by grouping the last two stages
together.

R2 R

R, R;
Sn+1 * S, f Sp-1 Si+1l + S; 3 i S2 f S
; n n-lb i i fe—] 2 1 |-
t t t t t
Xp Xp -1 X Xz %]
Stage n Stage n — 1 Stage i Stage 2 Stage 1

*
If fi denotes the optimum objective value of the second subproblem
for a specified value of the input S3, we have

f5(s3) = opt[Ry(x2,53) + Ry(xy,5,)] (9.12)

Xt x2

The principle of optimality requires that x1 be selected so as to optimize R1 for
a given S2. Since S2 can be obtained once x2 and Sz are specified, Eq. (9.12)



can be written as

f3(s3) = opt[Ry(x2,53) + fi(s)] (9.13)

¢k
Thus f 2 represents the optimal policy for the two-stage subproblem. It can be
seen that the principle of optimality reduced the dimensionality of the problem
from two [in Eq. (9.12)] to one [in Eq. (9.13)]. This can be seen more clearly
by rewriting Eq. (9.13) using Eqg. (9.10) as

5; = 15X, i = 1.2,....n (9.10

f3(s3) = OptIR(x3,53) + fT{t2(x2,53)}] (9.14)

In this form it can be seen that for a specified input S3, the optimum is
determined

solely by a suitable choice of the decision variable x2. Thus the optimization
problem stated in Eq. (9.12), in which both X2 and x1 are to be simultaneously
varied to produce the optimum f*, is reduced to two subproblems

defined by Egs. (9.11) and (9.13). Since the optimization of each of these
subproblems involves only a single decision variable, the optimization is, in
general, much simpler.

This idea can be generalized and the ith subproblem defined by

fiGi) = opt  [R(xysie) + Rioyxi-p,8) + + - - + Ri(x1.5)]  9.15)
XipXi—1a. oo XY
can be written as

fiGsiv) = OPt[Rf(xf,SsH) + fiSi(s)] (9.16)

where ¥, denotes the optimal value of the objective function corresponding
to the last i — 1 stages, and s; is the input to the stage i — 1. The original
problem in Eq. (9.15) requires the simultaneous variation of i decision vari-
ables, x|, X5, . . . , x;, to determine the optimum value of f; = Li_, R, for any
specified value of the input s;,,. This problem, by using the principle of op-
timality, has been decomposed into i separate problems, each involving only
one decision variable. Equation (9.16) is the desired recurrence relationship
valid fori = 2,3,. . .,n.



4 computational procedure in dynamic Programming

The use of the recurrence relationship derived in Section 3 in actual computations is discussed in this
section. As stated, dynamic programming begins by suboptimizing the last component, numbered 1.
This involves the determination of

R, R, _1 R; R3 Ry

s_'__r—'—]_S_I—'—'S_ B B e L
e D= I e I I
t t t t t
X, An -1 X x2 X1
Stage n Stagen — 1 Stage ¢ Stage 2 Stage 1

fi(s2) = optIR,(x,,52)] (9.17)

The best value of the decision variable x,, denoted as x , is that which makes
the return (or objective) function R, assume its optimum value, denoted by
f1. Bothx{ and fT depend on the condition of the input or feed that the com-
ponent 1 receives from the upstream, that is, on s,. Since the particular value
s, will assume after the upstream components are optimized is not known at
this time, this last-stage suboptimization problem is solved for a ‘‘range’ of
possible values of s, and the results are entered into a graph or a table. This
graph or table contains a complete summary of the results of suboptimization
of stage 1. In some cases, it may be possible to express f} as a function of s,.

Ry (x;, s2) s xf IS 5
$2 % * 1 — - — _
Tx1 - —_ - :

{a) (b) Summary of stage 1

Figure 8 Suboptimization of component 1 for various settings of the input state variable s.

If the calculations are to be performed on a computer, the results of suboptimization have to be stored
in the form of a table in the computer. Figure 8 shows a typical table in which the results obtained from
the suboptimization of stage 1 are entered.



Next we move up the serial system to include the last two components. In this two-stage
suboptimization, we have to determine

F3(s3) = opt[Ry(x2,53) + Ry(x1,59)] (9.18)

xX2.X1

Since all the information about component 1 has already been encoded in the
table corresponding to £, this information can then be substituted for R, in

Eq. (9.18) to get the following simplified statement:

£3(83) = optIRy(x3,55) + f1(s2)] (9.19)
X2

Thus the number of variables to be considered has been reduced from two (x,
and x,) to one (x;). A range of possible values of 53 must be considered and
for each one, x§ must be found so as to optimize [R, + f7(s,)]. The results
(x3 and f7 for different s3) of this suboptimization are entered in a table as
shown in Fig. 9.

8 8 RQ +fs (32)
%& 2 2: 1 L—» | ! s3 = Fixed at some value

X X

£ *1
< ' X
Opt (B + 1} (st = fls3) x - p
X x2
For each setting of ss, draw a graph as
(a) shown above to obtain the following:
* *
$3 x2 fz 52

LT
FETE
LEE
RERN

(b) Summary of stages 2 and 1

Figure 9 Suboptimization of components 1 and 2 for various settings of the input
state variable Ss.

Assuming that the suboptimization sequence has been carried on to include
i — 1 of the end components, the next step will be to suboptimize the i end
components. This requires the solution of

fi(sip) = opt [R,+R._,+ - -+ R|] (9.20)

XigKi=1yees X1

However, again, all the information regarding the suboptimization of i — 1
end components is known and has been entered in the table corresponding to



f1. Hence this information can be substituted in Eq. (9.20) to obtain
FGsiv) = OPt[R;'(beHl) + fE G 9.21)

Thus the dimensionality of the i-stage suboptimization has been reduced to 1,
and the equation s; = #(s;,,,x;) provides the functional relation between x; and
s;. As before, a range of values of s;,( are to be considered, and for each one,

x} is to be found so as to optimize [R; + f ]. A table showing the values of
x] and f7 for each of the values of s;,, is made as shown in Fig. 9.10.

8, *
I\
x; X )
PRt = s 5; +1 Fixed at some value
For each setting of 5; , |, consider a graph as shown below: :'(
@) x | x
1
1
x 1 X
X ]
X 1 X
l* _.; xl
x;
® f*
Si 4+ 1 X 1 S

(b) Summary of stages i, i-1...2, and 1

Figure 10 Suboptimization of components 1, 2, . . ., i for various settings of the input state variable Si+1

The suboptimization procedure above is continued until stage n is reached.
At this stage only one value of s5,,; needs to be considered (for initial value
problems), and the optimization of the » components completes the solution
of the problem.




The final thing needed is to retrace the steps through the tables generated,
to gather the complete set of x* (i = 1,2,. . .,n) for the system. This can be
done as follows. The nth suboptimization gives the values of x; and £ for the
specified value of s, (for initial value problem). The known design equation
Sy = t(S,+1-X7) can be used to find the input, s)*, to the (n — 1)th stage. From
the tabulated results for £, (s,), the optimum values f)_, and x}*_, corre-
sponding to s can readily be obtained. Again the known design equation s, _
= t,_1(s,,x¥_|) can be used to find the input, s} |, to the (n — 2)th stage. As
before, from the tabulated results of £ ,(s,_,), the optimal values x,*_, and
fr_, corresponding to s, can be found. This procedure is continued until the
values x| and f | corresponding to s3 are obtained. Then the optimum solution
vector of the original problem is given by (x{.x¥,...,x}) and the optimum
value of the objective function by f.

5 Example Illustrating The Calculus Method Of Solution

Example 2 The four-bar truss shown in Fig. 11 is subjected to a vertical load of
2 X 10 Ib at joint A as shown. Determine the cross-sectional areas of the
members (bars) such that the total weight of the truss is minimum and the
vertical deflection of joint A is equal to 0.5 in. Assume the unit weight as 0.01
Ib/inzand the Young's modulus as 20 X 10¢ psi.

-— 120 in. —»

A
A |
80 in E 2x10%1b
:
Y : 4

D
AT

SOLUTION Let x; denote the area of cross section of member i (i = 1,2,3,4).
The lengths of members are given by /; = I3 = 100 in., I, = 120 in., and
= 60 in. The weight of the truss is given by

f(xl,xg,.x3,x4) = 001(100)\:1 + 120.1'2 + 100173 + 60.]34)
= X + 1.2.1'2 + X3 + 0.6x4 (El)



From structural analysis [9.5], the force developed in member i due to a unit
load acting at joint A(p;), the deformation of member i (d;), and the contribu-

tion of member i to the vertical deflection of A4 (§; = pd;) can be determined
as follows:

d = (stress)l;  Ppi;
Member ! E x.E 8. = pd,
i pi (in.) (in.)
1 —-1.25 —1.25/x, 1.5625/x,
2 0.75 0.9/x, 0.6750/x,
3 1.25 1.25/x; 1.5625/x;
4 —-1.50 —0.9/x, 1.3500/x,

The vertical deflection of joint A is given by

4

1.5625 0.6750 1.5625 1.3500
28 = + + +

i=1 X1 X2 X3 X4
Thus the optimization problem can be stated as:

dy = (Ea)

[Q] Consider the problem of four-bar truss, which is formulated
mathematically as a non linear programming problem:

Minimize
f(X) =x; + 1.2x, + x3 + 0.6x,

subject to

1.5625 0.6750 1.5625 1.3500
+ + + =

X1 Xa X3 X4

0.5 (E3)

X120, %20, 320, x, =0

Show that the problem can be posed as a multistage decision problem. Then obtain the
optimum solution of it

Answer:

Since the deflection of joint A is the sum of contributions of the various mem-
bers, we can consider the 0.5 in. deflection as a resource to be allocated 1o the
various activities x; and the problem can be posed as a multistage decision
problem as shown in Fig. 9.12. Let s, be the displacement (resource) available
for allocation to the first member (stage 1), §, the displacement contribution
due to the first member, and f{(s,) the minimum weight of the first member.



R =0.6x4 R3=1x3 Ry=12x, R, =x,

t i t

55| Stage 4 41 Stage 3 °3| Stage 2 52| Stage 1 3
(member 4) (member 3) " |tmember 2) " |(member 1)
x4 x3 X2 X1
Figure 9.12 Example 9.2 as a four-stage decision problem.
Then
) 1.5625
fi(s2) = min[Ry = x,] = — (Ey)
2
such that
1.5625
& = and x; =2 0
X1
since §; = s,, and
1.5625
xif = (Es)
52

Let s; be the displacement available for allocation to the first two members,
8, the displacement contribution due to the second member, and f5(s;) the
minimum weight of the first two members. Then we have, from the recurrence

relationship of Eq. (9.16),

Fisie) = OpURi(x;,8;+1) + Fisas)] (9~1‘5)|
fi(sy) = m:i_f;[Rz + 1)l (Eg)

where s, represents the resource available after allocation to stage 2 and is
given by

0.6750

X

S2 = 83— & =55 —

Hence, from Eq. (E4), we have



1.5625

8

0.6750 .
oo =1t (s - 20) - 1ses [ (5 - 2T20)| ey

X2 2

fi(s;) = min[R, = x,] =

(E4) |

Thus Eq. (E¢) becomes

1.5625
3(s3) = min | 1.2x, + ]
f2(s3) min [ T 0.67500, (Es)
Let
1.5625 1.5625x,
F(s3,x) = 1.2x, + =1.2x, +
(85.%2) A T > T % — 0.6750
For any specified value of 53, the minimum of F is given by
oF (1.5625)(0.6750) .  1.6124
—_— =12 - - -
% 0 — 06750 0 OF T2 T (Es)
1.5625 1.9349 26820 4.6169
F(s3) = 1.2xF + = + = E
fa(ss) 2 sy — 0.6750/x5 53 53 S5 (Er)

Let s, be the displacement available for allocation to the first three members.
Let 8; be the displacement contribution due to the third member and f{(s,) the
minimum weight of the first three members. Then

f3¥(se) = min [x3 + f3(s3)] (E1y)

n=0

1.5625 0.6750 1.5625 1.3500
+ + + =
X xz X3 X3

0.5 (Es) |




where s, is the resource available after allocation to stage 3 and is given by

1.5625
$3 =84 — 83 = 84 —
X3
From Eq. (E;y) we have
4.6169
#* — E
J29) = T 6251, (Es2)
and Eq. (E,;) can be written as
. 4.6169x,
* —_—
f3(sy) 21:; [x3 + a5 — 1.5625] (E13)
As before, by letting
4.6169x; _
Flsaxs) = 2 + S4x3 — 1.5625 (B
the minimum of F, for any specified value of s,, can be obtained as
aF (4.6169)(1.5625) « _ 4.2445
9 _qo0 - = = E
e, 0 T G — 156252 D 0 7 % 53 (Ess)
4.6169x ¥ 4.2445 7.3151 11.5596
* = * + = = E
369 = x3 spe¥ — 1.5625 S4 54 54 Eie)

Finally, let s5 denote the displacement available for allocation to the first four
members. If §, denotes the displacement contribution due to the fourth mem-

ber, and f;(ss) the minimum weight of the first four members, then

fi(ss) = mil(]) [0.6x, + f3(s4)] (Ei7)

where the resource available after allocation to the fourth member (s4) is given
by

1.5625 0.6750 1.5625  1.3500
+ + + =
X X2 X3 X4

0.5 (Es) |




1.3500

S4 = 85 — 54 = 85 — X (Els)
From Egs. (E¢), (E,7), and (Eg), we obtain
11.5596
s (ss) = min | 0.6x, +
Jalss) = min [ A 1.3500/x4] Er)
By setting
11.5596
Flosxa) = 060 + 1 35007,
the minimum of F(ss,x,), for any specified value of ss, is given by
oF (11.5596)(1.3500) . 044
— =0.6 — =0 = E
o~ 00 T oaxs = 1.3500)7 or X4 =7y (Ezo)
11.5596 3.864 16.492 20.356
(ss) = 0.6x§ + = + = E
Fass) s — 1.3500/xF s 55 P

Since the value of s5 is specified as 0.5 in., the minimum weight of the struc-
ture can be calculated from Eq. (E,,) as

20.356
fi@ss = 0.5) = o5 = 40.712 b (E»y)

Once the optimum value of the objective function is found, the optimum values
of the design variables can be found with the help of Eqgs. (Ey), (E;s), (Ey),
and (Es) as

x¥ = 12.88 in’

1,
S4 = 55 — % = 0.5 — 0.105 = 0.395 in.
4



4.2445

x¥ = = 10.73 in’
84
S3 = §4 — 1.?25 = 0.3950 — 0.1456 = 0.2494 in.
3
x¥ = L.o124 _ 647 in?
33
§) = 83 — O.i’iSO = 0.2494 — 0.1042 = 0.1452 in.
2
xf = 1.5625 _ 10.76 in?

32



