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1 Introduction 

 
From what we have learned about transport, we know that there 

is no such thing as an ideal (ρ   = 0) conventional conductor. 

All materials have defects and phonons (and to a lessor degree 

of importance, electron-electron interactions). As a result, from 

our basic understanding of metallic conduction ρ must be finite, 

even at T = 0. Nevertheless many superconductors, for which 

ρ = 0, exist. The first one Hg was discovered by Onnes in 

1911.   It becomes superconducting for T  < 4.2
◦
K .  Clearly this 

superconducting state must be fundamentally different than the 

”normal” metallic state. I.e., the superconducting state must 

be a different phase, separated by a phase transition, from the 

normal state. 

 
1.1 Evidence of a Phase Transition 

 
Evidence of the phase transition can be seen in the specific heat 

(See Fig. 1). The jump in the superconducting specific heat Cs 

indicates that there is a phase transition without a latent heat 

(i.e. the transition is continuous or second order). Furthermore, 
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Figure 1: The specific heat of a superconductor CS and and normal metal Cn. Below 

the transition, the superconductor specific heat shows activated behavior, as if there is 

a minimum energy for thermal excitations. 

the activated nature of C for T < Tc 
 

Cs ∼ e
−β∆ (1) 

gives us a clue to the nature of the superconducting state. It is 

as if excitations require a minimum energy ∆. 

 
1.2 Meissner Effect 

 
There is another, much more fundamental characteristic which 

distinguishes the superconductor from a normal, but ideal, con- 

ductor. The superconductor expels magnetic flux, ie., B = 0 

Cn  T 

C
S
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within the bulk of a superconductor. This is fundamentally dif- 

ferent  than  an  ideal  conductor,  for  which  Ḃ 

closed path 

= 0 since for any 

 

 
 

Figure 2: A closed path and the surface it contains within a superconductor. 
 

0 = IR = V  = 

I  

E ·dl = 

∫

 
 

 

∇ ×E ·dS = −
1 

∫

 
 

 

∂B 

∂t 
·dS ,  (2) 

 

or, since S and C are arbitrary 
 

0 = 
1
Ḃ 

c 
· S ⇒  Ḃ  = 0 (3) 

 

Thus, for an ideal conductor, it matters if it is field cooled or 

zero field cooled. Where as for a superconductor, regardless 

of the external field and its history, if T < Tc, then B = 0 

inside the bulk. This effect, which uniquely distinguishes an 

ideal conductor from a superconductor, is called the Meissner 

effect. 

S S 

Superconductor 

S 

C 
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Figure 3: For an ideal conductor, flux penetration in the ground state depends on 

whether the sample was cooled in a field through the transition. 

For this reason a superconductor is an ideal diamagnet. I.e. 
 
 

B = µH = 0 µ = 0 M = χH = 
µ −  1

H (4) 
4π 

1 
χSC = −

4π 
(5) 

Ie., the measured χ, Fig. 4, in a superconducting metal is very 

large and negative (diamagnetic). This can also be interpreted 
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Figure 4: LEFT: A sketch of the magnetic susceptibility versus temperature of a su- 

perconductor. RIGHT: Surface currents on a superconductor are induced to expel the 

external flux. The diamagnetic response of a superconductor is orders of magnitude 

larger than the Pauli paramagnetic response of the normal metal at T > TC 

as the presence of persistent surface currents which maintain a 

magnetization of 
1 

M = −
4π 

Hext (6) 

in the interior of the superconductor in a direction opposite 

to the applied field. The energy associated with this currents 

increases with Hext. At some point it is then more favorable 

(ie., a lower free energy is obtained) if the system returns to a 

normal metallic state and these screening currents abate. Thus 

there exists an upper critical field Hc 

js 

M 
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Figure 5: Superconductivity is destroyed by either raising the temperature or by ap- 

plying a magnetic field. 

2 The London Equations 

 
London and London derived a phenomenological theory of su- 

perconductivity which correctly describes the Meissner effect. 

They assumed that the electrons move in a frictionless state, so 

that 

 

 

 

or, since ∂j 

 
= −ensv̇ , 

mv̇ = − eE (7) 

 

 

∂js =
 

∂t 

e2ns 

m  
E (First London Eqn.) (8) 

Normal 

S.C. 
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n e 

c 

c 

L 

c ∂t 

 
 

Then, using the Maxwell equation 
 

1 ∂B m ∂js 1 ∂B 
∇  × E = −  

c
 

or 

∂t 
⇒

 

nse2 
∇  × + 

∂t c 
= 0 (9) 

∂t 

∂ m 

∂t nse2 
∇  × js + 

1
B = 0 (10) 

c 

This described the behavior of an ideal conductor (for which 

ρ = 0), but not the Meissner effect. To describe this, the 

constant of integration must be chosen to be zero. Then 

nse
2 

∇  × js = −  B (Second London Eqn.) (11) 
mc 

or defining λL = m
2 , the London Equations become 

s 

B 

c  
= −λL ∇  × js E = λ 

∂js 
L ∂t 

(12) 

If we now apply the Maxwell equation ∇ ×H = 4π j ⇒  ∇ ×B = 
 

4πµj then we get 

4π 

 

4πµ 
 
 

and 

∇  × (∇  × B) = 
c 

µ∇  × j = −
c2λ

 B (13) 

1 
∇  × (∇  × j) = −

λ
 

4πµ 

c
∇  × B = −

c2λ
 j (14) 

or since ∇  · B = 0, ∇  · j = 1 ∂ρ = 0 and ∇  × (∇  × a) = 
 

∇ (∇  · a) −  ∇ 2a we get 

L 

L 
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SC 

j 

q
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 . 
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q
=

 

2 2 

 
 

 

∇  B − 
4πµ 

c2λL 
B = 0 ∇  j − 

4πµ 

c2λL 
j = 0 (15) 
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Figure 6: A superconducting slab in an external field. The field penetrates into the 

slab a distance ΛL 
 

 

   mc2  

4πne2µ 

 

Now consider a the superconductor in an external field shown 

in Fig. 6. The field is only in the x-direction, and can vary in 

space only in the z-direction, then since ∇  × B = 4πµj, the 

current is in the y-direction, so 

∂2Bx 

∂z2 
−
 

4πµ 

c2λL 

 

Bx = 0 
∂2jsy 

∂z2 
−
 

4πµ 

c2λL 

 

jsy = 0 (16) 

with the solutions 
 B 

 
= B0e

−  z

 

 
 j = j 

 
e
−  z 

 

 

 
 (17) 

x x 
ΛL Λ sy sy 

 
 

c2λL 
L 4πµ 

 
 

mc2 

4πne2µ 
is the penetration depth. 

L 

q
=

 Λ 
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3 Cooper Pairing 

 
The superconducting state is fundamentally different than any 

possible normal metallic state (ie a perfect metal at T = 0). 

Thus, the transition from the normal metal state to the super- 

conducting state must be a phase transition. A phase transition 

is accompanied by an instability of the normal state. Cooper 

first quantified this instability as due to a small attractive(!?) 

interaction between two electrons above the Fermi surface. 

 
3.1 The Retarded Pairing Potential 

 
The attraction comes from the exchange of phonons. The lat- 

 e 
ions 

e-  
   


8 

F 
10 cm/s 



region of 

positive charge 

attracts a second 

electron 

  







Figure 7: Origin of the retarded attractive potential. Electrons at the Fermi surface 

travel with a high velocity vF . As they pass through the lattice (left), the positive ions 

respond slowly. By the time they have reached their maximum excursion, the first 

electron is far away, leaving behind a region of positive charge which attracts a second 

electron. 

 
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tice deforms slowly in the time scale of the electron. It reaches 

its maximum deformation at a time τ ∼ 2π ∼ 10
−13s after the 

 

electron has passed. In this time the first electron has traveled 

∼ vF τ ∼ 108 cm · 10
−13s ∼ 1000 A

◦ 
.  The positive charge of 

 

the lattice deformation can then attract another electron with- 

out feeling the Coulomb repulsion of the first electron. Due 

to retardation, the electron-electron Coulomb repulsion may be 

neglected! 

The net effect of the phonons is then to create an attrac- 

tive interaction which tends to pair time-reversed quasiparticle 

states. They form an antisymmetric spin singlet so that the 

 
 
 

 

  1000








- k


Figure 8: To take full advantage of the attractive potential illustrated in Fig. 7, the 

spatial part of the electronic pair wave function is symmetric and hence nodeless. To 

obey the Pauli principle, the spin part must then be antisymmetric or a singlet. 

 

spatial part of the wave function can be symmetric and nodeless 

k
e

e
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and so take advantage of the attractive interaction. Further- 

more they tend to pair in a zero center of mass (cm) state so 

that the two electrons can chase each other around the lattice. 

 
3.2 Scattering of Cooper Pairs 

 
This latter point may be quantified a bit better by considering 

two electrons above a filled Fermi sphere. These two electrons 

are attracted by the exchange of phonons. However, the max- 

imum energy which may be exchanged in this way is ∼ h̄ωD. 
 

Thus the scattering in phase space is restricted to a narrow 
 

shell  of  energy  width  h̄ωD. Furthermore,  the  momentum  in 
 
 
 

 

E  k
2
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9: Pair states scattered by the exchange of phonons are restricted to a narrow 

scattering  shell  of  width h̄ωD  around  the  Fermi  surface. 
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this scattering process is also conserved 
 

k1 + k2 = k
′

1  + k
′

2  = K (18) 

Thus the scattering of k1 and k2 into k
′

1  and k
′

2  is restricted to 

the overlap of the two scattering shells, Clearly this is negligible 

unless K ≈ 0.   Thus the interaction is strongest (most likely) 

if k1 = − k2 and ς1 = − ς2; ie., pairing is primarily between 

time-reversed eigenstates. 

 

scattering shell 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10: If the pair has a finite center of mass momentum, so that k1 + k2 = K, 

then there are few states which it can scatter into through the exchange of a phonon. 

k
1

 -k 
2 

K 
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3.3 The Cooper Instability of the Fermi Sea 

 
Now consider these two electrons above the Fermi surface. They 

will obey the Schroedinger equation. 
h̄2 2  2 

 

−
2m

(∇ 1 + ∇ 2)ψ(r1r2) + V (r1r2)ψ(r1r2) = (ϵ  + 2EF )ψ(r1r2) 
(19) 

 

If V = 0, then ϵ = 0, and 
 

ψV =0 

1 
= 

L3/2 
eik1·r1 

1 
L3/2 

eik2·r2   = 
1 
L3 

eik(r1− r2), (20) 

where we assume that k1 = − k2 = k. For small V, we will 

perturb around the V = 0 state, so that 

ψ(r1 r  ) =  
 1  

g(k)eik·(r1−r2) (21) 
2 L3 

k 

The sum must be restricted so that 

h̄2k2 
EF  < 

2m 
< EF  + h̄ωD (22) 

 

this may be imposed by g(k), since |g(k)|2  is the probability of 

finding an electron in a state k and the other in − k. Thus we 

take 
g(k) = 0 for 

 k   < kF   
(23) 

 
 

 

  k > 
√

2m(E +h̄ωD) 
h̄ 
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⇒

 

Σ 

− 

− 

0 2m 2m 

 

 
 

The Schroedinger equations may be converted to a k-space 

equation by multiplying it by 

 1  
d3r e

− ik′ · r S.E. (24) 
L3 

 

so that 

h̄2k2  1  
g(k) + 

m L3 
k′ 

where 

 
g(k

′
)Vkk′ = (ϵ  + 2EF )g(k) (25) 

Vkk′ = 

∫  

V (r)e− i(k −k′)·rd3r (26) 

now  describes  the  scattering  from  (k, −k)  to  (k
′
, −k

′
).    It  is 

usually approximated as a constant for all k and k
′
 which obey 

the Pauli-principle and scattering shell restrictions 

−V E <  h̄
2k2 

, h̄
2k′2   

< E + h̄ω 

0 otherwise 

so 

h̄2k2 
—  

m 
+ ϵ + 2EF 

or 

 

g(k) =  
V0 

L3 

Σ

k′

 

g(k′) ≡  −A (28) 

g(k) =
  A 

 
h̄2k2 

 
 

 
(i.e. for EF 

 

h̄2k2 
2m 

 
< EF 

 
+ h̄ωD) 

—  m + ϵ + 2EF 
(29) 

Vkk′ = 
F F D 

. (27) 

< 
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F 

L3 

2
V0Z(EF ) ln 

→ 

(33) 

 
 

Summing over k 

V0 Σ A  
 

 

 

 

 
= +A (30) 

L3 h̄2k2 
k m 

or 

—  ϵ −  2EF 

1 = 
V0

 

Σ 1  
 

  
  

(31) 

This may be converted to a density of states integral on E = 
h̄2k2 

 

2m 
 

 
1 = V0 

EF +h̄ωD 

 
EF 

1 

  dE  
Z(EF )

2E −  ϵ −  2E 
 

ϵ  − 2h̄ωD 
 

 
 

 

 

 

 

(32) 
 
 
 

ϵ  = 
2h̄ωD 

1 −  e2/(V0Z(EF )) 
' −2h̄ωD e− 2/(V0Z(EF )) < 0, as 

V0 0 
EF 

(34) 
 
 
 

4 The BCS Ground State 

 
In the preceding section, we saw that the weak phonon-mediated 

attractive interaction was sufficient to destabilize the Fermi sea, 

and promote the formation of a Cooper pair (k ↑ , −k ↓ ).   The 

scattering 

ϵ 

F —  ϵ −  2E h̄2k2 

m k 

∫ 

1 = 
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Σ 

 
 
 

 

(k ↑ , −k ↓ ) → (k
′
 ↑ , −k

′
 ↓ ) (35) 

yields an energy V0 if k and k′ are in the scattering shell EF  < 

Ek, Ek′ < EF  + h̄ωD.    Many electrons can participate in this 

process and many Cooper pairs are formed, yielding a new state 

(phase) of the system. The energy of this new state is not just 

N ϵ less than that of the old state, since the Fermi surface is 

renormalized by the formation of each Cooper pair. 

 
4.1 The Energy of the BCS Ground State 

Of course, to study the thermodynamics of this new phase, it is 

necessary to determine its energy. It will have both kinetic and 

potential contributions. Since pairing only occurs for electrons 

above the Fermi surface, the kinetic energy actually increases: 

if wk is the probability that a pair state (k ↑ , −k ↓ ) is occupied 

then 

Ekin = 2 
k 

wkξk, ξk = 
h̄2k2 

2m 
−  EF (36) 

The potential energy requires a bit more thought. It may be 

written in terms of annihilation and creation operators for the 
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k k 

Y 

2 

    

k 

 
 

pair states labeled by k 
 

|1⟩ k (k ↑ , −k ↓ )occupied (37) 

|0⟩ k (k ↑ , −k ↓ )unoccupied (38) 
 

or 

|ψk ⟩  = uk |0⟩ k + vk |1⟩ k (39) 
 

where v2 = wk and u2 = 1 −  wk. Then the BCS state, which 
 

is a collection of these pairs, may be written as 
 

|φBCS ⟩  ' {uk |0⟩ k + vk |1⟩ k} . (40) 
k 

We will assume that uk, vk ∈  ঩. Physically this amounts to 

taking the phase of the order parameter to be zero (or π), so 

that it is real. However the validity of this assumption can only 

be verified for a more microscopically based theory. 

By the Pauli principle, the state (k ↑ , −k ↓ ) can be, at most, 

singly occupied, thus a (s = 1) Pauli representation is possible 
 

1 

|1⟩ k = 
0

 

0 

|0⟩ k = 
1

 (41) 

 

Where ς+ and ςk
− , describe the creation and anhialation of the 

k k 
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k k 

+ 

L3 k′ k 

k 

k 

 
 

state (k ↑ , −k ↓ ) 

ς+ = 1(ς1 + iς2) = 
0 1

 

 

 (42) 

k 2 k k 
0 0

 

ς− = 1(ς1 −  iς2)  = 
0 0

  (43) 

k 2 k k 
1 0

 

Of course ς+ 
0

 

= 
1

 

k 
1

 
0

 

ς+ |1⟩  = 0 ς+ |0⟩  
k 

= |1⟩ k (44) 

ςk
− |1⟩ k = |0⟩ k ςk   |0⟩ k =   0 (45) 

 

The  process  (k  ↑ , −k  ↓ )  →  (k
′
 ↑ , −k

′
 ↓ ),  if  allowed,  is 

associated with an energy reduction V0. In our Pauli matrix 

representation this process is represented by operators ς+ς
−
, 

k′  k 

so 

V = − 
V0

 

Σ 
ς+ς−  

 

 

 
(Note that this is Hermitian) (46) 

kk′ 
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Σ 

Σ
= 2  v  ξ 

Σ 

k k 

L3 

L3 

L3 
p kk′ 

BCS BCS p p k k′ 

1 

 
 

Thus the reduction of the potential energy is given by ⟨ φBCS |V | φBCS ⟩  

⟨ φ |V | φ ⟩  = − 

( 

(u  ⟨ 0| + v  ⟨ 1|) ς+ς
−
 

V0 
Y Σ 

 

Y  
up′ |0⟩ p′ + vp′ |1⟩ p′

 
 

(47) 

p′ 
 

 

Then as k ⟨ 1|1⟩ k ′ = δkk ′ , k ⟨ 0|0⟩ k ′ = δkk ′ and k ⟨ 0|1⟩ k ′ = 0 
 

⟨ φBCS |V | φ 
 
BCS 

V0 
⟩  = −

L3
 vk 

kk ′ 

uk ′ uk vk ′ (48) 

Thus, the total energy (kinetic plus potential) of the system of 

Cooper pairs is 

WBCS 
2 V0 
k k −  

L3
 

k 

vk 

kk ′ 

uk ′ uk vk ′ (49) 

As yet vk and uk are unknown. They may be treated as 
 

variational parameters. Since wk = v2 

may impose this constraint by choosing 

and 1 −  wk = u2, we 

 

vk = cos θk, uk = sin θk (50) 
 

At T = 0, we require WBCS to be a minimum. 

WBCS = 
Σ

k 2ξk cos2 θk −  
V0

 

Σ
kk ′ cos θk sin θk ′ cos θk ′ sin θk 

 

= 
Σ

k

 2ξk cos2 θk −  
V0

 Σ
kk ′ 4  sin 2θk sin 2θk ′ (51) 
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Σ 

− 
Σ 

k 

L3 

2 

k 

k k 2 Ek 2 ξ2 + ∆2 

Σ Σ 

 
 

∂WBCS 
 

∂θk 
= 0 = − 4ξk cos θk sin θk 

V0 
−
L3

 cos 2θk 
k ′ 

sin 2θk ′ (52) 

ξk tan 2θk = 
1 V0 

2 L3 
sin 2θk 

k ′ 

′  (53) 

Conventionally, one introduces the parameters Ek = 
√

ξ2 + ∆2, ∆ = 

V0 

L3 k 
ukvk = V0 cos θk sin θk. Then we get    

k 

∆ 
ξk tan 2θk = −∆  ⇒  2ukvk = sin 2θk = (54) 

Ek 
cos 2θ = 

− ξk 
 

 

= cos2 θ 2 2 2 —  sin θ = v −  u = 2v −  1 (55) 
k 

Ek
 k k k k k 

w = v2 = 
1  

  

1 −  
− ξk  

       

= 
1  

  

1 −  √ 
ξk

 
 

 

! 

(56) 
 
 

 If we now make these substitutions 
  

2ukvk = ∆ , v2 

= 1   
  

1 −  ξk  

   

 
w = v 2 

T = 0 

Ek k 2 Ek 

k k clearly kinetic 
energy increases 

1 
 
 
 
 
 
 

 

 
 = -E + 

F 

h
2 
k

2 

2m 
 

Figure 11: Sketch of the ground state pair distribution function. 

k 

0 
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Σ 

Σ 

2 

− 

 
 

into WBCS, then we get 

 
WBCS = ξk 

k 

 
1 

ξk 

Ek 

 

L3 

—  
V0

 

 
 

∆2. (57) 

 

Compare this to the normal state energy, again measured 

relative to EF 

Wn = 
k<kF 

or 

2ξk (58) 

WBCS  −  Wn 
 

 

 1 Σ ξk

 
∆2 

 
 

 

L3 
= −

L3
 

1 
 

 

ξk 1 + 
k k 2 

— 
V0

 (59) 

≈ −
2

Z(EF )∆ < 0. (60) 
 

So the formation of superconductivity reduces the ground state 

energy. This can also be interpreted as ∆Z(EF ) electrons pairs 

per and volume condensed into a state ∆ below EF . The aver- 

age energy gain per electron is ∆. 

 
4.2 The BCS Gap 

 
The gap parameter ∆ is fundamental to the BCS theory. It tells 

us both the energy gain of the BCS state, and about its excita- 

tions. Thus ∆ is usually what is measured by experiments. To 

E 

  



25  

k 
2

 
  

k 

k 

k 

Σ
∆E  = −  2v  

E 

Σ
+  2v  E ′k 

2

  F

m 

Ek 

k 

 
 

see this consider 
 

WBCS = 
Σ 

2ξ 
1 

  

1 −  
ξk

 
 

 

 
L3∆2 

—  
V0

 

 
 

(61) 

↓  Lots of algebra (See I&L) 

WBCS = −  
Σ 

2Ekv
4 

 

(62) 
 

Now recall that the probability that the Cooper state (k ↑ , k ↓ ) 

was occupied, is given by wk = v2. Thus the first pair breaking 

excitation takes v2
′ = 1 to v2

′ = 0, for a change in energy 
k k 

k

 

-k


w = v2 = 1 

 
e





e 

v
2 

= 0 
k k k

Figure 12: Breaking a pair requires an energy 2
√

ξ2 + ∆2 ≥ 2∆ 
 

 
4 
k k 

k/=k ′ 

 
4 k = 2Ek 

k 

′  = 2
q

ξ2 
 
+ ∆2 (63) 

Then since ξk ′ = h̄2k ′2  
− E   , the smallest such excitation is just 

∆Emin = 2∆ (64) 

k 
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k 

k — E 

 
 

superconductor 

 
 

normal 
metal 

 
 

This is the minimum energy required to break a pair, or create 

an excitation in the BCS ground state. It is what is measured 

by the specific heat C ∼ e
−β2∆ for T < Tc. 

Now consider some experiment which adds a single electron, 

or perhaps a few unpaired electrons, to a superconductor (ie 

tunneling). This additional electron cannot find a partner for 

 
 
 
 
 
 

Figure 13: 
 

pairing.  Thus it must enter one of the excited states discussed 

above. Since it is a single electron, its energy will be 

Ek = 
q

ξ2 + ∆2 (65) 

For ξ2   ∆, Ek = ξk = h̄2k ′2 
 

2m F , which is just the energy of 

a normal metal state. Thus for energies well above the gap, the 

normal metal continuum is recovered for unpaired electrons. 
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k 
k 

 
 

To calculate the density of unpaired electron states, recall 

that the density of states was determined by counting k-states. 

These are unaffected by any phase transition. Thus it must be 

that the number of states in d3k is equal. 

kz 

 
 
 
 
 
 
 

 

k
x
 

 

Figure 14: The number of k-states within a volume d3k of k-space is unaffected by 

any phase transition. 

Ds(Ek)dEk  = Dn(ξk)dξk (66) 

In the vicinity of ∆ ∼ ξk, Dn(ξk) ≈ Dn(EF ) since |∆|   EF 

(we shall see that ∆ ≤ 2wD). Thus for ξk ∼ ∆ 

Ds(Ek) 
 

 

Dn(EF ) 
= 

dξx 

dEk 

  d 
= 

dEk 

q
E2 −  ∆2 = 

Ek 
√

E2 −  ∆2 

 
Ek > ∆ 

(67) 
 
 

 

Given the experimental and theoretical importance of ∆, it 

d 
3
k 

k
y
 

 
3 

L 
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1 Ds   Dn 

Σ Σ Σ 

k 

∆ 

= 
) √

ξ
 (71) 

2 

∫ 

 
 

E 

 
 
 
 
 
 
 

Density of additional 

 electron states only! 

 
 
 
 

 

Figure 15: 
 

should be calculated. 
 

∆  = 
V0

 

L3 
sin θk 

k 

cos θk = 
V0 

L3 ukvk 
k 

= 
V0 

L3 

  ∆ 

2Ek 
k 

 

(68) 

∆  = 
1 V0 

2 L3 

Σ

k 

√
 ∆ 

ξ2 + ∆2 

 

(69) 

Convert this to sum over energy states (at T = 0 all states with 

ξ < 0 are occupied since ξk = h̄2k2 
 

2m 
—  EF ). 

∆ = 
V0 

∆ 
2 

h̄ωD 

 
− h̄ωD 

Z(EF + ξ)dξ 
√

ξ2 + ∆2 
(70) 

  1  
∫
 

 

    

h̄ωD   dξ  
 

 

 
 

  1  

V0Z(EF ) 
= sinh−1 

 
h̄ωD 

  

(72) 

+ ∆ 2 F Z(E 0 V 0 
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− 

 
 

For small ∆,  
h̄ωD 

 
 

∆ 

 
 

  1  

∼ eV0Z(EF ) (73) 

∆   ' h̄ωD 
  1  

e V0Z(EF ) (74) 
 
 
 
 

 
 

Figure 16: 
 
 
 

5 Consequences of BCS and Experiment 

 
5.1 Specific Heat 

 
As mentioned before, the gap ∆ is fundamental to experiment. 

The simplest excitation which can be induced in a supercon- 

ductor has energy 2∆. Thus 

∆E ∼ 2∆e−β2∆ T       Tc (75) 

sinh x 

 e
x
 

x 
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h

microwave 

∼ 

 
 

∂∆E ∂β ∆2   
− β2∆ 

 

C 
∂β ∂T 

∼
 T 2 

e 
(76) 

 

5.2 Microwave Absorption and Reflection 

 
Another direct measurement of the gap is reflectivity/absorption. 

A phonon impacting a superconductor can either be reflected 

or absorbed.  Unless h̄ω > 2∆, the phonon cannot create an ex- 

citation and is reflected.  Only if h̄ω  > 2∆ is there absorption. 

Consider a small cavity within a superconductor. The cavity 

has a small hole which allows microwave radiation to enter the 

cavity. If h̄ω <  2∆  and  if  B  <  Bc,  then  the  microwave  in- 
 

superconductor I
s 
- I

n 

I
n

 

 
 

B=0 

cavity 
 

10 

 
 
 

 

h

h = 2

B 

 
 

Figure  17:   If  B  >  Bc  or  h̄ω  >  2∆,  then  absorption  reduces  the  intensity  to  the 

normal-state value I = In. For B = 0 the microwave intensity within the cavity is 

large so long as h̄ω < 2∆ 
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√ 

 
 

tensity  is  high  I  =  Is. On  the  other  hand,  if h̄ω >  2∆  ,or 
 

B > Bc, then the intensity falls in the cavity I = In due to 

absorbs ion by the walls. 

Note that this also allows us to measure ∆ as a function of 

T . At T = Tc, ∆ = 0, since thermal excitations reduce the 

number of Cooper pairs and increase the number of unpaired 

electrons, which obey Fermi-statistics. The size of (Eqn. 71) is 

k








-k

e

kT  2







e


Figure 18: 

 
 

only effected by the presence of a Cooper pair . The probabil- 

ity that an electron is unpaired is f
 √

ξ2 + ∆2 + EF , T
 
= 

 

exp β 
1 
ξ2+∆2+1 

so, the probability that a Cooper pair exists is 
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In Pb 
Sn 

 
  Real SC 

√ 

T 

    ∫ 

 

1 −  2f 
 √

ξ2 + ∆2 + EF , T 
  

. Thus for T /= 0 

  1  
∫
 
 

h̄ωD   dξ , 
 

 

 √  , 
= 

V0Z(EF ) 0 
√

ξ2
 

+ ∆2 
1 −  2f ξ2 + ∆2 + EF , T 

(77) 
 

 

Note that as ξ2 + ∆2 ≥ 0, when β → ∞ we recover the 

T = 0 result. 

This equation may be solved for ∆(T ) and for Tc. To find Tc 
 
 

(T) 

(0) 

data (reflectivity) 
 
 
 
 
 

1 
T/Tc 

 

Figure 19: The evolution of the gap (as measured by reflectivity) as a function of tem- 

perature. The BCS approximation is in reasonably good agreement with experiment. 

 

consider this equation as T 
c 
→ 1, the first solution to the gap 

equation, with ∆ = 0+, occurs at T = Tc. Here 

  1  

V0Z(EF ) 

h̄ωD 

= 
0 

dξ 
tanh 

ξ 

  ξ  

2kBTc 

 

(78) 

which may be solved numerically to yield 
 

1 = V0 Z(EF ) ln 
1.14h̄ωD 

kBTc 
(79) 
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M 
∼ 2 D 

 
 

kBTc = 1.14h̄ωDe
−1/{V0Z(EF )} (80) 

but recall that ∆   = 2h̄ωDe
−1/{V0Z(EF )}, so 

 

∆(0) 
 

 

kBTc 

2 
= 

1.14 
= 1.764 (81) 

 
 

 

metal Tc
◦K Z(EF )V0 ∆(0)/kBTc 

Zn 0.9 0.18 1.6 

Al 1.2 0.18 1.7 

Pb 7.22 0.39 2.15 
 

Table 1:  Note that the value 2.15 for ∆(0)/kBTc for Pb is higher than BCS predicts. 

Such systems are labeled strong coupling superconductors and are better described by 

the Eliashberg-Migdal theory. 

 
 
 
 

5.3 The Isotope Effect 

Finally, one should discuss the isotope effect. We know that 

Vkk ′ , results from phonon exchange.    If we change the mass of 

one of the vibrating members but not its charge, then V0N (EF ) 

etc are unchanged but 

ω ∼ 

r 
k

 M −
1 
. (82) 
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∼ 2 

 
 

Thus Tc M 
− 1 

. This has been confirmed for most normal 
 

superconductors, and is considered a ”smoking gun” for phonon 

mediated superconductivity. 

 
6 BCS  ⇒  Superconducting  Phenomenology 

Using Maxwell’s equations, we may establish a relation between 

the critical current and the critical field necessary to destroy the 

superconducting state. Consider a long thick wire (with radius 

r0 ΛL) and integrate the equation 

 
 
 

j = j e
(r - r

0 
)/

L 
0 

H 


j 
0 

 
 
 
 
 
 

 


L 

 

Figure 20: Integration contour within a long thick superconducting wire perpendicular 

to a circulating magnetic field. The field only penetrates into the wire a distance ΛL. 

 

∇  × H = 
4π 

j (83) 
c 

H 


S 
r0 

   

d l 
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c 

√ 

4πΛ 

n 
8π c 

 
 

along the contour shown in Fig. 20. 
∫ 

∇  × HdS = 

∫ 

H · dl = 
4π 

∫ 

j · ds (84) 

 

2πr0H = 
4π 

c 
2πr0ΛLj0 (85) 

If j0 = jc (jc is the critical current), then 
 

 

Hc = 
4π 

c 
ΛLjc (86) 

Since both Hc and jc ∝  ∆, they will share the temperature- 

dependence of ∆. 

At T = 0, we could also get an expression for Hc by noting 

that, since the superconducting state excludes all flux, 

 1  
(W −  W ) = 

 1 
H2 (87) 

 

However, since we have earlier 
 

 
 
 

we get 

 1  

L3 
(Wn —  WBCS) = N (0)∆2, 

2 

 

(88) 

 
 

Hc = 2∆ πN (0) (89) 
 

We can use this, and the relation derived above jc =    c Hc, 
L 

L3 BCS 

1 
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√ 

F mc2  
2∆ = 2∆ 

h̄kF 

F 

 
 

to get a (properly derived) relationship for jc. 

j =
 c 

2∆ πN (0) (90) 
c 4πΛL 

 

However, for most metals 
 

n 
N (0) ' 

E
 

 

 
(91) 

 
 

 

 

 
taking µ = 1 

ΛL = 
mc2 

4πne2µ 
(92)

 

c  
r

4πne2 
s

πn2m √ ne 

  
 

This gives a similar  result to what Ibach  and Lüth  get,  but 

for a completely different reason. Their argument is similar to 

one originally proposed by Landau. Imagine that you have a 

fluid which must flow around an obstacle of mass M . From the 

perspective of the fluid, this is the same as an obstacle moving 

in it. Suppose the obstacle makes an excitation of energy ϵ and 

momentum p in the fluid, then 

E ′ = E − ϵ P′ = P − p (94) 

or from squaring the second equation and dividing by 2M 

h̄2k2 4π 

s 

jc = (93) 
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P 

v = P/M 
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  v  

 

 

Figure 21: A superconducting fluid which must flow around an obstacle of mass M. 

From the perspective of the fluid, this is the same as an obstacle, with a velocity equal 

and opposite the fluids, moving in it. 

 
(a) (b) 

 
 
 




Figure 22: A large mass M moving with momentum P in a superfluid (a), creates an 

excitation (b) of the fluid of energy ϵ and momentum p 
 

P ′2 

2M 
−
 

P 2 

2M 
= −  

P · p 
+

 

M 

p2 

2M 
= E −  E = ϵ (95) 

 
 
 
 
 
 
 
 
 

P



Figure 23: 

 
pP cos θ 

ϵ  = 
M 

− 

 
p2 

(96) 
2M 
p2 

ϵ = pv cos θ −  (97) 
2M 

M v P 

E 
M 
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≥ 

 
 

If M → ∞ (a defect in the tube which carries the fluid could 

have essentially an infinite mass) then 

ϵ 

 
Then since cos θ ≤ 1 

= v cos θ (98) 
p 

 
ϵ 

v (99) 
p 

Thus, if there is some minimum ϵ,then there is also a mini- 

mum velocity below which such excitations of the fluid cannot 

happen. For the superconductor 

v  = 
ϵmin 

c  
p

 

Or 

2∆ 
= 

2h̄kF 

 
ne 

(100) 

jc = envc = ∆
h̄k

 (101) 

This is the same relation as we obtained with the previous 

thermodynamic argument (within a factor 
√

2). However, the 

former argument is more proper, since it would apply even for 

gapless superconductors, and it takes into account the fact that 

the S.C. state is a collective phenomena ie., a minuet, not a 

waltz of electric pairs. 

F 
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∼ 
m 

δp ⇒  δp ∼ 2m
p

 

 
 

7  Coherence of the Superconductor ⇒  

Meisner effects 

 

Superconductivity is the Meissner effect, but thus far, we have 

not yet shown that the BCS theory leads to the second London 

equation which describes flux exclusion. In this subsection, we 

will see that this requires an additional assumption: the rigidity 

of the BCS wave function. 

In the BCS approximation, the superconducting wave func- 

tion is taken to be composed of products of Cooper pairs. One 

can estimate the size of the pairs from the uncertainty principle 
  

p2 pF ∆ 
 

  
 

h̄ h̄pF h̄2kF EF 
ξcp ∼ δx ∼ 

δp 
∼
 

= 
2m∆ 

= 
2m∆ 

(103) 
kF ∆ 

ξcp ∼ 103 −  104 A
◦ 
∼ size of Cooper pair wave function  (104) 

 

Thus in the radius of the Cooper pair, about 

 
4πn 

  
ξcp 

  3
 

 

  

other pairs have their center of mass. 

2 3 

F 2m 
2∆ = δ (102) 

∼ 10 8 (105) 
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Figure 24: Many electron pairs fall within the volume of a Cooper wavefunction. 

This leads to a degree of correlation between the pairs and to rigidity of the pair 

wavefunction. 

The pairs are thus not independent of each other (regardless 

of the BCS wave function approximation). In fact they are 

specifically anchored to each other; ie., they maintain coherence 

over a length scale of at least ξcp. 

 

Figure 25: 
 

In light of this coherence, lets reconsider the supercurrent 
 

 

 2e 
j = −

4m
 {ψp∗ψ∗ + ψ∗pψ} (106) 
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Σ 

2 

  

BCS 
c BCS 

 
 

where pair mass = 2m and pair charge = − 2e. 

2e 
p = − ih̄∇  − A (107) 

c 

A current, or a CM momentum K, modifies the single pair state 
 

ψ(r1 
 

, r2 ) =  
 1  

g(k)eiK· (r1+r2)/2eik· (r1−r2) (108) 
L3 

k 

ψ(K, r1, r2) = ψ(K = 0, r1, r2)eiK·R (109) 
 

where R = r1+r2 

mentum. Thus 

is the cm coordinate and h̄K  is  the  cm  mo- 

 

ΦBCS ' eiφΦBCS(K = 0) = eiφΦ(0) (110) 

φ = K · (R1 + R2 + · · · ) (111) 

(In principle, we should also antisymmetrize this wave function; 

however, we will see soon that this effect is negligible). Due to 

the rigidity of the BCS state it is valid to approximate 

∇  = ∇ R + ∇ r ≈ ∇ R (112) 
 

Thus  
 2e 

js ≈ 
4m

 
Σ  

Φ∗
BCS 

 

 

 

− ih̄∇ Rν 

 

+ 
2eA 

Φ
 

c 

 
 

 
BCS 

+Φ 

 

ih̄∇  
+ 

2eA
 ∗ 

Φ∗ 

  

(113) 

ν 

Rν 
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c 

Σ 

2 

 
 

or 

 2e 
js = −

2m
 

(

|Φ(0)|
2  4eA

 

 
+ 2h̄ |Φ(0)|

2 
∇ R 

ν 

φ

) 

(114) 

 

Then since for any ψ, ∇  × ∇ ψ = 0 

2e2 2 
∇  × js = −

mc 
|Φ(0)| 

or since |Φ(0)|
2 

= ns 

∇  × A (115) 

ne2 
∇  × j = −  

mc 
B (116) 

which is the second London equation which as we saw in Sec. 2 

leads to the Meissner effect. Thus the second London equation 

can only be derived from the BCS theory by assuming that the 

BCS state is spatially homogeneous. 

 
8 Quantization of Magnetic Flux 

 
The rigidity of the wave function (superconducting coherence) 

also guarantees that the flux penetrating a superconducting 

loop is quantized. This may be seen by integrating Eq. 114 

along a contour within the superconducting bulk (at least a 

ν 



43  

mc 
A −  ∇ Rν φ (117) 

◦ js · dl = −  
ms

 ◦∇Rν φ  · dl (118) 
ν 

ν 

 
 

distance ΛL from the surface). 

e2ns 
 

 

eh̄ns Σ 
 

 

 

 
 

∫ 
e2ns 

∫ 
 

 eh̄ns Σ ∫ 
 

Presumably the phase of the BCS state ΦBCS = eiφΦ(0) is 
 

superconducting loop 
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X 
X
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X     
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Figure 26: Magnetic flux penetrating a superconducting loop is quantized. This may 

be seen by integrating Eq. 114 along a contour within the superconducting bulk (a 

distance ΛL from the surface). 

 

single valued, so 
Σ ∫ 

∇ Rν φ  · dl = 2πN N ∈  Z (119) 

Also since the path l may be taken inside the superconductor 

by a depth of more than ΛL, where js = 0, we have that 

∫ 

js · dl = 0 (120) 

ν 
2m 

js = −  

◦ A · dl − 2m 
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∫
s

 ∫
s

 

 
 

so 

e2n 
—  

ms 

 
e2n 

A · dl = −  
ms

 

 
B · ds = 2Nπ 

 
 
eh̄ns 

(121) 
2m 

 

Ie., the flux in the loop is quantized. 
 

9 Tunnel Junctions 

 
Imagine that we have an insulating gap between two metals, 

and that a plane wave (electronic Block State) is propagating 

towards this barrier from the left 

V 
a b c 

 
 

V 
0 

 
 

 

metal 
 

2 

metal 
x 0 d d2 

+ 
2m 

E = 0 
 

 
 

d 


dx 2 

+ 
2m 

E = 0 
h2 d

2
 + 2m (E - V )




dx 2 h2 

dx2 h2 0 

 

Figure 27: 
 

 

ψa  = A1eikx  + B1e− ikx ψb  = A2eik′x  + B2e− ik′x 

ψc = B3e− ikx (122) 

 
 
 

 
insulator 
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√ 

√ 

      

 
 

These are solutions to the S.E. if 

√
2mE 

k = 
h̄ 

 
 

 
in a & c (123) 

 
 

k ′ = 
2m(E − V0) 

h̄ 
in b (124) 

The coefficients are determined by the BC of continuity of ψ 

and  ψ
′
 at  the  barriers  x  =  0  and  x  =  d.    If  we  take  B3  =  1 

and E < V0, so that 

 
 

 

k ′ = iκ   = 
2m(E − V0) 

h̄ 
(125) 

then, the probability of having a particle tunnel from left to 

right is 

 

 
Pl→r ∝  |B3|

2 
 

 =  
   1   

= 

(
1 
−
 1  

  
k 

 
κ 2 1 k 

−  + 
κ 2 

+ cosh 2κd 

)−1 

|B1|2 

 
For large κd 

|B1|2 2 8 κ k 8 κ k 

(126) 
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κ

 

    √ ) 

k  T 2 

 
 
 
 

Pl→r ∝  8 
k − 2    

+ e
−2κd (127) 

κ k 

8 
k 

+ 
κ 

κ −2 

k 

 

exp 
2d 2m(V0 −  E) 

 
 

h̄ 

 

(128) 

 

Ie, the tunneling probability falls exponentially with distance. 

Of course, this explains the physics of a single electron tun- 

neling across a barrier, assuming that an appropriate state is 

filled on the left-hand side and available on the right-hand side. 

This, as can be seen in Fig. 28, is not always the case, espe- 

cially in a conductor. Here, we must take into account the 

densities of states and their occupation probabilities f . We will 

be interested in applied voltages V which will shift the chemical 

potential eV . To study the gap we will apply 

 
eV ∼ ∆ (129) 

 

We know that 2∆  
B c 

∼ 4, ∆ ∼ 4kBTc
 ∼ 10◦K.  However typical 

metallic densities of states have features on the scale of electron- 

volts ∼ 104◦K.   Thus, on this energy scale we may approximate 

∝  

(

−
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Figure 28: Electrons cannot tunnel accross the barrier since no unoccupied states are 

available on the left with correspond in energy to occupied states on the right (and vice-

versa). However, the application of an appropriate bias voltage will promote the state 

on the right in energy, inducing a current. 

the metallic density of states as featureless. 

Nr(ϵ) = Nmetal(ϵ) ≈ Nmetal(EF ) (130) 

The tunneling current is then, roughly, 

I ∝  P 

∫ 

dϵf (ϵ −  eV )Nr(EF )Nl(ϵ)(1 −  f (ϵ)) 

− P 

∫  

dϵf (ϵ)Nl(ϵ)Nr(EF )(1 −  f (ϵ −  eV )) (131) 

For eV = 0, clearly I = 0 i.e. a balance is achieved.  For 

eV /= 0 a current may occur. Let’s assume that eV > 0 

and kBT        ∆.   Then the rightward motion of electrons is 

S I N 

E 

X 
eV N(E) 
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dV 

∂V l 

 
 
 
 
 
 
 
 

E
F

 

 
 
 
 
 
 

 

Figure 29: If eV= 0, but there is a small overlap of occupied and unoccupied states on 

the left and right sides, then there still will be no current due to a balance of particle 

hopping. 

suppressed. Then 

I ∼ PNr(EF ) 

∫ 

dϵf (ϵ −  eV )Nl(ϵ) (132) 
 

and  
dI 

dV  
∼ PNr(EF 

∂f 

) 

∫ 

dϵ
∂f (ϵ −  eV )

N (ϵ) (133) 

∂V 
∼ eδ(ϵ −  eV −  EF ) (T         EF ) (134) 

dI 

dV  
' PNr(EF )Nl(eV + EF ) (135) 

Thus the low temperature differential conductance dI is a mea- 
 

sure of the superconducting density of states. 
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Figure 30: At low temperatures, the differential conductance in a normal metal– 

superconductor tunnel junction is a measure of the quasiparticle density of states. 

10 Unconventional Superconductors 

 
From different review articles, it is clear that there are different 

definitions of unconventional superconductivity. For example, 

some define it as beyond BCS, or to only include superercon- 

ductors, such as odd-frequency superconductors, that clearly 

cannot be described by the BCS equations (although it may be 

possible to describe them with the Eliashberg equations). An- 

other definition, which I will adopt, is to define unconventional 

superconductors that are not described by the simple discus- 

sion of the BCS equations that we have discussed so far in this 

chapter. These will include (and will be finined below) triplet, 

lower symmetry (e.g., d-wave) of often magnetically mediated 
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supererconductors, to very unusual ideas, that have not yet 

been observed, such as odd-frequency superconductors. In each 

case, I will assume that the superconducting state is formed via 

Cooper pairing of fermions, so that the order parameter must 

remain odd under a product of symmetry operations, such as 

parity, time reversal, spin, etc. as summarized in Tab. 2. 

Type spin symmetry inversion symmetry time reversal symmetry 

odd-frequency triplet (even) even odd 

odd-frequency singlet (odd) odd (p-wave) odd 

d-wave S=0 L=2 singlet (odd) even even 

triplet S=1 L=1 triplet (even) odd even 

Table 2: Types and characteristics of the order parameter of unconventional super- 

conductors formed from electron pairs. 

 

Below, we will discuss each of these unconventional super- 

conductors, and identify their properties and experimental sig- 

natures. 

 
10.1 D-wave Superconductors 

 
Cuprate superconductors which are nearly antiferromagnetic, 

and so highly anisotropic that they may be viewed as nearly 

two-dimensional. 
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Figure 31: The Fermi surface of 

the 2D non-interacting half-filled 

Hubbard model with near-neighbot 

hopping. The pairing interactions 

due to the magentic correlations 

are strongest at half filling  and 

on the Fermi survace near the 

magnetic order vectors (±π. ± π). 

Since they are purely repulsive, the 

order parameter, which is largest 

in between the ording vectors (i.e., 

(0, π)) must change sign like a d0- 

wave orbital (see text). 

In fact the modeling of Zhang and 

Rice reduces the cuprates to a 2D 

t-J or Hubbard model, which are re- 

lated by a Schrieffer-Wolf transfor- 

mation, and the models are close to 

half filling where the non-interacting 

fermi surface forms a square as il- 

lustrated in Fig. 31 and strong an- 

tiferromagnetic correlations begin to 

form. The latter are believed to pro- 

vide the pairing interaction, despite 

the fact that the pairing interaction 

from antiferromagnetic correlations 

is purely repulsive. 

Whereas conventional s-wave su- 

perconductors form spin singlet pairs 

with s-wave symmetry (S=0, L=0), d-wave superconductors 

form lower symmetry pairs (S=0, L=2).    This pairing may 

be described by the BCS formalism with a k-dependent ∆(k). 
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∆(k ) = √
ξ2 + ∆(k)2 

(136)
 2L3 

 
 

We assume that the pairing interaction is strongly peaked at 

the antiferromagnetic ordering wavenumbers k = (±π, ±π), or V 

(k) = − V0δ(k −  (±π, ±π)) where V0 > 0 and is only finite at 

energies near the fermi surface. Since the pairing is due to 

magnetic correlations, the width of the scattering shell is now 

roughly J which is assumed to be J EF . In this case the 

gap equation becomes 

′   1   Σ ∆(k)V (k − k′) 

 

In order to have a solution, the minus sign in V must be 

canceled. The large contributions to the sum comes when 

k − k′ is  a  magnetic  ordering  vector  where  V   is  large.   Sup- 

pose  k − k′ =  (π, π),  and  k  =  (π, 0)  and  k′ =  (0, −π),  then 

to  cancel  the  minus  sign,  we  need  ∆(k)  =  −∆(k′),  so  that 

the order parameter changes sign for every rotation by π/2 and 

presumably is zero along the diagonal, just like a dx2− y2 orbital. 

Hence the name d-wave superconductivity. 

Note that the lower symmetry of the order parameter has 

experimental consequences. First the d-wave geometry of the 

order parameter may be directly confirmed by creating a tun- 

k 
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nel junction with a conventional s-wave superconductor, as illus- 

trated in Fig. 32. 

Here, the phase difference across one 

of the s-d junctions causes a persis- 

tant current and a trapped magnetic 

flux measurable by a SQUID. d-wave 

superconductivity is very sensitive to 

disorder, such as Zn doping for Cu 

where only a few percent of impu- 

rities can destroy superconductivity. 

The reason for this sensitivity is that 

Figure 32: Cartoon of a corner 

junction between a conbentional s- 

wave and a d-wave, cuprate, su- 

perconductor. 

the elastic scattering from the Zn impurities is nearly local, and 

hence mixes ∆(k) with all other k values on the fermi surface, 

and when averaged over the fermi surface, the order parame- 

ter is zero. Furthermore since the gap has a range of values 

extending to zero, so do the excitations across the gap. As a 

result, the activated T-dependence seen in the specific heat is 

replaced by algebraic or power-law T-dependence seen in the 

nuclear magnetic resonance relaxation rate and specific heat. 
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10.2 Triplet Superconductors 

 
As illustrated in Tab. 2, triplet superconductivity is also pos- 

sible which is even in spin or odd in orbital symmetry. More 

complex triplet states are also possbile, but will not be discussed 

here. Triplet superconductivity may actually be an old subject 

if it include condensation of 3He which is spin 1/2 and forms 

a triplet condensate which is not a superconductor since 3He 

carries no charge. as (S=1, L=1). The pairing is believed to be 

mediated by magnetic fluctuations enhanced by the proximity 

to a ferromagnetic transition (similar to the case for the cuprates 

where the magnetic fluctuations are enhanced by proximity to 

half filling). It is believed that the triplet state is favored by the 

exchange hole that keeps the pair of electrons apart, avoiding 

the short ranged repulsive interaction between them. 

In addition to 3He triplet superconductivity, with a real su- 

percurrent, is believed to exist in a number of solids, including 

Sr2RuO4 which is believed to have a chiral p-wave state and 

a complex gap function which breaks time-reversal so that the 

pairs have a finite magnetic moment. 
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This triplet state should have a number of experimental con- 

sequences. Perhaps the most obvious is that, like the d-wave 

superconductors, the pairing should be very sensitive to diorder, 

at least disorder with a mean-free path that is shorter than the 

pairing length. I.e., the stronger the pairing, the less sensitive 

the state is do disorder. 

 
10.3 Odd-frequency Superconductors 

 
Another, not yet observed (to the best of my knowledge) type 

of pairing is odd in frequency or in time. In this case both the 

spin and orbital part of the pairing can be even or both odd. 

Of course, it is difficult to treat such a state in the BCS formal- 

ism since the frequency-dependence of the order parameter is 

suppressed. 


