

لحاسبات والمعلومات كليه ا

C o n t e n t s i n D e t a i l

Acknowledgments	 xxiii

Introduction	 1
Whom Is This Book For? . 2
Conventions . 2
What Is Programming? . 3

What Is Python? . . 4
Programmers Don’t Need to Know Much Math . 4
Programming Is a Creative Activity . . 5

About This Book . 5
Downloading and Installing Python . 6
Starting IDLE . . 7

The Interactive Shell . 8
How to Find Help . 8
Asking Smart Programming Questions . 9
Summary . 10

Part I: Python Programming Basics	 11

1
Python Basics	 13
Entering Expressions into the Interactive Shell . 14
The Integer, Floating-Point, and String Data Types . 16
String Concatenation and Replication . 17
Storing Values in Variables . 18

Assignment Statements . 18
Variable Names . 20

Your First Program . . 21
Dissecting Your Program . 22

Comments . 23
The print() Function . . 23
The input() Function . 23
Printing the User’s Name . . 24
The len() Function . 24
The str(), int(), and float() Functions . 25

Summary . 28
Practice Questions . . 28

2
Flow Control	 31
Boolean Values . . 32
Comparison Operators . 33
Boolean Operators . 35

x Contents in Detail

Binary Boolean Operators . . 35
The not Operator . 36

Mixing Boolean and Comparison Operators . 36
Elements of Flow Control . 37

Conditions . 37
Blocks of Code . 37

Program Execution . 38
Flow Control Statements . . 38

if Statements . 38
else Statements . 39
elif Statements . 40
while Loop Statements . 45
break Statements . 49
continue Statements . 50
for Loops and the range() Function . 53

Importing Modules . 57
from import Statements . 58

Ending a Program Early with sys.exit() . 58
Summary . 58
Practice Questions . . 59

3
Functions	 61
def Statements with Parameters . 63
Return Values and return Statements . 63
The None Value . 65
Keyword Arguments and print() . 65
Local and Global Scope . 67

Local Variables Cannot Be Used in the Global Scope 67
Local Scopes Cannot Use Variables in Other Local Scopes 68
Global Variables Can Be Read from a Local Scope . 69
Local and Global Variables with the Same Name . 69

The global Statement . 70
Exception Handling . 72
A Short Program: Guess the Number . 74
Summary . 76
Practice Questions . . 76
Practice Projects . 77

The Collatz Sequence . 77
Input Validation . 77

4
Lists	 79
The List Data Type . 80

Getting Individual Values in a List with Indexes . 80
Negative Indexes . 82
Getting Sublists with Slices . 82
Getting a List’s Length with len() . 83
Changing Values in a List with Indexes . 83

Contents in Detail xi

List Concatenation and List Replication . 83
Removing Values from Lists with del Statements . 84

Working with Lists . 84
Using for Loops with Lists . 86
The in and not in Operators . 87
The Multiple Assignment Trick . 87

Augmented Assignment Operators . 88
Methods . 89

Finding a Value in a List with the index() Method . 89
Adding Values to Lists with the append() and insert() Methods 89
Removing Values from Lists with remove() . 90
Sorting the Values in a List with the sort() Method . 91

Example Program: Magic 8 Ball with a List . . 92
List-like Types: Strings and Tuples . 93

Mutable and Immutable Data Types . 94
The Tuple Data Type . . 96
Converting Types with the list() and tuple() Functions 97

References . 97
Passing References . 100
The copy Module’s copy() and deepcopy() Functions 100

Summary . 101
Practice Questions . . 102
Practice Projects . 102

Comma Code . 102
Character Picture Grid . 103

5
Dictionaries and Structuring Data	 105
The Dictionary Data Type . . 105

Dictionaries vs. Lists . 106
The keys(), values(), and items() Methods . 107
Checking Whether a Key or Value Exists in a Dictionary 109
The get() Method . 109
The setdefault() Method . . 110

Pretty Printing . 111
Using Data Structures to Model Real-World Things . 112

A Tic-Tac-Toe Board . 113
Nested Dictionaries and Lists . 117

Summary . 119
Practice Questions . . 119
Practice Projects . 120

Fantasy Game Inventory . 120
List to Dictionary Function for Fantasy Game Inventory 120

6
Manipulating Strings	 123
Working with Strings . 123

String Literals . 124
Indexing and Slicing Strings . 126
The in and not in Operators with Strings . 127

xii Contents in Detail

Useful String Methods . 127
The upper(), lower(), isupper(), and islower() String Methods 128
The isX String Methods . 129
The startswith() and endswith() String Methods . 131
The join() and split() String Methods . 131
Justifying Text with rjust(), ljust(), and center() . 133
Removing Whitespace with strip(), rstrip(), and lstrip() 134
Copying and Pasting Strings with the pyperclip Module 135

Project: Password Locker . 136
Step 1: Program Design and Data Structures . 136
Step 2: Handle Command Line Arguments . 137
Step 3: Copy the Right Password . 137

Project: Adding Bullets to Wiki Markup . 139
Step 1: Copy and Paste from the Clipboard . 139
Step 2: Separate the Lines of Text and Add the Star 140
Step 3: Join the Modified Lines . 141

Summary . 141
Practice Questions . . 142
Practice Project . 142

Table Printer . 142

Part II: Automating Tasks	 145

7
Pattern Matching with Regular Expressions	 147
Finding Patterns of Text Without Regular Expressions . . 148
Finding Patterns of Text with Regular Expressions . 150

Creating Regex Objects . 150
Matching Regex Objects . 151
Review of Regular Expression Matching . 152

More Pattern Matching with Regular Expressions . 152
Grouping with Parentheses . 152
Matching Multiple Groups with the Pipe . 153
Optional Matching with the Question Mark . . 154
Matching Zero or More with the Star . 155
Matching One or More with the Plus . 155
Matching Specific Repetitions with Curly Brackets . 156

Greedy and Nongreedy Matching . 156
The findall() Method . 157
Character Classes . 158
Making Your Own Character Classes . 159
The Caret and Dollar Sign Characters . 159
The Wildcard Character . 160

Matching Everything with Dot-Star . 161
Matching Newlines with the Dot Character . 162

Review of Regex Symbols . . 162
Case-Insensitive Matching . 163

I n t r o d u c t i o n

“You’ve just done in two hours what it takes
the three of us two days to do.” My college

roommate was working at a retail electronics
store in the early 2000s. Occasionally, the store

would receive a spreadsheet of thousands of product
prices from its competitor. A team of three employees
would print the spreadsheet onto a thick stack of paper and split it among
themselves. For each product price, they would look up their store’s price
and note all the products that their competitors sold for less. It usually took
a couple of days.

“You know, I could write a program to do that if you have the original
file for the printouts,” my roommate told them, when he saw them sitting
on the floor with papers scattered and stacked around them.

After a couple of hours, he had a short program that read a competi-
tor’s price from a file, found the product in the store’s database, and noted
whether the competitor was cheaper. He was still new to programming, and

2 Introduction

he spent most of his time looking up documentation in a programming
book. The actual program took only a few seconds to run. My roommate
and his co-workers took an extra-long lunch that day.

This is the power of computer programming. A computer is like a Swiss
Army knife that you can configure for countless tasks. Many people spend
hours clicking and typing to perform repetitive tasks, unaware that the
machine they’re using could do their job in seconds if they gave it the right
instructions.

Whom Is This Book For?
Software is at the core of so many of the tools we use today: Nearly everyone
uses social networks to communicate, many people have Internet-connected
computers in their phones, and most office jobs involve interacting with a
computer to get work done. As a result, the demand for people who can code
has skyrocketed. Countless books, interactive web tutorials, and developer
boot camps promise to turn ambitious beginners into software engineers
with six-figure salaries.

This book is not for those people. It’s for everyone else.
On its own, this book won’t turn you into a professional software devel-

oper any more than a few guitar lessons will turn you into a rock star. But if
you’re an office worker, administrator, academic, or anyone else who uses a
computer for work or fun, you will learn the basics of programming so that
you can automate simple tasks such as the following:

•	 Moving and renaming thousands of files and sorting them into folders

•	 Filling out online forms, no typing required

•	 Downloading files or copy text from a website whenever it updates

•	 Having your computer text you custom notifications

•	 Updating or formatting Excel spreadsheets

•	 Checking your email and sending out prewritten responses

These tasks are simple but time-consuming for humans, and they’re
often so trivial or specific that there’s no ready-made software to perform
them. Armed with a little bit of programming knowledge, you can have
your computer do these tasks for you.

Conventions
This book is not designed as a reference manual; it’s a guide for begin-
ners. The coding style sometimes goes against best practices (for example,
some programs use global variables), but that’s a trade-off to make the code
simpler to learn. This book is made for people to write throwaway code, so
there’s not much time spent on style and elegance. Sophisticated program-
ming concepts—like object-oriented programming, list comprehensions,

Introduction 3

and generators—aren’t covered because of the complexity they add.
Veteran programmers may point out ways the code in this book could
be changed to improve efficiency, but this book is mostly concerned with
getting programs to work with the least amount of effort.

What Is Programming?
Television shows and films often show programmers furiously typing cryptic
streams of 1s and 0s on glowing screens, but modern programming isn’t
that mysterious. Programming is simply the act of entering instructions for
the computer to perform. These instructions might crunch some numbers,
modify text, look up information in files, or communicate with other com-
puters over the Internet.

All programs use basic instructions as building blocks. Here are a few
of the most common ones, in English:

“Do this; then do that.”

“If this condition is true, perform this action; otherwise, do that action.”

“Do this action that number of times.”

“Keep doing that until this condition is true.”

You can combine these building blocks to implement more intricate
decisions, too. For example, here are the programming instructions, called
the source code, for a simple program written in the Python programming
language. Starting at the top, the Python software runs each line of code
(some lines are run only if a certain condition is true or else Python runs
some other line) until it reaches the bottom.

u passwordFile = open('SecretPasswordFile.txt')
v secretPassword = passwordFile.read()
w print('Enter your password.')

typedPassword = input()
x if typedPassword == secretPassword:
y print('Access granted')
z if typedPassword == '12345':
{ print('That password is one that an idiot puts on their luggage.')

else:
| print('Access denied')

You might not know anything about programming, but you could prob-
ably make a reasonable guess at what the previous code does just by reading
it. First, the file SecretPasswordFile.txt is opened u, and the secret password in
it is read v. Then, the user is prompted to input a password (from the key-
board) w. These two passwords are compared x, and if they’re the same,
the program prints Access granted to the screen y. Next, the program checks
to see whether the password is 12345 z and hints that this choice might not
be the best for a password {. If the passwords are not the same, the pro-
gram prints Access denied to the screen |.

4 Introduction

What Is Python?
Python refers to the Python programming language (with syntax rules for
writing what is considered valid Python code) and the Python interpreter
software that reads source code (written in the Python language) and per-
forms its instructions. The Python interpreter is free to download from
http://python.org/, and there are versions for Linux, OS X, and Windows.

The name Python comes from the surreal British comedy group Monty
Python, not from the snake. Python programmers are affectionately called
Pythonistas, and both Monty Python and serpentine references usually pep-
per Python tutorials and documentation.

Programmers Don’t Need to Know Much Math
The most common anxiety I hear about learning to program is that people
think it requires a lot of math. Actually, most programming doesn’t require
math beyond basic arithmetic. In fact, being good at programming isn’t
that different from being good at solving Sudoku puzzles.

To solve a Sudoku puzzle, the numbers 1 through 9 must be filled in for
each row, each column, and each 3×3 interior square of the full 9×9 board.
You find a solution by applying deduction and logic from the starting num-
bers. For example, since 5 appears in the top left of the Sudoku puzzle shown
in Figure 0-1, it cannot appear elsewhere in the top row, in the leftmost col-
umn, or in the top-left 3×3 square. Solving one row, column, or square at a
time will provide more number clues for the rest of the puzzle.

Figure 0-1: A new Sudoku puzzle (left) and its solution (right). Despite using numbers,
Sudoku doesn’t involve much math. (Images © Wikimedia Commons)

Just because Sudoku involves numbers doesn’t mean you have to
be good at math to figure out the solution. The same is true of program-
ming. Like solving a Sudoku puzzle, writing programs involves breaking
down a problem into individual, detailed steps. Similarly, when debugging
programs (that is, finding and fixing errors), you’ll patiently observe what
the program is doing and find the cause of the bugs. And like all skills, the
more you program, the better you’ll become.

Introduction 5

Programming Is a Creative Activity
Programming is a creative task, somewhat like constructing a castle out
of LEGO bricks. You start with a basic idea of what you want your castle
to look like and inventory your available blocks. Then you start building.
Once you’ve finished building your program, you can pretty up your code
just like you would your castle.

The difference between programming and other creative activities is
that when programming, you have all the raw materials you need in your
computer; you don’t need to buy any additional canvas, paint, film, yarn,
LEGO bricks, or electronic components. When your program is written, it
can easily be shared online with the entire world. And though you’ll make
mistakes when programming, the activity is still a lot of fun.

About This Book
The first part of this book covers basic Python programming concepts, and
the second part covers various tasks you can have your computer automate.
Each chapter in the second part has project programs for you to study. Here’s
a brief rundown of what you’ll find in each chapter:

Part I: Python Programming Basics

Chapter 1: Python Basics  Covers expressions, the most basic type of
Python instruction, and how to use the Python interactive shell soft-
ware to experiment with code.

Chapter 2: Flow Control  Explains how to make programs decide
which instructions to execute so your code can intelligently respond to
different conditions.

Chapter 3: Functions  Instructs you on how to define your own func-
tions so that you can organize your code into more manageable chunks.

Chapter 4: Lists  Introduces the list data type and explains how to
organize data.

Chapter 5: Dictionaries and Structuring Data  Introduces the diction-
ary data type and shows you more powerful ways to organize data.

Chapter 6: Manipulating Strings  Covers working with text data
(called strings in Python).

Part II: Automating Tasks

Chapter 7: Pattern Matching with Regular Expressions  Covers how
Python can manipulate strings and search for text patterns with regular
expressions.

Chapter 8: Reading and Writing Files  Explains how your programs
can read the contents of text files and save information to files on your
hard drive.

Chapter 9: Organizing Files  Shows how Python can copy, move,
rename, and delete large numbers of files much faster than a human
user can. It also explains compressing and decompressing files.

6 Introduction

Chapter 10: Debugging  Shows how to use Python’s various bug-
finding and bug-fixing tools.

Chapter 11: Web Scraping  Shows how to write programs that can
automatically download web pages and parse them for information.
This is called web scraping.

Chapter 12: Working with Excel Spreadsheets  Covers programmati-
cally manipulating Excel spreadsheets so that you don’t have to read
them. This is helpful when the number of documents you have to ana-
lyze is in the hundreds or thousands.

Chapter 13: Working with PDF and Word Documents  Covers pro-
grammatically reading Word and PDF documents.

Chapter 14: Working with CSV Files and JSON Data  Continues to
explain how to programmatically manipulate documents with CSV and
JSON files.

Chapter 15: Keeping Time, Scheduling Tasks, and Launching
Programs  Explains how time and dates are handled by Python pro-
grams and how to schedule your computer to perform tasks at certain
times. This chapter also shows how your Python programs can launch
non-Python programs.

Chapter 16: Sending Email and Text Messages  Explains how to write
programs that can send emails and text messages on your behalf.

Chapter 17: Manipulating Images  Explains how to programmatically
manipulate images such as JPEG or PNG files.

Chapter 18: Controlling the Keyboard and Mouse with GUI Automation 
Explains how to programmatically control the mouse and keyboard to
automate clicks and keypresses.

Downloading and Installing Python
You can download Python for Windows, OS X, and Ubuntu for free from
http://python.org/downloads/. If you download the latest version from the
website’s download page, all of the programs in this book should work.

W A RNING 	 Be sure to download a version of Python 3 (such as 3.4.0). The programs in this book
are written to run on Python 3 and may not run correctly, if at all, on Python 2.

You’ll find Python installers for 64-bit and 32-bit computers for each
operating system on the download page, so first figure out which installer
you need. If you bought your computer in 2007 or later, it is most likely a
64-bit system. Otherwise, you have a 32-bit version, but here’s how to find
out for sure:

•	 On Windows, select Start4Control Panel4System and check whether
System Type says 64-bit or 32-bit.

Introduction 7

•	 On OS X, go the Apple menu, select About This Mac4More Info4
System Report4Hardware, and then look at the Processor Name
field. If it says Intel Core Solo or Intel Core Duo, you have a 32-bit
machine. If it says anything else (including Intel Core 2 Duo), you
have a 64-bit machine.

•	 On Ubuntu Linux, open a Terminal and run the command uname -m.
A response of i686 means 32-bit, and x86_64 means 64-bit.

On Windows, download the Python installer (the filename will end
with .msi) and double-click it. Follow the instructions the installer displays
on the screen to install Python, as listed here:

1.	 Select Install for All Users and then click Next.

2.	 Install to the C:\Python34 folder by clicking Next.

3.	 Click Next again to skip the Customize Python section.

On Mac OS X, download the .dmg file that’s right for your version of
OS X and double-click it. Follow the instructions the installer displays on
the screen to install Python, as listed here:

1.	 When the DMG package opens in a new window, double-click the
Python.mpkg file. You may have to enter the administrator password.

2.	 Click Continue through the Welcome section and click Agree to accept
the license.

3.	 Select HD Macintosh (or whatever name your hard drive has) and
click Install.

If you’re running Ubuntu, you can install Python from the Terminal by
following these steps:

1.	 Open the Terminal window.

2.	 Enter sudo apt-get install python3.

3.	 Enter sudo apt-get install idle3.

4.	 Enter sudo apt-get install python3-pip.

Starting IDLE
While the Python interpreter is the software that runs your Python programs,
the interactive development environment (IDLE) software is where you’ll enter
your programs, much like a word processor. Let’s start IDLE now.

•	 On Windows 7 or newer, click the Start icon in the lower-left corner of
your screen, enter IDLE in the search box, and select IDLE (Python GUI).

•	 On Windows XP, click the Start button and then select Programs4
Python 3.44IDLE (Python GUI).

8 Introduction

•	 On Mac OS X, open the Finder window, click Applications, click
Python 3.4, and then click the IDLE icon.

•	 On Ubuntu, select Applications4Accessories4Terminal and then
enter idle3. (You may also be able to click Applications at the top of
the screen, select Programming, and then click IDLE 3.)

The Interactive Shell
No matter which operating system you’re running, the IDLE window that
first appears should be mostly blank except for text that looks something
like this:

Python 3.4.0 (v3.4.0:04f714765c13, Mar 16 2014, 19:25:23) [MSC v.1600 64
bit (AMD64)] on win32Type "copyright", "credits" or "license()" for more
information.
>>>

This window is called the interactive shell. A shell is a program that lets you
type instructions into the computer, much like the Terminal or Command
Prompt on OS X and Windows, respectively. Python’s interactive shell lets
you enter instructions for the Python interpreter software to run. The com-
puter reads the instructions you enter and runs them immediately.

For example, enter the following into the interactive shell next to the
>>> prompt:

>>> print('Hello world!')

After you type that line and press enter, the interactive shell should
display this in response:

>>> print('Hello world!')
Hello world!

How to Find Help
Solving programming problems on your own is easier than you might
think. If you’re not convinced, then let’s cause an error on purpose: Enter
'42' + 3 into the interactive shell. You don’t need to know what this instruc-
tion means right now, but the result should look like this:

>>> '42' + 3
u Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>
 '42' + 3

v TypeError: Can't convert 'int' object to str implicitly
>>>

Introduction 9

The error message v appeared here because Python couldn’t under-
stand your instruction. The traceback part u of the error message shows
the specific instruction and line number that Python had trouble with. If
you’re not sure what to make of a particular error message, search online
for the exact error message. Enter “TypeError: Can't convert 'int' object to
str implicitly” (including the quotes) into your favorite search engine, and
you should see tons of links explaining what the error message means and
what causes it, as shown in Figure 0-2.

Figure 0-2: The Google results for an error message can be very helpful.

You’ll often find that someone else had the same question as you and
that some other helpful person has already answered it. No one person can
know everything about programming, so an everyday part of any software
developer’s job is looking up answers to technical questions.

Asking Smart Programming Questions
If you can’t find the answer by searching online, try asking people in a
web forum such as Stack Overlow (http://stackoverflow.com/) or the “learn
programming” subreddit at http://reddit.com/r/learnprogramming/. But keep
in mind there are smart ways to ask programming questions that help
others help you. Be sure to read the Frequently Asked Questions sections
these websites have about the proper way to post questions.

10 Introduction

When asking programming questions, remember to do the following:

•	 Explain what you are trying to do, not just what you did. This lets your
helper know if you are on the wrong track.

•	 Specify the point at which the error happens. Does it occur at the very
start of the program or only after you do a certain action?

•	 Copy and paste the entire error message and your code to http://pastebin
.com/ or http://gist.github.com/.

These websites make it easy to share large amounts of code with
people over the Web, without the risk of losing any text formatting. You
can then put the URL of the posted code in your email or forum post.
For example, here some pieces of code I’ve posted: http://pastebin.com/
SzP2DbFx/ and https://gist.github.com/asweigart/6912168/.

•	 Explain what you’ve already tried to do to solve your problem. This tells
people you’ve already put in some work to figure things out on your own.

•	 List the version of Python you’re using. (There are some key differ-
ences between version 2 Python interpreters and version 3 Python
interpreters.) Also, say which operating system and version you’re
running.

•	 If the error came up after you made a change to your code, explain
exactly what you changed.

•	 Say whether you’re able to reproduce the error every time you run the
program or whether it happens only after you perform certain actions.
Explain what those actions are, if so.

Always follow good online etiquette as well. For example, don’t post
your questions in all caps or make unreasonable demands of the people
trying to help you.

Summary
For most people, their computer is just an appliance instead of a tool. But
by learning how to program, you’ll gain access to one of the most powerful
tools of the modern world, and you’ll have fun along the way. Programming
isn’t brain surgery—it’s fine for amateurs to experiment and make mistakes.

I love helping people discover Python. I write programming tutorials
on my blog at http://inventwithpython.com/blog/, and you can contact me with
questions at al@inventwithpython.com.

This book will start you off from zero programming knowledge, but
you may have questions beyond its scope. Remember that asking effective
questions and knowing how to find answers are invaluable tools on your
programming journey.

Let’s begin!

http://pastebin.com/
http://pastebin.com/
http://pastebin.com/SzP2DbFx/
http://pastebin.com/SzP2DbFx/

Part I
p y t h o n P r o g r a m m i n g

B as i cs

1
P y t h o n B as i cs

The Python programming language has
a wide range of syntactical constructions,

standard library functions, and interactive
development environment features. Fortunately,

you can ignore most of that; you just need to learn
enough to write some handy little programs.

You will, however, have to learn some basic programming concepts
before you can do anything. Like a wizard-in-training, you might think
these concepts seem arcane and tedious, but with some knowledge and
practice, you’ll be able to command your computer like a magic wand to
perform incredible feats.

This chapter has a few examples that encourage you to type into the
interactive shell, which lets you execute Python instructions one at a time
and shows you the results instantly. Using the interactive shell is great for
learning what basic Python instructions do, so give it a try as you follow
along. You’ll remember the things you do much better than the things
you only read.

14 Chapter 1

Entering Expressions into the Interactive Shell
You run the interactive shell by launching IDLE, which you installed with
Python in the introduction. On Windows, open the Start menu, select All
Programs 4 Python 3.3, and then select IDLE (Python GUI). On OS X,
select Applications 4 MacPython 3.3 4 IDLE. On Ubuntu, open a new
Terminal window and enter idle3.

A window with the >>> prompt should appear; that’s the interactive
shell. Enter 2 + 2 at the prompt to have Python do some simple math.

>>> 2 + 2
4

The IDLE window should now show some text like this:

Python 3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit
(AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> 2 + 2
4
>>>

In Python, 2 + 2 is called an expression, which is the most basic kind of
programming instruction in the language. Expressions consist of values
(such as 2) and operators (such as +), and they can always evaluate (that is,
reduce) down to a single value. That means you can use expressions any-
where in Python code that you could also use a value.

In the previous example, 2 + 2 is evaluated down to a single value, 4.
A single value with no operators is also considered an expression, though
it evaluates only to itself, as shown here:

>>> 2
2

E r rors A r e Ok ay !

Programs will crash if they contain code the computer can’t understand, which
will cause Python to show an error message. An error message won’t break
your computer, though, so don’t be afraid to make mistakes. A crash just means
the program stopped running unexpectedly.

If you want to know more about an error message, you can search for the
exact message text online to find out more about that specific error. You can
also check out the resources at http://nostarch.com/automatestuff/ to see a list
of common Python error messages and their meanings.

Python Basics 15

There are plenty of other operators you can use in Python expressions,
too. For example, Table 1-1 lists all the math operators in Python.

Table 1-1: Math Operators from Highest to Lowest Precedence

Operator Operation Example Evaluates to…

** Exponent 2 ** 3 8

% Modulus/remainder 22 % 8 6

// Integer division/floored quotient 22 // 8 2

/ Division 22 / 8 2.75

* Multiplication 3 * 5 15

- Subtraction 5 - 2 3

+ Addition 2 + 2 4

The order of operations (also called precedence) of Python math oper
ators is similar to that of mathematics. The ** operator is evaluated first;
the *, /, //, and % operators are evaluated next, from left to right; and the
+ and - operators are evaluated last (also from left to right). You can use
parentheses to override the usual precedence if you need to. Enter the fol-
lowing expressions into the interactive shell:

>>> 2 + 3 * 6
20
>>> (2 + 3) * 6
30
>>> 48565878 * 578453
28093077826734
>>> 2 ** 8
256
>>> 23 / 7
3.2857142857142856
>>> 23 // 7
3
>>> 23 % 7
2
>>> 2 + 2
4
>>> (5 - 1) * ((7 + 1) / (3 - 1))
16.0

In each case, you as the programmer must enter the expression, but
Python does the hard part of evaluating it down to a single value. Python
will keep evaluating parts of the expression until it becomes a single value,
as shown in Figure 1-1.

16 Chapter 1

(5 - 1) * ((7 + 1) / (3 - 1))

4 * ((7 + 1) / (3 - 1))

4 * () / (3 - 1))8

4 * () / ()8 2

4 * 4.0

16.0

Figure 1-1: Evaluating an expres-
sion reduces it to a single value.

These rules for putting operators and values together to form expres-
sions are a fundamental part of Python as a programming language, just
like the grammar rules that help us communicate. Here’s an example:

This is a grammatically correct English sentence.

This grammatically is sentence not English correct a.

The second line is difficult to parse because it doesn’t follow the rules
of English. Similarly, if you type in a bad Python instruction, Python won’t
be able to understand it and will display a SyntaxError error message, as
shown here:

>>> 5 +
 File "<stdin>", line 1
 5 +
 ^
SyntaxError: invalid syntax
>>> 42 + 5 + * 2
 File "<stdin>", line 1
 42 + 5 + * 2
 ^
SyntaxError: invalid syntax

You can always test to see whether an instruction works by typing it into
the interactive shell. Don’t worry about breaking the computer: The worst
thing that could happen is that Python responds with an error message.
Professional software developers get error messages while writing code all
the time.

The Integer, Floating-Point, and String Data Types
Remember that expressions are just values combined with operators,
and they always evaluate down to a single value. A data type is a category
for values, and every value belongs to exactly one data type. The most

Python Basics 17

common data types in Python are listed in Table 1-2. The values -2 and 30,
for example, are said to be integer values. The integer (or int) data type indi-
cates values that are whole numbers. Numbers with a decimal point, such as
3.14, are called floating-point numbers (or floats). Note that even though the
value 42 is an integer, the value 42.0 would be a floating-point number.

Table 1-2: Common Data Types

Data type Examples

Integers -2, -1, 0, 1, 2, 3, 4, 5

Floating-point numbers -1.25, -1.0, ‑-0.5, 0.0, 0.5, 1.0, 1.25

Strings 'a', 'aa', 'aaa', 'Hello!', '11 cats'

Python programs can also have text values called strings, or strs (pro-
nounced “stirs”). Always surround your string in single quote (') characters
(as in 'Hello' or 'Goodbye cruel world!') so Python knows where the string
begins and ends. You can even have a string with no characters in it, '',
called a blank string. Strings are explained in greater detail in Chapter 4.

If you ever see the error message SyntaxError: EOL while scanning string
literal, you probably forgot the final single quote character at the end of
the string, such as in this example:

>>> 'Hello world!
SyntaxError: EOL while scanning string literal

String Concatenation and Replication
The meaning of an operator may change based on the data types of the
values next to it. For example, + is the addition operator when it operates on
two integers or floating-point values. However, when + is used on two string
values, it joins the strings as the string concatenation operator. Enter the fol-
lowing into the interactive shell:

>>> 'Alice' + 'Bob'
'AliceBob'

The expression evaluates down to a single, new string value that com-
bines the text of the two strings. However, if you try to use the + operator on
a string and an integer value, Python will not know how to handle this, and
it will display an error message.

>>> 'Alice' + 42
Traceback (most recent call last):
 File "<pyshell#26>", line 1, in <module>
 'Alice' + 42
TypeError: Can't convert 'int' object to str implicitly

18 Chapter 1

The error message Can't convert 'int' object to str implicitly means
that Python thought you were trying to concatenate an integer to the string
'Alice'. Your code will have to explicitly convert the integer to a string,
because Python cannot do this automatically. (Converting data types will
be explained in “Dissecting Your Program” on page 22 when talking
about the str(), int(), and float() functions.)

The * operator is used for multiplication when it operates on two inte-
ger or floating-point values. But when the * operator is used on one string
value and one integer value, it becomes the string replication operator. Enter
a string multiplied by a number into the interactive shell to see this in action.

>>> 'Alice' * 5
'AliceAliceAliceAliceAlice'

The expression evaluates down to a single string value that repeats the
original a number of times equal to the integer value. String replication is a
useful trick, but it’s not used as often as string concatenation.

The * operator can be used with only two numeric values (for multipli-
cation) or one string value and one integer value (for string replication).
Otherwise, Python will just display an error message.

>>> 'Alice' * 'Bob'
Traceback (most recent call last):
 File "<pyshell#32>", line 1, in <module>
 'Alice' * 'Bob'
TypeError: can't multiply sequence by non-int of type 'str'
>>> 'Alice' * 5.0
Traceback (most recent call last):
 File "<pyshell#33>", line 1, in <module>
 'Alice' * 5.0
TypeError: can't multiply sequence by non-int of type 'float'

It makes sense that Python wouldn’t understand these expressions: You
can’t multiply two words, and it’s hard to replicate an arbitrary string a frac-
tional number of times.

Storing Values in Variables
A variable is like a box in the computer’s memory where you can store a
single value. If you want to use the result of an evaluated expression later in
your program, you can save it inside a variable.

Assignment Statements
You’ll store values in variables with an assignment statement. An assignment
statement consists of a variable name, an equal sign (called the assignment
operator), and the value to be stored. If you enter the assignment statement
spam = 42, then a variable named spam will have the integer value 42 stored in it.

Python Basics 19

Think of a variable as a labeled box that a value is placed in, as in
Figure 1-2.

Figure 1-2: spam = 42 is like telling the program,
“The variable spam now has the integer value 42 in it.”

For example, enter the following into the interactive shell:

u >>> spam = 40
>>> spam
40
>>> eggs = 2

v >>> spam + eggs
42
>>> spam + eggs + spam
82

w >>> spam = spam + 2
>>> spam
42

A variable is initialized (or created) the first time a value is stored in it u.
After that, you can use it in expressions with other variables and values v.
When a variable is assigned a new value w, the old value is forgotten, which
is why spam evaluated to 42 instead of 40 at the end of the example. This is
called overwriting the variable. Enter the following code into the interactive
shell to try overwriting a string:

>>> spam = 'Hello'
>>> spam
'Hello'
>>> spam = 'Goodbye'
>>> spam
'Goodbye'

Just like the box in Figure 1-3, the spam variable in this example stores
'Hello' until you replace it with 'Goodbye'.

add image credit

Note: The cardboard box image comes
from http://commons.wikimedia.org/
wiki/File:Open _ cardboard _ box _
husky.png and was released to the
public domain. The font is ammy’s
handwriting, which is listed on dafont.
com as a “free” license.

20 Chapter 1

Figure 1-3: When a new value is assigned to a variable,
the old one is forgotten.

Variable Names
Table 1-3 has examples of legal variable names. You can name a variable
anything as long as it obeys the following three rules:

1.	 It can be only one word.

2.	 It can use only letters, numbers, and the underscore (_) character.

3.	 It can’t begin with a number.

Table 1-3: Valid and Invalid Variable Names

Valid variable names Invalid variable names

balance current-balance (hyphens are not allowed)

currentBalance current balance (spaces are not allowed)

current_balance 4account (can’t begin with a number)

_spam 42 (can’t begin with a number)

SPAM total_$um (special characters like $ are not allowed)

account4 'hello' (special characters like ' are not allowed)

Python Basics 21

Variable names are case-sensitive, meaning that spam, SPAM, Spam, and sPaM
are four different variables. It is a Python convention to start your variables
with a lowercase letter.

This book uses camelcase for variable names instead of underscores;
that is, variables lookLikeThis instead of looking_like_this. Some experienced
programmers may point out that the official Python code style, PEP 8, says
that underscores should be used. I unapologetically prefer camelcase and
point to “A Foolish Consistency Is the Hobgoblin of Little Minds” in PEP 8
itself:

“Consistency with the style guide is important. But most impor-
tantly: know when to be inconsistent—sometimes the style guide
just doesn’t apply. When in doubt, use your best judgment.”

A good variable name describes the data it contains. Imagine that you
moved to a new house and labeled all of your moving boxes as Stuff. You’d
never find anything! The variable names spam, eggs, and bacon are used as
generic names for the examples in this book and in much of Python’s docu-
mentation (inspired by the Monty Python “Spam” sketch), but in your pro-
grams, a descriptive name will help make your code more readable.

Your First Program
While the interactive shell is good for running Python instructions one at
a time, to write entire Python programs, you’ll type the instructions into
the file editor. The file editor is similar to text editors such as Notepad or
TextMate, but it has some specific features for typing in source code. To
open the file editor in IDLE, select File4New Window.

The window that appears should contain a cursor awaiting your input,
but it’s different from the interactive shell, which runs Python instructions
as soon as you press enter. The file editor lets you type in many instructions,
save the file, and run the program. Here’s how you can tell the difference
between the two:

•	 The interactive shell window will always be the one with the >>> prompt.

•	 The file editor window will not have the >>> prompt.

Now it’s time to create your first program! When the file editor window
opens, type the following into it:

u # This program says hello and asks for my name.

v print('Hello world!')
print('What is your name?') # ask for their name

w myName = input()
x print('It is good to meet you, ' + myName)
y print('The length of your name is:')

print(len(myName))

22 Chapter 1

z print('What is your age?') # ask for their age
myAge = input()
print('You will be ' + str(int(myAge) + 1) + ' in a year.')

Once you’ve entered your source code, save it so that you won’t have
to retype it each time you start IDLE. From the menu at the top of the file
editor window, select File4Save As. In the Save As window, enter hello.py
in the File Name field and then click Save.

You should save your programs every once in a while as you type them.
That way, if the computer crashes or you accidentally exit from IDLE, you
won’t lose the code. As a shortcut, you can press ctrl-S on Windows and
Linux or z-S on OS X to save your file.

Once you’ve saved, let’s run our program. Select Run4Run Module
or just press the F5 key. Your program should run in the interactive shell
window that appeared when you first started IDLE. Remember, you have
to press F5 from the file editor window, not the interactive shell window.
Enter your name when your program asks for it. The program’s output in
the interactive shell should look something like this:

Python 3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit
(AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
Hello world!
What is your name?
Al
It is good to meet you, Al
The length of your name is:
2
What is your age?
4
You will be 5 in a year.
>>>

When there are no more lines of code to execute, the Python program
terminates; that is, it stops running. (You can also say that the Python pro-
gram exits.)

You can close the file editor by clicking the X at the top of the window.
To reload a saved program, select File4Open from the menu. Do that now,
and in the window that appears, choose hello.py, and click the Open button.
Your previously saved hello.py program should open in the file editor window.

Dissecting Your Program
With your new program open in the file editor, let’s take a quick tour of the
Python instructions it uses by looking at what each line of code does.

Python Basics 23

Comments
The following line is called a comment.

u # This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or
remind yourself what the code is trying to do. Any text for the rest of the
line following a hash mark (#) is part of a comment.

Sometimes, programmers will put a # in front of a line of code to tem-
porarily remove it while testing a program. This is called commenting out
code, and it can be useful when you’re trying to figure out why a program
doesn’t work. You can remove the # later when you are ready to put the line
back in.

Python also ignores the blank line after the comment. You can add as
many blank lines to your program as you want. This can make your code
easier to read, like paragraphs in a book.

The print() Function
The print() function displays the string value inside the parentheses on the
screen.

v print('Hello world!')
print('What is your name?') # ask for their name

The line print('Hello world!') means “Print out the text in the string
'Hello world!'.” When Python executes this line, you say that Python is
calling the print() function and the string value is being passed to the func-
tion. A value that is passed to a function call is an argument. Notice that
the quotes are not printed to the screen. They just mark where the string
begins and ends; they are not part of the string value.

N o t e 	 You can also use this function to put a blank line on the screen; just call print() with
nothing in between the parentheses.

When writing a function name, the opening and closing parentheses at
the end identify it as the name of a function. This is why in this book you’ll
see print() rather than print. Chapter 2 describes functions in more detail.

The input() Function
The input() function waits for the user to type some text on the keyboard
and press enter.

w myName = input()

This function call evaluates to a string equal to the user’s text, and the
previous line of code assigns the myName variable to this string value.

24 Chapter 1

You can think of the input() function call as an expression that evalu-
ates to whatever string the user typed in. If the user entered 'Al', then the
expression would evaluate to myName = 'Al'.

Printing the User’s Name
The following call to print() actually contains the expression 'It is good to
meet you, ' + myName between the parentheses.

x print('It is good to meet you, ' + myName)

Remember that expressions can always evaluate to a single value. If 'Al'
is the value stored in myName on the previous line, then this expression evalu-
ates to 'It is good to meet you, Al'. This single string value is then passed to
print(), which prints it on the screen.

The len() Function
You can pass the len() function a string value (or a variable containing a
string), and the function evaluates to the integer value of the number of
characters in that string.

y print('The length of your name is:')
print(len(myName))

Enter the following into the interactive shell to try this:

>>> len('hello')
5
>>> len('My very energetic monster just scarfed nachos.')
46
>>> len('')
0

Just like those examples, len(myName) evaluates to an integer. It is then
passed to print() to be displayed on the screen. Notice that print() allows
you to pass it either integer values or string values. But notice the error that
shows up when you type the following into the interactive shell:

 >>> print('I am ' + 29 + ' years old.')
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 print('I am ' + 29 + ' years old.')
TypeError: Can't convert 'int' object to str implicitly

The print() function isn’t causing that error, but rather it’s the expres-
sion you tried to pass to print(). You get the same error message if you type
the expression into the interactive shell on its own.

Python Basics 25

>>> 'I am ' + 29 + ' years old.'
Traceback (most recent call last):
 File "<pyshell#7>", line 1, in <module>
 'I am ' + 29 + ' years old.'
TypeError: Can't convert 'int' object to str implicitly

Python gives an error because you can use the + operator only to add
two integers together or concatenate two strings. You can’t add an integer
to a string because this is ungrammatical in Python. You can fix this by
using a string version of the integer instead, as explained in the next section.

The str(), int(), and float() Functions
If you want to concatenate an integer such as 29 with a string to pass to
print(), you’ll need to get the value '29', which is the string form of 29. The
str() function can be passed an integer value and will evaluate to a string
value version of it, as follows:

>>> str(29)
'29'
>>> print('I am ' + str(29) + ' years old.')
I am 29 years old.

Because str(29) evaluates to '29', the expression 'I am ' + str(29) +
' years old.' evaluates to 'I am ' + '29' + ' years old.', which in turn
evaluates to 'I am 29 years old.'. This is the value that is passed to the
print() function.

The str(), int(), and float() functions will evaluate to the string, inte-
ger, and floating-point forms of the value you pass, respectively. Try con-
verting some values in the interactive shell with these functions, and watch
what happens.

>>> str(0)
'0'
>>> str(-3.14)
'-3.14'
>>> int('42')
42
>>> int('-99')
-99
>>> int(1.25)
1
>>> int(1.99)
1
>>> float('3.14')
3.14
>>> float(10)
10.0

26 Chapter 1

The previous examples call the str(), int(), and float() functions
and pass them values of the other data types to obtain a string, integer,
or floating-point form of those values.

The str() function is handy when you have an integer or float that you
want to concatenate to a string. The int() function is also helpful if you
have a number as a string value that you want to use in some mathematics.
For example, the input() function always returns a string, even if the user
enters a number. Enter spam = input() into the interactive shell and enter 101
when it waits for your text.

>>> spam = input()
101
>>> spam
'101'

The value stored inside spam isn’t the integer 101 but the string '101'.
If you want to do math using the value in spam, use the int() function to
get the integer form of spam and then store this as the new value in spam.

>>> spam = int(spam)
>>> spam
101

Now you should be able to treat the spam variable as an integer instead
of a string.

>>> spam * 10 / 5
202.0

Note that if you pass a value to int() that it cannot evaluate as an inte-
ger, Python will display an error message.

>>> int('99.99')
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in <module>
 int('99.99')
ValueError: invalid literal for int() with base 10: '99.99'
>>> int('twelve')
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in <module>
 int('twelve')
ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if you need to round a floating-point
number down.

Python Basics 27

>>> int(7.7)
7
>>> int(7.7) + 1
8

In your program, you used the int() and str() functions in the last
three lines to get a value of the appropriate data type for the code.

z print('What is your age?') # ask for their age
myAge = input()
print('You will be ' + str(int(myAge) + 1) + ' in a year.')

The myAge variable contains the value returned from input(). Because
the input() function always returns a string (even if the user typed in a num-
ber), you can use the int(myAge) code to return an integer value of the string
in myAge. This integer value is then added to 1 in the expression int(myAge) + 1.

The result of this addition is passed to the str() function: str(int(myAge)
+ 1). The string value returned is then concatenated with the strings 'You
will be ' and ' in a year.' to evaluate to one large string value. This large
string is finally passed to print() to be displayed on the screen.

Let’s say the user enters the string '4' for myAge. The string '4' is con-
verted to an integer, so you can add one to it. The result is 5. The str() func-
tion converts the result back to a string, so you can concatenate it with the
second string, 'in a year.', to create the final message. These evaluation
steps would look something like Figure 1-4.

T e x t a nd Numbe r Equi va l e nce

Although the string value of a number is considered a completely different
value from the integer or floating-point version, an integer can be equal to a
floating point.

>>> 42 == '42'
False
>>> 42 == 42.0
True
>>> 42.0 == 0042.000
True

Python makes this distinction because strings are text, while integers and
floats are both numbers.

28 Chapter 1

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

print('You will be ' + str(int() + 1) + ' in a year.')

print('You will be ' + str() + ' in a year.')

print('You will be ' + str() + ' in a year.')

print('You will be ' + + ' in a year.')

'4'

'5'

print('You will be 5' + ' in a year.')

print('You will be 5 in a year.')

5

4 + 1

Figure 1-4: The evaluation steps, if 4 was stored in myAge

Summary
You can compute expressions with a calculator or type string concatena-
tions with a word processor. You can even do string replication easily by
copying and pasting text. But expressions, and their component values—
operators, variables, and function calls—are the basic building blocks
that make programs. Once you know how to handle these elements, you
will be able to instruct Python to operate on large amounts of data for you.

It is good to remember the different types of operators (+, -, *, /, //, %,
and ** for math operations, and + and * for string operations) and the three
data types (integers, floating-point numbers, and strings) introduced in this
chapter.

A few different functions were introduced as well. The print() and input()
functions handle simple text output (to the screen) and input (from the key-
board). The len() function takes a string and evaluates to an int of the num-
ber of characters in the string. The str(), int(), and float() functions will
evaluate to the string, integer, or floating-point number form of the value
they are passed.

In the next chapter, you will learn how to tell Python to make intelli-
gent decisions about what code to run, what code to skip, and what code to
repeat based on the values it has. This is known as flow control, and it allows
you to write programs that make intelligent decisions.

Practice Questions
1.	 Which of the following are operators, and which are values?

*
'hello'
-88.8
-
/
+
5

Python Basics 29

2.	 Which of the following is a variable, and which is a string?

spam
'spam'

3.	 Name three data types.

4.	 What is an expression made up of? What do all expressions do?

5.	 This chapter introduced assignment statements, like spam = 10. What is
the difference between an expression and a statement?

6.	 What does the variable bacon contain after the following code runs?

bacon = 20
bacon + 1

7.	 What should the following two expressions evaluate to?

'spam' + 'spamspam'
'spam' * 3

8.	 Why is eggs a valid variable name while 100 is invalid?

9.	 What three functions can be used to get the integer, floating-point
number, or string version of a value?

10.	 Why does this expression cause an error? How can you fix it?

'I have eaten ' + 99 + ' burritos.'

Extra credit: Search online for the Python documentation for the len()
function. It will be on a web page titled “Built-in Functions.” Skim the
list of other functions Python has, look up what the round() function
does, and experiment with it in the interactive shell.

2
F l o w C o n t r o l

So you know the basics of individual
instructions and that a program is just a

series of instructions. But the real strength
of programming isn’t just running (or executing)

one instruction after another like a weekend errand
list. Based on how the expressions evaluate, the pro-
gram can decide to skip instructions, repeat them,
or choose one of several instructions to run. In fact, you almost never want
your programs to start from the first line of code and simply execute every
line, straight to the end. Flow control statements can decide which Python
instructions to execute under which conditions.

These flow control statements directly correspond to the symbols in a
flowchart, so I’ll provide flowchart versions of the code discussed in this
chapter. Figure 2-1 shows a flowchart for what to do if it’s raining. Follow
the path made by the arrows from Start to End.

32 Chapter 2

No

Yes

Yes

No

NoGo outside.

Wait a while.

Start

End

Is raining? Have umbrella?

Is raining? Yes

Figure 2-1: A flowchart to tell you what to do if it is raining

In a flowchart, there is usually more than one way to go from the start
to the end. The same is true for lines of code in a computer program. Flow
charts represent these branching points with diamonds, while the other
steps are represented with rectangles. The starting and ending steps are
represented with rounded rectangles.

But before you learn about flow control statements, you first need to
learn how to represent those yes and no options, and you need to under-
stand how to write those branching points as Python code. To that end, let’s
explore Boolean values, comparison operators, and Boolean operators.

Boolean Values
While the integer, floating-point, and string data types have an unlimited
number of possible values, the Boolean data type has only two values: True
and False. (Boolean is capitalized because the data type is named after
mathematician George Boole.) When typed as Python code, the Boolean
values True and False lack the quotes you place around strings, and they
always start with a capital T or F, with the rest of the word in lowercase.
Enter the following into the interactive shell. (Some of these instructions
are intentionally incorrect, and they’ll cause error messages to appear.)

Flow Control 33

u >>> spam = True
>>> spam
True

v >>> true
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 true
NameError: name 'true' is not defined

w >>> True = 2 + 2
SyntaxError: assignment to keyword

Like any other value, Boolean values are used in expressions and can
be stored in variables u. If you don’t use the proper case v or you try to use
True and False for variable names w, Python will give you an error message.

Comparison Operators
Comparison operators compare two values and evaluate down to a single
Boolean value. Table 2-1 lists the comparison operators.

Table 2-1: Comparison Operators

Operator Meaning

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

These operators evaluate to True or False depending on the values you
give them. Let’s try some operators now, starting with == and !=.

>>> 42 == 42
True
>>> 42 == 99
False
>>> 2 != 3
True
>>> 2 != 2
False

As you might expect, == (equal to) evaluates to True when the values
on both sides are the same, and != (not equal to) evaluates to True when
the two values are different. The == and != operators can actually work with
values of any data type.

34 Chapter 2

>>> 'hello' == 'hello'
True
>>> 'hello' == 'Hello'
False
>>> 'dog' != 'cat'
True
>>> True == True
True
>>> True != False
True
>>> 42 == 42.0
True

u >>> 42 == '42'
False

Note that an integer or floating-point value will always be unequal to a
string value. The expression 42 == '42' u evaluates to False because Python
considers the integer 42 to be different from the string '42'.

The <, >, <=, and >= operators, on the other hand, work properly only
with integer and floating-point values.

>>> 42 < 100
True
>>> 42 > 100
False
>>> 42 < 42
False
>>> eggCount = 42

u >>> eggCount <= 42
True
>>> myAge = 29

v >>> myAge >= 10
True

T he Dif f e r e nce Be t w e e n t he == a nd = Ope r ators

You might have noticed that the == operator (equal to) has two equal signs,
while the = operator (assignment) has just one equal sign. It’s easy to confuse
these two operators with each other. Just remember these points:

•	 The == operator (equal to) asks whether two values are the same as each
other.

•	 The = operator (assignment) puts the value on the right into the variable
on the left.

To help remember which is which, notice that the == operator (equal to)
consists of two characters, just like the != operator (not equal to) consists of
two characters.

Flow Control 35

You’ll often use comparison operators to compare a variable’s value to
some other value, like in the eggCount <= 42 u and myAge >= 10 v examples.
(After all, instead of typing 'dog' != 'cat' in your code, you could have just
typed True.) You’ll see more examples of this later when you learn about
flow control statements.

Boolean Operators
The three Boolean operators (and, or, and not) are used to compare Boolean
values. Like comparison operators, they evaluate these expressions down
to a Boolean value. Let’s explore these operators in detail, starting with the
and operator.

Binary Boolean Operators
The and and or operators always take two Boolean values (or expressions),
so they’re considered binary operators. The and operator evaluates an expres-
sion to True if both Boolean values are True; otherwise, it evaluates to False.
Enter some expressions using and into the interactive shell to see it in action.

>>> True and True
True
>>> True and False
False

A truth table shows every possible result of a Boolean operator. Table 2-2
is the truth table for the and operator.

Table 2-2: The and Operator’s Truth Table

Expression Evaluates to…

True and True True

True and False False

False and True False

False and False False

On the other hand, the or operator evaluates an expression to True if
either of the two Boolean values is True. If both are False, it evaluates to False.

>>> False or True
True
>>> False or False
False

You can see every possible outcome of the or operator in its truth table,
shown in Table 2-3.

36 Chapter 2

Table 2-3: The or Operator’s Truth Table

Expression Evaluates to…

True or True True

True or False True

False or True True

False or False False

The not Operator
Unlike and and or, the not operator operates on only one Boolean value (or
expression). The not operator simply evaluates to the opposite Boolean value.

>>> not True
False

u >>> not not not not True
True

Much like using double negatives in speech and writing, you can nest
not operators u, though there’s never not no reason to do this in real pro-
grams. Table 2-4 shows the truth table for not.

Table 2-4: The not Operator’s Truth Table

Expression Evaluates to…

not True False

not False True

Mixing Boolean and Comparison Operators
Since the comparison operators evaluate to Boolean values, you can use
them in expressions with the Boolean operators.

Recall that the and, or, and not operators are called Boolean operators
because they always operate on the Boolean values True and False. While
expressions like 4 < 5 aren’t Boolean values, they are expressions that evalu-
ate down to Boolean values. Try entering some Boolean expressions that
use comparison operators into the interactive shell.

>>> (4 < 5) and (5 < 6)
True
>>> (4 < 5) and (9 < 6)
False
>>> (1 == 2) or (2 == 2)
True

Flow Control 37

The computer will evaluate the left expression first,
and then it will evaluate the right expression. When it
knows the Boolean value for each, it will then evaluate
the whole expression down to one Boolean value. You
can think of the computer’s evaluation process for
(4 < 5) and (5 < 6) as shown in Figure 2-2.

You can also use multiple Boolean operators in an
expression, along with the comparison operators.

>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2
True

The Boolean operators have an order of operations just like the
math operators do. After any math and comparison operators evaluate,
Python evaluates the not operators first, then the and operators, and then
the or operators.

Elements of Flow Control
Flow control statements often start with a part called the condition, and all
are followed by a block of code called the clause. Before you learn about
Python’s specific flow control statements, I’ll cover what a condition and a
block are.

Conditions
The Boolean expressions you’ve seen so far could all be considered con-
ditions, which are the same thing as expressions; condition is just a more
specific name in the context of flow control statements. Conditions always
evaluate down to a Boolean value, True or False. A flow control statement
decides what to do based on whether its condition is True or False, and
almost every flow control statement uses a condition.

Blocks of Code
Lines of Python code can be grouped together in blocks. You can tell when a
block begins and ends from the indentation of the lines of code. There are
three rules for blocks.

1.	 Blocks begin when the indentation increases.

2.	 Blocks can contain other blocks.

3.	 Blocks end when the indentation decreases to zero or to a containing
block’s indentation.

(4 < 5) and (5 < 6)

True and (5 < 6)

True and True

True

Figure 2-2: The
process of evalu-
ating (4 < 5) and
(5 < 6) to True.

38 Chapter 2

Blocks are easier to understand by looking at some indented code, so
let’s find the blocks in part of a small game program, shown here:

if name == 'Mary':
u print('Hello Mary')

if password == 'swordfish':
v print('Access granted.')

else:
w print('Wrong password.')

The first block of code u starts at the line print('Hello Mary') and con-
tains all the lines after it. Inside this block is another block v, which has
only a single line in it: print('Access Granted.'). The third block w is also
one line long: print('Wrong password.').

Program Execution
In the previous chapter’s hello.py program, Python started executing
instructions at the top of the program going down, one after another. The
program execution (or simply, execution) is a term for the current instruction
being executed. If you print the source code on paper and put your finger
on each line as it is executed, you can think of your finger as the program
execution.

Not all programs execute by simply going straight down, however. If you
use your finger to trace through a program with flow control statements,
you’ll likely find yourself jumping around the source code based on condi-
tions, and you’ll probably skip entire clauses.

Flow Control Statements
Now, let’s explore the most important piece of flow control: the statements
themselves. The statements represent the diamonds you saw in the flowchart
in Figure 2-1, and they are the actual decisions your programs will make.

if Statements
The most common type of flow control statement is the if statement. An if
statement’s clause (that is, the block following the if statement) will execute
if the statement’s condition is True. The clause is skipped if the condition is
False.

In plain English, an if statement could be read as, “If this condition is
true, execute the code in the clause.” In Python, an if statement consists of
the following:

•	 The if keyword

•	 A condition (that is, an expression that evaluates to True or False)

•	 A colon

•	 Starting on the next line, an indented block of code (called the if clause)

Flow Control 39

For example, let’s say you have some code that checks to see whether
someone’s name is Alice. (Pretend name was assigned some value earlier.)

if name == 'Alice':
 print('Hi, Alice.')

All flow control statements end with a colon and are followed by a
new block of code (the clause). This if statement’s clause is the block with
print('Hi, Alice.'). Figure 2-3 shows what a flowchart of this code would
look like.

print('Hi, Alice.')

Start

End

name == 'Alice' True

False

Figure 2-3: The flowchart for an if statement

else Statements
An if clause can optionally be followed by an else statement. The else clause
is executed only when the if statement’s condition is False. In plain English,
an else statement could be read as, “If this condition is true, execute this
code. Or else, execute that code.” An else statement doesn’t have a condi-
tion, and in code, an else statement always consists of the following:

•	 The else keyword

•	 A colon

•	 Starting on the next line, an indented block of code (called the else
clause)

Returning to the Alice example, let’s look at some code that uses an
else statement to offer a different greeting if the person’s name isn’t Alice.

if name == 'Alice':
 print('Hi, Alice.')

40 Chapter 2

else:
 print('Hello, stranger.')

Figure 2-4 shows what a flowchart of this code would look like.

print('Hi, Alice.')

Start

End

name == 'Alice'

print('Hello, stranger.')

True

False

Figure 2-4: The flowchart for an else statement

elif Statements
While only one of the if or else clauses will execute, you may have a case
where you want one of many possible clauses to execute. The elif statement
is an “else if” statement that always follows an if or another elif statement.
It provides another condition that is checked only if any of the previous con-
ditions were False. In code, an elif statement always consists of the following:

•	 The elif keyword

•	 A condition (that is, an expression that evaluates to True or False)

•	 A colon

•	 Starting on the next line, an indented block of code (called the elif
clause)

Let’s add an elif to the name checker to see this statement in action.

if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')

Flow Control 41

This time, you check the person’s age, and the program will tell them
something different if they’re younger than 12. You can see the flowchart
for this in Figure 2-5.

print('Hi, Alice.')

Start

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

Figure 2-5: The flowchart for an elif statement

The elif clause executes if age < 12 is True and name == 'Alice' is False.
However, if both of the conditions are False, then both of the clauses are
skipped. It is not guaranteed that at least one of the clauses will be exe-
cuted. When there is a chain of elif statements, only one or none of the
clauses will be executed. Once one of the statements’ conditions is found
to be True, the rest of the elif clauses are automatically skipped. For example,
open a new file editor window and enter the following code, saving it as
vampire.py:

if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
elif age > 2000:
 print('Unlike you, Alice is not an undead, immortal vampire.')
elif age > 100:
 print('You are not Alice, grannie.')

42 Chapter 2

Here I’ve added two more elif statements to make the name checker
greet a person with different answers based on age. Figure 2-6 shows the
flowchart for this.

print('Hi, Alice.')

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

age > 100

True

False

print('You are not Alice, grannie.')

age > 2000

True

False

Start

print('Unlike you, Alice is not
an undead, immortal vampire.')

Figure 2-6: The flowchart for multiple elif statements in the vampire.py program

Flow Control 43

The order of the elif statements does matter, however. Let’s rearrange
them to introduce a bug. Remember that the rest of the elif clauses are
automatically skipped once a True condition has been found, so if you swap
around some of the clauses in vampire.py, you run into a problem. Change
the code to look like the following, and save it as vampire2.py:

if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')

u elif age > 100:
 print('You are not Alice, grannie.')
elif age > 2000:
 print('Unlike you, Alice is not an undead, immortal vampire.')

Say the age variable contains the value 3000 before this code is executed.
You might expect the code to print the string 'Unlike you, Alice is not
an undead, immortal vampire.'. However, because the age > 100 condition is
True (after all, 3000 is greater than 100) u, the string 'You are not Alice,
grannie.' is printed, and the rest of the elif statements are automatically
skipped. Remember, at most only one of the clauses will be executed, and
for elif statements, the order matters!

Figure 2-7 shows the flowchart for the previous code. Notice how the
diamonds for age > 100 and age > 2000 are swapped.

Optionally, you can have an else statement after the last elif statement.
In that case, it is guaranteed that at least one (and only one) of the clauses
will be executed. If the conditions in every if and elif statement are False,
then the else clause is executed. For example, let’s re-create the Alice pro-
gram to use if, elif, and else clauses.

if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
else:
 print('You are neither Alice nor a little kid.')

Figure 2-8 shows the flowchart for this new code, which we’ll save as
littleKid.py.

In plain English, this type of flow control structure would be, “If the
first condition is true, do this. Else, if the second condition is true, do that.
Otherwise, do something else.” When you use all three of these statements
together, remember these rules about how to order them to avoid bugs like
the one in Figure 2-7. First, there is always exactly one if statement. Any elif
statements you need should follow the if statement. Second, if you want to
be sure that at least one clause is executed, close the structure with an else
statement.

44 Chapter 2

print('Hi, Alice.')

Start

End

print('You are not Alice, kiddo.')

True

False

True

False

print('Unlike you, Alice is not
an undead, immortal vampire.')

True

False

print('You are not Alice, grannie.')

False

X

name == 'Alice'

age < 12

age > 2000

age > 100

True

Figure 2-7: The flowchart for the vampire2.py program. The crossed-out path
will logically never happen, because if age were greater than 2000, it would
have already been greater than 100.

Flow Control 45

print('Hi, Alice.')

Start

End

name == 'Alice'

print('You are not Alice, kiddo.')age < 12

True

False

True

False

print('You are neither Alice
nor a little kid.')

Figure 2-8: Flowchart for the previous littleKid.py program

while Loop Statements
You can make a block of code execute over and over again with a while state-
ment. The code in a while clause will be executed as long as the while state-
ment’s condition is True. In code, a while statement always consists of the
following:

•	 The while keyword

•	 A condition (that is, an expression that evaluates to True or False)

•	 A colon

•	 Starting on the next line, an indented block of code (called the while
clause)

46 Chapter 2

You can see that a while statement looks similar to an if statement. The
difference is in how they behave. At the end of an if clause, the program
execution continues after the if statement. But at the end of a while clause,
the program execution jumps back to the start of the while statement. The
while clause is often called the while loop or just the loop.

Let’s look at an if statement and a while loop that use the same condi-
tion and take the same actions based on that condition. Here is the code
with an if statement:

spam = 0
if spam < 5:
 print('Hello, world.')
 spam = spam + 1

Here is the code with a while statement:

spam = 0
while spam < 5:
 print('Hello, world.')
 spam = spam + 1

These statements are similar—both if and while check the value of spam,
and if it’s less than five, they print a message. But when you run these two
code snippets, something very different happens for each one. For the if
statement, the output is simply "Hello, world.". But for the while statement,
it’s "Hello, world." repeated five times! Take a look at the flowcharts for
these two pieces of code, Figures 2-9 and 2-10, to see why this happens.

print('Hello, world.')

Start

End

spam < 5

spam = spam + 1

True

False

Figure 2-9: The flowchart for the if statement code

Flow Control 47

print('Hello, world.')

Start

End

spam < 5

spam = spam + 1

True

False

Figure 2-10: The flowchart for the while statement code

The code with the if statement checks the condition, and it prints
Hello, world. only once if that condition is true. The code with the while loop,
on the other hand, will print it five times. It stops after five prints because
the integer in spam is incremented by one at the end of each loop iteration,
which means that the loop will execute five times before spam < 5 is False.

In the while loop, the condition is always checked at the start of each
iteration (that is, each time the loop is executed). If the condition is True,
then the clause is executed, and afterward, the condition is checked again.
The first time the condition is found to be False, the while clause is skipped.

An Annoying while Loop

Here’s a small example program that will keep asking you to type, literally,
your name. Select File4New Window to open a new file editor window, enter
the following code, and save the file as yourName.py:

u name = ''
v while name != 'your name':

 print('Please type your name.')
w name = input()
x print('Thank you!')

First, the program sets the name variable u to an empty string. This is so
that the name != 'your name' condition will evaluate to True and the program
execution will enter the while loop’s clause v.

48 Chapter 2

The code inside this clause asks the user to type their name, which
is assigned to the name variable w. Since this is the last line of the block,
the execution moves back to the start of the while loop and reevaluates the
condition. If the value in name is not equal to the string 'your name', then
the condition is True, and the execution enters the while clause again.

But once the user types your name, the condition of the while loop will
be 'your name' != 'your name', which evaluates to False. The condition is now
False, and instead of the program execution reentering the while loop’s
clause, it skips past it and continues running the rest of the program x.
Figure 2-11 shows a flowchart for the yourName.py program.

print('Please type your name.')

Start

End

name! = 'your name'

name = input()

True

False

name = "

print('Thank you!')

Figure 2-11: A flowchart of the yourName.py program

Now, let’s see yourName.py in action. Press F5 to run it, and enter something
other than your name a few times before you give the program what it wants.

Please type your name.
Al
Please type your name.
Albert

Flow Control 49

Please type your name.
%#@#%*(^&!!!
Please type your name.
your name
Thank you!

If you never enter your name, then the while loop’s condition will never
be False, and the program will just keep asking forever. Here, the input()
call lets the user enter the right string to make the program move on. In
other programs, the condition might never actually change, and that can
be a problem. Let’s look at how you can break out of a while loop.

break Statements
There is a shortcut to getting the program execution to break out of a while
loop’s clause early. If the execution reaches a break statement, it immedi-
ately exits the while loop’s clause. In code, a break statement simply contains
the break keyword.

Pretty simple, right? Here’s a program that does the same thing as the
previous program, but it uses a break statement to escape the loop. Enter the
following code, and save the file as yourName2.py:

u while True:
 print('Please type your name.')

v name = input()
w if name == 'your name':
x break
y print('Thank you!')

The first line u creates an infinite loop; it is a while loop whose condition
is always True. (The expression True, after all, always evaluates down to the
value True.) The program execution will always enter the loop and will exit
it only when a break statement is executed. (An infinite loop that never exits
is a common programming bug.)

Just like before, this program asks the user to type your name v. Now,
however, while the execution is still inside the while loop, an if statement
gets executed w to check whether name is equal to your name. If this condi-
tion is True, the break statement is run x, and the execution moves out of the
loop to print('Thank you!') y. Otherwise, the if statement’s clause with the
break statement is skipped, which puts the execution at the end of the while
loop. At this point, the program execution jumps back to the start of the
while statement u to recheck the condition. Since this condition is merely
the True Boolean value, the execution enters the loop to ask the user to type
your name again. See Figure 2-12 for the flowchart of this program.

Run yourName2.py, and enter the same text you entered for yourName.py.
The rewritten program should respond in the same way as the original.

50 Chapter 2

print('Please type your name.')

Start

End

True

name = input()

True

name = "

print('Thank you!')

name == 'your name' breakTrue

False

XFalse

Figure 2-12: The flowchart for the yourName2.py program with an infinite loop. Note
that the X path will logically never happen because the loop condition is always True.

continue Statements
Like break statements, continue statements are used inside loops. When the
program execution reaches a continue statement, the program execution
immediately jumps back to the start of the loop and reevaluates the loop’s
condition. (This is also what happens when the execution reaches the end
of the loop.)

Flow Control 51

Let’s use continue to write a program that asks for a name and password.
Enter the following code into a new file editor window and save the pro-
gram as swordfish.py.

while True:
 print('Who are you?')
 name = input()

u if name != 'Joe':
v continue

 print('Hello, Joe. What is the password? (It is a fish.)')
w password = input()

 if password == 'swordfish':
x break
y print('Access granted.')

If the user enters any name besides Joe u, the continue statement v
causes the program execution to jump back to the start of the loop. When
it reevaluates the condition, the execution will always enter the loop, since
the condition is simply the value True. Once they make it past that if state-
ment, the user is asked for a password w. If the password entered is swordfish,
then the break statement x is run, and the execution jumps out of the while
loop to print Access granted y. Otherwise, the execution continues to the
end of the while loop, where it then jumps back to the start of the loop. See
Figure 2-13 for this program’s flowchart.

T r app e d in a n Inf ini t e Loop?

If you ever run a program that has a bug causing it to get stuck in an infinite
loop, press ctrl-C. This will send a KeyboardInterrupt error to your program
and cause it to stop immediately. To try it, create a simple infinite loop in the
file editor, and save it as infiniteloop.py.

while True:
 print('Hello world!')

When you run this program, it will print Hello world! to the screen forever,
because the while statement’s condition is always True. In IDLE’s interactive shell
window, there are only two ways to stop this program: press ctrl-C or select
Shell4Restart Shell from the menu. ctrl-C is handy if you ever want to termi-
nate your program immediately, even if it’s not stuck in an infinite loop.

52 Chapter 2

print('Who are you?')

Start

End

True

name = input()

True

name = "

print('Access Granted.')

name != 'Joe'continue True

X

print('Hello, Joe. What is the password? (It is a fish.)')

password = input()

password == 'swordfish'

break True

False

False

False

Figure 2-13: A flowchart for swordfish.py. The X path will logically never happen because the loop
condition is always True.

Flow Control 53

Run this program and give it some input. Until you claim to be Joe, it
shouldn’t ask for a password, and once you enter the correct password, it
should exit.

Who are you?
I'm fine, thanks. Who are you?
Who are you?
Joe
Hello, Joe. What is the password? (It is a fish.)
Mary
Who are you?
Joe
Hello, Joe. What is the password? (It is a fish.)
swordfish

Access granted.

for Loops and the range() Function
The while loop keeps looping while its condition is True (which is the reason
for its name), but what if you want to execute a block of code only a certain
number of times? You can do this with a for loop statement and the range()
function.

“T ru t h y ” a nd “Fa l se y ” Va lue s

There are some values in other data types that conditions will consider equiva-
lent to True and False. When used in conditions, 0, 0.0, and '' (the empty
string) are considered False, while all other values are considered True. For
example, look at the following program:

name = ''
while not name:u
 print('Enter your name:')
 name = input()
print('How many guests will you have?')
numOfGuests = int(input())
if numOfGuests:v
 print('Be sure to have enough room for all your guests.')w
print('Done')

If the user enters a blank string for name, then the while statement’s condition
will be True u, and the program continues to ask for a name. If the value for
numOfGuests is not 0 v, then the condition is considered to be True, and the
program will print a reminder for the user w.

You could have typed not name != '' instead of not name, and numOfGuests
!= 0 instead of numOfGuests, but using the truthy and falsey values can make
your code easier to read.

54 Chapter 2

In code, a for statement looks something like for i in range(5): and
always includes the following:

•	 The for keyword

•	 A variable name

•	 The in keyword

•	 A call to the range() method with up to three integers passed to it

•	 A colon

•	 Starting on the next line, an indented block of code (called the for
clause)

Let’s create a new program called fiveTimes.py to help you see a for loop
in action.

print('My name is')
for i in range(5):
 print('Jimmy Five Times (' + str(i) + ')')

The code in the for loop’s clause is run five times. The first time it
is run, the variable i is set to 0. The print() call in the clause will print
Jimmy Five Times (0). After Python finishes an iteration through all the code
inside the for loop’s clause, the execution goes back to the top of the loop,
and the for statement increments i by one. This is why range(5) results in
five iterations through the clause, with i being set to 0, then 1, then 2, then
3, and then 4. The variable i will go up to, but will not include, the integer
passed to range(). Figure 2-14 shows a flowchart for the fiveTimes.py program.

print('Jimmy Five Times (' + str(i) + ')')

Start

End

for i in range (5)

Looping

Done looping

print('My name is')

Figure 2-14: The flowchart for fiveTimes.py

Flow Control 55

When you run this program, it should print Jimmy Five Times followed by
the value of i five times before leaving the for loop.

My name is
Jimmy Five Times (0)
Jimmy Five Times (1)
Jimmy Five Times (2)
Jimmy Five Times (3)
Jimmy Five Times (4)

N o t e 	 You can use break and continue statements inside for loops as well. The continue
statement will continue to the next value of the for loop’s counter, as if the program
execution had reached the end of the loop and returned to the start. In fact, you can
use continue and break statements only inside while and for loops. If you try to use
these statements elsewhere, Python will give you an error.

As another for loop example, consider this story about the mathemati-
cian Karl Friedrich Gauss. When Gauss was a boy, a teacher wanted to give
the class some busywork. The teacher told them to add up all the numbers
from 0 to 100. Young Gauss came up with a clever trick to figure out the
answer in a few seconds, but you can write a Python program with a for
loop to do this calculation for you.

u total = 0
v for num in range(101):
w total = total + num
x print(total)

The result should be 5,050. When the program first starts, the total
variable is set to 0 u. The for loop v then executes total = total + num w
100 times. By the time the loop has finished all of its 100 iterations, every
integer from 0 to 100 will have been added to total. At this point, total is
printed to the screen x. Even on the slowest computers, this program takes
less than a second to complete.

(Young Gauss figured out that there were 50 pairs of numbers that added
up to 100: 1 + 99, 2 + 98, 3 + 97, and so on, until 49 + 51. Since 50 × 100 is
5,000, when you add that middle 50, the sum of all the numbers from 0 to
100 is 5,050. Clever kid!)

An Equivalent while Loop

You can actually use a while loop to do the same thing as a for loop; for
loops are just more concise. Let’s rewrite fiveTimes.py to use a while loop
equivalent of a for loop.

print('My name is')
i = 0
while i < 5:
 print('Jimmy Five Times (' + str(i) + ')')
 i = i + 1

56 Chapter 2

If you run this program, the output should look the same as the
fiveTimes.py program, which uses a for loop.

The Starting, Stopping, and Stepping Arguments to range()

Some functions can be called with multiple arguments separated by a
comma, and range() is one of them. This lets you change the integer passed
to range() to follow any sequence of integers, including starting at a number
other than zero.

for i in range(12, 16):
 print(i)

The first argument will be where the for loop’s variable starts, and the
second argument will be up to, but not including, the number to stop at.

12
13
14
15

The range() function can also be called with three arguments. The first
two arguments will be the start and stop values, and the third will be the
step argument. The step is the amount that the variable is increased by after
each iteration.

for i in range(0, 10, 2):
 print(i)

So calling range(0, 10, 2) will count from zero to eight by intervals of two.

0
2
4
6
8

The range() function is flexible in the sequence of numbers it produces
for for loops. For example (I never apologize for my puns), you can even use
a negative number for the step argument to make the for loop count down
instead of up.

for i in range(5, -1, -1):
 print(i)

Running a for loop to print i with range(5, -1, -1) should print from
five down to zero.

5
4

Flow Control 57

3
2
1
0

Importing Modules
All Python programs can call a basic set of functions called built-in functions,
including the print(), input(), and len() functions you’ve seen before. Python
also comes with a set of modules called the standard library. Each module
is a Python program that contains a related group of functions that can be
embedded in your programs. For example, the math module has mathematics-
related functions, the random module has random number–related functions,
and so on.

Before you can use the functions in a module, you must import the
module with an import statement. In code, an import statement consists of
the following:

•	 The import keyword

•	 The name of the module

•	 Optionally, more module names, as long as they are separated by
commas

Once you import a module, you can use all the cool functions of that
module. Let’s give it a try with the random module, which will give us access
to the random.ranint() function.

Enter this code into the file editor, and save it as printRandom.py:

import random
for i in range(5):
 print(random.randint(1, 10))

When you run this program, the output will look something like this:

4
1
8
4
1

The random.randint() function call evaluates to a random integer value
between the two integers that you pass it. Since randint() is in the random
module, you must first type random. in front of the function name to tell
Python to look for this function inside the random module.

Here’s an example of an import statement that imports four different
modules:

import random, sys, os, math

58 Chapter 2

Now we can use any of the functions in these four modules. We’ll learn
more about them later in the book.

from import Statements
An alternative form of the import statement is composed of the from key-
word, followed by the module name, the import keyword, and a star; for
example, from random import *.

With this form of import statement, calls to functions in random will not
need the random. prefix. However, using the full name makes for more read-
able code, so it is better to use the normal form of the import statement.

Ending a Program Early with sys.exit()
The last flow control concept to cover is how to terminate the program.
This always happens if the program execution reaches the bottom of the
instructions. However, you can cause the program to terminate, or exit, by
calling the sys.exit() function. Since this function is in the sys module, you
have to import sys before your program can use it.

Open a new file editor window and enter the following code, saving it as
exitExample.py:

import sys

while True:
 print('Type exit to exit.')
 response = input()
 if response == 'exit':
 sys.exit()
 print('You typed ' + response + '.')

Run this program in IDLE. This program has an infinite loop with no
break statement inside. The only way this program will end is if the user enters
exit, causing sys.exit() to be called. When response is equal to exit, the pro-
gram ends. Since the response variable is set by the input() function, the user
must enter exit in order to stop the program.

Summary
By using expressions that evaluate to True or False (also called conditions),
you can write programs that make decisions on what code to execute and
what code to skip. You can also execute code over and over again in a loop
while a certain condition evaluates to True. The break and continue statements
are useful if you need to exit a loop or jump back to the start.

These flow control statements will let you write much more intelligent
programs. There’s another type of flow control that you can achieve by writ-
ing your own functions, which is the topic of the next chapter.

Flow Control 59

Practice Questions
1.	 What are the two values of the Boolean data type? How do you

write them?

2.	 What are the three Boolean operators?

3.	 Write out the truth tables of each Boolean operator (that is, every
possible combination of Boolean values for the operator and what
they evaluate to).

4.	 What do the following expressions evaluate to?

(5 > 4) and (3 == 5)
not (5 > 4)
(5 > 4) or (3 == 5)
not ((5 > 4) or (3 == 5))
(True and True) and (True == False)
(not False) or (not True)

5.	 What are the six comparison operators?

6.	 What is the difference between the equal to operator and the assign-
ment operator?

7.	 Explain what a condition is and where you would use one.

8.	 Identify the three blocks in this code:

spam = 0
if spam == 10:
 print('eggs')
 if spam > 5:
 print('bacon')
 else:
 print('ham')
 print('spam')
print('spam')

9.	 Write code that prints Hello if 1 is stored in spam, prints Howdy if 2 is
stored in spam, and prints Greetings! if anything else is stored in spam.

10.	 What can you press if your program is stuck in an infinite loop?

11.	 What is the difference between break and continue?

12.	 What is the difference between range(10), range(0, 10), and range(0, 10, 1)
in a for loop?

13.	 Write a short program that prints the numbers 1 to 10 using a for loop.
Then write an equivalent program that prints the numbers 1 to 10 using
a while loop.

14.	 If you had a function named bacon() inside a module named spam, how
would you call it after importing spam?

Extra credit: Look up the round() and abs() functions on the Internet,
and find out what they do. Experiment with them in the interactive shell.

3
F u n c t i o n s

You’re already familiar with the print(),
input(), and len() functions from the previ-

ous chapters. Python provides several built-
in functions like these, but you can also write

your own functions. A function is like a mini-program
within a program.

To better understand how functions work, let’s create one. Type this
program into the file editor and save it as helloFunc.py:

u def hello():
v print('Howdy!')

 print('Howdy!!!')
 print('Hello there.')

w hello()
hello()
hello()

62 Chapter 3

The first line is a def statement u, which defines a function named
hello(). The code in the block that follows the def statement v is the body
of the function. This code is executed when the function is called, not when
the function is first defined.

The hello() lines after the function w are function calls. In code, a
function call is just the function’s name followed by parentheses, possibly
with some number of arguments in between the parentheses. When the
program execution reaches these calls, it will jump to the top line in the
function and begin executing the code there. When it reaches the end of
the function, the execution returns to the line that called the function
and continues moving through the code as before.

Since this program calls hello() three times, the code in the hello()
function is executed three times. When you run this program, the output
looks like this:

Howdy!
Howdy!!!
Hello there.
Howdy!
Howdy!!!
Hello there.
Howdy!
Howdy!!!
Hello there.

A major purpose of functions is to group code that gets executed mul-
tiple times. Without a function defined, you would have to copy and paste
this code each time, and the program would look like this:

print('Howdy!')
print('Howdy!!!')
print('Hello there.')
print('Howdy!')
print('Howdy!!!')
print('Hello there.')
print('Howdy!')
print('Howdy!!!')
print('Hello there.')

In general, you always want to avoid duplicating code, because if you
ever decide to update the code—if, for example, you find a bug you need to
fix—you’ll have to remember to change the code everywhere you copied it.

As you get more programming experience, you’ll often find yourself
deduplicating code, which means getting rid of duplicated or copy-and-
pasted code. Deduplication makes your programs shorter, easier to read,
and easier to update.

Functions 63

def Statements with Parameters
When you call the print() or len() function, you pass in values, called argu-
ments in this context, by typing them between the parentheses. You can also
define your own functions that accept arguments. Type this example into
the file editor and save it as helloFunc2.py:

u def hello(name):
v print('Hello ' + name)

w hello('Alice')
hello('Bob')

When you run this program, the output looks like this:

Hello Alice
Hello Bob

The definition of the hello() function in this program has a parameter
called name u. A parameter is a variable that an argument is stored in when a
function is called. The first time the hello() function is called, it’s with the
argument 'Alice' w. The program execution enters the function, and the
variable name is automatically set to 'Alice', which is what gets printed by the
print() statement v.

One special thing to note about parameters is that the value stored
in a parameter is forgotten when the function returns. For example, if you
added print(name) after hello('Bob') in the previous program, the program
would give you a NameError because there is no variable named name. This
variable was destroyed after the function call hello('Bob') had returned, so
print(name) would refer to a name variable that does not exist.

This is similar to how a program’s variables are forgotten when the pro-
gram terminates. I’ll talk more about why that happens later in the chapter,
when I discuss what a function’s local scope is.

Return Values and return Statements
When you call the len() function and pass it an argument such as 'Hello',
the function call evaluates to the integer value 5, which is the length of the
string you passed it. In general, the value that a function call evaluates to is
called the return value of the function.

When creating a function using the def statement, you can specify what
the return value should be with a return statement. A return statement con-
sists of the following:

•	 The return keyword

•	 The value or expression that the function should return

64 Chapter 3

When an expression is used with a return statement, the return value
is what this expression evaluates to. For example, the following program
defines a function that returns a different string depending on what num-
ber it is passed as an argument. Type this code into the file editor and save
it as magic8Ball.py:

u import random

v def getAnswer(answerNumber):
w if answerNumber == 1:

 return 'It is certain'
 elif answerNumber == 2:
 return 'It is decidedly so'
 elif answerNumber == 3:
 return 'Yes'
 elif answerNumber == 4:
 return 'Reply hazy try again'
 elif answerNumber == 5:
 return 'Ask again later'
 elif answerNumber == 6:
 return 'Concentrate and ask again'
 elif answerNumber == 7:
 return 'My reply is no'
 elif answerNumber == 8:
 return 'Outlook not so good'
 elif answerNumber == 9:
 return 'Very doubtful'

x r = random.randint(1, 9)
y fortune = getAnswer(r)
z print(fortune)

When this program starts, Python first imports the random module u.
Then the getAnswer() function is defined v. Because the function is being
defined (and not called), the execution skips over the code in it. Next, the
random.randint() function is called with two arguments, 1 and 9 x. It evalu-
ates to a random integer between 1 and 9 (including 1 and 9 themselves),
and this value is stored in a variable named r.

The getAnswer() function is called with r as the argument y. The pro-
gram execution moves to the top of the getAnswer() function w, and the
value r is stored in a parameter named answerNumber. Then, depending on
this value in answerNumber, the function returns one of many possible string
values. The program execution returns to the line at the bottom of the pro-
gram that originally called getAnswer() y. The returned string is assigned to
a variable named fortune, which then gets passed to a print() call z and is
printed to the screen.

Functions 65

Note that since you can pass return values as an argument to another
function call, you could shorten these three lines:

r = random.randint(1, 9)
fortune = getAnswer(r)
print(fortune)

to this single equivalent line:

print(getAnswer(random.randint(1, 9)))

Remember, expressions are composed of values and operators. A func-
tion call can be used in an expression because it evaluates to its return value.

The None Value
In Python there is a value called None, which represents the absence of a
value. None is the only value of the NoneType data type. (Other programming
languages might call this value null, nil, or undefined.) Just like the Boolean
True and False values, None must be typed with a capital N.

This value-without-a-value can be helpful when you need to store some-
thing that won’t be confused for a real value in a variable. One place where
None is used is as the return value of print(). The print() function displays
text on the screen, but it doesn’t need to return anything in the same way
len() or input() does. But since all function calls need to evaluate to a return
value, print() returns None. To see this in action, enter the following into the
interactive shell:

>>> spam = print('Hello!')
Hello!
>>> None == spam
True

Behind the scenes, Python adds return None to the end of any func-
tion definition with no return statement. This is similar to how a while or for
loop implicitly ends with a continue statement. Also, if you use a return state-
ment without a value (that is, just the return keyword by itself), then None is
returned.

Keyword Arguments and print()
Most arguments are identified by their position in the function call. For
example, random.randint(1, 10) is different from random.randint(10, 1). The
function call random.randint(1, 10) will return a random integer between 1
and 10, because the first argument is the low end of the range and the sec-
ond argument is the high end (while random.randint(10, 1) causes an error).

66 Chapter 3

However, keyword arguments are identified by the keyword put before
them in the function call. Keyword arguments are often used for optional
parameters. For example, the print() function has the optional parameters
end and sep to specify what should be printed at the end of its arguments
and between its arguments (separating them), respectively.

If you ran the following program:

print('Hello')
print('World')

the output would look like this:

Hello
World

The two strings appear on separate lines because the print() function
automatically adds a newline character to the end of the string it is passed.
However, you can set the end keyword argument to change this to a different
string. For example, if the program were this:

print('Hello', end='')
print('World')

the output would look like this:

HelloWorld

The output is printed on a single line because there is no longer a new-
line printed after 'Hello'. Instead, the blank string is printed. This is use-
ful if you need to disable the newline that gets added to the end of every
print() function call.

Similarly, when you pass multiple string values to print(), the function
will automatically separate them with a single space. Enter the following
into the interactive shell:

>>> print('cats', 'dogs', 'mice')
cats dogs mice

But you could replace the default separating string by passing the sep
keyword argument. Enter the following into the interactive shell:

>>> print('cats', 'dogs', 'mice', sep=',')
cats,dogs,mice

You can add keyword arguments to the functions you write as well, but
first you’ll have to learn about the list and dictionary data types in the next
two chapters. For now, just know that some functions have optional keyword
arguments that can be specified when the function is called.

Functions 67

Local and Global Scope
Parameters and variables that are assigned in a called function are said
to exist in that function’s local scope. Variables that are assigned outside all
functions are said to exist in the global scope. A variable that exists in a local
scope is called a local variable, while a variable that exists in the global scope
is called a global variable. A variable must be one or the other; it cannot be
both local and global.

Think of a scope as a container for variables. When a scope is destroyed,
all the values stored in the scope’s variables are forgotten. There is only one
global scope, and it is created when your program begins. When your pro-
gram terminates, the global scope is destroyed, and all its variables are for-
gotten. Otherwise, the next time you ran your program, the variables would
remember their values from the last time you ran it.

A local scope is created whenever a function is called. Any variables
assigned in this function exist within the local scope. When the function
returns, the local scope is destroyed, and these variables are forgotten. The
next time you call this function, the local variables will not remember the
values stored in them from the last time the function was called.

Scopes matter for several reasons:

•	 Code in the global scope cannot use any local variables.

•	 However, a local scope can access global variables.

•	 Code in a function’s local scope cannot use variables in any other
local scope.

•	 You can use the same name for different variables if they are in dif-
ferent scopes. That is, there can be a local variable named spam and a
global variable also named spam.

The reason Python has different scopes instead of just making every-
thing a global variable is so that when variables are modified by the code
in a particular call to a function, the function interacts with the rest of
the program only through its parameters and the return value. This nar-
rows down the list code lines that may be causing a bug. If your program
contained nothing but global variables and had a bug because of a variable
being set to a bad value, then it would be hard to track down where this bad
value was set. It could have been set from anywhere in the program—and
your program could be hundreds or thousands of lines long! But if the bug
is because of a local variable with a bad value, you know that only the code
in that one function could have set it incorrectly.

While using global variables in small programs is fine, it is a bad habit
to rely on global variables as your programs get larger and larger.

Local Variables Cannot Be Used in the Global Scope
Consider this program, which will cause an error when you run it:

def spam():
 eggs = 31337

68 Chapter 3

spam()
print(eggs)

If you run this program, the output will look like this:

Traceback (most recent call last):
 File "C:/test3784.py", line 4, in <module>
 print(eggs)
NameError: name 'eggs' is not defined

The error happens because the eggs variable exists only in the local
scope created when spam() is called. Once the program execution returns
from spam, that local scope is destroyed, and there is no longer a variable
named eggs. So when your program tries to run print(eggs), Python gives
you an error saying that eggs is not defined. This makes sense if you think
about it; when the program execution is in the global scope, no local scopes
exist, so there can’t be any local variables. This is why only global variables
can be used in the global scope.

Local Scopes Cannot Use Variables in Other Local Scopes
A new local scope is created whenever a function is called, including when a
function is called from another function. Consider this program:

def spam():
u eggs = 99
v bacon()
w print(eggs)

def bacon():
 ham = 101

x eggs = 0

y spam()

When the program starts, the spam() function is called y, and a local
scope is created. The local variable eggs u is set to 99. Then the bacon()
function is called v, and a second local scope is created. Multiple local
scopes can exist at the same time. In this new local scope, the local variable
ham is set to 101, and a local variable eggs—which is different from the one in
spam()’s local scope—is also created x and set to 0.

When bacon() returns, the local scope for that call is destroyed. The pro-
gram execution continues in the spam() function to print the value of eggs w,
and since the local scope for the call to spam() still exists here, the eggs vari-
able is set to 99. This is what the program prints.

The upshot is that local variables in one function are completely sepa-
rate from the local variables in another function.

Functions 69

Global Variables Can Be Read from a Local Scope
Consider the following program:

def spam():
 print(eggs)
eggs = 42
spam()
print(eggs)

Since there is no parameter named eggs or any code that assigns eggs a
value in the spam() function, when eggs is used in spam(), Python considers
it a reference to the global variable eggs. This is why 42 is printed when the
previous program is run.

Local and Global Variables with the Same Name
To simplify your life, avoid using local variables that have the same name
as a global variable or another local variable. But technically, it’s perfectly
legal to do so in Python. To see what happens, type the following code into
the file editor and save it as sameName.py:

def spam():
u eggs = 'spam local'

 print(eggs) # prints 'spam local'

def bacon():
v eggs = 'bacon local'

 print(eggs) # prints 'bacon local'
 spam()
 print(eggs) # prints 'bacon local'

w eggs = 'global'
bacon()
print(eggs) # prints 'global'

When you run this program, it outputs the following:

bacon local
spam local
bacon local
global

There are actually three different variables in this program, but confus-
ingly they are all named eggs. The variables are as follows:

u	 A variable named eggs that exists in a local scope when spam() is called.

v	 A variable named eggs that exists in a local scope when bacon() is called.

w	 A variable named eggs that exists in the global scope.

70 Chapter 3

Since these three separate variables all have the same name, it can be
confusing to keep track of which one is being used at any given time. This is
why you should avoid using the same variable name in different scopes.

The global Statement
If you need to modify a global variable from within a function, use the global
statement. If you have a line such as global eggs at the top of a function,
it tells Python, “In this function, eggs refers to the global variable, so don’t
create a local variable with this name.” For example, type the following
code into the file editor and save it as sameName2.py:

def spam():
u global eggs
v eggs = 'spam'

eggs = 'global'
spam()
print(eggs)

When you run this program, the final print() call will output this:

spam

Because eggs is declared global at the top of spam() u, when eggs is set to
'spam' v, this assignment is done to the globally scoped spam. No local spam
variable is created.

There are four rules to tell whether a variable is in a local scope or
global scope:

1.	 If a variable is being used in the global scope (that is, outside of all
functions), then it is always a global variable.

2.	 If there is a global statement for that variable in a function, it is a global
variable.

3.	 Otherwise, if the variable is used in an assignment statement in the
function, it is a local variable.

4.	 But if the variable is not used in an assignment statement, it is a global
variable.

To get a better feel for these rules, here’s an example program. Type
the following code into the file editor and save it as sameName3.py:

 def spam():
u global eggs

 eggs = 'spam' # this is the global

 def bacon():
v eggs = 'bacon' # this is a local

Functions 71

 def ham():
w print(eggs) # this is the global

 eggs = 42 # this is the global
 spam()
 print(eggs)

In the spam() function, eggs is the global eggs variable, because there’s
a global statement for eggs at the beginning of the function u. In bacon(),
eggs is a local variable, because there’s an assignment statement for it in
that function v. In ham() w, eggs is the global variable, because there is no
assignment statement or global statement for it in that function. If you run
sameName3.py, the output will look like this:

spam

In a function, a variable will either always be global or always be local.
There’s no way that the code in a function can use a local variable named
eggs and then later in that same function use the global eggs variable.

N o t e 	 If you ever want to modify the value stored in a global variable from in a function,
you must use a global statement on that variable.

If you try to use a local variable in a function before you assign a value
to it, as in the following program, Python will give you an error. To see this,
type the following into the file editor and save it as sameName4.py:

def spam():
 print(eggs) # ERROR!

u eggs = 'spam local'

v eggs = 'global'
spam()

If you run the previous program, it produces an error message.

Traceback (most recent call last):
 File "C:/test3784.py", line 6, in <module>
 spam()
 File "C:/test3784.py", line 2, in spam
 print(eggs) # ERROR!
UnboundLocalError: local variable 'eggs' referenced before assignment

This error happens because Python sees that there is an assignment
statement for eggs in the spam() function u and therefore considers eggs to
be local. But because print(eggs) is executed before eggs is assigned any-
thing, the local variable eggs doesn’t exist. Python will not fall back to using
the global eggs variable v.

72 Chapter 3

Exception Handling
Right now, getting an error, or exception, in your Python program means the
entire program will crash. You don’t want this to happen in real-world pro-
grams. Instead, you want the program to detect errors, handle them, and
then continue to run.

For example, consider the following program, which has a “divide-by-
zero” error. Open a new file editor window and enter the following code,
saving it as zeroDivide.py:

def spam(divideBy):
 return 42 / divideBy

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

We’ve defined a function called spam, given it a parameter, and then
printed the value of that function with various parameters to see what hap-
pens. This is the output you get when you run the previous code:

21.0
3.5
Traceback (most recent call last):
 File "C:/zeroDivide.py", line 6, in <module>
 print(spam(0))
 File "C:/zeroDivide.py", line 2, in spam
 return 42 / divideBy
ZeroDivisionError: division by zero

A ZeroDivisionError happens whenever you try to divide a number by
zero. From the line number given in the error message, you know that the
return statement in spam() is causing an error.

F unc t ions as “Bl ack Box e s”

Often, all you need to know about a function are its inputs (the parameters)
and output value; you don’t always have to burden yourself with how the func-
tion’s code actually works. When you think about functions in this high-level
way, it’s common to say that you’re treating the function as a “black box.”

This idea is fundamental to modern programming. Later chapters in this
book will show you several modules with functions that were written by other
people. While you can take a peek at the source code if you’re curious, you
don’t need to know how these functions work in order to use them. And because
writing functions without global variables is encouraged, you usually don’t have
to worry about the function’s code interacting with the rest of your program.

Functions 73

Errors can be handled with try and except statements. The code that
could potentially have an error is put in a try clause. The program execu-
tion moves to the start of a following except clause if an error happens.

You can put the previous divide-by-zero code in a try clause and have
an except clause contain code to handle what happens when this error occurs.

def spam(divideBy):
 try:
 return 42 / divideBy
 except ZeroDivisionError:
 print('Error: Invalid argument.')

print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))

When code in a try clause causes an error, the program execution
immediately moves to the code in the except clause. After running that
code, the execution continues as normal. The output of the previous pro-
gram is as follows:

21.0
3.5
Error: Invalid argument.
None
42.0

Note that any errors that occur in function calls in a try block will also
be caught. Consider the following program, which instead has the spam()
calls in the try block:

def spam(divideBy):
 return 42 / divideBy

try:
 print(spam(2))
 print(spam(12))
 print(spam(0))
 print(spam(1))
except ZeroDivisionError:
 print('Error: Invalid argument.')

When this program is run, the output looks like this:

21.0
3.5
Error: Invalid argument.

74 Chapter 3

The reason print(spam(1)) is never executed is because once the execu-
tion jumps to the code in the except clause, it does not return to the try
clause. Instead, it just continues moving down as normal.

A Short Program: Guess the Number
The toy examples I’ve show you so far are useful for introducing basic con-
cepts, but now let’s see how everything you’ve learned comes together in a
more complete program. In this section, I’ll show you a simple “guess the
number” game. When you run this program, the output will look some-
thing like this:

I am thinking of a number between 1 and 20.
Take a guess.
10
Your guess is too low.
Take a guess.
15
Your guess is too low.
Take a guess.
17
Your guess is too high.
Take a guess.
16
Good job! You guessed my number in 4 guesses!

Type the following source code into the file editor, and save the file as
guessTheNumber.py:

This is a guess the number game.
import random
secretNumber = random.randint(1, 20)
print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guessesTaken in range(1, 7):
 print('Take a guess.')
 guess = int(input())

 if guess < secretNumber:
 print('Your guess is too low.')
 elif guess > secretNumber:
 print('Your guess is too high.')
 else:
 break # This condition is the correct guess!

if guess == secretNumber:
 print('Good job! You guessed my number in ' + str(guessesTaken) + ' guesses!')
else:
 print('Nope. The number I was thinking of was ' + str(secretNumber))

Functions 75

Let’s look at this code line by line, starting at the top.

This is a guess the number game.
import random
secretNumber = random.randint(1, 20)

First, a comment at the top of the code explains what the program
does. Then, the program imports the random module so that it can use the
random.randint() function to generate a number for the user to guess. The
return value, a random integer between 1 and 20, is stored in the variable
secretNumber.

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.
for guessesTaken in range(1, 7):
 print('Take a guess.')
 guess = int(input())

The program tells the player that it has come up with a secret number
and will give the player six chances to guess it. The code that lets the player
enter a guess and checks that guess is in a for loop that will loop at most six
times. The first thing that happens in the loop is that the player types in a
guess. Since input() returns a string, its return value is passed straight into
int(), which translates the string into an integer value. This gets stored in a
variable named guess.

 if guess < secretNumber:
 print('Your guess is too low.')
 elif guess > secretNumber:
 print('Your guess is too high.')

These few lines of code check to see whether the guess is less than or
greater than the secret number. In either case, a hint is printed to the screen.

 else:
 break # This condition is the correct guess!

If the guess is neither higher nor lower than the secret number, then it
must be equal to the secret number, in which case you want the program
execution to break out of the for loop.

if guess == secretNumber:
 print('Good job! You guessed my number in ' + str(guessesTaken) + ' guesses!')
else:
 print('Nope. The number I was thinking of was ' + str(secretNumber))

After the for loop, the previous if...else statement checks whether the
player has correctly guessed the number and prints an appropriate message
to the screen. In both cases, the program displays a variable that contains

76 Chapter 3

an integer value (guessesTaken and secretNumber). Since it must concatenate
these integer values to strings, it passes these variables to the str() function,
which returns the string value form of these integers. Now these strings
can be concatenated with the + operators before finally being passed to
the print() function call.

Summary
Functions are the primary way to compartmentalize your code into logical
groups. Since the variables in functions exist in their own local scopes, the
code in one function cannot directly affect the values of variables in other
functions. This limits what code could be changing the values of your vari-
ables, which can be helpful when it comes to debugging your code.

Functions are a great tool to help you organize your code. You can
think of them as black boxes: They have inputs in the form of parameters
and outputs in the form of return values, and the code in them doesn’t
affect variables in other functions.

In previous chapters, a single error could cause your programs to crash.
In this chapter, you learned about try and except statements, which can run
code when an error has been detected. This can make your programs more
resilient to common error cases.

Practice Questions
1.	 Why are functions advantageous to have in your programs?

2.	 When does the code in a function execute: when the function is
defined or when the function is called?

3.	 What statement creates a function?

4.	 What is the difference between a function and a function call?

5.	 How many global scopes are there in a Python program? How many
local scopes?

6.	 What happens to variables in a local scope when the function call returns?

7.	 What is a return value? Can a return value be part of an expression?

8.	 If a function does not have a return statement, what is the return value
of a call to that function?

9.	 How can you force a variable in a function to refer to the global variable?

10.	 What is the data type of None?

11.	 What does the import areallyourpetsnamederic statement do?

12.	 If you had a function named bacon() in a module named spam, how
would you call it after importing spam?

13.	 How can you prevent a program from crashing when it gets an error?

14.	 What goes in the try clause? What goes in the except clause?

Functions 77

Practice Projects
For practice, write programs to do the following tasks.

The Collatz Sequence
Write a function named collatz() that has one parameter named number. If
number is even, then collatz() should print number // 2 and return this value.
If number is odd, then collatz() should print and return 3 * number + 1.

Then write a program that lets the user type in an integer and that keeps
calling collatz() on that number until the function returns the value 1.
(Amazingly enough, this sequence actually works for any integer—sooner
or later, using this sequence, you’ll arrive at 1! Even mathematicians aren’t
sure why. Your program is exploring what’s called the Collatz sequence, some-
times called “the simplest impossible math problem.”)

Remember to convert the return value from input() to an integer with
the int() function; otherwise, it will be a string value.

Hint: An integer number is even if number % 2 == 0, and it’s odd if
number % 2 == 1.

The output of this program could look something like this:

Enter number:
3
10
5
16
8
4
2
1

Input Validation
Add try and except statements to the previous project to detect whether the
user types in a noninteger string. Normally, the int() function will raise a
ValueError error if it is passed a noninteger string, as in int('puppy'). In the
except clause, print a message to the user saying they must enter an integer.

4
L i s t s

One more topic you’ll need to understand
before you can begin writing programs in

earnest is the list data type and its cousin,
the tuple. Lists and tuples can contain multiple

values, which makes it easier to write programs that
handle large amounts of data. And since lists them-
selves can contain other lists, you can use them to
arrange data into hierarchical structures.

In this chapter, I’ll discuss the basics of lists. I’ll also teach you about
methods, which are functions that are tied to values of a certain data type.
Then I’ll briefly cover the list-like tuple and string data types and how they
compare to list values. In the next chapter, I’ll introduce you to the diction-
ary data type.

80 Chapter 4

The List Data Type
A list is a value that contains multiple values in an ordered sequence. The
term list value refers to the list itself (which is a value that can be stored in a
variable or passed to a function like any other value), not the values inside
the list value. A list value looks like this: ['cat', 'bat', 'rat', 'elephant'].
Just as string values are typed with quote characters to mark where the
string begins and ends, a list begins with an opening square bracket and
ends with a closing square bracket, []. Values inside the list are also called
items. Items are separated with commas (that is, they are comma-delimited).
For example, enter the following into the interactive shell:

>>> [1, 2, 3]
[1, 2, 3]
>>> ['cat', 'bat', 'rat', 'elephant']
['cat', 'bat', 'rat', 'elephant']
>>> ['hello', 3.1415, True, None, 42]
['hello', 3.1415, True, None, 42]

u >>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam
['cat', 'bat', 'rat', 'elephant']

The spam variable u is still assigned only one value: the list value. But
the list value itself contains other values. The value [] is an empty list that
contains no values, similar to '', the empty string.

Getting Individual Values in a List with Indexes
Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable
named spam. The Python code spam[0] would evaluate to 'cat', and spam[1]
would evaluate to 'bat', and so on.
The integer inside the square brack-
ets that follows the list is called an
index. The first value in the list is at
index 0, the second value is at index
1, the third value is at index 2, and
so on. Figure 4-1 shows a list value
assigned to spam, along with what the
index expressions would evaluate to.

For example, type the following expressions into the interactive shell.
Start by assigning a list to the variable spam.

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0]
'cat'
>>> spam[1]
'bat'
>>> spam[2]
'rat'
>>> spam[3]
'elephant'

spam = ["cat", "bat", "rat", "elephant"]

spam[0] spam[1] spam[2] spam[3]

Figure 4-1: A list value stored in the vari-
able spam, showing which value each
index refers to

Lists 81

>>> ['cat', 'bat', 'rat', 'elephant'][3]
'elephant'

u >>> 'Hello ' + spam[0]
v 'Hello cat'

>>> 'The ' + spam[1] + ' ate the ' + spam[0] + '.'
'The bat ate the cat.'

Notice that the expression 'Hello ' + spam[0] u evaluates to 'Hello ' +
'cat' because spam[0] evaluates to the string 'cat'. This expression in turn
evaluates to the string value 'Hello cat' v.

Python will give you an IndexError error message if you use an index
that exceeds the number of values in your list value.

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[10000]
Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 spam[10000]
IndexError: list index out of range

Indexes can be only integer values, not floats. The following example
will cause a TypeError error:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1]
'bat'
>>> spam[1.0]
Traceback (most recent call last):
 File "<pyshell#13>", line 1, in <module>
 spam[1.0]
TypeError: list indices must be integers, not float
>>> spam[int(1.0)]
'bat'

Lists can also contain other list values. The values in these lists of lists
can be accessed using multiple indexes, like so:

>>> spam = [['cat', 'bat'], [10, 20, 30, 40, 50]]
>>> spam[0]
['cat', 'bat']
>>> spam[0][1]
'bat'
>>> spam[1][4]
50

The first index dictates which list value to use, and the second indicates
the value within the list value. For example, spam[0][1] prints 'bat', the sec-
ond value in the first list. If you only use one index, the program will print
the full list value at that index.

82 Chapter 4

Negative Indexes
While indexes start at 0 and go up, you can also use negative integers for
the index. The integer value -1 refers to the last index in a list, the value -2
refers to the second-to-last index in a list, and so on. Enter the following
into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[-1]
'elephant'
>>> spam[-3]
'bat'
>>> 'The ' + spam[-1] + ' is afraid of the ' + spam[-3] + '.'
'The elephant is afraid of the bat.'

Getting Sublists with Slices
Just as an index can get a single value from a list, a slice can get several values
from a list, in the form of a new list. A slice is typed between square brackets,
like an index, but it has two integers separated by a colon. Notice the differ-
ence between indexes and slices.

•	 spam[2] is a list with an index (one integer).

•	 spam[1:4] is a list with a slice (two integers).

In a slice, the first integer is the index where the slice starts. The second
integer is the index where the slice ends. A slice goes up to, but will not
include, the value at the second index. A slice evaluates to a new list value.
Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0:4]
['cat', 'bat', 'rat', 'elephant']
>>> spam[1:3]
['bat', 'rat']
>>> spam[0:-1]
['cat', 'bat', 'rat']

As a shortcut, you can leave out one or both of the indexes on either side
of the colon in the slice. Leaving out the first index is the same as using 0,
or the beginning of the list. Leaving out the second index is the same as
using the length of the list, which will slice to the end of the list. Enter the
following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[:2]
['cat', 'bat']
>>> spam[1:]
['bat', 'rat', 'elephant']

Lists 83

>>> spam[:]
['cat', 'bat', 'rat', 'elephant']

Getting a List’s Length with len()
The len() function will return the number of values that are in a list value
passed to it, just like it can count the number of characters in a string value.
Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']
>>> len(spam)
3

Changing Values in a List with Indexes
Normally a variable name goes on the left side of an assignment state-
ment, like spam = 42. However, you can also use an index of a list to change
the value at that index. For example, spam[1] = 'aardvark' means “Assign the
value at index 1 in the list spam to the string 'aardvark'.” Enter the following
into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1] = 'aardvark'
>>> spam
['cat', 'aardvark', 'rat', 'elephant']
>>> spam[2] = spam[1]
>>> spam
['cat', 'aardvark', 'aardvark', 'elephant']
>>> spam[-1] = 12345
>>> spam
['cat', 'aardvark', 'aardvark', 12345]

List Concatenation and List Replication
The + operator can combine two lists to create a new list value in the same
way it combines two strings into a new string value. The * operator can also
be used with a list and an integer value to replicate the list. Enter the fol-
lowing into the interactive shell:

>>> [1, 2, 3] + ['A', 'B', 'C']
[1, 2, 3, 'A', 'B', 'C']
>>> ['X', 'Y', 'Z'] * 3
['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z']
>>> spam = [1, 2, 3]
>>> spam = spam + ['A', 'B', 'C']
>>> spam
[1, 2, 3, 'A', 'B', 'C']

84 Chapter 4

Removing Values from Lists with del Statements
The del statement will delete values at an index in a list. All of the values
in the list after the deleted value will be moved up one index. For example,
enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> del spam[2]
>>> spam
['cat', 'bat', 'elephant']
>>> del spam[2]
>>> spam
['cat', 'bat']

The del statement can also be used on a simple variable to delete it, as
if it were an “unassignment” statement. If you try to use the variable after
deleting it, you will get a NameError error because the variable no longer exists.

In practice, you almost never need to delete simple variables. The del
statement is mostly used to delete values from lists.

Working with Lists
When you first begin writing programs, it’s tempting to create many indi-
vidual variables to store a group of similar values. For example, if I wanted
to store the names of my cats, I might be tempted to write code like this:

catName1 = 'Zophie'
catName2 = 'Pooka'
catName3 = 'Simon'
catName4 = 'Lady Macbeth'
catName5 = 'Fat-tail'
catName6 = 'Miss Cleo'

(I don’t actually own this many cats, I swear.) It turns out that this is a
bad way to write code. For one thing, if the number of cats changes, your
program will never be able to store more cats than you have variables. These
types of programs also have a lot of duplicate or nearly identical code in
them. Consider how much duplicate code is in the following program,
which you should enter into the file editor and save as allMyCats1.py:

print('Enter the name of cat 1:')
catName1 = input()
print('Enter the name of cat 2:')
catName2 = input()
print('Enter the name of cat 3:')
catName3 = input()
print('Enter the name of cat 4:')
catName4 = input()
print('Enter the name of cat 5:')
catName5 = input()

Lists 85

print('Enter the name of cat 6:')
catName6 = input()
print('The cat names are:')
print(catName1 + ' ' + catName2 + ' ' + catName3 + ' ' + catName4 + ' ' +
catName5 + ' ' + catName6)

Instead of using multiple, repetitive variables, you can use a single
variable that contains a list value. For example, here’s a new and improved
version of the allMyCats1.py program. This new version uses a single list and
can store any number of cats that the user types in. In a new file editor win-
dow, type the following source code and save it as allMyCats2.py:

catNames = []
while True:
 print('Enter the name of cat ' + str(len(catNames) + 1) +
 ' (Or enter nothing to stop.):')
 name = input()
 if name == '':
 break
 catNames = catNames + [name] # list concatenation
print('The cat names are:')
for name in catNames:
 print(' ' + name)

When you run this program, the output will look something like this:

Enter the name of cat 1 (Or enter nothing to stop.):
Zophie
Enter the name of cat 2 (Or enter nothing to stop.):
Pooka
Enter the name of cat 3 (Or enter nothing to stop.):
Simon
Enter the name of cat 4 (Or enter nothing to stop.):
Lady Macbeth
Enter the name of cat 5 (Or enter nothing to stop.):
Fat-tail
Enter the name of cat 6 (Or enter nothing to stop.):
Miss Cleo
Enter the name of cat 7 (Or enter nothing to stop.):

The cat names are:
 Zophie
 Pooka
 Simon
 Lady Macbeth
 Fat-tail
 Miss Cleo

The benefit of using a list is that your data is now in a structure, so your
program is much more flexible in processing the data than it would be with
several repetitive variables.

86 Chapter 4

Using for Loops with Lists
In Chapter 2, you learned about using for loops to execute a block of
code a certain number of times. Technically, a for loop repeats the code
block once for each value in a list or list-like value. For example, if you ran
this code:

for i in range(4):
 print(i)

the output of this program would be as follows:

0
1
2
3

This is because the return value from range(4) is a list-like value that
Python considers similar to [0, 1, 2, 3]. The following program has the
same output as the previous one:

for i in [0, 1, 2, 3]:
 print(i)

What the previous for loop actually does is loop through its clause
with the variable i set to a successive value in the [0, 1, 2, 3] list in each
iteration.

NOTE 	 In this book, I use the term list-like to refer to data types that are technically named
sequences. You don’t need to know the technical definitions of this term, though.

A common Python technique is to use range(len(someList)) with a for
loop to iterate over the indexes of a list. For example, enter the following
into the interactive shell:

>>> supplies = ['pens', 'staplers', 'flame-throwers', 'binders']
>>> for i in range(len(supplies)):
 print('Index ' + str(i) + ' in supplies is: ' + supplies[i])

Index 0 in supplies is: pens
Index 1 in supplies is: staplers
Index 2 in supplies is: flame-throwers
Index 3 in supplies is: binders

Using range(len(supplies)) in the previously shown for loop is handy
because the code in the loop can access the index (as the variable i) and
the value at that index (as supplies[i]). Best of all, range(len(supplies)) will
iterate through all the indexes of supplies, no matter how many items it
contains.

Lists 87

The in and not in Operators
You can determine whether a value is or isn’t in a list with the in and not in
operators. Like other operators, in and not in are used in expressions and
connect two values: a value to look for in a list and the list where it may be
found. These expressions will evaluate to a Boolean value. Enter the follow-
ing into the interactive shell:

>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']
True
>>> spam = ['hello', 'hi', 'howdy', 'heyas']
>>> 'cat' in spam
False
>>> 'howdy' not in spam
False
>>> 'cat' not in spam
True

For example, the following program lets the user type in a pet name
and then checks to see whether the name is in a list of pets. Open a new file
editor window, enter the following code, and save it as myPets.py:

myPets = ['Zophie', 'Pooka', 'Fat-tail']
print('Enter a pet name:')
name = input()
if name not in myPets:
 print('I do not have a pet named ' + name)
else:
 print(name + ' is my pet.')

The output may look something like this:

Enter a pet name:
Footfoot
I do not have a pet named Footfoot

The Multiple Assignment Trick
The multiple assignment trick is a shortcut that lets you assign multiple vari-
ables with the values in a list in one line of code. So instead of doing this:

>>> cat = ['fat', 'black', 'loud']
>>> size = cat[0]
>>> color = cat[1]
>>> disposition = cat[2]

you could type this line of code:

>>> cat = ['fat', 'black', 'loud']
>>> size, color, disposition = cat

88 Chapter 4

The number of variables and the length of the list must be exactly
equal, or Python will give you a ValueError:

>>> cat = ['fat', 'black', 'loud']
>>> size, color, disposition, name = cat
Traceback (most recent call last):
 File "<pyshell#84>", line 1, in <module>
 size, color, disposition, name = cat
ValueError: need more than 3 values to unpack

Augmented Assignment Operators
When assigning a value to a variable, you will frequently use the variable
itself. For example, after assigning 42 to the variable spam, you would increase
the value in spam by 1 with the following code:

>>> spam = 42
>>> spam = spam + 1
>>> spam
43

As a shortcut, you can use the augmented assignment operator += to do
the same thing:

>>> spam = 42
>>> spam += 1
>>> spam
43

There are augmented assignment operators for the +, -, *, /, and % oper-
ators, described in Table 4-1.

Table 4-1: The Augmented Assignment Operators

Augmented assignment statement Equivalent assignment statement

spam = spam + 1 spam += 1

spam = spam - 1 spam -= 1

spam = spam * 1 spam *= 1

spam = spam / 1 spam /= 1

spam = spam % 1 spam %= 1

The += operator can also do string and list concatenation, and the *=
operator can do string and list replication. Enter the following into the
interactive shell:

>>> spam = 'Hello'
>>> spam += ' world!'
>>> spam
'Hello world!'

Lists 89

>>> bacon = ['Zophie']
>>> bacon *= 3
>>> bacon
['Zophie', 'Zophie', 'Zophie']

Methods
A method is the same thing as a function, except it is “called on” a value.
For example, if a list value were stored in spam, you would call the index()
list method (which I’ll explain next) on that list like so: spam.index('hello').
The method part comes after the value, separated by a period.

Each data type has its own set of methods. The list data type, for
example, has several useful methods for finding, adding, removing, and
otherwise manipulating values in a list.

Finding a Value in a List with the index() Method
List values have an index() method that can be passed a value, and if that
value exists in the list, the index of the value is returned. If the value isn’t
in the list, then Python produces a ValueError error. Enter the following into
the interactive shell:

>>> spam = ['hello', 'hi', 'howdy', 'heyas']
>>> spam.index('hello')
0
>>> spam.index('heyas')
3
>>> spam.index('howdy howdy howdy')
Traceback (most recent call last):
 File "<pyshell#31>", line 1, in <module>
 spam.index('howdy howdy howdy')
ValueError: 'howdy howdy howdy' is not in list

When there are duplicates of the value in the list, the index of its first
appearance is returned. Enter the following into the interactive shell, and
notice that index() returns 1, not 3:

>>> spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']
>>> spam.index('Pooka')
1

Adding Values to Lists with the append() and insert() Methods
To add new values to a list, use the append() and insert() methods. Enter the
following into the interactive shell to call the append() method on a list value
stored in the variable spam:

>>> spam = ['cat', 'dog', 'bat']
>>> spam.append('moose')

90 Chapter 4

>>> spam
['cat', 'dog', 'bat', 'moose']

The previous append() method call adds the argument to the end of
the list. The insert() method can insert a value at any index in the list.
The first argument to insert() is the index for the new value, and the sec-
ond argument is the new value to be inserted. Enter the following into the
interactive shell:

>>> spam = ['cat', 'dog', 'bat']
>>> spam.insert(1, 'chicken')
>>> spam
['cat', 'chicken', 'dog', 'bat']

Notice that the code is spam.append('moose') and spam.insert(1, 'chicken'),
not spam = spam.append('moose') and spam = spam.insert(1, 'chicken'). Neither
append() nor insert() gives the new value of spam as its return value. (In fact,
the return value of append() and insert() is None, so you definitely wouldn’t
want to store this as the new variable value.) Rather, the list is modified in
place. Modifying a list in place is covered in more detail later in “Mutable
and Immutable Data Types” on page 94.

Methods belong to a single data type. The append() and insert() methods
are list methods and can be called only on list values, not on other values
such as strings or integers. Enter the following into the interactive shell,
and note the AttributeError error messages that show up:

>>> eggs = 'hello'
>>> eggs.append('world')
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in <module>
 eggs.append('world')
AttributeError: 'str' object has no attribute 'append'
>>> bacon = 42
>>> bacon.insert(1, 'world')
Traceback (most recent call last):
 File "<pyshell#22>", line 1, in <module>
 bacon.insert(1, 'world')
AttributeError: 'int' object has no attribute 'insert'

Removing Values from Lists with remove()
The remove() method is passed the value to be removed from the list it is
called on. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam.remove('bat')
>>> spam
['cat', 'rat', 'elephant']

Lists 91

Attempting to delete a value that does not exist in the list will result in
a ValueError error. For example, enter the following into the interactive shell
and notice the error that is displayed:

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam.remove('chicken')
Traceback (most recent call last):
 File "<pyshell#11>", line 1, in <module>
 spam.remove('chicken')
ValueError: list.remove(x): x not in list

If the value appears multiple times in the list, only the first instance of
the value will be removed. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'cat', 'hat', 'cat']
>>> spam.remove('cat')
>>> spam
['bat', 'rat', 'cat', 'hat', 'cat']

The del statement is good to use when you know the index of the value
you want to remove from the list. The remove() method is good when you
know the value you want to remove from the list.

Sorting the Values in a List with the sort() Method
Lists of number values or lists of strings can be sorted with the sort()
method. For example, enter the following into the interactive shell:

>>> spam = [2, 5, 3.14, 1, -7]
>>> spam.sort()
>>> spam
[-7, 1, 2, 3.14, 5]
>>> spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
>>> spam.sort()
>>> spam
['ants', 'badgers', 'cats', 'dogs', 'elephants']

You can also pass True for the reverse keyword argument to have sort()
sort the values in reverse order. Enter the following into the interactive shell:

>>> spam.sort(reverse=True)
>>> spam
['elephants', 'dogs', 'cats', 'badgers', 'ants']

There are three things you should note about the sort() method. First,
the sort() method sorts the list in place; don’t try to capture the return
value by writing code like spam = spam.sort().

92 Chapter 4

Second, you cannot sort lists that have both number values and string
values in them, since Python doesn’t know how to compare these values.
Type the following into the interactive shell and notice the TypeError error:

>>> spam = [1, 3, 2, 4, 'Alice', 'Bob']
>>> spam.sort()
Traceback (most recent call last):
 File "<pyshell#70>", line 1, in <module>
 spam.sort()
TypeError: unorderable types: str() < int()

Third, sort() uses “ASCIIbetical order” rather than actual alphabetical
order for sorting strings. This means uppercase letters come before lower-
case letters. Therefore, the lowercase a is sorted so that it comes after the
uppercase Z. For an example, enter the following into the interactive shell:

>>> spam = ['Alice', 'ants', 'Bob', 'badgers', 'Carol', 'cats']
>>> spam.sort()
>>> spam
['Alice', 'Bob', 'Carol', 'ants', 'badgers', 'cats']

If you need to sort the values in regular alphabetical order, pass str.
lower for the key keyword argument in the sort() method call.

>>> spam = ['a', 'z', 'A', 'Z']
>>> spam.sort(key=str.lower)
>>> spam
['a', 'A', 'z', 'Z']

This causes the sort() function to treat all the items in the list as if they
were lowercase without actually changing the values in the list.

Example Program: Magic 8 Ball with a List
Using lists, you can write a much more elegant version of the previous chap-
ter’s Magic 8 Ball program. Instead of several lines of nearly identical elif
statements, you can create a single list that the code works with. Open a new
file editor window and enter the following code. Save it as magic8Ball2.py.

import random

messages = ['It is certain',
 'It is decidedly so',
 'Yes definitely',
 'Reply hazy try again',
 'Ask again later',
 'Concentrate and ask again',
 'My reply is no',
 'Outlook not so good',
 'Very doubtful']

print(messages[random.randint(0, len(messages) - 1)])

Lists 93

When you run this program, you’ll see that it works the same as the
previous magic8Ball.py program.

Notice the expression you use as the index into messages: random
.randint(0, len(messages) - 1). This produces a random number to use
for the index, regardless of the size of messages. That is, you’ll get a ran-
dom number between 0 and the value of len(messages) - 1. The benefit of
this approach is that you can easily add and remove strings to the messages
list without changing other lines of code. If you later update your code,
there will be fewer lines you have to change and fewer chances for you to
introduce bugs.

List-like Types: Strings and Tuples
Lists aren’t the only data types that represent ordered sequences of values.
For example, strings and lists are actually similar, if you consider a string to
be a “list” of single text characters. Many of the things you can do with lists

E xce p t ions to Inde n tat ion Rul e s in Py t hon

In most cases, the amount of indentation for a line of code tells Python what
block it is in. There are some exceptions to this rule, however. For example, lists
can actually span several lines in the source code file. The indentation of these
lines do not matter; Python knows that until it sees the ending square bracket,
the list is not finished. For example, you can have code that looks like this:

spam = ['apples',

 'oranges',

 'bananas',

'cats']

print(spam)

Of course, practically speaking, most people use Python’s behavior to
make their lists look pretty and readable, like the messages list in the Magic 8
Ball program.

You can also split up a single instruction across multiple lines using the \
line continuation character at the end. Think of \ as saying, “This instruction
continues on the next line.” The indentation on the line after a \ line continua-
tion is not significant. For example, the following is valid Python code:

print('Four score and seven ' + \

 'years ago...')

These tricks are useful when you want to rearrange long lines of Python
code to be a bit more readable.

94 Chapter 4

can also be done with strings: indexing; slicing; and using them with for
loops, with len(), and with the in and not in operators. To see this, enter the
following into the interactive shell:

>>> name = 'Zophie'
>>> name[0]
'Z'
>>> name[-2]
'i'
>>> name[0:4]
'Zoph'
>>> 'Zo' in name
True
>>> 'z' in name
False
>>> 'p' not in name
False
>>> for i in name:
 print('* * * ' + i + ' * * *')

* * * Z * * *
* * * o * * *
* * * p * * *
* * * h * * *
* * * i * * *
* * * e * * *

Mutable and Immutable Data Types
But lists and strings are different in an important way. A list value is a mutable
data type: It can have values added, removed, or changed. However, a string
is immutable : It cannot be changed. Trying to reassign a single character in
a string results in a TypeError error, as you can see by entering the following
into the interactive shell:

>>> name = 'Zophie a cat'
>>> name[7] = 'the'
Traceback (most recent call last):
 File "<pyshell#50>", line 1, in <module>
 name[7] = 'the'
TypeError: 'str' object does not support item assignment

The proper way to “mutate” a string is to use slicing and concatenation
to build a new string by copying from parts of the old string. Enter the fol-
lowing into the interactive shell:

>>> name = 'Zophie a cat'
>>> newName = name[0:7] + 'the' + name[8:12]
>>> name
'Zophie a cat'

Lists 95

>>> newName
'Zophie the cat'

We used [0:7] and [8:12] to refer to the characters that we don’t wish
to replace. Notice that the original 'Zophie a cat' string is not modified
because strings are immutable.

Although a list value is mutable, the second line in the following code
does not modify the list eggs:

>>> eggs = [1, 2, 3]
>>> eggs = [4, 5, 6]
>>> eggs
[4, 5, 6]

The list value in eggs isn’t being changed here; rather, an entirely new
and different list value ([4, 5, 6]) is overwriting the old list value ([1, 2, 3]).
This is depicted in Figure 4-2.

If you wanted to actually modify the original list in eggs to contain
[4, 5, 6], you would have to do something like this:

>>> eggs = [1, 2, 3]
>>> del eggs[2]
>>> del eggs[1]
>>> del eggs[0]
>>> eggs.append(4)
>>> eggs.append(5)
>>> eggs.append(6)
>>> eggs

[4, 5, 6]

Figure 4-2: When eggs = [4, 5, 6] is executed, the contents of eggs are replaced with a
new list value.

In the first example, the list value that eggs ends up with is the same
list value it started with. It’s just that this list has been changed, rather than
overwritten. Figure 4-3 depicts the seven changes made by the first seven
lines in the previous interactive shell example.

96 Chapter 4

Figure 4-3: The del statement and the append() method modify the same list value
in place.

Changing a value of a mutable data type (like what the del statement
and append() method do in the previous example) changes the value in
place, since the variable’s value is not replaced with a new list value.

Mutable versus immutable types may seem like a meaningless dis
tinction, but “Passing References” on page 100 will explain the different
behavior when calling functions with mutable arguments versus immu-
table arguments. But first, let’s find out about the tuple data type, which is
an immutable form of the list data type.

The Tuple Data Type
The tuple data type is almost identical to the list data type, except in two
ways. First, tuples are typed with parentheses, (and), instead of square
brackets, [and]. For example, enter the following into the interactive shell:

>>> eggs = ('hello', 42, 0.5)
>>> eggs[0]
'hello'
>>> eggs[1:3]
(42, 0.5)
>>> len(eggs)
3

But the main way that tuples are different from lists is that tuples,
like strings, are immutable. Tuples cannot have their values modified,
appended, or removed. Enter the following into the interactive shell, and
look at the TypeError error message:

>>> eggs = ('hello', 42, 0.5)
>>> eggs[1] = 99
Traceback (most recent call last):
 File "<pyshell#5>", line 1, in <module>
 eggs[1] = 99
TypeError: 'tuple' object does not support item assignment

Lists 97

If you have only one value in your tuple, you can indicate this by placing
a trailing comma after the value inside the parentheses. Otherwise, Python
will think you’ve just typed a value inside regular parentheses. The comma
is what lets Python know this is a tuple value. (Unlike some other program-
ming languages, in Python it’s fine to have a trailing comma after the last
item in a list or tuple.) Enter the following type() function calls into the
interactive shell to see the distinction:

>>> type(('hello',))
<class 'tuple'>
>>> type(('hello'))
<class 'str'>

You can use tuples to convey to anyone reading your code that you
don’t intend for that sequence of values to change. If you need an ordered
sequence of values that never changes, use a tuple. A second benefit of
using tuples instead of lists is that, because they are immutable and their
contents don’t change, Python can implement some optimizations that
make code using tuples slightly faster than code using lists.

Converting Types with the list() and tuple() Functions
Just like how str(42) will return '42', the string representation of the inte-
ger 42, the functions list() and tuple() will return list and tuple versions
of the values passed to them. Enter the following into the interactive shell,
and notice that the return value is of a different data type than the value
passed:

>>> tuple(['cat', 'dog', 5])
('cat', 'dog', 5)
>>> list(('cat', 'dog', 5))
['cat', 'dog', 5]
>>> list('hello')
['h', 'e', 'l', 'l', 'o']

Converting a tuple to a list is handy if you need a mutable version of a
tuple value.

References
As you’ve seen, variables store strings and integer values. Enter the follow-
ing into the interactive shell:

>>> spam = 42
>>> cheese = spam
>>> spam = 100
>>> spam
100
>>> cheese
42

98 Chapter 4

You assign 42 to the spam variable, and then you copy the value in spam
and assign it to the variable cheese. When you later change the value in spam
to 100, this doesn’t affect the value in cheese. This is because spam and cheese
are different variables that store different values.

But lists don’t work this way. When you assign a list to a variable, you
are actually assigning a list reference to the variable. A reference is a value
that points to some bit of data, and a list reference is a value that points to a
list. Here is some code that will make this distinction easier to understand.
Enter this into the interactive shell:

u >>> spam = [0, 1, 2, 3, 4, 5]
v >>> cheese = spam
w >>> cheese[1] = 'Hello!'

>>> spam
[0, 'Hello!', 2, 3, 4, 5]
>>> cheese
[0, 'Hello!', 2, 3, 4, 5]

This might look odd to you. The code changed only the cheese list, but
it seems that both the cheese and spam lists have changed.

When you create the list u, you assign a reference to it in the spam vari-
able. But the next line v copies only the list reference in spam to cheese, not
the list value itself. This means the values stored in spam and cheese now both
refer to the same list. There is only one underlying list because the list itself
was never actually copied. So when you modify the first element of cheese w,
you are modifying the same list that spam refers to.

Remember that variables are like boxes that contain values. The previ-
ous figures in this chapter show that lists in boxes aren’t exactly accurate
because list variables don’t actually contain lists—they contain references
to lists. (These references will have ID numbers that Python uses inter-
nally, but you can ignore them.) Using boxes as a metaphor for variables,
Figure 4-4 shows what happens when a list is assigned to the spam variable.

Figure 4-4: spam = [0, 1, 2, 3, 4, 5] stores a
reference to a list, not the actual list.

Lists 99

Then, in Figure 4-5, the reference in spam is copied to cheese. Only a new
reference was created and stored in cheese, not a new list. Note how both
references refer to the same list.

Figure 4-5: spam = cheese copies the reference, not the list.

When you alter the list that cheese refers to, the list that spam refers to is
also changed, because both cheese and spam refer to the same list. You can
see this in Figure 4-6.

Figure 4-6: cheese[1] = 'Hello!' modifies the list that both
variables refer to.

Variables will contain references to list values rather than list values
themselves. But for strings and integer values, variables simply contain the
string or integer value. Python uses references whenever variables must
store values of mutable data types, such as lists or dictionaries. For values
of immutable data types such as strings, integers, or tuples, Python vari-
ables will store the value itself.

Although Python variables technically contain references to list or dic-
tionary values, people often casually say that the variable contains the list or
dictionary.

100 Chapter 4

Passing References
References are particularly important for understanding how arguments
get passed to functions. When a function is called, the values of the argu-
ments are copied to the parameter variables. For lists (and dictionaries,
which I’ll describe in the next chapter), this means a copy of the reference
is used for the parameter. To see the consequences of this, open a new file
editor window, enter the following code, and save it as passingReference.py:

def eggs(someParameter):
 someParameter.append('Hello')

spam = [1, 2, 3]
eggs(spam)
print(spam)

Notice that when eggs() is called, a return value is not used to assign a
new value to spam. Instead, it modifies the list in place, directly. When run,
this program produces the following output:

[1, 2, 3, 'Hello']

Even though spam and someParameter contain separate references, they
both refer to the same list. This is why the append('Hello') method call
inside the function affects the list even after the function call has returned.

Keep this behavior in mind: Forgetting that Python handles list and
dictionary variables this way can lead to confusing bugs.

The copy Module’s copy() and deepcopy() Functions
Although passing around references is often the handiest way to deal with
lists and dictionaries, if the function modifies the list or dictionary that is
passed, you may not want these changes in the original list or dictionary
value. For this, Python provides a module named copy that provides both
the copy() and deepcopy() functions. The first of these, copy.copy(), can be used
to make a duplicate copy of a mutable value like a list or dictionary, not just a
copy of a reference. Enter the following into the interactive shell:

>>> import copy
>>> spam = ['A', 'B', 'C', 'D']
>>> cheese = copy.copy(spam)
>>> cheese[1] = 42
>>> spam
['A', 'B', 'C', 'D']
>>> cheese
['A', 42, 'C', 'D']

Lists 101

Now the spam and cheese variables refer to separate lists, which is why only
the list in cheese is modified when you assign 42 at index 7. As you can see in
Figure 4-7, the reference ID numbers are no longer the same for both vari-
ables because the variables refer to independent lists.

Figure 4-7: cheese = copy.copy(spam) creates a second list that can be modified
independently of the first.

If the list you need to copy contains lists, then use the copy.deepcopy()
function instead of copy.copy(). The deepcopy() function will copy these
inner lists as well.

Summary
Lists are useful data types since they allow you to write code that works on a
modifiable number of values in a single variable. Later in this book, you will
see programs using lists to do things that would be difficult or impossible to
do without them.

Lists are mutable, meaning that their contents can change. Tuples and
strings, although list-like in some respects, are immutable and cannot be
changed. A variable that contains a tuple or string value can be overwritten
with a new tuple or string value, but this is not the same thing as modifying
the existing value in place—like, say, the append() or remove() methods do on
lists.

Variables do not store list values directly; they store references to lists.
This is an important distinction when copying variables or passing lists as
arguments in function calls. Because the value that is being copied is the
list reference, be aware that any changes you make to the list might impact
another variable in your program. You can use copy() or deepcopy() if you
want to make changes to a list in one variable without modifying the origi-
nal list.

102 Chapter 4

Practice Questions
1.	 What is []?

2.	 How would you assign the value 'hello' as the third value in a list stored
in a variable named spam? (Assume spam contains [2, 4, 6, 8, 10].)

For the following three questions, let’s say spam contains the list ['a',
'b', 'c', 'd'].

3.	 What does spam[int('3' * 2) / 11] evaluate to?

4.	 What does spam[-1] evaluate to?

5.	 What does spam[:2] evaluate to?

For the following three questions, let’s say bacon contains the list
[3.14, 'cat', 11, 'cat', True].

6.	 What does bacon.index('cat') evaluate to?

7.	 What does bacon.append(99) make the list value in bacon look like?

8.	 What does bacon.remove('cat') make the list value in bacon look like?

9.	 What are the operators for list concatenation and list replication?

10.	 What is the difference between the append() and insert() list methods?

11.	 What are two ways to remove values from a list?

12.	 Name a few ways that list values are similar to string values.

13.	 What is the difference between lists and tuples?

14.	 How do you type the tuple value that has just the integer value 42 in it?

15.	 How can you get the tuple form of a list value? How can you get the list
form of a tuple value?

16.	 Variables that “contain” list values don’t actually contain lists directly.
What do they contain instead?

17.	 What is the difference between copy.copy() and copy.deepcopy()?

Practice Projects
For practice, write programs to do the following tasks.

Comma Code
Say you have a list value like this:

spam = ['apples', 'bananas', 'tofu', 'cats']

Write a function that takes a list value as an argument and returns
a string with all the items separated by a comma and a space, with and
inserted before the last item. For example, passing the previous spam list to
the function would return 'apples, bananas, tofu, and cats'. But your func-
tion should be able to work with any list value passed to it.

Lists 103

Character Picture Grid
Say you have a list of lists where each value in the inner lists is a one-character
string, like this:

grid = [['.', '.', '.', '.', '.', '.'],
 ['.', 'O', 'O', '.', '.', '.'],
 ['O', 'O', 'O', 'O', '.', '.'],
 ['O', 'O', 'O', 'O', 'O', '.'],
 ['.', 'O', 'O', 'O', 'O', 'O'],
 ['O', 'O', 'O', 'O', 'O', '.'],
 ['O', 'O', 'O', 'O', '.', '.'],
 ['.', 'O', 'O', '.', '.', '.'],
 ['.', '.', '.', '.', '.', '.']]

You can think of grid[x][y] as being the character at the x- and
y-coordinates of a “picture” drawn with text characters. The (0, 0) origin
will be in the upper-left corner, the x-coordinates increase going right,
and w the y-coordinates increase going down.

Copy the previous grid value, and write code that uses it to print the image.

..OO.OO..

.OOOOOOO.

.OOOOOOO.

..OOOOO..

...OOO...

....O....

Hint: You will need to use a loop in a loop in order to print grid[0][0],
then grid[1][0], then grid[2][0], and so on, up to grid[8][0]. This will fin-
ish the first row, so then print a newline. Then your program should print
grid[0][1], then grid[1][1], then grid[2][1], and so on. The last thing your
program will print is grid[8][5].

Also, remember to pass the end keyword argument to print() if you
don’t want a newline printed automatically after each print() call.

5
D i c t i o n a r i e s a n d
S t r u c t u r i n g D a t a

In this chapter, I will cover the dictionary
data type, which provides a flexible way to

access and organize data. Then, combining
dictionaries with your knowledge of lists from

the previous chapter, you’ll learn how to create a data
structure to model a tic-tac-toe board.

The Dictionary Data Type
Like a list, a dictionary is a collection of many values. But unlike indexes for
lists, indexes for dictionaries can use many different data types, not just
integers. Indexes for dictionaries are called keys, and a key with its associ-
ated value is called a key-value pair.

In code, a dictionary is typed with braces, {}. Enter the following into
the interactive shell:

>>> myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}

106 Chapter 5

This assigns a dictionary to the myCat variable. This dictionary’s keys are
'size', 'color', and 'disposition'. The values for these keys are 'fat', 'gray',
and 'loud', respectively. You can access these values through their keys:

>>> myCat['size']
'fat'
>>> 'My cat has ' + myCat['color'] + ' fur.'
'My cat has gray fur.'

Dictionaries can still use integer values as keys, just like lists use inte-
gers for indexes, but they do not have to start at 0 and can be any number.

>>> spam = {12345: 'Luggage Combination', 42: 'The Answer'}

Dictionaries vs. Lists
Unlike lists, items in dictionaries are unordered. The first item in a list
named spam would be spam[0]. But there is no “first” item in a dictionary.
While the order of items matters for determining whether two lists are the
same, it does not matter in what order the key-value pairs are typed in a dic-
tionary. Enter the following into the interactive shell:

>>> spam = ['cats', 'dogs', 'moose']
>>> bacon = ['dogs', 'moose', 'cats']
>>> spam == bacon
False
>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}
>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}
>>> eggs == ham
True

Because dictionaries are not ordered, they can’t be sliced like lists.
Trying to access a key that does not exist in a dictionary will result in a

KeyError error message, much like a list’s “out-of-range” IndexError error
message. Enter the following into the interactive shell, and notice the
error message that shows up because there is no 'color' key:

>>> spam = {'name': 'Zophie', 'age': 7}
>>> spam['color']
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 spam['color']
KeyError: 'color'

Though dictionaries are not ordered, the fact that you can have arbi-
trary values for the keys allows you to organize your data in powerful ways.
Say you wanted your program to store data about your friends’ birthdays.
You can use a dictionary with the names as keys and the birthdays as values.
Open a new file editor window and enter the following code. Save it as birth-
days.py.

Dictionaries and Structuring Data 107

u birthdays = {'Alice': 'Apr 1', 'Bob': 'Dec 12', 'Carol': 'Mar 4'}

while True:
 print('Enter a name: (blank to quit)')
 name = input()
 if name == '':
 break

v if name in birthdays:
w print(birthdays[name] + ' is the birthday of ' + name)

 else:
 print('I do not have birthday information for ' + name)
 print('What is their birthday?')
 bday = input()

x birthdays[name] = bday
 print('Birthday database updated.')

You create an initial dictionary and store it in birthdays u. You can see
if the entered name exists as a key in the dictionary with the in keyword v,
just as you did for lists. If the name is in the dictionary, you access the asso-
ciated value using square brackets w; if not, you can add it using the same
square bracket syntax combined with the assignment operator x.

When you run this program, it will look like this:

Enter a name: (blank to quit)
Alice
Apr 1 is the birthday of Alice
Enter a name: (blank to quit)
Eve
I do not have birthday information for Eve
What is their birthday?
Dec 5
Birthday database updated.
Enter a name: (blank to quit)
Eve
Dec 5 is the birthday of Eve
Enter a name: (blank to quit)

Of course, all the data you enter in this program is forgotten when the
program terminates. You’ll learn how to save data to files on the hard drive
in Chapter 8.

The keys(), values(), and items() Methods
There are three dictionary methods that will return list-like values of the
dictionary’s keys, values, or both keys and values: keys(), values(), and items().
The values returned by these methods are not true lists: They cannot be
modified and do not have an append() method. But these data types (dict_keys,

108 Chapter 5

dict_values, and dict_items, respectively) can be used in for loops. To see
how these methods work, enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> for v in spam.values():
 print(v)

red
42

Here, a for loop iterates over each of the values in the spam dictionary.
A for loop can also iterate over the keys or both keys and values:

>>> for k in spam.keys():
 print(k)

color
age
>>> for i in spam.items():
 print(i)

('color', 'red')
('age', 42)

Using the keys(), values(), and items() methods, a for loop can iterate
over the keys, values, or key-value pairs in a dictionary, respectively. Notice
that the values in the dict_items value returned by the items() method are
tuples of the key and value.

If you want a true list from one of these methods, pass its list-like return
value to the list() function. Enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}
>>> spam.keys()
dict_keys(['color', 'age'])
>>> list(spam.keys())
['color', 'age']

The list(spam.keys()) line takes the dict_keys value returned from keys()
and passes it to list(), which then returns a list value of ['color', 'age'].

You can also use the multiple assignment trick in a for loop to assign
the key and value to separate variables. Enter the following into the inter
active shell:

>>> spam = {'color': 'red', 'age': 42}
>>> for k, v in spam.items():
 print('Key: ' + k + ' Value: ' + str(v))

Key: age Value: 42
Key: color Value: red

Dictionaries and Structuring Data 109

Checking Whether a Key or Value Exists in a Dictionary
Recall from the previous chapter that the in and not in operators can check
whether a value exists in a list. You can also use these operators to see whether
a certain key or value exists in a dictionary. Enter the following into the
interactive shell:

>>> spam = {'name': 'Zophie', 'age': 7}
>>> 'name' in spam.keys()
True
>>> 'Zophie' in spam.values()
True
>>> 'color' in spam.keys()
False
>>> 'color' not in spam.keys()
True
>>> 'color' in spam
False

In the previous example, notice that 'color' in spam is essentially a
shorter version of writing 'color' in spam.keys(). This is always the case: If
you ever want to check whether a value is (or isn’t) a key in the dictionary, you
can simply use the in (or not in) keyword with the dictionary value itself.

The get() Method
It’s tedious to check whether a key exists in a dictionary before accessing
that key’s value. Fortunately, dictionaries have a get() method that takes two
arguments: the key of the value to retrieve and a fallback value to return if
that key does not exist.

Enter the following into the interactive shell:

>>> picnicItems = {'apples': 5, 'cups': 2}
>>> 'I am bringing ' + str(picnicItems.get('cups', 0)) + ' cups.'
'I am bringing 2 cups.'
>>> 'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.'
'I am bringing 0 eggs.'

Because there is no 'eggs' key in the picnicItems dictionary, the default
value 0 is returned by the get() method. Without using get(), the code
would have caused an error message, such as in the following example:

>>> picnicItems = {'apples': 5, 'cups': 2}
>>> 'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'
Traceback (most recent call last):
 File "<pyshell#34>", line 1, in <module>
 'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'
KeyError: 'eggs'

110 Chapter 5

The setdefault() Method
You’ll often have to set a value in a dictionary for a certain key only if that
key does not already have a value. The code looks something like this:

spam = {'name': 'Pooka', 'age': 5}
if 'color' not in spam:
 spam['color'] = 'black'

The setdefault() method offers a way to do this in one line of code. The
first argument passed to the method is the key to check for, and the second
argument is the value to set at that key if the key does not exist. If the key
does exist, the setdefault() method returns the key’s value. Enter the follow-
ing into the interactive shell:

>>> spam = {'name': 'Pooka', 'age': 5}
>>> spam.setdefault('color', 'black')
'black'
>>> spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}
>>> spam.setdefault('color', 'white')
'black'
>>> spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}

The first time setdefault() is called, the dictionary in spam changes
to {'color': 'black', 'age': 5, 'name': 'Pooka'}. The method returns the
value 'black' because this is now the value set for the key 'color'. When
spam.setdefault('color', 'white') is called next, the value for that key is not
changed to 'white' because spam already has a key named 'color'.

The setdefault() method is a nice shortcut to ensure that a key exists.
Here is a short program that counts the number of occurrences of each let-
ter in a string. Open the file editor window and enter the following code,
saving it as characterCount.py:

message = 'It was a bright cold day in April, and the clocks were striking thirteen.'
count = {}

for character in message:
 count.setdefault(character, 0)
 count[character] = count[character] + 1

print(count)

The program loops over each character in the message variable’s string,
counting how often each character appears. The setdefault() method call
ensures that the key is in the count dictionary (with a default value of 0)

Dictionaries and Structuring Data 111

so the program doesn’t throw a KeyError error when count[character] =
count[character] + 1 is executed. When you run this program, the output
will look like this:

{' ': 13, ',': 1, '.': 1, 'A': 1, 'I': 1, 'a': 4, 'c': 3, 'b': 1, 'e': 5, 'd': 3, 'g': 2, 'i':
6, 'h': 3, 'k': 2, 'l': 3, 'o': 2, 'n': 4, 'p': 1, 's': 3, 'r': 5, 't': 6, 'w': 2, 'y': 1}

From the output, you can see that the lowercase letter c appears 3 times,
the space character appears 13 times, and the uppercase letter A appears
1 time. This program will work no matter what string is inside the message
variable, even if the string is millions of characters long!

Pretty Printing
If you import the pprint module into your programs, you’ll have access to
the pprint() and pformat() functions that will “pretty print” a dictionary’s
values. This is helpful when you want a cleaner display of the items in a
dictionary than what print() provides. Modify the previous characterCount.py
program and save it as prettyCharacterCount.py.

import pprint
message = 'It was a bright cold day in April, and the clocks were striking
thirteen.'
count = {}

for character in message:
 count.setdefault(character, 0)
 count[character] = count[character] + 1

pprint.pprint(count)

This time, when the program is run, the output looks much cleaner,
with the keys sorted.

{' ': 13,
 ',': 1,
 '.': 1,
 'A': 1,
 'I': 1,
 'a': 4,
 'b': 1,
 'c': 3,
 'd': 3,
 'e': 5,
 'g': 2,
 'h': 3,
 'i': 6,

112 Chapter 5

 'k': 2,
 'l': 3,
 'n': 4,
 'o': 2,
 'p': 1,
 'r': 5,
 's': 3,
 't': 6,
 'w': 2,
 'y': 1}

The pprint.pprint() function is especially helpful when the dictionary
itself contains nested lists or dictionaries.

If you want to obtain the prettified text as a string value instead of dis-
playing it on the screen, call pprint.pformat() instead. These two lines are
equivalent to each other:

pprint.pprint(someDictionaryValue)
print(pprint.pformat(someDictionaryValue))

Using Data Structures to Model Real-World Things
Even before the Internet, it was possible to play a game of chess with some-
one on the other side of the world. Each player would set up a chessboard at
their home and then take turns mailing a postcard to each other describing
each move. To do this, the players needed a way to unambiguously describe
the state of the board and their moves.

In algebraic chess notation, the spaces on the chessboard are identified by
a number and letter coordinate, as in Figure 5-1.

a b
1

2

3

4

5

6

7

8

c d e f g h
a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

g5

Figure 5-1: The coordinates of
a chessboard in algebraic chess
notation

The chess pieces are identified by letters: K for king, Q for queen, R for
rook, B for bishop, and N for knight. Describing a move uses the letter of the
piece and the coordinates of its destination. A pair of these moves describes

Dictionaries and Structuring Data 113

what happens in a single turn (with white going first); for instance, the
notation 2. Nf3 Nc6 indicates that white moved a knight to f3 and black
moved a knight to c6 on the second turn of the game.

There’s a bit more to algebraic notation than this, but the point is that
you can use it to unambiguously describe a game of chess without needing
to be in front of a chessboard. Your opponent can even be on the other side
of the world! In fact, you don’t even need a physical chess set if you have a
good memory: You can just read the mailed chess moves and update boards
you have in your imagination.

Computers have good memories. A program on a modern computer
can easily store billions of strings like '2. Nf3 Nc6'. This is how computers can
play chess without having a physical chessboard. They model data to repre-
sent a chessboard, and you can write code to work with this model.

This is where lists and dictionaries can come in. You can use them to
model real-world things, like chessboards. For the first example, you’ll use
a game that’s a little simpler than chess: tic-tac-toe.

A Tic-Tac-Toe Board
A tic-tac-toe board looks like a large hash
symbol (#) with nine slots that can each
contain an X, an O, or a blank. To repre-
sent the board with a dictionary, you can
assign each slot a string-value key, as shown
in Figure 5-2.

You can use string values to represent
what’s in each slot on the board: 'X', 'O', or
' ' (a space character). Thus, you’ll need
to store nine strings. You can use a diction-
ary of values for this. The string value with
the key 'top-R' can represent the top-right
corner, the string value with the key 'low-L'
can represent the bottom-left corner, the
string value with the key 'mid-M' can repre-
sent the middle, and so on.

This dictionary is a data structure that represents a tic-tac-toe board.
Store this board-as-a-dictionary in a variable named theBoard. Open a
new file editor window, and enter the following source code, saving it as
ticTacToe.py:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure stored in the theBoard variable represents the tic-tac-
toe board in Figure 5-3.

'low-L' 'low-M' 'low-R'

'mid-L' 'mid-M' 'mid-R'

'top-L' 'top-M' 'top-R'

Figure 5-2: The slots of a tic-tac-
toe board with their correspond-
ing keys

114 Chapter 5

Figure 5-3: An empty tic-tac-toe board

Since the value for every key in theBoard is a single-space string, this
dictionary represents a completely clear board. If player X went first and
chose the middle space, you could represent that board with this dictionary:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
 'mid-L': ' ', 'mid-M': 'X', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure in theBoard now represents the tic-tac-toe board in
Figure 5-4.

Figure 5-4: The first move

A board where player O has won by placing Os across the top might
look like this:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O',
 'mid-L': 'X', 'mid-M': 'X', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

The data structure in theBoard now represents the tic-tac-toe board in
Figure 5-5.

Dictionaries and Structuring Data 115

Figure 5-5: Player O wins.

Of course, the player sees only what is printed to the screen, not the
contents of variables. Let’s create a function to print the board dictionary
onto the screen. Make the following addition to ticTacToe.py (new code is in
bold):

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}
def printBoard(board):
 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])
 print('-+-+-')
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
 print('-+-+-')
 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])
printBoard(theBoard)

When you run this program, printBoard() will print out a blank tic-tac-
toe board.

 | |
-+-+-
 | |
-+-+-
 | |

The printBoard() function can handle any tic-tac-toe data structure you
pass it. Try changing the code to the following:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O', 'mid-L': 'X', 'mid-M':
'X', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

def printBoard(board):
 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])
 print('-+-+-')
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
 print('-+-+-')
 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])
printBoard(theBoard)

116 Chapter 5

Now when you run this program, the new board will be printed to
the screen.

O|O|O
-+-+-
X|X|
-+-+-
 | |X

Because you created a data structure to represent a tic-tac-toe board
and wrote code in printBoard() to interpret that data structure, you now
have a program that “models” the tic-tac-toe board. You could have orga-
nized your data structure differently (for example, using keys like 'TOP-LEFT'
instead of 'top-L'), but as long as the code works with your data structures,
you will have a correctly working program.

For example, the printBoard() function expects the tic-tac-toe data struc-
ture to be a dictionary with keys for all nine slots. If the dictionary you passed
was missing, say, the 'mid-L' key, your program would no longer work.

O|O|O
-+-+-
Traceback (most recent call last):
 File "ticTacToe.py", line 10, in <module>
 printBoard(theBoard)
 File "ticTacToe.py", line 6, in printBoard
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
KeyError: 'mid-L'

Now let’s add code that allows the players to enter their moves. Modify
the ticTacToe.py program to look like this:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', 'mid-L': ' ', 'mid-M': '
', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):
 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])
 print('-+-+-')
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
 print('-+-+-')
 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])
turn = 'X'
for i in range(9):

u printBoard(theBoard)
 print('Turn for ' + turn + '. Move on which space?')

v move = input()
w theBoard[move] = turn
x if turn == 'X':

 turn = 'O'
 else:
 turn = 'X'
printBoard(theBoard)

Dictionaries and Structuring Data 117

The new code prints out the board at the start of each new turn u, gets
the active player’s move v, updates the game board accordingly w, and
then swaps the active player x before moving on to the next turn.

When you run this program, it will look something like this:

 | |
-+-+-
 | |
-+-+-
 | |
Turn for X. Move on which space?
mid-M
 | |
-+-+-
 |X|
-+-+-
 | |
Turn for O. Move on which space?
low-L
 | |
-+-+-
 |X|
-+-+-
O| |

--snip--

O|O|X
-+-+-
X|X|O
-+-+-
O| |X
Turn for X. Move on which space?
low-M
O|O|X
-+-+-
X|X|O
-+-+-
O|X|X

This isn’t a complete tic-tac-toe game—for instance, it doesn’t ever check
whether a player has won—but it’s enough to see how data structures can be
used in programs.

NOTE 	 If you are curious, the source code for a complete tic-tac-toe program is described in the
resources available from http://nostarch.com/automatestuff/.

Nested Dictionaries and Lists
Modeling a tic-tac-toe board was fairly simple: The board needed only a
single dictionary value with nine key-value pairs. As you model more com-
plicated things, you may find you need dictionaries and lists that contain

118 Chapter 5

other dictionaries and lists. Lists are useful to contain an ordered series
of values, and dictionaries are useful for associating keys with values. For
example, here’s a program that uses a dictionary that contains other dic-
tionaries in order to see who is bringing what to a picnic. The totalBrought()
function can read this data structure and calculate the total number of an
item being brought by all the guests.

allGuests = {'Alice': {'apples': 5, 'pretzels': 12},
 'Bob': {'ham sandwiches': 3, 'apples': 2},
 'Carol': {'cups': 3, 'apple pies': 1}}

def totalBrought(guests, item):
 numBrought = 0

u for k, v in guests.items():
v numBrought = numBrought + v.get(item, 0)

 return numBrought

print('Number of things being brought:')
print(' - Apples ' + str(totalBrought(allGuests, 'apples')))
print(' - Cups ' + str(totalBrought(allGuests, 'cups')))
print(' - Cakes ' + str(totalBrought(allGuests, 'cakes')))
print(' - Ham Sandwiches ' + str(totalBrought(allGuests, 'ham sandwiches')))
print(' - Apple Pies ' + str(totalBrought(allGuests, 'apple pies')))

Inside the totalBrought() function, the for loop iterates over the key-
value pairs in guests u. Inside the loop, the string of the guest’s name is
assigned to k, and the dictionary of picnic items they’re bringing is assigned
to v. If the item parameter exists as a key in this dictionary, it’s value (the
quantity) is added to numBrought v. If it does not exist as a key, the get()
method returns 0 to be added to numBrought.

The output of this program looks like this:

 Number of things being brought:
 - Apples 7
 - Cups 3
 - Cakes 0
 - Ham Sandwiches 3
 - Apple Pies 1

This may seem like such a simple thing to model that you wouldn’t
need to bother with writing a program to do it. But realize that this same
totalBrought() function could easily handle a dictionary that contains thou-
sands of guests, each bringing thousands of different picnic items. Then
having this information in a data structure along with the totalBrought()
function would save you a lot of time!

You can model things with data structures in whatever way you like, as
long as the rest of the code in your program can work with the data model
correctly. When you first begin programming, don’t worry so much about

Dictionaries and Structuring Data 119

the “right” way to model data. As you gain more experience, you may come
up with more efficient models, but the important thing is that the data
model works for your program’s needs.

Summary
You learned all about dictionaries in this chapter. Lists and dictionaries
are values that can contain multiple values, including other lists and dic-
tionaries. Dictionaries are useful because you can map one item (the key)
to another (the value), as opposed to lists, which simply contain a series
of values in order. Values inside a dictionary are accessed using square
brackets just as with lists. Instead of an integer index, dictionaries can have
keys of a variety of data types: integers, floats, strings, or tuples. By organiz-
ing a program’s values into data structures, you can create representations
of real-world objects. You saw an example of this with a tic-tac-toe board.

That just about covers all the basic concepts of Python programming!
You’ll continue to learn new concepts throughout the rest of this book,
but you now know enough to start writing some useful programs that can
automate tasks. You might not think you have enough Python knowledge to
do things such as download web pages, update spreadsheets, or send text
messages, but that’s where Python modules come in! These modules, writ-
ten by other programmers, provide functions that make it easy for you to
do all these things. So let’s learn how to write real programs to do useful
automated tasks.

Practice Questions
1.	 What does the code for an empty dictionary look like?

2.	 What does a dictionary value with a key 'foo' and a value 42 look like?

3.	 What is the main difference between a dictionary and a list?

4.	 What happens if you try to access spam['foo'] if spam is {'bar': 100}?

5.	 If a dictionary is stored in spam, what is the difference between the
expressions 'cat' in spam and 'cat' in spam.keys()?

6.	 If a dictionary is stored in spam, what is the difference between the
expressions 'cat' in spam and 'cat' in spam.values()?

7.	 What is a shortcut for the following code?

if 'color' not in spam:
 spam['color'] = 'black'

8.	 What module and function can be used to “pretty print” dictionary
values?

120 Chapter 5

Practice Projects
For practice, write programs to do the following tasks.

Fantasy Game Inventory
You are creating a fantasy video game. The data structure to model the
player’s inventory will be a dictionary where the keys are string values
describing the item in the inventory and the value is an integer value detail-
ing how many of that item the player has. For example, the dictionary value
{'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12} means the
player has 1 rope, 6 torches, 42 gold coins, and so on.

Write a function named displayInventory() that would take any possible
“inventory” and display it like the following:

Inventory:
12 arrow
42 gold coin
1 rope
6 torch
1 dagger
Total number of items: 62

Hint: You can use a for loop to loop through all the keys in a dictionary.

inventory.py
stuff = {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12}

def displayInventory(inventory):
 print("Inventory:")
 item_total = 0
 for k, v in inventory.items():
 print(str(v) + ' ' + k)
 item_total += v
 print("Total number of items: " + str(item_total))

displayInventory(stuff)

List to Dictionary Function for Fantasy Game Inventory
Imagine that a vanquished dragon’s loot is represented as a list of strings
like this:

dragonLoot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']

Write a function named addToInventory(inventory, addedItems), where the
inventory parameter is a dictionary representing the player’s inventory (like
in the previous project) and the addedItems parameter is a list like dragonLoot.

A
I n s t a l l i n g

T h i r d - P a r t y M o d u l e s

Beyond the standard library of modules
packaged with Python, other developers

have written their own modules to extend
Python’s capabilities even further. The primary

way to install third-party modules is to use Python’s
pip tool. This tool securely downloads and installs
Python modules onto your computer from https://pypi.python.org/, the web-
site of the Python Software Foundation. PyPI, or the Python Package Index,
is a sort of free app store for Python modules.

The pip Tool
The executable file for the pip tool is called pip on Windows and pip3 on OS X
and Linux. On Windows, you can find pip at C:\Python34\Scripts\pip.exe. On
OS X, it is in /Library/Frameworks/Python.framework/Versions/3.4/bin/pip3. On
Linux, it is in /usr/bin/pip3.

442 Appendix A

While pip comes automatically installed with Python 3.4 on Windows and
OS X, you must install it separately on Linux. To install pip3 on Ubuntu or
Debian Linux, open a new Terminal window and enter sudo apt-get install
python3-pip. To install pip3 on Fedora Linux, enter sudo yum install python3
-pip into a Terminal window. You will need to enter the administrator pass-
word for your computer in order to install this software.

Installing Third-Party Modules
The pip tool is meant to be run from the command line: You pass it the
command install followed by the name of the module you want to install.
For example, on Windows you would enter pip install ModuleName, where
ModuleName is the name of the module. On OS X and Linux, you’ll have to
run pip3 with the sudo prefix to grant administrative privileges to install the
module. You would need to type sudo pip3 install ModuleName.

If you already have the module installed but would like to upgrade it
to the latest version available on PyPI, run pip install –U ModuleName (or pip3
install –U ModuleName on OS X and Linux).

After installing the module, you can test that it installed successfully by
running import ModuleName in the interactive shell. If no error messages are
displayed, you can assume the module was installed successfully.

You can install all of the modules covered in this book by running the
commands listed next. (Remember to replace pip with pip3 if you’re on OS X
or Linux.)

•	 pip install send2trash

•	 pip install requests

•	 pip install beautifulsoup4

•	 pip install selenium

•	 pip install openpyxl

•	 pip install PyPDF2

•	 pip install python-docx (install python-docx, not docx)

•	 pip install imapclient

•	 pip install pyzmail

•	 pip install twilio

•	 pip install pillow

•	 pip install pyobjc-core (on OS X only)

•	 pip install pyobjc (on OS X only)

•	 pip install python3-xlib (on Linux only)

•	 pip install pyautogui

N o t e 	 For OS X users: The pyobjc module can take 20 minutes or longer to install, so don’t
be alarmed if it takes a while. You should also install the pyobjc-core module first,
which will reduce the overall installation time.

B
R u n n i n g P r o g r a m s

If you have a program open in IDLE’s
file editor, running it is a simple matter

of pressing F5 or selecting the Run4Run
Module menu item. This is an easy way to run

programs while writing them, but opening IDLE to
run your finished programs can be a burden. There
are more convenient ways to execute Python scripts.

Shebang Line
The first line of all your Python programs should be a shebang line, which
tells your computer that you want Python to execute this program. The she-
bang line begins with #!, but the rest depends on your operating system.

•	 On Windows, the shebang line is #! python3.

•	 On OS X, the shebang line is #! /usr/bin/env python3.

•	 On Linux, the shebang line is #! /usr/bin/python3.

444 Appendix B

You will be able to run Python scripts from IDLE without the shebang
line, but the line is needed to run them from the command line.

Running Python Programs on Windows
On Windows, the Python 3.4 interpreter is located at C:\Python34\python.exe.
Alternatively, the convenient py.exe program will read the shebang line at the
top of the .py file’s source code and run the appropriate version of Python
for that script. The py.exe program will make sure to run the Python pro-
gram with the correct version of Python if multiple versions are installed on
your computer.

To make it convenient to run your Python program, create a .bat batch
file for running the Python program with py.exe. To make a batch file, make
a new text file containing a single line like the following:

@py.exe C:\path\to\your\pythonScript.py %*

Replace this path with the absolute path to your own program, and
save this file with a .bat file extension (for example, pythonScript.bat). This
batch file will keep you from having to type the full absolute path for the
Python program every time you want to run it. I recommend you place
all your batch and .py files in a single folder, such as C:\MyPythonScripts or
C:\Users\YourName\PythonScripts.

The C:\MyPythonScripts folder should be added to the system path on
Windows so that you can run the batch files in it from the Run dialog. To
do this, modify the PATH environment variable. Click the Start button and
type Edit environment variables for your account. This option should auto-
complete after you’ve begun
to type it. The Environment
Variables window that appears
will look like Figure B-1.

From System variables,
select the Path variable and
click Edit. In the Value text
field, append a semicolon,
type C:\MyPythonScripts,
and then click OK. Now you
can run any Python script in
the C:\MyPythonScripts folder
by simply pressing win-R and
entering the script’s name.
Running pythonScript, for
instance, will run pythonScript
.bat, which in turn will save
you from having to run the
whole command py.exe C:\
MyPythonScripts\pythonScript.py
from the Run dialog.

Figure B-1: The Environment Variables window on
Windows

Running Programs 445

Running Python Programs on OS X and Linux
On OS X, selecting Applications4Utilities4Terminal will bring up a
Terminal window. A Terminal window is a way to enter commands on your
computer using only text, rather than clicking through a graphic interface.
To bring up the Terminal window on Ubuntu Linux, press the win (or
super) key to bring up Dash and type in Terminal.

The Terminal window will begin in the home folder of your user account.
If my username is asweigart, the home folder will be /Users/asweigart on OS X
and /home/asweigart on Linux. The tilde (~) character is a shortcut for your
home folder, so you can enter cd ~ to change to your home folder. You can
also use the cd command to change the current working directory to any
other directory. On both OS X and Linux, the pwd command will print the
current working directory.

To run your Python programs, save your .py file to your home folder.
Then, change the .py file’s permissions to make it executable by running
chmod +x pythonScript.py. File permissions are beyond the scope of this book,
but you will need to run this command on your Python file if you want to
run the program from the Terminal window. Once you do so, you will be
able to run your script whenever you want by opening a Terminal window
and entering ./pythonScript.py. The shebang line at the top of the script will
tell the operating system where to locate the Python interpreter.

Running Python Programs with Assertions Disabled
You can disable the assert statements in your Python programs for a slight
performance improvement. When running Python from the terminal,
include the -O switch after python or python3 and before the name of the
.py file. This will run an optimized version of your program that skips the
assertion checks.

C
A n s w e r s t o t h e

P r ac t i c e Q u e s t i o n s

This appendix contains the answers to
the practice problems at the end of each

chapter. I highly recommend that you take the
time to work through these problems. Programming
is more than memorizing syntax and a list of func-
tion names. As when learning a foreign language,
the more practice you put into it, the more you will
get out of it. There are many websites with practice
programming problems as well. You can find a list of
these at http://nostarch.com/automatestuff/.

http://nostarch.com/automatestuff/

448 Appendix C

Chapter 1
1.	 The operators are +, -, *, and /. The values are 'hello', -88.8, and 5.

2.	 The string is 'spam'; the variable is spam. Strings always start and end
with quotes.

3.	 The three data types introduced in this chapter are integers, floating-
point numbers, and strings.

4.	 An expression is a combination of values and operators. All expressions
evaluate (that is, reduce) to a single value.

5.	 An expression evaluates to a single value. A statement does not.

6.	 The bacon variable is set to 20. The bacon + 1 expression does not reassign
the value in bacon (that would need an assignment statement: bacon =
bacon + 1).

7.	 Both expressions evaluate to the string 'spamspamspam'.

8.	 Variable names cannot begin with a number.

9.	 The int(), float(), and str() functions will evaluate to the integer, float-
ing-point number, and string versions of the value passed to them.

10.	 The expression causes an error because 99 is an integer, and only
strings can be concatenated to other strings with the + operator. The
correct way is I have eaten ' + str(99) + ' burritos.'.

Chapter 2
1.	 True and False, using capital T and F, with the rest of the word in

lowercase

2.	 and, or, and not

3.	 True and True is True.
True and False is False.
False and True is False.
False and False is False.
True or True is True.
True or False is True.
False or True is True.
False or False is False.
not True is False.
not False is True.

4.	 False

False

True

False

False

True

Answers to the Practice Questions 449

5.	 ==, !=, <, >, <=, and >=.

6.	 == is the equal to operator that compares two values and evaluates to
a Boolean, while = is the assignment operator that stores a value in a
variable.

7.	 A condition is an expression used in a flow control statement that evalu-
ates to a Boolean value.

8.	 The three blocks are everything inside the if statement and the lines
print('bacon') and print('ham').

print('eggs')
if spam > 5:
 print('bacon')
else:
 print('ham')
print('spam')

9.	 The code:

if spam == 1:
 print('Hello')
elif spam == 2:
 print('Howdy')
else:
 print('Greetings!')

10.	 Press ctrl-C to stop a program stuck in an infinite loop.

11.	 The break statement will move the execution outside and just after a loop.
The continue statement will move the execution to the start of the loop.

12.	 They all do the same thing. The range(10) call ranges from 0 up to (but
not including) 10, range(0, 10) explicitly tells the loop to start at 0, and
range(0, 10, 1) explicitly tells the loop to increase the variable by 1 on
each iteration.

13.	 The code:

for i in range(1, 11):
 print(i)

and:

i = 1
while i <= 10:
 print(i)
 i = i + 1

14.	 This function can be called with spam.bacon().

450 Appendix C

Chapter 3
1.	 Functions reduce the need for duplicate code. This makes programs

shorter, easier to read, and easier to update.

2.	 The code in a function executes when the function is called, not when
the function is defined.

3.	 The def statement defines (that is, creates) a function.

4.	 A function consists of the def statement and the code in its def clause.
A function call is what moves the program execution into the function,
and the function call evaluates to the function’s return value.

5.	 There is one global scope, and a local scope is created whenever a func-
tion is called.

6.	 When a function returns, the local scope is destroyed, and all the vari-
ables in it are forgotten.

7.	 A return value is the value that a function call evaluates to. Like any
value, a return value can be used as part of an expression.

8.	 If there is no return statement for a function, its return value is None.

9.	 A global statement will force a variable in a function to refer to the
global variable.

10.	 The data type of None is NoneType.

11.	 That import statement imports a module named areallyourpetsnamederic.
(This isn’t a real Python module, by the way.)

12.	 This function can be called with spam.bacon().

13.	 Place the line of code that might cause an error in a try clause.

14.	 The code that could potentially cause an error goes in the try clause.
The code that executes if an error happens goes in the except clause.

Chapter 4
1.	 The empty list value, which is a list value that contains no items. This is

similar to how '' is the empty string value.

2.	 spam[2] = 'hello' (Notice that the third value in a list is at index 2
because the first index is 0.)

3.	 'd' (Note that '3' * 2 is the string '33', which is passed to int() before
being divided by 11. This eventually evaluates to 3. Expressions can be
used wherever values are used.)

4.	 'd' (Negative indexes count from the end.)

5.	 ['a', 'b']

6.	 1

7.	 [3.14, 'cat', 11, 'cat', True, 99]

8.	 [3.14, 11, 'cat', True]

Answers to the Practice Questions 451

9.	 The operator for list concatenation is +, while the operator for replica-
tion is *. (This is the same as for strings.)

10.	 While append() will add values only to the end of a list, insert() can add
them anywhere in the list.

11.	 The del statement and the remove() list method are two ways to remove
values from a list.

12.	 Both lists and strings can be passed to len(), have indexes and slices, be
used in for loops, be concatenated or replicated, and be used with the
in and not in operators.

13.	 Lists are mutable; they can have values added, removed, or changed.
Tuples are immutable; they cannot be changed at all. Also, tuples are
written using parentheses, (and), while lists use the square brackets,
[and].

14.	 (42,) (The trailing comma is mandatory.)

15.	 The tuple() and list() functions, respectively

16.	 They contain references to list values.

17.	 The copy.copy() function will do a shallow copy of a list, while the
copy.deepcopy() function will do a deep copy of a list. That is, only copy
.deepcopy() will duplicate any lists inside the list.

Chapter 5
1.	 Two curly brackets: {}

2.	 {'foo': 42}

3.	 The items stored in a dictionary are unordered, while the items in a list
are ordered.

4.	 You get a KeyError error.

5.	 There is no difference. The in operator checks whether a value exists as
a key in the dictionary.

6.	 'cat' in spam checks whether there is a 'cat' key in the dictionary, while
'cat' in spam.values() checks whether there is a value 'cat' for one of
the keys in spam.

7.	 spam.setdefault('color', 'black')

8.	 pprint.pprint()

Chapter 6
1.	 Escape characters represent characters in string values that would

otherwise be difficult or impossible to type into code.

2.	 \n is a newline; \t is a tab.

3.	 The \\ escape character will represent a backslash character.

452 Appendix C

4.	 The single quote in Howl's is fine because you’ve used double quotes to
mark the beginning and end of the string.

5.	 Multiline strings allow you to use newlines in strings without the \n
escape character.

6.	 The expressions evaluate to the following:

•	 'e'

•	 'Hello'

•	 'Hello'

•	 'lo world!

7.	 The expressions evaluate to the following:

•	 'HELLO'

•	 True

•	 'hello'

8.	 The expressions evaluate to the following:

•	 ['Remember,', 'remember,', 'the', 'fifth', 'of', 'November.']

•	 'There-can-be-only-one.'

9.	 The rjust(), ljust(), and center() string methods, respectively

10.	 The lstrip() and rstrip() methods remove whitespace from the left and
right ends of a string, respectively.

Chapter 7
1.	 The re.compile() function returns Regex objects.

2.	 Raw strings are used so that backslashes do not have to be escaped.

3.	 The search() method returns Match objects.

4.	 The group() method returns strings of the matched text.

5.	 Group 0 is the entire match, group 1 covers the first set of parentheses,
and group 2 covers the second set of parentheses.

6.	 Periods and parentheses can be escaped with a backslash: \., \(, and \).

7.	 If the regex has no groups, a list of strings is returned. If the regex has
groups, a list of tuples of strings is returned.

8.	 The | character signifies matching “either, or” between two groups.

9.	 The ? character can either mean “ match zero or one of the preceding
group” or be used to signify nongreedy matching.

10.	 The + matches one or more. The * matches zero or more.

11.	 The {3} matches exactly three instances of the preceding group. The
{3,5} matches between three and five instances.

12.	 The \d, \w, and \s shorthand character classes match a single digit,
word, or space character, respectively.

13.	 The \D, \W, and \S shorthand character classes match a single character
that is not a digit, word, or space character, respectively.

Dear Students, you can find a simple explanation for

the first lessons of this book at the following Link:

https://www.youtube.com/watch?v=1F_OgqRuSdI&list

=PL0-84-yl1fUnRuXGFe_F7qSH1LEnn9LkW

I want to Thank Dr. AI Sweigart, who

write his Original book which called “

AUTOMATE THE BORING STUFF

WITH PYTHON :

Practical Programming for total

Beginners.”, which considers the main

and only reference of this book.

https://www.youtube.com/watch?v=1F_OgqRuSdI&list=PL0-84-yl1fUnRuXGFe_F7qSH1LEnn9LkW
https://www.youtube.com/watch?v=1F_OgqRuSdI&list=PL0-84-yl1fUnRuXGFe_F7qSH1LEnn9LkW

	fb691964e544c4f0e28e22985b64412c96a36927f5ede17939047b83a42310f6.pdf
	Contents in Detail

	Introduction
	Whom Is This Book For?
	Conventions
	What Is Programming?
	What Is Python?
	Programmers Don’t Need to Know Much Math
	Programming Is a Creative Activity

	About This Book
	Downloading and Installing Python
	Starting IDLE
	The Interactive Shell

	How to Find Help
	Asking Smart Programming Questions
	Summary

	Part I: Python Programming Basics
	Chapter 1: Python Basics
	Entering Expressions into the Interactive Shell
	The Integer, Floating-Point, and String Data Types
	String Concatenation and Replication
	Storing Values in Variables
	Assignment Statements
	Variable Names

	Your First Program
	Dissecting Your Program
	Comments
	The print() Function
	The input() Function
	Printing the User’s Name
	The len() Function
	The str(), int(), and float() Functions

	Summary
	Practice Questions

	Chapter 2: Flow Control
	Boolean Values
	Comparison Operators
	Boolean Operators
	Binary Boolean Operators
	The not Operator

	Mixing Boolean and Comparison Operators
	Elements of Flow Control
	Conditions
	Blocks of Code

	Program Execution
	Flow Control Statements
	if Statements
	else Statements
	elif Statements
	while Loop Statements
	break Statements
	continue Statements
	for Loops and the range() Function

	Importing Modules
	from import Statements

	Ending a Program Early with sys.exit()
	Summary
	Practice Questions

	Chapter 3: Functions
	def Statements with Parameters
	Return Values and return Statements
	The None Value
	Keyword Arguments and print()
	Local and Global Scope
	Local Variables Cannot Be Used in the Global Scope
	Local Scopes Cannot Use Variables in Other Local Scopes
	Global Variables Can Be Read from a Local Scope
	Local and Global Variables with the Same Name

	The global Statement
	Exception Handling
	A Short Program: Guess the Number
	Summary
	Practice Questions
	Practice Projects
	The Collatz Sequence
	Input Validation

	Chapter 4: Lists
	The List Data Type
	Getting Individual Values in a List with Indexes
	Negative Indexes
	Getting Sublists with Slices
	Getting a List’s Length with len()
	Changing Values in a List with Indexes
	List Concatenation and List Replication
	Removing Values from Lists with del Statements

	Working with Lists
	Using for Loops with Lists
	The in and not in Operators
	The Multiple Assignment Trick

	Augmented Assignment Operators
	Methods
	Finding a Value in a List with the index() Method
	Adding Values to Lists with the append() and insert() Methods
	Removing Values from Lists with remove()
	Sorting the Values in a List with the sort() Method

	Example Program: Magic 8 Ball with a List
	List-like Types: Strings and Tuples
	Mutable and Immutable Data Types
	The Tuple Data Type
	Converting Types with the list() and tuple() Functions

	References
	Passing References
	The copy Module’s copy() and deepcopy() Functions

	Summary
	Practice Questions
	Practice Projects
	Comma Code
	Character Picture Grid

	Chapter 5: Dictionaries and Structuring Data
	The Dictionary Data Type
	Dictionaries vs. Lists
	The keys(), values(), and items() Methods
	Checking Whether a Key or Value Exists in a Dictionary
	The get() Method
	The setdefault() Method

	Pretty Printing
	Using Data Structures to Model Real-World Things
	A Tic-Tac-Toe Board
	Nested Dictionaries and Lists

	Summary
	Practice Questions
	Practice Projects
	Fantasy Game Inventory
	List to Dictionary Function for Fantasy Game Inventory

	blank504x666
	fb691964e544c4f0e28e22985b64412c96a36927f5ede17939047b83a42310f6.pdf
	Appendix A: Installing Third-Party Modules
	The pip Tool
	Installing Third-Party Modules

	blank504x666
	fb691964e544c4f0e28e22985b64412c96a36927f5ede17939047b83a42310f6.pdf
	Appendix B: Running Programs
	Shebang Line
	Running Python Programs on Windows
	Running Python Programs on OS X and Linux
	Running Python Programs with Assertions Disabled

	Appendix C: Practice Question Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

