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1 Introduction

We can think of a curve as a connected one-dimensional series of points.
Sometimes all points in a curve lie in a plane. These curves are called planar
curves, in contrast to spatial curves that are not contained in a plane. We
study geometrical concepts for planar and spatial curves. Let us start with
two different analytical approaches to describing curves.

2 Representation of a curve

2.1 Parametric representation

We could consider a curve as the trace left in the space by a point that
is moving. Hence the coordinates of a generic point P of the curve C are
functions

r=zx(t), y =y(t), z=z(t),
called coordinate functions, where t is assuming all the values in an interval

I C R; that is, every value of the parameter is mapped to a point P € C.
The map

=

1 — R}
) = (z(t),3(),2(8),
is called a parametric representation or parametrization of C. In the fol-

lowing examples we see how a curve can be given by different parametric
representations.

il

Examples

1. Straight line. A straight line containing a point of coordinates (a, as, az)
with director vector (v, v2, v3) is given by the following parametric rep-
resentation:

7(t) = (a1 + tvy, as + tvsg, ag + tvs)

where a;, v; are constants and at least one v; # 0.

2. Clircle. The circle is the set of all points in a plane that are at a given
distance from a given point, the centre.



Let consider the circle C' with radius r, center at the point of the
coordinates (ai, az,0) and contained in the plane z = 0. A parametric
representation for C' is given by

7(t) = (a1 +rcosa, az +rsine,0), a € [0,2m),

where « is the angle formed by the point P = 7(0), the origin of the
coordinate O and the generic point X = 7(t) of the circle.

Another parametric representation for C' is:
7(t) = (a1 + rcos2a, as +rsin2a,0), a € [0,7),

where we go over the circle at double speed.

Remark. As the functions in the previous parametrization of the circle
are trigonometric functions the parametrization said to be trigonomet-
ric.

By solving the cartesian equation of the circle of radio r and center
(a1,as), that is, (z(t) — a1)*+(y(t)—as)? = r2, for = we obtain y = as+

r? — (z — a;)’. Hence, we can consider the following parametrization
of the circle,

Flx) = (:::, as +14/7? — (x—a1)2,0> , T € lay —r,a1 + 1.

Remark. The previous parametrization is said to be irrational as its
coordinates functions are irrational. The parametrization is said to be
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rational (resp. polynomial) if it depends on rational (resp. polynomial)
functions.

Less well-known is the parameterization of the circle by rational func-
tions. For simplicity, let consider the unit circle in R? of center the
origin of coordinates. The line through the point of coordinates (0, 1)
with slope m is given by y = 1+ mz. This line intersects the unit circle
in one other point P and as we vary m we strike every point on the
unit circle. The coordinates (z,y) of P satisfy both 2% + > = 1 and
y = 1 + mx so we have

22+ (1 +mz) =1 g 2 (1+m?) +2mz =0
y=1+mz y=1+mzx

g :czlﬁﬁ"lor:r:o
y=m(z+1)

Therefore P = (1;2;2 g ;ﬁ%g) or P = (0, 1) and every point on the unit

. : —2m  1-m?
circle is of the form (1+m2, 1+m2) and

9 1—m?
14+ m?2’ 14+ m?

ftm) = ( ) mer

is a rational parametrization of the circle.

. Clircular heliz. Let consider the curve contained in a circular cylinder,
for example the cylinder 2% +y? = r? such that when z and y get again
their initial values, z has increased 2wb. Here’s an illustration for the
circular helix:




A parametric representation of the circular helix is given by
7(t) = (rcost, rsint, bt), t € [0,2k7), with k € N.

The parameter ¢ is a measure of the angle that forms the x axis with the
straight line that joins the point O with the projection of the generic
point P € C with the plane xy.

2.1.1 Allowable change of parameter

Definition. We say that a function t = t(s), s € J C R, is an allowable
change of parameter if it verifies the following conditions:

1. t =t(s) is a differentiable function of class 3,

2. t'(s) #0,Vs € J.

Example The function t(f) = tan%, § € (—Z,2), is an allowable change
of parameter for any regular parametric representation 7(t), t € I C R, of
a curve C' because the function ¢(f) = tan$ is a function of class 3 in the

interval J = (-7, %) and, moreover,

dt i i 0 0 T
it = =14+t — 0 -, =].
do J 2(‘052% 2( e 2) 7 ’VGE( 2’2)

2.1.2 Regular parametric representation.

Definition. The tangent vector of a curve C' with parametrization 7(t) =
(x(t),y(t),2(t)), t € I TR, at a point P = 7{(lp) is the vector

7'(t) = (2'(2),§' (1), 7 (t)).

Definition. The map 7(t) = (x(t), y(t), 2(t)), t € I C R is a regular paramet-
ric representation of a curve C' if the following conditions hold:

1. Tm¥= €,
2. 7 is a differentiable application of class C?,

3. The tangent vector to the curve at any point P € C' is never zero; that
is,
7'(t) = (2'(t),y'(t), 2'(t)) # 0 for every t € I.
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Definition. Let C be a curve with parametric representation 7(t) = (z(t), y(t), 2(¢)),
tel CR.

e A point P = (ty) € C is said to be singular if ¥’ (to) = 0. If 7'(to) # 0
otherwise it is said to be reqular.

e A point P = 7(to) € C is said to be a double point if there are t,,ts € I,
tl ;é tz, so that T‘_'(f]) = ’T_"(fz) —= I

Examples

1. The polynomial parametrization 7(t) = (¢2,#*, 1) define a planar curve
(contained in the plane z = 1). As 7 is a polyonimal parametrization
it is differentiable of class C*°.

We have: 7'(t) = (2t,3t2,0). Being 7'(0) = 0 the point P = 7(0) =
(0,0,1) is a singular point of the curve. The other point of the curves
are regular points because 7 '(t) # 0 if ¢ # 0.

2. The parametrization 7(t) = (cos®t, sint, 0), t € [0,27), define a
planar curve (contained in the plane z = 0). As 7 is a trigonometric
parametrization it is differentiable of class C*°.



We have: 7 /(t) = (—3cos’tsint, 3sin’tcost, 0). Hence 7 '(t) =
(0,0,0) < sint = 0 or cost = 0; that is, if t = 0,7/2,m,37/2. Thus,
the points

F(O) = (l: 0, 0) ) 7_"(71'/2) n (01 1, 0) )
r(m) = (-1,0,0), 7(37/2)=(0,-1,0),

are singular points.

2.2 Implicit representation

A curve C can also be considered as the intersection of two surfaces. Hence, if
F(z,y,z) = 0 and G(z,y, 2) = 0 are the respective equations of two surfaces
then the coordinates (x,y, z) of a generic point P of the curve C' must satisfy
both equations: F(z,y, z) = 0 and G(z,y, z) = 0. The equations F(z,y, z) =
0, G(z,y, z) = 0 are called cartesian or implicit equations of the curve.

Examples

1. Straight line. A straight line can be consider as the intersection of
two planes. For example the straight line with parametrization 7(t) =
(ay + tvy, as +tvs, az+tuz), t € R can be seen as the intersection of
the planes 7, T3 with equations:

_r—m Y — asz Tr — aq Z — as

™= — , and me = =
U1 Vg (1 U3




2. Clircle.

A circle can be seen as the intersection of a sphere and a plane. For
example, the unit cicle in the plane z = 0 ca be seen as the intersecction
of the sphere of equation z% + 3*> + 22 = a? and the plane z = 0..
It can also be seen as the intersection of the paraboloid of equation
22 +y? — 2 = o with the plane of equation z = 0 or as the intersection
of the cylinder 22 + y? = a® and the plane z = 0.

3. Viviani’s curve. This curve is defined as the intersection of the hemi-
sphere with a cylinder whose axis is parallel to a diameter of the sphere.

For example, let us consider the hemisphere with center the origin of
coordinates and radius 2 and the cylinder with axis the straight line
z = 0,y = 0 and basis the circle with center Z(1,0,0) and radius 1.
Hence the Viviani’s curve is the set of points satisfying

22 +y*+22=4, z>0, (implicit equation of the hemisphere),
(z — 1)2+ 3% = 1, (implicit equation of the cylinder).

See the illustration bellow for a Viviani’s curve:

We are going to find a parametric representation of this curve. The
circle (z — 1)+ y? = 1 in 2 = 0 can be parameterized as follow:

z(t) = 1+ cost, y(t) =sint, 2(t) =0,



with ¢ € [0,27). By substituting the values for z and y in the hemi-
sphere equation we obtain:

P4yl +22=4 < (1+cost)’+(sint)®+22=14

< 1+2cost+cos’t+sint+22=14

— 22=2-—2cost

— 2= 2—2(0052% — sin® %)

= 2= 2(0052%—|—sin2 %) — 20032%+25in2%
= 22:4sin2%

—

ZZQSin%aSZEO.

Note that for values of ¢ € [0, 2), sin £ is always positive or null. Thus,
one parametrization of the Viviani’s curve is:

7(t) = (1 + cost, sint, 2sinl) ¢t € [0,2m).
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3 The length of a curve

The first and simplest geometrical quantity associated with a curve is its
length.

Definition. Let C be a curve with regular parametric representation 7(¢) =
(z(t),y(t),2(t)), t € I. Then the length of C over the interval I = (a,b) is
given by

b
length(f] — f 117 ()| das
@
Remark. Let & be a reparametrization of 7. Then
length|[F] = length|a].

That is the lenght of ac urve does not depend on the parametrization used
to compute it.

Definition. Fix a number a < ¢ < b. The arc length function s of a curve C
with regular parametric representation 7: (a,b) — R? starting at c is defined
by

t
s(t) = f 17" (u)||du, where t € (a,b).

Remark. Note that
s'(t) =7 ()| #0, YVt € I,

as 7(t) is a regular parametric representation. Therefore the arc length is an
allowable change of parameter. As s ’(t) # 0, Vit € I,the Inverse Function
Theorem implies that t — s(t) has an inverse s — %(s) and that

! _ 1 _ 1
t'(s) = 7w = e

Now define @ by d(s) = 7(t(s)). We have

R _ Fre)
a'(s) =7"(t(s)t'(s) = mranm

and therefore

= | =,
e ")l = || e || = 17 aenn = L

Hence the unit-speed curves are said to be parametrized by arc length or they
have a natural parametric representation.

7 '(t(s)) H _ IF el —
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Examples

1. Let C be the curve with parametric representation:

7(t) = (@ sin(t), “Zt, §cos(t)), vVt e [0,2r).

we have,

7(t) = (ﬁ cos(t), X, —§sin(t)), vt e [0,27),

and

7@l = \/ (Feos®) +(g) + (~Fsint))

= \/% cos?(t) + % — %sin2(t)
= |

Therefore ¢ is the arc parameter and 7 is the natural or arc-length
representation.

2. Let C be the curve with parametric representation:
7(t) = (acos(t), asin(t), bt), Vit e [0,+00),
with a? + % # 0. We have:
7'(t) = (—asin(t), acos(t), b), Vte€ [0,+00),

and

17/l = y/a?sin®(t) +a? cos?(t) + ?
— 1/a2+b2;

thus, the arc length is given by the function:

t t
s(t) :f ||F’(u)||du:/ va? + b2du = va? + b%t,
0 0

that is a linear application. We have,
s'(t) = Va2 + b #0,
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that is an allowable change of parameter. We have:

t(S) = \/ﬁ,

and the natural parametric representation of C' is the following:

T(t(s)) = (a cos (ﬁ) , asin (\/a;+52) , b\/a25+52) ,
where the arc parameter s takes values in the interval [0, +00).

. Let C be the curve intersection of the following surfaces:

S = P+ (z-1)2=1,
S z+y’=1.

A parametric representation of C' is:
7(t) = (1 — sin®(¢),sin(t), 1 + cos(t)), with ¢ € [0, 27).

In the picture below you can see the plot of the curve:

Zm

We have

7'(t) = (—2sin(t) cos(t), cos(t), —sin(t)), YV t € [0, 27),
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[|[7/(#)]] = (—2sin(t)cos(t))? + cos®(t) + sin’(t)
= 4sin®(t) cos®(t) + 1
= sin®(2t) + 1.

As ||7'(t)|| # O for every t the parametrization 7 is regular but it is not
the natural parametrization as ||7'(t)|| # 1, for some ¢ € [0,27). The
arc parameter function is given by the following expression:

i f " Jein®(20) + 1du.

The inverse function of s(t), which is needed to find the unit-speed
parametrization, is too complicated to be of much use.

. Let C be a curve with parametric representation:
7(t) = ((t + 1) cos(t), —(t+m)sin(t), &+t + %) , t e [—2n,2n].
Hence
7'(t) = (cos(t) — (¢t + m)sin(t), —sin(t) — (¢ + 7) cos(t), 2t +7),

and ||7/(t)||> = 1 + 5t + 6nt + 272, Thus, ||7'(¢)|| = 0 if and only if

1452 +6mt+212 = 0= t= VIR0 4
as 36m2 —20(27%* +1) = —4r?—20<0.
Hence the parametrization is regular but it is not the natural para-

metization as ||7(t)|| # 1 for some t € [-27,27x]. The arc parameter
function is given by the following expression:

t t
s(t) = f |17 (u)||du = V1 + 5u2 + 6mu + 2m2du.

—2m —27

The inverse function of s(t), which is needed to find the unit-speed
parametrization, is an elliptic function that is too complicated to be of
much use.
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4 Local study of unit-speed curves

We first define the curvature and torsion of a unit-speed curve in R3, as the
defienition are more straightforward in this case. The case of arbitrary-speed
curves in R? will be considered in the next section.

Therefore during this section 7: I — R?* will be a natural (or unit-speed)
parametrization of a curve C' C R3.

4.1 Curvature of unit-speed curves

Definition. The function k: I — R defined as

K(s) = |I™" (sl

is called the curvature of 7.

Intuitively, curvature measures the failure of a curve to be a straight line.
In fact, a straight line is characterized by the fact that its curvature vanishes
at every value of the parameter s.
Geometrical interpretation of the curvature. The curvature measures the
variation of the angle between the respective tangent lines of neighboring
points of the curve. Let #(s) the angle between the tangent line to C' at the
point 7(sg) and the the tangent line to C' at the point 7(s). We have:

9(3) sin 9[23) . ]i 2SIHT

sl 751

g 9 i
lim 2L — Jim
s—sg 15750 5—50

and taking into account the equality

[17/(s) = 7*'(s0)|| = 2sin 752,

we have: :
» 2 sin fia) . P N8V =7 (s =
lim |5_So2| — lim P G)=7 (ol (Ti_zol(qo)” = ||F ”(80)“.

5—+80 8—+80

Definition. The vector field £(s) = 7/(s) is called the unit tangent vector field
of the curve C with natural parametrization 7. Note that the unit tangent
vector field satisfies ||t(s)|| = 1
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Remark. Let £(s) be the unit tangent vector field of a curve C, then 0 =

t(s) -t ’(s) as differentiating the equation #(s) - £{(s) = 1 we obtain 0 =
t

(es) - E(s))" =28 "(5) - Els).

‘We now restrict ourselves to unit-speed curves whose curvature is strictly
positive (that is, x(s) > 0). Hence, the vector field £ /(s) = 7 "(s) never
vanishes. Let us define the principal normal vector field and the binormal
vector field.

Definition. The principal normal vector field is the unitary vector field 7i(s)
is the unitary vector field in the direcction of the curvature vector field; that

is,

t'(s)
= : — . 1
ls) = 1)
As t'(s) = 7 "(s) and k(s) = ||F "(s)]|. The binormal vector field b(s) is
unitary vector field orthogonal to the tangent vector and to the principal

normal vector; thas is, .
b(s) = t(s) A7i(s). (2)

4.2 Frenet frame field

Definition. The triple (£(s),7i(s), b(s)) is called the Frenet frame field of the
natural parametrization 7(s) of a curve C' € R?. The Frenet frame field gives
us an orthogonal moving frame along the curve.

The Frenet frame at a given point of a space curve is illustrated in the
figure bellow
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4.3 Torsion of unit-speed curves

In order to measure the separation of the curve from the plane containing
the point P = 7(s) and with characteristic vector b(s) we study the variation
of the binormal vector field.

By differentiating the binormal vector field b(s) = #(s) A 7i(s) we have:

b(s)=1"(s) Ai(s) +t(s) A (s).

Let us compute 7i'(s). By differentiating the identity 7i(s) - 7i(s) = 1, we
obtain 7i(s) - 7'(s) = 0 and we can conclude that 7'(s) is orthogonal to 7i(s).

Therefore (s) is a linear combination of #(s) and b(s); that is, there exist
functions p(s), 7(s) such that

' (s) = p(s)(s) +7(s)B(s)- (3)
By differentiating the identity 7i(s) - £(s) = 0 we have:
0 = (7s)-s))
= 7(s) - &s) +7i(s) - £'(s)
= (u()s) +7(5)8(s)) - Es) +(s) - K(s)iE(s)
= pu(s) + k(s).

Therefore 1u(s) = —r(s) and hence 7'(s) = —k(s)t(s) + 7(s)b(s). By substi-
tuting 7'(s) and  ’(s) = &(s)7i(s) into the expresion of b'(s) we have:

B(s) = t'(s)Afi(s) +t(s) Af'(s)
= K(s)i(s) Ai(s) +(s) A (#(s)f(s) 3 'r(s)f?'(s))

= 7(s)t(s) Ab(s)
—7(8)7(s).

Finally, taking into account 7i(s) - 7i(s) = 1 we obtain
b(s) - A(s) = —7(s).
Definition. The function defined as follows
7(s) = —b'(s) - 7i(s).

is called torsion or second curvature of the curve 7(s) the function 7(s) and
it measures the variation of the binormal vector field.
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4.4 Frenet-Serret formulas

Let 7: I — R? be a natural (or unit-speed) parametrization of a curve C' C
R? with curvature x(s) and torsion 7(s). The vectors of the Frenet frame
(ﬂs),ﬁ(s),g(s)) at any point P = 7(s) of the curve, satisfy the following

equations:

Ps)=  kls)is) )
?i.-,"(s) = —k(s)t(s) +7(s)b(s),
b'(s) = —7(s)7i(s),

called the Frenet-Serret formulas. The Frenet-Serret formulas are a system
of ordinary differential equations for the vectors #(s), 7i(s) and b(s). Taking
into account the theorem of existence and uniqueness of solutions of initial
value problem for a system of ordinary differential equations we have the
following result:

Theorem. Given two functions k,7: I C R — R of class C' with (s) >
0, Vs € I, there exists a unique curve 7(s) up to transformations by the
Euclidean group, such that x(s) is the curvature function of 7(s) and 7(s) is
its torsion function of 7(s).

The above result tells us that the curvature and torsion functions; that
is, k(s) and 7(s), determine the curve up to position at the space. For this
reason, the equations kK = k(s) and 7 = 7(s) are called intrinsic equations of
the curve.

4.4.1 Examples

1. Let C be a curve with parametric representation 7(s), s € I. Let check
by using the Frenet-Serret formulas that the following conditions are
equivalent:

(a) The curve 7(s) is a plane curve;
(b) 7(s) =0 for every s € I.
Note that when both conditions hold, the binormal vector field b(s) is

perpendicular tio the plane containing the curve 7{s).

The condition that a curve 7(s) lie in a plane II can be expressed
analytically as
(r(s) = P)-¢=0

18



where P is a point in the plane and ¢ is an unitary vector orthogonal
to II. By differentiating the above equation we have:

7'(s)-d=0and 7"(s)- 7= 0.

—

Thus both #(s) and 7i(s) are orthogonal to ¢. Since b(s) is also ortho-
gonal to t(s) and 7i(s), it follows that

b(s) =q.
Therefore §'(s) = 0 and from the third Frenet-Serret formula we deduce
Tle)=i
Conversely, suppose 7(s) = 0, for every s € I. Then the third Frenet-
Serret formula b'(s) = —7(s)7i(s) implies b'(s) = 0 for every s € I,

therefore b(s) = b is a constant vector field. Let consider so € I and
the function

f(s) = (7(s) = 7(s0)) - B.
As f(so) = 0 and f'(s) = 7(s)-b = 0, we have f = 0; that is,
(7(s) — 7(so)) - b = 0 and therefore the curve is contained in the plane
orthogonal to b containing the point 7(sp).

. Let C be a circular heliz with parametrization

7(t) = (acos(t), asin(t), bt), t € [0,400)

where the radio a > 0 and b is the incline of the helix.
As
7'(t) = (—asin(t), acos(t), b),

then [|7/(t)|| = va? + b2. The helix is one of the few curves for which
a natural parametrization is easy to find. A natural parametrization of
the circular helix is

a(s) = (acos —\/a;W’ asin \/a;+b2’ bv/a;erZ) , te€]0,+00).
Let us compute the tangent, normal and binormal vector fields and the
curvature and torsion functions of the helix. We have:

_ 4 __a : s a ! s b
t (S) - (5) - ( VaZ+b2 s VaZ+b2' aZ+b? cos VaZ4b2? \/GZ_H.‘,‘Z)

i iz E 3
Va5t (_“Bm—\/m= 4 Co8 Ty ‘5)=
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and

sy L _f —HE E]
a’(s) powES ( A COS s, —aSIN s, O) ;
As a > 0, we have

k(s) =la" (s) || = a4,
and
a’ (s)
#ld) = wopps
18" (s) Il
= (—cos—f =, — sin —— ,0).
va2+b va2+b?
By the formula b (s) = £ (s) A7 (s), we obtain
T ¥ b
b(s) = |~ ~/a§+b2 R \/anf+b2 \/a;-i-bz_ i \/a;+62 Va2+b?
— a1+b —asin \/a;:w a cos a{+62 b
—COS =y —SIN e 0
= e (bsm x/fﬁ, bcos \/ﬁ’ a).

Finally, as

by comparing the expression for b (s) with the expression for 7 (s) and
by using the third Frenet-Serret formula: b'(s) = —7(s)7i(s) we deduce:

7(s) = -

Remark. Both the curvature function and the torsion function of a
helix are constant.
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4.4.2 Computaion of the torsion function.

The torsion function of a curve with natural parametrization 7(s) can be
computed as follows:

[71(s), 7 "(),7"(s)]
&)= eE

From the third Frenet-Serret formula we have: 7(s) = —¥/(s) - 7i(s).
By substituting

B(s) = (ts)Aii(s))
= t'(s) A

into the above equations for the torsion and taking into account the expres-
sions for (s) and i(s) we obtain

T(s) = —b’&s) - 7i(8) )
t'(s) Ai(s)) - 7i(s) — (E(s) A#'(s)) - 7i(s)

_ o P\ 7 ()
= = (’*‘" "(s) A (Tx(s) ) ) 0
- —ﬁ( ‘(s) AT "(s)) -7 "(s)

_ [F8).7 ()7 " (8)]

= )
17 ()]l !

where [ "(s), 7" (9) 7 "'(s)] denotes the mixed product of the vectors fields
o

™'(s), 7"(s), 7" (s).
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5 Local study of arbitrary-speed curves

For efficient computations of the curvature and torsion functions of an arbitrary-
speed curve, we need formulas that avoid finding a natural parametrization
explicitly.

Theorem. Let C be a curve with arbitrary regular parametric representation
7: I C R — R? and nonzero curvature. Then

tt) = o
T - 7 ()N (L)
) = Frmaren

i(t) = b(t) AEt),

_ IR @ar @)l
K1) = EerE

_ RO 05 @)
™) = o ror

Proof. Let & be the natural parametrization of C. We have: 7(t) = @(s(t))
and therefore

mi(t) = d(s(t)s'(t)
= a(s@)IF @l
= H)lIF'@ll,
Tt = a@'(s(t)s'(t) + & (s(t))s" (1),
TIATE) = @ (s(1)s'(t) A (@ (s(2)s' (1) + & (s(t))s" (1))
= $(1)°a(s(®)) A" (s(2))

= §'(t)°k(s(t))E(t) Ai(t)

17 ()°w(s(2))B(2),
7' @ AF"OI = [IF' @) (),

therefore we obtain the expressions for #(t), b(t) and k(s(t)). Moreover,
taking

7 "(t) = &"(s(2))s'(¢)" + 3" (s(t))s' (£)s" (¢) + & (s(2))s" (1),
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and the expression of the vector 7'(¢) A 7" (t) into account, we have:

(7)) AT (@) T"(2)
= (S (s(t)) A@"(s(t))) - (@"(s(2))s'(2)" + 3a"(s(t))s'(t)s" () + & (s())s" (¢))
= §'([&)° (@ (s(t) A" (s(t))) - @"(s(t))
17" @)]1° [@ (s(2)), @ (s(2)), @" (s(¢))]
17 ()17 (s(8)s(s(t))
= |7 ()| (s(t)) LA O

T(s@)IIF' (&) AT @),

and therefore

— [F'®.F "(@),F ()]
Fley= 7 ")AF "I

5.0.3 Examples

1. Let C be a curve with parametric representation:
F(t) = (t, —=t%, 1+¢%), te[0,+o0).

Let us find the elements of the Frenet frame, the curvature and the
torsion at a generic point of the curve and at the point P of coordinates
(0,0,1). We have:

F1(t) = (1, =2¢, 3%), te[0,+o0).

As ||F'(t)|| = V1 + 42 + 9t* # 1, the parameter ¢ is not the arc para-
meter. Taking the derivative of the parametric representation we obatin

7"(t) = (0, =2, 6¢),
7#"(t) = (0, 0, 6)

PR AT"(E) = (-6, —6t, —2),
|7/ AF"(t)]] = V/36t4+36t2 +4
= 2V/0r 102 + 1.
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£r e B 1 2
t(t) - ”f»’-‘(t]” - \/l+4t2+gt4 (]‘! _Qtj Bt )l
= . FeaTrE 1 2
b(t) T IF AT ()] T 24/149t2 408 (_Gt ¥ _6ts _2)?
n(t) - b(t) A t(t) 5 241491240t /1+412 404 1 4 —2t 3t
—6t* —6t
- \/1+912+9t4 \/1+4§2+9t4 (2t + 9t%, 1—9t%, -3t — 6t3)'
The curvature and the torsion are given by
K(t) = |7 ‘(AT "Bl 24/ 9821
o [77OIF — (14422+944)3/2
1 —2t 3¢
_ F'es s " 1 ‘
T(t) = [IF7(AF "2~ 36t5+36t2+4 0 -2 6t
0 0 6
—12 _ -3

36t 4+3612+4 ~ 9t*40t2+1°

As P = 7(0), the tangent vector, the binormal vector and the normal

vector at P are:

f’(0) == (]‘! 01 0) 1
5(0) — (0,0,—l) 3
i(0) = b(0) AE{0) = (0,-1,0),

and k(0) =2, 7(0) = —3.
Let C be a curve with parametric representation:

7(t) = (e’ cos(t), €'sin(t), €'), t € [0,4+00).

Let us find the elements of the Frenet frame, the curvature and the
torsion at a generic point of the curve. In the figure bellow we have the

plot of the curve:
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2
1
S
/ e
1

By differentiating 7(t) we obtain:

(1
Gl 2e’ sin(t), 2e’ cos(t), et),

AT * (sin(t) — cos(t), cos(t) —sin(t), 2),

[7'(t),7"(2),7"(8)] = 2.
Thus,
2
s(t) = I 1@~ "0l _ Ve V2
I7OF  ~ e3(3)72 3¢t
and -
() = EOFos g 26 1
||*=(sw "OF ~ e 3t
From . .
s:f ||F’(u)||du:f &*V/3du =3 (¢ - 1),
0 0
we obtain

t__
&= gty

and therefore the intrinsic equations are

K(s) = 3(3\15\/5)’ gt 3(s+v3)"
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= (e’ (cos(t) —sin(t)), €’ (sin(t) + cos(t)), €),

)
) (=
F"(t) = (—2€ (sin(t) + cos(t)), 2€* (cos(t) — sin(t)),
) e?
]

¢),



6 Lines and planes determined by the Frenet
frame field

Rewview. The parametric equation of a line containing a point P of coordinates
(a,b, c) and with director vector ¥ of coordinates (vi, vs, v3) is the following:

. z(A) = a+ vy
T(A) =OP + A0 <= ¢ y(A) =b+ vz, where A € R.
z(A) = ¢+ Mg,

The cartesian equation of a plane Il containing a point P of coordin-
ates (a, b, ¢) and with characteristic vector ¢ of coordinates (vq, v2,v3) is the
following:

—_— .
X € <= PX -v=0
< (z—a,y—bz—c)- (v1,v2,v3) =0
= (z—a)vy +(y—Ddua+(z—cJug=0.
The parametric equation of a plane II containing a point P of coordinates

(a,b,c) and generated by the vector @ = (uq, us, uz) and & = (wy, wq, w3) is
the following:

a + suy + twi,
b+ sus + twy, where s, € R.
= ¢+ sug + {ws,

. z(A)
7(s,t) = OP + sii 4+t <= { y())
z(A)

Equivalently, a point X belongs to the plane II if and only if PX is a linear
combination of the vectors « and w. Then if (z,y, 2) are the coordinates of
the point X they mush verify the following equation:

r—a y—b z—c

{):— Uq Uy Uz
w1 Wo ws
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6.1 Tangent line and normal plane

Definition The tangent line to a curve C at the point P is the straight line
that has the same tangent vector at P as the curve C. We say that the
tangent line has order of contact 1 with the curve C' at the point P.

Thus, the tangent line to the curve C' with tangent vector = (v1,v2,v3)
at the point P = (a, b, ¢) has the following parametrization: 7(\) = OB+ Y
this is,

z(A) =a+ A
y(A) = b+ Ava, with A € R.
2(A) = ¢+ Avs,

Definition The normal plane to a curve C' at a point P is the orthogonal
plane to the tangent line that contains the point P.

Let IT be the normal plane of the curve C' with tangent vector ¢ =
(t1,t2,t3) at the point P = (a,b,c). A point X belongs to the normal plane
if it verifies the following vectorial equation:

—
PX-1=0

That is, if (z,y, z) are the coordinates of the point X, the implicit equations
of the plane is:
(z—a)t; +(y—b)ta+ (2 —c)tz =0.
The following plot represents the tangent line and the normal plane of the
curve with parametrization 7(t) = (1 — sin®(t), sin(¢), 1 + cos(t)), t € [0, 27),
at the point P = 7(7/4).
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6.2 Principal normal line and osculating plane. Oscu-
lating circle.

Definition. The principal normal line to a curve C' at a point P is the straight
line that passes through the point P and whose direction vector is the normal
vector to the curve at P. Thus the normal line to the curve C' with normal
vector 7 = (n1,n2,n3) at the point P = (a,b,c) has the following natural

parametrization: 7(A) = OP + A, this is,

z(A) =a+ Ay
y(A) = b+ Ang, with A € R.
Z(/\) = e )\ng,

Definition. The osculating plane to the curve C' at a point P is the plane
that contains the tangent and normal lines to the curve at the point P.

Let C be the curve with tangent vector ¢ = (t1,t2,t3) and normal vector
7t = (n1, ng, n3) at the point P = (a, b, c). A point X belongs to the osculating
plane if and only if PX is a linear combination of the vectors £ and . Then
the coordinates (z,y, z) of X verify the following equation:

r—a y—b z—c
0= t1 to i3
mnq Ta na
Definition. We call osculating circle of the curve C' at a point P € C the
circle contained in the osculating plane of the curve C' at P whose center,

called center of the curvature, lies on the normal line and whose radius is
R(so) = 1/k(s0). See the picture bellow.

ﬁ%
-

_._-—-—-—|-—
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The osculating circle has order of contact two with the curve at a point
P € ()} this means that it has the same tangent vector and the same curvature
than the curve at the point P.

The center Z of the osculating circle at the point P = @&(sp) satisfies the
following equation:

— —
0OZ =0P + R(Sg)ﬁ(&g);

and the equations of the osculating circle is:
—
||ZX]| = R(so).

6.2.1 Example.

The evolute of a curve is the locus of centers of curvature. Let us compute
the evolute of the parabola contained in the plane z = 0, of equation y = 12%.
A parametrization of the parabola is 7(t) = (t, 3¢%,0). By differentiating F(t)

we obtain:
f'E)=(1,40); 7"(t)=(0;1,0); F'AAF"E)=(001)

thus,

—r

(t) = 7= (L,0), B(t) = (0,0,1), () = 7= (~,1,0).

=

and the radius of curvature is given by the function:

3/2

I @I
R(t) = ne 7 = (1+1)

Thus, the locus of centers of curvature of the curve has the following para-
metrization:

B(t) = (t)+ R()(t)
(ol 2,0) 1+ L (~¢,1,0)
= (t,3t%0) + (L+ %) ( 1,0)
(- t3,1+§t2,0).

Note that the components of ﬁ(t) satisfy y = 1 — 3 2?3 and z = 0.
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6.3 Binormal line and rectifying plane. Torsion.

Definition. The binormal line to the curve C at the point P is the line
containing the point P and whose direction vector is the binormal vector to
C at P. Thus the binormal line to the curve C with binormal vector b =
(b1, ba, bi)_?t the point P = (a, b, ¢) has the following natural parametrization:

7(A) = OP + b, this is,

z(A) =a+ by
Y(A) =b+ Aby, with A e R.
z2(A) = ¢+ Abg,

The following picture represents the tangent, normal and binormal lines
of the curve with parametrization 7(t) = (1 — sin®(¢),sin(¢), 1 + cos(t)), t €
[0,27), at the point P = 7(m/4):

Definition. The rectifying plane of the curve C at the point P = (a,b,c) is
the plane containing the tangent and binormal lines to the curve at the point
P. Thus the rectifying plane has the following vectorial equation:

—
PX -i=0<= (z—a)m +(y—>b)na+ (2 —c)nz =0.

Remark. If 7(s) = 0, Vs, then ¥(s) = 0, the binormal vector is constant and
the curve C' is contained in the osculating plane. Therefore, C' is a plane
curve.

Proposition. Let C be a curve of class C?, then

C is plane if and only if the torsion is zero.
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6.4 Examples

1. Let C be a curve with parametrization 7(t) = (acos(t), asin(t), b),
t € [0,27) and a # 0,1. Let us compute the tangent, normal and
binormal lines and de tangent, osculating and rectifying planes at a
generic point Xy € C' and at the point P = (0,q,b).

(a) By differentiating 7(¢) we obtain

7'(t) = (—asin(t), acos(t), 0),
7"(t) = (—acos(t), —asin(t), 0)

and therefore ||7/(t)|| = a and

Ht) = =g = (—sin(t), cos(t), 0),
i 9 k
F')AT"({t) = | —asin(t) acos(t) 0 |=(0,0,a?)
—acos(t) —asin(t) 0
b(t) = eramengy = (0,0,1),
i ik
i(t) = b(t) At(t) =| —sin(t) cos(t) 0 | = (cos(t),sin(t)).
0 0 1

Remark. Note that the Frenet frame (t_'(t) ,7i(), g(t)) is a positive-

oriented frame as

—sin(t) —sin(t) 0
cos(t) sin(t) 0 |=1>0.
0 0 1

—

Remark. Note that as b(t) is constant vector the curve is plane and
it is contained at the osculating plane. A point X is at the osculat-
ing plane at a generic point X, = 7(tg) = (acos(ty), asin(ty), b)
if and only if X_oX) : g(t) — 0. Hence the equation of the osculating
plane at Xj is:

(x — acos(ty), y — asin(tg), 2—15b)-(0,0,1) =0<= z=10.
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At P = (0,a,b) = 7(5) we have:

f(3) = (~sin(§), cos(§), 0)= 1,00,
A(E) = (cos(Z),sin(%),0) = (0,1,0),
Bz = (0,0,0)

(b) The tangent line at an arbitrary point Xy = 7(to) is the following:

AO) = o) + Ak
= (acos(tp), asin(ty), b) + A(—sin(tp), cos(tp), 0)
= (acos(tg) — Asin(tg), asin(tp) + Acos(tp), b).

The principal normal line at an arbitrary point Xo = 7(%o) is the
following:

Tn(A) = 7(to) + Mi(to)
= (acos(tp), asin(tg), b) + A(cos(to), sin(to), 0)
= (acos(tp) + Acos(tg), asin(tg) + Asin(tg), b)
((a+ A)cos(to), (a+ A)sin(to), b).

The binormal line at an arbitrary point Xy = 7o) is the following;:
H(A) = (to) + Ab(to)

= (acos(tp), asin(tp), b) + A(0,0,1)
= (acos(tg) — Asin(tg), asin(ty) + Acos(tp), b).

The tangent, normal and binormal lines at P = 7{(3) are given by

the following parametric equations:

7(A) = (acos(§)— Asin(F), asin(F) + Acos(5), b) = (=A, a, b),

mm(A) = ((@a+A)cos(3), (a+A)sin(3), b) = (0, a+A, b),

m(A) = (acos(3) — Asin(3), asin(3) + Acos(3), b) = (—A, a, b).
(¢) A point X is at the normal plane at Xo = 7(tg) = (acos(tp), asin(to), b)

if and only if XoX - £(to) = 0. Hence, the equation of the normal
plane is:

(x — acos(ty), y —asin(ty), z—b) - (—sin(tg), cos(tp), 0) =0
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that is,
— (z — acos(ty)) sin(to) + (y — asin(ty)) cos(tg) = 0.

A point X is at the rectifying plane at Xy, = 7(tp) if and only if
—
XoX - fi(tg) = 0. Hence the equation of the rectifying plane is:

(x —acos(tyg), y — asin(ty), z — b) - (cos(tg), sin(ty), 0) =0
that is,
(x — acos(to)) cos(to) + (y — asin(to)) sin(tp) = 0.

And the equation of the osculating plane at Xg is z = b.

The normal, rectifying and osculating planes at P = 7(%) are
given by the following implicit equations:

|
i
I
<
|

2. Viviani’s curve. Let C be the curve with parametrization:
7(t) = (L + cost, sint, 2sint), ¢ € [0,2m).

Let us compute the tangent, normal and binormal lines and de tangent,
osculating and rectifying planes at the point P = (0,0, 2).

(a) By differentiating 7(t) we obtain

7'(t) = (—sin(t), cos(t), cos(%)),

7"(t) = (—cos(t), —sin(t), —%Sin(%))

and therefore ||7/(t)|| = 1/1+ cos?(t). We have: P = (m), as
1+ cost =0, sint =0 and QSin% = 2 if and only if t = 7. We
have

F!(ﬂ-) == (01 _13 O)a

Fﬂ(ﬂ) = (la 0, _%)a



(b)

and therefore

f‘(ﬂ') = %_(0 O):
R R
F'myAFT"(r) = [0 =1 0 :(%,0,1),
1 0 —%
f-;(ﬂ') _ FImAF(m) 1 (1 0 1)_ T
I |G G T o R AT 57038 )
1+
i(m) = B(mAf(m) =] 0 -1 0 :(_%,0?%)
& U &

The tangent line at P = 7(m) is the following:

() = m) + M)
= (,02)+A 0,—1,0)
= (0,-),2).

The principal normal line at P = 7(7) is the following:
T(A) = 7(r) + Ai(n)
= (0,0,2) + X (—%,0, %)
= (-&002+ %)),
The binormal line at P = 7(m) is the following:
() = F(r)+ Ab(n)
= 0,02)+X (350, %)

_ 1,
= (Aﬁ,0,2+AI)

A point X is at the normal plane at P = 7(m) if and only if
—F .
PX - t(m) = 0. Hence, the equation of the normal plane is:

(z, ¥y, 2—2)-(0,-1,0) =0

that is, I, =y = 0.
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A point X is at the rectifying plane at P = () if and only if
—
PX -i(w) = 0. Hence the equation of the rectifying plane is:

(z, v, z—2)‘(—%,0 %) =
that is,
HTE—%x—f—(z—Q)%:Oi:»—Qa:—kz:Q.

x_uaoint X is at the osculating plane at P = 7(n) if and only if
PX- g(ﬂ) — 0. Hence the equation of the osculating plane is:

(IL'? Y, 2_2) (%?01%) =0
that is,

IT,

%:E—F(Z—Q)%:O{:}x—f—QZ:—i.
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Differential Geometry of curves Dr. Mohamed Elsayed 4™ year 2022
Examples

3.1. Show that x = fe; + (24 1)e; + (1 — 1)%; is a regular parametric representation for
all { -

dx/dt = e; + 2tey + 3(t —1)%, is continuous and |dx/dt| = [1 + 482+ 9(t—1)4]1/2 0 for all
t. Hence x is regular for all .

3.2. Show that the representation 2, = (1+ cos ), 2 = sin 8, z; = 2 sin (0/2), —2x < 0 = 2x,
is regular

dz/de = —sine, dwy/ds = coss, dxy/de = cos(6/2)

are continuous and
de,Y  [dz,\ dxg)”}”“
I:(d—a) +(z—.;-> \@w/ ]
= [l + cos2(s/2)}]172 +# 0

Hence the representation is regular.

3.15. Compute the length of the arc x = 3(cosh2t)e; + 3(sinh 2t)e; + bley, 0 =1=n.

sy
szf
U

T

|6 sinh 2te; + 6 cosh2te, + Gey| db

dx
—|d
dt’t

Il

m

/
w
= f G[sink? 2f + cosh? 2¢ + 1}1/2dt
)
J

62 cosh22¢]V2 dt = f 6V2cosh2tdt = 8y/2sinh2r
0

3.17. Infroduce arc length as a parameter along
x = (etcost)e + (et sintle, + eles, —<t< o
1
o= J

i t
= f [6%4(—2 cos ¢ sin ¢+ 1) + (2 cos { sint + 1) + e¥]1/2dt = V’ﬁj etdt = V3 (et —1)
0 0

dx

—

|4
i dt = f |(e* cost — et sint)e; + (e sint + 6¢ cos tle, + efeyldt
0

Solving, t = log (s/y/3 + 1), —V/3 < 3 < =, Introducing arc length ¢ ag a parameter,
x = (sh/g + 1)(cos log (s/v/3 + 1)e; + sin log (/3 + e, + ;)

3.25.  Show that the representation
X = te 4+ (52'1‘2)02 + (ts"It)ea
is regular for all £
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Differential Geometry of curves Dr. Mohamed Elsayed 4™ year 2022
Example 4.1.

Along the helix x = afcos te, + a(sin t)e, + btes, a,b + 0, we have
;Lf = —a(sint)e; + a(cos t)e, + be; and !%x-t-l = (a2 482172
Then
dx dx dt ds dx /i d .
t = 3 = 2= = oS == d’: (a® + b2)—1/2(—qa(sin t)e, + a(cos t)e, + bey)

where we used the fact that c!s/dt = |dx/d{| (Theorem 3.4). Observe that along the helix the unit tangent t
makes a constant angle 6 = cos~!(t-e;) = cos~1b(a®+ b%)~1/2 with the x5 axis.

Example 4.2.
The tangent line to the curve x = te, + t%,+f%e; at £t =1 is

= x(1)+kx'(1) or y = (1+kle;+{1+2k)e; + (1+3kley, —»<k<e=
The normal plane at t =1 is
(y-x(1)+x() = 0 or (=1 +@—D2+ @1 =10
or ¥+ 2ys+ 3y; = 6.

Exaraple 4.3.
Along the circle of radius a, x = a{cosfje, + afsin t)e,, @ >0, we have

dx ; ax
il —afsin f)e; + a(cos tley, lai a
t X frasl —(sin t)ey + (costle
at/ | dt 1 1
and k =t = gt _ ad dt @ /| ’ = cost)e + (sin t)e,)
ds dt ds dt . A

Note that k is directed towards the origin, The curvature is constant, equal to x| = |k| = /o and the
radius of curvature is p =1/|x| = a. Henee as we expect, the radius of curvature of a circle is simply
its radius.

Example 44.
Along the helix x = alcost)e, + alsint)e, + bte;, a >0, b0, we have
i—’; = —a(sintle; + alcostle, + be,, g:’ = (a?+ b2)1/2
t = i—:/l ‘fi’:‘ = (a® b2)~V/2(—a(sin t)e; + a(cos t)e, 1 bey)
and

_ oy o gt |dx
k—t—dt/]dt

= (a2 b%)~Y2(—a(cos they
= a(sin t)ey)/(a® + b2)1/2

= = ZBJ:TE. ((cos t)e, + (sin t)e,)
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Differential Geometry of curves Dr. Mohamed Elsayed 4™ year 2022

Example 4.5.
Along the third degree curve x = te; + §i'e,,

‘jl—: = e 1 th,, % = (1+¢p3, t = %/ fl_}: = (1+#) 172y + they)
,'ﬂﬂ/ldxl - -2 —
and k=1-= = =T |El = 21+ 1)~ t%e; —ey)
Example 4.7.
Congider the helix x = (eos t)e, + (sin f)e, + fe,.

x' = (—sint)e, + (cos t)e, + €5, [|x'| = V2

t = x/[x'| = (/V2)(—sint)e, + (cos t)es + e3)
and k = t = ¢/|x| = —(})((cos t)e; + (sin t)e,)
and, since k# 0 for all ¢,
n = k/lk|] = —((cos t)e, + (sin t)e,)

The equation of the prineipal normal at t = »/2 ig
¥y = x(=/2) + kn(+/2) or ¥y = (1 —kle;, + =/2e,, —w L k< ew
and the equation of the osculating plane at ¢ = #/2 is

Hy — x@/2)t/2)nln/2)] = 0

¥ -1z 0
or det | yy — 1 0 -1 = 0 or ¥+ s = #/2
va—w/2  1A/2Z 0

Example 4.8.
Referring to the helix in Example 4.4, we have
x = alcost)e; + alsint)e, + bleg, >0, b+*0
t = (a2 b2)~1/2(—a(sin t)e, + alcos tle, + bey)

2] " k 2
k = ——51Tgllcosd)e; + (sint)ey), n = Bl = —((cos t)e, + (sin t)ey)
e; —a(a2+b2)~12gint —cost
b = tXn = det|e; a(a®2+b%) 1/2cost —sint
e  b(a2+ b2)-1/2 0

= (a?+ b2)~1/2(b(sin t)e; — blcos t)e; + aeg)
The equation of the binormal line at t = ¢; is
y = x(tg) + kb(y)
or ¥ = (acosty,+ kb(aZ+ b2)~1/2 gin t;)e, + (a sin ty — kb(a2+ b2)~1/2 gog fy)e,
+ (bt, + ak(aZ + b2)—1/2)a,, — < < @
Or, if we introduce the change in parameter ¢ = k(a2 + bZ)—1/2,
y = A{a'costy+ 6bsintple;, + (asinty — eb cositple, + (biy + ad)eg, —m L g < ®
The equation of the rectifying plane at £t = t; is
(¥ — x(tg)) *mlty) = 0
or (y1 — @ costg)(—costy) + (yp — e sinty)(—sinty) = 0
or yyeosty + yasinly — «

Observe that rectifying planes are parallel to the x; axis.
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Example 4.9.
We congider again the helix
X = afcos the; + afsin t)e, + ble,, a>0, b#0
Referring to Example 4.8, we have
b = (a?+ 52)~1/2(b(gsin te, — blcos t)e, + ae;)
b = %E = % i I%’ = (a?+52)~L(bcos tle, + b(sin fe,)

The torsion is constant, equal to

T = —"b *n = —{a+ b2~ (b(cos t)e; + b(sin t)e;) * ((—cost)e; — (sint)ey)) = b/(a®+ b%)

41. Find the equations of the tangent line and normal plane to the curve

x = (l+tes — tres + (1+tYes
at t = 1.

x' = e — tey + %, x(1} = Ze, — e, + 25, x'(1) = e, — 2e, + e,
The equation of the tangent line at ¢ =1 is
¥y = x() +kx'(1) or ¥y = (2+kje;— (L+2k)e, + (2+ 3k
The equation of the normal plane is

(F—x(LN+x(1) =0 or (U =2)+ @W+D—2)+(y;—2)8 =0 or y;—2yp+38y; = 10

4.2. TFind the intersection of the z:x: plane and the tangent lines to the helix
x = (cost)e; + (sint)es + tes (£>0)
The tangent line at an arbitrary point x is
vy =x+ke or y = (cost—kasintle + (sint+ & costle, + (¢ +kle;
or, using x as the position vector,
#, = cost— ksint, =, = sint+keost, x; = t+Ek
The equation of the 2%, plane is #;=0. Hence along the intersection, t+k =0 or k= —i.

Thus the intersection is the curve

%, = cost+ tsint, m = sint—teost, w3 =10

43. Show that the tangent vectors along the curve x = ate, + bi%e; + 1%; where 2b2 = 3q,
malke a constant angle with the vector a = e; + es.

x' = oae; + 2bte; + 3t%e,
| = (a® +4b2%2 + Ot)12 = (a2 + 6at? + QE)1/2 = ¢ + 312

where we have used 202 = 3¢, Then the angle between the tangent X" and a is

Iy 32
cos—l{l(:'llz?} = ecos™! {ﬁz)t—\/ﬁﬁ} = cost(IVZ) = /4

4.5. Find the curvature vector k and eurvature || on the curve

x = ter + itlex + Lfles
at the point ¢ =1.

X' = e + te, + t2ey, |x| = (1+ 2+ )iz
t = X/ = (1+884 1)~ 12(e, + te, + tle;)
(1+ €2+ t4)—1/2(ey + 2teg) ~ (o) + Loy + 2eg)(1 + 12+ (4)—3/2(¢ + 247)
= —(1+ 2+ )-32[26 + e, + (t5— L)eg — (3 + 2t)ey]
k =t = /K] = —(1+ 2+t 2269+ t)e, + (¢ — 1)e, ~ (t°+ 2t)ey]
At £=1 we have k = —}(e; —e3) and |« = |k| = %\fﬁ

tF
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4.9. Let x=1x(s) be of class =2 and let Af denote the angle between the unit tangent
t(s) at x(s) and t(s +As) at a neighboring point x(s +As), As >0, as shown in Fig.
4-14(a). Show that the curvature

{ = Hmal o @

Agwmr O AS dS
Namely, |«| is a measure of rate of change of direction of the tangent with respect to
arc length.

t(s + As) — t(s)
Ys -+ ag)
(@) ()
Fig. 4-14

Since t is a unit vector, |t(s+As) — t(8)| is the base of an igosceles triangle with sides of
length 1, as shown in Fig. 4-14(). Henee

te+As) —ts)] = 2gin(JA9) = A6 + ofAs)

where we have used the Taylor expansion for the sine function. Then

. S i A —_—
Ag=+( Ag As—+0 Ag
. Ag + o(Ag) ; Ag o(A8)
= lm S22 gim | SS{1 4=
As+0 As As— [As < A8
i i = lim o(a0) = = im 2¢ = ﬁ.
Since il_r?o Ad 0, then lm Ag 0 and |« .:.lsl-IPu s P

441. Find a conlinuous unit principzl normal and unit binormal along the curve
x = (3t—t%e: + Bttes + (3L+)es
x = (3— 3t2)e, + bte, + (3+ 3t2)e;
x| = S[(1— )2 + (282 + (1+ 22|12 = B2 (142624 H)1/2 = 32 (1 + 1)

o’ i
= = 2 [1-#8 2 1+ ¢
t ] N f.ﬂ)[( e, + 2te, + (1 + i2)ey]
poojo o THetd—®e o eptd-oppe
=t=1 = T ~ 30T 8% = it ap
Since k£ 0 for all ¢, we can choose
0k =2 1— ¢
B S g T Tren Tt ryes
51 1 s t2 -—Et

and b = txm = -_1_ﬂzdet €y 2t 1—¢2

VB e 1+12 0

1
= ————[—(L+ )1 — ey — (L + t2ep + (L + 1%)%4]
VB(1+ )2
m [(t?'— 1)&1 — 2te2 + (1 + tﬂ)ea}
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4.12.

Show that along a curve x =x(t) the vector x”” is parallel to the osculating plane
and that its components with respect to t and n are [x’|" and «[x’[|> respectively.

Differentiating x' = %%’ = ts' with respect to {, we obtain

x" = ts" + s = ts” + 182 = ts” + nxs

where from equation (4.6), t = «n. It follows that x” is parallel to the osculating plane and that
its eomponents with respect to t and n are |x'|"=¢" and «|x’|® = xs"? respectively.

4.13. (a) If x* and x’” are linearly independent at a point x along x = x(f), show that the

osculating plane at x is [(y —x)x'x""] = 0. (b) Use this formula to find the osculating
plane to the curve x = fe; + t%e: + %3 at { =1.

(¢) We saw in the above problem that x/ is parallel to the osculating plane and we know that
¥, being a multiple of ¢, is parallel to the scsculating plane. Since we are given that x" and
x" are independent, it follows that x' X x’* is a nonzero vector normal to the osculating plane
at x. Therefore the equation of the osculating plane at x is [(y —x)x'x"] = 0.

(b) x' = e, + 2te, + Bt2e;, x'" = 2e, + Gtey

Thus the osculating plane at ¢ =1 is [(y —x(1))x'(1)x"(1})] =0 or

hw—1 1 0
det | o —1 2 2 = 0
ys—1 3 6
from which
E(y;—1)—6(y—1)+2(ys—1) =0 or 3y — 3ty =1

41



Chapter 3

In this chapter we are going to study the following concepts

1) Helices

2) Spherical Indicatrix
3) Involutes

4) Evolutes

5) Bertrand Curves

8. Helices. A curve traced on the surface of a cylinder, and
cutting the generators at a constant angle, 1s called a helw. Thus
the tangent to a helix is inclined at a constant angle to a fized
direction If then t 1s the unit tangent to the helix, and a a constant
vector parallel to the generators of the cylinder, we have

tea =const.
and therefore, on differentiation with respect to s,
knea =10
Thus, since the curvature of the helix does not vanish, the principal
normal is everywhere perpendicular to the generators. Hence the
fixed direction of the generators 1s parallel to the plane of t and b;

and since 1t makes a constant angle with t, it also makes a constant
angle with b,

An important property of all helices is that the curvature and torsion are

1n a constant ratio.

To prove this we differentiate the relation n.a=0=n'.a =0, where

!

d ..
= —, obtaining
ds

(th — xt).2a =0,
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Thus e is perpendicular to the vector b — xt. But a is parallel to
the plane of t and b, and must therefore be parallel to the vector
Tt + xb, which is inclined to t at an angle tan™ /7. But this angle
is constant. Therefore the curvature and torsion are 1n a constant
ratio.

Conversely we may prove that a curve whose curvalure and
torsion are tn & constant ratwo t8 a hehw. Let T=cx where ¢ 18
constant. Then since

t'=«n,
and b'=—tn=— ckn,
it follows that & b+ ot)=0,
and therefore b+ct=a,

where a is a constant vector. Forming the scalar product of each
side with t we have
tea=c

Thus t 18 inclined at a constant angle to the fixed direction of a,
and the curve is therefore & helix.

Finally we may show that the curvature and the torsion of a
helix are 1n a constant ratio to the curvature &, of the plane section
of the eylinder perpenchoular to the generators. lake the s-axis

\

Fig b.

parallel to the generators, and let 8 be measured from the inter-
gection A of the curve with the @y plane. Let u be the arc-length
of the normal section of the cylinder by the zy plane, measured
from the same pomt A up to the gemerator through the current
point (@, y, 2). Then,1f B 18 the constant angle at which the curve
cuts the generators, we have
u= g8 B,
and therefore uw =sin B,
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The coordinates @, ¥ are functions of u, while =28 cos 8. Hence for
the current pomnt on the helix we have

r=(z, y, 8cos R),
so that r’=(§—zsin/3, %sin B, cos B).
wi (g Wngo).

Hence the curvature of the helix is given by

R |

so that K = Ko 8103 8,

For the torsion, we have already proved that
B = tan™ &/,

so that T=rk cot 8=1x,81n 8 cos B.

From these results it is clear that the only curve whose curvature
and, torsion are both constant 13 the circular helwr. For such a curve
must be a helhix, since the ratio of its curvature to its torsion 1s also
constant. And since « is constant it then follows that «, 18 constant,
so that the cylinder on which the helix is drawn is a circular
cylinder.

Ex. Show that, for any curve,
4 1" L d
[, r% v ]=‘5E<-E)

This expression therefore vanishes for & helix and conversely, 1f 1t vanishes,
the curve 18 & helix.

9. Spherical indicatrix. The locus of & pont, whose position
vector is equal to the umt tangent t of & given curve, 1s called the
spherical snducatriz of the tangent to the curve Such a locus les
on the surface of a unit sphere, hence the name. Let the suffix
umty be used to distinguish quantities belonging to this locus.

Then r1 = t’

and therefore t = —F—l = gl_t 2 = KD —— ds

ds, dsds, ds,’
showing that the tangent to the spherical indicatrix is parallel to
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the principal normal of the given curve. We may measure s, so
that

t1=n:
do_
ds

For the curvature «, of the indicatrix, on differentiating the relation
t,=n, we find the formula

and therefore

Squaring both sides we obtain the result
"12= (IC’ + Tn)/"’:
so that the curvature of the indicatrix 1s the ratio of the screw
curvature to the circular curvature of the curve. The unit binormal
of the indicatrix is
t+ b
kK,
The torsion could be obtamned by differentiating this equation; but,
the result follows more easily from the equation [cf. Examples I,

)

b1=t1><n1=

ds 8 / 7 (774
el T (ﬁ) =[r/, 1", 0] = [¥,t", t""]

= K.'s (IC‘T, — IC"T)_,
/ 7/
which reduces to = (:'(rmn +"T:))_

Sumlarly the spherical indicatria of the binormal of the given
curve is the locus of a point whose position vector 18 b. Using the
suffix unity to distinguish quantities belonging to this locus, we have

r=D>b,
and therefore t, = % :l% =—r i:
We may measure 8, so that
t,=—n,
and therefore ds, =7
ds

To find the curvature differentiate the equation t,=—mn. Then

d ds 1
K1n1=a“s(— n)—il=;(/ct—'rb),
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giving the direction of the principal normal. On squaring this result
we have

k2 = (k2 + 1)/
Thus the curvature of the indicatrix is the ratio of the screw
curvature to the torsion of the given curve. The unit binormal 1s

b, =t xm,= 'rt+/c'b,
TH,
and the torsion, found as 1n the previous case, is equal fo
Tk’ — k7’
T r(et+ 1)’
Ex. 1, Find the torsions of the spherical indicatrces from the formula

Rl=p+afp,

where B=1 and p;=1/x, 18 known.

Ex., 2. Examine the spherical indicatrix of the principal normal of & given
curve

T

10. Involutes. When the tangents to a curve (' are normals
to another curve C,, the latter is called an nwvolute of the former,
and C 18 called an evolute of 0,. An involute may be generated

/s— —
A
N4
Nt’
\n

Fig. 6.

mechanically in the following manner Let one end of an inex-
tensible string be fixed to a point of the curve C, and let the string
be kept taut while it is wrapped round the curve on its convex
mde. Then any particle of the string describes an involute of O,
since at each instant the free part of the string is a tangent to
the curve O, while the direction of motion of the particle is at
right angles to this tangent.

From the above definition it follows that the pomnt r, of the
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mvolute which lies on the tangent at the pownt r of the curve O is
given by

r, =r 4 ut,
where u 18 to be determined. Let ds, be the arc-length of the

mvolute corresponding to the element ds of the curve C. Then the
unit tangent to C, 18

_dnds _ ‘ ds
tl——ds d31— L(]. +u)t+u1€n}a-s—l.

To satisfy the condition for an involute, this vector must be per-
pendicular to t. Hence
14+4 =0,

S0 that U=¢—S8§,

where ¢ 18 an arbitrary constant Thus the current point on the
involute 18
r,=r+(c—2s)t,

and the umt tangent there 1s
t,=(c—8)« @ n
ds,
Hence the tangent to the involute is parallel to the principal

normal to the given curve. We may take the positive direction
along the 1mvolute so that

and therefore %% = (c—8) «.

To find the curvature x, of the involute we diffcrentiate the
relation t, = n, thus obtaining

n b — «t
_ ath= x(c—8)
Therefore, on squaring both sides, we have

e T
Y (e—e)
The unit principal normal to the mvolute is
o = 7b — xt
' ke (c—8)’
and the umt binormal
b+ 7t

b1=t1xn1=mc1(c—s)'
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Since the constant ¢ is arbitrary, there is a single infinitude of
involutes to a given curve; and the tangents at corresponding
pomts of two different involutes are parallel and at a constant
distance apart.

Ex. 1. Show that the torsion of an involute has the value

k7 — k't
k (k2472 (6 —38)"
Ex. Q. Prove that the involutes of a circular helix are plane curves, whose

planes are normal to the axs of the cylinder, and that they are also mvolutes
of the circular sections of the oylinder.

*11. Evolutes. The converse problem to that just solved is
the problem of finding the evolutes of a given curve (. Let r, be
the pomt on the evolute C, corresponding to the pomt r on C.
Then, smce the tangents to O, are normals to 0, the point r, lies
n the normal plane to the given curve at r. Hence

r,=r+4 un+4b,
where u, v are to be determined. The tangent to the evolute at r,
is parallel to dr,/ds, that 1s, to
(1—uk)t+ @ —vr)n +(ur+v)b
Hence, in order that 1t may be parallel to un + vb we must have

l—ux=0,

U —vr ur4+v

and = .
U v

The first of these gives u=%= p, and from the second it follows
that

_vp —p¥
T= ¥+ pﬁ .
Integrating with respect to s and writing yr = f '-rds, we have
0
v+ ¢ = tan ( p) )
so that v=—p tan (J +¢).

The point r; on the evolute is therefore given by

r,=T+ p {mn—tan (Y»+ ¢) b}.
It therefore Lies on the axis of the circle of curvature of the given
curve, at a distance — p tan (y» +¢) from the centre of curvature.
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The tangent to the evolute, bemng the line jomning the points r
and r;, 15 1n the normal plane of the given curve C, and is mclined
to the principal normal n at an angle (y» + ¢).

Let the suffix umty distingmsh quantities refermng to the
evolute Then on differentiating the last equation, remembering
that dvyr/ds =, we find

hi—?=%={ "+ pr tan (Y + ¢)} {n — tan (Y + ¢) b}.
Thus the unit tangent to the evolute 1s
t,=cos(Yy+c)n—sm(yr+c)b
ds, _ «remn (Y + c) — &' cos (Y + c)
ds «? cos? (Y +¢)

The curvature of the evolute 18 obtained by differentiating the
vector t,. Thus

and therefore

nlnl%=%’=—xcus(\k+c)t

The principal normal to the evolute 1s thus parullel to the tangent to
the curve C. We may take

n, =—t,
and therefore &, = xcos (Y + ¢) %
1
_ «? cos’ (Y0 + ¢)
" krmn(Y+c)—« cos(Y+c)
The unit binormal to the evolute is
b=t xn,=cos(Yy+c)b+smn(Y+ec)n
The torsion 1s found by differentiating this. Thus

-7, (Cii—s;=—lcﬂln(‘\.lf‘+ c)t
and therefore
71=—ICBI.U.(‘4I‘+G)§—:1

_ < s1n (Yr + ¢) cos* (Y + 0)
kT8I (Y +¢c)— k' cos (Y +¢)’
Thus the ratio of the torsion of the evolute to its curvature is
—tan (Y + ¢). :
Since the constant ¢ is arbitrary there 1s a single infimtude of
V. 3
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evolutes The tangents to two different evolutes, corresponding to
the values ¢, and ¢,, drawn from the same pomt of the given curve,
are inclined to each other at a constant angle ¢, — c,.

Ex. 1. The loous of the centre of curvature 18 an evolute only when the
curve 18 plane,

Ex. 2. A plane curve has only a single evolute m its own plane, the locus

of the centre of curvature All other evolutes are helices traced on the rnght
cylinder whose base is the plane evolute,

*12. Bertrand curves. Saint-Venant proposed and Bertrand
solved the problem of finding the curves whose principal normals
are also the principal normals of another curve. A pair of curves,
0 and O;, having their principal normals in common, are said to be
conjugate or associate Berirand curves. We may take their prin-
cipal normals in the same sense, so that

n, =0n.
The point 1, on C, corresponding to the point r on C is then given
ki =T +aN . .cior een tene aenes @A),
where it is easily seen that a s constant. For the tangent to O, i
parallel to dr,/ds, and therefore to
t+ae'n+ a(tb—«t)
This must be perpendicular to m, so that a’ 18 zero and therefort

a constant. Further, if symbols with the suffix unity refer to th
curve C;, we have

g—s(t et)=snet +te(k;n) %=O,
showing that tet, = const.

t

t‘ FAN
\/h.
— > b

Fig. 7.
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Thus the tangents to the two curves are inclined at a constant angle
But the principal normals coincide, and therefore the binormals of
the two curves are 1nclined at the same constant angle. Let a be

the inclination of b, to b measured from b toward t. Then « 18
constant

On differentiating the above expression for r, we have
ds,
tl% —-(1 —a,/c)t+wrb ......
Then, forming the scalar product of each mde with b,, we obtain
O=(l-akx)sma+arcosa

Thus there is a linear relation with constant coefficients between the
curvature and torsion of O;

(+-3)
T={Kk—-)tana

a
Moreover 1t is obvious from the diagram thab

t,=tcosa—bamna
On comparing this with (1) we see that

cos a = (1 — ak) %\L
! (ui).

am g =— ar
& |

Now the relation between the curves C and C] 1s clearly a recip-
rocal one The point r 15 at a distance — @ along the normal at
r,, and t 15 mnclined at an angle —a to t, Hence, corresponding to

(111), we have

cosa=(1+ arc,)%
s, [ e (1v).
ds
On multiplying together corresponding formulae of (1ii) and (iv)
we obtain the relations

sina=—an

1 2
'T'T; — a‘a Bln a

(1 —ax) (1 + ak;) = cos*a

The first of these shows that the torsions of the two curves have
the same sugn, and their product 18 constant. This theorem 1s due to

3—2
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Schell. The result contamned in the second formula may be ex-
pressed as follows: If P, P, are corresponding pownis on two con-
jugate Bertrand curves, and O, O, their centres of curvature, the

cross ratto of the range (POP,0,) 18 constant and equal to sec? a.
This theorem is due to Mannheim,

Ex. 1. By differentiatang the equation

(l—ax) s1n a+ ar cos a=0,
deduce the following results:

For a ourve of constant curvature the econjugate 1s the locus of ita centre of
curvature.

A curve of constant torsion coincides with 1ts conjugate.

Ex. 2, Show that a plane curve admits an mfimty of conjugates, all
parallel to the given ourve
Prove also that the only other curve which has more than one conjugate 18

the circular helix, the conjugates being also circular helices on coaxial
cylinders

EXAMPLES II

1. The prinocipal normal to a curve 18 normal to the locus of the centre of
curvature at points for which the value of « 1s stationary

2. The normal plane to the locus of the centre of circular curvature of a

curve ( bisects the radus of spherical ourvature at the corresponding pont
of 0

3. The bmormal at a pomt P of a given curve 18 the imiting position of

the common perpendrcular to the tangents at P and a consecutive pont of
the curve.

4. For a curve drawn on a sphere the centre of curvature at any pont is

the foot of the perpendioular from the centre of the sphere upon the osculating
plane at the point

5. Prove that, in order that the prinoipal normals of a curve be binormals

of another, the relation
o (<34 7)== x

must hold, where o 18 constant

6. If there is a one-to-one correspondence between the pomnts of two
ourves, and the tangents at corresponding points are parallel, show that the
prinoipal normals are parallel, and therefore also the binormals, Prove also
that

Two ourves so related are said to be deducible from each other by a Combes-
cura transformatiwon,



Chapter 2

Surfaces in R3

2.1 Definitions and Examples

First, we assume you know the definition of open sets and continuous
maps from R” to R™.

Definition 2.1.1. If f : X — Y s continuous and bijective, and if its
inverse map f~1:Y — X is also continuous, then f is called a homeomor-
phism and X andY are said to be homeomorphic.

Theorem 2.1.2 (Invariance of domain). If f : U C R™ — R" s an tnjective
continuous map, then V- = f(U) is open and f is a homeomorphism between
UandV.

Definition 2.1.3. A subset S C R? is a reqular surface if for each p € S,
there exists a neighbourhood W C R® and a map o : U = W NS of an open
set U C R? onto WN S C R3, such that

e o is smooth
e o is homeomorphism
e at all points (u,v) € U, oy X 0y # 0.

The mapping o is called a (regular) parametrization or a chart. We will
call its image a coordinate patch. A collection of charts such that every point
of S is contained in a coordinate patch is called an atlas. The condition 3
above means o, and o, are linearly independent, or doy : R2 — RR3 is one
to one.

For any point of a regular surface S, there might be more than one
charts.

Proposition 2.1.4. Leto : U — S, 6 : V — § be two charts of S such that
p€a(U)N&(V)=W. Then the transition map h =010 :6 1 (W) —
o Y(W) is a diffeomorphism.

29
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Proof is omitted. It is another application of Inverse Function Theorem.
The diffeomorphism h gives a reparametrization.

Definition 2.1.5. A reparametrization of surface is a composition oo f :
V = R? where f : V = U is a diffeomorphism.

Since the Jacobian df is invertible, let f(z,y) = (u(z,y),v(z,y)), (60 f)z
and (o o f), are linearly independent if and only if o,, and o, are. So the
following is well defined.

Definition 2.1.6. The tangent plane 1,S of a surface S at the point p is
the vector space spanned by o,(p) and o, (p).

1,8

This space is independent of parametrization. One should think of the
origin of the vector space as the point p.

Definition 2.1.7. The unit vector

Oy X Oy

N = Ju=%

is the standard normal to the surface at point p = o(u,v).

Here are examples of parametrized surfaces. For the pictures of these,
look at Hichin’s notes.

Example:

1. A plane:
o(u,v) =a+ub+wvc

for constant vectors a,b, ¢ and b x ¢ # 0. The normal vector

bxce
N=——
b x c|

2. A cylinder:
o(u,v) = (acosu,asinu,v),a >0

N = (cosu,sinu,0)
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. A cone (without cone point):

o(u,v) = (aucos v, ausinv, u)

. A helicoid:

o(u,v) = (aucosv,ausinv, v)

. A sphere (minus a half circle connecting poles) in spherical coordinates:

U= (—T,T) x (0,2r).

g2
o(u,v) = (acosvcosu,asinvcosu,asinu)

N:—lo

a

. A torus

o(u,v) = ((a + becosu) cos v, (@ + beosu) sinv, bsin u),

a > b are constants.

. A surface of revolution

o(u,v) = (f(u) cosv, f(u)sinv, g(u))

is obtained by rotating a plane curve (called profile curve) v(u) =
(f(u),0,g(u)) around z-axis. We assume f(u) > 0 for all u. We have

oy = (fucosv, fysinv, g,), 0y = (—fsinv, f cosv,0).
So

oy X 0y = (—fgcosv, — fgsinv, ff), |low x 0y = f2(f2 +4¢°) #0

. A generalized cylinder

o(u,v) = v(u) + va.

Oy =7%,0py =4

o is regular if v is never tangent to the ruling a.

But usually, a surface has more than one patches. That is the reason

why we need more preparation of surfaces local theory than that of curves.
For curves, only one patch is enough since the topology is simpler. The
following example shows how a closed (i.e. compact without boundary)
surface is different from a closed curve, where we can use a periodic one
patch parametrization.
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Example 2.1.8. The unit sphere S? = {(z,y,2) € R} 22 +y? + 2% =1} is
a regular surface. We let o1 : U C R? — R3.

o1(z,y) = (z,9, V1 - 22 — y?),(z,y) € U = B1(0)

is a parametrization. Please check the 3 conditions (general statement is
Proposition 2.1.9).

Simalarly o9(z,y) = (z,y, —\/1 — 22 — y?), (z,y) € U = B1(0) is also a

parametrization. And o1(U) U 02(U) covers S? minus equator z = 0.
With 4 more parametrizations

o3(z,2) = (z, V1 — 22 — 22,2)
o4(z,2) = (2, — V1 — 22 — 22,2)

0'5(9,2) :( l—y2—z2,y,z)

o6(y;2) = (-V1-9y* - 2%,9,2)

they cover S%. So S? is a regular surface.

To check each o; is a parametrization, one could prove the following more
general result, whose proof is left as an exercise.

Proposition 2.1.9. If f : U C R? = R is a smooth function in an open set
U of R%, then the graph of f, i.e. o(z,y) = (z,y, f(z,v)) for (z,y) € U is
a regular surface.

2.1.1 Compact surfaces

A subset X of R3 is compact if it is closed and bounded (i.e. X is
contained in some open ball).

Non-examples: A plane is not compact. The open disc {(z,y, 2) € R3|zr:2+
y? < 1,z = 0} is not compact.
There are very few compact surfaces:

Example 2.1.10. Any sphere is compact. Let us consider the unit sphere
B2,

It is bounded because it is contained in the open ball D2(0).

To show S? is closed, i.e. the complement is open: if ||p|| # 1, say
lpl| > 1. Let € = ||p|| — 1, De(p) does not intersect S?. This is because if
q € De(p), then ||q|| = [Ipl| = |lp — ql| > [lpl]| —e= 1.

Other examples are torus X7 = T2, and surface of higher “genus” ¥,>2.

Theorem 2.1.11. For any g > 0, ¥, has an atlas such that it is a smooth
surface. Moreover, every compact surface is diffeomorphic to one of ¥,.
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2.1.2 Level sets

There is another family of regular surfaces: the level sets. Suppose that
f:U C R™ = R is smooth. For each p € U, we have Jacobian

df? = Vf(p) = (f$11 fmz: s 'JfIn)(p)‘

Definition 2.1.12. We say p € U is a critical point if df, = 0. Otherwise
it is regular.

The image f(p) of a critical point is called a critical value. t € R is a
regular value if every point of the level set f~1(t) is reqular.

The following shows the notions of regular surface and regular value
coincide in some sense.

Theorem 2.1.13. If f : U C R® — R is a smooth function and t € f(U) is
a regular value of f, then f~1(t) is a regular surface in R3.

Proof. Let p be a point of f~1(t). Without loss, we assume f,(p) # 0.
Define F : U C R® — R3 by

F(z,y,2) = (.9, f(z,y,2))-

Its Jacobian is

1 0 0
dE,=10 1 0
fo fy [z

det(dFp) = f, #0.

Thus by Inverse Function Theorem, we have a neighbourhood V' C R? of
pand W C R3 of F(p) such that F : V — W is invertible and F~1 : W - V
is smooth, i.e. F~(u,v,w) = (u,v,g(u,v,w)) with (u,v,w) € W and g
smooth. Especially g(u,v,t) = h(u,v) is smooth, where h takes value from
W' = {(u,v)|(u,v,t) € W} C R2. Since F(f~1(t)NV) = {(u,v,t)} N W,
the graph of h(u,v) is F~1(u,v,t) = f~1(¢t)NV. Hence h: W' — f~1(t)NV
is a parametrization containing p. Hence by Proposition 2.1.9 f~1(¢) is a
regular surface. -

Example 2.1.14. o f(x,y,2) = 2% +y?+ 22 Vf = (2x,2y,22). Thus
fL(t) is an embedded surface for all t > 0. It is a sphere of radius t.

e f(z,y,2) =22 +y% - 22. Vf = (2z,2y,—22). f1(0) is a cone which
is singular at the origin. f~1(t) is a regular surface for t # 0. It is a
hyperboloid — 1-sheeted for t > 0 and 2-sheeted for t < 0.
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2.2 The First Fundamental Form

Choose a parametrization o : U — R3 of S, such that p € o(U) and
o(ug,v9) = p. A curve 7y lies on S and passes through p when t = tg if
7(t) = o(u(t),v(t)) with u(to) = up and v(tp) = vo. By Inverse Function
Theorem, both v and v are smooth.

Since |[4]|2 =< 4,4 >= E4? + 2Fui + G2, where

E=o0y 04y, F =0y -0y,G=0y- 0y,

the arc length of such a curve fromt =a tot =bis

b b
[ 15(2)||dt = f VE@? + 2Fud + Go2dt.
a [}

Definition 2.2.1. The first fundamental form of a surface in R® is the
€TPTession

[ = Edu? + 2Fdudv + Gdv?.

This is just the quadratic form

Qv,v)=v-v

on the tangent plane written in terms of the basis o, and 0,. (And we assume
the formal computations du(oy,) = dv(o,) = 1,du(o,) = dv(oy) = 0.) So it
tells us how the surface S inherits the inner product of R3. It is represented
in this basis by the symmetric matrix

E F
F G)°
It is clear that the first fundamental form only depends on S and p.
Especially, it does not depend on the parametrization. A reparametrization

& = o o f will change it to the same form FEdz? + 2Fdxzdy + Gdy? which is
identical to the one calculated from coordinate change

du = uzdz + uydy, dv = vedz + vydy,

where f(z,y) = (u(z,y),v(z,y)). It helps us to make measurement (e.g.
Length of curves, angles, areas) on the surface directly, so we say a property
of S is intrinsic if it can be expressed in terms of the first fundamental form.

Example:
1. Plane o(u,v) = a+ ub + vc with b L ¢ and

|l = [le]| = 1.
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o, =b,0, =c, s0
E=|b|f=1,F=b-¢=0,G=|lc|]?=1.
The first fundamental form is

I = du? + dv?.
2. Surface of revolution

o(u,v) = (f(u) cosv, f(u)sinv, g(u)).

We could assume the profile curve y(u) = (f(u), 0, g(u)) is unit-speed,
ie. f2+g2=1,and f > 0. We have

oy = (fucosv, fysinv, g,), 0, = (—fsinv, f cosv,0).

So
E=f2142=1F=0,G=f2

Hence
I = du® + f(u)?dv?

The unit sphere S? is a special case where u = 0,v = ¢, f 0) =
cosf,g(f) = sinf. We have

I = db? + cos? 0d¢?

3. Generalized cylinder o(u,v) = 7(u) + va. We assume + is unit-speed,
a is a unit vector, and 4 L a. Since g, = ¥,0, = a,

I = du® + dv?.

Exercise: Calculate the first fundamental form for all other examples in
previous section.

Observe that the first fundamental form of a generalized cylinder is the
same as that of a plane! This is not a coincidence. The reason is the
generalized cylinder is obtained from bending a piece of paper. Or it could
be cut through one of its ruling to a flat paper. This is called a local isometry.

2.3 Length, Angle, Area: Isometric, Conformal,
Equiareal

In this section, we explore several intrinsic properties.
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2.3.1 Length: Isometry

Definition 2.3.1. Two surfaces S1 and Sy are isometric if there is a dif-
feomorphism f : §1 — S2 which maps curves in S1 to curves in Sy of the
same length. The map [ is called an isometry.

The map from a plane to a cylinder is not an isometry since it is not a
diffeomorphism. But indeed it has the second property. A smooth map like
this is called a local isometry. This suggests us to look at this definition for
a coordinate patch.

Theorem 2.3.2. The coordinate patches Uy and Uy are isometric if and
only if there exist parametrizations o1 : V — R3 and o9 : V — R® with the
same first fundamental form, and o1(V') = Uy, 02(V) = Us.

Proof. Suppose such parametrizations exist, then the identity map is an
isometry since the first fundamental form determines the length of curves.

Conversely, assume Uy, U; are isometric. And let the charts be o7 : V3 —
R3 and g5 : V3 = R3. So we could assume the diffeomorphism is realized by
f: Vi — V5. Then

oy0 f,o1: Vi » R®

are parametrizations from the same open set V = V. So the fundamental
forms are defined using same coordinate (u,v) as

Erdu? + 2F dudv 4+ G1dv?, Bydu? + 2Fsdudv + Gadv?.
We have

f VE142 + 2F b + Giv2dt = / V Eai? + 2Fyiiy + Goi2dt
I I

for all curves and all intervals. Take derivative, we have
VE112 + 2F100 + G192 = \/ Eat? + 2Fyut + Goi?
for all u(t) and v(t). Hence Ey = Ey, F1 = F3,G1 = Gs. O
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2.3.2 Angle: conformal

One notices that the dot product inherited from R? is also preserved un-
der isometry (and vice versa), since it is determined by the first fundamental
form:

1
vew = o(llv +wlf* = (vl = [Iw][?).

Hence, the angle is also an intrinsic invariant. Let us define it.
Look at two curves a, 8 on the surface S intersecting at { = 0. The angle
between them at ¢ = 0 is given by
Q- B

cosl=——0<0<n

L2117 ——

Everything is expressed in terms of the coefficients of the first fundamental
form.

Definition 2.3.3. Two surfaces S1 and Sy are conformal if there is a dif-
feomorphism f which preserves the angle for any pair of curves.

Notice the invariance of the expression of cos# if we scale the first fun-
damental form by a positive function A2. Hence we have a similar charac-
terization as for isometry.

Theorem 2.3.4. The coordinate patches Uy and Uy are conformal if and
only if there exist parametrizations o1 : V. — R3? and o3 : V = R3 with
o01(V) = Uy,02(V) = Uy, and Ey = N2Ey, Fy = X2F1,G = MGy in V,
where A2 is a nowhere zero differentiable function in V.

We call them locally conformal. The most important property of con-
formal maps is the following.

Theorem 2.3.5. Any two regular surfaces are locally conformal.

To prove the theorem, we need to choose a special parametrization. For
a neighborhood of any point of a regular surface by Isothermal parametriza-
tion, in which the first fundamental form is A%(u,v)(du? + dv?).

2.3.3 Area: equiareal

Let us focus on a parametrized surface ¢ : U — R3. There are two
families of curves u = const and v = const. Fix (ug,vp) € U, we have the
following picture.

The area of the “parallelogram” is

llowAu X 0, Av|| = ||oy X oy||Aulv.
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ouAv

v =1y + Av

Local “parallelogram”

Definition 2.3.6. The area A,(R) of the part o(R) of 0 : U — R3 for
region R C U is

As(R) = A [low X oy||dudv = /}; VEG — F2dudv.

The second equality follows from
low % aul[? = |lou|Pllow|? — (ou - ) = EG — F?.

As a corollary, we know the area of a surface patch is unchanged by reparametriza-
tion.
There is a characterization for equiareal map.

Theorem 2.3.7. A diffeomrphism f : Uy — Uy is equiareal, i.e. it takes

any region in S1 to a region of same area in So, if and only if for any surface
patch o on Sy, the first fundamental forms of charts o and f o o satisfy

E\G, - F? = E;G, - F2.

We summarize that being isometric is a stronger condition than being
conformal or equiareal.

2.4 The Second Fundamental Form

The first fundamental form describe the intrinsic geometry of a surface,
namely independent of the choice of its sitting in R3. The second funda-
mental form describes how the surface is bent in R3.
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Mobius band

2.4.1 Normals and orientability

A unit normal to surface S at p, up to sign, is a unit vector perpendicular
to T,S5. Recall that we define standard unit normal for a parametrization

o:U > RS as
Oy X Oy
a

||ow X O'v.:”.

However, we do not always have a smooth choice of the unit normal
at any point of S. For instance, the Mdbius band is such an example.
Intuitively, if we walk along the middle circle of it, after one turn, the normal
vector N will come back as —IN. In other words, we cannot make a consistent
choice of a definite “side” on Mobius band. But apparently, N, is a smooth
choice on one surface patch. Actually, the reason of this phenomenon is N,
depends on the choice of patches.

Let & : U — R3 be another. Then

oudv  Ouov

5555 %%)O’u X oy = det J(®)oy X 0y,

5’11 X 5’1", = (
where J(®) is the Jacobian of the transition map ® = 6 1 o0. So Nj =
+N,. The sign is that of det J(®).

Definition 2.4.1. A surface S is orientable if we have a smooth choice of
unit normal at any point of S. Such a choice of unit normal vector field is
called an orientation of S.

A surface with a chosen orientation is called oriented.

Example 2.4.2. Every compact surface in R® is orientable. This is because
every compact surface is diffeomorphic to one of X.

The next follows from the above discussion.
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Proposition 2.4.3. A surface S is orientable if there exists an atlas A of
S such that for transition map ® between any two charts in A, we have

det J(®) > 0.

After on, without particular mentioning, our surface will be orientable.

2.4.2 Gauss map and second fundamental form
Let S C R? be a surface with an orientation N, we have the Gauss map

G:8— 8%p— N,

where IN,, is the unit normal of S at p. The rate at which IN varies across S
is measured by the derivative. It is denoted as DG : TpS — Tg(,)S*. But
as planes in R3, Tg(p) S2 and T,S are parallel since both are perpendicular
to N. So we actually look at the Weingarten map

Wps = —DpG : T, = T,5.
It is defined as the unique linear map determined by
W(ou) = —Nu, W(ow) = =Ny
for any parametrization o.
Exercise: Prove W is independent of the choice of surface parametrization.

Parallel to the discussion of first fundamental form, we have

Definition 2.4.4. The second fundamental form of an oriented surface is
the expression
II = Ldu® + 2Mdudv + Ndv®

where L = oyy - N, M = 0y - N, N = 0y - N.
There is another expression. Note that o, - N = 0, we have
(0u N)y = 0wy - N+0y Ny =0
and similarly
Owu N4+0y Ny=0,04 N+0o, Ny=0,04N+o0, N, =0.

Hence we also have
L=—-0, Ny
M = -0y Ny =—0y Ny
N = —Oy* Nv
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Hence the second fundamental form is the symmetric bilinear form

II(w) =W, s(w) - w=<W,g(W),w>.

L M
M N/
in terms of basis o, and o,.

There is a third interpretation. Recall that the curvature of a curve
could be understand as t’ - n, or the second term of Taylor expansion of
v(s). We could understand the second fundamental form in a similar way.
We look at Taylor expression

It is represented by

o(u+Au,v+Av)—o(u,v) = JuAu—l—O'UAU—{—%(o’w(Au)2—|—20wAuA1J+0'W(Av)2)+R
where ]imAu‘&U_m m = 0. Since Ty N = Ty N= O,

(o(u+ Au,v+ Av) —o(u,v))-N = %(L(Au}z +2MAulAv + N(Av)?) + R

The fourth interpretation is more geometric: we take surface o(u,v) and
push it inwards a distance ¢ along its normal to get a family of surfaces

R(u,v,t) = o(u,v) — tN(u, v).

We calculate the first fundamental form Edu? + 2Fdudv + Gdv? of R which
depends on t, then the derivative

%%(Edﬁ + 2Fdudv + Gdv?)|i— = Ldu® + 2Mdudv + Ndv*

where Ldu? + 2Mdudv + Ndv? is the second fundamental form of 0. So
it describes how the first fundamental form varies along the unit normal
direction.

Example:

1. Plane o(u,v) = a+ ub + vc has oy = 0yy = 0y = 0. So the second
fundamental form vanishes.

2. Surface of revolution
J(u} U) = (f(u') COSU} f(u) SiIl’U, g(u))
We again assume f2 + g2 =1 and f > 0. We have

oy = (fucoswv, fysinv, gy), 0, = (—fsinv, f cosv,0).
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So
Oy X 0y = (—fgucosv,—fgysinv, ffu),||low X a0|| = F.
Hence
N = (—gy cosv, —gy sinv, f,),

Ouu = (fuu €08V, fuu SINV, Guu),
Ouy = (— fusinw, f, cosv,0),
ow = (—f cosv, — f sinv, 0).
So the second fundamental form
II = (fuguu — fuugu)du® + fgudv?.
There are two special cases:
(a) Unit sphere: u =0, v=¢, f(0) = cosb, g(f) = sinb.
I = d#? + cos? 0d¢?
the same as its first fundamental form.
(b) Unit cylinder: f(u) =1, g(u) = u. So
=&,

This is different from that of a plane, although their first funda-~
mental forms are the same.

These examples tells us second fundamental form is an extrinsic concept,
although it is not independent of the first fundamental form.

Exercise: Prove the converse of Example 1: If the second fundamental
form vanishes, it is part of a plane.

2.5 Curvatures

2.5.1 Definitions and first properties

The shape of a surface influences the curvature of curves on the surface.

Let v(t) = o(u(t),v(t)) be a unit-speed curve on an oriented surface S.
Hence v = uoy + 00y € T()S, which means ¥ L N. So N, 4 and N x 7 is
a right handed orthonormal basis of R3. Since ¥ L 74,

¥ = knN + KgN X 75 (2.1)
Here &, is called the normal curvature and kg is called the geodesic curvature
of 4. Notice when ¢ is a plane and <y a plane curve, the geodesic curvature
is just the signed curvature k.

On a general (non-oriented) surface, only magnitudes of , and x, are
well defined.
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Proposition 2.5.1. 1. k, =4 -N,kg =% (N x 7).
2. kK2 = K2 + &3.

3. kn = KCOSY, kg = Ksiny, where k is the curvature of v and v is the
angle between N and n of 7.

Proof. The first is obtained by multiplying N and N x 4 respectively to
(2.1).

The second is by multiplying 4 to it.

For the last notice ¥ = kn. Comparing the coefficients of (2.1) and

kn = kcostYPN + ksinpIN x 4
gives us the equalities. O
Proposition 2.5.2. If v is a unit-speed curve on S,
= EI(A):
In other words, for v(t) = o(u(t),v(t)),
Kn = L% + 2Mutd + Nv?
Proof. Since N-4 =0, N-4%=—N-4. So
fn =N-§=-N-§ =< W({),4 >= II(%).
d

So ky only depends on the point p and the tangent vector +(p), but not
the curve «.

Theorem 2.5.3 (Meusnier’s Theorem). Let p € S, v € T),S a unit vector.
Let I1g be the plane containing v and making angle 6 # 0 with T,S. Suppose
Ilp intersects S in a curve with curvature k9. Then kgsin@ is independent

of .

Proof. Let v9 = Ilp N S, and parametrize it by arc length.
Then at p, 49 = £v, so 49 L v and || Iy since ~y is a plane curve. Thus
% = 5 — 0 and kg sin = k,, independent of 6. O

The Weingarten map is a linear map. It could be viewed as a symmetric
2 x 2 matrix after fixing basis, say oy, oy, since the second fundamental form
is a symmetric bilinear form. Its determinant and trace are two invariant
associate with it, which is independent of the choice of basis.
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Definition 2.5.4. Let W, be the Weingarten map at p € S. Then the
Gaussian curvature

and mean curvature

H = %trac&(wp)‘

For a linear map/matrix, we also look at their eigenvalues and eigenvec-
tors. For W, the eigenvalues are real numbers since it is symmetric.
So at p € S, there are k1, k2 and a basis {t1,t2} of 7},S such that

W(tl) = ﬁltl,W(tg) - Fégtg,

Moreover, if k1 # kg, then < t1,ty >= 0. We call k1, kg principal curvatures,
and tq,ts principal vectors. Points of the surface with k1 = kg is called
umbilical points, where W, is k1 - Iyx2 and every direction is a principal
direction.

Hence, for any points, there is an orthonormal basis of T,S consisting of
principal vectors. We also know that

1
H = E(!ﬂ + ko), K = K1 - Ka.

Theorem 2.5.5 (Euler’s Theorem). Let v be a curve on an oriented surface
S, and let k1, ke be the principal curvatures with principal vectors tq,ts.
Then the normal curvature of v is

Kn = K1 €082 0 + ko sin? 6,
whff_(if? is the angle from t1 to 7 in the orientation of T,,S (which is denoted
as t1%).
Proof. We assume {t1,t2} is an orthonormal basis and tﬁ} = 3. So
4 = cos Bt1 + sin Ot
Then
Kn = II() = cos® 0 - IT(t1) + 2sinfcosf < W(t1),ty > +sin? 6 - I1(ts).

Here, recall 1I(v) =< W(v),v >.
Finally, the conclusion follows since

Ki 1=]

< W(ti),tj >=< kiti, t; >= { 0 ki
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We want to remark that Meusnier’s Theorem and Euler’s Theorem are
most ancient results on the theory of surfaces.

Corollary 2.5.6. The principal curvatures at a point of a surface are maz-
imum and minimum of the normal curvature of all curves on the surface
that pass through this point.

Proof. If k1 > ko, then k1 > Kkp > Ka. O

2.5.2 Calculation of Gaussian and mean curvatures

Now we want to calculate Gaussian curvature K and mean curvature H
in terms of first and second fundamental forms. Let o(u,v) be a chart, and

I = Bdu® + 2Fdudv + Gdv?, IT = Ldu® + 2Mdudv + Ndv?.

E F L M
-7:1=(F G)"FHZ(M N)'

Proposition 2.5.7. Let o be a parametrization. Then the matriz W, with
respect to the basis {oy, 04} of T,S is FriFy ' = (F; ' Fu)T.

We denote

Proof. We know that W(o,) = —Ny, W(o,) = —N,,. So the matrix of W is
a b
c d)’

—N, = aogy + bo,, —N, = co,, + do,.

where

Paring each with oy, 0,, we have
L=aE+bF,M =aF +bG,M = cF +dF,N = cF +dG,

ie.

Corollary 2.5.8.

_ LG—2MF + NE

oag2
e _LN-M
2(EG — F?)

T EG-F%

ol



46 CHAPTER 2. SURFACES IN R3

Proof.
E det Fpr LN — M?
K= 1 = = .
det(F; Fi) = 357, = EG-F2
. 1 G -F\(L M
1 _
frn=ge_—pm (—F E)(M N)
1 LG—-MF MG-NF
“EG-F2\ME—-LF NE-MF
So

LG —2MF + NE
2(EG — F?)

1
H = §tmoe(FI_1FH) =

Example 2.5.9. Surface of revolution
o(u,v) = (f(u) cosv, f(u)sinv, g(u)).
We again assume f2+ g2 =1 and f > 0.
I =du? + f2dv?, IT = (fuguu — fuugu)du® + fgudv?.

Hence
- (fuguu = fuugu)fgu.

f2

Taking derivative on f* + g2 = 1, we have

K

fufuu + Gufuu = 0.

So
(fuguu = fuugu)gu — _fuu(fi +gz2_-,) = — fuu;
and I, f
K=- 12 = —T‘

Especially, for a unit sphere u = 0,v = ¢, f(f) = cosf, g(f) = sinf. We
thus have K = 1.

Gauss uses another way to define K, roughly speaking it is the ratio of
the area changed under Gaussian map G, or

. Area(G(R))
flzl—rﬁ; AreaR

Next theorem makes it precisely.



2.5. CURVATURES 47

Theorem 2.5.10. Let o : U = R® be a parametrization, with (ug,v) € U.
Let Rs = {(u,v) € R%|(u — up)? + (v — v9)? < 6%}. Then

. AN(Rs)
AR~ Kb

where K is the Gaussian at o(ug, vp).

Proof. Recall that

An(Rs)  Jr, |INu x Ny||dudv
As(Rs) [, llow x ov||dudv |

Ny x N, =(agy + boy) X (coy + doy,)

=(ad — bc)oy X oy

=det(]:}_1]:[[)0'u X Oy

=Ko, X gy,
So we could choose § small, such that |K (u,v)— K (ug,v)| < € if (u,v) € Ry.
So

An (Rs)

AG(RHS)
This finishes the proof. U

| K (ug, v0)| — € < < | K (up,v0)| + €.

2.5.3 Principal curvatures

Let us come back to principal curvatures. They are the roots x of
det(F; ' Frr — sI) = 0, which is

det(]'_u - K-.Fj) =0.

t = éoy, + oy, is a principal vector if

(Frr — &Fr) (f?) = (g) .

Example 2.5.11. For unit sphere
I =11 =d#? + cos® 8d?.

So principal curvatures are repeated roots k = 1 and thus every tangent
vector is principal, every point is umbilical.

Example 2.5.12. For cylinder
o(u,v) = (cosv,sinv, u).

I =du? + dv?, IT = dv?.
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Principal curvatures are solutions of

0—k 0
det( 0 1—;.:.)_()'

So k = 0,1, and no point is umbilical.
The principal vector

t; = ow = (0,0,1),t3 = 0, = (—sinw, cos v, 0).

Proposition 2.5.13. Let S be a connected surface of which every point is
umbilical. Then S is an open subset of a plane or a sphere.

Proof. For every tangent vector t, W(t) = st where  is the principal
curvature. Since W(o,) = —N,, W(o,) = —N,, then

Ny = —koy, Ny = —K0oy.
Hence by taking derivatives,
KyOy = KyOy.

Since g, and g, are linearly independent, x, = k, = 0. Thus x = C.
If k =0, N is constant. Then (N-0), = (N-0)y, =0,s0 N-o = C.
Thus ¢(U) is an open subset of the plane P-N = C.
If K £0, N= —ko + a. Hence
1. o 1w 1
- = =||-=N||*= .
lo = —all? = || - ~N|? =
So o(U) is an open subset of the sphere with centre x 'a and radius |x|™'.
To complete the proof, notice that each patch is contained in a plane or
a sphere. But if the images of two patches intersect, they must clearly be
part of the same plane or same sphere. So complete the proof. U

Principal curvature at p € S provides the information about shape. We
choose the coordinates as following: p is the origin, 7,5 is the zy-plane in
R3, principal vectors t; = (1,0,0) and ty = (0,1,0) and N = (0,0,1). We
could always choose such a coordinate up to an isometry, i.e. rotation and
translation, of R3.

Let o be a parametrization with o(0,0) = 0 (point p). The tangent plane
is {(z,y,0)} = s04,(0,0) + ta,(0,0). Taylor expansion gives us

1
o(s,t) = 0(0,0)+s04(0,0)+tay (0, 0)+§(32%(0, 0)+25t0yu (0, 0)+t200y(0, 0))+ - -
If z,y (hence s,t) are small, we have o(s,t) ~ (z,y, 2) where

1
(5200 (0, 0) + 25t0y,(0,0) + t204,(0,0)) - N = §(Ls2 + 2M st + Nt?).

B | =

A~
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Since
W(t) = 2W(t1) + yW(ts) = kit + koyte = (K12, K2y, 0)
for t = (z,v,0), hence
Ls? + 2Mst + Nt? =< W(t),t >= r12% + soy®.

So near p, S is approximated by z = %(mwz + Koy?).

There are 4 cases of local behaviour:

1. Elliptic if K, > 0, s0 z = %(5.1:1:2 + Ky?) is an elliptic paraboloid.

2. Hyperbolic if K, < 0, it is a hyperbolic paraboloid.

3. Parabolic if one of ki, k2 is zero, and the other is non-zero. It is a
parabolic cylinder.

4. Planar if both k1 = k3 = 0 (or W, = 0). We need higher derivatives
to know the shape.

2.6 Gauss’s Theorema Egregium

Since the definitions of curvatures involve the second fundamental form,
they are usually not intrinsic. But actually Gaussian curvature K is an
intrinsic invariant.

Theorem 2.6.1 (Gauss’s Theorema Egregium). The Gaussian curvature
K of a surface is invariant of the first fundamental form.

In this section, we prove it by detailed calculations.
For regular surface S, and a chart ¢ : U — S, oy, 0y, N would be a basis.
We express oyy, Ouy; Ouvs DY

Ouwu = T11ouw + T30y + L1 -N (2.2)
O = Dot Dlgtre+ Ly - N (2.3)
Ovw = T390u + 50y + L3 - N (2.4)

Here I‘?j are called Christoffel symbols.
First, by taking dot product with N, Ly = L,Ly = M, L3z = N.

Next, we claim Fi—‘j only depends on the first fundamental form. More
precisely,
. _ GE, - 2FF,+ FE, 2 _ 2EF, — EE, — FE,
= EG-F?2) U7 2EG-F?
E,-F EG, - FE,
Iy = M: 1o = s (2.5)
2(EG — F?) 2(EG — F?)
ri, — 2GF, — GGy — FGy ., EG,—2FF,+ FG,

20EG-F?) "2 2(EG-F?)



