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Chapter 1

Kinematics of Rigid Bodies

Deformable Body: Anybody that changes its shape and/or volume while being acted upon by

any kind of external force.

Rigid body: A rigid body is a solid body in which deformation is zero or so small it can be
neglected. The distance between any two given points on a rigid body remains constant in

time regardless of external forces exerted on it
A deformable body is one that can distort. It would normally refer to a solid object so that as

it deforms, it sort of deforms in a way that it could return to its starting shape if all the

external forces were removed that caused it to deform.

Types of Rigid Body Motion

Translation (Or Translation-al motion)

Translation. This type of motion occurs when a line in the body remains parallel to its

original orientation throughout the motion.

Recti-linear translation: when the paths of motion for any two points on the body are parallel

lines, the motion is called rectilinear translation
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Rocket test sled

Curvi-linear Translation

If the paths of motion are along curved lines, the motion is called curvilinear translation

Parallel-link swinging plate

Rotation about a fixed axis

One straight line in the body is fixed. All other points in the body travel in circles around this
line.

Centripetal /

force /

Velecity\, "~

© sbainvent.com
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When a rigid body rotates about a fixed axis, all the particles of the body, except those which
lies on the axis of rotation, move along circular paths except those which lies on the axis of

rotation.

\ )

General plane motion

General plane motion. When a body is subjected to general plane motion, it undergoes a
combination of translation and rotation, the translation occurs within a reference plane, and

the rotation occurs about an axis perpendicular to the reference plane.

Velocity and Acceleration

In the Transitional motion , the velocity and acceleration of all points of the body at any

moment are equal in magnitude and direction.

— — —

V,=V, =V, =V, =V,
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v, Va4
A A C——

Motion is not transitional Translational motion

Rotational (Rotation) motion

Rotational motion is the motion of the body wrapping (Read: rapping) around its center
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Fig. (c)

Note: One complete revolution is 360° = 2x radians.

Rotation about a Fixed Axis

When a body rotates about a fixed axis, any point P located in the body travels along a
circular path. To study this motion it is first necessary to discuss the angular motion of the
body about the axis.

Angular Motion. Since a point is without dimension, it cannot have angular motion. Only
lines or bodies undergo angular motion. For example, consider the body shown in Figure and
the angular motion of a radial line r located within the shaded plane.

Angular Position. At the instant shown, the angular position of r is defined by the angle u,
measured from a fixed reference line torr.

Angular Displacement. The change in the angular position, which can be measured as a
differential dU, is called the angular displacement. This vector has a magnitude of dU,
measured in degrees, radians, or revolutions, where 1 rev = 2p rad. Since motion is about a
fixed axis, the direction of dU is always along this axis. Specifically, the direction is
determined by the right-hand rule; that is, the fingers of the right hand are curled with the
sense of rotation, so that in this case the thumb, or dU, points upward, Fig. 16—4a. In two
dimensions, as shown by the top view of the shaded plane, Fig. 16—4b, both u and du are
counterclockwise, and so the thumb points outward from the page.

Angular Velocity. The time rate of change in the angular position is called the angular velocity
V (omega). Since dU occurs during an,

Remember that

When a body moves in a circular path, we can write both the velocity and acceleration in the

form
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V=r(r, ré), f=(F-ré6?% rd+2r0)
If r=constant , then r=r"*=0. So, the velocity and acceleration becomes
V=r=(0, rd), f=(0-r0? rd+0),0or v=i=(0, rd), f=(-r6?% rd)

The angular velocity in rotational (rotation) motion

Angular velocity: The time rate of change in the angular position is called the angular

velocity V (omega). Since dU occurs during an instant of time dt, then,
From the Figure S=ré& , where ¢ is angler position and the angler velocity is (6" = w).
It is clear that d_H =0 =0.
dt
The relation between the angular velocity and transitional velocity is given from

ds_S._V:d(rH):rde

=ro'=rw

dt dt dt

The direction of the angular velocity
@

A4
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- The direction of translational velocity is in the same direction angular velocity

- The direction of the vector tells you the axis of the rotation, as well as whether the rotation

is clockwise or counterclockwise.

- The relation between the angular acceleration and transitional acceleration is given from

the transitional acceleration has two components, the first in Tangential directionand ( f,)

the other in the normal direction (f,)

i

The direction of motion

The components of the acceleration are given as

fi=ro, fr=rw? Or f,=ro?
The Resultant of acceleration is given by f =/ ft2 + fr2
f
While the direction is given by tan (pzi
f
;

-fr

Ji

10
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Special case of rotational motion

(i) In the case of constant angular velocity( i. e. the angular velocity does not (e =Constant)

change with time (jj—w =0) (i1) The pure
t

rotational motion In the case of the

o . d
angular acceleration is constant (i. e. @' =Constant ). Then 29 _c and w=Ct
dt

The relationship between the laws of motion in the case of linear motion with constant linear

acceleration and rotational motion with constant angular acceleration

v=v, + a.t, w=0, + o't,
1 1
x=u,t + =a,t? 0=0,t + = ot
2 2
=0 + 2a, X, o’'= &’ + 200

General Plane Motion (Translation + Rotation)

If a rigid body moves with both translational and rotational motion, it is said to be in general

plane motion.

Example 1: The angular velocity of the disk is defined by a):(Stz +2 Jrad/sec where t is

in seconds. Determine the magnitudes of the velocity and acceleration of point A on the disk
whent=0.5sec?

11
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Solution

w:(5t2+2 ]rad/sec
. _do 2
® :—:(10'[ ) rad/sec
dt
Att=0.5 sec a)=[5(0.5)2+2 J =3.25rad /sec, o :[10(0.5) J =5rad / sec?

But v, =(@) s (Nygisk
Then vV, =(3.25)(0.8)=2.6m/sec,
— 32 .
fr_a) I, ft=a) r
fo =@ (N gig = (3.25)% (0.8m)) = (10.5625) (0.8) =8.45 m/sec?

fAt = (0 gisk (M ik = (6)(0.8m)=4cm/sec’But f, = f;t + fA2Ir

f, :\/(8.45)2 +(4)? =~/71.4025 +16 =+/87.4025 =9.349 m/sec? =9.35 m/sec?

f ,
tang= 1t _>tan¢=i:£5=o.47337 —¢=tan~1(0.47337) — $=25°.33

r A
r

Example 2: The angular acceleration of the disk is defined by «* :[St2 +12 J rad / sec?

where 1 is in seconds. If the disk is originally rotating at «, =12 rad/sec. Determine the
magnitude of the velocity and two components of acceleration of point Aand B on the disk

when t=2sec.

12




Mechanics of Rigid body Mathematics Department

Solution

The angular acceleration of the disk is given by «* = (3t2 +12 j rad/sec’.
While the angular velocity is given by o= [o"dt= | (3t2 +12 ] dt

o =(§t3 +121 )-‘rcl
3
At the start rotating point (i. e. t=0 ) @, =12 rad/sec. SO ¢, =12. Then
The angular velocity is given as @ :{t3 +12t+12 }rad /sec At
t=2sec, we have

w:{(2)3+12(2)+12 }:44rad/sec, a)':(3(2)2+12 j:24rad/sec2

From the two relation fr =T, ft —w'r,

At the point A we have, (r),;, =0.5m

_ _ _ _ 2
fAr = (a)z)disk (N gisk = (44)? (0.5m)) = (1936) (0.5) =968 m/sec

fAt = (@) ik ( gisk = (24)(0.5m)=12 m/sec?

At the point A magnitude of the acceleration is given by fA = / fﬁ + f;
t r

f,= \/ (12)* +(968)° =+/144 + 937024 =/937168 =968.07 m/sec? =968 m/sec?

f

The direction of acceleration is given by tan¢ = t
fr
f
tang :=i:£=0.1239 - @ =tan_1(0.1239) — @, =0.71024'
A fA 968 A A

r

13
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At the point B we have, (r), , =0.4m

_ _ _ _ 2
fAr _(a)z)disk (N gisk = (44)% (0.4m)) = (1936) (0.4) =774.4m/ sec

fAt = (@) gisk (F ik = (24)(0.4m)=9.6m/sec’

At the point B magnitude of the acceleration is given by fB = fB2 + fé
t r

fg= \/ (9.6)% +(774.4)* =/92.16 +599695 =+/599787 =774.45m/sec?

f
B
The direction of the acceleration is given by tang_ = f—t
°r
‘e 9.6
tang =—t=_">-0.1239 — ¢ =tan"1(0.1239) — ¢, =0.71024'
& . T74.4 & ( ) > %

r

Example 3: The disk is originally rotating at @, =12 rad/sec. If it is subjected to a constant

angular acceleration of @ =20 rad/sec*. Determine the magnitudes of the velocity and the

two components of acceleration of point A at the instant t =2sec?

wy = 12 rad /s

Solution

14
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Where the disk is subjected to a constant angular acceleration of w* = 20 rad/sec?.
Then w=0, + o't, 49:a)ot+%a)'tz, o'= ) + 206

Where o, =12 rad/sec, and after t =2sec and form

Angular Motion: The angular velocity of the disk can be determined using from

o=0, + o't,We have o=>012) + (200(2) —» o =52 rad/sec
Motion of Point A. The magnitude of the velocity is given by

Vo=@ gisk Dgisk = Va =g 0-9) gy = V, =26 m/sec
The tangential and normal component of acceleration are

f A = (%) 4igy, (1) gigpe = (62)% (0.5m)) = (1936) (0.4) = 1352 m/sec?

fAt = (@) gisk (F gis = (20)(0.5m)=10 m/sec’

At the point A magnitude of the acceleration is given by fA = f; + f;
t r

fy :\/ (10)* +(1352)* =1352.04 m/sec?

The direction of the acceleration is given by tang¢ ::t
A
r
fA 10 _1 '
tang == — ¢ =tan™+(0.00739) — ¢ =0.423778 , then from
A f, 1352.04 A A

r

EQ. = @ + 200 , We have

(52)* = (12)> + 2(2000 — 6= 2704-144 _2560_256 - ,_g4
40 40
The disk makes angle distance is given by ( # =64 rad)
: 0 64 32 :
The disk rotates laps N = —=—="= — 6=10.2 rev (reflection-reversal )

2x 2m 7

15
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Example 4: The disk is originally rotating at @, =12 rad/sec. If it is subjected to a constant

angular acceleration of @" =20 rad/sec*. Determine the magnitudes of the velocity and the

two components of acceleration of point B when the disk undergoes 2 revolutions?

wy = 12 rad /s

Solution

Where the disk is subjected to a constant angular acceleration of @* = 20 rad /sec’.Then
. 1 2 2 2 .

=0, + o't, 0:w0t+5a)t, o =0 + 200

Where @, =12 rad/sec.

When the disk undergoes 2 revolutions. Then N :zi: 2 > O=4r rev
T

Angular Motion: The angular velocity of the disk can be determined using from

o= o + 200, We have o = (12)° + 2(20)(47) =144+1607 = 646.6548,

w =25.43rad/sec

Motion of Point B. The magnitude of the velocity is given by

VA:(a))disk(r)B—> VA=(25.43)Olisk (0.4)B -V, =10.1717 m/sec — VA:10.2m/sec

16
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The tangential and normal component of acceleration are

fBr = (0?) 4ig) (1) g = (25.43)2 (0.4m)) = 258..674m / sec?
th = (@) gisk (T ) g = (20)(0.4m)=8 m/sec?
At the point A magnitude of the acceleration is given by fB = [f? + 1‘B2

Bt r

f, =\/(8)+( 258.674) = 258.798m/sec? The
f
direction of the acceleration is given by tan Pg = t
1Er
f
Bt 8 _ —1 ~10 ’
tan g, = — gg=tan (0.03092) — ?g =1.47714

f ~ 058.674
r

Example 5: The disk is driven by a motor such that the angular position of the disk is

defined by 8 = (ZOt +4t2 j rad where tis in seconds. Determine the number of revolutions,

the angular velocity, and angular acceleration of the disk when t=90s?

Solution

17
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At t=90sec, we find that (t =90) =[20(90)+4(90)2jrad =(1800+4(8100) jrad

&(t =90) = (1800 +32400) rad =34200 rad

q (L) rev _ 34200
27 rad 27T

@ =34200 ra rev — @=5443 rev

Angular Velocity: Applying Eq. a):(il—f , we have

w:%[20t+4t2j =20+8t and at t =90sec, we have @=20+8(90)=740rad /sec

Angular Acceleration: Applying Eg. A @ =8, wehave :?j_i‘)

o =8rad/sec? t=90sec

Example 6: At the instant @5 =5 rad /sec (it means initial the angular velocity), pulley A

Is given an angular acceleration @, = 6rad /sec?. Determine the magnitude of acceleration

of point B on pulley C when A rotates 2 revolutions. Pulley C has an inner hub which is

fixed to its outer one and turns with it?

40 mm

18
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Solution

Given (a)Aj =5rad /sec , a)A=6rad /sec?,
0

Where the angular acceleration of pulley A is constant. So we have

1
w=0, + o't, 6?=a)0t+§a)'t2, o= + 200

: 2
When the pulley A rotates 2 revolutions. Then N, :2—A: 2 > 0,=4r rev
T

Angular Motion: The angular velocity of the pulley A can be determined from

o= o + 200,We have o = (5)° + 2(6)(4r) =25+487 =175.79644, o =13.2588rad/sec

Since pulleys A and C are connected by a non-slip belt. So, at any point on the pulleys A and

V, =V, fAt :fCt.Then

V,=Vo = @, =a.l. = (13.2588) (50) =@, (40) — o, =16.57 rad /sec

_ . : _ : . 2
Also fAt _fCt — 1y o, =t o, — (50) (6)=(40) v, — W, =1.5 rad/sec

Motion of Point B. The tangential and normal component of acceleration of point B can be

determined from,

fg =(@?) (r)g =(16.57)?(0.6m) =164.739m /sec?
r

th = (@) (r) g =(6)(0.6m)=3.6 m/sec’

f, =/(3.6)? +(164.77)* =164.77m/sec?

19
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Chapter 2

I. Mass Moment of Inertia

Definition of the Rigid body

In physics, a rigid body is a solid body in which deformation is zero or so small it can be
neglected. The distance between any two given points on a rigid body remains constant in
time regardless of external forces exerted on it. A rigid body is usually considered as a

continuous distribution of mass.

Definition of moment of inertia

Physical; A measure of the resistance of a body to angular acceleration about a given axis

For an object rotating about an axis, the resistance of a body to accelerate is called inertia of

Mass

Mathematic; The Moment of Inertia is equal to the sum of the products of each element of

mass in the body and the square of the element's distance from the axis.

It is defined as the sum of second moment of area of individual section about an axis
(1) The basic shapes

(2) Systems of particles

(3) Composite bodies (shapes)

(4) Uninform shapes

20
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The Moment of Inertia of mass (Second moment of mass)

The mass moment of inertia about a fixed axis is the property of a body that measures the
body's resilience to rotational acceleration. The greater its value, the greater the moment
required to provide a given acceleration about a fixed pivot. The moment of inertia must be

specified with respect to a chosen axis of rotation.
(1)- For a single mass, the moment of inertia can is expressed as

For the element dm that is located a distance a from the L-axis, the Moment of inertia

referenced to L -axis is given as

Fig. 1
I, =dma’
(2)- If a system consists of n-bodies, then the moment of inertia can be given as

For the n-elements, they have the mass dm, dm,, dm,,.....,dm_that is located a distance a

from the L -axis, the moment of inertia referenced to L -axis is given as

dmy,

dni,

21
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n
I, =dma’+dm,a’+dm,a’ +......... +dm,al => dma’
i=1

(3)- The Moment of Inertia in the plane

dm
X
»
y
o l X
Fig. 3
Referenced to x-axis is given by I, =dmy?,
Referenced to y -axis is given by I, =dmx?,

Referenced to the original point (0) is given by
lo =dmr? =m(x*+y?) =l +1,,
I, Is called Polar moment inertial

(4)- The Moment of Inertia in the plane for number of elements

y
dm,

X @ . dm, dm,

2 5 @ . dm,

i i

12 ; v

X
Fig. 4
. . . n
Referenced to x-axis is given by L, =Y dm y}

i=1
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Referenced to y -axis is given by I, => dm x?

i=1

(4)- The Moment of Inertia in space

L

i
m
Yy
- -
0
x
.1.
X Fig. 5
Referenced to the original point (0O) is given by
lo =mr? =m(x* +y’ +2°) (2)
Referenced to x-axis is given by I, =m(y* +2%),
Referenced to y -axis is given by l,, =m(x*+2%),
Referenced to z -axis is given by I, =m(x*+y?),
Referenced to the plane—x =0 is given by I, =m(y*+2%),
Referenced to the plane I, =m(x*+2%),is given by ~y=0
Referenced to the plane z=0 is given by |, =m(x*+y?),

From previous relation, we have

2 2 2 2
l,=mr°=mx“+y +2z°) =1, + 1, +1,

23
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21, =1 +1,, or Io:mr2:m(x2+y2+zz):%(lxx+IW+IZZ)

o XX+IW

I, =m(y’+2°) = Loy + oz
I, =m(x* +2z%) = I

2 2
L,=m(X“+y)=1,+ s

Parallel axis theorem

Parallel axis theorem is applicable to bodies of any shape. The theorem of parallel axis states
that the moment of inertia of a body about an axis parallel to an axis passing through the centre
of mass is equal to the sum of the moment of inertia of body about an axis passing through
centre of mass and product of mass and square of the distance between the two axes. The

parallel axis theorem is much easier to understand in equation form than in words. Here it is:

Rotation Axis through
axis center of mass
A A
< | =
d

A
¥

In physics, the parallel axis theorem can be used to determine the moment of inertia of a
rigid object about any axis, given the moment of inertia of the object about the parallel axis
through the object's center of mass and the perpendicular distance between the axes.

We consider an element (m) and its center is (x,,, Y., ) (see below Figure)

24
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=

y
x=x"+x_,
Y=YV,

X
[
-l——_xm
r
// d
0
Fig. 7

dl, =dmy?, the moment of inertial with respect to x— axis

dl,, =dmx?, the moment of inertial with respect to y- axis

dlo =dmr? =1, +1, =dm(x* +y*) , the moment of inertial with respect to the point(o)

lo :J.rzdm:_[ (x* +y*)dm
|, = j r'’dm= j (X2 +y'?)dm

X=X+Xgr Y=Y+ Yo

lo = [r’dm=| {[x# X, Jz +(y'+ Yo jz}dm

:J- {XIZ + Xczm +2X Xcm + y’2 + yc2m + 2y’ ycm }dm

lg = I (x'z +y” )dm+J(x§m +y2 jdm+ 2xcmjx'dm+ 2ycmjy’dm
NI

Icm :dz

Io =1, +Id2dm+2xcm_[x’dm+2ycmjy’dm

lo =1, +d2j dm+ 2xmjx'dm+ 2ycmfy’dm

lg =1, +d? m+2xcmjx’dm+2ycmjy'dm

d
jdm —>jx’dm:XJ'dm, yzjjydmm —>Iy'dm: yjdm

Iy = Icm+d2m+2xcm{>‘<_|.dm }+2ycm{yjdm }

lg =1, +d’m+2x,, Xm+2y_ ym
25

1)
()

3)

(4)

(5)
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(6) lg =1, +md>
Question: Let 1, and 15 be moments of inertia of a body about two axes A and B

respectively. The axis A passes through the centre of mass of the body but B does not, So.

(A) 1<l (B) 1,>14 (C) If the axes are parallel 1, <1,
(D) If the axes are parallel 1, > 1, (E) If the axes are not parallel 1, >1,

The moment of inertia is always less for an axis passing through the center of mass than any
other parallel axis. We cannot say anything of the moment of inertia about a non parallel

axis. Thus C is correct.

Perpendicular Axis Theorem

This theorem is applicable only to the planar bodies. Bodies which are flat with very less or
negligible thickness. This theorem states that the moment of inertia of a planar body about
an axis perpendicular to its plane is equal to the sum of its moments of inertia about two

perpendicular axes concurrent with the perpendicular axis and lying in the plane of the body.

Z

Fig. 8

dl . =dmy?, the moment of inertial with respect to x- axis

dl,, =dmx*, the moment of inertial with respect to y— axis

dl, =dmr? =1 _+1, =dm(x* +y?),, the moment of inertial with respect to the point (o)
Iozj(x2+y2)dmzjr2dm= rz_[dm =r’m 1)

I, =l+1, (2)
26
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Example:1 Find the Mass moment of inertia of a thin uniform rod?

Solution

We consider L be the length of the Rod, M be the mass of the Rod and is the density p.

We divide the Rod into many small elements. We select one of them, that has length dx, mass

dm and has the distance x from the left end of the Rod

L
For the small element dm:pdx—>m=_[0Lpdx =p_[0 dx =pX|; - m=plL

dm=pdx
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The moment of inertia about its end is given by

(w2 (o2 21 s 1 s m 1 5 ) 21
IW_dem_ij(pdx)_gpL —§pL pL3_§mL s Iw_gmL

This the moment of inertia of a thin uniform rod about an axis perpendicular to its length and
passing through one of its ends.
The moment of inertia of a thin uniform rod about an axis perpendicular to its length and

passing through its center. From the Parallel axis theorem

2 2
|W=|y,y,+m[1Lj —>5mL2=|y,y,+m(3L] - |y,y,=lmL2—1m|_2=(ﬂij2=iml_2
2 3 2 3 4 12 12
: 1 2
. IylylzﬁmL

The moment of inertia about its other end is given as

2 2
Iy =1,y +m I |y,,y,,=im|_2+m L) = tme s ime (23 mz o e
2 12 2 12 4 12 12

zI””=1mB

y'y 3

Note: The moment of inertia for a thin uniform Rod that rotates about the axis perpendicular

to the rod and passing through one end is %mLZ . If the axis of rotation passes through the

center of the Rod, then the moment of inertia isémLz.

Example 2: Find the Mass moment of inertia of a thin uniform rectangular plate

about its base and its one of edges axes?

Solution

We consider a uniform strip with the length (dx) and thickness (dy) as shown in below Figure,

where the density isp .

28




Mechanics of Rigid body Mathematics Department

R Y
=

Rectangle

-—J’ﬁ d1'
b x

’

]

| _x

b a
dm=pdxdy >m = p[[dxdy > m=pab . The moment of inertia about its corner is given by
00

NG b 3 3
ba ba m 1
dIW:XdeszZdXdy —)Iyy ff dXdy p{ 3} [y]g: p= P IW:_maz

00 0

If we select a vertical strip (sector, section), we have

a

3 3 3

dl,, =x2dm = px (bdx) —> | _pbjx dx=pb| X | = P&, ba’ S m
3|, 3 3 " pab

R S 1Y

. yy_gma l, =1, +m Ea -

1, 1 ) 1,1 , (4-3) , 1 _,

—ma‘=l..+m| -a| >, . =—ma"——ma’*=| —— | ma”"=—ma

3 vy 2 vy o3 4 12 12

Ly = L e Similarly, if we select a horizontal strip, we can prove that:

12
Ixlembz, IX,X,:imb2
3 12

For axis is perpendicular ox,0y 1, =1y + 1y = %mb2 +%ma2 :%m(az +b?)

.. ] 1 1 1
For axis is perpendicular ox’,oy’: 1..,=1.+1,. =—mb?+—ma*=—m(a?+b?
p p Yy 7'7 X'X Yy 12 12 12 ( )

The moment of inertia about its corner is given by (Mass moment of inertia)

29
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1 1 1 1 1
I, ==mb®= Z(ab)b® = =ab’, |, ==ba’ =1, +1, ==ab(a’+b?
o =3Mb? = 2 (@b)b” = »=3 o= lat 1, =5ab(a’ +b?)
I, =iab3, I, =iba3 Iy =l + 1y =iab(a2+b2)
xxo 12 yy oo 12 12
Uniform rectangular Axis coincides with Axis passing through Axis coincides to
plate (a,b) one of its sides its centroid other side
i i | ==ma’ I =~ ma? l,..==ma’
With respect toaxis |yy - w3 v T 19 vy =
With respect toaxis 1, — l = 1mb2 o = émb2 | = 1mb2
With respect to axis
perpendicular to the l,, = %m(a2 +b?) I = %m(a2 +b%) | .= % m(a’® +b?)
plane oxy

Example 3: Determine the mass moment of inertia for right Triangular Plate
(Right-angled triangle)?

Solution

We consider a uniform strip with the length (x) and thickness (dy), such that it is parallel to

x - axis, as shown in below Figure. Then

h h y y? h h2 1
dm=pxdy—>m=pjxdy:pja(1—ﬁ)dy=ap{y—%} =ap{h——}—> mzzahp
0 0 0
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'}
Right-Tringale
4 1(0.h) R

X-x _V—»h - Y-a_ y—0
n-x VN O-a h-0

.

La=a(l-=

dm x=a( h)

LR

=
a (a.0)

Then moment of Inertia with respect to x - axis:

h
dl, =y’dm=pxy’dy — Ixxzpjxyzdy , but §+%:1 — x:a(l—%
0
fon Y 0 y° vy
I, =pla@l-2)y*dy=pa| (y*-2-) dy=pa| Z———
xxpl(h)yypg(y h)yp[34hl 1
1, ==mh?
3 4 XX
L —pa| Lot ooz =t panes ™ lgpe 6
3 4h| 12 12 i
Sahp
2
Then moment of Inertia with respect to x' — axis:
2
L=t em[Eh] o 1 =tm - imeetmneo2=Ltmne 1, = Lmn
3 6 9 18 18 18
Then moment of Inertia with respect to x” - axis:
2
.= IX,X,+m(ghj L mne s Amne - Lmneeg) =2 mw? I, —=mh?
3 18 9 18 18 2
Also, Iwzémaz, Iy,y,:%maz, Iy,,y,,:%maz.
1 2 1 2 1 2 2 1 2 1 2 1 2 2
IZZ:IXX+IW:€ma +gmh :Em(a +h%) IZ,Z,:IX,X,+Iy,y,:Ema +Emh :Em(a +h?)

Again, | ,; = %m(oo’)2
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where %(oo') AB , AB=y(0-a)’+(h—0)° =+a’+h’

1 2 1 1 1 2 2 a.h
|, =—=m(00") =————-m, Also —ah==(00") AB ==(00")va®+h° - 00'= ———
0 =00 Zgariy M AR R AN (0N AB =5 (00) N
Right Triangular Plate ) About its center of ]
) About its corner About its vertex
of height h and bass a mass
. 1 1 2 1
About its base o = mh Lex = 1™ i =5 mh
About its height 1 = Lma . =~ ma I = Zma?
out Its heig Y6 W18 vt o
About vertical axis l,, ==m(a’+h?) I, =—m(@*+h?) | 1, :%m(3a2+hz), L :%m(a2+3h2)

Example 4: The Mass Moment of inertia of acute triangular plate?

Solution

We divide the acute triangular plate to two right triangular plate as is shown in Figure

Acute-Tringale

The Moment of inertia of about x- axis for the two right triangular plate is given as

1
(Ixx)l :gmlhz,

(1,), = =m, b2,

6
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For the acute triangular plate

1 1 1 1
L =(IXX)1+( Ixx)z :Emlhz + Emz h? =g(m1+ mz)h2=gmh2

Example 5: The Mass Moment of inertia of obtuse triangular plate?
Solution

We divide the obtuse triangular plate to two right- triangular plate as is shown below
Figure

Obtuse-Tringale
h

The Moment of inertia of about x- axis for the two right triangular plate is given as
1 1

(IXX)ABD:E(m1+m2)h2’ (IXX)CBD:EmZhZ

For the acute triangular plate

1 1 1
(Ixx)ABC :(IXX)ABD +(Ixx)CBD :E(ml"' mz)hz _gmz h? :Emlhz

Example 6 : Find the Mass Moment of inertia of right- triangular plate as is

shown in figure about all different axes?

Solution
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Right-Tringale
B .
gl
5
h=4 '
T -
NS
] - C
a=3—————————™
22
From the Figure it is clear that Ixlemhz, Iyy:lmaz, loe =%m
6 6(a’+h?)
o= 2mh?= M@ = m="m, 1, = Tma?=_m(@ = m=om
6 6 6 3 6 6 6 2

S Y ) SR )T Lo N O €L P
6(a2+h?)  6(B)F+(4)?) 6(9+16)  6(25) 25

Note that s<4<s, IXX:§m>IW:§m>IBC:ﬁm
3 2 25

Example 7: The Mass Moment of inertia of Circular Ring?

Solution

We select a small element has the mass dm at any point located at distance (x,y) from the

origin point

dm=apd@

3

)= asin 0

0 x=acosh
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The Moment of inertia about z —axis (The axis is passing through the center (z-axis) and is

perpendicular to the Ring) is given as

z

dl, =a’*dm......... IZZ:J.azdm:aZJ.dm—> I, =a’m
0

From the Perpendicular axis theorem (Here, the distance between the tangent and the diameter

1 2
isa) I,=1,+1,.50 I+l =ma

But I, and I, are symmetric,so 1, =1, , Then

IXX

e =1, :E ma“ (The moment of inertia of a ring about of its diameter or the axis passes through the diameter)

. 1 1
From the parallel axis theorem 1., =1 +ma’— |, ==ma’+ma’— I, =-ma’
2 2

1 2 2 1 2
,=—ma“+ma“— |_,,==ma
2 X 2

2
I,,:Iw+ma—>lx, X

XX X

Moment of inertia about an axis is passing through the edge of Ring and perpendicular to its
plane and parallel an axis is passing through the center (z-axis) and is perpendicular to the
Ring

I, , =l;z+ma’> -1, , =ma*+ma* -1, , =2ma’
z 12 z12 z 12

Circular Ring For Vertical axis About axis in the plane of Circular Ring and passes in the its center

The moment of inertia of the ring about of its diameter

1 .
Axis of rotation | =ma? ly = |yy = Ema

24

3
. . _ 2 _ _> 2
Axis of rotation l,,, =2ma Iy = Iy,y, =3 ma
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Example 8: Find the Mass Moment of inertia of Circular area ?

Solution

We divide the Circular area to the small Circular Rings, we selected one of them has mass
(dm),thickness (dr) and raids (r).

<

a

r2

S0,dm=2zrpdr —» m:27zp_[ rdr >m=2zp > =rza’p
0

0

42 4 4 4
2npr’|  mpa’ mpa’m _mpa M

l,, :J.rzdm:J.rz(Zﬂrpdr) :anj'rSdr:
0

., 2 2 m 2 ga‘p
1, = L ma?
2
From the Perpendicular axis theorem
I =1+1,.S0 I +I —lma2
7 T X w o XX W 2 '
. 1
But 1,1, are symmetric,so 1,=1,. Then 1 = Iyyzzma2
Circular area For Vertical axis Aboutaxis in the plane of Circular
Ring and passes in the its center
2 2
Axis of rotation |, =Ema lx = lyy = Zma
: : 3 > S 2
AX'S Of rotation IZ'Z' :Ema IXVX/ = Iy/y¢ = Zma
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Example 9: Find the Moment of inertia of Thin Disc?

Solution

We divide the solid Disc to the small Circular Rings, we selected one of them has mass

(dm),thickness (dr),distraction thickness (Az) and raids (r).

e

a G
dm=2zrpAzdr — m:ZﬂpAzj rdr —>m=27rpAZ% =ra’pAz
0 0
So, the Moment of inertia of thin Disc is
r a 4
IZZ:J rzdm:'[ r2(272'rpAZdr):27rpAZJa r3dr:27szzI :szz7
0
0
4 4
ZZ:7r,oa m _ zpAza 2m N Zzzlmaz
2 m 2 rma‘pAz 2
From the Parallel axis theorem 1., =1_,+ma*— 1,, :gmaz
From the Perpendicular axis theorem 1, =1, +1, . S0 IXX+IW:%ma2 :
. 1,
But 1,1, are symmetric,so 1,=1,. Then IXX:IW:Zma

Example: 10: Derive the Mass moment of inertia of Hollow Cylinder?

Solution
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Take the hollow cylinder as the corresponding shape, divide it into an infinite number of

regular circular rings and take one of these rings with the mass (dm) and the radius (a).

Then the moment of inertia of this ring is given as  di,, =a’dm.

Y24

Then, the total moment of Hollow Cylinder

2
7z

l,, :.Tazdm:ma2 — 1,=ma
Example: 11: Derive the Mass moment of inertia of Solid Cylinder?

Solution

We divide the Solid Cylinder it into an infinite number of thin discs and take one of these

discs with the mass (dm) and the radius (a).
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/_{I\\%‘ 8]

[
7

Then the moment of inertia of this disc is given as. dl L a2dm. Then the total moment of

Hollow Cylinder 1, :jla2 dm=1ma’
) 2 2

Example: 11: Derive the Mass moment of inertia of Hollow Sphere?

Solution

. Rsing
Y d _Rd#

[s(i]

dm_-

We divide the Hollow Sphere into a number of small circular rings and we consider one of
them with the mass (dm), the radius (y) and thickness (dz).

dm=2zyp dz=2x(asind) p add >m=2zp azr sin@d@ -»m=-27p a’ cose‘z =
0
=-27 p a*(cos(z)—cos(0) ) =27 p a*(-1-1)=27p a*(1+1)==4rp &’
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The moment of inertia of this circular ring is given as dl,, =y*dm.

Then the total moment of Hollow Sphere 1,, = [ y*dm, then

I, =] ydm=2zpa‘[ (sin)zsinedezzﬁpa““ (l—cosze)sinadaJ
0 0

= 272'pa4|:r sin ede—j" (cos )’ d (-sinO)
0

=2z pa’ —cos@+ % (cos 9)3} =2z pa’ —cos(z)+ % (cos(r))® - { —cos(0) + % (cos(O))SH

0

:2ﬂpa4{1+%—{—1+%}J =27zpa4|:1+%+1—%} =27zpa4|:2—§:| =§7zpa4

|ZZ=§7Z',08.4 m2 - Zma? Then 1, _2ma
3 4ra’p 3 3
For the symmetric of axes 1, =1,=1,, =§ma2

Also, we know 1 +1,+1,=21,, 2I, zgma2+gma2+§ma2 _Omat - oma?

Example: 12: Derive the Mass moment of inertia of Solid Sphere?

Solution

S
/

We divide the solid sphere into a number of hollow sphere and take one of these sphere with

mass (dm), radius (r) and thickness (dr). Then the moment inertia of this sphere around oz
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axisis di,, = %(dm)rz, for whole sphere the moment inertia is given as 1,, = j%(dm)r2 , Where

dm=4zr’pdr— m=47rpj r dr:%ﬂ a’p. Then
0

4|2

2 a2 8 F 8 r 8
==(dm)r2= =4z r? dr = r‘dr=—z p—| =—nx pa’
J3tdm !3 S 3”’0£ 3775 T157 7
Izzzﬁzr,oaf’m 87rpa M _2ma2  Then l,, —Zma’
15 m 15 4 5 5
3~

Where the axes are Symmetrical 1, =1,=1, :%ma2

3
“ma?

Also I, +1,+1,=21,, Then 21, Zma?+2ma?+2ma? = Sma? I, =
5 5 5 5 5
Example: 13: Find the Mass moment inertial for the Hollow Circular Cone ?

Solution

Divide the Hollow Circular Cone into a number of small circular rings and take one of
these rings with mass (dm), radius (y) and thickness (dL ), which is located higher (z) than

the base of the cone with radius (a). Note that it is similar to triangles ABC and AB'C, we

have E:X - y=E(h—z)—> Z=D(a—y)
h a h a

h—

h

.
=7 =0 +d’

N\ B y

......
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The moment of inertia of this circular ring is given as dl,, =y*dm.

Then the total moment of Hollow Circular Cone 1,, = [ y* dm

h
Note that , wheredm =27y p dL— m=27p [ ydL
0

2 2
= /1+(Ej dy = 1+(Dj dy:1\/a2+h2 dy:E dy. Then
dy a a a

a L Lyza
dm=27zpj ydL= 27[,0.[ ygdy= 271,05?
0 0

2

:ank%em:ﬁaLp.Then
a

0

a

! —Tyzd Ty(zyzy dL) =27 jy Layoor pb ¥ cop pb®_p, 8
«=) 0 p p Padal, ¥ aa P
:ana—m:ana— M _lha IZZ:Ema2
2 m 2 maLp 2 2

Again, dL—1/1+ dy dz= |1+ dz_ \/h2+a dz—

Lz
dm= anj ydL= ZﬁpJ.—Z Fdz=27pa s

2

L h
—ZﬂpaF?—)m=7Z’aLp

3, : a_\'L Lt , a’l [
IZZ:'[y dmzjy (2zyp dL):Zﬂ'IDI W2 Fdz:ZﬂpFIz dz::ZEpFZ
0 0 0 0 0

a’L h* a’m a m 1
=2 p— —=nlp— =xalp——=rnlp — =—ma
P g =75 Pom "2 zaLp 2

2 I 2

7z

1

=—-ma
2

Example 14: Find the Mass moment inertial for the Solid Circular Cone?

Solution
We divide the Solid Circular Cone into a number of small Disks and take one of them
with mass (dm), radius (y) and thickness (dz), which is located higher (z) than the base of

the cone with radius (a). Note that it is similar to triangles ABC and AB'C, we have
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h-z Yy
a

= - :—(a z)—>z——(a y)

-----

2 h

dm=rzy?pdz— m= ﬁpj( (h—z)j dz= 7rph2 j(h2—2hz+zz)dz

2 Z3
_ﬂphz (h Z—2h?+€j

The moment of inertia of this Disk is given as dl,, =y*dm.

h 3

zyzphz (he’ h3+h?j—>m:%7ra2hp

0

Then the total moment of Solid Circular Conel, = j y’>dm, that is given

17 1t 1t 1 %a o1 (a)'} .
IZZ:E.([yzdmzzz[yz(zryzp dz):E;zp_([y“dz:zzrpﬂﬁ(h—z)j dz:Eﬂp(Ej j(h—z) dz
h

1 (aY (h-z)
_Zﬂp[hj 5|

I :ima2 , Also
10

1 a‘h® 1 . 1 4. M 1 m 3
=Zrxp——=—rgpath=—rpa‘h—=—r pa'h —— ="ma?
2" Py T10" 7 107 " T 0"

y24

Io=f zzdm:F zz(nyzpdz):;zpf Zzyde—ﬂp.r ( (h— Z)J dz

2 a2 4 5|
a z3 VAR 10-15+6
= — h?z2-2hz®+z*)dz = h2Z —hy || = _h5 il
ﬂp(hj _r ( ) ﬂphZL 3 2 5] 0 Tp ( 30 J

0

a’h® 1 2ps L 2pam_ 1 2 13 2 1
e N ot pa? Dot — ™ L yh? Then I, = —mh?
P30 30" " 307 Mt 1T 10
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[I. Area Moment of Inertia

Area moment of inertia also known as second area moment or 2" moment of area is a
property of a two-dimensional plane shape where it shows how its points are dispersed in an
arbitrary axis in the cross-sectional plane. This property basically characterizes the deflection

of the plane shape under some load.

Area moment of inertia is usually denoted by the letter 1 for an axis in a plane. The
dimension unit of second area moment is Length to the power of four which is given as L*. If
we take the International System of Units, its unit of dimension is meter to the power of four

or m*. If we take the Imperial System of Units it can be inches to the fourth power, in*.

We will come across this concept in the field of structural engineering often. Here the area
moment of inertia is said to be the measure of the flexural stiffness of a beam. It is an
important property that is used to measure the resistance offered by a beam to bending or in

calculating a beam’s deflection. Here we have to look at two cases.

First, a beam’s resistance to bending can be easily described or defined by the planar second

moment of area where the force lies perpendicular to the neutral axis.

Secondly, the polar second moment of area can be used to determine the beam’s resistance
when the applied moment is parallel to its cross-section. It is basically the beams ability to

resist torsion

Area Moment Of Inertia Formulas

The area moment of inertia for the area is given in below figure can be expressed

mathematically as:
Referenced to x-axis is given by I, =Yy°dA,
Referenced to y -axis is given by I, = x*dA,
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=

O

Referenced to o -point is given by lo =r?dA= (x*+y*)dA=1_+1,

The parallel axis theorem

The parallel axis theorem is a relation between the moment of inertia about an axis passing

through the centroid and the moment of inertia about any parallel axis.

¥
1 A

L — X
Fo
7

K -

O

The parallel axis theorem states that

I, =1, +Ay? 1 =1, +AX

XX XX Yy Yy
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A simple recap of the Basics:
- Moments of inertia are always positive.

- Minimum moments of inertia axes always pass through the center of mass.

- Moments of inertia are a measure of the mass distribution of a body about a set of axes.
Think of a rotating ice skater. If the person stretches the arms out, she slows down and
speeds up otherwise. Hence the smaller the inertia the more concentrated or closer the mass

Is about a particular axis.
- Area moments of inertia are for a particular section or a 2D surface.
- Products of inertia can be positive, negative or zero.

- Products of inertia are a measure of the symmetry of a body about a set of axes. They are

zero about any axis normal to a plane of symmetry.

- For any given point on a section, for example the centroid or any other point, there exists a

set of axes oriented in such a way that all products of inertia are zero.

Example 1: Find the Area moment of inertia of a rectangular section about a horizontal axis

passing through base?

Solution

We consider a uniform element with the length (dx) and thickness (dy) as is shown in below Figure

Rectangle

- a
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The Area moment of inertia about its vertical corner is given by

b ra 3 b
dl,, =x*dA =x*dxdy — IW:j _f x> dxdy = X [v]s = lpat - l, = Ima?
00 31, 3 3
l 2
From the parallel Axis Theorem L, =1, + m(—a) -
2
| =ipbad—Lian)a?=| 223 |pa*= Lha? 1 = tpa
yy 3 4 12 12 vy 12
. . . 1 3 1 3
Similarly, we can prove that: 1, = §ab , o= Eab
.. . 1 3 1 3 1 2 2
For axis is perpendicular ox,0y 1, =1y +1yy =§ab +§ba =§ab(a +b?)
1c 1 1 ' r . l 3 1 3 1 2 2
For axis is perpendicular ox,oy': 1, , =1.. +1.. =—ab’*+—ba’=-—ab(a’+b?)
zz X X yy 12 12 12
Uniform rectangular plate Axis coincides with AXis passing Axis coincides to other
(a,b) one of its sides through its centroid side
. . _ 3 _ 1 3 _ 1 3
With respect toaxis |, — I, ==ba nyyr _Eba Iy”y" —gba
With respect toaxis |, — Ixx—lab3 I :iabs L :labs
3 xx 12 X X 3
With respect to axis L e e _1 2 12
- Izzzlab(az—kbz) Izrzl 12ab(a +b) IZ!!er 3ab(a +b )
perpendicular to the plane oxy 3

Example 2: Find the Area moment of inertia of a triangular section about a horizontal axis

passing through base?

Solution

We consider a uniform element with the length (dx) and thickness (dy) as is shown in below

Figure
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y
[ ] ,
! Right-Tringale
A41(0,7) X—-x,  y—-» x—a y-0
X=X, V,— W O-a h-0
Sy :f.r(l—i) or x :n(l—l)
a I
}1‘1
X _Flfh \
\l
(0,0) 2 u (a,0)

W:_[ _[ x* (dxdy) — I, :j “_[ ) 2dxdy:"’l_sjh(l—%fdy
2oy ay =2 -3y +3y'h-y) oy

3 2 4 |h 3 4 3.4
== hoy -3t syh- Y| 2 & e 3pegpe D)2l [8—6—1]=ia3h
0 12

h 2 4 3h? 2 4 | 12n°
1
1, =-—ha’
w12
Right Triangular Plate of height ) About its center of ]
About its corner About its vertex
h and bass a mass
1 1 1
i | =—ah’ | =—ah? — = ap’
About its base =1 = 3p [y 1 ah
. . _ 1 3 _ 1 3 1 3
About its height ly=1;ha Ly =3¢ N2 lyy =5 ha
ah
v =—(@® +3h?%),
. R :—(a2+h2) ’or 7(a2+h2) 2"z 12
About vertical axis 212 ah . .
'z”z”=§(3a +h?)

Example 3: Determine Area the moment of inertia of the shaded area with respect to

0X, 0y —axes?
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[l
=

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x - axis with the length (2—-x) and thickness

(dy)as is shown in below Figure. Then dA=(2-x)dy

y
)

y=0.25x°

d4d =(2—x)dy

/ 2—x f X

IS |} J——
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So, the area moment of inertia with respect tox -axis is given as

17

IyszI (2—x)dy= Iy 2— 4y dyI 3 dy
TR 3, 3 9 16 3 3 8
I = Sy =2’y | 2202°-2(4)@° ==-2(4)’ 2 ° =2 -053334m*
=37 10()y 3 10()() 3 10()() 15 "

0

The Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y-axis with the length(y) and

thickness (dx) as is shown in below Figure. Then dA =ydx

2m

So, the area moment of inertia with respect to y -axis is given as

6
1, =] xedA= fxyolx—jZ (0.25)x dx f 025xo|y_(2231 =%=§=2.67m4

Aqgain, the Area Moment of inertia with respect to x- axis

If we consider the previous Figure (second Figure) we can find the Area moment of inertia as

1 21 12 L :
=] gyos [ vo=3L (0250 ax= 028X ax= J(025) ()]

0

_ 115625 1024 116000000 116 18 8 _ —0.53334m"

*~ 31000000 10 310000000 310 35 15
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Example 4: Determine the Area moment of inertia of the shaded area with respect to

0X, Oy —axes?

[ ]

o =

4 m

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x - axis with the length (x) and thickness

(dy)as is shown in below Figure. Then dA=xdy

Y y=21
A y 8

- X

| 1] E——
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So, the area moment of inertia with respect to x -axis is given as
8 8 1 v
= [y*dA=[y’xdy =[y*(2)y*dy = 2j y3 dy =2 3(83 53(1024) =614.4m*

0 0

From the above Figure, the area moment of inertia with respect to y -axis is given by

1, 58 81, , 81 256 )
=] =x¥dy=[ Zydy=22 =2 Z(64)= 2 =85.3334
stxyjos y32(y)o 32( ) 3 m

The Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y-axis with the length (8-y) and

thickness (dx) as is shown in below Figure. Then dA=(8-y) dx.

- X

A

So, the area moment of inertia with respect to y -axis is given as
2 b 2 I 2 x° h , X
= | x“dA= 8—y)dx= 8—— |dx=|| 8x" —— |dx=
8, s . 1, 2 16 2 1] 256
| Iy =@ (@) =) - | = = | === -85.3334
Y [3 48y] 3() 48() ()(3 48} (){3 3] 3 m

The Area Moment of inertia with respect to x- axis

If we consider the previous Figure (second Figure) we can find the Area moment of inertia

with respect to x- axis (from the parallel axis theorem)as 1 =1, . +dm (y)®
X X

XX
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Where 1, ., =i(8—y)3dx=i(512—192y+24y2—y3)dx
X X 12 12

2
Y=Z@-Y)+y=26+y) > ¥ _[;(8+y)} -2 (64+16y+y"),

dm=(8-y)dx Thenl, =1, , +dm (y)* becomes
X X
1 2 3 1 2
:5(512—192y+24y —y?)dx+(8—y) dx (2(64+16y+y )]

={$(512—192y+24y2 —y)+128+32y +2y° - %(64y+16y2 + y3)} dx

{%— 16y + 2y? BT y3+128+ 32y + 2y* — 16y — 4y? —lyg}dx

2+6+8=0 3+7+9=0 2+6+8=0 3+7+9=0 2+6+8=0 3+7+9=0

512 1 , 1 . 1 Xya
2 _Cyirdx=24512-y® rdx=21512—(=)° {dx

For all the Area, we have

L = {512 (8) }dx—lj {512 (2)’x }dx—%[mx“( Uk }
B L] 1 QICIC)
_3{512(4) 7 )(4)} 3[512(4) ()(4)} { (8)(8)(8)}
1 2

L@yt o2
3 8| 7

Example 5: Determine Area the moment of inertia of the shaded area with respect to

0X, Oy —axXes?
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Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x - axis with the length (x) and thickness

(dy) as is shown in below Figure. Then dA=xdy

dv

- 16m -

So, the area moment of inertia with respect to x -axis is given as

2 I 2 h 2(,\2 h 4 (4)5
L=y dAzly xdy:!v (vfay=] y*dy=-2

0

_1024_ 204.8m*

The Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y-axis with the length (4-y) and

thickness (dx) as is shown in below Figure. Then dA=(4-y) dx

"
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ly = IXZdA: TX2(4— y)dx :TXZ( 4_(X);jdx :1.[6( 4x° —(X)gjdx = 4(26)3 _ 2(176)2

l,, =5461.333-48611428=780.2 m*

Example 6: Determine the Area moment of inertia of the shaded area with respect to

0X, Oy —axes?

100 mm 4‘

200 mm

lel x

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x-axis with the length (x) and thickness

(dy) as is shown in below Figure. Then dA=xdy

y

‘._IOcm——I

dy

10

"
@{
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So, the area moment of inertia with respect to x -axis is given a

7 10
1, =2] ydA= 2j y2xdy = zj 10y)2dy 2(10): ijdy 2(10) [iyJ

0

1 2 >y 4 4 4
|, =2(10)z 7(10)2 =—10'm

The Area Moment of inertia with respect to y- axis

If we consider the previous Figure (first Figure) we can find the Area moment of inertia with

respect to y—- axisas |1, = | % Xdy
3 5
2 10 2 2
= 2] 3dy 2] (10y)2 dy = 240° 2(10) j (y)? dy 2(130) 2(150)
4 4
10“= 10 =—1o4m
1y, = 15 ( ) ( ) 5

Again the Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y-axis with the length (10-y) and

thickness (dx) as is shown in below Figure. Then dA=(10-y) dx

}\ dx

- —

+—10cm
1

10—y

<

f———————
?‘{

2 i 2 ? 2 1 2 i 2 1 4
” :ZIX dA:2£x (10—y)dx:2£x (1O—Ex jdx:ZI(le 15 )dx

10 4 4
=2(9x3—ix5j o 18 10 2 (50 30p0 = 210t = 210t
3~ 50 ), 3 50/ 150 150 15
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Example 7: Determine the Area moment of inertia of the shaded area with respect to

0X, Oy —axes?

b §

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the y-axis with the length (y) and thickness

(dy)as is shown in below Figure. Then dA =ydx

y
A

m

- 8m -
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So, the area moment of inertia with respect to x -axis is given as

1 ., 1%, 2%, 2 v 2, 2048 A
—[Zvidx=2[v32vdy) =< [vidy = < == (4 ==""m* =136.533
J 3y 3!” ydy) 3£y y=1 0 b= =" m

The Area Moment of inertia with respect to y- axis

m4

7] " 204842
0

L, :_[ xszzj.szy dx :Iaxz(x); dx :J'BxZ dx:% {xz
0 0 0

7
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[11. Products of Inertia of mass

Products of Inertia of mass

(1) If the body is located in a plane as shown below figure and has mass (dm). Then the

product of inertia with respect to the axes ox,oy is given by

3

=X
l,, =xydm (1)
Note that l, =xydm=1 =yxdm
(2) For the body in space
.l_
-
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With respect to the axes ox,oy

l,, =xydm (2)

With respect to the axes ox,oz

I, =xzdm 3)

While, With respect to the axes oy,oz

I, =yzdm 4)
Product of inertia can be positive or negative value as oppose the moment of inertia. The

calculation of the product of inertia isn't different much for the calculation of the moment of

inertia. The units of the product of inertia are the same as for moment of inertia.

Parallel-axis theorem for products of inertia

For any rigid body has mass (m ) and the center of mass (X, , Y., ) as Shown below figure

¥ .

X=x+x_

.1I = .1‘1 + -1L(']?|

I x(/{/
X . x‘r
r v ,
d
/ I

' X

Dividing the body into a number of small elements. Taking a small element whose mass

(dm) and its coordinate with respect to the original axes is (x,y) . With respect to axes parallel
to the original axes and passing through the center of mass the element has the coordinate
(X .y

For the original axes (x,y), the inertial product of mass (dm) is given by

l,, =xydm 1)
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For the total mass (m)
Iy = Ixydm (2)

From the above Figure x = X Xy Y= y + Y., and into Eq. (2), we have

IX}’ = Ixydm: J. {(X' + Xcm ](y’+ ycm j}dm = I {le,+ X’ycm +Xcmy’+xcm ycm }dm

Ly :I xy'dm + ycmj x'dm + xcmj y'dm +x_, ycmj dm (3)
But, it is well-known that

Xydm =1, X dm=x m,
j y Xy cm ycmj cm ycm

jx'dm _ jy’dm (4)

X = jdm —>jx'dm:>‘<jdm, y jdm —>jy’dm:7jdm

From Eq. (4) into Eq. (3), we have
Iy =1y + Yom )‘(j dm + X, VI dm + X, YoM
Ixy=|x’y’+ycm)_(m+xcmym+xcmycmm (5)

But the coordinate (x, y) is the center of mass from the center of mass and it is equal to zero.
Substituting in (5) we get
Ixy = I X'y’ +m Xcm ycm (6)

Where 1,, is the product of inertia with respect to the two axes ox, oy, while Ly Is the

product of inertia with respect to the two axes o x , o y and x are the distance of the

cm ! ycm

center of gravity from the two axes ox, oy, respectively.

Notes

(1)-The product of inertia is a product of different coordinates, so it can be positive or

negative quantity
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(2)- For the product of inertiais 1, =1,, I,=1,, I,=I

yx? yz zy? X Xz

(3)- If the Products of Inertia are zero with respect to any two planes. It is said that the axis

of intersection of these two axes is a principal axis.

(4) If the inertia product is neglected with respect to any two principal coordinates ox, oy, it

Is said that the tow axis ox, oy are principal axes

(5)- Any symmetry axis in a flat plate with any perpendicular axis , then these axes are called

the principal axes

(6) - The product of inertia is finished for the two axes are perpendicular, if each other and

one or both axes of symmetry.

Example 1: Find the Product of Inertia of a thin uniform rectangular plate?

Solution

We divide the plate to small uniform strip, we consider one of them with the length (dx) and

thickness (dy) as in Figure, where the density is p.

Rectangle

dx

-..—J.’—I- d_‘l'
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b
dm=p dxdy ->m =p'[0bfoadxdy=paj dy=abp —»> m=abp
0

With respect to ox, oy, we have dl,, =(dm)xy.

For the total plate, we have

bpa a’b’ a’* m a’* m 1
IXY:.[J.Xy(dedy)—)IXV:pj.o.l.oxdedy:??p: 4 H: 4 E:Zmab
1
Ixy:Zmab

From the theory of parallel axes for the product of inertia, the product of inertia with respect

to ox , oy Iis given I, =1, +mx, Vg — %mabzlx,y,er(%a)(%b)—) =1, :%mab—lmabzo
l,,=0. So, the axes ox , oy are symmetric axes.

Example 2: Find the Product of Inertia of a thin uniform triangular plate?

Solution

2

h pai-) " " h2| 1
dm=p dxdy—>m=,oj0 IO h dxdy:pja(l—%)dy:ap[y—%} :ap[h——}z—ahp
0 0

Right-Tringale

X=X y—y x—a y-0

= RN =
\ X=X VoW 0—a h-0

Y :h(l—i) or x:a(l—l)
a h

(0.0)o g _dx (a,0)
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With respect to ox, oy, we have dI,, =(dm)xy. For the total plate, we have
h ea-Y) a? h

Ly =] [ xy (pdxdy) > 1, =p[ [ " xydxdy="-p] (1—%)2ydy

_ a® i 2 _ a’ o 2 _ a’ o, 2 3

=27 Ply (=) ydy == p[ (0" —2yh+ y?) ydy=_ p[ ] (yh* ~2y*h+y")dy

2 22 3 4 h 2 4 4 4 21,4 21,4
_ a2 {yh _Z;I h+y_j| — _a {h__£+h_:|—ah p[6_8+3]:ah Yo
0

o2 2 4| TPl 23 T a7 2 24n?
a’h? m a’*h® m 1
= —= Yol =-—mah
24 Pm” 24 P1 12
= pah
2
1
I, =—mah
v 10

From the theory of parallel axes for the product of inertia, the product of inertia with respect

to ox , oy Iisgiven

1 1.1 1 1 1
Iy =1, +MmX — —mah=1,,+m(za)(zh)—»> =1, =—mah-—mah=—-(6-8
Xy Xy’ cm ycm 12 Xy’ (3 )(3 ) Xy 12 9 72( )
Iy :—imah

36
1 2 -1 1 2 1

Loy =1y +MX Ve — IX,,y,,:—ﬁmah+m(§a)(?h)—> :Ix,y,=—£mah—§mah=%(—l—8)mah
l,...,=—-mah
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I\V. Moments of Inertia about inclined axis

X'=xcos6+ ysing

3 y' =ycosf —xsing

vcos® dm

- vsinf ¥
/ Ycosf
oloo-5
0 X
xsin 6
2
For ox  dl . =(dm)y’

IX'X' :jyIZ dm (1)

y' =ycosf — xsiné

I, = I(ycose— xsin@) dm = I y? cos® Qdmjtj.xzsin2 edm—ZIxycosesinedm
l,, =cos’ ijz dm-+sin? BI X2 dm—2cos€sin6?'|' xydm

Lo =1, €08"0+1,,sin’ 61 sin26 (2)
For oy’
l,, = '[ x> dm (3)

X' =xc0sé + ysing

= J.(xcose +ysin@)f dm= Ixz cos’@dm+ J. y2sin®@dm + ZIxycosasinedm

l,y =00329jx2 dm+sin20I y>dm+ 2cosHsin0jxydm

l,, =1, €08 0+1,sin’0+1, sin20 4)
For I,
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Ly :Ix'y’dm

X'=xc0sf + ysing, y =ycosd—xsind

Ly = j(xcos@+ ysind)(ycosé —xsing)dm

Ly = jxycosz z9dm—jxzsin49cost9dm+jy2 cosé sinedm—jxysinze dm
| =C0S° ajx ydm—sin@cos@szdm+sin¢9cos¢9[ y*dm —sinzejxy dm
l,, =c0s’ 01, —cosfsind 1, +cosdsind 1, —sin* 1,

Ly = (00326?—sin26?)lxy +sing coso(l, - IW)

e =1y .
Ly = 5 sin20+1,,cos26

Lo =1y .
Iy = > sin26+1,, cos20

From Eqg. (6), the maximum angle happens at I, =0

21
tan20 =—~
Ly~ L
2 HYJ H
Eq. (2)....... Lo = 1,€08° 0+1,,sin* 0 —-sin201
= IXX1+c0529 i 1-cos260 _sin20|
2 2 v
I, +1 I, —
Ly = 2 +——-c0s20 -1 sin20
2 2

Eqg. (4)....... l,, =1, cos’0+1,sin* 6+, sin260

1+ cos26 1-cos26 )
L, =1, > + 1, > +1,,8in260

o+ . —1 ]
I, =224 WZ ch0526?+lxysm29

Add 1+2 and 8+9, we have

Lo + 1y = Lo+ 1,
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Example 3: Find the moment of inertia with respect to a diagonal of the

rectangular plate?

Solution
Y
V' I,':" =—ma’
. i Rectangle '
]n,:imab |
‘\,."ﬂ'z+b2
b
Sin€ =— :
Na +b° 1
Cosf = a Inzimbz
Va? +b? 3
g » X
0 = o -
It is well-known
Ly =1, €08"0+1,,sin 61 sin26 1)
2 H4 H
l,, =1,,c08*0+1,sin*@+1sin20 (2)
Lo — 1, . 3
Loy = 5 sin26+1,,c0s26 3)
Where
1 1 1
| ==mb*, |,==-ma? | ==mab 4
* 3 o3 ¥ g (4)

Then From Eg. 1-4, we have

XX

| —Embz(—al j:lma{—b ]Z—Emab( a J[ b j
3 aZ +b? 3 Va2 +b? 4 Va2 +b? \ Va2 +b?

I =1 cos0+1.sin?0—1_ sin20 1., — ~mb?cos? 0+ ~ma’sin’ 60—~ mab (2sin@cos)
XX W Xy XX 3 3 4

—lm—azbz +1m_a2b2 —Em a’b’ =m a’b’ 1(2+2—3)—£m—azbz
73 a?+b? 3 a’+b? 2  a’+b? a’+b*6 6 a’+b’
1 ( a®’
l..==m —— 5
6 (a2+b2J ®)
2 .2 - 1, 1 ..., 1 .
l,, =1,c080+1,sin"0+1, sin20 l,, ===ma“cos”#+_mb”sin®d+—mab (2sindcoso)
3 3 4
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yy

S [ 2+1mb2 b 2+gmab a b
Ja’+b?) 3 Ja’+b?) 4 JaZ+b? )\ Va?+b?

a’ 1 b* 1 a’h® 1 a*+b* 1  a%?

1

. =—ma
3
1

. m +=m +Im—""—=m +=m
yy 3 a’+b?* 3 a*+b® 2 a*+b* 3 a*+b* 2  a’+b?

1
Iyry/ = mm(z a4 + 3a2b2 + 2b4 ) (6)

=1, .
Iy = > sin20 + 1, cos20

Ly, =(1,—1, )sin6cosd+1, (cos?0-sin?0)

N :Gmbz _%maZJ[JaZ b’ J[Jai o’ Hmab{ﬁ j _{JabTb ] }

1 ab 1 a’ b? 1 ab
l...==mlb?-a? “mab - =—mlb®-a® 4-3
3 ( )(a2+b2j+4 {a2+b2 a2+b2} 12 ( )(a2+b2j( )
1 ab
I .. =—m(b?—-a? 7
Xy 12m( a )(a2+b2j ( )

Note that at 9 =45°, we have a=b, Then

1 ( a®»® 1
Lo = =M Z—= |==m,
6 a“+b 12

Lot
W 6(a% +b?)

Ly :ém(b2 - az)( ab ): 0

a’+b?

m(2 a* + 3a% + 20" )= %(7)m = ém, (8)

Example 4: Determine the product of inertia 1, of the right half of the parabolic

area, bounded by the y=2m and x=07

y=2x"
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Solution

T X

yv= 2x?

2

1
,, L

N 3 yy. p 3 20 2p _4p 4
dm—PXdy%m—Pl‘(Ej dy—3—\/§[YF —m[ZF——[SF——[ZF—) m=—p
2

0

dl, =dl,, +dmx

Xy cm ycm

1 1 3 1 %y 1 %
Ly :jdmxcm Yo :j(pxdy)(gx)yzzp!' xzydy:Ep.[Eydy:ZP_([y? dy

1
I, =—=m
"2 1t y[_18.8 2 2 m_ 2 m_1_
1773 TaP3T 12 T3P T3 m T3 e T
.y
3
Exercise

Find the moment of inertia about ox’ and oy’ axis also the product of inertia for rectangular

plate as is shown Figure (3x4)?

3m

30°
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Chapter 3

Application

Newton’s second law for rotation

We have thus far found many counterparts to the translational terms used throughout this
text, most recently, torque, the rotational analog to force. This raises the question: Is there an
analogous equation to Newton’s second law » F =ma , which involves torque and rotational
motion? To investigate this, we start with Newton’s second law for a single particle rotating
around an axis and executing circular motion. Let’s exert a force F on a point mass m that is
at a distance r from a pivot point (see below Figure). The particle is constrained to move in a

circular path with fixed radius and the force is tangent to the circle. We apply Newton’s

second law to determine the magnitude of the acceleration a -F i the direction of £ .
m

Recall that the magnitude of the tangential acceleration is proportional to the magnitude of
the angular acceleration by a=rea

Frictionless tabletop

\N

Circular path of radius r
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Substituting this expression into Newton’s second law, we obtain F=mra«
Multiply both sides of this equation by r, we have rF=mr?«

Note that the left side of this equation is the torque about the axis of rotation, where r is
the lever arm and F is the force, perpendicular to r. Recall that the moment of inertia for a

point particle is 1=mr?. The torque applied perpendicularly to the point mass in above

Figure is therefore =1«

The torque on the particle is equal to the moment of inertia about the rotation axis times the
angular acceleration. We can generalize this equation to a rigid body rotating about a fixed

axis.

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques

equals the moment of inertia times the angular acceleration:

ZTi=|0!

The term1 « is a scalar quantity and can be positive or negative (counterclockwise or

clockwise) depending upon the sign of the net torque. Remember the convention that
counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating clockwise

and experiences a positive torque (counterclockwise), the angular acceleration is positive.

Example-1: A uniform rod of length 2L and mass M is pivoted (is hinged) at one end and

the other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it

was horizontally. Prove that the horizontal reaction will be maximum when the Rod tilts on

the horizontal at an angle ?%mg and in this case the vertical reaction is given as %

Solution
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X

mg sin &

6
mg cos @ |
mg -L6"
' Le"”
y
The motion of center of Rod
m(-Lo"")=mgsind—R, — mLO” =R —mgsind Q)
mLO&™ =mgcosd -R, (2)
The rotation of motion ( at then of Rod)
d . .
E('°9)=M° S 1,0 =M, (3)
Eq. (3) maybe written as
1 2 e . _ 39
gm(ZL) 0" = (mgcosd) (L)—» @ :—Lcose 4)
. o2
H’di = 3—gcosé? - je'de' = 3—9_[ cosf dfd — v =3—gsin6'+ C,
de 4L 4L 2 L
At the start point =0 and ¢° =0, then ¢, =0
0’ :3—?_sin¢9 (5)

From Eq, (5) into Eq. (1) m L(%

R, :Zimg sin@

sinaJ:Rl—mgsin9—> R =mL [%

sin0J+mgsin0

(6)
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From Eq, (4) into Eq. (2)

mL[%cosé’jzmgcosQ—R2 - Rzzmgcose—fmgcose

R, = 4£mg cosd (7)
But

R, =R,sind-R, cosé (8)
R, =R;sind+R, cosd 9)
Then

R, = (%mg cosﬁ)sine—(;mg sin@d) cosé > R, :—%mg siné cosé

R =—8gmg sin20 (20)

X

R, =(25mg sine)sin¢9+(4lmg cosf)cosd — R, =22mg sin2¢9+%mg cos’ @

y

R =(22 sin29+4£cos2 eng (11)

IS maximum if  sin26 is maximum and sin20 is

X

From Eg. (9) R, :gmg sin20 , R

maximum if sin20=1 , then 29:%—> 9:%
. [5(1Y 1(1Y 11
Inthiscase R (=5)=|=|—=| +=|—| |m - R ==—m
/(0= (Z(ﬁj 4(&)] J yTg o

Example-2: A uniform rod of length L and mass M is pivoted (is hinged) at one end and the

other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it

was vertically with angle velocity 1/‘Q’Tg. Find the reaction at the hinged point at ezg and

prove that the Rod move angle ¢ intime t=2 /%In(sec(g)ﬂan(g)j :
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Solution
R R,
5 X
AN
Le”
P mg cos &
mgsin g
me -Le"
:‘;
The motion of center of Rod
—mLO” =mgcosf-R, — mLO” =R, —mgcosd Q)
mL&* =R, —mgsing (2)
The rotation of motion (_At then of Rod)
d . (1]
EIOOH )=M, > 1,0 =M, 3
Eg. (3) maybe written as
1 2 nee . . 39 .
gm(ZL) 0" = (-mgsing) (L)—» 6~ = —Hsme 4)
. W2
H'di: —3—gsin9 - j9°d9' = —3—gj sin@d dé — 0—=3—gcose+cl
do 4L 4L 2 4L

At the start point =0 and ¢° =1/3—g , then cl:?’—g—?’—g:?’—g
L 2L 4L 4L
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2

0_=3_g(;050+3_g - 0'2 =3—g(1+ COSH) (5)
2 4L 4L 2L
Note that

cos(®) = cos(g + g) =cos’ (g) —sin® (g) =cos’ (g) —(1-cos® (g)) =2c0s° (g) -1

From Eq. (5), we have
L e P 49 _ 139 o5 1 40|39
0" = . _\/ZL(ZCOS (2)j - el cos(2) - _[ o do= 3 Idt
2

Zfsec(g)d(g):\/?ngdt — =2In(sec(§)+tan(g)j= /?’Tguc2

At the start point #=0 and t=0

2In(sec() + tan(0))=c, — ¢,=2In(1+0)=0

t=2 \/?Lg In(sec(g) + tan(g)J (6)

R, :%(3+ 5cosé jmg mL(g—E(1+cos¢9)):Rl—mg cosd - R, = mL@—ﬁ(l+cos¢9))+mg cosé

(7)
39 . . . 3 .
mL(——smej:Rz—mgsme — R, =mgsind—-—mgsiné
4L 4
1 .
Rzzzmgsm@ (8)
Ato==
3
R, :23(3+ 5COS(%) ng:%(3+g ng :%mg — R :%mg 9)
1 1 gz 1 3 J3
R, =— 0=— —)=— — R,=— 10
, =5 mgsing =--mgsin(2) =—mg(>) - =g ms (10
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Example 3: A body rolls down an inclined plane without slipping. Describe the motion of
the body?

Solution

First draw a free body diagram of the body, which down the plane:

We can write both of the Linear and rotation equations of motion

mgeosda

Linear equations of motion (Equations of motion of center of gravity)

mx* =mg sina - F (@D
m(0) = R—-mg cosa (2

Equation of Rotational Motion of a Rigid Body

d( .\ -

a(lce)_Mc S 1,0" =M, (3)
.07 =(F) @ F =0 @)
mx* =mg sina - |a° o (5)
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Pure rolling

X" =ad", then

oo M I oo
mXx™ =mgsina ——-X
a

- F :(I—°ngsina or F :+

ma’+ |, ma

+1

c

"Ijmgsina

c

mg CoSa
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Example 4: A Solid Cylinder of mass m and radius a rolls without slipping down an
inclined plane whose incline angle with the horizontal is theta. Determine the acceleration of
the cylinder's center of mass, and the minimum coefficient of friction that will allow the

cylinder to roll without slipping on this incline?
Solution

First draw a free body diagram of the cylinder, which down the plane:

We can write both of the Linear and rotation equations of motion

mgsine

mgcosa

Linear equations of motion (Equations of motion of center of gravity)

mx* =mg sina - F (1)
mg cosa =R 2)

Rotational Motion of a Cylinder

i(lce?‘):Mc N

- Py 3)

c c

that can be written as

st —®) @ £ -Lmar g
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The necessary condition for rolling without slipping is the contact point have zero

velocity (the condition for no sliding is). i. e. x" =a#" — x™ =a@™. Substitute in Eq. (4), we

have
F :%m X" 5)
Again, Substituting from Eq. (5) into Eqg. (1), we have

mx“:mgsina—lm X" - x”+%x“:gsina - gx”:gsina

X" =3 gsina (6)
Substituting from Eq. (6) into Eq. (5), we have

1 2 . 1 .
F_Em(g gsina) - F_émgsma (7)

Again, the necessary condition for rolling without slipping is the static coefficient and is

generally lower than the static coefficient of friction. i.e. F < xR

us = (8)

1 .

gmgsiha 1 sina
u>=>— 5 u>=

mg Ccosa 3 cosa

>1tana
#=3

Example 5: Calculate the minimum coefficient of friction necessary to keep a thin circular
ring from sliding as it rolls down a plane inclined at an angle ¢ with respect to the horizontal

plane.

Solution

First draw a free body diagram of the ring, which down the plane:

We can write both of the Linear and rotation equations of motion
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mg s o

mgcosa

Linear equations of motion (Equations of motion of center of gravity)

mx* =mg sina - F (1)
mg cosa =R 2)

Rotational motion equations

%(|Ce°):|\/|c - 1,0" =M, (3)

that can be written as
ma20” =(F) (a)—» F=mad" 4)

The necessary condition for rolling without slipping is the contact point have zero
velocity (the condition for no sliding is). i. e. x* =a@* — x™ =a@™. Substitute in Eq. (4), we

have
F=mx" (5)
Again, Substituting from Eqg.. (5) into Eq. (1), we have
mx*™ =mgsina—-m x* — X" +x" =gsina —» 2 x” =gsina
X = gsina (6)
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Substituting from Eq.. (6) into Eqg. (5), we have
1 . 1 :
F:m(E gsina) - F:Emgsma (7)

Again, the necessary condition for rolling without slipping is the static coefficient and is

generally lower than the static coefficient of friction. i.e. F < 4R

us (8)

1 .

Emgsma 1 sina
u> = > u>=

mg CoSa 2 Cosa

1
—> u >Etan0.’

Example 6: A uniform solid sphere of mass m and radius a rolls without slipping
down an inclined plane whose incline angle with the horizontal is theta.
Determine the acceleration of the ball's center of mass, and the minimum
coefficient of friction that will allow the ball to roll without slipping on this

incline?
Solution

First draw a free body diagram of the sphere, which down the plane:

We can write both of the Linear and rotation equations of motion

mg s o

nmgcosa
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Linear equations of motion (Equations of motion of center of gravity)

mx* =mg sina - F (1)
mg cosa =R (2)

Rotational motion equations

%(ICH'):MC S 1,6" =M, (3)

that can be written as

%maze"z(F) (@)— F=§m89" ()

The necessary condition for rolling without slipping is the contact point have zero velocity. i.

e. x"=af" - x™ =af". Substitute in Eq. (4), we have
F :ém X" ®)
Again, Substituting from Eq. (5) into Eq. (1), we have
. : 2 . “ 2 . : 7 e :
mx™ =mgsina——m x” — x"+= x"=gsina > — x"=gsina
5 5 5

X = gsina (6)

Substituting from Eq. (6) into Eq. (5), we have
2 5 . 2 :
F_gm(7 gsina) - F_7mgsma (7)

Again, the necessary condition for rolling without slipping is the static coefficient and is
generally lower than the static coefficient of friction. i.e. F < xR

p>— (8)

2 .

?mgsma 2 sing
u> — > u>—

mg Ccosa 7 cosa

2
- u >7tana
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Example 7: A uniform sphere of radius a initially at rest rolls without slipping

down from the top of a rough sphere of radius b . Find the angular velocity of the

ball at the instant it breaks off the sphere and show that the angle COS‘l[%J with

the vertical?

Solution

First draw a free body diagram of the sphere, which down the plane:

We can write both of the Linear and rotation equations of motion

Note that
V:(Vrv V9)=(I", rH')

i=(a,, ag):(r" —ro’, ro° +2r'9')

Equations of motion of Center of Gravity

m(a+b)6* =mg sind-F (1)
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Mechanics of Rigid body
~m(a+b)o" =mg cosd-R (2)
Rotational motion equation
d . o
a('c¢)=|\/‘c > lg" =M, (3)
That can be written as
(4)

gma’lgo":(F) @— F= émago"

The condition for pure rolling is (a+b)d=ap —, then (a+b)o" =ae"

(a+h)0” =ap” —> ¢ = a;b o (5)

Substituting from Eq. (5) into Eq. (4), we have

F= %m(a+b) 0 (6)

Again, substituting from Eq. (6) into Eq. (1), we have

m(a+b) 6°° =mg sin@—%m(a+b) 0" — %m(a+b) 0" =mg sind

0" = ing 7
7(a+bh) g sin (7
‘di:ig sind — I&'d&‘ = > g Isin&de
do 7(a+b) 7(a+Db)
0 5
g __ 0 8
5 7(aer)g cosé +¢, (8)

At the initial motion =0 ,then 8° =0

Then in Eq. (8), we have ¢, = > g and again in Eq. (8), we have
7(a+b)
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o 5 5 5
—_—=— cosd = 1—cosé@
2~ 7@+b)’ " a+n)? 7(a+b)g( )
.2 109 2 109
= 1—cosé 0" (a+b)=—"2(1-cos@ 9
7(a+b)( ) — (a+b) 7( ) 9)

Substituting from Eq. (9) into Eq. (2), we have
- m(g g@- cos@)) =mg cosd —R

R=mg cose—gmg (1-cosh) — R:gmg cose—gmg (20)

When the ball instant breaks off the sphere

At the instant, that the ball breaks off the sphere, the reaction equals zero, so from Eq.
(10), we have

Emg cos&—%mgzo - gmg cosezgmg — 17 cosd =10

cos0 =20 5 g=cos* (Ej —>  6=53.968° (11)
17 17

In this case the angle will be maximum (6=4_,)

Where the velocity is given by v=(v,,v,)=(r", re") s> =(0, ro)

—r49—(a+b)\/ (1—cos6) = \/—g(a+b)(1 cosé)

109
7(a+b)
At the moment (6=6_. )

_ 199 @19y (100 AT 10 10g 7
v—\/ d )—\/ (a+ ) = \/ 29 @+b) ()

V= /1;)—79(a+b) (12)
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DAMPED AND FORCED OSCILLATIONS

INTRODUCTION

I n order to investigate the damped and forced harmonic oscillations

we need to take a look on differential equation of higher order or in

particular of order two with constant coefficients. A linear differential equation

is an equation in which the dependent variable and its derivatives appear only
in the first degree. A linear differential equation of order n of the form

dny dn—ly dn—Zy

dxz" T dx™ ! dx"?

d
+.a, Yy a,y = Q(x) ®
dz

where a,,a,,....a,_,,a, are constants and Q(x) is any function of z is called a
linear differential equation with constant coefficients.

. d d* d* d"
For convenience, the operators —,—,—/—...., are also denoted by
de’ dx? dax? dx"

D,D? D3,.....,D™, respectively.
Thus the equation (1) can also be written as
D"y + alD"_ly + azD"_Zy +..a, Dy+a,y=Qx) (2)
(D" +a,D" "' 4+ a,D"* +...a, \D+a,)y= Q) 3)
If y = f(z)is a solution of the homogeneous ODE

D™y + alD"_ly + azD"_Zy +wea, Dy+a,y=20
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and y = ¢(z) is any particular solution of the equation (2) not containing any

arbitrary constant, then
y = f(z) + ()
is the general solution of ODE (2).

Thus the method of solving a linear equation is divided into two parts:

First, we find the general solution of the equation (3). It is called the
complementary function (C.F.). It must contain as many arbitrary constants as
is the order of the given differential equation.
Next, we find a solution of (2) which does not contain an arbitrary constant.
This is called the particular integral (P.l.). If we add (C.F.) and (P.l.), we get
the general solution of (2). Thus the general solution of ODE (2) is

y = C.F.4P.L

4 Determination of complementary solution (C.S.)

Consider a linear nth order differential equation with constant coefficients of
the form f(D) =0, i.e.,
(D" +a, D" ' +a,D"? +...a, ;D+a,)y=0 (4)
This is equivalent to
(D —m)(D —my)(D —my)...(D —m,,))y =0 (5)
The solution of any one of the equations
(D—m)y =0,(D—my)y =0,....,(D—m, )y =0 (6)
is also a solution of (5) and we know that the general solution of
(D—m)y=0isy=Ae™"
Hence we can assume that a solution of the equation (5) is of the formy = ™"
Then, substituting ™ for y in (1), so that

Dy = me™, D*y = m?e™®,...D"y = m"e™® we get



rF ‘ 3 l
F

(mn +a1mn—l +a2mn—2

+.a, m+a,)e™ =0
or m" +am"' +a,m"? +..a, ,m+a, = 0because e™ =0

Hence e™® will be a solution of (4) if m has the value obtained from the

equation
m" +am™' +am"? +...a, m+a, =0 (7)

The equation (7) is called the auxiliary equation (A.E.) and is obtained by
putting D = min f(D) =0

It will give in general n roots, say m,,m,,my,...,m,,

Now we will consider three cases of these roots.

¢ Case I: If all the roots of the Auxiliary Equation (A.E.) are distinct:

If the roots m,,m,,ms,...,m, are all distinct, then ™", e™",....e™* are all
distinct and linearly independent. So the general solution of (1) in this case is
y = ce™” + c,e™” + ce"™" ... +c e 8

4 Case I1: Auxiliary equation having equal roots:

If two roots are equal say m, = m,, then the solution (8) becomes
y = ce™” + c,e™” + ce"™ ... +c, e
Or y = (¢ +¢,)e™” + c;e™ ... +c, e

Now (¢, + ¢,) can be replaced by single constant say c.

Therefore this solution has only (n - 1) arbitrary constants and so it is not the

general solution.

To obtain the general solution, consider the differential equation

(D — m,)*y = 0 in which the two roots are equal.

This can be written as (D — m,)(D — m,)y =0 9)
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Now putting (D — m,)y = vwe get (D —m,)v =0

or dv/dx = mv or dv/v = m,dx (variables being separated).
Then by integrating,
logv = mx +loge, OF log(v/c)=max OF v=ce™ .

Thus putting itin (9) (D —m))y = v = ¢,e™”

d
or Dy — my = c,e™* or d_Z —myy =ce™” |D= T
—m.az QY d
™¥_Z —me ™My =c = — e ™My =c¢
or dz v ! dx v !

by integrating this equation we get

e "'y =cz+c, =y =(cxz+c,)e™”

Hence the general solution of f(D)y = 0 in this case is

Similarly if three roots of the auxiliary equation are equal say, m, = m, = m,

, the general solution of f(D)y = 0 will be

= (¢, + e,z + c,22)e™? + ¢, e™...... + ¢_e™* and so on.
Yy 1 2 3 4 n

Case I11: Auxiliary equation having complex roots:

Let the two roots of the auxiliary equation be complex, say m, = a + ¢3 and
m, = o — i3, (Wheres® = —1).
The solution corresponding to these two roots will be

y = ce@+ide 4 ¢ gla=if)e

= cle‘”e’ﬁ“c + c,e

a:ce—i,O:c
= ¢,e™”(cos Bz + isin Bx) + c,e”(cos Br — isin Bx)

= (¢, + ¢,)e* cos Bz + i(c, — c,)e*” sin Bz
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or y = e* (A, cos Bz + A, sin Bz)wWhere A = ¢, + ¢,, A, =i(c, —¢,)

or y = e*(c, cos Bz + ¢, sin Bz) by changing the constants.
If the imaginary roots are repeated, say o+ ¢3 and « — 3 occur twice then
the solution will be
y = e (¢ + c,x)cos B + (¢; + ¢ x)sin B

and so on.
<Note 1: The expression e**(c, cos Bz + ¢, sin Bx) can also be written as

c, e sin(Bzx + c,) or c,€°" cos(Bz + c,)
&~ Note 2: If a pair of the roots of the auxiliary equation is irrational i. e., they

area & u/? where 3 positive, then the corresponding term in the C.F. is

will be e** ¢ coshy/ Bz + ¢, sinh Bz
or c,e™” sinh(\/ﬁm +c,) oOr c,e™ cosh(\/gw +c,)

If these irrational roots are repeated twice, then the corresponding portion of

the solution will be

e (¢; + cyx)cosh/Bx + (c; + c,x)sinh \/Ea:
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ImIllustrative Examplesll

2
0 ExampLE: Solve &Y — 7% | 19y — ¢
d;I:Z dz

O Solution: The given differential equation is (D* — 7D +12)y =0 .
Then the auxiliary equation is m? —7Tm +12 =0

or (m—3)(m—4)=0 = m =3 and 4.

Hence the solutionis  y = ¢,€*® + c,e*”

O EXAMPLE: Solve (D? + 6D? +11D + 6)y = 0

O Solution: The auxiliary equation is m?® + 6m? +11m +6 =0

or =>m=—1,-2,-3.

Hence the solutionis  y = c,e™ + c,e™®* + cye

2
0O EXAMPLE: Solve d—f - 3';—:: + 2z = 0 given that when ¢ = 0, z = 0 and
dt
dx/dt =0
O Solution: The auxiliary equation is m? —3m +2 =0 = m=12.

Hence the solutionis = = cje’ + c,e* (1)
where ¢, and ¢, are arbitrary constants.
Now = =0 when t =0 =0=c +c, (¥

Also dz/dt = ce' + 2c,e* and dz/dt =0 when t =0 = 0 = ¢, + 2¢, (*¥)

Solving (*) and (**), we get, ¢, = ¢, = 0.

Now putting values of ¢; and c; in (1), we get the required solution asz = 0
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ddy
O EXAMPLE: Solve —2 — 8y = 0.
dz?

O Solution: The auxiliary equation is given by m® —8 =0
or (m—2)(m>+2m +4) =0 ie., m =2 and m=—1+i3.
Hence the solution is written as

y = e “(c, cos 3z + c, sin \/3:13) + ¢ e*”

: d'y
O EXAMPLE: Solve —= —2—= —
dz! dx? dx
O Solution: The auxiliary equation is given by
m* —2m® —2m —1=0
or (m* —1)—2m(m? +1) =0
or (m? —1)(m?® +1) —2m(m? +1) =0
or (m? +1)(m?> —2m —1) =0

That is the roots are m = 4+i and m =14+ 2

Hence the solution is written as

Yy = (¢, cosz + ¢, sinx) + e”(c, cosh/2z + c, sinh\/gm)
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PROBLEMS

Solve the following ordinary differentia equations

1-

2-

d’y dy

—~ 4+ (a+b)—+aby =0
12 ( )dw Yy

2

Y _ 3 _ 4,9

dx? dx

3 2
M+6M+3d_y_]_0y:0
da?® da? dz

2

Y _ 4 W yy—o

dz? dz

4 3 2

Ay .4y _dy _ ,dy

dz! da® da? dx

+ 4y

=0
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imple harmonic motion has constant amplitude and goes on

forever. For many real oscillating systems, SHM is not a very

good model: usually the amplitude of the oscillations
gradually decreases, and the motion dies away.

When you find that a model is unsatisfactory, you need to look again at your
assumptions. Real oscillating systems are almost always damped: that is they
are affected to some degree by the resistive forces of friction and/or air
resistance. They perform damped oscillations.

In many systems the damping force is proportional to the speed of the object.
This is often represented on a diagram by a device called a linear dashpot, as

shown in Figure 1.

W 2
N j

Figure 1

A dashpot exerts a force on the system which is proportional to the rate at
which it is being extended or compressed, and which acts in the direction
opposite to that of the motion. This is illustrated in Figure 2.

dashpat being
compressed

—_— =

dashpot being
extended

i

Figure 2
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The force R that the dashpot exerts on the system at time t is given by
dL
R=p8—
B dt

where the constant of proportionality 3 is called the dashpot constant (or the

damping constant). The amount of travel still left in the dashpot (see Figure 3)

N i

is denoted by L.

Figure 3

It is important to be clear in your mind about the direction of the force R and
the signs involved. Look at the point P on the moving part of the dashpot.
<~When P is moving from right to left, L is increasing; dL/dt is positive and
the force is in the same direction as that marked for R in Figure 3. The dashpot
is opposing the right to left motion.

< When P is moving from left to right, L is decreasing, dL/dt is negative and
the force is in the opposite direction to that marked for R in Figure 3. The
dashpot is now opposing the left to right motion.

Thus the sign of the dashpot force looks after itself as the motion changes.

However you will not usually be interested in the quantity L so much as the
distance of the point P from some fixed point of the system. This distance is
shown as z in Figure 3. All the systems that you will meet in this book are set
up so that as « increases, L decreases, and vice versa, so

do _ _dL

dt dt

Consequently the force that the dashpot exerts on the system is given by
dx
R=-3—
8 dt

in the direction of increasing = .
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The general equation for damped oscillations

The differential equation of motion in the spring-mass-dashpot system above is

an example of the general differential equation of a linearly damped system:

d
y+ﬁ +ky:0
d2
Or by dividing by m ﬂ+a@+wy_0
dt’ dt

where and «,w are positive constants. For a spring-mass-dashpot system,

a = @/mwhere B is the dashpot constant, and w? = k/mwhere k is the
stiffness of the spring. The quantity (w/2m)is called the natural frequency of
the system: it is the same whether the system is damped or undamped.

The solution of this ordinary differential equation can give several different
types of motion,

depending on the relative sizes of the parameters and o,w. The auxiliary
equation is given by A2 + aX + w? =0

This has two solutions

—a+vVa? — 4w? —a —Na? — 4u?
A= 5 and A\, = 5

The discriminant, a® — 4w?, determines the nature of the solution. There are

three possibilities, as follows.

#Over-damping: o — 4u?, is positive, and the system does not oscillate see

‘M YV/\

Figure 4.

~ ¥
=¥

Figure 4
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4 Under-damping: o? — 4w?, is negative, and oscillations occur oscillate see

Figure 5.

Ay !

4 Critical damping: o? — 4w® =0, Figure 6

Critical damping is the borderline between overdamping and underdamping. It
is not obvious in a physical situation when damping is critical, since the pattern
of motion for critical damping can be very similar to that in the overdamped
case.

Figure 6
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ImIllustrative Examplesll

O ExXAMPLE: A simple oscillating system is being modelled as a damped
spring-mass oscillator, in which an object of mass 2 kg is attached to fixed
points by a spring of natural length 0.5 m, stiffness 20 Nm™ and by a dashpot
of constant 12 Nm™ s. The spring-mass dashpot system lies on a smooth
horizontal surface, as shown in the Figure 7.

.y
. . _ - A
Ih=05m k= 20MNm™! r=12Nm ‘s

Figure 7

i) Formulate the differential equation of motion for this system.

The system is released from rest when the spring length is 0.6 m.

i) Find the particular solution of the differential equation that models this
situation.

0 SOLUTION

i) Figure 8 shows the spring-mass-dashpot system at some general time t
(seconds),

when the extension of the spring is = . The horizontal forces are the tension in

the spring, T, and the damping force R.

Figure 8

The tension in the spring is T = kx = 20x.

The dashpot force is R = —ﬁ@ = —12@
dt dt

Applying Newton’s second law F = ma at any instant gives

2
2T _ 159 90 F=R—T
dt? dt
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Dividing both sides by 2, and rearranging, you obtain the equation of motion of

the spring-mass dashpot system:

2
4z L 69T L 10z =0
dt? dt

ii) The auxiliary equation for the differential equation is

A 4+6MA+10=0 =A=-3+13

The general solution of the differential equation is = = Ae % sin(t + )
At the start of the motion, the length of the spring is 0.6 m and the object is at
rest, so the initial conditions are = 0.1, dz/dt =0 as t = 0and _

when t =0, z = 0.1 = Asine = 0.1 D

d
Whent:O,d—fzﬂ = —3Asine + Acose =0 => tane = 1/3

From Eq. (1) we see that sine = 0.1/ A which is positive, and so € must be an
angle in the first quadrant.
= & = 0.322 (radians) and A = 0.1 /sin0.322 = 0.316
The particular solution in this case is
x = 0.316e 3 sin(t + 0.322)
The initial amplitude of the motion is 0.316 m and the period

2—ﬂ-=2—ﬂ-=27r(<.a.::1)
w 1

- Figure 9
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The amplitude decays exponentially. In this case, the oscillation decays very
quickly. Figure 9 shows the graph of a typical damped oscillation. There are
many real situations where the oscillations decrease gradually in amplitude like
this. Oscillations of this type are often called lightly damped or underdamped.

0O EXAMPLE: A particle of mass 20 kg executes a simple harmonic motion on
X axis. Initially the particle position was at 4 m from the center and has a
velocity 16 ms™ and acceleration 80 ms? directed towards the center. A
resistance force acted on the particle of magnitude value per unit of mass is 8v
where v indicates the instant velocity. Find the position and velocity of the
particle in terms of time and the periodic time and the frequency.

0 SOLUTION

Since, forSHM. F xz = F = Kz, M% = Kz

Due to the boundary conditions:
20(80) = 4K = K = 400

when the resistance force acts then the equation of motion becomes

M#=—-R— Kz = 20i = —8(20) — 400z (R = 8& x M)
= %+ 8&+ 200 = 0

The auxiliary equation for the differential equation is
A +8A+20=0 =SA=-4+2

Therefore, the general solution of the differential equation is

x = e *(Asin2t + Bcos2t) or x = Ae *sin(2t + ¢)
where A and B are arbitrary constants, and to obtain their values, at the start of
the motion, i.e., initial conditions are = = 4, dx/dt =16 as t = 0
dz
whent=0,z=4 = B=4 whent:o,azlﬁ = B =16

The particular solution in this case is

x = 4e % (4sin 2t + cos2t) (1)



Damped Oscillations |16 h N

which gives the position of the particle at any instant and it illustrates that the

motion of under-damping type with resistance factor e~*, it is clear that the
amplitude of the motion reduces as Figure 9, to get the velocity in terms of
time, differentiate Eq. (1)

= —16e~**(4sin2t + cos2t) + 4e **(8sin2t — 2 cos2t)
= & = 16e *(cos 2t — 4.5sin 2t+) (2)

Eq. (1) can be re-written as

z = 417e " sin(2t + €) (tane = 1/4)

That is the amplitude of the motion is 4v/17e~*t and the period

The frequency is v = 1/7 = 1/w

O ExXAMPLE: The differential equation for a particle moves along straight line

IS & + 52 + 4o = 0, initially the pointat x = 1,& = 2 as ¢ = 0. Prove that the
point reaches its maximum distance after time (1/3)In2.

0 SOLUTION
Since, & +5& +4x =0

The auxiliary equation for the differential equation is
AN +5A+4=0 = A=—4,-1
Therefore, the general solution of the differential equation is
x = Ae * 4 Be™

where A and B are arbitrary constants, and to obtain their values, at the start of

the motion, i.e., initial conditionsare z =1, t =2ast =0
whent=0,z=1 = A+B=1att=0,2=2 =2=—-44—B

this gives A = —1, B = 2 The particular solution in this case is
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—4t —4t

r=2t—¢ and & = 4e —2e7t

This is a over-damping motion, and the point reaches its maximum distance

when & = 0 that is

0=4de % — 2t

O EXAMPLE: A particle of mass m is attached to one end of a string, of length
b, the other end of which is tied to a fixed point O, immersed in a viscous

medium, where the resistance of the medium is proportional to the velocity

with constant of proportionality equals 2m(g/b)"/?; g being the gravity
acceleration. Initially the particle has been given a small angular displacement
from rest with respect to vertical axis. Find the angular displacement and
velocity at any instant.

0 SOLUTION

Let the particle make an angle# after time t as

shown in the figure, then by using polar coordinate

system the governing differential equation of Qs —
motion is 6
mbl = —mgsin@ — RbO (R = 2m(g/b)"/?) .
= d+%6n0+299 =0 ,
b b ,
P
But the angular displacement is small such that ™
sin@ ~ @and cosf =1 I i
mg
Hence the previous equation becomes '
Y

é+2\ﬁé+29=0
b b

The auxiliary equation for the differential equation is

A2+ 2\/%9 +% =0 == \/%,\/% (repeated)

Therefore, the general solution of the differential equation is
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0 = (A + Bt)elo/"

where A and B are arbitrary constants, and this equation illustrates that the

particle in critical damped harmonic motion.

B Remember that in polar coordinate the velocity and acceleration components
are given by v = (#,76), a = (¥ — r6%,70 + 270))

and in particular case » = b these components become

v = (0,b6), a = (—bd*,b0)
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4 Damped forced oscillations

Earlier in this chapter you saw the effect on simple harmonic o ]_F
motion of introducing a linear damping device called a
dashpot. The oscillations, if they occurred, decayed to zero. If
the damping constant, 3, was large compared with the

stiffness of the spring and the mass of the object, oscillations

did not occur at all.

dashipat

ey

You have also seen the effect of forcing an undamped system. &W
Most real systems do have an element of damping, so in this Figure 10
section we explore the effect of including a linear dashpot in the system.

Figure 10 shows the spring-mass system which, as before, is forced to oscillate.
A linear dashpot has been added below the object.

4 Modeling forced vibrations: the undamped case

In order to understand the mathematics of forced oscillations, including
resonance, we look at the simplest suitable case, that of an object hanging on a
light, perfectly elastic spring, without damping. (The case in which both

forcing and damping occur is considered later in this chapter).

In Figure 11 the top end A of the spring is forced to vibrate so that its
displacement at time t is y = Asin Q¢ . (This can be achieved experimentally,
to a reasonable approximation, by attaching the supporting string over a pulley

to a rotating cam.)

If the natural length of the spring is ¢, the stiffness of the spring is & and the

object has mass m, then in equilibrium, point A coincides with O, the object is
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at rest and the extension of the spring is v = mg/k. At a general time t during

the forced motion, the extension of the spring below the equilibrium position is

i
S A Inibally At 0% 77T T

I

-Y e equilibium position

-1--—equilibium position

object — Inequilibcvm Tp=mg. ¢ ]

But T, = ke. so ke = mg.

Figure 11 Figure 12

denoted by = (Figure 12).

There are two forces acting on the object, the force of gravity mg and the
tension T. The acceleration of the object is #. Applying Newton’s second law
gives mi = mg —T

The extension of the spring is (v + = — y), S0 the tension in the spring is
T=ky+z—y).

The equation of motion is therefore

d2
m™> = mg — k(v +x — )
dt?

Expanding the right-hand side and recalling that mg — kv = 0 (Figure 11),

this becomes

2
md—m + kx = ky
dt?

Dividing both sides by m and putting «? = k/m

2 2
dz +uwlr=wly or dz + Wiz = WEf(t)
dt? dt?
In the system we have described, y = AsinQ¢. This is forced harmonic

motion, and €2/2= is called the forcing frequency. The differential equation of

motion may be written as %+ W'z = A'w? sin Ot (*



A=)

The complementary function is given by A coswt + Bsinwt

For the particular integral, try = = psin Qt + gcos Q¢ . This gives

dx . d*z 5 .
=>E=Q(pcosﬂt—qsmﬂt) and — = —Q (pcosQt + gsin Qt)
dt

Substituting these in the differential equation of motion gives

—Q?(pcosQt + gsin Qt) + w(psin Qt + gcos Q) = A’w? sin Qt Equating

coefficients: P e B
, | Mormally you would use -,
sinQt: — pQ? + po? = A'W? ( landminthe trial )
. 2 2 _ ¢ function, but in this )
cos 2t : gQ* +quw” =0 ! cxamplepand gare )
/2 ) used instead because | ff:
Assuming 2 = w, this gives p = and ¢ =0 ¢~ and m are representing
W — Q2 s length and mass.
Al A N
The particular integral is therefore ———sin Qt
W —Q?

The general solution of the differential equation (*) is therefore

A'W?
x = Acoswt + Bsinwt + ————sin Qt, Q=zw
w? — Q2

Describing forced oscillations

You should have made the following deductions.
O The terms Asinwt + B coswt represent the natural or free oscillations of the
system, as they would occur if the cam were not rotating. The natural
frequency of the system is w/2=

A'W? A .
The term msin Qt represents the oscillations caused by rotating cam.
O As the value of © approaches that of w, the quantity w? —Q? in the
denominator tends to zero: the forced oscillations increase in amplitude.

Consequently a small input amplitude A leads to a much larger output

amplitude A’w?/(w?® — ©?). This effect is known as resonance.

O3 This solution is only valid in cases where €2 does not actually equal w .



Damped Oscillations |22 h N

Over the last few pages we have set up and solved a differential equation to

model a simple case of forced oscillations. This has given us a mathematical
explanation for the phenomenon of resonance which we described earlier in

this chapter.

The case when @ = w
Resonance occurs when the frequency of the driving function is the same as the
natural frequency of the system. Looking back at the differential equation for

2
the general spring-mass system (equationd—';B + = A'W?sinQt ), this
dt

occurs when © = w and so the differential equation becomes

(j;T;B + Wz = A’ sinwt
Since it is unaffected by the function on the right-hand side of the equation, the
complementary function is still Asinwt + Beoswt. TO obtain the particular
integral, given the function on the right-hand side, you would normally try
x = Asinwt + Beoswt but this is included in the complementary function.
So you multiply the usual trial function by the independent variable.
In this case try z = ¢(Asinwt + Bcoswt).
Differentiating this gives

& = (Asinwt + Bcoswt) + t(Awcoswt — Bsin wt)
And # = 2w(Acoswt — Bsinwt) — tw?(Asinwt + Bcoswt)

Substituting these into the differential equation gives

2w(A cos wt — Bsin wt) — tw?(Asinwt + B cos wt)
+ tw?(Asinwt + Beoswt) = A'w? sinwt

Equating coefficients:

1
sin wt : —2Bw —w? At+ WAt = A'W? = B = —EA’w
cos wt : 24w —w?Bt+ W!Bt = 0 = A=0
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So a particular integral is — wt coswt and the general solution in the case

I, g, R .\_.-\_.__M_‘

{ This is called the forcing term-.;

T A S U
Alwt /
2

when Q = wis given by

x = Asinwt 4+ Bcoswt — cos wt

Note that as t increases the forcing term dominates the solution. It represents an
oscillation whose amplitude is proportional to t and so grows linearly with
time. This is a mathematical description of resonance. It occurs when the

forcing frequency is identical to the natural frequency of the system.

Drawing graphs of forced oscillations:

To illustrate the general results we have just established, we take a particular
set of values for the variables involved and specify the initial conditions.

The general solution of

2
d’z + W’z = A'W? sinwt (2 = w)
at’
A'W?
is given by x = Asinwt + Beoswt + ————sin Q¢
w? — Q?

Let us take the following values:
the stiffness of the spring: k=20Nm™
the mass of the object: m = 0.2 kg
the amplitude of the forcing motion: A’=0.02m
acceleration due to gravity: g =10 ms?,

and we assume that initially the object is stationary at the equilibrium position

sothatwhent=0, =% =0

Since z = ;(2Sinﬂt —0.2Qsin10t) (Q = w)
100 — ©°
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Graphs in Figure 13 show the variation of z with t for various values of

2=2
/ AN N A Y
u’f \Il'kru'{l \\r\f I S 'kr\a"r
N n=u9
| |.|| ||I| |||| 0 . | ||| ||| ||
\ ,|'”',|||,||||||\||| |||‘H||I|Iu A
1 17 '|1
VT ||H||" !
L |||u |||
A /|
i ‘| Ll I |||| | |

Figure 13

In the case of (€2 = w). The solution may be written as

x = 0.01(sin10¢ — 0.1£cos10t) (2 = w)

Figure 14 shows the graph of this solution.

Figure 14



A=)

As before, the spring has stiffness 20 Nm™, the object has mass 0.2 kg and the
amplitude of the forcing oscillation is 2 cm. The dashpot constant is 1 Nm™s
and g is taken to be 10 ms?. The object starts from rest in its equilibrium
position.

mg

mg R
Figure 15

The first step is to formulate a differential equation to model this system.
Figure 15 shows the system and the forces acting, first in equilibrium and then

at some general time t during the motion.

In equilibrium, the extension of the spring is ~ = mg _ % = 0.1. At the

k

general time t the object is displaced a distance x below the equilibrium level.

2
The acceleration of the object is d—f
dt
The net force on the object in the direction of positive z (i.e. downwards) is
mg+ R—-T
Applying Newton’s second law at any instant t gives
2

mﬂzmg+R—T
dt?

The extension of the springis v + z —y S0 T = 20(0.1 + = — y)

Let the length of the dashpot at time t be L, and its length in equilibrium be L.
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Then L = I, — « and 9% — _9®
dt  dt

The dashpot force R is given by ,6% , Where g3 is the dashpot constant. So in

this case,

2
0.2%4% _
dt?
2
29T 59T 000 = 100y
dt? dt

If the displacement of the forcing point is y = 0.02sinQt, the differential
equation modeling the system is

2
S ET L AT 00e = 2sin Ot
dt? dt

The next stage is to solve the differential equation, which is (as before) a
nonhomogeneous linear equation with constant coefficients. Its auxiliary
equation is

A2 +5X+100=0 = A= —2.519.68;

The complementary function is therefore e=%%( Asin9.68t + B cos9.68t) .
For the particular integral, try = = psinQt + gcosQt.
Differentiating this gives

2
dz = Q(p cos Nt — gsin N), dz = —Q*(psin Qt + qcos Nt)
dt dt?

Substituting these in the differential equation for the system, gives

—Q?(psin Qt + qcos Q)
+ 5Q(p cos 2t — gsin Q) + 100(p sin 2t + g cos NE) = 2sin Ot

Equating coefficients:



A2

sinQt: — pQ? —5¢Q +100p = 2
cosQt:  —qQ? +5pQ +100g =0

Solving these equations for p and q gives

_2(100 — Q?) and q=— 1092
(100 — Q2)? + 2502 (100 — Q?)? + 2502
The particular integral is therefore
2(100 — ©?
(100 ) sinQt — 1062 cos (2t
(100 — ©2?)* + 2502 (100 — 2?)* + 2502

The general solution is the sum of the complementary function and the
particular integral:

z = e 2% (Asin9.68t + B cos9.68t)

2(100 — ©?) 1002
sin Qt — cos 2t
(100 — Q%) + 2502 (100 — Q2)? + 2502

As t increases, the natural damped oscillations, given by the complementary
function,
decay because of the e~ term, leaving

2
J(100 — Q2)? + 2502

This is called the steady state solution. It is

the particular integral of the differential . /,\ /\
w0y

equation. It describes the oscillations that [\ /

@=05] | [—

occur after the unforced oscillations have died o H'M:‘“\ELL Eafﬁ - :l‘lll‘x :

—B

—

away. Figure 16 shows graphs of this steady °r | f "\ | \
state solution for two values of Q. Y J \\J
-30t Figure 16

Remember that in the undamped case the
value of € for resonance was calculated by setting the denominator to zero in
the particular integral. Catastrophic resonance does not occur in the damped

case, because the denominator of each part of the particular integral is always
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greater than zero. However, the amplitude of the forced vibrations does still
depend on the value of €.

The amplitude of the steady state oscillations is the square root of the sum of
the squares of the coefficients of cosQt and sinQ2¢ in the steady state

solution, i.e.

2100 — 2) |’ . 100 ’
(100 — ©?)? + 2502 (100 — ©?)? + 2502
This can be simplified to
2

J(100 — Q2)? + 2502

This result shows how the amplitude of the steady state solution depends on (2.
Figure 17 shows a graph of this amplitude against €

When © and w are close in value

to each other, then it follows that  aaf 3\ Notioe that in e darmped case,

the: maximum arapliude oooums
when the forcing frequency
is jusi less than the natural
frequency of the systemn.

the forcing frequency Q/2mw naat

arnplimde

and the natural frequency w/2m 002

QoL

are close in value. When this is the

'.ID .':2 .'IJ .'.:‘; ]IS ZIIII 2 2.4 ;;.

Figure 17

[}

=

b
o

case, the steady state oscillations
become large compared with the
input amplitude. The motion of the system at these relatively large amplitudes
is still called resonance, though the amplitude of the vibrations does not

increase without limit as it does in the undamped case.

You have now seen the effect of linear damping on the system. What would be
the effect of varying the damping constant, 3? To predict this, look at the
differential equation for the same damped spring-mass system (m = 0.2 and k =

20), but this time use a general damping constant 3. The equation becomes

2
0222 4 39 | 20z — 0.4sin 02t
dt? dt
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We know that the complementary function decays and that the steady state
oscillations are given by the particular integral. In this case it is

.4(20 — 0.2022 460
0.4(20 — 0 ) sinQt — 0.45 cos (2t

€r =
(20 — 0.202)? + 322 (20 — 0.20%)? 4+ 3%Q?

The amplitude of the steady state forced oscillation is

2
J(100 — Q2) 4 253202

Figure 18 shows graphs of the andl r

steady state amplitude against |||_r=m

Q for different values of 3. ) e I|| II

The graphs show that as g3 Eﬂ'ﬂ- I|Il,f~ILI||_r=u
decreases (i.e. the amount of ot | / I{'x s
damping is reduced), the _—,—,—,-‘if‘/{iﬁ,ii’f_

O 4 & & 10 17 14 16 18 W =
amplitude at the resonant _

) Figure 18
frequency increases. In each
case resonance occurs when € is very near in value to w (in this case 10). In
any real system there is always some damping but, as you can see, if the

damping constant is small the resonance can still be damaging.

Activity: The previous example involved a particular case of damped forced

motion in which the various parameters of the system were given particular

values.
i) Show that the differential equation modelling the general case may
2
be written. d= + a@ + W’z = A’ sin Qt
dt? dt
i) Find

a) the general solution;
b) the particular solution correspondingto = =& =0 att=0

c) the amplitude of the steady state oscillations.

)

2
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PROBLEMS
"1 Anelectrical circuit conzists of a 0.2 henry inductor, a | ohm resistor and a 0.8 farad

capacitor in series, The charge ¢ coulombs on the capacitor 15 modelled by the
differential equation

dg  dg 1
(A AR S
a  dr 08"

Iutially ¢ 1= 2 and % {the current in amperes) is 4.

i} Find an equation for the charge as a function of time.

ii} Sketch the graphs of charge and current against time. Describe how the
charge and current change.

iii) What 1z the charge on the capacitor and the current in the circuit after a long
period of time?

The temperature of a chemical undergoing a reaction is medelled by the
differential squation

where T is the temperature in °C and ¢ 15 the time in mimtes.

For a particular experiment, the temperature 1s mnitially 30°C, and it is 453°C one
minute later.

i} Find an expression for the temperature T at any time.

iil}y What will the temperature be after to minutes?

iil} Sketch a graph of T against &

iv) What 15 the steady state temperature?

The angular displacement from its equilibrium position of a swing door fitted
with a damping device 1z modelled by the differential equaticon

dr8 de

— +4—+5=10

ds? di

™ . I .
The door starts from rest at an angle DfE from its equilibrium position.

i} Find the general solution of the differential equation.

il} Find the particular solution for the given 1mtial conditions.

iii) Sketch a graph of the particular sclution, and hence describe the motion of
the door.

iv) What does yvour model predict as ¢ becomes large?
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The diagram shows a block of mass 10 kg being drageed across a horizontal surface
by means of an elastic spring AB of unstretched length 0.5 m. The end A is being
pulled with constant speed 5 ms~1. The bleck is attached to the end B of the spring.

s Sms!

Ll Sma
B A
1 1 el

The block is subject to a resistance force given by dv W, where v is the speed of
the block inms~". The only other horizontal force acting on the block is the
tension in the spring given by T'= K&y — 0.5} M, where v 1= the length of the
spring in metres and £ 15 a constant (the stiffness of the spring).

i} By considering the honzontal forces acting on the block, write down the

dv
equation of motion of the block mn terms of IL v, ¥ and & Use the fact that

, 2. ,
% = 5 — v to eliminate v, and show that JD% + 4% + f = 055 +20.
i} You are given that &= 20. Find the general solution of the differential
equation.

At the beginning of the motion, the spring is unstretched and the block is at rest.

iii) Find an expression for v at time ¢ = 0,

W) What are the limiting values of v and y after a long period of time? Explain
briefly how these values would be affected if a different spring were used
with a lower value of k.

An electrical circuit consists of 3 | henry inductor and a 107* F capacitor in
series with a sinusoidal power source,
The charge g, in coulombs (), stored in the capacitor 15 given by the differential
equation .

dg .
3 +10000g = 1000sini{ls

‘ g

where ¢ 15 the time in seconds, Initially the charge ¢ and current d_q' in the circuit

are both zero. df

i} Find the particular salution for the charge g.

ii} State the valie of £2 for which resonance occurs. Find the particular solution
for g(#) in this case. Calculate the time at which the charge first exceeds
Lo QonC,

ili) Us= a graphics calculator or computer to graph the solution in part i)

A sphere of mass m and radius a is falling vertically through a liquid which
produces a linear resistance force. The motion of the sphere 15 modelled by the

differential squation
dx de
mF + mI = mg

where & 1= the distance fallen in ¢ seconds and r iz a constant. The sphere 1=
released from rest so that x = 0 and % = 0 when =10,

i} Find the sclution for x and hence the velocity of the sphers as a function of

time.
iil}y Draw a graph of the velocity against time, and describe the motion of the

sphere.
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7 During the design of a car, part of the suspension system 15 tested by subjecting
it to viclent displacements. One such test is modelled by the differential equation

iP+2ki+x=1
where x 15 displacement. and imtially x = 0 and &= (. The parameter & (> ) is
known as the damping coefficient and can be varied during the tests.
For optimum road holding a “hard’ suspension is desirable and it is believed that
to achieve this the damping should be critical.
i} Find the wvalue of & for critical damping.
i} Determine x as a function of time ¢ in this case.
For a more comfortable ride a “soft’ suspension is proposed in which & = (L6,
iii) Determine x as a function of time ¢ for the “soft’ suspension.
iwv) Find the maximum displacement of the “soft” suspension.

& The current in an electrical circult consisting of an inductor, resistor and
capacitor in series with an alternating power source, is described by the equation
E+ 2:'-£ + 100§ = — 1 70 sin 20¢
der? dr
where [ 1= the current in amperes and ¢ is the time in seconds after the power
source is switched on.
i)  Find the general solution.

dl
Whent=10, —=7=0,
ds

iil} Find the solution.

The exponentially decaving terms in the solution describe what is known as the

transient current. The non-decayving temms describe the steady state current.

iil} Write down an expression for the steady state current for the solution in part ii).
Why would this expression remain unchanged if the initial conditions were
different

iv) Express the steady state current in the form & sin (20r + o), where B and o
are to be determmed. Venify that, after only | second, the magnitude of the
transient current is close to 1% of the steady state amplitude, &
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MOTION WITH VARIABLE MASS

o far in this course we have dealt exclusively with the dynamics

Sof particles and bodies whose masses remain constant during the

motion. In certain applications we can’t make this assumption. A rocket is

propelled by ejecting burnt fuel which causes the mass of the rocket to

decrease substantially as the rocket accelerates. A raindrop falling through a

damp atmosphere coalesces with smaller droplets which increase its mass. In

both of these illustrations the mass of the body may be thought of as varying

with time: the term “variable mass” is slightly misleading since we don’t

intend to mean that mass is being created or being destroyed, but that it is
being removed or added to the body.

Suppose that a body having variable mass m(t) is moving with velocity v(t).
At time ¢ + 6t let its main mass be m(t + 6t) and its velocity be v(¢ + 6t).
The body has either gained or lost incrementally mass -mi(t + t) + m(t)

depending on the sign of this difference. For the sake of discussion let us
suppose that an increment of mass has broken from the main body with

absolute velocity w(¢), Fig. 1. At time ¢ this mass m(t) — m(t + dt) (which
will be positive in this case) experiences a sudden velocity change from wv(¢) to
u(t) . For the whole system the momentum at time ¢ + 6t is

m(t + ot)v(t + 6t) + {m(t) — m(t + ot) }u(t + ot)
whilst at time ¢ it was m(t)v(t) . We are only concerned with the translation of

the body: any rotational effects on the body will not be considered here. The

change of momentum is
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u(t + dt)

m(t + &t) Q{

m(t) — m(t + ot)

(t)

vt + Bt)

Fig. 1 Body of mass undergoing incremental mass change (i) shows the body immediately before the mass
m(t) — m(t + dt) is ejected with absolute velocity wu(t) (b) shows the situation at time ¢ + ¢ with the

main mass now m(t + dt)
m(t + ot)v(t + ot) + {m(t) — m(t + ot)}u(t + dt) — m(t)v(¢)
= {m(t + 6t) — m(t)}v(t) + m(t){v(t + dt) — v(t)}
— {m(t + 6t) — m(t) }u(t + 6t)
where the previous line has been prepared for division by the time increment

ot . We now divide the right-hand side above by 4t so that

{m(t +6t) — m()} . {olt +5t) — v(t)} {m(t + 6t) — m(t)}
- olt) + . m(t) — - u(t + 6t)

From the definition of the derivative

dm _ im m(t + 6t) — m(t)
dt t—0 ot

etc. Consequently the rate of change of the linear momentum of the body
becomes (taking limit as 6t approach zero)

dm dv dm . i dm m dv
L oft) + m(t) 2 — T ult) = (u() — w(®) T+ m(t) 2

Suppose that the body is also subject to an external force F . Then Newtonian’s
second law of motion is now interpreted in the form, force equals the rate of
change of the linear momentum of the body which is the same as the previous

hypothesis F = m(dv / dt) if the mass of the body remains constant. Hence it

follows that the equation of motion assumes the form

F=@-u)?m®
dt dt
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where we have now dropped the time arguments of m,v and .

It may appear at first sight that Eq. (1) is inconsistent with the expression

which may be thought as the rate of change of momentum mwv . However, any

disposal or accretion of mass which involves a velocity difference will have a

continuous impulsive effect on the remaining mass. Hus the disposal of the

increment m(t) — m(t + t) involves a velocity difference w — v. Hence over

the time interval this means that the remaining mass experiences an impulse
(m(t) — m(t + 6t))(v(t) — u(t))

The corresponding force F,, say, as a continuous function of time is given by

F, = lim (m(t) — m(t + 6t))
5t—0 ot

(v(t) — u(?))

Thus we could interpret Eq. (1) also as

Notice that eq. (1) becomes

If w=wv. In this case mass is being lost or acquired but at zero relative

velocity. If w = 0, then

F = mﬂﬂ_fd—m = i(my)
dt dt  dt

This corresponds, for example, to the case of the raindrop falling through a
stationary cloud of droplets. Equation (1) is the fundamental relation for
motion with variable mass. However, in order to be able to analyze a problem
we shall still need to specify the rate of mass change and its velocity in

addition to the external force.
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Im lllustrative Examples H|

0O EXAMPLE

A balloon of mass M contains a bag of sand of mass m,, and the balloon is
in equilibrium. The sand is released at a constant rate and is disposed of in a
time ¢,. Find the height of the balloon and its velocity when all the sand has
been released. Assume that the balloon experiences a constant upthrust and
neglect air resistance.

0O SOLUTION

In equilibrium the up-thrust F must balance the weight of the balloon and
sand

F = (M + m)g wee(1)

Let m be the mass of the sand at time ¢ where 0 < ¢ < ¢, then
M =m, [1 - i] ..... )
tﬂ
since the sand is released at a constant rate. The velocity of the sand relative to
the balloon is zero on release with the result that » = win Eq. (1) . Let = be
the subsequent displacement of the balloon. Its equation of motion becomes
(M + my)g — (M + m)g = (M + m) wee(3)
where v = . On substituting for m from Eqg. (2) into Eq. (3)

@ _ mg,gt
dt (M + my)t, — mt

(M + my)t, — myt
(M + my)t, — myt

(M + my)gt,
(M + my)t, — myt

This is a variable separable equation with solution
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v=—gt— (M + my )gty ln[l — Mot ] wee(4)

m, (M + my)t,
where the initial condition v = 0 when ¢ = 0 has been used.
The differential equation for the displacement is
M
@z—gt—( +m°)gt°ln 1 myt
dt m, 0

is gain of separable type with solution

g m,
r=— t+ ZIn(l — kt)|dt + A k=———
J[g s )] ’ (M + my)t,
1 gt tdt . .
=A—- t2——ln1—kt—f integrating by parts
9t — o In( )=, [(integrating by parts)

1 gt 1

=A—=gt? — ZIn(1 — kt) — —1+ dt
99 k ( ) gj[ l—kt]
1

t gt g
=A—=-g —Lma—kt)+ L + L1 — kt
9t — - nd )+ 2 ( )

1 g gt
=A—Zgt®? + (1 —kt)ln(1 — kt) + =
59 kz( ) In( )+

Taking the initial conditionto be = = 0 when ¢ = 0, we see that A = 0. Thus

gt 1 ., g
== ——gt’ + L (1— kt)In(1 — kt we(5) W
@ = =59t + (= k)ln(l— k) (5)
All equations and solutions hold only during the time interval 0 <t < ¢,
attime ¢ = ¢, the balloon has reached a height
_ 9

(U 2
2m,

(2M + my)my + 2M(M + m;)In M
M + m,

and is moving with speed

t M
0y = &[(Mw)m[ﬂ]_mﬂ]
m M
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0O EXAMPLE
A spherical raindrop of initial radius a , falling freely, receives in each instant

an increase of volume equal to X times its surface at that instant; determine the

velocity at the end of time ¢, and the distance fallen through in that time.
0 SOLUTION

Let m be the mass and = the radius of the raindrop when it has fallen through

a distance y intime ¢. Also let v be the velocity at that instant so that

dy
—~ = ool
" 1)

Since raindrop is falling freely under gravity
P =mg wee(2)

Now m = mass of raindrop at time ¢ equals
4
m = §7T7‘3p «.(3)

dm , dr
= — =4nr‘p—
dt dt

But given, rate of increase of mass i.e., (= dm / dt = X 47r® p)
Therefore, equating two values of dm / dt , we have

dr_)\

dr
= 4mrip—= Ap(47r® or —=
P p(4mr®) m

Integrating r= Xt + A (Aisaconstant of integration)

Initiallyat t =0, r =a then A=a
Hence r=Xt+a «.(4)

m = gﬂ'p()\t +aP  ..(5) (Equations (3)and (4))

Also the relative velocity V' = 0, since the mass is picked up from rest. Hence

Hence the equation of variable mass namely
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i(mv) =P+ Vd—m becomes
dt dt

%[[gﬂp(kt +a)’ ]v] = gﬂ'p()\t +a)’g (using Eq. (2) and (5))
i 3 _ 3 3 _ 3
or dt A +a)v =Xt +a)yg =d (M +a)Pv =\t +a)lgdt
Integrating,

At+afv="LAt+a)+4
5y
Initially v =0, t =0 .. A= —(ga* /4))

(At +a)*v = % (Mt +a)* —a*

4

g a
or v=-"|(AM+a)— —— 6)m
4 ( ) (At +a)? (©)
This equation gives velocity at any time ¢
Now from Eg. (1) and (6) we get
4

N (A

dt  4x (At + a)’
Integrating;

g 4
y=—"|(AM+a}+——|+B
82 (At + a)?

Initially y =0, t =0 .. B = —(ga® / 42?). Hence

4

g 2 a 2
y=—"—|(M+a) +——— —2a

82 (At + a)?

g )

=9 |\t +a)—
82 ( ) (At + a)
2

g [t +a) —d®| _ gt?[(At + 2a)° (7)m
8A?|  (At+a) 8 | (At + a)?

This gives required distance.
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0O EXAMPLE
A spherical raindrop of radius a cm., falls from rest through a vertical height
h, receiving throughout the motion an accumulation of condensed vapour at

the rate of p grams per square cm. per second, no vertical force but gravity

acting, show that when the raindrop reaches the ground its radius will be
2
M f% 1+ 1492

g 2hp?

Proceeding exactly as a previous example, the height r from Eqg. (7) is given

by

0 SOLUTION

(ut + 2a)?
(ut + a)?

2
h=9"
8

] (replacing A by p)

9 %zt,ut—l—Za

(1
g put+a @

Also radius r atany time ¢ is

r = a+ pt fromEq.(4)previous Ex.
=>t=(r—a)/p

Substituting values of ¢ and a + pt in Eq. (1), we have
— 9 f%: r—a[’r—i—a]

g Iz r

2h ,

= 2ur|[—=r’—a

g
21 f%
g

Solving this equation we have (neglect — sign before square root)

20 ’% + f4,ﬁ% + 4a®
— g g9
2
2
= u‘fﬁ + q/—zh“ + a?
g g

= r? — r—a’=0
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—N,f ,f 4,
2hu,
=p f 1+ 1+
g \j 2hu
O EXAMPLE

A trailer full of sand is pulled by a constant force F, Sand leaks out at the rate

of X units of mass per second. Prove that the velocity at the end of time is

FM At At At
1——|Injl——|+—

- 32 13+ 3

where M is the initial mass of the trailer and contents.

0 SOLUTION

Let m be the mass and v the velocity of the trailer and its contents after any
time ¢ .

=>m=M— X\t ..(1)

so that dm/dt=X wee(2)
V= velocity of leaking sand =v  ...(3)
P =F

Hence equation of motion when mass varies namely

%(m’v) =P+ VddL:' gives on using Egs. (1), (2) and (3)

i((M — Atw) = F + v(=A)

= (M — )\t)@—)\ =F—Av or o _ _F
dt dt M — Xt

Integrating after separation variables, we get
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vz—gln M-t +A

Initially v =0, at £ =0 :>A:§lnM

=>'v:—£ln M — X\t +ElnM
A A

:_Eln[ulz—fln[1—ﬁ] we(4)m
A by M

Now if z is the distance described by the trailer in time ¢, then

dx
— =7
dt

From Egs. (4) and (5), we have

@:—Eln l—ﬁ :>dw:—£ln 1—£ dt
M A

dt A M
Integrating,
:B:—Ejln[l—ﬁ]dt+3
A M

or

w:—E tln 1—£ — t; A dt t + B Integrating by parts
A ©M 1 A

Al M
M
S L .U —Ff;dt+B
A M M — X\t
_ P oML —M_)‘t_Mdt+B
A M A M — X\t
:—ﬂln l—ﬁ +Et+%ln 1—£ + B
M A A2 M

Initially =0, at ¢ =0 = B=0

Ft At F FM
:B:——ln 1—— +—t+—ln
M A 22

:—FM l—ﬁ In 1—£ +& [ ]
22 M M M

l_ﬁ]
M
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0O EXAMPLE
A rocket whose total initial mass (fuel+ shell) is m, ejects fuel at a constant

rate em, and at a velocity V' relative to the case. Deduce that the lowest rate
of fuel consumption that will permit the rocket to rise at once is c¢=g/V .
Assuming this design condition is met, Obtain the greatest speed and height
reached by the rocket.

0O SOLUTION

The equation of motion of variable mass is

)= p v 1)
dt dt

where m is mass at time ¢ .
Here P = —mg (since mass is moving in upward direction)

dm

Fra —cm, as mass is ejected ... (2)

Integrating Eq. (2) m = —emyt + A,
Initially m = m, t = 0 then A = m, m=my(l—ct) ... (3)

Substituting values of P and V from above in Eq. (1), we get

dt dt t
T

dt dt

Vi

W g™ (from Eq.(2) .(d)
dt m

dv cV

— = from Eq.(3 5
w9t q(3)) «-(5)

Integrating, we have
v=—gt—Vlh l—ct +B
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PROBLEMS

I. A rocket of total mass M contains a proportion eM (0 < £ < 1) as fuel. If the exhaust
speed ¢ is constant show that the final speed of the rocket is independent of the rate at
which the fucl is burnt.

2. A rocket of mass M cjects fuel at a constant rate k with exhaust speed ¢. Show that
the rocket will not rise initially from the Earth’s surface unless k > Myjc.

3. A rocket of total mass M + m, contains fuel of mass ¢M (¢ < 1). The payload
is of mass m, and (1 — £)M is the mass of the rocket casing. Suppose it is technically
possible to discard the casing continuously at a constant rate whilst the fuel is burning
so that no casing remains when the fuel is burnt. If the fuel is burnt at the constant rate
k show that the casing must be discarded at the rate (1 — ¢)k/e. Verify that, if ¢ = 0.83
and mg = M/100, the rocket’s final speed will be approximately 3.8¢.

4. A liquid oxygen rocket has an exhaust speed of 2440 m/s. How far will a single-stage
rocket burning liquid oxygen travel from the Earth if its fuel/total mass ratio is § and
the fuel is burnt in 150 s? Assume ¢ to be constant.

5. A balloon of mass 400 kg has suspended from it a rope of mass 100 kg and
length 100 m. The buoyancy force of the balloon is sufficient to support a mass
of 450 kg. Initially it is falling at its terminal speed of 10 m/s due to air resistance
which is proportional to the square of its speed. Show that if m is the total mass of the
balloon and rope ¢ s after the rope has first touched the ground, then the equation of
motion can be written as
2

md-m-fy(m—'SSO):O

dr

>
-

d*m dm d

By writi
y writing 4 as -

d
(dm), solve the differential equation and find the speed of
t
the balloon:

(1) when 50 m of rope lics on the ground,
(i1) when the balloon hits the ground.

Give a physical explanation for the speeds you obtain.

6. A rocket consists of a payload of mass m propelled by two stages of masses
M, (first stage) and M, (sccond stage). Each stage has the same exhaust speed
¢ and contains the same proportion o <1) of fuel. Show that the final speed of
the rocket is given by

M, eM,
t=—chnil—-— —J=cn{l - ;
M, +M;+m My+m

If £ =083 and M, = 9M,, show that the maximum payload which can be given a
final velocity of 2.5¢ is 0.019 (M, + M,).
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A rocket of initial mass M of which ¢eM (0 <z < 1) is fuel, burns the fuel at a
constant rate k and ejects the exhaust gases with speed ¢. The rocket takes off
from rest and rises vertically under (constant) gravity. If the air resistance is assumed
to be a x (speed of the rocket), find the speed of the rocket as a function of time whilst
the fuel is burning.

A rocket is fired from an aircraft flying horizontally with speed V. The fuel is burnt
at a constant rate k and ejected at a constant speed ¢. The attitude control of the rocket
always maintains it in a horizontal position. If the total mass of the rocket is M find

the path of the rocket during its powered flight. Assume that g is constant.
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MOTION OF A PARTICLE IN THREE DIMENSIONS

he motion in two dimensions has been undertaken into account

Tand we defined three types of coordinates, i.e., Cartesian

coordinates (z,y), polar coordinates (r,0) and intrinsic coordinates (S,) .

This part deals with the motion in space or motion in three dimensions and we

will consider three types of coordinate systems namely, Cartesian, cylindrical
and spherical coordinates systems.

4 Cartesian coordinate

Let P(z,y,2) be the Cartesian coordinates of a point P at time ¢, with respect
to (w.r.t.) the fixed coordinate axes O0X,0Y
and OZ. If » = OP is the position vector of
w.r.t. the origin O and ¢,k are the unit
vectors along the axes respectively, thus k el P

r=ai+yj+ 2k ,

¥

If v represents the velocity vector and g the

acceleration vector of P, then the velocity is IR A

dr dzr. dy-. dz-:
—=—t+—J+—k
dt dt dt dt

'l_):

That is the components of velocity of parallel to the coordinate axes are
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dr dy dz .
—, =Z, == respectively.
dt’ dt’ dt P y

These are positive in the direction of z,y and z increasing respectively.

The resultant velocity of P is given by

e <[] (2]

and the acceleration vector is

dv d’z. dy- d’z;
a=—=—it+—J+—k
dt  dt? dt? dt?

Thus the acceleration of P, parallel to the coordinate axes is

d*z d*y d’z .
—=, =2 == respectively
dt* dt* dt’

These are positive in the direction of z,y and z increasing respectively.

The resultant acceleration of P is given by

(]

at?
Now we will investigate the second type of coordinate system.

2 2

&'
dt?

d’y
dt?
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4 Cylindrical coordinates:

z
. . . . |
Consider P(x,y,2) is a point whose projection on Y
the zy-plane is M(z,y)has the cylindrical i B S
o i — " 4
coordinates (p,,z) Where p = OM, ¢ = ZXOM - _F? _____ {W
; p
1
and z=PM. The Ilimits of p,p,z are 7
o a | -
0<p<oo 0<p<2rand —oo<z<oo. TN v
1
Due to the figure besides, we have eyt —,;/'I
T =pcosp, Yy=psing, z==z (D) X
With the help of Eq. (1), expressing p, and z in terms of z,y,z we get
9 5 1/2 4
p=2+y" , p=tan! y/z, z==z (2)
The coordinate surfaces in the cylindrical coordinate system are
(i) p=cie, 2 +y* =¢! i.e, right circular cylinders having the

z - axis as a common axis.
(i) ¢ =c¢, I8, y = ztanc, i.e., half planes through the z -axis
(iii) z = ¢, i.e., planes parallel to the zy—plane, as in the cartesian

coordinate system.
Now, the point P is the point of intersection of these three coordinate surfaces.

The coordinate curves for p,o and =z are respectively straight lines

perpendicular to the z-—axis, horizontal circles with centers on the z-axis and

lines parallel to the z—axis.

~

The usual mutually perpendicular unit vectors p,,2 in cylindrical coordinate

system are as follows.

Q) The first unit vector pis normal to the cylindrical surface

p = const in the direction of increasing radius p .
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(i) The second unit vector ¢ is tangential to the cylindrical

surface perpendicular to the half plane ¢ = cosnt and pointing
in the direction of increasing azimuth angle ¢ .
(iii)  The third unit vector 2 is the usual Cartesian unit vector & in

the direction of increasing z .
Then we have

p=cospi+singj, ¢p=y=—sinpi+cospj, 2=k 3
where 14, 7,k are the usual unit vectors in the cartesian coordinate system.
To obtain the components of velocity and acceleration of a moving point in
terms of cylindrical coordinates let (x,y,z) be the coordinates of any point P
moving in space at any instant ¢. If (p,4,2) be its cylindrical coordinates,
therefore

T = pcosp, y = psinp, z=2z (@)
Let r be the position vector of P, then

r =i +yj + 2k Or r = pcosgi + psingj + 2k (5)

Now, the velocity vector » of P is the rate of change of displacement. Hence,
using Eq. (5), we have
dr _ dws 4y dzp
dt dt dt dt . R

= (pcosp — psinpp)i + (psing + pcospp)j + 2k

where dot denotes the derivatives w.r.t. time (¢ ). Re-writing previous equation

we get
v = p(coscpfz + singoj') + pr(—sincp'z + cospj) + sk
—— N
p @ Z
Or v=pp+ppp+ 22 (6)

where p, ¢, zare usual mutually perpendicular unit vectors in the cylindrical

coordinate system given by
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p =cospi +singj, ¢ = —singi+cosp), 2=k @)
If v,,v,,v, be the components of velocity of P in the directions p,¢,2
respectively, then from Eq. (6) we have
v, = p along NP, v, = pP perpendicular to the plane ZOMP and 2 parallel

to 0Z
@Note: k is constant unit vector dk/dt = 0 so dk/dt = dz/dt = 0.

Again to get the components of acceleration at P, since the acceleration vector
a Of P is the rate of change of its velocity vector » . Hence Using Eq. (6)

dv d d d

a=-—>=_0p)+_(ppP) + () ©

dp d¢
_PP+PE+P<P+P(P<P+P<Pd—+ZZ

where p = d?p/dt?, p = d’p/dt®, £ = d’z/dt*
P

Differentiation relations (7) w.r.t. time, we get

dp .o AN s

d;) —psingi + @ cos ] = G(—sinpi + cosp]) = $@,
do . s, LA . s A L
o = —pcospi — psinpj = —P(cos i + sinpj) = —Pp

Thatis dp/dt = pp, dp/dt = —pp . Hence Eq. (8) becomes
a = pp + ppP + peP + ppp — p’p + E2
Or  a= p—p¢* p+(pp+200)p + 22 ©)
If a,,a,,a, be the components of acceleration of point P in the directions

D, p, 2 respectively, then by Eqg. (9) we get

a, = p—pp* (along NP),

a, = PP+ 2pp = 14 [p2 Z—f] (perpendicular to the plane ZOMP)

p di
a, =2 paralleltoOZ
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4 Sphereical coordinates

Let P(x,y,z) be any point whose projection on the zy-—plane is M(z,y) has

the spherical coordinates (r,0,p)where » = OP, 8 = ZZOP andp = ZXOM.
The limits on 7,0, are 0 <r <oo, 0 <0 <2wando < ¢ < 27. Due to

the figure besides, we have

x = rsinfcosp, y = rsinfsiny, z = rcosd (10)

With the help of Eq. (10), expressing r,0 and ¢ in terms of x,y,z we get

(.’1)2 + y2 )1/2
z

1/2
p= z*+y*+ 2 /, 0 = tan™! , <p:tan_1[2] (11)
T

|

The coordinate surfaces in the spherical coordinate system are
(i) r=cie., ¥ +y* + 2% =¢c? i.e., concentric spheres centered at
the origin.
(i) 0 =c, i.e,, 2* +y® = 2* tan® ¢, .., right circular cones with axis

as z-—axis and vertices at the origin.
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(iii) ¢ = ¢, 8., y = ztanc, i.e., half planes through the z—axis.

Now, the point P is the point of intersection of these three coordinate surfaces.

The coordinate curves for », 8 and ¢ are respectively straight lines passing

through the origin, vertical circles with centre at the origin and the horizontal

circles with centers on the z—axis.

The usual mutually perpendicular unit vectors ,0,% in spherical coordinate

system are in the direction of tangents to the »,0 and ¢ coordinate curves.
These unit vectors are directed respectively in the direction of r—increasing, 0

increasing and ¢ increasing respectively. Thus, we have

= sin 0(cos¢p'2 + sintpj) + cos Ok,
6 = cosB(cos pi + sin j) — sin Ok, (12)

3>

@ = —sinpi + cosp j,
To find the components of velocity and acceleration of a moving point in terms
of spherical coordinates let (x,y,z) be the coordinates of any point P moving

in space at any instant ¢ . If (r,0,¢) be its spherical coordinates, then
x = 7sind cos ¢, 1y = rsinfsin , z =7cos0 (13)

Let + be the position vector of P, then

r=ai+yj+ 2k
Or r = rsinfcospi + rsinfsinpj + r cos Ok (14)
Now, the velocity vector v of P is the rate of change of displacement. But the

displacement r = r# where |r| = r, we have

dr d, .
0= = ™ 15
. dr (15)
=rr+nr—

From Eq. (14) # = r/r = sinf cos @i + sinOsin pj + cos Ok

Differentiation both sides w.r.t time, we get
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% = (B cosB cosp — ¢ sinBsin )i + (0 cosOsinp + ¢ sin b cosp)j — O sin Ok

= 0(cos 0 cos ©i + cosOsingj — sin 0k)) + ¢ sin O(—sin i + cos ©7)
) ] @ (16)

dr .-
= — = 00 + psinO¢
dt ¥ ¥

Using Eqgns. (15) and (16) reduces to

v= 7 + 166 + rsin 6P (17)
If v,,v,,v, be the components of velocity of P in the directions 76,¢
respectively, then from Eq. (17) we have
v, =+ along OP in the direction of r increasing, v, = rd perpendicular to
OP in the plane ZOMP in the direction of @ increasing. and v, = rsind ¢ in

the direction perpendicular to the plane ZOMP in the direction of ¢ increasing.

Again, the acceleration vector a of P is the rate of change of velocity v of P,

Using Eq. (17), we get

dv _d d 5, d
a=—=—(rr + —(r00) + — (r¢ sin ¢
- dt dt( ) Adt( ) dt( ¥ A(p)
— i+ #9100 4 ri6 + r0 %0 (18)
dt dt

+ 7@ sin 0P + rsin 0P + 1@l cos 0 + rd sinei—f

Differentiation relations (12) w.r.t. time, we get

dr/dt = (écosBcosgo— c,bsin@sincp)'z + (écosBsin<p+ c,'osinBcosap)j — Osin Ok,
= é(cos@coscp'z +cosOsinpj — sin@lg:) —+ gbsin@(—sincpi -+ coscpj'),

Thus
di/dt= 60 + psinp
Similarly db/dt =— 67 + cos 6,

and d@/dt =— p(cospi + sinp 7) = —(sin OF + cosOé)
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If ar,ag,awbe the components of acceleration of point P in the directions

#,0,¢ respectively, i.e., along OP, perpendicular to OP in the plane ZOMP in
the direction of 6 increasing and perpendicular to the plane ZOMP in the
direction of ¢ increasing, then we have

) A2 «2 e 2
a, =% —rf" —rg”sin® 6,

ay, = 70 + 270 — rsin@cosp* = 1 % 720 — 7sin6 cos O, (20)
r
a_ =@rsinf+ 2rpsin @ + 2r cos Oégb = 4 r2psin? 0
® rsind dt

Now we will consider the following two particular cases

@®Particular case I: suppose the given particle moves in such a way that the
position P(r,0,) of the particle at any time is such that » = const. = L, say
(that is the particle moves over or inner a sphere of radius L). In that case the
coordinates of P become P(L,6,p)and clearlys = # = 0 (r = L). Hence the
velocity Eq. (17) and acceleration Eqg. (20) take the following form

v= L6 + LpsinOp ie, (v, =09,= Lé,v¢ = Lpsin6)

a, = —L(0? + $?sin’ 0),
a, = Lo — Lsin 0 cos 02,

L d psin® 0

a ="Lsin9+2Lc0500" =
v =9 ® sin@ dt

@®Particular case I1: suppose the given particle moves in such a way that the

position P(r,0,¢) of the particle at any time is such that & = const. = ¢, say
(that is the particle moves over or inner a cone of angle «). In that case the

coordinates of P become P(r,a,¢) and clearlyd = 8 = 0 (6 = «). Hence the
velocity Eq. (17) and acceleration Eqg. (20) take the following form
v= 77 + Lpsinap ie, (v, =17, =0,v, = r@sin o)

and
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s «2 e 2
a, =7 — rg”sin® a,

_ . .2
Ay, = —TsSINacosxyp,

sina d r2o
dt

a, =@rsina+ 2rgsina =

Also in this case we can use the cylindrical coordinate P(p,,z) Where

p = ztan asuch that the velocity and acceleration are given by

v = Ztanap + zptan @ + 22

8 2y o4
z dt

a= Ztana— P’ztana p +

Finally, the above results can be further simplified while solving problems
related to a particular geometry of the problem (spheres, cones,..). Students are

advised to remember these results for direct application in problems.
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ImIllustrative Examplesll

O ExXAMPLE: A particle moves over a spiral smooth wire of vertical axis and
whose radius and angle are a, « with parametric equations z = acos®,
y = asin@ and z = aftan« . Initially the particle is projected with velocity

Vv from position@ = 0. Prove that the particle will stop after one revolution if

V? = 4magtan o and takes time 2\/a7/(gsinacosay).
0 SOLUTION:
Due to the Figure shown, equations of motion in XYZ directions are
mi = —Rcos0, my = —Rsina, mZ=—mg
Multiply the first part by & and the second part by g and the third part by 2
then adding three parts, we have,
m(zE + yj + 22) = —(£R cos 0 + YR sin o + mg2)

= ém%(ﬁ + 9* + 2?) = —(#Rcos@ + yRsina + mgz) (1)

But the parametric equations are « = acosf, y = asinf and z = aftan«
Therefore, & = —afsinb, § = abcos® and 2 = aftana (2)

Now Eg. (1) reduces to

1mi(m2 + 4 + 2*) = —af(—Rsin 0 cos O + R cosOsina) — mgs

2 dt
1 d .2 .9 2 dZ ]. 2

cS.o-om— (27 + + 2°) = —mg— = -mdv® = —mgdz
2 dt(—?{z—)' gdt 2 g

v

Integrating we get %mv2 + mgz = A, (3), A being an arbitrary constant, this

equation stated that the sum of kinetic energy and potential energy is constant.
Apply this equation at initial position and when it stops after one revolution,

i.e.,, 0 =21 ie.,z=2wtancx

%mV2 + mg(0) :%m(ﬂ)2 + mg(2antana) = V? = dagmtan
Now, if we want to determine the arbitrary constant A, let v =V,60 =0 in
Eq. (3), we get
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%sz +mg(0) = A = A=2amgrtana (V? = 4agmtanc)
1
hence Eq. (3) reduces to Emv2 + mgz = 2amgn tan o (4)

Since,
P =g+ + 2
= a?0*(sin®  + a® cos® 0 + tan® 0)
a’0%(1 + tan® 0) = a%6” sec? 0 s v = afseca

S
1

Hence, Eq. (4)

v? + 2gz= 4agmtan o = a?6? sec® o + 2gaf tan o = 4dagmtan o

2
a[%] = (4gm tan o — 296 tan @) cos® o =2g(2m — 6)sinacos o

. 2 T .
d0 2g(2m — @) sinaxcos do 2gsin acos
| J N
2T — 0 a
2gsin acos o
2 271' — 1!
277 gsmacosa

which gives the time to stop after one revolution
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0O EXAMPLE: A heavy particle of mass m moves inside a smooth sphere of

radius L; show that, if the velocity be that due to the level of the center, the
reaction of the surface will vary as the depth below the center.

0 SOLUTION:

Let P(r,0,¢)its position at time t, such that OP

makes an angle @with the downward vertical
through the center O of the sphere.
The velocity of the particle at P

v= L6 + LpsinOp and

v = I} (0 + P?sin?0) or V)1 =6 + ¢?sin® 6 o
Let R be the reaction of the surface of the sphere at P, which will act along PO.
At the point P » = L (const.), therefores» = # = 0, and since the equations of
motion of the particle are given by

ma = E or ma, = Fr’ ma, = FO’ matp = Fﬁpthen

—mL(0? + $?sin’ 0) = mgcosd — R, (2)
mL(6 — sin 6 cos Op?) = —mgsin 6, (3)
mL d . 2

— ¢sin“0 =0 4
sin@ dt v )

Using (1) and (2) gives

R = mL(0® + $* sin’ 0) + mgcos O )
= mgcos6 + mv’/L

Given that the velocity v at P is that due to the level Bb of the center, i.e., the
velocity at P is that of a particle falling freely from Bb upto P. Hence using

v® = u® + 2gh, we get v* = 0 + 2g(OM) = 2gL cos @ then Eq. (5) reduces to
R = mgcos8 + (m/L)(2gL cos 8) = 3mgcos @ = (3mg/a)(acosb)

i.e., the reaction R = (3mg/a)(OM), showing that the reaction R at P will

vary as the depth OM below the center R o< OM..



Motion in 3D |58 h k

0O EXAMPLE: A particle is projected horizontally along the interior surface of

a smooth hemisphere of radius b whose axis is vertical and its vertex is
downwards: the point of projection being at an angular distance from the
lowest point, show that the initial velocity so that the particle may just ascend

to the rim of the hemisphere is (2bgsec c)'/?.

O SOLUTION: Let ABC be a hemisphere
whose axis OC is vertical and its vertex C
is downwards. At any instant t, let P be the
position of the given particle of mass m
such that ZCOP =6. Let R be the
reaction of the sphere along PO. Let

spherical polar coordinates of P be (r,8,)

here » = b so that » = # = 0. Hence the

usual components of acceleration of P in

terms of spherical coordinates are given by

a, = —b(6? + ¢?sin® 6), a, = b6 — P*sinfcosh), a, = b d psin® 0

r

Y sin@ dt

Governing equations of motion are given by

ma, = mgcos® — R ie., —mb(0®+ @?sin®0) = mgcosd — R, (1)

ma, = —mgsiné ie., b(6 — $?sinf cosB) = —gsin 6, (2)
b d

=0 ie., — @sin®6 =0 3

ma,, ie 0 & @sin (3)

Integrating Eq. (3), 2= A, A being an arbitrary constant, 4)

Let initially the given particle be projected horizontally with velocity V along

the interior surface the hemisphere from the point P, such that ZF,0C = «.
Let v,,vy,v, be the components of velocity of the moving point particle in

spherical coordinates. Then, by the condition of the problem, v, = v, =0,



A

v, =V. But% = bpsin® . So initially at Py, when 6 = v, = Vv, let

Pl,_y = Po- Thus

V = b, sina sothat ¢, = V/bsinaw  (5)

Now, since <,b|t:0 = ¢, When 6 = « hence Eq. (4) gives

A = ¢, sin’ or A =sin?o(V/bsina) = (V/b)sina, by(5) (6)
Eq. (4) gives ¢sin®?0 = (V/b)sina or ¢ = (Vsina/bsin®6) (7)
Using Eq. (7), Eq. (2) gives

b(0 — (V?*sin? o/ b? sin 0) sin @ cos @) = —gsin O

= 0% = (V?sin® a/b?)sin™® Ocos@ — (g/b)sin® as 0= 9%

= 20d0 = (V?*sin® o/b?)sin > Ocos @ — (g/b)sin6 dO

Integrating, 6* = —(V?sin® a/b? sin® 8) + (2g/b)cos® + B (8)

where B is an arbitrary constant. Initially at P, when 6 = o, v, =0, i.e.,
b9 = 0 or 6 = 0, then Eq. (8) gives B = (V?/b*)— (2g/b)cosa  (9)
Subtracting Eqg. (9) from (8), we have

6* = (V*/b*)(1 — sin® o / sin® 6) + (2g/b)(cos @ — cos )

By the problem, the particle just ascends to the rim A of the hemisphere. So at
A, when® = 7/2, 6 = 0. Hence the above relation reduces to

0 = (V2/b*)(1 —sin’ a) — (2g/b)cosa or V?cos® a/b? = (2g/b)cos

Thus V? = 2gbsecsac  or V = (2gbsecs a)'/?

This we need to prove.
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0O ExXAMPLE: A particle moves on a smooth sphere of radius ¢ under no

forces except the pressure of the surface; Show that its path is given by the

equation cot® = cot3cotp where @and ¢ are its angular coordinates,

suppose ¢ = 0 when 6 = 3.

0 SOLUTION: Let AB be the vertical diameter of
the given sphere. At any instant t, let P be the
position of the moving particle of mass m such that
ZAOP = 6. Let R be the pressure of the sphere.

Let the spherical polar coordinates of P be (r,8,)

here » = ¢ so that +» = # = 0. Hence the usual
components of acceleration of P in terms of

spherical coordinates are given by

a, = —L(0* + $*sin®0), a, = £(6 — P*sinfcosh), a
Since the particle moves under no forces except
the pressure R along OP, so there is no force on the particle in 6and «

directions. That is we have

a, =0 or 6 — ¢*sinfcosh =0 (1)
L d

a =0 or — $sin?0 =0 2

® sin@ dt v @

Integrating Eq. (2), 72p= A, A being an arbitrary constant,
= ‘fi—":: A/sin* 6 (3)
Using Eq. (3), Eq. (1) gives 6 — (A?/sin* @ )sinOcosh =0

A 2
or %0 _ ATc0s0 5546 — 242 cosOsin—* 646
do sin® 0

Integrating, * = —A*/sin*0 + B (4)



(=)

where B is an arbitrary constant. Initially let # = 8, § = 0, then Eq. (4) gives
B = A?/sin’ 3

Therefore Eq. (4) gives

[d_0]2:A2[ 1 1 ]=A2
dt sin? 3 sin? 0

sin? Bsin® @
o ("
dt
Dividing Eq. (3) by Eq. (5), we have
de_ A [__ sinBsing
dd  sin?@ | (sin? @ — sin® B)/2
csc® 6d0 csc® 6d0

(csc? B — csc? B)Y%  (cot? B — cot? )2

Putting cot® = u SO that —csc? 8d0 = du
du

(cot? B — u?)!/?
Integrating, ¢ = cos™'(u/cot 3) + C = cos*(cot 8/ cot B) + C  (6)
Initially, when 8 = 3 let » = 0 so Eq. (6) givesC =0
Equation (6) becomes ¢ = cos™*(cot8/ cot 3) or cot® = cot Bcot
which is required path of the particle.

sin? @ — sin? ﬁ]

m (Sil’l2 0 — Sin2 ﬂ)1/2 (5)

dp = —
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0O EXAMPLE: A particle is attached to one end of a string, of length b, the

other end of which is tied to a fixed point O. When the string is inclined at an
acute angle «to the downward-drawn vertical, the particle is projected
horizontally and perpendicular to the string with a velocity V. Find the
resulting motion of the particle. Also find the tension of the string at any

instant.

0 SOLUTION b
Let P be the position of the particle at 0
time t, such that the polar coordinates

of P w.r.t. coordinate axes through O,

with Z-axis along downward vertical are
P(1,6,p). Here r =1 (const.). If T is the

tension in the string, then the equations mg
of motion of the particle are

—ml(0? + @? sin® ) = mgcosd — T, (1)

ml(6 — sin 6 cos Op?) = —mgsin 6, (2)
ml d « .2

— ¢sin“0 =0 3

sin@ dt v ®)

From Eq. (3) by integrating, we get

psin?@= A (const.) (3)

From Eq. (4) A = sin’ V__Vsna

[sin l

That is Eq. (4) reduces to sin® 9‘;—‘: = @ (5)

Substituting the value of from (5) in (2)

d*0 V?sin’a cosf

dt? 2 sin® 6

= —9ing
l
Multiplying both sides by 2d@/dt and then integrating, we get

[de ]2 V2sin? o
—_ + P

= 2—gcos€ + B (6)
dt 1% sin” 0 l



F ‘ 63'
F

But initially § = owhen 6 = o« = B = V?/I*> — (2g/1)cos o

From Eg. (6) we have

2 2 s 2 2
[d—O] +—V S« —V——I—zTg(cosO—cosa)

dt sin?0 2
2 2 s 2
= oy _v -2 +2—g(c050—cosa) (7
dt 2 sin’ 0 l
2( 329 cin2
=V— Sn 7 shh o 0 —sin” a +2—g(0050—cosa)
2 sin’ 0 l
_V2 cos? a — cos? 6 29

+ T(cosG — cosx)

2 sin® 0
(cos@ — cosax) (/2
_2g T —(cos O + cosa) — sin? 0
l sin? 0 29l

(cos@ — coscx

)
_2 (nz (cos8 + cosa) — sin? O ):aking V? = 41gn?

l sin? @
If d9/dt = 0 then 2n%(cos@ + cosx) —sin? @ = 0
Since cos@ — cosa = 0 as @ = « is the initial position
= cos? 0 + 2n* cos@ — (1 —2n’cosa) = 0
= cos = —n? £ (1 — 2n?% cosa + nt)'/?

If do/dt =0 for 6 = B then cosB = —n? + (1 — 2n® cosa + nt)/? (8)
neglecting - sign which is in admissible as 6 is acute angle. Hence the motion
of the particle is confined between 6 = « and 6 = 3 given by (8)

The motion of the particle will remain above or below the starting point8 = «

,accordingas 8 > or <«

ie., according as cos(3 <Or >coscx

i.e, accordingas —n? 4+ (1—2n%cosa+n*)Y? <or>cosc
i.e., accordingas 1—2n?cosa+ n* <or>(n? + cosa)?
i.e., accordingas n? > or <sin® a/(4cos )

ie., accordingas V2 >or <gltanasina

To find the tension T at any instant, substituting the values of d0/dt, de/dt

from (5) and (7) in (1), weget T =m V?/l+ g(3cos® — 2cos )
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0O EXAMPLE: A particle of mass m moves on the inner surface of a smooth

cone of vertical angle 2«, being acted on by a force towards the vertex of the
cone, and its direction of motion always cuts the generators at a constant angle
3 . Find the motion and the law of force.

O SOLUTION: Let a particle of mass m

moves on the inner surface of the cone OAB
whose axis is OC and ZAOC = «. Let F be

the force acting on it towards the vertex and
R the reaction of the cone acting along
perpendicular PN to OA. At any time t let P
be the position of the particle such that

OP = r. Let spherical polar of P be (r,0,¢) X/@b\

where 8 = « so that & = 0. Hence the usual

<

components of velocity v,,v,,v,and components of acceleration a,,a,,a are

v, =T, vy =0, v, = rsina 1)
a =7 — r@? sin? oy
a, = —rsinacos ag?, (2)
sihnae d 5.
= r¥
r dt
Hence the governing equations of motion are

a, =@rsina+ 2rpsina =

ma, = F or  m(i0® — r¢?sin®? a) = —F, (3)

ma, = —R or mrsin acos a@? = R, (4)
msina d 5,

ma, =0 or —r =0 5

v v di ®

Also, since the direction of motion always cuts OP at angle 3, From Eqg. (3) by
integrating, we get  tanB = v, / v, = r¢sina/# (6)
Integrating Eq. (5) we have, #*¢= A, A being constant, )

Substituting the value of ¢ from Eq. (7) into Eq. (6), we have
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7 = rsinacot B3(A/r?), or 7 =(A/r)sinacot3 8)
Differentiation both sides of Eq. (8), we obtain
# = A(—r/r*)sinacot3 or ¥ = —A%*1/r*)sin’ acot’ 3 (byEq.(8)) (9)

Substituting the value of ¢ and # from Eq. (7) into Eq. (9) in Eqg. (3), we
have

— F = —A?(1/7%)sin® accot? B — rsin® o A% /r?)
= F’ = (A4%/r®)sin® ofcot® B + 1)
= F’' = A’sin”’ acsc® B/r* = F' =p/r? (F' = F/m) (10)
where p = A?sin® aesc® 3 (11)
Equation (10) illustrates that force varies inversely as cube of the distance from
the vertex O. This gives the required law of force.
Now, with the help of Eq. (1), the velocity v at any time t at P is given by

2 _ .2 2 2 _ a2 i 2 2 _ 2 i N2
v =v, + vy +v, =7 + (r¢sina) or v =7*+ (r¢sina)

v? = (A?/r?)sin® accot? B + r? sin® o(A/r?)* using Eq.(7)and (8)
= v* = (4%/r?)sin® afcot? B + 1)=(A? sin® o/ sin® B)(1/7?) = p'?/r?
Thus = v = p’/ri.e., the velocity varies inversely as OP.
Using Eq. (7), Eq. (4) reduces to
R/m = rsinacos(4/r%)? = (A?/r?)sin acos (12)
= (A?/r?)sin® acese? B(sin’? B cos ar/ sin o)
= (F/m)(sin® Bcosa/sin) by Eq.(10)
Thus Rsina = Fsin® Bcos (13)
which gives relation between R and F. Re-writing Eq. (6),

dr/dt

7/ = rsin acot or
/@ B, dp/di

= rsin acot 3

or ;l_’r =rsinacot3 = (1/r)dr = sinacot Bdy
P

Integrating; logr = ¢sinacot 3 + B (14); where, B is an arbitrary constant.

Letinitially » = r,when ¢ = 0 (say), So Eq. (14) gives B = logr;
Then Eq. (14) reduces to logr —logr, = ysinacot3 or r = e P wijth

represents the path of the moving particle.
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O ExAMPLE: A smooth conical surface is fixed with its axis vertically and

vertex downward. A particle of mass m is in steady motion on its side in a

horizontal circle and is slightly disturbed. Show that the time of a small
oscillation about this state of steady motion is 27w(L/3gcos )'/?, where « is

the semi-vertical angle of the cone and L is the length of the generator of the

circle of steady motion.

O SOLUTION: Let a particle of mass m z

moves on the inner surface of the cone
OAB whose axis is OC and ZAOC = «.

Let R be the reaction of the cone acting
along perpendicular PN to OA. At any
time t let P be the position of the particle
such that OP = r. Let spherical polar of P

be (r,6,0)where 6 = so that § =0.

Hence the usual components of velocity

and acceleration in terms of spherical coordinates are given by

sinae d

2 .
Y
v r dt

_as « 2 . _ . 2
a. =T —Te’sm’q, ay = —Trsmacosap”, a

Therefore, the equations of motion are given by

ma, = —mgcosa ie., #—rp’sin®a= —gcosa, (1)

ma, = mgsina — R ie., — mrsinacosag? = mgsina — R (2)
msina d

ma, =0 i.e. — r¥p =0 3

’ ’ T dt I8 (3)

Integrating Eq. (3) r’p = A, A being a constant. 4)

Initially le the particle be at P, such that OF, = L. In this position the particle
is in steady motion in a horizontal circle moving with angular velocity w
(say). Thus, initially, when r = L,» = w. Hence Eq. (4) gives I’¢ = A.
Then Eq. (4) becomes 7’¢p = Pw = ¢ = Pw/ 7’ (5)

Substituting the value of ¢ from Eq. (5) in Eq. (1) we get,
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.. IL'?sinacosa
f=———————— —gcos (6)
3

But for steady motion, # = owhen » = L. So Eq. (6) gives

')’ sin accos o 9 .
————— —gcosaa = gcosa = Lw”sinacosa

l3
Putting » = L + 7, where » = L + # is small. Eq. (6) gives

0=

- . -3
d’t  IL'w?sinacosa 9 . T
= ————— —gcosa = Lw”sinacosa 1+E —gcosa

dt? (L + 7)?

= Luw? sinacosa[l + 3%] — Lu? sin accos o

Here we use Eq. (7) and the fact that # is small.
7= —(3/L)gicosa using Eq.(5) (= —W*, w? = (3/L)gicosa)

which represents a S.H.M. of time period Components of velocity at Pare given

by 27/w = 27(L/3g cos a)'/?
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O ExAmMPLE: A hollow right circular cone is placed with its vertex downward

and axis vertical, and a point of mass m on its interior surface at a height h
above the vertex a particle is projected horizontally along the surface with a

velocity (2gh/(n* + n))*/2. Show that the lowest point of its path will be at

height above the vertex of the cone.

O SOLUTION: Let a particle of mass m

moves on the inner surface of the cone OAB

whose axis is OC and ZAOC = «. Let R be
the reaction of the cone acting along
perpendicular PN to OA. At any time t let P
be the position of the particle such that
OP = r. Let spherical polar of the point P

be (r,6,p)where 8 =a so that 6 =o0.

Hence the usual components of velocity and

acceleration in terms of spherical coordinates are given by

9 _sina d

TR s 2 @ .
a, =T —rp sin“c, @y =-—rsinacosayp’, a, = — P
Therefore, the equations of motion are given by
ma, = —mgcosa i.e., # —r¢lsin?a = —gcosa, (1)
ma, = mgsina — R i.e., — mrsinacosag? = mgsina — R (2)
. msina d 5,
ma,_ =0 i.e. — T =0 3
= ) , dt ® 3)
Integrating Eq. (3) r’p = A, A being a constant. 4)
Components of velocity at Pare given by
v, =1, v, =0, v, = r¢sina (5)

Given that initially the particle is projected horizontally with velocity
(2gh/(n? + n))M/? from a point P, (say) such that OM, equals the height of P,

above O which equals h
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Hence initially, at Po, we have v, = # =0, v, = 0and v, = (2gh/(n* + n))"/?
Now, at Po,» = OPF, = hsecar. Also, let at Py <,'o|t:0 = ¢,. Hence Eq. (5)
gives (2gh/(n® +n))'/? = v, = hg secasina

giving ¢, = (cos/hsine)(2gh/(n® + n))"? (6)

Since at Py, » = OF, = hseca and¢ = ¢, EQ. (4) gives

h*sec’ apy = A or A = (h/sinacosa)(2gh/(n? + n))/%, by Eq. (6)
Therefore, Eq. (4) gives

¢ = A/r* = (h/r* sinacosa)(2gh/(n* + n))'/? (7)

Substituting the value of ¢ from Eq. (7) in Eq. (1), we get

. dr rh? sin® o [ 2gh ] .. .dr
—— = —gcosa, as (¥ =71—)
dr r*sin?acos’aln? +n dr

3,,—3
= 2rdr = _ 4ghr 2g cos o |dr
(n? + n)cos® o
Integrating
2ah3
7= gh — 2grcoso + B, (8)

o (n? + n)cos®

where B is an arbitrary constant.

But initially at Po,» = OF, = hseca, 7 = 0. S0 Eq. (8) gives
0 = —2gh/(n? + n) — 2gh + B, or B =2gh(n®+n+1)/(n® +n)
Then Eq. (8) re-written as

5 2gh(n’ 1
7 = 2gh —2grcosa + ghin” +n +1)

r?*(n® + n)cos’ a n® +n

) (9)
Now, from Eq. (9) + is again zero when

0= , where z = rcos

3 2 2 1
2gh _2ge gh(n® + n +1)

2*(n? + n) n’ +n
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= n?+n)2 —(n®+n+1)h +h3 =0

= (n® + n)z* — (n* + n)hz® —h2* + K* =0

= (n* +n)2*(z —h) —h(z —h)(z+h) =0

= (2 —h)(n(n +1)2> —hz —h?) =0

= (2 — h)(n(n +1)2* — (n + )hz + nhz — h?) =0
= (z — h)((n +1)z(nz — h) + h(nz —h)) =0

= (z—h)(nz—h)((n+1)z+h)=10

Thus, z = rcosa = h, h/n or —h/(n +1),

Now the negative value of ris inadmissible. Again, rcosa = hcorresponds to
the initial position of P, of the particle. Hence the required lowest point of the

particle path will be at height equals rcosa = h/n  above the vertex O of the

cone.

ONote that examples of motion over a cone surface can be solved using
cylindrical coordinate

Now we will re-solve this example using cylindrical coordinate:

The acceleration in terms of cylindrical coordinates are given by

Y «2 _]-d 2 . e
a4, =P=pg, a,=_ T PP, a =2

Note there is a relation between pand z i.e., p = ztana, Therefore,
p = 2tana and p = Ztan « hence the acceleration components are re-written
as

tana d
(s 2 _ a 5. .
a, =(£—z¢°)tanc, a, = o zZp, a, =%

Therefore the equations of motion become

m(Z — zp? tana = —R cos o, 1)
tana d

— 29 =0 2

> dt ¥ y (2)

m £ = Rsina — mg (3)
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By deleting R between Eq. (1) and (3), multiply Eq. (1) by sinand Eq. (3) by
cos athen adding, we get

Z(sinatan v + cos ) — zp? tan asinx = —gcos o (4)
Integrating Eq. (2) 2%p = A, A being an arbitrary constant.  (5)
Given that initially the particle is projected horizontally with velocity

(2gh/(n* + n))/? from a point Py (say) such that OM, equals the height of P,

above O which equals h
Hence initially, at Py, we have
v,=p=0 v, =pp=(gh/n*+n)"% v =2=0 (6)
Now, at Py, p = htana. Also, let at Py, <,2>|t=0 = ¢,. Hence Eq. (6) gives
(2gh/(n* + n))"/? = v, = htan ag,
giving @, = (cosc/hsina)(2gh/(n* + n))/? (7)
Since at Py, p = htana ie., z = h and¢ = ¢, EQ. (5) gives

h’¢, = A or A= (h/tana)(2gh/(n* +n))"/*, by Eq. (7)
Therefore, Eq. (5) gives

¢ = A/ = (h/2 tan @) (2gh/(n? + n))/ ®)

Substituting the value of ¢ from Eq. (8) in Eq. (4), we get

Z(sin actan o + cos @) — (h?/z* tan® o) (2gh/(n? + n))z tan asina = —g cos o
= Zseca — (h?/2*)(2gh/(n* + n))cosa = —gcos o
= 2 — (h?/2*)(2gh/(n* + n))cos’ a = —g cos® «
= z% — (h?/2*)(2gh/(n? + n))cos® a = —gcos® a

This equation is similar to the previous derived equation with (z = rcos &)
h? [ 2gh ]

r? cos? aln? +n

7 — = —gcosaq, Obtained previous

Then one completes the solution as previous.
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0O ExXAMPLE: A particle moves over the interior surface about the vertical

axis. Initially at a height h above the vertex a particle is projected horizontally
along the surface with a velocity V. Prove that the equation of motion of the

particle and determine the maximum vertical distance when the particle

projected V2 = 4gh .

O SOLUTION:

The acceleration in terms of cylindrical coordinates are given by
Y «2 _ 1d 2 . e
a, =p—pe, aw—;apﬁoa a, ==z

Note there is a relation between pand z i.e., p®> =4az, Therefore,

p = 2tana and p = Ztan « hence the acceleration components are re-written

as following
Y .2 _ tana d 2 . Y
a, =(£—z¢°)tanc, a, = ~ EZLP’ a, =%
Therefore the equations of motion become
m(p — p¢*) = —Rsin, 1)
1 d 2 .
m— — =0, 2
pTias (2)
m 2 = Rcosy — mg (3)

By deleting R between Eq. (1) and (3), multiply Eq. (1) by sinand Eq. (3) by

cos o then adding, we get

pcostp + Zsinp — pgp? cos1p = —gsinp

. PZ . ge
p+g—pso2=—£ (tantp = p/2a)

] 2a5 42.2
Since p?=4daz = p=-2_ a:

p p
20 4a’2* pZ )
T + P2 _ppr = 9P (tanv = p/2a) (4)
P p 2a 2a
Now, integrating Eq. (2) p?¢ = A, A being an arbitrary constant. (5)

Given that initially the particle is projected horizontally with velocity V' from

a point P, (say) such that OM, equals the height of P, above O which equals h
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Hence initially, at Py, we have

v,=p=0 v, =pp=V, v =:=0 (6)

z

Now, at Py, p* = 4az. Also, let at P ¢~|t:0 = ¢,. Hence Eq. (6) gives
V=uv,=pp, 6 (1)
Eq. (5) gives p, pp , = A or A=2V(ah)'/* byEq.(7)
Therefore, EqQ. (5) re-written as
p'p =2V(ah)'/? = pp* =aViah/p®  (8)

Substituting the value of ¢ from Eq. (8) in Eq. (4), we get

212 _ 4a’3? " % _4V2ah __9p

p ps 2a ps " 2a

Multiply by 2a/p, we get

4a%s _ 8a’3? _8V2a2h

=—9
P’ p p*
Substituting p? = 4az, we have
22 2
et _ar Vh,y _ 4 (9)
z 222 222
Multiply by, we obtain
2032 a3z® V?hz .
_— = + 22z = —2z2g
z P 22
2
dt| z dt\ z dt dt
a 2 1 52
= ad|— |+ V°hd|-|+d2* = —2gdz
z z
then integrate
22 1
a|=~|+V?h|=-|+2* =—-292+B (10)
z z

B being an arbitrary constant that can be determined using initial condition,
i.e.,, z=h,when 2=0= B =V?+2gh,.

Eq. (10) reduces to
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a[z—]+V2h[1]+z'2 =V? + 2gh — 2gz (11)
z z

To obtain the two planes that the motion is between them we put in Eq. (11)

z
= 292> — 2(V? +2gh) + V?h =0

Vzh[ll =V? 4+ 2gh — 2gz

Solving this quadrant equation we have,

, _Vi+2gh J(V? + 2gh): —8gV?h
49 49
_V? +2gh " JV* +4gV?h + 4g°h* — 8gV?h
- 49 49
_ V? + 2gh n (V? — 2gh)?
49 49
_ V2+2ghiV2—Zgh
4 4g

where, plus and minus signs gives the roots, i.e., z = V2/2g,h

This means that the motion of the particle is subtended between the two planes
z, = V?/2gand z, = hinitial plane of projection

To calculate the maximum vertical distance when ' ue

inz, = V?/2g hence z = 2h.
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PROBLEMS

1. A heavy particle is projected with velocity I from the end of a horizontal diameter of a
sphere of radius @ along the inner surface, the direction of projection making an angle } with the
equator. If the particle never leaves the surface, prove that 3 sin® <2 + (F¥/3ga)®,

2. A particle constrained to move on a smooth spherical surface is projected horizontally
from a point at the level of the centre so that its angular velocity relative to the centre is @, If
w’a be very great compared with g, show that its depth z below the level of the centre at time ¢
is (2g/m?®) sin® (w4/2) approximately.

3. A particle describes a rhumb-line on a sphere in such a way that its longitude increases
uniformly; show that the resultant acceleration varies as the cosine of the latitude and that its direction
makes with the normal an angle equal to the latitude.

4. A particle moves on the inside of a smooth sphere, of radius a. under a force perpendicular
to and acting from a given diameter, which equals (u sin €/cos® 0) when the particle is at an
angular distance 0 from that diameter; if, when the angular distance of the particle is v, it is projected
with velocity (pa)'” sec y in a direction perpendicular to the plane through itself and the given
diameter, show that its path is a small circle of the sphere, and find the reaction of the sphere.

5. A particle moves on the surface of a smooth sphere and is acted on by a force in the direction
of the perpendicular from the particle on a dianieter and equal to w/(distance)®. Show that it can be
projected so that its path will cut the meridians at a constant angle.

6. A particle moves on the interior of a smooth sphere, of radius a, under a force producing an
acceleration pw™ along the perpendicular @ drawn to a fixed diameter. It is projected with velocity I
along the great circle to which this dianeter is perpendicular and is slightly distarbed from its path;
show that the new path will cut the old one m times in a revelution, where m* = 4(1 — ua”" " '/17).

A particle is attached to one end of a string, of length a, the other end of which is tied to
a fixed point . When the siving is inclined at an acute angle o to the downward-drawn vertical the
particle is projected horizontally and perpendicular to the string with a velocity I Find the resulting
motion. B

A heavy particle is projected horizontally along the inner surface of a smooth spherical
shell of radius g7 with velocity (Tag/3)'? at a depth 2a/3 below the centre. Show that it will rise
fo a height a/3 above the centre, and that pressure on the sphere just vanishes at the highest point of
the path.

A particle moves on the surface of a smooth sphere along a rhumb-line, being acted on
by a force parallel to the axis of the rhumb-line. Show that the force varies inversely as the fourth
power of the distance jfrom the axis and directly as the distance from the meridian plane perpendicular
lo axis.

A thin siraight hollow smooth tube is always inclined at an angle o to the upward drawn
vertical, and revolves with uniform velocity o about a vertical axis which intersects it. A heavy
particle is projected from the stationary point of the tube with velocity (g/w) col o, show that in time
t it has described a distance (g cos o’ sin® o) (1 — e "™, Find also the reaction of the ube.



Motion in 3D [;k

1. A smooth circularcone, of angle 2cc, has its axis vertical and its vertex, which is pierced with
a small hole, downwards, A mass A hangs at rest by a stning which passes through the vertex, and a
mass m attached to the upper end describes a horizontal circle on the inner surface of the cone. Find
the time T of a complete revolution, and show that small oscillations about the steady motion take
place in the time T cosec oo (M +m)/3m3'",

2. A point moves with a constant velocity on a cone so that its direction of motion makes a
constant angle with a plane perpendicular to the axis of the cone. Show that the resultant acceleration
is perpendicular to the axis of the cone and varies inversely as the distance of the point from the axis.

3. At the vertex of a smooth cone of vertical cone 2ce, fixed with its axis vertical and vertex
downwards, is a centre of repulsive force /(distance)’. A weightless particle is projected horizontally
with velocity (2p sin® «/c™)'” from a point, distant ¢ from the axis, along the inside of the surface.
Show that it will describe a curve on the cone whose projection on a horizontal plane is
1 = (¢/¥) = 3 tanh® {{6/2) sin w)}.

4. A particle moves on a smooth cone under the action of a force to the vertex varying as the
square of the distance. If the cone be developed into a plane, show that the path becomes a conic
section.

5. If a particle moves on the inner surface of a right circular cone under the action of a
force from the vertex, the law of repulsion being mu(a cos® a/r’ — 1/2r%), where 2w is the vertical
angle of the cone, and if it be projected from an apse at distance a with velocity (/a)'™ sin o, show
that the path will be a parabola.

[show that the plane of the motion is parallel to a generator of the cone]

6, A particle is constrained to move on a smooth conical surface of vertical angle 2« and
describes a plane curve under the action of an attraction to the vertex, the plane of the orbit cutting the
axis of the cone at a distance a from the vertex. Show that the attractive force must vary as
(1/¥) = (alr') cos o,



NON-INERTIAL REFERENCE FRAME

=

INTRODUCTION

he advantage of choosing an inertial reference frame to describe
Tdynamic motion was made evident in the previous studying. It is

always possible to express the equations of motion for a system in an inertial
frame. But there are types of problems for which these equations would be
extremely complex, and it becomes easier to treat the motion of the system in a

non-inertial frame of reference.

To illustrate, for example, the motion of a particle on or near the surface of the
Earth, it is tempting to do so by choosing a coordinate system fixed with
respect to Earth. We know, however, that Earth undergoes a complicated
motion, compounded of many different rotations (and hence accelerations)
with respect to an inertial reference frame identified with the fixed stars.
Earth’s coordinate system is, therefore, a non-inertial frame of reference; and,
although the solutions to many problems can be obtained to the desired degree
of accuracy by ignoring this distinction, many important effects result from the
non-inertial nature of the Earth coordinate system. In fact, we have already
studied non-inertial systems when we studied Sun-Earth orbits are observed on

Earth’s surface, which is a non-inertial system.
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In analyzing the motion of rigid bodies in the following chapters, we also find
is convenient to use non-inertial reference frames and therefore make use of

much of the development presented here.

€ Time rate of change of vector in Fixed frame

Let » = az + yj + zk be the position vector of point P
in the Fixed system frame. In this case, the time rate of
change of the vector r according to these fixed frames

we get

dr de: dy- dz:
— =—i1+—7+—k
dt Jpea Ot dt dt

Since the time rate of change of the unit vectors 4, 7,k is zero because these

unit vectors have fixed direction and constant length (unity) i.e.,

di _dj _ dk

= = =0 1
dt dt dt @

€ Time rate of change of constant vector

Let r be a vector of constant magnitude i.e., |r| = constant and it rotates with

constant angular velocity w around z-axis, i.e.,

w = wk, where the angle between the vector r and Z
z-axis is constant and equals « Now __\)g_
0Q = r(t +6t) = r(t) + br(t) < L
R T S - N
we observe that 0Q = OP + PQ = r(t) + PQ thus, - Pi ,
k 7
PQ = dr(t) oA
I !
Then the time rate of change of vector r is Hi P
S
dr _ . r(t+6t) = r(t) i
dt ot—0 ot - :;~.?_ I ' Y
. or(t) . PQ Ta
= lim ——= = lim =

5t—0 Ot T St—0 ot
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Since the length PQ is small enough then it can be considered to be equal to
the arc length from the circle whose its center is C and we get
PQ = PQ = CPép = rsinadyp

when &t approaches to zero, therefore, PQ — 0 and hence,

dr . PQ . PQ
— = lim =— X lim —
dt PQ—0PQ 6t—0 6t
P .
— lim 22 pip TSRO0
PQ—0 PQ t—0 ot

. . bp . PQ
=rsina lim — X lim =—
at—0 Ot PQ—0 PQ
[
)
dr PQ

. — =rpsina lim =—

dt PQ—0 PQ
where ¢ represents the angular velocity of P rotation in the circle of center C
which equals the angular velocity w of rotation vector r then

dr . . PQ
— = rwsina lim =—
dt PQ—0 PQ

But it is clear that PQ/PQ is a unit vector in direction of PQ and when PQ

approaches zero (PQ — 0) then P — @ that is the unit vector becomes in
the direction of tangential to the circle whose its center is C at P that is

ar _ rwsina 4 @
dt

where 4 is a unit vector perpendicular to %, in addition is perpendicular to the

radius CP, that % is normal to the plane of vectors k and CP, hence, 4 IS

normal to OP = r and from the definition of vector product we have,
wATr=rwsinau (2)

By comparing the two Equations (1) and (2) we have
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The last equation (3) gives us the time rate of change of a vector with constant
length and rotates with a constant angular velocity around an axis (here z-axis).

So the time rate of change of unit vectors 4,5,k (where |i| =|j| = |k| =1)

di - dj . dk .
Zzwni, L=wnj, T =wrk *)
dt dt dt

4 Motion Referred to a Moving Coordinate System

Suppose that the position of a point P (Figure below) is determined with
respect to n oxyz coordinate system, while at the same time this coordinate
system moves with a translational velocity R and an angular velocity w with
respect to a "fixed" OXYZ coordinate system. This is the type of coordinate
system which might become necessary, for example, in a long range ballistics
problem for which the motion of the Earth would have to be taken into
account. In such a problem the measurements would be made with respect to
the Earth, and the motion of the Earth relative to some coordinate system fixed
with respect to certain stars would be considered. We shall now derive a
general expression for the acceleration of a point referred to a coordinate

system which itself is moving.

In the analysis to follow, we shall always measure the vectors R and r in the

fixed OXYZ system. The unit vectors (z,7,k) always have the direction of the
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moving coordinate axes, while the unit vectors (I,J,K) always have the

direction of the fixed coordinate axes.

By the absolute displacement r of the point P is meant the displacement
measured with respect to the fixed OXYZ system. By differentiating this
absolute displacement we obtain the absolute velocity . and the absolute
acceleration .

=XI+YJ+ ZK

XI+YJ+ ZK

XI+YJ+ZK

T
T
p
During these differentiations, the unit vectors it, (I,J,K) are treated as

constants due to Equation (1), since neither their magnitudes nor their
directions change with time. If we wish to express the absolute motion in terms

of motion measured in the moving oxyz system, we have,
r=R+r' =R+ai +yj+zk
where the directions of the (i, 7,k) unit vectors are known with respect to the

fixed system. However, the unit vectors are changing direction with time, since
they rotate with the oxyz system. In taking the derivatives 7 and #, therefore,
the time derivatives of these unit vectors must be included,

PR =Rt tii kol oy Py 9

dt dt dt
The derivatives of the unit vectors are given by Equations (2), so
=R+ + 2k +wA (@ +yj + 2k)
The quantity (dz + g7 + 2k = #/,) represents the velocity of the point P,
measured relative to the moving coordinate system, which we shall call the
relative velocity 7’ . Using this notation, the expression for P becomes,
i=R+7 +wnr

The acceleration of P may be found by a second differentiation,
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7=

[

.

+ i
+ (@ + G5 + 2R) + 20 A (d + 95 + 2k) + @ A (@i + yj + 2k)
+ w A (@i + yj + zk)

Il
=y

Writing( iz + i + 2k = #,.), which we call the relative acceleration of the
point P, the expression for # can be written as,
F=R+wA(WAT)+OnT +7, +2wAF, (3)

The first three terms in this expression for # represent the absolute

acceleration of a point attached to the moving coordinate system, coincident

with the point P at any given time. This may be seen by noting that for a point
fixed in the moving system s/, = #/_ = 0. The fourth term #’_ represents the
acceleration of P relative to the moving system. The last term2w A 7/, is
sometimes called the acceleration of Coriolis, after G. Coriolis (1792-1843)) a
French engineer who first called attention to this term and w A (w A 7’) is

known as centrifugal acceleration.

O When (R = 0) i.e., P places at the origin of oxyz coordinates

op = || =|E| ywrr=i+war
dt ), \dt).
d d

ay = S| o2 +wAvg
dt ), \dt |

=F+WAT+WA(P+wAT)
=F+2WAT+WA(WAT)+DAT

a

a, v

Zr
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ImIllustrative Examplesll

0O EXAMPLE: A set of coordinate system axes Oxyz (non-inertial) rotates with

angular velocity w with respect to a set of inertial axes OXYZ (Fixed axes)

where w = 2i — 35 + 5k If r = sinti — costj + e 'k then find

[d’l_“ df] [dzf] dzf]
22 =\, ==, |=—=
dat )y \dt* ). |adt® ),

9
dt ),
O SOLUTION:
d . 2 .n -
9L\ = ¢ = costi +sintj — ek,
dt ),
i j k
dr :[ﬂ] + WA T =costi +sintj — etk +| 2 -3 5
dt ), dt |, . —t
sint —cost e
= (6cost — 3e )i + (6sint — 2e*)j + (3sint — 2cost — e )k,
2
dr =i = —sinti + costj + e 'k,
ae? ).~
ﬂ] :[ﬂ] +WAT =costs +sintj — etk +| 2 -3 5
dt ), dt | . —t
sint —cost e

= (6cost — 3e )i + (6sint — 2e*)j + (3sint — 2cost — e )k,

d’r d|dr d|dr dr
— =|—]—= =|—|— F+wA|—=]| =.....
dt? Jp dt\ dt )p ), dt\dt )| — \dt)g
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0O ExaMPLE: A smooth circular wire of radius b rotates with constant angular
velocity w in a horizontal plane about a
perpendicular axis to its plane at a point O on | Z
its circumference. Prove that the equation of bk
motion for a smooth small bead slides over the

wire is 6 + w?sin® = 0 where @ represents
the angle between the diameters that passing
through the bead and the point O.

0 SOLUTION:
Let P be the position of the ring at instant t where r = bsin@i + b(1 + cos )

according to rotating frame, and the fixed and rotating frames are choosing as

illustrated in the figure OXYZ represents the rotating frame, while Oxyz

represents fixed frame. Now w = wk and

r = bsinBi + b(1 + cos )] =7 = b cosOi — bOsin 0]
dr .
S vp=|—=| =F+wATr
dt ),
= bOcosOi — bOsin@j+ b| 0 0 w

sin@ 1+ cos@ 0
= b( cosO — w(1 + cos 6))i + b(wsin® — Osin0)]

and the acceleration becomes

= ap =[dﬁ] =1_.7F + w A vp
dt |,
= b(6 cos® — w(1 + cosB))i + b(wsin O — sin G)5

7 j k
+b 0 0 w
6 cos® — w(l + cosf) wsinh —Osin® 0

= b(@cosh — 6%sin 0 + 2whsin @ — w’ sin )i

+ b(—0sin@ — 62 cos O + 2w cos O — w?(1 + cos b)) j

a?l
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The forces acting on the ring within its motion are its weight mg downwards,
reaction of the wire which we solve it into two components namely, R passing
through the center of the wire and the other component N upwards direction
where N = mg, the equations of motion in OX and OY directions are

ma, = —Rsin, ma, = —R cos 6,
or mb(fcosd — 6 sinb + 2whsin @ — w? sinf) = —Rsin O

and mb(—#sin@ — 62 cos O + 2w0 cos @ — w*(1 + cosh)) = —Rcos O
Dividing the last two equations we get

mb(f cos@ — 0% sinf + 2whsin® — w?sinh)  —Rsinb

mb(—é sin@ — 6% cos @ + 2wl cos O — w? (1+ cosf)) —RcosO

or

(6 cos® — 6 sin O + 2whsin — w? sin 6) __sinf

(—é sin@® — 6% cos @ + 2wl cosh — w2(1 + cosf)) cosO

= cos (0 cos @ — 6? sin 6 + 2whsin O — w? sin O)
= sinf(—6sin @ — 6? cos @ + 2w cos @ — w?(1 + cosh))

O(cos® O + sin® 9) + w? sin@ = 0

or 6+ w?sinh =0

which gives the equation of motion of the small bead.
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4 Motion relative to the Earth

As known, the Earth spins about its polar axis once

every about 24 hours or 8.64 x 10*s (not strictly true
in a sidereal frame due to the orbit of the Earth
about the Sun but sufficiently accurate for our
purposes here), which means that each point of the
Earth disrobe a circle about the axis. Consider a
point P on the Earth's surface with latitude
(latitude represents the angle between the radius to P
and the equatorial plane; as seen in the Figure). The

Earth angular speed is

2
w = _m 7.27 x 1075 rads™!

~ 8.64 x 10°
The acceleration of P due to the spin of the Earth will vary with the latitude of
point P. If is the distance of P from the polar axis, the acceleration of P towards

to the axis is rw? = becos Y - w? = 3.36cos ¥ cms >

Gravitational pull. It is approximately 981 cm s? (its value of course not
constant since the Earth is not perfectly spherical shape). Both accelerations are
small compared with this typical acceleration due to gravity. For this reason we
can take the Earth as an inertial frame for local phenomena on the Earth. It
must be emphasized, however, that is not always safe to assume that small
accelerations effective over long intervals of time can be ignored. A small

sustained acceleration can produce significant impacts.

The motion of Earth with respect to an inertial reference frame is dominated by
Earth’s rotation about its own axis. The effects of the other motion (e.g., the
revolution about the Sun and the motion of the solar system with respect to the
local galaxy) are small by comparison. If we place the fixed or inertial frame

OXYZ at the center of Earth (at point O) and the moving reference frame oxyz
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on the surface of Earth at latitude 9 as seen from the figure, we can describe
the motion of a moving object close to the surface of Earth.

w = —wcos Vi + wsin Ik and 1‘1 =R+r

where 7_«',2 are position vectors of the particle according to O and o

respectively. The acceleration here differs from the obtained previous with the

value of acceleration of o with respect to O which equals w?(oD) where D is

the center of latitude ¥ of point o, that is differs by the value w?(R cos)
which is a small value and so can be neglected. Hence the acceleration of the
particle with respect to o is given by

a,=g—2wAY, —WA(WAT)—@WAT

Here the angular velocity of the Earth is constant thus, & = 0 and also the
term w A (w A 7) is small enough to be ignored and previous equation reduces
to

a.=g—2wAuv, v, = (2,7,2)

T

This is the equation that we will use to discuss the motion of objects close to

the surface of Earth.
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O APPLICATION 1: Find the horizontal deflection from the plumb line caused
by the Coriolis force acting on a particle falling freely in Earth's gravitational
field from a height h above Earth's surface.

O SOLUTION:
The acceleration due to gravity is the effective one and
is along the plumb line. We choose a Z-axis directed
vertically outward (along —g) from the surface of Earth.
r = T + yj + 2k
=v, =@ +9) + 2k
=a, =&+ 4j + Zk

and the acceleration becomes

= a, = g — 2w A vy, g =—gk
= = s |
i 7k
= —glg:—Zw —cosd 0 sin?d
& g 2

The components of acceleration are

I = 2wysing (1)
i = —2w(Zsind + ZcosI) (2)
Z=—g+ 2wycos? (3)

Integrate Eqg. (1) and (3), we get
T = 2wysind + ¢,
2= —gt + 2wycosI+ c,

From the boundary conditions at (t=0), v =0, r = hk = ¢ =¢ =0

Therefore,
T = 2wysinv (4)
2 = —gt + 2wycosV (5)

Substituting Eq. (4) and (5) in Eq. (2) we have



i = —2w(2wysin® ¥ — gt cos I + 2wy cos® )
=— 2w(2wy — gtcosI)
= 2wgt cos I — 4w’y

= § = 2wgt cos Y (7)

Neglecting the term 4w?y and integrate Eq. (7) we have § = wgt?® cos9 + ¢,

Again from the boundary conditions we obtain ¢, = 0

. 1
oY = wgt? cos =y :gwgt3 cos? + ¢,
: 1
Since ¢, =0 =y =§c.ugt3 cos v

2
T = 2wysin19=§wzgt3 cos Y sind
2
z2=—gt+ nggt?' cos? ¥
We ignore the terms containing w?
=0, 2= —gt
Integrating

1
T = c,, z:—;gt2+c6

Due to the boundary conditionswe get ¢, =0, ¢, =h
1 1,
z =0, yzgwgt cos v, z:h—ggt

These three equations give the position of the particle at any time and the
particle reaches to the Earth i.e., (z = 0) when T = (2h/g)"/?

Now when the particle arrives to Earth, its position is

z=0, y =%wg(2h/g)3/2 cosd, z=0

This means that the particle deflect to east of distance %wg(Zh/ 9)*/? cos 9
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4 Foucault pendulum

The impact of Coriolis force on the motion of a pendulum produces a
precession or rotation with time of the plane of oscillation. Describe the motion
of this system, called a Foucault pendulum.

In order to illustrate this impact, let us select a set of coordinate axes with
origin at the equilibrium point of the pendulum and z-axis along the local
vertical. We are interested only in the rotation of the plane of oscillation- that
iS, we want to consider the motion of the pendulum bob in x-y plane (the
horizontal plane). We therefore, limit the motion to oscillation of small
amplitude, with the horizontal excursions small compared with the length of
the pendulum. Under this assumpition, dz/dt is small compared with dx/dt and

dy/dt and can be neglected. As clear

w = —wcos Vi + wsin vk

r=axi+yj+ 2k

T = —Tcosai —Tcosﬁj' —Tcos'ylgz

x
cosa:z, cosﬁ:%, cosy =

Now the equation of motion are

ma =T + mg — 2mw A v
Since, v=iti +9j+ 2k, a=d+ijj+ 5k

2

ik
WwAv=w|—cosd 0 sin?

= w(—gsindi + (&sinY + 2cosV)j — g cos k)

Thus, the equations of interest are



mi = —T% + 2mwy sin 9,

myj = — %— 2mw(zsind + 2cos ),

(L —2)

mzZ = —T — mg + 2mwy cos Y

For small oscillations, so we can consider that the particle moves in the

horizontal plane XQY i.e.,, 2 =2 =0 and hence,T = mg — 2mwicosI, We

have
mi = —m%(g — 2mwy cos V) + 2mwysin I,
mij = —mg(g — 2mwy sind) — 2mwi sin Y,
2 9
G =9y 20008 Yy + 2wy sin 9,
Oor L .
i = _gy + —2wsm19y3./ — 2w sinJ
L L ’

We note that the equation for & contains a term ingy and that the equation for
ij contains a term in 4 . Such equations are called coupled equations. Since the

guantities x,y,w are very small, so we can ignore the terms involve quantities

wzy, wyy then previous equations become

T = —%:1: + 2wy sin I,

Y —%y — 2wz sin 9,

A solution for this pair of coupled equations can be affected by adding the first
of the above equations to ¢ times the second.
This equation is identical with the equation that describes damped oscillations,

except that here the term corresponding to the damping factor is purely
imaginary. The solution is given by (Q = = + iy ,k* = g/L ,& = wsind)
Q + 2i0Q + K'Q = 0, 4

The roots of auxiliary equation are
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—2i0 * \l

A+ 20N+ K2 =0, A= _'—wi«\/~2+k2

The solution of differential equation (1) is
Q(t) — it Aei\l&2+k2t + Be—i\id;“rkzt

If Earth were not rotating, that is@ = 0, then the equation for @Q(¢) would
become

Q+KQ =0, (@ = 0)
from which it is seen that o« corresponds to the oscillation frequency of the
pendulum. This frequency is clearly much greater than the angular frequency
of the Earth's rotation. Therefore, k£ > &, and the equation for Q(t) becomes

Qt) = e Ae™ 4 Be ™
We can interpret this equation more easily if we note that the equation for Q
has the solution

Q =Q(t)],_, = X(t) +iY(t) = Ae™ + Be ¥

Thus

Q(t) = Q(t)e™*"
= () + iy(t) = (X(¢) + 1Y (¢))(cos wt — isin wt)
= X(t)coswt + Y (t)sinwt + ¢(Y(t) coswt — X(t)sin wt)

Equating real and imaginary parts,

x(t) = X(t) cos @t + Y (t)sin &, y(t) = Y(t) coswt — X(t)sin &t
or in matrix form [w(t)] = [ CO.S d)f Sinu:)t][X(t)] (D)
y(t) —sinwt coswt || Y(¢)

from which (z,y) may be obtained from (X,Y) by the application of a

rotation matrix of the familiar from

cosf@ sin@ ]

—sinf@ cos@
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Thus the angle of rotation® = &t , and the plane of oscillation of the pendulum
therefore rotates with a frequency & = wsin« around Z-axis and the time of

revolution is2w/& = 2w/wsind . The observation of this rotation gives a clear

demonstration of the rotation of Earth.
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PROBLEMS

If a particle is projected vertically upward to a height h above a point on Earth's sur-
face at a northern latitude A, show that it strikes the ground at a point %wcos A
\v Bhs,.r’g to the west. (Neglect air resistance, and consider only small vertical
heights.)

If a projectile is fired due east from a point on the surface of Earth at a northern
latitude A with a velocity of magnitude ¥, and at an angle of inclination to the hor-
izontal of &, show that the lateral deflection when the projectile strikes Earth is

4

=

< Sin A - Sin %o cos o

where w 1s the rotation frequency of Earth.

Determine how much greater the gravitational field strength gis at the pole than at
the equator. Assume a spherical Earth. If the actual measured difference is
Ag = 52 mm/s%, explain the difference. How might you calculate this difference
between the measured result and vour calculation?

In the preceding problem, if the range of the projectile is i for the case w = 0,
sheow that the change of range due to the rottion of Earth is
R
AR = 2Ry PR A(cmma — % tan’-"*aj
g

v

Obtain an expression for the angular deviaton of a particle projected from the
Morth Pole in a path that es elose o Earth. Is the deviation significant for a mis-
sile that makes a 4,800km flight in 10 minutes? What is the "miss distance” if the
missile s aimed direcdy at the arge: Is the miss distance greater for a 19,500-km
tlight at the same velocitvy

Show that the small angular deviation £ of a plumb line from the e vertical {i.e.,
toward the center of Earth) ata point on Earth's surface ar a latinule A is

_ Rw® sin A cos A
r — Rw? cos® A

whore K s the radius of Earth, Whae is the value (in seconds of arc) of the maxi-
mum deviation? Note that the entire denominator in the answer is actumlly the ef-
fective g, and g, denotes the pure gravitational component.



