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PREFACE

Molecular spectroscopy cannot be regarded as the private domain of the
physicist or physical chemist who describes himself as a spectroscopist.
Both organic and inorganic chemists make use of infrared and ultraviolet
spectrometers as if they were standard tools of the trade. Analytical
chemists base many of their analytical techniques on the methods of
spectroscopy. IFurthermore, almost all chemists make frequent use of
molecular-structure data, and much of this has been obtained from
spectroscopic measurements.

One can, it is true, make very considerable use of spectroscopy as a
tool for the characterization, identification, and analysis of materials
with little or no understanding of the way in which the observed spec-
trum is related to the properties of the absorbing, or emitting, molecules.
Likewise, data on molecular properties can be used even if the way in
which they were obtained is not understood. The tendency of many
chemists, who are not molecular spectroscopists, to proceed with this
lack of appreciation for the elementary theory of molecular spectroscopy
persists, in part, because of the lack of suitable introductory material.
This book is, therefore, intended to bridge the gap between the very
cursory treatment of spectroscopy generally given in undergraduate text-
books and the detailed treatments written for the specialist and research
worker that are given in books in the various areas of molecular spectros-
copy. The reader will here be provided with the basic theory which
makes understandable the relationship of the amount and wavelength of
radiation absorbed or emitted by a sample and the properties of the mole-
cules of the sample. This introduction should not only allow the organic,

inorganic, or analytical chemist to make surer use of spectroscopy as a
v



vi PREFACE

tool, but should also provide that comfortable feeling of knowing ‘‘what
is happening’’ when spectroscopic techniques, or results obtained by these
techniques, are used. '

No special background is necessary for the study of this book.
Although the Schrédinger wave equation is introduced and simple prob-
lems to illustrate its relation to quantities that are important in spectros-
copy are solved, no prior knowledge of quantum mechanics is assumed.
In a similar way, some of the theory known as “‘group theory” is given
and some analyses are based on the methods of group theory. Again no
previous knowledge of this subject is necessary. The use of quantum
mechanics and group theory is carefully confined to areas of specific value
in this introduction to spectroscopy. The level of treatment is main-
tained by avoiding the many additional avenues that these subjects
open up.

This introduction to molecular spectroscopy will show how molecular
spectra can be interpreted in terms of molecular behavior and how, from
such interpretations, molecular properties can be obtained. The level
of understanding of the theory of molecular spectroscopy that this book
seeks to achieve is that from which the student can enter into the special-
ized reference books and the research literature of molecular spectroscopy.
In fact the goal of much of the material presented could be considered
to be that of providing readier access for the student to the two important
molecular spectroscopy books, frequently referred to throughout the
book, by G. Herzberg. It is hoped that the student will be able to under-
stand and appreciate advanced and current spectroscopic material if,
after studying this book, he pays some additional attention to the details
and nomenclature surrounding a particular spectroscopic subject. With
this background the inorganic chemist should, for example, be able to
appreciate the very important guides to the nature of bonding in coordi-
nation compounds that are now being based, to a large extent, on spectros-
copic results. The organic chemist, to use a specific example, should
be able to make increased use of the information on the nature and
energies of excited states that are being discovered and analyzed by the
spectroscopist.

The problems of selection of material and depth of treatment are,
of course, considerable in a book which attempts to serve as an introduc-
tion to a field as extensive as spectroscopy. Judgement as to the relative
importance of the topics to be treated and the depths to which these
treatments should be taken are, it is recognized, greatly influenced by
one’s particular interests and background. I have attempted, however,
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to maintain a uniform introduction to the areas of rotational, vibrational,
and electronic spectroscopy that are generally of interest to chemists.

Several sections are concerned in some detail with subjects that are
perhaps of special rather than general interest. These sections, marked
with an asterisk, can be omitted without destroying the continuity of
the book.

I would like to express my appreciation to my colleagues, Dr. Wm.
Abrahamson and Dr. W. E. Thompson, and to the graduate students
at Case Institute, Mrs. Carol Haberman, Miss Kim Vo, and Mr. I. Chu,
for the assistance they have given me by carefully working through
many sections of the manuscript. I am also indebted to my wife,
Harriet, for the improvements that she made in the style of the presenta-
tion and to Mrs. Julia Dasch for typing the manuscript.

Gordon M. Barrow
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INTRODUCTION

Molecular spectroscopy is the study of the absorption-or emission of
electromagnetic radiation by molecules. The experimental data that
such studies provide are the frequencies, or wavelengths, of the radiation
and the amount of radiation emitted or absorbed by the sample.

One can often understand the nature of the molecular changes that
are responsible for the emission or absorption of the radiation. In such
cases, the experimental spectroscopic data can be used to determine
quantitative values for various molecular properties. In this way, as
will be seen, remarkably detailed and exact measurements of the size,
shape, flexibility, and electronic arrangement of a molecule can be
obtained. It will become apparent that spectroscopy offers one of the
most powerful tools for a great variety of molecular-structure studies.

Only brief mention will be made of the experimental techniques used
to obtain the spectra that are discussed. A number of books, listed at
the end of this section, deal in part or wholly with these techniques. In
practice, furthermore, many commercial spectrometers operating in the
various spectral regions are available. With such equipment, spectra
can be obtained and used without a detailed understanding of the
behavior of the components of the instrument.

There will, furthermore, be no attempt to deal in detail with the
tremendous body of very useful empirical data that has been accumulated,
primarily from studies of infrared and ultraviolet spectra. References to
some treatments and collections of these data are given below.

Classifications of Spectroscopy

When the theory of molecular spectra is treated, it is convenient to

classify spectra according to the type of molecular energy that is being
1



2 INTRODUCTION TO MOLECULAR SPECTROSCOPY

altered in the emission or absorption process. In this way the principal
headings for the material that is to be presented can be arrived at.
These are:

Rotational spectra—due to changes in the rotational energy of the
molecule

Vibrational spectra—due to changes in the vibrational energy of the
molecule

Electronic spectra—due to changes in the energy of the molecule due
to different electron arrangements

It is allowable, generally to a good approximation, to treat the
energy of afree molecule as made up of separate rotational, vibrational, and
electronic components as has been implied by this classification. We will
see, however, that spectra may result from transitions in which more
than one type of molecular energy changes. Thus an absorption of
energy due primarily to a change in the vibrational energy may show the
effects of accompanying rotational energy changes.

One can also divide spectroscopy according to the instrumentation
used. It happens that the categories obtained in this way are similar to
those based on molecular energies. The instrumentation classification
might be given as:

Microwave spectrometer: Klystron source, wave guide, and crystal
detector—molecular rotation spectra

Infrared spectrometer: hot ceramic source, rock-salt prism or grating,
thermocouple detector—molecular vibration spectra

Visible and ultraviolet spectrometer: tungsten lamp or hydrogen dis-
charge tube source, glass or quartz prism or grating, photomultiplier
detector—electronic spectra

It should also be mentioned that vibrational spectra can be obtained
by means of Raman spectroscopy and that this technique uses a visible
or ultraviolet spectrometer,

In addition to the types of molecular spectroscopy listed above,
there are two closely related types that play a comparable role in chem-
istry. These are nuclear magnetic resonance (nmr) and electron spin
resonance (esr) spectroscopy. The energy levels that are studied in
these spectroscopic categories result, in contrast to those normally
studied in rotational, vibrational, and electronic spectroscopy, from the
action of a magnetic field on the molecules of the sample. In nuclear
magnetic resonance spectroscopy the effect of the magnetic field is to
orient certain nuclei in certain directions with respect to the direction of
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the field. These different orientations correspond to different energies,
and radiation of a suitable frequency can then be used to study the energy-
level separations. Similarly, in electronic spin resonance spectroscopy
the spin of an electron of the sample molecule is oriented one way or the
other with respect to the field, and again the resulting energy-level separa-
tion of these two orientations is studied by radiation of suitable frequency.
A number of recent books have appeared which provide excellent
introductions, suitable for the chemist, to nuclear magnetic resonance
and electronic spin resonance spectroscopy. Of particular interest
are “Nuclear Magnetic Resonance,” McGraw-Hill Book Company,
Inc., New York, 1959, and “An Introduction to Spin-Spin Splitting
in High-Resolution Nuclear Magnetic Resonance Spectra,” W. A,
Benjamin, Inc., New York, 1961, both by J. D. Roberts, and ‘“Applica-
tions of Nuclear Magnetic Resonance Spectroscopy in Organic Chemis-
try,” Pergamon Press, Inc., New York, 1959, by M. L. Jackman. In
view of these treatments, which are at the same level as the treatments of
rotational, vibrational, and electronic spectroscopy given here, no discus-
sion of nuclear magnetic resonance and electronic spin resonance will be
included.

Wavelength, Frequency, and Energy of Radiation

Before the emission or absorption of radiation by molecular systems
can be treated, some of the terms used to describe electromagnetic radia-
tion must be summarized. )

The wave nature description of electromagnetic radiation associates
oscillating electric and magnetic fields with the radiation. Ordinary
radiatior traveling in the z direction, for example, can be treated in
terms of electric and magnetic fields perpendicular to each other and to
the direction of propagation. Polarized radiation, which is more con-
venient for discussion here, can be obtained. Figure 1 indicates the

FIG. 1 Plane-polarized electromagnetic radiation.

X

/— E =E,cos 2my(t~ %)




4 INTRODUCTION TO MOLECULAR SPECTROSCOPY

electric and magnetic fields that are associated with polarized electro-
magnetic radiation which has only the zz plane component of the electrie
field. In spectroscopy almost all attention is centered on the electric
field, but, for completeness, Fig. 1 shows that this plane polarized radia-
tion has the magnetic field component in the plane perpendicular to that
of the electric field.

The oscillation of the electric field, and also of the associated mag-
netic field, travels out in the 2 direction, the direction of propagation,
with a velocity ¢. The value of the electric field along the z axis at a
given time and at a given point on the z axis as a function of time can be
expressed by the formula

E = E, cos 2wy (t - z) 1)

This formula, it should be recognized, gives the behavior shown in Fig. 1
for a given value of ¢, { = 0 for example, while at a given value of z the .
oscillation of E with respect to time is given.

With this wave picture of radiation, electromagnetic radiation con-
sists of waves of varying electric and magnetic field strength traveling
with the velocity of light and having a given wavelength and frequency.
As can be readily verified by considering a position with some fixed value
of 2z and asking how many cycles pass this position in the time ¢ seconds,
the relation between the wavelength and the frequency of oscillation of
the wave is

@

>0

-
I

Although, as will be seen later, the frequencies of the radiation that
are absorbed or emitted in a spectral study are more directly related to
the molecular energy changes that cause the absorption or emission, it is
often customary to deal as well with the wavelength. of the radiation.

The corpuscular description of electromagnetic radiation views this
radiation as a stream of energy packets, called photons in the visible
region, traveling with the velocity of light.

Basic to an understanding. of spectra is the relation of Planck that
brings together the wave and corpuscular theories of radiation. His
equation

Ae = hv 3)
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where h, a constant known as Planck’s constant, with the value 6.624 X
10~-% erg-sec, ties together the corpuscular quantity Ae, the energy of a
radiation energy packet, or quantum, with the wave nature concept of
the frequency of the radiation.

In the various types of spectroscopy one makes use of Ae, », or A to
characterize the particular radiation emitted or absorbed. One addi-
tional unit which is proportional to » has convenient numerical values
and is often used. This unit, quite commonly called a frequency unit,
differs from » by the factor ¢. It is designated as # and is defined as

1

y=x 4)
The units of # are invariably those of em™, called reciprocal centimeters or
wave numbers. It should be kept in mind that 7 is essentially a measure of
frequency, being different from » by the constant factor of the velocity of
light.

The ranges of electromagnetic radiation, expressed in the units usu-
ally used for each region, are shown in Table 1. While it may seem
unfortunate that a consistent set of units, such as the cgs wavelength
unit of centimeters, is not used throughout, it is a historical fact that
each area of spectroscopy developed pretty much on its own, independ-
ent of developments in other areas, and each acquired its own con-
venient set of units.

It is frequently necessary to convert from one description of radia-
tion, such as given by a value of A, for example, to another, such as given
by », or 7, or by the value of A¢ = hv. Conversion factors for all the
interconversions that are likely to be encountered are shown in Table 2.
It should be pointed out, with regard to the entries in Table 2, that a
term such as cal/mole is intended to mean calories per Avogadro’s
number of particles, where the ‘“‘particles’” may be molecules, atoms, or
quanta.

TABLE 1 The Spectral Regions of Electromagnetic Radiation

Microwave Infrared Visible Ultraviolet
X (em) 30-0.1 0.003-0.00025 |7 X 1075-3 X 1073 |3 X 10~5-1 X 1075
A (A) ) 7,000-3,000 3,000-1,000
vy 1000-300,000
megacycles/sec
7 300-4,000 cim™!?
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TABLE 2 Energy Conversion Factors
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erg/molecule ev em™} cal/mole
erg/molecule. .. ... 1 6.242 X 101t 5.036 X 105 | 1.439 X 10
V. 1.602 X 1072 1 8,067 23,060
em™l. .. ..........| L986 X 1071 | 1.2396 X 10—* 1 2.858
cal/mole. ........ 6.949 X 1077 | 4.338 X 1078 0.3499 1
Exercise 1. Complete Table 1 by filling in all the blank spaces.

Exercise 2. Verify the conversion factors along a row of Table 2.
Exercise 3. Calculate typical energies of an Avogadro’s number (6.023 X
102%) of quanta in the four regions of electromagnetic radiation shown in
Table 1. Compare these values with the classical thermal kinetic energy
of #RT = 600 cal/mole per degree of freedom at room temperature and
with chemical bond energies of 50 to 100 keal/mole.

PRINCIPAL REFERENCES

Experimental Methods

1. Harrison, G. R., R. C. Lord, and J. R. Loofbourow: “Practical Spectroscopy,”
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1948.

2. Gordy, W., W. V, Smith, and R. F. Trambarulo: “Microwave Spectroscopy,’’
John Wiley & Sons, Inc., New York, 1953.

3. Sawyer, R. A.: “Experimental Spectroscopy,” Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1944.

Applications )

1. Bellamy, L. J.: “The Infrared Spectra of Complex Molecules,” John Wiley &
Sons, Inc., New York, 1954.

2. Lawson, K. E.: “Infrared Absorption of Inorganic Substances,” Reinhold
Publishing Corporation, New York, 1961.

3. Gillam, A. E, and E. S. Stern: “An Introduction to Electroni¢ Absorption
Spectroscopy in Organic Chemistry,” Edward Arnold & Co., London, 1954.
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INTRODUCTION TO
THE THEORETICAL TREATMENT OF
MOLECULAR SYSTEMS

The development of theories of atomic and molecular systems has, since
about 1900, been closely tied to the study of their spectra. The principal
aspect of these theories that must be introduced here is their statements
about the energy that an atom or molecule can have. An appreciation
of the restrictions that are placed on the energies of atomic and molecular
systems is basic to an understanding of the spectra of these systems.

While many spectra can be understood to some extent without any
further appreciation of the theories of molecular systems, a better under-
standing is usually obtained if some of the general features of these
theories are known. In this chapter, the general nature of theoretical
treatments of atomic and molecular systems will be introduced to the
extent needed for the treatments of molecular systems given in later
chapters.

1-1. The Recognition of Quantum Restrictions

The earliest recognition of discrete energy jumps or quantum restric-
tions stems from Planck’s studies of the radiation emitted by hot bodies.
He was driven to assume, as was later stated, that the oscillating atoms
of a hot body cannot have any energy of oscillation but can have only the
energies that are integr:l multiples of h», where » is a frequency of
oscillation and h is a proportionality constant, Planck’s constant. Fur-
thermore, radiation from such an oscillating system consists of the

7



8 INTRODUCTION TO MOLECULAR SPECTROSCOPY

energies emitted when an oscillator jumps from one of the allowed energy
levels to a lower one. The unit, or quantum, of energy given out in such
a jump from one energy state to the next lowest one is, therefore,

Ae = hy

The idea of discrete energies and the prominent role played by the
constant h were basic features of Planck’s black-body radiation deriva-
tion. They seemed, however, to be awkward and troublesome features
since, in classical treatments, they could not be justified. Planck’s
black-body theory was, however, a preview of the developments in molec-
ular theory and spectroscopy that were to take place in the next half
century. His reluctantly proposed ideas of quantum restrictions
were accepted and expanded into more elaborate theories of molecular
behavior, and his interpretation of the continuous spectrum provided by
a hot body was to be followed by analyses of spectra of great detail and
complexity.

In the next few years after 1900 the ideas of Planck were applied
and cxtended, as in Einstein’s theories of the photoelectric effect and the
heat capacity of solids. The next major step of spectroscopic interest
was the application of these ideas of quantum restrictions to atomic
systems, in particular to the hydrogen atom, by Niels Bohr in 1913.

1-2. The Bohr Theory of the Hydrogen Atom

Although detailed theories of atomic structure are not pertinent to
the discussion here, the Bohr theory provides a clear and concrete
illustration of one of the most important quantum rules and is, therefore,
worthy of study. By 1913 it was recognized, as a result of the then
recent work of Thomson and of Rutherford, that an atom, in particular
the hydrogen atom, consisted of a small heavy nucleus carrying the posi-
tive charge and that the electron moved, or resided, in some manner out-
side the nucleus.

Bohr’s interpretation of the behavior of the electron was based on
the rather arbitrary assumption that it moved in a circular orbit about
the nucleus in such a way that its angular momentum was an integral
multiple of h/2x. This statement and the ordinary rules of dynamics and
electrostatics lead to allowed orbits for the electron, each allowed orbit
having a certain energy.

The derivation, in brief, is as follows: the angular momentum
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postulate requires that

mvr=n2% n=1273 ... 1
where m is the mass of the electron, » its velocity, and r the radius of its
orbit. The requirement that the electron should have the coulombic
force of attraction to the nucleus balanced by the centrifugal force gives

e my?

i @)
or o

"= ®)

where e is the charge of the electron. Elimination of »%, by means of the
quantum restriction of Eq. (1), gives the radii of the orbits in which,
according to Bohr, the electron is allowed to travel as

h?

- 2
r=nt g 4)

Substitution of numerical values for the constants gives the radii of
the Bohr orbits as

r = 0.529n2 angstrom n=1273, ... (5)

The convenient unit of angstroms, defined so that 1 A = 10=% cm, has
been introduced.

Of more interest in spectroscopy are the energies of the allowed
orbits. If the potential energy at infinite separation of the electron and
proton is taken as zero, the potential energy at separation r is given by
Coulomb’s law as

62

PE- - % 6)

Addition of the kinetic energy gives, for the total energy of the electron,
the result

¢e = KE + PE
! |
= gmr -2 )

Use can now be made of the relation of Eq. (3) and the quantum restric-
tion of Eq. (1) to obtain

2. 4 v
—2",0#(—1-) n=123, ... ®)

n?

€ =
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where the fact that each value of n implies a value of ¢ has been recog-
nized by writing ¢,. = This result gives, according to the Bohr theory, the
possible energies that the electron of the hydrogen atom can assume.

Elaborations of this result have been made to allow for elliptical
orbits, to take into account that the electron and nucleus should be
treated as rotating about the center of gravity, which is not quite at the
nucleus, and to include the relativistic dependence of electron mass on
velocity. These details need not, however, be treated here.

It is interesting to see that the condition that the angular momentum
be quantized in units of /27 leads to a set of allowed energies. Further-
more, if the electron of the hydrogen atom is now assumed to jump from
one orbit to another, say from that withn = n;, down to that with n = n,,
the Bohr theory predicts that an amount of energy Ae = €,, — €,, must
be emitted. With the Planck relation Ae = h», the Bohr theory leads to
the prediction of emission of radiation with frequencies

2 4
_ Ae _ 2n’me (l - iz) with n; > ns 9)

In terms of the more often used units of em~!, one has the prediction

v _2rmet (1 1 4

== (n% nf) i (10)
which, on substitution of numerical values, gives

- 1 1

» = 109,677 (n_';’ - ff) cm—! (11)

This corresponds almost exactly to the empirical expression known
as the Rydberg expression, which summarizes the observed hydrogen-
atom spectrum.

Exercise 1-1. Derive, according to the Bohr theory, the orbit radii and
energies for an electron of the Het ion.

The principle of quantized angular momentum used by Bohr is, as
will be seen, a very generally applicable one in atomic and molecular
systems. A more complete statement of the principle applied to the
simple Bohr hydrogen atom would recognize that not only must the total
angular momentum be quantized but that, if a direction is imposed on
the atom, as by an applied electric or magnetic field, the component of
angular momentum in that direction must also be quantized in units of
h/2x. Thus for the n = 2 orbit, for example, the total angular momen-
tum of the electron is 2(h/2r), and there is the possibility of showing by
the application of a directed field that this orbit can be inclined in five
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different directions corresponding to angular momentum components of

2(h/27), L(h/27), O, —1(h/2¢), and —2(h/2x). The splitting of the
energy of the original n = 2 state by the application of a field reveals
that the original state is to be thought of as having five states, all with the
same energy. One says that the n = 2 orbit, or state of the electron,
has a multiplicity of 5 or is fivefold degenerate.

The details of atomie theory and speectra will not be developed
further here. Instead, some further general theoretical developments
which led finally to the more powerful and less ad hoc formulation of
quantum restrictions than that of Bohr will be outlined.

1-3. The Wave Nature of Particles

In 1925, Louis de Broglie, reasoning from the generally symmetric
nature of the physical world, proposed that electrons, protons, and so
forth, as well as radiation quanta, should have wave properties associated
with them. He further suggested that the wavelength associated with a
particle with mass m and velocity v, i.e., with momentum mv, would be
given by

h
A= (12)

This interesting relation can be used in a number of situations. For
example, if it is postulated that the wave associated with an electron in a
Bohr orbit should form a standing wave around the nucleus, the condition
that 2rr = n\ where n is an integer and 2#r is the circumference of the
electron orbit is imposed. This stipulation together with de Broglie’s
wavelength relation leads, interestingly, to the same requirement, l.e.,
myr = n(h/2w), as imposed by Bohr.

Even more indicative of the validity of the de Broglie relation were
the experiments of Davisson and Germer in which an electron beam was
shown to give diffraction effects corresponding to a wave with wave-
length given by the de Broglie relation.

It became clear that the Bohr condition, while successful in explain-
ing the hydrogen-atom spectrum, did not recognize in a sufficiently basic
way this wave nature of the electron. The importance of the wave
nature led ultimately to a formulation of a general approach to the
mechanics of atomic-sized systems.

It seems best here to present and illustrate this approach by means of
an equation given in 1926 by Erwin Schrodinger. It is of great value to
appreciate the way in which atomic-scale problems are handled and
described by the wave mechanics of Schrédinger.
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1-4, The Time-independent Schrédinger Equation

Although the equation originally presented by Schrédinger allowed
for the calculation of time-dependent behavior, it is convenient first to
demonstrate the simpler time-independent features of the complete
equation.

In a study of spectroscopy there is little need to perform wave-
mechanical, or quantum-mechanical, calculations of the properties of
molecular systems. It will, however, be very helpful to-have performed
a simple illustrative calculation. One can then better appreciate the
nature of more general quantum-mechanical methods and solutions.

The Schrodinger equation is not really derivable and should be looked
upon as the counterpart, applicable to atomic- and molecular-scale
problems, of such classical formulations as Newton’s f = ma expressian.
The Schrédinger equation, like f = ma, is used and accepted, not because
of a derivation showing its validity, but rather because it leads, wherever
properly applied, to results in agreement with observation.

Use of the Schrédinger equation implies that we are interested in
learning about the energy of a particle, which is subject to some potential
energy, and the position adopted by the particle. (The Bohr theory of
hydrogenlike atoms obtained just such information, and the information
was in agreement with experiment. Bohr’s method could not, however,
be extended to more complicated systems. The Schrédinger equation
accomplishes this extension.) The Schrédinger equation might, for
example, be used to solve again the hydrogen-atom problem and predict
the position and the energy of the electron exposed to the coulombic
potential of the nucleus.

The Schrédinger equation, as will be seen, yields directly values
for the allowed energies of the particle under study. The position of the
particle is, however, given only in terms of a probability function.
According to M. Born, the value at a given point of the square of the
trigonometric or algebraic function that solves the Schrédinger equation
gives the probability of the particle being found at that point. If we
choose, for simplicity, to consider a simple problem in which the particle
can move only along one dimension, say the x coordinate, the solution
function, or eigenfunction, represented by ¢, will be a function of z. For
emphasis one sometimes writes ¢(x). The probability of the particle
being at a given value of z along the x axis is then equal to the value of
¥? at the given value of z. (If ¥ is a complex function, as is sometimes
the case, the probability is given by ¢*¢, where ¢* is the complex con-
jugate of ¥.)
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The Schrddinger equation for a particle of mass m constrained to
one dimension and subject to some potential function U(x) is

2 2
e P Uy = (13)

(The first term can, in fact, be associated with the kinetic energy of the
particle, the second with the potential energy, and the sum, there-
fore, with the total energy. It is perhaps better at first merely to
use the equation to calculate desired quantities much as one does with
f = ma.)

Solution of a particular problem requires values of m and an expres-
sion for the potential function to be substituted. The function y that
solves the resulting differential equation must then be found. Such a
function will generally exist only for certain values of ¢, and these values
are the allowed energies of the system that are being sought. The square
of the solution function gives, as mentioned, the probability of the par-
ticle being at various positions. The hydrogen-atom problem would
require the value of m for the electron to be used and the expression
—e?/r to be put in as the potential function. (The hydrogen-atom prob-
lem is, however, three dimensional.) Solution of the problem would give
the allowed energies, which turn out to be identical with those obtained
by Bohr. The ¢? function would give the probability of the electron
being at various positions, and the probability that is found is related to,
but not identical with, the Bohr orbits.

Before the equation is illustrated by a simple, but important,
example, it is necessary to state some of the limitations that are imposed
on the function ¢. Briefly, the function ¢, to be an acceptable solution,
must be “well behaved.” It must not, for example, go to infinity or be
double valued. In the first case one would deduce from the infinite value
of Y2 an infinite probability of the particle being at a given position;
while in the second case one would have two different probabilities at
the same position. Neither of these would be physically reasonable.
Further restrictions are that the function must be continuous and that
discontinuities in the slope can occur only at points where the potential
energy goes to infinity. One understands these restrictions from the
fact that the equation involves the second derivative of ¢ and that this
would go to infinity at a discontinuity in the slope.

The equation and its application are more understandable when
applied to a specific problem. -
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1-5. The Particle-in-a-Box Problem

A very simple problem, which in fact has some counterparts of
interest in real molecular problems, is that of determining the allowed
energies and the position probability function of a particle that can move
in only one dimension and is confined to a region of length a. This
problem implies a potential-energy function that has some value, which
can conveniently be taken as zero, between 2 = 0 and z = @, and is
infinitely high outside this region.

An electron in a piece of wire, for example, is subject to a potential
which for some purposes can be so represented. Of more spectroscopic
interest, as will be shown in Chap. 11, is the fact that the double-bonding,
or w, electrons of a conjugated system of double bonds in a molecule
behave approximately as though the potential which they experience is
such a simple square-well function.

In the region 0 < x < a the potential-energy function is U(z) = 0,
and the Schrodinger equation in this region reduces to

h2 d?lp _

T Srtmdr Y (14)

It is now necessary to find well-behaved solutions for this equation.
The function ¢ must be zero outside the potential well since there the
potential is infinitely high, and there is no probability of the particle
being in such a region. To be well behaved, and prevent a discontinuity
in ¢, the function ¢ in the region between 0 and ¢ must be such that it
equals zero at x = 0 and at £ = a. Functions which solve the differ-
ential equation and also satisfy these boundary conditions can be seen
by inspection to be

. nwx
¥ = A sin —Z— wheren =1,2,3, . .. (15)

and A is some constant factor: The expression nrx/a has, as can be
checked, been arranged so that the function goes to zero at ¥ = 0 and at
z = a for any integral value of n. That the function satisfies the
Schrodinger equation can be tested by substitution in Eq. (14) to give

2 2.2 B
Left side = — <o (= ™) 4 sin 272
8n2m a? a
n2h? . nwr
= —— r— 1
Smat (A sin — ) (16)

nwx

Right side = ¢ <A sin T) an
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The left and right sides of Eq. (14) are equal, and the expression

I x
\€r=Asm—a—

gives solutions of Eq. (14) if

2nL2 ’
=;—na;:ﬂ n=123... (18)

€

No really different solutions ecan be found, and no energies other than '
these will result. [The value n = 0 in Eq. (15) provides a solution to
Eq. (14) but gives a wave function that is everywhere zero. This leads
to a zero probability of a particle being anywhere in the box and is there-
fore unacceptable] The allowed energies ¢, which are represented in
Fig. 1-1, are seen to be quantized as a result of the quite natural intro-
duction of the integers in the solutions of the Schrédinger equation, A
similar situation occurs generally in atomic and molecular problems.
The quantum phenomena, which were so arbitrarily introduced in the
Bohr theory, are seen to result much more naturally in Schrédinger’s
approach,

FIG. 1-1 Energies, wave functions, and probability functions for the particle-in-a-box
problem. :
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The solution functions, or eigenfunctions,

. nwx
Y = AsmT

and the probability functions

Y? = A?sin? ﬁ;ﬂ ‘ (19)

are shown opposite the corresponding energy level in Fig. 1-1.

This simple problem illustrates many of the characteristics of more
difficult quantum-mechanical calculations on atomie and molecular
systems. Onme finds that solutions exist for the Schrédinger equation
only for-certain values of ¢ and that the solution functions and the cor-
responding energies are characterized by an integer, called a quantum
number. A number of situations will arise in later chapters where solu-
tion of the Schrédinger equation will present some mathematical com-
plexities that cannot be dealt with here. In these cases, if the general
features of Schrodinger equation solutions are appreciated, it will be
sufficient to have the solution functions and allowed energies stated with-
out derivation.

As an illustration of this Schrédinger equation problem the one-
dimensional square-well, or ‘“particle-in-a-box,”” solution can be applied
to the question of the energies of the double-bonding or = electrons of a
conjugated system. These electrons are apparently delocalized and are
relatively free to move throughout the length of the molecule. One can
therefore approximate such a system by representing the molecule as a
one-dimensional region of uniform potential bounded by regions of
infinitely high potential. The allowed energies of the = electrons, ignor-
ing electron-electron repulsions, are then those given by the previous
derivation; i.e., ¢ = n%h2/8ma?. To apply this square-well approxima-
tion to the = electrons of a conjugated system, it remains to recall the
Pauli exclusion principle which requires that no two electrons of a mole-
cule have all their quantum numbers the same. Since the spin of an
electron can be oriented to give a spin quantum number of +3% or —3,
two electrons can be accommodated in a state represented by a single
value of n. The occupancy of the energy levels by the six = electrons of
hexatriene is represented in Fig. 1-2. The success of this simplification
of the factors affecting = electrons in conjugated systems is judged by
the comparison of the energy calculated for the promotion of one of the
highest energy electron pair to the next higher energy state with the
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energy of the radiation quanta absorbed in an electronic spectral study.
The agreement, as Exercise 1-2 illustrates, is remarkably good.

Exercise 1-2. Calculate the wavelength of the radiation that will be
absorbed in the lowest energy =-electron transition of hexatriene according
to the square-well model. The length of the molecule can be taken as
about 7.3 A. Compare with the observed value of 2,580 A.

1-6. Normalization of Wave Functions

It is frequently convenient, when a wave function ¥ is obtained for a
particle, to arrange it so this function shows that there is a value of unity
for the total probability of the particle being found somewhere in space.
In terms of a one-dimensional problem this implies that
f”’“ vide =1 (20)

For the particle-in-a-box problem, since ¢ is zero everywhere outside the
region 0 to a, the limits can be reduced to give

fa" yrde =1 1)

A wave function that gives a total probability of unity is said to be
normalized.

Energy

FIG. 1-2 The square-well model for the 7 electrons of
hexatriene. The dashed arrow shows the transition that
occurs when radiation is absorbed.
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For the particle-in-a-box wave functions, normalization consists of
evaluating A such that

‘AP gy = 1 (22)
0 a

The integration can be performed (or read from tables which give, if m is

an integer, ﬂ] " sin? my dy = =/2) to give

¢ gin? ™2 gy =
/;sm ad:z: 5 (23)

For normalization, therefore,
22
#()
2

1

or

The normalized wave functions for a particle in a box are, therefore,

2 . nwx
In a similar way, wave functions for other molecular problems can,
and usually are, normalized. In the general three-dimensional case, if
dr represents the differential element of volume, the normalization condi-
tion on a wave function ¢ is that

f*‘” Yrdr =1 (26)

—

or, if the wave functions are complex,

/+” Y dr =1 @7

1-7. Orthogonality

A general property of wave functions, i.e., functions that solve the
Schrédinger equation for a particular problem, is that of orthogonality, a
property of considerable importance in spectroscopic problems. Two
wave functions y; and ¥,, where ! and m imply different quantum
numbers, are such. that

[ wimar =0
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or, more generally,

+
[T wtgmdr =0 (28)
if 7 and m describe states with different energies.

This property is stated without proof. It can, however, be readily
illustrated by the particle-in-a-box eigenfunctions. It is necessary to
show that

/a sin?r—xsin T gz =0 29)
0 a a

for I % m. Substitution of the variable y = wxz/a converts the left side
of Eq. (29) to

/;) " sin ly sin my dy

where, it should be kept in mind, ! and m are integers. The integral in
this form can be shown to be zero by, for example, replacing the sine
terms by

. 1
= 2 (il — g-il
sin ly 5 (e — e—ilv)
and

sin my = % (i — g—imv) (30)

and performing the integration on the exponential form of the integral.
In this way one obtains zero for the integral and verifies the orthogonality
statement of Eq. (29).

This is an example of the general orthogonality result that is applica-
ble to the wave functions for states with different energies. Some addi-
tional features must be considered when there are several states, i.e.,
wave functions, corresponding to a single energy of the system.

A summary of this and the previous section can be given by the
statement that if ¥; and y,, are normalized, real, wave functions cor-
responding to nondegenerate states of a system

+w =0 forl = m ‘
[—w Vibm dr{ =1 forl=m 31

These properties, it will be seen, lead to considerable simplification in a
number of spectroscopic problems.
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1-8. Symmetry Properties of Wave Functions

A general property of wave functions that is important in many
spectroscopic problems is their form when, as is often the case, the
potential-eniergy function is a symmetric one. The potential of the par-
ticle-in-a-box problem, for example, is symmetric about the point z = a/2
in Fig. 1-1. It is apparent from the plots of the wave functions shown in
Fig. 1-1 that those with even values of n are functions that are antisym-
metric about the mid-point of the well while those with odd values of n
are symmetric, Such symmetry properties are characteristic of wave
functions that arise from a problem with a symmetric potential function,

Generally, it is more satisfactory to use the center of symmetry, such
as the mid-point of the square well, as the origin of the coordinate system.
If this is done in the square-well case, the solution functions are sines and
cosines as shown in Fig. 1-3. It is then possible to investigate the sym-
metry properties of the wave functions by investigating what happens
when y is replaced by —y in a particular wave function. When this is
done for the functions shown in Fig. 1-3, one sees mathematically that

FIG. 1-3 The symmetry properties of the particle-in-a-box wave functions. (The wave
functions shown are not normalized.)

Wave function ¥ Symmetry nature of ¥

¥, =sin 4—:E —0dd function, antisymmetric
¥; =—cos —:‘-E = Even function, symmetric

¥, =—sin 22 0dd function, antisymmetric
¥ = m? Even function, symmetric
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For n odd

v(y) = ¥(—v)
For n even ’ (32)

¥(y) = —¥(—»)

Again one sees that for odd values of n the.function is an even, or sym-
metric, function; while for even values of n the function is an odd, or
antisymmetric, function.

*1-9. The Quantum-mechanical Average

Although the values of the allowed energies of a system are the
quantum-mechanical results of prime importance for spectroscopy, we
will have occasion to want to know the average value of some other
properties. We will, for example, want to know the average position of a
particle for which we have obtained an eigenfunction y from solution of
the appropriate Schrédinger equation.

The method of finding a quantum-mechanical average, furthermore,
allows the concept of operators, which will also be encountered later, to
be introduced. In quantum mechanics every variable, such as position,
momentum, and kinetic energy, has associated -with it what is called an
operator. If one of these variables is denoted by g and the operator for
this funetion by G, then operation on the wave function of the system by
G will give, in some cases, the value for the variable g times ¢, i.e.,

Gy = g¢ (33)

Only a few functions and their operators will be encountered, and
these are listed in Table 1-1. The operator for kinetic energy can be
used to illustrate the basic operator relation Gy = gy. ' The kinetic-
energy operator, denoted by T is, for one-dimensional motion along the
z axis,

h2 62

T =~ gomar (34)
The calculation of the average value of the kinetic energy of a particle in
a box can be used to illustrate this operator. Since ¢ = A sin nrz/a,

operation on this function by T, gives

h? O\ (nr\® . nxzx
TH = — goim (‘ \/g) (7) sin =~

nh? 2 . nmxz n2h?
=§m—w‘\£s‘“7=m¢ (35)
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Here operation on ¢ by T, gives a quantity n*h?/8ma? times ¢. Since
T.'is the kinetic-energy operator, the values of n2h?/8ma? are the allowed
kinetic energies of the particle. This result, since the potential energy
was taken as zero, agrees with that obtained previously.

One further feature of the nature of these operators must be pointed
out. Sometimes an operator acts on y and does not lead to a number,
such as n2h?/8ma? in the example, times the wave function. Thus the
momentum operator acting on the particle-in-a-box wave function is

P, <\/2 sin 111r_x) = i \/2 (ﬂ) cos X% ' (36)
a a 27t Na \ a a

TABLE 1-1  Some Quantum-mechanical Operators
(In terms of cartesian coordinates z, y, z and polar coordinates r, 6, ¢)

Variable Operator
Position:
z . z
Yy Yy
z z
Linear momentum:
P. 22
271 0z
P, L)
2%t 0y
P, 22
2n1 82
Angular momentum:
M, 2‘m(y——z—)or
—( sind»— cot0cos¢i)
2xi a0 FYS
h a a4
M, —{z— —z—)or

27 31‘ 6z
h
(cos ¢— — cot 8sin ¢ ——)

:1,
M, = i_yi

2m(a¢) 7 \
M= M2+ M o Lo 30 (0 35) * s o)

Kinetic energy:
Fm@: + o] + )

Potential energy:
V(x,y,2) V(z,,2)

B @
T 8rtm \ozt | oyt | ozt
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In such cases one is to understand that the variable being investigated is
not a constant for one of the allowed states. Rather it has various
values at various positions. For such functions, the average value of the
variable is obtained according to the general rule

[ v ar
g="F7—— (37)
[ v
For normalized functions the denominator is of course equal to unity.

For normalized, real functions, the average value of a variable is,
therefore,

g = ._.:” Y@y dr (38)

One obtains the average momentum with this relation as

/ a ( \[2 . mrx) h \/5 <n1r) nax
—8in — ) =— 4 /—| — } cos — dzx
0 a a /2ri Na \a a

nh [® . nwx nrx
= sin —— cos — dzx
a 0 a a

_nh( 8 N gna T
T ia? \2nr a |o
0 (39)

The result of an average momentum of zero reflects the fact that the
classical picture of the motion of the particle would ascribe both positive
and negative values to the momentum since the particle would move in
either direction.

P,

Exercise 1-3. Obtain the average position of a particle in a box in the
n = 1 state using the operator method of Eq. (38).

Similar applications of Eq. (37), or (38), will be made in a number of
spectroscopic problems.

1-10. The Boltzmann Distribution

Spectra can be interpreted in terms of the energies of the allowed
states if one can decide which of the allowed states will in fact be occupied
by the molecules of the sample. In the particle-in-a-box example the
question that would have to be asked is: If some large number (fre-
quently it is convenient to consider an Avogadro’s number 6 X 102%) of
particles are placed in such a potential well, how many will behave
according to the n = 1 wave function, i.e., occupy the n = 1 level; how
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many the n = 2 level; and so forth? (In Sec. 1-5 the tacit assumption
that the lowest available levels would be occupied was made.)

The answer to such questions is given by the Boltzmann distribution
which states that the number of particles N; occupying a state with
energy ¢; will be related to the number N; occupying some state with
energy ¢;, which is lower than ¢;, by the relation

%%': = e—(e;—f;)/kr (40)
where £ is Boltzmann’s constant, 1.380 X 10~!8 erg/deg molecule. If it
is more convenient to measure the energies of the states in calories per
- mole, the appropriate expression is

A_{_‘ = e—-(E;—Ei)IRT (41)

N;
where R, equal to Nk, is 1.987 cal/mole deg.

Most often one is ipterested in the number of molecules in a state
with an energy ¢; compared to the number in the lowest energy state eo.
The appropriate form of the Boltzmann distribution is then

N; = Noe~ta—a) kT (42)

Sometimes, as was mentioned in Sec. 1-2, there are several states
with the same energy. The population of the energy level is then cor-
respondingly greater. Thus if g; is the multiplicity of the sth energy
level, i.e., the number of states with energy ¢, and as is usually the case,
the lowest energy level is a single state, the number of molecules with
energy ¢ compared to the number with energy e, is

N; =. giNOG_(“—“‘) kT (43)

[Note that the number in each state at energy e is still Noe— (6 /*T,
There are, however, g; states at energy e..] ’



THE VIBRATIONAL
ENERGIES OF A
DIATOMIC MOLECULE

The general introduction to the theory of atomic and molecular systems
of the preceding chapter can now be applied to the particular case of
simple vibrating systems. First the classical behavior of a single particle
and a pair of particles will be treated according to classical mechanics.
Then the corresponding problem with molecular-sized units and quantum
mechanics will be studied. The energy levels deduced in these calcula-
tions will then be compared with the separation between these energy
levels indicated by spectroscopic transitions. '

We will see that changes in the vibrational energy of the simple
systems dealt with here lead, in spectroscopic studies, to absorption of
radiation in the infrared spectral region. The chemist may well be
already familiar with the complicated absorption pattern, like that
of Fig. 2-1b, which”large molecules show in this region. The rather
““mechanical” treatment of simple vibrating systems in this chapter con-
stitutes an introduction to these more complex, but chemically more
interesting, systems.

In later chapters a number of points that are here mentioned in
passing will be dealt with in greater detail. Thus, Chap. 4 will deal with
the transition process that takes a molecule from one energy level to
another, and Chap. 6 will recognize that gas-phase molecules engage in
simultaneous rotation and vibration and that it must be shown to what

- extent these motions can be treated separately. It seems desirable,
25
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however, to present some introductory material before these questions
are raised.

2-1, The Vibrations of a Single Particle (Classical)

It will be apparent from the next few sections that an understanding
of the behavior of macroscopie, i.e., ordinary-sized, particles which can
be deseribed by classical mechanics is very helpful when the quantum-
mechanical behavior of molecules is encountered. The simplest classical
vibrational problem is that illustrated in Fig. 2-2. The effect of gravity
is here ignored. ‘

The question that is asked is: What type of vibrational motion does
the particle of mass m undergo?

The answer clearly depends, among other things, on the nature of
the spring. It is found that many springs are such that if the particle is
removed a distance from its equilibrium position, it experiences a restor-
ing force that is proportional to its displacement from the equilibrium

FIG. 2-1 The absorption of radiation in the infrared spectral region by (a) a diatomic
molecule and (b) a polyatomic molecule. In general, the greater the number of atoms
in a molecule, the more ways the molecule can vibrate and the more complex is the
infrared absorption spectrum.
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position. A spring which behaves in this manner is said to obey Hooke’s
law. For such behavior one can write

foex )]
or
f=—kx (2)

where x, the measure of the displacement from the equilibrium position,
is the displacement coordinate, f is the force which the spring imposes on
the particle, and k is a proportionality constant called the force constant.
It should be appreciated that k, which will also appear in molecular
problems, measures the stiffness of the spring; i.e., it gives the restoring
force for unit displacement from the equilibrium position. The minus
sign, written explicitly in Eq. (2) so that k will be positive, enters because

T L U=3kx?

B

o

]

3 &
£
3
S
%
51

(a)
FIG., 2-2 The restoring force and
potential-energy function for a boll-
and-spring system obeying Hooke's
law. The displacement from the
equilibrium position is measured in (b)

{a) from the equilibrium position and
in (b) from the point of attachment
of the spring.
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as z increases in one direction the force increases but is directed in the
opposite direction.

Before proceeding to the problem of the nature of the vibrations, it is
important to point out that Hooke’s law implies that the potential energy
of the particle increases parabolically as the particle moves in either direc-
tion from the equilibrium position. The work that must be done to dis-
place the particle a distance dz i8 fupmica dr, and this work is stored as
potential energy U. Thus

dU = fapplied d:t (3)

1t is more convenient to deal with the force f that the spring exerts on the
particle and, since it is this force that the applied force acts against, one
has f = —flpplied and

AU = (—f) dz

or G
aUu
ol —f

This is an important and general relation between force and potential
energy.

In the particular case of Hooke’s law, where f = —kz, the potential-
energy derivative is
dUu
a—x— = kx
or (5)
dU = kx dz

If the equilibrium position is taken as that of zero potential energy,
integration of Eq. (5) gives

U = }kxt : (6)

This potential function is illustrated in Fig. 2-2.

The statement of Eq. (6) is therefore equivalent to that of Eq. (2),
both corresponding to Hooke’s law.

It is well to recognize here, since it will be encountered again later,
that, as differentiation of Eq. (6) shows, k is equal to d*U/dz”. The force
constant, measuring the stiffness of a spring, is equal to the curvature of
the potential-energy function. '

Sometimes a problem is more conveniently set up in terms of the
position of the particle measured from some other reference point than
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the equilibrium position. If, as Iig. 2-2b indicates, the length of thespring
is [ and the equilibrium length is [,, the previous results are expressed as
f=—=k(l-1) and U= 3kl — 1,)? 7)

The equation describing the motion of the particle can now be set up.
One way of doing this is to substitute into Newton’s f = ma equation to
obtain

—kx = m o or —kx = m& )

It is often more convenient to start with statements about the kinetic
and potential energies of the particle. One then writes

Kinetic energy = T = lmai?
Potential energy = U = }kx?

&)

An equation equivalent to the f = ma equation that can then be used to
solve for the nature of the motion of the particle is that of Lagrange

One can note that, since
% = ma and %(ﬂ) = mi
the same expxlession
mié + kx =0 or —kz = mi (11)

as set up by Newton’s f = ma relation, is obtained.
The differential equation, Eq. (11), has a solution of the form

z = A cos 2xvt + o) (12)

The correctness of this solution can be verified by substituting Eq. (12)
and its second derivative with respect to time

£ = —dx%?4 cos (2mvt + o) (13)

back into the differential equation. When this is done one obtains an
equality if

— i = —k
or (14)
y=21 [k

2r \N\m
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This equation is the important classical result. It shows that a
particle with mass m held by a spring with force constant k will vibrate
aceording to Eq. (12) with the frequency » given by Eq. (14). Only this
frequency is allowed. The energy with which the particle vibrates can
be shown to depend on the maximum displacement, i.e., the amplitude
A of the vibration.

The quantum-mechanical result will differ from this (not all vibra-
tional energies will be allowed), but it will be seen that the quantum-
mechanical solution retains a considerable similarity to Eq. (14).

2-2. The Vibrations of Two Particles Connected by a Spring (Classical)

It is worth while treating one additional problem in a completely
classical manner before we proceed to molecular systems. Consider
the macroscopic system of a spring and two particles, which provides
the counterpart of the diatomic-molecule problem. = The particles will,
for simplicity, be allowed to move only along the line of the system.
Again it is asked: What is the nature of the motion that these particles
undergo?

FIG. 2-3 The shape of the potential energy~bond length curve for a diatomic molecule.
The displacement coordinate q is defined asq = r — r..

|

Potential energy ——

_q<———o——>+q
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If r; and z, represent displacements of the particles of mass m; and
ms from initial positions in which the particles were separated by their
equilibrium distance, and if Hooke’s law is assumed for the spring, the
kinetic and potential energies can be written as

T = y(mad + matd)
and (15)
U= -ék(xz —_ x1)2

Although one could solve the problem by writing f = ma for each particle,
the use of Lagrange’s equation, which will be important in later work,
will be illustrated here. For each particle ¢, one writes the Lagrange
equation as

d [T au .

4 (5;) +% 0 (16)
Since the simultaneous motion of two particles is being considered, two
equations in two unknowns will be obtained. Two methods of solution,
which are presented here because they introduce methods that will be
encountered in molecular vibrational problems, can be used.

a. Direct Solution. With either Lagrange's equations or f = ma
applied to each particle, one obtains

m;il - ]C(.’I:z -— .'61) =0
and a7
?YLg:iz + k('l’z - x;) = 0

Let us again see if solutions of the type found for the single-particle
problem exist. We try, therefore,

Z1 = Ajcos (2rvt + o)
and ) (18)
Z2 = Ascos 2mvt + @)
where the amplitudes 4, and A; may be different but where, if a vibra-
tional solution is to be found, the frequency will be that of the system and
must be the same for particles 1 and 2. Substitution of
& = —4xt?A, cos 2wyt + @)
and 19)
£y = —A4xv2A, cos 2wyt + @)

and Eqgs. (18) into Eqs. (17) gives, on rearranging,

(—47!'21'27",1 + k)Al —_ ]CAz =0
and (20)
—kA1 + ( —_ 41?21127’!2 + ’C)Az = 0
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One can now eliminate A or A, from these two equations to get a relation
for ». This is most conveniently done by recalling that for such linear
homogeneous equations nontrivial solutions for the A’s will exist only if the
determinant of the coefficients of the A’s is zero. That is,

(—4x2?m, + k) —k

—k (—4x2im, + k) | 0 @0

This determinant, on expansion, yields the equation

(4r2?)2mumy — 4dx2v?k(my + ms) + k2 — k2 = (22)
which has the roots
v =20 (23)
and
_L. [ __mum
v =5 \/; where u= prp— (24)

The quantity p which is introduced here will be frequently encountered
and is given the name the reduced mass. There are, therefore, two natural
frequencies for the system, one of the frequencies being zero.

The motions that correspond to these frequencies can be recognized
if the relation of the two amplitudes A4, and A, is found.

Substitution of » = 0 in either of the equations of Egs. (20) gives,
after rearranging,

A = A, (25)

and, therefore, r; = z,. Thus the motion corresponding to » = 0 con-
sists of displacement of the particles by the same amount and in the same
direction. The » = 0 root corresponds, therefore, to a translational
motion of the entire system.

Substitution of » = 1/2r v/k/u in either of Eqs. (20) gives, after
substitution of 4 = myma/m1 + m. and rearranging,

A1 _ mae
4L 0m
and (26)
X _ ms
T2 om
If the two masses are equal, one gets A; = — A4, and 2, = —zs." The

motion corresponding to » = 1/2x v/k/u can be generated, in view of
Eqs. (18), by displacing the particles from their equilibrium position by
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equal and~6pposite amounts. - The motion that will occur will clearly be

one of vibration and will have the frequency v = 1/2x \V/k/p.

It should be recognized from Eq. (26) that if the masses of the two
particles are not equal, the lighter one will move with a greater amplitude
than the heavier one. Thus if myis less than m., Eq. (26) shows that the
amplitude of particle 1 will be correspondingly greater than that of
particle 2.

Exercise 2-1. Obtain the relation between A; and Ag for the two roots
of Eq. (21) by comparing the appropriate minors of the determinant.

b. Solution in Terms of an Internal and a Center-of-mass Coordinate.
The existence of a translational mode and a vibrational one can be recog-
nized at the outset, and the problem can be set up in terms of coordinates
which are especially suited to describe these motions. Thus, rather than
displacements x, and x,, one could choose to use the coordinates

qg =22 — 1 )
and 27

X = Mmix1 + maks

my1 + ms )

Now ¢ is a measure of the displacement of the distance between the
particles from the original equilibrium value, and X is a measure of the
displacement of the center of mass of the system. In terms of these
coordinates one can immediately write down the potential energy as

U = k(x2 — 21)2 = }kg¢? (28)
The kinetic energy is always easily written in terms of simple cartesian
coordinates. Thus

T = §(mz? 4+ mqid)

This expression must be converted to one involving ¢ and X.

From Eqgs. (27) one obtains by rearrangement, or by forming the
inverse transformation,

= X — T
! ‘ m1+’mzq
and 29)
= my
¥ = X+’m1+mzq

These allow the kinetic energy to be written as

1 . 1 .
T=-2-(m1+mg)X2+§(-1—n—:%)q2 ‘ (30)
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The Lagrange equation, applied to the coordinate g, then gives

mymy —
m; + mzq+ kg .0

or 31)
ug + kg =0

This can be recognized as identical to Eq. (11) for the vibration of a single
particle. Only a change in notation from m to p and z to ¢ has occurred.
The solution to Eq. (31) is, therefore, the same as that for Eq. (11), and
we can write down the solution as

A cos (2rvt 4+ ¢) (32)

=% ﬁ (33)

The Lagrange equation for X retains only the kinetic-energy term
and leads to

(mq, + mz)X =0
X=0
A solution which is formally like that obtained previously is

X = A cos (2mut + o)

q
and

or (34)

with » = 0. Alternatively one can write the solution velocity as
X = const ¢ representing a uniform velocity of the center of mass of the
system.

The advantage of this procedure of recognizing the existence of
translational and vibrational modes initially is that one ends up with one
equation which determines the vibrational motion and another which
determines ‘the translational motion. Previously, two simultaneous
equations were obtained, and these had to be solved to extract the desired
information on the vibrational motion. For problems of much com-
plexity it is of great value to eliminate the translational and rotational
motions before the vibrational problem is developed.

Exercise 2-2. By finding the inverse of the transformation matrix for the
z’s in terms of ¢ and X, obtain the expressions of Eq. (29).

2-3. The Potential-energy Function for a Chemica!l Bond

A preliminary to the study of the vibrations of a molecule, as with a
macroscopic mass and spring system, is a consideration of the nature of
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the variation of the potential energy with the position of the atoms.
More particularly, for a diatomic molecule, one asks about the change in
potential energy of the molecule as a function of the distortion of the bond
of the molecule from its equilibrium distance.

Except for the case of Hy, it has not been possible to calculate the
energy of the molecule as a function of internuclear distance from the
interactions between the bonding electrons and the atomic nuclei. The
general shape of the potential-energy versus bond-length curve can, how-
ever, be sketched. One knows, for example, that if a bond is stretched
far enough it will break, i.e., a molecule can be dissociated, and that bonds
‘strongly resist compression, as is revealed, for example, by the relative
incompressibility of solids. Such qualitative ideas, and more exact ones
that will be developed, lead to a potential curve of the form shown in
TFig. 2-3.

Although no exact ntathematical expression for the potential energy
curves of all molecules is known, a simple and often convenient one that
yields curves of the shape of that in Fig. 2-3 has been given by P. M. -
Morse. He has suggested the relation

U(g) = D,(1 — e#1)? (35)

where, as before, ¢ measures the distortion of the bond from its equi-
. librium length; D, is the dissociation energy measured from the equi-
librium position, i.e., from the minimum of the curve; and g is a constant
for any given molecule and can be said to determine the narrowness, or
curvature, of the potential well. The Morse curve with the values of -
D, and B that are appropriate to HCI is shown in Fig. 2-4.

Exercise 2-3. The value of 8 in the Morse equation can be conveniently
calculated from the relation

. ’2120;1
B = We Deh

Determine 8 for H, for which &, = 4,395 em~! and D, = 38,310 em—%
Plot the harmonic oscillator, using k= 5.2 X 10° dyne/cm, and Morse
curves for H, as has been done for HCl in Fig. 2-3. (The quantity &.
is related to the vibrational level spacing as will be shown in Sec. 2-6.)

A straightforward procedure for deducing the allowed vibrational
energies would be to substitute the Morse function into the Schrodinger
equation and, in much the same way as was done for the square-well
problem, to look for functions that solve the resulting differential equa-
tion. The pattern of allowed energies, known in terms of D, and 8,
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could then be compared with the observed spectrum. Some mathe-
matical difficulties arise in this procedure, and a simpler and more fruitful
procedure is followed.

It will be seen shortly that the vibrations of a molecule result in only
small distortions of the bond from its equilibrium length. In a study of
the vibrational motion of a molecule we are, therefore, particularly
interested only in an expression for the potential energy near the minimum
in the potential-energy curve. This suggests that a suitable expression
for the potential energy can be obtained by a series expansion about the
minimum. If ¢ is the displacement of the bond from its equilibrium
length, a Maclaurin series expansion about ¢ = 0 gives

- au LAUN - L.
V@ = Voot (50) 0+ 3 (50),0 ¢+ (36)
The usual choice of U = 0 at r = 1,, or ¢ = 0, sets U,o equal to zero.

Furthermore, at ¢ = 0 the potential energy is a minimum, and therefore
(dU/dgq) =0 must be zero. If only the next higher termin the expansion is

FIG. 2-4 The harmonic oscillator (dashed line) and Morse {solid line) potential-energy
functions for HCI.

40,000~
) U =36300[1— ™ M%7
| 30,000 —
E
[*]
£
8
[
5
® 20,000
5
&
10,000
U =134,000(r —r,)
| I
% 05 1.0 35

r(A)



THE VIBRATIONAL ENERGIES OF A DIATOMIC MOLECULE 37
retained, we have the approximation, valid near the equilibrium position,

v@ - 5(5).. 7 @

This result should be recognized, by comparison with Eq. (6), as identical
to that which would have been obtained if it had been assumed that a
chemical bond behaves as a spring following Hooke’s law. (For a true
Hooke’s law spring, d2U/dq? is equal to k at all values of ¢; i.e.,, U is a
parabola. For a chemical bond the curve can be said to approximate a
parabola only near the minimum. The force constant is then the value of
d?U/dq® near the minimum.) Figure 2-4 shows the parabola that fits
the Morse curve for HCl near the minimum.

When the parabolic potential function is used to approximate the
potential of a chemical bond, the system is said to be treated as a harmonic
oscillator. '

2-4. The Quantum-mechanical Solutions of the Harmonic Oscillator

The solution of the two-particle problem by method b in Sec. 2-2
showed that the vibrational equation that arises for the vibration of the
two-particle system is identical in form to that for a single vibrating
particle. It is only necessary to replace m by u and x, the displacement
of the single particle from its equilibrium position, by ¢ = z: — ., the
distortion of the distance between the two particles from the equilibrium
bond length. The same situation is true in the quantum-mechanical
problem. The Schrédinger equation for a single atom of mass m subject
to a potential of U = 3kz? is

B dy + <l kxﬁ) v =eb (38)

~ 8rm dz? 2

while that for the vibrations of a diatomic molecule with reduced mass
u is, correspondingly,

ht d* 1
- 8’—2'“% + (§ qu)lll = g} (39)

The deduction of solution functions will not be followed through
here but can be found in any textbook on quantum mechanics. The
procedure should be recognized to be essentially that followed in the sim-
pler square-well problem. (The solution functions for the two problems
are in fact similar, and those which will be given as solutions to the har-
monic-oscillator problem should be compared with those previously
obtained for the square-well problem.)
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It is found, as would be expected from the similar square-well prob-
lem, that solution functions exist for certain values of ¢ and that these
functions, and the values of ¢, are characterized by a quantum number.
Thus, there are again certain allowed states, and each of these states has
a specified energy. The integer that deseribes these states is usually
represented by v. It can take on the values 0, 1,2, . . . .

The energies of the allowed states are given by the expression

e.,=<v+l _h_\ﬂ_c wherev = 0,1,2, . .. (40)
2/ 27 Nu

These allowed energies are shown, along with the potential-energy func-
tion, in Fig. 2-5. The appearance in Eq. (40) of the same quantities as
in the classical caleculation of a vibrating system should be noted. This

FIG.2-5 The harmonic-oscillator
wave functions and the funda-
v=0 L : mental vibrational transition.
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relation to the classical problem is sometimes made use of by writing

& = v+ Hho (41)

where w = 1/2r \/k/u is written for the frequency with which, according
to Eq. (14), the system would vibrate if it behaved classically. (In
what follows, w will be used for a molecular vibrational property and »
will be reserved for the frequency of radiation.)

The form of the solution functions, or eigenfunctions, is also shown
in Fig. 2-5. Although little will be done with the solution wave func-
tions themselves, it can be mentioned that each involves a set of series
terms known as a Hermite polynomial. If one introduces a as

o= 2TV k ;/“k (42)
the solution functions can be written as
¥y = N,ede¢H, (\/ag)  wherev =0,1,2, ... (43)

and H, is the Hermite polynomial of degree ». The normalizing factor
N,is

N, = (20—"/5/—;)* | (44)

For most purposes it will be enough to recognize the form of the solution
functions shown in Fig. 2-5. For those unfamiliar with the Hermite
polynomials it may be informative, however, to write down a few of the
- first solution functions. '

bom (2) e

™
Y1 = V2 <%>* getest
Yo = \/Li <g> (2ag® — 1)eded’ (45)

» E
¥ = \/g (g) (203¢* — 3adg)eted’

1 [23 g 2
l//4 = % <;r> (46\!2q4 - 12(1q2 + 3)e—§aq V
The spectral absorptions or emissions attributable to changes in the
vibrational energy of a molecule will now be discussed in terms of the
energy levels of I'ig. 2-5.
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2-5. Vibrational Absorption Spectra of Diatomic Molecules

The previous section has shown that the allowed energy levels of a
vibrating molecule form a pattern of equally spaced levels with a separa-
tion that is related to the molecular properties by the relation

Ae = €1 — € = % (46)
The spectral transitions that are to be expected to arise from such an
energy-level pattern can be predicted if one also knows what transitions
can occur with the absorption or emission of radiation and what energy
levels are appreciably populated at the témperature of the experiment.

Although the interaction of molecules with radiation will be dealt
with in Chap. 4, some of the results that will be obtained can be men-
tioned here. First of all, it will be shown that a vibrating molecule
cannot interact with electromagnetic radiation unless a vibrating, or
oscillating, dipole moment accompanies the molecular vibration. Qua-
litatively, one can picture an oscillating dipole as coupling with the
electric field of the radiation so that energy can be exchanged between the
molecule and the radiation. This stipulation that the vibration be
accompanied by a dipole-moment change implies that all homonuclear
diatomic molecules, which necessarily have zero dipole moment for all
bond lengths, will fail to interact with radiation and will exhibit no
vibrational spectral transitions. On the other hand, a heteronuclear
diatomic molecule will generally have a dipole moment and, generally,
the dipole moment will be dependent on the internuclear distance.
The vibration of a heteronuclear diatomic molecule will, therefore, be
generally accompanied by an oscillating dipole moment. Such molecules
can interact with radiation and can absorb energy of the radiation and
can thereby change their vibrational state to one of higher energy.
They can, also, emit radiation energy and thereby change their vibra-
tional state to one of lower energy.

One further transition restriction, which will be discussed in Chap.
4, must be mentioned. Even for those molecules that have an oscillating
dipole moment there is the further restriction, which is rigorously applica-
ble only to harmonic oscillator type systems, that the vibrational
quantum number can chinge only by one unit. Transitions are allowed,
therefore, only if

= +1 | 7
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This restriction is an example of a selection rule. For absorption experi-
ments, which are those most commonly performed, the applicable part
of the selection rule is, of course, Ay = 4-1.

Now that the allowed transitions have been stated, it is only neces-
sary to decide in which state, or states, the molecules are likely to be
found at the beginning of an experiment. It will be shown that the
energy spacing between vibrational energy levels is typically of the order
of 2 % 10-13 erg/molecule or 3000 cal/mole. With Boltzmann’s dis-
tribution one can calculate the number of molecules in the.v = 1 state
compared with the number in the » = 0 state at 25°C as

%u-l = ¢—2X10715/298(1.38X1071%)
v==0
= 0.008 (48)

Thus, less than 1 per cent of the molecules are in the v = 1 state, and
negligibly small numbers will be in still higher energy states. It follows
‘that, in experiments not much above room temperature, the transitions
that begin with the v = 0 state will be of major importance.

The selection rule and population statements allow the vertical
arrow of Fig. 2-5 to be drawn to indicate the expected spectral vibrational
transition for an absorption experiment with a heteronuclear diatomic
molecule.

It is found experimentally that such molecules do lead to the absorp-
tion of radiation quanta in the infrared spectral region and that this
absorption can be attributed to the vibrational transition. Thus, HCl
absorbs radiation with # = 2,890 ¢m~! or

y = 3 X 1010(2,890) = 8.67 X 10'3 cycles/sec
The energy of the quanta of this radiation is

Ae = hy = 6.62 X 10~27(8.67 X 1019)
5.74 X 10-1% erg . (49)

It is this energy that must correspond to the energy difference between
the vy = 0 and v = 1 levels, i.e., to

Ae = 5— o[~ (50)

By equating these two results for Ae and using

maMcy

=1, —24
e = 1627 X 107% g

MHCI =
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one obtains
k = 4.84 X 105 dynes/cm (51)

In this way it is seen that the spectral absorption is understood
in terms of a molecular-energy-level pattern and that new quantitative
information about the molecule is gained.

The frequencies of radiation absorbed by some diatomic molecules
and the deduced force constants are shown in Table 2-1. One should
recall that the force constant measures the stiffness of the bond and
should see that the force constants of Table 2-1 are to some extent under-
standable in terms of qualitative ideas about these chemical bonds.

It 'should be mentioned finally that it is not customary to convert
from radiation frequency to quantum energies in comparing spectral
absorptions with energy-level patterns. It is more convenient to use
the conversion factor b between energy and frequency, i.e., Ae = hy,
and to convert the energies of allowed energy levels to frequency units.

TABLE 2-1 Frequencies of Fundamental Vibrational
Transitions v == 0 o v = 1 and the Bond Force Con-
stants Calculated from These Data

(Values for homonuclear molecules are from Raman
spectral studies)

Molecule #(cm™1) k (dynes/cm)
H, 4,159.2 5.2 X105
D, 2,990.3 5.3
HF 3,958.4 8.8
HCl 2,885.6 4.8
HBr 2,559.3 3.8
HI 2,230.0 2.9
co 2,143.3 18.7
NO 1,876.0 15.5
F, 802 4.5
Cls 556.9 3.2
Br; 321 2.4
I, 213.4 1.7
O, 1,556.3 11.4
N, 2,330.7 22.6
Lis 246.3 1.3
Nas 157.8 1.7
NaCl 378 1.2
KCl 278 .8
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Thus the energy levels of the harmonic oscillator can be written as

N\r [k ‘
€& = (v + §) 5 \/; ergs (52)
€ = (v + %) 2—11; \/g cycles/sec (83)

1\ 1 |k
& = (v + §> o \/l:‘ cm™! : (54)

The symbol & will be used for energies expressed in units of cm™!
to be consistent with frequencies or quantum energies of radiation that
are written as 7 if expressed in cm~. With the last of these expressions
one can compare the energy separation between two levels directly with
the wave number # of the radiation absorbed or emitted in a transition
between these levels; i.e., A¢ will be the same as 7 for the radiation.

Exercise 2-4. Calculate the numbers of molecules in the v = 1 state
compared to the number in the v = 0 state at 25°C for Br,, which has the
rather small vibrational energy-level spacing of 323 ecm—, and for H,,
which has a vibrational spacing of about 4,159 em™~!, the largest for any
molecule.

2-6. The Anhorménicify of Molecular Vibrations

That the harmonic oscillator expression U = }kq? is only an approx-
imate representation of the correct potential-energy function shows up
in the presence of weak spectral absorption corresponding to Av = +2,
+3, . . ., in violation of the Av = +1 selection rule, and in the fact
that the frequencies of these overtone absorptions is not exactly 2,3, . . .
times that of the fundamental, Av = +1, absorption.

The retention of one additional term in the Maclaurin series expan-
sion of Eq. (37) provides a better approximation to the potential energy.
One has, then,

1 (U 1 (d3U
V=2 (w) ¢+ W) ¢ (55)

This expression for the potential can be used in the Schrodinger equation
to deduce the energy levels of the allowed states of the anharmonic
oscillator. The solution is obtained by an approximation, or perturba-
tion, method and leads to an energy-level expression that can be written
as

& = a0+ 3) — e (0 + 3)° (56)
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Here &, has been written for convenience in place of 1/2xc \/k./x where
k., = (d?U/dg?)¢m0. This quantity @, is, therefore, the spacing of the
energy levels, expressed in em—!, that would occur if the potential curve
were a parabola with the curvature that the actual curve has at the
minimum, or equilibrium, position. The coeflicient w., of the squared
quantum-number term is known as the anharmonicity constant. It is
always much less than the principal term &, With the minus sign
written explicitly in Eq. (56) it is found that w.z. is always a positive
quantity. The energy-level expression of Eq. (56) shows, therefore, that
the separation between successive vibrational levels is not constant but
rather decreases slightly with increasing values of v, as shown in Fig. 2-6.

Tt should be recognized that the broadening out of the potential
curve, shown in Figs. 2-3 and 2-4, as a bond stretches, confines the

FIG. 2-6 The vibrational energy levels calculated for HCl. Pattern (a) is based on the
harmonic-oscillator ‘approximation and the frequency of the fundamental transition.
Pattern {b) is based on the anharmonic values of Table 2-2.
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vibrating particles less closely than would a parabolic curve. Such loosen-
ing of the restrictions on the motion of particles always leads to more
closely spaced allowed energy levels. The anharmonicity term intro-
duces, therefore, an effect which decreases the spacing of the higher energy
levels, as shown in Fig. 2-6. ‘

If one observes some of the overtone bands, i.e., transitions from
v =0 tov =2 v =3 and so forth, one can check the success of the
energy-level expression of Eq. (56) and determine the constants &, and
«.z.. Table 2-2 shows the data obtained for the fundamental and first
four overtones of HCl. These data can be compared with those derived
from Eq. (56) for the energies of the transitions from v = 0 tov = v;i.e.,

V) — €0) = &,(v) — wrp@® + 1) (57)

One finds, for @, = 2,988.90 em™! and w.z, = 51.60 cm~!, that Eq. (57)
provides a very satisfactory fit to the observed frequencies of HCI.

One notices that &, is considerably larger than the quantity é1) —
é(0) which would have been identified with the coefficient of the (v + 1)
term in the expression based on a harmonic potential. It follows that
the force constants calculated from these two quantities will be different. )
The distinetion is that &, is a measure of the curvature of the potential
curve at the very bottom of the curve, where a hypothetical v = —% level
would be. The harmonic-oscillator approximation takes the difference in
energy of the v = 0 and v = 1 levels as a measure of the curvature of the
potential curve and therefore gets a lower value. Thus for HCl

@, = 2,988.90 ecm—! . k, = 5.1574 X 10% dynes/cm

TABLE 2-2 Frequencies of the Vibrational Transitions of HCl. Comparison
of the Observed Frequencies with Those Calculated from the Harmonic Oscil-
lator Approximation and with Those from the Anharmonic Expression &, —
€= 2,988.90(v) — 51.60v(v + 1)

Peale CII L
... . o
Ay Description Pobs CIM Harmonie Anharmonic
oscillator oscillator
0— 1 | Fundamental 2,885.9 (2,885.9) 2,885.70
0 — 2 | First overtone 5,668.0 5,771.8 5,668.20
0— 3 | Second overtone 8,347.0 8,657.7 8,347.50
0— 4 | Third overtone 10,923.1 11,543.6 10,923.6
0— 5 | Fourth overtone 13,396.5 14,429.5 13,396.5
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while

€(1) — &0) = 2,885.90 cin™! k = 4.806 X 10° dynes/cm

The use of @, instead of the observed fundamental energy is, in a number
of ways, more satisfactory, but its use requires information on the over-
tone ‘frequencies. For polyatomic molecules, this information is not
always available.

Exercise 2-5. The fundamental and overtone frequencies of the CH
stretching vibration of CHCI; are reported by Herzberg to be at 3,019,
5,900, 8,700, 11,315, 13,860, and 16,300.cm—'.  Fit these frequencies with
a suitable equation that allows for anharmonicity. What value of &
can be deduced?

PRINCIPAL REFERENCE

1. Herzberg, G.: “Spectra of Diatomic Molecules,” chap. 3, D. Van Nostrand
Company, Ine., Princeton, N.J., 1950, ~
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THE ROTATIONAL
ENERGIES OF LINEAR MOLECULES

In the previous chapter it has been shown that changes in the vibrational
energy of simple molecules can lead to absorption, or emission, of radia-
tion in the infrared spectral region and that information on the frequency
of the radiation absorbed, or emitted, can be used to determine the stiff-
ness of the bond holding the atoms together. It is now natural to ask
whether the rotational energy of a molecule is also quantized, whether
changes in the rotational energy can lead to the absorption, or emission,
of radiation, and, if so, what molecular property can be deduced from a
study of the frequencies of radiation emitted or absorbed.

The nature of the rotational energies of molecules can be introduced
by a consideration of the particularly simple systems of linear molecules.
Although diatomic molecules provide most of the examples of linear
molecules, the theory that is developed is equally applicable to linear
polyatomic molecules. It is again convenient to consider first the
classical behavior of a linear mass system and then to see the difference
in behavior that is imposed when the system is of molecular dimensions
and the quantum restrictions become important.

No attempt will be made in this introductory treatment to allow
for the fact that the molecules undergo simultaneous rotation and
vibration. The rotational effects will be considered by themselves. A
treatment that assumes that the molecular dimensions are independent
of molecular vibrations and undisturbed by molecular rotation is known
as the rigid-rotor approximation. A final section will consider the slight

47
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modifications that occur as a result of the centrifugal distortion the
rotation produces. Such a treatment is said to deal with the nonrigid
rotor.

3-1. The Rotation of a Linear System (Classical)

The rotation of any system is most conveniently treated in terms
of the angular velocity w and the moment of inertia 1.

It will be recalled that w is defined as the number of radians of angle
swept out in unit time by the rotating system. TFor a particle moving
with a linear velocity v a distance r from the center of gravity, the revolu-
tions per unit time, usually a second, are given by »/2xr and the angular
velocity by

o= 2,r(27';r) -2 (1)

It follows also that the number of revolutions per unit time, i.e., the dis-
tance traveled per unit time divided by the circumference of the particle
path, is v/27r or w/2r. .

The moment of inertia of a system is defined as

I=Zm:r? - ?) |

where r; is the distance of the 7th particle from the center of gravity of
the system. For any particular system, the value of I can be worked
out by first locating the center of gravity and then applying Eq. (2).

' For a diatomic molecule, for instance, the masses and distances of
Fig. 3-1 lead to the center of gravity being located so that

myry = Mare

FIG. 3-1 Location of the center of gravity of a diatomic molecule.




THE ROTATIONAL ENERGIES OF LINEAR MOLECULES 49

or, since r; + r2 = r, to the relations

My
= my + me T
and : 3
— m" v
s = my + mq

Application of the defining equation, Eq. (2), for the moment of inertia
now gives

mimy 2 mymj 2
r= (m: + ’m'z)2 + (my + my)? r
_ myme r2
my + mq
= ur? 4

where p, the reduced mass, is defined as in the previous chapter as

mimas

b= (5)

The kinetic energy of a system of moving macroscopic particles is
given by E%miv?. If the system performs a rotational motion, the

particle velocities are more conveniently treated in terms of the angular
velocity  of the system. One then can write the kinetic energy T as

T =4Y ma}
%

§ Y, motr? = jo? Y, ma?
T T
ot (6)
Equation (6) shows that a system of particles that obeys classical
mechanics has a kinetic energy that is dependent on the moment of
inertia of the system and on the angular velocity. No restriction,
furthermore, is placed on the angular velocity with which the system can

rotate. It can now be expected that when the same problem is treated

for a molecular system some restrictions on the allowed rotational energy
will appear.

Exercise 3-1. Calculate the moment of inertia of (a) HCI®*, HC1%, and
DCI%5, all of which have an equilibrium bond length of 1.275 A, and (b)

N:0, which is linear and has N—N and N—O bond lengths of 1.126 and
1.191 A, respectively.
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3-2. The Rotation of a Linear System (Quantum Mechanical)

Although a complete quantum-mechanical description, ie., the
wave functions and energies of the allowed states, can be obtained by
solving the Schrédinger equation for a rotating linear system, it is, at
first, more informative to see what result is obtained by applying Bohr’s
condition that the angular momentum be quantized in units of A/2w.

The angular momentum of a rotating system is defined as

2, (mavr;

which, in view of the definition of I as Zm? and w as v;/r;, is

e (3) = 2 | @

Thus, the quantized angular momentum condition requires that
h .
Iw=J§; withJ =10,1,2, ... )]
where the quantum number, following customary notation, has been

designated by J. This stipulation leads to the aliowed rotational energies
of

1 2
e = jlo? = f(IIw)
K2
=g’ ®)

The correct result, obtained, for example, by solution of the Schrs-
dinger equation, is only slightly different, being

2
e = &}:—qJ(J +1) (10)

The correct quantum-mechanical treatment turns out to allow, if J
is an integral quantum number, angular momenta given by

VITFD &

rather than by the simpler form J(h/2r) introduced by Bohr and used
. e h
in early quantum-mechanical treatments. If this term, VIWJ +1D) o
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is introduced for Iw in the classical energy expression, the correct quan-
tum-mechanical result is obtained.

Solution of the molecular-rotation problem, and hence derivation
of Eq. (10), by application of the Schriodinger equation will not be carried
out here. Any textbook on quantum mechanics can be consulted for
such a derivation. The problem consists of setting up the Schrédinger
equation for three dimensions, using the convenient polar coordinates
of Fig. 3-2. For a free gaseous molecule, rotation is unhindered, and the
potential-energy function can be set equal to zero. Solutions are found
for the resulting differential equation only if the energies have the values
indicated in Eq. (10). The wave functions themselves need not now
concern us. It can be mentioned, however, that they are identical to
the angular part of the solutions for the behavior of the electron of the
hydrogen atom. Thus for J = 0, the rotational wave function ¥s.o
has the same form as the angular part of an s orbital wave function,
For J = 1, the wave function is the same as that for the p,, p,, and p,
orbitals, 'and so forth.

For spectroscopic work, the expression for the energies of the rota-
tional states allowed by the quantum restrictions is of prime importance.
These allowed energies, as given by Eq. (10), are shown schematically
in Fig. 3-3. Again it is more convenient to express these energles in
wave-number units; in these units we have the expression

€& = g%&.](] + 1) cm™! (11)

The group of terms h/8x2Ic is sufficiently frequently encountered in

FIG. 3-2 Polar coordinates.
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molecular spectroscopy to merit a symbol, and one uses the symbol B
defined as

B=ﬁ em—! - (12)

Again the barred symbol is used to emphasize the units of cm='. The
allowed rotational energies of a linear molecule can now be written as
& =BJJ+1) em™! (13)

FIG. 3-3 The energy-level pattern for a rotating linear molecule. The degeneracy, or
multiplicity, of each rotational level is indicated by the number of levels that would appear
if an electric field were applied to the rotating molecule.

Energy pattern if
Allowed 27 + 1 degeneracy
rotational ’ were removed
o e, =BJJ+1) energies (schematic)

- —=

208

|

0B
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3-3. Rotational Energy-level Populations

The next step in laying the foundation for an understanding of
rotational spectra involves a discussion of the populations of the rota-
tional states whose energies are given by Eq. (10), (11), or (13).

Now as with the hydrogen atom treated in Sec. 1-2, there are, in gen-
eral, a number of rotational states corresponding to a given rotational
energy. This can most easily be seen from the condition that the com-
ponent of the angular momentum in a direction imposed on a rotating mole-
cule be quantized in units of A/2x. It follows, as Fig. 3-3 indicates, that
there are 2J + 1 states with energy BJ(J + 1). The number 2J + 1
arises from the states with angular momentum components of J, J — 1,
J—-2.0, =1, =2 —J + 1, —J times h/2r that would appear if an
external field were applied.

In view of this 2J + 1 degeneracy of the Jth energy level, the Boltz-
mann distribution expression for the populations of the rotational energy
levels is

N; = (2J + 1)N e JV+Dmismrer (14)

It will be seen later that the allowed rotational energies typically
have small energy spacings compared to the room-temperature value of
kT. For example, N,O has an N—N bond length of 1.126 A and an
N—O bond length of 1.191 A. The moment of inertia can be calculated,
as suggested in Exercise 3-1, to be 66.8 X 104 g cm? and at 25°C
the energy-level population expression is

NJ = (2J + l)Noe—J(J+1)(0.00202) (15)

The population of the levelsof N,O isshown as a function of J in Fig. 3-4.

FIG. 3-4 The relative populations of rotational energy levels of N;O at 25°C.
25

20 \
// ™.

15 J
N, /Ny X
10 ] - \\
10 ‘15 20 25 30 35 40 45
Rotational quantum number, J
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The result of this example, that quite a few of the allowed rotational
energy levels are appreciably populated, is generally valid. It follows
that, in an absorption experiment, we must expect transitions starting
from energy levels corresponding not only to J = 0 but also to higher
J values to be important.

Exercise 3-2. Make a population versus J value diagram like Fig. 3-4
for HCI at 25 and 1500°C.

3-4. Rotational Spectra of Rigid Linear Molecules

It is again necessary to anticipate the results that will be obtained
in the following chapter when the transitions that electromagnetic radia-
tion can induce will be studied.

The first requirement for the absorption of radiation by a rotational
energy transition is that the molecule must have a permanent dipole. The
rotating dipole can be thought of as interacting with the electric field
of the radiation and allowing energy to be exchanged between the mole-
cule and the radiation. The requirement is seen to be equivalent to
that stated in the previous chapter where the vibration of a molecule
had to be accompanied by an oscillating dipole for such interaction to
oceur.

There is a further restriction on rotational transitions even for those
molecules which have dipole moments. - The selection rule for rotational
transitions of linear molecules that occur with the absorption or emission
of electromagnetic radiation is

AJ = +1 - (16)
For studies of the absorption of radiation, the experiment that is invari-
ably done when rotational spectra are obtained, the appropriate part
of the selection rule is AJ = 1.

With this selection rule, and the population results obtained in the
previous section, the expected transitions can be indicated by the vertical
arrows of Fig. 3-5.

The general expression for the energies that are absorbed in the
transitions indicated by arrows in Fig. 3-5 can be obtained from the
allowed energies given in Eq. (13). If the quantum number for the
jower level involved in a transition is J and that for the upper level is
J + 1, the energy difference in em™, and therefore the value of # for the
absorbed radiation, is

3=BWJ +1)J +2) —BJIJ+1)
= 2B(/J + 1) a7
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We thus expect, since the levels J =0, 1, 2, . . . will generally be
populated, absorptions of radiation at frequencies of 2B, 4B, 6B,

and should therefore observe a set of lines spaced by a constant amount.
This amount can then be identified with 2B.

One observes in the microwave spectral region such series of absorp-
tion lines when linear molecules with dipole moments are studied.
Table 3-1 shows the frequencies of absorption, attributable to rotational
transitions, observed for the linear molecule OCS.

FIG. 3-5 Rotational energy levels and fransitions for a rigid-rotor linear molecule
The symbol B is used fo represent the quantity h/8mr%kc.

-

J Energy
5 y 308
Aé =10B
4 20
|
I
Rotational e gl
energy < A€ =8E |[
levels |
|
3 : 12B
F 3 | I
| |
I
AE=6B | :
I i
2 ! ! 6B
L L}
1 i i 1
5 | | i
A= 48 i ] ;
1 : ’ — 2B
A _ 1
Ae=2R | IF 1 1
i
. 0 [ | i i 0
A
|
i i I I I
1 | | 1 |
s S



56 INTRODUCTION TO MOLECULAR SPECTROSCOPY

From these data one can obtain an average value of the absorption
line spacing of 12,162.7 megacycles/sec and

12,162.7 X 106

B = 3509790 % 10%)

= 0.20285 cm™! (18)

Therefore, since B = h/8xIc, the moment of inertia of the OCS mole-
cule can be calculated to be

Toes = 138.0 X 10— g cm? (19)

It should be apparent that from this single experimental result it is
not possible to deduce both the CO and C8 distances of the molecule.
In such cases, what is done whenever possible is to obtain the rotational
spectrum of different isotopic species. Thus, more detailed analyses
of the rotational spectra of 018C!2832 and OC!283¢ reported by Strand-
berg, Wentink, and Kyhl [Phys. Rev., 75: 270 (1949)] give

3016012832 = 0.202864 cm™! and I015012832 = 138.0 X 10—40 g/sq cm
' (20
3015012834 =0.197910 ecm™! and 1013012834 =141.4 X 1040 g/Sq cm

From these moment-of-inertia data, and the assumption that the bond
lengths are independent of the isotopic species, one deduces that in the
OCS molecule

r(CO) = 1.161 + 0.001 A
r(C8) = 1.559 + 0.001 A

(a1)

It is easier, as one will discover, to verify that these distances are con-
sistent with the moment-of-inertia data than to derive the bond lengths
from the moments of inertia.

Measurements of the spacing of rotational spectral frequencies have

TABLE 3-1 Absorptions of O*C2532 in
the Microwave Region Due to Rotational
Transitions™

Transition Frequency v
J—-=J+1 (megacycles/sec)
0—1
152 24,325.92
2—3 36,488.82
3— 4 48,651.64
4—-5 60,814.08

* From Strandberg, Wentink, and
Kyhl, Phys. Rev., 75: 270 (1949).
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led to very accurate values for the moments of inertia and, in many
cases, for the lengths of the bonds of molecules. Some of these results are
shown in Table 3-2.

Close examination of data such as those of Table 3-1 reveals that the
spacing between adjacent spectral lines is not, in fact, exactly constant.
The constant spacing expected from the treatment given here is that
obtained from the rigid-rotor approximation. Now we can gee (although
this is a minor matter that can be passed over) what alterations to the
theory arise from the recognition that molecules are not rigid, but are
flexible, and can be expected to stretch under the influence of the cen-
trifugal forces that arise-when they rotate.

Exercise 3-3. The rotational constant term B = ¢B is given by Gordy,
Smith, and Trambarulo [2] for HC2N* as 44,315.97 megacycles and for
DC!N" as 36,207.40 megacycles. Deduce moments of inertia for these
molecules. Assuming that the bond lengths are independent of isotopic
substitution, calculate the H—C and C—N bond lengths.

*3-5. The Nonrigid Rotor

The stretching effect of the centrifugal forces on the bond lengths,
and therefore on the moment of inertia of a rotating system, can first
be calculated on the basis of classical behavior. Consider, for simplicity,

TABLE 3-2 Some Bond Lengths Obtained from Micro-
wave Spectroscopy of Linear-Molecuies*

Molecule Bond Bond distance (A)
CO C=0 1.1282
NaCl Na—Cl 2.3606
HCN C—H 1.064

C=N 1.156
CICN c—Cl1 1.629
C=N 1.163
HC=CC(l C—H 1.052
C=C 1.211
CcC—Cl1 1.632
HC=C—C==N C—H 1.057
C=C 1.203
Cc—C 1.382
C=N 1.157

* From W. Gordy, W. V. Smith, and R. F. Tram-
barulo, “Microwave Spectroscopy,” John Wiley &
Sons, Inc., New York, 1953,
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a single particle of mass m rotating about a fixed point with an angular
velocity of w. Assume that, when there is no rotation, the particle
is a distance ro from the fixed point and that this length increases to a
value of r when the particle rotates.

The centrifugal force of mrw? is balanced by a restoring force of
k(r — ro) that accompanies bond stretching. The extent of bond
stretching that occurs for an angular velocity of w is, therefore, given by
the expression

k(r — ro) = mro? ' (22)
On rearrangement, this gives the distorted bond length as
kr
= )

Since the energy of the rotating system is made up of kinetic- and
potential-energy contributions, the total energy can be written as

= }lw? + 3k(r — ro)? (24)
which, with Eq. (22), becomes

1 (Iw?)?
2 4
o + 2 kr?

The quantum restriction that the angular momentum Jw be quan-
tized according to /J(J + 1) (h/2x) will convert this classical result
to a quantum-mechanical result.. The correct allowed energies are,

therefore, deduced to be

(25)

h? ht 2 2
€J=”§'—‘J(J+l)+§2—4‘jﬁk-](-]+l)

h? h4 .

2
=gl + D+ gaag U+ 1) (26)
It is finally necessary to relate the distorted distance r in the first term,
which is of major importance in Eq. (26), to ro by means of Eq. (23).
In this way, and approximating r by ro in the second, minor term of Eq.
(26), one obtains

ht
&= g r,J(J+1) T "V + D?
+§TW@JU+D2
h¢
= G IV D) = G S 1 @)
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In terms of wave-number units, this result becomes

. _ h __km
il =R =y oS S
- . 3
=BJ(J+1)—4=—~&’B2 JJ + 1) . (28)

where & is the vibrational-energy term 1/2xc v/k/m and, as before,
B = h/8r%Iec.

It is customary to write this expression for the rotational energy
levels as

&= BJ(WJ + 1) — DJ¥J + 1)? (29)
where D, known as the centrifugal distortion constant, is a quantity that
can be evaluated from spectral results and, according to the above
derivation, can be related to other spectroscopic molecular parameters
by the relation

D = 4Bs/a? (30)

The value of D is always very much less than that of B, and the
difference between the rigid and nonrigid rotor treatments can, as Fig. 3-6

\_

I 6
g
5 5
4
FIG. 36 The effect of centrifugal
distortion shown by the comparison
of the allowed rotational energy 3
levels of a rigid (solid lines) and
nonrigid (dashed lines) rotor. 2
1
[+

Rigid rotor Non-rigid rotor
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TABLE 3-3 Absorptions Due to Rotational Transitions of HCI*

Transition Fobs Peate = 2B(J 4+ 1) Feate = 2B(J + 1) — 4D + 1)

J->J+1| (em) | (with B = 10.34 em™1) | (B = 10.395, D = 0.0004 cm™)
3— 4 83.03 82.72 83.06
45 104.1 103.40 103.75
5—6 124.30 124.08 124.39
6—7 145.03 144.76 144.98
78 165.51 165.44 165.50
89 185.86 186.12 185.94
9510 206.38 206 .80 206.30
10— 11 226.50 227.48 226.55

* From G. Herzberg, ‘“‘Spectra of Diatomic Molecules,” D. Van Nostrand Company,*
Ine., Princeton, ‘N.J., 1950.

suggests, be expected to show up only when high J value levels are
involved.

The expression for the energies of the rotational transitions AJ = -+1
for a nonrigid rotor are, according to Eq. (29),

Ad(J —J +1) = 2B(J + 1) — 4D(J + 1) @31)
The data of Table 3-3 illustrate the improved fit to experimental

absorption frequencies that can be obtained by allowing for centrifugal
distortion.

PRINCIPAL REFERENCES

1. Herzberg, G.: “Spectra of Diatomic Molecules,” chap. 3, D. Van Nostrand
Company, Inec., Princeton, N.J., 1950,

2. Gordy, W., W. V. Smith, and R. F. Trambarulo: “Microwave Spectroscopy,”
John Wiley & Sons, Inc., New York, 1953.
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THE ABSORPTION AND
EMISSION OF RADIATION

In the two previous chapters it has been necessary to state, without
adequate explanation or proof, that transitions between allowed energy
levels can occur with the absorption or emission of electromagnetic
radiation. Furthermore, selection rules governing the transitions that

an thus occur have been quoted. Now that some introduction to
allowed energy levels and to simple spectra has been given, it is appropri-
ate to investigate the theoretical basis on which spectral transitions can

e understood. A considerable amount of manipulation with quantum-
mechanical expressions will be necessary. The net result of the deriva-
tion is, however, an expression that can often be used in a qualitative, or
diagrammatic, way to understand what transitions will occur in a par-
ticular system and, moreover, the intensity of the absorption or emission
band that will be observed. (The reader will notice that in the previous
chapters the emphasis has been on the frequencies of absorption bands
and little attention has been paid to their intensities.)

4-1, The Time-dependent Schrddinger Equation

The form previously given for the Schrédinger equation, and illus-
rated by the particle-in-a-box calculation, is known as the time-inde-
pendent, or amplitude, equation. A more complete expression for
Schrédinger’s equation allows the calculation of atomic-scale phenomena
as a function of time as well as of space. For one dimension the equation
written for z and ¢ is )
R 9*¥(z,t)

8r°m ~ 9z%

+ U@¥G) = — 5 22D M

61
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The explicit indication that ¥ is a function of x and ¢, i.e., ¥(z,t),
will not be continued. It will be understood that ¥ is a function of x
and ¢ and that ¢ is a function only of x.

Previously it was shown that ¢*¢ described the system, i.e., gave
information on the position of the particle, in the one-dimensional square-
well potential. In a similar way, ¥*¥ describes the system in space
and time.

To reduce equations such as the time-dependent Schrédinger equa-
tion to more manageable forms, it is customary to try to separate them
into two equations each involving only one of the variables. With this
approach one tries the general substitution :

¥ = ¥(z) ¢() )

where ¥(z) and ¢(t) are functions of z and ¢, respecti{rely. Substitution
of this relation in Eq. (1), with the supposition that U is a function
only of z, gives

— o D 4y 1 U @) W) #0) = — o () LD
or (3)
1 [ W dye) __h 1 de@d
m[ SePm da? ]+ U@ = ~9n%®m dat

The left side of this equation is a function only of z, and the right
side is a function only of ¢. The equation can be valid for all values of
z and ¢, only if each side is equal to a constant. The constant is called e
since it can be identified with the energy of the system. The two
equations that are obtained by setting Eq. (3) equal to the constant ¢ are

d¢(t) 27t
- - TR o (t) CY)
and
h? d? %
“ Srimdg T U@ = ®)

The second of these equations can be recognized as the time-inde-
pendent Schrédinger equation introduced in Chap. 1. The time-depend-
ent part of the complete Schrédinger equation can be readily solved, and
the solution is

() = e~C2riim t (6)

where ¢, is written because the values of ¢ that are required by Eq. (5)
involve a quantum number which can be denoted by n. The solution
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to the complete equation for a general one-dimensional problem can,
therefore, be written as

T, (2,0) = Pulz)e—Eri et -

If one thinks 6f the particle-in-a-box problem as an example, the
solutions that would have been obtained from the time-dependent Schré-
dinger equation would have been

Wa(xt) = \/g <sin 7?) e (2milby et

where .

%h? .
“ = Gt ®

The implications of the solution in x and ¢ can be seen if the quantum-
mechanical description of the system, as given by ¥*¥, is obtained.
This is given in general by

‘I’*‘I’ = 'p*'lle(?rilh)e,te—(zn'lh)e.t
— \b*'pe(hilh)(e,.—c,.)t

=y )

The time-dependent part of the solution to the space and time equa-
tion is seen, therefore, to drop out, and the system is again described
simply in terms of the time-independent wave functions. Systems, like-
the particle-in-a-box system studied in Chap. 1, which lead to solutions
that are time independent, are said to have allowed siationary states. .
These are the allowed states that are obtained as solutions to the time-
independent Schrédinger equation.

For a spectroscopic process to occur, a procedure must exist which
causes a state to change from one stationary state to another. How a
time dependence is introduced into a quantum-mechanical problem will
now be investigated.

4-2. Induced Quantum Transitions

Much of spectroscopy is concerned with the absorption of radiant
energy as a system goes from one stationary state to another under the
influence of incident electromagnetic radiation. It is necessary to inves-
tigate, therefore, how radiation can disturb, or as one says perturb, a
system so that a transition is induced.

In general any atomic or molecular system will have many allowed
energy levels corresponding to the stationary states of the system. It
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is sufficient, and the notation is simplified, if a system is treated that is
assumed to have only a lower energy state, with a wave function ¢,
and an upper energy state, with a wave function y,,, where [ and m are
two different values of the quantum number for the system.

The complete time and space Schrédinger equation for one dimen-
sion is, as before,

h? 9%V h 0¥
~Semo T U@Y = — 5o

(10
It is convenient to introduce the symbol H, called the Hamiltonian, to
represent the terms

h2
~ 8r'm 6;62

+U()

(Although it is sufficient to treat H as a symbol, one should recognize
that it is the quantum-mechanical operator for the total energy of the
system.) With this notation, Eq. (10) becomes
. h o¥ ’

HY = — o 9L (11)

The supposition that only the two stationary states described by
¥ and ¢, exist for the system implies that the only two solutions to
Eq. (11) are

= 1//16"(2""‘) «t

and (12)
\I’m = ‘llme—(mrilh) €mt

Since such solutions to the Schrédinger equation, as pointed out in Sec.
1-7, form an orthogonal set of functions, a general solution to the equation
can be written as a series of these functions. In this case, where only
two solutions exist, the general solution is simply

v = a;\Il; + a,,.\I/m (13)

where a; and a,. are weighting coefficients which are not functions of =
but, as we will see, can be functions of time. The two allowed stationary
states of the system are described by the general expression with a; = 1,
an =0o0ra; =20, a, =1.

The potential energy of the system before it is disturbed, or per;
turbed, by electromagnetic radiation is now represented, more specifically,
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by U,, and the corresponding Hamiltonian by H; i.e.,
R d?

vHo = m%—z'i' Uo(x) (14)
The Schrodinger equation for this initial, unperturbed case is then written
as

h ¥

Ho¥ = — oo

(15)
It is this equation that has the two solutions ¥; and ¥,

Now let us assume that it is known that initially the system is in
the lower energy state ! with the wave function ¥; and energy ¢. The
initial state, at time ¢ = 0, is therefore described by Eq. (13), with
a, = 1and a, = 0. As was seen from the previous discussion, the solu-
tion ¥; will lead to a description of the system as being time independent
with the wave function ¥, and energy ¢. This state of affairs will con-
tinue as long as the system is undisturbed, i.e., as long as U = U,.

Now let us suppose that electromagnetic radiation falls on the sys-
tem, As will be shown later in more detail, the electric field of the
radiation may act on the system and change the potential energy.- The
change in U is denoted by U’ and that in H is denoted by H’. The new
Hamiltonian is then Ho 4+ H’. The differential equation corresponding
to the initial state of the system is therefore changed, and ¥; will not
satisfy the new equation.

The more general expression

¥ = a;()¥; + an(t) ¥, (16)

where a; and a,, are time-dependent parameters, can be used to provide
a solution to the new Schrédinger equation that is applicable to the
perturbed system.

This wave function, with undetermined e; and a,., can be substi-
tuted into this new Schrédinger equation to give

9

(Ho + H)Y (¥ + 0n¥m) = — Q% 3 (¥ + an¥,)

Expansion of this equation gives

¥ + a,Ho¥,, + a,H'Y; + a, H'Y,, = — l. ¥, do,
27t dt

h g dom _ kb OV b 0. 9¥n

o2 ™At 2w YOt 2mi ™ Of

7
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The first two and last two terms cancel because ¥; and ¥,, are solutions
of the unperturbed wave equation. The remaining expression is simpli-
fied if it is multiplied through by ¥* and integrated over all space, i.e.,
fromz = — to x = + . The orthogonality of ¥,, and y; eliminates
one of the integrals, and the time-dependent part drops out of the
Xy, integral as in Sec. 4-1.  On rearranging.the remaining terms, and
substituting Eqgs. (12), one has .

da 2 . oo
m 27 ale—(2n/h)(e;—-e,..)t l//:‘,Hlil/z dl‘
—

dt k
R y + o
- 2—;1 m f VEH"Ymdz  (18)

It is known that initially a; = 1 and a, = 0 so that the final term does
not initially contribute. It can be shown also that the final term does
not contribute appreciably at longer times, and one has

‘ . [t
%" = _ g%"_" o= (2milR) (e t f_ VEH" dx (19)

This important equation gives the rate at which a system can be
changed from one stationary state to another under the influence of a
perturbing effect. The rate with which a.. increases corresponds to the
rate at which the description of the system changes from ¥; to ¥m.

To proceed it is necessary to be more specific about the perturba-
tion H’. Some features of the interaction between the electric field
of the electromagnetic radiation and the molecular system that absorbs
the system are now treated.

4-3. The Interaction of Electromagnetic Radiation with a Molecular
System

When electromagnetic radiation falls on a molecule, the oscillating
electric field of the radiation can in some cases disturb the potential
energy of the molecule and allow it to escape from its initial stationary
state, here assumed to be characterized by the quantum number I. It
will be recalled from the discussion presented in the introduction that
the electric field of the radiation oscillates at the point occupied by the
molecule with a frequency ». ,For example, the £ component of the
radiation can be described at the position occupied by the molecule by an
equation which is usually written as

E, = 2E° cos 2nut \ (20)

It is here more convenient to use the exponential form for the time
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dependency and write
Ez = E:(eh'ivt + e—2n’yt) : (21)

The derivation of the influence of the electric field on the molecule
can, for simplicity, be followed through in terms of the x component
of the interaction. At the end of the derivation, the effects. of the inter-
actions in the y and z directions can be added on.

The electric field E, can act on a dipole-moment component u.
to produce a change in energy of E.u,. This term adds to the potential
energy of the system and is responsible for the change in H that occurs
when radiation falls on the system. One can write, therefore,

H' = E.p, (22)
If the frequency dependence of E. is shown explicitly, this becomes

H' = El(e¥irt 4 e~ 2it)y, (23)

Substitution of this perturbation in Eq. (19) gives

dam _ 2m

dan 2ri B /‘+n VEua da(emiM en—erthnt | p(2rilh) (ea—a—hr)t)

(24)
The integral over x that appears here is customarily represented by
|zl ; 1€, :

] = [ Vi do (25)

w0

With this notation, and integration of the time-dependent functions of
Eq. (24) over the time interval 0 to ¢, one obtains

1 — e2xi/d) (em—ertho)e 1 — e2xilh) (em—~e—h)t

&n — €+ hy €n — € — hy

o) = ol | | o

The process of interest here is that in which the system goes from a
lower energy level ¢ to a higher one ¢,. For such an arrangement of
energies, the denominator of the second term in the square brackets
will go to zero when the radiation frequency is such that

hy = em — & . . - 27

For such conditions this second term can take on large values and be of
major importance in determining a.(f). On the other hand, if ¢, were
lower than ¢, the first term in the square brackets would be of major
importance in determining a.(f), for then hv equal to the energy differ-
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ence would lead to a zero denominator. It follows that the first term
in the square brackets is important if the transition from ! to m is one
of emission, whereas the second term is important if the transition is
one of absorption. Bince we are here investigating an absorption process,
the energy of the m state is greater than that of the I state, and it is only
necessary to retain the final term of Eq. (26). We have, therefore, for
the assumed energy-level pattern

(28)

€n — € — hv

1 —_— e(2n'lh)(¢,,,—£;—hv)t
an ) = ianl B | |

As the system changes from the description ¥; to ¥,, it can be
described by the product ¥*¥, where ¥ = a,¥%; + a,,¥,, and the a’s are
time dependent. This quantum-mechanical description can be given
as a function of time if it is integrated over all values of . This integra-
tion, moreover, removes all the space-dependent wave functions because
of their orthogonality and normalization. One is left only with

/+” Y*¥dz = afa; + ti,ﬁam (29)

The importance of the m state in the description of the system is
given, therefore, by the product a}a, which, according to Eq. (28), is
given as a funection of time by
2 — e(2n’/h)(¢,,—q—hr)t — e—(Zn’/h;(z,,.—q—hr)t

(em — €& — hv)?

= orproy2 | SIR2 (w/h) (em — e — o)t
- 4[/‘zlm| (Ez) [ (Em S hV)2 ]

The above expression shows the effect of a given frequency of radiation.
Integration over all frequencies, treating E2 as a constant since the
absorption will usually occur over a narrow frequency range, gives, with
the definite integral

+* gin? g
s dr ==
e T

the result

—— |Mm|2<E:>2[

(30)

2 .
QA (0)an(t) = T [uernlH(ED (31)

This is the desired result except for the characterization of the
radiation by its electric field strength instead of its energy density. It
is the latter measure of the amount of radiation that is more convenient
when comparisons are made with experimental determinations of the
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amount of absorption. The necessary relation, which is here given with-
out derivation, is

b= o (B (32)

where p is the energy density, i.e., the energy per unit volume that is
irradiated by the electromagnetic radiation.

Replacement of EY in Eq. (31) by this relation gives the rate
d(aXa,)/dt with which the importance of state m in the description
increases as :

d(a*an)  8x®
(“dt“ ) o 31,2—2 | et 20 (33)

For isotropic radiation the three components of the radiation-dipole
interaction are equal, and one writes

d 8wd
a—i (a:am) = 3—;:2 I(N-zlr»)2 + (F'ylm)2 + (l"zlm)zlp
8 3
= o |l (34)

This rate of change of the system as a result of absorption of radiation
under the perturbing effect of the electric field of the radiation is usually
written with Bi,, called Einstein’s coefficient of induced absorption, intro-
duced so that Eq. (34) becomes

d
o (a*an) = Binp (35)
with
8 3
By, = 3;;;2 |t (36)

This expression obtained for the time dependence of the coefficient
of ¥, for a system originally described by ¥; shows the factors that are
responsible for the change from one stationary state to another. The
rate of transition is seen to depend on the term |u|, called the transition
moment, and on the energy density of the radiation.

To complete the general study of the process by which radiation
energy is absorbed, it remains only to compare this derived expression
with the quantities usually encountered in the experimental determina-
tions of the absorption of radiation.
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Exercise 4-1. Plot the function
sin? (2xr/h) (em — e — hv)

(em — & — hv)?
which must be integrated over all frequencies to obtain Eq. (31), versus

frequency near hv = . — €, and see that the frequencies that contribute
most to the integral are those close to the Bohr condition e, — ¢ = ha.

4-4, Comparison with Experimental Quantities

The quantities used in reporting the experimental results for the
absorption of radiation can be introduced by considering the derivation
of Beer’s law for an absorbing solute in a nonabsorbing solvent. The
decrease in intensity of the radiation as it penetrates a distance dl, as in
Fig. 4-1, is, according to Beer’s law, proportional to I, the radiation
intensity; to C, the molar concentration; and to the path length dl.
Introducing a(»), the absorption coefficient, as the proportionality constant
allows the equation

—dI = a(»)IC dl (37)

to be written. The dependence of « on the frequency is here emphasized
by writing a(v). Integration of this equation over the cell length I
allows the absorption coefficient to be measured in terms of 7I,, the
incident intensity, or the intensity with no absorbing material, and 7,
the intensity of the radiation after passing through the cell containing
the solution. The integrated form of Beer’s law is obtained. in this way
as

Iy
T

a(s) = z;1n (38)

FIG. 4-1 The absorption of radiation by a solution.

Source Sample Spectrometer

Solution of concentrate, C moles/liter
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An absorption band for a given transition usually extends over a
range of frequencies. The total intensity of the band is obtained by
measuring a(») in the region of the absorption and determining, usually
by graphical integration, the integrated absorption coefficient 4, i.e.,

4= over band a(v) dv
or (39)
A = over band a(i’) v
= —4.
c

It is now necessary to relate the experimental quantities a(»), or 4,
to the theory of the previous section.

The theoretical result of the previous discussion is that the rate of
transfer of molecules from state I to state m is

8 3
(Binp = o im0 (40)

If one introduces the symbol N’ to represent the number of molecules
in a cubic centimeter of the sample and recognizes that an amount of
energy hvi, is removed from the radiation by each transfer, the decrease
in intensity, or energy, of the beam passing through a length dl of the
sample is given by the theory of the previous section as

8 2

T
—dI = 2

|“lm|2PthmN " dl (41)
Furthermore, since I is the energy flowing through a cross-section area
of 1 8q em in 1 sec, it is related to the energy density by

I =cp (42)

where ¢ is the velocity of propagation of the radiation. Equation (41)
can therefore be written as

82 I ,
—dI = S e (£) et a #3)

For comparison with the experimental expression, Eq. (37), it is
finally necessary to relate N’ to the molar concentration C. If Avo-
gadro’s number is N, this relation is

,_ NC
N = 1600 (44)
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Substitution for N’ in Eq. (43) gives

8r? 1 NC :
_.dI = .3% ,F'lmlz (E) hl/lm'm dl (45)

Comparison with the differential form of Beer’s law, Eq. (37),
allows the terms corresponding to a(v) to be identified. The theory
predicts, however, the total absorption for the transition rather than
that for a given frequency, and the identification should be made with
A = fa(n) dv. In this way we obtain

8n3iN

- T 2
4 3he(1,000) Vi |

(46)
where »,,, is the center of the absorption band and, as it will be recalled,

o

il = [ 7 Wb do 47)

The important result given by Eq. (46) is that the integrated
absorption coefficiént, or simply the band intensity, can be calculated
for a transition if the wave functions for the initial and final states are
known and if the integration of Eq. (47) can be performed. Conversely,
one can use the measured value of A to obtain a value of |wa|? and of
+ |um] and thereby learn, by means of Eq. (47), something about the
wave functions of the states involved in the transition. In subsequent
work, both procedures will be used.

4-5. The Basis of Selection Rules

The results of the previous section provide a quantitative relation
between the transition moment of the absorbing species and the absorp-
tion of radiation by a given sample. From this relation, furthermore,
often some very important qualitative statements can be made about
which transitions can be induced by radiation, and thus lead to the
absorption of radiation, and which transitions cannot be so induced, and
therefore fail to absorb radiation. Such general statements are called
selection rules, and for a given system they can be deduced by deciding
for which transitions the integral |u;,.| must necessarily have a zero value.
The deduction of selection rules for the particle-in-a-box system will
conveniently demonstrate the deduction of selection rules.

Let us consider the particle to be an electron and the balancing
positive charge to be located at the mid-point of the well or, at least, to
be symmetrically distributed about the mid-point. The dipole moment
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will then have the form
po=ey (48)

where, as Fig. 4-2 shows, y is the distance of the electron from the center
of the potential well. TFor a transition from a state with n = [ to one
with n = m to be induced by electromagnetic radiation, the integral

lanl = [, Wr(e)¥m do (49)

must be nonzero.

The integration will be carried out in the next section when a
quantitative result for the absorption intensities is desired.” One can
here illustrate that for the deduction of selection rules it is often sufficient
to consider the symmetry of the three functions ¥, ey, and ¢, that appear
in Eq. (49). '

The coordinate system, of Fig. 4-2, with y at the mid-point is
convenient for the symmetry discussions that are necessary here. The
coordinate y, and therefore the function ey, is clearly an odd, or anti-
symmetric, function since it changes sign at the origin. All the wave

(odd function)

(even function)

FIG. 4-2 The symmetry proper-
ties of the particle-in-a-box wave
function and some of the tran-
sitions allowed by the rule
+ o=, =y -,

(odd function)

(even function)
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functions, as was shown in Sec. 1-8, are either symmetric or antisymmetric
about this origin; i.e., they are either even or odd functions. If the
product of the three functions of the integral of Eq. (49) is an odd func-
tion, the result of the integration over the left half of the potential well
will exactly cancel the contribution from the integration over the right
half. Thus |um| will necessarily be zero for a transition from n = [ to
n = m if I and m are both odd numbers or both even numbers. The
allowed transitions, i.e., the transitions for which |u.| is not necessarily
zero, connect a state with an even value of the quantum number to a
state with an odd value. ’

One should recognize that the selection rule stating that transitions
can occur between energy levels only if one level has an odd quantum
number and the other an even quantum number is equivalent to the
statement that only levels of different symmetry can combine. The
selection rule can be conveniently expressed as

+ — —

+ o+, - o -

where 4 indicates a state with a symmetric wave function and —
indicates one with an antisymmetric wave function. The transitions
allowed by these selection rules are indicated in Fig. 4-2.

As for this particle-in-a-box example, it will often be possible to
deduce selection rules without a detailed working out of the integrals.
T he symmetry of the system will be important in this regard, and the
selection rules will usually have some simple direct relation to the sym-
metry of the wave functions corresponding to the energy levels.

4-6. The Integrated Absorption Coefficient for a Transition of a Particle
in a Box

To evaluate the theoretical integrated absorption coefficient for a
transition, one must work out the integral involved in |u.]. The transi-
tion for a partiele in a box can be easily treated.

For the dipole moment term u one writes, using the coordinate system
for which the wave functions of the square well were given in Sec. 1-5,

Y S W
u—e(z 2) ex - & (50)

The wave functions are

2 . nax
vn = (o ™22 (51)
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and the transition moment |um| is, therefore,

2¢ [of . lnzx . mnx a
lim| = - '[) (sm —Z—) (sm——a’r— (z - §) dz (52)

Since the orthogonality condition eliminates the integral arising from
the a/2 term, one is left with the expression

2 a . .
|bim| = Ze [) z (sm !%f) (sm mT”) dz (53)

Making use of the relation -

sin 8 sin ¢ = [cos (6 — ¢) — cos (8 + ¢)] (54)
one gets
lm,,.|=§ﬁ°[xcos(l—m)%x—xcos(l+m)”7:]dx (55)

Integration, making use of the integral [y cos ydy = cos y + y sin y,
gives

lim] = ea [cos (!l —myr—1 cos(l +m)1r—1]

x? (- m)* (I + m)?
where the fact that { — m and [ + m are integers has been used to elim
inate the sine terms. ‘

The selection rules deduced from symmetry considerations in the
previous section can be obtained analytically by the insertion into
Eq. (56) of the various even and odd combinations for { and m.

The intensity of the w-electron transition of hexatriene, ‘for which
the frequency was calculated in Exercise 1-2, can be used as a specific
application of Eq. (56). The transition, as Fig. 1-2 indicates, corre-

sponds to I = 3 and m = 4. Substitution of these values in Eq. (56)
gives

(56)

|him| = TP = s ‘ (57)

The integrated absorption coefficient is then given, by Eq. (46), as

4 = 8rN 4e%a?
3he(1,000) "™ "t
_ 32Ne?a’vim
" 3xhcl,000 (58)

Using Nj = 2,600 A and a = 7.3 A, one gets

A = 14 X 10! sec~! em~! mole! liter
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The observed value is
A = [a(v) dv = 4.3 X 108 sec™! em~! mole! liter

In view of the simplicity of the model, the order of magnitude agreement
is quite satisfactory.

Exercise 4-2. Calculate the frequency and the integrated absorption
coefficient for the lowest r-electron transition of octatetraene, using the
square-well potential model.

4-7. Induced Emission and Induced Absorption

In some experiments it is important to recognize, as was mentioned
in Sec. 4-3, that the term for induced emission is equal to that for induced
absorption. This means that, if there are the same number of molecules
in the state m as in the state I, the effect of subjecting the system to
electromagnetic radiation will be to cause just as many molecules to go
from m to l as from l to m. No net absorption of energy will be observed.
In practice, when one studies absorption spectra, one generally deals
with & system where each state of lower energy has a larger population
than each upper state. A net absorption of energy is then observed.

In addition to induced absorption and emission, there is the possi-
bility of spontaneous emission. The probability of such emission is
usually much less than for the induced process, and it need not be treated
here.

Finally it can be mentioned that the treatment of induced &bsorption
has been based on the interaction of the electromagnetic radiation with
the dipole moment of the atom or molecule. Emission or absorption
can also occur as a result of the quadrupole of the atom or molecule.
The interaction of the quadrupole with the electric field of the radiation
is smaller than the dipole interaction by a factor of about 108, and one
can therefore almost always ignore these quadrupole effects.

4-8. The Integrated Absorption Coefficient for a Vibrational Transition

The treatment of vibrational energies and vibrational spectra given
in Chap. 2 used the selection-rule result that for a vibrational transition
to be induced by electromagnetic radiation Av = +1, where v is the
vibrational quantum number. It can now be recognized that this
implies that only for Av = +1 can |u.| for a vibrational transition be
nonzero. This result can be readily obtained by those familiar with the
general properties of Hermite polynomials. The application to a vibra-
tional problem of the important relations of Eqgs. (46) and (47) will, how-
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ever, be demonstrated. An important result will be obtained by a
derivation of the relation between molecular properties and the amount of
absorption caused by the fundamental » = 0 to » = 1 vibrational
transition.

In Sec. 4-4 the result was obtained that the integrated absorption
coefficient .

A= /a(v) v’

= _1_ _I_° —1 —1 —1 13
=T / In 7 dv sec—! em—! mole™! liter

is related to the transition moment according to the relation

- 87I'3N 2 —1 —1 —1 1§

A = he(1,000) Vim| thim| sec—! cm~! mole~! liter
In the experimental study of vibrational transitions one usually deals
with frequencies 7, with units of em~!, instead of », with units of sec™'.
In terms of 7, the integrated absorption coefficient Ais

=  8mN  _ 2 2 i '

A= 3he(1,000) Vim| ttim| em~2 mole—! liter (59)
For the fundamental transition for which the values of the vibrational
quantum number » are [ = 0,and m = 1, the expression for Ais

- 8n3iN ‘7

Ay = ——c 7 2

01 3hC(1,000) 1’011[-’401' (60)

The dipole moment, necessary for the evaluation of |un|, of a
heteronuclear diatomic molecule must be expected to be some not easily
determined, or even expressed, function of the internuclear distance.
It is possible, however, if it is required that’the dipole moment must be
expressed only for small displacements of the molecule from its equi-
librium configuration, to represent the dipole moment by the series
expansion

= d“ — » . .
M= Myer, + (%)r—n (7' Te) + : (61)

where .., is, essentially, the quantity usually referred to as the perma-
nent dipole moment.

In terms of the displacement coordinate

g=7r—"7. (62)
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the dipole-moment expression is

dp .
B = pgmo + (E@)M q+ (63)

The wave functions for the » = 0 and the v = 1 states that are
involved in the fundamental transition are shown in Sec. 2-4 to be
expressed in terms of the displacement coordinate as

H
a

={= —agt/2
Yo ( ) €

and

Y = (g)* V20 ge—eei2
where

a=2x W _ 4«2p};,d,ﬁc

and g, is written to distinguish the reduced mass from the dipole
moment u.

With these expressions for u, Yo, and ¢;, the transition moment
can be set up, if only the first two terms of Eq. (63) are retained, as

+
|pod] = /_” Yo [uq-o + (Z—Z)Fo q] Y1 dg . (64)

The orthogonality of ¥o and ¢, leads to a zero contribution from the
constant term p,.o and shows that a constant dipole moment is not
sufficient to lead to a vibrational transition being induced by electro-
magnetic radiation. A nonzero value of |uon| can, however, result from
the second term of Eq. (64). This leads to the result

(2 te
[or| = (@)q_o /_ . Yogd1 dg

= (% \/93(%); [_ﬂ gl dg (65)

dq /=0

The necessary integration can be performed with the tabulated integral

© 1 ix
2p—az? = — z
-/; e dx Y \/; (66)

One obtains

o] = ﬁ (j—‘q‘)q_ ©7)
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and with this value for the transition moment the integrated absorption
coefficient A is found to be related to molecular properties according to

s _ N d_;ﬁ 2 '
4 = 3(T,000) 5w (dq)q=o (68)

( ) \/3c2<1 000) 100 A (69)
Aq ] e=o =

Equation (68) is the important result that shows how the absorption
intensity of a fundamental vibrational transition is related to the proper-
ti€8 frea. and (du/dg) =0 of the molecule under study. The transposition
given in Eq. (69) is that which is used when it is desired to obtain the
dipole-moment derivative from the measured absorption intensity.

The measured value of A for the fundamental transition of BrCl
at 439 em~, for example, has been reported by W. V. F. Brooks and
B. Crawford [J. Chem. Phys., 23: 363 (1955)] to be

or

A =105 + 14 em~2 mole! liter (70)
From this value and the reduced mass of 4.1 X 10—2? g, one calculates
(%) = 40.76 X 10~ esu (71)
q /=0 .

Although distortion of a chemical bond from its equilibrium distance
is undoubtedly generally accompanied by a complicated redistribution
of the electrons of the bonded atoms, the order of magnitude that is to
be expected for values of (du/dq),=0 can be obtained by assuming a
constant charge of -é&¢ on one atom of the bond and —de on the other
atom. With this model the bond dipole moment is

u = (o) )

and, since ¢ = r — 7,,

(%L = (jTZ)q-o = e (73)

This result suggests that values of (du/dg).—c should be of the order of
magnitude of the electron charge, 4.8 X 10~ esu. The result obtained
for BrCl is consistent with this expectation.

It is, in fact, rather unsatisfactory to attempt to express the dipole
moment of a bond, or a diatomic molecule, by means of Eq. (72). One
can, however, recognize that at r = 0 the dipole moment g is necessarily
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zero and that at » = «, since in inert solvents or gaseous media essen-
tially all bonds are expected to break to give neutral particles, u is also
zero. The value of n at the equilibrium distance can be determined, but
even this determination does not lead directly to a determination of the
sign of this equilibrium dipole moment. The information available,
including a deduced value of % (du/dg),~o from the measured value of 4,
can be illustrated by the curves for possible dipole-moment versus bond-
distance dependence shown in Fig 4-3. It is at present a difficult matter
to decide whether the curve with a positive value of (du/dg)e—0 or a
negative value is correct for a given molecule. Nevertheless, the meas-
urement of values of A and the deduction of values for + (du/dg)g—o,
according to Eq. (71), lead to the accumulation of data that are of con-
siderable potential value in consideration of the electronic structure of
molecules.

4-9. The Intensities of Absorption Bands Due to Electronic Transitions

Detailed discussion of the changes in the electronic structure of
molecules that lead to the absorption of radiation, usually in the visible
or ultraviolet regions, will not be given until Chaps. 10 and 11. It is,
however, convenient to obtain here an often-used guide to the intensities
of absorption bands that result from electronic transitions. The calcu-
lation is based on a simple model for the behavior of an electron in o
molecule or ion.

One assumes that the electron that is responsible for the absorption
of the radiation is attracted to the center of the molecule, here assumed
to be spherical, with a Hooke’s law type of force. With this model, the

FIG. 4-3 Types of u versus r curves that can be drawn from measured values of u and
du/dq.
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behavior of the electron is given by the harmonic oscillator wave func-
tions used in the previous section.

Each cartesian coordinate contributes a dipole-moment integral like
that of Eq. (67). Now, however, since u, = ex, p, = ey, and p, = ez,
one can replace (du/dr).—0 by ¢, and so forth. Likewise, since the mass
of the electron is much less than that of the remainder of the molecule,
one replaces u.q. by m, the mass of the electron. With these variations
the transition moments for this simple model of a bound electron are,
according to Eq. (67) and the expression for a,

~ h o\
[o1z] = |moty] = |wore| = e(m) ’ (74)
Addition of the equal cartesian components then gives
3eh
2 = 900
[on] 8rmic (75)

Substitution of this expression in Eq. (46) gives, for the integrated
absorption coefficient predicted by this model, the result

- Ne? - -
A= 1.0000m sec™! cm~! mole™? liter
or (76)
r _ Ne? s -
A = m cm :mole liter

Insertion of numerical values gives the prediction as
A = [a(?) d5 = 2.31 X 10% em~—2 mole~! liter @7

This result is often used as a reference value against which the
actual intensities of electronic absorption bands are compared. To do
this one introduces the term oscillator strength. This is denoted by f
and is defined as the ratio of the observed integrated absorption coefficient
to the value predicted by Eq. (76). Thus one has

f= [Ja(?) dPlows
[Ne?/1,000¢2m]
= 4.33 X 10~*fa(5) d7 (78)

One finds, in fact, that many electronic absorption bands have f
values near unity. One also finds electronic absorption bands with
very much smaller values of f, and in these cases one expects to assign
the absorption band to some ‘‘forbidden transition.” These ideas will
be enlarged upon in Chap. 11.
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ROTATIONAL SPECTRA

Some of the principal features of the energy levels of the allowed rota-
tional states of diatomic molecules and of the transitions between these
states have been discussed in Chap. 3. The rotational energies and
rotational spectra of general polyatomic molecules are conveniently
treated under headings that specify the relative value of the three
principal moments of inertia of the molecule. On this basis, the chapter
is divided into the three principal topics: linear, symmetric-top, and
asymmetric-top molecules. A number of aspects of the rotational spectra
of linear molecules have already been dealt with in Chap. 3. Now the
heading will be used principally to introduce a number of finer features
of rotational spectra that were not mentioned in the earlier introductory
chapter.

LINEAR MOLECULES

The selection rules for transitions-between rotational energy levels
and the multiplicity of these levels have been stated in Chap. 3. Before
proceeding to molecules of general geometry, it is perhaps advisable to
look in somewhat more detail at these two features for the relatively
simple. situation of linear molecules. These molecules also provide a
convenient basis for mention of the fine structure that is observed in
rotational spectra when nuclear spin, if present, interacts with the
molecular rotation and for commenting on the effect that any nuclear
spin has, as a result of the statistics that are followed, on the rotational

states that exist.
83
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5-1. Rotational Selection Rules for Linear Molecules

The requirement that a molecule must have a permanent dipole
moment and that the rotational quantum number can change only
by one unit for a rotational transition to be induced by electromagnetic
radiation must first be investigated. As was shown in Chap. 4, to do
this it is only necessary to investigate the value of the transition moment
for the transition under consideration.

The three-dimensional nature of the problem suggests the use of the
polar coordinate system of Fig. 3-2 to describe the wave functions and
the dipole moment that appear in the transition-moment integral.

The rotational wave functions can be obtained by solution of the
Schradinger equation expressed in polar coordinates for a molecule freely
rotating in three-dimensional space. Solution of this problem will not
be given here since it is somewhat intricate and can be found in any of
the standard texts on quantum mechanics. The problem is, as was
mentioned in Chap. 3, generally solved when the hydrogen atom is
studied. It turns out that the Schrédinger equation for the hydrogen
atom can be separated into two parts. One part involves only the
angular coordinates § and ¢ of the electron considered to move about a
fixed nucleus; the other involves only the distance between the electron
and the nucleus. The former part is identical to the equation that
would be set up for a freely rotating rigid molecule which, of course, would
involve only the angles describing the orientation of the molecule as
variables. The correspondence of these equations means that the rota-
tional wave functions that are of importance here are identical to the
familiar angular part of the hydrogen-atom wave functions. These are
illustrated in Fig. 5-1, where both the J quantum-number notation
appropriate to molecular rotation problems and the s, p,d, . . . notation
appropriate to atomic problems are given.

Those familiar with the hydrogen-atom wave functions will recall
that the angular part of these solutions is related to functions known as
associated Legendre functions. Each solution is characterized by
two quantum numbers which are here denoted by J and M and which
can be assigned integral values, with the provision that M is less than,
or equal to, J. The wave functions corresponding to some of the lowest
energy states are given in Table 5-1.

The Schrédinger equation solution to the rotating linear molecule
problem leads to allowed energies that are identical to those given in
Sec. 3-2. The solution functions illustrated in Fig. 5-1 and Table 5-1
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satisfy the Schriodinger equation only if € in that equation has the values
e_’g,r_zIJ(J+1) J=012 ... ¢))

This result is the same as that obtained previously from the quantized
angular momentum restriction. Furthermore, if quantum-mechanical
operators for angular momentum given in Table 1-1 are used to compute
average angular momenta from the wave functions given in Table 5-1,
it is found that

Total angular momentum = \/J(J + 1) 5— 2

Component of angular momentum along an axis = M %‘ (2)

TABLE 5-1 Some of the Wave Functions for a Rigid Rotating Linear.

Molecule
J=0 | M=0 g =
2r
1
J =1 M=0 ¢=—\/§ cos
2 \~n
M= +1 v =%1,2—3ﬂ_ sin fe*i® or
i
- sin 6 cos ¢
v = 2
—1—\/§sm05m
2 ¢
1
J=2 =0 ¢=—\/:(3cos20—1)
4 \«w
11
= +1 Y= 3 ism 8 cos feri¢ or
1\/ﬁ
= sin 8 cos 8.cos ¢
2 T
=1 i
—\/— sin 0 cos 6 sin ¢
2 g
M= +2 }\/:sm’ fet2ié or
4 V2«
1
1 —51n’0cos2¢
v = 4 T
1 J15
- sm*osm2¢
4 LS
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where
M=0 %1, +2 ..., +J

The first of these is the now familiar total angular momentum stipulation,
while the second corresponds to the stipulation that the angular momen-
tum component in a direction in space be quantized.

It is sometimes convenient to illustrate the angular momentum
components implied by the rotational wave functions by means of
a vector diagram. The diagrams that result for quantization in terms
of /J(J + 1) and M are illustrated in Fig. 5-2. The number of angu-
lar momentum components along an axis that can be obtained from a
given value of J can be seen from such a diagram to be 2J + 1.

Exercise 5-1. Apply the operator for total angular momentum to the
J =0 and +1 wave functions, and confirm that the average angular
momentum is \/J(J + 1)(h/2x) in these cases.

After the wave functions of the states involved are specified, the
remaining term that is necessary for the evaluation of the transition-
moment integral is the dipole moment. If the permanent dipole moment
of the molecule is represented by o, the components along the three axes

FIG. 5-2 The total and component angular momentum vectors for J = 2. For J = 2
an applied field reveals five components. More generally for the Jth rotational level
2] 4 1 states would be revealed.

Angular momentum
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of Fig. 3-2 are given, for any orientation of the molecule, by
He = po sin @ cos ¢

uy = uo sin 8 sin ¢ (3)
M: = po cOS 0

]

With the rotational wave functions of Table 5-1 and the dipole-
moment expressions of Eq. (3), one can investigate the contributions
of the transition-moment components to the total transition moment.
In this way, if a transition between a state characterized by J’ and M’
and one characterized by J” and M"' is investigated, one obtains the
integrals

2 . YT

| M| = g /0 " fo' 7'M’ sin 6 cos ¢y’ "M gin 8 dB d¢
2 YT . PIMI oY

|ug M| = fo - fo' 7'M gin 6 sin ¢y’ ' M sin 6 d6 d¢ 4)
2; A Lt

g7 = o [ [T 97 cos oy sin 0 do do

(It will be recalled that the element of solid angle is sin 8 df d¢ in polar
coordinates.) These components allow the calculation of the total
transition moment as

[/ MM = |y MM 2 | MM | MM 2 5)

It is immediately clear from Eq. (4) that the transition moment for
rotational transitions will be zero unless uo has a nonzero value. It
requires a more detailed investigation of the integrals to see that they
also vanish unless

J=J"x1
that is,
AJ = +1 (6)

The deduction of this result is outlined in ‘“Spectra of Diatomie
Molecules,” by G. Herzberg, and will not be given here. The verification
of this selection rule for particular values of J/, M’ and J”'; M"’ can, how-
ever, be carried out in a straightforward manner; such verifications are
suggested as exercises.

Exercise 5-2. Deduce from the symmetry of the wave functions of Fig.
5-1 and the antisymmetric nature of the dipole moment, as can be verified
from Eq. (3), that the transition moment for J = 0 to J = 1 will be
nonzero while that for the J = 0 to J = 2 will be necessarilyAzero.
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Since the energy of a freely rotating molecule is, according to Eq.
(1), dependent only on J, the selection rule for J is of prime importance
in rotational spectroscopy. When, however, as will be discussed in the
next section, an externsl electric field imposes a direction on the rotating
molecule, the states with different values of M have different energies
and the selection rule for M becomes significant. It is found that the
integrals of Eq. (4) vanish unless

AM =0 )]

Again, since the general proof of this requires a knowledge of the behavior
of spherical harmonics, it will not be given. One can, however, verify
that this selection rule operates for transitions between states described
by the wave functions of Table 5-1.

Exercise 5-3. Verify the AJ = +1 and the AM = 0 selection rules for
the J = 0 to J = 1 transition. :

The treatments of the rotational spectra of generally shaped mole-
cules that will be presented in the remainder of the chapter will introduce
other selection rules. These will be stated, without derivation, and it is
understood that they are based on the same considerations as those
indicated here for linear molecules. Derivations, or reference to deriva-
tions, of these selection rules can be found in ref. 3.

5-2. The Stark Effect in Molecular Rotation Spectra

Although the rotational states of linear molecules are characterized
by two quantum numbers, the energies of these states depend only
on the total angular momentum quantum number J. The 2J +1
degeneracy of these rotational levels, due to the various values of M
- for a given value of J, can be made apparent if an external field is applied
to the molecules while their rotational spectrum is observed. An electric
field is used, and the shifting and splitting of rotational spectral lines that
results is known as a Stark effect.

The quantum number M gives the component of the angular
momentum in an applied direction, and in a Stark effect experiment
this direction is that of the applied electric field. The states with
different values of M correspond, therefore, in a classical picture, to
different orientations of the rotating molecule relative to the applied
field. Since the molecule has a dipole moment, it can be expected that
these different orientations relative to the applied electric field will cor-
respond to the different energies. The calculation of these energy
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shifts that the states with given J and various values of M experience is,
however, not simply done. The effect of the applied field is, as will be
seen, very small, and the calculation of the energy requires a second-order
perturbation calculation to be made. The derivation of the expression
for the energy shifts is beyond the scope of this treatment and is outlined,
with references, in ref. 2. ‘

The result of the calculation is that the energy of a state character-
ized by values of J and M is shifted in an electric field of & volts/cm by
d¢, where

forJ # 0
_ 4w ]uie? JWJ +1) — 3M2

b = 3@E00 T + DT = DI +3) O
while for J = 0 ®)
b _ Arlu?

~ 3hE300):  °TES

These energy shifts in ergs can be converted to frequency shifts of
cm~! or megacycles per second, the unit usually used in microwave
spectroscopy.

The effect on the energy levels given by these equations is shown
for a particular case in Fig. 5-3.

These energy-level shifts show up when spectral transitions are
obtained for molecules subject to an electric field. Now, both selection
rules

A = %1 AM =0 9)
or, for absorption experiments, 7
Al =+4+1 AM =0 10)

as mentioned in the previous section, are important. With these rules
the allowed transitions can be added to the energy-level diagram, and
this is done in Fig. 5-3. Observation of the number of components that
rotational line splits into when an electric field is applied is often a great
help in deciding which J levels of the molecule are responsible for the
transition. In Chap. 3 it was assumed that a simple series of equally
spaced lines could be expected if a rotational spectrum of a linear molecule
is obtained. While this is true for linear molecules, sufficient complexi-
ties are introduced into the rotational spectrum of generally shaped
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molecules that a simple matching of the spectral lines with the expected
pattern is seldom possible.

In addition to illustrating the space quantization effect, measurement
of Stark effect splittings allow, with the aid of Eq. (8), the determination
of often rather precise values of the molecular dipole moment x;. The
first such determination was made by T. W. Dakin, W. E. Good, and

A
FIG. 5-3 The effect of a Stark field of 1,00Q volts/cm on the rotational energy levels
of HCI.
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D. K. Coles [Phys. Rev., 70: 560 (1946)] for the molecule OCS. The
oscilloscope pattern of the J = 1 to J = 2 line is shown for different
electric field strengths in Fig. 5-4.

Some dipole-moment determinations that have been made using
the Stark effect in rotational spectra are given in Table 5-2.

Exercise 5-4. (a) Calculate the shift in the J = 1, M = 1 energy level
of N,O as a result of an applied electric field of 5,000 volts/cm.
(b) Estimate from Fig. 5-4 the dipole moment of the OCS molecule.

5-3. Molecular Rotation—Nuclear-spin Coupling

It has been recognized that the allowed rotational states of a mole-
cule are those for which the angular momentum is a \/J(J + 1) type
multiple, of h/2r. In addition to this molecular rotation angular momen-
tum, some molecules have angular momentum because of the nuclear
spin of one or more of their nuclei. A complete characterization of the
rotational states of such molecules, as we will see, must take into account
both the molecular and nuclear-spin angular momentum contributions
to the total angular momentum. One finds, in fact, experimental evi-
dence in the hyperfine structure of rotational transitions of some mole-
cules for the effect of nuclear spin. The basis and nature of this fine
detail of rotational spectra will be only briefly outlined. Its introduction
here is intended to allow the student to appreciate the many rotational
spectra studies reported in the literature where this effect occurs.

The angular momentum of a nucleus results from the spinning of the
nucleus and is a characteristic of the nucleus. It is quantized in units of

TABLE 5-2 Some Moleculor Dipole Moments from Stark Splittings
of Rotational Transitions™®

Dipole moment Dipole moment
Molecule (Debye) Molecule (Debye)
FCl 0.88 NF, 0.23
¥Br 1.29 CHF, 1.64
BrCl 0:57 CH,F 1.79
0CS8 0.710 CH,Cl 1.87
HCN 3.00 CH;Br 1.80
N0 0.166 CH,l 1.65
NH, 1.47 CH,CCH 0.75
PH, 0.55 B:H, 2.13

* From W. Gordy, W. V. Smith, and R. F. Trambarulo, “Micro-
wave Spectroscopy,”’ John. Wiley & Sons, Inc., 1953.
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h/2r, and, if the nuclear-spin quantum number is designated by I, the
spin angular momentum of a particular nucleus has one of the values

\/m+1)2i1r where I = 0,3, 1,4, . . .

If there is no coupling, i.e., interaction between the orientation of
the nucleus and that of the molecule, the molecule will rotate and leave
the spinning nuclei unchanged in orientation. In such a case the energy
of a given molecular rotation state, designated by J, would be unaffected
by the nuclear spin I. If, on the other hand, there is an energy of inter-
action the energy of the system will depend on the orientation of the
nuclear spin relative to that of the molecular rotation. This dependence
can be expressed by introducing a quantum number for the total angular
momentum of the system. This is usually denoted by F, and the total
angular momentum of the system is then \/F(F + 1) (h/27). A molecu-

FIG. 5-4 The Stark splitting of the J = 1 — 2 absorption line of OCS. [From T. W.
Dakin, W. E. Good, and D. K. Coles, Phys. Rev., 70: 560 (1946).] The line for no field
is centered at about 24,320 megacycles/sec, and the two markers on each curve are
spaced 6 megacycles/sec apart.
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lar rotation state with a given value of J can then lead to states with
various values of F according to

F=J+IJ+I-1,...,J—-1 (11)

with the provision that the total angular momentum cannot be negative
and, therefore, that the J — I type terms are not always realized for
states with low J numbers. The splittings of the J levels that result
from a nuclear spin of £ are illustrated schematically in Fig. 5-5.
Something must be said about the source of the interaction between
the orientation of the molecule and that of the nuclear spin. For
almost all molecules, the exceptions being odd molecules such as NO, this
interaction occurs between the electric field that the molecule exerts
at the spinning nucleus and the quadrupole moment of the nucleus.
(All nuclei lack dipole moments. Those with I greater than §, however,
have a charge asymmetry that gives them quadrupole moments.) It is,
of course, the directional asymmetry of the electric field of the molecule
acting on the nucleus that is now important.” Although s orbits. bring
their electrons close to the nucleus, they are ineffective in orienting the
nucleus because of their spherical symmetry. The next most effective
electron orbits in producing an electric field at the nucleus are the
p orbits. Again, however, a completed p shell has spherical symmetry,
and no directional effect would be imposed on the nucleus. Some inter-
esting results have been obtained by attributing the extent of coupling,

FIG. 5-5 The hyperfine splittings (schematic} of rotational levels resuiting from coupling
with a nuclear spin | = -§.
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for a given nucleus with a given quadrupole moment, with the extent to
which the.p subshell of the atom is more or less complete in a particular
molecule [2].

The spectral effect produced by the coupling of J and I to produce
a resultant F can be understood with an energy-level diagram like that
of Fig. 5-5 and the selection rules

A =41  AF =0, +1 (12)

A simple illustration is provided by the molecule DCN, in which
N4 has a spin of unity. The energy levels and J = 0 — 1 transition,
observed by Simmons; Anderson, and Gordy [Phys. Rev., 77: 77 (1950)
are shown in Fig. 5-6. . )

In summary: any molecule containing a nucleus with a spin greater
than § will) if the nucleus is embedded in an asymmetric electric field
of the molegule, show such hyperfine structure due to nuclear-spin
interaction. Considerable complexity can be introduced into rotational
spectra by thiseffect. No detailed treatment of this quadrupole coupling
fine structure will, therefore, be attempted in the following treatments of
symmetric- and asymmetric-top molecules.

Absorption —

Frequency ———

FIG. 56 The J=0-—>1 ab-
sorption and transitions for DCN
showing the effect of the nuclear
spin| = 1 of the nitrogen nucleus.
[The absorption spectrum is from b e el
J. W. Simmons, W. E. Anderson, T

and W. Gordy, Phys. Rev., 77:77
{1950).]
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*5-4, The Positive and Negative Character of the Wave Functions of
Linear Molecules

It has been shown, in Sec. 1-8, that the wave functions for the very
simple system of a particle in a box were either unchanged or changed in
sign when the wave function was subjécted to an inversion through
the origin, i.e., when y was replaced by —y. On the basis of this behav-
ior, the allowed states were labeled with a plus or a minus, depending on
their behavior with regard to this symmetry operation. It was found,
furthermore, that the selection rules (4 «— —, 4+ «—» +, — > —)
for the transitions induced by electromagnetic radiation could be deduced
on the basis of the plus or minus character of the states involved in the
transition. We will now see that plus and minus signs can, in an entirely
analogous manner, be assigned to the wave functions that describe
diatomic molecules. This positive and negative character is important
in connection with selection rules and with the statistical weights of
rotational levels, considered in the following section.

We now consider the effect on the total wave function V.. of a
diatomic molecule when this function is inverted through the origin, i.e.,
when all the coordinates involved in Y. are reversed, as by the substitu-
tion z, y, z— —z, —y, —z. The effect of this on Y. is best deduced
by writing the approximate, but adequate for the present argument,
separated function

Viota = Velo¥r (13)

" where the subscripts ¢, v, and r stand for electronic, vibrational, and
rotational. We can now investigate the effect of inversion on each
factor and then combine these results to see the effect on Yista.

Inversion of the electronic part of the wave function can be accom-
plished by rotating the entire molecule by 180 deg about an axis perpen-
dicular to the internuclear axis and then performing a reflection through
a plane perpendicular to this rotation axis and passing through the inter-
nuclear axis (see Fig. 5-7). Since the first step in this process leaves the
coordinates of the electrons unchanged with respect to the nuclei, it
does not alter ¢.. The second step reflects the electronic wave function
through the designated plane, and the result of this reflection depends
on the particular wave function that describes the electronic state of the
molecule. The nature of the many different electronic waye functions
that occur in the ground and excited states of diatomic molecules will be
considered in some detail in Chap. 10. For the present it is enough to
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concern ourselves with the electronic wave functions that occur in the
ground state of almost all diatomic and linear molecules that have even
numbers of electrons. This common ground-state function is positive
both above and below any plane passing through the internuclear axis.
Electronic functions that are symmetric with respect to such planes are
labeled with a plus sign, and one finds that most ground-state electronic
wave functions are of this type. Most ground-state wave functions, in
fact, are designed as =+ states. The basis for the use of the letter =
will be discussed in Chap. 10. For these often encountered I+ states,
therefore, we conclude that an inversion of ¥, through the origin leaves
¥. unchanged.

The vibrational component ¢, of the total wave function. depends,
as shown in Sec. 2-4, on the magnitude of the internuclear distance. It
follows that ¢, will also be unaffected by an inversion through the origin
since this operation leaves the magnitude of the internuclear distance
unchanged.

The remaining factor ¢,, discussed in Sec. 5-1, must now be con- -
sidered. The polar coordinate equivalent to the inversion implied by
z, ¥y, z— —x, —y, —=z is obtained by replacing r, 6, and ¢ by r, » — 6,
and  + ¢. The effect of this inversion on ¢, can be seen either analyt-
ically by this replacement in the expressions for ¢, given in Table 5-1
or diagrammatically from the wave functions depicted in Fig. 5-1. On
either basis, one sees that for even values of J the function ¥, remains
unchanged by inversion, while for odd values of J the function y, changes
sign.

With the recognition that ¥, and ¢, are unchanged by inversion,

FIG. 5-7 lllustration that rotation by 180 deg around an axis and reflection through a
plane perpendicular to the axis correspond to inversion through the origin.

T =~~gnitial position
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for the molecules considered here, one deduces that .. behaves in a
manner dictated by ¢,, as shown in Fig. 5-8.

An immediate result of this assignment is the selection-rule result
(+ &> —, + > +, — <} —) that can be deduced for interaction
with electromagnetic radiation in the same way as illustrated for the
one-dimensional example in Sec. 4-5. This result can be recognized to be
consistent with that of AJ = +1 obtained from a more detailed analysis
of the rotational wave functions.

We now will proceed to another important type of symmetry
consideration and will make use of the plus and minus assighments
obtained above.

*Exercise 5-5. Deduce that the interaction of a molecular dipole
with electromagnetic radiation can lead only to transitions of the type
+ — —.

*5.5. Symmetric-Antisymmetric Character and Statistical Weight of
Homonuclear Linear Molecules

Another rather different type of symmetry behavior must be recog-
nized when the molecule under consideration is a homonuclear diatomic
molecule with identical nuclei, or a linear molecule with identical nuclei,
guch as CO; or HC=CH. We are concerned now with the effect of an
interchange of identical nuclei on the wave function of the molecule.
This feature, which must be considered whenever a system contains like
particles, is perhaps best known to a chemist in terms of an interchange
of electrons. Mention of this operation for the two electrons of the

Behavior of ¥, .,

J on inversion
5 _
4 +

FIG. 5-8 The positive-negative character, show-
ing the behavior of Y on inversion, of the

3 - rotational levels for those molecules with a Z+
ground electronic state.

O
+
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helium atom may clarify the parallel treatment that will be given for like
nuclei of molecules.

For the helium atom, or any atom, the total wave function contains
no vibrational and rotational factors and migh't be written as

‘Ptotnl = Wc - (14)

Furthermore, one can write a suitable approximate expression for .
for the helium atom by regarding each electron as behaving according
to 1s hydrogenlike wave functions, properly adjusted for the increased
‘nuclear change. Thus one would write -

Yot = Yo = 18(1)1s(2) (15)

This function is clearly unchanged by the interchange of the two elec-
trons; i.e., 1s(1)1s(2) = 1s(2)1s(1).

Thus far our discussion of the helium atom has lacked the important
factor of the spin of the electrons. The electronic wave function given
above describes only the orbital behavior of the eleetrons, and one should
write the more complete expression

Vitar = Velapin (16)

Each electron has a spin quantum number }, and since the angular
momentum associated with this spin can be directed one way, designated
say by the symbol a, or the other way, designated by the symbol 8, one
can write various possible spin functions for Y. as

a(1)a(2)
8(1)8(2)
a(1)8(2) + «(2)8(1)
a(1)8(2) — «(2)8(1)

These have all been written so that ¥, will go to +v,,.. when the
electrons are interchanged.

To attach correct spin functions, from these four possibilities, to the
orbital functions, one must make use of the fact that the behavior of
electrons in nature can be accounted for only if wave functions that are
antisymmetric with respect to the exchange of any pair of electrons are
used. It follows that a suitable antisymmetric . can be written by
combining the orbital and spin factors to give

Ve = 18(1)15(2)[a(1)B(2) — a(2)8(1)] amn

One deduces by this means the familiar result, given immediately by the
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usual form of the Pauli exclusion principle, that the electrons of the
helium atom, in its ground state, must have opposite spins. :

In a similar way the total wave function for a molecule must behave,
for the interchange of like nuclei, in a manner dictated by the nature
of the spin of the nucleus. It turns out that the spin of the nucleus, or
any particle, is the index which determines whether the wave function
must be unchanged, i.e., symmetric, or must be changed in sign, i.e.,
antisymmetric, with respect to an exchange of identical particles. If
the spin quantum number of the particle is half integral, as is that
of the electron, the wave function must change sign; whereas if the spin
quantum number is zero or integral, the wave function must remain
unchanged. Particles of the first type, electrons and protons are the
most often encountered examples, are said to follow Fermi-Dirac statis-
tics; those of the second type, such as Q!¢ (with zero spin) and H? (with
unit spin), are said to follow Bose-Einstein statistics. )

The effect of an interchange of likeé nuclei on ¥, will now be ana-
lyzed. Then the nuclear spin, dealt with in another connection in Sec.
5-3, will be introduced in a way so that the complete wave function
behaves in a manner suitable to the statistics followed by the nuclei.

It is informative to analyze the effect of an interchange of identical
nuclei of a diatomic, or linear, molecule by imagining this exchange to
occur as & result (1) of an inversion of all the particles, electrons and
nuclei, through the origin, and then (2) of the inversion of the electrons
back through the origin. = The first step of this process is nothing more than
the symmetry operation treated in the previous section. We therefore
already know that its effect on the total wave function, for =+ states, is
plus or minus depending on whether J is even or odd. The second step
of the process has an effect that depends only ‘on the electronic wave
function. Some electronic wave functions, such as the lowest particle-
in-a-box state, are symmetric with respect to this inversion through
the center of symmetry of the molecule. These symmetric electronic
states, which constitute the most often encountered ground states, are
labeled.with a g (for the German gerade). Those electronic states which
are antisymmetric with respect to inversion through the center of sym-
metry are labeled with a.u (for ungerade). (Note that electronic func-
tions only have g or » properties when there is a center of symmetry
as there is in H, CO,, and so forth. The property plus and minus
assigned to electronic wave functions in the previous section depends on
reflection through a plane containing the molecular axis. Such behavior
can be considered even for molecules like HC], NaCl, and so forth.) . -

The net effect of the two-step process is, if the electronic state is -
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of the g type, to leave the total wave function unchanged for even values
of J and to change its sign for odd values of J. For u states this con-
clusion is reversed. Thus, since the two-step process is equivalent to the
exchange of the identical nuclei, we have found the behavior of the
total wave function, exclusive of the effect of nuclear spin, as a result of
this exchange. Symmetric or antisymmetric behavior with regard to
this exchange is indicated by an s or an a.

For molecules, such as O*CO, that have identical nuclei with
zero spin, the above treatment is complete; i.e., no spin function is
involved in the total wave function. It follows, since nuclei with zero
spin behave according to Bose-Einstein statistics which require sym-
metric behavior as a result of nuclear interchange, that only the states
with even values of J can exist. The rotational energy-level diagram
should show, as illustrated in Fig. 5-9, only the states with even values of
J. The absence of the odd levels cannot, of course, be observed in
rotational spectra because such symmetric molecules with identical nuclei
have zero dipole moments and do not give rise to rotational absorption

FIG. 5-9 The rotational energy-level diagrams for linear molecules with like nuclei.
The statistical weight factor due to the nuclear spin is shown. In {a) the like nuclei have
1 =0, in (b) they have | = 3.
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spectra. It should be mentioned, however, that rotational Raman
spectra, which will not be discussed here, confirm the absence of the
odd J levels for such molecules. Furthermore, the absence of these levels
will be noticed in rotation-vibration spectra that will be studied in Chap. 7.

Let us now consider molecules, such as H, and H—C=C—H,
that have like nuclei with spin quantum number 1. (The C!2 nuclei of
acetylene have zero spin and can here be ignored.) As for the two
electrons of the helium atom, three symmetric spin functions aa, 88, and
af + Be and one antisymmetric function af — Ba can be written. Fur-
thermore, nuclei with a spin quantum number of } follow Fermi-Dirac
statistics that require a total wave function which is antisymmetric with
respect to the interchange of the nuclei. Now states with both even and
odd values of J can be brought to the required antisymmetry by suitably
coupling Yy.m with spin functions. Thus one writes, for g electronic
functions, antisymmetric functions for the s states, which have J even, as

‘pe‘l’v‘/'r(aﬁ - 6“)
and for the a states, which have J odd, as

aa

Yoo 188
af + Ba

Since three spin functions are available to provide the correct symmetry
for the odd J levels whereas only one spin function makes the total wave
function antisymmetric when J is even, the odd J levels have a statistical
weight due to the spin function of 3 while the even J levels have a
weight of 1. Thus, in addition to the 2J 4+ 1 multiplicity that all
levels have, the odd J levels have an additional multiplicity factor of 3
while this factor is only 1 for even J levels. Again this alternation in
multiplicities, which leads to an alternation in populations, illustrated
in Fig. 5-9, cannot be observed in rotational spectra but, for molecules
like HC==CH that will be discussed in Sec. 7-4, an alternation in the
intensities of the rotational components of rotation-vibration absorption
bands is observed.

One should recognize that the analysis given above has led us to
recognize the ortho states of Hy-like molecules, which are those having
parallel [ nuclear spins, and the para states, which have opposed 1| nuclear
spins. A very strong selection rule exists which prohibits, by any
mechanism, transitions between s states and a states. Thus ortho and
para states cannot be interconverted, unless the molecules are dissoci-
ated. One should notice that the selection rule s ——s, a<——a,
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s <} a, which applies to homonuclear molecules, and + «—— —,
+ 4> +, — <= —, which applies to any diatomic molecule, elim-
inates the possibility of pure rotational spectra of diatomic homonuclear
molecules.

A similar treatment can be applied to molecules containing like
nuclei with spins of 1, §, and so forth. Again, one finds that all J levels
can be combined with spin functions to give total wave functions with the
symmetry required by the nuclei. Again, however, the s and a states,
with even and odd J values, have different statistical weights.

SYMMETRIC-TOP MOLECULES

Symmetric-top molecules are defined as those having two equal
principal moments of inertia, the third being different from these two.
The unique moment of inertia is generally represented by I, while the
two equal moments of inertia are Ip = I¢. Most symmetric-top mole-
cules that will be treated belong to this class because of a symmetric
arrangement of some of the like atoms of the molecule. A typical
example is cyclobutane, which has its unique axis perpendicular to the
plane of the carbon atoms, and the two axes with equal moments of inertia
pass through either the carbon atoms at opposite corners of the square
or through the opposite sides of the square. Benzene and the methyl hal-
ides also are symmetric-top molecules. Figure 5-10 shows the principal
axes of these two examples.

The classical treatment of the rotation of such symmetric-top mole-
cules will first be given so that the quantized angular momentum restric-
tion can be applied to give the allowed rotational energy levels. A state-

FIG. 5-10 Examples of symmetric-iop molecules, i.e., those with 14 7 Iz = lo.
I
Iy

(1,< Iy ; prolate symmetric top) (1> Iy ; oblate symmetric top)
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“ment of the selection rules will then allow the spectral transitions to be
drawn in and a comparison with observed spectra to be made.

5-6. The Rotational Energy of Symmetric-top Molecules

As with linear molecules, the allowed rotational energy levels can
be obtained from the classical equations by the appropriate angular
momentum restrictions. The rotation of a system with principal
moments of inertia I, Is, and I is written classically as

€ = IIAwA + EIB‘*’?? + lIcw%

+ Py P

21,4 21g (18)

21¢
where p4, ps, and pe are the angular momenta about the three axes.
For a symmetric-top molecule Ir = I¢, and this general expression
becomes

- Ph P&

2IA taor, T2, (19)

The energy levels of a quantum-mechanical symmetric-top system

can be obtained from Eq. (19). As for linear molecules, it is assumed

that the total angular momentum is quantlzed and, with the quantum
number J, is given by

VITT D4 J=01,2,... (20)

The correct quantum-mechanical solution for symmetric-top molecules
is obtained by further assuming that the component of the angular
momentum about the unique axis is quantized and that this quantization
is

KL k=0 41, 12 L, xd (21)

'é; —Y IL ITsy ..., T

where the plus and minus values correspond to the possibility of clock-
wise and anticlockwise rotation about the unique axis. These quantum
restrictions lead to :

; h\?
pi= K’(g‘n_)

and (22)
. h h 2
ph+at =70 + 0 () - K2 (3)
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These relations convert Eq (19) to the quantum-mechanical result

h2
ex = K 81r2I +JU+ D 8«21 =
JU+D (- )k e
= J( )8121 8L Bl g
and (23)

- h h — h 2 -1

“E T Batels JU+ D+ (81201.4 8«2013) kK o

It is again convenient to introduce rotational constants B and A
defined by

- h - h

- —1 _— —1

B =g I, ™ and A 8ricla em
With this notation, the energies of the allowed states of a rigid rotating
symmetric-top molecule are given by

Gk = BJ(J +1)+ (4 — B)K? 24

withJ =0,1,2, .. .and K =0, +1, £2, . . . , £J

This expression gives the same set of energy levels that would have
been obtained if solutions to the Schrédinger equation for a rotating
symmetric-top molecule had been sought. By the application of the
appropriate quantum mechanical operators, cne would also have found
that the quantum number J determines the total angular momentum of
the system while the number K determines the component of this angular
momentum along the unique axis of the molecule.

It will only be mentioned here that Eq. (24) corresponds to the
assumption of a rigid molecule and that additional terms must be intro-
duced to allow for centrifugal stretching. As for linear molecules

_ treated in Sec. 3-5, the shifting of the energy levels due to this effect
is always very small.

The significance of Eq. (24) is best illustrated by a diagram of the
energies that are predicted for various values of J and K. Two different
situations are recognized. Molecules that have the unique moment of
inertia I4 less than Ip = I¢ are said to be prolate molecules. An exam-
ple is CH;CN. TFor such molecules the coefficient of K2 in Eq. (24)
is positive, and for a given J value the higher the value of K, the higher
the energy. Molecules that have the unique moment of inertia I,

_ greater than Ip = I, are said to be oblate molecules. An example is
benzene. For this class of symmetric tops, thecoefficient of K2 is
negative, and for a given value of J the higher the value of K, the lower .
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the energy. The energy-level diagrams for these two cases are shown
schematically in Fig. 5-11.

It should be pointed out that the occurrence of K in Eq. (24) as a
squared term leads to the same energy for a state with positive or nega-
tive values of K. Thus all levels with K = 0 are doubly degenerate.

Exercise 5-6. Given the geometry of the CH;Cl molecule in Table 5-3,
locate the center of gravity and calculate the three principal moments of
inertia. Also calculate the rotational constants and plot to scale the first
few rotational energy levels.

5-7. Selection Rules and Spectra of Symmetric-top Molecules

Most symmetric-top molecules that have a dipole moment have
this dipole moment in the direction of the figure, or unique, axis of the
molecule. In such cases the selection rules for the absorption or emis-
sion of electromagnetic radiation are

AJ =0, +1 AK =0 for K # 0 :
and (25)
A = +1 AK =0 for K =0
For an absorption experiment, the part of the selection rule that cor-
responds to an increase in the energy of the system and is appropriate is
A =+1 AK =0 ©(26)
The fact that electromagnetic radiation cannot induce a transition
between different K values can be understood from the fact that, for the

molecules considered here, rotation about the figure axis contributes
no rotating dipole moment. This component of the rotation cannot,

TABLE 5-3 Some Molecular Structure Results for Symmetric-top Molecules*

Molecule Bond angle Bond distances

CH;F HCH 110°0’ CH 1.109 CF 1.385

CH,C1 HCH 110°20' CH 1.103 CCl 1.782

CH;Br HCH 110°48' CH 1.101 CBr 1.938

CH,CN HCH 109°8’ CH 1.092 CC 1.460
CN 1.158

CH,C=CH HCH 108°14’ CH (methyl) 1.097 CC 1.460
C=C 1.207 =CH 1.056

CHCIl; CICCl 110°24/ CH 1.073 CCl 1.767

NH, HNH 107° %+ 2° NH 1.016

* From W. Gordy, W. V. 8mith, and F. R. Trambarulo, “Microwave Spectroscopy,”
John Wiley & Sons, Inc., New York, 1953.
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K(AK=0) 0 1 12 123 123
o e
AJ o0—1 1—2 2—3 3—4 4—>5
. L1 1 1 1
Y

FIG. 5-12 The effect of centrifugal distortion on the rotational transition absorptions
of a symmetric-top molecule according to Eq. {28). (From G. Herzberg, ““Infrared and
Raman Spectra,’”” D. Yan Nostrand Company, Inc., Princeton, N.J., 1945.}

therefore, interact with the electromagnetic radiation, and the value of K
does not change.

With the selection rule AJ = 41 and the energy-level expression of
Eq. (24), the absorption spectral frequencies are obtained as

»=2B(J +1) em~1! @27
The same pattern is expected,. therefore, for a symmetric-top molecule
as was found for a linear molecule.

Inclusion of centrifugal stretching effects leads, however, to the
expression

5= 2B(J + 1) — 2DxsK*J + 1) — 4Ds(J + 1)? (28)
for the transition frequencics. If the centrifugal distortion effects are
resolved, the splittings indicated in Fig. 5-12 will provide a distinction -
between linear and symmetric-top spectra. The details of part of the
J = 8 — 9 transition of CF;CCH are shown in Fig. §-13. The alterna-

FIG. 5-13 Part of the J = 8 — 9 transition of CF;CCH showing the effect of centrifugal
distortion. (The diagram is centered at about 51,800 megacycles/sec.) [From W. E.
Anderson, R. F. Trambarulo, J. Sheridan, and W. Gordy, Phys. Rev., 82: 58 (1951).]

Absorption

I 6 megacycles————>|

o
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tion in intensity of the different K components is due to the different )
statistical weights of the levels involved.

5-8. Results from Analyses of Rotation Spectra of
Symmetric-top Molecules

According to Eq. (27), measurement of the frequencies of the rota-
tional transitions of a symmetric-top molecule leads only to information
about the two equal moments of inertia about the axes of the molecule
perpendicular to the figure axis. This one determined quantity is, of
course, insufficient for the determination of the bond lengths and bond
angles of a polyatomic molecule. Again it is possible to make use of
different isotopic species to obtain further moment-of-inertia data. As
we will see, however, such a procedure requires the assumption that bond
lengths and angles are independent of isotopic substitution; while this
would undoubtedly be true to a very good approximation if the atoms
were at their equilibrium positions, it introduces some uncertainty when
data for the v = 0 states are used. Another procedure is to make use of
diffraction data, either x-ray or electron diffraction, to provide data
on the internuclear distances between the heavy atoms and to supplement
these data with the moment-of-inertia result from the rotational spectrum.
In this way one can often deduce additional bond length and angle data
and, for example, fix the positions of the hydrogen atoms of a molecule.

In spite of the inadequacy of the data provided by the rotational spec-
trum of a given molecule, many structures have been determined with con-
siderable accuracy. Some of these structures are listed in Table 5-3.

ASYMMETRIC MOLECULES

A molecule with three different moments of inertia is known as an
asymmetric-top molecule. It will be apparent that the rotational energies
and, therefore, the rotational spectrum of such a molecule are expressed
with much more difficulty than was encountered for linear and symmetric-
top molecules.

5-9. The Energy Levels of an Asymmetric-top Molecule

The rotational energy of an asymmetric system can be expressed
by the general, classical formula

e = 3140} IIBwf, + 3 lcwd

_pA

21, 213 * 37, 210 (29)
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Conversion to a system which obeys quantum mechanics requires the
stipulation that the total angular momentum, ignoring nuclear-spin
angular momentum, is quantized according to the relation

Total angular momentum = /J(J + 1) Qh; (30)

Unlike the symmetric-top case, no component of this total angular
momentum is quantized; therefore, no quantum number other than J
is available to characterize the rotational energy states. As for sym-
metric-top molecules, however, it must be expected that for each value of
J there will be 2J + 1 states. We are brought to this result by the fol-
lowing statement. A small change of the moments of inertia from a sym-
metric-top system, which has, for a given value of J, the 2J + 1 states
characterized by K =0, +1, +2, . . ., +J, can be expected only to
shift the energy levels and would not eliminate any of the allowed states.
This “adiabatic’” argument shows that, even for an asymmetric-top mole-
cule, the 2J + 1 states will still exist for each value of J. A difficulty
in characterizing these states arises in the asymmetric-top case because
there is no quantized component of this total angular momentum; i.e.,
K is not a “good’”’ quantum number for an asymmetric-top molecule.

Solution of the Schrodinger equation for an asymmetric-top molecule
“has been accomplished, although the problem is one of some difficulty,
and for each value of J it is found that there are 2J 4 1 solution fune-
tions, each with its own energy. Since these 2J 4 1 solutions for a given
J are not characterized by quantum numbers, it is customary to keep
track of them by adding a subscript to the J value. This index 7 is
given integers going from —J for the lowest energy of the set to +J for
the highest energy.

No closed general expression is available for any but the lowest
few energy levels of an asymmetric-top molecule. The nature of the
energy pattern can, however, be illustrated by a diagram of the type
shown in Fig. 5-14. The energy-level pattern for an oblate symmetric-
top molecule, for example, with A = B = 3 and C = 1, is drawn at the
left of the diagram, and the corresponding symmetric-top diagram for the
prolate symmetric-top molecule, for example, with A = 3and B = C = 1,
at the right of the diagram. (Notice that this procedure violates the
usual agreement to have the A axis unique.) One can now schemat-
ically ‘connect the energy levels of the symmetric-top patterns to show
what would happen if the moment of inertia along the B axis were grad-
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ually changed so that B varied from the value of 3 to the value of 1.
In this way, the interconnecting lines of Fig. 5-14 are drawn. The J
value of any line remains unchanged, and the index = can be entered as
a subseript to each J value as shown.

The labeling of the asymmetric-top energy levels in Fig. 5-14 sug-
gests an alternative to the use of 7. One can notice from that figure
that the value of 7 is related to the K values of the symmetric-top mole-

FIG. 5-14 A correlation diagram illusirating the energy-level pattern for asymmetric-top
rotors. (From W. Gordy, W. V. Smith, and R. F. Trambarulo, *‘Microwave Spectroscopy,”’
John Wiley & Sons, Inc., New York, 1953.)
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cules according to

T = I{\prohte - Kobhf-e (31)
With this recognition one can identify an energy level with the notation
as J, or with the K notation as Jx K Thus a level 3_; with the

prolate’ “oblate”
r notation is 3;,; with the K notation. Both types of notation may be
encountered.
For quantitative treatments of asymmetric-top molecules, it is
convenient to have an abscissa scale to show the “degree of asymmetry.”
A convenient quantity is the asymmetry parameter x defined as

, = 2B =3 + O]

32
i, (32)
where 4, B, and C are the rotational constants
A=t emt ete ' (33)
8wl , )

One can readily verify that for an oblate symmetric top with
I 4> I B = I ¢

and therefore A < B = €, x = 1; while for a prolate symmetric top with
I, < Ip = I¢, and therefore A > B = C,x = —1. For all asymmetric
tops, « lies between +1 and —1, and for the most asymmetric case, such
as A =3,B=2C=1«=0.

The expressions that have been obtained by B. 8. Ray [Z. Physik,
78: 74 (1932)] and by G. W. King, R. M. Hainer, and P. C. Cross [J.
Chem. Phys., 11: 27 (1943)] for the energy levels of some of the lower
J states of asymmetric molecules are listed in Table 5-4.

For states with higher J values, energies have been tabulated for
molecules of various degrees of asymmetry. See, for example, King,
Hainer, and Cross [J. Chem. Phys., 11: 27 (1943); 17: 826 (1949)].

Exercise 5-7. Using the expressions of Table 5-4, plot to scale the first
several correlation lines of Fig. 5-12.

5-10. Selection Rules, Spectra, and Structure Results for
Asymmetric-top Molecules

The selection rule AJ =0, +1 encountered with symmetric-top
molecules, is applicable also to asymmetric tops. Now, even in absorp-
tion spectroscopy, it is necessary to retain all three possible changes in J
since, as Fig. 5-14 shows, the energy levels are not necessarily ordered
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in the order of J; i.e., an energy level with a higher value of J may occur
at lower energy than that corresponding to a lower value of J.

Selection rules for the r values have also been given. These depend
on the components of the dipole moment of the molecule along the
directions of the principal axes. The selection rules themselves, and
their derivation, are sufficiently elaborate so that it is adequate here
merely to indicate that they are treated in ref. 2.

The complexity of the energy-level diagram of an asymmetric top
leads, with the selection rules for induced transitions, to a corresponding
complexity in the observed rotational spectrum. The assignment of each
of the observed lines to the energy levels involved in the transition is now
a problem of some difficulty. The most helpful aid in this work is the
splitting observed when a Stark field is applied. The splittings of the
lines and the relative intensities of the components are characteristic of
the J and 7 numbers involved in the transition.

‘In spite of the difficulties encountered in analyzing the rotational
" spectra of asymmetric-top molecules, quite a few molecules have been

TABLE 5-4 Some Closed Solutions for the Rotational Energy Levels of Asym-

metric Tops

J Rk e 1) Kk mt1) Energy ecot.
000 0
110 A+ B
1y A+C
1l B+ C
230 24 +2B+2C+2VB -0+ (4 - C)(Ad — B)
221 44 4+ B+ C
2n A+4B + C
212 A+ B +4C
202 24 4+2B+2C-2vV/B -0+ (A - C)(4 - B)
330 54 +5B +2C +2+V4(A4 — B+ (4 — C)(B — )
3a1 54 +2B +5C +2 V4(A — C)* — (A — B)(B — C)
3a 24 +5B+5C +2V4B -C)2*+ (A4 -~ B)(4 - 0)
322 44 + 4B 4 4C
312 6A +5B+2C —2+v4(A -B)*+ (A —O)(B — C)
31 54 +2B +5C —2+/4(A —C)2 — (A — B)(B — )
30 24 +5B +5C —-2V4(B - C)* 4+ (4 — B)Y(4 — O)
40 104 4+ 5B +5C +24/4B — )2 + 9(4 — C)(A — B)
4y 5A +10B +5C +2 V44 — C)* —9(4 — B)(B — O)
430 54 + 5B +10C +24(4 — B)* + 9(4 — C)(B — C)
455 104 + 5B +5C —2+V4(B - C)®* +9(4 — C)(A — B)
4,3 54 +10B +5C —2V4(A - 0)2 — 94 — BY(B — C)

4, 54 +5B +10C —2/4A4 -B)*+ 94 — OB - 0O)
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TABLE 5-5 Some Molecular Structure Results for Asym-
metric-top Molecules™

Molecule Bond angle Bond distance
80, 0S80 119°20’ SO 1.433
(o8 00’0 116°49’ 00’ 1.278
CH;Cl, HCH 112°0’ CH 1.068

CICH 111°47' | CCl 1.772
CH,—CH,| HCH 116°41’ CH 1.082
N

COC 61°24’ CC 1.472

Y CO 1.436
SO,F, 0S80 129°38’ SO 1.370
FSF  92°47' SF 1.570

* From W. Gordy, W. V. Smith, and R. F. Tram-
barulo, ‘“Microwave Spectroscopy,” John Wiley &
Sons, Inc., New York, 1953.

studied and the observed transitions identified with the participating
energy levels. When this is done, one ean use the equations of Table 5-4
or the tables of King, Hainer, and Cross to deduce the three rotational
constants and thus the three moments of inertia of the molecule. These
three data, especially when supplemented by isotopic studies, provide
a good basis for the deduction of the structure of the molecule. Some
of the results that have been obtained from such studies are shown in

Table 5-5.
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THE VIBRATIONS OF
POLYATOMIC MOLECULES

An introduction to the classical and quantum-mechanical nature of the
vibrations of polyatomic molecules will now be presented. This theo-
retical development provides the background for an understanding of the
absorption spectrum in the infrared region, like that of Fig. 2-1, of solu-
tions and pure liquids containing polyatomic molecules. In the follow-
ing chapter, simultaneous vibration and rotation of molecules will be
dealt with, and the absorption spectra of gases, which show the effect
of changes in both vibrational and rotational energies, will be studied.

6-1. The Number of Independent Vibrations of a Polyatomic Molecule

If a molecule containing n atoms is imagined to have these atoms
held together by extremely weak bonds, the motions of the system might
best be described in terms of the motion of the n, nearly independent
individual atoms. If three cartesian coordinates are used to describe
the position and motion of each atom, there will be a total of 3n such
coordinates required for a description of the set of the n atoms. Each
of these 3n coordinates represents a degree of freedom of the system in
that any arbitrary displacement and velocity can be given along each
of these coordinates. Any additional displacement or velocity, beyond
these 3n, that is imposed on an atom, or on the molecule, could be
described in terms of the 3 cartesian coordinates.

For actual molecules the 3n cartesian coordinates are not, in fact,
very convenient. One can recognize that if the bonding of the hypo-
thetical molecule with very weak bonds were to be gradually strength-

15
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ened, it would become increasingly important to recognize the existence
of the molecule rather than to treat the system as consisting of n rather
independent particles. One likes, for example, to use three coordinates
to describe the motion of the center of mass of the molecule and, for
nonlinear molecules, three coordinates to describe the rotation of the
molecule about this center of mass. If one imagines a gradual strength-
ening of the bonds between the atoms as one goes from a set of inde-
pendent atoms to the rather firmly held set that constitutes a molecule,
one will see that none of the 3n degrees of freedom is destroyed. The
degrees of freedom are merely reclassified. It follows that if three
translational and three rotational degrees of freedom are recognized, there
will be left a total of 3n — 6 degrees of freedom which must be accounted
for by internal coordinates of the system. Displacements and velocities
in accordance with these 3n — 6 coordinates constitute vibrations of the
molecule.

If the molecule is linear; molecular rotations can occur only about
the two axes that can be drawn perpendicular to the molecular axis.
For such molecules, three over-all translations and two over-all rotations
are subtracted from the total of 3n degrees of freedom, and there remain
3n — 5 internal degrees of freedom.

The number of internal degrees of freedom of a molecule corresponds
to the number of ways in which the atoms of the molecule can be given
independent displacements and velocities relative to one another. They
. are, as will be shown in the following section, the number of vibrations
of the molecule. It is now necessary to see if these 3n — 6 or, for linear
molecules, 3n — 5 internal degrees of freedom can be further described.

6-2. The Nature of Normal Vibrations and Normal Coordinates

A collection of many mass units interconnected by springs can be
expected to undergo an infinite variety of internal motions, or vibrations,
depending on what initial displacements are given to the particles of the
system. The general motion of such a system can be analyzed in terms
of a set of internal coordinates, and, as the previous section indicates,
there are 3n — 6 (or 3n — 5) independent internal coordinates. For any
molecule there is, furthermore, a particular set of coordinates, called
normal coordinates, which is especially convenient for the description of
the vibrations of a system. The nature of normal coordinates, which
are very important in vibrational problems, can be illustrated by a
simple example. :

Consider a particle of mass m held by springs, as in Fig. 6-1. If
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z and y coordinates are set up as indicated, the motion of the particle,
in the plane of the spring system, can be deduced from the potential and
kinetic energies which are written as

U = 4kt + b 6y
T = jmi* + jmy? @)

where the springs have been assumed to obey Hooke’s law and to have
force constants k., and k,. [It should be noticed that the spring system,
for small displacements, is such that the restoring force in the = direction
arises only from a displacement in the x direction and, sizhilarly, forces in
the y direction only from y displacements. One can see that the poten-
tial-energy expression of Eq. (1) leads to this result by forming

= - 8__U = —
fo = (ax>,_ ko
and
U
fv=— ('5-?; A = —kyy.]

The motion of the particle can now be deduced by applying La-
grange’s equation to the coordinates of the system. For the z coordi-
nate, the equation

d (8T aU

gives ,
mi+kax=0 @

This is the now familiar differential form which indicates vibrational

FIG. é6-1 A two-dimensional, one-particle
spring system,
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motion with the displacement as a function of time given by

z = A, sin (20vd + ¢2) : ' (5)
where
1 k.,
Vg = Z E (6)

Similarly, for the y coordinate, Lagrange’s equation gives
mj + kyy =0 ” )

which leads to the solution

y = Aysin @rnt + o) ®
where
_1 |k
Vy = 21'_ ﬁ (9)

Initial displacements along the z or y axis will, therefore, lead to
simple sinusoidal vibrations along this axis. Displacement in any other
direction will lead to a complicated motion that can be interpreted in
terms of sinusoidal components in the z and y directions; i.e., Eqs. (5)
and (8) will simultaneously apply, and the motion is described when
the appropriate values of A, and A, for the displacement are used.
The z and y coordinates allow the motion of the particle to be most
simply described, and they are the normal coordinates for the system.
Motion of the system along a normal coordinate consists of simple
harmonic motion, and such motion is said to be a normal vibration or
normel mode. ‘

Similar normal coordinates and normal vibrations will exist for
more complicated vibrating systems. In such cases a normal coordinate
will, in general, consist of the displacement coordinates of more than
one atom of the system. The normal coordinate will, therefore, often
be a complicated combination of atomic displacements. In terms of this
coordinate, however, the vibrational motion of the system will be simply
described, and a displacement of the system according to the normal coordi-
nate will lead to a simple motion in which all the particles move in phase
with the same frequency and, if Hooke's law is applicable, will execute
simple harmonic motion. (For some systems, as we will see, it will be
necessary to modify this description of normal coordinates so that it is
stated that displacement according to the normal coordinate will lead
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to motion for which the cartesian coordinates of all the atoms of the
molecule will execute simple harmonic motion.)

Exercise 6-1. Consider a spring system like that of Fig. 6-1 with M = 1
atomic mass unit equivalent to a hydrogen atom, k. = 1 X 10% and
ky = 2 X 10° dynes/em, values that are of the order of magnitude
encountered with chemical bonds.

(@) Calculate the classical natural frequencies of this system.

(b) Draw a diagram showing, side by side, the allowed energies for
the two normal modes treated quantum mechanically. What would be
the wave numbers of the radiation absorbed in the fundamental transi-
tions of this system?

It is informative to consider also the way in which one would proceed
to a description of the vibrating system of Fig. 6-1 if one did not know
in advance the directions along which the springs lay and, therefore, did
not know the convenient directions in which to choose coordinates. The
simple calculation that is necessary will, in fact, anticipate the problems
that will arise with molecular systems where one generally does not
initially know what coordinates are the normal coordinates and, there-
fore, what atomic displacements will lead to normal modes of vibration.

Let us suppose that the spring system of Fig. 6-1 has been turned
through an angle as shown in Fig. 6-2. The axes relative to this orienta-
tion of the system are labeled z’ and y’ as in Fig. 6-2. The essential
difference between the axis choice of Fig. 6-1 and that of Fig. 6-2 can be
recognized by considering the restoring force that would act for displace-
ments along the coordinate axes. In Fig. 6-1 it is clear that displacement

FIG. 6-2 The spring system of Fig. 6-1 described by an awkward coordinate system such
as might be used if the directions of the springs were not initially known.

Restoring force components
and resuitant for a
displacement along x’
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along the z axis, or the y axis, results in a restoring force acting along
that axis and directed toward the origin. This was the basis for the
form of the potential written in Eq. (1).

For the coordinate system of Fig. 6-2, displacement along the coordi-
nate axes will not, as the force vectors suggest, lead to restoring forces
along these axis. It follows that the potential-energy function has the
form

U = $ki@)? + ki (2 @) + #R,(0)° (10)

This potential expression can be seen to lead to the restoring forces
expected for the spring orientation of Fig. 6-2. Thus one has

au '
- (ﬁi)w = _k’x - kl’”y’

U
fv=- <a—yr P —ky — ke

I

and

(11)

A restoring force in the 2’ direction can result, therefore, from displace-
ments in both the 2’ and ¥’ directions. Thus, a selection of coordinates,
where the normal coordinate directions are not recognized in advance, will
lead to a potential-energy expression which is not just the sum of squared
terms but contains, in addition, cross products between the coordinates.

Let us proceed now to study the vibrations of this one-particle
system, using the coordinates of Fig. 6-2. The potential is written in
Eq. (10), and since the coordinates are still orthogonal, the kinetic energy
is

T = ym(#)? + dm(@)? (12)

Lagrange’s equation for the 2’ coordinate now gives, with Eqs. (10) and
(12),

mi — klz —ky =0 (13)
and, for the y’ coordinate,

my — bz —ky =0 (14)

Although these equations are clearly less convenient than those of Eq. (4)
and Eq. (7), we can again look for vibration-type solutions, where the
frequency of vibration is v, by trying the functions

z’ = Al sin 2rvt + ¢)

and (15)
y = A, sin (2xvt + @)
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Differentiation twice with respect to time gives functions for # and ¢’
and, with Eqgs. (13) and (14), leads to the expressions

artimAl — KA, — KA = 0
and (16)
dxtvm Al — K, A, — kAL =0

For these equalities to hold, for other than the trivial solution with
A, = A, =0, the determinant of the coefficients of the amplitudes
must be zero; i.e.,

4rv*m ~ k. -k, _
—K,  dwvm—k | =0 a7
Expansion of the determinant gives
(4r¥*m — k) (4x%?m — k) — (k)2 = (18)
The roots of this quadratic in »? are found to be
bz + k) £ 1(k; — k;)® + 4(k,)7 (
(19)
21r 2m

Thus the two natural vibrational frequencies of the system can be
calculated.

Finally, the roots given by Eq. (19) can be substituted into Eq. (16);
or, alternatively, the appropriate minors of Eq. (17) can be calculated,
and values for the ratio of A, to A] can be obtained for each vibration
frequency.

Exercise 6-2. When the spring and particle system of Exercise 6-1 is
rotated counterclockwise by 30 deg with respect to the axes, now labeled
z’ and y’, the potential-energy function is

= $(1.25 X 10%)(z")? + V% X 105(z') (y/') + $(1.75 X 109 (y)*

(@) Calculate the natural frequencies of the system, and see that the
same values are obtained as in Exercise 6-1.

(b) Calculate the relative values of A, and A, for each vibration, and
see that one can deduce, from the given potentlal function, the du‘ectlons
in which the particle moves in each vibration.

This rather detailed treatment of a very simple system will later be
recognized as an illustration of the procedure that.is necessary when the
relation between the force constants and vibrations of a molecule is
treated. The immediate purpose of the example is to illustrate that
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there is a convenient set of coordinates, called normal coordinates, for
treating the vibrations of a system. Furthermore these coordinates are
such that they allow both the kinetic and potential energies to be written
as the sum of squared terms. Finally, even if these convenient coordinates
are not initially known, solution of the problem can be carried through
with any other set of coordinates, and the normal coordinates can then
be deduced from the amplitudes that are obtained for the natural, or
normal, vibrations of the system.

6-3. Quantum-mechanical Treatment of the Vibrations of
Polyatomic Molecules

Previous applications of the Schrodinger equation have been
restricted to one-dimensional problems. The equation can, however,
be written for n particles, the position of each being described by three
cartesian coordinates. In this way the Schrodinger equation is written

as
n
2 2 2, 2
- 2;}}(3—5 + %?}; + g—g) + Uy, - - - e = (20)
i=1

where the function ¥ will involve the 8n coordinates. As in the classical
discussion of the previous section, the 3n cartesian coordinates are not
convenient for describing the molecular motions. One can, as in the
classical case, treat separately the three coordinates that describe the
motion of the center of mass of the system and the three (or two for a
linear molecule) that describe the rotation of the system about the
principal moment-of-inertia axes. The derivation that shows how this
separation of external from internal coordinates is carried out will not
be given here. It can be found in many texts on quantum mechanics,
as, for example, “Introduction to Quantum Mechanics,” by L. Pauling
and E. B. Wilson (McGraw-Hill Book Company, Inc., New York, 1935).

Let us now proceed to investigate the form that the solutions of the
Schrodinger equation will take when it is applied to the internal, or
vibrational, coordinates of a molecule. Furthermore we will proceed,
formally, with the normal coordinates, designated by @, of the molecule.
In general one is not initially able to describe these normal coordinates
in terms of the relative motions of the atoms of the molecule. We know,
however, from the simple example of the preceding section the important
fact that normal coordinates are such that both the kinetic and potential
energies of a system are expressed by the sum of terms each involving
the square of a normal coordinate.
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The correct form of the Schrédinger equation for treatment of
the internal motion of a molecule in terms of the 3n — 6 (or 3n — 5)
normal coordinates can be deduced from the fact that the kinetic-energy
operator for a coordinate @ is given by an expression of the type

h? 32
T &g

The mass term that normally appears in the denominator of this
kinetic-energy operator is generally absorbed in the normal coordinate
Q:. The operator for the potential energy is the potential energy func-
tion itself. Since, in terms of the normal coordinates, the kinetic energy
is a function of squared terms, one can write

n—6
h? %Y

“gm 2, et U@ Quab = (21)

i=1
where the solution function y will, in general, be a function of the 3n — 6
normal coordinates.

This many-dimensional equation is greatly simplified because of
the fact that, in terms of normal coordinates, not only is the kinetic
energy a sum of squared terms, but so also is the potential energy. The
form of the potential-energy function can be shown by writing

U(@1Q: -+ * Qsnce) = 3MQ7 + Q2 + - - - FAan—eQZ,_

3n—6

3 ,21 Qs : (22)

where the \’s are coefficients that depend on the force constants of the
molecule.
Equation (21) can now be written as

3n—6

6
h? a? 1
~on ) v+ (3 ) nar)v - (28)
i=1 3

=1

3n—

It is profitable to try to separate this eqliation into 3n — 6 equations,
each involving only one of the normal coordinates. We write

¥ = vi(@)¥2(Q2) * -+ * Van-s(Qsng)

or (24)
¥ = Yigs - - - VYins
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and substitute Eq. (24) into Eq. (23). When this is done and the entire
equation is divided through by ¢, one gets 3n — 6 expressions of the type
2 240

- 81—2%3_@'% Q! =«

or (25)
2 2.4

~ i BNODK = i

Each such expression is identical to that already encountered in
one-dimensional vibrational problems. The solution functions for each
of the 3n — 6 equations like Eq. (25) are, therefore, the harmonic
oscillator wave functions listed in Sec. 2-4. Furthermore, each normal
coordinate Q; will lead to a set of energy levels with a constant spacing,
such as shown for the one-dimensional case in Fig. 2-4.

The important result has been obtained that, since normal coordi-
nates allow both the kinetic and potential energy to be written as the
sums of squared terms, the quantum-mechanical problem (cf. the classical
solution at the beginning of the previous section) is separable in terms of
these coordinates. A molecule containing n atoms will have, therefore,
3n — 6 (or 3n — 5) vibrational energy-level patterns, each pattern cor-
responding to one of the classical normal vibrations of the system.

Since the wave functions written in terms of normal coordinates
are the same as those discussed in Sec. 2-4, the selection rules for transi-
tions between the vibrational states for each normal coordinate are

Ay = +1 (26)
For absorption experiments, the pertinent rule
Ay = +1 ‘ 27

is again obtained. We can expect, therefore, an absorption of radiation
corresponding to the transition from the v = 0 to the v = 1 level of each
energy-level pattern. (We will see that, in fact, for symmetric molecules
some of these transitions are forbidden.) The energy-level diagrams and
the observed spectrum of H,0 are shown schematically in Fig. 6-3.

It perhaps should be pointed out that in general we do not know
the normal coordinates of a molecule. For some of the simpler molecules
they have been deduced, but their deduction is often rather difficult.
The previous derivation of the separation of the vibrational problem does
not, however, require us to be able to describe the normal coordinates.
It is sufficient to know that there are coordinates in terms of which T
and U are both sums of squared terms. With this knowledge one deduces
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that the vibrational energy of a molecule is to be treated in terms of
3n — 6 energy-level patterns,

é-4. The Symmetry Properties of Normal Coordinates

Normal coordinates are often complicated functions in that they
involve the displacement coordinates of many, or all, of the atoms of the
molecule, When the molecule has some symmetry, as many do, a great
simplification occurs. The consequences of symmetry in molecular
spectroscopy are, in fact, widespread and profound. One way in which
symmetry enters into treatments of molecular systems will here be
illustrated by a discussion of the nature of the normal coordinates of a
symmetric molecule.

A complete classification of the ways in which a molecule can be
symmetric will be given in Chap. 8. Here it will be enough to consider
a linear system, like CO,, and to recognize that a plane perpendicular
to the molecular axis is a plane of symmetry; i.e., the molecule in its

FIG. 6-3 The energy-level patterns and schematic representations of the corresponding
vibrations and a schematic infrared absorption spectrum of H,0.
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equilibrium configuration is identical on both sides of the plane. It is
customary to call such a plane an element of symmetry.

The axis of the molecule of CO; is another such symmetry element
of the molecule.

In vibrational spectroscopy we are concerned with displacements
of the atoms of a molecule from their equilibrium positions. These
displacements can be depicted by vectors, as shown for a general dis-
placement of an oxygen atom of CO; in Fig. 6-4. To deal with the
.relation of such displacements to symmetry elements, one introduces
the idea of a symmetry operation. Thus the symmetry operation cor-
responding to the plane of symmetry is a reflection through the plane.
This operation transforms the displacement vector of Fig. 6-4 in the
manner shown. The symmetry operation for an axis of symmetry is
rotation about the axis, and this operation is also shown in Fig. 6-4.
It should be pointed out that the numbering of the atoms will be kept
unaltered by symmetry operations; only the displacement vectors will
undergo the symmetry operation.

That symmetry and normal vibrations are related can be readily
illustrated by reference to the spring system of Fig. 6-5. If one were
asked to set this system vibrating according to its natural or normal
modes of vibration, one would, without any detailed analysis, distort
the system symmetrically, as in Fig. 6-5a, or antisymmetrically, as in
Fig. 6-5b. In this simple example it is obvious, particularly if one has a
model to work with, that the coordinates along which the system must be
distorted in order for the particles to vibrate in phase and with the same
frequency are either symmetric or antisymmetric with respect to the
plane of symmetry. A similar conclusion can also be drawn for the less
easily visualized normal coordinates of molecular systems.

FIG. 6-4 Two symmetry elements of COx a plane and an axis of symmetry. Symmetry
operations corresponding to these elements transform the solid arrows into the dashed
arrows.

\— Plane of symmetry
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To do this, it is first necessary to point out that both the kinetic
and potential energy of a molecule must be unaltered by a symmetry
operation. If a symmetry operation is performed on a distorted mole-
cule, which has, therefore, some higher potential energy than the equi-
librium configuration, the distorted molecule that is obtained by the
symmetry operation will have the same potential energy as the original
distorted one. This is illustrated in Fig. 6-6a. In a similar way, if a
molecule has kinetic energy as a result of motion of its atoms, a symmetry
operation cannot change this energy. This is apparent in Fig. 6-6, where
the velocities of the atoms are represented vectorially and the symmetry
operation changes the directions of these in space but does not affect
the magnitude of the velocities of atoms of given masses. It follows
then that a symmetry operation, sinc¢e it does not alter the potential or
kinetic energy of a molecule, does not alter the total energy.

In the previous section it was shown that the vibrational energy
is most simply expressed in terms of the normal coordinates of the
molecules. In these coordinates both the kinetic and potential energies
contain only squared terms; i.e.,

e =301 +QF + 301 + Qi + - - -+ PhansQls (28)

Now, since the normal coordinates represent the displacements of the
atoms during a vibration, they can be represented by displacement

FIG. 6-5 A two-particle spring system with a plane of symmetry perpendicular to the
axis of the springs. Distortions are indicated that are (a) symmetric and (b) antisymmetric
with respect to the plane of symmetry. The arrows indicate the initial motions of the par-
ticles that would follow such displacements.

ﬁi‘lane of symmetry

o e
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Reflection
through
e
plane of
symmetry

(b)

FIG. 6-6 [lustration that a symmetry operation does not change the potential or the
kinetic energy of a molecule.

vectors such as those of Fig. 6-4 or 6-6. In view of Eq. (28), however,
it is seen that for the energy to remain constant, in the general case
where all \; are different, when a symmetry operation is performed,
each normal coordinate must remain unchanged or, at most, change sign.
Thus, € of Eq. (28) is unchanged if as a result of a symmetry operation

Q:— +Q; (29)

This important conclusion is that normal coordinates are either symmetric
or antisymmetric with respect to a symmelry operation. With this result
one can, for example, immediately represent two of the normal coordi-
nates of the CO; molecule. One needs only to draw arrows, as in Fig.
6-7, which keep the center of gravity of the molecule fixed, lead to no

FIG. 6-7 Arrows indicating the relative motions of the atoms of CO; in two normal
vibrations with displacements along the molecular axis.
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rotation of the molecule, and are such that they are left unchanged or
result in a simple change of sign, i.e., of direction, when a symmetry
operation is performed. For simple molecules with a high degree of
symmetry, as for COs, one can often write down immediately the form
of the normal coordinates. In general, however, the symmetry proper-
ties of a molecule can be used to classify the normal coordinates accord-
ing to whether they transform symmetrically or antisymmetrically with
the various symmetry operations of the molecule. In later chapters
we will see that such a classification is a tremendous aid in studies of the
vibrations of polyatomic molecules.

The previous discussion has been based on the general case where all
the normal coordinates have different values of A in Eq. (28). This
supposition corresponds to cases in which all the normal vibrations
of the molecule have different frequencies. The bending vibrations of
CO; in the two perpendicular planes, as shown in Fig. 6-8, provide an
illustration of normal coordinates that have equal values of A. The
frequency expected for each vibration is therefore identical. Such vibra-
tions are said to be degenerate, and in this case, since 2 degrees of freedom
are involved and, quantum mechanically, two identical sets of energy
levels will exist, the vibration is said to be doubly degenerate.

When such degeneracy occurs, the requirement that the energy
remain unchanged during a symmetry operation does not lead, accord-
ing to Eq. (28), to the restriction that @; — + @;. If the normal coordi-
nates of the degenerate vibration are @; and @, one has

30+ Q2 + 301+ Qi+ - - - (30)

where the equal potential energy coefficients have been designated A,.
Rearrangement of Eq. (30) gives

e=2Q1+ Q)+ (@ + Q)+ - - - (31)

Now the energy remains constant, as far as @, and Q. are concerned, as
long as the symmetry operation does not change the value of Q% 4 Q3.

€

FIG. 6-8 The two components of the doubly degenerate bending vibration of CO.,
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Q, FIG. 6-9 The behavior of de-
. ) generate motions under a sym-
Q" —Ql(ms.0)+ Q, (sind) metry operation. (The figure
Q> =Q,(= sinf) + Q,(cosf) corresponds to an end view of
Q, Fig. 6-8 with only the arrows on
P} the oxygen atoms shown.)

?:

Within this restriction, it is allowed that a syinmetry operation produce
the transformations

Q1— aQy + bQ; _
and (32)
Q:— c@Qy 4 dQ:

An illustration of this behavior is given in Fig. 6-9 where the symmetry
operation consisting of a rotation of CO, about its axis by an angle ¢ is
considered.

In summary, the behavior of normal coordinates with respect to
symmetry operations can be stated as

1. For nondegenerate vibrations, the normal coordinates remain
unchanged or change sign.

2. For degenerate vibrations, each normal coordinate of the set
can be transformed, by the operation, into combinations of the coordi-
nates of the set, subject to a restriction imposed by the particular sym-
metry operation.

Exercise 6-3. Draw, to the extent that one can on the basis of symmetry
and zero translation and rotation, arrows showing the relative displace-
ments of the atoms of the linear molecule CS; and the bent molecule HoS
in the normal vibrations of each molecule.
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ROTATION-VIBRATION
SPECTRA

When the infrared radiation absorbed by a pure liquid or by a material
in solution is' measured, well-defined regions of absorption which can,
for the most part, be attributed to the v = 0 to » = 1 transitions in the
various vibrational energy patterns are observed. Typical liquid-phase
spectra of fairly simple molecules are shown in Figs. 2-1 and 7-la. In
the previous chapter it was indicated that each absorption band can be
associated with a fundamental transition in an energy-level pattern
corresponding to a specific normal mode of vibration of the molecule.

The infrared absorption spectrum of a simple molecule in the gas
phase does not, if the resolution of the instrument is adequate, show such
smooth, structureless absorption bands, but rather, as Fig. 7-1b illus-
trates, absorption regions of considerable complexity. The structure
of such absorption bands can be attributed to changes in the rotational
energy of the molecule accompanying the vibrational transition. In
the liquid phase no well-defined rotational energy levels exist, and rota-
tional structure is not observed on a vibrational absorption band.

We will now investigate in some detail the nature of rotation-vibra-
tion bands, and we will see that molecular-structure information can be
deduced from an analysis of the structure of such bands. Furthermore,
the nature of the rotational structure of a rotation-vibration absorption
band will be seen to reveal much about the type of vibration that is
occurring, and this information will be of great aid when we attempt to
match up the observed vibrational absorption bands with the normal
vibrations of polyatomic molecules. The general features of the rota-

. 131
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tion-vibration bands of the three molecular types, diatomic, linear, and
symmetric top, will be dealt with separately. The complexities that
arise in the rotational energy-level pattern of asymmetric-top molecules
lead to corresponding complexities in their rotation-vibration bands.
These will not be analyzed here.

DIATOMIC MOLECULES

7-1. Selection Rules and Transitions for the Rigid Rotor—Harmonic
Oscillator Model

The selection rules governing the allowed rotational and vibrational
transitions, given in Chaps. 2 and 3, remain applicable when both types of
energy are changed in a given transition. For absorption spectra, as
before, the selection rule Av = +1 is appropriate and the fundamental
transition, from » = 0 to » = 1, is again often studied. The selection
rule for J was given as AJ = 11, and now, unlike the situation in pure
rotational absorption spectroscopy, both possibilities are important.
Thus the selection rules for a rotation-vibration absorption band are

Ay = 41 A = 1 1

(Exceptions to this rule are provided by molecules like NO that have an
odd electron. This electron contributes angular momentum about the
molecular axis, and this in turn allows AJ = 0 transitions to occur.)
These rules, together with an expression for the rotational and
vibrational energy levels, allow the energies, or frequencies, of the
- absorption lines to be calculated. The simplest, and fairly satisfactory,
energy-level expression is obtained by treating the molecule as a rigid-
rotor, harmonic-oscillator system. With this approximation, one writes

a Ll [ h
é"'J=(v+%)2—7rc\/;+81r_2—IcJ(J+l)'
=0+ i B+ @

The two improved models treated earlier, i.e., the anharmonic
oscillator and the nonrigid rotor, could be introduced and would lead
to terms involving (v + $)? and [J(J + 1)]2. These correction terms
are, however, of less importance than a rotation-vibration coupling
term that will be introduced after the rotation-vibration spectrum cor-
responding to the simple rigid-rotor, harmonic-oscillator energy expres-
gion is deduced.
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It is convenient to replace, as was done in Sec. 2-4, the factor

1/2x /k/p by the symbol w and 1/2xc v/k/p by the symbol &. With
this notation, the energy-level expression of Eq. (2) and the selection
rules of Eq. (1) give the allowed transition frequencies # = Az for the
v = 0 — v = 1 transitions as

For AJ = +1,ie.,J —J + 1, R
5=a+ Bl(J +1)(J +2) - JW + 1]
=&+2BWJ +1) whereJ =0,1,2, ... 3)

For AJ = —1,ie.,J —>J — 1,

=&+ B[(J — 1)(J) - J(J + 1)]
=& —2B(J) whereJ =1,2, ... 4)

One should note that in these expressions the value to be inserted for J
is the rotational quantum number for the lower vibrational state.

These transitions, and the resulting absorption lines, are best shown
on a diagram such as that of Fig. 7-2. There it is clear, as the above
expressions show, that there should be a set of absorption lines, spaced
by the constant amount 2B, on the high-frequency side of the band
center, which occurs at # = », and a corresponding set on the low-
frequency side with a similar constant spacing. There should, further-
more, be a gap in the band center corresponding to the absent AJ = 0
transitions, all of which would have had a frequency @. It is customary
to label the low-frequency set of lines as the P branch of the rotation-
vibration band and the high-frequency side as the R branch. (For
some molecules, as we will see, the central AJ = 0 branch is allowed,
and it is known as the @ branch.) -

The infrared’ absorption spectrum of HBr shows the absorption,
given in Fig. 7-3, that can be attributed to the » = 0 to v = 1 transition.
The general shape of this experimental curve is, in fact, that predicted
on the basis of Eqgs. (3) and (4) or Fig. 7-2. It is clear that the frequency
ofthev =0,J = 0tov =1, J = 0 transition can be deduced from the
central gap in the band and that this value gives the spacing of the vibra-
tional energy levels of the molecule. Furthermore, the separation of the
components of the P and R branches can be identified with the molecular
quantity 28. From this quantity, values for the moment of inertia
and the bond length of the molecule can be deduced as they were when
the spacing of pure rotational lines was determined from studies in the
microwave region.
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EIG. 7-2 The transitions that lead to rotational structure in a vibrational band for a
linear molecule based on the assumption that B is independent of v.

Two features illustrated by the HBr example in Fig. 7-3 have not
yet been accounted for and must now be considered. First, the relative
intensities of the components remain to be investigated and, second, the
fact that the spacings of the components are not found to be exactly
constant must be dealt with.

7-2. The Relative Intensities of the Components of a Rotation-Vibration
Absorption Band

The relative intensities of the components of bands such as that of
Fig. 7-3 can be understood on the basis of the population of the various
rotational energy levels of the ground vibrational state. The approxima-
tion can be made that the intensities of the components of the rotation-
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138 INTRODUCTION TO MOLECULAR SPECTROSCOPY

vibration band are proportional to the populations of the rotational
energy levels from which the components originate. As was shown in
Sec. 3-3, the multiplicity of the Jth rotational energy level is 2J + 1,
and it follows that, according to the Boltzmann distribution, the popula-
tion of the Jth level is

NJ = (2J + I)Noe—J(J+l)hilsf11kT (5)

The moment-of-inertia value for the molecule being studied and
the temperature of the experiment can be substituted into this expression,
and the value of N;/N, can be calculated for various J values. The
intensities of the components starting from various J values will be
proportional to the values of N;/N,. The absorption band predicted
on this basis, with the rigid-rotor approximation, will correspond rather
closely to that observed.

Exercise 7-1. Calculate the relative populations of the J = 0, 2,4, 6,8,
and 10 energy levels of HBr at 25°C, and compare these results with the

relative values of log L for the components of the P and R branches

shown in Fig. 7-3. (Much of the disagreement that will be found is
because of the experimental problems that arise when very sharp absorp-
tion lines are measured.)

7-3. Coupling of Rotation and Vibration

The energy-level expression of Eq. (2) is based on the assumption
that the energy of a molecule can be treated in terms of separate con-
tributions from the rotation of the molecule and the vibration of the
molecule. The fact that the spectral transitions derived on this basis
are not in complete accord with the observed bands, i.e., the spacing of
the components is not constant, can be attributed to coupling between
the rotatioh and the vibration of the molecule. This coupling introduces
a cross term in the energy expression for a rotating-vibrating molecule
that involves a term of the type (v + $)J(J + 1). This term is usually
introduced by recognizing that B depends, since it involves the effective
bond length r, on the vibrational energy. Thus one “usually treats
the coupling by writing

Go=(+ P/ 2xcVEk/e+ BJJ + 1) (6)

where B, implies that the rotational term is a function of the vibrational
quantum number. One finds, in fact, that the dependence is pretty well



ROTATION-VIBRATION SPECTRA 139

‘represented by an expression of the type
B, = B, — au(v + §) ™

where B, is the rotational term corresponding to the equilibrium bond
length and «, is a small, positive constant.

With this energy expression the selection rules give the allowed
transition frequencies # = Aé for the v = 0 to » = 1 transition as

R branch, J = J 41

e =6+ [Bi(J + 1)(J +2) — BJ(J + 1)
=&+ 2B, + (3B1 — Bo)J + (B1 — By)J? (8)

P branch, J —-J — 1

50 = & + [Bild — D) — BJ(J + 1]
=& — (B1 + Bo)J + (B, — Bo)J? : ()]

Since the higher energy vibrational state has a greater vibrational
amplitude, it will have a larger effective value of r. It follows that
I, > I, and that B; < B,. The coefficients of the J? terms in the
expressions for the P and R branches are therefore negative. It is these
terms that are primarily responsible for the nonconstant spacing of the
components of a rotation-vibration band and for the asymmetry of the
band that is apparent in the band of Fig. 7-3. The high J components
of the P branch are at frequencies that are lower than would be expected
on the basis of B; = By = B, and as a consequence this branch extends
farther down to the low-frequency side. The high J components of the
R branch are similarly at somewhat lower frequencies than would be
expected for B, = By = B, and the high J components of the R branch
tend, therefore, to bunch up. (It can be mentioned that this effect
can become sufficiently important so that the components of the K
branch start moving back to lower frequencies for very high J values.
The band is then said to have a band head. Such behavior is observed
only in electronic-vibration-rotation bands.)

Analysis of the rotation-vibration band can, as Fig. 7-4 suggests,
lead to values of B, and Bo. It should be clear from Fig. 7-4 that the
difference in the frequency of the component of the R branch and that
of the P branch that start from the same value of J gives information
on the rotational spacing in the upper vibrational level. Similarly, the
difference in the frequency of the component of the B branch and that
of the P branch that end at the same value of J in the » = 1 level gives
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information on the rotational spacing in the lower vibrational level.
From the rotational spacings in the ¥ = 0 and » = 1 levels, one can
deduce values of By and B;. Furthermore, values of B; and B, can be
obtained, from various pairs of transitions as a function of J, and any
effect of centrifugal distortion can be recognized.

The combinations that lead to values of B, and B, can be deduced
by considering Fig. 7-4 or, analytically, by taking the appropriate differ-
ences between the frequencies of the P and R branch components.

FIG. 7-4  An illustration that the rotational spacing and, therefore, the moment of inertio
inthevy = 1 and v = O states can be deduced from the rotational structure of a.vibration-
rotation absorption band. - The difference in frequency of the components shown as heavy
solid lines gives the spacing in the v = 1 state, while the difference in the frequency of the
dashed lines gives the spacing in the v = 0 state.

J

Energy ———
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Thus for P and E components that start from the same J value, one has

3a(J) — #p(J) = 2B1(2J + 1) (10)
from which B, can be evaluated. An R component starting from the
J level and a P component starting from the J - 2 level end on the same
J level in the upper state. One then can obtain, by writing J in the
expression for the R components and J + 2 in the expression for the P
components and performing the subtraction,

5a(J) — 7p(J + 2) = 2B4(2J + 3) (11)

From these differences, values of B, can be obtained.

The dependence of .B, and therefore of I and r, on the vibrational
level turns out to be appreciable. Some results for diatomic molecules
are given in Table 7-1. Also shown in the table are values for B, andr,
which are deduced, by means of the formula B, = B, — a.(v + ) and
the measured values of B,, for at least two vibrational levels. These
results correspond to the equilibrium bond length, i.e., the bond length
corresponding to the minimum in the potential-energy curve. One
should particularly notice that r, is significantly different from r,. This
difference makes itself known when one uses isotopic substitution, as was
mentioned in Chap. 5, to obtain additional moment-of-inertia data for
polyatomic molecules from which additional bond lengths or angles
can be determined. The assumption of constant bond length with
isotopic substitution would appear to be valid to a very good approxima-
tion for the equilibrium bond length. For the v = O state, which is
usually what is studied in pure rotational spectral studies, a substitution
of, for example, D for H lowers the v = 0 energy level in the potential
curve and moves the effective bond length part way from the value ro

TABLE 7-1 Dependence of B and the Bond Distance on the Vibrational
State of a Molecule
[Values of «, are for the formula B, = B, — a.(v + 3)]

Molecule [ B, (cm~) [ «, (cm~?) re (A) ro (A) r1 (A)
H, 60.809 2.993 0.7417 0.7505 0.7702
HD 45.655 1.993 0.7414 0.7495 0.7668
D, 30.429 1.049 0.7416 0.7481 0.7616
HCl 10.5909 0.3019 1.27460 1.2838 1.3028
DCl 5.445 0.1118 1.275 1.282 1.295
CO 1.9314 0.01748 1.1282 1.1367 1.1359
N. 2.010 0.0187 1.094 1.097 1.102
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for the H-containing compound to r. If rotation-vibration bands can
be analyzed, as discussed here, results for r. can be obtained for different
isotopic species, and these can be safely assumed to remain constant with
isotopic substitution.

Exercise 7-2. The molecule DCI has a reduced mass of 3.14 X 10~ g,
an equilibrium bond length of about 1.27 A, and a force constant of
4.8 X 10° dynes/em.

(¢) Draw to scale an energy-level diagram showing the first five
rotational levels of the » = 0 and v = 1 vibrational states.

(b) Draw vertical arrows to represent the transitions that would
occur in an absorption study of the fundamental band. (Place the arrows
so that the one corresponding to the lowest energy change is at the left
and the highest one is at the right, as is done in Fig. 7-2.)

(¢) Pick out two transitions, and therefore absorption lines, that
could be used to calculate Bo and two that could be used to calculate B,.

LINEAR MOLECULES

Two principal types of rotation-vibration® bands occur for linear
molecules. If the vibration is such that the oscillating dipole moment
connected with the vibration is parallel to the molecular axis, a certain
set of selection rules, which will be discussed in the following section,
apply and the rotation-vibration band is said to be a parallel band. If
the vibration is such that the oscillating dipole moment is perpendicular
to the molecular axis, a different set of selection rules apply and the rota-
tion-vibration band is said to be a perpendicular band.

7-4. Parallel Bands of Linear Molecules

When the vibration of a linear molecule results in an oscillating
dipole moment that is parallel to the molecular axis, the situation, as
far as rotation-vibration selection rules and resulting band shapes are
concerned, is in no way different from the simpler linear molecules,
the diatomic molecules. Thus the selection rules are Av = +1 and
AJ = 11, and the rotation-vibration band has the same appearance, i.e.,
P and R branches and no @ branch, as that observed for diatomic mole-
cules. This is illustrated in Fig. 7-5. The treatment of the previous
section can also be applied to the bands of linear molecules and leads,
for the fundamental vibrational transition, to values of B, and B,.
(Values of B, and B, would be expected to depend somewhat on the
particular vibration being studied; the value deduced for B, should be
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the same for all vibrations of the molecule.) The problem of deducing
bond lengths from the single experimental result, B or I, is, of course,
the same as that encounteréd in studies of pure rotational spectra.

It is of interest to point out that, in contrast to the situation that
exists in pure rotational spectroscopy, linear symmetric molecules can
exhibit rotation-vibration absorption bands even if the molecule possesses
no permanent dipole moment. It is only necessary for the vibration to
be such that there is an oscillating dipole moment. The antisymmetric
stretching vibration of CO3, 0=C=0, and that of acetylene, H—C=C—H,
are examples of vibrations which lead to rotation-vibration absorption
bands. From analysis of such bands, moment-of-inertia data for these
nonpolar molecules can be obtained.

The statistics followed by the like atoms of molecules such as CO,
and C:H, lead, as discussed in Sec. 5-5, to the decrease in statistical
weight of some of the rotational levels or to the absence of some of these
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levels. The appropriate energy-level diagram for COj%, an example in
which the like atoms have zero spin and obey Bose-Einstein statistics,
is shown in Fig. 7-6a. The absorption band that results from the
asymmetric stretching vibration is also shown in Fig. 7-6b. Although
the appearance of the band does not immediately indicate the effect
of the missing rotational levels, one finds that the spacing of the com-
ponents is twice 2B and that the central gap is half again as large as the
" spacing in the P and R branches.

The molecule acetylene illustrates the case where Fermi statistics
apply since the hydrogen nuclei have spin 3. (The carbon nuclei have
no spin and, therefore, do not have an effect.) The alternation in
statistical weight of the rotational levels is like that of H,, and this

FIG. 7-6b A parallel band of the linear molecule CO; which has a center of symmetry
and like atoms which obey Bose-Einstein statistics.
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FIG. 7-7a The energy-level diagram ond transitions
of a molecule like H—C=C—H.
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alternation leads, in the case of acetylene, to the alternation in intensity
of the components shown in Figs. 7-7a and b.

7-5. Perpendicular Bands of Linear Molecules

Bending vibrations of linear molecules have oscillating dipole
moments that are in+a direction perpendicular to the molecular axis.
For these vibrations the selection rules for rotation-vibration transitions
are

Av=+1 AJ=0, £1 (12)

The perpendicular-type band of a linear molecule has, therefore, in
addition to P and R branches that are similar to those found in parallel
bands, a central @ branch corresponding to the AJ = 0 transitions.
The appearance of such bands is illustrated by the absorption band
corresponding to the bending vibration of N;O shown in Fig. 7-8. The
principal new feature, the § branch, corresponds to the overlap of the
AJ = 0 transitions. If the rotational spacing in the upper vibrational
state were the same as that in the lower state, the J — J transitions
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would all have the same frequency 7. The fact that B, is somewhat
smaller than B, leads to a slight decrease in frequency of the @ com-
ponents with high J values. The @ branch usually, therefore, has a
slight asymmetry.

The perpendicular vibrations of a linear molecule are, as mentioned
in Sec. 6-4, doubly degenerate, and the two perpendicular motions of the
molecule can be coupled to show that in this vibrational state the molecule
has angular momentum as a result of this vibrational motion. This -
angular momentum about the figure axis leads to some additional fea-
tures of perpendicular bands. The lowest J value for the » = 1 state,
for example, is J = 1 because the one unit of angular momentum that

FIG. 7-8 A perpendicular band of the linear molecule N:O. (The two satellite Q
branches can be atiributed to N2O molecules that are in a vibrationally excited state.)
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the vibration contributes disallows the total angular momentum value
of zero. The angular momentum, furthermore, couples with the over-all
rotation of the molecule in such a way that each J level of the v = ] state
is split and the two levels that result can be attributed to rotation of the
molecule in opposite directions. These finer details can, however, best
be passed over here. They will occur again in our study of the rotation-
vibration spectra of symmetric-top molecules and will be discussed at
greater length there.

SYMMETRIC-TOP MOLECULES

The infrared active normal vibrations of molecules like CH;Cl and
benzene, which are symmetric tops because of the symmetric arrangement
of the atoms, have their oscillating dipole moment either parallel to the
unique-axis of the molecule or perpendicular to this axis. As for linear
molecules, these two types of vibrations have different rotation-vibra-
tion selection rules and therefore different rotation-vibration band shapes.

7-6. Parallel Bands of Symmetric-top Molecules

Vibrations that lead to parallel bands can be illustrated by the
displacements indicated in Fig. 7-9a¢. All these vibrations have an
oscillating dipole moment along the unique axis, the figure axis of the
molecule. For such vibrations the selection rules for the rotational
changes in a rotation-vibration transition are

AK =0 AJ=0,+1 ifK#0
and (13)
AK =0 AJ = +1 fK=20

These rules can be combined with the energy-level expression, Eq.
(14) in Chap. 5, for the rotational energies of a symmetric-top molecule

Gx=BJJ+1)+A-BK* J=01,2 ... (14)
K=0,+1,+2 ..., +J

where J and K are quantum numbers, A is the rotational constant
for the unique axis, and B is the rotational constant for.the axes perpen-
dicular to the figure axis. The transitions that constitute the parallel
band can then be represented on the energy diagram of Fig. 7-10. If
the dependence of the moments of inertia on the value of K is small, the
spacing within each set of levels with a given value of K will be almost
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FIG.7-9 Vibrations of symmetry-top molecules that lead to (a) parallel absorption bands
and (b) perpendicular absorption bands. .
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the same since they are governed by the same term, i.e., the J(J + 1)5,
and J(J + 1)B, terms of the energy expression. The contributions
to the total band from the transitions within each set of levels with a
given value of K can be shown as in Fig. 7-11.  One should notice, as both
Figs. 7-10 and 7-11 show, that for the higher K values the low values
of J do not occur. This follows from the requirement that, since K
determines a component of the angular momentum while J determines

FIG. 7-10 The energy levels of a symmetric-top molecule and the transitions that are
allowed for a parallel band. -
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FIG. 7-11 The components of a parallel band showing the contributions from each of the
K levels of the v = O state,

the total angular momentum, J must be equal to or greater than K
for any allowed state. Outside of this feature each contribution shown
in Fig. 7-11 consists of simple P, @, and R branches (except for the K = 0
contribution which shows no @ branch). The appearance expected for
the total band is seen to be borne out by the absorption band of CH;Br
shown in Fig. 7-12.

If the components of the P and R branches of the parallel band
can be resolved, one can deduce values for B, and B,, or at least an aver-
age value of B, in the same way as previously indicated for diatomic
molecules. With such data the moment of inertia perpendicular to the
figure axis is obtained.

7-7. Perpendicular Bands of Symmetric-top Molecules

Vibrations that have oscillating dipole moments perpendicular to
the unique axis of the molecule are shown in Fig. 7-9b. For such vibra-
tions, the selection rule for rotational transitions accompanying the
vibrational transition is

AK = +1 AJ =0, +1 (15)

The energy-level diagram of Fig. 7-13 shows the transitions that
can occur in a perpendicular band. The complete band can be under-
stood in terms of a summation of subbands. These subbands consist of
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FIG. 7-12 A parallel absorption band of the symmetry-top moiecule CH3Br, The P
branch is partly resolved, while only the contour of the R branch is obtained.
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all the AJ = 0, +1 transitions that occur for a given change in K.
Thus, as shown in Fig. 7-14, for K = 0— 1, the P, @, and R type sub-
bands result from the AJ = 0, +1 transitions. Similar subbands oceur
- for K = 1— 0, and so forth. For each initial K value, except K = 0,
one gets two subbands corresponding to the sets of transitions that 6ecur
within AKX = +1 and AK = —1. The total band, as the experimental

FIG. 7-13 The energy levels of a symmetry-toﬁ molecule showing the fransitions that are
allowed for a perpendicular band.

~

|
sl

O=NW b 01 O ~

i

l
L
i
w

]

i




*aJpis O = A By} 30

S[9A3 ) 3y} JO P woly suouNqLUD Yy Buimoys punq Jojdipuadiadd b Jo sjusuoduwiod Yl ¢1-Z2 'O

I+=3V
I==¥V

I+=3V

I—-=XV
1+=3V
I~=J¥V
T+=3V

e

%

Ilill

@Gesp=a
ut enjea 1)

MMM N 11110000

YITTTTTTT L N R RN

LU WO 1D ILALLL

Tnn

.-___—___—__— Ty

ULLLILLLLARAAE B ERELLLLAN

._______.— CEVTITTTITIT T

Jeex

o=y

155



156 INTRODUCTION TO MOLECULAR SPECTROSCOPY

curve of Fig. 7-15 shows, usually reveals the Q branches of the subbands
superimposed on an unresolved background.

The spacing of these @ branches can be calculated from the energy-
level expression

éx = BJ(WJ +1) + (4 — B)K? (16)

and the changes AK = +1, AJ = 0 that result in the @ branches. If
A and B are taken as independent of v and if one again designates the
band origin by &, one has

For AK = +1
’-’annehel = ‘:’ + (A— - B)[(K + 1)2 - Kz]
=+ A -B)+2d—-BK forK=01,2, .
Q17
For AK = —
innnchen = @ + (1‘I B) (K - 1)2 - K
=0+ (A~-B)~2(Ad-BK forK =123,
(18)

The spacing of the @ branches of a perpendicular band can, accord-
ing to this result, be identified with 2(4 — B). For molecules like the
methyl halides, where A is larger than B, the Q branches are well sep-
arated and, as Fig. 7-15 shows, easily resolved.

The alternation in intensity of the @ branches of the CH;Cl band
of Fig. 7-15 can be attributed to the different statistical weights of the
levels with different K values. The basis for the strong, weak, weak,
strong variation and the intensity ratio of 2:1 is the same as that dis-
cussed for linear molecules in Sec. 5-5. Detailed analysis of the situation
in which there are three rather than two identical nuclei will, however,
not be given here. (See ref. 1, page 406.)

Exercise 7-3. The rotational constants of CH;Br are A = 5.08 cm~!and
B=C=03lcm.

(a) Make two energy-level diagrams, like that of Fig. 7-9, for CH,Br.
(Draw the rotational spacings to scale for both they = 0andv =1 states,
but reduce the » = 0 to v = 1 energy difference.)

(b) On one diagram, indicate the transitions that occur in a vibration
in which the dipole-moment oscillation is along the figure axis.

(¢) On the other diagram, indicate the transitions that lead to the
Q branches in a perpendicular type band.
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If one investigates in detail a number of perpendicular bands of a
given molecule, one might find the rather disturbing fact that the @
branch spacing is nowhere near the same in the different bands. The
treatment given here, which leads to the expectation of a constant
spacing of 2(4 — B), is, for some molecules, in error because of neglect
of a coupling that occurs between the doubly degenerate vibrations,
which can be combined to show an angular momentum, that lead to
perpendicular bands and the rotation of the molecule, The coupling
occurs through Coriolis forces, and the basis and effect of such forces
are discussed in ref. 1. The effect of Coriolis coupling can be calculated,
but the calculation requires a knowledge of the form of the normal
vibrations of the molecule. Only simple molecules can therefore be
handled, and in general the analysis of a perpendicular band does not
yield molecular structure information.

Exercise 7-4. Obtain the infrared spectrum of a gaseous methyl halide.
Determine A — B for as many of the perpendicular bands as possible,

- and see that the values obtained are not identical: Compare with the
value of A — B calculated from values of the bond lengths and bond
angles reported in the literature.

PRINCIPAL REFERENCES

1. Herzberg, G.: “Infrared and Raman Spectra,” chap. 4, D. Van Nostrand
Company, Inc., Princeton, N.J., 1945.



MOLECULAR SYMMETRY
AND GROUP THEORY

The previous two chapters have suggested the importance of molecular
symmetry for spectroscopy. It has been shown that for nondegenerate
vibrations each normal coordinate, or vibration, of the molecule must be
either symmetric or antisymmetric with respect to any symmetric ele-
ment. Furthermore, the previous chapter has shown that, for a sym-
metric-top molecule, the appearance of a rotation-vibration absorption
band is determined by the symmetry nature of the vibration. In
Chap. 11, moreover, we will see that the wave functions that describe
the behavior of the electrons of a molecule must conform to the symmetry
of the molecule and that the symmetry properties of the electronic states
of a molecule provide an important and helpful characterization of the
states.

A systematic study of the symmetry properties of molecules will
now be undertaken. To avoid a rather abstract treatment, applications
of general methods and results will continually be made to the study
of the vibrations of symmetric molecules. It should be emphasized, in
this connection, that deductions based on the methods presented here are
applicable to many areas of molecular spectroscopy and molecular-
structure studies. Vibrational modes merely provide, in view of our
studies of the previous chapters, convenient illustrations of the applica-
tion of symmetry arguments.

This study can be divided into two major parts. First, the ways
in which symmetry elements of a molecule are described and the ways
in which the symmetry nature -of molecular motions is determined and

159



160 INTRODUCTION TO. MOLECULAR SPECTROSCOPY:

" tabulated will be given. Second, it- will be shown that the symmetry
operations of a molecule form what is known-in mathematics as a “group.”’
The mathematical treatment that can be given for a general, or abstract,
group is then developed to the extent that-it is needed for application to
problems of molecular spectroscopy, and some of these applications are
illustrated.

SYMMETRY PROPERTIES OF MOLECULES

8-1. Symmetry Elements, Symmetry Operations, and Point Groups

It is apparent that some molecules; such as CO, and H0, are “sym-.
metric.” To proceed with a systematic study of the consequences of
such symmetry, it is necessary to be able to.-describe in more detail the
nature of the symmetry of a given molecule. The symmetry of a mole-
cule is discussed in terms of the symmetry. elements that the molecule has
in its equilibrium configuration. All molecular symmetries can be
treated in terms of the five symmetry elements listed, along with the
symbols used to denote them, in Table 8-1. These symmetry elements
are best explained in terms of symmetry operations. Each symmetry
element has & symmetry operation.associated with .it, -and Table 8-1
includes a brief statement of these operations. (The distinction between
symmetry elements, such as a plane of symmetry, and:symmetry opera-
tions, such as a reflection through a plane of symmetry, is necessary for
an orderly treatment of the consequences of symmetry.) Various mole-
cules drawn so as to exhibit symmetry elements are shown in Figs. 8-1
and 8-2. [Illustration of the symmetry element E, which all molecules
have, would be trivial. Its inclusion as an element of symmetry is

TABLE 8-1 The Symmetry Ei ts and Sy try Operations

Symmetry elements

Symmetry operations
Symbol Description

E Identity No change

' Plane of symmetry | Reflection through the plane

1 Center of sym- Inversion through the center
metry

C, Axis of symmetry | Rotation about the axis by 360/p deg
S, Rotation-reflection | Rotation about the axis by 360/p deg followed by
axis of symmetry | reflection through the plane
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dictated by considerations that will become apparent later. The only
further comment that need be made about the symmetry elements is
that, in diagrams such as those of Fig. 8-1, it is customary to set up the
principal axis of symmetry vertically and, if a coordinate system is
used, to have the z axis in this vertical direction. In a case such as
benzene, where there is a sixfold axis and also twofold axes perpendicular
to it, the sixfold axis is considered to be the principal axis.

It is worth while to memorize the symbols used for the various sym-
metry elements. :

If a great variety of molecules is investigated, it will be found that
only a few different combinations of symmetry elements occur. Each
combination of symmetry elements that can occur is known as a poini
group. (The term point group is used because, as we will see, the sym-
metry operations that are associated with the symmetry elements of the
molecule leave a point of the molecule fixed in space. This is in contrast
to a space group, as is found in a crystal, where some of the symmetry
operations result in a translation of a molecule, or a unit cell, to a new
location in the crystal.)

FIG. 8-1 Some of the symmetry elements in terms of the examples trans-dichloroethane,
carbon dioxide, and dllene.

[ i=d Y
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A summary of the important combinations of symmetry elements
that can occur, i.e., the possible point groups, and the symbols used to
denote these are given in Table 8-2. It will be noticed that the boldface
symbols used for the point group are based, for the most part, on the
principal symmetry element of the group and that the subscripts added
to some of the point-group symools further tie in the symbol with the
elements in the group.

It is not necessary to commit to memory the symbols and symmetry

TABLE'8-2 Some of the Point Groups That Are Important in Molecular Probiems
(The number of times a symmetry element occurs is indicated by a number before

the symbol for that symmetry element)

Point group Symmetry elements Examples
C; E CH,;—CHCIBr
C, E, C: H,0,
C; E, i CH,—CHCI—CHCI—CH; (trans.)
C E, o NOCl1
Csy E, Cq, 20, H,0, CH,Cl,
C:v E, C:, 36., NH;, HCCI;
Cwy E, C,, wa, HCN, 0CS8
Can E, Cyyon t CIHC=CHCI (trans.)
D2y E, 3C; (mutually perp.), 8¢ (coin- | H{C=C=CH,
cident with one of the C;), 204
(through the S, axis)
D E, Cs, 3C; (perp. to the C; axis), | CéH,. (cyclohexane)
Ss (coincident with the C; axis),
%, 30a
D:=V, |E, 3C: (mutually perp.), 3¢ (mu- | H;C=CH.
tually perp.), ¢
Das E, C;, 3C; (perp. to the C; axis), | BCl,
30y, oa
Da E, C,, 4C; (perp. to the C, axis), | C{H; (cyclobutane)
40y, o, C; and S, (both coinci-
dent with C,), ¢
D E, Cs, 6C; (perp. to the Cs axis), | C¢H, (benzene)
80., o5, Ca and C; and Ss (all co-
incident with the Cs axis), 1
D.x E, C,, «C, (perp. to the C,, axis), | Hs, CO,, HC=CH
By, Thy T
Ta E, 3C; (mutually perp.), 4Cs, 60, | CH,
38, (coincident with the C;axes),
(¢ 73 E, 3C, (mutually perp.), 4Cs, 3S. | [PtCle~
and 3C, (coincident with the C; | [Co(NH,)¢**
axes), 6C,, 90, 4Ss (coincident
with the Cs), ¢
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FIG. 8-2 The symmetry elements of H;O, point group Cs and CH;Cl, point group Cgy.
(The coordinate systems are drawn in ways that will be convenient for later treatments.)

elements for all the point groups. It is, at this stage, sufficient to notice
particularly those of the C,, and C;, groups since molecules of the type
H,0 and CH,Cl, which belong to these point groups, will be used in later
illustrations. These molecules, and the symmetry elements they con-
tain, are illustrated in Fig. 8-2. It should be pointed out that the C;
axis of symmetry implies two different symmetry operations. One is a
counterclockwise rotation by a third of a revolution, and the other is a
counterclockwise rotation by two-thirds of a revolution, or a clockwise
one of one-third of a revolution. The operation symbol C; designates
the first of these and C% the second. ’

8-2. Symmetry Operations on Molecular Motions

The symmetry elements of a molecule are determined by the geom-
etry of a molecule in its equilibrium configuration. Displacements of the
atoms of a molecule, such as occur in a translation or rotation of the
molecule, or a vibration of the atoms of the molecule, can be related to
these symmetry elements by means of the symmetry operation associ-
ated with each element.

Application of a symmetry operation to a molecular motion is best
done by first describing the motion by means of arrows along the cartesian
coordinates associated with each atom of the molecule. One of the
rotations and one of the translations of the H,0 molecule are so described
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o e
I S
A A~

/H—>- v /H—>~—y
x x )
Translation in the Y Rotation about the principal axis
direction (T, ) inthe Y direction( R, )

FIG. 8-3 Representation of the transiation T, and the rotation R, of the H;O molecule by
of displ t vectors.

in Fig. 8-3. Also, since the features associated with degenerate vibra-
tions are then encountered, the molecule CH;Cl is also used as an illus-
tration and the three translational motions are represented by vectors
along the atomic cartesian coordinates in Fig. 8-4.

Let us first consider the effect of the symmetry operations on the
molecular motions of the H;O molecule, which is an example of a molecule
with no degenerate motions. The symmetry operations corresponding
to the various symmetry elements can be performed on the .displacement
vectors such as those of Fig. 8-3. When this is done for the illustrated
motions T, and R, for H,0, one sees that the displacement arrows
either are left unchanged or are reversed in direction. These two
possibilities are represented by +1 for the symmetric result of no change
or —1 for the antisymmetric result of a reversal in direction. In a
similar manner, a +1 or —1 can be associated with the result of each
symmetry operation acting on the displacement vectors that correspond
to the remaining translations and rotations of the H;O molecule. (As the

FIG. 8-4 Representation of the translational motions of CH;Cl by means of displacement
vectors. (Note that the coordinate system of Fig, 8-2 is vsed.)

Clm>——x o 1:
Lk
Hi \\"__> H‘jZ \H/ HE/ N4
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discussion of normal coordinates in Chap. 6 indicated, the vibrations
of the H,0 molecule will similarly transform. The vectors of Fig. 8-5
represent displacements that have suitable symmetry behavior for
molecular vibrations.)

The results of such diagrammatic analyses can be put in a form that
is more convenient for mathematical extension by writing the operation
of a symmetry operation on a molecular displacement as, for example, for
the motions of Fig. 8-3,

Cz(Ty) and Cz(Ry)

These symbols are to be interpreted as ‘“the operation corresponding
to the C, symmetry element acting on the molecular displacements T,
and R,.”

The result, that the vectors change direction as a result of the opera-
tion, can then be indicated by writing

Co(Ty) = (—1X(Ty) 1)
and

CxRy) = (—1)(R,) (2)
With this procedure one recognizes the reason for the use of +1 and —~1
to represent symmetric and antisymmetric behavior. When degenerate
motions are considered, it will be recognized that the 41 and —1. trans-
formation factors that appear in the H,O example are in fact one-by-one
maftrices and are examples of what are known as transformation matrices.

Exercise 8-1. Draw the cartesian displacement vectors that correspond
to translation of the H,O molecule in the 2 and z directions and show that
the symmetry operations corresponding to the symmetry elements of the
molecule result in either no change or a simple reversal of these vectors.
Do the same for rotations about axes in the x and z directions and for the
vibrations of Fig. 8-5.

When molecules have a threefold or higher axis of symmetry, it is
found that degenerate motions occur; and these introduce a number of
complications. In CH;Cl, for example, one recognizes that rotations
about the z axis and the y axis will lead to identical sets of rotational

FIG. 8-5 Displacements that corr d to possible vibrati of the H:O molecule.
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energy levels because the moments of inertia about the axes in these two
directions must be identical. Similarly, certain vibrations of such mole-
cules will necessarily have, as a result of the molecular symmetry, iden-
tical energy-level patterns. It follows, as we will now see, that such
degenerate motions must be treated as a set and that, when symmetry
properties are considered, they cannot be treated separately. This
behavior can be illustrated by considering the effect of the symmetry
operations of the CH;Cl molecule on the degenerate set 7', and T,.

A vector displacement indicating the motion of the C, or Cl, atom
in the translation T, and T, is shown in projection in Fig. 8-6. (Similar
arrows can be drawn on the H atoms. These will behave in an identical
manner to the vectors located on the axial atoms, and since the effect
of operations on them is a little harder to imagine and draw, they are not
included.) Let us now consider the operations C3(T5) and C3(T,). The

FIG. 8-6 The effect of the symmetry operations on the translations T, and T, of the Cs,
molecule CH3Cl.  The diagrams here correspond to end views, from the top, of Fig. 8-2.

30.5,,8 H~>T,

r L—H (v)

v
Operation C?,
3
n=-31+¥%r Operation ¢ ,
T',=+\§n-%r, T.=17,+0T,
T T;=0T,.- 1T,
1\; v
AY
T, T (o)
Operation ¢; Operation g

3
m=-in-Pr

1;=_-2Ln+1z§r,
=-Vr+iz

(d)

1",='.‘/z_§1; +4r
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C'; operation consists of a rotation by 120 deg, and when the operation
\ acts on the vectors of T, and T,, the vector displacements shown by
dashed vectors in Fig. 8-6a are obtained. Now, and this is the char-
acteristic feature of degenerate motions, the vectors of T, are not simply
. unchanged or reversed in direction. As the geometry of Fig. 8-6 shows,

the result of the transformation can be described in terms of the vectors
of T,and T, by

ouT) = - Ly - 3 (1) @

Similarly, the result of rotating the T, vector by 120 deg can be described
as

oty = + 2y -1y | @

One sees that T, and T, cannot be kept separate. It is therefore con-
venient to treat their transformation properties together and write the
result of the operation corresponding to the symmetry element C; on
the pair of motions T'; and T, by the matrix equation*

T -3 -y (T
ol He .

In a similar way one can describe the effect of the symmetry operations
corresponding to the remaining symmetry elements of the C;, group by
transformation matrices. Thus one writes, with the aid of Fig. 8-6, for
all the operations of the C;, group

5(2)-( (@) 1
()= D@ (@)= s

_1 B\
a’” (Tz) N 2 2 (Tz)
"\T,) V3 1 T,
—2 t3

* Only a few features of matrix methods are necessary for the treatments given
‘in this chapter. The student with no background in this subject should be able to

follow the developments if he learns matrix multiplication enough to understand
equations like Eq. (5).

[=]
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and, including for completeness the C; operation given above,
T,
T,
T,
T,

The transformation matrices will play an important role in later
work. For the present it is enough to recognize that they allow the
effect of the symmetry operation to be represented in mathematical rather
than diagrammatic forms.

8-3. Symmetry Species and Character Tables

A brief introduction can now be given to the ways in which the
behavior of molecular motions with respect to symmetry operations is
usually tabulated. Some of the reasons for setting up the system that is
actually used will, however, not be completely understandable until later
material is studied.

The transformation matrices that arise when the motions of a
molecule belonging to a given point group are investigated can be
arranged in tabular form. The behavior of the motions of H,0, or in
fact any C., molecule, with respect to symmetry operations, is given in
Table 8-3. :

This table summarizes the fact that the transformation matrices
for T, are +1 for each symmetry element; for R, they are 41 for the
symmetry elements E and C,, but —1 for ¢, and o,; and so forth.

Since, as we will see later, a number of different molecular motions,

TABLE 8-3 Summary of the Transformation Matrices for
the Symmetry Operations for the Translations and Rota-
tions of the C,, Molecule H,O

Cy | E C. Ty o, Rot. and trans.
1 1 1 1 T,
1 1 -1 -1 R,
1 -1 1 -1 Ry, T,
1 -1 —1 1 R:, T,
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including vibrations as well as translations and rotations, and also the
various electron orbitals for the molecule, transform with the transforma-
tion matrices given in one row of such a table, it is convenient to introduce
symbols for each row. The procedure is to designate a row by A if the
transformations are symmetric with respect to the principal axis of sym-
metry and B if antisymmetric with respect to this axis. Thus the first
two rows of Table 8-3 would be labeled A and the second two B. In
order to distinguish the two A rows one labels the first row, where the
completely symmetric set of transformations is written, as A, and the
second row as A,. Similarly, the two B rows are distinguished by B,
and B;. Thus, with this added notation, the sets of transformation
matrices of & molecule with C;, symmetry are given in Table 8-4.

The rows of such a table are said to be symmetry species to which
motions of a molecule or electron orbitals of a molecule belonging to the
point group of the table can be assigned.

A slightly different notation is used if the molecule contains a center
of symmetry. Then one uses, instead of the subscripts 1 and 2, a sub-
seript g for a symmetry species that is symmetric with respect to inversion
at the center of symmetry and u if it is antisymmetric with respect to this
operation.

The transformation matrices that are found for the Cs, point group,
a group which, as illustrated for T, and T, in the previous section, leads
to degenerate sets of translations and rotations, are summarized in Table
8-5. It turns out, as we will see later, to be sufficient for most purposes
to tabulate, not the complete transformation matrices, but merely the
sums of the diagonal elements of the transformation matrices. This
procedure leads, as can be readily checked from the matrices of Table 8-5,
to the summary of the symmetry behavior for C;, molecules shown in
Table 8:6. A doubly degenerate symmetry species is generally labeled
as E, not to be confused with the identity symmetry element, and a

TABLE 8-4 The Transformation Matrices for Cs, Molecule
with- Symbols for the Different Behaviors with Regard to
Symmetry Operations

Cw | E C, oo o, | Rot. and trans.
4, | 1 1 1 1 T,

4: | 1 1 -1 -1 R,

B 1 1 - 1 1 - 1 Rm Tz

B, 1 -1 -1 1 R., T,
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TABLE 8-6 The Sums of the Diagonal Elements of the Transformation
Matrices of a Cs, Molecule

Cyv E C, c: ay o, o) Rot. and trans.
A, 1 1 1 1 1 1 T,
A, 1 1 1 -1 -1 -1 R,
E 2 - 1 —1 0 0 0 (R:yRﬂ)y (T::Tu)

triply degenerate set as F or T. (It will, in fact, be seen later that each
entry for the nondegenerate species in tables such as Tables 8-4 and 8-5
is really to be interpreted as the sum of the diagonal elements of the
transformation matrix. If the matrix is a one-by-one matrix, this is, of
course, identical with the transformation matrix, +1 or —1, itself.)

The identical transformation matrices for the two rotation elements
and for the three planes of symmetry that can be noted in Table 8-5
are typical. It is therefore possible to abbreviate such tables by showing
only one column for each type of symmetry element. The number of
symmetry elements in the class is then indicated at the top of the column.
Thus for the C;, point group one abbreviates Table 8-6 and writes the
information as in Table 8-7.

The basis, properties, and uses of tabulations such as Tables 8-4
and 8-7 will be the subject.of the remainder of the chapter. Their
introduction here is intended principally to establish the notation that is
used. One will notice in many advanced texts on spectroscopy and
quantum mechanics that such tables are given for all possible point
groups. (See, for example, G. Herzberg, “Infrared and Raman Spectra,”
D. Van Nostrand Company, Inc., Princeton, N.J., 1945; E. B. Wilson,
J. C. Decius, and P. C. Cross, “Molecular Vibrations,” McGraw-Hill
Book Company, Inc., New York, 1955; and H. Eyring, J. Walter, and
G. K. Kimball, “Quantum Chemistry,” Wiley & Sons, Inc., New York,

TABLE 8-7 The Sums of the Diagonal Elements of the
Transformation Matrices of a Cs, Molecule i Con-
densed Form

[of E 2C; 3y Rot. and trans.

A |1 1 1| T.
4 |1 1| -1} R
E | 2] -1 0 | (BRy), (TTy)
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1948. The first of these references also gives a detailed discussion, with
many examples, of symmetry elements and point groups.)

It can also be mentioned here that, since the sum of the diagonals
of a transformation matrix is known as the character of the transformation
matrix, these tables summarizing symmetry behavior are known as the -
character tables for the symmetry point groups.

The character table for any point group can be deduced by finding
the transformation matrices for various motions of a molecule belonging
to that point group. Little difficulty will be encountered in checking
some of the smaller, nondegenerate character tables by this method. A
number of general properties of character tables will, however, be devel-
oped later, and it will then be easier to understand the larger character
tables containing degenerate types.

The introductory summary of molecular symmetry has now been
completed. Before making use of the quantities introduced here, an
extensive digression into some of the general mathematical properties
of the transformation matrices and character tables will be made. We
will then see how the character table can be used to deduce some results
that are of great importance in molecular spectroscopy.

GROUP THEORY

An apparently rather abstract mathematical subject called group
theory turns out to be directly applicable to investigations of a number
of properties of symmetric molecules. The theory can, for example,
deal with the symmetry operations that have been treated in the pre-
ceding section and can be used to draw a number of important deductions
regarding the nature of the vibrations of symmetric molecules and the
electronic properties and electronic transitions of such molecules.
Some of the mathematical features that can be ascribed to general, or
abstract, groups will be pointed out, and deductions of properties of
such groups, which are important for molecular spectroscopy, will be
made. The previous treatment of symmetry elements and symmetry
operations provides material with which some of the general group-theory
results can be illustrated.

8-4. The Nature of a Group

To be a mathematically useful term, the word group must be given a
more precise definition than the meaning, a collection of items, usually
associated with it. To be a mathematical group, a set of elements, which
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can be objects, quantities, operations, and so forth, must conform to
four requirements. It should, perhaps, be pointed out immediately
that these requirements may appear ‘“unreal.” That they make the
term group a useful mathematical concept will be apparent as our study
of the theory that can be built up for groups develops.

A set of elements P, Q, R, S, . . . is said to form a group if the
following conditions are satisfied:

1. There is a rule for combining any two elements of the group; and
the combination of any two elements according to this rule leads to the
formation of one of the elements of the group. Commonly one calls
the combination procedure multiplication although, as we will see, the
procedure need not be the familiar multiplication. When the elements P
and Q are combined one writes PQ. The first requirement for a group
is that there be a rule which makes the combination PQ meaningful and,
‘moreover, makes PQ equal to an element of the group.

2. The associative law must hold for the combination of elements.
Thus if P(QR) means that Q and R are multiplied, i.e., combined accord-
ing to the appropriate rule, and then P multiplies the element formed
from QR, the associative law requires

P(QR) = (PQ)R (6

The right-hand side implies that P and @ are first combined and that the
element they form is then combined with R.,

(It should here be mentioned that the commutative law will not
be stipulated as a requirement for a group. Thus PQ will not necessarily
be equal to QP.  One must, therefore, be careful to preserve the order
in which elements are written.)

3. The set must contain an identity element, which we will designate
by E. An identity element E is an element with the properties such
that

EP=PE =P
EQ=QE=2¢Q @)
ER =RE =R

and so forth, for all elements of the group. (Note that the element E
does commute with all elements of the group.)

4. For every element of the group there must exist an inverse which
is also an element of the group. An inverse is defined so that if S, for
example, is the inverse of Q

QS = SQ=E | ®
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The inverse of the element Q will sometimes be designated as Q-! and,
for the set of elements of which @ is a member to be a group, Q! must
be one of the elements of the group. (Notice that an element and its
inverse do commute.)

8-5. The Symmetry Operations as a Group

The rules that must be obeyed by a set of elements if they are to
constitute a group can now be illustrated by the symmetry operations
for a molecule of a particular symmetry, i.e., belonging to a given point
group. ' ’

The H,0 molecule was seen to have the symmetry Cs,, and the
symmetry operations for such a molecule are those corresponding to the
symmetry elements E, Cs, 0., and ¢,. These operations will be recog-
nized as forming a group if the rule of combination is successive operation
on the molecule by the symmetry operations. (One generally agrees if],
for example, the combination Cy, is written to operate first with the
element on the right, i.e., ., and then with the element on the left, i.e.,
C:) Let us now see if the symmetry operations conform to the require-
ments of a group. :

1. One can verify, by operating on various rotational and transla-
tional motions of H,0, that successive operations are always equivalent
to the single operation of one of E, Cs, ¢y, or /. Thus

ECz = Cz 0',,0‘: = 03

Cowy =0, ' )
Cy, = o, ete.
2. The associative law is tested by investigating such combinations
as
,(C204) 2(e,C2)oy
We find

Left side = ¢}(Cy0,) = o'(¢)) = E
Right side = (¢’Cs)o, = (¢y)0, = E

In a similar manner it can be verified that various ways of associating
the elements in a sequence of operations lead to the same element; i.e.,
they obey the associative law.

3. The identity operation, in which no change is imposed on the
molecule, has been included in the set of symmetry operations so that
these operations will constitute a group. It is apparent that

EC; = CE =C;y ete. (1)

(10)
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4. To satisfy the inverse requirement, every element must be such
that there is some other element of the group which, written before or
after the first element, produces the identity. For the C,, point group
we see that

CzCz = .E
G0y = E (12)
oo, =E

Thus, and this will not generally be so, each element of the C,, group
is its own inverse, and the fourth requirement is satisfied.

Exercise 8-2. Verify by drawing the appropriate displacement diagrams
that two successive symmetry operations on a translation or rotation of
the H,O molecule are equivalent to a single symmetry operation of the
molecule and that this single symmetry operation is a member of the
C;, point group.

We have shown, therefore, that the set of symmetry operations
conforms to the requirements for a group, i.e., they are a group. In a
similar manner, the symmetry operations associated with other point
groups can be tested. It will be found that these sets of symmetry
operations similarly obey the group requirements.

Exercise 8-3. Using 7', as a basis on which ‘to apply the group operations,
verify that the elements of the C;, group do, in fact, obey the group
postulates.

Exercise 8-4. Using T, and T, as a basis, verify that the elements of the
C3, group obey the group postulates.

Any deduction that can be made about the elements of a group is,
therefore, binding on the symmetry operations of a molecule. It is this
result that ties abstract group theory to problems involving molecular
symmetry.

8-6. Representations of a Group

Of particular importance for the purposes to which group theory is
to be put is the fact that the elements of a group, such as the symmetry
operations of a molecule, can be represented by numbers, or more gen-
erally matrices, and these can then be combined by ordinary multiplica-
tion. For the representation to be true, or faithful, the multiplication of the
. numbers representing elements P and Q of the group must, if PQ = R,
lead to the number which represents the element R. A set of numbers, or
matrices, which can be assigned to the elements of a group and can
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properly represent the multiplications of the elements of the group is said
to constitute a representation of the group.

Again the symmetry operations of the C,, point group can be used
to illustrate this feature. Customarily, representations are designated
by T' and the components of a particular T are written under the group
elements that they represent. An apparently trivial but, in fact, impor-
tant representation of the C,, group of symmetry operations can be
constructed by assigning +1 to each element. Thus one would write

‘ E ‘ C, | oy | o,

nlolololw
(The parentheses are placed about each number because, as we will see,
they are one-by-one matrices.) Since any combination of symmetry

operations leads to one of the symmetry operations of the group, this is
properly represented by the multiplication

1@ =@ (13)

Three other one-by-one representations (the way in which they were
deduced will be shown shortly) can also be written and a table of repre-
sentations can be constructed. Thus the representations I';, T's, T's, and
T4 can be given as

E C, oy ol

i 6] 1)
| @)@ (=1) | (-D)
rs | ()| (=D | W (-1
L M) =)@

It can easily be verified that these representations all properly represent
the set of the symmetry operations of the point group Cs;. To do this
one writes, for example,

Ceo, = o,
and investigates the ways in which the various representations of the

group correspond to thig equality. Thus

For the T'; representation: @@ = (1)

For the T'; representation: 1(—-1) = (-1
For the T'; representation: (-1)1) = (-1
For the Iy representation: (-1)(—-1) =(Q)
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The result of the four multiplications is seen, in each case, to give the
number which that representation attaches to o,. A similar test of
other combinations will show that multiplication of the symmetry opera-
tions is always faithfully represented.

Exercise 8-5. Test that the representations of the C., group faithfully
represent the multiplication of several pairs of symmetry operations.

While these simple representations might have been discovered by
trial and error, it is interesting to see that they are nothing more than
the transformation matrices discovered for H.O in Sec. 8-3. We must
now see why such transformation matrices should form a representation
of the group of symmetry operations.

It is necessary to show, for example, that the transformation matrix
for Cao, is equal to the simple product of the transformation matrices
for C; and .. To do this, one might investigate the operation equation

Con(Te) = 4(T2) . a9
The operation of ¢, on T. will give (+1)7,, and one can write
Cooo(Ty) = Co(+1)T. S ‘ (15)

The operation C; acts only on T, and cannot affect the pure number
(+1). This implies that (41) and C; can be written in either order,
i.e., they commute, and one can write

Caoo(T5) = (+1)C(T:) = (F1)(—1)(To) = (=T, (16)

In this way one sees that, if C; is represented by (—1) and o, by (+1),
the combination C.o, is represented by the simple multiple

(+D(=1) = (-1

Furthermore, since as Table 8-4 shows, the operation ¢, on T, changes
the direction of the T'. displacement vectors, one represents o,(7'.) by
(—1)T,. This example shows that, if Cs and ¢, are represented by trans-
formation matrices, the product Cr, = o} will be properly represented
by the product of the transformation matrices of C; and a,. It follows,
therefore, and this is an illustration of a general result, that the combina-
tion of symmetry operations corresponds to simple multiplication of the
corresponding transformation matrices and that this combination is
faithfully represented by transformation matrices. ’

Although the transformation matrices dealt with so far do form
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representations of the group, they do not form the only representations.
There are, in fact, an infinite number of representations. These gen-
erally are square matrices of various orders. Some of these that might
be built up from those of the previous table are

!

E Cz Oy g,
GD | GD |G| G
01 01 01 ) 01

1 00 1 00 1 00 100
010 010 01090 010
0 01 0 01 0 01 0 01

GO | GD 6|6 -

and so forth. Again one can verify that these form faithful representa-
tions of the group Cs,.

Other large matrix representations can be found. A particularly
important one for a given molecule is that based on the 3n cartesian
displacement coordinates that can be associated with the atoms of the
molecule. Such a representation can be set up by writing the 3n car-
tesian coordinates as a column matrix and deducing, by looking at a
diagram of the molecule and the 3n displacement vectors, the 3n X 3n
transformation matrix for the particular operation. For example, in
view of Fig. 8-7, the operation ¢, on H;O can be seen to lead to the trans-

di | 'Y

FIG. 8.7 The effect of the o, symmetry operation on the 3n cart
coordma!es of-H;0. One sees, for example, that xy transforms as shown mto xg+ and
that x,, = xXg’.
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formation matrix

zy 0 0 0 1 0 0 0 0 0) (za
Yn 0 0 0 0 -1 0 0 0 o0]yx
ZH 0 0 0 0 0 1 0 0 0 ZH
T 1 0 0 0 0 0 0 0 0 X'
olyw|=]0 =1 0 0o 0o o 0 0 0)]|yw
2y 0 0 1 0 0 0 0 0 0 2w
Zo 0 0 0 0 0 0 1 0 0 Zo
Yo 0 0 0 0 o o0 0 —1 o]y
20 0 0 0 0 0 0 0 0 1){z

The corresponding transformation matrices for the other operations
of the group can similarly be found. In this way one would obtain a
representation of the C,, group consisting of four 3n X 3n matrices.

Exercise 8-6. Verify that the transformation matrices for a given
molecular motion provide faithful representations of the symmetry opera-
tions of the C;, group. Do this for the one-by-one matrices that are
obtained when T, or R, is considered and also for the two-by-two matrices
that are obtained on the basis of (7,,7,) or (R,,R,).

8-7. Reducible and Irreducible Representations

In the preceding section it was shown that representations of small
dimension, such as those involving one-by-one matrices, could be built
up to give any number of representations involving matrices of larger
dimension. Of much more importance is the process by which a large-
dimension matrix representation, such as the 3n X 3n one based on
cartesian displacements, is broken down into representations which
consist of matrices with as small a dimension as possible. Representa-
tions that can be so broken down are said to be reducible representations,
and those which involve matrices whose dimensions cannot be further
decreased are said to be irreducible representations. We will find that
for any given group, although there are an infinite number of reducible
representations, there will be only a few irreducible representations.

Suppose that the set of large-dimension matrices E, 4, B, C, . . .
forms a representation of the group. New matrices can be obtained
from these by what are called similarity transformations. Thus, if
there is a square matrix 8, with an inverse B#~%, matrix multiplications
can be performed to give
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A" = p1AB '
B’ = BB (17)
' = BC8  ete.

The new matrices will now be shown to be also a representation of the
group with A’ representing the group element that A did, B’ the ele-
ment that B did, and so forth. It is necessary to show that if AB = D,
then A’B’ = D’. To do this we substitute the expressions which led
to A’, B/, and D’ into the equation

A'B =D’ (18)
and obtain
B1ABB~'BB = DB (19)
Now since 8 and 8! are the inverse of each other, i.e.,
100
g =EF={o o ) (20)

and since EB = B, one has, from Eq. (19),
B~1ABB = D8 (21)

Now we can multiply both sides of this equation, on the left by 8 and -
on the right by g—*. Since 8~ = '8 = E, one has

AB=1D , (22)

Thus A’B’ = D' is equivalent to AB = D, and the new matrices,
connected to the old ones by a similarity transformation, also form a
representation of the group.

Now it might be possible to find a transformation matrix such that

all the matrices A’, B/, . . . are of the form
(@1) 0 0
g (az) 0
A =
0 0 (as)
(23)
by O o -
B = 0 (bz) 0 c s
0 0 (s) - - - etc.
where ay, by, ¢1, . . . are square matrices of the same dimension, @s, bs, ¢:

are square matrices of the same dimension, and so forth. If such trans-
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formations can be performed, the previous multiplication resuit
AB =D or A'B' =D

becomes, since matrices are equal only if their corresponding elemerits are

equal,

/

a;b; = d1 '

azbz = dz . (24)

ashs = ds .
It follows that a;, by, €1, . . . ; as, by, cs, . . . ; and so forth, also form
representations of the group. Since they are composed of matrices of
smaller dimension than 4, B, C, . . . or A’, B, (', , the repre-

sentation is said to have been reduced by the 81m11ar1ty transformatlon
If it is not possible to find a matrix 8 that will further reduce all the
matrices of a given representation, the representation is said to be
irreducible.

The transformatlon matrices deduced for the C,, and Cj;, point
groups in Sec. 8-3 are irreducible representations. They are, as will be
shown later, the only irreducible representations for these groups. Any
other matrix representation can be reduced to one or more of these
irreducible representations by a suitable similarity transformation.

8-8. The Irreducible Representations as Orthogonal Vectors

We come now to some of the most important properties common
to all irreducible representations. Before proceeding to ‘a general state-
ment of these properties, it might be helpful to illustrate these properties
by reference to the irreducible representations of the C,, and Cs, point
groups.

First it is necessary to define the order of a group as the number of
elements in the group. The symbol g will be used to represent the order
of a group. From the treatment of the C,, and Cs, groups in Sec. 8-3,
it should be apparent that their orders are 4 and 6, respectively.

As the heading of this section suggests, the elements of the irreduc-
ible representations behave like the components of orthogonal vectors.
The orthogonality property requires that, if T:(R) is the matrix which
represents the Bth symmetry operation of the group in the ith irreducible
representation,

S TR)TH(R) =0
R

;IH(R)I‘;,(R) =0 ete. (25)
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Inspection of the irreducible representation table for C,, confirms this
property which, in general, can be represented as

; T«(R)T;(R) =0  fori =j (26)

Furthermore, each representation of the C,, group corresponds to
the components of a vector normalized to a value equal to the order of
the group, ie.,

Y Iy(R)TW(R) = 4
R

Y T(R)T5(R) =4 et @)

R

Let us now see if these orthogonality and normalization properties
also apply to the C;, group where degeneracy occurs and one of the
irreducible representations is & two-by-two matrix. One can test the
orthogonality condition for all the representations only by treating
separately each component of the two-by-two matrix, Thus one can
notice that if the elements of the first representation listed in Table 8-5,
which we will now label as I';, multiply, for example, the first row, first
column elements of the third representation I';, the sum of the products
is again zero. Likewise the sum of the squares of the elements of T’
or of T, gives the value 6, the order of the group. However, the sum
of the squares of any component of the matrices of T's, the entries in the
first row, first column, for example, gives the value 3, the order of the
group divided by 2, for any component.

These results for the Cs, and Cs, groups are examples of an important
general property of irreducible representations. If Ti(R)n. designates
the mnth component of the 7th representation for the I symmetry oper-
ation and T;(R)w. designates the m'n’ component of the jth representa-
tion for the R symmetry operation, the general properties, which have
been illustrated, can be expressed as

z Li(R)mnlj(R)mw =0 4]

N (28)
2 Ly B)mal i B)mww = 0 m#Em,nE
R
and
z I‘i(R)mnI‘i(R)"m = ;! . (29)

R
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where g is the order of the group and [; is the dimension of the ith irreduc-
ible representation.

The proof that these relations are always obeyed by irreducible
representation will not be given here. - It is presented in some detail in
Appendix II of ref. 1.

One important characteristic of the set of irreducible representations
that exist for a point group can be immediately drawn from the fact
that the irreducible representations, or their components if they are
two-by-two or three-by-three matrices, behave as orthogonal vectors
in a g dimensional space. By analogy with two- and three-dimensional
space, it is apparent that one can have only as many orthogonal vectors
as one has dimensions in space. Thus in g dimensional space there can
only be g orthogonal vectors. The four one-by-one representations of
the Cs, group given in Table 8-4 form, therefore, a complete set for this
fourth-order group. Likewise, for the sixth-order Cj, group, the two
one-by-one and one two-by-two matrices, the latter contributing four
“vectors,” given in Table 8-5, form a complete set. One sees that we
now have a proof that there are no irreducible representations other than
those that have already been reported for these point groups. One has
a way of determining when one has found all the irreducible representa-
tions of a group.

Exercise 8-7. Verify that the elements of the transformation matrix
representations of the Cs, group behave like orthogonal vectors. Do the
same for the matrices of the representations of the C;, group.

8-9. Characters of Representations

The characters of the matrices of a representation are defined as the
sums of the diagonal terms of the matrices. It turns out that the
characters rather than the complete matrices can be used for many
important deductions. This fact introduces a considerable simplifica-
tion into the applications of group theory.

The character of a representation of the Rth symmetry operation
is denoted by x(R). The definition of the character can then be written
as

X(R) = E P(R)mnt (30)

m

where T' without a subscript implies a representation that is not neces-
sarily irreducible. If T, is the 7th irreducible representation, one writes

xi(R) = E Fi(R)mm (31)
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We have already seen, in Sec. 8-7, that if a set of matrices that
constitutes a representation is subjected to a similarity transformation
the new set of matrices that is obtained is also a representation for the
group. Now we will show that, although the similarity transformation
changes the matrices, it leaves, if the similarity transformation matrices
are orthogonal and normal, the characters of the matrices unaltered.
[The derivation, involving more matrix manipulation than previous
work, need not be followed through. The student can proceed directly
to the result, Eq. (38).]

We wish to show that if P and @ are matrices related by the similar-
ity transformation

Q = g'Pg (32)
then

Xe = Xp (33)

If the process of matrix multiplication involved in g~'Pg is written
out explicitly, one expresses the ith diagonal element of @ by

Qi = g B VaPr(8)u (34)

Now, since 8 is presumed to be an orthonormal matrix,
BV = (B = Bhr (35)

where g’ indicates the transposed 8 matrix. Equation (34) can now be
written as

Qi = 2 Bx(B)1:Pu ' (36)
)
Finally, the sum of the diagonal elements of @ is obtained as

Z_ Qi = 2 B (81l

1,k,0

=¥ Y [B)u(B)ulPu
"
= 2 8P
k
=Y Pu (37)
E
[The Kroeniker 8, defined such that 8 equals 1 for k = land 0 for k # [,
has been used to express the result of Z (8)#:(8) 1 which corresponds to the

product of two rows of the orthonormal matrix 8].
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"We have now reached the desired result
Xe = Xp : (38)

This important result will be used when we investigate the irreduc-
ible representations that can be obtained from a reducible one. We see
that if the breaking down of the large reducible representation is depicted
by

( 0o 0 o0
0o () 0 o
0 0 () O
0O 0 0 ()

the character,of the partially diagonalized matrix will be the same
as that of the original matrix. Alternatively, one can say that the sum
of the characters of the irreducible representations that can be obtained from a
reducible representation will be the same as the character of the reducible
representation. This result will be of great value.

Inspection of the characters of the representations of the C,, and
Cs, groups will show that the characters, like the representation matrices
themselves, behave as orthogonal vectors. The general expression for
their behavior can be written as

;Xi(R)x,-(R) =0 fori#j (39)
and

; xi(B)xi(R) = ¢ (40)

The proof of these character relations is easily given. We have,
from the results on irreducible representations,

2 Ti(R)mmIi (Rt = 0 fori # 7 (41)
R

2 Ti(R)mnTi(R)mm = ;{ ' (42)
R

where ; is the order of the matrices of the ¢th representation. If the
sums of the diagonal elements are now taken, one maintains the orthog-
onality result of the first expression because of the orthogonality of the
components that are summed when the characters are formed. Sim-
ilarly, the product of the characters of one representation by itself can
be written out, in view of Eq. (29), in terms of the diagonal components
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that are involved as

%[5 retmnimn] 1)

m=¢ R

In this way the result of Eq. (40) is obtained.

The expressions of Eqs. (39) and (40) give properties of the char-
acters of two representations as one goes across a character table, ie.,
one sums over the various operations of the group. It is interesting to
notice also that one can relate the number of irreducible representations
to the characters that appear in the column under the identity element of
the group. This follows from the fact that the character of the repre-
sentation of the identity operation is equal to the order of the representa-
tion. The square of this number gives the number of ‘‘vectors,” as
discussed in Sec. 8-8, that the representation contributes. In view of
the discussion at the end of Sec. 8-8, one can write, therefore,

XBE) +3(E) + - - +xHE) =g (44)

where ¢ is the number of representations in the group.

In almost all group-theory applications, as we will see, it will be
possible to make use of the characters of the representations and the
relations involving the characters that have been obtained here rather
than the representations themselves.

Exercise 8-8. Verify that the characters of the C,, and Cs, groups, given
in Tables 8-4 and 8-6, behave in the manner indicated by Eqgs. (39) and
(40).

Exercise 8-9. Verify that the Ci, and Cs;, group characters behave
according to Eq. (44).

8-10. Classes

One further concept, that of classes of symmetry operations, simpli-
fies group-theory applications. Inspection of the character table for
the C;, group shows that the characters of the representations for Cs
and C? are identical and those for o, o}, and ¢}’ are also identical. The
operations (5 and C? are said to belong to one class of symmetry opera-
tions, and the operations o, o, and ¢, are said to belong to another class.
The identity operation, having characters unlike that of any other opera-
tion, belongs to a class by itself. Similarly, since all four symmetry
operations of the Cs, group have different columns of characters, each
belongs to a class by itself.
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In abstract group theory a class consists of a set of elements, say
P and Q, of the group which, when subjected to the operation

X—1PX and X-1QX

where X is in turn all the elements of the group, gives a result which is a
member of the set, i.e., is P or Q.

This general definition can be applied to C; and C2 to show that they
constitute a class in the group C;,. The following combinations are
investigated, and the operation to which they are equivalent is noted:

E-1C.E = C, E-1CIE = Ct
0210303 = Cs G;IC";Cs = Ca
©)ecs =3 ()it = ¢
p7Cs0, = C% o71C%, = C;

(¢))"1Cs’, = C2 (02)"1C%., = C;
(@) WCwl =C% (o)) 1CW) = C;s

We see that, when C; and C% are subject to a similarity type operation
by all the elements of the group, the result is either Cs or C3. Thus Cs
and C% constitute a class. In a similar way one could verify that E by
itself and o,, ¢}, and ¢! form classes.

When the multiplication of the representation matrices replaces
the corresponding combinations of symmetry operations, the previous
result that a simalarity transformation leaves the character of a matrix
unchanged can be used to deduce that the representations of all members
of a class have the same characters. The matrix of each member of a class
is transformed into another member of the class by at least one of the
transformation matrices. It follows that these two matrices must have
the same character. In this way all members of a class can be seen o
have the same characters for all irreducible representations.

It is this result that allows character tables to include only typical
elements of each class rather than all the elements of the class. The
number of elements in the class is, however, indicated as was done in the
Cs, and Cs, character tables,

The detailed working out of the combination X—!'PX is not usually
necessary in order to decide which symmetry operations belong to-a class.
Geometric consideration will usually be sufficient, and one will find that
rotations such as C; and C? and reflections through similar planes such
as g, a5, o constitute classes.

When the character table is written with the characters for the
different classes exhibited rather than the character for all symmetry
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operations exhibited, the character table is a square array. That this
must be so can be shown from the fact that, if allowance is made for the
number of elements, say 7, in each class, the characters behave as
orthogonal vectors in a space with dimension equal to that of the num-
ber of different classes. If R now denotes a typical symmetry element
of its class, Eqs. (39) and (40) can be written as

02 [Varx(B)[Vrzx;i(R)] =0 fori=j (45)
and all classes B —
OE [V7rexi(R)[Vnexi(R)] = ¢ (46)
all classes

Thus the v/nzx:(R) terms behave as components of orthogonal vectors,
and there can be only as many such vectors as the dimensionality of the
space allows. Thus we conclude that there can be only as many repre-
sentations as there are classes. This conclusion is parallel, it should be
recalled, to the previous one that there can be only as many representa-
tion .vectors, counting one for a one-by-one representation, four for a
two-by-two, and so forth, as there are symmetry elements. It should
also be mentioned that the factors ng are usually placed at the top of the
character table rather than as part of the characters themselves, but
this does not alter the argument given here.

8-11. Analysis of a Reducible Representation

The final aspect of abstract group theory that must be dealt with
before we can proceed to some applications is the question as to whether,
given a reducible representation, there is any convenient way to deduce
what irreducible representations make up the reducible one. In Sec. 8-7
it was pointed out that, in principle, one could find a similarity trans-
formation to convert the reducible representation to a form in which the
irreducible representations appeared explicitly. In practice there is no
convenient way of finding the transformation matrix that accomplishes
this. There is, however, a simple and important procedure for dis-
covering how many times each of the irreducible representations oceurs
in'a given reducible representation.

Since any reducible representation can, in principle, be reduced
to the irreducible representations that it contains by a similarity trans-
formation, which leaves the character unchanged, one can write

x(B) = 3 ax(B) (@)
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. where x(R) is a reducible representation, x;(R) are the ¢ irreducible
representations of the group, and the a;’s are the number of times the
jth irreducible representation occurs in the reducible representation.
We first multiply both sides of this equation by x:(®) and then sum
over all symmetry operations R. In this way we obtain

;x(R)x"(R) = ; _Ecl AGiX;R)YXi(R) (48)

Now the results of Egs. (39) and (40), that
0 fori£j

SxEra® = |0 ot (49)
can be used on the right side of Eq. (48) to convert Eq. (48) to
Z x(R)x:(R) = ag
R
or
1
o=l z X (R)x:(R) (50)

R

Thus, if the characters of a reducible representation are known,
and the characters of the irreducible representations are available from a
character table, the number. of times each irreducible representation
occurs in the reducible representation can be readily calculated.

The above expression requires the summation over all symmetry
operations. It is more convenient to have the corresponding expression
where the summation is over all classes of symmetry operations. For
this one writes
1
a; = - nex(R)x«(R) (51)

Over
all classes

where ng is the number of elements in the class for which a typical
operation is R.

We now have the basic results from abstract group theory and can
proceed to apply them to problems in molecular spectroscopy and
molecular structure.

The methods of application will be illustrated in the remainder of
the chapter with problems based on molecular vibrations. Similar appli-
cations to electronic structure and electronic spectra will be made in
Chap. 11 when these subjects are studied.
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Exercise 8-10. The characters of a reducible representation of the Cs,
group are 4, 0, —2, +2 for the classes of £, (s, g,, and o,. Deduce the
irreducible representations that the reducible representation is made up
of.

Exercise 8-11. Deduce the irreducible representations contained in the
reducible representation of the Cs;, group which has the characters 7, 1,
and —1 for the classes of E, C3, and o..

8-12. The Characters for the Reducible Representation of
Molecular Motion

The effect of the symmetry operations on the motions of a molecule
could be represented by the transformation matrices that show how the
3n normal coordinates (including translations and rotations) are changed
when the various symmetry operations are performed. These trans-
. formation matrices would constitute a reducible representation. The
3n normal coordinates are said to form a basis for the representatibn
of the group. Since each normal coordinate must transform according
to an irreducible representation, or a degenerate set must transform
according to two, three, etc., dimensional representations, the irreducible
representations that make up the 3n dimensional representation are of
particular interest. It follows that it is only necessary to see how many
times the various irreducible representations occur in the reducible
representation to discover how many of the 3n normal coordinates belong
to the various symmetry species, i.e., transform according to the various
irreducible representations. .

We cannot, however, construct the reducible representation on the
basis of the normal coordinates because these are generally initially
unknown (except for the translations and rotations). A helpful result
that overcomes this difficulty is that which states: if two representations
of a group differ only in their basis coordinates and if the coordinates
of one base are linear combinations of those of the other base, the two
representations are said to be equivalent and the characters of the two
representations are equal. (The result is based on the fact that two such
representations can be shown to be related by a similarity transforma-
tion.) With this theorem one can resort to the much simpler procedure
of constructing the reducible representation on the basis of the 3n
cartesian displacement coordinates. Such transformation matrices were
deduced for the H,O molecule in Sec. 8-6. The character of this repre-
sentation, which is found rather easily, will be the same as that for the
representation based on the 3n normal coordinates.
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To obtain the character of the 3n dimensional representation for the
molecule being studied, it is not necessary to write out the complete
matrices. It is only necessary to deduce the elements that appear
on the diagonals of these matrices. To show how this can easily be
done, we again consider the transformation matrices, which constitute
the reducible representation, for H;0. The 3n cartesian coordinate
vectors are indicated as

20

The matrices which describe the transformations by equations of the
type

Ty T
7

Yu Yu
!

2 [7:4
'

Xy . TH'
’ _ | Transformation ,

yf" ’ matrix Yu

ZH; ¥4:44

A Zo
7

Yo Yo

P 20

can be found by inspection of diagrams such as that shown for the
symmetry operation o, in Fig. 8-7. The four transformation matrices
for the H,O molecule are found to be

b

S OO O OO O -
[~ e = =]
OO OO Oo OO
S oo oo+ OC
Do OO~ OOCOCQ
S o O OOoOC OO
COoOHOOOO OO0
O OOCOoOQOCOCOQ
-0 00 OO0 oo
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C,

0 0 0 -1 00 0 0 0
0 0 0 0 -1 0 0 00
0 6 0 0 01 0 0 0

-1 00 0 090 0 0 0
0 -1 0 0 00 0 0 0
0 01 0 00 0 00
0 00 0 0 0 -1 00
0 0 0 0 00 0 -1 0
0 0 0 0 00 0 01

Ty

0 0 01 0 0 0 00

0 0 00 -1 00 0 0

0 0 00 010 0 0

1 0 0 0 0 0 O 0 0

0 -1 0 O 0 0O 00

0 010 0 0 0 00

0 000 0 01 00

0 0.0 0 00 0 -1 0

0 0 0 0 0 00 01

o,

-1 0 0 0 00 0 0O
010 0 00 0 00
0 01 0 00 0 0O
0 00 -1 00 0 00
0 00 010 000
000 0 0 1 0 00
0 00 0 00 -1 0O
0 0O 0 00 010
0 00 0 0 0 0 01

One should first notice that diagonal elements occur only if the sym-
melry operation leaves the position of an atom unchanged. One can deduce
the character of the representation matrix, therefore, by concerning
oneself only with the cartesian displacement vectors of the atoms that
do. not change positions as a result of the symmetry operation. With
this recognition and the fact that the vectors of unchanged atoms in
molecules like H,0 are left unchanged or are reversed and that these
effects lead to +1 and — 1, respectively, along the diagonal, one can write
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down, by inspection of the displacement vector diagram, the result

szlE C: v o,
;—IQ -1 1 3

The sums of the diagonal elements of the complete transformation
matrices given above confirm these values.

One might further notice that simple, general statements can be
made about such characters. When an atom is unchanged in position
as a result of a C, operation, it will contribute a net —1 contribution
to the C; character. Similarly, if any atom is unchanged in position by a
reflection through a plane, it will contribute a +1 to the appropriate
o character. Furthermore, if a molecule has a center of symmetry and
an atom is situated at this center, its position will be unchanged by
inversion at the center of symmetry, all three cartesian coordinate
vectors will be reversed, and a contribution of —3 will be made to the
character. Slightly more difficult to visualize are the characters con-
tributed by atoms when, as a result of a C,, C,, and so forth, rotation
their positions are unchanged. Figure 8-8 shows the geometry that leads
to the transformation matrices and the contributions to the character in
such cases.

FIG. 8-8 The contributions for each unshifted atom, i.e., each atom on the axis, to the
character of the 3n dimensional representation for the operations C, and S..

VA z
¢
Az I
Rotation by
g = 360
=~ Y _ P Y
“y T -
X' <
. 'z -,
X X

x cosf~sing O\ [x
y]|=| sinf cosd O]ly
z 0 1] 1/iz

X (Rotation by gy = (1 +2 c0s 8)

x(RMalion by 8 and reflection through plane perpendicular to axis) =(- 1+ 2cos 0)
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With these generalizations we can summarize the contributions that
unshifted atoms make to the characters of the reducible representation
of order 3n. This is done in Table 8-8. With these recipes, one can
readily write down the characters of the reducible representation without
making the cartesian displacement diagram and visualizing the effect
of the various symmetry operations.

Exercise 8-12. Deduce the characters of the 3n dimension representation
for molecules of the type CH,X.

8-13. Number of Normal Modes of Various Symmetry Types

In the previous section it was shown that the 3n dimensional repre-
sentation for a molecule could easily be set up, and in Sec. 8-11 it was
shown that the number of times the various irreducible representations are
contained in a reducible representation could be deduced. These results,
along with the fact that each normal mode, including translation and
rotation as well as vibration, transforms according to one of the irreduc-
ible representations, allow the number of normal modes of the different
symimetry types, i.e., belonging to the different reducible representations,
to be determined.

The H;0 example can again be used. The characters of the irreduc-
ible representations are given in the character table, Table 8-4.

The characters of the reducible representation were given in the
previous section as :

’

|E C o o

x]9 -1 1 3

Now one calculates the number of normal modes that transform
according to the first representation, i.e., belong to the symmetry

TABLE 8-8 Contributions to the Characters
of the 3n Dimensional Reducible Representa-
tion per Unshifted Atom

Operation Character contribution
E 3
- 1
i -3
Ce -1
ci, C: 0
c Gk 1

Cy Ch 2
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type A, by application of Eq. (51). Thus

a=1 Y nx®u®
9 Over
all classes
=39 —-1+1+3=3
Similarly,

a=19—-1-1-3]=1
a; =39 +1+1-31=2

and 52)
au=39+1—-1+4+3=3

These results can be summarized by saying that the reducible
representation contains representations of the symmetry types according
to

If the assigned translations and rotations, indicated in the last column
of Table 8-4, are removed, one has

Tup = 2A1 + B, (54)

There are, therefore, two vibrations of the symmetry type A; and one
of the symmetry type B.. One can verify that the displacements dis-
played foer H,O in Fig. 6-3 do, in fact, transform according to these
symmetry types.

In a similar way one can classify the normal modes of any molecule.
The importance of such classifications is perhaps more apparent for
molecules of the type CH;X because of the previous discussion of rota-
tion-vibration band contours which pointed out the great difference, i.e.,
parallel and perpendicular bands, of the different types of vibrations.

Exercise 8-13. Determine the number of normal vibrations of the vari-
ous symmetry types for the molecule CH;CL

8-14. The Infrared Active Fundamentals

It is apparent that some vibrations of symmetric molecules, such as
the symmetric stretching mode of CO,, ie., <~ O=C=0—, have no
oscillating dipole moment and therefore cannot interact with electro-
magnetic radiation. Furthermore, the necessarily zero oscillating dipole
moment is a result of the symmetry of the molecule and the symmetry
type of the vibration. It is possible, as we will now see, to decide for
which symmetry types the fundamental transition will be active, i.e., for
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which symmetry type the oscillating dipole moment will not necessarily
be zero. '

As was pointed out in Sec. 4-5, a fundamental vibrational transition,
from v = 0 to » = 1, can occur with the absorption of electromagnetic
radiation in the vibrational energy-level pattern corresponding to the
normal coordinate Q; only if one of the integrals

fo(Q)pb1(Q:) dr
f ¢0(Q5)#u¢1(Qi) dr

or

So(Q) 1 (Q:) dr
is nonzero. A nonzero integral leads to a nonzero value for integrated
absorption coeflicient, as indicated by Eq. (4-46). Since this band
intensity is an observable quantity, it must have the same value for all
indistinguishable orientations of the molecule. It follows that for any
of the three transition moment integrals to have a nonzero value, the
value of the integral must be unchanged for all symmetry operations on the
molecule. It is now necessary to see the effect of symmetry operations
on the quantities in the integrals and then on the complete integrals.

The dipole components can be represented by the charge separations
shown in Fig. 8-9. It should be clear that these dipole components ‘will
transform under the various symmetry operations in exactly the same
way as do the displacement arrows representing 7., T,, and T, It
follows that the representations T'u,, I'y,, and Ty, will be the same as the
representations I'r,, I'r,, and T'r,.

The vibrational wave function for a molecule can be described as

Yo = 0(@1)e(@2)0(Qs) -« * ©(Qsn—s) (65)

For the ground state, where all vibrational quantum numbers are zero,

FIC. 8-9 The dipole-moment vector of
a molecule and its components along the

- cartesian axes.
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one has

Vo=t = 2o{Q1)0o(Q2)00(Q3) * * + ¢o{ Qsn—s) (56)

For harmonic oscillator wave functions this total wave function has the
form, in view of the wave functions of Eq. (2-45),

‘l/(v=0) = const [e—‘llQl’e—"Ith L _e—‘l(an-a)Q’(a»—u)] (57)

where vy, = 2wv./h. Now the effect of a symmetry operation on ¥,
can be investigated. For nondegenerate vibrations Q; — =+ @, and since
only the squares of @’s oceur in the expression, the nondegenerate terms
in ¥,—o are unchanged by the symmetry operation. Degenerate vibra-
tions, a doubly degenerate pair, for example, have the same value of v,
and therefore of v;. A degenerate pair contributes terms of the type
e’ = ¢l +e» Tn Sec. 6-4 it was shown that a symmetry
operation on a degenerate set of vibrations left the value of Q% 4+ Q7
unchanged. It follows, therefore, that all symmetry operations on ¥y—o
lead to ¥, 1.e., the ground vibrational state is tnvariant under all symmetry
operations.

The wave functions for a molecule in which the wave function cor-
responding to @ is excited to the v = 1 state is of the form

‘Pu;=1 = (cOnSt)(Qi) (¢v=0) (58)
which follows because the v = 1 wave funection is of the form
@vm1 = (const)’ Qie—re?

In this case, where »; = 1, the wave function for the molecule transforms
according to the normal coordinate Q;. Similarly, if a degenerate pair of
vibrations are excited to the » = 1 level, the vibrational wave function
of the molecule will transform as does the degenerate pair of normal
coordinates. '

These results can now be summarized according to the effect of the
symmetry operation R as

Ha 5 Ty (R)u-

by 5 T'r,(R)uy

#e = Or,(R)us (59)
Vomo = Yomo
Yo = TaB)Womr

The result of the B symmetry operation on the transition-moment
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integrals can, therefore, be written as

[V amttiaosmr dr —> g (R)Ta,(R) [Womottatbumr dr (60)

and so forth. The previous result that all symmetry operations must leave
the integral unchanged if it has a nonzero value means that Ty (R)Tq(R)
must be unity for each and every symmetry operation.

The normalization and orthogonality characteristics of representa-
tions show that only if I'r, and Tg, are identical representations can the
product of Ty (R) and T¢,(R) be unity for every R. It follows that
the transition moment integral for the v = 0 to v = 1 transition for a given
normal coordinate can be different from zero only if the normal coordinate
belongs to the same symmetry species as T., Ty, or T..

With this result and an analysis of how many normal coordinates
belong t6 the various symmetry species, one can determine the number
of infrared active fundamental transitions that can occur for a molecule
of a given symmetry. The argument can, it should be mentioned, some-
times be turned around so that the geometry, and therefore the symmetry,
of a molecule is determined from the number of infrared absorption bands
that are observed.

(It will only be mentioned that whether or not a fundamental
transition can lead to a Raman shift can be deduced in a similar manner.
The requirement for a Raman shift is that at least one of the integrals
of the type

Jo(Q0)azaa(Q:) dr J¥o(Q:) o1 (Qy) dr ete.
be nonzero. Furthermore, the polarizability components as., o, etc.,
can be shown to transform as the produet of the representations for the
translations indicated in the subscript on «. It is for this reason that
character tables sometimes show the symmetry species of T,T., T'.T,, etc.
In a manner similar to that used to investigate transition-moment inte-
grals one can show that for a fundamental transition to be Raman active

the normal coordinate must belong to the same symmetry species as one
of T.T., T.T,, and so forth.)

Exercise 8-14. Which of the CH;Cl vibrations will lead to absorption
bands corresponding to fundamental transitions, and which of these will -
be parallel and which perpendicular vibrations?

8-15. The Symmetry of Group Vibrations

Many molecules have groups of atoms that vibrate rather inde-
pendently of the remainder of the molecule. The hydrogen atoms, since
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their mass is usually so much less than that of the other atoms of the
molecule, often lead to such vibrations. It turns out that in such a case
the vibrations of the molecule can be treated, or at least visualized, in
terms of separate vibrations of the molecular skeleton and vibrations of
the hydrogen atoms of the molecule. This separation is of great aid
in assigning the observed infrared absorption bands to normal vibrations
of a molecule. A discussion of the molecule CCl;—CH,—CCl; will
illustrate the procedure.

The molecule probably belongs to the Ce, point group. Let us first
calculate the types of the vibrations of the molecule without the two
hydrogen atoms. The characters of the reducible representation for
this nine-atom residue can be worked out, with the aid of Table 8-4, to be

IE C. K& o,

x|27 -1 1 5

The number of vibrations of the different symmetry types of this heavy-
atom fragment can now be calculated as

=327 —1+1+4+5 =8
@ =327 ~1—-1-51=5
a; =3274+14+1-5]=6

=127 +1—145="8

(61)

Removal of the translations and rotations shows that the representation
for the vibrations is composed of

T = 7A1 + 4A2 + 4Bl -+ 632 (62)

The same treatment with the entire molecule, i.e., including the two
hydrogen atoms, gives

Tuw = 9A1 + 5A2 + 631 + 7Bz (63)

The additional two hydrogen atoms introduce, therefore, vibrations of
the types

T atoms = 2A1 4+ A; + 2B, 4 B, (64)

(This same result could have been obtained by writing down the con-
tributions to the reducible representation that the two hydrogen atoms
make and then resolving this representation into the irreducible repre-
sentations that it contains.) '

Pictures can now be drawn to represent the six hydrogen vibrations.
Exact indications of how the atoms move in the normal coordinates can-
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not be made without the lengthy calculations that will be introduced
in the following chapter. It is, however, helpful to recognize that each
hydrogen atom introduces one vibration that is essentially a C—H
stretching vibration and two vibrations that are essentially bending
ones. With this approach the six diagrams of Fig. 8-10 can be drawn
for the methylene vibrations. These vibrations can be expected to occur,
more or less disturbed and altered, in any molecule that contains a

CH; group. In a similar manner one can represent the vibrations

characteristic of a CH; group. When such group vibrations are recog-
nized, it is often possible to reach an initial understanding of some of the
absorption bands of the absorption spectrum of quite complicated mole-
cules containing CH, and CH; groups.

FIG. 8-10 Vibrations of the CH; group classified according to symmetry. The form of
the actual vibrations and the frequencies of the fundamental absorption bands depend
somewhat on the nature of the molecule contdining the CH; group.

A,(CH, twisting)
¥ =1,270cm—!

A,(CH, bending)
7 = 1,460 cm—1

A, (CH stretching)
y=12870cm—1

B,(CH; wagging)
v =1,330cm—1

B,(CH, rocking)
v = 800cm—!

B, (CH stretching)
v = 2,950cm—!
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Exercise 8-15. Analyze the symmetries of the vibrations of a —CH;
group, and draw diagrams to represent these vibrations. Classify the
diagrams according to symmetry type and bending or stretching nature.
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o CALCULATION OF
VIBRATIONAL FREQUENCIES AND
NORMAL COORDINATES OF

POLYATOMIC MOLECULES

It has been shown in Chap. 6 that certain’hatur%l, or normal, vibrations
will occur in ‘a many-particle system and that these normal vibrations
are characterized by particle motions that are in phase and have the
same frequency. In a molecular system each normal vibration leads
to a vibrational energy-level pattern and, if the selection rules permit, an
absorption band corresponding to the » = 0 to » = 1 transition in that
energy-level pattern will be observed. Furthermore, weaker bands, due
to overtones and combinations of fundamentals, may be observed.

For a diatomic molecule only one vibration occurs, only one vibra-
tional energy-level pattern exists, and only one fundamental transition
is observed spectroscopically. The frequency of this transition was, in
Chap. 2, related to the force constant and the reduced mass of the mole-
cule. It is now necessary to see how the frequencies of the 3n — 6
fundamental transitions of a polyatomic molecule are related to the force
constants and atomic masses of the molecule. We will also be interested
in determining bow the molecule vibrates, i.e., what the form of the
normal coordinate is, in each one of the normal vibrations. When all
this can be accomplished for a particular molecule, its infrared absorption
spectrum, which may look like those of Figs. 2-1 and 7-1, is said to be

analyzed or understood.
202
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The treatment of diatomic molecules in Chap. 2 anticipated the use
of Lagrange’s equation rather than the f = ma relation in calculations
for polyatomic molecules. With this approach it is necessary to set up
expressions for the kinetic energy T and the potential energy U of the
molecule. After an initial discussion of how this can be done for a poly-
atomic molecule, the form of the equations that result from substitution
of these functions in Lagrange’s equation will be considered. Following
consideration of these general features, some typical, simple examples
will ‘be worked through. Finally, the more systematic methods devel-
oped by Wilson for performing such calculations will be outlined.

9-1. The Kinetic-energy Expression for a Polyatomic Molecule

The kinetic energy that is here of interest is that due to the vibrations
of the atoms of the molecule relative to each other. This contribution
to the kinetic energy of the molecule can be treated in terms of coordinates
that measure the positions of the atoms relative to a set of axes that
move with the molecule as it undergoes translational and rotational
motion. If the jth atom is located, in terms of these axes, by ;, ¥;, and
2;, the kinetic energy due to the vibrations of the molecule can be immedi-
ately written down as

n
T =3 Y m@}+ 92+ 2) €]
=1
This expression is the basis for the treatment of kinetic energy in vibra-
tional problems. One should note that the orthogonality of the cartesian
displacement coordinates results in an expression that contains squared
terms and no cross products.

It is important to remember that a motion described as a vibration
must not involve a net translation or rotation of the molecule. This
requirement is imposed by requiring that no movement of the center of
gravity of the molecule and that no angular momentum be imparted to
the molecule by the velocity components #;, ¥; and Z;. In this way the
kinetic-energy expression of Eq. (1) can be used along with the relations

E mik; = 0 E miy; = 0 2 szJ =0. (2)
=1 i1 i1 _

and ’
Z m;(yiz; — zy;) = 0 Y mi(ed; — aidy) = 0

-,
-

=1
' 3)
mi(zy; — yid;) = 0

i L)

.
[
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(The separation of vibration from translation and rotation suggested
here is treated in a more rigorous manner in ref. 1.)

9-2, The Potential-energy Expression for a Polyatomic Molecule

The potential energy of a molecule is a function of the distortion
of the molecule from its equilibrium configuration. It follows that
displacement coordinates which show the change in the geometry of a
molecule from its equilibrium configuration will form a suitable base for a
potential-energy expression. This might be done in a number of ways.
One approach would be to base the description of the geometry on the
changes, or;;, from the equilibrium value of the distances between the
nuclei 7 and j. With this coordinate system and the harmonic-oscillator
approximation that assumes it is sufficient to keep only the quadratic
terms in the potential-energy function, one might write

U=14 Y k) @
1#;}_1
For H—-O—H’, for example, this would lead to the potential function

- U = $kno(6rro)? + $kuo(8rwo)? + tkan (dran’)?
+ kHo,H’o(5THo) (57‘3'0) + kHo,Hﬂ'(57‘Ho)(57‘HH’)
+ kao,nﬂ'(ﬁrn'o)(afﬂn’) (5)

where the fact that kxo = kao has been recognized.

Such formulations, as Eq. (5), of the potential-energy function,
while complete, are seldom satisfactory. Many moére k;; parameters are
introduced than can be evaluated, except in favorable cases, from experi-
mental data. Thus, for HyO there would be four force constant terms
in the potential-energy function, and these could not be determined
from the 3n — 6 = 3 fundamental transition frequencies that are
observed spectroscopically. It is necessary, therefore, to attempt to
find a way in which the change in the potential energy of the molecule
as the molecule is distorted ean be deseribed without recourse to this
most general quadratic potential function expression. Two different
points of view as to the dimensions of the molecule that are most impor-
tant in determining the potential energy have been used to approach
this goal. These ideas led to the early use of the central force field,
. generally favored by physicists, and the valence-bond force field, more
frequently used by chemists.

The central force field assumes that the change in potential energy
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that occurs when a molecule is distorted from its equilibrium position
can best be described by terms in the potential-energy expression, each
of which involves a force constant and a square of an internuclear dis-

tance. Thus, for H H’ the simple central-force-field expression for
the potential energy would be
U= %kno(&’no)z + 7},7‘"?110(5711'0)2 + %kﬂﬁ(arﬂﬁ’)2 (6)

where érmo, 0rmo, and dram represent changes from the designated equi-
librium internuclear distances. The assumption of a central force field,
therefore, reduces the number of terms in the description of the potential
energy of the H,O molecule to two, i.e., ko and kus.

The valence-bond force field assumes that the potential energy of a
distorted molecule can best be described in terms of the changes in
length of chemical bonds and changes in angles between chemical bonds
from their equilibrium values. With this approach one would attempt
to describe the potential-energy function of H,O by the expression

U = 3kuo(87a0)? + Skuo(dro)? + 3ka(d)? )

where da is the change in the angle between the two bonds from its
equilibrium value and, as before, drao and drxo are changes of the HO
and H’O bond lengths from their equilibrium values. Again only two
force constants appear in this simplified potential-energy expression.
[Frequently one writes the final term of Eq. (7) as 1k, (roda)? so that k.,
like kmo, will have the units of dynes per centimeter. The two force
constants k, and k&, are related by &k, = k,/r3.]

As we will see later in the chapter, the absorption band frequencies
corresponding to the fundamental transitions of H,O can be used to
deduce values of the constants in the potential-energy expression. In
fact, one can determine the two force constants in the previous potential-
energy expressions so that the calculated frequencies are close to two
of the observed absorption band frequencies. The success of the poten-
tial function can then be judged by how well the calculated value of the
third frequency agrees with that observed. When such calculations are
performed it is clear that neither simplified potential function is com-
pletely satisfactory. The results suggest, however, that the valence-
bond field is usually the preferable approach to a satisfactory potential
function.

One can, if the available spectroscopic data warrant, add additional
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quadratic terms to improve on the simple force fields. Thus one might
add a bond stretching-angle bending interaction constant to the simple
valence-bond potential and write

U = }kno(drno)? + 3kmo(dreo)? + 3ka(da)?
+ $kno,o(8a 6rxo + b Srwo) (8)

This function will certainly provide a better description for the way in
which the potential energy varies with molecular distortion. TUnless,
however, one makes use of the spectra of isotopically substituted species,
there is no way of verifying its success.

The significance of the various force constants can best be seen by
determining the force that would act to restore a bond distance or angle
to its equilibrium distance. Thus, one might investigate the force
acting to restore the angle between the bonds of H.0 to its equilibrium
value and obtain

i)
—_ a———(g!) = ku(aa) + %kﬂo,a(aruo -+ 57'310)
9

One sees that the added terms allow for a restoring force to act on angular
displacements, not only as the result of these displacements, but also
as a result of changes in the bond lengths from their equilibrium distances.
Furthermore, it seems reasonable, and turns out to be so, that interaction
terms, such as kno,. should generally be small and need not always have
positive signs.

Restoring force on éa =

Exercise 9-1. Write expressions for the potential-energy function for
NH; on the basis of (a) the simple valence-bond force field and (b) the
simple central force field.

Exercise 9-2, Draw a diagram showing a displacement of the atoms
of the H20 molecule from their equilibrium positions that would lead
to a calculated increase in the potential energy that would be different
for the simple valence-bond and central-force-field approximations.

Finally, it should be mentioned that a potential function, based on
what is called a Urey-Bradley field, is now often used when fairly simple
molecules are dealt with and several different isotopically substituted
species can be studied. This field combines the features of both the
central force field and the valence-bond field. It has, therefore, terms
involving the distortion of chemical bond lengths and angles and also
terms depending on the distances between nonbonded atoms.
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9-3. Use of Lagrange's Equation in Molecular-vibration Problems

The motion of particles constrained by certain forces, i.e., subject
t0 a particular potential-energy function, can, as pointed out in Chap. 2,
be determined by application of Newton’s f = ma relation or, more
conveniently, by Lagrange’s equation. In the later method, Lagrange’s
equation is applied to each coordinate needed to describe the system.
If a typical coordinate is ¢;, one obtains the sth equation as

dfoT\ , oU _
2 ()30 a0

For a vibrating molecule there will be, as we will see, 3n — 6 such equa-
tions. The set of these equations can be solved for the 3n — 6 vibra-
tional frequencies and modes of vibration.

In order to apply Eq. (10) to a system, it is necessary that both
T and U be expressions involving the same set of coordinates. This
requirement creates considerable complexity in molecular-vibration prob-
lems since, as we have seen in the previous two sections, it is convenient
to set up 7 in cartesian displacement coordinates and U in what are called
internal coordinates, i.e., bond stretching and either angle bending or
internuclear distance type coordinates. Thus, if By, Ry . . ., Rans
represent the internal-displacement coordinates, i.e., the coordinates
which describe the displacements of the atoms from their equilibrium
internuclear distances and the bond angles from their equilibrium values,
and the cartesian displacement coordinates are represented by i, s,

., Zsny ODne usually sets up the expressions

3n—6

T=1% 2 myi} (11)
f=1
3jn—6

U = % kiniRj . (12)

1

-
L
Ll

(The values of k,; will, of course, generally be unknown at the beginning
of the calculation. They generally are evaluated such that the observed
frequencies are obtained.)

To proceed from Egs. (11) and (12) one must be able to express
either the R’s in terms of the z’s or the z’s in terms of the R’s. The first
procedure, as we will see when an example is worked out in the following
section, is generally easier to set up since equations of the type

R = f(zy, . . . ,Ts0)
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can often be immediately written down. Transformation of Egs. (11)
and (12) to cartesian coordinates, of which there are 3n, leads, however,
to 3n equations when Lagrange’s equation is applied. In molecules
of any complexity it is usually better to obtain, by one means or another,
transformations of the typex; = fi(Ry, . . . ,Rs.—s) and to proceed tosolve
the problem in terms of the 3n-— 6 internal coordinates. To illustrate
Jhow this can be done, a specific example will be worked out in the follow-
ing section by this approach. It is true, however, that even 3n — 6
equations become difficult to handle, even for fairly small molecules, and
solution by these methods becomes rather troublesome. More syste-
matic ways of handling the problem will be introduced later.

9-4. The Stretching Vibrations of a Linear Triatomic Molecule

A suitable example to illustrate the discussion of the previous sec-
tions is that which considers motion of a linear triatomic molecule of the
type @—®@—®, i.e., HCN, OCS, and so forth, along the axis of the
molecule. The 3 degrees of freedom along this axis will lead to two
vibrations, which will involve stretching of the bonds, and one transla-
tion. The more general problem of a three-dimensional molecule will
differ only in complexity.

The potential energy is best expressed in terms of changes from the
equilibrium values of the distances between the atoms of the molecule.
If the equilibrium bond lengths are denoted by ¢, and %, and changes
from these values are denoted by ér1; and érss, the potential energy can
be written, in the simple valence bond approach, as

U= gkl(m'lz)z + %k2(57'23)2 (13)

More generally we will use R’s to indicate internal displacement coordi-
nates, and if we let R, represent dr;; and R, represent 8793, the potential
energy function is written as

U= EklR% + %I@R% (14)

The kinetic energy expression can be immediately written with
respect to a set of axes fixed in space. If 2, x5, and x; represent the
positions of the three atoms along the one-dimensional line of the molecule,
as indicated in Fig. 9-1, the kinetic energy for the one-dimensional prob-
lem can be immediately written down as

T = im} + dmyd? + imgit (15)
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3

We must now proceed to obtain expressions of the type

Ty = fx(Rl,R2)
@2 = fo(R1,Rz) (16)
i3 = f3(Ry,Re)

so that the kinetic energy expression of Eq. (15) can be written in terms
of the internal coordinates B; and B;. The two types of coordinates are
related by the expressions.

0rie = By = (X2 — 1) — 112 a7
and
Orgs = Ry = (x5 — 22) — 1y . (18)

Furthermore, since r{, and rJ; are molecular properties that are not time
dependent, the time derivatives of Egs. (17) and (18) are

Ry = &y — @&, (19)
Ry = &3 — s (20)

The ease with which these equations, of the type R = f(#ifs, . . .),
are written is typical, while some further effort, as will be seen, is required
to obtain the desired expressions which are of the type & = f(RiR: . . .).
In the convenient matrix notation, Eqgs. (19) and (20) can be written as

. T
()-Co 4 D= e

I3
One cannot immediately solve Egs. (19) and (20), or Eq. (21), for &y, s,
and 3 in terms of B; and R, because of the occurrence of three cartesian
coordinates and two internal coordinates. In the matrix expression, one
sees this in the impossibility of taking the inverse of the nonsquare
matrix. The desired inverse relations can be obtained, however, if one
imposes the condition that the motions to be studied be vibrations and,
therefore, that no net linear momentum be involved. Thus one has the

FIG." 9-1. The location of the

" atoms of a @—@—@ type ._H

molfecule moving -in one-dimen- —

T f‘ T
sional space by means of a set ﬂ X, X, X3
of axes fixed in space. —
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additional relation
Mady + Moty + Maits = 0 - (22)

This expression allows, with Eqgs. (19) and (20), or Eq. (21), the expres-
sion for &, &2, and #; in terms of R, and R, to be obtained. In matrix
notation one can add this additional relation to give

Ry -1 1 0\ /i, '
R)=| 0 -1 1 )|, (23)
O my Mo ms 3.:3

Now we can take the inverse of the square matrix to get, with the notation
M = m; + me + m;, the desired result

__(m2 + my) —-m; 1
, M M M .
% my —mgy 1 I-Zl
s, my my + me 1 0
M M M

or one can obtain, by means of the necessary algebraic manipulations, the
algebraic equations equivalent to this:

_ (mz + ms) Rl _ mng

M M
g = SR - TR, (25)
123 —MRl—l-f,n_l]—#Rz

Substitution of these expressions into Eq. (15) for T gives, after rearrange-
ment,

T = —+ 2mz'm3 + '”L‘z + m1m3)R

231 (m3

2M2 (2m3 + 2m1m;, + szM3)R1R2

m32 (m2 + 2mymy + m? + momg + mlms)R2 (26)

+ 5ap

This expression for T together with

U = §k:R3 + 3koR3 @7)
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leads, when Lagrange’s equation is applied successively to R, and R», to

]% (m% 4+ 2moms + mi + mymy + mymy) K,

+ %lll-’ 2m: + 2mims + 2m2m3)R2 + kR =0 (28)

and
M"ii (m% + 2mims + m? + mams + myms) By

+ 5’% (2m3 + 2mms + 2moma) By + kaRy = 0 (29)

One can again see if solutions of the type

R, = A, cos 2xut

and (30)
R, = A; cos 2avt

exist for this pair of equations. Substitution of these trial functions
and their second derivatives in Eqs. (28) and (29) leads to the expressions

— 4722 7 (m3 + 2mamy + m2 4 momy + mams) + ki | A,
M

- [41!'21'2 it (2m§ + 2m1m3 + 2M2M3)] Az = 0

2M?
and 31
- [4'”2,;2 2"}:{‘2 @m? + 2mym, + 2m2m3)] A,
+ [—47r2v2 ]—75—: (m2 +-2myms + m? + mams + mym;) + kz] A, =0

Again, nontrivial solutions il exist for the A’s only if the determinant
of the coefficients is zero, This 2 X 2 determinantal equation leads, on
expansion, to a quadratic in »2. The two roots of the equation (only
positive values are appropriate for ») give the desired frequencies.

It is now perhaps better to consider a particular case. If, for exam-
ple, one were studying HCN, one would know from spectroscopic studies
that the frequencies of the absorption bands corresponding to the two
stretching modes are 2,089 and 3,312 cm—!. ~ One can now choose numer-
ical values of k; and %, which, when ingerted in the determinantal equa-
tion arising from Eq. (31) along with the values of the atomic masses,
yield roots of the equation with frequencies corresponding to the observed
values of 2,089 and 3,312 cm=!. In this way one deduces that the force
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constants for the bonds in HCN are

kac = 5.8 X 10° dynes/cm

kew = 17.9 X 10° dynes/cm (32)

Exercise 9-3. Verify that the force constants of Eq. (32) lead, when sub-
stituted in Eq. (31), to the observed stretching frequencies of the HCN
molecule.

Exercise 9-4. Calculate the positions of the absorption bands due to
the stretching vibrations to be expected for DCN.

Frequently one must make the calculation in this direction, i..,
deduce values of the k’s to fit known frequencies. Sometimes, however,
one can take force constants from some malecules and carry them over
to other molecules and thereby reduce frequencies from a calculation
of the type illustrated here.

Tt remains for us to see how a molecule, again the HCN example can
be considered, vibrates in the vibrational modes that have the frequencies
used in the calculation. One needs, therefore, the relative values of 4,
and A, that solve the set of equations, Eq. (31), when »is 2,089(3 X 10%)
and » is 3,312(3 X 10%) cycles/sec. The relative values of Ay and A,
and thus the form of the vibrations, can be immediately obtained by
rearranging Eq. (31). (More generally one takes the ratio of the cofac-
tors of the determinant formed by the coefficients of the A’s.) For the
HCN example one has

For 7 = 2,080 cm~!  A;:4, = 0.405:1.00 (33)
~and
For 7 = 3,312 cm™! Ay A, = 1.00: — 0.137 ' (34)

One can recognize that the first vibration is predominantly one of C—N
stretching while the second is predominantly one of C—H stretching.

Exercise 9-5. Draw diagrams illustrating the displacements of the
atoms of HCN in the two stretching modes. Do this by attaching
arrows to the atoms such that no net translation is given to the molecule
and so that the relative amplitudes given by Egs. (33) and (34) are
obeyed.

Exercise 9-6. Deduce relative displacement amplitudes and draw suita-
ble diagrams for the two stretching vibrations of DCN.

Exercise 9-7. Consider the basis for the fact that some calculation was
necessary to draw the diagrams of the previous two exercises, whereas in
Exercise 6-3 the corresponding vibrations of the CS; molecule could be
drawn with less calculation.
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Exercise 9-8. The fundamental transitions of the stretching modes of
OCS lead to absorption bands at 2,050 and 863 cm~. If a simple poten-
tial function like that of Eq. (19) is assumed, what values of the stretching
force constants for the C=0 and C=S bonds are calculated?

Calculate the relative distortion amplitudes for the two bonds in each
vibration, and draw diagrams to represent the nature of the vibrations.
Exercise 9-9. The fundamental stretching mode transitions of the CO.
molecule correspond to frequencies of 1,388 and 2,349 ecm~! (the former is
not infrared active). By the procedure outlined in Sec. 9-4, obtain a
value for the C=O0 force constant from these data (a) on the basis of a
potential function like that of Eq. (13) and (b) on the basis of a potential
function that includes a cross term between the two bonds of the
molecule, :

The above examples, i.e., solution for the stretching modes of a
inear X-Y-Z type molecule in internal coordinates, illustrate the pro-
cedures that can be used in the general case. It only needs to be men-
tioned that, when a more than one-dimensional problem is considered,
the solution will require the imposition of zero angular momentum as
well as zero linear momentum. Thus one imposes, in the general case,
the conditions of Egs. (2) and (3).

It should be apparent from the simple example treated here that
the analysis of the vibrations of a molecule with many atoms will involve
the solution of equations of high order. This is particularly troublesome
when one knows the frequencies and must determine what force constants
lead to these frequencies. Considerable simplification results, fortu-
nately, when molecules have elements of symmetry. Some of these
features will now be considered. '

9-5. Use of Symmetry in Vibrational Problems

The determination of the relation between the force constants and
the vibrational frequencies of all but the simplest molecules is frequently
feasible only ‘when the simplifications that result from the symmetry
of the molecule are recognized. For example, the vibrational problem
of benzene involves 3n — 6 = 30 internal coordinates, and one would
be led to a 30 X 30 determinant of the type that would arise from Eq.
(31). On the other hand, if full use is made of the symmetry of the
benzene molecule, the problem factors down to one 4 X 4,0ne 3 X 3, and
several 2 X 2 and 1 X 1 determinants. The caleulation is then per-
fectly feasible. .

The basis for the simplifications that symmetry introduces is, as
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mentioned in Sec. 6-4, the necessary absence of cross terms in the kinetic-
and potential-energy expressions if these expressions are set up in terms
of symmetry coordinates. These coordinates consist of linear combina-
tions of the cartesian or internal-displacement coordinates. The com-
binations are such that each symmetry coordinate is symmetric or anti-
symmetric with respect to each symmetry operation. One recalls that
if S; and S, are symmetry coordinates that behave differently with respect
to any symmetry operation, perhaps S;— S; and S, — —38, for a par-
ticular operation, then the eross term 8:8, must not occur in T and a term
involving S:S, must not oceur in U. If such cross terms did occur, the
symmetry operation would convert 8.8, —» —8:8, and 8;S, — —8.S, and
would alter the kinetic and the potential energies of the molecule. This
would be contrary to the conclusion reached in Sec. 6-4 that a symmetry
operation cannot result in any change of the kinetic or potential energy
of a molecule. The effect of the absence of cross terms between elements
of different symmetry types means that the determinant resulting from
application of Lagrange’s equation to the symmetry coordinates will
have blocks of zeros in the off-diagonal positions that correspond to the
cross-term positions between the different symmetry coordinates. Thus
the determinant has the form ‘

7] 0 0 0
0 7] 0 0
=0 (35)
0 0 7] 0
0 0 0 7]

where each shaded block will be a subdeterminant of order equal to the
number of coordinates of that symmetry type. Since the total determi-
nant will be zero if the determinant of any diagonal block is zero, each
block can be set equal to zero and can be solved for the vibrational
frequencies of that symmetry type. This reduction in the order of the
determinants to be solved is very great in the case of molecules, such as
benzene, of high symmetry.

The use of symmetry coordinates can be illustrated by the example
of the ,0 molecule. The 3n — 6 =3 internal-coordinate problem can
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be expected to reduce, according to the discussion of Seec. 8-13, to one
involving two totally symmetric coordinates, of type A,, and one anti-
symmetric coordinate, of type Bs.

We consider the H,O molecule of Fig. 9-2, and we set up coordinates
which not only ha,ve the symmetry appropriate to the normal coordinates,
ie., two A; and one B,, but also are such that they involve no translation
or rotatlon of the molecule. Suitable coordinates are represented dia-
grammatically in Fig. 9-2 by the three figures. The proper relative
lengths of the arrows in each figure can.be designated by indicating that
displacement according to S, consists of motion of H and H’ by S: units
in the directions shown; displacement according to S consists of motions
of H and H’ by 8, units; and O by 2ms/mo units as shown; and so forth.
The relative atomic motions that constitute S 1 Sz, and S; are then
compatible with the symmetry requirements and involve no translation
or rotation. These coordinates are convenient for solvmg the vibrational
problem of the H;0 type molecule.

Again one must write the expressions for T and U in the coordinstes
in which they can be immediately formulated. We can write, for motion
of the molecule in the plane of the molecule,

T = gma(ig + 93) + $mo(d3 + 93) + ima(El + i) (36)
and
U = $kou(drom)® + 3hon(drom)? + 3ka(sa)? 37)
|
/°\

H-ST <§1—H’

| 2my

mg

FIG. 9-2 Three symmetry coordinates Sy, S, and S3
that are convenient for the calculation of the vibra-
tional frequencies and normal coordinates of the H.O Zmy o
g Sasina

~ molecule. . \\S3
Sy
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Now it is necessary to have the coordinates &m, g, . . . and dros, . . .
expressed in terms of Sy, Sz, and S; so that we can obtain

T - 481,880 (38)
and .

U = u(Sl,Sz,Ss) (39)

It is first necessary to ask how displacements described by the sym-
metry coordinates S;, Sz, and S; can lead to motions of the atoms equiv-
alent to zm, s, and so forth. Inspection of Fig. 9-2 allows one to write
immediately the velocities that the atoms would have along the cartesian
directions in terms of velocity contrlbutlons based on the symmetry
coordinates as

i = 81 — Sssin o do = mjﬂ——s—om—a gw = —81 — Sssina

2’"’LHS 2 (40)

H' —Sz+SsCOSa

=8, — 8;c08 a; Yo =
Substitution in Eq. (36) gives, after rearrangement,
T='m;;S§+'m,H(1+2—m—13>5'2—{—m“<1+————sm2 >S’2 (41)

The relation between the internal eoordinates and the symmetry
coordinates can best be found by first writing the cartesian displacements
of the atoms that result in bond stretching and angle bending. Thus

3 om = (820 — 8zm) sin a + (8yo — dyn) co0s o
0 on = — (820 — 6zw) sin a + (8yo — dya') cos (42)

ba = T—l[(axm — bzx) cos @ + (dyms + dym) sin @ — 28yo sin a]
[
The expressions for the effect of changes in the symmetry coordi-

nates on the cartesian displacements, written in Eq. (40) for the time
element df, can be used to convert Egs. (42) to the desired relations

2mn

om = — sin aS; — cos a (1 + —) Ss + (1 + B gin? )S:;
81'03, = — sin aS]_ — €08 a( 2'"111) Sz _ (1 >S3

) Sa (43)

Sa = Ecos aSl+-2sin a(l
To To

These transformation equations between internal coordinates and
symmetry coordinates can be substituted into the expression for U given



CALCULATION OF VIBRATIONAL FREQUENCIES 217

in Eq. (37) to obtain, after rearrangement,

U= [kﬁo sin? o + 2—:2—'—’ cos? a] S2
[}
2ma\? |, 2k, . . 2ma . 2
-+ [kno cos? a(l - —’;’L—O_H) +r—gsm2 a(l + m—oE'SlIl a) ] Sg
+ [21950 sin « oS « (1 + 2—"—1—5)

mo

=+ 4—12“ sin « cos o (1 + 2ma sin a)] 818,
T Mo

1]

+ Fmo [1 4 2ma e a]2 2 | (44)

mo

Now that T and U are expressed, by Egs. (41) and (44), in terms
of the symmetry coordinates Si, S;, and S;, Lagrange’s equation can
be applied to each of these coordinates. Again three equations are
obtained, and solutions of the form

Sl = Al cos 2wyt
Sz = Az cos 21th (45)
S; = Aj cos 2rvt

can be sought. Nontrivial solutions of this form are then seen to exist
if the determinant composed of the coefficients of the A’s is zero.

The elements of the determinant are rather cumbersome, and it is
convenient to introduce the notation

T = anS% + (I/zzSg -4 a333§ (46)
and
U= buS% + 2b1231S2 + b22S§ + bassg (47)

where the a’s and b’s refer to the coefficients of the terms of Egs. (41)
and (44). Furthermore, the customary procedure of designating the
term 4x%? by A will be followed, and this leads to expressions comparable
with those shown as Eq. (31) in the internal coordinate treatmentof
Sec. 9-4. The determinant of the coefficients of the amplitudes Ay A,
and 4 is set equal to zero to give the equation

b1 — ey bis 0
bay bas — Aass 0 =0 (48)
0 ¢ b3z — Aass

It is clear that the symmetry coordinates have led to the desired break-
down of the 3 X 3 determinant to 8 2 X 2 and a 1 X 1 block. The two
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roots corresponding to the symmetric coordinates result from expansion
of the 2 X 2 subdeterminant. On rearrangement one has

\ = (bu b22) (bu __@)2_{_ 8b;s (49)
@131 Qa2

@11 22 @11022
The third root of the determinantal equation, corresponding to the
antisymmetric coordinate, is seen immediately to be A = bsa/ass.

The above equations can be solved, in a particular case, for the three
frequencies of an H,0 type molecule if values of the atomic masses, inter-
bond angle, and force constants are inserted. For the H,O molecule, for
example, the angle between the two H—O bonds has been determined
to be 105 deg. One can then verify that the force constants

k_ﬂo = 7.76 X 105

and
ko
H
lead to the calculation of frequencies in quite good agreement with the
observed values of 3,652 and 1,595 cm™! for the symmetric modes and
3,756 cm~! for the antisymmetric mode.

The form of each of the three normal coordinates can now be deter-
mined. One of the roots of Eq. (48) is substituted into the determinant,
and for this value of \, or », the ratio A;:A,:A; is calculated. When
this is done for each of the three roots, one sees that the two symmetric
modes can be described by linear combinations of S; and S, while the
antisymmetric normal coordinate is, apart from a constant factor, noth-
ing other than the antisymmetric symmetry coordinate Ss.

= 0.69 X 10° dynels/cm

Exercise 9-10. Repeat the calculations of Exercise 9-9, but use the
method of symmetry coordinates illustrated here.

*9_6. Solution of Vibrational Problems in Internal Coordinates by the
Method of Wilson

The treatment illustrated in the previous section can be systematized
by an approach introduced by E. B. Wilson [J. Chem. Phys., 9 76 (1941)].
This procedure is the basis for many of the calculations of molecular
vibrations now being done. The original presentation of Wilson will
therefore be elaborated. Additional material on this approach will be
found in ref. 1. It should be pointed out that the procedure depends
on a familiarity with matrix methods.

The Wilson method sets up both the kinetic and potential energies
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in terms of the internal coordinates R;. As has been pointed out, the
potential energy can be easily formulated in these coordinates, and one
can immediately write the general expression as

20U = Z kuR R,
Py

The notation used by Wilson designates the force constants by fi. We
will now follow this notation and write

2U = Y fuRiR:
&l

or, in matrix notation,
2U = R'FR , (50)

where R’ is the transpose of R.

The general discussion of this section may be clarified if the par-
ticular equations appropriate to the O—@—@ problem studied in
Sec. 9-4 are set up to correspond to the general equations given here.
Thus Eq. (14) of Sec. 9-4 can be written as

v = ra (B 0)(2)

and the matrix F; for this example, is recognized to be

ky O
0 ke

To set up the kinetic-energy expression, one must start with the
cartesian coordinate expression
3n
2T = E myi? (1)
i=1 '
It is convenient to absorb the mass coefficients into the coordinates by
defining new coordinates ¢; that are proportional to the cartesian coordi-
nates and are related to them by

¢ = (my)tz; (52)
With these coordinates Eq. (51) becomes
3n
2T = Y ¢ (83)
i=1

As we saw in the ©@—®@—@ molecule example of Sec. 9-4, the time
derivatives of the cartesian coordinates, or the ¢/'s, are related by a set
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of linear equations to the time derivatives of the internal coordinates.
With Wilson’s notation one writes

3n
R, = E B (54)
i=1

or, in matrix form,
R = Bi (55)

where R is a column matrix with 3n — 6 rows, # is a column matrix
with 3n rows, and B is a transformation matrix consisting of 3n — 6
and 3n columns. [Again it is suggested that the expressions here be
compared with those which arose in Sec. 9-4 for the particular example
of the @—@—@) molecule. The general expression of Eq. (55) com-
pares, for instance, with Eq. (21), which is appropriate to the ©®—@—®
problem.]

The expressions corresponding to Eqs. (54) and (55), but involving
the ¢; coordinates, are

3n
Rk = E Dk,'q'.‘ Where Dl‘m‘ = Blci (ml')_% (56)
i=1
and
R = Dy
The principal problem now is to proceed from

3n 3n

2T = ¥ mdi= Y ¢

v 1 i=1
and the transformation equation
R = Dg (567)

to an expression for T in terms of R that is comparable with the expres-
gion for U in terms of R given by Eq. (50). Considerable manipulation
is necessary to impose the conditions of zero translation and zero angular
momentum so that, in effect, the inverse transformation of Eq. (57) can
be found and inserted into the kinetic energy expression.

The matrix D can be made square by writing, as six additional
rows, the six conditions of zero translational and zero angular momentum.
In this way the matrix D where

D = (go) 58
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could be formed, and one could calculate, in principle,
D! = (QQv) (59)

where D and D! are square 3n X 3n matrices. Furthermore, D! has
been arbitrarily divided into @, a 3n X 3n — 6 matrix, and @, a 3n X 6
matrix. (Note that Q depends on both D and D,, as also does @,.)

In terms of the square matrix D, one has

® = D¢ (60)

()-8

where # = Dog is a column matrix consisting of six zero elements.

Now the desired inverse of Eq. (60) can, formally, be written down
as

j = DR (62)
With this relation one can express T in terms of the internal coordinates
as

2T = ¢'§ = R/(D"Y)'D'R (63)

Further manipulations allow the problem to be reduced to 3n — 6,
rather than 3n, dimensions. Since

® = (f) and @& = (B'¥) (64)
D= (11))) and O = (D'DY) (65)
0

o= (@) wd (@ (&) (66)

the expression for 27 can be expanded as
21 = @) (&) @@ (§) (67)

2T = (B'Q' + ¥QD(QR + Q)
= R'Q'QR + R'Q Qo + ¥ QQR + # QQot (68)
Since # is a zero matrix, the last three terms are zero and one is left with
2T = R'Q'QR (69)

The desired reduction to 3n — 6 matrices has now been formally
accomplished. It remains to see how the matrix @ can be conveniently
deduced.
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The matrix Q arises in the inverse of the matrix . A number of
useful relationships become apparent if one writes

DD = (QQo) (ll))0> = (QD + QuDo) = Iuxsn (70)

and

o5 = () @20 = (g ) = Tonc )

where I represents a diagonal unit matrix. The second result is con-
venient in that it allows us to recognize that D@, which is composed
of the 3n — 6 X 3n matrix D, i.e., 3n — 6 rows and 3n columns, and the
3n X 3n — 6 matrix @, isa 3n — 6 X 3n — 6 identity matrix. The first
relation can now be made to yield a valuable result. It is first transposed
to give

D'Q" + DyQt = Isnxsn (72)
and then multiplied on the left by D and on the right by @ to give
DD'Q'Q + DDy@QyQ = DQ = Insxan—s (73)

Now one must recognize that the internal coordinates will'be the basis
for descriptions of the pure vibrations of the molecule and that these
coordinates will therefore be orthogonal to the over-all translational and
rotational coordinates. It follows that D and Dy are orthogonal matrices
and that DDj is a zero matrix. This relationship eliminates the second
term of Eq. (73) and leaves

DD'QQ =1 (74)
The product Q'Q desired for T is then obtained as
QQ = (DDI)—l = @G—1 (75)

where the usually used symbol G = DD’ has been introduced for this
important matrix. In view of the relation between the components of
D and B given in Eq. (56), one can express the elements of G = DD’ as

3n

le = it v (76)

From this result we can calculate each element of the G matrix, ie.,
Gufork=1,2,...,3n—6andl=1,2,...,3n—6. (It will be
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recalled that the B matrix is the transformation matrix between the
internal coordinates and the cartesian coordinates and that it can be
written down from a consideration of a diagram of the molecule.)

One now has

2T = R'G'R ' 77
and
2U = R'FR (78)

When Lagrange’s equation is applied to each of the E; coordinates and
vibrational-type solutions

Rk = Ak cos 2nvi

are sought, the secular determinant formed by the coefficients of the
A’s has the form

Fiu— @ )h Frp — (G7H12A
F21 - (G—l)glk Fzz - (G_l)n)\ - l=0 (79)

where A = 4z22, If A is used to represent a diagonal matrix with N’s
on the diagonals, this equation can be written as

[F —G-1Al =0 (80)

Finally, it is sometimes more convenient to rearrange this determinant by
multiplying through by |G| to give

|G| |F — G—A| = |(()(F — G-1A)]
=|GF — Al =0 (81)

With either Eq. (80) or (81), and the procedure obtained for setting
up the F and G matrices, we can solve for the 3n — 6 values of A that
satisfy the equation. The O—@—@ molecular type example can be
used to illustrate Eq. (80) or (81). In more complicated cases the
systematic nature of “Wilson’s FG method” is of real value. Probably
most of the molecular-vibration calculations that have been published
have made use of this procedure.

*Exercise 9-11. Calculate the frequencies of the HCN molecule, from
the given force constants, by the method of Seec. 9-6.

*9-7. Formation of the G Matrix by a Vectorial Method

In a second paper by Wilson a convenient method for setting up
the G matrix introduced in the previous section is presented. The -
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previous treatment required use of the relation
1
le = ;n'kaiBli k, l = 1, e ey 3n—6 (82)
where the By, terms that arise are determined by the relations
X 3n
R. = Y. Bus: (83)
i=1
It is now suggestive to write out the atomic cartesian coordinates
more specifically to show Eq. (83) in the form
R, = (Biz®1 + By 1 + Biiy?1)
+ (Bioge2 + Bryggs + + ¢ )

+ (Bkm,.j:n + Bku,.gn + Bkinz'”)

These many products of components can be more neatly expressed by
introducing the vectors

o: with components &, ¥,
and
sy with components By,,, By, Bi.,

where { numbers off the n atoms of the molecule. With this notation
R; is written as

B, = 2 Skt ° O¢ (84)
t=1 .
and, as will be illustrated, the G matrix elements are simply
Gu=) Loy (85)
B = ™ Skt ° Sit
: t=1

This result for G4 can be verified by considering atom ¢ and recognizing
that Eq. (84) gives its contribution to Gy as

1 1
m Spt * Sip = pomy (Biz,Biz, + By By, + Br.Bi.,) (86)

This is the same contribution as is expected from Eq. (79), except for
the notation based on &, ¥, z, rather than on the running index:. The
formulation of Eq. (85) is helpful only if there is a convenient way of
expressing the sy vectors. This can be done by introducing unit vectors
€ along the bonds in the molecule. The subscripts « and g8 indicate



CALCULATION OF VIBRATIONAL FREQUENCIES 225

the terminal atoms of the bond, and it is agreed that the unit vectors
are directed from the atom labeled « to that labeled 8.

With these e vectors, it is possible to set up convenient recipes for
determining and s;: vectors, i.e., the s vector contributions of each atom
t to a particular internal coordinate R;. If R: involves the stretching
of a bond, say between atoms labeled o and B, the s, and s;s vectors
must show how the terminal atoms must move to lead to a bond stretch-
ing. In this way one has simply

) Ska = —€ag
and (87)
Sip = €

Thus if one were dealing with the internal coordinate R, = érorn for the
molecule H—O-—H’ and the e vector had been indicated as

0
Eon// \
H H’
S = te€on

and . (88)

S10 = —é€ro

one would have

If R; involves an angle bending, 8« for H,0, for example, one
agrees to draw the e vectors directed away from the apex angle thus

(0]

€on / \eon'

H H’

More generally, one might number the three atoms that fix the value
of the interbond angle and draw the ¢ vectors as

Ealj \isz
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Furthermore one lets rs; and rs» denote the equilibrium bond lengths
and ¢ the equilibrium value of the interbond angle. Some geometric
manipulation is now necessary to arrive at the general expressions which
show how, in terms of the vectors, the three atoms must move to result
in an increase in the angle with no accompanying bond stretching. One
finds that, if Ry is an angle bending coordinate,
COS p€;3; — €

i e (89)

Spy = COSTf:;;n—‘pésl (90)
. (rs1 — 732 cOS )€s1 + (rga — T'31 COS @)€ss

731732 SIN @

Skz = 1)
These relations between the s vectors and the e vectors, the latter intro-
ducing the molecular geometry into the problem, allow, for very many
molecules, the G matrix elements to be readily calculated according to the
expression

n
1
Gu = 2 E Syt * Si (92) ,
t=

The dot products between the various s vectors will lead to dot products
between the € vectors that are fixed along the directions of the bonds.
In this way cosines of angles between bonds of the molecule will arise
and will, in a very convenient way, introduce the molecular geometry
into the G matrix.

*Exercise 9-12. Apply the Wilson FG method to the molecule HOD.
Calculate the frequencies predicted on the basis of the force constants
kuo = kpo = 7.76 X 10° dynes/em and k./rom = 0.69 X 10° dynes/cm.
Compare with the observed absorption band frequencies of 1,402, 2,719,
and 3,690 cm—.

*9-8. Use of Symmetry Coordinates in Wilson's Method

It has already been shown, in Sec. 9-5, that the use of symmetry
coordinates, which can be expressed as linear combinations of internal
coordinates, allow the secular determinant to be factored into a number
of determinants of lower order. This reduction can be performed when
the methods of the previous two sections are applied to symmetric
molecules.

The symmetry coordinates S; can be set up in terms of the internal
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coordinates R according to

3n—6
Si= Y UnRs (93)
k=1
or
8 =UR (94)

For H,0, for example, one might write

S; = 8ry + b, symmetric (4,)
Sy = S symmetrie (4,) » (95)
83 = ory — ory antisymmetric (Bs)

S, 1 1 0\ /or,
<Sz) = (0 0 1) ors (96)
Ss 1 -1 0/ \bo

Since, as this example illustrates, the symmetry coordinates can be set
up to be orthogonal to one another, the U matrix is orthogonal, and the
relation, which will be used below,

or

U-1=r 97)
will hold.

In Wilson’s procedure the kinetic energy is expressed as

2T = R'G—'R » (98)

The corresponding expression involving symmetry coordihates can be
obtained by inserting the identity matrices UU-! and U-1U to give

2T = R'U\UGU-UR (99

Now UR is recognized as 8, and R'U-! = R'U’ is recognized as .
Thus, again with U~! = U’, we can write

2T = SUG-U'8 = §'g18 (100)
where the notation
g1 = UG- . (101)

has been introduced. Since all three matrices are nonsingular, the g
matrix can be expressed by

g = (U 'qu—
= UGU’ (102)
This matrix equation allows, since U and U’ are known from the way
in which the symmetry coordinates were set up and the elements of G
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can be calculated from Eq. (92), the calculation of §. Expansion of
Eq. (102) shows that the elements of G are given by

n 3n—6
Su = (“ UnUprsi sk’t> (103)
m
t=1 kik'=1

This cumbersome expression can be used more conveniently if symmetry
displacement vectors S that are comparable to the s, vectors are intro-
duced., If S!is defined as

3n—6

St = Y Unsu (104)

k=1

the elements of the kinetic-energy matrix can be calculated from

G = 2 ml, st - S, (105)
t=1 ~

With Eqs. (104) and (105) the kinetic-energy matrix G of Eqgs. (100) and
(101) can be set up.

Thus one calculates the various S¢ vectors from Eq. (104) and sub-
stitutes these, along with the appropriate atomic-mass terms in Eq. (105),
to obtain the desired kinetic-energy matrix based on the symmetry
coordinates of the problem.

The potential-energy expression based on these coordinates pre-
sents no difficulty. One can write down,; except for numerical values
of the components of the F matrix, as shown in Sec. 9-7, the potential-
energy expression

2U = R'FR (106)
The internal coordinate matrices R and B’ can be replaced by symmetry

coordinate matrices by use of the relations, obtained from Eq. (94), and
the relation of Eq. (97),

R=U18=US (107)
and

RU =RU'=§ or R =8U (108)
Substitution in Eq. (106) gives

2U = S'UFU'S (109)
or

2U = §'58 (110)
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where the potential-energy matrix ¥ based on symmetry coordinates has
been introduced as

§ = UFU' (111)

With Egs. (100) and (110) and the methods for obtaining G and ¥
given by Egs. (105) and (111), the vibrations of a symmetric molecule
can be analyzed in terms of symmetry coordinates and, as seen in Sec.
9-5, the convenient factoring of the secular determinant will occur.

*Exercise 9-13. Apply the Wilson FG method, making use of symmetry
as indicated in Sec. 9-8, to the SO; molecule. The molecule is bent and
has a bond angle of 120 deg. The force constants reported for a simple
"valence force field are kso = 9.97 X 10% dynes/cm and k. = 0.81 X 105
dynes/cm. (Compare with the observed frequencies of 519, 1,150, and
1,360 cm—1.) ’

PRINCIPAL REFERENCES

1. Wilson, E. B., Jr., J. C. Decius, and P. C. Cross: ‘“Molecular Vibrations,”
MecGraw-Hill Book Company, Inc., New York, 1955.
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ELECTRONIC SPECTRA
OF DIATOMIC MOLECULES

Molecules can absorb, or emit, radiation not only as a result of changes
in their rotational and vibrational energies but also as a result of changes
in their electronic arrangement and, therefore, their electronic energy.
The energy changes involved in a transition from one electronic state
of a molecule to another are usually relatively large and correspond to
radiation in the visible or ultraviolet regions. In the course of such
high energy transitions, it must be expected that the vibrational energy
and, since all materials considered in this chapter are gaseous, the rota-
tional energy of the molecule will also change in the transition. We
will see, in fact, that electronic transitions result in broad absorption
or emission bands and that these bands contain a large amount of fine
structure. Analysis of this structure often leads to a wealth of informa-
tion on the moments of inertia and the potential-energy function for the
electronic states involved ih the transition. Furthermore, diatomic mole-
cules exhibit many different excited electronic states, and the energies
of these states can also be deduced from studies of electronic transitions.
The lack of a simple, generally adopted pattern for the energies of these
excited states makes, as we will see, the assignment of transitions tu
particular states a problem of considerable difficulty. For only a few
diatomic molecules can a reasonably complete diagram of the energies
of the excited electronic states be drawn.

The analysis of electronic bands of diatomic molecules is perhaps
best introduced by considering the vibrational and rotational structure

that is found in typical electroni¢ absorption or emission bands. Follow-
230
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ing this analysis of the fine structure of typical bands, a consideration
of the kinds of electronic states that can occur for a particular molecule
will be given, and mention will be made of how an observed band can be
assigned to a transition between two of these states.

It should, perhaps, be mentioned here that the analysis of the
electronic spectra of diatomic molecules is a rather specialized study and
that most chemists are likely to encounter only electronic spectra of
polyatomic molecules, or ions. Furthermore, the visible and ultraviolet
spectra of these species are likely to be obtained on solution samples.
Much of the detailed analysis of the rotational structure observed in the
gas-phase spectra of diatomic molecules does not carry over to the
analysis of these polyatomic solution spectra. We will, therefore, treat
only the principal features of the electronic spectra of diatomic molecules
and will make reference to the very complete treatment given in ref. 2
for those who wish to pursue further the detailed study of the electronic
spectra of diatomic molecules.

10-1. The Vibrational Structure of Electronic Bands

The way in which the potential energy of a diatomic molecule
might vary, as a function of the internuclear distance for two different
arrangements of the electrons of the molecule, i.e., two different electronic
states, is shown in Fig. 10-1. We will see later that on such diagrams
potential-energy curves occur variously placed and with various shapes
for the di'fferent electronic states of a particular molecule. The curves
shown in Fig. 10-1 are, however, typical of a ground and an excited
electronic state. The potential-energy curves of Fig. 10-1 imply that
for each of the two electronic arrangements the molecule will vibrate,
and, as in Chap. 2, horizontal lines are drawn to represent the energies
of the allowed vibrational states. Furthermore, the probabilities of the
molecule being found at various internuclear distances, i.e., the square
of the harmonic oscillator wave functions, are shown on the energy
levels to which they refer.

We will now consider an absorption or emission of radiation that
changes the molecule from one electronic state to the other. The
question immediately arises as to which transitions are to be expected
between the various vibrational levels, labeled v/’ = 0, 1,2, . . . , of the
lower electronic state and the various vibrational levels, labeled v* = 0,
1,2, ..., of the upper electronic state. Three factors must be kept
in mind to answer this question.

1. As observation of the vibrational structure of electronic bands
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FIG. 10-1 Potential-energy functions, vibrational energy levels, and vibrational prob-
ability functions Y2 for two typical electronic states of o diatomic molecule.
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will confirm, there are no general restrictions on the changes in » for a
transition going from one electronic state to another. This result is in
contrast to the rule of Av = +1 that is operative in vibrational transi-
tions within a given electronic state.

2. It must be kept in mind that electrons can move and rearrange
themselves much faster than can the nuclei move to alter the inter-
nuclear distance. (The relative times for electronic and nuclear motion
can be recognized, for instance, from the fact that an electron in a Bohr
orbit of an atom completes a revolution around the nucleus in about
10— sec whereas a typical molecule vibrates with a period of about
1018 sec.) This characteristic of electronic and nuclear motions leads
to the Franck-Condon principle that an electronic transition in a molecule
takes place so rapidly compared to the vibralional motion of the nuclei
that the internuclear distance can be regarded as fixed during the transition.
It follows that on a diagram, such as that of Fig. 10-1, electronic transitions
must be represented by essentially vertical lines connecting the initial
and final states at some fixed internuclear distance:

3. The fact that the probability of the molecule being at a particular
internuclear distance is a function of the distance, as shown by the
probability curves of Fig. 10-1, must be taken into account. An elec-
tronic transition must be expected, in view of the transition moment
integral defined in Eq. (4-25), to be most favored if it occurs while the
molecule has an internuclear distance such that the transition connects
probable states of the molecule. This rule is usually simplified, in view
of the shapes of the probability functions shown in Fig. 10-1, by con-
sidering transitions to be relatively more probable if they begin or end
at the middle of the » = 0 level or either end of any of the higher vi-
brational levels.

With these three statements one can draw, as is done in Fig. 10-2,
the expected transitions for the potential curves of Fig. 10-1.

In an absorption experiment the temperature is often near room
temperature, and the »”’ = 0 level is most populated. One expects,
therefore, to see a progression of absorption lines in the electronic absorp-
tion band due to transitions, with »"” = 0 and »" varying perhaps from
v’ = 0 to large values. Figure 10-3 shows absorption bands of CO and
I, which illustrate this behavior.

Exercise 10-1. Draw potential-energy curves for ground and excited
electronic states such that, as observed in the absorption spectrum of
Fig. 10-3a, only the transition to high vibrational levels of the upper
electronic state is observed.
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In emission spectra the temperature is usually high enough so that
many of the »* levels are appreciably populated. In emission spectra,
therefore, many lines arising from transitions from various upper state
levels, i.e., various ¢ values, to various lower levels, i.e., various »”
values, are to be expected. The many probable transitions that occur
generally lead to a band of such complexity, as that of the molecule N,
shown in Fig. 10-4, that without considerable experience one cannot
recognize how the band structure is related to transitions such as those
exhibited in Fig. 10-2b. The compenents of such a vibrational-electronic
band are usually analyzed by arranging the frequencies of the compo-
nents in a table, called a Deslandres table, in such a way that the differ-
ence in the frequencies in adjacent columns is approximately constant
and varies uniformly, and the difference in the frequencies in adjacent
rows is likewise approximately constant and varies uniformly. The

FIG. 10-2 (o) Some of the most probable transitions, for an absorption experiment at a
_ relatively low temperature, for the potential-energy curves of Fig. 10-1. (b) Examples
of the most probable :mission transitions between vibrational levels of two electronic
states. (Note, as Table 10-1 shows, that for a given value of v transitions to states with
two different values of v are preferred.) V
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components of an electronic emission band of the molecule PN, arranged
to conform to these requirements, as shown by the frequency differ-
ences also exhibited, are given in Table 10-1. This pattern is under-
standable in terms of the emission transitions of Fig. 10-2b if the columns
are labeled with the vibrational quantum number v’ of the lower elec~
tronic state and the rows with the quantum numbers v’ of the upper
state. PBach frequency in the table can then be identified as a transi-
tion between the »’ value of the row it occupies and the v’ value of
its column. The most intense lines, moreover, tend to follow a para~
bolic-like curve as would be expected from the potential curves of Fig. 10-1
and the three statements given earlier in this section. For »* = 6, for
example, preferred transitions are apparently those going to »'’ = 3 and
»” =9 or 10. Thus for a given value of v" one expects transitions to
two different v”’ levels to be preferred. The differences between the
rows of the Deslandres table can now be recognized as giving the spacing
of the vibrational levels in the upper electronic state, while the differ-
ences between the values in the columns give the vibrational spacing
in the lower electronic state.

It should now be clear that data from electronic absorption or
emission bands provide much more information on the vibrational energy-
level pattern of a diatomic molecule than can be obtained from direct
studies of vibrational transitions. One obtains information on the ener-
gies of levels with high vibrational quantum numbers, and one can learn,
therefore, much about the potential-energy function. For example, there
is an electronic transition of I, that leads to an absorption band at about
2,000 A connecting the ground electronic state with an excited state.
The vibrational structure of this band has been measured in considerable
detail, and transitions involving ground-state vibrational quantum num-
bers up to »” = 114 have been reported. From the data on these
vibrational spacings, some of which are summarized in Table 10-2, a
well-defined potential-energy function can be deduced. This is shown
in Fig. 10-5 along with, for comparison, the Morse curve that was intro-
duced in Sec. 2-3. (The Morse curve is generally accepted as a good
approximation to the potential function of a diatomic molecule.)

In favorable cases, such as the I, transition mentioned in the previ-
ous paragraph, the pattern of vibrational levels almost up to the limit of
_ dissociation can be obtained, and the dissociation energy for the molecule
in that electronic state can be deduced by a suitable extrapolation. It is
particularly important to recognize that this information on the shape
of the potential function, and often on the dissociation energy, can be
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obtained not only for the ground electronic state but also, in contrast to
studies in the infrared region, for excited electronic states. (Some mole-
cules have been studied sufficiently so that a rather detailed diagram
showing the variation of potential energy with internuclear distance
for various electronic states of the molecule can be drawn. An example
is provided in Fig. 10-20.)

10-2. Rotational Structure of Electronic Bands

If an electronic band is studied with a spectrograph with sufficiently
high resolving power, it is observed that each of the vibrational com-
ponents, studied in the previous section, does not consist of a single line
but is rather a subband of considerable detail. This additional detail
can be attributed to changes in the rotational energy of the molecule
that accompany the vibrational-electronic transition.

If ) represents the frequency of a particular vibrational component
of an electronic transition, & the rotational energy of the excited molecule
in the J' rotational state, and &/ the rotational energy of the molecule
in a lower electronic state and the J” rotational state, the rotational

TABLE 10-1 The Co.nponents of an Emission Band of PN Arrunged in a Deslandres

'

0 39,698.8 | (1322.3) | 38,476.5 | (1307.5) | 37,068.7

(1087.4) (1090.7) (1086.8)
1 40,786.2 | (1319.0) | 39,467.2 | (1311.7) | 38,155.5 | (1294.2) | 86,861.3
(1072 .‘9) (1069.0) (1071.6)
2 41,859.1 | (1322.9) | 40,536.2 37,932.9 | (1280.4)
(1061.2)
3 41,597.4 | (1309.1) | 40,288.3
(1042.9)
4 41,331.2
5 41,066.1
(1015.9)
6 . 42,082.0

© 00 .

* From G. Herzberg, “Molecular Spectra and Molecular Structure,” D. Van Nostrand Company,
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details of the subband can be discussed in terms of the expression
b=+ (& — & 1)

(It should be mentioned that, particularly in studies of the rotational
and vibrational structure of electronic bands, use is generally made of a
different notation than has been used here to designate the various types
of energy that a molecule can have. T is used to denote the total energy
of a given state of the molecule; 7', is used to denote the electronic
energy, i.e., the energy that the molecule would have if it were not rotat-
ing and remained at the minimum of the potental-energy curve for that
state. The symbol G is used to represent the vibrational energy of the
molecule, while F represents its rotational energy. Finally, a double
prime represents a lower energy state; a single prime, a higher energy
state. Since detailed analyses of electronic bands will not be given here,
it will not be necessary to change over to this standard notation.)

Although many excited electronic states have electronic angular
momentum contributions that couple with the rotational angular momen-
tum of the molecule, which lead to considerable complexity, it is here

Table* (The wave numbers, in em™, of the spectral lines are given.)

4 5 6 7

36,652.5 (1265.3) 35,387.2

(1060.0) (1059.2)
37,712.5 £1266.1) 36,446.4 (1252.4) 35,194.0
(1043.9) (1042.6)
38,756.4 36,236.6 (1238.3) 34,998.3
(1029.4)
38,519.4 36,027.7 (1225.5)
41,798.3
41,522.6
41,239.4

Ine., Princeton, N.J., 1950.
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sufficient to consider the simpler cases in which the rotational energies
for the two electronic states can be expressed by the simple, rigid rotor
expressions. In such cases the subband structure can be expressed as

P=3o+ BJ'(J + 1) — B)J'WJ" + 1) @)

where B! and B!’ are the rotational constants for the vibrational and
electronic states involved in the transition. In general, further complica-
tions arise in that the selection rules on J depend on the types of electronic
states involved in the transition. However, one frequently has situa-
tions in which AJ = 0, +1 are allowed. For these rotational branches
one has, if the value of J”/ is simply labeled as J,

P branch: J" =J,J' =J — 1

7= 7 — (B, + BJ + (B, — B)J?
Qbranch: J" =J,J' =J
7= % + (B, — B))J + (B, — B))J? 3

TABLE 10-2 Some of the Vibrational Energy-level
Spacings for the Ground Electronic State of |, Ob-
tained from Studies of the Electronic Band at 2,000 A*

v’ A& (cm™1)
0 213.31
1 :

10 200.68

11

40 ' 154.62

41

60 110.09

61

80 52.33

81

100 9.0
101

114 0.5
115 '

* From R. D. Verma, J. Chem. Phys., 32: 92 (1960).
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Rbranch:J" =J,J ' =J +1
5 = 5+ 2B, + 3B, — B/)J + (B, — B,)J?

These expressions are similar to those encountered in Chap. 7
where vibration-rotation bands were treated. There, it will be recalled,
it was a good approximation to set the B values for the different vibra-
tional states equal and to neglect the terms equivalent to (B, — BY).

The principal difference that is apparent when the rotational struc-
ture of vibrational-electronic transitions are analyzed is that B, and B,
and therefore the moments of inertia and the bond lengths, can be very
different for different electronic states of the molecule. (As can be seen
in Fig. 10-20, the minima of the potential-energy curves for different

FIG. 10-5 The potential-energy curve for the ground electronic state of lo. The solid
line is computed from the vibrational energy levels deduced from an electronic emission
band that is observed at about 2,000 A. The dashed line is a Morse curve for 1. [From
R. D. Yerma, J. Chem. Phys., 32: 738 (1960).]
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electronic states can occur at quite different bond lengths.) It follows
that the coefficient of the J2 term of Eqs. (3) can be quite large, and the
components of the P and R branches will not, therefore, move out linearly
from the band origin. In fact, if, for example, B, is greater than B,
the J? terms of the P branch can, at high J values, dominate the terms
linear in J and the branch components will “turn around’’ and move to
higher, instead of lower, frequencies as J increases. Similarly, if B/ is
greater than B, the J? terms of the @ branch can dominate the linear
terms and the high J compenents of the band can turn around and move
to lower, instead of higher, frequencies as J increases. This behavior
leads to the often striking feature of a band head, an example of which is
shown in Fig, 10-6, in the rotational structure of each vibrational com-
ponent of an electronic band. A large difference in B! and B!’ has the
further effect, as shown by the second of Egs. (3), of spreading out the @
branch components and thereby preventing the sharp @ branch that is
often a dominant feature of vibration-rotation spectra.

A vibrational component of an electronic transition of CuH, for
which the rotational selection rule is AJ = =1, is shown in Fig. 10-7.
The components of the branches of such bands are usually sorted out, and
this is particularly necessary when the branch is overlapped or forms a
band head and moves back on itself, by plotting the line frequencies
against a quantum number, as shown for the 0—0, i.e., 2"’ = 0 — v’ = 0,
band of a CN transition in Fig. 10-8. The parabolic behavior that is to
be expected on the basis of Egs. (3) is then observed, and the assignment
of J values to individual lines can be made so that all points fall on a
smooth parabola. Such a parabola, first recognized by Fortrat, is now
known as a Fortrat parabola.

FIG. 10-6 Enlargement of a component of the emission band of Ny showing that the
apparent lines of Fig. 10-4 are in fact band heads. (Courtesy of J. A. Marquises, Case
Institute of Technology, Cleveland, Ohio.)

3,805 A
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FIG. 10-7 The rotational fine structure of a component of the electronic band of CuH at
4,280A. [From H. Schuler, H. Hahn, and H. Gallnow; Z. Physik, 111: 484 (1939).]

Analysis of the structure of the rotational branches leads, with
Egs. (3), to values of the rotational constants B, and B’/ for the two states
involved in the transition. In this way one obtains information on the
equilibrium bond lengths not only for the ground but also for various
excited electronic states. These data, moreover, are often obtained with

FIG. 10-8 A Fortrat parabola formed by plotting the frequencies of the rotational lines
of the 0-0 component of a CN band against the rotational quantum number in the lower
energy electronic state. (From G. Herzberg, “Spectra of Diatomic Molecules,” D. Van
Nestrand Company, Inc., Princeton, N.J., 1950.)
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an accuracy comparable to that provided by direct studies of rotational
transitions in the microwave region.

It has now been shown how typical electronic bands of diatomic
molecules can be analyzed to yield information both on the shape of the
potential-energy curve, as a function of the internuclear distance, and on
the internuclear distance at the minimum of this potential-energy curve,
i.e., the equilibrium internuclear distance, for various electronic states
of a diatomic molecule. It is now necessary to see if the states involved
in an electronic transition can, in some way, be characterized. When
this can be done, the potential-energy functions can be assigned to par-
ticular electronic arrangements and a vast amount of information on
molecular bonding is made available. It is essential for the chemist,
if he is to have access to this information, to learn something of the
notation, and the implications of the notation, used to describe electronic
states. The remainder of the chapter will be devoted primarily to this
end. The material of Sec. 10-4 is, however, of additional interest in
that the molecular orbitals discussed there will be used again in connec-
tion with studies of the electronic states of polyatomic molecules in the
following chapter.

10-3. Electronic States of Atoms

A review of some features of the way in which the electronic states
of atoms are described is necessary before the corresponding descriptions
of states of molecules are attempted.

Application of the Schrédinger equation to a hydrogenlike atom,
i.e., a one-electron atom or ion, shows that various orbitals, each identi-
fied by the values of three quantum numbers, are available to the electron.
These three quantum numbers are

n=123 ... principal quantum number
1=01,2 ...,n—1(rspd,...) angular momentum
quantum number
and
m=~l, —14+1 ...,0...,4+1 magnetic quantum num-
ber

An electronic state of a one-electron atom is defined, that is, the energy
and probability function for the electron are given, by values for the
three quantum numbers. Furthermore, as application of the appropri-
ate operator would show, the value of the quantum number [ implies an
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orbital angular momentum of VIT + 1)(h/2x) and the value of the
quantum number m implies a component of this angular momentum of
m(h/2x) along a specified direction.

This procedure for describing the electronic state of a one-electron
system in terms of quantum numbers can be extended to atoms, or ions,
consisting of one electron outside one or more filled inner shells by using
an effective nuclear charge in place of the actual charge. By such an
extension, however, our ability to predict a precise energy and spatial
distribution for the outer electron is lost. The energy of the outer
electron becomes dependent on I as well as on n. This is shown sche-
matically in Fig. 10-9. It can be shown, however (see, for example,
H. Eyring, J. Walter, and G. E. Kimball, “Quantum Chemistry,”
pp. 124-143, John Wiley & Sons, Inc., New York, 1944), that, since
closed inner shells provide spherically symmetric screening effects and
no angular momentum contribution, the important angular momentum
implications of I and m for an outer electron are not destroyed. The
shapes, possible orientations, and magnetic quantum numbers m for the
s, P, and d orbits, which are important in spectroscopic studies, are shown
in Fig. 10-10.

With the theoretically and experimentally established result that .
inner shells do not upset the angular momenta associated with the
quantum numbers [ and m and, for the lighter elements, do not greatly

FIG. 10-9 Schematic representation of the effect of filled inner shells on the allowed
energies of an outer electron.
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upset the approximate energy and spatial implications of the three
quantum numbers, one ean proceed to describe atoms in terms of their
outer electrons. If there are several outer electrons, and if for the
moment they are assumed to behave relatively independently, one can
begin to describe an electronic state by assigning each outer electron
to an available electron orbit; i.e., one can assign values of n, I, and m

FIG. 10-10 The shapes and orientations of the s, p, and d orbitals. Note that, rather
like the classical rotation situation, the angular momentum along the field direction is
greater the more the orbital projects out from the axis in this direction.

Symbol Orbitals Angular momentum in
(angular factor) direction of field (<)
> m=%2
d i
|
) m=%1
m=0
- and —» m=%1
P
— m=0
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‘to each electron. Furthermore, since each electron can be assigned a
- spin quantum number of 4} or —4%, the Pauli exclusion principle allows
two electrons to be assigned identical values of n, [, and m. One would
indicate the ground state of the oxygen atom, for example, by

[(18)%]1(25)*(2p-)*(2p,) * (2p.)*

The number of electrons in each orbit is indicated by the superscript,
and as is customary, the inner closed shells are set off with brackets.
Such an abbreviation, giving a description of an electronic state in terms
of the orbitals occupied by the individual electrons, is said to specify
the electronic configuration of the atom. (In the next section we will see
that the writing of an electronic configuration can also be the first step
in describing an electronic state of a molecule.)

Exercise 10-2. Write the ground-state electron configurations for the
fluorine atom and for the phosphorus atom. Suggest electron configura-
tions of these two atoms that would correspond to excited electronic
states.

For an actual atom, or molecule, however, the supposition that the
electrons are noninteracting cannot be made. It is not even clear what
is meant by the contribution of the individual electrons of the atom
when they interact with each other to give some net effect. It turns out,
however, as can be seen from a rather lengthy quantum-mechanical
argument (see,-for example, Eyring, Walter, and Kimball, “Quantum
Chemistry,” chap. 9), which need not be given here, that the electronic
state of an atom is determined, in part, by the quantum number L
which is the counterpart of the individual electron quantum number 1.
(The effect of a magnetic field on a many-electron atom will be treated
later, and then the counterpart of the individual electron quantum num-
ber m will be introduced.) The quantum-mechanical treatment further
shows that there is a simple relation between the values of I; of the indi-
vidual, presumed noninteracting outer electrons and the values of L
for the atom as a whole. The possible electronic states, for exam-
ple, of an atom with. two outer electrons in orbits with quantum numbers
l: and Iy, are described by values of L calculated according to

L=l1+l2,l1+l2—'1,l1+l2—2,...,(ll—lz)

If the electronic configuration under consideration has, for example,
two p electrons outside the inner closed shells, the possible values of L are

L=210r0
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In the same way that one uses s, p, d, . . . to indicate [ values of 0, 1, 2,
. . . for individual electrons, one uses S, P, D, . . . to indicate L = 0,
1,2, . ... For the present example with two p electrons one would
designate the electronic states corresponding to L = 0, 1, or 2 by the
letters S, P, or D, Although the fact that the two electrons are p elec-
trons, rather than, say, one p and one d, is of primary importance in
determining the energy of the electronic state, the way in which the two
electrons are arranged in the p orbitals, i.e., the value of L, has some
bearing on the energy. Thus, in this example, the possible S, P, and D
states of the p® configuration would have somewhat different energies.
The relative energies of these states cannot readily be calculated but
can be deduced from spectroscopic studies.

The net electron spin of the atomic state is described by a quantum
number S and, again, this atomic quantity can be deduced from the spins
of the individual outer electrons. For two outer electrons, the values
that S can have are calculated according to

S=81+82 or S=S1—82

and, since the spin quantum number has the fixed value of %, one can
have :

S=1 or S=0

for a two outer electron system.

The energy of the electronic state of an atom, with a given electron
configuration, is also dependent on the net electron spin. Exact calcu-
lations of the relative energies of states with different net spins cannot be
made. There is, however, a general rule formulated by Hund, which
applies both to atomic and molecular systems, that states with greater spin
lie at lower energies than those with smaller spin. Thus, for the two
outer electron example, it would be expected that states with S =1
would have lower energies than those with S = 0. This rule can be
easily remembered in terms of the obvious electron repulsion and, there-
fore, increased energy that would set in if, for example, two electrons
were paired up in a single p orbital. If they occupy different p orbitals,
the repulsion will be much less. For the former case the spins must be
paired, i.e., 8§ = 0, and for the latter they may be parallel, i.e.,, S = 1.

In spectroscopy it is often helpful to focus one’s attention on the
angular momentum implications of the quantum numbers L and S.
Just as the value of ! implies an orbit in which an electron has an angular
momentum of v/I(l + 1) (h/2x), so also does L imply an angular momen-
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tum of /L({T + 1) (h/2r) for the electronic state of the atom. Further-
more, s = § implies an electronic spin angular momentum of }(h/27) on
the part of the individual electrons, and S implies a net spin angular
momentum of S(h/2x).

Instead of using the previous equations to deduce the possible
values of the quantum numbers L and S from the quantum numbers of
the individual electrons, one can ask how the angular momentum con-
tributions of the individual electrons could lead to net angular momenta
for the electronic state of the molecule. 'To combine the angular momen-
tum contributions, it is convenient to introduce vectors and to deal with
what is known as the vector model of the atom. The vector model assigns
an orbital angular momentum vector 1 to represent the magnitude
V10 + 1) (h/2x) and the direction of the orbital angular momentum
contribution that each of the electrons of the atom would make if the
electrons were noninteracting. Similarly, a vector L represents the
magnitude v/ L(L + 1) (h/27) and the direction of the orbital angular
momentum of the atom when it is in the electronic state specified by L.

The possible values of the vector L are correctly given by the vector
combinations

L=Zli

which lead to vectors L that correspond to integral values of L.

It turns out to be much easier to draw the vector diagrams, such as
those which give L from the values of 1, if one returns to the early, and
not really correct, idea that the quantum number L implies an angular
momentum of L(h/2x) rather than v/L(L + 1) (k/2x) and ! an angular
momentum of I(h/2x) rather than \/I(l + 1) (h/2x). In this way one
would draw vector diagrams such as those of Fig. 10-11 to represent the
various possible combinations of 1 to form the net vector L.

Similarly, one describes the total angular momentum due to the
spin of the electrons of the atom by a vector S, and in terms of the

angular momentum contributions of the individual spinning electrons
one has

S=Zs;

The previous discussion has assumed that the orbital and spin
quantum numbers, and the corresponding angular momentum contribu-
tions, can be separately treated. In fact this is not so; although in some
systems it turns out to be a satisfactory approximation. Since it is the
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FIG. 10-11 The vector additions of the angular momentum vectors of two p-orbit elec-

trons to give the total an angular momentum vector for the atom.

total angular momentum of the atom that is really quantized, the mean-
ingful quantum number of the atom is that which determines this total
amount. The quantum number J is used, and the value of the total
angular momentum of the atom is given by /J(J + 1) (h/27). Again
the vector model of the atom introduces a vector J to represent this
magnitude and the direction of the total angular momentum. It turns
out again, and this is another illustration of the reason for using the
vector model, that the correct vectors J are obtained by vectorially
combining L and S. This is illustrated in Fig. 10-12. In terms of

FIG. 10-12 The vector diagrams that represent the ways in which the L and S vectors
<an be combined to give resulting vectors. -
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quantum numbers, the value of J is given correctly by

J=L+S8L+8S-1,L+8-2...,|L-S§

The electronic state of a free atom can now be described, in a manner
suitable for spectroscopic studies, by the values of the quantum numbers
L, 8, and J.

It is customary to indicate the values of these three angular momen-
tum quantum numbers by a term symbol. To indicate that L has the
value 0, 1, 2, . . . one writes, as mentioned earlier, S, P, D, . . . .
Since the number of ways that the spin quantum number can be com-
bined with the orbital angular momentum quantum number is often an
important feature (energy levels with a given value of L are sometimes
split into sublevels, depending on the coupling between L and S), we
indicate this number of ways (28 + 1) as a left superscript on the
symbol for L. Finally, the value of J is written as a right subseript
on the symbol for L. Thus one encounters descriptions such as 28,
tPy, 2Py, and so forth, for the electronic state of an atom.

We will see that the electronic states of diatomic molecules are
similar, in many respects, to those of atoms under the influence of an
electric field. Experimental, as well as theoretical, results for such atoms
indicate that the atomic orbitals must orient themselves so that the
component of the angular momentum of the atom must be quantized
along the direction of the electric field. Just as for the case of a rotating
molecule, treated in Chap. 5, a quantum-mechanical treatment shows
that, if the total angular momentum of the atom is \/J(J + 1) (h/2x),
the component along the direction of the applied field will be M (h/2x),
where

M=JJ-1...,0,...,—-J
Again the vector model is convenient in that it suggests that the angular
momentum vector J can take up various orientations relative to the
applied field and that these orientations are such that the component
angular momentum along the field is an integral, or half integral if J is
half integral, multiple of (2/2x). This is illustrated in Fig. 10-13.

We are now in a position to proceed to a similar description of pos-
sible electronic states of molecules and then to assign these states to the
observed electronic transitions.

10-4. Electron Orbitals in Diatomic Molecules

As for polyelectronic atoms it is generally impossible to calculate
the energies and detailed electronic arrangements for the possible elec-
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tronic states of molecules. Again it is necessary to describe the allowed
states by means of values of the quantum numbers of the properties,
principally angular momenta, whose quantization can be immediately
recognized. Just as for the case of atoms, this can best be done by first
considering the allowed individual electron orbits and then investigating
the molecular states that result when certain of these orbits are occupied
by electrons.

The electron orbits of diatomic molecules are best described in
terms of the orbits to which they would go in the limits of the wnited
atom, i.e., the internuclear distance diminished to zero, and the separated
atoms, i.e., the internuclear distance increased to infinity.

Let us first consider the united atom of some diatomic molecule
and investigate how the electron orbits are to be described as the nucleus
of the united atom is imagined to be subdivided and the separate nuclei
that correspond to those of the diatomic molecule are formed. The
initial effect on the atomic orbits can be understood on the basis of the
fact that the divided nucleus presents a field of axial rather than spherical
symmetry. The effect on the orbits is comparable to that of an external
electric field applied along the direction in which the bond is being formed.
It becomes necessary, therefore, if the orbits of such a deformed atom
are to be deseribed, to specify, not only the orbital angular momentum,
but also the component of this along the internuclear axis. Thus,
although an orbit of the united atom is characterized by its total angular
momentum, as indicated by the quantum number / =0, 1,2, ..., n

FIG. 10-13 Vector diagrams illustrating that three orientations can be taken up relative
to an applied field by the angular momentum vector corresponding to a J = 1 state.
On the left the simpler diagram based on vectors of length J(h/27) is shown. On the
right the correct diagram, with J{J 4 1)lh/27) vectors, is given. Either diagram shows
that the J = 1 state splits into three components.
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or by the letters s, p, d, . . . , as the atom is deformed toward a diatomic
molecule, these orbits will be characterized also (and for large distortions
better) by the component of the angular momentum along the molecular
axis.

For a given value of I of the initial atomic orbit, the quantized
angular momentum components along the bond direction can have the
quantum numbers 0, 1, 2, . . . , . The symbol X\ is usually used to
designate the quantum number for the component along the internuclear
axis, and values of A =0, 1, 2, . . . are usually indicated by saying
that the orbit is a ¢, m, §, . . . orbit. (The nomenclature principle
that is followed consists of using Greek letters for molecular quantities
and Roman letters for atomic properties. Thus, in the spherical field
of an atom, the orbital angular momentum quantum number is of major
importance and is designated for each electron by I. For the cyclindrical
field of a diatomic molecule, the principal orbital angular momentum
feature is the component along the axis of the molecule, and the quantum
number for this is, therefore, designated by A.) With this notation the
initial step in the formation of a diatomic molecule from the united atom
can be illustrated as in Fig. 10-14. It is well to note the geometric
arrangement of the electron orbit associated with each energy level as
well as their angular momentum contributions.

In a similar way, when the two separated atoms that correspond
to the diatomic molecule are allowed to approach one another, the
electron orbits are affected by the imposition of an axial direction. The
perturbation that this causes when the separated atoms are different, i.e.,
when the diatomic molecule is heteronuclear, is illustrated in Fig. 10-15a.
(It is customary to represent the united-atom limit at the left of the
page and the separated-atom limit at the right of the page. This order
is maintained in the diagrams for initial effects in Figs. 10-14 and 10-15.)
A second atom affects the orbitals of a given atom by imposing a direc-
tion in space. This distinguishes between orbitals of the given atom
that have the same value of ! but different orientations relative to the
internuclear axis that is being formed. The three p orbitals, for example,
which might be labeled p., p,, and p,, are identical in the spherical sym-
- metry of an isolated atom. When an axial direction is imposed, the
orbit projecting along this direction, which has zero angular momentum
in this direction and is therefore labeled as ap, is differently affected than
the two orbitals that project perpendicularly from the axis, have one
unit of angular momentum along this axis, and are designated as wp
orbitals.



FIG. 10-14 The splittings of the atomic-energy levels that result from the initial step in
breaking apart a united atom. The notation based on angular momenta and the. orien-
tations of the orbitals are shown.
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In the case of homonuclear diatomic atoms, one additional feature
must be recognized in order to see how the orbits of the separated atoms
interact as they go over into molecular orbitals of the diatomic molecule.
As should be familiar from studies of the Heitler-London description of
the H; molecule, or as is evident from the simple one-dimensional illus-
tration of Fig. 10-16, two like wave functions can be combined either
symmetrically, designated by g, or antisymmetrically, designated by .
These symbols must be attached to the description of the orbjtals, as is
done in Fig. 10-15b, when molecular orbitals are formed from like atoms.

The states deduced for the perturbed limits of the united and

FIG. 10-16 A square-well analogy to show the importance of the g and v character of
wave functions resulting from the uniting of two similar systems. Notice that the wave
function with the node goes to higher energy as the bond is formed while that without a
node goes to lower energy.

Infinite separation

//-\ u
______ I D N
e I~ —~— g

Slight interaction

//\\/ u
//_\\ g

Large interaction (comparable to
bond formation)



ELECTRONIC SPECTRA OF DIATOMIC MOLECULES 257

separated atoms must now be connected to give the desired molecular
orbitals appropriate to intermediate nuclear distances. The two limits
can be correlated with each other, to give a correlation diagram, when it
is realized that the quantum number A is a good one even when the
axial field is very important as it is at intermediate internuclear distances.
Thus, one joins up, as in Figs. 10-17 and 10-18, states with the same
values of ), i.e., a ¢ with a o state, a = with a = state, and so forth. Fur-
thermore, for homonuclear molecules it is necessary to preserve the g and
u character of the orbital. This can be done by joining orbitals desig-
nated by u for separated atoms with, for example, op states which, as
shown by the wave-function sketches in Fig. 10-14, have the correct
antisymmetry character.

The correlation diagrams of Figs. 10-17 and 10-18 allow the electron
orbits of a diatomic molecule to be described and the order of their

FIG. 10-17 A correlation diagram describing the energies of the electron orbitals
of heteronuclear diatomic molecules. (From G. Herzberg, “Spectra of Diatomic Molecules,”
D. Van Nostrand Company, Inc., Princeton, N.J., 1950.) The vertical broken lines indicate
the approximate positions which give the correct ordering of the energies of the molecular
orbitals for the indicated molecules. ’
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energies to be roughly estimated. They are, therefore, equivalent to
Fig. 10-9 and provide essentially the same basis for describing the elec-
tronic state of a molecule as does the use of the hydrogenlike wave func-
tions for a many-electron atom.

Correlation diagrams are resorted to because of the.relative ease
with which the general shapes and energies of electron orbits of atoms
can be described and the great difficulty of doing the same for molecules.
The correlation diagram gives immediately some information on the
relative energies of molecular orbitals. Something of the shape of the
corresponding orbitals can also be deduced by looking at the shapes
of the limiting atomic orbitals. This is illustrated for the case of op
and #p orbitals in Fig. 10-19. One should notice that two arrangements
of the two orbitals that overlap, when the molecule is formed, are always
possible. The one that overlaps to form a high electron density between
the nuclei is of lower energy (recall the ordering of particle-in-a-box

FIG. 10-18 A correlation diagram describing the energies of the electron orbitals of
homonuclear diatomic molecules. (From G. Herzberg, “Spectra of Diatomic Molecules,”
D. Van Nostrand Company, Inc., Princeton, N.J., 1950.)
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FIG. 10-19 Diagrams indicating something of the shope of some molecular orbitals.
These shapes indicated for op, c*p, p, and 7*p apply, for example, to the energy levels
labeled 20p4, 20ps, 2pa, and 27ps in Fig. 10-17 and ¢,2p, 0u2p, Tu2p, and m,2p in
Fig. 10-18.

wave functions according to the number of nodes) and is said to be a
bonding orbital. The second arrangement, in which the function must
change sign and have a node between the nuclei, is of higher energy
and is known as an antibonding orbital. In a similar way, one can draw
the bonding and antibonding orbitals that are formed from the coming
together of other atomic orbitals. These qualitative pictures of electron
orbitals are often used, particularly when polyatomic molecules are
studied, as a basis for describing electron changes that occur.

Exercise 10-3. With the aid of Fig. 10-17, suggest an electronic con-
figuration for the ground state of the molecule NO. ,(Note that each =
and & energy level can accommodate a total of four. electrons.)
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Exercise 10-4. With the aid of Fig. 10-18 suggest an electronic con-
figuration for the molecule O,.

10-5. Electronic States of Diatomic Molecules

The arrangement of the individual electrons in a given electronic
state of a molecule can be described by the individual electron descrip-
tions that are based on the correlation diagram. Some examples are
shown in Table 10-3. If the molecule is composed of like atoms, the
separated atom designation for the orbitalg is more revealing and is used.
For heteronuclear molecules, the united atom designation is used.

As for atoms, the electronic state of the molecule depends on the
net or total electronic arrangement. Various electronic states can arise
from a given electronic configuration, i.e., from a given deseription of the
electrons considered one at a time. The electronic arrangement of the
molecule as a whole can best be characterized by the net orbital angular
momentum component along the internuclear axis and the net electronic
spin angular momentum aldng this axis. The orbital component along
the molecular axis, designated by A since this quantity depends on the
individual electron contributions designated by A, is easily obtained by
summing up the contributions of the separate atoms, 0 for ¢, 1 for =, 2 for
8, and so forth. The value of A =0, 1, 2, . . . is indicated by writing
a term symbol Z, II, A, . . . . The spin angular momentum along the
axis is, as for the atomic case, indicated by a superscript giving the
multiplicity of the state. If the molecule is homonuclear, the net
symmetry, i.e., the g or u property, is significant for the molecule as
well as for the individual orbitals. (The electronic state is even and
labeled with a g if the number of « electrons is even, and the state is odd
and labeled with a u if the number of % electrons is odd.) Finally,

TABLE 10-3 Some Examples of the Descriptions Used for Electronic States
(K is used to denote 2 electrons in 1s orbits, L to denote 8 electrons in the 2s and
2p orbits)

Molecule Ground configuration First excited configuration
H, (og18)? 1ZF | (egl8)ouls izt s3F
Li, KK/(s,2s)? 12+ | KK(0,25)0,28 134 sz+
N. KK(0,25)2(0u28)%(mu2p)* | 12} | KK (0428)2(0u28)(m.2p)* | 'O, 0,
(042p)* (092p)'me2p
LiH K(230)? 13+ | K(2s0)2po 1p+, szt
CH K (280)2(280)22p7 I | K(2s0)2pe(2pr)? 137, 24, 23, 22
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if a molecule is in a T state as a result of the opposition of two = or 8
angular momentum vectors, these vectors can have either the orientation
— «—or « —. It turns out, by an argument not easily given, that these
alternatives correspond to molecular orbitals that are either symmetric
or antisymmetric with respect to a plane through the molecular axis.
In view of this, and the discussion of Sec. 5-4, we label 2 states, which
arise from two = or two & orbitals, as =+ and Z—. (It should be clear,
in view of Fig. 10-14, that antisymmetry with respect to any plane
through the internuclear axis cannot be achieved from ¢ orbitals.) The
notation used for molecular electronic states is illustrated, along with
the indicated orbital occupancy, in Table 10-3.

We are now at a stage where we can describe, in terms of angular
momenta, the different electronic states that can be expected for a given
molecule, and with the aid of the correlation diagrams, we can tell,
although only approximately, the order of these states on an energy
scale.

10:6. Potential-energy Curves for Electronic States of
Diatomic Molecules

Although the energies of states arising from different electronic
arrangements for diatomic molecules cannot yet be calculated, the
electronic states of diatomic molecules can, as indicated by the lengthy
discussions of the previous sections, be described and labeled. It can
now be pointed out that a given electronic transition can, in some cases,
be associated with a particular pair of states. When this can be done,
the detailed information obtained from analysis of the rotational and
vibrational structure of the spectral band can be used along with the
electronic configurations of the states involved so that diagrams, such as
that of Fig. 10-20, can be constructed.

The way in which electronic states are assigned to the transition
resulting in an electronic absorption or emission band cannot be treated
here. The subject is covered in considerable detail in the references
given at the end of this chapter. It need only be mentioned here that
the principal basis for the assignment stems from a comparison of the
observed rotational structure with that expected for transitions between
various types of electronic states. The nature of the rotational transi-
tions is strongly affected by the coupling between the electronic angular
momenta of the states involved and the rotational angular momentum
of the molecule. As a result one observes such features as P and R
branches with or without a @ branch, P and R branches with each line
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FIG. 10-20 The potential-energy curves for various electronic states of the molecule C..
(From G. Herzberg, “Specira of Diotomic Molecules,” D. Van Nostrand Company, Inc.,
Princeton, N.J., 1950.) (More recent data indicate that some revision is necessary.) The

symbol X is inserted to identify the ground state. The notation @, b, ¢, . . . and A, B,
C, . . . is added to identify the different staies of the same multiplicity.
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split into two or three lines, missing early members of the P, Q, and.
R branches, and so forth. .

For some diatomic molecules, a fairly complete analysis of the
-ground and lower excited states can be made. For many more mole-
cules, only a few of the observed bands can be definitely attributed to
specific electronic states. Much of the wealth of chemical bonding
information that has arisen from studies -of electronic transitions is
summarized in the Appendix of ref. 2. A summary of some more recent
results has been given by P. G. Wilkinson [J. Molecular Spectroscopy, 6: 1
(1961)].

PRINCIPAL REFERENCES

1. Herzberg, G.: “Atomic Spectra and Atomic Structure,” Dover Publications,
New York, 1944,

2. Herzberg, G.: ‘“Spectra of Diatomic Molecules,” D. Van Nostrand Company,
Inec., Princeton, N.J., 1950.

3. Gaydon, A. G.: “Dissociation Energies and Spectra of Diatomic Molecules,”
Dover Publications, New York, 1950,

4. Mulliken, R. S.: Rev. Mod. Phys., 2(60): 506 (1930); 3: 90 (1931); 4: 3 (1932).



ELECTRONIC SPECTRA
OF POLYATOMIC MOLECULES

The wealth of experimental data and detailed analyses that characterize
the spectroscopy of electronic states of diatomic molecules is in sharp
contrast to the situation encountered with most polyatomic molecules.
Since the energy of an electronically excited polyatomic molecule can
usually be distributed so as to break a weak chemical bond of the mole-
cule, bound high-energy electronic states are not so abundant as in
diatomic molecules. A further consequence of this is that a sample
usually cannot be heated to a-temperature at which emission spectra
can be obtained without risk of decomposition. The only transitions
that are normally observed are, therefore, those from the ground to an
excited electronic state that show up in absorption spectra. Only a
few bands arising from such transitions are usually obtained, and since
the samples under study are often solutions or solids, the absorption
bands are often broad and relatively structureless. (Spectra of com-
pounds that will be studied later in this chapter are shown in Figs. 11-2,
11-10, and 11-18.) The revealing rotational structure of diatomic
absorption bands is, therefore, absent, and a band does not immediately
reveal the nature of the electronic states involved in the transition.

In spite of the relatively greater difficulty involved in the analysis
of the electronic spectra of polyatomic molecules, much work has been
and is being done in this area. Spectral data on the nature and energies
of electronic configurations of states other than the ground state of the
molecule provide important testing data for theories of chemieal bond-

ing. The geometry of molecules in excited states is not necessarily the
264
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same as that of the ground state; formaldehyde and ethylene are, for
example, nonplanar in one or more of their excited states. In studies
of reaction mechanisms, particularly those resulting from photochemical
excitation, such information on excited electronic states is basic to a
detailed understanding of the mechanism.

It should also be mentioned that the absorption bands due to
electronic transitions, which usually oeccur in the ultraviolet or visible
spectral regions, have long played an important role in the analysis and
characterization of both organic and inorganic compounds. A number
of important empirical generalizations have been developed which predict
the effect of structural changes on the frequency and intensity of the
absorption bands of a parent molecule. The relation between the elec-
tronic structure of the absorbing molecule and its absorption spectrum
that will be introduced in this chapter provides some basis for the under-
standing of such empirical relations and for the use of ultraviolet and
visible spectra as a tool for the study of electronic structures.

The material falling within the scope of the title of this chapter
can be conveniently divided into four topics.

The first topic concerns itself with molecules that absorb radiation
because of an electronic transition that is essentially localized in a bond,
or group, of the molecule. Most studied of such systems, and suitable
to illustrate the procedures used, are molecules containing a carbonyl

group C=O0. The analysis of the spectra of such systems is similar

to that for diatomic molecules, but important differences arise because
of the experimental limitations mentioned previously and the loss of the
axis along which angular momentum would be quantized.

The second molecular type to be studied consists of molecules con-
taining conjugated m-electron systems. Aromatic molecules constitute
the largest and most studied group in this category, and after a brief
discussion of linear conjugated systems, the way in which one attempts
to describe the various electronic states resulting from excitation,of the
7 electrons in these molecules will be introduced.

The next topic deals with the absorption spectra produced by sys-
tems that contain a transition metal ion in a coordination compound.
Many such systems are colored; i.e., they have electronic transitions that
result in absorption in the visible region. The spectrum of such a
compound is, therefore, an often referred to characteristic of the material.
Analyses of such absorption bands in terms of the electronic states
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involved lead to further understanding. of the bonding in these coordina-
tion compounds,

Finally, the process by which a molecule or an ion in an excited
electronic state can get rid of its excess energy and return to its ground
state will be investigated, and some features of the processes of fluores-
cence and phosphorescence will be introduced.

TRANSITIONS LOCALIZED IN BONDS OR GROUPS

11-1. Electronic States of Localized Groups

Chemists have devised a number of ways for describing the ground
electronic state of a molecule. One of these, due to G. N. Lewis, uses
dot diagrams to indicate the number of bonding and nonbonding electrons
in a molecule. Thus, for formaldehyde, H,CO, this approach would give
a diagrammatic description of the ground electronic state as

H
H:('J::fj:

where the placement of the dots represents the role of the outer electrons
in the molecule.. With the advent of quantum-mechanical descriptions
based on the Schrédinger equation solutions for the hydrogen-atom
problem, these diagrams could be refined to show in somewhat more
detail the spatial arrangement of the electrons. Thus, the diagrams
of the type used in the previous chapter, i.e.,

could be drawn.

These atomic orbital type diagrams suggest a method for describing
the available electron orbits in molecules of this type. In view of the
notation used for diatomic molecules, bonding », or s and p hybrid,
orbitals projecting in the direction of the bond are said to be ¢ orbitals,
and the bonding orbital resulting from the overlap of such orbitals is
known as a ¢ bond. There will also be, as can be seen by inspection of
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the correlation diagrams of Figs. 10-17, 10-18, and 10-19, a corresponding
higher energy antibonding ¢ orbital, not occupied in the ground state,
produced by the overlap of the two ¢ atomic orbitals. This antibonding
orbital is usually denoted by ¢*. The principal distinguishing feature of ¢
and ¢ * orbitals is, as shown in Fig. 10-19, the node in the ¢* orbital. The
- atomic p orbitals that project perpendicularly from the bond direction and
form a bond are said to be = orbitals. The overlap of such atomie orbitals
leads to a bonding = orbital, which will be occupied in the ground state of
H,CO, and s higher energy antibonding orbital designated by =*. The
remaining electrons that are of interest in the study of electronic transi-
tions of such groups are ‘‘lone-pair” or ‘“nonbonding” electrons on the
oxygen atom. They can, if hybridization of the atomic orbitals on
oxygen is not considered, be located in the available oxygen-atom orbitals,
which are a low-lying 2s orbital and the remaining 2p orbital. If only
the higher-energy 2p orbital is considered to be involved in the observed
transitions, it can be designated simply as a nonbonding orbital and the
symbol n can be used for it.

It should be recognized that, as for diatomic molecules, the exact
spatial distribution corresponding to these orbitals cannot be calculated.
Furthermore, no exact angular momentum values can be used to charac-
terize the orbitals. We will see, however, that the shapes of the orbitals
can be drawn well enough so that the symmetry of the orbitals can be
deduced, and the behavior under the symmetry operations of the molecule
will be seen to provide the best characterization of orbitals in polyatomic
molecules. In anticipation of this, the diagrams given in Fig. 11-1
for the orbitals of the carbonyl bond that are important in electronic
transitions of that group should be noted.

Once the available individual electron orbits for a given molecule
are recognized, electrons can be assigned to these orbilals to specify an
electronic configuration of the molecule. Thus, the ground state of H,CO
can be expected to .correspond to the designation, which later will be
~ abbreviated,

[(186)%(180)(280)*(ocm) Hocn) Hoco) {meo) 2 (no)?

The three ¢ bonds to the carbon atom are thought of as being formed
from sp? trigonal hybrid orbitals on the carbon atom. The 7 bond
between the carbon and oxygen atoms then is formed from the remaining
carbon atom p orbital and one of the oxygen p orbitals. The brackets
enclose the low-lying inner and bonding electron orbitals that are not
normally expected to be involved in the transitions studied. It isenough,
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therefore, to write, for the ground-state electron arrangement,
[Inner electrons](mweo)?(n0)?

or simply
[Inner electrons](r)%(n)?

Similarly, some of the excited states that might be expected to be impor-
tant can be indicated by

[Inner electrons](w)2(n)(x*)

[Inner electrons](r)(n)2(x*)

[Inner electrons](w)2(n)(s*)

FIG. 11-1 Some spectroscopically important orbitals of HyCO and their symmetry
properties.

Lone pair _
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and so forth. In the above, as is customary, a superseript 1 is understood
and is not written when an orbital is singly occupied.

Expressions such as those given above constitute electronic configura-
tions for the various electronic states of the H,CO molecule considered
here.

Exercise 11-1. Write the electronic configurations for the ground and
several excited states of the acetonitrile CH;CN molecule.

For some purposes the electronic state of a molecule is adequately
described by such electronic configurations, i.e., by such individual
electron descriptions. A more thorough understanding of the electronic
transitions of polyatomic molecules requires, as for diatomic molecules, a
description, for a given assignment of electrons to the individual orbitals,
of the electronic state of the molecule as a whole. As previously men-
tioned, this cannot be done for nonlinear molecules on the basis of a net
orbital angular momentum along an axis. One can, however, recognize
that the total electronic wave function must have a symmetry that is.
compatible with the symmetry of the molecular skeleton. It is this
symmetry behavior that best characterizes electronic states of polyatomic
molecules. »

First one must consider the symmetry types of the individual
orbitals. The molecule being used as an illustration here, H,CO, or
effectively any symmetric ketone, belongs to the point group Co..
The character table for this group is shown in Table 11-1. Assignment
of the orbitals of Fig. 11-1 to symmetry species can readily be made by
investigating whether the orbital is left unchanged or changes sign as a
result of the four symmetry operations of the group. In this way the
symmetry classification of the individual orbitals, shown in Fig. 11-1, is
obtained. :

It is now necessary to assign the total electronic wave function of the
molecule to a symmetry type. First one recognizes that, to an approxi-

TABLE 11-1 The C;, Character Table

Cs, E C, oy -
A, 1 1 1 1 T,
As 1 1 -1 -1
B, 1 -1 1 -1 T.
B, 1 -1 -1 1 T,
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TABLE 11-2  The Effect of Symmetry Operations on ¢(1), Presumed to Be of the Type A,,
and ¢(2), of the Type B;, and on the Product ¢{1)¢(2)

E C: Oy N 'vll
Ro(1) = +1p01) +lp) —le() —1e()
Rp(2) = +1¢(2) —10(2) +10(2) —1¢(2)
Ro(De@ = | (+D(+DeWe@ [(+1(~Dee@ | (=1 (+Dele@ | (-1 (-De)e@
) = ~1p(1)p(2) = ~le(Me® = +1p(e(@)

mation sufficient for symmetry considerations, the total wave function
for the molecule can be written as the product of the wave functions
describing the individual behavior of the electrons. Thus one writes

¥ = o()e)e@B) - - - 1)

where (1) is the wave function for the orbital occupied by electron 1,
#(2) the wave function for that occupied by electron 2, and so forth.

The results of the various symmetry operations on the ¢’s are
known. Thus, for example, if electron 1 is in an orbital of type A4,
and electron 2 is in an orbital of type Bj, the result of symmetry opera-
tions on ¢(1) and ¢(2) could be tabulated as shown in Table 11-2.

The effect of the symmetry operations on the product ¢(1)¢(2) is
given in the third row of the table. We have used again, as we did in
investigations of the symmetry behavior of the transition-momerit inte-
gral, the fact that the character for such a product of functions is equal to
the product of the characters of the individual functions. (In group theory
one uses the term direct product for such a product of two functions.)
The product ¢(1)¢(2) is found, according to the results of Table 11-2, to
transform according to the symmetry type B..

With this result and the symmetries of the individual orbitals, one
can calculate the symmetry type of the total electronic wave function
of the molecule with given electronic assignments. The task is greatly
simplified when it is recognized (1) that many (in the ground state,
usually all) of the orbitals are occupied by two electrons and (2) that the
product of one nondegenerate representation and itself necessarily leads
to the totally symmetric representation. In view of this, the net char-
acter for all the doubly occupied orbitals is the set of +1’s that constitute
the totally symmetric representation. The symmetry types of the
electronic states of H,CO, corresponding to the configurations previously
displayed, can then be easily deduced from the symmetries of the singly
occupied orbitals. The results are shown in Table 11-3.
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TABLE 11-3 Some Electronic Configurations and Electronic States of Formaldehyde

Configuration Symmetry of elec- Transition moments from
tronic state ground state
{Inner electrons)] (x)%(n)? Ay
[Inner electrons] (x)2(n)(x*) A, le] = luy| = lue] =0
[Inner electrons] (x)(n)%(x*) Az laz| = luy] = 0; |us| 20
{Inner electrons] (x)2(n)(sc*) B, lpel = lus] = 0; |uy] 50

Exercise 11-2, Verify the symmetry assignments shown in Table 11-3
for the various electron configurations.

One further feature of the electronic states of molecules must be
mentioned. The description has, so far, ignored the relative directions
of spin of the electrons. The Pauli principle requires that the spins of
two electrons occupying the same orbital be opposed but allows, when
orbitals are occupied by single electrons, either spin orientation. If
follows that the ground state of H,CO must be a singlet state, i.e., the
net spin must equal zero, since all the electrons are paired and each pair
must have opposite spins. TFor the excited states considered above, how-
ever, the net spin can be either zero, i.e., the molecule can be in a singlet
state, or unity, i.e., the molecule can be in a triplet state. The designa-
tion singlet or triplet must, therefore, be added to the description of a
molecular state. It can be mentioned in this connection that the rule
based on atomic spectral results, and known as Hund’s rule, is also
applicable to molecular systems. This rule states that, if both singlet
and triplet configurations are possible with the same set of orbitals, the
triplet state will have a lower energy than the corresponding singlet
state. Thus, lower energy electronic states are to be expected when the
above excited configurations are occupied by electrons with parallel
spins than when they are occupied with paired spins. This qualitative
discussion is as far as we need go in attempting to describe the electronic
states that are involved in the electronic transitions with which we will
be concerned. Now we must see if the obscrved absorption bands can
be correlated with transitions between the various electronic states.

11.2. Electronic Transitions and Absorption Bands

A schematic absorption spectra of a carbonyl compound such as form-
aldehyde or methyl ethyl ketone, is shown in Fig. 11-12. The object of
this section is to see if such absorption spectra can be understood on the
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basis of the electronic states of molecules as described, for example,
in the previous section. If assignments of the absorption bands to
transitions between given states can be made, the relative energies of the
various electronic arrangements of the molecule can be deduced.

The excited states of a carbonyl compound that are usually sus-
pected of being involved in electronic spectral transitions are those
described in the previous section. It is first necessary, therefore, to see
if transitions between the ground state and each of these excited states
can be expectéd to be induced by electromagnetic radiation. According
to the discussion of Sec. 49 it is necessary for one of the integrals

|/‘-=| = f '/’excited“z‘l/ground dr

l'ull] = f‘llexciudﬂu‘l/gtound dT
or

lﬂzl = f ‘l/exciudﬂz'l/zround dT

10 be nonzero for the transition to be induced. Knowledge of the

FIG. 11-2 A schematic diagram for the vultraviolet absorption spectrum of a carbonyl!
compound. '

5
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symmetry of the wave functions is sufficient to decide whether or not
the integrals may be nonzero. (One can, in fact, use approximate wave
functions for the orbitals shown diagrammatically in the previous section
and perform the integrations in order to get some idea, not only of whether
a transition is allowed or not, but also of how intense the absorption will
be.) The integrals, like all observable properties, must not be changed
by the symmetry operations which take the molecule from one orienta-
tion to an indistinguishable one. Thus, unless the symmetry species
to which Yerciteats¥arouna Delongs is A4,, the value of the integral must be
zero. Similar statements can be made for the transition-moment integral
in the y and z directions. The ground state for the molecules considered
here, and for all molecules with no unpaired electrons, has the symmetry
type A;. It follows that the entire integrand has the symmetry A, if
Vexcited ANA Uz, Yexcitea ANA vy, OF Yoreiea a0d g, belong to the same symmetry
type. Thus, just as in vibrational transitions, an electronic transition
from a totally symmetric ground state is allowed if the excited state
belongs to a symmetry type that contains u,, g, or p,, ie., Ty, Ty, or T,.
The results of such an analysis applied to CH;0 are shown in Table 11-3.

The selection rule prohibiting changes in spin that is operative in
small atoms and diatomic molecules appears to be fairly well obeyed in
simple polyatomic molecules. Again, however, the presence of a nucleus
with a large nuclear charge results in a strong coupling of the spinning
electron with the orbital motion of the electron and allows the relative
spins of electrons to be _altered. KEven in simple molecules, such as
formaldehyde, transitions to an excited triplet state cannot be entirely
ruled out. While triplet states are relatively unimportant in absorp-
tion studies, i.e., they lead to very weak absorption bands, we will
see that they play an interesting and important role in fluorescence and
phosphorescence.

A comparison of the observed band intensities with those expected
on the basis of the transition-moment integrals provides the most fre-
quently used approach to the assignment of electronic states to absorp-
tion bands. As mentioned in Sec. 4-9, a completely allowed transition,
such as that from the ground state to the A4, excited state of formalde-
hyde, is expected to have an intensity f«(5) d# which corresponds to an
oscillator strength, or f value, near unity. On the other hand, transitions
that are predicted to be forbidden on the basis of the symmetry treat-
ment illustrated above can occur to such an extent that weak absorption
bands are observed. The f values for such bands will be much less
than unity. One mechanism that allows forbidden transitions to occur
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involves vibrations of the molecule that lead to nuclear configurations
that do not have the same symmetry as does the molecule in its equi-
librium configuration. As a result, the skeletal symmetry to which the
electronic wave functions must conform is, for the H,CO example, not
strictly Cg,, and the prohibitions based on that symmetry group are not
strictly adhered to. The generally accepted assignment for the observed
carbonyl bands is shown in Table 11-4.

Two other general methods for aiding in the assignment of absorp-
tion bands are used. The first of these is concerned with the direction
of the transition moment, i.e., the polarization of the absorption. The
analyses given in Table 11-3 indicate that a determination of the direction
of polarization would identify the upper state involved in the transition.
Considerable experimental difficulty is, however, encountered in align-
ing the absorbing molecules so that studies with polarized radiation
can be used to determine the direction of the trapsition moment. In
some cases, a suitable crystalline form can be found that permits such
studies.

Another assignment aid comes from the shift in the wavelength
of the ah.orption band that accompanies solvation of the molecule.
It is found, for example, principally on the basis of empirical correlations,
that absorptions due to n — x* transitions are shifted to shorter wave-
lengths while those due to # — 7* transitions are shifted to longer wave-
lengths as the solvation, or dielectric environment, of the absorbing
molecule is increased. This correlation is frequently useful and has some
theoretical basis. [Cf. H. McConnell, J. Chem. Phys., 20: 700 (1952).]
One expects, for example, a hydrogen bond to the carbonyl group to
tie up, to some extent, the nonbonding electrons on the oxygen. This

TABLE 11-4 The Ultraviolet Absorption Bands of Carbonyl Compounds and Suggested
Assignments
(Values of A and f are Typical Values for a Number of Compounds)

Assignment
xbaml max f
A (osc. strength) | Configuration | Upper state Selection rule
change symmetry
1,700 0.5 x>t 14, Allowed
1,800 0.02 n— o* 1B, Symmetry forbidden
2,800 0.0004 n—r* 14, Symmetry forbidden
3,500 10— n—ox* 34,(7) Symmetry and spin for-
bidden
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would lower their energy and lead to a greater energy change, or a shorter
wavelength band, for a transition that promotes one of these electrons.

An interesting and important aspect of electronic transitions that
has not been considered but which is pertinent to a discussion of local-
ized absorbing groups, and to the conjugated and aromatic systems that
will be dealt with in the final section of this chapter, is the process by
which molecules in excited electronic states lose their excess energy and
revert to ground-state molecules. This process, as we will see, can
involve fluorescence and phosphorescence emission of radiation.

(It should be mentioned that, since the symbols for electronic
states do not immediately reveal the relative energies of the states, it is
becoming standard, when transitions between two electronic states are
considered, always to write the higher-energy state first. Thus, for
example, the band in the H.CO absorption spectrum at about 1,800 A
would be referred to as due to a !By « 14, transition. If the same transi-
tion were studied in emission, one would write !B; — !4,. When, as is
often the case, both absorption and emission spectra are dealt with,
designations according to this system avoid much of the confusion that
can arise. However, when the transition is discussed in terms of the
configuration change of an electron of the molecule, the relative energies -
of the two configurations are usually evident, and one writes the initial
electron orbit first and then an arrow pointing to the new orbit reached
by the electron.)

Exercise 11-3. Draw the = and =* orbitals of ethylene, and assign them
to symmetry types in the point group to which ethylene belongs. To
what symmetry types do the ground and first excited (x)(x*) states
belong? Would a transition between these states be allowed, and, if 80,
in what direction would it be polarized?

ELECTRONIC TRANSITIONS OF CONJUGATED AND
AROMATIC SYSTEMS

In molecules containing conjugated double bonds and in aromatic
systems it is now clear that the = electrons, i.e., those in the 2p orbitals
that project perpendicularly from the plane of the trigonal sp? orbitals
forming o bonds, are responsible for the absorption found in the near-
ultraviolet or even the visible region. In studying such systems we can,
therefore, concern ourselves with the possible orbitals that can arise
from the atomic 2pr orbitals. A very simple but surprisingly successful
approach, known as the free-electron model, will be introduced for linear
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" conjugated systems. This treatment puts obvious emphasis on the
delocalization of the electrons; i.e., the molecular orbitals that it leads
to are spread out over the entire molecular skeleton. In the following
section, aromatic systems will be considered, and molecular orbitals will
be set up for benzene by means of the classical molecular orbital approach
which combines the 2pr atomic orbitals into appropriate molecular
orbitals.

11-3. Conjugated Systems by the Free-electron Model

It is well known that conjugated systems have absorption bands
at longer and longer wavelengths as the number of conjugated double
bonds gets greater and greater. In fact, long conjugated systems are
often colored, i.e., the absorption band is in the visible region. These
general features, as well as the wavelength and intensity of the absorption
band for a given molecule, can be understood on the basis of a very simple
model for the r electrons of the molecule.

Let us consider the specific case of the molecule octatetraene, CsH .
The structure, as indicated in Fig. 11-3, consists of a planar nuclear array.
The carbon atoms can be considered to form o bonds with sp? trigonal
orbitals and = bonds with the remaining p orbitals. A total of eight
electrons will oceupy the = orbital system.

A treatment of the x electrons can be based on the idea, long held by
chemists, that these electrons are delocalized and are not confined to a
given atom or even to a given bond position. This suggests that one
might treat the molecular skeleton as a region of roughly uniform poten-
tial throughout which, subject to the wave functions that can be calcu-
lated from the Schrédinger equation, the electrons are free to move.
Outside the molecule the potential energy, on the simplest model, is

FIG. 11-3 The bonding and structure of octatetraene. Each carbon atom forms three
o bonds, indicated by —, with sp? hybrid orbitals. Each remaining 2p orbital, shown as
an atomic orbital here, enters into the delocalized 7 bondi

-
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assumed to be infinitely high. This free-electron or particle-in-a-box
model, although clearly rather crude, leads to quite satisfactory results.

The potential-energy function for octatetraene is shown in Fig. 11-4,
The exact width of this potential well is not unambiguously set. One
usually assumes that the = electrons are free to move about half a bond
length beyond each end carbon atom, Likewise, one usually assumes
that an end-to-end measurement of the molecule is appropriate rather
than one that follows the zigzag of the chain. With these assumptions,
and ignoring repulsion between the = electrons, one can deduce the
allowed orbitals and their energies.

The quantum-mechanical problem has already been solved in Sec.
1-5. There it was found that the wave functions for the particle-in-a-box
problem are

nTE

1&=AsinT n=123 ... 2)

and that the energies of these solutions are

2h2
= Sma? ©

The Pauli exclusion stipulation that no two electrons can have the
same quantum numbers requires that no more than two electrons, one
with spin +% and one with spin —1, be assigned to a wave function with a

FIG. 11-4 Occupancy of molecular orbitals by the
electrons of octatetraene in the ground state. The
arrow indicates the transition that leads to the
cbserved absorption band.
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given value of n. The occupation of the available = molecular orbitals
for octatetraene can then be illustrated as in Fig. 11-4.

The longest wavelength transition that is expected is that which
takes one of the n = 4 electrons to the n = 5 orbital as indicated by the
arrow in Fig. 11-4. The energy involved in this transition is given by

h2
8ma?

e — ¢4 = (52— 4?) 4)
The frequency of radiation that would cause this transition is calculated,
with a = 9.5 A, to be

5 = 27,000 cm™ (5)

This calculated result is to be compared with the absorption band
maximum found at 33,100 cm—!. The agreement is surprisingly good.

A further advantage of this simple model is that, as discussed in
Sec. 4-6, the intensity with which a sample absorbs radiation can be
calculated. The prediction, for octatetraene, that the integrated absorp-
tion coefficient be, according to Eq. (58) in Chap. 4,

_ 32Ne2a”/v
~ 3whel,000
= 1.9 X 10 sec~! cm~! mole™! liter (6)

can be compared with the experimental value of approximately
Ja(p) dp = 1.1 X 10! sec! em™~! mole~! liter )]

Again the agreement is satisfactory.

A number of elaborations of this simple method for calculating the
electronic states of conjugated systems have been introduced. The chief
merit of this approach, which clearly oversimplifies the potential experi-
enced by the = electrons, is, however, its simplicity.

Exercise 11-4. Note the similarity between the orbitals of Exercise 11-1
and the n = 1 and » = 2 particle-in-a-box wave functions that would
be drawn for the ground and first excited orbitals for ethylene using the
particle-in-a-box model.

Exercise 11-5. What are the calculated and observed f values for the
longest wavelength r-electron transition of octatetraene?

Exercise 11-6. Lycopene is a linearly conjugated hydrocarbon con-
sisting of all double bonds alternating with single bonds. It is responsible
for the red color of tomatoes. Calculate the wavelength expected for
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the = — «* transition and compare with the observed band maximum
which occurs at A = 4,700 A.

11-4. Electronic States and Transitions in Aromatic Systems

An adequate description of the ground electronic state of aromatic
systems was a goal that occupied the attention of many early organic
and physical-organic chemists. Following the advent of quantum
mechanics, attention could be extended to the excited electronic states
and the spectral transitions that occur between these states. A number
of approaches to the description of the excited m-electron states of aro-
matic systems have been used. An introduction to the electronic spectra
of aromatic systems can, perhaps, best be given in terms of a simple
molecular orbital treatment, based on 2pr atomic orbitals, applied to
the example benzene. The importance of the symmetry classification
of the molecular orbitals and the electronic states will be brought out,
and it will be shown that some assignments of observed absorption bands
to the states involved in the transitions can be made. The treatment
can be extended to other aromatic systems, but this will not be done here.

As in the previous section, attention will be centered on the 2p=x

orbitals, shown for benzene in Fig. 11-5, It is first necessary to see how
~ these atomic orbitals can be combined to provide suitable molecular
-orbitals. The guiding principle here is that an electronic wave function,
or molecular orbital, of the benzene molecule must conform to the
symmetry of the molecule. That is, by an argument analogous to that
used in discussing the symmetry of normal coordinates in Sec. 6-4 and
illustrated for localized orbitals in Sec. 11-1, each molecular orbital must
transform, under the various symmetry operations, according to one
of the irreducible representations of the group. Let us now see if such
molecular orbitals can be obtained by suitable combinations of the six
2pr atomic orbitals.

FIG. 11-5 The 2p atomic orbitals of
the carbon atoms of benzene.
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TABLE 11-5 The D; Character Table

Ds | E| 200 | 22 | & | 3¢, | 3c,

1 1 1 1 1
Ay 1 1 1 1 -1 ) T
B, 1 -1 1 -1 1 -1
B, 1 -1 1 -1 -1 1
E, 2 1 -1 -2 0 0 7., Ty
E, 2 -1 -1 2 0 0

The point group to which the nuclear skeleton of the benzene mole-
cule belongs is Dgn.  The treatment can be somewhat simplified if the
symmetry about the plane of the molecule is, for the time being, ignored.
It is enough to treat the wave function above the horizontal plane of the
molecule or below that plane. Later the fact that all pr orbitals are
antisymmetric with respect to this plane can be added in. With this
simplification, the problem can be analyzed in terms of the simpler
point group Ds, for which the character table is given in Table 11-5
and the symmetry elements are illustrated in Fig. 11-6.

The six 2pr atomic orbitals form a basis for a reducible representa-
tion of the group, i.e., the transformation matrices that are obtained
when the various symmetry operations are applied to these atomic
orbitals will lead to representation matrices that can later be reduced.
Thus to obtain the reducible representation, one investigates the oper-
ations on the individual « orbitals and writes the transformation equations

.FIG. 116 The symmetry elements of tha D)4 point group. Neote that, unlike the case for
the D¢, point group, symmetry with regard to the plane of the molecule is not considered.

CS" CZ" cJé

>
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as
p4 P
B B
Pl /100 00 o?
EI”|={0o 1000 0])|? character for £ = 6
pA pA

Y y
c 0O 0 01 0O ¢
C, p =0 00 01 0 p character for C, = 0

and so forth. In this way one finds that the character of the reducible
representation corresponding to the six 2p= orbitals is

'E 2Cs 20t Ci 3C: 3C,

Xred. ! 6 0 0 0 2 0

As in the normal vibration problem, this representation can be
-analyzed in terms of the irreducible representations that correspond to
it. Thus, application of Eq. (51) in Chap. 8 shows, as can readily be
checked, that the reducible representation contains representatlons of
the types 4., By, Ey, and E,, ie.,

Pred. = A1+B1+E1+E2 - (8)

We see from this that the atomic orbitals should be combined to give
molecular orbitals, one of which transforms according to the symmetry
type 4, one according to B;, one pair acecording to the degenerate class
E,, and another pair according to E,. We must now see what combina-
tions of the atomic orbitals have these transformation properties.

A systematic group theoretical procedure is available for obtaining
the suitable combinations. Rather than develop this, we will present
the results and merely check that they have the correct transformation
properties. (The two nondegenerate orbitals can, in fact, be constructed
by inspection.) The molecular orbitals that have the correct symmetry
properties are given in Table 11-6. (The degenerate pairs can be written
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TABLE 11-6 Molecular Orbitals for the & Electrons of Benzene

Symmetry
type Molecular orbital*
A, Yo, =@a + 8 +9c+e¢p+er+or
B, Vb, = @4 —¢B +oc —¢p + Pr — ¢F
E, Ve, = 204 + 0B — @c — 2¢0p — ¢r + ¢F
Ve, = ¢4 + 208 +@c — ¢p — 208 — PF
E, Ve, = 204 — o8 — ¢c + 200 — Y5 — @F

Ve, = @4 — 208 +@c +¢p — 208 + ¢F
* Lower-case letters are used as subscripts to identify the molecular orbitals, just as
lower-case letters were used for individual electron orbitals in atoms and diatomic
molecules. Capital letters are reserved for the symmetry type and the net electronic
state of an atom or molecule.

in various ways, and it may be more revealing to consider the sum and the
difference of the two functions given in Table 11-6.)

The form of the molecular orbitals can be seen by drawing the wave
functions as in Fig. 11-7. One should recognize that a corresponding
function, but with opposite signs, will project out on the other side of the
benzene ring. Also one should keep in mind that each molecular orbital
can accommodate two electrons.

The order of the energies of these individual molecular orbitals
can be recognized by recalling that, as can readily be seen from the
particle-in-a-box problem, the more nodes there are in a wave function,
the higher is its energy. The wave functions of Fig. 11-7 have been
ordered so that the a; function at the bottom of the diagram has the
lowest energy and the b; function at the top has the highest energy.

Calculations of the energies of these orbitals can be made, and the
simplest calculation leads to the spacing shown in Fig. 11-8. These
energy spacings are usually expressed in terms of a quantity 8 which
represents an integral that is difficult to evaluate.

The symmetry designations for the orbitals on the basis of the
Dg point group, for which the character table is given in Table 11-7,
are also shown in Figs. 11-7 and 11-8. The fact that the pr wave
functions, or any linear combination of them, have opposite signs on
opposite sides of the plane of the molecule allows, after inspection of the
wave-function diagrams of Fig. 11-7, these designations to be given to the
orbitals previously labeled ai, ey, es, and b; in accordance with the Ds
group.

Exercise 11-7. By inspection of the molecular orbital diagrams of Fig.
11-7, verify the Dg, classifications of a1, €14, €24, and by, for the orbitals
classified on the basis of Ds symmetry as ai, e, €z, and b, respectively.



byi(byy)

e(ez) |

€ (eln)

ay (a1.)

FIG. 11-7 Schematic representation of the molecular orbitals for benzene. Dark gray
outlines positive parts of ¥; light gray outlines negative parts. (The symmetry type is
given in terms of D and, in parentheses, D)

by(b,,) T
B
ey(e,,) 53
8 28
@
=
w
FIG. 11-8 The relative energies of the individual erlery) -
molecular orbitals of benzene. Symmetry designa- 8
tions are given on the basis of the D¢ point group l
a,(d,,)

and, in parentheses, on the basis of the D group.
283
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Now it is necessary to consider the assignment of the six 2pr elec-
trons to the available orbitals in ways that correspond to the states,
ground and excited, that are involved in spectroscopic transitions. It
will be important, furthermore, to determine the symmetry of each of
these electronic states, i.e., the symmetry resulting from the occupancy
of orbitals of given symmetry by the six = electrons.

The electronic configurations that need to be considered (remember-
ing that two electrons can occupy a given orbital and four a double-
degenerate orbital) are that of the ground state and that of the excited
states which result when one electron is promoted to an e;, orbital.
"These are indicated in Fig. 11-9.

The symmetries of the electronic states of these configurations can
be derived from the produets of the characters for the symmetry species
of the orbitals occupied by each electron as described for localized groups
in Sec. 11-1. Thus, since the ground state involves pairs of electrons
occupying the same orbitals, the total symmetry of this electronic state
must be A5, The symmetries of the excited states can be obtained by
analyzing the direct product of the representations of the orbitals ey,
and ey, occupied by the lone electrons. The direct product of the char-
acters of the E,; and E,, representations is

‘E 2Cs 20 C3 3C, 3C, on 30, 300 28s 28, 1 -

XB, XEp |4 —1 1 —4 0 0 4 0 0 -1 1 -4

Now, unlike the situation encountered with nondegenerate representa-
tions, a reducible representation is obtained. It is necessary to analyze

TABLE 11-7 The D¢ Character Table

Do [E|2Cs {2C3 | €3 {3C; |3C, | ou | 30w | 360 | 28s | 28 |
Ay, |1 1 1 1 1 1 1 1 1 1 1 1
A1 1] 1 1 1 1t —-1f-1]-1|=-1]=-1] -1
Ay il 1 1 1 -1 -1 1 —1 -1 1 1 1
Ap | 1 1 1 1| =1 -1 -1 1 1| -1 =1 1|7,
By 1| -1 1] -1 1] -1 -1{-1 1 1| -1 1
B, |1]| -1 1] -1 1| -1 1 1| -1} -1 1) -1
By, j 1| =1 1] -1 -1 1] -1 1] -1 1] -1 1
By |1 ]| -1 1| —-1]| —1 1 1] -1 1 -1 1 -1
Ey, |2 1|-1}-2| o] of-2! o] o] =1 1 2
En |2 1|l-11-27 of o 2! o] o 1| -1]|-2|T,T,
Eyl2|-11]-1 2{ o] o 21 o o] -1]-1 2
En|2|-1}-1 2 o]l o|]-2] of o 1 1| -2
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this in terms of its component irreducible representations in order to
determine the symmetries of the states arising from single-electron
occupancy of the ey, and es, orbitals. This.can be done by application
of Eq. (52) in Chap. 8, and the result is obtained, as can be readily
checked, that

XEy " XBpw = XBy + XBau + XEs (9)

The electronic states of benzene corresponding to the lowest excited
electronic configuration are, therefore, expected to consist of two states
with symmetries Bi, and B;. and a degenerate pair of states with sym-
metry Fi.

To a first approximation these four states, since they involve
occupancy of the same set of individual orbitals, correspond to the same
total electronic energy. It is a matter of considerable difficulty to
deduce, in a purely theoretical way, the relative energies of these states
and the ground state. Furthermore, two electrons in each of these
excited states need not have their spins-paired. It is possible, therefore,
to have both singlet and triplet states, and as suggested by Hund’s rule
cited previously, calculations indicated that the triplet states lie lower
than the corresponding singlet states. Many attempts have been made
to calculate the energy pattern for the excited states of the benzene

FIG. 11-9 Distribution of the 7 electrons of benzene in the ground and first excited elec-
tron configurations.

blﬂ 1g
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ey, r~ L — ey r~_r
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Ground-state Excited-state
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molecule, but so far it has not been possible to make, on a theoretical
basis, a certain assignment of energies to the various electronic states.

One must, therefore, make what deductions one can from the
observed spectrum, shown in Fig. 11-10, about the states involved in the
various absorption bands.

It is first necessary to consider which transitions will be allowed,
and just as for localized groups, one needs to ask which upper states
belong to a symmetry type that contains T, T,, or T.. One sees from
Table 11-7 that, for a De molecule, transitions to the states with sym-
metries 4., and E;, would be allowed. Furthermore, changes in multi-
plicity are expected to be forbidden, and one expects only singlet-singlet
transitions to lead to strong absorption bands. Thus the most intense
band in the absorption spectrum of benzene should be assigned to the
completely allowed transition to the 1E,, state.

The absorption spectrum of benzene shows, however, more absorp-
tion bands than the single most intense band that is assigned to the
1E), <— 14, transition.

Some assignments of the remaining absorption bands can be made.
The very short wavelength band, around 1,500 A, is attributed to a

FIG. 11-10 The absorption spectrum of benzene in the ultraviolet speciral region. (From
K. S. Pitzer, “Quantum Chemistry,” Prentice-Hall, Inc., Englewood Cliffs, N.J., 1953.)
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“Rydberg” type transition in which the principal quantum number of
one of the 2pr electrons is increased, as in the Rydberg series usually
discussed in connection with the hydrogen atom. Such high-energy
transitions have not been included in the treatment given here. It has
been suggested that the band near 2,100 A is due to either the transition
1By, « 1A, or By « 14, These forbidden transitions could occur
as a result of “borrowing” intensity from the nearby intense band at
1,800 A or by coupling with a vibration of appropriate symmetry. The
band near 2,500 A is attributed to the transition B, « !4, This
transition, prohibited on the basis of the selection rule derived from the
electronic states, can again be allowed as a result of coupling with a
vibration of 'suitable symmetry. The very weak absorption at about
3,300 A is attributed to the highly forbidden transition *Bi, < 144,
1t should be apparent from these comments that, although the electronic
states of benzene can be classified as to symmetry, it remains a task of
considerable difficulty definitely to identify each absorption band with a
transition to a particular state. The assignments suggested here are
included in the spectrum of Fig. 11-10.

Similar attempts can be made to assign the ultraviolet absorption
bands of other aromatic systems to transitions between electronic states
of certain symmetries. As in studies of molecules with localized absorb-
ing groups, aids to the assignment are provided by oriented-molecule
spectra studied with polarized radiation, the effect of solvents, and the
effect of substituents. Some of the ways in which more complicated
aromatic systems can be approached have been discussed by R. N. Jones
[J. Am. Chem. Soc., 67: 2127 (1945)].

Exercise 11-8. On the basis of the assignments of the absorption bands
of Fig. 11-10 to electronic states of the benzene molecule, draw an energy-
level diagram showing, by means of horizontal lines, the energies of the
various electronic states of the molecule. Attach electron volt and keal
per mole energy scales to the diagram.

Exercise 11-9, Treat the molecule cyclobutadiene

in a similar manner to that in which benzene was treated above.
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(a) Deduce the number of molecular orbitals of the various sym-
metry types.

(b) Draw, by inspecting the way in which the orbitals must trans-
form, these molecular orbitals.

(c) Arrange these orbitals in order of their energy.

(d) Assign the 7 electrons to these orbitals in accordance with the
lowest and the first excited electronic configurations. What are the
symmetry species and multiplicities of the electronic states that arise
from these configurations? :

(e) What transitions between the ground and these excited states
would be allowed ?

ELECTRONIC TRANSITIONS OF COORDINATION COMPOUNDS

The absorption spectra of compounds or ions containing transition
metals have long been used to characterize these species empirically.
Coordination compounds, in which & number of electron-rich groups,

called Iigands' (such as : NH;, H,O:, : Cl: ~), coordinate to the metal

ion, comprise the most extensively studied type of transition metal
species. In this class one has, for example, the familiar, colorful ions
[Cu(NH,)4]*++, which gives an intense blue color, and Ni (dimethylglyox-
ime),, which forms a red crystal. Almost all coordination compounds of
the transition metals have absorption bands in the visible, as these
familiar examples do, or in the near-infrared or near-ultraviolet spectral
regions.

In recent years an earlier theory developed by Bethe and by Van
Vleck has been applied, and extended, to these systems, and it has
become clear that the principal absorption of these compounds can be
interpreted, for the most part, in terms of transitions involving the
electrons in the incomplete outer d shell of the metal ion. (Other absorp-~
tions, usually more intense and farther out in the ultraviolet, that occur
are attributed to what are called charge-transfer transitions. In these
transitions electrons are, to some extent, transferred from the ligands
to the metal or from the metal to the ligands. These charge-transfer
transitions will not be dealt with here.) ,

The treatment of the d orbitals that has been used and that allows
the absorption spectrum of a coordination compound to be related to the
properties of the metal ion and the ligands is known, in its simplest form,
as the crystal-field theory and, when a more detailed treatment of the
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participation of the ligands is made, as the ligand-field theory. In its
simplest form, which is all that will be introduced here, the theory-
supposes that the ligands impose on the central metal ion an electric field
whose symmetry depends on the number and arrangement of the ligands
and whose strength depends on the electrical nature of the ligands and,
more particularly, on the repulsion which those electron-rich groups
exert on the d electrons of the metal ion. (The coordination compound
is pictured as being held together primarily by the attractive interaction
of the charge of the metal ion with the charges or dipoles of the ligands.)

11-5. Electron Orbitals of Coordination Compounds

Tt is first necessary to investigate the effect of the ligand field on the
d orbitals of the metalion. It will be recalled that in a spherical potential
such as exists in the free ion the five d orbitals have identical energies,
i.e., they constitute a degenerate set. The effect of the ligand field is
to break this degeneracy, i.e., to change the energies of some of the d
orbitals relative to other d orbitals. To analyze these changes we must
proceed, as in the benzene analysis of the previous section, to find orbitals
that have symmetries compatible with that of the system, i.e., with the
arrangement of the ligands. When this is done, the relative energies
of these orbitals can be investigated and the available electrons can be
assigned to these orbitals.

The procedure is adequately illustrated by treating only the impor-
tant example of octahedral complexes. An illustration of the geometry
of such complexes is shown in Fig. 11-11. Since all six ligands are
equivalent, such ions have the symmetry of the point group Os The
character table for this group is given as Table 11-8, and some of the

TABLE 11-8 The O; Character Table i

Oh E 803 602 604 302 ’L GS4 SSQ 30'h 617d
A, 1 1 1 * 1 1 1 1 1 1
Ay 1 1 1 1 1|-1}-1]-1}-1]-1
Agy 1 1| -1}-1 1 1| -1 1 1] -1
Ay 1 1| —-1| -1 1| -1 1 —-1|-1 1
E, 2 | -1] 0| o 2 2 0} —1 2 0
E, 2 | -1 0 0 21 -2 0 1| -2 0
T 3 0 —1 1| -1 3 1 0| —-1| -1
T 3 0] -1 1| -1|-8} -1 0 1 1| 7T, Ty, T.
Taq 3 0 1| -1 -1 3| -1 0] -1 1
T 3 0 1| -1)-1|-3 1 0 1| -1

v
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symmetry elements are shown in“Fig. 11-11. Treatments similar to
that given here for octahedral complexes can, of course, also be given for
complexes with other symmetries.

The d orbitals of an atom or ion are those corresponding to the
solution functions with I = 2 for an electron of a hydrogenlike atom.
Five functions occur since, for I = 2, the magnetic quantum number m
can have the values 0, +1, +2. The five d orbital wave functions that
arise in this way were shown in terms of J = 2 in Table 5-1. (These,
of course, define only the angular factors of the orbitals. A radial factor
that depends on the principal quantum number must also be introduced
to determine the wave function completely. For considerations of
symmetry, it is enough to concern ourselves with angular factors.)

The d-orbital functions of Table 5-1 are appropriate to a system
with spherical symmetry. They provide, furthermore, basic functions
from which orbitals can be constructed that have symmetries compatible
with the octahedral arrangement of the ligands that are now imagined
to be located about the central ion. The procedure is similar to that in
which the separate 2pr atomic orbitals in benzene were combined to give
molecular orbitals consistent with the skeletal symmetry of the benzene
molecule. Again the details of the way in which this is done will be
passed over, and only the results will be given.

It is found that the reducible representation that the five d orbital
wave functions lead to under the operations of the octahedral point

FIG. 11-11 (a) The geometry of an octahedral complex. All six ligands are equivalent,
and the complex belongs to the symmetry point group 0, (b) Some representative
symmetry elements of the O point group.

THS & +++
Hn -...____m/
—
A
¥ NH,
(a)

o planes are perpendicular to C, and C,



ELECTRONIC SPECTRA OF POLYATOMIC MOLECULES 291

group Oy can be recognized as containing the doubly degenerate irre-
ducible representation E, and the triply degemerate one Ty A set
of three orbitals that transform according to the latter representa-
tion can be directly constructed from the original wave functions.
These are indicated diagrammatically, along with the d.,, ds., dy. nota-
tion usually used, in Fig. 11-12. Diagrams can be drawn to represent
the two orbitals that transform according to the E, representation by
drawing three pictures and imagining linear combinations of these to be
made so that two orbitals result. It is customary, however, to illustrate
the E, orbitals by combining two of these diagrams to yield the two orbit-
als, shown in Fig. 11-12, corresponding to the notation d,:., and d..
One must, however, keep in mind that no axis is unique and that the
orbitals with E, symmetry consist of a pair of orbitals that project along -
the cartesian axis. (To be consistent with the use of lower-case symbols,
suchass, p,d,...ando, w § ..., to describe individual electron
orbits, the symbols ¢, and e, will be used to describe orbits that transform

FIG. 11-12 Diagrammatic representations of the angular factors of the d orbitals.
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according to the symmetry types Ty, and E,.) We now consider the
relative energies of the {5, and e, orbitals that must be occupied by the
outer d electrons of a transition metal ion when the metal ion forms a
octahedral complex.

The energy difference between the two sets of d orbitals can, in a
qualitative way, be immediately recognized. (This step corresponds, it
might be mentioned, to the deduction that the energies of the molecular
orbitals of benzene are arranged as in Fig. 11-8.) One supposed that
the six ligands occupy sites along the cartesian axes of Fig. 11-12. These
ligands present electron-filled lone-pair orbitals in the direction of the
metal ion and, therefore, produce an electron-repulsing effect along these
axes. It follows that a metal-ion electron in an e, orbital will experience,
since such orbitals point in the direction of the ligand electrons, more
repulsion than one in a ¢, orbital. Thus the ¢, orbitals can be expected,
as indicated in Fig. 11-13, to lie at a higher energy than do the £, orbitals.
The exact amount of splitting of the two sets of orbitals cannot be
satisfactorily calculated. It depends on the details of the interaction
between the electron of the metal ion and those of the ligands. The
amount of splitting must be deduced empirically, and as we will see,
spectroscopic studies often allow this to be done. Finally it should be
mentioned that it has become customary to use either the quantity A or
10Dq to designate the energy splitting between the e, and ¢y, orbital
sets. For bivalent ions one generally finds A = 10Dgq to be of the order
of 10,000 ecm—!, while for trivalent ions this splitting is increased to

FIG. 11-13  The removal of d orbital degeneracy by an octahedral field. The extent of
splitting is customarily discussed either in terms of A or 10Dq. Both notations are included
here. .
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around 20,000 cm~!. The quantity A, or 10Dg, must, however, be
expected to be characteristic of both the metal ion and the ligands. A
number of interesting correlations can be made between this quantity
and chemical properties of both the transition metal ions and the ligands
that have been studied.

We have now obtained the symmetry-correct orbitals for a metal
ion in an octahedral complex and have recognized that the ligand field
splits the original fivefold degeneracy. Now we must consider the
electronic states that arise when the d electrons of the transition metal
ion occupy the available orbitals.

11-6. Electronic States of Coordination Compounds

The electronic states of an ion with only one outer d electron, such
as Ti%+, are most easily treated. The effect of the crystal field on the
states of such an ion will, therefore, be discussed first.

In view of the survey of atomic, or ionic, electron states indicated
in Sec. 10-3, one d electron species must be expected to give a 2D state;
i.e., the net orbital angular momentum quantum number L must be 2
and the net spin S must be %, and thus 28§ + 1 = 2. For no crystal
field, therefore, the electronic state of the Ti*+ ion is a 2D state. When
ligands are now placed in octahedral positions about such an ion, the
degenerate d orbitals, in which the single d electron is accommodated,
split to give a set of lower-energy ¢,, orbitals and a set of higher-energy
e, orbitals. Now, depending on which set of orbitals the electron is
assigned to, there are two different electronic states. The electronic
configurations corresponding to these two states are indicated as (fg,)!
and (¢,)'. Since there is only one electron, the electronic states are
similarly described and are labeled with the capital letter designations
Ty and E, Furthermore, as for the original 2D atomic state, one
indicates the spin and writes the two states as *T,, and 2E,.

One sometimes indicates the effect of the crystal field for this one d
electron example by a diagram like that of Fig. 11-14. Ina sense, which
will be more evident later, this is a correlation diagram between the
situation for the spherical field of the ion at the left and the strong
crystal field at the right. Various ligands will have crystal fields of
various strengths and will correspond to positions along the abscissa.
For example, the aquated Ti**+ ion [Ti(H.0)e}*+ has an absorption band
at 4,900 A, or 20,400 cm~!, which can be identified with the transition
*E, « *T'3. This observation allows the vertical dashed line to be drawn
in Fig. 11-14 at a position where the splitting is 20,400 cm~!, Alterna-
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tively we can say that for [Ti(H,0)¢J** the value of the crystal-field
splitting factor A, or 10Dg, is 20,400 cm™!.

Now let us consider the situation when there are two d electrons.
The ion V3+ serves as an example since it has two outer d electrons and
forms octahedral complexes. We wish to draw a diagram, like that of
Fig. 11-14, so that the energy-level pattern for any strength of crystal
field can be picked off. For the zero crystal-field limit, the two [ = 2
electronic contributions can, as discussed in Sec. 10-3, be combined to
give L values of 4, 3, 2, 1, or 0, i.e., G, F, D, P, or S states. Now, and
these features were not mentioned in the earlier discussion, the assign-
ment of the two electrons to the available d orbitals must be made in
accordance with the Pauli exclusion principle. An illustration of how

FIG. 11-14 The energy-level diagram for a metal ion with one d electron, i.e., d' con-
figuration, showing the effect of increasing crystal field effect. The energy scale is
arbitrarily assigned the value zero for the ground state of the undisturbed ion.  The posi-
tion of [Ti(OH.)¢)** is located and the value A determined by the frequency of 20,400 cm™
of the observed absorption band.

[Ti(OH,) T+
|

State ZE,
15,000 — configuratien (e,)'

10,000 —

~ 5,000

's

2

8 0

g ot
=

4 state ZD/

- 5,000

- 10,000 State °7,,

configuration ( tzg)l

| I I |
0 5,000 10,000 15000 20,000 25,000

Zero s Large_
crystal field crystal field



ELECTRONIC SPECTRA OF POLYATOMIC MOLECULES 295

these restrictions operate to allow only certain spin arrangements of
the two electrons for certain values of L can be followed through accord-
ing to the detailed discussion given by G. Herzberg, ‘“Atomic Spectra
and Atomic Structure’” (pp. 130-135, Dover Publications, New York,
1944) and will not be repeated here. One finds by this means that the
d? configuration can only lead to states 3P, 3F, 'S, 1D, or 'G. The energy
péttern of these states is not easily predicted but can be determined from
analyses of atomic spectra. In this way the pattern at the origin of Fig.
11-15 can be drawn for the V3* jon.

Let us now move over to the far right-hand side of the diagram
and consider the states that would be expected for a d? ion subjected
to a strong crystal field. The three possible electronic configurations
that must be considered are, in order of increasing energy, (£2,)%, (£2,)1(e,)?,
and (e,)2.. Now, to find what electronic states these configurations cor-
respond to we must, as in the previous treatments of localized groups
and conjugated systems, form the direct product of the representations
of each electron in a given configuration. Analysis of the (,,)? configura-
tion is illustrated in Table 11-9. In a similar way the states for the other
two configurations can be found, and the results of these analyses are
shown in Table 11-10. Similarly, the electronic states that arise from
other electronic configurations can be found from the appropriate direct
products of irreducible representations, and these results for all nine
configurations of an incomplete d shell subject to octahedral symmetry

TABLE 11-9 lllustration of the Determination of the Electronic States Arising from the
Configuration (t,,)?

[0 7% E C, C, C, C: ) A Se an o4

Formation of direct product

Xy 3| of 1f—-1|-1f{38|=1] o]l=-1] 1
XTs X XT4, 9 of 1| 1| 1] 9 1| o] 1| 1

Analysis in terms of characters of irreducible representations

XAy, 1 1 1 1 1 1 1 1 1 1
XE, 2 -1 0 0 2| 2 0] —1 2 0
XTyg 3 0] -1 1] -1 3 1 0} ~1]| -1
XT, 3 0 1{-1|-1} 3 -1 0 ~1 1

X4y, + x5, + x1,,
+ xr,, = 9 o] 1 1| 1] 9 1| ol 1 1
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TABLE 11-10 Electronic States Arising from an Electron System Subject to Octahedral
Symmetry

Electronic configuration
Free i Ion subject to octa- Electronic states
ree ion
hedral symmetry

di, d (e0)? B,
{t20)" Ty

d?, d8 (eg)? 3Ag, 141, 'E,
(t20)(ey)? 3T 100 3T'2g, T'sgy T2
(th)2 lem 1Aln; le 1T2a

as d’ (€)? E,
(t20) (e0)? T2, 22T g, 22T3y
(t20)(eg)! 4T1g; T2, 2A1gy 2Asg, 2%T 1y, 22Tz
(izn)" 4A2m 2Eﬂ} lea, szv

a4, d¢ (e5)* 1Ay,
(t20)* (e0)® T 19y *T'29y 'Thg, T3

 (f20)%(eg)? 8T 55, 2B, 33T 15, 23T'2g, 2' A1y, 'Asg, 31E,, 1Ty, 3Ty,
uzﬂ)a(ea)] SE,, aAlm aAzﬂx 23E,, 23T1m 28T 20y 1AAlay lAZa’ lEvr
21Ty, 2Ty,
(tn)‘ 3Tlay lAlw lEv: ‘Tg,
as (420)‘(90)4 2T, .
(f20)%(eg)® 4T gy ATsq, 241y, 2Agg, 2:E,, 2T, 2Ty,
(t29)%(eg)? 8T1g, ‘Trg Azg, 2By, ‘Tay, ‘Tay, 2%Ay, *As, 32E,
427, 42T,

(tag)4(en)? 4Trg, *Tap, Ay, 2Azg, 22E,, 22Ty, 2T,
(t20)® 2Tz

are given in Table 11-10. (We will see later that the configurations and
states for d* systems are similar to those for d'*—" gystems.) Again, it is
necessary to obey Pauli’s exclusion principle in assigning electron spins
when, as in the (¢5,)? and (e,)? configurations, two electrons have the
same orbital description. By a procedure similar to that which allows
spins to be assigned to the atomic states, one would arrive at the spin
assignments included in the electronic states listed in Table 11-10.

Exercise 11-10. Verify that the (¢;)? configuration leads to the states

Agy, Ay, and E, and that the (15,)(e,)! configuration leads to two states
each of the type T, and Ty, as listed in Table 11-11.

For large crystal fields, the energy of an electronic state is deter-
mined by the number of electrons in the low-energy fs, orbitals and the
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number in the high-energy ¢, orbitals. The right-hand limit of Fig. 11-15
can be drawn, with the states of the d? configuration, on this basis.

For intermediate field strengths the tendency for the electrons to
occupy the low-energy ¢,, orbitals as well as their tendency to avoid
one another, which produces the different states of the free atom, are
important. The energy-level pattern for such situations can be drawn

FIG. 11-15 A schematic correlation diagram for the states of a dZion. On the left is the
energy-level pattern for the free ion; on the right is the pattern for very strong crystal
fields. The correlation lines are drawn with regard to the muitiplicities of the levels and
the correlations of Table 11-11.
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by joining up the appropriate states of the right and left sides of Fig.
11-14,

The way in which such correlations must be made was first shown by
H. Bethe [Ann. Phys., 57: 3, 133 (1929)] by means of a group-theoretical
derivation of the relation between the atomic states of the spherically
symmetric problem and those states described by the crystal-field nota-
tion appropriate to the potential field of octahedral symmetry. The
derivation shows that it is the net angular momentum of the atomic state
that determines the correlation. It follows that, for any atom, the
correlation of atomic states and the octahedral crystal-field descriptions
are determined by the atomic-state symbol, i.e., S, P, D, and so forth.
The appropriate correlations are given in Table 11-11.

In a particular case, such as the d? configuration shown in Fig. 11-15,
one must also preserve the spin, or multiplicity, of the electronic states.
When this is done, the correlation lines shown in Fig. 11-14 can be
drawn.

It is now appropriate to point out that the often used spectroscopic
trick of recognizing that the treatment for an atom with twe d electrons,
i.e., a d? system, is in many respects identical to that for an atom lacking
two d electrons from a completed d shell, i.e. a d® configuration. Thus
Ni++, which has the configuration d3, has a set of atomic states arranged
like those drawn for the d? example of V3t in Fig. 11-15. Furthermore
the crystal-field configurations will be the same except that we will be
dealing, as it were, with positive holes in the completed d shell. As a
consequence; the ordering of the configurations with regard to energy
at the right of a diagram such as that of Fig. 11-15 is reversed. The
schematic energy-level diagram that would be drawn on this basis for
Nit+ is shown in Fig. 11-16.

In practice one does not encounter ligands that have a sufficiently
strong crystal field completely to overshadow the electron-repulsion
factors that operate in the atom t6 produce the different atomic states

TABLE 11-11 Correlation of Atomic States, for Which
Spherical Symmetry Exists, with the States Occurring in
a Field of Octahedral Symmetry

Atomic state symbol Octahedral symmetry states
Ay,

Ty

Eg + Tz,

Azp + Ty + To

Alv + Ea + Tlo + T20

QYN ®
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for a given number of d electrons. One usually, therefore, focusses one’s
attention on the left-hand part of the diagrams that have just been dis-
cussed. . The left-hand part for the Ni++ ion, which is often studied in
coordination chemistry, is shown in Fig. 11-17. Here account is also
taken of the fact that like quantum-mechanical states tend to ‘“mix”
and to form somewhat modified states whose energies remain different
from one another. The energy levels of like states are said to repel

FIG. 11-16 The schematic correlation diagram between the free ion and the strong
octahedral field complex for d® ions.
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one another. In Fig. 11-17, this effect is noticed in the curvatures of
the two 37Ty, the two 175, and the two E, energy-level lines.

Exercise 11-11. What are the differences in the limit of strong crystal
fields of the energies of the configurations (£2,)% (f2,)%(es)Y, (t20)'(e,)? and
(e;)®. Illustrate the answer by an energy diagram and show the energy
scale in terms of both the parameter A and the parameter 10D,.
Exercise 11-12. Arrange according to energy, as in Exercise 11-11, the
possible configurations of a d7 ion in an octahedral complex.

Before the predicted energy-level pattern of a Nit* complex, such
as that of Fig. 11-16, can be used as a basis for the interpretation of the
observed spectral transitions, it remains for us to consider the selection
rules governing transitions from the ground, 34.,, state, to the higher-
energy states. One can immediately carry over the rule that forbids

FIG. 11-17 The energy-level diagram for a d8 ion, such as Ni*™, in a field of octahedral
symmetry. The energies of the important states with the same multiplicity as the ground
state are shown as heavy lines. The position of [Ni(H:O)]™ ™ is located along the abscissa
to fit the observed spectrum. {(From L. E. Orgel, “An Introduction to Transition-Metal
Chemistry, “Methuen & Co., Ltd., London, 1960.)
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changes in the net spin of the system and can therefore, in this case,
expect the important spectral bands to be interpretable on the basis
of the other triplet states, the 3T, state and the two 3Ty, states. Further-
more, consideration of the transition-moment integral leads to the con-
clusion, well known in atomic spectra and referred to as the Laporte rule,
that no transitions between states arising from a given configuration
such as d? are allowed. This is based on the symmetry result that, as
Fig. 11-12 shows, all d orbitals are symmetric with respect to their
origin, and since the dipole-moment term itself is antisymmetric, the
product of the terms in the transition-moment integral would be anti-
symmetric and, therefore, according to the discussion of Sec. 4-5, the
integral would necessarily be zero. For a coordination compound this
rule is broken down, to some extent, because some of the vibrations
of the ligands with respect to the metal ion destroy the symmetry of the
system. One finds, however, that d-d trangitions, i.e., transitions
between energy levels such as those of Fig. 11-17, lead to relatively weak
absorption bands. Typical values of a(7) at the maximum of the absorp-
tion band for such absorptions is
- 1 Iy - e '

(D) max = pi log (—T)’m 2 5 em~! mole—* liter (10)
The corresponding typical oscillator strength is about 10-*. (It should
be mentioned that the AS = 0 selection rule can also be violated. Tran-
sitions involving spin changes lead, however, to very weak bands, with
f values of perhaps 107, and these are not generally observed when the
much more intense AS = 0 bands occur.)

Now the energy-level pattern for a given octahedrally coordinated
metal ion can be used as a base for the interpretation of the observed
spectrum. The example of Ni++ is still suitable. The spectrum of the
aquated ion [Ni(H,O)e]** is shown in Fig. 11-18. The three absorption
bands can be attributed to the states indicated above each absorption
band, and the positions of these bands match up rather well with the
spacing between the energy levels of Fig. 11-17 if one assumes a value of
A = 8,500 cm™! for the [Ni(H:0)q]++ ion.

One final illustration of the crystal field interpretation of the d-elec-
tron energy levels and the spectrum resulting from transitions between
these levels can be given. The d% configuration, found in Mn*+ and
Fet*, is different from the previous examples in two regards. First, for
not too strong a crystal field, the ground-state configuration is (£2,)%(e,)?,
and this configuration has an energy that is independent of the value
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of A. This leads to the horizontal ground-state energy level for the
63 state shown in Fig. 11-19. Secondly, this ground state configuration
has a spin of 5/2, and this is greater than can be achieved by any of the
other possible electron configurations.

Although, to interpret the electronic spectrum, one would now
normally focus one’s attention primarily on the higher energy states
with the same spin as the ground state, such states do not exist. The
highest spin found in the excited configurations corresponds to two
electrons being paired with opposite spins, and this situation produces
a net spin of 3/2 and quartet states. The energy levels for these states,
which now must serve as the excited states when radiation is absorbed
in a d-d transition, are shown in the region of relatively low crystal field
energy in Fig. 11-19.

The spectrum of [Mn(H,0)¢]**, shown in Fig. 11-20, is in line with
the predictions that would be made on the basis of Fig. 11-19. First,
the low extinction coefficients, as compared for example with the cor-
responding spectrum of the aquated Ni*+ jon, should be noticed. The
oscillator strengths are less for Mn*+ by a factor of about one hundred
and this can be attributed to the violation of the AS = 0 rule that must
accompany the d-d transitions of the [Mn(H;O)¢*+ ion. (The reader
may, in fact, have noticed the generally pale colors displayed by man-
ganese solutions, and this again can be attributed to the spin change
involved in the visible region transitions.) The number and positions
of the absorption bands of various Mn+*+ coordination complexes have led
to the suggestion that a value of A of about 7,800 em—? for [Mn(H:0)é*,

FIG. 11-18 The absorption spectrum due to the octahedral ion [Ni(H:0)¢]**. [From
Holmes and McClure, J. Chem. Phys., 26: 1686 (1957).] :
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FIG. 11-19 The energy-fevel diagram for a d° ion such as Mntt, Only the ground
(From L. E. Orgel, “An
Introduction to Transition-Metal Chemistry,” Methuen & Co., Ltd., London, 1960.)

state, designated as S and Ty, and quartet states are shown.

FIG. 11-20 The absorption spec-
trum due to the ion [Mn(H;O)¢*.
[From C. K. Jorgensen, Acta. Chem.
Scand., 8: 1502 (1954).]
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which predicts a group of three absorptions around 25,000 em—! and
another group of three around 30,000 cm~!, gives the best correlation
between the energy-level diagram and the observed spectrum.

The above examples illustrate the chief goals and results of the dis-
cussion of this section. The positions of the principal d-electron absorp-
tion bands are understood, and the parameter A, measuring the magni-
tude of the interaction between the ligands and a metal ion, can be
evaluated. Other spectra of other octahedral ions can also be under-
stood, and the value of A determined, from comparisons of the observed
spectra with the energy-level diagram. In a similar way one can con-
struct energy-level diagrams for octahedral complexes of ions with
different numbers of d electrons and can understand the principal fea-
tures of the spectra of these ions. Furthermore, other geometries, i.e.,
square planar, tetrahedral, and so forth, can be studied, energy-level
diagrams for these geometries can be constructed, and the spectra of
ions with these geometries can also be treated. It should, however, be
mentioned again that a more complete and detailed study must take into
account the orbitals of the ligands as well as those of the metal ion.
Then one constructs suitable orbitals from these two types of localized
orbitals. This ligand field approach will not, however, be dealt with
here. :
Again it should be pointed out that other electronic transitions,
leading to charge-transfer bands, occur with coordination compounds.
Although these bands are generally very intense, they usually occur
farther out in the ultraviolet region than do the d-d bands treated here.
‘They do not, it might be added, contribute to the characteristic colors
often observed with transition metal complexes.

EMISSION AND DECAY PROCESSES

Various types of electronic transitions that lead to the absorption of
electromagnetic radiation and raise the absorbing molecule or ion to some
high-energy electronic state have been dealt with in the preceding parts
of the chapter. Now we will investigate the ways in which a molecule, or
ion, can get rid of its excess energy and return to the ground state after
it has been raised to such a high-energy electronic state. Two general
types of energy-dissipation processes can be recognized. In one type,
which we will call nonradiative processes, energy is transferred to molecules
that collide with the excited molecule and carry away some of this energy
as translational, or rotational and vibrational, energy. No emission of
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radiation is observed in such processes. The second type of dissipation
processes, on the other hand, involves an emission of radiant energy.
Such radiation can be detected and analyzed, and as we will see, such
analysis leads to the further classifications of fluorescent emission and
phosphorescent emission.

11-7. Nonradiative Processes

As was discussed in Sec. 10-1 and illustrated in Fig. 10-2, the transi-
tion associated with an electronic absorption band produces a higher
energy electron configuration and often leaves the molecule in one of the
higher vibrational states of the new electronic state. For molecules in
solution it appears that the molecular collisions are very effective in
removing, probably by one vibrational level step at a time, the excess
vibrational energy. This energy goes into the thermal, and perhaps
vibrational, motion of the molecules of the solvent and is not detected
as emitted radiation. It appears, from ultrasonic dispersion measure-
ments and theoretical calculations, that a typical time required for the
dissipation of excess vibrational energy by such a process is of the order
of 107 sec. When this is compared with a typical vibrational period of
10~ see, it is seen that many vibrations, say a thousand, do occur while
the excess vibrational energy is being lost.

Since the principal mechanism for the vibrational deactivation of a
molecule involves molecular collisions, it can be expected that restricting
or eliminating such collisions will slow down the process. A procedure
that has been often used, for reasons which will be made clear in the
remainder of the chapter, to effect a slowing down of this process consists
of dissolving the material under study in a solvent which, when cooled,
sets to a rigid glass. One solvent often used is boric acid; another is a
mixture of ether, isopentane, and ethanol, referred to as EPA.

The simple diagram of Fig. 10-1 showing the potential curve of
the ground electronic configuration and that of a single excited state
configuration is not typical of the situation that exists for polyatomic
molecules and is inadequate for a complete discussion of radiationless
energy dissipation. A number of different electronic configurations
must be expected to have energies that lead to potential-energy curves
in the region covered by this diagram. In this regard Fig. 10-20 is
more typical. Furthermore, the potential energy for a given electronic
state will be a function of all the internal coordinates of the molecule,
and for polyatomic molecules the potential energy would have to be
represented by a surface in this many-dimensional space. The net
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effect of these two features is that potential-energy curves or, more
properly, surfaces of different electronic states will cross one another, and
a representative arrangement of potential curves is that shown in Fig.
11-21.

The occurrence of a crossing, or nearby, potential surface with that
initially reached by the absorption process leads to a second type of
radiationless process. This type can, moreover, lead to the return of the
excited molecule to its ground state. When two potential surfaces or,
to simplify the discussion, two potential curves cross as in Fig. 11-21,
it is possible for the molecule, originally in the excited electronic configura-
tion corresponding to the curve labeled S, to change over into the con-
figuration corresponding to the curve labeled S’. The crossing of the
potential curves facilitates this process, known as internal conversion,

FIG. 11-21 Energy dissipation by vibrational deactivation and internal conversion.
(The dashed curve suggests the course of these nonradiative processes.)
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because at the crossover point the potential energies of the two electronic
states are equal and the vibrational kinetic energy of the molecule in
either state would be zero.

For polyatomic molecules, potential curves often exist with suit-
able relative positions so that combinations of vibrational deactivations
and internal conversions can return the molecule to its ground state
before any emission process has had a chance to occur. Other molecules,
however, either do not have such crossing potential curves or have
electronic states in which the molecule becomes trapped. In such cases
emission does oceur, and we will now investigate how this happens.

11-8. Fluorescence

If the efficiency of internal conversion processes that return the
molecule to its ground state is not too great, various emission processes
can occur. The simplest mechanism that is consistent with some of the
observed emission is illustrated in Fig. 11-22. The observation that
the emission band generally appears at longer wavelengths, i.e., lower
energy, than the absorption band suggests that vibrational deactivation
within the potential curve of the upper electronic state is essentially

FIG. 11-22 Fluorescent emission from the same electronic state as initiolly reached by the
excitation process.
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complete before much emission occurs and, therefore, that the emission
transition of Fig. 11-22, rather than the exact reverse of the absorption
transition, is to be drawn. Absorption and emission bands which
illustrate this behavior are shown in Fig. 11-23.

Since most fairly intense absorption bands that are observed occur
from the ground state to an excited state with the same multiplicity
as the ground state, the emission process of Fig. 11-22 is a transition
with no multiplicity change. It is now becoming customary, although
other conventions are used, to use the term fluorescence for emission
transitions that occur between states of the same multiplicity. This
definition includes, therefore, emissions from states reached from the
initial excited state by internal conversion as long as the second state
has the same multiplicity, usually a singlet State, as the ground state.
We will now see that fluorescent transitions, as defined above, can and
generally do occur within about 10— sec after excitation. (Transitions
connecting states of different multiplicities, usually triplet to singlet
transitions, will be defined as phosphorescence and, in contrast to
fluorescence, often continue for periods up to seconds after the absorption
process is ended.)

FIG. 11-23 The absorption and fluorescent emission spectrum of anthracene dissolved in
dionane showing the occurrence of the emission band at longer wavelengths, as suggested
by the transition arrows of Fig. 11-22. [From G. Kortum and B. Finckh, Z. physik Chem.
B52, 263 (1942).]
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Let us now consider the rate, or probability, for an emission process
of the type illustrated in Fig. 11-22. The experimental results that
one might try to understand would consist of measurements of the
change of intensity of the emitted radiation with time after the radiation
beam causing the excitation to the higher-energy electronic state had
been turned off. Information is needed, therefore, about the process of
spontaneous emission. A brief derivation will show that a coefficient
for spontaneous emission can be deduced and that it is related to the
coefficient of induced emission, or absorption, derived in Chap. 4. We
will then be in a position to use the measurable absorption coefficient
to deduce the behavior of the spontaneous-emission process.

Let us consider molecules with a ground electronic state designated
as ¢ and a higher electronic state designated as h. Consider the sample
containing these molecules to be in a black-body cavity in which the
radiation density p(») is related to the frequency and the temperature
by Planck’s radiation law

8why? 1
p(v) = —E,L T (11)

At equilibrium the ratio of the number of molecules N, in the higher-
energy state to the number N, in the ground state will be given by
Boltzmann’s distribution as

Na

14

= ghralkT’ (12)

where hy,; is the energy difference, per molecule, between the two states.
Now we must investigate the mechanism by which this equilibrium is
established and maintained.

Molecules can be excited from state g to state h by transitions
induced by the radiation in the cavity. Recalling the Einstein coefficient
of induced absorption B,-s, introduced in Eq. (85) of Chap. 4, one writes

Rate of g — h transitions = N,B,n0(vs) 13)

Transitions downward can occur by either induced emission or spon-
taneous emission. One can write the net rate of these processes as

Rate of h — g transitions = Nu[Bpsep(¥en) + Ayl (14)

where A, is Einstein’s coefficient of spontaneous emission. The nature
of Ap., will be determined by relations established here. (We know,
however, from the discussion of Chap. 4 that B,_, = Bx,.)
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At equilibrium the two opposing rates must be equal, and one can
obtain from the above rates the relation

&' _ BaﬂhP(Vgh)
N, = Brooplrm) + Ay (15)

Now one can replace N»/N, by the Boltzmann expression for this quan-
tity, and one can also replace p(v,) by the black-body expression of
Eq. (11). Rearrangement of the resulting equation gives, with

Ba—»h = Bh_,ﬂ
the desired relation

Ah—-ba = ’__—SThE:gh)a B

g—h
= 87h(3gs) By (16)

We can further relate B, to the observed- integrated intensity of the
absorption band, [«(7) d7, by Eqgs. (36) and (46) in Chap. 4. ‘Thus

A _ 64‘"'4(’-’0h)3'#ﬂh|2
A

— 8r(1,000)c(Fu) / «(3) dv 17)

With this result, the value of 44, can be calculated from the observed
integrated intensity of the corresponding absorption band.

The lifetime of an excited state that spontaneously emits after the
exciting radiation is turned off can be calculated as a half-life, i.e., the
time it takes for the number of molécules in the excited state to decrease
to half its value. One can write the rate equation

AL VN A
or : ' (18)
dln N}. = -—(Ah__,a) dt

Integration over the time interval { = 0 to ¢ = #; in which N, goes from
Ny to 3N, gives
'1N,,
lnzm = (Ansg)ly
or (19)

b= Ay
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Finally, substitution of the expression for A, obtained in Eq. (17)
gives
b= Nin2
¥ T 8ae(1,000) (7,0)*f (7) di
_0.55 X 10°
= GoJa() & @0

Alternatively one can relate the half-life to the oscillator strength f
of the transition discussed in Sec. 4-9. If one inserts the relation of
Eq. (78) of Chap. 4, one has

24
b= Gy @1

A typical strong absorption band due to an allowed electronic
transition has fa(?) d# = 10% and a band maximum at, perhaps, 3,000
A, or 30,000 cm™!. The emission from the excited state reached by this
absorption should, according to the above analysis, have a half-life, due
to the emission process, of

0.55 X 10°
i =

TE e~ = it :
55 To7(io%) — 06 X 1077 sec (22)

Such lifetimes are comparable with, or shorter than, typical non-
radiative processes involving internal conversion treated in the previous
section. It is clear, therefore, that any decrease in the efficiency of
collisional deactivation, as by freezing in a glass or cooling to liquid
nitrogen temperature, will allow the fluorescent emission to occur to a
significant extent.

Many absorption bands are less intense, i.e., occur with a smaller
integrated absorption coefficient, than that cited for typical completely
allowed transitions. . Emissions corresponding to these bands occur, in
view of Eq. (20), with a correspondingly longer half-life. One finds in
practice that fluorescent emission can be prolonged to half-lives of as

- much as 10~ sec in cases where the value of A;_, is small enough and
nonradiative processes are relatively ineffective.

11-9. Phosphorescence

Phosphorescent emission is here defined as resulting from transitions
that connect electronic states of different multiplicities, i.e., states with
different net electron spin angular momenta. It is now recognized,
primarily as a result of the early work of G. N. Lewis, that the most
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important phosphorescent bands of organic compounds arise from transi-
tions between a triplet excited state and a singlet ground state.

The potential-energy diagram that represents a situation that can
lead to phosphorescence is shown in Fig. 11-24. Absorption of radiation
from the ground singlet to an excited singlet can occur to an appreciable
extent; i.e., the transition can be allowed. Collisional deactivation can
then drop the energy past the point where the potential curve of the
singlet state crosses that of the triplet state. Although internal con-
version between states of different multiplicities is apparently not easy,
this process can occur and can lead to triplet-state molecules if the
collisional deactivation does not carry the molecule too quickly past the
potential crossing point. Once a triplet electronic state is formed,
further vibrational energy will be lost and the molecules will occupy
the low-lying vibration levels of the triplet electronic state.

Emission from this triplet state to the ground state will constitute
phosphorescence. Since such transitions will be forbidden by the pro-
hibition against spin changes, the spontaneous-emission process will

FIG. 11-24 Arrangement of potential-energy curves of singlet S and triplet T states that
can lead to phosphorescence.
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occur with low probability, i.e., 4., will be very small, and the phos-
phorescent emission will continue over relatively long periods of time.
Half-lives for phosphorescence of the order of seconds, or longer, are not
uncommon. (One should recognize that the relation between the B, .,
and A, coefficients and the relation between A;-,, and #; require a
roundabout mechanism, such as that of Fig. 11-22, in order to populate
a long-lived excited state.)

The process of internal conversion between a singlet and a triplet
state is sufficiently difficult, even if the potential curves cross, that
phosphorescence is seldom observed in liquids at ordinary temperatures.
Again the process of forming a glass with the material as a solute and
cooling the system to liquid nitrogen temperatures is often resorted to.
With this procedure many organic compounds undergo appreciable
excited singlet to triplet internal conversions, generally referred to as inter-
system crossing, and are observed to emit radiation as phosphorescence.

It should be mentioned that the lifetimes of excited states is a
subject of great importance in photochemical studies. The occurrence
of a long-lived high-energy species, such as the triplet states that lead to
phosphorescence, often provides the means whereby photochemical reac-
tions can occur. In this way the study of electronic spectra, and par-
ticularly fluorescence and phosphorescence, and photochemistry are
intimately related.
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