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Introduction 

Light interacts with matter in many different ways. Metals are shiny, but water 
is transparent. Stained glass and gemstones transmit some colours, but absorb 
others. Other materials such as milk appear white because they scatter the 
incoming light in all directions. 

In the chapters that follow, we will be looking at a whole host of these optical 
phenomena in a wide range of solid state materials. Before we can begin to do 
this, we must first describe the way in which the phenomena are classified, 
and the coefficients that are used to quantify them. We must then introduce 
the materials that we will be studying, and clarify in general terms how the 
solid state is different from the gas and liquid phase. This is the subject of the 
present chapter. 

1.1 Classification of optical processes 

The wide-ranging optical properties observed in solid state materials can be 
classified into a small number of general phenomena. The simplest group, 
namely reflection, propagation and transmission, is illustrated in Fig. 1.1. 
This shows a light beam incident on an optical medium. Some of the light is 
reflected from the front surface, while the rest enters the medium and propa­
gates through it. If any of this light reaches the back surface, it can be reflected 
again, or it can be transmitted through to the other side. The amount of light 
transmitted is therefore related to the reflectivity at the front and back surfaces 
and also to the way the light propagates through the medium. 

The phenomena that can occur while light propagates through an optical 
medium are illustrated schematically in Fig. 1.2. 
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reflected light 
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Fig. 1.1 Reflection, propagation and trans­
mission of a light beam incident on an optical 
medium. 
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refraction 

absorption and 

luminescence 

Fig. 1.2 Phenomena that can occur as a 
light beam propagates through an optical 
medium. Refraction causes a reduction in the 
velocity of the wave, while absorption causes 
attenuation. Luminescence can accompany 
absorption if the excited atoms re~cmit by 
spontaneous emission. Scattering causes a 
redirection of the light. The diminishing 
width of the arrow for the processes of 
absorption and scattering represents the 
attenuation of the beam. 

Refraction causes the light waves to propagate with a smaller velocity than 
in free space. This reduction of the velocity leads to the bending of light rays 
at interfaces desclibed by Snell's law of refraction. Refraction, in itself, does 
not affect the intensity of the light wave as it propagates. 

Absorption occurs during the propagation if the frequency of the light is 
resonant with the transition frequencies of the atoms in the medium. In this 
case, the beam will be attenuated as it progresses. The transmission of the 
medium is clearly related to the absorption, because only unabsorbed light 
will be transmitted. Selective absorption is responsible for the colouration of 
many optical materials. Rubies, for example, are red because they absorb blue 
and green light, but not red. 

Luminescence is the general name given to the process of spontaneous emis­
sion of light by excited atoms in a solid state material. One of the ways in which 
the atoms can be promoted into excited states prior to spontaneous emission is 
by the absorption of light. Luminescence can thus accompany the propagation 
of light in an absorbing medium. The light is emitted in all directions, and has 
a different frequency to the incoming beam. 

Luminescence does not always have to accompany absorption. It takes a 
characteristic amount of time for the excited atoms to re-emit by spontaneous 
emission. This means that it might be possible for the excited atoms to dissipate 
the excitation energy as heat before the radiative re-emission process occurs. 
The efficiency of the luminescence process is therefore closely tied up with the 
dynamics of the de-excitation mechanisms in the atoms. 

Scattering is the phenomenon in which the light changes direction and pos~ 
sibly also its frequency after interacting with the medium. The total number of 
photons is unchanged, but the number going in the forward direction decreases 
because light is being re-directed in other directions. Scattering therefore has 
the same attenuating effect as absorption. The scattering is said to be elastic if 
the frequency of the scattered light is unchanged, or inelastic if the frequency 
changes in the process. The difference in the photon energy in an inelastic 
scattering process has to be taken from the medium if the frequency increases 
or given to the medium if the frequency decreases. 

A number or other phenomena can occur as the light propagates through 
the medium if the intensity of the beam is very high. These are described by 
nonlinear optics. An example is frequency doubling, in which the frequency 
of part of a beam is doubled by interaction with the optical medium. These 
nonlinear effects have only been discovered through the use of lasers. At this 
stage, we only mention their existence for completeness, and postpone their 
further discussion until Chapter I I . 

1.2 Optical coefficients 

The optical phenomena described in the previous section can be quantified by 
a number of parameters that determine the properties of the medium at the 
macroscopic level. 

The reflection at the surfaces is described by the coefficient of reflection 
or reflectivity. This is usually given the symbol R and is defined as the ratio 
of the reflected power to the power incident on the surface. The coefficient 



of transmission or transmissivity T is defined likewise as the ratio of the 
transmitted power to the incident power. If there is no absorption or scattering, 
then by conservation of energy we must have that: 

R+T=l. (Ll) 

The propagation of the beam through a transparent medium is described by 
the refractive index n. This is defined as the ratio of the velocity of light in 
free space c to the velocity of light in the medium v according to: 

n 
c 

v 
(1.2) 

The refractive index depends on the frequency of the light beam. This effect is 
called dispersion, and will be discussed in detail in Section 2.3. In colourless 
transparent materials such as glass, the dispersion is small in the visible spec­
tral region, and it therefore makes sense to speak of 'the' refractive index of 
the substance in question. 

The absorption of light by an optical medium is quantified by its absorption 
coefficient ct. This is defined as the fraction of the power absorbed in a unit 
length of the medium. If the beam is propagating in the z direction, and the 
intensity (optical power per unit area) at position z is 1 (z), then the decrease 
of the intensity in an incremental slice of thickness dz is given by: 

dl = -ctdz x l(z). (1.3) 

This can be integrated to obtain Beer's law: 

1 (z) = Ioe-az , (1.4) 

where 10 is the optical intensity at z = O. The absorption coefficient is a strong 
function of frequency, so that optical materials may absorb one colour but not 
another. 

In the next section we will explain how both the absorption and the refraction 
can be incorporated into a single quantity called the complex refractive index. 
Knowledge of this quantity enables us to calculate the reflectivity R, and hence 
the transmissivity T. This last point follows because the transmissivity of an 
absorbing medium of thickness I is given by: 

(1.5) 

where Rl and R2 are the reflectivities of the front and back surfaces respec­
tively. This formula applies to the transmission of light through an optical 
medium such as the one shown in Fig. 1.1. The first and third terms on the 
right hand side of eqn 1.5 account for the transmission of the front and back 
surfaces respectively, while the middle term gives the exponential decrease in 
intensity due to the absorption according to Beer's law. If the front and back 
surfaces have equal reflectivities R, as will usually be the case, then eqn 1.5 
simplifies to: 

(1.6) 

1.2 Optical coefficients 3 

Equation (1.5) ignores the possibility of mul­
tiple reflections between the front and back 
sUli'aces. These will have to be induded if the 
surfaces are parallel and the reflection coef­
ficients are sufficiently large. We will come 
across some examples where these effects 
are important when we consider semiconduc­
tor laser diodes in Section 5.4.3 and optical 
bistability in Section 11.4.3. In many cases, 
however, the effects are small enough to be 
neglected, as shown in Exercises 1.8 and 1.9. 
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The optical density, and hence the absorp­
tion coefficient, is usually worked out from 
the measured transmissivity of the sample, 
This requires accurate normalization of the 
reflection losses at the surfaces. (See Exer­
cise LlO.) 

excited state 

V relaxation 

absorption emission 

ground state 

Fig. 1.3 Luminescence process in an atom. 
The atom jumps to an excited state by ab­
sorption of a photon, then relaxes to an in­
termediate state, before re-emitting a photon 
by spontaneous emission as it falls back to 
the ground state, The photon emitted has 
a smaller energy than the absorbed photon. 
This reduction in the photon energy is called 
the Stokes shift. 

The absorption of an optical medium can also be sometimes quantified in 
terms of the optical density (O.D.). This is sometimes called the absorbance, 
and is defined as: 

O.D.=-IOglO(I(l)) , 
10 

(1.7) 

where I is the length of the absorbing medium. It is apparent from eqn 1.4 that 
the optical density is directly related to the absorption coefficient a through: 

al 
O.D. = = 0.434 al . 

10ge(l0) 
(1.8) 

In this book we will quantify the absorption by a instead of the optical density 
because it is independent of the sample length. 

The phenomenon of luminescence was studied extensively by George 
Stokes in the nineteenth century before the advent of quantum theory, Stokes 
discovered that the luminescence is down-shifted in frequency relative to the 
absorption, an effect now known as the Stokes shift. Luminescence cannot 
be described easily by macroscopic classical parameters because spontaneous 
emission is fundamentally a quantum process (see Appendix B). 

The simplest sequence of events that takes place in luminescence is illus­
trated in Fig. 1.3. The atom jumps to an excited state by absorbing a photon, 
then relaxes to an intermediate state, and finally re-emits a photon as it drops 
back to the ground state. The Stokes shift is explained by applying the law of 
conservation of energy to the process. It is easy to see that the energy of the 
photon emitted must be less than that of the photon absorbed, and hence that 
the frequency of the emitted light is less than that of the absorbed light. The 
magnitude of the Stokes shift is therefore determined by the energy levels of 
the atoms in the medium. 

Scattering is caused by variations of the refractive index of the medium on 
a length scale smaller than the wavelength of the light. This could be caused 
by the presence of impurities, defects, or inhomogeneities. Scattering causes 
attenuation of a light beam in an analogous way to absorption. The intensity 
decreases exponentially as it propagates into the medium according to: 

l(z) = Ioexp(-NasZ), (1.9) 

where N is the number of scattering centres per unit volume, and as is the 
scattering cross-section of the scattering centre. This is identical in form to 
Beer's law givenineqn 1.4, with a == NO's. 

The scattering is described as Rayleigh scattering if the size of the scattering 
centre is very much smaller than the wavelength of the light. In this case, the 
scattering cross-section will vary with the wavelength).. according to: 

1 
as()..) ex )..4 • (1.10) 

The Rayleigh scattering law implies that inhomogeneous materials tend to 
scatter short wavelengths more strongly than longer wavelengths. 
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Example 1.1 

The reflectivity of silicon at 633 nm is 35% and the absorption coefficient is 
3.8 x 105 m- I . Calculate the transmission and optical density of a sample with 
a thickness of 10 /..Lm. 

Solution 

The transmission is given by eqn 1.6 with R = 0.35 and al = (3.8 x 105) x 
(10 x 10-6) = 3.8. This gives: 

T = (1 - 0.35)2 . exp( -3.8) = 0.0095 . 

The optical density is given by eqn 1.8: 

D.D. = 0.434 x 3.8 = 1.65 . 

1.3 The complex refractive index and dielectric 
constant 

In the previous section we mentioned that the absorption and refraction of a 
medium can be described by a single quantity called the complex refractive 
index. This is usually given the symbol ii and is defined through the equation: 

ii = n + iK. (1.11) 

The real part of ii, namely n, is the same as the nonnal refractive index defined 
in eqn. 1.2. The imaginary part of ii, namely K, is called the extinction coeffi­
cient. As we will sec below, K is directly related to the absorption coefficient a 
of the medium. 

The relationship between a and K can be derived by considering the prop­
agation of plane electromagnetic waves through a medium with a complex 
refractive index. If the wave is propagating in the z direction, the spatial and 
time dependence of the electric field is given by (see eqn A.32 in Appendix A): 

8(z, t) = 8oei (kz-wt), (1.12) 

where k is the wave vector of the light and U) is the angular frequency. 1801 
is the amplitude at z = O. In a non-absorbing medium of refractive index n, 
the wavelength of the light is reduced by a factor n compared to the free space 
wavelength A. k and U) are therefore related to each other through: 

271: nU) 

k = (Aln) = -;-. (1.13) 

This can be generalized to the case of an absorbing medium by allowing the 
refractive index to be complex: 

U) (J) 

k=ii-=(n+iK)-, (1.14) 
c c 



6 Introduction 

On substituting eqn 1.14 into eqn 1.12, we obtain: 

8(z, t) = 80 ei«vJiz/c--wt) 

= 80 e-KillZ / C ei(UmZ/C-illt) • ( 1.15) 

This shows that a non-zero extinction coefficient leads to an exponential decay 
of the wave in the medium. At the same time, the real part of Ii still deter­
mines the phase velocity of the wave front, as in the standard definition of the 
refractive index given in eqn 1.2. 

The optical intensity of a light wave is proportional to the square of the 
electric field, namely I ex 88* (c.f. eqn A.40). We can therefore deduce [rom 
eqn 1.15 that the intensity falls off exponentially in the medium with a decay 
constant equal to 2 x (nv/ c). On comparing this to Beer's law given in eqn 1.4 
we conclude that: 

2KW 4JTK 
Oi=-~=-~, 

c A 
0.16) 

where ), is the free space wavelength of the light. This shows us that K is 
directly proportional to the absorption coefficient. 

We can relate the refractive index of a medium to its relative dielectric 
constant E'r by using the standard result derived from Maxwell's equations (cf. 
eqn A.31 in Appendix A): 

n = Fr. ( 1.17) 

This shows us that if 11 is complex, then Er must also be complex. We therefore 
define the complex relative dielectric constant Er according to: 

(1.18) 

By analogy with eqn 1.17, we see that Ii and Er are related to each other 
through: 

-2 -n = Er (l.19) 

We can now work out explicit relationships between the real and imaginary 
parts of Ii and Er by combining eqns 1.11, 1.18 and 1.19. These are: 

and 

E] = n2 ~ K2 

E2 = 2nK , 

( 1.20) 

(1.21 ) 

(1.22) 

(1.23) 

This analysis shows us that ii and Er are not independent variables: if we know 
Eland E2 we can calculate nand K, and vice versa. Note that if the medium 
is only weakly absorbing, then we .can assume that K is very small, so that 
eqns 1.22 and 1.23 simplify to: 

n=,JEi 
E2 

K=-. 
2n 

(l.24) 

( 1.25) 
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These equations show us tbat the refractive index is basically determined by the 
real part of the dielectric constant, while the absorption is mainly determined 
by the imaginary part. This generalization is obviously not valid if the medium 
has a very large absorption coefficient. 

The microscopic models that we will be developing t1u'oughout the book 
usually enable us to calculate Er rather than ;1. The measurable optical proper­
ties can then be obtained by converting Eland E2 to n and K through eqns 1.22 
and 1.23. The refractive index is given directly by n, while the absorption 
coefficient can be worked out from K using eqn 1.16. The reflectivity depends 
on both nand K and is given by 

R = I ii - 112 _ (n - 1)2 + K2 . (1.26) 
Ii + I (n + 1)2 + K2 

This formula is derived in eqn A.50. It gives the coefficient of reflection be­
tween the medium and the air (or vacuum) at normal incidence. 

In a transparent material such as glass in the visible region of the spectrum, 
the absorption coefficient is very small. Equations 1.16 and 1.2] then tell us 
that K and E2 are negligible, and hence that both Ii and Er may be taken as real 
numbers. This is why tables of the properties of transparent optical materials 
generally list only the real parts of the refractive index and dielectric constant. 
On the other hand, if there is significant absorption, then we will need to know 
both the real and imaginary parts of Ii and Er . 

In the remainder of this book we will take it as explicitly assumed that both 
the refractive index and the dielectric constant are complex quantities. We will 
therefore drop the tilde notation on nand Er from now on, except where it 
is explicitly needed to avoid ambiguity. It will usually be obvious from the 
context whether we are dealing with real or complex quantities. 

Example 1.2 

The complex refractive index of germanium at 400 nm is given by Ii = 

4.141 + i 2.215. Calculate for germanium at 400 nm: (a) the phase velocity of 
light, (b) the absorption coefficient, and (c) the reflectivity. 

Solution 

(a) The velocity of light is given by eqn 1.2, where n is the real part of n. Hence 
we obtain: 

c 2.998 X 108 
V = - = ms- I = 7.24 x 107 ms- I . 

n 4.141 

(b) The absorption coefficient is given by eqn 1.16. By inserting K = 2.215 
and A = 400 nm, we obtain: 

4n x 2.215 
Q' = m- I = 6.96 x 107 m- I . 

400 x 10-9 

(c) The reflectivity is given by eqn 1.26. Inserting n = 4.141 and K = 2.215 
into this, we obtain: 

(4.141 - 1)2 + 2.2152 
R = - =47.1 %. 

(4.141 + 1)2 + 2.2152 
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We will see in Chapter 10 that the restrahlen 
absorption is caused by the interaction be­
tween the light and the optical phonons. 

Example 1.3 

Salt (NaCl) absorbs very strongly at infrared wavelengths in the 're­
strahlen' band. The complcx dielectric constant at 60 flm is given by €r = 
-16.8 + i 91.4. Calculate the absorption coefficient and the reflectivity at this 
wavelength. 

Solution 

We must first work out the complex refractive index using eqns 1.22 and 1.23. 
This gives: 

and 
1 ( 1) ~ K= h +16.8+((-16.8)2+ 91.42)2 -=7.41. 

We then insert these values into eqns 1.16 and 1.26 to obtain the required 
results: 

4][ x 7.41 . 
a = . m- 1 = 1.55 x 106 m- 1 , 

60 x 10-6 

and 
(6.17 - 1)2 + 7.412 

R = = 76.8 %. 
(6.17 + 1)2 + 7.412 

1.4 Optical materials 

We will be studying the optical properties of many different types of solid state 
materials throughout this book. The materials can be loosely classified into five 
general categories: 

• Crystalline insulators and semiconductors 
• Glasses 
• Metals 
• Molecular materials 
• Doped glasses and insulators. 

Before delving into the details, we give here a brief overview of the main 
optical properties of these materials. This will serve as an introduction to the 
optical physics that will be covered in the following chapters. 

1.4.1 Crystalline insulators and semiconductors 

Figure 1.4(a) shows the transmission spectrum of crystalline sapphire (AI203) 
from the infrared to thc ultraviolet spectral region. The spectrum for sapphire 
shows the main features observed in all insulators, although of course the 
details will vary considerably from material to material. The principal optical 
properties can be summarized as fonows: 

I 
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(1) Sapphire has a high transmission in the wavelength range 0.2-6 tIm. 
This defines the transparency range of the crystal. The transparency 
region of sapphire includes the whole of the visible spectrum, which 
explains why it appears colourless and transparent to the human eye. 

(2) Within the transparency range the absorption coefficient is very small, 
and the refractive index may be taken to be real with no imaginary 
component. The value of the refractive index is approximately constant, 
and is equal to 1.77 in sapphire. 

(3) The transmission coefficient in the transparency range is determined by 
the reflectivity of the surfaces through eqn 1.6. The reflectivity in tum is 
determined by the refractive index through eqn 1.26. For sapphire with 
n = 1.77, this gives R 0.077. Hence we find T = (1 - R)2 = 0.85. 

(4) The dip in the transmission in the infrared around 3 tIm, and the sharp 
drop in the transmission for A. > 6 tIm, is caused by vibrational absorp­
tion. This absorption mechanism is analogous to the infrared absorption 
due to vibrations in polar molecules. The vibrational excitations of a 
crystal lattice are called phonon modes, and so the vibrational absorption 
in a solid is usually called phonon absorption or lattice absorption. This 
absorption mechanism will be discussed in Chapter 10. 

(5) The transmission drops sharply in the ultraviolet spectral region for A. < 
0.2/1m due to absorption by bound electrons. Thc onset of the absorp­
tion is called the fundamental absorption edge. The wavelength of the 
fundamental edge is determined by the band gap of the insulator. The 
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Fig. 1.4 (al Transmission spectrum of a sap­
phire (AI203) crystal of thickness 3 mm. (b) 
Transmission spectrum of a CdSe crystal of 
thickness 1.67 mm. After [1]. 

Sapphire gemstones tend to be blue. This 
is caused by the presence of chromium, ti­
tanium and iron impurities in the Al203 
crystal. Pure synthetic Al203 crystals are 
colourless. 

Sapphire actually transmits in the far infrared 
spectral region when the frequency is well 
below that of the optical phonons. 
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The very high transparency of diamond in the 
infrared is noteworthy. This is caused by the 
faet that diamond i, a purely covalent crystal, 
which means that its optical phonons cannot 
interact directly with light Waves. This point 
will be discussed [urther in Chapkr 10. 

Table 1.1 Approximate transparency range 
and refractive index 11 o[ a numher of crys­
talline insulators. II is measured at 546 nm. 
Values of n arc given both for the o-ray and 
e-ray of birefringent matclials. After II] and 
[2]. 

Crystal Transparency II 

range (/~m) 

A1203 0.2-6 1.771 (0) 
(sapphire) 1.763 (e) 

BaF2 0.2-12 1.476 
Diamond 0.25-> 80 2.424 
KBr O.l-c\O 1 . .'lM 
KCl 0.21-25 1.493 
KI 0.3-40 1.673 
MgF} 0.12-R 1.379 (0) 

1.390 (e) 
NaCl 0.21-20 1.55 
NaF 0.19-15 1.326 
Si02 0.2-:, l.546 (0) 
(quartz) 1.555 (e) 

Ti02 0.455 2.652 (0) 
(rutile) 2.958 (e) 

explanation of the absorption spectra due to bound electrons needs band 
theory, and will be discussed in Chapters 3 and 4. 

Point (1) is perhaps the most obvious aspect of the optical properties of 
insulators: they all tend to be colourless and transparent in the visible spectral 
region. If they are coloured, this is most likely caused by the presence of 
impmities, as will be explained in Section 1.4.5 below. This transparency is 
slightly deceptive. The insulators do absorb very strongly in the ultraviolet and 
in the infrared, but this is hidden from the human eye. The transparent region 
between the infrared and ultraviolet absorption hands is particularly useful for 
making optical windows and lenses. The approximate transparency range and 
refractive index of a number of common crystalline insulators are listed in 
Table 1.1. 

The crystallinity of the matelials gives rise to a number of properties relating 
to the underlying symmetry of the latLice. This point will be expanded further 
in Section 1.5.1. One immediate consequence is that some of the materials 
listed in Table 1.1 are birefringent. The optical properties are anisotropic. and 
the value of the refractive index depends on the direction of propagation of the 
light relative to the crystallographic axes. The phenomenon of birefringence 
will be described in more detail in Section 2.4. 

The optical properties of semiconductors are conceptually similar to those of 
insulators, except that the electronic and vibrational transitions occur at longer 
wavelengths. By way of example, Pig. l.4(b) shows the transmission spec­
trum of the II-VI compound semiconductor CdSe over the same wavelength 
range as for the sapphire crystal. Just as with sapphire, we have a transparency 
range which is limited by electronic absorption at short wavelengths and lat­
tice absorption at long wavelengths. The maximum transmission is around 
60% which is again mainly limited by the surface reflectivities. The short 
wavelength edge occurs beyond 700 nm, which means that the whole of the 
transparency range lies outside the visible spectrum. Hence no visible light is 
transmitted through the crystal, and it has a dark metallic appearance to the 
eye. 

Table 1.2 lists the transparency range and refractive index of several semi­
conductors. The data show that the lower limit of tile transmission range coin­
cides closely with the wavelength of the fundamental band gap. This happens 
because the band gap determines the lowest energy for interband transitions, 
as will be explained in Chapter 3. Note that the refractive index increases as 
the band gap wavelength gets larger. 

The upper limit of the transmission range is determined by the lattice ab­
sorption, as for insulators, and also by free carrier absorption. Free carriers are 
present in semiconductors at room temperature through the thermal excitation 
of electrons across the band gap or due to the presence of impurities. This 
causes infrared absorption, as will be explained in Section 7.4. Insulators have 
very small free carrier densities due to their large band gaps. 

One very important aspect of the optical properties of semiconductors is that 
a subset of them, namely those with direct band gaps, luminesce strongly when 
electrons are promoted to the conduction band. This is the physical basis for 
the light-emitting devices used in the optoelectronics industry. The physical 
processes behind the luminescence will be explained in Chapter 5. The main 
point is that the wavelength of the luminescence coincides with the band gap 



of the semiconductor. In Chapter 6 we will see how quantum size effects in 
low-dimensional semiconductors can be used to shift the effective band gap 
to higher energy. This is a highly desirable feature, because it provides a way 
to 'tune' the emission wavelength by controlled variation of the parameters 
during the crystal growth. 

1.4.2 {;lasses 

Glasses are extremely important optical materials. They have been used for 
centuries in prisms and lenses for optical instruments, in addition to their com­
mon usage in windows and glassware. In more recent times they have found 
new applications in optical fibre technology. With the exception of stained 
glasses, they are usually made to be transparent in the visible spectmm. They 
are not crystalline solids, and therefore do not exhibit the optical anisotropy 
that is characteristic of some crystals. 

Most types of glasses are made by fusing sand (silica: Si02) with other 
chemicals. Pure fused silica is an insulator, and shows all the characteristic 
features of insulators discussed in the previous section. It is transparent in the 
visible region, but absorbs in the ultraviolet due to the electronic transitions 
of the Si02 molecules, and in the infrared due to vibrational absorption. The 
transparency range thus goes from around 200 nm in the ultraviolet to beyond 
2000 nm in the infrared. 

The properties of fused silica will be described in more detail in Sec­
tion 2.2.3. Fused silica is used extensively in the fibre optics industry, as the 
principal material from which many fibres are made. It has been refined to 
such an extent that the absorption and scattering losses are so small that light 
can travel many kilometres down the fibre before being fully attenuated. 

The refractive index of silica in the transparency range is tabulated against 
the wavelength in Table 1.3. This variation of the refractive index with wave­
length is called dispersion. Note that it is not a very large effect: n changes 
by less than 1 % over the whole visible spectral region. Note also that the 
dispersion is largest at the shortest wavelengths near the fundamental absorp­
tion edge. Dispersion is present in all optical materials, as will be explained in 
Section 2.3. 

Chemicals are commonly added to silica during the fusion process to pro­
duce a whole range of other types of glasses. The presence of these additives 
can aIter the refractive index and the transmission range. Table 1.4.2 lists the 
composition of a number of common glasses together with their refractive in­
dex and ultraviolet transmission. It is apparent that the additives have the effect 
of increasing the refractive index, at the expense of increasing the ultraviolet 
absorption. A high refractive index is desirable for cut-glass products, since it 
increases the reflectivity (see Exercise 1.2), and hence gives the glassware a 
more shiny appearance. 

Stained glass and colour glass filters are made by adding semiconductors 
with band gaps in the visible spectral region during the fusion process. The 
properties of these coloured glasses will be discussed further in Section 1.4.5 
below. 
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Table 1.2 Approximate transparency range, 
band gap wavelength Ag, and refractive index 
n of a number of common semiconductors. n 
is measured at 10 !L111. After [1], [2J and 13]. 

Crystal Transparency Ag n 
range (!Lm) (!Lm) 

Ge 1.8-23 1.8 4.00 
Si 1.2-15 1.1 3.42 
GaAs 1.0-20 0.87 3.16 
CdTe 0.9-14 0.83 2.67 
CdSe 0.75-24 0.71 2.50 
ZnSc 0.45-20 0.44 2.41 
ZnS 0.4-14 0.33 2.20 

Table 1.3 Refractive index of synthetic 
fused silica versus wavelength. After [2]. 

Wavelength (nm) Refractive index 

213.9 1.53430 
239.9 1.51336 
275.3 1.49591 
334.2 1.47977 
404.7 1.46962 
467.8 1.46429 
50R.6 1.46186 
546.1 1.46008 
632.8 1.45702 
706.5 1.45515 
780.0 1.45367 
1060 1.44968 
1395 1.44583 
1530 1.44427 
1970 1.43853 
2325 1.43293 
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Table 1.4 Composition, refractive index and ultraviolet transmission of common glasses. The letters after the names give the abbreviations used to 
identify the glass type. The composition figures are the percentage by mass. The refractive index is measured at 546.1 nm, and the transmission is 
for a I em plate at 310 nm. After [I], [4]. 

Name Si02 B2 0 3 A1203 Na20 K20 CaO BaO PbO P20S 11 T 

Fused silica 100 1.460 0.91 
Crown (K) 74 9 II 6 1.513 0.4 
Borosilicate crown (BK) 70 10 8 8 3 1.519 0.35 
Phosphate crown (PK) 3 10 12 5 70 1.527 0.46 
Light flint (I .F) 53 5 8 34 1.585 0.008 
Flint (F) 47 2 7 44 1.607 
Dense flint (SF) 33 5 62 1.746 
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Fig. 1.5 Reflectivity of silver from the in-
frared to the ultraviolet. After [4]. Wavelength (J..lm) 

1.4.3 Metals 

The characteristic optical feature of metals is that they are shiny. This is why 
metals like silver and aluminium have been used for making mirrors for cen­
turies. The shiny appearance is a consequence of their very high reflection 
coefficients. We will see in Chapter 7 that the high reflectivity is caused by the 
interaction of the light with the free electrons that are present in the metal. 

Figure 1.5 shows the reflectivity of silver from the infrared spectral region 
to the ultraviolet. We see that the reflectivity is very close to 100 % in the 
infrared, and stays above 80 % throughout the whole visible spectral region. 
The reflectivity then drops sharply in the ultraviolet. This general behaviour 
is observed in all metals. There is strong reflection for all frequencies below 
a characteristic cut-off frequency called the plasma frequency. The plasma 
frequency corresponds to a wavelength in the ultraviolet spectral region, and so 
metals reflect infrared and visible wavelengths, but transmit ultraviolet wave­
lengths. This effect is called the ultraviolet transmission of metals. 

Some metals have characteristic colours. Copper, for example, has a pinkish 
colour, while gold is yellowish. These colours are caused by interband elec­
tronic transitions that occur in addition to the free carrier effects that cause the 
reflection. This point will be explained in Section 7.3.2 of Chapter 7. 



1.4.4 Molecular materials 

The tenn 'molecular material' could in principle cover the solid phase of any 
molecule. However, the crystalline phase of inorganic molecules such as NaCI 
or GaAs are classified as insulators or semiconductors in this book, while 
simple organic molecules such as methane (CH4) tend to be gases or liquids 
at room temperature. We therefore restrict our attention here to large organic 
molecules. 

Some organic compounds fonn crystals in the condensed phase, but many 
others are amorphous. The solids are held together by the relatively weak 
van der Waals interactions between the molecules, which are themselves held 
together by strong covalent bonds. The optical properties of the solid therefore 
tend to be very similar to those of the individual molecules. 

Organic compounds can be generally classified into either saturated or con­
jugated systems. This classification depends on the type of bonding in the 
molecule, and will be explained in more detail in Chapter 8. 

In saturated compounds, the valence electrons are incorporated into strong, 
localized bonds between neighbouring atoms. This means that all the electrons 
are tightly held in their bonds, and can only respond at high frequencies in the 
ultraviolet spectral range. Saturated compounds are therefore usually colour­
less and do not absorb in the visible region. Their properties are generally 
similar to those of the glasses discussed in Section J .4.2 above: they absorb 
in the infrared and ultraviolet due to vibrational and electronic transitions 
respectively, and are transparent in the visible. Plastics such as poly-methyl­
methacrylate (commonly known as 'perspex' or 'plexiglass') or poly-ethylene 
(polythene) are typical examples. 

Conjugated molecules, by contrast, have much more interesting optical 
properties. The electrons from the p-like atomic states of the carbon atoms 
form large delocalized orbitals called ][ orbitals which spread out across the 
whole molecule. The standard example of a conjugated molecule is benzene 
(C6H6), in which the][ electrons form a ring-like orbital above and below the 
plane of the carbon and hydrogen atoms. Further examples include the other 
aromatic hydrocarbons, dye molecules, and conjugated polymers. 

][ electrons are less tightly bound than the electrons in saturated molecules, 
and are optically-active at lower frequencies. In benzene the absorption edge 
is in the ultraviolet at 260 nm, but with other molecules the transition energy 
is shifted down to visible frequencies. The molecules with visible absorption 
also tend to emit strongly at visible frequencies. This makes them of high 
technological interest for applications as light-emitting devices. These are the 
solid state counterparts of the organic dyes that have been used in liquid lasers 
for several decades. 

The optical processes that occur in ][ conjugated materials will be described 
in Chapter 8. By way of exanlple, Fig. 1.6 shows the absorption spectrum of the 
technologically important polyftuorene-based polymer called 'F8'. Thin film 
samples of this material are typically prepared by spin coating the molecules 
onto a glass slide. The data in Fig. 1.6 show that the polymer is transparent 
throughout most of the visible spectral region, but absorbs strongly at ultravi­
olet wavelengths. The broad absorption band which peaks at 380 nm is caused 
by vibrational-electronic transitions to the first singlet excited state of the 

1.4 Optical materials 13 
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Fig. 1.6 Absorption spectrum of the 
polyfluorene-based polymer F8 [poly(9,9-
dioctylfluorene»). After [5], copyright 
20tH Exerpta Medica Inc., reprinted with 
permission. 
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molecule. This band extends slightly into the blue spectral region, and gives 
the material a pale yellow colour. 

Conjugated polymers such as F8 luminesce strongly when electrons are 
promoted into the excited states of the molecule. The luminescence is Stokes 
shifted to lower energy compared to the absorption, and typically occurs in 
the middle of the visible spectral region. An attractive feature of these organic 
materials is that the emission wavelength can be 'tuned' by small alterations 
to the chemical structure of the molecular units within the polymers. We will 
see in Section 8.6 how this property has been used to develop organic light­
emitting devices to cover the full range of the visible spectral region. 

1.4.5 Doped glasses and insulators 

We have already mentioned in Section 1.4.2 above that colour glass filters 
and stained glass arc made by adding appropriately chosen semiconductors to 
silica during the fusion process. This is a typical example of how a colourless 
material such as fused silica can take on new properties by controlled doping 
with optically active substances. 

The colour of a colour glass filter can be controlled in two different ways. 

(1) The most obvious way is by variation of the composition of the dopant. 
For example, the glass might be doped with the alloy semiconductor 
CdxZnl-xSe during the fusion process, with the value of x determined 
by the ZnSe : CdSe ratio in the original melt. The band gap of the alloy 
can be 'tuned' through the visible spectrum region by varying x, and this 
determines the short wavelength transmission cut-off for the filter. 

(2) The size of the semiconductor crystallites within the glass can be very 
small, and this can also have an effect on the colour produced. Normally, 
the optical properties of a material are independent of the size of the 
crystal, but this ceases to be the case if the dimensions are comparable to 
the electron wavelength. The 'quantum size effcct' increases the energy 
of the electrons and hence shifts the effective band gap to higher energy. 
This point will be explained further in Section 6.9 of Chapter 6. 
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The principle of doping optically active atoms into colourless hosts is em­
ployed extensively in the crystals used for solid state lasers. A typical example 
is the ruby crystal. Rubies consist of Cr3+ ions doped into Ah03 (sapphire). 
In the natural crystals, the Cr3+ ions are present as impurities, but in synthetic 
crystals, the dopants are deliberately introduced in controlled quantities during 
the crystal growth process. 

Figure 1.7 compares the transmission spectra of synthetic ruby (A1203 with 
0.05 % Cr3+) to that of synthetic sapphire (pure AI203). It is seen that the 
presence of the chromium ions produces two strong absorption bands, one in 
the blue spectral region and the other in the green/yellow region. These two 
absorption bands give rubies their characteristic red colour. The other obvious 
difference between the two transmission curves is that the overall transmission 
of the ruby is lower. This is caused in part by the increased scattering of light 
by the impurities in the crystal. 

The optical properties of crystals like ruby will be covered in Chapter 9. We 
will sec there that the broadening of the discrete transition lines of the isolated 
dopant ions into absorption bands is caused by vibronic coupling between the 
valence electrons of the dopant and the phonons in the host crystal. We will 
also see how the centre wavelength of the bands is determined by the crystal 
field effect, that is, the interaction between the dopant ions and cIectric field of 
the host crystal. These properties are very important in the design of solid state 
lasers and phosphors. 

1.5 Characteristic optical physics in the solid 
state 

The previous section has given a brief overview of the optical properties of 
several different classes of solid state materials. It is natural to ask whether 
any of these properties are exclusive to the solid state. In other words, how do 
the optical properties of a solid differ from those of its constituent atoms or 
molecules? This question is essentially the same as asking what the difference 
is between solid state and atomic or molecular physics. 

Fig. 1.7 Transmission spectrum of ruby 

(A1203 with 0.05 % Cr3+) compared to 
sapphire (pure AIZ03)' The thicknesses of 
the two crystals were 6.1 mm and 3.0 mm 
respectively. After [6], reprinted with permis­
sion. 
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The answer clearly depends on the type of material that we are consider­
ing. In some materials there will be a whole range of new effects associated 
with the solid state, while with others, the differences may not be so great. 
Molecular materials are an example of the second typc. We would expect the 
absorption spectra of a solid film and that of an equivalent dilute solution to 
be very similar. This happens because the forces between the molecules in 
the condensed phase are relatively weak compared to the forces within the 
molecule itself. The appeal of the solid state in this case is the high number 
density of molecules that are present, and the possibility of incorporating them 
into solid state electronic devices. 

With many other materials, however, there will be substantial differences 
between the condensed phase and the gaseous or liquid state. It is obviously 
not possible to give a full catalogue of these effects in an introductory chapter 
such as this one. Instead, we will highlight here five aspects that make the 
physics of the solid state interesting and different, namely 

• Crystal symmetry 
• Electronic bands 
• Vibronic bands 
• The density of states 
• Delocalized states and collective excitations. 

There are many others, of course, but these themes occur over and over again 
and are therefore worth considering briefiy in themselves before we start going 
into the details. 

1.5.1 Crystal symmetry 

Most of the materials that we will be studying occur as crystals. Crystals 
have long range translational order, and can be categOlized into 32 classes 
according to their point group symmetry. The point group symmetry refers 
to the group of symmetry operations that leaves the crystal invadant. Exam­
ples of these include rotations about particular axes, reflections about planes, 
and inversion about points in the unit cell. Some crystal classes such as the 
cubic ones possess a very high degree of symmetry. Others have much lower 
symmetry. 

The link between the measurable properties and the point group symmetry 
of a crystal can be made through Neumann's principle. This states that: 

Any macroscopic physical property must have at least the symme­
try of the crystal structure. 

For example, if a crystal has four-fold rotational symmetry about a particular 
axis, then we must get the same result in any experiment we might perform in 
the four equivalent orientations. 

It is instructive to compare the properties of a crystal to those of the atoms 
from which it has been formed. A gas of atoms has no translational order. 
Therefore we expect to find new effects in the solid state that reflect its trans­
lational symmetry. The formation of electronic bands and delocalized states 
discussed in Sections 1.5.2 and 1.5.5 below are examples of this. At the same 
time, the point group symmetry of a crystal is lower than that of the individual 
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atoms, which have the highest possible symmetry due to their sphelical invali­
ance. We therefore expect to find other effects in the solid statc that relate to 
the loweling of the symmetry on going from free atoms to the particular point 
group of the crystal class. Two specific examples of this are discussed briefly 
here, namely optical anisotropy and the lifting of degeneracies. 

A crystal is said to be anisotropic if its properties are not the same in all 
directions. Anisotropy is only found in the solid state, because gases and liq­
uids do not have any preferred directions. Thc degree of anisotropy found in 
a crystal depends strongly on the point group symmetry that it possesses. In 
cubic crystals, for example, the optical properties must be the same along the x, 
y and z axes because they are physically indistinguishable. On the other hand, 
in a uniaxial crystal, the properties along the optic axis will be different from 
those along the axes at light angles to it. The optical anisotropy is manifested 
by the property of birefringence which is discussed in Section 2.4. It is also 
important for the descliption of the nonlinear optical coefficients of crystals 
discussed in Chapter 11. 

The lifting of degeneracies by reduction of the symmetry is a well-known 
effect in atomic physics. Free atoms are spherically symmetric and have no 
preferred directions. The symmetry can be broken by applying an external 
magnetic or electric field which creates a preferred axis along the field direc­
tion. This can lead to the lifting of certain level degeneracies that are present 
in the free atoms. The Zeeman effect, for example, describes the splitting of 
degenerate magnetic levels when a magnetic field is applied. If the same atom 
is introduced into a crystal, it will find itself in an environment with a point 
group symmetry determined by the lattice. This symmetry is lower than that of 
the free atom, and therefore some level degeneracies can be lifted. 

Fig. 1.8 Splitting of the magnetic levels of 
a free atom by the crystal field effect. In 
the free atoms, the magnetic levels are de­
generate. We must apply a magnetic field to 
split them by the Zeeman effect. However, 
the magnetic levels can be split even with­
out applying an external magnetic field in a 
crystal. The details of the way the levels split 
are determined by the symmetry class of the 
crystal. 
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This point is illustrated schematically in Fig. 1.8, which shows how the 
magnetic levels of a free atom can be split by the crystal field effect in an anal­
ogous way to the Zeeman effect. The splitting is caused by the interaction of 
the orbitals of the atoms with the electric fields of the crystalline environment. 
The details do not concern us here. The important point is that the splittings are 
determined by the symmetry class of the crystal and do not require an external 
field. Optical transitions between these crystal-field split levels often occur 
in the visible spectral region, and cause the material to havc very interesting 
properties that are not found in the free atoms. These effects will be explored 
in more detail in Chapter 9. 

E 
solid 

Before closing this section on crystal symmetry, it is worth pointing out that 
many important solid state materials do not possess long range translational 
symmetry. Glass is an obvious example. Other examples include thin molecu­

free lar films such as light-emitting polymers sputtered onto substrates, and anlOr­
atom phous silicon. The optical properties of these materials may be very similar to 

Interatomic separation 

Fig. 1.9 Schematic diagram of the formation 
of electronic bands in a solid from the con­
densation of free atoms. As the atoms are 
brought closer together to fom] the solid. 
their outer orbitals begin to overlap with 
each other. These overlapping orbitals inter­
act strongly, and hroad bands arc formed. 
The inner core orbitals do not overlap and 
so remain discrete even in the solid state. 
Optical transitions between the bands can 
occur, and this causes strong absorption over 
a continuous range of frequencies rather than 
discrete lines. 

those of their constituent atoms or molecules. Their importancc is usually re­
lated to the convenience of the solid phase rather than to new optical properties 
that relate to the solid state physics. 

1.5.2 Electronic bands 

The atoms in a solid are packed very close to each other, with the interatomic 
separation approximately equal to the size of the atoms. Hence the outer or­
bitals of the atoms overlap and interact strongly with each other. This broadens 
the discrete levels of the free atoms into bands, as illustrated schematically in 
Fig. 1.9. 

The electron states within the bands are de10calized and possess the transla­
tional invariance of the crystal. Bloch's theorem states that the wave functions 
should be written in the form: 

(1.27) 

where Uk (r) is a function that has the periodicity of the lattice. The Bloch states 
described by eqn 1.27 arc modulated plane waves. Each electronic band has a 
different envelope function uk(r) which retains some of the atomic character 
of the states from which the band was derived. 

Optical transitions can occur between the electronic bands if they are al­
lowed by the selection rules. This 'interband' absorption is possible over a 
continuous range of photon energies determined by the lower and upper energy 
limits of the bands. This contrasts with the absorption spectra of free atoms, 
which consist of discrete lines. The observation of broad bands of absorption 
rather than discrete lines is one of the characteristic features of the solid state. 

lnterband transitions will be discussed at length in a number of chapters in 
this book, most notably Chapters 3 and 5. The absorption strength is usually 
very high because of the very large density of absorbing atoms in the solid. 
This means that we can produce sizeable optical effects in very thin samples, 
allowing us to make the compact optical devices that form the basis of the 
modern optoelectronics industry. 
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1.5.3 Vibronic bands 

The electronic states of the atoms or molecules in a solid may be strongly 
coupled to the vibrational modes of the crystal through the vibronic interaction. 
A typical example of where this effect occurs is the doped insulator crys­
tals introduced in Section 1.4.5. The vibronic coupling broadens the discrete 
electronic states of the isolated dopant atoms into bands. This has the effect 
of broadening the discrete absorption and emission lines of the atoms into 
continuous bands. These vibronic effects will be described in more detail in 
Chapter 9. 

It is important to realize that the reason for the formation of the vibronic 
bands is different to that for the electronic bands considered in the previous 
section. In the case of vibronic bands, the continuum of states arises from the 
coupling of discrete electronic states to a continuous spectrum of vibrational 
modes. This contrasts with the electronic bands, where the continuum arises 
from interactions between electronic states of neighbouring atoms. 

Vibronic effects are also observed in molecular materials. This is an inter­
esting case which highlights the difference between the solid state and the 
liquid or gaseous phase. The absorption spectra of simple free molecules also 
show vibrational-electronic bands, but the transition frequencies are discrete 
because both the electronic energies and the vibrational energies are discrete. 
In molecular solids. by contrast, the vibrational frequencies are continuous, 
and this causes continuous absorption and emission spectra. 

1.5.4 The density of states 

The concept of the density of states is an inevitable corollary of band formation 
in solids. The electronic and vibrational states of free molecules and atoms 
have discrete energies, but this is not the case in a solid: both the electronic 
states and the phonon modes have a continuous range of energies. This con­
tinuum of states leads to continuous absorption and emission bands, as has 
already been stressed in the previous two sections. 

The number of states within a given energy range of a band is conveniently 
expressed in terms of the density of states function geE). This is defined as: 

Number of states in the range E ---+ (E + dE) = geE) dE . (1.28) 

geE) is worked out in practice by first calculating the density of states in 
momentum space g(k), and then using the relationship between geE) and g(k), 

namely: 
dk 

geE) = g(k) dE . (1.29) 

This can be evaluated from knowledge of the E -k relationship for the electrons 
or phonons. Knowledge of geE) is crucial for calculating the absorption and 
emission spectra due to interband transitions and also for calculating the shape 
of vibronic bands. 

1.5.5 Delocalized states and collective excitations 

The fact that the atoms in a solid are very close together means that it is 
possible for the electron states to spread over many atoms. The wave functions 
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of these delocalized states possess the underlying translational symmetry of 
the crystal. The Bloch waves described by eqn 1.27 are a typical example. 
The delocalized electron waves move freely throughout the whole crystal and 
interact with each other in a way that is not possible in atoms. The delo­
calization also allows collective excitations of the whole crystal rather than 
individual atoms. Two examples that we will consider in this book are the 
excitons formed from delocalized electrons and holes in a semiconductor, and 
the plasmons fonned from free electrons in metals and doped semiconductors. 
These collective excitations may be observed in optical spectra, and have no 
obvious counterpart in the spectra of free atoms. These excitonic effects will 
be discussed in Chapter 4, while plasmons are covered in Section 7.5. 

Other wave-like excitations of the crystal are delocalized in the same way as 
the electrons. In the case of the lattice vibrations, the delocalized excitations 
are described by the phonon modes. We have already mentioned above that 
the phonon frequencies are continuous, which contrasts with the discrete vi­
brational frequencies of molecules. Some optical effects related to phonons 
have direct analogies with the vibrational phenomena observed in isolated 
molecules but others are peculiar to the solid state. Examples of the former 
are Raman scattering and infrared absorption. Examples of the latter include 
the phonon-assisted interband transitions in semiconductors with indirect band 
gaps (cf. Section 3.4), and the broadening of the discrete levels of impurity 
atoms into continuous vibronic bands by interactions with phonons as dis­
cussed in Chapter 9. 

The delocalized states of a crystal are described by quantum numbers such 
as k and q which have the dimensions of inverse length. These quantum num­
bers follow from the translational invmiance, and are therefore a fundamental 
manifestation of the crystal symmetry. To all intents and purposes, the quantum 
numbers like k and q behave like the wave vectors of the excitations, and they 
will be treated as such whenever we encounter them in derivations. However, it 
should be borne in mind that this is really a consequence of the deep underlying 
symmetry which is unique to the solid state. 

1.6 Microscopic models 

In the following chapters we will be developing many microscopic models to 
explain the optical phenomena that are observed in the solid state. The types 
of models will obviously vary considerably, but they can all be classified into 
one of the following three general categories: 

• Classical 
• Semiclassical 
• Fully quantum. 

These approaches get progressively more difficult, and so we usually apply 
them in the order listed above. 

In the classical approach we treat both the medium and the light according 
to classical physics. The dipole oscillator model described in Chapter 2 is a 
typical example. This model is the basic starting point for understanding the 
general optical properties of a medium, and in particular for describing the 



main effects due to free electrons (Chapter 7) and phonons (Chapter 10). We 
will also use it as a starting point for the discussion of nonlinear optics in 
Chapter 11. It would be a mistake to undervalue the classical approach in this 
modem day and age. The value of more sophisticated models will only be 
appreciated fully once the classical physics has been properly understood. 

In semiclassical models we apply quantum mechanics to the atoms, but 
treat the light as a classical electromagnetic wave. The treatment of interband 
absorption in Chapter 3 is a typical example. The absorption coefficient is 
calculated using Fermi's golden mle, which requires knowledge of the wave 
functions of the quantized levels of the atoms, but treats the light-matter inter­
action as that between a quantized atom and a classical electric field wave. This 
semiclassical approach is used extensively throughout the book. Appendix B 
summarizes the main results that will be needed. 

The final approach is the full quantum treatment. This is the realm of quan­
tum optics, where both the atoms and the light are treated quantum mechani­
cally. We use this approach implicitly whenever we refer to the light as a beam 
of photons and draw Feynman diagrams to represent the interaction processes 
that are occurring. This might give the impression that the explanations we are 
giving are fully quantum because we speak in terms of photons interacting with 
atoms. However, in the equations used to describe the process quantitatively, 
the light is treated classically and only the atoms are quantized. The quantita­
tive description is therefore only semiclassical. The use of the fully quantum 
approach at the quantitative level is beyond the scope of this present book. 

Chapter summary 

1.6 Microscopic models 21 
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Further reading 

A good general discussion of the optical properties of materials can be found 
in Hecht (1998). A more advanced treatment may be found in Born and Wolf 
(1999). The introduction to the optical properties of various materials given 
in Section 1.4 will be expanded in subsequent chapters, where suitable further 
reading will be suggested. 

The relationship between the optical properties and the complex refractive 
index and dielectric constant is discussed in most texts on electromagnetism, 
for example, Bleaney and Bleaney (1976), or Lorrain, Corson and Lorrain 
(2000). This material is also covered in Born and Wolf (1999). 

A classic discussion of the effects of the point group symmetry on the phys­
ical properties of crystals is given in Nye (1957). 
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Exercises 
(1.1) Crown glass has a refractive index of 1.51 in the visible 

spectral region. Caleulate the reflectivity of the air-glass 
interface, and the transmission of a typical glass window. 

(1.2) Use the data in Table 1.4 to calculate the ratio of the 
reflectivities of fused silica and dense flint glass. 

(1.3) The complex dielectric constant of the semiconductor 
cadmium telluride is given by Er = 8.92 + i 2.29 at 
500 nm. Calculate for CdTe at this wavelength: the 
phase velocity of light, the absorption coefficient and thc 
reflectivity. 

(1.4) The detectors used in optical fibre networks operating at 
850 nm are usually made from silicon, which has an ab­
sorption coefficient of 1.3 x 105 m- I at this wavelength. 
The detectors have coatings on the front surface that 
makes the reflectivity at the design wavelength negligibly 
small. Calculate the thickness of the active region of a 
photodiode designed to absorb 90 % of the light. 

(1.5) GaAs has a refractive index of 3.68 and an absorption 
coefficient of 1.3 x 106 m- l at 800 nm. Calculate the 

(iv) Explain why the ratio of the fields might be impor­
tant rather than the ratio of the intensities. 

reflected 
light 

transmitted 
light 

Fig. 1.10 Multiple reflections in a parallel-sided plate. 

(1.9) Rcpeat Exercise 1.8(ii) and (iii) for the GaAs plate 
considered in Exercise 1.5. 

transmission coefficient and optical density of a 2 Mm (1.10) Show that the optical density (O.D.) of a sample is related 
thick GaAs sample. to its transmission T and reflectivity R through: 

(J .6) Sea water has a refractive index of 1.33 and absorbs 
99.8 % of red light of wavelength 700 nm in a depth 
of 10 m. What is its complex dielectric constant at this 
wavelength? 

(1.7) How would you expect the absorption coefficient of a 
yellow colour glass filter to vary with wavelength? 

(1.8) A beam of light is incident on a parallel-sided plate 
of thickness I as shown in Fig. 1.10. The reflectivity 
of the front and back surfaces is R and the absorption 
coefficient is 0'. 

(i) Show that the intensity of the beam exiting the 
sample after having been reflected from the back 
surface once is smaller than that of the bean1 that 
has suffered no reflections by a factor R 2e-2ot1 . 

(ii) Calculate this ratio for a transparent glass window 
with a refractive index of 1.5. 

(iii) Repeat part (ii), but calculate the ratio of the elec­
tric fields of the beams rather than their intensities. 

O.D. = 10glO(T) + 2log lO ( 1 - R). 

Hence explain how you would detelmine the optical 
density by making two transmission measurements, one 
at wavelength A where the material absorbs, and the other 
at a wavelength A' where the material is transparent. 

(1.11) The refractive index of fused silica is 1.45248 at 850 nm 
and 1.44427 at 1500 nm. Calculate the difference in time 
taken for short light pulses at R50 nm and 1500 nm to 
propagate down a silica optical fibre of length 1 km. 

(1. 12) The complex dielectric constant of a metal at infrared 
frequencies is given by 

_ (5 

Er =Er+i-, 
EOW 

where Er is the static rel~tive dielectric constant, (5 is the 
electrical conductivity, and W is the angular frequency. 
(See eqn A.45 in Appendix A with J1.r = 1.) Estimate the 
reflectivity of a silver mirror at a wavelength of 100 Mm. 
Assume that 1'2 » 1'1, and that the conductivity of silver 
is 6.6 x 107 Q-1m. 
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(1.13) Estimate the distance over which the light intensity falls 
by a factor of 2 in a gold film at a wavelength of 100 Mm. 
The electrical conductivity of gold is 4.9 x 107 Q-1m. 
Make the same assumptions as in the previous question. 

(1.16) 

(1.14) The data shown in Fig. 1.5 indicates that the reflectivity 

A photon of wavelength 514 run is scattered inelastically 
from an NaCl crystal by exciting a phonon of frequency 
7.92 x 1012 Hz. By applying the law of conservation of 
energy to the scattering process, calculate the wavelength 
of the scattered photon. 

(1.15) 

of silver is close to zero at around 320 nm. What is the (1.17) A certain optical fibre transmits 10 % of the light coupled 
approximate value of the complex dielectric constant at into it at 850 nm. Calculate the transmission of the same 
this wavelength? fibre at 1550 nm, on the assumption that the dominant 

A neodymium laser crystal absorbs photons at 850 nm 
and luminesces at 1064 run. The efficiency of the lumi­
nescence process is quantified in terms of the radiative 
quantum efficiency I1R, which is defined as the fraction 
of the atoms that emit a photon after absorbing a photon. 

(i) Calculate the amount of energy dissipated as heat 
in each emission process. 

(ii) If the total power absorbed at 850 nm is lOW, 
calculate the power emitted at 1064 run if I1R = 
100 %. How much power is dissipated as heat in 
the crystal? 

(iii) Repeat part (ii) for a crystal with I1R = 50 %. 

loss is Rayleigh scattering from inhomogeneities in the 
fibre. Hence explain why telecommunications companies 
use a wavelength of 1550 run for their long distance op­
tical fibre networks instead of the wavelength of 850 nm 
used for local area networks. 

(1.18) Calculate the distance over which the intensity falls to 
50 % of its original value in a medium which contains 
1016 m-3 scattering centres with as 2 x 10-17 m2. 
Calculate the equivalent distance at half the wavelength, 
on the assumption that the Rayleigh scattering law ap­
plies. 

(1 .19) Explain why ice is birefringent, but water is not. 



Classical propagation 

The propagation of light through an optical medium was discussed in general 
terms in Sections 1.1-1.3 of Chapter 1. We saw there that the propagation 
is characterized by two parameters, namely the refractive index and the ab­
sorption coefficient. In this chapter we will investigate the classical theory of 
optical propagation, in which the light is treated as electromagnetic waves and 
the atoms or molecules are modelled as classical dipole oscillators. We will 
see that this model gives a good general overview of the optical properties, and 
enables us to calculate the frequency dependence of the complex dielectric 
constant. This gives us the frequency dependence of the absorption coefficient 
and refractive index, and hence enables us to explain the phenomenon of dis­
persion. We will also see that the model provides the framework for describing 
the effects due to optical anisotropy such as birefringence. 

The treatment given here presupposes a working knowledge of the electro­
magnetic properties of dielectrics. A summary of the main results that we will 
use is given in Appendix A. The model will be revisited in subsequent chapters 
when we consider the optical properties of free electrons in Chapter 7, and 
when we discuss lattice vibrations in Chapter 10. The model is also the starting 
point for the treatment of nonlinear optical effects in Chapter 11. 

2.1 Propagation of light in a dense optical 
medium 

The classical model of light propagation was developed at the end of the 
nineteenth century following Maxwell's theory of electromagnetic waves and 
the introduction of the concept of the dipole oscillator. In this section we will 
give a qualitative discussion of the physical assumptions of this model, leaving 
the quantitative calculation to the next section. 

The model assumes that there are several different types of oscillators within 
a medium, each with their own characteristic resonant frequency. At optical 
frequencies the most important contribution is from the oscillations of the 
bound electrons within the atoms, and so we begin this section by consid­
ering atomic oscillators. We then go on to introduce the idea of vibrational 
oscillators, which resonate at lower frequencies in the infrared spectral region, 
and finally mention free electron oscillators, which are responsible for the 
principal optical properties of metals. 

2.1 

2.2 

2.3 
2.4 

Propagation of light in a 
dense optical medium 25 
The dipole oscillator 
model 29 
Dispersion 40 
Optical anisotropy: 
birefringence 42 
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Fig. 2.1 Classical model of the bound elec­
trons in an atom. The electrons are repre­
sented by the open circles, while the black 
circle at the centre of the atom represents 
the nucleus. The electrons are held to the 
heavy nucleus by springs which represent the 
restoring forces due to the binding between 
them. Each atom has a series of characteristic 
resonant frequencies which we now know 
to correspond with the quantized transition 
energies. 

2.1.1 Atomic oscillators 

The concept of the dipole oscillator was introduced soon after Maxwell's 
electromagnetic theory. It was shown theoretically that an oscillating electric 
dipole would emit electromagnetic waves, and this was confirmed in 1887 
when Heinrich Hertz succeeded in generating and detecting radio waves in the 
laboratory. He used an oscillatory discharge across a spark gap as the source 
and a wire loop as the aerial of the detector. This was an elegant confirmation 
of the validity of Maxwell's electromagnetic theory, and the beginning of radio 
telecommunications. 

The idea of considering atoms as oscillating dipoles was originally proposed 
by Henrick Antoon Lorentz in 1878, thus preceding Hertz's demonstration by 
several years. It was known that atoms emit and absorb at discrete frequencies, 
and Lorentz's model provided a simple explanation for these observations in 
terms of the newly discovered electromagnetic theories. 

The oscillator model of the atom is illustrated schematically in Fig. 2.1. It is 
assumed that the electron is held in a stable orbit with respect to the nucleus, 
and the spring represents the restoring force for small displacements from the 
equilibrium. The negatively charged electron and the positively charged nu­
cleus form an electric dipole with a magnitude proportional to their separation. 
Lorentz, of course, could not have known about electrons and nuclei, because 
they were not discovered until 1897 and 1911 by lJ. Thomson and Ernest 
Rutherford respectively. Lorentz simply postulated the existence of dipoles 
without knowing their origin. 

The natural resonant frequency Wo of the atomic dipoles is determined by 
their mass and the magnitude of the restoring force experienced for small 
displacements. The appropriate mass is the reduced mass given by: 

1 1 1 
-=-+-, (2.1) 
fl mo mN 

where mo and mN are the masses of the electron and nucleus respectively. Since 
mN » mo, we may safely take fl ~ mo here. The restoring force is quantified 
in terms of a spring constant Ks, which is chosen so that Wo coincides with one 
of the natural frequencies of the atoms (see Exercise 2.1): 

wo=fj. (2.2) 

We have to suppose that there are several dipoles within every atom, to account 
for the fact that a given atom has many transition frequencies. These are known 
from the absorption and emission spectra, and the frequencies occur in the 
near-infrared, visible and ultraviolet spectral regions (1014_1015 Hz). 

We can understand the connection between the atomic dipoles and the emis­
sion spectra by considering the oscillations of the dipole shown in Fig. 2.2. An 
electric dipole consists of a positive charge +q at position r + and a negative 
charge -q at r _. The electric dipole moment is defined as 

p = q(r+ - L). (2.3) 

Hence the positive nucleus and negative electron form a dipole with magnitude 
equal to elrN - rei. 
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During the oscillations of the atomic dipole, the nucleus remains more or 
less stationary due to its heavy mass, while the electron oscillates backwards 
and forwards at frequency wOo Hence the oscillations produce a time varying 
dipole in addition to any permanent dipole the atom may have. The magnitude 
of the time varying dipole is given by: 

pet) = -ex(t), (2.4) 

where x (t) is the time varying displacement of the electron from its equilib­
rium position. This connection between the electron displacement and the time 
dependent atomic dipole is illustrated in the top half of Fig. 2.2. The oscillating 
dipole radiates electromagnetic waves at frequency WO, in accordance with the 
theory of classical Hertzian dipoles. Hence the atom is expected to radiate light 
at its resonant frequency whenever sufficient energy is imparted to it to excite 
the oscillations. 

We can also use the dipole model to understand how the atom interacts with 
an external electromagnetic wave at frequency W. The AC electric field exerts 
forces on the electron and the nucleus and drives oscillations of the system at 
frequency W. If w coincides with one of the natural frequencies of the atom, 
then we have a resonance phenomenon. This induces very large amplitude 
oscillations, and transfers energy from the external wave to the atom. The atom 
can therefore absorb energy from the light wave if w = WOo The absorption 
strength is characterized by the absorption coefficient (X, and the intensity of 
the wave will decay exponentially according to Beer's law (eqn 1.4). 

We now know from quantum theory that what actually happens during ab­
sorption is that the atom jumps to an excited state by absorbing a photon. This 
can only occur if liw = E2-EI, where E} and E2 are the quantized energies of 
the initial and final states. Once it has been excited, the atom can return to the 
ground state by a series of radiationless transitions, in which case the energy 
from the absorbed photon is ultimately converted into heat. Alternatively, it can 
luminesce by re-emitting a photon at some later time. The re-radiated photons 
are incoherent with each other and are emitted in all directions rather than in 
the specific direction of the incoming wave. Hence there is a net decrease in 

Fig. 2.2 Oscillations of a classical dipole con­
sisting of a heavy positive charge and a light 
negative charge bound together by a spring. 
x (t) is the time-dependent displacement of 
the negative charge from its equilibrium po­
sition. The natural vibrations of the dipole 
about the equilibrium length at frequency wo 
generate a time dependent dipole moment 
p (I) as indicated in the top half of the figure. 

We assume here that the forces exerted by the 
electric fields are very small compared to the 
binding forces that hold the electrons to the 
nucleus. This approximation may not be valid 
if we are using a very powerful laser beam to 
excite the medium. If this is the case, then we 
are working in the regime of nonlinear optics. 
These effects are considered in Chapter 11. 
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Fig. 2.3 Classical model of a polar molecule. 
The atoms are positively and negatively 
charged, and can vibrate about their equilib­
rium separation. These vibrations produce an 
oscillating electric dipole which will radiate 
electromagnetic waves at the resonant fre­
quency. Alternatively, the molecule will in­
teract with the electric tleld € of a light wave 
through the forces exerted on the charged 
atoms. 

the energy flow in the beam direction, which is equivalent to absorption. 
If (f) does not coincide with any of the resonant frequencies, then the atoms 

will not absorb, and the medium will be transparent. In this situation the light 
wave drives non-resonant oscillations of the atoms at its own frequency (f). 

The oscillations of the atoms follow those of the driving wave, but with a 
phase lag. The phase lag is a standard feature of forced oscillators and is 
caused by damping. (See Exercise 2.2.) The oscillating atoms all re-radiate 
instantaneously, but the phase lag acquired in the process accumulates through 
the medium and retards the propagation of the wave front. This implies that the 
propagation velocity is smaller than in free space. The reduction of the velocity 
in the medium is characterized by the refractive index defined in eqn 1 .2. 

The slowing of the wave due to the non-resonant interactions can be con­
sidered as a repeated scattering process. The scattering is both coherent and 
elastic, and each atom behaves like a Huygens point source. The scattered 
light interferes constructively in the forward direction, and destructively in 
all other directions, so that the direction of the beam is unchanged by the 
repetitive scattering process. However, each scattering event introduces a phase 
lag which causes a slowing of the propagation of the phase front through the 
medium. 

2.1.2 Vibrational oscillators 

An optical medium may contain other types of dipole oscillators in addition 
to those originating from the bound electrons within the atoms. If the medium 
is ionic, it will contain oppositely charged ions. Vibrations of these charged 
atoms from their equilibrium positions within the crystal lattice will produce 
an oscillating dipole moment, in exactly the same way as the oscillations of 
the electrons within the individual atoms that we considered above. Therefore, 
we must also consider the optical effects dues to these vibrational oscillators 
when we consider the interaction of light with an ionic optical medium. 

The optical effects of vibrational oscillators are well known in molecular 
physics. Figure 2.3 gives a schematic illustration of a classical polar molecule. 
This consists of two charged atoms bound together in a stable configuration, 
with the spring representing the molecular bond between them. The charged 
atoms can vibrate about their equilibrium positions and induce an oscillating 
electric dipole in an analogous way to the bound electrons in the atoms. We see 
immediately from eqn 2.2 that the vibrations will occur at lower frequencies 
because the reduced mass is larger. The vibrations therefore occur at infrared 
frequencies with (f) j2rc ~ 1012_1013 Hz. These molecular vibrations are asso­
ciated with strong absorption lines in the infrared spectral region. 

The interaction between the vibrations of tlle molecule and the light wave 
occurs through the forces exerted on the atoms by the electric field. It is obvious 
that this can only happen if the atoms are charged. This is why we specified 
that the molecule was polar in the preceding paragraph. A polar molecule is 
one in which the electron charge cloud that forms the bond sits closer to one 
of the atoms than to the other. Ionic molecules like the alkali halides (e.g. 
Na+Cl-) clearly fall into this category, while purely covalent ones such as the 
elemental molecules (e.g. 02) do not. Many other molecules fall somewhere 
between these two limits. Water (H20) is a well known example. Oxygen has 



a greater electron affinity than hydrogen, and so the valence electrons in the 
O-H bond sit closer to the oxygen atoms. The two hydrogen atoms therefore 
possess a small positive charge which is balanced by a negative charge of twice 
the magnitude on the oxygen atom. 

In a crystalline solid formed from the condensation of polar molecules, the 
atoms are arranged in an alternating sequence of positive and negative ions. 
The ions can vibrate about their equilihrium positions, and this produces oscil­
lating dipole waves. These oscillations are associated with lattice vibrations, 
and they occur at frequencies in the infrared spectral region. We will consider 
the optical properties related to the lattice vibrations in detail in Chapter 10. We 
will see there that the light-matter interaction is associated with the excitation 
of phonons, which are quantized lattice waves. At this stage, we simply note 
that the lattice vibrations of a polar crystal give rise to strong optical effects 
in the infrared spectral region. These effects occur in addition to those due to 
the bound electrons of the atoms that comprise the crystal. In practice we can 
treat these two types of dipoles separately because the resonances are sharp 
and they occur at very different frequencies. Therefore the resonant effects of 
the bound electrons are negligible at the frequencies of the lattice vibrations, 
and vice versa. This point will be considered in more detail in Section 2.2.2. 

2.1.3 Free electron oscillators 

The electronic and vibrational dipoles considered above are both examples 
of bound oscillators. Metals and doped semiconductors, by contrast, contain 
significant numbers of free electrons. As the name implies, these are electrons 
that are not bound to any atoms, and therefore do not experience any restoring 
forces when they are displaced. This implies that the spring constant in eqn 2.2 
is zero, and hence that the natural resonant frequency cuo = O. 

The free electron model of metals is attributed to Paul Drude, and so the 
application of the dipole oscillator model to free electron systems is generally 
called the Drude-Lorentz model. The dipole oscillator model is perfectly valid. 
except that we must set {l)O = 0 throughout. The optical properties of free 
electron systems will be discussed in Chapter 7. 

2.2 The dipole oscillator model 

In the previous section we introduced the general assumptions of the dipole 
oscillator model. We now want to use the model to calculate the frequency 
dependence of the rcfractive index and absorption coefficient. This will pro­
vide a simple explanation for the dispersion of the refractive index in optical 
materials, and will also illustrate a very general point that the phenomena of 
absorption and refraction are related to each other. 

2.2.1 The Lorentz oscillator 

We consider the interaction between a light wave and an atom with a single 
resonant frequency {l)O due to the bound electrons, as given by eqn 2.2. We 
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We know from experimental observations 
that atoms must have many natural resonant 
frequencies to account for the multiplicity of 
lines in the absorption and emission spectra. 
However, the salient features of the physical 
behaviour are well illustrated by a singly 
resonant system, and the inclusion of mul­
tiple resonances complicates the discussion 
without adding much to the physical under­
standing at this stage. We therefore postpone 
the discussion of the effects of multiple reso­
nances to subsection 2.2.2 below. 

Note that the phase factors <I> and <1>' in 
eqns 2.6 and 2.7 are not necessarily the same. 
In fact, the phase of the electrons will tend 
to lag behind the phase of the light. This is 
a well known property of forced oscillations: 
the vibrations occur at the same frequency as 
the driving force but lag behind due to the 
damping term. This phase lag is thc origin of 
the slowing down of the light in the optical 
medium, as discussed above in Section 2.1. 

model the displacement of the atomic dipoles as damped harmonic oscillators. 
The inclusion of damping is a consequence of the fact that the oscillating 
dipoles can lose their energy by collisional processes. In solids, this would 
typically occur through an interaction with a phonon which has been thermally 
excited in the crystal. As we will see, the damping term has the effect of 
reducing the peak absorption coefficient and broadening the absorption line. 

The electric field of the light wave induces forced oscillations of the atomic 
dipole through the driving forces exerted on the electrons. We make the as­
sumption that mN » mo here so that we can ignore the motion of the nucleus. 
The displacement x of the electron is governed by an equation of motion of the 
form: 

d2x dx 2 
mO--2 + moy - + mowox = -eS , 

dt dt 
(2.5) 

where y is the damping rate, e is the magnitude of the electric charge of the 
electron, and S is the electric field of the light wave. The terms on the left hand 
side represent the acceleration, the damping and the restoring force respec­
tively. The damping is modelled by a frictional force which is proportional to 
the velocity and impedes the motion. The term on the right hand side represents 
the driving force due to the AC electric field of the light wave. 

We consider the interaction of the atom with a monochromatic light wave of 
angular frequency w. The time dependence of the electric field is given by 

Set) = Socos(wt + <p) = Soffie (eXP(-iwt - <P)), (2.6) 

where So is the amplitude and <P is the phase of the light. In order to keep 
consistency with the sign convention introduced later, we have chosen to take 
the negative frequency part of the complex exponential. 

The AC electric field will drive oscillations at its own frequency w. We 
therefore substitute eqn 2.6 into eqn 2.5 and look for solutions of the form: 

x(t) = Xo ffie ( exp (-iwt - <P')) , (2.7) 

where Xo and <p' are the amplitude and phase of the oscillations. We can in­
corporate the phase factors of eqns 2.6 and 2.7 into the amplitudes by allowing 
both So and Xo to be complex numbers. We then substitute S(t) = Soe- iwt 

into eqn 2.5, and look for solutions of the formx(t) = Xoe- iwt . This gives: 

which implies that: 

-eSo/mo 
Xo = . w5 - w2 - iycv 

(2.9) 

The displacement of the electrons from their equilibrium position produces 
a time varying dipole moment pet), as shown in Fig. 2.2. The magnitude 
of the dipole is given by eqn 2.4. This gives a resonant contribution to the 
macroscopic polarization (dipole moment per unit volume) of the medium. If 



N is the number of atoms per unit volume, the resonant polarization is given 
by: 

Presonant = N P 

=-Nex 
Ne2 1 

=- E. 
mo (w6 - w2 - iyw) 

(2.10) 

A quick inspection of eqn 2.10 shows that the magnitude of Presonant is small 
unless the frequency is close to woo This is another general property of forced 
oscillations: the response is small unless the frequency is close to resonance 
with the natural frequency of the oscillator. 

Equation 2.10 can be used to obtain the complex relative dielectric constant 
Er. The electric displacement D of the medium is related to the electric field 
8 and polarization P through: 

D = E08 +P, (2.11) 

where the bold font indicates vector quantities (see eqn A.2 in Appendix A). 
We are interested in the optical response at frequencies close to wo, and so 
we split the polarization into a non-resonant background term and the resonant 
term arising from the driven response of the oscillator. We therefore write: 

D = E08 + Pbackground + Presonant 

= E08 + EoX8 + Presonant. (2.12) 

To simplify the mathematics, we will assume that the material is isotropic, in 
which case the relative dielectric constant is defined through the relationship: 

(2.13) 

We then combine eqns 2.10-2.13 to obtain: 

Ne2 1 
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The electric susceptibility X in eqn 2.12 
accounts for all other contributions to the 
polarizability of the atoms. We will discuss 
the physical meaning of the 'non-resonant 
polarization' in subsection 2.2.2 below. 

The treatment of non-isotropic materials only 
introduces unnecessary complications at this 
stage, and will be covered briefly in Sec-

Er ((l») = 1 + X + -- ( 2 
Eomo Wo - w2 iY(J!) . 

(2.14) tion 2.4. 

This can be spilt into its real and imaginary parts according to eqn 1.18 to give: 

Ne2 w2 - w2 
El(W) = 1 + X + -- _---:::-_"'-0 ___ _ 

Eomo (w6 - ( 2)2 + (yw)2 
(2.15) 

Ne2 yw 
E2(W) = -- . 

Eomo (w6 - ( 2)2 + (yw)2 
(2.16) 

These fonnulae can be simplified further if we are working at frequencies close 
to resonance, where (1) :::::; (00 » y. This allows us to approximate (w6 - ( 2) 

by 2wo~w, where ~(j) = (w - wo) is the detuning from WOo We then notice 
that the low and high frequency limits of Er(W) are given by 

Ne 2 

Er(O) == Est = 1 + X + 2 ' 
Eomowo 

(2.17) 
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Fig. 2.4 Frequency dependence of the real 
and imaginary parts of the complex dielecttic 
constant of a dipole oscillator at frequencies 
close to resonance. The graphs are calcu-
lated for an oscillator with Wo = 1014 rad/s, 
y 5X 1012 S-I, Est = 12.l and Eoo = 10. Also 
shown is the real and imaginary part of the 
refractive index calculated from the dielec-
tric constant. 
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and 

Er(OO) == Eoo = 1 + X (2.18) 

respectively. The subscript on Est stands for 'static', since it represents the 
dielectric response to static electric fields. With this notation we find that: 

Ne2 
(Est - Eoo) = 2 . 

Eomowo 
(2.19) 

We finally rewrite eqns 2.15 and 2.16 in the following form valid at frequencies 
close to resonance: 

EI (llw) = Eoo 
2wollw 

(Est - Eoo) 4(llw)2 + y2 ' (2.20) 

ywo 
Eoo) 4(llw)2 + y2 . (2.21) 

These equations describe a sharp atomic absorption line centred at wo with full 
width at half maximum eoual to v. 

Figure 2.4 shows the frequency dependence of EI and E2 predicted by 
eqns 2.20-2.21 for an oscillator with Wo = 1014 rad/s, 'Y = 5 X 1012 S - j, 

Est = 12.1 and Eoo = 10. These numbers are fairly typical of the infrared 
absorption lines in an ionic crystal. We see that E2 is a strongly peaked function 
of w with a maximum value at Wo and a full width at half maximum equal to 
y. The frequency dependence of E] is more complicated. As we approach Wo 
from below, E] gradually rises from the low frequency value of Est, and reaches 
a peak at Wo - 'Y/2. (See Example 2.1.) It then falls sharply, passing through a 
minimum at Wo + y/2 before rising again to the high frequency limit of Eoo. 

Note that the frequency scale over which these effects occur is determined 
by 'Y for both E] and E2' This shows that the damping of the oscillator causes 
line broadening. The frequency dependence determined of E] and E2 shown in 
Fig. 2.4 is called Lorentzian after the originator of the dipole model. 

In an experiment we actually measure the refractive index n and the ab­
sorption coefficient a. The measurement of a then determines the extinction 



coefficient K through eqn 1.16. Figure 2.4 shows the values of nand K calcu­
lated from El and E2 using eqns 1.22 and 1.23. We sec that n approximately 
follows the frequency dependence of ../El(W), while K more or less follows 
E2(W). The correspondence n ++ .jEl and K ++ E2 would be exact if K were 
much smaller than n (cf. eqns 1.24 and 1.25). This is what generally happens 
in gases in which the low density of atoms makes the total absorption small. 
In the example shown in Fig. 2.4 the correspondence is only approximate 
because the absorption is very strong near WO, so that we cannot always assume 
n » K. Nevertheless, the basic behaviour shows that the absorption peaks at 
a frequency very close to WO and has a width of about y, while the refractive 
index shows positive and negative excursions below and above wo. This is the 
typical behaviour expected of an atomic absorption line. 

One interesting aspect of the Lorentz oscillator is that it affects the re­
fractive index over a much larger frequency range than the absorption. This 
point is clearly shown in the graphs given in Fig. 2.4. The absorption is a 
strongly peaked function of wand falls off as (t~w)"2 as we tune away from 
resonance. Thus there is no significant absorption if we tune sufficiently far 
from resonance. On the other hand, the frequency dependence of the refractive 
index varies as l~wl-l for large I~wl. This follows from eqn 2.20 with the 
approximation n = .jEl, which is valid for large I~wl when E2 is very small. 

Example 2.1 

The full width at half maximum of the strongest hyperfine component of the 
sodium D2 line at 589.0 nm is 100 MHz. A beam of light passes through a 
gas of sodium with an atom density of 1 x 1017 m-3 . Calculate: (i) The peak 
absorption coefficient due to this absorption line. (ii) The frequency at which 
the resonant contribution to the refractive index is at a maximum. (iii) The peak 
value of the resonant contribution to the refractive index. 

Solution 

(i) We are dealing with a low density gas of atoms, and so the approximations 
given in eqns J .24 and 1.25 will be valid. This means that the absorption will 
directly follow the frequency dependence of E2(W), and the peak absorption 
will occur precisely at the line centre. The peak extinction coefficient can be 
worked out from eqns 2.16 and 1.25. This gives: 

E2(WO) Ne2 1 
K(WO) = -- = -

2n 2nEomo YWO 

We do not know what n is, but because we are dealing with a gas, it will only 
be very slightly different from unity. This point is confinned in part (iii) of the 
question. We therefore take n = I here, and insert N = J X 1017 m-3, l' = 

21T X 108 S-l and uJo = 21TC/A = 3.20 X 1015 rad/s to find that K(WO) = 7.90 X 

10-5. This confirms that n » K, and hence that it is valid to use eqn 1.25. We 
then work out the absorption coefficient from Eq. 1.16, which gives: 

4Jl'K(WO) 3 -1 
amax == a(wo) = = 1.7 x IO m . 

A 
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The absorption coefficient measured in an 
experiment would actually be smaller than 
the value calculated here by about a factor of 
3. This discrepancy is caused by the fact that 
we arc assuming that the oscillator strength of 
the transition is unity. This point is discussed 
further in section 2.2.2 below. 
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Fig. 2.5 Absorption coefficient and refractive 
index of sodium gas in the vicinity of the 
strongest hyperfine component of the D2 line, 
on the assumption that the oscillator strength 
of the transition is unity, and that the atom 
density is 1 x 1017 m - 3. See Example 2.1 for 
the details. no represents the off-resonant re­
fractive index. which is approximately equal 
to unity. 

o 

n 

-200 -100 

1700 m-l 

--- ------r- 3.95 X 10-5 

o 
~v(MHz) 

100 200 

(ii) We know from Fig. 2.4 that there will be a peak: in the refractive index 
just below Woo Equation 1.24 tells us that new) = Jfl(W), and hence that 
the local maximum of n will occur at the same frequency as the maximum in 
fl. Since the peak occurs near wo, it will be valid to use eqn 2.20. The local 
maximum occurs when: 

This gives b.w = ±y /2. We see from Fig. 2.4 that b.(V = -y /2 corresponds 
to the local maximum, while b.w = +y /2 corresponds to the local minimum. 
Therefore the peak: in the refractive index occurs 50 MHz below the line centre. 

(iii) From part (ii) we know that the local maximum in the refractive index 
occurs when b.w = -y /2. We see from eqns 1.24 and 2.20 that the refractive 
index at this frequency is given by: 

nmax =.JEl = (fOO + Ne2 
) i = no (1 + 7.90 X21O-S

) i , 
2fomowoy no 

where no = Foo is the off-resonant refractive index. We are dealing with a 
low density gas, and so it is justified to take no ~ 1 here. This implies that the 
peak value of the resonant contribution to the refractive index is :3.95 x 10-5. 

The full frequency dependence of the absorption and refractive index near 
this absorption line is plotted in Fig. 2.5. 

2.2.2 Multiple resonances 

In general, an optical medium will have many characteristic resonant frequen­
cies. We already discussed in Section 2.1 how we expect to observe separate 



resonances due to the lattice vibrations and to the oscillations of the bound 
electrons within the atoms. Furthermore, a particular medium may have many 
resonances of each type. We can treat these multiple resonances without diffi­
culty in our model provided they occur at distinct frequencies. 

In writing eqn 2.12 we split the polarization ofthe medium into a resonant 
part and a non-resonant part. We then discussed the resonant part in detail, 
without specifying very accurately what we meant by the non-resonant term. 
We simply stated that P was proportional to € through the susceptibility x. 
In reality, the non-resonant polarization of the medium must originate from 
the polarizability of the atoms in exactly the same way as the resonant part. 
Equation 2.19 tells us that the dielectric constant decreases each time we go 
through an absorption line. The contributions that enter the background electric 
susceptibility X in eqn 2.12 thus arise from the polarization due to all the other 
oscillators at higher frequencies. 

We can understand this point better by making it more quantitative. The 
contribution to the polarization of a particular oscillator is given by eqn 2.10. 
In a medium with many electronic oscillators of different frequencies, the total 
polarization will therefore be given by 

P = (Ne2 L 1 ) €, 
rno j (W] - w2 - i yjW) 

(2.22) 

where W j and Yj are the frequency and damping terms of a particular resonance 
line. We then substitute this into eqn 2.11, and recall the definition of Er given 
in eqn 2.13. This gives: 

Ne2 1 
Er(W) = 1 + -- L . 

EOrnO j (W] - w2 - iYjW) 
(2.23) 

This equation takes account of all the transitions in the medium and can be 
used to calculate the full frequency dependence of the dielectric constant. 

The refractive index and absorption coefficient calculated from eqn 2.23 
are plotted against frequency in Fig. 2.6. The figure has been calculated for a 
hypothetical solid with three well-separated resonances with Wj equal to 4 X 

1013 rad/s, 4 X 1015 rad/s and 1 X 1017 rad/s respectively. The width of each 
absorption line has been set to 10 % of the centre frequency by appropriate 
choice of the damping term. The resonance in the infrared is included to 
represent the vibrational absorption. In a real solid, we would have to adapt 
the model appropriately to account for the different reduced mass and effective 
charge of the vibrational oscillator. 

We can understand this figure by starting at the highest frequencies and 
gradually working our way down to the lower frequencies. At the very highest 
frequencies, the electrons are incapable of responding to the driving field. The 
medium therefore has no polarization, and the dielectric constant is unity. As 
we reduce the frequency, we first run into the transitions of the inner electrons 
in the X-ray/vacuum-ultraviolet spectral region, and then the transitions of the 
outer electrons in the ultraviolet and visible. We then have a region with no 
transitions until we finally reach the vibrational frequencies in the infrared. 
Each time we go through one of these resonances, we see the characteristic 
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Fig. 2.6 Schematic diagram of the frequency 
dependence of the refractive index and 
absorption of a hypothetical solid from the 
infrared to the X -ray spectral region. The 
solid is assumed to have three resonant 
frequencies with Wj 4 X 1011 rad/s, 4 X 
1015 rad/s and 1 X 1017 rad/s respectively. The 
width of each absorption line has been set to 
10 % of the cenU'e frequency by appropriate 
choice of the "Ij ·s. 

An astute reader will have noticed that the 
peak absorption coefficient for the three 
transition lines shown in Fig. 2.6 decreases 
slightly with decreasing frequency. This hap­
pens because n is larger at the lower frequen­
cies. The transitions all have the same peak 
E2, but we can see from eqn 1.21 that K must 
be slightly smaller if n is larger. 
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frequency dependence of the Lorentz oscillator, with a peak in the absorption 
spectrum and a 'wiggle' in the refractive index. In between the resonances 
the medium is transparent: the absorption coefficient is zero and the refractive 
index is almost constant. 

The value of the refractive index in the transparent regions gradually in­
creases as we go through more and more resonance lines on decreasing the 
frequency. This increase of the refractive index is caused by the fact that Est> 

Eoo (cf. eqn 2.19), which implies that n is larger below an absorption line than 
above it. By reference to Fig. 2.6, we now see that we have to understand 
'static' and '00' as relative to a particular resonance. The variation of n with 
frequency due to the resonances is the origin of the dispersion found in optical 
materials even when they are transparent. This point wiIl be discussed further 
in Section 2.3 below. 

The dipole oscillator model predicts that each oscillator contributes a term 
given by eqn 2.10. This leads to a series of absorption lines of the same 
strength. However, experimental data shows that the absorption strength 
actually varies considerably between different atomic transitions. With the 
benefit of hindsight, we know that this is caused by the variation of the quantum 
mechanical transition probability. (See Appendix B.) In classical physics, 
however, there is no explanation, and we just assign a phenomenological 
oscillator strength fJ to each transition, rewriting eqn 2.23 as: 

(2.24) 



It can be shown from quantum mechanics that we must have L j Ii = I for 
each electron. Sinee the classical model predicts fj = 1 for each oscillator, 
we then interpret this by saying that a particular electron is involved in sev­
eral transitions at the same time, and the absorption strength is being divided 
between these transitions. 

2.2.3 Comparison with experimental data 

The schematic behaviour shown in Fig. 2.6 can be compared to experimental 
data on a typical solid state material. Figure 2.7 shows the frequency depen­
dence of the refractive index and extinction coefficient of fused silica (Si02) 
glass from the infrared to the X-ray spectral region. The general characteris­
tics indicated by Fig. 2.6 are clearly observed, with strong absorption in the 
infrared and ultraviolet, and a broad region of low absorption in between. The 
data confirms that n » K except near the peaks of the absorption. This means 
that the approximation whereby we associate the frequency dependence of n 
with that of Ej, and that of K with E2 (eqns 1.24 and 1.25), is valid at most 
frequencies. 

The general behaviour shown in Fig. 2.7 is typical of optical materials which 
are transparent in the visible spectral region. We already noted in Sections 1.4.1 
and 1.4.2 that the transmission range of colourless materials is determined by 
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Fig. 2.7 (a) Refractive index and (b) extinc­
tion coefficient of fused silica (Si02) glass 
from the infrared to the x-ray spectral region. 
After [1]. 
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It is apparent from Fig. 2.6 that dn/dk will 
be negative at some frequencies close to one 
of the resonance lines. Equation 2.26 then 
implies that "g > v, and so we could again 
run into a problem with relativity. However, 
the medium is highly absorbing in these fre­
quency regions, and this means that the signal 
travels with yet another velocity called the 
signal velocity. This is always less than c. 

the electronic absorption in the ultraviolet and the vibrational absorption in the 
infrared. This is demonstrated by the transmission data for sapphire shown in 
Fig. 1.4(a). 

Silica is a glass, and hence does not have a regular crystal lattice. The 
infrared absorption is therefore caused by excitation of vibrational quanta in 
the Si02 molecules themselves. Two distinct peaks are observed at 104 x 1013 
Hz (21/,i,m) and 3.3 x 1013 Hz (9.1 f,i,m) respectively. These correspond to 
different vibrational modes of the molecule. The detailed modelling of these 
absorption bands by the oscillator model will be discussed in Chapter 10. 

The ultraviolet absorption in silica is caused by interband electronic transi­
tions. Si02 has a fundamental band gap of about 10 eV, and interband transi­
tions are possible whenever the photon energy exceeds this value. Hence we 
observe an absorption threshold in the ultraviolet at 2 x 1015 Hz (150nm). 
The interband absorption peaks at around 3 x 1015 Hz with an extremely high 
absorption coefficient of ~ 108 m- I , and then gradually falls off to higher 
frequency. Subsidiary peaks are observed at ~ 3 x 1016 Hz and 1.3 x 1017 Hz. 
These are caused by transitions of the inner core electrons of the silicon and 
oxygen atoms. The fact that the electronic absorption consists of a continuous 
band rather than a discrete line makes it hard to model accurately as a Lorentz 
oscillator. We will discuss the quantum theory of the interband absorption in 
Chapter 3. 

The refractive index of glass has resonances in the infrared and the ultra­
violet which correspond to the interband and vibrational absorption. In the 
far infrared region below the vibrational resonance, the refractive index is 
~ 2, while in the hard ultraviolet and X-ray region it approaches unity. In 
the transparency region between the vibrational and interband absorption, the 
refractive index has a value of......, 1.5. Closer inspection of Fig. 2.7 shows 
that the refractive index actually increases with frequency in this transparency 
region, rising from a value of lAO at 8 x 1013 Hz (3.5 f,i,m) to 1.55 at 1.5 x 
1015 Hz (200 nm). This dispersion originates from the low frequency wings 
of the ultraviolet absorption and the high frequency wings of the infrared 
absorption, and will be discussed in more detail in Section 2.3 below. 

The data in Fig. 2.7 show that the refractive index falls below unity at a 
number of frequencies. This implies that the phase velocity of the light is 
greater than c, which might seem to imply a contradiction with relativity. 
However, this overlooks the fact that a signal must be transmitted as a wave 
packet rather than as a monochromatic wave. In a dispersive medium, a wave 
packet will propagate at the group velocity l'g given by: 

dw 
Vg = dk ' (2.25) 

rather than at the phase velocity v = w j k = c j n. The relationship between Vg 

and v is: 

Vg = v (1 - ~ ~~) . (2.26) 

The derivation of this result is left as an exercise to the reader. (See Exer­
cise 2.7.) We will see in Section 2.3 that dnjdk is positive in most materials 
at optical frequencies. This then implies that Vg is always less than v, and 
if we were to try to transmit a signal in a spectral region where v > C, we 



would always find that Vg is less than c. The proof of this for a simple Lorentz 
oscillator is considered in Exercise 2.8. 

2.2.4 Local field corrections 

The calculation of the dielectric constant given in eqn 2.24 is valid in a rarefied 
gas with a low density of atoms. However, in a dense optical medium such as 
a solid, there is another factor that we must consider. The individual atomic 
dipoles respond to the local field that they experience. This may not necessarily 
be the same as the external field, because the dipoles themselves generate 
electric fields which will be felt by all the other dipoles. The actual local field 
experienced by an atom therefore takes the form: 

810cal = 8 + 8 other dipoles, (2.27) 

where 8 and 8 other dipoles represent the fields due to the external field and the 
other dipoles respectively. We should have been using 810eal instead of 8 all 
along throughout the calculation given in Sections 2.2.1 and 2.2.2. 

The calculation of the correction field due to the other dipoles in the medium 
is actually a rather complicated one. An approximate solution due to Lorentz 
can be derived if we assume that all the dipoles are paralJel to the applied field 
and are alTanged on a cubic lattice. The calculation works by separating the 
contribution from the nearby dipoles and that from the rest of the sample, as 
indicated in Fig. 2.8. The division is effected by an imaginary spherical surface 
with a radius large enough to make it sensible to average the material outside 
it. The problem is then reduced to summing the field of the dipoles inside the 
sphere at the one in the middle, and then calculating the effect of a uniformly 
polarized dielectric outside the sphere. The final result is: 

P 
8 other dipoles = -3 ' 

EO 
(2.28) 

where P is the polarization of the dielectric outside the sphere. The derivation 
of this result is the subject of Exercise 2.9. By using the result of eqn 2.28 in 
eqn 2.27 we find that: 

P 
810cal = 8 + -3 . 

EO 

The macroscopic polarization P will be given by 

P = N EOXa810cai 

where Xa is the electric susceptibility per atom. Xa is defined by: 

(2.29) 

(2.30) 

(2.31) 

p being the induced dipole moment per atom. This is analogous to the usual 
definition of the macroscopic susceptibility given in eqn A.I, except that it is 
now applied to individual atoms interacting with the local field. We can see 
from eqn 2.10 that Xa is given by 

e2 

Xa = -- (2 ') )' 
EomO Wo - w- - iyw 

(2.32) 
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t t £t t 
Fig. 2.8 Model used to calculate the local 
field by the Lorentz correction. An imaginary 
spherical surface drawn around a particular 
atom divides the medium into nearby dipoles 
and distant dipoles. The field at thc centre 
of the sphere due to the nearby dipoles is 
summed exactly, while the field due to the 
distant dipoles is calculated by treating the 
material outside the sphere as a uniformly 
polarized dielectric. 
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if there is just a single resonance. This is modified to 

(2.33) 

if there are multiple resonances (cf. eqn 2.24). 
We can combine eqns 2.29 and 2.30 with eqns 2.11 and 2.13 by writing 

P = NEoXa (8 + ~) = (Er - I)E08. 
3Eo 

We put all this together to find that: 

Er - 1 

Er +2 
NXa 

3 

(2.34) 

(2.35) 

This result is known as the Clausius-Mossotti relationship. The relationship 
works well in gases and liquids. It is also valid for those crystals in which the 
Lorentz cOlTection given in eqn 2.29 gives an accurate account of the local field 
effects, namely cubic crystals. 

2.2.5 The Kramers-Kronig relationships 

The discussion of the dipole oscillator shows that the refractive index and the 
absorption coefficient are not independent parameters but are related to each 
other. This is a consequence of the fact that they are derived from the real and 
imaginary parts of a single parameter, namely the complex refractive index. If 
we invoke the law of causality (that an effect may not precede its cause) and 
apply complex number analysis, we can delive general relationships between 
the real and imaginary parts of the refractive index. These are known as the 
Kramers-Kronig relationships and may be stated as follows: 

1 100 K(W') 
new) = 1 + - P -,-- dw' 

IT -00 W - w 
(2.36) 

1 100 n(w') - 1 
K(W) = -- P , dw', 

IT -00 W - W 
(2.37) 

where P indicates that we take the principal part of the integral. 
The Kramers-Kronig relationships allow us to calculate n from K, and vice 

versa. This can be very useful in practice, because it would allow us, for 
example, to measure the frequency dependence of the optical absorption and 
then calculate the dispersion without needing to make a separate measurement 
ofn. 

2.3 Dispersion 

Figure 2.9 plots the refractive index data from Fig. 2.7 in more detail. The data 
show that the refractive index increases with frequency in the near infrared 
and visible spectral regions. We have seen in Section 2.2.3 that this dispersion 
originates mainly from the interband absorption in the ultraviolet. At visible 
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frequencies the absorption from these transitions is negligible and the glass 
is transparent. However, the ultraviolet absorption still affects the refractive 
index through the extreme wings of the Lorentzian line. In the near infrared, 
the dispersion is also affected by the high frequency wings of the vibrational 
absorption at lower frequency. 

A material in which the refractive index increases with frequency is said to 
have normal dispersion, while one in which the contrary occurs is said to have 
anomalous dispersion. A number of empirical fonnulae to describe the normal 
dispersion of glasses have been developed over the years. (See Exercise 2.12.) 

The dispersion of the refractive index of glasses such as silica can be used 
to separate different wavelengths of light with a prism, as shown in Fig. 2.10. 
The blue light is refracted more because of the higher index of refraction, and 
is therefore deviated through a larger angle by the prism. (See Exercise 2.13.) 
This effect is used in prism spectrometers. 

Onc of the effects of dispersion is that light of different frequencies takes a 
different amount of time to propagate through a material. (See Exercise 1.11, 
for example.) A pulse of light of duration tp must necessarily contain a spread 
of frequencies given approximately by 

1 
lll! ~ -

tp 
(2.38) 

in order to satisfy the 'uncertainty principle' II I! llt '" l. Dispersion will thcre­
fore cause the pulse to broaden in time as it propagates through the medium. 
This can become a serious problem when attempting to transmit very short 
pulses through a long length of an optical material, for example in a high speed 
optical fibre telecommunications system. 
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Fig. 2.9 Refractive index of Si02 glass in the 
near infrared, visible and ultraviolet spectral 
regions. After [1]. 

The use of the words 'normal' and 'anoma­
lous' is somewhat misleading here. The 
dipole oscillator model shows us that all 
materials have anomalous dispersion at some 
frequencies. The phraseology was adopted 
before measurements of the refractive index 
had been made over a wide frequency range 
and the origin of dispersion had been prop­
erly understood. 

Whl~ 
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blue 

Fig. 2.10 Separation of white light into dif­
ferent colours by dispersion in a glass prism. 



42 Classical propagation 

Equation 2.40 should he contrasted with the 
usual scalar relationship between P and e 
namely (cf. eqn A.I): 

P=EOX e . 
which only applies to isotropic materials. 

We mentioned in Section 2.2.3 that a pulse of light travels with the group 
velocity vg . The important parameter for pulse spreading due to dispersion is 
therefore the group velocity dispersion (aVD) (see Exercise 2.14): 

d 2w d 2n d 2n 
GVD= - ex: - ex:-

dk2 dw2 d),2 . (2.39) 

The Lorentz model indicates that the aVD is positive below an absorption line 
and negative above it. Applying this to the data in Fig. 2.9, we see negative 
GVD in the infrared due to the vibrational absorption and positive aVD in the 
visible due to the interband absorption in the ultraviolet. These two effects 
cancel at a wavelength in the near infrared which is identified in Fig. 2.9. 
This region of zero aVD occurs around 1.3 11m in silica optical fibres. Short 
pulses can be transmitted down the fibre with negligible temporal broadening 
at this wavelength, and so it is one of the preferred wavelengths for optical 
fibre communication systems. 

2.4 Optical anisotropy: birefringence 

The atoms in a solid are locked into a crystalline lattice with well defined axes. 
In general, we cannot assume that the optical properties along the different 
crystalline axes are equivalent. For example, the separation of the atoms might 
not be the same in all directions. This would lead to different vibrational 
frequencies, and hence a change in the refractive index between the relevant 
directions. This optical anisotropy contrasts with gases and liquids which are 
isotropic because the atoms have no preferred directions in the absence of 
external perturbations such as applied magnetic or electric fields. 

Optical anisotropy gives rise to the phenomenon of birefringence. We can 
describe the properties of a birefringent crystal by generalizing the relationship 
between the polarization and the applied electric field. If the electric field is 
applied along an arbitrary direction relative to the crystalline axes, we must 
write a tensor equation to relate P to €: 

P = toX€ (2.40) 

where X represents the susceptibility tensor. Written explicitly in terms of the 
components, we have: 

XI2 

X22 

X32 

X13 ) ( 8 x ) X23 8 y . 

X33 8 z 

(2.41) 

We can simplify this by choosing the cartesian coordinates x, y, and z to 
correspond to the principal crystalline axes. In this case, the off-diagonal com­
ponents are zero, and the susceptibility tensor takes the form: 

(
XlI 

X = 0 
o 

o 
X22 
o 

o ) o . 
X33 

(2.42) 

The relationships between the components are determined by the crystal sym­
metry. 



.. 

2.4 Optical anisotropy: birefringence 43 

Table 2.1 Refractive indices of some common uniaxial crystals at 589.3 IlIll. After [2J. 

Crystal Chemical structure 

Ice H2O 
Quartz Si02 
Beryl BeJAl2(Si03)6 
Sodium nitrate NaN°3 
Calcite CaC~ 
Tounnaline complex silicate 
Sapphire Al203 
Zircon ZrSi04 
Rutile Ti02 

optic axis 

" 

unpolarized 
light 

" " " 

Symmetry class 

trigonal 
trigonal 
hexagonal 
trigonal 
trigonal 
trigonal 
trigonal 
tetragonal 
tetragonal 

type no no 

positive 1.309 1.313 
positive 1.544 1.553 
negative 1.581 1.575 
negative 1.584 1.336 
negative 1.658 1.486 
negative 1.669 1.638 
negative 1.768 1.760 
positive 1.923 1.968 
positive 2.616 2.903 

e-ray 

o-ray 

• In cubic crystals, the x, y and z axes are indistinguishable. They there­
fore have Xli = X22 = X33. and their optical properties are isotropic. 

• Crystals with tetragonal, hexagonal or trigonal (rhombohedral) symme­
try are called uniaxial crystals. These crystals possess a single optic 
axis, which is usually taken as the z axis. In hexagonal crystals, for 
example, the optic axis is defined by the direction normal to the plane 
of the hexagons. The optical properties are the same along the x and y 
directions, but not along the z direction. This implies that XII = X22 i= 
X33. Some examples of uniaxial crystals are listed in Table 2.1. 

• Crystals with orthorhombic, monoclinic or triclinic symmetry are called 
biaxial crystals. They have two optic axes, and all three diagonal com­
ponents of the susceptibility tensor are different. Mica is an important 
example of a biaxial crystal, since it is widely used for making optical 

wave plates. 

One very striking demonstration of optical anisotropy is the phenomenon of 
double refraction. In this effect an unpolarizcd light ray is separated into two 
rays which emerge displaced from each other, as shown in Fig. 2.11. These .two 
rays are called 'ordinary' and 'extraordinary', and are orthogonally polarIZed 

to each other. 
The phenomenon of double refraction can be explained by ass~mi~g that 

the crystal has different refractive indices for the orth~go~al ~olanzatIOns of 
the ordinary and extraordinary rays. These two refrac~lve mdlces are usually 
labelled no and ne respectively. Consider the propagatIOn of a beam of unpo-

Fig. 2.11 Double refraction in a natural cal­
cite crystal. The shape of the crystal and the 
orientation of the optic axis is determined by 
the cleavage planes of calcite, An unpolar­
ized incident light ray is split into two spa­
tially separated orthogonally polarized rays. 
The. symbol for the a-ray indicates that it 
is polarized with its field pointing out of the 
page. 

Crystals with cubic symmetry are only 
isotropic as regards their linear optical prop­
erties. We will sec in Chapter 11 that cubic 
crystals can actually have anisotropic nonlin­
ear optical properties. 
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Fig. 2.12 Electric field vector of ray propa­
gating in a uniaxial crystal with ill; optic axis 
along the z direction. The ray makes an angle 
of e with respect to the optic axis. The x and 
y axes are chosen so that the beam is propa­
gating in the y, z plane. The polarization can 
be resolved into: (a) a component along the 
x axis and (b) a component at an angle of 
90° - e to the optic axis. (a) is the o-ray and 
(b) is the e-ray. 

optic axis 
z 

propagation 
direction 

y 

(a) o-ray 

optic axis 
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propagation 
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larized light which enters a uniaxial crystal at an angle e to the optic axis, 
which is taken to lie along the z axis. The optical properties are isotropic in 
the x, y plane, and so we can choose the axes so that the beam is propagating 
in the y, z plane without Joss of generality, as shown in Fig. 2.12. This allows 
us to split the polarization of the light into two orthogonal components, one 
of which is polarized along the x axis, and the other polarized at an angle of 
(90 0 - e) to the optic axis. The former is the o(rdinary)-ray, and the latter 
is the e(xtraordinary)-ray. Now the refractive index will be different for light 
which is polarized along the z axis or in the x, y plane. Therefore the o-ray 
experiences a different refractive index to the e-ray, and will thus be refracted 
differently: hence double refraction. On the other hand, if the beam propagates 
along the optic axis so that e = 0, the € -vector of the light will always fall in 
the x, y plane. In this case, no double refraction will be observed because the 
x and )' directions are equivalent and there is no e-ray, 

Double refraction was first observed in natural uniaxial crystals such as 
calcite ('Iceland Spar') and quartz. Table 2.1 lists the refractive indices for 
the 0- and e-rays of calcite and quartz, together with those of several other 
uniaxial crystals. The birefringent crystals are classified as being either positive 
or negative depending on whether ne is greater or smaller than no. 

Further discussion of the detailed effects of bireflingence can be found in 
most optics textbooks. The purpose of introducing birefringence here is to 
give an example of how the phenomenon of optical anisotropy arises from the 
underlying symmetry of the crystal structure. This is a very standard example 
of an optical effect that occurs in crystalline solids and is not found in gases or 
liquids. 

Example 2.2 

The .optic axis. of a. uniaxial crystal lies along the z axis. The refractive index 
for 11ght p~lanzed l~ the z direction is nc , while that for light polarized in the 
x, y plane 1.S 11 0 , .wrIte down the dielectric constant tensor defined throuah the 
tensor relatlOnslup b 

D = EQ£r€. 
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Solution 

We make use of egns 2.11 and 2.40 to write: 

D =E08 +P 

= E08 + EoX8 

= EO (1 + X) 8 == EOfr 8 . (2.43) 

Hence we see that: 
€r = 1 + X (2.44) 

The susceptibility tensor is given by egn 2.42, and hence the dielectric constant 
tensor will take the form: 

( 
1 + X1l 

€r = 0 
o 

o 
1+ X22 

o 
o ) o . 

1 + X33 

(2.45) 

In a uniaxial crystal with the optic axis along the z direction, we must have 
XII = X22 =1= X33· 

We now further assume that the crystal is transparent, so that the dielectric 
constant is just equal to the square of the refractive index (cf. eqns 1.24 and 
1.25 with K = 0). If we had a linearly polarized light beam with the electric 
field directed along the x or y directions, we would measure a refractive index 
of no. This tells us that 

2 1 + XII = 1 + X22 = no' 

On the other hand, if 8 is along the z axis, we would measure a refractive index 
of ne, which implies that 

1 + X33 = n~. 
Therefore the dielectric constant tensor must be: 

(2.46) 

Chapter summary 



46 Classical propagation 

Further reading 

The subject matter of this chapter is covered, to a greater or lesser extent, in 
most electromagnetism and optics textbooks. See, for example: Bleaney and 
Bleaney (1976), Born and Wolf (1999), Hecht (1998) or Klein and Furtak 
(1986). 

An excellent collection of optical data on a wide range of solid state materi­
als can be found in Palik (1985). 

For a fuller description of birefringence, see: Hecht (1998), Born and Wolf 
(1999) or Klein and Furtak (1986). 
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Exercises 
(2.1) Writc down the equations of motion for the frictionless 

displacements Xl and X2 of two masses, nI I and nl2' 

connected together by a light spring with a spring con­
stant Ks. Hence show that the angular frequency for 

1 
small oscillations is equal to (Kslf.l)'l. where f.l- 1 = 

-1 -1 
1111 +m2 • 

(2.2) A damped oscillator with mass m, natural frequency wo, 
and damping constant y is being driven by a force of 
amplitude Fo and frequency w. Thc equation of motion 
for the displacement x of the oscillator is: 

d2x dx 2 
In -2- + my - + mwOx = Fo cos wt . 

dt dt 

What is the phase of X relative to the phase of the driving 
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forcc ? Fig. 2.13 Infrared refractive index of NaC!. After [1]. 

(2.3) A sapphirc crystal doped with titanium absorbs strongly (2.7) 
around 500 nm. Calculate the difference in the refractive Derive eqn 2.26. 

index of the doped crystal above and below the 500 nm 
absorption band if the density of absorbing atoms is 
1 x 1025 m - 3. The refractive index of undoped sapphire 
is 1.77. 

(2.4) The laser crystal Ni2+ :MgF2 has a broad absorption 
band in the blue which peaks at 405 nm and has a full 
width at half maximum of 8.2 x 1013 Hz. The oscillator 
strength of the transition is 9 x 10-5 . Estimate the maxi­
mum absorption coefficient in a crystal with 2x 1026m-3 

absorbing atoms per unit volume. The refractive index of 
the crystal is 1.39. 

(2.5) Show that the absorption coefficient of a Lorentz oscil­
lator at the line centre does not depend on the value of 
woo 

(2.6) Figure 2.13 shows the refractive index of N aCl in the 
infrared spectral region. The data can be modelled ap­
proximately by assuming that the resonance feature is 
caused by the vibrations of the completely ionic Na+CI-· 
molecules. The atomic weights of sodium and chlorine 
are 23 and 35.5 respectively. Use the data to estimate: 

(i) The static dielectric constant of NaCl. 

(ii) The natural oscillation frequency of the vibrations. 

(iii) The restoring force for a unit displacement of the 
oscillator. 

(iv) The density of NaCl molecules per unit volume. 

(v) The damping constant y for the vibrations. 

(vi) The pcak absorption coefficient. 

* Exercises marked with an asterisk are more challenging. 

(2.8)* Consider a simple Lorentz oscillator with a single un­
damped resonance. The dielectric constant will be given 
by eqn 2.14 with X and y both zero. This gives: 

Ne2 1 
Er(u» = 1 + -- ( ) . 

EOmO wB -w2 

Prove that the group velocity is always less than c. 

(2.9)* Consider a dielectric sample placed in a uniform electric 
field pointing in the z direction as shown in Fig. 2.8. 
Assume that the atoms are arranged on a cubic lattice 
and the dipoles are all pointing along the external field 
direction. 

(i) Let us first consider the field generated by the 
dipoles within the spherical surface. By using the 
standard formula for the electric field generated by 
an electric dipole, show that the field at the centre 
of the sphere is given by 

1 3z2 - r2 
8 sphere = -4- LPj J 5 J 

1l"EO j rj 

where the summation rnns over all the dipoles 
within the surface except the one at the centre, and 
P j is the dipole moment of .the atom at the jth 
lattice site. . 

(ii) Show that 8 sphere = 0 in a homogenous medium 
where all the P j 's are the same. 
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(iii) Now consider the unifonnly polarized dielectric 
material outside the spherical hole. Let P be the 
macroscopic polarization of the medium, which is 
assumed to be parallel to the external field. Show 
that the surface charge density on the sphere at an 
angle () from the z axis is equal to - P cos (). Hence 
show that the material outside the spherical surface 
generates a field at the centre of the sphere equal to 

-P/3Eo· 

(2.10) Under what conditions does the Clausius-Mossotti re­
lationship given by eqn 2.35 reduce to the usual rela­
tionship between thc dielectric constant and the electric 
susceptibility given in eqn A.4 ? 

(2.11) The relative dielectric constant of N2 gas at standard 
temperature and pressure is 1.000588. Calculate Xa for 
the N2 molecule. Show that the electric field strength 
required to generate a dipole equivalent to displacing the 
electron by 1 A (10- 10 m) is of a similar magnitude 
to the electric field between a proton and an electron 
separated by the same distance. 

(2.12) (a) SeIlmeier derived the fonowing equation for the 
wavelength dependence of the refractive index in 1871: 

A-A2 

n2 = 1 + L. ( J ) . ; A2 _ A2 
J 

Show that this equation is equivalent to eqn 2.24 in 
regions of transparency far from any absorption lines. 
State the values of A j and A j. 

(b) Assume that the dispersion is dominated by the 
closest resonance, so that we only need to include one 
tenn (say the one with j = 1) in the summation 
of Sellmeier's equation. Assume that AT / A 2 is small, 
and expand Sellmeier's equation to derive the earlier 
dispersion fonnula determined empirically by Cauchy: 

C2 C3 
n = C] + A2 + A4 + ... 

State the values of Cl, C2 and C 3 in tenns of A 1 and A 1. 

(2.13) The refractive index of crown glass is 1.5553 at 402.6 nm 
and 1.5352 at 706.5 nm. 

(i) Detennine the coefficients Cl and C2 in Cauchy's for­
mula given in the previous question, on the assumption 
that the tenn in C3 is negligible. 

(ii) Estimate the refractive index for blue light at 450 nm 
and for red light at 650 nm. 

(iii) White light strikes a crown glass prism with an 
apex angle of 60°, as shown in Fig. 2.10. The angle 

of incidence with the first surface is 45°. Calculate the 
difference in the angle between the light at 450 nm and 
650 nm at the exit surface of the prism. 

(2.14) Show that the temporal broadening of a short pulse by 
a dispersive medium of length L is given approximately 
by: 

!\r = !:.. (A2 d 2n) llA 
c dA2 A 

where A is the vacuum wavelength and AA is the spectral 
width of the pulse. Estimate II r for an ultrashort laser 
pulse with a temporal width of I ps in 1 m of optical 
fibre at 1550 nm, where A 2d2n/dA 2 = -0.01. 

(2.15) Consider the propagation of a wave with polarization 
vector components (x, y. z), wherex2+y2+z2 = 1, in a 
birefringent medium. The dielectric constant experienced 
by the wave is conveniently described by the index 
ellipsoid: 

where the Eij are the components of the dielectric con­
stant tensor defined in eqn 2.45. The use of the index 
ellipsoid can be justified by considering the direction of 
the energy flow through the crystal: see Born and Wolf 
(1999). Use the index ellipsoid to show that the refractive 
index for the e-ray propagating at an angle e to the optic 
axis of a uniaxial crystal as shown in Fig. 2.12(b) is given 
by: 

1 sin2 () cos2 () 
-----+--
n«(})2 - n~ n~' 

where ne and no arc defined in Example 2.2. 

(2.16) A uniaxial birefringent crystal made from quartz has 
flO = 1.5443 and I1c = 1.5534. A wave plate is made by 
cutting the crystal so that the optic axis is parallel to the 
surfaces of the plate. The crystal will function as a quarter 
wave plate if the phase difference between the 0- and e­
rays is 90°, turning light polarized at 45° to the optic axis 
into circularly polarized light. Calculate the thickness of 
the crystal if it behaves as a quarter wave plate at 500 nm. 

(2.17) Look up the crystal structure of the following materials 
to detennine whether they are birefringent or not: (a) 
NaC!, (b) diamond, (c) graphite (in the infrared, where 
it transmits), (d) ZnS (wurtzite structure), (e) ZnS (zinc 
blende structure), (f) solid argon at 4 K, (g) sulphur. 
Specify which, if any, of the bireflingent materials are 
biaxial. 



Electromagnetism in 
dielectrics 

This appendix summarizes the principal results of electromagnetism that are 
used throughout the book. It is hoped that the reader will be familiar with this 
material. The main purpose of the appendix is to collect together the equations 
in a concise form for quick reference, and also to define the notation. S1 units 
are used throughout. A short bibliography of suitable supplementary texts is 
given under Further Reading. 

A.1 Electromagnetic fields and Maxwell's 
equations 

The response of a dielectric material to an external electric field is character­
ized by three macroscopic vectors: 

• the electric field strength 8; 
• the polarization P; 
• the electric displacement D. 

The microscopic response of the material is determined primarily by the po­
larization. For this reason, the first task in all the examples treated by elec­
tromagnetism in this book is to calculate P. The dielectric constant Er is then 
determined from P, and the optical properties are deduced from Er . 

The polarization is defined as the net dipole moment per unit volume. The 
application of a field produces a polarization by the forces exerted on the pos­
itive and negative charges of the atoms that are contained within the medium. 
If the atoms have permanent dipole moments, the field will apply a torque 
to these randomly orientated dipoles and tend to align them along the field 
direction. If there are no permanent dipoles, the field will push the positive 
and negative charges in opposite directions and induce a dipole parallel to the 
field. In either case, the end result is the same: the application of the field tends 
to produce many microscopic dipoles aligned parallel to the direction of the 
external field. This generates a net dipole moment within the dielectric, and 
hence a polarization. 

The microscopic dipoles will all tend to align along the field direction, and 
so the polarization vector will be parallel to 8. This allows us to write: 

P = EoX8, (A. I) 

A.1 Electromagnetic fields 
and Maxwell's equations255 

A.2 Ek'Ctromagnetic waves 258 

where EO is the electric permittivity of free space and X is the electric suscep-
tibility of the medium. EO = 8.854 x 10-12 Fm- I in SI units. 
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Equation A.I makes two assumptions that need a brief word of explanation. 

(1) We have assumed that the medium is isotropic, even though we know 
that some materials are anisotropic. In particular, anisotropic crystals 
have preferred non-equivalent axes, and P will not necessarily be parallel 
to 8. 

(2) We have assumed that P varies linearly with 8. This will not always be 
the case. In particular, if the optical intensity is very large, we can enter 
the realm of nonlinear optics, in which eqn A.I is not valid. 

Both of these qualifications introduce unnecessary complications at this stage, 
and are not considered further in this appendix. A discussion of how to treat 
non-isotropic materials may be found in Section 2.4, while nonlinear optics is 
the subject of Chapter 11. 

The electric displacement D of the medium is related to the electric field 
8 and polarization P through: 

D = EOe +P. (A.2) 

This may be considered to be the definition of D. By combining eqns A.I and 
A.2, we can write: 

(A.3) 

where 
Er = 1 + X. (A.4) 

Er is the relative dielectric constant of the medium, and is an extremely im­
portant parameter in the understanding of the propagation of light through 
dielectrics. 

In electrostatic problems we are frequently interested in calculating the spa­
tial dependence of electric field, and hence the electric potential V, from the 
free charge density Q. This calculation can be performed by using the Poisson 
equation: 

v2 V = -~. (A.5) 
ErEO 

Poisson's equation is derived from Gauss's law of electrostatics: 

(A.6) 

We recall that the electric field strength is the gradient of the potential: 

e = -VV. (A.7) 

Equation A.5 follows directly by substituting for e in eqn A.6 using eqn A.7. 
Once we know V, we can then calculate 8 from eqn A.7. This approach is also 
useful when we are treating devices in which the potential across the device is 
fixed by an external voltage source. 

The response of a material to external magnetic fields is treated in a similar 
way to the response of dielectrics to electric fields. The magnetization M 
of the medium is proportional to the magnetic field strength H through the 
magnetic susceptibility XM: 

(A.8) 



The magnetic flux density B is related to Hand M through: 

B = fLo(H + M) 

= fLo(l + XM)H 

= fLOfLr H , 
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(A.9) 

where fLo is the magnetic penneability of the vacuum and fLr = 1 + XM is the 
relative magnetic permeability of the medium. 11-0 = 47r x 1O-7Hm- 1 in SI units. 

The laws that describe the combined electric and magnetic response of a 
medium are summarized in Maxwell's equations of electromagnetism: 

V·D=Q 

V·B=O 
aB 

VA€=--at 
aD 

VAH=j+-, at 

(A. 10) 

(A.ll) 

(A.12) 

(A.l3) 

where Q is the free charge density, and j is the cunent density. The first of these 
four equations is Gauss's law of electrostatics (eqn A.6) written in tenus of D 
rather than €. The second is the equivalent of Gauss's law for magnetostatics 
with the assumption that free magnetic monopoles do not exist. The third 
equation combines the Faraday and Lenz laws of electromagnetic induction. 
The fourth is a statement of Ampere's law, with the second term on the right 
hand side to account for the displacement cuncnt. 

The second Maxwell equation naturally leads to the concept of the vector 
potential. This is defined through the equation 

(A. 14) 

We see that the vector potential A automatically satisfies eqn A.II. because 
V· (V A A) = 0 for all A. However, this definition docs not define A uniquely. 
We can add any vector of the form V <p to A without changing B. This follows 
because 

V A (A + V({J) = V AA+ V A (V<p) = V AA. CA.lS) 

<per) can be any scalar function of r. For this reason, we have to give an 
additional definition, which specifies the gauge in which we are working. The 
Coulomb gauge is defined by 

V·A=O. (A.16) 

This gauge is a convenient one because it allows us to derive a simple rela­
tionship between € and A. By substituting for B in the third Maxwell equation 
(eqn A.12) using eqn A.14, we see that: 

The solution is 

V A€ = --(V AA) = VA --a . ( aA) 
at at 

aA 
€ = - - + constant, at 

(A. 17) 

(A.18) 
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where the constant is any vector whose curl is zero. If the scalar potential 
is V, then we can combine eqn A18 with eqn A7 by writing 

aA e=---vv. at (A.19) 

This works because V /\ VV = O. By taking the divergence of eqn A.19, we 
can recover Poisson's equation (A5) if we satisfy eqn A16, that is, if we are 
in the Coulomb gauge. The more general definition of e given in eqn A19 
reduces to eqn A.7 when the magnetic field does not vary with time, and to 

aA e=-­at (A20) 

when the static potential is constant throughout space. The vector potential in 
the Coulomb gauge is used in the semiclassical treatment of the interaction of 
light with atoms discussed in Section B.2 of Appendix B. 

A.2 Electromagnetic waves 

Maxwell was able to show that eqns AlO-Al3 were consistent with wave­
like solutions in a medium with no free charges or currents. To see this we first 
simplify eqns Al2 and Al3 by setting j = 0 and eliminating B and Dusing 
eqns A3 and A9. This gives: 

and ae 
V /\ H = EOEr - . at 

(A21) 

(A22) 

We then take the curl of eqn A21 and eliminate V /\ H using eqn A22. This 
gives: 

a2e 
V /\ (V /\ e) = J-LOJ-LrEOEr at2 . 

The left hand side can be simplified by using the vector identity 

(A23) 

(A24) 

Equation A6 with Q 

result: 
o tells us that V . e = O. Therefore we obtain the final 

a2e 
v2e = J-LOJ-LrEoEr -2- . at (A25) 

Equation A25 is of the same form as the wave equation: 

a2y 1 a2y 
ax2 = v2 at2' (A26) 

where v is the velocity of the wave. We therefore identify eqn A25 as describ­
ing electromagnetic waves with a phase velocity v given by 

I 
2 = J-LoJ-LrEOEr' 
v 

(A27) 



In free space Er = fl.r = I and the velocity of the wave is c, so we have: 

c = _1_ = 2.998 x Id~ m s-l. (A.28) 
vi fl.oEo 

At the same time, we see from eqns A.27 and A.28 that the velocity in a 
medium is given by 

v=---c . 
.jErfl.r 

(A.29) 

We define the refractive index n of the medium as the ratio of the velocity of 
light in free space to the velocity in the medium: 

c 
n =-. 

v 
At optical frequencies we can set fl.r = I, and thus conclude: 

n=.JE;. 

(A.30) 

(A.31) 

This allows us to relate the propagation constants of electromagnetic waves in 
a medium to the dielectric constant. 

The solutions to eqn A.25 are of the form 

8(z, t) = 80 ei(kz-wt) , (A.32) 

where 80 is the amplitude of the wave, z is the direction of propagation, k is 
the wave vector, and w is the angular frequency. The wave vector k is given by 

2rr w nw 
k = - = - = - , (A.33) 

A v C 

where A is the wavelength inside the medium. The first equality is the definition 
of k, the second follows by substitution of eqn A.32 into eqn A.25 with v given 
by eqn A.27, and the third follows from the definition of n given in eqn A.30. 

The energy flow in an electromagnetic wave can be calculated from the 
Poynting vector: 

(A. 34) 

This gives the power flow per unit area in W m- 2, which is equal to the 
intensity of the light wave. The intensity is defined as the energy crossing a 
unit area in unit time, and is therefore given by: 

1= vU v , (A.35) 

where v is the velocity of the wave and u v is the energy density per unit volume 
of the beam. 

The Poynting vector given by eqn A.34 can be evaluated easily for the 
case of plane waves. Consider a wave polarized along the x axis of angular 
frequency w propagating in the z direction. From eqn A.21 or A.22 we see 
that the magnetic field is perpendicular to the electric field. 8 and H therefore 
form a right handed system as depicted in Fig. A.l. Hence the components of 
the wave must satisfy: 

Ex (z, t) = E xO ei(kz--M) 

Ey(z,t)=O 

Hx(z, t) = 0 

Hy(z, t) = Hyoei(kz-wt). (A.36) 
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The use of complex solutions of the type 
given in Eq. A.32 simplifies the mathemat­
ics and is used extensively throughout this 
book. Physically measurable quantities are 
obtained by taking the real part of the com­
plex wave. 



260 Electromagnetism in dielectrics 

z 

........ 

Fig. A.I The electric and magnetic fields of 
an electromagnetic wave fonn a right handed 
system. The figure shows the directions of the 
fields in a wave polarized along the x axis and 
propagating in the z direction. 

Z has a value of 377 Q in free space. 

On substituting these fields into eqn A21, we find that: 

and hence that 

where 

k e xO = fJ-ofJ-rW Hyo , 

exo 
Hyo=­

Z 

Z _ k _ JfJ-OfJ-r _ I 
- fJ-OfJ-rw - 60er - CEon . 

(A37) 

(A38) 

(A.39) 

The second equality in eqn A39 follows from eqns A.33 and A.27, while the 
third follows from Eq. A.28 and A.31 with Mr = 1. The quantity Z is called the 
wave impedance. On substituting eqns A36-A39 into eqn A34, we obtain: 

(AAO) 

where (e(t)2)rms represents the root-mean-square time average. This shows 
that the intensity of a light wave is proportional to the square of the amplitude 
of the electric field. The relationship can be generalized for all light waves 
irrespective of the particular polarization of the beam. 

Tn many topics covered in this book, it will be necessary to treat the refrac­
tive index as a complex number. A well-known example of how such a situation 
arises occurs when treating the propagation of electromagnetic waves through 
a conducting medium such as a metal. In a conductor, the current density is 
related to the electric field through the electrical conductivity a according to: 

j =a8. (A.41) 

Using this relationship to substitute for j in eqn A13, and eliminating D, Band 
H in the same way that led to eqn A.25, we obtain: 

(A42) 

We now look for plane wave solutions of thc type given by eqn A32. Substi­
tution of eqn A.32 into eqn A42 gives: 

k2. + 2 = 1 a fJ-ofJ-rW MOfJ-rEoErW, (A.43) 

This can be made compatible with the usual relationship between W and k given 
in eqn A.33 by allowing n to be a compJex number. The complex refractive 
index is usually written ii, and is defined by 

_W 
k=n-. 

c 
(AA4) 
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By combining eqns A.43 and A.44 we obtain: 

-2 J.tr(1 . 
n = --t + J.t,€" 

€Oli) 
(A.45) 

where we have made use of eqn A.28. This of course reduces to eqn A.31 if 
we set (1 = 0 and fLr = 1. The physical significance of the complex refractive 
index implied by eqn A.45 is developed in more detail in Section 1.3. 

The Maxwell equations also allow us to treat the transmission and reflection 
of light at an interface between two materials. This situation is depicted in 
Fig. A.2. Part of the beam is transmitted into the medium and the rest is 
reflected. The solution for an arbitrary angle of incidence was treated by Fres­
nel, and the resulting formulre are known as Fresnel's equations. We restrict 
ourselves here to the simpler case when the angle of incidence is zero: that is, 
normal incidence. 

We consider again an x-polarized light beam propagating in the z direction, 
with the field directions as shown in Fig. A.I. The electric and magnetic fields 
are given by eqn A.36. The beam is incident on a medium with complex 
refractive index ii. The fields are related to each other through eqn A,38, with 
Z given by eqn A.39, although we now have to allow for the possibility that n 
may be complex. 

The boundary conditions at the interface between two dielectrics tell us that 
the tangential components of the electric and magnetic fields are continuous. 
Applying this to the situation shown in Fig. A,2, we must have that both £ x 

and Hy are conserved across the boundary. Hence we can write: 

(A.46) 

and 
fl; - H; = H;, (A.47) 

where the superscripts i, rand t refer to the incident, reflected and transmitted 
beams rcspectively. By making use of the relationship between the magnetic 
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Fig, A.2 Transmission and reflection of light 
at an interface between air and a medium of 
refractive index ii. The incident, transmitted 
and reflected rays are shown displaced from 
each other for clarity. All rays are normal to 
the interface. The symbol 8 for the magnetic 
fields of the incident and transmitted rays 
indicates that the field direction is out of the 
page, while the symbol 0 for the reflected 
wave indicates that the field is pointing in to 
the page. 

It is shown in Chapter 7 that eqn A.4 5 is only 
valid at low frequencies. This is because the 
AC conductivity at higb frequencies is not 
the same as the DC conductivity that enters 
eqn A.4l. 
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and electric fields given in eqns A.38-A.39, we can rewrite eqn A.47 as: 

oi or - ot 
u x - U x = nux' (A. 48) 

where we have assumed that the light is incident from air with ii = 1 and that 
f.ir = I at the optical frequencies of interest here. Equations A.46 and A.48 
can be solved together to obtain 

S~ it-I 
Sir = it + l' (AA9) 

This can be rearranged to obtain the required result for the reflectivity R: 

R = 1 ~t 12 = 1 ~ ~ ~ 12 (A. 50) 

This formula is used in many examples throughout the book. 

Further reading 

The subject matter of this appendix is standard electromagnetism, and there are 
numerous books on the market that cover the material, for example: Bleaney 
and Bleaney (1976), Duffin (1990), Good (1999), Grant and Phillips (1990), 
Lorrain, Corson and Lorrain (1988). The subject is also covered in many optics 
text books such as Hecht (1998) or Born and Wolf (1999). 


