The Gamma Function and
Related Functions

2.1 Introduction

In the eighteenth century, L. Euler (1707-1783) concerned himself with the
problem of interpolating between the numbers

[o.¢]
n!=f et"dt, n=0,1,2,...
0

with nonintegral values of n. This problem led Euler in 1729 to the now
famous gamma function, a generalization of the factorial function that gives
meaning to x! when x is any positive number. His result can be extended to
certain negative numbers and even to complex numbers. The notation I'(x)
that is now widely accepted for the gamma function is not due to Euler,
however, but was introduced in 1809 by A. Legendre (1752-1833), who was
also responsible for the duplication formula for the gamma function. Nearly
150 years after Euler’s discovery of it, the theory concerning the gamma
function was greatly expanded by means of the theory of entire functions
developed by K. Weierstrass (1815-1897).

Because it is a generalization of n!, the gamma function has been
examined over the years as a means of generalizing certain functions,
operations, etc., that are commonly defined in terms of factorials. In
addition to these applications, the gamma function is useful in the evalua-
tion of many nonelementary integrals; the same is true of the related beta
function. often called the Eulerian integral of the first kind. In 1771,



forty-three years after discovering the gamma function, Euler discovered
that the beta function is actually a particular combination of gamma
functions.

The logarithmic derivative of the gamma function leads to the digamma
function. Further differentiation of the digamma function produces the
family of polygamma functions, all of which are also related to the zeta
function of G. Riemann (1826-1866).

2.2  Gamma Function

One of the simplest but very important special functions is the gamma
function. It appears occasionally by itself in physical applications (mostly in
the form of some integral), but much of its importance stems from its
usefulness in developing other functions such as Bessel functions (Chapter 6)
and hypergeometric functions (Chapters 8-10), which have more direct
physical application.

The gamma function has several equivalent definitions, most of which
are due to Euler. To begin, we define it by*

I(x) = nlirr:o x(x + 1)(x +.2) -+ (x+n) (2.1)

If x is not zero or a negative integer, it can be shown that the limit (2.1)
exists." It is apparent, however, that I'(x) cannot be defined at x =
0, —1, —2,..., since the limit becomes infinite for any of these values. Let
us formalize this last statement as a theorem.

Theorem 2.1. If x= —n (n=0,1,2,...), then |I'(x)| = oo, or equiva-
lently,

1
— =0, =0,1,2,...
T(=n) 0 n

By setting x = 1 in Equation (2.1), we see that

(1) = lim nin - fim —"—
n-oo 1 X2X3X - Xn(n+1) non+l

*A variation of (2.1), called Euler’s infinite product (see problem 43), was actually the
starting point of Euler’s work on the interpolation problem for n!.
fSee E.D. Rainville, Special Functions. New York: Chelsea, 1960, p. 5.



from which we deduce the special value
ra =1 (2.2)

Other values of I'(x) are not so easily obtained, but the substitution of
x + 1 for x in (2.1) leads to

) n'n*+!
P+ 1) = bm e G+ 2) x5 1)

— tim —% . lim nin”
nooo X+ n+1 o0 x(x+1)---(x+n)

from which we deduce the recurrence formula
I'(x+ 1) =xI(x) (2.3)

Equation (2.3) is the basic functional relation for the gamma function; it is
in the form of a difference equation. While many of the special functions
satisfy some linear differential equation, it has been shown that the gamma
function does not satisfy any linear differential equation with rational
coefficients.*

A direct connection between the gamma function and factorials can be
obtained from (2.2) and (2.3). That is, if we combine these relations, we
have

r(2)=1xTr)=1
I(3)=2xT(2)=2x1=2
T'(4)=3xT(3)=3x2 =3

and through mathematical induction it can be shown that
'(n+1)=n!, n=0,1,2,... (2.4)

Thus the gamma function is a generalization of the factorial function from
the domain of positive integers to the domain of all real numbers (except as
noted in Theorem 2.1). Also, Equation (2.4) confirms a result which begin-
ning algebra students often find puzzling to understand, viz., 0! = 1.

It is sometimes considered a nuisance that n! is not I'(n), but I'(n + 1).
Because of this, some authors adopt the notation x! for the gamma

*See R. Campbell, Les intégrals Eulériennes et leurs applications, Paris: Dunod, 1966, pp.
152-159.



function, whether or not x is an integer. C. Gauss (1777-1855) introduced
the notation IT(x), where IT(x) = x!, but this notation is seldom utilized.
The symbol TI', due to Legendre, is the most widely used today. We will not
use the notation of Gauss, nor will we use the factorial notation except
when dealing with nonnegative integer values.

2.2.1 Integral Representations

Our reason for using the limit definition (2.1) of the gamma function is
mostly historical, but also that it defines the gamma function for negative
values of x as well as positive values. The gamma function rarely appears in
the form (2.1) in applications. Instead, it most often arises in the evaluation
of certain integrals; for example, Euler was able to show that*

I(x) =f°°e"t"‘1dt x>0 (2.5)
0 ’ )

This integral representation of I'(x) is the most common way in which the
gamma function is now defined. Since integrals are fairly easy to manipu-
late, (2.5) is often preferred to (2.1) for developing properties of this
function. Equation (2.5) is less general than (2.1), however, since the
variable x is restricted in (2.5) to positive values. Lastly, we note that (2.5) is
an improper integral, due to the infinite limit of integration and also
because the factor t*~! becomes infinite at ¢ = 0 for values of x in the
interval 0 < x < 1. Nonetheless, the integral (2.5) is uniformly convergent
forall a < x < b, where0 <a <b < 0.

Let us first establish the equivalence of (2.1) and (2.5) for positive values
of x. To do so, we set

F(x) =f°°e"t"‘1dt
0
. o (2.6)
= lim [ (1——) ~ldt, x>0
n—o0 Y0 n
where we are making the observation
e'= lim (1 - i) 2.7)
n—oo n

Using successive integration by parts, after making the change of variable

*Legendre termed the right-hand side of (2.5) the Eulerian integral of the second kind.



z = t/n, we find

F(x) = lim n"fl(l —z)"z* ldx
n— oo 0
0

[ 1
. x _ n ﬂ 1 _ n—1_4
nlln;on -(1 z)/%"o+ xfo 1-2z2)" "z dz]

= ... (2.8)
. [ n(n-1)---2x1 1
= ll X x+n-1
it _x(x+1)~--(x+n—l)-/(;z dz]
= lim nin
n—ow xX(x +1)(x +2)---(x+n)
and thus we have shown that
[o.¢]
F(x) =f e 't* ldt=T(x), x>0 (2.9)
0

It follows from the uniform convergence of the integral (2.5) that I'(x) is
a continuous function for all x > 0 (see Theorem 1.19). To investigate the
behavior of I'(x) as x approaches the value zero from the right, we use the
recurrence formula (2.3) written in the form

I(x) = F(xx+ 1)

Thus, we see that

p 00 (2.10)

lim I'(x)= lim
x—0"*

x—-07

Another consequence of the uniform convergence of the defining in-
tegral for I'(x) is that we may differentiate the function under the integral
sign to obtain*

I'(x)= foooe"t"_llogtdt, x>0 (2.11)

and

I"(x) = fo “eit*1(logt) dt, x>0 (2.12)

*Actually, to completely justify the derivative relations (2.11) and (2.12) requires that we
first establish the uniform convergence of the integrals in them. See Theorem 1.21 in Section
1.6.3.



The integrand in (2.12) is positive over the entire interval of integration, and
thus it follows that I'’(x) > 0. This implies that the graph of y = I'(x) is
concave upward for all x > 0. While maxima and minima are ordinarily
found by setting the derivative of the function to zero, here we make the
observation that, since I'(1) = I'(2) = 1 and I'(x) is always concave up-
ward, the gamma function has only a minimum on the interval x > 0.
Moreover, the minimum occurs on the interval 1 < x < 2. The exact
position of the minimum was first computed by Gauss and found to be
xo = 1.4616..., which leads to the minimum value I'(x;) = 0.8856... .
Lastly, from the continuity of I'(x) and its concavity, we deduce that

lim T(x)=+o (2.13)

x— + 00

With this last result, we have determined the fundamental characteristics of
the graph of the gamma function for x > 0 (see Fig. 2.1).

The gamma function is defined for negative values of x by Equation
(2.1), but can be evaluated more conveniently by using the recurrence
formula

F(x)=r—(xx—+L), x#0,-1,-2,... (2.14)
I'(x)
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Figure 2.1 The Gamma Function



We are particularly interested in the behavior of the gamma function in the

(2.15)

(2.16)

vicinity of the discontinuities at x = 0, —1, —2,... . From the above ex-
pression, we immediately obtain
. . I'(x+1

lim I'(x) = lim Txr1) _ -

x—0" x—0" X
and

. . F'(x+1

lim T'(x)= lim Mx+1) _ _

x—-1* x—--1* X

By replacing x with x + 1 in (2.14), we get

I'(x+2)

I(x+1)= 1
which leads to

_TI'(x+1) T(x+2)
B x Cx(x+1)

I'(x)

Using this last expression, we find the limiting values

. . T(x+2)
= 1 =
x_l.n—nr I(x) - x(x+1) oo
and
. . T(x+2)
im T = lim —== +00
x—»l-—Z+ (x) x-»l-—Z‘” X(X + 1)

Continuing this process, we finally derive the formula

I'(x+ k)
x(x+1)(x+2)---(x+k-1)°

I'(x) =

k=

(2.17)

(2.18)

(2.19)

which defines the gamma fynction over the interval —k < x < 0, except for

x=-1,-2-3,...,—-k+ 1.
Example 1: Evaluate T'(— 3).

Solution: Making use of (2.19) with k = 2 yields*
r(-3) = (-D(-)T() = 4V

*T'(}) = V7. See Equation (2.23).



If we now assemble all the information we have on the gamma function
for both positive and negative values of x, we obtain the graph of this
function shown in Fig. 2.1. Values of I'(x) are commonly tabulated for the
interval 1 < x < 2, and other values of I'(x) can then be generated through
use of the recurrence formulas.

In addition to

T'(x) =f0°°e"t"‘1dt, x>0

there are a variety of other integral representations of I'(x), most of which
can be derived from that one by simple changes of variable. For example, if
we set ¢ = u? in the above integral, we get

P(x) =2 e*u> 'du, x>0 (2.20)
0
whereas the substitution ¢ = log(1/u) yields
x—1
I'(x) =f1(log l) du, x>0 (2.21)
0 u

A slightly more complicated relation can be derived by using the
representation (2.20) and forming the product

I'(x)I(y) = Zfooe‘“zuz"‘ldu : Zfooe‘vzvb—ldv
0 0

[e 0] [e ¢}
— 4] f e—(u2+v2)u2x—102y—ldudv
0 Y0

The presence of the term u? + v?

coordinates

in the integrand suggests the change of

u = rcosé, v=rsind
which leads to

[(x)T(y) = 4f"/2f°°e_’2r2x‘lcosz"_10r2)"1sin2)"10rdrd0
o Yo
—af P A1 gy ) "2 052519 sin2 10 df
0 0

= 2T(x + y) [ eos?* g sin2> g df
0

Finally, solving for the integral, we get the interesting relation

/2 2x—1g n2y—1 =F(x)F(y)
fo cos?*~fsin® 19 = SN, x>0,y >0 (2.22)



By setting x = y = 1 in (2.22), we have

w2 . T(HT(E)
48 = =5

from which we deduce the special value
r(4)=vm (2.23)
Example 2: Evaluate f(;"’e"2 dt.
Solution: By comparison with (2.20), we see that
[[e =1 () = b
Example 3: Evaluate [Px*e™* dx.

Solution: Let t = x3, and then

© _ .3
fx“exdx=
0

W =

fwe"t2/3dt =1iT(3)
0

2.2.2 Legendre Duplication Formula

A formula involving gamma functions that is somewhat comparable to the
double-angle formulas for trigonometric functions is the Legendre duplica-
tion formula

22*7IT(x)T(x + 4) = Vo T (2x) (2.24)
In order to derive this relation, we first set y = x in (2.22) to get

TOO)T(x) _ (72 2v-1p e 2x-1
—21"(2x) fo cos 6 sin“*~'6d0

= 21‘2xf"/2sin2“‘120d0
0

where we have used the double-angle formula for the sine function. Next we
make the variable change ¢ = 26, which yields

I'(x)T'(x)

= 7~ 2x £ 2x—1
2T(2x) 2 fosm odo

= 21—2x/"/zsin2x—l¢d¢
0

_27PT()I(x)
2T (x +3)



where the last step results from (2.22). Simplification of this identity leads to
(2.29).

An important special case of (2.24) occurs when x = n (n = 0,1,2,...),
1e.,

!
r(n+%)=f7”);ﬁ, n=0,1,2,... (2.25)
n.

the verification of which is left to the exercises (see problem 39).

Example 4: Compute I'(3).

Solution: The substitution of n = 1 in (2.25) yields

20T
F(%)=T(1+%)=22x1! =1yr

2.2.3 The Weierstrass Infinite Product

Although it was originally found by Schlomilch in 1844, thirty-two years
before Weierstrass’s famous work on entire functions, Weierstrass is usually
credited with the infinite-product definition of the gamma function

0

ﬁ =xe[] (1 + %)e"‘/" (2.26)

n=1

where v is the Euler-Mascheroni constant defined by*

y= lim Y 1_ logn = 0.577215... (2.27)
= p=1 k

We can derive this representation of I'(x) directly from (2.1) by first
observing that

1 _ lim x(x+1)(x+2)---(x+n)
F(X) n— 00 n'n*
] xx+1) (x+2) (x+n)
= x lim n [ 1) (247 (x4 ]
= xnlin:o exp[ — (logn) x] kl:[1 (1 + %) (2.28)

where we have written n™* = exp[ — (logn)x]. Next, relying on properties

*The constant y is commonly called (simply) Euler’s constant.



of exponentials, we recognize the identity

o[-

k=1

Thus, if we multiply (2.28) by the left-hand side of this expression and
divide by the right-hand side, we arrive at

n

1 | x
—  =xl — —1 -l Z e */k
T(x) x lim exp[(ké1 X ogn)x] m [] (1 + k)e

n— o0 n—o k=1
which reduces to (2.26).
An important identity involving the gamma function and sine function

can now be derived by using (2.26). We begin with the product of gamma
functions

sty - 2 L+ 2 (e T (1 5o
or
I‘(x)Il‘(—x) - _xznfjl (1 - ;c_z) 229

where we assume that x is nonintegral. Recalling Equation (1.92) in Section
1.7.2, which gives the infinite-product definition of the sine function, we
have

00 2 .
(1 - "—) L (2.30)

Comparison of (2.29) and (2.30) reveals that

w
X sinmx

[(x)I(—x)= - (x nonintegral) (2.31)

Also, by writing the recurrence formula (2.3) in the form
—xT(=x)=T(1 - x)
we deduce the identity

T

F(x)T( - x) = sinwx

(x nonintegral) (2.32)

Example 5: Evaluate the integral [J/*tan'/?0dé.



Solution: Making use of (2.22) and (2.32), we get

[ " anl/20d6 = [ "2Gin /20 cos /20 46
0 0

_TR)TE)
2T(1)

1 _ =
2 sin(w/4)
7

V2

Remark: An entire function is one that is analytic for all finite values of
its argument. Weierstrass was the first to show that any entire function
(under appropriate restrictions) with an infinite number of zeros, such as
sinx and cos x, is essentially determined by its zeros. This result led to the
infinite-product representations of such functions, and in particular, to the
infinite-product representation of the gamma function.

2.2.4 Fractional-Order Derivatives

Besides generalizing the notion of factorials, the gamma function can be
used in a variety of situations to generalize discrete processes into the
continuum. Such generalizations are not new, however: mathematicians over
the years have concerned themselves with this concept. In particular, the
question concerning derivatives of nonintegral order was first raised by
Leibniz in 1695, many years before Euler introduced the gamma function.

The general procedure for developing fractional derivatives is too in-
volved for our purposes.* However, we can illustrate the concept by first
recalling the familiar derivative formula from calculus,

ana.__a(a_1)...(a—n+l)xa-"’ a>0 (233)

where D" = d"/dx". In terms of the gamma function, we can rewrite (2.33)
as (see problem 10)

I'(a+1)
IF(a-n+1)

a—n

D"x4 =

The right-hand side of this expression is meaningful for any real number n
for which I'(a — n + 1) is defined. Hence, we will assume that the same is

*For a deeper discussion of fractional derivatives, see L. Debnath, Generalized Calculus
and Its Applications, Int. J. Math. Educ. Sci. Technol., 9, No. 4, pp. 399-416 (1978).



true of the left-hand side and write

T(a+1)

R "

x4’ a>=0 (2.34)

where » is not restricted to integer values. Equation (2.34) provides a simple
method of computing fractional-order derivatives of polynomials.

Example 6: Compute D'/2x2.

Solution: Directly from (2.34), we obtain

DV/2x2 = st/z

r(3)
the simplification of which yields

8
D252 = x3/2

3Vm

Generalization of the differentiation formula for D"x~¢, which covers
the case of negative exponents, is left to the exercises (see problem 52).

EXERCISES 2.2

1. Use Equation (2.1) directly to evaluate
(@ T'@). () I'O).

In problems 2-7, give numerical values for the expressions.

2. T(6)/T(3). 3. I(7)/T@T3).
4. T(2). 5. (- 1).
6. T(-3)/T(3). 7. TH/TG).

In problems 8-14, verify the given identity.
8 Ia+n)y=a(a+1)(a+2)---(a+n-Dl(a), n=1,2,3,....

9 rlgzl a)) =(-D"a(a—1)a-2)---(a—n+1),n=123,....
10. F(a) =(a—1a—2)---(a—n),n=123,....

I'(a—n)



—Dn!
1 I'(k—n) _ w, 0 < k < n (k, n non-negative integers),
. _ =4 (n=k)
I(-n)
0, k>n.

Hint: See problem 9.

12. (n) n!r(a_n+1)’n 0’1,2,‘...

Hint: See problem 10.

—_1\" ]
'3-(_%)=L(2'Z)’,n=0,1,2,,,,,
n 22(n?)
—2k — 1) _ (_qymm + 2k)! _
. (7K1 = (- Gk k=012

15. In problems in electromagnetic theory it is quite common to come
across products like
2X4X6X---X2n=(2n)"
and
1X3X5%X---x(2n+1)=2n+ 1!

Use these definitions of the !! notation to show that
(2n + 1)!

(@) @n)!! = 2"n!, (b) 2n + DIt = —7—,

(-1)"2"n!
2n)!
Hint: See problem 10 for (c) and (d).

© (=2n— 1) = (d (-1 = 1.

16. Prove that f Zem 1 dr converges uniformly in 1 < x < 2.
0

In problems 17-20, verify the given integral representation.
00

17. T(x) = s"f e St~ ldt, x,5 > 0.
0

18. I'(x) = /oo exp(xt — e')dt, x > 0.

Hint: Let u = e".

= e —tyx—1 - (_1)"
19. I'(x) j; e t* " dt + "g’o__n!(x+n)’x>0'

20. T(x) = (logb)* [ =" b~"dt, x > 0, b > 1.
gb)* | , x>0,

Hint: Let u = tlogh.



In problems 21-29, use properties of the gamma function to obtain the
result.

21. fooez‘”‘"‘2 dx = L/me®,

a
Hint: 2ax — x*> = —(x — a)* + a>.
45

22. fwe“z"x6dx =3
0

23. f°°‘/§e-1’dx = —‘/3£
0

R

fl_L -
" V —logu

—1)"n!
.flxk(logx)"dx=(—1)-—n—'— k>-1,n=0,1,2,..
0

2 n+1’
(k+1)

v ]

w/2 6 _ gz
26.[0 cos9d = 5.

27. f"/zsin3000520d0 = 1—25
0

m 37
4 =
28. focos xdx R

L T 2n( p1)?
29, f sin2n+19 46 = f 2 c0s?"* 19 46 = (—22;%
0 0 !

In problems 30-35, evaluate the integral in terms of the gamma function
and simplify when possible.

n=012,....

o g5t o dx
30. dt, s > 0. 31. .
j(; \/t_ j(; 1+ x*

Hint: Let x? = tané.

32. [7VsinZx dx. B[ ' Ylog Lyt ar, x, y > 0,
0 0 t

3. [ cot'/9s. | PVt p.s,x > 0.
0 0

36. Using the recurrence formula (2.3), deduce that
(@) T'(x)=T"(x+1)— xI'"(x),
(b) T'(x) = fooe"(t — x)t* Hogtdt, x > 0.
0



In problems 37 and 38, use the Euler formulas

eix + e—ix elX _ e—ix
cosx = —————— sinx = ————
2 ’ 2i

and properties of the gamma function to derive the result. Assume that
b,x>0and — {7 <a < im.

o0

37. I'(x)cosax = b"f t*~le=btcosacog( bt sin a) dt.
0
[e 0]

38. T'(x)sinax = b* f t*~le=b10sagin bt sin a) dt.
0

39. Based on the Legendre duplication formula, show that (for n =
0,1,2,...)

2n)W
(@ T(n + 3 = T 2'2"1!” ,
L (=" i(n - HWr
(b) F(Z n) - (2” — 1)! )

© TG +mT{E —n)= (-1
40. Show that
T(3x) = %33"_1/21"(x)r(x + T(x + 2)
41. Show that
II'(x)[ < T()I"(x), x>0
42. Show that

@ I'A + x)I'(1 — x) = wxcsc7x (x nonintegral),
® TG +x)TE —x)=msecax, x#n+ %, n=0,12,....

43. Derive Euler’s infinite-product representation

« (1+7)
) ”m

44. Derive the recurrence relation I'(x + 1) = xI'(x), by use of the

(a) integral definition (2.5),
(b) Weierstrass infinite product (2.26).

45. A particle of mass m starts from rest at » = 1 and moves along a radial
line toward the origin » = 0 under the reciprocal force law f = —k/r,
where k is a positive constant. The energy equation of the particle is



given by

dr\?
l — =
2m(dt) + klogr=20

(a) Show that the time required for the particle to reach the origin is

(mw/2k)/2,

(b) If the particle starts from rest at » = a (a > 0), the energy equation

becomes

2
%m(%) + klogr = kloga

Again find the time required for the particle to reach the origin.

46. Find the area enclosed by the curve x* + y* = 1.

47. Find the total arclength of the lemniscate r? = acos24.

48. Find the area inside the curve x2/2 + y2/3 =1,

49. Find the volume in the first octant below the surface
XV 4 yl/2 4 2=

50. Compute the fractional-order derivatives

(a) D'/*c, where c is constant,

(b) DY?(3x% — Tx + 4),

(¢) D*/2x2,

(d) D*x”, where » is not a positive integer.

51. Show that
(a) DI/Z(DI/ZxZ) = sz,
(b) D—I/Z(D1/2x2) = XZ,
(c) D*(D*x%) = D**#x*.

52. By generalizing the formula for D"x ¢, show that

= (-1

F(V + a) —(a+v)

I'(a)

a>0

2.3  Beta Function

A useful function of two variables is the beta function*

B(x,y) = folt"'l(l -0 'd, x>0, y>0

*This is called the Eulerian integral of the first kind.

(2.35)



The utility of the beta function is often overshadowed by that of the gamma
function, partly perhaps because it can be evaluated in terms of the gamma
function. However, since it occurs so frequently in practice, a special
designation for it is widely accepted.

If we make the change of variable ¥ = 1 — ¢ in (2.35), we find

B(x,y) = j(;l(l - u)x_luy—ldu

from which we deduce the symmetry property

B(x,y)=B(y,x) (2.36)

Another representation of the beta function results if we make the variable
change ¢ = u/(1 + u), leading to

x—1

®© u
B(x,Y)='[) mdu, x>0, y>0 (2.37)

Finally, to show how the beta function is related to the gamma function, we
set t = cos28 in (2.35) to find

B(x,y) = 2[)"/20052"‘10 sin?’ 19 d@

and hence from (2.22) we obtain the relation

T'(x)T(y)

Bﬁdﬂ=ru+yy

x>0, y>0 (2.38)

Example 6: Evaluate the integral I = [x~1?(1 + x) 2 dx.

Solution: By comparison with (2.37), we recognize

I=5(4.3)
_Ir()ra)
I'(2)
Hence, we deduce that
foox_l/z(l +x) Pdx=1
o 2
Example 7: Show that
© COS X T
= R 0 1
R e MR



Solution: Making the observation (problem 17 in Exercises 2.2)

_1_ = L ® —xt p-1
+7 I‘(p)-/(;e P dt
it follows that
®COSX © X —xtyp-1
j(; T dx ——( ) cosxf0 e *tP~ 1t dx

f
= (—f lj(;ooe'"’cosxabcdt
'/(‘)w

where we have reversed the order of integration. If we now let u = ¢2,
then

f°° cosx . _ _1 /°° u»=D du

o xF 2T(p)Jo 1+u
__1 (1+p l—p)
2T(p) 2 0 2

However (see problem 10),

1+p 1—-p\ pm
B(—————2 ST )—wsec(z)

and thus we have our result.

Example 7 illustrates one of the basic approaches we use in the evalua-
tion of nonelementary integrals. That is, we replace part (or all) of the
integrand by its series representation or integral representation and then
interchange the order in which the operations are carried out.

EXERCISES 2.3

In problems 1-4, evaluate the beta function.

1. B(3,§ 2. B(4a4
3. B4, 1). 4. B(x,1 —x),0<x<1.

In problems 5-10, verify the identity.
5. B(x+1,y)+ B(x,y + 1) = B(x, y), x,y > 0.



6. B(x,y +1)= 2B(x+1,y)= ;—ﬁ—yB(x,y), X,y > 0.

7. B(x,x)=2"%B(x,}), x> 0.

I'(x)T(y)T(2)T(w)
I'(x+y+z+w)
x, y,z,w > 0.

9. B(n,m)B(n+ s,n+ H=a2'"%n"1, n=123,....

10. 3(1;” 12p)=1rsec(p7r/2),0<p<l.

In problems 11-18, use properties of the beta and gamma functions to
evaluate the integral.

1. [x(1 = x) dx.
0
2 [ 41 - x?)" 2 dx.
0
© X
B[ ——
'[0 1+ x%)°
Hint: Set t = x*/(1 + x?).

14, f (1 +x)1/2

Hint: Set x =2t — 1.

8 B(x,y)B(x+y,z2)B(x+y+ z,w)=

15. f b(b — x)™ " Y(x — a)""! dx, where m, n are positive integers.
a
16. f2x2(2 — x)" V2% dx.
0
17. fax“\/a2 — x2 dx.
0
18. f2x3\/8 - x3 dx.
0

In problems 19-30, verify the integral formula.

19 00xp-ld— O0<p<l1
'fo 15 & = mesepm, P .

 sin x T
20. ./(; x? dx = 21"(p)sin(pvr/2)’0 <p<l

21. fwsinxzdx = %\/?
0

Hint: Use problem 20.




22.

25.

26.

27.

28.

29.

30.

31.

32.

33.

T

© 2d
j(;COSX x—E 3"

w/2 m/2 m
j(; an’x dx j(; cot?x dx 2005 pr/2) P
©x? ogx .,
/0 ﬁdx— wcscpwcot pm, 0 < p < 1.

o0 xp_l aT

dx = — ,0<p<a.

b T+ x° Y asin( pm/a) p=a

st — e~y = — M) _
j(;e (1 —-e)'dt 1,(s_*_n_'_1),wheres>0,n

2x

fw f dx = 27 a~?3b=13 where a,b > 0.
-wae’* +b 33
I e 2T

~o (&% + 1) W3

Hint: Differentiate with respect to b in problem 27.

x-1 y—-1
f’ T 4= 2B(x, y), where x, y > 0.

(r+1)*"

11 - ) B(x, y)
f x+y dt = x x+ty?
o (t+p) P (1 +p)

n=0

n=

, n=1,2,

1.

0,1,2,....

where x, y, p > 0.

9

n=1,2,3,....

0,
3,....

n=20,1,2,...

Using the notation of problem 15 in Exercises 2.2, show that
ko
! 2’
(@ f_l(l — xH)2x2ndx = _@n-1n
(2n +2)1°
7,
®) [ - x?)x2dx = { (20— DU
-1 2n)M
Show that
2
f_ll(l %) dx =2 (25:?1)! :
The incomplete beta function is defined by

B.(p.q) = fo"tﬂ—l(l — 0" a,

0<x=<l1,

p,q>0



(a) Show that

B.(p.q) = x'I(q) ¥, —— DX

,0<x<1
a0 L(g—n)(p+n)n

(b) From (a), deduce that

i (-n" _ _I(p)
a0 L(g—n)(p+n)n!  T(p+gq)




The Hypergeometric
Function

8.1 Introduction

Because of the many relations connecting the special functions to each
other, and to the elementary functions, it is natural to inquire whether more
general functions can be developed so that the special functions and
elementary functions are merely specializations of these general functions.
General functions of this nature have in fact been developed and are
collectively referred to as functions of the hypergeometric type. There are
several varieties of these functions, but the most common are the standard
hypergeometric function (which we discuss in this chapter) and the confluent
hypergeometric function (Chapter 9). Still, other generalizations exist, such as
MacRobert’s E-function and Meijer’s G-function, for which even gener-
alized hypergeometric functions are certain specializations (Chapter 10).

The major development of the theory of the hypergeometric function
was carried out by Gauss and published in his famous memoir of 1812, a
memoir that is also noted as being the real beginning of rigor in mathe-
matics.* Some important results concerning the hypergeometric function
had been developed earlier by Euler and others, but it was Gauss who made
the first systematic study of the series that defines this function.

*C.F. Gauss, Disquisitiones Generales circa Seriem Infinitam..., Comment. Soc. Reg.
Sci. Gottingensis Recent., 2 (1812).



8.2 The Pochhammer Symbol

In dealing with certain product forms, factorials, and gamma functions, it is
useful to introduce the abbreviation

(a)g=1, (a),=a(a+1)---(a+n—-1), n=1,2,3,...
(8.1)

called the Pochhammer symbol. Using properties of the gamma function, it
follows that this symbol can also be defined by

I(a+n)

(a), = ——t O =0,1,2,... (8.2)

Remark: For typographical convenience the symbol (a), is sometimes
replaced by Appel’s symbol (a, n).

The Pochhammer symbol (a), is important in most of the following
material in this text. Because of its close association with the gamma
function, it clearly satisfies a large number of identities. Some of the special
properties are listed in Theorem 8.1 below, while other relations are taken
up in the exercises.

Theorem 8.1. The Pochhammer symbol (a), satisfies the identities:

(1) (1)n = n!’
2) (a + n)a),=a(a+1),,
o (79 - W,

4 (@),4r = (a)k(a + k), = (a),(a + n), (addition formula),

) (@)-p=(=1"(a)/Q = a = k),
(6) (a),, = 2*"(Aa),(3 + }a), (duplication formula).

(Partial) proof: We will prove only parts (1), (2), and (3). The remain-
ing proofs are left to the exercises.
From the definition, it follows that

(1): 1),=1%x2X--- Xn=n!,
(2): (a+n)a),=ala+1)---(a+n—-1)(a+n)

=a(a+1),,



(3): (—a)= —a(—a—l)-,-’!-(—a—n+l)

~~

_nl!)"a(a+l)---(a+n—l)

(="

- L), .
From the definition, we see that the parameter a can be either positive

or negative, but generally we assume a # 0. An exception to this is the

special value (0), = 1. If a is a negative integer, we find that (see problem

17)

(—1)"k!
(=k),={ (k=n)"’
0, n>k

0<n<k (8.3)

Part (5) of Theorem 8.1 can be used to give meaning to the Pochhammer
symbol for negative index: by setting kK = 0 we obtain

_ ey
(@-n= a0 1,2,3,... (8.4)

Like the binomial coefficient, the Pochhammer symbol plays a very
important role in combinatorial problems, probability theory, and algorithm
development. In developing certain relations it is more convenient to use the
Pochhammer symbol than it is to use the binomial coefficient. The use of
this symbol (and the hypergeometric function) in the evaluation of certain
series and combinatorial relations is illustrated in Section 8.5.

The Pochhammer symbol and binomial coefficient are related directly by
the formula given in part (3) of Theorem 8.1. A more complex relation
between these symbols is developed in the next example.

Example 1: Based on the properties of the Pochhammer symbol listed in
Theorem 8.1, show that

(a+k-1)- (‘I)n"!g:‘;))l(”)k, k=1,2,3,...

Solution: From (3) and (5) of Theorem 8.1, we first obtain

(i) - e a0,

_ (a)«

n!(a)k—n



Replacing n by —n in part (4) of Theorem 8.1, we find

(a)k—n = (a)—n(a - n)k
_(=D"(a—n),
(1 - a)n

where the last step is a consequence of Equation (8.4). Combining the
above results leads to the desired relation

(a + k- 1) _ (=1)"(1 - a),(a),

n n'(a—n),

EXERCISES 8.2

In problems 1-16, verify the identity.
1. (=n), =(=1)"n. 2. (a—n),=(—D"A - a),

3. (@)y41 = ala + 1), 4. (@)ysi = (@)(a + k),
5.(a+1),—n(a+1),_, =(a),

6. (a—1),+ n(a),_; = (a),.

7. (n+ k) = nl(n + 1),. 8 Ta+1-n)= (_—1)(%;&1—2
9. (a+n)_,(a+k),_,=1

10. (a+ k)i = (-D)" 1 —a—n),,.

-1"
11 (@) = (i—_l—f“,f;— 12. (a)y, = 2"(Ja), (3 + da),.
13. 2n)! = 22°(3),n. 14. 2n + 1! = 22"(3),n'.
2a _ (_a)n(% - a)n
15 (Zn) - e

16. (a);, = 3"(3a),(3 + %a),(3 + }a),.
17. Show that (k = 1,2,3,...)
(-1)"k!

(—k)n= { (k—=n)’
0, n>k

0<n<k



18. Show that

19. Show that

8.3 The Function F(a, b; c; x)

The series defined by*
ab a(a+ 1)b(b +1) x? Z (a),(b), x"
1+ —x+ X4 = ~niin 2 (8.
¢ c(c+1) ot 'E’O (c), n! (8.5)

is called the hypergeometric series. It gets its name from the fact that for
a =1 and ¢ = b the series reduces to the elementary geometric series

T+x+ x4 =Y x" (8.6)
n=0

Denoting the general term of (8.5) by u,(x) and applying the ratio test,
we see that

1 ﬁﬂ."‘l(_x) = 1 (a)n+1(b)n+l-xn+l . (C),,n!
| () | T | (@) + DT (@) ()"
_ x| lim |lat )b+ )

- |x|nan:° (c+n)(n+1)

where we have made use of property (4) of Theorem 8.1. Completing the
limit process reveals that

un+1(x)

u,(x)

under the assumption that none of a, b, or c is zero or a negative integer.
Therefore, we conclude that the series (8.5) converges under these circum-
stances for all |x| <1 and diverges for all |x| > 1. For |x| = 1, it can be
show;n that a sufficient condition for convergence of the seriesis ¢ —a — b
> 0.

lim

n—oo

= |x| (8.7)

*Throughout our discussion the parameters a, b, ¢ are assumed to be real.
¥See E.D. Rainville, Special Functions, New York: Chelsea, 1971, p. 46.



The function

F(a,bic;x) = i ”zcgb)"z, x| < 1 (8.8)

defined by the hypergeometric series is called the hypergeometric function. It
is also commonly denoted by the symbol

,F,(a,b;c; x) = F(a,b;c; x) (8.9)

where the 2 and 1 refer to the number of numerator and denominator
parameters, respectively, in its series representation. The semicolons sep-
arate the numerator parameters a and b (which are themselves separated by
a comma), the denominator parameter ¢, and the argument x.

If ¢ is zero or a negative integer, the series (8.8) generally does not exist,
and hence the function F(a, b; c; x) is not defined. However, if either a or b
(or both) is zero or a negative integer, the series is finite and thus converges
for all x. That is, if a= —m (m=20,1,2,...) then (—m), =0 when
n > m, and in this case (8.8) reduces to the hypergeometric polynomial
defined by

F(—-m,b;c;x) = i (—_—wx—", -0 <x<oo (8.10)
n=0 C)n

S

8.3.1 Elementary Properties

There are several properties of the hypergeometric function that are im-
mediate consequences of its definition (8.8). First, we note the symmetry
property of the parameters a and b, i.e.,

F(a,b;c;x) = F(b,a;c; x). (8.11)
Second, by differentiating the series (8.8) termwise, we find that

n—1

i a.bc: x)= - (a)n(b)n X
afl@biex) = L ==y

n—->n+1

(psr 1

i (a+1),(b+1), x"

nso  (c+1), n

— ; (a)n+1(b)n+1x_n
ab

and hence,

%F(a,b;c;x)= %F(a+l,b+l;c+l;x) (8.12)



Repeated application of (8.12) leads to the general formula (see problem 1)

k
;kF(a b;c;x) = (az';;f)kF(a +k,b+k;c+k;x),

k=1,2,3,... (8.13)

The parameters a, b, and ¢ in the definition of the hypergeometric
function play much the same role in the relationships of this function in that
the parameters n or p did for the Legendre polynomials and Bessel
functions. The usual nomenclature for the hypergeometric functions in
which one parameter changes by +1 or —1 is “contiguous functions.”
There are six contiguous functions, defined by F(a + 1, b; ¢; x), F(a,b +
1;¢; x), and F(a, b; ¢ £ 1; x). Gauss was the first to show that between
F(a, b; c; x) and any two contiguous functions there exists a linear relation
with coefficients at most linear in x. The six contiguous functions, taken two
at a time, lead to a total of fifteen recurrence relations of this kind, i.e.,
(6 =15

In order to derive one of the fifteen recurrence relations, we first observe
that

x%F(a, b;c; x) + aF(a,b;c; x)
_ v (@).(8), nx" & a(a),(b), x”
Ll £l
_ v (a+n)(a),(b), x"
L (0. o«
o f @t 0,8, 5

n=0 (c)n n!

from which we deduce

xad;F(a, b;yc;x) + aF(a,b;c;x) =aF(a+ 1,b;c;x) (8.14)
Similarly, from the symmetry property (8.11),
xad;F(a,b; ¢;x) + bF(a,b;c;x) =bF(a,b+ 1;¢c;x) (8.15)

and by subtracting (8.15) from (8.14), it follows at once that
(a—b)F(a,b;c;x)=aF(a+ 1,b;¢c;x) —bF(a,b+ 1;¢; x)
(8.16)

*For a listing of all 15 relations, see A. Erdelyi et al., Higher Transcendental Functions,
Vol. I, New York: McGraw-Hill, 1953, pp. 103-104.



which is one of the simplest recurrence relations involving the contiguous
functions. Some of the other recurrence relations are taken up in the
exercises.

8.3.2 Integral Representation

To derive an integral representation for the hypergeometric function, we
start with the beta-function relation (see Section 2.3)

B(n+bc—b)= [t 1 -0, c>b>0 (817)
0
from which we deduce (for n = 0,1,2,...)

(b)n r(c) 1 +b-1 c—b-!
= t" 1- 1
(@, " TITe—py b A0 61
The substitution of (8.18) into (8.8) yields

F(C) (a Latp-1 _ )bl
r(b)r(c—b)Z . fo’ =0T

I'(c) b-1 Tt o (a), )
T(b)F(c—b)ft - (‘S‘o ar (1) )dt
(8.19)

where we have reversed the order of integration and summation. Now, using
the relation (from Theorem 8.1)

F(a,b;c;x) =

(a)n _ (ZH) =D (8.20)

n!
we recognize the series in (8.19) as a binomial series which has the sum
¥ @aiy = § (3= 62
n=0 ! n=0
provided |xt| < 1. Hence, (8.19) gives us the integral representation

F(a,b;c;x) = T%f;’bq(l C 0N = x)

c>b>0 (8.22)

Although (8.22) was derived under the assumption that |x¢| < 1, it can
be shown that the integral converges for all |x| < 1.*. The convergence of
(8.22) for x = 1 is important in our proof of the following useful theorem.

*See E.D. Rainville, Special Functions, New York: Chelsea, 1971, pp. 48—49.



Theorem 82. Forc+#0,—1,—-2,... andc—a — b > 0,

I['(c)T(c—a—-b)

Fla,b;61) = T =T (e = b)

Proof: We will prove the theorem only with the added restriction
¢ > b > 0, although it is valid without this restriction. We simply set x = 1
in (8.22) to get
I'(c) 1, c—b-1 -
Fla,b;c;1) = ———=————— [ t""1(1 — ¢ 1-1¢)"%d
(@561 = Fre gy ¢ A 0T

- T e

which, evaluated as a beta integral, yields our result, viz.,

T'(c)T(b)T(c—a—b)

Fla,b;61) = T5)T(c = b)T(c = a)
_TI(c)T(c—a—b) -
I'(c—a)T(c—b)
8.3.3 The Hypergeometric Equation
The linear second-order DE
x(1=x)y”" +[c—(a+b+1)x]y —aby=0 (8.23)

is called the hypergeometric equation of Gauss. It is so named because the
function

»n = F(a,b;c; x), c*0,-1,-2,... (8.24)

is a solution. To verify that (8.24) is indeed a solution, we can substitute the
series for F(a, b; c; x) directly into (8.23).

Examination of the coefficient of y” reveals that both x = 0 and x = 1
are (finite) singular points of the equation. Therefore, to find a second series
solution about x = 0 would normally require use of the Frobenius method.*
Under special restrictions on the parameter ¢, however, we can produce a
second (linearly independent) solution of (8.23) without resorting to this
more general method. We simply make the change of dependent variable

y=x'"¢ (8.25)

*For an introductory discussion of the Frobenius method, see L.C. Andrews, Ordinary
Differential Equations with Applications, Glenview, Ill.: Scott, Foresman, 1982, Chapter 9.



from which we calculate

y=x'"2+(1-¢c)x" < (8.26a)
y'=xt"z"+201 -c)x 2 —c(l —c)x 1z (8.26b)
The substitution of (8.25), (8.26a), and (8.26b) into (8.23) leads to (upon
algebraic simplification)
x(1=x)z"+[2—c—(a+b—2c+3)x]z
-1l4+a-c)1+b-¢c)z=0 (8.27)

which we recognize as another form of (8.23). Hence, Equation (8.27) has
the solution

z=FQl+a-c,1+b—-c2-c¢;x), c+2,3,4,... (8.28)
and so we deduce that

Hm=x'"Fl+a-c1+b-c;2-c;x), c+2,3,4,...
(8.29)

is a second solution of (8.23). For ¢ =2,3,4,..., the hypergeometric
function in (8.29) does not usually exist, while for ¢ = 1 the solutions (8.29)
and (8.24) are identical. However, if we restrict ¢ to ¢ # 0, +1, +2,...,
then (8.29) is linearly independent of (8.24) and

y=CF(a,b;c;x)+Cx'"Fl+a—-c,1+b—1¢c;2—c;x)
(8.30)

is a general solution of Equation (8.23).

To cover the cases when ¢ = 2,3,4,..., a hypergeometric function of the
second kind can be introduced (see problem 28). However, beyond its
connection as a solution to the hypergeometric equation of Gauss, the
hypergeometric function of the second kind has limited usefulness in
applications.

Remark: Actually, y, = F(a,b;c;x) and y, =x'"F1 +a—c1+
b — ¢;2 — ¢; x) are only two of a total of 24 solutions of Equation (8.23)
that can be expressed in terms of the hypergeometric function. For a listing
of all 24 solutions, see W.W. Bell, Special Functions for Scientists and
Engineers, London: Van Nostrand, 1968, pp. 208-209.



EXERCISES 8.3

1. Show that (for k = 1,2,3,...)

d* (a)i(b)s : )
. —Fla,b;c;x) = —(?)k—F(a+k,b+k,c+k,x)

2. Show that (for k = 1,2,3,...)
(a) gd—[x“F(a b; c; x)] = ax® 'F(a + 1, b; c; x),
(b) [x“ L+kF(a, b; ¢; x)| = (a),x*"'F(a + k, b; ¢; x),
(c) [xc F(a,b;c; x)| = (¢ = k)x"1"*F(a, b; c — k; x).

In problems 3-6, verify the differentiation formula.

3. xgd;F(a, b;c;x)+ (1 —c)F(a,b;c; x)=aF(a + 1, b; c; x)
+(1 —c¢)F(a,b;c — 1; x).

4. xd—‘iF(a —1,b;¢;x)=(a— 1)F(a, b;c; x)
—(a— 1)F(a — 1, b;c; x).

5.(1- x)xdixF(a, b;c;x)=(a+ b — c)xF(a,b; c; x)
+c¢ (¢ — a)c — b)xF(a, b; c + 1; x).

6. xdi;F(a —1,b;¢;x)=(a — 1)xF(a, b; c; x)
—c¢ Ya —1)(c — b)xF(a, b;c + 1; x).

In problems 7-13, verify the given contiguous relation by using the results
of problems 3-6, or by series representations.

7. (b—a)1 — x)F(a,b;c;x)=(c —a)F(a—1,b;c; x)
—(c — b)F(a,b — 1; ¢; x).

8. (1 —x)F(a,b;c;x)= F(a —1,b;c; x)
—c ¢ — b)xF(a, b; c + 1; x).

9. (1 —x)F(a,b;c;x)= F(a,b — 1;¢c; x)
—c Yc - a)xF(a, b;c + 1; x).

10. (¢ —a — b)F(a,b;c; x) +a(l — x)F(a + 1,b;c; x)
=(¢c— b)F(a,b — 1;¢; x).



1. (c —a - b)F(a,b;c; x) + b(1 — x)F(a,b + 1;¢; x)
=(c—a)F(a—1,b;c; x).

12. (¢ — b —1)F(a, b;c; x) + bF(a,b + 1; ¢; x)
=(c — 1)F(a, b; c — 1; x).

13. [2b — ¢ + (a — b)x]F(a,b; c; x) = b(1 — x)F(a,b + 1;¢; x)
—(¢c—b)F(a,b — 1;c; x).

In problems 14 and 15, verify the formula by direct substitution of the series
representations.

4. F(a,b+ 1;¢;x) — F(a, b; ¢; x) = %F(a +1L,b+1c+ 1;x).
15. F(a,b;c;x) — F(a,b;c — 1; x)
aox
— X _Fa+1,b+1;c+1;%).
c(c—l)F(a R c X)

In problems 16 and 17, use termwise integration to derive the given integral
representation.

16. F(a,b;c;x) =
c>d>0.

17. F(a,b;c + 1;x) = cle(a, bs ¢ xt)t<~Vdt, ¢ > 0.
0

& 1,a- _ ge—d-1 .
l"(a!)l“(c—d)fo’ Y1 = 1) 'F(a, b; d; xt) dt,

18. Show that (s > 0)

(a) /we"’F[a,b; 1, x(1 — e H)dt = %F(a, b;s + 1; x),
: T(s)T(s + 1 - a — b)
I(s+1—-a)l(s+1-0b)"

(b) fooe"’F(a, bi1;1 — e 'ydt =
0

Hint: Set x =1 in (a).
19. Show that (for n = 0,1,2,...)

(@) F(=n,b;c;1) = (C(:—)lz)n
) F(—=n,a + n;¢c;1) = (_1)n(1+_(¢;);_£_)l,
(C +b— 1)2n

) F(=n,1 =b—n;¢c;1) =

(C),,(C +b - 1)n.
20. Show that

n=20,1,2,...



21.

22.

23.

25.

26.

Using the result of problem 19(a), show that (for p = 0,1,2,...)
0, O<n<p-1,
(@ F(-=p,a+n+1a+1;1)={ (=1)"p!
(a+1),’ =P

(b) F(—=p,a+n+2;a+1;1)
0, O<n<p-2,

= (=) (n+1)
(a+1),(n+1-p)’°

n=p-—1,p.

Given the generating function
w(x,t)=1-0)""A=t+xt)"", c¢#0,-1,-2,...
show that

[e ¢}
w(x,t)= Y %F(—n,b;c;x)t"
n=0 :

where F(—n, b; c; x) denotes the hypergeometric polynomials defined by
Equation (8.10).

Show that, for |x| <1 and |x/(1 — x)| < 1,
-a .« e X = e
1-x) F(a,c b;c; l—x) F(a,b;c;x)

. By substituting y = x/(x — 1) in problem 23, deduce that

N - _ y\b—c _ ... X
(a) F(a,c — b;c; x) x(l x) F(c a,c = bic; 5 _x),

B e = _ c—b _ [
(b) F(a,c bic; = x) A — x)"PF(c — a,¢ — b; ¢; x),
(c) F(a,b;c;x)=(1 —x)*"*"®F(c — a,c — b; c; x).

Show that
(1-x)"“"Flia,} + ia—-b;1 +a—b;;x2
(1-x)
= F(a,b;1+a—b;x)
Use problems 23-25 to deduce that

T +a-b)I(1+ }a)

CT(1+a)T(1+ sa—-b)’
L(3¢)T(3c + 1)

T(ia+ $c)T(3 - da+ ic)’
T(a+b+ iWr

T(a+ 5)T(b+ 1)

(@) F(a,b;1 +a—b; —1)

(b) F(a,l —a;c;%)=

(c) FQ2a,2b;a+ b+ ;1) =



27. By assuming a power-series solution of the form
[ee]
y= L A,x"
n=0
show that y = F(a, b; c; x) is a solution of the hypergeometric equation
x(1=x)y"+[c—(a+b+1)x]y —aby=0
28. The hypergeometric function of the second kind is defined by

Y = rl-o¢ .
Glabieix) = T DT (b —cr 1) (@B 6 %)

F(C—l) 1-¢ _ O, T
+—l"(a)I‘(b)x Fl+a-c,1+b—-c;2—c;x)

(a) Show that G(a, b; c; x) is a solution of the hypergeometric equation
in problem 27, ¢ # 0, +1, +2,....
(b) Show that G(a, b;¢;x)=x'"G1+a—c,1+b—c;2—c;x).

29. Show that the Wronskian of F(a, b; c; x) and G(a, b; c; x) 1s given by
(see problem 28)

W(F,G)(x) = __I—‘(_al:-)(;_)(bjx_c(l _ x)c—a—b—l

30. Derive the generating function relation

t2(x2-1) Z

(1 —Xt)z n=

. P
(1 - x0)F|1a,3a + 1;1, (@) Bal)

where P,(x) is the nth Legendre polynomial.

8.4 Relation to Other Functions

The hypergeometric function is important in many areas of mathematical
analysis and its applications. Partly this is a consequence of the fact that so
many elementary and special functions are simply special cases of the
hypergeometric function. For example, the specialization

2]

o0
1
F(1,b;b;x) = Y, %x" = ) x"
n=0 * n=0
reveals that

F(1,b;b;x)=(1—-x)"" (8.31)



Similarly, it can be established that
arcsin x = xF(%,4;; x?) (8.32)
and
log(1 — x) = —xF(1,1;2; x) (8.33)
Example 2: Show that arcsin x = xF(}, 1; 3; x?).

Solution: From the calculus, we recall

00 1y2n+1
arcsinx = ), (2n)2.x
n=02*"(n")"(2n + 1)

In order to recognize this series as a hypergeometric series, we need to
express the coefficient of x2"*!/n! in terms of Pochhammer symbols.
Thus, using the results of problems 13 and 14 in Exercises 8.2, we have

(2n)! = 227(3) !

@n+ 1)t _ (3),
@n) (4),

and making these substitutions leads to

2 (B)a(d), x

arcsinx = x 3

2n+1)=

from which we deduce
arcsin x = xF(3,4;3; x?)

The verification of (8.33) along with several other such relations involv-
ing elementary functions is left to the exercises.
A more involved relationship to establish is given by

P,,(x)=F(—n,n+1;l;1+x) (8.34)

where P (x) is the nth Legendre polynomial. To prove (8.34), we first
observe that

(1 -2xt+2) " =[(1 - 1) - 2e(x - 1)]“/2

-1 21()6 )
=(1- 8.35



and thus we deduce the relation

00
Y P(x)t"=(1—-2xt+ tz)_l/2

=(1- t)"[l Jalx—l) ”J_m

(1-1)°
_ 2 (-1 (nfenf -
/E'o( k ) a- t)2k+1 (8.36)

Our object now is to recognize the right-hand side of (8.36) as a power series
in ¢t which has the coefficient F(—n,n + 1;1; (1 — x)/2). To obtain powers
of ¢, we further expand (1 — ¢)~2%~! in a binomial series and interchange
the order of summation. Hence,

L= 5 (72 enm et

m=0 k=0
nZOkZ()( )( nZk )( 1)"2K(x — )" (8.37)

where the last step is a result of the index change m = n — k. Next, from
part (3) of Theorem 8.1, we can write

—L\/ g — -D"3), 2k +1),_
3 ( 2k 1)= (=1)"(3)«( )n-k (8.38)
k n—k k'(n— k)
but from problems 7 and 13 in Exercises 8.2, we further have
_ (n+k) n'(n+ l)k
+ = .
Finally, setting a = 1 in problem 11 in Exercises 8.2 leads to
(-1)*n!
n—k)l = —>"—~—— (8.40
( ) =n), )
so by combining the results of (8.38), (8.39), and (8.40), we find that (8.37)
becomes
- o |5 (-n)k(n+1)k(l—x)k]
P (x)t"= t"
n§0 ( ) n§0|:k§0 (l)kk' 2
d 1-x
= Zl”(—n,nﬂ;l;—2 )r" (8.41)
n=0

from which (8.34) follows.



8.4.1 Legendre Functions

The relation (8.34) between the nth Legendre polynomial and hypergeomet-
ric function provides us with a natural way of introducing the more general
function

P,(x)=F(—y,y+1;1;1——_2-—"—) (8.42)

where » is not restricted to integer values. We call P,(x) a Legendre function
of the first kind of degree »; it is not a polynomial except in the special case
when v=n (n=0,1,2,...). A Legendre function of the second kind,
denoted by Q,(x), can also be defined in terms of the hypergeometric
function, although we will not discuss it.*

The function P,(x) has many properties in common with the Legendre
polynomial P,(x). For example, by setting x = 1 in (8.42), we obtain

P(1)=F(-»,»+1;1;0) =1 (8.43)
The substitution of x = 0 in (8.42) leads to
P,(0)=F(-»,» + 151; 1) (8.44)
and by using the relation [see problem 26(b) in Exercises 8.3]

T(3c)T(4c + 3)

F(a,1 —a;c;}1) = 8.45
(l-aed) = forG-tar g &%
we deduce that
Vr
P,(0) = 8.46
A (e Ty (PR (846)
Recalling the identity
ko
I[(x)F1-x)= pr— (8.47)
we can express (8.46) in the alternative form
T(j»+ 1)
P,(0) = ————cos(irm 8.48
0= iy ) (8.48)

When » is a nonnegative integer, we find that (8.48) reduces to the results
that we previously derived for the Legendre polynomials (see problem 22).

Various recurrence formulas for P,(x) can be derived by expressing this
function in its series representation, or by using properties of the hypergeo-

*See T.M. MacRobert, Spherical Harmonics, Oxford: Pergamon, 1967, Chapter V1.



metric function. For example, it can be verified that

(r+ 1P, (x)—2v+ 1)xP,(x)+vP,_;(x)=0 (8.49)
P/ y(x) = xP)(x) = (v + 1) P,(x)
(8.50)

xP/(x) = P/_y(x) =wP(x)  (851)
and so forth.

The Legendre functions P,(x) are important for theoretical purposes in
the general study of spherical harmonics. Their properties are important
also from a more practical point of view, since these functions are promi-
nent in solving Laplace’s equation in various coordinate systems, such as
toroidal coordinates.*

EXERCISES 8.4

In problems 1-8, compare series to deduce the result.
1. 1 = F(0, b; c; x).
. (1 —x)"%= F(a,b; b; x).
. log(l — x) = —xF(1,1;2; x).

1+ x
1—x

=2xF(},1; 3; x%).

. arctan x = xF(3,1; 3; x?).

.1+ x)1 - x)"2"! = FQa,a + 1; a; x).

AQ A+ V)T 4 5A - Vx) T2 = Fa,a + 13 15 x).

[1 +/1—x ]“2"
2

2
3
4. log
5
6
7

8. = F(a — %, a;2a; x).

9. Show that
K(x)=47F(3,5;1;x?)
where K(x) is the complete elliptic integral of the first kind defined by

K(x) = [)ﬂ/z(l - xzsinzqﬁ)_l/2 do

10. Show that
E(x) = dnF(~ 1.1 1;x?)

*See Chapter 8 in N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.



11.

12.

13.

14.

where E(x) is the complete elliptic integral of the second kind defined by

E(x) = f"/z(l — xsin%)"* do
0
Show that the associated Legendre functions

m = — y2 '”/Zﬂ_
satisfy the relation
(n+ m)!

_ A\ 1 2y
2"(n — m)'m! (1=x%)

P"(x)=

XF(m—n,m+n+l;m+1;—1——;—£)

Show that the Chebyshev polynomials of the first kind

(=) (n—k 1)

T(x)= X

) n—2k 1
E Tk 2 Tenz

satisfy the relation
1 1-—x
T,(x) = F(_”»"’ bR “2—)

Show that the Chebyshev polynomials of the second kind
[n/2]

ux =T (" F)nren

k=0
satisfy the relation

U(x) = (n+ DF(=nn+ 23157

Show that the Gegenbauer polynomials
[n/2]
A v) — -A\(n-— k) o\ n—2k
)= X (, )" ke

satisfy the relations
A n (}‘)" 1 2
(a) CZn(x)=(_1) T!—F(_n,}\+n;f;x )’

® i) = () L 4

(c) C,,*(x)=(” + Zn)\_ 1)F(—n,2)\+ A+ i 1 ;x)
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25.

Show that P,(x) = P_,_;(x).
Hint: Recall that F(a, b; c; x) = F(b, a; c; x).

By making the substitution x =1 — 2z in the generalized form of
Legendre’s equation

1-x*)y"=2xy'+v(v+1)y=0

show that it transforms to Gauss’ hypergeometric equation and thus

deduce that y = F( -r,v+1;1; % is one solution of the gener-
alized Legendre equation.
. Show that
]. 2 m/2 . 2k
— = sin“¢de, k=0,1,2,...
k! "T(%)k'/o pae

and then, by expressing P,(x) in its series representation (problem 18),
deduce that

P,(x) = %j:/zF(—v,v+ 1;%; lgxsinng)dgb



Legendre Polynomials and
Related Functions

4.1 Introduction

The Legendre polynomials are closely associated with physical phenomena
for which spherical geometry is important. In particular, these polynomials
first arose in the problem of expressing the Newtonian potential of a
conservative force field in an infinite series involving the distance variables
of two points and their included central angle (see Section 4.2). Other
similar problems dealing with either gravitational potentials or electrostatic
potentials also lead to Legendre polynomials, as do certain steady-state
heat-conduction problems in spherical-shaped solids, and so forth.

There exists a whole class of polynomial sets which have many proper-
ties in common, and for which the Legendre polynomials represent the
simplest example. Each polynomial set satisfies several recurrence formulas,
is involved in numerous integral relationships, and forms the basis for series
expansions resembling Fourier trigonometric series where the sines and
cosines are replaced by members of the polynomial set. Because of all the
similarities in these polynomial sets, and because the Legendre polynomials
are the simplest such set, our development of the properties associated with
the Legendre polynomials will be more extensive than similar developments
in Chapter 5, where we introduce other polynomial sets.

In addition to the Legendre polynomials, we will present a brief discus-
sion of the Legendre functions of the second kind and associated Legendre
functions. The Legendre functions of the second kind arise as a second



solution set of Legendre’s differential equation, and the associated functions
are related to derivatives of the Legendre polynomials.

4.2 The Generating Function

Among other areas of application, the subject of potential theory is con-
cerned with the forces of attraction due to the presence of a gravitational
field. Central to the discussion of problems of gravitational attraction is
Newton’s law of universal gravitation:

“Every particle of matter in the universe attracts every other particle with a
force whose direction is that of the line joining the two, and whose
magnitude is directly as the product of their masses and inversely as the
square of their distance from each other.”

The force field generated by a single particle is usually considered to be
conservative. That is, there exists a potential function V such that the
gravitational force F at a point of free space (i.e., free of point masses) is
related to the potential function according to

F=-vV (4.1)

where the minus sign is conventional. If r denotes the distance between a
point mass and a point of free space, the potential function can be shown to
have the form*

~ | =

v(r) = (4.2)
where k is a constant whose numerical value does not concern us. Because
of spherical symmetry of the gravitational field, the potential function V'
depends only upon the radial distance r.

Valuable information on the properties of potentials like (4.2) may be
inferred from developments of the potential function into power series of
certain types. In 1785, A.M. Legendre published his “Sur l'attraction des
sphéroides,” in which he developed the gravitational potential (4.2) in a
power series involving the ratio of two distance variables. He found that the
coefficients appearing in this expansion were polynomials that exhibited
interesting properties.

In order to obtain Legendre’s results, let us suppose that a particle of
mass m is located at point P, which is a units from the origin of our

*See O.D. Kellogg, Foundations of Potential Theory, New York: Dover, 1953, Chapter III.



Figure 4.1

coordinate system (see Fig. 4.1). Let the point Q represent a point of free
space r units from P and b units from the origin O. For the sake of
definiteness, let us assume b > a. Then, from the law of cosines, we find the
relation

r?=a?+ b?> — 2abcos¢ (4.3)

where ¢ is the central angle between the rays OP and OQ. By rearranging
the terms and factoring out b2, it follows that

r2=b2[1 —2%cos4> +(%)2], a<b (4.4)
For notational simplicity, we introduce the parameters
t= %, X = cos¢ (4.5)
and thus, upon taking the square root,
r=b(1-2xt+12)"? (4.6)

Finally, the substitution of (4.6) into (4.2) leads to the expression
=%(1—2xt+t2)_1/2, 0<r<1 (4.7)

for the potential function. For reasons that will soon be clear, we refer to
the function w(x, t) = (1 — 2xt + t2)~1/2 as the generating function of the
Legendre polynomials. Our task at this point is to develop w(x,t) in a
power series in the variable .

4.2.1 Legendre Polynomials

From Example 6 in Section 1.3.2, we recall the binomial series

(1-u)?= f; (‘n%)(—l)"u", lu < 1 (4.8)

n=0



Hence, by setting u = #(2x — t), we find that

w(x,t) = (1= 2xt +¢2)""?
_ 5 (‘n%)(—l)"t"(zx — )" (4.9)

n=0

which is valid for |2xt — ¢?| < 1. For |t| < 1, it follows that |x| < 1. The
factor (2x — ¢)” is simply a finite binomial series, and thus (4.9) can further
be expressed as

w(x,t) = ):_0( - )(—1)"t"kz=;0(Z)(—l)k(zx)"‘kzk

or

W)=Y 3 (;%)(Z)(—l)”k(zx)""‘w (4.10)

n=0 k=0

Since our goal is to obtain a power series involving powers of ¢ to a single
index, the change of indice n - n — k is suggested. Thus, recalling Equa-
tion (1.18) in Section 1.2.3, i.e.,

© n o [n/2]
2 Z Ak = Z Z A2k k
n=0 k=0 n=0 k=0

we see that (4.10) can be written in the equivalent form
o ([n/2] 1 —k 5
v = T (AR e @
n=0\k=0\n—K k

The innermost summation in (4.11) is of finite length and therefore
represents a polynomial in x, which happens to be of degree n. If we denote
this polynomial by the symbol

ne =% (e

k=0 \Nn —

then (4.11) leads to the intended result
w(x,t) =Y P(x)t", |x|<1, Jf<1 (4.13)
n=0
where w(x,t) = (1 — 2xt + t?)" /2,

The polynomials P,(x) are called the Legendre polynomials in honor of
their discoverer. By recognizing that [see Equation (1.27) in Section 1.2 and



Equation (2.25) in Section 2.2.2]

EIRETE

- (—1)"———-r'f!"ré§)
_(=1"C@n)
) (4.14)

it follows that the product of binomial coefficients in (4.12) is

P e oz )

and hence, (4.12) becomes

U2 (—1)*(2n — 2k)1x" 2

P,(x) = EO 27k!(n — k)!(n — 2k)!

(4.16)

The first few Legendre polynomials are listed in Table 4.1.

Making an observation, we note that when » is an even number the
polynomial P,(x) is an even function, and when n is odd the polynomial is
an odd function. Therefore,

P(-x)=(-1)"P/(x), n=0,1,2,... (4.17)

The graphs of P,(x), n=0,1,2,3,4, are sketched in Fig. 4.2 over the
interval -1 < x < 1.

Returning now to Equation (4.7) with x = cos¢ and ¢t = a/b, we find
that the potential function has the series expansion

v=ky Pn(cos¢)(£) . a<b (4.18)
b =, b
In terms of the argument cos ¢, the Legendre polynomials can be expressed

Table 4.1 Legendre polynomials

Py(x)=1

P(x)=x

Py(x)=1(3x? - 1)

Py(x) = 3(5x° - 3x)

P,(x)= 3(35x* — 30x2 + 3)
Py(x) = $(63x° — 70x3 + 15x)




P,(x)

-1+

Figure 42 Graph of P,(x), n=0,1,2,3,4

as trigonometric polynomials of the form shown in Table 4.2 (see problem
3).

In Fig. 4.3 the first few polynomials P,(cos¢) are plotted as a function
of the angle ¢.

4.2.2 Special Values and Recurrence Formulas

The Legendre polynomials are rich in recurrence relations and identities.
Central to the development of many of these is the generating-function

Table 4.2 Legendre trigonometric polynomials.

Py(cos o) =1
P;(cos ) = cos ¢
P,(cos¢) = 1(3cos?p — 1)
= 1(Bcos2¢ + 1)
Py(cos ¢) = L(5cos’p — 3cos¢)
= $(5cos3¢ + 3cos o)




-0.5

Figure 43 Graph of P,(cos¢), n =0,1,2,3,4

relation

(1-2xt+13)2 =Y P(x)r", |x|<1, |ff<1 (4.19)
n=0

Special values of the Legendre polynomials can be derived directly from
(4.19) by substituting particular values for x. For example, the substitution
of x =1 yields

1-2t+2)""=(1-1)"= i P,(1)1" (4.20)
n=0

However, we recognize that (1 — ¢)~! is the sum of a geometric series, so
that (4.20) is equivalent to

S =Y ) (4.21)
n=0

n=0

Hence, from the uniqueness theorem of power series (Theorem 1.13), we can
compare like coefficients of ¢” in (4.21) to deduce the result

P(1)=1, n=0,1,2,... (4.22)
Also, from (4.17) we see that

P(-1)=(-1)", n=01,2,... (4.23)



The substitution of x = 0 into (4.19) leads to

1+ = % p(0)" (4.24)
n=0
but the term on the left-hand side has the binomial series expansion
o0
1+)"V2=Y% ( ‘n%)rz" (4.25)
n=0

Comparing terms of the series on the right in (4.24) and (4.25), we note that
(4.25) has only even powers of t. Thus we conclude that P,(0) =0 for
n=173,5,..., or equivalently,

P2n+l(0)=09 n=0’192y--- (426)

Since all odd terms in (4.24) are zero, we can replace n by 2n in the series
and compare with (4.25), from which we deduce

1 -1)"(2n)!
P, (0) = ( 5) - ()—(Z) n=01,2,... (427)
n 22(n!)
where we are recalling (4.14).
Remark: Actually, (4.26) could have been deduced from the fact that

P,,.,(x) is an odd (continuous) function, and therefore must necessarily
pass through the origin. (Why?)

In order to obtain the desired recurrence relations, we first make the
observation that the function w(x,t) = (1 — 2xt + t?)~1/? satisfies the
derivative relation

(1 =2xt+ )2 4 (1= x)w =0 (4.28)
ot

Direct substitution of the series (4.13) for w(x, t) into (4.28) yields

(1 —2xt + t?) i nP,(x)t" ' +(t — x) i P(x)t"=0
n=0 n=0

Carrying out the indicated multiplications and simplifying gives us

00 00
Y nP(x)t" ' —2x Y nP,(x)t"
n=0 n=0——"
n—-n-1
00 L) 00
+ Y nP (x)t" 4+ Y P(x)"tP—x Y P(x)t"=0
n=0 n=0 n=0"""
n—on-2 n—-n-—2 n—-n-1

(4.29)



We now wish to change indices so that powers of ¢ are the same in each
summation. We accomplish this by leaving the first sum in (4.29) as it is,
replacing n with n — 1 in the second and last sums, and replacing n with
n — 2 in the remaining sums; thus, (4.29) becomes

[oe]

Y nP,(x)t" ! —2x i (n=1)P,_,(x)t" '+ éz(n —2)P,_,(x)" !

n=0 n=1

[ee] o0
+ T P () = x TP (x)" =0
n=2 n=1
Finally, combining all summations, we have

. [18,(x) = 2x(n = )2, () +(n = D2y ()
+P,_5(x) = xP,_(x)] 1" 1 + Pi(x) — xPy(x) =0 (4.30)

But P(x) — xPy(x) = x — x = 0, and the validity of (4.30) demands that
the coefficient of 1"~ be zero for all x. Hence, after simplification we arrive
at

nP,(x)—2n—-1)xP,_(x)+(n—1)P,_,(x) =0, n=23,4,...
or, replacing n by n + 1, we obtain the more conventional form
(n+ 1P, (x)—2n+ 1)xP,(x) +nP,_;(x)=0 (4.31)

where n = 1,2,3,....

We refer to (4.31) as a three-term recurrence formula, since it forms a
connecting relation between three successive Legendre polynomials. One of
the primary uses of (4.31) in computations is to produce higher-order
Legendre polynomials from lower-order ones by expressing them in the
form

Pon(x) = (Z 38,00 ~ (2 )P (6) (43)

where n = 1,2,3,... . In practice, (4.32) is generally preferred to (4.16) in
making computer calculations when several polynomials are involved.*

*Actually, to avoid excessive roundoff error in making computer calculations, Equation
(4.32) should be rewritten in the form

xP,(x) = P (x)

Pn+l(x)=2xpn(x)_Pn—l(x)_ n+1



A relation similar to (4.31) involving derivatives of the Legendre poly-
nomials can be derived in the same fashion by first making the observation
that w(x, t) satisfies

(1 —2xt + tz)% -w=0 (4.33)

where this time the differentiation is with respect to x. Substituting the
series for w(x, t) directly into (4.33) leads to

o0 0
(1T-2xt+2)Y P(x)t"= Y P(x)t"*'=0
n=0 n=0
or, after carrying out the multiplications,

Y P(x)"=2x ¥ P(x)"h+ X P(x)1"t = ) P (x)1"t =0
n=0 n=0 n=0

n=0 —_——————

n—-n-1 n—-n-2 n—-n-1

(4.34)
Next, making an appropriate change of index in each summation, we get
Y [Bi(x) = 23Ry (x) + Po(x) = Py (x)]1" =0 (435)
n=2
where all terms outside this summation add to zero. Thus, by equating the
coefficient of ¢” to zero in (4.35), we find
P/(x) —2xP/_(x) + P]_,(x) — P,_,(x) =0, n=23,4,...
or, by a change of index,
Pl (x) = 2xP/(x) + P/_y(x) = P,(x) =0 (4.36)

forn=1,2,3,....
Certain combinations of (4.21) and (4.36) can lead to further recurrence
relations. For example, suppose we first differentiate (4.31), i.e.,

(n+ 1P/, (x)—2n+1)P,(x) —(2n + 1)xP)(x) + nP/_(x) =0

(4.37)

From (4.36) we find
P (x) = P,(x) + 2xP/(x) — P/, ,(x) (4.38a)
P! (x) = P,(x) + 2xP/(x) — P/_,(x) (4.38b)

and the successive replacement of P,_,(x) and P, ,(x) in (4.37) by (4.38a)



and (4.38b) leads to the two relations
Pl(x) - xP)(x) = (n + 1)P,(x) (4.39)
xP!(x) — P]_,(x) = nP,(x) (4.39b)
The addition of (4.39a) and (4.39b) yields the more symmetric formula
Plu(x) = PLy(x) = (2n + 1) Py(x) (4.40)

Finally, replacing n by n — 1 in (4.39a) and then eliminating the term
P)_,(x) by use of (4.39b), we obtain

(1 = x?)P/(x) =nP,_,(x) — nxP,(x) (4.41)

This last relation allows us to express the derivative of a Legendre poly-
nomial in terms of Legendre polynomials.

4.2.3 Legendre’s Differential Equation

All the recurrence relations that we have derived thus far involve successive
Legendre polynomials. We may well wonder if any relation exists between
derivatives of the Legendre polynomials and Legendre polynomials of the
same index. The answer is in the affirmative, but to derive this relation we
must consider second derivatives of the polynomials.

By taking the derivative of both sides of (4.41), we get

L[ - ) Bi(x)] = nP,_y(x) = nE,(x) = mxp(x)

and then, using (4.39b) to eliminate P,_,(x), we arrive at the derivative
relation

L1~ ) P(x)] + n(n + 1)B,(x) = 0 (442)

which holds for n = 0,1, 2,... . Expanding the product term in (4.42) yields

(1 =x?)P/(x) —2xP/(x) +n(n+1)P,(x)=0 (4.43)

and thus we deduce that the Legendre polynomial y = P,(x) (n=
0,1,2,...) is a solution of the linear second-order DE

(1-x¥)y”=2xy'+n(n+1)y=0 (4.44)

called Legendre’s differential equation.*
Perhaps the most natural way in which Legendre polynomials arise in
practice is as solutions of Legendre’s equation. In such problems the basic

*In Section 4.6 we will discuss other solutions of Legendre’s equation.



model is generally a partial differential equation. Solving the partial DE by
the separation-of-variables technique leads to a system of ordinary DEs,
and sometimes one of these is Legendre’s DE. This is precisely the case, for
example, in solving for the steady-state temperature distribution (indepen-
dent of the azimuthal angle) in a solid sphere. We will delay any further
discussion of such problems, however, until Chapter 7.

Remark: Any function f,(x) that satisfies Legendre’s equation, i.e.,

(1= x2) £/ (x) = 2x4/(x) + n(n + 1) f,(x) = 0

will also satisfy all previous recurrence formulas given above, provided that
f,(x) is properly normalized. Consequently, any further solutions of
Legendre’s equation can be selected in such a way that they automatically
satisfy the whole set of recurrence relations already derived. The set of
solutions Q,(x) introduced in Section 4.6 is a case in point.

EXERCISES 4.2
1. Use the series (4.16) to determine P,(x) directly for the specific cases
n=0,1,2 3,4, and 5.

2. Given that P,(x) = 1 and P,(x) = x, use the recurrence formula (4.33)
to determine P,(x), Py(x), and P,(x).

3. Verify that

(a) Py(cosg) = 1.

(b) P,(cosp) = cos .

(c) Py(cos¢) = (3cos2¢ + 1).

(d) Py(cos¢) = §(5cos3¢ + 3cos o).

4. Given the function w(x, t) = (1 — 2xt + t2)~1/2,

(a) show that w(—x, —t) = w(x, ).
(b) Use the result in (a) and the generating function relation (4.19) to
deduce that (for n = 0,1,2,...)

P,(=x) = (-1)"P,(x).
5. Verify the special values (n = 0,1,2,...)
@@ P)=1in(n+1), (b)) P(-1)=(-1)"""in(n+1)
6. Verify the special values (n = 0,1,2,...)

/ ’ (_1)"(2’1 + 1)
(@) P;,(0)=0. () P;,..(0) = _____22'1_(2:).



7.

10.

11.

Establish the generating-function relation
o0
1-2xt+:2)7'= Y U(x)", Jii<1, |x|<1
n=0

where U, (x) is the nth Chebyshev polynomial of the second kind* defined
by

- =ty

) n—2k
Z h(n—ziy )

. Given the generating function w(x, t) = (1 — 2xt + t?)7},

(a) show that it satisfies the identity
(1 - 2xt + tz)%—‘;) +2(t = x)w=0

(b) Substitute the series in problem 7 into the identity in (a) and derive
the recurrence formula (for n = 1,2,3,...)

Un+1(x) - 2xUn(x) + Un-l(x) =0

. Show that the generating function in problem 8 also satisfies the

identity

(1 —2xt+t2)%¥ —2tw=20

(a) and deduce the relation (for n = 1,2,3,...)
Ulia(x) = 2xU/(x) + Uy (x) = 2U,(x) = 0
(b) Show that (a) can be obtained directly from problem 8(b) by
differentiation.
Using the results of problems 7-9, show that
@ (1 — x)U,/(x) = —nxU,(x) + (n + DU, _,(x),
(b) 1 — xHU(x) — 3xU(x) + n(n + 2)U,(x) = 0.
Using the Cauchy product of two power series (Section 1.3.3), show that

xt 00
e

= Ye(x)", <1
1-—1¢
n=0

where e,(x) is the polynomial equal to the first n + 1 terms of the

*We will discuss these polynomials further in Section 5.4.2.



12.

13.

14.

15.

16.

Maclaurin series for e”*, i.e.,

n
e(x=z"—
k=0

x

Given the generating function w(x, ) = e* /(1 — 1),
(a) show that it satisfies the identity
a- t)‘;—‘:’ -[x1-t)+1]w=0
(b) Substitute the series in problem 11 into the identity in (a) and derive
the recurrence formula (n = 1,2, 3,...)
(n+ e, 1 (x)—(n+1+x)e,(x)+xe,_,(x)=0
(c) Show directly from the series definition of e,(x) that
e/(x)=-e,_,(x), n=1,23,...

Using the results of problems 11 and 12, show that y =e,(x) is a
solution of the second-order linear DE

xy" —(x+n)y +ny=0

Make the change of variable x = cos¢ in the DE
1 d{(.  dy _
Snd 49 (sm¢d¢) +n(n+1)y=0

and show that it reduces to Legendre’s DE (4.44).

Determine the values of n for which y = P,(x) is a solution of
(@ 1 —x*)y” —2xy"+n(n+ 1)y =0, y0)=0, y(1) =1,

) 1 —x2)y”"=2xy" +n(n+1)y=0, y(0)=0, y(1)= 1.

When a tightly stretched string is rotating with uniform angular speed w
about its rest position along the x-axis, the DE governing the displace-
ments of the string in the vertical plane is approximately

d
TGy ] +pe’y =0

where T(x) is the tension in the string and p the linear density
(constant) of the string. If T(x) =1 — x? and the boundary condition
y(—1) = y(1) is prescribed, determine the two lowest possible critical
speeds w. What shape does the string assume in the vertical plane in
each case?

Hint: Assume that pw? = n(n + 1).



17.

18.

)

An electric dipole consists of electric charges ¢ and — ¢ located along
the x-axis as shown in the figure above. The potential induced at point
P due to the charges is known to be (r > a)

-l

r n

where k is a constant. Express the potential in terms of the coordinates
r and ¢ and show that it leads to an infinite series involving Legendre
polynomials. Also show that if only the first nonzero term of the series
is retained, the dipole potential is

2ak
V= azqcos(ﬁ, r>a
r

The electrostatic potential induced at point P for the array of charges
shown in the figure below is given by (r > a)

r r r

where k is constant. Expressing V entirely in terms of r and ¢, show

r




19.

20.

21.

22.

25.

that the first nonzero term of the resulting series is

kq

2
y =4 (3cos2¢ + 1), r>a
2r3

Show that the even and odd Legendre polynomials have the series
representations (for n = 0,1,2,...)

(-1)" Z (-1)“@2n + 2k - 1) L2k
21U E Q) (n+ k= D)(n— k)T

D" S (CDf@r 2k ) L,
() Porer() = "0 2 Gk w Di(n + 00— k)1

Derive the identity (n = 0,1,2,...)

@) Pp,(x)=

(1 = x*)P/(x) = (n + )[xP,(x) = P,.1(x)]
Show that

(@ X 2k + DP(x)= P, (x) + P/(x),

k=0
n

(b) (1 = x) ¥ 2k + )P (x) = (n + D[P,(x) = P, 1(x)].
k=0

Show that

(a) i [xP/(x) — nP,(x))t" = t2(1 — 2xt + t?)™3/2,
n=0
w [1/2)

b Y Y @n—4dk+1)P,_,, (x)t"=1 — 2xt + t2)" ¥,
n=0 k=0

. Using the result of problem 22, deduce that

[3(n-2)]
xP/(x) —nP,(x)= Y (2n—4k—=3)P,_, ,.(x)
k=0

. Show that

[5(n=1)
Pn’(x) = Z (2n — 4k — l)Pn—l—Zk(x)
k=0

Show that

5 @n+ )P (x)" = (1 - )1 — 231 + 12) "2



4.3 Other Representations of the Legendre Polynomials

For each n, the Legendre polynomials can be defined either by the series

U2 (—p*@en-28) .

Fa(x) = EO 27k (n — k)(n — 2k)1 (4.45)
or by the recurrence formula
Per() = (2 )en (0 - () Ba(x) (449)

where Py(x) = 1 and P;(x) = x. In some situations, however, it is advanta-
geous to have other representations from which further properties of the
polynomials are more readily found.

4.3.1 Rodrigues’s Formula

A representation of the Legendre polynomials involving differentiation is
given by the Rodrigues formu[a

1
2mn! 'dx

In order to verify (4.47), we start with the binomial series

P,(x) =

n=0,1,2,... (4.47)

-~ (= 1) n!
(x? Z K (n— k)

and differentiate n times. Noting that

1
a" ____’n'__xm—n, n<m
Q;;Xm = { (m - n)!

0, n>m
we infer

d" 12— 1y = "f] (-1)*n'(2n - 2%)!

dx" w0 K!(n— k) (n—2k)'
=2"n'P,(x)

from which (4.47) now follows.

4.3.2 Laplace Integral Formula

An integral representation of P,(x) is given by

P.(x) = %j:[x +(x* = 1)"%cosg|"dp, n=0,1,2,... (448)



which is called the Laplace integral formula. This relation is easily verified
for n = 0 and n = 1, but more difficult to prove in the general case.

Let us call the integral I and expand the integrand in a finite binomial
series to get

I= %foﬂ[x +(x2 = 1)"*cos 9| " do

= H)ﬂéo(;:)x"‘*(xz - 1) cos*s do

n\ k(.2 k2l ™oy
-1 — d 449
T ()62 =072 [eostodo (4.49)

The residual integral in (4.49) can be shown to satisfy
L - _
WLcos 6de =0, k=1,3,5... (4.50)
and for even values of k we set kK = 2 to find
L ok do = 2 [ cos?
7Tfocos bdo = '”fo cos“p do

_ @)
221
The verification of (4.50) and (4.51) is left to the exercises (see problems

5 and 6). Thus, all odd terms in (4.49) are zero, and by setting k = 2 j and
using (4.51), we see that

j=0,1,2,... (4.51)

[n/2] n!xn—Zj(XZ _ 1)/
j=0 2%(n = 2,)1(j!)’

What remains now is to show that (4.52) is a series representation of P,(x),
and this we leave also to the exercises (problem 7).

I= (4.52)

4.3.3 Some Bounds on P,(x)

One of the uses of the Laplace integral formula (4.48) is to establish some
inequalities for the Legendre polynomials which furnish certain bounds on
them. Of particular interest is the interval |x| < 1, but since the integrand in
(4.48) 1s not real for this restriction on x, we first rewrite (4.48) in the form
(i*= -1

P(x)= %fo"[x +i(1 — x2)coso|"do,  |x|<1 (4.53)



Now, using the fact that the absolute value of an integral is less than or
equal to the integral of the absolute value of the integrand, we get

1B,(x)] = = ["|x + i1 — x)cos o do (4.54)
T Jo

From the algebra of complex numbers, it is known that |a + ib| = (a* +
b?)1/2, and thus for |x| < 1 it follows that

|x +i(1 - xz)l/zcosqbr = [x? +(1 = x?)cos?p| "
= (cos%p + xzsinzc;b)"/2
< (cos% + sin%)"?
<1
Returning now to (4.54), we have shown that
P s 1 [(de
or
|P(x)| <1, |x|<1, n=0,1,2,... (4.55)
which is our intended result. The equality in (4.55) holds only when

= +1.
Another inequality, less obvious and more difficult to prove, is given by

P,(x) < [ Ix] <1, n=1,2,3,... (4.56)

- 1/2
2n(1-x%)| ’

Again the Legendre integral representation is used to derive this inequality,
although we will not do so here (see problem 10).

EXERCISES 4.3

1. Using Rodrigues’s formula (4.47), derive the identities (n = 1,2,3,...)
@ (n+DP,,(x)=2n + DxP,(x) — nP,_(x),
(b) P/(x) = xP/_i(x) + nP,_,(x),
(¢) xP,)(x) = nP,(x) + P,_(x),
(@) P/, y(x) = P/_y(x)=(2n + )P (x).
2. Representing P,(x) by Rodrigues’s formula (4.47), show that

[ P(x)ax=0, n=123,..
-1



. Using Rodrigues’s formula (4.47) and integration by parts, show that

1 2
f_l[P,,(x)]zdx=2n—+T, n=0,1,2,...

. By defining v = (x2 — 1)", show that
dv
— x2)y 2= =
(@ (1-x )dx + 2nxv = 0.

(b) Differentiating the result in (a) n + 1 times and defining u = v(",
show that u satisfies Legendre’s equation

(1-=x>)u"-2xu' +n(n+1u=0
. Verify that

lfwcosz”“&?d0=0, n=0,1,2,...
T J0

. Verify that

l 4 2n — Z /2 2n
(a) Wj(; cos*"8df = 7,/(; cos“"0dé.
(b) Using properties of the gamma function, show that

" !
2 ["cos™ 0.8 = B S
mJo 22n(n!)

. Show that the generating function for the Legendre polynomials can be
written in the form

2(x?-1) 2
@ Q-2xt+tH V2=1-xt)"}1 - —]
(1 - xt)?
(b) Using the result in (a), expand the expression on the right in powers
of t. Then, by comparing your result with Equation (4.19) in Section
4.2.1, deduce that

, ( ) ~ ['g] n!xn-2k(x2 _ 1)"
n xX)= — 2k _ ] ] 2
k=0 2*(n — 2k)'(k!)

. (Jordan inequality) 1f 0 < ¢ < 7 /2, show that
. 2¢
sing > -
Hint: Prove that (sin¢)/¢ is a decreasing function on the given interval

by showing its derivative is always negative. Hence, the minimum value
occurs at ¢ = 7 /2.



9.

10.

11.

12.

Derive the inequality
1—-y<e™, y>0

By using the Laplace integral formula (4.48), show that for |x| < 1,

(a) |P,,(X)| < %f"/z[l _(1 _ xz)sin2¢.]"/2d¢.
0
(b) Show that application of the Jordan inequality (problem 8) reduces
(a) to

2 (a2 4¢%*(1 - x2) |2
|Pn(x)|3;f0 [1——(—;‘;——)] d¢

(c) Making use of the inequality in problem 9 together with an ap-
propriate change of variables, show that

2 ®© 2
[2n(1 —xz)]l/z'/(; e

| P (x)] <

and from this result, deduce that (n = 1,2,3,...)

- 1/2
P(x)|<|m———| ., x| <1
|P,(x)| [Zn(l_xz)] |x|

Starting with the identity
(1 = x2) B/(x) = nP,_,(x) — nxB,(x)

show that

’ n,_ =
|P)(x)| < T x| <1, n=1,2,3,...
Starting with the identities
2
-1
P,(x) = xP, (x) + "= P/ ,(x)

Pn’(x) = XPnl—l(x) + nPn—l(x)
(a) show that (forn = 1,2,3,...)

(2] +[P(2)]* =

(b) From (a), establish the inequality

1—x2

n2

L2 (] + B (]

R Y

(¢) From (b), deduce that
|P(x)| <1, |x|<1



4.4 Legendre Series

In this section we wish to show how to represent certain functions by series
of Legendre polynomials, called Legendre series. Because the general term
in such series is a polynomial, we can interpret a Legendre series as some
generalization of a power series for which the general term is also a
polynomial, viz., (x — a)". However, to develop a given function f in a
power series requires that the function f be at least continuous and
differentiable in the interval of convergence. In the case of Legendre series
we make no such requirement. In fact, many functions of practical interest
exhibiting (finite) discontinuities may be represented by convergent Legendre
series. Legendre series are only one member of a fairly large and special
class of series collectively referred to as generalized Fourier series, all of
which have many properties in common. In Section 1.5 we encountered
Fourier trigonometric series, which are perhaps the best known members of
this class, and in the following chapters we will come across several other
members of this general class. Besides their obvious mathematical interest, it
turns out that the applications of generalized Fourier series are very
extensive—so much so, in fact, that they involve almost every facet of
applied mathematics.

4.4.1 Orthogonality

Although we have already derived many identitities associated with the
Legendre polynomials, none of these is so fundamental and far-reaching in
practice as is the orthogonality property

f_llP,,(x)Pk(x) dx=0, k#n (4.57)

Remark: It is sometimes helpful to think of (4.57) as a generalization of
the scalar (dot) product of vector analysis. In fact, much of the following
discussion has a vector analog in three-dimensional vector space.

To prove (4.57), we first take note of the fact that both P,(x) and P,(x)
satisfy Legendre’s DE (4.42), and thus we write

7145[(1 = x?)P{(x)] + k(k + 1) P(x) = 0 (4.58a)
%[(1 = x*)P/(x)] + n(n + 1)P,(x) =0 (4.58b)

If we multiply the first of these equations by P,(x) and the second by



P,(x), subtract the results, and integrate from —1 to 1, we find
J P (- x?) Py(x)] dx - [RACF= [0 - x?)By(x)] ax
+[k(k+1)—n(n+ l)]f1 P,(x)P,(x)dx=0
-1
(4.59)
On integrating the first integral above by parts, we have
0
1 d ’ ’ 1
S ) [ = 2 Pi(o)] dx = £,(x) (&) Pi(0)]-

= [ (=2 B0 Pi(x) ax
(4.60a)

and similarly for the second integral,

f_‘lpk(x)d—‘i[a — x?)P/(x)] dx = —f_ll(l — ) P/(x)Pl(x) dx
(4.60b)

and therefore the difference of these two integrals is clearly zero. Hence,
(4.59) reduces to

[k(k+1)—n(n+ 1)]/_11P,,(x)Pk(x)dx =0

and since k # n by hypothesis, the result (4.57) follows immediately.
When k = n, the situation is different. Let us define

4, = f_ll[P,,(x)]zdx (4.61)

and replace one of the P,(x) in (4.61) by use of the identity [replace n with
n — 1in (4.32)]

2n —1 n—1
Pn(x) = XPn—l(x) - TPn—Z(x) (462)
to get
A= [ B[ 2 (e Lp, o)) ax
-1
0
=221 e (x)p, "L R (x) dx
—1 -1

(4.63)



The second integral above vanishes because of the orthogonality property
(4.57). To further simplify (4.63), we rewrite (4.62) in the form

XB(x) = 3 [(n + 1) By (2) + nPy_y ()]

and substitute it into (4.63), from which we deduce

0
2n—1\( n+1 1
An_( )(2n+l)f_1P"+l(x n—l(x)dx

n

2n—1 1
+ 2" + 1 fnl[Pn—l(x)]zdx
or

_2n-1
nT p+ 1700

n=273,4,... (4.64)
Equation (4.64) is simply a recurrence formula for A,. Using the fact that

A, = f_‘l[Po(x)]zdx - f_lldx -2

and
1 2 1, X
A = P (x)]|"dx = x“dx = %
= [ AP ax = [ arax =
Equation (64) yields
Ay=3X5X2=1%
Ay =§xIxix2=3

while in general it can be verified by mathematical induction that

_2n—lx2n—3x2n—5x.” 1 2
" 2n+1 " 2n—-1" 2n-3 3 T 2n+1°
n=0,1,2,... (4.65)

Thus, we have derived the important result

YIP()Pde= =2, n=01,2,... (4.66
-1 2n + 1

44.2 Finite Legendre Series

Because of the special properties associated with Legendre polynomials, it
may be useful in certain situations to represent arbitrary polynomials as



linear combinations of Legendre polynomials. For example, if g, (x) de-
notes an arbitrary polynomial of degree m, then, since Py(x),
P(x),..., P,(x) are all polynomials of degree m or less, we might expect to
find a representation of the form*

gm(x) = coPo(x) + ;P (x) + -+ +c, P, (x) (4.67)
Let us illustrate with a simple example.
Example 1: Express x? in a series of Legendre polynomials.
Solution: We write
x2 = cyPy(x) + c; Pi(x) + ¢, Py (x)
=co+ x + ¢, 5(3x* = 1)
= (co = 362) + eyx + Jopx?
Now equating like coefficients, we see that
Co—36,=0, ¢ =0, 3c,=1
from which we deduce ¢, = §, ¢, = 0, and ¢, = 3. Hence,
x? = §Py(x) + 3Py(x)
When the polynomial ¢, (x) is of a high degree, solving a system of
simultaneous equations for the ¢’s as we did in Example 1 is very tedious. A

more systematic procedure can be developed by using the orthogonality
property (4.57). We begin by writing (4.67) in the form

an(x) = X 6,7, (x) (4.69

Next, we multiply both sides of (4.68) by P,(x), 0 < k < m, and integrate
the result termwise (which is justified because the series is finite) from —1 to
1 to get

1 m 1 0 (n + k)
[ a0 dx = Lo, [ PMF()ax (469
_ noo -

Because of the orthogonality property (4.57), each term of the series in

*Two polynomials can be equated if and only if they are of the same degree.



(4.69) vanishes except the term corresponding to n = k, and here we find

f_llqm(x)Pk(x)dx = Ckf_II[Pk(X)]de

= e 3657)
=%\ 2%k + 1

where the last step is a consequence of (4.66). Hence, we deduce that
(changing the dummy index back to n)

c,=(n+ %)f_llqm(x)P,,(x)dx, n=0,1,2,...,m (4.70)

Remark: If the polynomial ¢,(x) in (4.70) is even (odd), then only
those ¢, with even (odd) suffixes are nonzero, due to the even-odd property
of the Legendre polynomials (see problems 25 and 26).

As a consequence of the fact that a polynomial of degree m can be

expressed as a Legendre series involving only P,(x) and lower-order
Legendre polynomials, we have the following theorem.*

Theorem 4.1. If g,,(x) is a polynomial of degree m and m < r, then

fl gm(x)P.(x)dx =0, m<r
-1
Proof: Since g,,(x) is a polynomial of degree m, we can write
4n(x) = X c,P,(x)
n=0

Then, multiplying both sides of this expression by P,(x) and integrating
from —1to 1, we get

m ) 0
f_ lqm(x)Pr(x) dx = "E:Oc,,f_ IPM) dx

The largest value of n is m, and since m < r, the right-hand side is zero for
each n [due to the orthogonality property (4.57)], and the theorem is proved.
n

*Theorem 4.1 says that P,.(x) is orthogonal to every polynomial of degree less than r.



4.4.3 Infinite Legendre Series

In some applications we will find it necessary to represent a function f,
other than a polynomial, as a linear combination of Legendre polynomials.
Such a representation will lead to an infinite series of the general form

1= % an(x) (@)

where the coefficients can be formally derived by a process similar to the
derivation of (4.70), leading to

¢, = (n+ %)f_llf(x)P,,(x)dx, n=01,2,... (4.72)

Conditions under which the representation (4.71) and (4.72) is valid will be
taken up in the next section. For now it suffices to say that for certain
functions the series (4.71) will converge throughout the interval —1 < x < 1,
even at points of finite discontinuities of the given function. Series of this
type are called Legendre series, and because they belong to the larger class
of generalized Fourier series, the coefficients (4.72) are commonly called the
Fourier coefficients of the series.

In practice, the evaluation of integrals like (4.72) must be performed
numerically. However, if the function f is not too complicated, we can
sometimes use various properties of the Legendre polynomials to evaluate
such integrals in closed form. The following example illustrates the point.

Remark: Because the interval of convergence of (4.71) is confined to
—1 < x < 1, it really doesn’t matter if the function f is defined outside this
interval. That is, even if f is defined for all x, the representation will not be
valid beyond the interval —1 < x < 1 (unless f is a polynomial).

Example 2: Find the Legendre series for

_ (-1, —-1<x<0
f(x)—{ 1, 0<xx<1

Solution: The function f is an odd function. Hence, owing to the
even-odd property of the Legendre polynomials depending upon the
index n, we note that f(x)P,(x) is an odd function when n is even, and
in this case it follows that (see problem 25)

c,=(n+ %)fjlf(x)Pn(x)dx=0, n=0,2,4,...



For odd index n, the product f(x)P,(x) is even and therefore
¢ = (n+3) [ f(x)P,(x)dx
~1

=(2n+l)f1P,,(x)dx, n=1,3,5,...
0
Let us use the identity [see Equation (4.40)]

l !’ ’
P(x)= 2n—+T[Pn+l(x) — P/ ,(x)]
and set n = 2k + 1, thereby obtaining the result (for k = 0,1,2,...)
1
Cos1 = (4k + 3)] Py (x) dx
0
1
= _/0 [P2,k+2(x) _Pz'k(x)] dx
1
= [sz+2(x) - sz(x)] lo
= sz(O) - sz+z(0)

where we have used the property P,(1) =1 for all n. Referring to
Equation (4.27), we have

(=D @k (=D '@k +2)
22 (k1)? 22k+2[(k + 1)1]?

_(=nten[,, Ck+2)ek+1)
22k(k!)2 22(k + 1)2

_(=1)*(2k)! 2k + 1
B 22k(k!)2 [1 + 2k + 2

(-1)*(2k)'(4k + 3)
226+ et (k + 1)

Cok+1

and thus

f(x)= i (-1)"(2k)!(4k + 3)

P x), -1<xx<1
2o 22K (K + 1) (%)



EXERCISES 44

In problems 1-15, use the orthogonality property and/or any other rela-
tions to derive the integral formula.

1 0, n#1,
1. fnlen(x)dx—{%, n=1.

N

1 2n
. xP (x)P,_(x)dx = ————,n=1,23,....
[ B dx =

ol

fl P(x)P/. (x)dx =2, n=0,1,2,....
-1

te

f‘ xP(x)Py(x) dx = 5 01,2
1

n+1

[

: fl (1 — x2)PA(x)P{(x)dx = 0, k + n.
-1

2"
2n+1°

[=a)

=2+ )P0y dx = n=01,2,....
-1

22

2n+1°
Hint: Let t — 1 in problem 6.

|

: fl (1 — x)"1/2P (x) dx = n=01,2,....
-1

Cd

+
[ %P0 Py (x) dx = 2n(nt 1) g3

-1 (4n® - 1)(2n + 3)’

2n(n + 1)
2n+1)(2n + 3)°

-]

) f‘l(x2 — 1)P,, (X)P/(x)dx = n=1,23,....

2n+l(n!)2
(2n + 1)
Hint: Use problem 31.

10. fl X"P,(x)dx = ,n=012,....
-1

1, , . 0, n + k even,
1. If k <n, f_lp,,(x)Pk(x)dx —{k(k+ . n+ kodd
1 0, k<n,
12. f P,(x)P{(x)dx ={0, k>n,k+ n even,
-1 2, k>n,k+nodd.

13. j(;le,,(x)dx —0,n=123,....

2n(n+1) _

4. [0 0= B) = TR =012

[N



(n+1) n?
2n+ 3 2n—17

2
(2n + 1)

15. fl x*[P,(x)]?dx =
-1
n=012,....
16. Show that the orthogonality relation (4.57) for the functions P,(cos ¢) is
fﬂPn(cos¢)Pk(cos¢)sinq>d¢ =0, k+n
0

In problems 17-21, derive the given integral formula.

17. fO"PZn(cos.p)d¢= L (Zn"),n=o,1,2,....

22'1
(2”)2,n=1,2,3,....

8. [ *"p, (cosé) de = n
0

24n—1

2n+2

T e

24n+1

), n=1,23....
20. f"/sz,,(cosq>)sinq5d¢ =0, n=1,23,....

21. f P,(cos¢p)cosnpde = B(n + 3,3), n=0,1,2,....

22. Using Rodrigues’s formula (4.47) for P,(x),

(a) show that integration by parts leads to

1 1 1,
[ PP & = =i [ P
(b) Show, by continued integration by parts, that

[ rGop e = GO A p ()] - 1)

(c) For k # n, show that the integral on the right in (b) is zero.
23. For k = n, show that problem 22(b) leads to (n = 0,1,2,...)

@ [ pordx = (2")') [ -y

(b) By making an appropriate change of variable, evaluate the integral
in (a) through use of the gamma function and hence derive Equa-
tion (4.66).

24. Starting with the expression

00 o0
(1 —2xt + tz)—1 =Y Y P(x)P.(x)t"**
n=0 k=0

use the orthogonality property (4.57) to deduce Equation (4.66).

) 1+¢ & gl
Hint: log1 — = 2n§0 1

[ - 1" dx




25. Show that if f is an odd function
@ [ f()P,(x)dx=0,n=0,2,4,...,
-1

(b) fl f(x)P,(x)dx = Zflf(x)P,,(x)dx, n=13,5....
-1 0
26. Show that if f is an even function

@ [ P (xydx = 2[ f(x)P,(x)dx, 1= 0,2,4,...,
-1 0

(b) f‘ F()P,(x)dx =0, n=1,3,5,....
-1

In problems 27-30, find the Legendre series for the given polynomial.

27. q(x) = x>. 29. g(x)=12x* - 8x2+ 7.
3 5 x?2 x> x*
28. g(x)=9x" — 8x* + Tx — 6. 30.q(x)=1+x+5+§T+E.

31. Using Rodrigues’s formula (4.47) and integration by parts, show
that

[ 1Ry = U o - 17 e

Hint: See problem 22.

32. From the result of problem 31, deduce that

fl x"P,(x)dx =0 if m<n
1

33. From the result of problem 31, deduce that

(n+2k)T(k+ 1)
2"Qk)T(n + k+3)’°

fl x”+2kP,,(X)dx= k=0,1,2,...
-1

34. Show that

M 22(4n + 1)(2m)(m + n)!

2m _
(@) x™ = EO (2m + 2n+ 1)(m — n)!

o 220t (4n 4+ 3)(2m + 1)(m + n + 1)

(b) x*7"t = Eo (2m + 2n + 3)(m — n)!

Hint: Use problem 33.

P2n(x)9

P2n+1(x)‘



In problems 35-40, develop the Legendre series for the given function.

35. f(x) = Py(x). 36. f(x)=1|x, " 1<x<1
{0, -1=<x<0, _J, -1<x<0,

37. f(")_{l, 0<x<l 8. f(x) {o, 0<x<l.
_[0, —-1<x<0, _/1, —-1<x<0,

39. /(%) {x, 0<x<l 40. /(x) {x, 0<x<l.

41. Show that the Legendre series of a function f defined in the interval
—a < x < a is given by

f(x)= io: ¢,P,(x/a), —a<x<a
n=0
where
c, = 2n+1f f(x)P(x/a)dx n=0,1,2,...

42. Making the change of variable x = cos ¢, show that the Legendre series
for a function f(¢) is given by

f(¢)= X c,P(cos¢p), O<¢=<m
n=0
where
cn=(n+1} ff(qb)P (cos¢)singds, n=0,1,2,...

Hint: See problem 16.
43. Using the result of problem 42, find the Legendre series for

0, 0< 2
(@) f(¢)={l W;ﬁ;gﬂ. (b) f(9)=cos’p,0 < ¢ <.

’

44. Show that

wp 1+ X A
(a (1 x)P( x)—kgo(k)x.
(b) Letting x — 1, use part (a) to derive the identity

n

L (k) - ()

k=0

4.5 Convergence of the Series

Given the Legendre series of some function f, we now wish to discuss the
validity of such a representation. What we mean is—if a value of x is



selected in the chosen interval and each term of the series is evaluated for
this value of x, will the sum of the series be f(x)? If so, we say the series
converges pointwise to f(x).* In order to establish pointwise convergence of
the series, we need to obtain an expression for the partial sum'

S,(x) = L ePu(x) (473)
k=0

and then for a fixed value of x, show that

lim 5,(x) =/ (x) (474)

4.5.1 Piecewise Continuous and Piecewise Smooth Functions

To be sure the Legendre series converges to the function which generates the
series, it is essential to place certain restrictions on the function f. From a
practical point of view, such conditions should be broad enough to cover
most situations of concern and still simple enough to be easily checked for
the given function.

Definition 4.1. A function f is said to be piecewise continuous in the
interval a < x < b, provided that

(1) f(x) is defined and continuous at all but a finite number of points in
the interval, and
(2) the left-hand and right-hand limits exist at each point in the interval.

Remark: The left-hand and right-hand limits are defined, respectively,
by

im f(x—e) =f(x7),  lim f(x+e)=/f(x")
e—0" e—>0"
Furthermore, when x is a point of continuity, f(x~) = f(x*) = f(x).

It is not essential that a piecewise continuous function f be defined at
every point in the interval of interest. In particular, it is often not defined at
a point of discontinuity, and even when it is, it really doesn’t matter what
functional value is assigned at such a point. Also, the interval of interest
may be open or closed, or open at one end and closed at the other (see Fig.
4.4).

*See also the discussion in Section 1.3.
fAlthough (4.73) has n + 1 terms, we still designate it by the symbol S, ( x).



f(x)

\..

A

X

K“"“

Figure 4.4 A Piecewise Continuous Function

Definition 4.2. A function f is said to be smooth in the interval a < x < b
if it has a continuous derivative there. We say the function is piecewise
smooth if f and/or its derivative f’ are only piecewise continuous in
a<x<b

Example 3: Classify the following functions as smooth, piecewise smooth,

or neitherin —1 < x < 1: (a) f(x) = x, (b) f(x) = |x], (c) f(x) = |x|*/2.

Solution: In (a), the function f(x) = x and its derivative f'(x) = 1 are
both continuous, and thus f is smooth. The function in (b) is also
continuous, but because the derivative is discontinuous, i.e.,

-1, —-1<x<0
= {71
(%) 1, 0<x<l1
it is not smooth but only piecewise smooth. In (c), the function is once
again continuous, but |f’(x)| = oo as x — 0, so it is neither smooth nor
piecewise smooth.

45.2 A Theorem on Pointwise Convergence

Before stating and proving our main theorem on convergence, we must first
establish two lemmas.

Lemma 4.1 (Riemann). If the function f is piecewise continuous in the
closed interval —1 < x < 1, then

lim (n + %)1/2f_llf(x)P,,(x)dx -0

n—oo

Proof: Let the nth partial sum be denoted by

S, (x) = iockpk(x)



and consider the nonnegative quantity

[ ) = s, dx =0

or
f_lfz(x) dx — 2f_lf(x)S,,(x)dx + f_lS,,z(x)dx >0
Now
[ f0s,0d= T af f0r 00
v G
- k§0 k+ 3%
and

0(j+k)

12xx=nnc.cl. x) dx
[[sx)d= X X ge [RACLASY

kgockf_I[Pk(x)] dx

n cZ
Accordingly, we have
n

[rxax-2%

kN
kN

IV

=

N
N~

from which we deduce

n
Y < [ fi(x)dx
k=0 k * 5 '/
Because this last inequality is valid for all n, we simply pass to the limit to
get

[ee]
)} <[ )

1
k=0 k + 2
The integral on the right is necessarily bounded, since f is assumed to be
piecewise continuous in the closed interval of integration. Hence, the series

on the left is a convergent series (because its sum is finite), and therefore it



follows that

or equivalently (changing the index back to n),

lim (n + %)1/2'/1 f(x)P,(x)dx=0 [
n—oo —1

Lemma 4.2 (Christoffel-Darboux). The Legendre polynomials satisfy the
identity

L [Pe(1)P(x) = By(1) By ()]

T @k DR R = T

Proof: We begin by multiplying the recurrence relation (4.31) by P, (¢)
to get

(2k + 1)xP, (1) P (x) = (k + 1) P (1) P,y (x) + kP, (1) P, (x)

If we now interchange the roles of x and ¢ in this expression and subtract
the two results, we obtain

2k + 1)(t = x) P (1) P(x) = (k + 1)[ P, , (1) P (x) — P, ()P, (x)]
—k[P ()P _(x) = P,_ (1) P(x)]

Finally, summing both sides of this identity as k£ runs from 0 to n and
setting P_,(x) = 0, we find

(=) £ @k + DP(OP ()

= (n+ 1)[P1(1) P(x) = P, (1) P,y (x)]
and the lemma is proved. |

We note that integration of the Christoffel-Darboux formula leads to

n

Y (2k + 1)Pk(x)fl P.(¢) dr

k=0

Per(P(3) = PP (6)
t—x

=(n+ l)f_ll

from which we deduce

(n + 1)/_11Pn+1(t)Pn(xt)::n(t)Pn+l(x) dr =2 (475)



where we are using the orthogonality property

1 _ [0, k+#0
f_lPk(t)dt—{z’ k20 (4.76)

We are now prepared to state and prove our main result.

Theorem 4.2 If the function f is piecewise smooth in the closed interval
—1 < x < 1, then the Legendre series

(5= £ en(x)
where
c,,=(n+%)fl f(x)P,(x)dx, n=0,1,2,...
-1

converges pointwise to f(x) at every continuity point of the function f in
the interval —1 < x < 1. At points of discontinuity of f in the interval
—1 < x < 1, the series converges to the average value 3[f(x*) + f(x7)).
Finally, at x = —1 the series converges to f(—1%), and at x =1 it
converges to f(17).

Proof (for a point of continuity): Let us assume that x is a point of
continuity of the function f, and consider the nth partial sum (-1 < x < 1)

S,(x) = ek Py(x)

=
10=

" 1
3[R FIOTXOPATNES
k=0 -
where we have replaced the constants ¢, by their integral representation.

Interchanging the order of summation and integration, and recalling the
Christoffel-Darboux formula (Lemma 4.2), we obtain

5,0 = 3 400 T @k + DPOP) &

= %(ﬂ + l)f—llf(t) Pn+1(t)Pn(x) - Pn(t)Pn+l(x) dl

r—Xx

If we add and subtract the function f(x) (which is independent of the
variable of integration), we get

§,(x) = 3(n + 1)f(x)f_‘lPnﬂ(’)”n(xt):fn(t)P,,H(x) P

sy [ LI (5 (0830 - 2 (0B a



For notational convenience we introduce the function

g(1) = f(tg :fx(x)
and use (4.75) to obtain

S,(x) = 1(x) + 4(n + DB(0) [ g(1) By (1)
~n+ DB [ 2R d

At this point we wish to show that g satisfies the conditions of Riemann’s
lemma, i.e., that g is at least piecewise continuous. Because f is at least
piecewise smooth, it follows that g is also piecewise smooth for all ¢ # x.
To investigate the behavior of g at ¢t = x, we consider the limit (remem-
bering that x is a point of continuity of f)

g(x)= tlim f(t) f(x) f( )

Since by hypothesis f’ is at least piecewise continuous (why?), we see that g
is indeed a piecewise continuous function.
Letting

b= (n+ 3" [" g() (1) d
-1
we can express the nth partial sum in the form

(4 VA(x), (1t DR,
() = () + oS - S,

By recognizing that the Legendre polynomials are bounded on the interval
—1 < x <1 [see Equation (4.56)], and applying Riemann’s lemma, it can
now be shown that the last two terms in the expression for S,(x) vanish in
the limit as n — oo (see problem 10), and hence we deduce our intended
result

lim S,(x) = f(x)
n—oo
at a point of continuity of f. |
To prove that*

lim ,(x) = 3[£(x*) + f(x7)]

*For details, see D. Jackson, Fourier Series and Orthogonal Polynomials, Carus Math.
Monogr. 6, LaSalle, Ill.: Math. Assoc. Amer., Open Court Publ. Co., 1941.



at a point of discontinuity of f requires only a slight modification of the
above proof. Similar comments can be made about the points x = +1.

EXERCISES 4.5

In problems 1-8, discuss whether the function is piecewise continuous,
continuous, piecewise smooth, smooth, or none of these in the interval

-1l<x<1l

1. f(x) = tan2x. 2. f(x) = sinx.

3 f= ST L 4 109={o. ity s matonal
5. f(x)= Siz", x#0,f0 =1 6. f(x)= Sizx, x # 0.

7. f(x) = sin(1/x), x # 0. 8. f(x)=xe V/* x#0.

9. Suppose that a piecewise smooth function f is to be approximated on

10.

the interval —1 < x < 1 by the finite sum
S, (x)= Y bP(x), -1<x<1
k=0

Determine the constants b, so that the mean square error is minimized,
i.e., minimize

E,= [ 11(x) = 8,(x)) ds

Hint: Set dE,/db, =0, k =1,2,...,n.
Given that

kg

1,2
P,(x) < [m} s xl<1

and
b= (n+ [ s (1) a

where g(t) is piecewise continuous, deduce that

(n+ DR(x), _

(2) lim byt = 0,

e 2n+ 3)
im (n+ 1)Pn+ll(2x) n=0.
e 2(n+4)”




4.6 Legendre Functions of the Second Kind

The Legendre polynomial P,(x) represents only one solution of Legendre’s
equation

(1-x¥)y"=2xy"+n(n+1)y=0 (4.77)
Because the equation is second-order, we know from the general theory of

differential equations that there exists a second linearly independent solu-
tion Q,(x) such that the combination

y=GCP,(x)+ CQ,(x) (4.78)

where C; and C, are arbitrary constants, is a general solution of (4.77).
Also from the theory of second-order linear DEs it is well known that if
y1(x) is a nontrivial solution of

y' +a(x)y +b(x)y=0 (4.79)
then a second linearly independent solution can be defined by*

exp[— fa(x) dx]

y(x) = yi(x) dx (4.80)
’ (] 2 (x)
Hence, if we express (4.77) in the form
2x n(n+1)
"o__ '+ — 0
roro? 1-x
and let y,(x) = P,(x), it follows that
dx
y2(x) = P,(x) (4.81)
i / (1= x)[P(x)]’

is a second solution, linearly independent of P,(x). Because any linear
combination of solutions is also a solution of a homogeneous DE, it has
become customary to define the second solution of (4.77), not by (4.81), but
by

Q(x)—P(x){A +B f (4.82)

(1- xz)[P (x)]° }
where A, and B, are constants to be chosen for each n. We refer to 0, (x)

as the Legendre function of the second kind of integral order.
Accordingly, when n = 0 we choose 4, = 0 and B, = 1, and hence

O

*See Theorem 4.5 in L.C. Andrews, Ordinary Differential Equations with Applications,
Glenview, Il1.: Scott, Foresman and Co., 1982.



which leads to
1+ x
1—x

Qo(x) = 3log , x| <1 (4.83)

For n = 1, we set A; = 0 and B, = 1, from which we obtain

dx
Ql(x)—xfm
1 1
_x'/(l - x? * ?)dx
1+ x
=%xlogl_x -1 (4.84)
or
01(x) =xQ¢(x) -1, |x|<1 (4.85)

Rather than continuing in this fashion, which leads to more difficult
integrals to evaluate, we recall the Remark made at the end of Section 4.2.3
which stated that all (properly normalized) solutions of Legendre’s equation
automatically satisfy the recurrence formulas for P,(x). Hence, we will
select the Legendre functions Q,(x) so that necessarily

2
0in(x) = 2 120,(x) - 220, 1(x)  (486)

forn =1,2,3,... . With Q,(x) and Q,(x) already defined, the substitution
of n = 1 into (4.86) yields

0,(x) = 3x0,(x) - 300(x)
= 3(3x% = 1)Qo(x) — 3x

which we recognize as

0,(x) = P (x)Qo(x) — 3x, |x|<1 (4.87)
For n = 2, we find
05(x) = Py(x)Qp(x) — 3x* + 3, x| <1 (4.88)

whereas in general it has been shown that*

[3(n=1)]
P (x o) — : (2n — 4k - 1) N
Qn(x)_Pn( )QO( ) kgo (2k+ 1)(n_k)Pn—2k—1( )»

x| <1 (4.89)
forn=1,2,3,....

*See W.W. Bell, Special Functions for Scientists and Engineers, London: Van Nostrand,
1968, pp. 71-71.



Q,(x)
4

Ql Q2

Figure 4.5 Graph of Q,(x), n=0,1,2,3,4

Because of the logarithm term in Q,(x), it becomes clear that all Q,(x)
have infinite discontinuities at x = + 1. However, within the interval —1 <
x < 1 these functions are well defined. The first few Legendre functions of
the second kind are sketched in Fig. 4.5 for the interval 0 < x < 1.

In some applications it is important to consider Q,(x) defined on the
interval x > 1. While Equation (4.89) is not valid for x > 1, the functions,
Q,(x) can be expanded in a convergent asymptotic series (problem 16).
Based on this series, it can then be shown that all Q,(x) approach zero as
x — o0o. Such behavior for large x is quite distinct from that of the
Legendre polynomials P,(x), which become unbounded as x — oo except
for Py(x) = 1.

4.6.1 Basic Properties

We have already mentioned that the Legendre functions Q,(x) satisfy all
recurrence relations given in Section 4.2.2 for P,(x). In addition, there are
several relations that directly involve both P,(x) and Q,(x). For example,
if [¢| <|x|, then*

= L @n s )R 00,(x) (450)

*See E.T. Whittaker and G.N. Watson, 4 Course of Modern Analysis, Cambridge U.P.,
1965, pp. 321-322.



From this result, it is easily shown that (see problem 13)

1 PJ(1) B
0,(x)= Ef_lx_——z dt, n=01,2,... (4.91)

which is called the Neumann formula. Other properties are taken up in the
exercises.
EXERCISES 4.6
In problems 1-4, find a general solution of the DE in terms of P,(x) and
Q,.(x).

1. (1-x2)y” —2xy'=0. 2. (1-x%)y”-2xy+2y=0.

3.(1—-xY)y”"—=2x'+12y=0. 4. (1 -x2)y” —2xy’ + 30y =0.

5. Given Py(x) =1 and Q,(x) = %log[(1 + x)/(1 — x)), verify directly

that their Wronskian* satisfies

W(Py, Qo)(x) = 1 2

. Use Equation (4.82) for Q,(x) to deduce that, in general, the Wronskian

of P,(x)and Q,(x) is given by

wW(P,,Q,)(x) = n=0,1,2,...

1-—x2’

. Show that Q,(x) satisfies the relations (n = 1,2,3,...)

(@) @i1(x) = 2xQ,(x) + Q,_1(x) — Q,(x) =0,
(b) Q741(x) = xQ/(x) — (n + DQ,(x) =0,

(©) xQ,(x) = Q,_1(x) —nQ,(x) =0,

(d) @r11(x) = Q5 _1(x) = 21 + 1)Q,(x),

(& (1 — x*)Q,(x) = n[Q, _(x) — x@,(x)].

. Show that

(@) Qo(—x) = —Qp(x),
®) Q,(—x)= (—1)"+1Q,,(x), n=123....

. Show that (for n = 1,2,3,...)

n[Q,(x)P,_1(x) = Qu1(x) P, (x)]
=(n- 1)[Qn—l(x)Pn—2(x) - Qn—Z(x)Pn—l(x)]

*Recall that the Wronskian is defined by W(yy, y2) = »1¥; — ¥{)2-



10. From the result of problem 9, deduce that (n = 1,2,3,...)

0.(x) Pyy(x) = Qur () By(x) = — 1

11. Deduce the result of problem 10 by using the Wronskian relation in
problem 6 and appropriate recurrence relations.

12. Show that Q,(x) satisfies the Christoffel-Darboux formula

n+1
t— X

T (24 DO = T (0,100, (5) = 0,12, ()]

13. Use the result of Equation (4.90) to deduce the Neumann formula
1 1 P(1)
Q,(x) = Ef_lﬁdt’ x| >1

14. For x > 1, use the Neumann formula in problem 13 to show that

1—12)"

_ t(
0, (x) 2M/I(X

15. Using the result of problem 14, deduce that (x > 1)

_ t)”+l

e dé
(@) 0,(x)= _
fo [x +(x2 - l)l/zcoshﬂ] 1
0 12 . an
Hint: Set 1= £ F D7 —(x— 1)

ef(x + 1) +(x - 1)

2" (n+k)(n+2k) 1
® 0,()~ =5 Z K1(2n + 2k + 1)1 x2K’

16. Solve Legendre’s equation

X

1-=x2)y"=2xy"+n(n+1)y=0

o0
by assuming a power series solution of the form y = Y ¢, x™.
m=0

(a) Show that the general solution is

y = Ay;(x) + Byy(x)

where A and B are any constants and

n(x)=1- n(n; D) x2+ (n - 2)”('14!+ 1)(n+ 3)x“ B




and

Jy(x) = x - (r1—1;$n+2)x3

(n - 3)(n—1)(n+2)(n+ 4)
51

(b) For n = 0, show that

P = 28 0un) = n (W)

(c) For n =1, show that

A =28 00 = k)

4.7 Associated Legendre Functions

In applications involving either the Laplace or the Helmholtz equation in
spherical, oblate spheroidal, or prolate spheroidal coordinates, it is not
Legendre’s equation (4.44) that ordinarily arises but rather the associated
Legendre equation

(1—-x2)y” —2xy" + [n(n +1) - sly=0 (4.92)

1 —
Observe that for m = 0, (4.92) reduces to Legendre’s equation (4.44). The
DE (4.92) and its solutions, called associated Legendre functions, can be
developed directly from Legendre’s equation and its solutions. To show this
we will need the Leibniz formula for the mth derivative of a product,

o= B (7)e et

dmkdxk’

m=1,2,3,... (4.93)

If z is a solution of Legendre’s equation, i.e., if
(1-x?)z" —=2xz"+n(n+1)z=0 (4.94)
we wish to show that

)m/zd z

y=0- (4.95)

is then a solution of (4.92). By taking m derivatives of (4.94), we get

W[(l—xz) "]—2 (xz)+n(n+l)———0



which, applying the Leibniz formula (4.93), becomes

dm+2z dm+lz dmz
(1- xz)dx’"” - 2m)cdmerl - m(m— l)dx_’"
dmtlz dmz dmz

-2 xdx'"+1 +mdx"‘ +n(n+1)m =0

Collecting like terms gives us
1= o+ 1)x® S [n(n+1) = m(m + 1)]u=0
dx? dx
(4.96)

where, for notational convenience, we have set u = d™z/dx™. Next, by
introducing the new variable y = (1 — x?)™/2u, or equivalently,
u=y( - xz)_"'/2

we find that (4.96) takes the form
d* - d -
2 % 2y m/2 a 2y —m/2
(1-x )dxz[y(l x?)™ " 2(m+1)xdx[y(l x2)~ "7
+{n(n+1)=m(m+1)]y1 -x2)""*=0 (4.97)
Carrying out the indicated derivatives in (4.97) leads to

‘—z?[y(l - xz)_mﬁ] =y(1- xz)_m/2 + mxy(1 — xz)_l_'"/2

- [y’ ¥ 1":"{‘2](1 — x2)™" (4.98)
and similarly

2
fg[y(l - %)

_ [y" N m(2xy’ -1;y) + m(m + 2)22)’}(1 —x3)"™™?% (4.99)
1-x (1-x?)

Finally, the substitution of (4.98) and (4.99) into (4.97), and cancellation of
the common factor (1 — x2)~™/2, then yields

N I mQ2xy’ +y) = m(m+ 2)x%y
(1 )[y + 1—X2 + (1_x2)2 :l

-2(m + l)x[y' + 1"1—)9;(2] +[n(n+1)=m(m+1)]y=0

which reduces to (4.92) upon algebraic simplification.



We define the associated Legendre functions of the first and second kinds,
respectively, by (m = 0,1,2,...,n)

Pr(x) = (1= x40 p (x) (4.100)
and
07(x) = (1 - x)" 220, (x) (4.101)

Since P,(x) and Q,(x) are solutions of Legendre’s equation, it follows from
(4.95) that P"(x) and Q]'(x) are solutions of the associated Legendre
equation (4.92).

The associated Legendre functions have many properties in common
with the simpler Legendre polynomials P,(x) and Legendre functions of the
second kind Q,(x). Many of these properties can be developed directly
from the corresponding relation involving either P,(x) or Q,(x) by taking
derivatives and applying the definitions (4.100) and (4.101).

4.7.1 Basic Properties of PJ'(x)

Using the Rodrigues formula (4.47), it is possible to write (4.100) in the
form

1 m dn+m .
PM(x) = ey (1= x%) /ZW[(xz -1)"] (4.102)

Here we make the interesting observation that the right-hand side of (4.102)
is well defined for all values of m such that n + m > 0, i.e., for m > —n,
whereas (4.100) is valid only for m > 0. Thus, (4.102) may be used to extend
the definition of P"(x) to include all integer values of m such that
—n < m < n. (If m > n, then necessarily P,"(x) = 0, which we leave to the
reader to prove.) Moreover, using the Leibniz formula (4.93) once again, it
can be shown that (see problem 5)

P "(x) = (- =Mt (4.103)

(n+m) "
Lastly, we note that for m = 0 we get the special case
P (x) = P,(x) (4.104)

The associated Legendre functions P(x) satisfy many recurrence rela-
tions, several of which are generalizations of the recurrence formulas for
P,(x). But because P,"(x) has two indices instead of just one, there exists a
wider variety of possible relations than for P, (x).



To derive the three-term recurrence formula for P"(x), we start with the
known relation [see Equation (4.31)]

(n+1)P,,,(x)-(2n+ 1)xP,(x) + nP,_,(x) = (4.105)

and differentiate it m times to obtain

(4 D)2 p, 1 (x) —(2n + Dx-r P, (x)

m-1
-m(2n + 1
m(2n )dx -1

P(x)+n2p _(x)=0 (4.106)
dx
Now recalling [Equation (4.40)]

(2n +1)P,(x) = B/,1(x) = P/ (x)
we find that taking m — 1 derivatives leads to

m—l

am am
™= 1 n(x) = md m n+1('x) d mPn—l(x)
(4.107)

m(2n + 1)

and using this result, (4.106) becomes
(n=m+1)2p . (x) =20+ 1)x2 P (x)
dx™ n+1 dxm "

dm
+(n+ m)a;"-P,,_l(x) =0
Finally, multiplication of this last result by (1 — x2)™/? yields the desired
recurrence formula
(n=m+1)P" (x)-Q2n+ 1)xP"(x)+(n+m)P" (x)=0
(4.108)

Additional recurrence relations, which are left to the exercises for
verification, include the following:

(1 - x2)"*P(x) = BN (x) = B (x)] (4.109)

2n+1

(1 - x2)"?Pm(x) = [(n+m)(n+m-1)P" 1 (x)

2n +1
—(n—m+1)(n-m+2)P"7'(x)] (4.110)
Pm(x) = 2mx(1 — x2) " Pm(x)

—[n(n+1)=m(m-1)]P" (x) (4.111)



By constructing a proof exactly analogous to the proof of orthogonality
of the Legendre polynomials, it can be shown that

[ Br(x)Pp(x)dx =0, k#n (4.112)
-1

Also, the evaluation of
2(n + m)!

1 2 _
[ [PrCorax = 2n + 1)(n - m)!

follows exactly our derivation of (4.66) given in Section 4.4.1. The details of
proving (4.112) and (4.113) are left for the exercises.

As a final comment we mention that, although it is essentially only a
mathematical curiosity, there is another orthogonality relation for the
associated Legendre functions given by

(4.113)

0, k+m
f_llP,,'"(x)P,,"(x)(l - x2) ldx = { (n+m)! Ck=m (4119

m(n — m)!

EXERCISES 4.7

1. Directly from Equation (4.100), show that
@@ Pi(x)=@1—xH)%  (b) Pj(x)=3x(1 — x*)'/%,
(©) Pi(x)=301—x?). (d) Pi(x) = 3(5x* - )1 — x})'2,
(e) P3(x) = 15x(1 — x?),
2. Show that
(@ P(—x)= (=" "P"(x),
(b) P"(£1) =0, m > 0.
3. Show that (for n = 0,1,2,...)

PL(0) =0, by P, = S CGnt DY
(a) P,,(0) (b) Pp,.1(0) 22"(,1!)2
4. Show that
(a) P"(0)= 0, n + m odd,
(b) B(0) = (=1)"=™72 o n+ m even.

2'[(n = m) /2] [(n + m) /2]’
5. By applying the Leibniz formula (4.93) to the product (x + 1)"(x — 1)"
and using (4.102), verify that

() = (g m)!
(x) = ()" P (x)



6. Derive the generating function

2m)!(1 — x2)™?

2"m!(1 — 2xt + t2)m+l7

0
= X P ()"
n=0

In problems 7-11, derive the given recurrence formula.
7. (1 — x?)P"™(x)=(n+ m)P" (x) — nxP"™(x).
8 (1 - x?)P"™(x)=(n+ DxP"(x)—(n—m+ 1)P" (x).

1 .
9. (l - xz)l/Zan(x) = 2n+1 [Pn”j:il(x) - Pn":ll(x)]'
1 .
10. (1 = x*)'2P"(x) = -7 [(n + m)(n + m = A7\ (x)

—(n—m+ 1)(n—m+ 2)P" Y (x)).
1. P Y(x) = 2mx(1 — x2)7V2P"(x) — [n(n + 1) — m(m —1)]P"~}(x).

12. Prove the orthogonality relation
fl P"(x)P(x)dx =0, k#n
-1
13. Prove the orthogonality relation
fl Pr(x)PK(x)(1 —x?)ldx =0, k#m
-1
14. By defining
4, = f‘ [P™(x)]%dx, n=0,1,2,...
-1
show that
_(@n=-1)(n+m)

= A =2
@ A= G D) (n—m) e "= 234

(b) Evaluate A, and A4, directly and use (a) to deduce that

_ 2(n + m)!
" 2n+1)(n-m)’

n=0,1,2,...
15. Show that

[ [ = x) e = Ll



Other Orthogonal
Polynomials

5.1 Introduction

A set of functions {¢,(x)}, n=0,1,2,..., is said to be orthogonal on the
interval a < x < b, with respect to a weight function r(x) > 0, if*

Lbr(x)¢n(x)¢k(x)dx=0, k#+n

Sets of orthogonal functions play an extremely important role in analysis,
primarily because functions belonging to a very general class can be
represented by series of orthogonal functions, called generalized Fourier
series.

A special case of orthogonal functions consists of the sets of orthogonal
polynomials { p,(x)}, where n denotes the degree of the polynomial p,(x).
The Legendre polynomials discussed in Chapter 4 are probably the simplest
set of polynomials belonging to this class. Other polynomial sets which
commonly occur in applications are the Hermite, Laguerre, and Chebyshev
polynomials. More general polynomial sets are defined by the Gegenbauer
and Jacobi polynomials, which include the others as special cases.

The study of general polynomial sets like the Jacobi polynomials facili-
tates the study of each polynomial set by focusing upon those properties

*In some cases the interval of orthogonality may be of infinite extent.



that are characteristic of all the individual sets. For example, the sets
{ p,(x)} that we will study all satisfy a second-order linear DE and
Rodrigues formula, and the related set {(d™/dx™)p,(x)} (e.g., the associ-
ated Legendre functions) is also orthogonal. Moreover, it can be shown that
any orthogonal polynomial set satisfying these three conditions is neces-
sarily a member of the Jacobi polynomial set, or a limiting case such as the
Hermite and Laguerre polynomials.

5.2 Hermite Polynomials

The Hermite polynomials play an important role in problems involving
Laplace’s equation in parabolic coordinates, in various problems in quan-
tum mechanics, and in probability theory.

We define the Hermite polynomials H,(x) by means of the generating
function*

00 n
exp(2xt —t2) = ) H,,(x)%, lt] < 00, |x| < o0 (5.1)

n=0

By writing

exp(2xt — ) = e**' -

o [n/2] (_l)k(zx)n—Zk

X X

=0 k=0 Kk!(n—2k)!

" (5.2)

where the last step follows from the index change m = n — 2k [see Equa-
tion (1.17) in Section 1.2.3], we identify

) = 3 g (5.3)
)T L (= 2k)!

Examination of the series (5.3) reveals that H,(x) is a polynomial of
degree n, and further, is an even function of x for even n and an odd
function of x for odd n. Thus, it follows that

H,(=x)=(=1)"H,(x) (5.4)

The first few Hermite polynomials are listed in Table 5.1 for easy reference.

*There is another definition of the Hermite polynomials that uses the generating function
exp(xt — 1¢?). This definition occurs most often in statistical applications.



Table 5.1 Hermite polynomials

Ho(x) =1

H,(x)=2x

Hy(x)=4x>-2

Hy(x) = 8x3 - 12x
H,(x)=16x* — 48x% + 12
Hy(x) = 32x° — 160x> + 120x

In addition to the series (5.3), the Hermite polynomials can be defined
by the Rodrigues formula (see problem 3)

H,(x)=(-1)"e* ( %), n=0,1,2,... (5.5)

and the integral representation (see problem 5)
2mex’ .
H, (x)= ’) f e UrUsyngs  n=0,1,2,... (5.6)

The Hermite polynomials have many properties in common with the
Legendre polynomials, and in fact, there are many relations connecting the
two sets of polynomials. For example, two of the simplest relations are given
by (n=0,1,2,...)

2 ® _p2
e "t"H (xt)dt = P,(x 5.7
= ¢ () di = P(x) (57)
and
2mer [ “e= 1P (x/t) dt = H,(x) (5.8)

X
the verifications of which are left for the exercises.
Example 1: Use the generating function to derive the relation

UL niH,_ 5 (x)
o 2"k (n — 2k)!

x" =

Solution: From (5.1) we have

00 tk
exp(2xt — t2) = ) Hk(x)F
k=0 :
or

P tk
e = ¢! Z Hk(")?"
k=0 :



Expressing both exponentials in power series leads to

S 2x)'r & pm & tk
Y - L r

) !
n=0 M m=0 "™ k=0

o [n/2] H, Zk(x)t

L X ki(n - 2k)!

n=0 k=0
where the last step results from the change of index m =n — 2k.

Finally, by comparing the coefficients of ¢" in the two series, we deduce
that

é Zk(x)
k=0 "k'(n - 2k)!
5.2.1 Recurrence Relations

By substituting the series for w(x, r) = exp(2xt — ¢?) into the identity

‘Z‘: 2x - t)w = (5.9)

we obtain (after some manipulation)

E [H,,(x)—2xH,(x) + 2nH,_ l(x)] + H,(x) — 2xHy(x) =

n=1

(5.10)
But H;(x) — 2xHy(x) = 0, and thus we deduce the recurrence formula
H,,,(x)—2xH,(x)+2nH,_;(x)=0 (5.11)

forn=1,2,3,....
Another recurrence relation satisfied by the Hermite polynomials follows
the substitution of the series for w(x, t) into
aw
W -2tw=0 (512)

This time we find

é [H;(x) - 2nH,_,(x)] %T =0

which leads to

H/(x) =2nH,_,(x), n=1,2,3,... (5.13)

The elimination of H,__(x) from (5.11) and (5.13) yields
H,,.(x)—2xH,(x)+ H(x)=0 (5.14)
and by differentiating this expression and using (5.13) once again, we find
H!(x)—2xH,](x) +2nH,(x) =0 (5.15)

for n =0,1,2,.... Therefore we see that y = H (x) (n=0,1,2,...)isa



solution of the linear second-order DE

Yy’ =2xy'+2ny=0 (5.16)
called Hermite’s equation.

5.2.2 Hermite Series

The orthogonality property of the Hermite polynomials is given by*
f°° e H,(x)H,(x)dx =0, k+#n (5.17)
- o0

We could construct a proof of (5.17) analogous to that given in Section 4.4.1
for the Legendre polynomials, but for the Hermite polynomials an interest-
ing alternative proof exists.

Let us start with the generating-function relations

2 H (x) = e =" (5.18a)

(x) = e?x~’ (5.18b)

=~ I

o0
and multiply these two series to obtain

i()kio:'_ S_H,(x)H,(x) = exp[ = (1 + s?) + 2x(t + 5)] (5.19)

Next, we multiply both sides of (5.19) by the weight function e™** and
integrate (assuming that termwise integration is permitted), to find

2 2, 2\ [© 2
E Z e “H (x)H,(x)dx =e "+ e~ XIH2X(+9) g
n! k'f (x)Hy(x) f_w

,ﬂ.eZIS

where we have made the observation (see Example 2 below)

foo e X T2x gy = ot (5.20)

— 00

2ts

Finally, expanding ¢“** in a power series, we have

oo oo

" sk J-
S—;Ok=omﬁf H (x)H, (x)dx =

(5.21)

*The function e™*" in'(5.17) is called a weight function. In the case of the Legendre
polynomials, the weight function is unity.



and by comparing like coefficients of ¢"s*, we deduce that

J7 e P H () H(x)dx =0, k#n

As a bonus, we find that when k =n in (5.21), we get the additional
important result (for n = 0,1,2,...)

|7 e [, ()] dx = 2 (5.22)

Based upon the relations (5.17) and (5.22), we can generate a theory
concerning the expansion of arbitrary polynomials, or functions in general,
in a series of Hermite polynomials. Specifically, if f is a suitable function
defined for all x, we look for expansions of the general form

f(x)= ioc,,H,,(x), —00 <x < 00 (5.23)

where the (Fourier) coefficients are given by*

1
c —
" 2N

Series of this type are called Hermite series. We have the following theorem
for them.

foo e *f(x)H,(x)dx, n=0,1,2,... (5.24)

Theorem 5.1. If f is piecewise smooth in every finite interval and

© 2
f e *fHx)dx < o
— o0
then the Hermite series (5.23) with constants defined by (5.24) converges
pointwise to f(x) at every continuity point of f. At points of discontinuity,
the series converges to the average value 3[ f(x™) + f(x7)].

The proof of Theorem 5.1 closely follows that of Theorem 4.1 [see N.N.
Lebedev, Special Functions and Their Applications, New York: Dover, 1972,
pp. 71-73}.

Example 2: Express f(x) = e*%* in a Hermite series and use this result to
deduce the value of the integral

foo e—x2+2ben(x) dx

— o0

*The constants ¢, can be formally derived through use of the orthogonality property
analogous to the technique used in Section 4.4.2.



Solution: In this case we can obtain the series in an indirect way. We
simply set ¢ = b in the generating function (5.1) to obtain

0 n
exp(2bx — b*) = ), — H,(x)
ao M
and hence we have our intended series
0 n
2bx _ ,b? b
€ =e Z ;Hn(x)
n=0
The direct derivation of this result from (5.24) leads to
1

cn
2"nWar

However, we have already shown that

fw e"‘2+2b"Hn(x) dx, n=20,1,2,...
- 00

n bZ
c, = —'e

and thus it follows that

[* e (x) dx = VR @), n=0,1,2,...

-0

In particular, for n = 0 we get the result of Equation (5.20).

5.2.3 Simple Harmonic Oscillator

A fundamental problem in quantum mechanics involving Schrodinger’s
equation concerns the one-dimensional motion of a particle bound in a
potential well. It has been established that bounded solutions of
Schrodinger’s equation for such problems are obtainable only for certain
discrete energy levels of the particle within the well. A particular example of
this important class of problems is the harmonic oscillator problem, the
solutions of which lead to Hermite polynomials.

In terms of dimensionless parameters, Schrodinger’s equation for the
harmonic-oscillator problem takes the form

Y +A=-x*)y=0, -0<x<oo (5.25)

The parameter A is proportional to the possible energy levels of the
oscillator and ¢ is related to the corresponding wave function. In addition
to (5.25), the solution ¥ must satisfy the boundary condition

lim y(x)=0 (5.26)

|x]— o0



In looking for bounded solutions of (5.25), we start with the observation
that A becomes negligible compared with x? for large values of x. Thus,
asymptotically we expect the solution of (5.25) to behave like

Y(x)~er2 x| - (5.27)

where only the negative sign in the exponent is appropriate in order that
(5.26) be satisfied. Based upon this observation, we make the assumption
that (5.25) has solutions of the form

¥(x) =y(x)e >/ (5.28)
for suitable y. The substitution of (5.28) into (5.25) yields the DE
y' =2xy'+(A-1)y=0 (5.29)

The boundary condition (5.26) suggests that whatever functional form y
assumes, it must either be finite for all x or approach infinity at a rate
slower than e *'/2 approaches zero. It has been shown* that the only
solutions of (5.29) satisfying this condition are those for which A — 1 = 2n,
or

A=A, =2n+1, n=0,1,2,... (5.30)

These allowed values of A are called eigenvalues, or energy levels, of the
oscillator. With A so restricted, we see that (5.29) becomes

Yy’ —=2xy +2np =0 (5.31)

which is Hermite’s equation with solutions y = H,(x). (The other solutions
of Hermite’s equation are not appropriate in this problem.) Hence, we
conclude that to each eigenvalue A, given by (5.30), there corresponds the
solution of (5.25) (called an eigenfunction or eigenstate) given by

¥,(x)=H,(x)e ®?, n=0,1,2,... (5.32)
EXERCISES 5.2
1. Show that (for n = 0,1,2,...)
2n)!
@ 0= ) 8,0 =0,
oo , _ ,(2n +2)
(c) H3,(0)=0, (d) Hy, ,(0)=(-1) Ik

*See E.C. Kemble, The Fundamental Principles of Quantum Mechanics with Elementary
Applications, New York: Dover, 1958, p. 87.



. Derive the generatmg-funcuon relations
2n

(a) e”cos2xt = 2( 1)'H,,(x)—, |t] < o0,
"% 0 (2 )’2 +1
(b) e'’sin2xt = z( 1" Hz,,“(x)(z +1)v’ | < oo.

. Derive the Rodngues formula (for n = 0,1,2,...)

H,(x)=(-1)"" ("‘)
. Starting with the integral formula

f°° e~ gy — [ ot

— 00
(a) show that differentiating both sides with respect to b leads to
foo te—12+2bt dt = \/;bebz

— 00
(b) For n = 1,2,3,..., show that

[o o]
tne—12+2b1 dt = b2
f % 2n db"(

. Set b = ix in the result of problem 4(b) to deduce that (for n =
0,1,2,...)

n X
H,(x)= 2 f e~ 11t 2ixtyn gy

. Using the result of problem 5, show that (for n = 0,1,2,...)
(_ ) 22n+l
Vv

_ na2n+2
(b) Hyp1(x) = (_1)5_2__

. Derive the Fourier transform relations

(a) H,,(x)= e[ % e 408 2xt di,
0

o0
e"zf e t2"+sin 2 xt dt.
0

(a) ‘/21_/°° e-;:2+ixtHn(t)dt=i"e‘xz/zH"(x),
7 Y-
2 o0 1,2 2
®) \/; [T H, (t)c0s xtdr = (=1)'e™H, (),
0

(©) \/ % .,(;ooe_%’sznﬂ(t)Sinﬂdt = (_1)"e—xz/2H2n+l(x)‘



In problems 8-11, verify the integral relation.

8. 7 xte  H,(x)dx =0, k=0,1,...,n— 1.
— 0

9. foo xze"‘z[H,,(x)]zdx = V7 2"n!(n + ).
— 0

®© 2 !
10. f t"e”"H,(xt)dt = ﬁTnP,,(x).
0

1. fwe-"z"“P,,(x/z)dz = ——¢ “H,(x).

X

12. Use the result of problem 5 to deduce that

_ 2 21,2 n

(@) (1—t2>“/2exp[2"y’ 1 ;y L ZH( () UL
2
@ = e 254 ) = 5 1 )12(’/)

13. Use problem 12 to show that (n = O, 1,2,...)
foo e > [H,(x)]*dx = 2"":T(n + })

— 00
14. Derive the Hermite series relations

(2k) H,,(x)
22k Z o 2n)i(k —n)V’

(a) x

2k+1 2k + 1)! Hy,i1(x)
(0) x 22k+1 ;O @n+ DYk —n)"

15. Show that the functions ¥,(x) = H,,(x)e"‘z/ 2 satisfy the relations
@) 2ny,_(x) = x¢,(x) + ¢, (x),

(5) 2x¢,(x) = 2ny,_1(x) = ¥, 11(X),
(©) ¥n(x) = x9,(x) = ¢p41(x).

16. For m < n, prove that
dm

WH,,(X) =

(—n_—m—)*!Hn—m(x)

In problems 17-20, derive the series relationship.

H,,(x)
17. [H,(x)]* = 2"(n!)? 2k
[H,(x)] (nh) kZO (k) (n - k)1

5§ BERO) A Ha() - B ()H,0).
Py 2kk! 2" nl(y — x)




19, Hy(x+ )= 27 ({2 2)

o ! H2k+p(x)
20 Ry () = 2+ DY L Sm s pn — oL

2"/

5.3 Laguerre Polynomials
The generating function
o] S, e 0sse
n=0

(5.33)

leads to yet another important class of polynomials, called Laguerre poly-
nomials. By expressing the exponential function in a series, we have

(- t)_le’(p[_'lj—_t'?] B ki::o( klv) (x) (1 - 1) !
B i 5 1) (x0)" i (_km_l)(—l)'"t"'
k=0 m=0

(5.34)

but since [see Equation (1.27) in Section 1.2.4]

(1) ol

it follows that (5.34) becomes

(1-1) exp[—————-] 2 Okzo( 1)(]8‘)‘“’")" o (5.35)

where we have reversed the order of summation. Finally, the change of
index m = n — k leads to (5.33) where

_ " (—1)kn!x"
La(%) kgo(k!)z(n—k)!

In Table 5.2 we have listed the first few Laguerre polynomials L, (x).
The Rodrigues formula for the polynomials L,(x) is given by

(5.36)

L,(x)=

n=0,1,2,... (5.37)



Table 5.2 Laguerre polynomials

Lo(x)= 1
Li(x)=-x+1

Ly(x) = %(x2 —4x+2)
Ly(x) = %(—ﬁ + 9x% ~ 18x + 6)

Ly(x)= x4 —16x% + 72x% — 96x + 24)

4v(

which can be verified by application of the Leibniz formula

dn kf dk 3
Z( )dn kdk’ n=1,2,3,... (538)
5.3.1 Recurrence Relations

It is easily verified that the generating function

w(x,t)=(1- t)_lexp[—lx—_tt]
satisfies the identity

-0 +(x-1+0)w=0 (5.39)

By substituting the series (5.33) for w(x,t) into (5.39), we find upon
simplification that

21 [(n + 1)L, (x)+(x—=1-2n)L,(x) + nLn_l(x)]t" =0

(5.40)

Hence, equating the coefficient of ¢"” to zero, we obtain the recurrence
formula
(n+1DL, (x)+(x—=1-=2n)L,(x)+nL,_(x)=0 (5.41)
forn=1,2,3,....
Similarly, substituting (5.33) into the identity

1- t)g—: +w=0 (5.42)

leads to the derivative relation
Li(x)—L,_y(x)+ L,_1(x) =0 (5.43)
where n = 1,2,3,....



If we now differentiate (5.41), we obtain

(n+ 1)L, (x)+(x—-1=2n)L(x)+ L,(x)+nL,_;(x)=0

(5.44)
and by writing (5.43) in the equivalent forms
Ly(x) =L (x) = L,(x) (5.452)
Ly _y(x)=Ly(x)+ L,_,(x) (5.45b)
we can eliminate L, ;(x) and L;_;(x) from (5.44), which yields
xL,(x) = nL,(x) — nL,_;(x) (5.46)

This last relation allows us to express the derivative of a Laguerre poly-
nomial in terms of Laguerre polynomials.

To obtain the governing DE for the Laguerre polynomials, we begin by
differentiating (5.46) and using (5.43) to get

xLy(x) + L (x) = nL;(x) = nL;_y(x)

= _nLn—l(x)
We can eliminate L,_;(x) by use of (5.46), which leads to
xL!’(x) +(1 = x)L,(x)+nL,(x)=0 (5.47)

Hence we conclude that y =L, (x) (n=0,1,2,...) 1s a solution of
Laguerre’s equation

x"+(1—x)y +ny=0 (5.48)

5.3.2 Laguerre Series

Like the Legendre polynomials and Hermite polynomials, various functions
satisfying rather general conditions can be expanded in a series of Laguerre
polynomials. Fundamental to the theory of such series is the orthogonality

property
fooe"‘L,,(x)Lk(x) dx=0, k#n (5.49)
0

Our proof of (5.49) will parallel that given for the Hermite polynomials.
We begin by multiplying the two series

ni:‘,OL,,(x)t" =(1- t)—lexp[— lx__tt] (5.50a)

[e ¢}
Y L(x)s* = (1 = 5) "exp[ - 7=
k=0

] (5.50b)



to obtain

s
2 exp[ 1—t+1—s)]
Y X 1"t (x)L,(x) =
n=0 k=0 ¢ (1-n1-s)
Next, multiplication of both sides of (5.51) by the weight function e * and
subsequent integration leads to (see problem 29)

Z Z t"s / L, (x)L,(x)dx = (1 —1s)""

n=0 k=0

(5.51)

= i t"s" (5.52)

By comparing the coefficient of ¢"s* on both sides of (5.52) we deduce the
result (5.49), while for k = n, we also see that (for n = 0,1,2,...)

foooe"‘[L,,(x)]zdx -1 (5.53)

By a Laguerre series, we mean a series of the form

f(x)= f c,L,(x), 0<x<o (5.54)
n=0
where
C, = fooe"‘f(x)Ln(x)dx, n=0,1,2,... (5.55)
0

Without proof, we state the following theorem.
Theorem 5.2. If f is piecewise smooth in every finite interval x; < x < x,,
0 <x; <x,< o0, and
fooe"‘fz(x)dx < o0
0
then the Laguerre series (5.54) with constants defined by (5.55) converges

pointwise to f(x) at every continuity point of f. At points of discontinuity,
the series converges to the average value [ f(x*) + f(x7)).

5.3.3 Associated Laguerre Polynomials

In many applications, particularly in quantum-mechanical problems, we
need a generalization of the Laguerre polynomials called the associated
Laguerre polynomials, i.e.,

LM (x) = (- 1) [L,,+m(x)] m=0,1,2,... (5.56)



By repeated differentiation of the series representation (5.36), it readily

follows that (see problem 4)

d 1)%(n + m)ix*

L(m) = ( ,
(x) 2 (n = k)i(m + k)k!

m=0,1,2,... (557)

A generating function for the Laguerre polynomials L{™(x) can be
derived from that for L,(x). We first replace n by n + m in (5.33) to get

(-0 e[ - 72| - Y L. (x)em

n=-—-m

and then differentiate both sides m times with respect to x, i.e.,

—_1\"ym(1 — ) Im _x_t = - _i'i_ n+m
(1" = 07 el - 72| = L Rl
The terms of the series for which n = —1, —2,..., —m are all zero, since

the mth derivative of a polynomial of degree less than m is zero, and hence
we deduce that

(1- t)“‘”’exp[—lx—_’t] = Y L(x)t", | <1 (5.58)
n=0

The associated Laguerre polynomials have many properties that are
simple generalizations of those for the Laguerre polynomials. Among these
are the recurrence relations*

(n + 1)L (x)
+(x—1=-2n—-m)L{(x) +(n+m)L{™(x)=0  (5.59)
xL{m’(x) — nL{™(x) +(n + m)L{™ (x) =0  (5.60)
and the Rodrigues formula

m 1 Xy—m d —Xyn+tm
L{m(x) = P —(e *x"*m) (5.61)
The polynomials L{™(x) also satisfy numerous relations where the upper
index does not remain constant. Two such relations are given by

L™ (x) + L D(x) - L{™(x) =0 (5.62)
and
L™ (x) = —L{miV(x) (5.63)

*Note that for m = 0, (5.59) reduces to (5.41).



The second-order DE satisfied by the polynomials L{™(x) is the associ-
ated Laguerre’s equation

" +(m+1-=x)y +ny=0 (5.64)

To show this, we first note that the polynomial z = L, (x) is a solution of
Laguerre’s equation

xz" +(1 -x)z’+(n+m)z=0 (5.65)
By differentiating (5.65) m times, using the Leibniz rule (5.38), we obtain
dm+22 dm+lz d'"“z d"z
dxm+2 +mdxm+l +(l x)dxm+1 +nm =0

or equivalently,
d? (d™z d"z d"z
xdxz(dx )+(m+l—x)d (dx'”)+n(§x_)_0 (5.66)

Comparing (5.64) and (5.66), we see that any function y = C,(d™z/dx™) is
a solution of (5.64) where C, is arbitrary. In particular, y = L{™(x) is a
solution.

Example 3: Prove the addition formula

n
LEt D (x +y) = ¥ LO()LP(y),  ab> -1
k=0

Solution: From the generating function (5.58), we have

i L@ b+D(x + )" = exp[ —(x + y)t/(1 = 1)]

"0 (1 _ t)a+b+2
_exp[—xt/Q—1)] exp[—yt/(1 —1)]
(1 _ t)a+1 (1 _ t)b+1

i LOG)E - T L)
k=0 m=0
pl

5 1oL

Next, making the change of index m = n — k leads to

o0

© n
L LD (x+y)en= ¥ X LEO(x) L, (y)e"
=0 n=0 k=0



and by comparing the coefficient of ¢” in each series, we get our
intended result.

Remark: The associated Laguerre polynomial L{™(x) can be gener-

alized to the case where m is not restricted to integer values by writing

" (=D T(n +a+ 1)x*

L (x) = ,E;O (n—Kk)T(k +a+ 1)k’

a> —1

Most of the above relations are also valid for this more general polynomial.

EXERCISES 5.3

1.

Show that (for n = 0,1,2,...)
(@ L,(0)=1,

(b) L,(0) = —n,

(¢) L7(0) = 3n(n—1).

. Derive the Rodrigues formula

X n

e
(a) Ln(x - F dx"

1 d"
(m) = — xy Mo~ X
®) L{(x) = Lox e

Hint: Use the Leibniz formula (5.38).

(x"e™™),

(xn+me—X).

. Derive the recurrence formulas

(@) Ly(x) = Ly (x) + L,_,(x) = 0.

n—1
(b) Li(x) = — X Ly(x).
k=0

. By repeated differentiation of the series (5.36), show that

ey e (=D (m + n)ix*
L) = X G oim 7

m=20,1,2,...

k=0
. Show that
dk —k K
n!w[e XML (x)] = (n + k)le *x™ Lm0 (x)
. Show that

(n+ m)!

L) = n'm!



In problems 7-10, verify the given recurrence relation.

7. (n+ HLM(x)+(x —1—-2n - m)L"")(x) + (n + m)L{™ (x) = 0.

8. xL{™"(x) — nL{™(x)+ (n + m)L"" (x)=
9. LI (x)+ L{m V(x) — L™ (x) =
10. L{™'(x) = —L{™1Y(x).
In problems 11-18, verify the integral formula.

0 0 k<n

-x k = ’ b

11. /0 e *x"“L,(x)dx {(—1)"n!, k=n.
2. [ L)Ly (x — 1)dr = [ Lkt = Ly () = Ly a5,

1B, [Te LMy dt = e LI (x) — L0, m = 0,12,

m'n!
(m+n+1)
I'(b)T(n+a+1)
I(n+a+b+1)

14. fx(x - t)"L,(t)dt =
0

5. [ Yo — 1P (xe) dr = L@+ (x), a >
0
b>0.

16. fooe"‘x“Lf,“)(x)LS(")(x)dx =0,k+na>—-1.
0

17. fooe"‘x“[Lf,“)(x)]zdx = I('I—-'_?Ll—), a> -1
0 n.

18. [ e L)) dx = ﬂ’”n"—“)(z ta+1),a> —1.
0

x™HILMID(x) m=0,1,2,... .

-1,

In problems 19-23, derive the given relation between the Hermite and

Laguerre polynomials.

19. L V(x) = (G2l H,,(/x).

22n !
__ (="
20. L{/D(x) = mH2n+l(\/;)'
21. fooe"z[H,,(t)]zcos(\/Z—xt)dt — V72" nle /2L, (x).
_ 42 a-; = n ( 1)(2”) a
2. [ (= ) di = (D TS L),

-1
a> 2-

2 2y _ (_1)n L Hy (x)Hyo gy ()
B LGS+ = o EO k'(n — k)!



In problems 24 and 25, derive the Laguerre series.

2. x? = p! éo(fl’ )(—l)"L,,(x).

5. e =(a+1)'Y (
n=0

Hint: Set t = a/(a + 1) in the generating function.
26. Show that (x > 0)

! —1
a+1)L,,(x),a> 2

e ™ % Li(x)
foz+1“"n§0n+1

Hint: Use problem 25.
27. Show that (x > 0)

. = L (x)
“(xt)"™?J (2Yxt) = Sl MR SVEFLY =0,1,2,...
e'(xt) ' Vxt) ngo(""'m)! m=20

where J,,(x) is the Bessel function defined by (see Chapter 6)

o) = 00 (_l)k(x/2)2k+m
In(x) ,E’O k'(k + m)!

28. Show that for m > 1,

Lwt"+m/2Jm(2M)e_’dt = nle x™/2L{™M(x)

Hint: See problem 27.
29. Show that

(1—_—7)1?1—-:—)](;wexp[—x(l+—l—l_—t- lis)]dx= lits

30. Show that the Laplace transform of L,(t) leads to

© 1 1\"
j(; e'”Ln(t)dt= ';(1 - -5) y s>0
5.4 Generalized Polynomial Sets

The many properties that are shared by the Legendre, Hermite, and
Laguerre polynomials suggest that there may exist more general polynomial



sets of which these are certain specializations. Indeed, the Gegenbauer and
Jacobi polynomials are two such generalizations. The Gegenbauer polynomi-
als are closely connected with axially symmetric potentials in n dimensions
and contain the Legendre, Hermite, and Chebyshev polynomials as special
cases. The Jacobi polynomials are more general yet, as they contain the
Gegenbauer polynomials as a special case.

5.4.1 Gegenbauer Polynomials

The Gegenbauer polynomials* C(x) are defined by the generating function

0
A-2xt+) =Y M), <1, |x|<1  (5.67)
n=0

where A > — 1. By expanding the function w(x, ) = (1 — 2xt + t2)"* in
a binomial series, and following our approach in Section 4.2.1, we find

wix )= 2 (M) (=1)"m(@x — 0)"

n=0
£ E (e
_ i-o:[%Zl(n__}\k)(n;k)(_l)n(zx)n—zkt,, (5.68)

and thus deduce that
[n/2]

=02 [N e

k=0

By substituting the series (5.67) into the identity
2y OW
(1-2xt+¢ )W +2M(t—x)w=0 (5.70)

where w(x,t)= (1 — 2xt + t?)~*, we obtain the three-term recurrence
formula (n = 1,2,3,...)

(n+1)C(x) —2(A+ n)xCMx)+(2A+n—1)C ,(x)=0
(5.71)

Other recurrence formulas satisfied by the Gegenbauer polynomials include

*The polynomials CN(x) are also called ultraspherical polynomials.



the following;:
(n+1)CM (x) = 2AxCM1(x) + 2AC M (x) =0 (5.712)
(n 4+ 2A)CMx) = 2ACMY(x) + 2AxCM 1 (x) =0 (5.73)
CM(x) = 2ACNH(x) (5.74)

The orthogonality property is given by (see problem 13)
[l a =) ieNxC(x) dx =0, k#n (5.75)
~1

and the governing DE is
(1-x2)y"—-QA+1)xy'+n(n+2\)y=0 (5.76)

which can be verified by substituting the series (5.69) directly into (5.76).

One of the main advantages of developing properties of the Gegenbauer
polynomials is that each recurrence formula, etc., becomes a master formula
for all the polynomial sets that are generated as special cases. For example,
when A = 1 we see that (5.67) is the generating function for the Legendre
polynomials, and thus

P,(x)=C*(x), n=0,1,2,... (5.77)

By setting A = in (5.71), (5.75), and (5.76), we immediately obtain the
recurrence formula, orthogonality property, and governing DE, respectively,
for the Legendre polynomials.

The Hermite polynomials can also be generated from the Gegenbauer
polynomials through the limit relation

H,(x)= n!Alim AT"2CMx/VN),  n=0,1,2,... (5.78)
—> 00

To show this, we start with the series representation

[n/2] n—2k
—n /2 oy -\ n—k)(zx)
G R) = (0" E (K ) B 6
From Equation (1.27) in Section 1.2.4, we obtain the relation
(—1)"( -A )= (—l)k(A+ n—k- 1)
Nk \n—k Nk n—k

(-1)*T(A + n - k)
N KT(A)(n = k)!




and thus establish that (see problem 3)
, (-1)"( -A ) (="
lim ——— = — .
A Nk \n—k) " (n— k) (5:80)
Hence, from (5.79) we now deduce our intended result

(e < (1
. _ _\=h)n
n.Aan:o)\ G (X/ A) kgo k'(n — 2k)!

= H,(x)

(zx)n—Zk

Properties of the Hermite polynomials can be obtained from properties of
the Gegenbauer polynomials, although most such relations are more difficult
to deduce than for the Legendre polynomials.

5.4.2 Chebyshev Polynomials*

An important subclass of Gegenbauer polynomials are the Chebyshev
polynomials, of which there are two kinds. The Chebyshev polynomials of the
first kind are defined by

Gr(x)
A 9

T(x)=1, T,(x)= %gin:) n=1,2,3,... (581)
Because the Gegenbauer polynomials vanish when A = 0, we cannot just
simply define the polynomials 7,(x) by C2(x). The choice Ty(x) =1 is
made to preserve the recurrence relation (5.85) given below. By following a
procedure similar to that used to verify the relation (5.78), it can be
established that (see problem 15)

L (=) (n—k -

[ '
T,(x) = 3 kgo K\(n — 2k)! L (5.82)

The Chebyshev polynomials of the second kind are simply®
U(x)=CHx), n=0,1,2,... (5.83)
and thus by setting A = 1 in (5.69) we immediately deduce that
[n/2]

U= X (" K)nten (5:84)

k=0

*There are numerous spellings of Chebyshev that occur throughout the literature, e.g.,
TchebyshefT, Tchebycheff, Tchebichef, and Chebysheff, among others.

¥Some authors call (1 — x2)!/2{,(x) the Chebyshev functions of the second kind.



By using properties previously cited for the Gegenbauer polynomials, we
readily obtain the recurrence formulas

T,1(x) = 2xT,(x) + T,_,(x) = 0 (5.85)
Upir(x) = 25U, (x) + U, ,(x) = 0 (5.36)
orthogonality properties
j_‘1(1 —x) VT ()T (x)dx =0, k#n (5.87)
fjl(l - x)2U(X)U(x)dx =0, k#n (5.88)
and governing DE for T, (x),
(1-x%)y"—xy"+n*’%=0 (5.89)
and for U,(x),
1-x?)y" =3 +n(n+2)y=0 (5.90)

There are also several recurrence-type formulas connecting the polynomials
T,(x) and U,(x), such as

T,(x) = Uy(x) = xUyp_,(x) (5.91)
and
(1 = x*)U,(x) = xT,(x) = T,.,,(x) (5.92)
the proofs of which are left for the exercises.
By making the substitution x = cos¢ in (5.89), we find it reduces to

2
§¢—)2)+n2y=0

with solutions cos n¢ and sin n¢. Thus we speculate that
T,(cos¢) = c,cosn¢

for some constant c,. But since 7,(1) =1 for all n (see problem 26), it
follows that ¢, = 1 for all n. It turns out that this speculation is correct, and
in general we write

T,(x) = cosng = cos(ncos 'x) (5.93)
Similarly, it can be shown that

_ sin[(n + 1)cos x|

V1 — x?

U,(x)

(5.94)



The significance of these observations is that the properties of sines and
cosines can be used to establish many of the properties of the Chebyshev
polynomials.

The Chebyshev polynomials have acquired great practical importance in
polynomial approximation methods. Specifically, it has been shown that a
series of Chebyshev polynomials converges more rapidly than any other
series of Gegenbauer polynomials, and converges much more rapidly than
power series.*

5.4.3 Jacobi Polynomials

The Jacobi polynomials, which are generalizations of the Gegenbauer poly-
nomials, are defined by the generating function

2a+b —a _b oC
——R—(l —t+R) ‘0 +t+R) "= Y PUOO(x)t",
a>-1, b> -1 (5.95)
where
=(1-2xt+12)"? (5.96)

The Jacobi polynomials have the following three series representations
(among others), which are somewhat involved to derive:

o= EOEIGTCT (YT e
PEO)(x) = Zi:(n+a)(n+k:a+b)(xz;1)k (5.98)

Pa®(x) = kZ:’O(_l)n_k(: -1_— Ilz)(n + k ;(— a+ b)(ﬁ_zt_l)k (5.99)

By examination of the generating function (5.95), we observe that the
Legendre polynomials are a specialization of the Jacobi polynomials for
which a = b =0, i.e,

P,(x)=P%9(x), n=0,1,2,... (5.100)

*For theory and applications involving the Chebyshev polynomials, see L. Fox and I.B.
Parker, Chebyshev Polynomials in Numerical Analysis, London: Oxford U.P., 1968.



whereas the associated Laguerre polynomials arise as the limit (see problem
37)

L (x) = blim P®(1 - 2x/b), n=0,1,2,... (5.101)

—>oC
In addition to the Legendre and Laguerre polynomials, the Gegenbauer
polynomials are also a special case of the Jacobi polynomials. To derive the

relation between the Gegenbauer and Jacobi polynomials, we start with the
identity

2t(x - 1)
(1-1)
and expand the right-hand side in a series. This action leads to

(1= 2t + 2) i( )( D) (x - 1"

k=0 ( _ t)Z(k+)\)

(1-2xt+1) =1~ z)‘“[1 } (5.102)

i:: E" (_kA)( —2km— 2)\)(_1)m+k2k(x _ l)ktm+k

m=0 k=0
(5.103)
where we have expanded (1 — ¢)~%**» in another binomial series and
interchanged the order of summation. Next, replacing the left-hand side of

(5.103) by the series (5.67) and making the change of index m = n — k, we
get

00

Y Q=L X (M) THE A0yt
n=0 n=0 k=0 n-=

from which we deduce

CMx) = (—1)"20( M CE - (100

n

Recalling Equation (1.27) in Section 1.2.4 and the Legendre duplication
formula, we see that

n( =AY =2k —2A\ _ (A+k—1)(n+k+2A—-1
GO (AR
_ T(AN+Kk)T(n+k+2X)
" T(MN)KITQA + 2k)(n — k)!
T(A+ 3H)T(n+ k+2X)
TQA)T(A + k + 4)k!(n — k)12




and hence (5.104) can be expressed in the form
T(A+ 4)T(n +22)
TEA)T(n+ A+ 1)

n it _ _ P
xz(n:)\kz)(n+k+kz>\ 1)(x21) (5.105)
k=0 -

GMx) =

or, by comparing with (5.98),

I(A+ §)T(n+ 28) pa-ia-

TEMT(n+A+14) " ) (x) (5.106)

Gh(x) =

The basic recurrence formula for the polynomials P(*®)(x) is

2(n+ 1) (a+b+n+1)(a+b+2n)PeP(x)=(a+b+2n+1)

X[a® = b2+ x(a+b+2n+2)(a+b+2n)|PD(x)

—2(a+n)(b+n)(a+b+2n+ 2)P,,‘f'1”)(3_c) (5.107)

for n =1,2,3,... . Also, the orthogonality property and governing DE are
given respectively by

[ =00+ ) PED(x)PEP(x)dx =0,k
-1

(5.108)
and
Q-x¥)y"+[b—a—-(a+b+2)x]y'+n(n+a+b+1)y=0
(5.109)

Some additional properties concerning the Jacobi polynomials are taken up
in the exercises.

EXERCISES 54
1. Show that (for n = 0,1,2,...)
CM—x) = (-1)"CMx)
2. Show that (for n = 0,1,2,...)

@ AO=(71), (b) G =0,

© Qo= "A) @ =2



3. Show that
T(A+n—k
im S !

In problems 4-8, derive the given recurrence relation.

4. xCM(x) = nCMx) + CM,(x).

5. 2(A + m)CNx) = Gy (x) — GYy(x).
xCM(x) = G 1(x) = @A + n)CN(x).
. (x2 = 1DCM(x) = nxCMNx) — A — 1 + n)C~ l(x)
nCMNx)=2x(A+n—1DC (x) — 2A + n — 2)C* ,(x).

. Use any of the results of problems 4-8 and the recurrence formula
(5.71) to show that y = C}(x) is a solution of

\990\19\

1-x3)y"—-QrA+Dxy'+n(n+2A)y=0

10. Show that (for £k = 1,2,3,...)

a* A _wI(A+k) Chok
Hint: Use Equation (5.74).
11. Verify that (for k = 1,2,3,...)*
! 1 dk
C,li(x)= — P, (x)

2k — )M agxk™ "
12. Derive the recurrence relation

(n+20)GMx) —(n + 1G4 (x)
2(1 — x)

n
L (n+N)C(x) =
k=0
13. Verify the orthogonality property
f‘ (1 - x) M x)CM(x)dx =0, k+#n
-1

14. Show that (for n = 0,1,2,...)

21722 T'(n + 2A)
(n+A) [T(V)]*n!

f (1 - x*)*" C}‘(x] dx =

*See problem 15 in Exercises 2.2 for definition of the symbol !!.



15. By using Equation (5.69) and the definition

n=1,2,3,...

show that

_n [n/2] (_l)k(n — k- 1)' (2x)n—2k

16. Using the recurrence formula (5.71), deduce the relations

@) T,,(x) = 2xT,(x) + T,_(x) = 0.
(0) Uy 41(x) = 2xU(x) + U, (x) = 0.

In problems 17-22, derive the given relation for the Chebyshev polynomi-
als.

17. T,(x) = U(x) — xU,_(x).

18. (1 - x2)U,(x) = xT,(x) = T, 1(x).
19. T,)(x) = nU,_(x).

20. AT, (X)) = 1 + Ty, (x).

2L [T,(0) = T,y ()T, y(x) =1 - x*
22. [U,(0))? = Upsr(0)U,_y(x) = 1.

23. By making the substitution x = cos¢ in the orthogonality relation
(5.87), show that

f”cosn¢cosk¢d¢ =0, k#n
0

In problems 24 and 25, derive the generating-function relation.

1-1¢2 i
, ——————— =Ty (x)+2 ), T (x)t"
1—2xt+t2 0( ) o n( )
_ o 0]
25.—1——55—2= T, (x)t".
1—2xt+1¢ ne0

26. Show that T,(1)=1, n=0,1,2,..., by using

(a) problem 24,
(b) problem 25.

27. Verify the special values (for n = 0,1,2,...)

(@ T,(-D=(-1",
(b) T2n(0) = (_1)n9
(©) T, 11 (0) = 0.



15.

16.

17.

18.

Show that the Jacobi polynomials

(a,b) ____n ”+a(n+b) ok
ERLORE DY ) (4 [CER I CERY
satisfy the relations
(@) PO (x) = (- 1)("+b)F( non+a+b+1;1+b; 1;"),

(b) LD (x) =(” : a)F(—n,n +a+b+1;1+a I_T")

Given the incomplete beta function
B(p.g)= [ 1 -0)""d,  p,g>0
0
show that

xP
(@ B,(p,q9)= 7F(p,l - q;1+ p; x),

I'(p)T
() By(p.9) = —F((’;)+(j)) :
Show that
n—1
kZ-ZO(Z)x" =(1+x)° —(g)x"F(n —a,l;n+1;—x)
Verify that

R (1) (1= x)\k
P,(X)—kgo (k!)2 k( 2 )

In problems 19-21, use the series representation in problem 18 to deduce
the given recurrence formula.

19. (v + DP,,(x)— v + D)xP,(x) + vP,_1(x) = 0.
20. P/ (x)—xP/(x)=(v+ 1P,(x).
21. xP/(x) — P/_i(x) = vP,(x).
22. Using the relation (8.48), show that (for k = 0,1,2,...)
(@) Py+1(0) =
® P = 1) o
23. Show that
ny(o) = M YT

sin
VrT(v + 1) 2



28. Verify the special values (for n = 0,1,2,...)

@ U,1)=n+1,
(b) U2n(0) = (_1)"a
©) Uy,110)=0

29. Show that

T
[ A=)Vl ax = {7
30. Show that
1
/_1(1 ) U, (x)] dx = 5

In problems 31-38, verify the given relation for the Jacobi polynomials.
31. P(*®(=x)=(—-1)"P{" D (x).

32 peh@y=(atntl),

3. PER(-1) = (-1 T r 1),

34. P(4D(x) = (2_,,1), =X +x)" a

I(k+n+a+b+1
( ) (a-;kh+k)(x)

+ x)b*n].

35. d* —P@9(x) =

dxk " 2*T(n+a+b+1)
36. P{“*~D(x) — P{*"P(x) = P{2P)(x).
37. LW(x) = blim PP (1 — 2x/b)
— o0

22"("!)210(—%-—%)()(),

38‘ T;l(x) = (2")’ n




Bessel Functions

6.1 Introduction

The German astronomer F.W. Bessel (1784-1846) first achieved fame by
computing the orbit of Halley’s comet. In addition to many other accom-
plishments in connection with his studies of planetary motion, he is credited
with deriving the differential equation bearing his name.* It is known,
however, that Bessel’s equation was first investigated in 1703 by J. Bernoulli,
who was studying the oscillatory behavior of a hanging chain. In fact,
Bernoulli solved Bessel’s equation by an infinite series that now defines the
Bessel function of the first kind. Bessel functions were also met with by Euler
and others who were concerned with various problems in mechanics.
Nonetheless, it was Bessel in 1824 who carried out the first systematic study
of the properties of these functions, and thus they are named in his honor.

Bessel functions are closely associated with problems possessing circular
or cylindrical symmetry. For example, they arise in the study of free
vibrations of a circular membrane and in finding the temperature distribu-
tion in a circular cylinder. They also occur in electromagnetic theory and
numerous other areas of physics and engineering. In fact, Bessel functions
occur so frequently in practice that they are undoubtedly the most im-
portant functions beyond the elementary ones.

*A short historical account of Bessel’s problem of planetary motion is given in N.W.
McLachlan, Bessel Functions for Engineers, London: Oxford, 1961, Chapter 1.



Because of their close association with cylindrical-shaped domains, all
solutions of Bessel’s equation are collectively called cylinder functions. The
Bessel functions, of which there are several varieties, are certain special
cases of cylinder functions. In addition to Bessel functions of the first kind,
there are Bessel functions of the second and third kinds, modified Bessel
functions of the first and second kinds, spherical Bessel functions, and so
on.

6.2 Bessel Functions of the First Kind

Although Bessel functions arise in practice most frequently as solutions of
certain DEs, it is both instructive and convenient to develop them from the
same point of view that we adopted in introducing the orthogonal poly-
nomials in Chapters 4 and 5, viz., by a generating function.

6.2.1 The Generating Function

By expanding the function

w(x, 1) = exp[%x(t - %)] 140 (6.1)

in a series involving both positive and negative powers of ¢, we wish to
establish the relation

w(x,t) = =§i J(x)t" (6.2)

where J,(x) denotes the Bessel function we want to define.
To begin, we write w(x, t) as the product of two exponential functions
and expand each in a Maclaurin series to get

W(X, t) — exl/2 . e—x/2l

2 (xt/2) i (—xk/'Zt)k

N \g!

1
o J° k=0

RN C VI E77) S
_j§0k§O Jik! .

We now make the change of index n =j — k. Because of the range of
values on j and k, it follows that — o0 < n < o0, and thus

W= ¥ % (_13(15)1/?)! o

n=-00 k=0

(6.3)



By defining the Bessel function of the first kind of order n by the series

0 k 2k+n
(=1 (x/2)
= , - 6.4
J,(x) k§0 K1k + n)1 0 <x< o (6.4)
we see that (6.3) leads to the desired generating-function relation
1 o0
exp[%x(t - 7)] = Y J(x)n %0 (6.5)
n=-—oo

Since (6.5) involves both positive and negative values of n, we may wish
to investigate the definition of J (x) specifically when n < 0. The formal
replacement of n with —n in (6.4) yields

R (DA
J'"(")_EO k'(k — n)!

_ 0 (_l)k(x/z)Zk—n
En k'(k—n)

where we have used the fact that 1/(k —n)! =0(k=0,1,...,n— 1) by
virtue of Theorem 2.1. Finally, the change of index kK = m + n gives us

_ 00 (_1)m+n(x/2)2m+n
(%) mz=0 m!(m + n)! (6.6)
from which it follows that
J_,(x)= (—1)"J,,(x), n=0,1,2,... (6.7)

Graphs of J,(x) for certain values of n are provided in Fig. 6.1. Observe
that only J;(x) is nonzero when x = 0. To prove this, we simply set x = 0
in the generating-function relation (6.5) to get

o0
1= Y J,(0)¢"
n=—o00
and by comparing like terms we deduce the results

L) =1, J0)=0, n#0 (6.8)

6.2.2  Bessel Functions of Nonintegral Order

Thus far we have only discussed Bessel functions of integral order. We can
generalize the series definition [Equation (6.4)] of the Bessel function J,(x)



Figure 6.1 Graph of J,(x), n =0,1,2

to include nonintegral values of n by replacing (k + n)! with its gamma
function equivalent. Hence, if p is any real number for which p > 0, we
then define

G V€77l

J = 6.9
h(x) EO k'T(k+p+1) (69)
as the Bessel function of the first kind of order p.
The formal replacement of p with —p in (6.9) yields
00 k 2k-p
_ v (=) (x/2)
J_,(x)=X (6.10)

=, kT(k—p+1)

which for p # 0,1,2,... is not a multiple of J,(x). That is, since J_,(x)
becomes infinite at x = 0 while J,(x) remains finite, the two functions are
not proportional, and hence are linearly independent for nonintegral values
of p. The ramifications of this observation will become clear in Section 6.5.

Although J,(x) and J_,(x) do not satisfy any generating-function
relation, they are completely defined by their series representations and
share most of the properties of J,(x) and J_,(x).

6.2.3 Recurrence Relations

There are many recurrence relations connecting the Bessel functions, analo-
gous to those for the orthogonal polynomials. For example, suppose we
multiply the series for J,(x) by x” and then differentiate with respect to x.



This gives us
0 (_l)kx2k+2p

im0 22 PKIT(k+p + 1)

d
dix[x”.lp(x)] =

_ 5 (ED(k 4 p)xhei
k=0 22"+’k!F(k +p + 1)

o (_1\k 2k+(p-1)
ey EU (/D) (6.11)
k=0 k'T(k + p)
or
di.» = x?
a[x J,(x)] = xP7,_,(x) (6.12)
Similarly, if we multiply J,(x) by x 7, we find that (problem 14)
dp _ _
g;[x 2], (x)] = —x7P, 1 (x) (6.13)

If we carry out the differentiation in (6.12) and (6.13), and divide the
results by the factors x” and x 7, respectively, we deduce that

J/(x) +§J,,(x) =J, 1(x) (6.14)
and
Fx) = 20,(x) = =J,(x) (6.15)
The substitution of p = 0 in (6.15) leads to the special result
Jo(x) = —Ji(x) (6.16)
Finally, the sum of (6.14) and (6.15) yields the relation
20(x) = Jp1 (%) = Jpur (%) (6.17)

whereas the difference of (6.14) and (6.15) gives us
2p -
TJP(X) _Jp—l(x) +Jp+l(x) (618)

This last relation is the three-term recurrence formula for the Bessel func-
tions.



Repeated application of the above recurrence relations can lead to the
additional results*

(x x) [x22,(x)] = %70, () (6.19)

and
(xdx) [x727,(x)] = (=1)"x77"", (x) (6.20)

where m = 1,2,3,....

6.2.4 Bessel’s Differential Equation

By using the above recurrence formulas, we can derive a derivative relation
involving only the Bessel function J,(x). To start, we rewrite Equation
(6.14) in the form

xJ/(x) = xJ,_y(x) + pJ,(x) =0 (6.21)
and differentiate to find
xJ)(x) +(p + 1)J)(x) — xJ/_1(x) —J,_,(x) =0 (6.22)
Multiplying (6.22) by x and subtracting (6.21) multiplied by p yields
X2 (x) + xJ)(x) = pT(x) +(p — V)xJ,_(x) = x¥/_(x) =0

(6.23)
Now if we rewrite Equation (6.15) in the form
xJ}1(x) = (p = 1)dy_y(x) = x4, (x)
and use it to eliminate J,_;(x) and J,_(x) from (6.23), we obtain
X7 (x) + xJ)(x) +(x -p*),(x)=0 (6.24)

Hence, we deduce that the Bessel function J,(x) is a solution of the
second-order linear DE'

x%y” 4+ xy' +(x2—p*)y=0 (6.25)

Equation (6.25) is called Bessel’s equation. Among other areas of
application, it arises in the solution of various partial differential equations

N d\V 1d{(la
Wemterpret( dx)y_ xdx(xd

¥Since only p? appears in (6.25), it is customary to make the assumption that p > 0.

) and so on.



of mathematical physics, particularly those problems displaying either cir-
cular or cylindrical symmetry (see Section 7.3).

EXERCISES 6.2

1. Show that the generating-function relation (6.5) can also be written in
the form (¢ # 0)

exp[%x(t - %)] = Jo(x) + gjljn(x)[t" +(=1)"]

2. Show that J (x) is an even function for even n and an odd function for
odd n, ie.,

J(=x)=(-1)"J,(x), n=0,%1,+2,...

(a) by using the generating function (6.5),
(b) by using the series representation (6.4).

3. By using the series representation (6.4), show that

(a) JY(0) =3, (b) J/(0)=0 forn> 1.
4. For w(x,t) = exp[3x(t — 1/1)},

(a) show that w(x + y,t) = w(x. t)w(y, ).

(b) From (a), deduce the addition theorem

(o]
Jn(x+y)= Z Jk(x)‘]n—k(y)
k= —o00

(c) From (b), derive the result

Jo(2x) = [Jp(x)]* + 2k§1<—1)k[1k<x)12

5. Given the generating function w(x, t) = exp[ix(t — 1/1)],
(a) show that it satisfies the identity

aw 1
W —%x(l+ 1_2)w=0

(b) Using (a), derive the recurrence relation

2x—nJ,,(x) T () +d.(x), n=1,2,3,..



10.

11.

Given the generating function w(x, t) = exp[3x(¢t — 1/1)},
(a) show that it satisfies the identity

aw 1 1

%2 (’ B 7)W =0
(b) Using (a), derive the relation

2J)(x)=J,_1(x) = J, .1 (x), n=1,2,3,...
Show that (k # 0, t #+ 0)

exp[—%(k—%)] i L)k = Y T (k)"

n=-—oo n=—oo
From the product of the generating functions w(x, t)w(—x,t),

(a) show that
= [+ 2 X [
(b) From (a), deduce that (for all x)

[Jo(x)| <1 and IJ,,(x)|s—l-, n=1,23,...

V2

Use the generating function (6.5) to derive the Jacobi-Anger expansion

exp(ixsind) = Y, J,(x)e™"?
n= —oo

Use the result of problem 9 to deduce that

(a) cos(xsinf) = Jy(x) + 2 S I, (x)cos(2n),
(b) sin(xsin@) =2 3" Jz,,_ln(jcl)sin[(Zn - 1)6),
(©) cosx = Jy(x) o lf (=1)", (x),

(d) sinx =2 il(_l)n";:n—l(x)'

Use the results of problem 10 to deduce that

@ x=2Y @n -1, 4(x).

n=1

Hint: Diﬁergontiate problem 10(b).
(b) xsinx =2 Y (2n)%,(x).

n=1



. Set t = e’ in the generating function (6.5) and deduce that

(a) cosh(xsinh@) = Jy(x) + 2 i Jy,(x)cosh(2n@),

n=1

(b) sinh(xsinh§) = 2 i 5, —1(x)sinh[(2n — 1)8].

n=1

. Derive Lommel’s formula

L(x)_,(x) +J_,(x)J,_1(x) = 2sin pm

X

. Show that

LLx (0] = =x ()

. Show that

L k0] = =kdpu () + 2 (k)

. Show that

(@) (00 = 2 (L, GOP — [y (1),

(b) %[xZJ,,_l(x)Jp“(X)] = 2x%,(x) S (x).

. Show that

@ o (3B = Jpor () dper ()} = G
(b) ;gz{[lp(x)]2 + [ (0} = 2{%[4(*)]2 - £ : 1

. Show directly that y = J_,(x) is a solution of

Wy (0P

x2y" + xy' +(x2—p?)y=0
. Show directly that y = J,(kx) is a solution of

x%y" + xy" +(k*x2—p*)y=0
. Establish the following identities:

. 2
@ Jip(0 = Y = sinx, ®) Jya(0) = | = cosx,

sin2x

© Jl/z(X)J—l/z(x) = Tax
2

(d [11/2(x)]2 + [J—l/z(x)]2= =




21.

By using the Cauchy product, show that

[Jo(x)] né‘,o( 1) §2n)'(%) n

n

Hint: ¥ (,’é)2 =(2n").

k=0

In problems 22-24, derive the given identity.

22

23.

24,

25.

KT =2x) = T J(0) s
n=0
— -p/2 n
(x 2’) J,(Vx? = 2xt) = Z p+,,(x)%

X

[o o]

e’ (tsing) = 3 P,,(cos¢)m, where P (x) is the nth Legendre
n=0 :

polynomial.

A waveform with phase modulation distortion may be represented by*
s(t) = cos[wyt + &(t)]
where €(¢) represents the “distortion term.” In much of the analysis of

such waveforms it suffices to approximate the distortion term by the
first term of its Fourier series, i.e.,

e(1) = asinw,,t
where a denotes the peak phase error and «,, is the fundamental
frequency of the phase error. Thus, the original waveform becomes
s(1) = cos(wyt + asinw,,t)
(a) Show that this last form for s(z) can be decomposed into its

harmonic components with Bessel functions representing the corre-
sponding amplitudes, i.e., show that

s(t) = Jy(a)cos wyt + i J,(a)[cos(wyt + new,,t)

n=1
+(—1)"cos(wot — nw,t)]
Hint: Use problem 10.

(b) Whenever the peak phase error satisfies a < 0.4 radians, we can use
the approximations

Jy(a) =1, Jl(a)=§, J(a)=0 (n=2,3,4,...)

*For a further discussion of this kind of problem, see C.E. Cook and M. Bernfeld, Radar

Signals, New York: Academic, 1967.



Show that under these conditions the phase modulation error term
produces only the effect of “paired sidebands” with a frequency
displacement of + «w,, with respect to w, and a relative amplitude of

a/2.

6.3 Integral Representations and Integrals of Bessel Functions

There are several integral representations of J,(x) that are especially useful
in practice. Foremost among these is one involving the Bessel function of
integral order. To derive it, we start with the generating-function relation

o0
e%x(x—l/t) — Z Jk(x)t"

k=—o00

and set t = e to get

00
et = ) Ji(x)e ke (6.26)

k=-o

where we have made the observation

1 - i .
t— o =e ® — e = —2ising

Next, we multiply both sides of (6.26) by e'"® and integrate the result from
0 to =, obtaining
f i(np—xsing) d¢ = Z Jk(x)f i(n—k)¢ d¢ (6.27)
0 k=—00

assuming that termwise integration is permitted. Now using Euler’s formula,
we can express (6.27) in terms of sines and cosines, i.e.,

f cos(ng — xsing) do + zf sin(n¢ — xsing) do

z Jk(x)f cos(n — k)ode + i z Jk(x)f sin(n — k)¢ dé

k=—o0 k=—
(6.28)
Equating the real parts of (6.28), and using the result
" _ _J/0, k#n
focos(n k) do {m kzn (6.29)

we find all terms of the infinite sum vanish except for the term correspond-



ing to k = n, and thus we are left with the integral representation (for
n=012...)

J(x)= j cos(né — xsing) do (6.30)
When n = 0, we get the special case
1 /7 .
Jo(x) = —f cos(xsing) do (6.31)
m™J0

The representation (6.30) is restricted to Bessel functions of integral
order. A less restrictive representation, due to S.D. Poisson (1781-1840), is
given by

J(x)— (X/z) f(l Z)P—%eixtdt, P>_%, x>0

p

(6.32)

where p is not restricted to integral values. To derive (6.32), we start with
the relation

fl (1 — 12)? 2eixt gr = 2[1(1 — £2)" " 2cos xt dt
-1 0

o (_1\k, 2k .
-9 (=1'x fl(l — 12)P T2k gy
'Y
(6.33)

where we are using properties of even and odd functions and have expressed
cos xt in a power series. The residual integral in (6.33) can be evaluated in
terms of the beta function by making the change of variable u = ¢, from
which we get (for p > — 1)

[a-yiera=1 10 -u) i
0 0

=4B(k+ 3, p+1)
I'(k+3)T(p+3)

T T aT(k+p+1) (6.34)
From the Legendre duplication formula, we have
T(k+3)= RRL g (6.35)

22Kk



and by substituting the results of (6.34) and (6.35) into (6.33), we obtain

pP- z lxt o l)k(x/z)Zk
f (l—t dt = \/_l"(p+ )kZW

— VT (p %( ) J,(x) (6.36)

from which we deduce (6.32).
A variant of (6.32) results if we make the change of variable ¢ = cos8:

4 7
J(x)= (x/—Z))L cos(xcos@)sin’?6dd, p> -4, x>0
2

(6.37)

the verification of which is left to the reader (problem 2).

6.3.1 Indefinite Integrals Involving Bessel Functions

Many of the indefinite integrals that arise in practice are simple products of
some Bessel function and x raised to a power. In particular, we find as a
general rule that any integral of the form

1= fx'"Jn(x)dx (6.38)

where m and n are integers such that m + n > 0, can be integrated in
closed form when m + n is odd, but will ultimately depend upon the
residual integral [Jy(x) dx when m + n is even.*

By starting with the identities [see (6.12) and (6.13)]

A e, ()] = 22,10 (6:9)
and
dp _ -
E[X "Jp(x)] = —-x pjp+1(x) (640)

we can derive two useful integration formulas for handling integrals of the
form (6.38). Direct integration of (6.39) and (6.40) leads to

fx”Jp_l(x) dx = x?J,(x) + C (6.41)

*The integral [3Jy(7)dr has been tabulated. See, for example, M. Abramowitz and 1.
Stegun, (Eds.), Handbook of Mathematical Functions, New York: Dover, 1965.



and
fx"’JpH(x)dx = —x7?,(x)+C (6.42)

where C denotes a constant of integration.
Example 1: Reduce [x%,(x)dx to an integral involving only Jy(x).

Solution: To use (6.42), we first write

foJz(x) dx = fxa[x_llz(x)] dx

and use integration by parts with
u=x> dv = x" ', (x)dx
du = 3x2dx, v=—x"Y(x)

Thus we have
fxz.lz(x) dx = —x%(x) + 3fx.ll(x) dx
and a second integration by parts finally gives
fxz.lz(x)dx = —x%(x) — 3xJy(x) + BfJo(x) dx

The last integral involving J,(x) cannot be evaluated in closed form,
and so our integration is complete.

6.3.2 Definite Integrals Involving Bessel Functions

In practice we are often faced with the necessity of evaluating definite
integrals involving Bessel functions in combinations with various elementary
functions or, in some instances, special functions of other kinds. The usual
procedure in such integrals is to replace the Bessel function by its series
representation (or an integral representation) and then interchange the order
in which the operations are carried out.

To illustrate the technique, let us consider the Laplace transform integral

1= fowe-aXxPJ,,(bx)dx, p>-% a>0, b>0 (6.43)

Here we replace J,(bx) by its series representation (6.9) and integrate the



resulting series termwise to get

— ( 1) (b/2)2k+p —ax,2k+2p
! Z CKT(k+p+1) 0‘" X dx

F(2k+2p+1) 2 —(p+H—k 2\ k
= b? : b 6.44
kZO 22"+1’k'1‘(k +p+1) (%) ()" (6.44)

where the integral has been evaluated through properties of the gamma
function. We wish to show that the series (6.44) is a binomial series, and
hence it can be summed. Recalling the Legendre duplication formula and
Equation (1.27) in Section 1.2.4, it follows that (p > — %)

(- TRk +2p+1) (-1 2?T(p+k+1)

22K*PEIT(k + p + 1) v k!
_ 2’F(‘/P77+ 1) ( —(Pk+ %)) (6.45)
Thus, (6.44) becomes
I= Wé( ‘(Pk+ %))(aZ)““%)"‘(bZ)k (6.46)

and by summing this binomial series, we are led to*

2 l’ l
f ~axx?] (bx) dx = (26)'T(p )l, p>—3%, a>0, b>0
0 \/;(a +b2)p+5

(6.47)

Setting p = 0 in (6.47) yields the special result

[Ce (b dx = (a2 + 82 a0, b>0  (6.48)
0

Strictly speaking, the validity of (6.48) rests upon the condition that
a > 0 (or at least the real part of a positive if a is complex). Yet it is
possible to justify a limiting procedure whereby the real part of a ap-
proaches zero. Thus, if we formally replace a in (6.48) with the pure

*Summing the series (6.46) requires that a # b, although the result (6.47) is valid even
when a = b.



imaginary number ia, we get

[Fem e (bx) dx = (07 - a?) "
0

The separation of this expression into real and imaginary parts leads to

fwcos(ax) Jo(bx)dx — ifoosin(ax) Jo(bx) dx
0 0
p*-a?)?  b>
(¢ ) n ¢ (6.49)
—i(a*—b*)""’°, b<a

and by equating the real and imaginary parts of (6.49), we deduce the pair
of integral formulas

[ cos(ax) Jy(bx) dx = {(b2 —a?) % b>a (65
0 0, b<a
and
0, b>a
(a2 =b1)""% b<a

These last two formulas are important in the theory of Fourier integrals.
Both (6.50) and (6.51) diverge when b = a.

j:osin(ax) Jo(bx) dx = { (6.51)

Example 2: Derive Weber’s integral formula

22m—p—11’*(m)

= 0O<m<} > -1
I(p—-m+1)’ msaop :

o0
j(; x*m7Pml (x) dx =
Solution: Replacing J,(x) by its integral representation (6.37), we have
2-p

o0
x2m=P- (x)dx = ———
e =

X fwxz'”'lf"cos(x cos 6)sin*”0 df dx
0 0

277
VaT(p+ %)
X f"sinzl’()fwxz""lcos(xcosﬂ) dxde
0 0

where we have reversed the order of integration. By making the substitu-
tion ¢ = xcos@ in the inner integral and using the result of problem 37



in Exercises 2.2, we obtain

® 2m-1 —2mp [ 2m-1
/ x*" Icos(x cos@) dx = cos "'0/ t*™ " costdt
0 0

cos~2mG T (2m)cos mm

71722210 (m)T(m + )cosmmcos™ 2™

The last step follows from the Legendre duplication formula. The
remaining integral above now leads to

/wsin2”0cos’2"'0d0 = Zf"/zsinzmcos_z'”B de
0

0
_Mp+HYTQE - m)
I(p—m+1)

and hence, we deduce that

22m=P I (m)T(m + 3$)T(3 — m)cosmm

foooxz'”_”_l.lp(x) dx =

al(p—m+1)
_ 22m—p—1r(m)
I'(p—-—m+1)

where we are recalling the identity [problem 42(b) in Exercises 2.2]

T({ +m)T(3 —m)=nsecmn
(Although we won’t show it, Weber’s integral is valid for a much wider
range of values on m and p than indicated above.)

EXERCISES 6.3

1. Using Equation (6.30), deduce the following results:
@) [1 + (—~D)")J,(x) = %f cosnfcos(xsind)dé (n =0,1,2,...).
0

®) [1 = (—1)"1J,(x) = %f"sinnasin(xsino)do (n=01,2,...).
0
©) Jyu(x) = lf"coszkevcos(xsinar)d() (k=0,1,2,...).
m™J0

(d) Jyps (%) = % I "sin[(2k + 1)0]sin(xsin8) 0 (k = 0,1,2,...).
0

(e) f"cos[(2k + 1)@]cos(xsinf)dfd =0 (k =0,1,2,...).
0

® f"sinzko sin(xsind)df = 0 (k = 0,1,2,...).
0



2. By setting ¢ = cos @ in (6.32), show that

_ (x/2)" " 2 _1
J(x) = FT(p+ %)focos(xcosﬂ)sm P0d6, p>—-4i, x>0

3. By writing cosxt in an infinite series and using termwise integration,
deduce that

2 1 cosxt
Jo(x)—;fo = dt

4. Replacing J,,(xt) by its series representation and using termwise
integration, deduce the integral relation

J(x) = 21“(()61{—2—)11;')”]01(1 — )7 Tm Y (xt) dt,

p>m>-1, x>0

In problems 5-16, use recurrence relations, integration by parts, etc., to
verify the given result.

5. f xJy(x)dx = xJy(x) + C.

6. fxz.lo(x)dx = X2, (x) + xJy(x) — fJO(x)dx +C.

7. fx3J0(x)dx (x* = 4x)Jy(x) + 2x%,(x) + C.

8. le(x)dx = —Jy(x)+C.

9. fx.ll(x)dx = —xJy(x) + fJo(x)dx +C.

10. fxz.ll(x)dx = 2xJy(x) — x¥,(x) + C.

11. fx3J1(x)dx = 3x2,(x) — (x* = 3x)Jy(x) — 3fJO(x)dx +C

12. fJ3(x)dx = —Jy(x) = 2x" Uy (x) + C.

1

w

) fx‘lJl(x)dx = —J(x)+ fJO(x)dx +C.

14. /x'ZJz(x)dx = - 3—22-11(x) - (%)
X
1 1
+ 3Jo(x) + 5fJo(x)arx + C.



15. fJo(x)cosxdx = xJy(x)cosx + xJy(x)sinx + C.

16. f Jo(x)sin x dx = xJo(x)sin x — xJy(x)cos x + C.
17. Show that

fx{[./p()c)]2 —[Jpﬂ(x)]z} dx = xJ,(x)J,.,(x) + C

Hint: Use the result of problem 16(a) in Exercises 6.2.
18. Show that

fx[Jp(x)]zdx = %xz{[Jp(x)]2 - Jp_l(x)Jp+l(x)} +

Hint: Use the result of problem 17(a) in Exercises 6.2.

19. Show that (using repeated integration by parts)

feyax=nx) + D X300 4

n

(2n = 2)1J,(x) + (2n)!/J,,(x)d

2" Yn = 1"t 2"n! x

In problems 20-35, derive the given integral formula.
oo 1
20. fo Jo(bx)dx = 3, b > 0.
Hint: Let a — 0% in Equation (6.48).
[o o} [oe]
21. f J, . (x)dx = [ J,_(x)dx, n=1,2,3,....
0 0
Hint: Use Equation (6.17).
2. fooJ,,(x)dx =1,n=012,....
0
Hint: Use problem 21.

23. fwmdx= l, n=123,....
0 X n

Hint: Use problems 21 and 22.
2°*IT(p + 3) ab?
‘/77 (az+b2)p+%’p

24. Lwe_“"x"“./p(bx)dx =
a>0,b>0.

C

X

> —1,

Hint: Differentiate both sides of Equation (6.47) with respect to a.



25.

26.

27.

29.

30.

31.

32.

33.

35.

(2a% - b?)
(a® +67)"%
Hint: Differentiate both sides of Equation (6.48) with respect to a.

[e o]
f x%e™ %, (bx) dx = a>0,b>0.
0

e /% p> —1,a>0,b>0.

[} 2 bP
f e™“x? " (bx)dx = (
0

2a)p+l

/we_‘”‘zx””./p(bx)dx =
0
a>0,b>0.

bP b2 _b2/4
W(!’“‘E)" o>l

Hint: Differentiate both sides of problem 26 with respect to a.
1

. foox‘lsinx.lo(bx)dx = arcsin(—), b>1.
0

b
Hint: Integrate Equation (6.50) with respect to a.

f"/zJo(x cosp)cospdo = S X
0 X
fﬂ/z.ll(xcos¢)d¢ _ 1- cosx.

0 X

a5 -1 . _ sin(kasin¢)
fox(a x)"Jy(kxsing)do ~ksing

f"e’ms“’.lo(t sing)sing d¢ = 2.
0
Hint: Use problem 24 in Exercises 6.2.

fooe"m"’JO(tsinq&)t"dt = n!P,(cos¢), 0 < ¢ < m, where P,(x) is the
0
nth Legendre polynomial.

Hint: Use problem 24 in Exercises 6.2.

. foox(xz + a?) V2 (bx)dx = -l-e"‘”, a>0,b>0.
0

b
Hint: Use the integral representation

- 1 0 2, 42

X2 + aZ 172 - e—(x +a )tt—l/Zdt

( V==
and then interchange the order of integration.

pt+tl—-m
NG G el
f mdx= ,m>%,p—rn>—1-
0o X me(P T 1+ m
2 r(———z )



36. The amplitude of a diffracted wave through a circular aperture is given
by

v=k[ ’ A Heibrsinty g g

where & is a physical constant, a is the radius of the aperture, 8 is the
azimuthal angle in the plane of the aperture, and b is a constant
inversely proportional to the wavelength of the incident wave. Show
that the intensity of light in the diffraction pattern is given by

472k%q?
I=U*= —bz"—[fl(ab)]2

6.4 Bessel Series

A Bessel series, which is a member of the class of generalized Fourier
series,* has the form

f(x)= ¥ edy(k,x), 0<x<b, p>-}  (652)
n=1

where the c’s are constants to be determined and the k, (n =1,2,3,...)
are solutions of the equation

J(k,b) =0, n=1273,... (6.53)

The theory of Bessel series closely parallels that of Legendre series. For
example, the Bessel functions satisfy an orthogonality relation, and the
constants (Fourier coefficients) c, are defined by a formula similar to that
for Legendre series. The conditions under which the series (6.52) converges
will be stated (see Theorem 6.1 below), although we will not present the
formal proof.

6.4.1 Orthogonality

The theory of all generalized Fourier series rests heavily upon the ortho-
gonality property of the particular special functions. In the case of Bessel
functions, we have (p > —1)

b
'/0 xJ,(knx)J,(k,x)dx =0, m#+n (6.54)
where k,, and k, are distinct roots satisfying (6.53).

*See the discussion in Section 4.4 on generalized Fourier series.

" The Bessel function J,(x) has an infinite number of zeros for x > 0. See Theorem 5.6 in
L.C. Andrews, Ordinary Differential Equations with Applications, Glenview, Ill.: Scott,
Foresman, 1982.



In order to prove (6.54), we first note that since y = J,(x) is a solution
of Bessel’s equation

ny// + xyl +(X2 — pz)y =0 (6.55)

it follows that y = J,(kx) satisfies the more general equation (see problem
19 in Exercises 6.2)

x%y" + xp" +(k*x? = p*)y =0 (6.56)
For our purposes we wish to rewrite (6.56) in the more useful form
xzd;(xy') +(k2x2 - p*)y=0 (6.57)
and hence, J,(k,,x) and J,(k,x) satisfy respectively the DEs
2 [xdif (kmx)] F (K22 = p) T (kpx) =0 (6.58)

x% x== (K, x)] +(k2x* = p*)J,(k,x) =0 (6.59)

If we multiply (6.58) by x~'J,(k,x) and (6.59) by x~'/,(k,,x), subtract the
resulting equations, and integrate from 0 to b, we find upon rearranging the
terms

(kﬁ,—kf)fo”xJp(k,,,x)Jp(k,,x)dx—f  (Kpyx) = [ =k, x)] dx
—fJ(k x) T [ =,k x)]dx

Carrying out the integrations (by parts) on the right-hand side and dividing
by the factor k2 — k2 leads to

b
j(; xJ,(kx)J,(k,x) dx

d d x=b
x [Jp(kmx)z;Jp(k,,x) - Jp(k,,x)z;Jp(kmx)] .

k2 — k}?

(6.60)

By hypothesis, k,, # k, and J,(k,b) = J,(k,b) =0, and thus the right-
hand side of (6.60) vanishes, which proves the orthogonality property (6.54).
When k,, = k,, the resulting integral

I= j(;bx[lp(knx)]zdx

is also of interest to us. To deduce its value we take the limit of (6.60) as



k,, — k,. Because the right-hand side of (6.60) approaches the inde-
terminate form 0/0 in the limit, we need to employ L’Hopital’s rule, which
leads to (treating k,, as the variable and all other parameters constant)

X d
I= %, ?J;Jl’(k"x)dk J,(k,x) —J,(k, x)dk dx J,

(6.61)
Now, using the recurrence relations (see problem 15 in Exercises 6.2)
d )4
—J ,(kx) = —Jp(kx) — kJ, 1 (kx) (6.62a)
dk J, (kx) = ”J,,(kx) = xJ, . (kx) (6.62b)

we find that (6.61) reduces to

1= (Y2500 + 3tk

x=b
- kL;Jp(knx)Jp+l(knx)}
x=0
or finally
fbx[Jp(k,,x)lzdx = 1824, 1 (kb)) (6.63)
0
6.4.2 A Convergence Theorem
Returning now to the series
[o o]
f(x)= T edy(kyx), 0<x<b, p>-}  (664)
n=1

where J,(k,b) =0 (n=1,2,3,...), let us assume the validity of this
representation and attempt to formally find the Fourier coefficients. To
begin, we multiply both sides of (6.64) by xJ,(k,,x) and integrate from 0 to
b. Under the assumption that termwise integration is permitted, we obtain

O(n #+ m)

fxf(x)J(k x)dx = z ij (kpx VI, (K ,x) dx
=cmj(;x[Jp(kmx)] dx (6.65)
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and hence deduce that (changing the index back to n)

2 b
mfoxf(x)l,,(k,,x)dx, n=1,23... (656)

Theorem 6.1. If f is a piecewise smooth function in the interval 0 < x < b,
then the Bessel series (6.64) with constants defined by (6.66) converges
pointwise to f(x) at points of continuity of f, and to i[f(x*) + f(x7)] at
points of discontinuity of f.*

Example 3: Find the Bessel series for

_[x, 0<x<1
f(")_{o, l1<x<2

corresponding to the set of functions {J(k,x)}, where k, satisfies
Jik,)=0(n=1,2,3,...).

Solution: The series we seek is

f() = % eph(kyx), 0<x<2

n=1
where
c, = m/ f(x Jl(k x)dx
= —-—-—-1 1x2 Xx)dx =k x
_2[12(2,(")]2/0 T (k,x)dx  (let 1 = k,x)
1 1

Recalling the formula tzll(t) = (d/dt)[t*),(t)], we find that

kn — k"i p—
[[rnyde= [ Z ()] de = ki(k,)

and thus
JZ ( k n )

—Ll o p=1,2,3,.
2k, [y (2k,)]

n =

*The series always converges to zero for x = b, and converges to zero at x = 0if p > 0.



The desired Bessel series is therefore given by

w _ (k)

_1 .
AR F- VRPN

Generalizations of the Bessel series can be developed where the k,
(n=1,2,3,...) satisfy the more general condition
hJ,(k,b) + k,J/(k,b) =0  (h constant) (6.67)

The theory in such cases requires only a slight modification of that pre-
sented here and is taken up in the exercises.

EXERCISES 6.4

In problems 1 and 2, verify the series relation given that Jy(k,) =0
(n=123,...).

& Jy(k,x)
Lia-x»H= Y 27 0<x<1.
’ L (k)
[e ¢}
2. logx= -2, —']O(k—x)— <x<1l
n=1 [k, dy (k)]

In problems 3-S5, find the Bessel series for f(x) in terms of { J,(k,x)},
given that Jy(k,)=0(n=1,2,3,...).

3. f(x)=01Jy(k;x),0 <x < 1.

4. f(x)=1,0<x<1.

5 f(x)=x*0<x<1

6. If p> — § and J,(k,)=0(n=1,2,3,...), show that
©  J(k,x)

=2 0<x<l1
Z kan+1(k )

7.1f p> — 3 and J,(k,) =0 (n=1,2,3,...), show that
p+l(knx)

PHl=22(p 41
® (» ),,Zl iy (k)

+2 _ 3 p+2(knx)
(b) x” 2(p+1)(p+2)2—k3J )

nvp+1

,0<x<1,

,0<x<1.



8. Expand f(x) = x"7,0 < x < 1, in the series
[o.¢]
x?= Y cJ(k,x), 0<x<l1
n=1

where J,(k,) =0 (n=1,2,3,... and p > 0).
9. Given that (p > — 1)

(kb)) =0, n=123,...

show that
b
(2) fOxJp(k,,,x)Jp(k"x)dx =0, m#n,
b k2b? — p?
(b) [x1J, (k) dx = TZ”[J,,(k,,b)]Z.

10. Given that (p > — 1)
hJ,(k,b) + k,J(k,b) =0, n=1,2,3,... (h constant)
show that
(a) fo "X, ), (Kyx) dx = 0, m # n,
(k% + h?)b? - p?
2k}?
11. Under the assumption that (p > 0)

® [ "X, (k)] dx = [, (kb))

J/(k,) =0, n=1,2.73,...
use the result of problem 9 to derive the Bessel series
& kan+1(kn)

xP=2Y s (k,x),  0<x<1
n=1 (k2 = p*)[J,(k,)]

12. Does the expansion in problem 11 hold when p = 0? Explain.

6.5 Bessel Functions of the Second and Third Kinds
We have previously shown that

= 3 D2
=) EO KT(k+p+1)°

p=0 (6.68)



is a solution of Bessel’s equation

x2y" + xy" +(x2—p?)y=0 (6.69)
Because J_,(x) satisfies the same recurrence relations as J,(x), it follows
that J_ (x) is also a solution of (6.69). Moreover, for p not an integer, we
have already established that J_,(x) is linearly independent of J,(x), and
hence, under these conditions a general solution of (6.69) is given by

y=CJ,(x)+GJ_,(x), p#*n (n=0,12,...) (6.70)

where C, and C, are arbitrary constants.
For p=n (n=0,1,2,...), the solutions J,(x) and J_,(x) are related
by [see Section 6.2.1]

J_(x)=(-1)"J,(x), n=01,2,... (6.71)

and thus are not linearly independent. Therefore, (6.70) cannot represent a
general solution of (6.69) in this case.

For purposes of constructing a general solution of (6.69), it is preferable
to find a second solution whose independence of J,(x) is not restricted to
certain values of p. Hence, we introduce the function

(cos pm)J,(x) —J_,(x)
sin pw

Y, (x) = (6.72)
called the Bessel function of the second kind of order p. Because Y,(x) is a
linear combination of J,(x) and J_,(x), it is clearly a solution of (6.69).
Furthermore, it is linearly independent of J,(x) when p is not an integer.
(Why?) When p = n (n = 0,1,2,...), however, it requires further investiga-
tion. That is, when p = n we find that (6.72) assumes the indeterminate
form 0/0. Nonetheless, the limit as p — n does exist and we define (see
Section 6.5.1)

Y,(x) = lim Y,(x) (6.73)
p—n
The function Y,(x) is linearly independent of J,(x),* and we conclude
therefore that for arbitrary values of p, the general solution of (6.69) is

y=CJ,(x) + GY,(x) (6.74)

6.5.1 Series Expansion for Y,(x)
We wish to derive an expression for the Bessel function of the second kind
when p takes on integer values. Because the limit (6.73) leads to the

*The Wronskian of J, and Y, is 2 /7x (see problem 8), and thus the functions are linearly
P »
independent for all p.



indeterminate form 0/0, we must apply L’Hopital’s rule, from which we
deduce

Y,(x) = lim 7,(x)

(—msin pm)J,(x) +(cosp77) J,(x) - .I_p(x)
= lim
pon wcoqur
= lim W[—J( )—-(-1)" —J_p(x) (6.75)
pon

The derivative of the Bessel function with respect to its order leads to
(x> 0)

9 1 (x)

_ Z (- ) { (x/2)**Plog(x/2) _ (x/2*""I'(k+p+1)
I(k+p+1) [T(k+p+1)]°

p (k,rlzk(/ 2 log(x/2) ~ vk + p 4 1)

where Y (x) is the digamma function (see Section 2.5). We can further write
this last expression as

L) = a2 - £ CILCAE Lyt p 4

o kK'T(k+p+1)
(6.76)
By a similar analysis, it follows that
i _ (=1)*( /2)“"’ _
557 -+ (3) = ~J_,(x)log(x/2) + Z R IR U
(6.77)

At this point we wish to first consider the special case when p — 0. Here
we see that (6.75) reduces to

2. 4
Yo(x) = — glj}}) a—pf,,(x),
or by using (6.76), we obtain (x > 0)

Yo(x) = 2ay(x)log(x/2) - kgo(——l—’(k—()/—zl—xp(kn) (6.78)



Another form of (6.78) can be obtained by making the observation*

£ (- 1)(;((')/2) .
-y g UG ‘)(k(')/z)“( peredeild)
_ EO(_L)(_k('_)/_z)_
R

from which we deduce (x > 0)
2
Yo(x) = 2s5(x)[log(x/2) + ]

2 & (=) (x/2)* 1 1

The derivation of the series for Y, (x), n = 1,2,3,..., is a little more

difficult to obtain. Proceeding as before and taking the limit in (6.75) by
using (6.76) and (6.77), we find

Y,(x) = [4(x) +(=1)"7_,(x)]log(x/2)

1 [ (=D (2"
™ K'T(k+n+1)

Y(k+n+1)

(=) (x/2)*"
= Z CKT(k—n +1)

v(k-—n+1)| (681)

Recalling that

IT(k—n+1)| >0, k=0,1,...,n—-1
and

[¢(k—n+1)| > oo, k=0,1,....,n—1

we see that the first n terms in the last series in (6.81) become inde-

*y is Euler’s constant.



terminate. However, it can be shown that (see problem 9)

Yk=p+1) _ vk k- 1) _ ~
}l—»nl“(k p+1) (D" (k-1 k=01,...n-1

(6.82)
and therefore
(-1 £ LAy ey
Uy (k=D ke
)
+(-1)" Z (k'rl()k( /,12)+ 1)"11/(k—n+ 1)
(6.83)

Finally, making the change of index m = k — n in the last sum in (6.83), we
obtain the desired result (for n = 1,2,3,... and x > 0)

Y,(x) = —J ' (x)log(x/2) — = z —1)( e

—%i; —)” (x/z)mn[\p(m+n+l)+\p(m+l)]

m!(m + n)!

(6.84)

Graphs of Y,(x) for various values of n are shown in Fig. 6.2. Observe
the logarithmic behavior as x = 0*. Also note that these functions have
oscillatory characteristics similar to those of J,(x).

6.5.2 Hankel Functions

Another class of Bessel functions is the class of Bessel functions of the third
kind, or Hankel functions, defined by

H®(x) =J,(x) +iY,(x) (6.85)
and
H?(x) =J,(x) —iY,(x) (6.86)

The primary motivation for introducing the Hankel functions is that these
linear combinations of J,(x) and Y,(x) lend themselves more readily to the



Figure 6.2 Graph of Y,(x), n=0,1,2

development of asymptotic formulas for large x, from which we can deduce
the asymptotic formulas for J,(x) and Y,(x) (see Section 6.9.2). Also, the
Hankel functions are occasionally encountered directly in applications.

It follows from their definition that the Hankel functions are solutions of
Bessel’s equation (6.69). Moreover, they are linear independent solutions of
this DE. Thus we can choose to write the general solution of Bessel’s
equation in the alternate form

y= CIH;”(x) + GHP(x) (6.87)
where C; and C, are arbitrary constants.

6.5.3 Recurrence Relations

Because Y,(x) is a linear combination of J,(x) and J_,(x) for nonintegral
p, it follows that Y, (x) satisfies the same recurrence formulas as J,(x) and
J_,(x). For example, it is easily established that

n ] =xy, (0 (6:88)

L [, ()] = =5y () (6:59)



and also that

Yo (x) + Yy (x) = 227, (x) (6.90)
Y, (x) = ¥,,4(x) = 21, - (6.91)

For p equal to an integer n, the validity of these formulas can be deduced
by considering the limit p — n, noting that all functions are continuous
with respect to the index p. Furthermore, it can be shown that (problem 14)

Y_,(x)=(-1)"Y,(x), n=0,1,2,... (6.92)

The Hankel functions H{"(x) and H{?(x) are simply linear combina-
tions of J,(x) and Y,(x). Therefore it follows that they too satisfy the same
recurrence formulas as J,(x) and Y,(x) (see problems 12 and 13).

EXERCISES 6.5

In problems 1-4, write the general solution of the DE in terms of Bessel
functions.

L x%y"+x+(x*=Hy=0.
2. xp"+y +xy=0.
3. 16x%y” + 16xy" + (16x2 — 1)y = 0.
4. x%y" + xy' + (4x?2 - 1)y = 0.
Hint: Let ¢t = 2x.
5. Show that the change of variable y = u(x)/ Vx reduces Bessel’s equa-

tion (6.69) to
_ 2
u”+{l+ 1-4p ]u=0
4x?

6. Use the result of problem 5 to find a general solution of Bessel’s
equation (6.69) when p = 1 that does not involve Bessel functions.

7. The Wronskian of the solutions of the second-order DE

y'+a(x)y +b(x)y=0
is given by (Abel’s formula)

Wy, »)(x) = Cem(—fa(x)dx)

for some constant C. Use this result to deduce that the Wronskian of



10.

11.

12.

13.

14.

15.

the solutions of Bessel’s equation is

C
Wy, »)(x) = >
From the result of problem 7, show that
_ 2sinpmw
TX
Hint: Use the relation C = lim, _, o+xW(J,, J_,)(x).
(b) From (a), deduce that W(J,, Y, )(x) = 2/mx.

Using the identities I'(x)I'(1 — x) = #cscax and ¢(1 — x) — ¢(x) =
acot wx, show that

(@) W(J,, J_,)x)=

, P # integer.

. \P(k_p+1)= _q\n—k _ _
fim Tk —prn - D ok

k=0,1,...,.n—1

Show that

d
@ 2 [XPY,(0] = xPY,_(x),

d_ _ _
(6) [x Y, ()] = —x 7Y, (%),
From the results of problem 10, deduce that

2

@ Y, () + Y0 = L),
(b) Y,_i(x) = Y, 1(x) = 2Y)(x).

Show that the identities in problem 10 for Y,(x) are also true for
H®(x) and H?(x).

Show that the identities in problem 11 for Y,(x) are also true for
H{"(x) and H{?(x).

Verify that
Y_,(x)=(-1)"Y,(x), n=0,1,2,...

By making the change of variable ¢ = bx, show that (b > 0)
y = CJ,(bx) + G,Y,(bx)
is the general solution of

x%y” 4+ xy' +(b*x*—p?)y=0, p=0



16. Show that the boundary value problem ( p > 0)
x2y” + xy’ +(k>x2 - p*)y=0, O0<x<l1
y(x) finite as x = 07, y(1)=0

has only the set of solutions y,(x) = J,(k,x), n=1,2,3,..., where
the k’s are chosen to satisfy the relation

J(k)=0, k>0
Hint: See problem 15.
17. Solve Bessel’s equation

xly" + xy' +(x2-p?)y=0, p=0

by assuming a power-series solution of the form ( Frobenius method )*

y=x" L cx"
n=0
and
(a) show that one solution corresponding to s = p is
y(x) = J(x)

(b) For p = 0, show that the method of Frobenius leads to the general
solution

y = (A + Blogx) io: ——-—(_1)k(x/2)2k

k=0 (k!)?
2 (=D 2 1 1
+Bk§1 (k!)? (1 T2t "7)

where A and B are arbitrary constants.

6.6 Differential Equations Related to Bessel’s Equation

Elementary problems are regarded as solved when their solutions can be
expressed in terms of tabulated functions, such as trigonometric and ex-
ponential functions. The same can be said of many problems of a more
complicated nature when their solutions can be expressed in terms of Bessel
functions, since extensive tables of Bessel functions have been compiled for
various values of x and p."

*For an introductory discussion of the Frobenius method, see L.C. Andrews, Ordinary
Differential Equations with Applications, Glenview, Ill.: Scott, Foresman, 1982, Chapter 9.

fFor example, see M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical
Functions, Dover Pub. Co., New York (1965), Chapters 9 and 10.



A fairly large number of DEs occurring in physics and engineering are
specializations of the form

x2y” +(1 = 2a)xy’ +[b%2x? +(a® - ¢*p?)] y = 0,
p=>0, b>0 (6.93)
the general solution of which, expressed in terms of Bessel functions, is
y = x2[C ], (bx°) + Y, (bx°)] (6.94)

where C; and C, are arbitrary constants.
To derive the solution formula (6.94) requires two transformations of
variables. First, let us set

y=x% (6.95)
from which we obtain
xy’ = x%z + ax%
x¥y" = x"2" + 2ax°*z’ + a(a — 1)x%
Then substituting these expressions into (6.93) and simplifying, we get
x%2" + xz’ + (b2 — ¢*p?)z =0 (6.96)
Next, we make the change of independent variable

t=x° (6.97)

from which it follows, through application of the chain rule, that

xz' = cx‘£
dt
dz d*z
2,m — _ c¥e 2.2c% <
x*z" =c(c—1)x 7 T "
Hence, Equation (6.96) becomes
2
tzfi—t; + t% +(b%2 - p*)z=0 (6.98)

whose general solution is (see problem 15 in Exercises 6.5)
z(t) = C,J,(bt) + Csz(bt) (6.99)

Transforming back to the original variables x and y leads us to the desired
result (6.94).



Remark: For those cases when p is not an integer, we can express the

general solution (6.94) in the alternate form

y= x“[CIJp(bxc) + CZJ_p(bx‘)]

Example 4: Find the general solution of Airy’s equation*

y'+xy=0

Solution: In order to compare this equation with (6.93), we must
multiply through by x2, putting it in the form

xy” +x3 =0
Thus, we see that
1-2a=0, b%%2=1, 2c=3, a’>-c*p*=

from which we calculate a = 1, b =%, ¢ = 3, and p = 1. The general
solution therefore has the form

y = xV2[C 5 (3x72) + Gy, 5 (3x772))

or, since p is not an integer, we also can represent the general solution in
the form

y= x1/2[C1Jl/3(%x3/2) + CZJ_1/3(%x3/2)]

EXERCISES 6.6

In problems 1-12, express the general solution in terms of Bessel functions.

1.

x'+y +iy=0.

2. 4xYy" + 4xy’ + (x2 — n?)y =0.
3. x5y + xy' + 4(x* —k¥)y=0.
4. xy" —y'+ xy =0.

5.
6
7

xp”" + A+ 2n)y" +xy=0.

L xyT+ (x2+ Hy=o.
L xly” =Ty’ + (36x° — B)y =0.

*The solutions of this DE, called Airy functions, are important in the theory of diffraction

of radio waves around the earth’s surface.



8 y'+y=0.
9.y’ + k*x* =0.

10.
11.
12. x
13.

14.

15.

16.

¥y + k2x*y = 0.
4x%y” + (1 + 4x)y = 0.
2y + 5xy" + (9x2 — 12)y = 0.
Given the DE
Yy’ + ae™y =0, m>0
(a) show that the substitution ¢ = e™* transforms it into
2
t% * dt

(b) Solve the DE in (a) in terms of Bessel functions.
(c) Write the general solution of the original DE in terms of Bessel
functions.

Given the DE

ﬂ+12y=0
m

x%” + x(1 — 2xtanx)y’ —(xtanx + n?)y =0

(a) show that the transformation y = u(x)secx leads to an equation in
u solvable in terms of Bessel functions.
(b) Write the general solution for y in terms of Bessel functions.

A particle of variable mass m = (a + bt) !, where a and b are positive
constants, starting from rest at a distance 7, from the origin O, is
attracted to O by a force always directed toward O and whose magni-
tude is k2mr (k > 0). The equation of motion is given by

d ar\y _ .,
dt(mdt)_ k“mr

Solve this equation for r subject to the prescribed initial conditions.

Hint: Make the change of variable bx = a + bt, transforming the equa-
tion of motion to x2r” — xr’ + k2x*r = 0.

In a problem on the stability of a tapered strut, the displacement y
satisfies the boundary-value problem

2
Y’ +(§ )y 0, y(a)=0, y(b)=0 (0<a<b)
For solutions to exist, show that the constant K must satisfy

Jo(KVa)Yo(KVb) = Jo(KVB)Yo(Ka), K >0



17.

18.

The small deflections of a uniform column of length b bending under its
own weight are governed by

0" + K*x6=0, 6'(0)=0, 6(b)=0

where 6 is the angle of deflection from the vertical and K is a positive
constant.

(a) Show that the solution of the DE satisfying the first boundary
condition at x = 0 is

0()() = Cxl/zj_l/:;(%Kxa/z)

where C is an arbitrary constant.
(b) Show that the shortest column length for which buckling may occur
(denoted by by) is by = 1.99K~2/3,

Hint: The first zero of J_, ;(u) is u = 1.87.

An axial load P is applied to a column whose circular cross section is
tapered so that the moment of inertia is I(x) = (x/a)*. If the column is
simply supported at the ends x = 1 and x = a (a > 1), the deflections
are governed by

x*y"+k?y=0, y(1)=0, y(a)=0
where k2 = Pa*/E (constant).

(a) Express the general solution (not satisfying the boundary condi-
tions) in terms of Bessel functions.

(b) By making the substitution y = xu(x) followed by x = 1/¢, show
that the general solution of the DE can also be expressed in terms of
sines and cosines.

(c) Apply the prescribed boundary conditions to the solution in (b) and
show that the first buckling mode is described by

f-3)

Remark: For additional applications like problems 1618, consult N.W.

y(x) = xsm[

McLachlan, Bessel Functions for Engineers, 2nd ed., London: Oxford U.P.,
1961.





