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Dynamics 



INTRODUCTION 

 

he subject of Dynamics is generally divided into two branches: 

the first one, is called Kinematics, is concerned with the 

geometry of motion apart from all considerations of force, mass or energy; the 

second, is called Kinetics, is concerned with the effects of forces on the motion 

of bodies.  

In order to describe the motion of a particle (or point) two things are needed,  

(i) a frame of reference,  

(ii) a time-keeper.  

It is not possible to describe absolute motion, but only motion relative to 

surrounding objects; and a suitable frame of reference depends on the kind of 

motion that it is desired to describe. Thus if the motion is rectilinear the 

distance from a fixed point on the line is a sufficient description of the position 

of the moving point; and in more general cases systems of two or of three 

rectangular axes may be chosen as a frame of reference. For example, in the 

case of a body projected from the surface of the Earth a set of axes with the 

origin at the point of projection would be suitable for the description of motion 

relative to the Earth. But, for the description of the motion of the planets, it 

would be more convenient to take a frame of axes with an origin at the Sun's 

center (Polar co-ordinates). 

 

 Definitions 

1. Mass: The mass of a body is the quantity of matter in the body. The unit of 

mass used in England is a pound and is defined to be the mass of a certain 

piece of platinum kept in the Exchequer Office. 

T 
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2. A Particle (point):  is a portion of matter which is indefinitely small in size, 

or which, for the purpose of our investigations, is so small that the distances 

between its different parts may be neglected. 

3. A Body: may be regarded as an indefinitely large number of indefinitely 

small portions, or as a conglomeration of particles. 

4. A Rigid Body is a body whose parts always preserve an invariable position 

with respect to one another. 

5. Space is the boundless, three-dimensional extent in which objects and events 

occur and have relative position and direction. Two-dimensional space is 

described with two coordinates( , )x y , while three-dimensional space (physical 

reality) is described in three coordinates( , , )x y z . 

6. Time is a part of the measuring system used to sequence events, to compare 

the durations of events and the intervals between them, and to quantify rates of 

change such as the motions of object (not related to analysis of statics 

problems). 

7. Force is any influence that causes an object to undergo a change in speed, a 

change in direction, or in a change in shape. Force can also be described by 

intuitive concepts such as a push or pull that can cause an object with mass to 

change its velocity, i.e. accelerate. A force has both magnitude and direction, 

which is a vector quantity. 
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KINEMATICS IN ONE DIMENSION 

RECTILINEAR MOTION 

 

lthough motion in a straight line or rectilinear motion constitute 

the simplest of dynamical problems, yet it is very important 

because many physical problems reduce to this category, e.g., simple harmonic 

motion, motion under inverse square law, motion in a resisting medium and 

motion of a rocket. Therefore, in this chapter, we first proceed to determine the 

solution of the one dimensional equation of motion with subject to initial 

conditions. When a point (or particle) moves along a straight line, its motion is 

said to be a rectilinear motion. Here in this chapter we shall discuss the motion 

of a point (or particle) along a straight line which may be either horizontal or 

vertical. When a point (or particle) moves along a straight line, its motion is 

said to be a rectilinear motion. Here in this chapter we shall discuss the motion 

of a point (or particle) along a straight line which may be either horizontal or 

vertical. 

 

 Velocity and Acceleration  

Suppose a particle moves along a straight line OX  where O  represents a fixed 

point on the line. Let P  be the position of the particle at time t , where OP x  

and P'  be the position of the particle at time t t , with OP' x x . 

Therefore /x t  represents the average rate of displacement or the average 

velocity during the interval t . If this ratio be independent of the interval t , 

i.e. if it has the same value for all intervals of time, then the velocity is constant 

or uniform, and equal distances will be traversed in equal times. Whether the 

ratio /x t  be constant or not, its limiting value as t  tends to zero is 

defined to be the measure of the velocity (also known as instantaneous 

A 

RECTILINEAR MOTION 
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velocity) of the moving point at time t . But this limiting value is the 

differential coefficient of x  with regard to t , so that if we denote the velocity 

by v , we have 

0
lim
t

x dxv x
t dt

 

 

 

 

Again, Acceleration is similarly defined as the rate of change of velocity. Thus, 

if  ,v v v  denote the velocities of the moving point at times ,t t t , then 

v is the change of velocity in time t  and /v t  is the average rate of change 

of velocity during the interval t . If this ratio is independent of the interval t , 

then the acceleration is constant or uniform, or equal increments of velocity 

take place in equal intervals. Whether the ratio  /v t  be constant or not, its 

limiting value as t  tends to zero is defined to be the measure of the 

acceleration of the moving point at time t . But this limiting value is the 

differential coefficient of v  with regard to t , so that if we denote the 

acceleration by a , we have 

0
2

2

lim
t

v dva
t dt

d dx d x x
dt dt dt

 

 Other Expression for Acceleration 

Let 
dxv
dt

. We can write (using chain rule in Differentiation) 

2

2

v

d x d dxa x
dt dtdt

dv dv dx dvv
dt dx dt dx
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Therefore, 
2

2
,d x dv

dtdt
 and 

dvv
dx

 are three expressions for representing the 

acceleration and any one of them can be used to suit the convenience in 

working out the problems.  

 

 Remember 

The law of acceleration in a particular problem may be given by expressing the 

acceleration as a function of the time t , or the distance x , or the velocity v . 

The problem of further investigating the motion can then be solved as follows: 

If acceleration is given as a function of the time t  say ( )t  so 

1

( ) ( )

( )

( )

dva t t
dt
dv t dt

v t dt c

 

And then           1 1( ) ( )dxv t dt c t dt c
dt

 

  1( )dx t dt c dt  

1 2( )x t dt c dt c  

If acceleration is given as a function of the distance x  say ( )f x  so 

2
3

( ) ( ) ( )

2 ( )

dva f x v f x vdv f x dx
dx

v f x dx c
 

Further,                      2
32 ( )v f x dx c  

       32 ( )dx f x dx c
dt

 

3

4

3

2 ( )

2 ( )

dx dt
f x dx c

dxt c
f x dx c
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Again, Acceleration is given as a function of velocity v  say ( )v  

5

( ) ( )

( )

( )

dva v v
dt
dv dt
v

dvt c
v

by integrating 

or we may connect velocity with distance by writing 

6( )
( ) ( )

dv vdv vdvv v dx x c
dx v v

 

where, 1 6c c  are constants of integration. 
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 Illustrative Examples  

 

Example 

A car moves along a straight line such that its displacement x from a fixed 

point on the line (origin) at time t  is given by 3 29 24 6x t t t . 

Determine the instant when the acceleration becomes zero, the position of the 

car at this instant and the velocity of the particle then.  

Solution 

Since, 3 29 24 6x t t t . Differentiating with respect to time (w.r.t), 

the velocity    23 18 24dxv t t
dt

, 

and the acceleration is   6 18dva t
dt

 

Now the acceleration vanishes i.e. 0a  when      6 18 0 3t t  

When 3t , the position is given by 3 23 9(3 ) 24(3) 6 24x units. 

Again when  3t  the velocity is given by 23(3 18(3) 24 3)v , this 

means that at 3t  the velocity of the particle equals 3  units and in the 

opposite direction of x . 

Example 

If at time t  the displacement x of a particle moving away from the origin is 

given by cos sinx A t B t , where ,A B  are constants. Find the velocity and 

acceleration of the particle at in terms of time. 

Solution 

Given that cos sinx A t B t  

Differentiating with respect to time (w.r.t), we obtain the velocity of the 

particle  
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cos sindxv B t A t
dt

 

Differentiating again, one get the acceleration at any time, 

cos sin

( cos sin )
x

dva A t B t
dt

A t B t

x

 

Note that the acceleration proportional to the displacement. 

Example 

A man moves along a straight line where its distance x  from a fixed point on 

the line is given by cos( )x A t . Prove that its acceleration varies as the 

distance measured from the origin and is directed towards the origin. 

Solution 

Since we have  cos( )x A t  

Differentiating w.r.t        cos( )x A t , we get 

sin( )dx A t
dt

 

Differentiation again          
2

2 2

2
cos( )

x

d x A t
d

x
t

 

That is the acceleration varies as the distance x  from the origin. The negative 

sign “-“  indicates that it is in the negative sense of the x -axis, i.e., towards the 

origin. 

Example 

A truck moves along a straight line such that its distance x  from a fixed point 

on it and the velocity v  are related by 2 2 2( )v b x . Prove that the 

acceleration varies as the distance from the origin and is directed towards the 

origin. 

 



  

 

9 

Solution 

Since we have 2 2 2( )v b x  

Differentiating w.r.t x , we obtain 

2 ( 2 )dv dvv x v a x
dx dx

 

Hence the acceleration varies as the distance x  from the origin. The negative 

sign “-“  indicates that it is in the direction of  x  decreasing, i.e., towards the 

origin. 

Example 

A particle moves along a straight line such that its distance x  from a fixed 

point on it and the time at any time t  are related by 2(1 )tx e . Find the 

velocity in terms of distance and the acceleration in terms of velocity. 

Solution 

In order to obtain the velocity with differentiating the function of position x  

with respect to time, we get 

( ) ( )2 1 2 No )te (t t f x f xdx d
x e v e e

dt dx
f x e  

2 2 2tx e v x  

This equation illustrates the relation between velocity and distance. 

Now to get the relation between acceleration and velocity 

( 1) Note 1
dv dv

a v v v a v
dx dx

 

Example 

A car moves along a straight line such that its acceleration at any time t  is 

given by 6 2t . Initially the mass at rest placed at the origin point. Determine 
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the velocity and distance as a function of time. Determine the position of the 

car after 5 sec. 

Solution 

Since we have 6 2, 6 2dv dva t a t
dt dt

 

Thus, by separation of variables we get 

6 2 6 2dv t dt dv t dt  

2
13 2v t t c  

From initial conditions at 0t , 1v then 1 0c  

Again, 23 2v t t  this equation gives the relation between velocity and 

time. Since 
dxv
dt

 that is 

2 23 2 3 2dx t t dx t t dt
dt

   (Separation variables) 

23 2dx t t dt  or 3 2
2x t t c  

From initial conditions at 0t , 0x then 2 0c , i.e. 

3 2x t t  

this equation gives the relation between distance and time. 

The position at 5t  is 3 2
5
5 5 150

t
x  

Example 

A point moves along a straight line according to v u bx , where ,u b  are 

constants. Find the velocity and acceleration in terms of time and the 

acceleration in terms of distance and also as a function of velocity. 

Solution 

Velocity and acceleration can be obtained by differentiation the function of 

position and then velocity with respect to time, therefore 
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( ) ( )
dv dx

v u bx a b bv b u bx a b u bx
dt dt

 

This equation gives the acceleration as a function of velocity a bv  and as a 

function of distance ( )a b u bx  

Again to get the velocity and acceleration as functions of time  

( )
dx dx

v u bx b u bx bdt
dt u bx

 

Multiply the previous relation by b  and then integrate 

2 2ln( )
bdx

b dt u bx b t C
u bx

 

Where C  is integration constant , the last relation can be rewritten as 

2

2 2ln( ) ln Or

,b t C

u bx b t C v b t C

v Ae A e
 

This is the relation between velocity and time, also the acceleration given by  

2b ta bv bAe  

Example 

A plane flies along a straight line with retardation 22a v . Find the position 

at any instance if the point starts from origin with initial velocity equals unity. 

Solution 

The motion under retardation where 22a v  but we know
dv

a
dt

, so 

2 22 2
dv

a v v
dt

 

By separation of variables and integrate, we obtain 

1 12

1
2 2

dv
dt c t c

vv
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The integration constant 1c  can be evaluated as 1v  when 0t , hence 

1 1 11 2(0) c c  then the velocity can be obtained by  

1
2 1 but 2 1 Or

2 1

dx dt dt
t v t dx

v dt dx t
 

Again by integrating we get 

2
2

2 ln(2 1) 2
2 1

dt
dx t x c

t
 

From initial condition 0x  when 0t  then 2 0c  and the relation 

between distance and time becomes 

1
ln(2 1)
2

x t  

Example 

A particle starts from rest at a distance h  from the origin O  with retardation

34x . Prove that the particle reach to distance  from O  in time 

2 2

2

h
h  and then find its velocity at this position. 

Solution 

Since we have been given the retardation as 316a x  and 
dv

a v
dx

 

therefore,  

3 34 4
dv
v x vdv x dx
dx

 

By integrating, we obtain 

23 2
1 12 2

1 2 4
4 Or Or

2
vdv x dx c v c v c

x x
 

The integration constant c  can be evaluated as 0v  when x h , hence 

2

4
0 c
h

 i.e. 
21
4

c
h

 and then we get 
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2 2 2 2
2

2 2 2 2

4( )4 4 2h x h x
v v

h xx h x h
 

We will consider the minus sign since the motion of the particle towards the 

origin –in decreasing x - and use 
dx

v
dt

 

2 2

2 2

22 2

2 2
2

2 2
Or

2

2

dx h x xdx
dt

dt h x hh x

xdx
dt c
hh x

h x t c
h

 

To obtain the constant 2c when x h  as 0t  and then 2 0c  so 

2 2 2 22
Or

2

h
h x t t h x

h
 

The spent time to reach to a distance  from origin point is 2 2

2

h
t h , 

to determine the velocity at this position, we put x  in  velocity relation, 

that is 

2 22
x

h
v

h
 

Example 

A car moves along a straight line according to the relation 2(1 )v x t . Find 

the distance as a function of time if the point starts its motion from the origin. 

 Solution 

Since 2(1 )v x t  thus 

2
2

(1 )
1

dx dx
x t tdt

dt x
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1 2
1 12

1
tan

21

dx
tdt c x t c

x
 

From initial condition where the point starts its motion at origin 

1 2 2
1 1 1

1 1
tan 0 0 0 0 tan

2 2
0c c c x t  

Note that  

1
2
tan

1

f dx
f

f
 

Example 

If t  be regarded as a function of velocity v , prove that the rate of decrease of 

acceleration is given by 
2

3
2

d t
a
dv

, a being the acceleration. 

 Solution 

Let a  be the acceleration at time t . Then 
dv

a
dt

. Now the rate of decrease 

of acceleration = 
da

at
 

  

1
d dv d dt

at dt at dv
regarded t  as a function of v  

  
1 2 2

2

d dt dv dt d t dv

av dv dt dv dtdv
 

  

2 32 2 2
3

2 2 2

a

dv d t dv dv d t d t
a

dt dt dtdv dv dv
 

Example 

Prove that if a point moves with a velocity varying as any power (not less than 

unity) of its distance from a fixed point which it is approaching, it will never 

reach that point. 
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 Solution 

If x is the distance of the particle from the fixed point O at any time t , then its 

speed v at this time is given by nv kx , where k is a constant and n is not 

less than 1. Since the particle is moving towards the fixed point i.e., in the 

direction decreasing, therefore 

or ....(1)ndx dx
v kx

dt dt
 

Case 1. If 1n , then from (1), we have 

1
or

dx dx
kx dt

dt k x
 

Integrating, 
1
lnt x A
k

 where A  is a constant. 

Putting 0x  then the time t  to reach the fixed point O is given by 

1
ln 0t A
k

 

i.e., the particle will never reach the fixed point O  

Case 2. If 1n , then from (1), we have 

1 ndt x dx
k

 

Integrating, 
11

1

nx
t B

k n
 where B  is a constant. 

Or    
1

1

( 1) n
t B
k n x

 

Putting 0x  then the time t  to reach the fixed point O is given by 

t B  

i.e., the particle will never reach the fixed point O  

Hence if 1n , the particle will never reach the fixed point, it is approaching. 
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 PROBLEMS 

 A particle moving in a straight line is subject to a resistance which produces 

the retardation 3kv , where v  is the velocity and k  is a constant. Show that v  

and t  (the time) are given in terms of x  (the distance) by the equations 

1

u
v

kux
, 21

2

x
t kx

u
, where u  is the initial velocity. 

 

 

 

 

 

 If the relation between x  and t is of the form 2t kbx x , find the 

velocity v  as a function of x , and prove that the retardation of the particle is 

32bv . 

 

 

 

 

 A particle is projected vertically upwards with speed u and moves in a 

vertical straight line under uniform gravity with no air resistance. Find the 

maximum height achieved by the particle and the time taken for it to return to 

its starting point. 
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Kinematics in Two Dimensions 

 

 Velocity in Cartesian Coordinates 

The velocity vector of a particle (or point) moving along a curve is the rate of 

change of its displacement with respect to time. 

Let P and Q be the positions of a particle moving along a curve at times t  and 

t t  respectively. With respect to O  as the origin of vectors, let OP r  

and OQ r r  Then  P O OPQ Q r   represents the displacement 

of the particle in time t  and 
r

t
 indicates the average rate of displacement  

(or average velocity) during the interval t . The limiting value of the average 

velocity 
r

t
 as t tends to zero ( 0t ) is the velocity. Therefore if the 

vector  v  represents the velocity of the particle at time t  then 

0
lim
t

r dr
v r

t dt
 

Where r  is the position vector of the particle. 

Now, if   ˆ ˆr x i y j  

Then    ˆ ˆ ˆ ˆ

x yv v

dr dydxv i j x i y j
dt dt dt

 

Note that ( , )x y are called the components or resolved parts of the velocity v  

along the axes x  and y respectively. The speed of the particle at P is given by  

22 dydx dsv
dt dt dt

 

Also the angle  which the direction of v  makes with OX is  
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tan /
dy dydx

dt dt dx
 

 Acceleration in Cartesian Coordinates 

The acceleration vector of a particle moving along a curve is defined as the rate 

of change of its velocity vector. 

if  v  and v v  are the velocities of a particle moving along a curve at times 

t and t t respectively, then v  is the change in velocity vector in time t  

and 
v

t
 is the average and then 

2

20
lim
t

v dv dr d rda
t dt dt dt dt

 

Substituting for ˆ ˆdydxv i j
dt dt

 we have, 

22

2 2
ˆ ˆ ˆ ˆ ˆ ˆ

x ya a

dy d yd dx d xa i j i j x i y j
dt dt dt dt dt

 

Here, ( , )x y are called the components of the acceleration a  along the axes x  

and y respectively. The magnitude of the acceleration is given by  

22 22

2 2

d yd xa
dt dt

 

Again, the angle  which the direction of a  makes with OX is 

2 2

2 2
tan /

d y d x

dt dt
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 Illustrative Examples  

Example 

A point moves along the curve 3 21,x t y t  where, t  is the time. 

Determine the components of velocity and acceleration at 1t  

Solution 

Let r  be the position vector of the particle at time t , therefore 

3 2ˆ ˆ ˆ ˆ( 1)r x i y j t i t j  

Then the velocity vector is 

2 ˆ ˆ3 2
dr

v t i t j
dt

 and 2
1

ˆ ˆ ˆ ˆ3(1) 2(1) 3 2
t
v i j i j  

Again the vector of acceleration is 

ˆ ˆ6 2
dv

a t i j
dt

 and 
1

ˆ ˆ ˆ ˆ6(1) 2 6 2
t
a i j i j  

Example 

The position of a moving point at time t  is given by 3cos , 2sinx t y t  

Find its path velocity and acceleration vectors. 

Solution 

Since the parametric equations are 3cos , 2sinx t y t  then 

2 22 2
2 2cos , sin 1

3 2 3 2

y yx xt t  or 2 24 9 36x y  

This is a the path equation which represents an Ellipse 

Velocity vector is  ˆ ˆ3 sin 2cosv t i t j  

While the acceleration vector is  
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 ˆ ˆ ˆ ˆ3 cos 2 sin (3 cos 2 sin )

r

a t i t j t i t j r  

Example 

A particle moves along the curve 22y x  such that its horizontal component 

of velocity is constant and equals 2 . Calculate the components of acceleration 

and velocity when 8y . 

Solution 

Since the horizontal component of velocity equals 2, i.e. 2x , therefore by 

differentiating w.r.t t  we get 

0x  and 2 4 8 82 16y xx x y xy x  

That is the acceleration vector is given by 

ˆ16a j  

and the velocity components are 2x  and 8y x  

Since as 8y  gives 2x  thus, ˆ ˆ2 8( 2) , 260v i j v  

Example 

A particle describes a plane curve such that its components of acceleration 

equal 2(0, / )y with initial velocity 2 / b  parallel to X-axis and the 

initial position(0, )b . Find the path equation. 

Solution 

Here we are given that 

22

2 2 2
0,

d yd x

dt dt y
  

Note that 
2

2

d y dy dy dy dyd d y
dt dt dy dt dt dydt

  chain rule 
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Then  
2 2 2

dy
y ydy dy ydy dy
dy y y y

 

2
1

2 dy
y c y

y dt
 

Initially 0
dy

dt
 when y b ,  thus 1

2
c

b
 

2 22 2 2 2 212 1 b y
y y

y b y b y b b y
 

Hence 

2dy b y

dt b y
      (1) 

(Negative sign has been taken because the particle is moving in the direction of 

y  decreasing) 

Again from 
2

32
0d x dx c

dtdt
 

Initially when 0t , 
2dx

dt b
  thus 3

2
c

b
 

2dx

dt b
       (2) 

By dividing the two equations (1) and (2) we get 

dy b y y
dy dx

dx y b y
, then by integrating 

 1
2sin 1

y y y

b b b
b x c  

Hint to get the integration 
y
dy

b y
 let us use the transformation 
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2 2 sin cossin dy by b d  

2

2

2

2

sin 2 si cosn
sin

sin 2 sin
co

co
s

s n

co

s

i

s

d
y bdy b
b y b

b b
b

d

b

os2 sin cb 22 sinbd d

 

2

2

1 1 cos2
2

1 1 cos2
2

sin 21 cos2

sin

2 sin 2

2

db b

b

d

d b

 

1sin 1
y y y

b

y
dy b

b y b b
 

The initial condition is 0t  0,x y b  then from the equation 

1
2 2sin 1

2

y y y

b b
x

b
b c c b  

1

1

2
sin 1

sin 1

sin 1 2

c

2

os 1

2

y y y
x

b b b

y y y

b b b

y y y

b b b

y y
x

b

b b

x
b

b t

b

 

 2cos 1
y y

y b x
b b
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 Relative motion of two particles 

Motion does not happen in isolation. If you’re riding in a train moving at  

10 ms
-1

 east, this velocity is measured relative to the ground on which you’re 

traveling. However, if another train passes you at 15 ms
-1

 east, your velocity 

relative to this other train is different from your velocity relative to the ground. 

Your velocity relative to the other train is 5 ms
-1

 west. To explore this idea 

further, we first need to establish some terminology. 

 Reference Frames 

To discuss relative motion in one or more dimensions, we first introduce the 

concept of reference frames. When we say an object has a certain velocity, we 

must state it has a velocity with respect to a given reference frame. In most 

examples we have examined so far, this reference frame has been Earth. If you 

say a person is sitting in a train moving at 10 m/s east, then you imply the 

person on the train is moving relative to the surface of Earth at this velocity, 

and Earth is the reference frame. We can expand our view of the motion of the 

person on the train and say Earth is spinning in its orbit around the Sun, in 

which case the motion becomes more complicated. In this case, the solar 

system is the reference frame. In summary, all discussion of relative motion 

must define the reference frames involved. We now develop a method to refer 

to reference frames in relative motion. 

For two particles A and B moving in plane as shown, we 

considered the relative motion of B with respect to A, or 

more precisely, with respect to a moving frame attached 

to A and in translation with A. Denoting by |B Ar  the 

relative position vector of B with respect to A, we had 

| |orB A B A B A B Ar r r r r r  
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Denoting by |B Av and |B Aa , respectively, the relative velocity and the relative 

acceleration of B with respect to A, we also showed that 

Differentiating previous equation with respect to time           

|
|or

B A B A
B A B A

dr dr dr
v v v

dt dt dt
 

Differentiating previous equation with respect to time      

|
|or

B A B A
B A B A

dv dv dv
a a a

dt dt dt
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

25 

 Illustrative Examples  

Example 

Two points A and B are moving along a straight line such that 3 2Ax t t  

and 3 22 5B tx t . Find the relative velocity BAv  and acceleration BAa . 

Solution 

Since the relative position of point B with respect to point A, |B Ax , is given by 

3 2

|

|
3 3 2( ) ( 2 ) 2 52 5

B A B A

B A

x x

x t

x

t t t t tt

 

Hence the relative velocity |B Av  is obtained by  

| 2
| 3 2 2B

B
A

A
t t

d

d

t

x
v  

Again the relative acceleration BAa  is given by 

|
| 6 2

B A
B Aa t

dt

dv
 

Example 

A car A is traveling south at a speed of 70 km/h toward an 

intersection. A car B is traveling east toward the intersection at a 

speed of 80 km/h, as shown. Determine the velocity of the car B 

relative to the car A. 

Solution 

According to the given data the velocity of car A is ˆ70Av j and velocity of 

car B is ˆ80Bv i  then 

|

2 2 -1
|

ˆ ˆ80 ( 70 )
ˆ ˆ80 70

(80) (70) 11300 106.3 kmh

B A B A

B A

v v v

i j

i j

v

 

 

 

 

A 

B 

 

 
B 



Kinematics of a Particle

 

 

26 

And make an angle  with the velocity direction of car B obtained by 

170 7 7
tan tan

80 8 8
 

Example 

A pilot must fly his plane due north to reach his destination. The plane can fly 

at 300 km/h in still air. A wind is blowing out of the northeast at 90 km/h. 

Calculate the speed of the plane relative to the ground and in what direction 

must the pilot head her plane to fly due north. 

Solution 

The pilot must point her plane somewhat east of north to 

compensate for the wind velocity. We need to construct a 

vector equation that contains the velocity of the plane with 

respect to the ground, the velocity of the plane with respect to 

the air, and the velocity of the air with respect to the ground. 

Since these last two quantities are known, we can solve for the 

velocity of the plane with respect to the ground. We can graph 

the vectors and use this diagram to evaluate the magnitude of 

the plane’s velocity with respect to the ground. The diagram will also tell us 

the angle the plane’s velocity makes with north with respect to the air, which is 

the direction the pilot must head her plane. 

From the given data the velocity of plane P is |
ˆ ˆ300(sin cos )P Av i j  and 

velocity of air A is 0 0
|

ˆ ˆ90(cos45 sin 45 )AGv i j  and | |
ˆ

PG PGv v j  then 

| | |
0 0

0 0

0

ˆ ˆ ˆ ˆ300(sin cos ) 90(cos 45 sin 45 )
ˆ ˆ(300 sin 90cos 45 ) (300cos 90 sin 45 )

300 sin 90cos 45 0

PG P A AGv v v

i j i j

i j
 

45 2
sin

300
     And 0 -1

| 300cos 90sin 45 230 kmhPGv  
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 PROBLEMS 

 The position of a moving point at time t  is given by 2, 2x at y at  

Find its velocity and acceleration 

 

 

 

 A particle moves with constant velocity parallel to the axis of Y  and a 

velocity proportional to y  parallel to the axis of X . Prove that it will describe 

a parabola 

 

 

 

 

 A particle is acted on by a force parallel to the axis of Y  whose acceleration 

is y  and is initially projected with a velocity a  parallel to the axis of X  at 

a point where y a . Prove that it will describe the catenary 

cosh( / )y a x a
 

 

 

 

 

 

  A boat heads north in still water at 4.5 ms
-1

 directly across a river that is 

running east at 3.0 ms
-1

. Find the velocity of the boat with respect to Earth. 



POLAR COORDINATES 

 

In some problems it is convenient to employ 

another coordinates not Cartesian coordinates as 

polar coordinates. Let the position of a point P  be 

defined by its distance r  from a fixed origin O  and 

the angle  that OP makes with a fixed axisOX .  

The Cartesian coordinates  ( , )x y  of P are connected with the polar coordinates 

( , )r  by the relations cos , sinx r y r . 

Note that r̂  and ˆ  represent unit vectors in direction of increasing r  and 

normal to r  in the direction of increasing  as illustrated in the figure. 

 Angular Velocity and Acceleration 

Let P  be a moving point in a plane. If O  be a fixed point (pole) and OX  is a 

fixed line through O in the plane of motion, then the angular velocity of the 

moving point P  about O  (or the line OP  in the plane XOP ) is the rate of 

change of the angle XOP  Figure. 

Let P  andQ  be the positions of a moving particle at times t  and t t  

respectively such that POX  and QOX . Therefore, the angle 

turned by the particle in time t  is . That is the average rate of change of 

the angle of P  about O  is 
t

 

Then the angular velocity of the point P about O  is 

 
0

lim
t

d

t dt
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Where the dot placed over  denotes differentiation with respect to time, and 

the units of angular velocity is radian/sec. 

Now the rate of change of angular velocity is called angular acceleration 

That is the angular acceleration 

2

20
lim
t

d d d d

t dt dt dt dt
 

The units of angular acceleration is radian/sec
2 

 Velocity and Acceleration in Polar Coordinates 

Let the position of a point P  be defined by its 

distance r  from a fixed origin O  and the angle  

that OP makes with a fixed axis OX .  

The Cartesian coordinates  ( , )x y  of P are connected with the polar coordinates 

( , )r  by the relations cos , sinx r y r . 

Let ,rv v  denote the components of velocity of P  in the direction OP  and at 

right angles to OP  in the sense in which  increases. The resultant of the 

components ,rv v  is also the resultant of the components ,x y . Therefore by 

resolving parallel to OX  and OY  we get 

sin ( cos )

cos n

o

si

c sr
dv x r
dt
r

v

r
 

And 

cos ( sin )

sin s

i

co

s nr
dv y r
dt
r

v

r
 

Solving these equations for u  and v  clearly gives (comparing) 

,rv r v r , 

and these are the polar components of velocity. 
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In like manner if ,ra a  denote the components of acceleration along and at 

right angles to OP , since these have the same resultant as x  and y , we get 

2

2

2

sin ( cos )

cos

c

n

o

2 s

s

i

r
da x r
t
r r

a
d

r r
 

Again for y  we have  

2

2

2

cos ( sin )

sin

s

s

i

2 c

n

o

r
da y r
t
r r

a
d

r r
 

giving on solution  2
r ra r  and 2a r r  

These components constitute a third representation of the velocity and 

acceleration of a point moving in a plane; they are sometimes called radial and 

transverse components, and we note that the transverse component of 

acceleration may also be written 

212 da r r r
r dt

 

 Special Case: If the particle moves in a circle with radius , i.e. r  

then 0r r  and hence the velocity of the particle is given by ˆv  and 

its direction will be along the normal to tangent to the circle and also the 

acceleration will be  2 ˆˆa r . 

 

 

 

 

 

 

 

 

  

  Fixed line 
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 Another method for Velocity and Acceleration in Polar Coordinates 

We will now evaluate the two derivatives
ˆdr

d
and 

ˆd

d
. These will be needed 

when we derive the formulae for the velocity and acceleration of P in polar co-

ordinates. First we expand ˆˆ( , )r  in terms of the Cartesian basis vectors ˆ ˆ( , )i j . 

This gives 

ˆˆ ˆ ˆ ˆˆ cos sin , sin cosr i j i j  

Since ˆ,̂r  are now expressed in terms of the constant vectors ˆ ˆ( , )i j , the 

differentiations with respect to  are simple and give 

ˆˆ ˆ ˆ,
dr d

r
d d

     (1) 

Suppose now that P is a moving particle with polar co-ordinates ,r that are 

functions of the time t . The position vector of P  relative to O  has magnitude 

OP r  and direction r̂ and can therefore be written 

ˆr r r       (2) 

In what follows, one must distinguish carefully between the position vector r , 

which is the vectorOP , the co-ordinate r  , which is the distance OP , and the 

polar unit vector r̂ . 

To obtain the polar formula for the velocity of P , we differentiate formula (2) 

with respect to time t . This gives 

ˆ

ˆ
ˆ ˆ( )

ˆ
ˆ

ˆˆ

dr d dr dr
v rr r r

dt dt dt dt
dr d

rr r
d dt

rr r

 

We used the chain rule and formula (1), which is the polar formula for the 

velocity of P . 
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In order to obtain the polar formula for acceleration, we differentiate the 

velocity formula ˆˆv rr r with respect to t  again. This gives 

ˆ ˆ
2

ˆˆ

ˆˆ ˆˆ ( )

ˆˆ( ) ( 2 )
r

dv d
a rr r

dt dt
dr d d d

r r r r r r
d dt d dt

r r r r r

 

which is the polar formula for the acceleration of P . 

 

The formula ˆˆv rr r  shows that the velocity of P  is the vector sum of 

an outward radial velocity r  and a transverse velocity r ; in other words v is 

just the sum of the velocities that  P  would have if r  and  varied separately. 

This is not true for the acceleration as it will be observed that adding together 

the separate accelerations would not yield the term ˆ2r . This ‘Coriolis term’ 

is certainly present however, but is difficult to interpret intuitively. 
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INTRINSIC COORDINATES 

Let P  be the position of a moving particle at time t  and r   its position vector 

with respect to the origin O . Let AP S  and let  be the angle which the 

tangent at P  to the path of the particle makes with OX . Then (S, )  are the 

intrinsic coordinates of P . 

Let t̂  denote the unit vector along the tangent at in the direction of S  

increasing and n̂  be the unit vector normal at P  in the direction of  

increasing i.e., in the direction of inwards drawn normal. 

 

 

 

 

In the same manner we will now evaluate the two derivatives
ˆdt

d
and 

ˆdn

d
. 

These will be needed when we derive the formulae for the velocity and 

acceleration of P  in intrinsic co-ordinates. First we expand ˆ ˆ( , )t n  in terms of 

the Cartesian basis vectors ˆ ˆ( , )i j . This gives 

ˆ ˆ ˆ ˆˆ ˆcos sin , sin cost i j n i j  

Since ˆ ˆ( , )t n  are now expressed in terms of the constant vectors ˆ ˆ( , )i j , the 

differentiations with respect to  are simple and give 

ˆ ˆ ˆˆ,
dt dn

n t
d d

     (1) 
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Since the velocity be in tangent so 

ˆdS
v t

dt
      (2) 

Now, in order to obtain the polar formula for acceleration, we differentiate the 

velocity formula ˆdS
v t

dt
 with respect to time t . This leads to 

2

2

ˆ

ˆ
ˆ

dv d dS
a t

dt dt dt
d S dS dt
t

dtdtdt

 

2

2

22

2

1/ˆ

ˆ
ˆ

ˆ
ˆ

n

d S dS dt d dS
t
dt d dS dtdt

d S dS dt d
t

dt d dSdt

 

2

22
ˆ ˆ

d S v
t n

dt
 

Where 
dS

d
 is the radius of curvature at the point Pwhich is the 

tangential 
2

2t
d S dv dv

a v
dt dSdt

 and normal 
2

n
v

a acceleration at P . 

The formula ˆdS
v t

dt
 illustrates that the velocity of P  is in the tangent at P , 

while the acceleration has two components (a , )t na and the resultant of 

acceleration is 

222
22
nt

dv
a

dt

v
a a  
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XAMPLESE LLUSTRATIVEI

 

Example 

A point P  describes, with a constant angular velocity about the origin and 

r ea  Obtain the radial and transverse acceleration of  P . 

Solution 

Since 2 ˆˆ 2a r r r r r  and given (constant)d

dt
  

then by differentiating r ea  with respect to time we have 

2 2andr e a e r r a e aa e r  

Also 
2

2
0d d

dt dt
 then the radial ra  and transverse a acceleration are 

2 2 20, 0 2ra r r a r  

That is  2 ˆ2a r  

Example 

The velocities of a particle along and perpendicular to the radius vector are 

constants. Prove that the acceleration inversely varies as the radius  r . 

Solution 

Since r A  and r B  where ,A B  are constants then by differentiating 

with respect to time we have 

0r A r  and 0r B r r  

then, the radial acceleration is  2
ra r r    thus  

2 2
0r
B Ba
r r

 

And for transverse acceleration a  
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2a r r  thus r ABa
r

 

The magnitude of acceleration is given by 

4 2 2

2 2

4 2 2

2

4 2

2

2

2

,

r
B Aa a a
r r
B

B

B

B

A

r
C C B A
r

 

that is the acceleration inversely varies as the radius vector r . 

Example 

A particle moves along the circle 2cosr  in such a way that its acceleration 

perpendicular to the radius vector is always zero. Find the velocity of the 

moving particle in terms of r . 

Solution 

Since 2cosr  then by differentiating with respect to time we have 

2cos 2sinr r  

Also we have that the acceleration towards the origin is always zero i.e., 

2

2

2

10 0

0

( )

d ra
r dt
d r

r h const.

 

Therefore the velocity magnitude is 

2

2 2 2

2

2

2 2

2

2 2

2 2

/

2

2

2

(

( 2 sin (

4 sin

4

)

) )

(1 cos

4 4

)

2

c

2

os

4

r

h r

v v v r

r

r

r

hr r
r

r

r
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Example 

A particle describes a curve with constant velocity and its angular velocity 

about a given fixed point O  varies inversely as its distance from O . Find the 

path equation. 

Solution 

Let the velocity of the particle be equal to v  (constant). Given that the angular 

velocity d / dt  of the particle about a fixed point O  varies inversely as its 

distance r  from O , we have  

1d d k

dt r dt r
(k  is constant) 

Since 
2 2

dr dv r
dt dt

 (  is constant) 

2

2

2 2
2

2 2
2

2
2 2

2 2

dr dv r
dt dt

dr kv r
dt

k

r

dr

dt
dr

d
k

t

 

dr d dr k dr

d dt d
d

r r k
 

By integrating 

lln nc
k

r  ( lnc  is integration constant) 

/
ln

k

k

r r ce
c

 

This is the equation of equiangular spiral 
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Example 

Find the path equation of a point P  which possesses two constant velocities 

U  and V , the first of which is in OX  direction and the other is perpendicular 

to the radius OP  drown from a fixed point O . 

Solution 

Take the fixed point O  as the pole and the fixed direction as the initial line 

OX . Let ( , )P r  be the position of the particle at any time. Resolve the 

velocities in the direction of and perpendicular to the radius OP   we have 

cosd Ur

dt
   and  sindr V U

dt
 

Dividing these two equations we have 

sin si
cos cos

n
d d d
rd

r U r U

V U r V U
 

By integrating we get 

ln ln( sin ) lnr V U c  

or ln ln( sin )c V U
r

   ( lnc  is integration constant) 

sinc V U
r

 

Example 

A particle moves in a plane curve so that its tangential acceleration is constant, 

and the magnitude of tangential velocity and normal acceleration are in a 

constant ratio. Find the intrinsic equation of the curve. 

Solution 

In our problem it is given that  

tangential acceleration 
dv

dt
 (a constant) and    (1) 
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2

tangential velocity

normal acceleration /

v

vv
 

(a constant)   (2) 

Since    ,dS dSv
dt d

 

Then from formula (2) 

1/

/
Or

ddt

d d

dS d

v dS tdt
 

From formula (1)  

1/

Or
ddv dv dv

dt d dt
v d

d
d  

By integrating   1v c  

Where 1c  is a constant, again from equation (2)  

1 1OrcSv d
d

cd dS  

Integrating  

2 2
1

2 2
1,

1 Or
2

1,
2

cS C

S A B C cA B
 

Example 

A particle moves in a catenary tans c , the direction of its acceleration at 

any point makes equal angles with the tangent and normal to the path at the 

point. If the speed at the vertex ( 0 ) be u , show that the velocity and 

acceleration at any other point  are ue  and 2 2 2cos( 2 / )c u e . 

Solution 

It is given that the direction of acceleration at any point makes equal angles 

with the tangent and normal to the path at the point. Therefore the tangential 

and normal accelerations will be equal at any time 
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i.e.  
2dv vv

ds
 

2dv v dvv v
ds ds

   or 

dv ds dv dvv v d
ds d d v

 

lnv c  from the initial conditions ( 0 ln,u cv u ) 

ln ln nl vu v uev
u

 

which gives the velocity of the particle at any point . 

Further it is given that the path of the particle is the catenary tans c  

2secds c
d

 

And since the acceleration magnitude is given by 

2 2 22

2 2 2 2 2

2 2 2

2

2

212 2 cos
sec

dv v v vv
ds

v u e u e
cc

 

Example 

The relation between the velocity of a particle moving in a plane v  and its 

tangent acceleration ta  is 
1
1ta v

. Find the relation between ,v S  and ,v t

if the particle start from rest at the position 0S . 

 

 
Solution 

To obtain the relation between ,v t  where t
dva
dt

 then 

1 (1 )
1

dv v dv dt
dt v
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By integrating     2
1

1
2

v v t c  

The integration constant 1c  can be evaluated from initial conditions, i.e. 0v  

at 0t  and hence 1 0c  then the last formula becomes 

21
2

v v t

Again since, t
dva v
dS

 and therefore,  

21 ( )
1

dvv v v dv dS
dS v

 

Integration again    2 3
2

1 1
2 3
v v S c  

Where 2c  is a constant where 0v  at 0S  and hence 2 0c  then the 

relation between ,v S  is  2 31 1
2 3
v v S  

Example 

A particle describes a curve (for which and vanish simultaneously) with 

uniform v , if acceleration at any point S  be 2 2 2/ ( )v S  . Find the 

intrinsic equation of the curve. 

Solution 

It is given that the velocity is constant i.e., 

2

2
0dS d Sv c

dt dt
 

And since the resultant of acceleration is  

2 22 2 2

2

d S v va
dt

 

But it is given that  
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2 22

2 2 2 2

2

va

v

v v

S S
2d v

dS 2 2

2 2

2

1

1

dS
d

d

S

S

S

S

d

 

By integrating  

1tan S C  C is a constant 

Given that 0  when 0S , gives 0C  

Therefore,  1tan Or tan( )S S  

Example 

A particle moves over a circle with radius 2 ft  according to a constant tangent 

acceleration 24 ftsec . If initially, the particle at the point A on a circumference 

and have zero velocity. Find the velocity of the particle after it returns to the 

point A and time spent to reach. Find its acceleration after return to point a. 

Solution 

It’s given that 4ta  thus 

14 4 4dv dv dt v t c
dt

 

To get the constant 1c  we apply the initial conditions i.e. 0v  when 0t  

so  1 0c  

Then the last equation turns into   4v t  

Again since 
dSv
dt

 hence 
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2
24 4 2dS t dS tdt S t c

dt
 

Again To get the constant 2c  we apply the initial conditions i.e. 0S  when 

0t  so  1 0c  (consider A be the fixed point) then the relation between ,S t  

is  22S t  

From this equation we can obtain the tome spent to reach to the point A again –

note 4S - thus the time 24 2 2t t  

And its velocity is 4 2v  

 

Moreover the acceleration has two components namely tangential component 

24 ftsecta  and  normal component na , where 

2
2)16(2

16
2

ftsecn
va   (note 2 ft ) 
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MOTION UNDER CONSTRAINT 

 

 particle may be constrained to move along a given curve or 

surface, and the constraint may be one-sided, as for example 

when a heavy particle slides on the inside of a spherical surface and is free to 

break contact with the surface on the inside of the sphere but cannot get 

outside. There will then be a normal pressure inwards exerted by the sphere on 

the particle so long as contact persists, and the pressure will vanish at the point 

where the particle leaves the surface. On the other hand if the constraint is two-

sided as when a particle moves in a fine tube, or a bead moves along a wire, 

then the normal reaction may vanish and change sign but the particle persists in 

the prescribed path. 

 Motion of a Heavy Particle on a Smooth Curve in a Vertical Plane  

 

The motion is determined by the tangential and normal components of 

acceleration. The beginner may find it useful in such problems as this to make 

two diagrams, one showing the components of acceleration multiplied by the 

mass and the other showing the forces. It is then only necessary to realize that 

the two diagrams are equivalent representations of the same vector, so that the 

resolved parts in any assigned direction in the two diagrams are equal. 

 

 

 

 

 

 

A 
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If m  is the mass of the particle, the forces acting on it are the weight mg  and 

the reaction R  along the normal. The components of acceleration are dvv
ds

 

along the tangent and 
2v

 along the inward normal. Hence, by resolving along 

the tangent, we get 

sin
dydvmv mg mg

dS ds
, 

therefore, by integration, 

21
2
mv c mgy  

or, if u  is the velocity when the ordinate is 0y , we have 

2 2
0

1
2
m u yv mg y      (1) 

This is the equation of energy and might have been written down at once; for 

since the curve is smooth no work is done by the reaction R  in any 

displacement, so the increase in kinetic energy is equal to the work done by the 

weight. 

Again, resolving along the normal, we get 

2
cosvm R mg       (2) 

Substituting for v  from equation (1), we have 

2
0cos 2 ( /)R mg u ygm y    (3) 

Assuming that the form of the curve is given, the values of  and  at any 

point can be determined, and thus R  is known; and if we equate to zero the 

value of R  we shall have an equation to determine the point, if any, at which 

the particle leaves the curve. 
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 Motion of a Heavy Particle, placed on the outside of a Smooth Circle in 

a Vertical Plane and allowed to slide down 

 

If the particle starts with zero initial velocity from position Q at an angular 

distance AOQ  from the highest point A, and a  is the radius of the circle 

and v  the velocity at P where the angular distance from A is AOP , then,  

2 2 (cos cos )v ga  

Also by resolving along the inward normal 

2
cosvm

a
R mg  

where R  is the outward reaction of the curve. 

Therefore  (3cos 2cos )R mg   

showing that the pressure vanishes, and that the particle 

flies off the curve, when 
2cos cos
3

. 

 Motion in a Vertical Plane of a Heavy Particle attached by a Pine String 

to a Fixed Point 

 

Suppose that the particle starts with velocity u  from its lowest position B. If v  

is the velocity at P  and  is the angle that the string makes with the vertical, 

the equation of energy is 

2 2 1 cos1
2

u mgv am   (1) 

and by resolving along the inward normal 

2
cosvm

a
T mg  

where T  is the tension of the string. 

Therefore 

2(3 co 2 / )s aT m g g u     (2) 

In order to find the height of ascent we put 0v  in (1), and get 

22 cos 2ga ga u      (3) 
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and by putting 0T  in equation (2), we find that the tension vanishes when 

23 cos 2ga ga u       (4) 

Now we have the following cases: 

(i) If 2 2u ga , the string does not reach the horizontal position and the 

tension does not vanish. 

(ii) If 2 2u ga , the string just reaches the horizontal position, the tension 

vanishes for 
2

, and the particle swings through a quadrant on each side of 

the vertical. 

(iii) If 22 5ga u ga , we find that there is a value of , an obtuse angle, 

given by (4) smaller than that given by (3), so that the string becomes slack 

before the velocity vanishes and the particle will fall away from the circular 

path and move in a parabola till the string again becomes taut. 

(iv) If 2 5u ga , the tension just vanishes in the highest position, but v  does 

not vanish, so that circular motion persists. 

(v) If 2 5u ga , neither v  nor T  vanish. This is an example of a one-sided 

constraint; if instead of the problem of a particle attached to a string, we 

consider that of a bead sliding on a wire, we find that if 2 4u ga  the bead 

will reach the highest point of the wire and for any greater value of u  it will 

describe the complete circle. 

 Circular pendulum:  

A mass hangs from a massless string of length  

Conditions have been set up so that the mass swings 

around in a horizontal circle, with the string making an 

angle  with the vertical (see Figure).  
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The mass travels in a circle, so the horizontal radial 

force must be 

2 2 2 2
2sin sin

sin sinn
vF m m  

directed radially inward. The forces on the mass are the tension in the string, T

, and gravity, mg  as illustrated. There is no acceleration in the vertical 

direction, so  F ma  in the vertical and radial directions give, respectively, 

cosT mg   and  2sin sinT m  

Solving for  gives  

cos

g
 

Note that if 0 , then 
g

, which equals the frequency of a plane 

pendulum of length . And if  90 , then , which makes sense. 
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Examples Illustrative 

 

Example 

A heavy particle of weight mg , attached to a fixed point by a light 

inextensible string with length , describes a circle in a vertical plane. The 

tension in the string has the values nmg  and n mg , respectively, when the 

particle is at the highest and lowest points in its path. Show that 6n n . 

Solution 

 
The equation of motion along and perpendicular to the 

radius r  

2 cosm T mg     (1) 

sin sinm mg g   (2) 

Since we have 
d d d d

dt d dt d
 and  

substituting in formula (1)  and integrate 

sin

sin

d g
d
d g d

 

2 2 cosg c   (3) 

Where c  the integration constant and substituting from equation (3) in 

equation (1) we get 
(2 cos ) cos 3 cosT m g c mg mg C    (4) 

It’s given that the tension at highest position is nmg i.e. at point B and at the 

lowest position n mg i.e. at point A then 

3 cos ( 3)n mg mg C C n mg    and 

3 cos0 ( 3)n mg mg C C n mg  

Therefore, by subtracting 6 0 Or 6n n n n  

The reader can resolve this problem by using intrinsic coordinates. 
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Example 

A particle slides outside a smooth vertical circle with radius. At time 0t  the 

particle was at the top of the circle and has zero initial velocity. Determine the 

velocity at any position and the reaction of the circle the find the position that 

the particle will leave the circle. 

Solution 

The forces acting on the particle are mg  the 

weight and reaction R  as illustrated in the figure 

The equation of motion along perpendicular to the 

radius is  

sin Or sin
ddv dv dSmv mg v g b

dS d dS d
 

sinvdv bg d  

By integration  

2 2 cosv C bg  

Since 0v  at 0t  thus 2C bg  then  2 2 (1 cos )v bg  

The equation of motion along the radius we get 

2 2
cos cosv vm mg R R mg m

b b
 

cos 2 (1 cos )

(3 cos 2)

R mg mg

mg
 

The last equation gives the reaction of the circle at any position and the particle 

will leave the circle when the reaction vanishes, i.e. 

2(3 cos 2) 0 cos
3

mg  

That is the particle will leave the circle after sliding a vertical distance equals  
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Example 

Prove that the simple pendulum executes simple harmonic motion and 

determine the periodic time. 

Solution 

 If a heavy particle is tied to one end of a light 

inextensible string the other end of which is 

fixed, and oscillates in a vertical circle, we have 

what is called a Simple Pendulum 

We now obtain the time of oscillation of such a 

pendulum when it is allowed to oscillate 

through a small angle only. Let O be the fixed 

point, A the lowest position of the particle, and 

P any position such that AOP=  

Since in polar co-ordinate 

( 2 ( 0)a r r L r L r ) 

The equations of motion in direction is  

sin sin
g

mL mg
L

 

When the angle  is small enough so the approximation sin  can be 

applied and the equation of motion,  sin
g

L
 becomes 

g

L
 

Which is similar to 2w , with 2 Or =
g

L
w

g
w

L
 

So, a simple pendulum moves like a SHM with periodic time of motion equals 

2 L

g
 

 

 

 

 
 

 

 

 

 

 

 

 

 



  93 

 PROBLEMS 

 A point starts from the origin in the direction of the initial line with velocity 

u  and moves with angular velocity  about the origin and with constant 

negative radial acceleration u . Find the equation of path 
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 A point describes the cycloid  4 sinS a with uniform speed v . Find its 

acceleration at any point. 
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 If the tangential and normal acceleration of a particle describing a plane 

curve be constant throughout, prove that the radius of curvature  at any point 

is given by 2( )at b , where ,a b  are constants 
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 The velocities of a particle along and perpendicular to the radius vector are 

r and  respectively. Find the path equation and obtain the accelerations 

along and perpendicular to the radius vector. 

 

 

 

 

 

 

 

 

 

 

 The velocities of a particle along and perpendicular to the radius vector are 

2r and 2  respectively. Find the path equation and obtain the accelerations 

along and perpendicular to the radius vector. 

 

 



KINETICS OF A PARTICLE 

his chapter is concerned with the foundations of dynamics and 

gravitation. Kinematics is concerned purely with geometry of 

motion, but dynamics seeks to answer the question as to what motion will 

actually occur when specified forces act on a body. The rules that allow one to 

make this connection are Newton’s laws of motion. These are laws of physics 

that are founded upon experimental evidence and stand or fall according to the 

accuracy of their predictions. In fact, Newton’s formulation of mechanics has 

been astonishingly successful in its accuracy and breadth of application, and 

has survived, essentially intact, for more than three centuries. The same is true 

for Newton’s universal law of gravitation which specifies the forces that all 

masses exert upon each other.  

Taken together, these laws represent virtually the entire foundation of classical 

mechanics and provide an accurate explanation for a vast range of motions 

from large molecules to entire galaxies. 

 Newton’s Laws 

Isaac Newton’s∗  three famous laws of motion were laid down in Principia, 

written in Latin and published in 1687. These laws set out the founding 

principles of mechanics and have survived, essentially unchanged, to the 

present day. Even when translated into English, Newton’s original words are 

hard to understand, mainly because the terminology of the seventeenth century 

is now archaic. Also, the laws are now formulated as applying to particles, a 

concept never used by Newton. A particle is an idealized body that occupies 

only a single point of space and has no internal structure. True particles do not 

exist in nature, but it is convenient to regard realistic bodies as being made up 

of particles. Using modern terminology, Newton’s laws may be stated as 

follows: 

T 
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First Law: When all external influences on a particle are removed, the 

particle moves with constant velocity. {This velocity may be zero in which 

case the particle remains at rest.} 

Second Law: When a force F  acts on a particle of mass m , the particle 

moves with instantaneous acceleration a  given by the formula 

F ma  

where the unit of force is implied by the units of mass and acceleration. 

Third Law: When two particles exert forces upon each other, these forces 

are (i) equal in magnitude, (ii) opposite in direction, and (iii) parallel to the 

straight line joining the two particles. 

 

 The Law of Gravitation 
 

Physicists recognize only four distinct kinds of interaction forces that exist in 

nature. These are gravitational forces, electromagnetic forces and weak/strong 

nuclear forces. The nuclear forces are important only within the atomic nucleus 

and will not concern us at all. The electromagnetic forces include electrostatic 

attraction and repulsion, but we will encounter them mainly as ‘forces of 

contact’ between material bodies. Since such forces are intermolecular, they 

are ultimately electromagnetic although we will make no use of this fact! The 

present section however is concerned with gravitation. 

It is an observed fact that any object with mass attracts any other object with 

mass with a force called gravitation. When gravitational interaction occurs 

between particles, the Third Law implies that the interaction forces must be 

equal in magnitude, opposite in direction and parallel to the straight line 

joining the particles. The magnitude of the gravitational interaction forces is 

given by: 

The gravitational forces that two particles exert upon each other each have 

magnitude 
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2
ˆMm

F F
R

      (1) 

where ,M m are the particle masses, R  is the distance between the particles, 

and , the constant of gravitation, is a universal constant. Since  is not 

dimensionless, its numerical value depends on the units of mass, length and 

force. 

This is the famous inverse square law of gravitation originally suggested by 

Robert Hooke, a scientific contemporary (and adversary) of Newton. In SI 

units, the constant of gravitation is given approximately by 

11 2 26.67 10 Nm kg  

this value being determined by observation and experiment. There is presently 

no theory (general relativity included) that is able to predict the value of . 

Indeed, the theory of general relativity does not exclude repulsion between 

masses! 

To give some idea of the magnitudes of the forces involved, suppose we have 

two uniform spheres of lead, each with mass 5000 kg (five metric tons). Their 

common radius is about 47 cm which means that they can be placed with their 

centers 1 m apart. What gravitational force do they exert upon each other when 

they are in this position? We will show later that the gravitational force 

between uniform spheres of matter is exactly the same as if all the mass of each 

sphere were concentrated at its center. Given that this result is true, we can find 

the force that each sphere exerts on the other simply by substituting 

5000M m  and 1R  into equation (1). This gives 0.00167NF  

approximately, the weight of a few grains of salt! Such forces seem 

insignificant, but gravitation is the force that keeps the Moon in orbit around 

the Earth, and the Earth in orbit around the Sun. The reason for this disparity is 

that the masses involved are so much larger than those of the lead spheres in 

our example. For instance, the mass of the Sun is about 2 × 10
30

 kg. 
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 Motion Through a Resisting Medium 

When a body moves in a medium like air or any other fluid, it experiences a 

resistance to its motion. The resistance which we have been neglecting so far, 

generally varies with the velocity. For small velocities the resistance is 

approximately proportional to the velocity, for greater velocities it varies as the 

square of the velocity and for still greater velocities, the resistance varies as the 

cube or even a higher power of the velocity. The forces of resistance being 

non-conservative, the principle of Conservation of Energy is not applicable to 

such cases. 

 Bodies Falling Vertically in a Resisting Medium 

Suppose a particle with mass m  is allowed to fall vertically subject to a 

resistance proportional to some power of the velocityv , e.g. a resistance force 

mv , then we have the equation of motion  

Ormv
dv dv

m mg g
dt dt

v  

where m  is the constant of proportionality and g , the acceleration due to 

gravity, is supposed to remain constant. The equation shows that the 

acceleration of the particle decreases as its velocity increases and that it 

vanishes when /g  . Separation of variables for the previous equation we get 

v v

dv dv
dt dt

g g
 

Integration we have 

1ln( ) tvg c  

If the initial velocity is u  therefore, the constant 1c   may be obtained as 

1ln( )g cu then  

ln( ) ln( ) ln
g

g t
v

v u t
u

g
g
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1
( ) ( )t tg

v u e Or v u eg g g  

The value 
g

 is the greatest velocity attainable by the particle and is called the 

limiting or terminal velocity.  

To get the height since 
dy

v
dt

then 

1 1
( ) ( )t tdy g g

u e dy u e dt
d

g g
t

 

And integrate we get 

22

1
( ) tg

y t ug e c  

Where 2 2

1
( )gc u  sine 0y  when 0t  that is  

2

1
( ) 1tg

g
y t u e  

Subsequently the particle moves uniformly with this limiting velocity. The 

velocity for the rain drops at the surface of the earth cannot, therefore, give us 

any idea of the height from which they might have fallen, for after moving for 

some time they acquire the terminal velocity and continue to move uniformly 

with that velocity. 
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Examples Illustrative

 

Example 

A particle with mass m  moves horizontally through a resisting medium where 

its resistance proportional to v  and the proportional constant is m . If the 

particle starts its motion from the origin point with initial velocity u . Find the 

distance after time t . 

Solution 

The equation of motion of the particle is (horizontally) 

mv
dv dv

m dt
d vt

 

By integrating we have   1ln( )v c t    (1) 

The constant 1c  can be determined from the initial conditions, v u  at 

0t , therefore 1 lnc u  and equation (1) becomes  

  ln( ) ln Or tv u t v ue    (2) 

Equation (2) gives the velocity of the particle at any instance, and the position 

of the particle x  can be obtained as follows 

2 Or

t t

v
t

dx
ue dx ue dt

dt

dx ue dt c

 

2
tu

x e c        (3) 

Where 2c   is integration constant  that can be calculated from the initial 

conditions, 0x  at 0t , therefore 2
u

c  and equation (3) turns into  

t
1

u
x e  
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Example 

A moving point with mass equals unity subject to a resistance 2v v  If the 

resisting force is the only force acting on the point. Find the distance where u  

is the initial velocity of the point. 

Solution 

Equation of motion is ( 1m ) – Note resisting force is the only acting force- 

2)( v v
dv dv
v
dx

dx
v

 

By integration we get 

1ln( )v c x      (1) 

Where 1c   represents integration constant and can be obtained from the initial 

conditions, v u  at 0x , therefore 1 ln( )c u  and equation (1) turns 

into  

ln( ) ln( ) Or ln
u

v u x x
v

  (2) 

Again from the last equation we can obtain the position of the point as the 

velocity vanishes 

0

1 1
ln ln 1

v

u
x u  

Example 

Two equal particles with mass m projected downwards from the same point 

and at the same instance with initial velocities 1 2,u u  subject to a resistance 

mv  If 1 2,u u  are the velocities of the particles after timeT . Prove that 

1 2 1 2( )
T

u u u u e . 
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Solution 

With respect the first particle we suppose that its velocity at any time is v  

therefore, the equation of motion is  

Ormv
v

dv dv dv
m mg dt dt
t g vd g

 

By integration we have

ln( )g v c t  

look c   indicates the integration constant which can be calculated from the 

initial conditions, 1v u when 0t , therefore 1ln( )c g u  and the last 

equation become  

1 1ln( ) ln( ) Or ( ) tg v g u t g v g u e   

Now after time T , the velocity become 1u  that is  

1 1( ) Tg u g u e       (1) 

Now with respect the second particle we suppose that its velocity at any time is 

v  therefore, the equation of motion is  

Ormv
v

dv dv dv
m mg d dt
t g v

t
d g

 

By integration we have

ln( )g v c t  

where c   refers to the integration constant which can be obtained from the 

initial conditions, 2uv when 0t , therefore 2ln( )c g u  and the 

previous equation converted to  

2 2ln( ) ln( ) Or ( ) tg v g u t g v g u e   

Again, Now after time T , the velocity become 2u  that is  

22 ( ) Tg u g u e       (2) 
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By subtracting Equations (1) and (2) we obtain 

1 2 1 1 22 21( ) Or ( )T Tu u u u e u u u u e  

Example 

A point with mass m  is projected vertically upwards with initial velocity 

1g  and the resistance of air produces retardation per unit mass 2v  where 

v  is the velocity and  is constant. Find the highest position and the time 

spent to reach is  
4 g

. 

Solution 

The equation of motion – let the projection point be the origin-then 

2
2 2

Or
2

2
dv vdv vdv

mv mg dy dmv
v

y
dy g g v

 

By integration we get

2
1ln( ) 2g v c y     (1) 

Note 1c   indicates the integration constant which can be obtained from the 

initial conditions, 1v g when 0y , therefore 1 ln 2c g  and equation 

(1) be  

1 2
ln( ) ln 2 2 Or ln

2

g
g v g y y

g v
   (2) 

Equation (2) gives the position of the point at any instance t  and at highest 

position the velocity is zero  0v  and then  

1 2 1
ln ln 2

2 2

g
y Y

g
 

And this is the highest position and to evaluate the spent time to reach since 
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2 2
2

1

Or
g

mv g
v

v

dv
dv dv

m mg dt dt
dt

g

g
 

By integration we obtain 

1
2tan v g t

g
c     (3) 

Note 2c   is the integration constant which its value can be evaluated by the 

initial conditions, 1v g when 0t , therefore 2 4
c  and equation (3) 

turn into 

1tan Or ta
4 4

n
g

v g t v g t
g

 

This equation gives the velocity at any time t , and when 0v  then t  

4

4 4

0 tan

0 Or

g
g t

g t t
g

 

Example 

A point with mass m  is projected vertically upwards where the resistance of 

air produces a retardation m v  where v  is the velocity and  is constant. If 

the velocity vanish at time T  with a height  from the point of projection 

Show that the initial velocity of the point is gT . 

Solution 

The equation of motion –the point of projection is chosen to be the origin 

point- 
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dv dv
m mg m t

v
d

g
v

dt
 

By integration we get

1ln( )v c tg      (1) 

here 1c   gives the integration constant which can be obtained from the initial 

conditions, v u  when 0t , -we suppose that the initial velocity is u  

which we need to obtain- therefore 1 ln( )c g u  and equation (1) takes the 

following formula  

ln( ) ln( ) Or tg v g u t g v g u e
 

at , 0 Tt T v g g u e     (2) 

In order to determine the height of the point we have 

1
( ) Or ( )

t t
g v g u e v g u e g

 

But 
dy

v
dt

 then  

1 1
( ) ( )

t tdy
g u e g dy g u e g dt

dt  

 By integration we get

2
( )1 tg u

y e gt c     (3) 

here 2c   gives the integration constant which can be obtained from the initial 

conditions, 0y  when 0t ,  therefore 
22

( )g u
c  and equation (2) 

become

2

( )1 tg ug u
y e gt  

Now let y  when t T  
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2 2

2 2 2 2

( )

( )
Or

T

T

g ug u gT
e

g u g u gT g g u gT
e

We use equation (2)

2 2

g g u gT
u gT  

Example 

A point with mass m  is projected vertically upwards with initial velocity u  

and the resistance of air produces a retardation 2m v  where v  is the velocity 

and  is constant. Show that the velocity with which the point will return to 

the point of projection is 
2 2

uu

u u
 where 1u g . 

Solution 

To determine the velocity with which the point will return to the point of 

projection, we will consider the motion of the point upwards until it stop then it 

return.

The equation of motion of the point – consider Y  axis to be vertically and the 

point of projection is chosen to be the origin point- 

2
2

2
2mv

dv vdv
mv mg dy
dy vg

 

By integration we get

2
1ln( ) 2g v c y     (1) 

Where 1c   points out integration constant which can be obtained from the 

initial conditions, v u  at 0y , therefore 2
1 ln( )c g u  and equation 

(1) takes the following formula  

2
2 2

2

1
ln( ) ln( ) 2 ln

2

g u
v g u y Or y

g v
g  
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The point will stop as 0v , therefore 

2 2
2

0 2

1 1
ln ln 1 , ( )

2 2v

g u u g
y Y u

g u
 

Now by taking the motion where the point moves downwards, let the highest 

position represents the new origin point and the Y  axis is chosen to be 

vertically downward. Moreover, the initial condition will be 0v when 

0y  where v  is the velocity. The equation of motion   

2
2

2
2

dv vdv
mv mg dy
dy g

mv
v

 

By integration we get

2
2ln( ) 2g v c y     (2) 

Constant of integration 2c   can be obtained from the initial conditions, 0v  

at 0y , therefore 2 lnc g  and equation (2) becomes  

2
2

1
ln( ) ln 2 Or ln

2

g
v g y y

g v
g   

And the velocity of the point with which the point will return to the point of 

projection is that is at 
2

2

1
ln 1

2

u
y Y

u
hence 

2 2

2 2 2 2

1 1
ln 1 ln Or 1

2 2

u g u g

u g v u g v
 

2 2 2 2
2 2

2 2 2 2 2 2

u u g gu gu
g v v g

u g v u u u u
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4
2 2

2 2

2 2 2 4

2 2 2 2

2 2

2 2

2

2 2

)(

u
v u

u u
u u u u

u u u u

u u

u u
uu g

v u
u u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  67 

PROBLEMS

 A particle is projected with velocity V  along a smooth horizontal plane in a 

medium whose resistance per unit mass is v ,   is a constant. Obtain the 

velocity v  and the distance after a time t  . 
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 A particle is projected vertically upwards with velocity u  and the resistance 

of the air produces a retardation kv  where v  is the velocity. Determine the 

velocity with which the particle will return to the point of projection. 
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 A particle P  moving along a horizontal straight line has retardation v , 

where v  is the velocity at time t . When 0t , the particle is at O  and has 

velocity u . Show that u v  is proportional to OP . 
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 A particle subject to gravity describes a curved path in a resisting medium 

which causes retardationhv . Show that the resultant acceleration has a 

constant direction, and equals 0
hta e   where 0a  is the acceleration when 

0t . 

 

 

 

 

 

 

 



 

PROJECTILE MOTION 
 

 

et us consider that u ,v  denote the resolved parts of the velocity 

of the particle parallel to the axes at time t  and u u , v v  

refer to the resolved parts at time t t  then the resolved parts of the 

acceleration are given as 

2

20
limx
t

u du d dx d xa x
t dt dt dt dt

 

2

20
limy
t

dy d yv du da y
t dt dt dt dt

 

The consideration of component velocities and accelerations is of great 

importance when we have to deal with cases of motion where the path is not a 

straight line. 

 

 Equations of Motion of a Particle Moving in a Plane 
 

The position of a point in a straight line being determined by one co-ordinate, 

only one equation of motion is sufficient to determine the motion completely. 

In the case of a particle moving in a plane, two equations of motion are 

required in order to obtain the two co-ordinates which define the position of a 

point in a plane. The two equations of motion are obtained by resolving the 

forces in any two convenient directions at right angles to one another.  If the 

two directions are taken parallel to the co-ordinate axes the equations of 

motion, as deduced from the second law of motion, will be of the form 

2

2 x
d xm F
dt

 and  
2

2 y
d y

m F
dt

 

L 

PROJECTILE MOTION 
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where xF , yF  are the sums of the resolved parts of the forces parallel to the 

axes of x  and y : 

  Projectiles 

As an example of motion in two dimension is the projectile  motion. Recall that 

a particle has a mass but negligible size and shape. Therefore, we must limit 

application to those objects that have dimensions that are of no consequence in 

the analysis of the motion. In most problems, we will be focused in bodies of 

finite size, such as rockets, projectiles, or 

vehicles. Each of these objects can be 

considered as a particle, as long as the 

motion is characterized by the motion of 

its mass center and any rotation of the 

body is neglected.  The free-flight 

motion of a projectile is often studied in 

terms of its rectangular components. The 

acceleration is of approximately  

9.81 ms
-2

 or 32.2 ft s
-2

. 

We will discuss the motion of a particle 

projected in the field of gravity. We now 

consider the motion of a projectile, that 

is, the motion of a body which is small 

enough to be regarded as a particle and which is projected in a direction 

oblique to the direction of gravity. A body that moves freely under uniform 

gravity, and possibly air resistance, is called a projectile. Projectile motion is 

very common. In ball games, the ball is a projectile, and controlling its 

trajectory is a large part of the skill of the game. On a larger scale, artillery 

shells are projectiles, but guided missiles, which have rocket propulsion, are 

not. 
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Note: Near the Earth’s surface, we assume that the downward acceleration due 

to gravity is constant and the effect of air resistance is negligible. 

We shall suppose the body to be projected in vacuum near the surface of the 

earth or, in other words, we shall suppose the resistance due to air and the 

slight variation in the force of gravity to be negligible. A particle of mass m  is 

projected into the air with velocityu , in a direction making an angle  with 

the horizontal, to find its motion and the path described. 

Let O, the point of projection, be taken as the origin and let the horizontal and 

the vertical lines through be taken as the axes of X  and Y . Again, let P be the 

position of the moving point, after time t . During the motion of the projectile, 

the only force acting on it is its weight acting downwards. The equations of 

motion, therefore, are  

 

 

 

 

 

 

 

 

 

 
2

2
0d xm

dt
 and  

2

2

d y
m mg
dt

 

Or  in other formula 
2

2
0d x

dt
   and   

2

2

d y
g

dt
 

Integrating these equations, we get 

1
dx C
dt

   and   
2

2 2
d y

C gt
dt

     (1) 

where  1 2,C C  are integration constants 
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Initially at O when 0t ,  cosdx u
dt

  and  sin
dy

u
dt

 then 

Equation (1) becomes 

cosdx u
dt

  and   sin
dy

u gt
dt

  (2) 

Integrating these equations again and applying initial conditions, viz., when 

0, 0t x y , we obtain 

cosx u t   and  21sin
2

y u t gt   (3) 

Equation (2) gives the components of the velocity and (3) the displacements of 

the particle in the horizontal and vertical directions at any time t . These 

equations could also be written down at once by regarding the particle to be 

projected with a constant velocity cosu  in the horizontal direction and with 

an initial velocity  sinu  under a retardation g  in the vertical direction. 

Eliminating the time t  the two parts of Equation (3) we have, 

2

2 2

1tan
2 cos

gx
y x

u
      (4) 

We now deduce the following facts from the five equations just obtained: 

 

  The Path Equation of Projectile 

Equation (4) is of the second degree and the second degree term 2x  is a perfect 

square. It follow, therefore, that the path of the particle is a parabola.  

Equation (4) can be re-written in the form  

22 2 2

2 2

sin sin 2
2 22 cos

gu uy x
g gu

 

It shows that the latus-rectum of the parabolic path 2 22 cos /u g . 

In the particular case when the particle is projected horizontally, 0 , and 

the Equation (4) of the path reduces to  
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2

22

g
y x

u
 

which is obviously a parabola the length of whose latus-rectum is 22 /u g . The 

path of a projectile is called its trajectory. 

 The Time of Flight 

Let T , represents the time which the particle takes in reaching the horizontal 

plane through the point of projection.  

Putting  0y , in the second part of Equation (3) we get either 0t (at O) 

And 2 sin 2 sinu ut T
g g

 

 Greatest Height  

This is also obtained either by finding by differentiation, the, maximum value 

of y  from the second part of Equation (3) or by the fact that at the greatest 

height the vertical component of the velocity must vanish, i.e. from the second 

part of Equation (2)  

sinsin 0
dy uu gt t
dt g

 

 Substituting this in Equation (3) and simplifying we get 

2 2sin
2

uY
g

 

 Horizontal Range 

The range OBR , on the horizontal plane through the point of projection the 

horizontal distance described by the particle in the time of flightT . 

22 sin sin 2cos . cos u uR u T u
g g

 

R  can also be obtained by putting 0y  in Equation (4). 
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Since, 
2 sin 2uR
g

 so R  can be obtained by two values of projected angles 

because   2 ) sin 2 ( , )
2

sin 2 sin(
2

 

 Maximum Horizontal Range  

The range R  is maximum when sin2 1 , i.e., when 
4

 Or 45O  

therefore, the maximum range 
2

max
uR
g

. 

For a given velocity of projection, the horizontal range is the greatest when the 

angle of projection is 45
o
. 

 

 Range on an Inclined Plane 

Let a particle be projected from a point O on a plane of inclination , in the 

vertical plane through OP, the line of greatest slope of the inclined plane. 

Let the velocity of projection be u  at an elevation  to the horizontal. The 

equation to the path of the particle is 

2

2 2

1tan
2 cos

gx
y x

u
      (10) 

If the particle strikes the inclined Q plane at the point P, the distance, OP is 

called the range on the inclined plane. If OP R  then the co-ordinates of P

( cos , )sinR R  must satisfy Equation (10). 

2 2

2 2

cos1sin cos tan
2 cos

gr
R R

u
 

Then the range r   

22 2

2 2

2

2

tan sin ) si(cos cos cos2 2. .
cos co

n( )

sin(2 ) sin

s

cos

u uR
g g

u

g

 

The range down the plane may be obtained by putting  for  in this case 

the slope of the inclined plane is downwards. 
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 Maximum Range on an Inclined Plane 

 u  and  being known, the range varies with , and it will be maximum 

when sin(2 )  is maximum. When  Or
2

2
2

 

Hence for maximum range, the direction of projection must bisect the angle 

between the vertical and the inclined plane. If OT be the direction of 

projection, then OT is tangent to the path at O, and the vertical through is 

perpendicular to the directrix. OT being equally inclined to OP and the vertical, 

the focus to the path must, therefore, lie on the line OP of the inclined plane, 

i.e., in the case of maximum range the focus lies in the range. The value of the 

maximum range is 

2

2

2

2

2

max

(1 sin

cos

(1 sin

(1 sin

(1 sin

)

)

)

)

u
R

g

u

g

u

)(1 sin (1 sin )g

2

(1 si )n
u

g

 

 
 
 
 
 
 
 

 



Projectile Motion 32 

Examples Illustrative

 
Example 

If the maximum height for a projectile is 900 ft  and the horizontal range is 

400 ft . Find the velocity and its direction.  

Solution 

Since the maximum height and horizontal range are given by formulas 

2 2 2sin sin 2
,

2

u u
Y R

g g
 

Then using given values we get 

2 2 2sin 2 sin
900 , 400

cos

2

u u

g g
 

Then by dividing these two equations 

2 2 2
1co9 sin 2 sin s 9 tan

/ tan
4

9
4 2 4

u u

g g
 

which gives the angle of projection and the magnitude of the velocity of 

projection by using first equation 

2
2 281 1800 82 32.2

900 Or 242.23 ( 32.2 ftsec )
2 82 81

u
u u g

g

  

Example 

If the ratio between the magnitude of the velocity at maximum height and a 

height equals half of maximum height is 
6
7

. Show that the angle of projection 

is 030 . 
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Example 

As it is obtained that 2) 1( sin
2

y u t gt  

Let the point A  be the maximum height and hence  
2 2sin
2A

uY
g

 

And B  be the point where its height equals half of maximum height i.e.,  

2 2

4
1
2

sin
B A

uY Y
g

 

The time spent from the projection of the particle reach point B  is given by  

2 2
2sin 1( s )in

4 2
u u t gt
g

 

Rewrite this equation again as (multiply by 4g ) 

2 2 22( ) 4( ) sin s 10 1 sinn
2

iu gtt g u ug t  

The components of velocity at point B are 

1 1
, sin 1 sin sicos sin n

2 2
B By gtx u u u u u  

The resultant of the velocity at point B 

2

2 22 2 1
) s( cos in 1 cos

2 2
B B Bv x

u
uuy  

Since at the maximum height  cos , 0A Ayx u  then  

22 cosAA A yv x u  

But as given 
6
7

A

B

v

v
 therefore, 

2

2

2

2

2 cos 6
71 cos

cos 3
71 cos

cos 3
71 cos

u

u
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2 2 2

0

7 cos 3 3 cos cos4 3

3cos Or 30
2

 

Example 

A particle is projected with a velocity of 24 ft sec
-1

 at an angle of elevation 60. 

Find (a) the equation to its path, (b) the greatest height attained, (c) the time for 

the range, (d) the length of the range.,  

Solution 

Since 24u  and 260 , 32.2 fts eco g  

(a)  the equation to the path is 

2

2 2

1tan
2 cos

gx
y x

u
,  therefore 213

9
y x x  

 (b) The maximum height
2 2sin 24 24 3 6.71 ft
2 2 32.2 4

u

g
 

(c) The time for the range
2 sin 2 24 3 1.29 sec

32.2 2
u

g
 

(d) the length of the ran 
1 3 3cos 24 15.49 ft
2 4

u T  
Example 

Find the maximum horizontal range of cricket ball projected with a velocity of 

48 ft. per sec. If the ball is to have a range of 36 3  ft., find the least angle of 

projection and the least time taken (let 232 ftsecg ). 

Solution 

We have 48u  and 245 , 32 ftseco g  

2

max max
48 48 72 ft
32

uR R
g

 

If 
2 36 3 32sin 2 36 3 sin

4 2
2 3

8 48
uR
g
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Then 60 or 1 02 2o o    that is  30 or 60o o  

Thus, the least angle of projection  30o  

and the least time taken 
2 sin 2 48 1 1.5 sec

32 2
u

g
 

Example 

A ball is projected from a point on the ground distant a  from the foot of a 

vertical wall of height b , the angle of projection being  to the horizontal. If 

the ball just clears the wall prove that the greatest height reached is  

2 2tan
4( tan )
a

a b
 

Solution 

Let u  be the velocity of projection, then since the ball passes through the top 

of the wall, a point ( , )a b , we have 

2 2

2 2 2 2
tan Or tan

2 cos 2 cos

ga ga
b a a b

u u
 

2
2

22( tan )cos

ga
u

ba
 

Now the greatest height Y  reached by the ball 

2 2

22

2

2 2

sin
2

sin
2 2( tan )co
tan

4( tan )

s

uY
g

ga

g a
a

a

b

b

 

Example 

If T  be the time taken to reach the other common point A  of its path and T  

the time to reach the horizontal plane through the point of projection. Find the 

height of the point A. 
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Solution 

Since cosx u t  and the time of flight is T T  also 
2 sin 2uR
g

 

Hence 
22 cos sin 1cos ( ) sin ( )

2
uu T T u g T T

g
 

2 21 1 1 1sin ( )
2 2 2 2A A

y u T gT y gT T T gT gTT  

Example 

A particle is projected with a velocity u  so as just to pass over the highest 

possible post at a horizontal distance  from the point of projection O . Prove 

that the greatest height above O attained by the particle in its flight is 

6

4 2 22 ( )

u

g u g
. 

Solution 

Taking  as the angle of projection and substituting  for x  the equation to 

the path, we have 

2 2
2

2 2 2
(1 tan )

2 cos
tan tan

2
y

g g

u u
 

 

 

2
tan0 u

g

dy

d
 or 

4
2

4 2 2
sin u

u g
 

y being positive and its minimum value being zero, the value of  given in 

previous equation gives the maximum value of y . Now the greatest height 

attained by the particle 

4 6

4 2 2 4

2 2 2

2 2

sin
2 2 2

u u

u

u uY
g g gg g u

 

 

 

 

2 2
2 2

2

2

2
tan sse ec 1 tanc sec

dy d

d

g g

u u
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Example 

Two particles are projected from the same point in the same vertical plane with 

equal velocities. If ,t t  be the times taken to reach the common point of their 

paths and ,T T  the times to the highest point, show that tT t T  is 

independent of the directions of projection 

Solution 

Let ,  be the directions of projection 

sinsin ,
uuT T

g g
 

If x  is the horizontal distance of the common point, then 

cos , cosx u t x u t  

sinsin (tan tan ) (*)
cos cos

ux u x xtT t T
u g u g g

 

Now the equations of the two- paths arc 

2 2 2 2

2 2

sec sec1 1tan , tan
2 2

gx gx
y x y x

u u
 

Subtracting we have, 

2 2
2 2 2 2

2 2

1 1(tan tan sec sec tan tan
2 2

)
gx gx

x
u u

 

2

2

2(tan ta )nx u

g g
 

Hence from Equation (*) 

2

2

2utT t T
g

 which is independent of the directions of projection. 
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Example 

A particle is projected with velocity u  from a point on an inclined plate. If 1v  

be its velocity on striking the plane when the range up the plane is maximum 

and 2v  the velocity on striking the plane when the range down the plane is 

maximum, prove that 2
1 2u v v  

Solution 

Let R  be the maximum range up the plane and be the inclination of the 

plane, then 

2
,

(1 s n )i
uR

g
 and 2 2 2

1 2 2 sinv u gy u gR  

2 22
1

2 1 sin
(1 s

2 s
in ) 1 sin

in u u
g

v u g  

Similarly, by changing the sign of , we have 

22
2

1 sin
1 sin

v u  Hence       4 2 2 2
1 2 1 2Oru v v u v v  

Example 

A particle is projected and it paths through the two points (12,12) and (36,12)  

Find its velocity and the direction of projection.  

Solution 

The trajectory or path equation is  
2

2 2
tan

cos2

gx

u
y x  

The two points (12,12) and (36,12)  lies on the path so that 

With regard the point (36,12)   
2

2 2

(36)
12 36 tan

c s2 o

g

u
 

With regard the point (12,12)   
2

2 2

(12)
12 12 tan

c s2 o

g

u
 

By multiplying the second equation by 9  then subtracting, we have 
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96 4
ta9 n

7
6 72 tan

2 3
 

which gives the direction of velocity of projection, and to obtain the magnitude 

of the projection velocity, from first equation 

2

2 2

2 2
2

2

(36) (36)4
36

3
2

12 36
3 3

5 5
50 Or

2

5 2

g g

u u

u g u g

 

Example 

A particle is projected and it paths through the two points ( , ) and ( , )a b b a  

where ( , ) and ( , )a b b a  Prove that the range is given by 
2 2a ab b

a b
.  

Solution 

The trajectory or path equation is  
2

2 2
tan

cos2

gx

u
y x  

The two points ( , ) and ( , )a b b a  lies on the path so that 

With regard the point ( , )a b   
2

2 2
tan

cos2

gb

u
a b  

With regard the point ( , )b a   
2

2 2
tan

cos2

ga

u
b a  

By multiplying the first equation by a  and the second by b  then subtracting, 

we have 

)

2

( )

2

(a b a b

a b
2 22 c

( )
os

gab

u
a b

2 2

2 2

2 cos

2 cos
Or

gab
a b

u

ab u

a b g

 

Once again by multiplying the first equation by 2a  and the second by 2b  then 

subtracting, we have 
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2 2

3 3

( )( )a ab b a b

a b ( )a bab 2 2tantan ab a ab b  

Since the range is given by  
2 sin 2u

R
g

 therefore,  

2

2 2 2 2

/

2

( )

sin 2 2 cos

2 cos
tan

sin

tan

ab a b

u

ab a ab b

a b

u
R

g

a

g
u

bg

  2 2a ab b
R

a b
 

Example 

A particle is projected to reach a certain object located in the same horizontal 

plate of projection point, when it projected with angle it falls down before 

the object by distance  and when it projected with angle  it falls down after 

the object by distance .   Find the exact angle to reach the object.  

Solution 

Let u  be the velocity of projection and R  is the exact range of the object then 

the range in first case is R  and the range in second case is R therefore 

2 sin 2uR
g

 and  
2 sin 2u

R
g

 

By addition the two equations, we get 

2 2
2 sin 2 sin 2 sin 2 sin 2

2
u uR R
g g

 

Now, let  be the exact angle to reach the object so 
2 sin 2uR
g

 

By comparing (or dividing) the last two equations then  

2 2sin 2 sin 2 sin 2
2

u u

g g
 

1sin 2 sin 2 sin 2 sin 21sin 2 sin
2 2 2
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 Projectiles with Resistance 

We now proceed to include the effect of air resistance. From our earlier 

discussion of fluid drag, it is evident that in most practical instances of 

projectile motion through the Earth’s atmosphere, it is the quadratic law of 

resistance that is appropriate. On the other hand, only the linear law of 

resistance gives rise to linear equations of motion and simple analytical 

solutions. This explains why mechanics textbooks contain extensive coverage 

of the linear case, even though this case is almost never appropriate in practice; 

the case that is appropriate cannot be solved! In the following example, we 

treat the linear resistance case. 

Now suppose that the motion is opposed by a force proportional to the 

velocity. Thus if m  denote the mass and v  the velocity, let m v  denote the 

magnitude of the resistance. Therefore the components of the resistance 

parallel to horizontal and vertical axesOX ,OY  are 

,m x m y  

Let u  denote the initial velocity in a direction making an angle  with the 

horizontal. The equations of motion give 

andx x y g y  

By integrating we obtain 

1 2ln and ln
g

x c t y c t  

since initially 0x y  and cos , sinx u y u ,then 1 ln cosc u  

and 2 ln sin
g

c u , and hence 

cos and sint tg g
x u e y u e  
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Once again integrate the previous formula  

3 4

cos 1
and sint t

u g g
x e c y u e t c  

Where, 4 3,c c  are constant, and 0x y  at 0t  so that  

3 4
cos 1

, sin
u g

c c u  

So the last equation becomes 

cos 1
1 and sin 1t t

u g g
x e y u e t  

The time spent to reach the maximum height is 

1 sin
ln 1

u
T

g
 

The maximum height is  

2

sin sin
ln 1

u g u
y

g
 

The time of flight is 

1 sin
1 1 Tu

T e
g

 

The path equation is 

2

sin
1 ln 1

cos cos

g u g x
y x

u g u
 

For instance to evaluate the spent time to reach the maximum height  

Since   
2 3

ln(1 ) .....
2 3

x x
x x   

this is true for 1x , and now let 0  in formula 

1 sin
ln 1

u
T

g
 

We get 
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2 2 2 3 3 3

20

2 2 3 3

20

1 sin sin sin
lim ....

32
sin sin sin sin

lim ....
32

u u u
T

g gg
u u u u

g g gg

 

This result obtained before when we neglected the resistance of air. 

 

Example 

A particle of mass m  is projected with initial velocity u  at an angle of 

elevation  through a resisting medium where its resistance proportional to v  

and the proportional constant is m . Prove that the direction of the velocity 

makes an angle  with the horizontal 
1
ln 1 (sin cos )

u

g
 

Solution 

By writing the equation of motion in OX, OY  and then integrating and use the 

initial conditions as illustrated before we obtain the components of velocity of 

the particle at any instance 

cos and sint tg g
x u e y u e  

Since the angle of projection is  and the angle that the direction of velocity 

makes with the horizontal axis decreases until vanish at the highest position 

then it reverse to be  again downwards after time t  which determines from   

sin

tan tan
cos

t

t

g g
u e

y

x u e
 

That is  

sin sin 2 sin

2 sin 1 2 sin
1 ln 1

t t t

t

g g g g
u e u e u e

u u
e t

g g
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PROBLEMS

 A body, projected with a velocity of 120 ft sec
-1

 just clears a vertical wall  

72 ft high and 360 ft. distant, find the two possible angles of projection and the 

corresponding horizontal ranges. 

 

 

 

 

 

 

 A particle is projected so as just to clear a wall of height b at a horizontal 

distance a, and to have a range c from the point of projection, show that the 

velocity of projection V is given by  

2 2 2 22 ( )2
( )

a c a b cV

g ab c a
. 

 

 

 

 

 

 A projectile is fired with an initial velocity of 

VA = 150 m/s off the roof of the building. 

Determine the range R where it strikes the 

ground at B. 
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 A stone is projected with velocity V and elevation from a point O on level 

ground so as to hit a mark P on a wall whose distance from O is a, the height of 

P above the ground being 6. Prove that 

2 22 co2 ( s cos )sin b gV a a . 

 

 

 

 

 A particle in projected with a velocity of 120 ft. per sec. at an angle of 60 

with the horizontal from the foot of an inclined plane of inclination 30. Find 

the time of flight and the range on the inclined plane. 

 

 

 

 

 

 A particle is projected from a point on a plane of inclination  with 

velocity u. Show that the maximum range down the plane is 

2

2

1 sin

cos

u

g
. 
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 A ball is thrown from A. If it is required to 

clear the wall at B, determine the minimum 

magnitude of its initial velocity VA. 

 

 

 

 

 

 

 A boy throws a ball at 0 in the air with a 

speed Vo at an angle 1 . If he then throws 

another ball with the same speed v0 at an 

angle 2 1  determine the time between 

the throws so that the balls collide in midair 

at B. 



 

 

SIMPLE HARMONIC MOTION 

 

scillations are a particularly important part of mechanics and 

indeed of physics as a whole. This is because of their 

widespread occurrence and the practical importance of oscillation problems. 

Most engineering materials are nearly elastic under working conditions. And, 

of course, all real things have mass. These ingredients, elasticity and mass, are 

what make vibration possible. Even structures which are fairly rigid will 

vibrate if encouraged to do so by the shaking of a rotating motor, the rough 

rolling of a truck, or the ground motion of an earthquake. The vibrations of a 

moving structure can also excite oscillations in flowing air which can in turn 

excite the structure further. This mutual excitement of fluids and solids is the 

cause of the vibrations in a clarinet reed, and may have been the source of the 

wild oscillations in the famous collapse of the Tacoma Narrows bridge. 

Mechanical vibrations are not only the source of most music but also of most 

annoying sounds. They are the main function of a vibrating massager, and the 

main defect of a squeaking hinge. Mechanical vibrations in pendulum or quartz 

crystals are used to measure time. Vibrations can cause a machine to go out of 

control, or a building to collapse. So, the study of vibrations, for better or for 

worse, is not surprisingly one of the most common applications of dynamics. 

When an engineer attempts to understand the oscillatory motion of a machine 

or structure, she undertakes a vibration analysis. A vibration analysis is a study 

of the motions that are associated with vibrations. Study of motion is what 

dynamics is all about, so vibration analysis is just a part of dynamics. A 

O 

SIMPLE HARMONIC MOTION 
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vibration analysis could mean the making of a dynamical model of the 

structure one is studying, writing equations of motion using the momentum 

balance or energy equations and then looking at the solution of these equations. 

But, in practice, the motions associated with vibrations have features which are 

common to a wide class of structures and machines. For this reason, a special 

vocabulary and special methods of approach have been developed for vibration 

analysis. For example, one can usefully discuss resonance, normal modes, and 

frequency response, concepts which we will soon discuss, without ever writing 

down any equations of motion. We will first approach these concepts within 

the framework of the differential equations of motion and their solutions. But 

after the concepts have been learned, we can use them without necessarily 

referring directly to the governing differential equations. 

 

 Definition 

A particle is said to execute Simple Harmonic Motion if it moves such that its 

acceleration is always directed towards a fixed point, and is proportional to 

the distance of the particle from the faced point. 

 

 

 

 

 

 

 

The expressions for velocity and position of the particle at any instant are 

obtained as follows: 

Suppose O be the fixed point in the line A1OA and let P denote the particle 

after time t  from moving with a velocity v  in the positive direction from O to 

A. Let OP x , then the acceleration is kx  where k  is a constant. Since the 

A A1 O p 
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acceleration is in the direction opposite to that in which x  increases, the 

equation of motion of the particle is given as 

2

2

d xm kx
dt

 

Rearranging this equation, we get one of the most famous and useful 

differential equations of all time: 

0kx x
m

 

This equation appears in many contexts both in and out of dynamics. In non-

mechanical contexts the variable x and the parameter combination k/m are 

replaced by other physical quantities. In an electrical circuit, for example, x 

might represent a voltage and the term corresponding to k/m might be 1/LC, 

where C is a capacitance and L an inductance. But even in dynamics the 

equation appears with other physical quantities besides k/m multiplying the x, 

and x itself could represent rotation, say, instead of displacement. In order to 

avoid being specific about the physical system being modeled, the harmonic 

oscillator equation is often written as 

2 0x w x  

The constant in front of the x is called 2w  instead of just, say, w , for two 

reasons:  

(i) This convention shows that 2w  is positive,  

(ii) In the solution we need the square root of this coefficient, so it is 

convenient to have 2w =w . 

For the spring-block system, 2w  is k/m and in other problems 2w  is some 

other combination of physical quantities. 
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 Solution of harmonic oscillator differential equation 

2
2

2

d x w x
dt

 or  2 2dvv w x vdv w xdx
dx

 

Integrating previous equation, we have 

1
2 2 21 1

2 2
v c w x  

where 1c  is an integral constant. As P is supposed to be moving in the 

direction OA and as the acceleration is given to be taking place in the opposite 

direction, the particle P must come to rest at some point in OA  say at A, i.e., 

suppose  0v  where x a , so that 

2 2
1 1

2 21 10
2 2

c w a c w a  

Therefore  

2 2 2 2 2 2 2 2( )v w a w x w a x   or 2 2v w a x  

This equation gives the value of the velocity v  for any displacement x  

As P is moving in the positive direction 2 2v w a x  

2 2

2 2

dx dxw a x wdt
dt a x

 

By integrating  

1

2 2
sindx xwdt wt

aa x
  Or 

sin( )x a wt  

where  is integration constant to be determined from the initial conditions. If 

t  is measured from the instant when P is at O, i.e., if 0x  when 0t , then 

0 . 

 Note 1 Velocity in terms of time t can be obtained by differentiating any of 

these equations involving x and t. 

 Note 2 When the particle is on the left-hand side of O, the equation of 

motion is 2x w x  acceleration in the direction of P1A
2w OP1 
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2 2( )w x w x  Hence the same equation that holds on the right-hand side 

of O, holds also on the left hand side. 

The Equation 2 2w a x  gives the velocity of P in terms of its distance 

from O. Initially, when 0x  at the point O, the velocity is maximum and 

equal to wa . As As the particle proceeds towards A, the acceleration being 

towards O, the velocity goes on decreasing as x  increases. At A where x a , 

it vanishes and the particle is, for an instant, at rest. Then owing to the 

acceleration towards O the particle moves in the negative direction with a 

velocity which increases numerically as x  decreases and is the greatest at O 

where it is wa . Due to this velocity, the particle proceeds further to the 

negative side of O, the velocity remaining negative and decreasing gradually in 

magnitude till the particle comes to rest at Al where x a . The acceleration 

being towards O, the particle then starts and moves towards O with a positive 

velocity which increases gradually till it is again maximum at O. The same 

motion is repeated again and again and the particle goes on oscillating 

indefinitely between A and A1, the two positions of momentary rest. 

The motion of the particle is oscillatory. All oscillatory motions are, however, 

not necessarily simple harmonic. In fact, simple harmonic motion is the 

simplest and most important case of oscillatory motion which occurs in nature 

and it is always dominated by the differential equation 

2
2

2

d x w x
dt

 

The distance OA or OAl i.e., the distance of the center from one of the 

positions of rest is called the Amplitude. 
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 The Periodic time of Motion 

The equation sinx a wt  gives the time form in terms of x , the distance of 

the particle measured from O. Since 

2sin sin( 2 ) sinx a wt a wt a wt
w

 

And 
2cos cos( 2 ) cosdx aw wt aw wt aw wt

dt w
 

the particle has the same position, velocity and direction after time  
2t
w

, 

4t
w

 etc., as it had at the time t, i.e., the particle has a periodic motion, its 

periodic time  being 2
w

 

 The Frequency  

The frequency of SHM is the number of complete oscillations in one second, 

so that if n  denotes the frequency and  the periodic time of the motion, 

11
2
wnn  

 Simple Pendulum  

If a heavy particle is tied to one end of a light 

inextensible string with length and the other 

end of which is fixed, and oscillates in a 

vertical circle, we have what is called a Simple 

Pendulum. We now obtain the time of 

oscillation of such a pendulum when it is 

allowed to oscillate through a small angle only. 

Let O be the fixed point, A the lowest position 

of the particle, and P any position such that 

YOP=  

The equations of motion in horizontal direction is (resolve the tension) 
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an nd cossimx T mgT  

Here we suppose that the motion of mass m in X  direction only. Now, when 

the angle  is small enough so the approximations cos 1  and sin

can be applied and the equation of motion,  sinmx T becomes  

orm
gxmg x x

L L
x  

which is similar to 2x xw  with 2 Or =
g

L
w

g
w

L
 

So, a simple pendulum moves like a SHM with periodic time of motion equals 

2 L

g
 

 The Cycloid Pendulum 

We have illustrated that the motion of a simple pendulum is simple harmonic 

motion only when the angle of swing is so small that sin  is very nearly equal 

to  and the amplitude to the motion is so small that it may be treated as 

infinitesimal. If, however, the amplitude of motion is not small and  the particle 

supposed to be constrained to move under gravity, along the arc of a smooth 

cycloid in a vertical plane, the equation of motion of the particle along the 

tangent to the curve is 

2

2
sind Sm mg

dt
   (1) 

where  is the angle which the tangent to the curve makes with the horizontal 

and S  the length of its arc measured from the vertex, the cycloid being placed 

with its vertex downwards and axis vertical. We know by the Calculus that the 

intrinsic equation of the cycloid is 

4 sinS a       (2) 

Note S being measured from the vertex where 0 , and a being the radius 

of the generating circle. From equations (1) and (2), we have 
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2

2 4

gd S S
adt

        (3)  

this formula shows that the motion represents simple harmonic no matter how 

great the amplitude.  The time of a complete oscillation is given as  2 4 /a g  

which is constant for oscillations, small or large. Thus, if a particle is 

constrained to move along a smooth cycloid curve, its period of motion is 

absolutely independent of the amplitude. (This is an answer to the question 

which interested the mathematicians of the 18
th
 century in what curve should 

that the bob of a pendulum swing in order that the period of oscillation may be 

absolutely independent of the amplitude?) 

The oscillations on a cycloid are called isochronous because the period is the 

same for large or small oscillations. This important property of a cycloid finds 

its application in the formation of clocks. A cycloid pendulum may be 

constructed by causing the cord of the pendulum to wind and unwind itself on 

the evaluate of the path. 

In order to find the pressure of the curve on the particle, we write its equation 

of motion in the direction of the normal at the point, namely 

2
cosvm R mg  

where  is the radius of curvature of the curve, R  the normal pressure and v  

the velocity of the particle obtained from equation (3) by integration. 

Note (i). The students acquainted with elements of differential equation will 

note that  

cos sinS A wt B wt  where / 4w g a  

is the most general solution of differential equation (3). 

Note a. Since 24 sin 4 8 ,
dy

S a a S ay
ds

 y and S  being measured 

from the vertex of the cycloid 
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 Hooke's Law 

The ' extension' of a stretched elastic string means the ratio of the increment in 

length to the unstretched length. Thus if , is the natural or unstretched length 

and the stretched length is  then the extension is ( ) / . 

 

Hooke's Law is that the tension of the string is proportional to the extension. If 

T  denote the tension and we state the law in the form  

T  

where  is called the modulus of elasticity of the string. 

The extension or compression of a spiral spring follows the same law, but in 

this' case the length is measured along the axis of the helix and not along the 

wire that forms the spring; and when the spring is extended or compressed the 

force exerted by the spring is a tension or a thrust in the direction of the axis. 

The formula above may be used for compression as well as extension provided 

we regard a negative tension as a thrust. For when the spring is compressed the 

length  is less than the natural length , so that the formula would give a 

negative tension, i.e. a thrust of magnitudeT . 

 Motion of a Particle Attached to an Elastic String 

Elastic Strings. If an elastic string or wire or a spiral spring is fixed at one 

point and pulled within limits at the other, it is found to increase in length, the 

extension being proportional to the tension of the string. 

If different wires of the same material are considered, the extension is directly 

proportional to the product of the tension and the natural length and inversely 

as the area A of the cross-section. Thus if x denotes the extension, l  the natural 

length and T the tension (in absolute units), then,  

OrT Axx T
A
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where  is a constant depending on the material of the wire. If we take A =unit 

area, we have xT  

If  is the natural length of an elastic string and l  the stretched length, then 

( )T  

i.e., tension of an elastic string or a spring is proportional to the extension of 

the spring beyond its natural length. This is Hooke's law of elastic string and A 

is called the Modulus of Elasticity. 

When ,x T , so that  for a string of unit cross-section is equal to the 

amount of force which would stretch it to twice its natural length. 

Let one end of an elastic string be fixed to a point O on a smooth horizontal 

table and let OA=  be its natural length. 

 

If a particle of mass m is attached to the other end and if the particle is 

displaced along the line OA, a distance AB=b and P be position of the particle 

at any subsequent time so that AP=x, then the tension in the string is 
xT ; 

which acts in the direction PA and is directed towards A. The tension of the 

string being the only force which tends to move the particle, its equation of 

motion is 

2 2
2

2 2
Ord x x d xm T x w x

mdt dt
 

which shows that the motion about A is simple harmonic, the constant w

equals  
m

. The periodic time of oscillation is 2 m
 

The particle will further move through to a point B' at an equal distance on the 

other side of and then back again and so on. The distance from A to A'  
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(OA= OA') and back to A is moved with the velocity which the particle 

acquires at A. The string being slack this velocity remains the same throughout 

this part. The periodic time obtained above refers to the time which the particle 

takes in moving from B to A, from A' to B' and then from B' to A' and from A 

to B. This is the only part where motion is simple harmonic. 

 Vertical Elastic string 

Suppose that a particle of mass m is suspended from a fixed 

point by a string (or spring) OA of a natural length . Let 

OB be the length of the string when the mass hangs in 

equilibrium, then AB(=e), the extension of the string is 

given by 

AB emg  

Now if the particle is displaced vertically from B it will 

oscillate in a vertical line about B and it will execute SHM 

which can be proved as follows: 

Let P be the displaced position of the particle during its motion and let PB x , 

then the tension, T , of the string in this position is given by 

( )T BA x mg x  (from previous equation) 

Then the resultant force acting on the particle in the direction BP 

( )mg T mg mg x x  

Hence the equation of motion of the particle 

2 2
2

2 2
Ord x x d xm x w x

mdt dt
 

which shows that the particle moves with simple harmonic motion having B, 

the position of equilibrium, as the center of oscillation. The period of motion is 

2 2m e

g
 

 

 

p 
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 e being the extension of the string in the equilibrium position of the particle. 

By Equation AB emg , e being proportional to m , the A period 

depends on the weight which is hung on, and on the stiffness of the string or 

spring to which the particle is attached. The stiffer the spring the shorter the  

 

Note (i). At B, the ultimate position of equilibrium of the particle, the forces 

acting on it, viz., its weight and the tension of the string, balance. In all 

problems of this typo the position of this point must be obtained first. 

Note (ii). The particle moves with Simple Harmonic motion only so long as the 

particle is below A, i.e., so long as the string remains stretched. If the particle 

rises above A (it will do so, for example when it is pulled down below, B, a 

distance greater than AB) the string will become slack and the part of the 

motion above A will be simply free vertical motion under gravity. 
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XAMPLESE LLUSTRATIVEI

 

Example 
A point moves along a straight line such that its distance given by 

3cos2 4sin2x t t . Prove that the motion of the point is simple harmonic 

motion and find its periodic time and amplitude. 

Solution 

Since the position of the point is given by 3cos2 4sin2x t t  and by 

differentiating w.r.t  t  we get 

6sin 2 8cos2 ,

again differentiating 12cos2 16sin 2

x t t

x t t
 

2Or 4(3 cos2 4 sin 2 ) 2
x

x t t x  

This equation represents a simple harmonic motion with 2  since the 

acceleration varies with distance, where the periodic time is  and given by  

2 2
2

 and the amplitude may be calculated as 

3 43 cos2 4 sin 2 5 cos2 sin

2 cos sin 2 )

2
5 5

5 sin 5 sin(2

t t t t

tcos t t
 

that is the amplitude is 5a  

Example 

A moving particle along a straight line where , cos2x t  is constant. 

Show that the motion of the point is simple harmonic motion and find its 

periodic time and amplitude. 

Solution 

Since the position of the point is given by cos2x t  and by 

differentiating twice w.r.t  t  we get 

2

2
2 sin 2 and 4 cos2 4( ) 4( )

x

dx d xt t x x
dt dt
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This equation indicates a simple harmonic motion (SHM) with center  x  

and 2 4 . The periodic time is  and given by  2 2
2

 . 

(Hint: Let  y x  then the previous equation turn into 22 yy , which 

represents a simple harmonic motion with center 0y  (x )). 

(Readers have to calculate the amplitude) 

 
Example 

A particle moves with SHM in a straight line. In the first second after starting 

from rest, it travels a distance a  and in the next second it travels a distance b  

in the same direction. Prove that the amplitude of the motion is 22 / (3 )a a b

? 

Solution 

Measuring time t from the starting point and the distance x of the particle from 

the center of motion and denoting the amplitude by A, we have 

cosx a wt  

Now by the question when 1,t x A a  

And when 2,t x A a b  

2cos and cos2 2cos 1A a A w A a b A w A w  

From these two equations we have 

2
2 2

2

( ) 12 1 4 2
A a

A a b A A aA a
AA

 

2 2 2 24 2 Or (3 ) 2A aA bA A aA a a b A a  

22
3
aA
a b
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Example 

A point executing SHM has velocities ,u u and positions in two of its 

positions ,b b respectively. Show that the periodic time of motion is  

2 2

2 2
2 b b

u u
 

Solution 

Let a  be the amplitude of the simple harmonic motion then 

2 2 2 2( )v w a x  

Therefore,  

2 2 2 2 2 2 2 2( ) and ( )u w a b u w a b  

By subtracting  

2 2 2 2 2( )u u w b b          
2 2 2 2

2

2 2 2 2
Oru u u uw w

b b b b
 

Since 
2 2

2 2

2 2 b b

w u u
 

Example 

A body moving with SHM has an amplitude a  and period T . Show that the 

velocity v  at a distance x  from the mean position is given by 

22 22 2( )4v T a x  

Solution 

As we have 2 2 2 2( )v w a x  where a  represents the amplitude  

Also  
2 2T w
w T

 

2
2 2 22 ( )v a x

T
   2 2 2 2 24 ( )v T a x  
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Example 

The speed v  of a particle moving along the axis of x  is given by the relation 

22 2 2(8 12 )n bx xv b . Show that the motion is simple harmonic with its 

center at 4x b  and amplitude 2b . Find the time from 5x b to or 6x b .  

Solution 

A particle is said to be its motion as simple harmonic motion if   

2x w x  

From the question we have 22 2 2(8 12 )n bx xv b  thus by differentiation   

2 2(8 2 Or ( 42 ) )

x

dv dvv vn b
dx d

b
x

x n x  

So the particle moves as a SHM with center 4x b  

2 20 8 12 0 ( 6 )( 2 ) 0v bx x b x b x b  

Therefore  6 and 2x b x b   

which gives the ended points of SHM and the amplitude is 2b . 

Example 

At the ends of three successive seconds, the distances of a point moving with 

SHM, from its mean position, measured in the same direction are 1 2 3, ,X X X . 

Find the periodic time of motion. 

Solution 

As known the general solution of simple harmonic motion is sin( )x a t  

Let the time to reach position 1X  is t  and thus the time to reach position 2X  

is 1t  and 2t  is the time to reach position 3X  and therefore, 

2

1

3

sin(

sin( ( 1)

sin( 2

)

)

)( )

X a t

X a t

X a t
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From previous equations – by adding first and third equations- we have 

2

31

2

sin( sin( ( 2)

2 sin( ( 1)

cos

) )

)cos

2
X

X X a t t

a t

X

 

Here we use the triangle relation 

 sin sin 2sin cos
2 2

x y x y
x y  

1 3 1 31
1 2

2 2
3 cos cos Or co

2
2 s

2

X X X
X X X

X

X X

But the periodic time is given by  
2

 therefore,  

1 1 3

2

cos
2

2
X X

X

 

Where 2 1 3 22 2X X X X  

Example 

An elastic string supporting a heavy particle with mass m hangs in equilibrium. 

The particle is now pulled down below the equilibrium position through a 

small distance and let go then the particle done n complete oscillations per 

second. If  represents the natural length of the string in the case of 

equilibrium. Find the natural length of string and evaluate the tension when the 

equals natural length.                                             

Solution 

Suppose that 0  represents natural length of string and T gives the tension in 

equilibrium after hangs mass m, in equilibrium case and from Hooke's law 

0
0

( )mg T    (1) 
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After particle is pulled down below the equilibrium position a distance x  then 

equation of motion becomes 

mx mg T   

Where 0
0

( )T x  

0
0

0
0 0 0

( )

( )

mg

mx mg x

mg x x  

2

0

x x w x
m

 

Which shows that the motion about a point of equilibrium is simple harmonic 

 motion, the constant w equals 
0m

. The periodic time is 02
m

 

Now since 2 2

00

1 4
2 2
wn n

m
n m  

Therefore, from Equation (1)  

m 0
0

2 2( ) 4g n m
20 0 2

( )
4

g

n
   

Or 
20 24

g

n
 

Which evaluate the natural length of string. To obtain the tension from Hooke's 

law 

2 2 2 2 2 2

20 20
0

4 4 4
4

g
n m n mT m n g

n
  

Example 

A heavy particle is supported in equilibrium by two equal elastic strings with 

their other ends attached to two points in a horizontal plane and each inclined 

at an angle of 60° to the vertical. The modulus of elasticity is such that when 
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the particle is suspended from any portion of the string its extension is equal to 

its natural length. The particle is displaced vertically a small distance and then 

released. Prove that the period of its small oscillations is 2 2 / 5g , where  

is the stretched length of either string in equilibrium. 

Solution 

Let m  be the mass of the particle and  the 

modulus of elasticity. Then by supposing the 

particle to be suspended from any portion of the 

string, since the extended length is double the 

natural length we find 

that mg . 

If 0  be the natural length of either string, we have, in 

the equilibrium position, 

0 00

0 0

2 cos 60mg  

but mg , therefore 0
1
2

 

Let y  denote the vertical displacement and L  the length of either string 

at time t . To find the period of small oscillations we want to obtain an 

equation of the form 

2x x  

where  is a constant. It will therefore be sufficient for our purpose to 

write down the equation of motion at time t  and neglect all powers of x  

higher than the first. 

We have  

0

0

2 cos OPA
L

my mg  

where P  is the particle at time t , O  is its equilibrium position and 

PA=PB L  are the strings. 
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Now 

2
2 2 2 21 3

2 4
L y y y  

Therefore      

1/2
11
2

y
L y  

correct to the first power of x , and 

1 1
2 2cos OPA=

1
2
21 1 1

2 2
31 1

2 2

y y

L y

y y

y

 

to the first power of y . And hence 

1 12
32 2 1 1

1 2 2
2

y
y

my mg  

Therefore, 

3
1 1

2

y y
y g g    Or 

5

2

g
y y  

 

which represents a simple harmonic motion of period 2 2 / 5g . 
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 PROBLEMS 

 A point executing SHM has velocities u and v and accelerations a and b in 

two of its positions. Find the distance between the two positions and that the 

periodic time of motion 

 

 

 

 If the displacement, velocity and acceleration at a particular instant of a 

particle describing SHM are respectively 3 in., 3 in./sec. and 3 in./sec
2
, Find 

the greatest velocity of the particle and the period of motion. 

 

 

 

 A point moving with SHM has a period of oscillation of л sec. and its 

greatest acceleration is 5 ft. /sec
2
. Find the amplitude and the velocity when the 

particle is at a distance 1 ft. from the center of oscillation. 

 

 

 

 A particle describing simple harmonic motion executes 100 complete 

Vibrations per minute and its speed at its mean position is 15 ft. per sec. What 

is the length of its path?  
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 A particle oscillates in a cycloid under gravity the amplitude of the motion 

being  l  and the periodic time being T . Show that its velocity at a time t 

measured from a position of rest is 2 2sinl tw
T T

 

 

 

 

 

 

 

 

 A body is suspended from a fixed point by a light elastic string of natural 

length  whose modulus of elasticity is equal to the weight of the body and 

makes vertical oscillations of amplitude a . Show that, if as the body rises 

through its equilibrium position it picks up another body of equal weight, the 

amplitude of the oscillation becomes 
1/4

2 21
2
a  

 



 

 

IMPACT AND COLLISION OF ELASTIC BODIES  

 

 
 

n this section we will integrate the equation of motion with respect 

to time and thereby obtain the principle of impulse and momentum. 

The resulting equation will be useful for solving problems involving force, 

velocity, and time. Using kinematics, the equation of motion for a particle of 

mass m  can be written as 

dvF ma m
dt

 

where a and v  are both measured from an inertial frame of reference. 

Rearranging the terms and integrating between the limits 1v v at 1t t  and

2v v , at 2t t we have 

2 2

1 1

t v

t v

Fdt m dv    
2

1

2 1

t

t

Fdt mv mv   (*) 

This equation is referred to as the principle of linear impulse and momentum. 

From the derivation it can be seen that it is simply a time integration of the 

equation of motion. It provides a direct means of obtaining the particle's final 

velocity 2v  after a specified time period when the particle's initial velocity is 

known and the forces acting on the particle are either constant or can be 

expressed as functions of time. By comparison, if 2v  was determined using the 

equation of motion, a two-step process would be necessary; i.e., apply 

F ma to obtain a , then integrate 
dva
dt

 to obtain 2v  

I 

IMPACT AND COLLISION 
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 Linear Momentum   

Each of the two vectors of the form L mv  in Equation (*) is referred to as 

the particle's linear momentum. Since m  is a positive scalar, the linear-

momentum vector has the same direction as v  and its magnitude mv has units 

of mass-velocity, e.g., kg.m/s, or slug. ft/s. 

 Linear Impulse  

The integral I Fdt  in Equation (0) is referred to as the linear impulse. 

This term is a vector quantity which measures the effect of a force during the 

time the force acts. Since time is a positive scalar, the impulse acts in the same 

direction as the force, and its magnitude has units of force-time, e.g., N.s or 

lb·s. If the force is expressed as a function of time, the impulse can be 

determined by direct evaluation of the integral. In particular, if the force is 

constant in both magnitude and direction, the resulting impulse becomes 

2

1

2 1( )c c

t

t

I F dt F t t  

 Impact  

This action occurs when two bodies collide with each other during a very short 

period of time, causing relatively large (impulsive) forces to be exerted 

between the bodies. The striking of a hammer on a nail, or a golf club on a ball, 

are common examples of impact loadings. In general, there are two types of 

impact. Central impact occurs when the direction of motion of the mass centers 

of the two colliding particles is along a line passing through the mass centers of 

the particles. This line is called the line of impact, which is perpendicular to the 

plane of contact. When the motion of one or both of the particles makes an 

angle with the line of impact, the impact is said to be oblique impact. 

 Elasticity If we drop a ball of glass on to a marble floor, it rebounds almost 

to its original height but if the same ball were dropped on to a wooden floor, 

the distance through which it rebounds is much smaller. If further we allow an 
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ivory ball and a wooden ball to drop from the same height upon a hard floor 

the heights through which they rebound are quite different. The velocities of 

these balls are the same when they reach the floor but since they rebound to 

different heights their velocities on leaving the floor are different. 

Again, when a ball strikes against a floor or when two balls of any hard 

material collide, the balls are slightly compressed and when "they tend to 

recover their original shape, they rebound. The property of the bodies which 

causes these differences in velocities and which makes them rebound after 

collision is called Elasticity. If a body does not tend to return to its original 

shape and does not rebound after collision, it is said to be Inelastic. 

In considering impact of elastic bodies, we suppose that they are smooth, so 

that the mutual action between them takes place only in the direction of their 

common normal at the point where they meet, there being no force in the 

direction perpendicular to their common normal. 

 Definitions 

When the, direction of each body 

is along the common normal at the 

point where they touch, the impact 

is said to be direct.  

When the direction of motion of 

either or both, is not along the 

common normal at the point of 

contact the impact is said to be 

oblique. 
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 Direct Impact of two Smooth Spheres 

Suppose two smooth spheres of masses m and m  moving in the same 

straight line with velocities u  and u , collide and stick together. The forces 

which act between them during the collision act equally but in opposite 

directions on the two spheres so that the total momentum of the spheres remain 

unaltered by the impact. If U  be the common velocity of the spheres after the 

collision and if the velocities are all measured in the same direction, we have 

( )m m U mu m u  

This equation is sufficient to determine the one unknown quantityU . 

But we know, as a matter of ordinary experience, that when two bodies of any 

hard material impinge on each other, they separate almost immediately and a 

finite change of velocity is generated in each by their mutual action depending 

on the material of the bodies. Hence the spheres, if free to move, will have after 

impact, different velocities say v  and v . 

The equation of momentum now becomes 

mv m v mu m u   (1) 

This single equation is not sufficient to determine the two unknown quantities 

v  and v .  

 

 

 

 

 

 

Another relation between the velocities is supplied by Newton's Experimental 

Law which states that when two bodies impinge directly, their relative velocity 

after impact is in a constant ratio to their relative velocity before impact, and 

is in the opposite direction. 
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If bodies impinge obliquely, the same fact holds for their component velocities 

along the common nominal at the point of contact. The equation derived from 

this law for the above spheres is, 

v v e
u u

  Or  ( )v v e u u   (2) 

, ,v v u and u  being all measured in the same direction. 

The constant ratio, e  is called the co-efficient of elasticity or restitution. It 

depends on the substances of which the bodies are made and is independent of 

the masses of the bodies and their velocities before impact. The value of e 

differs considerably for different bodies and varies from 0 to 1. 

(i) When 0e , the bodies are said to be inelastic (Plastic impact). In this case 

we have from Equation (2) v v i.e., if two inelastic spheres impinge they 

move with the same velocity after impact. 

(ii) When 1e  the bodies are said to be perfectly elastic. 

Both these are ideal eases never actually realized in nature. 

In order to evaluate the velocities of the spheres after direct impact we solve 

Equations (1) and (2) and get 

( )mu m u em u u
v

m m
    and 

( )mu m u em u u
v

m m
 

When m m and 1e , we have v u and v u i.e., if two equal 

perfectly elastic spheres impinge directly they interchange their velocities after 

impact. 

 Kinetic energy lost by direct impact 

In general, there is always a loss of kinetic energy whenever two bodies 

impinge. Since we have by algebra   

2 2 2 2( )( ) ( ) ( )m m mu m u mu m u mm u u  

And   2 2 2 2( )( ) ( ) ( )m m mv m v mv m v mm v v  

Subtracting these two equations and divide by 2( )m m and using  
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mv m v mu m u  and ( )v v e u u  

Therefore, Loss in K.E. is 

2 2 2 2 2 21 1 1 1 1 ( ) (1 )
2 2 2 2 2

mmmu m u mv m v u u e
m m

 

 Oblique Impact of two smooth spheres  

Suppose that at the moment of impact the direction of motion of the spheres is 

not along the line joining their centers. Let ,m m  be the masses of the two 

spheres with centers A and B at the time of impact, ,u u  the velocities just  

before impact, ,  the angles the directions of motion make with AB before 

impact, ,v v  the velocities after impact, and ,  angles the directions of 

motion make with AB after impact. 

Since the spheres are smooth, there is no impulse perpendicular to the line of 

centers and hence the resolved parts of velocities of the two spheres in the 

direction perpendicular to AB remain unaltered. 

sin and si nn isi n su uv v    (3) 

Since the impulsive forces acting during the collision on the two spheres along 

their line of centers are equal and opposite, the total momentum along AB 

remains unchanged. 

cos cos coc s so m v mm mu uv   (4) 

By Newton's experimental law for relative velocities resolved along the 

common normal AB, we have 

cos (co c os os c s )v e uv u   (5) 
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We deduce the following particular cases from the above equations: 

(i) If 0u , from Equation (3) 0 , ( 0v ), i.e., if the sphere of mass 

m  were at rest, it will move along the line of centers after impact. 

(ii) If  0u  and m em  from Equation (3) 0  and then 90o  , so 

that if a sphere of mass m  impinges obliquely on a sphere of mass m  at rest, 

the directions of motion of the spheres after impact will be at right angles if

m em . This evidently holds true when the spheres are equal and perfectly 

elastic i.e. , when 0, 1u e and m m . 

(iii) If m m  and 1e  then, we have 

cos anco d cos coss u v uv  

i.e., if two equal-and perfectly elastic spheres impinge they interchange their 

velocities in the direction of their line of centers. Also in this case, by using 

Equation (3), we get: ta tan tann tan  

It follows that if two equal and perfectly elastic spheres impinge at right 

angles, their directions after impact will still be at right angles. 

The students advised to prove this particular case independently. 

Obtain the relation that describes the loss of kinetic energy in Oblique Impact 

2 21LossK.E. ( cos cos ) (1 )
2
mm u u e
m m

 

 

 Impact against a Fixed Plane  

Suppose a smooth sphere (or particle) of mass m , 

moving with a velocity u , strikes a smooth fixed plane in 

a direction making an angle  with the normal to the 

plane, and that it rebounds with velocity v  making an 

angle  with the normal. Then, since the plane is smooth, 

the component of the velocity along the plane must 

remain unaltered 
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sisin nv u        (6) 

The plane being fixed its velocity is taken as zero. by Newton's experimental 

law for relative velocity along the common normal AN, we have 

0 ( cos 0) cos coscos e u v euv   (7) 

Squaring and adding (6) and (7), we get  

2 2 2 22 (sin cos )v u e  

Dividing (7) by (6) we have: cot otc e  

These equations give the velocity and direction of motion of the sphere after 

impact.  The following facts may be noted: 

(1) If 0  then by Equation (6),  0  and by Equation (7), v eu  i.e., 

when the impact is direct, the direction of motion of the sphere is reversed after 

impact and its velocity is reduced in the ratio : 1e . 

(2) If 1e , therefore  and then u v , i.e., when the plane is perfectly 

elastic, the angle of reflection is equal to the angle of incidence, and the 

velocity remains unchanged in magnitude. 

(3) If 0e , thus 90o  and then sinv u , i.e., when the plane i 

perfectly inelastic, the sphere simply slides along the plane, its velocity parallel 

to the plane remaining unaltered. 

(4) Loss of Kinetic energy E  

2 2

2 2 2

2

2 2

2 2

1 1
2 2
1 1 (sin cos

)c

)
2 2

1 s(
2

o1

E mu mv

mu m

e

u

mu

e  
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XAMPLESE LLUSTRATIVEI

 

Example 

A ball of mass 8 Ib  moving with a velocity of 14 ftsec  is overtaken by a ball, 

of mass 12 Ib  moving with a velocity of 19 ftsec , (i) in the same direction as 

the first, (ii) in the opposite direction. If 0.2e  find the velocities of the balls 

after impact. Find also the loss of Kinetic energy in the first case. 

Solution 

 (i) Let the direction of motion of the first ball be taken as positive and let ,v v  

be the velocities after impact, then with consideration conservation of 

momentum. 

8 12 8 4 12 9 140v v  and 0.2(4 9) 1v v  

which give  7.6v  ft./s. and 6.6v  ft./s. 

(ii) 8 12 8 4 12 9 76v v  and 
1(4 ( 9)) 2.6
5

v v  

which give 5.36v  ft./s. and 2.76v  ft/s 

 

 

 

 

 

 

In this case the first ball turns back after impact. It should be noted that the 

velocities are measured algebraically, that is, all velocities in one direction cert 

taken as positive while those in the opposite direction as negative. 

 

 

 

  

 

 

i ii 
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Example 

A ball A, moving with velocity u  impinges directly on an equal ball B moving 

with velocity v  in the opposite direction. If A be brought to rest by the impact, 

show that 1
1

u e

v e
 where e  is the co-efficient of restitution. 

Solution 

Let V be the velocity of B after impact and let m  be the mass of each, then 

since A is reduced to rest after the impact, according to Conservation of 

momentum we obtain 

0 ( ) Orm m V mu m v V u v  and 

0 ( ( )) Or ( )

( ) Or (1 ) (1 )

V e u v V e u v

u v V e u v e u e v
 

Hence 
1
1

u e

v e
 

 

 

 

Example 

A ball with mass nm   moving with velocity 1ua  impinges directly on 

another ball with mass m  moving with velocity u  in the same direction. If the 

ball with mass m  be brought to rest by the impact, determine the co-efficient 

of restitution. 

Solution 
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Let V  be the velocity of the mass nm  after impact (along the impact line 

since the balls impinge directly). According to the principle of the momentum 

along the impact line, we get 

(0) 1u nm nmV mu nm nV u
a a

  (1) 

From Newton’s Experimental Law, we obtain 

10 1uV e u V eu
a a

        (2) 

From these two equations (1) and (2) 

neu 11 1 n u
a a ( 1)

a ne
n a

 

Example 

Let 1 2,m m  be the masses of two spheres impinge directly with velocities

1 2,u u  in the same direction. If  e  be the co-efficient of restitution. Prove that 

the loss of kinetic energy by impact is 
2

1 2 2
1 2

1 2)

(1 )
( )

2(

e m m
u u

m m
 

Solution 
 

 

From the figure and according to the principle of the momentum along the 

impact line, we get Let 1 2,u u  be the velocities of the spheres after impact. 

1 1 2 2 1 1 2 2m u m u m uu m   (1) 

By Newton’s experimental law 
1 1 22 ( )u u e u u           (2) 
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Squaring equations (1) and (2) and multiply equation (2)  by 1 2m m  then 

adding we get 

2 2
2

2 2 2
1 1 2 2 1 2 1 1 1 2 2 1 2 1 2)(m uu m u m m u u m u em um um

 

By adding and subtracting the value  2
1 2 1 2( )um m u  to the R.H.S. of 

previous equation 

2 2
1 2 1 1 2 2 1 1 2 2

2 2 2
1 2 1 2 1 2 2

2

1

( )

) )( (

m m m u m u m u m

m u m

u

m uu m e u
 

Or 

2 2
1 2 1 1 2 2

2 2 2
1 2 1 1 2 1 2 1

2
2 2

( )

( 1 () )

m m m u m u

m m m u m m uu m e u
 

Dividing the last equation by 1 2
1
2
m m , we have 

2 2
1 2 1 22 2 2

1 1 2 2 1 1 2
1 2

2
2

)1 1 1 1
2 2 2 2 2( )

1 (m e um u
m u m u m u m

m m
u  

2 2
1 2 1 22 2 2

1 1 2 1 1 2 2
1 2

2
2

)1 1 1 1
2 2 2 (

(

2 2 )

1m u
E m u m m u m

m

m
u

m

e u
u

 
This relation illustrates that the total of kinetic energies of the two spheres after 

impact is less that the total of kinetic energies before impact by the value 

2 2
1 2 1 2

1 2

1 ( )

2( )

m um

m m

e u
 and this values represents the loss of the kinetic 

energy by collision. 

Example 

A ball weighting one pound and moving with a velocity 8 ftsec
-1

, impinges on 

a smooth fixed horizontal plane in a direction making 060  with the plane; find 

its velocity and direction of motion after impact, the co-efficient of restitution 

being 0.5 . Find also the loss in Kinetic energy due to the impact.  
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Solution 

The direction of motion of the ball makes an angle of 030  with the normal to 

the plane. If after impact the ball moves in a direction making an angle  with 

the normal with velocityv , then 

1coco s 8 cos 0 2s 3 3
2

v eu  

sinsi sin3n 8 0 4v u  

2 112 16 28 5.29 ftsecvv  

and    

3cot
2

  i.e. 49 6o  

Loss of K.E. E  is  

2 21 1 1 (8 8 28) 18
2 2 2

E mu mv m    ( 1m ) 

Example 

A smooth ball A , collides Obliquely with an equal smooth ball B. Just before 

impact B is stationary and A makes an angle of  with the line joining the 

centers of the spheres with velocity v  in a direction making an angle of  at 

the instant of impact. If e  is the co-efficient of restitution, find the resulting 

motion of the sphere A? 

Solution 
 

 

 

 

 

Since the momentum after impact along the line of centers = momentum before 

impact, we have, let be the velocity of the rest ball after collision 
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cos cos 0 cos cosmu mV mu u V u   (1) 

Again by Newton's experimental law  

cos ( cos 0)u V e u           (2) 

By adding the equations (1) and (2)  

2 cos (1 ) cosu e u            (3) 

Now since the velocity of the sphere A perpendicular to AB remains the same, 

we have 

 sin sinu u             (4) 

By dividing the equations (3) and (4) therefore 

1tan 2 tan 2 tanOr tan1 tan tan
2 1 1 1e e e

 

Example 

A sphere A, impinges obliquely on another sphere B at rest. If the direction of 

ball A after impact is perpendicular to the direction of ball B and the balls are 

perfectly elastic. Prove that the masses of the spheres are equivalent. 

Solution 

 

 

Let m  be the mass of the sphere B and hence its motion after impact will be 

along the line of impact and suppose its velocity will be V . Since the 

directions after impact make right angle, that is the velocity of the sphere A 

will be perpendicular to the line of impact. Let the sphere has a mass m  and 

velocity u  with an angle of   before the impact and has velocity u  after 

impact  (perpendicular to the line of impact). According to the principle of 

constant of momentum along the line of impact we have 
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cos90 cos 0 cosmu m V mu m V mu   (1) 

According to Newton's experimental law 
cos90 ( cos 0) cos ( 1)u V e u V u e       (2) 

Substituting Equation (1) into Equation (2) we have  m m  

Example 

A smooth sphere A moving with speed u, collides with an identical smooth 

sphere B which is moving in a perpendicular direction with the same speed u 

The line of centers at the instant of impact is perpendicular to the direction of 

motion of sphere B.  If the coefficient of restitution between the spheres is 

e . Prove that 
1

tan
2

e
, where  is the angle through which sphere 

B is turned as a result of the impact. 

Solution 

Let ,V u  be the velocities of the spheres after impact. From the figure and 

according to the principle of the momentum along the line of impact, we have, 

cos cos90 cosmV mu mu mu V u u   (1) 

Again from Newton's experimental law 

( cos ) ( cos90) cosV u e u u V u eu       (2) 

Subtracting Equations (1) and (2) 

2 cos (1 )u e u             (3) 

Since the resolved parts of velocities of the two spheres in the direction 

perpendicular to the line of impact remain unaltered. 

sinu u              (4) 

Now by dividing the equations (3) and (4)    

2an
1

t
e
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In order to determine the deviates of the velocity at an angle say  where 

2
 therefore  

1

1tan tan cot
2 2

1 1tan Or tan
2 2

e

e e
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PROBLEMS 
 A smooth sphere A of mass 5 kg is moving on a smooth horizontal surface 

with velocity (2i+3j) m s1. Another smooth sphere B of mass 3 kg and the 

same radius as A is moving on the same surface with velocity (4i-2j) m s1. The 

spheres collide when their line of centres is parallel to j. The coeffi cient of 

restitution between the spheres is 3/5. Find the velocities of both spheres after 

the impact. 

 A smooth sphere P, of mass 5 kg, moving with a speed of 

2 m/s collides directly with a smooth sphere Q, of mass 3 kg, 

moving in the opposite direction with a speed of u m/s on a 

smooth horizontal table. The coefficient of restitution for the 

collision is 0.5. As a result of the collision, sphere P is 

brought to rest. 

(i) Find the value of u.   

(ii) Find the speed of Q after the collision. 

 An imperfectly elastic sphere whose elasticity is equal to tan 30 impinges 

upon a plane with a velocity such that the velocity after impact equals the 

velocity before impact  sin 45. Calculate the angles of incidence and 

reflection. 

 If the masses of two balls be as 2:1 and their respective velocities before 

impact be as 1 : 2 in opposite directions. Evaluate the co-efficient of restitution, 

each ball moves back, after impact, with 5 / 6  of its original velocity. 

 sphere impinges directly on an equal sphere at rest; if the coefficient of 

restitution is e show that their velocities after the impact are as 
1
1
e

e
. 

 Two bodies A and B whose elasticity is e, moving in opposite directions 

with velocities a and b, impinge directly upon each other ; determine their 

distance at time t after impact. 

3   5   

2 m sec-1 u m sec-1 



Impact and Collision 

 
40 

 Two equal balls moving with equal speeds impinge, their directions bring 

inclined at 30 and 60 to the line of centers at the time of impact; show that if 

1e , the balls move in parallel directions after the impact, inclined at 45 to 

the line of centers 

 body of moss M moving with a velocityv  collides with another of mass m 

which rests on a table. Both are perfectly elastic and smooth and the body m is 

driven in a direction making an angle  with the previous line of motion of the 

body M, show that its velocity is 
2 cosM v
M m

 

Two equal smooth spheres moving along parallel lines in opposite directions 

with velocities u and v. collide with the line of centers at an angle  with their 

direction of motion. If after impact their lines of motion are at right angles to 

one another, show that 
2

2 2
2

2( )
si cn

( )
os

u v

u v
e  

 Two smooth disks A and E, having a 

mass of 1 kg and 2 kg, respectively, 

collide with the velocities shown in the 

Figure. If the coefficient of restitution for 

the disks is e = 0.75, determine the x and 

y components of the final velocity of 

each disk just after collision. 

 Determine the coefficient of restitution e between ball A and ball B. The 

velocities of A and B before and after the collision are shown 

 

 



 

ORBITAL MOTION 
 

e have already illustrated the motion of a particle in a plane 

by writing down its equations of motion either in the 

directions of two fixed co-ordinate axes or in the direction of the tangent and 

normal to the path described by the particle. However a large number of 

dynamical problems, where a particle moves under a central force, are readily 

solved, as already pointed out, by writing the equations of motion in the 

direction of the radius vector and in a direction perpendicular to it. These 

equations are of the form (using polar coordinates) 

22

2r
d r dF m r

dtdt
 

and     
2

2

2

12d dr d d dF m r m r
dt dt r dt dtdt

 

where m  is the mass of the particle and rF  and F  denote the sums of the 

components of the forces in the radial and transverse directions 

Now, if a particle is moving only under the influence of a force having a line of 

action which is always directed toward a fixed point called the centre of force, 

the motion is called central-force motion. The path described by the particle is 

called a central orbit. This type of motion is commonly caused by electrostatic 

and gravitational forces. The position of the particle at any instant is defined by 

the polar co-ordinates r  and  referred to the centre of force O  as the origin 

and any fixed line OX through O as the initial line.  

 

W 

ORBITAL MOTION 
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 Definitions: 

Central force. A force whose line of action always passes through a fixed 

point, is called a central force. The fixed point is known as the center of force 

Central orbit. A central orbit is the path described by a particle moving under 

the action of a central force. The motion of a planet about the sun is an 

important example of a central orbit. 

 Theorem. A central orbit is always a plane curve. 

Proof.  

Take the center of force O as the origin of vectors. Let P be the position of a 

particle moving in a central orbit at any time t  and let OP r .Then is the 

expression for the acceleration vector of the particle at the point P. Since the 

particle moves under the action of a central force with center at O , therefore 

the only force acting on the particle at P is along the line OP or PO. So the 

acceleration vector of P is parallel to the vector OP  

2

2

d r

dt
  is parallel to r  

2

2
0

0 0

d r r
dt

d dr dr drr
dt dt dt dt

 

Integration we have  Constvector (say) ....(1)dr r h
dt

 

Taking dot product of both sides of Eq. (1) with the vectorr , we get 

drr r r h
dt

 

But the left hand member is a scalar triple product involving two equal vectors, 

and so it vanishes 

0r h  
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Which shows that r  is always perpendicular to a constant vectorh . Thus the 

radius vector OP  is always perpendicular to a fixed direction and hence lies in 

a plane. Therefore the path of P is a plane curve 

 Differential Equation of Orbital Path 

In order to find the differential equation of the path of a particle moving in a 

plane under a force which is directed to a fixed centre, we will consider the 

particle P shown in Fig. 1, which has a mass m and is acted upon only by the 

central forceF . The free-body diagram for the particle is shown in Fig. 2. 

Using polar coordinates ( , )r the equations of motion are  

  

 

 

 

 

 

Fig. 1     Fig. 2 

22

2
, ....(1)r r

d r dF ma F m r
dtdt

 

2

2
, 0 2 ....(2)d dr dF ma m r

dt dtdt
 

The Equation (2) may be re-written in the form 

21 0d dr
r dt dt

 

so that integrating yields 

2 ....(3)dr h
dt

 

Here h  represents the constant of integration. 
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To obtain the path of motion, ( )r f , the independent variable t  must be 

eliminated from Equations (1) and (2). Using the chain rule of calculus and 

Equation (3), the time derivatives of Equations (1) and (2) may be replaced by 

2

r rdr d d h d

dt d dt dr
 

2

2 2

2

2 2

d r d h d

dt ddt r
d h d d

d d dtr
h d h d

d d

r

r

r

r

r

 

 

Substituting a new dependent variable 1r u  into the Equation (2), we have 

dr d du d duh
dt du d

r

dt d  

2 2
2 2

2 2
....(4)d r d uh u

dt d
 

As well as, the square of Equation (3) becomes  

2
2

4 ...(5)d h u
dt

 

Substituting these two Equations (4) and (5) into Equation (1) yields 

2
2 2 2 3

2

d u Fh u h u
md

 

Or 
2

2 2

2
.....(6)d uF mh u u

d
  

This differential equation defines the path over which the particle travels when 

it is subjected to the central force d . Equation (6) is important for the solution 

of two problems: 

(i) Given the orbit, to determine the law of central force. 

(ii) Given the law of central force, to determine the orbit. 
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 Velocity Law 

Since, ,r
dr v d

t
v

dtd
r  then 2 2,r

du h
d

v h v u  

Therefore, the velocity law describes as 
2

2 2 2 ......(7)duv h u
d

 

which gives the velocity when the path is known. 

 Areal Velocity 

When a particle moves along a plane curve, the 

rate of change of the area traced out by the radius 

vector joining the particle to a fixed point is 

called the areal velocity of the particle. Let the 

particle moves along the curve APQ and let it 

describes the arc PQ s  in time t .     

Let ( ),r  be the co-ordinates of P and ( , )r r  be those of Q, therefore 

the areal velocity A  at P is given by 

0 0
2

2

0 0

2 2

( )sin1lim lim
2
1 sin 1lim lim
2 2

1 1
2 2 2

t t

t t

h

r r rOdAA
dt t t

r r
t t

hr r
d

P

d

t

Q

 (7) 

From Fig. 3 notice that the shaded area described by the radiusr , as r  moves 

through an angle . In other words, the particle will sweep out equal 

segments of area per unit of time as it travels along the path. 

 Apse and Apsidal Distance 

An apse is a point on central orbit at which the radius vector drawn from the 

center of a force is a maximum or minimum. The length of the radius vector at 

such a point is known as the apsidal distance. The analytical condition for a 

maximum or minimum value of the length of the radius vector is that /du d
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shall vanish and that the first differential co-efficient which does not vanish 

shall be of an even order. 

Now if  be the angle between the radius vector and the tangent to the curve, 

then by the Calculus, 

tan Or cotd duu u
du d

 

so that when    0
2

du

d
 

Hence the tangent at an apse is perpendicular to the radius vector. In the case of 

a planet moving round the sun in an ellipse, the ends of the major axis are the 

two apses, the one nearer to the sun is called, perihelion and the further one is 

called aphelion. 

 Conservation of Angular Momentum 

The angular of momentum about the center of O  

represents by the moment of linear momentum about O  

– remember that ( , )v r r - 

2( ) cons a t(0) t n
h

r mrmr mr mh  

That is the angular of momentum about O  remains constant during the motion, 

this called the principle of Conservation of Momentum 

 

 Planetary Motion (Three Kepler’s Laws)  

The laws according to which planets move round the sun are stated as follows: 

(i) The orbit of a planet round the sun is an ellipse, in one focus of which the 

center of the sun is situated. 

(ii) The radius vector, drawn from the center of the sun to the planet describes 

equal areas in equal times. 

(iii) The square of the periodic times of the various planets are proportional 
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to the cubes of the semi-major axes of their orbits. 

These three laws were discovered by Kepler (1571-1630) and were deduced by 

him entirely from observations of the movements of the planets without any 

reference to the nature of the forces which control these movements. 

For application, the force of gravitational 

attraction will be considered. Some common 

examples of central-force systems which depend 

on gravitation include the motion of the moon 

and artificial satellites about the earth, and the 

motion of the planets about the sun. As a typical 

problem in space mechanics, consider the 

trajectory of a space satellite or space vehicle launched into free-flight orbit 

with an initial velocity  V0 , see the figure.  It will be assumed that this velocity 

is initially parallel to the tangent at the surface of the earth, as shown in the 

figure. Just after the satellite is released into free flight, the only force acting on 

it is the gravitational force of the earth. (Gravitational attractions involving 

other bodies such as the moon or sun will be neglected, since for orbits close to 

the earth their effect is small in comparison with the earth's gravitation.) 

According to Newton's law of gravitation, force F will always act between the 

mass centers of the earth and the satellite, Figure 3. From Equation 1, this force 

of attraction has a magnitude of 

2

eMF G
m

r
 

where eM  and m  represent the mass of the earth and the satellite, 

respectively, G is the gravitational constant, and  r  is the distance between the 

mass centers. To obtain the orbital path, we set 1r u  in the foregoing 

equation and substitute the result into Equation 6. We get 

2

2 2

eGMd u u
d h

 



Orbital Motion 48 

This second-order differential equation has constant coefficients and is 

nonhomogeneous. The solution is the sum of the complementary and particular 

solutions given by 

2

1 cos( ) e

r

G
C

h
u

M
 

This equation represents the free-flight trajectory of the satellite. It is the 

equation of a conic section expressed in terms of polar coordinates. 

The type of path traveled by the satellite is 

determined from the value of the 

eccentricity of the conic section as 

2

e

Che
GM

 

0e  free-flight trajectory is a circle,  

1e  free-flight trajectory is a parabola 

1e  free-flight trajectory is an ellipse 

1e  free-flight trajectory is a hyperbola 
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 Illustrative Examples  

Example 

A particle describes the path tanr a  under a force to the origin. Find its 

acceleration and velocity in terms of r . 

Solution 

Since, tanr a  and let us consider 1r
u

 then cotau  

By differentiation with respect to   

2 2 2 2csc 1 cot 1dua a u
d

 

Again 

2
2 2 2

2
2csc cot 2 1d ua au a u

d
 

2 2 2 2

2
2 2

2

2 2
2 2 2 3

2 2

32 2 31 3a u a

d uF mh u u
d

h aF mh u u u mh u
r r

u
 

Also to get the velocity law 

22 22
2 2 2 2 2 2

2

1 a uduv h u v h u
d a

 

2
2 4 2 2 4

2 4
3hv a a r r

a r
 

 

Example 

Determine the law of force in the following orbits, the pole being the centre of 

attraction  

2 2

2

(i) co

(i

s 2

i) a

a

r
b

r
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Solution 

 (i) Due to 2 2 cos2r a  and let us choose 1r u  therefore 2

2

1 cos2a
u

 

Now differentiate with respect to   

2
3

1 2du

du

2 2 3sin 2 sin 2dua a u
d

 

Again 

2

2 3

2
2 3 2 2 3 2 2 2

2
1/

sin2

2 cos2 3 sin 2 2 cos2 3 sin 2
u

a u

d u du dua u a u u a a u
d dd

 

2
4 5 2 4 5 2

2

4 5 4 5 2

4 5 4 5

2 3 sin 2 2 3 1 cos 2

2 3 3 cos 2

2 3 3 3

d u u a u u a u
d

u a u a u

u a u u a u u

 

2
4 5

2
3d u u a u

d
 

2
2 2

2

4 2
2 2 44 2 7

7

53 33

d uF mh u u
d

ma hF mh u ma h u
r

a u

 

(ii) In the similar manner, we have  
2

ar
b

 assume that 1r u  hence 

2 2

2

22

1 21

2

du

d

a a

u b u

du u
d a

b

2

1

u

2 2du

a d a

  

Now differentiate again with respect to variable   

2

2

2d u

ad
 

2

2

2d u u u
ad
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2
2 2

2

2
2 2

3

2 2 1

d uF mh u u
d

mhF mh u u r
a ar

 

Example 

If a particle describes the cardioid (1 cos )r a  under a force to the pole, 

show that the force is proportional to the inverse fourth power of the distance. 

If P be the force at the apse ( ) and V  represents the velocity, prove that

23 4V aP . 

Solution 

Since we have (1 cos )r a  and let us choose 1r u  therefore 

1 (1 c s )oa
u

 

Now differentiate with respect to   

2

2

1 sin sindu dua au
d du

 

Once again 

2
2 2 3 2 2

2
2 sin cos 2 sin cosd u duau au a u au
dd

 

2
2 2 2 2

2
cos 2 sin cos 2 1 cosd u au au au au

d
 

2
2 2

2

2

1/
2

2 2

1/
2

cos 2 1 cos

cos 2 1 cos (1 cos )

cos 2(1 cos )

( 2 cos ) ( 3 1 cos )

3

u

au

d u au au
d

au ua

au

au au

au u
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2
2

2
3d u u au

d
 

2
2 2

2

2
2 2 2 4

4

23 33

d uF mh u u
d

mahF mh u m h
r

au a u

 

At apse we have  

20 Or 0 sin 0 sin 0dur au
d

 

2 ( ) 2 Note (1 cos ) 2
V

h r r r aV r a a  

But we derived the law of force 

22
2

4 4

3 (2 )3 3 4
(2 )

ma aVmahF F P mV aP
r a

 

Example 

Show that the curve cosn nr a n  can be described under a force to the pole 

varying inversely as 2 3n  power of the distance 

Solution 

Since, cosn nr a n  and let us take 1r u  thus
1 cosn

n
a n

u
 

Now differentiate with respect to   

n
1

1
n

du n
du

1sin sinn n ndua n a u n
d

 

Once again 

1

2
1

2

1

1/
sin

cos ( 1) sin

cos ( 1) sin
n

n n

n n n n

n n n n

u
a u n

d u duna u n n a u n
dd
dunu a n n a u n
d
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2

2
2 2 1 2 2 2 1 2

2

2 2 1 2 1 2 2

1/

( 1) sin ( 1) (1 cos )

( 1) ( 1) cos
n

n n n n

n n n n

u

d u nu n a u n nu n a u n
d

nu n a u n u a n
 

2
2 2 1 2 2 1

2
( 1) ( 1) ( 1)n n n nd u nu n a u n u n a u u

d
 

2
2 2 1

2
( 1) n nd u u n a u

d
 

2
2 2

2

2 2
2 2 2 12 2 2 2 3

2 3
( 1) 3( 1)n n

n
n n

n

d uF mh u u
d

ma hF mh u n ma h un a u
r

 

Example 

A particle moves under the action of a force to a fixed point varying inversely 

as the square of the distance r. Prove that the orbit is a conic section with one 

focus at the center of force. 

Solution 

Since, 2

2
F u

r
 then 

2 2

2 2 2 2

2

2 2 2
( )F d u d uu u

mh u d d mh u m

u

h
 

2

2d u u
d

 

This is a differential equation which its general solution is 

(1 cos( )1 )u
r

 

Where  and represent the constants of integration. 

 

Example 

A particle with mass 1grmoves under an attractive force varies inversely as 3r  

where the force equals 1 Dyne  when 1 cmr .  Find the path equation if 
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0  when 2 cmr  and velocity 11
cm sec
2

 with direction makes an angle 

of 
4

 with constant line. 

Solution 

Since the attractive force varies inversely as cub of  r , i.e. 
3

F
r

 where  

is constant of proportional which can be evaluated from the condition 1F  

when 1r  then 1 , therefore 
3

1
F

r
 and the path differential  

equation is 

3

2

2 2 2
2 2 2

2 2 2

1Or 1 0d u d u d uh u u u h u u u
d d d h

 (1) 

The constant h  can be obtained from the principle of conservation of angular 

momentum about the attractive point and then 

1 1(2sin )
2 4 2

h  

Substituting in differential equation (1) we obtain 

2

2
0d u u

d
 

0 Or 0du d du du duu d udu
d du d d d

 

Then by integration 

1

2
2du u c

d
       (2) 

Where 1c  is constant of integration and to determine 1c  we have to evaluate 

du

d
 as 2r  which can be evaluated from velocity law 

2 2
2 2 2 21

2
v

du du
h u u

d d
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Since 
1

2
v  when  

1

2
u  then 

2 2

2

1 1 1 1

4 2 4 4
r

du du

d d
 

That is as 
1

2
u  we have 

2
1

4

du

d
 therefore, the value of integration 

constant 1 0c  and from equation (2) 

2
2 Ordu du duu u d

d d u
 

Then by integration we have  

2ln cu  

Now from the initial condition 
1

2
u  as 0  we get  2

1
ln Or
2

c  

2 ln 2c  and then  

ln2 ln lnl 2 Or 2n r ru e  

Which gives the path equation. 

 
Example 

If the ratio between the maximum value of angular velocity of a planet and the 

minimum value is 2 . Prove that eccentricity of the planet trajectory is 
1

1
. 

Solution 

According Kepler’s law the planet moves around the sun in an ellipse path, in 

one focus of which the center of the sun is situated, where 

2
2r

r
h

h  
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It’s clear that the angular velocity  varies inversely as the square of distance 

of the sun r , therefore the greatest angular velocity occurs as r  be smallest 

say 1r r  where 1r OA a ae  and again the lowest angular velocity 

occurs as 2r r  where 2r OB a ae  

2
2 2

2
1
2

2

(1 )

(1 )

A

B

r

r

e

e

 

1 1
Or

1 1

e
e

e
 

Example 

If a particle moves under the effect of a detractive central force to outside such 

that its path equation is ( )r . Prove that the force law is given by  

2 2 3

5 3

(2 )mh r r

r
 

where '  indicates differentiations with respect to r . 

Solution 

The law of detractive force is given by  

2
2 2

2

d uF mh u u
d

 

from the path equation  is a function of r  let  as usual 
1r
u

 hence 

2

2

1( ) d d drr
du dr du u

du u

d

 

Once time differentiate we have 
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2 2

2

2
22

2 2

2

2

3 2

3

12

2

2

d u d u du

du dd

u u
du du
d dr

u u

u u

 

3 2
2 2

3

2 3
2

5 3

2 1

2

u uF mh u u u
r

r rmh
r

 

Example 

Prove that the areal velocity in Cartesian coordinate is 
1( )
2
xy yx . 

Solution 

Since the relation between Cartesian ( , )x y
 
and Polar ( , )r  coordinates are 

2 2 2tan ,
y

r x y
x

 

And the areal velocity is given by 21 1
2 2

A h r  

Then differentiating  

2

2

2

2

tan sec

cos

y yx xy

x x
yx xy

x

 

 but 
2

2

2 2
cos x

x y
 

2
2 2 2

2 2 2

1 1( )
2 2

1
2

yx xy xA r x y
x x y

yx xy
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PROBLEMS 
 

 A particle is attracted to a point by a central force, and it is observed that the 

orbit of the particle is the spiral r e . Determine the force that is acting. 

 

 

 

 

 

 

 

 

 A particle moving under the influence of a central force, describes a circle 

through the center of the force. Prove that the force is attractive and inversely 

proportional to the fifth power of the distance  

[Hint. Equation of the circle is 2 cosr a ]. 
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 If in a central orbit under the force ( 3 2 2(3 2 )u a u ), a particle be projected 

at a distance a with a velocity 5 / a  in a direction making 1 1tan
2

 with the 

radius, show that the equation to the path is cot
4

r a . 

 

 

 

 

 

 Show that the curve 
1 cos

r  can be described under a force to the 

pole varying inversely as 2  power of the distance. 




