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Chapter 1 

Kinematics of Rigid Bodies  

 

Deformable Body: Anybody that changes its shape and/or volume while being acted upon by 

any kind of external force. 

 

Rigid body:  A rigid body is a solid body in which deformation is zero or so small it can be 

neglected. The distance between any two given points on a rigid body remains constant in 

time regardless of external forces exerted on it 

 

A deformable body is one that can distort. It would normally refer to a solid object so that as 

it deforms, it sort of deforms in a way that it could return to its starting shape if all the 

external forces were removed that caused it to deform.  

 

Types of Rigid Body Motion 

Translation (Or Translation-al motion)                                               

Translation. This type of motion occurs when a line in the body remains parallel to its 

original orientation throughout the motion. 

Recti-linear translation: when the paths of motion for any two points on the body are parallel 

lines, the motion is called rectilinear translation  
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Curvi-linear Translation  

If the paths of motion are along curved lines, the motion is called curvilinear translation 

 

          

Rotation about a fixed axis 

One straight line in the body is fixed. All other points in the body travel in circles around this 

line.  

           



Mechanics of Rigid body                                                                                       Mathematics Department  

6 

When a rigid body rotates about a fixed axis, all the particles of the body, except those which 

lies on the axis of rotation, move along circular paths except those which lies on the axis of 

rotation. 

 

General plane motion 

General plane motion. When a body is subjected to general plane motion, it undergoes a 

combination of translation and rotation, the translation occurs within a reference plane, and 

the rotation occurs about an axis perpendicular to the reference plane. 

 

Velocity and Acceleration  

In the Transitional motion , the velocity and acceleration of all points of the body at any 

moment are equal in magnitude and direction.  

VVVVV DCBA


==== ,      fffff DCBA


====  
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Rotational (Rotation) motion                                                                               

Rotational motion is the motion of the body wrapping (Read: rapping) around its center 

 

                                                                  Fig. (a) 

                                                   

                                                              Fig. (b) 
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                                                        Fig. (c) 

Note: One complete revolution is 360° = 2π radians. 

Rotation about a Fixed Axis 

When a body rotates about a fixed axis, any point P located in the body travels along a 

circular path. To study this motion it is first necessary to discuss the angular motion of the 

body about the axis. 

Angular Motion. Since a point is without dimension, it cannot have angular motion. Only 

lines or bodies undergo angular motion. For example, consider the body shown in Figure and 

the angular motion of a radial line r located within the shaded plane. 

Angular Position. At the instant shown, the angular position of r is defined by the angle u, 

measured from a fixed reference line to r. 

Angular Displacement. The change in the angular position, which can be measured as a 

differential dU, is called the angular displacement. This vector has a magnitude of dU, 

measured in degrees, radians, or revolutions, where 1 rev = 2p rad. Since motion is about a 

fixed axis, the direction of dU is always along this axis. Specifically, the direction is 

determined by the right-hand rule; that is, the fingers of the right hand are curled with the 

sense of rotation, so that in this case the thumb, or dU, points upward, Fig. 16–4a. In two 

dimensions, as shown by the top view of the shaded plane, Fig. 16–4b, both u and du are 

counterclockwise, and so the thumb points outward from the page.  

Angular Velocity. The time rate of change in the angular position is called the angular velocity 

V (omega). Since dU occurs during an, 

Remember that                                                                                                                                     

When a body moves in a circular path, we can write both the velocity and acceleration in the 

form     
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)2,2(),,(  


rrrrfrrrv +−==  

If constant=r , then 0... == rr . So, the velocity and acceleration becomes  

)0,20(),,0( +−===  


rrfrrv , or   ),2(),,0(  


rrfrrv −===  

The angular velocity in rotational (rotation) motion  

Angular velocity: The time rate of change in the angular position is called the angular 

velocity V (omega). Since dU occurs during an instant of time dt, then, 

From the Figure rs =  , where   is angler position and the angler velocity is  ).(  = .       

It is clear that 


== .
dt

d
.                                                                                                                

The relation between the angular velocity and transitional velocity is given from     




rr
dt

d

dt

rd
v

dt

ds
rs ===== = .. )(
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- The direction of translational velocity is in the same direction angular velocity 

- The direction of the vector tells you the axis of the rotation, as well as whether the rotation 

is clockwise or counterclockwise. 

- The relation between the angular acceleration and transitional acceleration is given from 

the transitional acceleration has two components, the first in Tangential directionand  )( tf  

the other in the normal direction )( rf      

 

The components of the acceleration are given as   

2,.  rrr fft ==   Or 2rnf =                                                                                              

The Resultant of acceleration is given by  
22

rt
fff +=                                                  

While the direction is given by 

r
f

t
f

=tan    
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Special case of rotational motion 

(i) In the case of constant angular velocity( i. e. the angular velocity does not  )Constant( =   

change with time 0=
dt

d
 )                                                                                     (ii) The pure 

rotational motion                                                                                      In the case of the 

angular acceleration is constant (i. e. Constant. = ). Then C
dt

d
=


 and tC=   

The relationship between the laws of motion in the case of linear motion with constant linear 

acceleration and rotational motion with constant angular acceleration      













.

.

.

2,2

,
2

1
,

2

1

,,

2222

22

+=+=

+=+=

+=+=

xa

tttatx

tta

c

c

c

 

General Plane Motion (Translation + Rotation)  

If a rigid body moves with both translational and rotational motion, it is said to be in general 

plane motion. 

Example 1: The angular velocity of the disk is defined by sec/25 2 radt 







+=  where t  is 

in seconds. Determine the magnitudes of the velocity and acceleration of point A  on the disk 

when sec50.=t ? 
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Solution 

sec/25 2 radt 







+=                                                                                

2sec/10. rad
dt

d
t 







==


                                                                                                         

At 0 5 sec.t =      25(0.5) 2 3.25 / secrad
 
 = + =  
 

,    210(0.5) 5 / sec. rad
 
 = =  
 

                                 

But  
disk

r
diskA

v )()(=                                                                                                

Then sec/62)80()253( ... m
A

v == , 

rfrf
tr

.,2  ==

2))) sec/45.8)80()5625.10()80()25.3( ..22 (( mm
diskdisk

r
A

rf ==== 

2sec/4)()5()()( 80.. cmm

t
A diskdisk

rf ===  But 
22

r
A

t
AA

fff +=  

2222 sec/359sec/349940258716402571)4()458( ..... mmf
A

===+=+=          

4 1tan tan 0 47337 tan (0 47337) 25 33
8 45

. . .
.

A
Ot

A

t

r

f

f
r

f

f
   → =

−= = = → = → =

Example 2: The angular acceleration of the disk is defined by 223 12 / sec. radt
 
 = +  
 

 

where t  is in seconds. If the disk is originally rotating at sec/120 rad= . Determine the 

magnitude of the velocity and two components of acceleration of point A and B  on the disk 

when sec2=t . 
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Solution 

The angular acceleration of the disk is  given by 2sec/123 2. radt 







+= .                          

While the angular velocity is given by   







+== dtdt t 123 2.                          

1

3 12
3

3
ctt +








+=                                                                                                                        

At the start rotating point (i. e. 0=t  ) sec/120 rad= . So 121 =c . Then                                          

The angular velocity is given as       sec/12123 radtt








++=                                           At 

sec2=t , we have                                                                      

sec/4412)2(12)2( 3 rad=








+= + ,    2sec/2412)2(3 2. rad=







+=                                            

From the two relation rfrf
tr

.,2  == ,  

At the point A  we have, m
disk

r 50.)( =   

2)) sec/968)50()1936()50()44( ..22 )(( mm
diskdisk

r
A

rf ==== 

2sec/12)()24()()( 50.. mm

t
A diskdisk

rf ===                                                                             

At the point A  magnitude of the acceleration is given by 
22

r
A

t
AA

fff +=  

2222 sec/968sec/07968937168937024144)968()12( . mmf
A

===+=+=                     

The direction of acceleration is given by  

r
f

t
f

A
=tan  

471020)12390(1tan12390
968

12
tan ... =→−=→=== =

AA

A

t
A

A

r
f

f

  
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At the point B  we have , m
disk

r 40.)( =   

2)) sec/4774)40()1936()40()44( ...22 )(( mm
diskdisk

r
A

rf ==== 

2sec/9)()24()()( 640 ... mm

t
A diskdisk

rf ===                                                                                   

At the point B  magnitude of the acceleration is given by  
22

r
B

t
BB

fff +=  

222 sec/59978759969516.92)4.774()6.9( 45.774 mf
B

==+=+=                                 

The direction of the acceleration is given by  

r
f

f

B

t
B

B
=tan  

471020)12390(1tan12390
4.774

6.9
tan ... =→−=→== =

BB

B

t
B

B

r
f

f

  

Example 3:  The disk is originally rotating at sec/120 rad= . If it is subjected to a constant 

angular acceleration of 2sec/20. rad= . Determine the magnitudes of the velocity and the 

two components of acceleration of point A  at the instant sec2=t ?                                   

 

Solution 
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Where the disk is subjected to a constant angular acceleration of 2sec/20. rad= .                  

Then    

... 2,
2

1
, 222 +=+=+= ttt                                                         

Where sec/120 rad= , and after sec2=t  and form                                                                

Angular Motion: The angular velocity of the disk can be determined using from 

t.  += , we have       →+= )2()20()12(         sec/52 rad=  

Motion of Point A . The magnitude of the velocity is given by  

→=
disk

r
diskA

v )()(    →=
diskdiskA

v )50()52( .  sec/26 m
A

v =  

The tangential and normal component of acceleration are 

2 )) sec/)40()1936()50()52(  1352)(( ..22 mm
diskdisk

r
A

rf ==== 

2sec/)()20()()( 1050.. mm

t
A diskdisk

rf ===                                                                                  

At the point A  magnitude of the acceleration is given by  
22

r
A

t
AA

fff +=  

222 sec/)1352 ()10( 1352.04 mf
A

=+=                                                                              

The direction of the acceleration is given by  tan
A

t

r

f

f
 =  

423778
10 1tan tan (0 00739) 0

 1352.04
. .

A
t

A
A

A A

f

f
r

   = −= → = → = , then from 

Eq.  

.222 +=  , we have 

64
4

256

40

2560

40

1442704
)20(2)12()52( 22 =→==

−
=→+=                                             

The disk makes angle distance is given by ( 64=  rad ) 

The disk rotates laps revN 210
32

2

64

2
.=→=== 




 (reflection-reversal ) 
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Example 4:  The disk is originally rotating at sec/120 rad= . If it is subjected to a constant 

angular acceleration of 2sec/20. rad= . Determine the magnitudes of the velocity and the 

two components of acceleration of point B  when the disk undergoes 2  revolutions? 

 

Solution 

Where the disk is subjected to a constant angular acceleration of 2sec/20. rad= .Then  

 

... 2,
2

1
, 222 +=+=+= ttt  

Where sec/120 rad= . 

When the disk undergoes 2  revolutions. Then revN 



42

2
=→==  

Angular Motion: The angular velocity of the disk can be determined using from 

  
.222 += , we have 6548646160144)4()20(2)12( .22 =+=+=  ,  

sec/4325. rad=  

Motion of Point B . The magnitude of the velocity is given by  

→=
B

r
diskA

v )()( →=
BdiskA

v )40()( ..4325  →= sec/171710. m
A

v   sec/210. m
A

v =  
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The tangential and normal component of acceleration are 

2674)4325) sec/258)40()( ... 22 )(( mm
Bdisk

r
B

rf === 

2sec/8)()20()()( 40.. mm
Bdisk

t
B

rf ===                                                                                   

At the point A  magnitude of the acceleration is given by  
22

r
B

t
BB

fff +=  

222 sec/)674.258 ()8( 798 .258 mf
B

=+=                                                             The 

direction of the acceleration is given by  

r
f

t
f

B
=tan  

44771.. 1)030920(1tan
674.258 

8
tan = =→−=→== O

B

t
B

BB

r
f

f

B
  

Example 5: The disk is driven by a motor such that the angular position of the disk is 

defined by radtt 






 += 2420 where t is in seconds. Determine the number of revolutions, 

the angular velocity, and angular acceleration of the disk when st 90= ? 

 

Solution 
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At sec90=t , we find that radradt 














 +=+== )8100(41800)90(4)90(20)90( 2  

( ) radradt 34200324001800)90( =+==       

→== rev
rad

rev
rad




2

34200

2

)1(
34200 rev5443=                                                

Angular Velocity: Applying Eq. 
dt

d
 = , we have                      

ttt
dt

d
820

2420 +=






 +=  and at sec90=t , we have  sec/740)90(820 rad=+=  

Angular Acceleration: Applying Eq. A                             8.= ,  we have      
dt

d
 =.   

2sec/8. rad=      sec90=t  

Example 6: At the instant sec/5 rad
A
= (it means initial the angular velocity), pulley A  

is given an angular acceleration 2sec/6. rad
A
= . Determine the magnitude of acceleration 

of point B  on pulley C  when A  rotates 2  revolutions. Pulley C  has an inner hub which is 

fixed to its outer one and turns with it? 
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Solution 

Given sec/5
0

rad
A

=




 , 2sec/6. rad

A
= ,  

Where the angular acceleration of pulley A  is constant. So we have  

 

... 2,
2

1
, 222 +=+=+= ttt  

When the pulley A  rotates 2  revolutions. Then revN A
A

A 



42

2
=→==  

Angular Motion: The angular velocity of the pulley A  can be determined from 

  
.222 += , we have 796441754825)4()6(2)5( .22 =+=+=  ,  sec/258813. rad=  

Since pulleys A and C are connected by a non-slip belt. So, at any point on the pulleys A and 

C. 

,cvv
A
=   

t
cf

t
f

A
= . Then 

→= cvv
A

  →=→= )40()50()2588.13( ccc rr
AA

      sec/57.16 radc =  

Also  →=→=→= ... )40()6()50( ccrr
t

cf
t

f
CAAA

      2sec/5.7. radc =  

Motion of Point B. The tangential and normal component of acceleration of point B can be 

determined from,  

27164 057) sec/39)6()16( ... 22 )(( mm
BC

r
B

rf ===   

2sec/3)()6()()( 660 ... mm
BC

t
B

rf ===                                                                                    

222 sec/)77.164 ()6.3( 77.164 mf
B

=+=                           
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Chapter 2 

I. Mass Moment of Inertia                                                                                       

 

Definition of the Rigid body 

In physics, a rigid body is a solid body in which deformation is zero or so small it can be 

neglected. The distance between any two given points on a rigid body remains constant in 

time regardless of external forces exerted on it. A rigid body is usually considered as a 

continuous distribution of mass. 

Definition of moment of inertia 

Physical; A measure of the resistance of a body to angular acceleration about a given axis 

For an object rotating about an axis, the resistance of a body to accelerate is called inertia of 

mass 

Mathematic; The Moment of Inertia is equal to the sum of the products of each element of 

mass in the body and the square of the element's distance from the axis. 

It is defined as the sum of second moment of area of individual section about an axis  

(1) The basic shapes 

(2) Systems of particles 

(3) Composite bodies (shapes) 

(4) Uninform shapes 
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The Moment of Inertia of mass (Second moment of mass) 

The mass moment of inertia about a fixed axis is the property of a body that measures the 

body's resilience to rotational acceleration. The greater its value, the greater the moment 

required to provide a given acceleration about a fixed pivot. The moment of inertia must be 

specified with respect to a chosen axis of rotation. 

(1)- For a single mass, the moment of inertia can is expressed as 

For the element dm  that is located a distance a  from the L -axis, the Moment of inertia 

referenced to L -axis is given as 

 

2admILL =  

(2)- If a system consists of −n bodies, then the moment of inertia can be given as 

 For the −n elements, they have the mass ndmdmdmdm ,.......,,, 321  that is located a distance a  

from the L -axis, the moment of inertia referenced to L -axis is given as 
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
=

=++++=
n

i

iinnLL admadmadmadmadmI
1

222

33

2

22

2

11 ............  

(3)- The Moment of Inertia in the plane   

 

Referenced to x -axis is given by         ,2ydmI xx =                                            

Referenced to y -axis is given by          ,2xdmI yy =                                           

Referenced to the original point (O ) is given by 

                                          yyxxO IIyxmrdmI +=+== )( 222    

OI   is called Polar moment inertial  

(4)- The Moment of Inertia in the plane for number of elements    

 

Referenced to x -axis is given by          
=

=
n

i

iixx ydmI
1

2                                        
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Referenced to y -axis is given by         
=

=
n

i

iiyy xdmI
1

2                  

(4)- The Moment of Inertia in space    

 

Referenced to the original point (O ) is given by 

)( 2222 zyxmrmIO ++==                                                              (1) 

Referenced to x -axis is given by          ),( 22 zymIxx +=                                            

Referenced to y -axis is given by          ),( 22 zxmI yy +=  

Referenced to z -axis is given by          2 2( ),xI m x y= +                                           

Referenced to the plane 0x− =   is given by          ),( 22 zymIxx +=                                            

Referenced to the plane                                                 2 2( ),yI m x z= + is given by           0y− =   

          Referenced to the plane 0z =  is given by          2 2( ),zI m x y= +                                          

              From previous relation, we have                                              

                                        yozxozxoyo IIIzyxmrmI ++=++== )( 2222
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             zzyyxxo IIII ++=2         or   )(
2

1
)( 2222

zzyyxxo IIIzyxmrmI ++=++==

yozxozzz

yozxoyyy

xozxoyxx

IIyxmI

IIzxmI

IIzymI

+=+=

+=+=

+=+=

)(

)(

)(

22

22

22

 

Parallel axis theorem 

Parallel axis theorem is applicable to bodies of any shape. The theorem of parallel axis states 

that the moment of inertia of a body about an axis parallel to an axis passing through the centre 

of mass is equal to the sum of the moment of inertia of body about an axis passing through 

centre of mass and product of mass and square of the distance between the two axes.  The 

parallel axis theorem is much easier to understand in equation form than in words. Here it is: 

 

In physics, the parallel axis theorem can be used to determine the moment of inertia of a 

rigid object about any axis, given the moment of inertia of the object about the parallel axis 

through the object's center of mass and the perpendicular distance between the axes.                                                                                          

We consider an element ( m ) and its center is ),( cmcm yx (see below Figure)   
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,2ydmdIxx =  the moment of inertial with respect to x− axis                                                                                              

,2xdmdIyy =  the moment of inertial with respect to y −  axis                                                     

)( 222 yxdmIIrdmdI yyxxO +=+== , the moment of inertial with respect to the point( o )                                                        

 +== dmyxdmrIO )( 222                                                                                     (1) 

 +== dmyxdmrIcm )( 222                                                                                  (2) 

cmcm yyyxxx +=+= ,                                             













+++++=





















++








+==

dmyyyyxxxx

dmyyxxdmrI

cmcmcmcm

cmcmO

22 2222

22

2

  ++







++







 +=

=

dmyydmxxdmyxdmyxI cmcm

d

cmcm

I

O

cm

22

2

2222

  

  +++= dmyydmxxdmdII cmcmcmO 222                      

  +++= dmyydmxxdmdII cmcmcmO 222                       

 +++= dmyydmxxmdII cmcmcmO 222                                                                 (3) 










=→


==→


= dmydmy

dm

dmy
ydmxdmx

dm

dmx
x ,                                   (4) 









+








++=  dmyydmxxmdII cmcmcmO 222                                    

myymxxmdII cmcmcmO 222 +++=                                                                          (5) 
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           (6)                                                                                                      2dmII cmO +=

Question:  Let AI   and BI  be moments of inertia of a body about two axes A  and B  

respectively. The axis A  passes through the centre of mass of the body but B  does not, So. 

(A) BII A                         (B) BII A                           (C) If the axes are parallel BII A                                            

(D) If the axes are parallel BII A                              (E) If the axes are not parallel BII A                                                                                                                           

The moment of inertia is always less for an axis passing through the center of mass than any 

other parallel axis. We cannot say anything of the moment of inertia about a non parallel 

axis. Thus C is correct. 

 Perpendicular Axis Theorem                                                                                      

This theorem is applicable only to the planar bodies. Bodies which are flat with very less or 

negligible thickness. This theorem states that the moment of inertia of a planar body about 

an axis perpendicular to its plane is equal to the sum of its moments of inertia about two 

perpendicular axes concurrent with the perpendicular axis and lying in the plane of the body. 

 

2 ,xxdI dm y=  the moment of inertial with respect to x− axis                                                                                              

2 ,yydI dm x=  the moment of inertial with respect to y −  axis                                                     

2 2 2( ),O xx yydI dmr I I dm x y= = + = + , the moment of inertial with respect to the point ( o )                                                        

mrdmrdmrdmyxIO

22222 )( ===+=                                                                  (1) 

yyxxzz III +=                                                                                                               (2)  
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Example:1  Find the Mass moment of inertia of a thin uniform rod? 

Solution 

 

We consider L  be the length of the Rod,  M  be the mass of the Rod and is the density  .          

We divide the Rod into many small elements. We select one of them, that has length dx , mass 

dm  and has the distance x  from the left end of the Rod                                                           

For the small element    Lmxdxdxmdxdm
LL L

 =→===→=  00 0
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The moment of inertia about its end is given by 

2

3

3322

3

1

3

1

3

1
)(

0
Lm

L

m
LLdxxdmxI

L

yy =====  
                  2

3

1
LmI yy =                                          

This the moment of inertia of a thin uniform rod about an axis perpendicular to its length and 

passing through one of its ends.                                                                                                         

The moment of inertia of a thin uniform rod about an axis perpendicular to its length and 

passing through its center. From the Parallel axis theorem 

→







+= 

2

2

1
LmII yyyy

2222

2

2

12

1

12

34

4

1

3

1

2

1

3

1
mLmLmLLmILmILm yyyy =







 −
=−=→








+= 

2

12

1
mLI yy =                                                                                                                                

The moment of inertia about its other end is given as  

→







+= 

2

2

1
LmII yyyy

2222

2

2

12

4

12

31

4

1

12

1

2

1

12

1
mLmLmLLmLmLmI yy =







 +
=+=








+=

2

3

1
mLI yy =                                                                                                                    

Note: The moment of inertia for a thin uniform Rod that rotates about the axis perpendicular 

to the rod and passing through one end is 2

3

1
mL  . If the axis of rotation passes through the 

center of the Rod, then the moment of inertia is 2

12

1
mL .                                                                

Example 2: Find the Mass moment of inertia of a thin uniform rectangular plate 

about its base and its one of edges axes?                                                                   

Solution 

We consider a uniform strip with the length )(dx and thickness )(dy as shown in below Figure, 

where the density is  .  
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bamdydxmdydxdm

b a

 =→=→=  
0 0

.   The moment of inertia about its corner is given by 

 
3 3 3

2 2 2

0
0 0

0
3 3 3

b
b a

b

yy yy

x b a b a m
dI x dm x dx dy I x dx dy y

ab
    



 
 = = → = = = = 
  

     2

3

1
amI yy =                                                                                                                                                                       

If we select a vertical strip (sector, section), we have  

ba

mababx
bdxxbIdxbxdmxdI

aa

yyyy



333

)(
333

222

00

==







==→==                

2

3

1
amI yy =              →








+= 

2

2

1
amII yyyy

 

2

2 2 2 2 21 1 1 1 4 3 1

3 2 3 4 12 12y y y y
ma I m a I ma ma ma ma   

   −   = + → = − = =      
   

                                   

2

12

1
maI yy =         Similarly, if we select a horizontal strip, we can prove that: 

22

12

1
,

3

1
bmIbmI xxxx ==                                                                                                           

For axis is perpendicular oyox, )(
3

1

3

1

3

1 2222 bamambmIII yyxxzz +=+=+=                                      

For axis is perpendicular yoxo , :  )(
12

1

12

1

12

1 2222 bamambmIII yyxxzz
+=+=+=                                                                           

The moment of inertia about its corner is given by (Mass moment of inertia)  



Mechanics of Rigid body                                                                                       Mathematics Department  

30 

3322

3

1
,

3

1
)(

3

1

3

1
baIbababbmI yyxx ====                     )(

3

1 22 baabIII yyxxo +=+=  

31
,

12x x
I ab  =                                               

31

12y y
I ba  =                 )(

12

1 22 babaIII yyxxo +=+=   

Uniform rectangular 

plate ),( ba  

Axis coincides with 

one of its sides 

Axis passing through 

its centroid 

Axis coincides to 

other side 

With respect toaxis yyI −   
2

3

1
maI yy =  2

12

1
maI yy =  2

3

1
maI yy =  

With respect toaxis xxI −   
2

3

1
mbIxx =  

2

12

1
mbI

xx
=  

2

3

1
mbI

xx
=  

With respect to axis 

perpendicular to the 

plane oxy  

)(
3

1 22 bamI zz +=  )(
12

1 22 bamI
zz

+=  )(
3

1 22 bamI
zz

+=  

 

Example 3:  Determine the mass moment of inertia for right Triangular Plate 

(Right-angled triangle)? 

Solution 

We consider a uniform strip with the length ( )x and thickness ( )dy , such that it is parallel to 

x - axis,  as shown in below Figure. Then      

 ham
h

h
ha

h

y
yady

h

y
adyxmdyxdm

h hh

2

1

22
)1(

2

0 0

2

0

=→







−==








−=−==→=   
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Then moment of Inertia with respect to −x  axis:         

=→==

h

xxxx dyyxIdyyxdmydI
0

222   , but   )1(1
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y
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h

y
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−=→=+                         
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2

6

1
hmI xx =                       

Then moment of Inertia with respect to −x  axis: 

→







+= 

2

3

1
hmII xxxx

2222

18

1
)23(

18

1

9

1

6

1
hmhmhmhmI xx =−=−=        

2

18

1
hmI xx =                                

Then moment of Inertia with respect to −x  axis: 

2222

2

18

9
)81(

18

1

9

4

18

1

3

2
hmhmhmhmhmII xxxx =+=+=








+=                 

2

2

1
hmI xx =                    

Also, ,
6

1 2amI yy =           ,
18

1 2amI yy =                 .
2

1 2amI yy =  

)(
6

1

6

1

6

1 2222 hamhmamIII yyxxzz +=+=+= )(
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1

18

1

18

1 2222 hamhmamIII yyxxzz
+=+=+=   

Again, 
2)(

6

1
oomI AB
=                                                                                              
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where ABoo )(
2

1
  ,   2222 )0()0( hahaAB +=−+−=   

m
ha

ha
oomI AB

)(6
)(

6

1
22
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2

+
== , Also 
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22)(
2

1
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2

1

2

1
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oohaooABooha

+
=→+==  

  Right Triangular Plate 

of height h  and bass a  
About its corner   

About its center of 

mass  
About its vertex  

About its base  2

6

1
mhI xx =  2

18

1
mhI

xx
=  2

2

1
mhI

xx
=  

About its height  2

6

1
maI yy =  

2

18

1
maI yy =  

2

2

1
maI yy =  

About vertical axis )(
6

1 22 hamI zz +=  )(
18

1 22 hamI
zz

+=  )3(
6

1
),3(

6

1 2222 hamIhamI
zzzz

+=+= 

 

 

Example 4:  The Mass Moment of inertia of acute triangular plate?  

Solution 

We divide the acute triangular plate to two right triangular plate as is shown in Figure   

 

The Moment of inertia of about x −  axis for the two right triangular plate is given as   

( ) ( ) ,
6

1
,

6

1 2

22

2

11
hmIhmI xxxx ==                                                                                                          

http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
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For the acute triangular plate                          

( ) ( ) 22

21

2

2

2

121
6

1
)(

6

1

6

1

6

1
hmhmmhmhmIII xxxxxx =+=+=+=  

Example 5: The Mass Moment of inertia of obtuse triangular plate?  

Solution 

We divide the obtuse triangular plate to two right- triangular plate as is shown below 

Figure   

 

The Moment of inertia of about x −  axis for the two right triangular plate is given as   

( ) ( ) 2

2

2

21
6

1
,)(

6

1
hmIhmmI

CBDxxABDxx =+=                                                                                 

For the acute triangular plate                      

( ) ( ) 2

1

2

2

2

21
6

1

6

1
)(

6

1
)( hmhmhmmIII

CBDxxABDxxABCxx =−+=+=  

 

Example 6 : Find the Mass Moment of inertia of right- triangular plate as is 

shown in figure about all different axes? 

 Solution 
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From the Figure it is clear that m
ha

ha
IamIhmI BCyyxx

)(6
,

6

1
,

6

1
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+
===  

mmmhmI xx
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1 22 ==== ,      mmmamI yy
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+

=
+
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+

=  

Note that  8 3 24
3 4 5,

3 2 25
xx yy BCI m I m I m  =  =  =  

Example 7:  The Mass Moment of inertia of Circular Ring? 

Solution 

We select a small element has the mass dm  at any point located at distance ),( yx  from the 

origin point  
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The Moment of inertia about −z axis (The axis is passing through the center (z-axis) and is 

perpendicular to the Ring) is given as 

dmadIzz

2= ………   →== 
m

zz dmadmaI
0

22   maI zz

2=                                                               

From the Perpendicular axis theorem (Here, the distance between the tangent and the diameter 

is a ) yyxxzz III += . So     
2amII yyxx =+                                                                                               

But xxI and yyI  are symmetric, so  yyxx II = , Then                                                          

2

2

1
amII yyxx ==   (The moment of inertia of a ring about of its diameter or the axis passes through the diameter) 

From the parallel axis theorem  
2222

2

1

2

1
amIamamIamII yyyyyyyy =→+=→+=   

2222

2

1

2

1
am

xx
Iamam

xx
IamI

xx
I yy =


→+=


→+=


 

Moment of inertia about an axis is passing through the edge of Ring and perpendicular to its 

plane and parallel an axis is passing through the center (z-axis) and is perpendicular to the 

Ring 

2 2 2 22I I m a I m a m a I m azz
z z z z z z

= + → = + → =       

 

Circular Ring For Vertical axis 

 

About axis in the plane of Circular Ring and passes in the its center 

The moment of inertia of the ring about of its diameter 

Axis of rotation 
2maI zz =  2

2

1
maII yyxx ==  

Axis of rotation 
22maI zz =  

2

2

3
maII

yyxx
==   
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Example 8:  Find the Mass Moment of inertia of Circular area ?  

Solution 

We divide the Circular area to the small Circular Rings, we selected one of them has mass 

( dm ),thickness ( dr ) and raids ( r ).   

 

So,  2

0

2

0
2

222 a
r

mdrrmdrrdm

aa

==→=→= 




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2

444

0
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2224

2
2)2(

a

ma
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maar
drrdrrrdmrI

aa

zz =======                        

2

2

1
maI zz =                                                                                                                          

From the Perpendicular axis theorem 

yyxxzz III += . So     
2

2

1
amII yyxx =+ .                                                                                             

But 
yyxx II ,  are symmetric, so  yyxx II = .     Then    

2

4

1
amII yyxx ==  

Circular area For Vertical axis  
About axis in the plane of Circular 

Ring and passes in the its center   

Axis of rotation 
2

2

1
maI zz =  2

4

1
maII yyxx ==  

Axis of rotation 
2

2

3
maI zz =  

2

4

5
maII

yyxx
==   
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Example 9:  Find the Moment of inertia of   Thin Disc?  

Solution 

We divide the solid Disc to the small Circular Rings, we selected one of them has mass 

( dm ),thickness ( dr ),distraction thickness ( z ) and raids ( r ).      

           

za
r

zmdrrzmdrzrdm

aa

==→=→=   2

0

2

0
2

222                                                                    

So, the Moment of inertia of thin Disc is 

4 4
2 2 3

0
0

(2 ) 2 2
4 2

a
a

zz

r a
I r dm r r z dr z r dr z z    = =  =  =  =              

4 4
2

2

1

2 2 2
zz zz

a m z a m
I I ma

m a z

 

 


= = → =


                                                                                                             

From the Parallel axis theorem     
22

2

3
amIamII zzzzzz =→+=                                                             

From the Perpendicular axis theorem  yyxxzz III += . So     
2

2

1
amII yyxx =+ .                                          

But yyxx II ,  are symmetric, so  yyxx II = .     Then    
2

4

1
amII yyxx ==  

Example: 10: Derive the Mass moment of inertia of Hollow Cylinder? 

Solution 



Mechanics of Rigid body                                                                                       Mathematics Department  

38 

Take the hollow cylinder as the corresponding shape, divide it into an infinite number of 

regular circular rings and take one of these rings with the mass ( dm ) and the radius  ( a ).  

 

Then the moment of inertia of this ring is given as    dmadIzz

2= .  

Then, the total moment of Hollow Cylinder  

2

0

22 amIamdmaI zz

m

zz =→==                                                      

                                                  

Example: 11: Derive the Mass moment of inertia of Solid Cylinder? 

Solution 

We divide the Solid Cylinder it into an infinite number of thin discs and take one of these 

discs with the mass ( dm ) and the radius ( a ). 
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Then the moment of inertia of this disc is given as. dmadIzz

2

2

1
= . Then the total moment of 

Hollow Cylinder 2

0

22

2

1

2

1

2

1
amIamdmaI zz

m

zz =→==     

Example: 11: Derive the Mass moment of inertia of Hollow Sphere? 

 Solution  

        

We divide the Hollow Sphere into a number of small circular rings and we consider one of 

them with the mass ( dm ), the radius ( y ) and thickness ( dz ). 

( ) ( ) ( )

2 2

0
0

2 2 2 2

2 2 ( sin ) 2 sin 2 cos

2 cos( ) cos(0) 2 1 1 2 1 1 4

dm y dz a a d m a d m a

a a a a

 

            

        

= = → = → = − =

= − − = − − − = + ==

                               
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The moment of inertia of this circular ring is given as dmydIzz

2= .                                     

Then the total moment of Hollow Sphere = dmyI zz

2 , then 

2 4 2 4 2

0 0

4 2

0 0

4 3 4 3 3

0
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Example: 12: Derive the Mass moment of inertia of Solid Sphere? 

Solution 

 

We divide the solid sphere into a number of hollow sphere and take one of these sphere with 

mass ( dm ), radius ( r ) and thickness ( dr ). Then the moment inertia of this sphere around oz  
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axis is 2)(
3

2
rdmdIzz = , for whole sphere the moment inertia is given as =
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Example: 13: Find the Mass moment inertial for the Hollow Circular Cone ?    

Solution 

Divide the Hollow Circular Cone into a number of small circular rings and take one of 

these rings with mass ( dm ), radius ( y ) and thickness ( dL ), which is located higher ( z ) than 

the base of the cone with radius ( a ). Note that it is similar to triangles ABC and CBA  , we 

have
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The moment of inertia of this circular ring is given as dmydIzz

2= .                                     

Then the total moment of Hollow Circular Cone = dmyI zz

2                                                              
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Example 14: Find the Mass moment inertial for the Solid Circular Cone? 

Solution 

We divide the Solid Circular Cone into a number of small Disks and take one of them 

with mass ( dm ), radius ( y ) and thickness ( dz ), which is located higher ( z ) than the base of 

the cone with radius ( a ). Note that it is similar to triangles ABC and CBA  , we have 
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The moment of inertia of this Disk is given as dmydIzz

2= .                                                       

Then the total moment of Solid Circular Cone = dmyI zz

2 , that is given  
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II. Area Moment of Inertia 

Area moment of inertia also known as second area moment or 2nd moment of area is a 

property of a two-dimensional plane shape where it shows how its points are dispersed in an 

arbitrary axis in the cross-sectional plane. This property basically characterizes the deflection 

of the plane shape under some load. 

Area moment of inertia is usually denoted by the letter I  for an axis in a plane. The 

dimension unit of second area moment is Length to the power of four which is given as 4L . If 

we take the International System of Units, its unit of dimension is meter to the power of four 

or 4m . If we take the Imperial System of Units it can be inches to the fourth power, 4in . 

We will come across this concept in the field of structural engineering often. Here the area 

moment of inertia is said to be the measure of the flexural stiffness of a beam. It is an 

important property that is used to measure the resistance offered by a beam to bending or in 

calculating a beam’s deflection. Here we have to look at two cases. 

First, a beam’s resistance to bending can be easily described or defined by the planar second 

moment of area where the force lies perpendicular to the neutral axis. 

Secondly, the polar second moment of area can be used to determine the beam’s resistance 

when the applied moment is parallel to its cross-section. It is basically the beams ability to 

resist torsion 

 

Area Moment Of Inertia Formulas 

The area moment of inertia for the area is given in below figure can be expressed 

mathematically as:  

Referenced to x -axis is given by            2 ,xxI y dA=      

Referenced to y -axis is given by           2 ,yyI x dA=  
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Referenced to o -point is given by          2 2 2( )O xx yyI r dA x y dA I I= = + = +                                                   

The parallel axis theorem                                                                                             

The parallel axis theorem is a relation between the moment of inertia about an axis passing 

through the centroid and the moment of inertia about any parallel axis. 

 

The parallel axis theorem states that 

                                  22 , xAIIyAII yyyyxxxx +=+=     
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A simple recap of the Basics: 

- Moments of inertia are always positive. 

- Minimum moments of inertia axes always pass through the center of mass.                                            

- Moments of inertia are a measure of the mass distribution of a body about a set of axes. 

Think of a rotating ice skater. If the person stretches the arms out, she slows down and 

speeds up otherwise. Hence the smaller the inertia the more concentrated or closer the mass 

is about a particular axis. 

- Area moments of inertia are for a particular section or a 2D surface. 

- Products of inertia can be positive, negative or zero. 

- Products of inertia are a measure of the symmetry of a body about a set of axes. They are 

zero about any axis normal to a plane of symmetry. 

- For any given point on a section, for example the centroid or any other point, there exists a 

set of axes oriented in such a way that all products of inertia are zero. 

Example 1: Find the Area moment of inertia of a rectangular section about a horizontal axis 

passing through base?                                                                

Solution  

We consider a uniform element with the length )(dx and thickness )(dy  as is shown in below Figure 
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The Area moment of inertia about its vertical corner is given by 

 
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Example 2: Find the Area moment of inertia of a triangular section about a horizontal axis 

passing through base?                                                                

Solution 

We consider a uniform element with the length )(dx and thickness )(dy as is shown in below 

Figure 
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Example 3: Determine Area the moment of inertia of the shaded area with respect to 

,ox oy −axes? 

http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
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Solution 

The Area Moment of inertia with respect to x- axis                                                                                 

We consider a uniform strip line parallels to the x − axis with the length (2 )x− and thickness 

)(dy as is shown in below Figure. Then (2 )dA x dy= −  
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So, the area moment of inertia with respect to x -axis is given as 
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The Area Moment of inertia with respect to y- axis                                                             

While if we consider a uniform strip line parallels to the y −axis with the length ( )y and 

thickness ( )dx as is shown in below Figure. Then dA y dx=   

  .                 

So, the area moment of inertia with respect to y -axis is given as 
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Again, the Area Moment of inertia with respect to x- axis 

If we consider the previous Figure (second Figure) we can find the Area moment of inertia as    
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Example 4: Determine the Area moment of inertia of the shaded area with respect to 

,ox oy −axes? 

 

Solution 

The Area Moment of inertia with respect to x- axis                                                                                 

We consider a uniform strip line parallels to the x − axis with the length ( )x and thickness 

)(dy as is shown in below Figure. Then dA x dy=  
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So, the area moment of inertia with respect to x -axis is given as 
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From the above Figure, the area moment of inertia with respect to y -axis is given by 
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The Area Moment of inertia with respect to y- axis                                                                          

While if we consider a uniform strip line parallels to the y −axis with the length (8 )y− and 

thickness ( )dx as is shown in below Figure. Then (8 )dA y dx= − . 

 

So, the area moment of inertia with respect to y -axis is given as 
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The Area Moment of inertia with respect to x- axis                                                                                      

If we consider the previous Figure (second Figure) we can find the Area moment of inertia 

with respect to x −  axis (from the parallel axis theorem) as    2( )xx
x x

I I dm y = +  
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Where    3 2 31 1
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For all the Area, we have 
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
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
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Example 5: Determine Area the moment of inertia of the shaded area with respect to 

,ox oy −axes? 
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Solution 

The Area Moment of inertia with respect to x- axis                                                                                  

We consider a uniform strip line parallels to the x − axis with the length ( )x and thickness 

)(dy as is shown in below Figure. Then dA x dy=  

 

So, the area moment of inertia with respect to x -axis is given as 

( ) 4
54

0

4

4

0

22

4

0

22 8.204
5

1024

5

)4(
mdyydyyydyxydAyI xx =======   

The Area Moment of inertia with respect to y- axis                                                                          

While if we consider a uniform strip line parallels to the y −axis with the length (4 )y− and 

thickness ( )dx as is shown in below Figure. Then (4 )dA y dx= −  
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( ) ( ) ( )
( )
7
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)16(4
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7
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0
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0
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1
2

16

0

22 −=







−=








−=−==  dxxxdxxxdxyxdAxI yy

42.7801428.4861333.5461 mI yy =−=  

Example 6: Determine the Area moment of inertia of the shaded area with respect to 

,ox oy −axes? 

 

Solution 

The Area Moment of inertia with respect to x- axis                                                                                  

We consider a uniform strip line parallels to the x − axis with the length ( )x and thickness 

)(dy as is shown in below Figure. Then dA x dy=  
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So, the area moment of inertia with respect to x -axis is given a 

( ) ( ) ( )
10

5 71 1 110 10 10
2 2 2 2 22 2 2

0 0 0
0

2
2 2 2 10 2 10 2 10

7
xxI y dA y x dy y y dy y dy y
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4 422
2 4

2 10 (10) 10
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= =  
 

 

The Area Moment of inertia with respect to y- axis 

If we consider the previous Figure (first Figure) we can find the Area moment of inertia with 

respect to y −  axis as    = dyxI yy

3

3

1
    

3 3 5
3 32 2 210 10
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3 5

4 4 42 2
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I x dy y dy y dy

I m
+

= = = =

= = =

    

Again the Area Moment of inertia with respect to y- axis                                                                          

While if we consider a uniform strip line parallels to the y −axis with the length (10 )y− and 

thickness ( )dx as is shown in below Figure. Then (10 )dA y dx= −  
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Example 7: Determine the Area moment of inertia of the shaded area with respect to 

,ox oy −axes? 

 

Solution 

The Area Moment of inertia with respect to x- axis                                                                                  

We consider a uniform strip line parallels to the y −axis with the length ( )y and thickness 

)(dy as is shown in below Figure. Then dA y dx=  
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So, the area moment of inertia with respect to x -axis is given as 

( ) ( ) 4454
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4

0

4

4

0

33 533.136
15
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4

15

2

15
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3

2
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mmydyydyyydxyI xx =======    

The Area Moment of inertia with respect to y- axis 

8
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III. Products of Inertia of mass 

Products of Inertia of mass 

(1) If the body is located in a plane as shown below figure and has mass ( )dm . Then the 

product of inertia with respect to the axes  ,ox oy  is given by 

 

dmyxIxy =                                                                                                            (1) 

Note that         dmxyIdmyxI xyxy ===  

(2) For the body in space  
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With respect to the axes  ,ox oy  

dmyxIxy =                                                                                                            (2)                               

With respect to the axes  ,ox oz                                                                                     

dmzxI xz =                                                                                                             (3)                        

While, With respect to the axes  ,oy oz                                                                                          

dmzyI yz =                                                                                                                    (4) 

Product of inertia can be positive or negative value as oppose the moment of inertia. The 

calculation of the product of inertia isn't different much for the calculation of the moment of 

inertia. The units of the product of inertia are the same as for moment of inertia. 

Parallel-axis theorem for products of inertia 

For any rigid body has mass ( m ) and the center of mass ( , )cm cmx y  as shown below figure 

 

Dividing the body into a number of small elements. Taking a small element whose mass 

( dm ) and its coordinate with respect to the original axes is ( , )x y . With respect to axes parallel 

to the original axes and passing through the center of mass the element has the coordinate 

( , )x y   .                                                                                                                                                  

For the original axes ( , )x y , the inertial product of  mass ( dm ) is given by                      

dmxyIxy =                                                                                                            (1)                 
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For the total mass )(m                                                                                                

dmyxI xy =                                                                                                         (2)               

From the above Figure ,cm cmx x x y y y = + = +   and into Eq. (2), we have  










+++=
















+








+== dmyxyxyxyxdmyyxxdmyxI cmcmcmcmcmcmxy  

 +++= dmyxdmyxdmxydmyxI cmcmcmcmxy
                                                     (3) 

But, it is well-known that 













=→


==→


=

==


dmydmy
dm

dmy
ydmxdmx

dm

dmx
x

myxdmyxIdmyx cmcmcmcmyx

,

,,

                                      (4)  

From Eq. (4) into Eq. (3), we have                                  

myxdmyxdmxyII cmcmcmcmyxxy +++=   

myxmyxmxyII cmcmcmcmyxxy +++=                                                                            (5) 

But the coordinate ( ),x y  is the center of mass from the center of mass and it is equal to zero. 

Substituting in (5) we get                                      

cmcmyxxy yxmII +=                                                                                                      (6)                        

Where xyI  is the product of inertia with respect to the two axes ,o x oy , while 
x y

I   is the 

product of inertia with respect to the two axes ,o x o y    and ,cm cmx y  are the distance of the 

center of gravity from the two axes ,o x oy , respectively. 

Notes 

(1)-The product of inertia is a product of different coordinates, so it can be positive or 

negative quantity 
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(2)- For the product of inertia is , ,xy yx yz zy zx xzI I I I I I= = =  

(3)- If the Products of Inertia are zero with respect to any two planes. It is said that the axis 

of intersection of these two axes is a principal axis. 

(4) If the inertia product is neglected with respect to any two principal coordinates ,ox oy , it 

is said that the tow axis ,ox oy  are principal axes 

(5)- Any symmetry axis in a flat plate with any perpendicular axis , then these axes are called 

the principal axes 

(6) - The product of inertia is finished for the two axes are perpendicular, if each other and 

one or both axes of symmetry. 

 

Example 1: Find the Product of Inertia of a thin uniform rectangular plate? 

Solution 

We divide the plate to small uniform strip, we consider one of them with the length )(dx and 

thickness )(dy as in Figure, where the density is  .  
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 bamabdyadydxmdydxdm

b
b a

=→===→=  
0

0 0
  

With respect to ,ox oy , we have yxdmdIxy )(= .   

 For the total plate, we have 

( ) mab
ba

mba

m

mbaba
dydxyxIdydxyxI

b a

xyxy
4

1

4422

222222

0 0
=====→=    

  

bamI xy
4

1
=  

From the theory of parallel axes for the product of inertia, the product of inertia with respect 

to ,ox oy   is given 0
4

1

4

1
)

2

1
()

2

1
(

4

1
=−==→+=→+=  abmmabIbamImabyxmII yxyxcmcmyxxy  

0=yxI .  So, the axes ,ox oy   are symmetric axes.  

Example 2: Find the Product of Inertia of a thin uniform triangular plate? 

Solution 

 ha
h

h
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h

y
yady

h

y
adydxmdydxdm

h h
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

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
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
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With respect to ,ox oy , we have yxdmdIxy )(= .   For the total plate, we have 
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From the theory of parallel axes for the product of inertia, the product of inertia with respect 

to ,ox oy   is given 
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IV. Moments of Inertia about inclined axis 

 

For xo       2)( ydmdI xx
=                                       

dmyI xx  =
2                                                                                                      (1)                                                                           

 sincos xyy −=  
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 For yo     
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2                                                                                                        (3)                                                                           

 sincos yxx +=  
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For yxI   
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dmyxI yx  =                                                                                                        (5)                                                                          
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From Eq. (6), the maximum angle happens at 0=yxI    

xxyy

xy
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I

−
=

2
2tan                                                                                                          (7) 

Eq. (2)……. xyyyxxxx IIII  2sinsincos 22 −+=    
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Eq. (4)…….  2sinsincos 22
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Add 1+2 and 8+9, we have  

yyxxyyxx IIII +=+                                                                                                    (10) 
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Example 3: Find the moment of inertia with respect to a diagonal of the 

rectangular plate? 

Solution 

 

It is well-known                                                                                 
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Then From Eq. 1-4, we have 

 2sinsincos 22

xyyyxxxx IIII −+= )cossin2(
4

1
sin

3

1
cos

3

1 2222  abmambmI xx −+==

22

22

22

22

22

22

22

22

22

22

2222

2

22

2

2

22

2

6

1
)322(

6

1

2

1

3

1

3

1

4

2

3

1

3

1

ba

ba
m

ba

ba
m

ba

ba
m

ba

ba
m

ba

ba
mI

ba

b

ba

a
abm

ba

b
am

ba

a
bmI

xx

xx

+
=−+

+
=

+
−

+
+

+
=















+














+
−














+
+














+
=





                










+
= 22

22

6

1

ba

ba
mI xx                                                                                                                                               (5) 

 2sinsincos 22

xyxxyyyy IIII ++=          )cossin2(
4

1
sin

3

1
cos

3

1 2222  abmbmamI yy ++==  



Mechanics of Rigid body                                                                                       Mathematics Department  

68 

2 2

2 2

2 2 2 2 2 2 2 2

1 1 2

3 3 4y y

a b a b
I ma mb mab

a b a b a b a b
 

       
       

= + +       
       + + + +       

4 4 2 2 4 4 2 2

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1

3 3 2 3 2y y

a b a b a b a b
I m m m m m

a b a b a b a b a b
 

+
= + + = +

+ + + + +

( )4224

22
232

)(6

1
bbaam

ba
I yy ++

+
=                                                                           (6) 

( ) ( )

( ) ( ) ( )34
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1

4

1

3

1

4

1

3

1

3

1

sincoscossin

2cos2sin
2

22

22

22

2

22

2

22
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2
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2

222222
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
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

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
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











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


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






+
+













+














+








−=

−+−=

+
−

=









ba

ab
abm

ba

b

ba

a
mab

ba

ab
abmI

ba

b

ba

a
mab

ba

b

ba

a
mambI

IIII

I
II

I

yx

yx

xyyyxxyx

xy

yyxx

yx





( ) 








+
−= 22

22

12

1

ba

ab
abmI yx                                                                                                                                  (7)           

Note that at O45= , we have ba = , Then 

( )

( ) 0
12

1

,
12

7
)7(

)2(6

1
232

)(6

1

,
12

1

6

1

22

22

4224

22

22

22

=








+
−=

==++
+

=

=








+
=







ba

ab
abmI

mmbbaam
ba

I

m
ba

ba
mI

yx

yy

xx

                                          (8) 

Example 4: Determine the product of inertia xyI of the right half of the parabolic 

area, bounded by the my 2=  and 0=x ? 
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Solution 

 

        



3

4
2

23

4
8

23

2
2

23

2

2
2

32
2

1

2

1

2

3

2

0

2

32

0

2

1

=→====







=→=  mydy

y
mdyxdm  

                  cmcmyxxy yxdmdIdI += 

                    mI xy
2

1
=        

( )

m
m

m

my

dyydyy
y

dyyxyxdyxyxdmI cmcmxy

2

1

3

43

2

3

2

3

2

12

8

3

8

4

1

34

1

4

1

22

1

2

1
)

2

1
(

2

0

3

2

0

2

2

0

2

0

2

=======

===== 







                                                                     Exercise 

Find the moment of inertia about xo   and yo  axis also the product of inertia for rectangular 

plate as is shown Figure ( 43 )? 
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Chapter 3 

Application 

Newton’s second law for rotation 

We have thus far found many counterparts to the translational terms used throughout this 

text, most recently, torque, the rotational analog to force. This raises the question: Is there an 

analogous equation to Newton’s second law F m a= , which involves torque and rotational 

motion? To investigate this, we start with Newton’s second law for a single particle rotating 

around an axis and executing circular motion. Let’s exert a force F on a point mass m that is 

at a distance r from a pivot point (see below Figure). The particle is constrained to move in a 

circular path with fixed radius and the force is tangent to the circle. We apply Newton’s 

second law to determine the magnitude of the acceleration  
F

a
m

=  in the direction of F . 

Recall that the magnitude of the tangential acceleration is proportional to the magnitude of 

the angular acceleration by a r=  
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Substituting this expression into Newton’s second law, we obtain  F m r=                   

Multiply both sides of this equation by r , we have   2r F mr =  

Note that the left side of this equation is the torque about the axis of rotation, where r  is 

the lever arm and F  is the force, perpendicular to r . Recall that the moment of inertia for a 

point particle is 2I m r= . The torque applied perpendicularly to the point mass in above 

Figure is therefore I =  

The torque on the particle is equal to the moment of inertia about the rotation axis times the 

angular acceleration. We can generalize this equation to a rigid body rotating about a fixed 

axis. 

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques 

equals the moment of inertia times the angular acceleration: 

i
i

I =  

The term I   is a scalar quantity and can be positive or negative (counterclockwise or 

clockwise) depending upon the sign of the net torque. Remember the convention that 

counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating clockwise 

and experiences a positive torque (counterclockwise), the angular acceleration is positive. 

 

Example-1: A uniform rod of length L2  and mass M is pivoted (is hinged) at one end and 

the other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it 

was horizontally. Prove that the horizontal reaction will be maximum when the Rod tilts on 

the horizontal at an angle ? mg
8

11
and in this case the vertical reaction is given as  

4


   

Solution 
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The motion of center of Rod  

 sinsin)( 1

2

1

2
mgRLmRmgLm −=→−=− ••                          (1)  

2cos RmgLm −=••                                                                      (2) 

The rotation of motion ( at then of Rod)  

( ) oOoO MIMI
dt

d
=→= •••                                                        (3)               

Eq. (3) maybe written as                                                        

    ( ) →=•• )()cos(2
3

1 2
LmgLm      cos

4

3

L

g
=••                        (4) 

1

2

sin
4

3

2
cos

4

3
cos

4

3
c

L

g
d

L

g
d

L

g

d

d
+=→=→=

•
••

•
•

 






                                                     

At the start point 0=  and 0=• , then  01 =c                                                             

 sin
2

32

L

g
=•                                                                                 (5)                                               

From Eq, (5) into Eq. (1)       sinsin
2

3
sinsin

2

3
11 mg

L

g
LmRmgR

L

g
Lm +








=→−=








                                         

sin
2

5
1 mgR =                                                                                 (6)                                              
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From Eq, (4) into Eq. (2)                                          

 cos
4

3
coscoscos

4

3
22 mgmgRRmg

L

g
Lm −=→−=








                                                                      

cos
4

1
2 mgR =                                                                                 (7)                                           

But                                                                                                                 

 cossin 12 RRRx −=                                                                       (8)               

 cossin 21 RRRy +=                                                                       (9)                                       

Then                                                          

 cossin
4

9
cos)sin

2

5
(sin)cos

4

1
( mgRmgmgR xx −=→−=                              

2sin
8

9
mgRx −=                                                                           (10) 

 22 cos
4

1
sin

2

5
cos)cos

4

1
(sin)sin

2

5
( mgmgRmgmgR yy +=→+=       

mgRy 







+=  22 cos

4

1
sin

2

5
                                                           (11)                                      

From Eq. (9)  2sin
8

9
mgRx = ,  xR   is maximum if   2sin  is maximum and sin 2  is 

maximum if 12sin =  , then 
42

2





 =→=                                                                              

In this case  mgRmgR yy
8

11

2

1

4

1

2

1

2

5
)

4
(

22

=→





















+








==


  

 

Example-2:  A uniform rod of length L  and mass M is pivoted (is hinged) at one end and the 

other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it 

was vertically with angle velocity 
L

g3
.  Find the reaction at the hinged point at 

3


 = and 

prove that the Rod move angle    in time  







+= )

2
tan()

2
sec(ln

3
2



g

L
t . 
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Solution 

 

 

The motion of center of Rod  

 coscos 1

2

1

2
mgRLmRmgLm −=→−=− ••                             (1) 

 sin2 mgRLm −=••                                                                        (2) 

The rotation of motion ( At then of Rod)  

( ) oOoO MIMI
dt

d
=→= •••                                                            (3) 

Eq. (3) maybe written as  

( ) →−=•• )()sin(2
3

1 2
LmgLm      sin

4

3

L

g
−=••                              (4) 

1

2

cos
4

3

2
sin

4

3
sin

4

3
c

L

g
d

L

g
d

L

g

d

d
+=→−=→−=

•
••

•
•

 






  

At the start point 0=  and 
L

g3
=• , then  

L

g

L

g

L

g
c

4

3

4

3

2

3
1 =−=  
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( )


cos1
2

3

4

3
cos

4

3

2

2
2

+=→+= •
•

L

g

L

g

L

g
                                       (5)  

Note that                         

1)
2

(cos2))
2

(cos1()
2

(cos)
2

(sin)
2

(cos)
22

cos()cos( 22222 −=−−=−=+=


          

From Eq. (5), we have  

 =→=→







==• dt

L

g
d

L

g

dt

d

L

g

dt

d 3

)
2

cos(

1
)

2
cos(

3
)

2
(cos2

2

3 2 





2

3
)

2
tan()

2
sec(ln2

3
)

2
()

2
sec(2 ct

L

g
dt

L

g
d +=








+=→= 


 

At the start point 0=  and 0=t   

( ) ( ) 001ln2)0tan()0sec(ln2 22 =+=→=+ cc  









+= )

2
tan()

2
sec(ln

3
2



g

L
t                                                                      (6)  

          mgR 







+= cos53

2

1
1 ( ) ( )  coscos1

2

3
coscos1

2

3
11 mg

L

g
LmRmgR

L

g
Lm +








+=→−=








+

                                                                     (7) 

                                                           sin
4

3
sinsinsin

4

3
22 mgmgRmgR

L

g
Lm −=→−=








−

           sin
4

1
2 mgR =                                                                                       (8)                                              

At 
3


 =                                 

mgRmggmmgR
4

11

4

11

2

5
3

2

1
)

3
cos(53

2

1
11 =→=














+=








+=


         (9) 

mgRmgmgmgR
8

3
)

2

3
(

4

1
)

3
(sin

4

1
sin

4

1
22 =→===


       (10)  
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Example 3: A body rolls down an inclined plane without slipping. Describe the motion of 

the body? 

Solution 

First draw a free body diagram of the  body, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  

 

Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm −=•• sin                                                                     (1) 

cos)0( mgRm −=                                                                    (2) 

Equation of Rotational Motion of a Rigid Body 

( ) cccc MIMI
dt

d
=→= •••                                                     (3) 

→=•• )()( aFIc     ••= 
a

I
F c                                                  (4) 

•••• −= 
a

I
mgxm csin                                                              (5) 
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Pure rolling  

•• = ax , then     •••• = ax  

 sinsin
22

gx
am

I
xx

a

I
mgxm cc =+→−= ••••••••  

22
1

sin

1

sin

am

I

g
xa

am

I

g
x

cc +

==→

+

= •••••• 



                                     (6) 

xx ••+= 20

2 vv  

2

2

2

2

2

2

1

2

sin
1

sin
2

1

sin
20

am

I

hgh

am

I

g
s

am

I

g
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=→



















+

=→



















+

+= vvv



     

2
1

2

am

I

hg

c+

=v                                                                               (7) 




sin

1

1
sin

1

sin1
22

2

gm

I

am
Forgm

Iam

I
F

am

I

g

aa

I
F

c

c

c

c

c

+

=










+
=→



















+

=        (8) 

RF   






cos

sin
2

mg

gm
Iam

I

R

F
RF

c

c












+
→→   

 tan
2 











+


c

c

Iam

I
                                                                   (9) 

 tan
2 











+
=

c

c

Iam

I   
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Example 4: A Solid Cylinder of mass m  and radius a  rolls without slipping down an 

inclined plane whose incline angle with the horizontal is theta. Determine the acceleration of 

the cylinder's center of mass, and the minimum coefficient of friction that will allow the 

cylinder to roll without slipping on this incline? 

Solution 

First draw a free body diagram of the cylinder, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  

 

Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm −=•• sin                                                                           (1) 

Rmg =cos                                                                                     (2) 

Rotational Motion of a Cylinder 

( ) cccc MIMI
dt

d
=→= •••                                                            (3) 

that can be written as 

→=•• )()(
2

1 2 aFam     ••= amF
2

1
                                                (4) 
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The necessary condition for rolling without slipping is the contact point have zero 

velocity (the condition for no sliding is). i. e. •••••• =→=  axax . Substitute in Eq. (4), we 

have                      

••= xmF
2

1
                                                                                     (5) 

Again, Substituting from Eq. (5) into Eq. (1), we have 

 sin
2

3
sin

2

1

2

1
sin gxgxxxmmgxm =→=+→−= ••••••••••  

sin
3

2
gx =••                                                                                 (6) 

Substituting from Eq. (6) into Eq. (5), we have 

 sin
3

1
)sin

3

2
(

2

1
gmFgmF =→=                                          (7) 

Again, the necessary condition for rolling without slipping is the static coefficient and is 

generally lower than the static coefficient of friction. i. e. RF   

R

F
                                                                             (8) 










 tan

3

1

cos

sin

3

1

cos

sin
3

1

→→
mg

gm

 

Example 5: Calculate the minimum coefficient of friction necessary to keep a thin circular 

ring from sliding as it rolls down a plane inclined at an angle   with respect to the horizontal 

plane. 

Solution 

First draw a free body diagram of the ring, which down the plane:                                          

We can write both of the Linear and rotation equations of motion  
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Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm −=•• sin                                                                           (1) 

Rmg =cos                                                                                     (2) 

Rotational motion equations 

( ) cccc MIMI
dt

d
=→= •••                                                            (3) 

that can be written as 

→=•• )()(2 aFam     ••= amF                                                 (4) 

The necessary condition for rolling without slipping is the contact point have zero 

velocity (the condition for no sliding is). i. e. •••••• =→=  axax . Substitute in Eq. (4), we 

have  

••= xmF                                                                                      (5) 

Again,  Substituting from Eq.. (5) into Eq. (1), we have 

 sin2sinsin gxgxxxmmgxm =→=+→−= ••••••••••  

sin
2

1
gx =••                                                                                 (6) 
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Substituting from Eq.. (6) into Eq. (5), we have 

 sin
2

1
)sin

2

1
( gmFgmF =→=                                          (7) 

Again, the necessary condition for rolling without slipping is the static coefficient and is 

generally lower than the static coefficient of friction. i. e. RF   

R

F
                                                                             (8) 










 tan

2

1

cos

sin

2

1

cos

sin
2

1

→→
mg

gm

 

Example 6: A uniform solid sphere of mass m  and radius a  rolls without slipping 

down an inclined plane whose incline angle with the horizontal is theta. 

Determine the acceleration of the ball's center of mass, and the minimum 

coefficient of friction that will allow the ball to roll without slipping on this 

incline? 

Solution 

First draw a free body diagram of the sphere, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  
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Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm −=•• sin                                                                           (1) 

Rmg =cos                                                                                     (2) 

Rotational motion equations 

( ) cccc MIMI
dt

d
=→= •••                                                            (3) 

that can be written as 

→=•• )()(
5

2 2 aFam     ••= amF
5

2
                                                (4)                                                            

The necessary condition for rolling without slipping is the contact point have zero velocity. i. 

e. •••••• =→=  axax . Substitute in Eq. (4), we have                                                                   

••= xmF
5

2
                                                                                     (5)                                                                                    

Again, Substituting from Eq. (5) into Eq. (1), we have 

 sin
5

7
sin

5

2

5

2
sin gxgxxxmmgxm =→=+→−= ••••••••••                                        

sin
7

5
gx =••                                                                                 (6)                                 

Substituting from Eq. (6) into Eq. (5), we have 

 sin
7

2
)sin

7

5
(

5

2
gmFgmF =→=                                     (7) 

Again, the necessary condition for rolling without slipping is the static coefficient and is 

generally lower than the static coefficient of friction. i. e. RF   

R

F
                                                                                       (8) 










 tan

7

2

cos

sin

7

2

cos

sin
7

2

→→
mg

gm
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Example 7: A uniform sphere of radius a  initially at rest rolls without slipping 

down from the top of a rough sphere of radius b . Find the angular velocity of the 

ball at the instant it breaks off the sphere and show that the angle 
101

17
cos

 −  
  
 

 with 

the vertical? 

Solution 

First draw a free body diagram of the sphere, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  

 

Note that  

( ) ( )..,,  rrr == vvv


 

( ) ( )....... 2,,
2

 rrrra r +−== aa


 

Equations of motion of Center of Gravity 

Fmgbam −=+ ••  sin)(                                                           (1) 
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Rmgbam −=+− •  cos)(
2

                                                       (2) 

Rotational motion equation 

( ) cccc MIMI
dt

d
=→= •••                                                     (3) 

That can be written as  

→=•• )()(
5

2 2 aFam     ••= amF
5

2
                                       (4) 

The condition for pure rolling is →=+  aba )( , then •• =+  aba )(   

•••••••• +
=→=+ 

a

ba
aba )(                                         (5) 

Substituting from Eq. (5) into Eq. (4), we have    

••+= )(
5

2
bamF                                                                      (6) 

Again, substituting from Eq. (6) into Eq. (1), we have    

 sin)(
5

7
)(

5

2
sin)( mgbambammgbam =+→+−=+

••••••  

 sin
)(7

5
g

ba +
=

••                                                                   (7) 

 +
=→

+
= ••

•
• 




 dg

ba
dg

bad

d
sin

)(7

5
sin

)(7

5
 

1cos
)(7

5

2

2

cg
ba

+
+

−=
•




                                                          (8) 

At the initial motion  0=   , then 0=•  

Then in Eq. (8), we have g
ba

c
)(7

5
1

+
=  and again in Eq. (8), we have  
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)cos1(
)(7

5

)(7

5
cos

)(7

5

2

2




−
+

=
+

+
+

−=
•

g
ba

g
ba

g
ba

 

)cos1(
7

10
)()cos1(

)(7

10 22
 −=+→−

+
= •• g

ba
ba

g
           (9) 

Substituting from Eq. (9) into Eq. (2), we have  

Rmggm −=







−−  cos)cos1(

7

10
 

mgmgRmgmgR
7

10
cos

7

17
)cos1(

7

10
cos −=→−−=          (10) 

When the ball instant breaks off the sphere 

At the instant, that the ball breaks off the sphere, the reaction equals zero, so from Eq. 

(10), we have  

10cos17
7

10
cos

7

17
0

7

10
cos

7

17
=→=→=−  mgmgmgmg  

O96853
17

10
cos

17

10
cos .1 =→








=→= −                          (11) 

In this case the angle will be maximum ( max = )  

Where the velocity is given by ( ) ( )..,,  rrr == vvv


)   حيث  ).,0 r=v


 

)cos1()(
7

10
)cos1(

)(7

10
)(.  −+=−

+
+== ba

g

ba

g
barv  

At the moment ( max = ) 

)
17

7
()(

7

10
)

17

1017
()(

7

10
)

17

10
1()(

7

10
ba

g
ba

g
ba

g
+=

−
+=−+=v  

)(
17

10
ba

g
+=v                                                                         (12) 
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INTRODUCTION  

 

n order to investigate the damped and forced harmonic oscillations 

we need to take a look on differential equation of higher order or in 

particular of order two with constant coefficients. A linear differential equation 

is an equation in which the dependent variable and its derivatives appear only 

in the first degree. A linear differential equation of order n of the form 

1 2

1 2 11 2
.... ( ) (1)

n n n

n nn n n

d y d y d y dy
a a a a y Q x

dxdx dx dx
 

where 1 2 1, , .... ,n na a a a are constants and ( )Q x  is any function of x  is called a 

linear differential equation with constant coefficients. 

For convenience, the operators 
2 3

2 3
, , ....,

n

n

d d d d

dx dx dx dx
 are also denoted by 

2 3, , , ....., nD D D D , respectively. 

Thus the equation (1) can also be written as 

1 2
1 2 1.... ( ) (2)n n n

n nD y a D y a D y a Dy a y Q x  

1 2
1 2 1( .... ) ( ) (3)n n n

n nD a D a D a D a y Q x  

If ( )y f x is a solution of the homogeneous ODE 

1 2
1 2 1.... 0n n n

n nD y a D y a D y a Dy a y  

I 

DAMPED and Forced oscillations 
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and ( )y x  is any particular solution of the equation (2) not containing any 

arbitrary constant, then 

( ) ( )y f x x  

is the general solution of ODE (2). 

Thus the method of solving a linear equation is divided into two parts: 

First, we find the general solution of the equation (3). It is called the 

complementary function (C.F.). It must contain as many arbitrary constants as 

is the order of the given differential equation. 

Next, we find a solution of (2) which does not contain an arbitrary constant. 

This is called the particular integral (P.I.). If we add (C.F.) and (P.I.), we get 

the general solution of (2). Thus the general solution of ODE (2) is 

C.F.+P.I.y  

 

 Determination of complementary solution (C.S.) 

Consider a linear nth order differential equation with constant coefficients of 

the form ( ) 0f D , i.e., 

1 2
1 2 1( .... ) 0 (4)n n n

n nD a D a D a D a y  

This is equivalent to 

1 2 3(( )( )( )...( )) 0 (5)nD m D m D m D m y  

The solution of any one of the equations 

1 2( ) 0,( ) 0, .....,( ) 0 (6)nD m y D m y D m y  

is also a solution of (5) and we know that the general solution of  

1( ) 0D m y  is 1m xy Ae  

Hence we can assume that a solution of the equation (5) is of the form mxy e  

Then, substituting mxe for y in (1), so that 

2 2, , ....mx mx n n mxDy me D y m e D y m e  we get 
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1 2
1 2 1( .... ) 0n n n mx

n nm a m a m a m a e  

Or  1 2
1 2 1.... 0n n n

n nm a m a m a m a because 0mxe  

Hence mxe will be a solution of (4) if m has the value obtained from the 

equation 

1 2
1 2 1.... 0 (7)n n n

n nm a m a m a m a  

The equation (7) is called the auxiliary equation (A.E.) and is obtained by 

putting D m in ( ) 0f D  

It will give in general n roots, say 1 2 3, , , ..., nm m m m  

Now we will consider three cases of these roots. 

 

 Case I: If all the roots of the Auxiliary Equation (A.E.) are distinct: 

If the roots 1 2 3, , , ..., nm m m m are all distinct, then 1 2, , .... nm x m x m xe e e are all 

distinct and linearly independent. So the general solution of (1) in this case is 

1 2 3
1 2 3 ...... (8)nm x m x m x m x

ny c e c e c e c e  

 Case II: Auxiliary equation having equal roots: 

If two roots are equal say 1 2m m , then the solution (8) becomes 

1 1 3
1 2 3 ...... nm x m x m x m x

ny c e c e c e c e  

Or  1 3
1 2 3( ) ...... nm x m x m x

ny c c e c e c e  

Now ( 1 2c c ) can be replaced by single constant say c. 

Therefore this solution has only (n - 1) arbitrary constants and so it is not the 

general solution. 

To obtain the general solution, consider the differential equation 

2
1( ) 0D m y  in which the two roots are equal. 

This can be written as 1 1( )( ) 0 (9)D m D m y  
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Now putting 1( )D m y v we get 1( ) 0D m v  

or 1/dv dx m v  or  1/dv v m dx  (variables being separated). 

Then by integrating, 

1 1log logv m x c  or    1 1log( / )v c m x   or    1
1
m xv c e  . 

Thus putting it in (9)     1
1 1( ) m xD m y v c e  

or  1
1 1

m xDy m y c e  or 1
1 1

m xdy d
m y c e D

dx dx
 

or   
1 1 1

1

1 1 1

1

m x m x m x

m x

dy d
e m e y c e y c

dx dx
d e y c dx

 

by integrating this equation we get 

1 1
1 2 1 2( )m x m xe y c x c y c x c e  

Hence the general solution of ( ) 0f D y  in this case is 

1 3
1 2 3( ) ...... nm x m x m x

ny c c x e c e c e  

Similarly if three roots of the auxiliary equation are equal say, 1 2 3m m m

, the general solution of ( ) 0f D y  will be 

1 42
1 2 3 4( ) ...... nm x m x m x

ny c c x c x e c e c e and so on. 

 

Case III: Auxiliary equation having complex roots:  

Let the two roots of the auxiliary equation be complex, say 1m i  and

2m i , (where 2 1i ). 

The solution corresponding to these two roots will be 

( ) ( )
1 2

1 2

1 2

1 2 1 2

(cos sin ) (cos sin )

( ) cos ( ) sin

i x i x

x i x x i x

x x

x x

y c e c e

c e e c e e

c e x i x c e x i x

c c e x i c c e x

 



  5 

or   1 2( cos sin )xy e A x A x where 1 1 2 2 1 2, ( )A c c A i c c  

or  1 2( cos sin )xy e c x c x by changing the constants. 

If the imaginary roots are repeated, say i  and i  occur twice then 

the solution will be 

1 2 3 4( )cos ( )sinxy e c c x x c c x x  

and so on. 

Note 1: The expression 1 2( cos sin )xe c x c x  can also be written as 

1 2sin( )xc e x c  or 1 2cos( )xc e x c  

Note 2: If a pair of the roots of the auxiliary equation is irrational i. e., they 

are i , where  positive, then the corresponding term in the C.F. is 

will be   1 2cosh sinhxe c x c x  

or   1 2sinh( )xc e x c  or 1 2cosh( )xc e x c  

If these irrational roots are repeated twice, then the corresponding portion of 

the solution will be 

1 2 3 4( )cosh ( )sinhxe c c x x c c x x  
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Illustrative Examples

 

 EXAMPLE: Solve 
2

2
7 12 0

d y dy
y

dxdx
 

 Solution: The given differential equation is 2( 7 12) 0D D y  .  

Then the auxiliary equation is 2 7 12 0m m  

or  ( 3)( 4) 0 3 and 4m m m . 

Hence the solution is 3 4
1 2
x xy c e c e  

 

 EXAMPLE: Solve 3 2( 6 11 6) 0D D D y  

 Solution: The auxiliary equation is 3 26 11 6 0m m m  

or  1, 2, 3m . 

Hence the solution is 2 3
1 2 3
x x xy c e c e c e  

 

 EXAMPLE: Solve 
2

2
3 2 0

d x dx
x

dtdt
 given that when 0, 0t x  and 

/ 0dx dt  

 Solution: The auxiliary equation is 2 3 2 0m m  1,2m . 

Hence the solution is 2
1 2
t tx c e c e    (1) 

where c1 and c2 are arbitrary constants. 

Now 0x  when 0t   1 20 (*)c c  

Also 2
1 2/ 2t tdx dt c e c e and / 0dx dt  when 0t  1 20 2 (**)c c  

Solving (*) and (**), we get, 1 2 0c c . 

Now putting values of c1 and c2 in (1), we get the required solution as 0x  
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 EXAMPLE: Solve 
3

2
8 0

d y
y

dx
. 

 Solution: The auxiliary equation is given by 3 8 0m  

or  2( 2)( 2 4) 0 i.e., 2 and 1 3m m m m m i . 

Hence the solution is written as 

2
1 2 3( cos 3 sin 3 )x xy e c x c x c e     

 

 EXAMPLE: Solve 
4 3

4 3
2 2 0

d y d y dy
y

dxdx dx
. 

 Solution: The auxiliary equation is given by  

4 3

4 2

2 2 2

2 2

2 2 1 0

or ( 1) 2 ( 1) 0

or ( 1)( 1) 2 ( 1) 0

or ( 1)( 2 1) 0

m m m

m m m

m m m m

m m m

 

That is the roots are and 1 2m i m  

Hence the solution is written as 

1 2 3 4( cos sin ) ( cosh 2 sinh 2 )xy c x c x e c x c x     
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PROBLEMS 

 

Solve the following ordinary differentia equations 

1- 
2

2
( ) 0

d y dy
a b aby

dxdx
 

2- 
2

2
3 4 0

d y dy
y

dxdx
 

3- 
3 2

3 2
6 3 10 0

d y d y dy
y

dxdx dx
 

4- 
2

2
4 4 0

d y dy
y

dxdx
 

5- 
4 3 2

4 3 2
2 3 4 4 0

d y d y d y dy
y

dxdx dx dx
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DAMPED AND FORCED OSCILLATIONS 

 

imple harmonic motion has constant amplitude and goes on 

forever. For many real oscillating systems, SHM is not a very 

good model: usually the amplitude of the oscillations 

gradually decreases, and the motion dies away. 

When you find that a model is unsatisfactory, you need to look again at your 

assumptions. Real oscillating systems are almost always damped: that is they 

are affected to some degree by the resistive forces of friction and/or air 

resistance. They perform damped oscillations. 

In many systems the damping force is proportional to the speed of the object. 

This is often represented on a diagram by a device called a linear dashpot, as 

shown in Figure 1. 

A dashpot exerts a force on the system which is proportional to the rate at 

which it is being extended or compressed, and which acts in the direction 

opposite to that of the motion. This is illustrated in Figure 2. 

S 

Figure 1 

Figure 2 
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The force R that the dashpot exerts on the system at time t is given by 

dL
R

dt
 

where the constant of proportionality  is called the dashpot constant (or the 

damping constant). The amount of travel still left in the dashpot (see Figure 3) 

is denoted by L.  

It is important to be clear in your mind about the direction of the force R and 

the signs involved. Look at the point P on the moving part of the dashpot. 

When P is moving from right to left, L is increasing; /dL dt is positive and 

the force is in the same direction as that marked for R in Figure 3. The dashpot 

is opposing the right to left motion. 

 When P is moving from left to right, L is decreasing, /dL dt is negative and 

the force is in the opposite direction to that marked for R in Figure 3. The 

dashpot is now opposing the left to right motion. 

Thus the sign of the dashpot force looks after itself as the motion changes. 

However you will not usually be interested in the quantity L so much as the 

distance of the point P from some fixed point of the system. This distance is 

shown as x  in Figure 3. All the systems that you will meet in this book are set 

up so that as x increases, L decreases, and vice versa, so 

dx dL

dt dt
 

Consequently the force that the dashpot exerts on the system is given by 

dx
R

dt
 

in the direction of increasing x . 

Figure 3 
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The general equation for damped oscillations 
 

The differential equation of motion in the spring-mass-dashpot system above is 

an example of the general differential equation of a linearly damped system: 

2

2
0

d y dy
m ky

dtdt
 

Or by dividing by m 
2

2
2

0
d y dy

y
dtdt

 

where and ,  are positive constants. For a spring-mass-dashpot system, 

/mwhere  is the dashpot constant, and 2 /k mwhere k  is the 

stiffness of the spring. The quantity ( /2 ) is called the natural frequency of 

the system: it is the same whether the system is damped or undamped. 

The solution of this ordinary differential equation can give several different 

types of motion, 

depending on the relative sizes of the parameters and , . The auxiliary 

equation is given by 2 2 0  

This has two solutions 

2 2 2 2

1 2
4 4

and
2 2

 

The discriminant, 2 24 , determines the nature of the solution. There are 

three possibilities, as follows. 

Over-damping: 2 24 , is positive, and the system does not oscillate see 

Figure 4. 

Figure 4 



Damped Oscillations

 
12 

Under-damping: 2 24 , is negative, and oscillations occur oscillate see 

Figure 5. 

 

Critical damping: 2 24 0 , Figure 6 

 

Critical damping is the borderline between overdamping and underdamping. It 

is not obvious in a physical situation when damping is critical, since the pattern 

of motion for critical damping can be very similar to that in the overdamped 

case. 

 

 

 

 

 

 

 

 

 

Figure 5 

Figure 6 
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Illustrative Examples

 

 EXAMPLE: A simple oscillating system is being modelled as a damped 

spring-mass oscillator, in which an object of mass 2 kg is attached to fixed 

points by a spring of natural length 0.5 m, stiffness 20 Nm
-1

 and by a dashpot 

of constant 12 Nm
-1

 s. The spring-mass dashpot system lies on a smooth 

horizontal surface, as shown in the Figure 7. 

i) Formulate the differential equation of motion for this system. 

The system is released from rest when the spring length is 0.6 m. 

ii) Find the particular solution of the differential equation that models this 

situation. 

 SOLUTION 

i) Figure 8 shows the spring-mass-dashpot system at some general time t 

(seconds), 

when the extension of the spring is x . The horizontal forces are the tension in 

the spring, T, and the damping force R. 

The tension in the spring is 20T kx x . 

The dashpot force is 12
dx dx

R
dt dt

 

Applying Newton’s second law F ma  at any instant gives 

2

2
2 12 20
d x dx

x F R T
dtdt

 

Figure 7 

Figure 8 
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Dividing both sides by 2, and rearranging, you obtain the equation of motion of 

the spring-mass dashpot system: 

2

2
6 10 0

d x dx
x

dtdt
 

ii) The auxiliary equation for the differential equation is 

2 6 10 0 3 i  

The general solution of the differential equation is  3 sin( )tx Ae t  

At the start of the motion, the length of the spring is 0.6 m and the object is at 

rest, so the initial conditions are 0.1, / 0 as 0x dx dt t and _ 

when 0, 0.1 sin 0.1t x A   (1) 

when 0, 0 3 sin cos 0 tan 1/3
dx

t A A
dt

 

From Eq. (1) we see that sin 0.1/A  which is positive, and so  must be an 

angle in the first quadrant. 

0.322 (radians) and 0.1 / sin0.322 0.316A  

The particular solution in this case is 

30.316 sin( 0.322)tx e t  

The initial amplitude of the motion is 0.316 m and the period  

2 2
2 ( 1)

1
 

 

 

 

 

 

 

 
Figure 9 
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The amplitude decays exponentially. In this case, the oscillation decays very 

quickly. Figure 9 shows the graph of a typical damped oscillation. There are 

many real situations where the oscillations decrease gradually in amplitude like 

this. Oscillations of this type are often called lightly damped or underdamped. 

 

 EXAMPLE: A particle of mass 20 kg executes a simple harmonic motion on 

X axis. Initially the particle position was at 4 m from the center and has a 

velocity 16 ms
-1

 and acceleration 80 ms
-2

 directed towards the center. A 

resistance force acted on the particle of magnitude value per unit of mass is 8v

where v  indicates the instant velocity. Find the position and velocity of the 

particle in terms of time and the periodic time and the frequency. 

 SOLUTION 

Since, for S.H.M. ,F x F Kx Mx Kx  

Due to the boundary conditions: 

20(80) 4 400K K  

when the resistance force acts  then the equation of motion becomes 

20 8(20) 400 ( 8 )

8 20 0

Mx R Kx x x x R x M

x x x
 

The auxiliary equation for the differential equation is 

2 8 20 0 4 2i  

Therefore, the general solution of the differential equation is 

4 4( sin2 cos2 ) or sin(2 )t tx e A t B t x Ae t  

where A and B are arbitrary constants, and to obtain their values, at the start of 

the motion, i.e., initial conditions are 4, / 16 as 0x dx dt t  

when 0, 4 4t x B   when 0, 16 16
dx

t B
dt

 

The particular solution in this case is 

44 (4 sin2 cos2 ) (1)tx e t t  
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which gives the position of the particle at any instant and it illustrates that the 

motion of under-damping type with resistance factor 4te , it is clear that the 

amplitude of the motion reduces as Figure 9, to get the velocity in terms of 

time, differentiate Eq. (1)  

4 4

4

16 (4 sin 2 cos2 ) 4 (8 sin 2 2cos2 )

16 (cos2 4.5 sin 2 ) (2)

t t

t

x e t t e t t

x e t t
 

Eq. (1) can be re-written as  

44 17 sin(2 ) (tan 1/4)tx e t  

That is the amplitude of the motion is 44 17 te and the period  

2 2
( 2)

2
 

The frequency is 1/ 1/  

 

 EXAMPLE: The differential equation for a particle moves along straight line 

is 5 4 0x x x , initially the point at 1, 2x x  as 0t . Prove that the 

point reaches its maximum distance after time (1/3)ln2 .  

 SOLUTION 

Since, 5 4 0x x x  

The auxiliary equation for the differential equation is 

2 5 4 0 4, 1  

Therefore, the general solution of the differential equation is 

4t tx Ae Be  

where A and B are arbitrary constants, and to obtain their values, at the start of 

the motion, i.e., initial conditions are 1, 2 as 0x x t  

when 0, 1 1t x A B
 
at 0, 2 2 4t x A B  

this gives 1, 2A B The particular solution in this case is 
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4 42 and 4 2t t t tx e e x e e  

This is a over-damping motion, and the point reaches its maximum distance 

when 0x
 
that is  

4 4 3 1
0 4 2 2 or 2 ln 2

3
t t t t te e e e e t  

 

 EXAMPLE: A particle of mass m is attached to one end of a string, of length 

b, the other end of which is tied to a fixed point O, immersed in a viscous 

medium, where the resistance of the medium is proportional to the velocity 

with constant of proportionality equals 1/22 ( / )m g b ; g  being the gravity 

acceleration. Initially the particle has been given a small angular displacement 

from rest with respect to vertical axis. Find the angular displacement and 

velocity at any instant. 

  SOLUTION 

Let the particle make an angle  after time t as 

shown in the figure, then by using polar coordinate 

system the governing differential equation of 

motion is 

1/2sin ( 2 ( / ) )

2
sin 0

mb mg Rb R m g b

g g

b b

 

But the angular displacement is small such that 

sin and cos 1  

Hence the previous equation becomes 

2 0
g g

b b
 

The auxiliary equation for the differential equation is 

2 2 0 , (repeated)
g g g g

b b b b
 

Therefore, the general solution of the differential equation is 
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/( ) g btA Bt e  

where A and B are arbitrary constants, and this equation illustrates that the 

particle in critical damped harmonic motion. 

 Remember that in polar coordinate the velocity and acceleration components 

are given by 2( , ), ( , 2 ))v r r a r r r r  

and in particular case r b  these components become  

2(0, ), ( , )v b a b b  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  19 

 Damped forced oscillations 

Earlier in this chapter you saw the effect on simple harmonic 

motion of introducing a linear damping device called a 

dashpot. The oscillations, if they occurred, decayed to zero. If 

the damping constant, , was large compared with the 

stiffness of the spring and the mass of the object, oscillations 

did not occur at all. 

 

You have also seen the effect of forcing an undamped system. 

Most real systems do have an element of damping, so in this 

section we explore the effect of including a linear dashpot in the system.  

Figure 10 shows the spring-mass system which, as before, is forced to oscillate.  

A linear dashpot has been added below the object. 

 

 Modeling forced vibrations: the undamped case 

In order to understand the mathematics of forced oscillations, including 

resonance, we look at the simplest suitable case, that of an object hanging on a 

light, perfectly elastic spring, without damping. (The case in which both 

forcing and damping occur is considered later in this chapter). 

In Figure 11 the top end A of the spring is forced to vibrate so that its 

displacement at time t is siny A t . (This can be achieved experimentally, 

to a reasonable approximation, by attaching the supporting string over a pulley 

to a rotating cam.) 

If the natural length of the spring is 0 , the stiffness of the spring is k  and the 

object has mass m, then in equilibrium, point A coincides with O, the object is  

Figure 10 
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at rest and the extension of the spring is /mg k . At a general time t during 

the forced motion, the extension of the spring below the equilibrium position is 

denoted by x  (Figure 12). 

There are two forces acting on the object, the force of gravity mg  and the 

tension T. The acceleration of the object is x . Applying Newton’s second law 

gives mx mg T  

The extension of the spring is ( x y ), so the tension in the spring is 

( )T k x y . 

The equation of motion is therefore 

2

2
( )

d x
m mg k x y
dt

 

Expanding the right-hand side and recalling that 0mg k  (Figure 11), 

this becomes 

2

2

d x
m kx ky
dt

 

Dividing both sides by m and putting 2 /k m  

2 2
2 2 2 2

2 2
or ( )

d x d x
x y x f t

dt dt
 

In the system we have described, siny A t . This is forced harmonic 

motion, and  /2  is called the forcing frequency. The differential equation of 

motion may be written as 2 2 sin (*)x x A t  

Figure 11 Figure 12 
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The complementary function is given by cos sinA t B t  

For the particular integral, try sin cosx p t q t . This gives 

2
2

2
( cos sin ) and ( cos sin )

dx d x
p t q t p t q t

dt dt
 

Substituting these in the differential equation of motion gives 

2 2( cos sin ) ( sin cos ) sinp t q t p t q t A t Equating 

coefficients: 

2 2 2

2 2

sin :

cos : 0

t p p A

t q q
 

Assuming , this gives 
2

2 2
and 0

A
p q  

The particular integral is therefore 
2

2 2
sin

A
t  

The general solution of the differential equation (*) is therefore 

2

2 2
cos sin sin ,

A
x A t B t t  

Describing forced oscillations 

You should have made the following deductions. 

 The terms sin cosA t B t represent the natural or free oscillations of the 

system, as they would occur if the cam were not rotating. The natural 

frequency of the system is /2  

The term 
2

2 2
sin

A
t  represents the oscillations caused by rotating cam. 

 As the value of  approaches that of , the quantity 2 2  in the 

denominator tends to zero: the forced oscillations increase in amplitude. 

Consequently a small input amplitude A  leads to a much larger output 

amplitude 2 2 2/( )A . This effect is known as resonance. 

 This solution is only valid in cases where  does not actually equal . 
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Over the last few pages we have set up and solved a differential equation to 

model a simple case of forced oscillations. This has given us a mathematical 

explanation for the phenomenon of resonance which we described earlier in 

this chapter. 

 

The case when  

Resonance occurs when the frequency of the driving function is the same as the 

natural frequency of the system. Looking back at the differential equation for 

the general spring-mass system (equation
2

2 2
2

sin
d x

x A t
dt

), this 

occurs when  and so the differential equation becomes 

2
2 2

2
sin

d x
x A t

dt
 

Since it is unaffected by the function on the right-hand side of the equation, the 

complementary function is still sin cosA t B t . To obtain the particular 

integral, given the function on the right-hand side, you would normally try 

sin cosx A t B t  but this is included in the complementary function. 

So you multiply the usual trial function by the independent variable. 

In this case try ( sin cos )x t A t B t . 

Differentiating this gives 

      ( sin cos ) ( cos sin )x A t B t t A t B t  

And   22 ( cos sin ) ( sin cos )x A t B t t A t B t  

Substituting these into the differential equation gives 

2

2 2

2 ( cos sin ) ( sin cos )

( sin cos ) sin

A t B t t A t B t

t A t B t A t
 

Equating coefficients: 

2 2 2

2 2

1
sin : 2

2
cos : 2 0 0

t B At At A B A

t A Bt Bt A
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So a particular integral is cos
2

A t
t   and the general solution in the case 

when is given by 

sin cos cos
2

A t
x A t B t t  

Note that as t increases the forcing term dominates the solution. It represents an 

oscillation whose amplitude is proportional to t and so grows linearly with 

time. This is a mathematical description of resonance. It occurs when the 

forcing frequency is identical to the natural frequency of the system. 

 

Drawing graphs of forced oscillations: 

To illustrate the general results we have just established, we take a particular 

set of values for the variables involved and specify the initial conditions. 

The general solution of  

2
2 2

2
sin ( )

d x
x A t

dt
 

is given by  
2

2 2
sin cos sin

A
x A t B t t  

Let us take the following values: 

the stiffness of the spring:    k = 20 Nm
-1

 

the mass of the object:     m = 0.2 kg 

the amplitude of the forcing motion:      A’= 0.02 m 

acceleration due to gravity:    g = 10 ms
-2

, 

and we assume that initially the object is stationary at the equilibrium position 

so that when t = 0, 0x x   

Since 
2

1
(2sin 0.2 sin10 ) ( )

100
x t t
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Graphs in Figure 13 show the variation of x  with t for various values of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of ( ) . The solution may be written as 

0.01(sin10 0.1 cos10 ) ( )x t t t  

Figure 14 shows the graph of this solution. 

 

 

 

 

Figure 13 

Figure 14 
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As before, the spring has stiffness 20 Nm
-1

, the object has mass 0.2 kg and the 

amplitude of the forcing oscillation is 2 cm. The dashpot constant is 1 Nm
-1

s 

and g is taken to be 10 ms
-2

. The object starts from rest in its equilibrium 

position. 

The first step is to formulate a differential equation to model this system. 

Figure 15 shows the system and the forces acting, first in equilibrium and then 

at some general time t during the motion. 

In equilibrium, the extension of the spring is 
2

0.1
20

mg

k
. At the 

general time t the object is displaced a distance x  below the equilibrium level. 

The acceleration of the object is 
2

2

d x

dt
 

The net force on the object in the direction of positive x  (i.e. downwards) is 

mg R T  

Applying Newton’s second law at any instant t gives 

2

2

d x
m mg R T
dt

 

The extension of the spring is x y  so 20(0.1 )T x y  

Let the length of the dashpot at time t be L, and its length in equilibrium be L0. 

Figure 15 
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Then 0L L x  and 
dL dx

dt dt
 

The dashpot force R is given by 
dL

dt
, where  is the dashpot constant. So in 

this case, 

1 ( 1)
dL dx

R
dt dt

 

The equation of motion becomes 

2

2
0.2 2 20(0.1 )
d x dx

x y
dtdt  

2

2
5 100 100

d x dx
x y

dtdt  

If the displacement of the forcing point is 0.02siny t , the differential 

equation modeling the system is 

2

2
5 100 2sin

d x dx
x t

dtdt
 

The next stage is to solve the differential equation, which is (as before) a 

nonhomogeneous linear equation with constant coefficients. Its auxiliary 

equation is 

2 5 100 0 2.5 9.68i  

The complementary function is therefore 2.5 ( sin9.68 cos9.68 )te A t B t . 

For the particular integral, try sin cosx p t q t . 

Differentiating this gives 

2
2

2
( cos sin ), ( sin cos )

dx d x
p t q t p t q t

dt dt
 

Substituting these in the differential equation for the system, gives 

2( sin cos )

5 ( cos sin ) 100( sin cos ) 2 sin

p t q t

p t q t p t q t t
 

Equating coefficients: 
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2

2

sin : 5 100 2

cos : 5 100 0

t p q p

t q p q
 

Solving these equations for p and q gives  

2

2 2 2 2 2 2

2(100 ) 10
, and ,

(100 ) 25 (100 ) 25
p q  

The particular integral is therefore 

2

2 2 2 2 2 2

2(100 ) 10
sin cos

(100 ) 25 (100 ) 25
t t  

The general solution is the sum of the complementary function and the 

particular integral: 

2.5

2

2 2 2 2 2 2

( sin 9.68 cos9.68 )

2(100 ) 10
sin cos

(100 ) 25 (100 ) 25

tx e A t B t

t t
 

As t increases, the natural damped oscillations, given by the complementary 

function, 

decay because of the 2.5te  term, leaving 

2 2 2

2

(100 ) 25
 

This is called the steady state solution. It is 

the particular integral of the differential 

equation. It describes the oscillations that 

occur after the unforced oscillations have died 

away. Figure 16 shows graphs of this steady 

state solution for two values of . 

Remember that in the undamped case the 

value of  for resonance was calculated by setting the denominator to zero in 

the particular integral. Catastrophic resonance does not occur in the damped 

case, because the denominator of each part of the particular integral is always 

Figure 16 
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greater than zero. However, the amplitude of the forced vibrations does still 

depend on the value of . 

The amplitude of the steady state oscillations is the square root of the sum of 

the squares of the coefficients of cos t  and sin t  in the steady state 

solution, i.e. 

2 22

2 2 2 2 2 2

2(100 ) 10

(100 ) 25 (100 ) 25
 

This can be simplified to 

2 2 2

2

(100 ) 25
 

This result shows how the amplitude of the steady state solution depends on . 

Figure 17 shows a graph of this amplitude against  

When  and  are close in value 

to each other, then it follows that 

the forcing frequency        /2  

and the natural frequency   /2  

are close in value. When this is the 

case, the steady state oscillations 

become large compared with the 

input amplitude. The motion of the system at these relatively large amplitudes 

is still called resonance, though the amplitude of the vibrations does not 

increase without limit as it does in the undamped case. 

 

You have now seen the effect of linear damping on the system. What would be 

the effect of varying the damping constant, ? To predict this, look at the 

differential equation for the same damped spring-mass system (m = 0.2 and k = 

20), but this time use a general damping constant . The equation becomes 

2

2
0.2 20 0.4 sin
d x dx

x t
dtdt

 

Figure 17 
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We know that the complementary function decays and that the steady state 

oscillations are given by the particular integral. In this case it is 

2

2 2 2 2 2 2 2 2

0.4(20 0.2 ) 0.4
sin cos

(20 0.2 ) (20 0.2 )
x t t  

The amplitude of the steady state forced oscillation is 

2 2 2 2

2

(100 ) 25
 

 

Figure 18 shows graphs of the 

steady state amplitude against 

 for different values of . 

The graphs show that as  

decreases (i.e. the amount of 

damping is reduced), the 

amplitude at the resonant 

frequency increases. In each 

case resonance occurs when  is very near in value to  (in this case 10). In 

any real system there is always some damping but, as you can see, if the 

damping constant is small the resonance can still be damaging. 

 

Activity: The previous example involved a particular case of damped forced 

motion in which the various parameters of the system were given particular 

values. 

i) Show that the differential equation modelling the general case may 

be written.          
2

2 2
2

sin
d x dx

x A t
dtdt

 

ii) Find  

a) the general solution; 

b) the particular solution corresponding to 0x x  at t = 0  

c) the amplitude of the steady state oscillations. 

Figure 18 
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PROBLEMS 
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MOTION WITH VARIABLE MASS 

 

 

o far in this course we have dealt exclusively with the dynamics 

of particles and bodies whose masses remain constant during the 

motion. In certain applications we can’t make this assumption. A rocket is 

propelled by ejecting burnt fuel which causes the mass of the rocket to 

decrease substantially as the rocket accelerates. A raindrop falling through a 

damp atmosphere coalesces with smaller droplets which increase its mass. In 

both of these illustrations the mass of the body may be thought of as varying 

with time: the term “variable mass” is slightly misleading since we don’t 

intend to mean that mass is being created or being destroyed, but that it is 

being removed or added to the body. 

Suppose that a body having variable mass ( )m t  is moving with velocity ( )v t . 

At time t t  let its main mass be ( )m t t  and its velocity be ( )v t t . 

The body has either gained or lost incrementally mass - ( ) ( )m t t m t  

depending on the sign of this difference. For the sake of discussion let us 

suppose that an increment of mass has broken from the main body with 

absolute velocity ( )u t , Fig. 1. At time t  this mass ( ) ( )m t m t t  (which 

will be positive in this case) experiences a sudden velocity change from ( )v t  to 

( )u t . For the whole system the momentum at time t t  is 

( ) ( ) { ( ) ( )} ( )m t t v t t m t m t t u t t  

whilst at time t  it was ( ) ( )m t v t . We are only concerned with the translation of 

the body: any rotational effects on the body will not be considered here. The 

change of momentum is  

S 

MOTION WITH VARIABLE MASS 
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Fig. 1 Body of mass undergoing incremental mass change (i) shows the body immediately before the mass 

( ) ( )m t m t t is ejected with absolute velocity ( )u t  (b) shows the situation at time t t with the 

main mass now ( )m t t   

( ) ( ) { ( ) ( )} ( ) ( ) ( )

{ ( ) ( )} ( ) ( ){ ( ) ( )}

{ ( ) ( )} ( )

m t t v t t m t m t t u t t m t v t

m t t m t v t m t v t t v t

m t t m t u t t

 

where the previous line has been prepared for division by the time increment 

t . We now divide the right-hand side above by t  so that 

{ ( ) ( )} { ( ) ( )} { ( ) ( )}
( ) ( ) ( )

m t t m t v t t v t m t t m t
v t m t u t t

t t t  

From the definition of the derivative 

0

( ) ( )
lim
t

m t t m tdm

dt t
 

etc. Consequently the rate of change of the linear momentum of the body 

becomes (taking limit as t  approach zero) 

( ) ( ) ( ) ( ( ) ( )) ( )
dm dv dm dm dv
v t m t u t v t u t m t

dt dt dt dt dt
 

Suppose that the body is also subject to an external forceF . Then Newtonian’s 

second law of motion is now interpreted in the form, force equals the rate of 

change of the linear momentum of the body which is the same as the previous 

hypothesis ( / )F m dv dt  if the mass of the body remains constant. Hence it 

follows that the equation of motion assumes the form 

( ) ....(1)
dm dv

F v u m
dt dt

 

 

 
 

 

i ii 
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where we have now dropped the time arguments of ,m v  and u . 

It may appear at first sight that Eq. (1) is inconsistent with the expression 

( )
d dm dv
mv v m

dt dt dt
 

which may be thought as the rate of change of momentummv . However, any 

disposal or accretion of mass which involves a velocity difference will have a 

continuous impulsive effect on the remaining mass. Hus the disposal of the  

increment ( ) ( )m t m t t involves a velocity difference u v . Hence over 

the time interval this means that the remaining mass experiences an impulse 

( ( ) ( ))( ( ) ( ))m t m t t v t u t  

The corresponding force 1F , say, as a continuous function of time is given by  

1
0

( ( ) ( ))
lim ( ( ) ( ))
t

m t m t t
F v t u t

t
 

Thus we could interpret Eq. (1) also as  

1
dv

F F m
dt

 

Notice that eq. (1) becomes  

dv
F m

dt
 

If u v . In this case mass is being lost or acquired but at zero relative 

velocity. If 0u , then  

( )
dv dm d

F m v mv
dt dt dt

 

This corresponds, for example, to the case of the raindrop falling through a 

stationary cloud of droplets. Equation (1) is the fundamental relation for 

motion with variable mass. However, in order to be able to analyze a problem 

we shall still need to specify the rate of mass change and its velocity in 

addition to the external force. 
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Examples Illustrative

 

 EXAMPLE 

A balloon of mass M  contains a bag of sand of mass 0m , and the balloon is 

in equilibrium. The sand is released at a constant rate and is disposed of in a 

time 0t . Find the height of the balloon and its velocity when all the sand has 

been released. Assume that the balloon experiences a constant upthrust and 

neglect air resistance. 

 SOLUTION 

In equilibrium the up-thrust F  must balance the weight of the balloon and 

sand 

0( ) ....(1)F M m g  

Let m
 
be the mass of the sand at time t

 
where 00 t t  then 

0
0

1
1 .....(2)M m
t

 

since the sand is released at a constant rate. The velocity of the sand relative to 

the balloon is zero on release with the result that v u in Eq. (1) . Let x
 
be 

the subsequent displacement of the balloon. Its equation of motion becomes 

0) ( ) ( ) ....(3)( g M m g mM Mm  

where v x . On substituting for m
 
from Eq. (2) into Eq. (3) 

0

0 0 0

0 0 0

0 0 0

0

0

0

0 0

(

(

(

)

)

(

)

)

)

(

m tdv

dt M m m t

M m m t

M m m

g

t

t
g

t

g

t

M m t
g

M m t m t

 

This is a variable separable equation with solution 
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0 0 0

0 0 0

(
ln 1 ....(4

(

)
)

)

M m m t
v gt

m M m

gt

t
 

where the initial condition 0v
 
when 0t  has been used. 

The differential equation for the displacement is 

0 0 0

0 0 0

(
ln 1

(

)

)

M m m tdx
gt

dt m M m

gt

t
 

is gain of separable type with solution 

        

0

2

0 0

ln(1 ) ,

1
ln(1 ) (integrating by parts)

)

1

(

2

mg
x gt kt dt A k

k
gt tdt

A gt kt g
k

M

t

m t

k

 

2

2
2

1 1
ln(1 ) 1

2 1
1

ln(1 ) ln(1 )
2

gt
A gt kt g dt

k kt
gt gt g

A gt kt kt
k k k

 

   2
2

1
(1 )ln(1 )

2

g gt
A gt kt kt

kk
 

Taking the initial condition to be 0x
 
when 0t , we see that 0A . Thus  

2
2

1
(1 )ln(1 ) ....(5)

2

gt g
x gt kt kt

k k
 

All equations and solutions hold only during the time interval 00 t t
 

at time 0t t  the balloon has reached a height  

0 0 0

2
0

0 2
0 0

(2 2 ( )ln
2

)
gt M

x M m M M m
M mm

m  

and is moving with speed  

0 0
0 0

0
0 )( ln
gt M m

v M m m
m M
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 EXAMPLE 

A spherical raindrop of initial radius a , falling freely, receives in each instant 

an increase of volume equal to  times its surface at that instant; determine the 

velocity at the end of time t , and the distance fallen through in that time. 

 SOLUTION 

Let m  be the mass and r  the radius of the raindrop when it has fallen through 

a distance y  in time t . Also let v  be the velocity at that instant so that 

....(1)
dy

v
dt

 

Since raindrop is falling freely under gravity 

....(2)P mg  

Now m mass of raindrop at time t  equals  

3 ...(3)
4

3
m r  

24
dr

r
dt

dm

dt
 

But given, rate of increase of mass i.e., ( 2/ 4dm dt r ) 

Therefore, equating two values of /dm dt , we have 

2 2(4 ) or4
dr dr

r r
dt dt

 

Integrating  r t A    (A is a constant of integration) 

Initially at 0t , r a  then  A a  

Hence    ...(4)r t a  

  34
( ) ....(5)

3
m t a     (Equations (3) and (4)) 

Also the relative velocity 0V , since the mass is picked up from rest. Hence  

Hence the equation of variable mass namely 
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( ) becomes
d dm
mv P V

dt dt
 

3 34 4
( ) ( )

3 3

d
t a v t a g

dt
 (using Eq. (2) and (5)) 

or  3 3 3 3( ) ( ) ( ) ( )
d

t a v t a g d t a v t a gdt
dt

 

Integrating,  

3 4( ) ( )
4

g
t a v t a A  

Initially 40, 0 ( / 4 )v t A ga  

  3 4 4( ) ( )
4

g
t a v t a a  

or   
4

3
( ) ....(6)

4 ( )

g a
v t a

t a
 

This equation gives velocity at any time t  

Now from Eq. (1) and (6) we get 

4

3
( )

4 ( )

dy g a
t a

dt t a
 

Integrating;  

4
2

2 2
( )

8 ( )

g a
y t a B

t a
 

Initially 2 20, 0 ( / 4 )y t B ga . Hence  

4
2 2

2 2

22

2

( ) 2
8 ( )

( )
( )8

g a
y t a a

t a

g a
t a

t a

 

               

22 2 22

2 2

( ) ( 2 )
....(7)

( ) 88 ( )

t a a t ag gt

t a t a
 

This gives required distance. 
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 EXAMPLE 

A spherical raindrop of radius a  cm., falls from rest through a vertical height 

h , receiving throughout the motion an accumulation of condensed vapour at 

the rate of  grams per square cm. per second, no vertical force but gravity 

acting, show that when the raindrop reaches the ground its radius will be  

2

2

2
1 1

2

h ga

g h
 

 SOLUTION 

Proceeding exactly as a previous example, the height h  from Eq. (7) is given 

by  

22

2

( 2 )
(replacing by )

8 ( )

t agt
h

t a
 

2 2
2 ....(1)
h t a

t
g t a

 

Also radius r  at any time t  is  

fromEq.(4)previous Ex.

( ) /

r a t

t r a
 

Substituting values of t  and a t  in Eq. (1), we have 

2 2

2 2

2
2

2
2

2
2 0

h r a r a

g r
h

r r a
g

h
r r a

g

 

Solving this equation we have (neglect – sign before square root) 

        

2 22 2
2 4 4

2

h h
a

g g
r  

          
2

22 2h h
a

g g
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2

2

2

2

2 2
1
2

2
1 1

2

h h ga

g g h

h ga

g h

 

 EXAMPLE 

A trailer full of sand is pulled by a constant force F , Sand leaks out at the rate 

of  units of mass per second. Prove that the velocity at the end of time is 

ln 1
F t

M
 

and the distance moved during that time t  is 

2
1 ln 1

FM t t t

M M M
 

where M  is the initial mass of the trailer and contents. 

 SOLUTION 

Let m  be the mass and v  the velocity of the trailer and its contents after any 

time t .  

...(1)m M t  

so that    / ....(2)dm dt   

V  velocity of leaking sand ...(3)v  

P F  

Hence equation of motion when mass varies namely  

( ) gives on using Eqs. (1), (2) and (3)
d dm
mv P V

dt dt
 

(( ) ) ( )

( ) or

d
M t v F v

dt
dv dv F

M t v F v
dt dt M t

 

Integrating after separation variables, we get  
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ln
F

v M t A  

Initially 0, at 0 ln
F

v t A M  

  ln ln
F F

v M t M  

ln ln 1 ....(4)
F M t F t

M M
 

Now if x  is the distance described by the trailer in time t , then 

.....(5)
dx

v
dt

 

From Eqs. (4) and (5), we have 

ln 1 ln 1
dx F t F t

dx dt
dt M M

 

Integrating,  

ln 1
F t

x dt B
M

 

or  

1
ln 1 Integrating by parts

1

F t
x t t dt B

M t M

M

 

  ln 1
Ft t t

F dt B
M M t

 

  ln 1
Ft t F M t M

dt B
M M t

 

  
2

ln 1 ln 1
Ft t F FM t

t B
M M

 

Initially 0, at 0 0x t B  

2
ln 1 ln 1

Ft t F FM t
x t

M M
 

          
2
1 ln 1

FM t t t

M M M
 
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 EXAMPLE 

A rocket whose total initial mass (fuel+ shell) is 0m  ejects fuel at a constant 

rate 0cm  and at a velocity V  relative to the case. Deduce that the lowest rate 

of fuel consumption that will permit the rocket to rise at once is /c g V . 

Assuming this design condition is met, Obtain the greatest speed and height 

reached by the rocket. 

 SOLUTION 

The equation of motion of variable mass is  

( ) .....(1)
d dm
mv P V

dt dt
 

where m  is mass at time t . 

Here  P mg  (since mass is moving in upward direction) 

0 as mass is ejected .....(2)
dm

cm
dt

 

Integrating Eq. (2) 0m cm t A ,  

Initially 0, 0m m t  then 0A m      0(1 ) .....(3)m m ct  

Substituting values of P  and V from above in Eq. (1), we get 

0

( )

(from Eq.(2)) ....(4)

dv dm dm
m v mg v V
dt dt dt
dv dm

m mg V
dt dt

cVmdv
g

dt m

 

  (from Eq.(3)) ....(5)
1

dv cV
g

dt ct
 

Integrating, we have 

ln 1v gt V ct B  
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PROBLEMS
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MOTION OF A PARTICLE IN THREE DIMENSIONS   

 

he motion in two dimensions has been undertaken into account 

and we defined three types of coordinates, i.e., Cartesian 

coordinates ( , )x y , polar coordinates ( , )r  and intrinsic coordinates ( , )S . 

This part deals with the motion in space or motion in three dimensions and we 

will consider three types of coordinate systems namely, Cartesian, cylindrical 

and spherical coordinates systems. 

 

 Cartesian coordinate 

Let P( , , )x y z  be the Cartesian coordinates of a point P at time t , with respect 

to (w.r.t.) the fixed coordinate axes OX,OY

and OZ . If OPr  is the position vector of 

w.r.t. the origin O and ˆ ˆ ˆ, ,i j k  are the unit 

vectors along the axes respectively, thus     

ˆ ˆ ˆr xi yj zk  

If v  represents the velocity vector and a the 

acceleration vector of P, then the velocity is 

ˆ ˆ ˆdr dx dy dz
v i j k

dt dt dt dt
 

That is the components of velocity of parallel to the coordinate axes are 

T 

MOTION in three dimension 
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, ,
dx dy dz

dt dt dt
 respectively. 

These are positive in the direction of ,x y  andz increasing respectively. 

The resultant velocity of P is given by 

2 2 2
dx dy dz

dt dt dt
 

and the acceleration vector is  

2 2 2

2 2 2
ˆ ˆ ˆdv d x d y d z

a i j k
dt dt dt dt

 

Thus the acceleration of P, parallel to the coordinate axes is 

2 2 2

2 2 2
, ,

d x d y d z

dt dt dt
 respectively 

These are positive in the direction of ,x y  andz increasing respectively. 

The resultant acceleration of P is given by 

2 2 22 2 2

2 2 2

d x d y d z

dt dt dt
 

Now we will investigate the second type of coordinate system. 
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 Cylindrical coordinates:  

Consider P( , , )x y z  is a point whose projection on 

the xy –plane is M( , )x y has the cylindrical 

coordinates ( , , )z where OM, XOM

and PMz . The limits of , ,z  are 

0 , 0 2 and z . 

Due to the figure besides, we have  

cos , sin ,x y z z    (1) 

With the help of Eq. (1), expressing , andz in terms of , ,x y z  we get 

1/22 2 1, tan / ,x y y x z z                 (2)  

The coordinate surfaces in the cylindrical coordinate system are 

(i) 1c i.e., 2 2 2
1x y c  i.e., right circular cylinders having the 

z - axis as a common axis. 

(ii) 2c  i.e., 2tany x c i.e., half planes through the z -axis 

(iii) 3z c  i.e., planes parallel to the xy –plane, as in the cartesian 

coordinate system.  

Now, the point P is the point of intersection of these three coordinate surfaces. 

The coordinate curves for ,  and z  are respectively straight lines 

perpendicular to the z –axis, horizontal circles with centers on the z –axis and 

lines parallel to the z –axis. 

The usual mutually perpendicular unit vectors ˆ ˆ ˆ, ,z  in cylindrical coordinate 

system are as follows. 

(i) The first unit vector ˆ is normal to the cylindrical surface 

const  in the direction of increasing radius . 

O 

M 

N 

X 

Y 

Z 
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(ii) The second unit vector ˆ  is tangential to the cylindrical 

surface perpendicular to the half plane cosnt  and pointing 

in the direction of increasing azimuth angle .  

(iii) The third unit vector ẑ  is the usual Cartesian unit vector k̂  in 

the direction of increasingz .  

Then we have 

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆcos sin , sin cos ,i j y i j z k      (3) 

where ˆ ˆ ˆ, ,i j k  are the usual unit vectors in the cartesian coordinate system.  

To obtain the components of velocity and acceleration of a moving point in 

terms of cylindrical coordinates let ( , , )x y z  be the coordinates of any point P 

moving in space at any instant t . If ( , , )z  be its cylindrical coordinates, 

therefore 

cos , sin ,x y z z          (4) 

Let r  be the position vector of P, then  

 ˆ ˆ ˆr xi yj zk  Or  ˆ ˆ ˆcos sinr i j zk  (5) 

Now, the velocity vector v  of P is the rate of change of displacement. Hence, 

using Eq. (5), we have 

ˆ ˆ ˆ

ˆ ˆ ˆ( cos sin ) ( sin cos )

dr dx dy dz
v i j k

dt dt dt dt
i j zk

 

where dot denotes the derivatives w.r.t. time ( t ). Re-writing previous equation 

we get 

              
ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ(cos sin ) ( sin cos )
z

v i j i j z k  

Or   ˆ ˆ ˆv zz                        (6) 

where ˆ ˆ ˆ, ,z are usual mutually perpendicular unit vectors in the cylindrical 

coordinate system given by 
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ˆ ˆ ˆ ˆ ˆˆ ˆ ˆcos sin , sin cos ,i j i j z k                   (7) 

If , , zv v v  be the components of velocity of P in the directions ˆ ˆ ˆ, ,z

respectively, then from Eq. (6) we have 

v  along NP, v  perpendicular to the plane ZOMP and z  parallel 

to OZ  

Note: k̂  is constant unit vector /̂ 0dk dt  so ˆ ˆ/ / 0dk dt dz dt . 

Again to get the components of acceleration at P, since the acceleration vector 

a  of P is the rate of change of its velocity vectorv . Hence Using Eq. (6) 

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ
ˆ ˆ ˆ ˆ

dv d d d
a zz

dt dt dt dt
d d

zz
dt dt

            (8) 

where 2 2 2 2 2 2/ , / , /d dt d dt z d z dt  

Differentiation relations (7) w.r.t. time, we get 

ˆ ˆ ˆ ˆ ˆ ˆsin cos ( sin cos ) ,

ˆ ˆ ˆ ˆ ˆ ˆcos sin (cos sin )

d
i j i j

dt
d

i j i j
dt

    

That is ˆ ˆ ˆ ˆ/ , /d dt d dt . Hence Eq. (8) becomes  

       2ˆ ˆ ˆ ˆ ˆ ˆa zz  

        Or       2 ˆ ˆ ˆ( 2 )a zz              (9) 

If , , za a a be the components of acceleration of point P in the directions 

ˆ ˆ ˆ, ,z  respectively, then by Eq. (9) we get 

2

2

(along NP),

1
2 (perpendicular to theplaneZOMP)

parallel toOZz

a

d d
a

dt dt
a z
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 Sphereical coordinates 

Let P( , , )x y z  be any point whose projection on the xy –plane is M( , )x y has 

the spherical coordinates ( , , )r where OP, ZOPr and XOM . 

The limits on , ,r  are 0 , 0 2r and0 2 . Due to 

the figure besides, we have  

sin cos , sin sin , cosx r y r z r               (10) 

With the help of Eq. (10), expressing ,r and in terms of , ,x y z  we get 

2 2 1/21/22 2 2 1 1( )
, tan , tan

x y y
x y z

z x
  (11)

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The coordinate surfaces in the spherical coordinate system are 

(i) 1r c i.e., 2 2 2 2
1x y z c  i.e., concentric spheres centered at 

the origin. 

(ii) 2c  i.e., 2 2 2 2
2tanx y z c i.e., right circular cones with axis 

as z –axis and vertices at the origin. 

Z 

O 

M 

N 

X 
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(iii) 3c  i.e., 3tany x c i.e., half planes through the z –axis.  

Now, the point P is the point of intersection of these three coordinate surfaces. 

The coordinate curves for ,r  and  are respectively straight lines passing 

through the origin, vertical circles with centre at the origin and the horizontal 

circles with centers on the z –axis. 

The usual mutually perpendicular unit vectors ˆˆ ˆ, ,r  in spherical coordinate 

system are in the direction of tangents to the ,r  and  coordinate curves. 

These unit vectors are directed respectively in the direction of r –increasing, 

increasing and  increasing respectively. Thus, we have 

ˆ ˆ ˆˆ sin (cos sin ) cos ,
ˆ ˆ ˆ ˆcos (cos sin ) sin ,

ˆ ˆˆ sin cos ,

r i j k

i j k

i j

                                       (12) 

To find the components of velocity and acceleration of a moving point in terms 

of spherical coordinates let ( , , )x y z  be the coordinates of any point P moving 

in space at any instant t . If ( , , )r  be its spherical coordinates, then 

sin cos , sin sin , cosx r y r z r            (13) 

Let r  be the position vector of P, then  

 ˆ ˆ ˆr xi yj zk    

Or  ˆ ˆ ˆsin cos sin sin cosr r i r j r k    (14) 

Now, the velocity vector v  of P is the rate of change of displacement. But the 

displacement ˆr rr  where r r , we have 

ˆ( )

ˆ
ˆ

dr d
v rr

dt dt
dr

rr r
dt

   (15) 

From Eq. (14) ˆ ˆ ˆˆ / sin cos sin sin cosr r r i j k   

Differentiation both sides w.r.t time, we get 
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ˆ ˆ ˆ ˆ( cos cos sin sin ) ( cos sin sin cos ) sin
dr

i j k
dt

 

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ(cos cos cos sin sin )) sin ( sin cos )

ˆ ˆ ˆsin

i j k i j

dr

dt

   (16) 

Using Eqns. (15) and (16) reduces to     

ˆˆ ˆsinv rr r r           (17) 

If , ,rv v v  be the components of velocity of P in the directions ˆˆ ˆ, ,r

respectively, then from Eq. (17) we have 

rv r  along OP in the direction of r  increasing, v r  perpendicular to 

OP in the plane ZOMP in the direction of increasing. and sinv r  in 

the direction perpendicular to the plane ZOMP in the direction of increasing. 

Again, the acceleration vector a  of P is the rate of change of velocity v  of P, 

Using Eq. (17), we get  

ˆˆ ˆ( ) ( ) ( sin )

ˆˆ ˆ ˆˆ

ˆ
ˆ ˆ ˆsin sin cos sin

dv d d d
a rr r r

dt dt dt dt
dr d

rr r r r r
dt dt

d
r r r r

dt

            (18) 

Differentiation relations (12) w.r.t. time, we get 

ˆ ˆ ˆˆ/ ( cos cos sin sin ) ( cos sin sin cos ) sin ,
ˆ ˆ ˆ ˆ ˆ(cos cos cos sin sin ) sin ( sin cos ),

dr dt i j k

i j k i j
 

Thus 

ˆˆ ˆ/ sindr dt  

Similarly      ˆ ˆ ˆ/ cos ,d dt r  

and ˆˆ ˆ ˆˆ/ (cos sin ) ( sin cos )d dt i j r  
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If , ,ra a a be the components of acceleration of point P in the directions 

ˆˆ ˆ, ,r  respectively, i.e., along OP, perpendicular to OP in the plane ZOMP in 

the direction of  increasing and perpendicular to the plane ZOMP in the 

direction of increasing, then we have 

2 2 2

2 2 2

2 2

sin ,

1
2 sin cos sin cos ,

1
sin 2 sin 2 cos sin

sin

ra r r r

d
a r r r r r

r dt
d

a r r r r
r dt

        (20) 

Now we will consider the following two particular cases 

Particular case I: suppose the given particle moves in such a way that the 

position ( , , )P r  of the particle at any time is such that const.r L , say 

(that is the particle moves over or inner a sphere of radius L). In that case the 

coordinates of P become ( , , )P L and clearly 0 ( )r r r L . Hence the 

velocity Eq. (17) and acceleration Eq. (20) take the following form 

ˆ ˆsin i.e., ( 0, , sin )rv L L v v L v L  

2 2 2

2

2

( sin ),

sin cos ,

sin 2 cos sin
sin

ra L

a L L

L d
a L L

dt

 

Particular case II: suppose the given particle moves in such a way that the 

position ( , , )P r  of the particle at any time is such that const. , say 

(that is the particle moves over or inner a cone of angle ). In that case the 

coordinates of P become ( , , )P r  and clearly 0 ( ) . Hence the 

velocity Eq. (17) and acceleration Eq. (20) take the following form 

ˆ ˆsin i.e., ( , 0, sin )rv rr L v r v v r  

and 
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2 2

2

2

sin ,

sin cos ,

sin
sin 2 sin

ra r r

a r

d
a r r r

r dt

 

Also in this case we can use the cylindrical coordinate ( , , )P z  where 

tanz such that the velocity and acceleration are given by 

ˆ ˆ ˆtan tanv z z zz  

2 2tan
ˆ ˆ ˆtan tan

d
a z z z zz

z dt
 

Finally, the above results can be further simplified while solving problems 

related to a particular geometry of the problem (spheres, cones,..). Students are 

advised to remember these results for direct application in problems. 
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Illustrative Examples
 

 EXAMPLE:  A particle moves over a spiral smooth wire of vertical axis and 

whose radius and angle are a,  with parametric equations cos ,x a

siny a and tanz a . Initially the particle is projected with velocity 

V from position 0 . Prove that the particle will stop after one revolution if 

2 4 tanV ag  and takes time 2 /( sin cos )a g .   

 SOLUTION: 

Due to the Figure shown, equations of motion in XYZ directions are 

cos , sin ,mx R my R mz mg  

Multiply the first part by x and the second part byy  and the third part by z  

then adding three parts, we have,  

2 2 2

( ) ( cos sin )

1
( ) ( cos sin ) (1)

2

m xx yy zz xR yR mgz

d
m x y z xR yR mgz
dt

  

But the parametric equations are cos ,x a siny a and  tanz a  

Therefore, sin ,x a cosy a and  tanz a    (2) 

Now Eq. (1) reduces to 

2

2 2 2

2 2 2 2

1
( ) ( sin cos cos sin )

2
1 1

( )
2 2

v

d
m x y z a R R mgz
dt
d dz

m x y z mg mdv mgdz
dt dt

 

Integrating we get 21
,

2
mv mgz A     (3), A being an arbitrary constant, this 

equation stated that the sum of kinetic energy and potential energy is constant. 

Apply this equation at initial position and when it stops after one revolution, 

i.e.,  2 i.e., 2 tanz

  

2 2 21 1
(0) (0) (2 tan ) 4 tan

2 2
mV mg m mg a V ag  

Now, if we want to determine the arbitrary constant A, let  , 0v V  in 

Eq. (3), we get  



Motion in 3D

 
56 

2 21
(0) 2 tan ( 4 tan )

2
mV mg A A amg V ag  

hence Eq. (3) reduces to    21
2 tan , (4)

2
mv mgz amg     

 
Since,  

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

(sin cos tan )

(1 tan ) sec sec

v x y z

a a

a a v a

 

Hence, Eq. (4) 

2 2 2 22 4 tan sec 2 tan 4 tanv gz ag a ga ag  

2
2(4 tan 2 tan )cos 2 (2 )sin cos

d
a g g g
dt

2

0 0

2 (2 )sin cos 2 sin cos

2

g gd d
dt

dt a a

0

2

2 sin cos
2 2 2

sin cos

g a

a g

which gives the time to stop after one revolution  
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 EXAMPLE:  A heavy particle of mass m moves inside a smooth sphere of 

radius L; show that, if the velocity be that due to the level of the center, the 

reaction of the surface will vary as the depth below the center. 

 SOLUTION: 

Let ( , , )P r its position at time t, such that OP 

makes an angle with the downward vertical 

through the center O of the sphere.  

The velocity of the particle at P  

ˆ ˆsinv L L  and  

2 2 2 2 2 2 2 2 2 2( sin ) / sin (1)v L or v L

Let R be the reaction of the surface of the sphere at P, which will act along PO. 

At the point P (const.)r L , therefore 0r r , and since the equations of 

motion of the particle are given by 

or , ,r rma F ma F ma F ma F then 

2 2 2

2

2

( sin ) cos , (2)

( sin cos ) sin , (3)

sin 0 (4)
sin

mL mg R

mL mg

mL d

dt

 

Using (1) and (2) gives 

2 2 2

2

( sin ) cos

cos /

R mL mg

mg mv L
            (5) 

Given that the velocity v  at P is that due to the level Bb of the center, i.e., the 

velocity at P is that of a particle falling freely from Bb upto P. Hence using  

2 2 2v u gh , we get 2 0 2 (OM) 2 cosv g gL then Eq. (5) reduces to 

cos ( / )(2 cos ) 3 cos (3 / )( cos )R mg m L gL mg mg a a  

i.e., the reaction (3 / )(OM)R mg a , showing that the reaction R  at P will 

vary as the depth OM below the center OMR . 

b B 
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 EXAMPLE:  A particle is projected horizontally along the interior surface of 

a smooth hemisphere of radius b whose axis is vertical and its vertex is 

downwards: the point of projection being at an angular distance from the 

lowest point, show that the initial velocity so that the particle may just ascend 

to the rim of the hemisphere is 1/2(2 sec )bg . 

 SOLUTION:  Let ABC be a hemisphere 

whose axis OC is vertical and its vertex C 

is downwards. At any instant t, let P be the 

position of the given particle of mass m 

such that COP . Let R be the 

reaction of the sphere along PO. Let 

spherical polar coordinates of P be ( , , )r  

here r b  so that 0r r . Hence the 

usual components of acceleration of P in 

terms of spherical coordinates are given by 

2 2 2 2 2( sin ), ( sin cos ), sin
sinr
b d

a b a b a
dt

 

Governing equations of motion are given by 

2 2 2

2

2

cos i.e., ( sin ) cos , (1)

sin i.e., ( sin cos ) sin , (2)

0 i.e., sin 0 (3)
sin

rma mg R mb mg R

ma mg b g

b d
ma

dt

 

Integrating Eq. (3), 2 ,r A  A being an arbitrary constant,      (4) 

Let initially the given particle be projected horizontally with velocity V along 

the interior surface the hemisphere from the point P0 such that 0POC . 

Let , ,rv v v  
be the components of velocity of the moving point particle in 

spherical coordinates. Then, by the condition of the problem, 0,rv v

A 
B 

C 

O 

mg 

X 

Z 

R   

N 

Y 

P0 
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v V . But sinv b . So initially at P0, when ,v V , let 

00t
.  Thus   

0 0sin so that / sin (5)V b V b  

Now, since 00t
 when  hence Eq. (4) gives 

2 2
0 sin or sin ( / sin ) ( / )sin , by(5) (6)A A V b V b  

Eq. (4) gives 2 2sin ( / )sin ( sin / sin ) (7)V b or V b  

Using Eq. (7), Eq. (2) gives 

2 2 2 4( ( sin / sin )sin cos ) sinb V b g  

2 2 2 3( sin / )sin cos ( / )sin as
d d

V b g b
d d

 

2 2 2 32 ( sin / )sin cos ( / )sind V b g b d  

Integrating, 2 2 2 2 2( sin / sin ) (2 / )cos (8)V b g b B   

where B is an arbitrary constant. Initially at P0, when , 0v , i.e., 

0 or 0b , then Eq. (8) gives 2 2( / ) (2 / )cos (9)B V b g b  

Subtracting Eq. (9) from (8), we have 

2 2 2 2 2( / )(1 sin / sin ) (2 / )(cos cos )V b g b  

By the problem, the particle just ascends to the rim A of the hemisphere. So at 

A, when /2, 0 . Hence the above relation reduces to 

2 2 2 2 2 20 ( / )(1 sin ) (2 / )cos or cos / (2 / )cosV b g b V b g b  

Thus 2 1/22 secs or (2 secs )V gb V gb  

This we need to prove. 
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 EXAMPLE:  A particle moves on a smooth sphere of radius  under no 

forces except the pressure of the surface; Show that its path is given by the 

equation cot cot cot  where and  are its angular coordinates, 

suppose 0  when . 

 SOLUTION:  Let AB be the vertical diameter of 

the given sphere. At any instant t, let P be the 

position of the moving particle of mass m such that 

AOP . Let R be the pressure of the sphere. 

Let the spherical polar coordinates of P be ( , , )r  

here r  so that 0r r . Hence the usual 

components of acceleration of P in terms of 

spherical coordinates are given by 

2 2 2 2 2( sin ), ( sin cos ), sin
sinr

d
a a a

dt
 Since the particle moves under no forces except 

the pressure R along OP, so there is no force on the particle in and 

directions. That is we have  

2

2

0 or sin cos 0 (1)

0 or sin 0 (2)
sin

a

d
a

dt

 

Integrating Eq. (2), 2 ,r A  A being an arbitrary constant,  

2/sin (3)
d

A
dt

 

Using Eq. (3), Eq. (1) gives  2 4( /sin )sin cos 0A  

or 
2

2 3
3

cos
2 2 cos sin

sin

d A
d A d

d
 

Integrating, 2 2 2/sin (4)A B   

A 

B 

O 

M 

Y 

Z 

R   

X 
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where B is an arbitrary constant. Initially let , 0 , then Eq. (4) gives 

2 2/sinB A  

Therefore Eq. (4) gives 

2 2 2
2 2

2 2 2 2

2 2 1/2

1 1 sin sin

sin sin sin sin

(sin sin ) (5)
sin sin

d
A A

dt
d A

dt

 

Dividing Eq. (3) by Eq. (5), we have 

2 2 2 1/2

2 2

2 2 1/2 2 2 1/2

sin sin

sin (sin sin )
csc csc

(csc csc ) (cot cot )

d A

d

d d
d

 

Putting cot u
 
so that 2csc d du

 

2 2 1/2(cot )

du
d

u  

Integrating, 1 1cos ( /cot ) cos (cot /cot ) (6)u C C  

Initially, when  let 0
 
so Eq. (6) gives C = 0 

Equation (6) becomes 1cos (cot /cot ) or cot cot cot   

which is required path of the particle. 
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 EXAMPLE:  A particle is attached to one end of a string, of length b, the 

other end of which is tied to a fixed point O. When the string is inclined at an 

acute angle to the downward-drawn vertical, the particle is projected 

horizontally and perpendicular to the string with a velocity V. Find the 

resulting motion of the particle. Also find the tension of the string at any 

instant. 

 SOLUTION 

Let P be the position of the particle at 

time t, such that the polar coordinates 

of P w.r.t. coordinate axes through O, 

with Z-axis along downward vertical are 

( , , )P l . Here (const.)r l . If T is the 

tension in the string, then the equations 

of motion of the particle are 

2 2 2

2

2

( sin ) cos , (1)

( sin cos ) sin , (2)

sin 0 (3)
sin

ml mg T

ml mg

ml d

dt

 

From Eq. (3) by integrating, we get  

2sin (const.) (3)A  

From Eq. (4) 2 sin
sin

sin

V V
A

l l
 

That is Eq. (4) reduces to 2 sin
sin (5)

d V

dt l
 

Substituting the value of from (5) in (2) 

2 2 2

2 2 3

sin cos
sin

sin

d V g

ldt l
 

Multiplying both sides by 2 /d dt  and then integrating, we get 

2 2 2

2 2

sin 2
cos (6)

sin

d V g
B

dt ll
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But initially 0when 2 2/ (2 / )cosB V l g l  

From Eq. (6) we have 

2 2 2 2

2 2 2

2 2 2

2 2

2 2 2

2 2

2 2 2

2 2

sin 2
(cos cos )

sin

sin 2
1 (cos cos ) (7)
sin

sin sin 2
(cos cos )

sin
cos cos 2

(c
sin

d V V g

dt ll l

d V g

dt ll
V g

ll
V g

ll
2

2
2

2 2 2 2
2

os cos )

(cos cos )2
(cos cos ) sin

2sin
(cos cos )2

2 (cos cos ) sin taking 4 lg
sin

g V

l gl

g
n V n

l

If / 0d dt  then 2 22 (cos cos ) sin 0n   

Since cos cos 0  as  is the initial position 

2 2 2

2 2 4 1/2

cos 2 cos (1 2 cos ) 0

cos (1 2 cos )

n n

n n n
 

If / 0d dt  for 
 
then  2 2 4 1/2cos (1 2 cos ) (8)n n n   

neglecting - sign which is in admissible as  is acute angle. Hence the motion 

of the particle is confined between  and  given by (8) 

The motion of the particle will remain above or below the starting point

, according as  or <  

i.e., according as cos  < or > cos  

i.e., according as 2 2 4 1/2(1 2 cos )n n n  < or > cos  

i.e., according as 2 41 2 cosn n  < or > 2 2( cos )n  

i.e., according as 2n  > or < 2sin /(4cos )  

i.e., according as 2V  > or < tan singl  

To find the tension T at any instant, substituting the values of /d dt , /d dt  

from (5) and (7) in (1), we get      2/ (3cos 2cos )T m V l g  
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 EXAMPLE:  A particle of mass m moves on the inner surface of a smooth 

cone of vertical angle 2 , being acted on by a force towards the vertex of the 

cone, and its direction of motion always cuts the generators at a constant angle 

. Find the motion and the law of force.  

 SOLUTION: Let a particle of mass m 

moves on the inner surface of the cone OAB 

whose axis is OC and AOC . Let F be 

the force acting on it towards the vertex and 

R the reaction of the cone acting along 

perpendicular PN to OA. At any time t let P 

be the position of the particle such that 

OP r . Let spherical polar of P be ( , , )r

where 
 
so that 0 . Hence the usual 

components of velocity , ,rv v v and components of acceleration , ,ra a a are  

, 0, sin (1)rv r v v r
 

2 2

2

2

sin ,

sin cos , (2)

sin
sin 2 sin

ra r r

a r

d
a r r r

r dt

 

Hence the governing equations of motion are  

2 2 2

2

2

or ( sin ) , (3)

or sin cos , (4)

sin
0 0 (5)

rma F m r r F

ma R mr R

m d
ma or r

r dt

 

Also, since the direction of motion always cuts OP at angle , From Eq. (3) by 

integrating, we get     tan / sin / (6)rv v r r
 

Integrating Eq. (5) we have, 2 ,r A  A being constant,                      (7) 

Substituting the value of  from Eq. (7) into Eq. (6), we have 

F 

A B C 

O 

M 

N 

X 

Y 

Z 

R   
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2sin cot ( / ), or ( / )sin cot (8)r r A r r A r  

Differentiation both sides of Eq. (8), we obtain 

2 2 3 2 2( / )sin cot or (1/ )sin cot (byEq.(8)) (9)r A r r r A r  

Substituting the value of  and r  from Eq. (7) into Eq. (9) in Eq. (3), we 

have 
2 3 2 2 2 2 4

2 3 2 2

2 2 2 3 3

(1/ )sin cot sin ( / )

( / )sin (cot 1)

sin csc / / ( / ) (10)

F A r r A r

F A r

F A r F r F F m

 

where    2 2 2sin csc (11)A   

Equation (10) illustrates that force varies inversely as cube of the distance from 

the vertex O. This gives the required law of force. 

 Now, with the help of Eq. (1), the velocity v  at any time t at P is given by 

2 2 2 2 2 2 2 2 2( sin ) or ( sin )rv v v v r r v r r
 

2 2 2 2 2 2 2 2 2( / )sin cot sin ( / ) usingEq.(7)and(8)v A r r A r
 

2 2 2 2 2 2 2 2 2 2 2( / )sin (cot 1)=( sin /sin )(1/ ) /v A r A r r  

Thus /v r i.e., the velocity varies inversely as OP. 

Using Eq. (7), Eq. (4) reduces to 

2 2 2 3

2 3 2 2 2

2

/ sin cos ( / ) ( / )sin cos (12)

( / )sin csc (sin cos / sin )

( / )(sin cos / sin ) by Eq.(10)

R m r A r A r

A r

F m

 

Thus    2sin sin cos (13)R F   

which gives relation between R and F. Re-writing Eq. (6),  

/
/ sin cot , or sin cot

/

dr dt
r r r

d dt
 

or sin cot (1/ ) sin cot
dr

r r dr d
d

 

Integrating; log sin cotr B  (14); where, B is an arbitrary constant. 

Let initially 0r r when 0  (say), So Eq. (14) gives 0logB r  

Then Eq. (14) reduces to 0log log sin cotr r  or sin cot
0r r e with 

represents the path of the moving particle. 
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 EXAMPLE: A smooth conical surface is fixed with its axis vertically and 

vertex downward. A particle of mass m is in steady motion on its side in a 

horizontal circle and is slightly disturbed. Show that the time of a small 

oscillation about this state of steady motion is 1/22 ( /3 cos )L g , where  is 

the semi-vertical angle of the cone and L is the length of the generator of the 

circle of steady motion. 

 SOLUTION: Let a particle of mass m 

moves on the inner surface of the cone 

OAB whose axis is OC and AOC . 

Let R be the reaction of the cone acting 

along perpendicular PN to OA. At any 

time t let P be the position of the particle 

such that OP r . Let spherical polar of P  

be ( , , )r where 
 

so that 0 . 

Hence the usual components of velocity 

and acceleration in terms of spherical coordinates are given by  

2 2 2 2sin
sin , sin cos ,r

d
a r r a r a r

r dt  
Therefore, the equations of motion are given by 

2 2

2

2

cos i.e., sin cos , (1)

sin i.e., sin cos sin (2)

sin
0 i.e., 0 (3)

rma mg r r g

ma mg R mr mg R

m d
ma r

r dt

Integrating Eq. (3)  2r A , A being a constant.      (4)  

Initially le the particle be at P0 such that 0OP L . In this position the particle 

is in steady motion in a horizontal circle moving with angular velocity  

(say). Thus, initially, when ,r L . Hence Eq. (4) gives 2L A . 

Then Eq. (4) becomes 2 2 2 2/ (5)r L L r  

Substituting the value of  from Eq. (5) in Eq. (1) we get, 

A B C 

O 

M 

N 

X 

Y 

Z 

R 

M 
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4 2

3

sin cos
cos (6)

L
r g

r
 

But for steady motion, 0r when r L . So Eq. (6) gives 

4 2
2

3

sin cos
0 cos cos sin cos
L

g g L
l

 

Putting r L r , where r L r  is small. Eq. (6) gives 

32 4 2
2

2 3

2 2

sin cos
cos sin cos 1 cos

( )
3

sin cos 1 sin cos

d r L r
g L g

Ldt L r
r

L L
L

 

Here we use Eq. (7) and the fact that r  is small. 

2 2(3/ ) cos using Eq.(5) ( , (3/ ) cos )r L gr r r L gr  

which represents a S.H.M. of time period Components of velocity at Pare given 

by 1/22 / 2 ( /3 cos )L g  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Motion in 3D

 
68 

 EXAMPLE:  A hollow right circular cone is placed with its vertex downward 

and axis vertical, and a point of mass m on its interior surface at a height h 

above the vertex a particle is projected horizontally along the surface with a 

velocity 2 1/2(2 /( ))gh n n . Show that the lowest point of its path will be at 

height above the vertex of the cone. 

  SOLUTION: Let a particle of mass m 

moves on the inner surface of the cone OAB 

whose axis is OC and AOC . Let R be 

the reaction of the cone acting along 

perpendicular PN to OA. At any time t let P 

be the position of the particle such that

OP r . Let spherical polar of the point P  

be ( , , )r where 
 

so that 0 . 

Hence the usual components of velocity and 

acceleration in terms of spherical coordinates are given by  

2 2 2 2sin
sin , sin cos ,r

d
a r r a r a r

r dt  
Therefore, the equations of motion are given by 

2 2

2

2

cos i.e., sin cos , (1)

sin i.e., sin cos sin (2)

sin
0 i.e., 0 (3)

rma mg r r g

ma mg R mr mg R

m d
ma r

r dt

Integrating Eq. (3)  2r A , A being a constant.      (4)  

Components of velocity at Pare given by 

, 0, sin (5)rv r v v r  

Given that initially the particle is projected horizontally with velocity 

2 1/2(2 /( ))gh n n  from a point P0 (say) such that OM0 equals the height of P0 

above O which equals h 

A B C 

O 

M 

N 

X 

Y 

Z 

R 

M 
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Hence initially, at P0, we have 0, 0rv r v and 2 1/2(2 /( ))v gh n n  

Now, at P0, 0 secr OP h . Also, let at P0, 00t
. Hence Eq. (5) 

gives 2 1/2
0(2 /( )) sec singh n n v h  

giving  2 1/2
0 (cos / sin )(2 /( )) (6)h gh n n  

Since at P0, 0 secr OP h  and 0 , Eq. (4) gives 

 2 2 2 1/2
0sec ( /sin cos )(2 /( ))h A or A h gh n n , by Eq. (6) 

Therefore, Eq. (4) gives 

2 2 2 1/2/ ( / sin cos )(2 /( )) (7)A r h r gh n n  

Substituting the value of from Eq. (7) in Eq. (1), we get 

2 2

4 2 2 2

3 3

2 2

sin 2
cos , as ( )

sin cos
4

2 2 cos
( )cos

dr rh gh dr
r g r r
dr drr n n

gh r
rdr g dr

n n

 

Integrating  

3
2

2 2 2

2
2 cos , (8)

( )cos

gh
r gr B

r n n
 

where B is an arbitrary constant.  

But initially at P0, 0 sec , 0r OP h r . So Eq. (8) gives 

2 2 20 2 /( ) 2 , or 2 ( 1)/( )gh n n gh B B gh n n n n  

Then Eq. (8) re-written as   

23
2

2 2 2 2

2 ( 1)2
2 cos , (9)

( )cos

gh n ngh
r gr

r n n n n
 

Now, from Eq. (9) r is again zero when  

23

2 2 2

2 ( 1)2
0 2

( )

gh n ngh
gz

z n n n n
, where cosz r  
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2 3 2 2 3

2 3 2 2 2 3

2 2

2 2

2 2

( ) ( 1) 0

( ) ( ) 0

( ) ( ) ( )( ) 0

( )( ( 1) ) 0

( )( ( 1) ( 1) ) 0

( )(( 1) ( ) ( )) 0

( )( )(( 1) ) 0

n n z n n hz h

n n z n n hz hz h

n n z z h h z h z h

z h n n z hz h

z h n n z n hz nhz h

z h n z nz h h nz h

z h nz h n z h

 

Thus, cos , / or /( 1),z r h h n h n  

Now the negative value of r is inadmissible. Again, cosr h corresponds to 

the initial position of P0 of the particle. Hence the required lowest point of the 

particle path will be at height equals cos /r h n  above the vertex O of the 

cone. 

 

Note that examples of motion over a cone surface can be solved using 

cylindrical coordinate  

Now we will re-solve this example using cylindrical coordinate: 

 

The acceleration in terms of cylindrical coordinates are given by  

2 21
, , z

d
a a a z

dt  

Note there is a relation between and z  i.e., tanz , Therefore, 

tanz  and tanz  hence the acceleration components are re-written 

as 

2 2tan
( )tan , , z

d
a z z a z a z

z dt  

Therefore the equations of motion become 

2

2

( )tan cos , (1)

tan
0, (2)

sin (3)

m z z R

d
m z

z dt
m z R mg
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By deleting R between Eq. (1) and (3), multiply Eq. (1) by sin and Eq. (3) by 

cos then adding, we get 

2(sin tan cos ) tan sin cos (4)z z g  

Integrating Eq. (2)  2z A , A being an arbitrary constant.     (5)  

Given that initially the particle is projected horizontally with velocity 

2 1/2(2 /( ))gh n n  from a point P0 (say) such that OM0 equals the height of P0 

above O which equals h 

Hence initially, at P0, we have  

2 1/20, (2 /( )) , 0zv v gh n n v z        (6)  

Now, at P0, tanh . Also, let at P0, 00t
. Hence Eq. (6) gives 

2 1/2
0(2 /( )) tangh n n v h  

giving  2 1/2
0 (cos / sin )(2 /( )) (7)h gh n n  

Since at P0, tan i.e.,h z h  and 0 , Eq. (5) gives 

2 2 1/2
0 or ( / tan )(2 /( ))h A A h gh n n , by Eq. (7) 

Therefore, Eq. (5) gives 

2 2 2 1/2/ ( / tan )(2 /( )) (8)A z h z gh n n  

Substituting the value of from Eq. (8) in Eq. (4), we get  

2 4 2 2

2 3 2

2 3 2 2 2

2 3 2 2 2

(sin tan cos ) ( / tan )(2 /( )) tan sin cos

sec ( / )(2 /( ))cos cos

( / )(2 /( ))cos cos

( / )(2 /( ))cos cos

z h z gh n n z g

z h z gh n n g

z h z gh n n g

dz
z h z gh n n g
dz

 This equation is similar to the previous derived equation with ( cosz r ) 

2

3 2 2

2
cos , Obtainedprevious

cos

h gh
r g
r n n

 

Then one completes the solution as previous. 

 

 

 

 



Motion in 3D

 
72 

 EXAMPLE:  A particle moves over the interior surface about the vertical 

axis. Initially at a height h above the vertex a particle is projected horizontally 

along the surface with a velocityV . Prove that the equation of motion of the 

particle and determine the maximum vertical distance when  the particle 

projected 2 4V gh .  

 SOLUTION:   

The acceleration in terms of cylindrical coordinates are given by  

2 21
, , z

d
a a a z

dt  

Note there is a relation between and z  i.e., 2 4az , Therefore, 

tanz  and tanz  hence the acceleration components are re-written 

as following 

2 2tan
( )tan , , z

d
a z z a z a z

z dt  
Therefore the equations of motion become 

2

2

( ) sin , (1)

1
0, (2)

cos (3)

m R

d
m

dt
m z R mg

 

By deleting R between Eq. (1) and (3), multiply Eq. (1) by sin and Eq. (3) by 

cos then adding, we get 

2cos sin cos sinz g  

2 ( tan /2 )
2 2

z g
a

a a
 

Since    
2 2

2
3

2 4
4

az a z
az  

2 2
2

3

2 4
( tan /2 ) (4)

2 2

az a z z g
a

a a
 

Now, integrating Eq. (2)     2 A , A being an arbitrary constant.     (5)  

Given that initially the particle is projected horizontally with velocity V  from 

a point P0 (say) such that OM0 equals the height of P0 above O which equals h 
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Hence initially, at P0, we have  

0, , 0zv v V v z        (6) 

Now, at P0,
2 4az . Also, let at P0, 00t

. Hence Eq. (6) gives 

0
V v    (7) 

Eq. (5) gives 1/2
0 0

or 2 ( )A A V ah , by Eq. (7) 

Therefore, Eq. (5) re-written as 

2 1/2 2 2 32 ( ) 4 / (8)V ah V ah  

Substituting the value of from Eq. (8) in Eq. (4), we get  

2 2 2

3 3

2 4 4

2 2

az a z z V ah g

a a
 

Multiply by 2 /a , we get 

2 3 2 2 2

2 4 4

4 8 8a z a z V a h
z g  

Substituting 2 4az , we have 

2 2

2 2
(9)

2 2

az az V h
z g

z z z
 

Multiply by, we obtain 

3 2

2 2

2
2 2

azz az V hz
zz zg

z z z
 

   

2
2 2

2
2 2

1
2

1
2

d z d d dz
a V h z g
dt z dt z dt dt

z
ad V hd dz gdz

z z
 

then integrate 
2

2 21
2 (10)

z
a V h z gz B
z z

 

B being an arbitrary constant that can be determined using initial condition, 

i.e.,  ,z h when 0z 2 2B V gh , . 

Eq. (10) reduces to  
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2
2 2 21

2 2 (11)
z

a V h z V gh gz
z z

 

To obtain the two planes that the motion is between them we put in Eq. (11) 

2 2

2 2 2

1
2 2

2 ( 2 ) 0

V h V gh gz
z

gz z V gh V h
 

Solving this quadrant equation we have, 

2 2 22

2 4 2 2 2 2

2 22

2 2

( 2 ) 82

4 4

2 4 4 8

4 4

( 2 )2

4 4
2 2

4 4

V gh gV hV gh
z

g g

V gh V gV h g h gV h

g g

V ghV gh

g g
V gh V gh

g g

 

where, plus and minus signs gives the roots, i.e., 2/2 ,z V g h  

This means that the motion of the particle is subtended between the two planes 

2
1 /2z V g and 2z h initial plane of projection 

To calculate the maximum vertical distance when 2V gh  we put this value 

in 2
1 /2z V g  hence 2z h . 
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PROBLEMS 
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INTRODUCTION  

 

 

he advantage of choosing an inertial reference frame to describe 

dynamic motion was made evident in the previous studying. It is 

always possible to express the equations of motion for a system in an inertial 

frame. But there are types of problems for which these equations would be 

extremely complex, and it becomes easier to treat the motion of the system in a 

non-inertial frame of reference. 

To illustrate, for example, the motion of a particle on or near the surface of the 

Earth, it is tempting to do so by choosing a coordinate system fixed with 

respect to Earth. We know, however, that Earth undergoes a complicated 

motion, compounded of many different rotations (and hence accelerations) 

with respect to an inertial reference frame identified with the fixed stars. 

Earth’s coordinate system is, therefore, a non-inertial frame of reference; and, 

although the solutions to many problems can be obtained to the desired degree 

of accuracy by ignoring this distinction, many important effects result from the 

non-inertial  nature of the Earth coordinate system. In fact, we have already 

studied non-inertial systems when we studied Sun-Earth orbits are observed on 

Earth’s surface, which is a non-inertial system.  

 

T 

Non-inertial reference frame 
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In analyzing the motion of rigid bodies in the following chapters, we also find 

is convenient to use non-inertial reference frames and therefore make use of 

much of the development presented here. 

 

Time rate of change of vector in Fixed frame 

Let ˆ ˆ ˆr xi yj zk  be the position vector of point P 

in the Fixed system frame. In this case, the time rate of 

change of the vector r  according to these fixed frames 

we get 

Fixed

ˆ ˆ ˆdr dx dy dz
i j k

dt dt dt dt
 

Since the time rate of change of the unit vectors ˆ ˆ ˆ, ,i j k  is zero because these 

unit vectors have fixed direction and constant length (unity) i.e.,  

ˆ ˆ ˆ
0 (1)

di dj dk

dt dt dt
 

Time rate of change of constant vector 

Let r  be a vector of constant magnitude i.e., constantr and it rotates with 

constant angular velocity  around z-axis, i.e., 

k̂ , where the angle between the vector r  and 

z-axis is constant and equals  Now  

( ) ( ) ( )OQ r t t r t r t  

we observe that ( )OQ OP PQ r t PQ  thus, 

( )PQ r t  

Then the time rate of change of vector r  is 

0

0 0

( ) ( )
lim

( )
lim lim

t

t t

r t t r tdr

dt t
PQr t

t t
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Since the length PQ  is small enough then it can be considered to be equal to 

the arc length from the circle whose its center is C and we get 

sinPQ PQ CP r  

when t  approaches to zero, therefore, 0PQ  and hence, 

0 0

0 0

0 0

lim lim

sin
lim lim

sin lim lim

PQ t

PQ t

t PQ

PQdr PQ

dt PQ t
PQ r

PQ t
PQ

r
t PQ

 

0
sin lim

PQ

PQdr
r

dt PQ
 

where  represents the angular velocity of P rotation in the circle of center C 

which equals the angular velocity  of rotation vector r  then 

0
sin lim

PQ

PQdr
r

dt PQ
 

But it is clear that /PQ PQ  is a unit vector in direction of PQ  and when PQ  

approaches zero ( 0PQ ) then P Q  that is the unit vector becomes in 

the direction of tangential to the circle whose its center is C at P that is 

ˆsin
dr

r u
dt

 (1) 

where û  is a unit vector perpendicular to k̂ , in addition is perpendicular to the 

radius CP, that û  is normal to the plane of vectors k̂  and CP , hence, û  is 

normal to OP r  and from the definition of vector product we have, 

ˆsinr r u  (2) 

By comparing the two Equations (1) and (2) we have  

(3)
dr

r
dt
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The last equation (3) gives us the time rate of change of a vector with constant 

length and rotates with a constant angular velocity around an axis (here z-axis). 

So the time rate of change of unit vectors ˆ ˆ ˆ, ,i j k  (where ˆ ˆ ˆ 1i j k )  

ˆ ˆ ˆ
ˆ ˆ ˆ, , (*)

di dj dk
i j k

dt dt dt   

 

 Motion Referred to a Moving Coordinate System  

Suppose that the position of a point P (Figure below) is determined with 

respect to n oxyz coordinate system, while at the same time this coordinate 

system moves with a translational velocity R  and an angular velocity  with 

respect to a "fixed" OXYZ coordinate system. This is the type of coordinate 

system which might become necessary, for example, in a long range ballistics 

problem for which the motion of the Earth would have to be taken into 

account. In such a problem the measurements would be made with respect to 

the Earth, and the motion of the Earth relative to some coordinate system fixed 

with respect to certain stars would be considered. We shall now derive a 

general expression for the acceleration of a point referred to a coordinate 

system which itself is moving. 

 

 

 

 

 

 

In the analysis to follow, we shall always measure the vectors R  and r  in the 

fixed OXYZ system. The unit vectors ˆ ˆ ˆ( , , )i j k  always have the direction of the 
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moving coordinate axes, while the unit vectors ˆ ˆ ˆ( , , )I J K  always have the 

direction of the fixed coordinate axes. 

By the absolute displacement r  of the point P is meant the displacement 

measured with respect to the fixed OXYZ system. By differentiating this 

absolute displacement we obtain the absolute velocity r . and the absolute 

acceleration r . 

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

r XI YJ ZK

r XI YJ ZK

r XI YJ ZK

 

During these differentiations, the unit vectors it, ˆ ˆ ˆ( , , )I J K  are treated as 

constants due to Equation (1), since neither their magnitudes nor their 

directions change with time. If we wish to express the absolute motion in terms 

of motion measured in the moving oxyz system, we have, 

ˆ ˆ ˆr R r R xi yj zk  

where the directions of the ˆ ˆ ˆ( , , )i j k unit vectors are known with respect to the 

fixed system. However, the unit vectors are changing direction with time, since 

they rotate with the oxyz system. In taking the derivatives r  and r , therefore, 

the time derivatives of these unit vectors must be included, 

ˆ ˆ ˆ
ˆ ˆ ˆ di dj dk

r R r R xi yj zk x y z
dt dt dt

 

The derivatives of the unit vectors are given by Equations (2), so  

ˆ ˆ ˆ ˆ ˆ ˆ( )r R xi yj zk xi yj zk  

The quantity ( ˆ ˆ ˆ
rxi yj zk r ) represents the velocity of the point P, 

measured relative to the moving coordinate system, which we shall call the 

relative velocityr . Using this notation, the expression for P becomes, 

rr R r r  

The acceleration of P may be found by a second differentiation, 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 ( ) ( )
ˆ ˆ ˆ( )

r R r

R xi yj zk xi yj zk xi yj zk

xi yj zk

 

Writing( ˆ ˆ ˆ
rxi yj zk r ), which we call the relative acceleration of the 

point P, the expression for r  can be written as, 

( ) 2 (3)r rr R r r r r  

The first three terms in this expression for r  represent the absolute 

acceleration of a point attached to the moving coordinate system, coincident 

with the point P at any given time. This may be seen by noting that for a point 

fixed in the moving system 0r rr r . The fourth term rr  represents the 

acceleration of P relative to the moving system. The last term2 rr , is 

sometimes called the acceleration of Coriolis, after G. Coriolis (1792-1843)) a 

French engineer who first called attention to this term and ( )r  is 

known as centrifugal acceleration. 

 

 When ( 0R ) i.e., P places at the origin of oxyz coordinates 

r

F
F r v

dr dr
v r r r

dt dt
 

r r

F F
F F

F r
( )

2 ( )
a v

dv dv
a v

dt dt
r r r r

r r r r
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Illustrative Examples

 EXAMPLE: A set of coordinate system axes Oxyz  (non-inertial) rotates with 

angular velocity  with respect to a set of inertial axes OXYZ  (Fixed axes) 

where ˆ ˆ ˆ2 3 5i j k  If ˆ ˆ ˆsin cos tr ti tj e k  then find 

2 2

2 2
r F r F

, , ,
dr dr d r d r

dt dt dt dt  

 SOLUTION: 

r

ˆ ˆ ˆcos sin ,t
dr

r ti tj e k
dt

 

F r

ˆ ˆ ˆ

ˆ ˆ ˆcos sin 2 3 5

sin cos
ˆ ˆ ˆ(6cos 3 ) (6 sin 2 ) (3 sin 2cos ) ,

t

t

t t t

i j k
dr dr

r ti tj e k
dt dt

t t e

t e i t e j t t e k

 

2

2
r

ˆ ˆ ˆsin cos ,t
d r

r ti tj e k
dt

 

F r

ˆ ˆ ˆ

ˆ ˆ ˆcos sin 2 3 5

sin cos
ˆ ˆ ˆ(6cos 3 ) (6 sin 2 ) (3 sin 2cos ) ,

t

t

t t t

i j k
dr dr

r ti tj e k
dt dt

t t e

t e i t e j t t e k

 

2

2
F F FF rF

.......
d r d dr d dr dr

dt dt dt dt dtdt
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 EXAMPLE: A smooth circular wire of radius b rotates with constant angular 

velocity  in a horizontal plane about a 

perpendicular axis to its plane at a point O on 

its circumference. Prove that the equation of 

motion for a smooth small bead slides over the 

wire is 2 sin 0  where  represents 

the angle between the diameters that passing 

through the bead and the point O.  

 SOLUTION:  

Let P be the position of the ring at instant t where ˆ ˆsin (1 cos )r b i b j  

according to rotating frame, and the fixed and rotating frames are choosing as 

illustrated in the figure OXYZ represents the rotating frame, while Oxyz 

represents fixed frame. Now k̂ and 

F

ˆ ˆ ˆ ˆsin (1 cos ) cos sin

ˆ ˆ ˆ

ˆ ˆcos sin 0 0

sin 1 cos 0
ˆ ˆ( cos (1 cos )) ( sin sin )

F

r b i b j r b i b j

dr
v r r

dt

i j k

b i b j b

b i b j

 

and the acceleration becomes 

F
F F F

F

2 2

ˆ ˆ( cos (1 cos )) ( sin sin )

ˆ ˆ ˆ

0 0

cos (1 cos ) sin sin 0

ˆ( cos sin 2 sin sin )

(
xa

dv
a v v

dt
b i b j

i j k

b

b i

b 2 2 ˆsin cos 2 cos (1 cos ))

ya

j
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The forces acting on the ring within its motion are its weight mg downwards, 

reaction of the wire which we solve it into two components namely, R passing 

through the center of the wire and the other component N upwards direction 

where N = mg,  the equations of motion in OX and OY directions are 

sin , cos ,x yma R ma R  

2 2or ( cos sin 2 sin sin ) sinmb R  

and 2 2( sin cos 2 cos (1 cos )) cosmb R  

Dividing the last two equations we get 

2 2

2 2

( cos sin 2 sin sin ) sin

cos( sin cos 2 cos (1 cos ))

mb R

Rmb
 

or 

2 2

2 2

( cos sin 2 sin sin ) sin

cos( sin cos 2 cos (1 cos ))
 

2 2

2 2

cos ( cos sin 2 sin sin )

sin ( sin cos 2 cos (1 cos ))
 

2 2 2(cos sin ) sin 0   

or              2 sin 0  

which gives the equation of motion of the small bead. 
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Motion relative to the Earth 

As known, the Earth spins about its polar axis once 

every about 24 hours or 48.64 10 s (not strictly true 

in a sidereal frame due to the orbit of the Earth 

about the Sun but sufficiently accurate for our 

purposes here), which means that each point of the 

Earth disrobe a circle about the axis. Consider a 

point P on the Earth's surface with latitude  

(latitude represents the angle between the radius to P 

and the equatorial plane; as seen in the Figure). The 

Earth angular speed is 

5 1
4

2
7.27 10 rad s

8.64 10
 

The acceleration of P due to the spin of the Earth will vary with the latitude of 

point P. If is the distance of P from the polar axis, the acceleration of P towards 

to the axis is 2 2 2cos 3.36cos cmsr b  

Gravitational pull. It is approximately 981 cm s
-2

 (its value of course not 

constant since the Earth is not perfectly spherical shape). Both accelerations are 

small compared with this typical acceleration due to gravity. For this reason we 

can take the Earth as an inertial frame for local phenomena on the Earth. It 

must be emphasized, however, that is not always safe to assume that small 

accelerations effective over long intervals of time can be ignored. A small 

sustained acceleration can produce significant impacts.  

The motion of Earth with respect to an inertial reference frame is dominated by 

Earth’s rotation about its own axis. The effects of the other motion (e.g., the 

revolution about the Sun and the motion of the solar system with respect to the 

local galaxy) are small by comparison. If we place the fixed or inertial frame 

OXYZ at the center of Earth (at point O) and the moving reference frame oxyz 
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on the surface of Earth at latitude  as seen from the figure, we can describe 

the motion of a moving object close to the surface of Earth.  

ˆ ˆcos sini k  and   r R r  

where ,r r  are position vectors of the particle according to O and o 

respectively. The acceleration here differs from the obtained previous with the 

value of acceleration of o with respect to O which equals 2( )oD  where D is 

the center of latitude  of point o, that is differs by the value 2( cos )R  

which is a small value and so can be neglected. Hence the acceleration of the 

particle with respect to o is given by 

r r2 ( )a g v r r  

Here the angular velocity of the Earth is constant thus, 0  and also the 

term ( )r  is small enough to be ignored and previous equation reduces 

to 

r r r2 , ( , , )a g v v x y z  

This is the equation that we will use to discuss the motion of objects close to 

the surface of Earth. 
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 APPLICATION 1: Find the horizontal deflection from the plumb line caused 

by the Coriolis force acting on a particle falling freely in Earth's gravitational 

field from a height h above Earth's surface. 

 SOLUTION: 

The acceleration due to gravity is the effective one and 

is along the plumb line. We choose a Z-axis directed 

vertically outward (along –g) from the surface of Earth. 

r

r

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

r xi yj zk

v xi yj zk

a xi yj zk

 

and the acceleration becomes 

r F
ˆ2 ,

ˆ ˆ ˆ

ˆ 2 cos 0 sin

a g v g gk

i j k

gk

x y z

 

The components of acceleration are  

2 sin (1)

2 ( sin cos ) (2)

2 cos (3)

x y

y x z

z g y

 
Integrate Eq. (1) and (3), we get 

1

2

2 sin

2 cos

x y c

z gt y c

 

From the boundary conditions at (t = 0), ˆ0,v r hk  1 2 0c c  

Therefore, 

2 sin (4)

2 cos (5)

x y

z gt y
 

Substituting Eq. (4) and (5) in Eq. (2) we have 
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2 2

2

2 (2 sin cos 2 cos )

2 (2 cos )

2 cos 4

2 cos (7)

y y gt y

y gt

gt y

y gt

 

Neglecting the term 24 y  and integrate Eq. (7) we have  2
3cosy gt c  

Again from the boundary conditions we obtain  3 0c  

2 3
4

1
cos cos

3
y gt y gt c  

Since 3
4

1
0 cos

3
c y gt  

2 3

2 3 2

2
2 sin cos sin

3
2

cos
3

x y gt

z gt gt
 

We ignore the terms containing  2  

0,x z gt  

Integrating 

2
5 6

1
,

2
x c z gt c  

Due to the boundary conditions we get 5 60,c c h  

3 21 1
0, cos ,

3 2
x y gt z h gt  

These three equations give the position of the particle at any time and the 

particle reaches to the Earth i.e., (z = 0) when 1/2(2 / )T h g  

Now when the particle arrives to Earth, its position is  

3/21
0, (2 / ) cos , 0

3
x y g h g z  

This means that the particle deflect to east of distance 3/21
(2 / ) cos

3
g h g  
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Foucault pendulum  

The impact of Coriolis force on the motion of a pendulum produces a 

precession or rotation with time of the plane of oscillation. Describe the motion 

of this system, called a Foucault pendulum. 

In order to illustrate this impact, let us select a set of coordinate axes with 

origin at the equilibrium point of the pendulum and z-axis along the local 

vertical. We are interested only in the rotation of the plane of oscillation- that 

is, we want to consider the motion of the pendulum bob in x-y plane (the 

horizontal plane). We therefore, limit the motion to oscillation of small 

amplitude, with the horizontal excursions small compared with the length of 

the pendulum. Under this assumpition, dz/dt is small compared with dx/dt and 

dy/dt and can be neglected. As clear  

ˆ ˆcos sini k  

ˆ ˆ ˆr xi yj zk  

ˆ ˆ ˆcos cos cosT T i T j T k  

cos , cos , cos
x y L z

L L L
 

Now the equation of motion are 

2ma T mg m v  

Since, ˆ ˆ ˆ ˆ ˆ ˆ,v xi y j zk a xi y j zk  

ˆ ˆ ˆ

cos 0 sin

ˆ ˆ ˆ( sin ( sin cos ) cos )

i j k

v

x y z

y i x z j y k

 

Thus, the equations of interest are  
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2 sin ,

2 ( sin cos ),

( )
2 cos

x
mx T m y

L
y

my T m x z
L
L z

mz T mg m y
L

 

For small oscillations, so we can consider that the particle moves in the 

horizontal plane XOY i.e., 0z z  and hence, 2 cosT mg m y , we 

have 

( 2 cos ) 2 sin ,

( 2 sin ) 2 sin ,

x
mx m g m y m y

L
y

my m g m y m x
L

 

Or  

2 cos
2 sin ,

2 sin
2 sin ,

g
x x xy y

L L
g

y y yy x
L L

 

We note that the equation for x contains a term iny  and that the equation for 

y  contains a term inx . Such equations are called coupled equations. Since the 

quantities , ,x y  are very small, so we can ignore the terms involve quantities 

,xy yy  then previous equations become 

2 sin ,

2 sin ,

g
x x y

L
g

y y x
L

 

A solution for this pair of coupled equations can be affected by adding the first 

of the above equations to i  times the second. 

This equation is identical with the equation that describes damped oscillations, 

except that here the term corresponding to the damping factor is purely 

imaginary. The solution is given by (Q x iy , 2 /k g L , sin )  

22 0, (1)Q i Q k Q  

The roots of auxiliary equation are 
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2 2
2 2 2 22 4 4
2 0,

2

i k
i k i k  

The solution of differential equation (1) is 

2 2 2 2
( ) i t i k t i k tQ t e Ae Be

 

If Earth were not rotating, that is 0 , then the equation for ( )Q t  would 

become  

2 0, ( 0)Q k Q  

from which it is seen that  corresponds to the oscillation frequency of the 

pendulum. This frequency is clearly much greater than the angular frequency 

of the Earth's rotation. Therefore, k , and the equation for ( )Q t  becomes  

( ) i t ikt iktQ t e Ae Be
 

We can interpret this equation more easily if we note that the equation for Q

has the solution  

0
( ) ( ) ( ) ikt ikt
t

Q Q t X t iY t Ae Be
 

Thus 

( ) ( )

( ) ( ) ( ( ) ( ))(cos sin )

( )cos ( )sin ( ( )cos ( )sin )

i tQ t Q t e

x t iy t X t iY t t i t

X t t Y t t i Y t t X t t
 

Equating real and imaginary parts, 

( ) ( )cos ( )sin , ( ) ( )cos ( )sinx t X t t Y t t y t Y t t X t t  

or in matrix form   
( ) cos sin ( )

( )
( ) sin cos ( )

x t t t X t

y t t t Y t
 

from which ( , )x y  may be obtained from ( , )XY  by the application of a 

rotation matrix of the familiar from  

cos sin

sin cos
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Thus the angle of rotation t , and the plane of oscillation of the pendulum 

therefore rotates with a frequency sin  around Z-axis and the time of 

revolution is2 / 2 / sin . The observation of this rotation gives a clear 

demonstration of the rotation of Earth.  
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PROBLEMS 

 

 

 

 


