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Set Theory

1.1 INTRODUCTION

The concept of a set appears in all mathematics. This chapter introduces the notation and terminology of set
theory which is basic and used throughout the text. The chapter closes with the formal definition of mathematical
induction, with examples.

1.2 SETS AND ELEMENTS, SUBSETS

A set may be viewed as any well-defined collection of objects, called the elements or members of the set.
One usually uses capital letters, A, B, X, Y, ..., to denote sets, and lowercase letters, a, b, x, y, . . ., to denote
elements of sets. Synonyms for “set” are “class,” “collection,” and “family.”

Membership in a set is denoted as follows:

a < § denotes that a belongs to a set §
a, b € § denotes that a and b belong to a set §
Here € is the symbol meaning “is an element of.” We use ¢ to mean “is not an element of.”

Specifying Sets

There are essentially two ways to specify a particular set. One way, if possible, is to list its members separated
by commas and contained in braces { }. Asecond way is to state those properties which characterized the elements
in the set. Examples illustrating these two ways are:

A=1{1,3,5,7,9} and B = {x|x isaneven integer, x > 0}

That is, A consists of the numbers 1, 3, 5, 7, 9. The second set, which reads:

B is the set of x such that x is an even integer and x is greater than 0,
denotes the set B whose elements are the positive integers. Note that a letter, usually x, is used to denote a typical
member of the set; and the vertical line | is read as “such that” and the comma as “and.”

EXAMPLE 1.1

(a) The set A above can also be written as A = {x | x is an odd positive integer, x < 10}.
(b) We cannot list all the elements of the above set B although frequently we specify the set by
B=1{2,4,6,..}

where we assume that everyone knows what we mean. Observe that 8 € B, but 3 ¢ B.
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2 SET THEORY [CHAP. 1

(c) Let E={x|x?—3x+2=0}, F={2,1}and G=1{1,2,2,1}. ThenE=F =G.

We emphasize that a set does not depend on the way in which its elements are displayed. A set remains the
same if its elements are repeated or rearranged.

Even if we can list the elements of a set, it may not be practical to do so. That is, we describe a set by listing its
elements only if the set contains a few elements; otherwise we describe a set by the property which characterizes
its elements.

Subsets

Suppose every element in a set A is also an element of a set B, that is, suppose a € A implies a € B. Then
A is called a subset of B. We also say that A is contained in B or that B contains A. This relationship is written

ACB or BDA

Two sets are equal if they both have the same elements or, equivalently, if each is contained in the other. That is:

A=Bifandonlyif ACBand BC A

If A is not a subset of B, that is, if at least one element of A does not belong to B, we write A € B.

EXAMPLE 1.2 Consider the sets:
A=1{1,3,478,9, B={1,23435} C=({1,3}

Then C € A and C C B since 1 and 3, the elements of C, are also members of A and B. But B & A since some
of the elements of B, e.g., 2 and 5, do not belong to A. Similarly, A € B.

Property 1: Itis common practice in mathematics to put a vertical line “|” or slanted line “/” through a symbol
to indicate the opposite or negative meaning of a symbol.

Property 2: The statement A C B does not exclude the possibility that A = B. In fact, for every set A we have
A C A since, trivially, every element in A belongs to A. However, if A € B and A # B, then wesay Aisa
proper subset of B (sometimes written A C B).

Property 3: Suppose every element of a set A belongs to a set B and every element of B belongs to a set C.
Then clearly every element of A also belongs to C. In other words, if A € Band B € C, then A C C.

The above remarks yield the following theorem.

Theorem 1.1: Let A, B, C be any sets. Then:
i) ACA

(ii)) fACBand BC A,thenA =B

(i) fACBandBC C,thenA CC

Special symbols

Some sets will occur very often in the text, and so we use special symbols for them. Some such symbols are:
N = the set of natural numbers or positive integers: 1,2, 3, ...
Z = the set of all integers: ..., —2,—-1,0,1,2,...
Q = the set of rational numbers
R = the set of real numbers
C = the set of complex numbers
Observethat NCZCQCRCC.
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Universal Set, Empty Set

All sets under investigation in any application of set theory are assumed to belong to some fixed large set
called the universal set which we denote by
U

unless otherwise stated or implied.
Given a universal set U and a property P, there may not be any elements of U which have property P. For
example, the following set has no elements:

§ = {x | x is a positive integer, x% = 3}
Such a set with no elements is called the empty set or null set and is denoted by
@

There is only one empty set. That is, if § and T are both empty, then S = T, since they have exactly the same
elements, namely, none.

The empty set @ is also regarded as a subset of every other set. Thus we have the following simple result
which we state formally.

Theorem 1.2: For any set A, we have @ C A C U.

Disjoint Sets

Two sets A and B are said to be disjoint if they have no elements in common. For example, suppose
A={l,2}, B={4,5,6}, and C=1{5,6,7,8}

Then A and B are disjoint, and A and C are disjoint. But B and C are not disjoint since B and C have elements
in common, e.g., 5 and 6. We note that if A and B are disjoint, then neither is a subset of the other (unless one is
the empty set).

1.3 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets in which sets are represented by enclosed areas in the
plane. The universal set U is represented by the interior of a rectangle, and the other sets are represented by disks
lying within the rectangle. If A C B, then the disk representing A will be entirely within the disk representing B
asin Fig. 1-1(a). If A and B are disjoint, then the disk representing A will be separated from the disk representing
B as in Fig. 1-1(b).

CNiO ’

(a) ACRB (b) A and B are disjoint (c)

Fig. 1-1
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However, if A and B are two arbitrary sets, it is possible that some objects are in A but not in B, some are
in B but not in A, some are in both A and B, and some are in neither A nor B; hence in general we represent A
and B as in Fig. 1-1(c).

Arguments and Venn Diagrams

Many verbal statements are essentially statements about sets and can therefore be described by Venn diagrams.
Hence Venn diagrams can sometimes be used to determine whether or not an argument is valid.

EXAMPLE 1.3 Show that the following argument (adapted from a book on logic by Lewis Carroll, the author
of Alice in Wonderland) is valid:

S1: All my tin objects are saucepans.
S>: I find all your presents very useful.
S3: None of my saucepans is of the slightest use.

S : Your presents to me are not made of tin.

The statements Sj, S,, and S3 above the horizontal line denote the assumptions, and the statement S below
the line denotes the conclusion. The argument is valid if the conclusion § follows logically from the assumptions
51, 8>, and S3.

By S the tin objects are contained in the set of saucepans, and by S3 the set of saucepans and the set of
useful things are disjoint. Furthermore, by S> the set of “your presents” is a subset of the set of useful things.
Accordingly, we can draw the Venn diagram in Fig. 1-2.

The conclusion is clearly valid by the Venn diagram because the set of “your presents” is disjoint from the
set of tin objects.

sauscpans

useful things

Fig. 1-2

1.4 SET OPERATIONS

This section introduces a number of set operations, including the basic operations of union, intersection, and
complement.

Union and Intersection

The union of two sets A and B, denoted by A U B, is the set of all elements which belong to A or to B;
that is,
AUB={x|xe Aorx € B}
Here “or” is used in the sense of and/or. Figure 1-3(a) is a Venn diagram in which A U B is shaded.
The intersection of two sets A and B, denoted by A N B, is the set of elements which belong to both A and
B; that 1s,
ANB={x|x € Aand x € B}

Figure 1-3(b) is a Venn diagram in which A N B is shaded.
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(a) A U B is shaded (h) A N B is shaded

Fig. 1-3

Recall that sets A and B are said to be disjoint or nonintersecting if they have no elements in common or,
using the definition of intersection, if A N B = @, the empty set. Suppose

S=AUB and ANB=0

Then § is called the disjoint union of A and B.

EXAMPLE 1.4

(a) Let A={1,2,3,4}, B={3,4,5,6,7}, C = {2,3,8,9}. Then
AUB=1{1,2.3,4,5,6,71, AUC={1,2,3.4,8,9], BUC=123,4,5,6,7,8,9,
ANB ={3,4}, ANC=1{23}, BNC ={3).

(b) Let U be the set of students at a university, and let M denote the set of male students and let F' denote the set
of female students. The U is the disjoint union of M of F; that is,

U=MUF and MNF=0

This comes from the fact that every student in U is either in M or in F, and clearly no student belongs to
both M and F, that is, M and F are disjoint.

The following properties of union and intersection should be noted.

Property 1: Every element x in A N B belongs to both A and B; hence x belongs to A and x belongs to B. Thus
AN B is a subset of A and of B; namely

ANB<CA and ANBCBH

Property 2: An element x belongs to the union A U B if x belongs to A or x belongs to B; hence every element
in A belongs to A U B, and every element in B belongs to A U B. That is,

ACAUB and BCAUB

We state the above results formally:
Theorem 1.3: For any sets A and B, we have:
()ANBCACAUBand(ii)) ANB< BC AUB.

The operation of set inclusion is closely related to the operations of union and intersection, as shown by the
following theorem.

Theorem 1.4: The following are equivalent: AC B, ANB=A, AUB=B.

This theorem is proved in Problem 1.8. Other equivalent conditions to are given in Problem 1.31.
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(a) A s shaded (b) A\B is shaded (c) A @ B is shaded

Fig. 14

Complements, Differences, Symmetric Differences

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U. The absolute
complement or, simply, complement of a set A, denoted by A€, is the set of elements which belong to U but which
do not belong to A. That is,

AC={x|x cU,x ¢ A}

Some texts denote the complement of A by A’ or A. Fig. 1-4(a) is a Venn diagram in which A€ is shaded.

The relative complement of a set B with respect to a set A or, simply, the difference of A and B, denoted by
A\B, is the set of elements which belong to A but which do not belong to B; that is

AB={x|x<cA,x¢B)}

The set A\B is read “A minus B.” Many texts denote A\B by A — B or A ~ B. Fig. 1-4(b) is a Venn diagram in
which A\B is shaded.

The symmetric difference of sets A and B, denoted by A @ B, consists of those elements which belong to A
or B but not to both. That is,

A®B=(AUB\ANB) or A® B = (A\B)U (B\A)

Figure 1-4(c) is a Venn diagram in which A @ B is shaded.

EXAMPLE 1.5 Suppose U=N = {1, 2, 3, ...} is the universal set. Let
A=1{1,2,3,4}, B=1{3,4,5,67} C=12,3.8,9], E=1{2,4.6,...]
(Here E is the set of even integers.) Then:
A€ =1{5,6,7,...}, B¢={1,2,8,9,10,...}, E¢={1,3,517,..]}
That is, E€ is the set of odd positive integers. Also:

A\B = {1, 2}, A\C ={1,4}, B\C={4,5,6,7}, A\E={l1,3},
B\A=1{5,6,7}, C\A=1{8,9}, C\B={2,38,09}, E\A =1{6,8,10,12,...}.

Furthermore:
A@® B =(A\B)U(B\A)={1,2,5,6,7}, B@&C={2,4,5,6,7,8,9},
AdC=(A\C)U(B\C)=1{1,4,8,9}, A®E=1{13,6,8,10,...}.
Fundamental Products

Consider n distinct sets A1, Az, ..., A,. A fundamental product of the sets is a set of the form

ATNA3N...NA* where A'=A or A¥=AC
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We note that:

(i) There are m = 2" such fundamental products.
(i) Any two such fundamental products are disjoint.
(iii) The universal set U is the union of all fundamental products.

Thus U is the disjoint union of the fundamental products (Problem 1.60). There is a geometrical description
of these sets which is illustrated below.

EXAMPLE 1.6 Figure 1-5(a) is the Venn diagram of three sets A, B, C. The following lists the m = 23 = 8
fundamental products of the sets A, B, C:

PP=ANBNC, Ps=ANB°NC, Ps=A°NBNC, P;=A°NnBCNC,
P,=ANBNCS P;=ANB°NCC, P;=A°NnBNCS P =A°NB°NCE.

The eight products correspond precisely to the eight disjoint regions in the Venn diagram of sets A, B, C as
indicated by the labeling of the regions in Fig. 1-5(b).

A
4%
NG

(a) (h)

Fig. 1-5

1.5 ALGEBRA OF SETS, DUALITY

Sets under the operations of union, intersection, and complement satisfy various laws (identities) which are
listed in Table 1-1. In fact, we formally state this as:

Theorem 1.5: Sets satisfy the laws in Table 1-1.

Table 1-1 Laws of the algebra of sets

Idempotent laws: (la) AUA=A (Ib)ANA=A
Associative laws: (2a) (AUB)UC =AU (BUC) 20) (ANB)NC=AN(BNC)
Commutative laws: | (3a) AUB=BUA Bb)ANB=BNA
Distributive laws: | (4a) AU(BNC)=(AUB)N(AUC) | @)AN(BUC)=(ANB)U(ANC)
. . (5a) AUP=A (5b))ANU=A
TOERUEY s G AUU=TU ) ANG =0
Involution laws: (N A9 =4
(8a) AUAC=U Bb)ANAC=¢
Complement laws: = =
(92) U€ = ¢ (9b) 9C =U
DeMorgan’s laws: | (10a) (A U B)C = A€ n B€ (10b) (AN B)¢ = AU B®
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Remark: Each law in Table 1-1 follows from an equivalent logical law. Consider, for example, the proof of
DeMorgan’s Law 10(a):

(AUB={x|x¢(AorB)} ={x|x ¢ Aand x ¢ B} = A°NBC
Here we use the equivalent (DeMorgan’s) logical law:

where — means “not,” v means “or,” and A means “and.” (Sometimes Venn diagrams are used to illustrate the
laws in Table 1-1 as in Problem 1.17.)

Duality

The identities in Table 1-1 are arranged in pairs, as, for example, (2a) and (2b). We now consider the principle
behind this arrangement. Suppose E is an equation of set algebra. The dual E* of E is the equation obtained by
replacing each occurrence of U, N, U and ¥ in E by N, U, ¥, and U, respectively. For example, the dual of

(UNA)UBNA)=A is BUANBUA)=A

Observe that the pairs of laws in Table 1-1 are duals of each other. It is a fact of set algebra, called the principle
of duality, that if any equation E is an identity then its dual E* is also an identity.

1.6 FINITE SETS, COUNTING PRINCIPLE

Sets can be finite or infinite. A set S is said to be finite if § is empty or if § contains exactly m elements where
m is a positive integer; otherwise S is infinite.

EXAMPLE 1.7

(a) The set A of the letters of the English alphabet and the set D of the days of the week are finite sets. Specifically,
A has 26 elements and D has 7 elements.

(b) Let E be the set of even positive integers, and let I be the unit interval, that is,
E=1{2,4,6,...} and I=[0,1]={x|0=<x <1}
Then both E and I are infinite.

A set § is countable if § is finite or if the elements of § can be arranged as a sequence, in which case § is
said to be countably infinite; otherwise S is said to be uncountable. The above set E of even integers is countably
infinite, whereas one can prove that the unit interval I = [0, 1] is uncountable.

Counting Elements in Finite Sets

The notation n(S) or |S| will denote the number of elements in a set S. (Some texts use #(5) or card(S)
instead of n(S).) Thus n(A) = 26, where A is the letters in the English alphabet, and n(D) = 7, where D is the
days of the week. Also n(¥) = 0 since the empty set has no elements.

The following lemma applies.

Lemma 1.6: Suppose A and B are finite disjoint sets. Then A U B is finite and
n(AU B) =n(A) +n(B)
This lemma may be restated as follows:

Lemma 1.6: Suppose S is the disjoint union of finite sets A and B. Then S is finite and
n(S) = n(A) +n(B)
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Proof. In counting the elements of A U B, first count those that are in A. There are n(A) of these. The only other
elements of A U B are those that are in B but not in A. But since A and B are disjoint, no element of B is in A,
so there are n(B) elements that are in B but not in A. Therefore, n(A U B) = n(A) + n(B).

For any sets A and B, the set A is the disjoint union of A\B and A N B. Thus Lemma 1.6 gives us the
following useful result.

Corollary 1.7: Let A and B be finite sets. Then
n(A\B) = n(A) —n(AN B)

For example, suppose an art class A has 25 students and 10 of them are taking a biology class B. Then the number
of students in class A which are not in class B is:

n(A\B) =n(A) —n(ANB)=25—10=15

Given any set A, recall that the universal set U is the disjoint union of A and AC. Accordingly, Lemma 1.6
also gives the following result.

Corollary 1.8: Let A be a subset of a finite universal set U. Then
n(A%) = n(U) —n(4)

For example, suppose a class U with 30 students has 18 full-time students. Then there are 30 — 18 = 12 part-time
students in the class U.

Inclusion-Exclusion Principle

There is a formula for n(A U B) even when they are not disjoint, called the Inclusion—Exclusion Principle.
Namely:

Theorem (Inclusion—-Exclusion Principle) 1.9: Suppose A and B are finite sets. Then A U B and A N B are
finite and
n(AUB) = n(A) +n(B) —n(AN B)

That is, we find the number of elements in A or B (or both) by first adding n(A) and n(B) (inclusion) and then
subtracting n(A N B) (exclusion) since its elements were counted twice.
We can apply this result to obtain a similar formula for three sets:

Corollary 1.10: Suppose A, B, C are finite sets. Then A U B U C is finite and
n(AUBUC) =n(A) +n(B)+n(C) —n(ANB)—n(ANC)—n(BNC)+n(ANBNC)

Mathematical induction (Section 1.8) may be used to further generalize this result to any number of finite sets.

EXAMPLE 1.8 Suppose a list A contains the 30 students in a mathematics class, and a list B contains the
35 students in an English class, and suppose there are 20 names on both lists. Find the number of students:
(a) only on list A, (b) only on list B, (c) on list A or B (or both), (d) on exactly one list.

(a) List A has 30 names and 20 are on list B; hence 30 — 20 = 10 names are only on list A.
(b) Similarly, 35 — 20 = 15 are only on list B.
(c) We seek n(A U B). By inclusion—exclusion,
n(AUB) =n(A) +n(B) —n(AN B) =30+ 35 — 20 = 45.
In other words, we combine the two lists and then cross out the 20 names which appear twice.

(d) By (a) and (b), 10 4 15 = 25 names are only on one list; that is, n(A @ B) = 25.
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1.7 CLASSES OF SETS, POWER SETS, PARTITIONS

Given a set S, we might wish to talk about some of its subsets. Thus we would be considering a set of sets.
Whenever such a situation occurs, to avoid confusion, we will speak of a class of sets or collection of sets rather
than a set of sets. If we wish to consider some of the sets in a given class of sets, then we speak of subclass or
subcollection.

EXAMPLE 1.9 Suppose § = {1, 2, 3,4}.

(a) Let A be the class of subsets of S which contain exactly three elements of S. Then
A=[{1,2,3},{1,2,4},{1, 3,4}, {2, 3, 4}]

That is, the elements of A are the sets {1, 2, 3}, {1, 2,4}, {1, 3,4}, and {2, 3, 4}.

(b) Let B be the class of subsets of S, each which contains 2 and two other elements of S. Then
B =1[{1,2,3}{1,2,4},{2,3,4}]

The elements of B are the sets {1, 2, 3}, {1, 2, 4}, and {2, 3, 4}. Thus B is a subclass of A, since every
element of B is also an element of A. (To avoid confusion, we will sometimes enclose the sets of a class in
brackets instead of braces.)

Power Sets

For a given set § , we may speak of the class of all subsets of S. This class is called the power set of S , and
will be denoted by P(S). If S is finite, then so is P(S). In fact, the number of elements in P(S) is 2 raised to the
power n(S). That is,

n(P(S)) = 2"

(For this reason, the power set of S is sometimes denoted by 28

EXAMPLE 1.10 Suppose S = {1, 2, 3}. Then
P(S) =19, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, §]

Note that the empty set ¥ belongs to P(S) since @ is a subset of §. Similarly, S belongs to P(S). As expected
from the above remark, P(S) has 2* = 8 elements.

Partitions
Let S be a nonempty set. A partition of S is a subdivision of § into nonoverlapping, nonempty subsets.
Precisely, a partition of S is a collection {A;} of nonempty subsets of S such that:
(1) Each a in § belongs to one of the A;.
(i1) The sets of {A;} are mutually disjoint; that is, if
Aj#Ar then AjNAr=0

The subsets in a partition are called cells. Figure 1-6 is a Venn diagram of a partition of the rectangular set
§ of points into five cells, A1, A2, Az, A4, As.
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Fig. 1-6

EXAMPLE 1.11 Consider the following collections of subsets of § = {1, 2,...,8,9}:
@ [{1,3,5}, {2,6}, {4,8,9]]
(i) [{1,3,5},{2,4,6,8},{5,7,9)]
i) [{1,3,5},{2.4,6,8},{7,9}]

Then (i) is not a partition of S since 7 in § does not belong to any of the subsets. Furthermore, (ii) is not a
partition of S since {1, 3, 5} and {5, 7, 9} are not disjoint. On the other hand, (iii) is a partition of §.

Generalized Set Operations

The set operations of union and intersection were defined above for two sets. These operations can be extended
to any number of sets, finite or infinite, as follows.

Consider first a finite number of sets, say, Ay, A,, ..., A,,. The union and intersection of these sets are
denoted and defined, respectively, by

AlUAU...UA, =L, Ai = {x | x € A; for some A;}
AINAN...NAym =L, Ai = {x | x € A; forevery A;}

That is, the union consists of those elements which belong to at least one of the sets, and the intersection consists
of those elements which belong to all the sets.

Now let &/ be any collection of sets. The union and the intersection of the sets in the collection A is denoted
and defined, respectively, by

U (AJA € &) = {x | x € A; for some A; € o}
(N (A|A € &) = {x|x € A; for every A; € &)

That is, the union consists of those elements which belong to at least one of the sets in the collection ./ and the
intersection consists of those elements which belong to every set in the collection A.

EXAMPLE 1.12 Consider the sets
A1 =1{1,2,3,..}=N, Ax=1{2.3,4,...}, Az=1{3,45,...}y Azg={n.n+1l.n+2,..}
Then the union and intersection of the sets are as follows:
JAklkeN)=N and ((AxlkeN) =0
DeMorgan’s laws also hold for the above generalized operations. That is:
Theorem 1.11: Let & be a collection of sets. Then:
O [UAlAe )] =NAC|1Aca)

(ii) [ﬂ(A|Ae.Q{)]C:U(AC|Ae.@’)
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1.8 MATHEMATICAL INDUCTION
An essential property of the set N = {1, 2, 3, ...} of positive integers follows:
Principle of Mathematical Induction I: Let P be a proposition defined on the positive integers N; that is, P(n)
is either true or false for each n € N. Suppose P has the following two properties:
(i) P(1)is true.

(ii)) P(k + 1) is true whenever P (k) is true.
Then P is true for every positive integer n € N.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when N is
developed axiomatically.

EXAMPLE 1.13 Let P be the proposition that the sum of the first n odd numbers is n?; that is,
Pm):143+5+---+@n—1)=n?
(The kth odd number is 2k — 1, and the next odd number is 2k + 1.) Observe that P(n) is true for n = 1; namely,
P() =12
Assuming P(k) is true, we add 2k + 1 to both sides of P(k), obtaining
143454 +Qk—D+Qk+1) k24 @Qk+1) = (k+1)?

which is P(k + 1). In other words, P(k + 1) is true whenever P (k) is true. By the principle of mathematical
induction, P is true for all n.

There is a form of the principle of mathematical induction which is sometimes more convenient to use.
Although it appears different, it is really equivalent to the above principle of induction.

Principle of Mathematical Induction II: Let P be a proposition defined on the positive integers N such that:
(i) P(1)is true.
(i) P(k) is true whenever P(j)istrueforall 1 < j < k.

Then P is true for every positive integer n € N.

Remark: Sometimes one wants to prove that a proposition P is true for the set of integers
{a,a+1l,a+2,a+3,..}

where a is any integer, possibly zero. This can be done by simply replacing 1 by a in either of the above Principles
of Mathematical Induction.

Solved Problems

SETS AND SUBSETS

1.1 Which of these sets are equal: {x, y, z}, {z, y, z. x}, {3, x, ¥, 2}, {>, 2. x, ¥}?
They are all equal. Order and repetition do not change a set.

1.2 List the elements of each set where N = {1, 2, 3, ...}.

(@) A={xeN|3<x <9}
(b) B={x eN|xiseven, x < 11}
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1.3

(c) C={xeN|4+x=3}

(a) A consists of the positive integers between 3 and 9; hence A = {4, 5, 6, 7, 8}.
(b) B consists of the even positive integers less than 11; hence B = {2, 4, 6, 8, 10}.
(c) No positive integer satisfies 4 + x = 3; hence C = #J, the empty set.

Let A = {2,3,4,5}.

(a) Show that A is not a subset of B = {x € N|x iseven}.

(b) Show that A is a proper subsetof C = {1,2,3,...,8,9}.

(a) Itis necessary to show that at least one element in A does not belong to B. Now 3 € A and, since B consists
of even numbers, 3 ¢ B; hence A is not a subset of B.

(b) Each element of A belongs to C so A € C. On the other hand, 1 € C but 1 ¢ A. Hence A # C. Therefore A
is a proper subset of C.

SET OPERATIONS
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1.5

1.6

1.7

Let U= {1,2, ..., 9} be the universal set, and let
A =412 53,4,
B =1{4,5,6,7}, D ={1,3,5,7,9,
Find: (a) AUBand ANB; () AUCandANC; (c)DUFand DNF.

Recall that the union X U ¥ consists of those elements in either X or ¥ (or both), and that the intersection X N Y consists
of those elements in both X and Y.

(a) AUB={1,2,3,4,5,6,7} and AN B = {4, 5}
(b)) AUC=1{1,2,3,4,5,6,7,8,9}=U and ANC = {5}
(¢) DUF={1,3,5,7,9)=D and DNF=(1,5,9)=F

Observe that F € D, so by Theorem 1.4 wemusthave DUF =Dand DN F = F.
Consider the sets in the preceding Problem 1.4. Find:
(@) A€, B®, D, E®; (b)) A\B,B\A,D\E; (0)A®B,C®D, E®F.
Recall that:

(1) The complements X C consists of those elements in U which do not belong to X.
(2) The difference X'\ Y consists of the elements in X which do not belong to Y.
(3) The symmetric difference X @ ¥ consists of the elements in X or in ¥ but not in both.

Therefore:
(@) A©=16,7,8,9); BC€=11,2,3,8,9: D¢=(2,468=E E“={1,3,579}=D.
(b) A\B=1{1,2,3}; B\A=16,7; D\E={1,3,5,7,9}=D; F\D=A¥.
(c) A®@B=1{1,2,3,6,7; Ce®D={1,3,6,8); E®F=1{2,468159=EUF.
Show that we can have: (a) ANB=ANC without B=C; (b) AUB=AUC without B =C.

(@) Let A={1,2},B={2,3},C={2,4).Then AN B ={2}and ANC = {2}; but B £ C.
(b) LetA={1,2},B={1,3},C={2,3}.Then AUB ={1,2,3}and AUC = {1, 2,3} but B # C.

Prove: B\A = B N AC. Thus, the set operation of difference can be written in terms of the operations of
intersection and complement.

B\A={x|xeB, x¢ A}={x|x € B, x € A} = Bn AC.
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Prove Theorem 1.4. The following are equivalent: A € B,ANB=A, AU B = B.

Suppose A € Bandletx € A. Thenx € B,hencex € ANBand A € AN B. By Theorem 1.3, (AN B) € A. Therefore
AN B = A. On the other hand, suppose ANB = Aandletx € A. Then x € (AN B); hence x € A and x € B.
Therefore, A € B. Both results show that A € B is equivalentto AN B = A.

Suppose againthat A € B.letx € (AUB). Thenx € Aorx € B.If x € A, then x € B because A € B. In either
case, x € B. Therefore AU B € B.By Theorem 1.3, B € AU B. Therefore AU B = B. Now suppose AU B = B and
let x € A. Then x € A U B by definition of the union of sets. Hence x € B = A U B. Therefore A € B. Both results
show that A € B is equivalentto AU B = B.

Thus A € B, AUB = A and AU B = B are equivalent.

VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY

1.9

1.10

1.11

Ilustrate DeMorgan’s Law (A U B )€ = AN BC using Venn diagrams.

Shade the area outside A U B in a Venn diagram of sets A and B. This is shown in Fig. 1-7(a); hence the shaded
area represents (A U B)C. Now shade the area outside A in a Venn diagram of A and B with strokes in one direction
(//1), and then shade the area outside B with strokes in another direction (\\\\). This is shown in Fig. 1-7(b); hence the
cross-hatched area (area where both lines are present) represents A€ BC.Both (AU B)C and AN BC are represented
by the same area; thus the Venn diagram indicates (A U B)¢ = A€ BC. (We emphasize that a Venn diagram is not a
formal proof, but it can indicate relationships between sets.)

Fig. 1-7

Prove the Distributive Law: AN (BUC)=(ANB)U(ANC(C).

ANBUC)={x|xe A,x e (BUC(C)}
={x|lxeA,xeBorxeA,xeC}=(ANBYU(ANC)

]

Here we use the analogous logical law p A (g vV r) = (p A q) vV (p Ar) where A denotes “and” and v denotes “or.’

Write the dual of: (@) UNA)U(BNA)=A; (b)(ANU)N@W@U AS) = 0.
Interchange U and N and also U and @ in each set equation:

(@@UANBUA) =A; () (AU UUNAS =U.

1.12 Prove: (AU B)\(A N B) = (A\B) U (B\ A). (Thus either one may be used to define A ® B.)

Using X\Y =XnNnY C and the laws in Table 1.1, including DeMorgan’s Law, we obtain:

(AUBNMANB)=(AUBN(ANBC = (AU B)n (ACU BG)
—AuASHu@AnBSuBNAS U BNBS
=pu@AnBSHUBNAG US
= (AN BS U (B NAC) = (A\B) U (B\A)
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1.13 Determine the validity of the following argument:
S1: All my friends are musicians.
$>: John is my friend.

S3: None of my neighbors are musicians.

S : John is not my neighbor.

The premises S; and S3 lead to the Venn diagram in Fig. 1-8(a). By S>, John belongs to the set of friends which is
disjoint from the set of neighbors. Thus § is a valid conclusion and so the argument is valid.

musicians
neighbors
55

(a) (&)

S
=]

Fig. 1-8

FINITE SETS AND THE COUNTING PRINCIPLE
1.14 Each student in Liberal Arts at some college has a mathematics requirement A and a science requirement B.
A poll of 140 sophomore students shows that:
60 completed A, 45 completed B, 20 completed both A and B.
Use a Venn diagram to find the number of students who have completed:
(a) At least one of A and B; (b) exactly one of A or B; (c) neither A nor B.
Translating the above data into set notation yields:
n(A) =60, n(B) =45, n(An B) =20, n(U) = 140

Draw a Venn diagram of sets A and B as in Fig. 1-1(c). Then, as in Fig. 1-8(b), assign numbers to the four regions as
follows:

20 completed both A and B, son(A N B) = 20.

60 — 20 = 40 completed A but not B, son(A\B) = 40.

45 — 20 = 25 completed B but not A, son(B\A) = 25.

140 — 20 — 40 — 25 = 55 completed neither A nor B.
By the Venn diagram:

(a) 20+ 40 + 25 = 85 completed A or B. Alternately, by the Inclusion-Exclusion Principle:
n(AUB) =n(A)+n(B) —n(ANB) =60+45—20 =285
(b) 40+ 25 = 65 completed exactly one requirement. That is, n(A @ B) = 65.

(¢) 55 completed neither requirement, i.e. n(AC N BC) = n[(AU B)C] = 140 — 85 = 55.

1.15 In a survey of 120 people, it was found that:

65 read Newsweek magazine, 20 read both Newsweek and Time,
45 read Time, 25 read both Newsweek and Fortune,
42 read Fortune, 15 read both Time and Fortune,

8 read all three magazines.
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(a) Find the number of people who read at least one of the three magazines.

(b) Fill in the correct number of people in each of the eight regions of the Venn diagram in Fig. 1-9(a) where
N, T, and F denote the set of people who read Newsweek, Time, and Fortune, respectively.

(c) Find the number of people who read exactly one magazine.

A
\/
AA

(@) (B)

20

Fig. 1-9
(a) We want to find n(N U T U F). By Corollary 1.10 (Inclusion-Exclusion Principle),

n(NUT U F)=n(N) +n(T)+n(F)—n(NNT)—n(NNF)—n(TNF)+n(NNT N F)
=65+45+42—20—25—15+8 = 100

(b) The required Venn diagram in Fig. 1-9(b) is obtained as follows:
8 read all three magazines,
20 — 8 = 12 read Newsweek and Time but not all three magazines,
25 — 8 = 17 read Newsweek and Fortune but not all three magazines,
15 — 8 = 7 read Time and Fortune but not all three magazines,
65 — 12 — 8 — 17 = 28 read only Newsweek,
45 — 12 — 8 — 7 = 18 read only Time,
42 — 17 — 8 — 7 = 10 read only Fortune,

120 — 100 = 20 read no magazine at all.
(c) 28 + 18 + 10 = 56 read exactly one of the magazines.

1.16 Prove Theorem 1.9. Suppose A and B are finite sets. Then A U B and A N B are finite and
n(AUB) =n(A)+n(B) —n(ANB)
If A and B are finite then, clearly, A U B and A N B are finite.
Suppose we count the elements in A and then count the elements in B.

Then every element in A N B would be counted twice, once in A and once in B. Thus

n(AUB)=n(A)+n(B)—n(ANB)
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CLASSES OF SETS
1.17 Let A =[{1, 2,3}, {4,5}, {6, 7, 8}]. (a) List the elements of A; (b) Find n(A).
(a) A has three elements, the sets {1, 2, 3}, {4, 5}, and {6, 7, 8}.
(b) n(A) =3.
1.18 Determine the power set P(A) of A = {a, b, ¢, d}.
The elements of P(A) are the subsets of A. Hence
P(A)=[A, {a,b,c}, {a, b, d}, {a,c,d}, {b,c,d}, la, b}, {a, ¢}, {a, d}, {b, ¢}, {b, d},
{c, d}, {a}, (b}, {c}, {4}, 0]
As expected, P(A) has 2% = 16 elements.
1.19 Let S = {a,b,c,d, e, f, g}. Determine which of the following are partitions of S:

(a) JPl = [{ascs e}-’ {b}! {ds 8}], (C) P3 — [{a, b') €, 8}, {C}a {d! f}]y
(b) P?. = [{G,E, 8}, {C-’ d}! {b! €, f”- (d) P4 = [{a!b! c, d’ €, f-» g}]

(a) P isnot a partition of § since f € § does not belong to any of the cells.
(b) P> is not a partition of S since ¢ € § belongs to two of the cells.
(c) Pj; is apartition of § since each element in § belongs to exactly one cell.

(d) P, is apartition of § into one cell, S itself.

1.20 Find all partitions of § = {a, b, ¢, d}.
Note first that each partition of S contains either 1, 2, 3, or 4 distinct cells. The partitions are as follows:
1) Ha,b,c,d}]
(2) [a}, {b, ¢, d}], [{b}. {a, ¢, d}], [{c}, {a, b, d}], [{d}, {a, b, c}],
[{a, b}, {c, d}], [{a, c}, {b,d}], {a, d}, {b, c}]
(3) Ual, {b}, {c, d}], a}, {c}, {bd}], [{a}, {d}, {b, c}],
[{}, {c}, {a, d}], [{b}, {d}, {a, c}], [{c}, {d}, {a, b}]
@) [a}, {b}, {c}, {d}]

There are 15 different partitions of §.
1.21 LetN ={1,2,3,...} and, foreachn € N, Let A, = {n, 2n, 3n,...}. Find:
(@) A3N As;(b) AgN As; (¢) |JiepAi where Q = (2, 3,5,7, 11, ...} is the set of prime numbers.

(a) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence A3 N A5 = As.
(b) The multiples of 12 and no other numbers belong to both A4 and Ag, hence Ay N Ag = Aja.

(c) Every positive integer except 1 is a multiple of at least one prime number; hence

U A =1{2,3,4,...} =N\{1}
ieQ

1.22 Let {A;|i € I} be an indexed class of sets and let iy € I. Prove
A € 4, < J 4
iel iel

Letx € (jcs Aj then x € A; forevery i € I. In particular, x € A;,. Hence ();; A; € A;,. Now let y € A;,. Since
ig € I,y € NicAi- Hence Ay, < Ui Ai-
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1.23 Prove (De Morgan’s law): For any indexed class {A; |i € I}, we have (| J; Ai)c =A%
Using the definitions of union and intersection of indexed classes of sets:
C 5
(Ui AN =ixlx ¢ Ui Ai} = {x | x ¢ A forevery i}
C . C
= {x|x € A; forevery i} :ﬂi A;

MATHEMATICAL INDUCTION
1.24 Prove the proposition P(n) that the sum of the first n positive integers is %n(n + 1); that is,
P)=1+2+3+---+n=1inn+1)

The proposition holds for n = 1 since:
P(1): 1= F(1)(1+1)
Assuming P (k) is true, we add k + 1 to both sides of P(k), obtaining

142434 +k+G+D=Fkk+ D+ K+
= 2k(k +1) +2(k + 1)]
=2k + Dk +2)]

which is P(k + 1). That is, P(k + 1) is true whenever P (k) is true. By the Principle of Induction, P is true for all n.
1.25 Prove the following proposition (forn > 0):
Pl): 14292 12 foep PP =019
P(0) is true since 1 =21 — 1. Assuming P (k) is true, we add 2k+1 {0 both sides of P(k), obtaining
142422423 4. g2k g okl okl g 4 okl _ppktly g gkd2

which is P(k + 1). That is, P(k + 1) is true whenever P (k) is true. By the principle of induction, P(n) is true for all n.

Supplementary Problems
SETS AND SUBSETS
1.26 Which of the following sets are equal?
A={x|x2—4x+3=0}, C={x|xeN,x <3}, E={1,2}, G={3,1),
B :{x!x2—3x+2:0}, D={x|xeN,xisodd,x <5}, F={1,2,1}, H={1,1,3}

1.27 List the elements of the following sets if the universal setis U = {a, b, c, ..., ¥, z}.

Furthermore, identify which of the sets, if any, are equal.

A = {x|xis avowel], C = {x | x precedes f'in the alphabet},
B = {x| x is a letter in the word “little”}, D = {x | x is a letter in the word “title”}.

128 Let A=1{1,2,....,89}), B=1{2.4,6,8}, C={1,3,5,7,9}, D=1{3,4,5}, E={3.5).
‘Which of the these sets can equal a set X under each of the following conditions?

(a) X and B are disjoint. (c) XCTAbutX ¢ C.
(b) X< DbutX ¢ B. (d XSChutX ¢ A.
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SET OPERATIONS

1.29

1.30

1.31

1.32

1.33

Consider the universal set U= {1,2,3,...,8,9} andsets A = {1,2,5,6}, B={2,5,7},C ={1, 3,5,7,9}. Find:

(@) ANBand ANC () ACandC® (e)A@BandA®C
(b) AUBand BUC  (d) A\Band A\C (f) (AUC)\B and (B @® C)\A

Let A and B be any sets. Prove:

(a) A is the disjoint union of A\B and A N B.
(b) AU B is the disjoint union of A\B, AN B, and B\A.

Prove the following:

(@) AcBifandonlyif ANB® =@  (c) A < Bifandonlyif B¢ < AC
(b) AC Bifandonlyif AUB=U  (d) A < Bifandonlyif A\B =0

(Compare the results with Theorem 1.4.)
Prove the Absorption Laws: (a) AU(ANB)=A; (b)AN(AUB)=A.

The formula A\B = AN BC defines the difference operation in terms of the operations of intersection and complement.
Find a formula that defines the union A U B in terms of the operations of intersection and complement.

VENN DIAGRAMS

1.34

1.35

1.36

The Venn diagram in Fig. 1-5(a) shows sets A, B, C. Shade the following sets:

@ A\(BUC); ®)ACN(BUC); (©ASN(C\B).

Use the Venn diagram in Fig. 1-5(b) to write each set as the (disjoint) union of fundamental products:
(@ AN(BUC); (b)ACN(BUC); () AU(B\O).

Consider the following assumptions:
S1: All dictionaries are useful.
S5: Mary owns only romance novels.
S3: No romance novel is useful.

Use a Venn diagram to determine the validity of each of the following conclusions:

(a) Romance novels are not dictionaries.
(b) Mary does not own a dictionary.

(c) All useful books are dictionaries.

ALGEBRA OF SETS AND DUALITY
1.37 Write the dual of each equation:

(a) A=(B NAUMANB)
b)) ANBUUNBUANBSYUUCNBG =U

1.38 Use the laws in Table 1-1 to prove each set identity:

@ (ANBUMANBC) =4
(b) AUB=(ANBSHYUUCNBIUANB)
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FINITE SETS AND THE COUNTING PRINCIPLE

1.39 Determine which of the following sets are finite:

(a) Lines parallel to the x axis. (c) Integers which are multiples of 5.

(b) Letters in the English alphabet.  (d) Animals living on the earth.
1.40 Use Theorem 1.9 to prove Corollary 1.10: Suppose A, B, C are finite sets. Then A U B U C is finite and

n(AUBUC) =n(A)+n(B)+n(C)—n(ANB)—n(ANC)—n(BNC)+n(ANBNC)

1.41 A survey on a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three popular
options, air-conditioning (A), radio (R), and power windows (W), were already installed. The survey found:

15 had air-conditioning (A), 5had A and P,
12 had radio (R), 9had Aand R, 3 had all three options.
11 had power windows (W), 4had Rand W,

Find the number of cars thathad: (a)only W; (b)only A; (c)only R; (d)Rand W butnotA; (e)Aand R butnot W;
(f) only one of the options; (g) at least one option; (h) none of the options.

CLASSES OF SETS
1.42 Find the power set P(A) of A = {1, 2, 3,4, 5}.

1.43 Given A = [{a, b}, {c}, {d, e, f}].
(a) List the elements of A. (b) Find n(A). (c) Find the power set of A.

1.44 Suppose A is finite and n(A) = m. Prove the power set P(A) has 2™ elements.

PARTITIONS

145 Let S ={1,2,..., 8, 9}. Determine whether or not each of the following is a partition of § :

@ I[{1,3,6},{2,8},{57,9}] (© [{2,4,5,8},{1,9}, (3,6, 7}]
(b) [{1,5,7},{2,4,8,9},{3,5,6}1 (@ [{1,2,7},(3,5),{4,6,8,9}, {3,5}]

1.46 Let S =1{1,2,3,4,5,6}. Determine whether or not each of the following is a partition of S :

@ P1=1[{1,23},{1,4,5,6}] (© P3=1[{1,3,5},{2,4}, {6}]
(b) P = [{l' 2}, {3$ 5, 6}] (d) Py= [{ls 3, 5}, {2@ 4, 6,7}]

1.47 Determine whether or not each of the following is a partition of the set N of positive integers:

(@ [{nln>5}h{n|ln<35}l; (@) [{n|n=>6},{1,3,5},{2,4}]
© [n|n?> 11}, (n|n? < 11}].

1.48 Let[Ay, A2, ..., Am] and [Bq, B2, ..., Bn] be partitions of a set S.

Show that the following collection of sets is also a partition (called the cross partition) of § :
P=[A;NBjli=1,....,m, j=1,...,n)\@
Observe that we deleted the empty set #.
1.49 Let S§={1,2,3,...,8,9}. Find the cross partition P of the following partitions of S :

Py =1[{1,3,5,7,9},{2,4,6,8})] and P =][{1,2,3,4},{57},16,8,9}]
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INDUCTION
1.50 Prove:2+4+44+6+---4+2n=nn+1)
1.51 Prove: 1 +4+7+---+3n —2 = 2G2-1
152 Prove: 12422 432 ... 4 p? — 2ot lOnt])
: 3 1 1 1 -
1.53 Prove: f3+ 35+ 357+t g = B
. | 1 1 1 _
L54 Prove: 1z + 35+ g3+ + @@ = T
1.55 Prove 7" —2" isdivisible by Sforalln e N
1.56 Prove n> — 4n + 6 is divisible by3foralln e N
1.57 Usetheidentity 1 +2+3+---4+n =n(n+ 1)/2 to prove that
Py o¥ e pinage® (1420 3 pcga)
Miscellaneous Problems
1.58 Suppose N= {1, 2, 3, ...} is the universal set, and
A={n|n=<6}, B={nl4=<n=<9}, C={1,3,5,7,9}, D={2,3,5178}
Find:(a) A@B; b)B&aC; (©ANB&D);, ((ANB)YG(AND).
1.59 Prove the following properties of the symmetric difference:
(a) (A®@B)® C =A@ (B® C) (Associative Law).
(b) A® B =B ® A (Commutative Law).
(c) fA® B =A@ C,then B = C (Cancellation Law).
(d AN(B@ C)=(ANB)D (ANC) (Distributive Law).
1.60 Consider m nonempty distinct sets A, A», ..., A,y in a universal set U. Prove:
(a) There are 2™ fundamental products of the m sets.
(b) Any two fundamental products are disjoint.
(c) U is the union of all the fundamental products.
Answers to Supplementary Problems 1.34 See Fig. 1-10.
126 B=C=E=F,A=D=G=H. 135 3) (ANBNC)UMANBNCHUMANBCNC)
127 A = [{a,e,i,o,u}, B = D = ({lite}] ® (ASNBNCOUACNBNC)UACNBENC)
C={a,b,c,d, e}
© (ANBNC)UMANBNCYHUMANBCNC)
1.28 (a) C and E; (b) D and E; (c) A, B, and D; (d) None. UACNnBNCcC u@nBCnc
129 @) AOR=AZ5), ANE — {1, 35 1.36 The three premises yield the Venn diagram in
(b)AUB={1,2,5,6,7}, BUC ={1,2,3,5,7,9; Fig. 1-11(a). (a) and (b) are valid, but (c) is not valid
(©) A€ ={3,4,7,8,9},CC = (2,4,6,8); & ' ‘ ;
(d)A\B:{l,G},A\C:{z'G}; 1.37 A= BCUADAUB
©A®B=1{1,6,7,A®C=123,6,7,9; A @A = C) e .
() (AUC)\B ={1,3,6,9}, (B ® C)\A = {3,9). ) (AUB)N(ACUB)N(AUBS)N(ACUBC) =0
133 AUB = (A®nBC)C. 1.39 (a) Infinite; (b) finite; (c) infinite; (d) finite.
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a
<

AN
&

A
%8

1.41

1.42

1.43

(a)

Fig.

()

1-10

(e)

useful books

dictionaries

romance
novels

Mary's books

(a)

Fig.

Use the data to fill in the Venn diagram in Fig. 1-11(b).
Then:

(@) 5; (b) 4; (c) 2; (d) 1; (e) 6; () 11; (g) 23; (h) 2.
P(A) has 25 = 32 elements as follows:

(9, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1,
51,12,33, 12,41, {2, 5), {3, 4}, {3, 5}, {4, 5}, {1, 2,
3L 4L 241 1L 2.5): 12, 3490 02,3, 51 (3 4 5)
{1,3, 4}, {1, 3,5}, {1, 4.5); 12,4, 5), 1.2, 3,4);
{1,2,3,5}, 11,2,4,5), [1,3,4,5). {2, 3,4, 5], 4]

(a) Three elements: [a, b], (c), and {d, e, f}. (b) 3.
(c) P(A) has 23 = 8 elements as follows:

P(A) ={A,[{a, b}, {c}], [{a, b}, {d, e, f}I,
[{c}. {d, e, £1], Ha, b}], [{c}], [{d, e, £}], O}

1-11

1.44

1.45

1.46

1.47

1.49

1.55

1.58

Let X be an element in P(A). For each a € A, either
ac Xoraé¢ X. Since n(A) = m, there are 2™ differ-
ent sets X. That is | P(A)| = 2™,

(a) No, (b) no, (c) yes, (d) yes.

(a) No, (b) no, (c) yes, (d) no.

(a) No, (b) no, (c) yes.

[(13}, {24}, (5.7}, (9}, (6.8}]

Hhng: 7o+ bl — gkt g0y gk ot
77k — 2%) + (7 - 2)2

(@ {1, 2,3, 7,8 9} (b {L, 3, 4, 6, 8}; (c) and
(d){2,3,4,6}.



Relations

2.1 INTRODUCTION

” e

The reader is familiar with many relations such as “less than,” *“is parallel to,” “is a subset of,” and so on.
In a certain sense, these relations consider the existence or nonexistence of a certain connection between pairs
of objects taken in a definite order. Formally, we define a relation in terms of these “ordered pairs.”

An ordered pair of elements a and b, where a is designated as the first element and b as the second element,
is denoted by (a, b). In particular,

(a,b) =(c,d)

if and only if a = ¢ and b = d. Thus (a, b) # (b, a) unless a = b. This contrasts with sets where the order of
elements is irrelevant; for example, {3, 5} = {5, 3}.

2.2 PRODUCT SETS

Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where a € A and b € B is called
the product, or Cartesian product, of A and B. A short designation of this product is A x B, which is read
“A cross B.” By definition,

Ax B={(a,b)|ac Aand b € B}

One frequently writes A? instead of A x A.

EXAMPLE 2.1 R denotes the set of real numbers and so R> = R x R is the set of ordered pairs of real numbers.
The reader is familiar with the geometrical representation of R? as points in the plane as in Fig. 2-1. Here each
point P represents an ordered pair (a, b) of real numbers and vice versa; the vertical line through P meets the
x-axis at a, and the horizontal line through P meets the y-axis at b. R? is frequently called the Cartesian plane.

EXAMPLE 2.2 Let A = {1, 2} and B = {a, b, c}. Then

AxB={(,a), (1,b), (1,¢), 2,a), (2,b), (2,0)}
BxA={al), (1)), (c,1), (a,2), (b,2), (c,2)}

Also, A x A={(1,1),(1,2), (2, 1), (2,2)}

23
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Fig. 2-1

There are two things worth noting in the above examples. First of all A x B # B x A. The Cartesian product
deals with ordered pairs, so naturally the order in which the sets are considered is important. Secondly, using
n(S) for the number of elements in a set S, we have:

n(A x B) =6 =2(3) =n(A)n(B)
In fact, n(A x B) = n(A)n(B) for any finite sets A and B. This follows from the observation that, for an ordered

pair (a, b) in A x B, there are n(A) possibilities for a, and for each of these there are n(B) possibilities for b.

The idea of a product of sets can be extended to any finite number of sets. For any sets A1, Az, ..., Ay, the
set of all ordered n-tuples (a1, az, ..., a,) wherea; € Ay, az € A, ..., an € A, is called the product of the sets
Ay, ..., A, and is denoted by

n
Ay x A2 x---x A, or HAI
i=1

Just as we write A2 instead of A x A, so we write A" instead of A x A x --- x A, where there are n factors all
equal to A. For example, R? = R x R x R denotes the usual three-dimensional space.

2.3 RELATIONS
We begin with a definition.
Definition 2.1: Let A and B be sets. A binary relation or, simply, relation from A to B is a subset of A x B.

Suppose R is a relation from A to B. Then R is a set of ordered pairs where each first element comes from
A and each second element comes from B. That is, for each paira € A and b € B, exactly one of the following
is true:

(i) (a,b) € R; we then say “a is R-related to b”, written aRb.
(ii) (a,b) ¢ R; we then say “a is not R-related to b”, written aRb.

If R is a relation from a set A to itself, that is, if R is a subset of A2 =Ax A, then we say that R is arelation on A.
The domain of a relation R is the set of all first elements of the ordered pairs which belong to R, and the
range is the set of second elements.
Although n-ary relations, which involve ordered n-tuples, are introduced in Section 2.10, the term relation
shall then mean binary relation unless otherwise stated or implied.
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EXAMPLE 2.3

(a) A=(1,2,3)and B = {x, y,z},andlet R = {(1, y), (1, 2), (3, ¥)}. Then R is a relation from A to B since R
is a subset of A x B. With respect to this relation,

1Ry, 1Rz,3Ry, but 1Rx,2Rx, 2Ry, 2Rz, 3Rx,3KR?
The domain of R is {1, 3} and the range is {y, z}.

(b) Set inclusion C is a relation on any collection of sets. For, given any pair of set A and B, either A € B
orA & B.

(c) A familiar relation on the set Z of integers is “m divides n.” A common notation for this relation is to write
m | n when m divides n. Thus 6|30 but 7 4 25.

(d) Consider the set L of lines in the plane. Perpendicularity, written “_,” is a relation on L. That is, given any
pair of lines a and b, either a L bora £b. Similarly, “is parallel to,” written “||,” is a relation on L since
eithera | bora |} b.

(e) Let A be any set. An important relation on A is that of equality,
{(a,a)|a € A}
which is usually denoted by “=.” This relation is also called the identity or diagonal relation on A and it will
also be denoted by A 4 or simply A.

(f) Let A be any set. Then A x A and # are subsets of A x A and hence are relations on A called the universal
relation and empty relation, respectively.

Inverse Relation

Let R be any relation from a set A to a set B. The inverse of R, denoted by R~!, is the relation from B to A
which consists of those ordered pairs which, when reversed, belong to R; that is,

R™' ={(b,a)|(a,b) € R}
For example, let A = {1, 2,3} and B = {x, y, z}. Then the inverse of

R={(Ly), 12,3, is R'={( 1,1, 0,3}

Clearly, if R is any relation, then (R—1)~! = R. Also, the domain and range of R~ are equal, respectively, to
the range and domain of R. Moreover, if R is a relation on A, then R —1 js also a relation on A.

2.4 PICTORIAL REPRESENTATIVES OF RELATIONS
There are various ways of picturing relations.
Relations on R

Let S be a relation on the set R of real numbers; that is, S is a subset of R2=R xR. Frequently, S consists
of all ordered pairs of real numbers which satisfy some given equation E(x, y) = 0 (such as s y2 = 25).

Since R2 can be represented by the set of points in the plane, we can picture S by emphasizing those points
in the plane which belong to S. The pictorial representation of the relation is sometimes called the graph of the
relation. For example, the graph of the relation x* 4 y? = 25 is a circle having its center at the origin and radius 5.
See Fig. 2-2(a).
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Y
5
=5 0 5 -
—5
24+ y2 =25
(a) (b)
Fig. 2-2

Directed Graphs of Relations on Sets

There is an important way of picturing a relation R on a finite set. First we write down the elements of the
set, and then we draw an arrow from each element x to each element y whenever x is related to y. This diagram
is called the directed graph of the relation. Figure 2-2(b), for example, shows the directed graph of the following
relation R on the set A = {1, 2, 3, 4}

R=1{(1,2),22),2,4),3,2),3,4,41), 4)3)}
Observe that there is an arrow from 2 to itself, since 2 is related to 2 under R.

These directed graphs will be studied in detail as a separate subject in Chapter 8. We mention it here mainly
for completeness.

Pictures of Relations on Finite Sets

Suppose A and B are finite sets. There are two ways of picturing a relation R from A to B.

(i) Form a rectangular array (matrix) whose rows are labeled by the elements of A and whose columns are
labeled by the elements of B. Put a 1 or 0 in each position of the array according as a € A is or is not
related to b € B. This array is called the matrix of the relation.

(1)) Write down the elements of A and the elements of B in two disjoint disks, and then draw an arrow from
a € Atob € B whenever a is related to b. This picture will be called the arrow diagram of the relation.

Figure 2-3 pictures the relation R in Example 2.3(a) by the above two ways.

x y oz
|

6} (ii)
R={(1,», (1,2), G,»}

Fig. 2-3
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2.5 COMPOSITION OF RELATIONS

Let A, B and C be sets, and let R be a relation from A to B and let S be a relation from B to C. That is, R is
a subset of A x B and S is a subset of B x C. Then R and § give rise to a relation from A to C denoted by RoS
and defined by:
a(RoS)c if for some b € B we have aRb and bSc.

That is ,
R o § = {(a, c¢) | there exists b € B for which (a, b) € R and (b, ¢) € S}

The relation RoS is called the composition of R and S; it is sometimes denoted simply by RS.

Suppose R is a relation on a set A, that is, R is a relation from a set A to itself. Then RoR, the composition
of R with itself, is always defined. Also, RoR is sometimes denoted by R2, Similarly, R3 = R20R = RoRoR,
and so on. Thus R" is defined for all positive n.

Warning: Many texts denote the composition of relations R and S by SoR rather than RoS. This is done in order
to conform with the usual use of go f to denote the composition of fand g where f and g are functions. Thus the
reader may have to adjust this notation when using this text as a supplement with another text. However, when a
relation R is composed with itself, then the meaning of RoR is unambiguous.

EXAMPLE 2.4 Let A = {1,2,3,4}, B = {a, b, c,d}, C = {x, y, z} and let
R ={(1,q),(2,d),3,a),(3,b),3,d)} and §={(b,x),(b,2),(c,Yy),d, 2}

Consider the arrow diagrams of R and § as in Fig. 2-4. Observe that there is an arrow from 2 to d which is followed
by an arrow from d to z. We can view these two arrows as a “path” which “connects” the element 2 € A to the
element z € C. Thus:

2(R o S)z since 2Rd and dSz

Similarly there is a path from 3 to x and a path from 3 to z. Hence
3(RoS)x and 3(RoS)z
No other element of A is connected to an element of C. Accordingly,
Ro§={2,2),3,x),3,2)}

Our first theorem tells us that composition of relations is associative.

Theorem 2.1: Let A, B, C and D be sets. Suppose R is a relation from A to B, S is a relation from B to C, and
T is a relation from C to D. Then

(RoS)oT =Ro(S0oT)

We prove this theorem in Problem 2.8.
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Composition of Relations and Matrices

There is another way of finding RoS. Let Mg and Mg denote respectively the matrix representations of the
relations R and S. Then

a b c d X ¥z
1 1 0 0 0 a 0 0 0
Mp= 2 0 00 1) and Ms= b | 1 0 1
3 1 1 0 1 6 01 0
4 0 0 0 OJ d |_0 0 IJ
Multiplying Mg and Mg we obtain the matrix
X Vg
1 0 0 0
2 0 01
M=MaMs— 311 0 2
4 0 0 0

The nonzero entries in this matrix tell us which elements are related by RoS. Thus M = Mz Mg and Mp,s have
the same nonzero entries.

2.6 TYPES OF RELATIONS

This section discusses a number of important types of relations defined on a set A.

Reflexive Relations

A relation R on a set A is reflexive if aRa for every a € A, that is, if (a,a) € R forevery a € A. Thus R is
not reflexive if there exists a € A such that (a, a) ¢ R.

EXAMPLE 2.5 Consider the following five relations on the set A = {1, 2, 3, 4}:

Ry =1{(1,1),(1,2),(2,3),(1,3), (4,4)}

R ={(1,1)(1,2), (2, 1), (2,2), (3,3), (4, 4)}
R; ={(1,3), 2, 1)}

R4 = @, the empty relation

R; = A x A, theuniversal relation

Determine which of the relations are reflexive.

Since A contains the four elements 1, 2, 3, and 4, a relation R on A is reflexive if it contains the four pairs
(1, 1), (2,2), (3,3), and (4,4). Thus only R> and the universal relation Rs = A x A are reflexive. Note that
R1, Ra, and Ry are not reflexive since, for example, (2, 2) does not belong to any of them.

EXAMPLE 2.6 Consider the following five relations:

(1) Relation < (less than or equal) on the set Z of integers.

(2) Setinclusion € on a collection C of sets.

(3) Relation L (perpendicular) on the set L of lines in the plane.

(4) Relation || (parallel) on the set L of lines in the plane.

(5) Relation |of divisibility on the set N of positive integers. (Recall x | y if there exists z such that xz = y.)

Determine which of the relations are reflexive.
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The relation (3) is not reflexive since no line is perpendicular to itself. Also (4) is not reflexive since no line
is parallel to itself. The other relations are reflexive; thatis, x < x foreveryx € Z, A € Aforanyset A € C,
and n | n for every positive integer n € N.

Symmetric and Antisymmetric Relations

Arelation R on a set A is symmetric if whenever aRb then bRa, that is, if whenever (a, b) € R then (b, a) € R.
Thus R is not symmetric if there exists a, b € A such that (a, b) € Rbut (b, a) ¢ R.

EXAMPLE 2.7

(a) Determine which of the relations in Example 2.5 are symmetric.
R is not symmetric since (1, 2) € Ry but (2, 1) ¢ R;. R3 is not symmetric since (1, 3) € Rz but (3, 1) € Rs3.
The other relations are symmetric.

(b) Determine which of the relations in Example 2.6 are symmetric.

The relation L is symmetric since if line a is perpendicular to line b then b is perpendicular to a. Also, || is
symmetric since if line a is parallel to line b then b is parallel to line a. The other relations are not symmetric.
For example:

3<4butd £3; {1,2}C {1,2,3}but{l,2,3} £ {1,2}; and 2|6but6 /2.

Acrelation R on a set A is antisymmetric if whenever aRb and bRa then a = b, that is, if @ # b and aRb then hRa.
Thus R is not antisymmetric if there exist distinct elements a and b in A such that aRb and bRa.

EXAMPLE 2.8

(a) Determine which of the relations in Example 2.5 are antisymmetric.

R> is not antisymmetric since (1, 2) and (2, 1) belong to R, but 1 # 2. Similarly, the universal relation R3
is not antisymmetric. All the other relations are antisymmetric.

(b) Determine which of the relations in Example 2.6 are antisymmetric.

The relation < is antisymmetric since whenevera < bandb < athena = b. Setinclusion C is antisymmetric
since whenever A € B and B € A then A = B. Also, divisibility on N is antisymmetric since whenever
m|n and n|m then m = n. (Note that divisibility on Z is not antisymmetric since 3 | —3 and —3 |3 but
3 # —3.) The relations | and || are not antisymmetric.

Remark: The properties of being symmetric and being antisymmetric are not negatives of each other. For example,
the relation R = {(1, 3), (3, 1), (2, 3)} is neither symmetric nor antisymmetric. On the other hand, the relation
R ={(1, 1), (2, 2)} is both symmetric and antisymmetric.

Transitive Relations

Acrelation R on a set A is transitive if whenever aRb and bRc then aRc, that is, if whenever (a, b), (b,c) € R
then (a, ¢) € R. Thus R is not transitive if there exist a, b, ¢ € R such that (a, b), (b, c) € R but (a, c) ¢ R.
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EXAMPLE 2.9
(a) Determine which of the relations in Example 2.5 are transitive.

The relation R3 is not transitive since (2, 1), (1, 3) € R3but (2, 3) ¢ Rj3.All the other relations are transitive.

(b) Determine which of the relations in Example 2.6 are transitive.

The relations <, C, and | are transitive, but certainly not L. Also, since no line is parallel to itself, we can
havea |[b and b || a, but a || a. Thus || is not transitive. (We note that the relation “is parallel or equal to” is
a transitive relation on the set L of lines in the plane.)

The property of transitivity can also be expressed in terms of the composition of relations. For a relation R on A
we did define R2 = RoR and, more generally, R” = R"~!oR. Then we have the following result:

Theorem 2.2: A relation R is transitive if and only if, for every n > 1, we have R" C R.

2.7 CLOSURE PROPERTIES

Consider a given set A and the collection of all relations on A. Let P be a property of such relations, such as
being symmetric or being transitive. A relation with property P will be called a P-relation. The P-closure of an
arbitrary relation R on A, written P(R), is a P-relation such that

RCP(R)CS
for every P-relation S containing R. We will write
reflexive(R), symmetric(R), and transitive(R)

for the reflexive, symmetric, and transitive closures of R.

Generally speaking, P(R) need not exist. However, there is a general situation where P(R) will always
exist. Suppose P is a property such that there is at least one P-relation containing R and that the intersection of
any P-relations is again a P-relation. Then one can prove (Problem 2.16) that

P(R) =N(S|Sisa P-relation and R € S)
Thus one can obtain P(R) from the “top-down,” that is, as the intersection of relations. However, one usually

wants to find P (R) from the “bottom-up,” that is, by adjoining elements to R to obtain P (R). This we do below.

Reflexive and Symmetric Closures

The next theorem tells us how to obtain easily the reflexive and symmetric closures of a relation. Here
A = {(a,a)|a € A} is the diagonal or equality relation on A.

Theorem 2.3: Let R be a relation on a set A. Then:
(i) R U Ay is the reflexive closure of R.
(ii)) RU R~ is the symmetric closure of R.

In other words, reflexive(R) is obtained by simply adding to R those elements (a, a) in the diagonal which do not
already belong to R, and symmetric(R) is obtained by adding to R all pairs (b, a) whenever (a, b) belongs to R.

EXAMPLE 2.10 Considertherelation R = {(1, 1), (1, 3), (2,4), (3, 1), (3, 3), (4, 3)} ontheset A = {1, 2, 3, 4}.
Then

reflexive(R) = RU{(2,2), (4,4)} and symmetric(R) = RU{(4,2),(3,4)}
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Transitive Closure
Let R be a relation on a set A. Recall that R2 = RoR and R" = R"~loR. We define

o0
R*=JF
i=1

The following theorem applies:
Theorem 2.4: R* is the transitive closure of R.

Suppose A is a finite set with n elements. We show in Chapter 8 on graphs that
R*=RUR?U...UR"

This gives us the following theorem:

Theorem 2.5: Let R be a relation on a set A with n elements. Then

transitive (R) = RUR?U...UR"

EXAMPLE 2.11 Consider the relation R = {(1, 2), (2, 3), (3,3)} on A = {1, 2, 3}. Then:
R*=RoR=1{(1,3),(2,3),(3,3)} and R’=R%R=/{(1,3),(23),3,3)}
Accordingly,

transitive (R) = {(1, 2), (2,3), (3, 3), (1, 3)}

2.8 EQUIVALENCE RELATIONS

Consider a nonempty set S. A relation R on S is an equivalence relation if R is reflexive, symmetric, and
transitive. That is, R is an equivalence relation on § if it has the following three properties:

(1) Foreverya € S,aRa. (2) If aRb, then bRa. (3) If aRb and bRc, then aRc.

The general idea behind an equivalence relation is that it is a classification of objects which are in some way
“alike.” In fact, the relation “="" of equality on any set S is an equivalence relation; that is:

(1) a=aforeveryaecS. (2) fa=b,thenb=a. 3) Ifa=b,b=c,thena=c.

Other equivalence relations follow.

EXAMPLE 2.12
(a) Let L be the set of lines and let T be the set of triangles in the Euclidean plane.

(i) The relation “is parallel to or identical to” is an equivalence relation on L.

(i) The relations of congruence and similarity are equivalence relations on 7.

(b) The relation C of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not
symmetric since A € B does not imply B C A.
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(c) Letm be a fixed positive integer. Two integers a and b are said to be congruent modulo m, written
a = b (mod m)
if m divides a — b. For example, for the modulus m = 4, we have
11=3(mod4) and 22=6 (mod4)

since 4 divides 11 — 3 = 8 and 4 divides 22 — 6 = 16. This relation of congruence modulo m is an important
equivalence relation.

Equivalence Relations and Partitions

This subsection explores the relationship between equivalence relations and partitions on a non-empty set S.
Recall first that a partition P of S is a collection { A; } of nonempty subsets of S with the following two properties:

(1) Each a € S belongs to some A;.
(2) IfA; £ Ajthen A; NA; =0.
In other words, a partition P of § is a subdivision of S into disjoint nonempty sets. (See Section 1.7.)

Suppose R is an equivalence relation on a set S. For each a € S, let [a] denote the set of elements of § to
which a is related under R; that is:

l[a]l = {x | (a,x) € R}
We call [a] the equivalence class of ain S; any b € [a] is called a representative of the equivalence class.

The collection of all equivalence classes of elements of S under an equivalence relation R is denoted by S/R,
that is,

S/R = {lal |a € S}

It is called the quotient set of S by R. The fundamental property of a quotient set is contained in the following
theorem.

Theorem 2.6: Let R be an equivalence relation on a set S. Then S/R is a partition of S. Specifically:

(i) Foreach ain §, we have a € [a].
(i) [a] = [b] if and only if (a, b) € R.
(iii) If [a] # [b], then [a] and [b] are disjoint.

Conversely, given a partition {A;} of the set S, there is an equivalence relation R on § such that the sets A; are
the equivalence classes.

This important theorem will be proved in Problem 2.17.

EXAMPLE 2.13

(a) Consider the relation R = {(1, 1), (1,2),(2,1),(2,2),(3,3)}on § = {1, 2, 3}.
One can show that R is reflexive, symmetric, and transitive, that is, that R is an equivalence relation. Also:
[11=1{1,2},[2] = {1, 2}, [3] = {3}

Observe that [1] = [2] and that S/R = {[1], [3]} is a partition of S. One can choose either {1, 3} or {2, 3} as
a set of representatives of the equivalence classes.
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(b) Let Rs be the relation of congruence modulo 5 on the set Z of integers denoted by
x =y (mod 5)

This means that the difference x — y is divisible by 5. Then Rs is an equivalence relation on Z. The quotient
set Z/Rs contains the following five equivalence classes:

Ag="1++;—10,-5,0,5,10; ...}
Ay ={...,-9, 4,1611 .}
Ao ={..;—8,—3,2,7,12,...}
A3={...,—7,-2,3,8, 3 o)
Ag={...,—6,—1,4,9,14,..}

Any integer x, uniquely expressed in the form x = 5g +r where 0 < r < 5, is a member of the equivalence
class A,, where ris the remainder. As expected, Z is the disjoint union of equivalence classes A1, A2, A3, A4.
Usually one chooses {0, 1, 2, 3,4} or {—2, —1, 0, 1, 2} as a set of representatives of the equivalence classes.

2.9 PARTIAL ORDERING RELATIONS

Arelation R on a set S is called a partial ordering or a partial order of S if R is reflexive, antisymmetric, and
transitive. A set S together with a partial ordering R is called a partially ordered set or poset. Partially ordered
sets will be studied in more detail in Chapter 14, so here we simply give some examples.

EXAMPLE 2.14

(a) The relation C of set inclusion is a partial ordering on any collection of sets since set inclusion has the three
desired properties. That is,

(1) A C A for any set A.
(2) fAC Band B C A, then A = B.
(3) fACBand B< C,then A CC.

(b) The relation < on the set R of real numbers is reflexive, antisymmetric, and transitive. Thus < is a partial
ordering on R.

(c) The relation “a divides b,” written a | b, is a partial ordering on the set N of positive integers. However, “a
divides b” is not a partial ordering on the set Z of integers since a | b and b | @ need not imply a = b. For
example, 3| —3 and —3 |3 but 3 # —3.

2.10 n-ARY RELATIONS

All the relations discussed above were binary relations. By an n-ary relation, we mean a set of ordered
n-tuples. For any set S, a subset of the product set S” is called an r-ary relation on S. In particular, a subset of
$3 is called a ternary relation on S.

EXAMPLE 2.15

(a) LetLbe aline in the plane. Then “betweenness” is a ternary relation R on the points of L; thatis, (a, b,c) € R
if b lies between a and c on L.

(b) The equation x2 + y2 + z2 = 1 determines a ternary relation T on the set R of real numbers. That is, a triple
(x, ¥, z) belongs to T'if (x, y, z) satisfies the equation, which means (x, y, z) is the coordinates of a point in
R on the sphere S with radius 1 and center at the origin O = (0, 0, 0).
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Solved Problems

PRODUCT SETS
2.1. Given: A={1,2},B={x,y,z},and C = {3,4}. Find: A x B x C.

A x B x C consists of all ordered triplets (a, b, c) wherea € A, b € B, ¢ € C. These elements of A x B x C can be
systematically obtained by a so-called tree diagram (Fig. 2-5). The elements of A x B x C are precisely the 12 ordered
triplets to the right of the tree diagram.

3 (1,2,3)

x<4 1,2,4)
D R
=<1 i
=i en
B T
=i e
Fig. 2-5

Observe that n(A) = 2, n(B) = 3, and n(C) = 2 and, as expected,
n(Ax BxC)=12=n(A) -n(B) -n(C)

2.2, Find x and y given (2x,x +y) = (6, 2).

Two ordered pairs are equal if and only if the corresponding components are equal. Hence we obtain the equations
2x=6 and x+y=2

from which we derive the answers x =3 and y = —1.

RELATIONS AND THEIR GRAPHS

2.3. Find the number of relations from A = {a, b, c} to B = {1, 2}.
There are 3(2) = 6 elements in A x B, and hence there are m = 26 — 64 subsets of A x B. Thus there are m — 64

relations from A to B.

24. Given A = {1,2,3,4}and B = {x, y, z}. Let R be the following relation from A to B:

R={(1,y),(1,2),(3,y), 4 x), 42}

(a) Determine the matrix of the relation.
(b) Draw the arrow diagram of R.

(¢) Find the inverse relation R~ of R.
(d) Determine the domain and range of R.

(a) See Fig. 2-6(a) Observe that the rows of the matrix are labeled by the elements of A and the columns by the elements
of B. Also observe that the entry in the matrix corresponding toa € A and b € B is 1 if a is related to b and 0
otherwise.

(b) See Fig. 2.6(b) Observe that there is an arrow froma € A to b € B iff a is related to b, i.e., iff (a, b) € R.
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2.5.
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Fig. 2-6

(c¢) Reverse the ordered pairs of R to obtain R~ L

R ={(3, 1),z 1), (3,3), (x, ), (z, 4)

Observe that by reversing the arrows in Fig. 2.6(b), we obtain the arrow diagram of R—1.

(d) The domain of R, Dom(R), consists of the first elements of the ordered pairs of R, and the range of R, Ran(R),
consists of the second elements. Thus,

Dom(R) ={1,3,4} and Ran(R)={x,y,z}

Let A ={1,2,3}, B ={a,b,c},and C = {x, y, z}. Consider the following relations R and S from A to B
and from B to C, respectively.

R={(1,b),(2,a),(2,c)} and §={(a,y),(b,x),(c,y),(c,2)}

(a) Find the composition relation RoS.

(b) Find the matrices Mg, Mg, and Mpg.s of the respective relations R, S, and RoS, and compare Mpg.s to
the product Mp M.

(a) Draw the arrow diagram of the relations R and S as in Fig. 2-7(a). Observe that 1 in A is “connected” to x in C by

the path 1 — b — x; hence (1, x) belongs to RoS. Similarly, (2, ¥) and (2, z) belong to ReS.
We have

ROS = {(]-v X), (21 J’)a {25 Z)}

© 2
<

Fig. 2-7
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(b) The matrices of Mg, Mg, and Mpg.s follow:

a b ¢ x ¥y z x ¥y z

1 010 a 010 1 1 00

Mp= 2 1 0 1 Ms= b 1 00 Mpos = 2 01 1
3 0 0 0 & 011 3 00 0

Multiplying Mg and Mg we obtain
Il "0
MpMg=1| 0 2
00

Observe that Mg,g and Mg Mg have the same zero entries.

Consider the relation R = {(1, 1), (2,2),(2,3),(3,2), 4,2), (4,4)}on A = {1, 2,3,4}.
(a) Draw its directed graph. (b) Find R? = RoR.

(a) Foreach (a, b) € R, draw an arrow from a to b as in Fig. 2-7(b).
(b) For each pair (a, b) € R, find all (b, ¢) € R. Then (a,c) € R2. Thus

R2={(1,1),(2,2), 2,3),(3.2),(3.3), 4,2), 4,3), 4, 4)}

Let R and S be the following relations on A = {1, 2, 3}:
R={(1,1),(1,2),23),3,1D,3,3)}, §={1,2),01,3),2,1,3,3)}
Find (@) RUS, RNS, R®; (b) RoS; (c) §% = SoS.

(a) Treat R and § simply as sets, and take the usual intersection and union. For RC, use the fact that A x A is the
universal relation on A.

RNS={(1,2),3,3))
RUS ={(1,1),(1,2),(1,3),(2,1),(2,3),3, 1), (3,3)}
RC ={(1,3),(2,1),(2,2),(3,2)

(b) For each pair (a,b) € R, find all pairs (b,c) € S. Then (a,c) € RoS. For example, (1,1) € R and (1, 2),
(1,3) € §; hence (1, 2) and (1, 3) belong to RoS. Thus,

Ro§ =1{(1,2),(1,3),(1,1),(2,3),3,2),(3,3)}

(c) Following the algorithm in (b), we get

5% = So8= {(1, 1), (1,3), {2:2): 2,3); 3, 3)]

Prove Theorem 2.1: Let A, B, C and D be sets. Suppose R is a relation from A to B, § is a relation from B to
C and T'is a relation from C to D. Then (RoS)oT = Ro(SoT).

We need to show that each ordered pair in (RoS)oT belongs to Ro(SoT'), and vice versa.

Suppose (a, d) belongs to (RoS)oT . Then there exists ¢ € C such that (a, ¢) € RoSand (¢, d) € T. Since (a, ¢) € RoS,
there exists b € B such that (a,b) € R and (b, c) € §. Since (b,c) € § and (c,d) € T, we have (b,d) € SoT; and
since (a,b) € R and (b,d) € SoT, we have (a,d) € R o (§oT). Therefore, (RoS)oT € Ro(SoT). Similarly
Ro(80T) € (RoS)oT. Both inclusion relations prove (RoS)oT = Ro(SeT).
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TYPES OF RELATIONS AND CLOSURE PROPERTIES

2.9. Consider the following five relations on the set A = {1, 2, 3}:

R={(1,1),(1,2),(1,3),3,3)} ) = empty relation
S ={(1,1)(1,2), (2, 1)(2,2),(3,3)}, A x A = universal relation
T={(1,1),(1,2),(22),(23)}

Determine whether or not each of the above relations on A is: (a) reflexive; (b) symmetric; (c) transitive;
(d) antisymmetric.

{a) R is not reflexive since 2 € A but (2,2) ¢ R. T is not reflexive since (3, 3) ¢ T and, similarly, @ is not reflexive.
Sand A x A are reflexive.
(b) Risnotsymmetric since (1,2) € Rbut (2, 1) ¢ R, and similarly T is not symmetric. §, @, and A x A are symmetric.

(¢) Tis not transitive since (1, 2) and (2, 3) belong to T, but (1, 3) does not belong to T. The other four relations are
transitive.

(d) S is not antisymmetric since 1 # 2, and (1, 2) and (2, 1) both belong to S. Similarly, A x A is not antisymmetric.
The other three relations are antisymmetric.

2.10. Give an example of a relation R on A = {1, 2, 3} such that:

(a) R is both symmetric and antisymmetric.
(b) R is neither symmetric nor antisymmetric.

(c) Ris transitive but R U R~ is not transitive.

There are several such examples. One possible set of examples follows:

@R={(1,1,2,2}) BR={(1,2),23)} (©R={1,2)}

2.11. Suppose C is a collection of relations § on a set A, and let T be the intersection of the relations § in C, that
is, T =N(S|S € C) Prove:

(a) If every §is symmetric, then T is symmetric.

(b) If every § is transitive, then T is transitive.

(a) Suppose (a,b) € T. Then (a,b) € § for every S. Since each § is symmetric, (b,a) € § for every S. Hence
(b,a) € T and T is symmetric.

(b) Suppose (a, b) and (b, ¢) belong to T. Then (a, b) and (b, c) belong to S for every S. Since each S is transitive, (a, ¢)
belongs to S for every S. Hence, (a, ¢) € T and T is transitive.

2.12. Let R be arelation on a set A, and let P be a property of relations, such as symmetry and transitivity. Then
P will be called R-closable if P satisfies the following two conditions:
(1) There is a P-relation S containing R.
(2) The intersection of P-relations is a P-relation.

(a) Show that symmetry and transitivity are R-closable for any relation R.

(b) Suppose Pis R-closable. Then P(R), the P-closure of R, is the intersection of all P-relations S containing
R, that is,

P(R) =N(S|SisaP-relationand R C §)
(a) The universal relation A x A is symmetric and transitive and A x A contains any relation R on A. Thus (1) is

satisfied. By Problem 2.11, symmetry and transitivity satisfy (2). Thus symmetry and transitivity are R-closable for
any relation R.



38 RELATIONS [CHAP. 2

(b) Let T = N(S| S is a P-relationand R € §). Since P is R-closable, T is nonempty by (1) and T is a P-relation
by (2). Since each relation S contains R, the intersection T contains R. Thus, T is a P-relation containing R. By
definition, P(R) is the smallest P-relation containing R; hence P(R) € T. On the other hand, P(R) is one of the
sets § defining T, that is, P(R) is a P-relation and if R € P(R). Therefore, T € P(R). Accordingly, P(R) =T.

2.13. Consider the relation R = {(a, a), (a, b), (b, ¢), (c, ¢)} on the set A = {a, b, c}. Find: (a) reflexive(R);
(b) symmetric(R); (c) transitive(R).

(a) The reflexive closure on R is obtained by adding all diagonal pairs of A x A to R which are not currently in R.
Hence,

reflexive(R) = R U {(b, b)} = {(a, a), (a, b), (b, b), (b, ¢), (c, C)}

(b) The symmetric closure on R is obtained by adding all the pairs in R—! to R which are not currently in R. Hence,
symmetric(R) = RU {(b, a), (¢, b)} = {(a, @), (a, b), (b, a), (b, ¢), (¢, b), (¢, ©)}

(c) The transitive closure on R, since A has three elements, is obtained by taking the union of R with R? = RoR and
R3 = RoRoR. Note that

R* = RoR = {(a, a), (a, b), (a, &), (b, ¢), (c, ¢))
R? = RoRoR = {(a, a), (a, b), (a, ¢), (b, ¢), (c, ¢)}

Hence
transitive(R) = RU R2 U R3 = {(a, a), (a, b), (a, ©), (b, ), (c, ¢)}

EQUIVALENCE RELATIONS AND PARTITIONS

2.14. Consider the Z of integers and an integer m > 1. We say that x is congruent to y modulo m, written
x =y (mod m)
if x — y is divisible by m. Show that this defines an equivalence relation on Z.
We must show that the relation is reflexive, symmetric, and transitive.

(i) For any x in Z we have x = x (mod m) because x — x = 0 is divisible by m. Hence the relation is reflexive.

(ii) Supposex = y (mod m), sox —yisdivisible by m. Then —(x —y) = y—x isalso divisible by m, so y = x (mod m).
Thus the relation is symmetric.

(iii) Now suppose x = y (mod m) and y = z (mod m), so x — y and y — z are each divisible by m. Then the sum
=M+ -—2=x—z2

is also divisible by m; hence x = z (mod m). Thus the relation is transitive.

Accordingly, the relation of congruence modulo m on Z is an equivalence relation.

2.15. Let A be a set of nonzero integers and let & be the relation on A x A defined by
(a,b) = (c,d) whenever ad = bc

Prove that = is an equivalence relation.

‘We must show that = is reflexive, symmetric, and transitive.

(i) Reflexivity: We have (a, b) # (a, b) since ab = ba. Hence = is reflexive.
(ii) Symmetry: Suppose (a, b) = (c, d). Then ad = bc. Accordingly, cbh = da and hence (¢, d) = (a, b). Thus, ~ is
symmetric.
(iii) Transitivity: Suppose (a, b) =~ (¢, d) and (c, d) = (e, f). Then ad = be and ¢f = de. Multiplying corresponding
terms of the equations gives (ad)(cf) = (bc)(de). Canceling ¢ # 0 and d # 0 from both sides of the equation
yields af = be, and hence (a, b) =~ (e, f). Thus # is transitive. Accordingly, ~ is an equivalence relation.
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2.16. Let R be the following equivalence relation on the set A = {1, 2, 3,4, 5, 6}:
R={(1,1),(1,5),(2,2),(2,3),(2,6),(3,2),(3,3),3,6), (4,4, 5, 1), (5,5), (6, 2), (6, 3), (6, 6)}
Find the partition of A induced by R, i.e., find the equivalence classes of R.

Those elements related to 1 are 1 and 5 hence
[11=1{1,5}

We pick an element which does not belong to [1], say 2. Those elements related to 2 are 2, 3, and 6, hence

[21=1{2.3,6}
The only element which does not belong to [1] or [2] is 4. The only element related to 4 is 4. Thus

[4] = {4}
Accordingly, the following is the partition of A induced by R:
[{1,5},{2,3,6}, {4}]

2.17. Prove Theorem 2.6: Let R be an equivalence relation in a set A. Then the quotient set A/R is a partition
of A. Specifically,

(1) a € [al, foreverya € A.
(i) [a] = [b]if and only if (a, b) € R.
(iit) If [a] # [b], then [a] and [b] are disjoint.
(a) Proof of (i): Since R is reflexive, (a, a) € R for every a € A and therefore a € [a].

(b) Proof of (ii): Suppose (a, b) € R. We want to show that [a] = [b]. Let x € [b] ; then (b, x) € R. But by hypothesis
(a,a) € R and so, by transitivity, (a, x) € R . Accordingly x € [a]. Thus [b] € [a]. To prove that [a] < [b] we
observe that (a, b) € R implies, by symmetry, that (b, a) € R . Then, by a similar argument, we obtain [a] C [b].
Consequently, [a] = [b].

On the other hand, if [a] = [b], then, by (i), b € [b] = [a]; hence (a, b) € R.

(¢) Proof of (iii): We prove the equivalent contrapositive statement:

If [aln[b]l #@ then [a]=[b]

If [a] N [b] # @, then there exists an element x € A with x € [a] N [b]. Hence (a,x) € R and (b, x) € R. By
symmetry, (x, b) € R and by transitivity, (a, b) € R. Consequently by (ii), [a] = [b].

PARTIAL ORDERINGS

2.18. Let £ be any collection of sets. Is the relation of set inclusion C a partial order on £?

Yes, since set inclusion is reflexive, antisymmetric, and transitive. That is, for any sets A, B, Cin £ we have: (i) A C A;
(ii)if AC Band B < A,then A = B; (iii)if AC Band B< C,then A C C.

2.19. Consider the set Z of integers. Define aRb by b = a” for some positive integer r. Show that R is a partial
order on Z, that is, show that R is: (a) reflexive; (b) antisymmetric; (c) transitive.

(a) R is reflexive since a = al.

(b) Suppose aRb and bRa, say b = a” and a = b°*. Then a = (a")® = a"°. There are three possibilities: (i) rs = 1,
(ii)a=1,and (iii)a = —1.Ifrs = lthenr = lands = landsoa = b.Ifa = 1 thenh = 1" = 1 = a, and,
similarly, if » = 1 thena = 1. Lastly, ifa = —1 then b = —1 (since b # 1) and @ = b. In all three cases, a = b.
Thus R is antisymmetric.

(¢) Suppose aRb and bRc say b = a" and ¢ = b°. Then ¢ = (a")® = a"* and, therefore, a Rc. Hence R is transitive.

Accordingly, R is a partial order on Z.
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Supplementary Problems

RELATIONS

2.20. LetS ={a,b,c},T = {b,c,d),and W = {a,d}. Find S x T x W.

2.21. Findxandy where: (@) (x+2,49)=(5,2x+y); B (ry—-2,2x+1)=x—1,y+2).
222 Prove:(a) Ax (BNC)=(AxB)N(AxC); (b()Ax(BUC)=(AxB)U(AxC).
2.23. Consider the relation R = {(1, 3), (1,4), (3,2),(3,3), (3,4} on A = (1,2, 3,4}.

(a) Find the matrix Mg of R. (d) Draw the directed graph of R.
(b) Find the domain and range of R.  (e) Find the composition relation RoR.

(c)Find R™1. (f) Find RoR~! and R~1oR.
2.24. letA={1,2,3,4}, B ={a,b,c}, C = {x, y, z}. Consider the relations R from A to B and § from B to C as follows:
R=1{(1,b),(3,a),(3,b),4,c)} and §={(a,y)),(cx),(a,z2)}

(a) Draw the diagrams of R and S.
(b) Find the matrix of each relation R, S (composition) RoS.

(c) Write R~! and the composition RoS as sets of ordered pairs.
2.25. Let R and S be the following relations on B = {a, b, ¢, d}:
R ={(a,a),(a,c),(c,b),(c,d),(d,b)} and §={(b,a),(c,c),(c,d),(d a)}

Find the following composition relations: (a) RoS; (b) SoR; (c) RoR; (d) SoS.

2.26. Let R be the relation on N defined by x + 3y = 12,1e. R = {(x, y) |x + 3y = 12}.

(a) Write R as a set of ordered pairs. (c) Find R

(b) Find the domain and range of R. (d) Find the composition relation RoR.

PROPERTIES OF RELATIONS

2.27. Each of the following defines a relation on the positive integers N:

(1) “xis greater than y.” 3)x+y=10
(2) “xyis the square of an integer.” (4) x +4y = 10.

Determine which of the relations are: (a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.
2.28. Let R and S be relations on a set A. Assuming A has at least three elements, state whether each of the
following statements is true or false. If it is false, give a counterexample on the set A = {1, 2, 3}:
(a) If Rand § are symmetric then R N S is symmetric.
(b) If R and S are symmetric then R U § is symmetric.

(c) If Rand S are reflexive then R N § is reflexive.
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(d) If R and S are reflexive then R U § is reflexive.
(e) If Rand S are transitive then R U § is transitive.

(f) If R and § are antisymmetric then R U § is antisymmetric.

(g) If Ris antisymmetric, then R~ 1is antisymmetric.

(h) If R is reflexive then R N R—! is not empty.

(i) If R is symmetric then R N R—! is not empty.
¥ pLy.

2.29. Suppose R and § are relations on a set A, and R is antisymmetric. Prove that R N § is antisymmetric.

EQUIVALENCE RELATIONS

2.30.
2.31.

Prove that if R is an equivalence relation on a set A, than R~!isalso an equivalence relation on A.

Let §$ = {1,2,3,..., 18, 19}. Let R be the relation on § defined by “xy is a square,” (a) Prove R is an equivalence

relation. (b) Find the equivalence class [1]. (c) List all equivalence classes with more than one element.

2.32.

Let § = {1,2,3,...,14,15}. Let R be the equivalence relation on § defined by x = y (mod 5), that is, x — y is

divisible by 5. Find the partition of § induced by R, i.e. the quotient set S/R.

2.33.

Let § =1{1,2,3,...,9}, and let ~ be the relation on A x A defined by

(a, b) ~ (¢, d) whenever a+d=>b+c.

(a) Prove that ~ is an equivalence relation.

(b) Find [(2, 5)], that is, the equivalence class of (2, 5).

Answers to Supplementary Problems

2.20. {(a, b, a), (a, b, d), (a, c, a), (a, c, d),
(a, d, a), (a,d, d), (b, b, a), (b, b, d),
(b, c,a), (b,c,d), (b,d, a), (b,d,d),
(¢, b, a), (c, b, d), (c, ¢, a), (c, c, d),
(c, d, a), (c, d, d)}

221 (@x=3,y=-2;(b)x=2,y=3.

2.23. (a) Mr=1[0,0,1,1;0,0,0, 0

0,1,1, 1;0,0,0, 0];
(b) Domain = {1, 3}, range = {2, 3,4};

© R-'={@.1). th 1,2 3. B
4, 3));

2.24.

2.25.

Fig. 2-8

(d) See Fig. 2-8(a);

() RoR={(1,2), (1,3), (1,4, 3, 2),
(3,3), 3,9}

(a) See Fig. 2-8(b);

(b)R=1[0,1,0; 0,0,0; 1,1,0; 0,0, 1],
§5=10:1,1:40.0:0:1..0.0].
RoS§S=10,0,0; 0,0,0; 0,1, 1; 1,0,0[;

©{®,1), (@3), b,3), (c, D}, {B,y),
(3,2), 4,x)}

(a) RoS = {(a, ¢), (a,d),(c,a),(d, a)}
(b) SoR = {(b, a), (b, ¢), (¢, b), (¢, d),
d,a), d,c)}
(¢) RoR = {(a, a), (a, b), (a,¢), (a,d), (c, b)}
(d) oS ={(c, ¢), (¢, a), (¢, d)}
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226. (@ {O, 1,6,2),3,3)}s ® @O {96 3}
(i) {1, 2, 3}, (i) {(1, 9), (2, 6), (3, )} (©) {3, 3)}.

2.27. (a) None; (b) (2) and (3); (c) (1) and (4); (d) all
except (3).

2.28. All are true except: (e) R = {(1,2)}, § = {(2,3)};
O R={(1,2)},5={2, D}

2.31. (b){1,4,9,16}; () {1,4,9, 16}, {2, 8, 18}, {3, 12}.

2.32. [{1,6, 11}, {2,7,12}, {3, 8,133}, {4, 9, 14},
{5, 10, 15}]

2.33. (0){(1,4),(2,5),3,6),4,7),(5,8), (6,9}



Functions and
Algorithms

3.1 INTRODUCTION

” L

One of the most important concepts in mathematics is that of a function. The terms “map,” “mapping,”
“transformation,” and many others mean the same thing; the choice of which word to use in a given situation is
usually determined by tradition and the mathematical background of the person using the term.

Related to the notion of a function is that of an algorithm. The notation for presenting an algorithm and a
discussion of its complexity is also covered in this chapter.

3.2 FUNCTIONS

Suppose that to each element of a set A we assign a unique element of a set B; the collection of such
assignments is called a function from A into B. The set A is called the domain of the function, and the set B is
called the target set or codomain.

Functions are ordinarily denoted by symbols. For example, let f denote a function from A into B. Then we
write

ffA— B
which is read: “fis a function from A into B,” or “ftakes (or maps) A into B.” If a € A, then f(a) (read: “fof a”)
denotes the unique element of B which f assigns to a; it is called the image of a under f, or the value of f at a.
The set of all image values is called the range or image of f. The image of f: A — B is denoted by Ran(f),
Im(f) or f(A).

Frequently, a function can be expressed by means of a mathematical formula. For example, consider the
function which sends each real number into its square. We may describe this function by writing

f(x):x2 or x+>x% or y:x2

In the first notation, x is called a variable and the letter f denotes the function. In the second notation, the barred
arrow > is read “goes into.” In the last notation, x is called the independent variable and y is called the dependent
variable since the value of y will depend on the value of x.

Remark: Whenever a function is given by a formula in terms of a variable x, we assume, unless it is otherwise
stated, that the domain of the function is R (or the largest subset of R for which the formula has meaning) and
the codomain is R.

43
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Fig. 3-1

EXAMPLE 3.1

(a) Consider the function f(x) = x3, i.e., fassigns to each real number its cube. Then the image of 2 is 8, and
so we may write f(2) = 8.

(b) Figure 3-1 defines a function f from A = {a, b, ¢, d} into B = {r, 5, t, u} in the obvious way. Here
fla=s, fB)=u [flo=r, fd)=s

The image of fis the set of image values, {r, s, u}. Note that r does not belong to the image of f because ¢ is
not the image of any element under f.

(c) Let A be any set. The function from A into A which assigns to each element in A the element itself is called
the identity function on A and it is usually denoted by 14, or simply 1. In other words, foreverya € A,

la(a) = a.

(d) Suppose S is a subset of A, that is, suppose S € A. The inclusion map or embedding of S into A, denoted by
iz § = A is the function such that, for every x € §,

i(x)=x
The restriction of any function f: A — B, denoted by f/|s is the function from § into B such that, for any x € §,

fls(x) = fx)

Functions as Relations

There is another point of view from which functions may be considered. First of all, every function f: A — B
gives rise to a relation from A to B called the graph of f and defined by

Graph of f = {(a,b)|a € A, b = f(a)}

Two functions f: A — B and g: A — B are defined to be equal, written f = g, if f(a) = g(a) for every
a € A; that is, if they have the same graph. Accordingly, we do not distinguish between a function and its graph.
Now, such a graph relation has the property that each a in A belongs to a unique ordered pair (a, b) in the relation.
On the other hand, any relation f from A to B that has this property gives rise to a function f: A — B, where
f(a) = b for each (a, b) in f. Consequently, one may equivalently define a function as follows:

Definition: A function f: A — B is arelation from A to B (i.e., a subset of A x B) such that each @ € A belongs
to a unique ordered pair (a, b) in f.

Although we do not distinguish between a function and its graph, we will still use the terminology “graph
of f” when referring to f as a set of ordered pairs. Moreover, since the graph of f is a relation, we can draw its
picture as was done for relations in general, and this pictorial representation is itself sometimes called the graph
of f. Also, the defining condition of a function, that each a € A belongs to a unique pair (a, b) inf, is equivalent
to the geometrical condition of each vertical line intersecting the graph in exactly one point.
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EXAMPLE 3.2

(a) Let f: A — B be the function defined in Example 3.1 (b). Then the graph of fis as follows:
{(a,s), (b,u), (c,r), (d,s)}

(b) Consider the following three relations on the set A = {1, 2, 3}:

f=113), 2,3, G, D}, g={(1,2), G, D}, h={(1,3), 2,1, (1,2), G, 1)

fis a function from A into A since each member of A appears as the first coordinate in exactly one ordered
pair in f; here f(1) = 3, f(2) = 3, and f(3) = 1. g is not a function from A into A since 2 € A is not the
first coordinate of any pair in g and so g does not assign any image to 2. Also h is not a function from A into
A since 1 € A appears as the first coordinate of two distinct ordered pairs in A, (1, 3) and (1, 2). If 4 is to be
a function it cannot assign both 3 and 2 to the element 1 € A.

(c) By a real polynomial function, we mean a function f: R — R of the form
f@) =anx"+ap_1x" '+ tax+ao

where the g; are real numbers. Since R is an infinite set, it would be impossible to plot each point of the
graph. However, the graph of such a function can be approximated by first plotting some of its points and then
drawing a smooth curve through these points. The points are usually obtained from a table where various
values are assigned to x and the corresponding values of f(x) are computed. Figure 3-2 illustrates this
technique using the function f(x) = x> — 2x — 3.

z | fz)
2| 5
-1] o

o| -3
1| —4
2] -3
3] o
4| 5

Graph of f(x) = x2—2x—3

Fig. 3-2

Composition Function

Consider functions f: A — B and g: B — C; that is, where the codomain of fis the domain of g. Then we
may define a new function from A to C, called the composition of f and g and written go f, as follows:

(gof)(a) = g(f(a))

That is, we find the image of a under f and then find the image of f(a) under g. This definition is not really
new. If we view fand g as relations, then this function is the same as the composition of f and g as relations (see
Section 2.6) except that here we use the functional notation go f for the composition of f and g instead of the
notation fog which was used for relations.
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Consider any function f: A — B. Then

fela=f and lpof=f

where 14 and 1p are the identity functions on A and B, respectively.

3.3 ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

A function f: A — B is said to be one-to-one (written 1-1) if different elements in the domain A have
distinct images. Another way of saying the same thing is that fis one-to-one if f(a) = f(a’) impliesa = a'.

A function f: A — B is said to be an onto function if each element of B is the image of some element of A.
In other words, f: A — B is onto if the image of fis the entire codomain, i.e., if f(A) = B. In such a case we
say that fis a function from A onto B or that f maps A onto B.

A function f: A — B isinvertible if its inverse relation f —1 s a function from B to A. In general, the inverse
relation £—! may not be a function. The following theorem gives simple criteria which tells us when it is.

Theorem 3.1: A function f: A — B is invertible if and only if fis both one-to-one and onto.

If f: A — B is one-to-one and onto, then fis called a one-to-one correspondence between A and B. This
terminology comes from the fact that each element of A will then correspond to a unique element of B and vice
versa.

Some texts use the terms injective for a one-to-one function, surjective for an onto function, and bijective for
a one-to-one correspondence.

EXAMPLE 3.3 Consider the functions fi: A — B, f»: B — C, f3: C — D and f4: D — E defined by the
diagram of Fig. 3-3. Now f; is one-to-one since no element of B is the image of more than one element of A.
Similarly, f> is one-to-one. However, neither f3 nor fy is one-to-one since f3(r) = f3(u) and f3(v) = fa(w)

Fig. 3-3

As far as being onto is concerned, f> and f3 are both onto functions since every element of C is the image
under f> of some element of B and every element of D is the image under f3 of some element of C, f2(B) = C
and f3(C) = D. On the other hand, f; is not onto since 3 € B is not the image under fj4 of any element of A.
and f4 is not onto since x € E is not the image under f; of any element of D.

Thus f; is one-to-one but not onto, f3 is onto but not one-to-one and fj is neither one-to-one nor onto.
However, f> is both one-to-one and onto, i.e., is a one-to-one correspondence between A and B. Hence f5 is
invertible and f,” ! is a function from C to B.

Geometrical Characterization of One-to-One and Onto Functions

Consider now functions of the form f: R — R. Since the graphs of such functions may be plot-
ted in the Cartesian plane R? and since functions may be identified with their graphs, we might wonder
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whether the concepts of being one-to-one and onto have some geometrical meaning. The answer is yes.
Specifically:

(1) f:R — R is one-to-one if each horizontal line intersects the graph of fin at most one point.
(2) f:R — Ris an onto function if each horizontal line intersects the graph of f at one or more points.

Accordingly, if fis both one-to-one and onto, i.e. invertible, then each horizontal line will intersect the graph of
fat exactly one point.

EXAMPLE 3.4 Consider the following four functions from R into R:
fim=x% HW =2, H®=x>-2"-5x+6, fulx)=x

The graphs of these functions appear in Fig. 3-4. Observe that there are horizontal lines which intersect the graph
of fi twice and there are horizontal lines which do not intersect the graph of f; at all; hence f; is neither one-
to-one nor onto. Similarly, f> is one-to-one but not onto, f3 is onto but not one-to-one and f; is both one-to-one
and onto. The inverse of f4 is the cube root function, i.e., f, 4_1 (x) = Ix.

=—/ N

filx) = 2 falx) = 2 f3(x) = 23— 222 — 5z + 6 fala) = a3

Fig. 3-4

Permutations

An invertible (bijective) function o: X — X is called a permutation on X. The composition and inverses of
permutations on X and the identity function on X are also permutations on X.
Suppose X = {1, 2, ..., n}. Then a permutation o on X is frequently denoted by

( 1. 2 B osse p )
o= : ) . .
a mr»p n -

where j; = o (7). The set of all such permutations is denoted by S, and there are n! = n(n —1)---3-2-1of
them. For example,

5—123456 andr—123456

A4 6 251 3 N6 43 1 2 5
are permutations in Sg, and there are 6! = 720 of them. Sometimes, we only write the second line of the
permutation, that is, we denote the above permutations by writing o = 462513 and © = 643125.

3.4 MATHEMATICAL FUNCTIONS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

This section presents various mathematical functions which appear often in the analysis of algorithms, and
in computer science in general, together with their notation. We also discuss the exponential and logarithmic
functions, and their relationship.
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Floor and Ceiling Functions

Let x be any real number. Then x lies between two integers called the floor and the ceiling of x. Specifically,

|x ], called the floor of x, denotes the greatest integer that does not exceed x.

[x], called the ceiling of x, denotes the least integer that is not less than x.

If x is itself an integer, then | x| = [x7; otherwise |x| 4+ 1 = [x7]. For example,
3141 =3, |5]|=2. 1-8s51=—5, mI=7 L41=—4

[3.14] = 4, (\/3] =3, [L851=~8. =7 [RI=—4

Integer and Absolute Value Functions

Let x be any real number. The integer value of x, written INT(x), converts x into an integer by deleting
(truncating) the fractional part of the number. Thus

INT(3.14) =3, INT(v/5)=2, INT(-8.5) =-8, INT(7)=7
Observe that INT(x) = [x| or INT(x) = [x] according to whether x is positive or negative.

The absolute value of the real number x, written ABS(x) or |x|, is defined as the greater of x or —x. Hence
ABS(0) = 0, and, for x # 0, ABS(x) = x or ABS(x) = —x, depending on whether x is positive or negative.
Thus

|—15] =15, [7|=7, |—3.33]1=3.33, [444]=4.44, |—-0.075]=0.075

We note that [x| = | — x| and, for x # 0, |x| is positive.

Remainder Function and Modular Arithmetic
Let k be any integer and let M be a positive integer. Then

k (mod M)

(read: k modulo M) will denote the integer remainder when k is divided by M. More exactly, k (mod M) is the
unique integer r such that

k=Mg+r where 0<r<M
When £ is positive, simply divide k£ by M to obtain the remainder r. Thus
25 (mod 7) =4, 25(mod 5)=0, 35 (mod 11)=2, 3 (mod8) =3
If k is negative, divide |k| by M to obtain a remainder r’; then k (mod M) = M — r’ when r’ # 0. Thus
—26(mod 7)=7—-5=2, —-371(mod8) =8-3=5, —39(mod3)=0

The term “mod” is also used for the mathematical congruence relation, which is denoted and defined as
follows:

a =b (mod M) if anyonlyif Mdividesb—a

M is called the modulus, and a = b (mod M) is read “a is congruent to b modulo M. The following aspects of
the congruence relation are frequently useful:

0=M (mod M) and a+ M =a (mod M)
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m Three-Dimensional Coordinate Systems

Fid

9L

e

X

FIGURE 1
Coordinate axes
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FIGURE 2
Right-hand rule

FIGURE 3

FIGURE 4

To locate a point in a plane, two numbers are necessary. We know that any point in
the plane can be represented as an ordered pair (a, b) of real numbers, where a is the
x-coordinate and b is the y-coordinate. For this reason, a plane is called two-dimensional.
To locate a point in space, three numbers are required. We represent any point in space by
an ordered triple (a, b, ¢) of real numbers.

In order to represent points in space, we first choose a fixed point O (the origin) and
three directed lines through O that are perpendicular to each other, called the coordinate
axes and labeled the x-axis, y-axis, and z-axis. Usually we think of the x- and y-axes as
being horizontal and the z-axis as being vertical, and we draw the orientation of the axes
as in Figure 1. The direction of the z-axis is determined by the right-hand rule as illus-
trated in Figure 2: If you curl the fingers of your right hand around the z-axis in the direc-
tion of a 90° counterclockwise rotation from the positive x-axis to the positive y-axis, then
your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane contains
the y- and z-axes; the xz-plane contains the x- and z-axes. These three coordinate planes
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

1

ﬂ‘plaﬁe YZz-plane
0

= Y
xa” Y

(a) Coordinate planes (b)

Because many people have some difficulty visualizing diagrams of three-dimensional
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom
corner of a room and call the corner the origin. The wall on your left is in the xz-plane, the
wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs along
the intersection of the floor and the left wall. The y-axis runs along the intersection of the
floor and the right wall. The z-axis runs up from the floor toward the ceiling along the inter-
section of the two walls. You are situated in the first octant, and you can now imagine seven
other rooms situated in the other seven octants (three on the same floor and four on the
floor below), all connected by the common corner point O.

Now if Pis any point in space, let a be the (directed) distance from the yz-plane to P,
let b be the distance from the xz-plane to F, and let ¢ be the distance from the xy-plane to
P We represent the point P by the ordered triple (a, b, ¢) of real numbers and we call
a, b, and c the coordinates of P, a is the x-coordinate, b is the y-coordinate, and c is the
z-coordinate. Thus, to locate the point (a, b, ¢), we can start at the origin O and move
a units along the x-axis, then b units parallel to the y-axis, and then c units parallel to the
z-axis as in Figure 4.
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FIGURE 5
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The point Aa, b, ¢) determines a rectangular box as in Figure 5. If we drop a perpen-
dicular from Pto the xy-plane, we get a point Q with coordinates (&, b, 0) called the pro-
jection of P onto the xy-plane. Similarly, R0, b, ¢) and Sa, 0, ¢) are the projections of P
onto the yz-plane and xz-plane, respectively.

As numerical illustrations, the points (—4, 3, —5) and (3, —2, —6) are plotted in Fig-
ure 6.

|
|
|
|
-
il
-
vl
(3.—2.—6) «H\_\/

FIGURE 6

The Cartesian product R X R X R = {(x, y, z) | x, y, z € R} is the set of all ordered
triples of real numbers and is denoted by R*. We have given a one-to-one correspon-
dence between points P in space and ordered triples (a, b, ¢) in R®. It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the
first octant can be described as the set of points whose coordinates are all positive.

In two-dimensional analytic geometry, the graph of an equation involving x and yis a
curve in R? In three-dimensional analytic geometry, an equation in x, y, and z represents
a surface in R®.

[ IETXETEN What surfaces in R* are represented by the following equations?
@ z=3 b) y=5

SOLUTION

(@) The equation z = 3 represents the set {(x, y, z) | z = 3}, which is the set of all points
in R® whose z-coordinate is 3. This is the horizontal plane that is parallel to the xy-plane
and three units above it as in Figure 7 (a).

FIGURE 7 (a) z= 3, a plane in R’ (b) y=75, a plane in R* (c) y=5, aline in B

(b) The equation y = 5 represents the set of all points in R* whose y-coordinate is 5.
This is the vertical plane that is parallel to the xz-plane and five units to the right of it as
in Figure 7(b). =
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FIGURE 10
The plane y=x

NOTE When an equation is given, we must understand from the context whether it rep-
resents a curve in R? or a surface in R*. In Example 1, y = 5 represents a plane in R*, but
of course y = 5 can also represent a line in R? if we are dealing with two-dimensional ana-
lytic geometry. See Figure 7(b) and (c).

In general, if & is a constant, then x = k represents a plane parallel to the yz-plane,
y = kis a plane parallel to the xz-plane, and z = k is a plane parallel to the xy-plane. In
Figure 5, the faces of the rectangular box are formed by the three coordinate planes x = 0
(the yz-plane), y = 0 (the xz-plane), and z = 0 (the xy-plane), and the planes x = a, y = h,
andz = c

(a) Which points (x, y, z) satisfy the equations
¥+y* =1 and z=3
(b) What does the equation x* + y* = 1 represent as a surface in R*?

SOLUTION

(a) Because z = 3, the points lie in the horizontal plane z = 3 from Example 1(a).
Because x* + y* = 1, the points lie on the circle with radius 1 and center on the z-axis.
See Figure 8.

(b) Given that x* + y* = 1, with no restrictions on z, we see that the point (x, y, )
could lie on a circle in any horizontal plane z = k. So the surface x* + y* = 1 in R?
consists of all possible horizontal circles x* + y* = 1, z = k, and is therefore the circu-
lar cylinder with radius 1 whose axis is the z-axis. See Figure 9.

z
- = E ""H\.
3+
0 \
/ ¥
X
FIGURE 8 FIGURE 9
The circle x2 + y?=1,z=3 The cylinder x*+ y*=1 [

7 IEXXTTE] Describe and sketch the surface in R® represented by the equation y = x.

SOLUTION The equation represents the set of all points in R® whose x- and y-coordinates
are equal, that is, {(x, x, z) | x € R, z € R}. This is a vertical plane that intersects the
xy-plane in the line y = x, z = (. The portion of this plane that lies in the first octant is
sketched in Figure 10. ==

The familiar formula for the distance between two points in a plane is easily extended to
the following three-dimensional formula.

Distance Formula in Three Dimensions The distance | P, P; | between the points
Pi(x1, y1, z1) and Py(xz, 32, 25) is

|PP| = /(e — %12 + (ja — 31)? + (2 — z1)?
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FIGURE 11

FIGURE 12

Py(xy, y1.7)

A(x, yi.7y)

Py(x3, ¥2,2,)

B(x3, ¥2,27)
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To see why this formula is true, we construct a rectangular box as in Figure 11, where
Py and P, are opposite vertices and the faces of the box are parallel to the coordinate
planes. If A(xz, y1, z1) and B(xz, ys, z1) are the vertices of the box indicated in the figure,
then

|PA| = |x — x| |AB| = |y2 — n| | BB| = |z2 — z1|

Because triangles P, BP; and P, AB are both right-angled, two applications of the Pythago-
rean Theorem give

|PiP;[* = | ABJ* + | BR[|
and | PiBI = | RA[* + | ABJ*
Combining these equations, we get

|P1P2|2 = |P1A|2 + |AB|2 + |B¢F’2|2
=le—-—xf+|p-nf+]z-=af
=(—x)+(—pn)iP+@—n)

Therefore |PB| = Ve — ) + (o — )P + (2 — 21)?

The distance from the point A2, —1, 7) to the point (1, —3, 5) is

|PQ=+v(1 -2+ (-3+12+(5B—-T7Tf=4/1+4+4=3 =

[ T2 Find an equation of a sphere with radius r and center ({4, k, /).

SOLUTION By definition, a sphere is the set of all points A, y, z) whose distance from
Cis r. (See Figure 12.) Thus Pis on the sphere if and only if | PC| = r. Squaring both
sides, we have | PC|* = r or

x—HW+(y—+@c-00P=r i)

The result of Example 5 is worth remembering.

Equation of a Sphere  An equation of a sphere with center (4, &, 1) and radius r is
(x=0+(y— B+G—= D=1
In particular, if the center is the origin O, then an equation of the sphere is

+y+2=r

Show that x* + y* + z* + 4x — 6y + 2z + 6 = 0 is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if we
complete squares:

(P+Hax+ D)+ (P -6+ + (P +2z2+1)=-6+4+9+1
x+2P+(y—3+@z+17°=8
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Comparing this equation with the standard form, we see that it is the equation of a

sphere with center (—2, 3,

—1) and radius /8 = 22. [ ]

[E7XJT3] What region in R* is represented by the following inequalities?

can be rewritten as

FIGURE 13

SOLUTION The inequalities

Is2+y+z22<s4 =<0

ls 2+ +222<4

Isyxt+yP+z22 <2

so they represent the points (x, y, z) whose distance from the origin is at least 1 and at
most 2. But we are also given that z < 0, so the points lie on or below the xy-plane.
Thus the given inequalities represent the region that lies between (or on) the spheres
X+ y*+ z* = 1and x* + y* + z* = 4 and beneath (or on) the xy-plane. It is sketched

in Figure 13. —
m Exercises
1. Suppose you start at the origin, move along the x-axis a 9. Determine whether the points lie on straight line.
distance of 4 units in the positive direction, and then move (@) A(2,4,2), B3,7,-2), (1,33
downward a distance of 3 units. What are the coordinates (b) IX0, —5,5), E(1,-2,4), F3,4,2)
of your position? 10. Find the distance from (4, —2, 6) to each of the following.
2. Sketch the points (0, 5, 2), (4,0, —1), (2, 4, 6), and (1, —1, 2) (a) The xy-plane (b) The yz-plane

on a single set of coordinate axes. (c) The xz-plane (d) The x-axis

(e) The y-axis (f) The z-axis

3. Which of the points A(—4, 0, —1), B(3, 1, —5), and (2, 4, 6)
is closest to the yz-plane? Which point lies in the xz-plane?

4. What are the projections of the point (2, 3, 5) on the xy-, yz-,
and xz-planes? Draw a rectangular box with the origin and
(2, 3, 5) as opposite vertices and with its faces parallel to the
coordinate planes. Label all vertices of the box. Find the length
of the diagonal of the box.

5. Describe and sketch the surface in R® represented by the equa-
tion x + y= 2.

6. () What does the equation x = 4 represent in R*? What does
it represent in R3? Illustrate with sketches.
(b) What does the equation y = 3 represent in R*? What does
z = 5 represent? What does the pair of equations y = 3,
z = 5 represent? In other words, describe the set of points
(x, y, z) such that y = 3 and z = 5. [llustrate with a sketch.

7-8 Find the lengths of the sides of the triangle POR. Is it a right
triangle? Is it an isosceles triangle?

7. A3,-2,-3), O(7.0,1), R121)
8. A2,—-1,0), 0Q(4,1,1), R4, -54)

11. Find an equation of the sphere with center (—3, 2, 5) and
radius 4. What is the intersection of this sphere with the
Jyz-plane?

12. Find an equation of the sphere with center (2, —6, 4) and
radius 5. Describe its intersection with each of the coordinate
planes.

13. Find an equation of the sphere that passes through the point
(4, 3, —1) and has center (3, 8, 1).

14. Find an equation of the sphere that passes through the origin
and whose center is (1, 2, 3).

15-18 Show that the equation represents a sphere, and find its
center and radius.

15 L+ +22—2x—4y+8=15
16. X+ )y’ +22+8x—6y+2:+17=0
17. 2X2+2yz+222=8x—24z+l

18. 3x% + 3y + 322 =10 + 6y + 12z

1. Homework Hints available at stewartcalculus.com

Copyright 2010 Cengage Leamning. All Rights Reserved. Mﬂynuthewpnd, scanmed, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any content does not

affect the overall leaming experience. Cengage Learning reserves the right to remove additional content at amy time if subsequent rights restrictions require it.



19. (a) Prove that the midpoint of the line segment from
Pi(x, y, 21) to Polxz, yo, z2) is

nt+xn pnty ntn
2 * iz T’
(b) Find the lengths of the medians of the triangle with vertices

A(l,2,3), B(—2,0,5), and (4, 1, 5).

20. Find an equation of a sphere if one of its diameters has end-
points (2, 1, 4) and (4, 3, 10).

21. Find equations of the spheres with center (2, —3, 6) that touch
(a) the xy-plane, (b) the yz-plane, (c) the xz-plane.

22. Find an equation of the largest sphere with center (5, 4, 9) that
is contained in the first octant.

23-34 Describe in words the region of R represented by the equa-
tions or inequalities.

3. x=5 24 y=-2

25 y<8 26. x= -3
2.0<z<6 28 z2=1
29.A'2+y2=4, z=—1 M.yz-i-zz:lﬁ

N A2+ +22<3 32 x=:
BAL+2E=<9 T Bl

35-38 Write inequalities to describe the region.
35. The region between the yz-plane and the vertical plane x = 5

36. The solid cylinder that lies on or below the plane z = 8 and on
or above the disk in the xy-plane with center the origin and
radius 2

37. The region consisting of all points between (but not on) the
spheres of radius rand R centered at the origin, where r < R

38. The solid upper hemisphere of the sphere of radius 2 centered
at the origin

39. The figure shows a line L, in space and a second line L;,
which is the projection of L, on the xy-plane. (In other words,

m Vectors

M.

SECTION 12.2 VECTORS mm

the points on L, are directly beneath, or above, the points

on ;)

(a) Find the coordinates of the point P on the line ;.

(b) Locate on the diagram the points A, B, and C, where
the line L, intersects the xy-plane, the yz-plane, and the
xz-plane, respectively.

. Consider the points P such that the distance from P to

A(—1, 5, 3) is twice the distance from Pto B(6, 2, —2). Show
that the set of all such points is a sphere, and find its center and
radius.

Find an equation of the set of all points equidistant from the
points A(—1, 5, 3) and B(6, 2, —2). Describe the set.

. Find the volume of the solid that lies inside both of the spheres

x2+_yz+zz+4x—2y+4z+5=0

and X¥+yi+i=4

. Find the distance between the spheres x* + y* + z> = 4 and

x2+y2+zz=4x+4y+4z—ll.

. Describe and sketch a solid with the following properties.

When illuminated by rays parallel to the z-axis, its shadow is a
circular disk. If the rays are parallel to the y-axis, its shadow is
a square. If the rays are parallel to the x-axis, its shadow is an
isosceles triangle.

D
B
u
/
C
A

The term vector is used by scientists to indicate a quantity (such as displacement or veloc-
ity or force) that has both magnitude and direction. A vector is often represented by an
arrow or a directed line segment. The length of the arrow represents the magnitude of the
vector and the arrow points in the direction of the vector. We denote a vector by printing a
letter in boldface (v) or by putting an arrow above the letter (7).

For instance, suppose a particle moves along a line segment from point A to point 5.

FIGURE 1
Equivalent vectors

The corresponding displacement vector v, shown in Figure 1, has initial point 4 (the tail)
and terminal point B (the tip) and we indicate this by writing v = AB. Notice that the vec-
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792 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

A
FIGURE 2

e b

FIGURE 5

m Visual 12.2 shows how the Triangle and
Parallelogram Laws work for various vectors
aandb.

toru = C—'5 has the same length and the same direction as v even though it is in a different
position. We say that u and v are equivalent (or equal) and we write u = v. The zero vec-
tor, denoted by 0, has length 0. It is the only vector with no specific direction.

I Combining Vectors

Suppose a particle moves from A to B, so its displacement vector is @ Then the particle
changes direction and moves from Bto C, with displacement vector BCas in Figure 2. The
combined effect of these displacements is that the particle has moved from Ato C. The
resulting displacement vector A_a is called the sum of ABand BCand we write

AC= AB+ BC

In general, if we start with vectors u and v, we first move v so that its tail coincides with
the tip of u and define the sum of u and v as follows.

Definition of Vector Addition If u and v are vectors positioned so the initial point of
v is at the terminal point of u, then the sum u + v is the vector from the initial
point of u to the terminal point of v.

The definition of vector addition is illustrated in Figure 3. You can see why this definition
is sometimes called the Triangle Law.

FIGURE 3 The Triangle Law FIGURE 4 The Parallelogram Law

In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another
copy of v with the same initial point as u. Completing the parallelogram, we see that
u + v = v + u. This also gives another way to construct the sum: If we place u and v so
they start at the same point, then u + v lies along the diagonal of the parallelogram with
u and v as sides. (This is called the Parallelogram Law.)

7 TN Draw the sum of the vectors a and b shown in Figure 5.

SOLUTION First we translate b and place its tail at the tip of a, being careful to draw a
copy of b that has the same length and direction. Then we draw the vector a + b [see
Figure 6(a)] starting at the initial point of a and ending at the terminal point of the copy
of b.

Alternatively, we could place b so it starts where a starts and construct a + b by the
Parallelogram Law as in Figure 6(b).

(@ (b) [
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—v/ —1.5v

FIGURE 7
Scalar multiples of v

TR,

FIGURE 9

FIGURE 10

FIGURE 8
Drawingu —v

SECTION 12.2 VECTORS 793

It is possible to multiply a vector by a real number c. (In this context we call the real num-
ber c a scalar to distinguish it from a vector.) For instance, we want 2v to be the same
vector as v + v, which has the same direction as v but is twice as long. In general, we mul-
tiply a vector by a scalar as follows.

Definition of Scalar Multiplication If c is a scalar and v is a vector, then the scalar
multiple cv is the vector whose length is | ¢| times the length of v and whose
direction is the same as v if ¢ > 0 and is opposite tovif c < 0. Ifc=0o0orv =10,
then cv = 0.

This definition is illustrated in Figure 7. We see that real numbers work like scaling fac-
tors here; that's why we call them scalars. Notice that two nonzero vectors are parallel if
they are scalar multiples of one another. In particular, the vector —v = (—1)v has the same
length as v but points in the opposite direction. We call it the negative of v.

By the difference u — v of two vectors we mean

u—v=u+ (—v)

So we can construct u — v by first drawing the negative of v, —v, and then adding it to u
by the Parallelogram Law as in Figure 8(a). Alternatively, since v + (u — v) = u, the vec-
tor u — v, when added to v, gives u. So we could construct u — v as in Figure 8(b) by
means of the Triangle Law.

u—-v

(b)

[IETIT[ZTF] If a and b are the vectors shown in Figure 9, draw a — 2b.

SOLUTION We first draw the vector —2b pointing in the direction opposite to b and twice
as long. We place it with its tail at the tip of a and then use the Triangle Law to draw
a + (—2b) as in Figure 10. E—

I Components

For some purposes it’s best to introduce a coordinate system and treat vectors algebra-
ically. If we place the initial point of a vector a at the origin of a rectangular coordinate
system, then the terminal point of a has coordinates of the form (ai, @) or (a1, a, a3),
depending on whether our coordinate system is two- or three-dimensional (see Figure 11).

(a. as)

o ‘ x

a={(a,a,) a=(a;, ay, as)
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794 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Y (4,5) These coordinates are called the components of a and we write

(1,3) P(3.2) a~= (3[. 32) or a= <al, dz, 33)

We use the notation (a;, @) for the ordered pair that refers to a vector so as not to confuse
it with the ordered pair (ay, a2) that refers to a point in the plane. .

For instance, the vectors shown in Figure 12 are all equivalent to the vector OP= (3, 2)
whose terminal point is A3, 2). What they have in common is that the terminal point is
reached from the initial point by a displacement of three units to the right and two upward.
FIGURE 12 We can think of all these geometric vectors as representations of the algebraic vector
Represeiitations of the veciora=(3,2) &= (3, 2). The particular representation OPfrom the origin to the point A3, 2) is called

the position vector of the point P, _
In three dimensions, the vector a = C7ﬁ = (a, a, a3) is the position vector of the

N point Aay, as, as). (See Figure 13.) Let's consider any other representation ABof a, where
Egzgfgf p the initial point is A(x1, y1, z1) and the terminal point is B(xz, 2, z2). Then we must have
xit+ta =x, iy +ta= and z; + a3 =1z and so a; = x; — x1, a2 = }» — yi, and
a3 = z; — z;. Thus we have the following result.

£

Play, a, as)

y [1] Given the points A(xi, y1, z1) and B(xz, 2, 22), the vector a with represen-

tation is
FIGURE 13 a=(x —x,) — Y22 — 21)

Representations of a = (a,, a,, a,)

x& Alx,y,z) Blxta,ytayztai)

[ IETITZTE] Find the vector represented by the directed line segment with initial
point A(2, —3, 4) and terminal point B(—2, 1, 1).

SOLUTION By [1], the vector corresponding to ABis
a=(=2—21={=3)1 —4y=(-44 =3) =

The magnitude or length of the vector v is the length of any of its representations and
is denoted by the symbol | v| or ||v|. By using the distance formula to compute the length
of a segment OF, we obtain the following formulas.

The length of the two-dimensional vector a = (a,, a,) is

¥ al = /22 + a2
(@, +by,a,+ by) | | A o
[ The length of the three-dimensional vector a = (ay, az, as) is
|
|
atb b | b, |a| = vaZ + a} + a}
|
|
__bl__|
2 a | | a
zl l ! X How do we add vectors algebraically? Figure 14 shows that if a = (a, a2) and
0 a, b, x b = (by, b:), thenthesumisa + b= (a + b, & + b:), at least for the case where the
components are positive. In other words, to add algebraic vectors we add their compo-
FIGURE 14 nents. Similarly, to subtract vectors we subtract components. From the similar triangles in
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FIGURE 15

Vectors in 2 dimensions are used to list various
quantities in an organized way. For instance, the
components of a six-dimensional vector

P ={p.p. pp s pe)

might represent the prices of six different ingre-
dients required to make a particular product.
Four-dimensional vectors (x, y, z, ¢) are used
in relativity theory, where the first three compo-
nents specify a position in space and the fourth
represents time.

SECTION 12.2 VECTORS 795

Figure 15 we see that the components of ca are ca; and ca;. So to multiply a vector by a
scalar we multiply each component by that scalar.

Ifa = (ay, a) and b = (b, b,), then
at+b={(a+ b,a + b) a—b=(a—b,a — b)
ca = {ca, ca)
Similarly, for three-dimensional vectors,
(a1, a2, as) + (b, bz, b3) = (a1 + b, a2 + by, a3 + bs)
(an, a2, as) — (b, bz, by) = (a1 — b, a2 — by, a3 — bs)

(ay, az, a3) = (ca, ca, cay)

V| Ifa=(4,0,3)andb= (—2,1,5), find |a| and the vectorsa + b,
a — b, 3b, and 2a + 5b.

SOLUTION la| =vAT+ 02+ 3 =25 =5
at+b=1(403)+(-215)
= {4+ (=2),8+1,8 +5) = (2 1.8)
a—b=(403) —(-21,5)
= (4— (-2),0—1,3 —5) = (6, -1, —2)
3b = 3(—2,1,5) = (3(—2); 3(1), 3(5)) = (-6, 3,15)
2a+5b=2(4,03) +5(-2,1,5)
= {8,0.6)+{-10.5,25) — {-2,5,31) =2
We denote by V4 the set of all two-dimensional vectors and by V; the set of all three-

dimensional vectors. More generally, we will later need to consider the set V, of all
n~dimensional vectors. An n-dimensional vector is an ordered n-tuple:

where ay, az, ..., a, are real numbers that are called the components of a. Addition and
scalar multiplication are defined in terms of components just as for the cases n = 2 and

n=3.

Properties of Vectors If a, b, and c are vectors in V, and ¢ and d are scalars, then
.a+b=b+a 2at+b+c)=(@+b)+c

3 at+t0=a 4 at+t(—-a)=0

5. cla+b)=ca+ cb 6. (c+da=ca+ da

7. (cd)a = dda) 8 la=a
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796 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
lelogram Law) or as follows for the case n = 2:

a+b={(a,a)+ (b b)={a+ b,a + b)
= (‘b] +31--‘!k+32> = (bl' bz) + (ali aE)
=b+a

We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector P(Q is obtained either by first con-
structing a + b and then adding ¢ or by adding a to the vector b + c.

Three vectors in V; play a special role. Let

FIGURE 16 i=(1,0,0) j=1¢0,1,0) k=(0,01)

These vectors 1, j, and k are called the standard basis vectors. They have length 1 and
point in the directions of the positive x-, y-, and z-axes. Similarly, in two dimensions we
definei = (1,0) and j = (0, 1). (See Figure 17.)

VA
{0! 1)_’\
J
0| i I x
(1,0)
FIGURE 17
Standard basis vectors in V, and V; (a)
¥ Ifa = (a, a, as), then we can write
(ay, as)
" aj a=(ay, a a3) = (a,0,0) + (0, a,0) + 0,0, a3)
0 i = = a;(1,0,0) + a,(0,1,0) + a;{0,0, 1)
|z| a=ai+ aj+ ak

(@) a=aji+a,j

5 Thus any vector in V5 can be expressed in terms of i, j, and k. For instance,

(@, @y, as)

(1,-2,6) =i — 2j + 6k
Similarly, in two dimensions, we can write

e L [3] a=(a, &) =ait aj
b a=alhnlruk See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with

FIGURE 18 Figure 17.
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Gibbs

Josiah Willard Gibbs (1839-1903), a professor
of mathematical physics at Yale College, pub-
lished the first book on vectors, Vector Analysis,
in 1881. More complicated objects, called
quaternions, had earlier been invented by
Hamilton as mathematical tools for describing
space, but they weren't easy for scientists to
use. Quaternions have a scalar part and a vec-
tor part. Gibb's idea was to use the vector part
separately. Maxwell and Heaviside had similar
ideas, but Gibb's approach has proved to be the
most convenient way to study space.

SECTION 12.2 VECTORS 197
IETUEEY Ifa =i+ 2j — 3kand b = 4i + 7Kk, express the vector 2a + 3b in terms
ofi, j, and k.
SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

2a + 3b = 2(i + 2j — 3k) + 3(4i + 7k)

=2i+4j — 6k + 12i + 21k = 14i + 4j + 15k -

A unit vector is a vector whose length is 1. For instance, i, j, and k are all unit vectors.
In general, if a # 0, then the unit vector that has the same direction as a is

1 a
u=——a=—
2] Pk

a a

In order to verify this, we let ¢ = 1/|a|. Then u = ca and c is a positive scalar, so u has
the same direction as a. Also

1
u|=|ca|=|c||la|=——]a|=1
= leal=lellal = plel

2,610 7841 Find the unit vector in the direction of the vector 2i — j — 2k.
SOLUTION The given vector has length

|2i —j—2k| =22+ 12+ (-2 =9 =3

so, by Equation 4, the unit vector with the same direction is

3@i—j— 20 =3i—3j -3k

I Applications

Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see
how they describe the velocity and acceleration of objects moving in space. Here we look
at forces.

A force is represented by a vector because it has both a magnitude (measured in pounds
or newtons) and a direction. If several forces are acting on an object, the resultant force
experienced by the object is the vector sum of these forces.

[E0UTETEA A 100-1b weight hangs from two wires as shown in Figure 19. Find the ten-
sions (forces) Ty and T in both wires and the magnitudes of the tensions.

SOLUTION We first express T, and T, in terms of their horizontal and vertical compo-
nents. From Figure 20 we see that

[5] T, = —|T,|cos 50°i + | T, |sin 50° j
[6] T, = | Tz|cos 32°i + | Tz |sin 32° j
The resultant T, + T of the tensions counterbalances the weight w and so we must have
T, + T, = —w = 100j
Thus
(—|T1|cos 50° + | Tz|cos 32°) i + (| T:|sin 50° + | T:|sin 32°) j = 100
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798 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Equating components, we get
—| T | cos 50° + | T2|cos 32° =0
| T;|sin 50° + | T,|sin 32°= 100
Solving the first of these equations for | T | and substituting into the second, we get

|Tl|sm50°+J1;‘0§°;Tfuosm32°=wo

So the magnitudes of the tensions are

T | = 100
ITu] sin 50° + tan 32° cos 50°

=~ 85.641b

and i = DL i s

cos 32°

Substituting these values in [5] and [6], we obtain the tension vectors

T, ~ —55.051 + 65.60j T, ~ 55.051 + 34.40j =
Exercises
1. Are the following quantities vectors or scalars? Explain. 5. Copy the vectors in the figure and use them to draw the
(a) The cost of a theater ticket following vectors.
(b) The current in a river (@ u+v b)u+w
(c) The initial flight path from Houston to Dallas ) v+w (du-—v
(d) The population of the world e v+u+w fHlu—w-—v
2. What is the relationship between the point (4, 7) and the /
vector (4, 7)7? Illustrate with a sketch.
u v w

3. Name all the equal vectors in the parallelogram shown.
6. Copy the vectors in the figure and use them to draw the

A B following vectors.
(@a+b (b)a—b
E (© za (d) —3b
(e) a+ 2b (f)2b — a

D c
b a

4. Write each combination of vectors as a single vector.

— —

(@) AE; ¥ BE (b) (Ti? L iﬁf . 7. In the figure, the tip of ¢ and the tail of d are both the midpoint
(c) DB — AB (d DC+ CA+ AB of QR. Express ¢ and d in terms of a and b.

P
A B B
a
R
. d
D
c Q

1. Homework Hints available at stewartcalculus.com
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8. If the vectors in the figure satisfy [u| = [v| = 1 and
u+v+w=0, whatis |w|?

9-14 Find a vector a with representation given by the directed line
segment AB. Draw AB and the equivalent representation starting at
the origin.

QA= 0),. BS.E)
1. A(-1,3), B2.2)
13. 4(0,3,1), B2 3, —-1)

10. A(—4,—1), B(1,2)
12 42,1), HB0,6)
14. A(4,0,-2), B4,2.1)

SECTION 12.2 VECTORS 799

32-33 Find the magnitude of the resultant force and the angle it
makes with the positive x-axis.
2. 33. ¥

45° 300N 60°

0[~_30° x 0
161b

Bl

15-18 Find the sum of the given vectors and illustrate
geometrically.

15. (—1,4), (6,-2)
17. (3,0,1), (0,8,0)

16. (3,—1), (-—1,5)
18. (1,3,-2), (0,0,6)

19-22 Finda + b, 2a + 3b, |a|,and |a — b]|.
19. a= (5 —12), b= (-3, —6)

W a=4i+j b=i-—2j
Noa=i+2)-38k b=-21-j+5k

2 a=2i-4j+4k b=2j-k

23-25 Find a unit vector that has the same direction as the given
vector.

B. -3i+7j
2. 8i—j + 4k

24. (—4,2,4)

26. Find a vector that has the same direction as (—2, 4, 2) but has
length 6.

27-28 What is the angle between the given vector and the positive
direction of the x-axis?

2. i +/3j 28. 8i + 6

29. If v lies in the first quadrant and makes an angle /3 with the
positive x-axis and | v| = 4, find v in component form.

30. If a child pulls a sled through the snow on a level path with a
force of 50 N exerted at an angle of 38° above the horizontal,
find the horizontal and vertical components of the force.

31. A quarterback throws a football with angle of elevation 40° and
speed 60 ft/s. Find the horizontal and vertical components of
the velocity vector.

34. The magnitude of a velocity vector is called speed. Suppose
that a wind is blowing from the direction N45°W at a speed of
50 km/h. (This means that the direction from which the wind
blows is 45° west of the northerly direction.) A pilot is steering
a plane in the direction N60°E at an airspeed (speed in still air)
of 250 km/h. The true course, or track, of the plane is the
direction of the resultant of the velocity vectors of the plane
and the wind. The ground speed of the plane is the magnitude
of the resultant. Find the true course and the ground speed of
the plane.

35. A woman walks due west on the deck of a ship at 3 mi/h. The
ship is moving north at a speed of 22 mi/h. Find the speed and
direction of the woman relative to the surface of the water.

36. Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has
a mass of 5 kg. The ropes, fastened at different heights, make
angles of 52° and 40° with the horizontal. Find the tension in
each wire and the magnitude of each tension.

40°

3m Sm

37. A clothesline is tied between two poles, 8 m apart. The line
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the midpoint
is pulled down 8 cm. Find the tension in each half of the
clothesline.

38. The tension T at each end of the chain has magnitude 25 N
(see the figure). What is the weight of the chain?

~ o

~ -
0\ /3‘? [+]
- f\\‘\ ___-..z"//l\

39. A boatman wants to cross a canal that is 3 km wide and wants
to land at a point 2 km upstream from his starting point. The
current in the canal flows at 3.5 km/h and the speed of his boat
is 13 km/h.

(a) In what direction should he steer?
(b) How long will the trip take?
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40. Three forces act on an object. Two of the forces are at an angle 48. If r = (x, y), r1 = {(x1, 1), and r, = (xz, ), describe the
of 1007 to each other and have magnitudes 25 N and 12 N. The set of all points (x, y) such that |[r —ri| + |r — 12| = &,
third is perpendicular to the plane of these two forces and has where k> |r; — 1z .

REgrinie 4 N. ot/ dR ri@itiocat AR Sore i 49. Figure 16 gives a geometric demonstration of Property 2 of
would exactly counterbalance these three forces. - Y
vectors. Use components to give an algebraic proof of this

41. Find the unit vectors that are parallel to the tangent line to the fact for the case n = 2.
parabola y = x* at the point (2, 4). 50, P ] _

. Prove Property 5 of vectors algebraically for the case n = 3.

42. (a) Find the unit vectors that are parallel to the tangent line to Then use similar triangles to give a geometric proof.

(b) g‘i‘:}; ‘;zeu);n—vi;?r: S:atth:rg ?)]:rtpgfl?culllr to the tangent L e )R . il T S
line. two sides of a triangle is parallel to the third side and half
(c) Sketch the curve y = 2 sin x and the vectors in parts (a) its length.
and (b), all starting at (/6, 1). 52. Suppose the three coordinate planes are all mirrored and a

A%, 6. B, A C E G Vet GE s el find light ray given by ﬂ?e vector a = {ay, az, as) first strikes the
1B+ B+ Ca xz-plane, as shown in the figure. Use the fact that the angle of

+BC+ CA incidence equals the angle of reflection to show that the direc-

44. Let C be the point on the line segment AB that is twice as far tion of the reflected ray is given by b = (a1, —az, as). Deduce
from Bas it is from A. Ifa = OA b= OB and ¢ = OC. show that, after being reflected by all three mutually perpendicular
thatc = 2a + Lb. mirrors, the resulting ray is parallel to the initial ray. (American

space scientists used this principle, together with laser beams

8. (a) Draw the vectorsa = (3,2),b = (2, —1), and and an array of corner mirrors on the moon, to calculate very

c=(7,1). precisely the distance from the earth to the moon.)
(b) Show, by means of a sketch, that there are scalars s and ¢

such that ¢ = sa + tb.
(c) Use the sketch to estimate the values of s and ~.
(d) Find the exact values of sand .

46. Suppose that a and b are nonzero vectors that are not parallel
and c is any vector in the plane determined by a and b. Give
a geometric argument to show that ¢ can be written as
¢ = sa + tb for suitable scalars s and ¢. Then give an argu-
ment using components.

47. If r = (x, y, z) and rg = (X, Jo, zo), describe the set of all

points (x, y, z) such that |r — ro| = 1.

m The Dot Product

So far we have added two vectors and multiplied a vector by a scalar. The question arises:
Is it possible to multiply two vectors so that their product is a useful quantity? One such
product is the dot product, whose definition follows. Another is the cross product, which is
discussed in the next section.

[1] Definition Ifa = (a,, a,, a;) and b = (b, by, by), then the dot product of a
and b is the number a - b given by

a-b=alb1+agb3+aglk

Thus, to find the dot product of a and b, we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot
product is sometimes called the scalar product (or inner product). Although Definition 1
is given for three-dimensional vectors, the dot product of two-dimensional vectors is defined
in a similar fashion:

(al.éiz) ) (bl-bz) =ab + axb
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SECTION 12.3 THE DOT PRODUCT 801
(V) EXAMPLE 1 |
(2,4) - (3,—1) = 2(3) + 4(—1) =2
(~1,7,4) - (6.2, —3) = (=1)(6) + 7(2) + 4(-2) =6
i+2j—3K:@2j—k=10) + 22 + (=3)(-1) =1 i

The dot product obeys many of the laws that hold for ordinary products of real numbers.
These are stated in the following theorem.

|z| Properties of the Dot Product If a, b, and c are vectors in V; and cis a
scalar, then

1. a-a=|af’ 2a-b=b-a
33a‘(b+c)=a-b+a-c 4 (ca)-b=cda-b)=a- ()
5. 0-a=20

These properties are easily proved using Definition 1. For instance, here are the proofs
of Properties 1 and 3:

1. ara=af + af + a} = |a]

Za-bt+to)=(a,aa) (ht+tabtabta)
= ab + ) + ab, + o) + abs + ©)
=aih + aia + axbp + a2 + asbhs + az3
=(aih + axbp + asby) + (10 + a0 + a33)
=a-b+a-c

The proofs of the remaining properties are left as exercises. EEE

The dot product a - b can be given a geometric interpretation in terms of the angle §
between a and b, which is defined to be the angle between the representations of a and
b that start at tJ_'lg origig,) where 0 =< 6 < 7. In other words, 6 is the angle between the
line segments OA and OB in Figure 1. Note that if a and b are parallel vectors, then § = 0
or f = .

The formula in the following theorem is used by physicists as the definition of the dot
product.

FIGURE 1 E Theorem If 6 is the angle between the vectors a and b, then

a-b=|al||b|cosé

PROOF If we apply the Law of Cosines to triangle OAB in Figure 1, we get
[4] |AB|? = | OA|* + | OB|* — 2| OA|| OB| cos 8

(Observe that the Law of Cosines still applies in the limiting cases when § = 0 or , or
a=0orb=0)But|OA| = |a|,| OB| = |b|,and | AB| = |a — b|, so Equation 4
becomes

[5] la—bf*=|al*+ |b|*—2|a||b]cos 8
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Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this equa-
tion as follows:

la—b|*=(—b)-(a—b)
=a-a—a*‘b—-b-a+b-b
=|alf—2a-b+ |b]
Therefore Equation 5 gives
|a?—2a-b+ |b]>=|af’ + |b|> — 2|a||b]|cos 8
Thus —2a-b=—2|a||b]|cos 6
or a-b=|a||b|cosé 3

[ETTTZTF] If the vectors a and b have lengths 4 and 6, and the angle between them is
/3, finda - b.

SOLUTION Using Theorem 3, we have
a-b=a||b|cos(w/3) =4-6-3=12 =

The formula in Theorem 3 also enables us to find the angle between two vectors.

[6] Corollary If @ is the angle between the nonzero vectors a and b, then

cos 0 =
|a]|b]|

7 IELIIZE] Find the angle between the vectorsa = (2,2, —1) and b = (5, —3, 2).
SOLUTION Since
la|=v22+ 22+ (-1 =3 and |b|=+/52+ (—3)* + 22 = /38
and since
a~h=2(5) +2(=3) +IN2)—2
we have, from Corollary 6,

cos 0 = . = 2
la|[b] 3438

So the angle between a and b is

0= cos"(ﬁ) =~ 1.46 (or 84°) —

Two nonzero vectors a and b are called perpendicular or orthogonal if the angle
between them is # = 7/2. Then Theorem 3 gives

a-b=|al||b|cos(w/2) =0
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a-b>0
f acute

/ a:h=0
— ¢ b 6 obtuse

FIGURE 2

Visual 12.3A shows an animation
of Figure 2.

FIGURE 3

SECTION 12.3 THE DOT PRODUCT 803

and conversely if a - b = 0, then cos # = 0, so § = /2. The zero vector 0 is considered
to be perpendicular to all vectors. Therefore we have the following method for determining
whether two vectors are orthogonal.

|I| Two vectors a and b are orthogonal if and only ifa - b = 0.

Show that 2i + 2j — k is perpendicular to 5i — 4j + 2k.
SOLUTION Since

i+2j— Kk - (5i—4j +2k)=205)+2(-49) +(-1D2)=0

these vectors are perpendicular by [7]. i 1]

Becausecos @ > 0if0 < 0 < «r/2andcos # < 0if /2 < @ < m, weseethata * bis
positive for # < 77/2 and negative for § > /2. We can think of a + b as measuring the
extent to which a and b point in the same direction. The dot product a + b is positive if a
and b point in the same general direction, 0 if they are perpendicular, and negative if they
point in generally opposite directions (see Figure 2). In the extreme case where a and b
point in exactly the same direction, we have # = 0, so cos § = 1 and

a-b=|a||b]

If a and b point in exactly opposite directions, then § = 7 and so cos # = —1 and
a-b=—|a||b|

N Direction Angles and Direction Cosines

The direction angles of a nonzero vector a are the angles a, 8, and 7 (in the interval [0, #])
that a makes with the positive x-, y-, and z-axes. (See Figure 3.)

The cosines of these direction angles, cos a, cos 3, and cos v, are called the direction
cosines of the vector a. Using Corollary 6 with b replaced by i, we obtain

cos a — Al :i

lalli]  a

(This can also be seen directly from Figure 3.)
Similarly, we also have

[9] cos,B=|aszl cosy=aTe'|

By squaring the expressions in Equations 8 and 9 and adding, we see that
cos’a + cos’B + cos’y =1
We can also use Equations 8 and 9 to write

a = (ay, a, a;) = (|a| cos a, |a| cos B, |a| cos v)

= |a|(cos a, cos B, cos y)

Copyright 2010 Cengage Leamning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any content does not

affect the overall leaming experience. Cengage Learning reserves the right to remove additional content at amy time if subsequent rights restrictions require it.



804 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Visual 12.38 shows how Figure 4

changes when we vary a and b.

proja b

FIGURE 4
Vector projections

P |b| cos 8= comp, b

FIGURE 5
Scalar projection

Therefore
1
[11] ma= (cos a, cos B, cos y)

which says that the direction cosines of a are the components of the unit vector in the direc-
tion of a.

[ETI[ZT3] Find the direction angles of the vectora = (1, 2, 3).
SOLUTION Since |a| = 4/1% + 22 + 32 = /14, Equations 8 and 9 give

1 2 3
cosa—m CDSB_\/E ccu::.-y—‘/ﬁ

and so

1 2 3
—eost—=_ ) = 7o — sactl E Yesega — el —=_ls=
a = cos ( (T ) 74 B = cos ( T ) 58 Y = cos ( T ) 37

B Projections

Figure 4 shows representations }-"_é and PR of two vectors a and b with the same initial
point P If Sis the foot of the perpendicular from R to the line containing Pﬁ then the vec-
tor with representation PS is called the vector projection of b onto a and is denoted by
proja b. (You can think of it as a shadow of b).

The scalar projection of b onto a (also called the component of b along a) is defined
to be the signed magnitude of the vector projection, which is the number | b | cos 6, where
6 is the angle between a and b. (See Figure 5.) This is denoted by comp. b. Observe that it
is negative if 77/2 < 6 < 7. The equation

a-b=|a||b|cosd=a|(|b]cos 6)
shows that the dot product of a and b can be interpreted as the length of a times the scalar
projection of b onto a. Since

-y
|b|c058=a —2_.p
la| |a

the component of b along a can be computed by taking the dot product of b with the unit
vector in the direction of a. We summarize these ideas as follows.

-b
Scalar projection of b onto a: comp, b = a|T|

-]
o
—
-]
-]
-2

Vector projection of b onto a: proja b = (—

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.
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SECTION 12.3 THE DOT PRODUCT 805

i IETTZTT] Find the scalar projection and vector projection of b = (1, 1, 2)
ontoa= (—2,3,1).

SOLUTION Since |a| = /(=2)2 + 3Z + 12 = /14, the scalar projection of b onto a is

a-b_(=2()+31)+12) _ 3
[a| V14 V14

comp, b =

The vector projection is this scalar projection times the unit vector in the direction of a:

B e WA 7' 14" 14

One use of projections occurs in physics in calculating work. In Section 6.4 we defined
the work done by a constant force F'in moving an object through a distance das W = Fd, but
this applies only when the force is directed along the line of motion of the object. Suppose,
however, that the constant force is a vector F = PR pointing in some other direction, as

R in Figure 6. If the force moves the object from Pto @, then the displacement vector is
D= P_O) The work done by this force is defined to be the product of the component of the

|
F I force along D and the distance moved:
] sl W= (|F|cos ) D]
P .0
D But then, from Theorem 3, we have
FIGURE 6 [12] W= |F||D|cos@=F-D
Thus the work done by a constant force F is the dot product F - D, where D is the dis-
placement vector.
d IEXZTFE A wagon is pulled a distance of 100 m along a horizontal path by a constant
R .. force of 70 N. The handle of the wagon is held at an angle of 35° above the horizontal.
Find the work done by the force.
SOLUTION If F and D are the force and displacement vectors, as pictured in Figure 7,
F then the work done is
35°
D W=F-D=|F||D]| cos 35°
FIGURE 7 = (70)(100) cos 35° =~ 5734 N-m = 5734 ] =

A force is given by a vector F = 3i + 4j + 5k and moves a particle from
the point A2, 1, 0) to the point (X4, 6, 2). Find the work done.

SOLUTION The displacement vector is D = }-"_Q) = (2, 5, 2), so by Equation 12, the work
done is
W=F-D=(3,45)-(25,2)
=6+20+10=36

If the unit of length is meters and the magnitude of the force is measured in newtons,
then the work done is 36 J. il
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806 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

m Exercises

1. Which of the following expressions are meaningful? Which are
meaningless? Explain.

(a)(a-b)-¢c (b) (a - b)e

() |a|(b-c) (da-(b+c

(e)a-b+c¢ (f) |al- (b +¢)
2-10 Finda - b.

2a=(-2,3), b=(07,12)

3a=(-21), b=(-512)

. a=(6,-2,3), b=(25 -1)

a=(4,11). b=(6-3 -8)

a=(p.—-p2p), b=(2gq—q

a=2i+j b=i—j+k

.a=3i+2j—k b=4i+5k

. |[a] =6, |b| =25, theangle betweena andbis 27/3
10. |a| =3, |b| =46, the angle between a and b is 45°

© ® N @

21-22 Find, correct to the nearest degree, the three angles of the
triangle with the given vertices.

2. A2,0), Q0,3), R3.4)

22. A(1,0,-1), B(3.-2,0), ((1,3,3)

23-24 Determine whether the given vectors are orthogonal,
parallel, or neither.

2. @ a=(-537), b=(6-82)
(b) a=(4,6), b=(-3,2)
@a=-i+2j+5k b=3i+4j—k
(d)a=2i+6j— 4k b= —3i—9j + 6k

24 (a u=1(-3,906), v=(4,-12 -8)
Wu=i—j+2k v=2i—j+k
©u=<{abc), v={(—ba)

11-12 If u is a unit vector, findu - vand u - w.

1. 12. u

13. (a) Show thati-j=j-k=k-i=0.
(b) Show thati-i=j-j=k-k=1.

14. A street vendor sells a hamburgers, b hot dogs, and ¢ soft
drinks on a given day. He charges $2 for a hamburger, $1.50
for a hot dog, and $1 for a soft drink. If A = (a, b, ¢) and
P = (2, 1.5, 1), what is the meaning of the dot product A - P?

15-20 Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

15. a= (4,3), b=(2,—1)
16. a=(—2,5), b=(512)
17.a=(3,-1,5), b=(-2,4,3)
18. a=(4,0,2), b= (2 —-1,0)
19.a=4i—3j+k b=2i—k
2. a=i+2j—2k b=4i-3k

25. Use vectors to decide whether the triangle with vertices
Al, -3, -2), A2, 0, —4), and R(6, —2, —5) is right-angled.

26. Find the values of x such that the angle between the vectors
(2,1,—1),and (1, x, 0) is 45°.

27. Find a unit vector that is orthogonal to bothi + jand i + k.

28. Find two unit vectors that make an angle of 60° with
v=(3,4).

29-30 Find the acute angle between the lines.
2. 2x—y=3, Ix+y=T
B x+:2y=T, Sx—y=2

31-32 Find the acute angles between the curves at their points of
intersection. (The angle between two curves is the angle between
their tangent lines at the point of intersection.)

3. y=x2, y=x3

32 y=sinx, y=cosx, 0=x=<m/2

33-37 Find the direction cosines and direction angles of the vector.
(Give the direction angles correct to the nearest degree.)

3. (2,1,2) 34, (6,3, —2)
3. i—2j— 3k % ji+j+k

31. {c.cc), wherec=>0

1. Homework Hints available at stewartcalculus.com

38. If a vector has direction angles @ = /4 and B = 7/3, find the
third direction angle 7.
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39-44 Find the scalar and vector projections of b onto a.

39.

40.

a.

&

a=(-512), b= (4,6)

a=(1,4), b=(2,3)
a=(3,6,-2), b=(1,2,3)
a=(-2,3-6), b=(5-1,4)
a=2i—j+4k, b=j+3k

a=i+j+k b=i—j+k

41.

. Show that the vector orth, b = b — proj, b is orthogonal to a.

(It is called an orthogonal projection of b.)

For the vectors in Exercise 40, find orth, b and illustrate by
drawing the vectors a, b, proja b, and ortha b.

Ifa = (3,0, —1), find a vector b such that comp, b = 2.

Suppose that a and b are nonzero vectors.
(a) Under what circumstances is comp, b = compy, a?
(b) Under what circumstances is proja b = projp, a?

. Find the work done by a force F = 8i — 6j + 9k that moves

an object from the point (0, 10, 8) to the point (6, 12, 20) along
a straight line. The distance is measured in meters and the force
in newtons.

. A tow truck drags a stalled car along a road. The chain makes

an angle of 30° with the road and the tension in the chain is
1500 N. How much work is done by the truck in pulling the
car 1 km?

A sled is pulled along a level path through snow by a rope.
A 30-1b force acting at an angle of 40° above the horizontal
moves the sled 80 ft. Find the work done by the force.

A boat sails south with the help of a wind blowing in the direc-
tion S36°E with magnitude 400 Ib. Find the work done by the
wind as the boat moves 120 ft.

. Use a scalar projection to show that the distance from a point

Py(xy, y1) to the line ax + by + ¢=01s
|EX| + b)‘] o C|
Jat + b?

Use this formula to find the distance from the point (—2, 3) to
the line 3x — 4y + 5= 0.

L Ifr= (x, y,z),a= (ay, @, as), and b = (by, by, b3), show

that the vector equation (r — a) - (r — b) = 0 represents a
sphere, and find its center and radius.

55.

57.

61.

SECTION 123 THE DOT PRODUCT 807
Find the angle between a diagonal of a cube and one of its
edges.

Find the angle between a diagonal of a cube and a diagonal of
one of its faces.

A molecule of methane, CHy, is structured with the four hydro-
gen atoms at the vertices of a regular tetrahedron and the car-
bon atom at the centroid. The bond angle is the angle formed
by the H— C—H combination; it is the angle between the
lines that join the carbon atom to two of the hydrogen atoms.
Show that the bond angle is about 109.5°. [Hint: Take the
vertices of the tetrahedron to be the points (1, 0, 0), (0, 1, 0),
(0, {1} I1},la=mct (1, 1, 1), as shown in the figure. Then the centroid

islz,2.3)-

. Ifc = |a|b + |b|a, where a, b, and c are all nonzero vectors,

show that ¢ bisects the angle between a and b.

. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).
. Suppose that all sides of a quadrilateral are equal in length and

opposite sides are parallel. Use vector methods to show that the
diagonals are perpendicular.

Use Theorem 3 to prove the Cauchy-Schwarz Inequality:
|a-b|<]a]|b

. The Triangle Inequality for vectors is

|a+b|=<|a|+|b]

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 61 to
prove the Triangle Inequality. [Hint: Use the fact that
[a+bJ>=(a+ b)-(a+ b)and use Property 3 of the

dot product.]

. The Parallelogram Law states that

la+bP+|a—bf=2]af+2|b]

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. (See the hint in Exercise 62.)

. Show that if u + v and u — v are orthogonal, then the vectors

u and v must have the same length.
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808 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

m The Cross Product

Hamilton

The cross product was invented by the Irish
mathematician Sir William Rowan Hamilton
(1805—1865), who had created a precursor of
vectors, called quaternions. When he was five
years old Hamilton could read Latin, Greek, and
Hebrew. At age eight he added French and
Italian and when ten he could read Arabic and
Sanskrit. At the age of 21, while still an under-
graduate at Trinity College in Dublin, Hamilton
was appointed Professor of Astronomy at the
university and Royal Astronomer of Ireland!

Given two nonzero vectorsa = {ai, &, &) and b = (b, by, bs), it is very useful to be able
to find a nonzero vector c that is perpendicular to both a and b, as we will see in the next
section and in Chapters 13 and 14. If ¢ = (¢, ¢, ¢3) is such a vector, then a - ¢ = 0 and
b:-c=0andso

1] ac + ac+ ac=0
[2] bey + b + by =0

To eliminate ¢; we multiply [1] by b3 and [2] by a3 and subtract:
[3] (aibs — asb) ey + (@b — asby), = 0

Equation 3 has the form pe + go; = 0, for which an obvious solution is ¢ = ¢ and
¢ = —p. So a solution of [3] is

a = aby — asby o= ab — ab
Substituting these values into [1] and [Z], we then get

3= ab; — axby
This means that a vector perpendicular to both a and b is

(a, a, &) = (@b — asby, asby — abs, ab, — abn)
The resulting vector is called the cross product of a and b and is denoted by a X b.

E Definition Ifa = (ai, a2, a3) and b = (b, b, bs), then the cross product of
a and b is the vector

a X b= ab — asby, ashy — a\bs, a1l — a:bn)

Notice that the cross product a X b of two vectors a and b, unlike the dot product, is
a vector. For this reason it is also called the vector product. Note that a X b is defined
only when a and b are three-dimensional vectors.

In order to make Definition 4 easier to remember, we use the notation of determinants.
A determinant of order 2 is defined by

a b

:d_
% g a be

—2(4) — 1(—6) — 14

For example, ‘ a1

-6

A determinant of order 3 can be defined in terms of second-order determinants as
follows:

a a @&
5] blebB_albzh_b]h_i_a;bibz‘
0 O [&] a

Q G G
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SECTION 12.4 THE CROSS PRODUCT 809

Observe that each term on the right side of Equation 5 involves a number a; in the first row
of the determinant, and a, is multiplied by the second-order determinant obtained from the
left side by deleting the row and column in which a, appears. Notice also the minus sign in

the second term. For example,

3

0: 1
=
B

1 30
4 2 2| D -5 4‘

1 2

3 0 1|=1

-5 4
=1(0—4) — 26 +5) +(—-1)(12 — 0) = —38

If we now rewrite Definition 4 using second-order determinants and the standard basis
vectors i, j, and k, we see that the cross product of the vectorsa = a;i + a»j + ask and
b= bii + b;j + b3 kis

d; a a a3

by b

i—

m axXb=

In view of the similarity between Equations 5 and 6, we often write

i j k
m axXb=|a a a
b b b

Although the first row of the symbolic determinant in Equation 7 consists of vectors, if we
expand it as if it were an ordinary determinant using the rule in Equation 5, we obtain
Equation 6. The symbolic formula in Equation 7 is probably the easiest way of remem-

bering and computing cross products.

UVl BTN Ifa = (1,3,4) andb = (2,7, —5}, then

ij k
axXxb=|1 3 4

2 7 —5

3 4 5y |8 1 3

_7—51_2—5‘”27“

=(-15-28)i—(-5—-8)j+(7T—-6)k=—-43i+ 13j +k mm

7 IETTF1 Show thata X a = 0 for any vector a in V4.
SOLUTION Ifa = (a, a,, as), then

i § K
aXa=|a a a
da dy 43
= (aza; — asa)i — (mas — asa1)j + (ana: — aza)) k
=0i—0j+0k=0 o
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810 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

FIGURE 1

The right-hand rule gives
the direction of a x b.

Visual 12.4 shows how a > b changes
as b changes.

Geometric characterization of a X b

We constructed the cross product a X b so that it would be perpendicular to both a and
b. This is one of the most important properties of a cross product, so let's emphasize and
verify it in the following theorem and give a formal proof.

Theorem The vector a X b is orthogonal to both a and b.

PROOF In order to show that a X b is orthogonal to a, we compute their dot product as
follows:

= allaxby — ashy) — aabs — ash) + as(aby — azbn)

= arashy — aihas — aiabs + bhayas + aibas — haas

=0
A similar computation shows that (a X b) - b = 0. Therefore a X b is orthogonal to both
aandb. |

If a and b are represented by directed line segments with the same initial point (as in Fig-
ure 1), then Theorem 8 says that the cross product a X b points in a direction perpendicu-
lar to the plane through a and b. It turns out that the direction of a X b is given by the
right-hand rule: If the fingers of your right hand curl in the direction of a rotation (through
an angle less than 180°) from a to b, then your thumb points in the direction of a X b.

Now that we know the direction of the vector a X b, the remaining thing we need to
complete its geometric description is its length |a X b|. This is given by the following
theorem.

E Theorem If § is the angle between a and b (so 0 < 6 < ), then

|axXb|=|a||b]|siné

PROOF From the definitions of the cross product and length of a vector, we have
|a X b|* = (azby — ashy)* + (ash — ab)’ + (a1, — a:bn)’
= a}bi — 2aasboby + aibi + aibt — 2aiasbiby + af b
+ afb} — 2aa:bi by + abbf
= (af + af + ad)(bf + b} + b3) — (arby + azby + a3by)?
= [af[b[ — @- by
= |af’|b|* — |a[}|b|*cos’d (by Theorem 12.3.3)
= |al’b[*(1 — cos®0)
= |a[’|b|*sin’0
Taking square roots and observing that /sin?6 = sin @ because sin § = 0 when

0 <6 = 7, we have
|a X b|=|a||b]|siné =

Since a vector is completely determined by its magnitude and direction, we can now say
that a X b is the vector that is perpendicular to both a and b, whose orientation is deter-
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FIGURE 2

SECTION 12.4 THE CROSS PRODUCT 811

mined by the right-hand rule, and whose length is |a| | b|sin 6. In fact, that is exactly how
physicists definea X b.

Corollary Two nonzero vectors a and b are parallel if and only if

axXb=10

PROOF Two nonzero vectors a and b are parallel if and only if @ = 0 or 7. In either case
sin # = 0,s0 |a X b| = 0 and thereforea X b = 0. =

The geometric interpretation of Theorem 9 can be seen by looking at Figure 2. If a and
b are represented by directed line segments with the same initial point, then they determine
a parallelogram with base | a|, altitude | b | sin 6, and area

A=a|(|b|sing) = |aXb]

Thus we have the following way of interpreting the magnitude of a cross product.

The length of the cross product a X b is equal to the area of the parallelogram
determined by a and b.

[E71TITF] Find a vector perpendicular to the plane that passes through the points
A1,4,6), A—2,5,—1),and R(1, —1, 1).

SOLUTION The vector P_Q) X P_}){’is perpendicular to both P_Q)and E‘?aﬂd is therefore
perpendicular to the plane through P, Q, and R. We know from (12.2.1) that

PO=(-2-1i+(5-4j+(-1-6k=—-3i+j— 7k
PR=(1-1)i+(-1-4)j+(1—-6k=—5j—5k

We compute the cross product of these vectors:

i j k
POXPR=|-3 1 -7
0 =5 —5

= (=5 —35)i— (15— 0)j + (15 — 0) k = —40i — 15j + 15k

So the vector (—40, —15, 15) is perpendicular to the given plane. Any nonzero scalar
multiple of this vector, such as (—8, —3, 3), is also perpendicular to the plane. )

Find the area of the triangle with vertices A1, 4, 6), (-2, 5, —1),
and R(1, -1, 1).

SOLUTION In Example 3 we computed that }% X PR = (—40, —15, 15). The area of
the parallelogram with adjacent sides PQ and PR is the length of this cross product:

| PO x PR| = V(=40)? + (—15)2 + 152 = 5./82
The area A of the triangle PQR is half the area of this parallelogram, that is,3/82. =
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812 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

If we apply Theorems 8 and 9 to the standard basis vectors i, j, and k using 6 = #/2,

we obtain
ixXj=k jXk=1i kXi=j
jXi=—k kXj=—i iXk=—j
Observe that
Ixj£§xi

Thus the cross product is not commutative. Also
iX(ixXj)=ixXk=—j

whereas

(X)) Xj=0xj=0
So the associative law for multiplication does not usually hold; that is, in general,
(@axXxb)Xec#ax((bXc)

However, some of the usual laws of algebra do hold for cross products. The following the-
orem summarizes the properties of vector products.

E Theorem If a, b, and c are vectors and c is a scalar, then

l.aXb=-bXa

2. (ca) Xb=c(@aXb)=aX (ch)
3Zax((bb+c=axXb+aXc

4 (@a+b)Xc=aXc+hbXc
5a-(bXc)=(@xXb)-c
6.aX(bXc)=(-cb—(a-b)c

These properties can be proved by writing the vectors in terms of their components
and using the definition of a cross product. We give the proof of Property 5 and leave the
remaining proofs as exercises.

PROOF OF PROPERTY5 Ifa = (ai, a2, a3), b = (b, b, b3),and ¢ = (1, &, &3), then

[12] a-(bXc)=alha— ha)+ alba — he) + abe — ba)
= aibhey, — aibyo + abye — abos + asho — ash g
= (azbs — askr)ar + (ash — aibs)cz + (@b, — azbn)cs
=(@axXb)-c .

N Triple Products

The product a - (b X ¢) that occurs in Property 5 is called the scalar triple product of the
vectors a, b, and c. Notice from Equation 12 that we can write the scalar triple product as

a determinant;
a a a
[13] a-bXo=|b b b
0 & G
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SECTION 12.4 THE CROSS PRODUCT 813

The geometric significance of the scalar triple product can be seen by considering the par-
allelepiped determined by the vectors a, b, and c. (See Figure 3.) The area of the base
parallelogram is A = |b X c|. If @ is the angle between a and b X c, then the height A
of the parallelepiped is &= |a||cos 8]. (We must use |cos 6| instead of cos 6 in case
# > 7/2.) Therefore the volume of the parallelepiped is

V=Ah=|b X c||a||cos@| =]a- (b X )|

Thus we have proved the following formula.

The volume of the parallelepiped determined by the vectors a, b, and c is the
magnitude of their scalar triple product:

V=|a-(bXdc)|

If we use the formula in and discover that the volume of the parallelepiped
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they are
coplanar.

7 IETXT] Use the scalar triple product to show that the vectorsa = (1, 4, —7),
b=(2,—1,4),and ¢ = (0, —9, 18) are coplanar.

SOLUTION We use Equation 13 to compute their scalar triple product:

T
a-(bxe¢ =12 -1 4
0 -9 18

_g|=1 4] ]2 4‘_7‘2 =4

—5' 18 0 18 0 -9

= 1(18) — 4(36) — 7(—18) =0

Therefore, by [14], the volume of the parallelepiped determined by a, b, and c is 0. This
means that a, b, and c are coplanar. iz

The product a X (b X ¢) that occurs in Property 6 is called the vector triple product
of a, b, and c. Property 6 will be used to derive Kepler's First Law of planetary motion in
Chapter 13. Its proof is left as Exercise 50.

I Torque

The idea of a cross product occurs often in physics. In particular, we consider a force F act-
ing on a rigid body at a point given by a position vector r. (For instance, if we tighten a bolt
by applying a force to a wrench as in Figure 4, we produce a turning effect.) The torque 7
(relative to the origin) is defined to be the cross product of the position and force vectors

T=r XF

and measures the tendency of the body to rotate about the origin. The direction of the torque
vector indicates the axis of rotation. According to Theorem 9, the magnitude of the torque
vector is

|7| = |t X F|=|r||F|sin 6
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814 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

where 6 is the angle between the position and force vectors. Observe that the only com-
ponent of F that can cause a rotation is the one perpendicular to r, that is,
magnitude of the torque is equal to the area of the parallelogram determined by r and F.

F|sin 6. The

A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in
2 Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is
|7] =|r X F| =|r||F|sin75° =
= 10 sin 75° = 9.66 N-m

(0.25)(40) sin 75°

If the bolt is right-threaded, then the torque vector itself is

Wi |
4 7=|7|n=9.66n
FIGURE 5 where n is a unit vector directed down into the page.

m Exercises

1-7 Find the cross product a X b and verify that it is orthogonal to 14-15 Find |u X v| and determine whether u X v is directed into
both a and b. the page or out of the page.

1.a=(6,0,—-2), b=(0,8,0) 14. lv|]=5

2a=(11-1), b=1(2,4,6) 45°

3a=i+3j—2k b=—-i+5k [u|=4

4. a=j+7k b=2i—j+4k

5.a=i—j—k b=3i+j+ik
6.a=1ti+costj+sintk, b=1i—sint + costk
La=(t115 b=(AA1) (a) Find |a X b|.

16. The figure shows a vector a in the xy-plane and a vector b in
the direction of k. Their lengths are |a| = 3 and |b| = 2.

(b) Use the right-hand rule to decide whether the components

of a X b are positive, negative, or 0.

8. Ifa=i—2kand b =j + k, find a X b. Sketch a, b, and
a X b as vectors starting at the origin.

9-12 Find the vector, not with determinants, but by using proper-
ties of cross products.

9. (ixj) xk 10. k X (i — 2j)
mn G-k xk-1i 12 (i+j) x(i—3j)

17. Ifa= (2, —1,3)andb = (4,2,1),finda X band b X a.

13. State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.

18. Ifa= (1,0,1),b= (2,1, —1), and ¢ = (0, 1, 3), show that

(a)a-{b)(c) (b}ax(b-c} aX(ch}?ﬁ(aXb)Xc.
(©) ax(bXxe¢ (d a-(b-¢) 19. Find two unit vectors orthogonal to both (3, 2, 1) and
(e) (a-b) X (c-d) (f) @xXb)-(cxd {(—1,1,0).

1. Homework Hints available at stewartcalculus.com
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20. Find two unit vectors orthogonal to both j — k and i + j.

21. Show that 0 X a = 0 = a X 0 for any vector a in 4.
Show that (a X b) - b = 0 for all vectors a and b in V3.
Prove Property 1 of Theorem 11.

22,
3.
24. Prove Property 2 of Theorem 11.
25. Prove Property 3 of Theorem 11.
26. Prove Property 4 of Theorem 11.
2].

Find the area of the parallelogram with vertices A(—2, 1),
B0, 4), 4, 2), and D(2, —1).

28. Find the area of the parallelogram with vertices K(1, 2, 3),
L(1, 3, 6), M3, 8, 6), and M3, 7, 3).

29-32 (a) Find a nonzero vector orthogonal to the plane through

the points P, Q, and R, and (b) find the area of triangle PQR.

29. A1,0,1), (X-2,1,3), R4,205)

30. A0,0,—3), (4,2,0), R3,31)

3. A0, —-2,0), (X4,1,-2), R5,3,1)

32. A—-1,3,1), 0,52), R43, -1)

33-34 Find the volume of the parallelepiped determined by the
vectors a, b, and c.

Ba={123 b=(CLLY: e=1(2.18)
Ma=i+j, b=j+k c=i+j+k

35-36 Find the volume of the parallelepiped with adjacent edges
PQ, PR, and PS.

3B A-21,0), Q23.2), Rl1,4-1), 3,61
36. A3,0,1), -1,25), R51,-1), S04,2)

37. Use the scalar triple product to verify that the vectors
u=i+5j—2kv=3i—jandw=>5i+9j— 4k
are coplanar.

38. Use the scalar triple product to determine whether the points
A(1,3,2), B3, —1,6), A5, 2,0), and X3, 6, —4) lie in the
same plane.

39. A bicycle pedal is pushed by a foot with a 60-N force as
shown. The shaft of the pedal is 18 cm long. Find the
magnitude of the torque about F.

SECTION 12.4 THE CROSS PRODUCT 815

40. Find the magnitude of the torque about P if a 36-1b force is
applied as shown.

4 f

41. A wrench 30 cm long lies along the positive y-axis and grips a
bolt at the origin. A force is applied in the direction (0, 3, —4)
at the end of the wrench. Find the magnitude of the force
needed to supply 100 N-m of torque to the bolt.

42. Let v = 5j and let u be a vector with length 3 that starts at
the origin and rotates in the xy-plane. Find the maximum and
minimum values of the length of the vector u X v. In what
direction does u X v point?

43. Ifa-b=/3anda X b= (1,2,2), find the angle between a
and b.

44, (a) Find all vectors v such that
(L,2,1) x v= (3,1, -5)
(b) Explain why there is no vector v such that
{1.2.1) X v=1{3,1,5)

45. (a) Let Pbe a point not on the line L that passes through the
points (J and R. Show that the distance d from the point P
to the line L is

|a x b
d = —
|a|
where a = Q?andb = Q_AB
(b) Use the formula in part (a) to find the distance from
the point A1, 1, 1) to the line through (X0, 6, 8) and
R—1,4,7).

46. (a) Let Pbe a point not on the plane that passes through the
points @, R, and S. Show that the distance d from Pto the

plane is
|a-(bxc)

d=
|a X b

g
where a = Q?,b=@5,andc= Q?

(b) Use the formula in part (a) to find the distance from the
point A2, 1, 4) to the plane through the points (X1, 0, 0),
R0, 2,0), and S0, 0, 3).

47. Show that |a X b|*=|a|?|b|* — (a - b)~.
48. Ifa + b + ¢ = 0, show that

aXb=bXxXc=cXa

Copyright 2010 Cengage Leamning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any content does not

affect the overall leaming experience. Cengage Learning reserves the right to remove additional content at amy time if subsequent rights restrictions require it.



816

CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

49. Prove that (a — b) X (a + b) = 2(a X b). . If v, vz, and v; are noncoplanar vectors, let
50. Prove Property 6 of Theorem 11, that is, X g e
ki =——mm k =———

axX(bbxc=(a-c)b—(a-b)c : v s (V2 X va) k v - (V2 X v3)

51. Use Exercise 50 to prove that . Vi X ¥y

axbxXxc+bx(exa+ex@axb=0 Vi - (V2 X vg)

52. Prove that (These vectors occur in the study of crystallography. Vectors

(% B (e X d) = a-c b-c of the form mv, + mvz + mvs, where each n; is an integer,
a-d b-d form a Jattice for a crystal. Vectors written similarly in terms of

53. Suppose thata #= 0.

(a) Ifa - b = a - ¢, does it follow that b = ¢?
(b) Ifa X b = a X c, does it follow that b = ¢?

ki, k2, and k3 form the reciprocal lattice.)
(a) Show that k; is perpendicular to v; if i # j.
(b) Show that k;-v,i=1fori=1,2, 3.

(c) Ifa-b=a-canda X b=a X ¢, does it follow 1

that b = ¢?

DISCOVERY PROJECT

(C} Show that k; - (kz X kg} T ——
v (Vz x V3)

THE GEOMETRY OF A TETRAHEDRON

A tetrahedron is a solid with four vertices, P, Q, R, and S, and four triangular faces, as shown in
the figure.

1. Let vy, vz, v3, and v4 be vectors with lengths equal to the areas of the faces opposite the
vertices P, J, R, and §, respectively, and directions perpendicular to the respective faces and
pointing outward. Show that

\’|+\’2+V3+V4=0

2. The volume V of a tetrahedron is one-third the distance from a vertex to the opposite face,
times the area of that face.
(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices
P, Q R and S.
(b) Find the volume of the tetrahedron whose vertices are A1, 1, 1), (X1, 2, 3), R(1, 1, 2),
and S5(3, —1, 2).

3. Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the
three angles at S are all right angles.) Let A, B, and Cbe the areas of the three faces that
meet at S, and let D be the area of the opposite face POR. Using the result of Problem 1,
or otherwise, show that

D'=A+B+C

(This is a three-dimensional version of the Pythagorean Theorem.)

m Equations of Lines and Planes

A line in the xy-plane is determined when a point on the line and the direction of the line
(its slope or angle of inclination) are given. The equation of the line can then be written
using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a point
Py(x0, yo, z0) on L and the direction of L. In three dimensions the direction of a line is con-
veniently described by a vector, so we let v be a vector parallel to L. Let Px, y, z) be an arbi-
trary point on L and let ry and r be the position vectors of P and P (that is, they have
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SECTION 12.5 EQUATIONS OF LINES AND PLANES 817

representations O?i, and W) If a is the vector with representation ﬁ as in Figure 1, then
the Triangle Law for vector addition gives r = ry + a. But, since a and v are parallel vec-
tors, there is a scalar ¢ such that a = ¢v. Thus

Py(xs¥0:20)

[1] r=ry+ tv

which is a vector equation of L. Each value of the parameter ¢ gives the position vector r
FIGURE 1 of a point on L. In other words, as ¢ varies, the line is traced out by the tip of the vector r. As
Figure 2 indicates, positive values of ¢ correspond to points on L that lie on one side
of F,, whereas negative values of f correspond to points that lie on the other side of F,.
If the vector v that gives the direction of the line L is written in component form as
v=(a b, c), then we have tv = (ta, th, tc). We can also write r = (x, y,z) and
ro = (Xo, Jo. 2o, so the vector equation [1] becomes

(x, y,2z) = (x0 + ta, w + th, z0 + tc)

Two vectors are equal if and only if corresponding components are equal. Therefore we
have the three scalar equations:

FIGURE 2

El xX=xp + at ¥=wn+ bt z=1zy+ ct

where ¢ € R. These equations are called parametric equations of the line L through the
point Py(xo, 3o, z0) and parallel to the vector v = (a, b, c). Each value of the parameter ¢
gives a point (x, y, z) on L.

Figure 3 shows the line L in Example 1 and its EZM
relation to the given point and to the vector that  (a) Find a vector equation and parametric equations for the line that passes through the

Qives its direction. point (5, 1, 3) and is parallel to the vectori + 4j — 2k.
(b) Find two other points on the line.

SOLUTION
(@) Herero = (5,1,3) = 5i +j + 3kand v =1i + 4j — 2K, so the vector equa-
tion [I] becomes

r=5i+j+ 3k + i +4j — 2k)

or r=06+0i+(1+49j+ B 29k

Parametric equations are

FIGURE 3

x=d +t p=1+4 =32t

(b) Choosing the parameter value ¢t = 1 gives x =6, y=5,andz = 1, so (6,5, 1) is a
point on the line. Similarly, t = —1 gives the point (4, —3, 5). i)

The vector equation and parametric equations of a line are not unique. If we change the
point or the parameter or choose a different parallel vector, then the equations change. For
instance, if, instead of (5, 1, 3), we choose the point (6, 5, 1) in Example 1, then the para-
metric equations of the line become

x=6+¢t y=5+4 z=1-2¢
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818 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Or, if we stay with the point (5, 1, 3) but choose the parallel vector 2i + 8j — 4k, we arrive
at the equations
x=3+t2t y=1+8 z=3-—4¢

In general, if a vector v = (a, b, ¢) is used to describe the direction of a line L, then the
numbers a, b, and care called direction numbers of L. Since any vector parallel to v could
also be used, we see that any three numbers proportional to a, b, and ¢ could also be used
as a set of direction numbers for L.

Another way of describing a line L is to eliminate the parameter ¢ from Equations 2. If
none of a, b, or cis 0, we can solve each of these equations for ¢, equate the results, and
obtain

E X=X _y— W _zZ—2
a b c

These equations are called symmetric equations of L. Notice that the numbers a, b, and
c that appear in the denominators of Equations 3 are direction numbers of L, that is, com-
ponents of a vector parallel to L. If one of a, b, or c is 0, we can still eliminate ¢. For
instance, if a = 0, we could write the equations of L as

y—mw_z—2

X=X
b c

This means that L lies in the vertical plane x = xq.

Figure 4 shows the line L in Example 2 and the
point Pwhere it intersects the xy-plane. (a) Find parametric equations and symmetric equations of the line that passes through

FIGURE 4

z the points A(2, 4, —3) and B(3, —1, 1).
(b) At what point does this line intersect the xy-plane?

SOLUTION
(a) We are not explicitly given a vector parallel to the line, but observe that the vector v

with representation ABis parallel to the line and

v=(3-2-1—41-(=-3)=(1,-5,4)

A Thus direction numbers are a = 1, b= —5, and ¢ = 4. Taking the point (2, 4, —3) as
Py, we see that parametric equations [2] are

x=2+t y=4—8t z=-3+4¢

and symmetric equations [3] are

(b) The line intersects the xy-plane when z = 0, so we put z = 0 in the symmetric equa-
tions and obtain

This gives x = L and ¥ = 1, so the line intersects the xy-plane at the point (% i 0].
.
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The lines Ly and L; in Example 3, shown in

Figure 5, are skew lines.

FIGURE 5

SECTION 12.5 EQUATIONS OF LINES AND PLANES 819

In general, the procedure of Example 2 shows that direction numbers of the line L through
the points Py(xp, Jy, zp) and Pi(x;, y, z;) are x; — xp, 1 — y, and z; — zy and so symmet-
ric equations of L are

X—Xo Y~ W _zZ—2

xn—XxX JN—W 21— Z

Often, we need a description, not of an entire line, but of just a line segment. How, for
instance, could we describe the line segment ABin Example 27 If we put ¢ = 0 in the para-
metric equations in Example 2(a), we get the point (2, 4, —3) and if we put t = 1 we get
(3, —1, 1). So the line segment AB s described by the parametric equations

x=2+t y=4-5t z=-3+4t O0=sr=1
or by the corresponding vector equation
D=2+ t4-54-3+4n 0s¢<1

In general, we know from Equation 1 that the vector equation of a line through the (tip
of the) vector 1 in the direction of a vector vis r = ry + ¢v. If the line also passes through
(the tip of) ry, then we can take v = r; — ry and so its vector equation is

r=rp+ tr; —r)) = (1 — g + my

The line segment from ry to r, is given by the parameter interval 0 < r=< 1.

[4] The line segment from ry to r; is given by the vector equation

r()=(1 — dro + O0=st=1

7 IETXTE] Show that the lines L; and L, with parametric equations
¥=1+dt y==293% =z=4-t
x=2s y=3+s z=-3+4s

are skew lines; that is, they do not intersect and are not parallel (and therefore do not lie
in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors (1, 3, —1) and
(2,1, 4) are not parallel. (Their components are not proportional.) If L, and L, had a
point of intersection, there would be values of ¢ and s such that

1+ ¢t=2s
=2+ =3 +s
4— t=-3+4s
But if we solve the first two equations, we get = & and s = £, and these values don't

satisfy the third equation. Therefore there are no values of ¢ and s that satisfy the three
equations, so L; and L; do not intersect. Thus L, and L; are skew lines. ]

I Planes

Although a line in space is determined by a point and a direction, a plane in space is
more difficult to describe. A single vector parallel to a plane is not enough to convey the
“direction” of the plane, but a vector perpendicular to the plane does completely specify
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820 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

its direction. Thus a plane in space is determined by a point Py(xy, ¥, zo) in the plane and
a vector n that is orthogonal to the plane. This orthogonal vector n is called a normal
vector. Let Ax, y, z) be an arbitrary point in the plane, and let ro and r be the position vec-
tors of /4 and P, Then the vector r — ry is represented by BRP (See Figure 6.) The normal
vector n is orthogonal to every vector in the given plane. In particular, n is orthogonal to
r — rp and so we have

[5] n-(r—r)=0

FIGURE 6

which can be rewritten as

[6] n‘r=n-r

Either Equation 5 or Equation 6 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write n = (a, b, ¢), r = (x, y, z), and
1o = (X0, b, Z0) - Then the vector equation [5] becomes

(a,bc)  (x—x0,y— w,z—2)=0

or

[7] alx — x) + By — ) + oz — ) =0

Equation 7 is the scalar equation of the plane through F(xo, yo, zo) with normal vector
n={a b c).

7 IEXXZT] Find an equation of the plane through the point (2, 4, —1) with normal
vector n = (2, 3, 4). Find the intercepts and sketch the plane.

SOLUTION Puttinga=2,b=3, c=4, xo = 2, » = 4, and zp = —1 in Equation 7, we
see that an equation of the plane is

20x—2)+3(y—-4H)+4:z+1)=0

or 2x+ 3y + 4z=12

To find the x-intercept we set y = z = 0 in this equation and obtain x = 6. Similarly, the
y-intercept is 4 and the z-intercept is 3. This enables us to sketch the portion of the plane
FIGURE 7 that lies in the first octant (see Figure 7). -

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation
of a plane as

ax+ by+a+d=0

where d = —(axo + by + cz). Equation 8 is called a linear equation in x, y, and z. Con-
versely, it can be shown that if a, b, and c are not all 0, then the linear equation [8] repre-
sents a plane with normal vector (a, b, c). (See Exercise 81.)
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Figure 8 shows the portion of the plane in
Example 5 that is enclosed by triangle POR.

Q(3,—1,6)

P(1,3,2)

R(5.2.,0)
FIGURE 8

FIGURE 9

Figure 10 shows the planes in Example 7 and
their line of intersection L.

xty+z=1 x—2y+3z=1

=T .5 T - =

FIGURE 10

SECTION 12.5 EQUATIONS OF LINES AND PLANES 821

[E71I[ZT¥] Find an equation of the plane that passes through the points A1, 3, 2),
Q3, —1,6), and R(5, 2, 0).

SOLUTION The vectors a and b corresponding to }-"_Q) and PR are
a=(2, —4,4) b=(4,-1,-2)

Since both a and b lie in the plane, their cross product a X b is orthogonal to the plane
and can be taken as the normal vector. Thus

i j k
n—axb=|2 -4 4|=12i+20j+ 14k
4§ 4 -2

With the point A1, 3, 2) and the normal vector n, an equation of the plane is
12x— 1) +20(y —3) + 14z — 2) =0
or 6x+ 10y + 7z = 50 st

Find the point at which the line with parametric equations x = 2 + 3¢,
y= —4t,z =15 + tintersects the plane 4x + 5y — 2z = 18.

SOLUTION We substitute the expressions for x, y, and z from the parametric equations
into the equation of the plane:

42+ 30 +5(—4) —2(5+1) =18

This simplifies to —10¢ = 20, so t = —2. Therefore the point of intersection occurs
when the parameter value is t = —2. Then x = 2 + 3(—2) = —4, y= —4(—-2) = 8,
z =5 — 2 = 3 and so the point of intersection is (—4, 8, 3). [

Two planes are parallel if their normal vectors are parallel. For instance, the planes
x+ 2y — 3z=4 and 2x + 4y — 6z = 3 are parallel because their normal vectors are
n; = (1,2, —3) and n, = (2,4, —6) and n, = 2n;. If two planes are not parallel, then
they intersect in a straight line and the angle between the two planes is defined as the acute
angle between their normal vectors (see angle 6 in Figure 9).

(VI EXAMPLE 7]

(a) Find the angle between the planes x + y+ z=1and x — 2y + 3z = 1.
(b) Find symmetric equations for the line of intersection L of these two planes.

SOLUTION
(a) The normal vectors of these planes are

n1=(1,1,1) n2=(1, —2,3>
and so, if 6 is the angle between the planes, Corollary 12.3.6 gives

n; - n; 1(1) + 1(=2) + 1(3) 2
cos = ———— = =—

T m|[me| JF1+1/1+4+9 VA2

2
— N =] = o
6 = cos (m) 72

(b) We first need to find a point on L. For instance, we can find the point where the line
intersects the xy-plane by setting z = 0 in the equations of both planes. This gives the
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822 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Another way to find the line of intersection is
to solve the equations of the planes for two of
the variables in terms of the third, which can
be taken as the parameter.

FIGURE 11

Figure 11 shows how the line L in Example 7
can also be regarded as the line of intersection

of planes derived from its symmetric equations.

Py

FIGURE 12

equations x + y= 1 and x — 2y = 1, whose solution is x = 1, y = 0. So the point
(1,0, 0) lies on L.

Now we observe that, since L lies in both planes, it is perpendicular to both of the
normal vectors. Thus a vector v parallel to L is given by the cross product

i j ok
v=mXn=|1 1 1(=5i—-2j—3k
1 =2 3

and so the symmetric equations of L can be written as

x-1_ v __z
5 -2 -3

NOTE Since a linear equation in x, y, and z represents a plane and two nonparallel
planes intersect in a line, it follows that two linear equations can represent a line. The
points (x, y, z) that satisfy both a,x + by + qz + d = 0and ax + by + gz + o =0
lie on both of these planes, and so the pair of linear equations represents the line of inter-
section of the planes (if they are not parallel). For instance, in Example 7 the line L was
given as the line of intersection of the planes x + y + z=1and x — 2y + 3z = 1. The
symmetric equations that we found for L could be written as

=1 ¥
b -2

¥ z

wl T3

which is again a pair of linear equations. They exhibit L as the line of intersection of the
planes (x — 1)/5 = y/(—2) and y/(—2) = z/(—3). (See Figure 11.)
In general, when we write the equations of a line in the symmetric form
XX _Yy— W _ZI_ D
a b c

we can regard the line as the line of intersection of the two planes

X=X _y— W Y= N _z—n
a b — b c

Find a formula for the distance D from a point Pi(xi, yi, z1) to the
plane ax + by + cz + d= 0.
SOLUTION Let Py(xo, 3o, zo) be any point in the given plane and let b be the vector
corresponding to B P. Then

b= (x — x0, 1 — Jo.21 — 20)
From Figure 12 you can see that the distance D from P, to the plane is equal to the

absolute value of the scalar projection of b onto the normal vector n = (g, b, c). (See
Section 12.3.) Thus

- _In-b]
D =|comp,b| ]
_ |alxi — %) + By — w) + dzi — zo) |
vai+ b+ ¢
_ (axi + by + cz1) — (axo + by + cz0) |
Vat+ b+ ¢?

Copyright 2010 Cengage Leamning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has desmed that amy content does not islly affect the overall leamning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it.




SECTION 12.5 EQUATIONS OF LINES AND PLANES 823

Since £ lies in the plane, its coordinates satisfy the equation of the plane and so we
have axy + by + czo + d = 0. Thus the formula for D can be written as

] D= |ax + byi + ¢z + d|
Jai+ b2+ ¢

Find the distance between the parallel planes 10x + 2y — 2z = 5 and
bx k. yp—z—=,

SOLUTION First we note that the planes are parallel because their normal vectors

(10, 2, —2) and (5, 1, —1) are parallel. To find the distance D between the planes, we
choose any point on one plane and calculate its distance to the other plane. In particular,
if we put y = z = 0 in the equation of the first plane, we get 10x =5 and so (3, 0, 0)

is a point in this plane. By Formula 9, the distance between (% 0, D] and the plane

5x+ y—z—1=0is

p 5@+ -—10-11__ 3 _B
V52 + 12+ (-1 33 6
So the distance between the planes is v/3/6. )

In Example 3 we showed that the lines

Li: x=1+t y=-2+4+3t z=4-—1¢
Ly x=2s y=3#&s z=-3+4s

are skew. Find the distance between them.

SOLUTION Since the two lines L; and L; are skew, they can be viewed as lying on two
parallel planes P, and P,. The distance between L, and L, is the same as the distance
between P, and P;, which can be computed as in Example 9. The common normal vec-
tor to both planes must be orthogonal to both v; = (1, 3, —1) (the direction of L;) and
vz = (2, 1, 4) (the direction of L;). So a normal vector is

ij k
n=viXv,=|13 —-1|=13i—6j— 5k
2% 4

If we put s = 0 in the equations of L, we get the point (0, 3, —3) on L; and so an equa-
tion for P is

13(x—0) —6(y—3)—5(z+3)=0 or 13x — 6y —52+3=0

If we now set ¢ = 0 in the equations for L, we get the point (1, —2, 4) on P.. So
the distance between L; and L; is the same as the distance from (1, —2, 4) to
13x — 6y — 5z + 3 = 0. By Formula 9, this distance is

_ B3 -6(-2 -5 +3] 8 _
D ‘/132 ¥ (—6)2 + (_5}2 ,.'—230 0.53 [ ]
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824 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

m Exercises

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
(j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2-5 Find a vector equation and parametric equations for the line.

2. The line through the point (6, —5, 2) and parallel to the
vector (1, 3, -3

3. The line through the point (2, 2.4, 3.5) and parallel to the
vector 3i + 2j — k

4. The line through the point (0, 14, —10) and parallel to the line
¥=—-1L+2Ly=86~-3tz2=319¢

5. The line through the point (1, 0, 6) and perpendicular to the
plane x + 3y + z=25

6-12 Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point (4, 3, —1)

7. The line through the points (0,2, 1) and (2, 1, —3)

8. The line through the points (1.0, 2.4, 4.6) and (2.6, 1.2, 0.3)
9. The line through the points (—8, 1, 4) and (3, -2, 4)

10. The line through (2, 1, 0) and perpendicular to bothi + j
and j + k

11. The line through (1, —1, 1) and parallel to the line
x+2= %y =z—3

12. The line of intersection of the planes x + 2y + 3z =1
andx— y+z=1

16. (a) Find parametric equations for the line through (2, 4, 6) that
is perpendicular to the plane x — y + 3z = T.
(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from (2, —1, 4)
to (4, 6, 1).
18. Find parametric equations for the line segment from (10, 3, 1)
to (5, 6, —3).
19-22 Determine whether the lines L; and L; are parallel, skew, or
intersecting. If they intersect, find the point of intersection.
W lyix=3+2 y=4-4 z=1+3¢
Lz x=1+4s y=3—2s5 z=4+5s
20 Li:x=5—-12¢ y=3+9 z=1-3¢
Ly x=3+8s, y=—6s, z=T+2s
=&  ¥=3  z—1

2. Li: T
L2:113=y24=z_—72
22.L1:TX=%=Z;2

13. Is the line through (—4, —6, 1) and (—2, 0, —3) parallel to the
line through (10, 18, 4) and (5, 3, 14)?

14. Is the line through (—2, 4, 0) and (1, 1, 1) perpendicular to the
line through (2, 3, 4) and (3, —1, —8)?

15. (a) Find symmetric equations for the line that passes
through the point (1, —5, 6) and is parallel to the vector
(=] 2= 3%,
(b) Find the points in which the required line in part (a) inter-
sects the coordinate planes.

. Homework Hints available at stewartcalculus.com

23-40 Find an equation of the plane.

23. The plane through the origin and perpendicular to the
vector (1, —2, 5)

24. The plane through the point (5, 3, 5) and with normal
vector 2i +j — k

25. The plane through the point ( 1.1, 3) and with normal
vectori + 4j + k

26. The plane through the point (2, 0, 1) and perpendicular to the
linex=3ty=2—-¢tz=3+ 4¢

21. The plane through the point (1, —1, —1) and parallel to the
plane5x — y—z=26

28. The plane through the point (2, 4, 6) and parallel to the plane
e S

29. The plane through the point (l, 1, %) and parallel to the plane
x+y+z=0

30. The plane that contains the linex=1+ ty=2 — ¢
z =4 — 3tand is parallel to the plane 5x + 2y + z =1

31. The plane through the points (0, 1, 1), (1, 0, 1), and (1, 1, 0)

32. The plane through the origin and the points (2, —4, 6)
and (5, 1, 3)
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33. The plane through the points (3, —1, 2), (8, 2, 4), and
(—1,—2,-3)

34. The plane that passes through the point (1, 2, 3) and contains
thelinex=34y=1+tz=2—1t

35. The plane that passes through the point (6, 0, —2) and contains
thelinex=4— 24 y=3+56z=1T7 + 4¢

36. The plane that passes through the point (1, —1, 1) and
contains the line with symmetric equations x = 2y = 3z

317. The plane that passes through the point (—1, 2, 1) and contains
the line of intersection of the planes x + y — z = 2 and
2x—y+3z=1

38. The plane that passes through the points (0, —2, 5) and
(—1, 3, 1) and is perpendicular to the plane 2z = 5x + 4y

39. The plane that passes through the point (1, 5, 1) and is perpen-
dicular to the planes 2x + y — 2z =2and x + 3z = 4

40. The plane that passes through the line of intersection of the
planes x — z = 1 and y + 2z = 3 and is perpendicular to the
plane x + y— 2z =1

SECTION 12.5 EQUATIONS OF LINES AND PLANES 825

57-58 (a) Find parametric equations for the line of intersection of
the planes and (b) find the angle between the planes.

8. x+y+z=1, x+2y+2z=1

58. 3x—2y+:z=1 2x+y—3:=3

59-60 Find symmetric equations for the line of intersection of the
planes.

89. 5x—2y—2z=1, 4x+y+z=86
60. z=2x—y—5 z=4x+3y—5

41-44 Use intercepts to help sketch the plane.
M. 2x+5y+z=10
8. 6x—3y+4z=6

2. 3x+y+2z=6
4. 6x+5y—3z=15

45-47 Find the point at which the line intersects the given plane.
Box=3= y=2+F4 z2=0 x=y+t2z=9
B. x=1+2¢4 y=44 z=2-3t, x+2y—z+1=0

4. x=y—1=2z; 4x—y+3z=8

48. Where does the line through (1, 0, 1) and (4, —2, 2) intersect
the plane x + y + z = 67

49. Find direction numbers for the line of intersection of the planes
x+yt+tz=landx+z=0.

50. Find the cosine of the angle between the planes x + y + z =0
and x+ 2y + 3z =L

51-56 Determine whether the planes are parallel, perpendicular, or
neither. If neither, find the angle between them.

5. x+4y—3z=1 -3x+6y+7z=0
52 2z=4y—x 3x—12y+6z=1
8B.xtytz=1 x=yptz=1

5. 2x—3y+4z=5, x+6y+4z=3
55, x=4y— 2z, 8y=1+2x+ 4z

5. x -2yt 2z2=1 2= yt+2z=1

61. Find an equation for the plane consisting of all points that are
equidistant from the points (1, 0, —2) and (3, 4, 0).

62. Find an equation for the plane consisting of all points that are
equidistant from the points (2, 5, 5) and (-6, 3, 1).

63. Find an equation of the plane with x-intercept a, y-intercept b,
and z-intercept c.

64. (a) Find the point at which the given lines intersect:
r={L10) +K1.—-1.2)
r=1(2,02)+ s(—1,1,0)

(b) Find an equation of the plane that contains these lines.

65. Find parametric equations for the line through the point
(0, 1, 2) that is parallel to the plane x + y + z = 2 and
perpendicular to thelinex =1+ ¢, y=1— t,z = 2¢.

66. Find parametric equations for the line through the point
(0, 1, 2) that is perpendicular to the line x =1 + ¢,
y=1—t,z=2tand intersects this line.

67. Which of the following four planes are parallel? Are any of
them identical?

P:3x+6y—32=6
Ps: 9y=1+ 3x+ 6z

P dx— 12y +8z=5
Piz=x+2y-12
68. Which of the following four lines are parallel? Are any of them
identical?
Li: x=1+6t y=1-3t z=12¢t+5
Lpx=1+12t y=¢ z=114¢
Ly: 2x—2=4—-4y=z+1
Ly r=(3,1,5) + t(4,2,8)
69-70 Use the formula in Exercise 45 in Section 12.4 to find the
distance from the point to the given line.
69. (4,1, -2); x=1+4y=3-2z=4-3¢
70. (0,1,3); x=2t y=6-2,z=3+1¢
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826 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

71-72 Find the distance from the point to the given plane.
n (1,-2,4),
72. (—6,3.5),

3x+2y+6z=5
x—2y—4:=8

73-74 Find the distance between the given parallel planes.
B 2x—3y+z=4, dx—6y+2:=3

M 6z=4y—2x, 9z2=1-3x+ by

75. Show that the distance between the parallel planes
ax+by+cz+d=0andax+ by+ cz+ d=0is

d — &

p=—Jd-a|

76. Find equations of the planes that are parallel to the plane
x + 2y — 2z = 1 and two units away from it.

71. Show that the lines with symmetric equations x = y = z and
x+ 1= y/2 = z/3 are skew, and find the distance between
these lines.

LABORATORY PROJECT

78.

79.

Find the distance between the skew lines with parametric
equations x=1+ t,y=1+6Lz=2tand x=1 + 25,
y=5+15s5z= -2 + 6s.

Let L, be the line through the origin and the point (2, 0, —1).
Let L; be the line through the points (1, —1, 1) and (4, 1, 3).
Find the distance between L, and L.

. Let L, be the line through the points (1, 2, 6) and (2, 4, 8).

Let L; be the line of intersection of the planes  and 7,
where  is the plane x — y + 2z + 1 = 0 and ; is the plane
through the points (3, 2, —1), (0, 0, 1), and (1, 2, 1). Calculate
the distance between L; and L,.

. If a, b, and c are not all 0, show that the equation

ax + by + ¢z + d = 0 represents a plane and (a, b, c) is
a normal vector to the plane.
Hint: Suppose a # 0 and rewrite the equation in the form

a(x+g)+b(y—0)+c{z—0)=0

. Give a geometric description of each family of planes.

@x+yt+tz=c
(c) ycosf + zsinf =1

b) x+y+a=1

PUTTING 3D IN PERSPECTIVE

segment.

Computer graphics programmers face the same challenge as the great painters of the past: how
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume—the portion of space that will be visible—is the region contained by the four planes that
pass through the viewpoint and an edge of the screen window. If objects in the scene extend
beyond these four planes, they must be truncated before pixel data are sent to the screen. These
planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the yz-plane with vertices (0, =400, 0)
and (0, =400, 600), and the camera is placed at (1000, 0, 0). A line L in the scene passes
through the points (230, —285, 102) and (860, 105, 264). At what points should L be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. Arectangle with vertices (621, —147, 206), (563, 31, 242), (657, —111, 86), and
(599, 67, 122) is added to the scene. The line L intersects this rectangle. To make the rect-
angle appear opaque, a programmer can use hidden line rendering, which removes portions
of objects that are behind other objects. Identify the portion of L that should be removed.
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