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Preface

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Yet the fundamental concepts remain fairly clear, and it is on these that we base
this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level.
We hope that practitioners will also find it useful. It provides a clear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data structures, computer organization,
and a high-level language, such as C. The hardware topics required for an
understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly C, with some Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
contain pointers to research papers in which results were first presented and
proved, as well as references to material for further reading. In place of proofs,
figures and examples are used to suggest why we should expect the result in
question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most innovative operating
systems, including Sun Microsystems' Solaris; Linux; Mach; Microsoft MS-DOS,
Windows NT, Windows 2000, and Windows XP; DEC VMS and TOPS-20; IBM OS/2;
and Apple Mac OS X.

In this text, when we refer to Windows XP as an example operating system,
we are implying both Windows XP and Windows 2000. If a feature exists in
Windows XP that is not available in Windows 2000, we will state this explicitly.

V l l
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If a feature exists in Windows 2000 but not in Windows XP, then we wili refer
specifically to Windows 2000.

Organization of This Book

The organization of this text reflects our many years of teaching operating
systems courses. Consideration was also given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2001 for teaching operating systems, published by
the Joint Task Force of the IEEE Computing Society and the Association for
Computing Machinery (ACM).

On the supporting web page for this text, we provide several sample syllabi
that suggest various approaches for using the text in both introductory and
advanced operating systems courses. As a general rule, we encourage readers
to progress sequentially through the chapters, as this strategy provides the
most thorough study of operating systems. However, by using the sample
syllabi, a reader can select a different ordering of chapters (or subsections of
chapters).

Content of This Book

The text is organized in eight major parts:
• Overview. Chapters 1 and 2 explain what operating systems are, what

they do, and how they are designed and constructed. They discuss what the
common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation is motivational and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individual readers or for students in lower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

• Process management. Chapters 3 through 7 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code) and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included under this topic is a discussion of
threads.

• Memory management. Chapters 8 and 9 deal with main memory man-
agement during the execution of a process. To improve both the utilization
of the CPU and the speed of its response to its users, the computer must
keep several processes in memory. There are many different memory-
management schemes, reflecting various approaches to memory man-
agement, and the effectiveness of a particular algorithm depends on the
situation.
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Storage management. Chapters 10 through 13 describe how the file system,
mass storage, and I/O are handled in a modern computer system. The
file system provides the mechanism for on-line storage of and access to
both data and programs residing on the disks. These chapters describe
the classic internal algorithms and structures of storage management.
They provide a firm practical understanding of the algorithms used—
the properties, advantages, and disadvantages. Since the I/O devices that
attach to a computer vary widely, the operating system needs to provide
a wide range of functionality to applications to allow them to control all
aspects of the devices. We discuss system I/O in depth, including I/O
system design, interfaces, and internal system structures and functions.
In many ways, I/O devices are also the slowest major components of
the computer. Because they are a performance bottleneck, performance
issues are examined. Matters related to secondary and tertiary storage are
explained as well.

Protection and security. Chapters 14 and 15 discuss the processes in an
operating system that must be protected from one another's activities.
For the purposes of protection and security, we use mechanisms that
ensure that only processes that have gained proper authorization from
the operating system can operate on the files, memory, CPU, and other
resources. Protection is a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means of specifying the controls to be imposed,
as well as a means of enforcement. Security protects the information stored
in the system (both data and code), as well as the physical resources of
the computer system, from unauthorized access, malicious destruction or
alteration, and accidental introduction of inconsistency.

Distributed systems. Chapters 16 through 18 deal with a collection of
processors that do not share memory or a clock—a distributed system. By
providing the user with access to the various resources that it maintains, a
distributed system can improve computation speed and data availability
and reliability. Such a system also provides the user with a distributed file
system, which is a file-service system whose users, servers, and storage
devices are dispersed among the sites of a distributed system. A distributed
system must provide various mechanisms for process synchronization and
communication and for dealing with the deadlock problem and a variety
of failures that are not encountered in a centralized system.

Special-purpose systems. Chapters 19 and 20 deal with systems used for
specific purposes, including real-time systems and multimedia systems.
These systems have specific requirements that differ from those of the
general-purpose systems that are the focus of the remainder of the text.
Real-time systems may require not only that computed results be "correct"
but also that the results be produced within a specified deadline period.
Multimedia systems require quality-of-service guarantees ensuring that
the multimedia data are delivered to clients within a specific time frame.

Case studies. Chapters 21 through 23 in the book, and Appendices A
through C on the website, integrate the concepts described in this book by
describing real operating systems. These systems include Linux, Windows
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XP, FreeBSD, Mach, and Windows 2000. We chose Linux and FreeBSD
because UNIX—at one time—was almost small enough to understand
yet was not a "toy" operating system. Most of its internal algorithms were
selected for simplicity, rather than for speed or sophistication. Both Linux
and FreeBSD are readily available to computer-science departments, so
many students have access to these systems. We chose Windows XP and
Windows 2000 because they provide an opportunity for us to study a
modern operating system with a design and implementation drastically
different from those of UNIX. Chapter 23 briefly describes a few other
influential operating systems.

Operating-System Environments

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention is paid
to the Microsoft family of operating systems (including Windows NT, Windows
2000, and Windows XP) and various versions of UNIX (including Solaris, BSD,
and Mac OS X). We also provide a significant amount of coverage of the Linux
operating system reflecting the most recent version of the kernel—Version 2.6
—at the time this book was written.

The text also provides several example programs written in C and
Java. These programs are intended to run in the following programming
environments:

• Windows systems. The primary programming environment for Windows
systems is the Win32 API (application programming interface), which pro-
vides a comprehensive set of functions for managing processes, threads,
memory, and peripheral devices. We provide several C programs illustrat-
ing the use of the Win32 API. Example programs were tested on systems
running Windows 2000 and Windows XP.

• POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operating
systems. Although Windows XP and Windows 2000 systems can also run
certain POSIX programs, our coverage of POSIX focuses primarily on UNIX
and Linux systems. POSIX-compliant systems must implement the POSIX
core standard (POSIX.1)—Linux, Solaris, and Mac OS X are examples of
POSIX-compliant systems. POSIX also defines several extensions to the
standards, including real-time extensions (POSlxl.b) and an extension for
a threads library (POSIXl.c, better known as Pthreads). We provide several
programming examples written in C illustrating the POSIX base API, as well
as Pthreads and the extensions for real-time programming. These example
programs were tested on Debian Linux 2.4 and 2.6 systems, Mac OS X, and
Solaris 9 using the gcc 3.3 compiler.

• Java. Java is a widely used programming language with a rich API and
built-in language support for thread creation and management. Java
programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating system and networking concepts
with several Java programs tested using the Java 1.4 JVM.



Preface xi

We have chosen these three programming environments because it,is our
opinion that they best represent the two most popular models of operating
systems: Windows and UNIX/Linux, along with the widely used Java environ-
ment. Most programming examples are written in C, and we expect readers to
be comfortable with this language; readers familiar with both the C and Java
languages should easily understand most programs provided in this text.

In some instances—such as thread creation—we illustrate a specific
concept using all three programming environments, allowing the reader
to contrast the three different libraries as they address the same task. In
other situations, we may use just one of the APIs to demonstrate a concept.
For example, we illustrate shared memory using just the POSIX API; socket
programming in TCP/IP is highlighted using the Java API.

The Seventh Edition

As we wrote this seventh edition of Operating System Concepts, we were guided
by the many comments and suggestions we received from readers of our
previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten the
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changes in many of
the chapters. Most importantly, we have completely reorganized the overview
material in Chapters 1 and 2 and have added two new chapters on special-
purpose systems (real-time embedded systems and multimedia systems).
Because protection and security have become more prevalent in operating
systems, we now cover these topics earlier in the text. Moreover, we have
substantially updated and expanded the coverage of security.

Below, we provide a brief outline of the major changes to the various
chapters:

• Chapter 1, Introduction, has been totally revised. In previous editions, the
chapter gave a historical view of the development of operating systems.
The new chapter provides a grand tour of the major operating-system
components, along with basic coverage of computer-system organization.

m Chapter 2, Operating-System Structures, is a revised version of old
Chapter 3, with many additions, including enhanced discussions of system
calls and operating-system structure. It also provides significantly updated
coverage of virtual machines.

• Chapter 3, Processes, is the old Chapter 4. It includes new coverage of how
processes are represented in Linux and illustrates process creation using
both the POSIX and Win32 APIs. Coverage of shared memory is enhanced
with a program illustrating the shared-memory API available for POSIX
systems.

• Chapter 4, Threads, is the old Chapter 5. The chapter presents an enhanced
discussion of thread libraries, including the POSIX, Win32 API, and Java
thread libraries. It also provides updated coverage of threading in Linux.



Preface

Chapter 5, CPU Scheduling, is the old Chapter 6. The chapter offers a
significantly updated discussion of scheduling issues for multiprocessor
systems, including processor affinity and load-balancing algorithms. It
also features a new section on thread scheduling, including Pthreads, and
updated coverage of table-driven scheduling in Solaris. The section on
Linux scheduling has been revised to cover the scheduler used in the 2.6
kernel.

Chapter 6, Process Synchronization, is the old Chapter 7. We have
removed the coverage of two-process solutions and now discuss only
Peterson's solution, as the two-process algorithms are not guaranteed to
work on modern processors. The chapter also includes new sections on
synchronization in the Linux kernel and in the Pthreads API.

Chapter 7, Deadlocks, is the old Chapter 8. New coverage includes
a program example illustrating deadlock in a multithreaded Pthread
program.

Chapter 8, Main Memory, is the old Chapter 9. The chapter no longer
covers overlays. In addition, the coverage of segmentation has seen sig-
nificant modification, including an enhanced discussion of segmentation
in Pentium systems and a discussion of how Linux is designed for such
segmented systems.

Chapter 9, Virtual Memory, is the old Chapter 10. The chapter features
expanded coverage of motivating virtual memory as well as coverage
of memory-mapped files, including a programming example illustrating
shared memory (via memory-mapped files) using the Win32 API. The
details of memory management hardware have been modernized. A new
section on allocating memory within the kernel discusses the buddy
algorithm and the slab allocator.

Chapter 10, File-System Interface, is the old Chapter 11. It has been
updated and an example of Windows XP ACLs has been added.

Chapter 11, File-System Implementation, is the old Chapter 12. Additions
include a full description of the WAFL file system and inclusion of Sun's
ZFS file system.

Chapter 12, Mass-Storage Structure, is the old Chapter 14. New is the
coverage of modern storage arrays, including new RAID technology and
features such as thin provisioning.

Chapter 13, I/O Systems, is the old Chapter 13 updated with coverage of
new material.

Chapter 14, Protection, is the old Chapter 18 updated with coverage of the
principle of least privilege.

Chapter 15, Security, is the old Chapter 19. The chapter has undergone
a major overhaul, with all sections updated. A full example of a buffer-
overflow exploit is included, and coverage of threats, encryption, and
security tools has been expanded.

Chapters 16 through 18 are the old Chapters 15 through 17, updated with
coverage of new material.
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• Chapter 19, Real-Time Systems, is a new chapter focusing on realtime
and embedded computing systems, which have requirements different
from those of many traditional systems. The chapter provides an overview
of real-time computer systems and describes how operating systems must
be constructed to meet the stringent timing deadlines of these systems.

• Chapter 20, Multimedia Systems, is a new chapter detailing developments
in the relatively new area of multimedia systems. Multimedia data differ
from conventional data in that multimedia data—such as frames of video
—must be delivered (streamed) according to certain time restrictions. The
chapter explores how these requirements affect the design of operating
systems.

• Chapter 21, The Linux System, is the old Chapter 20, updated to reflect
changes in the 2.6 kernel—the most recent kernel at the time this text was
written.

• Chapter 22, XP, has been updated.

• Chapter 22, Influential Operating Systems, has been updated.

The old Chapter 21 (Windows 2000) has been turned into Appendix C. As in
the previous edition, the appendices are provided online.

Programming Exercises and Projects

To emphasize the concepts presented in the text, we have added several
programming exercises and projects that use the POS1X and Win32 APlsas well
as Java. We have added over 15 new programming exercises that emphasize
processes, threads, shared memory, process synchronization, and networking.
In addition, we have added several programming projects which are more
involved than standard programming exercises. These projects include adding
a system call to the Linux kernel, creating a UNIX shell using the fork () system
call, a multithreaded matrix application, and the producer-consumer problem
using shared memory.

Teaching Supplements and Web Page

The web page for the book contains such material as a set of slides to accompany
the book, model course syllabi, all C and Java source code, and up-to-date
errata. The web page also contains the book's three case-study appendices and
the Distributed Communication appendix. The URL is:

http://www.os-book.com

New to this edition is a print supplement called the Student Solutions
Manual. Included are problems and exercises with solutions not found in
the text that should help students master the concepts presented. You can
purchase a print copy of this supplement at Wiley's website by going to
http://www.wiley.com/college/silberschatz and choosing the Student Solu-
tions Manual link.
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To obtain restricted supplements, such as the solution guide to the exercises
in the text, contact your local John Wiley & Sons sales representative. Note that
these supplements are avaialble only to faculty who use this text. You can
find your representative at the "Find a Rep?" web page: http://www.jsw-
edcv.wiley.com/college/findarep.

Mailing List

We have switched to the mailman system for communication among the users
of Operating System Concepts. If you wish to use this facility, please visit the
following URL and follow the instructions there to subscribe:

http://mailman.cs.yale.edu/mailman/listinfo/os-book-list

The mailman mailing-list system provides many benefits, such as an archive
of postings, as well as several subscription options, including digest and Web
only. To send messages to the list, send e-mail to:

os-book-list@cs.yale.edu

Depending on the message, we will either reply to you personally or forward
the message to everyone on the mailing list. The list is moderated, so you will
receive no inappropriate mail.

Students who are using this book as a text for class should not use the list
to ask for answers to the exercises. They will not be provided.

Suggestions

We have attempted to clean up every error in this new edition, but—as
happens with operating systems—a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify.

If you would like to suggest improvements or to contribute exercises,
we would also be glad to hear from you. Please send correspondence to
os-book@cs.vale.edu.
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2PC protocol, see two-phase commit

protocol
lOBaseT Ethernet, 619
16-bit Windows environment, 812
32-bit Windows environment, 812-813
100BaseT Ethernet, 619

aborted transactions, 222
absolute code, 278
absolute path names, 390
abstract data type, 375
access:

anonymous, 398
controlled, 402-403
file, sec file access

access control, in Linux, 778-779
access-control list (ACL), 403
access latency, 484
access lists (NFS V4), 656
access matrix, 538-542

and access control, 545-546
defined, 538
implementation of, 542-545
and revocation of access rights,

546-547
access rights, 534, 546-547
accounting (operating system service),

41
accreditation, 602
ACL (access-control list), 403
active array (Linux), 752

Active Directory (Windows XP), 828
active list, 685
acyclic graph, 392
acyclic-graph directories, 391-394
adaptive mutex, 218-219
additional-reference-bits algorithm, 336
additional sense code, 515
additional sense-code qualifier, 515
address(es):

defined, 501
Internet, 623
linear, 306
logical, 279
physical, 279
virtual 279

address binding, 278-279
address resolution protocol (ARP), 636
address space:

logical vs. physical, 279-280
virtual, 317, 760-761

address-space identifiers (ASIDs),
293-294

administrative complexity, 645
admission control, 721, 729
admission-control algorithms, 704
advanced encryption standard (AES),

579
advanced technology attachment (ATA)

buses, 453
advisory file-locking mechanisms, 379
AES (advanced encryption standard),

579
affinity, processor, 170

887
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aging, 163-164, 636
allocation:

buddy-system, 354-355
of disk space, 421-429

contiguous allocation, 421-423
indexed allocation, 425^427
linked allocation, 423^125
and performance, 427-429

equal, 341
as problem, 384
proportional, 341
slab, 355-356

analytic evaluation, 181
Andrew file system (AFS), 653-659

file operations in, 657-658
implementation of, 658-659
shared name space in, 656-657

anomaly detection, 595
anonymous access, 398
anonymous memory, 467
APCs, see asynchronous procedure calls
API, see application program interface
Apple Computers, 42
AppleTalk protocol, 824
Application Domain, 69
application interface (I/O systems),

505-511
block and character devices, 507-508
blocking and nonblocking I/O,

510-511
clocks and timers, 509-510
network devices, 508-509

application layer, 629
application programs, 4

disinfection of, 596-597
multistep processing of, 278, 279
processes vs., 21
system utilities, 55-56

application program interface (API),
44-46

application proxy firewalls, 600
arbitrated loop (FC-AL), 455
architecture(s), 12-15

clustered systems, 14-15
multiprocessor systems, 12-13
single-processor systems, 12-14
of Windows XP, 787-788

architecture state, 171
archived to tape, 480

areal density, 492
argument vector, 749
armored viruses, 571
ARP (address resolution protocol), 636
arrays, 316
ASIDs, see address-space identifiers
assignment edge, 249
asymmetric clustering, 15
asymmetric encryption, 580
asymmetric multiprocessing, 13, 169
asynchronous devices, 506, 507
asynchronous (nonblocking) message

passing, 102
asynchronous procedure calls (APCs),

140-141, 790-791
asynchronous thread cancellation, 139
asynchronous writes, 434
ATA buses, 453
Atlas operating system, 845-846
atomicity, 669-672
atomic transactions, 198, 222-230

and checkpoints, 224-225
concurrent, 225-230

and locking protocols,
227-228

and serializability, 225-227
and timestamp-based

protocols, 228-230
system model for, 222-223
write-ahead logging of, 223-224

attacks, 560. See also denial-of-service
attacks
man-in-the-middle, 561
replay, 560
zero-day, 595

attributes, 815
authentication:

breaching of, 560
and encryption, 580-583
in Linux, 777
two-factor, 591
in Windows, 814

automatic job sequencing, 841
automatic variables, 566
automatic work-set trimming (Windows

XP), 363
automount feature, 645
autoprobes, 747
auxiliary rights (Hydra), 548
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back door, 50/
background processes, 166
backing store, 282
backups, 436
bad blocks, 464-465
bandwidth:

disk, 457
effective, 484
sustained, 484

banker's algorithm, 259-262
base file record, 815
base register, 276, 277
basic file systems, 412
batch files, 379
batch interface, 41
Bayes' theorem, 596
Belady's anomaly, 332
best-fit strategy, 287
biased protocol, 674
binary semaphore, 201
binding, 278
biometrics, 591-592
bit(s):

mode, 18
modify (dirty), 329
reference, 336
valid-invalid, 295-296

bit-interleaved parity organization,
472

bit-level striping, 470
bit vector (bit map), 429
black-box transformations, 579
blade servers, 14
block(s), 47, 286, 382

bad, 464-465
boot, 71, 463-464
boot control, 414
defined, 772
direct, 427
file-control, 413
index, 426
index to, 384
indirect, 427
logical, 454
volume control, 414

block ciphers, 579
block devices, 506-508, 771-772

block groups, 767
blocking, indefinite, 163
blocking I/O, 510-511
blocking (synchronous) message

passing, 102
block-interleaved distributed parity,

473
block-interleaved parity organization,

472-473
block-level striping, 470
block number, relative, 383-384
boot block, 71, 414, 463^64
boot control block, 414
boot disk (system disk), 72, 464
booting, 71-72, 810-811
boot partition, 464
boot sector, 464
bootstrap programs, 463-464, 573
bootstrap programs (bootstrap loaders),

6, 7, 71
boot viruses, 569
bottom half interrupt service routines,

755
bounded-buffer problem, 205
bounded capacity (of queue), 102
breach of availability, 560
breach of confidentiality, 560
breach of integrity, 560
broadcasting, 636, 725
B+ tree (NTFS), 816
buddy heap (Linux), 757
buddy system (Linux), 757
buddy-system allocation, 354-355
buffer, 772

circular, 438
defined, 512

buffer cache, 433
buffering, 102, 512-514, 729
buffer-overflow attacks, 565-568
bully algorithm, 684-685
bus, 453

defined, 496
expansion, 496
PCI, 496

bus architecture, 11
bus-mastering I/O boards, 503
busy waiting, 202, 499
bytecode, 68
Byzantine generals problem, 686
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C

cache:
buffer, 433
defined, 514
in Linux, 758
as memory buffer, 277
nonvolatile RAM, 470
page, 433
and performance improvement, 433
and remote file access:

and consistency, 649-650
location of cache, 647-648
update policy, 648, 649

slabs in, 355
unified buffer, 433, 434
in Windows XP, 806-808

cache coherency, 26
cache-consistency problem, 647
cachefs file system, 648
cache management, 24
caching, 24-26, 514

client-side, 827
double, 433
remote service vs., 650-651
write-back, 648

callbacks, 657
Cambridge CAP system, 549-550
cancellation, thread, 139
cancellation points, 139
capability(-ies), 543, 549
capability-based protection systems,

547-550
Cambridge CAP system, 549-550
Hydra, 547-549

capability lists, 543
carrier sense with multiple access

(CSMA), 627-628
cascading termination, 95
CAV (constant angular velocity), 454
CD, see collision detection
central processing unit, see under CPU
certificate authorities, 584
certification, 602
challenging (passwords), 590
change journal (Windows XP), 821
character devices (Linux), 771-773
character-stream devices, 506-508
checkpoints, 225
checksum, 637

child processes, 796 ?

children, 90
CIFS (common internet file system), 399
CineBlitz, 728-730
cipher-block chaining, 579
circuit switching, 626-627
circular buffer, 438
circular SCAN (C-SCAN) scheduling

algorithm, 460
circular-wait condition (deadlocks),

254-256
claim edge, 258
classes (Java), 553
class loader, 68
CLI (command-line interface), 41
C library, 49
client(s):

defined, 642
diskless, 644
in SSL, 586

client interface, 642
client-server model, 398-399
client-side caching (CSC), 827
client systems, 31
clock, logical, 665
clock algorithm, see second-chance page-

replacement algorithm
clocks, 509-510
C-LOOK scheduling algorithm, 461
closeO operation, 376
clusters, 463, 634, 815
clustered page tables, 300
clustered systems, 14-15
clustering, 634

asymmetric, 15
in Windows XP, 363

cluster remapping, 820
cluster server, 655
CLV (constant linear velocity), 454
code:

absolute, 278
reentrant, 296

code books, 591
collisions (of file names), 420
collision detection (CD), 627-628
COM, see component object model
combined scheme index block, 427
command interpreter, 41-42
command-line interface (CLI), 41
commit protocol, 669
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committed transactions, 222
common internet file system (CIFS), 399
communication(s):

direct, 100
in distributed operating systems,

613
indirect, 100
interprocess, see interprocess

communication
systems programs for, 55
unreliable, 686-687

communications (operating system
service), 40

communication links, 99
communication processors, 619
communications sessions, 626
communication system calls, 54-55
compaction, 288, 422
compiler-based enforcement, 550-553
compile time, 278
complexity, administrative, 645
component object model (COM),

825-826
component units, 642
compression:

in multimedia systems, 718-720
in Windows XP, 821

compression ratio, 718
compression units, 821
computation migration, 616
computation speedup, 612
computer environments, 31-34

client-server computing, 32-33
peer-to-peer computing, 33-34
traditional, 31-32
Web-based computing, 34

computer programs, see application
programs

computer system(s):
architecture of:

clustered systems, 14-15
multiprocessor systems, 12-13
single-processor systems,

12-14
distributed systems, 28-29
file-system management in, 22-23
I/O structure in, 10-11
memory management in, 21-22
operating system viewed by, 5
operation of, 6-8

process management in, 20-21
protection in, 26-27
secure, 560
security in, 27
special-purpose systems, 29-31

handheld systems, 30-31
multimedia systems, 30
real-time embedded systems,

29-30
storage in, 8-10
storage management in, 22-26

caching, 24-26
I/O systems, 26
mass-storage management,

23-24
threats to, 571-572

computing, safe, 598
concurrency control, 672-676

with locking protocols, 672-675
with timestamping, 675-676

concurrency-control algorithms, 226
conditional-wait construct, 215
confidentiality, breach of, 560
confinement problem, 541
conflicting operations, 226
conflict phase (of dispatch latency), 703
conflict resolution module (Linux),

747-748
connectionless messages, 626
connectionless (UDP) sockets, 109
connection-oriented (TCP) sockets, 109
conservative timestamp-ordering

scheme, 676
consistency, 649-650
consistency checking, 435^36
consistency semantics, 401
constant angular velocity (CAV), 454
constant linear velocity (CLV), 454
container objects (Windows XP), 603
contention, 627-628
contention scope, 172
context (of process), 89
context switches, 90, 522-523
contiguous disk space allocation,

421-423
contiguous memory allocation, 285
continuous-media data, 716
control cards, 49, 842, 843
control-card interpreter, 842
controlled access, 402-403
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controller(s), 453, 496-^97
defined, 496
direct-memory-access, 503
disk, 453
host, 453

control programs, 5
control register, 498
convenience, 3
convoy effect, 159
cooperating processes, 96
cooperative scheduling, 156
copy-on-write technique, 325-327
copy semantics, 513
core memory, 846
counting, 431
counting-based page replacement

algorithm, 338
counting semaphore, 201
covert channels, 564
CPU (central processing unit), 4, 275-277
CPU-bound processes, 88-89
CPU burst, 154
CPU clock, 276
CPU-I/O burst cycle, 154-155
CPU scheduler, sec short-term scheduler
CPU scheduling, 17

about, 153-154
algorithms for, 157-169

criteria, 157-158
evaluation of, 181-185
first-come, first-served

scheduling of, 158-159
implementation of, 184-185
multilevel feedback-queue

scheduling of, 168-169
multilevel queue scheduling

of, 166-167
priority scheduling of, 162-164
round-robin scheduling of,

164-166
shortest-job-first scheduling

of, 159-162
dispatcher, role of, 157
and I/O-CPU burst cycle, 154-155
models for, 181-185

deterministic modeling,
181-182

and implementation, 184-185
queueing-netrwork analysis, 183

simulations, 183-184
in multimedia systems, 722-723
multiprocessor scheduling, 169-172

approaches to, 169-170
and load balancing, 170-171
and processor affinity, 170
symmetric multithreading,

171-172
preemptive scheduling, 155-156
in real-time systems, 704-710

earliest-deadline-first
scheduling, 707

proportional share
scheduling, 708

Pthread scheduling, 708-710
rate-monotonic scheduling,

705-707
short-term scheduler, role of, 155

crackers, 560
creation:

of files, 375
process, 90-95

critical sections, 193
critical-section problem, 193-195

Peterson's solution to, 195-197
and semaphores, 200-204

deadlocks, 204
implementation, 202-204
starvation, 204
usage, 201

and synchronization hardware,
197-200

cross-link trust, 828
cryptography, 576-587

and encryption, 577-584
implementation of, 584—585
SSL example of, 585-587

CSC (client-side caching), 827
C-SCAN scheduling algorithm, 460
CSMA, see carrier sense with multiple

access
CTSS operating system, 849
current directory, 390
current-file-position pointer, 375
cycles:

in CineBlitz, 728
CPU-I/O burst, 154-155

cycle stealing, 504
cylinder groups, 767
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d (page offset), 289
daemon process, 536
daisy chain, 496
data:

multimedia, 30
recovery of, 435-437
thread-specific, 142

database systems, 222
data capability, 549
data-encryption standard (DES), 579
data files, 374
data fork, 381
datagrams, 626
data-in register, 498
data-link layer, 629
data loss, mean time to, 469
data migration, 615-616
data-out register, 498
data section (of process), 82
data striping, 470
DCOM, 826
DDOS attacks, 560
deadline I/O scheduler, 772
deadlock(s), 204, 676-683

avoidance of, 252, 256-262
with banker's algorithm,

259-262
with resource-allocation-graph

algorithm, 258-259
with safe-state algorithm,

256-258
defined, 245
detection of, 262-265, 678-683

algorithm usage, 265
several instances of a

resource type, 263-265
single instance of each

resource type, 262-263
methods for handling, 252-253
with mutex locks, 247-248
necessary conditions for, 247-249
prevention/avoidance of, 676-678
prevention of, 252-256

and circular-wait condition,
254-256

and hold-and-wait condition,
253-254

and mutual-exclusion t

condition, 253
and no-preemption condition,

254
recovery from, 266-267

by process termination, 266
by resource preemption, 267

system model for, 245-247
system resource-allocation graphs

for describing, 249-251
deadlock-detection coordinator, 679
debuggers, 47, 48
dedicated devices, 506, 507
default signal handlers, 140
deferred procedure calls (DPCs), 791
deferred thread cancellation, 139
degree of multiprogramming, 88
delay, 721
delay-write policy, 648
delegation (NFS V4), 653
deletion, file, 375
demand paging, 319-325

basic mechanism, 320-322
defined, 319
with inverted page tables, 359-360
and I/O interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure, 360-361
pure, 322
and restarting instructions, 322-323
and TLB reach, 358-359

demand-zero memory, 760
demilitarized zone (DMZ), 599
denial-of-service (DOS) attacks, 560,

575-576
density, areal, 492
dentry objects, 419, 765
DES (data-encryption standard), 579
design of operating systems:

distributed operating systems,
633-636

goals, 56
Linux, 742-744
mechanisms and policies, 56-57
Windows XP, 785-787

desktop, 42
deterministic modeling, 181-182
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development kernels (Linux), 739
device controllers, 6, 518. See also I/O

systems
device directory, 386. See also directories
device drivers, 10, 11, 412, 496, 518, 842
device-management system calls, 53
device queues, 86-87
device reservation, 514-515
DFS, see distributed file system
digital certificates, 583-584
digital signatures, 582
digital-signature algorithm, 582
dining-philosophers problem, 207-209,

212-214
direct access (files), 383-384
direct blocks, 427
direct communication, 100
direct I/O, 508
direct memory access (DMA), 11, 503-504
direct-memory-access (DMA) controller,

503
directories, 385-387

acyclic-graph, 391-394
general graph, 394-395
implementation of, 419—420
recovery of, 435-437
single-level, 387
tree-structured, 389-391
two-level, 388-389

directory objects (Windows XP), 794
direct virtual memory access (DVMA),

504
dirty bits (modify bits), 329
disinfection, program, 596-597
disk(s), 451^153. See also mass-storage

structure
allocation of space on, 421-429

contiguous allocation, 421-423
indexed allocation, 425-427
linked allocation, 423-425
and performance, 427^29

bad blocks, 464-46
boot, 72, 464
boot block, 463-464
efficient use of, 431
electronic, 10
floppy, 452-453
formatting, 462-463
free-space management for, 429^31
host-attached, 455

low-level formatted, 454 »
magnetic, 9
magneto-optic, 479
network-attached, 455—456
performance improvement for,

432-435
phase-change, 479
raw, 339
read-only, 480
read-write, 479
removable, 478-480
scheduling algorithms, 456^62

C-SCAN, 460
FCFS, 457-458
LOOK, 460^61
SCAN, 459-460
selecting, 461-462
SSTF, 458-459

solid-state, 24
storage-area network, 456
structure of, 454
system, 464
WORM, 479

disk arm, 452
disk controller, 453
diskless clients, 644
disk mirroring, 820
disk scheduling:

CineBlitz, 728
in multimedia systems, 723-724

disk striping, 818
dispatched process, 87
dispatcher, 157
dispatcher objects, 220

Windows XP, 790
in Windows XP, 793

dispatch latency, 157, 703
distributed coordination:

and atomicity, 669-672
and concurrency control, 672-676
and deadlocks, 676-683

detection, 678-683
prevention/avoidance,

676-678
election algorithms for, 683-686
and event ordering, 663-666
and mutual exclusion, 666-668
reaching algorithms for, 686-688

distributed denial-of-service (DDOS)
attacks, 560
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distributed file system (DFS), 398
stateless, 401
Windows XP, 827

distributed file systems (DFSs), 641-642
AFS example of, 653-659

file operations, 657-658
implementation, 658-659
shared name space, 656—657

defined, 641
naming in, 643-646
remote file access in, 646-651

basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648,

649
and caching vs. remote

service, 650-651
and consistency, 649-650

replication of files in, 652-653
stateful vs. stateless service in,

651-652
distributed information systems

(distributed naming services),
399

distributed lock manager (DLM), 15
distributed naming services, see

distributed information systems
distributed operating systems, 615-617
distributed-processing mechanisms,

824-826
distributed systems, 28-29

benefits of, 611-613
defined, 611
distributed operating systems as,

615-617
network operating systems as,

613-615
DLLs, see dynamic link libraries
DLM (distributed lock manager), 15
DMA, see direct memory access
DMA controller, see direct-memory-

access controller
DMZ (demilitarized zone), 599
domains, 400, 827-828
domain-name system (DNS), 399, 623
domain switching, 535
domain trees, 827
DOS attacks, see denial-of-service attacks
double buffering, 513, 729
double caching, 433

double indirect blocks, 427 f

downsizing, 613
down time, 422
DPCs (deferred procedure calls), 791
DRAM, see dynamic random-access

memory
driver end (STREAM), 520
driver registration module (Linux),

746-747
dual-booted systems, 417
dumpster diving, 562
duplex set, 820
DVMA (direct virtual memory access),

504
dynamic linking, 764
dynamic link libraries (DLLs), 281-282,

787
dynamic loading, 280-281
dynamic priority, 722
dynamic protection, 534
dynamic random-access memory

(DRAM), 8
dynamic routing, 625
dynamic storage-allocation problem,

286, 422

earliest-deadline-first (EDF) scheduling,
707, 723

ease of use, 4, 784
ECC, see error-correcting code
EDF scheduling, see earliest-deadline-

first scheduling
effective access time, 323
effective bandwidth, 484
effective memory-access time, 294
effective UID, 27
efficiency, 3, 431-432
EIDE buses, 453
election, 628
election algorithms, 683-686
electronic disk, 10
elevator algorithm, see SCAN scheduling

algorithm
embedded systems, 696
encapsulation (Java), 555
encoded files, 718
encrypted passwords, 589-590
encrypted viruses, 570
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encryption, 577-584
asymmetric, 580
authentication, 580-583
key distribution, 583-584
symmetric, 579-580
Windows XP, 821

enhanced integrated drive electronics
(EIDE) buses, 453

entry section, 193
entry set, 218
environmental subsystems, 786-787
environment vector, 749
EPROM (erasable programmable read-

only memory), 71
equal allocation, 341
erasable programmable read-only

memory (EPROM), 71
error(s), 515

hard, 465
soft, 463

error conditions, 316
error-correcting code (ECC), 462, 471
error detection, 40
escalate privileges, 27
escape (operating systems), 507
events, 220
event latency, 702
event objects (Windows XP), 790
event ordering, 663-666
exceptions (with interrupts), 501
exclusive lock mode, 672
exclusive locks, 378
execO system call, 138
executable files, 82, 374
execution of user programs, 762-764
execution time, 278
exit section, 193
expansion bus, 496
expired array (Linux), 752
expired tasks (Linux), 752
exponential average, 161
export list, 441-442
ext2fs, see second extended file system
extended file system, 413, 766
extent (contiguous space), 423
extents, 815
external data representation (XDR),

112
external fragmentation, 287-288, 422

failure:
detection of, 631-633
mean time to, 468
recovery from, 633
during writing of block, 477-478

failure handling (2PC protocol),
670-672

failure modes (directories), 400-401
fair share (Solaris), 176
false negatives, 595
false positives, 595
fast I/O mechanism, 807
FAT (file-allocation table), 425
fault tolerance, 13, 634, 818-821
fault-tolerant systems, 634
FC (fiber channel), 455
FC-AL (arbitrated loop), 455
FCB (file-control block), 413
FC buses, 453
FCFS scheduling algorithm, see first-

come, first-served scheduling
algorithm

fibers, 832
fiber channel (FC), 455
fiber channel (FC) buses, 453
fids (NFS V4), 656
FIFO page replacement algorithm,

331-333
50-percent rule, 287
file(s), 22, 373-374. See also directories

accessing information on, 382-384
direct access, 383-384
sequential access, 382-383

attributes of, 374-375
batch, 379
defined, 374
executable, 82
extensions of, 379-390
internal structure of, 381-382
locking open, 377-379
operations on, 375-377
protecting, 402-407

via file access, 402-406
via passwords/permissions,

406-407
recovery of, 435-437
storage structure for, 385-386
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file access, 377, 402-406
file-allocation table (FAT), 425
file-control block (FCB), 413
file descriptor, 415
file handle, 415
FileLock (Java), 377
file management, 55
file-management system calls, 53
file mapping, 350
file migration, 643
file modification, 55
file objects, 419, 765
file-organization module, 413
file pointers, 377
file reference, 815
file replication (distributed file systems),

652-654
file-server systems, 31
file session, 401
file sharing, 397-402

and consistency semantics,
401-402

with multiple users, 397-398
with networks, 398-401

and client-server model,
398-399

and distributed information
systems, 399-400

and failure modes, 400-401
file systems, 373, 411-413

basic, 412
creation of, 386
design problems with, 412
distributed, 398, see distributed file

systems
extended, 412
implementation of, 413-419

mounting, 417
partitions, 416-417
virtual systems, 417-419

levels of, 412
Linux, 764-770
log-based transaction-oriented,

437-438
logical, 412
mounting of, 395-397
network, 438-444
remote, 398
WAFL, 444-446

File System Hierarchy Standard f,
document, 740

file-system management, 22-23
file-system manipulation (operating

system service), 40
file transfer, 614-615
file transfer protocol (FTP), 614-615
file viruses, 569
filter drivers, 806
firewalls, 31, 599-600
firewall chains, 776
firewall management, 776
FireWire, 454
firmware, 6, 71
first-come, first-served (FCFS)

scheduling algorithm, 158-159,
457-458

first-fit strategy, 287
fixed-partition scheme, 286
fixed priority (Solaris), 176
fixed routing, 625
floppy disks, 452^153
flow control, 521
flushing, 294
folders, 42
footprint, 697
foreground processes, 166
forests, 827-828
forkO and exec() process model (Linux),

748-750
fork() system call, 138
formatting, 462^163
forwarding, 465
forward-mapped page tables, 298
fragments, packet, 776
fragmentation, 287-288

external, 287-288, 422
internal 287, 382

frame(s), 289, 626, 716
stack, 566-567
victim, 329

frame allocation, 340-343
equal allocation, 341
global vs. local, 342-343
proportional allocation, 341-342

frame-allocation algorithm, 330
frame pointers, 567
free-behind technique, 435
free objects, 356, 758
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free-space list, 429
free-space management (disks), 429-431

bit vector, 429-430
counting, 431
grouping, 431
linked list, 430^31

front-end processors, 523
FTP, see file transfer protocol
ftp, 398
full backup, 436
fully distributed deadlock-detection

algorithm, 681-683

Gantt chart, 159
garbage collection, 68, 395
gateways, 626
GB (gigabyte), 6
gcc (GNU C compiler), 740
GDT (global descriptor table), 306
general graph directories, 394-395
gigabyte (GB), 6
global descriptor table (GDT), 306
global ordering, 665
global replacement, 342
GNU C compiler (gcc), 740
GNU Portable Threads, 130
graceful degradation, 13
graphs, acyclic, 392
graphical user interfaces (GUIs),

41-43
grappling hook, 573
Green threads, 130
group identifiers, 27
grouping, 431
group policies, 828
group rights (Linux), 778
guest operating systems, 67
GUIs, see graphical user interfaces

H

HAL, see hardware-abstraction layer
handheld computers, 5
handheld systems, 30-31
handles, 793, 796
handling (of signals), 123
handshaking, 498-499, 518

hands-on computer systems, set' ?

interactive computer systems
happened-before relation, 664-666
hard affinity, 170
hard-coding techniques, 100
hard errors, 465
hard links, 394
hard real-time systems, 696, 722
hardware, 4

I/O systems, 496-505
direct memory access,

503-504
interrupts, 499-503
polling, 498-499

for storing page tables, 292-294
synchronization, 197-200

hardware-abstraction layer (HAL), 787,
788

hardware objects, 533
hashed page tables, 300
hash functions, 582
hash tables, 420
hash value (message digest), 582
heaps, 82, 835-836
heavyweight processes, 127
hierarchical paging, 297-300
hierarchical storage management

(HSM), 483
high availability, 14
high performance, 786
hijacking, session, 561
hit ratio, 294, 358
hive, 810
hold-and-wait condition (deadlocks),

253-254
holes, 286
holographic storage, 480
homogeneity, 169
host adapter, 496
host-attached storage, 455
host controller, 453
hot spare disks, 475
hot-standby mode, 15
HSM (hierarchical storage

management), 483
human security, 562
Hydra, 547-549
hyperspace, 797
hyperthreading technology, 171
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I

IBM OS/360, 850-851
identifiers:

file, 374
group, 27
user, 27

idle threads, 177
IDSs, see intrusion-detection systems
IKE protocol, 585
ILM (information life-cycle

management), 483
immutable shared files, 402
implementation:

of CPU scheduling algorithms,
184-185

of operating systems, 57-58
of real-time operating systems,

700-704
and minimizing latency,

702-704
and preemptive kernels, 701
and priority-based

scheduling, 700-701
of transparent naming techniques,

645-646
of virtual machines, 65-66

incremental backup, 436
indefinite blocking (starvation), 163, 204
independence, location, 643
independent disks, 469
independent processes, 96
index, 384
index block, 426
indexed disk space allocation, 425-427
index root, 816
indirect blocks, 427
indirect communication, 100
information life-cycle management

(ILM), 483
information-maintenance system calls,

53-54
inode objects, 419, 765
input/output, see under I/O
input queue, 278
InServ storage array, 476
instance handles, 831
instruction-execution cycle, 275-276
instruction-execution unit, 811

instruction register, 8 »
integrity, breach of, 560
intellimirror, 828
Intel Pentium processor, 305-308
interactive (hands-on) computer

systems, 16
interface(s):

batch, 41
client, 642
defined, 505
intermachine, 642
Windows XP networking, 822

interlock, I/O, 361-362
intermachine interface, 642
internal fragmentation, 287, 382
international use, 787
Internet address, 623
Internet Protocol (IP), 584-585
interprocess communication (IPC), 96-102

in client-server systems, 108-115
remote method invocation,

114-115
remote procedure calls, 111-113
sockets, 108-111

in Linux, 739, 773-774
Mach example of, 105-106
in message-passing systems, 99-102
POSIX shared-memory example of,

103-104
in shared-memory systems, 97-99
Windows XP example of, 106-108

interrupt(s), 7, 499-503
defined, 499
in Linux, 754-755

interrupt chaining, 501
interrupt-controller hardware, 501
interrupt-dispatch table (Windows XP),

792
interrupt-driven data transfer, 353
interrupt-driven operating systems, 17-18
interrupt latency, 702-703
interrupt priority levels, 501
interrupt-request line, 499
interrupt vector, 8, 284, 501
intruders, 560
intrusion detection, 594-596
intrusion-detection systems (IDSs),

594-595
intrusion-prevention systems (IPSs), 595
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inverted page tables, 301-302, 359-360
I/O (input/output), 4, 10-11

memory-mapped, 353
overlapped, 843-845
programmed, 353

I/O-bound processes, 88-89
I/O burst, 154
I/O channel, 523, 524
I/O interlock, 361-362
I/O manager, 805-806
I/O operations (operating system

service), 40
I/O ports, 353
I/O request packet (IRP), 805
I/O subsystem(s), 26

kernels in, 6, 511-518
procedures supervised by, 517-518

I/O system(s), 495^96
application interface, 505-511

block and character devices,
507-508

blocking and nonblocking
I/O, 510-511

clocks and timers, 509-510
network devices, 508-509

hardware, 496-505
direct memory access, 503-504
interrupts, 499-503
polling, 498-499

kernels, 511-518
buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
I/O scheduling, 511-512
and I/O subsystems, 517-518
protection, 515-516
spooling and device

reservation, 514-515
Linux, 770-773

block devices, 771-772
character devices, 772-773

STREAMS mechanism, 520-522
and system performance, 522-525
transformation of requests to

hardware operations, 518-520
IP, see Internet Protocol
IPC, see interprocess communication
IPSec, 585
IPSs (intrusion-prevention systems), 595

IRP (I/O request packet), 80c
ISCSI, 456
ISO protocol stack, 630
ISO Reference Model, 585

Java:
file locking in, 377-378
language-based protection in,

553-555
monitors in, 218

Java threads, 134-138
Java Virtual Machine (JVM), 68
JIT compiler, 68
jitter, 721
jobs, processes vs., 82
job objects, 803
job pool, 17
job queues, 85
job scheduler, 88
job scheduling, 17
journaling, 768-769
journaling file systems, see log-based

transaction-oriented file systems
just-in-time (JIT) compiler, 68
JVM (Java Virtual Machine), 68

K

KB (kilobyte), 6
Kerberos, 814
kernel(s), 6, 511-518

buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
I/O scheduling, 511-512
and I/O subsystems, 517-518
Linux, 743, 744
multimedia systems, 720-722
nonpreemptive, 194-195
preemptive, 194-195, 701
protection, 515-516
real-time, 698-700
spooling and device reservation,

514-515
task synchronization (in Linux),

753-755
Windows XP, 788-793, 829
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kernel extensions, 63
kernel memory allocation, 353-356
kernel mode, 18, 743
kernel modules, 745-748

conflict resolution, 747-748
driver registration, 746-747
management of, 745-746

kernel threads, 129
Kerr effect, 479
keys, 544, 547, 577

private, 580
public, 580

key distribution, 583-584
key ring, 583
keystreams, 580
keystroke logger, 571
kilobyte (KB), 6

language-based protection systems,
550-555
compiler-based enforcement,

550-553
Java, 553-555

LANs, see local-area networks
latency, in real-time systems, 702-704
layers (of network protocols), 584
layered approach (operating system

structure), 59-61
lazy swapper, 319
LCNs (logical cluster numbers), 815
LDAP, see lightweight directory-access

protocol
LDT (local descriptor table), 306
least-frequently used (LFU) page-

replacement algorithm, 338
least privilege, principle of, 532-533
least-recently-used (LRU) page-

replacement algorithm, 334-336
levels, 719
LFU page-replacement algorithm, 338
libraries:

Linux system, 743, 744
shared, 281-282, 318

licenses, software, 235
lightweight directory-access protocol

(LDAP), 400, 828
limit register, 276, 277
linear addresses, 306

linear lists (files), 420
line discipline, 772
link(s):

communication, 99
defined, 392
hard, 394
resolving, 392
symbolic, 794

linked disk space allocation, 423-425
linked lists, 430^131
linked scheme index block, 426^127
linking, dynamic vs. static, 281-282, 764
Linux, 737-780

adding system call to Linux kernel
(project), 74-78

design principles for, 742-744
file systems, 764-770

ext2fs, 766-768
journaling, 768-769
process, 769-770
virtual, 765-766

history of, 737-742
distributions, 740-741
first kernel, 738-740
licensing, 741-742
system description, 740

interprocess communication,
773-774

I/O system, 770-773
block devices, 771-772
character devices, 772-773

kernel modules, 745-748
memory management, 756-764

execution and loading of
user programs,
762-764

physical memory, 756-759
virtual memory, 759-762

network structure, 774-777
on Pentium systems, 307-309
process management, 748-757

fork() and execO process
model, 748-750

processes and threads,
750-751

process representation in, 86
real-time, 711
scheduling, 751-756

kernel synchronization,
753-755
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Linux {continued)
process, 751-753
symmetric multiprocessing,

755-756
scheduling example, 179-181
security model, 777-779

access control, 778-779
authentication, 777

swap-space management in, 468
synchronization in, 221
threads example, 144-146

Linux distributions, 738, 740-741
Linux kernel, 738-740
Linux system, components of, 738, 743-744
lists, 316
Little's formula, 183
live streaming, 717
load balancers, 34
load balancing, 170-171
loader, 842
loading:

dynamic, 280-281
in Linux, 762-764

load sharing, 169, 612
load time, 278
local-area networks (LANs), 14, 28,

618-619
local descriptor table (LDT), 306
locality model, 344
locality of reference, 322
local name space, 655
local (nonremote) objects, 115
local playback, 716
local procedure calls (LPCs), 786,

804-805
local replacement, 342
local replacement algorithm (priority

replacement algorithm), 344
location, file, 374
location independence, 643
location-independent file identifiers, 646
location transparency, 643
lock(s), 197, 544

advisory, 379
exclusive, 378
in Java API, 377-378
mandatory, 379
mutex, 201, 251-252
reader-writer, 207
shared, 378

locking protocols, 227-228, 672-675 '>
lock-key scheme, 544
lockO operation, 377
log-based transaction-oriented file

systems, 437-438
log-file service, 817
logging, write-ahead, 223-224
logging area, 817
logical address, 279
logical address space, 279-280
logical blocks, 454
logical clock, 665
logical cluster numbers (LCNs), 815
logical file system, 413
logical formatting, 463
logical memory, 17, 317. See also virtual

memory
logical records, 383
logical units, 455
login, network, 399
long-term scheduler (job scheduler), 88
LOOK scheduling algorithm, 460-461
loopback, 111
lossless compression, 718
lossy compression, 718-719
low-level formatted disks, 454
low-level formatting (disks), 462-463
LPCs, see local procedure calls
LRU-approximation page replacement

algorithm, 336-338

M

MAC (message-authentication code), 582
MAC (medium access control) address,

636
Mach operating system, 61, 105-106,

851-853
Macintosh operating system, 381-382
macro viruses, 569
magic number (files), 381
magnetic disk(s), 9, 451-453. See also

disk(s)
magnetic tapes, 453-454, 480
magneto-optic disks, 479
mailboxes, 100
mailbox sets, 106
mailslots, 824
mainframes, 5
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main memory, 8-9
and address binding, 278-279
contiguous allocation of, 284-285

and fragmentation, 287-288
mapping, 285
methods, 286-287
protection, 285

and dynamic linking, 281-282
and dynamic loading, 280-281
and hardware, 276-278
Intel Pentium example:

with Linux, 307-309
paging, 306-308
segmentation, 305-307

and logical vs. physical address
space, 279-280

paging for management of, 288-302
basic method, 289-292
hardware, 292-295
hashed page tables, 300
hierarchical paging, 297-300
Intel Pentium example,

306-308
inverted page tables, 301-302
protection, 295-296
and shared pages, 296-297

segmentation for management of,
302-305
basic method, 302-304
hardware, 304-305
Intel Pentium example,

305-307
and swapping, 282-284

majority protocol, 673-674
MANs (metropolitan-area networks), 28
mandatory file-locking mechanisms, 379
man-in-the-middle attack, 561
many-to-many multithreading model,

130-131
many-to-one multithreading model,

129-130
marshalling, 825
maskable interrupts, 501
masquerading, 560
mass-storage management, 23-24
mass-storage structure, 451-454

disk attachment:
host-attached, 455
network-attached, 455^456
storage-area network, 456

disk management: ?
bad blocks, 464-46
boot block, 463-464
formatting of disks, 462^163

disk scheduling algorithms,
456-462
C-SCAN, 460
FCFS, 457^158
LOOK, 460^161
SCAN, 459-460
selecting, 461-462
SSTF, 458^59

disk structure, 454
extensions, 476
magnetic disks, 451^453
magnetic tapes, 453-454
RAID structure, 468^77

performance improvement, 470
problems with, 477
RAID levels, 470-476
reliability improvement,

468-470
stable-storage implementation,

477-478
swap-space management, 466-468
tertiary-storage, 478-488

future technology for, 480
magnetic tapes, 480
and operating system

support, 480-483
performance issues with,

484-488
removable disks, 478-480

master book record (MBR), 464
master file directory (MFD), 388
master file table, 414
master key, 547
master secret (SSL), 586
matchmakers, 112
matrix product, 149
MB (megabyte), 6
MBR (master book record), 464
MCP operating system, 853
mean time to data loss, 469
mean time to failure, 468
mean time to repair, 469
mechanisms, 56-57
media players, 727
medium access control (MAC) address,

636
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medium-term scheduler, 89
megabyte (MB), 6
memory:

anonymous, 467
core, 846
direct memory access, 11
direct virtual memory access, 504
logical, 17, 317
main, see main memory
over-allocation of, 327
physical, 17
secondary, 322
semiconductor, 10
shared, 96, 318
unified virtual memory, 433
virtual, see virtual memory

memory-address register, 279
memory allocation, 286-287
memory management, 21-22

in Linux, 756-764
execution and loading of

user programs, 762-764
physical memory, 756-759
virtual memory, 759-762

in Windows XP, 834-836
heaps, 835-836
memory-mapping files, 835
thread-local storage, 836
virtual memory, 834-835

memory-management unit (MMU),
279-280, 799

memory-mapped files, 798
memory-mapped I/O, 353, 497
memory mapping, 285, 348-353

basic mechanism, 348-350
defined, 348
I/O, memory-mapped, 353
in Linux, 763-764
in Win32 API, 350-353

memory-mapping files, 835
memory protection, 285
memory-resident pages, 320
memory-style error-correcting

organization, 471
MEMS (micro-electronic mechanical

systems), 480
messages:

connectionless, 626
in distributed operating systems, 613

message-authentication code (MAC), 582

message digest (hash value), 582 "
message modification, 560
message passing, 96
message-passing model, 54, 99-102
message queue, 848
message switching, 627
metadata, 400, 816
metafiles, 727
methods (Java), 553
metropolitan-area networks (MANs), 28
MFD (master file directory), 388
MFU page-replacement algorithm, 338
micro-electronic mechanical systems

(MEMS), 480
microkernels, 61-64
Microsoft Interface Definition

Language, 825
Microsoft Windows, see under Windows
migration:

computation, 616
data, 615-616
file, 643
process, 617

minicomputers, 5
minidisks, 386
miniport driver, 806
mirroring, 469
mirror set, 820
MMU, see memory-management unit
mobility, user, 440
mode bit, 18
modify bits (dirty bits), 329
modules, 62-63, 520
monitors, 209-217

dining-philosophers solution using,
212-214

implementation of, using
semaphores, 214-215

resumption of processes within,
215-217

usage of, 210-212
monitor calls, see system calls
monoculture, 571
monotonic, 665
Morris, Robert, 572-574
most-frequently used (MFU) page-

replacement algorithm, 338
mounting, 417
mount points, 395, 821
mount protocol, 440-441



Index 90S

mount table, 417, 518
MPEG files, 719
MS-DOS, 811-812
multicasting, 725
MULTICS operating system, 536-538,

849-850
multilevel feedback-queue scheduling

algorithm, 168-169
multilevel index, 427
multilevel queue scheduling algorithm,

166-167
multimedia, 715-716

operating system issues with, 718
as term, 715-716

multimedia data, 30, 716-717
multimedia systems, 30, 715

characteristics of, 717-718
CineBlitz example, 728-730
compression in, 718-720
CPU scheduling in, 722-723
disk scheduling in, 723-724
kernels in, 720-722
network management in, 725-728

multinational use, 787
multipartite viruses, 571
multiple-coordinator approach

(concurrency control), 673
multiple-partition method, 286
multiple universal-naming-convention

provider (MUP), 826
multiprocessing:

asymmetric, 169
symmetric, 169, 171-172

multiprocessor scheduling, 169-172
approaches to, 169-170
examples of:

Linux, 179-181
Solaris, 173, 175-177
Windows XP, 178-179

and load balancing, 170-171
and processor affinity, 170
symmetric multithreading, 171-172

multiprocessor systems (parallel
systems, tightly coupled systems),
12-13

multiprogramming, 15-17, 88
multitasking, see time sharing
multithreading:

benefits of, 127-129
cancellation, thread, 139

and exed) system call, 138 »•
and forkO system call, 138
models of, 129-131
pools, thread, 141-142
and scheduler activations, 142-143
and signal handling, 139-141
symmetric, 171-172
and thread-specific data, 142

MUP (multiple universal-naming-
convention provider), 826

mutex:
adaptive, 218-219
in Windows XP, 790

mutex locks, 201, 247-248
mutual exclusion, 247, 666-668

centralized approach to, 666
fully-distributed approach to,

666-668
token-passing approach to, 668

mutual-exclusion condition (deadlocks),
253

N

names:
resolution of, 623, 828-829
in Windows XP, 793-794

named pipes, 824
naming, 100-101, 399^100

defined, 643
domain name system, 399
of files, 374
lightweight diretory-access

protocol, 400
and network communication,

622-625
national-language-support (NLS) API,

787
NDIS (network device interface

specification), 822
near-line storage, 480
negotiation, 721
NetBEUI (NetBIOSextended user

interface), 823
NetBIOS (network basic input/output

system), 823, 824
NetBIOSextended user interface

(NetBEUI), 823
.NET Framework, 69
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network(s). See also local-area networks
(LANs); wide-area networks
(WANs)
communication protocols in,

628-631
communication structure of,

622-628
and connection strategies,

626-627
and contention, 627-628
and naming/name

resolution, 622-625
and packet strategies, 626
and routing strategies,

625-626
defined, 28
design issues with, 633-636
example, 636-637
in Linux, 774r-777
metropolitan-area (MANs), 28
robustness of, 631-633
security in, 562
small-area, 28
threats to, 571-572
topology of, 620-622
types of, 617-618
in Windows XP, 822-829

Active Directory, 828
distributed-processing

mechanisms, 824-826
domains, 827-828
interfaces, 822
name resolution, 828-829
protocols, 822-824
redirectors and servers,

826-827
wireless, 31

network-attached storage, 455-456
network basic input/output system, see

NetBIOS
network computers, 32
network devices, 508-509, 771
network device interface specification

(NDIS), 822
network file systems (NFS), 438-444

mount protocol, 440-441
NFS protocol, 441-442
path-name translation, 442-443
remote operations, 443^44

network information service (NIS), 399

network layer, 629 *
network-layer protocol, 584
network login, 399
network management, in multimedia

systems, 725-728
network operating systems, 28, 613-615
network virtual memory, 647
new state, 83
NFS, see network file systems
NFS protocol, 440-442"
NFS V4, 653
nice value (Linux), 179, 752
NIS (network information service), 399
NLS (national-language-support) API,

787
nonblocking I/O, 510-511
nonblocking (asynchronous) message

passing, 102
noncontainer objects (Windows XP), 603
nonmaskable interrupt, 501
nonpreemptive kernels, 194-195
nonpreemptive scheduling, 156
non-real-time clients, 728
nonremote (local) objects, 115
nonrepudiation, 583
nonresident attributes, 815
nonserial schedule, 226
nonsignaled state, 220
nonvolatile RAM (NVRAM), 10
nonvolatile RAM (NVRAM) cache, 470
nonvolatile storage, 10, 223
no-preemption condition (deadlocks),

254
Novell NetWare protocols, 823
NTFS, 814-816
NVRAM (nonvolatile RAM), 10
NVRAM (nonvolatile RAM) cache, 470

objects:
access lists for, 542-543
in cache, 355
free, 356
hardware vs. software, 533
in Linux, 758
used, 356
in Windows XP, 793-796

object files, 374
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object linking and embedding (OLE),
825-826

object serialization, 115
object table, 796
object types, 419, 795
off-line compaction of space, 422
OLE, see object linking and embedding
on-demand streaming, 717
one-time pad, 591
one-time passwords, 590-591
one-to-one multithreading model, 130
one-way trust, 828
on-line compaction of space, 422
open-file table, 376
open() operation, 376
operating system(s), 1

defined, 3, 5-6
design goals for, 56
early, 839-845

dedicated computer systems,
839-840

overlapped I/O, 843-845
shared computer systems,

841-843
features of, 3
functioning of, 3-6
guest, 67
implementation of, 57-58
interrupt-driven, 17-18
mechanisms for, 56-57
network, 28
operations of:

modes, 18-20
and timer, 20

policies for, 56-57
real-time, 29-30
as resource allocator, 5
security in, 562
services provided by, 39-41
structure of, 15-17, 58-64

layered approach, 59-61
microkernels, 61-64
modules, 62-63
simple structure, 58-59

system's view of, 5
user interface with, 4-5, 41-43

optimal page replacement algorithm,
332-334

ordering, event, see event ordering
orphan detection and elimination, 652

OS/2 operating system, 783
out-of-band key delivery, 583
over allocation (of memory), 327
overlapped I/O, 843-845
overprovisioning, 720
owner rights (Linux), 778

p (page number), 289
packets, 626, 776
packet switching, 627
packing, 382
pages:

defined, 289
shared, 296-297

page allocator (Linux), 757
page-buffering algorithms, 338-339
page cache, 433, 759
page directory, 799
page-directory entries (PDEs), 799
page-fault-frequency (PFF), 347-348
page-fault rate, 325
page-fault traps, 321
page frames, 799
page-frame database, 801
page number (p), 289
page offset (d), 289
pageout (Solaris), 363-364
pageout policy (Linux), 761
pager (term), 319
page replacement, 327-339. Sec also

frame allocation
and application performance, 339
basic mechanism, 328-331
counting-based page replacement,

338
FIFO page replacement, 331-333
global vs. local, 342
LRU-approximation page

replacement, 336-338
LRU page replacement, 334-336
optimal page replacement,

332-334
and page-buffering algorithms,

338-339
page replacement algorithm, 330
page size, 357-358
page slots, 468
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page table(s), 289-292, 322, 799
clustered, 300
forward-mapped, 298
hardware for storing, 292-294
hashed, 300
inverted, 301-302, 359-360

page-table base register (PTBR), 293
page-table length register (PTLR), 296
page-table self-map, 797
paging, 288-302

basic method of, 289-292
hardware support for, 292-295
hashed page tables, 300
hierarchical, 297-300
Intel Pentium example, 306-308
inverted, 301-302
in Linux, 761-762
and memory protection, 295-296
priority, 365
and shared pages, 296-297
swapping vs., 466

paging files (Windows XP), 797
paging mechanism (Linux), 761
paired passwords, 590
PAM (pluggable authentication

modules), 777
parallel systems, set' multiprocessor

systems
parcels, 114
parent process, 90, 795-796
partially connected networks, 621-622
partition(s), 286, 386, 416-117

boot, 464
raw, 467
root, 417

partition boot sector, 414
partitioning, disk, 463
passwords, 588-591

encrypted, 589-590
one-time, 590-591
vulnerabilities of, 588-589

path name, 388-389
path names:

absolute, 390
relative, 390

path-name translation, 442-443
PCBs, sec process control blocks
PCI bus, 496
PCS (process-contention scope), 172

PC systems, 3 !

PDAs, see personal digital assistants
PDEs (page-directory entries), 799
peer-to-peer computing, 33-34
penetration test, 592-593
performance:

and allocation of disk space, 427-429
and I/O system, 522-525
with tertiary-storage, 484-488

cost, 485^88
reliability, 485
speed, 484-^85

of Windows XP, 786
performance improvement, 432-435, 470
periods, 720
periodic processes, 720
permissions, 406
per-process open-file table, 414
persistence of vision, 716
personal computer (PC) systems, 3
personal digital assistants (PDAs), 10,

30
personal firewalls, 600
personal identification number (PIN),

591
Peterson's solution, 195-197
PFF, see page-fault-frequency
phase-change disks, 479
phishing, 562
physical address, 279
physical address space, 279-280
physical formatting, 462
physical layer, 628, 629
physical memory, 17, 315-316, 756-759
physical security, 562
PIC (position-independent code), 764
pid (process identifier), 90
PIN (personal identification number),

591
pinning, 807-808
PIO, see programmed I/O
pipe mechanism, 774
platter (disks), 451
plug-and-play and (PnP) managers,

809-810
pluggable authentication modules

(PAM), 777
PnP managers, see plug-and-play and

managers
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point-to-point tunneling protocol
(PPTP), 823

policy(ies), 56-57
group, 828
security, 592

policy algorithm (Linux), 761
polling, 498^99
polymorphic viruses, 570
pools:

of free pages, 327
thread, 141-142

pop-up browser windows, 564
ports, 353, 496
portability, 787
portals, 32
port driver, 806
port scanning, 575
position-independent code (PIC), 764
positioning time (disks), 452
POSIX, 783, 786

interprocess communication
example, 103-104

in Windows XP, 813-814
possession (of capability), 543
power-of-2 allocator, 354
PPTP (point-to-point tunneling

protocol), 823
P + Q redundancy scheme, 473
preemption points, 701
preemptive kernels, 194-195, 701
preemptive scheduling, 155-156
premaster secret (SSL), 586
prepaging, 357
presentation layer, 629
primary thread, 830
principle of least privilege, 532-533
priority-based scheduling, 700-701
priority-inheritance protocol, 219, 704
priority inversion, 219, 704
priority number, 216
priority paging, 365
priority replacement algorithm, 344
priority scheduling algorithm, 162-164
private keys, 580
privileged instructions, 19
privileged mode, see kernel mode
process(es), 17

background, 166
communication between, see

interprocess communication
components of, 82
context of, 89, 749-750
and context switches, 89-90
cooperating, 96
defined, 81
environment of, 749
faulty, 687-688
foreground, 166
heavyweight, 127
independent, 96
I/O-bound vs. CPU-bound, 88-89
job vs., 82
in Linux, 750-751
multithreaded, see multithreading
operations on, 90-95

creation, 90-95
termination, 95

programs vs., 21, 82, 83
scheduling of, 85-90
single-threaded, 127
state of, 83
as term, 81-82
threads performed by, 84-85
in Windows XP, 830

process-contention scope (PCS), 172
process control blocks (PCBs, task

control blocks), 83-84
process-control system calls, 47-52
process file systems (Linux), 769-770
process identifier (pid), 90
process identity (Linux), 748-749
process management, 20-21

in Linux, 748-757
fork() and exec() process

model, 748-750
processes and threads,

750-751
process manager (Windows XP), 802-804
process migration, 617
process mix, 88-89
process objects (Windows XP), 790
processor affinity, 170
processor sharing, 165
process representation (Linux), 86
process scheduler, 85
process scheduling:

in Linux, 751-753
thread scheduling vs., 153
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process synchronization:
about, 191-193
and atomic transactions, 222-230

checkpoints, 224-225
concurrent transactions,

225-230
log-based recovery, 223-224
system model, 222-223

bounded-buffer problem, 205
critical-section problem, 193-195

hardware solution to, 197-200
Peterson's solution to,

195-197
dining-philosophers problem,

207-209, 212-214
examples of:

Java, 218
Linux, 221
Pthreads, 221-222
Solaris, 217-219
Windows XP, 220-221

monitors for, 209-217
dining-philosophers solution,

212-214
resumption of processes

within, 215-217
semaphores, implementation

using, 214-215
usage, 210-212

readers-writers problem, 206-207
semaphores for, 200-204

process termination, deadlock recovery
by, 266

production kernels (Linux), 739
profiles, 719
programs, processes vs., 82, 83. See also

application programs
program counters, 21, 82
program execution (operating system

service), 40
program files, 374
program loading and execution, 55
programmable interval timer, 509
programmed I/O (PIO), 353, 503
programming-language support, 55
program threats, 563-571

logic bombs, 565
stack- or buffer overflow attacks,

565-568
trap doors, 564-565

Trojan horses, 563-564 *
viruses, 568-571

progressive download, 716
projects, 176
proportional allocation, 341
proportional share scheduling, 708
protection, 531

access control for, 402-406
access matrix as model of, 538-542

control, access, 545-546
implementation, 542-545

capability-based systems, 547-550
Cambridge CAP system,

549-550
Hydra, 547-549

in computer systems, 26-27
domain of, 533-538

MULTICS example, 536-538
structure, 534-535
UNIX example, 535-536

error handling, 515
file, 374
of file systems, 402-407
goals of, 531-532
I/O, 515-516
language-based systems, 550-555

compiler-based enforcement,
550-553

Java, 553-555
as operating system service, 41
in paged environment, 295-296
permissions, 406
and principle of least privilege,

532-533
retrofitted, 407
and revocation of access rights,

546-547
security vs., 559
static vs. dynamic, 534
from viruses, 596-598

protection domain, 534
protection mask (Linux), 778
protection subsystems (Windows XP),

788
protocols, Windows XP networking,

822-824
PTBR (page-table base register), 293
Pthreads, 132-134

scheduling, 172-174
synchronization in, 221-222
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Pthread scheduling, 708-710
PTLR (page-table length register), 296
public domain, 741
public keys, 580
pull migration, 170
pure code, 296
pure demand paging, 322
push migration, 170, 644

quantum, 789
queue(s), 85-87

capacity of, 102
input, 278
message, 848
ready, 85, 87, 283

queueing diagram, 87
queueing-network analysis, 183

R

race condition, 193
RAID (redundant arrays of inexpensive

disks), 468-177
levels of, 470-476
performance improvement, 470
problems with, 477
reliability improvement, 468-470
structuring, 469

RAID array, 469
RAID levels, 470-474
RAM (random-access memory), 8
random access, 717
random-access devices, 506, 507, 844
random-access memory (RAM), 8
random-access time (disks), 452
rate-monotonic scheduling algorithm,

705-707
raw disk, 339, 416
raw disk space, 386
raw I/O, 508
raw partitions, 467
RBAC (role-based access control), 545
RC 4000 operating system, 848-849
reaching algorithms, 686-688
read-ahead technique, 435
readers, 206
readers-writers problem, 206-207
reader-writer locks, 207

reading files, 375
read-modify-write cycle, 473
read only devices, 506, 507
read-only disks, 480
read-only memory (ROM), 71, 463-464
read queue, 772
read-write devices, 506, 507
read-write disks, 479
ready queue, 85, 87, 283
ready state, 83
ready thread state (Windows XP), 789
real-addressing mode, 699
real-time class, 177
real-time clients, 728
real-time operating systems, 29-30
real-time range (Linux schedulers), 752
real-time streaming, 716, 726-728
real-time systems, 29-30, 695-696

address translation in, 699-700
characteristics of, 696-698
CPU scheduling in, 704-710
defined, 695
features not needed in, 698-699
footprint of, 697
hard, 696, 722
implementation of, 700-704

and minimizing latency,
702-704

and preemptive kernels, 701
and priority-based

scheduling, 700-701
soft, 696, 722
VxWorks example, 710-712

real-time transport protocol (RTP), 725
real-time value (Linux), 179
reconfiguration, 633
records:

logical, 383
master boot, 464

recovery:
backup and restore, 436^-37
consistency checking, 435—136
from deadlock, 266-267

by process termination, 266
by resource preemption, 267

from failure, 633
of files and directories, 435—137
Windows XP, 816-817

redirectors, 826
redundancy, 469. See also RAID
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redundant arrays of inexpensive disks,
set' RAID

Reed-Solomon codes, 473
reentrant code (pure code), 296
reference bits, 336
Reference Model, ISO, 585
reference string, 330
register(s), 47

base, 276, 277
limit, 276, 277
memory-address, 279
page-table base, 293
page-table length, 296
for page tables, 292-293
relocation, 280

registry, 55, 810
relative block number, 383-384
relative path names, 390
relative speed, 194
releaseO operation, 377
reliability, 626

of distributed operating systems,
612-613

in multimedia systems, 721
of Windows XP, 785

relocation register, 280
remainder section, 193
remote file access (distributed file

systems), 646-651
basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648, 649
and caching vs. remote service,

650-651
and consistency, 649-650

remote file systems, 398
remote file transfer, 614-615
remote login, 614
remote method invocation (RMI), 114—115
remote operations, 443-444
remote procedure calls (RPCs), 825
remote-service mechanism, 646
removable storage media, 481-483

application interface with, 481-482
disks, 478-480
and file naming, 482-483
and hierarchical storage

management, 483
magnetic disks, 451-453

magnetic tapes, 453-454, 480 ?

rendezvous, 102
repair, mean time to, 469
replay attacks, 560
replication, 475
repositioning (in files), 375
request edge, 249
request manager, 772
resident attributes, 815
resident monitor, 841
resolution:

name, 623
and page size, 358

resolving links, 392
resource allocation (operating system

service), 41
resource-allocation graph algorithm,

258-259
resource allocator, operating system as,

5
resource fork, 381
resource manager, 722
resource preemption, deadlock recovery

by, 267
resource-request algorithm, 260-261
resource reservations, 721-722
resource sharing, 612
resource utilization, 4
response time, 16, 157-158
restart area, 817
restore:

data, 436-437
state, 89

retrofitted protection mechanisms, 407
revocation of access rights, 546-547
rich text format (RTF), 598
rights amplification (Hydra), 548
ring algorithm, 685-686
ring structure, 668
risk assessment, 592-593
RMI, see remote method invocation
roaming profiles, 827
robotic jukebox, 483
robustness, 631-633
roles, 545
role-based access control (RBAC), 545
rolled-back transactions, 223
roll out, roll in, 282
ROM, see read-only memory
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root partitions, 417
root uid (Linux), 778
rotational latency (disks), 452, 457
round-robin (RR) scheduling algorithm,

164-166
routing:

and network communication,
625-626

in partially connected networks,
621-622

routing protocols, 626
routing table, 625
RPCs (remote procedure calls)
RR scheduling algorithm, see round-

robin scheduling algorithm
RSX operating system, 853
RTF (rich text format), 598
R-timestamp, 229
RTP (real-time transport protocol), 725
running state, 83
running system, 72
running thread state (Windows XP),

789
runqueue data structure, 180, 752
RW (read-write) format, 24

safe computing, 598
safe sequence, 256
safety algorithm, 260
safety-critical systems, 696
sandbox (Tripwire file system), 598
SANs, see storage-area networks
SATA buses, 453
save, state, 89
scalability, 634
SCAN (elevator) scheduling algorithm,

459-460, 724
schedules, 226
scheduler(s), 87-89

long-term, 88
medium-term, 89
short-term, 88

scheduler activation, 142-143
scheduling:

cooperative, 156
CPU, see CPU scheduling

disk scheduling algorithms, ,
456-462
C-SCAN, 460
FCFS, 457-458
LOOK, 460-461
SCAN, 459-460
selecting, 461-462
SSTF, 458-459

earliest-deadline-first, 707
I/O, 511-512
job, 17
in Linux, 751-756

kernel synchronization,
753-755

process, 751-753
symmetric multiprocessing,

755-756
nonpreemptive, 156
preemptive, 155-156
priority-based, 700-701
proportional share, 708
Pthread, 708-710
rate-monotonic, 705-707
thread, 172-173
in Windows XP, 789-790,

831-833
scheduling rules, 832
SCOPE operating system, 853
script kiddies, 568
SCS (system-contention scope), 172
SCSI (small computer-systems

interface), 10
SCSI buses, 453
SCSI initiator, 455
SCSI targets, 455
search path, 389
secondary memory, 322
secondary storage, 9, 411. See also disk(s)
second-chance page-replacement

algorithm (clock algorithm),
336-338

second extended file system (ext2fs),
766-769

section objects, 107
sectors, disk, 452
sector slipping, 465
sector sparing, 465, 820
secure single sign-on, 400
secure systems, 560
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security. See also file access; program
threats; protection; user
authentication
classifications of, 600-602
in computer systems, 27
and firewalling, 599-600
implementation of, 592-599

and accounting, 599
and auditing, 599
and intrusion detection,

594-596
and logging, 599
and security policy, 592
and virus protection,

596-598
and vulnerability assessment,

592-594
levels of, 562
in Linux, 777-779

access control, 77S-779
authentication, 777

as operating system service, 41
as problem, 559-563
protection vs., 559
and system/network threats,

571-576
denial of service, 575-576
port scanning, 575
worms, 572-575

use of cryptography for, 576-587
and encryption, 577-584
implementation, 584-585
SSL example, 585-587

via user authentication, 587-592
biometrics, 591-592
passwords, 588-591

Windows XP, 817-818
in Windows XP, 602-604, 785

security access tokens (Windows XP),
602

security context (Windows XP), 602-603
security descriptor (Windows XP), 603
security domains, 599
security policy, 592
security reference monitor (SRM),

808-809
security-through-obscurity approach, 594
seeds, 590-591
seek, file, 375
seek time (disks), 452, 457

segmentation, 302-305 *
basic method, 302-304
defined, 303
hardware, 304-305
Intel Pentium example, 305-307

segment base, 304
segment limit, 304
segment tables, 304
semantics:

consistency, 401-402
copy, 513
immutable-shared-files, 402
session, 402

semaphore(s), 200-204
binary, 201
counting, 201
and deadlocks, 204
defined, 200
implementation, 202-204
implementation of monitors using,

214-215
and starvation, 204
usage of, 201
Windows XP, 790

semiconductor memory, 10
sense key, 515
sequential access (files), 382-383
sequential-access devices, 844
sequential devices, 506, 507
serial ATA (SATA) buses, 453
serializability, 225-227
serial schedule, 226
server(s), 5

cluster, 655
defined, 642
in SSL, 586

server-message-block (SMB), 822-823
server subject (Windows XP), 603
services, operating system,
session hijacking, 561
session layer, 629
session object, 798
session semantics, 402
session space, 797
sharable devices, 506, 507
shares, 176
shared files, immutable, 402
shared libraries, 281-282, 318
shared lock, 378
shared lock mode, 672



Index 915

shared memory, 96, 318
shared-memory model, 54, 97-99
shared name space, 655
sharing:

load, 169, 612
and paging, 296-297
resource, 612
time, 16

shells, 41, 121-123
shell script, 379
shortest-job-first (SJF) scheduling

algorithm, 159-162
shortest-remaining-time-first scheduling,

162
shortest-seek-time (SSTF) scheduling

algorithm, 458-459
short-term scheduler (CPU scheduler),

88, 155
shoulder surfing, 588
signals:

Linux, 773
UNIX, 123, 139-141

signaled state, 220
signal handlers, 139-141
signal-safe functions, 123-124
signatures, 595
signature-based detection, 595
simple operating system structure, 58-59
simple subject (Windows XP), 602
simulations, 183-184
single indirect blocks, 427
single-level directories, 387
single-processor systems, 12-14, 153
single-threaded processes, 127
SJF scheduling algorithm, sec shortest-

job-first scheduling algorithm
skeleton, 114
slab allocation, 355-356, 758
Sleeping-Barber Problem, 233
slices, 386
small-area networks, 28
small computer-systems interface, see

under SCSI
SMB, see server-message-block
SMP, see symmetric multiprocessing
sniffing, 588
social engineering, 562
sockets, 108-111
socket interface, 508
SOC strategy, see system-on-chip strategy

soft affinity, 170 >
soft error, 463
soft real-time systems, 696, 722
software capability, 549
software interrupts (traps), 502
software objects, 533
Solaris:

scheduling example, 173, 175-177
swap-space management in, 467
synchronization in, 217-219
virtual memory in, 363-365

Solaris 10 Dynamic Tracing Facility, 52
solid-state disks, 24
sorted queue, 772
source-code viruses, 570
source files, 374
sparseness, 300, 318
special-purpose computer systems,

29-31
handheld systems, 30-31
multimedia systems, 30
real-time embedded systems, 29-30

speed, relative, 194
speed of operations:

for I/O devices, 506, 507
spinlock, 202
spoofed client identification, 398
spoofing, 599
spool, 514
spooling, 514-515, 844-845
spyware, 564
SRM, see security reference monitor
SSL 3.0, 585-587
SSTF scheduling algorithm, see shortest-

seek-time scheduling algorithm
stable storage, 223, 477-478
stack, 47, 82
stack algorithms, 335
stack frame, 566-567
stack inspection, 554
stack-overflow attacks, 565-568
stage (magnetic tape), 480
stalling, 276
standby thread state (Windows XP), 789
starvation, see indefinite blocking
state (of process), 83
stateful file service, 651
state information, 40-401
stateless DFS, 401
stateless file service, 651



916 Index

stateless protocols, 727
state restore, 89
state save, 89
static linking, 281-282, 764
static priority, 722
static protection, 534
status information, 55
status register, 498
stealth viruses, 570
storage. See also mass-storage structure

holographic, 480
nonvolatile, 10, 223
secondary, 9, 411
stable, 223
tertiary, 24
utility, 476
volatile, 10, 223

storage-area networks (SANs), 15, 455,
456

storage array, 469
storage management, 22-26

caching, 24—26
I/O systems, 26
mass-storage management, 23-24

stream ciphers, 579-580
stream head, 520
streaming, 716-717
stream modules, 520
STREAMS mechanism, 520-522
string, reference, 330
stripe set, 818-820
stubs, 114, 281
stub routines, 825
superblock, 414
superblock objects, 419, 765
supervisor mode, see kernel mode
suspended state, 832
sustained bandwidth, 484
swap map, 468
swapper (term), 319
swapping, 17, 89, 282-284, 319

in Linux, 761
paging vs., 466

swap space, 322
swap-space management, 466^168
switch architecture, 11
switching:

circuit, 626-627
domain, 535

message, 627 *
packet, 627

symbolic links, 794
symbolic-link objects, 794
symmetric encryption, 579-580
symmetric mode, 15
symmetric multiprocessing (SMP),

13-14, 169, 171-172, 755-756
synchronization, 101-102. See also

process synchronization
synchronous devices, 506, 507
synchronous message passing, 102
synchronous writes, 434
SYSGEN, see system generation
system boot, 71-72
system calls (monitor calls), 7, 43-55

and API, 44-46
for communication, 54-55
for device management, 53
for file management, 53
functioning of, 43-44
for information maintenance, 53-54
for process control, 47-52

system-call firewalls, 600
system-call interface, 46
system-contention scope (SCS), 172
system device, 810
system disk, see boot disk
system files, 389
system generation (SYSGEN), 70-71
system hive, 810
system libraries (Linux), 743, 744
system mode, see kernel mode
system-on-chip (SOC) strategy, 697, 698
system process (Windows XP), 810
system programs, 55-56
system resource-allocation graph,

249-251
system restore, 810
systems layer, 719
system utilities, 55-56, 743-744
system-wide open-file table, 414

table(s), 316
file-allocation, 425
hash, 420
master file, 414
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mount, 417, 518
object 796
open-file, 376
page, 322, 799
per-process open-hie, 414
routing, 625
segment, 304
system-wide open-file, 414

tags, 543
tapes, magnetic, 453^54, 480
target thread, 139
tasks:

Linux, 750-751
VxWorks, 710

task control blocks, see process control
blocks

TCB (trusted computer base), 601
TCP/IP, see Transmission Control

Protocol/Internet Protocol
TCP sockets, 109
TDI (transport driver interface), 822
telnet, 614
Tenex operating system, 853
terminal concentrators, 523
terminated state, 83
terminated thread state (Windows XP),

789
termination:

cascading, 95
process, 90-95, 266

tertiary-storage, 478^88
future technology for, 480
and operating system support,

480-483
performance issues with,

484-488
removable disks, 478-480
tapes, 480

tertiary storage devices, 24
text files, 374
text section (of process), 82
theft of service, 560
THE operating system, 846-848
thrashing, 343-348

cause of, 343-345
defined, 343
and page-fault-frequency strategy,

347-348
and working-set model, 345-347

threads. See also multithreading »
cancellation, thread, 139
components of, 127
functions of, 127-129
idle, 177
kernel, 129
in Linux, 144-146, 750-751
pools, thread, 141-142
and process model, 84—85
scheduling of, 172-173
target, 139
user, 129
in Windows XP, 144, 145, 789-790,

830, 832-833
thread libraries, 131-138

about, 131-132
Java threads, 134-138
Pthreads, 132-134
Win32 threads, 134

thread pool, 832
thread scheduling, 153
thread-specific data, 142
threats, 560. See also program threats
throughput, 157, 720
thunking, 812
tightly coupled systems, see

multiprocessor systems
time:

compile, 278
effective access, 323
effective memory-access, 294
execution, 278
of file creation/use, 375
load, 278
response, 16, 157-158
turnaround, 157
waiting, 157

time-out schemes, 632, 686-687
time quantum, 164
timer:

programmable interval, 509
variable, 20

timers, 509-510
timer objects, 790
time sharing (multitasking), 16
timestamp-based protocols, 228-230
timestamping, 675-676
timestamps, 665
TLB, see translation look-aside buffer
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TLB miss, 293
TLB reach, 358-359
tokens, 628, 668
token passing, 628, 668
top half interrupt service routines, 755
topology, network, 620-622
Torvalds, Linus, 737
trace tapes, 184
tracks, disk, 452
traditional computing, 31-32
transactions, 222. See also atomic

transactions
defined, 768
in Linux, 768-769
in log-structured file systems,

437-138
Transarc DFS, 654
transfer rate (disks), 452, 453
transition thread state (Windows XP), 789
transitive trust, 828
translation coordinator, 669
translation look-aside buffer (TLB), 293,

800
transmission control protocol (TCP), 631
Transmission Control Protocol/Internet

Protocol (TCP/IP), 823
transparency, 633-634, 642, 643
transport driver interface (TDI), 822
transport layer, 629
transport-layer protocol (TCP), 584
traps, 18, 321, 502
trap doors, 564-565
tree-structured directories, 389-391
triple DES, 579
triple indirect blocks, 427
Tripwire file system, 597-598
Trojan horses, 563-564
trusted computer base (TCB), 601
trust relationships, 828
tunneling viruses, 571
turnaround time, 157
turnstiles, 219
two-factor authentication, 591
twofish algorithm, 579
two-level directories, 388-389
two-phase commit (2PC) protocol,

669-672
two-phase locking protocol, 228
two tuple, 303
type safety (Java), 555

U

UDP (user datagram protocol), 631
UDP sockets, 109
UFD (user file directory), 388
UFS (UNIX file system), 413
UI, see user interface
unbounded capacity (of queue), 102
UNC (uniform naming convention),

824
unformatted disk space, 386
unicasting, 725
UNICODE, 787
unified buffer cache, 433, 434
unified virtual memory, 433
uniform naming convention (UNC),

824
universal serial buses (USBs), 453
UNIX file system (UFS), 413
UNIX operating system:

consistency semantics for, 401
domain switching in, 535-536
and Linux, 737
permissions in, 406
shell and history feature (project),

121-125
signals in, 123, 139-141
swapping in, 284

unreliability, 626
unreliable communications, 686-687
upcalls, 143
upcall handler, 143
USBs, see universal serial buses
used objects, 356, 759
users, 4-5, 397-398
user accounts, 602
user authentication, 587-592

with biometrics, 591-592
with passwords, 588-591

user datagram protocol (UDP), 631
user-defined signal handlers, 140
user file directory (UFD), 388
user identifiers (user IDs), 27

effective, 27
for files, 375

user interface (UI), 40-43
user mobility, 440
user mode, 18
user programs (user tasks), 81, 762-763
user rights (Linux), 778
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user threads, 129
utility storage, 476
utilization, 840

VACB, see virtual address control block
VADs (virtual address descriptors),

802
valid-invalid bit, 295
variable class, 177
variables, automatic, 566
variable timer, 20
VDM, see virtual DOS machine
vector programs, 573
vforkO (virtual memory fork), 327
VFS, see virtual file system
victim frames, 329
views, 798
virtual address, 279
virtual address control block (VACB),

806, 807
virtual address descriptors (VADs), 802
virtual address space, 317, 760-761
virtual DOS machine (VDM), 811-812
virtual file system (VFS), 417-419,

765-766
virtual machines, 64-69

basic idea of, 64
benefits of, 66
implementation of, 65-66
Java Virtual Machine as example

of, 68
VMware as example of, 67

virtual memory, 17, 315-318
and copy-on-write technique,

325-327
demand paging for conserving,

319-325
basic mechanism, 320-322
with inverted page tables,

359-360
and I/O interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure,

360-361
pure demand paging, 322

and restarting instructions,
322-323

and TLB reach, 358-359
direct virtual memory access, 504
and frame allocation, 340-343

equal allocation, 341
global vs. local allocation,

342-343
proportional allocation,

341-342
kernel, 762
and kernel memory allocation,

353-356
in Linux, 759-762
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Part One

Overview
An operating system acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well delineated portion
of the system, with carefully defined inputs, outputs, and functions.
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An operating system is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer (PC) operating systems support complex
games, business applications, and everything in between. Operating systems
for handheld computers are designed to provide an environment in which a
user can easily interface with the computer to execute programs. Thus, some
operating systems are designed to be convenient, others to be efficient, and others
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, I/O, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter we
provide a general overview of the major components of an operating system.

CHAPTER OBJECTIVES

• To provide a grand tour of the major operating systems components.

• To provide coverage of basic computer system organization.

1.1 What Operating Systems Do

We begin our discussion by looking at the operating system's role in the
overall computer system. A computer system can be divided roughly into
four components: the hardware, the operating system, the application programs,
and the users (Figure 1.1).
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Figure 1.1 Abstract view of the components of a computer system.

The hardware—the central processing unit (CPU), the memory, and the
input/output (I/O) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—define the ways in which these resources are
used to solve users' computing problems. The operating system controls and
coordinates the use of the hardware among the various application programs
for the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function by
itself. It simply provides an environment within which other programs can do
useful work.

To understand more fully the operating system's role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user's view of the computer varies according to the interface being
used. Most computer users sit in front of a PC, consisting of a monitor,
keyboard, mouse, and system unit. Such a system is designed for one user
to monopolize its resources. The goal is to maximize the work (or play)
that the user is performing. In this case, the operating system is designed
mostly for ease of use, with some attention paid to performance and none
paid to resource utilization—how various hardware and software resources
are shared. Performance is, of course, important to the user; but rather than
resource utilization, such systems are optimized for the single-user experience.
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In other cases, a user sits at a terminal connected to a mainframe or
minicomputer. Other users are accessing the same computer through other
terminals. These users share resources and may exchange information. The
operating system in such cases is designed to maximize resource utilization—
to assure that all available CPU time, memory, and I/O are used efficiently and
that no individual user takes more than her fair share.

In still other cases, users sit at workstations connected to networks of
other workstations and servers. These users have dedicated resources at their
disposal, but they also share resources such as networking and servers—file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems and networking. Because of power, speed, and interface limitations,
they perform relatively few remote operations. Their operating systems are
designed mostly for individual usability, but performance per amount of
battery life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads and
may turn indicator lights on or off to show status, but they and their operating
systems are designed primarily to run without user intervention.

1.1.2 System View

From the computer's point of view, the operating system is the program
most intimately involved with the hardware. In this context, we can view
an operating system as a resource allocator. A computer system has many
resources that may be required to solve a problem: CPU time, memory space,
file-storage space, I/O devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, the operating system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
fairly. As we have seen, resource allocation is especially important where many
users access the same mainframe or minicomputer.

A slightly different view of an operating system emphasizes the need to
control the various I/O devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of I/O devices.

1.1.3 Defining Operating Systems

We have looked at the operating system's role from the views of the user
and of the system. How, though, can we define what an operating system
is? In general, we have no completely adequate definition of an operating
system. Operating systems exist because they offer a reasonable way to solve
the problem of creating a usable computing system. The fundamental goal
of computer systems is to execute user programs and to make solving user
problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
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developed. These programs require certain common operations, such as those
controlling the I/O devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

In addition, we have no universally accepted definition of what is part of the
operating system. A simple viewpoint is that it includes everything a vendor
ships when you order "the operating system." The features included, however,
vary greatly across systems. Some systems take up less than 1 megabyte of
space and lack even a full-screen editor, whereas others require gigabytes of
space and are entirely based on graphical windowing systems. (A kilobyte, or
KB, is 1,024 bytes; a megabyte, or MB, is l,0242 bytes; and a gigabyte, or GB, is
l,0243 bytes. Computer manufacturers often round off these numbers and say
that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes.) A more
common definition is that the operating system is the one program running
at all times on the computer (usually called the kernel), with all else being
systems programs and application programs. This last definition is the one
that we generally follow.

The matter of what constitutes an operating system has become increas-
ingly important. In 1998, the United States Department of Justice filed suit
against Microsoft, in essence claiming that Microsoft included too much func-
tionality in its operating systems and thus prevented application vendors from
competing. For example, a web browser was an integral part of the operating
system. As a result, Microsoft was found guilty of using its operating system
monopoly to limit competition.

1.2 Computer-System Organization

Before we can explore the details of how computer systems operate, we need
a general knowledge of the structure of a computer system. In this section, we
look at several parts of this structure to round out our background knowledge.
The section is mostly concerned with computer-system organization, so you
can skim or skip it if you already understand the concepts.

1.2.1 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs
and a number of device controllers connected through a common bus that
provides access to shared memory (Figure 1.2). Each device controller is in
charge of a specific type of device (for example, disk drives, audio devices, and
video displays). The CPU and the device controllers can execute concurrently,
competing for memory cycles. To ensure orderly access to the shared memory,
a memory controller is provided whose function is to synchronize access to the
memory.

For a computer to start running—for instance, when it is powered
up or rebooted—it needs to have an initial program to run. This initial
program, or bootstrap program, tends to be simple. Typically, it is stored
in read-only memory (ROM) or electrically erasable programmable read-only
memory (EEPROM), known by the general term firmware, within the computer
hardware. It initializes all aspects of the system, from CPU registers to device
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controllers to memory contents. The bootstrap program must know how to
load the operating system and to start executing that system. To accomplish this
goal, the bootstrap program must locate and load into memory the operating-
system kernel. The operating system then starts executing the first process,
such as "init," and waits for some event to occur.

The occurrence of an event is usually signaled by an interrupt from either
the hardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software
may trigger an interrupt by executing a special operation called a system call
(also called a monitor call).

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A time line of this operation is shown in Figure 1.3.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.

CPU
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Figure 1.3 Interrupt time line for a single process doing output.
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The straightforward method for handling this transfer would be to invoke a
generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
memory (the first 100 or so locations). These locations hold the addresses of
the interrupt service routines for the various devices. This array, or interrupt
vector, of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for
the interrupting device. Operating systems as different as Windows and UNIX
dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device number. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state—for instance, by modifying
register values—it must explicitly save the current state and then restore that
state before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation resumes
as though the interrupt had not occurred.

1.2.2 Storage Structure

Computer programs must be in main memory (also called random-access
memory or RAM) to be executed. Main memory is the only large storage area
(millions to billions of bytes) that the processor can access directly. It commonly
is implemented in a semiconductor technology called dynamic random-access
memory (DRAM), which forms an array of memory words. Each word has its
own address. Interaction is achieved through a sequence of load or s tore
instructions to specific memory addresses. The load instruction moves a word
from main memory to an internal register within the CPU, whereas the s tore
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution.

A typical instruction-execution cycle, as executed on a system with a von
Neumann architecture, first fetches an instruction from memory and stores
that instruction in the instruction register. The instruction is then decoded
and may cause operands to be fetched from memory and stored in some
internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other
means) or what they are for (instructions or data). Accordingly, we can ignore
hoio a memory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory
permanently. This arrangement usually is not possible for the following two
reasons:
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1. Main memory is usually too small to store all needed programs and data
permanently.

2. Main memory is a volatile storage device that loses its contents when
power is turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension
of main memory. The main requirement for secondary storage is that it be able
to hold large quantities of data permanently.

The most common secondary-storage device is a magnetic disk, which
provides storage for both programs and data. Most programs (web browsers,
compilers, word processors, spreadsheets, and so on) are stored on a disk until
they are loaded into memory. Many programs then use the disk as both a source
and a destination of the information for their processing. Hence, the proper
management of disk storage is of central importance to a computer system, as
we discuss in Chapter 12.

In a larger sense, however, the storage structure that we have described—
consisting of registers, main memory, and magnetic disks—is only one of many
possible storage systems. Others include cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum and of holding that datum until it is retrieved at a later time. The
main differences among the various storage systems lie in speed, cost, size,
and volatility.

The wide variety of storage systems in a computer system can be organized
in a hierarchy (Figure 1.4) according to speed and cost. The higher levels are
expensive, but they are fast. As we move down the hierarchy, the cost per bit
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Figure 1.4 Storage-device hierarchy.
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generally decreases, whereas the access time generally increases. This trade-off
is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no
reason to use the slower, more expensive memory. In fact, many early storage
devices, including paper tape and core memories, are relegated to museums
now that magnetic tape and semiconductor memory have become faster and
cheaper. The top four levels of memory in Figure 1.4 may be constructed using
semiconductor memory.

In addition to differing in speed and cost, the various storage systems
are either volatile or nonvolatile. As mentioned earlier, volatile storage loses
its contents when the power to the device is removed. In the absence of
expensive battery and generator backup systems, data must be written to
nonvolatile storage for safekeeping. In the hierarchy shown in Figure 1.4, the
storage systems above the electronic disk are volatile, whereas those below
are nonvolatile. An electronic disk can be designed to be either volatile or
nonvolatile. During normal operation, the electronic disk stores data in a
large DRAM array, which is volatile. But many electronic-disk devices contain
a hidden magnetic hard disk and a battery for backup power. If external
power is interrupted, the electronic-disk controller copies the data from RAM
to the magnetic disk. When external power is restored, the controller copies
the data back into the RAM. Another form of electronic disk is flash memory,
which is popular in cameras and personal digital assistants (PDAs), in robots,
and increasingly as removable storage on general-purpose computers. Flash
memory is slower than DRAM but needs no power to retain its contents. Another
form of nonvolatile storage is NVRAM, which is DRAM with battery backup
power. This memory can be as fast as DRAM but has a limited duration in
which it is nonvolatile.

The design of a complete memory system must balance all the factors just
discussed: It must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile memory as possible. Caches can
be installed to improve performance where a large access-time or transfer-rate
disparity exists between two components.

1.2.3 I/O Structure
Storage is only one of many types of I/O devices within a computer. A large
portion of operating system code is dedicated to managing I/O, both because
of its importance to the reliability and performance of a system and because of
the varying nature of the devices. Therefore, we now provide an overview of
I/O.

A general-purpose computer system consists of CPUs and multiple device
controllers that are connected through a common bus. Each device controller
is in charge of a specific type of device. Depending on the controller, there may
be more than one attached device. For instance, seven or more devices can be
attached to the small computer-systems interface (SCSI) controller. A device
controller maintains some local buffer storage and a set of special-purpose
registers. The device controller is responsible for moving the data between
the peripheral devices that it controls and its local buffer storage. Typically,
operating systems have a device driver for each device controller. This device
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driver understands the device controller and presents a uniform interface to
the device to the rest of the operating system.

To start an I/O operation, the device driver loads the appropriate registers
within the device controller. The device controller, in turn, examines the
contents of these registers to determine what action to take (such as "read
a character from the keyboard")- The controller starts the transfer of data from
the device to its local buffer. Once the transfer of data is complete, the device
controller informs the device driver via an interrupt that it has finished its
operation. The device driver then returns control to the operating system,
possibly returning the data or a pointer to the data if the operation was a read.
For other operations, the device driver returns status information.

This form of interrupt-driven I/O is fine for moving small amounts of data
but can produce high overhead when used for bulk data movement such as disk
I/O. To solve this problem, direct memory access (DMA) is used. After setting
up buffers, pointers, and counters for the I/O device, the device controller
transfers an entire block of data directly to or from its own buffer storage to
memory, with no intervention by the CPU. Only one interrupt is generated per
block, to tell the device driver that the operation has completed, rather than
the one interrupt per byte generated for low-speed devices. While the device
controller is performing these operations, the CPU is available to accomplish
other work.

Some high-end systems use switch rather than bus architecture. On these
systems, multiple components can talk to other components concurrently,
rather than competing for cycles on a shared bus. In this case, DMA is even
more effective. Figure 1.5 shows the interplay of all components of a computer
system.
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1.3 Computer-System Architecture

In Section 1.2 we introduced the general structure of a typical computer system.
A computer system may be organized in a number of different ways, which we
can categorize roughly according to the number of general-purpose processors
used.

1.3.1 Single-Processor Systems

Most systems vise a single processor. The variety of single-processor systems
may be surprising, however, since these systems range from PDAs through
mainframes. On a single-processor system, there is one main CPU capable
of executing a general-purpose instruction set, including instructions from
user processes. Almost all systems have other special-purpose processors as
well. They may come in the form of device-specific processors, such as disk,
keyboard, and graphics controllers; or, on mainframes, they may come in the
form of more general-purpose processors, such as I/O processors that move
data rapidly among the components of the system.

All of these special-purpose processors run a limited instruction set and
do not run user processes. Sometimes they are managed by the operating
system, in that the operating system sends them information about their next
task and monitors their status. For example, a disk-controller microprocessor
receives a sequence of requests from the main CPU and implements its own disk
queue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems
or circumstances, special-purpose processors are low-level components built
into the hardware. The operating system cannot communicate with these
processors; they do their jobs autonomously. The use of special-purpose
microprocessors is common and does not turn a single-processor system into
a multiprocessor. If there is only one general-purpose CPU, then the system is
a single-processor system.

1.3.2 Multiprocessor Systems

Although single-processor systems are most common, multiprocessor systems
(also known as parallel systems or tightly coupled systems) are growing
in importance. Such systems have two or more processors in close commu-
nication, sharing the computer bus and sometimes the clock, memory, and
peripheral devices.

Multiprocessor systems have three main advantages:

1. Increased throughput. By increasing the number of processors, we expect
to get more work done in less time. The speed-up ratio with N processors
is not N, however; rather, it is less than N. When multiple processors
cooperate on a task, a certain amount of overhead is incurred in keeping
all the parts working correctly. This overhead, plus contention for shared
resources, lowers the expected gain from additional processors. Similarly,
N programmers working closely together do not produce N times the
amount of work a single programmer would produce.
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2. Economy of scale. Multiprocessor systems can cost less than equivalent
multiple single-processor systems, because they can share peripherals,
mass storage, and power supplies. If several programs operate on the
same set of data, it is cheaper to store those data on one disk and to have
all the processors share them than to have many computers with local
disks and many copies of the data.

3. Increased reliability. If functions can be distributed properly among
several processors, then the failure of one processor will not halt the
system, only slow it down. If we have ten processors and one fails, then
each of the remaining nine processors can pick up a share of the work of
the failed processor. Thus, the entire system runs only 10 percent slower,
rather than failing altogether.

Increased reliability of a computer system is crucial in many applications.
The ability to continue providing service proportional to the level of surviving
hardware is called graceful degradation. Some systems go beyond graceful
degradation and are called fault tolerant, because they can suffer a failure of
any single component and still continue operation. Note that fault tolerance
requires a mechanism to allow the failure to be detected, diagnosed, and, if
possible, corrected. The HP NonStop system (formerly Tandem) system uses
both hardware and software duplication to ensure continued operation despite
faults. The system consists of multiple pairs of CPUs, working in lockstep. Both
processors in the pair execute each instruction and compare the results. If the
results differ, then one CPU of the pair is at fault, and both are halted. The
process that was being executed is then moved to another pair of CPUs, and the
instruction that failed is restarted. This solution is expensive, since it involves
special hardware and considerable hardware duplication.

The multiple-processor systems in use today are of two types. Some
systems use asymmetric multiprocessing, in which each processor is assigned
a specific task. A master processor controls the system; the other processors
either look to the master for instruction or have predefined tasks. This scheme
defines a master-slave relationship. The master processor schedules and
allocates work to the slave processors.

The most common systems use symmetric multiprocessing (SMP), in
which each processor performs all tasks within the operating system. SMP
means that all processors are peers; no master-slave relationship exists
between processors. Figure 1.6 illustrates a typical SMP architecture. An
example of the SMP system is Solaris, a commercial version of UNIX designed
by Sun Microsystems. A Solaris system can be configured to employ dozens of
processors, all running Solaris. The benefit of this model is that many processes

GPU GPU CPU

memory

Figure 1.6 Symmetric multiprocessing architecture.
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can run simultaneously—N processes can run if there are N CPUs—without
causing a significant deterioration of performance. However, we must carefully
control I/O to ensure that the data reach the appropriate processor. Also, since
the CPUs are separate, one may be sitting idle while another is overloaded,
resulting in inefficiencies. These inefficiencies can be avoided if the processors
share certain data structures. A multiprocessor system of this form will allow
processes and resources—such as memory—to be shared dynamically among
the various processors and can lower the variance among the processors. Such
a system must be written carefully, as we shall see in Chapter 6. Virtually all
modern operating systems—including Windows, Windows XP, Mac OS X, and
Linux—now provide support for SMP.

The difference between symmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. For instance, Sun's operating system SunOS Version 4 provided
asymmetric multiprocessing, whereas Version 5 (Solaris) is symmetric on the
same hardware.

A recent trend in CPU design is to include multiple compute cores on
a single chip. In essence, these are multiprocessor chips. Two-way chips are
becoming mainstream, while N-way chips are going to be common in high-end
systems. Aside from architectural considerations such as cache, memory, and
bus contention, these multi-core CPUs look to the operating system just as N
standard processors.

Lastly, blade servers are a recent development in which multiple processor
boards, I/O boards, and networking boards are placed in the same chassis.
The difference between these and traditional multiprocessor systems is that
each blade-processor board boots independently and runs its own operating
system. Some blade-server boards are multiprocessor as well, which blurs the
lines between types of computers. In essence, those servers consist of multiple
independent multiprocessor systems.

1.3.3 Clustered Systems

Another type of multiple-CPU system is the clustered system. Like multipro-
cessor systems, clustered systems gather together multiple CPUs to accomplish
computational work. Clustered systems differ from multiprocessor systems,
however, in that they are composed of two or more individual systems
coupled together. The definition of the term clustered is not concrete; many
commercial packages wrestle with what a clustered system is and why one
form is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via a local-area network (LAN)
(as described in Section 1.10) or a faster interconnect such as InfiniBand.

Clustering is usually used to provide high-availability service; that is,
service will continue even if one or more systems in the cluster fail. High
availability is generally obtained by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others (over the LAN). If the monitored machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.
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Clustering can be structured asymmetrically or symmetrically. In asym-
metric clustering, one machine is in hot-standby mode while the other is
running the applications. The hot-standby host machine does nothing but
monitor the active server. If that server fails, the hot-standby host becomes the
active server. In symmetric mode, two or more hosts are running applications,
and are monitoring each other. This mode is obviously more efficient, as it uses
all of the available hardware. It does require that more than one application be
available to run.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Section 1.10). Parallel clusters allow
multiple hosts to access the same data on the shared storage. Because most
operating systems lack support for simultaneous data access by multiple hosts,
parallel clusters are usually accomplished by use of special versions of software
and special releases of applications. For example, Oracle Parallel Server is a
version of Oracle's database that has been designed to run on a parallel cluster.
Each machine runs Oracle, and a layer of software tracks access to the shared
disk. Each machine has full access to all data in the database. To provide this
shared access to data, the system must also supply access control and locking
to ensure that no conflicting operations occur. This function, commonly known
as a distributed lock manager (DLM), is included in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANs), as described in Section 12.3.3, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In a database cluster, dozens of hosts can share the same database, greatly-
increasing performance and reliability.

1.4 Operating-System Structure

Now that we have discussed basic information about computer-system orga-
nization and architecture, we are ready to talk about operating systems.
An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. There are, however, many
commonalities, which we consider in this section.

One of the most important aspects of operating systems is the ability to
multiprogram. A single user cannot, in general, keep either the CPU or the
I/O devices busy at all times. Multiprogramming increases CPU utilization by
organizing jobs (code and data) so that the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory
simultaneously (Figure 1.7). This set of jobs can be a subset of the jobs kept in
the job pool—which contains all jobs that enter the system—since the number
of jobs that can be kept simultaneously in memory is usually smaller than
the number of jobs that can be kept in the job pool. The operating system
picks and begins to execute one of the jobs in memory. Eventually, the job
may have to wait for some task, such as an I/O operation, to complete. In a
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Figure 1.7 Memory layout for a multiprogramming system.

non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed
system, the operating system simply switches to, and executes, another job.
When that job needs to wait, the CPU is switched to another job, and so on.
Eventually, the first job finishes waiting and gets the CPU back. As long as at
least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various
system resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system. Time sharing (or multitasking) is a logical extension of
multiprogramming. In time-sharing systems, the CPU executes multiple jobs
by switching among them, but the switches occur so frequently that the users
can interact with each program while it is running.

Time sharing requires an interactive (or hands-on) computer system,
which provides direct communication between the user and the system. The
user gives instructions to the operating system or to a program directly, using a
input device such as a keyboard or a mouse, and waits for immediate results on
an output device. Accordingly, the response time should be short—typically
less than one second.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends
to be short, only a little CPU time is needed for each user. As the system switches
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at least one separate program in memory. A program loaded into



1.5 Operating-System Operations 17

memory and executing is called a process. When a process executes, it typically
executes for only a short time before it either finishes or needs to perform I/O.
I/O may be interactive; that is, output goes to a display for the user, and input
comes from a user keyboard, mouse, or other device. Since interactive I/O
typically runs at "people speeds," it may take a long time to complete. Input,
for example, may be bounded by the user's typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rather than let
the CPU sit idle as this interactive input takes place, the operating system will
rapidly switch the CPU to the program of some other user.

Time-sharing and multiprogramming require several jobs to be kept
simultaneously in memory. Since in general main memory is too small to
accommodate all jobs, the jobs are kept initially on the disk in the job pool.
This pool consists of all processes residing on disk awaiting allocation of main
memory. If several jobs are ready to be brought into memory, and if there is
not enough room for all of them, then the system must choose among them.
Making this decision is job scheduling, which is discussed in Chapter 5. When
the operating system selects a job from the job pool, it loads that job into
memory for execution. Having several programs in memory at the same time
requires some form of memory management, which is covered in Chapters 8
and 9. In addition, if several jobs are ready to run at the same time, the system
must choose among them. Making this decision is CPU scheduling, which is
discussed in Chapter 5. Finally, running multiple jobs concurrently requires
that their ability to affect one another be limited in all phases of the operating
system, including process scheduling, disk storage, and memory management.
These considerations are discussed throughout the text.

In a time-sharing system, the operating system must ensure reasonable
response time, which is sometimes accomplished through swapping, where
processes are swapped in and out of main memory to the disk. A more common
method for achieving this goal is virtual memory, a technique that allows
the execution of a process that is not completely in memory (Chapter 9).
The main advantage of the virtual-memory scheme is that it enables users
to run programs that are larger than actual physical memory. Further, it
abstracts main memory into a large, uniform array of storage, separating logical
memory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide a file system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 12). Also, time-sharing systems provide a mechanism for
protecting resources from inappropriate use (Chapter 14). To ensure orderly
execution, the system must provide mechanisms for job synchronization and
communication (Chapter 6), and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another (Chapter 7).

1.5 Operating-System Operations

As mentioned earlier, modern operating systems are interrupt driven. If there
are no processes to execute, no I/O devices to service, and no users to whom
to respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always signaled by the occurrence of an interrupt
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or a trap. A trap (or an exception) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory access)
or by a specific request from a user program that an operating-system service
be performed. The interrupt-driven nature of an operating system defines
that system's general structure. For each type of interrupt, separate segments
of code in the operating system determine what action should be taken. An
interrupt service routine is provided that is responsible for dealing with the
interrupt.

Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a user
program could cause problems only for the one program that was running.
With sharing, many processes could be adversely affected by a bug in one
program. For example, if a process gets stuck in an infinite loop, this loop could
prevent the correct operation of many other processes. More subtle errors can
occur in a multiprogramming system, where one erroneous program might
modify another program, the data of another program, or even the operating
system itself.

Without protection against these sorts of errors, either the computer must
execute only one process at a time or all output must be suspect. A properly
designed operating system must ensure that an incorrect (or malicious)
program cannot cause other programs to execute incorrectly.

1.5.1 Dual-Mode Operation

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide
hardware support that allows us to differentiate among various modes of
execution.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer to
indicate the current mode: kernel (0) or user (1). With the mode bit, we are able
to distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a
system call), it must transition from user to kernel mode to fulfill the request.
This is shown in Figure 1.8. As we shall see, this architectural enhancement is
useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructions that
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Figure 1.8 Transition from user to kernel mode.

may cause harm as privileged instructions. The hardware allows privileged
instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to user mode is an example of a privileged
instruction. Some other examples include I/O control, timer management, and
interrupt management. As we shall see throughout the text, there are many
additional privileged instructions.

We can now see the life cycle of instruction execution in a computer system.
Initial control is within the operating system, where instructions are executed
in kernel mode. When control is given to a user application, the mode is set to
user mode. Eventually, control is switched back to the operating system via an
interrupt, a trap, or a system call.

System calls provide the means for a user program to ask the operating
system to perform tasks reserved for the operating system on the user
program's behalf. A system call is invoked in a variety of ways, depending
on the functionality provided by the underlying processor. In all forms, it is the
method used by a process to request action by the operating system. A system
call usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic t r a p instruction, although some systems
(such as the MIPS R2000 family) have a specific sysca l l instruction.

When a system call is executed, it is treated by the hardware as a software
interrupt. Control passes through the interrupt vector to a service routine in
the operating system, and the mode bit is set to kernel mode. The system-
call service routine is a part of the operating system. The kernel examines
the interrupting instruction to determine what system call has occurred; a
parameter indicates what type of service the user program is requesting.
Additional information needed for the request may be passed in registers,
on the stack, or in memory (with pointers to the memory locations passed in
registers). The kernel verifies that the parameters are correct and legal, executes
the request, and returns control to the instruction following the system call. We
describe system calls more fully in Section 2.3.

The lack of a hardware-supported dual mode can cause serious shortcom-
ings in an operating system. For instance, MS-DOS was written for the Intel
8088 architecture, which has no mode bit and therefore no dual mode. A user
program running awry can wipe out the operating system by writing over it
with data; and multiple programs are able to write to a device at the same time,
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with possibly disastrous results. Recent versions of the Intel CPU, such is the
Pentium, do provide dual-mode operation. Accordingly, most contemporary
operating systems, such as Microsoft Windows 2000 and Windows XP, and
Linux and Solaris for x86 systems, take advantage of this feature and provide
greater protection for the operating system.

Once hardware protection is in place, errors violating modes are detected
by the hardware. These errors are normally handled by the operating system.
If a user program fails in some way—such as by making an attempt either
to execute an illegal instruction or to access memory that is not in the user 's
address space—then the hardware will trap to the operating system. The trap
transfers control through the interrupt vector to the operating system, just as
an interrupt does. When a program error occurs, the operating system must
terminate the program abnormally. This situation is handled by the same code
as is a user-requested abnormal termination. An appropriate error message is
given, and the memory of the program may be dumped. The memory dump
is usually written to a file so that the user or programmer can examine it and
perhaps correct it and restart the program.

1.5.2 Timer

We must ensure that the operating system maintains control over the CPU.
We must prevent a user program from getting stuck in an infinite loop or not
calling system services and never returning control to the operating system.
To accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A
variable timer is generally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a fatal
error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simple technique is to initialize a counter with the amount of time that a
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter is decremented by 1. As long as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time
limit.

1.6 Process Management

A program does nothing unless its instructions are executed by a CPU. A
program in execution, as mentioned, is a process. A time-shared user program
such as a compiler is a process. A word-processing program being run by an
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individual user on a PC is a process. A system task, such as sending ©utput
to a printer, can also be a process (or at least part of one). For now, you can
consider a process to be a job or a time-shared program, but later you will learn
that the concept is more general. As we shall see in Chapter 3, it is possible
to provide system calls that allow processes to create subprocesses to execute
concurrently.

A process needs certain resources—including CPU time, memory, files,
and I/O devices—to accomplish its task. These resources are either given to
the process when it is created or allocated to it while it is running. In addition
to the various physical and logical resources that a process obtains when it is
created, various initialization data (input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of a terminal. The process will be given as an input the name of the file and will
execute the appropriate instructions and system calls to obtain and display
on the terminal the desired information. When the process terminates, the
operating system will reclaim any reusable resources.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as the contents of a file stored on disk, whereas a process is an active
entity. A single-threaded process has one program counter specifying the next
instruction to execute. (Threads will be covered in Chapter 4.) The execution
of such a process must be sequential. The CPU executes one instruction of the
process after another, until the process completes. Further, at any time, one
instruction at most is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute for
a given thread.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). All these processes can potentially execute concurrently—
by multiplexing the CPU among them on a single CPU, for example.

The operating system is responsible for the following activities in connec-
tion with process management:

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

• Providing mechanisms for deadlock handling

We discuss process-management techniques in Chapters 3 through 6.

1.7 Memory Management

As we discussed in Section 1.2.2, the main memory is central to the operation
of a modern computer system. Main memory is a large array of words or bytes,
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ranging in size from hundreds of thousands to billions. Each word or byte has
its own address. Main memory is a repository of quickly accessible data shared
by the CPU and I/O devices. The central processor reads instructions from main
memory during the instruction-fetch cycle and both reads and writes data from
main memory during the data-fetch cycle (on a Von Neumann architecture).
The main memory is generally the only large storage device that the CPU is able
to address and access directly. For example, for the CPU to process data from
disk, those data must first be transferred to main memory by CPU-generated
I/O calls. In the same way, instructions must be in memory for the CPU to
execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer 's
response to its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different memory-
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-management scheme for a specific system, we must take into account
many factors—especially on the hardware design of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in connec-
tion with memory management:

• Keeping track of which parts of memory are currently being used and by
whom

• Deciding which processes (or parts thereof) and data to move into and out
of memory

• Allocating and deallocating memory space as needed

Memory-management techniques will be discussed in Chapters 8 and 9.

1.8 Storage Management

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the file. The operating system maps files onto physical media and
accesses these files via the storage devices.

1.8.1 File-System Management

File management is one of the most visible components of an operating system.
Computers can store information on several different types of physical media.
Magnetic disk, optical disk, and magnetic tape are the most common. Each
of these media has its own characteristics and physical organization. Each
medium is controlled by a device, such as a disk drive or tape drive, that
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also has its own unique characteristics. These properties include accessspeed,
capacity', data-transfer rate, and access method (sequential or random).

A file is a collection of related information defined by its creator. Commonly,
files represent programs (both source and object forms) and data. Data files may
be numeric, alphabetic, alphanumeric, or binary. Files may be free-form (for
example, text files), or they may be formatted rigidly (for example, fixed fields).
Clearly, the concept of a file is an extremely general one.

The operating system implements the abstract concept of a file by managing
mass storage media, such as tapes and disks, and the devices that control them.
Also, files are normally organized into directories to make them easier to use-
Finally, when multiple users have access to files, it may be desirable to control
by whom and in what ways (for example, read, write, append) files may be
accessed.

The operating system is responsible for the following activities in connec-
tion with file management:

• Creating and deleting files

• Creating and deleting directories to organize files

• Supporting primitives for manipulating files and directories

• Mapping files onto secondary storage

• Backing up files on stable (nonvolatile) storage media

File-management techniques will be discussed in Chapters 10 and 11.

1.8.2 Mass-Storage Management

As we have already seen, because main memory is too small to accommodate
all data and programs, and because the data that it holds are lost when power
is lost, the computer system must provide secondary storage to back up main
memory. Most modern computer systems use disks as the principal on-line
storage medium for both programs and data. Most programs—including
compilers, assemblers, word processors, editors, and formatters—are stored
on a disk until loaded into memory and then use the disk as both the source
and destination of their processing. Hence, the proper management of disk
storage is of central importance to a computer system. The operating system is
responsible for the following activities in connection with disk management:

• Free-space management

• Storage allocation

• Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The
entire speed of operation of a computer may hinge on the speeds of the disk
subsystem and of the algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and lower in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
data, seldom-used data, and long-term archival storage are some examples.
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Magnetic tape drives and their tapes and CD and DVD drives and platters are
typical tertiary storage devices. The media (tapes and optical platters) vary
between WORM (write-once, read-many-times) and RW (read-write) formats.

Tertiary storage is not crucial to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary and tertiary storage management will be dis-
cussed in Chapter 12.

1.8.3 Caching

Caching is an important principle of computer systems. Information is
normally kept in some storage system (such as main memory). As it is used,
it is copied into a faster storage system—the cache—on a temporary basis.
When we need a particular piece of information, we first check whether it is
in the cache. If it is, we use the information directly from the cache; if it is not,
we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorithms to
decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware. For
instance, most systems have an instruction cache to hold the next instructions
expected to be executed. Without this cache, the CPU would have to wait
several cycles while an instruction was fetched from main memory. For similar
reasons, most systems have one or more high-speed data caches in the memory
hierarchy. We are not concerned with these hardware-only caches in this text,
since they are outside the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement
policy can result in greatly increased performance. See Figure 1.9 for a storage
performance comparison in large workstations and small servers that shows
the need for caching. Various replacement algorithms for software-controlled
caches are discussed in Chapter 9.

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest
level, the operating system may maintain a cache of file-system data in main
memory Also, electronic RAM disks (also known as solid-state disks) may be
used for high-speed storage that is accessed through the file-system interface.
The bulk of secondary storage is on magnetic disks. The magnetic-disk storage,
in turn, is often backed up onto magnetic tapes or removable disks to protect
against data loss in case of a hard-disk failure. Some systems automatically
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Figure 1.9 Performance of various levels of storage.

archive old file data from secondary storage to tertiary storage, such as tape
jukeboxes, to lower the storage cost (see Chapter 12).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the
controlling operating-system software. For instance, data transfer from cache
to CPU and registers is usually a hardware function, with no operating-system
intervention. In contrast, transfer of data from disk to memory is usually
controlled by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is to
be incremented by 1 is located in file B, and file B resides on magnetic disk.
The increment operation proceeds by first issuing an I/O operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and in an
internal register (see Figure 1.10). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various
processes, extreme care must be taken to ensure that, if several processes wish
to access A, then each of these processes will obtain the most recently updated
value of A.

magnetic
disk

main
memory

hardware
register

Figure 1.10 Migration of integer A from disk to register.
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The situation becomes more complicated in a multiprocessor environment
where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache. In such an environment, a copy of A may exist
simultaneously in several caches. Since the various CPUs can all execute
concurrently, we must make sure that an update to the value of A in one cache
is immediately reflected in all other caches where A resides. This situation is
called cache coherency, and it is usually a hardware problem (handled below
the operating-system level).

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept
on different computers that are distributed in space. Since the various replicas
may be accessed and upda ted concurrently, some distributed systems ensure
that, when a replica is upda ted in one place, all other replicas are brought up
to date as soon as possible. There are various ways to achieve this guarantee,
as we discuss in Chapter 17.

1.8.4 I/O Systems

One of the purposes of an operating system is to hide the peculiarities of specific
hardware devices from the user. For example, in UNIX, the peculiarities of I/O
devices are hidden from the bulk of the operating system itself by the I/O
subsystem. The I/O subsystem consists of several components:

• A memory-management component that includes buffering, caching, and
spooling

• A general device-driver interface

• Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed in Section 1.2.3 how interrupt handlers and device drivers are
used in the construction of efficient I/O subsystems. In Chapter 13, we discuss
how the I/O subsystem interfaces to the other system components, manages
devices, transfers data, and detects I/O completion.

1.9 Protection and Security

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-
tion from the operating system. For example, memory-addressing hardware
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so
the integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
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provide means for specification of the controls to be imposed and means for
enforcement.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that
is malfunctioning. An unprotected resource cannot defend against use (or
misuse) by an unauthorized or incompetent user. A protection-oriented system
provides a means to distinguish between authorized and unauthorized usage,
as we discuss in Chapter 14.

A system can have adequate protection but still be prone to failure and
allow inappropriate access. Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
the job of security to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
service attacks (which use all of a system's resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is consider an operating-
system function on some systems, while others leave the prevention to policy
or additional software. Due to the alarming rise in security incidents, operating-
system security features represent a fast-growing area of research and of
implementation. Security is discussed in Chapter 15.

Protection and security require the system to be able to distinguish among
all its users. Most operating systems maintain a list of user names and
associated user identifiers (user IDs). In Windows NT parlance, this is a security
ID (SID). These numerical IDs are unique, one per user. When a user logs in
to the system, the authentication stage determines the appropriate user ID for
the user. That user ID is associated with all of the user's processes and threads.
When an ID needs to be user readable, it is translated back to the user name
via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX system may be
allowed to issue all operations on that file, whereas a selected set of users may
only be allowed to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be implemented as a system-wide list of group names and group identifiers.
A user can be in one or more groups, depending on operating-system design
decisions. The user's group IDs are also included in every associated process
and thread.

In the course of normal use of a system, the user ID and group ID
for a user are sufficient. However, a user sometimes needs to escalate
privileges to gain extra permissions for an activity. The user may need
access to a device that is restricted, for example. Operating systems pro-
vide various methods to allow privilege escalation. On UNIX, for example,
the setuid attribute on a program causes that program to run with the
user ID of the owner of the file, rather than the current user's ID. The pro-
cess runs with this effective UID until it turns off the extra privileges or
terminates. Consider an example of how this is done in Solaris 10. User
pbg has user ID 101 and group ID 14, which are assigned via /etc/passwd:
pbg:x:101:14::/export/home/pbg:/usr/bin/bash
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1.10 Distributed Systems *

A distributed system is a collection of physically separate, possibly heteroge-
neous computer systems that are networked to provide the users with access
to the various resources that the system maintains. Access to a shared resource
increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface's device driver.
Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes—for example FTP and NFS. The protocols
that create a distributed system can greatly affect that system's utility and
popularity.

A network, in the simplest terms, is a communication path between
two or more systems. Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport media. TCP/IP is the most common network protocol,
although ATM and other protocols are in widespread use. Likewise, operating-
system support of protocols varies. Most operating systems support TCP/IP,
including the Windows and UNIX operating systems. Some systems support
proprietary protocols to suit their needs. To an operating system, a network
protocol simply needs an interface device—a network adapter, for example-—
with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a floor,
or a building. A wide-area network (WAN) usually links buildings, cities,
or countries. A global company may have a WAN to connect its offices
worldwide. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a metropolitan-area network (MAN) could link buildings within
a city. BlueTooth and 802.11 devices use wireless technology to communicate
over a distance of several feet, in essence creating a small-area network such
as might be found in a home.

The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity. A
network operating system is an operating system that provides features such
as file sharing across the network and that includes a communication scheme
that allows different processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment: The different operating
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systems communicate closely enough to provide the illusion that only a single
operating system controls the network.

We cover computer networks and distributed systems in Chapters 16
through 18.

1.11 Special-Purpose Systems

The discussion thus far has focused on general-purpose computer systems
that we are all familiar with. There are, however, different classes of computer
systems whose functions are more limited and whose objective is to deal with
limited computation domains.

1.11.1 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to VCRs and microwave ovens. They tend to have very specific tasks.
The systems they run on are usually primitive, and so the operating systems
provide limited features. Usually, they have little or no user interface, preferring
to spend their time monitoring and managing hardware devices, such as
automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems—such as UNIX—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices
with application-specific integrated circuits (ASICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as members of networks and the Web,
is sure to increase as well. Even now, entire houses can be computerized, so
that a central computer—either a general-purpose computer or an embedded
system—can control heating and lighting, alarm systems, and even coffee
makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator may call the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time operating systems. A
real-time system is used when rigid time requirements have been placed on
the operation of a processor or the flow of data; thus, it is often used as a
control device in a dedicated application. Sensors bring data to the computer.
The computer must analyze the data and possibly adjust controls to modify
the sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real-
time systems. Some automobile-engine fuel-injection systems, home-appliance
controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
mustbe done within the defined constraints, or the system will fail. For instance,
it would not do for a robot arm to be instructed to halt after it had smashed
into the car it was building. A real-time system functions correctly only if it
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returns the correct result within its time constraints. Contrast this system with
a time-sharing system, where it is desirable (but not mandatory) to respond
quickly, or a batch system, which may have no time constraints at all.

In Chapter 19, we cover real-time embedded systems in great detail. In
Chapter 5, we consider the scheduling facility needed to implement real-time
functionality in an operating system. In Chapter 9, we describe the design
of memory management for real-time computing. Finally, in Chapter 22, we
describe the real-time components of the Windows XP operating system.

1.11.2 Multimedia Systems

Most operating systems are designed to handle conventional data such as
text files, programs, word-processing documents, and spreadsheets. However,
a recent trend in technology is the incorporation of multimedia data into
computer systems. Multimedia data consist of audio and video files as well as
conventional files. These data differ from conventional data in that multimedia
data—such as frames of video—must be delivered (streamed) according to
certain time restrictions (for example, 30 frames per second).

Multimedia describes a wide range of applications that are in popular use
today. These include audio files such as MP3 DVD movies, video conferencing,
and short video clips of movie previews or news stories downloaded over the
Internet. Multimedia applications may also include live webcasts (broadcasting
over the World Wide Web) of speeches or sporting events and even live
webcams that allow a viewer in Manhattan to observe customers at a cafe
in Paris. Multimedia applications need not be either audio or video; rather, a
multimedia application often includes a combination of both. For example, a
movie may consist of separate audio and video tracks. Nor must multimedia
applications be delivered only to desktop personal computers. Increasingly,
they are being directed toward smaller devices, including PDAs and cellular
telephones. For example, a stock trader may have stock quotes delivered
wirelessly and in real time to his PDA.

In Chapter 20, we explore the demands of multimedia applications, how
multimedia data differ from conventional data, and how the nature of these
data affects the desigii of operating systems that support the requirements of
multimedia systems.

1.11.3 Handheld Systems

Handheld systems include personal digital assistants (PDAs), such as Palm
and Pocket-PCs, and cellular telephones, many of which use special-purpose
embedded operating systems. Developers of handheld systems and applica-
tions face many challenges, most of which are due to the limited size of such
devices. For example, a PDA is typically about 5 inches in height and 3 inches
in width, and it weighs less than one-half pound. Because of their size, most
handheld devices have a small amount of memory, slow processors, and small
display screens. We will take a look now at each of these limitations.

The amount of physical memory in a handheld depends upon the device,
but typically is is somewhere between 512 KB and 128 MB. (Contrast this with a
typical PC or workstation, which may have several gigabytes of memory!)
As a result, the operating system and applications must manage memory
efficiently. This includes returning all allocated memory back to the memory
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manager when the memory is not being used. In Chapter 9, we will explore
virtual memory, which allows developers to write programs that behave as if
the system has more memory than is physically available. Currently, not many
handheld devices use virtual memory techniques, so program developers must
work within the confines of limited physical memory.

A second issue of concern to developers of handheld devices is the speed
of the processor used in the devices. Processors for most handheld devices
run at a fraction of the speed of a processor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require
a larger battery, which would take up more space and would have to be
replaced (or recharged) more frequently. Most handheld devices use smaller,
slower processors that consume less power. Therefore, the operating system
and applications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is I/O.
A lack of physical space limits input methods to small keyboards, handwriting
recognition, or small screen-based keyboards. The small display screens limit
output options. Whereas a monitor for a home computer may measure up to
30 inches, the display for a handheld device is often no more than 3 inches
square. Familiar tasks, such as reading e-mail and browsing web pages, must
be condensed into smaller displays. One approach for displaying the content
in web pages is web clipping, where only a small subset of a web page is
delivered and displayed on the handheld device.

Some handheld devices use wireless technology, such as BlueTooth or
802.11, allowing remote access to e-mail and web browsing. Cellular telephones
with connectivity to the Internet fall into this category. However, for PDAs that
do not provide wireless access, downloading data typically requires the user
to first download the data to a PC or workstation and then download the data
to the PDA. Some PDAs allow data to be directly copied from one device to
another using an infrared link.

Generally, the limitations in the functionality of PDAs are balanced by
their convenience and portability. Their use continues to expand as network
connections become more available and other options, such as digital cameras
and MP3 players, expand their utility.

1.12 Computing Environments

So far, we have provided an overview of computer-system organization and
major operating-system components. We conclude with a brief overview of
how these are used in a variety of computing environments.

1.12.1 Traditional Computing

As computing matures, the lines separating many of the traditional computing
environments are blurring. Consider the "typical office environment." Just a
few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers. Terminals attached
to mainframes were prevalent at many companies as well, with even fewer
remote access and portability options.
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The current trend is toward providing more ways to access these computing
environments. Web technologies are stretching the boundaries of traditional
computing. Companies establish portals, which provide web accessibility
to their internal servers. Network computers are essentially terminals that
understand web-based computing. Handheld computers can synchronize with
PCs to allow very portable use of company information. Handheld PDAs can
also connect to wireless networks to use the company's web portal (as well as
the myriad other web resources).

At home, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Today, network-connection speeds once
available only at great cost are relatively inexpensive, giving home users more
access to more data. These fast data connections are allowing home computers
to serve up web pages and to run networks that include printers, client PCs,
and servers. Some homes even have firewalls to protect their networks from
security breaches. Those firewalls cost thousands of dollars a few years ago
and did not even exist a decade ago.

In the latter half of the previous century, computing resources were scarce.
(Before that, they were nonexistent!) For a period of time, systems were either
batch or interactive. Batch system processed jobs in bulk, with predetermined
input (from files or other sources of data). Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. Time-sharing systems used a timer and
scheduling algorithms to rapidly cycle processes through the CPU, giving each
user a share of the resources.

Today, traditional time-sharing systems are uncommon. The same schedul-
ing technique is still in use on workstations and servers, but frequently the
processes are all owned by the same user (or a single user and the operating
system). User processes, and system processes that provide services to the user,
are managed so that each frequently gets a slice of computer time. Consider
the windows created while a user is working on a PC, for example, and the fact
that they may be performing different tasks at the same time.

1.12.2 Client-Server Computing

As PCs have become faster, more powerful, and cheaper, designers have
shifted away from centralized system architecture. Terminals connected to
centralized systems are now being supplanted by PCs. Correspondingly, user-
interface functionality once handled directly by the centralized systems is
increasingly being handled by the PCs. As a result, many of todays systems act
as server systems to satisfy requests generated by client systems. This form
of specialized distributed system, called client-server system, has the general
structure depicted in Figure 1.11.

Server systems can be broadly categorized as compute servers and file
servers:

• The compute-server system provides an interface to which a client can
send a request to perform an action (for example, read data); in response,
the server executes the action and sends back results to the client. A server
running a database that responds to client requests for data is an example
of such a svstem.
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Figure 1.11 General structure of a client-server system.

• The file-server system provides a file-system interface where clients can
create, update, read, and delete files. An example of such a system is a web
server that delivers files to clients running web browsers.'

1.12.3 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another; instead, all nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from—other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

• When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

• A peer acting as a client must first discover what node provides a desired
service by broadcasting a request for the service to all other nodes in the
network. The node (or nodes) providing that service responds to the peer
making the request. To support this approach, a discovery protocol must be
provided that allows peers to discover services provided by other peers in
the network.

Peer-to-peer networks gained widespread popularity in the late 1990s with
several file-sharing services, such as Napster and Gnutella, that enable peers
to exchange files with one another. The Napster system uses an approach
similar to the first type described above: a centralized server maintains an
index of all files stored on peer nodes in the Napster network, and the actual
exchanging of files takes place between the peer nodes. The Gnutella system
uses a technique similar to the second type: a client broadcasts file requests
to other nodes in the system, and nodes that can service the request respond
directly to the client. The future of exchanging files remains uncertain because
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many of the files are copyrighted (music, for example), and there are* laws
governing the distribution of copyrighted material. In any case, though, peer-
to-peer technology undoubtedly will play a role in the future of many sendees,
such as searching, file exchange, and e-mail.

1.12.4 Web-Based Computing

The Web has become ubiquitous, leading to more access by a wider variety of
devices than was dreamt of a few years ago. PCs are still the most prevalent
access devices, with workstations, handheld PDAs, and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Devices that
were not previously networked now include wired or wireless access. Devices
that were networked now have faster network connectivity, provided by either
improved networking technology, optimized network implementation code,
or both.

The implementation of web-based computing has given rise to new
categories of devices, such as load balancers, which distribute network
connections among a pool of similar servers. Operating systems like Windows
95, which acted as web clients, have evolved into Linux and Windows XP, which
can act as web servers as well as clients. Generally, the Web has increased the
complexity of devices, because their users require them to be web-enabled.

1.13 Summary

An operating system is software that manages the computer hardware as well
as providing an environment for application programs to run. Perhaps the
most visible aspect of an operating system is the interface to the computer
system, it provides to the human user.

For a computer to do its job of executing programs, the programs must be
in main memory. Main memory is the only large storage area that the processor
can access directly. It is an array of words or bytes, ranging in size from millions
to billions. Each word in memory has its own address. The main memory is
usually a volatile storage device that loses its contents when power is turned off
or lost. Most computer systems provide secondary storage as an extension of
main memory. Secondary storage provides a form of non-volatile storage that
is capable of holding large quantities of data permanently. The most common
secondary-storage device is a magnetic disk, which provides storage of both
programs and data.

The wide variety of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,
but they are fast. As we move down the hierarchy, the cost per bit generally-
decreases, whereas the access time generally increases.

There are several different strategies for designing a computer system.
Uniprocessor systems have only a single processor while multiprocessor
systems contain two or more processors that share physical memory and
peripheral devices. The most common multiprocessor design is symmetric
multiprocessing (or SMP), where all processors are considered peers and run
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independently of one another. Clustered systems are a specialized form of
multiprocessor systems and consist of multiple computer systems connected
by a local area network.

To best utilize the CPU, modern operating systems employ multiprogram-
ming / which allows several jobs to be in memory at the same time, thus ensuring
the CPU always has a job to execute. Timesharing systems are an extension
of multiprogramming whereby CPU scheduling algorithms rapidly switch
between jobs, thus providing the illusion each job is running concurrently.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper operation of
the system, the hardware has two modes: user mode and kernel mode. Various
instructions (such as I/O instructions and halt instructions) are privileged and
can be executed only in kernel mode. The memory in which the operating
system resides must also be protected from modification by the user. A timer
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, and timer interrupt) are basic building blocks used by
operating systems to achieve correct operation.

A process (or job) is the fundamental unit of work in an operating system.
Process management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with another.
An operating system manages memory by keeping track of what parts of
memory are being used and by whom. The operating system is also responsible
for dynamically allocating and freeing memory space. Storage space is also
managed by the operating system and this includes providing file systems for
representing files and directories and managing space on mass storage devices.

Operating systems must also be concerned with protecting and securing
the operating system and users. Protection are mechanisms that control the
access of processes or users to the resources made available by the computer
system. Security measures are responsible for defending a computer system
from external or internal attacks.

Distributed systems allow users to share resources on geographically
dispersed hosts connected via a computer network. Services may be provided
through either the client-server model or the peer-to-peer model. In a clustered
system, multiple machines can perform computations on data residing on
shared storage, and computing can continue even when some subset of cluster
members fails.

LANs and WANs are the two basic types of networks. LANs enable
processors distributed over a small geographical area to communicate, whereas
WANs allow processors distributed over a larger area to communicate. LANs
typically are faster than WANs.

There are several computer systems that serve specific purposes. These
include real-time operating systems designed for embedded environments
such as consumer devices, automobiles, and robotics. Real-time operating
systems have well defined, fixed time constraints. Processing must be done
within the defined constraints, or the system will fail. Multimedia systems
involve the delivery of multimedia data and often have special requirements of
displaying or playing audio, video, or synchronized audio and video streams.

Recently, the influence of the Internet and the World Wide Web has
encouraged the development of modern operating systems that include web
browsers and networking and communication software as integral features.
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Exercises *

1.1 In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared
machine as in a dedicated machine? Explain your answer.

1.2 The issue of resource utilization shows up in different forms in different
types of operating systems. List what resources must be managed
carefully in the following settings:

a. Mainframe or minicomputer systems

b. Workstations connected to servers

c. Handheld computers

1.3 Under what circumstances would a user be better off using a time-
sharing system rather than a PC or single-user workstation?

1.4 Which of the functionalities listed below need to be supported by the
operating system for the following two settings: (a) handheld devices
and (b) real-time systems.

a. Batch programming

b. Virtual memory

c. Time sharing

1.5 Describe the differences between symmetric and asymmetric multipro-
cessing. What are three advantages and one disadvantage of multipro-
cessor systems?

1.6 How do clustered systems differ from multiprocessor systems? What is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?

1.7 Distinguish between the client-server and peer-to-peer models of
distributed systems.

1.8 Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of
each.

1.9 How are network computers different from traditional personal com1"
puters? Describe some usage scenarios in which it is advantageous to
use network computers.

1.10 What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?
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1.11 Direct memory access is used for high-speed I/O devices in order to
avoid increasing the CPU's execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are
complete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

1.12 Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is not
possible.

1.13 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

1.14 Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems

b. Multiprocessor systems

c. Distributed systems

1.15 Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

1.16 What network configuration would best suit the following environ-
ments?

a. A dormitory floor

b. A university campus

c. A state

d. A nation

1.17 Define the essential properties of the following types of operating
systems:

a. Batch

b. Interactive

c. Time sharing

d. Real time

e. Network
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f. Parallel

g. Distributed

h. Clustered

i. Handheld

1.18 What are the tradeoffs inherent in handheld computers?
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CHAPTER

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices among
various algorithms and strategies.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showing the viewpoints of users, programmers, and operating-system
designers. We consider what services an operating system provides, how they
are provided, and what the various methodologies are for designing such
systems. Finally, we describe how operating systems are created and how a
computer starts its operating system.

CHAPTER OBJECTIVES

• To describe the services an operating system provides to users, processes,
and other systems.

• To discuss the various ways of structuring an operating system.

• To explain how operating systems are installed and customized and how
they boot.

2.1 Operating-System Services

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system services
are provided for the convenience of the programmer, to make the programming
task easier.

39
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One set of operating-system services provides functions that are helpful to
the user.

• User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. One is a command-line interface
(CLI), which uses text commands and a method for entering them (say, a
program to allow entering and editing of commands). Another is a batch
interface, in which commands and directives to control those commands
are entered into files, and those files are executed. Most commonly/ a
graphical user interface (GUI) is used. Here, the interface is a window
system with a pointing device to direct I/O, choose from menus, and make
selections and a keyboard to enter text. Some systems provide two or all
three of these variations.

• Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

• I/O operations. A running program may require I/O, which may involve a
file or an I/O device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a CRT screen). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do I/O.

• File-system manipulation. The file system is of particular interest. Obvi-
ously, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and list file
information. Finally, some programs include permissions management to
allow or deny access to files or directories based on file ownership.

• Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a computer network. Communications may be imple-
mented via shared memory or through message passing, in which packets of
information are moved between processes by the operating system.

• Error detection. The operating system needs to be constantly aware of
possible errors. Errors may occur in the CPU and memory hardware (such
as a memory error or a power failure), in I/O devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to
access an illegal memory location, or a too-great use of CPU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing. Debugging facilities can greatly
enhance the user's and programmer's abilities to use the system efficiently.

Another set of operating-system functions exists not for helping the user
but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among
the users.
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Resource allocation. When there are multiple users or multiple jobs
running at the same time, resources must be allocated to each of {hem.
Many different types of resources are managed by the operating system.
Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, whereas others (such as I/O devices) may have much more
general request and release code. For instance, in determining how best to
use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CPU, the jobs that must be executed, the number of
registers available, and other factors. There may also be routines to allocate
printers, modems, USB storage drives, and other peripheral devices.

Accounting. We want to keep track of which users use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigiire the system to improve computing services.

Protection and security. The owners of information stored in a multiuser or
networked computer system may want to control use of that information.
When several separate processes execute concurrently, it should not be
possible for one process to interfere with the others or with the operating
system itself. Protection involves ensuring that all access to system
resources is controlled. Security of the system from outsiders is also
important. Such security starts with requiring each user to authenticate
himself or herself to the system, usually by means of a password, to gain
access to system resources. It extends to defending external I/O devices,
including modems and network adapters, from invalid access attempts
and to recording all such connections for detection of break-ins. If a system
is to be protected and secure, precautions must be instituted throughout
it. A chain is only as strong as its weakest link.

2.2 User Operating-System Interface

There are two fundamental approaches for users to interface with the operating
system. One technique is to provide a command-line interface or command
interpreter that allows users to directly enter commands that are to be
performed by the operating system. The second approach allows the user
to interface with the operating system via a graphical user interface or GUI.

2.2.1 Command Interpreter

Some operating systems include the command interpreter in the kernel. Others,
such as Windows XP and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first logs
on (on interactive systems). On systems with multiple command interpreters
to choose from, the interpreters are known as shells. For example, on UNIX
and Linux systems, there are several different shells a user may choose from
including the Bourne shell, C shell, Bourne-Again shell, the Korn shell, etc. Most
shells provide similar functionality with only minor differences; most users
choose a shell based upon personal preference.
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The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipulate
files: create, delete, list, print, copy, execute, and so on. The MS-DOS and UNIX
shells operate in this way. There are two general ways in which these commands
can be implemented.

In one approach, the command interpreter itself contains the code to
execute the command. For example, a command to delete a file may cause
the command interpreter to jump to a section of its code that sets up the
parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter,
since each command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems
—implements most commands through system programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm f i l e . t x t

would search for a file called rm, load the file into memory, and execute it with
the parameter f i l e . txt. The function associated with the rm command would
be defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper
names. The command-interpreter program, which can be small, does not have
to be changed for new commands to be added.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is through a user-
friendly graphical user interface or GUI. Rather than having users directly enter
commands via a command-line interface, a GUI allows provides a mouse-based
window-and-menu system as an interface. A GUI provides a desktop metaphor
where the mouse is moved to position its pointer on images, or icons, on the
screen (the desktop) that represent programs, files, directories, and system
functions. Depending on the mouse pointer's location, clicking a button on the
mouse can invoke a program, select a file or directory—known as a folder—
or pull down a menu that contains commands.

Graphical user interfaces first appeared due in part to research taking place
in the early 1970s at Xerox PARC research facility. The first GUI appeared on
the Xerox Alto computer in 1973. However, graphical interfaces became more
widespread with the advent of Apple Macintosh computers in the 1980s. The
user interface to the Macintosh operating system (Mac OS) has undergone
various changes over the years, the most significant being the adoption of
the Aqua interface that appeared with Mac OS X. Microsoft's first version
of Windows—version 1.0—was based upon a GUI interface to the MS-DOS
operating system. The various versions of Windows systems proceeding this
initial version have made cosmetic changes to the appearance of the GUI and
several enhancements to its functionality, including the Windows Explorer.

Traditionally, UNIX systems have been dominated by command-line inter-
faces, although there are various GUI interfaces available, including the Com-
mon Desktop Environment (CDE) and X-Windows systems that are common on
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commercial versions of UNIX such as Solaris and IBM's AIX system. However,
there has been significant development in GUI designs from various open-
source projects such as K Desktop Environment (or KDE) and the GNOME desktop
by the GNU project. Both the KDE and GNOME desktops rim on Linux and
various UNIX systems and are available under open-source licenses, which
means their source code is in the public domain.

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNIX users prefer
a command-line interface as they often provide powerful shell interfaces.
Alternatively, most Windows users are pleased to use the Windows GUI
environment and almost never use the MS-DOS shell interface. The various
changes undergone by the Macintosh operating systems provides a nice study
in contrast. Historically, Mac OS has not provided a command line interface,
always requiring its users to interface with the operating system using its GUI.
However, with the release of Mac OS X (which is in part implemented using a
UNIX kernel), the operating system now provides both a new Aqua interface
and command-line interface as well.

The user interface can vary from system to system and even from user
to user within a system. It typically is substantially removed from the actual
system structure. The design of a useful and friendly user interface is therefore
not a direct function of the operating system. In this book, we concentrate on
the fundamental problems of providing adequate service to user programs.
From the point of view of the operating system, we do not distinguish between
user programs and system programs.

2.3 System Calls

System calls provide an interface to the services made available by an operating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly), may need to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let's first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the
user for the names of the two files. In an interactive system, this approach will
require a sequence of system calls, first to write a prompting message on the
screen and then to read from the keyboard the characters that define the two
files. On mouse-based and icon-based systems, a menu of file names is usually
displayed in a window. The user can then use the mouse to select the source
name, and a window can be opened for the destination name to be specified.
This sequence requires many I/O system calls.

Once the two file names are obtained, the program must open the input file
and create the output file. Each of these operations requires another system call.
There are also possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that name or that
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the file is protected against access. In these cases, the program should8 print a
message on the console (another sequence of system calls) and then terminate
abnormally (another system call). If the input file exists, then we must create a
new output file. We may find that there is already an output file with the same
name. This situation may cause the program to abort (a system call), or we
may delete the existing file (another system call) and create a new one (another
system call). Another option, in an interactive system, is to ask the user (via
a sequence of system calls to output the prompting message and to read the
response from the terminal) whether to replace the existing file or to abort the
program.

Now that both files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another system call). Each read
and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (no more disk space, printer out of paper, and so on).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more
system calls), and finally terminate normally (the final system call). As we
can see, even simple programs may make heavy use of the operating system.
Frequently, systems execute thousands of system calls per second. This system-
call sequence is shown in Figure 2.1.

Most programmers never see this level of detail, however. Typically, appli-
cation developers design programs according to an application programming
interface (API). The API specifies a set of functions that are available to an
application programmer, including the parameters that are passed to each

source file destination file

Example System Call Sequence
Acquire input file name

Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails
Close output file
Write completion message to screen
Terminate normally

Figure 2.1 Example of how system calls are used.
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EXAMPLE OF STANDARD API

As an example of a standard API, consider the ReadFileQ function in the
Win32 API—a function for reading from a file. The API for this function
appears Ln Figure 2.2.

return value

I
BOOL ReadFile c (HANDLE file,

LPVOID buffer,
T DWORD bytes To Read, parameters

function name

DWORD bytes To Read,
LPDWORD bytec Read,
LPOVERLAPPED ov". ) ;

Figure 2.2 The API for the ReadFileO function.

A description of the parameters passed to ReadFileO is as follows:

• 'HANDLE file—the file to be read.

• LPVOID buffer—a buffer where the data will be read into and written
from.

• DWORD bytesToRead—the number of bytes to be read into the buffer.

• LPDWORD bytesRead—the number of bytes read during the last read.

• LPOVERLAPPED ovl—i ndicates i f overl apped I / O i s being used.

function and the return values the programmer can expect. Three of the most
common APIs available to application programmers are the Win32 API for
Windows systems, the POSIX API for POSIX-based systems (which includes
virtually all versions of UNIX, Linux, and Mac OS X), and the Java API for
designing programs that run on the Java virtual machine.

Note that the system-call names used throughout this text are generic
examples. Each operating system has its own name for each system call.

Behind the scenes, the functions that make up an API typically invoke the
actual system calls on behalf of the application programmer. For example,
the Win32 function CreateProcess() (which unsurprisingly is used to create a
new process) actually calls the NTCreateProcess() system call in the Windows
kernel. Why would an application programmer prefer programming according
to an API rather than invoking actual system calls? There are several reasons for
doing so. One benefit of programming according to an API concerns program
portability: An application programmer designing a program using an API can
expect her program to compile and run on any system that supports the same
API (although in reality, architectural differences often make this more difficult
than it may appear). Furthermore, actual system calls can often be more detailed
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and difficult to work with than the API available to an application programmer.
Regardless, there often exists a strong correlation between invoking a function
in the API and its associated system call within the kernel. In fact, many of the
POSIX and Win32 APIs are similar to the native system calls provided by the
UNIX, Linux, and Windows operating systems.

The run-time support system (a set of functions built into libraries included
with a compiler) for most programming languages provides a system-call
interface that serves as the link to system calls made available by the operating
system. The system-call interface intercepts function calls in the API and
invokes the necessary system call within the operating system. Typically, a
number is associated with each system call, and the system-call interface
maintains a table indexed according to these numbers. The system call interface
then invokes the intended system call in the operating system kernel and
returns the status of the system call and any return values.

The caller needs to know nothing about how the system call is implemented
or what it does during execution. Rather, it just needs to obey the API and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the API and are managed by the run-time
support library. The relationship between an API, the system-call interface,
and the operating system is shown in Figure 2.3, which illustrates how the
operating system handles a user application invoking the open() system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and

open (

user
mode

kernel
mode

system call interface

open ()

Implementation
->- of open {)

system call

return

Figure 2.3 The handling of a user application invoking the openQ system call.



2.4 Types of System Calls 47

it 'parameters •:
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user program
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register
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(code for
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call 13

operating system

Figure 2.4 Passing of parameters as a table.

length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating system.
The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in a block, or table, in memory, and the address
of the block is passed as a parameter in a register (Figure 2.4). This is the
approach taken by Linux and Solaris. Parameters also can be placed, or pushed,
onto the stack by the program and popped off the stack by the operating system.
Some operating systems prefer the block or stack method, because those
approaches do not limit the number or length of parameters being passed.

2.4 Types of System Calls

System calls can be grouped roughly into five major categories: process
control, file manipulation, device manipulation, information maintenance,
and communications. In Sections 2.4.1 through 2.4.5, we discuss briefly the
types of system calls that may be provided by an operating system. Most of
these system calls support, or are supported by, concepts and functions that
are discussed in later chapters. Figure 2.5 summarizes the types of system calls
normally provided by an operating system.

2.4.1 Process Control

A running program needs to be able to halt its execution either normally (end)
or abnormally (abort). If a system call is made to terminate the currently
running program abnormally, or if the program runs into a problem and
causes an error trap, a dump of memory is sometimes taken and an error
message generated. The dump is written to disk and may be examined by a
debugger—a system program designed to aid the programmer in finding and
correcting bugs-—to determine the cause of the problem. Under either normal
or abnormal circumstances, the operating system must transfer control to the
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• Process control

o end, abort

o load, execute

o create process, terminate process

o get process attributes, set process attributes

o wait for time

o wait event, signal event

o allocate and free memory

• File management

° create file, delete file

o open, close

° read, write, reposition

o get file attributes, set file attributes

• Device management

o request device, release device

° read, write, reposition

o get device attributes, set device attributes

° logically attach or detach devices

• Information maintenance

o get time or date, set time or date

o get system data, set system data

o get process, file, or device attributes

o set process, file, or device attributes

• Communications
0 create, delete communication connection

° send, receive messages

o transfer status information

o attach or detach remote devices
Figure 2.5 Types of system calls.

invoking command interpreter. The command interpreter then reads the next
command. In an interactive system, the command interpreter simply continues
with the next command; it is assumed that the user will issue an appropriate
command to respond to any error. In a GUI system, a pop-up window might
alert the user to the error and ask for guidance. In a batch system, the command
interpreter usually terminates the entire job and continues with the next job.
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EXAMPLE OF STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, lot's assume a C program
invokes the p r in t f () statement. The C library intercepts this call and
invokes the necessary system call(s) in the operating system—in this instance,
the wri te () system call. The C library takes the value returned by wri te ()
and passes it back to the user program. This is shown in Figure 2.6.

user
mode

#include <stdio.h>
int main ()

— printf ("Greetings"); i

return o;

kernel
mode

standard C library

Figure 2.6 C library handling of w r i t e ( ) .

Some systems allow control cards to indicate special recovery actions in case
an error occurs. A control card is a batch system concept. It is a command to
manage the execution of a process. If the program discovers an error in its input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. It is then
possible to combine normal and abnormal termination by defining a normal
termination as an error at level 0. The command interpreter or a following
program can use this error level to determine the next action automatically.

A process or job executing one program may want to load and execute
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command, the click of a mouse,
or a batch command. An interesting question is where to return control when
the loaded program terminates. This question is related to the problem of
whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.
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If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have
effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new job or process to
be multiprogrammed. Often, there is a system call specifically for this purpose
(create process or submit job).

If we create a new job or process, or perhaps even a set of jobs or processes,
we should be able to control its execution. This control requires the ability
to determine and reset the attributes of a job or process, including the job's
priority, its maximum allowable execution time, and so on (get process
at t r ibutes and set process attributes). We may also want to terminate
a job or process that we created (terminate process) if we find that it is
incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them to
finish their execution. We may want to wait for a certain amount of time to
pass (wait time); more probably, we will want to wait for a specific event
to occur (wait event). The jobs or processes should then signal when that
event has occurred (signal event). System calls of this type, dealing with the
coordination of concurrent processes, are discussed in great detail in Chapter
6.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump memory. This provision is useful for
debugging. A program trace lists each instruction as it is executed; it is
provided by fewer systems. Even microprocessors provide a CPU mode known
as single step, in which a trap is executed by the CPU after every instruction.
The trap is usually caught by a debugger.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program

free memory

iinterpfefer;:

kernel

(a)

free memory

process

;:jrrterfjre|er:

kernel

(b)

Figure 2.7 MS-DOS execution, (a) At system startup, (b) Running a program.
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counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

There are so many facets of and variations in process and job control that
we next use two examples—one involving a single-tasking system and the
other a multitasking system—to clarify these concepts. The MS-DOS operating
system is an example of a single-tasking system. It has a command interpreter
that is invoked when the computer is started (Figure 2.7(a)). Because MS-DOS
is single-tasking, it uses a simple method to run a program and does not create
a new process. It loads the program into memory, writing over most of itself to
give the program as much memory as possible (Figure 2.7(b)). Next, it sets the
instruction pointer to the first instruction of the program. The program then
runs, and either an error causes a trap, or the program executes a system call
to terminate. In either case, the error code is saved in the system memory for
later use. Following this action, the small portion of the command interpreter
that was not overwritten resumes execution. Its first task is to reload the rest
of the command interpreter from disk. Then the command interpreter makes
the previous error code available to the user or to the next program.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user's choice
is run. This shell is similar to the MS-DOS shell in that it accepts commands
and executes programs that the user requests. However, since FreeBSD is a
multitasking system, the command interpreter may continue running while
another program is executed (Figure 2.8). To start a new process, the shell
executes a fork() system call. Then, the selected program is loaded into
memory via an exec() system call, and the program is executed. Depending
on the way the command was issued, the shell then either waits for the process
to finish or runs the process "in the background." In the latter case, the shell
immediately reqviests another command. When a process is running in the
background, it cannot receive input directly from the keyboard, because the
shell is using this resource. I/O is therefore done through files or through a GUI
interface. Meanwhile, the user is free to ask the shell to run other programs, to
monitor the progress of the running process, to change that program's priority,

process D

free memory

process C

interpreter

process B

kernel

Figure 2.8 FreeBSD running multiple programs.
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SOLARIS 10 DYNAMIC TRACING FACILITY

Making running operating systems easier'to understand, debug, and tune
is an active area of operating system research and implementation. For
example, Solaris 10 includes the d t race dynamic tracing facility. This facility
dynamically adds probes to a running system. These probes can be queried
via the D programming language to determine an astonishing amount about
the kernel, the system state, and process activities. For example, Figure 2.9
follows an application as it executes a system call ( ioct l ) and further shows
the functional calls within the kernel as they execute lo perform the system
call. Lines ending with "'IT' are executed in user mode, and lines ending in
"K" in kernel mode.

|l ./all
dtrace:

. d *pqrep xclock' XEver.tsQueued
script './all.d' matched 52377

CPU FUNCTION
0 ->
0
0
0
0
0
0
0
0
0
0
0
0
0

0

n

c
0
0
0
0
0 <

c < -

XEventsQueued
> XEventsQueued
-> __XllTransBytesReadable
<- XllTransBytesReadable
-> XliTransSocketBytesReadable
<- XllTransSocketBytesreadable
-> ioctl

-> ioctl
-> getf

-> set active fd
<- set active fd

<- getf
-> get udatamodel
<- get udatamodel

-> releasef
-> clear active fd
<- clear active fd
-> cv broadcast
<- cv broadcast

<- releasef
<- ioctl

<- ioctl
XEventsQueued

XEventsQueued

probes

U
U
U
U
U
U
U
K
K
K
K
K
K
K

K
K
K
K
K
K
K
U
U
"..I

Figure 2 .9 So la r i s 10 d t r a c e f o l l o w s a s y s t e m cal l w i t h i n t h e kerneL: ; ;i; ::!:!!:

Other operating systems are starting to include various perfojj^figej;:
and tracing tools, fostered by research at various institutions, including jfe:

and so on. When the process is done, it executes an e x i t ( ) system call to
terminate, returning to the invoking process a status code of 0 or a nonzero
error code. This status or error code is then available to the shell or other
programs. Processes are discussed in Chapter 3 with an program example
using the fork () andexecO system calls.
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2.4.2 File Management a

The file system will be discussed in more detail in Chapters 10 and 11. We can,
however, identify several common system calls dealing with files,

We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file's attributes. Once the
file is created, we need to open it and to use it. We may also read, write, or
reposition (rewinding or skipping to the end of the file, for example). Finally,
we need to close the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the
file name, a file type, protection codes, accounting information, and so on.
At least two system calls, get f i l e a t t r ibute and set f i l e at tr ibute,
are required for this function. Some operating systems provide many more
calls, such as calls for file move and copy. Others might provide an API that
performs those operations using code and other system calls, and others might
just provide system programs to perform those tasks. If the system programs
are callable by other programs, then each can be considered an API by other
system programs.

2.4.3 Device Management

A process may need several resources to execute—main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will
have to wait until sufficient resources are available.

The various resources controlled by the operating sysstem can be thought
of as devices. Some of these devices are physical devices (for example, tapes),
while others can be thought of as abstract or virtual devices (for example,
files). If there are multiple users of the system, the system may require us to
first request the device, to ensure exclusive use of it. After we are finished
with the device, we release it. These functions are similar to the open and
close system calls for files. Other operating systems allow unmanaged access
to devices. The hazard then is the potential for device contention and perhaps
deadlock, which is described in Chapter 7.

Once the device has been requested (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In fact,
the similarity between I/O devices and files is so great that many operating
systems, including UNIX, merge the two into a combined file-device structure.
In this case, a set of system calls is used on files and devices. Sometimes,
I/O devices are identified by special file names, directory placement, or file
attributes.

The UI can also make files and devices appear to be similar, even though
the underlying system calls are dissimilar. This is another example of the many
design decisions that go into building an operating system and user interface.

2.4.4 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most
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systems have a system call to return the current t i m e and d a t e . Other system
calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

In addition, the operating system keeps information about all its processes,
and svstem calls are used to access this information. Generally, calls are
also used to reset the process information (get p r o c e s s a t t r i b u t e s and
s e t p r o c e s s a t t r i b u t e s ) . In Section 3.1.3, we discuss what information is
normally kept.

2.4.5 Communication

There are two common models of interprocess communication: the message-
passing model and the shared-memory model. In the message-passing model,
the communicating processes exchange messages with one another to transfer
information. Messages can be exchanged between the processes either directly
or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer
in a network has a host name by which it is commonly known. A host also
has a network identifier, such as an IP address. Similarly, each process has
a process name, and this name is translated into an identifier by which the
operating system can refer to the process. The get host id and get processid
system calls do this translation. The identifiers are then passed to the general-
purpose open and close calls provided by the file system or to specific
open connection and close connection system calls, depending on the
system's model of communication. The recipient process usually must give its
permission for communication to take place with an accept connection call.
Most processes that will be receiving connections are special-purpose daemons,
which are systems programs provided for that purpose. They execute a wait
for c onnect ion call and are awakened when a connection is made. The source
of the communication, known as the client, and the receiving daemon, known as
a server, then exchange messages by using read message and write message
system calls. The close connection call terminates the communication.

In the shared-memory model, processes use shared memory create and
shared memory attach system calls to create and gain access to regions of
memory owned by other processes. Recall that, normally, the operating system
tries to prevent one process from accessing another process's memory. Shared
memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared
areas. The form of the data and the location are determined by the processes and
are not under the operating system's control. The processes are also responsible
for ensuring that they are not writing to the same location simultaneously. Such
mechanisms are discussed in Chapter 6. In Chapter 4, we look at a variation of
the process scheme—threads—in which memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. It is also easier to
implement than is shared memory for intercomputer communication. Shared
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memory allows maximum speed and convenience of communication, since it
can be done at memory speeds when it takes place within a computer. Problems
exist, however, in the areas of protection and synchronization between the
processes sharing memory.

2.5 System Programs

Another aspect of a modern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest level is
hardware. Next is the operating system, then the system programs, and finally
the application programs. System programs provide a convenient environment
for program development and execution. Some of them are simply user
interfaces to system calls; others are considerably more complex. They can
be divided into these categories:

• File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

• Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUI. Some systems also support a
registry, which is used to store and retrieve configuration information.

• File modification. Several text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may also be special commands to search contents of files or perform
transformations of the text.

• Programming-language support. Compilers, assemblers, debuggers and
interpreters for common programming languages (such as C, C++, Java,
Visual Basic, and PERL) are often provided to the user with the operating
system.

• Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

• Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another's screens, to browse web
pages, to send electronic-mail messages, to log in remotely, or to transfer
files from one machine to another.

In addition to systems programs, most operating systems are supplied
with programs that are useful in solving common problems or performing
common operations. Such programs include web browsers, word processors
and text formatters, spreadsheets, database systems, compilers, plotting and
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statistical-analysis packages, and games. These programs are known as system
utilities or application programs.

The view of the operating system seen by most users is defined, by the
application and system programs, rather than by the actual system calls.
Consider PCs. When his computer is running the Mac OS X operating system, a
user might see the GUI, featuring a mouse and windows interface. Alternatively,
or even in one of the windows, he might have a command-line UNIX shell. Both
use the same set of system calls, but the system calls look different and act in
different ways.

2.6 Operating-System Design and Implementation

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.6.1 Design Goals

The first problem in designing a system is to define goals and specifications.
At the highest level, the design of the system will be affected by the choice of
hardware and the type of system: batch, time shared, single user, multiuser,
distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users desire certain obvious properties in a system: The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system: The system should be easy
to design, implement, and maintain; it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for VxWorks, a real-
time operating system for embedded systems, must have been substantially
different from those for MVS, a large multiuser, multiaccess operating system
for IBM mainframes.

Specifying and designing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to
a discussion of some of these principles.

2.6.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism. Mecha-
nisms determine how to do something; policies determine what will be done.
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For example, the timer construct (see Section 1.5.2) is a mechanism for ensuring
CPU protection, but deciding how long the timer is to be set for a particular
user is a policy decision.

The separation of policy and mechanism is important for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism insensitive to changes in policy would be more desirable. A change
in policy would then require redefinition of only certain parameters of the
system. For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism is properly separated from policy,
it can be used to support a policy decision that I/O-intensive programs should
have priority over CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems (Section 2.7.3) take the separation of
mechanism and policy to one extreme by implementing a basic set of primitive
building blocks. These blocks are almost policy free, allowing more advanced
mechanisms and policies to be added via user-created kernel modules or via
user programs themselves. As an example, consider the history of UNIX. At
first, it had a time-sharing scheduler. In the latest version of Solaris, scheduling
is controlled by loadable tables. Depending on the table currently loaded,
the system can be time shared, batch processing, real time, fair share, or
any combination. Making the scheduling mechanism general purpose allows
vast policy changes to be made with a single load-new-table command. At
the other extreme is a system such as Windows, in which both mechanism
and policy are encoded in the system to enforce a global look and feel. All
applications have similar interfaces, because the interface itself is built into
the kernel and system libraries. The Mac OS X operating system has similar
functionality.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate a resource, a policy decision must
be made. Whenever the question is how rather than what, it is a mechanism that
must be determined.

2.6.3 Implementation

Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are most commonly written in higher-level languages such as C or C++.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in
PL/1. The Linux and Windows XP operating systems are written mostly in C,
although there are some small sections of assembly code for device drivers and
for saving and restoring the state of registers.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: The
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port—to move to some other hardware—
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if it is written in a higher-level language. For example, MS-DOS was wrftten in
Intel 8088 assembly language. Consequently, it is available on only the Intel
family of CPUs. The Linux operating system, in contrast, is written mostly in C
and is available on a number of different CPUs, including Intel 80X86, Motorola
680X0, SPARC, and MIPS RXOO0.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is no longer a major issue in today's systems. Although an
expert assembly-language programmer can produce efficient small routines,
for large programs a modern compiler can perform complex analysis and apply
sophisticated optimizations that produce excellent code. Modern processors
have deep pipelining and multiple functional units that can handle complex
dependencies that can overwhelm the limited ability of the human mind to
keep track of details.

As is true in other systems, major performance improvements in operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou-
tines. After the system is written and is working correctly, bottleneck routines
can be identified and can be replaced with assembly-language equivalents.

To identify bottlenecks, we must be able to monitor system performance.
Code must be added to compute and display measures of system behavior.
In a number of systems, the operating system does this task by producing
trace listings of system behavior. All interesting events are logged with their
time and important parameters and are written to a file. Later, an analysis
program can process the log file to determine system performance and to
identify bottlenecks and inefficiencies. These same traces can be run as input
for a simulation of a suggested improved system. Traces also can help people
to find errors in operating-system behavior.

2.7 Operating-System Structure

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and be modified easily. A
common approach is to partition the task into small components rather than
have one monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and functions.
We have already discussed briefly in Chapter 1 the common components
of operating systems. In this section, we discuss how these components are
interconnected and melded into a kernel.

2.7.1 Simple Structure

Many commercial systems do not have well-defined structures. Frequently,
such operating systems started as small, simple, and limited systems and then
grew beyond their original scope. MS-DOS is an example of such a system. It was
originally designed and implemented by a few people who had no idea that it
would become so popular. It was written to provide the most functionality in
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Figure 2.10 MS-DOS layer structure.

the least space, so it was not divided into modules carefully. Figure 2.10 shows
its structure.

In MS-DOS, the interfaces and levels of functionality are not well separated.
For instance, application programs are able to access the basic I/O routines
to write directly to the display and disk drives. Such freedom leaves MS-DOS
vulnerable to errant (or malicious) programs, causing entire system crashes
when user programs fail. Of course, MS-DOS was also limited by the hardware
of its era. Because the Intel 8088 for which it was written provides no dual
mode and no hardware protection, the designers of MS-DOS had no choice but
to leave the base hardware accessible.

Another example of limited structuring is the original UNIX operating
system. UNIX is another system that initially was limited by hardware function-
ality. It consists of two separable parts: the kernel and the system programs.
The kernel is further separated into a series of interfaces and device drivers,
which have been added and expanded over the years as UNIX has evolved. We
can view the traditional UNIX operating system as being layered, as shown in
Figure 2.11. Everything below the system call interface and above the physical
hardware is the kernel. The kernel provides the file system, CPU scheduling,
memory management, and other operating-system functions through system
calls. Taken in sum, that is an enormous amount of functionality to be com-
bined into one level. This monolithic structure was difficult to implement and
maintain.

2.7.2 Layered Approach

With proper hardware support, operating systems can be broken into pieces
that are smaller and more appropriate than those allowed by the original
MS-DOS or UNIX systems. The operating system can then retain much greater
control over the computer and over the applications that make use of that
computer. Implementers have more freedom in changing the inner workings
of the system and in creating modular operating systems. Under the top-
down approach, the overall functionality and features are determined and are
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Figure 2.11 UNIX system structure.

separated into components. Information hiding is also important, because it
leaves programmers free to implement the low-level routines as they see fit,
provided that the external interface of the routine stays unchanged and that
the routine itself performs the advertised task.

A system can be made modular in many ways. One method is the layered
approach, in which the operating system is broken up into a number of layers
(levels). The bottom layer (layer 0) is the hardware; the highest (layer N) is the
user interface. This layering structure is depicted in Figure 2.12.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer—say, layer M—consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
and debugging. The layers are selected so that each uses functions (operations)
and services of only lower-level layers. This approach simplifies debugging
and system verification. The first layer can be debugged without any concern
for the rest of the system, because, by definition, it uses only the basic hardware
(which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system is simplified.

Each layer is implemented with only those operations provided by lower-
level layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately
defining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary. For example, the device driver for the backing
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Figure 2.12 A layered operating system.

store (disk space used by virtual-memory algorithms) must be at a lower
level than the memory-management routines, because memory management
requires the ability to use the backing store.

Other requirements may not be so obvious. The backing-store driver would
normally be above the CPU scheduler, because the driver may need to wait for
I/O and the CPU can be rescheduled during this time. However, on a large
system, the CPU scheduler may have more information about all the active
processes than can fit in memory. Therefore, this information may need to be
swapped in and out of memory, requiring the backing-store driver routine to
be below the CPU scheduler.

A final problem with layered implementations is that they tend to be less
efficient than other types. For instance, when a user program executes an I/O
operation, it executes a system call that is trapped to the I/O layer, which calls
the memory-management layer, which in turn calls the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the parameters may be
modified, data may need to be passed, and so on. Each layer adds overhead to
the system call; the net result is a system call that takes longer than does one
on a nonlayered system.

These limitations have caused a small backlash against layering in recent
years. Fewer layers with more functionality are being designed, providing most
of the advantages of modularized code while avoiding the difficult problems
of laver definition and interaction.

2.7.3 Microkernels

We have already seen that as UNIX expanded, the kernel became large
and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operating system called Mach that modularized
the kernel using the microkernel approach. This method structures the
operating system by removing all nonessential components from the kernel and



62 Chapter 2 Operating-System Structures

implementing them as system and user-level programs. The result is a smaller
kernel. There is little consensus regarding which services should remain in the
kernel and which should be implemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility.

The main function of the microkernel is to provide a communication facility
between the client program and the various services that are also running
in user space. Communication is provided by message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

One benefit of the microkernel approach is ease of extending the operating
system. All new services are added to user space and consequently do not
require modification of the kernel. When the kernel does have to be modified,
the changes tend to be fewer, because the microkernel is a smaller kernel.
The resulting operating system is easier to port from one hardware design
to another. The microkernel also provides more security and reliability, since
most services are running as user—rather than kernel—processes. If a service
fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to
the user, but it is implemented with a Mach kernel. The Mach kernel maps
UNIX system calls into messages to the appropriate user-level services.

Another example is QNX. QNX is a real-time operating system that is also
based on the microkernel design. The QNX microkernel provides services
for message passing and process scheduling. It also handles low-level net-
work communication and hardware interrupts. All other services in QNX are
provided by standard processes that run outside the kernel in user mode.

Unfortunately, microkernels can suffer from performance decreases due
to increased system function overhead. Consider the history of Windows NT.
The first release had a layered microkernel organization. However, this version
delivered low performance compared with that of Windows 95. Windows NT
4.0 partially redressed the performance problem by moving layers from user
space to kernel space and integrating them more closely. By the time Windows
XP was designed, its architecture was more monolithic than microkernel.

2.7.4 Modules

Perhaps the best current methodology for operating-system design involves
using object-oriented programming techniques to create a modular kernel.
Here, the kernel has a set of core components and dynamically links in
additional services either during boot time or during run time. Such a
strategy uses dynamically loadable modules and is common in modern
implementations of UNIX, such as Solaris, Linux, and Mac OS X. For example, the
Solaris operating system structure, shown in Figure 2.13, is organized around
a core kernel with seven types of loadable kernel modules:

1. Scheduling classes

2. File systems
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Figure 2.13 Solaris loadable modules.

3. Loadable system calls

4. Executable formats

5. STREAMS modules

6. Miscellaneous

7. Device and bus drivers

Such a design allows the kernel to provide core services yet also allows
certain features to be implemented dynamically. For example, device and
bus drivers for specific hardware can be added to the kernel, and support
for different file systems can be added as loadable modules. The overall
result resembles a layered system in that each kernel section has defined,
protected interfaces; but it is more flexible than a layered system in that any
module can call any other module. Furthermore, the approach is like the
microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
is more efficient, because modules do not need to invoke message passing in
order to communicate.

The Apple Macintosh Mac OS X operating system uses a hybrid structure.
Mac OS X (also known as Danvin) structures the operating system using a
layered technique where one layer consists of the Mach microkernel. The
structure of Mac OS X appears in Figure 2.14.

The top layers include application environments and a set of services
providing a graphical interface to applications. Below these layers is the kernel
environment, which consists primarily of the Mach microkernel and the BSD
kernel. Mach provides memory management; support for remote procedure
calls (RPCs) and interprocess communication (IPC) facilities, including message
passing; and thread scheduling. The BSD component provides a BSD command
line interface, support for networking and file systems, and an implementation
of POSIX APIs, including Pthreads. In addition to Mach and BSD, the kernel
environment provides an I/O kit for development of device drivers and
dynamically loadable modules (which Mac OS X refers to as kernel extensions).
As shown in the figure, applications and common services can make use of
either the Mach or BSD facilities directly.
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2.8 Virtual Machines

The layered approach described in Section 2.7.2 is taken to its logical conclusion
in the concept of a virtual machine. The fundamental idea behind a virtual
machine is to abstract the hardware of a single computer (the CPU, memory,
disk drives, network interface cards, and so forth) into several different
execution environments, thereby creating the illusion that each separate
execution environment is running its own private computer.

By using CPU scheduling (Chapter 5) and virtual-memory techniques
(Chapter 9), an operating system can create the illusion that a process has
its own processor with its own (virtual) memory. Normally, a process has
additional features, such as system calls and a file system, that are not provided
by the bare hardware. The virtual-machine approach does not provide any such
additional functionality but rather provides an interface that is identical to the
underlying bare hardware. Each process is provided with a (virtual) copy of
the underlying computer (Figure 2.15).

There are several reasons for creating a virtual machine, all of which
are fundamentally related to being able to share the same hardware yet run
several different execution environments (that is, different operating systems)
concurrently. We will explore the advantages of virtual machines in more detail
in Section 2.8.2. Throughout much of this section, we discuss the VM operating
system for IBM systems, as it provides a useful working example; furthermore
IBM pioneered the work in this area.

A major difficulty with the virtual-machine approach involves disk sys-
tems. Suppose that the physical machine has three disk drives but wants to
support seven virtual machines. Clearly, it cannot allocate a disk drive to
each virtual machine, because the virtual-machine software itself will need
substantial disk space to provide virtual memory and spooling. The solution
is to provide virtual disks—termed minidisks in IBM's VM operating system
—that are identical in all respects except size. The system implements each
minidisk by allocating as many tracks on the physical disks as the minidisk
needs. Obviously, the sum of the sizes of all minidisks must be smaller than
the size of the physical disk space available.

Users thus are given their own virtual machines. They can then run any of
the operating systems or software packages that are available on the underlying
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Figure 2.15 System models, (a) Nonvirtual machine, (b) Virtual machine.

machine. For the IBM VM system, a user normally runs CMS—a single-user
interactive operating system. The virtual-machine software is concerned with
multiprogramming multiple virtual machines onto a physical machine, but it
does not need to consider any user-support software. This arrangement may
provide a useful way to divide the problem of designing a multiuser interactive
system into two smaller pieces.

2.8.1 Implementation

Although the virtual-machine concept is useful, it is difficult to implement.
Much work is required to provide an exact duplicate of the underlying machine.
Remember that the underlying machine has two modes: user mode and kernel
mode. The virtual-machine software can run in kernel mode, since it is the
operating system. The virtual machine itself can execute in only user mode.
Just as the physical machine has two modes, however, so must the virtual
machine. Consequently, we must have a virtual user mode and a virtual kernel
mode, both of which run in a physical user mode. Those actions that cause a
transfer from user mode to kernel mode on a real machine (such as a system
call or an attempt to execute a privileged instruction) must also cause a transfer
from virtual user mode to virtual kernel mode on a virtual machine.

Such a transfer can be accomplished as follows. When a system call, for
example, is made by a program running on a virtual machine in virtual user
mode, it will cause a transfer to the virtual-machine monitor in the real machine-
When the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the effect of
the system call. It can then restart the virtual machine, noting that it is now in
virtual kernel mode.

The major difference, of course, is time. Whereas the real I/O might have
taken 100 milliseconds, the virtual I/O might take less time (because it is
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spooled) or more time (because it is interpreted). In addition, the CPU is
being multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. VM
works for IBM machines because normal instructions for the virtual machines
can execute directly on the hardware. Only the privileged instructions (needed
mainly for I/O) must be simulated and hence execute more slowly.

2.8.2 Benefits

The virtual-machine concept has several advantages. Notice that, in this
environment, there is complete protection of the various system resources.
Each virtual machine is completely isolated from all other virtual machines,
so there are no protection problems. At the same time, however, there is no
direct sharing of resources. Two approaches to provide sharing have been
implemented. First, it is possible to share a minidisk and thus to share files.
This scheme is modeled after a physical shared disk but is implemented by
software. Second, it is possible to define a network of virtual machines, each
of which can send information over the virtual communications network.
Again, the network is modeled after physical communication networks but
is implemented in software.

Such a virtual-machine system is a perfect vehicle for operating-systems
research and development. Normally, changing an operating system is a
difficult task. Operating systems are large and complex programs, and it is
difficult to be sure that a change in one part will not cause obscure bugs
in some other part. The power of the operating system makes changing it
particularly dangerous. Because the operating system executes in kernel mode,
a wrong change in a pointer could cause an error that would destroy the entire
file system. Thus, it is necessary to test all changes to the operating system
carefully.

The operating system, however, runs on and controls the entire machine.
Therefore, the current system must be stopped and taken out of use while
changes are made and tested. This period is commonly called system-
development time. Since it makes the system unavailable to users, system-
development time is often scheduled late at night or on weekends, when system
load is low.

A virtual-machine system can eliminate much of this problem. System
programmers are given their own virtual machine, and system development is
done on the virtual machine instead of on a physical machine. Normal system
operation seldom needs to be disrupted for system development.

2.8.3 Examples

Despite the advantages of virtual machines, they received little attention
for a number of years after they were first developed. Today, however,
virtual machines are coming back into fashion as a means of solving system
compatibility problems. In this section, we explore two popular contemporary
virtual machines: VMware and the Java virtual machine. As we will see,
these virtual machines typically run on top of an operating system of any of
the design types discussed earlier. Thus, operating system design methods—
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simple layers, microkernel, modules, and virtual machines—are not nuitually
exclusive.

2.8.3.1 VMware

VMware is a popular commercial application that abstracts Intel 80X86
hardware into isolated virtual machines. VMware runs as an application on a
host operating system such as Windows or Linux and allows this host system
to concurrently run several different guest operating systems as independent
virtual machines.

Consider the following scenario: A developer has designed an application
and would like to test it on Linux, FreeBSD, Windows NT, and Windows XP. One
option is for her to obtain four different computers, each running a copy of one
of these operating systems. Another alternative is for her first to install Linux
on a computer system and test the application, then to install FreeBSD and test
the application, and so forth. This option allows her to use the same physical
computer but is time-consuming, since she must install a new operating system
for each test. Such testing could be accomplished concurrently on the same
physical computer using VMware. In this case, the programmer could test the
application on a host operating system and on three guest operating systems
with each system running as a separate virtual machine.

The architecture of such a system is shown in Figure 2.16. In this scenario,
Linux is running as the host operating system; FreeBSD, Windows NT, and
Windows XP are running as guest operating systems. The virtualization layer
is the heart of VMware, as it abstracts the physical hardware into isolated
virtual machines running as guest operating systems. Each virtual machine
has its own virtual CPU, memory, disk drives, network interfaces, and so forth.
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Figure 2.16 VMware architecture.
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2.8.3.2 The Java Virtual Machine *

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995. In addition to a language specification and a large API
library, Java also provides a specification for a Java virtual machine—or JVM.

Java objects are specified with the c lass construct; a Java program
consists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output ( .c lass) file that will run on any
implementation of the JVM.

The JVMis a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 2.17. The class loader loads the compiled . class
files from both the Java program and the Java API for execution by the Java
interpreter. After a class is loaded, the verifier checks that the . c lass file is
valid Java bytecode and does not overflow or underflow the stack. It also
ensures that the bytecode does not perform pointer arithmetic, which could
provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The JVM also automatically manages memory by performing
garbage collection—the practice of reclaiming memory from objects no longer
in use and returning it to the system. Much research focuses on garbage
collection algorithms for increasing the performance of Java programs in the
virtual machine.

The JVM may be implemented in software on top of a host operating
system, such as Windows, Linux, or Mac OS X, or as part of a web browser.
Alternatively, the JVM may be implemented in hardware on a chip specifically
designed to run Java programs. If the JVM is implemented in software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use a just-in-time (JIT) compiler. Here, the first time a
Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions and the bytecode operations need not be interpreted all over again.
A technique that is potentially even faster is to run the JVM in hardware on a
special Java chip that executes the Java bytecode operations as native code, thus
bypassing the need for either a software interpreter or a just-in-time compiler.

class loader

Java
interpreter

:.: .:. :.: .:.' ' '.' :.: .:. .".: " .:. :.' '.''- \ :\

Figure 2.17 The Java virtual machine.
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THE .NET FRAMEWORK

The .MET Framework is a collection of technologies, including a set of class
libraries, and an execution environment that come together to provide a
platform for developing software. This platform allows programs to be
written to target the .NTT Framework instead of a specific architecture. A
program written for the .NET Framework need not worry about the specifics
of the hardware or the operating system on which it will run. Thus, any
architecture implementing .NET will be able to successfully execute the
program, This is because the execution environment abstracts these details
and provides a virtual, machine as an intermediary between the executing
program and the underlying a rchitecture^

At the core of the .NET Framework is the Common Language Runtime
(CLR). The CLR is the implementation of the .NET virtual machine. It provides
an environment for execution of programs written in any of the languages
targeted at the .NET Framework. Programs written in languages such as
C# (pronounced C-sharp) and VB.NET are compiled into an intermediate,
architecture-independent language called i\4icrosoft Intermediate Language
(MS-1L). These compiled files, called assemblies, include MS-IL instructions
and metadata. They have a file extension of either .EXE or .DLL. Upon
execution of a program, the CLR loads assemblies into what is known as
the Application Domain. As instructions are requested by the executing
program, the CLR converts the MS-IL instructions inside the assemblies into
native code that is specific to the underlying arcliitecture using just-in-time
compilation. Once instructions have been converted to native code, they are
kept and will continue to run as native code for the CPU. The architecture of
the CLR for the .NET framework is shown in Figure 2.1.8.
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Figure 2.18 Architecture of the CLR for the .NET Framework.
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2.9 Operating-System Generation

It is possible to design, code, and implement an operating system specifically
for one machine at one site. More commonly, however, operating systems
are designed to run on any of a class of machines at a variety of sites with
a variety of peripheral configurations. The system must then be configured
or generated for each specific computer site, a process sometimes known as
system generation (SYSGEN).

The operating system is normally distributed on disk or CD-ROM. To
generate a system, we use a special program. The SYSGEN program reads from
a given file, or asks the operator of the system for information concerning the
specific configuration of the hardware system, or probes the hardware directly
to determine what components are there. The following kinds of information
must be determined.

• What CPU is to be used? What options (extended instruction sets, floating-
point arithmetic, and so on) are installed? For multiple CPU systems, each
CPU must be described.

• How much memory is available? Some systems will determine this value
themselves by referencing memory location after memory location until an
"illegal address" fault is generated. This procedure defines the final legal
address and hence the amount of available memory.

• What devices are available? The system will need to know how to address
each device (the device number), the device interrupt number, the device's
type and model, and any special device characteristics.

• What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers of
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
so on.

Once this information is determined, it can be used in several ways. At one
extreme, a system administrator can use it to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data
declarations, initializations, and constants, along with conditional compilation,
produce an output object version of the operating system that is tailored to the
system described.

At a slightly less tailored level, the system description can cause the
creation of tables and the selection of modules from a precompiled library.
These modules are linked together to form the generated operating system.
Selection allows the library to contain the device drivers for all supported I/O
devices, but only those needed are linked into the operating system. Because,
the system is not recompiled, system generation is faster, but the resulting
system may be overly general.

At the other extreme, it is possible to construct a system that is completely
table driven. All the code is always part of the system, and selection occurs at
execution time, rather than at compile or link time. System generation involves
simply creating the appropriate tables to describe the system.
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The major differences among these approaches are the size and generality
of the generated system and the ease of modification as the hardware
configuration changes. Consider the cost of modifying the system to support a
newly acquired graphics terminal or another disk drive. Balanced against that
cost, of course, is the frequency (or infrequency) of such changes.

2.10 System Boot

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The procedure of starting a computer by loading the kernel
is known as booting the system. On most computer systems, a small piece of
code known as the bootstrap program or bootstrap loader locates the kernel,
loads it into main memory, and starts its execution. Some computer systems,
such as PCs, use a two-step process in which a simple bootstrap loader fetches
a more complex boot program from disk, which in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is powered up
or rebooted—the instruction register is loaded with a predefined memory
location, and execution starts there. At that location is the initial bootstrap
program. This program is in the form of read-only memory (ROM), because
the RAM is in an unknown state at system startup. ROM is convenient because
it needs no initialization and cannot be infected by a computer virus.

The bootstrap program can perform a variety of tasks. Usually, one task
is to run diagnostics to determine the state of the machine. If the diagnostics
pass, the program can continue with the booting steps. It can also initialize all
aspects of the system, from CPU registers to device controllers and the contents
of main memory. Sooner or later, it starts the operating system.

Some systems—such as cellular phones, PDAs, and game consoles—store
the entire operating system in ROM. Storing the operating system in ROM is
suitable for small operating systems, simple supporting hardware, and rugged
operation. A problem with this approach is that changing the bootstrap code
requires changing the ROM hardware chips. Some systems resolve this problem
by using erasable programmable read-only memory (EPROM), which is read-
only except when explicitly given a command to become writable. All forms
of ROM are also known as firmware, since their characteristics fall somewhere
between those of hardware and those of software. A problem with firmware
in general is that executing code there is slower than executing code in RAM.
Some systems store the operating system in firmware and copy it to RAM for
fast execution. A final issue with firmware is that it is relatively expensive, so
usually only small amounts are available.

For large operating systems (including most general-purpose operating
systems like Windows, Mac OS X, and UNIX) or for systems that change
frequently, the bootstrap loader is stored in firmware, and the operating system
is on disk. In this case, the bootstrap runs diagnostics and has a bit of code
that can read a single block at a fixed location (say block zero) from disk into
memory and execute the code from that boot block. The program stored in the
boot block may be sophisticated enough to load the entire operating system
into memory and begin its execution. More typically, it is simple code (as it fits
in a single disk block) and only knows the address on disk and length of the
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remainder of the bootstrap program. All of the disk-bound bootstrap, artd the
operating system itself, can be easily changed by writing new versions to disk.
A disk that has a boot partition (more on that in section 12.5.1) is called a boot
disk or system disk.

Now that the full bootstrap program has been loaded, it can traverse the
file system to find the operating system kernel, load it into memory, and start
its execution. It is only at this point that the system is said to be running.

2.11 Summary

Operating systems provide a number of services. At the lowest level, system
calls allow a running program to make requests from the operating system
directly. At a higher level, the command interpreter or shell provides a
mechanism for a user to issue a request without writing a program. Commands
may come from files during batch-mode execution or directly from a terminal
when in an interactive or time-shared mode. System programs are provided to
satisfy many common user requests.

The types of requests vary according to level. The system-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, are translated into a sequence of system calls. System services
can be classified into several categories: program control, status requests, and
I/O requests. Program errors can be considered implicit requests for service.

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system's jobs.

The design of a new operating system is a major task. It is important that
the goals of the system be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

Since an operating system is large, modularity is important. Designing a
system as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtual
machine.

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisions from implementation details (mechanisms). This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems-
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating
system for a particular machine configuration, we must perform system
generation.

For a computer system to begin running, the CPU must initialize and start
executing the bootstrap program in firmware. The bootstrap can execute the
operating system directly if the operating system is also in the firmware, or
it can complete a sequence in which it loads progressively smarter programs
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from firmware and disk until the operating system itself is loaded into memory
and executed.

Exercises

2.1 The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.

2.2 List five services provided by an operating system that are designed to
make it more convenient for users to use the computer system. In what
cases it would be impossible for user-level programs to provide these
services? Explain.

2.3 Describe three general methods for passing parameters to the operating
system.

2.4 Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

2.5 What are the five major activities of an operating system with regard to
file management?

2.6 What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?

2.7 What is the purpose of the command interpreter? Why is it usually
separate from the kernel? Would it be possible for the user to develop
a new command interpreter using the system-call interface provided by
the operating system?

2.8 What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

2.9 Why is the separation of mechanism and policy desirable?

2.10 Why does Java provide the ability to call from a Java program native
methods that are wrritten in, say, C or C++? Provide an example of a
situation in which a native method is useful,

2.11 It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

2.12 What is the main advantage of the microkernel approach to system
design? How do user programs and system services interact in a
microkernel architecture? What are the disadvantages of using the
microkernel approach?

2.13 In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?

2.14 What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?
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2.15 Why is a just-in-time compiler useful for executing Java programs'?

2.16 What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?

2.17 The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization.

2.18 In Section 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the Windows32 or POSIX API. Be sure to include all necessary
error checking, including ensuring that the source file exists. Once you
have correctly designed and tested the program, if you used a system
that supports it, run the program using a utility that traces system calls.
Linux systems provide the p t race utility, and Solaris systems use the
t r u s s or dtrace command. On Mac OS X, the kt race facility provides
similar functionality.

Project—Adding a System Call to the Linux Kernel

In this project, you will study the system call interface provided by the Linux
operating system and how user programs communicate with the operating
system kernel via this interface. Your task is to incorporate a new system call
into the kernel, thereby expanding the functionality of the operating system.

Getting Started

A user-mode procedure call is performed by passing arguments to the called
procedure either on the stack or through registers, saving the current state and
the value of the program counter, and jumping to the beginning of the code
corresponding to the called procedure. The process continues to have the same
privileges as before.

System calls appear as procedure calls to user programs, but result in
a change in execution context and privileges. In Linux on the Intel 386
architecture, a system call is accomplished by storing the system call number
into the EAX register, storing arguments to the system call in other hardware
registers, and executing a trap instruction (which is the INT 0x80 assembly
instruction). After the trap is executed, the system call number is used to index
into a table of code pointers to obtain the starting address for the handler
code implementing the system call. The process then jumps to this address
and the privileges of the process are switched from user to kernel mode. With
the expanded privileges, the process can now execute kernel code that might
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include privileged instructions that cannot be executed in user mode. The
kernel code can then perform the requested services such as interacting with
I/O devices, perform process management and other such activities that cannot
be performed in user mode.

The system call numbers for recent versions of the Linux kernel
are listed in /us r / s rc / l inux~2 .x / inc lude /asm- i386 /un i s td .h . (For
instance, __NR_close, which corresponds to the system call c lose()
that is invoked for closing a file descriptor, is defined as value 6.) The
list of pointers to system call handlers is typically stored in the file
/usr/src/ l imix-2.x/arch/i386/kernel/entry.S under the heading
ENTRY (sys_call_table). Notice that sys_close is stored at entry numbered
6 in the table to be consistent with the system call number defined in unistd. h
file. (The keyword . long denotes that the entry will occupy the same number
of bytes as a data value of type long.)

Building a New Kernel

Before adding a system call to the kernel, you must familiarize yourself with
the task of building the binary for a kernel from its source code and booting
the machine with the newly built kernel. This activity comprises the following
tasks, some of which are dependent on the particular installation of the Linux
operating system.

• Obtain the kernel source code for the Linux distribution. If the source code
package has been previously installed on your machine, the corresponding
files might be available under /usr / s rc / l inux or /usr /src / l i rmx-2. x
(where the suffix corresponds to the kernel version number). If the package
has not been installed earlier, it can be downloaded from the provider of
your Linux distribution or from ht tp : //www. kernel. org.

• Learn how to configure, compile, and install the kernel binary. This
will vary between the different kernel distributions, but some typical
commands for building the kernel (after entering the directory where the
kernel source code is stored) include:

c make xconfig

o make dep

o make bzlmage

• Add a new entry to the set of bootable kernels supported by the system.
The Linux operating system typically uses utilities such as l i l o and grub
to maintain a list of bootable kernels, from which the user can choose
during machine boot-up. If your system supports l i l o , add an entry to
l i l o . conf, such as:

image=/boot/bzlmage.mykernel
label=mykernel
root=/dev/hda5
read-only

where /boot/bzImage. mykernel is the kernel image and mykernel is
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the label associated with the new kernel allowing you to choose it dliring
bootup process. By performing this step, you have the option of either
booting a new kernel or booting the unmodified kernel if the newly built
kernel does not function properly.

Extending Kernel Source

You can now experiment with adding a new file to the set of source files
used for compiling the kernel. Typically, the source code is stored in the
/usr /s rc / l inux-2. x/kernel directory, although that location may differ in
your Linux distribution. There are two options for adding the system call.
The first is to add the system call to an existing source file in this directory.
A second option is to create a new file in the source directory and modify
/usr/src/linux-2.x/kernel/Makefile to include the newly created file
in the compilation process. The advantage of the first approach is that by
modifying an existing file that is already part of the compilation process, the
Makefile does not require modification.

Adding a System Call to the Kernel

Now that you are familiar with the various background tasks corresponding
to building and booting Linux kernels, ycai can begin the process of adding a
new system call to the Linux kernel. In this project, the system call will have
limited functionality; it will simply transition from user mode to kernel mode,
print a message that is logged with the kernel messages, and transition back to
user mode. We will call this the helloioorld system call. While it has only limited
functionality, it illustrates the system call mechanism and sheds light on the
interaction between user programs and the kernel.

• Create a new file called helloworld. c to define your system call. Include
the header files lirmx/linkage. h and limix/kernel. h. Add the follow-
ing code to this file:

#include <linux/linkage.h>
#include <linux/kernel.h>
asmlinkage int sys_helloworld() {

printk(KERKLEMERG "hello world!");

return 1;

}

This creates a system call with the name sysJielloworldO. If you choose
to add this system call to an existing file in the source directory, all that is
necessary is to add the sysJhelloworld () function to the file you choose,
asmlinkage is a remnant from the days when Linux used both C++
and C code and is used to indicate that the code is written in C.
The printkO function is used to print messages to a kernel log file
and therefore may only be called from the kernel. The kernel mes-
sages specified in the parameter to printkO are logged in the file
/var/log/kernel/warnings. The function prototype for the printkO
call is defined in /usr/ include/l inux/kernel . h.
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• Define a new system call number for _JJR_tielloworl<i in
/usr/src/linux-2.x/include/asm-i386/unistd.h. A user program
can use this number to identify the newly added system call. Also be sure
to increment the value for _ JIR_syscalls, which is also stored in the same
file. This constant tracks the number of system calls currently defined in
the kernel.

• Add an entry .long sysJielloworld to the sys_call_table defined
in / i isr/src/l inux-2. x/arch/i386/kernel/entry. S file. As discussed
earlier, the system call number is used to index into this table to find the
position of the handler code for the invoked system call.

• Add your file helloworld. c to the Makefile (if you created a new file for
your system call.) Save a copy of your old kernel binary image (in case
there are problems with your newly created kernel.) You can now build
the new kernel, rename it to distinguish it from the unmodified kernel,
and add an entry to the loader configuration files (such as lilo.conf).
After completing these steps, you may now boot either the old kernel or
the new kernel that contains your system call inside it.

Using the System Call From a User Program

When you boot with the new kernel it will support the newly defined system
call; it is now simply a matter of invoking this system call from a user program.
Ordinarily, the standard C library supports an interface for system calls defined
for the Linux operating system. As your new system call is not linked into the
standard C library, invoking your system call will require manual intervention.

As noted earlier, a system call is invoked by storing the appropriate value
into a hardware register and performing a trap instruction. Unfortunately, these
are low-level operations that cannot be performed using C language statements
and instead require assembly instructions. Fortunately, Linux provides macros
for instantiating wrapper functions that contain the appropriate assembly
instructions. For instance, the following C program uses the _syscallO()
macro to invoke the newly defined system call:

#include <linux/errno.h>
#include <sys/syscall.h>
#include <linux/unistd.h>

_syscallO(int, helloworld);

main()

{
helloworld();

• The _syscallO macro takes two arguments. The first specifies the type of
the value returned by the system call; the second argument is the name of
the system call. The name is used to identify the system call number that
is stored in the hardware register before the trap instruction is executed.
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If your system call requires arguments, then a different macro (such as
_sysca l lO, where the suffix indicates the number of arguments) could be
used to instantiate the assembly code required for performing the system
call.

• Compile and execute the program with the newly built kernel.
There should be a message " h e l l o wor ld ! " in the kernel log file
/var / log/kernel /warnings to indicate that the system call has
executed.

As a next step, consider expanding the functionality of your system call.
How would you pass an integer value or a character string to the system call
and have it be printed into the kernel log file? What are the implications for
passing pointers to data stored in the user program's address space as opposed
to simply passing an integer value from the user program to the kernel using
hardware registers?
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derived from CP/67. Details regarding Mach, a microkernel-based operating
system, can be found in Young etal. [1987]. Kaashoek et al. [1997] present details
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tively. The internal workings of the Java virtual machine are fully described by
Verniers [1998]. Golm et al. [2002] highlight the JX operating system; Back
et al. [2000] cover several issues in the design of Java operating systems.
More information on Java is available on the Web at http://www.javasoft.com.
Details about the implementation of VMware can be found in Sugerman et al.
[2001].



Part Two

Process
Management

A process can be thought of as a program in execution, A process will
need certain resources—such as CPU time, memory, files, and I/O devices
—to accomplish its task. These resources are allocated to the process
either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of
a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Although traditionally a process contained only a single thread of
control as it ran, most modern operating systems now support processes
that have multiple threads.

The operating system is responsible for the following activities in
connection with process and thread management: the creation and
deletion of both user and system processes; the scheduling of processes;
and the provision of mechanisms for synchronization, communication,
and deadlock handling for processes.





CHAPTER

Processes

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system and had access to
all the system's resources. In contrast, current-day computer systems allow
multiple programs to be loaded into memory and executed concurrently.
This evolution required firmer control and more compartmentalization of the
various programs; and these needs resulted in the notion of a process, which is
a program in execution. A process is the unit of work in a modern time-sharing
system.

The more complex the operating system is, the more it is expected to do on
behalf of its users. Although its main concern is the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernel itself. A system therefore consists of a collection of processes: operating-
system processes executing system code and user processes executing user
code. Potentially, all these processes can execute concurrently, with the CPU (or
CPUs) multiplexed among them. By switching the CPU between processes, the
operating system can make the computer more productive.

CHAPTER OBJECTIVES

• To introduce the notion of a process — a program in execution, which forms
the basis of all computation.

• To describe the various features of processes, including scheduling,
creation and termination, and communication.

• To describe communication in client-server systems.

3.1 Process Concept

A question that arises in discussing operating systems involves what to call all
the CPU activities. A batch system executes jobs, whereas a time-shared system
has user programs, or tasks. Even on a single-user system such as Microsoft
Windows, a user may be able to run several programs at one time: a word
processor, a web browser, and an e-mail package. Even if the user can execute
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only one program at a time, the operating system may need to suppoft its
own internal programmed activities, such as memory management. In many
respects, all these activities are similar, so we call all of them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor's registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
that is dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as a file containing a list of instructions stored on disk (often called
an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (as in prog. exe or a. out.)

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,

max
Stack

heap

data

text

Figure 3.1 Process in memory.
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Figure 3.2 Diagram of process state.

several users may be running different copies of the mail program, or the same
user may invoke many copies of the web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

• New. The process is being created.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O
completion or reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are fotind on all systems, however. Certain operating
systems also more finely delineate process states. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and limiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB)—also called a task control block. A PCB is shown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

• Process state. The state may be new, ready, running, waiting, halted, and
so on.
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process state
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list of open files

Figure 3.3 Process control block (PCB).

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

• Memory-management information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 8).

• Accounting information. This information includes the amount of CPU
and real time used, time limits, account mimbers, job or process numbers,
and so on.

• I/O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one
task at one time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operating
systems have extended the process concept to allow a process to have multiple
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Figure 3.4 Diagram showing CPU switch from process to process.

threads of execution and thus to perform more than one task at a time. Chapter
4 explores multithreaded processes in detail.

3.2 Process Scheduling

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. The objective of time sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is running. To meet these objectives, the process scheduler selects
an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than one running process. If there are more processes, the rest will
have to wait until the CPU is free and can be rescheduled.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which consists
of all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains
pointers to the first and final PCBs in the list. Each PCB includes a pointer field
that points to the next PCB in the ready queue.

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an I/O request.
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PROCESS REPRESENTATION IN LINUX

The process control block in the Linux operating system is represented
by the C structure task_strtict. This structure contains all the necessary
information for 'representing a process, including the state of the process,
scheduling and memory management information, list of open files, and
pointers to the process's parent and any of its children. (A process's parent is
the process that created it; its children are any processes that it creates.) Some
of these fields include:

pid_t pid; /* process ident i f ie r * /
long s ta te ; / * s ta te of the process */
unsigned int time..slice / * scheduling information */
s t ruct f i les_struct *f i les ; / * l i s t of open f i l e s * /
s t ruct mm_struct *mm; /*• address space of t h i s process */

For example, the state of a process is represented by the field long s ta te
in this structure. Within the Linux kernel, all active processes are represented
using a doubly linked list of task_struct, and the kernel maintains a pointer
— current — to the process currently executing on the system. This is shown
in Figure 3.5.

struct task_struct
process information

struct task__struct
process information

struct task_struct
process information

current
(currently executing proccess)

Figure 3,5 Active processes in Linux.

As an illustration of how the kernel might manipulate one of the fields in
the task_struct for a specified process, let's assume the system would like
to change the state of the process currently running to the value new .state.
If current is a pointer to the process currently executing, its state is changed
with the following:

current->state = new..state;

Suppose the process makes an I/O request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
I/O request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular I/O device is called a
device queue. Each device has its own device queue (Figure 3.6).
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Figure 3.6 The ready queue and various I/O device queues.

A common representation for a discussion of process scheduling is a
queueing diagram, such as that in Figure 3.7. Each rectangular box represents
a queue. Two types of queues are present: the ready queue and a set of device
queues. The circles represent the resources that serve the queues, and the
arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there tmtil it is
selected for execution, or is dispatched. Once the process is allocated the CPU
and is executing, one of several events could occur:

• The process could issue an I/O request and then be placed in an I/O queue.

• The process could create a new subprocess and wait for the subprocess's
termination.

• The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.
In the first two cases, the process eventually switches from the waiting state

to the ready state and is then put back in the ready queue. A process continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
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Figure 3.7 Queueing-diagram representation of process scheduling.

from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an I/O request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-
arate the creation of one new process and the next. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem-
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes
leaving the system. Thus, the long-term scheduler may need to be invoked
only when a process leaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more time to decide
which process should be selected for execution.

It is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either L/O bound or CPU bound. An
I/O-bound process is one that spends more of its time doing I/O than it spends
doing computations. A CPU-bound process, in contrast, generates I/O requests
infrequently, using more of its time doing computations. It is important that the
long-term scheduler select a good process mix of I/O-bound and CPU-bound
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processes. If all processes are I/O bound, the ready queue will almost always
be empty, and the short-term scheduler will have little to do. If all processes
are CPU bound, the I/O waiting queue will almost always be empty, devices
will go unused, and again the system will be unbalanced. The system with the
best performance will thus have a combination of CPU-bound and I/O-bound
processes.

On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems such as UNIX and Microsoft Windows
systems often have no long-term scheduler but simply put every new process
in memory for the short-term scheduler. The stability of these systems depends
either on a physical limitation (such as the number of available terminals) or
on the self-adjusting nature of human users. If the performance declines to
unacceptable levels on a multiuser system, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an
additional, intermediate level of scheduling. This medium-term scheduler is
diagrammed in Figure 3.8. The key idea behind a medium-term scheduler is
that sometimes it can be advantageous to remove processes from memory
(and from active contention for the CPU) and thus reduce the degree of
multiprogramming. Later, the process can be reintroduced into memory, and its
execution can be continued where it left off. This scheme is called swapping.
The process is swapped out, and is later swapped in, by the medium-term
scheduler. Swapping may be necessary to improve the process mix or because
a change in memory requirements has overcommitted available memory,
requiring memory to be freed up. Swapping is discussed in Chapter 8.

3.2.3 Context Switch

As mentioned in 1.2.1, interrupts cause the operating system to change a CPU
from its current task and to run a kernel routine. Such operations happen
frequently on general-purpose systems. When an interrupt occurs, the system
needs to save the current context of the process currently running on the
CPU so that it can restore that context when its processing is done, essentially
suspending the process and then resuming it. The context is represented in
the PCB of the process; it includes the value of the CPU registers, the process
state (see Figure 3.2), and memory-management information. Generically, we
perform a state save of the current state of the CPU, be it in kernel or user mode,
and then a state restore to resume operations.
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Switching the CPU to another process requires performing a stat^ save
of the current process and a state restore of a different process. This task is
known as a context switch. When a context switch occurs, the kernel saves the
context of the old process in its PCB and loads the saved context of the new
process scheduled to run. Context-switch time is pure overhead, because the
system does no useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store all registers). Typical speeds are a few milliseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets
of registers. A context switch here simply requires changing the pointer to the
current register set. Of course, if there are more active processes than there are
register sets, the system resorts to copying register data to and from memory,
as before. Also, the more complex the operating system, the more work must
be done during a context switch. As we will see in Chapter 8, advanced
memory-management techniques may require extra data to be switched with
each context. For instance, the address space of the current process must be
preserved as the space of the next task is prepared for use. How the address
space is preserved, and what amount of work is needed to preserve it, depend
on the memory-management method of the operating system.

3.3 Operations on Processes

The processes in most systems can execute concurrently, and they may
be created and deleted dynamically. Thus, these systems must provide a
mechanism for process creation and termination. In this section, we explore
the mechanisms involved in creating processes and illustrate process creation
on UNIX and Windows systems.

3.3.1 Process Creation

A process may create several new processes, via a create-process system call,
during the course of execution. The creating process is called a parent process,
and the new processes are called the children of that process. Each of these
new processes may in turn create other processes, forming a tree of processes.

Most operating systems (including UNIX and the Windows family of
operating systems) identify processes according to a unique process identifier
(or pid), which is typically an integer number. Figure 3.9 illustrates a typical
process tree for the Solaris operating system, showing the name of each process
and its pid. In Solaris, the process at the top of the tree is the sched process,
with pid of 0. The sched process creates several children processes—including
pageout and f sf lush. These processes are responsible for managing memory
and file systems. The sched process also creates the i n i t process, which serves
as the root parent process for all user processes. In Figure 3.9, we see two
children of i n i t — inetd and dt login. inetd is responsible for networking
services such as t e l n e t and ftp; d t log in is the process representing a user
login screen. When a user logs in, d t log in creates an X-windows session
(Xsession), which in turns creates the sdt_shel process. Below sdt_shel, a
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user's command-line shell—the C-shell or csh—is created. It is this command-
line interface where the user then invokes various child processes, such as the
I s and cat commands. We also see a csh process with pid of 7778 representing
a user who has logged onto the system using t e lne t . This user has started the
Netscape browser (pid of 7785) and the emacs editor (pid of 8105).

On UNIX, a listing of processes can be obtained using the ps command. For
example, entering the command ps - e l will list complete information for all
processes currently active in the system. It is easy to construct a process tree
similar to what is shown in Figure 3.9 by recursively tracing parent processes
all the way to the i n i t process.

In general, a process will need certain resources (CPU time, memory, files,
I/O devices) to accomplish its task. When a process creates a subprocess, that
subprocess may be able to obtain its resources directly from the operatiiig
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children. Restricting a child process to a subset of the parent's
resources prevents any process from overloading the system by creating too
many subprocesses.

In addition to the various physical and logical resources that a process
obtains when it is created, initialization data (input) may be passed along by
the parent process to the child process. For example, consider a process whose
function is to display the contents of a file—say, img.jpg—on the screen of a

Figure 3.9 A tree of processes on a typical Solaris system.
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terminal. When it is created, it will get, as an input from its parent process,
the name of the file img.jpg, and it will use that file name, open the file, and
write the contents out. It may also get the name of the output device. Some
operating systems pass resources to child processes. On such a system, the
new process may get two open files, img.jpg and the terminal device, and may
simply transfer the datum between the two.

When a process creates a new process, two possibilities exist in terms of
execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process:

1. The child process is a duplicate of the parent process (it has the same
program and data as the parent).

2. The child process has a new program loaded into it.

To illustrate these differences, let's first consider the UNIX operating system.
In UNIX, as we've seen, each process is identified by its process identifier,

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{
pid-t pid;

/* fork a child process */
pid = fork();

if (pid < 0) {/* error occurred */
fprintf(stderr, "Fork Failed");
exit (-1) ;

}
else if (pid == 0} {/* child process */

execlpf"/bin/Is","Is",NULL);

}
else {/* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");
exit (0) ;

Figure 3.10 C program forking a separate process.
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which is a unique integer. A new process is created by the forkO system
call. The new process consists of a copy of the address space of the original
process. This mechanism allows the parent process to communicate easily with
its child process. Both processes (the parent and the child) continue execution
at the instruction after the f ork() , with one difference: The return code for
the forkO is zero for the new (child) process, whereas the (nonzero) process
identifier of the child is returned to the parent.

Typically, the execO system call is used after a forkO system call by
one of the two processes to replace the process's memory space with a new
program. The exec () system call loads a binary file into memory (destroying
the memory image of the program containing the execO system call) and
starts its execution. In this manner, the two processes are able to communicate
and then go their separate ways. The parent can then create more children; or,
if it has nothing else to do while the child runs, it can issue a wait () system
call to move itself off the ready queue until the termination of the child.

The C program shown in Figure 3.10 illustrates the UNIX system calls
previously described. We now have two different processes running a copy
of the same program. The value of pid for the child process is zero; that for
the parent is an integer value greater than zero. The child process overlays
its address space with the UNIX command / b i n / I s (used to get a directory
listing) using the execlpO system call (execlpO is a version of the execO
system call). The parent waits for the child process to complete with the wait ()
system call. When the child process completes (by either implicitly or explicitly
invoking ex i t ()) the parent process resumes from the call to wait () , where it
completes using the ex i t () system call. This is also illustrated in Figure 3.11.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Win32 API using the CreateProcessO function,
which is similar to f ork () in that a parent creates a new child process. However,
whereas f ork () has the child process inheriting the address space of its parent,
CreateProcess () requires loading a specified program into the address space
of the child process at process creation. Furthermore, whereas f ork () is passed
no parameters, CreateProcess 0 expects no fewer than ten parameters.

The C program shown in Figure 3.12 illustrates the CreateProcessO
function, which creates a child process that loads the application mspaint. exe.
We opt for many of the default values of the ten parameters passed to
CreateProcessO. Readers interested in pursuing the details on process
creation and management in the Win32 API are encouraged to consult the
bibliographical notes at the end of this chapter.

Figure 3.11 Process creation.
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#include <stdio.h> i
#include <windows.h>

int main(VOID)

{
STARTUPINFO si;
PROCESS_INFORMATION pi;

// allocate memory
ZeroMemory(&si, sizeof (si)) ;
si.cb = sizeof (si) ;
ZeroMemory(&pi, sizeof(pi));

// create child process
if (!CreateProcess(NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe", // command line
NULL, // don't inherit process handle
NULL, // don't inherit thread handle
FALSE, // disable handle inheritance
0, //no creation flags

NULL, // use parent's environment block
NULL, // use parent's existing directory
&si,

fprintf(stderr, "Create Process Failed");
return -1;

}
// parent will wait for the child to complete
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

// close handles
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

Figure 3.12 Creating a separate process using the Win32 API.

Two parameters passed to CreateProcess () are instances of the START-
UPINFO and PROCESSJNFORMATION structures. STARTUPINFO specifies many
properties of the new process, such as window size and appearance and han-
dles to standard input and output files. The PROCESSJNFORMATION structure
contains a handle and the identifiers to the newly created process and its thread.
We invoke the ZeroMemoryO function to allocate memory for each of these
structures before proceeding with CreateProcess () .

The first two parameters passed to CreateProcess () are the application
name and command line parameters. If the application name is NULL (which
in this case it is), the command line parameter specifies the application to
load. In this instance we are loading the Microsoft Windows mspaint.exe
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application. Beyond these two initial parameters, we use the default parameters
for inheriting process and thread handles as well as specifying no creation flags.
We also use the parent's existing environment block and starting directory.
Last, we provide two pointers to the STARTUPINFO and PROCESS-INFORMATION
structures created at the beginning of the program. In Figure 3.10, the parent
process waits for the child to complete by invoking the wa i tO system call.
The equivalent of this in Win32 is WaitForSingleObj ect ( ) , which is passed a
handle of the child process—pi . hProcess— that it is waiting for to complete.
Once the child process exits, control returns from the WaitForSingleOb j ect ()
function in the parent process.

3.3.2 Process Termination

A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the ex i t () system call. At that point, the
process may return a status value (typically an integer) to its parent process (via
the wait() system call). All the resources of the process—including physical and
virtual memory, open files, and I/O buffers—are deallocated by the operating
system.

Termination can occur in other circumstances as well. A process can cause
the termination of another process via an appropriate system call (for example,
TerminateProcessO in Win32). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, users
could arbitrarily kill each other's jobs. Note that a parent needs to know the
identities of its children. Thus, when one process creates a new process, the
identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

• The child has exceeded its usage of some of the resources that it has been
allocated. (To determine whether this has occurred, the parent must have
a mechanism to inspect the state of its children.)

• The task assigned to the child is no longer required.

• The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

Some systems, including VMS, do not allow a child to exist if its parent
has terminated. In such systems, if a process terminates (either normally or
abnormally), then all its children must also be terminated. This phenomenon,
referred to as cascading termination, is normally initiated by the operating
system.

To illustrate process execution and termination, consider that, in UNIX, we
can terminate a process by using the e x i t Q system call; its parent process
may wait for the termination of a child process by using the wai tO system
call. The wait () system call returns the process identifier of a terminated child
so that the parent can tell which of its possibly many children has terminated.
If the parent terminates, however, all its children have assigned as their new
parent the i n i t process. Thus, the children still have a parent to collect their
status and execution statistics.
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3.4 Interprocess Communication »

Processes executing concurrently in the operating system may be either
independent processes or cooperating processes. A process is independent
if it cannot affect or be affected by the other processes executing in the system.
Any process that does not share data with any other process is independent. A
process is cooperating if it can affect or be affected by the other processes
executing in the system. Clearly, any process that shares data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows process
cooperation:

• Information sharing. Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

• Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing elements (such as CPUs or I/O channels).

• Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 2.

• Convenience. Even an individual user may work on many tasks at the
same time. For instance, a user may be editing, printing, and compiling in
parallel.

Cooperating processes require an interprocess communication (IPC) mech-
anism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication: (1) shared memory and
(2) message passing. In the shared-memory model, a region of memory that
is shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message-
passing model, communication takes place by means of messages exchanged
between the cooperating processes. The two communications models are
contrasted in Figure 3.13.

Both of the models just discussed are common in operating systems, and
many systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Message
passing is also easier to implement than is shared memory for intercomputer
communication. Shared memory allows maximum speed and convenience of
communication, as it can be done at memory speeds when within a computer.
Shared memory is faster than message passing, as message-passing systems
are typically implemented using system calls and thus require the more time-
consuming task of kernel intervention. In contrast, in shared-memory systems,
system calls are required only to establish shared-memory regions. Once shared
memory is established, all accesses are treated as routine memory accesses, and
no assistance from the kernel is required. In the remainder of this section, we
explore each of these IPC models in more detail.



3.4 Interprocess Communication 97

2 1

(a) (b)

Figure 3.13 Communications models, (a) Message passing, (b) Shared memory.

3.4.1 Shared-Memory Systems

Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-memory
segment. Other processes that wish to communicate using this shared-memory
segment must attach it to their address space. Recall that, normally, the
operating system tries to prevent one process from accessing another process's
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then exchange information by reading and writing
data in the shared areas. The form of the data and the location are determined by
these processes and are not under the operating system's control. The processes
are also responsible for ensuring that they are not writing to the same location
simultaneously.

To illustrate the concept of cooperating processes, let's consider the
producer-consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code,
which is consumed by an assembler. The assembler, in turn, may produce
object modules, which are consumed by the loader. The producer-consumer
problem also provides a useful metaphor for the client-server paradigm. We
generally think of a server as a producer and a client as a consumer. For
example, a web server produces (that is, provides) HTML files and images,
which are consumed (that is, read) by the client web browser requesting the
resource.

One solution to the producer-consumer problem uses shared memory. To
allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by
the consumer. This buffer will reside in a region of memory that is shared by
the producer and consumer processes. A producer can produce one item while
the consumer is consuming another item. The producer and consumer must
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be synchronized, so that the consumer does not try to consume an item that
has not yet been produced.

Two types of buffers can be used. The unbounded buffer places no practical
limit on the size of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items. The bounded buffer assumes
a fixed buffer size. In this case, the consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Let's look more closely at how the bounded buffer can be used to enable
processes to share memory. The following variables reside in a region of
memory shared by the producer and consumer processes:

#define BUFFER_SIZE 10

typedef struct {

}item;

item buffer [BUFFER_SIZE] ;
int in = 0 ,-
int out = 0 ;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in == out; the buffer is full when ((in + 1) % BUFFER_SIZE) == out.

The code for the producer and consumer processes is shown in Figures 3.14
and 3.15, respectively. The producer process has a local variable nextProduced
in which the new item to be produced is stored. The consumer process has a
local variable nextConsumed in which the item to be consumed is stored.

This scheme allows at most BUFFER_SIZE - l items in the buffer at the same
time. We leave it as an exercise for you to provide a solution where BUFFER-SIZE
items can be in the buffer at the same time. In Section 3.5.1, we illustrate the
POSIX API for shared memory.

One issue this illustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concurrently. In Chapter 6, we discuss how synchronization
among cooperating processes can be implemented effectively in a shared-
memory environment.

item nextProduced;

while (true) {
/* produce an item in nextProduced */
while (((in + 1) % BUFFER-SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

Figure 3.14 The producer process.
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item nextConsumed; f

while (true) {
while (in == out)

; //do nothing

nextConsumed = buffer[out];
out = (out + 1) % BUFFEFLSIZE;
/* consume the item in nextConsumed */

}

Figure 3.15 The consumer process.

3.4.2 Message-Passing Systems

In Section 3.4.1, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
facility.

Message passing provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same address space and
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, a chat program used on the World Wide Web could be designed so
that chat participants communicate with one another by exchanging messages.

A message-passing facility provides at least two operations: send(message)
and receive(message). Messages sent by a process can be of either fixed
or variable size. If only fixed-sized messages can be sent, the system-level
implementation is straightforward. This restriction, however, makes the task
of programming more difficult. Conversely, variable-sized messages require
a more complex system-level implementation, but the programming task
becomes simpler. This is a common kind of tradeoff seen throughout operating
system design.

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between
them. This link can be implemented in a variety of ways. We are concerned here
not with the link's physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 16) but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send( ) / rece ive () operations:

• Direct or indirect communication

• Synchronous or asynchronous communication

• Automatic or explicit buffering

We look at issues related to each of these features next.
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3.4.2.1 Naming '

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send.0 and rece ive( ) primitives are defined as:

• send(P, message)—Send a message to process P.

• receive (Q, message)—Receive a message from process Q.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other's
identity to communicate.

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A
variant of this scheme employs asymmetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this
scheme, the send() and receive () primitives are defined as follows:

• send(P, message)—Send a message to process P.

• r ece ive ( id , message)—-Receive a message from any process; the vari-
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining all other process definitions.
All references to the old identifier must be found, so that they can be modified
to the new identifier. In general, any such hard-coding techniques, where
identifiers must be explicitly stated, are less desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and from which messages can be removed.
Each mailbox has a unique identification. For example, POSIX message queues
use an integer value to identify a mailbox. In this scheme, a process can
communicate with some other process via a number of different mailboxes.
Two processes can communicate only if the processes have a shared mailbox,
however. The sendC) and receive () primitives are defined as follows:

• send(A, message)—Send a message to mailbox A.

• receive(A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:



3.4 Interprocess Communication 101

• A link is established between a pair of processes only if both members of
the pair have a shared mailbox.

• A link may be associated with more than two processes.

• Between each pair of communicating processes, there may be a number of
different links, with each link corresponding to one mailbox.

Now suppose that processes P\, Vi, and P3 all share mailbox A Process
Pi sends a message to A, while both P2 and P3 execute a rece ive( ) from A
Which process will receive the message sent by Pi? The answer depends on
which of the following methods we choose:

• Allow a link to be associated with two processes at most.

• Allow at most one process at a time to execute a receive () operation.

• Allow the system to select arbitrarily which process will receive the
message (that is, either P2 or P3, but not both, will receive the message).
The system also may define an algorithm for selecting which process
will receive the message (that is, round robin where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (who can only
receive messages through this mailbox) and the user (who can only send
messages to the mailbox). Since each mailbox has a unique owner, there can be
no confusion about who should receive a message sent to this mailbox. When a
process that owns a mailbox terminates, the mailbox disappears. Any process
that subsequently sends a message to this mailbox must be notified that the
mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an
existence of its own. It is independent and is not attached to any particular
process. The operating system then must provide a mechanism that allows a
process to do the following:

• Create a new mailbox.

• Send and receive messages through the mailbox.

• Delete a mailbox.

The process that creates a new mailbox is that mailbox's owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision
could result in multiple receivers for each mailbox.

3.4.2.2 Synchronization

Communication between processes takes place through calls to sendO and
receive () primitives. There are different design options for implementing
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each primitive. Message passing may be either blocking or nonblocking—
also known as synchronous and asynchronous.

• Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

• Nonblocking send. The sending process sends the message and resumes
operation.

• Blocking receive. The receiver blocks until a message is available.

• Nonblocking receive. The receiver retrieves either a valid message or a
null.

Different combinations of send() and receive () are possible. When both
sendQ and rece ive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer-consumer problem
becomes trivial when we use blocking sendO and r e c e i v e 0 statements.
The producer merely invokes the blocking sendO call and waits until the
message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive () , it blocks until a message is available.

Note that the concepts of synchronous and asynchronous occur frequently
in operating-system I/O algorithms, as you will see throughout this text.

3.4.2.3 Buffering

Whether communication is direct or indirect, messages exchanged by commu-
nicating processes reside in a temporary queue. Basically, such queues can be
implemented in three ways:

• Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

• Bounded capacity. The queue has finite length n; thus, at most n messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without
waiting. The links capacity is finite, however. If the link is full, the sender
must block until space is available in the queue.

• Unbounded capacity. The queues length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as systems with automatic buffering.

3.5 Examples of I PC Systems

In this section, we explore three different IPC systems. We first cover the
POSIX APT for shared memory and then discuss message passing in the Mach
operating system. We conclude with Windows XP, which interestingly uses
shared memory as a mechanism for providing certain types of message passing.
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3.5.1 An Example: POSIX Shared Memory *

Several IPC mechanisms are available for POSIX systems, including shared
memory and message passing. Here, we explore the POSIX API for shared
memory.

A process must first create a shared memory segment using the shmget ()
system call (shmget () is derived from SHared Memory GET). The following
example illustrates the use of shmget ():

segment_id = shmget(IPCJPRIVATE, s i z e , SJRUSR | SJVVUSR) ;

This first parameter specifies the key (or identifier) of the shared-memory
segment. If this is set to IPC-PRIVATE, a new shared-memory segment is created.
The second parameter specifies the size (in bytes) of the shared memory
segment. Finally, the third parameter identifies the mode, which indicates
how the shared-memory segment is to be used—that is, for reading, writing,
or both. By setting the mode to SJRUSR | SJVVUSR, we are indicating that the
owner may read or write to the shared memory segment. A successful call to
shmget () returns an integer identifier for the shared-memory segment. Other
processes that want to use this region of shared memory must specify this
identifier.

Processes that wish to access a shared-memory segment must attach it to
their address space using the shmat () (SHared Memory ATtach) system call.
The call to shmat () expects three parameters as well. The first is the integer
identifier of the shared-memory segment being attached, and the second is
a pointer location in memory indicating where the shared memory will be
attached. If we pass a value of NULL, the operating system selects the location
on the user's behalf. The third parameter identifies a flag that allows the shared-
memory region to be attached in read-only or read-write mode; by passing a
parameter of 0, we allow both reads and writes to the shared region.

The third parameter identifies a mode flag. If set, the mode flag allows the
shared-memory region to be attached in read-only mode; if set to 0, the flag
allows both reads and writes to the shared region. We attach a region of shared
memory using shmat () as follows:

shared_memory = (char *) shmat(id, NULL, 0) ;

If successful, shmat () returns a pointer to the beginning location in memory
where the shared-memory region has been attached.

Once the region of shared memory is attached to a process's address space,
the process can access the shared memory as a routine memory access using
the pointer returned from shmat (). In this example, shmat () returns a pointer
to a character string. Thus, we could write to the shared-memory region as
follows:

sprintf(sharedjnemory, "Writing to shared memory");

Other processes sharing this segment would see the updates to the shared-
memory segment.

Typically, a process using an existing shared-memory segment first attaches
the shared-memory region to its address space and then accesses (and possibly
updates) the region of shared memory. When a process no longer requires
access to the shared-memory segment, it detaches the segment from its address
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#include <stdio.h> »
#include <sys/shm.h>
#include <sys/stat. h>

int main()

{
/* the identifier for the shared memory segment */
int segment_id;=
/* a pointer to the shared memory segment */
char* shared_memory;
/* the size (in bytes) of the shared memory segment */
const int size = 4096;

/* allocate a shared memory segment */
segmented = shmget (IPC_PRIVATE, size, S_IRUSR | S_IWUSR)

/* attach the shared memory segment */
shared.memory = (char *) shmat (segment_id, NULL, 0) ;

/* write a message to the shared memory segment */
sprint f (shared-memory, "Hi there!");

/* now print out the string from shared memory */
printf ("*%s\n" , shared_memory) ,•

/* now detach the shared memory segment */
shmdt (sharecLmemory) ;

/* now remove the shared memory segment */
shmctl (segment-Id, IPC_RMID, NULL);

return 0;

Figure 3.16 C program illustrating POSIX shared-memory API.

space. To detach a region of shared memory, the process can pass the pointer
of the shared-memory region to the shmdt () system call, as follows:

shmdt (shared_memory) ;

Finally, a shared-memory segment can be removed from the system with the
shmctl() system call, which is passed the identifier of the shared segment
along with the flag IPCJRMID.

The program shown in Figure 3.16 illustrates the POSIX shared-memory API-
discussed above. This program creates a 4,096-byte shared-memory segment.
Once the region of shared memory is attached, the process writes the message
Hi There! to shared memory. After outputting the contents of the updated
memory, it detaches and removes the shared-memory region. We provide
further exercises using the POSIX shared memory API in the programming
exercises at the end of this chapter.
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3.5.2 An Example: Mach ?

As an example of a message-based operating system, we next consider
the Mach operating system, developed at Carnegie Mellon University. We
introduced Mach in Chapter 2 as part of the Mac OS X operating system. The
Mach kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most communication
in Mach—including most of the system calls and all intertask information—
is carried out by messages. Messages are sent to and received from mailboxes,
called ports in Mach.

Even system calls are made by messages. When a task is created, two special
mailboxes—the Kernel mailbox and the Notify mailbox—are also created. The
Kernel mailbox is used by the kernel to communicate with the task. The kernel
sends notification of event occurrences to the Notify port. Only three system
calls are needed for message transfer. The msg_send() call sends a message
to a mailbox. A message is received via msg_receive(). Remote procedure
calls (RPCs) are executed via msg_rpc (), which sends a message and waits for
exactly one return message from the sender. In this way, the RPC models a
typical subroutine procedure call but can work between systems—hence the
term remote.

The por t_a l loca te ( ) system call creates a new mailbox and allocates
space for its queue of messages. The maximum size of the message queue
defaults to eight messages. The task that creates the mailbox is that mailbox's
owner. The owner is also allowed to receive from the mailbox. Only one task
at a time can either own or receive from a mailbox, but these rights can be sent
to other tasks if desired.

The mailbox has an initially empty queue of messages. As messages are
sent to the mailbox, the messages are copied into the mailbox. All messages
have the same priority. Mach guarantees that multiple messages from the same
sender are queued in first-in, first-out (FIFO) order but does not guarantee an
absolute ordering. For instance, messages from two senders may be queued in
any order.

The messages themselves consist of a fixed-length header followed by a
variable-length data portion. The header indicates the length of the message
and includes two mailbox names. One mailbox name is the mailbox to which
the message is being sent. Commonly, the sending thread expects a reply; so
the mailbox name of the sender is passed on to the receiving task, which can
use it as a "return address."

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in the
message is important, since objects defined by the operating system—such as
ownership or receive access rights, task states, and memory segments—may
be sent in messages.

The send and receive operations themselves are flexible. For instance, when
a message is sent to a mailbox, the mailbox may be full. If the mailbox is not
full, the message is copied to the mailbox, and the sending thread continues. If
the mailbox is full, the sending thread has four options:

1. Wait indefinitely until there is room in the mailbox.

2. Wait at most n milliseconds.
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3. Do not wait at all but rather return immediately. *

4. Temporarily cache a message. One message can be given to the operating
system to keep, even though the mailbox to which it is being sent is full.
When the message can be put in the mailbox, a message is sent back to
the sender; only one such message to a full mailbox can be pending at
any time for a given sending thread.

The final option is meant for server tasks, such as a line-printer driver. After
finishing a request, such tasks may need to send a one-time reply to the task
that had requested service; but they must also continue with other service
requests, even if the reply mailbox for a client is full.

The receive operation must specify the mailbox or mailbox set from which a
message is to be received- A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for the
purposes of the task. Threads in a task can receive only from a mailbox or
mailbox set for which the task has receive access. A por t_s ta tus( ) system
call returns the number of messages in a given mailbox. The receive operation
attempts to receive from (1) any mailbox in a mailbox set or (2) a specific
(named) mailbox. If no message is waiting to be received, the receiving thread
can either wait at most n milliseconds or not wait at all.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 16 through 18, but Mach is also suitable for single-
processor systems, as evidenced by its inclusion in the Mac OS X system. The
major problem with message systems has generally been poor performance
caused by double copying of messages; the message is copied first from
the sender to the mailbox and then from the mailbox to the receiver. The
Mach message system attempts to avoid double-copy operations by using
virtual-memory-management techniques (Chapter 9). Essentially, Mach maps
the address space containing the sender's message into the receiver's address
space. The message itself is never actually copied. This message-management
technique provides a large performance boost but works for only intrasystem
messages. The Mach operating system is discussed in an extra chapter posted
on our website.

3.5.3 An Example: Windows XP

The Windows XP operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed
to implement new features. Windows XP provides support for multiple
operating environments, or subsystems, with which application programs
communicate via a message-passing mechanism. The application programs
can be considered clients of the Windows XP subsystem server.

The message-passing facility in Windows XP is called the local procedure-
call (LPC) facility. The LPC in Windows XP communicates between two
processes on the same machine. It is similar to the standard RPC mechanism that
is widely used, but it is optimized for and specific to Windows XP. Like Mach,
Windows XP uses a port object to establish and maintain a connection between
two processes. Every client that calls a subsystem needs a communication
channel, which is provided by a port object and is never inherited. Windows
XP uses two types of ports: connection ports and communication ports. They
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are really the same but are given different names according to how they are
used. Connection ports are named objects and are visible to all processes; sthey
give applications a way to set up communication channels (Chapter 22). The
communication works as follows:

• The client opens a handle to the subsystem's connection port object.

• The client sends a connection request.

• The server creates two private communication ports and returns the handle
to one of them to the client.

• The client and server use the corresponding port handle to send messages
or callbacks and to listen for replies.

Windows XP uses two types of message-passing techniques over a port that
the client specifies when it establishes the channel. The simplest, which is used
for small messages, uses the port's message queue as intermediate storage and
copies the message from one process to the other. Under this method, messages
of up to 256 bytes can be sent.

If a client needs to send a larger message, it passes the message through
a section object, which sets up a region of shared memory. The client has to
decide when it sets up the channel whether or not it will need to send a large
message. If the client determines that it does want to send large messages, it
asks for a section object to be created. Similarly, if the server decides that replies
will be large, it creates a section object. So that the section object can be used,
a small message is sent that contains a pointer and size information about the
section object. This method is more complicated than the first method, but it
avoids data copying. In both cases, a callback mechanism can be used when
either the client or the server cannot respond immediately to a request. The
callback mechanism allows them to perform asynchronous message handling.
The structure of local procedure calls in Windows XP is shown in Figure 3.17.

It is important to note that the LPC facility in Windows XP is not part of
the Win32 API and hence is not visible to the application programmer. Rather,
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Figure 3.17 Local procedure calls in Windows XP.
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applications using the Win32 API invoke standard remote procedure#calls.
When the RPC is being invoked on a process on the same system, the RPC is
indirectly handled through a local procedure call. LPCs are also used in a few
other functions that are part of the Win32 API.

3.6 Communication in Client-Server Systems

In Section 3.4, we described how processes can communicate using shared
memory and message passing. These techniques can be used for communica-
tion in client-server systems (1.12.2) as well. In this section, we explore three
other strategies for communication in client-server systems: sockets, remote
procedure calls (RPCs), and Java's remote method invocation (RMI).

3.6.1 Sockets

A socket is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets—one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client-server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as telnet, ftp, and http) listen to
well-known ports (a telnet server listens to port 23, an ftp server listens to
port 21, and a web, or http, server listens to port 80). All ports below 1024 are
considered ivell known; we can use them to implement standard services.

When a client process initiates a request for a connection, it is assigned a
port by the host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the web server. This situation is illustrated in Figure 3.18. The packets

hostX
(146.86.5.20)

web server
(161.25.19.8)

socket
(146.86.5.20:1625)

Figure 3.18 Communication using sockets.
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traveling between the hosts are delivered to the appropriate process based on
the destination port number.

All connections must be unique. Therefore, if another process also on host
X wished to establish another connection with the same web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
in C or C++ should consult the bibliographical notes at the end of the chapter.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
use the DatagramSocket class. Finally, the Mult icastSocket class is a subclass
of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from

import java.net.*;
import j ava . io .* ;

public class DateServer

{
public static void main(String [] args) {

try {
ServerSocket sock = new ServerSocket(6013);

// now listen for connections
while (true) {

Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

// write the Date to the socket
pout.println(new java.util.Date() .toString());

// close the socket and resume
// listening for connections
client.close();

catch (IOException ioe) {
System.err.println(ioe);

Figure 3.19 Date server.
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the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.19. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept () method. The server blocks on the accept O method
waiting for a client to request a connection. When a connection request is
received, accept () returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes a Pr intWri ter object that it will use to communicate
with the client. A PrintWri ter object allows the server to write to the socket
using the routine p r i n t () and p r in t In () methods for output. The server
process sends the date to the client, calling the method p r i n t l n O . Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the
Java program shown in Figure 3.20. The client creates a Socket and requests

import j ava.net.*;
import java.io.*;

public class DateClient

{
public static void main(String[] args) {

try {
//make connection to server socket
Socket sock = new Socket("127.0 . 0.1",6013) ;

InputStream in = sock.getlnputStream();
BufferedReader bin = new

BufferedReader(new InputStreamReader(in));

// read the date from the socket
String line;
while ( (line = bin.readLine()) != null)

System.out.println(line);

II close the socket connection
sock.close () ;

}
catch (IOException ioe) {

System.err.println(ioe);

Figure 3.20 Date client.
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a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read front the socket using normal stream
I/O statements. After it has received the date from the server, the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the
loopback. When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP address,
an actual host name, such as ivrvw.westminstercoHege.edu, can be used as well.

Communication using sockets—although common and efficient—is con-
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsections, we look at two higher-level methods of communication: remote
procedure calls (RPCs) and remote method invocation (RMI).

3.6.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 3.5.2. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 3.4, and it is usually built on top of such a system. Here, however,
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication
scheme to provide remote service. In contrast to the IPC facility, the messages
exchanged in RPC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RPC daemon listening to
a port on the remote system, and each contains an identifier of the function
to execute and the parameters to pass to that function. The function is then
executed as requested, and any output is sent back to the requester in a separate
message.

A port is simply a number included at the start of a message packet. Whereas
a system normally has one network address, it can have many ports within
that address to differentiate the many network services it supports. If a remote
process needs a service, it addresses a message to the proper port. For instance,
if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RPC attached to a port—say, port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RPC message to port 3027 on the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow communication to take place by providing a stub on the client side.
Typically, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RPC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. This stub locates
the port on the server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be transmitted over



112 Chapter 3 Processes

a network. The stub then transmits a message to the server using message
passing. A similar stub on the server side receives this message and invokes
the procedure on the server. If necessary, return values are passed back to the
client using the same technique.

One issue that must be dealt with concerns differences in data representa-
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems (known as big-endian) use the high memory address to
store the most significant byte, while other systems (known as little-endian) store
the least significant byte at the high memory address. To resolve differences
like this, many RPC systems define a machine-independent representation of
data. One such representation is known as external data representation (XDR).
On the client side, parameter marshalling involves converting the machine-
dependent data into XDR before they are sent to the server. On the server
side, the XDR data are unmarshalled and converted to the machine-dependent
representation for the server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fail only under extreme circumstances, RPCs can fail, or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most once. Most local
procedure calls have the "exactly once" functionality, but it is more difficult to
implement.

First, consider "at most once". This semantic can be assured by attaching
a timestamp to each message. The server must keep a history of all the
timestamps of messages it has already processed or a history large enough
to ensure that repeated messages are detected. Incoming messages that have
a timestamp already in the history are ignored. The client can then send
a message one or more times and be assured that it only executes once.
(Generation of these timestamps is discussed in Section 18.1.)

For "exactly once," we need to remove the risk that the server never receives
the request. To accomplish this, the server must implement the "at most once"
protocol described above but must also acknowledge to the client that the RPC
call was received and executed. These ACK messages are common throughout
networking. The client must resend each RPC call periodically until it receives
the ACK for that call.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place
during link, load, or execution time (Chapter 8) so that a procedure call's name
is replaced by the memory address of the procedure call. The RPC scheme
requires a similar binding of the client and the server port, but how does a client
know the port numbers on the server? Neither system has full information
about the other because they do not share memory.

Two approaches are common. First, the binding information may be
predetermined, in the form of fixed port addresses. At compile time, an RPC
call has a fixed port number associated with it. Once a program is compiled,
the server cannot change the port number of the requested service. Second,
binding can be done dynamically by a rendezvous mechanism. Typically, an
operating system provides a rendezvous (also called a matchmaker) daemon
on a fixed RPC port. A client then sends a message containing the name of
the RPC to the rendezvous daemon requesting the port address of the RPC it
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Figure 3.21 Execution of a remote procedure call (RPC).

needs to execute. The port number is returned, and the RPC calls can be sent
to that port until the process terminates (or the server crashes). This method
requires the extra overhead of the initial request but is more flexible than the
first approach. Figure 3.21 shows a sample interaction.

The RPC scheme is useful in implementing a distributed file system
(Chapter 17). Such a system can be implemented as a set of RPC daemons
and clients. The messages are addressed to the distributed file system port on a
server on which a file operation is to take place. The message contains the disk
operation to be performed. The disk operation might be read, wri te , rename,
dele te , or s t a tus , corresponding to the usual file-related system calls. The
return message contains any data resulting from that call, which is executed by
the DFS daemon on behalf of the client. For instance, a message might contain
a request to transfer a whole file to a client or be limited to a simple block
request. In the latter case, several such requests may be needed if a whole file
is to be transferred.
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3.6.3 Remote Method Invocation ••

Remote method invocation (RMI) is a Java feature similar to RPCs. RMI allows
a thread to invoke a method on a remote object. Objects are considered remote
if they reside in a different Java virtual machine (JVM). Therefore, the remote
object may be in a different JVM on the same computer or on a remote host
connected by a network. This situation is illustrated in Figure 3.22.

RMI and RPCs differ in two fundamental ways. First, RPCs support pro-
cedural programming, whereby only remote procedures or functions can be
called. In contrast, RMI is object-based: It supports invocation of methods on
remote objects. Second, the parameters to remote procedures are ordinary data
structures in RPC; with RMI, it is possible to pass objects as parameters to remote
methods. By allowing a Java program to invoke methods on remote objects,
RMI makes it possible for users to develop Java applications that are distributed
across a network.

To make remote methods transparent to both the client and the server,
RMI implements the remote object using stubs and skeletons. A stub is a
proxy for the remote object; it resides with the client. When a client invokes a
remote method, the stub for the remote object is called. This client-side stub
is responsible for creating a parcel consisting of the name of the method to be
invoked on the server and the marshalled parameters for the method. The stub
then sends this parcel to the server, where the skeleton for the remote object
receives it. The skeleton is responsible for unmarshalling the parameters and
invoking the desired method on the server. The skeleton then marshals the
return value (or exception, if any) into a parcel and returns this parcel to the
client. The stub unmarshals the return value and passes it to the client.

Lets look more closely at how this process works. Assume that a client
wishes to invoke a method on a remote object server with a signature
someMethod(Object, Object) that returns a boolean value. The client
executes the statement

boolean val = server.someMethod(A, B);

The call to someMethod() with the parameters A and B invokes the stub for the
remote object. The stub marshals into a parcel the parameters A and B and the
name of the method that is to be invoked on the server, then sends this parcel to
the server. The skeleton on the server unmarshals the parameters and invokes
the method someMethod(). The actual implementation of someMethod()
resides on the server. Once the method is completed, the skeleton marshals

JVM

JVM

Figure 3.22 Remote method invocation.
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Figure 3.23 Marshalling parameters.

the boolean value returned from someMethod () and sends this value back to
the client. The stub unmarshals this return value and passes it to the client. The
process is shown in Figure 3.23.

Fortunately, the level of abstraction that RMI provides makes the stubs and
skeletons transparent, allowing Java developers to write programs that invoke
distributed methods just as they would invoke local methods. It is crucial,
however, to understand a few rules about the behavior of parameter passing.

• If the marshalled parameters are local (or nonremote) objects, they are
passed by copy using a technique known as object serialization. However,
if the parameters are also remote objects, they are passed by reference. In
our example, if A is a local object and B a remote object, A is serialized and
passed by copy, and B is passed by reference. This in turn allows the server
to invoke methods on B remotely.

• If local objects are to be passed as parameters to remote objects, they must
implement the interface j ava. io . Se r i a l i zab le . Many objects in the core
Java API implement Se r i a l i zab le , allowing them to be used with RMI.
Object serialization allows the state of an object to be written to a byte
stream.

3.7 Summary

A process is a program in execution. As a process executes, it changes state. The
state of a process is defined by that process's current activity. Each process may
be in one of the following states: new, ready, running, waiting, or terminated.
Each process is represented in the operating system by its own process-control
block (PCB).

A process, when it is not executing, is placed in some waiting queue. There
are two major classes of queues in an operating system: I/O request queues
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and the ready queue. The ready queue contains all the processes that areteady
to execute and are waiting for the CPU. Each process is represented by a PCB,
and the PCBs can be linked together to form a ready queue. Long-term (job)
scheduling is the selection of processes that will be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource-
allocation considerations, especially memory management. Short-term (CPU)
scheduling is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to
create new child processes. The parent may wait for its children to terminate
before proceeding, or the parent and children may execute concurrently. There
are several reasons for allowing concurrent execution: information sharing,
computation speedup, modularity, and convenience.

The processes executing in the operating system may be either independent
processes or cooperating processes. Cooperating processes require an interpro-
cess communication mechanism to communicate with each other. Principally,
communication is achieved through two schemes: shared memory and mes-
sage passing. The shared-memory method requires communicating processes
to share some variables. The processes are expected to exchange information
through the use of these shared variables. In a shared-memory system, the
responsibility for providing communication rests with the application pro-
grammers; the operating system needs to provide only the shared memory.
The message-passing method allows the processes to exchange messages.
The responsibility for providing communication may rest with the operating
system itself. These two schemes are not mutually exclusive and can be used
simultaneously within a single operating system.

Communication in client-server systems may use (1) sockets, (2) remote
procedure calls (RPCs), or (3) Java's remote method invocation (RMI). A socket
is defined as an endpoint for communication. A connection between a pair of
applications consists of a pair of sockets, one at each end of the communication
channel. RPCs are another form of distributed communication. An RPC occurs
when a process (or thread) calls a procedure on a remote application. RMI is
the Java version of RPCs. RMI allows a thread to invoke a method on a remote
object just as it would invoke a method on a local object. The primary distinction
between RPCs and RMI is that in RPCs data are passed to a remote procedure in
the form of an ordinary data structure, whereas RMI allows objects to be passed
in remote method calls.

Exercises

3.1 Describe the differences among short-term, medium-term, and long-
term scheduling.

3.2 Describe the actions taken by a kernel to context-switch between
processes.

3.3 Consider the RPC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the "at most once" or "exactly
once" semantic. Describe possible uses for a mechanism that has neither
of these guarantees.
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#include <sys/types.h> t

#include <stdio.h>
#include <unistd.h>

int value = 5;

int main()

{
pid_t pid;

pid = fork();

if (pid == 0) {/* child process */
value += 15;

}
else if (pid > 0) {/* parent process */

wait(NULL);
printf("PARENT: value = %d",value); /* LINE A */
exit(0);

Figure 3.24 C program.

3.4 Using the program shown in Figure 3.24, explain what will be output at
Line A.

3.5 What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.

a. Synchronous and asynchronous communication

b. Automatic and explicit buffering

c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages

3.6 The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8
Formally, it can be expressed as:

fibo = 0
Jibi = 1
fib,, = fib,,-\ + fib,,-2

Write a C program using the fork() system call that that generates the
Fibonacci sequence in the child process. The number of the sequence
will be provided in the command line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child
process. Because the parent and child processes have their own copies
of the data, it will be necessary for the child to output the sequence.
Have the parent invoke the wait () call to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-negative number is passed on the command line.
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3.7 Repeat the preceding exercise, this time using the CreateProcess 0 in
the Win32 API. In this instance, you will need to specify a separate
program to be invoked from CreateProcessC). It is this separate
program that will run as a child process outputting the Fibonacci
sequence. Perform necessary error checking to ensure that a non-
negative number is passed on the command line.

3.8 Modify the date server shown in Figure 3.19 so that it delivers random
fortunes rather than the current date. Allow the fortunes to contain
multiple lines. The date client shown in Figure 3.20 can be used to read
the multi-line fortunes returned by the fortune server.

3.9 An echo server is a server that echoes back whatever it receives from a
client. For example, if a client sends the server the string Hello there! the
server will respond with the exact data it received from the client—that
is, Hello there I

Write an echo server using the Java networking API described in
Section 3.6.1. This server will wait for a client connection using the
accept () method. When a client connection is received, the server will
loop, performing the following steps:

• Read data from the socket into a buffer.

• Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The date server shown in Figure 3.19 uses the
Java, io .BufferedReader class. Buff eredReader extends the
Java, io .Reader class, which is used for reading character streams.
However, the echo server cannot guarantee that it will read
characters from clients; it may receive binary data as well. The
class Java. io. InputStream deals with data at the byte level rather
than the character level. Thus, this echo server must use an object
that extends Java. io.InputStream. The read() method in the
j ava. io . InputStream class returns —1 when the client has closed its
end of the socket connection.

3.10 In Exercise 3.6, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique allows
the child to write the contents of the Fibonacci sequence to the shared-
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
to the shared memory will be reflected in the parent process as well.

This program will be structured using POSIX shared memory as
described in Section 3.5.1. The program first requires creating the
data structure for the shared-memory segment. This is most easily
accomplished using a struct. This data structure will contain two items:
(1) a fixed-sized array of size MAX_SEQUENCE that will hold the Fibonacci
values; and (2) the size of the sequence the child process is to generate
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—sequence_size where sequence_size < MAX..SEQUENCE. These items
can be represented in a s t ruc t as follows:

#define MAX-SEQUENCE 10

typedef s t ruc t {
long f ib_sequence [MAX_SEQUENCE] ;
in t sequence_size ;

}shared_data;

The parent process will progress through the following steps:

a. Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is < MAX_SEQUENCE.

b. Create a shared-memory segment of size shared_data.

c. Attach the shared-memory segment to its address space.

d. Set the value of sequence_size to the parameter on the command
line.

e. Fork the child process and invoke the wait () system call to wait
for the child to finish.

f. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child's address space as well. The child
process will then write the Fibonacci sequence to shared memory and
finally will detach the segment.

One issue of concern with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes generating the sequence. These two processes
will be synchronized using the wait() system call; the parent process
will invoke wait (), which will cause it to be suspended until the child
process exits.

3.11 Most UNIX and Linux systems provide the ipcs command. This com-
mand lists the status of various POSIX interprocess communication
mechanisms, including shared-memory segments. Much of the informa-
tion for the command comes from the data structure s t ruct shmicLds,
which is available in the /usr/include/sys/shm.h file. Some of the
fields of this structure include:

• int shm_segsz—size of the shared-memory segment

• short shmjiattch—number of attaches to the shared-memory
segment

• s t ruct ipc_perm shm_perm—permission structure of the
shared-memory segment
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The s t ruc t ipc^perm data structure (which is available in the file
/ u s r / i n c l u d e / s y s / i p c .h) contains the fields:

• unsigned short uid—identifier of the user of the
shared-memory segment

• unsigned short mode—permission modes

• key_t key (on Linux systems, __key)—user-specified key identifier

The permission modes are set according to how the shared-memory
segment is established with the shmget () system call. Permissions are
identified according to the following:

mode

0400

0200

0040

0020

0004

0002

meaning

Read permission of owner.

Write permission of owner.

Read permission of group.

Write permission of group:

Read permission of world.

Write permission of world.

Permissions can be accessed by using the bitwise AND operator &. For
example, if the statement mode & 0400 evaluates to true, the permission
mode allows read permission by the owner of the shared-memory
segment.

Shared-memory segments can be identified according to a user-
specified key or according to the integer value returned from the
shmget () system call, which represents the integer identifier of the
shared-memory segment created. The shm_ds structure for a given
integer segment identifier can be obtained with the following shmctl ()
system call:

/* i d e n t i f i e r of the shared memory segment*/
in t s egment_i d;
shm_ds shmbuffer;

shmctl (segmented, IPCSTAT, &shmbuf f e r ) ;

If successful, shmctl () returns 0; otherwise, it returns -1.
Write a C program that is passed an identifier for a shared-memory

segment. This program will invoke the shmctl () function to obtain its
shnuds structure. It will then output the following values of the given
shared-memory segment:

• Segment ID

• Key

• Mode
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• Owner If ID

• Size

• Number of attaches

Project—UNIX Shell and History Feature

This project consists of modifying a C program which serves as a shell interface
that accepts user commands and then executes each command in a separate
process. A shell interface provides the user a prompt after which the next
command is entered. The example below illustrates the prompt sh> and the
user's next command: cat prog. c. This command displays the file prog. c on
the terminal using the UNIX cat command.

sh> cat prog.c

One technique for implementing a shell interface is to have the parent
process first read what the user enters on the command line (i.e. cat prog. c),
and then create a separate child process that performs the command- Unless
otherwise specified, the parent process waits for the child to exit before
continuing. This is similar in functionality to what is illustrated in Figure
3.11. However, UNIX shells typically also allow the child process to run in the
background—or concurrently—as well by specifying the ampersand (&) at the
end of the command. By rewriting the above command as

sh> cat prog.c &

the parent and child processes now run concurrently.
The separate child process is created using the f ork() system call and the

user's command is executed by using one of the system calls in the execO
family (as described in Section 3.3.1).

Simple Shell

A C program that provides the basic operations of a command line shell is
supplied in Figure 3.25. This program is composed of two functions: main()
and setup () . The setup () function reads in the user's next command (which
can be up to 80 characters), and then parses it into separate tokens that are used
to fill the argument vector for the command to be executed. (If the command
is to be run in the background, it will end with '&', and setupO will update
the parameter background so the mainO function can act accordingly. This
program is terminated when the user enters <ControlxD> and setup 0 then
invokes exi t ().

The mainC) function presents the prompt C0MMAND-> and then invokes
se tupO, which waits for the user to enter a command. The contents of the
command entered by the user is loaded into the args array. For example, if
the user enters I s -1 at the C0MMAND-> prompt, args [0] becomes equal to
the string I s and a rgs [ l ] is set to the string to - 1 . (By ''string", we mean a
null-terminated, C-style string variable.)
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If include <stdio.h> *
#include <unistd.h>

#define MAX_LINE 80

/** setup() reads in the next command line, separating it into
distinct tokens using whitespace as delimiters,
setup() modifies the args parameter so that it holds pointers
to the null-terminated strings that are the tokens in the most
recent user command line as well as a NULL pointer, indicating
the end of the argument list, which comes after the string
pointers that have been assigned to args. */

void setup(char inputBuffer [] , char *args[],int *background)

{
/** full source code available online */

int main(void)

{
char inputBuffer [MAXJLINE] ; /* buffer to hold command entered */
int background; /* equals 1 if a command is followed by '&' */
char *args [MAX_LIN3/2 + 1] ; /* command line arguments */

while (1) {

background = 0;

printf(" COMMAND-> ") ;

/* setup() calls exitO when Control-D is entered */

setup(inputBuffer, args, fcbackground);

/** the steps are:

(1) fork a child process using fork()

(2) the child process will invoke execvp()

(3) if background == 1, the parent will wait,
otherwise it will invoke the setup 0 function again. */

Figure 3.25 Outline of simple shell.

This project is organized into two parts: (1) creating the child process and
executing the command in the child, and (2) modifying the shell to allow a
history feature.

Creating a Child Process

The first part of this project is to modify the mainQ function in Figure 3.25 so
that upon returning from se tup() , a child process is forked and executes the
command specified by the user.
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As noted above, the setup () function loads the contents of the args^array
with the command specified by the user. This args array will be passed to the
execvpO function, which has the following interface:

execvp(char *command, char *params[]);

where command represents the command to be performed and par ams stores the
parameters to this command. For this project, the execvp () function should be
invoked as execvp (args [0] ,args) ; be sure to check the value of background
to determine if the parent process is to wait for the child to exit or not.

Creating a History Feature

The next task is to modify the program in Figure 3.25 so that it provides a
history feature that allows the user access up to the 10 most recently entered
commands. These commands will be numbered starting at 1 and will continue
to grow larger even past 10, e.g. if the user has entered 35 commands, the 10
most recent commands should be numbered 26 to 35. This history feature will
be implementing using a few different techniques.

First, the user will be able to list these commands when he/she presses
<Control> <C>, which is the SIGINT signal. UNIX systems use signals to
notify a process that a particular event has occurred. Signals may be either
synchronous or asynchronous, depending upon the source and the reason for
the event being signaled. Once a signal has been generated by the occurrence
of a certain event (e.g., division by zero, illegal memory access, user entering
<Control> <C>, etc.), the signal is delivered to a process where it must be
handled. A process receiving a signal may handle it by one of the following
techniques:

• Ignoring the signal

• using the default signal handler, or

• providing a separate signal-handling function.

Signals may be handled by first setting certain fields in the C structure
struct sigaction and then passing this structure to the sigactionQ
function. Signals are defined in the include file /usr / include/sys/s ignal . h.
For example, the signal SIGINT represents the signal for terminating a program
with the control sequence <Control> <C>. The default signal handler for
SIGINT is to terminate the program.

Alternatively, a program may choose to set up its own signal-handling
function by setting the saJhandler field in s truct sigaction to the name of
the function which will handle the signal and then invoking the sigactionO
function, passing it (1) the signal we are setting up a handler for, and (2) a
pointer to s t r u c t s igac t ion .

In Figure 3.26 we show a C program that uses the function han-
dle.SIGINTQ for handling the SIGINT signal. This function prints out the
message''Caught Control C" and then invokes the ex i t () function to ter-
minate the program. (We must use the write () function for performing output
rather than the more common printf () as the former is known as being
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#include <signal.h>
#include <unistd.h>
#include <stdio.h>

#define BUFFER_SIZE 50
char buffer [BUFFER_SIZE] ;

/* the signal handling function */
void handle_SIGINT ()

write (STDOUT_FILENO, buffer, str len (buf f er) ) ;

exit (0);

int mainfint argc, char *argv[])

/* set up the signal handler */
struct sigaction handler;
handler . sa_handler = handle.SIGINT;
sigaction(SIGINT, chandler, NULL)•

/* generate the output message */
strcpy(buffer,"Caught Control C\n");

/* loop unti l we receive <ControlxC> */
while (1)

return 0;

Figure 3.26 Signal-handling program.

signal-safe/ indicating it can be called from inside a signal-handling function;
such guarantees cannot be made of p r in t f ().) This program will run in the
whi le (l) loop until the user enters the sequence <Control> <C>. When this
occurs, the signal-handling function handle_SIGINT () is invoked.

The signal-handling function should be declared above main() and
because control can be transferred to this function at any point, no parameters
may be passed to it this function. Therefore, any data that it must access in your
program must be declared globally, i.e. at the top of the source file before your
function declarations. Before returning from the signal-handling function, it
should reissue the command prompt.

If the user enters <Control><C>, the signal handler will output a list of the
most recent 10 commands. With this list, the user can run any of the previous
10 commands by entering r x where 'x' is the first letter of that command. If
more than one command starts with V, execute the most recent one. Also, the
user should be able to run the most recent command again by just entering V.
You can assume that only one space will separate the ' r ' and the first letter and
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that the letter will be followed by '\n'. Again, ' r ' alone will be immediately
followed by the \n character if it is wished to execute the most recent command.

Any command that is executed in this fashion should be echoed on the
user's screen and the command is also placed in the history buffer as the next
command, (r x does not go into the history list; the actual command that it
specifies, though, does.)

It the user attempts to vise this history facility to run a command and the
command is detected to be erroneous, an error message should be given to the
user and the command not entered into the history list, and the execvpQ
function should not be called. (It would be nice to know about improperly
formed commands that are handed off to execvpO that appear to look valid
and are not, and not include them in the history as well, but that is beyond the
capabilities of this simple shell program.) You should also modify setup () so
it returns an in t signifying if has successfully created a valid args list or not,
and the main () should be updated accordingly.
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Threads

The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating
systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APIs for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and how it affects the design of operating systems. Finally, we
explore how the Windows XP and Linux operating systems support threads at
the kernel level.

CHAPTER OBJECTIVES

• To introduce the notion of a thread — a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems.

• To discuss the APIs for Phtreads, Win32, and Java thread libraries.

4.1 Overview

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program
counter, a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open files and signals. A traditional (or heavyweight) process
has a single thread of control. Tf a process has multiple threads of control, it
can perform more than one task at a time. Figure 4.1 illustrates the difference
between a traditional single-threaded process and a multithreaded process.

4.1.1 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A web browser might have one thread display images or
text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread
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Figure 4.1 Single-threaded and multithreaded processes.

for responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background.

In certain situations, a single application may be required to perform
several similar tasks. For example, a web server accepts client requests for
web pages, images, sound, and so forth. A busy web server may have several
(perhaps thousands) of clients concurrently accessing it. If the web server ran
as a traditional single-threaded process, it would be able to service only one
client at a time. The amount of time that a client might have to wait for its
request to be serviced could be enormous.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, as was shown in the previous chapter. If the new process
will perform the same tasks as the existing process, why incur all that overhead?
It is generally more efficient to use one process that contains multiple threads.
This approach would multithread the web-server process. The server would
create a separate thread that would listen for client requests; when a request was
made, rather than creating another process, the server would create another
thread to service the request.

Threads also play a vital role in remote procedure call (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providing a
communication mechanism similar to ordinary function or procedure calls.
Typically, RPC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests. Java's RMI systems work similarly.

Finally, many operating system kernels are now multithreaded; several
threads operate in the kernel, and each thread performs a specific task, such
as managing devices or interrupt handling. For example, Solaris creates a set
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of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instance, a multithreaded web browser could still allow user interaction
in one thread while an image was being loaded in another thread.

2. Resource sharing. By default, threads share the memory and the
resources of the process to which they belong. The benefit of sharing
code and data is that it allows an application to have several different
threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly.
Because threads share resources of the process to which they belong, it
is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
In Solaris, for example, creating a process is about thirty times slower than
is creating a thread, and context switching is about five times slower.

4. Utilization of multiprocessor architectures. The benefits of multithread-
ing can be greatly increased in a multiprocessor architecture, where
threads may be running in parallel on different processors. A single-
threaded process can only run on one CPU, no matter how many are
available. Multithreading on a multi-CPU machine increases concurrency.

4.2 Multithreading Models

Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided either at the user level, for user threads, or by the
kernel, for kernel threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtually all contemporary
operating systems—including Windows XP, Linux, Mac OS X, Solaris, and
Tru64 UNIX (formerly Digital UNIX)—support kernel threads.

Ultimately, there must exist a relationship between user threads and kernel
threads. In this section, we look at three common ways of establishing this
relationship.

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.2) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user
space, so it is efficient; but the entire process will block if a thread makes a
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•user thread

kernel thread

Figure 4.2 Many-to-one model.

blocking system call. Also, because only one thread can access the kernel at a
time, multiple threads are unable to run in parallel on multiprocessors. Green
threads—a thread library available for Solaris—uses this model, as does GNU
Portable Threads.

4.2.2 One-to-One Model

The one-to-one model (Figure 4.3) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems—including Windows 95, 98, NT, 2000, and XP—
implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.4) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an

-user thread

- kernel thread

Figure 4.3 One-to-one model.
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kernel thread

Figure 4.4 Many-to-many model.

application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to
create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application (and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: Developers can create as many user
threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many model still multiplexes many
user-level threads to a smaller or equal number of kernel threads but also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to as the tivo-level model (Figure 4.5), is supported by operating systems
such as IRIX, HP-UX, and Tru64 UNIX. The Solaris operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

4.3 Thread Libraries

A thread library provides the programmer an API for creating and managing
threads. There are two primary ways of implementing a thread library. The first
approach is to provide a library entirely in user space with no kernel support.
All code and data structures for the library exist in user space. This means that
invoking a function in the library results in a local function call in user space
and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the POSIX standard, may be
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Figure 4.5 Two-level model.

provided as either a user- or kernel-level library. The Win32 thread library is a
kernel-level library available on Windows systems. The Java thread API allows
thread creation and management directly in Java programs. However, because
in most instances the JVM is running on top of a host operating system, the Java
thread API is typically implemented using a thread library available on the
host system. This means that on Windows systems, Java threads are typically
implemented using the Win32 API; UNIX and Linux systems often use Pthreads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi-
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

sum —
/=o

For example, if N were 5, this function would represent the summation from 0
to 5, which is 15. Each of the three programs will be run with the upper bounds
of the summation entered on the command line; thus, if the user enters 8, the
summation of the integer values from 0 to 8 will be output.

4.3.1 Pthreads

Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API for thread
creation and synchronization. This is a specification for thread behavior, not an
implementation. Operating system designers may implement the specification in
any way they wish. Numerous systems implement the Pthreads specification,
including Solaris, Linux, Mac OS X, and Tru64 UNIX. Shareware implementations
are available in the public domain for the various Windows operating systems
as well.

The C program shown in Figure 4.6 demonstrates the basic Pthreads API for
constructing a multithreaded program that calculates the summation of a non-
negative integer in a separate thread. In a Pthreads program, separate threads
begin execution in a specified function. In Figure 4.6, this is the runner ()
function. When this program begins, a single thread of control begins in
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#include <pthread.h> •>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */

int main(int argc, char *argv[])

{
pthread_t tid; /* the thread identifier */
pthread.attr_t attr; /* set of thread attributes */

if (argc != 2) {
fprintf(stderr,"usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1]) < 0) {

fprintf(stderr,"%d must be >= 0\n",atoi(argv[1]));
return -1;

/* get the default attributes */
pthread.attr.init (&attr) ;
/* create the thread */
pthread^create(&tid,&attr,runner,argv[1]);
/* wait for the thread to exit */
pthread_join (tid, NULL) ;

printf("sum = %d\n",sum);

/* The thread will begin control in this function */
void *runner(void *param)
{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i
sum += i;

pthread_exit (0) ;

Figure 4.6 Multithreaded C program using the Pthreads API.

mainO. After some initialization, mainO creates a second thread that begins
control in the runner () function. Both threads share the global data sum.

Let's look more closely at this program. All Pthreads programs must
include the pthread.h header file. The statement pthreadjt t i d declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread_attr_t a t t r
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declaration represents the attributes for the thread. We set the attributes in
the function call pthread_attr_init C&attr). Because we did not explicitly
set any attributes, we use the default attributes provided. (In Chapter 5, we
will discuss some of the scheduling attributes provided by the Pthreads API.) A
separate thread is created with the pthread_creat e () function call. In addition
to passing the thread identifier and the attributes for the thread, we also pass
the name of the function where the new thread will begin execution-—in this
case, the runner () function. Last, we pass the integer parameter that was
provided on the command line, argv [1].

At this point, the program has two threads: the initial (or parent) thread
in mainO and the summation (or child) thread performing the summation
operation in the runner () function. After creating the summation thread,
the parent thread will wait for it to complete by calling the pthread_join()
function. The summation thread will complete when it calls the function
pthread.exit 0 . Once the summation thread has returned, the parent thread
will output the value of the shared data sum.

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is similar to
the Pthreads technique in several ways. We illustrate the Win32 thread API in
the C program shown in Figure 4.7. Notice that we must include the windows. h
header file when using the Win32 API.

Just as in the Pthreads version shown in Figure 4.6, data shared by the
separate threads—in this case, Sum—are declared globally (the DWORD data
type is an unsigned 32-bit integer. We also define the SummationO function
that is to be performed in a separate thread. This function is passed a pointer to
a void, which Win32 defines as LPVOID. The thread performing this function
sets the global data Sum to the value of the summation from 0 to the parameter
passed to SummationO.

Threads are created in the Win32 API using the CreateThreadO function
and—just as in Pthreads—a set of attributes for the thread is passed to this
function. These attributes include security information, the size of the stack,
and a flag that can be set to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it eligible
to be run by the CPU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sum, as
the value is set by the summation thread. Recall that the Pthread program
(Figure 4.6) had the parent thread wait for the summation thread using the
pthread_j oin () statement. We perform the equivalent of this in the Win32 API
using the WaitForSingleObj ect () function, which causes the creating thread
to block until the summation thread has exited. (We will cover synchronization
objects in more detail in Chapter 6.)

4.3.3 Java Threads

Threads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single thread
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#inciude <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */
/* the thread runs in this separate function */

DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)

Sum += i ;
return 0;

int main(int argc, char *argv[])

{
DWORD Threadld;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
if (argc != 2) {

fprintf(stderr,"An integer parameter is required\n");
return -1;

}
Param = atoi(argv[l]) ;
if (Param < 0) {

fprintf(stderr,"An integer >= 0 is required\n");
return -1;

// create the thread
ThreadHandle = CreateThread(

NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param, // parameter to thread function
0, // default creation flags
SThreadld); // returns the thread identifier

if (ThreadHandle != NULL) {
// now wait for the thread to finish
WaitForSingleObject(ThreadHandle,INFINITE);

// close the thread handle
CloseHandle(ThreadHandle);

printfC'sum = %d\n",Sum);

}

Figure 4.7 Multithreaded C program using the Win32 API.
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of control—even a simple Java program consisting of only a main.0 method
runs as a single thread in the JVM.

There are two techniques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run() method. An alternative—and more commonly used—
technique is to define a class that implements the Runnable interface. The
Runnable interface is defined as follows:

public interface Runnable

{
public abstract void run();

When a class implements Runnable, it must define a run() method. The code
implementing the run() method is what runs as a separate thread.

Figure 4.8 shows the Java version of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating
an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not specifically create the new thread; rather,
it is the s tar t () method that actually creates the new thread. Calling the
s tar t () method for the new object does two things:

1. It allocates memory and initializes a new thread in the JVM.

2. It calls the run () method, making the thread eligible to be run by the
JVM. (Note that we never call the run() method directly. Rather, we call
the s tar t () method, and it calls the run() method on our behalf.)

When the summation program runs, two threads are created by the JVM.
The first is the parent thread, which starts execution in the main() method.
The second thread is created when the s tar t () method on the Thread object
is invoked. This child thread begins execution in the run () method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run () method.

Sharing of data between threads occurs easily in Win32 and Pthreads, as
shared data are simply declared globally. As a pure object-oriented language,
Java has no such notion of global data; if two or more threads are to share
data in a Java program, the sharing occurs by passing reference to the shared
object to the appropriate threads. In the Java program shown in Figure 4.8, the
main thread and the summation thread share the the object instance of the Sum
class. This shared object is referenced through the appropriate getSumO and
setSumO methods. (You might wonder why we don't use an Integer object
rather than designing a new sum class. The reason is that the Integer class is
immutable—that is, once its value is set, it cannot change.)

Recall that the parent threads in the Pthreads and Win32 libraries use
pthreacLjoinO and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The joinO method
in Java provides similar functionality. (Notice that joinO can throw an
InterruptedException, which we choose to ignore.)
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;lass Sura

private int sum;

public int getSumO {
return sum;

public void setSum(ir.t sum) {
this.sum = sum;

class Summation implements Runnable

{
private int upper;
private SUIT. sumValue;

public Summation(int upper, Sum sumValue)
this.upper = upper;
this.sumValue = sumValue;

public void run() {
int sum = 0;
for (int i = 0; i <= upper,- i

sum += i ,•

sumValue.setSum(sum);

public class Driver

{
public static void main(String[] args) {
if {args.length > 0) {
if (Integer.parseint(args[0]) < 0)
System.err.println(args [0] + " must be >= 0.") ;

else {
// create the object to be shared
Sum sumObject = new Sum();
int upper = Integer.parseint(args [0]) ;
Thread thrd = new Thread(new Summation(upper, sumObject)
thrd.start();
try {

thrd.join();
System.out.println

("The sum of "+upper+" is "+sumObject.getSum()
} catch (InterruptedException ie) { }

else
System.err.println("Usage: Summation <integer value>")

Figure 4.8 Java program for the summation of a non-negative integer.
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The JVM and Host Operating System

The JVM is typically implemented on top of a host operating system (see
Pigure 2.17). This setup allows the JVM to bide the implementation details
of the underlying operating system and to provide a consistent, abstract
environment that allows Java programs to operate on any platform that
supports- a JVM. The specification for the JVM does not indicate how Java
'threads are to be mapped to the underlying operating system, instead leaving
that decision to the particular implementation.of the JVM. For example, the
Windows XP operating system uses the one-to-one model; therefore, each
Java thread for a ' JVVI running on such a system maps to a kernel thread. On
operating systems that use the m.any-to-many model.(such as Tru64 UNIX), a
Java thread is mapped according to the many-to-many model. Solaris ini tially
implemented the JVM using the many-to-one model (the green thre'adslibrary,'
mentioned-earlier). Later releases of the JVM were implemented using the
many-to-many model. Beginning with Solaris 9, Java threads were mapped
using the one-to-one model. In addition, there may be a relationship between
the Java thread library and-the-thread library on the host operating system.
For example, implementations of a. JVM for the Windows family of operating
systems might use the Win32 API when creating Java threads; Linux and
Solaris systems might use the Pthreads -APL

4.4 Threading Issues

In this section, we discuss some of the issues to consider with multithreaded
programs.

4.4.1 The fork() and exec() System Calls

In Chapter 3, we described how the forkQ system call is used to create a
separate, duplicate process. The semantics of the f ork() and exec() system
calls change in a multithreaded program.

If one thread in a program calls f ork(), does the new process duplicate
all threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of forkQ, one that duplicates all threads and
another that duplicates only the thread that invoked the forkO system call.

The execO system call typically works in the same way as described
in Chapter 3. That is, if a thread invokes the exec () system call, the program
specified in the parameter to exec () will replace the entire process—including
all threads.

Which of the two versions of f orkO to use depends on the application.
If execO is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec () will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process does not call exec () after forking, the separate
process should duplicate all threads.
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4.4.2 Cancellation ?

Thread cancellation is the task of terminating a thread before it has completed.
For example, if multiple threads are concurrently searching through a database

1 and one thread returns the result, the remaining threads might be canceled.
f Another situation might occur when a user presses a button on a web browser
i that stops a web page from loading any further. Often, a web page is loaded
| using several threads—each image is loaded in a separate thread. When a
1 user presses the stop button on the browser, all threads loading the page are
•. canceled.

A thread that is to be canceled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation. One thread immediately terminates the
target thread.

2. Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim all resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource.

With deferred cancellation, in contrast, one thread indicates that a target
thread is to be canceled, but cancellation occurs only after the target thread has
checked a flag to determine if it should be canceled or not. This allows a thread
to check whether it should be canceled at a point when it can be canceled safely.
Pthreads refers to such points as cancellation points.

4.4.3 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,

't depending on the source of and the reason for the event being signaled. All
i signals, whether synchronous or asynchronous, follow the same pattern:

I
i. 1. A signal is generated by the occurrence of a particular event.

5 2. A generated signal is delivered to a process.

3. Once delivered, the signal must be handled.

•, Examples of synchronous signals include illegal memory access and
1 division by 0. If a running program performs either of these actions, a signal
;• is generated. Synchronous signals are delivered to the same process that
i performed the operation that caused the signal (that is the reason they are
= considered synchronous).
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When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals iiiclude
terminating a process with specific keystrokes (such as <control><C>) and
having a timer expire. Typically, an asynchronous signal is sent to another
process.

Every signal may be handled by one of two possible handlers:

1. A default signal handler

2. A user-defined signal handler

Every signal has a default signal handler that is run by the kernel when
handling that signal. This default action can be overridden by a user-defined
signal handler that is called to handle the signal. Signals may be handled in
different ways. Some signals (such as changing the size of a window) may
simply be ignored; others (such as an illegal memory access) may be handled
by terminating the program.

Handling signals in single-threaded programs is straightforward; signals
are always delivered to a process. However, delivering signals is more
complicated in multithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In general, the following options exist:

1. Deliver the signal to the thread to which the signal applies.

2. Deliver the signal to every thread in the process.

3. Deliver the signal to certain threads in the process.

4. Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process (<control><C>, for example)—should be
sent to all threads.

Most multithreaded versions of UNIX allow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an asyn-
chronous signal may be delivered only to those threads that are not blocking
it. However, because signals need to be handled only once, a signal is typically
delivered only to the first thread found that is not blocking it. The standard
UNIX function for delivering a signal is k i l l (aid_t a id , i n t s igna l ) ; here,
we specify the process (aid) to which a particular signal is to be delivered.
However, POSIX Pthreads also provides the pthreadJki l l (pthread_t t i d ,
in t s ignal ) function, which allows a signal to be delivered to a specified
thread (tid.)

Although Windows does not explicitly provide support for signals, they
can be emulated using asynchronous procedure calls (APCs). The APC facility
allows a user thread to specify a function that is to be called when the user
thread receives notification of a particular event. As indicated by its name,
an APC is roughly equivalent to an asynchronous signal in UNIX. However,
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whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the APC facility is more straightforward, as an APC is delivered
to a particular thread rather than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first concerns the amount of time required to create the thread prior to
servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: If we
allow all concurrent requests to be serviced in a new thread, we have not placed
a bound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU time or memory. One
solution to this issue is to use a thread pool.

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a request, it awakens a thread from this pool—if one
is available—and passes it the request to service. Once the thread completes
its service, it returns to the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

1. Servicing a request with an existing thread is usually faster than waiting
to create a thread.

2. A thread pool limits the number of threads that exist at any one point.
This is particularly important on systems that cannot support a large
number of concurrent threads.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool—thereby consuming less memory—when the load
on the system is low.

The Win32 API provides several functions related to thread pools. Using
the thread pool API is similar to creating a thread with the Thread Create()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

DWORD WINAPI PoolFunction(AVOID Param) {
/**
* this function runs as a separate thread.
**/

A pointer to PoolFunctionQ is passed to one of the functions in the thread
pool API, and a thread from the pool executes this function. One such member
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in the thread pool API is the QueueUserWorkltemO function, which is passed
three parameters:

• LPTHREAD_START-ROUTINE Function—a pointer to the function that is to
run as a separate thread

• PVOID Param—the parameter passed to Function

• ULONG Flags—flags indicating how the thread pool is to create and
manage execution of the thread

An example of an invocation is:

QueueUserWorkltemC&PoolFunction, NULL, 0) ;

This causes a thread from the thread pool to invoke PoolFunction () on behalf
of the programmer. In this instance, we pass no parameters to PoolFunc-
t i on (). Because we specify 0 as a flag, we provide the thread pool with no
special instructions for thread creation.

Other members in the Win32 thread pool API include utilities that invoke
functions at periodic intervals or when an asynchronous I/O request completes.
The j a v a . u t i l . concurrent package in Java 1.5 provides a thread pool utility
as well.

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction may be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific
data. Most thread libraries—including Win32 and Pthreads—provide some
form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A final issue to be considered with multithreaded programs concerns com-
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or two-level model
place an intermediate data structure between the user and kernel threads. This
data structure—typically known as a lightweight process, or LWP—is shown in -
Figure 4.9. To the user-thread library, the LWP appears to be a virtual processor on
which the application can schedule a user thread to run. Each LWP is attached
to a kernel thread, and it is kernel threads that the operating system schedules
to run on physical processors. If a kernel thread blocks (such as while waiting
for an I/O operation to complete), the LWP blocks as well. Up the,chain, the
user-level thread attached to the LWP also blocks.
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-user thread

UWP - lightweight process

-kernel thread

Figure 4.9 Lightweight process (LWP.)

An application may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only
one thread can run at once, so one LWP is sufficient. An application that is I/O-
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for I/O completion in the kernel. If a process has
only four LWPs, then the fifth request must wait for one of the LWPs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as scheduler activation. It works as follows: The kernel
provides an application with a set of virtual processors (LWPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upcall. Upcalls are handled by the thread library
with an upcall handler, and upcall handlers must run on a virtual processor.
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing
it that a thread is about to block and identifying the specific thread. The kernel
then allocates a new virtual processor to the application. The application runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the new virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informing it that the previously blocked thread is now eligible to run.
The upcall handler for this event also requires a virtual processor, and the kernel
may allocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the unblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

4.5 Operating-System Examples

In this section, we explore how threads are implemented in Windows XP and
Linux systems.



144 Chapter 4 Threads

4.5.1 Windows XP Threads *

Windows XP implements the Win32 API. The Win32 API is the primary API for
the family of Microsoft operating systems (Windows 95, 98, NT, 2000, and XP).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systems.

A Windows XP application runs as a separate process, and each process
may contain one or more threads. The Win32 API for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each user-level thread maps to an associated kernel
thread. However, Windows XP also provides support for a fiber library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

The general components of a thread include:

• A thread ID uniquely identifying the thread

• A register set representing the status of the processor

• A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

• A private storage area used by various run-time libraries and dynamic link
libraries (DLLs)

The register set, stacks, and private storage area are known as the context
of the thread. The primary data structures of a thread include:

• ETHREAD—executive thread block

• KTHREAD—kernel thread block

• TEB—thread environment block

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can access them. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifier, a user-mode stack, and an array for thread-
specific data (which Windows XP terms thread-local storage). The structure of"
a Windows XP thread is illustrated in Figure 4.10.

4.5.2 Linux Threads

Linux provides the f ork() system call with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
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Figure 4.10 Data structures of a Windows XP thread.

to create threads using the clone () system call. However, Linux does not
distinguish between processes and threads. In fact, Linux generally uses the
term task—rather than process or thread—when referring to a flow of control
within a program. When clone 0 is invoked, it is passed a set of flags, which
determine how much sharing is to take place between the parent and child
tasks. Some of these flags are listed below:

flag

CLONE_FS

CL0NE__VM

CLONE_SIGHAND

CLONE_FILES

meaning

File-system information is shared.

The same memory space is shared.

Signal handlers are shared. :

The set of open fifes is shared.

For example, if clone() is passed the flags CL0NE_FS, CLONEJM,
CLONE_SIGHAND, and CLONE_FILES, the parent and child tasks will share the
same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files.
Using clone () in this fashion is equivalent to creating a thread as described
in this chapter, since the parent task shares most of its resources with its child
task. However, if none of these flags are set when clone() is invoked, no
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sharing takes place, resulting in functionality similar to that provided By the
forkO system call.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure (specifically,
s truct task.struct) exists for each task in the system. This data structure,
instead of storing data for the task, contains pointers to other data structures
where these data are stored—for example, data structures that represent the list
of open files, signal-handling information, and virtual memory. When f ork()
is invoked, a new task is created, along with a copy of all the associated data
structures of the parent process. A new task is also created when the clone ()
system call is made. However, rather than copying all data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone ().

4.6 Summary

A thread is a flow of control within a process. A multithreaded process
contains several different flows of control within the same address space.
The benefits of multithreading include increased responsiveness to the user,
resource sharing within the process, economy, and the ability to take advantage
of multiprocessor architectures.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kernel threads, as no intervention from the kernel is required.
Three different types of models relate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one model
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal number of kernel
threads.

Most modern operating systems provide kernel support for threads; among
these are Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an API for
creating and managing threads. Three primary thread libraries are in common
use: POSIX Pthreads, Win32 threads for Windows systems, and Java threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the f ork() and exec() system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

Exercises

4.1 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

4.2 Describe the actions taken by a thread library to context switch between
user-level threads.
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4.3 Under what circumstances does a multithreaded solution using ^nulti-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

4.4 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

4.5 Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system?

4.6 As described in Section 4.5.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending
on the set of flags passed to the clone() system call. However, many
operating systems—such as Windows XP and Solaris—treat processes
and threads differently. Typically, such systems use a notation wherein
the data structure for a process contains pointers to the separate threads
belonging to the process. Contrast these two approaches for modeling
processes and threads within the kernel.

4.7 The program shown in Figure 4.11 uses the Pthreads API. What would
be output from the program at LINE C and LINE P?

4.8 Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal
to the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of
user-level threads.

4.9 Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The
program will then create a separate thread that outputs all the prime
numbers less than or equal to the number entered by the user.

4.10 Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.
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#include <pthread.h> (

#include <stdio.h>

int value = 0;
void *runner(void *param); /* the thread */

int main{int argc, char *argv[])

{
int pid;
pthread_t tid;
pthread_attr_t attr;

pid = fork () ;

if (pid == 0) {/* child process */
pthread_attr_init (&attr) ;
pthread_create (&tid, &attr , runner, NULL) ;
pthread.join(tid,NULL) ;
printf("CHILD: value = %d",value); /* LINE C */

}
else if (pid > 0) {/* parent process */

wait(NULL);
printf("PARENT: value = %d",value); /+ LINE P */

void *runner(void *param)
value = 5;
pthread_exit (0) ;

Figure 4.11 C program for question 4.7.

4.11 The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,
Formally, it can be expressed as:

fih = 0
fib, = 1
fib,, = fib,,^ + fib,,-2

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should
work as follows: The user will enter on the command line the number
of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is
probably the most convenient data structure). When the thread finishes
execution, the parent thread will output the sequence generated by
the child thread. Because the parent thread cannot begin outputting
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the Fibonacci sequence until the child thread finishes, this will fequire
having the parent thread wait for the child thread to finish, using the
techniques described in Section 4.3.

4.12 Exercise 3.9 in Chapter 3 specifies designing an echo server using the
Java threading API. However, this server is single-threaded, meaning the
server cannot respond to concurrent echo clients until the current client
exits. Modify the solution to Exercise 3.9 so that the echo server services
each client in a separate request.

Project—Matrix Multiplication

Given two matrices A and B, where A is a matrix with M rows and K columns
and matrix B contains K rows and N columns, the matrix product of A and B
is matrix C, where C contains M rows and N columns. The entry in matrix C
for row i column /' (C;.y) is the sum of the products of the elements for row i in
matrix A and column j in matrix B. That is,

K

n=\

For example, if A were a 3-by-2 matrix and B were a 2-by-3 matrix, element
Cxi would be the sum of Axi x £>i,i and A>,2 x B2.i-

For this project, calculate each element C,-,y in a separate worker thread. This
will involve creating M x N worker threads. The main—or parent—thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has access to A, B, and C.

A4atrices A and B can be initialized statically, as shown below:

#define M 3
#define K 2
#define N 3

int A [M] [K] = { {1,4}, {2,5}, {3,6} };
in t B [K][N] = { {8,7 ,6}, {5,4,3} };
in t C [M] [N] ;

Alternatively, they can be populated by reading in values from a file.

Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row i and column / that it is to use in calculating the matrix product.
This requires passing two parameters to each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a s t ruc t . The members
of this structure are i and j, and the structure appears as follows:
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,/* structure for passing data to threads */

struct v

{
int i; /'* row * /

int j ; /* column */'

Both the Pthreads and Win32 programs will create the worker threads
using a strategy similar to that shown below:

/* We have to create M * N worker threads */

for (i = 0; i < M, i + + )

for (j = 0,- j < N; j ++ ) {

struct v *data = (struct v *) malloc(sizeof(struct v) ) ;

data->i = i;

data->j = j ;

/* Now create the thread passing it data as a parameter */

The data pointer will be passed to either the pthread.create0 (Pthreads)
function or the CreateThreadO (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to create
and initialize the matrices A, B, and C. This main thread will then create the
worker threads, passing the three matrices—along with row i and column j —
to the constructor for each worker. Thus, the outline of a worker thread appears
as follows:

public class WorkerThread implements Runnable

{
private int row,-
private int col;
private int [] [] A;
private int [] [] B;
private int [] [] C;

public WorkerThread(int row, int col, int[] [] A,

int [] [] B, int[] [] G) {

this.row = row;

this.col = col;

this.A = A;

this.B = 3;

this.C = C;

}
public void run() {

/* calculate the matrix product in Cirow] [col] */
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#define NUMJTHREADS 10

/* an array of threads to be joined upon */
pthread-t workers [NUMJTHREADS] ,-

for (int i = 0; i < NUM_THREADS; i++)
pthread_join {workers [i] , NULL) ;

Figure 4.12 Phtread code for joining ten threads.

Waiting for Threads to Complete

Once all worker threads have completed, the main thread will output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Several different strategies can be used to enable a thread to wait
for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the WaitForSingleObjectO function, whereas Pthreads
and Java use pthread_join() and j o i n ( ) , respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the WaitForSingleObj ect () function, which
is used to wait for a single thread to finish. However, the Win32 API also
provides the WaitForMultipleObjectsQ function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjectsO is
passed four parameters:

1. The number of objects to wait for

2. A pointer to the array of objects

3. A flag indicating if all objects have been signaled

4. A timeout duration (or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for all its child threads to complete with the statement:

WaitForMultipleDbjectsCN, THandles, TRUE, INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Java's j o i n O is to enclose the join operation within a
simple for loop. For example, you could join on ten threads using the Pthread
code depicted in Figure 4.12. The equivalent code using Java threads is shown
in Figure 4.13.
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f ina l s t a t i c i n t NUM.THREADS = 1 0 ;

/* an ar ray of threads to be joined upon */
Thread [] workers = new Thread [NUMJTHREADS] ;

for ( int i = 0; i < NUM_THREADS; i
t r y {

w o r k e r s [ i ] . j o i n ( ) ;
}catch (InterruptedException ie) {}

Figure 4.13 Java code for joining ten threads.
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and Cesati [2002] explain how Linux handles threading.

Information on Pthreads programming is given in Lewis and Berg [1998]
and Butenhof [1997]. Information on threads programming in Solaris can be
found in Sun Microsystems [1995]. Oaks and Wong [1999], Lewis and Berg
[2000], and Holub [2000] discuss multithreading in Java. Beveridge and Wiener
[1997] and Cohen and Woodring [1997] describe multithreading using Win32.



GPU
Scheduling

E R

CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them, it is kernel-level threads—not processes—that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

CHAPTER OBJECTIVES

• To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems.

• To describe various CPU-scheduling algorithms,

• To discuss evaluation criteria for selecting a CPU-scheduling algorithm for
a particular system.

5.1 Basic Concepts

In a single-processor system, only one process can run at a time; any others
must wait until the CPU is free and can be rescheduled. The objective of
multiprogramming is to have some process running at all times, to maximize
CPU utilization. The idea is relatively simple. A process is executed until
it must wait, typically for the completion of some I/O request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Several processes are kept in memory at one time. When
one process has to wait, the operating system takes the CPU away from that
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process and gives the CPU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

5.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
Process execution consists of a cycle of CPU execution and I/O wait. Processes
alternate between these two states. Process execution begins with a CPU burst.
That is followed by an I/O burst, which is followed by another CPU burst, then
another I/O burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 5.1).

The durations of CPU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CPU bursts and a small number of long CPU bursts.
An I/O-bound program typically has many short CPU bursts. A CPU-bound

load store
add store
read from file

wait for i/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

<

wait for I/O

• CPU burst

- I/O burst

• CPU burst

• I/O burst

- CPU burst

- I/O burst

Figure 5.1 Alternating sequence of CPU and I/O bursts.
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Figure 5.2 Histogram of CPU-burst durations.

program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an I/O request or an invocation of wait for the
termination of one of the child processes)
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2. When a process switches from the running state to the ready state (ioi
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, at completion of I/O)

4. When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exists in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state. This scheduling method
was vised by Microsoft Windows 3.x; Windows 95 introduced preemptive
scheduling, and all subsequent versions of Windows operating systems have
used preemptive scheduling. The Mac OS X operating system for the Macintosh
uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such situations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behalf of a process. Such activities may involve changing important kernel
data (for instance, I/O queues). What happens if the process is preempted in
the middle of these changes and the kernel (or the device driver) needs to
read or modify the same structure? Chaos ensues. Certain operating systems,
including most versions of UNIX, deal with this problem by waiting either
for a system call to complete or for an I/O block to take place before doing a
context switch. This scheme ensures that the kernel structure is simple, since
the kernel will not preempt a process while the kernel data structures are in
an inconsistent state. Unfortunately, this kernel-execution model is a poor one
for supporting real-time computing and multiprocessing. These problems, and
their solutions, are described in Sections 5.4 and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost all times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
at exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.
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5.1.4 Dispatcher f

Another component involved in the CPU-scheduling function is the dispatcher.
Hie dispatcher is the module that gives control of the CPU to the process selected
by the short-term scheduler. This function involves the following:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

5.2 Scheduling Criteria

Different CPU scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

• CPU utilization. We want to keep the CPU as busy as possible. Concep-
tually, CPU utilization can range from 0 to 100 percent. In a real system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

• Throughput. If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be 10 processes per second.

• Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing I/O.

• Waiting time. The CPU scheduling algorithm does not affect the amount
of time during which a process executes or does I/O; it affects only the
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

• Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
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output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

It is desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we will illustrate their operation. An accurate illustration should involve many
processes, each being a sequence of several hundred CPU bursts and I/O bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

5.3 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes
in the ready queue is to be allocated the CPU. There are many different CPU
scheduling algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CPU burst given in milliseconds:

Process Burst Time

P, 24
Pi 3
p 3
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If the processes arrive in the order Pi, Po, P3, and are served in FCFS ©rder,
we get the result shown in the following Gantt chart:

P2

24 27 30

The waiting time is 0 milliseconds for process Pi, 24 milliseconds for process
Pn, and 27 milliseconds for process Pj. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order Pi, P3, Pi,
however, the results will be as showrn in the following Gantt chart:

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the process's CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their I/O and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
I/O devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an I/O device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the I/O queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the I/O processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been
allocated to a process, that process keeps the CPU until it releases the CPU, either
by terminating or by requesting I/O. The FCFS algorithm is thus particularly
troublesome for time-sharing systems, where it is important that each user get
a share of the CPU at regular intervals. It would be disastrous to allow one
process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process's next CPU burst. When the CPU is available, it is assigned to the process
that has the smallest next CPU burst. If the next CPU bursts of two processes are
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the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process

Pi
Pi

P3
PA

Burst Time
6
8
7
3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

PA PI P3 P2

0 3 9 16 24

The waiting time is 3 milliseconds for process P\, 16 milliseconds for process
Pi, 9 milliseconds for process P$, and 0 milliseconds for process P4. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 - 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) schedtiling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. There is no way to know the length of the next
CPU burst. One approach is to try to approximate SJF scheduling. We may not
know the length of the next CPU burst, but we may be able to predict its value.
We expect that the next CPU burst will be similar in length to the previous ones.
Thus, by computing an approximation of the length of the next CPU burst, we
can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CPU bursts. Let tn be the length of the »th CPU
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burst, and let T,,+I be our predicted value for the next CPU burst. Then, for a, 0
< a < 1, define

T , , + 1 =atn + ( l - a)-in.

This formula defines an exponential average. The value of tn contains our
most recent information; in stores the past history. The parameter a controls
the relative weight of recent and past history in our prediction. If a = 0, then
T,,+I = T,,, and recent history has no effect (current conditions are assumed
to be transient); if a = 1, then T,!+I - tn, and only the most recent CPU burst
matters (history is assumed to be old and irrelevant). More commonly, a =
1/2, so recent history and past history are equally weighted. The initial T0 can
be defined as a constant or as an overall system average. Figure 5.3 shows an
exponential average with a - 1/2 and To = 10.

To understand the behavior of the exponential average, we can expand the
formula for T,,+I by substituting for TH, to find

= at,, - a)atn-i H

Since both a and (1 — a) are less than or equal to 1, each successive term has
less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queue while a previous process is
still executing. The next CPU burst of the newly arrived process may be shorter
than what is left of the currently executing process. A preemptive SJF algorithm
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Figure 5.3 Prediction of the length of the next CPU burst.
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will preempt the currently executing process, whereas a nonpreemptiTe SJF
algorithm will allow the currently running process to finish its CPU burst.
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

ocess

Pi

Pi

P3
P4

Arrival Time
0
1
2
3

Burst Time
8
4
9
5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

P i p 2 P4 P i P3

10 17 26

Process Pi is started at time 0, since it is the only process in the queue. Process
P2 arrives at time 1. The remaining time for process Pi (7 milliseconds) is
larger than the time required by process P2 (4 milliseconds), so process Pi is
preempted, and process P2 is scheduled. The average waiting time for this
example is ((10 - 1) + (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0, in the order Pi, P2, • • -, P5, with the length of the CPU burst
given in milliseconds:



Process

Pi

Pi
P3

PA

Ps

5.3

Burst Time

10
1
2
1
5

Scheduling Algorithms

Priority

3
1
4
5
2
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Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

p 2 p 5 P i p 3 P4

16 18 19

The average waiting time is 8.2 milliseconds.
Priorities can be defined either internally or externally. Internally defined

priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average I/O burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 A.M. Sunday, when the system is finally
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that, when they shut down
the IBM 7094 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Aging is a technique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to 0 (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
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it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum or time
slice, is defined. A time quantum is generally from 10 to 100 milliseconds. The
ready queue is treated as a circular queue. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time interval of up to 1
time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst
given in milliseconds:

Process Burst Time

Pi
Pi

24
3
3

If we use a time quantum of 4 milliseconds, then process Pi gets the first
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P2. Since process Pi does not need 4 milliseconds, it quits before its
time quantum expires. The CPU is then given to the next process, process P3.
Once each process has received 1 time quantum, the CPU is returned to process
Pi for an additional time quantum. The resulting RR schedule is

P i p 2 p 3 P i P i P i P i P i

10 14 22 26 30

The average waiting time is 17/3 = 5.66 milliseconds.
In the RR scheduling algorithm, no process is allocated the CPU for more

than 1 time quantum in a row (unless it is the only runnable process). If a
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process's CPU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time units.
Each process must wait no longer than (n — 1) x q time units until its
next time quantum. For example, with five processes and a time quantum of 20
milliseconds, each process will get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the RR
policy is the same as the FCFS policy If the time quantum is extremely small
(say, 1 millisecond), the RR approach is called processor sharing and (in theory)
creates the appearance that each of n processes has its own processor running
at 1/n the speed of the real processor. This approach was used in Control
Data Corporation (CDC) hardware to implement ten peripheral processors with
only one set of hardware and ten sets of registers. The hardware executes one
instruction for one set of registers, then goes on to the next. This cycle continues,
resulting in ten slow processors rather than one fast one. (Actually, since
the processor was much faster than memory and each instruction referenced
memory, the processors were not much slower than ten real processors would
have been.)

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Let us assume that we have only one process of
10 time units. If the quantum is 12 time units, the process finishes in less than 1
time quantum, with no overhead. If the quantum is 6 time units, however, the
process requires 2 quanta, resulting in a context switch. If the time quantum is
1 time unit, then nine context switches will occur, slowing the execution of the
process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

process time = 10

0 10

o 6 10

quantum

12

context
switches

0

0 1 2 3 4 5 6 7 8 9 1 0

Figure 5.4 The way in which a smaller time quantum increases context switches.
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Figure 5.5 The way in which turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. As we can
see from Figure 5.5, the average turnaround time of a set of processes does
not necessarily improve as the time-quantum size increases. In general, the
average turnaround time can be improved if most processes finish their next
CPU burst in a single time quantum. For example, given three processes of 10
time units each and a quantum of 1 time unit, the average turnaround time is
29. If the time quantum is 10, however, the average turnaround time drops to
20. If context-switch time is added in, the average turnaround time increases
for a smaller time quantum, since more context switches are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degenerates to FCFS policy. A rule of thumb is that 80 percent of the
CPU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory
size, process priority, or process type. Each queue has its own scheduling
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Figure 5.6 Multilevel queue scheduling.

algorithm. For example, separate queues might be used for foreground and
background processes. The foreground quetie might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let's look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground-background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.
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5.3.6 Multilevel Feedback-Queue Scheduling "

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback-queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/O-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback-queue scheduler with three
queues, numbered from 0 to 2 (Figure 5.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

Figure 5.7 Multilevel feedback queues.
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In general, a multilevel feedback-queue scheduler is defined by the
following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher-
priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback-queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for all the parameters.

5.4 Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CPU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingly
more complex. Many possibilities have been tried; and as we saw with single-
processor CPU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems
in which the processors are identical—homogeneous—in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an I/O
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.)

5.4.1 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a multiprocessor system has all scheduling
decisions, I/O processing, and other system activities handled by a single
processor—the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SMP), where each
processor is self-scheduling. All processes may be in a common ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 6,
if we have multiple processors trying to access and update a common data
structure, the scheduler must be programmed carefully: We must ensure that
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two processors do not choose the same process and that processes are n&t lost
from the queue. Virtually all modern operating systems support SMP, including
Windows XP, Windows 2000, Solaris, Linux, and Mac OS X.

In the remainder of this section, we will discuss issues concerning SMP
systems.

5.4.2 Processor Affinity

Consider what happens to cache memory when a process has been running on
a specific processor; The data most recently accessed by the process populates
the cache for the processor; and as a result, successive memory accesses by
the process are often satisfied in cache memory. Now consider what happens
if the process migrates to another processor: The contents of cache memory
must be invalidated for the processor being migrated from, and the cache for
the processor being migrated to must be re-populated. Because of the high
cost of invalidating and re-populating caches, most SMP systems try to avoid
migration of processes from one processor to another and instead attempt to
keep a process running on the same processor. This is known as processor
affinity, meaning that a process has an affinity for the processor on which it is
currently running.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor—but
not guaranteeing that it will do so— we have a situation known as soft affinity.
Here, it is possible for a process to migrate between processors. Some systems
—such as Linux—also provide system calls that support hard affinity, thereby
allowing a process to specify that it is not to migrate to other processors.

5.4.3 Load Balancing

On SMP systems, it is important to keep the workload balanced among all
processors to fully utilize the benefits of having more than one processor.
Otherwise, one or more processors may sit idle while other processors have
high workloads along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in
an SMP system. It is important to note that load balancing is typically only
necessary on systems where each processor has its own private queue of eligible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnable process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—if it finds an imbalance—-evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 5.6.3) and the ULE scheduler
available for FreeBSD systems implement both techniques. Linux runs its load-
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balancing algorithm every 200 milliseconds (push migration) or whenever the
run queue for a processor is empty (pull migration).

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 5.4.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its
data being in that processor's cache memory. By either pulling or pushing a
process from one processor to another, we invalidate this benefit. As is often the
case in systems engineering, there is no absolute rule concerning what policy
is best. Thus, in some systems, an idle processor always pulls a process from
a non-idle processor; and in other systems, processes are moved only if the
imbalance exceeds a certain threshold.

5.4.4 Symmetric Multithreading

SMP systems allow several threads to run concurrently by providing multiple
physical processors. An alternative strategy is to provide multiple logical—
rather than physical—processors. Such a strategy is known as symmetric
multithreading (or SMT); it has also been termed hyperthreading technology
on Intel processors.

The idea behind SMT is to create multiple logical processors on the same
physical processor, presenting a view of several logical processors to the operat-
ing system, even on a system with only a single physical processor. Each logical
processor has its own architecture state, which includes general-purpose and
machine-state registers. Furthermore, each logical processor is responsible for
its own interrupt handling, meaning that interrupts are delivered to—and
handled by—logical processors rather than physical ones. Otherwise, each
logical processor shares the resources of its physical processor, such as cache
memory and buses. Figure 5.8 illustrates a typical SMT architecture with two
physical processors, each housing two logical processors. From the operating
system's perspective, four processors are available for work on this system.

It is important to recognize that SMT is a feature provided in hardware, not
software. That is, hardware must provide the representation of the architecture
state for each logical processor, as well as interrupt handling. Operating
systems need not necessarily be designed differently if they are to run on an
SMT system; however, certain performance gains are possible if the operating
system is aware that it is running on such a system. For example, consider a
system with two physical processors, both of which are idle. The scheduler
should first try scheduling separate threads on each physical processor rather

logical
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physical
GPU
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: logical i
; CPU ;

• ::::: m/i
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Figure 5.8 A typical SMT architecture
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than on separate logical processors on the same physical processor. Otherwise,
both logical processors on one physical processor could be busy while the other
physical processor remained idle.

5.5 Thread Scheduling

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

5.5.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads belonging
to the same process. When we say the thread library schedules user threads onto
available LWPs, we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CPU, the
kernel uses system-contention scope (SCS). Competition for the CPU with SCS
scheduling takes place among all threads in the system. Systems using the
one-to-one model (such as Windows XP, Solaris 9, and Linux) schedule threads
using only SCS.

Typically, PCS is done according to priority—the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities
are set by the programmer and are not adjusted by the thread library, although
some thread libraries may allow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in favor of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.4) among threads of equal priority.

5.5.2 Pthread Scheduling

We provided a sample POSIX Pthread program in Section 4.3.1, along with an
introduction to thread creation with Pthreads. Now, we highlight the POSIX
Pthread API that allows specifying either PCS or SCS during thread creation.
Pthreads identifies the following contention scope values:

® PTHREAD_SCOPEJPROCESS schedules threads using PCS scheduling.

• PTHREAD-SCOPE_SYSTEM schedules threads using SCS scheduling.
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On systems implementing the many-to-many model (Section 4.2.3), the
PTHREAD_SCOPE_PROCESS policy schedules user-level threads onto available
LVVPs. The number of LWFs is maintained by the thread library, perhaps using
scheduler activations (Section 4.4.6). The PT HREAD_SCOPE_SYSTEM scheduling
policy will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy (Section
4'.2.2).

The Pthread IPC provides the following two functions for getting—and
setting—-the contention scope policy:

• pthread_attr_setscope(pthread_attr_t *attr, int scope)

• pthread_attr_getscope(pthread_attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the attri^ite set for
the thread. The second parameter for the pthread^attr^setscope 0 function
is passed either the PTHREAD.SCOPE..SYSTEM or PTHREAD_5COPE_PROCESS
value, indicating how the contention scope is to be set. In the case of
pthread^attr_getscope() , this second parameter contains a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns non-zero values.

In Figure 5.9, we illustrate a Pthread program that first determines the
existing contention scope and sets it to PTHREAD.SCOPE.PROCESS. It then creates
five separate threads that will run using the SCS scheduling policy. Note that on
some systems, only certain contention scope values are allowed. For example,
Linux and Mac OS X systems allow only PTHREAD_SCOPE_SYSTEM.

5.6 Operating System Examples

We turn next to a description of the scheduling policies of the Solaris, Windows
XP, and Linux operating systems. It is important to remember that we are
describing the scheduling of kernel threads with Solaris and Linux. Recall that
Linux does not distinguish between processes and threads; thus, we use the
term task when discussing the Linux scheduler.

5.6.1 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling. It has defined four classes of
scheduling, which are, in order of priority:

1. Real time

2. System

3. Time sharing

4. Interactive

Within each class there are different priorities and different scheduling algo-
rithms. Solaris scheduling is illustrated in Figure 5.10.
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#include <pthread.h> ?

tinclude <stdio.h>
#define NUM.THREADS 5

int main(int argc, char *argv[])
{

int i , scope;
pthread_t tid [NUMJTHREADS] ;
pthread_attr_t attr;

/* get the default attributes */
pthread_attr_init (&attr) ;

/* first inquire on the current scope */

if (pthread_attr_getscope(fcattr, kscope) != 0)
fprintf(stderr, "Unable to get scheduling scope\n");

else {

if (scope == PTHREAD.SCOPE.PROCESS)
printf ( "PTHREAD_SCOPE_PROCESS" ) ;

else if (scope == PTHREAD.SCOPE.SYSTEM)

printf ( " PTHREAD_SCOPE_SYSTEM") ;
else
fprintf(stderr, "Illegal scope value.\n");

/* set the scheduling algorithm to PCS or SCS */

pthread_attr_setscope (&attr, PTHREAD^SCOPE.SYSTEM)

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread^create (&tid [i] , &attr, runner,NULL) ;

/* now join on each thread */

for (i = 0; i < NUMJTHREADS; i++)

pthread^join (tid [i] , NULL);

/* Each thread will begin control in this function */
void *runner(void *param)

{
/* do some work ... */

Dthread_exit fO) ;

Figure 5.9 Pthread scheduling API.
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Figure 5.10 Solaris scheduling.

The default scheduling class for a process is time sharing. The scheduling
policy for time sharing dynamically alters priorities and assigns time slices
of different lengths using a multilevel feedback queue. By default, there is
an inverse relationship between priorities and time slices: The higher the
priority, the smaller the time slice; and the lower the priority, the larger the
time slice. Interactive processes typically have a higher priority; CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications a higher priority for better performance.

Figure 5.11 shows the dispatch table for scheduling interactive and time-
sharing threads. These two scheduling classes include 60 priority levels, but
for brevity, we display only a handful. The dispatch table shown in Figure 5.11
contains the following fields:

• Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

• Time quantum. The time quantum for the associated priority. This
illustrates the inverse relationship between priorities and time quanta:
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Figure 5.11 Solaris dispatch table for interactive and time-sharing threads.

The lowest priority (priority 0) has the highest time quantum (200
milliseconds), and the highest priority (priority 59) has the lowest time
quantum (20 milliseconds).

Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered
CPU-intensive. As shown in the table, these threads have their priorities
lowered.

Return from sleep. The priority of a thread that is returning from sleeping
(such as waiting for I/O). As the table illustrates, when I/O is available
for a waiting thread, its priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

Solaris 9 introduced two new scheduling classes: fixed priority and fair
share. Threads in the fixed-priority class have the same priority range as
those in the time-sharing class; however, their priorities are not dynamically
adjusted. The fair-share scheduling class uses CPU shares instead of priorities
to make scheduling decisions. CPU shares indicate entitlement to available CPU
resources and are allocated to a set of processes (known as a project).

Solaris uses the system class to run kernel processes, such as the scheduler
and paging daemon. Once established, the priority of a system process does
not change. The system class is reserved for kernel use (user processes running
in kernel mode are not in the systems class).
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Threads in the real-time class are given the highest priority. This assignment
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CPU
until it (1) blocks, (2) uses its time slice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. As mentioned, Solaris has traditionally used the many-
to-many model (4.2.3) but with Solaris 9 switched to the one-to-one model
(4.2.2).

5.6.2 Example: Windows XP Scheduling

Windows XP schedules threads using a priority-based, preemptive scheduling
algorithm. The Windows XP scheduler ensures that the highest-priority thread
will always run. The portion of the Windows XP kernel that handles scheduling
is called the dispatcher. A thread selected to run by the dispatcher will run until
it is preempted by a higher-priority thread, until it terminates, until its time
quantum ends, or until it calls a blocking system call, such as for I/O. If a
higher-priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variable class
contains threads having priorities from 1 to 15, and the real-time class contains
threads with priorities ranging from 16 to 31. (There is also a thread running at
priority 0 that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows XP
kernel and the Win32 API. The Win32 API identifies several priority classes to
which a process can belong. These include:

• REALTIME-PRIORITY_CLASS

• HIGH-PRIORITY-CLASS

• ABOVE_NORMAL.PRIORITY_CLASS

• NORMAL-PRIORITY-CLASS

• BELOW.NORMAL_PRIORITY-CLASS

• IDLE-PRIORITY-CLASS

Priorities in all classes except the REALTIME-PRIORITY-CLASS are variable,
meaning that the priority of a thread belonging to one of these classes can
change.
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Figure 5.12 Windows XP priorities.

Within each of the priority classes is a relative priority. The values for
relative priority include:

• TIMEJZRITICAL

• HIGHEST

• ABOVE-NORMAL

• NORMAL

• BELOW-NORMAL

• LOWEST

• IDLE

The priority of each thread is based on the priority class it belongs to and its
relative priority within that class. This relationship is shown in Figure 5.12. The
values of the priority classes appear in the top row. The left column contains the
values for the relative priorities. For example, if the relative priority of a thread
in the ABOVE.NORMAL_PRIORITY_CLASS is NORMAL, the numeric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that specific class. The base
priorities for each priority class are:

• REALTIME-PRIORTTY-CLASS—24

• HIGH_PRIORITY-CLASS—13

• ABOVE-NORM AL.PRIORJTY-CLASS—10

• NORMAL-PRIORITY.CLASS—8

• BELOW.NORMAL_PRIORITY_CLASS—6

• IDLE-PRIORITY-CLASS—4
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Processes are typically members of the NORMAL .PRIORITY-CLASS. A pro-
cess will belong to this class unless the parent of the process was of the
IDLE-PRIORITY-CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread's time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority
is never lowered below the base priority, however. Lowering the thread's
priority tends to limit the CPU consumption of compute-bound threads. When a
variable-priority thread is released from a wait operation, the dispatcher boosts
the priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard I/O would get a large
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tends to give good response times to interactive threads that
are using the mouse and windows. It also enables I/O-bound threads to keep
the I/O devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the
user is currently interacting receives a priority boost to enhance its response
time.

When a user is running an interactive program, the system needs to provide
especially good performance for that process. For this reason, Windows XP
has a special scheduling rule for processes in the NORMAL_PR1ORITY_CLASS.
Windows XP distinguishes between the foreground process that is currently
selected on the screen and the background processes that are not currently
selected. When a process moves into the foreground, Windows XP increases the
scheduling quantum by some factor—typically by 3. This increase gives the
foreground process three times longer to run before a time-sharing preemption
occurs.

5.6.3 Example: Linux Scheduling

Prior to version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time—known as O(l)—regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, including Solaris (5.6.1) and
Windows XP (5.6.2), Linux assigns higher-priority tasks longer time quanta and
lower-priority tasks shorter time quanta. The relationship between priorities
and time-slice length is shown in Figure 5.13.



180 Chapter 5 CPU Scheduling

numeric
priority

0
•
•
•

99
100

»
ft

•

140

relative
priority

highest

lowest

real-time
tasks

other
tasks

time
quantum

200 ms

10 ms

Figure 5.13 The relationship between priorities and time-slice length.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time slice. When a task has exhausted its time
slice, it is considered expired and is not eligible for execution again until all
other tasks have also exhausted their time quanta. The kernel maintains a list
of all runnable tasks in a runqueue data structure. Because of its support for
SMP, each processor maintains its own runqueue and schedules itself indepen-
dently. Each runqueue contains two priority arrays—active and expired. The
active array contains all tasks with time remaining in their time slices, and the
expired array contains all expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.14). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks have
exhausted their time slices (that is, the active array is empty), the two priority
arrays are exchanged; the expired array becomes the active array, and vice
versa.

Linux implements real-time scheduling as defined by POSIX.lb, which is
fully described in Section 5.5.2. Real-time tasks are assigned static priorities.
All other tasks have dynamic priorities that are based on their nice values plus
or minus the value 5. The interactivity of a task determines whether the value
5 will be added to or subtracted from the nice value. A task's interactivity
is determined by how long it has been sleeping while waiting for I/O. Tasks
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Figure 5.14 List of tasks indexed according to priority.
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that are more interactive typically have longer sleep times and therefore are
more likely to have adjustments closer to -5, as the scheduler favors interactive
tasks. The result of such adjtistments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

The recalculation of a task's dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasks in the new active array have been
assigned new priorities and corresponding time slices.

5.7 Algorithm Evaluation

How do we select a CPU scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or throughput. To select an algorithm, we must first define
the relative importance of these measures. Our criteria may include several
measures, such as:

• Maximizing CPU utilization under the constraint that the maximum
response time is 1 second

• Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

One type of analytic evaluation is deterministic modeling. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0, in the order given, with the
length of the CPU burst given in milliseconds:

Process

Pi
P2

P3

Pi
P,

Burst Time
10
29
3
7
12
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Consider the FCFS, SJF, and RR (quantum = 10 milliseconds) scheduling
algorithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

Pi p2 p3 p4 p5

10 39 42 49 61

The waiting time is 0 milliseconds for process Pi, 10 milliseconds for process
P?, 39 milliseconds for process P3, 42 milliseconds for process P4, and 49
milliseconds for process P5. Thus, the average waiting time is (0 + 10 + 39
+ 42 + 49)/5 = 28 milliseconds.

With nonpreemptive SJF scheduling, we execute the processes as

P3 P4 Px p5 p2

10 20 32 61

The waiting time is 10 milliseconds for process P\, 32 milliseconds for process
P2, 0 milliseconds for process P3, 3 milliseconds for process P4, and 20
milliseconds for process P5. Thus, the average waiting time is (10 + 32 + 0
+ 3 + 20)/5 = 13 milliseconds.

With the RR algorithm, we execute the processes as

Pi p2 p3 P4 Ps p2 Ps p2

10 20 23 30 40 50 52 61

The waiting time is 0 milliseconds for process Pi, 32 milliseconds for process
P2, 20 milliseconds for process P3, 23 milliseconds for process P4, and 40
milliseconds for process P5. Thus, the average waiting time is (0 + 32 + 20
+ 23 + 40)/5 = 23 milliseconds.

We see that, in this case, the average waiting time obtained with the SJF
policy is less than half that obtained with FCFS scheduling; the RR algorithm
gives us an intermediate value.

Deterministic modeling is simple and fast. It gives us exact numbers,
allowing us to compare the algorithms. However, it requires exact numbers for
input, and its answers apply only to those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples. In
cases where we are running the same program over and over again and can
measure the program's processing requirements exactly, we may be able to use
deterministic modeling to select a scheduling algorithm. Furthermore, over a
set of examples, deterministic modeling may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at time 0), the
SJF policy will always result in the minimum waiting time.
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5.7.2 Queueing Models

On many systems, the processes that are run vary from day to day, so there
is no static set of processes (or times) to use for deterministic modeling. What
can be determined, however, is the distribution of CPU and I/O bursts. These
distributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CPU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). From these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CPU is a server with its ready queue, as is
the I/O system with its device queues. Knowing arrival rates and service rates,
we can compute utilization, average queue length, average wait time, and so
on. This area of study is called queueing-network analysis.

As an example, let n be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let X be
the average arrival rate for new processes in the queue (such as three processes
per second). We expect that during the time W that a process waits, \ x W
new processes will arrive in the queue. If the system is in a steady state, then
the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

This equation, known as Little's formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution.

We can use Little's formula to compute one of the three variables, if we
know the other two. For example, if we know that 7 processes arrive every
second (on average), and that there are normally 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of
complicated algorithms and distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in mathematically tractable
—but unrealistic—ways. It is also generally necessary to make a number of
independent assumptions, which may not be accurate. As a result of these
difficulties, queueing models are often only approximations of real systems,
and the accuracy of the computed results may be questionable.

5.7.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use
simulations. Running simulations involves programming a model of the
computer system. Software data structures represent the major components
of the system. The simulator has a variable representing a clock; as this
variable's value is increased, the simulator modifies the system state to reflect
the activities of the devices, the processes, and the scheduler. As the simulation
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Figure 5.15 Evaluation of CPU schedulers by simulation.

executes, statistics that indicate algorithm performance are gathered and
printed.

The data to drive the simulation can be generated in several ways. The most
common method uses a random-number generator, which is programmed to
generate processes, CPU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
(uniform, exponential, Poisson) or empirically. If a distribution is to be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of events in the real system; this distribution can
then be used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only how many instances of each event occur; it does not
indicate anything about the order of their occurrence. To correct this problem,
we can use trace tapes. We create a trace tape by monitoring the real system and
recording the sequence of actual events (Figure 5.15). We then use this sequence
to drive the simulation. Trace tapes provide an excellent way to compare two
algorithms on exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring hours of computer time. A
more detailed simulation provides more accurate results, but it also requires
more computer time. In addition, trace tapes can require large amounts of
storage space. Finally, the design, coding, and debugging of the simulator can
be a major task.

5.7.4 Implementation

Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and see how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.
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The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifying the operating system
to support it (along with its required data structures) but also in the reaction
of the users to a constantly changing operating system. Most users are not
interested in building a better operating system; they merely want to get their
processes executed and use their results. A constantly changing operating
system does not help the users to get their work done.

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are written and the types of problems change, but also as a result
of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes. If interactive
processes are given priority over noninteractive processes, then users may
switch to interactive use.

For example, researchers designed one system that classified interactive
and noninteractive processes automatically by looking at the amount of
terminal I/O. If a process did not input or output to the terminal in a 1-second
interval, the process was classified as noninteractive and was moved to a
lower-priority queue. In response to this policy, one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
less than 1 second. The system gave his programs a high priority, even though
the terminal output was completely meaningless.

The most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for
a specific application or set of applications. For instance, a workstation
that performs high-end graphical applications may have scheduling needs
different from those of a web server or file server. Some operating systems—
particularly several versions of UNIX—allow the system manager to fine-tune
the scheduling parameters for a particular system configuration. For example,
Solaris provides the dispadmin command to allow the system administrator
to modify the parameters of the scheduling classes described in Section 5.6.1.

Another approach is to use APIs that modify the priority of a process or
thread. The Java, /POSIX, and /WinAPI/ provide such functions. The downfall
of this approach is that performance tuning a system or application most often
does not result in improved performance in more general situations.

5.8 Summary

CPU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

First-come, first-served (FCFS) scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes. Shortest-
job-first (SJF) scheduling is provably optimal, providing the shortest average
waiting time. Implementing SJF scheduling is difficult, however, because pre-
dicting the length of the next CPU burst is difficult. The SJF algorithm is a special
case of the general priority scheduling algorithm, which simply allocates the
CPU to the highest-priority process. Both priority and SJF scheduling may suffer
from starvation. Aging is a technique to prevent starvation.
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Round-robin (RR) scheduling is more appropriate for a time-shared (inter-
active) system. RR scheduling allocates the CPU to the first process in the ready
queue for q time units, where q is the time quantum. After q time units, if
the process has not relinquished the CPU, it is preempted, and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive. The
SJF and priority algorithms may be either preemptive or nonpreemptive.

Multilevel queue algorithms allow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
vises FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

Many contemporary computer systems support multiple processors and
allow each processor to schedule itself independently. Typically, each processor
maintains its own private queue of processes (or threads), all of which are
available to run. Issues related to multiprocessor scheduling include processor
affinity and load balancing.

Operating systems supporting threads at the kernel level must schedule
threads—not processes—for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive,
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm. Simulation methods determine
performance by imitating the scheduling algorithm on a "representative''
sample of processes and computing the resulting performance. However, sim-
ulation can at best provide an approximation of actual system performance;
the only reliable technique for evaluating a scheduling algorithm is to imple-
ment the algorithm on an actual system and monitor its performance in a
"real-world" environment.

Exercises

5.1 Why is it important for the scheduler to distinguish I/O-bound programs
from CPU-bound programs?

5.2 Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utilization and response time

b. Average turnaround time and maximum waiting time

c. I/O device utilization and CPU utilization <
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5.3 Consider the exponential average formula used to predict the length of
the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. a — 0 and TO = 100 milliseconds

b. a = 0.99 and TQ = 10 milliseconds

5.4 Consider the following set of processes, with the length of the CPU burst
given in milliseconds:

Process Burst Time Priority

PT 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2

The processes are assumed to have arrived in the order Pi, P2/ P3, P4, P5,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these
processes using the following scheduling algorithms: FCFS, SJF,
nonpreemptive priority (a smaller priority number implies a
higher priority), and RR (quantum = 1).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the algorithms in part a results in the minimum average
waiting time (over all processes)?

5.5 Which of the following scheduling algorithms could result in starvation?

a. First-come, first-served

b. Shortest job first

c. Round robin

d. Priority

5.6 Consider a variant of the RR scheduling algorithm in which the entries
in the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be two major advantages and two disadvantages of
this scheme?

c. How would you modify the basic RR algorithm to achieve the
same effect without the duplicate pointers?
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5.7 Consider a system running ten I/Obound tasks and one CPU-bound
task. Assume that the I/O-bound tasks issue an I/O operation once for
every- millisecond of CPU computing and that each I/O operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

5.8 Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU
time allocated to the user's process?

5.9 Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not
running), its priority changes at a rate a; when it is running, its priority
changes at a rate (3. All processes are given a priority of 0 when they
enter the ready queue. The parameters a and p can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from (3 > a > 0?

b. What is the algorithm that results from a < pi < 0?

5.10 Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

5.11 Using the Windows XP scheduling algorithm, what is the numeric
priority of a thread for the following scenarios?

a. A thread in the REALTIME_PRIORITY.CLASS with a relative priority
of HIGHEST

b. A thread in the NORMAL-PRIORITY.CLASS with a relative priority
of NORMAL

c. A thread in the HIGH_PRIORITY_CLASS with a relative priority of
ABOVEJVORMAL

5.12 Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads.

a. What is the time quantum (in milliseconds) for a thread with
priority 10? With priority 55?

b. Assume that a thread with priority 35 has used its entire time
quantum without blocking. What new priority will the scheduler
assign this thread?
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c. Assume that a thread with priority 35 blocks for I/O before its
time quantum has expired. What new priority will the scheduler
assign this thread?

5.13 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: The higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process Pi is 40, process Pi is 18,
and process P3 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?
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Process
Synchronization

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data) or be allowed to share data
only through files or messages. The former case is achieved through the use of
lightweight processes or threads, which we discussed in Chapter 4. Concurrent
access to shared data may result in data inconsistency. In this chapter, we
discuss various mechanisms to ensure the orderly execution of cooperating
processes that share a logical address space, so that data consistency is
maintained.

CHAPTER OBJECTIVES

• To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data.

• To present both software and hardware solutions of the critical-section
problem.

• To intoduce the concept of atomic transaction and describe mechanisms
to ensure atomicity.

6.1 Background

In Chapter 3, we developed a model of a system consisting of cooperating
sequential processes or threads, all running asynchronously and possibly
sharing data. We illustrated this model with the producer-consumer problem,
which is representative of operating systems. Specifically, in Section 3.4.1, we
described how a bounded buffer could be used to enable processes to share
memory.

Let us return to our consideration of the bounded buffer. As we pointed
out, our solution allows at most BUFFER.SIZE - 1 items in the buffer at the same
time. Suppose we want to modify the algorithm to remedy this deficiency. One
possibility is to add an integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and is decremented

191
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every time we remove one item from the buffer. The code for the producer
process can be modified as follows:

while (true)

{
/* produce an item in nextProduced */
while (counter == BUFFER.SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER-SIZE;
counter++;

The code for the consumer process can be modified as follows:

while (true)
{

while (counter == 0)
; /* do nothing */

nextConsumed = buffer [out] ,-
out = (out + 1) % BUFFER_SIZE;
counter--;
/* consume the item in nextConsumed */

Although both the producer and consumer routines are correct separately,
they may not function correctly when executed concurrently. As an illustration,
suppose that the value of the variable counter is currently 5 and that the
producer and consumer processes execute the statements "counter++" and
"counter—" concurrently. Following the execution of these two statements,
the value of the variable counter may be 4, 5, or 6! The only correct result,
though, is counter == 5, which is generated correctly if the producer and
consumer execute separately.

We can show that the value of counter may be incorrect as follows. Note
that the statement "counter++" may be implemented in machine language (on
a typical machine) as

register^ - counter
registeri = registeri + 1
counter - registeri

where register^ is a local CPU register. Similarly, the statement "counter—" is
implemented as follows:

register2 - counter
register2 - register^ — 1
counter = registeri

where again register^ is a local CPU register. Even though register} and
register^ may be the same physical register (an accumulator, say), remember
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that the contents of this register will be saved and restored by the interrupt
handler (Section 1.2.3).

The concurrent execution of "counter++" and "counter—" is equivalent
to a sequential execution where the lower-level statements presented pre-
viously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

registeri — counter {registeri = 5}
register i = register^ + 1 {registeri = 6}
register^. = counter {register2 — 5}
register2 = registeri — 1 {register2 — 4}
counter = registeri {counter = 6}
counter = register2 {counter = 4}

Notice that we have arrived at the incorrect state "counter == 4", indicating
that four buffers are full, when, in fact, five buffers are full. If we reversed the
order of the statements at T4 and T5, we would arrive at the incorrect state
"counter —— 6".

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called a race condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable counter. To make such a guarantee, we require that the processes
be synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Clearly, we
want the resulting changes not to interfere with one another. Because of the
importance of this issue, a major portion of this chapter is concerned with
process synchronization and coordination.

6.2 The Critical-Section Problem

Consider a system consisting of n processes {PQ, PI, ..., P,,~\}. Each process
has a segment of code, called a critical section, in which the process may
be changing common variables, updating a table, writing a file, and so on.
The important feature of the system is that, when one process is executing in
its critical section, no other process is to be allowed to execute in its critical
section. That is, no two processes are executing in their critical sections at the
same time. The critical-section problem is to design a protocol that the processes
can use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the entry section. The
critical section may be followed by an exit section. The remaining code is the
remainder section. The general structure of a typical process P, is shown in
Figure 6.1. The entry section and exit section are enclosed in boxes to highlight
these important segments of code.



194 Chapter 6 Process Synchronization

do{

\ entry section

critical section

exit section

remainder section

} while (TRUE);

Figure 6.1 General structure of a typical process P,.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process P; is executing in its critical section, then no
other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in the
decision on which will enter its critical section next, and this selection
cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative speed of the n processes.

At a given point in time, many kernel-mode processes may be active in the
operating system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modified when a new file is opened or closed (adding
the file to the list or removing it from the list). If two processes were to open files
simultaneously, the separate updates to this list could result in a race condition.
Other kernel data structures that are prone to possible race conditions include
structures for maintaining memory allocation, for maintaining process lists,
and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

Two general approaches are used to handle critical sections in operating
systems: (1) preemptive kernels and (2) nonpreemptive kernels. A preemptive
kernel allows a process to be preempted while it is running in kernel mode.
A nonpreemptive kernel does not allow a process running in kernel mode
to be preempted; a kernel-mode process will run until it exits kernel mode,
blocks, or voluntarily yields control of the CPU. Obviously, a nonpreemptive
kernel is essentially free from race conditions on kernel data structures, as
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only one process is active in the kernel at a time. We cannot say the^same
about nonpreemptive kernels, so they must be carefully designed to ensure
that shared kernel data are free from race conditions. Preemptive kernels are
especially difficult to design for 5MP architectures, since in these environments
it is possible for two kernel-mode processes to run simultaneously on different
processors.

Why, then, would anyone favor a preemptive kernel over a nonpreemptive
one? A preemptive kernel is more suitable for real-time programming, as it will
allow a real-time process to preempt a process currently running in the kernel.
Furthermore, a preemptive kernel may be more responsive, since there is less
risk that a kernel-mode process will run for an arbitrarily long period before
relinquishing the processor to waiting processes. Of course, this effect can be
minimized by designing kernel code that does not behave in this way.

Windows XP and Windows 2000 are nonpreemptive kernels, as is the
traditional UNIX kernel. Prior to Linux 2.6, the Linux kernel was nonpreemptive
as well. However, with the release of the 2.6 kernel, Linux changed to the
preemptive model. Several commercial versions of UNIX are preemptive,
including Solaris and IRIX.

6.3 Peterson's Solution

Next, we illustrate a classic software-based solution to the critical-section
problem known as Peterson's solution. Because of the way modern computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson's solution will work correctly
on such architectures. However, we present the solution because it provides
a good algorithmic description of solving the critical-section problem and
illustrates some of the complexities involved in designing software that
addresses the requirements of mutual exclusion, progress, and bounded
waiting requirements.

Peterson's solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered Po and Pi. For convenience, when presenting P,-, we use Pj to
denote the other process; that is, j equals 1 — i.

Peterson's solution requires two data items to be shared between the two
processes:

int turn;
b o o l e a n f l a g [2] •

The variable turn indicates whose turn it is to enter its critical section. That is,
if turn == i, then process P; is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section.
For example, if f lag[i] is true, this value indicates that P; is ready to enter
its critical section. With an explanation of these data structures complete, we
are now ready to describe the algorithm shown in Figure 6,2.

To enter the critical section, process P, first sets flag[i] to be true and
then sets turn to the value j, thereby asserting that if the other process wishes
to enter the critical section, it can do so. If both processes try to enter at the
same time, turn will be set to both i and j at roughly the same time. Only
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do {

f lag[ i ] = TRUE;
turn = j ;
while (flag[j] turn == j ) ;

critical section

f lag[ i ] = FALSE;

remainder section

} while (TRUE);

Figure 6.2 The structure of process P-, in Peterson's solution.

one of these assignments will last; the other will occur but will be overwritten
immediately. The eventual value of turn decides which of the two processes
is allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved.

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only
if either f lag[j] == false or turn -- i. Also note that, if both processes
can be executing in their critical sections at the same time, then flag [0] ==
flag [1] == true. These two observations imply that Po and Pi could not have
successfully executed their while statements at about the same time, since the
value of turn can be either 0 or 1 but cannot be both. Hence, one of the processes
—say Pj—must have successfully executed the while statement, whereas P,
had to execute at least one additional statement ("turn == j") . However, since,
at that time, f lag[j] == true, and turn == j, and this condition will persist
as long as Pj is in its critical section, the result follows: Mutual exclusion is
preserved.

To prove properties 2 and 3, we note that a process P, can be prevented from
entering the critical section only if it is stuck in the while loop with the condition
flag [j] == true and turn == j; this loop is the only one possible. If P; is not
ready to enter the critical section, then flag [j] == false, and P; can enter its
critical section. If Pj has set flag [j ] to true and is also executing in its while
statement, then either turn == i or turn == j . If turn == i, then P, will enter
the critical section. If turn == j, then Pj will enter the critical section. However,
once P; exits its critical section, it will reset f lag[j] to false, allowing P, to
enter its critical section. If Pj resets flag [j ] to true, it must also set turn to i.
Thus, since P, does not change the value of the variable turn while executing
the while statement, P,- will enter the critical section (progress) after at most
one entry by P/ (bounded waiting).
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do { »

acquire lock

critical section

release lock

remainder section

} whi le (TRUE);

Figure 6.3 Solution to the critical-section problem using locks.

6.4 Synchronization Hardware

We have just described one software-based solution to the critical-section
problem. In general, we can state that any solution to the critical-section
problem requires a simple tool—a lock. Race conditions are prevented by
requiring that critical regions be protected by locks. That is, a process must
acquire a lock before entering a critical section; it releases the lock when it exits
the critical section. This is illustrated in Figure 6.3.

In the following discussions, we explore several more solutions to the
critical-section problem using techniques ranging from hardware to software-
based APIs available to application programmers. All these solutions are based
on the premise of locking; however, as we shall see, the design of such locks
can be quite sophisticated.

Hardware features can make any programming task easier and improve
system efficiency. In this section, we present some simple hardware instructions
that are available on many systems and show how they can be used effectively
in solving the critical-section problem.

The critical-section problem could be solved simply in a uniprocessor envi-
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this manner, we could be sure that the current sequence
of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable. This is the approach taken by nonpreemptive
kernels.

Unfortunately, this solution is not as feasible in a multiprocessor environ-
ment. Disabling interrupts on a multiprocessor can be time consuming, as the

boolean TestAndSet(boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

Figure 6.4 The definition of the TestAndSet () instruction.
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do {
while (TestAndSetLock(&lock) )

; // do nothing

// critical section

lock = FALSE;

// remainder section
}while (TRUE);

Figure 6.5 Mutual-exclusion implementation with TestAndSet ( ) .

message is passed to all the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also, consider the effect
on a system's clock, if the clock is kept updated by interrupts.

Many modern computer systems therefore provide special hardware
instructions that allow us either to test and modify the content of a word or
to swap the contents of two words atomically—that is, as one uninterruptible
unit. We can use these special instructions to solve the critical-section problem
in a relatively simple manner. Rather than discussing one specific instruction
for one specific machine, we abstract the main concepts behind these types of
instructions.

The TestAndSet() instruction can be defined as shown in Figure 6.4.
The important characteristic is that this instruction is executed atomically.
Thus, if two TestAndSet C) instructions are executed simultaneously (each on
a different CPU), they will be executed sequentially in some arbitrary order. If
the machine supports the TestAndSet () instruction, then we can implement
mutual exclusion by declaring a Boolean variable lock, initialized to fa lse .
The structure of process P, is shown in Figure 6.5.

The SwapO instruction, in contrast to the TestAndSet0 instruction,
operates on the contents of two words; it is defined as shown in Figure 6.6.
Like the TestAndSet 0 instruction, it is executed atomically. If the machine
supports the SwapO instruction, then mutual exclusion can be provided as
follows. A global Boolean variable lock is declared and is initialized to fa lse .
In addition, each process has a local Boolean variable key. The structure of
process P, is shown in Figure 6.7.

Although these algorithms satisfy the mutual-exclusion requirement, they
do not satisfy the bounded-waiting requirement. In Figure 6.8, we present

void Swap(boolean *a, boolean *b)
boolean temp = *a;
*a = *b;
*b = temp;

Figure 6.6 The definition of the Swap () instruction.
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do { ,

key = TRUE;
while (key == TRUE)

Swap (&lock, &key) ,-

// critical section

lock = FALSE;

// remainder section
Jwhile (TRUE);

Figure6.7 Mutual-exclusion implementation with the SwapO instruction.

another algorithm using the TestAndSetO instruction that satisfies all the
critical-section requirements. The common data structures are

boolean waiting[n];
boolean lock;

These data structures are initialized to false. To prove that the mutual-
exclusion requirement is met, we note that process P; can enter its critical
section only if either waiting[i] == false or key -- false. The value
of key can become false only if the TestAndSetO is executed. The first
process to execute the TestAndSet () will find key == false; all others must

do {
waiting [i] = TRUE;
key = TRUE;
while (waiting[i] && key)

key = TestAndSet(&lock);
waiting [i] = FALSE;

// critical section

j = ( i + 1) % n ;

w h i l e ( ( ] != i) ScSc ! w a i t i n g [ j ] )
j = (j + 1) % n ;

if (j == i)
lock = FALSE;

else
waiting[j] = FALSE;

// remainder section
}while (TRUE);

Figure 6.8 Bounded-waiting mutual exclusion with TestAndSet O.
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wait. The variable waiting[i] can become false only if another process
leaves its critical section; only one waiting [i] is set to false, maintaining the
mutual-exclusion requirement.

To prove that the progress requirement is met, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the
critical section either sets lock to false or sets waiting[j] to false. Both
allow a process that is waiting to enter its critical section to proceed.

To prove that the bounded-waiting requirement is met, we note that, when
a process leaves its critical section, it scans the array waiting in the cyclic
ordering (z' + 1, i + 2,..., n — 1, 0, ..., i — 1). It designates the first process in this
ordering that is in the entry section (waiting [j] =- true) as the next one to
enter the critical section. Any process waiting to enter its critical section will
thus do so within n — 1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd-
SetQ instructions on multiprocessors is not a trivial task. Such implementa-
tions are discussed in books on computer architecture.

6.5 Semaphores

The various hardware-based solutions to the critical-section problem (using
the TestAndSetC) and SwapO instructions) presented in Section 6.4 are
complicated for application programmers to use. To overcome this difficulty,
we can use a synchronization tool called a semaphore.

A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait () and signal ().
The waitO operation was originally termed P (from the Dutch probercn, "to
test"); signal () was originally called V (from verhogen, "to increment"). The
definition of wait 0 is as follows:

wait(S) {
while S <~ 0

; // no-op
S--;

The definition of signal () is as follows:

signal(S) {
S + + ;

}
All the modifications to the integer value of the semaphore in the wait ()

and signal() operations must be executed indivisibly. That is, when one
process modifies the semaphore value, no other process can simultaneously
modify that same semaphore value. In addition, in the case of wait(S), the
testing of the integer value of S (S < 0), and its possible modification (S—),
must also be executed without interruption. We shall see how these operations
can be implemented in Section 6.5.2; first, let us see how semaphores can be
used.
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6.5.1 Usage '

Operating systems often distinguish between counting and binary semaphores.
The value of a counting semaphore can range over an unrestricted domain.
The value of a binary semaphore can range only between 0 and 1. On some
systems, binary semaphores are known as mutex locks, as they are locks that
provide mutual t'.rclusion.

We can use binary semaphores to deal with the critical-section problem for
multiple processes. The n processes share a semaphore, mutex, initialized to 1.
Each process P, is organized as shown in Figure 6.9.

Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a waitQ operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal () operation
(incrementing the count). When the count for the semaphore goes to 0, all
resources are being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

We can also use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes: P\ with a statement
Si and Pi with a statement Si. Suppose we require that So be executed only
after Si has completed. We can implement this scheme readily by letting Pi
and Pi share a common semaphore synch, initialized to 0, and by inserting the
statements

Si;
signal(synch);

in process P\, and the statements

wait(synch);
Si;

in process P?. Because synch is initialized to 0, P? will execute S2 only after P\
has invoked s ignal (synch), which is after statement Si has been executed.

do {

wai t ing(mutex) ;

// critical section

signal(mutex);

// remainder section
}while (TRUE);

Figure 6.9 Mutual-exclusion implementation with semaphores.
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6.5.2 Implementation ?

The main disadvantage of the semaphore definition given here is that it requires
busy waiting. While a process is in its critical section, any other process that
tries to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,
where a single CPU is shared among many processes. Busy waiting wastes
CPU cycles that some other process might be able to use productively. This
type of semaphore is also called a spinlock because the process "spins" while
waiting for the lock. (Spinlocks do have an advantage in that no context switch
is required when a process must wait on a lock, and a context switch may
take considerable time. Thus, when locks are expected to be held for short
times, spinlocks are useful; they are often employed on multiprocessor systems
where one thread can "spin" on one processor while another thread performs
its critical section on another processor.)

To overcome the need for busy waiting, we can modify the definition of
the wait () and signal () semaphore operations. When a process executes the
wait () operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process can block
itself. The block operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state. Then control is transferred to the CPU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal() operation. The process is
restarted by a wakeup () operation, which changes the process from the waiting
state to the ready state. The process is then placed in the ready queue. (The
CPU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
a "C" struct:

typedef s truct {
int value;
s t ruct process * l i s t ;

} semaphore;

Each semaphore has an integer value and a list of processes l i s t . When
a process must wait on a semaphore, it is added to the list of processes. A
signal () operation removes one process from the list of waiting processes
and awakens that process.

The wait () semaphore operation can now be defined as

wait(semaphore *S) {
S->value—;
if (S->value < 0) {

add this process to S->list;
block();
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The signal 0 semaphore operation can now be defined as #

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

The blockO operation suspends the process that invokes it. The wakeup(P)
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system as basic system calls.

Note that, although under the classical definition of semaphores with busy
waiting the semaphore value is never negative, this implementation may have
negative semaphore values. If the semaphore value is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
waitO operation.

The list of waiting processes can be easily implemented by a link field in
each process control block (PCB). Each semaphore contains an integer value
and a pointer to a list of PCBs. One way to add and remove processes from
the list in a way that ensures bounded waiting is to use a FIFO queue, where
the semaphore contains both head and tail pointers to the queue. In general,
however, the list can use any queueing strategy. Correct usage of semaphores
does not depend on a particular queueing strategy for the semaphore lists.

The critical aspect of semaphores is that they be executed atomically- We
must guarantee that no two processes can execute waitO and signal()
operations on the same semaphore at the same time. This is a critical-section
problem; and in a single-processor environment (that is, where only one CPU
exists), we can solve it by simply inhibiting interrupts during the time the
wait () and signal () operations are executing. This scheme works in a single-
processor environment because, once interrupts are inhibited, instructions
from different processes cannot be interleaved. Only the currently running
process executes until interrupts are reenabled and the scheduler can regain
control.

In a multiprocessor environment, interrupts must be disabled on every
processor; otherwise, instructions from different processes (running on differ-
ent processors) may be interleaved in some arbitrary way. Disabling interrupts
on every processor can be a difficult task and furthermore can seriously dimin-
ish performance. Therefore, SMP systems must provide alternative locking
techniques—such as spinlocks—to ensure that waitO and s ignal0 are
performed atomically.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the waitO and signal() operations. Rather,
we have removed busy waiting from the entry section to the critical sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of the wait () and signal () operations, and these sections are
short (if properly coded, they should be no more than about ten instructions).
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Thus, the critical section is almost never occupied, and busy waiting occurs
rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or
even hours) or may almost always be occupied. In such cases, busy waiting is
extremely inefficient.

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a s igna l ( ) operation. When such a state is reached, these
processes are said to be deadlocked.

To illustrate this, we consider a system consisting of two processes, PQ and
Pi, each accessing two semaphores, S and Q, set to the value 1:

wai t (S) ; wait(Q);
wait(Q); wai t (S) ;

signal(S); signal(Q);
signal(Q); signal(S);

Suppose that P$ executes wait (S) and then Pi executes wait (Q). When Po

executes wait(Q), it must wait until Pi executes signal(Q). Similarly, when
Pi executes wait(S), it must wait until Po executes s ignal (S) . Since these
s ignal () operations cannot be executed, Po and Pi are deadlocked.

We say that a set of processes is in a deadlock state when every process in
the set is waiting for an event that can be caused only by another process in the
set. The events with which we are mainly concerned here are resource acquisition
and release. However, other types of events may result in deadlocks, as we shall
show in Chapter 7. In that chapter, we shall describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is indefinite blocking, or starva-
tion, a situation in which processes wait indefinitely within the semaphore.
Indefinite blocking may occur if we add and remove processes from the list
associated with a semaphore in LIFO (last-in, first-out) order.

6.6 Classic Problems of Synchronization

In this section, we present a number of synchronization problems as examples
of a large class of concurrency-control problems. These problems are used for
testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization.
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do { *

// produce an item in nextp

wait(empty);
wait(mutex);

// add nextp to buffer

signal(mutex);
signal(full);

}while (TRUE) ,-

Figure 6.10 The structure of the producer process.

6.6.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly
used to illustrate the power of synchronization primitives. We present here a
general structure of this scheme without committing ourselves to any particular
implementation; we provide a related programming project in the exercises at
the end of the chapter.

We assume that the pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and f u l l semaphores
count the number of empty and full buffers. The semaphore empty is initialized
to the value n; the semaphore f u l l is initialized to the value 0.

The code for the producer process is shown in Figure 6.10; the code for
the consumer process is shown in Figure 6.11. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

do {
wait(full);
wait(mutex);

// remove an item from buffer to nextc

signal(mutex);
signal(empty);

// consume the item in nextc

}while (TRUE);

Figure 6.11 The structure of the consumer process.
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6.6.2 The Readers-Writers Problem

A database is to be shared among several concurrent processes. Some of these
processes may want only to read the database, whereas others may want to
update (that is, to read and write) the database. We distinguish between these
two types of processes by referring to the former as readers and to the latter
as writers. Obviously, if two readers access the shared data simultaneously, no
adverse affects will result. However, if a writer and some other thread (either
a reader or a writer) access the database simultaneously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database. This synchronization problem is
referred to as the readers-writers problem. Since it was originally stated, it has
been used to test nearly every new synchronization primitive. The readers-
writers problem has several variations, all involving priorities. The simplest
one, referred to as the first readers-writers problem, requires that no reader
will be kept waiting unless a writer has already obtained permission to use
the shared object. In other words, no reader should wait for other readers to
finish simply because a writer is waiting. The second readers-writers problem
requires that, once a writer is ready, that writer performs its write as soon as
possible. In other words, if a writer is waiting to access the object, no new
readers may start reading.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. In this section, we present a
solution to the first readers-writers problem. Refer to the bibliographical notes
at the end of the chapter for references describing starvation-free solutions to
the second readers-writers problem.

In the solution to the first readers-writers problem, the reader processes
share the following data structures:

semaphore mutex, wrt;
int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized
to 0. The semaphore wrt is common to both reader and writer processes.
The mutex semaphore is used to ensure mutual exclusion when the variable
readcount is updated. The readcount variable keeps track of how many
processes are currently reading the object. The semaphore wrt functions as a
mutual-exclusion semaphore for the writers. It is also used by the first or last

do {
wait(wrt);

// writing is performed

signal (wrt) ,-
}while (TRUE);

Figure 6.12 The structure of a writer process.
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do { *
wait(mutex);
readcount + + ;
if (readcount == 1)

wait(wrt);
signal(mutex);

// reading is performed

wait (mutex) ,-
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex);

Jwhile (TRUE);

Figure 6.13 The structure of a reader process.

reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for a writer process is shown in Figure 6.12; the code for a reader
process is shown in Figure 6.13. Note that, if a writer is in the critical section
and n readers are waiting, then one reader is queued on wrt, and n — 1 readers
are queued on mutex. Also observe that, when a writer executes s ignal (wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

The readers-writers problem and its solutions has been generalized to
provide reader-writer locks on some systems. Acquiring a reader-writer lock
requires specifying the mode of the lock: either read or write access. When a
process only wishes to read shared data, it requests the reader-wrriter lock
in read mode; a process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader-writer lock in read mode; only one process may acquire the lock for
writing as exclusive access is required for writers.

Reader-writer locks are most useful in the following situations:

• In applications where it is easy to identify which processes only read shared
data and which threads only write shared data.

• In applications that have more readers than writers. This is because reader-
writer locks generally require more overhead to establish than semaphores
or mutual exclusion locks, and the overhead for setting up a reader-writer
lock is compensated by the increased concurrency of allowing multiple
readers.

6.6.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging
to one philosopher. In the center of the table is a bowl of rice, and the table is laid
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o • o ^

Figure 6.14 The situation of the dining philosophers.

with five single chopsticks (Figure 6.14). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at a time. Obviously, she cannot pick up a chopstick that
is already in the hand of a neighbor. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When
she is finished eating, she puts down both of her chopsticks and starts thinking
again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists dislike philosophers but because it is an example of a large class
of concurrency-control problems. It is a simple representation of the need
to allocate several resources among several processes in a deadlock-free and
starvation-free manner.

One simple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing a wait () operation on that
semaphore; she releases her chopsticks by executing the signal() operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of
philosopher / is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating
simultaneously, it nevertheless must be rejected because it could create a
deadlock. Suppose that all five philosophers become hungry simultaneously
and each grabs her left chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher tries to grab her right chopstick, she will be
delayed forever.

Several possible remedies to the deadlock problem are listed next. In
Section 6.7, we present a solution to the dining-philosophers problem that
ensures freedom from deadlocks.

• Allow at most four philosophers to be sitting simultaneously at the table.
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do {
wait (chopstick [i] ) ,-
wait(chopstick [ (i + 1) % 5] ) ;

// eat

signal(chopstick [i]);

signal(chopstick [(i + 1) % 5]);

/ / think

}while (TRUE);

Figure 6.15 The structure of philosopher i.

• Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this she must pick them up in a critical section).

• Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick.

Finally, any satisfactory solution to the dining-philosophers problem must
guard against the possibility that one of the philosophers will starve to death.
A deadlock-free solution does not necessarily eliminate the possibility of
starvation.

6.7 Monitors

Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing errors
that are difficult to detect, since these errors happen only if some particular
execution sequences take place and these sequences do not always occur.

We have seen an example of such errors in the use of counters in our
solution to the producer-consumer problem (Section 6.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be reasonable—off by only 1- Nevertheless, the solution is
obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when semaphores are
used. To illustrate how, we review the semaphore solution to the critical-
section problem. All processes share a semaphore variable mutex, which is.
initialized to 1. Each process must execute wait (mutex) before entering the
critical section and s ignal (mutex) afterward. If this sequence is not observed,
two processes may be in their critical sections simultaneously. Let us examine
the various difficulties that may result. Note that these difficulties will arise
even if a single process is not well behaved. This situation may be caused by an
honest programming error or an uncooperative programmer.
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• Suppose that a process interchanges the order in which the wait(j and
signal () operations on the semaphore mutex are executed, resulting in
the following execution:

signal(mutex);

critical section

wait(mutex);

In this situation, several processes may be executing in their critical sections
simultaneously, violating the rmitual-exclusion requirement. This error
may be discovered only if several processes are simultaneously active
in their critical sections. Note that this situation may not always be
reproducible.

• Suppose that a process replaces signal (mutex) with wait (mutex). That
is, it executes

wait(mutex);

critical section

wait(mutex);

In this case, a deadlock will occur.

• Suppose that a process omits the wait (mutex), or the signal (mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
occur.

These examples illustrate that various types of errors can be generated easily
when programmers use semaphores incorrectly to solve the critical-section
problem. Similar problems may arise in the other synchronization models that
we discussed in Section 6.6.

To deal with such errors, researchers have developed high-level language
constructs. In this section, we describe one fundamental high-level synchro-
nization construct—the monitor type.

6.7.1 Usage

A type, or abstract data type, encapsulates private data with public methods
to operate on that data. A monitor type presents a set of programmer-defined
operations that are provided mutual exclusion within the monitor. The monitor
type also contains the declaration of variables whose values define the state
of an instance of that type, along with the bodies of procedures or functions
that operate on those variables. The syntax of a monitor is shown in Figure
6.16. The representation of a monitor type cannot be used directly by the
various processes. Thus, a procedure defined within a monitor can access only
those variables declared locally within the monitor and its formal parameters.
Similarly, the local variables of a monitor can be accessed by only the local
procedures.
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monitor monitor name f

{
II shared variable declarations

procedure PI ( . . . ) {

}

p r o c e d u r e P 2 ( . . . ) {

p r o c e d u r e P n ( . . . ) {

i n i t i a l i z a t i o n c o d e ( . . . ) {

Figure 6.16 Syntax of a monitor.

The monitor construct ensures that only one process at a time can be
active within the monitor. Consequently, the programmer does not need
to code this synchronization constraint explicitly (Figure 6.17). However,
the monitor construct, as defined so far, is not sufficiently powerful for
modeling some synchronization schemes. For this purpose, we need to define
additional synchronization mechanisms. These mechanisms are provided by
the condition construct. A programmer who needs to write a tailor-made
synchronization scheme can define one or more variables of type condition:

condition x, y;

The only operations that can be invoked on a condition variable are wait ()
and s igna l ( ) . The operation

x .wai tO ;

means that the process invoking this operation is suspended until another
process invokes

x . s i g n a l ( ) ;

The x. s ignal () operation resumes exactly one suspended process. If no
process is suspended, then the s ignal () operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure
6.18). Contrast this operation with the s igna l () operation associated with
semaphores, which always affects the state of the semaphore.
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Figure 6.17 Schematic view of a monitor.

Now suppose that, when the x. s ignal () operation is invoked by a process
P, there is a suspended process Q associated with condition x. Clearly, if the
suspended process Q is allowed to resume its execution, the signaling process P
must wait. Otherwise, both P and Q would be active simultaneously within the
monitor. Note, however, that both processes can conceptually continue with
their execution. Two possibilities exist:

1. Signal and wait. P either waits until Q leaves the monitor or waits for
another condition.

2. Signal and continue. Q either waits until P leaves the monitor or waits
for another condition.

There are reasonable arguments in favor of adopting either option. On the
one hand, since P was already executing in the monitor, the signal-and-continue
method seems more reasonable. On the other hand, if we allow thread P to
continue, then by the time Q is resumed, the logical condition for which Q
was waiting may no longer hold. A compromise between these two choices
was adopted in the language Concurrent Pascal. When thread P executes the
signal operation, it immediately leaves the monitor. Hence, Q is immediately
resumed.

6.7.2 Dining-Philosophers Solution Using Monitors

We now illustrate monitor concepts by presenting a deadlock-free solution to
the dining-philosophers problem. This solution imposes the restriction that a
philosopher may pick up her chopsticks only if both of them are available. To
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queues associated with f
x, yconditions\

initialization
;• code

Figure 6.18 Monitor with condition variables.

code this solution, we need to distinguish among three states in which we may
find a philosopher. For this purpose, we introduce the following data structure:

enum {thinking, hungry, eat ing} s t a t e [5] ;

Philosopher i can set the variable s t a t e [i] = ea t ing only if her two
neighbors are not eating: ( s ta te [(i+4) °/» 5] != eating) and (s ta te [(i+1)
% 5] != eating).

We also need to declare

condit ion self [5] ;

where philosopher ;' can delay herself when she is hungry but is unable to
obtain the chopsticks she needs.

We are now in a position to describe our solution to the diiiing-philosophers
problem. The distribution of the chopsticks is controlled by the monitor dp,
whose definition is shown in Figure 6.19. Each philosopher, before starting to
eat, must invoke the operation pi ckup () . This may result in the suspension of
the philosopher process. After the successful completion of the operation, the
philosopher may eat. Following this, the philosopher invokes the putdownO
operation. Thus, philosopher i must invoke the operations pi ckup () and
putdownO in the following sequence:

dp .p ickup( i ) ;

eat

dp.putdown(i);
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monitor dp

enum {THINKING, HUNGRY, EATING}state [5]
condition self [5] ;

void pickup(int i) {
state [i] = HUNGRY;
test (i) ;
if (state [i] != EATING)

self [i] .wait() ;

void putdown(int i) {
state til = THINKING;
test((i + 4) % 5} ;
test( (i + 1) % 5) ;

void test(int i) {
if ((state [(i + 4) % 5] != EATING) &&
(state [i] == HUNGRY) &&
(state [(i + 1) % 5] != EATING)) {

state [i] = EATING;
self [i] .signal() ;

initialization-code () {
for (int i = 0; i < 5; i++)

state [i] = THINKING;

Figure 6.19 A monitor solution to the dining-philosopher problem.

It is easy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is
possible for a philosopher to starve to death. We do not present a solution to
this problem but rather leave it as an exercise for you.

6.7.3 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, a semaphore mut ex (initialized to 1) is provided.
A process must execute wait (mutex) before entering the monitor and must
execute signal (mutex) after leaving the monitor.

Since a signaling process must wait until the resumed process either leaves
or waits, an additional semaphore, next, is introduced, initialized to 0, on
which the signaling processes may suspend themselves. An integer variable
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next-count is also provided to count the number of processes suspended on
next. Thus, each external procedure F is replaced by

uait(mutex);

body of F

if (next_count > 0)

signal(next);
else

signal(mutex);

Mutual exclusion within a monitor is ensured.
We can now describe how condition variables are implemented. For each

condition x, we introduce a semaphore x_sem and an integer variable x_count,
both initialized to 0. The operation x. wait () can now be implemented as

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count—;

The operation x. signal () can be implemented as

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next) ;
next_count—;

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch-Hansen. In some cases, however, the generality of the
implementation is unnecessary, and a significant improvement in efficiency is
possible. We leave this problem to you in Exercise 6.17.

6.7.4 Resuming Processes Within a Monitor

We turn now to the subject of process-resumption order within a monitor. If
several processes are suspended on condition x, and an x. signal () operation
is executed by some process, then how do we determine which of the
suspended processes should be resumed next? One simple solution is to use an
FCFS ordering, so that the process waiting the longest is resumed first. In many
circumstances, however, such a simple scheduling scheme is not adequate. For
this purpose, the conditional-wait construct can be used; it has the form

x.wait(c);
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monitor ResourceAllocator

boolean busy;
condition x;

void acquire(int time)
if (busy)

x.wait(time);
busy = TRUE;

void release() {
busy = FALSE;
x.signal();

initialization_code
busy = FALSE;

Figure 6.20 A monitor to allocate a single resource.

where c is an integer expression that is evaluated when the wait () operation
is executed. The value of c, which is called a priority number, is then stored
with the name of the process that is suspended. When x. s ignal () is executed,
the process with the smallest associated priority number is resumed next.

To illustrate this new mechanism, we consider the ResourceAllocator
monitor shown in Figure 6.20, which controls the allocation of a single resource
among competing processes. Each process, when requesting an allocation
of this resource, specifies the maximum time it plans to use the resource.
The monitor allocates the resource to the process that has the shortest time-
allocation request. A process that needs to access the resource in question must
observe the following sequence:

R .acqu i r e ( t ) ;

access the resource;

R. r e l e a s e O ;

where R is an instance of type ResourceAllocator.
Unfortunately, the monitor concept cannot guarantee that the preceding

access sequence will be observed. In particular, the following problems can
occur:

• A process might access a resource without first gaining access permission
to the resource.

• A process might never release a resource once it has been granted access
to the resource.
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• A process might attempt to release a resource that it never requestecj.

• A process might request the same resource twice (without first releasing
the resource).

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource-
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect all the programs that make use of the ResourceAllocator monitor
and its managed resource. We must check two conditions to establish the
correctness of this system. First, user processes must always make their calls
on the monitor in a correct sequence. Second, we must be sure that an
uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can we
guarantee that no time-dependent errors will occur and that the scheduling
algorithm will not be defeated.

Although this inspection may be possible for a small, static system, it is not
reasonable for a large system or a dynamic system. This access-control problem
can be solved only by additional mechanisms that will be described in Chapter
14.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro-
nounced C-sharp), and Java. Other languages—such as Erlang—provide some
type of concurrency support using a similar mechanism.

6.8 Synchronization Examples

We next describe the synchronization mechanisms provided by the Solaris,
Windows XP, and Linux operating systems, as well as the Pthreads API. We
have chosen these three systems because they provide good examples of
different approaches for synchronizing the kernel, and we have included the
Pthreads API because it is widely used for thread creation and synchronization
by developers on UNIX and Linux systems. As you will see in this section, the
synchronization methods available in these differing systems vary in subtle
and significant ways.

6.8.1 Synchronization in Solaris

To control access to critical sections, Solaris provides adaptive mutexes, condi-
tion variables, semaphores, reader-writer locks, and turnstiles. Solaris imple-
ments semaphores and condition variables essentially as they are presented
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JAVA MONITORS

Java pros :de-.a monitor-like concurrency mechani.-m tor thread synchro-
nization, l-verv nhjivl in Ja\a has as.-ouated with it a single lurk.. When a
method î  declared to be synchron-l zed, calling thi- method requires ouning
the lovk tor the objivl. We declare a synchronized method by pKxing IIIL1

synclirrm-. zod ke\ \\ vvd In the method definition. I In.1 following defines the
safeMelhcdO as synchronized, for example:

uLIi.j yyiiciiorii r.e.ri void r-.-.f̂ :-'U' lio..i,.

/ * lTpli-mi:r;i-.-.r ion n: •iJtsHj'.nudu * /

Next, .l̂ i-uiiu1 m1 crciilc on object instnncc of SircploClass, >Lidi as:

Siir.pleClass sc = new SimpleClassO ;

Invoking lln- sc.safeKetliod() nu-tliod n-quirt1-; owning ilio lock on Liu-
object inslaiKL- sc. If tlu; lock is already ownod b\ anoLlK-r thn\id. the thread
calling the synchronizfiJ mclhod blocks and is pl.u.ed in the entry sol lor Ilio
object's lock. The unlrv si-l rqiresiTrN the sel of lhn.Md;> nailing lor tin- luck
to becomu available. If the lock is available vvhun a ayi:chrondr;ed method
is called, the calling Ihivad LH.\OMH'S the owner of the object'* lo^k and can
enter the- mcLhod. The lock i- released vvhon the Lha-ad exit* I he inetlmd; a
thread from theenln sel is then sek-cled .1- Hie new owner of the- lock.

Java also provides wai tO and no t i fy ( ) melhods. which are similar in
function to thrwai tO and signal. O sLalements lor a monitor. Release l."i
of the Java Virhial \fachine pro\ ides AIM support for semaphores, condition
variables, jnd mute\ locks (among other LoncurreiKv ineih.inisins') in the
java. irti 1. cor.currenL package.

in Sections 6.5 and 6.7. In this section, we describe adaptive mutexes, reader-
writer locks, and turnstiles.

An adaptive mutex protects access to every critical data item. On a
multiprocessor system, an adaptive mutex starts as a standard semaphore
implemented as a spinlock. If the data are locked and therefore already in use,
the adaptive mutex does one of two things. If the lock is held by a thread that
is currently running on another CPU, the thread spins while waiting for the
lock to become available, because the thread holding the lock is likely to finish
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the release of the lock. It is put
to sleep so that it will not spin while waiting, since the lock will not be freed
very soon. A lock held by a sleeping thread is likely to be in this category. On
a single-processor system, the thread holding the lock is never running if the
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lock is being tested by another thread, because only one thread can rijn at a
time. Therefore, on this type of system, threads always sleep rather than spin
if they encounter a lock.

Solaris uses the adaptive-mutex method to protect only data that are
accessed by short code segments. That is, a mutex is used if a lock will be
held for less than a few hundred instructions. If the code segment is longer
than that, spin waiting will be exceedingly inefficient. For these longer code
segments, condition variables and semaphores are used. If the desired lock is
already held, the thread issues a wait and sleeps. When a thread frees the lock, it
issues a signal to the next sleeping thread in the queue. The extra cost of putting
a thread to sleep and waking it, and of the associated context switches, is less
than the cost of wasting several hundred instructions waiting in a spinlock.

Reader-writer locks are used to protect data that are accessed frequently
but are usually accessed in a read-only manner. In these circumstances,
reader-writer locks are more efficient than semaphores, because multiple
threads can read data concurrently, whereas semaphores always serialize access
to the data. Reader-writer locks are relatively expensive to implement, so again
they are used on only long sections of code.

Solaris uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or a reader-writer lock. A turnstile is a queue structure
containing threads blocked on a lock. For example, if one thread currently
owns the lock for a synchronized object, all other threads trying to acquire the
lock will block and enter the turnstile for that lock. When the lock is released,
the kernel selects a thread from the turnstile as the next owner of the lock.
Each synchronized object with at least one thread blocked on the object's lock
requires a separate turnstile. However, rather than associating a turnstile with
each synchronized object, Solaris gives each kernel thread its own turnstile.
Because a thread can be blocked only on one object at a time, this is more
efficient than having a turnstile per object.

The turnstile for the first thread to block on a synchronized object becomes
the turnstile for the object itself. Subsequent threads blocking on the lock will
be added to this turnstile. When the initial thread ultimately releases the lock,
it gains a new turnstile from a list of free turnstiles maintained by the kernel. To
prevent a priority inversion, turnstiles are organized according to a priority-
inheritance protocol (Section 19.5). This means that if a lower-priority thread
currently holds a lock that a higher-priority thread is blocked on, the thread
with the lower priority will temporarily inherit the priority of the higher-
priority thread. Upon releasing the lock, the thread will revert to its original
priority.

Note that the locking mechanisms used by the kernel are implemented
for user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority-
inheritance protocol. Kernel-locking routines adhere to the kernel priority-
inheritance methods used by the scheduler, as described in Section 19.5;
user-level thread-locking mechanisms do not provide this functionality.

To optimize Solaris performance, developers have refined and fine-tuned
the locking methods. Because locks are used frequently and typically are used
for crucial kernel functions, tuning their implementation and use can produce
great performance gains.
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6.8.2 Synchronization in Windows XP ?

The Windows XP operating system is a multithreaded kernel that provides
support for real-time applications and multiple processors. When the Windows
XP kernel accesses a global resource on a uniprocessor system, it temporarily
masks interrupts for all interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows XP protects access to global
resources using spinlocks. Just as in Solaris, the kernel uses spinlocks only to
protect short code segments. Furthermore, for reasons of efficiency, the kernel
ensures that a thread will never be preempted while holding a spinlock.

For thread synchronization outside the kernel, Windows XP provides
dispatcher objects. Using a dispatcher object, threads synchronize according
to several different mechanisms, including mutexes, semaphores, events, and
timers. The system protects shared data by requiring a thread to gain ownership
of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.5. Events are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs. Finally, timers are used to notify one (or more than one) thread that a
specified amount of time has expired.

Dispatcher objects may be in either a signaled state or a nonsignaled state.
A signaled state indicates that an object is available and a thread will not block
when acquiring the object. A nonsignaled state indicates that an object is not
available and a thread will block when attempting to acquire the object. We
illustrate the state transitions of a mutex lock dispatcher object in Figure 6.21.

A relationship exists between the state of a dispatcher object and the state
of a thread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting, and the thread is placed in a waiting queue
for that object. When the state for the dispatcher object moves to signaled,
the kernel checks whether any threads are waiting on the object. If so, the
kernel moves one thread—or possibly more threads—from the waiting state
to the ready state, where they can resume executing. The number of threads the
kernel selects from the waiting queue depends on the type of dispatcher object
it is waiting on. The kernel will select only one thread from the waiting queue
for a mutex, since a mutex object may be "owned" by only a single thread. For
an event object, the kernel will select all threads that are waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that is in a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the

owner thread releases mutex lock

thread acquires mutex lock

Figure 6.21 Mutex dispatcher object.
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front of the queue will be moved from the waiting state to the ready state and
will acquire the mutex lock.

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Win32 API.

6.8.3 Synchronization in Linux

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted—even if a higher-priority
process became available to run. Now, however, the Linux kernel is fully
preemptive, so a task can be preempted when it is running in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader -
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock, and the kernel is designed so
that the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing
the spinlock, it enables kernel preemption. This is summarized below:

single processor

Disable kernel preemption.

Enable kernel preemption.

multiple processors

Acquire spin lock.

Release spin lock.

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls<—preempt_disable() and p r e -
empt .enable () —for disabling and enabling kernel preemption. In addition,
however, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this, each task in the system has a thread- info structure containing
a counter, preempt .count, to indicate the number of locks being held by the
task. When a lock is acquired, preempt_xount is incremented. It is decremented
when a lock is released. If the value of preempt_count for the task currently
running is greater than zero, it is not safe to preempt the kernel, as this task
currently holds a lock. If the count is zero, the kernel can safely be interrupted
(assuming there are no outstanding calls to preempt-disable ()).

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration. When a lock must be held for a longer period, semaphores
are appropriate for use.

6.8.4 Synchronization in Pthreads

The Pthreads API provides mutex locks, condition variables, and read-write
locks for thread synchronization. This API is available for programmers and
is not part of any particular kernel. Mutex locks represent the fundamental
synchronization technique used with Pthreads. A mutex lock is used to protect
critical sections of code—that is, a thread acquires the lock before entering
a critical section and releases it upon exiting the critical section. Condition
variables in Pthreads behave much as described in Section 6.7. Read-write
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locks behave similarly to the locking mechanism described in Section, 6.6.2.
Many systems that implement Pthreads also provide semaphores/ although
they are not part of the Pthreads standard and instead belong to the POSIX SEM
extension. Other extensions to the Pthreads API include spinlocks, although not
all extensions are considered portable from one implementation to another. We
provide a programming project at the end of this chapter that uses Pthreads
mutex locks and semaphores.

6.9 Atomic Transactions

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically. That is, if two critical sections are executed concurrently,
the result is equivalent to their sequential execution in some unknown order.
Although this property is useful in many application domains, in many cases
we would like to make sure that a critical section forms a single logical unit
of work that either is performed in its entirety or is not performed at all. An
example is funds transfer, in which one account is debited and another is
credited. Clearly, it is essential for data consistency either that both the credit
and debit occur or that neither occur.

Consistency of data, along with storage and retrieval of data, is a concern
often associated with database systems. Recently, there has been an upsurge of
interest in using database-systems techniques in operating systems. Operating
systems can be viewed as manipulators of data; as such, they can benefit from
the advanced techniques and models available from database research. For
instance, many of the ad hoc techniques used in operating systems to manage
files could be more flexible and powerful if more formal database methods
were used in their place. In Sections 6.9.2 to 6.9.4, we describe some of these
database techniques and explain how they can be used by operating systems.
First, however, we deal with the general issue of transaction atomicity. It is this
property that the database techniques are meant to address.

6.9.1 System Model

A collection of instructions (or operations) that performs a single logical
function is called a transaction. A major issue in processing transactions is the
preservation of atomicity despite the possibility of failures within the computer
system.

We can think of a transaction as a program unit that accesses and perhaps
updates various data items that reside on a disk within some files. From our
point of view, such a transaction is simply a sequence of read and wri te
operations terminated by either a commit operation or an abort operation.
A commit operation signifies that the transaction has terminated its execution
successfully, whereas an abort operation signifies that the transaction has
ended its normal execution due to some logical error or a system failure.
If a terminated transaction has completed its execution successfully, it is
committed; otherwise, it is aborted.

Since an aborted transaction may already have modified the data that it
has accessed, the state of these data may not be the same as it would have
been if the transaction had executed atomically. So that atomicity is ensured,
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an aborted transaction must have no effect on the state of the data that it has
already modified. Thus, the state of the data accessed by an aborted transaction
must be restored to what it was just before the transaction started executing. We
say that such a transaction has been rolled back. It is part of the responsibility
of the system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure.

• Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
memory. Access to volatile storage is extremely fast, both because of the
speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

• Nonvolatile storage. Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disks and
magnetic tapes. Disks are more reliable than main memory but less reliable
than magnetic tapes. Both disks and tapes, however, are subject to failure,
which may result in loss of information. Currently, nonvolatile storage is
slower than volatile storage by several orders of magnitude, because disk
and tape devices are electromechanical and require physical motion to
access data.

• Stable storage. Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannot be guaranteed). To implement an approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes and to update the information in a
controlled manner (Section 12.8).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile storage.

6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing all the modifications made by the transaction to the various data it
accesses. The most widely used method for achieving this form of recording
is write-ahead logging. Here, the system maintains, on stable storage, a data
structure called the log. Each log record describes a single operation of a
transaction write and has the following fields:

• Transaction name. The unique name of the transaction that performed the
write operation

• Data item name. The unique name of the data item written

• Old value. The value of the data item prior to the wri te operation

• New value. The value that the data item will have after the write



224 Chapter 6 Process Synchronization

Other special log records exist to record significant events during transac-
tion processing, such as the start of a transaction and the commit or abort of a
transaction.

Before a transaction T, starts its execution, the record < T, s ta r t s> is
written to the log. During its execution, any write operation by T, is preceded
by the writing of the appropriate new record to the log. When 7/ commits, the
record < T, commits> is written to the log.

Because the information in the log is used in reconstructing the state of the
data items accessed by the various transactions, we cannot allow the actual
update to a data item to take place before the corresponding log record is
written out to stable storage. We therefore require that, prior to execution of a
write(X) operation, the log records corresponding to X be written onto stable
storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed,
both for the data themselves and for the log recording the changes. In cases
where the data are extremely important and fast failure recovery is necessary,
the price is worth the functionality.

Using the log, the system can handle any failure that does not result in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

• undo(TJ), which restores the value of all data updated by transaction T, to
the old values

• redo(Tj), which sets the value of all data updated by transaction T; to the
new values

The set of data updated by 7} and their respective old and new values can be
found in the log.

The undo and redo operations must be idempotent (that is, multiple
executions must have the same result as does one execution) to guarantee
correct behavior, even if a failure occurs during the recovery process.

If a transaction 7} aborts, then we can restore the state of the data that
it has updated by simply executing undo(7}). If a system failure occurs, we
restore the state of all updated data by consulting the log to determine which
transactions need to be redone and which need to be undone. This classification
of transactions is accomplished as follows:

• Transaction 7, needs to be undone if the log contains the < T, s tar ts>
record but does not contain the < T-, commits> record.

• Transaction T, needs to be redone if the log contains both the < T, s tar ts>
and the < 7/ commits> records.

6.9.3 Checkpoints

When a system failure occurs, we must consult the log to determine those
transactions that need to be redone and those that need to be undone. In
principle, we need to search the entire log to make these determinations. There
are two major drawbacks to this approach:
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1. The searching process is time consuming. »

2. Most of the transactions that, according to our algorithm, need to be
redone have already actually updated the data that the log says they
need to modify. Although redoing the data modifications will cause no
harm (due to idempotency), it will nevertheless cause recovery to take
longer.

To reduce these types of overhead, we introduce the concept of check-
points. During execution, the system maintains the write-ahead log. In addi-
tion, the system periodically performs checkpoints that require the following
sequence of actions to take place:

1. Output all log records currently residing in volatile storage (usually main
memory) onto stable storage.

2. Output all modified data residing in volatile storage to the stable storage.

3. Output a log record <checkpoint> onto stable storage.

The presence of a <checkpoint> record in the log allows the system
to streamline its recovery procedure. Consider a transaction Tj that committed
prior to the checkpoint. The < T, commit s> record appears in the log before the
<checkpoints record. Any modifications made by Tj must have been written
to stable storage either prior to the checkpoint or as part of the checkpoint
itself. Thus, at recovery time, there is no need to perform a redo operation on
Tj.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction 7] that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record, and then finding the subsequent
< Ti s t a r t > record.

Once transaction Tj has been identified, the redo and undo operations need
be applied only to transaction Tj and all transactions Tj that started executing
after transaction Tj-. We'll call these transactions set T. The remainder of the log
can thus be ignored. The recovery operations that are required are as follows:

a For all transactions Tjt in T such that the record < Tj;- commits> appears in
the log, execute redo(T)t).

• For all transactions Tj- in T that have no < Ti- commits> record in the log,
execute undo(TO-

6.9.4 Concurrent Atomic Transactions

We have been considering an environment in which only one transaction can
be executing at a time. We now turn to the case where multiple transactions
are active simultaneously. Because each transaction is atomic, the concurrent
execution of transactions must be equivalent to the case where these trans-
actions are executed serially in some arbitrary order. This property, called
serializability, can be maintained by simply executing each transaction within
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a critical section. That is, all transactions share a common semaphore mutex,
which is initialized to 1. When a transaction starts executing, its first action is to
execute wa.±t(mutex). After the transaction either commits or aborts, it executes
signal(/?z«ta')-

Although this scheme ensures the atomicity of all concurrently executing
transactions, it is nevertheless too restrictive. As we shall see, in many
cases we can allow transactions to overlap their execution while maintaining
serializability. A number of different concurrency-control algorithms ensure
serializability. These algorithms are described below.

6.9.4.1 Serializability

Consider a system with two data items, A and B, that are both read and written
by two transactions, To and T\. Suppose that these transactions are executed
atomically in the order To followed by T\. This execution sequence, which is
called a schedule, is represented in Figure 6.22. In schedule 1 of Figure 6.22, the
sequence of instruction steps is in chronological order from top to bottom, with
instructions of To appearing in the left column and instructions of T\ appearing
in the right column.

A schedule in which each transaction is executed atomically is called
a serial schedule. A serial schedule consists of a sequence of instructions
from various transactions wherein the instructions belonging to a particular
transaction appear together. Thus, for a set of n transactions, there exist n\
different valid serial schedules. Each serial schedule is correct, because it is
equivalent to the atomic execution of the various participating transactions in
some arbitrary order.

If we allow the two transactions to overlap their execution, then the result-
ing schedule is no longer serial. A nonserial schedule does not necessarily
imply an incorrect execution (that is, an execution that is not equivalent to one
represented by a serial schedule). To see that this is the case, we need to define
the notion of conflicting operations.

Consider a schedule S in which there are two consecutive operations O,-
and Oj of transactions T, and Tj, respectively. We say that O, and Oj conflict if
they access the same data item and at least one of them is a wri te operation.
To illustrate the concept of conflicting operations, we consider the nonserial

Tn : T,

read(A)
write(A)
read(B)
write(B)

read (A)
write(A)
read(B)
write(B)

Figure 6.22 Schedule 1: A serial schedule in which To is followed by 7"i.
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read(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

Figure 6.23 Schedule 2: A concurrent serializable schedule.

schedule 2 of Figure 6.23. The write(A) operation of To conflicts with the
read(A) operation of Ti. However, the write(A) operation of T\ does not
conflict with the read(B) operation of To, because the two operations access
different data items.

Let Oj and Oj be consecutive operations of a schedule S. If O, and O; are
operations of different transactions and O-, and Oj do not conflict, then we can
swap the order of O, and 0/ to produce a new schedule S'. We expect S to be
equivalent to S', as all operations appear in the same order in both schedules,
except for O, and Oj, whose order does not matter.

We can illustrate the swapping idea by considering again schedule 2 of
Figure 6.23. As the write(A) operation of T\ does not conflict with the read(B)
operation of To, we can swap these operations to generate an equivalent
schedule. Regardless of the initial system state, both schedules produce
the same final system state. Continuing with this procedure of swapping
nonconflicting operations, we get:

• Swap the read(B) operation of TQ with the read(A) operation of T\.

• Swap the write(B) operation of To with the write(A) operation of T\.

• Swap the write(B) operation of To with the read(A) operation of T\.

The final result of these swaps is schedule 1 in Figure 6.22, which is a
serial schedule. Thus, we have shown that schedule 2 is equivalent to a serial
schedule. This result implies that, regardless of the initial system state, schedule
2 will produce the same final state as will some serial schedule.

If a schedule S can be transformed into a serial schedule S' by a series of
swaps of nonconflicting operations, we say that a schedule S is conflict serial-
izable. Thus, schedule 2 is conflict serializable, because it can be transformed
into the serial schedule 1.

6.9.4.2 Locking Protocol

One way to ensure serializability is to associate with each data item a lock and
to require that each transaction follow a locking protocol that governs how
locks are acquired and released. There are various modes in which a data item
can be locked. In this section, we restrict our attention to two modes:
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• Shared. If a transaction X, has obtained a shared-mode lock (denoted by
S) on data item Q, then 7] can read this item but cannot write Q.

• Exclusive. If a transaction T, has obtained an exclusive-mode lock (denoted
by X) on data item Q, then 7} can both read and write Q.

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access data item Q, transaction 7} must first lock Q in the appropriate
mode. If Q is not currently locked, then the lock is granted, and T; can now
access it. However, if the data item Q is currently locked by some other
transaction, then 7) may have to wait. More specifically, suppose that 7} requests
an exclusive lock on Q. In this case, 7] must wait until the lock on Q is released.
If T, requests a shared lock on Q, then 7) must wait if Q is locked in exclusive
mode. Otherwise, it can obtain the lock and access Q. Notice that this scheme
is quite similar to the readers-writers algorithm discussed in Section 6.6.2.

A transaction may unlock a data item that it locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.
Moreover, it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests in
two phases:

• Growing phase. A transaction may obtain locks but may not release any
lock.

• Shrinking phase. A transaction may release locks but may not obtain any
new locks.

Initially, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the shrinking
phase, and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
6.25). It does not, however, ensure freedom from deadlock. In addition, it
is possible that, for a given set of transactions, there are conflict-serializable
schedules that cannot be obtained by use of the two-phase locking protocol.
However, to improve performance over two-phase locking, we need either to
have additional information about the transactions or to impose some structure
or ordering on the set of data.

6.9.4.3 Timestamp-Based Protocols

In the locking protocols described above, the order followed by pairs of
conflicting transactions is determined at execution time by the first lock that
both request and that involves incompatible modes. Another method for
determining the serializability order is to select an order in advance. The most
common method for doing so is to use a timestamp ordering scheme.

With each transaction T, in the system, we associate a unique fixed
timestamp, denoted by TS(T/). This timestamp is assigned by the system
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before the transaction T, starts execution. If a transaction 7} has been assigned
timestamp TS(Tj-), and later a new transaction 7) enters the system, then TS(7})
< TS(Tj). There are two simple methods for implementing this scheme:

• Use the value of the system clock as the timestamp; that is, a transaction's
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systems or for processors that do not share a clock.

• Use a logical counter as the timestamp; that is, a transaction's timestamp
is equal to the value of the counter when the transaction enters the system.
The counter is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(T,) < TS(T,), then the system must ensure that the produced
schedule is equivalent to a serial schedule in which transaction T, appears
before transaction T,.

To implement this scheme, we associate with each data item Q two
timestamp values:

• W-timestamp(Q) denotes the largest timestamp of any transaction that
successfully executed write(Q).

• R-timestamp(Q) denotes the largest timestamp of any transaction that
successfully executed read(Q).

These timestamps are updated whenever a new read(Q) or write(Q) instruc-
tion is executed.

The timestamp-ordering protocol ensures that any conflicting read and
wri te operations are executed in timestamp order. This protocol operates as
follows:

• Suppose that transaction T,- issues read(Q):

o If TS(T,) < W-timestamp(), then T, needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and Tj- is
rolled back.

o If TS(TJ) > W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T,).

• Suppose that transaction 7} issues write(Q):

o If TS(T,) < R-timestamp(Q), then the value of Q that 7} is producing
was needed previously and T,- assumed that this value would never be
produced. Hence, the wri te operation is rejected, and 7} is rolled back.

=> If TS(T,) < W-timestamp(Q), then T, is attempting to write an obsolete
value of Q. Hence, this wri te operation is rejected, and T, is rolled back.

o Otherwise, the wri te operation is executed.

A transaction T, that is rolled back as a result of the issuing of either a read or
wri te operation is assigned a new timestamp and is restarted.
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T2

read(B)
read(B)
write(B)

read(A)
read(A)
write(A)

Figure 6.24 Schedule 3: A schedule possible under the timestamp protocol.

To illustrate this protocol, consider schedule 3 of Figure 6.24, which
includes transactions % and T3. We assume that a transaction is assigned a
timestamp immediately before its first instruction. Thus, in schedule 3, TS(T2)
< TS(T3), and the schedule is possible under the timestamp protocol.

This execution can also be produced by the two-phase locking protocol.
However, some schedules are possible under the two-phase locking protocol
but not under the timestamp protocol, and vice versa.

The timestamp protocol ensures conflict serializability. This capability
follows from the fact that conflicting operations are processed in timestamp
order. The protocol also ensures freedom from deadlock, because no transaction
ever waits.

6.10 Summary

Given a collection of cooperating sequential processes that share data, mutual
exclusion must be provided. One solution is to ensure that a critical section of
code is in use by only one process or thread at a time. Different algorithms exist
for solving the critical-section problem, with the assumption that only storage
interlock is available.

The main disadvantage of these user-coded solutions is that they all require
busy waiting. Semaphores overcome this difficulty. Semaphores can be used
to solve various synchronization problems and can be implemented efficiently,
especially if hardware support for atomic operations is available.

Various synchronization problems (such as the bounded-buffer problem,
the readers-writers problem, and the dining-philosophers problem) are impor-
tant mainly because they are examples of a large class of concurrency-control
problems. These problems are used to test nearly every newly proposed
synchronization scheme.

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these prob-
lems. Monitors provide the synchronization mechanism for sharing abstract
data types. A condition variable provides a method by which a monitor
procedure can block its execution until it is signaled to continue.

Operating systems also provide support for synchronization. For example,
Solaris, Windows XP, and Linux provide mechanisms such as semaphores,
mutexes, spinlocks, and condition variables to control access to shared data.
The Pthreads API provides support for mutexes and condition variables.
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A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it are executed to completion, or
none are performed. To ensure atomicity despite system failure, we can use a
write-ahead log. All updates are recorded on the log, which is kept in stable
storage. If a system crash occurs, the information in the log is used in restoring
the state of the updated data items, which is accomplished by use of the undo
and redo operations. To reduce the overhead in searching the log after a system
failure has occurred, we can use a checkpoint scheme.

To ensure serializability when the execution of several transactions over-
laps, we must use a concurrency-control scheme. Various concurrency-control
schemes ensure serializability by delaying an operation or aborting the trans-
action that issued the operation. The most common ones are locking protocols
and timestamp ordering schemes.

Exercises

6.1 The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, Pa and
Pi, share the following variables:

boolean flag[2]; /* i n i t i a l l y false */
int turn;

The structure of process P; (i == 0 or 1) is shown in Figure 6.25; the other
process is P,- (j == 1 or 0). Prove that the algorithm satisfies all three
requirements for the critical-section problem.

do {
flag[i] = TRUE;

while (flag[j] ) {
if (turn == j) {

flag [i] = false;
while (turn == j)

; // do nothing
flagfi] = TRUE;

// critical section

turn = j;
flag[i] = FALSE;

// remainder section
}while (TRUE);

Figure 6.25 The structure of process P, in Dekker's algorithm.
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do {
while (TRUE) {

f lag[ i ] = want_in;
j = turn;

while (j != i) {

if (flag[j] != idle) {
j = turn;

else

j = (j + 1) % n;

flag [i] = in_cs;
j = 0;

while ( (j < n) && (j == i | | flag[j] != in_cs) )

if ( (j >= n) && (turn == i || flag[turn] == idle)
break;

// critical section

j = (turn +1) % n;

while (flag[j] == idle)

j = (j + 1) % n;

turn = j;

flagfi] = idle;

// remainder section
}while (TRUE) ,-

Figure 6.26 The structure of process 8 in Eisenberg and McGuire's algorithm.

6.2 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n — 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enum pstate {idle, want_in, in_cs};
pstate flag[n];
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process P, is shown in
Figure 6.26. Prove that the algorithm satisfies all three requirements for
the critical-section problem.
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6.3 What is the meaning of the term busy 'waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

6.4 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

6.5 Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the syn-
chronization primitives are to be used in user-level programs.

6.6 Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.

6.7 Describe how the SwapO instruction can be used to provide mutual
exclusion that satisfies the bounded-waiting requirement.

6.8 Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection
is released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

6.9 Show that, if the waitO and signal () semaphore operations are not
executed atomically, then mutual exclusion may be violated.

6.10 Show how to implement the waitO and signal() semaphore opera-
tions in multiprocessor environments using the TestAndSet () instruc-
tion. The solution should exhibit minimal busy waiting.

6.11 The Sleeping-Barber Problem. A barbershop consists of a waiting room
with n chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

6.12 Demonstrate that monitors and semaphores are equivalent insofar as
they can be used to implement the same types of synchronization
problems.

6.13 Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

6.14 The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.13 mainly suitable for small portions.

a. Explain why this is true.

b. Design a new scheme that is suitable for larger portions.

6.15 Discuss the tradeoff between fairness and throughput of operations
in the readers-writers problem. Propose a method for solving the
readers-writers problem without causing starvation.
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6.16 How does the signal () operation associated with monitors differ from
the corresponding operation defined for semaphores?

6.17 Suppose the signal () statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified.

6.18 Consider a system consisting of processes Pi, Pi,..., P,,, each of which has
a unique priority number. Write a monitor that allocates three identical
line printers to these processes, using the priority numbers for deciding
the order of allocation.

6.19 A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: The sum of all unique
numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

6.20 When a signal is performed on a condition inside a monitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. How would the solution to the preceding exercise differ
with the two different ways in which signaling can be performed?

6.21 Suppose we replace the waitO and signal() operations of moni-
tors with a single construct await (B), where B is a general Boolean
expression that causes the process executing it to wait until B becomes
true.

a. Write a monitor using this scheme to implement the readers-
writers problem.

b. Explain why, in general, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that
it can be implemented efficiently? (Hint: Restrict the generality of
B; see Kessels [1977].)

6.22 Write a monitor that implements an alarm clock that enables a calling
program to delay itself for a specified number of time units (ticks).
You may assume the existence of a real hardware clock that invokes
a procedure tick in your monitor at regular intervals.

6.23 Why do Solaris, Linux, and Windows 2000 use spinlocks as a syn-
chronization mechanism only on multiprocessor systems and not on
single-processor systems?

6.24 In log-based systems that provide support for transactions, updates to
data items cannot be performed before the corresponding entries are
logged. Why is this restriction necessary?

6.25 Show that the two-phase locking protocol ensures conflict serializability.

6.26 What are the implications of assigning a new timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled-back transaction but that have timestamps smaller
than the new timestamp of the rolled-back transaction?
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6.27 Assume that a finite number of resources of a single resource type, must
be managed. Processes may ask for a number of these resources and
—once finished—will return them. As an example, many commercial
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If all licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
a license is returned.

The following program segment is used to manage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAXJIESDURCES 5
int available_resources = MAX_RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease_count0 function:

/* decrease available_resources by count resources */
/* return 0 if sufficient resources available, */
/ * otherwise return -1 */
int decrease.count(int count) {

if (available_resources < count)
return - 1 ;

else {
available_resources -= count;

return 0;

When a process wants to return a number of resources, it calls the
decrease_count() function:

/* increase available_resources by count */
int increase_count(int count) {

available^resources += count;

return 0;

The preceding program segment produces a race condition. Do the
following:

a. Identify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

c. Using a semaphore, fix the race condition.
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6.28 The decrease_count() function in the previous exercise currently
returns 0 if sufficient resources are available and -1 otherwise. This leads
to awkward programming for a process that wishes obtain a number of
resources:

while (decrease_count(count) == -1)

Rewrite the resource-manager code segment using a monitor and
condition variables so that the decrease_count() function suspends
the process until sufficient resources are available. This will allow a
process to invoke decrease_count () by simply calling

decrease_count(count);

The process will only return from this function call when sufficient
resources are available.

Project: Producer-Consumer Problem

In Section 6.6.1, we present a semaphore-based solution to the producer-
consumer problem using a bounded buffer. In this project, we will design a
programming solution to the bounded-buffer problem using the producer and
consumer processes shown in Figures 6.10 and 6.11. The solution presented in
Section 6.6.1 uses three semaphores: empty and full , which count the number
of empty and full slots in the buffer, and mutex, which is a binary (or mutual
exclusion) semaphore that protects the actual insertion or removal of items
in the buffer. For this project, standard counting semaphores will be used for
empty and full , and, rather than a binary semaphore, a mutex lock will be
used to represent mutex. The producer and consumer—running as separate
threads—-will move items to and from a buffer that is synchronized with these
empty, full , and mutex structures. You can solve this problem using either
Pthreads or the Win32 API.

The Buffer

Internally, the buffer will consist of a fixed-size array of type buffer^item
(which will be defined using a typef def). The array of buffer_item objects
will be manipulated as a circular queue. The definition of buf f er_item, along
with the size of the buffer, can be stored in a header file such as the following:

/* buffer.h * /
typedef int buffer.item;
#define BUFFER_SIZE 5

The buffer will be manipulated with two functions, insert_item() and
remove_item(), which are called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears as:
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#include <buffer.h> „

/* the buffer */

buffer.item buffer [BUFFERS IZE] ;

int insert_item(buffer_item item) {
/* insert item into buffer
return 0 if successful, otherwise
return -1 indicating an error condition */

int remove_item(buffer_item *item) {
/* remove an object from buffer
placing it in item
return 0 if successful, otherwise
return -1 indicating an error condition */

}

The insert-.item() and remove_item() functions will synchronize the pro-
ducer and consumer using the algorithms outlined in Figures 6.10 and 6.11.
The buffer will also require an initialization function that initializes the mutual-
exclusion object mutex along with the empty and full semaphores.

The mainC) function will initialize the buffer and create the separate
producer and consumer threads. Once it has created the producer and
consumer threads, the mainO function will sleep for a period of time and,
upon awakening, will terminate the application. The mainO function will be
passed three parameters on the command line:

1. How long to sleep before terminating

2. The number of producer threads

3. The number of consumer threads

A skeleton for this function appears as:

#include <buffer.h>

int main(int argc, char *argv[]) {
/* 1. Get command line arguments argv[l] , argv[2], argv[3] */
/* 2. In i t ia l ize buffer */
/* 3. Create producer thread(s) */
/* 4. Create consumer thread(s) */
/* 5. Sleep */
/* 6. Exit */

Producer and Consumer Threads

The producer thread will alternate between sleeping for a random period of
time and inserting a random integer into the buffer. Random numbers will
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be produced using the rand() function, which produces random irttegers
between 0 and RANDJvlAX. The consumer will also sleep for a random period
of time and, upon awakening, will attempt to remove an item from the buffer.
An outline of the producer and consumer threads appears as:

#include <stdl ib .h> /* required for randQ */
#include <buffer.h>

void ^producer(void *param) {
buffer_item rand;

while (TRUE) {
/* sleep for a random period of time */
sleep(...);
/* generate a random number */
rand = rand();
printf ("producer produced */of \n" ,rand);
if (insert.item(rand))

fprintf("report error condition");

void *consumer(void *param) {
buffer_item rand;

while (TRUE) {
/* sleep for a random period of time */
sleep(...);
if (remove_item(&rand))

fprintf("report error condition");
else

printf ("consumer consumed °/of \n" ,rand) ;

In the following sections, we first cover details specific to Pthreads and then
describe details of the Win32 API.

Pthreads Thread Creation

Creating threads using the Pthreads API is discussed in Chapter 4. Please refer
to that chapter for specific instructions regarding creation of the producer and
consumer using Pthreads.

Pthreads Mutex Locks

The following code sample illustrates how mutex locks available in the Pthread
API can be used to protect a critical section:
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#include <pthread.h> #
pthread_nnrtex_t mutex;

/* create the mutex lock * /
pthread_mutex_.init (&mutex,NULL);

/* acquire the mutex lock */
pthreadjmtex_lock(&mutex);

/*** c r i t i c a l section ***/

/* release the mutex lock */
pthreadjmutex_unlock(&mutex) ;

Pthreads uses the pthreadjnutex^t data type for mutex locks. A
mutex is created with the pthread_mutex__init (&mutex,NULL) function,
with the first parameter being a pointer to the mutex. By passing NULL
as a second parameter, we initialize the mutex to its default attributes.
The mutex is acquired and released with the pthread_mutex_lock() and
pthreadjmtexjunlockO functions. If the mutex lock is unavailable when
pthread_mutex_lock() is invoked, the calling thread is blocked until the
owner invokes pthreadjnutex_unlock(). All mutex functions return a value
of 0 with correct operation; if an error occurs, these functions return a nonzero
error code.

Pthreads Semaphores

Pthreads provides two types of semaphores—named and unnamed. For this
project, we use unnamed semaphores. The code below illustrates how a
semaphore is created:

#include <semaphore.h>
sem_t sem;

/ * Create the semaphore and i n i t i a l i z e it to 5 */
sem_init(&sem, 0, 5);

The sem.init () creates and initializes a semaphore. This function is passed
three parameters:

1. A pointer to the semaphore

2. A flag indicating the level of sharing

3. The semaphore's initial value

In this example, by passing the flag 0, we are indicating that this semaphore
can only be shared by threads belonging to the same process that created
the semaphore. A nonzero value would allow other processes to access the
semaphore as well. In this example, we initialize the semaphore to the value 5.



240 Chapter 6 Process Synchronization

In Section 6.5, we described the classical wait () and signal () semaphore
operations. Pthreads names the wait () and signal () operations sem_wait ()
and sem_post(), respectively. The code example below creates a binary
semaphore mutex with an initial value of 1 and illustrates its use in protecting
a critical section:

#include < semaphore. h>
sem_t sem mutex;

/* create the semaphore */
sem_init(&mutex, 0, 1);

/* acquire the semaphore */
sem_wait(&mutex);

/*** c r i t i c a l section ***/

/* release the semaphore */
sem_post(femutex);

Win32

Details concerning thread creation using the Win32 API are available in Chapter
4. Please refer to that chapter for specific instructions.

Win32 Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section 6.8.2. The
following illustrates how to create a mutex lock using the CreateMutexQ
function:

#include <windows.h>

HANDLE Mutex;
Mutex = CreateMutexCNULL, FALSE, NULL);

The first parameter refers to a security attribute for the mutex lock. By setting
this attribute to NULL, we are disallowing any children of the process creating
this mutex lock to inherit the handle of the mutex. The second parameter
indicates whether the creator of the mutex is the initial owner of the mutex
lock. Passing a value of FALSE indicates that the thread creating the mutex is
not the initial owner; we shall soon see how mutex locks are acquired. The third
parameter allows naming of the mutex. However, because we provide a value
of NULL, we do not name the mutex. If successful, CreateMutexO returns a
HANDLE to the mutex lock; otherwise, it returns NULL.

In Section 6.8.2, we identified dispatcher objects as being either signaled
or nansignaled. A signaled object is available for ownership; once a dispatcher
object (such as a mutex lock) is acquired, it moves to the nonsignaled state.
When the object is released, it returns to signaled.
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Mutex locks are acquired by invoking the WaitForSingleDbject 0 func-
tion, passing the function the HANDLE to the lock and a flag indicating how long
to wait. The following code demonstrates how the mutex lock created above
can be acquired:

WaitForSingleObj ect(Mutex, INFINITE);

The parameter value INFINITE indicates that we will wait an infinite amount
of time for the lock to become available. Other values could be used that would
allow the calling thread to time out if the lock did not become available within
a specified time. If the lock is in a signaled state, WaitForSingleObjectO
returns immediately, and the lock becomes nonsignaled. A lock is released
(moves to the nonsignaled state) by invoking ReleaseMutexO, such as:

ReleaseMutex(Mutex);

Win32 Semaphores

Semaphores in the Win32 API are also dispatcher objects and thus use the same
signaling mechanism as mutex locks. Semaphores are created as follows:

#include <windows.h>

HANDLE Sem;
Sem = CreateSemaphore(NULL, 1, 5, NULL);

The first and last parameters identify a security attribute and a name for
the semaphore, similar to what was described for mutex locks. The second
and third parameters indicate the initial value and maximum value of the
semaphore. In this instance, the initial value of the semaphore is 1, and its
maximum value is 5. If successful, CreateSemaphoreO returns a HANDLE to
the mutex lock; otherwise, it returns NULL.

Semaphores are acquired with the same WaitForSingleObjectO func-
tion as mutex locks. We acquire the semaphore Sem created in this example by
using the statement:

WaitForSingleObj ect(Semaphore, INFINITE);

If the value of the semaphore is > 0, the semaphore is in the signaled state
and thus is acquired by the calling thread. Otherwise, the calling thread blocks
indefinitely—as we are specifying INFINITE—until the semaphore becomes
signaled.

The equivalent of the s igna l ( ) operation on Win32 semaphores is the
ReleaseSemaphoreO function. This function is passed three parameters: (1)
the HANDLE of the semaphore, (2) the amount by which to increase the value
of the semaphore, and (3) a pointer to the previous value of the semaphore. We
can increase Sem by 1 using the following statement:

ReleaseSemaphore(Sem, 1, NULL);

Both ReleaseSemaphoreO and ReleaseMutexO return 0 if successful and
nonzero otherwise.
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In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; and if the resources
are not available at that time, the process enters a waiting state. Sometimes,
a waiting process is never again able to change state, because the resources
it has requested are held by other waiting processes. This situation is called
a deadlock. We discussed this issue briefly in Chapter 6 in connection with
semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: "When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.'"

In this chapter, we describe methods that an operating system can use to
prevent or deal with deadlocks. Most current operating systems do not provide
deadlock-prevention facilities, but such features will probably be added soon.
Deadlock problems can only become more common, given current trends,
including larger numbers of processes, multithreaded programs, many more
resources within a system, and an emphasis on long-lived file and database
servers rather than batch systems.

CHAPTER OBJECTIVES

• To develop a description of deadlocks, which prevent sets of concurrent
processes from completing their tasks

• To present a number of different methods for preventing or avoiding
deadlocks in a computer system.

7.1 System Model

A system consists of a finite number of resources to be distributed among
a number of competing processes. The resources are partitioned into several
types, each consisting of some number of identical instances. Memory space,
CPU cycles, files, and I/O devices (such as printers and DVD drives) are examples
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of resource types. If a system has two CPUs, then the resource type CPU has
two instances. Similarly, the resource type printer may have five instances.

If a process requests an instance of a resource type, the allocation of any
instance of the type will satisfy the request. If it will not, then the instances are
not identical, and the resource type classes have not been defined properly. For
example, a system may have two printers. These two printers may be defined to
be in the same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the basement,
then people on the ninth floor may not see both printers as equivalent, and
separate resource classes may need to be defined for each printer.

A process must request a resource before using it and must release the
resource after using it. A process may request as many resources as it requires
to carry out its designated task. Obviously, the number of resources requested
may not exceed the total number of resources available in the system. In other
words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

1. Request. If the request cannot be granted immediately (for example, if the
resource is being used by another process), then the requesting process
must wait until it can acquire the resource.

2. Use, The process can operate on the resource (for example, if the resource
is a printer, the process can print on the printer).

3. Release. The process releases the resource.

The request and release of resources are system calls, as explained in
Chapter 2. Examples are the request () and r e l ea se ( ) device, open() and
close () file, and a l loca te () and free () memory system calls. Request and
release of resources that are not managed by the operating system can be
accomplished through the wai tO and s ignal () operations on semaphores
or through acquisition and release of a mutex lock. For each use of a kernel-
managed resource by a process or thread, the operating system checks to
make sure that the process has requested and has been allocated the resource.
A system table records whether each resource is free or allocated; for each
resource that is allocated, the table also records the process to which it is
allocated. If a process requests a resource that is currently allocated to another
process, it can be added to a queue of processes waiting for this resource.

A set of processes is in a deadlock state when every process in the set is
waiting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources maybe either physical resources (for example, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,
files, semaphores, and monitors). However, other types of events may result in
deadlocks (for example, the 1PC facilities discussed in Chapter 3).

To illustrate a deadlock state, consider a system with three CD RVV drives.
Suppose each of three processes holds one of these CD RW drives. If each
process now requests another drive, the three processes will be in a deadlock
state. Each is waiting for the event "CD RVV is released," which can be caused



7.2 Deadlock Characterization 247

only by one of the other waiting processes. This example illustrates a deadlock
involving the same resource type.

Deadlocks may also involve different resource types. For example, consider
a system with one printer and one DVD d rive. Suppose that process P. is holding
the DVD and process P; is holding the printer. If P, requests the printer and P.
requests the DVD drive, a deadlock occurs.

A programmer who is developing multithreaded applications must pay
particular attention to this problem. Multithreaded programs are good candi-
dates for deadlock because multiple threads can. compete for shared resources.

7.2 Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied
up, preventing other jobs from starting. Before we discuss the various methods
for dealing with the deadlock problem, we look more closely at features that
characterize deadlocks.

7.2.1 Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultane-
ously in a system:

1. Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed
until the resource has been released.

DEADLOCK WITH MUTEX LOCKS

Let's see how deadlock can :occur in a multithreaded Pthread program
using mutex locks. The p t h r e a d j n u t e x ^ i a i t D function initializes
an unlocked mutex. Mutex locks are ^ acquired ;and released using
ptiar:ead.B'U,i:;ex.,lDclc() : ;a;nd p:thre :ad Jmitex.:unlock£X ' respec- :'
tively.: If a th;raad .attempts to acquire a . locked niutex,;-. Ihg . call ita X..
ptiireati.inviuBx^lacikiO blocks the thready until the; ovvner of: the rnufiex :-
ieok invokes pt:jire:ad.;iinjitexi::uril5c;k(). : :

: :: •• - _ ; • ; :
•locks are createci inihe following cad? example:. i ..-•;..: ::: :-.;-:.

:/•* C rea t e and . i n i t i a l i z e .the .mut:ex l o c k s */: %'XX^. :

p:trire.adjmitex..t i i.r.st.jjiiitez; . .;0 . . ; ;L.;!i . . ; i ; . . . . ! . . . i : . .
Dthread.iffli tex_:t secon,d_mii tex: 'M :l; ;i; ::: % :

pthread^mitex._init.C&f.i.rst.mutfix.,..ELiLL)%.%. •;;..:;;...;:;..;.;;...
;:.:

Next, two threads—thread ,one and thxead.twp—^are;:crea|ed, and both
tliese threads have access to both mutex locks, thrfac^-cine and t h r e a d ..two
run in the functions do..work_oneO and do.work^twc ( ) , respectively as
shown in Figure 7.1. :
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:/;<: eli;rSa;d;,.on8 ;;riirfs: ici; ;£Siife-;-gij*î t;-iGii; *;

3S ;:SOfaeJ

dhirsaeiiimia|:sjsiufl.|jCitR (i&if |

./'* -• tliread-.t;wo :ruris: in t t i
veld *Gto,wQrk_J;wo !ydid 4jparanj

* Do scbtrie work

k (if f r s t jmit:ex; •;
pthread^rnubeK^unlock (i&sec

Figure 7,1 Deadlock example. :\ i: : : : ..;: • :;

In this example/threacLpne aHerripts toaGquiire' Sie iixvupx iilocks an the
ordex (1) first;jnutex,:(2) seeandjmiltBx, i«h|!,e tteSadLtwo'aiiteniipfento
acgujre the rriutex locks: in^the; order TQ •secbn^m&&l p j |i:r||L|nites;, ;

tspossibfcJif tliread_Q:ne acquires

Mote that, even though dead lock Is pfossi:ble/i twill riot eeeuHiifirie a t o
is able to:acquire and release the rrvutex locks lor :fiEst33utex ahd: sec-
oiid.mutex before threkd_fwo atteiiipfe to acquire -tKe-ibcks: This example
tllustratey a probiem with handjing deadlocks; i:t:is:c!i!tieult::ts identify and
test for deadlocks thai mav occttr omly tinder certain ckfetims:teiinces.::: -:; •.:

2. Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.

3. No preemption. Resources cannot be preempted.; that is, a resource can
be released only voluntarily by the process holding it, after that process
has completed its task.
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4. Circular wait. A set {P$, Pi, ..., Pn\ of waiting processes must exist such
that P-0 is waiting for a resource held by P\, P\ is waiting for a resource
held by P?, •••, P.,--i is waiting for a resource held by Pn, and P,, is waiting
for a resource held by Pn.

We emphasize that all four conditions must hold for a deadlock to
occur. The circular-wait condition implies the hold-and-wait condition, so the
four conditions are not completely independent. We shall see in Section 7.4,
however, that it is useful to consider each condition separately

7.2.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called
a system resource-allocation graph. This graph consists of a set of vertices V
and a set of edges E. The set of vertices V is partitioned into two different types
of nodes: P - {Pi, Pi,,.., P,,\, the set consisting of all the active processes in the
system, and R = {R[, R?, •••/ Rm}, the set consisting of all resource types in the
system.

A directed edge from process P- to resource type Rj is denoted by P; -> R ,•;
it signifies that process P, has requested an instance of resource type R, and
is currently waiting for that resource. A directed edge from resource type Rj
to process P- is denoted by Rj -»• P,; it signifies that an instance of resource
type Rj has been allocated to process P;. A directed edge P, —> Rj is called a
request edge; a directed edge Rj -* P; is called an assignment edge.

Pictorially, we represent each process P, as a circle and each resource type
Ri as a rectangle. Since resource type Rj may have more than one instance, we
represent each such instance as a dot within the rectangle. Note that a request
edge points to only the rectangle R;, whereas an assignment edge must also
designate one of the dots in the rectangle.

When process P, requests an instance of resource type Rj, a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instantaneously transformed to an assignment edge. When
the process no longer needs access to the resource, it releases the resource; as a
result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.2 depicts the following
situation.

• The sets P, R, and £:

o P={PhP2/P?,}

o R= {/?!, RZ,R3, R;}

o £ = {p, _> Ru P2 _> R3/ R, _> p2f R2 _> P2/ R2 _> p.,, R3 -> P3 }

* Resource instances:

o One instance of resource type R|

o Two instances of resource type i??

"' One instance of resource type Rj
r> Three instances of resource type R±
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Figure 7.2 Resource-allocation graph.

• Process states:

o Process P\ is holding an instance of resource type R2 and is waiting for
an instance of resource type R|.

o Process Pn is holding an instance of R\ and an instance of R2 and is
waiting for an instance of R3.

o Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. If
the graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 7.2. Suppose that process P3 requests an instance of resource
type RT. Since no resource instance is currently available, a request edge P3 —>•
R? is added to the graph (Figure 7.3). At this point, two minimal cycles exist in
the svstem:

Pi
PT

P. R-,
Pi

Processes P\, P2, and P3 are deadlocked. Process P2 is waiting for the resource
R3, which is held by process P3. Process P3 is waiting for either process P\ or
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R

Figure 7.3 Resource-allocation graph with a deadlock.

process Pi to release resource Ri. In addition, process Pi is waiting for process
P? to release resource Ri.

Now consider the resource-allocation graph in Figure 7.4. In this example,
we also have a cycle

However, there is no deadlock. Observe that process P4 may release its instance
of resource type R?. That resource can then be allocated to P3, breaking the cycle,

in sunimary if a resource-allocation graph does not have a cycle, then the
system is not in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation is important when we deal
with the deadlock problem.

Figure 7.4 Resource-allocation graph with a cycle but no deadlock.
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7.3 Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three
ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlock state.

• We can allow the system to enter a deadlock state, detect it, and recover.

• We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

The third solution is the one used by most operating systems, including LJMTX
and Windows; it is then up to the application developer to write programs that
handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling
deadlocks. Then, in Sections 7.4 through 7.7, we present detailed algorithms.
However, before proceeding, we should mention that some researchers have
argued that none of the basic approaches alone is appropriate for the entire
spectrum of resource-allocation problems in operating systems. The basic
approaches can be combined, however, allowing us to select an optimal
approach for each class of resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlock-
prevention or a deadlock-avoidance scheme. Deadlock prevention provides
a set of methods for ensuring that at least one of the necessary conditions
(Section 7.2.1) cannot hold. These methods prevent deadlocks by constraining
how requests for resources can be made. We discuss these methods in Section
7.4.

Deadlock avoidance requires that the operating system be given in
advance additional information concerning which resources a process will
request and use during its lifetime. With this additional knowledge, it can
decide for each request whether or not the process should wait. To decide
whether the current request can be satisfied or must be delayed, the system
must consider the resources currently available, the resources currently allo-
cated to each process, and the future requests and releases of each process. We
discuss these schemes in Section 7.5.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 7.6 and Section 7.7.

If a system neither ensures that a deadlock will never occur nor provides
a mechanism for deadlock detection and recovery, then we may arrive at
a situation where the system is in a deadlocked state yet has no way of
recognizing what has happened. In this case, the undetected deadlock will
result in deterioration of the system's performance, because resources are being
held by processes that cannot run and because more and more processes, as
they make requests for resources, will enter a deadlocked state. Eventually, the
system will stop functioning and will need to be restarted manually.
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Although this method may not seem to be a viable approach to the deadlock
problem, it is nevertheless used in most operating systems, as mentioned
earlier. In many systems, deadlocks occur infrequently (say, once per year);
thus, this method is cheaper than the prevention, avoidance, or detection and
recovery methods, which must be used constantly Also, in some circumstances,
a system is in a frozen state but not in a deadlocked state. We see this situation,
for example, with a real-time process running at the highest priority (or any
process running on a nonpreemptive scheduler) and never returning control
to the operating system. The system must have manual recovery methods for
such conditions and may simply use those techniques for deadlock recovery.

7.4 Deadlock Prevention

As we noted in Section 7.2.1, for a deadlock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. We elaborate on this
approach by examining each of the four necessary conditions separately.

7.4.1 Mutual Exclusion

The mutual-exclusion condition must hold for nonsharable resources. For
example, a printer cannot be simultaneously shared by several processes.
Sharable resources, in contrast, do not require mutually exclusive access and
thus cannot be involved in a deadlock. Read-only files are a good example of
a sharable resource. If several processes attempt to open a read-only file at the
same time, they can be granted simultaneous access to the file. A process never
needs to wait for a sharable resource. In general, however, we cannot prevent
deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically nonsharable,

7.4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution. We can implement
this provision by requiring that system calls requesting resources for a process
precede all other system calls.

An alternative protocol allows a process to request resources only when it
has none. A process may request some resources and use them. Before it can
request any additional resources, however, it must release all the resources that
it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the
beginning of the process, then the process must initially request the DVD drive,
disk file, and printer. It will hold the printer for its entire execution, even though
it needs the printer only at the end.

The second method allows the process to request initially only the DVD
drive and disk file. It copies from the DVD drive to the disk and then releases
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both the DVD drive and the disk file. The process must then again request the
disk file and the printer. After copying the disk file to the printer, it releases
these two resources and terminates.

Both these protocols have two main disadvantages. First, resource utiliza-
tion may be low, since resources may be allocated but unused for a long period.
In the example given, for instance, we can release the DVD drive and disk file,
and then again request the disk file and printer, only if we can be sure that our
data will remain on the disk file. If we cannot be assured that they will, then
we must request all resources at the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the resources
that it needs is always allocated to some other process.

7.4.3 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition
does not hold, we can use the following protocol. If a process is holding some
resources and requests another resource that cannot be immediately allocated
to it (that is, the process must wait), then all resources currently being held
are preempted. In other words, these resources are implicitly released. The
preempted resources are added to the list of resources for which the process is
waiting. The process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check
whether they are allocated to some other process that is waiting for additional
resources. If so, we preempt the desired resources from the waiting process and
allocate them to the requesting process. If the resources are neither available
nor held by a waiting process, the requesting process must wait. While it is
waiting, some of its resources may be preempted, but only if another process
requests them. A process can be restarted only when it is allocated the new
resources it is requesting and recovers any resources that were preempted
while it was waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as printers and tape drives.

7.4.4 Circular Wait

The fourth and final condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holds is to impose a total ordering of
all resource types and to require that each process requests resources in an
increasing order of enumeration.

To illustrate, we let R = {R\, Ri, ..., Rm} be the set of resource types. We
assign to each resource type a unique integer number, which, allows us to
compare two resources and to determine whether one precedes another in our
ordering. Formally, we define a one-to-one function F: R —> N, where N is the
set of natural numbers. For example, if the set of resource types R includes
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tape drives, disk drives, and printers, then the function F might be defined as
follows:

F(tape drive) = 1
F(di.s.k drive) — 5
F (printer) = 12

We can now consider the following protocol to prevent deadlocks: Each
process can request resources only in an increasing order of enumeration. That
is, a process can initially request any number of instances of a resource type—
say, R,. After that, the process can request instances of resource type R; if and
only if F(R;) > F(R,). If several instances of the same resource type are needed,
a single request for all of them must be issued. For example, using the function
defined previously, a process that wants to use the tape drive and printer at
the same time must first request the tape drive and then request the printer.
Alternatively, we can require that, whenever a process requests an instance of
resource type R,, it has released any resources R. such that F{Rj) > F(Rj).

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists
(proof by contradiction). Let the set of processes involved in the circular wait be
{PQ, P\,..., P,,}, where P. is waiting for a resource R,-, which is held by process
P/+i. (Modulo arithmetic is used on the indexes, so that P,, is waiting for
a resource R,, held by Po-) Then, since process P.+i is holding resource R;
while requesting resource R;+i, we must have F(R,) < F(R,-+i), for all i. But
this condition means that F(R()) < F(R^) < ••• < F(R,,) < F(R0). By transitivity,
F(Ro) < F(RQ), which is impossible. Therefore, there can be no circular wait.

We can accomplish this scheme in an application program by developing
an ordering among all synchronization objects in the system. All requests for
synchronization objects must be made in increasing order. For example, if the
lock ordering in the Pthread program shown in Figure 7.1 was

F(first_mutex)= 1
F(second_mutex) = 5

then threacLtwo could not request the locks out of order.
Keep in mind that developing an ordering, or hierarchy, in itself does not

prevent deadlock. It is up to application developers to write programs that
follow the ordering. Also note that the function F should be defined according
to the normal order of usage of the resources in a system. For example, because
the tape drive is usually needed before the printer, it would be reasonable to
define F(tape drive) <F(printer).

Although ensuring that resources are acquired in the proper order is the
responsibility of application developers, certain software can be used to verify
that locks are acquired in the proper order and to give appropriate warnings
when locks are acquired out of order and deadlock is possible. One lock-order
verifier, which works on BSD versions of UNIX such as FreeBSD, is known as
witness. Witness uses mutual-exclusion locks to protect critical sections, as
described in Chapter 6; it works by dynamically maintaining the relationship
of lock orders in a system. Let's use the program shown in Figure 7.1 as an
example. Assume that threacLone is the tirst to acquire the locks and does so in
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the order (1) firstjnutex, (2) secondjnutex. Witness records the relationship
that f i r s t jnutex must be acquired before secondjnutex. If threacLtwo later
acquires the locks out of order, witness generates a warning message on the
system console.

7,5 Deadlock Avoidance

Deadlock-prevention algorithms, as discussed in Section 7.4, prevent deadlocks
by restraining how requests can be made. The restraints ensure that at least
one of the necessary conditions for deadlock cannot occur and, hence, that
deadlocks cannot hold. Possible side effects of preventing deadlocks by this
method, however, are low device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with one tape drive and one printer, the system might need to know that
process P will request first the tape drive and then the printer before releasing
both resources, whereas process Q will request first the printer and then the
tape drive. With this knowledge of the complete sequence of requests and
releases for each process, the system can decide for each request whether or
not the process should wait in order to avoid a possible future deadlock. Each
request requires that in making this decision the system consider the resources
currently available, the resources currently allocated to each process, and the
future requests and releases of each process.

The various algorithms that use this approach differ in the amount and type
of information required. The simplest and most useful model requires that each
process declare the maximum number of resources of each type that it may need.
Given this a priori, information, it is possible to construct an algorithm that
ensures that the system will never enter a deadlocked state. Such an algorithm
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular-
wait condition can never exist. The resource-allocation state is defined by the
number of available and allocated resources and the maximum demands of
the processes. In the following sections, we explore two deadlock-avoidance
algorithms.

7.5.1 Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe sequence. A sequence of processes
<P\, P?, ..., Pn> is a safe sequence for the current allocation state if, for each
Pi, the resource requests that P, can still make can be satisfied by the currently
available resources plus the resources held by all Pi, with / < /. In this situation,
if the resources that Pi needs are not immediately available, then P, can wait
until all Pj have finished. When they have finished, P; can obtain all of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When P, terminates, P,+l can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be unsafe.
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:;;j; deadlock.

safe:

Figure 7.5 Safe, unsafe, and deadlock state spaces.

A safe state is not a deadlocked state. Conversely, a deadlocked state is
an unsafe state. Not all unsafe states are deadlocks, however (Figure 7.5).
An unsafe state may lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlocked) states. In an unsafe state,
the operating system cannot prevent processes from requesting resources such
that a deadlock occurs: The behavior of the processes controls unsafe states.

To illustrate, we consider a system with 12 magnetic tape drives and three
processes: PLl/ P\, and P2. Process PQ requires 10 tape drives, process Pi may
need as many as 4 tape drives, and process P? may need up to 9 tape drives.
Suppose that, at time to, process PQ is holding 5 tape drives, process P\ is
holding 2 tape drives, and process P2 is holding 2 tape drives. (Thus, there are
3 free tape drives.)

Pi
P^

Maximum Needs

Po 10

Current Needs

4
9

At time fo, the system is in a safe state. The sequence < Pi, Po, ?2> satisfies
the safety condition. Process Pj can immediately be allocated all its tape drives
and then return them (the system will then have 5 available tape drives); then
process PL) can get all its tape drives and return them (the system will then have
10 available tape drives); and finally process P^ can get all its tape drives and
return them (the system will then have all 12 tape drives available).

A system can go from a safe state to an unsafe state. Suppose that, at time
t\, process Pz requests and is allocated one more tape drive. The system is no
longer in a safe state. At this point, only process P, can be allocated all its tape
drives. When it returns them, the system will have only 4 available tape drives.
Since process Pp, is allocated 5 tape drives but has a maximum of 10, it may
request 5 more tape drives. Since they are unavailable, process Po must wait.
Similarly, process P? may request an additional 6 tape drives and have to wait,
resulting in a deadlock. Our mistake was in granting the request from process
Pi for one more tape drive. If we had made P2 wait until either of the other
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processes had finished and released its resources, then we could have avoided
the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock. The idea is simply to ensure that the
system will always remain in a safe state. Initially, the system is in a safe state.
Whenever a process requests a resource that is currently available, the system
must decide whether the resource can be allocated immediately or whether
the process must wait. The request is granted only if the allocation leaves the
system in a safe state.

In this scheme, if a process requests a resource that is currently available,
it may still have to wait. Thus, resource utilization may be lower than it would
otherwise be.

7.5.2 Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with only one instance of each resource
type, a variant of the resource-allocation graph defined in Section 7.2.2 can be
used for deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim edge.
A claim edge P; —> Rj indicates that process P, may request resource R, at
some time in the future. This edge resembles a request edge in direction but is
represented in the graph by a dashed line. When process P.- requests resource
Rj, the claim edge P, —> Rj is converted to a request edge. Similarly, when a
resource Rj is released by Pj, the assignment edge Rj -» P,- is reconverted to
a claim edge P; —> Rj. We note that the resources must be claimed a priori in
the system. That is, before process p starts executing, all its claim edges must
already appear in the resource-allocation graph. We can relax this condition by
allowing a claim edge P, —> R- to be added to the graph only if all the edges
associated with process P,- are claim edges.

Suppose that process P, requests resource Rj. The request can be granted
only if converting the request edge P, —» Rj to an assignment edge Rj —> P;
does not result in the formation of a cycle in the resource-allocation graph. Note
that we check for safety by using a cycle-detection algorithm. An algorithm for
detecting a cycle in this graph requires an order of n2 operations, where n is
the number of processes in the system.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in

^

Figure 7.6 Resource-allocation graph for deadlock avoidance.
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Figure 7.7 An unsafe state in a resource-allocation graph.

an unsafe state. Therefore, process P: will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 7.6. Suppose that Pi requests R?. Although Ri is currently free, we
cannot allocate it to p>, since this action will create a cycle in the graph (Figure
7.7). A cycle indicates that the system is in an unsafe state. If Pi requests R2,
and Po requests R\, then a deadlock will occur.

7.5.3 Banker's Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-
allocation system with multiple instances of each resource type. The deadlock-
avoidance algorithm that we describe next is applicable to such a system but
is less efficient than the resource-allocation graph scheme. This algorithm is
commonly known as the banker's algorithm. The name was chosen because the
algorithm could be used in a banking system to ensure that the bank never
allocated its available cash in such a way that it could no longer satisfy the
needs of all its customers.

When, a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This number may
not exceed the total number of resources in the system. When a user requests
a set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases
enough resources.

Several data structures must be maintained to implement the banker's
algorithm. These data structures encode the state of the resource-allocation
system. Let n be the number of processes in the system and m be the number
of resource types. We need the following data structures:

• Available. A vector of length m indicates the number of available resources
of each type. If Availab!c[f] equals k, there are k instances of resource type
Ri available.

• Max. An n x m matrix defines the maximum demand of each process.
If M(7.t[;][/] equals k, then process P\ may request at most k instances of
resource type /?/.
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• Allocation. An n x in matrix defines the number of resources of each type
currently allocated to each process. If Allocation[i][j] equals k, then process
Pi is currently allocated k instances of resource type /?,.

• Need. An n x m matrix indicates the remaining resource need of each
process. If Need[i][j] equals k, then process P,- may need k more instances of
resource type R- to complete its task. Note that Need[/][/] equals Max[i][j]
- Allocntion[i][j].

These data structures vary over time in both size and value.
To simplify the presentation of the banker's algorithm, we next establish

some notation. Let X and Y be vectors of length n. We say that X < Y if and
only if X[i] < Y[/] for all / = 1, 2, ..., n. For example, if x"= (1,7,3,2) and Y =
(0,3,2,1), then Y < X. Y < X if Y < X and Y + X.

We can treat each row in the matrices Allocation and Need as vectors
and refer to them as Allocation; and Need,. The vector Allocation, specifies
the resources currently allocated to process P,; the vector Needi specifies the
additional resources that process P, may still request to complete its task.

7.5.3.1 Safety Algorithm

We can now present the algorithm for finding out whether or not a system is
in a safe state. This algorithm can be described, as follows:

1. Let Work and Finish be vectors of length in and n, respectively. Initialize
Work = A v a i l a b l e a n d Fiiush\i] - false f o r / - 0 , 1 , ..., n - l .

2. Find an / such that both

a. Finish[i] ==false

b. Need, < Work

If no such / exists, go to step 4.

3. Work = Work + Allocation,
Finish[i] = true
Go to step 2.

4. If Finisli[i] -- true for all. /, then the system is in a safe state.

This algorithm may require an order of m x it operations to determine whether
a state is safe.

7.5.3.2 Resource-Request Algorithm

We now describe the algorithm which determines if requests can be safely
granted.

Let Request• be the request vector for process P,. If Request,; [ /'] —— k, then
process P, wants k instances of resource type R;. When a request for resources
is made by process P,, the following actions are taken:

1. If Request, < Need:, go to step 2. Otherwise, raise an error condition, since
the process has exceeded its maximum claim.
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2. If Request{ < Available, go to step 3. Otherwise, Ps must wait, since the
resources are not available.

3. Have the system pretend to have allocated the requested resources to
process P- by modifying the state as follows:

Available = Available - Request;;
Allocation-, = Allocation; + Request;;
Need; = Necdj - Request-;

If the resulting resource-allocation state is safe, the transaction is com-
pleted, and process P; is allocated its resources. However, if the new state
is unsafe, then P, must wait for Request;, and the old resource-allocation
state is restored.

7.5.3.3 An Illustrative Example

Finally, to illustrate the use of the banker's algorithm, consider a system with
five processes PQ through P4 and three resource types A, B, and C. Resource
type A has 10 instances, resource type B has 5 instances, and resource type C
has 7 instances. Suppose that, at time To, the following snapshot of the system
has been taken:

Po
p,

Pi

Pj

Pi

Allocation

ABC
01 0
2 0 0
3 0 2
21 1
0 0 2

Max

ABC
7 5 3
3 2 2
9 02
2 2 2
4 3 3

Available

ABC
3 3 2

The content of the matrix Need is defined to be Max - Allocation and is as
follows:

Pi
Pi

p3

P4

Need
ABC
7 4 3
1 2 2
6 0 0
01 1
43 1

We claim that the system is currently in a safe state. Indeed, the sequence
<P\, P3, PA, PI, PO> satisfies the safety criteria. Suppose now that process
P] requests one additional instance of resource type A and two instances of
resource type C, so Request] = (1,0,2). To decide whether this request can be
immediately granted, we first check that Request < Available—that is, that
(1/0/2) < (3,3,2), which is true. We then pretend that this request has been
fulfilled, and we arrive at the following new state:
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Allocation Need Av

ABC ABC ABC
P(! 0 1 0 7 4 3 2 3 0

Pi 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

Pi 0 0 2 4 3 1

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <P\, Pj, Pi, Po, Pi>
satisfies the safety requirement. Hence, we can immediately grant the request
of process P\.

You should be able to see, however, that when the system is in this state, a
request for (3,3,0) by P4 cannot be granted, since the resources are not available.
Furthermore, a request for (0,2,0) by Po cannot be granted, even though the
resources are available, since the resulting state is unsafe.

We leave it as a programming exercise to implement the banker's algo-
rithm.

7.6 Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may occur. In this environment,
the system must provide:

• An algorithm that examines the state of the system to determine whether
a deadlock has occurred

• An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well as to
systems with several instances of each resource type. At this point, however, we
note that a detection-and-recovery scheme requires overhead that includes not
only the run-time costs of maintaining the necessary information and executing
the detection algorithm but also the potential losses inherent in recovering from
a deadlock.

7.6.1 Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock-
detection algorithm that uses a variant of the resource-allocation graph, called
a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

More precisely, an edge from P, to P, in a wait-for graph implies that
process P,- is waiting for process P, to release a resource that P- needs. An edge
P, -» P, exists in a wait-for graph if and only if the corresponding resource-
allocation graph contains two edges P, —>• R(j and R,, -» P, for some resource
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Figure 7.8 (a) Resource-allocation graph, (b) Corresponding wait-for graph.

R,:. For example, in Figure 7.8, we present a resource-allocation graph and. the
corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait-for
graph and periodically invoke an algorithm that searches for a cycle in the graph.
An algorithm to detect a cycle in a graph requires an order of n1 operations,
where n is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock-
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker's algorithm (Section 7.5.3):

» Available. A vector of length m indicates the number of available resources
of each type.

• Allocation. An n x m matrix defines the number of resources of each type
currently allocated to each process.

• Request. An n x in matrix indicates the current request of each process.
If Request[i][j] equals k, then process P, is requesting k more instances of
resource type Rj.

The s relation between two vectors is defined as in Section 7.5.3. To simplify
notation, we again treat the rows in the matrices Allocation and Request as
vectors; we refer to them as Allocation: and Request,. The detection algorithm
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described here simply investigates every possible allocation sequence f<9r the
processes that remain to be completed. Compare this algorithm with the
banker's algorithm of Section 7.5.3.

1. Let Work and Finish be vectors of length in and n, respectively. Initialize
Work - Available. For i = 0 ,1 , . . . , n-1, if Allocation, ^ 0, then Finish[i] - false;
otherwise, Finisli[i] = true.

2. Find an index i such that both

a. Finish[i] -=false

b. Requesti < Work

If no such / exists, go to step 4.

3. Work - Work + Allocation!
Finish[i] = true
Go to step 2.

4. If Finish[i] == false, for some /', 0 < / < n, then the system is in a deadlocked
state. Moreover, if Finish[i] == false, then process P; is deadlocked.

This algorithm requires an order of in x n2 operations to detect whether the
system is in a deadlocked state.

You may wonder why we reclaim the resources of process P,- (in step 3)
as soon as we determine that Request/ < Work (in step 2b). We know that P,
is currently not involved in a deadlock (since Request,• < Work). Thus, we take
an optimistic attitude and assume that P- will require no more resources to
complete its task; it will thus soon return all currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next time the deadlock-detection algorithm is
invoked.

To illustrate this algorithm, we consider a system with five processes PQ
through P4 and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. Suppose that, at time To, we have the following resource-allocation
state:

Allocation Request Available

ABC ABC ABC
Po 0 1 0 0 0 0 0 0 0
Pj 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

We claim that the sys tem is no t in a dead locked state. Indeed, if we execute
our a lgor i thm, we will find that the sequence <Pn, Pi, Pi, P\, PA> results in
Finish[i] -- true for all i.
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Suppose now that process Pj makes one additional request for an instance
of type C. The Request matrix is modified as follows:

Pi!
a
i [

Pi

P3
Pi

Rei

A
0
9

0
1
0

litest

BC
0 0
0 2
0 1
0 0
0 2

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process Po, the number of available resources is not sufficient
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting
of processes Pi, Pi, P3, and P4.

7.6.3 Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot
be granted immediately. This request may be the final request that completes
a chain of waiting processes. In the extreme, we can invoke the deadlock-
detection algorithm every time a request for allocation cannot be granted
immediately. In this case, we can identify not only the deadlocked set of
processes but also the specific process that "caused" the deadlock. (In reality,
each of the deadlocked processes is a link in the cycle in the resource graph, so
all of them, jointly, caused the deadlock.) If there are many different resource
types, one request may create many cycles in the resource graph, each cycle
completed by the most recent request and "caused" by the one identifiable
process.

Of course, if the deadlock-detection algorithm is invoked for every resource
request, this will incur a considerable overhead in computation time. A less
expensive alternative is simply to invoke the algorithm at less frequent intervals
— for example, once per hour or whenever CPU utilization drops below 40
percent. (A deadlock eventually cripples system throughput and causes CPU
utilization to drop.) If the detection algorithm is invoked at arbitrary points in
time, there may be many cycles in the resource graph. In this case, we would
generally not be able to tell which of the many deadlocked processes "caused"
the deadlock.
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7.7 Recovery From Deadlock «

When a detection algorithm determines that a deadlock exists, several alter-
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Another
possibility is to let the system recover from the deadlock automatically. There
are two options for breaking a deadlock. One is simply to abort one or more
processes to break the circular wait. The other is to preempt some resources
from one or more of the deadlocked processes.

7.7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

» Abort all deadlocked processes. This method clearly will break the
deadlock cycle, but at great expense; the deadlocked processes may have
computed for a long time, and the results of these partial computations
must be discarded and probably will have to be recomputed later.

• Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since, after each process is aborted,
a deadlock-detection algorithm must be invoked to determine whether
any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state. Similarly,
if the process was in the midst of printing data on a printer, the system must
reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated. This determination is
a policy decision, similar to CPU-scheduling decisions. The question is basically
an economic one; we should abort those processes whose termination will incur
the minimum cost. Unfortunately, the term minimum cost is not a precise one.
Many factors may affect which process is chosen, including:

1. What the priority of the process is

2. How long the process has computed and how much longer the process
will compute before completing its designated task

3. How many and what type of resources the process has used (for example,
whether the resources are simple to preempt)

4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated

6. Whether the process is interactive or batch
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7.7.2 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes until
the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

1. Selecting a victim. Which resources and which processes are to be
preempted? As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters
as the number of resources a deadlocked process is holding and the
amount of time the process has thus far consumed during its execution.

2. Rollback. If we preempt a resource from a process, what should be done
with that process? Clearly, it cannot continue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: Abort the process and then restart
it. Although it is more effective to roll back the process only as far as
necessary to break the deadlock, this method requires the system to keep
more information about the state of all running processes.

3. Starvation. How do we ensure that starvation will not occur? That is,
how can we guarantee that resources will not always be preempted from
the same process?

In a system where victim selection is based primarily on cost factors,
it may happen that the same process is always picked as a victim. As
a result, this process never completes its designated task, a starvation
situation that must be dealt with in any practical system. Clearly, we
must ensure that a process can be picked as a victim only a (small) finite
number of times. The most common solution is to include the number of
rollbacks in the cost factor.

7.8 Summary

A deadlock state occurs when two or more processes are waiting indefinitely
for an event that can be caused only by one of the waiting processes. There are
three principal methods for dealing with deadlocks:

• Use some protocol to prevent or avoid deadlocks, ensuring that the system,
will never enter a deadlock state.

• Allow the system to enter a deadlock state, detect it, and then recover.

• Ignore the problem altogether and pretend that deadlocks never occur in
the system.

The third solution is the one used by most operating systems, including UNIX
and Windows.
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A deadlock can occur only if four necessary conditions hold simultaneously
in the system: mutual exclusion, hold and wait, no preemption, and circular
wait. To prevent deadlocks, we can ensure that at least one of the necessary
conditions never holds.

A method for avoiding deadlocks that is less stringent than the prevention
algorithms requires that the operating system have a priori information on
how each process will utilize system resources. The banker's algorithm, for
example, requires a priori information about the maximum number of each
resource class that may be requested by each process. Using this information,
we can define a deadlock-avoidance algorithm.

It a system does not employ a protocol to ensure that deadlocks will never
occur, then a detection-and-recovery scheme must be employed. A deadlock-
detection algorithm must be invoked to determine whether a deadlock
has occurred. If a deadlock is detected, the system must recover either by
terminating some of the deadlocked processes or by preempting resources
from some of the deadlocked processes.

Where preemption is used to deal with deadlocks, three issues must be
addressed: selecting a victim, rollback, and starvation. In a system that selects
victims for rollback primarily on the basis of cost factors, starvation may occur,
and the selected process can never complete its designated task.

Finally, researchers have argued that none of the basic approaches alone
is appropriate for the entire spectrum of resource-allocation problems in
operating systems. The basic approaches can be combined, however, allowing
us to select an optimal approach for each class of resources in a system.

Exercises

7.1 Consider the traffic deadlock depicted in Figure 7.9.

a. Show that the four necessary conditions for deadlock indeed hold
in this example.

b. State a simple rule for avoiding deadlocks in this system.

7.2 Consider the deadlock situation that could occur in the dining-
philosophers problem when the philosophers obtain the chopsticks
one at a time. Discuss how the four necessary conditions for deadlock
indeed hold in this setting. Discuss how deadlocks could be avoided by
eliminating any one of the four conditions.

7.3 A possible solution for preventing deadlocks is to have a single, higher-
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization
objects A • • • E, deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, etc.) We can prevent
the deadlock by adding a sixth object F. Whenever a thread wants to
acquire the synchronization lock for any object A • •• E, it must first
acquire the lock for object F. This solution is known as containment:
The locks for objects A • • • E are contained within the lock for object F.
Compare this scheme with the circular-wait scheme of Section 7.4.4.
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nrm

Figure 7.9 Traffic deadlock for Exercise 7.1.

7.4 Compare the circular-wait scheme with the various deadlock-avoidance
schemes (like the banker's algorithm) with respect to the following
issues:

a. Runtime overheads

b. System throughput

7.5 In a real computer system, neither the resources available nor the
demands of processes for resources are consistent over long periods
(months). Resources break or are replaced, new processes come and
go, new resources are bought and added to the system. If deadlock is
controlled by the banker's algorithm, which of the following changes
can be made safely (without introducing the possibility of deadlock),
and under what circumstances?

a. Increase Available (new resources added).

b. Decrease.Available (resource permanently removed from system).

c. Increase Max for one process (the process needs more resources
than allowed; it may want more).

d. Decrease Max for one process (the process decides it does not need
that many resources).

e. Increase the number of processes.

f. Decrease the number of processes.

7.6 Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock free.
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7.7 Consider a system consisting of m resources of the same type being
shared by n processes. Resources can be requested and released by
processes only one at a time. Show that the system is deadlock free
if the following two conditions hold:

a. The maximum need of each process is between 1 and m resources.

b. The sum of all maximum needs is less than m + n.

7.8 Consider the dining-philosophers problem where the chopsticks are
placed at the center of the table and any two of them could be used
by a philosopher. Assume that requests for chopsticks are made one
at a time. Describe a simple rule for determining whether a particular-
request could be satisfied without causing deadlock given the current
allocation of chopsticks to philosophers.

7.9 Consider the same setting as the previous problem. Assume now that
each philosopher requires three chopsticks to eat and that resource
requests are still issued separately. Describe some simple rules for deter-
mining whether a particular request could be satisfied without causing
deadlock given the current allocation of chopsticks to philosophers.

7.10 We can obtain the banker's algorithm for a single resource type from
the general banker's algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that the multiple-
resource-type banker's scheme cannot be implemented by individual
application of the single-resource-type scheme to each resource type.

7.11 Consider the following snapshot of a system:

p0

Pl

Pl

Pl
p

Allocation

A BCD
0 0 1 2
1 0 0 0
1 3 5 4
0 6 3 2
0 0 14

Max

AB
0 0
1 7
2 3
0 6
0 6

CD
12
5 0
5 6
5 2
5 6

Available

A BCD
1 5 2 0

Answer the following questions using the banker's algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process Pi arrives for (0,4,2,0), can the request
be granted immediately?

7.12 What is the optimistic assumption made in the deadlock-detection
algorithm? How could this assumption be violated?

7.13 Write a multithreaded program that implements the banker's algorithm
discussed in Section 7.5.3. Create n threads that request and release
resources from the bank. The banker will grant the request only if it
leaves the system in a safe state. You may write this program using
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either Pthreads or Win32 threads. It is important that access to shared
data is sate from concurrent access. Such data can be safely accessed
using mutex locks, which are available in both the Pthreads and Win32
API. Coverage of mutex locks in both of these libraries is described in
"'producer-consumer problem" project in Chapter 6.

7.14 A single-lane bridge connects the two Vermont villages of North
Tunbridge and South Tunbridge. Farmers in the two villages use this
bridge to deliver their produce to the neighboring town. The bridge can
become deadlocked if both a northbound and a southbound farmer get
on the bridge at the same time (Vermont farmers are stubborn and are
unable to back up.) Using semaphores, design an algorithm that prevents
deadlock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).

7.15 Modify your solution to Exercise 7.14 so that it is starvation-free.
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Part Three

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, must be in main memory
(at least partially) during execution.

To improve both the utilization of the CPU and the speed of its
response to users, the computer must keep several processes in
memory- Many memory-management schemes exist, reflecting various
approaches, and the effectiveness of each algorithm depends on the
situation. Selection of a memory-management scheme for a system
depends on many factors, especially on the hardware design of the
system. Each algorithm requires its own hardware support.
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In Chapter 5, we showed how the CPU can be shared by a set of processes. As
a result of CPU scheduling, we can improve both the utilization of the CPU and
the speed of the computer's response to its users. To realize this increase in
performance, however, we must keep several processes in memory; that is, we
must share memory.

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to
paging and segmentation strategies. Each approach has its own advantages
and disadvantages. Selection of a memory-management method for a specific
system depends on many factors, especially 011 the hardware design of the
system. As we shall see, many algorithms require hardware support, although,
recent designs have closely integrated the hardware and operating system.

CHAPTER OBJECTIVES

• To provide a detailed description of various ways of organizing memory
hardware.

• To discuss various memory-management techniques, including paging
and segmentation.

» To provide a detailed description of the Intel Pentium, which supports both
pure segmentation and segmentation with paging.

8.1 Background

As we saw in Chapter 1, memory is central to the operation of a modern
computer system,. Memory consists of a large array of words or bytes, each
with its own address. The CPU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc-
tion from memory The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the

275



276 Chapter 8 Main Memory

operands, results may be stored back in memory. The memory unit sees ortly a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore ha~w a program
generates a memory address. We are interested only in the sequence of memory
addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent to
the various techniques for managing memory. This includes an overview of
basic hardware issues, the binding of symbolic memory addresses to actual
physical addresses, and distinguishing between logical and physical addresses.
We conclude with a discussion of dynamically loading and linking code and
shared libraries.

8.1.1 Basic Hardware

Main memory and the registers built into the processor itself are the only
storage that the CPU can access directly. There are machine instructions that take
memory addresses as arguments, but none that take disk addresses. Therefore,
any instructions in execution, and any data being used by the instructions,
must be in one of these direct-access storage devices. If the data are not in
memory, they must be moved there before the CPL can operate on them.

Registers that are built into the CPU are generally accessible within one
cycle of the CPU clock. Most CPUs can decode instructions and perform simple
operations on register contents at the rate of one or more operations per
clock tick. The same cannot be said of main memory, which is accessed via
a transaction on the memory bus. Memory access may take many cycles of the
CPU clock to complete, in which case the processor normally needs to stall,
since it does not have the data required to complete the instruction that it
is executing. This situation is intolerable because of the frequency of memory
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Figure 8.1 A base and a limit register define a logical address space.
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accesses. The remedy is to add fast memory between the CPU and main memory.
A memory buffer used to accommodate a speed differential, called a cache., is
described in Section 1.8.3.

Not only are we concerned with the relative speed of accessing physical
memory, but we also must ensure correct operation, has to protect the operating
system from access by user processes and, in addition, to protect user processes
from one another. This protection must be provided by the hardware. It can be
implemented in several ways, as we shall see throughout the chapter. In this
section, we outline one possible implementation.

We first need to make sure that each process has a separate memory space.
To do this, we need the ability to determine the range of legal addresses that
the process may access and to ensure that the process can access only these
legal addresses. We can provide this protection by using two registers, usually
a base and a limit, as illustrated in Figure 8.1. The base register holds the
smallest legal physical memory address; the limit register specifies the size of
the range. For example, if the base register holds 300040 and limit register is
120900, then the program can legally access all addresses from 300040 through
420940 (inclusive).

Protection of memory space is accomplished by having the CPU hardware
compare even/ address generated in user mode with the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users' memory results in a trap to the operating system, which treats the
attempt as a fatal error (Figure 8.2). This scheme prevents a user program from
(accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode, and since only the operating system executes
in kernel mode, only the operating system can load the base and limit registers.
This scheme allows the operating system to change the value of the registers
but prevents user programs from changing the registers' contents.

The operating system, executing in kernel mode, is given unrestricted
access to both operating system and users' memory. This provision allows

trap to operating system
monitor—addressing error memory

Figure 8.2 Hardware address protection with base and limit registers.
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the operating system to load users' programs into users' memory, to durrtp out
those programs in case of errors, to access and modify parameters of system
calls, and so on.

8.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed,
the program must be brought into memory and placed within a process.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The processes on the disk that
are waiting to be brought into memory for execution form the input queue.

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer starts at 00000,
the first address of the user process need not be 00000. This approach affects
the addresses that the user program can use. In most cases, a user program
will go through several steps—some of which maybe optional-—before being
executed (Figure 8.3). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
count). A compiler will typically bind these symbolic addresses to relocatable
addresses (such as "14 bytes from the beginning of this module''). The linkage
editor or loader will in turn bind the relocatable addresses to absolute addresses
(such as 74014). Each binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

• Compile time. If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The MS-DOS .COM-fo.nn.at programs are bound at
compile time.

• Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

• Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will
be discussed in Section 8.1.3. Most general-purpose operating systems use
this method.

A major portion of this chapter is devoted to showing how these vari-
ous bindings can be implemented effectively in a computer system and to
discussing appropriate hardware support.
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Figure 8.3 Multistep processing of a user program.

8.1.3 Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical address,
whereas an address seen by the memory unit—that is, the one loaded into
the memory-address register of the memory—is commonly referred to as a
physical address.

The compile-time and load-time address-binding methods generate iden-
tical logical and physical addresses. However, the execution-time address-
binding scheme results in differing logical and physical addresses. In this case,
we usually refer to the logical address as a virtual address. We use logical address
and virtual address interchangeably in this text. The set of all logical addresses
generated by a program is a logical address space; the set of all physical
addresses corresponding to these logical addresses is a physical address space.
Thus, in the execution-time address-binding scheme, the logical and physical
address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can choose
from many different methods to accomplish such mapping, as we discuss in
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Figure 8.4 Dynamic relocation using a relocation register.

Sections 8.3 through 8.7. For the time being, we illustrate this mapping with
a simple MMU scheme, which is a generalization of the base-register scheme
described in Section 8.1.1. The base register is now called a relocation register.
The value in the relocation register is added to every address generated by a
user process at the time it is sent to memory (see Figure 8.4). For example,
if the base is at 14000, then an attempt by the user to address location 0 is
dynamically relocated to location 14000; an access to location 346 is mapped
to location 14346. The MS-DOS operating system running on. the Intel 80x86
family of processors uses four relocation registers when loading and running
processes.

The user program never sees the real physical addresses. The program can
create a pointer to location 346, store it in memory, manipulate it, and compare it
with other addresses—all as the number 346. Only when it is used as a memory
address (in an indirect load or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The final location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for a base
value R). The user generates only logical addresses and thinks that the process
runs in locations 0 to max. The user program supplies logical addresses; these
logical addresses must be mapped to physical addresses before they are used.

The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management.

8.1.4 Dynamic Loading

in our discussion so far, the entire program and all data of a process must be in
physical memory for the process to execute. The size of a process is thus limited
to the size of physical memory. To obtain better memory-space utilization, we
can use dynamic loading. With dynamic loading, a routine is not loaded until
it is called. All routines are kept on disk in a relocatable load format. The main
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program is loaded into memory and is executed. When a routine needs to
call another routine, the calling routine first checks to see whether the other
routine has been loaded. If not, the relocatable linking loader is called to load
the desired routine into memory and to update the program's address tables
to reflect this change. Then control is passed to the newly loaded routine.

The advantage of dynamic loading is that an unused routine is never
loaded. This method is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In this
case, although the total program size may be large, the portion that is used
(and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

8.1.5 Dynamic Linking and Shared Libraries

Figure 8.3 also shows dynamically linked libraries. Some operating systems
support only static linking, in which system language libraries are treated
like any other object module and are combined by the loader into the
binary program image. The concept of dynamic linking is similar to that of
dynamic loading. Here, though, linking, rather than loading, is postponed
until execution time. This feature is usually used with system libraries, such as
language subroutine libraries. Without this facility, each program on a system
must include a copy of its language library (or at least the routines referenced
by the program) in the executable image. This requirement wastes both disk
space and main memory.

With dynamic linking, a stub is included in the image for each library-
routine reference. The stub is a small piece of code that indicates how to locate
the appropriate memory-resident library routine or how to load the library if
the routine is not already present. When the stub is executed, it checks to see
whether the needed routine is already in memory. If not, the program loads
the routine into memory. Either way, the stub replaces itself with the address
of the routine and executes the routine. Thus, the next time that particular
code segment is reached, the library routine is executed directly, incurring no
cost for dynamic linking. Under this scheme, all processes that use a language
library execute only one copy of the library code.

This feature can be extended to library updates (such as bug fixes). A
library may be replaced by a new version, and all programs that reference the
library wrill automatically use the new version. Without dynamic linking, all
such programs would need to be relinked to gain access to the new library.
So that programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the library.
More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to
use. Minor changes retain the same version number, whereas major changes
increment the version number. Thus, only programs that are compiled with
the new library version are affected by the incompatible changes incorporated
in it. Other programs linked before the new library was installed will continue
using the older library. This system is also known as shared libraries.
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Unlike dynamic loading, dynamic linking generally requires help from the
operating system. If the processes in memory are protected from one another,
then the operating system is the only entity that can check to see whether the
needed routine is in another process's memory space or that can allow multiple
processes to access the same memory addresses. We elaborate on this concept
when we discuss paging in Section 8.4.4.

8.2 Swapping

A process must be in memory to be executed. A process, however, can be
swapped temporarily out of memory to a backing store and then brought
back into memory for continued execution. For example, assume a multipro-
gramming environment with a round-robin CPU-scheduling algorithm. When
a quantum expires, the memory manager will start to swap out the process that
just finished and to swap another process into the memory space that has been
freed (Figure 8.5). In the meantime, the CPU scheduler will allocate a time slice
to some other process in memory. When each process finishes its quantum, it
will be swapped with another process. Ideally, the memory manager can swap
processes fast enough that some processes will be in memory, ready to execute,
when the CPU scheduler wants to reschedule the CPU. In addition, the quantum
must be large enough to allow reasonable amounts of computing to be done
between swaps.

A variant of this swapping policy is used for priority-based scheduling
algorithms. If a higher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process and then load and execute
the higher-priority process. When the higher-priority process finishes, the
lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roll out, roll in.

backing store

main memory

Figure 8.5 Swapping of two processes using a disk as a backing store.
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Normally, a process that is swapped out will be swapped back into the
same memory space it occupied previously. This restriction is dictated by the
method of address binding. If binding is done at assembly or load time, then
the process cannot be easily moved to a different location. If execution-time
binding is being used, however, then a process can be swapped into a different
memory space, because the physical addresses are computed during execution
time.

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of all memory images
for all users, and it must provide direct access to these memory images. The
system maintains a ready queue consisting of all processes whose memory
images are on the backing store or in memory and are ready to run. Wlienever
the CPU scheduler decides to execute a process, it calls the dispatcher. The
dispatcher checks to see whether the next process in the queue is in memory.
If it is not, and if there is no free memory region, the dispatcher swaps out a
process currently in memory and swaps in the desired process. It then reloads
registers and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get an
idea of the context-switch time, let us assume that the user process is 10 MB in
size and the backing store is a standard hard disk with a transfer rate of 40 MB
per second. The actual transfer of the 10-MB process to or from main memory
takes

10000 KB/40000 KB per second = 1/4 second
= 250 milliseconds.

Assuming that no head seeks are necessary, and assuming an average latency
of 8 milliseconds, the swap time is 258 milliseconds. Since we must both swap
out and swap in, the total swap time is about 516 milliseconds.

For efficient CPU utilization, we want the execution time for each process
to be long relative to the swap time. Thus, in a round-robin CPU-scheduling
algorithm, for example, the tune quantum should be substantially larger than
0.516 seconds.

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If
we have a computer system with 512 MB of main memory and a resident
operating system taking 25 MB, the maximum size of the user process is 487
MB. However, many user processes may be much smaller than this—say, 10
MB. A 10-MB process could be swapped out in 258 milliseconds, compared
with the 6.4 seconds required for swapping 256 MB. Clearly, it would be useful
to know exactly how much memory a user process is using, not simply how
much it might be using. Then we would need to swap only what is actually
used, reducing swap time. For this method to be effective, the user must keep
the system informed of any changes in memory requirements. Thus, a process
with dynamic memory requirements will need to issue system calls (request
memory and re lease memory) to inform the operating system of its changing
memory needs.

Swapping is constrained by other factors as well. If we want to swap
a process, we must be sure that it is completely idle. Of particular concern
is any pending I/O. A process may be waiting for an I/O operation when



284 Chapter 8 Main Memory

we want to swap that process to free up memory. However, if the I/O is
asynchronously accessing the user memory for I/O buffers, then the process
cannot be swapped. Assume that the I/O operation is queued because the
device is busy. If we were to swap out process Pi and swap in process Po, the
I/O operation might then attempt to use memory that now belongs to process
Pi. There are two main solutions to this problem: Never swap a process with
pending I/O, or execute I/O operations only into operating-system buffers.
Transfers between operating-system buffers and process memory then occur
only when the process is swapped in.

The assumption, mentioned earlier, that swapping requires few, if any,
head seeks needs further explanation. We postpone discussing this issue until
Chapter 12, where secondary-storage structure is covered. Generally, swap
space is allocated as a chunk of disk, separate from the file system, so that its
use is as fast as possible.

Currently, standard swapping is used in few systems. It requires too
much swapping time and provides too little execution time to be a reasonable
memory-management solution. Modified versions of swapping, however, are
found on many systems.

A modification of swapping is used in many versions of UNIX. Swapping is
normally disabled but will start if many processes are running and are using a
threshold amount of memory. Swapping is again halted when the load on the
system is reduced. Memory management in UNIX is described fully in Sections
21.7 and A.6.

Early PCs—which lacked the sophistication to implement more advanced
memory-management methods—ran multiple large processes by using a
modified version of swapping. A prime example is the Microsoft Windows
3.1 operating system, which supports concurrent execution of processes in
memory. If a new process is loaded and there is insufficient main memory,
an old process is swapped to disk. This operating system, however, does not
provide full swapping, because the user, rather than the scheduler, decides
when it is time to preempt one process for another. Any swapped-out process
remains swapped out (and not executing) until the user selects that process to
run. Subsequent versions of Microsoft operating systems take advantage of the
advanced MMU features now found in PCs. We explore such features in Section
8.4 and in Chapter 9, where we cover virtual memory.

8.3 Contiguous Memory Allocation

The main memory must accommodate both the operating system and the
various user processes. We therefore need to allocate the parts of the main
memory in the most efficient way possible. This section explains one common
method, contiguous memory allocation.

The memory is usually divided into two partitions: one for the resident
operating system and one for the user processes. We can place the operating
system in either low memory or high memory. The major factor affecting this
decision is the location of the interrupt vector. Since the interrupt vector is
often in low memory, programmers usually place the operating system in
low memory as well. Thus, in this text, we discuss only the situation where



8.3 Contiguous Memory Allocation 285

the operating system resides in low memory. The development of the? other
situation is similar.

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are in the input queue waiting to be brought into memory.
In this contiguous memory allocation, each process is contained in a single
contiguous section of memory.

8.3.1 Memory Mapping and Protection

Before discussing memory allocation further, we must discuss the issue of
memory mapping and protection. We can provide these features by using
a relocation register, as discussed in Section 8.1.3, with a limit register, as
discussed in Section 8.1.1. The relocation register contains the value of the
smallest physical address; the limit register contains the range of logical
addresses (for example, relocation = 100040 and limit = 74600). With relocation
and limit registers, each logical address must be less than the limit register; the
VIMU maps the logical address dynamically by adding the value in the relocation
register. This mapped address is sent to memory (Figure 8.6).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by the CPU is checked against
these registers, we can protect both the operating system and the other users'
programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to allow the
operating-system size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system contains code and buffer
space for device drivers. If a device driver (or other operating-system service)
is not commonly used, we do not want to keep the code and data in memory, as
we might be able to use that space for other purposes. Such code is sometimes
called transient operating-system code; it comes and goes as needed. Thus,
using this code changes the size of the operating system during program
execution.
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Figure 8.6 Hardware support for relocation and limit registers.
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8.3.2 Memory AHocation

Now we are ready to turn to memory allocation. One of the simplest
methods for allocating memory is to divide memory into several fixed-sized
partitions. Each partition may contain exactly one process. Thus, the degree
of multiprogramming is bound by the number of partitions. In this multiple-
partition method, when a partition is free, a process is selected from the input
queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process. This method was originally
used by the IBM OS/360 operating system (called MFT); it is no longer in use.
The method described next is a generalization of the fixed-partition scheme
(called MVT); it is used primarily in batch environments. Many of the ideas
presented here are also applicable to a time-sharing environment in which
pure segmentation is used for memory management (Section 8.6).

In the fixed-partition scheme, the operating system keeps a table indicating
which parts of memory are available and which are occupied. Initially, all
memory is available for user processes and is considered one large block of
available memory, a hole. When a process arrives and needs memory, we search
for a hole large enough for this process. If we find one, we allocate only as much
memory as is needed, keeping the rest available to satisfy future requests.

As processes enter the system, they are put into an input queue. The
operating system takes into account the memory requirements of each process
and the amount of available memory space in determining which processes are
allocated memory. When a process is allocated space, it is loaded into memory,
and it can then compete for the CPU. When a process terminates, it releases its
memory, which the operating system may then fill with another process from
the input queue.

At any given time, we have a list of available block sizes and the input
queue. The operating system can order the input queue according to a
scheduling algorithm. Memory is allocated to processes until, finally, the
memory requirements of the next process cannot be satisfied—that is, no
available block of memory (or hole) is large enough to hold that process. The
operating system can then wait until a large enough block is available, or it can
skip down the input queue to see whether the smaller memory requirements
of some other process can be met.

In general, at any given time we have a set of holes of various sizes scattered
throughout memory. When a process arrives and needs memory, the system
searches the set for a hole that is large enough for this process. If the hole is too
large, it is split into two parts. One part is allocated to the arriving process; the
other is returned to the set of holes. When a process terminates, it releases its
block of memory, which is then placed back in the set of holes. If the new hole
is adjacent to other holes, these adjacent holes are merged to form one larger
hole. At this point, the system may need to check whether there are processes
waiting for memory and whether this newly freed and recombined memory
could satisfy the demands of any of these waiting processes.

This procedure is a particular instance of the general dynamic storage-
allocation problem, which concerns how to satisfy a request of size n from a
list of free holes. There are many solutions to this problem. The first-fit, best-fit,
and worst-fit strategies are the ones most commonly used to select a free hole
from the set of available holes.
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• First fit. Allocate the first hole that is big enough. Searching can start either
at the beginning of the set of holes or where the previous first-fit search
ended. We can stop searching as soon as we find a free hole that is large
enough.

• Best fit. Allocate the smallest hole that is big enough. We must search the
entire list, unless the list is ordered by size. This strategy produces the
smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list,
unless it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst
fit in terms of decreasing time and storage utilization. Neither first fit nor best
fit is clearly better than the other in terms of storage utilization, but first fit is
generally faster.

8.3.3 Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer from
external fragmentation. As processes are loaded and removed from memory,
the free memory space is broken into little pieces. External fragmentation exists
when there is enough total memory space to satisfy a request, but the available
spaces are not contiguous; storage is fragmented into a large number of small
holes. This fragmentation problem can be severe. In the worst case, we could
have a block of free (or wasted) memory between every two processes. If all
these small pieces of memory were in one big free block instead, we might be
able to run several more processes.

Whether we are using the first-fit or best-fit strategy can affect the amount
of fragmentation. (First fit is better for some systems, whereas best fit is better
for others.) Another factor is which end of a free block is allocated. (Which is
the leftover piece—the one on the top or the one on the bottom?) No matter
which algorithm is used, external fragmentation will be a problem.

Depending on the total amount of memory storage and the average process
size, external fragmentation may be a .minor or a major problem. Statistical
analysis of first fit, for instance, reveals that, even with some optimization,
given N allocated blocks, another 0.5 N blocks will be lost to fragmentation.
That is, one-third of memory may be unusable! This property is known as the
50-percent rule.

Memory fragmentation can be internal as well as external. Consider a
multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that
the next process requests 18,462 bytes. If we allocate exactly the requested
block, we are left with a hole of 2 bytes. The overhead to keep track of this
hole will be substantially larger than the hole itself. The general approach
to avoiding this problem is to break the physical memory into fixed-sized
blocks and allocate memory in units based on block size. With this approach,
the memory allocated to a process may be slightly larger than the requested
memory. The difference between these two numbers is internal fragmentation
— memory that is internal to a partition but is not being used.
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One solution to the problem of external fragmentation is compaction. The
goal is to shuffle the memory contents so as to place all free memory together
in one large block. Compaction is not always possible, however. If relocation
is static and is done at assembly or load time, compaction cannot be done;
compaction is possible only if relocation is dynamic and is done at execution
time. If addresses are relocated dynamically, relocation requires only moving
the program and data and then changing the base register to reflect the new
base address. When compaction is possible, we must determine its cost. The
simplest compaction algorithm is to move all processes toward one end of
memory; all holes move in the other direction, producing one large hole of
available memory. This scheme can be expensive.

Another possible solution to the external-fragmentation problem is to
permit the logical address space of the processes to be noncontiguous, thus
allowing a process to be allocated physical memory wherever the latter
is available. Two complementary techniques achieve this solution: paging
(Section 8.4) and segmentation (Section 8.6). These techniques can also be
combined (Section 8.7).

8.4

Paging is a memory-management scheme that permits the physical address
space of a process to be noncontiguous. Paging avoids the considerable
problem of fitting memory chunks of varying sizes onto the backing store; most
memory-management schemes used before the introduction of paging suffered
from this problem. The problem arises because, when some code fragments or
data residing in main memory need to be swapped out, space must be found
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Figure 8.7 Paging hardware.
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on the backing store. The backing store also has the fragmentation problems
discussed in connection with main memory; except that access is much slower,
so compaction is impossible. Because of its advantages over earlier methods,
paging in its various forms is commonly used in. most operating systems.

Traditionally, support for paging has been handled by hardware. However,
recent designs have implemented paging by closely integrating the hardware
and operating system, especially on 64-bit microprocessors.

8.4.1 Basic Method

The basic method for implementing paging involves breaking physical mem-
ory into fixed-sized blocks called frames and breaking logical memory into
blocks of the same size called pages. When a process is to be executed, its
pages are loaded into any available memory frames from the backing store.
The backing store is divided into fixed-sized blocks that are of the same size as
the memory frames.

The hardware support for paging is illustrated in Figure 8.7. Every address
generated by the CPU is divided into two parts: a page number (p) and a
page offset (d). The page number is used as an index into a page table. The
page table contains the base address of each page in physical memory. This
base address is combined with the page offset to define the physical memory
address that is sent to the memory unit. The paging model of memory is shown
in Figure 8.8.

The page size (like the frame size) is defined by the hardware. The size
of a page is typically a power of 2, varying between 512 bytes and 16 MB per
page, depending on the computer architecture. The selection of a power of 2
as a page size makes the translation of a logical address into a page number
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and page offset particularly easy. If the size of logical address space is 2'"* and
a page size is 2" addressing units (bytes or words), then the high-order m - n
bits of a logical address designate the page number, and the n low-order bits
designate the page offset. Thus, the logical address is as follows:

page number page offset

m - n

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.9. Using a page size of 4 bytes and a physical memory of 32 bytes (8
pages), we show how the user's view of memory can be mapped into physical
memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we
find that page 0 is in frame 5. Thus, logical address 0 maps to physical address
20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3) maps to physical address
23 {- ( 5 x 4 ) + 3). Logical address 4 is page 1, offset 0; according to the page
table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical
address 24 (= (6x4) + 0). Logical address 13 maps to physical address 9.
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You may have noticed that paging itself is a form of dynamic relocation.
Every logical address is bound by the paging hardware to some physical
address. Using paging is similar to using a table of base (or relocation) registers,,
one for each frame of memory.

When we use a paging scheme, we have no external fragmentation: An 1/ free
frame can be allocated to a process that needs it. However, we may have some
internal fragmentation. Notice that frames are allocated as units. If the memory
requirements of a process do not happen to coincide with page boundaries,
the last frame allocated may not be completely full. For example, if page size
is 2,048 bytes, a process of 72,766 bytes would need 35 pages phis 1,086 bytes.
It would be allocated 36 frames, resulting in an internal fragmentation of 2,048
— 1,086 = 962 bytes. In the worst case, a process would need n pages plus 1
byte. It would be allocated, n + 1 frames, resulting in an internal fragmentation
of almost an entire frame.

If process size is independent of page size, we expect internal fragmentation
to average one-half page per process. This consideration suggests that small
page sizes are desirable. However, overhead is involved in each page-table
entry, and this overhead is reduced as the size of the pages increases. Also,
disk I/O is more efficient when the number of data being transferred is larger
(Chapter 12). Generally, page sizes have grown over time as processes, data
sets, and main memory have become larger. Today, pages typically are between
4 KB and 8 KB in size, and some systems support even larger page sizes. Some
CPUs and kernels even support multiple page sizes. For instance, Solaris uses
page sizes of 8 KB and 4 MB, depending on the data stored by the pages.
Researchers are now developing variable on-the-fly page-size support.

Usually, each page-table entry is 4 bytes long, but that size can vary as well.
A 32-bit entry can point to one of 232 physical page frames. If frame size is 4 KB,
then a system with 4-byte entries can address 244 bytes (or 16 TB) of physical
memory.

When a process arrives in the system to be executed, its size, expressed
in pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least n frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded into one of the allocated frames, and the frame number
is put in. the page table for this process. The next page is loaded into another
frame, and its frame number is put into the page table, and so on (Figure 8.10).

An important aspect of paging is the clear separation between the user's
view of memory and the actual physical memory. The user program views
memory as one single space, containing only this one program. In fact, the user
program is scattered throughout physical memory, which also holds other
programs. The difference between the user's view of memory and the actual
physical memory is reconciled by the address-translation hardware. The logical
addresses are translated into physical addresses. This mapping is hidden from
the user and is controlled by the operating system. Notice that the user process
by definition is unable to access memory it does not own. It has no way of
addressing memory outside of its page table, and the table includes only those
pages that the process owns.

Since the operating system is managing physical memory, it must be aware
of the allocation details of physical memory—which frames are allocated,
which frames are available, how manv total frames there are, and so on. This
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information is generally kept in a data structure called a frame table. The frame
table has one entry for each physical page frame, indicating whether the latter
is free or allocated and, if it is allocated, to which page of which process or
processes.

In addition, the operating system must be aware that user processes operate
in user space, and all logical addresses must be mapped to produce physical
addresses. If a user makes a system call (to do I/O, for example) and provides
an address as a parameter (a buffer, for instance), that address must be mapped
to produce the correct physical address. The operating system maintains a copy
of the page table for each process, just as it maintains a copy of the instruction
counter and register contents. This copy is used to translate logical addresses to
physical addresses whenever the operating system must map a logical address
to a physical address manually. It is also used by the CPU dispatcher to define
the hardware page table when a process is to be allocated the CPU. Paging
therefore increases the context-switch time.

8.4.2 Hardware Support

Each operating system has its own methods for storing page tables. Most
allocate a page table for each process. A pointer to the page table is stored with
the other register values (like the instruction counter) in the process control
block. When the dispatcher is told to start a process, it must reload the user
registers and define the correct hardware page-table values from the stored
user page table.

The hardware implementation of the page table can be done in several
ways. In the simplest case, the page table is implemented as a set of dedicated
registers. These registers should be built with very high-speed logic to make the
paging-address translation efficient. Every access to memory must go through
the paging map, so efficiency is a major consideration. The CPU dispatcher
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reloads these registers, just as it reloads the other registers. Instructions i& load
or modify the page-table registers are, of course, privileged, so that only the
operating system can change the memory map. The DEC PDP-11 is an example
of such an architecture. The address consists of 16 bits, and the page size is 8
KB. The page table thus consists of eight entries that are kept in fast registers.

The use of registers for the page table is satisfactory if the page table is
reasonably small (for example, 256 entries). Most contemporary computers,
however, allow the page table to be very large (for example, 1 million entries).
For these machines, the use of fast registers to implement the page table is
not feasible. Rather, the page table is kept in main memory, and a page-table
base register (PTBR) points to the page table. Changing page tables requires
changing only this one register, substantially reducing context-switch time.

The problem with this approach is the time required to access a user
memory location. If we want to access location /, we must first index into
the page table, using the value in the PTBR offset by the page number for ch8/8.
This task requires a memory access. It provides us with the frame number,
which is combined with the page offset to produce the actual address. We
can then access the desired place in memory. With this scheme, two memory
accesses are needed to access a byte (one for the page-table entry, one for the
byte). Thus, memory access is slowed by a factor of 2. This delay would be
intolerable under most circumstances. We might as well resort to sivapping!

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache, called a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; the hardware,
however, is expensive. Typically, the number of entries in a TLB is small, often
numbering between 64 and 1,024.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by
the CPU, its page number is presented to the TLB. If the page number is found,
its frame number is immediately available and is used to access memory. The
whole task may take less than 10 percent longer than it would if an unmapped
memory reference were used.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. When the frame number is obtained,
we can use it to access memory (Figure 8.11). In addition, we add the page
number and frame number to the TLB, so that they will be found quickly on the
next reference. If the TLB is already full of entries, the operating system must
select one for replacement. Replacement policies range from least recently used
(LRU) to random. Furthermore, some TLBs allow entries to be wired down,
meaning that they cannot be removed from the TLB. Typically, TLB entries for
kernel code are wired down.

Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An
ASID uniquely identifies each process and is used to provide address-space
protection for that process. WTien the TLB attempts to resolve virtual page
numbers, it ensures that the ASID for the currently running process matches the
ASID associated with the virtual page. If the ASIDs do not match, the attempt is
treated as a TLB miss. In addition to providing address-space protection, an ASID
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allows the TLB to contain entries for several different processes simultaneously.
If the TLB does not support separate ASIDs, then every time a new page table
is selected (for instance, with each context switch), the TLB must be flushed
(or erased) to ensure that the next executing process does not use the wrong
translation information. Otherwise, the TLB could include old entries that
contain valid virtual addresses but have incorrect or invalid physical addresses
left over from the previous process.

The percentage of times that a particular page number is found in the TLB is
called the hit ratio. An 80-percent hit ratio means that we find the desired page
number in the TLB 80 percent of the time. If it takes 20 nanoseconds to search
the TLB and 100 nanoseconds to access memory, then a mapped-memory access
takes 120 nanoseconds when the page number is in the TLB. If we fail to find the
page number in the TLB (20 nanoseconds), then we must first access memory
for the page table and frame number (100 nanoseconds) and then access the
desired byte in memory (100 nanoseconds), for a total of 220 nanoseconds. To
find the effective memory-access time, we weight each case by its probability:

effective access time = 0.80 x 120 + 0.20 x 220
= 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory-access time (from
100 to 140 nanoseconds).

For a 98-percent hit ratio, we have

effective access time = 0.98 x 120 + 0.02 x 220
= 122 nanoseconds.

This increased hit rate produces only a 22 percent slowdown in access time.
We will further explore the impact of the hit ratio on the TLB in Chapter 9.
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8.4.3 Protection

Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table.

One bit can define a page to be read-write or read-only. Every reference
to memory goes through the page table to find the correct frame number. At
the same time that the physical address is being computed, the protection bits
can be checked to verify that no writes are being made to a read-only page. An
attempt to write to a read-only page causes a hardware trap to the operating
system (or memory-protection violation).

We can easily expand this approach to provide a finer level of protection.
We can create hardware to provide read-only, read-write, or execute-only
protection; or, by providing separate protection bits for each kind of access, we
can allow any combination of these accesses. Illegal attempts will be trapped
to the operating system.

One additional bit is generally attached to each entry in the page table: a
valid-invalid bit. When this bit is set to "valid," the associated page is in the
process's logical address space and is thus a legal (or valid) page. When the bit
is set to"invalid,'" the page is not in the process's logical address space. Illegal
addresses are trapped by use of the valid-invalid bit. The operating system
sets this bit for each page to allow or disallow access to the page.

Suppose, for example, that in a system with a 14-bit address space (0 to
16383), we have a program that should use only addresses 0 to 10468. Given a
page size of 2 KB, we get the situation shown in Figure 8.12. Addresses in pages
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0,1, 2,3, 4, and 5 are mapped normally through the page table. Any attempt to
generate an address in pages 6 or 7, however, will find that the valid-invalid
bit is set to invalid, and the computer will trap to the operating system (invalid
page reference).

Notice that this scheme has created a problem. Because the program
extends to only address 10468, any reference beyond that address is illegal.
However, references to page 5 are classified as valid, so accesses to addresses
up to 12287 are valid. Only the addresses from 12288 to 16383 are invalid. This
problem is a result of the 2-KB page size and reflects the internal fragmentation
of paging.

Rarely does a process use all its address range. In fact, many processes
use only a small fraction of the address space available to them. It would be
wasteful in these cases to create a page table with entries for every page in the
address range. Most of this table would be unused but would take up valuable
memory space. Some systems provide hardware, in the form of a page-table
length register (PTLR), to indicate the size of the page table. This value is
checked against every logical address to verify that the address is in the valid
range for the process. Failure of this test causes an error trap to the operating
system.

8.4.4 Shared Pages

An advantage of paging is the possibility of sharing common code. This con-
sideration is particularly important in a time-sharing environment. Consider a
system that supports 40 users, each of whom executes a text editor. If the text
editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to
support the 40 users. If the code is reentrant code (or pure code), however, it
can be shared, as shown in Figure 8.13. Here we see a three-page editor—each
page 50 KB in size (the large page size is used to simplify the figure)—being
shared among three processes. Each process has its own data page.

Reentrant code is non-self-modifying code; it never changes during execu-
tion. Thus, two or more processes can execute the same code at the same time.
Each process has its own copy of registers and data storage to hold the data for
the process's execution. The data for two different processes will, of course, be
different.

Only one copy of the editor need be kept in physical memory. Each user's
page table maps onto the same physical copy of the editor, but data pages are
mapped onto different frames. Thus, to support 40 users, we need only one
copy of the editor (150 KB), plus 40 copies of the 50 KB of data space per user.
The total space required is now 2,150 KB instead of 8,000 KB—a significant
savings.

Other heavily used programs can also be shared—compilers, window
systems, run-time libraries, database systems, and so on. To be sharable, the
code must be reentrant. The read-only nature of shared code should not be
left to the correctness of the code; the operating system should enforce this
property.

The sharing of memory among processes on a system is similar to the
sharing of the address space of a task by threads, described in Chapter 4.
Furthermore, recall that in Chapter 3 we described shared memory as a method
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Figure 8.13 Sharing of code in a paging environment.

of interprocess communication. Some operating systems implement shared
memory using shared pages.

Organizing memory according to pages provides numerous benefits in
addition to allowing several processes to share the same physical pages. We
will cover several other benefits in Chapter 9.

8,5 Structure of the Page Table

In this section, we explore some of the most common techniques for structuring
the page table.

8.5.1 Hierarchical Paging

Most modern computer systems support a large logical address space
(232 to 264). In such an environment, the page table itself becomes excessively
large. For example, consider a system with a 32-bit logical address space. If
the page size in such a system is 4 KB (212), then a page table may consist of
up to 1 million entries (2j2/212). Assuming that each entry consists of 4 bytes,
each process may need up to 4 MB of physical address space for the page table
alone. Clearly, we would not want to allocate the page table contiguously in
main memory. One simple solution to this problem is to divide the page table
into smaller pieces. We can accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page table
itself is also paged (Figure 8.14). Remember our example of a 32-bit machine
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page table

Figure 8.14 A two-level page-table scheme.

memory

with a page size of 4 KB. A logical address is divided into a page number
consisting of 20 bits and a page offset consisting of 12 bits. Because we page
the page table, the page number is further divided into a 10-bit page number
and a 10-bit page offset. Thus, a logical address is as follows:

page number page offset

10 10 12

where p\ is an index into the outer page table and p2 is the displacement
within the page of the outer page table. The address-translation method for this
architecture is shown in Figure 8.15. Because address translation works from
the outer page table inward, this scheme is also known as a forward-mapped
page table.

The VAX architecture also supports a variation of two-level paging. The VAX
is a 32-bit machine with a page size of 512 bytes. The logical address space of a
process is divided into four equal sections, each of which consists of 2'° bytes.
Each section represents a different part of the logical address space of a process.
The first 2 high-order bits of the logical address designate the appropriate
section. The next 21 bits represent the logical page number of that section, and
the final 9 bits represent an offset in the desired page. By partitioning the page
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Figure 8.15 Address translation for a two-level 32-bit paging architecture.

table in this manner, the operating system can leave partitions unused until a
process needs them. An address on the VAX architecture is as follows:

section page offset

2 21 9

where s designates the section number, p is an index into the page table, and d
is the displacement within the page. Even when this scheme is used, the size
of a one-level page table for a VAX process using one section is 221 bits + 4 bytes
per entry = 8 MB. So that main-memory use is reduced further, the VAX pages
the user-process page tables.

For a system with a 64-bit logical-address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let us suppose that the page
size in such a system, is 4 KB (212). In this case, the page table consists of up
to 252 entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

outer page inner page offset

42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
This approach is also used on some 32-bit processors for added flexibility and
efficiency.

We can divide the outer page table in various ways. We can page the outer
page table, giving us a three-level paging scheme. Suppose that the outer page
table is made up of standard-size pages (2K! entries, or 2!2 bytes); a 64-bit
address space is still daunting:

2nd outer page , outer page inner page offset

32 10 10 12

The outer page table is still 234 bytes in size.
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The next step would, be a four-level paging scheme, where the second-
level outer page table itself is also paged. The SPARC architecture (with 32-bit
addressing) supports a three-level paging scheme, whereas the 32-bit Motorola
68030 architecture supports a four-level paging scheme.

For 64-bit architectures, hierarchical page tables are generally considered
inappropriate. For example, the 64-bit UltraSPARC would require seven levels of
paging—a prohibitive number of memory accesses—to translate each logical
address.

8.5.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a hashed page table, with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.16.

A variation of this scheme that is favorable for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar to
hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.

logical address

physical
memory

hash table

Figure 8.16 Hashed page table.
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8.5.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter's validity). This table representation is a natural
one, since processes reference pages through the pages' virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical address entry is and
to use that value directly. One of the drawbacks of this method is that each
page table may consist of millions of entries. These tables may consume large
amounts of physical memory just to keep track of how other physical memory
is being used.

To solve this problem, we can. use an inverted page table. An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns that page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.17 shows the operation of an inverted page table. Compare
it with Figure 8.7, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 8.4.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page
tables include the 64-bit UltraSPARC and PowerPC.

To illustrate this method, we describe a simplified version of the inverted
page table used in the IBM RT. Each virtual address in the system consists of a
triple

<process-id, page-number, offset>.
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Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found—say; at entry /—then the
physical address <i, or'fset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need to
be searched for a match. This search would take far too long. To alleviate this
problem, we use a hash table, as described in Section 8.5.2, to limit the search
to one—or at most a few—page-table entries. Of course, each access to the
hash table adds a memory reference to the procedure, so one virtual memory-
reference requires at least two real memory reads—one for the hash-table
entry and one for the page table. To improve performance, recall that the TLB
is searched first, before the hash table is consulted.

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used with inverted page tables;
because there is only one virtual page entry for every physical page, one
physical page cannot have two (or more) shared virtual addresses. A simple
technique for addressing this issue is to allow the page table to contain only
one mapping of a virtual address to the shared physical address. This means
that references to virtual addresses that are not mapped result in page faults.

8.6 Segmentation

An important aspect of memory management that became unavoidable with
paging is the separation of the user's view of memory and the actual physical
memory. As we have already seen, the user's view of memory is not the
same as the actual physical memory. The user's view is mapped onto physical
memory. This mapping allows differentiation between logical memory and.
physical memory.

8.6.1 Basic Method

Do users think of memory as a linear array of bytes, some containing
instructions and others containing data? Most people would say no. Rather,
users prefer to view memory as a collection of variable-sized segments., with
no necessary ordering among segments (Figure 8.18).

Consider how you think of a program when you are writing it. You think
of it as a main program with a set of methods, procedures, or functions. It
may also include various data structures: objects, arrays, stacks, variables, and
so on. Each of these modules or data elements is referred to by name. You
talk about "the stack," "the math library," ''the main program," without caring
what addresses in memory these elements occupy You are not concerned
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logical address

Figure 8.18 User's view of a program.

with whether the stack is stored before or after the Sqrt () function. Each
of these segments is of variable length; the length is intrinsically defined by
the purpose of the segment in the program. Elements within a segment are
identified by their offset from the beginning of the segment: the first statement
of the program, the seventh stack frame entry in the stack, the fifth instruction
of the Sqrt () , and so on.

Segmentation is a memory-management scheme that supports this user
view of memory. A logical address space is a collection of segments. Each
segment has a name and a length. The addresses specify both the segment name
and the offset within the segment. The user therefore specifies each address
by two quantities: a segment name and an offset. (Contrast this scheme with
the paging scheme, in which the user specifies only a single address, which is
partitioned by the hardware into a page number and an offset, all invisible to
the programmer.)

For simplicity of implementation, segments are numbered and are referred
to by a segment number, rather than by a segment name. Tluis, a logical address
consists of a two tuple:

< segment-number, offset >.

Normally, the user program is compiled, and the compiler automatically
constructs segments reflecting the input program.

A C compiler might create separate segments for the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used, by each thread

5. The standard C library
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Libraries that are linked in during compile time might be assigned separate
segments. The loader would take all these segments and assign them segment
numbers.

8.6.2 Hardware

Although the user can now refer to objects in the program by a two-dimensional
address, the actual physical memory is still, of course, a one-dimensional
sequence of bytes. Thus, we must define an implementation to map two-
dimensional user-defined addresses into one-dimensional physical addresses.
This .mapping is effected by a segment table. Each entry in the segment table
has a segment base and a segment limit. The segment base contains the starting
physical address where the segment resides in memory, whereas the segment
limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 8.19. A logical address
consists of two parts: a segment number, s, and an offset into that segment, d.
The segment number is used as an index to the segment table. The offset d of
the logical address must be between 0 and the segment limit. If it is not, we trap
to the operating system (logical addressing attempt beyond, end of segment).
When an offset is legal, it is added to the segment base to produce the address
in physical memory of the desired byte. The segment table is thus essentially
an array of base-limit register pairs.

As an example, consider the situation shown in Figure 8.20. We have five
segments numbered from 0 through 4. The segments are stored in physical
memory as shown. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory (or base) and
the length of that segment (or limit). For example, segment 2 is 400 bytes long
and begins at location 4300. Thus, a reference to byte 53 of segment 2 is mapped

• * • s

s d

limit base

segment
table

no

trap: addressing error physical memory

Figure 8.19 Segmentation hardware.
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Figure 8.20 Exampie of segmentation.

onto location 4300 + 53 = 4353. A reference to segment 3r byte 852, is mapped to
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment
0 would result in a trap to the operating system, as this segment is only 1,000
bytes long.

8.7 Example: The Intel Pentium

Both paging and segmentation have advantages and disadvantages. In fact,
some architectures provide both. In this section, we discuss the Intel Pentium
architecture, which supports both pure segmentation and segmentation with
paging. We do not give a complete description of the memory-management
structure of the Pentium in this text. Rather, we present the major ideas on
which it is based. We conclude our discussion with an overview of Linux
address translation on Pentium systems.

In Pentium systems, the CPU generates logical addresses, which are given
to the segmentation unit. The segmentation unit produces a linear address for
each logical address. The linear address is then given to the paging unit, which
in turn generates the physical address in main memory. Thus, the segmentation
and paging units form the equivalent of the memory-management unit (ViMU).
This scheme is shown in Figure 8.21.

8.7.1 Pentium Segmentation

The Pentium architecture allows a segment to be as large as 4 GB, and the
maximum number of segments per process is 16 KB. The logical-address space
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Figure 8.21 Logical to physical address translation in the Pentium.

of a process is divided into two partitions. The first partition consists of up to
8 KB segments that are private to that process. The second partition consists
of up to 8 KB segments that are shared among all the processes. Information
about the first partition is kept in the local descriptor table (LDT); information
about the second partition is kept in the global descriptor table (GDT). Each
entry in the LDT and GDT consists of an 8-byte segment descriptor with detailed
information about a particular segment, including the base location and limit
of that segment.

The logical address is a pair (selector, offset), where the selector is a 16-bit
number:

V

13 1 2

in which s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte (or word) within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
for every memory reference.

The linear address on the Pentium is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.2 Pentium Paging

The Pentium architecture allows a page size of either 4 KB or 4 MB. For 4-KB
pages, the Pentium uses a two-level paging scheme in which the division of
the 32-bit linear address is as follows:

page number page offset

10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.15. The Intel Pentium address translation is shown in more
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Figure 8.22 Intel Pentium segmentation.

detail in Figure 8.23. The ten high-order bits reference an entry in the outermost
page table, which the Pentium terms the page directory. (The CR3 register
points to the page directory for the current process.) The page directory entry
points to an inner page table that is indexed by the contents of the innermost
ten bits in the linear address. Finally, the low-order bits 0-11 refer to the offset
in the 4-KB page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

To improve the efficiency of physical memory use, Intel Pentium page
tables can be swapped to disk. In this case, an invalid bit is used in the page
directory entry to indicate whether the table to which the entry is pointing is
in memory or on disk. If the table is on disk, the operating system can use
the other 31 bits to specify the disk location of the table; the table then can be
brought into memory on demand.

8.7.3 Linux on Pentium Systems

As an illustration, consider the Linux operating system running on the Intel
Pentium architecture. Because Linux is designed to run on a variety of proces-
sors—many of which may provide only limited support for segmentation—
Linux does not rely on segmentation and uses it minimally- On the Pentium,
Linux uses only six segments:

1. A segment for kernel code

2. A segment for kernel data

3. A segment for user code

4. A segment for user data

5. A task-state segment (TSS)

6. A default LDT segment



308 Chapter 8 Main Memory-

age directory

(iogica! address)

page table offset

31 22 21 12 11

.^directory;

CR3 —•
register

; labfe :

page

page directory offsei
31 22 21

Figure 8.23 Paging in the Pentium architecture.

The segments for user code and user data are shared by all processes
running in user mode. This is possible because all processes use the same logical
address space and all segment descriptors are stored in the global descriptor
table (GDT). Furthermore, each process has its own task-state segment (TSS),
and the descriptor for this segment is stored in the GDT. The TSS is used to store
the hardware context of each process during context switches. The default LDT
segment is normally shared by all processes and is usually not used. However,
if a process requires its own LDT, it can create one and use that instead of the
default LDT.

As noted, each segment selector includes a 2-bit field for protection. Thus,
the Pentium allows four levels of protection. Of these four levels, Linux only
recognizes two: user mode and kernel mode.

Although the Pentium uses a two-level paging model, Linux is designed
to run on a variety of hardware platforms, many of which are 64-bit platforms
where two-level paging is not plausible. Therefore, Linux has adopted a three-
level paging strategy that works well for both 32-bit and 64-bit architectures.

The linear address in Linux is broken into the following four parts:

globr
rjiiectory J duectO'y ^tic-

Figure 8.24 highlights the three-level paging model in Linux.
The number of bits in each part of the linear address varies according

to architecture. However, as described earlier in this section, the Pentium
architecture only uses a two-level paging model. How, then, does Linux apply
its three-level model on the Pentium9 In this situation, the size of the middle
directory is zero bits, effectively bypassing the middle directory.
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Each task in Linux has its own set of page tables and —just as in Figure 8.23
— the CR3 register points to the global directory for the task currently executing.
During a context switch, the value of the CR3 register is saved and restored in
the TSS segments of the tasks involved in the context switch.

8.8 Summary

Memory-management algorithms for multiprogrammed operating systems
range from the simple single-user system approach to paged segmentation.
The most important determinant of the method used in a particular system is
the hardware provided. Every memory address generated by the CPU must be
checked for legality and possibly mapped to a physical address. The checking
cannot be implemented (efficiently) in software. Hence, we are constrained by
the hardware available.

The various memory-management algorithms (contiguous allocation, pag-
ing, segmentation, and combinations of paging and segmentation) differ in
many aspects. In comparing different memory-management strategies, we use
the following considerations:

Hardware support. A simple base register or a base-limit register pair is
sufficient for the single- and multiple-partition schemes, whereas paging
and segmentation need mapping tables to define the address map.

Performance. As the memory-management algorithm becomes more
complex, the time required to map a logical address to a physical address
increases. For the simple systems, we need only compare or add to the
logical address—operations that are fast. Paging and segmentation can be
as fast if the .mapping table is implemented in fast registers. If the table is
in memory, however, user memory accesses can be degraded substantially.
A TLB can reduce the performance degradation to an acceptable level.
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• Fragmentation. A multiprogrammed system will generally perform' more
efficiently if it has a higher level of multiprogramming. For a given
set of processes, we can increase the multiprogramming level only by
packing more processes into memory. To accomplish this task, we must
reduce memory waste, or fragmentation. Systems with fixed-sized allo-
cation units, such as the single-partition scheme and paging, suffer from
internal fragmentation. Systems with variable-sized allocation units, such
as the multiple-partition scheme and segmentation, suffer from external
fragmentation.

• Relocation. One solution to the external-fragmentation problem is com-
paction. Compaction involves shifting a program in memory in such a
way that the program does not notice the change. This consideration
requires that logical addresses be relocated dynamically, at execution time.
If addresses are relocated only at load time, we cannot compact storage.

• Swapping. Swapping can be added to any algorithm. At intervals deter-
mined by the operating system, usually dictated by CPU-scheduling poli-
cies, processes are copied from main memory to a backing store and later-
are copied back to main memory. This scheme allows more processes to be
run than can be fit into memory at one time.

• Sharing. Another means of increasing the multiprogramming level is to
share code and data among different users. Sharing generally requires
that either paging or segmentation be used, to provide small packets of
information (pages or segments) that can be shared. Sharing is a means
of running many processes with a limited amount of memory, but shared
programs and data must be designed carefully.

• Protection. If paging or segmentation is provided, different sections of a
user program can be declared execute-only, read-only, or read-write. This
restriction is necessary with shared code or data and is generally useful
in any case to provide simple run-time checks for common programming
errors.

Exercises

8.1 Explain the difference between internal and external fragmentation.

8.2 Consider the following process for generating binaries. A compiler is
used to generate the object code for individual modules, and a linkage
editor is used to combine multiple object modules into a single program
binary. How does the linkage editor change the binding of instructions
and data to memory addresses? What information needs to be passed
from the compiler to the linkage editor to facilitate the memory binding
tasks of the linkage editor?

8.3 Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and
600 KB (in order), how would each of the first-fit, best-fit, and worst-fit
algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in
order)? Which algorithm makes the most efficient use of memory?
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8.4 Most systems allow programs to allocate more memory to its address
space during execution. Data allocated in the heap segments of programs
is an example of such allocated memory. What is required to support
dynamic memory allocation In the following schemes?

a. contiguous-memory allocation

b. pure segmentation

c. pure paging

8.5 Compare the main memory organization schemes of contiguous-
memory allocation, pure segmentation, and pure paging with respect
to the following issues:

a. external fragmentation

b. internal fragmentation

c. ability to share code across processes

8.6 On a system with paging, a process cannot access memory that it does
not own. Why? How could the operating system allow access to other
memory? Why should it or should it not?

8.7 Compare paging with segmentation with respect to the amount of
memory required by the address translation structures in order to
convert virtual addresses to physical addresses.

8.8 Program binaries in many systems are typically structured as follows.
Code is stored starting with a small fixed virtual address such as 0. The
code segment is followed by the data segment that is used for storing
the program variables. When the program starts executing, the stack is
allocated at the other end of the virtual, address space and is allowed to
grow towards lower virtual addresses. What is the significance of the
above structure on the following schemes?

a. contiguous-memory allocation

b. pure segmentation

c. pure paging

8.9 Consider a paging system with the page table stored in memory.

a. if a memory reference takes 200 nanoseconds, how long does a
paged memory reference take?

b. If we add TLBs, and 75 percent of all page-table references are
found in the TLBs, what is the effective memory reference time?
(Assume that finding a page-table entry in the TLBs takes zero
time, if the entry is there.)

8.10 Why are segmentation and paging sometimes combined into one
scheme?

8.11 Explain why sharing a reentrant module is easier when segmentation, is
used than when pure paging is used.
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8.12 Consider the following segment table:

Segment

0
1
2
3
4

Base

219
2300
90

1327
1952

Length

600
14
100
580
96

What are the physical addresses for the following logical addresses?

a. 0,430

b. 1,10

c. 2,500

d. 3,400

e. 4,112

8.13 What is the purpose of paging the page tables?

8.14 Consider the hierarchical paging scheme used by the VAX architecture.
How many memory operations are performed when an user program
executes a memory load operation?

8.15 Compare the segmented paging scheme with the hashed page tables
scheme for handling large address spaces. Under what circumstances is
one scheme preferable to the other?

8.16 Consider the Intel address-translation scheme shown in Figure 8.22.

a. Describe all the steps taken by the Intel Pentium in translating a
logical address into a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory translation?

c. Are there any disadvantages to this address-translation system? If
so, what are they? If not, why is it not used by every manufacturer?
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In Chapter 8, we discussed various memory-management strategies used in
computer systems. All these strategies have the same goal: to keep many
processes in memory simultaneously to allow multiprogramming. However,
they tend to require that an entire process be in memory before it can execute.

Virtual memory is a technique that allows the execution of processes
that are not completely in memory. One major advantage of this scheme is
that programs can be larger than physical memory. Further, virtual memory
abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.
This technique frees programmers from the concerns of memory-storage
limitations. Virtual memory also allows processes to share files easily and
to implement shared memory. In addition, it provides an efficient mechanism
for process creation. Virtual memory is not easy to implement, however, and
may substantially decrease performance if it is used carelessly. In this chapter,
we discuss virtual memory in the form of demand paging and examine its
complexity and cost.

CHAPTER OBJECTIVES

• To describe the benefits of a virtual memory system.

• To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames.

• To discuss the principles of the working-set model.

9.1 Background

The memory-management algorithms outlined in Chapter 8 are necessary
because of one basic requirement: The instructions being executed must be
in physical memory. The first approach to meeting this requirement is to place
the entire logical address space in physical memory. Dynamic loading can help
to ease this restriction, but it generally requires special precautions and extra
work by the programmer.

315
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The requirement that instructions must be in physical memory te be
executed seems both necessary and reasonable; but it is also unfortunate, since
it limits the size of a program to the size of physical memory. In fact, an
examination of real programs shows us that, in many cases, the entire program
is not needed. For instance, consider the following:

• Programs often have code to handle unusual error conditions. Since these
errors seldom, if ever, occur in practice, this code is almost never executed.

• Arrays, lists, and tables are often allocated more memory than they actually
need. An array may be declared 100 bv 100 elements, even though it is
seldom larger than 10 by 10 elements. An assembler symbol table may
have room for 3,000 symbols, although the average program has less than
200 symbols.

• Certain options and features of a program may be used rarely. For instance,
the routines on U.S. government computers that balance the budget are only
rarely used.

Even in those cases where the entire program is needed, it may not all be
needed at the same time.

The ability to execute a program that is only partially in memory would
confer many benefits:

• A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual address space, simplifying the programming task.
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Figure 9.1 Diagram showing virtual memory that is larger than physical memory.
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• Because each user program could take less physical memory, ?inore
programs could be run at the same time, with a corresponding increase in
CPU utilization and throughput but with no increase in response time or
turnaround time.

• Less I/O would be needed to load or swap each user program into memory,
so each user program would run faster.

Thus, running a program that is not entirely in memory would benefit both
the system and the user.

Virtual memory involves the separation of logical memory as perceived
by users from physical memory. This separation, allows an extremely large
virtual memory to be provided for programmers when only a smaller physical
memory is available (Figure 9.1). Virtual memory makes the task of program-
ming much easier, because the programmer no longer needs to worry about
the amount of physical memory available; she can concentrate instead on the
problem to be programmed.

The virtual address space of a process refers to the logical (or virtual) view
of how a process is stored in memory. Typically, this view is that a process
begins at a certain logical address—say, address 0—and exists in contiguous
memory, as shown in Figure 9.2. Recall from Chapter 8, though, that in fact
physical memory may be organized in page frames arid that the physical page
frames assigned to a process may not be contiguous. Tt is up to the memory-
management unit (MMU) to map logical pages to physical page frames in
memory.

Note in Figure 9.2 that we allow for the heap to grow upward hi memory
as it is used for dynamic memory allocation. Similarly, we allow for the stack to
grow downward in memory through successive function calls. The large blank
space (or hole) between the heap and the stack is part of the virtual address
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Figure 9.2 Virtual address space.
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space but will require actual physical pages only if the heap or stack grcfvvs.
Virtual address spaces that include holes are known as sparse address spaces.
Using a sparse address space is beneficial because the holes can be filled as the
stack or heap segments grow or if we wish to dynamically link libraries (or
possibly other shared objects) during program execution.

In addition to separating logical memory from physical memory, virtual
memory also allows files and memory to be shared by two or more processes
through page sharing (Section 8.4.4). This leads to the following benefits:

• System libraries can be shared by several processes through mapping
of the shared object into a virtual address space. Although each process
considers the shared libraries to be part of its virtual address space, the
actual pages where the libraries reside in physical memory are shared by
all the processes (Figure 9.3). Typically, a library is mapped read-only into
the space of each process that is linked with it.

• Similarly, virtual memory enables processes to share memory. Recall from
Chapter 3 that two or more processes can communicate through the use
of shared memory. Virtual memory allows one process to create a region
of memory that it can share with another process. Processes sharing this
region consider it part of their virtual address space, yet the actual physical
pages of memory are shared, much as is illustrated in Figure 9.3.

• Virtual memory can allow pages to be shared during process creation with
the forkO system call, thus speeding up process creation.

We will further explore these—and other—benefits of virtual memory later in
this chapter. First, we begin with a discussion of implementing virtual memory-
through demand paging.
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Figure 9.3 Shared library using virtual memory.
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9.2 Demand Paging

Consider how an executable program might be loaded from disk into memory.
One option is to load the entire program in physical memory at program
execution time. However, a problem with this approach, is that we may not
initially need the entire program in memory. Consider a program that starts
with a list of available options from which the user is to select. Loading the
entire program into memory results in loading the executable code for all
options, regardless of whether an option is ultimately selected by the user or
not. An alternative strategy is to initially load pages only as they are needed.
This technique is known as demand paging and is commonly used in virtual
memory systems. With demand-paged virtual memory, pages are only loaded
when they are demanded during program execution; pages that are never
accessed are thus never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 9.4) where processes reside in secondary memory (usually a disk).
When we want to execute a process, we swap it into memory. Rather than
swapping the entire process into memory, however, we use a lazy swapper. A
lazy swapper never swaps a page into memory unless that page will be needed.
Since we are now viewing a process as a sequence of pages, rather than as one
large contiguous address space, use of the term swapper is technically incorrect.
A swapper manipulates entire processes, whereas a pager is concerned with
the individual pages of a process. We thus use pager, rather than swapper, in
connection with demand paging.

program
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program
B

4-priHKr

main
memory

Figure 9.4 Transfer of a paged memory to contiguous disk space.
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9.2.1 Basic Concepts

When a process is to be swapped in, the pager guesses which pages will be
used before the process is swapped out again. Instead of swapping in a whole
process, the pager brings only those necessary pages into memory. Thus, it
avoids reading into memory pages that will not be used anyway, decreasing
the swap rime and the amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish
between the pages that are in memory and the pages that are on the disk. The
valid-invalid bit scheme described in Section 8.5 can be used for this purpose.
This time, however, when this bit is set to "valid/" the associated page is both
legal and in memory. If the bit is set to "invalid," the page either is not valid
(that is, not in the logical address space of the process) or is valid but is currently
on the disk. The page-table entry for a page that is brovight into memory is set
as usual, but the page-table entry for a page that is not currently in memory is
either simply marked, invalid or contains the address of the page on disk. This
situation is depicted in Figure 9.5.

Notice that marking a page invalid will have no effect if the process never
attempts to access that page. Hence, if we guess right and page in all and only
those pages that are actually needed, the process will run exactly as though we
had brought in all pages. While the process executes and accesses pages that
are memory resident, execution proceeds normally.
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physical
memory

Figure 9.6 Steps in handling a page fault.

But what happens if the process tries to access a page that was not brought
into memory? Access to a page marked invalid causes a page-fault trap. The
paging hardware, in translating the address through the page table, will notice
that the invalid bit is set, causing a trap to the operating system. This trap is the
result of the operating system's failure to bring the desired page into memory.
The procedure for handling this page fault is straightforward (Figure 9.6):

1. We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an
invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid, but
we have not yet brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).

4. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with
the process and the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the trap. The process
can now access the page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in
memory. When the operating system sets the instruction pointer to the first
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instruction of the process, which is on a non-memory-resident page, the process
immediately faults for the page. After this page is brought into memory, the
process continues to execute, faulting as necessary until every page that it
needs is in memory. At that point, it can execute with no more faults. This
scheme is pure demand paging: Never bring a page into memory until it is
required.

Theoretically, some programs could access several new pages of memory
with each instruction execution (one page for the instruction and many for
data), possibly causing multiple page faults per instruction. This situation
would result in unacceptable system performance. Fortunately, analysis of
running processes shows that this behavior is exceedingly unlikely. Programs
tend to have locality of reference, described in Section 9.6.1, which results in
reasonable performance from demand paging.

The hardware to support demand paging is the same as the hardware for
paging and swapping:

• Page table. This table has the ability to mark an entry invalid through a
valid-invalid bit or special value of protection bits.

• Secondary memory. This memory holds those pages that are not present
in main memory. The secondary memory is usually a high-speed disk. It is
known as the swap device, and the section of disk used for this purpose is
known as swap space. Swap-space allocation is discussed in Chapter 12.

A crucial requirement for demand paging is the need to be able to restart
any instruction after a page fault. Because we save the state (registers, condition
code, instruction counter) of the interrupted process when the page fault
occurs, we must be able to restart the process in exactly the same place and
state, except that the desired page is now in memory and is accessible. In most
cases, this requirement is easy to meet. A page fault may occur at any memory
reference. If the page fault occurs on the instruction fetch, we can restart by-
fetching the instruction again. If a page fault occurs while we are fetching an
operand, we must fetch and decode the instruction again and then fetch the
operand.

As a worst-case example, consider a three-address instruction such as ADD
the content of A to B, placing the result in C. These are the steps to execute this
instruction:

1. Fetch and decode the instruction (ADD).

2. Fetch A.

3. Fetch B.

4. Add A and B.

5. Store the sum in C.

If we fault when we try to store in C (because C is in a page not currently
in memory), we will have to get the desired page, bring it in, correct the
page table, and restart the instruction. The restart will require fetching the
instruction again, decoding it again, fetching the two operands again, and
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then adding again. However, there is not much repeated work (less than one
complete instruction), and the repetition is necessary only when a page fault
occurs.

The major difficulty arises when one instruction may modify several
different locations. For example, consider the IBM. System 360/370 MVC (move
character) instruction., which can move up to 256 bytes from one location to
another (possibly overlapping) location. If either block (source or destination)
straddles a page boundary, a page fault might occur after the move is partially
done. In addition, if the source and destination blocks overlap, the source
block may have been modified, in which case we cannot simply restart the
instruction.

This problem can be solved in two different ways. In one solution, the
microcode computes and attempts to access both ends of both blocks. If a page
fault is going to occur, it will happen at this step, before anything is modified.
The move can then take place; wre know that no page fault can occur, since all
the relevant pages are in memory. The other solution uses temporary registers
to hold the values of overwritten locations. If there is a page fault, all the old
values are written back into memory before the trap occurs. This action restores
memory to its state before the instruction was started, so that the instruction
can be repeated.

This is by no means the only architectural problem resulting from adding
paging to an existing architecture to allow demand paging, but it illustrates
some of the difficulties involved. Paging is added between the CPU and the
memory in a computer system. It should be entirely transparent to the user
process. Thus, people often assume that paging can be added to any system.
Although this assumption is true for a non-demand-paging environment,
where a page fault represents a fatal error, it is not true where a page fault
means only that an additional page must be brought into memory and the
process restarted.

9.2.2 Performance of Demand Paging

Demand paging can significantly affect the performance of a computer system.
To see why, let's compute the effective access time for a demand-paged
memory. For most computer systems, the memory-access time, denoted ma,
ranges from 10 to 200 nanoseconds. As long as we have no page faults, the
effective access time is equal to the memory access time. If, however, a page
fault occurs, we must first read the relevant page from disk and then access the
desired word.

Let p be the probability of a page fault (0 s p 5 1). We would expect p to
be close to zero—that is, we would expect to have only a few page faults. The
effective access time is then

effective access time = (1 - p) x ma + p x page fault time.

To compute the effective access time, we must know how much time is
needed to service a page fault. A page fault causes the following sequence to
occur:

1. Trap to the operating system.

2. Save the user registers and process state.



324 Chapter 9 Virtual Memory

3. Determine that the interrupt was a page fault. '

4. Check that the page reference was legal and determine the location of the
page on the disk.

5. Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and /or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user (CPU scheduling,
optional).

7. Receive an interrupt from the disk I/O subsystem (I/O completed).

8. Save the registers and process state for the other user (if step 6 is executed).

9. Determine that the interrupt was from the disk.

10. Correct the page table and other tables to show that the desired page is
now in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state, and new page table, and then
resume the interrupted instruction.

Not all of these steps are necessary in every case. For example, we are assuming
that, in step 6, the CPU is allocated to another process while the I/O occurs.
This arrangement allows multiprogramming to maintain CPU utilization but
requires additional time to resume the page-fault service routine when the I/O
transfer is complete.

In any case, we are faced with three major components of the page-fault
service time:

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process.

The first and third tasks can be reduced, with careful coding, to several
hundred instructions. These tasks may take from 1 to 100 microseconds each.
The page-switch time, however, will probably be close to 8 milliseconds.
A typical hard disk has an average latency of 3 milliseconds, a seek of 5
milliseconds, and a transfer time of 0.05 milliseconds. Thus, the total paging
time is about 8 milliseconds, including hardware and software time. Remember
also that we are looking at only the device-service time. If a queue of processes
is waiting for the device (other processes that have caused page faults), we
have to add device-queueing time as we wait for the paging device to be free
to service our request, increasing even more the time to swap.

If we take an average page-fault service time of 8 milliseconds and a
memory-access time of 200 nanoseconds, then the effective access time in
nanoseconds is
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effective access time = (1 - p) x (200) + p (8 milliseconds)
= (1 - p) x 200 + p x 8.00(1000
= 200 + 7,999,800 x p.

We see, then, that the effective access time is directly proportional to the
page-fault rate. If one access out of 1,000 causes a page fault, the effective
access time is 8.2 microseconds. The computer will be slowed down by a factor
of 40 because of demand paging! If we want performance degradation to be
less than 10 percent, we need

220 > 200 + 7,999,800 x p,
20 > 7,999,800 x p,
p < 0.0000025.

That is, to keep the slowdown due to paging at a reasonable level, we can
allow fewer than one memory access out of 399,990 to page-fault. In sum,
it is important to keep the page-fault rate low in a demand-paging system.
Otherwise, the effective access time increases, slowing process execution
dramatically.

An additional aspect of demand paging is the handling and overall use
of swap space. Disk I/O to swap space is generally faster than that to the file
system. It is faster because swap space is allocated in much larger blocks, and
file lookups and indirect allocation methods are not used (Chapter 12). The
system can therefore gain better paging throughput by copying an entire file
image into the swap space at process startup and then performing demand
paging from the swap space. Another option is to demand pages from the file
system initially but to write the pages to swap space as they are replaced. This
approach will ensure that only needed pages are read from the file system but
that all subsequent paging is done from swap space.

Some systems attempt to limit the amount of swap space used through
demand paging of binary files. Demand pages for such files are brought directly
from the file system. However, when page replacement is called for, these
frames can simply be overwritten (because they are never modified), and the
pages can be read in from the file system, again if needed. Using this approach,
the file system itself serves as the backing store. However, swap space must
still be used for pages not associated with a file; these pages include the stack
and heap for a process. This method appears to be a good compromise and is
used in several systems, including Solaris and BSD UNIX.

9.3 Copy-on-Wrste

In Section 9.2, we illustrated how a process can start quickly by merely demand-
paging in the page containing the first instruction. However, process creation
using the f ork () system call may initially bypass the need for demand paging
by using a technique similar to page sharing (covered in Section 8.4.4). This
technique provides for rapid process creation and minimizes the number of
new pages that must be allocated to the newly created process.
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Figure 9.7 Before process 1 modifies page C.

Recall that the fork() system call creates a child process as a duplicate
of its parent. Traditionally, forkO worked by creating a copy of the parent's
address space for the child, duplicating the pages belonging to the parent.
However, considering that many child processes invoke the exec() system
call immediately after creation, the copying of the parent's address space may
be unnecessary. Alternatively, we can use a technique known as copy-on-write,
which works by allowing the parent and child processes initially to share the
same pages. These shared pages are marked as copy-on-write pages, meaning
that if either process writes to a shared page, a copy of the shared page is
created. Copy-on-write is illustrated in Figures 9.7 and Figure 9.8, which show
the contents of the physical memory before and after process 1 modifies page
C.

For example, assume that the child process attempts to modify a page
containing portions of the stack, with the pages set to be copy-on-write. The
operating system will then create a copy of this page, mapping it to the address
space of the child process. The child process will then modify its copied page
and not the page belonging to the parent process. Obviously, when the copy-on-
write technique is used, only the pages that are modified by either process are
copied; all unmodified pages can be shared by the parent and child processes.

process
physical
memory process.

Figure 9.8 After process 1 modifies page C.
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Note, too, that only pages that can be modified need be marked as copy-on-
write. Pages that cannot be modified (pages containing executable code) can
be shared by the parent and child. Copy-on-write is a common technique used
by several operating systems, including Windows XP, Linux, and Solaris.

When it is determined that a page is going to be duplicated using copy-
on-write, it is important to note the location from which the free page will
be allocated. Many operating systems provide a pool of free pages for such
requests. These free pages are typically allocated when the stack or heap for a
process must expand or when there are copy-on-write pages to be managed.
Operating systems typically allocate these pages using a technique known as
zero-fill-on-demand. Zero-fill-on-demand pages have been zeroed-out before
being allocated, thus erasing the previous contents.

Several versions of UNIX (including Solaris and Linux) also provide a
variation of the forkC) system call—vforkO (for virtual memory fork).
vf ork() operates differently from f ork() with copy-on-write. With vf ork() ,
the parent process is suspended, and the child process uses the address space
of the parent. Because vf ork () does not use copy-on-write, if the child process
changes any pages of the parent's address space, the altered pages will be
visible to the parent once it resumes. Therefore, vf ork() must be used with
caution to ensure that the child process does not modify the address space of
the parent, vf ork() is intended to be used when the child process calls execO
immediately after creation. Because no copying of pages takes place, vf ork()
is an extremely efficient method of process creation and is sometimes used to
implement UNIX command-line shell interfaces.

9.4 Page Replacement

In our earlier discussion of the page-fault rate, we assumed that each page
faults at most once, when it is first referenced. This representation is not strictly-
accurate, however. If a process of ten pages actually uses only half of them, then
demand paging saves the I/O necessary to load the five pages that are never
used. We could also increase our degree of multiprogramming by running
twice as many processes. Thus, if we had forty frames, we could run eight
processes, rather than the four that could run if each required ten frames (five
of which were never used).

If we increase our degree of multiprogramming, we are over-aJlocating
memory. If we run six processes, each of which is ten pages in size but actually
uses only five pages, we have higher CPU utilization and throughput, with
ten frames to spare. It is possible, however, that each of these processes, for a
particular data set, may suddenly try to use all ten of its pages, resulting in a
need for sixty frames when only forty are available.

Further, consider that system memory is not used only for holding program
pages. Buffers for I/O also consume a significant amount of memory. This use
can increase the strain on memory-placement algorithms. Deciding how much
memory to allocate to I/O and how much to program pages is a significant
challenge. Some systems allocate a fixed percentage of memory for I/O buffers,
whereas others allow both user processes and the I/O subsystem to compete
for all system memory.
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Figure 9.9 Need for page replacement.

Over-allocation of memory manifests itself as follows. While a user process
is executing, a page fault occurs. The operating system determines where the
desired page is residing on the disk but then finds that there are no free frames
on the free-frame list; all memory is in use (Figure 9.9).

The operating system has several options at this point. It could terminate
the user process. However, demand paging is the operating system's attempt to
improve the computer system's utilization and throughput. Users should not
be aware that their processes are running on a paged system—paging should
be logically transparent to the user. So this option is not the best choice.

The operating system could instead swap out a process, freeing all its
frames and reducing the level of multiprogramming. This option is a good one
in certain circumstances, and we consider it further in Section 9.6. Here, we
discuss the most common solution: page replacement.

9.4.1 Basic Page Replacement

Page replacement takes the following approach. If no frame is free, we find
one that is not currently being used and free it. We can free a frame by writing
its contents to swap space and changing the page table (and all other tables) to
indicate that the page is no longer in memory (Figure 9.10). We can now use
the freed frame to hold the page for which the process faulted. We modify the
page-fault service routine to include page replacement:

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.
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b. If there is no free frame, use a page-replacement algorithm toselect
a victim frame.

c. Write the victim frame to the disk; change the page and frame tables
accordingly.

3. Read the desired page into the newly freed frame; change the page and
frame tables.

4. Restart the user process.

Notice that, if no frames are free, two page transfers (one out and one in) are
required. This situation effectively doubles the page-fault service time and
increases the effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit). When
this scheme is used, each page or frame has a modify bit associated with it
in the hardware. The modify bit for a page is set by the hardware whenever
any word or byte in the page is written into, indicating that the page has been
modified. When we select a page for replacement, we examine its modify bit.
If the bit is set, we know that the page has been modified since it was read in
from the disk. In this case, we must write that page to the disk. If the modify
bit is not set, however, the page has not been modified since it was read into
memory. Therefore, if the copy of the page on the disk has not been overwritten
(by some other page, for example), then we need not write the memory page
to the disk: It is already there. This technique also applies to read-only pages
(for example, pages of binary code). Such pages cannot be modified; thus, they
may be discarded when desired. This scheme can significantly reduce the time
required to service a page fault, since it reduces I/O time by one-halfif the page
has not been modified.
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Figure 9.10 Page replacement.
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Page replacement is basic to demand paging. It completes the separation
between logical memory and physical memory- With this mechanism, an
enormous virtual memory can be provided for programmers on a smaller
physical memory. With no demand paging, user addresses are mapped into
physical addresses, so the two sets of addresses can be different. All the pages of
a process still must be in physical memory, however. With demand paging, the
size of the logical address space is no longer constrained by physical memory.
If we have a user process of twenty pages, we can execute it in ten frames
simply by using demand paging and using a replacement algorithm to find
a free frame whenever necessary. If a page that has been modified is to be
replaced, its contents are copied to the disk. A later reference to that page will
cause a page fault. At that time, the page will be brought back into memory,
perhaps replacing some other page in the process.

We must solve two major problems to implement demand paging: We must
develop a frame-allocation algorithm and a page-replacement algorithm. If
we have multiple processes in memory, we must decide how many frames to
allocate to each process. Further, when page replacement is required, we must
select the frames that are to be replaced. Designing appropriate algorithms to
solve these problems is an important task, because disk I/O is so expensive.
Even slight improvements in demand-paging methods yield large gains in
system performance.

There are many different page-replacement algorithms. Every operating
system probably has its own replacement scheme. How do we select a
particular replacement algorithm? In general, we want the one with the lowest
page-fault rate.

WTe evaluate an algorithm by running it on a particular string of memory
references and computing the number of page faults. The string of memory
references is called a reference string. We can generate reference strings
artificially (by using a random-number generator, for example), or we can trace
a given system and record the address of each memory reference. The latter
choice produces a large number of data (on the order of 1 million addresses
per second). To reduce the number of data, we use two facts.

First, for a given page size (and the page size is generally fixed by the
hardware or system), we need to consider only the page number, rather than the
entire address. Second, if we have a reference to a page p, then any immediately
following references to page p will never cause a page fault. Page p will be in
memory after the first reference, so the immediately following references will
not fault.

For example, if we trace a particular process, we might record the following
address sequence:

0100, 0432, 0101,0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104,0101,0610, 0102, 0103, 0104, 0101, 0609, 0102, 0105

At 100 bytes per page, this sequence is reduced to the following reference
string:

1,4,1,6,1,6,1,6,1,6,1
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Figure 9.11 Graph of page faults versus number of frames.

To determine the number of page faults for a particular reference string and
page-replacement algorithm, we also need to know the number of page frames
available. Obviously, as the number of frames available increases, the number
of page faults decreases. For the reference string considered previously, for
example, if we had three or more frames, we would have only three faults —
one fault for the first reference to each page. In contrast, with only one frame
available, we would have a replacement with every reference, resulting in
eleven faults. In general, we expect a curve such as that in Figure 9.11. As the
number of frames increases, the number of page faults drops to some minimal
level. Of course, adding physical memory increases the number of frames.

We next illustrate several page-replacement algorithms. In doing so, we
use the reference string

7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1

for a memory with three frames.

9.4.2 FIFO Page Replacement

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm.
A FIFO replacement algorithm associates with each page the time when that
page was brought into memory. When a page must be replaced, the oldest
page is chosen. Notice that it is not strictly necessary to record the time when
a page is brought in. We can. create a FIFO queue to hold all pages in memory.
We replace the page at the head of the queue. When a page is brought into
memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
first three references (7,0,1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
first. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The first reference to 3 results in replacement of page 0, since
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it is now first in line. Because of this replacement, the next reference, to 0, will
fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 9.12. Every time a fault occurs, we show which pages are in our three
frames. There are 15 faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new one,
a fault occurs almost immediately to retrieve the active page. Some other page
will need to be replaced to bring the active page back into memory. Thus, a bad
replacement choice increases the page-fault rate and slows process execution.
It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm., wTe consider the following reference string:

1,2,3,4,1,2,5,1,2,3,4,5

Figure 9.13 shows the curve of page faults for this reference string versus the
number of available frames. Notice that the number of faults for four frames
(ten) is greater than the number of faults for three frames (nine)! This most
unexpected result is known as Belady's anomaly: For some page-replacement
algorithms, the page-fault rate may increase as the number of allocated frames
increases. We would expect that giving more memory to a process would
improve its performance. In some early research, investigators noticed that
this assumption was not always true. Belady's anomaly was discovered as a
result.

9.4.3 Optimal Page Replacement

One result of the discovery of Belady's anomaly was the search for an optimal
page-replacement algorithm. An optimal page-replacement algorithm has the
lowest page-fault rate of all algorithms and will never suffer from Belady's
anomaly. Such an algorithm does exist and has been called OPT or MIK. It is
simply this:
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Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

Replace the page that will not be used
for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because 7 will not be used until reference 18, whereas page
0 will be used at 5, and page 1 at 14. The reference to page 3 replaces page
1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than a
FIFO algorithm, which resulted in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
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Figure 9.14 Optimal page-replacement algorithm.
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Section 5.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

9.4.4 LRU Page Replacement

If the optimal algorithm is not feasible, perhaps an approximation of the
optima] algorithm is possible. The key distinction between the FIFO and OPT
algorithms (other than looking backward versus forward in time) is that the
FIFO algorithm uses the time when a page was brought into memory, whereas
the OPT algorithm uses the time when a page is to be used. If we use the recent
past as an approximation of the near future, then we can replace the page that
has not been used for the longest period of time (Figure 9.15). This approach is
the least-recently-used (LRU) algorithm.

LRU replacement associates with each page the time of that page's last use.
When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time. We can think of this strategy as the optimal
page-replacement algorithm looking backward in time, rather than forward.
(Strangely, if we let S be the reverse of a reference string S, then the page-fault
rate for the OPT algorithm on 5 is the same as the page-fault rate for the OPT
algorithm on 5R. Similarly, the page-fault rate for the LRU algorithm on S is the
same as the page-fault rate for the LRU algorithm on SR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 9.15. The LRU algorithm produces 12 faults. Notice that the
first 5 faults are the same as those for optimal replacement. When the reference
to page 4 occurs, however, LRU replacement sees that, of the three frames in
memory, page 2 was used least recently. Thus, the LRU algorithm replaces page
2, not knowing that page 2 is about to be used. When it then faults for page
2, the LRU algorithm replaces page 3, since it is now the least recently used of
the three pages in memory. Despite these problems, LRU replacement with 12
faults is much better than FIFO replacement with 15.

The LRU policy is often used as a page-replacement algorithm and
is considered to be good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require substantial
hardware assistance. The problem is to determine an order for the frames
defined by the time of last use. Two implementations are feasible:
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• Counters. In the simplest case, we associate with each page-table entry a
time-of-use field and add to the CPU a logical clock or counter. The clock is
incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the time-of-use
field in the page-table entry for that page. In this way, we always have
the "time" of the last reference to each page. We replace the page with the
smallest time value. This scheme requires a search of the page table to find
the LRU page and a write to memory (to the time-of-use field in the page
table) for each memory access. The times must also be maintained when
page tables are changed (due to CPU scheduling). Overflow of the clock
must be considered.

• Stack. Another approach to implementing LRU replacement is to keep
a stack of page numbers. Whenever a page is referenced, it is removed
from the stack and put on the top. In this way, the most recently used
page is always at the top of the stack and the least recently used page is
always at the bottom (Figure 9.16). Because entries must be removed from
the middle of the stack, it is best to implement this approach by using
a doubly linked list with a head and tail pointer. Removing a page and
putting it on the top of the stack then requires changing six pointers at
worst. Each update is a little more expensive, but there is no search for
a replacement; the tail pointer points to the bottom of the stack, which is
the LRU page. This approach is particularly appropriate for software or
microcode implementations of LRU replacement.

Like optimal replacement, LRL replacement does not suffer from Belady's
anomaly. Both belong to a class of page-replacement algorithms, called stack
algorithms, that can never exhibit Belady's anomaly. A stack algorithm is an
algorithm for which it can be shown that the set of pages in memory for n
frames is always a subset of the set of pages that would be in memory with n
+ 1 frames. For LRL replacement, the set of pages in memory would be the n
most recently referenced pages. If the number of frames is increased, these n
pages will still be the most recently referenced and so will still be in memory.
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Note that neither implementation of LRU would be conceivable without
hardware assistance beyond the standard TLB registers. The updating of the
clock fields or stack must be done for every memory reference. If we were to
use an interrupt for every reference to allow software to update such data
structures, it would slow every memory reference by a factor of at least ten,
hence slowing every user process by a factor of ten. Few systems could tolerate
that level of overhead for memory management.

9.4.5 LRU-Approximation Page Replacement

Few computer systems provide sufficient hardware support for true LRU page
replacement. Some systems provide no hardware support, and other page-
replacement algorithms (such as a FIFO algorithm) must be used. Many systems
provide some help, however, in the form of a reference bit. The reference bit
for a page is set by the hardware whenever that page is referenced (either a
read or a write to any byte in the page). Reference bits are associated with each
entry in the page table.

Initially, all bits are cleared (to 0) by the operating system. As a user process
executes, the bit associated with each page referenced is set (to 1) by the
hardware. After some time, we can determine which pages have been used and
which have not been used by examining the reference bits, although we do not
know the order of use. This information is the basis for many page-replacement
algorithms that approximate LRU replacement.

9.4.5.1 Additional-Reference-Bits Algorithm

We can gain additional ordering information by recording the reference bits at
regular intervals. We can keep an 8-bit byte for each page in a table in memory.
At regular intervals (say, every 100 milliseconds), a timer interrupt transfers
control to the operating system. The operating system shifts the reference bit
for each page into the high-order bit of its 8-bit byte, shifting the other bits right
by 1 bit and discarding the low-order bit. These 8-bit shift registers contain the
history of page use for the last eight time periods. If the shift register contains
00000000, for example, then the page has not been used for eight time periods;
a page that is used at least once in each period has a shift register value of
11111111. A page with a history register value of 11000100 has been used more
recently than one with a value of 01110111. If we interpret these 8-bit bytes
as unsigned integers, the page with the lowest number is the LRU page, and
it can be replaced. Notice that the numbers are not guaranteed to be unique,
however. We can either replace (swap out) all pages with the smallest value or
use the FIFO method to choose among them.

The number of bits of history can be varied, of course, and is selected
(depending on the hardware available) to make the updating as fast as
possible. In the extreme case, the number can be reduced to zero, leaving
only the reference bit itself. This algorithm is called the second-chance page-
replacement algorithm.

9.4.5.2 Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement
algorithm. When a page has been selected, however, we inspect its reference
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Figure 9.17 Second-chance (clock) page-replacement algorithm.

bit. If the value is 0, we proceed to replace this page; but if the reference bit
is set to 1, we give the page a second chance and move on to select the next
FIFO page. When a page gets a second chance, its reference bit is cleared, and
its arrival time is reset to the current time. Thus, a page that is given a second
chance will not be replaced until all other pages have been replaced (or given
second chances). In addition, if a page is used often enough to keep its reference
bit set, it will never be replaced.

One way to implement the second-chance algorithm (sometimes referred
to as the dock algorithm) is as a circular queue. A pointer (that is, a hand on
the clock) indicates which page is to be replaced next. When a frame is needed,
the pointer advances until it finds a page with a 0 reference bit. As it advances,
it clears the reference bits (Figure 9.17). Once a victim page is found, the page
is replaced, and the new page is inserted in the circular queue in that position.
Notice that, in the worst case, when all bits are set, the pointer cycles through
the whole queue, giving each page a second chance. Tt clears all the reference
bits before selecting the next page for replacement. Second-chance replacement
degenerates to FIFO replacement if all bits are set.

9.4.5.3 Enhanced Second-Chance Algorithm

We can enhance the second-chance algorithm by considering the reference bit
and the modify bit (described in Section 9.4.1) as an ordered pair. With these
two bits, we have the following four possible classes:
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1. (0, 0) neither recently used nor modified—best page to replace

2. (0, 1) not recently used but modified—not quite as good, because the
page will need to be written out before replacement

3. (1., 0) recently used but clean—probably will be used again soon

4. (1,1) recently used and modified—probably will be used again soon, and
the page will be need to be written out to disk before it can be replaced

Each page is in one of these four classes. When page replacement is called for,
we use the same scheme as in the clock algorithm; but instead of examining
whether the page to which we are pointing has the reference bit set to 1,
we examine the class to which that page belongs. We replace the first page
encountered in the lowest nonempty class. Notice that we may have to scan
the circular queue several times before we find a page to be replaced.

The major difference between this algorithm and the simpler clock algo-
rithm is that here we give preference to those pages that have been modified
to reduce the number of 1/Os required.

9.4.6 Counting-Based Page Replacement

There are many other algorithms that can be used for page replacement. For
example, we can keep a counter of the number of references that have been
made to each page and develop the following two schemes.

• The least frequently used (LFU) page-replacement algorithm requires
that the page with the smallest count be replaced. The reason for this
selection is that an actively used page should have a large reference count.
A problem arises, however, when a page is used heavily during the initial
phase of a process but then is never used again. Since it was used heavily,
it has a large count and remains in memory even though it is no longer
needed. One solution is to shift the counts right by 1 bit at regular intervals,
forming an exponentially decaying average usage count.

• The most frequently used (MFU) page-replacement algorithm is based
on the argument that the page with the smallest count was probably just
brought in and has yet to be used.

As you might expect, neither MFU nor LFU replacement is common. The
implementation of these algorithms is expensive, and they do not approximate
OPT replacement well.

9.4.7 Page-Buffering Algorithms

Other procedures are often used in addition to a specific page-replacement
algorithm,. For example, systems commonly keep a pool of free frames. When
a page fault occurs, a victim frame is chosen as before. However, the desired
page is read into a free frame from the pool before the victim is written out. This
procedure allows the process to restart as soon as possible, without waiting
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for the victim page to be written out. When the victim is later written put, its
frame is added to the free-frame pool.

An expansion of this idea is to maintain a list of modified pages. Whenever
the paging device is idle, a modified page is selected and is written to the disk.
Its modify bit is then reset. This scheme increases the probability that a page
will be clean when it is selected for replacement and will not need to be written
out.

Another modification is to keep a pool of free frames but to remember
which page was in each frame. Since the frame contents are not modified when
a frame is written to the disk, the old page can be reused directly from the
free-frame pool if it is needed before that frame is reused. No I/O is needed in
this case. When a page fault occurs, we first check whether the desired page is
in the free-frame pool, if it is not, we must select a free frame and read into it.

This technique is used in the VAX/VMS system along with a FIFO replace-
ment algorithm. When the FIFO replacement algorithm mistakenly replaces a
page that is still in active use, that page is quickly retrieved from the free-frame
pool, and no I/O is necessary. The free-frame buffer provides protection against
the relatively poor, but simple, FIFO replacement algorithm. This method is
necessary because the early versions of VAX did not implement the reference
bit correctly.

Some versions of the UNIX system use this method in conjunction with
the second-chance algorithm. It can be a useful augmentation to any page-
replacement algorithm, to reduce the penalty incurred if the wrong victim
page is selected.

9.4.8 Applications and Page Replacement

In certain cases, applications accessing data through the operating system's
virtual memory perform, worse than if the operating system provided no
buffering at all. A typical example is a database, which provides its own
memory management and I/O buffering. Applications like this understand
their memory use and disk use better than does an operating system that is
implementing algorithms for general-purpose use. If the operating system is
buffering I/O, and the application is doing so as well, then twice the memory
is being used for a set of I/O.

In another example, data warehouses frequently perform massive sequen-
tial disk reads, followed by computations and writes. The LRU algorithm would
be removing old pages and preserving new ones, while the application would
more likely be reading older pages than newer ones (as it starts its sequential
reads again). Here, MFU would actually be more efficient than LRU.

Because of such problems, some operating systems give special programs
the ability to use a disk partition as a large sequential array of logical blocks,
without any file-system data structures. This array is sometimes called the raw
disk, and I/O to this array is termed raw I/O. Raw I/O bypasses all the file-
system services, such as file I/O demand paging, file locking, prefetchmg, space
allocation, file names, and directories. Note that although certain applications
are more efficient when implementing their own special-purpose storage
services on a raw partition, most applications perform better when they use
the regular file-system services.
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9.5 Allocation of Frames

We turn next to the issue of allocation. How do we allocate the fixed amount
of free memory among the various processes? If we have 93 free frames and
two processes, how many frames does each process get?

The simplest case is the single-user system. Consider a single-user system
with 128 KB of memory composed of pages 1 KB in size. This system has 128
frames. The operating system may take 35 KB, leaving 93 frames for the user
process. Under pure demand paging, all 93 frames would initially be put on
the free-frame list. When a user process started execution, it would generate a
sequence of page faults. The first 93 page faults would all get free frames from
the free-frame list. When the free-frame list was exhausted, a page-replacement
algorithm would he used to select one of the 93 in-memory pages to be replaced
with the 94th, and so on. When the process terminated, the 93 frames would
once again be placed on the free-frame list.

There are many variations on this simple strategy. We can require that the
operating system allocate all its buffer and table space from the free-frame list.
When this space is not in use by the operating system/ it can be used to support
user paging. We can try to keep three free frames reserved on the free-frame list
at all times. Thus, when a page fault occurs, there is a free frame available to
page into. While the page swap is taking place, a replacement can be selected,
which is then written to the disk as the user process continues to execute. Other
variants are also possible, but the basic strategy is clear: The user process is
allocated any free frame.

9.5.1 Minimum Number of Frames

Our strategies for the allocation of frames are constrained in various ways. We
cannot, for example, allocate more than the total number of available frames
(unless there is page sharing). We must also allocate at least a minimum number
of frames. Here, we look more closely at the latter requirement.

One reason for allocating at least a minimum number of frames involves
performance. Obviously, as the number of frames allocated to each process
decreases, the page-fault rate increases, slowing process execution. In addition,
remember that, when a page fault occurs before an executing instruction
is complete, the instruction must be restarted. Consequently, we must have
enough frames to hold all the different pages that any single instruction can
reference.

For example, consider a machine in which all memory-reference instruc-
tions have only one memory address. In this case, we need at least one frame
for the instruction and one frame for the memory reference. In addition, if
one-level indirect addressing is allowed (for example, a load instruction on
page 16 can refer to an address on page 0, which is an indirect reference to page
23), then paging requires at least three frames per process. Think about what
might happen if a process had only two frames.

The minimum number of frames is defined by the computer architecture.
For example, the move instruction for the PDP-11 includes more than one word
for some addressing modes, and thus the instruction itself may straddle two
pages. In addition, each of its two operands may be indirect references, for a
total of six frames. Another example is the IBM 370 MVC instruction. Since the
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instruction is from storage location to storage location, it takes 6 bytes and can
straddle two pages. The block of characters to move and the area to which it
is to be moved can each also straddle two pages. This situation would require
six frames. The worst case occurs when the MVC instruction is the operand of
an EXECUTE instruction that straddles a page boundary; in this case, we need
eight frames.

The worst-case scenario occurs in computer architectures that allow
multiple levels of indirection (for example, each 16-bit word could contain
a 15-bit address plus a 1-bit indirect indicator). Theoretically, a simple load
instruction could reference an indirect address that could reference an indirect
address (on another page) that could also reference an indirect address (on yet
another page), and so on, until every page in virtual memory had been touched.
Thus, in the worst case, the entire virtual memory must be in physical memory.
To overcome this difficulty, we must place a limit on the levels of indirection (for
example, limit an instruction to at most 16 levels of indirection). When the first
indirection occurs, a counter is set to 16; the counter is then decremented for
each successive indirection for this instruction. Tf the counter is decremented to
0, a trap occurs (excessive indirection). This limitation reduces the maximum
number of memory references per instruction to 17, requiring the same number
of frames.

Whereas the minimum number of frames per process is defined by the
architecture, the maximum number is defined by the amount of available
physical memory. In between, we are still left with significant choice in frame
allocation.

9.5.2 Allocation Algorithms

The easiest way to split in frames among n processes is to give everyone an
equal share, m/n frames. For instance, if there are 93 frames and five processes,
each process will get 18 frames. The leftover three frames can be used as a
free-frame buffer pool. This scheme is called equal allocation.

An alternative is to recognize that various processes will need differing
amounts of memory. Consider a system with a 1-KB frame size. If a small
student process of 10 KB and an interactive database of 127 KB are the only
two processes running in a system with 62 free frames, it does not make much
sense to give each process 31 frames. The student process does not need more
than 10 frames, so the other 21 are, strictly speaking, wasted.

To solve this problem, we can use proportional allocation, in which we
allocate available memory to each process according to its size. Let the size of
the virtual memory for process pt be s-, and define

Then, if the total number of available frames is m, we allocate a, frames to
process /»,-, where a, is approximately

a, = Sj/S x m.



342 Chapter 9 Virtual Memory

Of course, we must adjust each «,- to be an integer that is greater rha^i the
minimum number of frames required by the instruction set, with a sum not
exceeding m.

For proportional allocation, we would split 62 frames between two
processes, one of 10 pages and one of 127 pages, by allocating 4 frames and 57
frames, respectively, since

10/137 x 62 « 4, and
127/137 x 6 2 ~ 5 7 .

In this way, both processes share the available frames according to their
"needs," rather than equally.

In both equal and proportional allocation, of course, the allocation may
vary according to the multiprogramming level. If the multiprogramming level
is increased, each process will lose some frames to provide the memory needed
for the new process. Conversely, if the multiprogramming level decreases, the
frames that were allocated to the departed process can be spread over the
remaining processes.

Notice that, with either equal or proportional allocation, a high-priority
process is treated the same as a low-priority process. By its definition, however,
we may want to give the high-priority process more memory to speed its
execution, to the detriment of low-priority processes. One solution is to use
a proportional allocation scheme wherein the ratio of frames depends not on
the relative sizes of processes but rather on the priorities of processes or on a
combination of size and priority.

9.5.3 Global versus Local Allocation

Another important factor in the way frames are allocated to the various
processes is page replacement. With multiple processes competing for frames,
we can classify page-replacement algorithms into two broad categories: global
replacement and local replacement. Global replacement allows a process to
select a replacement frame from the set of all frames, even if that frame is
currently allocated to some other process; that is, one process can take a frame
from another. Local replacement requires that each process select from only its
own set of allocated frames.

For example, consider an allocation scheme where we allow high-priority
processes to select frames from low-priority processes for replacement. A
process can select a replacement from among its own frames or the frames
of any lower-priority process. This approach allows a high-priority process to
increase its frame allocation at the expense of a low-priority process.

With a local replacement strategy, the number of frames allocated to a
process does not change. With global replacement, a process may happen to
select only frames allocated to other processes, thus increasing the number of
frames allocated to it (assuming that other processes do not choose its frames
for replacement).

One problem with a global replacement algorithm is that a process cannot
control its own page-fault rate. The set of pages in memory for a process
depends not only on the paging behavior of that process but also on the paging
behavior of other processes. Therefore, the same process may perform quite
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differently (for example, taking 0.5 seconds for one execution and 10.3 seconds
for the next execution) because of totally external circumstances. Such is not
the case with a local replacement algorithm. Under local replacement, the
set of pages in memory for a process is affected by the paging behavior of
only that process. Local replacement might hinder a process, however, by
not making available to it other, less used pages of memory. Thus, global
replacement generally results in greater system throughput and is therefore
the more common method.

9,6 Thrashing

If the number of frames allocated to a low-priority process falls below the
minimum number required by the computer architecture, we must suspend,
that process's execution. We should then page out its remaining pages, freeing
all its allocated frames. This provision introduces a swap-in, swap-out level of
intermediate CPU scheduling.

In fact, look at any process that does not have ''enough" frames. If the
process does not have the number of frames it needs to support pages in
active use, it will quickly page-fault. At this point, it must replace some page.
However, since all its pages are in active use, it must replace a page that will
be needed again right away. Consequently, it quickly faults again, and again,
and again, replacing pages that it must bring back in immediately.

This high paging activity is called thrashing. A process is thrashing if it is
spending more time paging than executing.

9.6.1 Cause of Thrashing

Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too low,
we increase the degree of multiprogramming by introducing a new process
to the system. A global page-replacement algorithm is used; it replaces pages
without regard to the process to which they belong. Now suppose that a process
enters a new phase in its execution and needs more frames. It starts faulting and
taking frames away from other processes. These processes need those pages,
however, and so they also fault, taking frames from other processes. These
faulting processes must use the paging device to swap pages in and out. As
they queue up for the paging device, the ready queue empties. As processes
wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the
degree of multiprogramming as a result. The new process tries to get started
by taking frames from running processes, causing more page faults and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred, and system throughput plunges. The page-
fault rate increases tremendously As a result, the effective memory-access
time increases. No work is getting done, because the processes are spending
all their time paging.
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degree of multiprogramming

Figure 9.18 Thrashing.

This phenomenon is illustrated in Figure 9.18, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi-
programming increases, CPU utilization also increases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
even further, thrashing sets in, and CPU utilization drops sharply. At this point,
to increase CPU utilization and stop thrashing, we must decrease the degree of
multi pro grammi rig.

We can limit the effects of thrashing by using a local replacement algorithm
(or priority replacement algorithm). With local replacement, if one process
starts thrashing, it cannot steal frames from another process and cause the latter
to thrash as well. However, the problem is not entirely solved. If processes are
thrashing, they will be in the queue for the paging device most of the time. The
average service time for a page fault will increase because of the longer average
queue for the paging device. Thus, the effective access time will increase even
for a process that is not thrashing.

To prevent thrashing, we must provide a process with as many frames as
it needs. But how do we know how many frames it "needs'? There are several
techniques. The working-set strategy (Section 9.6.2) starts by looking at how
many frames a process is actually using. This approach defines the locality
model of process execution.

The locality model states that, as a process executes, it moves from locality
to locality. A locality is a set of pages that are actively used together (Figure
9.19). A program is generally composed of several different localities, which
may overlap.

For example, when a function is called, it defines a new locality. In this
locality, memory references are made to the instructions of the function call, its
local variables, and a subset of the global variables. When we exit the function,
the process leaves this locality, since the local variables and instructions of the
function are no longer in active use. We may return to this locality later.

Thus, we see that localities are defined by the program structure and its
data structures. The locality model states that all programs will exhibit this
basic memory reference structure. Note that the locality model is the unstated
principle behind the caching discussions so far in this book. If accesses to any
types of data were random rather than patterned, caching would be useless.
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Figure 9.19 Locality in a memory-reference pattern.

Suppose we allocate enough frames to a process to accommodate its current
locality. It will fault for the pages in its locality until all these pages are in
memory; then, it will not fault again until it changes localities. If we allocate
fewer frames than the size of the current locality, the process will thrash, since
it cannot keep in memory all the pages that it is actively using.

9.6.2 Working-Set Mode!

As mentioned, the working-set model is based on the assumption of locality.
This model uses a parameter, A, to define the working-set window. The idea
is to examine the most recent A page references. The set of pages in the most
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recent A page references is the working set (Figure 9.20). If a page is in,active
use, it will be in the working set. If it is no longer being used, it will drop from
the working set A time units after its last reference. Thus, the working set is an
approximation of the program's locality.

For example, given the sequence of memory references shown in Figure
9.20, if A = 10 memory references, then the working set at time t\ is {1, 2, 5,
6, 7). By time h, the working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of A. If A is too
small, it will not encompass the entire locality; if A is too large, it may overlap
several localities. In the extreme, if A is infinite, the working set is the set of
pages touched during the process execution.

The most important property of the working set, then, is its size. If we
compute the working-set size, WSSj, for each process in the system, we can
then consider that

where D is the total demand for frames. Each process is actively using the pages
in its working set. Thus, process i needs WSSj frames. If the total demand is
greater than the total number of available frames (D > m), thrashing will occur,
because some processes will not have enough frames.

Once A has been selected, use of the working-set model is simple. The
operating system monitors the working set of each process and allocates to
that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process's pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization.

The difficulty with the working-set model is keeping track of the working
set. The working-set window is a moving window. At each memory reference,
a new reference appears at one end and the oldest reference drops off the other
end. A page is in the working set if it is referenced anywhere in the working-set
window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assume that A equals 10,000
references and that we can cause a timer interrupt every 5,000 references.
When we get a timer interrupt, we copy and clear the reference-bit values for

page reference table

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4

WS(f,) = {1,2,5,6,7} WS(f2) = {3,4}

Figure 9.20 Working-set modef.
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each page. Thus, if a page fault occurs, we can examine the current reference
bit and two in-memory bits to determine whether a page was used within the
last 10,000 to 15,000 references. If it was used, at least one of these bits will be
on. If it has not been used, these bits will be off. Those pages with at least one
bit on will be considered to be in the working set. Note that this arrangement
is not entirely accurate, because we cannot tell where, within an interval of
5,000, a reference occurred. We can reduce the uncertainty by increasing the
number of history bits and the frequency of interrupts (for example, 10 bits
and interrupts every 1,000 references). However, the cost to service these more
frequent interrupts will be correspondingly higher.

9.6.3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 9.9.1), but it seems a clumsy way to control
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more
direct approach.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-fault
rate is too low, then the process may have too many frames. We can establish
upper and lower bounds on the desired page-fault rate (Figure 9.21). If the
actual page-fault rate exceeds the upper limit, we allocate the process another
frame; if the page-fault rate falls below the lower limit, we remove a frame
from the process. Thus, we can directly measure and control the page-fault
rate to prevent thrashing.

As with the working-set strategy, we may have to suspend a process. If the
page-fault rate increases and no free frames are available, we must select some
process and suspend it. The freed frames are then distributed to processes with
high page-fault rates.

number of frames

Figure 9.21 Page-fault frequency.
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9.7 Memory-Mapped Files

Consider a sequential read of a file on disk using the standard system calls
openQ, readO, and w r i t e Q . Each file access requires a system call and disk
access. Alternatively, we can use the virtual memory techniques discussed
so far to treat file I/O as routine memory accesses. This approach, known as
memory mapping a file, allows a part of the virtual address space to be logically
associated with the file.

9.7.1 Basic Mechanism

Memory mapping a file is accomplished by mapping a disk block to a page (or
pages) in memory. Initial access to the file proceeds through ordinary demand
paging, resulting in a page fault. However, a page-sized portion of the file
is read from the file system into a physical page (some systems may opt
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to read in more than a page-sized chunk of memory at a time). Subsequent
reads and writes to the file are handled as routine memory accesses, thereby
simplifying file access and usage by allowing the system to manipulate files
through memory rather than incurring the overhead of using the readQ and
wr i teO system calls.

Note that writes to the file mapped in memory are not necessarily
immediate (synchronous) writes to the file on disk. Some systems may choose
to update the physical file when the operating system periodically checks
whether the page in memory has been modified. When the file is closed, all the
memory-mapped data are written back to disk and removed from the virtual
memory of the process.

Some operating systems provide memory mapping only through a specific
system call and use the standard system calls to perform all other file I/O.
However, some systems choose to memory-map a file regardless of whether
the file was specified as memory-mapped. Let's take Solaris as an example. If
a file is specified as memory-mapped (using the mmapO system call), Solaris
maps the file into the address space of the process. If a file is opened and
accessed using ordinary system calls, such as openO, read( ) , and wr i t e ( ) ,
Solaris still memory-maps the file; however, the file is mapped to the kernel
address space. Regardless of how the file is opened, then, Solaris treats all
file I/O as memory-mapped, allowing file access to take place via the efficient
memory subsystem.

Multiple processes may be allowed to map the same file concurrently,
to allow sharing of data. Writes by any of the processes modify the data in
virtual memory and can be seen by all others that map the same section of
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Figure 9.23 Memory-mapped files.
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the file. Given our earlier discussions of virtual memory, it should be* clear
how the sharing of memory-mapped sections of memory is implemented:
The virtual memory map of each sharing process points to the same page of
physical memory—the page that holds a copy of the disk block. This memory
sharing is illustrated in Figure 9.23. The memory-mapping system calls can
also support copy-on-write functionality, allowing processes to share a file in
read-only mode but to have their own copies of any data they modify. So that
access to the shared data is coordinated, the processes involved might use one
of the mechanisms for achieving mutual exclusion described in Chapter 6.

In many ways, the sharing of memory-mapped files is similar to shared
memory as described in Section 3.4.1. Not all systems use the same mechanism
for both; on UNIX and Linux systems, for example, memory mapping is
accomplished with the mmap () system call, whereas shared memory is achieved
with the POSJX-compliant shmgetO and shmatO systems calls (Section
3.5.1). On Windows NT, 2000, and XP systems, however, shared memory is
accomplished by memory mapping files. On these systems, processes can
communicate using shared memory by having the communicating processes
memory-map the same file into their virtual address spaces. The memory-
mapped file serves as the region of shared meniory between the communicating
processes (Figure 9.24). In the following section, we illustrate support in the
Win32 API for shared memory using memory-mapped files.

9.7.2 Shared Memory in the Win32 API

The general outline for creating a region of shared, memory using memory-
mapped files in the Win32 API involves first creating a file mapping for the file
to be mapped and then establishing a view of the mapped file in a process's
virtual address space. A second process can then open and create a view of
the mapped file in its virtual address space. The mapped file represents the
shared-memory object that will enable communication to take place between
the processes.

We next illustrate these steps in more detail. In this example, a producer
process first creates a shared-memory object using the memory-mapping
features available in the Win32 API. The producer then writes a message

process-] process2

••shared- ;:
%riet?nery v

~ - -. . memory-mapped
~ ~ - _ file

;; shared ;:
;:; memory v

: shiaped
rnemdry:

Figure 9.24 Shared memory in Windows using memory-mapped I/O.
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to shared memory. After that, a consumer process opens a mapping tp the
shared-memory object and reads the message written by the consumer.

To establish a memory-mapped file, a process first opens the file to be
mapped with the Crea teFi leO function, which returns a HANDLE to the
opened file. The process then creates a mapping of this file HANDLE using
the CreateFileMappingO function. Once the file mapping is established, the
process then establishes a view of the mapped file in its virtual address space
with the MapViewOf FileC) function. The view of the mapped file represents
the portion of the file being mapped in the virtual address space of the process
—the entire file or only a portion of it may be mapped. We illustrate this

#ir.clude <windows . h>
#irdude <stdio.h>

inn mainfint argc, char *argv[]i

HANDLE hFile, hKapFile;

LPVCID lpMapAddress;

hFile = CreateFile ( "temp, txt" , /,/ file name
GENERIC-READ | GENERIC-WRITE, // read/write access

0, // no sharing of the file
NULL, // default security

OPEN-ALWAYS, /./ open new or existing file

FILE-ATTRIBUTEJSIORMAL, // routine file attributes

NULL) ; /./ no file template

hKapFile = CreateFileMapping(hFile, // file handle
NULL, /./ default security

PAGE-READWRITE, // read/write access ;o mapped pages

0, // map entire file

0,

TEXT("SharedObject")); // named shared memory object

lpMapAddress = MapViewOfFile(hMapFile, // mapped object handle

FILE_MAP_ALLJ\CCESS, // read/write access

0, // mapped view of entire file

0,

0) ;

/./ write to shared memory
sprintf(lpMapAddress,"Shared memory message");

UnmapViewOfFile (lpMapAddress) ,-

CloseHandle(hFile);

CloseHandle (hMapFile) ,•

Figure 9.25 Producer writing to shared memory using the Win32 API.
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sequence in the program shown in Figure 9.25. (We eliminate much of the error
checking for code brevity.)

The call to CreateFileMapping O creates a named shared-memory object
calledSharedObject. The consumer process will communicate using this
shared-memory segment by creating a mapping to the same named object.
The producer then creates a view of the memory-mapped file in its virtual
address space. By passing the last three parameters the value 0, it indicates
that the mapped view is the entire file. It could instead have passed values
specifying an offset and size, thus creating a view containing only a subsection
of the file. (It is important to note that the entire mapping may not be loaded
into memory when the mapping is established. Rather, the mapped file may be
demand-paged, thus bringing pages into memory only as they are accessed.)
The MapViewDf F i le () function returns a pointer to the shared-memory object;
any accesses to this memory location are thus accesses to the memory-mapped
file. In this instance, the producer process writes the message "Shared memory
message" to shared memory.

A program illustrating how the consumer process establishes a view of
the named shared-memory object is shown in Figure 9.26. This program is
somewhat simpler than the one shown in Figure 9.25, as all that is necessary
is for the process to create a mapping to the existing named shared-memory
object. The consumer process must also create a view of the mapped file, just
as the producer process did in the program in Figure 9.25. The consumer then

^include <windows.h>
#include <stdio.h>

int main(int argc, char *argv[])

{
HANDLE hMapFile;

LPVOID lpMapAddress;

hMapFile = OpenFileMapping{FILEJCAP_fl.LLJ^CCESS, // R/W access
FALSE, // no inheritance
TEXT("SharedObject">); // nane of mapped file object

lpMapAddress = MapViev.'OfFile (hMapFile, // mapped object handle

FILE31AP_ALL_ACCESS, // read/write access

0, // mapped view of entire file

0,

0) ;

// read fron shared memory

printf("Read message %s", ipMapAddress);

UnmapViewOfFile(IpMapAddress] ;

CloseHandle(hMapFile};

Figure 9.26 Consumer reading from shared memory using the Win32 API.
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reads from shared memory the message "Shared memory message" that was
written by the producer process.

Finally, both processes remove the view of the mapped file with a call to
UnmapViewOfFileO. We provide a programming exercise at the end of this
chapter using shared memory with memory mapping in the Win32 API.

9.7.3 M e m o r y - M a p p e d I/O

In the case of I/O, as mentioned in Section 1.2.1, each I/O controller includes
registers to hold commands and the data being transferred. Usually, special I/O
instructions allow data transfers between these registers and system memory.
To allow more convenient access to I/O devices, many computer architectures
provide memory-mapped I/O. In this case, ranges of memory addresses are
set aside and are mapped to the device registers. Reads and writes to these
memory addresses cause the data to be transferred to and from the device
registers. This method is appropriate for devices that have fast response times,
such as video controllers. In the IBM PC, each location on the screen is mapped
to a memory location. Displaying text on the screen is almost as easy as writing
the text into the appropriate memory-mapped locations.

Memory-mapped I/O is also convenient for other devices, such as the serial
and parallel ports used to connect modems and printers to a computer. The
CPU transfers data through these kinds of devices by reading and wrriting a few
device registers, called an I/O port. To send out a long string of bytes through a
memory-mapped serial port, the CPU writes one data byte to the data register
and sets a bit in the control register to signal that the byte is available. The device
takes the data byte and then clears the bit in the control register to signal that
it is ready for the next byte. Then the CPU can transfer the next byte. If the
CPU uses polling to watch the control bit, constantly looping to see whether
the device is ready, this method of operation is called programmed I/O (PIO).
If the CPU does not poll the control bit, but instead receives an interrupt when
the device is ready for the next byte, the data transfer is said to be interrupt
driven.

9.8 Allocating Kernel Memory

When a process running in user mode requests additional memory, pages
are allocated from the list of free page frames maintained by the kernel.
This list is typically populated using a page-replacement algorithm such as
those discussed in Section 9.4 and most likely contains free pages scattered
throughout physical memory, as explained earlier. Remember, too, that if a
user process requests a single byte of memory, internal fragmentation will
result, as the process will be granted, an entire page frame.

Kernel memory, however, is often allocated from a free-memory pool
different from the list used to satisfy ordinary user-mode processes. There
are two primary reasons for this:

1. The kernel requests memory for data structures of varying sizes, some of
which are less than a page in size. As a result, the kernel must use memory
conservatively and attempt to minimize waste due to fragmentation. This
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is especially important because many operating systems do not subject
kernel code or data to the paging system.

2. Pages allocated to user-mode processes do not necessarily have to be in
contiguous physical memory. However, certain hardware devices interact
directly with physical memory—-without the benefit of a virtual memory
interface—and consequently may require memory residing in physically
contiguous pages.

In the following sections, we examine two strategies for managing free memory
that is assigned to kernel processes.

9.8.1 Buddy System

The "buddy system" allocates memory from a fixed-size segment consisting
of physically contiguous pages. Memory is allocated from this segment using
a power-of-2 allocator, which satisfies requests in units sized as a power of 2
(4 KB, 8 KB, 16 KB, and so forth). A request in units not appropriately sized is
rounded up to the next highest power of 2. For example, if a request for 11 KB
is made, it is satisfied with a 16-KB segment. Next, we explain the operation of
the buddy system with a simple example.

Let's assume the size of a memory segment is initially 256 KB and the
kernel requests 21 KB of memory. The segment is initially divided into two
buddies—which we will call Ai and AR—each 128 KB in size. One of these
buddies is further divided into two 64-KB buddies—B; and B«. However, the
next-highest power of 2 from 21 KB is 32 KB so either B;_ or BR is again divided
into two 32-KB buddies, C[. and CR. One of these buddies is used to satisfy
the 21-KB request. This scheme is illustrated in Figure 9.27, where C;_ is the
segment allocated to the 21 KB request.
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Figure 9.27 Buddy system allocation.



9.8 Allocating Kernel Memory 355

An advantage of the buddy system is how quickly adjacent buddies dan be
combined to form larger segments using a technique known as coalescing. In
Figure 9.27, for example, when the kernel releases the Q. unit it was allocated,
the system can coalesce C-L and CR into a 64-KB segment. This segment, BL, can
in turn be coalesced with its buddy BR to form a 128-KB segment. Ultimately,
we can end up with the original 256-KB segment.

The obvious drawback to the buddy system is that rounding up to the
next highest power of 2 is very likely to cause fragmentation within allocated
segments. For example, a 33-KB request can only be satisfied with a 64-
KB segment. In fact, we cannot guarantee that less than 50 percent of the
allocated unit will be wasted due to internal fragmentation. In the following
section, we explore a memory allocation scheme where no space is lost due to
fragmentation.

9.8.2 Slab Allocation

A second strategy for allocating kernel memory is known as slab allocation. A
slab is made up of one or more physically contiguous pages. A cache consists of
one or more slabs. There is a single cache for each unique kernel data structure
—for example, a separate cache for the data structure representing process
descriptors, a separate cache for file objects, a separate cache for semaphores,
and so forth. Each cache is populated with objects that are instantiations of the
kernel data structure the cache represents. For example, the cache representing
semaphores stores instances of semaphores objects, the cache representing
process descriptors stores instances of process descriptor objects, etc. The
relationship between slabs, caches, and objects is shown in Figure 9.28. The
figure shows two kernel objects 3 KB in size and three objects 7 KB in size.
These objects are stored in their respective caches.

kernel objects caches slabs

3-KB
objects

7-KB
objects

physically
contiguous
pages

Figure 9.28 Slab allocation.
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The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects—which are initially marked as free—are
allocated to the cache. The number of objects in the cache depends on the size of
the associated slab. For example, a 12-KB slab (comprised of three continguous
4-KB pages) could store six 2-KB objects. Initially, all objects in the cache are
marked as free. When a new object for a kernel data structure is needed, the
allocator can assign any free object from the cache to satisfy the request. The
object assigned from the cache is marked as used.

Let's consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type s t r u c t task^st ruct , which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the s t r u c t t a s k . s t r u c t object from its
cache. The cache will fulfill the request using a s t ruc t task^s t ruc t object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. All objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

The slab allocator provides two main benefits:

1. No memory is wasted due to fragmentation. Fragmentation is not an
issue because each unique kernel data structure has an associated cache,
and each cache is comprised of one or more slabs that are divided into
chunks the size of the objects being represented. Thus, when the kernel
requests memory for an object, the slab allocator returns the exact amount
of memory required to represent the object.

2. Memory requests can be satisfied quickly. The slab allocation scheme
is thus particularly effective for managing memory where objects are
frequently allocated and deallocated, as is often the case with requests
from the kernel. The act of allocating—and releasing—memory can be
a time-consuming process. However, objects are created in advance and
thus can be quickly allocated from the cache. Furthermore, when the
kernel has finished with an object and releases it, it is marked as free and
returned to its cache, thus making it immediately available for subsequent
requests from the kernel.

The slab allocator first appeared in the Solaris 2.4 kernel. Because of its
general-purpose nature, this allocator is now also used for certain user-mode
memory requests in Solaris. Linux originally used the buddy system; however,
beginning with version 2.2, the Linux kernel adopted the slab allocator.
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9.9 Other Considerations *

The major decisions that we make for a paging system are the selections of
a replacement algorithm and an allocation policy, which we discussed earlier
in this chapter. There are many other considerations as welt and we discuss
several of them here.

9.9.1 Prepaging

An obvious property of pure demand paging is the large number of page faults
that occur when a process is started. This situation results from trying to get the
initial locality into memory. The same situation may arise at other times. For
instance, when a swapped-out process is restarted, all its pages are on the disk,
and each must be brought in by its own page fault. Prepaging is an attempt to
prevent this high level of initial paging. The strategy is to bring into memory at
one time all the pages that will be needed. Some operating systems—notably
Solaris—prepage the page frames for small files.

In a system using the working-set model, for example, we keep with each
process a list of the pages in its working set. If we must suspend a process
(due to an I/O wait or a lack of free frames), we remember the working set for
that process. When the process is to be resumed (because I/O has finished or
enough free frames have become available), we automatically bring back into
memory its entire working set before restarting the process.

Prepaging may offer an advantage in some cases. The question is simply
whether the cost of using prepaging is less than the cost of servicing the
corresponding page faults. It may well be the case that many of the pages
brought back into memory by prepaging will not be used.

Assume that s pages are prepaged and a fraction a of these s pages is
actually used (0 < a < 1). The question is whether the cost of the s*a saved
page faults is greater or less than the cost of prepaging s * (1 — a) unnecessary
pages. If a is close to 0, prepaging loses; if a is close to 1, prepaging wins.

9.9.2 P a g e Size

The designers of an operating system for an existing machine seldom have
a choice concerning the page size. However, when new machines are being
designed, a decision regarding the best page size must be made. As you might
expect there is no single best page size. Rather, there is a set of factors that
support various sizes. Page sizes are invariably powers of 2, generally ranging
from 4,096 (212) to 4,194,304 (222) bytes.

How do we select a page size? One concern is the size of the page table. For
a given virtual memory space, decreasing the page size increases the number
of pages and hence the size of the page table. For a virtual memory of 4 MB
(222), for example, there would be 4,096 pages of 1,024 bytes but only 512 pages
of 8,192 bytes. Because each active process must have its own copy of the page
table, a large page size is desirable.

Memory is better utilized with smaller pages, however. If a process is
allocated memory starting at location 00000 and continuing until it has as much
as it needs, it probably will not end exactly on a page boundary. Thus, a part
of the final page must be allocated (because pages are the units of allocation.)
but will be unused (creating internal fragmentation). Assuming independence
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of process size and page size, we can expect that, on the average, half of the
final page of each process will be wasted. This loss is only 256 bytes for a page
of 512 bytes but is 4,096 bytes for a page of 8,192 bytes. To minimize internal
fragmentation, then, we need a small page size.

Another problem is the time required to read or write a page. I/O time is
composed of seek, latency, and transfer times. Transfer time is proportional
to the amount transferred (that is, the page size)—a fact that would seem
to argue for a small page size. However, as we shall see in Section 12.1.1,
latency and seek time normally dwarf transfer time. At a transfer rate of 2
MB per second, it takes only 0.2 milliseconds to transfer 512 bytes. Latency
time, though, is perhaps 8 milliseconds and seek time 20 milliseconds. Of
the total I/O time (28.2 milliseconds), therefore, only 1 percent is attributable
to the actual transfer. Doubling the page size increases I/O time to only 28.4
milliseconds. It takes 28.4 milliseconds to read a single page of 1,024 bytes but
56.4 milliseconds to read the same amount as two pages of 512 bytes each.
Thus, a desire to minimize I/O time argues for a larger page size.

With a smaller page size, though, total I/O should be reduced, since locality
will be improved. A smaller page size allows each page to match program
locality more accurately. For example, consider a process 200 KB in size, of
which only half (100 KB) is actually used in an execution. If we have only one
large page, we must bring in the entire page, a total of 200 KB transferred and
allocated. If instead we had pages of only 1 byte, then we could bring in only
the 100 KB that are actually used, resulting in only 100 KB transferred and
allocated. With a smaller page size, we have better resolution, allowing us to
isolate only the memory that is actually needed. With a larger page size, we
must allocate and transfer not only what is needed but also anything else that
happens to be in the page, whether it is needed or not. Thus, a smaller page
size should result in less I/O and less total allocated memory.

But did you notice that with a page size of 1 byte, we would have a page
fault for each byte? A process of 200 KB that used only half of that memory
would generate only one page fault with a page size of 200 KB but 102,400 page
faults with a page size of 1 byte. Each page fault generates the large amount
of overhead needed for processing the interrupt, saving registers, replacing a
page, queueing for the paging device, and updating tables. To minimize the
number of page faults, we need to have a large page size.

Other factors must be considered as well (such as the relationship between
page size and sector size on the paging device). The problem has no best
answer. As we have seen, some factors (internal fragmentation, locality) argue
for a small page size, whereas others (table size, I/O time) argue for a large
page size. However, the historical trend is toward larger page sizes. Indeed,
the first edition of Operating Systems Concepts (1983) used 4,096 bytes as the
upper bound on page sizes, and this value was the most common page size in
1990. However, modern systems may now use much larger page sizes, as we
will see in the following section.

9 .9 .3 TLB R e a c h

In Chapter 8, we introduced the hit ratio of the TLB. Recall that the hit ratio
for the TLB refers to the percentage of virtual address translations that are
resolved in the TLB rather than the page table. Clearly, the hit ratio is related
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to the number of entries in the TLB, and the way to increase the hit ratio is
by increasing the number of entries in the TLB. This, however, does not come
cheaply, as the associative memory used to construct the TLB is both expensive
and power hungry.

Related to the hit ratio is a similar metric: the TLB reach. The TLB reach refers
to the amount of memory accessible from the TLB and is simply the number
of entries multiplied by the page size. Ideally, the working set for a process is
stored in the TLB. If not, the process will spend a considerable amount of time
resolving memory references in the page table rather than the TLB. If we double
the number of entries in the TLB, we double the TLB reach. However, for some
memory-intensive applications, this may still prove insufficient for storing the
working set.

Another approach for increasing the TLB reach is to either increase the size
of the page or provide multiple page sizes. If we increase the page size—say,
from 8 KB to 32 KB—we quadruple the TLB reach. However, this may lead to
an increase in fragmentation for some applications that do not require such
a large page size as 32 KB. Alternatively, an operating system may provide
several different page sizes. For example, the UltraSPARC supports page sizes
of 8 KB, 64 KB, 512 KB, and 4 MB. Of these available pages sizes, Solaris uses
both 8-KB and 4-MB page sizes. And with a 64-entry TLB, the TLB reach for
Solaris ranges from 512 KB with 8-KB pages to 256 MB with 4-MB pages. For the
majority of applications, the 8-KB page size is sufficient, although Solaris maps
the first 4 MB of kernel code and data with two 4-MB pages. Solaris also allows
applications—such as databases—to take advantage of the large 4-MB page
size.

Providing support for multiple pages requires the operating system—
not hardware—to manage the TLB. For example, one of the fields in a TLB
entry must indicate the size of the page frame corresponding to the TLB entry.
Managing the TLB in software and not hardware comes at a cost in performance.
However, the increased hit ratio and TLB reach offset the performance costs.
Indeed, recent trends indicate a move toward software-managed TLBs and
operating-system support for multiple page sizes. The UltraSPARC, MIPS,
and Alpha architectures employ software-managed TLBs. The PowerPC and
Pentium manage the TLB in hardware.

9.9.4 Inverted Page Tables

Section 8.5.3 introduced the concept of the inverted page table. The purpose
of this form of page management is to reduce the amount of physical memory
needed to track virtual-to-physical address translations. We accomplish this
savings by creating a table that has one entry per page of physical memory,
indexed by the pair <process-id, page-number>.

Because they keep information about which virtual memory page is stored
in each physical frame, inverted page tables reduce the amount of physical
memory needed to store this information. However, the inverted page table
no longer contains complete information about the logical address space of a
process, and that information is required if a referenced page is not currently
in memory. Demand paging requires this information to process page faults.
For the information to be available, an external page table (one per process)
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must be kept. Each such table looks like the traditional per-process page*table
and contains information on where each virtual page is located.

But do external page tables negate the utility of inverted page tables? Since
these tables are referenced only when a page fault occurs, they do not need to
be available quickly. Instead, they are themselves paged in and out of memory
as necessary. Unfortunately, a page fault may now cause the virtual memory
manager to generate another page fault as it pages in the external page table it
needs to locate the virtual page on the backing store. This special case requires
careful handling in the kernel and a delay in the page-lookup processing.

9.9.5 Program Structure

Demand paging is designed to be transparent to the user program. In many
cases, the user is completely unaware of the paged nature of memory. In other
cases, however, system performance can be improved if the user (or compiler)
has an awareness of the underlying demand paging.

Let's look at a contrived but informative example. Assume that pages are
128 words in size. Consider a C program whose function is to initialize to 0
each element of a 128-by-128 array. The following code is typical:

int i , j ;

int [128][128] data;

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[i] [j] = 0;

Notice that the array is stored row major; that is, the array is stored
data[0] [0], data[0] [1], - • -, data[0] [127], data[l] [0], data[l] [1], • • -,
data [127] [127]. For pages of 128 words, each row takes one page. Thus,
the preceding code zeros one word in each page, then another word in each
page, and so on. If the operating system allocates fewer than 128 frames to the
entire program, then its execution will result in 128 x 128 = 16,384 page faults.
In. contrast, changing the code to

int i, j ;
int[128][128] data;

for (i = 0; i < 128; i++)

for (j = 0 ; j < 128; j++)
data[ i ] [j] = 0;

zeros all the words on one page before starting the next page, reducing the
number of page faults to 128.

Careful selection of data structures and programming structures can
increase locality and hence lower the page-fault rate and the number of pages in
the working set. For example, a stack has good locality, since access is always
made to the top. A hash table, in contrast, is designed to scatter references,
producing bad locality. Of course, locality of reference is just one measure of
the efficiency of the use of a data structure. Other heavily weighted factors
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include search speed, total number of memory references, and total numBer of
pages touched.

At a later stage, the compiler and loader can have a significant effect on
paging. Separating code and data and generating reentrant code means that
code pages can he read-only and hence will never he modified. Clean pages
do not have to be paged out to be replaced. The loader can avoid placing
routines across page boundaries, keeping each routine completely in one page.
Routines that call each other many times can be packed into the same page.
This packaging is a variant of the bin-packing problem of operations research:
Try to pack the variable-sized load segments into the fixed-sized pages so that
interpage references are minimized. Such an approach is particularly useful
for large page sizes.

The choice of programming language can affect paging as well. For
example, C and C++ use pointers frequently, and pointers tend to randomize
access to memory, thereby potentially diminishing a process's locality. Some
studies have shown that object-oriented programs also tend to have a poor
locality of reference.

9.9.6 I/O Interlock

When demand paging is used, we sometimes need to allow some of the pages
to be locked in memory. One such situation occurs when I/O is done to or from
user (virtual) memory. I/O is often implemented by a separate I/O processor.
For example, a controller for a USB storage device is generally given the number
of bytes to transfer and a memory address for the buffer (Figure 9.29). When
the transfer is complete, the CPU is interrupted.

buffer

Figure 9.29 The reason why frames used for I/O must be in memory.
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We must be sure the following sequence of events does not occur: A process
issues an I/O request and is put in a queue for that I/O device. Meanwhile, the
CPU is given to other processes. These processes cause page faults; and one of
them, using a global replacement algorithm, replaces the page containing the
memory buffer for the waiting process. The pages are paged out. Some time
later, when the I/O request advances to the head of the device queue, the I/O
occurs to the specified address. However, this frame is now being used for a
different page belonging to another process.

There are two common solutions to this problem. One solution is never to
execute I/O to user memory. Instead, data are always copied between system
memory and user memory. I/O takes place only between system memory
and the I/O device. To write a block on tape, we first copy the block to system
memory and then write it to tape. This extra copying may result in unacceptably
high overhead.

Another solution is to allow pages to be locked into memory. Here, a lock
bit is associated with every frame. If the frame is locked, it cannot be selected
for replacement. Under this approach, to write a block on tape, we lock into
memory the pages containing the block. The system can then continue as
usual. Locked pages cannot be replaced. When the I/O is complete, the pages
are unlocked.

Lock bits are used in various situations. Frequently, some or all of the
operating-system kernel is locked into memory, as many operating systems
cannot tolerate a page fault caused by the kernel.

Another use for a lock bit involves normal page replacement. Consider
the following sequence of events: A low-priority process faults. Selecting a
replacement frame, the paging system reads the necessary page into memory.
Ready to continue, the low-priority process enters the ready queue and waits
for the CPU. Since it is a low-priority process, it may not be selected by the
CPU scheduler for a time. While the low-priority process waits, a high-priority
process faults. Looking for a replacement, the paging system sees a page that
is in memory but has not been referenced or modified: Tt is the page that the
low-priority process just brought in. This page looks like a perfect replacement:
It is clean and will not need to be written out, and it apparently has not been
used for a, long time.

Whether the high-priority process should be able to replace the low-priority
process is a policy decision. After all, we are simply delaying the low-priority
process for the benefit of the high-priority process. However, we are wasting
the effort spent to bring in the page for the low-priority process. If we decide
to prevent replacement of a newly brought-in page until it can be used at least
once, then we can use the lock bit to implement this mechanism. When a page
is selected for replacement, its lock bit is turned on; it remains on until the
faulting process is again dispatched.

Using a lock bit can be dangerous: The lock bit may get turned on but
never turned off. Should this situation occur (because of a bug in the operating
system, for example), the locked frame becomes unusable. On a single-user
system, the overuse of locking would hurt only the user doing the locking.
Multiuser systems must be less trusting of users. For instance, Solaris allows
locking "hints," but it is free to disregard these hints if the free-frame pool
becomes too small or if an individual process requests that too many pages be
locked in memory.
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9.10 Operating-System Examples

In this section, we describe how Windows XP and Solaris implement virtual
memory.

9.10.1 Windows XP

Windows XP implements virtual memory using demand paging with clus-
tering. Clustering handles page faults by bringing in not only the faulting
page but also several pages following the faulting page. When a process is first
created, it is assigned a working-set minimum and maximum. The working-set
minimum is the minimum number of pages the process is guaranteed to have
in memory. If sufficient memory is available, a process may be assigned as
many pages as its working-set maximum. For most applications, the value
of working-set minimum and working-set maximum is 50 and 345 pages,
respectively. (In some circumstances, a process may be allowed to exceed its
working-set maximum.) The virtual memory manager maintains a list of free
page frames. Associated with this list is a threshold value that is used to indicate
whether sufficient free memory is available. If a page fault occurs for a process
that is below its working-set maximum, the virtual memory manager allocates
a page from this list of free pages. If a process is at its working-set maximum
and it incurs a page fault, it must select a page for replacement using a local
page-replacement policy.

When the amount of free memory falls below the threshold, the virtual
memory manager uses a tactic known as automatic working-set trimming to
restore the value above the threshold. Automatic working-set trimming works
by evaluating the number of pages allocated to processes. If a process has
been allocated more pages than its working-set minimum, the virtual memory
manager removes pages until the process reaches its working-set minimum. A
process that is at its working-set minimum may be allocated pages from the
free-page frame list once sufficient free memory is available.

The algorithm used to determine which page to remove from a working set
depends on the type of processor. On single-processor 80x86 systems, Windows
XP uses a variation of the clock algorithm discussed in Section 9.4.5.2. On
Alpha and, multiprocessor x86 systems, clearing the reference bit may require
invalidating the entry in the translation look-aside buffer on other processors.
Rather than incurring this overhead, Windows XP uses a variation on the FIFO
algorithm discussed in Section 9.4.2.

9.10.2 Solaris

In Solaris, when a thread incurs a page fault, the kernel assigns a page to
the faulting thread from the list of free pages it maintains. Therefore, it is
imperative that the kernel keep a sufficient amount of free memory available.
Associated with this list of free pages is a parameter—lotsfree—that represents
a threshold to begin paging. The lotsfree parameter is typically set to 1/64 the
size of the physical memory. Four times per second, the kernel checks whether
the amount of free memory is less than lotsfree. If the number of free pages falls
below lotsfree, a process known as the pageout starts up. The pageout process is
similar to the second-chance algorithm, described in Section 9.4.5.2, except that
it uses two hands while scanning pages, rather than one as described in Section
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Figure 9.30 Solaris page scanner.

9.4.5.2. The pageout process works as follows: The front hand of the clock scans
all pages in memory, setting the reference bit to 0. Later, the back hand of the
clock examines the reference bit for the pages in memory, appending those
pages whose bit is still set to 0 to the free list and writing to disk their contents
if modified. Solaris maintains a cache list of pages that have been "freed" but
have not yet been overwritten. The free list contains frames that have invalid
contents. Pages can be reclaimed from the cache list if they are accessed before
being moved to the free list.

The pageout algorithm uses several parameters to control the rate at which
pages are scanned (known as the scanrate). The scanrate is expressed in pages
per second and ranges from siowscan to fastscan. When free memory falls
below lotsfree, scanning occurs at siowscan pages per second and progresses
to fastscan, depending on the amount of free memory available. The default
value of siowscan is 100 pages per second; fastscan is typically set to the value
(total physical pages)/2 pages per second, with a maximum of 8,192 pages per
second. This is shown in Figure 9.30 (with fastscan set to the maximum).

The distance (in pages) between the hands of the clock is determined by
a system parameter, lumdspread. The amount of time between the front hand's
clearing a bit and the back hand's investigating its value depends on the scanrate
and the handspread. If scanrate is 100 pages per second and lmndspread is 1,024
pages, 10 seconds can pass between the time a bit is set by the front hand
and the time it is checked by the back hand. However, because of the demands
placed on the memory system, a scanrate of several thousand is not uncommon.
This means that the amount of time between clearing and investigating a bit is
often a few seconds.

As mentioned above, the pageout process checks memory four times per
second. However, if free memory falls below desfree (Figure 9.30), pageout
will run 100 times per second with the intention of keeping at least desfree
free memory available. If the pageout process is unable to keep the amount
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of free memory at desfrce for a 30-second average,, the kernel begins swapping
processes, thereby freeing all pages allocated to swapped processes. In general,
the kernel looks for processes that have been idle for long periods of time. If
the system is unable to maintain the amount: of free memory at minfrec, the
pageout process is called for every request for a new page.

Recent releases of the Solaris kernel have provided enhancements of
the paging algorithm. One such enhancement involves recognizing pages
from shared libraries. Pages belonging to libraries that are being shared by
several processes—even if they are eligible to be claimed by the scanner—
are skipped during the page-scanning process. Another enhancement concerns
distinguishing pages that have been allocated to processes from pages allocated
to regular files. This is known as priority paging and is covered in Section 11.6.2.

9,11 S

It is desirable to be able to execute a process whose logical address space is
larger than the available physical address space. Virtual memory is a technique
that enables us to map a large logical address space onto a smaller physical
memory. Virtual memory allowrs us to run extremely large processes and to
raise the degree of multiprogramming, increasing CPU utilization. Further, it
frees application programmers from worrying about memory availability. In
addition, with virtual memory, several processes can share system libraries
and memory. Virtual memory also enables us to use an efficient type of process
creation known as copy-on-write, wherein parent and child processes share
actual pages of memory.

Virtual memory is commonly implemented by demand paging. Pure
demand paging never brings in a page until that page is referenced. The first
reference causes a page fault to the operating system. The operating-system
kernel consults an internal table to determine where the page is located on the
backing store. Tt then finds a free frame and reads the page in from the backing
store. The page table is updated to reflect this change, and the instruction that
caused the page fault is restarted. This approach allows a process to run even
though its entire memory image is not in main memory at once. As long as the
page-fault rate is reasonably low, performance is acceptable.

We can use demand paging to reduce the number of frames allocated to
a process. This arrangement can increase the degree of multiprogramming
(allowing more processes to be available for execution at one time) and—in
theory, at least—the CPU utilization of the system. It also allows processes
to be run even though their memory requirements exceed the total available
physical memory Such processes run in virtual memory.

If total memory requirements exceed the physical memory, then it may be
necessary to replace pages from memory to free frames for new pages. Various
page-replacement algorithms are used. FIFO page replacement is easy to pro-
gram but suffers from Belady's anomaly. Optimal page replacement requires
future knowledge. LRU replacement is an approximation of optimal page
replacement, but even it may be difficult to implement. Most page-replacement
algorithms, such as the second-chance algorithm, are approximations of LRU
replacement.
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In addition to a page-replacement algorithm, a frame-allocation policy
is needed. Allocation can be fixed, suggesting local page replacement, or
dynamic, suggesting global replacement. The working-set model assumes that
processes execute in localities. The working set is the set of pages in the current
locality. Accordingly, each process should be allocated enough frames for its
current working set. If a process does not have enough memory for its working
set, it will thrash. Providing enough frames to each process to avoid thrashing
may require process swapping and scheduling.

Most operating systems provide features for memory mapping files, thus
allowing file I/O to be treated as routine memory access. The Win32 API
implements shared memory through memory mapping files.

Kernel processes typically require memory to be allocated using pages
that are physically contiguous. The buddy system allocates memory to kernel
processes in units sized according to a power of 2, which often results in
fragmentation. Slab allocators assign kernel data structures to caches associated
with slabs, which are made up of one or more physically contiguous pages.
With slab allocation, no memory is wasted due to fragmentation, and memory
requests can be satisfied quickly.

In addition to requiring that we solve the major problems of page
replacement and frame allocation, the proper design of a paging system
requires that we consider page size, I/O, locking, prepaging, process creation,
program structure, and other issues.

9.1 Give an example that illustrates the problem with restarting the block
move instruction (MVC) on the IBM 360/370 when the source and
destination regions are overlapping.

9.2 Discuss the hardware support required to support demand paging.

9.3 What is the copy-on-write feature and under what circumstances is it
beneficial, to use this feature? What is the hardware support required to
implement this feature?

9.4 A certain computer provides its users with a virtual-memory space of
21" bytes. The computer has 218 bytes of physical memory. The virtual
memory is implemented by paging, and the page size is 4,096 bytes.
A user process generates the virtual address 11123456. Explain how
the system establishes the corresponding physical location. Distinguish
between software and hardware operations.

9.5 Assume that we have a demand-paged memory. The page table is held in
registers. It takes 8 milliseconds to service a page fault if an empty frame
is available or if the replaced page is not modified and 20 milliseconds if
the replaced, page is modified. Memory-access time is 100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the
time. What is the maximum acceptable page-fault rate for an effective
access time of no more than 200 nanoseconds?
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9.6 Assume that you are monitoring the rate at which the pointer isi the
clock algorithm (which indicates the candidate page for replacement)
moves. What can you say about the system if you notice the following
behavior:

a. pointer is moving fast

b. pointer is moving slow

9.7 Discuss situations under which the least frequently used page-
replacement algorithm generates fewer page faults than the least
recently used page-replacement algorithm. Also discuss under what
circumstance the opposite holds.

9.8 Discuss situations under which the most frequently used page-
replacement algorithm generates fewer page faults than the least
recently used page-replacement algorithm. Also discuss under what
circumstance the opposite holds.

9.9 The VAX/VMS system uses a FIFO replacement algorithm for resident
pages and a free-frame pool of recently used pages. Assume that the
free-frame pool is managed using the least recently used replacement
policy. Answer the following questions:

a. If a page fault occurs and if the page does not exist in the free-
frame pool, how is free space generated for the newly requested
page?

b. If a page fault occurs and if the page exists in the free-frame pool,
how is the resident page set and the free-frame pool managed to
make space for the requested page?

c. What does the system degenerate to if the number of resident
pages is set to one?

d. What does the system degenerate to if the number of pages in the
free-frame pool is zero?

9.10 Consider a demand-paging system with the following time-measured
utilizations:

CPU utilization 20%
Paging disk 97.7%
Other I/O devices 5%

For each of the following, say whether it will (or is likely to) improve
CPU utilization. Explain your answers.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.
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f. Install a faster hard disk or multiple controllers with rnilltiple
hard disks.

g. Add prepaging to the page-fetch algorithms,

h. Increase the page size.

9.11 Suppose that a machine provides instructions that can access memory
locations using the one-level indirect addressing scheme. What is the
sequence of page faults incurred when all of the pages of a program
are currently non-resident and the first instruction of the program is
an indirect memory load operation? What happens when the operating
system is using a per-process frame allocation technique and only two
pages are allocated, to this process?

9.12 Suppose that your replacement policy (in a paged system) is to examine
each page regularly and to discard that page if it has not been used since
the last examination. What would you gain and what would you lose
by using this policy rather than LRLr or second-chance replacement?

9.13 A page-replacement algorithm should minimize the number of page
faults. We can achieve this minimization by distributing heavily used
pages evenly over all of memory, rather than having them compete for
a small number of page frames. W'e can associate with each page frame
a counter of the number of pages associated with that frame. Then,
to replace a page, we can search for the page frame with the smallest
counter.

a. Define a page-replacement algorithm using this basic idea. Specif-
ically address these problems:

1. What the initial value of the counters is
2. When counters are increased
3. When counters are decreased
4. How the page to be replaced is selected

b. How many page faults occur for your algorithm for the following
reference string, with four page frames?

1, 2, 3, 4, 5, 3, 4,1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page-
replacement strategy for the reference string in part b with four
page frames?

9.14 Consider a demand-paging system with a paging disk that has an
average access and transfer time of 20 milliseconds. Addresses are
translated through a page table in main memory, with an access time of 1
microsecond per memory access. Thus, each memory reference through
the page table takes two accesses. To improve this time, we have added
an associative memory that reduces access time to one memory reference
if the page-table entry is in the associative memory.

Assume that 80 percent of the accesses are in the associative memory
and that, of those remaining, 10 percent (or 2 percent of the total) cause
page faults. What is the effective memory access time?
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9.15 What is the cause of thrashing? How does the system detect thrashing?
Once it detects thrashing, what can the system do to eliminate this
problem?

9.16 Is it possible for a process to have two working sets, one representing
data and another representing code? Explain.

9.17 Consider the parameter A used to define the working-set window in
the working-set model. What is the effect of setting A to a small value
on the page fault frequency and the number of active (non-suspended)
processes currently executing in the system? What is the effect when A
is set to a very high value?

9.18 Assume there is an initial 1024 KB segment where memory is allocated
using the buddy system. Using Figure 9.27 as a guide, draw the tree
illustrating how the following memory requests are allocated:

• request 240 bytes

• request 120 bytes

• request 60 bytes
n request 130 bytes

Next, modify the tree for the following releases of memory. Perform
coalescing whenever possible:

• release 250 bytes

• release 60 bytes

• release 120 bytes

9.19 The slab-allocation algorithm uses a separate cache for each different
object type. Assuming there is one cache per object type, explain why
this doesn't scale well with multiple CPUs. What could be done to address
this scalability issue?

9.20 Consider a system that allocates pages of different sizes to its processes.
What are the advantages of such a paging scheme? What modifications
to the virtual memory system provide this functionality?

9.21 Write a program that implements the FIFO and LRU page-replacement
algorithms presented in this chapter. First, generate a random page-
reference string where page numbers range from 0 to 9. Apply the
random page-reference string to each algorithm, and record the number
of page faults incurred by each algorithm. Implement the replacement
algorithms so that the number of page frames can vary from 1 to 7.
Assume that demand paging is used.

9.22 The Catalan numbers are an integer sequence C,, that appear in tree-
enumeration problems. The first Catalan numbers for n = 1. 2, 3. ... are
1,2, 5,14, 42,132 A formula generating C(i is

C = ] (In) — (-"-!
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Design two programs that communicate with shared memory using
the Win32 API as outlined in Section 9.7.2. The producer process will
generate the Catalan sequence and write it to a shared memory object.
The consumer process will then read and output the sequence from
shared memory.

In this instance, the producer process will be passed an integer
parameter on the command line specifying the number of Catalan
numbers to produce; i.e., providing 5 on the command line means the
producer process will generate the first 5 Catalan numbers.
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Part Four

Since main memory is usually too small to accommodate all the data and
programs permanently, the computer system must provide secondary
storage to back up main memory. Modern computer systems use disks
as the primary on-line storage medium for information (both programs
and data). The file system provides the mechanism for on-line storage
of and access to both data and programs residing on the disks. A file
is a collection of related information defined by its creator. The files are
mapped by the operating system onto physical devices. Files are normally
organized into directories for ease of use.

The devices that attach to a computer vary in many aspects. Some
devices transfer a character or a block of characters at a time. Some
can be accessed only sequentially, others randomly. Some transfer
data synchronously, others asynchronously. Some are dedicated, some
shared. They can be read-only or read-write. They vary greatly in speed.
In many ways, they are also the slowest major component of the
computer.

Because of all this device variation, the operating system needs to
provide a wide range of functionality to applications, to allow them to
control all aspects of the devices. One key goal of an operating system's
I/O subsystem is to provide the simplest interface possible to the rest of
the system. Because devices are a performance bottleneck, another key
is to optimize I/O for maximum concurrency.





For most users, the file system is the most visible aspect of an operating system.
It provides the mechanism for on-line storage of and access to both data and
programs of the operating system and all the users of the computer system. The
file system consists of two distinct parts: a collection of files, each storing related
data, and a directory structure, which organizes and provides information about
all the files in the system. File systems live on devices, which we explore fully
in the following chapters but touch upon here. In this chapter, we consider
the various aspects of files and the major directory structures. We also discuss
the semantics of sharing files among multiple processes, users, and computers.
Finally, we discuss ways to handle file protection, necessary when we have
multiple users and we want to control who may access files and how files may
be accessed.

• To explain the function of file systems.

• To describe the interfaces to file systems.

• To discuss file-system design tradeoffs, including access methods, file
sharing, file locking, and directory structures.

• To explore file-system protection.

10.1 File Concept

Computers can store information on various storage media, such as magnetic
disks, magnetic tapes, and optical disks. So that the computer system will
be convenient to use, the operating system provides a uniform logical view
of information storage. The operating system abstracts from the physical
properties of its storage devices to define a logical storage unit, the file. Files are
mapped by the operating system onto physical devices. These storage devices
are usually nonvolatile, so the contents are persistent through power failures
and system reboots.

373
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A file is a named collection of related information that is recorded on
secondary storage. From a user's perspective, a tile is the smallest allotment
of logical secondary storage; that is, data cannot be written to secondary
storage unless they are within a file. Commonly, files represent programs (both
source and object forms) and data. Data files may be numeric, alphabetic,
alphanumeric, or binary. Files may be free form, such as text files, or may be
formatted rigidly. In general, a file is a sequence of bits, bytes, lines, or records,
the meaning of which is defined by the file's creator and user. The concept of
a file is thus extremely general.

The information in a file is defined by its creator. Many different types
of information may be stored in a file—source programs, object programs,
executable programs, numeric data, text, payroll records, graphic images,
sound recordings, and so on. A file has a certain defined structure, which
depends on its type. A text file is a sequence of characters organized into
lines (and possibly pages). A source file is a sequence of subroutines and
functions, each of which is further organized as declarations followed by
executable statements. An object file is a sequence of bytes organized into
blocks understandable by the system's linker. An executable file is a series of
code sections that the loader can bring into memory and execute.

10.1.1 File Attributes

A file is named, for the convenience of its human users, and is referred to by
its name. A name is usually a string of characters, such as example.c. Some
systems differentiate between uppercase and lowercase characters in names,
whereas other systems do not. When a file is named, it becomes independent
of the process, the user, and even the system that created it. For instance, one
user might create the file example.c, and another user might edit that file by
specifying its name. The file's owner might write the file to a floppy disk, send
it in an e-mail, or copy it across a network, and it could still be called example.c
on the destination system.

A file's attributes vary from one operating system to another but typically
consist of these:

s Name. The symbolic file name is the only information kept in human-
readable form,.

• Identifier. This unique tag, usually a number, identifies the file within the
file system; it is the non-human-readable name for the file.

• Type. This information is needed for systems that support different types
of files.

• Location. This information is a pointer to a device and to the location of
the file on that device.

» Size. The current size of the file (in bytes, words, or blocks) and possibly
the maximum allowed size are included in this attribute.

• Protection. Access-control information determines who can do reading,
writing, executing, and so on.
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• Time, date, and user identification. This information may be kept for
creation, last modification, and last use. These data can be useful for
protection, security, and usage monitoring.

The information about all files is kept in the directory structure, which also
resides on secondary storage. Typically, a directory entry consists of the file's
name and its unique identifier. The identifier in turn locates the other file
attributes. It may take more than a kilobyte to record this information for
each. file. In a system with many files, the size of the directory itself may be
megabytes. Because directories, like files, must be nonvolatile, they must be
stored on the device and brought into memory piecemeal, as needed.

10,1.2 File Operations

A file is an abstract data type. To define a file properly, we need to consider the
operations that can be performed on files. The operating system can provide
system calls to create, write, read, reposition, delete, and truncate files. Let's
examine what the operating system must do to perform each of these six basic
file operations. It should then be easy to see how other, similar operations, such
as renaming a file, can be implemented.

» Creating a file. Two steps are necessary to create a file. First, space in the
file system must be found for the file. We discuss how to allocate space for
the file in Chapter 11. Second, an entry for the new file must be made in
the directory.

• Writing a file. To write a file, we make a system call specifying both the
name of the file and the information to be written to the file. Given the
name of the file, the system searches the directory to find the file's location.
The system must keep a write pointer to the location in the file where the
next write is to take place. The write pointer must be updated whenever a
write occurs.

• Reading a file. To read from a file, we use a system call that specifies the
name of the file and where (in memory) the next block of the file should
be put. Again, the directory is searched for the associated entry, and the
system needs to keep a read pointer to the location in the file where the
next read is to take place. Once the read has taken place, the read pointer
is updated. Because a process is usually either reading from or writing to
a file, the current operation location can be kept as a per-process current-
file-position pointer. Both the read and write operations use this same
pointer, saving space and reducing system complexity.

» Repositioning within a file. The directory is searched for the appropriate
entry, and the current-file-position pointer is repositioned to a given value.
Repositioning within a file need not involve any actual I/O. This file
operation is also known as a file seek.

• Deleting a file. To delete a file, we search the directory for the named file.
Having found the associated directory entry, we release all file space, so
that it can be reused bv other files, and erase the directory entry.
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• Truncating a file. The user may want to erase the contents of a file but
keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged—except
for file length—but lets the tile be reset to length zero and its file space
released.

These six basic operations comprise the minimal set of required file
operations. Other common operations include appending new information
to the end of an existing file and renaming an existing file. These primitive
operations can then be combined to perform other file operations. For instance,
we can create a copy of a file, or copy the file to another I/O device, such as
a printer or a display, by creating a new file and then reading from the old
and writing to the new. We also want to have operations that allow a user to
get and set the various attributes of a file. For example, we may want to have
operations that allow a user to determine the status of a file, such as the file's
length, and to set file attributes, such as the file's owner.

Most of the file operations mentioned involve searching the directory for
the entry associated with the named file. To avoid this constant searching, many
systems require that an openO system call be made before a file is first used
actively. The operating system keeps a small table, called the open-file table,
containing information about all open files. When a file operation is requested,
the file is specified via an index into this table, so no searching is required.
When the file is no longer being actively used, it is closed by the process, and
the operating system removes its entry from the open-file table, create and
de le te are system calls that work with closed rather than open files.

Some systems implicitly open a file when the first reference to it is made.
The file is automatically closed when the job or program that opened the
file terminates. Most systems, however, require that the programmer open a
file explicitly with the openO system call before that file can be used. The
openO operation takes a file name and searches the directory, copying the
directory entry into the open-file table. The openO call can also accept access-
mode information—create, read-only, read—write, append-only, and so on.
This mode is checked against the file's permissions. If the request mode is
allowed, the file is opened for the process. The openO system call typically
returns a pointer to the entry in the open-file table. This pointer, not the actual
file name, is used in all I/O operations, avoiding any further searching and
simplifying the system-call interface.

The implementation of the openO and close() operations is more
complicated in an environment where several processes may open the file at
the same time. This may occur in a system where several different applications
open the same file at the same time. Typically, the operating system uses two
levels of internal tables: a per-process table and a system-wide table. The per-
process table tracks all files that a process has open. Stored in this table is
information regarding the use of the file by the process. For instance, the
current file pointer for each file is found here. Access rights to the file and
accounting information can also be included.

Each entry in the per-process table in turn points to a system-wide open-file
table. The system-wide table contains process-independent information, such
as the location of the file on disk, access dates, and file size. Once a file has been
opened by one process, the system-wide table includes an entry for the file.
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When another process executes an openQ call, a new entry is simply added
to the process's open-file table pointing to the appropriate entry in the system-
wide table. Typically., the open-file table also has an open count associated with
each file to indicate how many processes have the file open. Each close 0
decreases this open count, and when the open count reaches zero, the file is no
longer in use, and the file's entry is removed from the open-file table.

In summary, several pieces of information are associated with an open file.

• File pointer. On systems that do not include a file offset as part of the
readO and wri te () system calls, the system must track the last read-
write location as a current-file-position pointer. This pointer is unique to
each process operating on the file and therefore must be kept separate from
the on-disk file attributes.

• File-open count. As files are closed, the operating system must reuse its
open-file table entries, or it could run out of space in the table. Because
multiple processes may have opened a file, the system must wait for the
last file to close before removing the open-file table entry. The file-open
counter tracks the number of opens and closes and reaches zero on the last
close. The system can then remove the entry.

• Disk location of the file. Most file operations require the system to modify
data within the file. The information needed to locate the file on disk is
kept in memory so that the system does not have to read it from disk for
each operation.

• Access rights. Each process opens a file in an access mode. This information
is stored on the per-process table so the operating system can allow or deny
subsequent I/O requests.

Some operating systems provide facilities for locking an open file (or
sections of a file). File "locks allow one process to lock a file and prevent other
processes from gaining access to it. File locks are useful for files that are shared
by several processes—for example, a system log file that can be accessed and
modified by a number of processes in the system.
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File locks provide functionality similar to reader-writer locks, covered in
Section 6.6.2. A shared lock is akin to a reader lock in that several processes
can acquire the lock concurrently. An exclusive lock behaves like a writer lock;
only one process at a time can acquire such a lock. It is important to note
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that not all operating systems provide both types of locks; some systems only
provide exclusive file locking.

Furthermore, operating systems may provide either mandatory or advi-
sory file-locking mechanisms. If a lock is mandatory, then once a process
acquires an exclusive lock, the operating system will prevent any other process
from accessing the locked file. For example, assume a process acquires an
exclusive lock on the file system.log. If we attempt to open system.log
from another process—for example, a text editor—the operating system will
prevent access until the exclusive lock is released. This occurs even if the text
editor is not written explicitly to acquire the lock. Alternatively, if the lock
is advisory, then the operating system will not prevent the text editor from
acquiring access to system. log. Rather, the text editor must be written so that
it manually acquires the lock before accessing the file. In other words, if the
locking scheme is mandatory, the operating system ensures locking integrity.
For advisory locking, it is up to software developers to ensure that locks are
appropriately acquired and released. As a general rule, Windows operating
systems adopt mandatory locking, and UNIX systems employ advisory locks.

The use of file locks requires the same precautions as ordinary process
synchronization. For example, programmers developing on systems with
mandatory locking must be careful to hold exclusive file locks only while
they are accessing the file; otherwise, they will prevent other processes from
accessing the file as well. Furthermore, some measures must be taken to ensure
that two or more processes do not become involved in a deadlock while trying
to acquire file locks.

10.1.3 Fiie Types

When we design a file system—indeed, an entire operating system—we
always consider whether the operating system should recognize and support
file types. If an operating system recognizes the type of a file, it can then operate
on the file in reasonable ways. For example, a common mistake occurs when a
user tries to print the binary-object form of a program. This attempt normally
produces garbage; however, the attempt can succeed if the operating system
has been told that the file is a binary-object program.

A common technique for implementing file types is to include the type as
part of the file name. The name is split into two parts—a name and an extension,
usually separated by a period character (Figure 10.2). In this way, the user and
the operating system can tell from the name alone what the type of a file is.
For example, most operating systems allow users to specify file names as a
sequence of characters followed by a period and terminated by an extension of
additional characters. File name examples include resume.doc, Scrver.java, and
ReaderThread.c. The system uses the extension to indicate the type of the file
and the type of operations that can be done on that file. Only a file with a .com,
.cxe, or .bat extension can be executed, for instance. The .com and .exe files are two
forms of binary executable files, whereas a .bat file is a batch file containing, in
ASCII format, commands to the operating system. MS-DOS recognizes only a few
extensions, but application programs also use extensions to indicate file types
in which they are interested. For example, assemblers expect source files to have
an .asm extension, and the Microsoft Word word processor expects its files to
end with a .doc extension. These extensions are not required, so a user may
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Figure 10.2 Common file types.

specify a file without the extension (to save typing), and the application will
look for a file with the given name and the extension it expects. Because these
extensions are not supported by the operating system, they can be considered
as "hints" to the applications that operate on them.

Another example of the utility of file types comes from the TOPS-20
operating system. If the user tries to execute an object program whose source file
has been modified (or edited) since the object file was produced, the source file
will be recompiled automatically. This function ensures that the user always
runs an up-to-date object file. Otherwise, the user could waste a significant
amount of time executing the old object file. For this function to be possible,
the operating system must be able to discriminate the source file from the
object file, to check the time that each file was created or last modified, and
to determine the language of the source program (in order to use the correct
compiler).

Consider, too, the Mac OS X operating system. In this system, each file has
a type, such as TEXT (for text file) or APPL (for application). Each file also has
a creator attribute containing the name of the program that created it. This
attribute is set by the operating system during the create 0 call, so its use
is enforced and supported by the system. For instance, a file produced by a
word processor has the word processor's name as its creator. When the user
opens that file, by double-clicking the mouse on the icon representing the file,
the word processor is invoked automatically, and the file is loaded, ready to be
edited.
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The UNIX system uses a crude magic number stored at the beginning of
some files to indicate roughly the type of the file—executable program, batch
file (or shell script), PostScript file, and so on. Not all files have magic numbers,
so system features cannot be based solely on this information. UNIX does not
record the name of the creating program, either. UNIX does allow file-name-
extension hints, but these extensions are neither enforced nor depended on
by the operating system; they are meant mostly to aid users in determining
the type of contents of the file. Extensions can be used or ignored by a given
application, but that is up to the application's programmer.

10.1.4 File Structure

File types also can be used to indicate the internal structure of the file. As
mentioned in Section 10.1.3, source and object files have structures that match
the expectations of the programs that read them. Further, certain files must
conform to a required structure that is understood by the operating system. For
example, the operating system requires that an executable file have a specific
structure so that it can determine where in memory to load the file and what
the location of the first instruction is. Some operating systems extend this idea
into a set of system-supported file structures, with sets of special operations
for manipulating files with those structures. For instance, DEC's VMS operating
system has a file system that supports three defined file structures.

This point brings us to one of the disadvantages of having the operating
system support multiple file structures: The resulting size of the operating
system is cumbersome. If the operating system defines five different file struc-
tures, it needs to contain the code to support these file structures. In addition,
every file may need to be definable as one of the file types supported by the
operating system. When new applications require information structured in
ways not supported by the operating system, severe problems may result.

For example, assume that a system supports two types of files: text files
(composed of ASCII characters separated by a carriage return and line feed)
and executable binary files. Now, if we (as users) want to define an encrypted
file to protect the contents from being read by unauthorized people, we may
find neither file type to be appropriate. The encrypted file is not ASCII text lines
but rather is (apparently) random bits. Although it may appear to be a binary
file, it is not executable. As a result, we may have to circumvent or misuse the
operating system's file-types mechanism or abandon our encryption scheme.

Some operating systems impose (and support) a minimal number of file
structures. This approach has been adopted in UNIX, MS-DOS, and others. UNIX
considers each file to be a sequence of 8-bit bytes; no interpretation of these bits
is made by the operating system. This scheme provides maximum flexibility
but little support. Each application program must include its own code to
interpret an input file as to the appropriate structure. However, all operating
systems must support at least one structure—that of an executable file—so...
that the system is able to load and run programs.

The Macintosh operating system also supports a minimal number of
file structures. It expects files to contain two parts: a resource fork and a
data fork. The resource fork contains information of interest to the user.
For instance, it holds the labels of any buttons displayed by the program.
A foreign user may want to re-label these buttons in his own language, and
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the Macintosh operating system provides tools to allow modification ef the
data in the resource fork. The data fork contains program code or data—the
traditional file contents. To accomplish the same task on a UNIX or MS-DOS
system, the programmer would need to change and recompile the source code,
unless she created her own user-changeable data file. Clearly, it is useful for
an operating system to support structures that will be used frequently and
that will save the programmer substantial effort. Too few structures make
programming inconvenient, whereas too many cause operating-system bloat
and programmer confusion.

10.1.5 Internal File Structure

Internally, locating an offset within a file can be complicated for the operating
system. Disk systems typically have a well-defined block size determined by
the size of a sector. All disk I/O is performed in units of one block (physical
record), and all blocks are the same size. It is unlikely that the physical record
size will exactly match the length of the desired logical record. Logical records
may even vary in length. Packing a number of logical records into physical
blocks is a common solution to this problem.

For example, the UNIX operating system defines all files to be simply
streams of bytes. Each byte is individually addressable by its offset from the
beginning (or end) of the file. In this case, the logical record size is 1 byte. The
file system automatically packs and unpacks bytes into physical disk blocks—
say, 512 bytes per block—as necessary.

The logical record size, physical block size, and packing technique deter-
mine how many logical records are in each physical block. The packing can be
done either by the user's application program or by the operating system.

In either case, the file may be considered to be a sequence of blocks. All
the basic I/O functions operate in terms of blocks. The conversion from logical
records to physical blocks is a relatively simple software problem.

Because disk space is always allocated in blocks, some portion of the last
block of each file is generally wasted. If each block were 512 bytes, for example,
then a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last
99 bytes would be wasted. The waste incurred to keep everything in units
of blocks (instead of bytes) is internal fragmentation. All file systems suffer
from internal fragmentation; the larger the block size, the greater the internal
fragmentation.

10.2 Access Methods

Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the file can be accessed in
several ways. Some systems provide only one access method for files. Other
systems, such as those of IBM, support many access methods, and choosing the
right one for a particular application is a major design problem.

10.2.1 Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by far the
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Figure 10.3 Sequential-access file.

most common; for example, editors and compilers usually access files in this
fashion.

Reads and writes make up the bulk of the operations on a file. A read
operation—read next—reads the next portion of the file and automatically
advances a file pointer, which tracks the I/O location. Similarly, the write
operation—write next—appends to the end of the file and advances to the
end of the newly written material (the new end of file). Such a file can be reset
to the beginning; and on some systems, a program .may be able to skip forward
or backward n records for some integer n—perhaps only for n = 1. Sequential
access, which is depicted in Figure 10.3, is based on a tape model of a file and
works as well on sequential-access devices as it does on random-access ones.

10.2.2 Direct Access

Another method is direct access (or relative access). A file is made up of fixed-
length logical records that allow programs to read and write records rapidly
in no particular order. The direct-access method is based on a disk model of
a file, since disks allow random access to any file block. For direct access, the
file is viewed as a numbered sequence of blocks or records. Thus, we may read
block 14, then read block 53, and then write block 7. There are no restrictions
on the order of reading or writing for a direct-access file.

Direct-access files are of great use for immediate access to large amounts
of information. Databases are often of this type. When a query concerning a
particular subject arrives, we compute which block contains the answer and
then read that block directly to provide the desired information.

As a simple example, on an airline-reservation system, we might store all
the information about a particular flight (for example, flight 713) in the block
identified by the flight number. Thus, the number of available seats for flight
713 is stored in block 713 of the reservation file. To store information about a
larger set, such as people, we might compute a hash function on the people's
names or search a small in-memory index to determine a block to read and
search.

For the direct-access method, the file operations must be modified to
include the block number as a parameter. Thus, we have read n, where n is
the block number, rather than read next, and write n rather than write next. An
alternative approach is to retain read next and write next, as with sequential
access, and to add an operation position file to n, where n is the block number.
Then, to effect a read n, we would, position to n and then read next.

The block number provided by the user to the operating system is normally
a relative block number. A relative block number is an index relative to the
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Figure 10.4 Simulation of sequential access on a direct-accsss file.

beginning of the file. Thvis, the first relative block of the file is 0, the next is
1, and so on, even though the actual absolute disk address of the block may
be 14703 for the first block and 3192 for the second. The use of relative block
numbers allows the operating system to decide where the file should be placed
(called the allocation problem, as discussed in Chapter 11) and helps to prevent
the user from accessing portions of the file system that may not be part of her
file. Some systems start their relative block numbers at 0; others start at 1.

How then does the system satisfy a request for record N in a file? Assuming
we have a logical record length L, the request for record A/ is turned into an I/O
request for L bytes starting at location L * (N) within the file (assuming the first
record is N - 0). Since logical records are of a fixed size, it is also easy to read,
write, or delete a record.

Not all operating systems support both sequential and direct access for
files. Some systems allow only sequential file access; others allow only direct
access. Some systems require that a file be defined as sequential or direct when
it is created; such a file can be accessed only in a manner consistent with its
declaration. We can easily simulate sequential access on a direct-access file by
simply keeping a variable cp that defines our current position, as shown in
Figure 10.4. Simulating a direct-access file on a sequential-access file, however,
is extremely inefficient and clumsy.

10.2.3 Other Access Methods

Other access methods can be built on top of a direct-access method. These
methods generally involve the construction of an index for the file. The index,
like an index in the back of a book, contains pointers to the various blocks. To
find a record in the file, we first search the index and then use the pointer to
access the file directly and to find the desired record.

For example, a retail-price file might list the universal product codes (UPCs)
for items, with the associated prices. Each record consists of a 10-digit UPC and
a 6-digit price, for a 16-byte record, if our disk has 1,024 bytes per block, we
can store 64 records per block. A file of 120,000 records would occupy about
2,000 blocks (2 million bytes). By keeping the file sorted by UPC, we can define
an index consisting of the first UPC in each block. This index would have 2,000
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory To
find the price of a particular item, we can make a binary search of the index.
From this search, we learn exactly which block contains the desired record and
access that block. This structure allows us to search a large file doing little I/O.
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With large files, the index file itself may become too large to be kept in
memory. One solution is to create an index for the index file. The primary
index file would contain pointers to secondary index files, which would point
to the actual data items.

For example, IBM's indexed sequential-access method (ISAM) uses a small
master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual file blocks. The file is kept sorted on a defined
key. To find a particular item, we first make a binary search of the master index,
which provides the block number of the secondary index. This block is read
in, and again a binary search is used to find the block containing the desired
record. Finally, this block is searched sequentially. In this way, any record can
be located from its key by at most two direct-access reads. Figure 10.5 shows a
similar situation as implemented by VMS index and relative files.

10.3 Directory Structure

Up to this point, we have been discussing "a file system." In reality, systems may
have zero or more file systems, and the file systems may be of varying types.
For example, a typical Solaris system may have a few UFS file systems, a VFS file
system, and some NFS file systems. The details of file system implementation
are found in Chapter 11.

The file systems of computers, then, can be extensive. Some systems store
millions of files on terabytes of disk. To manage all these data, we need to
organize them. This organization involves the use of directories. In this section,
we explore the topic of directory structure. First, though, we explain some basic
features of storage structure.

10.3.1 Storage Structure

A disk (or any storage device that is large enough) can be used in its entirety for
a file system. Sometimes, though, it is desirable to place multiple file systems
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on a disk or to use parts of a disk for a file system and other parts for other
things, such as swap space or unformatted (raw) disk space. These parts are
known variously as partitions, slices, or (in the IBM world) minidisks. A file
system can be created on each of these parts of the disk. As we shall see in the
next chapter, the parts can also be combined to form larger structures known as
volumes, and file systems can be created on these as well. For now, for clarity,
we simply refer to a chunk of storage that holds a file system as a volume. Each
volume can be thought of as a virtual disk. Volumes can also store multiple
operating systems, allowing a system to boot and run more than one.

Each volume that contains a file system must also contain information
about the files in the system. This information is kept in entries in a device
directory or volume table of contents. The device directory (more commonly
known simply as a directory) records information—such as name, location,
size, and type—for all files on that volume. Figure 10.6 shows a typical
file-system organization.

10.3.2 Directory Overview

The directory can be viewed as a symbol table that translates file names into
their directory entries. If we take such a view, we see that the directory itself
can be organized in many ways. We want to be able to insert entries, to delete
entries, to search for a named entry, and to list all the entries in the directory.
In this section, we examine several schemes for defining the logical structure
of the directory system.

When considering a particular directory structure, we need to keep in mind
the operations that are to be performed on a directory:

Search for a file. We need to be able to search a directory structure to find
the entry for a particular file. Since files have symbolic names and similar
names may indicate a relationship between files, we may want to be able
to find all files whose names match a particular pattern.

Create a file. New files need to be created and added to the directory.
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• Delete a file. When a file is no longer needed, we want to be able to remove
it from the directory.

• List a directory. We need to be able to list the files in a directory and the
contents of the directory entry for each file in the list.

• Rename a file. Because the name of a file represents its contents to its users,
we must be able to change the name when the contents or use of the file
changes. Renaming a file may also allow its position within the directory
structure to be changed.

• Traverse the file system. We may wish to access every directory and every
file within a directory structure. For reliability, it is a good idea to save the
contents and structure of the entire file system at regular intervals. Often,
we do this by copying all files to magnetic tape. This technique provides a
backup copy in case of system failure. In addition, if a file is no longer in
use., the file can be copied to tape and the disk space of that file released
for reuse by another file.

In the following sections, we describe the most common schemes for defining
the logical structure of a directory.

10.3.3 Single-Level Directory

The simplest directory structure is the single-level directory. All files are
contained in the same directory, which is easy to support and understand
(Figure 10.7).

A single-level directory has significant limitations, however, when the
number of files increases or when the system has more than one user. Since all
files are in the same directory, they must have unique names. If two users call
their data file test, then the unique-name rule is violated. For example, in one
programming class, 23 students called the program for their second assignment
progl; another 11 called i\ assign!. Although file names are generally selected to
reflect the content of the file, they are often limited in length, complicating the
task of making file names unique. The MS-DOS operating system allows only
11-character file names; UNIX, in contrast, allows 255 characters.

Even a single user on a single-level directory may find it difficult to
remember the names of all the files as the number of files increases. It is not
uncommon for a user to have hundreds of files on one computer system and an
equal number of additional files on another system. Keeping track of so many
files is a daunting task.

directory c.:'

3
Figure 10.7 Single-level directory.
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10.3.4 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of file names
among different users. The standard solution is to create a separate directory
for each user.

In the two-level directory structure, each user has his own user file
directory (LTD). The UFDs have similar structures, but each lists only the files
of a single user. When a user job starts or a user logs in, the system's master
file directory (MFD) is searched. The MFD is indexed by user name or account
number, and each entry points to the UFD for that user (Figure 10.8).

When a user refers to a particular file, only his own UFD is searched. Thus,
different users may have files with the same name, as long as all the file names
within each UFD are unique. To create a file for a user, the operating system
searches only that user's UFD to ascertain whether another file of that name
exists. To delete a file, the operating system confines its search to the local UFD;
thus, it cannot accidentally delete another user's file that has the same name.

The user directories themselves must be created and deleted as necessary.
A special system program is run with the appropriate user name and account
information. The program creates a new UFD and adds an entry for it to the PvlFD.
The execution of this program might be restricted to system administrators. The
allocation of disk space for user directories can be handled, with the techniques
discussed in Chapter 11 for files themselves.

Although the two-level directory structure solves the name-collision prob-
lem, it still has disadvantages. This structure effectively isolates one user from
another. Isolation is an advantage wrhen the users are completely independent
but is a disadvantage when the users want to cooperate on some task and to
access one another's files. Some systems simply do not allow local user files to
be accessed by other users.

If access is to be permitted, one user must have the ability to name a file
in another user's directory. To name a particular file uniquely in a two-level
directory, we must give both the user name and the file name. A two-level
directory can be thought of as a tree, or an inverted tree, of height 2. The root
of the tree is the MFD. Its direct descendants are the UFDs. The descendants of
the UFDs are the files themselves. The files are the leaves of the tree. Specifying
a user name and a file name defines a path in the tree from the root (the MFD)
to a leaf (the specified file). Thus, a user name and a file name define a path

master file
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O
Figure 10.8 Two-level directory structure.
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name. Every file in the system has a path name. To name a file uniquely, a user
must know the path name of the file desired.

For example, if user A wishes to access her own test file named test, she can
simply refer to test. To access the file named test of user B (with directory-entry
name userb), however, she might have to refer to /userb/test. Every system has
its own syntax for naming files in directories other than the user's own.

Additional syntax is needed to specify the volume of a file. For instance,
in MS-DOS a volume is specified by a letter followed by a colon. Thus, a file
specification might be C:\ userb\test. Some systems go even further and separate
the volume, directory name, and file name parts of the specification. For
instance, in VMS, the file login.com might be specified as: u:[sst.jdeckllogin.com;l,
where u is the name of the volume, sst is the name of the directory, jdeck is the
name of the subdirectory, and 1 is the version number. Other systems simply
treat the volume name as part of the directory name. The first name given is
that of the volume, and the rest is the directory and file. For instance, /u/pbg/test
might specify volume it, directory pbg, and file test.

A special case of this situation occurs with the system files. Programs pro-
vided as part of the system—loaders, assemblers, compilers, utility routines,
libraries, and so on—are generally defined as files. When the appropriate
commands are given to the operating system, these files are read by the loader
and executed. Many command interpreters simply treat such a command as the
name of a file to load and execute. As the directory system is defined presently,
this file name would be searched for in the current UFD. One solution would
be to copy the system files into each UFD. However, copying all the system files
would waste an enormous amount of space. (If the system files require 5 MB,
then supporting 12 users would require 5 x 12 = 60 MB just for copies of the
system files.)

The standard, solution is to complicate the search procedure slightly. A
special user directory is defined to contain the system files (for example, user
0). Whenever a file name is given to be loaded, the operating system first
searches the local UFD. If the file is found, it is used. If it is not found, the system
automatically searches the special user directory that contains the system files.
The sequence of directories searched when a file is named is called the search
path. The search path can be extended to contain an unlimited list of directories
to search when a command name is given. This method is the one most used
in UNIX and MS-DOS. Systems can also be designed so that each user has his
own search path.

10.3.5 Tree-Structured Directories

Once we have seen how to view a two-level directory as a two-level tree,
the natural generalization is to extend the directory structure to a tree of
arbitrary height (Figure 10.9). This generalization allows users to create their
own subdirectories and to organize their files accordingly. A tree is the most
common directory structure. The tree has a root directory, and every file in the
system has a unique path name.

A directory (or subdirectory) contains a set of files or subdirectories. A
directory is simply another file, but it is treated in a special way. All directories
have the same internal format. One bit in each directory entry defines the entry
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Figure 10.9 Tree-structured directory structure.

as a file (0) or as a subdirectory (1). Special system calls are used to create and
delete directories.

In normal use, each process has a current directory. The current directory
should contain most of the files that are of current interest to the process.
When reference is made to a file, the current directory is searched. If a file is
needed that is not in the current directory, then the user usually must either
specify a path name or change the current directory to be the directory holding
that file. To change directories, a system call is provided that takes a directory
name as a parameter and uses it to redefine the current directory. Thus, the
user can change his current directory whenever he desires. From one change
di rec tory system call to the next, all open system calls search the current
directory for the specified file. Note that the search path may or may not
contain a special entry that stands for "the current directory."

The initial current directory of the login shell of a user is designated when
the user job starts or the user logs in. The operating system searches the
accounting file (or some other predefined location) to find an entry for this
user (for accounting purposes). In the accounting file is a pointer to (or the
name of) the user's initial directory. This pointer is copied to a local variable
for this user that specifies the user's initial current directory. From that shell,
other processes can be spawned. The current directory of any subprocess is
usually the current directory of the parent when it was spawned.

Path names can be of two types: absolute and relative. An absolute path
name begins at the root and follows a path down to the specified file, giving
the directory names on the path. A relative path name defines a path from the
current directory. For example, in the tree-structured file system of Figure 10.9,
if the current directory is root/spell'/mail, then the relative path name prt/first
refers to the same file as does the absolute path name root/spcll/mail/prt/first.
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Allowing a user to define her own subdirectories permits her to impose
a structure on her files. This structure might result in separate directories for
files associated with different topics (for example, a subdirectory was created
to hold the text of this book) or different forms of information (for example, the
directory programs may contain source programs; the directory bin may store
ail the binaries).

An interesting policy decision in a tree-structured directory concerns how
to handle the deletion of a directory. If a directory is empty, its entry in the
directory that contains it can simply be deleted. However, suppose the directory
to be deleted is not empty but contains several files or subdirectories. One of
two approaches can be taken. Some systems, such as MS-DOS, will not delete a
directory unless it is empty. Thus, to delete a directory, the user must first delete
all the files in that directory. If any subdirectories exist, this procedure must
be applied recursively to them, so that they can be deleted also. This approach
can result in a substantial amount of work. An alternative approach, such as
that taken by the UNIX rm command, is to provide an option: When a request is
made to delete a directory, all that directory's files and subdirectories are also
to be deleted. Either approach is fairly easy to implement; the choice is one
of policy. The latter policy is more convenient, but it is also more dangerous,
because an entire directory structure can be removed with one command. If
that command is issued in error, a large number of files and directories will
need to be restored (assuming a backup exists).

With a tree-structured directory system, users can be allowed to access, in
addition to their files, the files of other users. For example, user B can access a
file of user A by specifying its path names. User B can specify either an absolute
or a relative path name. Alternatively, user B can change her current directory
to be user A's directory and access the file by its file names.

A path to a file in a tree-structured directory can be longer than a path
in a two-level directory. To allow users to access programs without having to
remember these long paths, the Macintosh operating system automates the
search for executable programs. It maintains a file, called the Desktop File,
containing the names and locations of all executable programs it has seen.
When a new hard disk or floppy disk is added to the system, or the network is
accessed, the operating system traverses the directory structure, searching for
executable programs on the device and recording the pertinent information.
This mechanism supports the double-click execution functionality described
previously. A double-click on a file causes its creator attribute to be read and
the Desktop File to be searched for a match. Once the match is found, the
appropriate executable program is started with the clicked-on file as its input.
The Microsoft Windows family of operating systems (95, 98, NT, 2000, XP)
maintains an extended two-level directory structure, with devices and. volumes
assigned drive letters (Section 10.4).

10.3.6 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The files asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and files of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in
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Figure 10.10 Acyclic-graph directory structure.

their own directories. The common subdirectory should be shared. A shared
directory or file will exist in the file system in two (or more) places at once.

A tree structure prohibits the sharing of files or directories. An acyclic graph
—that is, a graph with no cycles—allows directories to share subdirectories
and files (Figure 10.10). The same file or subdirectory may be in two different
directories. The acyclic graph is a natural generalization of the tree-structured
directory scheme.

It is important to note that a shared file (or directory) is not the same as two
copies of the file. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the file, the changes will not
appear in the other's copy. With a shared file, only one actual file exists, so any
changes made by one person are immediately visible to the other. Sharing is
particularly important for subdirectories; a new file created by one person will
automatically appear in all the shared subdirectories.

When people are working as a team, all the files they want to share can be
put into one directory. The UFD of each team member will contain this directory
of shared files as a subdirectory. Even in the case of a single user, the user's file
organization may require that some file be placed in different subdirectories.
For example, a program written for a particular project should be both in the
directory of all programs and in the directory for that project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by many of the UNIX systems, is to create a new
directory entry called a link. A link is effectively a pointer to another file or
subdirectory. For example, a link may be implemented as an absolute or a
relative path name. When a reference to a file is made, we search the directory.
If the directory entry is marked as a link, then the name of the real file is
included in the link information. We resolve the link by using that path name
to locate the real file. Links are easily identified by their format in the directory
entry (or by their having a special type on systems that support types) and are
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effectively named indirect pointers. The operating system ignores these links
when traversing directory trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to
duplicate all information about them in both sharing directories. Thus, both
entries are identical and equal. A link is clearly different from the original
directory entry; thus, the two are not equal. Duplicate directory entries,
however, make the original and the copy indistinguishable. A .major problem
with duplicate directory entries is maintaining consistency when a file is
modified.

An acyclic-graph directory structure is more flexible than is a simple tree
structure, but it is also more complex. Several problems must be considered
carefully. A file may now have multiple absolute path names. Consequently,
distinct file names may refer to the same file. This situation is similar to the
aliasing problem for programming languages. If we are trying to traverse the
entire file system—to find a file, to accumulate statistics on all files, or to copy
all files to backup storage—this problem becomes significant, since we do not
want to traverse shared structures more than once.

Another problem involves deletion. When can the space allocated to a
shared file be deallocated and reused? One possibility is to remove the file
whenever anyone deletes it, but this action may leave dangling pointers to the
now-nonexistent file. Worse, if the remaining file pointers contain actual disk
addresses, and the space is subsequently reused for other files, these dangling
pointers may point into the middle of other files.

In a system where sharing is implemented by symbolic links, this situation
is somewhat easier to handle. The deletion of a link need not affect the original
file; only the link is removed. If the file entry itself is deleted, the space for
the file is deallocated, leaving the links dangling. We can search for these links
and remove them as well, but unless a list of the associated links is kept with
each file, this search can be expensive. Alternatively, we can leave the links
until an attempt is made to use them. At that time, we can determine that the
file of the name given by the link does not exist and can fail to resolve the
link name; the access is treated just as with any other illegal file name. (In this
case, the system designer should consider carefully what to do when a file is
deleted and another file of the same name is created, before a symbolic link to
the original file is used.) In the case of UNIX, symbolic links are left when a file
is deleted, and it is up to the user to realize that the original file is gone or has
been replaced. Microsoft Windows (all flavors) uses the same approach.

Another approach to deletion is to preserve the file until all references to
it are deleted. To implement this approach, we must have some mechanism
for determining that the last reference to the file has been deleted. We could
keep a list of all references to a file (directory entries or symbolic links). When
a link or a copy of the directory entry is established, a new entry is added to
the file-reference list. When a link or directory entry is deleted, we remove its
entry on the list. The file is deleted when its file-reference list is empty.

The trouble with this approach is the variable and potentially large size of
the file-reference list. However, we really do not need to keep the entire list
—we need to keep only a count of the number of references. Adding a new
link or directory entry increments the reference count; deleting a link or entry
decrements the count. When the count is 0, the file can be deleted; there are
no remaining references to it. The UNIX operating system uses this approach
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for nonsymboiic links (or hard links), keeping a reference count in tile file
information block (or inode; see Appendix A.7.2). By effectively prohibiting
multiple references to directories, we maintain an acyclic-graph structure.

To avoid problems such as the ones just discussed, some systems do
not allow shared directories or links. For example,, in MS-DOS, the directory
structure is a tree structure rather than an acyclic graph.

10.3.7 General Graph Directory

A serious problem with using an acyclic-graph structure is ensuring that there
are no cycles. If we start with a two-level directory and allow users to create
subdirectories, a tree-structured directory results. It should be fairly easy to see
that simply adding new files and subdirectories to an existing tree-structured
directory preserves the tree-structured nature. However, when we add links to
an existing tree-structured directory, the tree structure is destroyed, resulting
in a simple graph structure (Figure 10.11).

The primary advantage of an acyclic graph is the relative simplicity of the
algorithms to traverse the graph and to determine when there are no more
references to a file. We want to avoid traversing shared sections of an acyclic
graph twice, mainly for performance reasons. If we have just searched a major
shared subdirectory for a particular file without finding it, we want to avoid
searching that subdirectory again; the second search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to
avoid searching any component twice, for reasons of correctness as well as
performance. A poorly designed algorithm might result in an infinite loop
continually searching through the cycle and never terminating. One solution
is to limit arbitrarily the number of directories that will be accessed during a
search.

A similar problem exists when we are trying to determine when a file
can be deleted. With acyclic-graph directory structures, a value of 0 in the
reference count means that there are no more references to the file or directory,

root aw ic jim

book, :>iml unhcv hyp

Figure 10.11 General graph directory.
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and the file can be deleted. However, when cycles exist, the reference count
may not be 0 even when it is no longer possible to refer to a directory or file.
This anomaly results from the possibility of self-referencing (or a cycle) in the
directory structure. In this case, we generally need to use a garbage-collection
scheme to determine when the last reference has been deleted and the disk
space can be reallocated. Garbage collection involves traversing the entire file
system, marking everything that can be accessed. Then, a second pass collects
everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or search will cover everything
in the file system once and only once.) Garbage collection for a disk-based file
system., however, is extremely time consuming and is thus seldom attempted.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure is much easier to work with. The difficulty
is to avoid cycles as new links are added to the structure. How do we know
when a new link will complete a cycle? There are algorithms to detect cycles
in graphs; however, they are computationally expensive, especially when the
graph is on disk storage. A simpler algorithm in the special case of directories
and links is to bypass links during directory traversal. Cycles are avoided, and
no extra overhead is incurred.

10.4 File-System Mounting

Just as a file must be opened before it is used, a file system must be mounted
before it can be available to processes on the system. More specifically, the
directory structure can be built out of multiple volumes, which must be
mounted to make them available within the file-system name space.

The mount procedure is straightforward. The operating system is given the
name of the device and the mount point—the location within the file structure
where the file system is to be attached. Typically, a mount point is an empty
directory. For instance, on a UNIX system, a file system containing a user's home
directories might be mounted as /home; then, to access the directory structure
within that file system, we could precede the directory names with ftiome, as
in /homc/janc. Mounting that file system under /users would result in the path
name /users/jane, which we could use to reach the same directory.

Next, the operating system verifies that the device contains a valid file
system. It does so by asking the device driver to read the device directory
and verifying that the directory has the expected format. Finally, the operating
system notes in its directory structure that a file system is mounted at the
specified mount point. This scheme enables the operating system to traverse
its directory structure, switching among file systems as appropriate.

To illustrate file mounting, consider the file system depicted in Figure
10.12, where the triangles represent subtrees of directories that are of interest.
Figure 10.12(a) shows an existing file system, while Figure 10.12(b) shows an
unmounted volume residing on /device'/dsk. At this point, only the files on the
existing file system can be accessed. Figure 10.13 shows the effects of mounting
the volume residing on /device/dsk over /users. If the volume is unmounted, the
file system is restored to the situation depicted in Figure 10.12.

Systems impose semantics to clarify functionality. For example, a system
may disallow a mount over a directory that contains files; or it may make the
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Figure 10.12 File system, (a) Existing system, (b) Unmounted volume.

mounted file system available at that directory and obscure the directory's
existing files until the file system is unmounted, terminating the use of the file
system and allowing access to the original files in that directory. As another
example, a system may allow the same file system to be mounted repeatedly,
at different mount points; or it may only allow one mount per file system.

Consider the actions of the Macintosh operating system. Whenever the
system encounters a disk for the first time (hard disks are found at boot time,
and floppy disks are seen when they are inserted into the drive), the Macintosh
operating system searches for a file system on the device. If it finds one, it
automatically mounts the file system at the root level, adding a folder icon on
the screen labeled with the name of the file system (as stored in the device
directory). The user is then able to click on the icon and thus display the newly
motinted file system.

The Microsoft Windows family of operating systems (95, 98, NT, small
2000, XP) maintains an extended two-level directory structure, with devices

jane

doc

Figure 10.13 Mount point.
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and volumes assigned drive letters. Volumes have a general graph directory
structure associated with the drive letter. The path to a specific file takes the
form of drive-letter;\path\to\file. The more recent versions of Windows allow a
file system to he mounted anywhere in the directory tree, just as UNIX does.
Windows operating systems automatically discover all devices and mount
all located file systems at boot time. In some systems, like UNIX, the mount
commands are explicit. A system configuration file contains a list of devices
and mount points for automatic mounting at boot time, but other mounts may
be executed manually.

Issues concerning file system mounting are further discussed in Section
11.2.2 and in Appendix A.7.5.

10.5 File Sharing

In the previous sections, we explored the motivation for file sharing and some of
the difficulties involved in allowing users to share files. Such file sharing is very
desirable for users who want to collaborate and to reduce the effort required
to achieve a computing goal. Therefore, user-oriented operating systems must
accommodate the need to share files in spite of the inherent difficulties.

In this section, we examine more aspects of file sharing. W'e begin by
discussing general issues that arise when multiple users share files. Once
multiple users are allowed to share files, the challenge is to extend sharing
to multiple file systems, including remote file systems; and we discuss that
challenge as well. Finally, we consider what to do about conflicting actions
occurring on shared files. For instance, if multiple users are writing to a file,
should all the writes be allowed to occur, or should the operating system protect
the user actions from one another?

10.5.1 Multiple Users

When an operating system accommodates multiple users, the issues of file
sharing, file naming, and file protection become preeminent. Given a directory
structure that allows files to be shared by users, the system must mediate the
file sharing. The system can either allow a user to access the files of other users
by default or require that a user specifically grant access to the files. These are
the issues of access control and protection, which are covered in Section 10.6.

To implement sharing and protection, the system must maintain more file
and directory attributes than are needed on a single-user system. Although
many approaches have been taken to this requirement historically, most
systems have evolved to use the concepts of file (or directory) owner (or user)
and group. The owner is the user who can change attributes and grant access
and who has the most control over the file. The group attribute defines a
subset of users who can share access to the file. For example, the owner of a
file on a UNIX system can issue all operations on a file, while members of the
file's group can execute one subset of those operations, and all other users can
execute another subset of operations. Exactly which operations can be executed
by group members and other users is definable by the file's owner. More details
on permission attributes are included in the next section.
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The owner and group IDs of a given file (or directory) are stored with the
other file attributes. When a user requests an operation on a file, the user ID can
be compared with the owner attribute to determine if the requesting user is the
owner of the file. Likewise, the group IDs can be compared. The result indicates
which permissions are applicable. The system then applies those permissions
to the requested operation and allows or denies it.

Many systems have multiple local file systems, including volumes of a
single disk or multiple volumes on multiple attached disks. In these cases,
the ID checking and permission matching are straightforward, once the file
systems are mounted.

10.5,2 Remote Fi!e Systems

With the advent of networks (Chapter 16), communication among remote
computers became possible. Networking allows the sharing of resources spread
across a campus or even around the world. One obvious resource to share is
data in the form of files.

Through the evolution of network and file technology, remote file-sharing
methods have changed. The first implemented method involves manually
transferring files between machines via programs like ftp. The second major
method uses a distributed file system (DFS) in which remote directories are
visible from a local machine. In some ways, the third method, the World Wide
Web, is a reversion to the first. A browser is needed to gain access to the
remote files, and separate operations (essentially a wrapper for ftp) are used
to transfer files.

f tp is used for both anonymous and authenticated access. Anonymous
access allows a user to transfer files without having an account on the remote
system. The World Wide Web uses anonymous file exchange almost exclusively.
DFS involves a much tighter integration between the machine that is accessing
the remote files and the machine providing the files. This integration adds
complexity, which we describe in this section.

10.5.2.1 The Client- Server Model

Remote file systems allow a computer to mount one or more file systems
from one or more remote machines. In this case, the machine containing the
files is the server, and the machine seeking access to the files is the client. The
client-server relationship is common with networked machines. Generally,
the server declares that a resource is available to clients and specifies exactly
which resource (in this case, which files) and exactly which clients. A server
can serve multiple clients, and a client can use multiple servers, depending on
the implementation details of a given client-server facility.

The server usually specifies the available files on a volume or directory
level. Client identification is more difficult. A client can be specified by a
network name or other identifier, such as an IP address, but these can be spoofed,
or imitated. As a result of spoofing, an unauthorized client could be allowed
access to the server. More secure solutions include secure authentication of the
client via encrypted keys. Unfortunately, with security come many challenges,
including ensuring compatibility of the client and server (they must use the
same encryption algorithms) and security of key exchanges (intercepted keys
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could again allow unauthorized access). Because of the difficulty of solving
these problems, unsecure authentication methods are most commonly used.

In the case of UNIX and its network file system (NFS), authentication takes
place via the client networking information, by default. In this scheme, the
user's IDs on the client and server must match. If they do not, the server will
be unable to determine access rights to files. Consider the example of a user
who has an ID of 1000 on the client and 2000 on the server. A request from
the client to the server for a specific file will not be handled appropriately, as
the server will determine if user 1000 has access to the file rather than basing
the determination on the real user ID of 2000. Access is thus granted or denied
based on incorrect authentication information. The server must trust the client
to present the correct user ID. Note that the NFS protocols allow many-to-many
relationships. That is, many servers can provide files to many clients. In fact,
a given machine can be both a server to other NFS clients and a client of other
NFS servers.

Once the remote file system is mounted, file operation requests are sent
on behalf of the user across the network to the server via the DFS protocol.
Typically, a file-open request is sent along with the ID of the requesting user.
The server then applies the standard access checks to determine if the user has
credentials to access the file in the mode requested. The request is either allowed
or denied. If it is allowed, a file handle is returned to the client application,
and the application then can perform read, write, and other operations on the
file. The client closes the file when access is completed. The operating system
may apply semantics similar to those for a local file-system mount or may use
different semantics.

10.5.2.2 Distributed Information Systems

To make client-server systems easier to manage, distributed information
systems, also known as distributed naming services, provide unified access
to the information needed for remote computing. The domain name sys-
tem (DNS) provides host-name-to-network-address translations for the entire
Internet (including the World Wide Web). Before DNIS became widespread,
files containing the same information were sent via e-mail or f tp between all
networked hosts. This methodology was not scalable. DNS is further discussed
in Section 16.5.1.

Other distributed information systems provide user name/password/user
ID/group ID space for a distributed facility. UNIX systems have employed a wide
variety of distributed-information methods. Sun Microsystems introduced
yellow pages (since renamed network information service, or NIS), and most of
the industry adopted its use. It centralizes storage of user names, host names,
printer information, and the like. Unfortunately, it uses unsecure authentication
methods, including sending user passwords unencrypted (in clear text) and
identifying hosts by IF address. Sun's NIS— is a much more secure replacement
for NIS but is also much more complicated and has not been widely adopted.

In the case of Microsofts common internet file system (CIFS), network
information is used in conjunction with user authentication (user name and
password) to create a network login that the server uses to decide whether
to allow or deny access to a requested file system. For this authentication
to be valid, the user names must match between the machines (as with
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NFS). Microsoft uses two distributed naming structures to provide a single
name space for users. The older naming technology is domains. The newer
technology, available in Windows XP and Windows 2000, is active directory.
Once established, the distributed naming facility is used by all clients and
servers to authenticate users.

The industry is moving toward use of the lightweight directory-access
protocol (LDAP) as a secure distributed naming mechanism. In fact, active
directory is based on LDAP. Sun Microsystems includes LDAP with the
operating system and allows it to be used for user authentication as well
as system-wide retrieval of information, such as availability of printers.
Conceivably, one distributed LDAP directory could be used by an organization
to store all user and resource information for all the organization's computers.
The result would be secure single sign-on for users, who would enter
their authentication information once for access to all computers within the
organization. It would also ease systems-administration efforts by combining,
in one location, information that is currently scattered in various files on each
system or in different distributed information services.

10.5.2.3 Failure Modes

Local file systems can fail for a variety of reasons, including failure of the
disk containing the file system, corruption of the directory structure or other
disk-management information (collectively called metadata), disk-controller
failure, cable failure, and host-adapter failure. User or systems-administrator
failure can also cause files to be lost or entire directories or volumes to be
deleted. Many of these failures will cause a host to crash and an error condition
to be displayed, and human intervention will be required to repair the damage.

Remote file systems have even more failure modes. Because of the
complexity of network systems and the required interactions between remote
machines, many more problems can interfere with the proper operation of
remote file systems. In the case of networks, the network can be interrupted
between two hosts. Such interruptions can result from hardware failure, poor
hardware configuration, or networking implementation issues. Although some
networks have built-in resiliency, including multiple paths between hosts,
many do not. Any single failure can thus interrupt the flow of DFS commands.

Consider a client in the midst of using a remote file system. It has files open
from the remote host; among other activities, it may be performing directory
lookups to open files, reading or writing data to files, and closing files. Now
consider a partitioning of the network, a crash of the server, or even a scheduled
shutdown of the server. Suddenly, the remote file system is no longer reachable.
This scenario is rather common, so it would not be appropriate for the client
system to act as it would if a local file system were lost. Rather, the system can
either terminate all operations to the lost server or delay operations until the
server is again reachable. These failure semantics are defined and implemented
as part of the remote-file-system protocol. Termination of all operations can
result in users' losing data—and patience. Thus, most DFS protocols either
enforce or allow delaying of file-system operations to remote hosts, with the
hope that the remote host will become available again.

To implement this kind of recovery from failure, some kind of state
information may be maintained on both the client and the server. If both server
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and client maintain knowledge of their current activities and open files, then
they can seamlessly recover from a failure. In the situation where the server
crashes but must recognize that it has remotely mounted exported file systems
and opened files, NFS takes a simple approach, implementing a stateless DFS.
In essence, it assumes that a client request for a file read or write would not
have occurred unless the file system had been remotely mounted and the file
had been previously open. The NFS protocol carries all the information needed
to locate the appropriate file and perform the requested operation. Similarly,
it does not track which clients have the exported volumes mounted, again
assuming that if a request comes in, it must be legitimate. While this stateless
approach makes NFS resilient and rather easy to implement, it also makes it
unsecure. For example, forged read or write requests could be allowed by an
NFS server even though the requisite mount request and permission check
have not taken place. These issues are addressed in the industry standard NFS
version 4, in which NFS is inade stateful to improve its security, performance,
and functionality.

10.5.3 Consistency Semantics

Consistency semantics represent an important criterion for evaluating any
file system that supports file sharing. These semantics specify how multiple
users of a system are to access a shared file simultaneously. In particular, they
specify when modifications of data by one user will be observable by other
users. These semantics are typically implemented as code with the file system.

Consistency semantics are directly related to the process-synchronization
algorithms of Chapter 6. However, the complex algorithms of that chapter tend
not to be implemented in the case of file I/O because of the great latencies and
slow transfer rates of disks and networks. For example, performing an atomic
transaction to a remote disk could involve several network communications,
several disk reads and writes, or both. Systems that attempt such a full set of
functionalities tend to perform poorly. A successful implementation of complex
sharing semantics can be found in the Andrew file system.

For the following discussion, we assume that a series of file accesses (that
is, reads and writes) attempted by a user to the same file is always enclosed
between the openQ and c lose() operations. The series of accesses between
the openO and close () operations makes up a file session. To illustrate the
concept, we sketch several prominent examples of consistency semantics.

10.5.3.1 UNIX Semantics

The UMIX file system (Chapter 17) uses the following consistency semantics:

• Writes to an open file by a user are visible immediately to other users that
have this file open.

• One mode of sharing allows users to share the pointer of current location
into the file. Thus, the advancing of the pointer by one user affects all
sharing users. Here, a file has a single image that interleaves all accesses,
regardless of their origin.

In the UNIX semantics, a file is associated with a single physical image that
is accessed as an exclusive resource. Contention for this single image causes
delays in user processes.
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10.5.3.2 Session Semantics

The Andrew file system (AFS) (Chapter 17) uses the following consistency
semantics:

• Writes to an open file by a user are not visible immediately to other users
that have the same file open.

• Once a file is closed, the changes made to it are visible only in sessions
starting later. Already open instances of the file do not reflect these changes.

According to these semantics, a file may be associated temporarily with several
(possibly different) images at the same time. Consequently, multiple xisers are
allowed to perform both read and write accesses concurrently on their images
of the file, without delay. Almost no constraints are enforced on scheduling
accesses.

10.5.3.3 Immutable-Shared-Files Semantics

A unique approach is that of immutable shared files. Once a file is declared
as shared by its creator, it cannot be modified. An immutable file has two key
properties: Its name may not be reused, and its contents may not be altered.
Thus, the name of an immutable file signifies that the contents of the file are
fixed. The implementation of these semantics in a distributed system (Chapter
17) is simple, because the sharing is disciplined (read-only).

10,6 Protection

When information is stored in a computer system, we want to keep it safe from
physical damage (reliability) and improper access (protection).

Reliability is generally provided by duplicate copies of files. Many comput-
ers have systems programs that automatically (or through computer-operator
intervention) copy disk files to tape at regular intervals (once per day or week
or month) to maintain a copy should a file system be accidentally destroyed.
File systems can be damaged by hardware problems (such as errors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes,
and vandalism. Files may be deleted accidentally. Bugs in the file-system soft-
ware can also cause file contents to be lost. Reliability is covered in more detail
in Chapter 12.

Protection can be provided in many ways. For a small single-user system,
we might provide protection by physically removing the floppy disks and
locking them in a desk drawer or file cabinet. In a multiuser system, however,
other mechanisms are needed.

10.6.1 Types of Access

The need to protect files is a direct result of the ability to access files. Systems
that do not permit access to the files of other users do not need protection. Thus,
we could provide complete protection by prohibiting access. Alternatively, we
could provide free access with no protection. Both approaches are too extreme
for general use. What is needed is controlled access.
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Protection mechanisms provide controlled access by limiting the types of
file access that can be made. Access is permitted or denied depending on
several factors, one of which is the type of access requested. Several different
types of operations may be controlled:

• Read. Read from the file.

• Write. Write or rewrite the file.

• Execute. Load the file into memory and execute it.

• Append. Write new information at the end of the file.

• Delete. Delete the file and tree its space for possible reuse.

• List. List the name and attributes of the file.

Other operations, such as renaming, copying, and editing the file, may also
be controlled. For many systems, however, these higher-level functions may
be implemented by a system program that makes lower-level system calls.
Protection is provided at only the lower level. For instance, copying a file may
be implemented simply by a sequence of read requests. In this case, a user with
read access can also cause the file to be copied, printed, and so on.

Many protection mechanisms have been proposed. Each has advantages
and disadvantages and must be appropriate for its intended application. A
small computer system that is used by only a few members of a research group,
for example, may not need the same types of protection as a large corporate
computer that is used for research, finance, and personnel operations. We
discuss some approaches to protection in the following sections and present a
more complete treatment in Chapter 14.

10.6.2 Access Control

The most common approach to the protection problem is to make access
dependent on the identity of the user. Different users may need different types
of access to a. file or directory. The most general scheme to implement identity-
dependent access is to associate with each file and directory an access-control
list (ACL) specifying user names and the types of access allowed for each user.
When a user requests access to a particular file, the operating system checks
the access list associated with that file. If that user is listed for the requested
access, the access is allowed. Otherwise, a protection violation occurs, and the
user job is denied access to the file.

This approach has the advantage of enabling complex access methodolo-
gies. The main problem with access lists is their length. If we want to allow
everyone to read a file, we must list all users with read access. This technique
has two undesirable consequences:

• Constructing such a list may be a tedious and unrewarding task, especially
if we do not know in advance the list of users in the system.

« The directory entry, previously of fixed size, now needs to be of variable
size, resulting in more complicated space management.
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These problems can be resolved by use of a condensed version of the afccess
list.

To condense the length of the access-control list, many systems recognize
three classifications of users in connection with each file:

• Owner. The user who created the file is the owner.

• Group. A set of users who are sharing the file and need similar access is a
group, or work group.

• Universe. All other users in the system constitute the universe.

The most common recent approach is to combine access-control lists with
the more general (and easier to implement) owner, group, and universe access-
control scheme just described. For example, Solaris 2.6 and beyond use the
three categories of access by default but allow access-control lists to be added
to specific files and directories when more fine-grained access control is desired.

To illustrate, consider a person, Sara, who is writing a new book. She has
hired three graduate students (Jim, Dawn, and Jill) to help with the project.
The text of the book is kept in a file named book. The protection associated with
this file is as follows:

• Sara should be able to invoke all operations on the file.

• Jim, Dawn, and Jill should be able only to read and write the file; they
should not be allowed to delete the file.

• All other users should be able to read, but not write, the file. (Sara is
interested in letting as many people as possible read the text so that she
can obtain appropriate feedback.)

To achieve such protection, we must create a new group—say, text—
with members Jim, Dawn, and Jill. The name of the group, text, must then
be associated with the file book, and the access rights must be set in accordance
with the policy we have outlined.

Now consider a visitor to whom Sara would like to grant temporary access
to Chapter 1. The visitor cannot be added to the text group because that would
give him access to all chapters. Because a file can only be in one group, another
group cannot be added to Chapter 1. With the addition of access-control-list
functionality, the visitor can be added to the access control list of Chapter 1.

For this scheme to work properly, permissions and access lists must be
controlled tightly. This control can be accomplished in several ways. For
example, in the UNIX system, groups can be created and modified only by
the manager of the facility (or by any superuser). Thus, this control is achieved
through human interaction. In the VMS system, the owner of the file can create
and modify this list. Access lists are discussed further in Section 14.5.2.

With the more limited protection classification, only three fields are needed
to define protection. Often, each field is a collection of bits, and each bit either
allows or prevents the access associated with it. For example, the UNfX system
defines three fields of 3 bits each—rwx, where r controls read access, w controls
write access, and x controls execution. A separate field is kept for the file owner,
for the file's group, and for all other users. In this scheme, nine bits per file are
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needed to record protection information. Thus, tor our example, the protection
fields for the file book are as follows: For the owner Sara, all bits are set; for the
group text, the r and w bits are set; and for the universe, only the r bit is set.

One difficulty in combining approaches comes in the user interface. Users
must be able to tell when the optional ACL perinissions are set on a file. In the
Solaris example, a "+" appends the regular permissions, as in:

19 -rw-r—r—+ 1 jim staff 130 May 25 22:13 f i l e l

A separate set of commands, setf acl and ge t fac l , are used to manage the
ACLs.

Windows XP users typically manage access-control lists via the GUI. Figure
10.14 shows a file-permission window on Windows XP's NTFS file system. In
this example, user "guest" is specifically denied access to the file 10.lex.

) General Security Summary;

Group or user names:

I f j ! Administrators (FBG-LAPTOFVclrninistratoriJ

! S | •' ' ! ; ' • ' ' ' '' " i
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Permissions for Guest
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Read & Execute
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Add... Remove

Allow Deny
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D
•
•
•

For special permissions or for advanced settings,
click Advanced.

Advanced

Figure 10.14 Windows XP access-control list management.



406 Chapter 10 File-System Interface

Another difficulty is assigning precedence when permission and'ACLs
conflict. For example, if Joe is in a file's group, which has read permission,
but the file has an ACL granting Joe read and write permission, should a write
by Joe be granted or denied? Solaris gives ACLs permission (as they are more
fine-grained and are not assigned by default). This follows the general rule that
specificity should have priority.

10.6.3 Other Protect ion A p p r o a c h e s

Another approach to the protection problem is to associate a password with
each file. Just as access to the computer system is often controlled by a
password, access to each file can be controlled in the same way. If the passwords
are chosen randomly and changed often, this scheme may be effective in
limiting access to a file. The use of passwords has a few disadvantages,
however. First, the number of passwords that a user needs to remember may
become large, making the scheme impractical. Second, if only one password is
used for all the files, then once it is discovered, all files are accessible; protection
is on an all-or-none basis. Some systems (for example, TOPS-20) allow a user
to associate a password with a subdirectory, rather than with an individual
file, to deal with this problem. The IBMVM/CMS operating system allows three
passwords for a minidisk—one each for read, write, and multiwrite access.
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Some single-user operating systems—such as MS-DOS and earlier versions
of the Macintosh operating system prior to Mac OS X—provide little in terms
of file protection. In scenarios where these older systems are now being placed
on networks where file sharing and communication are necessary, protection
mechanisms must be retrofitted into them. Designing a feature for a new
operating system is almost always easier than adding a feature to an existing
one. Such updates are usually less effective and are not seamless.

In a multilevel directory structure, we need to protect not only individual
files but also collections of files in subdirectories; that is, we need to provide
a mechanism for directory protection. The directory operations that must be
protected are somewhat different from the file operations. We want to control
the creation and deletion of files in a directory. In addition, we probably want
to control whether a user can determine the existence of a file in a directory.
Sometimes, knowledge of the existence and name of a file is significant in itself.
Thus, listing the contents of a directory must be a protected operation. Similarly,
if a path name refers to a file in a directory, the user must be allowed access
to both the directory and the file. In systems where files may have numerous
path names (such as acyclic or general graphs), a given user may have different
access rights to a particular file, depending on the path name used.

10.7 Summary

A file is an abstract data type defined and implemented by the operating
system. It is a sequence of logical records. A logical record may be a byte, a line
(of fixed or variable length), or a more complex data item. The operating system
may specifically support various record types or may leave that support to the
application program.

The major task for the operating system is to map the logical file concept
onto physical storage devices such as magnetic tape or disk. Since the physical
record size of the device may not be the same as the logical record size, it may
be necessary to order logical records into physical records. Again, this task may
be supported by the operating system or left for the application program.

Each device in a file system keeps a volume table of contents or device
directory listing the location of the files on the device. In addition, it is useful
to create directories to allow files to be organized. A single-level directory
in a multiuser system causes naming problems, since each file must have a
unique name. A two-level directory solves this problem by creating a separate
directory for each user. Each user has her own directory, containing her own
files. The directory lists the files by name and includes the file's location on the
disk, length, type, owner, time of creation, time of last use, and so on.

The natural generalization of a two-level directory is a tree-structured
directory. A tree-structured directory allows a user to create subdirectories
to organize files. Acyclic-graph directory structures enable users to share
subdirectories and files but complicate searching and deletion. A general graph
structure allows complete flexibility in the sharing of files and directories but
sometimes requires garbage collection to recover unused disk space.

Disks are segmented into one or more volumes, each containing a file
system or left "raw." File systems may be .mounted into the system's naming
structures to make them available. The naming scheme varies by operating
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system. Once mounted, the files within the volume are available for use. File
systems may be unmounted to disable access or for maintenance.

File sharing depends on the semantics provided by the system. Files may
have multiple readers, multiple writers, or limits on sharing. Distributed file
systems allow client hosts to mount volumes or directories from, servers, as long
as they can access each other across a network. Remote file systems present
challenges in reliability, performance, and security. Distributed information
systems maintain user, host, and access information so that clients and servers
can share state information to manage use and access.

Since files are the main information-storage mechanism in most computer
systems, file protection is needed. Access to files can be controlled separately
for each type of access—read, write, execute, append, delete, list directory, and
so on. File protection can be provided by passwords, by access lists, or by other
techniques.

Exercises

10.1 Consider a file system where a file can be deleted and its disk space
reclaimed while links to that file still exist. What problems may occur if
a new file is created in the same storage area or with the same absolute
path name? How can these problems be avoided?

10.2 The open-file table is used to maintain information about files that are
currently open. Should the operating system maintain a separate table
for each user or just maintain one table that contains references to files
that are being accessed by all users at the current time? if the same file
is being accessed by two different programs or users, should there be
separate entries in the open file table?

10.3 What are the advantages and disadvantages of a system providing
mandatory locks instead of providing advisory locks whose usage is
left to the users' discretion?

10.4 What are the advantages and disadvantages of recording the name
of the creating program with the file's attributes (as is done in the
Macintosh operating system)?

10.5 Some systems au tomatically open a file when it is referenced for the first
time and. close the file when the job terminates. Discuss the advantages
and disadvantages of this scheme compared with the more traditional
one, where the user has to open and close the file explicitly.

10.6 If the operating system were to know that a certain application is going
to access the file data in a sequential manner, how could it exploit this
information to improve performance?

10.7 Give an example of an application that could benefit from operating
system support for random access to indexed files.

10.8 Discuss the merits and demerits of supporting links to files that cross
mount points (that is, the file link refers to a file that is stored in a
different volume).
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10.9 Some systems provide file sharing by maintaining a single copy of a
file; other systems maintain several copies, one for each of the users
sharing the file. Discuss the relative merits of each approach.

10.10 Discuss the advantages and disadvantages of associating with remote
file systems (stored on file servers) a different set of failure semantics
from that associated with local file systems.

10.11 What are the implications of supporting UNIX consistency semantics
for shared access for those files that are stored on remote file systems.
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* CHAPTER

As we saw in Chapter 10, the file system provides the mechanism for on-line
storage and access to file contents, including data and programs. The file system
resides permanently on secondary storage, which is designed to hold a large
amount of data permanently. This chapter is primarily concerned with issues
surrounding file storage and access on the most common secondary-storage
medium, the disk. We explore ways to structure file use, to allocate disk space,
to recover freed space, to track the locations of data, and to interface other
parts of the operating system to secondary storage. Performance issues are
considered throughout the chapter.

CHAPTER OBJECTIVES

• To describe the details of implementing local file systems and directory
structures.

• To describe the implementation of remote file systems.

• To discuss block allocation and free-block algorithms and trade-offs.

11.1 File-System Structure

Disks provide the bulk of secondary storage on which a file system is
maintained. They have two characteristics that make them a convenient
medium for storing multiple files:

1. A disk can be rewritten in place; it is possible to read a block from the
disk, modify the block, and write it back into the same place.

2. A disk can access directly any given block of information it contains.
Thus, it is simple to access any file either sequentially or randomly, and
switching from one file to another requires only moving the read-write
heads and waiting for the disk to rotate.

We discuss disk structure in great detail in Chapter 12.

411



412 Chapter 11 File-System Implementation

Rather than transferring a byte at a time, to improve I/O efficiency, I/O
transfers between memory and disk are performed in units of blocks. Each
block has one or more sectors. Depending on the disk drive, sectors vary from
32 bytes to 4,096 bytes; usually, they are 512 bytes.

To provide efficient and convenient access to the disk, the operating system
imposes one or more file systems to allow the data to be stored, located, and
retrieved easily. A file system poses two quite different design problems. The
first problem is defining how the file system should look to the user. This task
involves defining a file and its attributes, the operations allowed on a file, and
the directory structure for organizing files. The second problem is creating
algorithms and data structures to map the logical file system onto the physical
secondary-storage devices.

The file system itself is generally composed of many different levels. The
structure shown in Figure 11.1 is an example of a layered design. Each level in
the design uses the features of lower levels to create new features for use by-
higher levels.

The lowest level, the I/O control, consists of device drivers and interrupt
handlers to transfer information between the main memory and the disk
system. A device driver can be thought of as a translator. Its input consists of
high-level commands such as "retrieve block 123." Its output consists of low-
level, hardware-specific instructions that are used by the hardware controller,
which interfaces the I/O device to the rest of the system. The device driver
usually writes specific bit patterns to special locations in the I/O controller's
memory to tell the controller which device location to act on and what actions
to take. The details of device drivers and the I/O infrastructure are covered in
Chapter 13.

The basic file system needs only to issue generic commands to the
appropriate device driver to read and write physical blocks on the disk. Each
physical block is identified by its numeric disk address (for example, drive 1,
cylinder 73, track 2, sector 10).

application programs

logical file system

file-organization module

basic file system

I/O control

devices

Figure 11.1 Layered file system.



11.2 File-System Implementation 413

The file-organization module knows about files and their logical blocks,
as well as physical blocks. By knowing the type of file allocation used and
the location of the file, the file-organization module can translate logical block
addresses to physical block addresses for the basic file system to transfer.
Each file's logical blocks are numbered from 0 (or 1) through N. Since the
physical blocks containing the data usually do not match the logical numbers,
a translation is needed to locate each block. The file-organization module also
includes the free-space manager, which tracks unallocated blocks and provides
these blocks to the file-organization module when requested.

Finally, the logical file system manages metadata information. Metadata
includes all of the file-system structure except the actual data (or contents of the
files). The logical file system manages the directory structure to provide the file-
organization module with the information the latter needs, given a symbolic
file name. It maintains file structure via file-control blocks. A file-control block
(FCB) contains information about the file, including ownership, permissions,
and location of the file contents. The logical file system is also responsible for
protection and security, as was discussed in Chapter 10 and will be further
discussed in Chapter 14.

When a layered structure is used for file-system implementation, duplica-
tion of code is minimized. The I/O control and sometimes the basic file-system
code can be used by multiple file systems. Each file system can then have its
own logical file system and file-organization modules.

Many file systems are in use today. Most operating systems support
more than one. For example, most CD-ROMs are written in the ISO 9660
format, a standard format agreed on by CD-ROM manufacturers. In addition
to removable-media file systems, each operating system has one disk-based
file system (or more). UNIX uses the UNIX file system (UFS), which is based on
the Berkeley Fast File System (FFS). Windows NT, 2000, and XP support disk
file-system formats of FAT, FAT32, and KTFS (or Windows NT File System), as
well as CD-ROM, DVD, and floppy-disk file-system formats. Although Linux
supports over forty different file systems, the standard Linux file system is
known as the extended file system, with the most common version being ext2
and ext3. There are also distributed file systems in which a file system on a
server is mounted by one or more clients.

11,2 File-System implementation

As was described in Section 10.1.2, operating systems implement open() and
close () systems calls for processes to request access to file contents. In this
section, we delve into the structures and operations used to implement file-
system operations.

11.2.1 Overview

Several on-disk and in-memory structures are used to implement a file system.
These structures vary depending on the operating system and the file system,
but some general principles apply.

On disk, the file system may contain information about how to boot an
operating system stored there, the total number of blocks, the number and
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location of free blocks, the directory structure, and individual files. Many of
these structures are detailed throughout the remainder of this chapter; here we
describe them briefly:

• A boot control block (per volume) can contain information needed by the
system to boot an operating system from that volume. If the disk does not
contain an operating system, this block can be empty. It is typically the
first block of a volume. In UFS, it is called the boot block; in NTFS, it is the
partition boot sector.

• A volume control block (per volume) contains volume (or partition)
details, such as the number of blocks in the partition, size of the blocks, free-
block count and free-block pointers, and free FCB count and FCB pointers.
In UFS, this is called a superblock; in NTFS, it is stored in. the master file
table.

• A directory structure per file system is used to organize the files. In UFS,
this includes file names and associated inode numbers. In NTFS it is stored
in the master file table.

• A per-file FCB contains many details about the file, including file permis-
sions, ownership, size, and location of the data blocks. In UFS, this is called
the inode. In NTFS, this information is actually stored within the master
file table, which uses a relational database structure, with a row per file.

The in-memory information is used for both file-system management and
performance improvement via caching. The data are loaded at mount time and
discarded at dismount. The structures may include the ones described below:

• An in-memory mount table contains information about each mounted
volume.

• An in-memory directory-structure cache holds the directory information
of recently accessed directories. (For directories at which volumes are
mounted, it can contain a pointer to the volume table.)

• The system-wide open-file table contains a copy of the FCB of each open
file, as well as other information.

• The per-process open-file table contains a pointer to the appropriate entry
in the system-wide open-file table, as well as other information.

To create a new file, an application program calls the logical file system.
The logical file system knows the format of the directory structures. To create a
new file, it allocates a new FCB. (Alternatively, if the file-system implementation
creates all FCBs at file-system creation time, an FCB is allocated from the set
of free FCBs.) The system then reads the appropriate directory into memory,
updates it with the new file name and FCB, and writes it back to the disk. A
typical FCB is shown in Figure 11.2.

Some operating systems, including UNIX, treat a directory exactly the same
as a file—one with a type field indicating that it is a directory. Other operating
systems, including Windows NT, implement separate system calls for files and
directories and treat directories as entities separate from files. Whatever the
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Figure 11.2 A typical file-control block.

larger structural issues, the logical file system can call the file-organization
module to map the directory I/O into disk-block numbers, which are passed
on to the basic file system and I/O control system.

Now that a file has been created, it can be used for I/O. First, though, it must
be opened. The openO call passes a file name to the file system. The openO
system call first searches the system-wide open-file table to see if the file is
already in use by another process. If it is, a per-process open-file table entry
is created pointing to the existing system-wide open-file table. This algorithm
can save substantial overhead. When a file is opened, the directory structure
is searched for the given file name. Parts of the directory structure are usually
cached in memory to speed directory operations. Once the file is found, the
FCB is copied into a system-wide open-file table in memory. This table not only
stores the FCB but also tracks the number of processes that have the file open.

Next, an entry is made in the per-process open-file table, with a pointer
to the entry in the system-wide open-file table and some other fields. These
other fields can include a pointer to the current location in the file (for the next
readO or wri te () operation) and the access mode in which the file is open.
The openO call returns a pointer to the appropriate entry in the per-process
file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a file descriptor; Windows refers to it as a
file handle. Consequently, as long as the file is not closed, all file operations
are done on the open-file table.

When a process closes the file, the per-process table entry is removed, and
the system-wide entry's open count is decremented. When all users that have
opened the file close it, any updated metadata is copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

Some systems complicate this scheme further by using the file system as an
interface to other system aspects, such as networking. For example, in UFS, the
system-wide open-file table holds the inodes and other information for files
and directories. It also holds similar information for network connections and
devices. In this way, one mechanism can be used for multiple purposes.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
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Figure 11.3 In-memory file-system structures, (a) File open, (b) File read.

blocks, in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A.

The operating structures of a file-system implementation are summarized
in Figure 11.3.

11.2.2 Partitions and Mounting

The layout of a disk can have many variations, depending on the operating
system. A disk can be sliced into multiple partitions, or a volume can span
multiple partitions on multiple disks. The former layout is discussed here,
while the latter, which is more appropriately considered a form of RAID, is
covered in Section 12.7.

Each partition can be either "raw," containing no file system, or "cooked;'
containing a file system. Raw disk is tised wrhere no file system is appropriate.
UNIX swap space can use a raw partition, for example, as it uses its own format
on disk and does not use a file system. Likewise, some databases use raw disk
and format the data to suit their needs. Raw disk can also hold information
needed by disk RAID systems, such as bit maps indicating which blocks are
mirrored and which have changed and need to be mirrored. Similarly, raw disk
can contain a miniature database holding RAID configuration information, such
as which disks are members of each RAID set. Raw disk use is further discussed
in Section 12.5.1.
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Boot information can be stored in a separate partition. Again, it has its
own format, because at boot time the system does not have file-system device
drivers loaded and therefore cannot interpret the file-system format. Rather,
boot information is usually a sequential series of blocks, loaded as an image
into memory. Execution of the image starts at a predefined location, such
as the first byte. This boot image can contain more than the instructions for
how to boot a specific operating system. For instance, PCs and other systems
can be dual-booted. Multiple operating systems can be installed, on such a
system. How does the system know which one to boot? A boot loader that
understands multiple file systems and multiple operating systems can occupy
the boot space. Once loaded, it can boot one of the operating systems available
on the disk. The disk can have multiple partitions, each containing a different
type of file system and a different operating system.

The root partition, which contains the operating-system kernel and some-
times other system files, is mounted at boot time. Other volumes can be
automatically mounted at boot or manually mounted later, depending on the
operating system. As part of a successful mount operation, the operating sys-
tem verifies that the device contains a valid file system. It does so by asking the
device driver to read the device directory and verifying that the directory has
the expected format. If the format is invalid, the partition must have its consis-
tency checked and possibly corrected, either with or without user intervention.
Finally, the operating system notes in its in-memory mount table structure that
a file system is mounted, along with the type of the file system. The details
of this function depend on the operating system. Microsoft Windows-based
systems mount each volume in a separate name space, denoted by a letter
and a colon. To record that a file system is mounted at F: , for example, the
operating system places a pointer to the file system in a field of the device
structure corresponding to F:. When a process specifies the driver letter, the
operating system finds the appropriate file-system pointer and traverses the
directory structures on that device to find the specified file or directory. Later
versions of Windows can mount a file system at any point within the existing
directory structure.

On UNIX, file systems can be mounted at any directory. Mounting is
implemented by setting a flag in the in-memory copy of the inode for that
directory. The flag indicates that the directory is a mount point. A field then
points to an entry in the mount table, indicating which device is mounted there.
The mount table entry contains a pointer to the superblock of the file system on
that device. This scheme enables the operating system to traverse its directory
structure, switching among file systems of varying types, seamlessly.

11.2.3 Virtual File Systems

The previous section makes it clear that modern operating systems must
concurrently support multiple types of file systems. But how does an operating
system allow multiple types of file systems to be integrated into a directory
structure? And how can users seamlessly move between file-system types
as they navigate the file-system space? We now discuss some of these
implementation details.

An obvious but suboptimal method of implementing multiple types of file
systems is to write directory and file routines for each type. Instead, however,
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most operating systems, including UNIX, use object-oriented techniques to
simplify, organize, and modularize the implementation. The use of these
methods allows very dissimilar file-system types to be implemented within
the same structure, including network file systems, such as NFS. Users can
access files that are contained within multiple file systems on the local disk or
even on file systems available across the network.

Data structures and procedures are used to isolate the basic system-
call functionality from the implementation details. Thus, the file-system
implementation consists of three major layers, as depicted schematically in
Figure 11.4. The first layer is the file-system interface, based on the openO,
read() , w r i t e O , and c loseO calls and on file descriptors.

The second layer is called the virtual file system (VFS) layer; it serves two
important functions:

1. It separates file-system-generic operations from their implementation
by defining a clean VFS interface. Several implementations for the VFS
interface may coexist on the same machine, allowing transparent access
to different types of file systems mounted locally.

2. The VFS provides a mechanism for uniquely representing a file throughout
a network. The VFS is based on a file-representation structure, called a
vnode, that contains a numerical designator for a network-wide unique
file. (UNIX inodes are unique within only a single file system.) This
network-wide uniqueness is required for support of network file systems.
The kernel maintains one vnode structure for each active node (file or
directory).
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Thus, the VFS distinguishes local files from remote ones, and local files are
further distinguished according to their file-system types.

The VFS activates file-system-specific operations to handle local requests
according to their file-system types and even calls the NFS protocol procedures
for remote requests. File handles are constructed from the relevant vnodes
and are passed as arguments to these procedures. The layer implementing
the file system type or the remote-file-system protocol is the third layer of the
architecture.

Let's briefly examine the VFS architecture in Linux. The four main object
types defined by the Linux VFS are:

• The inode object, which represents an individual file

• The file object, which represents an open file

• The superblock object, which represents an entire file system
8 The dentry object, which represents an individual directory entry

For each of these four object types, the VFS defines a set of operations that
must be implemented. Every object of one of these types contains a pointer to
a function table. The function table lists the addresses of the actual functions
that implement the defined operations for that particular object. For example,
an abbreviated API for some of the operations for the file object include:

• in t open(. . .) —Open a file.

• ssize_t read( . . .)—Read from a file.

• ssize_t wri te (. . .) —Write to a file.

• in t mmap(. . .) — Memory-map a file.

An implementation of the file object for a specific file type is required to imple-
ment each function specified in the definition of the file object. (The complete
definition of the file object is specified in the s t r u c t f i le_operat ions, which
is located in the file / u s r / i nc lude / l i rmx / f s .h.)

Thus, the VFS software layer can perform an operation on one of these
objects by calling the appropriate function from the object's function table,
without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a disk file,
a directory file, or a remote file. The appropriate function for that file's readQ
operation will always be at the same place in its function table, and the VFS
software layer will call that function without caring how the data are actually
read.

11.3 Directory implementation

The selection of directory-allocation and directory-management algorithms
significantly affects the efficiency, performance, and reliability of the file
system. In this section, we discuss the trade-offs involved in choosing one
of these algorithms.
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11.3.1 Linear List !

The simplest method of implementing a directory is to use a linear list of file
names with pointers to the data blocks. This method is simple to program
but time-consuming to execute. To create a new file., we must first search the
directory to be sure that no existing file has the same name. Then, we add a
new entry at the end of the directory. To delete a file, we search the directory
for the named file, then release the space allocated to it. To reuse the directory
entry, we can do one of several things. We can mark the entry as unused (by
assigning it a special name, such as an all-blank name, or with a used-unused,
bit in each entry), or we can attach it to a list of free directory entries. A third
alternative is to copy the last entry in the directory into the freed location and
to decrease the length of the directory. A linked list can also be used to decrease
the time required to delete a file.

The real disadvantage of a linear list of directory entries is that finding a
file requires a linear search. Directory information is used frequently, and users
will notice if access to it is slow. In fact, many operating systems implement a
software cache to store the most recently used directory information. A cache
hit avoids the need to constantly reread the information from disk. A sorted
list allows a binary search and decreases the average search time. However, the
requirement that the list be kept sorted may complicate creating and deleting
files, since we may have to move substantial amounts of directory information
to maintain a sorted directory. A more sophisticated tree data structure, such
as a B-tree, might help here. An advantage of the sorted list is that a sorted
directory listing can be produced without a separate sort step.

11.3.2 Hash Table

Another data structure used for a file directory is a hash table. With this
method, a linear list stores the directory entries, but a hash data structure is
also used. The hash table takes a value computed from the file name and returns
a pointer to the file name in the linear list. Therefore, it can greatly decrease the
directory search time. Insertion and deletion are also fairly straightforward,
although some provision must be made for collisions—situations in which
two file names hash to the same location.

The major difficulties with a hash table are its generally fixed size and the
dependence of the hash function on that size. For example, assume that we
make a linear-probing hash table that holds 64 entries. The hash function
converts file names into integers from 0 to 63, for instance, by using the
remainder of a division by 64. If we later try to create a 65th file, we must
enlarge the directory hash table—say, to 128 entries. As a result, we need
a new hash function that must map file names to the range 0 to 127, and we
must reorganize the existing directory entries to reflect their new hash-function
values.

Alternatively, a chained-overflow hash table can be used. Each hash entry
can be a linked list instead of an individual value, and we can resolve collisions
by adding the new entry to the linked list. Lookups may be somewhat slowed,
because searching for a name might require stepping through a linked list of
colliding table entries. Still, this method is likely to be much faster than a linear
search through the entire directory.
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11.4 Allocation Methods

The direct-access nature of disks allows us flexibility in the implementation of
files, in almost every case, many files are stored on the same disk. The main
problem is how to allocate space to these files so that disk space is utilized
effectively and files can be accessed quickly. Three major methods of allocating
disk space are in wide use: contiguous, linked, and indexed. Each method has
advantages and disadvantages. Some systems (such as Data General's RDOS
for its Nova line of computers) support all three. More commonly, a system
vises one method for all files within a file system type.

11.4.1 Contiguous Allocation

Contiguous allocation requires that each file occupy a set of contiguous blocks
on the disk. Disk addresses define a linear ordering on the disk. With this
ordering, assuming that only one job is accessing the disk, accessing block b +
1 after block b normally requires no head movement. When head movement
is needed (from the last sector of one cylinder to the first sector of the next
cylinder), the head need only move from one track to the next. Thus, the number
of disk seeks required for accessing contiguously allocated files is minimal, as
is seek time when a seek is finally needed. The IBM VM/CMS operating system
uses contiguous allocation because it provides such good performance.

Contiguous allocation of a file is defined by the disk address and length (in
block units) of the first block. If the file is n blocks long and starts at location
b, then it occupies blocks b, b + 1, b + 2, ..., b + n — 1. The directory entry for
each file indicates the address of the starting block and the length of the area
allocated for this file (Figure 11.5).
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Figure 11.5 Contiguous allocation of disk space.
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Accessing a file that has been allocated contiguously is easy. For sequential
access, the file system remembers the disk adciress of the last block referenced
and, when necessary, reads the next block. For direct access to block /' of a
file that starts at block b, we can immediately access block b + i. Thus, both
sequential and direct access can be supported by contiguous allocation.

Contiguous allocation has some problems, however. One difficulty is
finding space for a new file. The system chosen to manage free space determines
how this task is accomplished; these management systems are discussed in
Section 11.5. Any management system can be used, but some are slower than
others.

The contiguous-allocation problem can be seen as a particular application
of the general dynamic storage-allocation problem discussed in Section 8.3,
which involves how to satisfy a request of size n from a list of free holes. First
fit and best fit are the most common strategies used to select a free hole from
the set of available holes. Simulations have shown that both first fit and best fit
are more efficient than worst fit in terms of both time and storage utilization.
Neither first fit nor best fit is clearly best in terms of storage utilization, but
first fit is generally faster.

All these algorithms suffer from the problem of external fragmentation.
As files are allocated and deleted, the free disk space is broken into little pieces.
External fragmentation exists whenever free space is broken into chunks. It
becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragmented into a number of holes, no one of which is large
enough to store the data. Depending on the total amount of disk storage and the
average file size, external fragmentation may be a minor or a major problem.

Some older PC systems used contiguous allocation on floppy disks. To
prevent loss of significant amounts of disk space to external fragmentation,
the user had to run a repacking routine that copied the entire file system
onto another floppy disk or onto a tape. The original floppy disk was then
freed completely, creating one large contiguous free space. The routine then
copied the files back onto the floppy disk by allocating contiguous space
from this one large hole. This scheme effectively compacts all free space into
one contiguous space, solving the fragmentation problem. The cost of this
compaction is time. The time cost is particularly severe for large hard disks that
use contiguous allocation, where compacting all the space may take hours and
may be necessary on a weekly basis. Some systems require that this function
be done off-line, with the file system unmounted. During this down time,
normal system operation generally cannot be permitted; so such compaction is
avoided at all costs on production machines. Most modern systems that need
defragmentation can perform it on-line during normal system operations, but
the performance penalty can be substantial.

Another problem with contiguous allocation is determining how much
space is needed for a file. When the file is created, the total amount of space
it will need must be found and allocated. How does the creator (program or
person) know the size of the file to be created? In some cases, this determination
may be fairly simple (copying an existing file, for example); in general, however,
the size of an output file may be difficult to estimate.

If we allocate too little space to a file, we may find that the file cannot
be extended. Especially with a best-fit allocation strategy, the space on both
sides of the file may be in use. Hence, we cannot make the file larger in place.
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Two possibilities then, exist. First, the user program can be terminated^ with
an appropriate error message. The user must then allocate more space and
run the program again. These repeated runs may be costly. To prevent them,
the user will normally overestimate the amount of space needed, resulting in
considerable wasted space. The other possibility is to find a larger hole, copy
the contents of the file to the new space, and release the previous space. This
series of actions can be repeated as long as space exists, although it can be time
consuming. However, the user need never be informed explicitly about what
is happening; the system continues despite the problem, although more and
more slowly.

Even if the total amount of space needed for a file is known in advance,
preallocation may be inefficient. A file that will growr slowly over a long period
(months or years) must be allocated enough space for its final size, even though
much of that space will be unused for a long time. The file therefore has a large
amount of internal fragmentation.

To minimize these drawbacks, some operating systems use a modified
contiguous-allocation scheme. Here, a contiguous chunk of space is allocated
initially; and then, if that amount proves not to be large enough, another chunk
of contiguous space, known as an extent, is added. The location of a file's blocks
is then recorded as a location and a block count, plus a link to the first block
of the next extent. On some systems, the owner of the file can set the extent
size, but this setting results in inefficiencies if the owner is incorrect. Internal
fragmentation can still be a problem if the extents are too large, and external
fragmentation can become a problem as extents of varying sizes are allocated
and deallocated. The commercial Veritas file system uses extents to optimize
performance. It is a high-performance replacement for the standard UNIX UFS.

11.4.2 Linked Allocation

Linked allocation solves all problems of contiguous allocation. With linked
allocation, each file is a linked list of disk blocks; the disk blocks may be
scattered anywhere on the disk. The directory contains a pointer to the first
and last blocks of the file. For example, a file of five blocks might start at block
9 and continue at block 16, then block 1, then block 10, and finally block 25
(Figure 11.6). Each block contains a pointer to the next block. These pointers
are not made available to the user. Thus, if each block is 512 bytes in size, and
a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508
bytes.

To create a new file, we simply create a new entry in the directory. With
linked allocation, each directory entry has a pointer to the first disk block of the
file. This pointer is initialized to nil (the end-of-list pointer value) to signify an
empty file. The size field is also set to 0. A write to the file causes the free-space
management system to find a free block, and this new block is written to
and is linked to the end of the file. To read a file, we simply read blocks by
following the pointers from block to block. There is no external fragmentation
with linked allocation, and any free block on the free-space list can be used to
satisfy a request. The size of a file need not be declared when that file is created.
A file can continue to grow as long as free blocks are available. Consequently,
it is never necessary to compact disk space.
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Figure 11.6 Linked allocation of disk space.

Linked allocation does have disadvantages, however. The major problem
is that it can be used effectively only for sequential-access files. To find the
ith block of a file, we must start at the beginning of that file and follow the
pointers until we get to the ith block. Each access to a pointer requires a disk
read, and some require a disk seek. Consequently, it is inefficient to support a
direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers. If a pointer
requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being
used for pointers, rather than for information. Each file requires slightly more
space than it would otherwise.

The usual solution to this problem is to collect blocks into multiples, called
clusters, and to allocate clusters rather than blocks. For instance, the file system
may define a cluster as four blocks and operate on the disk only in cluster
units. Pointers then use a much smaller percentage of the file's disk space.
This method allows the logical-to-physical block mapping to remain simple
but improves disk throughput (because fewer disk-head seeks are required)
and decreases the space needed for block allocation and free-list management.
The cost of this approach is an increase in internal fragmentation, because
more space is wasted when a cluster is partially full than when a block is
partially full. Clusters can be used to improve the disk-access time for many
other algorithms as well, so they are used in most file systems.

Yet another problem of linked allocation is reliability. Recall that the files
are linked together by pointers scattered all over the disk, and consider what
would happen if a pointer were lost or damaged. A bug in the operating-system
software or a disk hardware failure might result in picking up the wrong
pointer. This error could in turn result in linking into the free-space list or into
another file. One partial solution is to use doubly linked lists, and another is
to store the file name and relative block number in each block; however, these
schemes require even more overhead for each file.
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Figure 11.7 File-allocation table.

An important variation on linked allocation is the use of a file-allocation
table (FAT). This simple but efficient method of disk-space allocation is used
by the MS-DOS and OS/2 operating systems. A section of disk at the beginning
of each volume is set aside to contain the table. The table has one entry for
each disk block and is indexed by block number. The FAT is used in much
the same way as a linked list. The directory entry contains the block number
of the first block of the file. The table entry indexed by that block number
contains the block number of the next block in the file. This chain continues
until the last block, which has a special enci-of-file value as the table entry.
Unused blocks are indicated by a 0 table value. Allocating a new block to a
file is a simple matter of finding the first 0-valued table entry and replacing
the previous end-of-file value with the address of the new block. The 0 is then
replaced with the end-of-file value. An illustrative example is the FAT structure
shown in Figure 1.1.7 for a file consisting of disk blocks 217, 618, and 339.

The FAT allocation scheme can result in a significant number of disk head
seeks, unless the FAT is cached. The disk head must move to the start of the
volume to read the FAT and find the location of the block in question, then
move to the location of the block itself. In the worst case, both moves occur for
each of the blocks. A benefit is that random-access time is improved, because
the disk head can find the location of any block by reading the information in
the FAT.

11.4.3 Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration prob-
lems of contiguous allocation. However, in the absence of a FAT, linked
allocation cannot support efficient direct access, since the pointers to the blocks
are scattered with the blocks themselves all over the disk and must be retrieved
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Figure 11.8 Indexed allocation of disk space.

in order. Indexed allocation solves this problem by bringing all the pointers
together into one location: the index block.

Each file has its own index block, which is an array of disk-block addresses.
The /"' entry in the index block points to the /"' block of the file. The directory
contains the address of the index block (Figure 11.8). To find and read the /th
block, we use the pointer in the /"' index-block entry. This scheme is similar to
the paging scheme described in Section 8.4.

When the file is created, all pointers in the index block are set to nil. When
the ith block is first written, a block is obtained from the free-space manager,
and its address is put in the zth index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more
space. Indexed allocation does suffer from wasted space, however. The pointer
overhead of the index block is generally greater than the pointer overhead of
linked allocation. Consider a common case in which we have a file of only one
or two blocks. With linked allocation, we lose the space of only one pointer per
block. With indexed allocation, an entire index block must be allocated, even
if only one or two pointers will be non-nil.

This point raises the question of how large the index block should be. Every
file must have an index block, so we want the index block to be as small as
possible. If the index block is too small, however, it will not be able to hold
enough pointers for a large file, and a mechanism will have to be available to
deal with this issue. Mechanisms for this purpose include the following:

* Linked scheme. An index block is normally one disk block. Thus, it can
be read and written directly by itself. To allow for large files, we can link
together several index blocks. For example, an index block might contain a
small header giving the name of the file and a set of the first 100 disk-block
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addresses. The next address (the last word in the index block) is nil (for a
small file) or is a pointer to another index block (for a large file). '

• Multilevel index. A variant of the linked representation is to use a first-
level index block to point to a set of second-level index blocks, which in
turn point to the file blocks. To access a block, the operating system uses
the first-level index to find a second-level index block and then uses that
block to find the desired data block. This approach could be continued to
a third or fourth level, depending on the desired maximum file size. With
4,096-byte blocks, we could store 1,024 4-byte pointers in an index block.
Two levels of indexes allow 1,048,576 data blocks and a file size of up to 4
GB.

• Combined scheme. Another alternative, vised in the UFS, is to keep the
first, say, 15 pointers of the index block in the file's inode. The first 12
of these pointers point to direct blocks; that is, they contain addresses of
blocks that contain data of the file. Thus, the data for small files (of no more
than 12 blocks) do not need a separate index block. If the block size is 4 KB,
then up to 48 KB of data can be accessed directly. The next three pointers
point to indirect blocks. The first points to a single indirect block, which
is an index block containing not data but the addresses of blocks that do
contain data. The second points to a double indirect block, which contains
the address of a block that contains the addresses of blocks that contain
pointers to the actual data blocks. The last pointer contains the address
of a triple indirect block. Under this method, the number of blocks that
can be allocated to a file exceeds the amount of space addressable by the
4-byte file pointers used by many operating systems. A 32-bit file pointer
reaches only 232 bytes, or 4 GB. Many UNIX implementations, including
Solaris and IBM's A1X, now support up to 64-bit file pointers. Pointers of
this size allow files and file systems to be terabytes in size. A UNIX inode
is shown in Figure 11.9.

Indexed-allocation schemes suffer from some of the same performance
problems as does linked allocation. Specifically, the index blocks can be cached
in memory, but the data blocks may be spread all over a volume.

11.4.4 Performance

The allocation methods that we have discussed vary in their storage efficiency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should not use
the same method as a system with mostly random access.

For any type of access, contiguous allocation requires only one access to get
a disk block. Since we can easily keep the initial address of the file in memory,
we can calculate immediately the disk address of the ;th block (or the next
block) and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. This method is fine for sequential access; for
direct access, however, an access to the ;th block might require / disk reads. This
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Figure 11.9 The UNIX inode.

problem indicates why linked allocation should not be used for an application
requiring direct access.

As a result, some systems support direct-access files by using contiguous
allocation and sequential access by linked allocation. For these systems, the
type of access to be made must be declared when the file is created. A file
created for sequential access will be linked and cannot be used for direct
access. A file created for direct access will be contiguous and can support both
direct access and sequential access, but its maximum length must be declared
when it is created. In this case, the operating system must have appropriate
data structures and algorithms to support both allocation methods. Files can be
converted from one type to another by the creation of a new file of the desired
type, into which the contents of the old file are copied. The old file may then
be deleted and the new file renamed.

Indexed allocation is more complex. If the index block is already in memory,
then the access can be made directly. However, keeping the index block in
memory requires considerable space. If this memory space is not available,
then we may have to read first the index block and then the desired data
block. For a two-level index, two index-block reads might be necessary. For an
extremely large file, accessing a block near the end of the file would require
reading in all the index blocks before the needed data block finally could
be read. Thus, the performance of indexed allocation depends on the index
structure, on the size of the file, and on the position of the block desired.

Some systems combine contiguous allocation with indexed allocation by
using contiguous allocation for small files (up to three or four blocks) and
automatically switching to an indexed allocation if the file grows large. Since
most files are small, and contiguous allocation is efficient for small files, average
performance can be quite good.
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For instance, the version of the UNIX operating system from Sun Microsys-
tems was changed in 1991 to improve performance in the file-system allocation
algorithm. The performance measurements indicated that the maximum disk
throughput on a typical workstation (a 12-M1PS SPARCstationl) took 50 percent
of the CPU and produced a disk bandwidth of only 1.5 MB per second. To
improve performance, Sun made changes to allocate space in clusters of 56 KB
whenever possible (56 KB was the maximum size of a DMA transfer on Sun
systems at that time). This allocation reduced external fragmentation, and thus
seek and latency times. In addition, the disk-reading routines were optimized
to read in these large clusters. The inode structure was left unchanged. As a
result of these changes, plus the use of read-ahead and free-behind (discussed
in Section 11.6.2), 25 percent less CPU was used, and throughput substantially
improved.

Many other optimizations are in use. Given the disparity between CPU
speed and disk speed, it is not unreasonable to add thousands of extra
instructions to the operating system to save just a fewr disk-head movements.
Furthermore, this disparity is increasing over time, to the point where hundreds
of thousands of instructions reasonably could be used to optimize head
movements.

11.5 Free-Space Management

Since disk space is limited, we need to reuse the space from deleted files for new
files, if possible. (Write-once optical disks only allow one write to any given
sector, and thus such reuse is not physically possible.) To keep track of free disk
space, the system maintains a free-space list. The free-space list records all free
disk blocks—those not allocated to some file or directory. To create a file, we
search the free-space list for the required amount of space and allocate that
space to the new file. This space is then removed from the free-space list. When
a file is deleted, its disk space is added to the free-space list. The free-space list,
despite its name, might not be implemented as a list, as we discuss next.

11.5.1 Bit Vector

Frequently, the free-space list is implemented as a bit map or bit vector. Each
block is represented by 1 bit. If the block is free, the bit is 1; if the block is
allocated, the bit is 0.

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17,
18, 25,26, and 27 are free and the rest of the blocks are allocated. The free-space
bit map would be

001111001111110001100000011100000 ...

The main advantage of this approach is its relative simplicity and its
efficiency in finding the first free block or n consecutive free blocks on the
disk, indeed, many computers supply bit-manipulation instructions that can
be used effectively for that purpose. For example, the Intel family starting
with the 80386 and the Motorola family starting with the 68020 (processors
that have powered PCs and Macintosh systems, respectively) have instructions
that return the offset in a word of the first bit with the value 1. One technique
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for finding the first free block on a system that uses a bit-vector to allocate
disk space is to sequentially check each word in the bit map to see whether
that value is not 0, since a 0-valued word has all 0 bits and represents a set of
allocated blocks. The first non-0 word is scanned for the first 1 bit, which is the
location of the first free block. The calculation of the block number is

(number of bits per word) x (number of 0-value words) + offset of first 1 bit.

Again, we see hardware features driving software functionality. Unfor-
tunately, bit vectors are inefficient unless the entire vector is kept in main
memory (and is written to disk occasionally for recovery needs). Keeping it in
main memory is possible for smaller disks but not necessarily for larger ones.
A 1.3-GB disk with 512-byte blocks would need a bit map of over 332 KB to
track its free blocks, although clustering the blocks in groups of four reduces
this number to over 33 KB per disk. A 40-GB disk with 1-KB blocks requires over
5 MB to store its bit map.

11.5.2 Linked List

Another approach to free-space management is to link together all the free disk
blocks, keeping a pointer to the first free block in a special location on the disk
and caching it in memory. This first block contains a pointer to the next free
disk block, and so on. In our earlier example (Section 11.5.1), we would keep a
pointer to block 2 as the first free block. Block 2 would contain a pointer to block
3, which would point to block 4, which would point to block 5, which would
point to block 8, and so on (Figure 11.10). However; this scheme is not efficient;
to traverse the list, we must read each block, which requires substantial I/O
time. Fortunately, traversing the free list is not a frequent action. Usually, the

free-space list head

Figure 11.10 Linked free-space list on disk.
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operating system simply needs a free block so that it can allocate thatblock
to a file, so the first block in the free list is used. The FAT method incorporates
free-block accounting into the allocation data structure. No separate method is
needed.

11.5.3 Grouping

A modification of the free-list approach is to store the addresses of n free blocks
in the first free block. The first n—1 of these blocks are actually free. The last
block contains the addresses of another n free blocks, and so on. The addresses
of a large number of free blocks can now be found quickly, unlike the situation
when the standard linked-list approach is used.

11.5.4 Counting

Another approach is to take advantage of the fact that, generally, several
contiguous blocks may be allocated or freed simultaneously, particularly
when space is allocated with the contiguous-allocation algorithm or through
clustering. Thus, rather than keeping a list of n free disk addresses, we can
keep the address of the first free block and the number n of free contiguous
blocks that follow the first block. Each entry in the free-space list then consists
of a disk address and a count. Although each entry requires more space than
would a simple disk address, the overall list will be shorter, as long as the count
is generally greater than 1.

11.6 Efficiency and Performance

Now that we have discussed various block-allocation and directory-
management options, we can further consider their effect on performance
and efficient disk use. Disks tend to represent a major bottleneck in system
performance, since they are the slowest main computer component. In this
section, we discuss a variety of techniques used to improve the efficiency and
performance of secondary storage.

11.6.1 Efficiency

The efficient use of disk space depends heavily on the disk allocation and
directory algorithms in use. For instance, UNIX inodes are preallocated on a
volume. Even an "empty" disk has a percentage of its space lost to inodes.
However, by preallocating the inodes and. spreading them across the volume,
we improve the file system's performance. This improved performance results
from the UNIX allocation and free-space algorithms, which try to keep a file's
data blocks near that file's inode block to reduce seek time.

As another example, let's reconsider the clustering scheme discussed in
Section 11.4, which aids in file-seek and file-transfer performance at the cost
of internal fragmentation. To reduce this fragmentation, BSD UNIX varies the
cluster size as a file grows. Large clusters are used where they can be filled, and
small clusters are used for small files and the last cluster of a file. This system
is described in Appendix A.

The types of data normally kept in a file's directory (or inode) entry also
require consideration. Commonly, a 'last write date" is recorded to supply
information to the user and, to determine whether the file needs to be backed
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up. Some systems also keep a "last access date," so that a user can determine
when the file was last read. The result of keeping this information is that,
whenever the file is read, a field in the directory structure must be written
to. That means the block must be read into memory, a section changed, and
the block written back out to disk, because operations on disks occur only in
block (or cluster) chunks. So any time a file is opened for reading, its directory
entry must be read and written as well. This requirement can be inefficient for
frequently accessed files, so we must weigh its benefit against its performance
cost when designing a file system. Generally, every data item associated with a
file needs to be considered for its effect on efficiency and performance.

As an example, consider how efficiency is affected by the size of the pointers
used to access data. Most systems use either 16- or 32-bit pointers throughout
the operating system. These pointer sizes limit the length of a file to either
216 (64 KB) or 232 bytes (4 GB). Some systems implement 64-bit pointers to
increase this limit to 264 bytes, which is a very large number indeed. However,
64-bit pointers take more space to store and in turn make the allocation and
free-space-management methods (linked lists, indexes, and so on) use more
disk space.

One of the difficulties in choosing a pointer size, or indeed any fixed
allocation size within an operating system, is planning for the effects of
changing technology. Consider that the IBM PC XT had a 10-MB hard drive
and an MS-DOS file system that could support only 32 MB. (Each FAT entry
was 12 bits, pointing to an 8-KB cluster.) As disk capacities increased, larger
disks had to be split into 32-MB partitions, because the file system could not
track blocks beyond 32 MB. As hard disks with capacities of over 100 MB became
common, the disk data structures and algorithms in MS-DOS had to be modified
to allow larger file systems. (Each FAT entry was expanded to 16 bits and later
to 32 bits.) The initial file-system decisions were made for efficiency reasons;
however, with the advent of MS-DOS version 4, millions of computer users were
inconvenienced when they had to switch to the new, larger file system. Sun's
ZFS file system uses 128-bit pointers, which theoretically should never need
to be extended. (The minimum mass of a device capable of storing 2'2S bytes
using atomic-level storage would be about 272 trillion kilograms.)

As another example, consider the evolution of Sun's Solaris operating
system. Originally, many data structures were of fixed length, allocated at
system startup. These structures included the process table and the open-file
table. When the process table became full, no more processes could be created.
When the file table became full, no more files could be opened. The system
would fail to provide services to users. Table sizes could be increased only by
recompiling the kernel and rebooting the system. Since the release of Solaris
2, almost all kernel structures have been allocated dynamically, eliminating
these artificial limits on system performance. Of course, the algorithms that
manipulate these tables are more complicated, and the operating system is a
little slower because it must dynamically allocate and deallocate table entries;
but that price is the usual one for more general, functionality.

11.6.2 Performance

Even after the basic file-system algorithms have been selected, we can still
improve performance in several ways. As will be discussed in Chapter 13,
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Figure 11.11 I/O without a unified buffer cache.

most disk controllers include local memory to form an on-board cache that
is large enough to store entire tracks at a time. Once a seek is performed, the
track is read into the disk cache starting at the sector under the disk head
(reducing latency time). The disk controller then transfers any sector requests
to the operating system. Once blocks make it from the disk controller into main
memory, the operating system may cache the blocks there.

Some systems maintain a separate section of main memory for a buffer
cache, where blocks are kept under the assumption that they will be used
again shortly. Other systems cache file data using a page cache. The page
cache uses virtual memory techniques to cache file data as pages rather than
as file-system-oriented blocks. Caching file data using virtual addresses is far
more efficient than caching through physical disk blocks, as accesses interface
with virtual memory rather than the file system. Several systems—including
Solaris, Linux, and Windows NT, 2000, and XP—use page caching to cache
both process pages and file data. This is known as unified virtual memory.

Some versions of UNIX and Linux provide a unified buffer cache. To
illustrate the benefits of the unified buffer cache, consider the two alternatives
for opening and accessing a file. One approach is to use memory mapping
(Section 9.7); the second is to use the standard system calls readO and
write 0 . Without a unified buffer cache, we have a situation similar to Figure
11.11. Here, the read() and wri te () system calls go through the buffer cache.
The memory-mapping call, however, requires using two caches—the page
cache and the buffer cache. A memory mapping proceeds by reading in disk
blocks from the file system and storing them in the buffer cache. Because the
virtual memory system does not interface with the buffer cache, the contents
of the file in the buffer cache must be copied into the page cache. This situation
is known as double caching and requires caching file-system data twice. Not
only does it waste memory but it also wastes significant CPU and I/O cycles due
to the extra data movement within, system memory. In add ition, inconsistencies
between the two caches can result in corrupt files. In contrast, when a unified
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memory-mapped I/O

Figure 11.12 I/O using a unified buffer cache.

buffer cache is provided, both memory mapping and the read () and wri te ()
system calls use the same page cache. This has the benefit of avoiding double
caching, and it allows the virtual memory system to manage file-system data.
The unified buffer cache is shown in Figure 11.12.

Regardless of whether we are caching disk blocks or pages (or both), LEU
(Section 9.4.4) seems a reasonable general-purpose algorithm for block or page
replacement. However, the evolution of the Solaris page-caching algorithms
reveals the difficulty in choosing an algorithm. Solaris allows processes and the
page cache to share unused inemory. Versions earlier than Solaris 2.5.1 made
no distinction between allocating pages to a process and allocating them to
the page cache. As a result, a system performing many I/O operations used
most of the available memory for caching pages. Because of the high rates
of I/O, the page scanner (Section 9.10.2) reclaimed pages from processes—
rather than from the page cache—when free memory ran low. Solaris 2.6 and
Solaris 7 optionally implemented priority paging, in which the page scanner
gives priority to process pages over the page cache. Solaris 8 applied a fixed
limit to process pages and the file-system page cache, preventing either from
forcing the other out of memory. Solaris 9 and 10 again changed the algorithms
to maximize memory use and minimize thrashing. This real-world example
shows the complexities of performance optimizing and caching.

There are other issvies that can affect the performance of I/O such as
whether writes to the file system occur synchronously or asynchronously.
Synchronous writes occur in the order in which the disk subsystem receives
them, and the writes are not buffered. Thus, the calling routine must wait for
the data to reach the disk drive before it can proceed. Asynchronous writes are
done the majority of the time. In an asynchronous write, the data are stored in
the cache, and control returns to the caller. Metadata writes, among others, can
be synchronous. Operating systems frequently include a flag in the open system
call to allow a process to request that writes be performed synchronously. For
example, databases use this feature for atomic transactions, to assure that data
reach stable storage in the required order.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the file. A file being read or written
sequentially should not have its pages replaced in LRU order, because the most
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recently used page will be used last, or perhaps never again. Instead, sequential
access can be optimized by techniques known as free-behind and read-ahead.
Free-behind removes a page from the buffer as soon as the next page is
requested. The previous pages are not likely to be used again and waste buffer
space. With read-ahead, a requested page and several subsequent pages are
read and cached. These pages are likely to be requested after the current page
is processed. Retrieving these data from the disk in one transfer and caching
them saves a considerable amount of time. One might think a track cache on the
controller eliminates the need for read-ahead on a multiprogrammed system.
However, because of the high latency and overhead involved in making many
small transfers from the track cache to main memory, performing a read-ahead
remains beneficial.

The page cache, the file system, and the disk drivers have some interesting
interactions. When data are written to a disk file, the pages are buffered in the
cache, and the disk driver sorts its output queue according to disk address.
These two actions allow the disk driver to minimize disk-head seeks and to
write data at times optimized for disk rotation. Unless synchronous writes are
required, a process writing to disk simply writes into the cache, and the system
asynchronously writes the data to disk when convenient. The user process sees
very fast writes. When data are read from a disk file, the block I/O system does
some read-ahead; however, writes are much more nearly asynchronous than
are reads. Thus, output to the disk through the file system is often faster than
is input for large transfers, counter to intuition.

11.7 Recovery

Files and directories are kept both in main memory and on disk, and care must
taken to ensure that system failure does not result in loss of data or in data
inconsistency. We deal with these issues in the following sections.

11.7.1 Consistency Checking

As discussed in Section 11.3, some directory information is kept in main
memory (or cache) to speed up access. The directory information in main
memory is generally more up to date than is the corresponding information
on the disk, because cached directory information is not necessarily written to
disk as soon as the update takes place.

Consider, then, the possible effect of a computer crash. Cache and buffet-
contents, as well as I/O operations in progress, can be lost, and with them
any changes in the directories of opened files. Such an event can leave the file
system in an inconsistent state: The actual state of some files is not as described
in the directory structure. Frequently, a special program is run at reboot time
to check for and correct disk inconsistencies.

The consistency checker—a systems program such as f sck in UNIX or
chkdsk in MS-DOS—compares the data in the directory structure with the
data blocks on disk and tries to fix any inconsistencies it finds. The allocation
and free-space-management algorithms dictate what types of problems the
checker can find and how successful it will be in fixing them. For instance, if
linked allocation is used and there is a link from any block to its next block,



436 Chapter 11 File-System Implementation

then the entire file can be reconstructed from the data blocks, and the directory
structure can be recreated. In contrast, the loss of a directory entry on an indexed
allocation system can be disastrous, because the data blocks have no knowledge
of one another. For this reason, UNIX caches directory entries for reads; but any
data write that results in space allocation, or other metadata changes, is done
synchronously, before the corresponding data blocks are written. Of course,
problems can still occur if a synchronous write is interrupted by a crash.

11.7.2 Backup and Restore

Magnetic disks sometimes fail, and care must be taken to ensure that the data
lost in such a failure are not lost forever. To this end, system programs can be
used to back up data from disk to another storage device, such as a floppy
disk, magnetic tape, optical disk, or other hard disk. Recovery from the loss of
an individual file, or of an entire disk, may then be a matter of restoring the
data from backup.

To minimize the copying needed, we can use information from each file's
directory entry. For instance, if the backup program knows when the last
backup of a file was done, and the file's last write date in the directory indicates
that the file has not changed since that date, then the file does not need to be
copied again. A typical backup schedule may then be as follows:

• Day 1. Copy to a backup medium all files from the disk. This is called a
full backup.

• Day 2. Copy to another medium all files changed since day 1. This is an
incremental backup.

• Day 3. Copy to another medium all files changed since day 2.

• Day N. Copy to another medium all files changed since day N— 1. Then
go back to Day 1.

The new cycle can have its backup written over the previous set or onto
a new set of backup media. In this manner, we can restore an entire disk
by starting restores with the full backup and continuing through each of the
incremental backups. Of course, the larger the value of N, the greater the
number of tapes or disks that must be read for a complete restore. An added
advantage of this backup cycle is that we can restore any file accidentally
deleted during the cycle by retrieving the deleted file from the backup of the
previous day. The length of the cycle is a compromise between the amount of
backup medium needed and the number of days back from which a restore
can be done. To decrease the number of tapes that must be read, to do a restore,
an option is to perform a full backup and then each day back up all files
that have changed since the full backup. In this way, a restore can be done
via the most recent incremental backup and. the full backup, with no other
incremental backups needed. The trade-off is that more files will be modified
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each day, so each successive incremental backup involves more files and more
backup media.

A user may notice that a particular file is missing or corrupted long after
the damage was done. For this reason, we usually plan to take a full backup
from time to time that will be saved "forever." It is a good idea to store these
permanent backups far away from the regular backups to protect against
hazard, such as a fire that destroys the computer and all the backups too.
And if the backup cycle reuses media, we must take care not to reuse the
media too many times—if the media wear out, it might not be possible to
restore any data from the backups.

11.8 Log-Structured File Systems

Computer scientists often find that algorithms and technologies originally used
in one area are equally useful in other areas. Such is the case with the database
log-based recovery algorithms described in Section 6.9.2. These logging algo-
rithms have been applied successfully to the problem of consistency checking.
The resulting implementations are known as log-based transaction-oriented
(or journaling) file systems.

Recall that a system crash can cause inconsistencies among on-disk file-
system data structures, such as directory structures, free-block pointers, and
free FCB pointers. Before the use of log-based techniques in operating systems,
changes were usually applied to these structures in place. A typical operation,
such as file create, can involve many structural changes within the file system
on the disk. Directory structures are modified, FCBs are allocated, data blocks
are allocated, and the free counts for all of these blocks are decreased. These
changes can be interrupted by a crash, and inconsistencies among the structures
can result. For example, the free FCB count might indicate that an FCB had been
allocated, but the directory structure might not point to the FCB. The FCB would
be lost were it not for the consistency-check phase.

Although we can allow the structures to break and repair them on recovery,
there are several problems with this approach. One is that the inconsistency
may be irreparable. The consistency check may not be able to recover the
structures, resulting in loss of files and even entire directories. Consistency
checking can require human intervention to resolve conflicts, and that is
inconvenient if no human is available. The system can remain unavailable until
the human tells it how to proceed. Consistency checking also takes system and
clock time. Terabytes of data can take hours of clock time to check.

The solution to this problem is to apply log-based recovery techniques to
file-system, metadata updates. Both NTFS and the Veritas file system use this
method, and it is an optional addition to LFS on Solaris 7 and beyond. In fact,
it is becoming common on many operating systems.

Fundamentally, all metadata changes are written sequentially to a log.
Each set of operations for performing a specific task is a transaction. Once
the changes are written to this log, they are considered to be committed,
and the system call can return to the user process, allowing it to continue
execution. Meanwhile, these log entries are replayed across the actual file-
system structures. As the changes are made, a pointer is updated to indicate
which actions have completed and which are still incomplete. When an entire
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committed transaction is completed, it is removed from the log file, which is
actually a circular buffer. A circular buffer writes to the end of its space and
then continues at the beginning, overwriting older values as it goes. We would
not want the buffer to write over data that has not yet been saved, so that
scenario is avoided. The log may be in a separate section of the file system or
even on a separate disk spindle. It is more efficient, but more complex, to have
it under separate read and write heads, thereby decreasing head contention
and seek times.

If the system crashes, the log file will contain zero or more transactions.
Any transactions it contains were not completed to the file system, even though
they were committed by the operating system, so they must now be completed.
The transactions can be executed from the pointer until the work is complete
so that the file-system structures remain consistent. The only problem occurs
when a transaction was aborted—that is, was not committed before the system
crashed. Any changes from such a transaction that were applied to the file
system must be undone, again preserving the consistency of the file system.
This recovery is all that is needed after a crash, eliminating any problems with
consistency checking.

A side benefit of using logging on disk metadata updates is that those
updates proceed much faster than when they are applied directly to the on-disk
data structures. The reason for this improvement is found in the performance
advantage of sequential I/O over random I/O. The costly synchronous random
metadata writes are turned into much less costly synchronous sequential writes
to the log-structured file system's logging area. Those changes in turn are
replayed asynchronously via random writes to the appropriate structures.
The overall result is a significant gain in performance of metadata-oriented
operations, such as file creation and deletion.

11.9 NFS

Network file systems are commonplace. They are typically integrated with
the overall directory structure and interface of the client system. NFS is a
good example of a widely used, well-implemented client-server network file
system. Here, we use it as an example to explore the implementation details of
network file systems.

NFS is both an implementation and a specification of a software system for
accessing remote files across LANs (or even WANs). NFS is part of ONJC+, which
most UNIX vendors and some PC operating systems support. The implementa-
tion described here is part of the Solaris operating system, which is a modified
version of UNIX SVR4 running on Sun workstations and other hardware. It uses
either the TCP or UDP/IP protocol (depending on the interconnecting network).
The specification and the implementation are intertwined in our description of
NFS. Whenever detail is needed, we refer to the Sun implementation; whenever,
the description is general, it applies to the specification also.

11.9.1 Overview

N FS v iews a set of interconnected worksta tions as a set of independent machines
with independent file systems. The goal is to allow some degree of sharing
among these file systems (on explicit request) in a transparent manner. Sharing
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is based on a client-server relationship. A machine may be, and often is, both a
client and a server. Sharing is allowed between any pair of machines. To ensure
machine independence, sharing of a remote file system affects only the client
machine and no other machine.

So that a remote directory will be accessible in a transparent manner
from a particular machine—say, from Ml—a client of that machine must
first carry out a mount operation. The semantics of the operation involve
.mounting a remote directory over a directory of a local file system. Once the
mount operation is completed, the mounted directory looks like an integral
subtree of the local file system, replacing the subtree descending from the
local directory. The local directory becomes the name of the root of the newly
mounted directory. Specification of the remote directory as an argument for the
mount operation is not done transparently; the location (or host name) of the
remote directory has to be provided. However, from then on, users on machine
Ml can access files in the remote directory in a totally transparent manner.

To illustrate file mounting, consider the file system, depicted in Figure
11.13, where the triangles represent subtrees of directories that are of interest.
The figure shows three independent file systems of machines named U, SI,
and S2. At this point, at each machine, only the local files can be accessed. In
Figure 11.14(a), the effects of mounting SI: /us r / shared over U: / u s r / l o c a l
are shown. This figure depicts the view users on U have of their file system.
Notice that after the mount is complete they can access any file within the
d i r l directory using the prefix / u s r / l o c a l / d i r l . The original directory
/ u s r / l o c a l on that machine is no longer visible.

Subject to access-rights accreditation, any file system, or any directory
within a file system, can be mounted remotely on top of any local directory.
Diskless workstations can even mount their own roots from servers.

Cascading mounts are also permitted in some NFS implementations. That
is, a file system can be mounted over another file system that is remotely
mounted, not local. A machine is affected by only those mounts that it has
itself invoked. Mounting a remote file system does not give the client access to
other file systems that were, by chance, mounted over the former file system.
Thus, the mount mechanism does not exhibit a transitivity property.
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Figure 11.14 Mounting in NFS. (a) Mounts, (b) Cascading mounts.

In Figure 11.14(b), we illustrate cascading mounts by continuing our
previous example. The figure shows the result of mounting S2: / u s r / d i r 2
over U: / u s r / l o c a l / d i r l , which is already remotely mounted from SI. Users
can access files within dir2 on U using the prefix / u s r / l o c a l / d i r l . If a shared
file system is mounted over a user's home directories on all machines in a
network, the user can log into any workstation and get his home environment.
This property permits user mobility.

One of the design goals of NFS was to operate in a heterogeneous environ-
ment of different machines, operating systems, and network architectures.
The NFS specification is independent of these media and thus encourages
other implementations. This independence is achieved through the use of
RPC primitives built on top of an external data representation (XDK) proto-
col used between two implementation-independent interfaces. Hence, if the
system consists of heterogeneous machines and file systems that are properly
interfaced to NFS, file systems of different types can be mounted both locally
and remotely.

The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services. Accordingly, two
separate protocols are specified for these services: a mount protocol and a
protocol for remote file accesses, the NFS protocol. The protocols are specified as
sets of RPCs. These RFCs are the building blocks used to implement transparent
remote file access.

11.9.2 The Mount Protocol

The mount protocol establishes the initial logical connection between a server
and a client. In Sun's implementation, each machine has a server process,
outside the kernel, performing the protocol functions.

A mount operation includes the name of the remote directory to be
mounted and the name of the server machine storing it. The mount request
is mapped to the corresponding RPC and is forwarded to the mount server
running on the specific server machine. The server maintains an export list
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that specifies local file systems that it exports for mounting, along with names
of machines that are permitted to mount them. (In Solaris, this list is the
/e tc /d f s/df stab, which can be edited only by a superuser.) The specification
can also include access rights, such as read only. To simplify the maintenance
of export lists and mount tables, a distributed naming scheme can be used to
hold this information and make it available to appropriate clients.

Recall that any directory within an exported file system can be mounted
remotely by an accredited machine. A component unit is such a directory. When
the server receives a mount request that conforms to its export list, it returns to
the client a file handle that serves as the key for further accesses to files within
the mounted file system. The file handle contains all the information that the
server needs to distinguish an individual file it stores. In UNIX terms, the file
handle consists of a file-system identifier and an inode number to identify the
exact mounted directory within the exported file system.

The server also maintains a list of the client machines and the corresponding
currently mounted directories. This list is used mainly for administrative
purposes—for instance, for notifying all clients that the server is going down.
Only through addition and deletion of entries in this list can the server state
be affected by the mount protocol.

Usually, a system has a static mounting preconfiguration that is established
at boot time ( /etc/vf s tab in Solaris); howrever, this layout can be .modified, m
addition to the actual mount procedure, the mount protocol includes several
other procedures, such as unmount and return export list.

11.9.3 The N FS Protocol

The NFS protocol provides a set of RPCs for remote file operations. The
procedures support the following operations:

• Searching for a file within a directory

• Reading a set of directory entries

• Manipulating links and directories

« Accessing file attributes

• Reading and writing files

These procedures can be invoked only after a file handle for the remotely
mounted, directory has been established.

The omission of openO and close () operations is intentional. A promi-
nent feature of NFS servers is that they are stateless. Servers do not maintain
information about their clients from one access to another. No parallels to
UNIX's open-files table or file structures exist on the server side. Consequently,
each request has to provide a full set of arguments, including a unique file
identifier and an absolute offset inside the file for the appropriate operations.
The resulting design is robust; no special measures need be taken to recover
a server after a crash. File operations must be idempotent for this purpose.
Every NFS request has a sequence number, allowing the server to determine if
a request is duplicated, or if any are missing.
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Maintaining the list of clients that we mentioned seems to violate the
statelessness of the server. However, this list is not essential for the correct
operation of the client or the server, and hence it does not need to be restored
after a server crash. Consequently, it might include inconsistent data and is
treated as only a hint.

A further implication of the stateless-server philosophy and a result of the
synchrony of an RPC is that modified data (including indirection and status
blocks) must be committed to the server's disk before results are returned to
the client. That is, a client can cache write blocks, but wiien it flushes them
to the server, it assumes that they have reached the server's disks. The server
must write all NFS data synchronously. Thus, a server crash and recovery
will be invisible to a client; all blocks that the server is managing for the
client will be intact. The consequent performance penalty can be large, because
the advantages of caching are lost. Performance can be increased by using
storage with its own nonvolatile cache (usually battery-backed-up memory).
The disk controller acknowledges the disk write when the write is stored in
the nonvolatile cache. In essence, the host sees a very fast synchronous write.
These blocks remain intact even after system crash and are written from this
stable storage to disk periodically.

A single NFS write procedure call is guaranteed to be atomic and is not
intermixed with other write calls to the same file. The NFS protocol, however,
does not provide concurrency-control mechanisms. A wri te () system call may-
be broken down into several RFC writes, because each NFS write or read call
can contain up to 8 KB of data and UDP packets are limited to 1,500 bytes. As a
result, two users writing to the same remote file may get their data intermixed.
The claim is that, because lock management is inherently stateful, a service
outside the NFS should provide locking (and Solaris does). Users are advised
to coordinate access to shared files using mechanisms outside the scope of NFS.

NFS is integrated into the operating system via a VFS. As an illustration
of the architecture, let's trace how an operation on an already open remote
file is handled (follow the example in Figure 11.15). The client initiates the
operation with a regular system call. The operating-system layer maps this
call to a VFS operation on the appropriate vnode. The VFS layer identifies the
file as a remote one and invokes the appropriate NFS procedure. An RPC call
is made to the NFS service layer at the remote server. This call is reinjected to
the VFS layer on the remote system, which finds that it is local and invokes
the appropriate file-system operation. This path is retraced to return the result.
An advantage of this architecture is that the client and the server are identical;
thus, a machine may be a client, or a server, or both. The actual service on each
server is performed by kernel threads.

11.9.4 Path-Name Translation

Path-name translation in NFS involves the parsing of a path-name such as
/ u s r / l o c a l / d i r I / f i l e . t x t into separate directory entries—or components:
(1) usr, (2) local , and (3) d i r l . Path-name translation is done by breaking the
path into component names and performing a separate NFS lookup c a l l for
every pair of component name and directory vnode. Once a mount point is
crossed, every component lookup causes a separate RFC to the server. This
expensive path-name-traversal scheme is needed, since the layout of each
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Figure 11.15 Schematic view of the NFS architecture.

client's logical name space is unique, dictated by the mounts the client has
performed. It would be much more efficient to hand a server a path name
and receive a target vnode once a mount point is encountered. At any point,
however, there can be another mount point for the particular client of which
the stateless server is unaware.

So that lookup is fast, a directory-name-lookup cache on the client side
holds the vnodes for remote directory names. This cache speeds up references
to files with the same initial path name. The directory cache is discarded when
attributes returned from the server do not match the attributes of the cached
vnode.

Recall that mounting a remote file system on top of another already
mounted remote file system (a cascading mount) is allowed in some imple-
mentations of NFS. However, a server cannot act as an intermediary between a
client and another server. Instead, a client must establish a direct client-server
connection with the second server by directly mounting the desired directory.
When a client has a cascading mount, more than one server can be involved in a
path-name traversal. However, each component lookup is performed between
the original, client and some server. Therefore, when a client does a lookup on
a directory on which the server has mounted a file system, the client sees the
underlying directory instead of the mounted directory.

11.9.5 Remote Operations

With the exception of opening and closing files, there is almost a one-to-one
correspondence between the regular UNIX system calls for file operations and
the NFS protocol RPCs. Thus, a remote file operation can be translated directly
to the corresponding RFC. Conceptually, NFS adheres to the remote-service
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paradigm; but in practice, buffering and caching techniques are employed for
the sake of performance. i\fo direct correspondence exists between a remote
operation and an RFC. Instead, file blocks and file attributes are fetched by the
RPCs and are cached locally. Future remote operations use the cached data,
subject to consistency constraints.

There are two caches: the file-attribute (inode-information) cache and the
file-blocks cache. When a file is opened, the kernel checks with the remote
server to determine whether to fetch or re-validate the cached attributes. The
cached file blocks are used only if the corresponding cached attributes are up
to date. The attribute cache is updated whenever new attributes arrive from
the server. Cached attributes are, by default, discarded after 60 seconds. Both
read-ahead and delayed-write techniques are used between the server and the
client. Clients do not free delayed-write blocks until the server confirms that
the data have been written to disk. In contrast to the system used in Sprite
distributed file system, delayed-write is retained even when a file is opened
concurrently, in conflicting modes. Hence, UNIX semantics Section 10.5.3.1) are
not preserved.

Tuning the system for performance makes it difficult to characterize the
consistency semantics of NFS. New files created on a machine may not be
visible elsewhere for 30 seconds. Furthermore, writes to a file at one site may
or may not be visible at other sites that have this file open for reading. New
opens of a file observe only the changes that have already been flushed to the
server. Thus, NFS provides neither strict emulation of UNIX semantics nor the
session semantics of Andrew (Section 10.5.3.2). In spite of these drawbacks, the
utility and good performance of the mechanism make it the most widely used
multi-vendor-distributed system in operation.

11.10 Example: The WAFL File System

Disk I/O has a huge impact on system performance. As a result, file-system
design and implementation command quite a lot of attention from system
designers. Some file systems are general purpose, in that they can provide
reasonable performance and functionality for a wide variety of file sizes, file
types, and I/O loads. Others are optimized for specific tasks in an attempt to
provide better performance in those areas than general-purpose file systems.
The WAFL file system from Network Appliance is an example of this sort of
optimization. WAFL, the ivrite-nin/wherc file layout, is a powerful, elegant file
system optimized for random writes.

WAFL is used exclusively on network file servers produced by Network
Appliance and so is meant for use as a distributed file system. It can provide
files to clients via the NFS, CIFS, ftp, and h t tp protocols, although it was
designed just for NFS and CIFS. When many clients use these protocols to talk
to a file server, the server may see a very large demand for random reads and
an even larger demand for random writes. The NFS and CIFS protocols cache
data from read operations, so writes are of the greatest concern to file-server
creators.

WAFL is used on file servers that include an NVRAM cache for writes.
The WAFL designers took advantage of running on a specific architecture to
optimize the file system for random I/O, with a stable-storage cache in front.
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root inode

Figure 11.16 The WAFL file layout.

Ease of use is one of the guiding principles of WAFL, because it is designed
to be used in an appliance. Its creators also designed it to include a new
snapshot functionality that creates multiple read-only copies of the file system
at different points in time, as we shall see.

The file system is similar to the Berkeley Fast File System, with many
modifications. It is block-based and uses inodes to describe files. Each inode
contains 16 pointers to blocks (or indirect blocks) belonging to the file described
by the inode. Each file system has a root inode. All of the metadata lives in
files: all inodes are in one file, the free-block map in another, and the free-inode
map in a third, as shown in Figure 11.16. Because these are standard files, the
data blocks are not limited in location and can be placed anywhere. If a file
system is expanded by addition of disks, the lengths of these metadata files are
automatically expanded by the file system.

Thus, a WAFL file system is a tree of blocks rooted by the root inode. To take
a snapshot, WAFL creates a duplicate root inode. Any file or metadata updates
after that go to new blocks rather than overwriting their existing blocks. The
new root inode points to metadata and data changed as a result of these writes.
Meanwhile, the old root inode still points to the old blocks, which have not
been updated. It therefore provides access to the file system just as it was at the
instant the snapshot was made—and takes very little disk space to do so! In
essence, the extra disk space occupied by a snapshot consists of just the blocks
that have been modified since the snapshot was taken.

An important change from more standard file systems is that the free-block
map has more than one bit per block. It is a bitmap with a bit set for each
snapshot that is using the block. When all snapshots that have been using the
block are deleted, the bit map for that block is all zeros, and the block is free to
be reused. Used blocks are never overwritten, so writes are very fast, because
a write can occur at the free block nearest the current head location. There are
many other performance optimizations in WAFL as well.

Many snapshots can exist simultaneously, so one can be taken each hour
of the day and. each day of the month. A user with access to these snapshots
can access files as they were at any of the times the snapshots were taken.
The snapshot facility is also useful for backups, testing, versioning, and so on.
WAFL's snapshot facility is very efficient in that it does not even require that
copy-on-write copies of each data block be taken before the block is modified.
Other file systems provide snapshots, but frequently with less efficiency. WAFL
snapshots are depicted in Figure 11.17.
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Figure 11.17 Snapshots in WAFL.

11.11 Summary

The file system resides permanently on secondary storage, which is designed to
hold a large amount of data permanently. The most common secondary-storage
medium is the disk.

Physical disks may be segmented into partitions to control media use
and to allow multiple, possibly varying, file systems on a single spindle.
These file systems are mounted onto a logical file system architecture to make
them available for use. File systems are often implemented in a layered or
modular structure. The lower levels deal with the physical properties of storage
devices. Upper levels deal with symbolic file names and logical properties of
files. Intermediate levels map the logical file concepts into physical device
properties.

Any file-system type can have different structures and algorithms. A VFS
layer allows the upper layers to deal with each file-system type uniformly. Even
remote file systems can be integrated into the system's directory structure and
acted on. by standard system calls via the VFS interface.

The various files can be allocated space on the disk in three ways: through
contiguous, linked, or indexed allocation. Contiguous allocation can suffer
from external fragmentation. Direct access is very inefficient with linked
allocation. Indexed allocation may require substantial overhead for its index
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block. These algorithms can be optimized in many ways. Contiguous space
can be enlarged through extents to increase flexibility and to decrease external
fragmentation. Indexed allocation can be done in clusters of multiple blocks
to increase throughput and to reduce the number of index entries needed.
Indexing in large clusters is similar to contiguous allocation with extents.

Free-space allocation methods also influence the efficiency of disk-space
use, the performance of the file system, and the reliability of secondary storage.
The methods used include bit vectors and linked lists. Optimizations include
grouping, counting, and the FAT, which places the linked list in one contiguous
area.

Directory-management routines must consider efficiency, performance,
and reliability. A hash table is a commonly used method as it is fast and
efficient. Unfortunately, damage to the table or a system crash can result
in inconsistency between the directory information and the disk's contents.
A consistency checker can be used to repair the damage. Operating-system
backup tools allow disk data to be copied to tape, enabling the user to recover
from data or even disk loss due to hardware failure, operating system bug, or
user error.

Network file systems, such as NFS, use client-server methodology to
allow users to access files and directories from remote machines as if they
were on local file systems. System calls on the client are translated into
network protocols and retranslated into file-system operations on the server.
Networking and multiple-client access create challenges in the areas of data
consistency and performance.

Due to the fundamental role that file systems play in system operation,
their performance and reliability are crucial. Techniques such as log structures
and caching help improve performance, while log structures and RAID improve
reliability. The WAFL file system is an example of optimization of performance
to match a specific I/O load.

Exercises

11.1 Consider a file system that uses a modifed contiguous-allocation
scheme with support for extents. A file is a collection of extents, with
each extent corresponding to a contiguous set of blocks. A key issue in
such systems is the degree of variability in the size of the extents. What
are the advantages and disadvantages of the following schemes?

a. All extents are of the same size, and the size is predetermined.

b. Extents can be of any size and are allocated dynamically.

c. Extents can be of a few fixed sizes, and these sizes are predeter-
mined.

11.2 What are the advantages of the variant of linked allocation that uses a
FAT to chain together the blocks of a file?

11.3 Consider a system where free space is kept in a free-space list.

a. Suppose that the pointer to the free-space list is lost. Can the
system reconstruct the free-space list? Explain your answer.
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b. Consider a file system similar to the one used by UNIX with
indexed allocation. How many disk I/O operations might be
required to read the contents of a small local file at/a/b/cl Assume
that none of the disk blocks is currently being cached.

c. Suggest a scheme to ensure that the pointer is never lost as a
result of memory failure.

11.4 Some file systems allow disk storage to be allocated at different levels
of granularity. For instance, a file system could allocate 4 KB of disk
space as a single 4-KB block or as eight 512-byte blocks. How could
we take advantage of this flexibility to improve performance? What
modifications would have to be made to the free-space management
scheme in order to support this feature?

11.5 Discuss how performance optimizations for file systems might result
in difficulties in maintaining the consistency of the systems in the event
of computer crashes.

11.6 Consider a file system on a disk that has both logical and physical
block sizes of 512 bytes. Assume that the information about each
file is already in memory. For each of the three allocation strategies
(contiguous, linked, and indexed), answer these questions:

a. How is the logical-to-physical address mapping accomplished
in this system? (For the indexed allocation, assume that a file is
always less than 512 blocks long.)

b. If we are currently at logical block 10 (the last block accessed was
block 10) and want to access logical block 4, how many physical
blocks must be read from the disk?

11.7 Fragmentation on a storage device could be eliminated by recom-
paction of the information. Typical disk devices do not have relocation
or base registers (such as are used when memory is to be compacted),
so how can we relocate files? Give three reasons why recompacting and
relocation of files are often avoided.

11.8 In what situations would using memory as a RAM disk be more useful
than using it as a disk cache?

11.9 Consider the following augmentation of a remote-file-access protocol.
Each client maintains a name cache that caches translations from file
names to corresponding file handles. What issues should we take into
account in implementing the name cache?

11.10 Explain why logging metadata updates ensures recovery of a file
system after a file-system crash.

11.11 Consider the following backup scheme:

• Day 1. Copy to a backup medium all files from the disk.

• Day 2. Copy to another medium all files changed since day 1.

• Day 3. Copy to another medium all files changed since day 1.
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This differs from the schedule given in Section 11.7.2 by having all
subsequent backups copy all files modified since the first full backup.
What are the benefits of this system over the one in Section 11.7.2?
What are the drawbacks? Are restore operations made easier or more
difficult? Explain your answer.
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The file system can be viewed logically as consisting of three parts. In Chapter
10, we saw the user and programmer interface to the file system. In Chapter 11,
we described the internal data structures and algorithms used by the operating
system to implement this interface. In this chapter, we discuss the lowest
level of the file system: the secondary and tertiary storage structures. We first
describe the physical structure of magenetic disks and magnetic tapes. We
then describe disk-scheduling algorithms that schedule the order of disk I/Os
to improve performance. Next, we discuss disk formatting and management
of boot blocks, damaged blocks, and swap space. We then examine secondary
storage structure, covering disk reliability and stable-storage implementation.
We conclude with a brief description of tertiary storage devices and the
problems that arise when an operating system uses tertiary storage.

CHAPTER OBJECTIVES

» Describe the physical structure of secondary and tertiary storage devices
and the resulting effects on the uses of the devices.

• Explain the performance characteristics of mass-storage devices.

« Discuss operating-system services provided for mass storage, including
RAID and HSM.

12.1 Overview of Mass-Storage Structure

In this section we present a general overview of the physical structure of
secondary and tertiary storage devices.

12.1.1 Magnetic Disks

Magnetic disks provide the bulk of secondary storage for modern computer
systems. Conceptually, disks are relatively simple (Figure 12.1). Each disk
platter has a flat circular shape, like a CD. Common platter diameters range
from 1.8 to 5.25 inches. The two surfaces of a platter are covered with a magnetic
material. We store information by recording it magnetically on the platters.
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Figure 12.1 Moving-head disk mechanism.

A read-write head "flies" just above each surface of every platter. The
heads are attached to a disk arm that moves all the heads as a unit. The surface
of a platter is logically divided into circular tracks, which are subdivided into
sectors. The set of tracks that are at one arm position makes up a cylinder.
There may be thousands of concentric cylinders in a disk drive, and each track
may contain hundreds of sectors. The storage capacity of common disk drives
is measured in gigabytes.

When the disk is in use, a drive motor spins it at high speed. Most drives
rotate 60 to 200 times per second. Disk speed has two parts. The transfer
rate is the rate at which data flow between the drive and the computer. The
positioning time, sometimes called the random-access time, consists of the
time to move the disk arm to the desired cylinder, called the seek time, and
the time for the desired sector to rotate to the disk head, called the rotational
latency. Typical disks can transfer several megabytes of data per second, and
they have seek times and rotational latencies of several milliseconds.

Because the disk head flies on an extremely thin cushion of air (measured
in microns), there is a danger that the head will make contact with the disk
surface. Although the disk platters are coated with a thin protective layer,
sometimes the head will damage the magnetic surface. This accident is called
a head crash. A head crash normally cannot be repaired; the entire disk must
be replaced.

A disk can be removable, allowing different disks to be mounted as needed.
Removable magnetic disks generally consist of one platter, held in a plastic case
to prevent damage while not in the disk drive. Floppy disks are inexpensive
removable magnetic disks that have a soft plastic case containing a flexible
platter. The head of a floppy-disk drive generally sits directly on the disk
surface, so the drive is designed to rotate more slowly than a hard-disk drive



12.1 Overview of Mass-Storage Structure 453

to reduce the wear on the disk surface. The storage capacity of a floppy disk
is typically only 1.44 MB or so. Removable disks are available that work much
like normal hard disks and have capacities measured in gigabytes.

A disk drive is attached to a computer by a set of wires called an I/O
bus. Several kinds of buses are available, including enhanced integrated
drive electronics (EIDE), advanced technology attachment (ATA), serial ATA
(SATA), universal serial bus (USB), fiber channel (FC), and SCSI buses. The
data transfers on a bus are carried out by special electronic processors called
controllers. The host controller is the controller at the computer end of the
bus. A disk controller is built into each disk drive. To perform a disk I/O
operation, the computer places a command into the host controller, typically
using memory-mapped I/O ports, as described in Section 9.7.3. The host
controller then sends the command via messages to the disk controller, and the
disk controller operates the disk-drive hardware to carry out the command.
Disk controllers usually have a built-in cache. Data transfer at the disk drive
happens between the cache and the disk surface, and data transfer to the host,
at fast electronic speeds, occurs betwreen the cache and the host controller.

12.1.2 Magnetic Tapes

Magnetic tape was used as an early secondary-storage medium. Although it
is relatively permanent and can hold large quantities of data, its access time
is slow compared with that of main memory and magnetic disk. In addition,
random access to magnetic tape is about a thousand times slower than random
access to magnetic disk, so tapes are not very useful for secondary storage.
Tapes are used mainly for backup, for storage of infrequently used information,
and as a medium for transferring information from one system to another.

A tape is kept in a spool and is wound or rewound past a read-write head.
Moving to the correct spot on a tape can take minutes, but once positioned,
tape drives can write data at speeds comparable to disk drives. Tape capacities
vary greatly, depending on the particular kind of tape drive. Typically, they
store from 20 GB to 200 GB. Some have built-in compression that can more than
double the effective storage. Tapes and their drivers are usually categorized
by width, including 4, 8, and 19 millimeters and 1/4 and 1/2 inch. Some are
named according to technology, such as LTO-2 and SDLT. Tape storage is further
described in Section 12.9.



454 Chapter 12 Mass-Storage Structure

l i * k&i&U fco^aiiijitiierftieE^siesagiiyd; Fyr:.

the :1EE.E: |39:4. a i a d d S j d i i i f f i ^ ^ i g p |
:|#itilwiMIK;: up;: fe ::SflO: Hi:ega|i,|s:j:per. geccinp.;:: $.%cently^ ::a :::new:;:sfa;ii.f arc!
| | i ^ fe Mel; i ^ : ! i | A M # i t e | i | I ^ i i

12.2 Disk Structure

Modern disk drives are addressed as large one-dimensional arrays of logical
blocks, where the logical block is the smallest unit of transfer. The size of
a logical block is usually 512 bytes, although some disks can be low-level
formatted to have a different logical block size, such as 1,024 bytes. This option
is described in Section 12.5.1. The one-dimensional array of logical blocks is
mapped onto the sectors of the disk sequentially. Sector 0 is the first sector
of the first track on the outermost cylinder. The mapping proceeds in order
through that track, then through the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermost to innermost.

By using this mapping, we can—at least in theory—convert a logical block
number into an old-style disk address that consists of a cylinder number, a track
number within that cylinder, and a sector number within that track. In practice,
it is difficult to perform, this translation, for two reasons. First, most disks have
some defective sectors, but the mapping hides this by substituting spare sectors
from elsewhere on the disk. Second, the number of sectors per track is not a
constant on some drives.

Let's look more closely at the second reason. On media that use constant
linear velocity (CLV), the density of bits per track is uniform. The farther a track
is from the center of the disk, the greater its length, so the more sectors it can
hold. As we move from outer zones to inner zones, the number of sectors per
track decreases. Tracks in the outermost zone typically hold 40 percent more
sectors than do tracks in the innermost zone. The drive increases its rotation
speed as the head moves from the outer to the inner tracks to keep the same rate
of data moving under the head. This method is used in CD-ROM and DVD-ROM
drives. Alternatively, the disk rotation speed can stay constant, and the density
of bits decreases from inner tracks to outer tracks to keep the data rate constant.
This method is used in hard disks and is known as constant angular velocity
(CAV).

The number of sectors per track has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.
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12.3 Disk Attachment

Computers access disk storage in two ways. One way is via I/O ports (or
host-attached storage); this is common on small systems. The other way is via
a remote host in a distributed file system; this is referred to as network-attached
storage.

12.3.1 Host-Attached Storage

Host-attached storage is storage accessed through local I/O ports. These ports
use several technologies. The typical desktop PC uses an I/O bus architecture
called IDE or ATA. This architecture supports a maximum of two drives per I/O
bus. A newer, similar protocol that has simplified cabling is SATA. High-end
workstations and servers generally use more sophisticated I/O architectures,
such as SCSI and fiber channel (FC).

SCSI is a bus architecture. Its physical medium is usually a ribbon cable
having a large number of conductors (typically 50 or 68). The SCSI protocol
supports a maximum of 16 devices on the bus. Generally, the devices include
one controller card in the host (the SCSI initiator) and up to 15 storage devices
(the SCSI targets). A SCSI disk is a common SCSI target, but the protocol provides
the ability to address up to 8 logical units in each SCSI target. A typical use of
logical unit addressing is to direct commands to components of a RATD array
or components of a removable media library (such as a CD jukebox sending
commands to the media-changer mechanism or to one of the drives).

FC is a high-speed serial architecture that can operate over optical fiber or
over a four-conductor copper cable. It has two variants. One is a large switched
fabric having a 24-bit address space. This variant is expected to dominate
in the future and is the basis of storage-area networks (SANs), discussed in
Section 12.3.3. Because of the large address space and the switched nature of
the communication, multiple hosts and storage devices can attach to the fabric,
allowing great flexibility in I/O communication. The other PC variant is an
arbitrated loop (FC-AL) that can address 126 devices (drives and controllers).

A wide variety of storage devices are suitable for use as host-attached
storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and
tape drives. The I/O commands that initiate data transfers to a host-attached
storage device are reads and writes of logical data blocks directed to specifically
identified storage units (such as bus ID, SCSI ID, and target logical unit).

12.3.2 Network-Attached Storage

A network-attached storage (NAS) device is a special-purpose storage system
that is accessed remotely over a data network (Figure 12.2). Clients access
network-attached storage via a remote-procedure-call interface such as NFS
for UNIX systems or CIFS for Windows machines. The remote procedure calls
(RPCs) are carried via TCP or UDP over an IP network—-usually the same
local-area network (LAN) that carries all data traffic to the clients. The network-
attached storage unit is usua lly implemented as a RAID array with software that
implements the RPC interface. It is easiest to think of NAS as simply another
storage-access protocol. For example, rather than using a SCSI device driver
and SCSI protocols to access storage, a system using NAS would use RPC over
TCP/IP.
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Figure 12.2 Network-attached storage.

Network-attached storage provides a convenient way for all the computers
on a LAN to share a pool of storage with the same ease of naming and access
enjoyed with local host-attached storage. However, it tends to be less efficient
and have lower performance than some direct-attached storage options.

ISCSI is the latest network-attached storage protocol. In essence, it uses
the IP network protocol to carry the SCSI protocol. Thus, networks rather than
SCSI cables can be used as the interconnects between hosts and their storage.
As a result, hosts can treat their storage as if it were directly attached, but the
storage can be distant from the host.

12.3.3 Storage-Area Network

One drawback of network-attached storage systems is that the storage I/O
operations consume bandwidth on the data network, thereby increasing the
latency of network communication. This problem can be particularly acute
in large client-server installations—the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

A storage-area network (SAN) is a private network (using storage protocols
rather than networking protocols) connecting servers and storage units, as
shown in Figure 12.3. The power of a SAN lies in its flexibility. Multiple hosts
and multiple storage arrays can attach to the same SAN, and storage can
be dynamically allocated to hosts. A SAN switch allows or prohibits access
between the hosts and the storage. As one example, if a host is running low-
on disk space, the SAN can be configured to allocate more storage to that host.
SANs make it possible for clusters of servers to share the same storage and
for storage arrays to include multiple direct host connections. SANs typically
have more ports, and less expensive ports, than storage arrays. FC is the most
common. SAN interconnect.

An emerging alternative is a special-purpose bus architecture named
InfiniBand, which provides hardware and software support for high-speed
interconnection networks for servers and storage units.

12.4 Disk Scheduling

One of the responsibilities of the operating system is to use the hardware
efficiently. For the disk drives, meeting this responsibility entails having
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Figure 12.3 Storage-area network.

fast access time and large disk bandwidth. The access time has two major
components (also see Section 12.1.1). The seek time is the time for the disk arm
to move the heads to the cylinder containing the desired sector. The rotational
latency is the additional time for the disk to rotate the desired sector to the disk
head. The disk bandwidth is the total number of bytes transferred, divided
by the total time between the first request for service and the completion of
the last transfer. We can improve both the access time and the bandwidth by
scheduling the servicing of disk I/O requests in a good order.

Whenever a process needs I/O to or from the disk, it issues a system call to
the operating system. The request specifies several pieces of information:

• Whether this operation is input or output

• What the disk address for the transfer is

• What the memory address for the transfer is

• What the number of sectors to be transferred is

If the desired disk drive and controller are available, the request can be
serviced immediately. If the drive or controller is busy, any new requests
for service will be placed in the queue of pending requests for that drive.
For a multiprogramming system with many processes, the disk queue may
often have several pending requests. Thus, when one request is completed,, the
operating system chooses which pending request to service next. How does
the operating system make this choice? Any one of several disk-scheduling
algorithms can be used, and we discuss them next.

12.4.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, the first-come, first-served
(FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not
provide the fastest service. Consider, for example, a disk queue with requests
for I/O to blocks on cylinders

98, 183, 37,122, 14, 124, 65, 67,
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queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
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Figure 12.4 FCFS disk scheduling.

in that order. If the disk head is initially at cylinder 53, it will first move from
53 to 98, then to 183, 37, 122, 14, 124/65, and finally to 67, for a total head
movement of 640 cylinders. This schedule is diagrammed in Figure 12.4.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests at 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

12.4.2 SSTF Scheduling

It seems reasonable to service all the requests close to the current head position
before moving the head far away to service other requests. This assumption is
the basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm
selects the request with the minimum seek time from the current head position.
Since seek time increases with the number of cylinders traversed by the head,
SSTF chooses the pending request closest to the current head position.

For our example request queue, the closest request to the initial head
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest
request is at cylinder 67. From there, the request at cylinder 37 is closer than the
one at 98, so 37 is served next. Continuing, we service the request at cylinder 14,
then 98,122, 124, and finally 183 (Figure 12.5). This scheduling method results
in a total head movement of only 236 cylinders—little more than one-third of
the distance needed for FCFS scheduling of this request queue. This algorithm
gives a substantial improvement in performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;
and like SJF scheduling, it may cause starvation of some requests. Remember
that requests may arrive at any time. Suppose that we have two requests in
the queue, for cylinders 14 and 186, and while servicing the request from 14,
a new request near 14 arrives. This new request will be serviced next, making
the request at 186 wait. While this request is being serviced, another request
close to 14 could arrive. In theory, a continual stream of requests near one
another could arrive, causing the request for cylinder 186 to wait indefinitely.
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Figure 12.5 SSTF disk scheduling.

This scenario becomes increasingly likely if the pending-request queue grows
long.

Although the SSTF algorithm is a substantial improvement over the FCFS
algorithm, it is not optimal. In the example, we can do better by moving the
head from 53 to 37, even though the latter is not closest, and then to 14, before
turning around to service 65, 67, 98, 122, 124, and 183. This strategy reduces
the total head movement to 208 cylinders.

12.4.3 SCAN Scheduling

In the SCAN algorithm, the disk arm starts at one end of the disk and moves
toward the other end, servicing requests as it reaches each cylinder, until it gets
to the other end of the disk. At the other end, the direction of head movement
is reversed, and servicing continues. The head continuously scans back and
forth across the disk. The SCAN algorithm is sometimes called the elevator
algorithm, since the disk arm behaves just like an elevator in a building, first
servicing all the requests going up and then reversing to service requests the
other way.

Let's return to our example to illustrate. Before applying SCAN to schedule
the requests on cylinders 98,183, 37,122,14, 124, 65, and 67, we need to know
the direction of head movement in addition to the head's current position (53).
If the disk arm is moving toward 0, the head will service 37 and then 14. At
cylinder 0, the arm will reverse and will move toward the other end of the
disk, servicing the requests at 65, 67, 98, 122, 124, and 183 (Figure 12.6). If a
request arrives in the queue just in front of the head, it will be serviced almost
immediately; a request arriving just behind the head will have to wait until the
arm moves to the end of the disk, reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and"reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests
is at the other end of the disk. These requests have also waited the longest, so
why not go there first? That is the idea of the next algorithm.
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queue = 98, 183, 37, 122, 14. 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199

Figure 12.6 SCAN disk scheduling.

12.4.4 C-SCAN Scheduling

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end
of the disk to the other, servicing requests along the way. When the head
reaches the other end, however, it immediately returns to the beginning of
the disk, without servicing any requests on the return trip (Figure 12.7). The
C-SCAN scheduling algorithm essentially treats the cylinders as a circular list
that wraps around from the final cylinder to the first one.

12.4.5 LOOK Scheduling

As we described them, both SCAN and C-SCAK move the disk arm across the
full width of the disk. In practice, neither algorithm is often implemented this
way. More commonly, the arm goes only as far as the final request in each

queue = 98: 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
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Figure 12.7 C-SCAN disk scheduling.
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queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
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Figure 12.8 C-LOOK disk scheduling.

direction. Then, it reverses direction immediately, without going all the way to
the end of the disk. Versions of SCAN and C-SCAN that follow this pattern are
called LOOK and C-LOOK scheduling, because they look for a request before
continuing to move in a given direction (Figure 12.8).

12.4.6 Selection of a Disk-Scheduling Algorithm

Given so many disk-scheduling algorithms, how do we choose the best one?
SSTF is common and has a natural appeal because it increases performance over
FCFS. SCAM and C-SCAN perform better for systems that place a heavy load on
the disk, because they are less likely to cause a starvation problem.. For any
particular list of requests, we can define an optimal order of retrieval, but the
computation needed to find an optimal schedule may not justify the savings
over SSTF or SCAN. With any scheduling algorithm, however, performance
depends heavily on the number and types of requests. For instance, suppose
that the queue usually has just one outstanding request. Then, all scheduling
algorithms behave the same, because they have only one choice for where to
move the disk head: They all behave like FCFS scheduling.

Requests for disk service can be greatly influenced by the file-allocation
method. A program reading a contiguously allocated file will generate several
requests that are close together on the disk, resulting in limited head movement.
A linked or indexed file, in contrast, may include blocks that are widely
scattered on the disk, resulting in greater head movement.

The location of directories and index blocks is also important. Since every
file must be opened to be used, and opening a file requires searching the
directory structure, the directories will be accessed frequently. Suppose that a
directory entry is on the first cylinder and a file's data are on the final cylinder.
In this case, the disk head has to move the entire width of the disk. If the
directory entry were on the middle cylinder, the head would have to move,
at most, one-half the width. Caching the directories and index blocks in main
memory can also help to reduce the disk-arm movement, particularly for read
requests.
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Because of these complexities, the disk-scheduling algorithm should be
written as a separate module of the operating system, so that it can be replaced
with a different algorithm if necessary. Either SSTF or LOOK is a reasonable
choice for the default algorithm.

The scheduling algorithms described here consider only the seek distances.
For modern disks, the rotational latency can be nearly as large as the
average seek time. It is difficult for the operating system to schedule for
improved rotational latency, though, because modern disks do not disclose the
physical location of logical blocks. Disk manufacturers have been alleviating
this problem by implementing disk-scheduling algorithms in the controller
hardware built into the disk drive. If the operating system sends a batch of
requests to the controller, the controller can queue them and then schedule
them to improve both the seek time and the rotational latency.

If I/O performance were the only consideration, the operating system
would gladly turn over the responsibility of disk scheduling to the disk hard-
ware. In practice, however, the operating system may have other constraints on
the service order for requests. For instance, demand paging may take priority
over application I/O, and writes are more urgent than reads if the cache is
running out of free pages. Also, it may be desirable to guarantee the order of a
set of disk writes to make the file system robust in the face of system crashes.
Consider what could happen if the operating system allocated a disk page to a
file and the application wrote data into that page before the operating system
had a chance to flush the modified inode and free-space list back to disk. To
accommodate such requirements, an operating system may choose to do its
own disk scheduling and to spoon-feed the requests to the disk controller, one
by one, for some types of F/O.

12.5 Disk Management

The operating system is responsible for several other aspects of disk manage-
ment, too. Here we discuss disk initialization, booting from disk, and bad-block
recovery.

12.5.1 Disk Formatting

A new magnetic disk is a blank slate: It is just a platter of a magnetic recording
material. Before a disk can store data, it must be divided into sectors that the
disk controller can read and write. This process is called low-level formatting,
or physical formatting. Low-level formatting fills the disk with a special data
structure for each sector. The data structure for a sector typically consists of a
header, a data area (usually 512 bytes in size), and a trailer. The header and
trailer contain information used by the disk controller, such as a sector number
and an error-correcting code (ECC). When the controller writes a sector of data
during normal I/O, the ECC is updated with a value calculated from all the
bytes in the data area. When the sector is read, the ECC is recalculated and
is compared with the stored value. If the stored and calculated numbers are
different, this mismatch indicates that the data area of the sector has become
corrupted and that the disk sector may be bad (Section 12.5.3). The ECC is an
error-correcting code because it contains enough information that, if only a few



12.5 Disk Management 463

bits or data have been corrupted, the controller can identify which bits, have
changed and can calculate what their correct values should be. It then reports
a recoverable soft error. The controller automatically does the ECC processing
whenever a sector is read or written.

Most hard disks are low-level-forniatted at the factory as a part of the
manufacturing process. This formatting enables the manufacturer to test the
disk and to initialize the mapping from logical block numbers to defect-free
sectors on the disk. For many hard disks, when the disk controller is instructed
to low-level-format the disk, it can also be told how many bytes of data space
to leave between the header and trailer of all sectors. It is usually possible to
choose among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a disk
with a larger sector size means that fewer sectors can fit on each track; but it
also means that fewer headers and trailers are written on each track and more
space is available for user data. Some operating systems can handle only a
sector size of 512 bytes.

To use a disk to hold files, the operating system still needs to record its own
data structures on the disk. It does so in two steps. The first step is to partition
the disk into one or more groups of cylinders. The operating system can treat
each partition as though it were a separate disk. For instance, one partition can
hold a copy of the operating system's executable code, while another holds
user files. After partitioning, the second step is logical formatting (or creation
of a file system). In this step, the operating system stores the initial file-system
data structures onto the disk. These data structures may include maps of free
and allocated space (a FAT or modes) and an initial empty directory.

To increase efficiency, most file systems group blocks together into larger
chunks, frequently called clusters. Disk I/O is done via blocks, but file system
I /O is done via clusters, effectively assuring that I/O has more sequential-access
and fewer random-access characteristics.

Some operating systems give special programs the ability to use a disk
partition as a large sequential array of logical blocks, without any file-system
data structures. This array is sometimes called the raw disk, and 1 /O to this array
is termed raw I/O. For example, some database systems prefer raw I/O because
it enables them to control the exact disk location where each database record is
stored. Raw I/O bypasses all the file-system services, such as the buffer cache,
file locking, prefetching, space allocation, file names, and directories. We can
make certain applications more efficient by allowing them to implement their
own special-purpose storage services on a raw partition, but most applications
perform better when they use the regular file-system services.

12.5.2 Boot Block

For a computer to start running—for instance, when it is powered up or
rebooted—it must have an initial program to run. This initial bootstrap program
tends to be simple. It initializes all aspects of the system, from CPU registers
to device controllers and the contents of main memory, and then starts the
operating system. To do its job, the bootstrap program finds the operating-
system kernel on disk, loads that kernel into memory, and jumps to an initial
address to begin the operating-system execution.

For most computers, the bootstrap is stored in read-only memory (ROM).
This location is convenient, because ROM needs no initialization and is at a fixed
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Figure 12.9 Booting from disk in Windows 2000.

location that the processor can start executing when powered up or reset. And,
since ROM is read only, it cannot be infected by a computer virus. The problem is
that changing this bootstrap code requires changing the ROM, hardware chips.
For this reason, most systems store a tiny bootstrap loader program in the boot
ROM whose only job is to bring in a full bootstrap program from disk. The
full bootstrap program can be changed easily: A new version is simply written
onto the disk. The full bootstrap program is stored in ''the boot blocks" at a
fixed location on the disk. A disk that has a boot partition is called a boot disk
or system disk.

The code in the boot ROM instructs the disk controller to read the boot
blocks into memory (no device drivers are loaded at this point) and then starts
executing that code. The full bootstrap program is more sophisticated than the
bootstrap loader in the boot ROM; it is able to load the entire operating system
from a non-fixed location on disk and to start the operating system running.
Even so, the full bootstrap code may be small.

Let's consider as an example the boot process in Windows 2000. The
Windows 2000 system places its boot code in the first sector on the hard disk
(which it terms the master boot record, or MBR). Furthermore, Windows 2000
allows a hard disk to be divided into one or more partitions; one partition,
identified as the boot partition, contains the operating system and device
drivers. Booting begins in a Windows 2000 system by running code that is
resident in the system's ROM memory. This code directs the system to read the
boot code from, the MBR. In addition to containing boot code, the MBR contains
a table listing the partitions for the hard disk and a flag indicating which
partition the system is to be booted from. This is illustrated in Figure 12.9.
Once the system identifies the boot partition, it reads the first sector from that
partition (which is called the boot sector) and continues with the remainder of
the boot process, which includes loading the various subsystems and system
services.

12.5.3 Bad Blocks

Because disks have moving parts and small tolerances (recall that the disk
head flies just above the disk surface), they are prone to failure. Sometimes the
failure is complete; in this case, the disk needs to be replaced and its contents
restored from backup media to the new disk. More frequently, one or more
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sectors become defective. Most disks even come from the factory with bad
blocks. Depending on the disk and controller in use, these blocks are handled
in a variety of ways.

On simple disks, such as some disks with [DE controllers, bad blocks are
handled manually. For instance, the MS-DOS format command performs logical
formatting and, as a part of the process, scans the disk to find bad blocks. If
format finds a bad block, it writes a special value into the corresponding FAT
entry to tell the allocation routines not to use that block. If blocks go bad during
normal operation, a special program (such as chkdsk) must be run manually
to search for the bad blocks and to lock them away as before. Data that resided
on the bad blocks usually are lost.

More sophisticated disks, such as the SCSI disks used in high-end PCs
and most workstations and servers, are smarter about bad-block recovery. The
controller maintains a list of bad blocks on the disk. The list is initialized during
the low-level formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system. The controller can be told to replace each bad sector logically with one
of the spare sectors. This scheme is known as sector sparing or forwarding.

A typical bad-sector transaction might be as follows:

The operating system tries to read logical block 87.

The controller calculates the ECC and finds that the sector is bad. It reports
this finding to the operating system.

The next time the system is rebooted, a special, command is run to tell the
SCSI controller to replace the bad sector with a spare.

After that, whenever the system requests logical block 87, the request is
translated into the replacement sector's address by the controller.

Such a redirection by the controller could invalidate any optimization by
the operating system's disk-scheduling algorithm! For this reason, most disks
are formatted to provide a few spare sectors in each, cylinder and a spare
cylinder as well. When a bad block is remapped, the controller uses a spare
sector from the same cylinder, if possible.

As an alternative to sector sparing, some controllers can be instructed to
replace a bad block by sector slipping. Here is an example: Suppose that
logical block 17 becomes defective and the first available spare follows sector
202. Then, sector slipping remaps all the sectors from 17 to 202, moving them
all down one spot. That is, sector 202 is copied into the spare, then sector 201
into 202, and then 200 into 201, and so on, until sector 18 is copied into sector
19. Slipping the sectors in this way frees up the space of sector 18, so sector 17
can be mapped to it.

The replacement of a bad block generally is not totally automatic because
the data in the bad block are usually lost. Several soft errors could trigger a
process in which a copy of the block data is made and the block is spared or
slipped. An unrecoverable hard error, however, results in lost data. Whatever
file was using that block must be repaired (for instance, by restoration from a
backup tape), and that requires manual intervention.
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12,6 Swap-Space Management

Swapping was first presented in Section 8.2, where wre discussed moving
entire processes between disk and main memory. Swapping in that setting
occurs when the amount of physical memory reaches a critically low point
and processes (which are usually selected because they are the least active) are
moved from memory to swap space to free available memory. In practice, very
few modern operating systems implement swapping in this fashion. Rather,
systems now combine swapping with virtual memory techniques (Chapter 9)
and swap pages, not necessarily entire processes. In fact, some systems now
use the terms swapping and paging interchangeably, reflecting the merging of
these two concepts.

Swap-space management is another low-level task of the operating
system. Virtual memory uses disk space as an extension of main memory.
Since disk access is much slower than memory access, using swap space
significantly decreases system performance. The main goal for the design, and
implementation of swap space is to provide the best throughput for the virtual
memory system. In this section, we discuss how swap space is used, where
swap space is located on disk, and how swap space is managed.

12.6.1 Swap-Space Use

Swap space is used in various ways by different operating systems, depending
on the memory-management algorithms in use. For instance, systems that
implement swapping may use swap space to hold an entire process image,
including the code and data segments. Paging systems may simply store pages
that have been pushed out of main memory. The amount of swap space needed
on a system can therefore vary depending on the amount of physical memory,
the amount of virtual memory it is backing, and the way in which the virtual
memory is used. It can range from a few megabytes of disk space to gigabytes.

Note that it may be safer to overestimate than to underestimate the amount
of swap space required, because if a system runs out of swap space it may be
forced to abort processes or may crash entirely. Overestimation wastes disk
space that could otherwise be used for files, but it does no other harm. Some
systems recommend the amount to be set aside for swap space. Solaris, for
example, sviggests setting swap space equal to the amount by which virtual
memory exceeds pageable physical memory. Historically, Linux suggests
setting swap space to double the amount of physical memory, although most
Linux systems now use considerably less swap space. In fact, there is currently
much debate in the Linux community about whether to set aside swap space
at all!

Some operating systems—including Linux—allow the use of multiple
swap spaces. These swap spaces are usually put on separate disks so the load
placed on the I/O system by paging and swapping can be spread over the
system's I/O devices.

12.6.2 Swap-Space Location

A swap space can reside in one of two places: It can be carved out of the
normal file system, or it can be in a separate disk partition. If the swap
space is simply a large file within the file system, normal file-system routines
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can be used to create it, name it, and allocate its space. This approach,
though easy to implement, is inefficient. Navigating the directory structure
and the disk-allocation data structures takes time and (potentially) extra
disk accesses. External fragmentation can greatly increase swapping times by
forcing multiple seeks during reading or writing of a process image. We can
improve performance by caching the block location information in physical
memory and by using special tools to allocate physically contiguous blocks
for the swap file, but the cost of traversing the file-system data structures still
remains.

Alternatively, swap space can be created in a separate raw partition, as no
file system or directory structure is placed in this space. Rather, a separate
swap-space storage manager is used to allocate and deallocate the blocks
from the raw partition. This manager uses algorithms optimized for speed
rather than for storage efficiency, because swap space is accessed much more
frequently than file systems (when it is used). Internal fragmentation may
increase, but this trade-off is acceptable because the life of data in the swap
space generally is much shorter than that of files in the file system. Swap space
is reinitialized at boot time so any fragmentation is short-lived. This approach
creates a fixed amount of swap space during disk partitioning. Adding more
swap space requires repartitioning the disk (which involves moving the other
file-system, partitions or destroying them and restoring them from backup) or
adding another swap space elsewhere.

Some operating systems are flexible and can swap both in raw partitions
and in file-system space. Linux is an example: The policy and. implementation
are separate, allowing the machine's administrator to decide which type of
swapping to use. The trade-off is between the convenience of allocation and
management in the file system and the performance of swapping in raw
partitions.

12.6.3 Swap-Space Management: An Example

We can illustrate how swap space is used by following the evolution of
swapping and paging in various UNIX systems. The traditional UNIX kernel
started with an implementation of swapping that copied entire processes
between contiguous disk regions and memory. UNIX later evolved to a
combination of swapping and paging as paging hardware became available.

In Solaris 1 (SunOS), the designers changed standard UNIX methods to
improve efficiency and reflect technological changes. When a process executes,
text-segment pages containing code are brought in from the file system,
accessed in main memory, and thrown away if selected for pageout. It is more
efficient to reread a page from the file system than to write it to swap space
and then reread it from there. Swap space is only used as a backing store for
pages of anonymous memory, which includes memory allocated for the stack,
heap, and uninitialized data of a process.

More changes were made in later versions of Solaris. The biggest change
is that Solaris now allocates swap space only when a page is forced out of
physical memory, rather than when the virtual memory page is first created.
This scheme gives better performance on modern computers, which have more
physical memory than older systems and tend to page less.
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Figure 12.10 The data structures for swapping on Linux systems.

Linux is similar to Solaris in that swap space is only used for anonymous
memory or for regions of memory shared by several processes. Linux allows
one or more swap areas to be established. A swap area may be in either a
swap file on a regular file system or a raw swap partition. Each swap area
consists of a series of 4-KB page slots, which are used to hold swapped pages.
Associated with each swap area is a swap map—an array of integer counters,
each corresponding to a page slot in the swap area. Tf the value of a counter is 0,
the corresponding page slot is available. Values greater than 0 indicate that the
page slot is occupied by a swapped page. The value of the counter indicates the
number of mappings to the swapped page; for example, a value of 3 indicates
that the swapped page is mapped to three different processes (which can occur
if the swapped page is storing a region of memory shared by three processes).
The data structures for swapping on Linux systems are shown in Figure 12.10.

12.7 RAID Structure

Disk drives have continued to get smaller and cheaper, so it is now econom-
ically feasible to attach .many disks to a computer system. Having a large
number of disks in a system presents opportunities for improving the rate
at which data can be read or written, if the disks are operated in parallel.
Furthermore, this setup offers the potential for improving the reliability of data
storage, because redundant information can be stored on multiple disks. Thus,
failure of one disk does not lead to loss of data. A variety of disk-organization
techniques, collectively called redundant arrays of inexpensive disks (RAIDS),
are commonly used to address the performance and reliability issues.

In the past, RAIDs composed of small, cheap disks were viewed as a
cost-effective alternative to large, expensive disks; today, RAIDs are used for
their higher reliability and higher data-transfer rate, rather than for economic
reasons. Hence, the I in RAID now stands for "independent" instead of
"inexpensive."

12.7.1 Improvement of Reliability via Redundancy

Let us first consider the reliability of RAIDs. The chance that some disk out of
a set of N disks will fail is much higher than the chance that a specific single
disk will fail. Suppose that the mean time to failure of a single disk is 100,000
hours. Then the mean time to failure of some disk in an array of 100 disks
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will be 100,000/100 = 1,000 hours, or 41.66 days, which is not long at all! If we
store only one copy of the data, then each disk failure will result in loss of a
significant amount of data—and such a high rate of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; we
store extra information that is not normally needed but that can be used in the
event of failure of a disk to rebuild the lost information. Thus, even if a disk
fails, data are not lost.

The simplest (but most expensive) approach to introducing redundancy is
to duplicate every disk. This technique is called mirroring. A logical disk then
consists of two physical disks, and every write is carried out on both disks. If
one of the disks fails, the data can be read from the other. Data will be lost only
if the second disk fails before the first failed disk is replaced.

The mean time to failure—where failure is the loss of data—of a mirrored
volume (made up of two disks, mirrored) depends on two factors. One is
the mean time to failure of the individual disks. The other is the mean time
to repair, which is the time it takes (on average) to replace a failed disk
and to restore the data on it. Suppose that the failures of the two disks are
independent; that is, the failure of one disk is not connected to the failure of
the other. Then, if the mean time to failure of a single disk is 100,000 hours and
the mean time to repair is 10 hours, the mean time to data loss of a mirrored
disk system is 100, 0002/(2 * 10) = 500 * 106 hours, or 57,000 years!

You should be aware that the assumption of independence of disk failures
is not valid. Power failures and natural disasters, such as earthquakes, fires,
and floods, may result in damage to both disks at the same time. Also,
manufacturing defects in a batch of disks can cause correlated, failures. As
disks age, the probability of failure grows, increasing the chance that a second
disk will fail while the first is being repaired. In spite of all these considerations,
however, mirrored-disk systems offer much higher reliability than do single-
disk systems.

Power failures are a particular source of concern, since they occur far more
frequently than do natural disasters. Even with mirroring of disks, if writes
are in progress to the same block in both disks, and power fails before both
blocks are fully written, the two blocks can be in an inconsistent state. One
solution to this problem is to write one copy first, then the next, so that one
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of the two copies is always consistent. Another is to add a nonvolatile' RAM
(NVRAM) cache to the RAID array. This write-back cache is protected from data
loss during power failures, so the write can be considered complete at that
point, assuming the NVRAM has some kind of error protection and correction.,
such as ECC or mirroring.

12.7.2 Improvement in Performance via Parallelism

Now let's consider how parallel access to multiple disks improves perfor-
mance. With disk mirroring, the rate at which read requests can be handled is
doubled, since read requests can be sent to either disk (as long as both disks
in a pair are functional, as is almost always the case). The transfer rate of each
read is the same as in a single-disk system, but the number of reads per unit
time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead)
by striping data across the disks. In its simplest form, data striping consists
of splitting the bits of each byte across multiple disks; such striping is called
bit-level striping. For example, if we have an array of eight disks, we write bit
/' of each byte to disk /. The array of eight disks can be treated as a single disk
with sectors that are eight times the normal size and, more important, that have
eight times the access rate. In such an organization, every disk participates in
every access (read or write); so the number of accesses that can be processed
per second is about the same as on a single disk, but each access can read eight
times as many data in the same time as on a single disk.

Bit-level striping can be generalized to include a number of disks that either
is a multiple of 8 or divides 8. For example, if we use an array of four disks,
bits / and 4 + i of each byte go to disk /. Further, striping need not be at the bit
level. For example, in block-level striping, blocks of a file are striped across
multiple disks; with n disks, block / of a file goes to disk (/ mod n) + 1. Other
levels of striping, such as bytes of a sector or sectors of a block, also are possible.
Block-level striping is the most common.

Parallelism in a disk system, as achieved through striping, has two main
goals:

1. increase the throughput of multiple small accesses (that is, page accesses)
by load balancing.

2. Reduce the response time of large accesses.

12.7.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high
data-transfer rates, but it does not improve reliability. Numerous schemes to
provide redundancy at lower cost by using the idea of disk striping combined
with "parity" bits (which we describe next) have been proposed. These schemes
have different cost-performance trade-offs and are classified according to
levels called RAID levels. We describe the various levels here; Figure 12.11
shows them pictorially (in the figure, P indicates error-correcting bits, and C
indicates a second copy of the data). In all cases depicted in the figure, four
disks' worth of data are stored, and the extra disks are used to store redundant
information for failure recovery.
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(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.

Figure 12.11 RAID levels.

• RAID Level 0. RAID level 0 refers to disk arrays with striping at the level of
blocks but without any redundancy (such as mirroring or parity bits), as
shown in Figure 12.11(a).

• RAID Level 1. RAID level 1 refers to disk mirroring. Figure 12.11 (b) shows
a mirrored organization.

• RAID Level 2. RAID level 2 is also known as memory-style error-correcting-
code (ECC) organization. Memory systems have long detected certain
errors by using parity bits. Each byte in a memory system may have a
parity bit associated with it that records whether the number of bits in the
byte set to 1 is even (parity = 0) or odd (parity = 1). If one of the bits in the
byte is damaged (either a 1 becomes a 0, or a 0 becomes a 1), the parity of
the byte changes and thus will not match the stored parity. Similarly, if the
stored parity bit is damaged, it will not match the computed parity. Thus,
all single-bit errors are detected by the memory system. Error-correcting
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schemes store two or more extra bits and can reconstruct the data if a
single bit is damaged. The idea of ECC can be used directly in disk arrays
via striping of bytes across disks. For example, the first bit of each byte can
be stored in disk 1, the second bit in disk 2, and so on until the eighth bit
is stored in disk 8; the error-correction bits are stored in further disks. This
scheme is shown pictorially in Figure 12.11 (c), where the disks labeled P
store the error-correction bits. If one of the disks fails, the remaining bits
of the byte and the associated error-correction bits can be read from other
disks and used to reconstruct the damaged data. Note that RAID level 2
requires only three disks' overhead for four disks of data, unlike RAID level
1, which requires four disks' overhead.

* RAID Level 3. RAID level 3, or bit-interleaved parity organization,
improves on level 2 by taking into account the fact that, unlike memory
systems, disk controllers can detect whether a sector has been read
correctly, so a single parity bit can be used for error correction as well
as for detection. The idea is as follows: If one of the sectors is damaged, we
know exactly which sector it is, and we can figure out whether any bit in
the sector is a 1 or a 0 by computing the parity of the corresponding bits
from sectors in the other disks. If the parity of the remaining bits is equal
to the stored parity, the missing bit is 0; otherwise, it is 1. RAID level 3 is as
good as level 2 but is less expensive in the number of extra disks required
(it has only a one-disk overhead), so level 2 is not used in practice. This
scheme is shown pictorially in Figure 12.11(d).

RAID level 3 has two advantages over level 1. First, the storage over-
head is reduced because only one parity disk is needed for several regular
disks, whereas one mirror disk is needed for every disk in level 1. Second,
since reads and writes of a byte are spread out over multiple disks with
A/-way striping of data, the transfer rate for reading or writing a single
block is N times as fast as with RAID level 1. On the negative side, RAID
level 3 supports fewer I/Os per second, since every disk has to participate
in every I/O request.

A further performance problem with RAID 3—and with all parity-
based RAID levels—is the expense of computing and writing the parity.
This overhead results in significantly slower writes than with non-parity
RAID arrays. To moderate this performance penalty, many RAID storage
arrays include a hardware controller with dedicated parity hardware. This
controller offloads the parity computation from the CPU to the array. The
array has an NVRAM cache as well, to store the blocks while the parity is
computed and to buffer the writes from the controller to the spindles. This
combination can make parity RAID almost as fast as non-parity. In fact, a
caching array doing parity RAID can outperform a non-caching non-parity
RAID.

• RAID Level 4. RAID level 4, or block-interleaved parity organization, uses
block-level striping, as in RAID 0, and in addition keeps a parity block on a
separate disk for corresponding blocks from A! other disks. This scheme is
diagramed in Figure 12.11(e). If one of the disks fails, the parity block can
be used with the corresponding blocks from the other disks to restore the
blocks of the failed disk.
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A block read accesses only one disk, allowing other requests to be
processed by the other disks, thus, the data-transfer rate for each access
is slower, but multiple read accesses can proceed in parallel, leading to a
higher overall I/O rate. The transfer rates for large reads are high, since all
the disks can be read in parallel; large writes also have high transfer rates,
since the data and parity can be written in parallel

Small independent writes cannot be performed in parallel. An operating
system write of data smaller than a block requires that the block be read,
modified with the new data, and written back. The parity block has to be
updated as well. This is known as the read-modify-write cycle. Thus, a
single write requires four disk accesses: two to read the two old blocks and
two to write the two new blocks.

WAFL (Chapter 11) uses RAID level 4 because this RAID level allows disks
to be added to a RAID set seamlessly. If the added ciisks are initialized with
blocks containing all zeros, then the parity value does not change, and the
RAID set is still correct.

• RAID Level 5. RAID level 5, or block-interleaved distributed parity, differs
from level 4 by spreading data and parity among all N + 1 disks, rather
than storing data in N disks and parity in one disk. For each block, one of
the disks stores the parity, and the others store data. For example, with an
array of five disks, the parity for the nth block is stored in disk (n mod 5)^1;
the nth blocks of the other four disks store actual data for that block. This
setup is shown in Figure 12.1 l(f), where the Ps are distributed across all
the disks. A parity block cannot store parity for blocks in the same disk,
because a disk failure would result in loss of data as well as of parity, and
hence the loss would not be recoverable. By spreading the parity across all
the disks in the set, RAID 5 avoids the potential overuse of a single parity-
disk that can occur with RAID 4. RAID 5 is the most common parity RAID
system.

• RAID Level 6. RAID level 6, also called the P + Q redundancy scheme, is
much like RAID level 5 but stores extra redundant information to guard
against multiple disk failures. Instead of parity, error-correcting codes such
as the Reed-Solomon codes are used. In the scheme shown in Figure
12.11(g), 2 bits of redundant data are stored for every 4 bits of data—
compared with 1 parity bit in level 5—and the system can tolerate two
disk failures.

• RAID Level 0 + 1. RAID level 0 + 1 refers to a combination of RAID levels
0 and 1. RAID 0 provides the performance, while RAID 1 provides the
reliability. Generally, this level provides better performance than RAID 5.
It is common in environments where both performance and. reliability
are important. Unfortunately, it doubles the number of disks needed for
storage, as does RAID 1, so it is also more expensive, in RAID 0 - 1, a set
of disks are striped, and then the stripe is mirrored to another, equivalent
stripe.

Another RAID option that is becoming available commercially is RAID
level 1 + 0, in which disks are mirrored in pairs, and then the resulting
mirror pairs are striped. This RAID has some theoretical advantages over
RAID 0 + 1. For example, if a single disk fails in RAID 0 + 1, the entire
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stripe
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a) RAID 0 + 1 with a single disk failure.

stripe
mirror mirror mirror mirror

b) RAID 1 + 0 with a single disk failure.

Figure 12.12 RAID 0 + 1 and 1 + 0.

stripe is inaccessible, leaving only the other stripe available. With a failure
in RAID 1 + 0 , the single disk is unavailable, but its mirrored pair is still
available, as are all the rest of the disks (Figure 12.12).

Numerous variations have been proposed to the basic RAID schemes described
here. As a result, some confusion may exist about the exact definitions of the
different RAID levels.

The implementation of RAID is another area of variation. Consider the
following layers at which RAID can be implemented.

• Volume-management software can implement RAID within the kernel or
at the system software layer. In this case, the storage hardware can provide
a minimum of features and still be part of a full RAID solution. Parity RAID
is fairly slow when implemented in software, so typically RAID 0,1, or 0 +
1 is used.

• RAID can be implemented in the host bus-adapter (HBA) hardware. Only
the disks directly connected to the HBA can be part of a given RAID set.
This solution is low in cost but not very flexible.

• RAID can be implemented in the hardware of the storage array. The storage
array can create RAID sets of various levels and can even slice these sets
into smaller volumes, which are then presented to the operating system.
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The operating system need only implement the file system on each ©f the
volumes. Arrays can have multiple connections available or can be part of
a SAN, allowing multiple hosts to take advantage of the array's features.

• RAID can be implemented in the SAN interconnect layer by disk virtualiza-
tion devices. In this case, a device sits between the hosts and the storage.
It accepts commands from the servers and manages access to the storage.
It could provide mirroring, for example, by writing each block to two
separate storage devices.

Other features, such as snapshots and replication, can be implemented at
each of these levels as well. Replication involves the automatic duplication of
writes between separate sites for redimdancy and disaster recovery. Replication
can be synchronous or asynchronous. In synchronous replication, each block
must be written locally and remotely before the write is considered complete,
whereas in asynchronous replication, the writes are grouped together and
written periodically. Asynchronous replication can result in data loss if the
primary site fails but is faster and has no distance limitations.

The implementation of these features differs depending on the layer at
which RAID is implemented. For example, if RAID is implemented in software,
then each host may need to implement and manage its own replication. If
replication is implemented in the storage array or in the SAN interconnect,
however, then whatever the host operating system or features, the hosts data
can be replicated.

One other aspect of most RAID implementations is a hot spare disk or disks.
A hot spare is not used for data but is configured to be used as a replacement
should any other disk fail. For instance, a hot spare can be used to rebuild a
mirrored pair should one of the disks in the pair fail. In this way, the RAID level
can be reestablished automatically, without waiting for the failed disk to be
replaced. Allocating more than one hot spare allows more than one failure to
be repaired without human intervention.

12.7.4 Selecting a RASD Level

Given the many choices they have, how do system designers choose a RAID
level? One consideration is rebuild performance. If a disk fails, the time needed
to rebuild its data can be significant and will vary with the RAID level used.
Rebuilding is easiest for RAID level 1, since data can be copied from another
disk; for the other levels, we need to access all the other disks in the array-
to rebuild data in a failed disk. The rebuild performance of a RAID system
may be an important factor if a continuous supply of data is required, as it
is in high-performance or interactive database systems. Furthermore, rebuild
performance influences the mean time to failure. Rebuild times can be hours
for RAID 5 rebuilds of large disk sets.

RAID level 0 is used in high-performance applications where data loss is
not critical. RAID level 1 is popular for applications that require high reliability
with fast recovery. RAID 0 + 1 and 1 - 0 are used where both performance and
reliability are important—for example, for small databases. Due to RAID l's
high space overhead, RAID level 5 is often preferred for storing large volumes
of data. Level 6 is not supported currently by many RAID implementations, but
it should offer better reliability than level 5.
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RAID system designers and administrators of storage have to make Several
other decisions as well. For example, how many disks should be in a given
RAID set? How many bits should be protected by each parity bit? If more disks
are in an array, data-transfer rates are higher, but the system is more expensive.
If more bits are protected by a parity bit. the space overhead due to parity bits
is lower, but the chance that a second disk will fail before the first failed disk is
repaired is greater, and that wall result in data loss.

12.7.5 Extensions

The concepts of RAID have been generalized to other storage devices, including
arrays of tapes, and even to the broadcast of data over wireless systems. When
applied to arrays of tapes, RAID structures are able to recover data even if one
of the tapes in an array is damaged. When applied to broadcast of data, a block
of data is split into short units and is broadcast along with a parity unit; if one
of the units is not received for any reason, it can be reconstructed from the
other units. Commonly, tape-drive robots containing multiple tape drives will
stripe data across all the drives to increase throughput and decrease backup
time.
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12.7.6 Problems with RAID

Unfortunately, RAID does not always assure that data are available for the
operating system and its users. A pointer to a file could be wrong, for example,
or pointers within the file structure could be wrong. Incomplete writes, if not
properly recovered, could result in corrupt data. Some other process could
accidentally write over a file system's structures, too. RAID protects against
physical rnedia errors, but not other hardware and software errors. As large as
the landscape of software and hardware bugs is, that is how numerous are the
potential perils for data on a system.

The Solaris ZFS file system takes an innovative approach to solving these
problems. It maintains internal checksums of all blocks, including data and
metadata. Added functionality comes in the placement of the checksums. They
are not kept with the block that is being checksummed. Rather, they are stored
with the pointer to that block. Consider an inode with pointers to its data.
Within the inode is the checksum, of each block of data. If there is a problem
with the data, the checksum will be incorrect, and the file system will know-
about it. If the data are mirrored, and there is a block with a correct checksum
and one with an incorrect checksum, ZFS will automatically update the bad
block with the good one. Likewise, the directory entry that points to the inode
has a checksum for the inode. Any problem in the mode is detected when
the directory is accessed. This checksumming takes places throughout all ZFS
structures, providing a much higher level of consistency, error detection, and
error correction than is found in RAID disk sets or standard file systems. The
extra overhead that is created by the checksum calculation and extra block
read-modify-write cycles is not noticeable because the overall performance of
ZFS is very fast.

12.8 Stable-Storage Implementation

In Chapter 6, we introduced the write-ahead log, which requires the availability
of stable storage. By definition, information residing in stable storage is never
lost. To implement such storage, we need to replicate the needed information
on multiple storage devices (usually disks) with independent failure modes.
We need to coordinate the writing of updates in a way that guarantees that
a failure during an update will not leave all the copies in a damaged state
and that, when we are recovering from a failure, we can force all copies to a
consistent and correct value, even if another failure occurs during the recovery.
In this section, we discuss how to meet these needs.

A disk write results in one of three outcomes:

1. Successful completion. The data were written correctly on disk.

2. Partial failure. A failure occurred in the midst of transfer, so only some of
the sectors were written with the new data, and the sector being written
during the failure may have been corrupted.

3. Total failure. The failure occurred before the disk write started, so the
previous data values on the disk remain intact.

Whenever a failure occurs during writing of a block, the system needs to
detect it and invoke a recovery procedure to restore the block to a consistent
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state. To do that, the system must maintain two physical blocks for each logical
block. An output operation is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information
onto the second physical block,

3. Declare the operation complete only after the second write completes
successfully.

During recovery from a failure, each pair of physical blocks is examined.
If both are the same and no detectable error exists, then no further action is
necessary. If one block contains a detectable error, then we replace its contents
with the value of the other block. If neither block contains a detectable error,
but the blocks differ in content, then wre replace the content of the first block
with that of the second. This recovery procedure ensures that a write to stable
storage either succeeds completely or results in no change.

We can extend this procedure easily to allow the use of an arbitrarily large
number of copies of each block of stable storage. Although having a large
number of copies further reduces the probability of a failure, it is usually
reasonable to simulate stable storage with only two copies. The data in stable
storage are guaranteed to be safe unless a failure destroys all the copies.

Because waiting for disk writes to complete (synchronous I/O) is time
consuming, many storage arrays add NVRAM as a cache. Since the memory is
nonvolatile (usually it has battery power as a backup to the unit's power), it
can be trusted to store the data en route to the disks. It is thus considered part
of the stable storage. Writes to it are much faster than to disk, so performance
is greatly improved.

12.9 Tertiary-Storage Structure

Would you buy a VCR that had inside it only one tape that you could not take
out or replace? Or a DVD or CD player that had one disk sealed inside? Of course
not. You expect to use a VCR or CD player with many relatively inexpensive
tapes or disks. On a computer as well, using many inexpensive cartridges with
one drive lowers the overall cost. Low cost is the defining characteristic of
tertiary storage, which we discuss in this section.

12.9.1 Tertiary-Storage Devices

Because costis so important, in practice, tertiary storage is built with removable
media. The most common examples are floppy disks, tapes, and read-only,
write-once, and rewritable CDs and DVDs. Many any other kinds of tertiary-
storage devices are available as well, including removable devices that store
data in flash memory and interact with the computer system via a USB interface.

12.9.1.1 Removable Disks

Removable disks are one kind of tertiary storage. Floppy disks are an example
of removable magnetic disks. They are made from a thin, flexible disk coated
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with magnetic material and enclosed in a protective plastic case. Although
common floppy disks can hold only about 1 MB, similar technology is used
for removable magnetic disks that hold more than 1 GB. Removable magnetic
disks can be nearly as fast as hard disks, although the recording surface is at
greater risk of damage from scratches.

A magneto-optic disk is another kind of removable disk. It records data
on a rigid platter coated with magnetic material, but the recording technology
is quite different from that for a magnetic disk. The magneto-optic head flies
much farther from the disk surface than a magnetic disk head does, and the
magnetic material is covered with a thick protective layer of plastic or glass.
This arrangement makes the disk much more resistant to head crashes.

The drive has a coil that produces a magnetic field; at room temperature,
the field is too large and too weak to magnetize a bit on the disk. To write a
bit, the disk head flashes a laser beam at the disk surface. The laser is aimed at
a tiny spot where a bit is to be written. The laser heats this spot, which makes
the spot susceptible to the magnetic field. Now the large, weak magnetic field
can record a tiny bit.

The magneto-optic head is too far from the disk surface to read the data by-
detecting the tiny magnetic fields in the way that the head of a hard disk does.
Instead, the drive reads a bit using a property of laser light called the Kerr
effect. When a laser beam is bounced off of a magnetic spot, the polarization
of the laser beam is rotated clockwise or counterclockwise, depending on the
orientation of the magnetic field. This rotation is what the head detects to read
a bit.

Another category of removable disk is the optical disk. Optical disks do not
use magnetism at all. Instead, they use special materials that can be altered by
laser light to have relatively dark or bright spots. One example of optical-disk
technology is the phase-change disk, which is is coated with a material that
can freeze into either a crystalline or an amorphous state. The crystalline state
is more transparent, and hence a laser beam is brighter when it passes through
the material and bounces off the reflective layer. The phase-change drive uses
laser light at three different powers: low power to read data, medium power
to erase the disk by melting and refreezing the recording medium into the
crystalline state, and high power to melt the medium into the amorphous state
to write to the disk. The most common examples of this technology are the
re-recordable CD-RW and DVD-RW.

The kinds of disks just described can be used over and over. They are called
read-write disks. In contrast, write-once, read-many-times (WORM) disks can
be written only once. An old way to make a WORM disk is to manufacture a thin
aluminum film sandwiched between two glass or plastic platters. To write a
bit, the drive uses a laser light to burn a small hole through the aluminum,. This
burning cannot be reversed. Although it is possible to destroy the information
on a WORM disk by burning holes everywhere, it is virtually impossible to alter
data on the disk, because holes can only be added, and the ECC code associated
with each sector is likely to detect such additions. WORtvl disks are considered
durable and reliable because the metal layer is safely encapsulated between
the protective glass or plastic platters and magnetic fields cannot damage the
recording. A newer write-once technology records on an organic polymer dye
instead of an aluminum layer; the dye absorbs laser light to form marks. This
technology is used in the recordable CD-R and DVD-R.
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Read-only disks, such as CD-ROM and DVD-ROM, come from the factory
with the data prerecorded. They use technology similar to that of WORM disks
(although the bits are pressed, not burned), and they are very durable.

Most removable disks are slower than their nonremovable counterparts.
The writing process is slower, as are rotation and sometimes seek time.

12.9.1.2 Tapes

Magnetic tape is another type of removable medium. As a general rule, a tape
holds more data than an optical or magnetic disk cartridge. Tape drives and

. disk drives have similar transfer rates. But random access to tape is much
slower than a disk seek, because it requires a fast-forward or rewind operation
that takes tens of seconds or even minutes.

Although a typical tape drive is more expensive than a typical disk drive,
the price of a tape cartridge is lower than the price of the equivalent capacity
of magnetic disks. So tape is an economical medium for purposes that do not
require fast random access. Tapes are commonly used to hold backup copies
of disk data. They are also used in large supercomputer centers to hold the
enormous volumes of data used in scientific research and by large commercial
enterprises.

Large tape installations typically use robotic tape changers that move tapes
between tape drives and storage slots in a tape library. These mechanisms give
the computer automated access to many tape cartridges.

A robotic tape library can lower the overall cost of data storage. A disk-
resident file that will not be neecied for a while can be archived to tape, where
the cost per gigabyte is lower; if the file is needed in the future, the computer
can stage it back into disk storage for active use. A robotic tape library is
sometimes called near-line storage, since it is between the high performance
of on-line magnetic disks and the low cost of off-line tapes sitting on shelves
in a storage room.

12.9.1.3 Future Technology

In the future, other storage technologies may become important. One promis-
ing storage technology, holographic storage, uses laser light to record holo-
graphic photographs on special media. We can think of a hologram as a
three-dimensional array of pixels. Each pixel represents one bit: 0 for black or 1
for white. And all the pixels in a hologram are transferred in one flash of laser
light, so the data transfer rate is extremely high. With continued development,
holographic storage may become commercially viable.

Another storage technology under active research, is based on micro-
electronic mechanical systems (MEMS). The idea is to apply the fabrication
technologies that produce electronic chips to the manufacture of small data-
storage machines. One proposal calls for the fabrication of an array of 10,000
tiny disk heads, with a square centimeter of magnetic storage material sus-
pended above the array. When the storage material is moved lengthwise over
the heads, each head accesses its own linear track of data on the material. The
storage material can be shifted sideways slightly to enable all the heads to
access their next track. Although it remains to be seen whether this technology
can be successful, it may provide a nonvolatile data-storage technology that is
faster than magnetic disk and cheaper than semiconductor DRAM.
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Whether the storage medium is a removable magnetic disk, a DVD, or a
magnetic tape, the operating system needs to provide several capabilities to use
removable media for data storage. These capabilities are discussed in Section
12.9.2.

12.9.2 Operat ing-System Support

Two major jobs of an operating system are to manage physical devices and
to present a virtual machine abstraction to applications. In this chapter, we
have seen that, for hard disks, the operating system provides two abstractions.
One is the raw device, which is just an array of data blocks. The other is a file
system. For a file system on a magnetic disk, the operating system queues and
schedules the interleaved requests from several applications. Now, we shall see
how the operating system does its job when the storage media are removable.

12.9.2.1 Application Interface

Most operating systems can handle removable disks almost exactly as they do
fixed disks. When a blank cartridge is inserted into the drive (or mounted), the
cartridge must be formatted, and then an empty file system is generated on the
disk. This file system is used just like a file system on a hard disk.

Tapes are often handled differently. The operating system usually presents
a tape as a raw storage medium. An application does not open a file on the
tape; it opens the whole tape drive as a raw device. Usually, the tape drive
then is reserved for the exclusive use of that application until the application
exits or closes the tape device. This exclusivity makes sense, because random
access on a tape can take tens of seconds, or even a few minutes, so interleaving
random accesses to tapes from more than one application would be likely to
cause thrashing.

When the tape drive is presented as a raw device, the operating system
does not provide file-system services. The application must decide how to use
the array of blocks. For instance, a program, that backs up a hard, disk to tape
might store a list of file names and sizes at the beginning of the tape and then
copy the data of the files to the tape in that order.

It is easy to see the problems that can arise from this wray of using tape.
Since every application makes up its own. rules for how to organize a tape, a
tape full of data can generally be used by only the program that created it. For
instance, even if we know that a backup tape contains a list of file names and
file sizes followed by the file data in that order, we still would find it difficult to
use the tape. How exactly are the file names stored? Are the file sizes in binary
or in ASCII? Are the files written one per block, or are they all concatenated
together in one tremendously long string of bytes? We do not even knowr the
block size on the tape, because this variable is generally one that can be chosen
separately for each block written.

For a disk drive, the basic operations are readO, wr i teO, and seek().
Tape drives have a different set of basic operations. Instead of seekQ, a tape
drive uses the locate () operation. The tape locate 0 operation is more
precise than the disk seek() operation, because it positions the tape to a
specific logical block, rather than an entire track. Locating to block 0 is the
same as rewinding the tape.
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For most kinds of tape drives, it is possible to locate to any block that has
been written on a tape. In a partly filled tape, however, it is not possible to
locate into the empty space beyond the written area, because most tape drives
do not manage their physical space in the same way disk drives do. For a disk
drive, the sectors have a fixed size, and the formatting process must be used to
place empty sectors in their final positions before any data can be written. Most
tape drives have a variable block size, and the size of each block is determined
on the fly when that block is written. If an area of defective tape is encountered
during writing, the bad area is skipped and the block is written again. This
operation explains why it is not possible to locate into the empty space beyond
the written area—the positions and numbers of the logical blocks have not yet
been determined.

Most tape drives have a read_posit ion() operation that returns the
logical block number where the tape head is. Many tape drives also support a
space () operation for relative motion. So, for example, the operation space (-
2) would locate backward over two logical blocks.

For most kinds of tape drives, writing a block has the side effect of logically
erasing everything beyond the position of the write. In practice, this side effect
means that most tape drives are append-only devices, because updating a
block in the middle of the tape also effectively erases everything beyond that
block. The tape drive implements this appending by placing an end-of-tape
(EOT) mark after a block that is written. The drive refuses to locate past the EOT
mark, but it is possible to locate to the EOT and then start writing. Doing so
overwrites the old EOT mark and places a new one at the end of the new blocks
just written.

In principle, a file system can be implemented on a tape. But many of the
file-system data structures and algorithms would be different from those used
for disks, because of the append-only property of tape.

12.9.2.2 File Naming

Another question that the operating system needs to handle is how to name
files on removable media. For a fixed disk, naming is not difficult. On a PC, the
file name consists of a drive letter followed by a path name. In UNIX, the file
name does not contain a drive letter, but the mount table enables the operating
system to discover on what drive the file is located. If the disk is removable,
however, knowing what drive contained, the cartridge at some time in the past
does not mean knowing how to find the file. If every removable cartridge in
the world had a different serial number, the name of a file on a removable
device could be prefixed with the serial number, but to ensure that no two
serial numbers are the same would require each one to be about 12 digits in
length. Who could remember the names of her files if she had to memorize a
12-digit serial number for each one?

The problem becomes even more difficult when we want to write data
on a removable cartridge on one computer and then use the cartridge in
another computer. If both machines are of the same type and have the same
kind of removable drive, the only difficulty is knowing the contents and data
layout on the cartridge. But if the machines or drives are different, many
additional problems can arise. Even if the drives are compatible, different
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computers may store bytes in different orders and may use different encodings
for binary numbers and even for letters (such as ASCII on PCs versus EBCDIC
on mainframes).

Today's operating systems generally leave the name-space problem
unsolved for removable media and depend on applications and users to figure
out how to access and interpret the data. Fortunately, a few kinds of removable
.media are so well standardized that all computers use them the same way. One
example is the CD. Music CDs use a universal format that is understood by any
CD drive. Data CDs are available in only a few different formats, so it is usual
for a CD drive and the operating-system device driver to be programmed to
handle all the common formats. DVD formats are also well standardized.

12.9.2.3 Hierarchical Storage Management

A robotic jukebox enables the computer to change the removable cartridge in a
tape or disk drive without human assistance. Two major uses of this technology
are for backups and hierarchical storage systems. The use of a jukebox for
backups is simple: When one cartridge becomes full, the computer instructs
the jukebox to switch to the next cartridge. Some jukeboxes hold tens of drives
and thousands of cartridges, with robotic arms managing the movement of
tapes to the drives.

A hierarchical storage system extends the storage hierarchy beyond
primary memory and secondary storage (that is, magnetic disk) to incorporate
tertiary storage. Tertiary storage is usually implemented as a jukebox of tapes
or removable disks. This level of the storage hierarchy is larger, cheaper, and
slower.

Although the virtual memory system can be extended in a straightforward
manner to tertiary storage, this extension is rarely carried out in practice. The
reason is that a retrieval from a jukebox can take tens of seconds or even
minutes, and such a long delay is intolerable for demand paging and for other
forms of virtual memory use.

The usual way to incorporate tertiary storage is to extend the file system.
Small and frequently used files remain on magnetic disk, while large and old
files that are not actively used are archived to the jukebox. In some file-archiving
systems, the directory entry for the file continues to exist, but the contents of
the file no longer occupy space in secondary storage. If an application tries to
open the file, the openC) system call is suspended until the file contents can
be staged in from tertiary storage. When the contents are again available from
magnetic disk, the open() operation returns control to the application, which
proceeds to use the disk-resident copy of the data.

Today, hierarchical storage management (HSM) is usually found in instal-
lations that have large volumes of data that are used seldom, sporadically,
or periodically. Current work in HSM includes extending it to provide full
information life-cycle management (ILM). Here, data move from disk to tape
and back to disk, as needed, but are deleted on a schedule or according to
policy. For example, some sites save e-mail for seven years but want to be sure
that at the end oi seven years it is destroyed. At that point, the data could be
on disk, HSM tape, and backup tape. ILM centralizes knowledge of where the
data are so that policies can be applied across all these locations.
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12.9.3 Performance Issues

As with any component of the operating system, the three most important
aspects of tertiary-storage performance are speed, reliability, and cost.

12.9.3.1 Speed

The speed of tertiary storage has two aspects: bandwidth and latency. We
measure the bandwidth in bytes per second. The sustained bandwidth is the
average data rate during a large transfer—that is, the number of bytes divided
by the transfer time. The effective bandwidth calculates the average over the
entire I/O time, including the time for seekQ or locate 0 and any cartridge-
switching time in a jukebox. In essence, the sustained bandwidth is the data
rate when the data stream, is actually flowing, and the effective bandwidth is
the overall data rate provided by the drive. The bandwidth of a drive is generally
understood to mean the sustained bandwidth.

For removable disks, the bandwidth ranges from a few megabytes per
second for the slowest to over 40 MB per second for the fastest. Tapes have a
similar range of bandwidths, from a few megabytes per second to over 30 MB
per second.

The second aspect of speed is the access latency. By this performance
measure, disks are much faster than tapes: Disk storage is essentially two-
dimensional—all the bits are out in the open. A disk access simply moves the
arm to the selected cylinder and waits for the rotational latency, which may
take less than 5 milliseconds. By contrast, tape storage is three-dimensional.
At any time, a small portion of the tape is accessible to the head, whereas most
of the bits are buried below hundreds or thousands of layers of tape wound
on the reel. A random access on tape requires winding the tape reels until
the selected block reaches the tape head, which can take tens or hundreds of
seconds. So we can generally say that random access within a tape cartridge is
more than a thousand times slower than random access on disk.

If a jukebox is involved, the access latency can be significantly higher. For
a removable disk to be changed, the drive must stop spinning, then the robotic
arm must switch the disk cartridges, and then the drive must spin up the new
cartridge. This operation takes several seconds—about a hundred times longer
than the random-access time within one disk. So switching disks in a jukebox
incurs a relatively high performance penalty.

For tapes, the robotic-arm time is about the same as for disk. But for tapes
to be switched, the old tape generally must rewind before it can be ejected, and
that operation can take as long as 4 minutes. And, after a new tape is loaded
into the drive, many seconds can be required for the drive to calibrate itself
to the tape and to prepare for I/O. Although a slow tape jukebox can have a
tape-switch time of 1 or 2 minutes, this time is not enormously greater than the
random-access time within one tape.

So, to generalize, we say that random access in a disk jukebox has a latency
of tens of seconds, whereas random access in a tape jukebox has a latency of
hundreds of seconds; switching tapes is expensive, but switching disks is not.
Be careful not to overgeneralize, though: Some expensive tape jukeboxes can
rewind, eject, load a new tape, and fast-forward to a random item of data all
in less than 30 seconds.
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If we pay attention to only the performance of the drives in a jukebox,
the bandwidth and latency seem reasonable. But if we focus our attention
on the cartridges instead, we find a terrible bottleneck. Consider first the
bandwidth. The bandwidth-to-storage-capacity ratio of a robotic library is
much less favorable than that of a fixed disk. To read all the data stored on
a large hard disk could take about an hour. To read all the data stored in a
large tape library could take years. The situation with respect to access latency
is nearly as bad. To illustrate this, if 100 requests are queued for a disk drive,
the average waiting time will be about a second. If 100 requests are queued
for a tape library, the average waiting time could be over an hour. The low-
cost of tertiary storage results from having many cheap cartridges share a few
expensive drives. But a removable library is best devoted to the storage of
infrequently used data, because the library can satisfy only a relatively small
number of I/O requests per hour.

12.9.3.2 Reliability

Although we often think good performance means high speed, another important
aspect of performance is reliability. If we try to read some data and are unable
to do so because of a drive or media failure, for all practical purposes the access
time is infinitely long and the bandwidth is infinitely small. So it is important
to understand the reliability of removable media.

Removable magnetic disks are somewhat less reliable than are fixed
hard disks because the cartridge is more likely to be exposed to harmful
environmental conditions such as dust, large changes in temperature and
humidity, and mechanical forces such as shock and bending. Optical disks
are considered very reliable, because the layer that stores the bits is protected
by a transparent plastic or glass layer. The reliability of magnetic tape varies
widely, depending on the kind of drive. Some inexpensive drives wear out
tapes after a few dozen uses; other kinds are gentle enough to allow millions of
reuses. By comparison with a magnetic-disk head, the head in a magnetic-tape
drive is a weak spot. A disk head flies above the media, but a tape head is in
close contact with the tape. The scrubbing action of the tape can wear out the
head after a few thousands or tens of thousands of hours.

In summary, we say that a fixed disk drive is likely to be more reliable than
a removable disk or tape drive, and an optical disk is likely to be more reliable
than a magnetic disk or tape. But a fixed magnetic disk has one weakness. A
head crash in a hard disk generally destroys the data, whereas the failure of a
tape drive or optical disk drive often leaves the data cartridge unharmed.

12.9.3.3 Cost

Storage cost is another important factor. Here is a concrete example of how
removable media may lower the overall storage cost. Suppose that a hard disk
that holds X GB has a price of $200; of this amount, $190 is for the housing,
motor, and controller, and $10 is for the magnetic platters. The storage cost
for this disk is $200/ X per gigabyte. Now, suppose that we can manufacture
the platters in a removable cartridge. For one drive and 10 cartridges, the total
price is $190 + $100, and the capacity is 10X GB, so the storage cost is $29/ X per
gigabyte. Even if it is a little more expensive to make a removable cartridge,
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Figure 12.13 Price per megabyte of DRAM, from 1981 to 2004.

the cost per gigabyte of removable storage may well be lower than the cost per
gigabyte of a hard disk, because the expense of one drive is averaged with the
low price of many removable cartridges.

Figures 12.13,12.14, and 12.15 show the cost trends per megabyte for DRAM
memory, magnetic hard disks, and tape drives. The prices in the graphs are
the lowest prices found in advertisements in various computer magazines and
on the World Wide Web at the end of each year. These prices reflect the small-
computer marketplace of the readership of these magazines, where prices are
low by comparison with the mainframe and minicomputer markets. In the
case of tape, the price is for a drive with one tape. The overall cost of tape
storage becomes much lower as more tapes are purchased for use with the
drive, because the price of a tape is a small fraction of the price of the drive.
However, in a huge tape library containing thousands of cartridges, the storage
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Year

Figure 12.14 Price per megabyte of magnetic hard disk, from 1981 to 2004.
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Figure 12.15 Price per megabyte of a tape drive, from 1984 to 2004.

cost is dominated by the cost of the tape cartridges. As of this writing in 2004,
the cost per GB of tape cartridges can be approximated as somewhat less than
$2.

The cost of DRAM fluctuates widely. In the period from 1981 to 2004, we
can see three price crashes (around 1981, 1989, and 1996) as excess production
caused a glut in the marketplace. We can also see two periods (around 1987 and
1993) where shortages in the marketplace caused significant price increases. In
the case of hard disks, the price decline has been much steadier, although it
appears to have accelerated since 1992. Tape-drive prices also fell steadily up to
1997. Since 1997, the price per gigabyte of inexpensive tape drives has ceased
its dramatic fall, although the price of mid-range tape technology (such as
DAT/DDS) has continued to fall and is now approaching that of the inexpensive
drives. Tape-drive prices are not shown prior to 1984, because, as mentioned,
the magazines used in tracking prices are targeted to the small-computer
marketplace, and tape drives were not widely used with small computers
prior to 1984.

We can see from these graphs that the cost of storage has fallen dramatically
over the past twenty years or so. By comparing the graphs, we can also see
that the price of disk storage has plummeted relative to the price of DRAM and
tape.

The price per megabyte of magnetic disk has improved by more than four
orders of magnitude during the past two decades, whereas the corresponding
improvement for main memory has been only three orders of magnitude. Main
memory today is more expensive than disk storage by a factor of 100.

The price per megabyte has dropped much more rapidly for disk drives
than for tape drives as well. In fact, the price per megabyte of a magnetic
disk drive is approaching that of a tape cartridge without the tape drive.
Consequently, small- and medium-sized tape libraries have a higher storage
cost than disk systems with equivalent capacity.

The dramatic fall in disk prices has largely rendered tertiary storage
obsolete: We no longer have any tertiary storage technology that is orders
of magnitude less expensive than magnetic disk. It appears that the revival
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of tertiary storage must await a revolutionary technology breakthrough.
Meanwhile, tape storage will find its use mostly limited to purposes such
as backups of disk drives and archival storage in enormous tape libraries that
greatly exceed the practical storage capacity of large disk farms.

12.10 Summary

Disk drives are the major secondary-storage I/O devices on most computers.
Most secondary storage devices are either magnetic disks or magnetic tapes.
Modern disk drives are structured as a large one-dimensional array of logical
disk blocks which is usually 512 bytes.

Disks may be attached to a computer system in one of two ways: (1) using
the local I/O ports on the host computer or (2) using a network connection such
as storage area networks.

Requests for disk I/O are generated by the file system and by the virtual
memory system. Each request specifies the address on the disk to be referenced,
in the form of a logical block number. Disk-scheduling algorithms can improve
the effective bandwidth, the average response time, and the variance in
response time. Algorithms such as SSTF, SCAN, C-SCAN, LOOK, and C-LOOK
are designed to make such improvements through strategies for disk-queue
ordering.

Performance can be harmed by external fragmentation. Some systems
have utilities that scan the file system to identify fragmented files; they then
move blocks around to decrease the fragmentation. Defragmenting a badly
fragmented file system can significantly improve performance, but the system
may have reduced performance while the defragmentation is in progress.
Sophisticated file systems, such as the UNIX Fast File System, incorporate
many strategies to control fragmentation during space allocation so that disk
reorganization is not needed.

The operating system manages the disk blocks. First, a disk must be low-
level-formatted to create the sectors on the raw hardware—new disks usually
come preformatted. Then, the disk is partitioned, file systems are created, and
boot blocks are allocated to store the system's bootstrap program. Finally, when
a block is corrupted, the system must have a way to lock out that block or to
replace it logically with a spare.

Because an efficient swap space is a key to good performance, systems
usually bypass the file system and use raw disk access for paging I/O. Some
systems dedicate a raw disk partition to swap space, and others use a file
within the file system instead. Still other systems allow the user or system
administrator to make the decision by providing both options.

Because of the amount of storage required on large systems, disks are
frequently made redundant via RAID algorithms. These algorithms allow more
than one disk to be used for a given operation and allow continued operation
and even automatic recovery in the face of a disk failure. RAID algorithms
are organized into different levels; each level provides some combination of
reliability and high transfer rates.

The write-ahead log scheme requires the availability of stable storage.
To implement such storage, we need to replicate the needed information on
multiple nonvolatile storage devices (usually disks) with independent failure
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modes. We also need to update the information in a controlled manner to
ensure that we can recover the stable data after any failure during data transfer
or recovery.

Tertiary storage is built from disk and tape drives that use removable
media. Many different technologies are available, including magnetic tape,
removable magnetic and magneto-optic disks, and optical disks.

For removable disks, the operating system generally provides the full
services of a file-system interface, including space management and request-
queue scheduling. For many operating systems, the name of a file on a
removable cartridge is a combination of a drive name and a file name within
that drive. This convention is simpler but potentially more confusing than is
using a name that identifies a specific cartridge.

For tapes, the operating system generally just provides a raw interface.
Many operating systems have no built-in support for jukeboxes. Jukebox
support can be provided by a device driver or by a privileged application
designed for backups or for HSM.

Three important aspects of performance are bandwidth, latency, and
reliability. Many bandwidths are available for both disks and tapes, but the
random-access latency for a tape is generally much greater than that for a disk.
Switching cartridges in a jukebox is also relatively slow. Because a jukebox
has a low ratio of drives to cartridges, reading a large fraction of the data in a
jukebox can take a long time. Optical media, which protect the sensitive layer
with a transparent coating, are generally more robust than magnetic media,
which are more likely to expose the magnetic material to physical damage.

:xercises

12.1 None of the disk-scheduling disciplines, except FCFS, is truly fair
(starvation may occur).

a. Explain why this assertion is true.

b. Describe a way to modify algorithms such as SCAN to ensure
fairness.

c. Explain why fairness is an important goal in a time-sharing
system.

d. Give three or more examples of circumstances in which it is
important that the operating system be unfair in serving I/O
requests.

12.2 Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The
drive is currently serving a request at cylinder 143, and the previous
request was at cylinder 125. The queue of pending requests, in FIFO
order, is:

86,1470, 913, 1774, 948, 1509, 1022,1750,130

Starting from the current head position, what is the total distance (in
cylinders) that the disk arm moves to satisfy all the pending requests
for each of the following disk-scheduling algorithms?
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a. FCFS ,

b. SSTF

c. SCAN

d. LOOK

e. C-SCAN

f. C-LOOK

12.3 Elementary physics states that when an object is subjected to a constant
acceleration a, the relationship between distance d and time f is given
by d — \at2. Suppose that, during a seek, the disk in Exercise 12.2
accelerates the disk arm at a constant rate for the first half of the seek,
then decelerates the disk arm at the same rate for the second half of the
seek. Assume that the disk can perform a seek to an adjacent cylinder
in 1 millisecond and a full-stroke seek over all 5,000 cylinders in 18
milliseconds.

a. The distance of a seek is the number of cylinders that the head
moves. Explain why the seek time is proportional to the square
root of the seek distance.

b. Write an equation for the seek time as a function of the seek
distance. This equation should be of the form t = x + yv'L,
where t is the time in milliseconds and L is the seek distance in
cylinders.

c. Calculate the total seek time for each of the schedules in Exercise
12.2. Determine which schedule is the fastest (has the smallest
total seek time).

d. The percentage speedup is the time saved divided by the original
time. What is the percentage speedup of the fastest schedule over
FCFS?

12.4 Suppose that the disk in Exercise 12.3 rotates at 7,200 RPVI.

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the time that you found
for part a?

12.5 Write a Java program for disk scheduling using the SCAN and C-SCAN
disk-scheduling algorithms.

12.6 Compare the performance of C-SCAN and SCAN scheduling, assuming
a uniform distribution of requests. Consider the average response time
(the time between the arrival of a request and the completion of that
request's service), the variation in response time, and the effective
bandwidth. How does performance depend on the relative sizes of
seek time and rotational latency?

12.7 Requests are not usually uniformly distributed. For example, we can
expect a cylinder containing the file-system FAT or modes to be accessed
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more frequently than a cylinder containing only files. Suppose you
know that 50 percent of the requests are for a small, fixed number of
cylinders.

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better
performance by taking advantage of this "hot spot'" on the disk.

c. File systems typically find data blocks via an indirection table,
such as a FAT in DOS or inodes in UNIX. Describe one or more
ways to take advantage of this indirection to improve disk
performance.

12.8 Could a RAID Level 1 organization achieve better performance for read
requests than a RAID Level 0 organization (with nonredundant striping
of data)? If so, how?

12.9 Consider a RAID Level 5 organization comprising five disks, with the
parity for sets of four blocks on four disks stored on the fifth disk. How
many blocks are accessed in order to perform the following?

a. A write of one block of data

b. A write of seven continuous blocks of data

12.10 Compare the throughput achieved by a RAID Level 5 organization with
that achieved by a RAID Level 1 organization for the following:

a. Read operations on single blocks

b. Read operations on multiple contiguous blocks

12.11 Compare the performance of write operations achieved by a RAID Level
5 organization with that achieved by a RAID Level 1 organization.

12.12 Assume that you have a mixed configuration comprising disks orga-
nized as RAID Level 1 and as RAID Level 5 disks. Assume that the system
has flexibility in deciding which disk organization to use for storing a
particular file. Which files should be stored in the RAID Level 1 disks
and which in the RAID Level 5 disks in order to optimize performance?

12.13 Is there any way to implement truly stable storage? Explain your
answer.

» 12.14 The reliability of a hard-disk drive is typically described in terms of a
\ quantity called mean time betiveen failures (MTBF). Although this quantity
s is called a "time/7 the MTBF actually is measured in drive-hours per
? failure.
•i

j a. If a system, contains 1,000 disk drives, each of which has a
5 750,000-hour MTBF, which of the following best describes how
d often a drive failure will occur in that disk farm: once per
j- thousand years, once per century, once per decade, once per
i year, once per month, once per week, once per day, once per
= hour, once per minute, or once per second?
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b. Mortality statistics indicate that, on the average, a U.S. resident
has about 1 in 1,000 chance of dying between ages 20 and 21
years. Deduce the MTBF hours for 20-year-olds. Convert this
figure from hours to years. What does this MTBF tell you about
the expected lifetime of a 20-year-old?

c. The manufacturer guarantees a 1-million-hour MTBF for a certain
model of disk drive. What can you conclude about the number
of years for which one of these drives is under warranty?

12.15 Discuss the relative advantages and disadvantages of sector sparing
and sector slipping.

12.16 Discuss the reasons why the operating system might require accurate
information on how blocks are stored on a disk. How could the oper-
ating system improve file system performance with this knowledge?

12.17 The operating system generally treats removable disks as shared file
systems but assigns a tape drive to only one application at a time. Give
three reasons that could explain this difference in treatment of disks and
tapes. Describe the additional features that an operating system would
need to support shared file-system access to a tape jukebox. Would the
applications sharing the tape jukebox need any special properties, or
could they use the files as though the files were disk-resident? Explain
your answer.

12.18 What would be the effects on cost and performance if tape storage had
the same areal density as disk storage? (Areal density is the number of
gigabits per square inch.)

12.19 You can use simple estimates to compare the cost and performance
of a terabyte storage system made entirely from disks with one that
incorporates tertiary storage. Suppose that magnetic disks each hold
10 GB, cost $1,000, transfer 5 MB per second, and have an average access
latency of 15 milliseconds. Suppose that a tape library costs $10 per
gigabyte, transfers 10 MB per second, and has an average access latency
of 20 seconds. Compute the total cost, the maximum total data rate,
and the average waiting time for a pure disk system. If you make
any assumptions about the workload, describe and justify them. Now,
suppose that 5 percent of the data are frequently used, so they must
reside on disk, but the other 95 percent are archived in the tape library.
Further suppose that the disk system handles 95 percent of the requests
and the library handles the other 5 percent. What are the total cost,
the maximum total data rate, and the average waiting time for this
hierarchical storage system?

12.20 Imagine that a holographic storage drive has been invented. Suppose
that the holographic drive costs $10,000 and has an average access time
of 40 milliseconds. Suppose that it uses a $100 cartridge the size of
a CD. This cartridge holds 40,000 images, and each image is a square
black-and-white picture with a resolution of 6, 000 x 6. 000 pixels (each
pixel stores 1 bit). Suppose that the drive can read or write one picture
in 1 millisecond. Answer the following questions.
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a. What would be some good uses for this device? *

b. How would this device affect the I/O performance of a comput-
ing system?

c. Which other kinds of storage devices, if any, would become
obsolete as a result of the invention of this device?

12.21 Suppose that a one-sided 5.25-inch optical-disk cartridge has an areal
density of 1 gigabit per square inch. Suppose that a magnetic tape has
an areal density of 20 megabits per square inch and is 1/2 inch wide and
1,800 feet long. Calculate an estimate of the storage capacities of these
two kinds of storage cartridges. Suppose that an optical tape exists that
has the same physical size as the tape but the same storage density
as the optical disk. What volume of data could the optical tape hold?
What would be a marketable price for the optical tape if the magnetic
tape cost $25?

12.22 Discuss how an operating system could maintain a free-space list
for a tape-resident file system. Assume that the tape technology is
append-only and that it uses EOT marks and locate , space, and read
pos i t ion commands as described in Section 12.9.2.1.
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CHAPTER

The two main jobs of a computer are I/O and processing. In many cases, the
main job is I/O, and the processing is merely incidental. For instance, when
we browse a web page or edit a file, our immediate interest is to read or enter
some information, not to compute an answer.

The role of the operating system in computer I/O is to manage and
control I/O operations and I/O devices. Although related topics appear in
other chapters, here we bring together the pieces to paint a complete picture
of I/O. First, we describe the basics of I/O hardware, because the nature of
the hardware interface places requirements on the internal facilities of the
operating system. Next, we discuss the I/O services provided by the operating
system and the embodiment of these services in the application I/O interface.
Then, we explain how the operating system bridges the gap between the
hardware interface and the application interface. We also discuss the UM1X
System V STREAMS mechanism, which enables an application to assemble
pipelines of driver code dynamically. Finally, we discuss the performance
aspects of I/O and the principles of operating-system design that improve
I/O performance.

CHAPTER OBJECTIVES

• Explore the structure of an operating system's I/O subsystem.

• Discuss the principles of I/O hardware and its complexity.

• Provide details of the performance aspects of I/O hardware and software.

13.1 Overview

The control of devices connected to the computer is a major concern of
operating-system designers. Because I/O devices vary so widely in their
function and speed (consider a mouse, a hard disk, and a CD-ROM jukebox),
varied methods are needed to control them. These methods form the I/O
subsystem of the kernel, which separates the rest of the kernel from the
complexities of managing I/O devices.

495
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I/O-device technology exhibits two conflicting trends. On one hand; we
see increasing standardization of software and hardware interfaces. This trend
helps us to incorporate improved device generations into existing computers
and operating systems. On the other hand, we see an increasingly broad variety
of I/O devices. Some new devices are so unlike previous devices that it is a
challenge to incorporate them into our computers and operating systems. This
challenge is met by a combination of hardware and software techniques. The
basic I/O hardware elements, such as ports, buses, and device controllers,
accommodate a wide variety of I/O devices. To encapsulate the details and
oddities of different devices, the kernel of an operating system is structured
to use device-driver modules. The device drivers present a uniform device-
access interface to the I/O subsystem, much as system calls provide a standard
interface between the application and the operating system.

13.2 I/O Hardware

Computers operate a great many kinds of devices. Most fit into the general
categories of storage devices (disks, tapes), transmission devices (network
cards, modems), and human-interface devices (screen, keyboard, mouse).
Other devices are more specialized, such as the steering of a military fighter jet
or a space shuttle. In these aircraft, a human gives input to the flight computer
via a joystick and foot pedals, and the computer sends output commands that
cause motors to move rudders, flaps, and thrusters. Despite the incredible
variety of I/O devices, though, we need only a few concepts to understand
how the devices are attached and how the software can control the hardware.

A device communicates with, a computer system by sending signals over
a cable or even through the air. The device communicates with the machine
via a connection point (or port)—for example, a serial port. If devices use a
common set of wires, the connection is called a bus. A bus is a set of wires and
a rigidly defined protocol that specifies a set of messages that can be sent on
the wires. In terms of the electronics, the messages are conveyed by patterns
of electrical voltages applied to the wires with defined timings. When device
A has a cable that plugs into device B, and device B has a cable that plugs into
device C, and device C plugs into a port on the computer, this arrangement is
called a daisy chain. A daisy chain usually operates as a bus.

Buses are used widely in computer architecture. A typical PC bus structure
appears in Figure 13.1. This figure shows a PCI bus (the common PC system
bus) that connects the processor-memory subsystem to the fast devices and an
expansion bus that connects relatively slow devices such as the keyboard and
serial and parallel ports. In the upper-right portion of the figure, four disks are
connected together on a SCSI bus plugged into a SCSI controller.

A controller is a collection of electronics that can operate a port, a bus,
or a device. A serial-port controller is a simple device controller. It is a single
chip (or portion of a chip) in the computer that controls the signals on the
wires of a serial port. By contrast, a SCSI bus controller is not simple. Because
the SCSI protocol is complex, the SCSI bus controller is often implemented as
a separate circuit board (or a host adapter) that plugs into the computer. It
typically contains a processor, microcode, and some private memory to enable
it to process the SCSI protocol messages. Some devices have their own built-in
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Figure 13.1 A typical PC bus structure.

controllers. If you look at a disk drive, you will see a circuit board attached
to one side. This board is the disk controller. It implements the disk side of
the protocol for some kind of connection—SCSI or ATA, for instance. Tt has
microcode and a processor to do many tasks, such as bad-sector mapping,
prefetching, buffering, a n c | caching.

How can the processor give commands and data to a controller to
accomplish an I/O transfer? The short answer is that the controller has one
or more registers for data and control signals. The processor communicates
with the controller by reading and writing bit patterns in these registers. One
way in which this communication can occur is through the use of special
I/O instructions that specify the transfer of a byte or word to an I/O port
address. The I/O instruction triggers bus lines to select the proper device and
to move bits into or out of a device register. Alternatively, the device controller
can support memory-mapped I/O. In this case, the device-control registers
are mapped into the address space of the processor. The CPU executes I/O
requests using the standard data-transfer instructions to read and write the
device-control registers.

Some systems use both techniques. For instance, PCs use I/O instructions
to control some devices and memory-mapped I/O to control others. Figure
13.2 shows the usual T/O port addresses for PCs. The graphics controller has
I/O ports for basic control operations, but the controller has a large memory-
mapped region to hold screen contents. The process sends output to the screen
by writing data into the memory-mapped region. The controller generates
the screen image based on the contents of this memory This technique is
simple to use. Moreover, writing millions of bytes to the graphics memory
is faster than issuing millions of I/O instructions. But the ease of writing
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Figure 13.2 Device I/O port locations on PCs (partial).

to a memory-mapped I/O controller is offset by a disadvantage. Because a
common type of software fault is a write through an incorrect pointer to an
unintended region of memory, a memory-mapped device register is vulnerable
to accidental modification. Of course, protected memory helps to reduce this
risk.

An I/O port typically consists of four registers, called the (1) status, (2)
control, (3) data-in, and (4) data-out registers.

• The data-in register is read by the host to get input.

• The data-out register is written by the host to send output.

• The status register contains bits that can be read by the host. These bits
indicate states, such as whether the current command has completed,
whether a byte is available to be read from the data-in register, and whether
a device error has occurred.

• The control register can be written by the host to start a command or to
change the mode of a device. For instance, a certain bit in the control
register of a serial port chooses between full-duplex and half-duplex
communication, another bit enables parity checking, a third bit sets the
word length to 7 or 8 bits, and other bits select one of the speeds supported
by the serial port.

The data registers are typically 1 to 4 bytes in size. Some controllers have
FIFO chips that can hold several bytes of input or output data to expand the
capacity of the controller beyond the size of the data register. A FIFO chip can
hold a small burst of data until the device or host is able to receive those data.

13.2.1 Polling

The complete protocol for interaction between the host and a controller can be
intricate, but the basic handshaking notion is simple. We explain handshaking
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with an example. We assume that 2 bits are used to coordinate the producer
-consumer relationship between the controller and the host. The controller
indicates its state through the busy bit in the status register. (Recall that to set a
bit means to write a 1 into the bit and to clear a bit means to write a 0 into it.)
The controller sets the busy bit when it is busy working and clears the busy bit
when it is ready to accept the next command. The host signals its wishes via the
command-ready bit in the command register. The host sets the command-ready bit
when a command is available for the controller to execute. For this example,
the host writes output through a port, coordinating with the controller by
handshaking as follows.

1. The host repeatedly reads the busy bit until that bit becomes clear.

2. The host sets the write, bit in the command register and writes a byte into
the data-out register.

3. The host sets the command-ready bit.

4. When the controller notices that the command-ready bit is set, it sets the
busy bit.

5. The controller reads the command register and sees the wri te command.
It reads the data-out register to get the byte and does the I/O to the device.

6. The controller clears the command-ready bit, clears the error bit in the status
register to indicate that the device I/O succeeded, and clears the busy bit
to indicate that it is finished.

This loop is repeated for each byte.
Tn step 1, the host is busy-waiting or polling: It is in a loop, reading the

status register over and over until the busy bit becomes clear, [f the controller
and device are fast, this method is a reasonable one. But if the wait may be
long, the host should probably swritch to another task. How, then, does the
host know when the controller has become idle? For some devices, the host
must service the device quickly, or data will be lost. For instance, when data
are streaming in on a serial port or from a keyboard, the small buffer on the
controller will overflow and data will be lost if the host waits too long before
returning to read the bytes.

In many computer architectures, three CPU-instruction cycles are sufficient
to poll a device: read a device register, logical-arid to extract a status bit, and
branch if not zero. Clearly, the basic polling operation is efficient. But polling
becomes inefficient when it is attempted repeatedly yet rarely finds a device
to be ready for service, while other useful CPU processing remains undone. In
such instances, it may be more efficient to arrange for the hardware controller to
notify the CPU when the device becomes ready for service, rather than to require
the CPU to poll repeatedly for an I/O completion. The hardware mechanism
that enables a device to notify the CPU is called an interrupt.

13.2.2 Interrupts

The basic interrupt mechanism works as follows. The CPU hardware has a wire
called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on the
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Figure 13.3 Interrupt-driven I/O cycle.

interrupt request line, the CPU performs a state save and jumps to the interrupt-
handler routine at a fixed address in memory. The interrupt handler determines
the cause of the interrupt, performs the necessary processing, performs a
state restore, and executes a re tu rn from in t e r rup t instruction to return
the CPU to the execution state prior to the interrupt. We say that the device
controller raises an interrupt by asserting a signal on the interrupt request line,
the CPU catches the interrupt and dispatches it to the interrupt handler, and the
handler clears the interrupt by servicing the device. Figure 133 summarizes
the interrupt-driven I/O cycle.

This basic interrupt mechanism enables the CPU to respond to an asyn-
chronous event, as when a device controller becomes ready for service. In a
modern operating system, however, we need more sophisticated, interrupt-
handling features.

1. We need the ability to defer interrupt handling during critical processing.

2. We need an efficient way to dispatch to the proper interrupt handler for
a device without first polling all the devices to see which one raised the
interrupt.
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3. We need multilevel interrupts, so that the operating system can.distin-
guish between high- and low-priority interrupts and can respond with
the appropriate degree of urgency.

In modern computer hardware, these three features are provided by the CPU
and by the interrupt-controller hardware.

Most CPUs have two interrupt request lines. One is the nonmaskable
interrupt, which is reserved for events such as unrecoverable memory errors.
The second interrupt line is maskable: It can be turned off by the CPU before
the execution of critical instruction sequences that must not be interrupted.
The maskable interrupt is used by device controllers to request service.

The interrupt mechanism accepts an address—a number that selects a
specific interrupt-handling routine from a small set. In most architectures, this
address is an offset in a table called the interrupt vector. This vector contains
the memory addresses of specialized interrupt handlers. The purpose of a
vectored interrupt mechanism is to reduce the need for a single interrupt
handler to search all possible sources of interrupts to determine which one
needs service. In practice, however, computers have more devices (and, hence,
interrupt handlers) than they have address elements in the interrupt vector.
A common way to solve this problem is to use the technique of interrupt
chaining, in which each element in the interrupt vector points to the head of
a list of interrupt handlers. When an interrupt is raised, the handlers on the
corresponding list are called one by one, until one is found that can service
the request. This structure is a compromise between the overhead of a huge
interrupt table and the inefficiency of dispatching to a single interrupt handler.

Figure 13.4 illustrates the design of the interrupt vector for the Intel Pentium
processor. The events from 0 to 31, which are nonmaskable, are used to signal
various error conditions. The events from 32 to 255, which are maskable, are
used for purposes such as device-generated interrupts.

The interrupt mechanism also implements a system of interrupt priority
levels. This mechanism enables the CPU to defer the handling of low-priority
interrupts without masking off all interrupts and makes it possible for a
high-priority interrupt to preempt the execution of a low-priority interrupt.

A modern operating system interacts with the interrupt mechanism in
several ways. At boot time, the operating system probes the hardware buses
to determine what devices are present and installs the corresponding interrupt
handlers into the interrupt vector. During I/O, the various device controllers
raise interrupts when they are ready for service. These interrupts signify that
output has completed, or that input data are available, or that a failure has
been detected. The interrupt mechanism is also used to handle a wide variety
of exceptions, such as dividing by zero, accessing a protected or nonexistent
memory address, or attempting to execute a privileged instruction from user
mode. The events that trigger interrupts have a common property: They are
occurrences that induce the CPU to execute an urgent, self-contained routine.

An operating system has other good uses for an efficient hardware and
software mechanism that saves a small amount of processor state and then
calls a privileged routine in the kernel. For example, many operating systems
use the interrupt mechanism for virtual memory paging. A page fault is an
exception that raises an interrupt. The interrupt suspends the current process
and jumps to the page-fault handler in the kernel. This handler saves the state
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Figure 13.4 Intel Pentium processor event-vector table.

of the process, moves the process to the wait queue, performs page-cache
management, schedules an I/O operation to fetch the page, schedules another
process to resume execution, and then returns from the interrupt.

Another example is found in the implementation of system calls. Usually
a program uses library calls to issue system calls. The library routines check
the arguments given by the application, build a data structure to convey the
arguments to the kernel, and then execute a special instruction called a software
interrupt (or a trap). This instruction has an operand that identifies the desired
kernel service. When a process executes the trap instruction, the interrupt
hardware saves the state of the user code, switches to supervisor mode, and
dispatches to the kernel routine that implements the requested service. The
trap is given a relatively low interrupt priority compared with those assigned
to device interrupts—executing a system call on behalf of an application is less
urgent than servicing a device controller before its FIFO queue overflows and
loses data.

Interrupts can also be used to manage the flow of control within the kernel.
For example, consider the processing required to complete a disk read. One
step is to copy data from kernel space to the user buffer. This copying is time
consuming but not urgent—it should not block other high-priority interrupt
handling. Another step is to start the next pending I/O for that disk drive. This
step has higher priority: If the disks are to be used efficiently, we need to start
the next I/O as soon as the previous one completes. Consequently, a pair of
interrupt handlers implements the kernel code that completes a disk read. The
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high-priority handler records the I/O status, clears the device interrupt.starts
the next pending I/O, and raises a low-priority interrupt to complete the work.
Later, when the CPU is not occupied with high-priority work, the low-priority
interrupt will be dispatched. The corresponding handler completes the user-
level I/O by copying data from kernel buffers to the application space and then
calling the scheduler to place the application on the ready queue.

A threaded kernel architecture is well suited to implement multiple
interrupt priorities and to enforce the precedence of interrupt handling over
background processing in kernel and application routines. We illustrate this
point with the Solaris kernel, in Solaris, interrupt handlers are executed
as kernel threads. A range of high priorities is reserved for these threads.
These priorities give interrupt handlers precedence over application code and
kernel housekeeping and implement the priority relationships among interrupt
handlers. The priorities cause the Solaris thread scheduler to preempt low-
priority interrupt handlers in favor of higher-priority ones, and the threaded
implementation enables multiprocessor hardware to run several interrupt
handlers concurrently. We describe the interrupt architecture of UNIX and
Windows XP in Appendices A and 22, respectively.

In summary, interrupts are used throughout modern operating systems to
handle asynchronous events and to trap to supervisor-mode routines in the
kernel. To enable the most urgent work to be done first, modern computers
use a system of interrupt priorities. Device controllers, hardware faults, and
system calls all raise interrupts to trigger kernel routines. Because interrupts
are used so heavily for time-sensitive processing, efficient interrupt handling
is required for good system performance.

13.2.3 Direct Memory Access

For a device that does large transfers, such as a disk drive, it seems wasteful
to use an expensive general-purpose processor to watch status bits and to
feed data into a controller register one byte at a time—a process termed
programmed I/O (PIO). Many computers avoid burdening the main CPU with
PIO by offloading some of this work to a special-purpose processor called a
direct-memory-access (DMA) controller. To initiate a DMA transfer, the host
writes a DMA command block into memory. This block contains a pointer to
the source of a transfer, a pointer to the destination of the transfer, and a count
of the number of bytes to be transferred. The CPU writes the address of this
command block to the DMA controller, then goes on with other work. The DMA
controller proceeds to operate the memory bus directly, placing addresses on
the bus to perform transfers without the help of the main CPU. A simple DMA
controller is a standard component in PCs, and bus-mastering I/O boards for
the PC usually contain their own high-speed DMA hardware.

Handshaking between the DMA controller and the device controller is
performed via a pair of wires called DMA-request and DMA-acknowledge.
The device controller places a signal on the DMA-request wire when a word of
data is available for transfer. This signal causes the DMA controller to seize the
memory bus, to place the desired, address on the memory-address wires, and
to place a signal on the DMA-acknowledge wire. When the device controller
receives the DMA-acknowledge signal, it transfers the w7ord of data to memory
and removes the DMA-request signal.
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Figure 13.5 Steps in a DMA transfer.

When the entire transfer is finished, the DMA controller interrupts the CPU.
This process is depicted in Figure 13.5. When the DMA controller seizes the
memory bus, the CPU is momentarily prevented from accessing main memory,
although it can still access data items in its primary and secondary caches.
Although this cycle stealing can slow down the CPU computation, offloading
the data-transfer work to a. DMA controller generally improves the total system
performance. Some computer architectures use physical memory addresses for
DMA, but others perform direct virtual memory access (DVMA), using virtual
addresses that undergo translation to physical addresses. DVMA can perform
a transfer between two memory-mapped devices without the intervention of
the CPU or the use of main memory.

On protected-mode kernels, the operating system generally prevents
processes from issuing device commands directly. This discipline protects data
from access-control violations and also protects the system from erroneous use
of device controllers that could cause a system crash. Instead, the operating
system exports functions that a sufficiently privileged process can use to
access low-level operations on the underlying hardware. On kernels without
memory protection, processes can access device controllers directly. This direct
access can be used to obtain high performance, since it can avoid kernel
communication, context switches, and layers of kernel software. Unfortunately,
it interferes with system security and stability. The trend in general-purpose
operating systems is to protect memory and devices so that the system can try
to guard against erroneous or malicious applications.

13.2.4 I/O Hardware Summary

Although the hardware aspects of I/O are complex when considered at the
level of detail of electronics-hardware design, the concepts that we have
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just described are sufficient to enable us to understand many I/O features
of operating systems. Let's review the main concepts:

• A bus

• A controller

• An I/O port and its registers

• The handshaking relationship between the host and a device controller

• The execution of this handshaking in a polling loop or via interrupts

• The offloading of this work to a DMA controller for large transfers

We gave a basic example of the handshaking that takes place between a
device controller and the host earlier in this section. In reality, the wide variety
of available devices poses a problem for operating-system implementers. Each
kind of device has its own set of capabilities, control-bit definitions, and
protocols for interacting with the host—and they are all different. How can
the operating system be designed so that we can attach new devices to the
computer without rewriting the operating system? And when the devices
vary so widely, how can the operating system give a convenient, uniform I/O
interface to applications? We address those questions next.

13.3 Application S/O interface

In this section, we discuss structuring techniques and interfaces for the
operating system that enable I/O devices to be treated in a standard, uniform
way. We explain, for instance, how an application can open a file on a disk
without knowing what kind of disk it is and how new disks and other devices
can be added to a computer without disruption of the operating system.

Like other complex software-engineering problems, the approach here
involves abstraction, encapsulation, and software layering. Specifically we
can abstract away the detailed differences in I/O devices by identifying a few-
general kinds. Each general kind is accessed through a standardized set of
functions—an interface. The differences are encapsulated in kernel modules
called device drivers that internally are custom-tailored to each device but that
export one of the standard interfaces. Figure 13.6 illustrates how the I/O-related
portions of the kernel are structured in software layers.

The purpose of the device-driver layer is to hide the differences among
device controllers from the I/O subsystem of the kernel, much as the I/O
system calls encapsulate the behavior of devices in a few generic classes
that hide hardware differences from applications. Making the I/O subsystem
independent of the hardware simplifies the job of the operating-system
developer. It also benefits the hardware manufacturers. They either design
new devices to be compatible with an existing host controller interface (such as
SCSI-2), or they write device drivers to interface the new hardware to popular
operating systems. Thus, we can attach new peripherals to a computer without
waiting for the operating-system vendor to develop support code.

Unfortunately for device-hardware manufacturers, each type of operating
system has its own standards for the device-driver interface. A given device
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Figure 13.6 A kernel I/O structure.

may ship with multiple device drivers—for instance, drivers for MS-DOS,
Windows 95/98, Windows NT/2000, and Solaris. Devices vary on many
dimensions, as illustrated in Figure 13.7.

• Character-stream or block. A character-stream, device transfers bytes one
by one, whereas a block device transfers a block of bytes as a unit.

• Sequential or random-access. A sequential device transfers data in a fixed
order determined by the device, whereas the user of a random-access
device can instruct the device to seek to any of the available data storage
locations.

• Synchronous or asynchronous. A synchronous device performs data
transfers with predictable response times. An asynchronous device
exhibits irregular or unpredictable response times.

• Sharable or dedicated. A sharable device can be used concurrently by
several processes or threads; a dedicated device cannot.

8 Speed of operation. Device speeds range from a few bytes per second to
a few gigabytes per second.

• Read-write, read only, or write only. Some devices perform both input
and output, but others support only one data direction.

For the purpose of application access, many of these differences are hidden
by the operating system, and the devices are grouped into a few conventional



13.3 Application I/O Interface 507

::: d i a l i n g : : *;; •;:;•;!; x v <:•<
: -. -. - . -. -. - : -: -. -: - . -: -. - : -. -. - . : -. -:

^f^ff^m:m:§m:§: -

. - • - : - : - : - : - : - : - : - : - : - : - : - : - : - : - : - : - :

: - : ' - : - : - : - : - : - : - : - : - ' : - : - : - ' : - : - : - : - : - :

: -: -: - : -. -: - : -: - : . - : - : -: -: - : -: -:'-[ : -: -:

- : - : - • - : - : - : - - : - : - : - : - : - : - : - : - : . - : - : -

- : - : - . - - . - : . - - • - : • - : : - : -

•i;i : : : l a l 9 n G y : ; : ;:• •;:; ;;i n :;: i;i ::: :: ::: •;;;• i

1 l l w l l S j Hi 1 '1:1.1 M.:!IJ
::;M::£tela|teteeein :G(|eratons: ,N; :

; • : ;

; •: U

•:^^lpm:§sm. •:

:• ; ; ; ; ; , ; o ; ; ; ; ; ; ; : ; : ; : ;:.; : ; : ; : ; : ;

::gfaphics eo:mtoiter ;;; *

Figure 13.7 Characteristics of I/O devices.

types. The resulting styles of device access have been found to be useful
and broadly applicable. Although the exact system calls may differ across
operating systems, the device categories are fairly standard. The major access
conventions include block I/O, character-stream I/O, memory-mapped file
access, and network sockets. Operating systems also provide special system
calls to access a few additional devices, such as a time-of-day clock and a timer.
Some operating systems provide a set of system calls for graphical display,
video, and audio devices.

Most operating systems also have an escape (or back door) that transpar-
ently passes arbitrary commands from an application to a device driver. Tn
UNIX, this system call is i o c t l O (for "I/O" control). The i o c t l O system call
enables an application to access any functionality that can be implemented by
any device driver, without the need to invent a new system call. The i o c t l O
system call has three arguments. The first is a file descriptor that connects the
application to the driver by referring to a hardware device managed by that
driver. The second is an integer that selects one of the commands implemented
in the driver. The third is a pointer to an arbitrary data structure in memory
that enables the application and driver to communicate any necessary control
information or data.

13.3.1 Block and Character Devices

The block-device interface captures all the aspects necessary for accessing disk
drives and other block-oriented devices. The device is expected to understand
commands such as read () and wr i t e (); if it is a random-access device, it is also
expected to have a seek() command to specify which block to transfer next.
Applications normally access such a device through a file-system interface.
We can see that r eadO, wri te (), and seekO capture the essential behaviors
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of block-storage devices, so that applications are insulated from the low-level
differences among those devices.

The operating system itself, as well as special applications such as database-
management systems, may prefer to access a block device as a simple linear
array of blocks. This mode of access is sometimes called raw I/O. If the
application performs its own buffering, then using a file system would cause
extra, unneeded buffering. Likewise, if an application provides its own locking
of file blocks or regions, then any operating-system locking services would be
redundant at the least and contradictory at the worst. To avoid these conflicts,
raw-device access passes control of the device directly to the application, letting
the operating system step out of the way. Unfortunately, no operating-system
services are then performed on this device. A compromise that is becoming
common is for the operating system to allow a mode of operation on a file that
disables buffering and locking. In the UNIX world, this is called direct I/O.

Memory-mapped file access can be layered on top of block-device drivers.
Rather than offering read and write operations, a memory-mapped interface
provides access to disk storage via an array of bytes in main memory. The
system call that maps a file into memory returns the virtual memory address
that contains a copy of the file. The actual data transfers are performed only
when needed to satisfy access to the memory image. Because the transfers
are handled by the same mechanism as that used for demand-paged virtual
memory access, memory-mapped I/O is efficient. Memory mapping is also
convenient for programmers—access to a memory-mapped file is as simple
as reading from and writing to memory. Operating systems that offer virtual
memory commonly use the mapping interface for kernel services. For instance,
to execute a program, the operating system maps the executable into memory
and then transfers control to the entry address of the executable. The mapping
interface is also commonly used for kernel access to swap space on disk.

A keyboard is an example of a device that is accessed through a character-
stream interface. The basic system calls in this interface enable an application
to get ( ) or pu tO one character. On top of this interface, libraries can be
built that offer line-at-a-time access, with buffering and editing services (for
example, when a user types a backspace, the preceding character is removed
from the input stream). This style of access is convenient for input devices such
as keyboards, mice, and modems that produce data for input "spontaneously"
—that is, at times that cannot necessarily be predicted by the application. This
access style is also good for output devices such as printers and audio boards,
which naturally fit the concept of a linear stream of bytes.

13.3.2 Network Devices

Because the performance and addressing characteristics of network I/O differ
significantly from, those of disk I/O, most operating systems provide a network
I/O interface that is different from the read 0 -wr i t e () - s eekO interface used
for disks. One interface available in many operating systems, including UNIX
and Windows NT, is the network socket interface.

Think of a wall socket for electricity: Any electrical appliance can be
plugged in. By analogy, the system calls in the socket interface enable an
application to create a socket, to connect a local socket to a remote address
(which plugs this application into a socket created by another application), to
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listen for any remote application to plug into the local socket, and to send and
receive packets over the connection. To support the implementation of servers,
the socket interface also provides a function called se lec t () that manages a
set of sockets. A call to se lec t () returns information about which sockets have
a packet waiting to be received and which sockets have room to accept a packet
to be sent. The use of s e l ec t () eliminates the polling and busy waiting that
would otherwise be necessary for network I/O. These functions encapsulate the
essential behaviors of networks, greatly facilitating the creation of distributed
applications that can use any underlying network hardware and protocol stack.

Many other approaches to interprocess communication and network
communication have been implemented. For instance, Windows NT provides
one interface to the network interface card and a second interface to the
network protocols (Section C.6). In UNIX, which has a long history as a
proving ground for network technology, we find half-duplex pipes, full-duplex
FIFOs, full-duplex STREAMS, message queues, and sockets. Information on UNIX
networking is given in Appendix A (Section A.9).

13.3.3 Clocks and Timers

Most computers have hardware clocks and timers that provide three basic
functions:

• Give the current time.

• Give the elapsed time.

• Set a timer to trigger operation X at time T.

These functions are used heavily by the operating system, as well as by time-
sensitive applications. Unfortunately, the system calls that implement these
functions are not standardized across operating systems.

The hardware to measure elapsed time and to trigger operations is called
a programmable interval timer. It can be set to wait a certain amount of time
and then generate an interrupt, and it can be set to do this once or to repeat the
process to generate periodic interrupts. The scheduler uses this mechanism to
generate an interrupt that will preempt a process at the end of its time slice. The
disk I/O subsystem uses it to invoke the flushing of dirty cache buffers to disk
periodically, and the network subsystem uses it to cancel operations that are
proceeding too slowly because of network congestion or failures. Hie operating
system may also provide an interface for user processes to use timers. The
operating system can support more timer requests than the number of timer
hardware channels by simulating virtual clocks. To do so, the kernel (or the
timer device driver) maintains a list of interrupts wanted by its own routines
and by user requests, sorted in earliest-time-first order. It sets the timer for the
earliest time. When the timer interrupts, the kernel signals the requester and
reloads the timer with the next earliest time.

On many computers, the interrupt rate generated by the hardware clock is
between 18 and 60 ticks per second. This resolution is coarse, since a modern
computer can execute hundreds of millions of instructions per second. The
precision of triggers is limited by the coarse resolution of the timer, together
with the overhead of maintaining virtual clocks. Furthermore, if the timer
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ticks are used to maintain the system tiine-of-day clock, the system? clock
can drift. In most computers, the hardware clock is constructed from a high-
frequency counter. In some computers, the value of this counter can he read
from a device register, in which case the counter can be considered a high-
resolution clock. Although this clock does not generate interrupts, it offers
accurate measurements of time intervals.

13.3.4 Blocking a n d Nonblocking IO

Another aspect of the system-call interface relates to the choice between
blocking I/O and nonblocking I/O. When an application issues a blocking
system call, the execution of the application is suspended. The application
is moved from the operating system's run queue to a wait queue. After the
system call completes, the application is moved back to the run queue, where
it is eligible to resume execution, at which time it will receive the values
returned by the system call. The physical actions performed by I/O devices
are generally asynchronous—they take a varying or unpredictable amount of
time. Nevertheless, most operating systems use blocking system calls for the
application interface, because blocking application code is easier to understand
than nonblocking application code.

Some user-level processes need nonblocking I/O. One example is a user
interface that receives keyboard and mouse input while processing and
displaying data on the screen. Another example is a video application that
reads frames from a file on disk while simultaneously decompressing and
displaying the output on the display.

One way an application writer can overlap execution with I/O is to write
a multithreaded application. Some threads can perform blocking system calls,
while others continue executing. The Solaris developers used this technique to
implement a user-level library for asynchronous I/O, freeing the application
writer from that task. Some operating systems provide nonblocking I/O system
calls. A nonblocking call does not halt the execution of the application for an
extended time. Instead, it returns quickly, with a return value that indicates
how many bytes were transferred.

An alternative to a nonblocking system call is an asynchronous system
call. An asynchronous call returns immediately, without waiting for the I/O to
complete. The application continues to execute its code. The completion of the
I/O at some future time is communicated to the application, either through the
setting of some variable in the address space of the application or through the
triggering of a signal or software interrupt or a call-back routine that is executed
outside the linear control flow of the application. The difference between
nonblocking and asynchronous system calls is that a nonblocking readQ
returns immediately with whatever data are available — the full number of
bytes requested, fewer, or none at all. An asynchronous read() call requests
a transfer that will be performed in its entirety but that will complete at some
future time. These two I/O methods are shown in Figure 13.8.

A good example of nonblocking behavior is the se lec t () system call for
network sockets. This system call takes an argument that specifies a maximum
waiting time. By setting it to 0, an application can poll for network activity
without blocking. But using s e l e c t ( ) introduces extra overhead, because
the se lec t () call only checks whether I/O is possible. For a data transfer,
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Figure 13.8 Two I/O methods: (a) synchronous and (b) asynchronous.

s e l e c t O must be followed by some kind of readO or wr i t eO command.
A variation on this approach, found in Mach, is a blocking multiple-read call.
It specifies desired reads for several devices in one system call and returns as
soon as any one of them completes.

13.4 Kernel I/O Subsystem

Kernels provide many services related to I/O. Several services—scheduling,
buffering, caching, spooling, device reservation, and error handling'—are
provided by the kernel's I /O subsystem and build on the hardware and device-
driver infrastructure. The I/O subsystem is also responsible for protecting itself
from errant processes and malicious users.

13.4.1 I/O Scheduling

To schedule a set of I/O requests means to determine a good order in which to
execute them. The order in which applications issue system calls rarely is the
best choice. Scheduling can improve overall system performance, can share
device access fairly among processes, and can reduce the average waiting time
for I/O to complete. Here is a simple example to illustrate the opportunity.
Suppose that a disk arm is near the beginning of a disk and that three
applications issue blocking read calls to that disk. Application 1 requests a
block near the end of the disk, application 2 requests one near the beginning,
and application 3 requests one in the middle of the disk. The operating system
can reduce the distance that the disk arm travels by serving the applications in
the order 2, 3,1. Rearranging the order of service in this way is the essence of
I/O scheduling.

Operating-system developers implement scheduling by maintaining a wait
queue of requests for each device. When an application issues a blocking I/O
system call, the request is placed on the queue for that device. The I/O scheduler
rearranges the order of the queue to improve the overall system efficiency
and the average response time experienced by applications. The operating
system may also try to be fair, so that no one application receives especially
poor service, or it may give priority service for delay-sensitive requests. For
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Figure 13.9 Device-status table.

instance, requests from the virtual memory subsystem may take priority over
application requests. Several scheduling algorithms for disk I/O are detailed
in Section 12.4.

When a kernel supports asynchronous I/O, it must be able to keep track
of many I/O requests at the same time. For this purpose, the operating system
might attach the wait queue to a device-status table. The kernel manages this
table, which contains an entry for each I/O device, as shown in Figure 13.9.
Each table entry indicates the device's type, address, and state (not functioning,
idle, or busy). If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.

One way in which the I/O subsystem improves the efficiency of the
computer is by scheduling I/O operations. Another way is by using storage
space in main memory or on disk via techniques called buffering, caching, and
spooling.

13.4.2 Buffering

A buffer is a memory area that stores data while they are transferred between
two devices or between a device and an application. Buffering is done for three
reasons. One reason is to cope with a speed mismatchbetween the producer and
consumer of a data stream. Suppose, for example, that a file is being received
via modem for storage on the hard disk. The modem is about a thousand
times slower than the hard disk. So a buffer is created in main memory to
accumulate the bytes received from the modem. When an entire buffer of data
has arrived, the buffer can be written to disk in a single operation. Since the
disk write is not instantaneous and the modem still needs a place to store
additional incoming data, two buffers are used. After the modem fills the first
buffer, the disk write is requested. The modem then starts to fill the second
buffer while the first buffer is written to disk. By the time the modem has filled
the second buffer, the disk write from the first one should have completed,
so the modem can switch back to the first buffer while the disk writes the
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Figure 13.10 Sun Enterprise 6000 device-transfer rates (logarithmic).

second one. This double buffering decouples the producer of data from the
consumer, thus relaxing timing requirements between them. The need for this
decoupling is illustrated in Figure 13.10, which lists the enormous differences
in device speeds for typical computer hardware.

A second use of buffering is to adapt between devices that have different
data-transfer sizes. Such disparities are especially common in computer
networking, where buffers are used widely for fragmentation and reassembly
of messages. At the sending side, a large message is fragmented into small
network packets. The packets are sent over the network, and the receiving side
places them in a reassembly buffer to form an image of the source data.

A third use of buffering is to support copy semantics for application I/O.
An example will clarify the meaning of "copy semantics.'' Suppose that an
application has a buffer of data that it wishes to write to disk. It calls the
wri te () system call, providing a pointer to the buffer and an integer specifying
the number of bytes to write. After the system call returns, what happens if
the application changes the contents of the buffer? With copy semantics, the
version of the data written to disk is guaranteed to be the version at the
time of the application system call, independent of any subsequent changes
in the application's buffer. A simple way in which the operating system can
guarantee copy semantics is for the wri te () system call to copy the application
data into a kernel buffer before returning control to the application. The disk
write is performed from the kernel buffer, so that subsequent changes to the
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application buffer have no effect. Copying of data between kernel buffers and
application data space is common in operating systems, despite the overhead
that this operation introduces, because of the clean semantics. The same effect
can be obtained more efficiently by clever use of virtual memory mapping and
copy-on-write page protection.

13.4.3 Caching

A cache is a region of fast memory that holds copies of data. Access to the cached
copy is more efficient than access to the original. For instance, the instructions
of the currently running process are stored on disk, cached in physical memory,
and copied again in the CPU's secondary and primary caches. The difference
between a buffer and a cache is that a buffer may hold the only existing copy of
a data item, whereas a cache, by definition, just holds a copy on faster storage
of an item that resides elsewhere.

Caching and buffering are distinct functions, but sometimes a region
of memory can be used for both purposes. For instance, to preserve copy
semantics and to enable efficient scheduling of disk I/O, the operating system
uses buffers in main memory to hold disk data. These buffers are also used as
a cache, to improve the I/O efficiency for files that are shared by applications
or that are being written and reread rapidly. When the kernel receives a file
I/O request, the kernel first accesses the buffer cache to see whether that region
of the file is already available in main memory. If so, a physical disk I/O
can be avoided or deferred. Also, disk writes are accumulated in the buffer
cache for several seconds, so that large transfers are gathered to allow efficient
write schedules. This strategy of delaying writes to improve I/O efficiency is
discussed, in the context of remote file access, in Section 17.3.

13.4.4 Spooling and Device Reservation

A spool is a buffer that holds output for a device, such as a printer, that cannot
accept interleaved data streams. Although a printer can serve only one job
at a time, several applications may wish to print their output concurrently,
without having their output mixed together. The operating system solves this
problem by intercepting all output to the printer. Each application's output
is spooled to a separate disk file. When an application finishes printing, the
spooling system queues the corresponding spool file for output to the printer.
The spooling system copies the queued spool files to the printer one at a time. In
some operating systems, spooling is managed by a system daemon process. In
others, it is handled by an in-kernel thread. In either case, the operating system
provides a control interface that enables users and system administrators to
display the queue, to remove unwanted jobs before those jobs print, to suspend
printing while the printer is serviced, and so on.

Some devices, such as tape drives and printers, cannot usefully multiplex
the I/O requests of multiple concurrent applications. Spooling is one way
operating systems can coordinate concurrent output. Another way to deal with
concurrent device access is to provide explicit facilities for coordination. Some
operating systems (including VMS) provide support for exclusive device access
by enabling a process to allocate an idle device and to deallocate that device
when it is no longer needed. Other operating systems enforce a limit of one
open file handle to such a device. Many operating systems provide functions
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that enable processes to coordinate exclusive access among themselves. For
instance,, Windows NT provides system calls to wait until a device object
becomes available. It also has a parameter to the openQ system call that
declares the types of access to be permitted to other concurrent threads. Oh
these systems, it is up to the applications to avoid deadlock.

13.4.5 Error Handling

An operating system that uses protected memory can guard against many
kinds of hardware and application errors, so that a complete system failure is
not the usual result of each minor mechanical glitch. Devices and I/O transfers
can fail in many ways, either for transient reasons, as when a network becomes
overloaded, or for "permanent" reasons, as when a disk controller becomes
defective. Operating systems can often compensate effectively for transient
failures. For instance, a disk read() failure results in a readC) retry, and
a network send() error results in a resendO, if the protocol so specifies.
Unfortunately, if an important component experiences a permanent failure,
the operating system is unlikely to recover.

As a general rule, an I/O system call will return one bit of information
about the status of the call, signifying either success or failure. In the UN'IX
operating system, an additional integer variable named errno is used to
return an error code—one of about a hundred values—indicating the general
nature of the failure (for example, argument out of range, bad pointer, or
file not open). By contrast, some hardware can provide highly detailed error
information, although many current operating systems are not designed to
convey this information to the application. For instance, a failure of a SCSI
device is reported by the SCSI protocol in three levels of detail: a sense key that
identifies the general nature of the failure, such as a hardware error or an illegal
request; an additional sense code that states the category of failure, such as a
bad command parameter or a self-test failure; and an additional sense-code
qualifier that gives even more detail, such as which command parameter was
in error or which hardware subsystem failed its self-test. Further, many SCSI
devices maintain internal pages of error-log information that can be requested
by the host—but that seldom are.

13.4.6 I/O Protection

Errors are closely related to the issue of protection. A user process may
accidentally or purposefully attempt to disrupt the normal operation of a
system by attempting to issue illegal I/O instructions. We can use various
mechanisms to ensure that such disruptions cannot take place in the system.

To prevent users from performing illegal I/O, we define all I/O instructions
to be privileged instructions. Thus, users cannot issue I/O instructions directly;
they must do it through the operating system. To do I/O, a user program
executes a system call to request that the operating system perform I/O on its
behalf (Figure 13.11). The operating system, executing in monitor mode, checks
that the request is valid and, if it is, does the I/O requested. The operating
system then returns to the user.

In addition, any memory-mapped and I/O port memory locations must
be protected from user access by the memory protection system. Note that a
kernel cannot simply deny all user access. Most graphics games and video
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Figure 13.11 Use of a system call to perform I/O.

editing and playback software need direct access to memory-mapped graphics
controller memory to speed the performance of the graphics, for example. The
kernel might in this case provide a locking mechanism to allow a section of
graphics memory (representing a window on screen) to be allocated to one
process at a time.

13.4.7 Kernel Data Structures

The kernel needs to keep state information about the use of I/O components.
It does so through a variety of in-kernel data structures, such as the open-file
table structure from Section 11.1. The kernel uses many similar structures to
track network connections, character-device communications, and other I/O
activities.

UNIX provides file-system access to a variety of entities, such as user files,
raw devices, and the address spaces of processes. Although each of these
entities supports a read() operation, the semantics differ. For instance, to
read a user file, the kernel needs to probe the buffer cache before deciding
whether to perform a disk I/O. To read a raw disk, the kernel needs to ensure
that the request size is a multiple of the disk sector size and is aligned on a
sector boundary. To read a process image, it is merely necessary to copy data
from memory. UNIX encapsulates these differences within a uniform structure
by using an object-oriented technique. The open-file record, shown in Figure
13.12, contains a dispatch table that holds pointers to the appropriate routines,
depending on the type of file.

Some operating systems use object-oriented methods even more exten-
sively. For instance, Windows NT uses a message-passing implementation for
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I/O. An I/O request is converted into a message that is sent through the kernel
to the I/O manager and then to the device driver, each of which may change the
message contents. For output, the message contains the data to be written. For
input, the message contains a buffer to receive the data. The message-passing
approach can add overhead, by comparison with procedural techniques that
use shared data structures, but it simplifies the structure and. design of the I/O
system and adds flexibility.

13.4.8 Kernel I/O Subsystem Summary

In summary, the I/O subsystem coordinates an extensive collection of services
that are available to applications and to other parts of the kernel. The I/O
subsystem supervises these procedures:

• Management of the name space for files and devices

• Access control to files and devices

• Operation control (for example, a modem cannot seek())

• File-system space allocation

• Device allocation

• Buffering, caching, and spooling

• I/O scheduling

• Device-status monitoring, error handling, and failure recovery
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m Device-driver configuration and initialization •

The upper levels of the I/O subsystem access devices via the uniform
interface provided by the device drivers.

13.5 Transforming I/O Requests to Hardware Operations

Earlier, we described the handshaking between a device driver and a device
controller, but we did not explain how the operating system connects an
application request to a set of network wires or to a specific disk sector. Let's
consider the example of reading a file from disk. The application refers to the
data by a file name. Within a disk, the file system maps from the file name
through the file-system directories to obtain the space allocation of the file. For
instance, in MS-DOS, the name maps to a number that indicates an entry in the
file-access table, and that table entry tells which disk blocks are allocated to the
file. In UNIX, the name maps to an inode number, and the corresponding inode
contains the space-allocation information.

How is the connection made from the file name to the disk controller (the
hardware port address or the memory-mapped controller registers)? First, we
consider MS-DOS, a relatively simple operating system. The first part of an
MS-DOS file name, preceding the colon, is a string that identifies a specific
hardware device. For example, c: is the first part of every file name on the
primary hard disk. The fact that c: represents the primary hard disk is built
into the operating system; c: is mapped to a specific port address through a
device table. Because of the colon separator, the device name space is separate
from the file-system name space within each device. This separation makes it
easy for the operating system to associate extra functionality with each device.
For instance, it is easy to invoke spooling on any files written to the printer.

If, instead, the device name space is incorporated in the regular file-system
name space, as it is in UNIX, the normal file-system name services are provided
automatically. If the file system provides ownership and access control to all
file names, then devices have owners and access control. Since files are stored
on devices, such an interface provides access to the I/O system at two levels.
Names can be used to access the devices themselves or to access the files stored
on the devices.

UNFIX represents device names in the regular file-system name space. Unlike
an MS-DOS file name, which has a colon separator, a UNIX path name has no
clear separation of the device portion, hi fact, no part of the path name is the
name of a device. UNIX has a mount table that associates prefixes of path names
with specific device names. To resolve a path name, UNIX looks up the name in
the mount table to find the longest matching prefix; the corresponding entry
in the mount table gives the device name. This device name also has the form
of a name in the file-system name space. When UNIX looks up this name in
the file-system directory structures, it finds not an inode number but a <major,
minor> device number. The major device number identifies a device driver
that should be called to handle I/O to this device. The minor device number
is passed to the device driver to index into a device table. The corresponding
device-table entry gives the port address or the memory-mapped address of
the device controller.
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Modern operating systems obtain significant flexibility from the maltiple
stages of lookup tables in the path between a request and a physical device
controller. The mechanisms that pass requests between applications and
drivers are general. Thus, we can introduce new devices and drivers into a
computer without recompiling the kernel. In fact, some operating systems
have the ability to load device drivers on demand. At boot time, the system
first probes the hardware buses to determine what devices are present; it then
loads in the necessary drivers, either immediately or when first required by an
I/O request.

Now we describe the typical life cycle of a blocking read request, as
depicted in Figure 13.13. The figure suggests that an I/O operation requires
a great many steps that together consume a tremendous number of CPU cycles.
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Figure 13.13 The life cycle of an I/O request.
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1. A process issues a blocking read () system call to a file descriptor 6f a file
that has been opened previously.

2. The system-call code in the kernel checks the parameters for correctness.
In the case of input, if the data are already available in the buffer cache,
the data are returned to the process, and the I/O request is completed.

3. Otherwise, a physical I/O must be performed. The process is removed
from the run queue and is placed on the wait queue for the device, and
the I/O request is scheduled. Eventually, the I/O subsystem sends the
request to the device driver. Depending on the operating system, the
request is sent via a subroutine call or an in-kernel message.

4. The device driver allocates kernel buffer space to receive the data and
schedules the I/O. Eventually, the driver sends commands to the device
controller by writing into the device-control registers.

5. The cievice controller operates the device hardware to perform the data
transfer.

6. The driver may poll for status and data, or it may have set up a DMA
transfer into kernel memory. We assume that the transfer is managed
by a DMA controller, which generates an interrupt when the transfer
completes.

7. The correct interrupt handler receives the interrupt via the interrupt-
vector table, stores any necessary data, signals the device driver, and
returns from the interrupt.

8. The device driver receives the signal, determines which I/O request has
completed, determines the request's status, and signals the kernel I/O
subsystem that the request has been completed.

9. The kernel transfers data or return codes to the address space of the
requesting process and moves the process from the wait queue back to
the ready queue.

10. Moving the process to the ready queue unblocks the process. When the
scheduler assigns the process to the CPU, the process resumes execution
at the completion of the system call.

13,6 STREAMS

UNIX System V has an interesting mechanism, called STREAMS, that enables
an application to assemble pipelines of driver code dynamically. A stream is
a full-duplex connection between a device driver and a user-level process. It
consists of a stream head that interfaces with the user process, a driver end
that controls the device, and zero or more stream modules between them. The
stream head, the driver end, and each module contain a pair of queues—a read
queue and a write queue. Message passing is used to transfer data between
queues. The STREAMS structure is shown in Figure 13.14.

Modules provide the functionality of STREAMS processing; they are pushed
onto a stream by use of the i o c t l Q system call. For example, a process can.
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Figure 13.14 The STREAMS structure.

open a serial-port device via a stream and can push on a module to handle
input editing. Because messages are exchanged between queues in adjacent
modules, a queue in one module may overflow an adjacent queue. To prevent
this from occurring, a queue may support flow control. Without flow control,
a queue accepts all messages and immediately sends them on to the queue
in the adjacent module without buffering them. A queue supporting flow
control buffers messages and does not accept messages without sufficient
buffer space; this process involves exchanges of control messages between
queues in adjacent modules.

A user process writes data to a device using either the wri te () or putmsgO
system call. The wri te 0 system call writes raw data to the stream, whereas
putmsgO allows the user process to specify a message. Regardless of the
system call used by the user process, the stream head copies the data into a
message and delivers it to the queue for the next module in line. This copying of
messages continues until the message is copied to the driver end and hence the
device. Similarly, the user process reads data from the stream head using either
the readQ or getmsgO system call. If read() is used, the stream head gets
a message from its adjacent queue and returns ordinary data (an unstructured
byte stream) to the process. If getmsgO is used, a message is returned to the
process.

STREAMS I/O is asynchronous (or nonblocking) except when the user
process communicates with the stream head. When writing to the stream,
the user process will block, assuming the next queue uses flow control, until
there is room to copy the message. Likewise, the user process will block when
reading from the stream until data are available.
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The driver end is similar to a stream head or a module in that it has'a read
and write queue. However, the driver end must respond to interrupts, such
as one triggered when a frame is ready to be read from a network. Unlike the
stream head, which may block if it is unable to copy a message to the next queue
in line, the driver end must handle all incoming data. Drivers must support
flow control as well. However, if a device's buffer is full, the device typically
resorts to dropping incoming messages. Consider a network card whose input
buffer is full. The network card must simply drop further messages until there
is ample buffer space to store incoming messages.

The benefit of using STREAMS is that it provides a framework for a
modular and incremental approach to writing device drivers and network
protocols. Modules may be used by different streams and hence by different
devices. For example, a networking module may be used by both an Ethernet
network card and a token-ring network card. Furthermore, rather than treating
character-device I/O as an unstructured byte stream, STREAMS allows support
for message boundaries and control information between modules. Support
for STREAMS is widespread among most UNIX variants, and it is the preferred
method for writing protocols and device drivers. For example, System V UNIX
and Solaris implement the socket mechanism using STREAMS.

13-7 Performance

I/O is a major factor in system performance. It places heavy demands on the CPU
to execute device-driver code and to schedule processes fairly and efficiently
as they block and unblock. The resulting context switches stress the CPU and its
hardware caches. I/O also exposes any inefficiencies in the interrupt-handling
mechanisms in the kernel. In addition, I/O loads down the memory bus during
data copy between controllers and physical memory and again during copies
between kernel buffers and application data space. Coping gracefully with all
these demands is one of the major concerns of a computer architect.

Although modern computers can handle many thousands of interrupts per
second, interrupt handling is a relatively expensive task: Each interrupt causes
the system to perform a state change, to execute the interrupt handler, and then
to restore state. Programmed I/O can be more efficient than interrupt-driven
J/O, if the number of cycles spent in busy waiting is not excessive. An I/O
completion typically unblocks a process, leading to the full overhead of a
context switch.

Network traffic can also cause a high context-switch rate. Consider, for
instance, a remote login from one machine to another. Each character typed
on the local machine must be transported to the remote machine. On the local
machine, the character is typed; a keyboard interrupt is generated; and the
character is passed through the interrupt handler to the device driver, to the
kernel, and then to the user process. The user process issues a network I/O
system call to send the character to the remote machine. The character then
flows into the local kernel, through the network layers that construct a network
packet, and into the network device driver. The network device driver transfers
the packet to the network controller, which sends the character and generates
an interrupt. The interrupt is passed, back up through the kernel to cause the
network I/O system call to complete.
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Now, the remote system's network hardware receives the packet, and an
interrupt is generated. The character is unpacked from the network protocols
and is given to the appropriate network daemon. The network daemon.
identifies which remote login session is involved and passes the packet to
the appropriate subdaemon for that session. Throughout this flow, there are
context switches and state switches (Figure 13.15). Usually, the receiver echoes
the character back to the sender; that approach doubles the work.

To eliminate the context switches involved in moving each character
between daemons and the kernel,, the Solaris developers reimplemented the
telnet daemon using in-kernel threads. Sun estimates that this improvement
increased the maximum number of network logins from a few hundred to a
few thousand on a large server.

Other systems use separate front-end processors for terminal I/O to reduce
the interrupt burden on the main CPU. For instance, a terminal concentrator
can multiplex the traffic from hundreds of remote terminals into one port on a
large computer. An I/O channel is a dedicated, special-purpose CPU found in
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mainframes and in other high-end systems. The job of a channel is to offload
I/O work from the main CPU. The idea is that the channels keep the data flowing
smoothly, while the main CPU remains free to process the data. Like the device
controllers and DMA controllers found in smaller computers, a channel can
process more general and sophisticated programs, so channels can be tuned
for particular workloads.

We can employ several principles to improve the efficiency of I/O:

• Reduce the number of context switches.

• Reduce the number of times that data must be copied in memory while
passing between device and application.

• Reduce the frequency of interrupts by using large transfers, smart con-
trollers, and polling (if busy waiting can be minimized).

• Increase concurrency by using DMA-knowledgeable controllers or chan-
nels to offload simple data copying from the CPU.

• Move processing primitives into hardware, to allow their operation in
device controllers to be concurrent with CPU and bus operation.

• Balance CPU, memory subsystem, bus, and r/O performance, because an
overload in any one area will cause idleness in others.

Devices vary greatly in complexity. For instance, a mouse is simple. The
mouse movements and button clicks are converted into numeric values that are
passed from hardware, through the mouse device driver, to the application. By
contrast, the functionality provided by the Windows NT disk device driver is
complex. It not only manages individual disks but also implements RAID arrays
(Section 12.7). To do so, it converts an application's read or write request into a
coordinated set of disk I/O operations. Moreover, it implements sophisticated
error-handling and data-recovery algorithms and takes many steps to optimize
disk performance.

Where should the I/O functionality be implemented—in the device hard-
ware, in the device driver, or in application software? Sometimes we observe
the progression depicted in Figure 13.16.

• Initially, we implement experimental I/O algorithms at the application
level, because application code is flexible and application bugs are unlikely
to cause system crashes. Furthermore, by developing code at the applica-
tion level, we avoid the need to reboot or reload device drivers after every
change to the code. An application-level implementation can be inefficient,
however, because of the overhead of context switches and because the
application cannot take advantage of internal kernel data structures and
kernel functionality (such as efficient in-kerne! messaging, threading, and
locking).

» When an application-level algorithm has demonstrated its worth, we
may reimplement it in the kernel. This can improve the performance,
but the development effort is more challenging, because an operating-
system kernel is a large, complex software system. Moreover, an in-kernel
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implementation must be thoroughly debugged to avoid data corruption
and system crashes.

The highest performance may be obtained by a specialized implementation
in hardware, either in the device or in the controller. The disadvantages of
a hardware implementation include the difficulty and expense of making
further improvements or of fixing bugs, the increased development time
(months rather than days), and the decreased flexibility. For instance, a
hardware RAID controller may not provide any means for the kernel to
influence the order or location of individual block reads and writes, even
if the kernel has special information about the workload that would enable
the kernel to improve the I/O performance.

13.8 Summary

The basic hardware elements involved in I/O are buses, device controllers, and
the devices themselves. The work of moving data between devices and main
memory is performed by the CPU as programmed I/O or is offloaded to a DMA
controller. The kernel module that controls a device is a device driver. The
system-call interface provided to applications is designed to handle several
basic categories of hardware, including block devices, character devices,
memory-mapped files, network sockets, and programmed interval timers. The
system calls usually block the process that issues them, but nonblocking and
asynchronous calls are used by the kernel itself and by applications that must
not sleep while waiting for an T/O operation to complete.

The kernel's I/O subsystem provides numerous services. Among these
are I/O scheduling, buffering, caching, spooling, device reservation, and error
handling. Another service, name translation, makes the connection between
hardware devices and the symbolic file names used by applications. It involves
several levels of mapping that translate from character-string names, to specific
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device drivers and device addresses, and then to physical addresses of l/Oports
or bus controllers. This mapping may occur within the file-system name space.,
as it does in UNIX, or in a separate device name space, as it does in MS-DOS.

STREAMS is an implementation and methodology for making drivers
reusable and easy to use. Through them, drivers can be stacked, with data
passed through them sequentially and bidirectionally for processing.

I/O system calls are costly in terms of CPU consumption, because of the
many layers of software between a physical device and the application. These
layers imply the overheads of context switching to cross the kernel's protection
boundary, of signal and interrupt handling to service the I/O devices, and of
the load on the CPU and memory system to copy data between kernel buffers
and application space.

Exercises

13.1 When multiple interrupts from different devices appear at about the
same time, a priority scheme could be used to determine the order in
which the interrupts would be serviced. Discuss what issues need to
be considered in assigning priorities to different interrupts.

13.2 What are the advantages and disadvantages of supporting memory-
mapped I/O to device control registers?

13.3 Consider the following I/O scenarios on a single-user PC:

a. A mouse used with a graphical user interface

b. A tape drive on a multitasking operating system (with no device
preallocation available)

c. A disk drive containing user files

d. A graphics card with direct bus connection, accessible through
memory-mapped I/O

For each of these scenarios, would you design the operating system
to use buffering, spooling, caching, or a combination? Would you use
polled I/O or interrupt-driven I/O? Give reasons for your choices.

13.4 In most multiprogrammed systems, user programs access memory
through virtual addresses, while the operating system uses raw phys-
ical addresses to access memory. What are the implications of this
design on the initiation of I/O operations by the user program and
their execution by the operating system?

13.5 What are the various kinds of performance overheads associated with
servicing an interrupt?

13.6 Describe three circumstances under which blocking I/O should be used.
Describe three circumstances under which nonblocking I/O should be
used. Why not just implement nonblocking I/O and have processes
busv-wait until their device is readv?
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13.7 Typically, at the completion of a device I/O, a single interrupt is raised
and appropriately handled by the host processor. In certain settings,
however, the code that is to be executed at the completion of the
I/O can be broken into two separate pieces, one of which executes
immediately after the I/O completes and schedules a second interrupt
for the remaining piece of code to be executed at a later time. What is
the purpose of using this strategy in the design of interrupt handlers?

13.8 Some DMA controllers support direct virtual memory access, where
the targets of I/O operations are specified as virtual addresses and
a translation from virtual to physical address is performed during
the DMA. How does this design complicate the design of the DMA
controller? What are the advantages of providing such a functionality?

13.9 UNIX coordinates the activities of the kernel I/O components by
manipulating shared in-kernel data structures, whereas Windows NT
uses object-oriented message passing between kernel I/O components.
Discuss three pros and three cons of each approach.

13.10 Write (in pseudocode) an implementation of virtual clocks, including
the queueing and management of timer requests for the kernel and
applications. Assume that the hardware provides three timer channels.

13.11 Discuss the advantages and disadvantages of guaranteeing reliable
transfer of data between modules in the STREAMS abstraction.
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Part Five

Protection mechanisms control access to a system by limiting the types
of file access permitted to users. In addition, protection must ensure
that only processes that have gained proper authorization from the
operating system can operate on memory segments, the CPU, and other
resources.

Protection is provided by a mechanism that controls the access of
programs, processes, or users to the resources defined by a computer
system. This mechanism must provide a means for specifying the controls
to be imposed, together with a means of enforcing them.

Security ensures the authentication of system users to protect the
integrity of the information stored in the system (both data and code),
as well as the physical resources of the computer system. The security
system prevents unauthorized access, malicious destruction or alteration
of data, and accidental introduction of inconsistency.





The processes in an operating system must be protected from one another's
activities. To provide such protection, we can use various mechanisms to ensure
that only processes that have gained proper authorization from the operating
system can operate on the files, memory segments, CPU, and other resources
of a system.

Protection refers to a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means for specifying the controls to be imposed,
together with a means of enforcement. We distinguish between protection and
security, which is a measure of confidence that the integrity of a system and
its data will be preserved. Security assurance is a much broader topic than is
protection, and we address it in Chapter 15.

CHAPTER OBJECTIVES

• Discuss the goals and principles of protection in a modern computer
system.

• Explain how protection domains combined with an access matrix are used
to specify the resources a process may access.

• Examine capability- and language-based protection systems.

14,1 Goals of Protection

As computer systems have become more sophisticated and pervasive in their
applications, the need to protect their integrity has also grown. Protection was
originally conceived as an adjunct to multiprogramming operating systems,,
so that untrustworthy users might safely share a common logical name space,
such as a directory of files, or share a common physical name space, such as
memory. Modern protection concepts have evolved to increase the reliability
of any complex system that makes use of shared resources.

We need to provide protection for several reasons. The most obvious is
the need to prevent mischievous, intentional violation of an access restriction

531
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by a user. Of more general importance, however, is the need to ensure that
each program component active in a system uses system resources only in
ways consistent with stated policies. This requirement is an absolute one for a
reliable system.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by a malfunctioning subsystem.
An unprotected resource cannot defend against use (or misuse) by an unau-
thorized or incompetent user. A protection-oriented system provicies means to
distinguish between authorized and unauthorized usage.

The role of protection in a computer system is to provide a mechanism for
the enforcement of the policies governing resource use. These policies can be
established in a variety of ways. Some are fixed in the design of the system,
while others are formulated by the management of a system. Still others are
defined by the individual users to protect their own files and programs. A
protection system must have the flexibility to enforce a variety of policies.

Policies for resource use may vary by application, and they may change
over time. For these reasons, protection is no longer the concern solely of the
designer of an operating system. The application programmer needs to use
protection mechanisms as well, to guard resources created and supported
by an application subsystem against misuse. In this chapter, we describe
the protection m.echanisms the operating system should provide, so that
application designers can use them in designing their own protection software.

Note that mechanisms are distinct horn policies. Mechanisms determine how
something will be done; policies decide what will be done. The separation
of policy and mechanism is important for flexibility. Policies are likely to
change from place to place or time to time. In the worst case, every change
in policy would require a change in the underlying mechanism. Using general
mechanisms enables us to avoid such a situation.

14,2 Principles of Protection

Frequently, a guiding principle can be used throughout a project, such as
the design of an operating system. Following this principle simplifies design
decisions and keeps the system consistent and easy to understand. A key,
time-tested guiding principle for protection is the principle of least privilege. It
dictates that programs, users, and even systems be given just enough privileges
to perform their tasks.

Consider the analogy of a security guard with a passkey. If this key allows
the guard into just the public areas that she guards, then misuse of the key
will result in minimal damage. If, however, the passkey allows access to all
areas, then damage from its being lost, stolen, misused, copied, or otherwise
compromised will be much greater.

An operating system following the principle of least privilege implements
its features, programs, system calls, and data structures so that failure or
compromise of a component does the minimum damage and allows the
minimum damage to be done. The overflow of a buffer in a system daemon
might cause the daemon to fail, for example, but should not allow the execution
of code from the process's stack that would enable a remote user to gain
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maximum privileges and access to the entire system (as happens too, often
today).

Such an operating system also provides system calls and services that
allow applications to be written with fine-grained access controls. It provides
mechanisms to enable privileges when they are needed and to disable them
when they are not needed. Also beneficial is the creation of audit trails for
all privileged function access. The audit trail allows the programmer, systems
administrator, or law-enforcement officer to trace all protection and security
activities on the system.

Managing users with the principle of least privilege entails creating a
separate account for each user, with just the privileges that the user needs. An
operator who needs to mount tapes and backup files on the system has access
to just those commands and files needed to accomplish the job. Some systems
implement role-based access control (RBAC) to provide this functionality.

Computers implemented in a computing facility under the principle of least
privilege can be limited to running specific services, accessing specific remote
hosts via specific services, and doing so during specific times. Typically, these
restrictions are implemented through enabling or disabling each service and
through access control lists, as described in Section 10.6.2 and 14.6.

The principle of least privilege can help produce a more secure computing
environment. Unfortunately, it frequently does not. For example, Windows
2000 has a complex protection scheme at its core and yet has many security
holes. By comparison, Solaris is considered relatively secure, even though it
is a variant of UNIX, which historically was designed with little protection
in mind. One reason for the difference may be that Windows 2000 has more
lines of code and more services than Solaris and thus has more to secure and
protect. Another reason could be that the protection scheme in Windows 2000
is incomplete or protects the wrong aspects of the operating system, leaving
other areas vulnerable.

14.3 Domain of Protection

A computer system is a collection of processes and objects. By objects, we mean
both hardware objects (such as the CPU, memory segments, printers, disks, and
tape drives) and software objects (such as files, programs, and semaphores).
Each object has a unique name that differentiates it from all other objects in the
system, and each can be accessed only through well-defined and meaningful
operations. Objects are essentially abstract data types.

The operations that are possible may depend on the object. For example,
a CPU can only be executed on. Memory segments can be read and written,
whereas a CD-ROM or DVD-ROM can only be read. Tape drives can be read,
written, and rewound. Data files can be created, opened, read, written, closed,
and deleted; program files can be read, written, executed, and deleted.

A process should be allowed to access only those resources for which it
has authorization. Furthermore, at any time, a process should be able to access
only those resources that it currently requires to complete its task. This second
requirement, commonly referred to as the need-to-knozv principle, is useful in
limiting the amount of damage a faulty process can cause in the system. For
example, when process p invokes procedure A{), the procedure should be



534 Chapter 14 Protection

allowed to access only its own variables and the formal parameters passed
to it; it should not be able to access all the variables of process p. Similarly,
consider the case where process p invokes a compiler to compile a particular
file. The compiler should not be able to access files arbitrarily but should have
access only to a well-defined subset of files (such as the source file, listing file,
and so on) related to the file to be compiled. Conversely, the compiler may have
private files used for accounting or optimization purposes that process p should
not be able to access. The need-to-know principle is similar to the principle of
least privilege discussed in Section 14.2 in that the goals of protection are to
minimize the risks of possible security violations.

14.3.1 Domain Structure

To facilitate this scheme, a process operates within a protection domain, which
specifies the resources that the process may access. Each domain defines a set
of objects and the types of operations that may be invoked on each object.
The ability to execute an operation on an object is an access right. A domain
is a collection of access rights, each of which is an ordered pair <object-iiame,
rights-set>. For example, if domain D has the access right <file F, {read,write} >,
then a process executing in domain D can both read and write file F; it cannot,
however, perform any other operation on that object.

Domains do not need to be disjoint; they may share access rights. For
example, in Figure 14.1, we have three domains: Dir D2, and D3. The access
right < Oi, (print}> is shared by D? and D3, implying that a process executing
in either of these two domains can print object O4. Note that a process must be
executing in domain D\ to read and write object O\, while only processes in
domain D3 may execute object O\.

The association between a process and a domain may be either static, if
the set of resources available to the process is fixed throughout the process's
lifetime, or dynamic. As might be expected, establishing dynamic protection
domains is more complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want to
adhere to the need-to-know principle, then a mechanism must be available to
change the content of a domain. The reason stems from the fact that a process
may execute in two different phases and may, for example, need read access
in one phase and write access in another. If a domain is static., we must define
the domain to include both read and write access. However, this arrangement
provides more rights than are needed in each of the two phases, since we have
read access in the phase where we need only write access, and vice versa. Thus,

D,

Figure 14.1 System with three protection domains.
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the need-to-know principle is violated. We must allow the contents of a domain
to be modified so that it always reflects the minimum necessary access rights.

If the association is dynamic, a mechanism is available to allow domain
switching, enabling the process to switch from one domain to another. We may
also want to allow the content of a domain to be changed. If we cannot change
the content of a domain, we can provide the same effect by creating a new
domain with the changed content and switching to that new domain when we
want to change the domain content.

A domain can be realized in a variety of ways:

» Each user may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the user. Domain switching occurs
when the user is changed—generally when one user logs out and another
user logs in.

• Each process may be a domain. In this case, the set of objects that can be
accessed depends on the identity of the process. Domain switching occurs
when one process sends a message to another process and then waits for
a response.

• Each procedure may be a domain. In this case, the set of objects that can be
accessed corresponds to the local variables defined within the procedure.
Domain switching occurs when a procedure call is made.

We discuss domain switching in greater detail in Section 14.4.
Consider the standard dual-mode (monitor-user mode) model of

operating-system execution. When a process executes in monitor mode, it
can execute privileged instructions and thus gain complete control, of the
computer system. In contrast, when a process executes in user mode, it can
invoke only nonprivileged instructions. Consequently, it can execute only
within its predefined memory space. These two modes protect the operating
system (executing in monitor domain) from the user processes (executing
in user domain). In a multiprogrammed operating system, two protection
domains are insufficient, since users also want to be protected from one
another. Therefore, a more elaborate scheme is needed. We illustrate such a
scheme by examining two influential operating systems—UNIX and MULT1CS
—to see how these concepts have been implemented there.

14.3.2 An Example: UNIX

In the UNIX operating system, a domain is associated with the user. Switching
the domain corresponds to changing the user identification temporarily.
This change is accomplished through the file system as follows. An owner
identification and a domain bit (known as the setuid bit) are associated with
each file. When the setuid bit is on, and a user executes that file, the user ID is
set to that of the owner of the file; when the bit is off however, the user ID does
not change. For example, when a user A (that is, a user with userlD = A) starts
executing a file owned by B, whose associated domain bit is off, the uscrlD of
the process is set to A. When the setuid bit is on, the userlD is set to that of
the owner of the file: B. When the process exits, this temporary userlD change
ends.
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Other methods are used to change domains in operating systems in which
user IDs are used for domain definition, because almost all systems need
to provide such a mechanism. This mechanism is used when an otherwise
privileged facility needs to be made available to the general user population.
For instance, it might be desirable to allow users to access a network without
letting them write their own networking programs. In such a case, on a UNIX
system, the setuid bit on a networking program would be set, causing the user
ID to change when the program was run. The user ID would change to that
of a user with network access privilege (such as root, the most powerful user
ID). One problem with this method is that if a user manages to create a file
with user ID root and with its setuid bit on, that user can become root and do
anything and everything on the system. The setuid mechanism is discussed
further in Appendix A.

An alternative to this method used in other operating systems is to place
privileged programs in a special directory. The operating system would be
designed to change the user ID of any program run from this directory, either
to the equivalent of root or to the user ID of the owner of the directory. This
eliminates one security problem, with setuid programs in which crackers create
and hide (using obscure file or directory names) them for later use. This method
is less flexible than that used in UNIX, however.

Even more restrictive, and thus more protective, are systems that simply
do not allow a change of user ID. In these instances, special techniques must
be used to allow users access to privileged facilities. For instance, a daemon
process may be started at boot time and run as a special user ID. Users then
run a separate program, which sends requests to this process whenever they
need to use the facility This method is used by the TOPS-20 operating system.

In any of these systems, great care must be taken in writing privileged
programs. Any oversight can result in a total lack of protection on the system.
Generally, these programs are the first to be attacked by people trying to
break into a system; unfortunately, the attackers are frequently successful.
For example, security has been breached on many UNIX systems because of the
setuid feature. We discuss security in Chapter 15.

14.3.3 An Example: MULTICS

In the MULTICS system, the protection domains are organized hierarchically
into a ring structure. Each ring corresponds to a single domain (Figure 14.2).
The rings are numbered from 0 to 7. Let D, and D- be any two domain rings.
If / < /, then D; is a subset of D ;. That is, a process executing in domain D,
has more privileges than does a process executing in domain D,\ A process
executing in domain Do has the most privileges. If only two rings exist, this
scheme is equivalent to the monitor—user mode of execution, where monitor
mode corresponds to Do and user mode corresponds to D\.

MULTICS has a segmented address space; each segment is a file, and each
segment is associated with one of the rings. A segment description includes an
entry that identifies the ring number. In addition, it includes three access bits
to control reading, writing, and execution. The association between segments
and rings is a policy decision with which we are not concerned here.

A cuirent-ring-mtmber counter is associated with each process, identifying
the ring in which the process is executing currently. When a process is executing
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ring 1

ring N- 1

Figure 14.2 MULTICS ring structure.

in ring /', it cannot access a segment associated, with ring/ (/ < i). It can access a
segment associated with ring k (k > /). The type of access, however, is restricted
according to the access bits associated with that segment.

Domain switching in MULTICS occurs when a process crosses from one ring
to another by calling a procedure in a different ring. Obviously, this switch must
be done in a controlled manner; otherwise, a process could start executing in
ring 0, and no protection would be provided. To allow controlled domain
switching, we modify the ring field of the segment descriptor to include the
following:

• Access bracket. A pair of integers, bl and bl, such that bl < bl.

• Limit. An integer b3 such that b3 > bl.

« List of gates. Identifies the entry points (or gates) at which the segments
may be called.

If a process executing in ring /' calls a procedure (or segment) with access bracket
(bl,bl), then the call is allowed if bl s ' < bl, and the current ring number of
the process remains /'. Otherwise, a trap to the operating system occurs, and
the situation is handled as follows:

If / < bl, then the call is allowed to occur, because we have a transfer to a
ring (or domain) with fewer privileges. However, if parameters are passed
that refer to segments in a lower ring (that is, segments not accessible to
the called procedure), then these segments must be copied into an area
that can be accessed by the called procedure.

If / > bl, then the call is allowed to occur only if b3 is greater than or equal
to / and the call has been directed to one of the designated entry points in
the list of gates. This scheme allows processes with limited access rights to
call procedures in lower rings that have more access rights, but only in a
carefully controlled manner.
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The main disadvantage of the ring (or hierarchical) structure is that it ctoes not
allow us to enforce the need-to-know principle. In particular, if an object must
be accessible in domain D, but not accessible in domain Du then we must have
/ < i. But this requirement means that every segment accessible in D, is also
accessible in D-.

The MULT1CS protection system is generally more complex and less efficient
than are those used in current operating systems. If protection interferes with
the ease of use of the system or significantly decreases system performance,
then its use must be weighed carefully against the purpose of the system. For
instance, we would want to have a complex protection system on a computer
used by a university to process students' grades and also used by students for
classwork. A similar protection system would notbe suited to a computer being
used for number crunching, in which performance is of utmost importance. We
would prefer to separate the mechanism from the protection policy, allowing
the same system to have complex or simple protection depending on the needs
of its users. To separate mechanism from policy, we require a more general
model of protection.

14.4 Access Matrix

Our model of protection can be viewed abstractly as a matrix, called an access
matrix. The rows of the access matrix represent domains, and the columns
represent objects. Each entry in the matrix consists of a set of access rights.
Because the column defines objects explicitly, we can omit the object name
from the access right. The entry access(/,/) defines the set of operations that a
process executing in domain Dj can invoke on object Or

To illustrate these concepts, we consider the access matrix shown in Figure
14.3. There are four domains and four objects—three files (F|, F2, F:1) and one
laser printer. A process executing in domain D\ can read files Fj and F3. A
process executing in domain D4 has the same privileges as one executing in
domain D\; but in addition, it can also write onto files F| and F?. Note that the
laser printer can be accessed only by a process executing in domain Do-

Figure 14.3 Access matrix.
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The access-matrix scheme provides us with the mechanism for specifying
a variety of policies. The mechanism consists of implementing the access
matrix and ensuring that the semantic properties we have outlined indeed,
hold. More specifically, we must ensure that a process executing in domain D,
can access only those objects specified in row \, and then only as allowed by
the access-matrix entries.

The access matrix can implement policy decisions concerning protection.
The policy decisions involve which rights should be included in the (z',;')th
entry. We must also decide the domain in which each process executes. This
last policy is usually decided by the operating system.

The users normally decide the contents of the access-matrix entries. When
a user creates a new object O-, the column 0/ is added to the access matrix
with the appropriate initialization entries, as dictated by the creator. The user
may decide to enter some rights in some entries in column / and other rights
in other entries, as needed.

The access matrix provides an appropriate mechanism for defining and
implementing strict control for both the static and dynamic association between
processes and domains. WThen we switch a process from one domain to another,
we are executing an operation (switch) on an object (the domain). We can
control domain switching by including domains among the objects of the
access matrix. Similarly, when we change the content of the access matrix,
we are performing an operation on an object: the access matrix. Again, we
can control these changes by including the access matrix itself as an object.
Actually, since each entry in the access matrix may be modified individually,
we must consider each entry in the access matrix as an object to be protected.
Now, we need to consider only the operations possible on these new objects
(domains and the access matrix) and decide how we want processes to be able
to execute these operations.

Processes should be able to switch from one domain to another. Domain
switching from domain D; to domain D\ is allowed if and only if the access
right switch e access(/,;'). Thus, in Figure 14.4, a process executing in domain
D2 can switch to domain D3 or to domain D4. A process in domain D4 can
switch to D], and one in domain D\ can switch to domain D2.

object

domain:

read;

react
vyfilf

F I laser
' 3 printer

rti

:; :| ;pf|n|

yfjte swiiah

swifcfi ;l

!;; | swiich

Figure 14.4 Access matrix of Figure 14.3 with domains as objects.
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Figure 14.5 Access matrix with copy rights.

Allowing controlled change in the contents of the access-matrix entries
requires three additional operations: copy, owner, and control . We examine
these operations next.

The ability to copy an access right from one domain (or row) of the access
matrix to another is denoted by an asterisk (*) appended to the access right.
The copy right allows the copying of the access right only within the column
(that is, for the object) for which the right is defined. For example, in Figure
14.5(a), a process executing in domain D2 can copy the read operation into any
entry associated with file F2. Hence, the access matrix of Figure 14.5(a) can be
modified to the access matrix shown in Figure 14.5(b).

This scheme has two variants:

1. A right is copied from access(/, /) to access(/c,/); it is then removed from
access(/,/). This action is a transfer of a right, rather than a copy.

2. Propagation of the copy right may be limited. That is, when the right
R* is copied from access(/,y) to access(/t,/), only the right R (not R")
is created. A process executing in domain Dk cannot further copy the
right R.

A system may select only one of these three copy rights, or it may provide all
three by identifying them as separate rights: copy, transfer, and limited copy.

We also need a mechanism to allow addition of new rights and removal of
some rights. The owner right controls these operations. If access(/,/) includes
the oivncr right, then a process executing in domain D, can add and remove
any right in any entry in column /'. For example, in Figure 14.6(a), domain D|
is the owner of F, and thus can add and delete any valid right in column F,.
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Figure 14.6 Access matrix with owner rights.

Similarly, domain D2 is the owner of F2 and F3 and thus can add and remove
any valid right within these two columns. Thus, the access matrix of Figure
14.6(a) can be modified to the access matrix shown in Figure 14.6(b).

The copy and owner rights allow a process to change the entries in a column.
A mechanism is also needed to change the entries in a row. The control right
is applicable only to domain objects. If access(/,/) includes the control right,
then a process executing in domain D. can remove any access right from
row /'. For example, suppose that, in Figure 14.4, we include the control right in
access(D2, D4). Then, a process executing in domain DT could modify domain
D4, as shown in Figure 14.7.

The copy and owner rights provide us with a mechanism to limit the
propagation of access rights. However, they do not give us the appropriate tools
for preventing the propagation (or disclosure) of information. The problem of
guaranteeing that no information initially held in an object can migrate outside
of its execution environment is called the confinement problem. This problem
is in general unsolvable (see Bibliographical Notes for references).

These operations on the domains and the access matrix are not in them-
selves important, but they illustrate the ability of the access-matrix model to
allow the implementation and control of dynamic protection requirements.
New objects and new domains can be created dynamically and included in the
access-matrix model. However, we have shown only that the basic mechanism
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Figure 14.7 Modified access matrix of Figure 14.4.

is here; system designers and users must make the policy decisions concerning
which domains are to have access to which objects in which ways.

14.5 Implementation of Access Matrix

How can the access matrix be implemented effectively? In general, the matrix
will be sparse; that is, most of the entries will be empty. Although data-
structure techniques are available for representing sparse matrices, they are
not particularly useful for this application, because of the way in which
the protection facility is used. Here, we first describe several methods of
implementing the access matrix and then compare the methods.

14.5.1 Global Table

The simplest implementation of the access matrix is a global table consisting
of a set of ordered triples <domain, object, rights-set>. Whenever an operation
M is executed on an object O, within domain D-,, the global table is searched
for a triple <D,, O;, Rk>, with M e R/:. If this triple is found, the operation is
allowed to continue; otherwise, an exception (or error) condition is raised.

This implementation suffers from several drawbacks. The table is usually
large and thus cannot be kept in main memory, so additional I/O is needed.
Virtual memory techniques are often used for managing this table. In addition,
it is difficult to take advantage of special groupings of objects or domains. For
example, if everyone can read a particular object, it must have a separate entry
in every domain.

14.5.2 Access Lists for Objects

Each column in the access matrix can be implemented as an access list for
one object, as described in Section 10.6.2. Obviously, the empty entries can be
discarded. The resulting list for each object consists of ordered pairs <rfomnin,
rights-set>, which define all domains with a nonempty set of access rights for
that object.

This approach can be extended easily to define a list plus a default set of
access rights. When an operation M on an object 0/ is attempted in domain
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Dj, we search the access list for object O., looking for an entry <D,, R; > with
M e Kj. If the entry is found, we allow the operation; if it is not, we check the
default set. If M is in the default set, we allow the access. Otherwise, access is
denied, and an exception condition occurs. For efficiency, we may check the
default set first and then search the access list.

14.5.3 Capability Lists for Domains

Rather than associating the columns of the access matrix with the objects as
access lists, we can associate each row with its domain. A capability list for
a domain is a list of objects together with the operations allowed on those
objects. An object is often represented by its physical, name or address, called
a capability. To execute operation M on object 0,, the process executes the
operation M, specifying the capability (or pointer) for object O/ as a parameter.
Simple possession of the capability means that access is allowed.

The capability list is associated with a domain, but it is never directly
accessible to a process executing in that domain. Rather, the capability list
is itself a protected object, maintained by the operating system and accessed
by the user only indirectly. Capability-based protection relies on the fact that
the capabilities are never allowed to migrate into any address space directly
accessible by a user process (where they could be modified). If all capabilities
are secure, the object they protect is also secure against unauthorized access.

Capabilities were originally proposed as a kind of secure pointer, to
meet the need for resource protection that was foreseen as multiprogrammed
computer systems came of age. The idea of an inherently protected pointer
provides a foundation for protection that canbe extended up to the applications
level.

To provide inherent protection, we must distinguish capabilities from other
kinds of objects and they must be interpreted by an abstract machine on which
higher-level programs run. Capabilities are usually distinguished from other
data in one of two ways:

9 Each object has a tag to denote its type either as a capability or as
accessible data. The tags themselves must not be directly accessible by
an application program. Hardware or firmware support may be used to
enforce this restriction. Although only 1 bit is necessary to distinguish
between capabilities and other objects, more bits are often used. This
extension allows all objects to be tagged with their types by the hardware.
Thus, the hardware can distinguish integers, floating-point numbers,
pointers, Booleans, characters, instructions, capabilities, and uninitialized
values by their tags.

• Alternatively, the address space associated with a program can be split into
two parts. One part is accessible to the program and contains the program's
normal data and instructions. The other part, containing the capability list,
is accessible only by the operating system. A segmented memory space
(Section 8.6) is useful to support this approach.

Several capability-based protection systems have been developed; we describe
them briefly in Section 14.8. The Mach operating system also uses a version of
capability-based protection; it is described in Appendix B.
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14.5.4 A Lock-Key Mechanism

The lock-key scheme is a compromise between access lists and capability
lists. Each object has a list of unique bit patterns, called locks. Similarly, each
domain has a list of unique bit patterns, called keys. A process executing in a
domain can access an object only if that domain has a key that matches one of
the locks of the object.

As with capability lists, the list of keys for a domain must be managed
by the operating system on behalf of the domain. Users are not allowed to
examine or modify the list of keys (or locks) directly.

14.5.5 Comparison

We now compare the various techniques for implementing an access matrix.
Using a global table is simple; however, the table can be quite large and often
cannot take advantage of special groupings of objects or domains. Access lists
correspond directly to the needs of users. When a user creates an object, he
can specify which domains can access the object, as well as the operations
allowed. However, because access-rights information for a particular domain
is not localized, determining the set of access rights for each domain is difficult.
In addition, every access to the object must be checked, requiring a search of
the access list. In a large system with long access lists, this search can be time
consuming.

Capability lists do not correspond directly to the needs of users; they
are useful, however, for localizing information for a given process. The
process attempting access must present a capability for that access. Then, the
protection system needs only to verify that the capability is valid. Revocation
of capabilities, however, may be inefficient (Section 14.7).

The lock-key mechanism, as mentioned, is a compromise between access
lists and capability lists. The mechanism can be both effective and flexible,
depending on the length of the keys. The keys can be passed freely from
domain to domain. In addition, access privileges can be effectively revoked by
the simple technique of changing some of the locks associated with the object
(Section 14.7).

Most systems use a combination of access lists and capabilities. When a
process first tries to access an object, the access list is searched. If access is
denied, an exception condition occurs. Otherwise, a capability is created and
attached to the process. Additional references use the capability to demonstrate
swiftly that access is allowed. After the last access, the capability is destroyed.
This strategy is used in the M.ULTICS system and in the CAL system.

As an example of how such a strategy works, consider a file system in
which each file has an associated access list. When a process opens a file, the
directory structure is searched to find the file, access permission is checked, and
buffers are allocated. All this information is recorded in a new entry in a file
table associated with, the process. The operation returns an index into this table
for the newly opened file. All operations on the file are made by specification
of the index into the file table. The entry in the file table then points to the file
and its buffers. When the file is closed, the file-table entry is deleted. Since the
file table is maintained by the operating system, the user cannot accidentally
corrupt it. Thus, the user can access only those files that have been opened.
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Since access is checked when the file is opened, protection is ensured^ This
strategy is used in the UNIX system.

The right to access must still be checked on each access, and the file-table
entry has a capability only for the allowed operations. If a file is opened for
reading, then a capability for read access is placed in the file-table entry. If
an attempt is made to write onto the file, the system identifies this protection
violation by comparing the requested operation with the capability in the
file-table entrv.

14.6 Access

In Section 10.6.2, we described how access controls can be used on files within a
file system. Each file and directory are assigned an owner, a group, or possibly
a list of users, and for each of those entities, access-control information is
assigned. A similar function can be added to other aspects of a computer
system. A good example of this is found in Solaris 10.

Solaris 10 advances the protection available in the Sun Microsystems
operating system by explicitly adding the principle of least privilege via
role-based access control (RBAC). This facility revolves around privileges.
A privilege is the right to execute a system call or to use an option within
that system call (such as opening a file with write access). Privileges can be
assigned to processes, limiting them to exactly the access they need to perform
their work. Privileges and programs can also be assigned to roles. Users are
assigned roles or can take roles based on passwords to the roles. In this way, a
user can take a role that enables a privilege, allowing the user to run a program
to accomplish a specific task, as depicted in Figure 14.8. This implementation
of privileges decreases the security risk associated with superusers and setuid
programs.

executes with role 1 privileges

Figure 14.8 Rote-based access control in Solaris 10.
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Notice that this facility is similar to the access matrix described in Section
14.4. This relationship will be further explored in the exercises at the end of the
chapter.

14.7 Revocation of Access Rights

In a dynamic protection system, we may sometimes need to revoke access
rights to objects shared by different users. Various questions about revocation
may arise:

• Immediate versus delayed. Does revocation occur immediately/ or is it
delayed? If revocation is delayed, can we find out when it will take place?

• Selective versus general. When an access right to an object is revoked,
does it affect all the users who have an access right to that object, or can
we specify a select group of users whose access rights should be revoked?

• Partial versus total. Can a subset of the rights associated with an object be
revoked, or must we revoke all access rights for this object?

• Temporary versus permanent. Can access be revoked permanently (that
is, the revoked access right will never again be available), or can access be
revoked and later be obtained again?

With an access-list scheme, revocation is easy. The access list is searched for
any access rights to be revoked, and they are deleted from the list. Revocation
is immediate and can be general or selective, total or partial, and permanent
or temporary.

Capabilities, however, present a much more difficult revocation problem.
Since the capabilities are distributed throughout the system, we must find them
before we can revoke them. Schemes that implement revocation for capabilities
include the following:

• Reacquisition. Periodically, capabilities are deleted from each domain. If
a process wants to use a capability, it may find that that capability has been
deleted. The process may then try to reacquire the capability. If access has
been revoked, the process will not be able to reacquire the capability.

• Back-pointers. A list of pointers is maintained with each object, pointing
to all capabilities associated with that object. When revocation is required,
we can follow these pointers, changing the capabilities as necessary. This
scheme was adopted in the MULTICS system. It is quite general, but its
implementation is costly.

• Indirection. The capabilities point indirectly, not directly, to the objects.
Each capability points to a unique entry in a global table, which in turn
points to the object. We implement revocation by searching the global table
for the desired entry and deleting it. Then, when an access is attempted,
the capability is found to point to an illegal table entry. Table entries can
be reused for other capabilities without difficulty, since both the capability
and the table entry contain the unique name of the object. The object for a
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capability and its table entry must match. This scheme was adopted in the
CAL system. It does not allow selective revocation.

Keys. A key is a unique bit pattern that can be associated with a capability.
Tliis key is defined when the capability is created, and it can be neither
modified nor inspected by the process owning the capability. A master
key is associated with each object; it can be defined or replaced with
the set-key operation. When a capability is created, the current value
of the master key is associated with the capability. When the capability
is exercised, its key is compared with the master key. If the keys match,
the operation is allowed to continue; otherwise, an exception condition
is raised. Revocation replaces the master key with a new value via the
set-key operation, invalidating all previous capabilities for this object.

This scheme does not allowr selective revocation, since only one master
key is associated with each object. If we associate a list of keys with each
object, then selective revocation can be implemented. Finally, we can group
all keys into one global table of keys. A capability is valid only if its
key matches some key in the global table. We implement revocation by
removing the matching key from the table. With this scheme, a key can be
associated with several objects, and several keys can be associated with
each object, providing maximum flexibility.

In key-based schemes, the operations of defining keys, inserting them
into lists, and deleting them from lists should not be available to all users.
In particular, it would be reasonable to allow only the owner of an object
to set the keys for that object. This choice, however, is a policy decision
that the protection system can implement but should not define.

14.8 Capability-Based Systems

In this section, we survey two capability-based protection systems. These
systems vary in their complexity and in the types of policies that can be
implemented on them. Neither system is widely used, but they are interesting
proving grounds for protection theories.

14.8.1 An Example: Hydra

Hydra is a capability-based protection system that provides considerable
flexibility. A fixed set of possible access rights is known to and interpreted
by the system. These rights include such basic forms of access as the right to
read, write, or execute a memory segment. In addition, a user (of the protection
system) can declare other rights. The interpretation of user-defined rights
is performed solely by the user's program, but the system provides access
protection for the use of these rights, as well as for the use of system-defined
rights. These facilities constitute a significant development in protection
technology.

Operations on objects are defined procedurally. The procedures that
implement such operations are themselves a form of object, and they are
accessed indirectly by capabilities. The names of user-defined procedures must
be identified to the protection system if it is to deal with objects of the user-
defined type. When the definition of an object is made known to Hydra, the
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names of operations on the type become auxiliary rights. Auxiliary rights
can be described in a capability for an instance of the type. For a process to
perform an operation on a typed object, the capability it holds for that object
must contain the name of the operation being invoked among its auxiliary
rights. This restriction enables discrimination of access rights to be made on an
instance-by-instance and process-by-process basis.

Hydra also provides rights amplification. This scheme allows a procedure
to be certified as trustworthy to act on a formal parameter of a specified type
on behalf of any process that holds a right to execute the procedure. The rights
held by a trustworthy procedure are independent of, and may exceed, the
rights held by the calling process. However, such a procedure must not be
regarded as universally trustworthy (the procedure is not allowed to act on
other types, for instance), and the trustworthiness must not be extended to any
other procedures or program segments that might be executed by a process.

Amplification allows implementation procedures access to the represen-
tation variables of an abstract data type. If a process holds a capability to a
typed object A, for instance, this capability may include an auxiliary right to
invoke some operation P but would not include any of the so-called kernel
rights, such as read, write, or execute, on the segment that represents A. Such
a capability gives a process a means of indirect access (through the operation
P) to the representation of A, but only for specific purposes.

When a process invokes the operation P on an object A, however, the
capability for access to A may be amplified as control passes to the code body
of P. This amplification may be necessary to allow P the right to access the
storage segment representing A so as to implement the operation that P defines
on the abstract data type. The code body of P may be allowed to read or to
write to the segment of A directly, even though the calling process cannot.
On return from P, the capability for A is restored to its original, unamplified
state. This case is a typical one in which the rights held by a process for access
to a protected segment must change dynamically, depending on the task to
be performed. The dynamic adjustment of rights is performed to guarantee
consistency of a programmer-defined abstraction. Amplification of rights can
be stated explicitly in the declaration of an abstract type to the Hydra operating
system.

When a user passes an object as an argument to a procedure, we may need
to ensure that the procedure cannot modify the abject. We can implement this
restriction readily by passing an access right that does not have the modification
(write) right. However, if amplification may occur, the right to modify may
be reinstated. Thus, the user-protection requirement can be circumvented.
In general, of course, a user may trust that a procedure performs its task
correctly. This assumption is not always correct, however, because of hardware
or software errors. Hydra solves this problem by restricting amplifications.

The procedure-call mechanism of Hydra was designed as a direct solution
to the problem of mutually suspicious subsystems. This problem is defined as
follows. Suppose that a program is provided that can be invoked as a service
by a number of different users (for example, a sort routine, a compiler, a
game). When users invoke this service program, they take the risk that the
program will malfunction and will either damage the given data or retain
some access right to the data to be used (without authority) later. Similarly,
the service program may have some private files (for accounting purposes,
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for example) that should not be accessed directly by the calling user program.
Hydra provides mechanisms for directly dealing with this problem.

A Hydra subsystem is built on top of its protection kernel and may require
protection of its own components. A subsystem interacts with the kernel
through calls on a set of kernel-defined primitives that define access rights to
resources defined by the subsystem. The subsystem designer can define policies
for use of these resources by user processes, but the policies are enforceable by
use of the standard access protection afforded by the capability system.

A programmer can make direct use of the protection system after acquaint-
ing herself with its features in the appropriate reference manual. Hydra
provides a large library of system-defined procedures that can be called by
user programs. A user of the Hydra system would explicitly incorporate calls
on these system procedures into the code of her programs or would use a
program translator that had been interfaced to Hydra.

14.8.2 An Example: Cambridge CAP System

A different approach to capability-based protection has been taken in the
design of the Cambridge CAP system. CAP's capability system is simpler and
superficially less powerful than that of Hydra. However, closer examination
shows that it, too, can be used to provide secure protection of user-defined
objects. CAP has two kinds of capabilities. The ordinary kind is called a
data capability. It can be used to provide access to objects, but the only
rights provided are the standard read, write, and execute of the individual
storage segments associated with the object. Data capabilities are interpreted
by microcode in the CAP machine.

The second kind of capability is the so-called software capability, which
is protected, but not interpreted, by the CAP microcode. It is interpreted by
a protected (that is, a privileged) procedure, which may be written by an
application programmer as part of a subsystem. A particular kind of rights
amplification is associated with a protected procedure. When executing the
code body of such a procedure, a process temporarily acquires the right to
read or write the contents of a software capability itself. This specific kind
of rights amplification corresponds to an implementation of the seal and
unseal primitives on capabilities. Of course, this privilege is still subject to type
verification to ensure that only software capabilities for a specified abstract
type are passed to any such procedure. Universal trust is not placed in any
code other than the CAP machine's microcode. (See Bibliographical Notes for
references.)

The interpretation of a software capability is left completely to the sub-
system., through the protected procedures it contains. This scheme allows a
variety of protection policies to be implemented. Although a programmer can
define her own protected procedures (any of which might be incorrect), the
security of the overall system cannot be compromised. The basic protection
system will not allow an unverified, user-defined, protected procedure access
to any storage segments (or capabilities) that do not belong to the protection
environment in which it resides. The most serious consequence of an insecure
protected procedure is a protection breakdown of the subsystem for which that
procedure has responsibility.
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The designers of the CAP system, have noted that the use of software
capabilities allowed them to realize considerable economies in formulating
and implementing protection policies commensurate with the requirements of
abstract resources. However, a subsystem designer who wants to make use of
this facility cannot simply study a reference manual, as is the case with Hydra.
Instead, she must learn the principles and techniques of protection, since the
system provides her with no library of procedures.

14.9 Language-Based Protection

To the degree that protection is provided in existing computer systems, it is
usually achieved through an operating-system kernel, which acts as a security
agent to inspect and validate each attempt to access a protected resource.
Since comprehensive access validation is potentially a source of considerable
overhead, either we must give it hardware support to reduce the cost of
each validation or we must accept that the system designer may compromise
the goals of protection. Satisfying all these goals is difficult if the flexibility
to implement protection policies is restricted by the support mechanisms
provided or if protection environments are made larger than necessary to
secure greater operational efficiency.

As operating systems have become more complex, and particularly as they
have attempted to provide higher-level user interfaces, the goals of protection
have become much more refined. The designers of protection systems have
drawn heavily on ideas that originated in programming languages and
especially on the concepts of abstract data types and objects. Protection systems
are now concerned not only with the identity of a resource to which access is
attempted but also with the functional nature of that access, in the newest
protection systems, concern for the function to be invoked extends beyond
a set of system-defined functions, such as standard file-access methods, to
include functions that may be user-defined as well.

Policies for resource use may also vary, depending on the application,
and they may be subject to change over time. For these reasons, protection
can no longer be considered a matter of concern to only the designer of an
operating system. It should also be available as a tool for use by the application
designer, so that resources of an applications subsystem can be guarded against
tampering or the influence of an error.

14.9.1 Compiler-Based Enforcement

At this point, programming languages enter the picture. Specifying the desired
control of access to a shared resource in a system is making a declarative
statement about the resource. This kind of statement can be integrated into a
language by an extension of its typing facility. When protection is declared
along with data typing, the designer of each subsystem can specify its
requirements for protection, as well as its need for use of other resources in a
system. Such a specification should be given directly as a program is composed,
and in the language in which the program itself is stated.. This approach has
several significant advantages:
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1. Protection needs are simply declared, rather than programmed as a
sequence of calls on procedures of an, operating system.

2. Protection requirements can be stated independently of the facilities
provided by a particular operating system.

3. The means for enforcement need not be provided by the designer of a
subsystem.

4. A declarative notation is natural because access privileges are closely
related to the linguistic concept of data type.

A variety of techniques can be provided by a programming-language
implementation to enforce protection, but any of these must depend on some
degree of support from an underlying machine and its operating system. For
example, suppose a language is used to generate code to run on the Cambridge
CAP system. On this system, every storage reference made on the underlying
hardware occurs indirectly through a capability. This restriction prevents any
process from accessing a resource outside of its protection environment at
any time. However, a program may impose arbitrary restrictions on how
a resource can be used during execution of a particular code segment.
We can implement such restrictions most readily by using the software
capabilities provided by CAP. A language implementation might provide
standard protected procedures to interpret software capabilities that would
realize the protection policies that could be specified in the language. This
scheme puts policy specification at the disposal of the programmers, while
freeing them from implementing its enforcement.

Even if a system does not provide a protection kernel as powerful as those
of Hydra or CAP, mechanisms are still available for implementing protection
specifications given in a programming language. The principal distinction is
that the security of this protection will not be as great as that supported by
a protection kernel, because the mechanism must rely on more assumptions
about the operational state of the system. A compiler can separate references
for which it can certify that no protection violation could occur from those
for which a violation might be possible, and it can treat them differently. The
security provided by this form of protection rests on the assumption that the
code generated by the compiler will not be modified prior to or during its
execution.

What, then, are the relative merits of-enforcement based solely on a kernel,
as opposed to enforcement provided largely by a compiler?

• Security. Enforcement by a kernel provides a greater degree of security
of the protection system itself than does the generation of protection-
checking code by a compiler. In a compiler-supported scheme, security
rests on correctness of the translator, on some underlying mechanism of
storage management that protects the segments from which compiled
code is executed, and, ultimately, on'the security of files from which a
program is loaded. Some of these considerations also apply to a software-
supported protection kernel, but to a lesser degree, since the kernel may
reside in fixed physical storage segments and may be loaded from only
a designated file. With a tagged-capability system, in which all address
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computation is performed either by hardware or by a fixed microprogram,
even greater security is possible. Hardware-supported protection is also
relatively immune to protection violations that might occur as a result of
either hardware or system software malfunction.

• Flexibility. There are limits to the flexibility of a protection kernel in
implementing a user-defined policy, although it may supply adequate
facilities for the system to provide enforcement of its own policies.
With a programming language, protection policy can be declared and
enforcement provided as needed by an implementation. If a language
does not provide sufficient flexibility, it can be extended or replaced with
less disturbance of a system in service than would be caused by the
modification of an operating-system kernel.

• Efficiency. The greatest efficiency is obtained wrhen enforcement of protec-
tion is supported directly by hardware (or microcode). Insofar as software
support is required, language-based enforcement has the advantage that
static access enforcement can be verified off-line at compile time. Also,
since an intelligent compiler can tailor the enforcement mechanism to
meet the specified need, the fixed overhead of kernel calls can often be
avoided.

In summary, the specification of protection in a programming language
allows the high-level description of policies for the allocation and use of
resources. A language implementation can provide software for protection
enforcement when automatic hardware-supported checking is unavailable. In
addition, it can interpret protection specifications to generate calls on whatever
protection system is provided by the hardware and the operating system.

One way of making protection available to the application program is
through the use of a software capability that could be used as an object
of computation. Inherent in this concept is the idea that certain program
components might have the privilege of creating or examining these software
capabilities. A capability-creating program would be able to execute a primitive
operation that would seal a data structure, rendering the latter's contents
inaccessible to any program components that did not hold either the seal or
the unseal privilege. They might copy the data structure or pass its address
to other program components, but they could not gain access to its contents.
The reason for introducing such software capabilities is to bring a protection
mechanism into the programming language. The only problem with the
concept as proposed is that the use of the seal and unseal operations takes a
procedural approach to specifying protection. A nonprocedural or declarative
notation seems a preferable way to make protection available to the application
programmer.

What is needed is a safe, dynamic access-control mechanism for distribut-
ing capabilities to system resources among user processes. To contribute to the
overall reliability of a system, the access-control mechanism should be safe
to use. To be useful in practice, it should also be reasonably efficient. This
requirement has led to the development of a number of language constructs
that allow the programmer to declare various restrictions on the use of a specific
managed resource. (See the Bibliographical Notes for appropriate references.)
These constructs provide mechanisms for three functions:
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1. Distributing capabilities safely and efficiently among customer processes:
In particular, mechanisms ensure that a user process will use the managed
resource only if it was granted a capability to that resource,

2. Specifying the type of operations that a particular process may invoke on
an allocated resource (for example, a reader of a file should be allowed
only to read the file, whereas a writer should be able both to read and
to write): It should not be necessary to grant the same set of rights to
every user process, and it should be impossible for a process to enlarge
its set of access rights, except with the authorization of the access-control
mechanism.

3. Specifying the order in which a particular process may invoke the various
operations of a resource (for example, a file must be opened before it can
be read): It should be possible to give two processes different restrictions
on the order in which they can invoke the operations of the allocated
resource.

The incorporation of protection concepts into programming languages, as
a practical tool for system design, is in its infancy. Protection will likely become
a matter of greater concern to the designers of new systems with distributed
architectures and increasingly stringent requirements on data security. Then
the importance of suitable language notations in which to express protection
requirements will be recognized more widely.

14.9.2 Protection in Java

Because Java was designed to run in a distributed environment, the Java virtual
machine—or JVM—has many built-in protecion mechanisms. Java programs
are composed of classes, each of which is a collection of data fields and
functions (called methods) that operate on those fields. The JVM loads a class
in response to a request to create instances (or objects) of that class. One of the
most novel and useful features of Java is its support for dynamically loading
untrusted classes over a network and for executing mutually distrusting classes
within the same ]"VM.

Because of these capabilities of Java, protection is a paramount concern.
Classes running in the same JVM may be from different sources and may not
be equally trusted. As a result, enforcing protection at the granularity of the
JVM process is insufficient. Intuitively, whether a request to open a file should
be allowed will generally depend on which class has requested the open. The
operating system lacks this knowledge.

Thus, such protection decisions are handled within the JVM. When the
JVM loads a class, it assigns the class to a protection domain that gives
the permissions of that class. The protection domain to which the class is
assigned depends on the URL from which the class was loaded and any digital
signatures on the class file. (Digital signatures are covered in Section 15.4.1.3.)
A configurable policy file determines the permissions granted to the domain
(and its classes). For example, classes loaded from a trusted server might be
placed in a protection domain that allows them to access files in the user's
home directory, whereas classes loaded from an untrusted server might have
no file access permissions at all.
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It can be complicated for the JVM to determine what class is responsible for a
request to access a protected resource. Accesses are often performed indirectly,
through system libraries or other classes. For example, consider a class that
is not allowed to open network connections. It could call a system library to
request the load of the contents of a URL. The JVM must decide whether or not
to open a network connection for this request. But which class should be used
to determine if the connection should be allowed, the application or the system
library?

The philosophy adopted in Java is to require the library class to explicitly
permit the network connection to load the requested URL. More generally, in
order to access a protected resource, some method in the calling sequence that
resulted in the request must explicitly assert the privilege to access the resource.
By doing so, this method takes responsibility for the request; presumably, it will
also perform whatever checks are necessary to ensure the safety of the request.
Of course, not every method is allowed to assert a privilege; a method can
assert a privilege only if its class is in a protection domain that is itself allowed
to exercise the privilege.

This implementation approach is called stack inspection. Every thread
in the JVM has an associated stack of its ongoing method invocations. When
its caller may not be trusted, a method executes an access request within a
doPrivileged block to perform the access to a protected resource directly or
indirectly. doPrivi leged() is a static method in the AccessController class
that is passed a class with a run() method to invoke. When the doPrivileged
block is entered, the stack frame for this method is annotated to indicate this
fact. Then, the contents of the block are executed. When an access to a protected
resource is subsequently requested, either by this method or a method it
calls, a call to checkPermissionsO is used to invoke stack inspection to
determine if the request should be allowed. The inspection examines stack
frames on the calling thread's stack, starting from the most recently added
frame and working toward the oldest. If a stack frame is first found that has the
doPrivileged () annotation, then checkPermissionsO returns immediately
and silently, allowing the access. If a stack frame is first found for which
access is disallowed based on the protection domain of the method's class,
then checkPermissionsO throws an AccessControlException. If the stack
inspection exhausts the stack without finding either type of frame, then
whether access is allowed depends on the implementation (for example, some
implementations of the JVM may allow access, other implementations may
disallow it).

Stack inspection is illustrated in Figure 14.9. Here, the gui() method of
a class in the tmtrusted applet protection domain performs two operations,
first a get O and then an open(). The former is an invocation of the
get ( ) method of a class in the URL loader protection domain, which is
permitted to openO sessions to sites in the lucent . com domain, in particular
a proxy server proxy.lucent.com for retrieving URLs. For this reason, the
untrusted applet's ge t ( ) invocation will succeed: the checkPermissionsO
call in the networking library encounters the stack frame of the get ( )
method, which performed its openO in a doPrivileged block. However,
the untrusted applet's openO invocation will result in an exception, because
the checkPermissionsO call finds no doPrivileged annotation before
encountering the stack frame of the gui 0 method.
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Figure 14.9 Stack inspection.

Of course, for stack inspection to work, a program must be unable to
modify the annotations on its own stack frame or to do other manipulations
of stack inspection. This is one of the most important differences between
Java and many other languages (including C++). A Java program cannot
directly access memory. Rather, it can manipulate only an object for which
it has a reference. References cannot be forged, and the manipulations are
made only through well-defined interfaces. Compliance is enforced through a
sophisticated collection of load-time and run-time checks. As a result, an object
cannot manipulate its run-time stack, because it cannot get a reference to the
stack or other components of the protection system.

More generally, Java's load-time and run-time checks enforce type safety of
Java classes. Type safety ensures that classes cannot treat integers as pointers,
write past the end of an array, or otherwise access memory in arbitrary ways.
Rather, a program can access an object only via the methods defined on that
object by its class. This is the foundation of Java protection, since it enables a
class to effectively encapsulate and protect its data and methods from other
classes loaded in the same JVM. For example, a variable can be defined as
pr iva te so that only the class that contains it can access it or protec ted so
that it can be accessed only by the class that contains it, subclasses of that class,
or classes in the same package. Type safety' ensures that these restrictions can
be enforced.

14,10 Summary

Computer systems contain many objects, and they need to be protected from
misuse. Objects may be hardware (such as memory, CPU time, and I/O devices)
or software (such as files, programs, and semaphores). An access right is
permission to perform an operation on an object. A domain is a set of access
rights. Processes execute in domains and may use any of the access rights in
the domain, to access and manipulate objects. During its lifetime, a process may
be either bound to a protection domain or allowed to switch from one domain
to another.
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The access matrix is a general model of protection that provides a
mechanism for protection without imposing a particular protection policy on
the system or its users. The separation of policy and mechanism, is an important
design property.

The access matrix is sparse. It is normally implemented either as access lists
associated with each object or as capability lists associated with each domain.
We can include dynamic protection in the access-matrix model by considering
domains and the access matrix itself as objects. Revocation of access rights in a
dynamic protection model is typically easier to implement with an access-list
scheme than with a capability list.

Real systems are much more limited than the general model and tend to
provide protection only for files. UNIX is representative, providing read, write,
and execution protection separately for the owner, group, and general public
for each file. MULTJCS uses a ring structure in addition to file access. Hydra, the
Cambridge CAP system, and Mach are capability systems that extend protection
to user-defined software objects. Solaris 10 implements the principle of least
privilege via role-based access control, a form of the access matrix.

Language-based protection provides finer-grained arbitration of requests
and privileges than the operating system is able to provide. For example, a
single Java JVM can run several threads, each in a different protection class. It
enforces the resource requests tlirough sophisticated stack inspection and via
the type safety of the language.

Exercises

14.1 Consider the ring protection scheme in MULTICS. If we were to imple-
ment the system calls of a typical operating system and store them in a
segment associated with ring 0, what should be the values stored in the
ring field of the segment descriptor? What happens during a system
call when a process executing in a higher-numbered ring invokes a
procedure in ring 0?

14.2 The access-control matrix could be used to determine whether a process
can switch from, say, domain A to domain B and enjoy the access
privileges of domain B. Is this approach equivalent to including the
access privileges of domain B in those of domain A?

14.3 Consider a computer system in which ''computer games" can be played
by students only between 10 P.M. and 6 A.M., by faculty members
between 5 P.M. and 8 A.M., and by the computer center staff at all
times. Suggest a scheme for implementing this policy efficiently.

14.4 What hardware features are needed in a computer system for efficient
capability manipulation? Can these be used for memory protection?

14.5 Discuss the strengths and weaknesses of implementing an access matrix
using access lists that are associated with objects.

14.6 Discuss the strengths and weaknesses of implementing an access matrix
using capabilities that are associated with domains.
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14.7 Explain why a capability-based system such as Hydra provides greater
flexibility than the ring protection scheme in enforcing protection
policies.

14.8 Discuss the need for rights amplification in Hydra. How does this
practice compare with the cross-ring calls in a ring protection scheme?

14.9 What is the need-to-know principle? Why is it important for a protec-
tion system to adhere to this principle?

14.10 Discuss which of the following systems allow module designers to
enforce the need-to-know principle.

a. The MULTICS ring protection scheme

b. Hydra's capabilities

c. jVM's stack-inspection scheme

14.11 Describe how the Java protection model would be sacrificed if a Java
program were allowed to directly alter the annotations of its stack
frame.

14.12 How are the access-matrix facility and the role-based access-control
facility similar? How do they differ?

14.13 How does the principle of least privilege aid in the creation of protection
systems?

14.14 How can systems that implement the principle of least privilege still
have protection failures that lead to security violations?
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was advocated by the Exokernel Project (Ganger et al. [2002], Kaashoek
et al. [1997]). Extensibility of system code through language-based protection
mechanisms was discussed in Bershad et al. [1995b]. Other techniques for
enforcing protection include sandboxing (Goldberg et al. [1996]) and software
fault isolation (Wahbe et al. [1993b]). The issues of lowering the overhead
associated with protection costs and enabling user-level access to networking
devices were discussed in McCanne and Jacobson [1993] and Basu et al. [1995].

More detailed analyses of stack inspection, including comparisons with
other approaches to Java security, can be found in Wallach et al. [1997] and
Gong etal. [1997].



Security

Protection, as we discussed in Chapter 14, is strictly an internal problem: How
do we provide controlled access to programs and data stored in a computer
system? Security, on the other hand, requires not only an adequate protection
system but also consideration of the external environment within which the
system operates. A protection system is ineffective if user authentication is
compromised or a program is run by an unauthorized user.

Computer resources must be guarded against unauthorized access, mali-
cious destruction or alteration, and accidental introduction of inconsistency.
These resources include information stored in the system (both data and code),
as well as the CPU, memory, disks, tapes and networking that are the com-
puter. In this chapter, we start by examining ways in which resources may be
accidentally or purposefully misused. We then explore a key security enabler
—cryptography- Finally, we look at mechanisms to guard against or detect
attacks.

CHAPTER OBJECTIVES

• To discuss security threats and attacks.

• To explain the fundamentals of encryption, authentication, and hashing.

• To examine the uses of cryptography in computing.

• To describe the various countermeasures to security attacks.

15.1 The Security Problem

In many applications, ensuring the security of the computer system is worth
considerable effort. Large commercial systems containing payroll or other
financial data are inviting targets to thieves. Systems that contain data pertain-
ing to corporate operations may be of interest to unscrupulous competitors.
Furthermore, loss of such data, whether by accident or fraud, can seriously
impair the ability of the corporation to function.

In Chapter 14, we discussed mechanisms that the operating system can
provide (with appropriate aid from the hardware) that allow users to protect
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their resources, including programs and data. These mechanisms work well
only as long as the users conform to the intended use of and access to these
resources. We say that a system is secure if its resources are used and accessed
as intended under all circumstances. Unfortunately, total security cannot be
achieved. Nonetheless, we must have mechanisms to make security breaches
a rare occurrence, rather than the norm.

Security violations (or misuse) of the system can be categorized as inten-
tional (malicious) or accidental. It is easier to protect against accidental misuse
than against malicious misuse. For the most part, protection mechanisms are
the core of protection from accidents. The following list includes forms of acci-
dental and malicious security violations. We should note that in our discussion
of security, we vise the terms intruder and cracker for those attempting to breach
security. In addition, a threat is the potential for a security violation, stich as the
discovery of a vulnerability, whereas an attack is the attempt to break secvirity.

• Breach of confidentiality. This type of violation involves unauthorized
reading of data (or theft of information). Typically, a breach of confiden-
tiality is the goal of an intruder. Capturing secret data from a system or
a data stream, such as credit-card information or identity information for
identity theft, can result directly in money for the intruder.

• Breach of integrity. This violation involves unauthorized modification
of data. Such attacks can, for example, result in passing of liability to
an innocent party or modification of the source code of an important
commercial application.

• Breach of availability. This violation involves unauthorized destruction of
data. Some crackers would rather wreak havoc and gain status or bragging
rights than gain financially. Web-site defacement is a common example of
this type of security breach.

• Theft of service. This violation involves unauthorized use of resources.
For example, an intruder (or intrusion program) may install a daemon on
a system that acts as a file server.

• Denial of service. This violation involves preventing legitimate use of the
system. Denial-of-service, or DOS, attacks are sometimes accidental. The
original Internet worm turned into a DOS attack when a bug failed to delay
its rapid spread. We discuss DOS attacks further in Section 15.3.3.

Attackers use several standard methods in their attempts to breach
security. The most common is masquerading, in which one participant in
a communication pretends to be someone else (another host or another
person). By masquerading, attackers breach authentication, the correctness of
identification; they can then can gain access that they would not normally be
allowed or escalate their privileges—obtain privileges to which they would not
normally be entitled. Another common attack is to replay a captured exchange
of data. A replay attack consists of the malicious or fraudulent repeat of a
valid data transmission. Sometimes the replay comprises the entire attack—
for example, in a repeat of a request to transfer money. But frequently it is
done along with message modification, again to escalate privileges. Consider
the damage that could be done if a request for authentication had a legitimate
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user's information replaced with an unauthorized user's. Yet another kind of
attack is the man-in-the-middle attack, in which an attacker sits in the data
flow of a communication, masquerading as the sender to the receiver, and
vice versa. In a network communication, a man-in-the-middle attack may be
preceded by a session hijacking, in which an active communication session is
intercepted. Several attack methods are depicted in Figure 15.1.

As we have already suggested, absolute protection of the system from
malicious abuse is not possible, but the cost to the perpetrator can be made
sufficiently high to deter most intruders. In some cases, such as a denial-of-
service attack, it is preferable to prevent the attack but sufficient to detect the
attack so that countermeasures can be taken.

Normal

- communication •

sender receiver

attacker

Masquerading

sender .f.o'ii0^ receiver

attacker

Man-in-the-middle

attacker

Figure 15.1 Standard security attacks.
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To protect a system, we must take security measures at four levels: "

1. Physical. The site or sites containing the computer systems must be
physically secured against armed or surreptitious entry by intruders.
Both the machine rooms and the terminals or workstations that have
access to the machines must be secured.

2. Human. Authorizing users must be done carefully to assure that only
appropriate users have access to the system. Even authorized users,
however, may be "encouraged" to let others use their access (in exchange
for a bribe, for example). They may also be tricked into allowing
access via social engineering. One type of social-engineering attack
is phishing. Here, a legitimate-looking e-mail or web page misleads
a user into entering confidential information. Another technique is
dumpster diving, a general term for attempting to gather information in
order to gain unauthorized access to the computer (by looking through
trash, finding phone books, or finding notes containing passwords, for
example). These security problems are management and personnel issues,
not problems pertaining to operating systems.

3. Operating system. The system must protect itself from accidental or
purposeful security breaches. A runaway process could constitute an
accidental denial-of-service attack. A query to a service could reveal pass-
words. A stack overflow could allow the launching of an unauthorized
process. The list of possible breaches is almost endless.

4. Network. Much computer data in modern systems travels over private
leased lines, shared lines like the Internet, wireless connections, or dial-up
lines. Intercepting these data could be just as harmful as breaking into a
computer; and interruption of communications could constitute a remote
denial-of-service attack, diminishing users' use of and trust in the system.

Security at the first two levels must be maintained if operating-system
security is to be ensured. A weakness at a high level of security (physical or
human) allows circumvention of strict low-level (operating-system) security
measures. Thus, the old adage that a chain is as weak as its weakest link is
especially true of system security. All of these aspects must be addressed for
security to be maintained.

Furthermore, the system must provide protection (Chapter 14) to allow the
implementation of security features. Without the ability to authorize users
and processes, to control their access, and to log their activities, it would
be impossible for an operating system to implement security measures or
to run securely. Hardware protection features are needed to support an overall
protection scheme. For example, a system without memory protection cannot
be secure. New hardware features are allowing systems to be made more
secure, as we shall discuss.

Unfortunately, little in security is straightforward. As intruders exploit
security vulnerabilities, security countermeasures are created and deployed.
This causes intruders to become more sophisticated in their attacks. For
example, recent security incidents include the use of spyware to provide
a conduit for spam through innocent systems (we discuss this practice in
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Section 15.2). This cat-and-mouse game is likely to continue, with more security
tools needed to block the escalating intruder techniques and activities.

In the remainder of this chapter, we address security at the network and
operating-system levels. Security at the physical and human levels, although
important, is for the most part beyond the scope of this text. Security within the
operating system and between operating systems is implemented in several
ways, ranging from passwords for authentication through guarding against
viruses to detecting intrusions. We start with an exploration of security threats.

15.2 Program Threats

Processes, along with the kernel, are the only means of accomplishing work
on a computer. Therefore, writing a program that creates a breach of security,
or causing a normal process to change its behavior and create a breach, is a
common goal of crackers. In fact, even most nonprogram security events have
as their goal causing a program threat. For example, while it is useful to log in
to a system without authorization, it is quite a lot more useful to leave behind
a back-door daemon that provides information or allows easy access even if
the original exploit is blocked. In this section, we describe common methods
by which programs cause security breaches. Note that there is considerable
variation in the naming conventions of security holes and that we use the most
common or descriptive terms.

15.2.1 Trojan Horse

Many systems have mechanisms for allowing programs written by users to
be executed by other users. If these programs are executed in a domain that
provides the access rights of the executing user, the other users may misuse
these rights. A text-editor program, for example, may include code to search
the file to be edited for certain keywords. If any are found, the entire file
may be copied to a special area accessible to the creator of the text editor.
A code segment that misuses its environment is called a Trojan horse. Long
search paths, such as are common on UNIX systems, exacerbate the Trojan-
horse problem. The search path lists the set of directories to search when an
ambiguous program name is given. The path is searched for a file of that
name, and the file is executed. All the directories in such a search path must
be secure, or a Trojan horse could be slipped into the user's path and executed
accidentally.

For instance, consider the use of the "." character in a search path. The "."
tells the shell to include the current directory in the search. Thus, if a user has
"." in her search path, has set her current directory to a friend's directory, and
enters the name of a normal system command, the command may be executed
from the friend's directory instead. The program would run within the user's
domain, allowing the program to do anything that the user is allowed to do,
including deleting the user's files, for instance.

A variation of the Trojan horse is a program that emulates a login program.
An unsuspecting user starts to log in at a terminal and notices that he has
apparently mistyped his password. He tries again and is successful. What
has happened is that his authentication key and password have been stolen
by the login emulator, which was left running on the terminal by the thief.
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The emulator stored away the password, printed out a login error message,
and exited; the user was then provided with a genuine login prompt. This
type of attack can be defeated by having the operating system print a usage
message at the end of an interactive session or by a non-trappable key sequence,
such as the c o n t r o l - a l t - d e l e t e combination used by all modern Windows
operating systems.

Another variation on the Trojan horse is spyware. Spyware sometimes
accompanies a program that the user has chosen to install. Most frequently, it
comes along with freeware or shareware programs, but sometimes it is included
with commercial software. The goal of spyware is to download ads to display
on the user's system, create pop-up browser windows when certain sites are
visited, or capture information from the user's system and return it to a central
site. This latter mode is an example of a general category of attacks known as
covert channels, in which surreptitious communication occurs. As a current
example, the installation of an innocuous-seeming program on a Windows
system could result in the loading of a spyware daemon. The spyware could
contact a central site, be given a message and a list of recipient addresses,
and deliver the spam message to those users from the Windows machine. This
process continues until the user discovers the spyware. Frequently, the spyware
is not discovered. In 2004, it was estimated that 80 percent of spam was being
delivered by this method. This theft of service is not even considered a crime
in most countries!

Spyware is a micro example of a macro problem: violation of the principle
of least privilege. Under most circumstances, a user of an operating system
does not need to install network daemons. Such daemons are installed via
two mistakes. First, a user may run with more privileges than necessary (for
example, as the administrator), allowing programs that she runs to have more
access to the system than is necessary. This is a case of human error—a common
security weakness. Second, an operating system may allow by default more
privileges than a normal user needs. This is a case of poor operating-system
design decisions. An operating system (and, indeed, software in general)
should allow fine-grained control of access and security, but it must also be easy
to manage and understand. Inconvenient or inadequate security measures are
bound to be circumvented, causing an overall weakening of the security they
were designed to implement.

15.2.2 Trap Door

The designer of a program or system might leave a hole in the software that only
she is capable of using. This type of security breach (or trap door) was shown in
the movie War Games. For instance, the code might check for a specific user ID or
password, and it might circumvent normal security procedures. Programmers
have been arrested for embezzling from banks by including rounding errors
in their code and having the occasional half-cent credited to their accounts.
This account crediting can add up to a large amount of money, considering the
number of transactions that a large bank executes.

A clever trap door could be included in a compiler. The compiler could
generate standard object code as well as a trap door, regardless of the source
code being compiled. This activity is particularly nefarious, since a search of
the source code of the program will not reveal any problems. Only the source
code of the compiler would contain the information.
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Trap doors pose a difficult problem because, to detect them, we have to
analyze all the source code for all components of a system. Given that software
systems may consist of millions of lines of code, this analysis is not done
frequently, and frequently it is not done at all!

15.2.3 Logic Bomb

Consider a program that initiates a security incident only under certain
circumstances. It would be hard to detect because under normal operations,
there would be no security hole. However, when a predefined set of parameters
were met, the security hole would be created. This scenario is known as a logic
bomb. A programmer, for example, might write code to detect if she is still
employed; if that check failed, a daemon could be spawned to allow remote
access, or code could be launched to cause damage to the site.

15.2.4 Stack and Buffer Overflow

The stack- or buffer-overflow attack is the most common way for an attacker
outside the system, on a network or dial-up connection, to gain unauthorized
access to the target system. An authorized user of the system may also use this
exploit for privilege escalation.

Essentially, the attack exploits a bug in a program. The bug can be a simple
case of poor programming, in which the programmer neglected to code bounds
checking on an input field, hi this case, the attacker sends more data than the
program was expecting. Using trial and error, or by examining the source
code of the attacked program if it is available, the attacker determines the
vulnerability and writes a program to do the following:

1. Overflow an input field, command-line argument, or input buffer—for
example, on a network daemon—until it writes into the stack.

2. Overwrite the current return address on the stack with the address of the
exploit code loaded in step 3.

3. Write a simple set of code for the next space in the stack that includes
the commands that the attacker wishes to execute—for instance, spawn
a shell.

The result of this attack program's execution will be a root shell or other
privileged command execution.

For instance, if a web-page form expects a user name to be entered into a
field, the attacker could send the user name, plus extra characters to overflow
the buffer and reach the stack, plus a new return address to load onto the stack,
plus the code the attacker wants to run. When the buffer-reading subroutine
returns from execution, the return address is the exploit code, and the code is
run.

Let's look at a buffer-overflow exploit in more detail. Consider the simple
C program shown in Figure 15.2. This program creates a character array of
size BUFFER_SIZE and copies the contents of the parameter provided on the
command l ine—argv[l] . As long as the size of this parameter is less than
BUFFER^SIZE (we need one byte to store the null terminator), this program
works properly. But consider what happens if the parameter provided on the
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#include <stdio.h>
#define BUFFER^SIZE 256

int main(int argc, char *argv[])

{
char buffer [BUFFER_SIZE] ;

if (argc < 2)
return -1;

else {
strcpy(buffer,argv[1]);
return 0;

Figure 15.2 C program with buffer-overflow condition.

command line is longer than BUFFER_SIZE. In this scenario, the s t rcpy()
function will begin copying from argv [1] until it encounters a null terminator
(\0) or until the program crashes. Thus, this program suffers from a potential
buffer-overflow problem in which copied data overflow the buffer array.

Note that a careful programmer could have performed bounds checking
on the size of argv [1] by using the strncpy () function rather than s t rcpy () ,
replacing the line "s t rcpy(buffer , a rgv[ l ] ) ; " : with "s trncpy(buffer ,
argv[ l ] , sizeof (buf f e r ) - l ) ;". Unfortunately, good bounds checking is
the exception rather than the norm.

Furthermore, lack of bounds checking is not the only possible cause of the
behavior of the program in Figure 15.2. The program could instead have been
carefully designed to compromise the integrity of the system. We now consider
the possible security vulnerabilities of a buffer overflow.

When a function is invoked in a typical computer architecture, the variables
defined locally to the function (sometimes known as automatic variables), the
parameters passed to the function, and the address to which control returns
once the function exits are stored in a stack frame. The layout for a typical stack

bottom

grows

top

return address

saved frame pointer

automatic variables

parameter(s)

frame pointer

Figure 15.3 The layout for a typical stack frame.
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frame is shown in Figure 15.3. Examining the stack frame from top to bottom,
we first see the parameters passed to the function, followed by any automatic
variables declared in the function. We next see the frame pointer, which is
the address of the beginning of the stack frame. Finally, we have the return
address, which specifies where to return control once the function exits. The
frame pointer must be saved on the stack, as the value of the stack pointer can
vary during the function call; the saved frame pointer allows relative access to
parameters and automatic variables.

Given this standard memory layout, a cracker could execute a buffer-
overflow attack. Her goal is to replace the return address in the stack frame so
that it now points to the code segment containing the attacking program.

The programmer first writes a short code segment such as the following:

#include <stdio.h>

int mainfint argc, char *argv[])

{
execvpt ' ' \b in \sh ' ' , ' v \b in \ s h ' ' , NULL);
return 0;

Using the execvpO system call, this code segment creates a shell process.
If the program being attacked runs with system-wide permissions, this newly
created shell will gain complete access to the system. Of course, the code
segment could do anything allowed by the privileges of the attacked process.
This code segment is then compiled so that the assembly language instructions
can be modified. The primary modification is to remove unnecessary features
in the code, thereby reducing the code size so that it can fit into a stack frame.
This assembled code fragment is now a binary sequence that will be at the
heart of the attack.

Refer again to the program shown in Figure 15.2. Let's asstime that when
the mainO function is called in that program, the stack frame appears as
shown in Figure 15.4(a). Using a debugger, the programmer then finds the
address of buffer [0] in the stack. That address is the location of the code the
attacker wants executed, so the binary sequence is appended with the necessary
amount of NO-OP instructions (for NO-OPeration) to fill the stack frame up
to the location of the return address; and the location of buffer [0], the new
return address, is added. The attack is complete when the attacker gives this
constructed binary sequence as input to the process. The process then copies
the binary sequence from argv [1] to position buffer [0] in the stack frame.
Now, when control returns from mainO, instead of returning to the location
specified by the old value of the return address, we return to the modified shell
code, which runs with the access rights of the attacked process! Figure 15.4(b)
contains the modified shell code.

There are many ways to exploit potential buffer-overflow problems. In
this example, we considered the possibility that the program being attacked—
the code shown in Figure 15.2—ran with system-wide permissions. However,
the code segment that runs once the value of the return address has been
modified might perform any type of malicious act, such as deleting files,
opening network ports for further exploitation, and so on.
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Figure 15.4 Hypothetical stack frame for Figure 15.2, (a) before and (b) after.

This example buffer-overflow attack reveals that considerable knowledge
and programming skill are needed to recognize exploitable code and then
to exploit it. Unfortunately, it does not take great programmers to launch
security attacks. Rather, one cracker can determine the bug and then write an
exploit. Anyone with rudimentary computer skills and access to the exploit—
a so-called script kiddie—can then try to launch the attack at target systems.

The buffer-overflow attack is especially pernicious because it can be run
between systems and can travel over allowed communication channels. Such
attacks can occur within protocols that are expected to be used to communicate
with the target machine, and they can therefore be hard to detect and prevent.
They can even bypass the security added by firewalls (Section 15.7).

One solution to this problem is for the CPU to have a feature that disallows
execution of code in a stack section of memory. Recent versions of Sun's SPARC
chip include this setting, and recent versions of Solaris enable it. The return
address of the overflowed routine can still be modified; but when the return
address is within the stack and the code there attempts to execute, an exception
is generated, and the program is halted with an error.

Recent versions of AMD and Intel x86 chips include the NX feature to prevent
this type of attack. The use of the feature is supported in several x86 operating
systems, including Linux and Windows XP SP2. The hardware implementation
involves the use of a new bit in the page tables of the CPUs. This bit marks
the associated page as nonexecutable, disallowing instructions to be read from
it and executed. As this feature becomes prevalent, buffer-overflow attacks
should greatly dimmish.

15.2.5 Viruses

Another form of program threat is a virus. Viruses are self-replicating and
are designed to "infect" other programs. They can wreak havoc in a system
by modifying or destroying files and causing system crashes and program
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malfunctions. A virus is a fragment of code embedded in a legitimate program.
As with most penetration attacks, viruses are very specific to architectures,
operating systems, and applications. Viruses are a particular problem for
users of PCs. UNIX and other multiuser operating systems generally are not
susceptible to viruses because the executable programs are protected from
writing by the operating system. Even if a virus does infect such a program, its
powers usually are limited because other aspects of the system are protected.

Viruses are usually borne via email, with spam the most common vector.
They can also spread when users download viral programs from Internet
file-sharing services or exchange infected disks.

Another common form of virus transmission uses Microsoft Office files,
such as Microsoft Word documents. These documents can contain macros (or
Visual Basic programs) that programs in the Office suite (Word, PowerPoint,
and Excel) will execute automatically. Because these programs run under the
user's own account, the macros can run largely unconstrained (for example,
deleting user files at will). Commonly, the virus will also e-mail itself to others
in the user's contact list. Here is a code sample that shows the simplicity of
writing a Visual Basic macro that a virus could use to format the hard drive of
a Windows computer as soon as the file containing the macro was opened:

Sub AutoOpen()
Dim oFS

Set oFS = CreateObject(''Scripting.FileSystemObject'')
vs = Shell(''c:

command.com / k f o r m a t c : ' ' , v b H i d e )
End Sub

How do viruses work? Once a virus reaches a target machine, a program
known as a virus dropper inserts the virus onto the system. The virus dropper
is usually a Trojan horse, executed for other reasons but installing the virus
as its core activity. Once installed, the virus may do any one of a number of
things. There are literally thousands of viruses, but they fall into several main
categories. Note that many viruses belong to more than one category.

• File. A standard file virus infects a system by appending itself to a file.
It changes the start of the program so that execution jumps to its code.
After it executes, it returns control to the program so that its execution is
not noticed. File viruses are sometimes known as parasitic viruses, as they
leave no full files behind and leave the host program still functional.

• Boot. A boot virus infects the boot sector of the system, executing every
time the system is booted and before the operating system is loaded. It
watches for other bootable media (that is, floppy disks) and infects them.
These viruses are also known as memory viruses, because they do not
appear in the file system. Figure 15.5 shows how a boot virus works.

• Macro. Most viruses are written in a low-level language, such as assembly
or C. Macro viruses are written in a high-level language, such as Visual
Basic. These viruses are triggered when a program capable of executing
the macro is run. For example, a macro virus could be contained in a
spreadsheet file.
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Figure 15.5 A boot-sector computer virus.

Source code. A source code virus looks for source code and modifies it to
include the virus and to help spread the virus.

Polymorphic. This virus changes each time it is installed to avoid detection
by antivirus software. The changes do not affect the virus's functionality
but rather change the virus's signature. A virus signature is a pattern that
can be used to identify a virus, typically a series of bytes that make up the
virus code.

Encrypted. An encrypted virus includes decryption code along with the
encrypted virus, again to avoid detection. The virus first decrypts and then
executes.

Stealth. This tricky virus attempts to avoid detection by modifying parts
of the system that could be used to detect it. For example, it could modify
the read system call so that if the file it has modified is read, the original
form of the code is returned rather than the infected code.
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• Tunneling. This virus attempts to bypass detection by an antivirus scanner
by installing itself in the interrupt-handler chain. Similar viruses install
themselves in device drivers.

• Multipartite. A virus of this type is able to infect multiple parts of a system,
including boot sectors, memory, and files. This makes it difficult to detect
and contain.

• Armored. An armored virus is coded to make itself hard for antivirus
researchers to unravel and understand. It can also be compressed to avoid
detection and disinfection. In addition, virus droppers and other full files
that are part of a virus infestation are frequently hidden via file attributes
or unviewable file names.

This vast variety of viruses is likely to continue to grow. In fact, in 2004
a new and widespread virus was detected. It exploited three separate bugs
for its operation. This virus started by infecting hundreds of Windows servers
(including many trusted sites) running Microsoft Internet Information Server
(IIS). Any vulnerable Microsoft Explorer web browser visiting those sites
received a browser virus with any download. The browser virus installed
several back-door programs, including a keystroke logger, which records
all things entered on the keyboard (including passwords and credit-card
numbers). It also installed a daemon to allow unlimited remote access by
an intruder and another that allowed an intruder to route spam through the
infected desktop computer.

Generally, viruses are the most disruptive security attack; and because they
are effective, they will continue to be written and to spread. Among the active
debates within the computing community is whether a monoculture, in which
many systems run the same hardware, operating system, and/or application
software, is increasing the threat of and damage caused by security intrusions.
Within the debate is the issue of whether or not there even exists a monoculture
today (consisting of Microsoft products).

15.3 System and Network Threats

Program threats typically use a breakdown in the protection mechanisms of a
system to attack programs. In contrast, system and network threats involve the
abuse of services and network connections. Sometimes a system and network
attack is used to launch a program attack, and vice versa.

System and network threats create a situation in which operating-system
resources and user files are misused. Here, we discuss some examples of these
threats, including worms, port scanning, and denial-of-service attacks.

It is important to note that masquerading and replay attacks are also
common over networks between systems. In fact, these attacks are more
effective and harder to counter when multiple systems are involved. For
example, within a computer, the operating system usually can determine the
sender and receiver of a message. Even if the sender changes to the ID of
someone else, there might be a record of that ID change. When multiple systems
are involved, especially systems controlled by attackers, then such tracing is
much harder.
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The generalization is that sharing secrets (to prove identity and as keys to
encryption) is required for authentication and encryption, and that is easier
in environments (such as a single operating system) in which secure sharing
methods exist. These methods include shared memory and interprocess com-
munications. Creating secure communication and authentication is discussed
in Sections 15.4 and 15.5.

15.3.1 Worms

A worm is a process that uses the spawn mechanism to ravage system
performance. The worm spawns copies of itself, using up system resources
and perhaps locking out all other processes. On computer networks, worms
are particularly potent, since they may reproduce themselves among systems
and thus shut down an entire network. Such an event occurred in 1988 to UNIX
systems on the Internet, causing millions of dollars of lost system and system
administrator time.

At the close of the workday on November 2,1988, Robert Tappan Morris,
Jr., a first-year Cornell graduate student, unleashed a worm program on one
or more hosts connected to the Internet. Targeting Sun Microsystems' Sun 3
workstations and VAX computers running variants of Version 4 BSD UNIX, the
worm quickly spread over great distances; within a few hours of its release,
it had consumed system resources to the point of bringing down the infected
machines.

Although Robert Morris designed the self-replicating program for rapid
reproduction and distribution, some of the features of the UNIX networking
environment provided the means to propagate the worm throughout the sys-
tem. It is likely that Morris chose for initial infection an Internet host left open
for and accessible to outside users. From there, the worm program exploited
flaws in the UNIX operating system's security routines and took advantage
of UNIX utilities that simplify resource sharing in local-area networks to gain
unauthorized access to thousands of other connected sites. Morris's methods
of attack are outlined next.
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Figure 15.6 The Morris Internet worm.
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The worm was made up of two programs, a grappling hook (also called a
bootstrap or vector) program and the main program. Named 11.c, the grappling
hook consisted of 99 lines of C code compiled and run on each machine it
accessed. Once established on the computer system under attack, the grappling
hook connected to the machine where it originated and uploaded a copy of the
main worm onto the hooked system (Figure 15.6). The main program proceeded
to search for other machines to which the newly infected system could connect
easily. In these actions, Morris exploited the UNIX networking utility rsh for
easy remote task execution. By setting up special files that list host-login
name pairs, users can omit entering a password each time they access a remote
account on the paired list. The worm searched these special files for site names
that would allow remote execution without a password. Where remote shells
were established, the worm program was uploaded and began executing anew.

The attack via remote access was one of three infection methods built into
the worm. The other two methods involved operating-system bugs in the UNIX
finger and sendmail programs.

The finger utility functions as an electronic telephone directory; the
command

finger user-name@hostname

returns a person's real and login names along with other information that
the user may have provided, such as office and home address and telephone
number, research plan, or clever quotation. Finger runs as a background
process (or daemon) at each BSD site and responds to queries throughout the
Internet. The worm executed a buffer-overflow attack on f inger. The program
queried finger with a 536-byte string crafted to exceed the buffer allocated
for input and to overwrite the stack frame. Instead of returning to the main
routine it was in before Morris's call, the finger daemon was routed to a
procedure within the invading 536-byte string now residing on the stack. The
new procedure executed /bin/sh, which, if successful, gave the worm a remote
shell on the machine under attack.

The bug exploited in sendmail also involved using a daemon process
for malicious entry, sendmail sends, receives, and routes electronic mail.
Debugging code in the utility permits testers to verify and display the state of
the mail system. The debugging option was useful to system administrators
and was often left on. Morris included in his attack arsenal a call to debug that
—instead of specifying a user address, as would be normal in testing—issued
a set of commands that mailed and executed a copy of the grappling-hook
program.

Once in place, the main worm undertook systematic attempts to discover
user passwords. It began by trying simple cases of no password or of passwords
constructed of account-user-name combinations, then used comparisons with
an internal dictionary of 432 favorite password choices, and then went to the
final stage of trying each word in the standard UNIX on-line dictionary as a
possible password. This elaborate and efficient three-stage password-cracking
algorithm enabled the worm to gain access to other user accounts on the
infected system. The worm then searched for rsh data files in these newly
broken accounts and used them as described previously to gain access to user
accounts on remote systems.
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With each new access, the worm program searched for already active
copies of itself. If it found one, the new copy exited, except in every seventh
instance. Had the worm exited on all duplicate sightings, it might have
remained undetected. Allowing every seventh duplicate to proceed (possibly
to confound efforts to stop its spread by baiting with fake worms) created a
wholesale infestation of Sun and VAX systems on the Internet.

The very features of the UNIX network environment that assisted the
worm's propagation also helped to stop its advance. Ease of electronic commu-
nication, mechanisms to copy source and binary files to remote machines, and
access to both source code and human expertise allowed cooperative efforts to
develop solutions quickly. By the evening of the next day, November 3, methods
of halting the invading program were circulated to system administrators via
the Internet. Within days, specific software patches for the exploited security
flaws were available.

Why did Morris unleash the worm? The action has been characterized as
both a harmless prank gone awry and a serious criminal offense. Based on
the complexity of starting the attack, it is unlikely that the worm's release or
the scope of its spread was unintentional. The worm program took elaborate
steps to cover its tracks and to repel efforts to stop its spread. Yet the program
contained no code aimed at damaging or destroying the systems on which it
ran. The author clearly had the expertise to include such commands; in fact,
data structures were present in the bootstrap code that could have been used to
transfer Trojan-horse or virus programs. The behavior of the program may lead
to interesting observations, but it does not provide a sound basis for inferring
motive. What is not open to speculation, however, is the legal outcome: A
federal court convicted Morris and handed down a sentence of three years'
probation, 400 hours of community service, and a $10,000 fine. Morris's legal
costs probably exceeded $100,000.

Security experts continue to evaluate methods to decrease or eliminate
worms. A more recent event, though, shows that worms are still a fact of
life on the Internet. It also shows that as the Internet grows, the damage
that even "harmless" worms can do also grows and can be significant. This
example occurred during August 2003. The fifth version of the "Sobig" worm,
more properly known as 'iW32.Sobig.F@mm/" was released by persons at this
time unknown. It was the fastest-spreading worm released to date, at its peak
infecting hundreds of thousands of computers and one in seventeen e-mail
messages on the Internet. It clogged e-mail inboxes, slowed networks, and
took a huge number of hours to clean up.

Sobig.F was launched by being uploaded to a pornography newsgroup via
an account created with a stolen credit card. It was disguised as a photo. The
virus targeted Microsoft Windows systems and used its own SMTP engine to
e-mail itself to all the addresses found on an infected system. It used a variety
of subject lines to help avoid detection, including "Thank You!" ''Your details,"
and "Re: Approved." It also used a random address on the host as the "From:"
address, making it difficult to determine from the message which machine was
the infected source. Sobig.F included an attachment for the target e-mail reader
to click on, again with a variety of names. If this payload was executed, it stored
a program called W1NPPR32.EXE in the default Windows directory, along with
a text file. It also modified the Windows registry.
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The code included in the attachment was also programmed to periodically
attempt to connect to one of twenty servers and download and execute a
program from them. Fortunately, the servers were disabled before the code
could be downloaded. The content of the program from these servers has not
yet been determined. If the code was malevolent, untold damage to a vast
number of machines could have resulted.

15.3.2 Port Scanning

Port scanning is not an attack but rather is a means for a cracker to detect
a system's vulnerabilities to attack. Port scanning typically is automated,
involving a tool that attempts to create a TCP/IP connection to a specific port
or a range of ports. For example, suppose there is a known vulnerability (or
bug) in sendmail. A cracker could launch a port seamier to try to connect
to, say, port 25 of a particular system or a range of systems. If the connection
was successful, the cracker (or tool) could attempt to communicate with the
answering service to determine if it was indeed sendmail and, if so, if it was
the version with the bug.

Now imagine a tool in which each bug of every service of every operating
system was encoded. The tool could attempt to connect to every port of one
or more systems. For every service that answered, it could try to use each
known bug. Frequently, the bugs are buffer overflows, allowing the creation of
a privileged command shell on the system. From there, of course, the cracker
could install Trojan horses, back-door programs, and so on.

There is no such tool, but there are tools that perform subsets of that
functionality. For example, nmap (from http://www.insecure.org/nmap/) is
a very versatile open-source utility for network exploration and security
auditing. When pointed at a target, it will determine what services are running,
including application names and versions. It can determine the host operating
system. It can also provide information about defenses, such as what firewalls
are defending the target. It does not exploit any known bugs.

Nessus (from http://www.nessus.org/) performs a similar function, but
it has a database of bugs and their exploits. It can scan a range of systems,
determine the services running on those systems, and attempt to attack all
appropriate bugs. It generates reports about the results. It does not perform
the final step of exploiting the found bugs, but a knowledgeable cracker or a
script kiddie could.

Because port scans are detectable (see 15.6.3), they frequently are launched
from zombie systems. Such systems are previously compromised, indepen-
dent systems that are serving their owners while being used for nefarious
purposes, including denial-of-service attacks and spam relay. Zombies make
crackers particularly difficult to prosecute because determining the source of
the attack and the person that launched it is challenging. This is one of many
reasons that "inconsequential" systems should also be secured, not just systems
containing "valuable" information or services.

15.3.3 Denial of Service

As mentioned earlier, DOS attacks are aimed not at gaining information or
stealing resources but rather at disrupting legitimate use of a system or
facility. Most denial-of-service attacks involve systems that the attacker has
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not penetrated. Indeed, launching an attack that prevents legitimate 5use is
frequently easier than breaking into a machine or facility.

Denial-of-service attacks are generally network based. They fall into two
categories. The first case is an attack that uses so many facility resources
that, in essence, no useful work can be done. For example, a web-site click
could download a Java applet that proceeds to vise all available CPU time
or to infinitely pop up windows. The second case involves disrupting the
network of the facility. There have been several successful denial-of-service
attacks of this kind against major web sites. They result from abuse of some
of the fundamental functionality of TCP/IP. For instance, if the attacker sends
the part of the protocol that says "I want to start a TCP connection/' but never
follows with the standard "The connection is now complete," the result can
be partially started TCP sessions. Enough of these sessions can eat up all
the network resources of the system, disabling any further legitimate TCP
connections. Such attacks, which can last hours or days, have caused partial
or full failure of attempts to use the target facility- These attacks are usually
stopped at the network level until the operating systems can be updated to
reduce their vulnerability.

Generally, it is impossible to prevent denial-of-service attacks. The attacks
use the same mechanisms as normal operation. Even more difficult to prevent
and resolve are distributed denial-of-service attacks (DDOS). These attacks
are launched from multiple sites at once, toward a common target, typically
by zombies.

Sometimes a site does not even know it is under attack. It can be difficult
to determine whether a system slowdown is just a surge in system use or an
attack. Consider that a successful advertising campaign that greatly increases
traffic to a site could be considered a DDOS.

There are other interesting aspects of DOS attacks. For example, pro-
grammers and systems managers need to fully understand the algorithms
and technologies they are deploying. If an authentication algorithm locks an
account for a period of time after several incorrect attempts, then an attacker
could cause all authentication to be blocked by purposefully causing incorrect
attempts to all accounts. Similarly, a firewall that automatically blocks certain
kinds of traffic could be induced to block that traffic when it should not.
Finally, computer science classes are notorious sources of accidental system
DOS attacks. Consider the first programming exercises in which students learn
to create subprocesses or threads. A common bug involves spawning subpro-
cesses infinitely. The system's free memory and CPU resources don't stand a
chance.

15.4 Cryptography as a Security Tool

There are many defenses against computer attacks, running the gamut from
methodology to technology. The broadest tool available to system designers
and users is cryptography. In this section we discuss the details of crypography
and its use in computer security.

In an isolated computer, the operating system can reliably determine the
sender and recipient of all interprocess communication, since it controls all
communication channels in the computer. In a network of computers, the
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situation is quite different. A networked computer receives bits fivm the
wire with no immediate and reliable way of determining what machine or
application sent those bits. Similarly, the computer sends bits onto the network
with no way of knowing who might eventually receive them.

Commonly, network addresses are used to infer the potential senders
and receivers of network messages. Network packets arrive with a source
address, such as an IP address. And when a computer sends a message, it
names the intended receiver by specifying a destination address. However, for
applications where security matters, we are asking for trouble if we assume
that the source or destination address of a packet reliably determines who sent
or received that packet. A rogue computer can send a message with a falsified
source address, and numerous computers other than the one specified by the
destination address can (and typically do) receive a packet. For example, all of
the routers on the way to the destination will receive the packet, too. How, then,
is an operating system to decide whether to grant a request when it cannot trust
the named source of the request? And how is it supposed to provide protection
for a request or data when it cannot determine who will receive the response
or message contents it sends over the network?

It is generally considered infeasible to build a network of any scale in
which the source and destination addresses of packets can be trusted in this
sense. Therefore, the only alternative is somehow to eliminate the need to
trust the network. This is the job of cryptography. Abstractly, cryptography is
used to constrain the potential senders and/or receivers of a message. Modern
cryptography is based on secrets called keys that are selectively distributed to
computers in a network and used to process messages. Cryptography enables a
recipient of a message to verify that the message was created by some computer
possessing a certain key—the key is the source of the message. Similarly, a
sender can encode its message so that only a computer with a certain key can
decode the message, so that the key becomes the destination. Unlike network
addresses, however, keys are designed so that it is not computationally feasible
to derive them from the messages they were used to generate or from any
other public information. Thus, they provide a much more trustworthy means
of constraining senders and receivers of messages. Note that cryptography is
a field of study unto itself, with large and small complexities and subtleties.
Here, we explore the most important aspects of the parts of cryptography that
pertain to operating systems.

15.4.1 Encryption

Because it solves a wide variety of communication security problems, encryp-
tion is used frequently in many aspects of modern computing. Encryption is
a means for constraining the possible receivers of a message. An encryption
algorithm enables the sender of a message to ensure that only a computer
possessing a certain key can read the message. Encryption of messages is an
ancient practice, of course, and there have been many encryption algorithms,
dating back to before Caesar. In this section, we describe important modern
encryption principles and algorithms.

Figure 15.7 shows an example of two users communicating securely over
an insecure channel. We refer to this figure throughout the section. Note that the
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write message m

attacker

Figure 15.7 A secure communication over an insecure medium.

key exchange can take place directly between the two parties or via a trusted
third party (that is, a certificate authority), as discussed in Section 15.4.1.4.

An encryption algorithm consists of the following components:

• A set K of keys.

• A set M of messages.

• A set C of ciphertexts.

• A function E : K ->• (M - • C). That is, for each k e K, E (k) is a function for
generating ciphertexts from messages. Both E and E(k) for any k should
be efficiently computable functions.

• A function D : K -> (C -> M). That is, for each k e K, D{k) is a function for
generating messages from ciphertexts. Both D and D(k) for any k should
be efficiently computable functions.

An encryption algorithm must provide this essential property: Given a
ciphertext c e C, a computer can compute m such that E(k)(m) = c only if
it possesses D(k). Thus, a computer holding D(k) can decrypt ciphertexts to
the plaintexts used to produce them, but a computer not holding D(k) cannot
decrypt ciphertexts. Since ciphertexts are generally exposed (for example, sent
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on the network), it is important that it be infeasible to derive D(k) from the
ciphertexts.

There are two main types of encryption algorithms: symmetric and
asymmetric. We discuss both types in the following sections.

15.4.1.1 Symmetric Encryption

In a symmetric encryption algorithm, the same key is used to encrypt and to
decrypt. That is, E(k) can be derived from D(k), and vice versa. Therefore, the
secrecy of E(k) must be protected to the same extent as that of D{k).

For the past 20 years or so, the most commonly used symmetric encryption
algorithm in the United States for civilian applications has been the data-
encryption standard (DES) adopted by the National Institute of Standards
and Technology (NIST). DES works by taking a 64-bit value and a 56-bit
key and performing a series of transformations. These transformations are
based on substitution and permutation operations, as is generally the case
for symmetric encryption transformations. Some of the transformations are
black-box transformations, in that their algorithms are hidden. In fact, these
so-called "S-boxes" are classified by the United States government. Messages
longer than 64 bits are broken into 64-bit chunks, and a shorter block is padded
to fill out the block. Because DES works on a chunk of bits at a time, is a
known as a block cipher. If the same key is used for encrypting an extended
amount of data, it becomes vulnerable to attack. Consider, for example, that
the same source block would result in the same ciphertext if the same key and
encryption algorithm were used. Therefore, the chunks are not just encrypted
but also XORed with the previous ciphertext block before encryption. This is
known as cipher-block chaining.

DES is now considered insecure for many applications because its keys can
be exhaustively searched with moderate computing resources. Rather than
giving up on DES, though, NIST created a modification called triple DES, in
which the DES algorithm is repeated three times (two encryptions and one
decryption) on the same plaintext using two or three keys—for example,
c = E{k^)(D{k2)(E(Ki)(m))). When three keys are used, the effective key length
is 168 bits. Triple DES is in widespread use today.

In 2001, NIST adopted a new encryption algorithm, called the advanced
encryption standard (AES), to replace DES. AES is another symmetric block
cipher. It can use key lengths of 128, 192, and 256 bits and works on 128-bit
blocks. It works by performing 10 to 14 rounds of transformations on a matrix
formed from a block. Generally, the algorithm is compact and efficient.

There are several other symmetric block encryption algorithms in use today
that bear mentioning. The twofish algorithm is fast, compact, and easy to
implement. It can use a variable key length of up to 256 bits and works on
128-bit blocks. RC5 can vary in key length, number of transformations, and
block size. Because it uses only basic computational operations, it can run on a
wide variety of CPUs.

RC4 is perhaps the most common stream cipher. A stream cipher is
designed to encrypt and decrypt a stream of bytes or bits rather than a block.
This is useful when the length of a communication would make a block cipher
too slow. The key is input into a pseudo-random-bit generator, which is an
algorithm that attempts to produce random bits. The output of the generator
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when fed a key is a keystream. A keystream is an infinite set of keys that can be
vised for the input plaintext stream. RC4 is used in encrypting steams of data,
such as in WEP, the wireless LAN protocol. It is also used in communications
between web browsers and web servers, as we discuss below. Unfortunately,
RC4 as used in WEP (IEEE standard 802.11) has been found to be breakable in a
reasonable amount of computer time. In fact, RC4 itself has vulnerabilities.

15.4.1.2 Asymmetric Encryption

In an asymmetric encryption algorithm, there are different encryption and
decryption keys. Here, we describe one such algorithm, known as RSA after
the names of its inventors (Rivest, Shamir and Adleman.) The RSA cipher is a
block-cipher public-key algorithm and is the most widely used asymmetrical
algorithm. Asymmetrical algorithms based on elliptical curves are gaining
ground, however, because the key length of such an algorithm can be shorter
for the same amount of cryptographic strength.

It is computationally infeasible to derive D(/Q, N) from E{kc, A/), and so
E (kc, IV) need not be kept secret and can be widely disseminated; thus, E (ke, N)
(or just kt.) is the public key and D{kLi, N) (or just kj) is the private key. A/ is the
product of two large, randomly chosen prime numbers p and q (for example, p
andtj are512bits each). The encryption algorithm is E{kc, N)(m) — mke mod JV,
where kL. satisfies kL.kj mod (p ~ \){q — 1) = 1. The decryption algorithm is then
D(kd,N)(c) = ck-> modN.

An example using small values is shown in Figure 15.8. In this example, we
makep = 7andq = 13. We then calculate N = 7*13 = 91and(p-l)(<j-l) = 72.
We next select ke relatively prime to 72 and < 72, yielding 5. Finally, we calculate
kd such that kekd mod 72 = 1, yielding 29. We how have our keys: the public
key, kt,, N = 5, 91, and the private key, kj, N = 29, 91. Encrypting the message
69 with the public key results in the message 62, which is then decoded by the
receiver via the private key.

The use of asymmetric encryption begins with the publication of the public
key of the destination. For bidirectional communication, the source also must
publish its public key. "Publication" can be as simple as handing over an
electronic copy of the key, or it can be more complex. The private key (or "secret
key") must be jealously guarded, as anyone holding that key can decrypt any
message created by the matching public key.

We should note that the seemingly small difference in key use between
asymmetric and symmetric cryptography is quite large in practice. Asymmetric
cryptography is based on mathematical functions rather than transformations,
making it much more computationally expensive to execute. It is much
faster for a computer to encode and decode ciphertext by using the usual
symmetric algorithms than by using asymmetric algorithms. Why, then, use
an asymmetric algorithm? In truth, these algorithms are not used for general-
purpose encryption of large amounts of data. However, they are used not
only for encryption of small amounts of data but also for authentication,
confidentiality, and key distribution, as wre show in the following sections.

15.4.1.3 Authentication

We have seen that encryption offers a way of constraining the set of possible
receivers of a message. Constraining the set of potential senders of a message is
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write *• message 69

X

encryption
key k591

decryption
key k29i91

• read

Figure 15.8 Encryption and decryption using RSA asymmetric cryptography.

called authentication. Authentication is thus complementary to encryption. In
fact, sometimes their functions overlap. Consider that an encrypted message
can also prove the identity of the sender. For example, if D{kd, N)(E(ke, N){m))
produces a valid message, then we know that the creator of the message must
hold kc. Authentication is also useful for proving that a message has not been
modified. In this section, we discuss authentication as a constraint on possible
receivers of a message. Note that this sort of authentication is similar to but
distinct from user authentication, which we discuss in Section 15.5.

An authentication algorithm consists of the following components:

• A set K of keys.

• A set M of messages.

• A set A of authenticators.

• A function S : K —*• (M —>• A). That is, for each k e K, S(k) is a function for
generating authenticators from messages. Both S and S(k) for any k should
be efficiently computable functions.
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• A function V : X - > ( M x y l - > {true, false}). That is, for each k e K,
V(k) is a function for verifying authenticators on messages. Both V and
V(k) for any k should be efficiently computable functions.

The critical property that an authentication algorithm must possess is this:
For a message m, a computer can generate an authenticator a e A such
that V(k)(ni.a) - t rue only if it possesses S(k). Thus, a computer holding
S(k) can generate authenticators on messages so that any other computer
possessing V(k) can verify them. However, a computer not holding S(k) cannot
generate authenticators on messages that can be verified using V(k). Since
authenticators are generally exposed (for example, they are sent on the network
with the messages themselves), it must not be feasible to derive S(k) from the
authenticators.

Just as there are two types of encryption algorithms, there are two main
varieties of authentication algorithms. The first step in understanding these
algorithms is to explore hash functions. A hash function creates a small, fixed-
sized block of data, known as a message digest or hash value, from a message.
Hash functions work by taking a message in n-bit blocks and processing the
blocks to produce an n-bit hash. H must be collision resistant on m—that
is, it must be infeasible to find an m' ^ m such that H(m) = H(m'). Now, if
H(m) — H(m'), we know that ni\ — m-i—that is, we know that the message has
not been modified. Common message-digest functions include MD5, which
produces a 128-bit hash, and SHA-l, which outputs a 160-bit hash.

Message digests are useful for detecting changed messages but are not
useful as authenticators. For example, H(m) can be sent along with a message;
but if H is known, then someone could modify m and recompute H(m), and
the message modification would not be detected. Therefore, an authentication
algorithm takes the message digest and encrypts it.

The first type of authentication algorithm uses symmetric encryption. In a
message-authentication code (MAC), a cryptographic checksum is generated
from the message using a secret key. Knowledge of V(k) and knowledge of
S(k) are equivalent: One can be derived from the other, so k must be kept
secret. A simple example of a MAC defines S(k)(m) = f(k, H(m)), where / is
a function that is one-way on its first argument (that is, k cannot be derived
from f(k, H(m))). Because of the collision resistance in the hash function, we
are reasonably assured that no other message could create the same MAC. A
suitable verification algorithm is then V(k)(m, a) = (f(k, m) = a). Note that k
is needed to compute both S(k) and V(k), so anyone able to compute one can
compute the other.

The second main type of authentication algorithm is a digital-signature
algorithm, and the authenticators thus produced are called digital signatures.
In a digital-signature algorithm, it is computationally infeasible to derive S(/rs)
from V(kv); in particular, V is a one-way function. Thus, kv is the public key
and ks is the private key.

Consider as an example the RSA digital-signature algorithm. It is similar
to the RSA encryption algorithm, but the key use is reversed. The digital
signature of a message is derived by computing S(ks)(m) — H(m)k< mod N.
The key ks again is a pair (d, N), where N is the product of two large, randomly-
chosen prime numbers p and q. The verification algorithm is then V{kv){m, a) =
(ak< mod N ~ H(m)), where kv satisfies kvks mod {p - l)(q - 1) — 1.
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If encryption can prove the identity of the sender of a message, then why do
we need separate authentication algorithms? There are three primary reasons.

• Authentication algorithms generally require fewer computations (with
the notable exception of RSA digital signatures). Over large amounts of
plaintext, this efficiency can make a huge difference in resource use and
the time needed to authenticate a message.

• An authenticator of a message is almost always shorter than the mes-
sage and its ciphertext. This improves space use and transmission time
efficiency.

• Sometimes, we want authentication but not confidentiality. For example,
a company could provide a software patch and could "sign" that patch to
prove that it came from the company and that it hasn't been modified.

Authentication is a component of many aspects of security For example, it
is the core of nonrepudiation, which supplies proof that an entity performed an
action. A typical example of nonrepudiation involves the filling out of electronic
forms as an alternative to the signing of paper contracts. Nonrepudiation
assures that a person filling out an electronic form cannot deny that he did
so.

15.4.1.4 Key Distribution

Certainly, a good part of the battle between cryptographers (those inventing
ciphers) and cryptanalysts (those trying to break them) involves keys. With
symmetric algorithms, both parties need the key, and no one else should
have it. The delivery of the symmetric key is a huge challenge. Sometimes
it is performed out-of-band—say, via a paper document or a conversation.
These methods do not scale well, however. Also consider the key-management
challenge. Suppose a user wanted to communicate with N other users privately.
That user would need JV keys and, for more security, would need to change
those keys frequently.

These are the very reasons for efforts to create asymmetric key algorithms.
K*ot only can the keys be exchanged in public, but a given user needs only one
private key, no matter how many other people she wants to communicate with.
There is still the matter of managing a public key per party to be communicated
with, but since public keys need not be secured, simple storage can be used for
that key ring.

Unfortunately, even the distribution of public keys requires some care.
Consider the man-in-the-middle attack shown in Figure 15.9. Here, the person
who wants to receive an encrypted message sends out his public key, but an
attacker also sends her "bad" public key (which matches her private key). The
person who wants to send the encrypted message knows no better and so uses
the bad key to encrypt the message. The attacker then happily decrypts it.

The problem is one of authentication—what we need is proof of who (or
what) owns a public key. One way to solve that problem involves the use
of digital certificates. A digital certificate is a public key digitally signed by
a trusted party. The trusted party receives proof of identification from some
entity and certifies that the public key belongs to that entity. But how do we
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Figure 15.9 A man-in-the-middle attack on asymmetric cryptography.

know we can trust the certifier? These certificate authorities have their public
keys included within web browsers (and other consumers of certificates) before
they are distributed. These certificate authorities can then vouch for other
authorities (digitally signing the public keys of these other authorities), and
so on, creating a web of trust. The certificates can be distributed in a standard
X.509 digital certificate format that can be parsed by computer. This scheme is
used for secure web communication, as we discuss in Section 15.4.3.

15.4.2 Implementation of Cryptography

Network protocols are typically organized in layers, each layer acting as a client
to the one below it. That is, when one protocol generates a message to send
to its protocol peer on another machine, it hands its message to the protocol
below it in the network-protocol stack for delivery to its peer on that machine.
For example, in an IP network, TCP (a transport-layer protocol) acts as a client
of IP (a network-layer protocol): TCP packets are passed down to IP for delivery
to the TCP peer at the other end of the TCP connection. IP encapsulates the TCP
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packet in an IP packet, which it similarly passes down to the data-link layer t© be
transmitted across the network to its IP peer on the destination computer. This
IP peer then delivers the TCP packet up to the TCP peer on that machine. All in
all, the ISO Reference Model, which has been almost universally adopted as a
model for data networking, defines seven such protocol layers. (You will read
more about the ISO model of networking in Chapter 16; Figure 16.6 shows a
diagram of the model.)

Cryptography can be inserted at almost any layer in the ISO model. SSL
(Section 15.4.3), for example, provides security at the transport layer. Network-
layer security generally has been standardized on IPSec, which defines IP
packet formats that allow the insertion of authenticators and the encryption
of packet contents. It uses symmetric encryption and uses the IKE protocol
for key exchange. IPSec is becoming widely used as the basis for virtual
private networks (VPNs), in which all traffic between two IPSec endpoints
is encrypted to make a private network out of one that may otherwise be
public. Numerous protocols also have been developed for use by applications,
but then the applications themselves must be coded to implement security.

Where is cryptographic protection best placed in a protocol stack? In
general, there is no definitive answer. On the one hand, more protocols benefit
from protections placed lower in the stack. For example, since IP packets
encapsulate TCP packets, encryption of IP packets (using IPSec, for example) also
hides the contents of the encapsulated TCP packets. Similarly, authenticators
on IP packets detect the modification of contained TCP header information.

On the other hand, protection at lower layers in the protocol stack may give
insufficient protection to higher-layer protocols. For example, an application
server that runs over IPSec might be able to authenticate the client computers
from which requests are received. However, to authenticate a user at a client
computer, the server may need to use an application-level protocol—for
example, the user may be required to type a password. Also consider the
problem of e-mail. E-mail delivered via the industry standard SMTP protocol is
stored and forwarded, frequently multiple times, before it is delivered. Each of
these hops could go over a secure or insecure network. For e-mail to be secure,
the e-mail message needs to be encrypted so that its security is independent of
the transports that carry it.

15.4.3 An Example: SSL

SSL 3.0 is a cryptographic protocol that enables two computers to communicate
securely—that is, so that each can limit the sender and receiver of messages
to the other. It is perhaps the most commonly used cryptographic protocol
on the Internet today, since it is the standard protocol by which web browsers
communicate securely with web servers. For completeness, we should note that
SSL was designed by Netscape and that it evolved into the industry standard
TLS protocol. In this discussion, we use SSL to mean both SSL and TLS.

SSL is a complex protocol with many options. Here, we present only a
single variation of it, and even then in a very simplified and abstract form,
so as to maintain focus on its use of cryptographic primitives. What we are
about to see is a complex dance in which asymmetric cryptography is used
so that a client and server can establish a secure session key that can be used
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for symmetric encryption of the session between the two—all of this* while
avoiding man-in-the-middle and replay attacks. For added cryptographic
strength, the session keys are forgotten once a session is completed. Another
communication between the two would require generation of new session
keys.

The SSL protocol is initiated by a client c to communicate securely with a
server. Prior to the protocol's use, the server s is assumed to have obtained a
certificate, denoted cert , from certification authority CA. This certificate is a
structure containing the following:

• Various attributes attrs of the server, such as its unique distinguished name
and its common (DNS) name

• The identity of a public encryption algorithm E () for the server

• The public key kc of this server

• A validity interval interval during which the certificate should be consid-
ered valid

• A digital signature a on the above information by the CA—that is,
a = S(kCA)({ attrs, E(ke), interval >)

In addition, prior to the protocol's use, the client is presumed to have obtained
the public verification algorithm V(1<:CA) for CA. In the case of the Web, the user's
browser is shipped from its vendor containing the verification algorithms and
public keys of certain certification authorities. The user can add or delete these
for certification authorities as she chooses.

When c connects to s, it sends a 28-byte random value nc to the server, which
responds with a random value ns of its own, plus its certificate cert,;. The client
verifies that V(kcA)({ attrs, E(ke), interval), a) - true and that the current time
is in the validity interval interval. If both of these tests are satisfied, the server
has proved its identity. Then the client generates a random 46-byte premaster
secret pms and sends cpms = E(fcs)(pms) to the server. The server recovers
pms = D(/crf)(cpms). Now both the client and the server are in possession of
«,:, ns, and pms, and each can compute a shared 48-byte master secret ms =
f(nc, itg, pms), where f is a one-way and collision-resistant function. Only the
server and client can compute ms, since only they know pms. Moreover, the
dependence of ms on nc and ns ensures that ms is a fresh value—that is, a
session key that has not been used in a previous communication. At this point,
the client and the server both compute the following keys from the ms:

• A symmetric encryption key kf[*p for encrypting messages from the client
to the server

• A symmetric encryption key k?P*p for encrypting messages from the server
to the client

• A MAC generation key k™ac for generating authenticators on messages
from the client to the server

• A MAC generation key k™ac for generating authenticators on messages
from the server to the client
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To send a message m to the server, the client sends ,

c =

Upon receiving c, the server recovers

and accepts m if V(k™ac)(m,a) - true. Similarly, to send a message m to the
client, the server sends

c = E(kfP"*)({m, S(k™c)(m)))

and the client recovers

and accepts m if V(k™ac)(m, a) = true.
This protocol enables the server to limit the recipients of its messages to the

client that generated pms and to limit the senders of the messages it accepts to
that same client. Similarly, the client can limit the recipients of the messages it
sends and the sender of the messages it accepts to the party that knows S(kd)
(that is, the party that can decrypt cpms). In many applications, such as web
transactions, the client needs to verify the identity of the party that knows S(kti).
This is one purpose of the certificate certs; in particular, the attrs field contains
information that the client can vise to determine the identity—for example, the
domain name—of the server with which it is communicating. For applications
in which the server also needs information about the client, SSL supports an
option by which a client can send a certificate to the server.

In addition to its use on the Internet, SSL is being used for a wide variety
of tasks. For example, IPSec VPNs now have a competitor in SSL VPNs. IPSec
is good for point-to-point encryption of traffic—say, between two company
offices. SSL VPNs are more flexible but not as efficient, so they might be used
between an individual employee working remotely and the corporate office.

15.5 User Authentication

The discussion of authentication above involves messages and sessions. But
what of users? If a system cannot authenticate a user, then authenticating that
a message came from that user is pointless. Thus, a major security problem for
operating systems is user authentication. The protection system depends on
the ability to identify the programs and processes currently executing, which
in turn depends on the ability to identify each user of the system. A user
normally identifies herself. How do we determine whether a user's identity
is authentic? Generally, user authentication is based on one or more of three
things: the user's possession of something (a key or card), the user's knowledge
of something (a user identifier and password), and/or an attribute of the user
(fingerprint, retina pattern, or signature).
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15.5.1 Passwords ?

The most common approach to authenticating a user identity is the use of
passwords. When the user identifies herself by user ID or account name, she
is asked for a password. If the user-supplied password matches the password
stored in the system, the system assumes that the account is being accessed by
the owner of that account.

Passwords are often used to protect objects in the computer system, in
the absence of more complete protection schemes. They can be considered a
special case of either keys or capabilities. For instance, a password could be
associated with each resource (such as a file). Whenever a request is made to
use the resource, the password must be given. If the password is correct, access
is granted. Different passwords may be associated with different access rights.
For example, different passwords may be used for reading files, appending
files, and updating files.

In practice, most systems require only one password for a user to gain
full rights. Although more passwords theoretically would be more secure,
such systems tend not to be implemented due to the classic trade-off between
security and convenience. If security makes something inconvenient, then the
security is frequently bypassed or otherwise circumvented.

15.5.2 Password Vulnerabilities

Passwords are extremely common because they are easy to understand and use.
Unfortunately, passwords can often be guessed, accidentally exposed, sniffed,
or illegally transferred from an authorized user to an unauthorized one, as we
show next.

There are two common ways to guess a password. One way is for the
intruder (either human or program) to know the user or to have information
about the user. All too frequently, people use obvious information (such as the
names of their cats or spouses) as their passwords. The other way is to use brute
force, trying enumeration—or all possible combinations of valid password
characters (letters, numbers, and punctuation on some systems)—until the
password is found. Short passwords are especially vulnerable to this method.
For example, a four-decimal password provides only 10,000 variations. On
average, guessing 5,000 times would produce a correct hit. A program that
could try a password every millisecond would take only about 5 seconds to
guess a four-digit password. Enumeration is less successful where systems
allow longer passwords that include both uppercase and lowercase letters,
along with numbers and all punctuation characters. Of course, users must take
advantage of the large password space and must not, for example, use only
lowercase letters.

In addition to being guessed, passwords can be exposed as a result of
visual or electronic monitoring. An intruder can look over the shoulder of a
user (shoulder surfing) when the user is logging in and can learn the password
easily by watching the keyboard. Alternatively, anyone with access to the
network on which a computer resides can seamlessly add a network monitor,
allowing her to watch all data being transferred on the network (sniffing),
including user IDs and passwords. Encrypting the data stream containing the
password solves this problem. Even such a system could have passwords
stolen, however. For example, if a file is used to contain the passwords, it



15.5 User Authentication 589

could be copied for off-system analysis. Or consider a Trojan-horse prpgram
installed on the system that captures every keystroke before sending it on to
the application.

Exposure is a particularly severe problem if the password is written down
where it can be read or lost. As we shall see, some systems force users to select
hard-to-remember or long passwords, which may cause a user to record the
password or to reuse it. As a result, such systems provide much less security
than systems that allow users to select easy passwords!

The final type of password compromise, illegal transfer, is the result of
human nature. Most computer installations have a rule that forbids users to
share accounts. This rule is sometimes implemented for accounting reasons but
is often aimed at improving security. For instance, suppose one user ID is shared
by several users, and a security breach occurs from that user ID. It is impossible
to know who was using the ID at the time the break occurred or even whether
the user was an authorized one. With one user per user ID, any user can be
questioned directly about use of the account; in addition, the user might notice
something different about the account and detect the break-in. Sometimes,
users break account-sharing rules to help friends or to circumvent accounting,
and this behavior can result in a system's being accessed by unauthorized users
—possibly harmful ones.

Passwords can be either generated by the system or selected by a user.
System-generated passwords may be difficult to remember, and thus users may
write them down. As mentioned, however, user-selected passwords are often
easy to guess (the user's name or favorite car, for example). Some systems will
check a proposed password for ease of guessing or cracking before accepting it.
At some sites, administrators occasionally check user passwords and notify a
user if his password is easy to guess. Some systems also age passwords, forcing
users to change their passwords at regular intervals (every three months, for
instance). This method is not foolproof either, because users can easily toggle
between two passwords. The solution, as implemented on some systems, is to
record a password history for each user. For instance, the system could record
the last N passwords and not allow their reuse.

Several variants on these simple password schemes can be used. For
example, the password can be changed more frequently. In the extreme, the
password is changed from session to session. A new password is selected
(either by the system or by the user) at the end of each session, and that password
must be used for the next session. In such a case, even if a password is misused,
it can be used only once. When the legitimate user tries to use a now-invalid
password at the next session, he discovers the security violation. Steps can then
be taken to repair the breached security.

15.5.3 Encrypted Passwords

One problem with all these approaches is the difficulty of keeping the password
secret within the computer. How can the system store a password securely yet
allow its use for authentication when the user presents her password? The
UNIX system uses encryption to avoid the necessity of keeping its password
list secret. Each user has a password. The system contains a function that is
extremely difficult—the designers hope impossible—to invert but is simple
to compute. That is, given a value x, it is easy to compute the function value
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f(x). Given a function value f(x), however, it is impossible to compute x* This
function is used to encode all passwords. Only encoded passwords are stored.
When a user presents a password, it is encoded and compared against the
stored encoded password. Even if the stored encoded password is seen, it
cannot be decoded, so the password cannot be determined. Thus, the password
file does not need to be kept secret. The function/^) is typically an encryption
algorithm that has been designed and tested rigorously.

The flaw in this method is that the system no longer has control over
the passwords. Although the passwords are encrypted, anyone with a copy
of the password file can run fast encryption routines against it—encrypting
each word in a dictionary, for instance, and comparing the results against
the passwords. If the user has selected a password that is also a word in the
dictionary, the password is cracked. On sufficiently fast computers, or even
on clusters of slow computers, stich a comparison may take only a few hours.
Furthermore, because UNIX systems use a well-known encryption algorithm,
a cracker might keep a cache of passwords that have been cracked previously.
For these reason, new versions of UNIX store the encrypted password entries in
a file readable only by the superuser. The programs that compare a presented
password to the stored password run se tu id to root; so they can read this file,
but other users cannot. They also include a "salt," or recorded random number,
in the encryption algorithm. The salt is added to the password to ensure that
if two plaintext passwords are the same, they result in different ciphertexts.

Another weakness in the UNIX password methods is that many UNIX
systems treat only the first eight characters as significant. It is therefore
extremely important for users to take advantage of the available password
space. To avoid the dictionary encryption method, some systems disallow the
use of dictionary words as passwords. A good technique is to generate your
password by using the first letter of each word of an easily remembered phrase
using both upper and lower characters with a number or punctuation mark
thrown in for good measure. For example, the phrase "My mother's name is
Katherine" might yield the password "Mmn.isK!'". The password is hard to
crack but easy for the user to remember.

15.5.4 One-Time Passwords

To avoid the problems of password sniffing and shoulder surfing, a system
could use a set of paired passwords. When a session begins, the system
randomly selects and presents one part of a password pair; the user must
supply the other part. In this system, the user is challenged and must respond
with the correct answer to that challenge.

This approach can be generalized to the use of an algorithm as a password.
The algorithm might be an integer function, for example. The system selects a
random integer and presents it to the user. The user applies the function and
replies with the correct result. The system also applies the function. If the two
results match, access is allowed.

Such algorithmic passwords are not susceptible to reuse; that is, a user can
type in a password, and no entity intercepting that password will be able to
reuse it. In this variation, the system and the user share a secret. The secret is
never transmitted over a medium that allows exposure. Rather, the secret is
used as input to the function, along with a shared seed. A seed is a random
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number or alphanumeric sequence. The seed is the authentication challenge
from the computer. The secret and the seed are used as input to the function
/(secret, seed). The result of this function is transmitted as the password to the
computer. Because the computer also knows the secret and the seed, it can
perform the same computation. If the results match, the user is authenticated.
The next time the user needs to be authenticated, another seed is generated,
and the same steps ensue. This time, the password is different.

In this one-time password system, the password is different in each
instance. Anyone capturing the password from one session and trying to reuse
it in another session will fail. One-time passwords are among the only ways to
prevent improper authentication due to password exposure.

One-time password systems are implemented in various ways. Commer-
cial implementations, such as SecurlD, use hardware calculators. Most of these
calculators are shaped like a credit card, a key-chain dangle, or a USB device;
they include a display and may or may not also have a keypad. Some use
the current time as the random seed. Others require that the user enters the
shared secret, also known as a personal identification number or PIN, on the
keypad. The display then shows the one-time password. The use of both a
one-time password generator and a PIN is one form of two-factor authentica-
tion. Two different types of components are needed in this case. Two-factor
authentication offers far better authentication protection than single-factor
authentication.

Another variation on one-time passwords is the use of a code book, or
one-time pad, which is a list of single-use passwords. In this method, each
password on the list is used, in order, once, and then is crossed out or erased.
The commonly used S/Key system uses either a software calculator or a code
book based on these calculations as a source of one-time passwords. Of course,
the user must protect his code book.

15.5.5 Biometrics

Another variation on the use of passwords for authentication involves the use
of biometric measures. Palm- or hand-readers are commonly used to secure
physical access—for example, access to a data center. These readers match
stored parameters against what is being read from hand-reader pads. The
parameters can include a temperature map, as well as finger length, finger
width, and line patterns. These devices are currently too large and expensive
to be used for normal computer authentication.

Fingerprint readers have become accurate and cost-effective and should
become more common in the future. These devices read your finger's ridge
patterns and convert them into a sequence of numbers. Over time, they can
store a set of sequences to adjust for the location of the finger on the reading
pad and other factors. Software can then scan a finger on the pad and compare
its features with these stored sequences to determine if the finger on the pad is
the same as the stored one. Of course, multiple users can have profiles stored,
and the scanner can differentiate among them. A very accurate two-factor
authentication scheme can result from requiring a password as well as a user
name and fingerprint scan. If this information is encrypted in transit, the system
can be very resistant to spoofing or replay attack.
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Multi-factor authentication is better still. Consider how strong authentica-
tion can be with a USB device that must be plugged into the system, a PIN, and
a fingerprint scan. Except for the user's having to place her finger on a pad and
plug the USB into the system, this authentication method is no less convenient
that using normal passwords. Recall, though, that strong authentication by
itself is not sufficient to guarantee the ID of the user. An authenticated session
can still be hijacked, if it is not encrypted.

15.6 Implementing Security Defenses

Just as there are myriad threats to system and network security, there are many
security solutions. The solutions run the gamut from improved user education,
through technology, to writing bug-free software. Most security professionals
subscribe to the theory of defense in depth, which states that more layers
of defense are better than fewer layers. Of course, this theory applies to any
kind of security. Consider the security of a house without a door lock, with
a door lock, and with a lock and an alarm. In this section, we look at the
major methods, tools, and techniques that can be used to improve resistance
to threats.

15.6.1 Security Policy

The first step toward improving the security of any aspect of computing is to
have a security policy. Policies vary widely but generally include a statement
of what is being secured. For example, a policy might state that all outside-
accessible applications must have a code review before being deployed, or that
users should not share their passwords, or that all connection points between a
company and the outside must have port scans run every six months. Without
a policy in place, it is impossible for users and administrators to know what
is permissible, what is required, and what is not allowed. The policy is a road
map to security, and if a site is trying to move from less secure to more secure,
it needs a map to know how to get there.

Once the security policy is in place, the people it affects should know it
well. It should be their guide. The policy should also be a living document
that is reviewed and updated periodically to ensure that it is still pertinent and
still followed.

15.6.2 Vulnerability Assessment

How can we determine whether a security policy has been correctly imple-
mented? The best way is to execute a vulnerability assessment. Such assess-
ments can cover broad ground, from social engineering through risk assess-
ment to port scans. For example, risk assessment endeavors to value the assets
of the entity in question (a program, a management team, a system, or a
facility) and determine the odds that a security incident will affect the entity
and decrease its value. When the odds of suffering a loss and the amount of the
potential loss are known, a value can be placed on trying to secure the entity.

The core activity of most vulnerability assessments is a penetration test,
in which the entity is scanned for known vulnerabilities. Because this book is
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concerned with operating systems and the software that runs on them, we will
concentrate on those aspects.

Vulnerability scans typically are done at times when computer use is
relatively low, to minimize their impact. When appropriate, they are done on
test systems rather than production systems because they can induce unhappy
behavior from the target systems or network devices.

A scan within an individual system can check a variety of aspects of the
system:

• Short or easy-to-guess passwords

• Unauthorized privileged programs, such as setuid programs

• Unauthorized programs in system directories

• Unexpectedly long-running processes

• Improper directory protections on user and system directories

• Improper protections on system data files, such as the password file, device
drivers, or the operating-system kernel itself

• Dangerous entries in the program search path (for example, the Trojan
horse discussed in Section 15.2.1)

• Changes to system programs detected with checksum values

• Unexpected or hidden network daemons

Any problems found by a security scan can be either fixed automatically or
reported to the managers of the system.

Networked computers are much more susceptible to security attacks than
are standalone systems. Rather than attacks from a known set of access
points, such as directly connected terminals, we face attacks from an unknown
and large set of access points—a potentially severe security problem. To a
lesser extent, systems connected to telephone lines via modems are also more
exposed.

In fact, the U.S. government considers a system to be only as secure as its
most far-reaching connection. For instance, a top-secret system may be accessed
only from within a building also considered top-secret. The system loses its top-
secret rating if any form of communication can occur outside that environment.
Some government facilities take extreme security precautions. The connectors
that plug a terminal into the secure computer are locked in a safe in the office
when the terminal is not in use. A person must have proper ID to gain access to
the building and her office, must know a physical lock combination, and must
know authentication information for the computer itself to gain access to the
computer—an example of multi-factor authentication.

Unfortunately for systems administrators and computer-security profes-
sionals, it is frequently impossible to lock a machine in a room and disallow all
remote access. For instance, the Internet network currently connects millions of
computers. It is becoming a mission-critical, indispensable resource for many
companies and individuals. If you consider the Internet a club, then, as in any
club with millions of members, there are many good members and some bad
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members. The bad members have many tools they can use to attempt to gain
access to the interconnected computers, just as Morris did with his worm.

Vulnerability scans can be applied to networks to address some of the
problems with network security. The scans search a network for ports that
respond to a request. If services are enabled that should not be, access to them
can be blocked, or they can be disabled. The scans then determine the details
of the application listening on that port and try to determine if each has any
known vulnerabilities. Testing those vulnerabilities can determine if the system
is misconfigured or is lacking needed patches.

Finally, though, consider the use of port scanners in the hands of a cracker
rather than someone trying to improve security. These tools could help crackers
find vulnerabilities to attack. (Fortunately, it is possible to detect port scans
through anomaly detection, as we discuss next.) It is a general challenge to
security that the same tools can be used for good and for harm. In fact, some
people advocate security through obscurity, stating that tools should not be
written to test security so that security holes will be harder to find (and exploit).
Others believe that this approach to security is not a valid one, pointing out,
for example, that crackers could write their own tools. It seems reasonable that
security through obscurity be considered one of the layers of security only so
long as it is not the only layer. For example, a company could publish its entire
network configuration information; but keeping that information secret makes
it harder for intruders to know what to attack or to determine what might be
detected. Even here, though, a company assuming that such information will
remain a secret has a false sense of security.

15.6.3 Intrusion Detection

Securing systems and facilities is intimately linked to intrusion detection. Intru-
sion detection, as its name suggests, strives to detect attempted or successful
intrusions into computer systems and to initiate appropriate responses to the
intrusions. Intrusion detection encompasses a wide array of techniques that
vary on a number of axes. These axes include:

• The time that detection occurs. Detection can occur in real time (while the
intrusion is occurring) or after the fact.

• The types of inputs examined to detect intrusive activity. These may
include user-shell commands, process system calls, and network packet
headers or contents. Some forms of intrusion might be detected only by
correlating information from several such sources.

• The range of response capabilities. Simple forms of response include
alerting an administrator to the potential intrusion or somehow halting
the potentially intrusive activity—for example, killing a process engaged
in apparently intrusive activity. In a sophisticated form of response, a
system might transparently divert an intruder's activity to a honeypot—
a false resource exposed to the attacker. The resource appears real to the
attacker and enables the system to monitor and gain information about the
attack.

These degrees of freedom in the design space for detecting intrusions have
yielded a wide range of solutions, known as intrusion-detection systems
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(IDSs) and intrusion-prevention systems (IDPs). IDS systems raise an alarm
when an intrusion is detected, while IDP systems act as routers, passing traffic
unless an intrusion is detected (at which point that traffic is blocked).

But just what constitutes an intrusion? Defining a suitable specification of
intrusion turns out to be quite difficult, and thus automatic IDSs and IDPs today
typically settle for one of two less ambitious approaches. In the first, called
signature-based detection, system input or network traffic is examined for
specific behavior patterns (or signatures) known to indicate attacks. A simple
example of signature-based detection is scanning network packets for the string
/etc/passwd/ targeted for a UNIX system. Another example is virus-detection
software, which scans binaries or network packets for known viruses.

The second approach, typically called anomaly detection, attempts
through various techniques to detect anomalous behavior within computer
systems. Of course, not all anomalous system activity indicates an intrusion,
but the presumption is that intrusions often induce anomalous behavior. An
example of anomaly detection is monitoring system calls of a daemon process
to detect whether the system-call behavior deviates from normal patterns,
possibly indicating that a buffer overflow has been exploited in the daemon
to corrupt its behavior. Another example is monitoring shell commands to
detect anomalous commands for a given user or detecting an anomalous login
time for a user, either of which may indicate that an attacker has succeeded in
gaining access to that user's account.

Signature-based detection and anomaly detection can be viewed as two
sides of the same coin: Signature-based detection attempts to characterize
dangerous behaviors and detects when one of these behaviors occurs, whereas
anomaly detection attempts to characterize normal (or non-dangerous) behav-
iors and detects when something other than these behaviors occurs.

These different approaches yield IDSs and IDPs with very different proper-
ties, however. In particular, anomaly detection can detect previously unknown
methods of intrusion (so-called zero-day attacks). Signature-based detection,
in contrast, will identify only known attacks that can be codified in a rec-
ognizable pattern. Thus, new attacks that were not contemplated when the
signatures were generated will evade signature-based detection. This problem
is well known to vendors of virus-detection software, who must release new
signatures with great frequency as new viruses are detected manually.

Anomaly detection is not necessarily superior to signature-based detection,
however. Indeed, a significant challenge for systems that attempt anomaly
detection is to benchmark "normal" system behavior accurately. If the system
is already penetrated when it is benchmarked, then the intrusive activity may
be included in the "normal" benchmark. Even if the system is benchmarked
cleanly, without influence from intrusive behavior, the benchmark must give
a fairly complete picture of normal behavior. Otherwise, the number of false
positives (false alarms) or, worse, false negatives (missed intrusions) will be
excessive.

To illustrate the impact of even a marginally high rate of false alarms,
consider an installation consisting of a hundred UNIX workstations from which
records of security-relevant events are recorded for purposes of intrusion
detection. A small installation such as this could easily generate a million
audit records per day. Only one or two might be worthy of an administrator's
investigation. If we suppose, optimistically, that each such attack is reflected in
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ten audit records, we can then roughly compute the rate of occurrence of audit
records reflecting truly intrusive activity as

o intrusions -. n records
dav intrusion
—i -3 = 0.00002.

1Q6 records
day

Interpreting this as a "probability of occurrence of intrusive records/' we
denote it as P(I); that is, event I is the occurrence of a record reflecting truly
intrusive behavior. Since P(/) = 0.00002, we also know that P( - I ) = l-P(I) =
0.99998. Now let A denote the raising of an alarm by an IDS. An accurate IDS
should maximize both P(l\A) and P(-.J |->A)—that is, the probabilities that an
alarm indicates an intrusion and that no alarm indicates no intrusion. Focusing
on P(I\A) for the moment, we can compute it using Bayes' theorem:

0.00002- P(A\I)

~~ 0.00002 • P{A\I) + 0.99998 • P{A\->I)

Now consider the impact of the false-alarm rate P(A|->J) on P(I\A). Even
with a very good true-alarm rate of P{A\l) — 0.8, a seemingly good false-
alarm rate of P(A\^I) = 0.0001 yields P(I\A) % 0.14. That is, fewer than one
in every seven alarms indicates a real intrusion! In systems where a security
administrator investigates each alarm, a high rate of false alarms—called a
"Christmas tree effect"—is exceedingly wasteful and will quickly teach the
administrator to ignore alarms.

This example illustrates a general principle for IDSs and IDPs: For usability,
they must offer an extremely low false-alarm rate. Achieving a sufficiently
low false-alarm rate is an especially serious challenge for anomaly-detection
systems, as mentioned, because of the difficulties of adequately benchmarking
normal system behavior. However, research continues to improve anomaly-
detection techniques. Intrusion detection software is evolving to implement
signatures, anomaly algorithms, and other algorithms and to combine the
results to arrive at a more accurate anomaly-detection rate.

15.6.4 Virus Protection
As we have seen, viruses can and do wreak havoc on systems. Protection from
viruses thus is an important security concern. Antivirus programs are often
used to provide this protection. Some of these programs are effective against
only particular known viruses. They work by searching all the programs on
a system for the specific pattern of instructions known to make up the virus.
When they find a known pattern, they remove the instructions, disinfecting
the program. Antivirus programs may have catalogs of thousands of viruses
for which they search.
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THE TRIPWIRE FILE SYSTEM

An example of an anomaly-detection tool is the Tripwire file system integrity-
checking tool for UNIX, developed at Purdue University. IVipwire operates on
the premise that many intrusions result in modification of system directories
and files. For example, an attacker might modify the system programs,
perhaps inserting copies with Trojan horses, or might insert new programs
into directories commonly found in user-shell search paths, Or an intruder
might remove system log'files to cover his tracks. Tripwire is a tool to
monitor file systems for added, deleted, or changed files and to alert system
administrators to these modifications.

The operation of Tripwire is controlled by a configuration file tv.conf ig
that enumerates the directories and files to be monitored for changes,
deletions, or additions. Each entry in this configuration file includes a
selection mask to specify the file attributes (inode attributes) that will be
monitored for changes. For example, the selection mask might specify that a
file's permissions be monitored but its access time be ignored. In addition, the
selection mask can instruct that the file be monitored for changes. Monitoring
the hash of a file for changes is as good as monitoring the file itself, but storing
hashes of files requires far less room than copying the files themselves.

When run initially, Tripwire takes as input the tw.config file and
computes a signature for each file or directory consisting of its monitored
attributes (inode attributes and hash values). These signatures are stored in a.
database. When run subsequently, Tripwire inputs both tw.config and the
previously stored database, recomputes the signature for each file or directory
named in tw.cprif ig, and compares this signature with the signature (if any)
in the previously computed database. Events reported to an administrator
include any monitored file or directory whose signature differs from that in
the database (a changed file), any file or directory in a monitored directory
for which a signature does hot exist in the database (an added file), and any
signature in .the.database.for. which, the corresponding file or directory no
longer exists (a deleted file).

Although effective for a wide class of attacks, Tripwire does have limita-
tions. Perhaps the most obvious is the need to protect the Tripwire program
and its associated files, especially the database file, from unauthorized mod-
ification. For this reason, Tripwire and its associated files should be stored
on some• tamper-proof medium, such as a write^protected disk or a secure
server where logins can be tightly controlled. Unfortunately, this makes it
less convenient to update the database after authorized updates to moni-
tored directories and files. A second limitation is that some security-relevant
files—for example, system log files—are supposed to change over time, and
Tripwire does not provide a way to distinguish between an authorized and
an unauthorized change. So, for example, an attack that modifies (without
deleting) a system log that would normally change anyway would escape
Tripwire's detection capabilities. The best Tripwire can do in this case is to
detect certain obvious inconsistencies (for example, if the log file shrinks). Free
and commercial versions of Tripwire are available from http://tripwire.org
and http://tripvvire.com.
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Both viruses and antivirus software continue to become more sophisticated.
Some viruses modify themselves as they infect other software to avoid the basic
pattern-match approach of antivirus programs. Antivirus programs in turn
now look for families of patterns rather than a single pattern to identify a virus.
In fact, some anti-virus programs implement a variety of detection algorithms.
They can decompress compressed viruses before checking for a signature.
Some also look for process anomalies. A process opening an executable file
for writing is suspicious, for example, unless it is a compiler. Another popular
technique is to run a program in a sandbox, which is a controlled or emulated
section of the system. The antivirus software analyzes the behavior of the code
in the sandbox before letting it run unmonitored. Some antivirus programs also
put up a complete shield rather than just scanning files within a file system.
They search boot sectors, memory, inbound and outbound e-mail, files as they
are downloaded, files on removable devices or media, and so on.

The best protection against computer viruses is prevention, or the practice
of safe computing. Purchasing unopened software from vendors and avoiding
free or pirated copies from public sources or disk exchange offer the safest
route to preventing infection. However, even new copies of legitimate software
applications are not immune to virus infection: There have been cases where
disgruntled employees of a software company have infected the master copies
of software programs to do economic harm to the company selling the software.
For macro viruses, one defense is to exchange Word documents in an alternative
file format called rich text format (RTF). Unlike the native Word format, RTF
does not include the capability to attach macros.

Another defense is to avoid opening any e-mail attachments from unknown
users. Unfortunately, history has shown that e-mail vulnerabilities appear as
fast as they are fixed. For example, in 2000, the love bug virus became very
widespread by appearing to be a love note sent by a friend of the receiver. Once
the attached Visual Basic script was opened, the virus propagated by sending
itself to the first users in the user's e-mail contact list. Fortunately, except
for clogging e-mail systems and users' inboxes, it was relatively harmless. It
did, however, effectively negate the defensive strategy of opening attachments
only from people known to the receiver. A more effective defense method is
to avoid opening any e-mail attachment that contains executable code. Some
companies now enforce this as policy by removing all incoming attachments
to e-mail messages.

Another safeguard, although it does not prevent infection, does permit
early detection. A user must begin by completely reformatting the hard disk,
especially the boot sector, which is often targeted for viral attack. Only secure
software is uploaded, and a signature of each program is taken via a secure
message-digest computation. The resulting filename and associated message-
digest list must then be kept free from unauthorized access. Periodically, or
each time a program is run, the operating system recomputes the signature and
compares it with the signature on the original list; any differences serve as a
warning of possible infection. This technique can be combined with others. For
example, a high-overhead antivirus scan, such as a sandbox, can be used; and
if a program passes the test, a signature can be created for it. If the signatures
match the next time the program is run, it does not need to be virus-scanned
again.
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15.6.5 Auditing, Accounting, and Logging .,

Auditing, accounting, and logging can decrease system performance, but they
are useful in several areas, including security. Logging can be general or
specific. All system-call executions can be logged for analysis of program
behavior (or misbehavior). More typically, suspicious events are logged.
Authentication failures and authorization failures can tell us quite a lot about
break-in attempts.

Accounting is another potential tool in a security administrator's kit. It
can be used to find performance changes, which in turn can reveal security
problems. One of the early UNIX computer break-ins was detected by Cliff
Stoll when he was examining accounting logs and spotted an anomaly.

15.7 Firewalling to Protect Systems and Networks

We turn next to the question of how a trusted computer can be connected
safely to an untrustworthy network. One solution is the use of a firewall to
separate trusted and untrusted systems. A firewall is a computer, appliance,
or router that sits between the trusted and the untrusted. A network firewall
limits network access between the two security domains and monitors and
logs all connections. It can also limit connections based on source or destination
address, source or destination port, or direction of the connection. For instance,
web servers use HTTP to communicate with web browsers. A firewall therefore
may allow only HTTP to pass from all hosts outside the firewall to the web
server within the firewall. The Morris Internet worm used the f inger protocol
to break into computers, so f inger would not be allowed to pass, for example.

In fact, a network firewall can separate a network into multiple domains.
A common implementation has the Internet as the untrusted domain; a semi-
trusted and semi-secure network, called the demilitarized zone (DMZ), as
another domain; and a company's computers as a third domain (Figure
15.10). Connections are allowed from the Internet to the DMZ computers and
from the company computers to the Internet but are not allowed from the
Internet or DMZ computers to the company computers. Optionally, controlled
communications may be allowed between the DMZ and one company computer
or more. For instance, a web server on the DMZ may need to query a database
server on the corporate network. With a firewall, however, access is contained,
and any DMZ systems that are broken into still are unable to access the company
computers.

Of course, a firewall itself must be secure and attack-proof; otherwise, its
ability to secure connections can be compromised. Furthermore, firewalls do
not prevent attacks that tunnel, or travel within protocols or connections that
the firewall allows. A buffer-overflow attack to a web server will not be stopped
by the firewall, for example, because the HTTP connection is allowed; it is the
contents of the HTTP connection that house the attack. Likewise, denial-of-
service attacks can affect firewalls as much as any other machines. Another
vulnerability of firewalls is spoofing, in which an unauthorized host pretends
to be an authorized host by meeting some authorization criterion. For example,
if a firewall rule allows a connection from a host and identifies that host by its
IP address, then another host could send packets using that same address and
be allowed through the firewall.
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Internet access from company's
computers

DMZ access from Internet access between DMZ and
company's computers

Figure 15.10 Domain separation via firewall.

In addition to the most common network firewalls, there are other, newer
kinds of firewalls, each with its pros and cons. A personal firewall is a
software layer either included with the operating system or added as an
application. Rather than limiting communication between security domains,
it limits communication to (and possibly from) a given host. A user could
add a personal firewall to her PC so that a Trojan horse would be denied
access to the network to which the PC is connected. An application proxy
firewall understands the protocols that applications speak across the network.
For example, SMTP is used for mail transfer. An application proxy accepts a
connection just as an SMTP server would and then initiates a connection to
the original destination SMTP server. It can monitor the traffic as it forwards
the message, watching for and disabling illegal commands, attempts to exploit
bugs, and so on. Some firewalls are designed for one specific protocol. An
XML firewall, for example, has the specific purpose of analyzing XML traffic
and blocking disallowed or malformed XML. System-call firewalls sit between
applications and the kernel, monitoring system-call execution. For example,
in Solaris 10, the "least privilege" feature implements a list of more than fifty
system calls that processes may or may not be allowed to make. A process that
does not need to spawn other processes can have that ability taken away, for
instance.

15.8 Computer-Security Classifications

The U.S. Department of Defense Trusted Computer System Evaluation Criteria
specify four security classifications in systems: A, B, C, and D. This specification
is widely used to determine the security of a facility and to model security
solutions, so we explore it here. The lowest-level classification is division D, or
minimal protection. Division D includes only one class and is used for systems
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that have failed to meet the requirements of any of the other security classes.
For instance, MS-DOS and Windows 3.1 are in division D.

Division C, the next level of security, provides discretionary protection and
accountability of users and their actions through the use of audit capabilities.
Division C has two levels: Cl and C2. A Cl-class system incorporates some
form of controls that allow users to protect private information and to
keep other users from accidentally reading or destroying their data. A Cl
environment is one in which cooperating users access data at the same levels
of sensitivity. Most versions of UNIX are Cl class.

The sum total of all protection systems within a computer system (hard-
ware, software, firmware) that correctly enforce a security policy is known as a
trusted computer base (TCB). The TCB of a Cl system controls access between
users and files by allowing the user to specify and control sharing of objects
by named individuals or defined groups. In addition, the TCB requires that the
users identify themselves before they start any activities that the TCB is expected
to mediate. This identification is accomplished via a protected mechanism or
password; the TCB protects the authentication data so that they are inaccessible
to unauthorized users.

A C2-class system adds an individual-level access control to the require-
ments of a Cl system. For example, access rights of a file can be specified
to the level of a single individual. In addition, the system administrator can
selectively audit the actions of any one or more users based on individual
identity. The TCB also protects itself from modification of its code or data
structures. In addition, no information produced by a prior user is available
to another user who accesses a storage object that has been released back to
the system. Some special, secure versions of UNIX have been certified at the C2
level.

Division-B mandatory-protection systems have all the properties of a class-
C2 system; in addition, they attach a sensitivity label to each object. The Bl-class
TCB maintains the security label of each object in the system; the label is used
for decisions pertaining to mandatory access control. For example, a user
at the confidential level could not access a file at the more sensitive secret
level. The TCB also denotes the sensitivity level at the top and bottom of each
page of any human-readable output. In addition to the normal user-name-
password authentication information, the TCB also maintains the clearance
and authorizations of individual users and will support at least two levels of
security. These levels are hierarchical, so that a user may access any objects
that carry sensitivity labels equal to or lower than his security clearance. For
example, a secret-level user could access a file at the confidential level in the
absence of other access controls. Processes are also isolated through the use of
distinct address spaces.

A B2-class system extends the sensitivity labels to each system resource,
such as storage objects. Physical devices are assigned minimum and maximum
security levels that the system uses to enforce constraints imposed by the
physical environments in which the devices are located. In addition, a B2
system supports covert channels and the auditing of events that could lead to
the exploitation of a covert channel.

A B3-class system allows the creation of access-control lists that denote
users or groups not granted access to a given named object. The TCB also
contains a mechanism to monitor events that may indicate a violation of
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security policy. The mechanism notifies the security administrator a^id, if
necessary, terminates the event in the least disruptive manner.

The highest-level classification is division A. Architecturally, a class-Al
system is functionally equivalent to a B3 system, but it uses formal design
specifications and verification techniques, granting a high degree of assurance
that the TCB has been implemented correctly. A system beyond class Al might
be designed and developed in a trusted facility by trusted personnel.

The use of a TCB merely ensures that the system can enforce aspects of a
security policy; the TCB does not specify what the policy should be. Typically,
a given computing environment develops a security policy for certification
and has the plan accredited by a security agency, such as the National
Computer Security Center. Certain computing environments may require other
certification, such as that supplied by TEMPEST, which guards against electronic
eavesdropping. For example, a TEMPEST-certified system has terminals that
are shielded to prevent electromagnetic fields from escaping. This shielding
ensures that equipment outside the room or building where the terminal is
housed cannot detect what information is being displayed by the terminal.

15.9 An Example: Windows XP

Microsoft Windows XP is a general-purpose operating system designed to
support a variety of security features and methods. In this section, we examine
features that Windows XP uses to perform security functions. For more
information and background on Windows XP, see Chapter 22.

The Windows XP security model is based on the notion of user accounts.
Windows XP allows the creation of any number of user accounts, which can
be grouped in any manner. Access to system objects can then be permitted or
denied as desired. Users are identified to the system by a unique security ID.
When a user logs on, Windows XP creates a security access token that includes
the security ID for the user, security IDs for any groups of which the user is
a member, and a list of any special privileges that the user has. Examples
of special privileges include backing up files and directories, shutting down
the computer, logging on interactively, and changing the system clock. Every
process that Windows XP runs on behalf of a user will receive a copy of the
access token. The system uses the security IDs in the access token to permit or
deny access to system objects whenever the user, or a process on behalf of the
user, attempts to access the object. Authentication of a user account is typically
accomplished via a user name and password, although the modular design of
Windows XP allows the development of custom authentication packages. For
example, a retinal (or eye) scanner might be used to verify that the user is who
she says she is.

Windows XP uses the idea of a subject to ensure that programs run by a
user do not get greater access to the system than the user is authorized to have.
A subject is used to track and manage permissions for each program that a
user runs; it is composed of the user's access token and the program acting
on behalf of the user. Since Windows XP operates with a client-server model,
two classes of subjects are used to control access: simple subjects and server
subjects. An example of a simple subject is the typical application program
that a user executes after she logs on. The simple subject is assigned a security



15.9 An Example: Windows XP 603

context based on the security access token of the user. A server subject is a
process implemented as a protected server that uses the security context of the
client when acting on the client's behalf.

As mentioned in Section 15.7, auditing is a useful security technique.
Windows XP has built-in auditing that allows many common security threats
to be monitored. Examples include failure auditing for login and logoff events
to detect random password break-ins, success auditing for login and logoff
events to detect login activity at strange hours, success and failure write-access
auditing for executable files to track a virus outbreak, and success and failure
auditing for file access to detect access to sensitive files.

Security attributes of an object in Windows XP are described by a security
descriptor. The security descriptor contains the security ID of the owner of
the object (who can change the access permissions), a group security ID used
only by the POSIX subsystem, a discretionary access-control list that identifies
which users or groups are allowed (and which are not allowed) access, and
a system access-control list that controls which atiditing messages the system
will generate. For example, the security descriptor of the file foo.bar might have
owner avi and this discretionary access-control list:

• avi—all access

• group cs—read-write access

• user cliff—no access

In addition, it might have a system access-control list of audit writes by
everyone.

An access-control list is composed of access-control entries that contain
the security ID of the individual and an access mask that defines all possible
actions on the object, with a value of AccessAUowed or AccessDenied for
each action. Files in Windows XP may have the following access types: Read-
Data, WriteData, AppendData, Execute, ReadExtendedAttribute, Write-
ExtendedAttribute, ReadAttributes, and Wri teAttr ibutes . We can see
how this allows a fine degree of control over access to objects.

Windows XP classifies objects as either container objects or noncontainer
objects. Container objects, such as directories, can logically contain other
objects. By default, when an object is created within a container object, the new
object inherits permissions from the parent object. Similarly, if the user copies a
file from one directory to a new directory, the file will inherit the permissions of
the destination directory. Noncontainer objects inherit no other permissions.
Furthermore, if a permission is changed on a directory, the new permissions
do not automatically apply to existing files and subdirectories; the user may
explicitly apply them if she so desires.

The system administrator can prohibit printing to a printer on the system
for all or part of a day and can use the Windows XP Performance Monitor to
help her spot approaching problems. In general, Windows XP does a good job
of providing features to help ensure a secure computing environment. Many of
these features are not enabled by default, however, which may be one reason
for the myriad security breaches on Windows XP systems. Another reason is
the vast number of services Windows XP starts at system boot time and the
number of applications that typically are installed on a Windows XP system.
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For a real multiuser environment, the system administrator should forrnulate
a security plan and implement it, using the features that Windows XP provides
and other security tools.

15.10 Summary

Protection is an internal problem. Security, in contrast, must consider both
the computer system and the environment—people, buildings, businesses,
valuable objects, and threats—within which the system is used.

The data stored in the computer system must be protected from unautho-
rized access, malicious destruction or alteration, and accidental introduction of
inconsistency. It is easier to protect against accidental loss of data consistency
than to protect against malicious access to the data. Absolute protection of the
information stored in a computer system from malicious abuse is not possible;
but the cost to the perpetrator can be made sufficiently high to deter most, if
not all, attempts to access that information without proper authority.

Several types of attacks can be launched against programs and against
individual computers or the masses. Stack- and buffer-overflow techniques
allow successful attackers to change their level of system access. Viruses and
worms are self-perpetuating, sometimes infecting thousands of computers.
Denial-of-service attacks prevent legitimate use of target systems.

Encryption limits the domain of receivers of data, while authentication
limits the domain of senders. Encryption is used to provide confidentiality
of data being stored or transferred. Symmetric encryption requires a shared
key, while asymmetric encryption provides a public key and a private key.
Authentication, when combined with hashing, can prove that data have not
been changed.

User authentication methods are used to identify legitimate users of a
system. In addition to standard user-name and password protection, several
authentication methods are used. One-time passwords, for example, change
from session to session to avoid replay attacks. Two-factor authentication
requires two forms of authentication, such as a hardware calculator with an
activation PIN. Multi-factor authentication uses three or more forms. These
methods greatly decrease the chance of authentication forgery.

Methods of preventing or detecting security incidents include intrusion-
detection systems, antivirus software, auditing and logging of system events,
monitoring of system software changes, system-call monitoring, and firewalls,.

Exercises

15.1 Buffer-overflow attacks can be avoided by adopting a better program-
ming methodology or by using special hardware support. Discuss these
solutions.

15.2 A password may become known to other users in a variety of \vays. Is
there a simple method for detecting that such an event has occurred?
Explain your answer.
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15.3 The list of all passwords is kept within the operating system. Thus,
if a user manages to read this list, password protection is no longer
provided. Suggest a scheme that will avoid this problem. (Hint: Use
different internal and external representations.)

15.4 What is the purpose of using a "salt" along with the user-provided
password? Where should the "salt" be stored, and how should it be
used?

15.5 An experimental addition to UNIX allows a user to connect a watchdog
program to a file. The watchdog is invoked whenever a program
requests access to the file. The watchdog then either grants or denies
access to the file. Discuss two pros and two cons of using watchdogs
for security.

15.6 The UNIX program COPS scans a given system for possible security
holes and alerts the user to possible problems. What are two potential
hazards of using such a system for security? How can these problems
be limited or eliminated?

15.7 Discuss a means by which managers of systems connected to the
Internet could have designed their systems to limit or eliminate the
damage done by a worm. What are the drawbacks of making the change
that you suggest?

15.8 Argue for or against the judicial sentence handed down against Robert
Morris/ Jr., for his creation and execution of the Internet worm discussed
in Section 15.3.1.

15.9 Make a list of six security concerns for a bank's computer system. For
each item on your list, state whether this concern relates to physical,
human, or operating-system security.

15.10 What are two advantages of encrypting data stored in the computer
system?

15.11 What commonly used computer programs are prone to man-in-the-
middle attacks? Discuss solutions for preventing this form of attack.

15.12 Compare symmetric and asymmetric encryption schemes, and discuss
under what circumstances a distributed system would use one or the
other.

15.13 Why doesn't D{kt,, N)(E{kd. N)(m)) provide authentication of the
sender? To what uses can such an encryption be put?

15.14 Discuss how the asymmetric encryption algorithm can be used to
achieve the following goals.

a. Authentication: the receiver knows that only the sender could
have generated the message.

b. Secrecy: only the receiver can decrypt the message.

c. Authentication and secrecy: only the receiver can decrypt the
message, and the receiver knows that only the sender could
have generated the message.
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15.15 Consider a system that generates 10 million audit records per day» Also
assume that there are on average 10 attacks per day on this system and
that each such attack is reflected in 20 records. If the intrusion-detection
system has a true-alarm rate of 0.6 and a false-alarm rate of 0.0005,
what percentage of alarms generated by the system correspond to real
intrusions?
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also as the Orange Book, describes a set of security levels and the features that
an operating system must have to qualify for each security rating. Reading
it is a good starting point for understanding security concerns. The Microsoft
Windows NT Workstation Resource Kit (Microsoft [1996]) describes the security
model of NT and how to use that model.

The RSA algorithm is presented in Rivest et al. [1978]. Information about
NIST's AES activities can be found at http://www.nist.gov/aes/; informa-
tion about other cryptographic standards for the United States can also
be found at that site. More complete coverage of SSL 3.0 can be found at
http://home.netscape.com/eng/ssl3/. In 1999, SSL 3.0 was modified slightly
and presented in an IETF Request for Comments (RFC) under the name TLS.

The example in Section 15.6.3 illustrating the impact of false-alarm rate
on the effectiveness of IDSs is based on Axelsson [1999]. A more complete
description of the swatch program and its use with syslog can be found
in Hansen and Atkins [1993]. The description of Tripwire in Section 15.6.5 is
based on Kim and Spafford [1993]. Research into system-call-based anomaly
detection is described in Forrest et al. [1996].





Part Six

Distributed

A distributed system is a collection of processors that do not share mem-
ory or a clock. Instead, each processor has its own local memory, and the
processors communicate with one another through communication lines
such as local-area or wide-area networks. The processors in a distributed
system vary in size and function. Such systems may include small hand-
held or real-time devices, persona! computers, workstations, and large
mainframe computer systems.

A distributed file system is a file-service system whose users, servers,
and storage devices are dispersed among the sites of a distributed
system. Accordingly, service activity has to be carried out across the
network; instead of a single centralized data repository, there are multiple
independent storage devices.

The benefits of a distributed system include giving users access to
the resources maintained by the system and thereby speeding up com-
putation and improving data availability and reliability. Because a system is
distributed, however, it must provide mechanisms for process synchro-
nization and communication, for dealing with the deadlock problem, and
for handling failures that are not encountered in a centralized system.





Distributed CHAPTER

Structures

A distributed system is a collection of processors that do not share memory
or a clock. Instead, each processor has its own local memory. The processors
communicate with one another through various communication networks,
such as high-speed buses or telephone lines. In this chapter, we discuss the
general structure of distributed systems and the networks that interconnect
them. We contrast the main differences in operating-system design between
these systems and centralized systems. In Chapter 17, we go on to discuss
distributed file systems. Then, in Chapter 18, we describe the methods
necessary for distributed operating systems to coordinate their actions.

CHAPTER OBJECTIVES

• To provide a high-level overview of distributed systems and the networks
that interconnect them.

• To discuss the general structure of distributed operating systems.

16.1 Motivation

A distributed system is a collection of loosely coupled processors intercon-
nected by a communication network. From the point of view of a specific
processor in a distributed system, the rest of the processors and their respective
resources are remote, whereas its own resources are local.

The processors in a distributed system may vary in size and function.
They may include small microprocessors, workstations, minicomputers, and
large general-purpose computer systems. These processors are referred to by a
number of names, such as sites, nodes, computers, machines, and hosts, depending
on the context in which they are mentioned. We mainly use site to indicate the
location of a machine and host to refer to a specific system at a site. Generally,
one host at one site, the server, has a resource that another host at another
site, the client (or user), would like to use. A general structure of a distributed
system is shown in Figure 16.1.
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site A site C

communication

« — client

site B

Figure 16.1 A distributed system.

There are four major reasons for building distributed systems: resource
sharing, computation speedup, reliability, and communication. In this section, we
briefly discuss each of them.

16.1.1 Resource Sharing

If a number of different sites (with different capabilities) are connected to one
another, then a user at one site may be able to use the resources available at
another. For example, a user at site A may be using a laser printer located at
site B. Meanwhile, a user at B may access a file that resides at A. In general,
resource sharing in a distributed system provides mechanisms for sharing
files at remote sites, processing information in a distributed database, printing
files at remote sites, using remote specialized hardware devices (such as a
high-speed array processor), and performing other operations.

16.1.2 Computation Speedup

If a particular computation can be partitioned into subcomputations that
can run concurrently, then a distributed system allows us to distribute
the subcomputations among the various sites; the subcomputations can be
run concurrently and thus provide computation speedup. In addition, if
a particular site is currently overloaded with jobs, some of them may be
moved to other, lightly loaded sites. This movement of jobs is called load
sharing. Automated load sharing, in which the distributed operating system
automatically moves jobs, is not yet common in commercial systems.

16.1.3 Reliability

If one site fails in a distributed system, the remaining sites can continue
operating, giving the system better reliability If the system is composed of
multiple large autonomous installations (that is, general-purpose computers),
the failure of one of them should not affect the rest. If, however, the system
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is composed of small machines, each of which is responsible for some crucial
system function (such as terminal character I/O or the file system), then a single
failure may halt the operation of the whole system. In general, with enough
redundancy (in both hardware and data), the system can continue operation,
even if some of its sites have failed.

The failure of a site must be detected by the system, and appropriate action
may be needed to recover from the failure. The system must no longer use the
services of that site. In addition, if the function of the failed site can be taken
over by another site, the system must ensure that the transfer of function occurs
correctly. Finally, when the failed site recovers or is repaired, mechanisms must
be available to integrate it back into the system smoothly. As we shall see in
Chapters 17 and 18, these actions present difficult problems that have many
possible solutions.

16.1.4 Communication

When several sites are connected to one another by a communication network,
the users at different sites have the opportunity to exchange information. At
a low level, messages are passed between systems, much as messages are
passed between processes in the single-computer message system discussed
in Section 3.4. Given message passing, all the higher-level functionality found
in standalone systems can be expanded to encompass the distributed system.
Such functions include file transfer, login, mail, and remote procedure calls
(RPCs).

The advantage of a distributed system is that these functions can be
carried out over great distances. Two people at geographically distant sites can
collaborate on a project, for example. By transferring the files of the project,
logging in to each other's remote systems to run programs, and exchanging
mail to coordinate the work, users minimize the limitations inherent in long-
distance work. We wrote this book by collaborating in such a manner.

The advantages of distributed systems have resulted in an industry-wide
trend toward downsizing. Many companies are replacing their mainframes
with networks of workstations or personal computers. Companies get a bigger
bang for the buck (that is, better functionality for the cost), more flexibility in
locating resources and expanding facilities, better user interfaces, and easier
maintenance.

16.2 Types of Distributed Operating Systems

In this section, we describe the two general categories of network-oriented
operating systems: network operating systems and distributed operating
systems. Network operating systems are simpler to implement but generally
more difficult for users to access and utilize than are distributed operating
systems, which provide more features.

16.2.1 Network Operating Systems

A network operating system provides an environment in which users, who are
aware of the multiplicity of machines, can access remote resources by either
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logging in to the appropriate remote machine or transferring data from the
remote machine to their own machines.

16.2.1.1 Remote Login

An important function of a network operating system is to allow users to log in
remotely. The Internet provides the telnet facility for this purpose. To illustrate
this facility, lets suppose that a user at Westminster College wishes to compute
on "cs.yale.edu," a computer that is located at Yale University. To do so, the
user must have a valid account on that machine. To log in remotely, the user
issues the command

telnet cs.yale.edu

This command results in the formation of a socket connection between the
local machine at Westminster College and the "cs.yale.edu" computer. After this
connection has been established, the networking software creates a transparent,
bidirectional link so that all characters entered by the user are sent to a process
on "cs.yale.edu" and all the output from that process is sent back to the user. The
process on the remote machine asks the user for a login name and a password.
Once the correct information has been received, the process acts as a proxy for
the user, who can compute on the remote machine just as any local user can.

16.2.1.2 Remote File Transfer

Another major function of a network operating system is to provide a
mechanism for remote file transfer from one machine to another. In such
an environment, each computer maintains its own local file system. If a user at
one site (say, "cs.uvm.edu") wants to access a file located on another computer
(say, "cs.yale.edu"), then the file must be copied explicitly from the computer
at Yale to the computer at the University of Vermont.

The Internet provides a mechanism for such a transfer with the file transfer
protocol (FTP) program. Suppose that a user on "cs.uvm.edu" wants to copy a
Java program Server. j ava that resides on "cs.yale.edu." The user must first
invoke the FTP program by executing

ftp cs.yale.edu

The program then asks the user for a login name and a password. Once
the correct information has been received, the user must connect to the
subdirectory where the file Server. j ava resides and then copy the file by
executing

get Server.Java

In this scheme, the file location is not transparent to the user; users must know-
exactly where each file is. Moreover, there is no real file sharing, because a user
can only copy a file from one site to another. Thus, several copies of the same
file may exist, resulting in a waste of space. In addition, if these copies are
modified, the various copies will be inconsistent.

Notice that, in our example, the user at the University of Vermont must
have login permission on "cs.yale.edu." FTP also provides a way to allow a user
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who does not have an account on the Yale computer to copy files remotely. This
remote copying is accomplished through the "anonymous FTP" method, which
works as follows. The file to be copied (that is, Server .Java) rmist be placed
in a special subdirectory (say, ftp) with the protection set to allow the public
to read the file. A user who wishes to copy the file uses the f tp command as
before. When the user is asked for the login name, the user supplies the name
"anonymous" and an arbitrary password.

Once anonymous login is accomplished, care must be taken by the system
to ensure that this partially authorized user does not access inappropriate
files. Generally, the user is allowed to access only those files that are in the
directory tree of user "anonymous." Any files placed here are accessible to
any anonymous users, subject to the usual file-protection scheme used on
that machine. Anonymous users, however, cannot access files outside of this
directory tree.

The FTP mechanism is implemented in a manner similar to telnet imple-
mentation. There is a daemon on the remote site that watches for connection
requests to the system's FTP port. Login authentication is accomplished, and
the user is allowed to execute commands remotely. Unlike the telnet daemon,
which executes any command for the user, the FTP daemon responds only to a
predefined set of file-related commands. These include the following:

• get : Transfer a file from the remote machine to the local machine.

• put: Transfer from the local machine to the remote machine.

• I s or d i r : List files in the current directory on the remote machine.

• cd: Change the current directory on the remote machine.

There are also various commands to change transfer modes (for binary or ASCII
files) and to determine connection status.

An important point about telnet and FTP is that they require the user to
change paradigms. FTP requires the user to know a command set entirely
different from the normal operating-system commands. Telnet requires a
smaller shift: The user must know appropriate commands on the remote
system. For instance, a viser on a Windows machine who telnets to a UNIX
machine must switch to UNIX commands for the duration of the telnet session.
Facilities are more convenient for users if they do not require the use of a
different set of commands. Distributed operating systems are designed to
address this problem.

16.2.2 Distributed Operating Systems

In a distributed operating system, the users access remote resources in the same
way they access local resources. Data and process migration from one site to
another is under the control of the distributed operating system.

16.2.2.1 Data Migration

Suppose a user on site A wants to access data (such as a file) that reside at site
B. The system can transfer the data by one of two basic methods. One approach
to data migration is to transfer the entire file to site A. From that point on, all
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access to the file is local. When the user no longer needs access to the *file, a
copy of the file (if it has been modified) is sent back to site B. Even if only a
modest change has been made to a large file, all the data must be transferred.
This mechanism can be thought of as an automated FTP system. This approach
was used in the Andrew file system, as we discuss in Chapter 17, but it was
found to be too inefficient.

The other approach is to transfer to site A only those portions of the file
that are actually necessary for the immediate task. If another portion is required
later, another transfer will take place. When the user no longer wants to access
the file, any part of it that has been modified must be sent back to site B. (Note
the similarity to demand paging.) The Sun Microsystems network file system
(NFS) protocol uses this method (Chapter 17), as do newer versions of Andrew.
The Microsoft SMB protocol (running on top of either TCP/IP or the Microsoft
NetBEUI protocol) also allows file sharing over a network. SMB is described in
Appendix C.6.1.

Clearly, if only a small part of a large file is being accessed, the latter
approach is preferable. If significant portions of the file are being accessed,
however, it is more efficient to copy the entire file. In both methods, data
migration includes more than the mere transfer of data from one site to another.
The system must also perform various data translations if the two sites involved
are not directly compatible (for instance, if they use different character-code
representations or represent integers with a different number or order of bits).

16.2.2.2 Computation Migration

In some circumstances, we may want to transfer the computation, rather than
the data, across the system; this approach is called computation migration. For
example, consider a job that needs to access various large files that reside at
different sites, to obtain a summary of those files. It would be more efficient to
access the files at the sites where they reside and return the desired results to
the site that initiated the computation. Generally, if the time to transfer the data
is longer than the time to execute the remote command, the remote command
should be used.

Such a computation can be carried out in different ways. Suppose that
process P wants to access a file at site A. Access to the file is carried out at
site A and could be initiated by an RPC. An RPC uses a datagram protocol
(UDP on the Internet) to execute a routine on a remote system (Section 3.6.2).
Process P invokes a predefined procedure at site A. The procedure executes
appropriately and then returns the results to P.

Alternatively, process P can send a message to site A. The operating system
at site A then creates a new process Q whose function is to carry out the
designated task. When process Q completes its execution, it sends the needed
result back to P via the message system. In this scheme, process P may execute
concurrently with process Q and, in fact, may have several processes running
concurrently on several sites.

Both methods could be used to access several files residing at various sites.
One RPC might result in the invocation of another RPC or even in the transfer
of messages to another site. Similarly, process Q could, during the course of its
execution, send a message to another site, which in turn would create another
process. This process might either send a message back to Q or repeat the cycle.
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16.2.2.3 Process Migration

A logical extension of computation migration is process migration. When a
process is submitted for execution, it is not always executed at the site at which
it is initiated. The entire process, or parts of it, may be executed at different
sites. This scheme may be used for several reasons:

• Load balancing. The processes (or subprocesses) may be distributed across
the network to even the workload.

• Computation speedup. If a single process can be divided into a number
of subprocesses that can run concurrently on different sites, then the total
process turnaround time can be reduced.

• Hardware preference. The process may have characteristics that make it
more suitable for execution on some specialized processor (such as matrix
inversion on an array processor, rather than on a microprocessor).

• Software preference. The process may require software that is available
at only a particular site, and either the software cannot be moved, or it is
less expensive to move the process.

• Data access. Just as in computation migration, if the data being used in the
computation are numerous, it may be more efficient to have a process run
remotely than to transfer all the data.

We use two complementary techniques to move processes in a computer
network. In the first, the system can attempt to hide the fact that the process has
migrated from the client. This scheme has the advantage that the user does not
need to code her program explicitly to accomplish the migration. This method
is usually employed for achieving load balancing and computation speedup
among homogeneous systems, as they do not need user input to help them
execute programs remotely.

The other approach is to allow (or require) the user to specify explicitly
how the process should migrate. This method is usually employed when the
process must be moved to satisfy a hardware or software preference.

You have probably realized that the Web has many aspects of a distributed-
computing environment. Certainly it provides data migration (between a web
server and a web client). It also provides computation migration. For instance,
a web client could trigger a database operation on a web server. Finally, with
Java, it provides a form of process migration: Java applets are sent from the
server to the client, where they are executed. A network operating system
provides most of these features, but a distributed operating system makes
them seamless and easily accessible. The result is a powerful and easy-to-use
facility—one of the reasons for the huge growth of the World Wide Web.

16.3 Network Structure

There are basically two types of networks: local-area networks (LAN) and
wide-area networks (WAN). The main difference between the two is the way in
which they are geographically distributed. Local-area networks are composed
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of processors distributed over small areas (such as a single building? or a
number of adjacent buildings), whereas wide-area networks are composed
of a number of autonomous processors distributed over a large area (such
as the United States). These differences imply major variations in the speed
and reliability of the communications network, and they are reflected in the
distributed operating-system design.

16.3.1 Local-Area Networks

Local-area networks emerged in the early 1970s as a substitute for large
mainframe computer systems. For many enterprises, it is more economical
to have a number of small computers, each with its own self-contained
applications, than to have a single large system. Because each small computer
is likely to need a full complement of peripheral devices (such as disks
and printers), and because some form of data sharing is likely to occur in
a single enterprise, it was a natural step to connect these small systems into a
network.

LANs, as mentioned, are usually designed to cover a small geographical
area (such as a single building or a few adjacent buildings) and are generally
used in an office environment. All the sites in such systems are close to one
another, so the communication links tend to have a higher speed and lower
error rate than do their counterparts in wide-area networks. High-quality
(expensive) cables are needed to attain this higher speed and reliability. It is
also possible to use the cable exclusively for data network traffic. Over longer
distances, the cost of using high-quality cable is enormous, and the exclusive
use of the cable tends to be prohibitive.

r
application server workstation

jr
workstation workstation

gateway

printer laptop file server

Figure 16.2 Local-area network.
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The most common links in a local-area network are twisted-pair and fiber-
optic cabling. The most common configurations are multiaccess bus, ring,
and star networks. Communication speeds range from 1 megabit per second,
for networks such as AppleTalk, infrared, and the new Bluetooth local radio
network, to 1 gigabit per second for gigabit Ethernet. Ten megabits per second
is most common and is the speed of lOBaseT Ethernet. 100BaseT Ethernet
requires a higher-quality cable but runs at 100 megabits per second and
is becoming common. Also growing is the use of optical-fiber-based FDDI
networking. The FDDI network is token-based and runs at over 100 megabits
per second.

A typical LAN may consist of a number of different computers (from
mainframes to laptops or PDAs), various shared peripheral devices (such
as laser printers and magnetic-tape drives), and one or more gateways
(specialized processors) that provide access to other networks (Figure 16.2). An
Ethernet scheme is commonly vised to construct LANs. An Ethernet network
has no central controller, because it is a multiaccess bus, so new hosts can be
added easily to the network. The Ethernet protocol is defined by the IEEE 802.3
standard.

16.3.2 Wide-Area Networks

Wide-area networks emerged in the late 1960s, mainly as an academic research
project to provide efficient communication among sites, allowing hardware and
software to be shared conveniently and economically by a wide community
of visers. The first WAN to be designed and developed was the Arpanet. Begun
in 1968, the Arpanet has grown from a four-site experimental network to a
worldwide network of networks, the Internet, comprising millions of computer
systems.

Because the sites in a WAN are physically distributed over a large geographi-
cal area, the communication links are, by default, relatively slow and unreliable.
Typical links are telephone lines, leased (dedicated data) lines, microwave links,
and satellite channels. These commvmication links are controlled by special
communication processors (Figure 16.3), which are responsible for defining
the interface through which the sites communicate over the network, as well
as for transferring information among the various sites.

For example, the Internet WAN provides the ability for hosts at geograph-
j ically separated sites to communicate with one another. The host computers
] typically differ from one another in type, speed, word length, operating system,
i and so on. Hosts are generally on LANs, which are, in turn, connected to
J the Internet via regional networks. The regional networks, such as NSFnet
\ in the northeast United States, are interlinked with routers (Section 16.5.2)
• to form the worldwide network. Connections between networks frequently
j use a telephone-system service called Tl, which provides a transfer rate of

1.544 megabits per second over a leased line. For sites requiring faster Internet
access, Tls are collected into multiple-Tl units that work in parallel to provide
more throughput. For instance, a T3 is composed of 28 Tl connections and

5 has a transfer rate of 45 megabits per second. The routers control the path
*• each message takes through the net. This routing may be either dynamic, to
: increase communication efficiency, or static, to reduce security risks or to allow
• communication charges to be computed.

3
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Figure 16.3 Communication processors in a wide-area network.

Other WANs use standard telephone lines as their primary means of com-
munication. Modems are devices that accept digital data from the computer
side and convert it to the analog signals that the telephone system uses. A
modem at the destination site converts the analog signal back to digital form,
and the destination receives the data. The UNIX news network, UUCP, allows
systems to communicate with each other at predetermined times, via modems,
to exchange messages. The messages are then routed to other nearby systems
and in this way either are propagated to all hosts on the network (public
messages) or are transferred to their destination (private messages). WANs are
generally slower than LANs; their transmission rates range from 1,200 bits
per second to over 1 megabit per second. UUCP has been superseded by PPP,
the point-to-point protocol. PPP functions over modem connections, allowing
home computers to be fully connected to the Internet.

16.4 Network Topology

The sites in a distributed system can be connected physically in a variety of
ways. Each configuration has advantages and disadvantages. We can compare
the configurations by using the following criteria:

• Installation cost. The cost of physically linking the sites in the system

• Communication cost. The cost in time and money to send a message from
site A to site B
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• Availability. The extent to which data can be accessed despite the failure
of some links or sites

The various topologies are depicted in Figure 16.4 as graphs whose nodes
correspond to sites. An edge from node A to node B corresponds to a direct
communication link between the two sites. In a fully connected network, each
site is directly connected to every other site. However, the number of links
grows as the square of the number of sites, resvilting in a huge installation cost.
Therefore, fully connected networks are impractical in any large system.

In a partially connected network, direct links exist between some—but
not all—pairs of sites. Hence, the installation cost of such a configuration is
lower than that of the fully connected network. However, if two sites A and
B are not directly connected, messages from one to the other must be routed
through a sequence of communication links. This requirement results in a
higher communication cost.

fully connected network partially connected network

tree-structured network star network

Figure 16.4 Network topology.
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If a communication link fails, messages that would have been transmitted
across the link must be rerouted. In some cases, another route through the
network may be found, so that the messages are able to reach their destination.
In other cases, a failure may mean that no connection exists between some pairs
of sites. When a system is split into two (or more) subsystems that lack any
connection between them, it is partitioned. Under this definition, a subsystem
(or partition) may consist of a single node.

The various partially connected network types include tree-structured
networks, ring networks, and star networks, as shown in Figure 16.4. They
have different failure characteristics and installation and communication costs.
Installation and communication costs are relatively low for a tree-structured
network. However, the failure of a single link in such a network can result
in the network's becoming partitioned. In a ring network, at least two links
must fail for partition to occur. Thus, the ring network has a higher degree of
availability than does a tree-structured network. However, the communication
cost is high, since a message may have to cross a large number of links. In a star
network, the failure of a single link results in a network partition, but one of the
partitions has only a single site. Such a partition can be treated as a single-site
failure. The star network also has a low communication cost, since each site is
at most two links away from every other site. However, if the central site fails,
every site in the system becomes disconnected.

16.5 Communication Structure

Now that we have discussed the physical aspects of networking, we turn to
the internal workings. The designer of a communication network must address
five basic issues:

• Naming and name resolution. How do two processes locate each other to
communicate?

• Routing strategies. How are messages sent through the network?

• Packet strategies. Are packets sent individually or as a sequence?

• Connection strategies. How do two processes send a sequence of mes-
sages?

• Contention. How do we resolve conflicting demands for the network's
use, given that it is a shared resource?

In the following sections, we elaborate on each of these issues.

16.5.1 Naming and Name Resolution

The first component of network communication is the naming of the systems
in the network. For a process at site A to exchange information with a process
at site B, each must be able to specify the other. Within a computer system,
each process has a process identifier, and messages may be addressed with the
process identifier. Because networked systems share no memory, a host within
the system initially has no knowledge about the processes on other hosts.
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To solve this problem, processes on remote systems are generally identified
by the pair <host name, identifiers-, where Iwst name is a name unique within
the network and identifier may be a process identifier or other unique number
within that host. A host name is usually an alphanumeric identifier, rather than
a number, to make it easier for users to specify. For instance, site A might have
hosts named homer, marge, bart, and lisa. Bart is certainly easier to remember
than is 12814831100.

Names are convenient for humans to use, but computers prefer numbers
for speed and simplicity. For this reason, there must be a mechanism to
resolve the host name into a host-id that describes the destination system
to the networking hardware. This resolve mechanism is similar to the name-
to-address binding that occurs during program compilation, linking, loading,
and execution (Chapter 8). In the case of host names, two possibilities exist.
First every host may have a data file containing the names and addresses of
all the other hosts reachable on the network (similar to binding at compile
time). The problem with this model is that adding or removing a host from the
network requires updating the data files on all the hosts. The alternative is to
distribute the information among systems on the network. The network must
then use a protocol to distribute and retrieve the information. This scheme is
like execution-time binding. The first method was the original method vised on
the Internet; as the Internet grew, however, it became untenable, so the second
method, the domain-name system (DNS), is now in use.

DNS specifies the naming structure of the hosts, as well as name-to-address
resolution. Hosts on the Internet are logically addressed with a multipart
name. Names progress from the most specific to the most general part of the
address, with periods separating the fields. For instance, bob.cs.brown.edu refers
to host bob in the Department of Computer Science at Brown University within
the domain edit. (Other top-level domains include com for commercial sites
and org for organizations, as well as a domain for each country connected
to the network, for systems specified by country rather than organization
type.) Generally, the system resolves addresses by examining the host name
components in reverse order. Each component has a name server—simply a
process on a system—that accepts a name and returns the address of the name
server responsible for that name. As the final step, the name server for the host
in question is contacted, and a host-id is returned. For our example system,
bob.cs.brown.edu, the following steps would be taken as result of a request made
by a process on system A to communicate with bob.cs.broion.edu:

1. The kernel of system A issues a request to the name server for the edu
domain, asking for the address of the name server for broum.edu. The
name server for the edu domain must be at a known address, so that it
can be queried.

2. The edit name server returns the address of the host on which the brown.edu
name server resides.

3. The kernel on system A then queries the name server at this address and
asks abovit cs.brown.edu,

4. An address is returned; and a request to that address for bob.cs.brozon.edu
now, finally, returns an Internet address host-id for that host (for example,
128.148.3L100).
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This protocol may seem inefficient, but local caches are usually kept at? each
name server to speed the process. For example, the edu name server would
have brown.edu in its cache and would inform system A that it could resolve
two portions of the name, returning a pointer to the cs.broum.edu name server.
Of course, the contents of these caches must be refreshed over time in case
the name server is moved or its address changes. In fact, this service is so
important that many optimizations have occurred in the protocol, as well as
many safeguards. Consider what would happen if the primary edu name server
crashed. It is possible that no edu hosts would be able to have their addresses
resolved, making them all unreachable! The solution is to use secondary,
back-up name servers that duplicate the contents of the primary servers.

Before the domain-name service was introduced, all hosts on the Internet
needed to have copies of a file that contained the names and addresses of each
host on the network. All changes to this file had to be registered at one site
(host SRI-NIC), and periodically all hosts had to copy the updated file from
SRI-NIC to be able to contact new systems or find hosts whose addresses had
changed. Under the domain-name service, each name-server site is responsible
for updating the host information for that domain. For instance, any host
changes at Brown University are the responsibility of the name server for
brown.edu and do not have to be reported anywhere else. DNS lookups will
automatically retrieve the updated information because brotvn.edu is contacted
directly. Within domains, there can be autonomous subdomains to distribute
further the responsibility for host-name and host-id changes.

Java provides the necessary API to design a program that maps IP names
to IP addresses. The program shown in Figure 16.5 is passed an IP name
(such as "bob.cs.brown.edu") on the command line and either outputs the
IP address of the host or returns a message indicating that the host name could
not be resolved. An InetAddress is a Java class representing an IP name or
address. The static method getByNameO belonging to the InetAddress class

/ * *
* Usage: Java DNSLookUp <IP name>

* i.e. Java DNSLookUp www.wiley.com
*/

public class DNSLookUp {
public static void main(String[] args) {

InetAddress hostAddress,-

try {
hostAddress = InetAddress.getByName(args[0]);
System.out.printIn(hostAddress.getHostAddress()

}
catch (UnknownHostException uhe) {

System.err.println("Unknown host: " + args [0]) ;

Figure 16.5 Java program illustrating a DNS lookup.
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is passed a string representation of an IP name, and it returns the corresponding
InetAddress. The program then invokes the getHostAddressQ method,
which internally uses DiVS to look up the IP address of the designated host.

Generally, the operating system is responsible for accepting from its
processes a message destined for <host name, identifier> and for transferring
that message to the appropriate host. The kernel on the destination host is then
responsible for transferring the message to the process named by the identifier.
This exchange is by no means trivial; it is described in Section 16.5.4.

16.5.2 Routing Strategies

When a process at site A wants to communicate with a process at site B, how
is the message sent? If there is only one physical path from A to B (such as
in a star or tree-structured network), the message must be sent through that
path. However, if there are multiple physical paths from A to B, then several
routing options exist. Each site has a routing table indicating the alternative
paths that can be used to send a message to other sites. The table may include
information about the speed and cost of the various communication paths,
and it may be updated as necessary, either manually or via programs that
exchange routing information. The three most common routing schemes are
fixed routing, virtual routing, and dynamic routing.

• Fixed routing. A path from A to B is specified in advance and does not
change unless a hardware failure disables it. Usually, the shortest path is
chosen, so that communication costs are minimized.

• Virtual routing. A path from A to B is fixed for the duration of one session.
Different sessions involving messages from A to B may use different paths.
A session could be as short as a file transfer or as long as a remote-login
period.

• Dynamic routing. The path used to send a message from site A to site
B is chosen only when a message is sent. Because the decision is made
dynamically, separate messages may be assigned different paths. Site A
will make a decision to send the message to site C; C, in turn, will decide
to send it to site D, and so on. Eventually, a site will deliver the message
to B. Usually, a site sends a message to another site on whatever link is the
least used at that particular time.

There are tradeoffs among these three schemes. Fixed routing cannot adapt
to link failures or load changes. In other words, if a path has been established
between A and B, the messages must be sent along this path, even if the path
is down or is used more heavily than another possible path. We can partially
remedy this problem by using virtual routing and can avoid it completely by
using dynamic routing. Fixed routing and virtual routing ensure that messages
from A to B will be delivered in the order in which they were sent. In dynamic
routing, messages may arrive out of order. We can remedy this problem by
appending a sequence number to each message.

Dynamic routing is the most complicated to set up and run; however, it is
the best way to manage routing in complicated environments. UNIX provides
both fixed routing for use on hosts within simple networks and dynamic
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routing for complicated network environments. It is also possible to mix the
two. Within a site, the hosts may just need to know how to reach the system that
connects the local network to other networks (such as company-wide networks
or the Internet). Such a node is known as a gateway. Each individual host has
a static route to the gateway, although the gateway itself uses dynamic routing
to reach any host on the rest of the network.

A router is the entity within the computer network responsible for routing
messages. A router can be a host computer with routing software or a
special-purpose device. Either way, a router must have at least two network
connections, or else it would have nowhere to route messages. A router decides
whether any given message needs to be passed from the network on which
it is received to any other network connected to the router. It makes this
determination by examining the destination Internet address of the message.
The router checks its tables to determine the location of the destination host, or
at least of the network to which it will send the message toward the destination
host. In the case of static routing, this table is changed only by manual update
(a new file is loaded onto the router). With dynamic routing, a routing protocol
is used between routers to inform them of network changes and to allow them
to update their routing tables automatically Gateways and routers typically
are dedicated hardware devices that run code out of firmware.

16.5.3 Packet Strategies

Messages are generally of variable length. To simplify the system design,
we commonly implement communication with fixed-length messages called
packets, frames, or datagrams. A communication implemented in one packet
can be sent to its destination in a connectionless message. A connectionless
message can be unreliable, in which case the sender has no guarantee that, and
cannot tell whether, the packet reached its destination. Alternatively, the packet
can be reliable; usually, in this case, a packet is returned from the destination
indicating that the packet arrived. (Of course, the return packet could be lost
along the way.) If a message is too long to fit within one packet, or if the packets
need to flow back and forth between the two communicators, a connection is
established to allow the reliable exchange of multiple packets.

16.5.4 Connection Strategies

Once messages are able to reach their destinations, processes can institute
communications sessions to exchange information. Pairs of processes that
want to communicate over the network can be connected in a number of ways.
The three most common schemes are circuit switching, message switching,
and packet switching.

• Circuit switching. If two processes want to communicate, a permanent
physical link is established between them. This link is allocated for the
duration of the communication session, and no other process can use
that link during this period (even if the two processes are not actively
communicating for a while). This scheme is similar to that used in the
telephone system. Once a communication line has been opened between
two parties (that is, party A calls party B), no one else can use this circuit



16.5 Communication Structure 627

until the communication is terminated explicitly (for example, when the
parties hang up).

• Message switching. If two processes want to communicate, a temporary
link is established for the duration of one message transfer. Physical
links are allocated dynamically among correspondents as needed and
are allocated for only short periods. Each message is a block of data
with system information—such as the source, the destination, and error-
correction codes (ECC)—that allows the communication network to deliver
the message to the destination correctly. This scheme is similar to the
post-office mailing system. Each letter is a message that contains both the
destination address and source (return) address. Many messages (from
different users) can be shipped over the same link.

• Packet switching. One logical message may have to be divided into a
number of packets. Each packet may be sent to its destination separately,
and each therefore must include a source and destination address with its
data. Furthermore, the various packets may take different paths through
the network. The packets must be reassembled into messages as they
arrive. Note that it is not harmful for data to be broken into packets,
possibly routed separately, and reassembled at the destination. Breaking
up an audio signal (say, a telephone communication), in contrast, could
cause great confusion if it was not done carefully.

There are obvious tradeoffs among these schemes. Circuit switching requires
substantial set-up time and may waste network bandwidth, but it incurs
less overhead for shipping each message. Conversely, message and packet
switching require less set-up time but incur more overhead per message. Also,
in packet switching, each message must be divided into packets and later
reassembled. Packet switching is the method most commonly used on data
networks because it makes the best use of network bandwidth.

16.5.5 Contention

Depending on the network topology, a link may connect more than two sites
in the computer network, and several of these sites may want to transmit
information over a link simultaneously. This situation occurs mainly in a ring or
multiaccess bus network. In this case, the transmitted information may become
scrambled. If it does, it must be discarded; and the sites must be notified about
the problem so that they can retransmit the information. If no special provisions
are made, this situation may be repeated, resulting in degraded performance.
Several techniques have been developed to avoid repeated collisions, including
collision detection and token passing.

• CSMA/CD. Before transmitting a message over a link, a site must listen
to determine whether another message is currently being transmitted
over that link; this technique is called carrier sense with multiple access
(CSMA). If the link is free, the site can start transmitting. Otherwise, it must
wait (and continue to listen) until the link is free. If two or more sites begin
transmitting at exactly the same time (each thinking that no other site is
using the link), then they will register a collision detection (CD) and will



628 Chapter 16 Distributed System Structures

stop transmitting. Each site will try again after some random time interval.
The main problem with this approach is that, when the system is very
busy, many collisions may occur, and thus performance may be degraded.
Nevertheless, CSMA/CD has been used successfully in the Ethernet system,
the most common local area network system. One strategy for limiting the
number of collisions is to limit the number of hosts per Ethernet network.
Adding more hosts to a congested network could result in poor network
throughput. As systems get faster, they are able to send more packets per
time segment. As a result, the number of systems per Ethernet network
generally is decreasing so that networking performance is kept reasonable.

• Token passing. A unique message type, known as a token, continuously
circulates in the system (usually a ring structure). A site that wants to
transmit information must wait until the token arrives. It removes the
token from the ring and begins to transmit its messages. When the site
completes its round of message passing, it retransmits the token. This
action, in turn, allows another site to receive and remove the token and to
start its message transmission. If the token gets lost, the system must then
detect the loss and generate a new token. It usually does that by declaring
an election to choose a unique site where a new token will be generated.
Later, in Section 18.6, we present one election algorithm. A token-passing
scheme has been adopted by the IBM and HP/ Apollo systems. The benefit
of a token-passing network is that performance is constant. Adding new
sites to a network may lengthen the waiting time for a token, but it will not
cause a large performance decrease, as may happen on Ethernet. On lightly
loaded networks, however, Ethernet is more efficient, because systems can
send messages at any time.

16.6 Communication Protocols

When we are designing a communication network, we must deal with the
inherent complexity of coordinating asynchronous operations communicating
in a potentially slow and error-prone environment. In addition, the systems on
the network must agree on a protocol or a set of protocols for determining
host names, locating hosts on the network, establishing connections, and
so on. We can simplify the design problem (and related implementation)
by partitioning the problem into multiple layers. Each layer on one system
communicates with the equivalent layer on other systems. Typically, each layer
has its own protocols, and communication takes place between peer layers
using a specific protocol. The protocols may be implemented in hardware or
software. For instance, Figure 16.6 shows the logical communications between
two computers, with the three lowest-level layers implemented in hardware.
Following the International Standards Organization (ISO), we refer to the layers
as follows:

1. Physical layer. The physical layer is responsible for handling both the
mechanical and the electrical details of the physical transmission of a bit
stream. At the physical layer, the communicating systems must agree on
the electrical representation of a binary 0 and 1, so that when data are
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Figure 16.6 Two computers communicating via the ISO network model.

sent as a stream of electrical signals, the receiver is able to interpret the
data properly as binary data. This layer is implemented in the hardware
of the networking device.

2. Data-link layer. The data-link layer is responsible for handling/ram<?s, or
fixed-length parts of packets, including any error detection and recovery
that occurred in the physical layer.

3. Network layer. The network layer is responsible for providing connec-
tions and for routing packets in the communication network, including
handling the addresses of outgoing packets, decoding the addresses
of incoming packets, and maintaining routing information for proper
response to changing load levels. Routers work at this layer.

4. Transport layer. The transport layer is responsible for low-level access
to the network and for transfer of messages between clients, including
partitioning messages into packets, maintaining packet order, controlling
flow, and generating physical addresses.

5. Session layer. The session layer is responsible for implementing sessions,
or process-to-process communication protocols. Typically, these protocols
are the actual communications for remote logins and for file and mail
transfers.

6. Presentation layer. The presentation layer is responsible for resolving the
differences in formats among the various sites in the network, including
character conversions and half duplex-full duplex modes (character
echoing).

7. Application layer. The application layer is responsible for interacting
directly with users. This layer deals with file transfer, remote-login
protocols, and electronic mail, as well as with schemas for distributed
databases.
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Figure 16.7 summarizes the ISO protocol stack—a set of cooperating
protocols—showing the physical flow of data. As mentioned, logically each
layer of a protocol stack communicates with the equivalent layer on other
systems. But physically, a message starts at or above the application layer and
is passed through each lower level in turn. Each layer may modify the message
and include message-header data for the equivalent layer on the receiving
side. Ultimately, the message reaches the data-network layer and is transferred
as one or more packets (Figure 16.8). The data-link layer of the target system
receives these data, and the message is moved up through the protocol stack;
it is analyzed, modified, and stripped of headers as it progresses. It finally
reaches the application layer for use by the receiving process.

The ISO model formalizes some of the earlier work done in network
protocols but was developed in the late 1970s and is currently not in widespread
use. Perhaps the most widely adopted protocol stack is the TCP/IP model, which
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Figure 16.7 The ISO protocol stack.
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Figure 16.8 An ISO network message.

has been adopted by virtually all Internet sites. The TCP/IP protocol stack
has fewer layers than does the ISO model. Theoretically, because it combines
several functions in each layer, it is more difficult to implement but more
efficient than ISO networking. The relationship between the ISO and TCP/IP
models is shown in Figure 16.9. The TCP/IP application layer identifies several
protocols in widespread use in the Internet, including HTTP, FTP, Telnet, DNS,
and SMTP. The transport layer identifies the unreliable, connectionless user
datagram protocol (UDP) and the reliable, connection-oriented transmission
control protocol (TCP). The Internet protocol (IP) is responsible for routing IP
datagrams through the Internet. The TCP/IP model does not formally identify
a link or physical layer, allowing TCP/IP traffic to run across any physical
network. In Section 16.9, we consider the TCP/IP model running over an
Ethernet network.

16.7 Robustness

A distributed system may suffer from various types of hardware failure. The
failure of a link, the failure of a site, and the loss of a message are the most
common types. To ensure that the system is robust, we must detect any of these
failures, reconfigure the system so that computation can continue, and recover
when a site or a link is repaired.

16.7.1 Failure Detection

In an environment with no shared memory, we are generally unable to
differentiate among link failure, site failure, and message loss. We can usually
detect only that one of these failures has occurred. Once a failure has been
detected, appropriate action must be taken. What action is appropriate depends
on the particular application.
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Figure 16.9 The ISO and TCP/IP protocol stacks.

To detect link and site failure, we use a handshaking procedure. Suppose
that sites A and B have a direct physical link between them. At fixed intervals,
the sites send each other an l-am-up message. If site A does not receive this
message within a predetermined time period, it can assume that site B has
failed, that the link between A and B has failed, or that the message from B
has been lost. At this point, site A has two choices. It can wait for another time
period to receive an l-am-up message from B, or it can send an Are-you-up?
message to B.

If time goes by and site A still has not received an l-am-up message, or if site
A has sent an Are-you-up? message and has not received a reply, the procedure
can be repeated. Again, the only conclusion that site A can draw safely is that
some type of failure has occurred.

Site A can try to differentiate between link failure and site failure by sending
an Are-you-up? message to B by another route (if one exists). If and when B
receives this message, it immediately replies positively. This positive reply tells
A that B is up and that the failure is in the direct link between them. Since we
do not know in advance how long it will take the message to travel from A to B
and back, we must use a time-out scheme. At the time A sends the Are-you-up?
message, it specifies a time interval during which it is willing to wait for the
reply from B. If A receives the reply message within that time interval, then it
can safely conclude that B is up. If not, however (that is, if a time-out occurs),
then A may conclude only that one or more of the following situations has
occurred:

• Site B is down.

• The direct link (if one exists) from A to B is down.



16.8 Design Issues 633

• The alternative path from A to B is down. *

• The message has been lost-

Site A cannot, however, determine which of these events has occurred.

16.7.2 Reconfiguration

Suppose that site A has discovered, through the mechanism described in the
previous section, that a failure has occurred. It must then initiate a procedure
that will allow the system to reconfigure and to continue its normal mode of
operation.

• If a direct link from A to B has failed, this information must be broadcast to
every site in the system, so that the various routing tables can be updated
accordingly.

• If the system believes that a site has failed (because that site can be reached
no longer), then all sites in the system must be so notified, so that they
will no longer attempt to use the services of the failed site. The failure of a
site that serves as a central coordinator for some activity (such as deadlock
detection) requires the election of a new coordinator. Similarly, if the failed
site is part of a logical ring, then a new logical ring must be constructed.
Note that, if the site has not failed (that is, if it is up but cannot be reached),
then we may have the undesirable situation where two sites serve as the
coordinator. When the network is partitioned, the two coordinators (each
for its own partition) may initiate conflicting actions. For example, if the
coordinators are responsible for implementing mutual exclusion, we may
have a situation where two processes are executing simultaneously in their
critical sections.

16.7.3 Recovery from Failure

When a failed link or site is repaired, it must be integrated into the system
gracefully and smoothly.

• Suppose that a link between A and B has failed. When it is repaired,
both A and B must be notified. We can accomplish this notification by
continuously repeating the handshaking procedure described in Section
16.7.1.

• Suppose that site B has failed. When it recovers, it must notify all other sites
that it is up again. Site B then may have to receive information from the
other sites to update its local tables; for example, it may need routing-table
information, a list of sites that are down, or undelivered messages and
mail. If the site has not failed but simply could not be reached, then this
information is still required.

16.8 Design Issues

Making the multiplicity of processors and storage devices transparent to the
users has been a key challenge to many designers. Ideally, a distributed system
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should look to its users like a conventional, centralized system. The1 user
interface of a transparent distributed system should not distinguish between
local and remote resources. That is, users should be able to access remote
resources as though these resources were local, and the distributed system
should be responsible for locating the resources and for arranging for the
appropriate interaction.

Another aspect of transparency is user mobility It would be convenient
to allow users to log into any machine in the system rather than forcing
them to use a specific machine. A transparent distributed system facilitates
user mobility by bringing over the user's environment (for example, home
directory) to wherever she logs in. Both the Andrew file system from CMU and
Project Athena from MET provide this functionality on a large scale; NFS can
provide it on a smaller scale.

Another design issue involves fault tolerance. We use the termfault tolerance
in a broad sense. Communication faults, machine failures (of type fail-stop),
storage-device crashes, and decays of storage media should all be tolerated to
some extent. A fault-tolerant system should continue to function, perhaps in
a degraded form, when faced with these failures. The degradation can be in
performance, in functionality, or in both. It should be proportional, however,
to the failures that cause it. A system that grinds to a halt when only a few of
its components fail is certainly not fault tolerant. Unfortunately, fault tolerance
is difficult to implement. Most commercial systems provide only limited fault
tolerance. For instance, the DEC VAX cluster allows multiple computers to share
a set of disks. If a system crashes, users can still access their information from
another system. Of course, if a disk fails, all systems will lose access. But in
this case, RAID can ensure continued access to the data even in the event of a
failure (Section 12.7).

Still another issue is scalability—the capability of a system to adapt to
increased service load. Systems have bounded resources and can become
completely saturated under increased load. For example, regarding a file
system, saturation occurs either when a server's CPU runs at a high utilization
rate or when disks are almost full. Scalability is a relative property, but it can be
measured accurately. A scalable system reacts more gracefully to increased load
than does a nonscalable one. First, its performance degrades more moderately;
and second, its resources reach a saturated state later. Even perfect design
cannot accommodate an ever-growing load. Adding new resources might solve
the problem, but it might generate additional indirect load on other resources
(for example, adding machines to a distributed system can clog the network
and increase service loads). Even worse, expanding the system can call for
expensive design modifications. A scalable system should have the potential
to grow without these problems. In a distributed system, the ability to scale
up gracefully is of special importance, since expanding the network by adding
new machines or interconnecting two networks is commonplace. In short, a
scalable design should withstand high service load, accommodate growth of
the user community, and enable simple integration of added resources.

Fault tolerance and scalability are related to each other. A heavily loaded
component can become paralyzed and behave like a faulty component. Also,
shifting the load from a faulty component to that component's backup can
saturate the latter. Generally, having spare resources is essential for ensuring
reliability as well as for handling peak loads gracefully An inherent advantage
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of a distributed system is a potential for fault tolerance and scalability because
of the multiplicity of resources. However, inappropriate design can obscure
this potential. Fault-tolerance and scalability considerations call for a design
demonstrating distribution of control and data.

Very large-scale distributed systems, to a great extent, are still only
theoretical. No magic guidelines ensure the scalability of a system. It is easier
to point out why current designs are not scalable. We next discuss several
designs that pose problems and propose possible solutions, all in the context
of scalability.

One principle for designing very large-scale systems is that the service
demand from any component of the system should be bounded by a constant
that is independent of the number of nodes in the system. Any service
mechanism whose load demand is proportional to the size of the system is
destined to become clogged once the system grows beyond a certain size.
Adding more resources will not alleviate such a problem. The capacity of this
mechanism simply limits the growth of the system.

Central control schemes and central resources should not be used to
build scalable (and fault-tolerant) systems. Examples of centralized entities are
central authentication servers, central naming servers, and central file servers.
Centralization is a form of functional asymmetry among machines constituting
the system. The ideal alternative is a functionally symmetric configuration; that
is, all the component machines have an equal role in the operation of the system,
and hence each machine has some degree of autonomy. Practically, it is virtually
impossible to comply with such a principle. For instance, incorporating diskless
machines violates functional symmetry, since the workstations depend on a
central disk. However, autonomy and symmetry are important goals to which
we should aspire.

The practical approximation of symmetric and autonomous configuration
is clustering, in which the system is partitioned into a collection of semi-
autonomous clusters. A cluster consists of a set of machines and a dedicated
cluster server. So that cross-cluster resource references are relatively infrequent,
each cluster server should satisfy requests of its own machines most of the time.
Of course, this scheme depends on the ability to localize resource references
and to place the component units appropriately. If the cluster is well balanced
—that is, if the server in charge suffices to satisfy all the cluster demands—it
can be used as a modular building block to scale up the system.

Deciding on the process structure of the server is a major problem in
the design of any service. Servers are supposed to operate efficiently in peak
periods, when hundreds of active clients need to be served simultaneously. A
single-process server is certainly not a good choice, since whenever a request
necessitates disk I/O, the whole service will be blocked. Assigning a process for
each client is a better choice; however, the expense of frequent context switches
between the processes must be considered. A related problem occurs because
all the server processes need to share information.

One of the best solutions for the server architecture is the use of lightweight
processes, or threads, which we discussed in Chapter 4. We can think of a group
of lightweight processes as multiple threads of control associated with some
shared resources. Usually, a lightweight process is not bound to a particular
client. Instead, it serves single requests of different clients. Scheduling of
threads can be preemptive or nonpreemptive. If threads are allowed to run
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to completion (nonpreemptive), then their shared data do not need «to be
protected explicitly. Otherwise, some explicit locking mechanism must be used.
Clearly, some form of lightweight-process scheme is essential if servers are to
be scalable.

16.9 An Example: Networking

We now return to the name-resolution issue raised in Section 16.5.1 and
examine its operation with respect to the TCP/IP protocol stack on the Internet.
We consider the processing needed to transfer a packet between hosts on
different Ethernet networks.

In a TCP/IP network, every host has a name and an associated 32-bit Internet
number (or host-id). Both of these strings must be unique; and so that the
name space can be managed, they are segmented. The name is hierarchical (as
explained in Section 16.5.1), describing the host name and then the organization
with which the host is associated. The host-id is split into a network number
and a host number. The proportion of the split varies, depending on the size of
the network. Once the Internet administrators assign a network number, the
site with that number is free to assign host-ids.

The sending system checks its routing tables to locate a router to send the
packet on its way. The routers use the network part of the host-id to transfer
the packet from its source network to the destination network. The destination
system then receives the packet. The packet may be a complete message, or it
may just be a component of a message, with more packets needed before the
message can be reassembled and passed to the TCP/UDP layer for transmission
to the destination process.

Now we know how a packet moves from its source network to its
destination. Within a network, how does a packet move from sender (host
or router) to receiver? Every Ethernet device has a unique byte number, called
the medium access control (MAC) address, assigned to it for addressing. Two
devices on a LAN communicate with each other only with this number. If a
system needs to send data to another system, the kernel generates an address
resolution protocol (ARP) packet containing the IP address of the destination
system. This packet is broadcast to all other systems on that Ethernet network.

A broadcast uses a special network address (usually, the maximum
address) to signal that all hosts should receive and process the packet. The
broadcast is not re-sent by gateways, so only systems on the local network
receive it. Only the system whose IP address matches the IP address of the ARP
request responds and sends back its MAC address to the system that initiated
the query. For efficiency, the host caches the IP-MAC address pair in an internal
table. The cache entries are aged, so that an entry is eventually removed from
the cache if an access to that system is not required in a given time. In this way,
hosts that are removed from a network are eventually forgotten. For added
performance, ARP entries for heavily used hosts may be hardwired in the ARP
cache.

Once an Ethernet device has announced its host-id and address, commu-
nication can begin. A process may specify the name of a host with which to
communicate. The kernel takes that name and determines the Internet number
of the target, using a DKS lookup. The message is passed from the application
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Figure 16.10 An Ethernet packet.

layer, through the software layers, and to the hardware layer. At the hardware
layer, the packet (or packets) has the Ethernet address at its start; a trailer
indicates the end of the packet and contains a checksum for detection of packet
damage (Figure 16.10). The packet is placed on the network by the Ethernet
device. The data section of the packet may contain some or all of the data of
the original message, but it may also contain some of the upper-level headers
that compose the message. In other words, all parts of the original message
must be sent from source to destination, and all headers above the 802.3 layer
(data-link layer) are included as data in the Ethernet packets.

If the destination is on the same local network as the source, the system
can look in its ARP cache, find the Ethernet address of the host, and place the
packet on the wire. The destination Ethernet device then sees its address in the
packet and reads in the packet, passing it up the protocol stack.

If the destination system is on a network different from that of the source,
the source system finds an appropriate router on its network and sends the
packet there. Routers then pass the packet along the WAN until it reaches its
destination netwrork. The router that connects the destination network checks
its ARP cache, finds the Ethernet number of the destination, and sends the
packet to that host. Through all of these transfers, the data-link-layer header
may change as the Ethernet address of the next router in the chain is used, but
the other headers of the packet remain the same until the packet is received
and processed by the protocol stack and finally passed to the receiving process
by the kernel.

16.10 Summary

A distributed system is a collection of processors that do not share memory or
a clock. Instead, each processor has its own local memory, and the processors
communicate with one another through various communication lines, such
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as high-speed buses and telephone lines. The processors in a distributed
system vary in size and function. They may include small microprocessors,
workstations, minicomputers, and large general-purpose computer systems.

The processors in the system are connected through a communication
network, which can be configured in a number of ways. The network may
be fully or partially connected. It may be a tree, a star, a ring, or a multiaccess
bus. The communication-network design must include routing and connection
strategies, and it must solve the problems of contention and security.

A distributed system provides the user with access to the resources
the system provides. Access to a shared resource can be provided by data
migration, computation migration, or process migration.

Protocol stacks, as specified by network layering models, massage the
message, adding information to it to ensure that it reaches its destination.
A naming system such as DNS must be used to translate from a host name
to a network address, and another protocol (such as ARP) may be needed
to translate the network number to a network device address (an Ethernet
address, for instance). If systems are located on separate networks, routers are
needed to pass packets from source network to destination network.

A distributed system may suffer from various types of hardware failure.
For a distributed system to be fault tolerant, it must detect hardware failures
and reconfigure the system. When the failure is repaired, the system must be
reconfigured again.

Exercises

16.1 What is the difference between computation migration and process
migration? Which is easier to implement, and why?

16.2 Contrast the various network topologies in terms of the following
attributes:

a. Reliability

b. Available bandwidth for concurrent communications

c. Installation cost

d. Load balance in routing responsibilities

16.3 Even though the ISO model of networking specifies seven layers of
functionality, most computer systems use fewer layers to implement a
network. Why do they use fewer layers? What problems could the use
of fewer layers cause?

16.4 Explain why doubling the speed of the systems on an Ethernet segment
may result in decreased network performance. What changes could
help solve this problem?

16.5 What are the advantages of using dedicated hardware devices for
routers and gateways? What are the disadvantages of using these
devices compared with using general-purpose computers?
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16.6 In what ways is using a name server better than using static host tables?
What problems or complications are associated with name servers?
What methods could you use to decrease the amount of traffic name
servers generate to satisfy translation requests?

16.7 Name servers are organized in a hierarchical manner. What is the
purpose of using a hierarchical organization?

16.8 Consider a network layer that senses collisions and retransmits imme-
diately on detection of a collision. What problems could arise with this
strategy? How could they be rectified?

16.9 The lower layers of the ISO network model provide datagram sendee,
with no delivery guarantees for messages. A transport-layer protocol
such as TCP is used to provide reliability. Discuss the advantages and
disadvantages of supporting reliable message delivery at the lowest
possible layer.

16.10 What are the implications of using a dynamic routing strategy on
application behavior? For what type of applications is it beneficial to
use virtual routing instead of dynamic routing?

16.11 Run the program shown in Figure 16.5 and determine the IP addresses
of the following host names:

• www.wiley.com

• www.cs.yale.edu

• www.javasoft.com

• www.westminstercollege.edu

• www.ietf.org

16.12 Consider a distributed system with two sites, A and B. Consider
whether site A can distinguish among the following:

a. B goes down.

b. The link between A and B goes down.

c. B is extremely overloaded and its response time is 100 times
longer than normal.

What implications does your answer have for recovery in distributed
systems?

16.13 The original HTTP protocol used TCP/IP as the underlying network
protocol. For each page, graphic, or applet, a separate TCP session was
constructed, used, and torn down. Because of the overhead of building
and destroying TCP/IP connections, performance problems resulted
from this implementation method. Would using UDP rather than TCP
be a good alternative? What other changes could you make to improve
HTTP performance?

16.14 Of what use is an address-resolution protocol? Why is it better to use
such a protocol than to make each host read each packet to determine
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that packet's destination? Does a token-passing network need such a
protocol? Explain your answer.

16.15 What are the advantages and the disadvantages of making the com-
puter network transparent to the user?
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Systems

In the previous chapter, we discussed network construction and the low-level
protocols needed for messages to be transferred between systems. Now we
examine one use of this infrastructure. A distributed file system (DFS) is
a distributed implementation of the classical time-sharing model of a file
system, where multiple users share files and storage resources (Chapter 11).
The purpose of a DFS is to support the same kind of sharing when the files are
physically dispersed among the sites of a distributed system.

In this chapter, we describe how a DFS can be designed and implemented.
First, we discuss common concepts on which DFSs are based. Then, we illustrate
our concepts by examining one influential DFS—the Andrew file system (AFS).

CHAPTER OBJECTIVES

• To explain the naming mechanism that provides location transparency and
independence.

• To describe the various methods for accessing distributed files.

• To contrast stateful and stateless distributed file servers.

• To show how replication of files on different machines in a is a useful
redundancy for improving availability, file replication

• To introduce the Andrew file system (AFS) as an example of a distributed
file system.

17.1 Background

As we noted in the preceding chapter, a distributed system is a collection
of loosely coupled computers interconnected by a communication network.
These computers can share physically dispersed files by using a distributed
file system (DFS). In this chapter, we use the term DFS to mean distributed
file systems in general, not the commercial Transarc DFS product. The latter is
referenced as Transarc DFS. Also, NFS refers to NFS version 3, unless otherwise
noted.

641
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To explain the structure of a DFS, we need to define the terms service, seroer,
and client. A service is a software entity running on one or more machines
and providing a particular type of function to clients. A server is the service
software running on a single machine. A client is a process that can invoke
a service using a set of operations that form its client interface. Sometimes a
lower-level interface is defined for the actual cross-machine interaction; it is
the intermachine interface.

Using this terminology, we say that a file system provides file services to
clients. A client interface for a file service is formed by a set of primitive file
operations, such as create a file, delete a file, read from a file, and write to a file.
The primary hardware component that a file server controls is a set of local
secondary-storage devices (usually, magnetic disks) on which files are stored
and from which they are retrieved according to the clients' requests.

A DFS is a file system whose clients, servers, and storage devices are
dispersed among the machines of a distributed system. Accordingly, service
activity has to be carried out across the network. Instead of a single centralized
data repository, the system frequently has multiple and independent storage
devices. As you will see in this text, the concrete configuration and imple-
mentation of a DFS may vary from system to system. In some configurations,
servers run on dedicated machines; in others, a machine can be both a server
and a client. A DFS can be implemented as part of a distributed operating
system or, alternatively, by a software layer whose task is to manage the
communication between conventional operating systems and file systems. The
distinctive features of a DFS are the multiplicity and autonomy of clients and
servers in the system.

Ideally, a DFS should appear to its clients to be a conventional, centralized
file system. The multiplicity and dispersion of its servers and storage devices
should be made invisible. That is, the client interface of a DFS should not
distinguish between local and remote files. It is up to the DFS to locate the
files and to arrange for the transport of the data. A transparent DFS facilitates
user mobility by bringing the user's environment (that is, home directory) to
wherever a user logs in.

The most important performance measurement of a DFS is the amount
of time needed to satisfy service requests. In conventional systems, this time
consists of disk-access time and a small amount of CPU-processing time. In a
DFS, however, a remote access has the additional overhead attributed to the
distributed structure. This overhead includes the time to deliver the request
to a server, as well as the time to get the response across the network back
to the client. For each direction, in addition to the transfer of the information,
there is the CPU overhead of running the communication protocol software.
The performance of a DFS can be viewed as another dimension of the DFS's
transparency. That is, the performance of an ideal DFS would be comparable to
that of a conventional file system.

The fact that a DFS manages a set of dispersed storage devices is the DFS's
key distinguishing feature. The overall storage space managed by a DFS is
composed of different and remotely located smaller storage spaces. Usually,
these constituent storage spaces correspond to sets of files. A component unit
is the smallest set of files that can be stored on a single machine, independently
from other units. All files belonging to the same component unit must reside
in the same location.
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17.2 Naming and Transparency ,

Naming is a mapping between logical and physical objects. For instance,
users deal with logical data objects represented by file names, whereas the
system manipulates physical blocks of data stored on disk tracks. Usually, a
user refers to a file by a textual name. The latter is mapped to a lower-level
numerical identifier that in turn is mapped to disk blocks. This multilevel
mapping provides users with an abstraction of a file that hides the details of
how and where on the disk the file is stored.

In a transparent DFS, a new dimension is added to the abstraction: that of
hiding where in the network the file is located. In a conventional file system, the
range of the naming mapping is an address within a disk. In a DFS, this range
is expanded to include the specific machine on whose disk the file is stored.
Going one step further with the concept of treating files as abstractions leads
to the possibility of file replication. Given a file name, the mapping returns a
set of the locations of this file's replicas. In this abstraction, both the existence
of multiple copies and their locations are hidden.

17.2.1 Naming Structures

We need to differentiate two related notions regarding name mappings in a
DFS:

1. Location transparency. The name of a file does not reveal any hint of the
file's physical storage location.

2. Location independence. The name of a file does not need to be changed
when the file's physical storage location changes.

Both definitions are relative to the level of naming discussed previously,
since files have different names at different levels (that is, user-level textual
names and system-level numerical identifiers). A location-independent nam-
ing scheme is a dynamic mapping, since it can map the same file name to
different locations at two different times. Therefore, location independence is
a stronger property than is location transparency.

In practice, most of the current DFSs provide a static, location-transparent
mapping for user-level names. These systems, however, do not support file
migration; that is, changing the location of a file automatically is impossible.
Hence, the notion of location independence is irrelevant for these systems.
Files are associated permanently with a specific set of disk blocks. Files and
disks can be moved between machines manually, but file migration implies an
automatic, operating-system-initiated action. Only AFS and a few experimental
file systems support location independence and file mobility. AFS supports file
mobility mainly for administrative purposes. A protocol provides migration
of AFS component units to satisfy high-level user requests, without changing
either the user-level names or the low-level names of the corresponding files.

A few aspects can further differentiate location independence and static
location transparency:

• Divorce of data from location, as exhibited by location independence,
provides a better abstraction for files. A file name should denote the file's
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most significant attributes, which are its contents rather than its location.
Location-independent files can be viewed as logical data containers that
are not attached to a specific storage location. If only static location
transparency is supported, the file name still denotes a specific, although
hidden, set of physical disk blocks.

* Static location transparency provides users with a convenient way to share
data. Users can share remote files by simply naming the files in a location-
transparent manner, as though the files were local. Nevertheless, sharing
the storage space is cumbersome, because logical names are still statically
attached to physical storage devices. Location independence promotes
sharing the storage space itself, as well as the data objects. When files can
be mobilized, the overall, system-wide storage space looks like a single
virtual resource. A possible benefit of such a view is the ability to balance
the utilization of disks across the system.

• Location independence separates the naming hierarchy from the storage-
devices hierarchy and from the intercomputer structure. By contrast, if
static location transparency is used (although names are transparent),
we can easily expose the correspondence between component units and
machines. The machines are configured in a pattern similar to the naming
structure. This configuration may restrict the architecture of the system
unnecessarily and conflict with other considerations. A server in charge of
a root directory is an example of a structure that is dictated by the naming
hierarchy and contradicts decentralization guidelines.

Once the separation of name and location has been completed, clients
can access files residing on remote server systems. In fact, these clients may
be diskless and rely on servers to provide all files, including the operating-
system kernel. Special protocols are needed for the boot sequence, however.
Consider the problem of getting the kernel to a diskless workstation. The
diskless workstation has no kernel, so it cannot use the DFS code to retrieve
the kernel. Instead, a special boot protocol, stored in read-only memory (ROM)
on the client, is invoked. It enables networking and retrieves only one special
file (the kernel or boot code) from a fixed location. Once the kernel is copied
over the network and loaded, its DFS makes all the other operating-system files
available. The advantages of diskless clients are many, including lower cost
(because the client machines require no disks) and greater convenience (when
an operating-system upgrade occurs, only the server needs to be modified).
The disadvantages are the added complexity of the boot protocols and the
performance loss resulting from the use of a network rather than a local disk.

The current trend is for clients to use both local disks and remote file servers.
Operating systems and networking software are stored locally; file systems
containing user data—and possibly applications—are stored on remote file
systems. Some client systems may store commonly used applications, such as
word processors and web browsers, on the local file system as well. Other, less
commonly used applications may be pushed from the remote file server to the
client on demand. The main reason for providing clients with local file systems
rather than pure diskless systems is that disk drives are rapidly increasing in
capacity and decreasing in cost, with new generations appearing every year
or so. The same cannot be said for networks, which evolve every few years.
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Overall, systems are growing more quickly than are networks, so extra work
is needed to limit network access to improve system throughput.

17.2.2 Naming Schemes

There are three main approaches to naming schemes in a DFS. In the simplest
approach, a file is identified by some combination of its host name and local
name, which guarantees a unique system-wide name. In Ibis, for instance,
a file is identified uniquely by the name host:local-name, where local-name is a
UMX-like path. This naming scheme is neither location transparent nor location
independent. Nevertheless, the same file operations can be used for both local
and remote files. The DFS is structured as a collection of isolated component
units, each of which is an entire conventional file system. In this first approach,
component units remain isolated, although means are provided to refer to a
remote file. We do not consider this scheme any further in this text.

The second approach was popularized by Sun's network file system (NFS).
NFS is the file-system component of ONC+, a networking package supported
by many UNIX vendors. NFS provides a means to attach remote directories
to local directories, thus giving the appearance of a coherent directory tree.
Early NFS versions allowed only previously mounted remote directories to
be accessed transparently. With the advent of the automount feature, mounts
are done on demand, based on a table of mount points and file-structure
names. Components are integrated to support transparent sharing, although
this integration is limited and is not uniform, because each machine may attach
different remote directories to its tree. The resulting structure is versatile.

We can achieve total integration of the component file systems by using the
third approach. A single global name structure spans all the files in the system.
Ideally, the composed file-system structure is isomorphic to the structure of
a conventional file system. In practice, however, the many special files (for
example, UNIX device files and machine-specific binary directories) make this
goal difficult to attain.

To evaluate naming structures, we look at their administrative complexity.
The most complex and most difficult-to-main tain structure is the NFS structure.
Because any remote directory can be attached anywhere onto the local directory
tree, the resulting hierarchy can be highly unstructured. If a server becomes
unavailable, some arbitrary set of directories on different machines becomes
unavailable. In addition, a separate accreditation mechanism controls which
machine is allowed to attach which directory to its tree. Thus, a user might
be able to access a remote directory tree on one client but be denied access on
another client.

17.2.3 Implementation Techniques

Implementation of transparent naming requires a provision for the mapping
of a file name to the associated location. To keep this mapping manageable,
we must aggregate sets of files into component units and provide the mapping
on a component-unit basis rather than on a single-file basis. This aggregation
serves administrative purposes as well. UNIX-like systems use the hierarchical
directory tree to provide name-to-location mapping and to aggregate files
recursively into directories.
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To enhance the availability of the crucial mapping information, we ca*n use
replication, local caching, or both. As we noted, location independence means
that the mapping changes over time; hence, replicating the mapping makes
a simple yet consistent update of this information impossible. A technique
to overcome this obstacle is to introduce low-level location-independent file
identifiers. Textual file names are mapped to lower-level file identifiers that
indicate to which component unit the file belongs. These identifiers are still
location independent. They can be replicated and cached freely without being
invalidated by migration of component units. The inevitable price is the need
for a second level of mapping, which maps component units to locations and
needs a simple yet consistent update mechanism. Implementing UNIX-like
directory trees using these low-level, location-independent identifiers makes
the whole hierarchy invariant under component-unit migration. The only
aspect that does change is the component-unit location mapping.

A common way to implement low-level identifiers is to use structured
names. These names are bit strings that usually have two parts. The first
part identifies the component unit to which the file belongs; the second part
identifies the particular file within the unit. Variants with more parts are
possible. The invariant of structured names, however, is that individual parts
of the name are unique at all times only within the context of the rest of the
parts. We can obtain uniqueness at all times by taking care not to reuse a name
that is still used, by adding sufficiently more bits (this method is used in AFS),
or by using a timestamp as one part of the name (as done in Apollo Domain).
Another way to view this process is that we are taking a location-transparent
system, such as Ibis, and adding another level of abstraction to produce a
location-independent naming scheme.

Aggregating files into component units and using lower-level location-
independent file identifiers are techniques exemplified in AFS.

17.3 Remote File Access

Consider a user who requests access to a remote file. The server storing the file
has been located by the naming scheme, and now the actual data transfer must
take place.

One way to achieve this transfer is through a remote-service mechanism,
whereby requests for accesses are delivered to the server, the server machine
performs the accesses, and their results are forwarded back to the user. One
of the most common ways of implementing remote service is the remote
procedure call (RPC) paradigm, which we discussed in Chapter 3. A direct
analogy exists between disk-access methods in conventional file systems and
the remote-service method in a DFS: Using the remote-service method is
analogous to performing a disk access for each access request.

To ensure reasonable performance of a remote-service mechanism, we can
use a form of caching. In conventional file systems, the rationale for caching is
to reduce disk I/O (thereby increasing performance), whereas in DFSs, the goal
is to reduce both network traffic and disk I/O. In the following discussion, we
describe the implementation of caching in a DFS and contrast it with the basic
remote-service paradigm.
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17.3.1 Basic Caching Scheme f

The concept of caching is simple. If the data needed to satisfy the access reqviest
are not already cached, then a copy of those data is brought from the server
to the client system. Accesses are performed on the cached copy. The idea is
to retain recently accessed disk blocks in the cache, so that repeated accesses
to the same information can be handled locally, without additional network
traffic. A replacement policy (for example, least recently used) keeps the cache
size bounded. No direct correspondence exists between accesses and traffic to
the server. Files are still identified with one master copy residing at the server
machine, but copies (or parts) of the file are scattered in different caches. When a
cached copy is modified, the changes need to be reflected on the master copy to
preserve the relevant consistency semantics. The problem of keeping the cached
copies consistent with the master file is the cache-consistency problem, which
we discuss in Section 17.3.4. DFS caching could just as easily be called network
virtual memory; it acts similarly to demand-paged virtual memory, except
that the backing store usually is not a local disk but rather a remote server. NFS
allows the swap space to be mounted remotely, so it actually can implement
virtual memory over a network, notwithstanding the resulting performance
penalty.

The granularity of the cached data in a DFS can vary from blocks of a file to
an entire file. Usually, more data are cached than are needed to satisfy a single
access, so that many accesses can be served by the cached data. This procedure
is much like disk read-ahead (Section 11.6.2). AFS caches files in large chunks (64
KB). The other systems discussed in this chapter support caching of individual
blocks driven by client demand. Increasing the caching unit increases the hit
ratio, but it also increases the miss penalty, because each miss requires more
data to be transferred. It increases the potential for consistency problems as
well. Selecting the unit of caching involves considering parameters such as the
network transfer unit and the RPC protocol service unit (if an RPC protocol is
used). The network transfer unit (for Ethernet, a packet) is about 1.5 KB, so larger
units of cached data need to be disassembled for delivery and reassembled on
reception.

Block size and total cache size are obviously of importance for block-
caching schemes. In UNIX-like systems, common block sizes are 4 KB and 8
KB. For large caches (over 1 MB), large block sizes (over 8 KB) are beneficial. For
smaller caches, large block sizes are less beneficial because they result in fewer
blocks in the cache and a lower hit ratio.

17.3.2 Cache Location

Where should the cached data be stored—on disk or in main memory? Disk
caches have one clear advantage over main-memory caches: They are reliable.
Modifications to cached data are lost in a crash if the cache is kept in volatile
memory. Moreover, if the cached data are kept on disk, they are still there during
recovery, and there is no need to fetch them again. Main-memory caches have
several advantages of their own, however:

• Main-memory caches permit workstations to be diskless.

• Data can be accessed more quickly from a cache in main memory than
from one on a disk.
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• Technology is moving toward larger and less expensive memory. The
achieved performance speedup is predicted to outweigh the advantages
of disk caches.

• The server caches (used to speed up disk I/O) will be in main memory
regardless of where user caches are located; if we use main-memory caches
on the user machine, too, we can build a single caching mechanism for use
by both servers and users.

Many remote-access implementations can be thought of as hybrids of
caching and remote service. In NFS, for instance, the implementation is based on
remote service but is augmented with client- and server-side memory caching
for performance. Similarly, Sprite's implementation is based on caching; but
under certain circumstances, a remote-service method is adopted. Thus, to
evaluate the two methods, we must evaluate to what degree either method is
emphasized.

The NFS protocol and most implementations do not provide disk caching.
Recent Solaris implementations of NFS (Solaris 2.6 and beyond) include a client-
side disk caching option, the cachefs file system. Once the NFS client reads
blocks of a file from the server, it caches them in memory as well as on disk.
If the memory copy is flushed, or even if the system reboots, the disk cache
is referenced. If a needed block is neither in memory nor in the cachefs disk
cache, an RPC is sent to the server to retrieve the block, and the block is written
into the disk cache as well as stored in the memory cache for client use.

17.3.3 Cache-Update Policy

The policy used to write modified data blocks back to the server's master copy
has a critical effect on the system's performance and reliability. The simplest
policy is to write data through to disk as soon as they are placed in any cache.
The advantage of a write-through policy is reliability: Little information is
lost when a client system crashes. However, this policy requires each write
access to wait until the information is sent to the server, so it causes poor write
performance. Caching with write-through is equivalent to using remote service
for write accesses and exploiting caching only for read accesses.

An alternative is the delayed-write policy, also known as write-back
caching, where we delay updates to the master copy. Modifications are written
to the cache and then are written through to the server at a later time. This
policy has two advantages over write-through. First, because writes are made
to the cache, write accesses complete much more quickly. Second, data may be
overwritten before they are written back, in which case only the last update
needs to be written at all. Unfortunately, delayed-write schemes introduce
reliability problems, since unwritten data are lost whenever a user machine
crashes.

Variations of the delayed-write policy differ in when modified data blocks
are flushed to the server. One alternative is to flush a block when it is about to
be ejected from the client's cache. This option can result in good performance,
but some blocks can reside in the client's cache a long time before they are
written back to the server. A compromise between this alternative and the
write-through policy is to scan the cache at regular intervals and to flush
blocks that have been modified since the most recent scan, just as UNIX scans
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Figure 17.1 Cachets and its use of caching.

its local cache. Sprite uses this policy with a 30-second interval. NFS uses the
policy for file data, but once a write is issued to the server during a cache
flush, the write must reach the server's disk before it is considered complete.
NFS treats metadata (directory data and file-attribute data) differently. Any
metadata changes are issued synchronously to the server. Thus, file-structure
loss and directory-structure corruption are avoided when a client or the server
crashes.

For NFS with cachefs, writes are also written to the local disk cache area
when they are written to the server, to keep all copies consistent. Thus, NFS
with cachefs improves performance over standard NFS on a read request with
a cachefs cache hit but decreases performance for read or write requests with
a cache miss. As with all caches, it is vital to have a high cache hit rate to gain
performance. Cachefs and its use of write-through and write-back caching is
shown in Figure 17.1.

Yet another variation on delayed write is to write data back to the server
when the file is closed. This write-on-close policy is used in AFS. In the case
of files that are open for short periods or are modified rarely, this policy
does not significantly reduce network traffic. In addition, the write-on-close
policy requires the closing process to delay while the file is written through,
which reduces the performance advantages of delayed writes. For files that are
open for long periods and are modified frequently, however, the performance
advantages of this policy over delayed write with more frequent flushing are
apparent.

17.3.4 Consistency

A client machine is faced with the problem of deciding whether or not a locally
cached copy of the data is consistent with the master copy (and hence can be
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used). If the client machine determines that its cached data are out of date,
accesses can no longer be served by those cached data. An up-to-date copy of
the data needs to be cached. There are two approaches to verifying the validity
of cached data:

1. Client-initiated approach. The client initiates a validity check in which it
contacts the server and checks whether the local data are consistent with
the master copy. The frequency of the validity checking is the crux of
this approach and determines the resulting consistency semantics. It can
range from a check before every access to a check only on first access to
a file (on file open, basically). Every access coupled with a validity check
is delayed, compared with an access served immediately by the cache.
Alternatively, checks can be initiated at fixed time intervals. Depending
on its frequency, the validity check can load both the network and the
server.

2. Server-initiated approach. The server records, for each client, the files
(or parts of files) that it caches. When the server detects a potential
inconsistency, it must react. A potential for inconsistency occurs when
two different clients in conflicting modes cache a file. If UNIX semantics
(Section 10.5.3) is implemented, we can resolve the potential inconsistency
by having the server play an active role. The server must be notified
whenever a file is opened, and the intended mode (read or write) must
be indicated for every open. The server can then act when it detects that
file has been opened simultaneously in conflicting modes by disabling
caching for that particular file. Actually, disabling caching results in
switching to a remote-service mode of operation.

17.3.5 A Comparison of Caching and Remote Service

Essentially, the choice between caching and remote service trades off poten-
tially increased performance with decreased simplicity. We evaluate this
tradeoff by listing the advantages and disadvantages of the two methods:

• When caching is used, the local cache can handle a substantial number
of the remote accesses efficiently. Capitalizing on locality in file-access
patterns makes caching even more attractive. Thus, most of the remote
accesses will be served as fast as will local ones. Moreover, servers are
contacted only occasionally, rather than for each access. Consequently,
server load and network traffic are reduced, and the potential for scalability
is enhanced. By contrast, when the remote-service method is used, every
remote access is handled across the network. The penalty in network traffic,
server load, and performance is obvious.

• Total network overhead is lower for transmitting big chunks of data (as
is done in caching) than for transmitting series of responses to specific
requests (as in the remote-service method). Furthermore, disk-access
routines on the server may be better optimized if it is known that requests
will always be for large, contiguous segments of data rather than for
random disk blocks.
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The cache-consistency problem is the major drawback of caching. When
access patterns exhibit infrequent writes, caching is superior. However,
when writes are frequent, the mechanisms employed to overcome the
consistency problem incur substantial overhead in terms of performance,
network traffic, and server load.

So that caching will confer a benefit, execution should be carried out on
machines that have either local disks or large main memories. Remote
access on diskless, small-memory-capacity machines should be done
through the remote-service method.

In caching, since data are transferred en masse between the server and the
client, rather than in response to the specific needs of a file operation, the
lower-level intermachine interface is different from the upper-level user
interface. The remote-service paradigm, in contrast, is just an extension of
the local file-system interface across the network. Thus, the intermachine
interface mirrors the user interface.

17.4 Stateful Versus Stateless Service

There are two approaches for storing server-side information when a client
accesses remote files: Either the server tracks each file being accessed by-
each client, or it simply provides blocks as they are requested by the client
without knowledge of how those blocks are used. In the former case, the
service provided is stateful; in the latter case, it is stateless.

The typical scenario of a stateful file service is as follows: A client must
perform an open() operation on a file before accessing that file. The server
fetches information about the file from its disk, stores it in its memory, and gives
the client a connection identifier that is unique to the client and the open file.
(In UMIX terms, the server fetches the mode and gives the client a file descriptor,
which serves as an index to an in-core table of inodes.) This identifier is used for
subsequent accesses until the session ends. A stateful service is characterized
as a connection between the client and the server during a session. Either on
closing the file or by a garbage-collection mechanism, the server must reclaim
the main-memory space used by clients that are no longer active. The key point
regarding fault tolerance in a stateful service approach is that the server keeps
main-memory information about its clients. AFS is a stateful file service.

A stateless file service avoids state information by making each request
self-contained. That is, each request identifies the file and the position in the
file (for read and write accesses) in full. The server does not need to keep a
table of open files in main memory, although it usually does so for efficiency-
reasons. Moreover, there is no need to establish and terminate a connection
through open() and c lose() operations. They are totally redundant, since
each file operation stands on its own and is not considered part of a session. A
client process would open a file, and that open would not result in the sending
of a remote message. Reads and writes would take place as remote messages
(or cache lookups). The final close by the client would again result in only a
local operation. NFS is a stateless file service.

The advantage of a stateful over a stateless service is increased perfor-
mance. File information is cached in main memory and can be accessed easily
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via the connection identifier, thereby saving disk accesses. In addition, a s|ateful
server knows whether a file is open for sequential access and can therefore
read ahead the next blocks. Stateless servers cannot do so, since they have no
knowledge of the purpose of the client's requests.

The distinction between stateful and stateless service becomes more
evident when we consider the effects of a crash that occurs during a service
activity. A stateful server loses all its volatile state in a crash. Ensuring the
graceful recovery of such a server involves restoring this state, usually by a
recovery protocol based on a dialog with clients. Less graceful recovery requires
that the operations that were underway when the crash occurred be aborted.
A different problem is caused by client failures. The server needs to become
aware of such failures so that it can reclaim space allocated to record the state of
crashed client processes. This phenomenon is sometimes referred to as orphan
detection and elimination.

A stateless computer server avoids these problems, since a newly reincar-
nated server can respond to a self-contained request without any difficulty.
Therefore, the effects of server failures and recovery are almost unnotkeable.
There is no difference between a slow server and a recovering server from a
client's point of view. The client keeps retransmitting its request if it receives
no response.

The penalty for using the robust stateless service is longer request messages
and slower processing of requests, since there is no in-core information to speed
the processing. In addition, stateless service imposes additional constraints
on the design of the DFS. First, since each request identifies the target file, a
uniform, system-wide, low-level naming scheme should be used. Translating
remote to local names for each request would cause even slower processing
of the requests. Second, since clients retransmit requests for file operations,
these operations must be idempotent; that is, each operation must have the
same effect and return the same output if executed several times consecutively.
Self-contained read and write accesses are idempotent, as long as they use an
absolute byte count to indicate the position within the file they access and
do not rely on an incremental offset (as done in UNIX read() and wri te( )
system calls). However, we must be careful when implementing destructive
operations (such as deleting a file) to make them idempotent, too.

In some environments, a stateful service is a necessity. If the server employs
the server-initiated method for cache validation, it cannot provide stateless
service, since it maintains a record of which files are cached by which clients.

The way UNIX uses file descriptors and implicit offsets is inherently stateful.
Servers must maintain tables to map the file descriptors to inodes and must
store the current offset within a file. This requirement is why NFS, which
employs a stateless service, does not use file descriptors and does include
an explicit offset in every access.

17.5 File Replication

Replication of files on different machines in a distributed file system is a useful
redundancy for improving availability. Multimachine replication can benefit
performance too: Selecting a nearby replica to serve an access request results
in shorter service time.
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NFS V4

Our coverage of NFS thus far has only considered version 3 (or V3) NFS. The
most recent NFS standard is version 4 (V4), and it differs fundamentally from
previous versions. The most significant change is that the protocol is now
statefid, meaning that the server maintains the state of the client session from
the time the remote file is opened until it is closed. Thus, the NFS protocol now
provides openO and close 0 operations; previous versions of NFS (which
are stateless) provide no such operations. Furthermore, previous versions
specify separate protocols for mounting remote file systems and for locking
remote files. V4 provides all of these features under a single protocol. In
particular, the mount protocol was eliminated, allowing NFS to work with
network firewalls. The mount protocol was a notorious security hole in NFS
implementations.

Additionally, V4 has enhanced the ability of clients to cache file data
locally. This feature improves the performance of the distributed file system,
as clients are able to resolve more file accesses from the local cache rather
than having to go through the server. V4 allows clients to request file locks
from servers as well. If the server grants the request, the client maintains
the lock until it is released or its lease expires. (Clients are also permitted to
renew existing leases.) Traditionally, UNIX-based systems provide advisory
file locking, whereas Windows operating systems use mandatory locking. To
allow NFS to work well with non-UNIX systems, V4 now provides mandatory
locking as well. The new locking and caching mechanisms are based on the
concept of delegation, whereby the server delegates responsibilities for a
file's lock and contents to the client that requested the lock. That delegated
client maintains in cache the current version of the file, and other clients can
ask that delegated client for lock access and file contents until the delegated
client relinquishes the lock and delegation.

Finally, whereas previous versions of NFS are based on the UDP network
protocol, V4 is based on TCP, which allows it to better adjust to varying traffic
loads on the network. Delegating these responsibilities to clients reduces the
load on the server and improves cache coherency.

The basic requirement of a replication scheme is that different replicas of
the same file reside on failure-independent machines. That is, the availability
of one replica is not affected by the availability of the rest of the replicas.
This obvious requirement implies that replication management is inherently
a location-opaque activity. Provisions for placing a replica on a particular
machine must be available.

It is desirable to hide the details of replication from users. Mapping a
replicated file name to a particular replica is the task of the naming scheme.
The existence of replicas should be invisible to higher levels. At lower
levels, however, the replicas must be distinguished from one another by
different lower-level names. Another transparency requirement is providing
replication control at higher levels. Replication control includes determination
of the degree of replication and of the placement of replicas. Under certain
circumstances, we may want to expose these details to users. Locus, for
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instance, provides users and system administrators with mechanisms to control
the replication scheme.

The main problem associated with replicas is updating. From a user's
point of view, replicas of a file denote the same logical entity, and thus an
update to any replica must be reflected on all other replicas. More precisely,
the relevant consistency semantics must be preserved when accesses to replicas
are viewed as virtual accesses to the replicas' logical files. If consistency is not
of primary importance, it can be sacrificed for availability and performance.
In this fundamental tradeoff in the area of fault tolerance, the choice is
between preserving consistency at all costs, thereby creating a potential for
indefinite blocking, and sacrificing consistency under some (we hope, rare)
circumstances of catastrophic failures for the sake of guaranteed progress.
Locus, for example, employs replication extensively and sacrifices consistency
in the case of network partition for the sake of availability of files for read and
write accesses.

Ibis uses a variation of the primary-copy approach. The domain of the
name mapping is a pair <primary-replica-identifier, local-replica-identifier>. If no
local replica exists, a special value is used. Thus, the mapping is relative to a
machine. If the local replica is the primary one, the pair contains two identical
identifiers. Ibis supports demand replication, an automatic replication-control
policy similar to whole-file caching. Under demand replication, reading of
a nonlocal replica causes it to be cached locally, thereby generating a new
nonprimary replica. Updates are performed only on the primary copy and
cause all other replicas to be invalidated through the sending of appropriate
messages. Atomic and serialized invalidation of all nonprimary replicas is not
guaranteed. Hence, a stale replica may be considered valid. To satisfy remote
write accesses, we migrate the primary copy to the requesting machine.

17.6 An Example: AFS

Andrew is a distributed computing environment designed and implemented
at Carnegie Mellon University. The Andrew file system (AFS) constitutes the
underlying information-sharing mechanism among clients of the environment.
The Transarc Corporation took over development of AFS, then was purchased
by IBM. IBM has since produced several commercial implementations of AFS.
AFS was subsequently chosen as the DFS for an industry coalition; the result
was Transarc DFS, part of the distributed computing environment (DCE) from
the OSF organization.

In 2000, IBM's Transarc Lab announced that AFS would be an open-source
product (termed OpenAFS) available under the IBM public license and Transarc
DFS was canceled as a commercial product. OpenAFS is available under most
commercial versions of UNIX as well as Linux and Microsoft Windows systems.
Many UNIX vendors, as well as Microsoft, support the DCE system and its DFS,
which is based on AFS, and work is ongoing to make DCE a cross-platform,
universally accepted DFS. As AFS and Transarc DFS are very similar, we describe
AFS throughout this section, unless Transarc DFS is named specifically.

AFS seeks to solve many of the problems of the simpler DFSs, such as
NFS, and is arguably the most feature-rich nonexperimental DFS. It features
a uniform name space, location-independent file sharing, client-side caching
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with cache consistency, and secure authentication via Kerberos. It also includes
server-side caching in the form of replicas, with high avail ability through
automatic switchover to a replica if the source server is unavailable. One of
the most formidable attributes of AFS is scalability: The Andrew system is
targeted to span over 5,000 workstations. Between AFS and Transarc DFS, there
are hundreds of implementations worldwide.

17.6.1 Overview

AFS distinguishes between client machines (sometimes referred to as worksta-
tions) and dedicated server machines. Servers and clients originally ran only 4.2
BSD UNIX, but AFS has been ported to many operating systems. The clients and
servers are interconnected by a network of LANs or WANs.

Clients are presented with a partitioned space of file names: a local name
space and a shared name space. Dedicated servers, collectively called Vice
after the name of the software they run, present the shared name space to the
clients as a homogeneous, identical, and location-transparent file hierarchy.
The local name space is the root file system of a workstation, from which
the shared name space descends. Workstations run the Virtue protocol to
communicate with Vice, and each is required to have a local disk where it
stores its local name space. Servers collectively are responsible for the storage
and management of the shared name space. The local name space is small,
is distinct for each workstation, and contains system programs essential for
autonomous operation and better performance. Also local are temporary files
and files that the workstation owner, for privacy reasons, explicitly wants to
store locally.

Viewed at a finer granularity, clients and servers are structured in clusters
interconnected by a WAN. Each cluster consists of a collection of workstations
on a LAN and a representative of Vice called a cluster server, and each cluster
is connected to the WAN by a router. The decomposition into clusters is
done primarily to address the problem of scale. For optimal performance,
workstations should use the server on their own cluster most of the time,
thereby making cross-cluster file references relatively infrequent.

The file-system architecture is also based on considerations of scale. The
basic heuristic is to offload work from the servers to the clients, in light
of experience indicating that server CPU speed is the system's bottleneck.
Following this heuristic, the key mechanism selected for remote file operations
is to cache files in large chunks (64 KB). This feature reduces file-open latency
and allows reads and writes to be directed to the cached copy without
frequently involving the servers.

Briefly, here are a few additional issues in the design of AFS:

• Client mobility. Clients are able to access any file in the shared name
space from any workstation. A client may notice some initial performance
degradation due to the caching of files when accessing files from a
workstation other than the usual one.

• Security. The Vice interface is considered the boundary of trustworthiness,
because no client programs are executed on Vice machines. Authentication
and secure-transmission functions are provided as part of a connection-
based communication package based on the RPC paradigm. After mutual
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authentication, a Vice server and a client communicate via encrypted
messages. Encryption is performed by hardware devices or (more slowly)
in software. Information about clients and groups is stored in a protection
database replicated at each server.

• Protection. AFS provides access lists for protecting directories and the
regular UNIX bits for file protection. The access list may contain information
about those users allowed to access a directory, as well as information
about those users not allowed to access it. Thus, it is simple to specify that
everyone except, say, Jim can access a directory. AFS supports the access
types read, write, lookup, insert, administer, lock, and delete.

• Heterogeneity. Defining a clear interface to Vice is a key for integration of
diverse workstation hardware and operating systems. So that heterogene-
ity is facilitated, some files in the local /bin directory are symbolic links
pointing to machine-specific executable files residing in Vice.

17.6.2 The Shared Name Space

AFS's shared name space is made up of component units called volumes. The
volumes are unusually small component units. Typically, they are associated
with the files of a single client. Few volumes reside within a single disk
partition, and they may grow (up to a quota) and shrink in size. Conceptually,
volumes are glued together by a mechanism similar to the UNIX mount
mechanism. However, the granularity difference is significant, since in UNIX
only an entire disk partition (containing a file system) canbe mounted. Volumes
are a key administrative unit and play a vital role in identifying and locating
an individual file.

A Vice file or directory is identified by a low-level identifier called a fid.
Each AFS directory entry maps a path-name component to a fid. A fid is 96 bits
long and has three equal-length components: a volume number, a vnode number,
and a iiniquifier. The vnode number is used as an index into an array containing
the modes of files in a single volume. The uniquifier allows reuse of vnode
numbers, thereby keeping certain data structures compact. Fids are location
transparent; therefore, file movements from server to server do not invalidate
cached directory contents.

Location information is kept on a volume basis in a volume-location
database replicated on each server. A client can identify the location of every
volume in the system by querying this database. The aggregation of files into
volumes makes it possible to keep the location database at a manageable size.

To balance the available disk space and utilization of servers, volumes
need to be migrated among disk partitions and servers. When a volume
is shipped to its new location, its original server is left with temporary
forwarding information, so that the location database does not need to be
updated synchronously. While the volume is being transferred, the original
server can still handle updates, which are shipped later to the new server.
At some point, the volume is briefly disabled so that the recent modifications
can be processed; then, the new volume becomes available again at the new
site. The volume-movement operation is atomic; if either server crashes, the
operation is aborted.
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Read-only replication at the granularity of an entire volume is supported
for system-executable files and for seldom-updated files in the upper levels
of the Vice name space. The volume-location database specifies the server
containing the only read-write copy of a volume and a list of read-only
replication sites.

17.6.3 File Operations and Consistency Semantics

The fundamental architectural principle in AFS is the caching of entire files
from servers. Accordingly, a client workstation interacts with Vice servers
only during opening and closing of files, and even this interaction is not
always necessary. Reading and writing files do not cause remote interaction (in
contrast to the remote-service method). This key distinction has far-reaching
ramifications for performance, as well as for semantics of file operations.

The operating system on each workstation intercepts file-system calls and
forwards them to a client-level process on that workstation. This process, called
Venus, caches files from Vice when they are opened and stores modified copies
of files back on the servers from which they came when they are closed. Venus
may contact Vice only when a file is opened or closed; reading and writing of
individual bytes of a file are performed directly on the cached copy and bypass
Venus. As a result, writes at some sites are not visible immediately at other
sites.

Caching is further exploited for future opens of the cached file. Venus
assumes that cached entries (files or directories) are valid unless notified
otherwise. Therefore, Venus does not need to contact Vice on a file open to
validate the cached copy. The mechanism to support this policy, called callback,
dramatically reduces the number of cache-validation requests received by
servers. It works as follows. When a client caches a file or a directory, the
server updates its state information to record this caching. We say that the
client has a callback on that file. The server notifies the client before allowing
another client to modify the file. In such a case, we say that the server removes
the callback on the file for the former client. A client can use a cached file for
open purposes only when the file has a callback. If a client closes a file after
modifying it, all other clients caching this file lose their callbacks. Therefore,
when these clients open the file later, they have to get the new version from
the server.

Reading and writing bytes of a file are done directly by the kernel without
Venus's intervention on the cached copy. Venus regains control when the file is
closed. If the file has been modified locally, it updates the file on the appropriate
server. Thus, the only occasions on which Venus contacts Vice servers are on
opens of files that either are not in the cache or have had their callback revoked
and on closes of locally modified files.

Basically, AFS implements session semantics. The only exceptions are
file operations other than the primitive read and write (such as protection
changes at the directory level), which are visible everywhere on the network
immediately after the operation completes.

In spite of the callback mechanism, a small amount of cached validation
traffic is still present, usually to replace callbacks lost because of machine or
network failures. When a workstation is rebooted, Venus considers all cached
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files and directories suspect, and it generates a cache-validation request for the
first use of each such entry.

The callback mechanism forces each server to maintain callback informa-
tion and each client to maintain validity information. If the amount of callback
information maintained by a server is excessive, the server can break callbacks
and reclaim some storage by unilaterally notifying clients and revoking the
validity of their cached files. If the callback state maintained by Venus gets
out of sync with the corresponding state maintained by the servers, some
inconsistency may result.

Venus also caches contents of directories and symbolic links, for path-
name translation. Each component in the path name is fetched, and a callback
is established for it if it is not already cached or if the client does not have
a callback on it. Venus does lookups on the fetched directories locally, using
fids. No requests are forwarded from one server to another. At the end of a
path-name traversal, all the intermediate directories and the target file are in
the cache with callbacks on them. Future open calls to this file will involve no
network communication at all, unless a callback is broken on a component of
the path name.

The only exception to the caching policy is a modification to a directory
that is made directly on the server responsible for that directory for reasons
of integrity. The Vice interface has well-defined operations for such purposes.
Venus reflects the changes in its cached copy to avoid re-fetching the directory.

17.6.4 Implementation

Client processes are interfaced to a UNIX kernel with the usual set of system
calls. The kernel is modified slightly to detect references to Vice files in the
relevant operations and to forward the requests to the client-level Venus process
at the workstation.

Venus carries out path-name translation component by component, as
described above. It has a mapping cache that associates volumes to server
locations in order to avoid server interrogation for an already known volume
location. If a volume is not present in this cache, Venus contacts any server
to which it already has a connection, requests the location information, and
enters that information into the mapping cache. Unless Venus already has
a connection to the server, it establishes a new connection. It then uses this
connection to fetch the file or directory. Connection establishment is needed for
authentication and security purposes. When a target file is found and cached, a
copy is created on the local disk. Venus then returns to the kernel, which opens
the cached copy and returns its handle to the client process.

The UNIX file system is used as a low-level storage system for both AFS
servers and clients. The client cache is a local directory on the workstation's
disk. Within this directory are files whose names are placeholders for cache
entries. Both Venus and server processes access UNIX files directly by the latter's
modes to avoid the expensive path-name-to-inode translation routine (namei).
Because the internal inode interface is not visible to client-level processes (both
Venus and server processes are client-level processes), an appropriate set of
additional system calls was added. DFS uses its own journaling file system to
improve performance and reliability over UFS.
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Venus manages two separate caches: one for status and the other for .data.
It uses a simple least-recently-used (LRU) algorithm to keep each of them
bounded in size. When a file is flushed from the cache, Venus notifies the
appropriate server to remove the callback for this file. The status cache is kept
in virtual memory to allow rapid servicing of s t a t ( ) (file-status-returning)
system calls. The data cache is resident on the local disk, but the UNIX I/O
buffering mechanism does some caching of disk blocks in memory that is
transparent to Venus.

A single client-level process on each file server services all file requests from
clients. This process uses a lightweight-process package with non-preemptible
scheduling to service many client requests concurrently. The RFC package
is integrated with the lightweight-process package, thereby allowing the file
server to concurrently make or service one RPC per lightweight process. The
RPC package is built on top of a low-level datagram abstraction. Whole-file
transfer is implemented as a side effect of the RPC calls. One RPC connection
exists per client, but there is no a priori binding of lightweight processes to these
connections. Instead, a pool of lightweight processes services client requests
on all connections. The use of a single multithreaded server process allows the
caching of data structures needed to service requests. On the negative side,
a crash of a single server process has the disastrous effect of paralyzing this
particular server.

17.7 Summary

A DFS is a file-service system whose clients, servers, and storage devices are
dispersed among the sites of a distributed system. Accordingly, service activity
has to be carried out across the network; instead of a single centralized data
repository, there are multiple independent storage devices.

Ideally, a DFS should look to its clients like a conventional, centralized
file system. The multiplicity and dispersion of its servers and storage devices
should be made transparent. That is, the client interface of a DFS should not
distinguish between local and remote files. It is up to the DFS to locate the files
and to arrange for the transport of the data. A transparent DFS facilitates client
mobility by bringing the client's environment to the site where the client logs
in.

There are several approaches to naming schemes in a DFS. In the simplest
approach, files are named by some combination of their host name and local
name, which guarantees a unique system-wide name. Another approach,
popularized by NFS, provides a means to attach remote directories to local
directories, thus giving the appearance of a coherent directory tree.

Requests to access a remote file are usually handled by two complementary
methods. With remote service, requests for accesses are delivered to the server.
The server machine performs the accesses, and their results are forwarded
back to the client. With caching, if the data needed to satisfy the access request
are not already cached, then a copy of the data is brought from the server
to the client. Accesses are performed on the cached copy. The idea is to
retain recently accessed disk blocks in the cache, so that repeated accesses
to the same information can be handled locally, without additional network
traffic. A replacement policy is used to keep the cache size bounded. The
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problem of keeping the cached copies consistent with the master file fe the
cache-consistency problem.

There are two approaches to server-side information. Either the server
tracks each file the client accesses, or it simply provides blocks as the client
requests them without knowledge of their use. These approaches are the
stateful versus stateless sendee paradigms.

Replication of files on different machines is a useful redundancy for
improving availability. Multimachine replication can benefit performance, too,
since selecting a nearby replica to serve an access request results in shorter
service time.

AFS is a feature-rich DFS characterized by location independence and loca-
tion transparency. It also imposes significant consistency semantics. Caching
and replication are used to improve performance.

Exercises

17.1 What are the benefits of a DFS compared with a file system in a
centralized system?

17.2 Which of the example DFSs discussed in this chapter would handle a
large, multiclient database application most efficiently? Explain your
answer.

17.3 Discuss whether AFS and NFS provide the following: (a) location
transparency and (b) location independence.

17.4 Under what circumstances would a client prefer a location-
transparent DFS? Under what circumstances would she prefer a
location-independent DFS? Discuss the reasons for these preferences.

17.5 What aspects of a distributed system would you select for a system
running on a totally reliable network?

17.6 Consider AFS, which is a stateful distributed file system. What actions
need to be performed to recover from a server crash in order to preserve
the consistency guaranteed by the system?

17.7 Compare and contrast the techniques of caching disk blocks locally, on
a client system, and remotely, on a server.

17.8 AFS is designed to support a large number of clients. Discuss three
techniques used to make AFS a scalable system.

17.9 Discuss the advantages and disadvantages of performing path-name
translation by having the client ship the entire path to the server
requesting a translation for the entire path name of the file.

17.10 What are the benefits of mapping objects into virtual memory, as Apollo
Domain does? What are the drawbacks?

17.11 Describe some of the fundamental differences between AFS and NFS
(see Chapter 11).
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17.12 Discuss whether clients in the following systems can obtain inconsistent
or stale data from the file server and, if so, under what scenarios this
could occur.

a. AFS

b. Sprite

c. NFS
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CHAPTER

Distributed
Coordination

In Chapter 6, we described various mechanisms that allow processes to
synchronize their actions. We also discussed a number of schemes to ensure
the atomicity of a transaction that executes either in isolation or concurrently
with other transactions. In Chapter 7, we described various methods that an
operating system can use to deal with the deadlock problem. In this chapter,
we examine how centralized synchronization mechanisms can be extended to
a distributed environment. We also discuss methods for handling deadlocks in
a distributed system.

CHAPTER OBJECTIVES

• To describe various methods for achieving mutual exclusion in a distributed
system.

• To explain how atomic transactions can be implemented in a distributed
system.

• To show how some of the concurrency-control schemes discussed in
Chapter 6 can be modified for use in a distributed environment.

• To present schemes for handling deadlock prevention, deadlock avoid-
ance, and deadlock detection in a distributed system.

18.1 Event Ordering

In a centralized system, we can always determine the order in which two events
occurred, since the system has a single common memory and clock. Many
applications may require us to determine order. For example, in a resource-
allocation scheme, we specify that a resource can be used only after the resource
has been granted. A distributed system, however, has no common memory and
no common clock. Therefore, it is sometimes impossible to say which of two
events occurred first. The liappened-before relation is only a partial ordering of
the events in distributed systems. Since the ability to define a total ordering is
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crucial in many applications, we present a distributed algorithm for exterfding
the happened-before relation to a consistent total ordering of all the events in the
system.

18.1.1 The Happened-Before Relation

Since we are considering only sequential processes, all events executed in a
single process are totally ordered. Also, by the law of causality, a message can
be received only after it has been sent. Therefore, we can define the happened-
before relation (denoted by -») on a set of events as follows (assuming that
sending and receiving a message constitutes an event):

1. If A and B are events in the same process, and A was executed before B,
then A -» B.

2. If A is the event of sending a message by one process and B is the event
of receiving that message by another process, then A —»• B.

3. If A -> B and B -» C then A - • C.

Since an event cannot happen before itself, the -> relation is an irreflexive
partial ordering.

If two events, A and B, are not related by the —> relation (that is, A did
not happen before B, and B did not happen before A), then we say that these
two events were executed concurrently. In this case, neither event can causally
affect the other. If, however, A -> B, then it is possible for event A to affect
event B causally.

A space-time diagram, such as that in Figure 18.1, can best illustrate the
definitions of concurrency and happened-before. The horizontal direction repre-
sents space (that is, different processes), and the vertical direction represents
time. The labeled vertical lines denote processes (or processors). The labeled
dots denote events. A wavy line denotes a message sent from one process to
another. Events are concurrent if and only if no path exists between them.

For example, these are some of the events related by the happened-before
relation in Figure 18.1:

7

P\ -*• <?4 (since p\ —» c\i and q2 —* <7-i)

These are some of the concurrent events in the system:

q0 and p2

/'o and CJ3
rQ and p3

<?3 and p.1

We cannot know which of two concurrent events, such as qo and pi, happened
first. However, since neither event can affect the other (there is no way for one
of them to know whether the other has occurred yet), it is not important which
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Figure 18.1 Relative time for three concurrent processes.

happened first. It is important only that any processes that care about the order
of two concurrent events agree on some order.

18.1.2 Implementation

To determine that an event A happened before an event B, we need either a
common clock or a set of perfectly synchronized clocks. Since neither of these
is available in a distributed system, we must define the happened-before relation
without the use of physical clocks.

We associate with each system event a timestamp. We can then define the
global ordering requirement: For every pair of events A and B, if A —> B, then
the timestamp of A is less than the timestamp of B. (Below, we will see that the
converse need not be true.)

How do we enforce the global ordering requirement in a distributed
environment? We define within each process P; a logical clock, LQ. The
logical clock can be implemented as a simple counter incremented between
any two successive events executed within a process. Since the logical clock
has a monotonically increasing value, it assigns a unique number to every
event, and if an event A occurs before event B in process P;, then LC,-(A) <
LC,-(B). The timestamp for an event is the value of the logical clock for that
event. This scheme enstires that for any two events in the same process the
global ordering requirement is met.

Unfortunately, this scheme does not ensure that the global ordering
requirement is met across processes. To illustrate the problem, consider two
processes Pi and P2 that communicate with each other. Suppose that Pi sends
a message to Pi (event A) with LCi(A) = 200, and Pi receives the message
(event B) with LCjiB) = 195 (because the processor for P2 is slower than the
processor for P]r its logical clock ticks more slowly). This situation violates our
requirement, since A ~> B but the timestamp of A is greater than the timestamp
ofB.

To resolve this difficulty, we require a process to advance its logical clock
when it receives a message whose timestamp is greater than the current value
of its logical clock. In particular, if process P, receives a message (event B) with
timestamp f and LC,(B) < t, then it should advance its clock so that LC,-(B) - t +
1. Thus, in our example, when P2 receives the message from Pi, it will advance
its logical clock so that LC2(B) = 201.
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Finally, to realize a total ordering, we need only observe that, with 6ur
timestamp-ordering scheme, if the timestamps of two events, A and B, are the
same, then the events are concurrent. In this case, we may use process identity
numbers to break ties and to create a total ordering. The use of timestamps is
further discussed in Section 18.4.2.

18.2 Mutual Exclusion

In this section, we present a number of different algorithms for implementing
mutual exclusion in a distributed environment. We assume that the system
consists of n processes, each of which resides at a different processor. To simplify
our discussion, we assume that processes are numbered uniquely from 1 to n
and that a one-to-one mapping exists between processes and processors (that
is, each process has its own processor).

18.2.1 Centralized Approach

In a centralized approach to providing mutual exclusion, one of the processes
in the system is chosen to coordinate the entry to the critical section. Each
process that wants to invoke mutual exclusion sends a request message to the
coordinator. When the process receives a reply message from the coordinator,
it can proceed to enter its critical section. After exiting its critical section,
the process sends a release message to the coordinator and proceeds with its
execution.

On receiving a request message, the coordinator checks to see whether some
other process is in its critical section. If no process is in its critical section, the
coordinator immediately sends back a reply message. Otherwise, the request
is queued. When the coordinator receives a release message, it removes one
of the request messages from the queue (in accordance with some scheduling
algorithm) and sends a reply message to the requesting process.

It should be clear that this algorithm ensures mutual exclusion. In addition,
if the scheduling policy within the coordinator is fair—such as first-come, first-
served (FCFS) scheduling—no starvation can occur. This scheme requires three
messages per critical-section entry: a request, a reply, and a release.

If the coordinator process fails, then a new process must take its place.
In Section 18.6, we describe some algorithms for electing a unique new
coordinator. Once a new coordinator has been elected, it must poll all the
processes in the system to reconstruct its request queue. Once the queue has
been constructed, the computation can resume.

18.2.2 Fully Distributed Approach

If we want to distribute the decision making across the entire system, then
the solution is far more complicated. One approach, described next, uses an
algorithm based on the event-ordering scheme described in Section 18.1.

When a process P, wants to enter its critical section, it generates a new
timestamp, TS, and sends the message request(Pj, TS) to all processes in the
system (including itself). On receiving a request message, a process may reply
immediately (that is, send a reply message back to P;), or it may defer sending
a reply back (because it is already in its critical section, for example). A process
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that has received a reply message from all other processes in the system can
enter its critical section, queueing incoming requests and deferring them. After
exiting its critical section, the process sends reply messages to all its deferred
requests.

The decision whether process P, replies immediately to a requcst(Pj, TS)
message or defers its reply is based on three factors:

1. If process P, is in its critical section, then it defers its reply to P-.

2. If process P; does not want to enter its critical section, then it sends a reply
immediately to Pj.

3. If process P; wants to enter its critical section but has not yet entered
it, then it compares its own request timestamp with the timestamp of
the incoming request made by process Pj. If its own request timestamp
is greater than that of the incoming request, then it sends a reply
immediately to Pj (Pj asked first). Otherwise, the reply is deferred.

This algorithm exhibits the following desirable behavior:

• Mutual exclusion is obtained.

• Freedom from deadlock is ensured.

• Freedom from starvation is ensured, since entry to the critical section is
scheduled according to the timestamp ordering. The timestamp ordering
ensures that processes are served in FCFS order.

• The number of messages per critical-section entry is 2 x (n — 1). This
number is the minimum number of required messages per critical-section
entry when processes act independently and concurrently.

To illustrate how the algorithm functions, we consider a system consisting
of processes Pi, Pz, and P3. Suppose that processes Pi and P3 want to enter
their critical sections. Process Pi then sends a message request (Pi, timestamp
- 10) to processes P? and P$, while process P3 sends a message request (P3,
timestamp = 4) to processes P] and Pi. The timestamps 4 and 10 were obtained
from the logical clocks described in Section 18.1. When process P2 receives
these request messages, it replies immediately. When process Pi receives the
request from process P3, it replies immediately, since the timestamp (10) on its
own request message is greater than the timestamp (4) for process P3. When
process P3 receives the request message from process P\, it defers its reply,
since the timestamp (4) on its request message is less than the timestamp (10)
for the message from process Pi. On receiving replies from both process Pi
and process P?, process P3 can enter its critical section. After exiting its critical
section, process P3 sends a reply to process Pi, which can then enter its critical
section.

Because this scheme requires the participation of all the processes in the
system, however, it has three undesirable consequences:

1. The processes need to know the identity of all other processes in the
system. When a new process joins the group of processes participating in
the mutual-exclusion algorithm, the following actions need to be taken:
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a. The process must receive the names of all the other processes1n the
group.

b. The name of the new process must be distributed to all the other
processes in the group.

This task is not as trivial as it may seem, since some request and reply
messages may be circulating in the system when the new process joins
the group. The interested reader is referred to the Bibliographical Notes
for more details.

2. If one process fails, then the entire scheme collapses. We can resolve this
difficulty by continuously monitoring the state of all processes in the
system. If one process fails, then all other processes are notified, so that
they will no longer send request messages to the failed process. When a
process recovers, it must initiate the procedure that allows it to rejoin the
group.

3. Processes that have not entered their critical section must pause fre-
quently to assure other processes that they intend to enter the critical
section.

Because of these difficulties, this protocol is best suited for small, stable sets of
cooperating processes.

18.2.3 Token-Passing Approach

Another method of providing mutual exclusion is to circulate a token among
the processes in the system. A token is a special type of message that is passed
around the system. Possession of the token entitles the holder to enter the
critical section. Since there is only a single token, only one process can be in its
critical section at a time.

We assume that the processes in the system are logically organized in a ring
structure. The physical communication network need not be a ring. As long as
the processes are connected to one another, it is possible to implement a logical
ring. To implement mutual exclusion, we pass the token around the ring. When
a process receives the token, it may enter its critical section, keeping the token.
After the process exits its critical section, the token is passed around again.
If the process receiving the token does not want to enter its critical section,
it passes the token to its neighbor. This scheme is similar to algorithm 1 in
Chapter 6, but a token is substituted for a shared variable.

If the ring is unidirectional, freedom from starvation is ensured. The
number of messages required to implement mutual exclusion may vary from
one message per entry, in the case of high contention (that is, every process
wants to enter its critical section), to an infinite number of messages, in the case
of low contention (that is, no process wants to enter its critical section).

Two types of failure must be considered. First, if the token is lost, an election
must be called to generate a new token. Second, if a process fails, a new logical
ring must be established. In Section 18.6, we present an election algorithm;
others are possible. The development of an algorithm for reconstructing the
ring is left to you in Exercise 18.9,
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18.3 Atomicity ?

In Chapter 6, we introduced the concept of an atomic transaction, which is a
program unit that must be executed atomically. That is, either all the operations
associated with it are executed to completion, or none are performed. When we
are dealing with a distributed system, ensuring the atomicity of a transaction
becomes much more complicated than in a centralized system. This difficulty
occurs because several sites may be participating in the execution of a single
transaction. The failure of one of these sites, or the failure of a communication
link connecting the sites, may result in erroneous computations.

Ensuring that the execution of transactions in the distributed system
preserves atomicity is the function of the transaction coordinator. Each site has
its own local transaction coordinator, which is responsible for coordinating the
execution of all the transactions initiated at that site. For each such transaction,
the coordinator is responsible for the following:

• Starting the execution of the transaction

• Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution

• Coordinating the termination of the transaction, which may result in the
transactions being committed at all sites or aborted at all sites

We assume that each local site maintains a log for recovery purposes.

18.3.1 The Two-Phase Commit Protocol

For atomicity to be ensured, all the sites in which a transaction T has executed
must agree on the final outcome of the execution. T must either commit at
all sites, or it must abort at all sites. To ensure this property, the transaction
coordinator of T must execute a commit protocol. Among the simplest and
most widely used commit protocols is the two-phase commit (2PC) protocol,
which we discuss next.

Let Tbe a transaction initiated at site S,, and let the transaction coordinator
at Si be C,. When T completes its execution—that is, when all the sites at
which T has executed inform C; that T has completed—then C; starts the 2PC
protocol.

• Phase 1. C; adds the record <prepare T> to the log and forces the record
onto stable storage. It then sends a prepare (T) message to all the sites at
which T has executed. On receiving the message, the transaction manager
at that site determines whether it is willing to commit its portion of T. If
the answer is no, it adds a record <no T> to the log, and then it responds
by sending an abort (T) message to C,. If the answer is yes, it adds a record
<ready T> to the log and forces all the log records corresponding to T
onto stable storage. The transaction manager then replies with a ready (T)
message to C,.

• Phase 2. When C, has received responses to the prepare (T) message from
all the sites, or when a pre-specified interval of time has elapsed since the
prepare (T) message was sent out, C, can determine whether the transaction
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T can be committed or aborted. Transaction T can be committed if <£,- has
received a ready (T) message from all the participating sites. Otherwise,
transaction T must be aborted. Depending on the verdict, either a record
< commit T> or a record < abort T> is added to the log and is forced onto
stable storage. At this point, the fate of the transaction has been sealed.
Following this, the coordinator sends either a commit (T) or an abort (T)
message to all participating sites. When a site receives that message, it
records the message in the log.

A site at which T has executed can unconditionally abort T at any time prior
to its sending the message ready (T) to the coordinator. The ready (T) message
is, in effect, a promise by a site to follow the coordinator's order to commit T or
to abort T. A site can make such a promise only when the needed information
is stored in stable storage. Otherwise, if the site crashes after sending ready T,
it may be unable to make good on its promise.

Since unanimity is required to commit a transaction, the fate of T is sealed
as soon as at least one site responds with abort (T). Note that the coordinator
site S, can decide unilaterally to abort T, as it is one of the sites at which
T has executed. The final verdict regarding T is determined at the time the
coordinator writes that verdict (commit or abort) to the log and forces it to
stable storage. In some implementations of the 2PC protocol, a site sends an
acknowledge (T) message to the coordinator at the end of the second phase of
the protocol. When the coordinator has received the acknowledge (T) message
from all the sites, it adds the record <complete T> to the log.

18.3.2 Failure Handling in 2PC

We now examine in detail how 2PC responds to various types of failures. As
we shall see, one major disadvantage of the 2PC protocol is that coordinator
failure may result in blocking, and a decision either to commit or to abort T
may have to be postponed until C; recovers.

18.3.2.1 Failure of a Participating Site

When a participating site Sjt recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution
when the failure occurred. Let Tbe one such transaction. How will Ŝ  deal with
T? We consider each of the possible alternatives:

• The log contains a <commit T> record. In this case, the site executes
redo(T).

• The log contains an <abort T> record. In this case, the site executes
undo(T).

• The log contains a <ready T> record. In this case, the site must consult
C; to determine the fate of T. If C, is up, it notifies S* regarding whether T
committed or aborted. In the former case, it executes redo(T); in the latter
case, it executes undo(T). If C; is down, S;- must try to find out the fate of
T from other sites. It does so by sending a query-status (T) message to all
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the sites in the system. On receiving such a message, a site must censult
its log to determine whether T has executed there and, if so, whether T
committed or aborted. It then notifies S/t about this outcome. If no site has
the appropriate information (that is, whether T committed or aborted), then
S-K can neither abort nor commit T. The decision concerning T is postponed
until Sk can obtain the needed information. Thus, Sk must periodically
resend the query-status (T) message to the other sites. It does so until a site
recovers that contains the needed information. The site at which C, resides
always has the needed information.

The log contains no control records (abort, commit, ready) concerning T.
The absence of control records implies that Sk failed before responding to
the prepare (T) message from C;. Since the failure of Sk means that it could
not have sent such a response, by our algorithm, C, must have aborted T.
Hence, Sk must execute undo(T).

18.3.2.2 Failure of the Coordinator

If the coordinator fails in the midst of the execution of the commit protocol
for transaction T, then the participating sites must decide on the fate of T. We
shall see that, in certain cases, the participating sites cannot decide whether to
commit or abort T, and therefore these sites must wait for the recovery of the
failed coordinator.

• If an active site contains a <commit T> record in its log, then T must be
committed.

• If an active site contains an <abort T> record in its log, then T must be
aborted.

• If some active site does not contain a <ready T> record in its log, then the
failed coordinator C, cannot have decided to commit T. We can draw this
conclusion because a site that does not have a <ready T> record in its log
cannot have sent a ready (T) message to Q. However, the coordinator may
have decided to abort f. Rather than wait for C; to recover, it is preferable
to abort T in this case.

• If none of the preceding cases holds, then all the active sites must have a
<ready T> record in their logs, but no additional control records (such
as <abort T> or <commit T>). Since the coordinator has failed, it is
impossible to determine whether a decision has been made—or, if so,
what that decision is—until the coordinator recovers. Thus, the active
sites must wait for C, to recover. As long as the fate of T remains in doubt,
T may continue to hold system resources. For example, if locking is used,
T may hold locks on data at active sites. Such a situation is undesirable
because hours or days may pass before C,- is again active. During this
time, other transactions may be forced to wait for T. As a result, data are
unavailable not only on the failed site (C;) but on active sites as well. The
amount of unavailable data increases as the downtime of C, grows. This
situation is called the blocking problem, because T is blocked pending the
recovery of site C,-.
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18.3.2.3 Failure of the Network ?

When a link fails, the messages in the process of being routed through the
link do not arrive at their destinations intact. From the viewpoint of the sites
connected throughout that link, the other sites appear to have failed. Thus, our
previous schemes apply here as well.

When a number of links fail, the network may partition, hi this case,
two possibilities exist. The coordinator and all its participants may remain in
one partition; in this case, the failure has no effect on the commit protocol.
Alternatively, the coordinator and its participants may belong to several
partitions; in this case, messages between the participant and the coordinator
are lost, reducing the case to a link failure.

18.4 Concurrency Control

We move next to the issue of concurrency control. In this section, we show
how certain of the concurrency-control schemes discussed in Chapter 6 can be
modified for use in a distributed environment.

The transaction manager of a distributed database system manages the
execution of those transactions (or subtransactions) that access data stored
in a local site. Each such transaction may be either a local transaction
(that is, a transaction that executes only at that site) or part of a global
transaction (that is, a transaction that executes at several sites). Each transaction
manager is responsible for maintaining a log for recovery purposes and for
participating in an appropriate concurrency-control scheme to coordinate the
conciirrent execution of the transactions executing at that site. As we shall
see, the concurrency schemes described in Chapter 6 need to be modified to
accommodate the distribution of transactions.

18.4.1 Locking Protocols

The two-phase locking protocols described in Chapter 6 can be used in a
distributed environment. The only change needed is in the way the lock
manager is implemented. Here, we present several possible schemes. The first
deals with the case where no data replication is allowed. The others apply
to the more general case where data can be replicated in several sites. As in
Chapter 6, we assume the existence of the shared and exclusive lock modes.

18.4.1.1 Nonreplicated Scheme

If no data are replicated in the system, then the locking schemes described in
Section 6.9 can be applied as follows: Each site maintains a local lock manager
whose function is to administer the lock and unlock requests for those data
items stored in that site. When a transaction wishes to lock data item Q at site
Si, it simply sends a message to the lock manager at site S; requesting a lock
(in a particular lock mode). If data item Q is locked in an incompatible mode,
then the request is delayed until that request can be granted. Once it has been
determined that the lock request can be granted, the lock manager sends a
message back to the initiator indicating that the lock request has been granted.
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This scheme has the advantage of simple implementation. It requires two
message transfers for handling lock requests and one message transfer for
handling unlock requests. However, deadlock handling is more complex. Since
the lock and unlock requests are no longer made at a single site, the various
deadlock-handling algorithms discussed in Chapter 7 must be modified; these
modifications are discussed in Section 18.5.

18.4.1.2 Single-Coordinator Approach

Several concurrency-control schemes can be used in systems that allow data
replication. Under the single-coordinator approach, the system maintains a
single lock manager that resides in a single chosen site—say, S,\ All lock and
unlock requests are made at site S,. When a transaction needs to lock a data
item, it sends a lock request to S;. The lock manager determines whether the
lock can be granted immediately. If so, it sends a message to that effect to the
site at which the lock request was initiated. Otherwise, the request is delayed
until it can be granted; and at that time, a message is sent to the site at which
the lock request was initiated. The transaction can read the data item from any
one of the sites at which a replica of the data item resides. In the case of a
wri te operation, all the sites where a replica of the data item resides must be
involved in the writing.

The scheme has the following advantages:

• Simple implementation. This scheme requires two messages for handling
lock requests and one message for handling unlock requests.

• Simple deadlock handling. Since all lock and unlock requests are made
at one site, the deadlock-handling algorithms discussed in Chapter 7 can
be applied directly to this environment.

The disadvantages of the scheme include the following:

• Bottleneck. The site S, becomes a bottleneck, since all requests must be
processed there.

• Vulnerability. If the site S, fails, the concurrency controller is lost. Either
processing must stop or a recovery scheme must be used.

A compromise between these advantages and disadvantages can be
achieved through a multiple-coordinator approach, in which the lock-
manager function is distributed over several sites. Each lock manager admin-
isters the lock and unlock requests for a subset of the data items, and the lock
managers reside in different sites. This distribution reduces the degree to which
the coordinator is a bottleneck, but it complicates deadlock handling, since the
lock and unlock requests are not made at a single site.

18.4.1.3 Majority Protocol

The majority protocol is a modification of the nonreplicated data scheme
presented earlier. The system maintains a lock manager at each site. Each
manager controls the locks for all the data or replicas of data stored at that site.
When a transaction wishes to lock a data item Q that is replicated in n different
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sites, it must send a lock request to more than one-half of the n sites in which
Q is stored. Each lock manager determines whether the lock can be granted
immediately (as far as it is concerned). As before, the response is delayed until
the request can be granted. The transaction does not operate on Q until it has
successfully obtained a lock on a majority of the replicas of chl8/18.

This scheme deals with replicated data in a decentralized manner, thus
avoiding the drawbacks of central control. However, it suffers from its own
disadvantages:

• Implementation. The majority protocol is more complicated to implement
than the previous schemes. It requires 2(n/2 + 1) messages for handling
lock requests and (n/2 + 1) messages for handling unlock requests.

• Deadlock handling. Since the lock and unlock requests are not made
at one site, the deadlock-handling algorithms must be modified (Section
18.5). In addition, a deadlock can occur even if only one data item is being
locked. To illustrate, consider a system with four sites and full replication.
Suppose that transactions T\ and" T2 wish to lock data item Q in exclusive
mode. Transaction T\ may succeed in locking Q at sites S\ and S3, while
transaction T2 may succeed in locking Q at sites Sj and S4. Each then must
wait to acquire the third lock, and hence a deadlock has occurred.

18.4.1.4 Biased Protocol

The biased protocol is similar to the majority protocol. The difference is that
requests for shared locks are given more favorable treatment than are requests
for exclusive locks. The system maintains a lock manager at each site. Each
manager manages the locks for all the data items stored at that site. Shared and
exclusive locks are handled differently.

• Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a replica
oichlS/18.

• Exclusive locks. When a transaction needs to lock data item Q, it requests
a lock on Q from the lock manager at each site containing a replica of
chl8/18.

As before, the response to the request is delayed until the request can be
granted.

The scheme has the advantage of imposing less overhead on read opera-
tions than does the majority protocol. This advantage is especially significant
in common cases in which the frequency of reads is much greater than the
frequency of writes. However, the additional overhead on writes is a dis-
advantage. Furthermore, the biased protocol shares the majority protocol's
disadvantage of complexity in handling deadlock.

18.4.1.5 Primary Copy

Yet another alternative is to choose one of the replicas as the primary copy-
Thus, for each data item Q, the primary copy of Q must reside in precisely one
site, which we call the primary site ofQ. When a transaction needs to lock a data
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item Q, it requests a lock at the primary site of chl8/18. As before, the response
to the request is delayed until the request can be granted.

This scheme enables us to handle concurrency control for replicated data
in much the same way as for unreplicated data. Implementation of the method
is simple. However, if the primary site of Q fails, Q is inaccessible even though
other sites containing a replica may be accessible.

18.4.2 Timestamping

The principal idea behind the timestamping scheme discussed in Section 6.9 is
that each transaction is given a unique timestamp, which is used to decide the
serialization order. Our first task, then, in generalizing the centralized scheme to
a distributed scheme is to develop a method for generating unique timestamps.
Our previous protocols can then be applied directly to the nonreplicated
environment.

18.4.2.1 Generation of Unique Timestamps

Two primary methods are used to generate unique timestamps; one is central-
ized, and one is distributed. In the centralized scheme, a single site is chosen
for distributing the timestamps. The site can use a logical counter or its own
local clock for this purpose.

In the distributed scheme, each site generates a local unique timestamp
using either a logical counter or the local clock. The global unique timestamp is
obtained by concatenation of the local unique timestamp with the site identifier,
which must be unique (Figure 18.2). The order of concatenation is important!
We use the site identifier in the least significant position to ensure that the global
timestamps generated in one site are not always greater than those generated
in another site. Compare this technique for generating unique timestamps with
the one we presented in Section 18.1.2 for generating unique names.

We may still have a problem if one site generates local timestamps at a
faster rate than do other sites. In such a case, the fast site's logical counter will
be larger than those of other sites. Therefore, all timestamps generated by the
fast site will be larger than those generated by other sites. A mechanism is
needed to ensure that local timestamps are generated fairly across the system.
To accomplish the fair generation of timestamps, we define within each site S; a
logical clock {LC,), which generates the local timestamp (see Section 18.1.2). To
ensure that the various logical clocks are synchronized, we require that a site
S; advance its logical clock whenever a transaction T, with timestamp <x,y>

local unique timestamp site identifier

global unique identifier

Figure 18.2 Generation of unique timestamps.
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visits that site and x is greater than the current value of Ld. In this case,?site S,
advances its logical clock to the value x + 1.

If the system clock is used to generate timestamps, then timestamps are
assigned fairly, provided that no site has a system clock that runs fast or slow.
Since clocks may not be perfectly accurate, a technique similar to that used for
logical clocks must be used to ensure that no clock gets far ahead or far behind
another clock.

18.4.2.2 Timestamp-Ordering Scheme

The basic timestamp scheme introduced in Section 6.9 can be extended in
a straightforward manner to a distributed system. As in the centralized case,
cascading rollbacks may result if no mechanism is used to prevent a transaction
from reading a data item value that is not yet committed. To eliminate cascading
rollbacks, we can combine the basic timestamp scheme of Section 6.9 with the
2PC protocol of Section 18.3 to obtain a protocol that ensures serializability
with no cascading rollbacks. We leave the development of such an algorithm
to you.

The basic timestamp scheme just described suffers from the undesirable
property that conflicts between transactions are resolved through rollbacks,
rather than through waits. To alleviate this problem, we can buffer the various
read and wri te operations (that is, delay them) until a time when we are
assured that these operations can take place without causing aborts. A read(x)
operation by T, must be delayed if there exists a transaction Ty that will perform
a write(;e) operation but has not yet done so and TS(Ty) < TS(Tj). Similarly, a
wr ite(x) operation by T, must be delayed if there exists a transaction T,- that will
perform either a read(x) or a write(x) operation and TS(T/) < TS(Ti). Various
methods are available for ensuring this property. One such method, called
the conservative timestamp-ordering scheme, requires each site to maintain
a read queue and a write queue consisting of all the read and wri te requests
that are to be executed at the site and that must be delayed to preserve the
above property. We shall not present the scheme here. Again, we leave the
development of the algorithm to you.

18.5 Deadlock Handling

The deadlock-prevention, deadlock-avoidance, and deadlock-detection algo-
rithms presented in Chapter 7 can be extended so that they can be used in
a distributed system. In this section, we describe several of these distributed
algorithms.

18.5.1 Deadlock Prevention and Avoidance

The deadlock-prevention and deadlock-avoidance algorithms presented in
Chapter 7 can be used in a distributed system, provided that appropriate
modifications are made. For example, we can use the resource-ordering
deadlock-prevention technique by simply defining a global ordering among
the system resources. That is, all resources in the entire system are assigned
unique numbers, and a process may request a resource (at any processor) with
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unique number / only if it is not holding a resource with a unique number
greater than i. Similarly, we can use the banker's algorithm in a distributed
system by designating one of the processes in the system (the banker) as the
process that maintains the information necessary to carry out the banker's
algorithm. Every resource request must be channelled through the banker.

The global resource-ordering deadlock-prevention scheme is simple to
implement in a distributed environment and requires little overhead. The
banker's algorithm can also be implemented easily, but it may require too
much overhead. The banker may become a bottleneck, since the number of
messages to and from the banker may be large. Thus, the banker's scheme
does not seem to be of practical use in a distributed system.

We turn next to a new deadlock-prevention scheme based on a timestamp-
ordering approach with resource preemption. Although this approach can
handle any deadlock situation that may arise in a distributed system, for
simplicity we consider only the case of a single instance of each resource type.

To control the preemption, we assign a unique priority number to each
process. These numbers are used to decide whether a process P, should wait
for a process Pj. For example, we can let P; wait for Pj if P- has a priority higher
than that of PJ; otherwise, P- is rolled back. This scheme prevents deadlocks
because, for every edge P/ -» Pj in the wait-for graph, P,- has a higher priority
than Pj. Thus, a cycle cannot exist.

One difficulty with this scheme is the possibility of starvation. Some
processes with extremely low priorities may always be rolled back. This
difficulty can be avoided through the use of timestamps. Each process in the
system is assigned a unique timestamp when it is created. Two complementary
deadlock-prevention schemes using timestamps have been proposed:

1. The wait-die scheme. This approach is based on a nonpreemptive
technique. When process P; requests a resource currently held by Pj, Pj is
allowed to wait only if it has a smaller timestamp than does P, (that is, P,
is older than P,). Otherwise, P, is rolled back (dies). For example, suppose
that processes P\, P2, and P3 have timestamps 5,10, and 15, respectively.
If Pi requests a resource held by Pi, P\ will wait. If P3 requests a resource
held by P2, P3 will be rolled back.

2. The wound-wait scheme. This approach is based on a preemptive
technique and is a counterpart to the wait-die approach. When process
P, requests a resource currently held by P)r Pi is allowed to wait only
if it has a larger timestamp than does Pj (that is, P- is younger than
Pj). Otherwise, Pj is rolled back (Pj is wounded by P,-). Returning to our
previous example, with processes Pi, P?, and P3, if Pi requests a resource
held by Pi_, then the resource will be preempted from Pi, and P2 will be
rolled back. If P3 requests a resource held by P?, then P3 will wait.

Both schemes can avoid starvation provided that, when a process is rolled
back, it is not assigned a new timestamp. Since timestamps always increase, a
process that is rolled back will eventually have the smallest timestamp. Thus,
it will not be rolled back again. There are, however, significant differences in
the way the two schemes operate.
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• In the wait-die scheme, an older process must wait for a younger one to
release its resource. Thus, the older the process gets, the more it tends to
wait. By contrast, in the wound-wait scheme, an older process never waits
for a younger process.

• In the wait-die scheme, if a process P, dies and is rolled back because it
has requested a resource held by process Pj, then P, may reissue the same
sequence of requests when it is restarted. If the resource is still held by Pj,
then Pj will die again. Thus, P, may die several times before acquiring the
needed resource. Contrast this series of events with what happens in the
wound-wait scheme. Process P,- is wounded and rolled back because Pj
has requested a resource it holds. When P; is restarted and requests the
resource now being held by Pj, Pi waits. Thus, fewer rollbacks occur in
the wound-wait scheme.

The major problem with both schemes is that unnecessary rollbacks may occur.

18.5.2 Deadlock Detection

The deadlock-prevention algorithm may preempt resources even if no dead-
lock has occurred. To prevent unnecessary preemptions, we can use a deadlock-
detection algorithm. We construct a wait-for graph describing the resource-
allocation state. Since we are assuming only a single resource of each type, a
cycle in the wait-for graph represents a deadlock.

The main problem in a distributed system is deciding how to maintain
the wait-for graph. We illustrate this problem by describing several common
techniques to deal with this issue. These schemes require each site to keep a
local wait-for graph. The nodes of the graph correspond to all the processes
(local as well as nonlocal) currently holding or requesting any of the resources
local to that site. For example, in Figure 18.3 we have a system consisting of two
sites, each maintaining its local wait-for graph. Note that processes Pj and Pj
appear in both graphs, indicating that the processes have requested resources
at both sites.

These local wait-for graphs are constructed in the usual manner for local
processes and resources. When a process P,- in site Si needs a resource held by
process P, in site Sj, a request message is sent by P; to site Si. The edge P, —>•
Pj is then inserted in the local wait-for graph of site S2.

site S^ site $2

Figure 18.3 Two local wait-for graphs.
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Figure 18.4 Global wait-for graph for Figure 18.3.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. The
fact that we find no cycles in any of the local wait-for graphs does not mean
that there are no deadlocks, however. To illustrate this problem, we consider
the system depicted in Figure 18.3. Each wait-for graph is acyclic; nevertheless,
a deadlock exists in the system. To prove that a deadlock has not occurred, we
must show that the union of all local graphs is acyclic. The graph (Figure 18.4)
that we obtain by taking the union of the two wait-for graphs of Figure 18.3
does indeed contain a cycle, implying that the system is in a deadlocked state.

A number of methods are available to organize the wait-for graph in a
distributed system. We describe several common schemes here.

18.5.2.1 Centralized Approach

In the centralized approach, a global wait-for graph is constructed as the
union of all the local wait-for graphs. It is maintained in a single process:
the deadlock-detection coordinator. Since there is communication delay in
the system, we must distinguish between two types of wait-for graphs. The
real graph describes the real but unknown state of the system at any instance
in time, as would be seen by an omniscient observer. The constructed graph
is an approximation generated by the coordinator during the execution of its
algorithm. The constructed graph must be generated so that, whenever the
detection algorithm is invoked, the reported results are correct. By correct we
mean the following:

• If a deadlock exists, then it is reported properly.

• If a deadlock is reported, then the system is indeed in a deadlocked state.

As we shall show, it is not easy to construct such correct algorithms.
The wait-for graph may be constructed at three different points in time:

1. Whenever a new edge is inserted in or removed from one of the local
wait-for graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the deadlock-detection coordinator needs to invoke the cycle-
detection algorithm

When the deadlock-detection algorithm is invoked, the coordinator searches
its global graph. If a cycle is found, a victim is selected to be rolled back. The
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coordinator must notify all the sites that a particular process has been sejected
as victim. The sites, in turn, roll back the victim process.

Let us consider option 1. Whenever an edge is either inserted in or removed
from a local graph, the local site must also send a message to the coordinator
to notify it of this modification. On receiving such a message, the coordinator
updates its global graph.

Alternatively (option 2), a site can send a number of such changes in a single
message periodically. Returning to our previous example, the coordinator
process will maintain the global wait-for graph as depicted in Figure 18.4.
When site % inserts the edge P3 —> P4 in its local wait-for graph, it also sends
a message to the coordinator. Similarly, when site Si deletes the edge P5 —>• Pi
because Pi has released a resource that was requested by P5, an appropriate
message is sent to the coordinator.

Note that no matter which option is used, unnecessary rollbacks may occur,
as a result of two situations:

1. False cycles may exist in the global wait-for graph. To illustrate this point,
we consider a snapshot of the system as depicted in Figure 18.5. Suppose
that P2 releases the resource it is holding in site Si, resulting in the deletion
of the edge Pi —»• P2 in site Si. Process P2 then requests a resource held
by P3 at site S2, resulting in the addition of the edge P2 -> P3 in site S2. If
the insert P2 —• P3 message from site S2 arrives before the delete P\ —• P2
message from site Si, the coordinator may discover the false cycle Pi -*
P2 -> P3 -* Pl after the insert (but before the delete). Deadlock recovery
may be initiated, although no deadlock has occurred.

2. Unnecessary rollbacks may also result when a deadlock has indeed
occurred and a victim has been picked, but at the same time one of the
processes has been aborted for reasons unrelated to the deadlock (as
when a process has exceeded its allocated time). For example, suppose
that site Si in Figure 18.3 decides to abort P2. At the same time, the
coordinator has discovered a cycle and picked P3 as a victim. Both P? and
P3 are now rolled back, although only P2 needed to be rolled back.

Let us now consider a centralized deadlock-detection algorithm using
option 3 that detects all deadlocks that actually occur and does not detect
false deadlocks. To avoid the report of false deadlocks, we require that requests
from different sites be appended with unique identifiers (or timestamps). When

site Si site S2 coordinator

Figure 18.5 Local and global wait-for graphs.
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process P,, at site Si, requests a resource from P., at site S?, a request message
with timestamp TS is sent. The edge P, —> P; with the label TS is inserted'in the
local wait-for graph of Si. This edge is inserted in the local wait-for graph of
site Si only if site S? has received the request message and cannot immediately
grant the requested resource. A request from P, to P-. in the same site is handled
in the usual manner; no timestamps are associated with the edge P, -> Pj.

The detection algorithm is as follows:

1. The controller sends an initiating message to each site in the system.

2. On receiving this message, a site sends its local wait-for graph to
the coordinator. Each of these wait-for graphs contains all the local
information the site has about the state of the real graph. The graph
reflects an instantaneous state of the site, but it is not synchronized with
respect to any other site.

3. When the controller has received a reply from each site, it constructs a
graph as follows:

a. The constructed graph contains a vertex for every process in the
system.

b. The graph has an edge Pj —>• Pj if and only if there is an edge P/ ->
Pj in one of the wait-for graphs or an edge P,- -> Pj with some label
TS in more than one wait-for graph.

If the constructed graph contains a cycle, then the system is in a deadlocked
state. If the constructed graph does not contain a cycle, then the system was
not in a deadlocked state when the detection algorithm was invoked as result
of the initiating messages sent by the coordinator (in step 1).

18.5.2.2 Fully Distributed Approach

In the fully distributed deadlock-detection algorithm, all controllers share
equally the responsibility for detecting deadlock. Every site constructs a wait-
for graph that represents a part of the total graph, depending on the dynamic
behavior of the system. The idea is that, if a deadlock exists, a cycle will appear
in at least one of the partial graphs. We present one such algorithm, which
involves construction of partial graphs in every site.

Each site maintains its own local wait-for graph. A local wait-for graph in
this scheme differs from the one described earlier in that we add one additional
node P,.v to the graph. An arc P, -> PL,X exists in the graph if P, is waiting for a
data item in another site being held by any process. Similarly, an arc Pex -» Pj
exists in the graph if a process at another site is waiting to acquire a resource
currently being held by Pj in this local site.

To illustrate this situation, we consider again the two local wait-for graphs
of Figure 18.3. The addition of the node PL,X in both graphs results in the local
wait-for graphs shown in Figure 18.6.

If a local wait-for graph contains a cycle that does not involve node
Pcx, then the system is in a deadlocked state. If, however, a local graph
contains a cycle involving PCXr then this implies the possibility of a deadlock.
To ascertain whether a deadlock does exist, we must invoke a distributed
deadlock-detection algorithm.
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site S,

Figure 18.6 Augmented local wait-for graphs of Figure 18.3.

Suppose that, at site S,-, the local wait-for graph contains a cycle involving
node Pcx. This cycle must be of the form

Pcx Pkl Pk, Pkn Pex

which indicates that process Pjt,. in site S, is waiting to acquire a data item
located in some other site—say, Sj. On discovering this cycle, site S, sends to
site Sj a deadlock-detection message containing information about that cycle.

When site Sj receives this deadlock-detection message, it updates its
local wait-for graph with the new information. Then it searches the newly
constructed wait-for graph for a cycle not involving Pex. If one exists, a
deadlock is found, and an appropriate recovery scheme is invoked. If a cycle
involving Pex is discovered, then Sj transmits a deadlock-detection message
to the appropriate site—say, S<,-. Site Sk, in return, repeats the procedure.
Thus, after a finite number of rounds, either a deadlock is discovered or the
deadlock-detection computation halts.

To illustrate this procedure, we consider the local wait-for graphs of Figure
18.6. Suppose that site Si discovers the cycle

Pcx - * Pi - > Pi - • Pcx.

Since P3 is waiting to acquire a data item in site S?, a deadlock-detection
message describing that cycle is transmitted from site Si to site Sz- When site S2
receives this message, it updates its local wait-for graph, obtaining the wait-for
graph of Figure 18.7. This graph contains the cycle

P2 ^ P3 ^ P4 -> p 2 ,

which does not include node Pcx. Therefore, the system is in a deadlocked state,
and an appropriate recovery scheme must be invoked.

Note that the outcome would be the same if site S2 discovered the cycle first
in its local wait-for graph and sent the deadlock-detection message to site Si.
In the worst case, both sites will discover the cycle at about the same time, and
two deadlock-detection messages will be sent: one by Si to S2 and another by
S2 to Si. This situation results in unnecessary message transfer and overhead in
updating the two local wait-for graphs and searching for cycles in both graphs.

To reduce message traffic, we assign to each process P, a unique identifier,
which we denote ID(P,). When site Sk discovers that its local wait-for graph
contains a cycle involving node Pex of the form
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site

Figure 18.7 Augmented local wait-for graph in site £G of Figure 18.6.

Pcx - • PK, - • PK2 - ... - > Px u - » P « ,

it sends a deadlock-detection message to another site only if

ID(PKu)

Otherwise, site Ŝ  continues its normal execution, leaving the burden of
initiating the deadlock-detection algorithm to some other site.

To illustrate this scheme, we consider again the wait-for graphs maintained
at sites Si and S2 of Figure 18.6. Suppose that

ID(P2) < ID(P3)

Let both sites discover these local cycles at about the same time. The cycle in
site Si is of the form

Pi -+ P3

>Since
site S2.

The cycle in site S2 is of the form

, site Si does not send a deadlock-detection message to

Since ID(P2) < ID{P^)r site Sj does send a deadlock-detection message to
site Si, which, on receiving the message, updates its local wait-for graph. Site
Si then searches for a cycle in the graph and discovers that the system is in a
deadlocked state.

18.6 Election Algorithms

As we pointed out in Section 18.3, many distributed algorithms employ a
coordinator process that performs functions needed by the other processes in
the system. These functions include enforcing mutual exclusion, maintaining
a global wait-for graph for deadlock detection, replacing a lost token, and
controlling an input or output device in the system. If the coordinator process
fails due to the failure of the site at which it resides, the system can continue
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execution only by restarting a new copy of the coordinator on some other site.
The algorithms that determine where a new copy of the coordinator should be
restarted are called election algorithms.

Election algorithms assume that a unique priority number is associated
with each active process in the system. For ease of notation, we assume that
the priority number of process P, is /. To simplify our discussion, we assume
a one-to-one correspondence between processes and sites and thus refer to
both as processes. The coordinator is always the process with the largest
priority number. Hence, when a coordinator fails, the algorithm must elect
that active process with the largest priority number. This number must be sent
to each active process in the system. In addition, the algorithm must provide a
mechanism for a recovered process to identify the current coordinator.

In this section, we present examples of election algorithms for two different
configurations of distributed systems. The first algorithm applies to systems
where every process can send a message to every other process in the system.
The second algorithm applies to systems organized as a ring (logically or
physically). Both algorithms require n2 messages for an election, where n is the
number of processes in the system. We assume that a process that has failed
knows on recovery that it has indeed failed and thus takes appropriate actions
to rejoin the set of active processes.

18.6.1 The Bully Algorithm

Suppose that process P; sends a request that is not answered by the coordinator
within a time interval T. In this situation, it is assumed that the coordinator has
failed, and P; tries to elect itself as the new coordinator. This task is completed
through the following algorithm,

Process P; sends an election message to every process with a higher priority
number. Process P, then waits for a time interval T for an answer from any one
of these processes.

If no response is received within time T, P,- assumes that all processes with
numbers greater than / have failed and elects itself the new coordinator. Process
P; restarts a new copy of the coordinator and sends a message to inform all
active processes with priority numbers less than; that P,- is the new coordinator.

However, if an answer is received, P, begins a time interval T, waiting to
receive a message informing it that a process with a higher priority number
has been elected. (That is, some other process is electing itself coordinator and
should report the results within time T.) If no message is sent within T, then
the process with a higher number is assumed to have failed, and process P,
should restart the algorithm.

If Pi is not the coordinator, then, at any time during execution, P,- may
receive one of the following two messages from process P,:

1. Pj is the new coordinator (j > /). Process P,, in turn, records this
information.

2. Pj has started an election (j < i). Process P,- sends a response to Pj
and begins its own election algorithm, provided that P, has not already
initiated such an election.

The process that completes its algorithm has the highest number and is elected
as the coordinator. It has sent its number to all active processes with smaller
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numbers. After a failed process recovers, it immediately begins execution of
the same algorithm. If there are no active processes with higher numbers, the
recovered process forces all processes with lower numbers to let it become the
coordinator process, even if there is a currently active coordinator with a lower
number. For this reason, the algorithm is termed the bully algorithm.

We can demonstrate the operation of the algorithm with a simple example
of a system consisting of processes Pi through Pj. The operations are as follows:

1. All processes are active; P4 is the coordinator process.

2. PT and P4 fail. P2 determines that P4 has failed by sending a request that
is not answered within time T. P2 then begins its election algorithm by
sending a request to P3.

3. P3 receives the request, responds to P2, and begins its own algorithm by
sending an election request to P4.

4. Pi receives Pa's response and begins waiting for an interval T'.

5. Pi does not respond within an interval T, so P3 elects itself the new
coordinator and sends the number 3 to P2 and Pi. (Pi does not receive
the number, since it has failed.)

6. Later, when P] recovers, it sends an election request to P?, P3, and P4.

7. P2 and P3 respond to Pi and begin their own election algorithms. P3 will
again be elected, through the same events as before.

8. Finally, P4 recovers and notifies Pi, Pj, and P3 that it is the current
coordinator. (P4 sends no election requests, since it is the process with
the highest number in the system.)

18.6.2 The Ring Algorithm

The ring algorithm assumes that the links are unidirectional and that each
process sends its messages to the neighbor on the right. The main data structure
used by the algorithm is the active list, a list that contains the priority numbers
of all active processes in the system when the algorithm ends; each process
maintains its own active list. The algorithm works as follows:

1. If process P; detects a coordinator failure, it creates a new active list that
is initially empty. It then sends a message elect(i) to its right neighbor and
adds the number / to its active list.

2. If Pj receives a message electij) from the process on the left, it must respond
in one of three ways:

a. If this is the first elect message it has seen or sent, P, creates a new
active list with the numbers i and;. It then sends the message ekct(i),
followed by the message elect(j).

b. If i # /—that is, the message received does not contain P.'s number
—then Pj adds / to its active list and forwards the message to its
right neighbor.
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c. If / = /—that is, Pi receives the message eled(i)—then the active list
for P now contains the numbers of all the active processes in the
system. Process P; can now determine the largest number in the
active list to identify the new coordinator process.

This algorithm does not specify how a recovering process determines the
number of the current coordinator process. One solution requires a recovering
process to send an inquiry message. This message is forwarded around the ring
to the current coordinator, which in turn sends a reply containing its number.

18.7 Reaching Agreement

For a system to be reliable, we need a mechanism that allows a set of processes
to agree on a common value. Such an agreement may not take place, for several
reasons. First, the communication medium may be faulty, resulting in lost or
garbled messages. Second, the processes themselves may be faulty, resulting
in unpredictable process behavior. The best we can hope for in this case is that
processes fail in a clean way, stopping their execution without deviating from
their normal execution pattern. In the worst case, processes may send garbled
or incorrect messages to other processes or even collaborate with other failed
processes in an attempt to destroy the integrity of the system.

The Byzantine generals problem provides an analogy for this situation.
Several divisions of the Byzantine army, each commanded by its own general,
surround an enemy camp. The Byzantine generals must reach agreement on
whether or not to attack the enemy at dawn. It is crucial that all generals agree,
since an attack by only some of the divisions would result in defeat. The various
divisions are geographically dispersed, and the generals can communicate with
one another only via messengers who run from camp to camp. The generals
may not be able to reach agreement for at least two major reasons:

1. Messengers may get caught by the enemy and thus may be unable to
deliver their messages. This situation corresponds to unreliable com-
munication in a computer system and is discussed further in Section
18.7.1.

2. Generals may be traitors, trying to prevent the loyal generals from
reaching an agreement. This situation corresponds to faulty processes
in a computer system and is discussed further in Section 18.7.2.

18.7.1 Unreliable Communications

Let us first assume that, if processes fail, they do so in a clean way and that
the communication medium is unreliable. Suppose that process P,- at site Si,
which has sent a message to process P; at site S2, needs to know whether
Pj has received the message so that it can decide how to proceed with its
computation. For example, P, may decide to compute a function foo if Pj has
received its message or to compute a function boo if Pj has not received the
message (because of some hardware failure).

To detect failures, we can use a time-out scheme similar to the one
described in Section 16.7.1. When P, sends out a message, it also specifies
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a time interval during which it is willing to wait for an acknowledgment
message from P,. When P, receives the message, it immediately sends an
acknowledgment to P,-. If P; receives the acknowledgment message within the
specified time interval, it can safely conclude that P, has received its message.
If, however, a time-out occurs, then P, needs to retransmit its message and
wait for an acknowledgment. This procedure continues until P, either gets the
acknowledgment message back or is notified by the system that site En is down.
In the first case, it will compute S; in the latter case, it will compute F. Note
that, if these are the only two viable alternatives, P; must wait until it has been
notified that one of the situations has occurred.

Suppose now that P< also needs to know that P,- has received its acknowl-
edgment message, so that it can decide how to proceed with its computation.
For example, Pj may want to compute foo only if it is assured that P>- got
its acknowledgment. In other words, P; and Pj will compute foo if and only
if both have agreed on it. It turns out that, in the presence of failure, it is
not possible to accomplish this task. More precisely, it is not possible in a
distributed environment for processes P; and Pr to agree completely on their
respective states.

To prove this claim, let us suppose that a minimal sequence of message
transfers exists such that, after the messages have been delivered, both
processes agree to compute foo. Let in' be the last message sent by P, to
Pj. Since P; does not know whether its message will arrive at Pj (since the
message may be lost due to a failure), P; will execute foo regardless of the
outcome of the message delivery. Thus, m' could be removed from the sequence
without affecting the decision procedure. Hence, the original sequence was not
minimal, contradicting our assumption and showing that there is no sequence.
The processes can never be sure that both will compute foo.

18.7.2 Faulty Processes

Now let us assume that the communication medium is reliable but that
processes can fail in unpredictable ways. Consider a system of n processes,
of which no more than m are faulty. Suppose that each process P; has some
private value of V/. We wish to devise an algorithm that allows each nonfaulty
process P, to construct a vector X, = (A.i, A.2- •••, A,n) such that the following
conditions exist:

1. If Pj is a nonfaulty process, then Aj.j = Vj.

2. If P, and Pj are both nonfaulty processes, then X,- = Xj.

There are many sokitions to this problem, and they share the following
properties:

1. A correct algorithm can be devised only if n > 3 x m + 1.

2. The worst-case delay for reaching agreement is proportionate to in + 1
message-passing delays.

3. The number of messages required for reaching agreement is large. No
single process is trustworthy, so all processes must collect all information
and make their own decisions.
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Rather than presenting a general solution, which would be complicated, we
present an algorithm for the simple case where m = 1 and n - 4. The algorithm
requires two rounds of information exchange:

1. Each process sends its private value to the other three processes.

2. Each process sends the information it has obtained in the first round to
all other processes.

A faulty process obviously may refuse to send messages. In this case, a
nonfaulty process can choose an arbitrary value and pretend that the value
was sent by the faulty process.

Once these two rounds are completed, a nonfaulty process P, can construct
its vector X, = (A.i, A.2/ A.3/ A.4) as follows:

2. For j ^ i, if at least two of the three values reported for process Pj (in
the two rounds of exchange) agree, then the majority value is used to set
the value of A,/- Otherwise, a default value—say, nil—is used to set the
value of A.,.

18.8 Summary

In a distributed system with no common memory and no common clock, it
is sometimes impossible to determine the exact order in which two events
occur. The happened-before relation is only a partial ordering of the events in
a distributed system. Timestamps can be used to provide a consistent event
ordering.

Mutual exclusion in a distributed environment can be implemented in a
variety of ways. In a centralized approach, one of the processes in the system
is chosen to coordinate the entry to the critical section. In the fully distributed
approach, the decision making is distributed across the entire system. A
distributed algorithm, which is applicable to ring-structured networks, is the
token-passing approach.

For atomicity to be ensured, all the sites in which a transaction T has
executed must agree on the final outcome of the execution. T either commits at
all sites or aborts at all sites. To ensure this property, the transaction coordinator
of T must execute a commit protocol. The most widely used commit protocol
is the 2PC protocol.

The various concurrency-control schemes that can be used in a centralized
system can be modified for use in a distributed environment. In the case
of locking protocols, we need only change the way the lock manager is
implemented. In the case of timestamping and validation schemes, the only
change needed is the development of a mechanism for generating unique
global timestamps. The mechanism can either concatenate a local timestamp
with the site identification or advance local clocks whenever a message arrives
that has a larger timestamp.

The primary method for dealing with deadlocks in a distributed environ-
ment is deadlock detection. The main problem is deciding how to maintain the
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wait-for graph. Methods for organizing the wait-for graph include a centralized
approach and a fully distributed approach.

Some distributed algorithms require the use of a coordinator. If the
coordinator fails because of the failure of the site at which it resides, the system
can continue execution only by restarting a new copy of the coordinator on
some other site. It can do so by maintaining a backup coordinator that is
ready to assume responsibility if the coordinator fails. Another approach is to
choose the new coordinator after the coordinator has failed. The algorithms
that determine where a new copy of the coordinator should be restarted are
called election algorithms. Two algorithms, the bully algorithm and the ring
algorithm, can be used to elect a new coordinator in case of failures.

Exercises

18.1 Discuss the advantages and disadvantages of the two methods we
presented for generating globally unique timestamps.

18.2 The logical clock timestamp scheme presented in this chapter provides
the following guarantee: If event A happens before event B, then the
timestamp of A is less than the timestamp of B. Note, however, that
one cannot order two events based only on their timestamps. The fact
that an event C has a timestamp that is less than the timestamp of event
D does not necessarily mean that event C happened before event D; C
and D could be concurrent events in the system. Discuss ways in which
the logical clock timestamp scheme could be extended to distinguish
concurrent events from events that can be ordered by the happens-before
relationship.

18.3 Your company is building a computer network, and you are asked to
write an algorithm for achieving distributed mutual exclusion. Which
scheme will you use? Explain your choice.

18.4 Why is deadlock detection much more expensive in a distributed
environment than in a centralized environment?

18.5 Your company is building a computer network, and you are asked to
develop a scheme for dealing with the deadlock problem.

a. Would you use a deadlock-detection scheme or a deadlock-
prevention scheme?

b. If you were to use a deadlock-prevention scheme, which one
would you use? Explain your choice.

c. If you were to use a deadlock-detection scheme, which one
would you use? Explain your choice.

18.6 Under what circumstances does the wait-die scheme perform better-
than the wound-wait scheme for granting resources to concurrently
executing transactions?

18.7 Consider the centralized and the fully distributed approaches to
deadlock detection. Compare the two algorithms in terms of message
complexity.
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18.8 Consider the following hierarchical deadlock-detection algorithm, in
which the global wait-for graph is distributed over a number of
different controllers, which are organized in a tree. Each non-leaf
controller maintains a wait-for graph that contains relevant information
from the graphs of the controllers in the subtree below it. In particular,
let SA, Sg, and Sc be controllers such that Sc is the lowest common
ancestor of SA and SB {SC must be unique, since we are dealing with
a tree). Suppose that node T; appears in the local wait-for graph of
controllers SA and Sg. Then T, must also appear in the local wait-for
graph of

• Controller Sc

• Every controller in the path from Sc to SA

• Every controller in the path from Sc to SB

In addition, if 7} and Tj appear in the wait-for graph of controller So
and there exists a path from 7} to T, in the wait-for graph of one of the
children of So, then an edge T, —>• Tj must be in the wait-for graph of
SD.

Show that, if a cycle exists in any of the wait-for graphs, then the
system is deadlocked.

18.9 Derive an election algorithm for bidirectional rings that is more efficient
than the one presented in this chapter. How many messages are needed
for n processes?

18.10 Consider a setting where processors are not associated with unique
identifiers but the total number of processors is known and the
processors are organized along a bidirectional ring. Is it possible to
derive an election algorithm for such a setting?

18.11 Consider a failure that occurs during 2PC for a transaction. For each
possible failure, explain how 2PC ensures transaction atomicity despite
the failure.

18.12 Consider the following failure model for faulty processors. Processors
follow the protocol but might fail at unexpected points in time. When
processors fail, they simply stop functioning and do not continue to
participate in the distributed system. Given such a failure model, design
an algorithm for reaching agreement among a set of processors. Discuss
the conditions under which agreement could be reached.
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Part Seven

Special-Purpose
Systems

Our coverage of operating-system issues thus far has focused mainly
on general-purpose computing systems. There are, however, special-
purpose systems with requirements different from those of many of the
systems we have described.

A real-time system is a computer system that requires not only that
computed results be "correct" but also that the results be produced
within a specified deadline period. Results produced after the deadline
has passed—even if correct—may be of no real value. For such sys-
tems, many traditional operating-system scheduling algorithms must be
modified to meet the stringent timing deadlines.

A multimedia system must be able to handle not only conventional
data, such as text files, programs, and word-processing documents,
but also multimedia data. Multimedia data consist of continuous-media
data (audio and video) as well as conventional data. Continuous-media
data—such as frames of video—must be delivered according to certain
time restrictions (for example, 30 frames per second). The demands of
handling continuous-media data require significant changes in operating-
system structure, most notably in memory, disk, and network manage-
ment.
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'Real-Time
Systems

Our coverage of operating-system issues thus far has focused mainly on
general-purpose computing systems (for example, desktop and server sys-
tems). In this chapter, we turn our attention to real-time computing systems.
The requirements of real-time systems differ from those of many of the systems
we have described, largely because real-time systems must produce results
within certain deadlines. In this chapter we provide an overview of real-
time computer systems and describe how real-time operating systems must
be constructed to meet the stringent timing requirements of these systems.

CHAPTER OBJECTIVES

• To explain the timing requirements of real-time systems.

• To distinguish between hard and soft real-time systems.

• To discuss the defining characteristics of real-time systems,

• To describe scheduling algorithms for hard real-time systems.

19.1 Overview

A real-time system is a computer system that requires not only that the
computing results be "correct" but also that the results be produced within
a specified deadline period. Results produced after the deadline has passed—
even if correct—may be of no real value. To illustrate, consider an autonomous
robot that delivers mail in an office complex. If its vision-control system
identifies a wall after the robot has walked into it, despite correctly identifying
the wall, the system has not met its requirement. Contrast this timing
requirement with the much less strict demands of other systems. In an
interactive desktop computer system, it is desirable to provide a quick response
time to the interactive user, but it is not mandatory to do so. Some systems
— such as a batch-processing system— may have no timing requirements
whatsoever.

Real-time systems executing on traditional computer hardware are used
in a wide range of applications. In addition, many real-time systems are
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embedded in "specialized devices," such as ordinary home appliances (for
example, microwave ovens and dishwashers), consumer digital devices (for
example, cameras and MP3 players), and communication devices (for example,
cellular telephones and Blackberry handheld devices). They are also present
in larger entities, such as automobiles and airplanes. An embedded system is
a computing device that is part of a larger system in which the presence of a
computing device is often not obvious to the user.

To illustrate, consider an embedded system for controlling a home dish-
washer. The embedded system may allow various options for scheduling the
operation of the dishwasher—the water temperature, the type of cleaning
(light or heavy), even a timer indicating when the dishwasher is to start. Most
likely, the user of the dishwasher is unaware that there is in fact a computer
embedded in the appliance. As another example, consider an embedded system
controlling antilock brakes in an automobile. Each wheel in the automobile has
a sensor detecting how much sliding and traction are occurring, and each
sensor continually sends its data to the system controller. Taking the results
from these sensors, the controller tells the braking mechanism in each wheel
how much braking pressure to apply. Again, to the user (in this instance, the
driver of the automobile), the presence of an embedded computer system may
not be apparent. It is important to note, however, that not all embedded systems
are real-time. For example, an embedded system controlling a home furnace
may have no real-time requirements whatsoever.

Some real-time systems are identified as safety-critical systems. In a
safety-critical system, incorrect operation—usually due to a missed deadline
—results in some sort of "catastrophe." Examples of safety-critical systems
include weapons systems, antilock brake systems, flight-management systems,
and health-related embedded systems, such as pacemakers. In these scenarios,
the real-time system must respond to events by the specified deadlines;
otherwise, serious injury—or worse—might occur. However, a significant
majority of embedded systems do not qualify as safety-critical, including FAX
machines, microwave ovens, wristwatches, and networking devices such as
switches and routers. For these devices, missing deadline requirements results
in nothing more than perhaps an unhappy user.

Real-time computing is of two types: hard and soft. A hard real-time
system has the most stringent requirements, guaranteeing that critical real-
time tasks be completed within their deadlines. Safety-critical systems are
typically hard real-time systems. A soft real-time system is less restrictive,
simply providing that a critical real-time task will receive priority over other
tasks and that it will retain that priority until it completes. Many commercial
operating systems—as well as Linux—provide soft real-time support.

19.2 System Characteristics

In this section, we explore the characteristics of real-time systems and address
issues related to designing both soft and hard real-time operating systems.

The following characteristics are typical of many real-time systems:

• Single purpose

• Small size
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• Inexpensively mass-produced *

• Specific timing requirements

We next examine each of these characteristics.
Unlike PCs, which are put to many uses, a real-time system typically serves

only a single purpose, such as controlling antilock brakes or delivering music
on an MP3 player. It is unlikely that a real-time system controlling an airliner's
navigation system will also play DVDs! The design of a real-time operating
system reflects its single-purpose nature and is often quite simple.

Many real-time systems exist in environments where physical space is
constrained. Consider the amount of space available in a wristwatch or a
microwave oven—it is considerably less than what is available in a desktop
computer. As a result of space constraints, most real-time systems lack both
the CPU processing power and the amount of memory available in standard
desktop PCs. Whereas most contemporary desktop and server systems use 32-
or 64-bit processors, many real-time systems run on 8- or 16-bit processors.
Similarly, a desktop PC might have several gigabytes of physical memory,
whereas a real-time system might have less than a megabyte. We refer to the
footprint of a system as the amount of memory required to run the operating
system and its applications. Because the amount of memory is limited, most
real-time operating systems must have small footprints.

Next, consider where many real-time systems are implemented: They are
often found in home appliances and consumer devices. Devices such as digital
cameras, microwave ovens, and thermostats are mass-produced in very cost-
conscious environments. Thus, the microprocessors for real-time systems must
also be inexpensively mass-produced.

One technique for reducing the cost of an embedded controller is to
use an alternative technique for organizing the components of the computer
system. Rather than organizing the computer around the structure shown in
Figure 19.1, where buses provide the interconnection mechanism to individual
components, many embedded system controllers use a strategy known as
system-on-chip (SOC). Here, the CPU, memory (including cache), memory-
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Figure 19.1 Bus-oriented organization.
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management-unit (MMU), and any attached peripheral ports, such as USB^ports,
are contained in a single integrated circuit. The SOC strategy is typically less
expensive than the bus-oriented organization of Figure 19.1.

We turn now to the final characteristic identified above for real-time
systems: specific timing requirements. It is, in fact, the defining characteristic of
such systems. Accordingly, the defining characteristic of both hard and soft real-
time operating systems is to support the timing requirements of real-time tasks,
and the remainder of this chapter focuses on this issue. Real-time operating
systems meet timing requirements by using scheduling algorithms that give
real-time processes the highest scheduling priorities. Furthermore, schedulers
must ensure that the priority of a real-time task does not degrade over time. A
second, somewhat related, technique for addressing timing requirements is by
minimizing the response time to events such as interrupts.

19.3 Features of Real-Time Kernels

In this section, we discuss the features necessary for designing an operating
system that supports real-time processes. Before we begin, though, let's
consider what is typically not needed for a real-time system. We begin
by examining several features provided in many of the operating systems
discussed so far in this text, including Linux, UNIX, and the various versions
of Windows. These systems typically provide support for the following:

• A variety of peripheral devices such as graphical displays, CD, and DVD
drives

• Protection and security mechanisms

• Multiple users

Supporting these features often results in a sophisticated—and large—kernel.
For example, Windows XP has over forty million lines of source code. In
contrast, a typical real-time operating system usually has a very simple design,
often written in thousands rather than millions of lines of source code. We
would not expect these simple systems to include the features listed above.

But why don't real-time systems provide these features, which are crucial
to standard desktop and server systems? There are several reasons, but three
are most prominent. First, because most real-time systems serve a single
purpose, they simply do not require many of the features found in a desktop
PC. Consider a digital wristwatch: It obviously has no need to support a
disk drive or DVD, let alone virtual memory. Furthermore, a typical real-time
system does not include the notion of a user: The system simply supports
a small number of tasks, which often await input from hardware devices
(sensors, vision identification, and so forth). Second, the features supported
by standard desktop operating systems are impossible to provide without fast
processors and large amounts of memory. Both of these are unavailable in
real-time systems due to space constraints, as explained earlier. In addition,
many real-time systems lack sufficient space to support peripheral disk drives
or graphical displays, although some systems may support file systems using
nonvolatile memory (NVRAM). Third, supporting features common in standard
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Figure 19.2 Address translation in real-time systems.

desktop computing environments would greatly increase the cost of real-time
systems, which could make such systems economically impractical.

Additional considerations apply when considering virtual memory in a
real-time system. Providing virtual memory features as described in Chapter 9
require the system include a memory management unit (MMU) for translating
logical to physical addresses. However, MMUs typically increase the cost
and power consumption of the system. In addition, the time required to
translate logical addresses to physical addresses—especially in the case of a
translation look-aside buffer (TLB) miss—may be prohibitive in a hard real-time
environment. In the following we examine several appraoches for translating
addresses in real-time systems.

Figure 19.2 illustrates three different strategies for managing address
translation available to designers of real-time operating systems. In this
scenario, the CPU generates logical address L that must be mapped to
physical address P. The first approach is to bypass logical addresses and
have the CPU generate physical addresses directly. This technique—known
as real-addressing mode—does not employ virtual memory techniques and
is effectively stating that P equals L. One problem with real-addressing mode
is the absence of memory protection between processes. Real-addressing mode
may also require that programmers specify the physical location where their
programs are loaded into memory. However, the benefit of this approach
is that the system is quite fast, as no time is spent on address translation.
Real-addressing mode is quite common in embedded systems with hard
real-time constraints. In fact, some real-time operating systems running on
microprocessors containing an MMU actually disable the MMU to gain the
performance benefit of referencing physical addresses directly.

A second strategy for translating addresses is to use an approach similar
to the dynamic relocation register shown in Figure 8.4. In this scenario, a
relocation register R is set to the memory location where a program is loaded.
The physical address P is generated by adding the contents of the relocation
register R to L. Some real-time systems configure the MMU to perform this way.
The obvious benefit of this strategy is that the MMU can easily translate logical
addresses to physical addresses using P = L + R. However, this system still
suffers from a lack of memory protection between processes.
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The last approach is for the real-time system to provide full virtual memory
functionality as described in Chapter 9. In this instance, address translation
takes place via page tables and a translation look-aside buffer, or TLB. In
addition to allowing a program to be loaded at any memory location, this
strategy also provides memory protection between processes. For systems
without attached disk drives, demand paging and swapping may not be
possible. However, systems may provide such features using NVRAM flash
memory. The LynxOS and OnCore Systems are examples of real-time operating
systems providing full support for virtual memory.

19.4 Implementing Real-Time Operating Systems

Keeping in mind the many possible variations, we now identify the features
necessary for implementing a real-time operating system. This list is by no
means absolute; some systems provide more features than we list below, while
other systems provide fewer.

• Preemptive, priority-based scheduling

• Preemptive kernel

• Minimized latency

One notable feature we omit from this list is networking support. How-
ever, deciding whether to support networking protocols such as TCP/IP is
simple: If the real-time system must be connected to a network, the operating
system must provide networking capabilities. For example, a system that
gathers real-time data and transmits it to a server must obviously include
networking features. Alternatively, a self-contained embedded system requir-
ing no interaction with other computer systems has no obvious networking
requirement.

In the remainder of this section, we examine the basic requirements listed
above and identify how they can be implemented in a real-time operating
system.

19.4.1 Priority-Based Scheduling

The most important feature of a real-time operating system is to respond
immediately to a real-time process as soon as that process requires the CPU.
As a result, the scheduler for a real-time operating system must support a
priority-based algorithm with preemption. Recall that priority-based schedul-
ing algorithms assign each process a priority based on its importance; more
important tasks are assigned higher priorities than those deemed less impor-
tant. If the scheduler also supports preemption, a process currently running
on the CPU will be preempted if a higher-priority process becomes available to
run.

Preemptive, priority-based scheduling algorithms are discussed in detail
in Chapter 5, where we also present examples of the soft real-time scheduling
features of the Solaris, Windows XP, and Linux operating systems. Each of
these systems assigns real-time processes the highest scheduling priority. For
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example, Windows XP has 32 different priority levels; the highest levels—
priority values 16 to 31—are reserved for real-time processes. Solaris and
Linux have similar prioritization schemes.

Note, however, that providing a preemptive, priority-based scheduler only
guarantees soft real-time functionality. Hard real-time systems must further
guarantee that real-time tasks will be serviced in accord with their deadline
requirements, and making such guarantees may require additional scheduling
features. In Section 19.5, we cover scheduling algorithms appropriate for hard
real-time systems.

19.4.2 Preemptive Kernels

Nonpreemptive kernels disallow preemption of a process running in kernel
mode; a kernel-mode process will run until it exits kernel mode, blocks, or
voluntarily yields control of the CPU. In contrast, a preemptive kernel allows
the preemption of a task running in kernel mode. Designing preemptive
kernels can be quite difficult; and traditional user-oriented applications such
as spreadsheets, word processors, and web browsers typically do not require
such quick response times. As a result, some commercial desktop operating
systems—such as Windows XP—are nonpreemptive.

However, to meet the timing requirements of real-time systems—in partic-
ular, hard real-time systems—preemptive kernels are mandatory. Otherwise,
a real-time task might have to wait an arbitrarily long period of time while
another task was active in the kernel.

There are various strategies for making a kernel preemptible. One approach
is to insert preemption points in long-duration system calls. A preemption
point checks to see whether a high-priority process needs to be run. If so, a
context switch takes place. Then, when the high-priority process terminates,
the interrupted process continues with the system call. Preemption points
can be placed only at safe locations in the kernel—that is, only where kernel
data structures are not being modified. A second strategy for making a kernel
preemptible is through the use of synchronization mechanisms, which we
discussed in Chapter 6. With this method, the kernel can always be preemptible,
because any kernel data being updated are protected from modification by the
high-priority process.
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Figure 19.3 Event latency.
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19.4.3 Minimizing Latency ?

Consider the event-driven nature of a real-time system: The system is typically
waiting for an event in real time to occur. Events may arise either in software
—as when a timer expires—or in hardware—as when a remote-controlled
vehicle detects that it is approaching an obstruction. When an event occurs, the
system must respond to and service it as quickly as possible. We refer to event
latency as the amount of time that elapses from when an event occurs to when
it is serviced (Figure 19.3).

Usually, different events have different latency requirements. For example,
the latency requirement for an antilock brake system might be three to five
milliseconds, meaning that from the time a wheel first detects that it is sliding,
the system controlling the antilock brakes has three to five milliseconds to
respond to and control the situation. Any response that takes longer might
result in the automobile's veering out of control. In contrast, an embedded
system controlling radar in an airliner might tolerate a latency period of several
seconds.

Two types of latencies affect the performance of real-time systems:

1. Interrupt latency

2. Dispatch latency

Interrupt latency refers to the period of time from the arrival of an interrupt
at the CPU to the start of the routine that services the interrupt. When an
interrupt occurs, the operating system must first complete the instruction it
is executing and determine the type of interrupt that occurred. It must then
save the state of the current process before servicing the interrupt using the
specific interrupt service routine (ISR). The total time required to perform these
tasks is the interrupt latency (Figure 19.4). Obviously, it is crucial for real-time
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Figure 19.4 Interrupt latency.
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operating systems to minimize interrupt latency to ensure that real-time?tasks
receive immediate attention.

One important factor contributing to interrupt latency is the amount of time
interrupts may be disabled while kernel data structures are being updated.
Real-time operating systems require that interrupts to be disabled for very
short periods of time. However, for hard real-time systems, interrupt latency
must not only be minimized, it must in fact be bounded to guarantee the
deterministic behavior required of hard real-time kernels.

The amount of time required for the scheduling dispatcher to stop one
process and start another is known as dispatch latency. Providing real-time
tasks with immediate access to the CPU mandates that real-time operating
systems minimize this latency. The most effective technique for keeping
dispatch latency low is to provide preemptive kernels.

In Figure 19.5, we diagram the makeup of dispatch latency. The conflict
phase of dispatch latency has two components:

1. Preemption of any process running in the kernel

2. Release by low-priority processes of resources needed by a high-priority
process

As an example, in Solaris, the dispatch latency with preemption disabled is
over 100 milliseconds. With preemption enabled, it is reduced to less than a
millisecond.

One issue that can affect dispatch latency arises when a higher-priority
process needs to read or modify kernel data that are currently being accessed
by a lower-priority process—or a chain of lower-priority processes. As kernel

event response to event

• response interval •

process made
interrupt available

^processing

dispatch latency

-conflicts dispatch

real-time
process

execution

time

Figure 19.5 Dispatch latency.
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data are typically protected with a lock, the higher-priority process will have to
wait for a lower-priority one to finish with the resource. The situation becomes
more complicated if the lower-priority process is preempted in favor of another
process with a higher priority. As an example, assume we have three processes,
L, M, and H, whose priorities follow the order L < M < H. Assume that
process H requires resource R, which is currently being accessed by process L.
Ordinarily, process H would wait for L to finish using resource R. However,
now suppose that process M becomes runnable, thereby preempting process
L. Indirectly, a process with a lower priority—process M—has affected how
long process H must wait for L to relinquish resource R.

This problem, known as priority inversion, can be solved by use of the
priority-inheritance protocol. According to this protocol, all processes that
are accessing resources needed by a higher-priority process inherit the higher
priority until they are finished with the resources in question. When they
are finished, their priorities revert to their original values. In the example
above, a priority-inheritance protocol allows process L to temporarily inherit
the priority of process H, thereby preventing process M from preempting its
execution. When process L has finished using resource R, it relinquishes its
inherited priority from H and assumes its original priority. As resource R is
now available, process H—not M—will run next.

19.5 Real-Time CPU Scheduling

Our coverage of scheduling so far has focused primarily on soft real-time
systems. As mentioned, though, scheduling for such systems provides no
guarantee on when a critical process will be scheduled; it guarantees only that
the process will be given preference over noncritical processes. Hard real-time
systems have stricter requirements. A task must be serviced by its deadline;
service after the deadline has expired is the same as no service at all.

We now consider scheduling for hard real-time systems. Before we proceed
with the details of the individual schedulers, however, we must define certain
characteristics of the processes that are to be scheduled. First, the processes
are considered periodic. That is, they require the CPU at constant intervals
(periods). Each periodic process has a fixed processing time t once it acquires
the CPU, a deadline d when it must be serviced by the CPU, and a period p.
The relationship of the processing time, the deadline, and the period can be
expressed as 0 < t < d < p. The rate of a periodic task is 1/p. Figure 19.6
illustrates the execution of a periodic process over time. Schedulers can take
advantage of this relationship and assign priorities according to the deadline
or rate requirements of a periodic process.

What is unusual about this form of scheduling is that a process may have to
announce its deadline requirements to the scheduler. Then, using a technique
known as an admission-control algorithm, the scheduler either admits the
process, guaranteeing that the process will complete on time, or rejects the
request as impossible if it cannot guarantee that the task will be serviced by its
deadline.

In the following sections, we explore scheduling algorithms that address
the deadline requirements of hard real-time systems.
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Figure 19.6 Periodic task.

19.5.1 Rate-Monotonic Scheduling

The rate-monotonic scheduling algorithm schedules periodic tasks using a
static priority policy with preemption. If a lower-priority process is running
and a higher-priority process becomes available to run, it will preempt the
lower-priority process. Upon entering the system, each periodic task is assigned
a priority inversely based on its period: The shorter the period, the higher the
priority; the longer the period, the lower the priority. The rationale behind this
policy is to assign a higher priority to tasks that require the CPU more often.
Furthermore, rate-monotonic scheduling assumes that the processing time of
a periodic process is the same for each CPU burst. That is, every time a process
acquires the CPU, the duration of its CPU burst is the same.

Let's consider an example. We have two processes Pi and P?. The periods
for P-[ and PT are 50 and 100, respectively—that is, f\ = 50 and pz = 100. The
processing times are t\ — 20 for Pi and tz = 35 for Pi. The deadline for each
process requires that it complete its CPU burst by the start of its next period.

We must first ask ourselves whether it is possible to schedule these tasks
so that each meets its deadlines. If we measure the CPU utilization of a process
Pi as the ratio of its burst to its period—tj/pi—the CPU utilization of Pi is
20/50 = 0.40 and that of P2 is 35/100 = 0.35, for a total CPU utilization of 75
percent. Therefore, it seems we can schedule these tasks in such a way that
both meet their deadlines and still leave the CPU with available cycles.

First, suppose we assign P2 a higher priority than P\. The execution of Pi
and P? is shown in Figure 19.7. As we can see, P2 starts execution first and
completes at time 35. At this point, Pi starts; it completes its CPU burst at time
55. However, the first deadline for Pi was at time 50, so the scheduler has
caused Pi to miss its deadline.

Now suppose we use rate-monotonic scheduling, in which we assign P]
a higher priority than Pi, since the period of Pi is shorter than that of P?.

Deadlines Pi

I

0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 19.7 Scheduling of tasks when P2 has a higher priority than P,.
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Deadlines P, P, P2 P^ 3 P, P 2
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Figure 19.8 Rate-monotonic scheduling.

The execution of these processes is shown in Figure 19.8. Pi starts first and
completes its CPU burst at time 20, thereby meeting its first deadline. P2 starts
running at this point and runs until time 50. At this time, it is preempted by
Pi, although it still has 5 milliseconds remaining in its CPU burst. Pi completes
its CPU burst at time 70, at which point the scheduler resumes P2. P2 completes
its CPU burst at time 75, also meeting its first deadline. The system is idle until
time 100, when Pi is scheduled again.

Rate-monotonic scheduling is considered optimal in the sense that if a set
of processes cannot be scheduled by this algorithm, it cannot be scheduled
by any other algorithm that assigns static priorities. Let's next examine a set
of processes that cannot be scheduled using the rate-monotonic algorithm.
Assume that process Pi has a period of p\ — 50 and a CPU burst of fi = 25.
For P2, the corresponding values are p2 = 80 and t2 = 35. Rate-monotonic
scheduling would assign process Pi a higher priority, as it has the shorter
period. The total CPU utilization of the two processes is (25/50)+(35/80) = 0.94,
and it therefore seems logical that the two processes could be scheduled and
still leave the CPU with 6 percent available time. The Gantt chart showing the
scheduling of processes Pi and P2 is depicted in Figure 19.9. Initially, Pi runs
until it completes its CPU burst at time 25. Process P2 then begins running and
runs until time 50, when it is preempted by Pi. At this point, P2 still has 10
milliseconds remaining in its CPU burst. Process Pi runs until time 75; however,
P2 misses the deadline for completion of its CPU burst at time 80.

Despite being optimal, then, rate-monotonic scheduling has a limitation:
CPU utilization is bounded, and it is not always possible to fully maximize CPU
resources. The worst-case CPU utilization for scheduling N processes is

2(21/" - 1).

With one process in the system, CPU utilization is 100 percent; but it falls
to approximately 69 percent as the number of processes approaches infinity.
With two processes, CPU utilization is bounded at about 83 percent. Combined
CPU utilization for the two processes scheduled in Figures 19.7 and 19.8 is 75
percent; and therefore, the rate-monotonic scheduling algorithm is guaranteed

Deadlines P-, P2 P, P-, P2

I 1 I 1 I
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 19.9 Missing deadlines with rate-monotonic scheduling.
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to schedule them so that they can meet their deadlines. For the two processes
scheduled in Figure 19.9, combined CPU utilization is approximately 94
percent; therefore, rate-mono tonic scheduling cannot guarantee that they can
be scheduled so that they meet their deadlines.

19.5.2 Earliest-Deadline-First Scheduling

Earliest-deadline-first (EDF) scheduling dynamically assigns priorities accord-
ing to deadline. The earlier the deadline, the higher the priority; the later the
deadline, the lower the priority. Under the EDF policy, when a process becomes
runnable, it must announce its deadline requirements to the system. Priorities
may have to be adjusted to reflect the deadline of the newly runnable process.
Note how this differs from rate-monotonic scheduling, where priorities are
fixed.

To illustrate EDF scheduling, we again schedule the processes shown in
Figure 19.9, which failed to meet deadline requirements under rate-monotonic
scheduling. Recall that Pj has values of p\ — 50 and t\ — 25 and that P2 has
values pi = 80 and t2 — 35. The EDF scheduling of these processes is shown in
Figure 19.10. Process Pi has the earliest deadline, so its initial priority is higher
than that of process Pi. Process Pi begins running at the end of the CPU burst
for P\. However, whereas rate-monotonic scheduling allows Pi to preempt P2

at the beginning of its next period at time 50, EDF scheduling allows process
P2 to continue running. P2 now has a higher priority than Pi because its next
deadline (at time 80) is earlier than that of P-, (at time 100). Thus, both Pi and P2

have met their first deadlines. Process Pi again begins running at time 60 and
completes its second CPU burst at time 85, also meeting its second deadline at
time 100. Pi begins running at this point, only to be preempted by Pi at the
start of its next period at time 100. P? is preempted because Pi has an earlier
deadline (time 150) than P2 (time 160). At time 125, Pi completes its CPU burst
and Pj resumes execution, finishing at time 145 and meeting its deadline as
well. The system is idle until time 150, when P] is scheduled to run once again.

Unlike the rate-monotonic algorithm, EDF scheduling does not require that
processes be periodic, nor must a process require a constant amount of CPU
time per burst. The only requirement is that a process announce its deadline
to the scheduler when it becomes runnable. The appeal of EDF scheduling is
that it is theoretically optimal—theoretically, it can schedule processes so that
each process can meet its deadline requirements and CPU utilization will be
100 percent. In practice, however, it is impossible to achieve this level of CPU
utilization due to the cost of context switching between processes and interrupt
handling.

Deadlines P-, P2 P-, P, P2
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Figure 19.10 Earliest-deadline-first scheduling.
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19.5.3 Proportional Share Scheduling *

Proportional share schedulers operate by allocating T shares among all
applications. An application can receive N shares of time, thus ensuring that the
application will have N/T of the total processor time. As an example, assume
that there is a total of T = 100 shares to be divided among three processes, A,
B, and C. A is assigned 50 shares, B is assigned 15 shares, and C is assigned
20 shares. This scheme ensures that A will have 50 percent of total processor
time, B will have 15 percent, and C will have 20 percent.

Proportional share schedulers must work in conjunction with an admission
control policy to guarantee that an application receives its allocated shares
of time. An admission control policy will only admit a client requesting a
particular number of shares if there are sufficient shares available. In our current
example, we have allocated 50 + 15 + 20 = 75 shares of the total of 100 shares.
If a new process D requested 30 shares, the admission controller would deny
D entry into the system.

19.5.4 Pthread Scheduling

The POS1X standard also provides extensions for real-time computing—
POSIX.lb. In this section, we cover some of the POSIX Pthread API related
to scheduling real-time threads. Pthreads defines two scheduling classes for
real-time threads:

• SCHED.FIFO

• SCHEDJRR

SCHED_FIFO schedules threads according to a first-come, first-served policy
using a FIFO queue as outlined in Section 5.3.1. However, there is no time slicing
among threads of equal priority. Therefore, the highest-priority real-time thread
at the front of the FIFO queue will be granted the CPU until it terminates
or blocks. SCHED_RR (for round-robin) is similar to SCHED_FIFO except that
it provides time slicing among threads of equal priority. Pthreads provides
an additional scheduling class—SCHED.OTHER—but its implementation is
undefined and system specific; it may behave differently on different systems.

The Pthread API specifies the following two functions for getting and
setting the scheduling policy:

• pthread_attr_getsched_policy(pthread_attr_t *attr, int
*policy)

• pthread_attr_getsched_policy (pthread_attr_t *attr, int
policy)

The first parameter to both functions is a pointer to the set of attributes for
the thread. The second parameter is either a pointer to an integer that is
set to the current scheduling policy (for pthread^attr^getsched_policy())
or an integer value—SCHED.FIFO, SCHED-RR, or SCHEDX>THER—for the
pthread_attr_getsched_policy () function. Both functions return non-zero
values if an error occurs.
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#include <pthread.h> }

#include <stdio.h>

#define NUM.THREADS 5

int main(int argc, char *argv[])

{
int i, policy;

pthread_t tid [NUM.THREADS] •

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init j&attr) ;

/* get the current scheduling policy */
if (pthread_attr_getschedpolicy(&attr, kpolicy) != 0)

fprintf(stderr, "Unable to get policy.\n");
else {

if (policy == SCHED_OTHER)
printf ( "SCHED_OTHER\rl" ) ;

else if (policy == SCHED_RR)

printf ("SCHEDJ^RVn") ;
else if (policy == SCHED_FIFO)
printf ("SCHED_FIFO\n") ;

/* set the scheduling policy - FIFO, RR, or OTHER */

if (pthread.attr_setschedpolicy (&attr, SCHED_OTHER) != 0)

fprintf(stderr, "Unable to set policy.\n");

/* create the threads */

for (i = 0; i < NUM_THREADS; i++)

pthread^create ( &tid [i] , iattr, runner, HULL) ;

/* now join on each thread */

for (i = 0; i < NUMJTHREADS; i++)

pthread_join(tid [i] , NULL) ;

/* Each thread will begin control in this function */

void *runner(void *param)

{
/* do some work ... */

pthread_exit (0) ;

Figure 19.11 Pthread scheduling API.
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In Figure 19.11, we illustrate a Pthread program using this APR This
program first determines the current scheduling policy followed by setting
the scheduling algorithm to SCHED.OTHER.

19.6 VxWorks 5.x

In this section, we describe VxWorks, a popular real-time operating system
providing hard real-time support. VxWorks, commercially developed by Wind
River Systems, is widely used in automobiles, consumer and industrial devices,
and networking equipment such as switches and routers. VxWorks is also used
to control the two rovers—Spirit and Opportunity—that began exploring the
planet Mars in 2004.

The organization of VxWorks is shown in Figure 19.12. VxWorks is centered
around the Wind microkernel. Recall from our discussion in Section 2.7.3 that
microkernels are designed so that the operating-system kernel provides a bare
minimum of features; additional utilities, such as networking, file systems,
and graphics, are provided in libraries outside of the kernel. This approach
offers many benefits, including minimizing the size of the kernel—a desirable
feature for an embedded system requiring a small footprint.

The Wind microkernel supports the following basic features:

• Processes. The Wind microkernel provides support for individual pro-
cesses and threads (using the Pthread API). However, similar to Linux,
VxWorks does not distinguish between processes and threads, instead
referring to both as tasks.

embedded real-time application

Wind microkernel

hardware level
(Pentium, Power PC, MIPS, customized, etc.)

Figure 19.12 The organization of VxWorks.
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REAL-TIME LINUX

The Linux operating system is being used increasingly in real-time environ-
ments. We have already covered its soft real-time scheduling features (Section
5.6.3), whereby real-time tasks are assigned the highest priority in the system,.
Additional features in the 2.6 release of the kernel make Linux increasingly
suitable for embedded systems. These features include a fully preemptive
kernel and a more efficient scheduling algorithm, which runs in 0(1) time
regardless of the number of tasks active in the system. The 2.6 release also
makes it easier to port Linux to different hardware architectures by dividing
the kernel into modular components.

Another strategy for integrating Linux into real-time environments
involves combining the Linux operating system with a small real-time ker-
nel, thereby providing a system that acts as both a general-purpose and
a real-time system. This is the approach taken by the RTLinux operating
system. In RTLinux, the standard Linux kernel runs as a task in a small
real-time operating system. The real-time kernel handles all interrupts—
directing each interrupt to a handler in the standard kernel or to an inter-
rupt handler in the real-time kernel. Furthermore, RTLinux prevents the
standard Linux kernel from ever disabling interrupts, thus ensuring that
it cannot add latency to the real-time system. RTLinux also provides different
scheduling policies, including rate-monotonic scheduling (Section 19.5.1) and
earliest-deadline-first scheduling (Section 19.5.2).

• Scheduling. Wind provides two separate scheduling models: preemptive
and nonpreemptive round-robin scheduling with 256 different priority
levels. The scheduler also supports the POSIX API for real-time threads
covered in Section 19.5.4.

• Interrupts. The Wind microkernel also manages interrupts. To support
hard real-time requirements, interrupt and dispatch latency times are
bounded.

• Interprocess communication. The Wind microkernel provides both shared
memory and message passing as mechanisms for communication between
separate tasks. Wind also allows tasks to communicate using a technique
known as pipes—a mechanism that behaves in the same way as a FIFO
queue but allows tasks to communicate by writing to a special file, the pipe.
To protect data shared by separate tasks, VxWorks provides semaphores
and mutex locks with a priority inheritance protocol to prevent priority
inversion.

Outside the microkernel, VxWorks includes several component libraries
that provide support for POSrx, Java, TCP/IP networking, and the like. All
components are optional, allowing the designer of an embedded system to
customize the system according to its specific needs. For example, if networking
is not required, the TCP/IP library can be excluded from the image of the
operating system. Such a strategy allows the operating-system designer to
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include only required features, thereby minimizing the size—or footprint—of
the operating system.

VxWorks takes an interesting approach to memory management, support-
ing two levels of virtual memory. The first level, which is quite simple, allows
control of the cache on a per-page basis. This policy enables an application
to specify certain pages as non-cacheable. When data are being shared by
separate tasks running on a multiprocessor architecture, it is possible that
shared data can reside in separate caches local to individual processors. Unless
an architecture supports a cache-coherency policy to ensure that the same
data residing in two caches will not be different, such shared data should not
be cached and should instead reside only in main memory so that all tasks
maintain a consistent view of the data.

The second level of virtual memory requires the optional virtual memory
component VxVMI (Figure 19.12), along with processor support for a memory
management unit (MMU). By loading this optional component on systems with
an MMU, VxWorks allows a task to mark certain data areas as private. A data area
marked as private may only be accessed by the task it belongs to. Furthermore,
VxWorks allows pages containing kernel code along with the interrupt vector
to be declared as read-only. This is useful, as VxWorks does not distinguish
between user and kernel modes; all applications run in kernel mode, giving an
application access to the entire address space of the system.

19.7 Summary

A real-time system is a computer system requiring that results arrive within
a deadline period; results arriving after the deadline has passed are useless.
Many real-time systems are embedded in consumer and industrial devices.
There are two types of real-time systems: soft and hard real-time systems.
Soft real-time systems are the least restrictive, assigning real-time tasks higher
scheduling priority than other tasks. Hard real-time systems must guarantee
that real-time tasks are serviced within their deadline periods. In addition to
strict timing requirements, real-time systems can further be characterized as
having only a single purpose and running on small, inexpensive devices.

To meet timing requirements, real-time operating systems must employ
various techniques. The scheduler for a real-time operating system must sup-
port a priority-based algorithm with preemption. Furthermore, the operating
system must allow tasks running in the kernel to be preempted in favor
of higher-priority real-time tasks. Real-time operating systems also address
specific timing issues by minimizing both interrupt and dispatch latency-

Real-time scheduling algorithms include rate-monotonic and earliest-
deadline-first scheduling. Rate-monotonic scheduling assigns tasks that
require the CPU more often a higher priority than tasks that require the
CPU less often. Earliest-deadline-first scheduling assigns priority according
to upcoming deadlines—the earlier the deadline, the higher the priority.
Proportional share scheduling uses a technique of dividing up processor time
into shares and assigning each process a number of shares, thus guaranteeing
each process its proportional share of CPU time. The Pthread API provides
various features for scheduling real-time threads as well.
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Exercises f

19.1 Identify whether hard or soft real-time scheduling is more appropriate
in the following environments:

a. Thermostat in a household

b. Control system for a nuclear power plant

c. Fuel economy system in an automobile

d. Landing system in a jet airliner

19.2 Discuss ways in which the priority inversion problem could be
addressed in a real-time system. Also discuss whether the solutions
could be implemented within the context of a proportional share
scheduler.

19.3 The Linux 2.6 kernel can be built with no virtual memory system.
Explain how this feature may appeal to designers of real-time systems.

19.4 Under what circumstances is rate-monotonic scheduling inferior to
earliest-deadline-first scheduling in meeting the deadlines associated
with processes?

19.5 Consider two processes, Pi and P2, where p-\ = 50, t-\ — 25, p? = 75,
and t2 = 30.

a. Can these two processes be scheduled using rate-monotonic
scheduling? Illustrate your answer using a Gantt chart.

b. Illustrate the scheduling of these two processes using earliest-
deadline-first (EDF) scheduling.

19.6 What are the various components of interrupt and dispatch latency?

19.7 Explain why interrupt and dispatch latency times must be bounded in
a hard real-time system.
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CHAPTER

Multimedia
Systems

In earlier chapters, we generally concerned ourselves with how operating
systems handle conventional data, such as text files, programs, binaries, word-
processing documents, and spreadsheets. However, operating systems may
have to handle other kinds of data as well. A recent trend in technology
is the incorporation of multimedia data into computer systems. Multime-
dia data consist of continuous-media (audio and video) data as well as
conventional files. Continuous-media data differ from conventional data in
that continuous-media data—such as frames of video—must be delivered
(streamed) according to certain time restrictions (for example, 30 frames per
second). In this chapter, we explore the demands of continuous-media data.
We also discuss in more detail how such data differ from conventional data
and how these differences affect the design of operating systems that support
the requirements of multimedia systems.

CHAPTER OBJECTIVES

• To identify the characteristics of multimedia data.

• To examine several algorithms used to compress multimedia data.

• To explore the operating-system requirements of multimedia data, includ-
ing CPU and disk scheduling and network management.

20.1 What Is Multimedia?

The term multimedia describes a wide range of applications that are in
popular use today. These include audio and video files such as MP3 audio
files, DVD movies, and short video clips of movie previews or news stories
downloaded over the Internet. Multimedia applications also include live
webcasts (broadcast over the World Wide Web) of speeches or sporting
events and even live webcams that allow a viewer in Manhattan to observe
customers at a cafe in Paris. Multimedia applications need not be either audio
or video; rather, a multimedia application often includes a combination of
both. For example, a movie may consist of separate audio and video tracks.

715
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Nor must multimedia applications be delivered only to desktop personal
computers. Increasingly, they are being directed toward smaller devices,
including personal digital assistants (PDAs) and cellular telephones. For
example, a stock trader may have stock quotes delivered in real time to her
PDA.

In this section, we explore several characteristics of multimedia systems
and examine how multimedia files can be delivered from a server to a client
system. We also look at common standards for representing multimedia video
and audio files.

20.1.1 Media Delivery

Multimedia data are stored in the file system just like any other data. The major
difference between a regular file and a multimedia file is that the multimedia file
must be accessed at a specific rate, whereas accessing the regular file requires
no special timing. Let's use video as an example of what we mean by "rate."
Video is represented by a series of images, formally known as frames, that
are displayed in rapid succession. The faster the frames are displayed, the
smoother the video appears. In general, a rate of 24 to 30 frames per second is
necessary for video to appear smooth to human eyes. (The eye retains the image
of each frame for a short time after it has been presented, a characteristic known
as persistence of vision. A rate of 24 to 30 frames per second is fast enough
to appear continuous.) A rate lower than 24 frames per second will result in
a choppy-looking presentation. The video file must be accessed from the file
system at a rate consistent with the rate at which the video is being displayed.
We refer to data with associated rate requirements as continuous-media data.

Multimedia data may be delivered to a client either from the local file
system or from a remote server. When the data are delivered from the local file
system, we refer to the delivery as local playback. Examples include watching
a DVD on a laptop computer or listening to an MP3 audio file on a handheld
MP3 player. In these cases, the data comprise a regular file that is stored on
the local file system and played back (that is, viewed or listened to) from that
system.

Multimedia files may also be stored on a remote server and delivered to a
client across a network using a technique known as streaming. A client may be
a personal computer or a smaller device such as a handheld computer, PDA, or
cellular telephone. Data from live continuous media—-such as live webcams
—are also streamed from a server to clients.

There are two types of streaming techniques: progressive download and
real-time streaming. With a progressive download, a media file containing
audio or video is downloaded and stored on the clients local file system. As
the file is being downloaded, the client is able to play back the media file
without having to wait for the file to be downloaded in its entirety. Because
the media file is ultimately stored on the client system, progressive download
is most useful for relatively small media files, such as short video clips.

Real-time streaming differs from progressive download in that the media
file is streamed to the client but is only played—and not stored—by the client.
Because the media file is not stored on the client system, real-time streaming
is preferable to progressive download for media files that might be too large
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for storage on the system, such as long videos and Internet radio and TV
broadcasts.

Both progressive download and real-time streaming may allow a client to
move to different points in the stream, just as you can use the fast-forward and
rewind operations on a VCR controller to move to different points in the VCR
tape. For example, we could move to the end of a 5-minute streaming video or
replay a certain section of a movie clip. The ability to move around within the
media stream is known as random access.

Two types of real-time streaming are available: live streaming and on-
demand streaming. Live streaming is used to deliver an event, such as a concert
or a lecture, live as it is actually occurring. A radio program broadcast over the
Internet is an example of a live real-time stream. In fact, one of the authors of
this text regularly listens to a favorite radio station from Vermont while at his
home in Utah as it is streamed live over the Internet. Live real-time streaming is
also used for applications such as live webcams and video conferencing. Due to
its live delivery, this type of real-time streaming does not allow clients random
access to different points in the media stream. In addition, live delivery means
that a client who wishes to view (or listen to) a particular live stream already
in progress will "join" the session "late," thereby missing earlier portions of
the stream. The same thing happens with a live TV or radio broadcast. If you
start watching the 7:00 P.M. news at 7:10 P.M., you will have missed the first 10
minutes of the broadcast.

On-demand streaming is used to deliver media streams such as full-length
movies and archived lectures. The difference between live and on-demand
streaming is that on-demand streaming does not take place as the event is
occurring. Thus, for example, whereas watching a live stream is like watching
a news broadcast on TV, watching an on-demand stream is like viewing a movie
on a DVD player at some convenient time—there is no notion of arriving late.
Depending on the type of on-demand streaming, a client may or may not have
random access to the stream.

Examples of well-known streaming media products include RealPlayer,
Apple QuickTime, and Windows Media Player. These products include both
servers that stream the media and client media players that are used for
playback.

20.1.2 Characteristics of Multimedia Systems

The demands of multimedia systems are unlike the demands of traditional
applications. In general, multimedia systems may have the following charac-
teristics:

1. Multimedia files can be quite large. For example, a 100-minute MPEG-1
video file requires approximately 1.125 GB of storage space; 100 minutes
of high-definition television (HDTV) requires approximately 15 GB of
storage. A server storing hundreds or thousands of digital video files
may thus require several terabytes of storage.

2. Continuous media may require very high data rates. Consider digital
video, in which a frame of color video is displayed at a resolution of
800 x 600. If we use 24 bits to represent the color of each pixel (which
allows us to have 224, or roughly 16 million, different colors), a single
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frame requires 800 x 600 x 24 = 11. 520, 000 bits of data. If the frames^are
displayed at a rate of 30 frames per second, a bandwidth in excess of 345
Mbps is required.

3. Multimedia applications are sensitive to timing delays during playback.
Once a continuous-media file is delivered to a client, delivery must
continue at a certain rate during playback of the media; otherwise, the
listener or viewer will be subjected to pauses during the presentation.

20.1.3 Operating-System Issues

For a computer system to deliver continuous-media data, it must guarantee
the specific rate and timing requirements—also known as quality of service,
or QoS, requirements—of continuous media.

Providing these QoS guarantees affects several components in a com-
puter system and influences such operating-system issues as CPU scheduling,
disk scheduling, and network management. Specific examples include the
following:

1. Compression and decoding may require significant CPU processing.

2. Multimedia tasks must be scheduled with certain priorities to ensure
meeting the deadline requirements of continuous media.

3. Similarly, file systems must be efficient to meet the rate requirements of
continuous media.

4. Network protocols must support bandwidth requirements while mini-
mizing delay and jitter.

In later sections, we explore these and several other issues related to QoS.
First, however, we provide an overview of various techniques for compressing
multimedia data. As suggested above, compression makes significant demands
on the CPU.

20.2 Compression

Because of the size and rate requirements of multimedia systems, multimedia
files are often compressed from their original form to a much smaller form.
Once a file has been compressed, it takes up less space for storage and can be
delivered to a client more quickly. Compression is particularly important when
the content is being streamed across a network connection. In discussing file
compression, we often refer to the compression ratio, which is the ratio of the
original file size to the size of the compressed file. For example, an 800-KB file
that is compressed to 100 KB has a compression ratio of 8:1.

Once a file has been compressed (encoded), it must be decompressed
(decoded) before it can be accessed. A feature of the algorithm used to compress
the file affects the later decompression. Compression algorithms are classified
as either lossy or lossless. With lossy compression, some of the original data
are lost when the file is decoded, whereas lossless compression ensures that
the compressed file can always be restored back to its original form. In general,
lossy techniques provide much higher compression ratios. Obviously, though,
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only certain types of data can tolerate lossy compression—namely, images,
audio, and video. Lossy compression algorithms often work by eliminating
certain data, such as very high or low frequencies that a human ear cannot
detect. Some lossy compression algorithms used on video operate by storing
only the differences between successive frames. Lossless algorithms are used
for compressing text files, such as computer programs (for example, zipping
files), because we want to restore these compressed files to their original state.

A number of different lossy compression schemes for continuous-media
data are commercially available. In this section, we cover one used by the
Moving Picture Experts Group, better known as MPEG.

MPEG refers to a set of file formats and compression standards for digital
video. Because digital video often contains an audio portion as well, each of
the standards is divided into three layers. Layers 3 and 2 apply to the audio
and video portions of the media file. Layer 1 is known as the systems layer and
contains timing information to allow the MPEG player to multiplex the audio
and video portions so that they are synchronized during playback. There are
three major MPEG standards: MPEG-1, MPEG-2, and MPEG-4.

MPEG-1 is used for digital video and its associated audio stream. The
resolution of MPEG-1 is 352 x 240 at 30 frames per second with a bit rate of up to
1.5 Mbps. This provides a quality slightly lower than that of conventional VCR
videos. MP3 audio files (a popular medium for storing music) use the audio
layer (layer 3) of MPEG-1. For video, MPEG-1 can achieve a compression ratio of
up to 200:1, although in practice compression ratios are much lower. Because
MPEG-1 does not require high data rates, it is often used to download short
video clips over the Internet.

MPEG-2 provides better quality than MPEG-1 and is used for compressing
DVD movies and digital television (including high-definition television, or
HDTV). MPEG-2 identifies a number of levels and profiles of video compression.
The level refers to the resolution of the video; the profile characterizes the
video's quality. In general, the higher the level of resolution and the better
the quality of the video, the higher the required data rate. Typical bit rates
for MPEG-2 encoded files are 1.5 Mbps to 15 Mbps. Because MPEG-2 requires
higher rates, it is often unsuitable for delivery of video across a network and
is generally used for local playback.

MPEG-4 is the most recent of the standards and is used to transmit
audio, video, and graphics, including two-dimensional and three-dimensional
animation layers. Animation makes it possible for end users to interact with
the file during playback. For example, a potential home buyer can download
an MPEG-4 file and take a virtual tour through a home she is considering
purchasing, moving from room to room as she chooses. Another appealing
feature of MPEG-4 is that it provides a scalable level of quality, allowing delivery
over relatively slow network connections such as 56-Kbps modems or over
high-speed local area networks with rates of several megabits per second.
Furthermore, by providing a scalable level of quality, MPEG-4 audio and video
files can be delivered to wireless devices, including handheld computers, PDAs,
and cell phones.

All three MPEG standards discussed here perform lossy compression
to achieve high compression ratios. The fundamental idea behind MPEG
compression is to store the differences between successive frames. We do not
cover further details of how MPEG performs compression but rather encourage
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the interested reader to consult the bibliographical notes at the end of this
chapter.

20.3 Requirements of Multimedia Kernels

As a result of the characteristics described in Section 20.1.2, multimedia
applications often require levels of service from the operating system that differ
from the requirements of traditional applications, such as word processors,
compilers, and spreadsheets. Timing and rate requirements are perhaps the
issues of foremost concern, as the playback of audio and video data demands
that the data be delivered within a certain deadline and at a continuous,
fixed rate. Traditional applications typically do not have such time and rate
constraints.

Tasks that request data at constant intervals—or periods—are known as
periodic processes. For example, an MPEG-1 video might require a rate of 30
frames per second during playback. Maintaining this rate requires that a frame
be delivered approximately every 1/30"' or 3.34 hundredths of a second. To put
this in the context of deadlines, let's assume that frame Fj succeeds frame F; in
the video playback and that frame F, was displayed at time To. The deadline
for displaying frame Fj is 3.34 hundredths of a second after time To. If the
operating system is unable to display the frame by this deadline, the frame
will be omitted from the stream.

As mentioned earlier, rate requirements and deadlines are known as quality
of service (QoS) requirements. There are three QoS levels:

1. Best-effort service. The system makes a best-effort attempt to satisfy the
requirements; however, no guarantees are made.

2. Soft QoS. This level treats different types of traffic in different ways, giving
certain traffic streams higher priority than other streams. However, just
as with best-effort service, no guarantees are made.

3. Hard QoS. The quality-of-service requirements are guaranteed.

Traditional operating systems—the systems we have discussed in this
text so far—typically provide only best-effort service and rely on overpro-
visioning; that is, they simply assume that the total amount of resources
available will tend to be larger than a worst-case workload would demand. If
demand exceeds resource capacity, manual intervention must take place, and
a process (or several processes) must be removed from the system. However
next-generation multimedia systems cannot make such assumptions. These
systems must provide continuous-media applications with the guarantees
made possible by hard QoS. Therefore, in the remainder of this discussion,
when we refer to QoS, we mean hard QoS. Next, we explore various techniques
that enable multimedia systems to provide such service-level guarantees.

There are a number of parameters defining QoS for multimedia applica-
tions, including the following:

• Throughput. Throughput is the total amount of work done during a certain
interval. For multimedia applications, throughput is the required data rate.
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* Delay. Delay refers to the elapsed time from when a request is first
submitted to when the desired result is produced. For example, the time
from when a client requests a media stream to when the stream is delivered
is the delay.

» Jitter. Jitter is related to delay; but whereas delay refers to the time a
client must wait to receive a stream, jitter refers to delays that occur
during playback of the stream. Certain multimedia applications, such
as on-demand real-time streaming, can tolerate this sort of delay. Jitter
is generally considered unacceptable for continuous-media applications,
however, because it may mean long pauses—or lost frames—during
playback. Clients can often compensate for jitter by buffering a certain
amount of data—say, 5 seconds' worth—before beginning playback.

• Reliability. Reliability refers to how errors are handled during transmis-
sion and processing of continuous media. Errors may occur due to lost
packets in the network or processing delays by the CPU. In these—and
other—scenarios, errors cannot be corrected, since packets typically arrive
too late to be useful.

The quality of service may be negotiated between the client and the server.
For example, continuous-media data may be compressed at different levels of
quality: the higher the quality, the higher the required data rate. A client may
negotiate a specific data rate with a server, thus agreeing to a certain level of
quality during playback. Furthermore, many media players allow the client
to configure the player according to the speed of the client's connection to
the network. This allows a client to receive a streaming service at a data rate
specific to a particular connection. Thus, the client is negotiating quality of
service with the content provider.

To provide QoS guarantees, operating systems often use admission control,
which is simply the practice of admitting a reqtiest for service only if the server
has sufficient resources to satisfy the request. We see admission control quite
often in our everyday lives. For example, a movie theater only admits as
many customers as it has seats in the theater. (There are also many situations in
everyday life where admission control is not practiced but would be desirable!)
If no admission control policy is used in a multimedia environment, the
demands on the system might become so great that the system becomes unable
to meet its QoS guarantees.

In Chapter 6, we discussed using semaphores as a method of implementing
a simple admission control policy. In this scenario, there exist a finite number
of non-shareable resources. When a resource is requested, we will only grant
the request if there are sufficient resources available; otherwise the requesting
process is forced to wait until a resource becomes available. Semaphores may be
used to implement an admission control policy by first initializing a semaphore
to the number of resources available. Every request for a resource is made
through a wai tO operation on the semaphore; a resource is released with
an invocation of s ignal 0 on the semaphore. Once all resources are in use,
subsequent calls to wait () block until there is a corresponding s ignal 0 .

A common technique for implementing admission control is to use
resource reservations. For example, resources on a file server may include
the CPU, memory, file system, devices, and network (Figure 20.1). Note that
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Figure 20.1 Resources on a file server.

resources may be either exclusive or shared and that there may be either
single or multiple instances of each resource type. To use a resource, a client
must make a reservation request for the resource in advance. If the request
cannot be granted, the reservation is denied. An admission control scheme
assigns a resource manager to each type of resource. Requests for resources
have associated QoS requirements—for example, required data rates. When a
request for a resource arrives, the resource manager determines if the resource
can meet the QoS demands of the request. If not, the request may be rejected,
or a lower level of QoS may be negotiated between the client and the server.
If the request is accepted, the resource manager reserves the resources for the
requesting client, thus assuring the client the desired QoS requirements. In
Section 20.7.2, we examine the admission control algorithm used to ensure QoS
guarantees in the CineBlitz multimedia storage server.

20.4 CPU Scheduling

In Chapter 19, which covered real-time systems, we distinguished between
soft real-time systems and hard real-time systems. Soft real-time systems
simply give scheduling priority to critical processes. A soft real-time system
ensures that a critical process will be given preference over a noncritical process
but provides no guarantee as to when the critical process will be scheduled.
A typical requirement of continuous media, however, is that data must be
delivered to a client by a certain deadline; data that do not arrive by the deadline
are unusable. Multimedia systems thus require hard real-time scheduling to
ensure that a critical task will be serviced within a guaranteed period of time.

Another scheduling issue concerns whether a scheduling algorithm uses
static priority or dynamic priority—a distinction we first discussed in Chapter
5. The difference between the two is that the priority of a process will remain
unchanged if the scheduler assigns it a static priority. Scheduling algorithms
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that assign dynamic priorities allow priorities to change over time. .Most
operating systems use dynamic priorities when scheduling non-real-time tasks
with the intention of giving higher priority to interactive processes. However,
when scheduling real-time tasks, most systems assign static priorities, as the
design of the scheduler is less complex.

Several of the real-time scheduling strategies discussed in Section 19.5 can
be used to meet the rate and deadline QoS requirements of continuous-media
applications.

20.5 Disk Scheduling

We first discussed disk scheduling in Chapter 12. There, we focused primarily
on systems that handle conventional data; for these systems, the scheduling
goals are fairness and throughput. As a result, most traditional disk schedulers
employ some form of the SCAN (Section 12.4.3) or C-SCAN (Section 12.4.4)
algorithm.

Continuous-media files, however, have two constraints that conventional
data files generally do not have: timing deadlines and rate requirements.
These two constraints must be satisfied to preserve QoS guarantees, and disk-
scheduling algorithms must be optimized for the constraints. Unfortunately,
these two constraints are often in conflict. Continuous-media files typically
require very high disk-bandwidth rates to satisfy their data-rate requirements.
Because disks have relatively low transfer rates and relatively high latency
rates, disk schedulers must reduce the latency times to ensure high bandwidth.
However, reducing latency times may result in a scheduling policy that does
not prioritize according to deadlines. In this section, we explore two disk-
scheduling algorithms that meet the QoS requirements for continuous-media
systems.

20.5.1 Earliest-Deadline-First Scheduling

We first saw the earliest-deadline-first (EDF) algorithm in Section 19.5.2 as an
example of a CPU-scheduling algorithm that assigns priorities according to
deadlines. EDF can also be used as a disk-scheduling algorithm; in this context,
EDF uses a queue to order requests according to the time each request must be
completed (its deadline). EDF is similar to shortest-seek-time-first (SSTF), which
was discussed in 12.4.2, except that instead of servicing the request closest to
the current cylinder, we service requests according to deadline—the request
with the closest deadline is serviced first.

A problem with this approach is that servicing requests strictly according
to deadline may result in higher seek times, since the disk heads may move
randomly throughout the disk without any regard to their current position.
For example, suppose a disk head is currently at cylinder 75 and the queue
of cylinders (ordered according to deadlines) is 98, 183, 105. Under strict EDF
scheduling, the disk head will move from 75, to 98, to 183, and then back to
105. Note that the head passes over cylinder 105 as it travels from 98 to 183. It
is possible that the disk scheduler could have serviced the request for cylinder
105 en route to cylinder 183 and still preserved the deadline requirement for
cylinder 183.
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20.5.2 SCAN-EDF Scheduling ?

The fundamental problem with strict EDF scheduling is that it ignores the
position of the read-write heads of the disk; it is possible that the movement of
the heads will swing wildly to and fro across the disk, leading to unacceptable
seek times that negatively affect disk throughput. Recall that this is the same
issue faced with FCFS scheduling (Section 12.4.1). We ultimately addressed
this issue by adopting SCAN scheduling, wherein the disk arm moves in one
direction across the disk, servicing requests according to their proximity to
the current cylinder. Once the disk arm reaches the end of the disk, it begins
moving in the reverse direction. This strategy optimizes seek times.

SCAN-EDF is a hybrid algorithm that combines EDF with SCAN scheduling.
SCAN-EDF starts with EDF ordering but services requests with the same deadline
using SCAN order. What if several requests have different deadlines that are
relatively close together? In this case, SCAN-EDF may batch requests, using
SCAN ordering to service requests in the same batch. There are many techniques
for batching requests with similar deadlines; the only requirement is that
reordering requests within a batch must not prevent a request from being
serviced by its deadline. If deadlines are equally distributed, batches can be
organized in groups of a certain size—say, 10 requests per batch.

Another approach is to batch requests whose deadlines fall within a given
time threshold—say, 100 milliseconds. Let's consider an example in which we
batch requests in this way. Assume we have the following requests, each with
a specified deadline (in milliseconds) and the cylinder being requested:

request

A

B

C

D

E

F

G

H

1

J

deadline

150

201

399

94

295

78

165

125

300

210

cylinder

25

112

95

31

185

85

150

101

85

90

Suppose we are at ti meo, the cylinder currently being serviced is 50, and the
disk head is moving toward cylinder 51. According to our batching scheme,
requests D and F will be in the first batch; A, G, and H in batch 2; B, E, and
J in batch 3; and C and I in the last batch. Requests within each batch will
be ordered according to SCAN order. Thus, in batch 1, we will first service
request F and then request D. Note that we are moving downward in cylinder
numbers, from 85 to 31. In batch 2, we first service request A; then the heads
begin moving upward in cylinders, servicing requests H and then G. Batch 3
is serviced in the order E, B, J. Requests I and C are serviced in the final batch.
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20.6 Network Management ,

Perhaps the foremost QoS issue with multimedia systems concerns preserving
rate requirements. For example, if a client wishes to view a video compressed
with MPEG-1, the quality of service greatly depends on the system's ability to
deliver the frames at the required rate..

Our coverage of issues such as CPU- and disk-scheduling algorithms has
focused on how these techniques can be used to better meet the quality-of-
service requirements of multimedia applications. However, if the media file is
being streamed over a network—perhaps the Internet—issues relating to how
the network delivers the multimedia data can also significantly affect how QoS
demands are met. In this section, we explore several network issues related to
the unique demands of continuous media.

Before we proceed, it is worth noting that computer networks in general
—and the Internet in particular— currently do not provide network protocols
that can ensure the delivery of data with timing requirements. (There are
some proprietary protocols—notably those running on Cisco routers—that
do allow certain network traffic to be prioritized to meet QoS requirements.
Such proprietary protocols are not generalized for use across the Internet and
therefore do not apply to our discussion.)

When data are routed across a network, it is likely that the transmission
will encounter congestion, delays, and other network traffic issues—issues
that are beyond the control of the originator of the data. For multimedia data
with timing requirements, any timing issues must be synchronized between
the end hosts: the server delivering the content and the client playing it back.

One protocol that addresses timing issues is the real-time transport
protocol (RTP). RTP is an Internet standard for delivering real-time data,
including audio and video. It can be used for transporting media formats
such as MP3 audio files and video files compressed using MPEG. RTP does not
provide any QoS guarantees; rather, it provides features that allow a receiver
to remove jitter introduced by delays and congestion in the network.

In following sections, we consider two other approaches for handling the
unique requirements of continuous media.

20.6.1 Unicasting and Multicasting

In general, there are three methods for delivering content from a server to a
client across a network:

• Unicasting, The server delivers the content to a single client. If the content
is being delivered to more than one client, the server must establish a
separate unicast for each client.

• Broadcasting. The server delivers the content to all clients, regardless of
whether they wish to receive the content or not.

• Multicasting. The server delivers the content to a group of receivers who
indicate they wish to receive the content; this method lies somewhere
between unicasting and broadcasting.

An issue with unicast delivery is that the server must establish a separate
unicast session for each client. This seems especially wasteful for live real-time
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streaming, where the server must make several copies of the same content,
one for each client. Obviously, broadcasting is not always appropriate, as not
all clients may wish to receive the stream. (Suffice to say that broadcasting is
typically only used across local area networks and is not possible across the
public Internet.)

Multicasting appears to be a reasonable compromise/ since it allows the
server to deliver a single copy of the content to all clients indicating that they
wish to receive it. The difficulty with multicasting from a practical standpoint is
that the clients must be physically close to the server or to intermediate routers
that relay the content from the originating server. If the route from the server
to the client must cross intermediate routers, the routers must also support
multicasting. If these conditions are not met, the delays incurred during routing
may result in violation of the timing requirements of the continuous media. In
the worst case, if a client is connected to an intermediate router that does not
support multicasting, the client will be unable to receive the multicast stream
at all!

Currently, most streaming media are delivered across unicast channels;
however, multicasting is used in various areas where the organization of
the server and clients is known in advance. For example, a corporation with
several sites across a country may be able to ensure that all sites are connected
to multicasting routers and are within reasonable physical proximity to the
routers. The organization will then be able to deliver a presentation from the
chief executive officer using multicasting.

20.6.2 Real-Time Streaming Protocol

In Section 20.1.1, we described some features of streaming media. As we noted
there, users may be able to randomly access a media stream, perhaps rewinding
or pausing, as they would with a VCR controller. How is this possible?

To answer this question, let's consider how streaming media are delivered
to clients. One approach is to stream the media from a standard web server
using the hypertext transport protocol, or HTTP—the protocol used to deliver

client

web browser web server

HTTP request for metafile

metafile

media player

server

web server

metafile

HTTP request for media stream

media stream

Figure 20.2 Streaming media from a conventional web server.
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documents from a web server. Quite often, clients use a media player, such
as QuickTime, RealPlayer, or Windows Media Player, to play back media
streamed from a standard web server. Typically, the client first requests a
metafile, which contains the location (possibly identified by a uniform resource
locator, or URL) of the streaming media file. This metafile is delivered to the
client's web browser, and the browser then starts the appropriate media player
according to the type of media specified by the metafile. For example, a Real
Audio stream would require the RealPlayer, while the Windows Media Player
would be used to play back streaming Windows media. The media player
then contacts the web server and requests the streaming media. The stream
is delivered from the web server to the media player using standard HTTP
requests. This process is outlined in Figure 20.2.

The problem with delivering streaming media from a standard web server
is that HTTP is considered a stateless protocol; thus, a web server does not
maintain the state (or status) of its connection with a client. As a result, it is
difficult for a client to pause during the delivery of streaming media content,
since pausing would require the web server to know where in the stream to
begin when the client wished to resume playback.

An alternative strategy is to use a specialized streaming server that
is designed specifically for streaming media. One protocol designed for
communication between streaming servers and media players is known as the
real-time streaming protocol, or RTSP. The significant advantage RTSP provides
over HTTP is a stateful connection between the client and the server, which
allows the client to pause or seek to random positions in the stream during
playback. Delivery of streaming media using RTSP is similar to delivery using
HTTP (Figure 20.2) in that the meta file is delivered using a conventional
web server. However, rather than using a web server, the streaming media
is delivered from a streaming server using the RTSP protocol. The operation of
RTSP is shown in Figure 20.3.

RTSP defines several commands as part of its protocol; these commands are
sent from a client to an RTSP streaming server. The commands include:

client

wfio browr

HTTP

er web server

reqiies: for metafile

mciaiile

myrtle

server

media player streaming server

RTSP request for media stream

media stream

Figure 20.3 Real-time streaming protocol (RTSP).
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Figure 20.4 Finite-state machine representing RTSP.

• SETUP. The server allocates resources for a client session.

• PLAY. The server delivers a stream to a client session established from a
SETUP command.

• PAUSE. The server suspends delivery of a stream but maintains the
resources for the session.

• TEARDOWN. The server breaks down the connection and frees up resources
allocated for the session.

The commands can be illustrated with a state machine for the server, as shown
in Figure 20.4. As you can see in the figure, the RTSP server may be in one of
three states: init, ready, and playing. Transitions between these three states are
triggered when the server receives one of the RTSP commands from the client.

Using RTSP rather than HTTP for streaming media offers several other
advantages, but they are primarily related to networking issues and are
therefore beyond the scope of this text. We encourage interested readers to
consult the bibliographical notes at the end of this chapter for sources of further
information.

20.7 An Example: CineBlltz

The CineBlitz multimedia storage server is a high-performance media server
that supports both continuous media with rate requirements (such as video
and audio) and conventional data with no associated rate requirements (such
as text and images). CineBlitz refers to clients with rate requirements as real-
time clients, whereas non-real-time clients have no rate constraints. CineBlitz
guarantees to meet the rate requirements of real-time clients by implementing
an admission controller, admitting a client only if there are sufficient resources
to allow data retrieval at the required rate. In this section, we explore the
CineBlitz disk-scheduling and admission-control algorithms.

20.7.1 Disk Scheduling

The CineBlitz disk scheduler services requests in cycles. At the beginning of
each service cycle, requests are placed in C-SCAN order (Section 12.4.4). Recall
from our earlier discussions of C-SCAN that the disk heads move from one end
of the disk to the other. However, rather than reversing direction when they
reach the end of the disk, as in pure SCAN disk scheduling (Section 12.4.3), the
disk heads move back to the beginning of the disk.
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Figure 20.5 Double buffering in CineBlitz.

20.7.2 Admission Control

The admission-control algorithm in CineBlitz must monitor requests from
both real-time and non-real-time clients, ensuring that both classes of clients
receive service. Furthermore, the admission controller must provide the rate
guarantees required by real-time clients. To ensure fairness, only a fraction p of
time is reserved for real-time clients, while the remainder, 1 — p, is set aside for
non-real-time clients. Here, we explore the admission controller for real-time
clients only; thus, the term client refers to a real-time client.

The admission controller in CineBlitz monitors various system resources,
such as disk bandwidth and disk latency, while keeping track of available
buffer space. The CineBlitz admission controller admits a client only if there
is enough available disk bandwidth and buffer space to retrieve data for the
client at its required rate.

CineBlitz queues requests R\,Ri,R^,...R,, for continuous media files where
r, is the required data rate for a given request R,. Requests in the queue are
served in cyclic order using a technique known as double buffering, wherein
a buffer is allocated for each request R-, of size 2 x T x r,-.

During each cycle 1, the server must:

1. Retrieve the data from disk to buffer (I mod 2).

2. Transfer data from the ((/ + 1) mod 2) buffer to the client.

This process is illustrated in Figure 20.5. For N clients, the total buffer space B
required is

x T x n < B. (20.1)

The fundamental idea behind the admission controller in CineBlitz is to
bound requests for entry into the queue according to the following criteria:

1. The service time for each request is first estimated.

2. A request is admitted only if the sum of the estimated service times for
all admitted requests does not exceed the duration of service cycle T.
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Let T x Y\ bits be retrieved during a cycle for each real-time client R, with rate r,.
If Ri, R.2, ...R,, are the clients currently active in the system, then the admission
controller must ensure that the total times for retrieving T x r\, T x r2 T x r,,
bits for the corresponding real-time clients does not exceed T. We explore the
details of this admission policy in the remainder of this section.

If b is the size of a disk block, then the maximum number of disk blocks
that can be retrieved for request Rk during each cycle is f(T x rjt)/fa] +1 . The 1 in
this formula comes from the fact that, if T x rk is less than b, then it is possible
for T x i'k bits to span the last portion of one disk block and the beginning
of another, causing two blocks to be retrieved. We know that the retrieval of
a disk block involves (a) a seek to the track containing the block and (b) the
rotational delay as the data in the desired track arrives under the disk head. As
described, CineBlitz uses a C-SCAN disk-scheduling algorithm, so disk blocks
are retrieved in the sorted order of their positions on the disk.

If tscek and trof refer to the worst-case seek and rotational delay times, the
maximum latency incurred for servicing N requests is

2 x t5eck + J2 ( r ^ - j p l + 2 ) x W. (20.2)

In this equation, the 2 x tseck component refers to the maximum disk-seek
latency incurred in a cycle. The second component reflects the sum of the
retrievals of the disk blocks multiplied by the worst-case rotational delay.

If the transfer rate of the disk is r^isk, then the time to transfer T x r^ bits
of data for request Rk is (T x r^/fdisk- As a result, the total time for retrieving
T x i ' i J x r2, .... T x rn bits for requests R\, R>, ..., Rn is the sum of equation
20.2 and

Therefore, the admission controller in CineBlitz only admits a new client R, if
at least 2 x T x r, bits of free buffer space are available for the client and the
following equation is satisfied:

£ f ^1 + 1 ) x t + Y2 x tseek + £ f I"—r-̂ -1 + 1 ) x trot + Y - ^ < T. (20.4)

20.8 Summary

Multimedia applications are in common use in modern computer systems.
Multimedia files include video and audio files, which may be delivered
to systems such as desktop computers, personal digital assistants, and cell
phones. The primary distinction between multimedia data and conventional
data is that multimedia data have specific rate and deadline requirements.
Because multimedia files have specific timing requirements, the data must
often be compressed before delivery to a client for playback. Multimedia data
may be delivered either from the local file system or from a multimedia server
across a network connection using a technique known as streaming.
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The timing requirements of multimedia data are known as quality-
of-service requirements, and conventional operating systems often cannot
make quality-of-service guarantees. To provide quality of service, multimedia
systems must provide a form of admission control whereby a system accepts a
request only if it can meet the quality-of-service level specified by the request.
Providing quality-of-service guarantees requires evaluating how an operating
system performs CPU scheduling, disk scheduling, and network management.
Both CPU and disk scheduling typically use the deadline requirements of
a continuous-media task as a scheduling criterion. Network management
requires the use of protocols that handle delay and jitter caused by the network
as well as allowing a client to pause or move to different positions in the stream
during playback.

Exercises

20.1 Provide examples of multimedia applications that are delivered over
the Internet.

20.2 Distinguish between progressive download and real-time streaming.

20.3 Which of the following types of real-time streaming applications can
tolerate delay? Which can tolerate jitter?

• Live real-time streaming

• On-demand real-time streaming

20.4 Discuss what techniques could be used to meet quality-of-service
requirements for multimedia applications in the following components
of a system:

• Process scheduler

• Disk scheduler

• Memory manager

20.5 Explain why the traditional Internet protocols for transmitting data are
not sufficient to provide the quality-of-service guarantees required for
a multimedia system. Discuss what changes are required to provide
the QoS guarantees.

20.6 Assume that a digital video file is being displayed at a rate of 30 frames
per second; the resolution of each frame is 640 x 480, and 24 bits are
being used to represent each color. Assuming that no compression is
being used, what is the bandwidth necessary to deliver this file? Next,
assuming that the file has been compressed at a ratio of 200 : 1, what is
the bandwidth necessary to deliver the compressed file?

20.7 A multimedia application consists of a set containing 100 images, 10
minutes of video, and 10 minutes of audio. The compressed sizes of the
images, video, and audio are 500 MB, 550 MB, and 8 MB, respectively.
The images were compressed at a ratio of 15 : 1, and the video and
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audio were compressed at 200 : 1 and 10 : 1, respectively. What were
the sizes of the images, video, and audio before compression?

20.8 Assume that we wish to compress a digital video file using MPEG-1
technology. The target bit rate is 1.5 Mbps. If the video is displayed
at a resolution of 352 x 240 at 30 frames per second using 24 bits to
represent each color, what is the necessary compression ratio to achieve
the desired bit rate?

20.9 Consider two processes, Pi and P2, where
and h = 30.

= 50, t-y — 25, pi — 75,

a. Can these two processes be scheduled using rate-monotonic
scheduling? Illustrate your answer using a Gantt chart.

b. Illustrate the scheduling of these two processes using earliest-
deadline-first (EDF) scheduling.

20.10 The following table contains a number of requests with their associated
deadlines and cylinders. Requests with deadlines occurring within 100
milliseconds of each other will be batched. The disk head is currently
at cylinder 94 and is moving toward cylinder 95. If SCAN-EDF disk
scheduling is used, how are the requests batched together, and what is
the order of requests within each batch?

request

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

deadline

57

300

250

88

85

110

299

300

120

212

cylinder

77

95

25

28

100

90

50

77

12

2

20.11 Repeat the preceding question, but this time batch requests that have
deadlines occurring within 75 milliseconds of each other.

20.12 Contrast unicasting, multicasting, and broadcasting as techniques for
delivering content across a computer network.

20.13 Describe why HTTP is often insufficient for delivering streaming media.

20.14 What operating principle is used by the CineBlitz system in performing
admission control for requests for media files?
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Part Eight

Case Studies
We can now integrate the concepts described in this book by describing
real operating systems. Two such systems are covered in great detail—
Linux and Windows XP. We chose Linux for several reasons: It is popular, it
is freely available, and it represents a full-featured UNIX system. This gives
a student of operating systems an opportunity to read—and modify—
real operating-system source code.

We also cover Windows XP in great detail. This recent operating
system from Microsoft is gaining popularity, not only in the stand-alone-
machine market, but also in the workgroup-server market. We chose
Windows XP because it provides an opportunity for us to study a mod-
ern operating system that has a design and implementation drastically
different from those of UNIX.

In addition, we briefly discuss other highly influential operating sys-
tems. We have chosen the order of presentation to highlight the similari-
ties and differences among the systems; it is not strictly chronological and
does not reflect the relative importance of the systems.

Finally, we provide on-line coverage of three other systems. The
FreeBSD system is another UNIX system. However, whereas Linux com-
bines features from several UNIX systems, FreeBSD is based on the BSD
model of UNIX. FreeBSD source code, like Linux source code, is freely
available. The Mach operating system is a modern operating system that
provides compatibility with BSD UNIX. Windows is another modern oper-
ating system from Microsoft for Intel Pentium and later microprocessors;
it is compatible with MS-DOS and Microsoft Windows applications.





The Linux
System

This chapter presents an in-depth examination of the Linux operating system.
By examining a complete, real system, we can see how the concepts we have
discussed relate both to one another and to practice.

Linux is a version of UNIX that has gained popularity in recent years. In this
chapter, we look at the history and development of Linux and cover the user
and programmer interfaces that Linux presents—interfaces that owe a great
deal to the UNIX tradition. We also discuss the internal methods by which Linux
implements these interfaces. Linux is a rapidly evolving operating system.
This chapter describes developments through the Linux 2.6 kernel, which was
released in late 2003.

CHAPTER OBJECTIVES

• To explore the history of the UNIX operating system from which Linux is
derived and the principles upon which Linux is designed.

• To examine the Linux process model and illustrate how Linux schedules
processes and provides interprocess communication.

• To look at memory management in Linux.
9 To explore how Linux implements file systems and manages I/O devices.

21.1 Linux History

Linux looks and feels much like any other UNIX system; indeed, UNIX
compatibility has been a major design goal of the Linux project. However,
Linux is much younger than most UNIX systems. Its development began in
1991, when a Finnish student, Linus Torvalds, wrote and christened Linux,
a small but self-contained kernel for the 80386 processor, the first true 32-bit
processor in Intel's range of PC-compatible CPUs.

Early in its development, the Linux source code was made available free
on the Internet. As a result, Linux's history has been one of collaboration by
many users from all around the world, corresponding almost exclusively over
the Internet. From an initial kernel that partially implemented a small subset of
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the UNIX system services, the Linux system has grown to include much ifFNIX
functionality.

In its early days, Linux development revolved largely around the central
operating-system kernel—the core, privileged executive that manages all
system resources and that interacts directly with the computer hardware.
We need much more than this kernel to produce a full operating system,
of course. It is useful to make the distinction between the Linux kernel and
a Linux system. The Linux kernel is an entirely original piece of software
developed from scratch by the Linux community. The Linux system, as we
know it today, includes a multitude of components, some written from scratch,
others borrowed from other development projects, and still others created in
collaboration with other teams.

The basic Linux system is a standard environment for applications and
user programming, but it does not enforce any standard means of managing
the available functionality as a whole. As Linux has matured, a need has arisen
for another layer of functionality on top of the Linux system. This need has
been met by various Linux distributions. A Linux distribution includes all the
standard components of the Linux system, plus a set of administrative tools
to simplify the initial installation and subsequent upgrading of Linux and to
manage installation and removal of other packages on the system. A modern
distribution also typically includes tools for management of file systems,
creation and management of user accounts, administration of networks, web
browsers, word processors, and so on.

21.1.1 The Linux Kernel

The first Linux kernel released to the public was Version 0.01, dated May
14,1991. It had no networking, ran only on 80386-compatible Intel processors
and PC hardware, and had extremely limited device-driver support. The virtual
memory subsystem was also fairly basic and included no support for memory-
mapped files; however, even this early incarnation supported shared pages
with copy-on-write. The only file system supported was the Minix file system
—the first Linux kernels were cross-developed on a Minix platform. However,
the kernel did implement proper UNIX processes with protected address spaces.

The next milestone version, Linux 1.0, was released on March 14, 1994.
This release culminated three years of rapid development of the Linux kernel.
Perhaps the single biggest new feature was networking: 1.0 included support
for UNIX's standard TCP/IP networking protocols, as well as a BSD-compatible
socket interface for networking programming. Device-driver support was
added for running IP over an Ethernet or (using PPP or SLIP protocols) over
serial lines or modems.

The 1.0 kernel also included a new, much enhanced file system without the
limitations of the original Minix file system and supported a range of SCSI con-
trollers for high-performance disk access. The developers extended the virtual
memory subsystem to support paging to swap files and memory mapping of
arbitrary files (but only read-only memory mapping was implemented in 1.0).

A range of extra hardware support was also included in this release.
Although still restricted to the Intel PC platform, hardware support had grown
to include floppy-disk and CD-ROM devices, as well as sound cards, a range
of mice, and international keyboards. Floating-point emulation was provided



21.1 Linux History 739

in the kernel for 80386 users who had no 80387 math coprocessor; System
V UNIX-style interprocess communication (IPC), including shared memory,
semaphores, and message queues, was implemented. Simple support for
dynamically loadable and unloadable kernel modules was supplied as well.

At this point, development started on the 1.1 kernel stream, but numerous
bug-fix patches were released subsequently against 1.0. A pattern was adopted
as the standard numbering convention for Linux kernels. Kernels with an odd
minor-version number, such as 1.1,1.3, and 2.1, are development kernels; even-
numbered minor-version numbers are stable production kernels. Updates
against the stable kernels are intended only as remedial versions, whereas the
development kernels may include newer and relatively untested functionality.

In March 1995, the 1.2 kernel was released. This release did not offer
nearly the same improvement in functionality as the 1.0 release, but it did
support a much wider variety of hardware, including the new PCI hardware
bus architecture. Developers added another PC-specific feature—support for
the 80386 CPU's virtual 8086 mode—to allow emulation of the DOS operating
system for PC computers. They also updated the networking stack to provide
support for the IPX protocol and made the IP implementation more complete
by including accounting and firewalling functionality.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution
for Linux 1.2 included partially implemented support for SPARC, Alpha, and
MIPS CPUs, but full integration of these other architectures did not begin until
after the 1.2 stable kernel was released.

The Linux 1.2 release concentrated on wider hardware support and more
complete implementations of existing functionality. Much new functionality
was under development at the time, but integration of the new code into the
main kernel source code had been deferred until after the stable 1.2 kernel had
been released. As a result, the 1.3 development stream saw a great deal of new
functionality added to the kernel.

This work was finally released as Linux 2.0 in June 1996. This release
was given a major version-number increment on account of two major new
capabilities: support for multiple architectures, including a fully 64-bit native
Alpha port, and support for multiprocessor architectures. Linux distributions
based on 2.0 are also available for the Motorola 68000-series processors and for
Sun's SPARC systems. A derived version of Linux running on top of the Mach
microkernel also runs on PC and PowerMac systems.

The changes in 2.0 did not stop there. The memory-management code
was substantially improved to provide a unified cache for file-system data
independent of the caching of block devices. As a result of this change, the
kernel offered greatly increased file-system and virtual memory performance.
For the first time, file-system caching was extended to networked file systems,
and writable memory-mapped regions also were supported.

The 2.0 kernel also included much improved TCP/IP performance, and a
number of new networking protocols were added, including AppleTalk, AX.25
amateur radio networking, and ISDN support. The ability to mount remote
netware and SMB (Microsoft LanManager) network volumes was added.

Other major improvements in 2.0 were support for internal kernel threads,
for handling dependencies between loadable modules, and for automatic
loading of modules on demand. Dynamic configuration of the kernel at run
time was much improved through a new, standardized configuration interface.
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Additional new features included file-system quotas and POSIX-compatible
real-time process-scheduling classes.

Improvements continued with the release of Linux 2.2 in January 1999. A
port for UltraSPARC systems was added. Networking was enhanced with more
flexible firewalling, better routing and traffic management, and support for
TCP large window and selective acks. Acorn, Apple, and NT disks could now
be read, and NFS was enhanced and a kernel-mode NFS daemon added. Signal
handling, interrupts, and some I/O were locked at a finer level than before to
improve symmetric multiprocessor (SMP) performance.

Advances in the 2.4 and 2.6 releases of the kernel include increased support
for SMP systems, journaling file systems, and enhancements to the memory-
management system. The process scheduler has been modified in version 2.6,
providing an efficient 0(1) scheduling algorithm. In addition, the Linux 2.6
kernel is now preemptive, allowing a process to be preempted while running
in kernel mode.

21.1.2 The Linux System

In many ways, the Linux kernel forms the core of the Linux project, but other
components make up the complete Linux operating system. Whereas the Linux
kernel is composed entirely of code written from scratch specifically for the
Linux project, much of the supporting software that makes up the Linux
system is not exclusive to Linux but is common to a number of UNIX-like
operating systems. In particular, Linux uses many tools developed as part
of Berkeley's BSD operating system, MIT's X Window System, and the Free
Software Foundation's GNU project.

This sharing of tools has worked in both directions. The main system
libraries of Linux were originated by the GNU project, but the Linux community
greatly improved the libraries by addressing omissions, inefficiencies, and
bugs. Other components, such as the GNU C compiler (gcc), were already
of sufficiently high quality to be used directly in Linux. The networking-
administration tools under Linux were derived from code first developed for
4.3 BSD, but more recent BSD derivatives, such as FreeBSD, have borrowed code
from Linux in return. Examples include the Intel floating-point-emulation math
library and the PC sound-hardware device drivers.

The Linux system as a whole is maintained by a loose network of
developers collaborating over the Internet, with small groups or individuals
having responsibility for maintaining the integrity of specific components. A
small number of public Internet file-transfer-protocol (ftp) archive sites act as de
facto standard repositories for these components. The File System Hierarchy
Standard document is also maintained by the Linux community as a means of
keeping compatibility across the various system components. This standard
specifies the overall layout of a standard Linux file system; it determines
under which directory names configuration files, libraries, system binaries,
and run-time data files should be stored.

21.1.3 Linux Distributions

In theory, anybody can install a Linux system by fetching the latest revisions
of the necessary system components from the ftp sites and compiling them.
In Linux's early days, this operation was often precisely what a Linux user
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had to carry out. As Linux has matured, however, various individuals and
groups have attempted to make this job less painful by providing a standard,
precompiled set of packages for easy installation.

These collections, or distributions, include much more than just the
basic Linux system. They typically include extra system-installation and
management utilities, as well as precompiled and ready-to-install packages
of many of the common UNIX tools, such as news servers, web browsers,
text-processing and editing tools, and even games.

The first distributions managed these packages by simply providing
a means of unpacking all the files into the appropriate places. One of
the important contributions of modern distributions, however, is advanced
package management. Today's Linux distributions include a package-tracking
database that allows packages to be installed, upgraded, or removed painlessly.

The SLS distribution, dating back to the early days of Linux, was the first
collection of Linux packages that was recognizable as a complete distribution.
Although it could be installed as a single entity, SLS lacked the package-
management tools now expected of Linux distributions. The Slackware
distribution represented a great improvement in overall quality, even though it
also had poor package management; it is still one of the most widely installed
distributions in the Linux community.

Since Slackware's release, many commercial and noncommercial Linux
distributions have become available. Red Hat and Debian are particularly
popular distributions; the first comes from a commercial Linux support
company and the second from the free-software Linux community. Other
commercially supported versions of Linux include distributions from Caldera,
Craftworks, and WorkGroup Solutions. A large Linux following in Germany
has resulted in several dedicated German-language distributions, including
versions from SuSE and Unifix. There are too many Linux distributions in
circulation for us to list all of them here. The variety of distributions does not
prohibit compatibility across Linux distributions, however. The RPM package
file format is used, or at least understood, by the majority of distributions, and
commercial applications distributed in this format can be installed and run on
any distribution that can accept RPM files.

21.1.4 Linux Licensing

The Linux kernel is distributed under the GNU general public license (GPL),
the terms of which are set out by the Free Software Foundation. Linux is not
public-domain software. Public domain implies that the authors have waived
copyright rights in the software, but copyright rights in Linux code are still
held by the code's various authors. Linux is free software, however, in the sense
that people can copy it, modify it, use it in any manner they want, and give
away their own copies, without any restrictions.

The main implications of Linux's licensing terms are that nobody using
Linux, or creating her own derivative of Linux (a legitimate exercise), can
make the derived product proprietary Software released under the GPL cannot
be redistributed as a binary-only product. If you release software that includes
any components covered by the GPL, then, under the GPL, you must make
source code available alongside any binary distributions. (This restriction does
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not prohibit making—or even selling—binary-only software distributions, as
long as anybody who receives binaries is also given the opportunity to get
source code, for a reasonable distribution charge.)

21.2 Design Principles

In its overall design, Linux resembles any other traditional, nonmicrokernel
UNIX implementation. It is a multiuser, multitasking system with a full set
of UNIX-compatible tools. Linux's file system adheres to traditional UNIX
semantics, and the standard UNIX networking model is implemented fully.
The internal details of Linux's design have been influenced heavily by the
history of this operating system's development.

Although Linux runs on a wide variety of platforms, it was developed
exclusively on PC architecture. A great deal of that early development was
carried out by individual enthusiasts, rather than by well-funded development
or research facilities, so from the start Linux attempted to squeeze as much
functionality as possible from limited resources. Today, Linux can run happily
on a multiprocessor machine with hundreds of megabytes of main memory
and many gigabytes of disk space, but it is still capable of operating usefully
in under 4 MB of RAM.

As PCs became more powerful and as memory and hard disks became
cheaper, the original, minimalist Linux kernels grew to implement more UNIX
functionality. Speed and efficiency are still important design goals, but much
of the recent and current work on Linux has concentrated on a third major
design goal: standardization. One of the prices paid for the diversity of UNIX
implementations currently available is that source code written for one flavor
may not necessarily compile or run correctly on another. Even when the same
system calls are present on two different UNIX systems, they do not necessarily
behave in exactly the same way. The POSIX standards comprise a set of
specifications of different aspects of operating-system behavior. There are POSIX
documents for common operating-system functionality and for extensions
such as process threads and real-time operations. Linux is designed to be
compliant with the relevant POSIX documents; at least two Linux distributions
have achieved official POSIX certification.

Because it presents standard interfaces to both the programmer and the
user, Linux presents few surprises to anybody familiar with UNIX. We do
not detail these interfaces here. The sections on the programmer interface
(Section A.3) and user interface (Section A.4) of BSD apply equally well to
Linux. By default, however, the Linux programming interface adheres to SVR4
UNIX semantics, rather than to BSD behavior. A separate set of libraries is
available to implement BSD semantics in places where the two behaviors are
significantly different.

Many other standards exist in the UNIX world, but full certification of
Linux against them is sometimes slowed because they are often available
only for a fee, and the expense involved in certifying an operating system's
compliance with most standards is substantial. However, supporting a wide
base of applications is important for any operating system, so implementation
of standards is a major goal for Linux development, even if the implementation
is not formally certified. In addition to the basic POSIX standard, Linux currently
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supports the POSIX threading extensions—Pthreads—and a subset of tl\e POSIX
extensions for real-time process control.

21.2.1 Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most
traditional UNIX implementations:

1. Kernel. The kernel is responsible for maintaining all the important
abstractions of the operating system, including such things as virtual
memory and processes.

2. System libraries. The system libraries define a standard set of functions
through which applications can interact with the kernel. These functions
implement much of the operating-system functionality that does not need
the full privileges of kernel code.

3. System utilities. The system utilities are programs that perform individ-
ual, specialized management tasks. Some system utilities may be invoked
just once to initialize and configure some aspect of the system; others—
known as daemons in UNIX terminology—may run permanently, handling
such tasks as responding to incoming network connections, accepting
logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux
system. The most important distinction here is between the kernel and
everything else. All the kernel code executes in the processor's privileged
mode with full access to all the physical resources of the computer. Linux
refers to this privileged mode as kernel mode. Under Linux, no user-mode
code is built into the kernel. Any operating-system-support code that does not
need to run in kernel mode is placed into the system libraries instead.

Although various modern operating systems have adopted a message-
passing architecture for their kernel internals, Linux retains UNIX's historical
model: The kernel is created as a single, monolithic binary. The main reason is
to improve performance: Because all kernel code and data structures are kept in
a single address space, no context switches are necessary when a process calls
an operating-system function or when a hardware interrupt is delivered. Not

system- ! user j
manaqement • ' utility i compilers

programs r I progiarrw j

system sharer! libraries

Linux kernel

loadable kernel modules

Figure 21.1 Components of the Linux system.
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only the core scheduling and virtual memory code occupies this address space;
all kernel code, including all device drivers, file systems, and networking cod̂ e,
is present in the same single address space.

Even though all the kernel components share this same melting pot, there
is still room for modularity. In the same way that user applications can load
shared libraries at run time to pull in a needed piece of code, so the Linux
kernel can load (and unload) modules dynamically at run time. The kernel
does not necessarily need to know in advance which modules may be loaded
-—they are truly independent loadable components.

The Linux kernel forms the core of the Linux operating system. It provides
all the functionality necessary to run processes, and it provides system services
to give arbitrated and protected access to hardware resources. The kernel
implements all the features required to qualify as an operating system. On
its own, however, the operating system provided by the Linux kernel looks
nothing like a UNIX system. It is missing many of the extra features of UNIX,
and the features that it does provide are not necessarily in the format in which
a UNIX application expects them to appear. The operating-system interface
visible to running applications is not maintained directly by the kernel. Rather,
applications make calls to the system libraries, which in turn call the operating-
system services as necessary.

The system libraries provide many types of functionality. At the simplest
level, they allow applications to make kernel-system-service requests. Making
a system call involves transferring control from unprivileged user mode to
privileged kernel mode; the details of this transfer vary from architecture to
architecture. The libraries take care of collecting the system-call arguments and,
if necessary, arranging those arguments in the special form necessary to make
the system call.

The libraries may also provide more complex versions of the basic system
calls. For example, the C language's buffered file-handling functions are all
implemented in the system libraries, providing more advanced control of file
I/O than the basic kernel system calls. The libraries also provide routines that do
not correspond to system calls at all, such as sorting algorithms, mathematical
functions, and string-manipulation routines. All the functions necessary to
support the running of UNIX or POS1X applications are implemented here in the
system libraries.

The Linux system includes a wide variety of user-mode programs—both
system utilities and user utilities. The system utilities include all the programs
necessary to initialize the system, such as those to configure network devices
and to load kernel modules. Continually running server programs also count as
system utilities; svich programs handle user login requests, incoming network
connections, and the printer queues.

Not all the standard utilities serve key system-administration functions.
The UNIX user environment contains a large number of standard utilities to
do simple everyday tasks, such as listing directories, moving and deleting
files, and displaying the contents of a file. More complex utilities can perform
text-processing functions, such as sorting textual data and performing pattern
searches on input text. Together, these utilities form a standard tool set that
users can expect on any UNIX system; although they do not perform any
operating-system function, they are an important part of the basic Linux
system.
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21.3 Kernel Modules

The Linux kernel has the ability to load and unload arbitrary sections of kernel
code on demand. These loadable kernel modules run in privileged kernel mode
and as a consequence have full access to all the hardware capabilities of the
machine on which they run. In theory, there is no restriction on what a kernel
module is allowed to do; typically, a module might implement a device driver,
a file system, or a networking protocol.

Kernel modules are convenient for several reasons. Linux's source code is
free, so anybody wanting to write kernel code is able to compile a modified
kernel and to reboot to load that new functionality; however, recompiling,
relinking, and reloading the entire kernel is a cumbersome cycle to undertake
when you are developing a new driver. If you use kernel modules, you do not
have to make a new kernel to test a new driver—the driver can be compiled
on its own and loaded into the already-running kernel. Of course, once a new
driver is written, it can be distribttted as a module so that other users can
benefit from it without having to rebuild their kernels.

This latter point has another implication. Because it is covered by the
GPL license, the Linux kernel cannot be released with proprietary components
added to it, unless those new components are also released under the GPL and
the source code for them is made available on demand. The kernel's module
interface allows third parties to write and distribute, on their own terms, device
drivers or file systems that could not be distributed under the GPL.

Kernel modules allow a Linux system to be set up with a standard, minimal
kernel, without any extra device drivers built in. Any device drivers that
the user needs can be either loaded explicitly by the system at startup or
loaded automatically by the system on demand and unloaded when not in
use. For example, a CD-ROM driver might be loaded when a CD is mounted
and unloaded from memory when the CD is dismounted from the file system.

The module support under Linux has three components:

1. The module management allows modules to be loaded into memory and
to talk to the rest of the kernel.

2. The driver registration allows modules to tell the rest of the kernel that
a new driver has become available.

3. A conflict-resolution mechanism allows different device drivers to
reserve hardware resources and to protect those resources from accidental
use by another driver.

21.3.1 Module Management

Loading a module requires more than just loading its binary contents into
kernel memory. The system must also make sure that any references the
module makes to kernel symbols or entry points are updated to point to the
correct locations in the kernel's address space. Linux deals with this reference
updating by splitting the job of module loading into two separate sections: the
management of sections of module code in kernel memory and the handling
of symbols that modules are allowed to reference.
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Linux maintains an internal symbol table in the kernel. This symbol table
does not contain the full set of symbols defined in the kernel during the latter's
compilation; rather, a symbol must be exported explicitly by the kernel. The set
of exported symbols constitutes a well-defined interface by which a module
can interact with the kernel.

Although exporting symbols from a kernel function requires an explicit
request by the programmer, no special effort is needed to import those symbols
into a module. A module writer just uses the standard external linking of the
C language: Any external symbols referenced by the module but not declared
by it are simply marked as unresolved in the final module binary produced by
the compiler. When a module is to be loaded into the kernel, a system utility
first scans the module for these unresolved references. All symbols that still
need to be resolved are looked up in the kernel's symbol table, and the correct
addresses of those symbols in the currently running kernel are substituted into
the module's code. Only then is the module passed to the kernel for loading. If
the system utility cannot resolve any references in the module by looking them
up in the kernel's symbol table, then the module is rejected.

The loading of the module is performed in two stages. First, the module-
loader utility asks the kernel to reserve a continuous area of virtual kernel
memory for the module. The kernel returns the address of the memory
allocated, and the loader utility can use this address to relocate the module's
machine code to the correct loading address. A second system call then passes
the module, plus any symbol table that the new module wants to export, to the
kernel. The module itself is now copied verbatim into the previously allocated
space, and the kernel's symbol table is updated with the new symbols for
possible use by other modules not yet loaded.

The final module-management component is the module requestor. The
kernel defines a communication interface to which a module-management
program can connect. With this connection established, the kernel will inform
the management process whenever a process requests a device driver, file
system, or network service that is not currently loaded and will give the
manager the opportunity to load that service. The original service request will
complete once the module is loaded. The manager process regularly queries
the kernel to see whether a dynamically loaded module is still in use and
unloads that module when it is no longer actively needed.

21.3.2 Driver Registration

Once a module is loaded, it remains no more than an isolated region of memory
until it lets the rest of the kernel know what new functionality it provides.
The kernel maintains dynamic tables of all known drivers and provides a
set of routines to allow drivers to be added to or removed from these tables
at any time. The kernel makes sure that it calls a module's startup routine
when that module is loaded and calls the module's cleanup routine before
that module is unloaded: These routines are responsible for registering the
module's functionality.

A module may register many types of drivers and may register more than
one driver if it wishes. For example, a device driver might want to register two
separate mechanisms for accessing the device. Registration tables include the
following items:
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• Device drivers. These drivers include character devices (such as printers,
terminals, and mice), block devices (including all disk drives), and network

. interface devices.

• File systems. The file system may be anything that implements Linux's
virrual-file-system calling routines. It might implement a format for storing
files on a disk, but it might equally well be a network file system, such as
NFS, or a virtual file system whose contents are generated on demand, such
as Linux's /proc file system.

• Network protocols. A module may implement an entire networking
protocol, such as IPX, or simply a new set of packet-filtering rules for a
network firewrall.

• Binary format. This format specifies a way of recognizing, and loading, a
new type of executable file.

In addition, a module can register a new set of entries in the sysctl and /proc
' tables, to allow that module to be configured dynamically (Section 21.7A),

21.3.3 Conflict Resolution

Commercial UNIX implementations are usually sold to run on a vendor's
own hardware. One advantage of a single-supplier solution is that the
software vendor has a good idea about what hardware configurations are
possible. IBM PC hardware, however, comes in a vast number of configurations,
with large numbers of possible drivers for devices such as network cards,
SCSI controllers, and video display adapters. The problem of managing the
hardware configuration becomes more severe when modular device drivers
are supported, since the currently active set of devices becomes dynamically
variable.

Linux provides a central conflict-resolution mechanism to help arbitrate
access to certain hardware resources. Its aims are as follows:

• To prevent modules from clashing over access to hardware resources

• To prevent autoprobes—device-driver probes that auto-detect device
configuration—from interfering with existing device drivers

j • To resolve conflicts among multiple drivers trying to access the same
j hardware—for example, as when both the parallel printer driver and the
i: parallel-line IP (PLIP) network driver try to talk to the parallel printer port

.,* To these ends, the kernel maintains lists of allocated hardware resources.
E1 The PC has a limited number of possible I/O ports (addresses in its hardware
I" I/O address space), interrupt lines, and DMA channels; when any device driver
I wants to access such a resource, it is expected to reserve the resource with
I the kernel database first. This requirement incidentally allows the system
;i administrator to determine exactly which resources have been allocated by
% which driver at any given point.
:;•• A module is expected to use this mechanism to reserve in advance any
f hardware resources that it expects to use. If the reservation is rejected because
i the resource is not present or is already in use, then it is up to the module
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to decide how to proceed. It may fail its initialization and request thatnt be
unloaded if it cannot continue, or it may carry on, using alternative hardware
resources.

21.4 Process Management

A process is the basic context within which all user-requested activity is
serviced within the operating system. To be compatible with other UNIX
systems, Linux must use a process model similar to those of other versions
of UNIX. Linux operates differently from UNIX in a few key places, however. In
this section, we review the traditional UNIX process model from Section A.3.2
and introduce Linux's own threading model.

21.4.1 The fork() and exec() Process Model

The basic principle of UNIX process management is to separate two operations:
the creation of a process and the running of a new program. A new process
is created by the f ork() system call, and a new program is run after a call to
exec(). These are two distinctly separate functions. A new process may be
created with forkO without a new program being run—the new subprocess
simply continues to execute exactly the same program that the first, parent
process was running. Equally, running a new program does not require that
a new process be created first: Any process may call exec 0 at any time. The
currently running program is immediately terminated, and the new program
starts executing in the context of the existing process.

This model has the advantage of great simplicity. Rather than having to
specify every detail of the environment of a new program in the system call that
runs that program, new programs simply run in their existing environment. If
a parent process wishes to modify the environment in which a new program
is to be run, it can fork and then, still running the original program in a child
process, make any system calls it requires to modify that child process before
finally executing the new program.

Under UNIX, then, a process encompasses all the information that the
operating system must maintain to track the context of a single execution of a
single program. Under Linux, we can break down this context into a number of
specific sections. Broadly, process properties fall into three groups: the process
identity, environment, and context.

21.4.1.1 Process Identity

A process identity consists mainly of the following items:

• Process ID (PID). Each process has a unique identifier. PIDs are used to
specify processes to the operating system when an application makes
a system call to signal, modify, or wait for another process. Additional
identifiers associate the process with a process group (typically, a tree of
processes forked by a single user command) and login session.

• Credentials. Each process must have an associated user ID and one or more
group IDs (user groups are discussed in Section 10.6.2) that determine the
rights of a process to access system resources and files.
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• Personality. Process personalities are not traditionally found on/UNIX
systems, but under Linux each process has an associated personality
identifier that can modify slightly the semantics of certain system calls.
Personalities are primarily used by emulation libraries to request that
system calls be compatible with certain flavors of UNIX.

Most of these identifiers are under limited control of the process itself.
The process group and session identifiers can be changed if the process
wants to start a new group or session. Its credentials can be changed, subject
to appropriate security checks. However, the primary PID of a process is
unchangeable and uniquely identifies that process until termination.

21.4.1.2 Process Environment

A process's environment is inherited from its parent and is composed of two
null-terminated vectors: the argument vector and the environment vector. The
argument vector simply lists the command-line arguments used to invoke the
running program; it conventionally starts with the name of the program itself.
The environment vector is a list of "NAME=VALUE" pairs that associates named
environment variables with arbitrary textual values. The environment is not
held in kernel memory but is stored in the process's own user-mode address
space as the first datum at the top of the process's stack.

The argument and environment vectors are not altered when a new process
is created: The new child process will inherit the environment that its parent
possesses. However, a completely new environment is set up when a new
program is invoked. On calling exec ( ) , a process must supply the environment
for the new program. The kernel passes these environment variables to the next
program, replacing the process's current environment. The kernel otherwise
leaves the environment and command-line vectors alone—their interpretation
is left entirely to the user-mode libraries and applications.

The passing of environment variables from one process to the next and the
inheriting of these variables by the children of a process provide flexible ways
to pass information to components of the user-mode system software. Various
important environment variables have conventional meanings to related parts
of the system software. For example, the TERM variable is set up to name the
type of terminal connected to a user's login session; many programs use this
variable to determine how to perform operations on the user's display, such as
moving the cursor and scrolling a region of text. Programs with multilingual
support use the LANG variable to determine in which language to display
system messages for programs that include multilingual support.

The environment-variable mechanism custom tailors the operating system
on a per-process basis, rather than for the system as a whole. Users can choose
their own languages or select their own editors independently of one another.

21.4.1.3 Process Context

The process identity and environment properties are usually set up when a
process is created and not changed until that process exits. A process may
choose to change some aspects of its identity if it needs to do so, or it may
alter its environment. In contrast, process context is the state of the running
program at any one time; it changes constantly. Process context includes the
following parts.
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• Scheduling context. The most important part of the process contexHs its
scheduling context—the information that the scheduler needs to suspend
and restart the process. This information includes saved copies of all the
process's registers. Floating-point registers are stored separately and are
restored only when needed, so that processes that do not use floating-point
arithmetic do not incur the overhead of saving that state. The scheduling
context also includes information about scheduling priority and about any
outstanding signals waiting to be delivered to the process. A key part of the
scheduling context is the process's kernel stack, a separate area of kernel
memory reserved for use exclusively by kernel-mode code. Both system
calls and interrupts that occur while the process is executing will use this
stack.

• Accounting. The kernel maintains information about the resources cur-
rently being consumed by each process and the total resources consumed
by the process in its entire lifetime so far.

• File table. The file table is an array of pointers to kernel file structures.
When making file-I/O system calls, processes refer to files by their index
into this table.

• File-system context. Whereas the file table lists the existing open files, the
file-system context applies to requests to open new files. The current root
and default directories to be used for new file searches are stored here.

• Signal-handler table. UNIX systems can deliver asynchronous signals to
a process in response to various external events. The signal-handler table
defines the routine in the process's address space to be called when specific
signals arrive.

• Virtual memory context. The virtual memory context describes the full
contents of a process's private address space; we discuss it in Section 21.6.

21.4.2 Processes and Threads

Linux provides the forkO system call with the traditional functionality of
duplicating a process. Linux also provides the ability to create threads using the
clone () system call. However, Linux does not distinguish between processes
and threads. In fact, Linux generally uses the term task—rather than process or
thread—when referring to a flow of control within a program. When clone ()
is invoked, it is passed a set of flags that determine how much sharing is to
take place between the parent and child tasks. Some of these flags are listed
below:

flag

CLQNE_jFS:

CL0NE__VM

CLONE_SIGHAND

CLONE_FILES

meaning' : : ;

File-system ififornrtatipniS: snared:

The same memory; space is ̂ shared.

Signal handlers are shared.

The set of open files is shared.
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Thus, if clone() is passed the flags CLONE_FS, CL0NE_VM, CLONE_SIG£AND,
and CLONE_FILES, the parent and child tasks will share the same file-system
information (such as the current working directory), the same memory space,
the same signal handlers, and the same set of open files. Using clone () in this
fashion is equivalent to creating a thread in other systems, since the parent task
shares most of its resources with its child task. However, if none of these flags is
set when clone () is invoked, no sharing takes place, resulting in functionality
similar to the f ork() system call.

The lack of distinction between processes and threads is possible because
Linux does not hold a process's entire context within the main process data
structure; rather, it holds the context within independent subcontexts. Thus,
a process's file-system context, file-descriptor table, signal-handler table, and
virtual memory context are held in separate data structures. The process data
structure simply contains pointers to these other structures, so any number of
processes can easily share a subcontext by pointing to the same subcontext as
appropriate.

The arguments to the clone () system call tell it which subcontexts to copy,
and which to share, when it creates a new process. The new process always is
given a new identity and a new scheduling context; according to the arguments
passed, however, it may either create new subcontext data structures initialized
to be copies of the parent's or set up the new process to use the same subcontext
data structures being used by the parent. The fork() system call is nothing
more than a special case of clone O that copies all subcontexts, sharing none.

21.5 Scheduling

Scheduling is the job of allocating CPU time to different tasks within an
operating system. Normally, we think of scheduling as being the running and
interrupting of processes, but another aspect of scheduling is also important
to Linux: the running of the various kernel tasks. Kernel tasks encompass both
tasks that are requested by a running process and tasks that execute internally
on behalf of a device driver.

21.5.1 Process Scheduling

Linux has two separate process-scheduling algorithms. One is a time-sharing
algorithm for fair, preemptive scheduling among multiple processes; the other
is designed for real-time tasks, where absolute priorities are more important
than fairness.

The scheduling algorithm used for routine, time-sharing tasks received a
major overhaul with version 2.5 of the kernel. Prior to version 2.5, the Linux
kernel ran a variation of the traditional UNIX scheduling algorithm. Among
other issues, problems with the traditional UNIX scheduler are that it does
not provide adequate support for SMP systems and that it does not scale well
as the number of tasks on the system grows. The overhaul of the scheduler
with version 2.5 of the kernel now provides a scheduling algorithm that runs
in constant time—known as O(l)—regardless of the number of tasks on the
system. The new scheduler also provides increased support for SMP, including
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Figure 21.2 The relationship between priorities and time-slice length.

processor affinity and load balancing, as well as maintaining fairness and
support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, Linux assigns higher-priority
tasks longer time quanta and vice-versa. Because of the unique nature of the
scheduler, this is appropriate for Linux, as we shall soon see. The relationship
between priorities and time-slice length is shown in Figure 21.2.

A runnable task is considered eligible for execution on the CPU so long as
it has time remaining in its time slice. When a task has exhausted its time slice,
it is considered expired and is not eligible for execution again until all other
tasks have also exhausted their time quanta. The kernel maintains a list of all
runnable tasks in a runqueue data structure. Because of its support for SMP,
each processor maintains its own runqueue and schedules itself independently.
Each runqueue contains two priority arrays—active and expired. The active
array contains all tasks with time remaining in their time slices, and the expired
array contains all expired tasks. Each of these priority arrays includes a list of
tasks indexed according to priority (Figure 21.3). The scheduler chooses the
task with the highest priority from the active array for execution on the CPU.
On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks
have exhausted their time slices (that is, the active array is empty), the two
priority arrays are exchanged as the expired array becomes the active array
and vice-versa.

Tasks are assigned dynamic priorities that are based on the nice value plus
or minus up to the value 5 based upon the interactivity of the task. Whether
a value is added to or subtracted from a task's nice value depends on the
interactivity of the task. A task's interactivity is determined by how long it has
been sleeping while waiting for I/O. Tasks that are more interactive typically
have longer sleep times and therefore are more likely to have an adjustment
closer to -5, as the scheduler favors such interactive tasks. Conversely, tasks
with shorter sleep times are often more CPU-bound and thus will have their
priorities lowered.



21.5 Scheduling 753

active expired
array array

priority task lists priority task lists
[0] O—O [0] O—O—O
[1] O K X ) [1] O

[140] O [140] O - O

Figure 21.3 List of tasks indexed according to priority.

The recalculation of a task's dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasks in the new active array have been
assigned new priorities and corresponding time slices.

Linux's real-time scheduling is simpler still. Linux implements the two real-
time scheduling classes required by POSIX.lb: first-come, first-served (FCFS) and
round-robin (Sections 5.3.1 and 5.3.4, respectively). In both cases, each process
has a priority in addition to its scheduling class. Processes of different priorities
can compete with one another to some extent in time-sharing scheduling; in
real-time scheduling, however, the scheduler always runs the process with the
highest priority. Among processes of equal priority, it runs the process that
has been waiting longest. The only difference between FCFS and round-robin
scheduling is that FCFS processes continue to run until they either exit or
block, whereas a round-robin process will be preempted after a while and
will be moved to the end of the scheduling queue, so round-robin processes of
equal priority will automatically time-share among themselves. Unlike routine
time-sharing tasks, real-time tasks are assigned static priorities.

Linux's real-time scheduling is soft—rather than hard—real time. The
scheduler offers strict guarantees about the relative priorities of real-time
processes, but the kernel does not offer any guarantees about how quickly
a real-time process will be scheduled once that process becomes runnable.

21.5.2 Kernel Synchronization

The way the kernel schedules its own operations is fundamentally different
from the way it schedules processes. A request for kernel-mode execution
can occur in two ways. A running program may request an operating-system
service, either explicitly via a system call or implicitly—for example, when
a page fault occurs. Alternatively, a device driver may deliver a hardware
interrupt that causes the CPU to start executing a kernel-defined handler for
that interrupt.

The problem posed to the kernel is that all these tasks may try to access the
same internal data structures. If one kernel task is in the middle of accessing
some data structure when an interrupt service routine executes, then that
service routine cannot access or modify the same data without risking data
corruption. This fact relates to the idea of critical sections—portions of code
that access shared data and that must not be allowed to execute concurrently.
As a result, kernel synchronization involves much more than just process
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scheduling. A framework is required that allows kernel tasks to run wfthout
violating the integrity of shared data.

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a
process running in kernel mode could not be preempted—even if a higher-
priority process became available to run. With version 2.6, the Linux kernel
became fully preemptive; so a task can now be preempted when it is running
in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader-
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock; the kernel is designed so that
the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding a
spinlock, the task disables kernel preemption. When the task would otherwise
release the spinlock, it enables kernel preemption. This pattern is summarized
below:

single processor

Disable kernel preemption.

Enable kernel preemption.

multiple processors

Acquire spin lock.

Release spin lock.

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt.disable 0 and pre-
empt .enable () —for disabling and enabling kernel preemption. However, in
addition, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this rule, each task in the system has a thread-info structure that
includes the field preempt_count, which is a counter indicating the number
of locks being held by the task. When a lock is acquired, preempt_count is
incremented. Likewise, it is decremented when a lock is released. If the value
of preempt .count for the task currently running is greater than zero, it is not
safe to preempt the kernel, as this task currently holds a lock. If the count is
zero, the kernel can safely be interrupted, assuming there are no outstanding
calls to preempt_disable().

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when the lock is held for short durations. When a lock
must be held for longer periods, semaphores are used.

The second protection technique that Linux uses applies to critical sections
that occur in interrupt service routines. The basic tool is the processor's
interrupt-control hardware. By disabling interrupts (or using spinlocks) during
a critical section, the kernel guarantees that it can proceed without the risk of
concurrent access of shared data structures.

However, there is a penalty for disabling interrupts. On most hardware
architectures, interrupt enable and disable instructions are expensive. Further-
more, as long as interrupts remain disabled, all I/O is suspended, and any
device waiting for servicing will have to wait until interrupts are reenabled; so
performance degrades. The Linux kernel uses a synchronization architecture
that allows long critical sections to run for their entire duration without having
interrupts disabled. This ability is especially useful in the networking code: An
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Figure 21.4 Interrupt protection levels.

interrupt in a network device driver can signal the arrival of an entire network
packet, which may result in a great deal of code being executed to disassemble,
route, and forward that packet within the interrupt service routine.

Linux implements this architecture by separating interrupt service routines
into two sections: the top half and the bottom half. The top half is a normal
interrupt service routine and runs with recursive interrupts disabled; interrupts
of a higher priority may interrupt the routine, but interrupts of the same
or lower priority are disabled. The bottom half of a service routine is run,
with all interrupts enabled, by a miniature scheduler that ensures that bottom
halves never interrupt themselves. The bottom-half scheduler is invoked
automatically whenever an interrupt service routine exits.

This separation means that the kernel can complete any complex processing
that has to be done in response to an interrupt without worrying about being
interrupted itself. If another interrupt occurs while a bottom half is executing,
then that interrupt can request that the same bottom half execute, but the
execution will be deferred until the one currently running completes. Each
execution of the bottom half can be interrupted by a top half but can never be
interrupted by a similar bottom half.

The top-half/bottom-half architecture is completed by a mechanism for
disabling selected bottom halves while executing normal, foreground kernel
code. The kernel can code critical sections easily using this system. Interrupt
handlers can code their critical sections as bottom halves; and when the
foreground kernel wants to enter a critical section, it can disable any relevant
bottom halves to prevent any other critical sections from interrupting it. At
the end of the critical section, the kernel can reenable the bottom halves and
run any bottom-half tasks that have been queued by top-half interrupt service
routines during the critical section.

Figure 21.4 summarizes the various levels of interrupt protection within
the kernel. Each level may be interrupted by code running at a higher level
but will never be interrupted by code running at the same or a lower level;
except for user-mode code, user processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs.

21.5.3 Symmetric Multiprocessing

The Linux 2.0 kernel was the first stable Linux kernel to support symmetric
multiprocessor (SMP) hardware, allowing separate processes to execute in
parallel on separate processors. Originally, the implementation of SMP imposed
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the restriction that only one processor at a time could be executing kernel-anode
code.

In version 2.2 of the kernel, a single kernel spinlock (sometimes termed
BKL for "big kernel lock") was created to allow multiple processes (running
on different processors) to be active in the kernel concurrently. However, the
BKL provided a very coarse level of locking granularity. Later releases of the
kernel made the SMP implementation more scalable by splitting this single
kernel spinlock into multiple locks, each of which protects only a small subset
of the kernel's data structures. Such spinlocks are described in Section 21.5.2.
The 2.6 kernel provided additional SMP enhancements, including processor
affinity and load-balancing algorithms.

21.6 Memory Management

Memory management under Linux has two components. The first deals with
allocating and freeing physical memory—pages, groups of pages, and small
blocks of memory. The second handles virtual memory, which is memory
mapped into the address space of running processes. In this section, we
describe these two components and then examine the mechanisms by which
the loadable components of a new program are brought into a process's virtual
memory in response to an exec () system call.

21.6.1 Management of Physical Memory

Due to specific hardware characteristics, Linux separates physical memory into
three different zones identifying different regions of memory. The zones are
identified as:

• Z0NE_DMA

• ZONEJTORMAL

• ZONE_HIGHMEM

These zones are architecture specific. For example, on the Intel 80x86 archi-
tecture, certain ISA (industry standard architecture) devices can only access
the lower 16 MB of physical memory using DMA. On these systems, the
first 16 MB of physical memory comprise ZONE-DMA. ZQNEJIORMAL identifies
physical memory that is mapped to the CPU's address space. This zone is
used for most routine memory requests. For architectures that do not limit
what DMA can access, ZONEJDMA is not present, and ZQNEJJQRMAL is used.
Finally, ZONE_HIGHMEM (for "high memory") refers to physical memory that is
not mapped into the kernel address space. For example, on the 32-bit Intel
architecture (where 232 provides a 4-GB address space), the kernel is mapped
into the first 896 MB of the address space; the remaining memory is referred
to as high memory and is allocated from ZONE_HIGHMEM. The relationship of
zones and physical addresses on the Intel 80x86 architecture is shown in Figure
21.5. The kernel maintains a list of free pages for each zone. When a request for
physical memory arrives, the kernel satisfies the request using the appropriate
zone.
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Figure 21.5 Relationship of zones and physical addresses on the Intel 80x86.

The primary physical-memory manager in the Linux kernel is the page
allocator. Each zone has its own allocator, which is responsible for allocating
and freeing all physical pages for the zone, and it is capable of allocating
ranges of physically contiguous pages on request. The allocator uses a buddy
system (Section 9.8.1) to keep track of available physical pages. In this scheme,
adjacent units of allocatable memory are paired together (hence its name). Each
allocatable memory region has an adjacent partner (or buddy). Whenever two
allocated partner regions are freed up, they are combined to form a larger
region—a buddy heap. That larger region also has a partner, with which it can
combine to form a still larger free region. Conversely, if a small memory request
cannot be satisfied by allocation of an existing small free region, then a larger
free region will be subdivided into two partners to satisfy the request. Separate
linked lists are used to record the free memory regions of each allowable size;
under Linux, the smallest size allocatable under this mechanism is a single
physical page. Figure 21.6 shows an example of buddy-heap allocation. A 4-KB
region is being allocated, but the smallest available region is 16 KB. The region
is broken up recursively until a piece of the desired size is available.

Ultimately, all memory allocations in the Linux kernel are made either
statically, by drivers that reserve a contiguous area of memory during system
boot time, or dynamically, by the page allocator. However, kernel functions
do not have to use the basic allocator to reserve memory. Several specialized
memory-management subsystems use the underlying page allocator to man-
age their own pools of memory. The most important are the virtual memory
system, described in Section 21.6.2; the kmallocO variable-length allocator;

Figure 21.6 Splitting of memory in the buddy system.
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the slab allocator, used for allocating memory for kernel data structures; and
the page cache, used for caching pages belonging to files.

Many components of the Linux operating system need to allocate entire
pages on request, but often smaller blocks of memory are required. The kernel
provides an additional allocator for arbitrary-sized requests, where the size
of a reqiiest is not known in advance and may be only a few bytes, rather
than an entire page. Analogous to the C language's mallocO function, this
kmalloc () service allocates entire pages on demand but then splits them
into smaller pieces. The kernel maintains a set of lists of pages in use by the
kmalloc () service. Allocating memory involves working out the appropriate
list and either taking the first free piece available on the list or allocating a new
page and splitting it up. Memory regions claimed by the kmalloc() system
are allocated permanently until they are freed explicitly; the kmalloc () system
cannot relocate or reclaim these regions in response to memory shortages.

Another strategy adopted by Linux for allocating kernel memory is known
as slab allocation. A slab is used for allocating memory for kernel data
structures and is made up of one or more physically contiguous pages. A
cache consists of one or more slabs and there is a single cache for each unique
kernel data structure —for example, a cache for the data structure representing
process descriptors, a cache for file objects, a cache for semaphores, and
so forth. Each cache is populated with objects that are instantiations of the
kernel data structure the cache represents. For example, the cache representing
semaphores stores instances of semaphore objects, the cache representing
process descriptors stores instances of process descriptor objects, etc. The
relationship among slabs, caches, and objects is shown in Figure 21.7. The
figure shows two kernel objects 3 KB in size and three objects 7 KB in size.
These objects are stored in the respective caches for 3-KB and 7-KB objects.

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects—which are initially marked as free—are
allocated to the cache. The number of objects in the cache depends on the size of

kernel objects caches slabs

3-KB
objects

7-KB
objects

physically
contiguous
pages

Figure 21.7 Slab allocator in Linux.
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the associated slab. For example, a 12-KB slab (comprised of three contirjguous
4-KB pages) could store six 2-KB objects. Initially, all objects in the cache are
marked as free. When a new object for a kernel data structure is needed, the
allocator can assign any free object from the cache to satisfy the request. The
object assigned from the cache is marked as used.

Let's consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type s t ruc t task_st ruct , which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the s t r u c t task_struct object from its
cache. The cache will fulfill the request using a s t ruc t task_st ruct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. AH objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

The other two main subsystems in Linux that do their own management
of physical pages are closely related to one another. These are the page cache
and the virtual memory system. The page cache is the kernel's main cache for
block-oriented devices and memory-mapped files and is the main mechanism
through which I/O to these devices is performed. Both the native Linux disk-
based file systems and the NFS networked file system use the page cache.
The page cache caches entire pages of file contents and is not limited to block
devices; it can also cache networked data. The virtual memory system manages
the contents of each process's virtual address space. These two systems interact
closely with one another because reading a page of data into the page cache
requires mapping pages in the page cache using the virtual memory system. In
the following sections, we look at the virtual memory system in greater detail.

21.6.2 Virtual Memory

The Linux virtual memory system is responsible for maintaining the address
space visible to each process. It creates pages of virtual memory on demand
and manages the loading of those pages from disk or their swapping back out
to disk as required. Under Linux, the virtual memory manager maintains two
separate views of a process's address space: as a set of separate regions and as
a set of pages.

The first view of an address space is the logical view, describing instructions
that the virtual memory system has received concerning the layout of the
address space. In this view, the address space consists of a set of nonoverlapping
regions, each region representing a continuous, page-aligned subset of the
address space. Each region is described internally by a single vm_area_struct
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structure that defines the properties of the region, including the process's read,
write, and execute permissions in the region, and information about any files
associated with the region. The regions for each address space are linked into
a balanced binary tree to allow fast lookup of the region corresponding to any
virtual address.

The kernel also maintains a second, physical view of each address space.
This view is stored in the hardware page tables for the process. The page-table
entries determine the exact current location of each page of virtual memory,
whether it is on disk or in physical memory. The physical view is managed
by a set of routines invoked from the kernel's software-intermpt handlers
whenever a process tries to access a page that is not currently present in the page
tables. Each vm_axea^struct in the address-space description contains a field
that points to a table of functions that implement the key page-management
functions for any given virtual memory region. All requests to read or write
an unavailable page are eventually dispatched to the appropriate handler
in the function table for the vm_area_struct, so that the central memory-
management routines do not have to know the details of managing each
possible type of memory region.

21.6.2.1 Virtual Memory Regions

Linux implements several types of virtual memory regions. The first property
that characterizes a type of virtual memory is the backing store for the region,
which describes where the pages for a region come from. Most memory regions
are backed either by a file or by nothing. A region backed by nothing is
the simplest type of virtual memory. Such a region represents demand-zero
memory: When a process tries to read a page in such a region, it is simply given
back a page of memory filled with zeros.

A region backed by a file acts as a viewport onto a section of that file:
Whenever the process tries to access a page within that region, the page table
is filled with the address of a page within the kernel's page cache corresponding
to the appropriate offset in the file. The same page of physical memory is used
both by the page cache and by the process's page tables, so any changes made
to the file by the file system are immediately visible to any processes that have
mapped that file into their address space. Any number of processes can map
the same region of the same file, and they will all end up using the same page
of physical memory for the purpose.

A virtual memory region is also defined by its reaction to writes. The
mapping of a region into the process's address space can be either private or
shared. If a process writes to a privately mapped region, then the pager detects
that a copy-on-write is necessary to keep the changes local to the process. In
contrast, writes to a shared region result in updating of the object mapped into
that region, so that the change will be visible immediately to any other process
that is mapping that object.

21.6.2.2 Lifetime of a Virtual Address Space

The kernel will create a new virtual address space in two situations: when a
process runs a new program with the execO system call and on creation of
a new process by the f ork() system call. The first case is easy: When a new
program is executed, the process is given a new, completely empty virtual
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address space. It is up to the routines for loading the program to populate the
address space with virtual memory regions.

The second case, creating a new process with f ork (), involves creating
a complete copy of the existing process's virtual address space. The kernel
copies the parent process's vm_area_struct descriptors, then creates a new set
of page tables for the child. The parent's page tables are copied directly into
the child's, and the reference count of each page covered is incremented; thus,
after the fork, the parent and child share the same physical pages of memory
in their address spaces.

A special case occurs when the copying operation reaches a virtual memory
region that is mapped privately. Any pages to which the parent process has
written within such a region are private, and subsequent changes to these pages
by either the parent or the child must not update the page in the other process's
address space. When the page-table entries for such regions are copied, they
are set to be read only and are marked for copy-on-write. As long as neither
process modifies these pages, the two processes share the same page of physical
memory However, if either process tries to modify a copy-on-write page, the
reference count on the page is checked. If the page is still shared, then the
process copies the page's contents to a brand-new page of physical memory
and uses its copy instead. This mechanism ensures that private data pages
are shared between processes whenever possible; copies are made only when
absolutely necessary.

21.6.2.3 Swapping and Paging

An important task for a virtual memory system is to relocate pages of memory
from physical memory out to disk when that memory is needed. Early UNIX
systems performed this relocation by swapping out the contents of entire
processes at once, but modern versions of UNIX rely more on paging—the
movement of individual pages of virtual memory between physical memory
and disk. Linux does not implement whole-process swapping; it uses the newer
paging mechanism exclusively.

The paging system can be divided into two sections. First, the policy
algorithm decides which pages to write out to disk and when to write them.
Second, the paging mechanism carries out the transfer and pages data back
into physical memory when they are needed again.

Linux's pageout policy uses a modified version of the standard clock (or
second-chance) algorithm described in Section 9.4.5.2. Under Linux, a multiple-
pass clock is used, and every page has an age. that is adjusted on each pass of
the clock. The age is more precisely a measure of the page's youthfulness, or
how much activity the page has seen recently. Frequently accessed pages will
attain a higher age value, but the age of infrequently accessed pages will drop
toward zero with each pass. This age valuing allows the pager to select pages
to page out based on a least frequently used (LFU) policy.

The paging mechanism supports paging both to dedicated swap devices
and partitions and to normal files, although swapping to a file is significantly
slower due to the extra overhead incurred by the file system. Blocks are
allocated from the swap devices according to a bitmap of used blocks, which
is maintained in physical memory at all times. The allocator uses a next-fit
algorithm to try to write out pages to continuous runs of disk blocks for
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improved performance. The allocator records the fact that a page has been
paged out to disk by using a feature of the page tables on modern processors:
The page-table entry's page-not-present bit is set, allowing the rest of the
page-table entry to be filled with an index identifying where the page has bef i
written.

21.6.2.4 Kernel Virtual Memory

Linux reserves for its own internal use a constant, architecture-dependent
region of the virtual address space of every process. The page-table entries
that map to these kernel pages are marked as protected, so that the pages are
not visible or modifiable when the processor is running in user mode. This
kernel virtual memory area contains two regions. The first is a static area that
contains page-table references to every available physical page of memory
in the system, so that a simple translation from physical to virtual addresses
occurs when kernel code is run. The core of the kernel, along with all pages
allocated by the normal page allocator, resides in this region.

The remainder of the kernel's reserved section of address space is not
reserved for any specific purpose. Page-table entries in this address range
can be modified by the kernel to point to any other areas of memory. The
kernel provides a pair of facilities that allow processes to use this virtual
memory. The vmallocO function allocates an arbitrary number of physical
pages of memory that may not be physically contiguous into a single region of
virtually contiguous kernel memory. The vremap () function maps a sequence
of virtual addresses to point to an area of memory used by a device driver for
memory-mapped I/O.

21.6.3 Execution and Loading of User Programs

The Linux kernel's execution of user programs is triggered by a call to the
exec () system call. This call commands the kernel to run a new program within
the current process, completely overwriting the current execution context with
the initial context of the new program. The first job of this system service is to
verify that the calling process has permission rights to the file being executed.
Once that matter has been checked, the kernel invokes a loader routine to start
running the program. The loader does not necessarily load the contents of the
program file into physical memory, but it does at least set up the mapping of
the program into virtual memory.

There is no single routine in Linux for loading a new program. Instead,
Linux maintains a table of possible loader functions, and it gives each such
function the opportunity to try loading the given file when an exec () system
call is made. The initial reason for this loader table was that, between the
releases of the 1.0 and 1.2 kernels, the standard format for Linux's binary files
was changed. Older Linux kernels understood the a.out format for binary
files—a relatively simple format common on older UNIX systems. Newer
Linux systems use the more modern ELF format, now supported by most
current UNIX implementations. ELF has a number of advantages over a.out,
including flexibility and extensibility: New sections can be added to an ELF
binary (for example, to add extra debugging information) without causing



21.6 Memory Management 763

the loader routines to become confused. By allowing registration of multiple
loader routines, Linux can easily support the ELF and a. out binary formats in
a single running system.

In Sections 21.6.3.1 and 21.6.3.2, we concentrate exclusively on the loading
and running of ELF-format binaries. The procedure for loading a. out binaries
is simpler but is similar in operation.

21.6.3.1 Mapping of Programs into Memory

Under Linux, the binary loader does not load a binary file into physical memory.
Rather, the pages of the binary file are mapped into regions of virtual memory.
Only when the program tries to access a given page will a page fault result in
the loading of that page into physical memory using demand paging.

It is the responsibility of the kernel's binary loader to set up the initial
memory mapping. An ELF-format binary file consists of a header followed by
several page-aligned sections. The ELF loader works by reading the header and
mapping the sections of the file into separate regions of virtual memory.

Figure 21.8 shows the typical layout of memory regions set up by the ELF
loader. In a reserved region at one end of the address space sits the kernel, in
its own privileged region of \drtual memory inaccessible to normal user-mode
programs. The rest of virtual memory is available to applications, which can use
the kernel's memory-mapping functions to create regions that map a portion
of a file or that are available for application data.

The loader's job is to set up the initial memory mapping to allow the
execution of the program to start. The regions that need to be initialized include
the stack and the program's text and data regions.

The stack is created at the top of the user-mode virtual memory; it
grows downward toward lower-mimbered addresses. It includes copies of the
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Figure 21.8 Memory layout for ELF programs.
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arguments and environment variables given to the program in the execO
system call. The other regions are created near the bottom end of virtual
memory. The sections of the binary file that contain program text or read-only
data are mapped into memory as a write-protected region. Writable initialized
data are mapped next; then any uninitialized data are mapped in as a private
demand-zero region.

Directly beyond these fixed-sized regions is a variable-sized region that
programs can expand as needed to hold data allocated at run time. Each
process has a pointer, brk, that points to the current extent of this data region,
and processes can extend or contract their brk region with a single system call
—sbrkO.

Once these mappings have been set up, the loader initializes the process's
program-counter register with the starting point recorded in the ELF header,
and the process can be scheduled.

21.6.3.2 Static and Dynamic Linking

Once the program has been loaded and has started running, all the necessary
contents of the binary file have been loaded into the process's virtual address
space. However, most programs also need to run functions from the system
libraries, and these library functions also need to be loaded. In the simplest
case, the necessary library functions are embedded directly in the program's
executable binary file. Such a program is statically linked to its libraries, and
statically linked executables can commence running as soon as they are loaded.

The main disadvantage of static linking is that every program generated
must contain copies of exactly the same common system library functions. It is
much more efficient, in terms of both physical memory and disk-space usage,
to load the system libraries into memory only once. Dynamic linking allows
this single loading to happen.

Linux implements dynamic linking in user mode through a special linker
library. Every dynamically linked program contains a small, statically linked
function that is called when the program starts. This static function just maps
the link library into memory and runs the code that the function contains. The
link library determines the dynamic libraries required by the program and the
names of the variables and functions needed from those libraries by reading the
information contained in sections of the ELF binary. It then maps the libraries
into the middle of virtual memory and resolves the references to the symbols
contained in those libraries. It does not matter exactly where in memory these
shared libraries are mapped: They are compiled into position-independent
code (PIC), which can run at any address in memory.

21.7 File Systems

Linux retains UNIX's standard file-system model. In UNIX, a file does not have
to be an object stored on disk or fetched over a network from a remote file
server. Rather, UNIX files can be anything capable of handling the input or
output of a stream of data. Device drivers can appear as files, and interprocess-
communication channels or network connections also look like files to the
user.
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The Linux kernel handles all these types of file by hiding the implemen-
tation details of any single file type behind a layer of software, the virtual file
system (VFS). Here, we first cover the virtual file system and then discuss the
standard Linux file system—ext2fs.

21.7.1 The Virtual File System

The Linux VFS is designed around object-oriented principles. It has two
components: a set of definitions that specify what file-system objects are
allowed to look like and a layer of software to manipulate the objects. The
VFS defines four main object types:

• An inode object represents an individual file.

• A file object represents an open file.

• A superblock object represents an entire file system.

• A dentry object represents an individual directory entry.

For each of these four object types, the VFS defines a set of operations.
Every object of one of these types contains a pointer to a function table. The
function table lists the addresses of the actual functions that implement the
defined operations for that object. For example, an abbreviated API for some of
the file object's operations includes:

• in t open (. . .) — Open a file.

• ssize_t r ead( . . .) —Read from a file.

• ssize_t wri te (. . .) —Write to a file.

• in t mmap (. . .) — Memory-map a file.

The complete definition of the file object is specified in the s t ruc t
f i le_operat ions, which is located in the file / u s r / i n c l u d e / l i n u x / f s . h .
An implementation of the file object (for a specific file type) is required to
implement each function specified in the definition of the file object.

The VFS software layer can perform an operation on one of the file-system
objects by calling the appropriate function from the object's function table,
without having to know in advance exactly what kind of object it is dealing
with. The VFS does not know, or care, whether an inode represents a networked
file, a disk file, a network socket, or a directory file. The appropriate function
for that file's readQ operation will always be at the same place in its function
table, and the VFS software layer will call that function without caring how the
data are actually read.

The inode and file objects are the mechanisms used to access files. An inode
object is a data structure containing pointers to the disk blocks that contain the
actual hie contents, and a file object represents a point of access to the data in an
open file. A process cannot access an inode's contents without first obtaining a
file object pointing to the inode. The file object keeps track of where in the file
the process is currently reading or writing, to keep track of sequential file I/O. It
also remembers whether the process asked for write permissions when the file
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was opened and tracks the process's activity if necessary to perform adaptive
read-ahead, fetching file data into memory before the process requests the data,
to improve performance.

File objects typically belong to a single process, but inode objects do not.
Even when a file is no longer being used by any processes, its inode object
may still be cached by the VFS to improve performance if the file is used again
in the near future. All cached file data are linked onto a list in the file's inode
object. The inode also maintains standard information about each file, such as
the owner, size, and time most recently modified.

Directory files are dealt with slightly differently from other files. The UNIX
programming interface defines a number of operations on directories, such as
creating, deleting, and renaming a file in a directory. The system calls for these
directory operations do not require that the user open the files concerned,
unlike the case for reading or writing data. The VFS therefore defines these
directory operations in the inode object, rather than in the file object.

The superblock object represents a connected set of files that form a
self-contained file system. The operating-system kernel maintains a single
superblock object for each disk device mounted as a file system and for
each networked file system currently connected. The main responsibility of
the superblock object is to provide access to inodes. The VFS identifies every
inode by a unique (file-system/inode number) pair, and it finds the inode
corresponding to a particular inode number by asking the superblock object to
return the inode with that number.

Finally, a dentry object represents a directory entry that may include the
name of a directory in the path name of a file (such as /usr) or the actual file
(such as s t d i o . h). For example, the file A i s r / i nc lude / s td io . h contains the
directory entries (1) /, (2) usr, (3) include, and (4) s td io .h. Each one of these
values is represented by a separate dentry object.

As an example of how dentry objects are used, consider the situ-
ation in which a process wishes to open the file with the pathname
/ u s r / i n c l u d e / s t d i o . h using an editor. Because Linux treats directory names
as files, translating this path requires first obtaining the inode for the root—
/. The operating system must then read through this file to obtain the inode
for the file include. It must continue this process until it obtains the inode for
the file s td io . h. Because path-name translation can be a time-consuming task,
Linux maintains a cache of dentry objects, which is consulted during path-name
translation. Obtaining the inode from the dentry cache is considerably faster
than having to read the on-disk file.

21.7.2 The Linux ext2fs File System

The standard on-disk file system used by Linux is called ext2fs, for historical
reasons. Linux was originally programmed with a Minix-compatible file
system, to ease exchanging data with the Minix development system, but
that file system was severely restricted by 14-character file-name limits and a
maximum file-system size of 64 MB. The Minix file system was superseded by
a new file system, which was christened the extended file system (extfs). A
later redesign of this file system to improve performance and scalability and
to add a few missing features led to the second extended file system (ext2fs).
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Linuxs ext2fs has much in common with the BSD Fast File Systen] (FFS)
(Section A.7.7). It uses a similar mechanism for locating the data blocks
belonging to a specific file, storing data-block pointers in indirect blocks
throughout the file system with up to three levels of indirection. As in FFS,
directory files are stored on disk just like normal files, although their contents
are interpreted differently. Each block in a directory file consists of a linked list
of entries; each entry contains the length of the entry, the name of a file, and
the inode number of the inode to which that entry refers.

The main differences between ext2fs and FFS lie in their disk-allocation
policies. In FFS, the disk is allocated to files in blocks of 8 KB. These blocks are
subdivided into fragments of 1 KB for storage of small files or partially filled
blocks at the ends of files. In contrast, ext2fs does not use fragments at all but
performs all its allocations in smaller units. The default block size on ext2fs is
1 KB, although 2-KB and 4-KB blocks are also supported.

To maintain high performance, the operating system must try to perform
I/O operations in large chunks whenever possible by clustering physically
adjacent I/O requests. Clustering reduces the per-request overhead incurred
by device drivers, disks, and disk-controller hardware. A 1-KB I/O request size
is too small to maintain good performance, so ext2fs uses allocation policies
designed to place logically adjacent blocks of a file into physically adjacent
blocks on disk, so that it can submit an I/O request for several disk blocks as a
single operation.

The ext2fs allocation policy comes in two parts. As in FFS, an ext2fs file
system is partitioned into multiple block groups. FFS uses the similar concept
of cylinder groups, where each group corresponds to a single cylinder of a
physical disk. However, modern disk-drive technology packs sectors onto the
disk at different densities, and thus with different cylinder sizes, depending
on how far the disk head is from the center of the disk. Therefore, fixed-sized
cylinder groups do not necessarily correspond to the disk's geometry.

When allocating a file, ext2fs must first select the block group for that file.
For data blocks, it attempts to allocate the file to the block group to which the
file's inode has been allocated. For inode allocations, it selects the block group
in which the file's parent directory resides, for nondirectory files. Directory
files are not kept together but rather are dispersed throughout the available
block groups. These policies are designed not only to keep related information
within the same block group but also to spread out the disk load among the
disk's block groups to reduce the fragmentation of any one area of the disk.

Within a block group, ext2fs tries to keep allocations physically contiguous
if possible, reducing fragmentation if it can. It maintains a bitmap of all free
blocks in a block group. When allocating the first blocks for a new file, it
starts searching for a free block from the beginning of the block group; when
extending a file, it continues the search from the block most recently allocated
to the file. The search is performed in two stages. First, ext2fs searches for an
entire free byte in the bitmap; if it fails to find one, it looks for any free bit.
The search for free bytes aims to allocate disk space in chunks of at least eight
blocks where possible.

Once a free block has been identified, the search is extended backward until
an allocated block is encountered. When a free byte is found in the bitmap, this
backward extension prevents ext2fs from leaving a hole between the most
recently allocated block in the previous nonzero byte and the zero byte found.
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Figure 21.9 ext2fs block-allocation policies.

Once the next block to be allocated has been found by either bit or byte search,
ext2fs extends the allocation forward for up to eight blocks and preallocates
these extra blocks to the file. This preallocation helps to reduce fragmentation
during interleaved writes to separate files and also reduces the CPU cost of
disk allocation by allocating multiple blocks simultaneously. The preallocated
blocks are returned to the free-space bitmap when the file is closed.

Figure 21.9 illustrates the allocation policies. Each row represents a
sequence of set and unset bits in an allocation bitmap, indicating used and
free blocks on disk. In the first case, if we can find any free blocks sufficiently
near the start of the search, then we allocate them no matter how fragmented
they may be. The fragmentation is partially compensated for by the fact that
the blocks are close together and can probably all be read without any disk
seeks, and allocating them all to one file is better in the long run than allocating
isolated blocks to separate files once large free areas become scarce on disk. In
the second case, we have not immediately found a free block close by, so we
search forward for an entire free byte in the bitmap. If we allocated that byte as
a whole, we would end up creating a fragmented area of free space before it, so
before allocating we back up to make this allocation flush with the allocation
preceding it, and then we allocate forward to satisfy the default allocation of
eight blocks.

21.7.3 Journaling

Many different types of file systems are available for Linux systems. One
popular feature in a file system is journaling, whereby modifications to the file
system are sequentially written to a journal. A set of operations that performs
a specific task is a transaction. Once a transaction is written to the journal, it
is considered to be committed, and the system call modifying the file system



21.7 File Systems 769

(i.e. wri te ()) can return to the user process, allowing it to continue execution.
Meanwhile, the journal entries relating to the transaction are replayed across
the actual file-system structures. As the changes are made, a pointer is updated
to indicate which actions have completed and which are still incomplete.
When an entire committed transaction is completed, it is removed from the
journal. The journal, which is actually a circular buffer, may be in a separate
section of the file system, or it may even be on a separate disk spindle. It is
more efficient, but more complex, to have it under separate read-write heads,
thereby decreasing head contention and seek times.

If the system crashes, there will be zero or more transactions in the journal.
Those transactions were never completed to the file system even though they
were committed by the operating system, so they must be completed. The
transactions can be executed from the pointer until the work is complete, and
the file-system structures remain consistent. The only problem occurs when a
transaction has been aborted. That is, it was not committed before the system
crashed. Any changes from those transactions that were applied to the file
system must be undone, again preserving the consistency of the file system.
This recovery is all that is needed after a crash, eliminating all problems with
consistency checking.

Journaling file systems are also typically faster than non-journaling sys-
tems, as updates proceed much faster when they are applied to the in-memory
journal rather than directly to the on-disk data structures. The reason for this
improvement is found in the performance advantage of sequential I/O over
random I/O. The costly synchronous random writes to the file system are
turned into much less costly synchronous sequential writes to the file system's
journal. Those changes in turn are replayed asynchronously via random writes
to the appropriate structures. The overall result is a significant gain in perfor-
mance of file system metadata-oriented operations, such as file creation and
deletion.

Journaling is not provided in ext2fs. It is provided, however, in another
common file system available for Linux systems, ext3, which is based on ext2fs.

21.7.4 The Linux proc File System

The flexibility of the Linux VFS enables us to implement a file system that does
not store data persistently at all but rather simply provides an interface to
some other functionality. The Linux process file system, known as the /proc
file system, is an example of a file system whose contents are not actually stored
anywhere but are computed on demand according to user file I/O requests.

A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc
file system as an efficient interface to the kernel's process debugging support:
Each subdirectory of the file system corresponded not to a directory on any
disk but rather to an active process on the current system. A listing of the file
system reveals one directory per process, with the directory name being the
ASCII decimal representation of the process's unique process identifier (PID).

Linux implements such a /proc file system but extends it greatly by
adding a number of extra directories and text files under the file system's root
directory. These new entries correspond to various statistics about the kernel
and the associated loaded drivers. The /proc file system provides a way for
programs to access this information as plain text files, which the standard
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UNIX user environment provides powerful tools to process. For example, in
the past, the traditional UNIX ps command for listing the states of all running
processes has been implemented as a privileged process that reads the process
state directly from the kernel's virtual memory. Under Linux, this command
is implemented as an entirely unprivileged program that simply parses and
formats the information from /proc.

The /proc file system must implement two things: a directory structure
and the file contents within. Given that a UNIX file system is defined as a set
of file and directory inodes identified by their inode numbers, the /proc file
system must define a unique and persistent inode number for each directory
and the associated files. Once such a mapping exists, it can use this inode
number to identify just what operation is required when a user tries to read
from a particular file inode or to perform a lookup in a particular directory
inode. When data are read from one of these files, the /proc file system will
collect the appropriate information, format it into textual form, and place it
into the requesting process's read buffer.

The mapping from inode number to information type splits the inode
number into two fields. In Linux, a PID is 16 bits wide, but an inode number is
32 bits. The top 16 bits of the inode number are interpreted as a PID, and the
remaining bits define what type of information is being requested about that
process.

A PID of zero is not valid, so a zero PID field in the inode number is
taken to mean that this inode contains global—rather than process-specific—
information. Separate global files exist in /proc to report information such as
the kernel version, free memory, performance statistics, and drivers currently
running.

Not all the inode numbers in this range are reserved. The kernel can allocate
new /proc inode mappings dynamically, maintaining a bitmap of allocated
inode numbers. It also maintains a tree data structure of registered global /proc
file-system entries. Each entry contains the file's inode number, file name, and
access permissions, along with the special functions used to generate the file's
contents. Drivers can register and Reregister entries in this tree at any time,
and a special section of the tree—appearing under the /proc/sys directory—
is reserved for kernel variables. Files under this tree are dealt with by a set
of common handlers that allow both reading and writing of these variables,
so a system administrator can tune the value of kernel parameters simply by
writing the new desired values out in ASCII decimal to the appropriate file.

To allow efficient access to these variables from within applications, the
/proc/sys subtree is made available through a special system call, s y s c t l O ,
that reads and writes the same variables in binary, rather than in text, without
the overhead of the file system, sysc t l () is not an extra facility; it simply reads
the /proc dynamic entry tree to decide to which variables the application is
referring.

21.8 Input and Output

To the user, the I/O system in Linux looks much like that in any UNIX system.
That is, to the extent possible, all device drivers appear as normal files. A
user can open an access channel to a device in the same way she opens any



21.8 Input and Output

user application

771

i

file system j . b!ock..,
| device file

I/O scheduler

block 1 SCSI manager

device [ S C S | deVice
d n v e r driver

character
device file

1.;:;,.:;,..;;; i,I;;.;;

ji. ,;;..;;; ; ; , . : ; ; . ; : , I;

l : ::: : : ::: :: : ::

character
device
driver

network
socket

;ij protocol
•j driver

network
device
driver

Figure 21.10 Device-driver block structure.

other file—devices can appear as objects within the file system. The system
administrator can create special files within a file system that contain references
to a specific device driver, and a user opening such a file will be able to read
from and write to the device referenced. By using the normal file-protection
system, which determines who can access which file, the administrator can set
access permissions for each device.

Linux splits all devices into three classes: block devices, character devices,
and network devices. Figure 21.10 illustrates the overall structure of the
device-driver system.

Block devices include all devices that allow random access to completely
independent, fixed-sized blocks of data, including hard disks and floppy disks,
CD-ROMs, and flash memory. Block devices are typically used to store file
systems, but direct access to a block device is also allowed so that programs
can create and repair the file system that the device contains. Applications can
also access these block devices directly if they wish; for example, a database
application may prefer to perform its own, fine-tuned laying out of data onto
the disk, rather than using the general-purpose file system.

Character devices include most other devices, such as mice and keyboards.
The fundamental difference between block and character devices is random
access—block devices may be accessed randomly, while character devices are
only accessed serially. For example, seeking to a certain position in a file might
be supported for a DVD but makes no sense to a pointing device such as a
mouse.

Network devices are dealt with differently from block and character
devices. Users cannot directly transfer data to network devices; instead,
they must communicate indirectly by opening a connection to the kernel's
networking subsystem. We discuss the interface to network devices separately
in Section 21.10.

21.8.1 Block Devices

Block devices provide the main interface to all disk devices in a system.
Performance is particularly important for disks, and the block-device system
must provide functionality to ensure that disk access is as fast as possible. This
functionality is achieved through the scheduling of I/O operations.
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In the context of block devices, a block represents the unit with which the
kernel performs I/O. When a block is read into memory, it is stored in a buffer.
The request manager is the layer of software that manages the reading and
writing of buffer contents to and from a block-device driver.

A separate list of requests is kept for each block-device driver. Traditionally,
these requests have been scheduled according to a unidirectional-elevator
(C-SCAN) algorithm that exploits the order in which requests are inserted in
and removed from the per-device lists. The request lists are maintained in
sorted order of increasing starting-sector number. When a request is accepted
for processing by a block-device driver, it is not removed from the list. It is
removed only after the I/O is complete, at which point the driver continues
with the next request in the list, even if new requests have been inserted into
the list before the active request. As new I/O requests are made, the request
manager attempts to merge requests in the per-device lists.

The scheduling of I/O operations changed somewhat with version 2.6 of
the kernel. The fundamental problem with the elevator algorithm is that I/O
operations concentrated in a specific region of the disk can result in starvation
of requests that need to occur in other regions of the disk. The deadline
I/O scheduler used in version 2.6 works similarly to the elevator algorithm
except that it also associates a deadline with each request, thus addressing
the starvation issue. By default, the deadline for read requests is 0.5 second
and that for write requests is 5 seconds. The deadline scheduler maintains a
sorted queue of pending I/O operations sorted by sector number. However,
it also maintains two other queues—a read queue for read operations and a
write queue for write operations. These two queues are ordered according to
deadline. Every I/O request is placed in both the sorted queue and either the
read or the write queue, as appropriate. Ordinarily, I/O operations occur from
the sorted queue. However, if a deadline expires for a request in either the read
or the write queue, I/O operations are scheduled from the queue containing the
expired request. This policy ensures that an I/O operation will wait no longer
than its expiration time.

21.8.2 Character Devices

A character-device driver can be almost any device driver that does not offer
random access to fixed blocks of data. Any character-device drivers registered
to the Linux kernel must also register a set of functions that implement the
file I/O operations that the driver can handle. The kernel performs almost no
preprocessing of a file read or write request to a character device; it simply
passes the request to the device in question and lets the device deal with the
request.

The main exception to this rule is the special subset of character-device
drivers that implement terminal devices. The kernel maintains a standard
interface to these drivers by means of a set of t ty_s t ruc t structures. Each of
these structures provides buffering and flow control on the data stream from
the terminal device and feeds those data to a line discipline.

A line discipline is an interpreter for the information from the terminal
device. The most common line discipline is the t t y discipline, which glues the
terminal's data stream onto the standard input and output streams of a user's
running processes, allowing those processes to communicate directly with the
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user's terminal. This job is complicated by the fact that several such processes
may be running simultaneously, and the t t y line discipline is responsible for
attaching and detaching the terminal's input and output from the various
processes connected to it as those processes are suspended or awakened by the
user.

Other line disciplines also are implemented that have nothing to do with
I/O to a user process. The PPP and SLIP networking protocols are ways of
encoding a networking connection over a terminal device such as a serial
line. These protocols are implemented under Linux as drivers that at one end
appear to the terminal system as line disciplines and at the other end appear
to the networking system as network-device drivers. After one of these line
disciplines has been enabled on a terminal device, any data appearing on that
terminal will be routed directly to the appropriate network-device driver.

21.9 Interprocess Communication

UNIX provides a rich environment for processes to communicate with each
other. Communication may be just a matter of letting another process know
that some event has occurred, or it may involve transferring data from one
process to another.

21.9.1 Synchronization and Signals

The standard UNIX mechanism for informing a process that an event has
occurred is the signal. Signals canbe sent from any process to any other process,
with restrictions on signals sent to processes owned by another user. However,
a limited number of signals are available, and they cannot carry information:
Only the fact that a signal occurred is available to a process. Signals are not
generated only by processes. The kernel also generates signals internally; for
example, it can send a signal to a server process when data arrive on a network
channel, to a parent process when a child terminates, or to a waiting process
when a timer expires.

Internally, the Linux kernel does not use signals to communicate with
processes running in kernel mode. If a kernel-mode process is expecting an
event to occur, it will not normally use signals to receive notification of that
event. Rather, communication about incoming asynchronous events within
the kernel is performed through the use of scheduling states and wait^queue
structures. These mechanisms allow kernel-mode processes to inform one
another about relevant events, and they also allow events to be generated
by device drivers or by the networking system. Whenever a process wants to
wait for some event to complete, it places itself on a wait queue associated with
that event and tells the scheduler that it is no longer eligible for execution. Once
the event has completed, it will wake up every process on the wait queue. This
procedure allows multiple processes to wait for a single event. For example,
if several processes are trying to read a file from a disk, then they will all be
awakened once the data have been read into memory successfully.

Although signals have always been the main mechanism for commu-
nicating asynchronous events among processes, Linux also implements the
semaphore mechanism of System V UNIX. A process can wait on a semaphore
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as easily as it can wait for a signal, but semaphores have two advantages: Large
numbers of semaphores can be shared among multiple independent processes,
and operations on multiple semaphores can be performed atomically. Inter-
nally, the standard Linux wait queue mechanism synchronizes processes that
are communicating with semaphores.

21.9.2 Passing of Data Among Processes

Linux offers several mechanisms for passing data among processes. The stan-
dard UNIX pipe mechanism allows a child process to inherit a communication
channel from its parent; data written to one end of the pipe can be read at the
other. Under Linux, pipes appear as just another type of inode to virtual-file-
system software, and each pipe has a pair of wait queues to synchronize the
reader and writer. UNIX also defines a set of networking facilities that can send
streams of data to both local and remote processes. Networking is covered in
Section 21.10.

Two other methods of sharing data among processes are available. First,
shared memory offers an extremely fast way to communicate large or small
amounts of data; any data written by one process to a shared memory region
can be read immediately by any other process that has mapped that region into
its address space. The main disadvantage of shared memory is that, on its own,
it offers no synchronization: A process can neither ask the operating system
whether a piece of shared memory has been written to nor suspend execution
until such a write occurs. Shared memory becomes particularly powerful when
used in conjunction with another interprocess-communication mechanism that
provides the missing synchronization.

A shared-memory region in Linux is a persistent object that can be created
or deleted by processes. Such an object is treated as though it were a small
independent address space. The Linux paging algorithms can elect to page
out to disk shared-memory pages, just as they can page out a process's data
pages. The shared-memory object acts as a backing store for shared-memory
regions, just as a file can act as a backing store for a memory-mapped memory
region. When a file is mapped into a virtual-address-space region, then any
page faults that occur cause the appropriate page of the file to be mapped into
virtual memory. Similarly, shared-memory mappings direct page faults to map
in pages from a persistent shared-memory object. Also just as for files, shared-
memory objects remember their contents even if no processes are currently
mapping them into virtual memory.

21.10 Network Structure

Networking is a key area of functionality for Linux. Not only does Linux
support the standard Internet protocols used for most UNIX-to-UNIX com-
munications, but it also implements a number of protocols native to other,
non-UNIX operating systems. In particular, since Linux was originally imple-
mented primarily on PCs, rather than on large workstations or on server-class
systems, it supports many of the protocols typically used on PC networks, such
as AppleTalk and IPX.
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Internally, networking in the Linux kernel is implemented by three layers
of software:

1. The socket interface

2. Protocol drivers

3. Network-device drivers

User applications perform all networking requests through the socket
interface. This interface is designed to look like the 4.3 BSD socket layer, so
that any programs designed to make use of Berkeley sockets will run on Linux
without any source-code changes. This interface is described in Section A.9.1.
The BSD socket interface is sufficiently general to represent network addresses
for a wide range of networking protocols. This single interface is used in Linux
to access not just those protocols implemented on standard BSD systems but all
the protocols supported by the system.

The next layer of software is the protocol stack, which is similar in
organization to BSD's own framework. Whenever any networking data arrive at
this layer, either from an application's socket or from a network-device driver,
the data are expected to have been tagged with an identifier specifying which
network protocol they contain. Protocols can communicate with one another
if they desire; for example, within the Internet protocol set, separate protocols
manage routing, error reporting, and reliable retransmission of lost data.

The protocol layer may rewrite packets, create new packets, split or
reassemble packets into fragments, or simply discard incoming data. Ulti-
mately, once it has finished processing a set of packets, it passes them on, up to
the socket interface if the data are destined for a local connection or downward
to a device driver if the packet needs to be transmitted remotely. The protocol
layer decides to which socket or device to send the packet.

All communication between the layers of the networking stack is per-
formed by passing single skbuff structures. An skbuff contains a set of
pointers into a single continuous area of memory, representing a buffer inside
which network packets can be constructed. The valid data in an skbuff do not
need to start at the beginning of the skbuf f's buffer, and they do not need to
run to the end. The networking code can add data to or trim data from either
end of the packet, as long as the result still fits into the skbuff. This capacity
is especially important on modern microprocessors, where improvements in
CPU speed have far outstripped the performance of main memory. The skbuff
architecture allows flexibility in manipulating packet headers and checksums
while avoiding any unnecessary data copying.

The most important set of protocols in the Linux networking system is the
TCP/IP protocol suite. This suite comprises a number of separate protocols.
The IP protocol implements routing between different hosts anywhere on the
network. On top of the routing protocol are built the UDP, TCP, and ICMP
protocols. The UDP protocol carries arbitrary individual datagrams between
hosts. The TCP protocol implements reliable connections between hosts with
guaranteed in-order delivery of packets and automatic retransmission of lost
data. The ICMP protocol is used to carry various error and status messages
between hosts.
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Packets (skbuf f s) arriving at the networking stack's protocol software are
expected to be already tagged with an internal identifier indicating to which
protocol the packet is relevant. Different networking-device drivers encode
the protocol type in different ways over their communications media; thus, the
protocol for incoming data must be identified in the device driver. The device
driver uses a hash table of known networking-protocol identifiers to look up
the appropriate protocol and passes the packet to that protocol. New protocols
can be added to the hash table as kernel-loadable modules.

Incoming IP packets are delivered to the IP driver. The job of this layer is
to perform routing. After deciding where the packet is destined, it forwards
the packet to the appropriate internal protocol driver to be delivered locally or
injects it back into a selected network-device-driver queue to be forwarded to
another host. It performs the routing decision using two tables: the persistent
forwarding information base (FIB) and a cache of recent routing decisions.
The FIB holds routing-configuration information and can specify routes based
either on a specific destination address or on a wildcard representing multiple
destinations. The FIB is organized as a set of hash tables indexed by destination
address; the tables representing the most specific routes are always searched
first. Successful lookups from this table are added to the route-caching table,
which caches routes only by specific destination; no wildcards are stored in
the cache, so lookups can be made quickly. An entry in the route cache expires
after a fixed period with no hits.

At various stages, the IP software passes packets to a separate section
of code for firewall management—selective filtering of packets according
to arbitrary criteria, usually for security purposes. The firewall manager
maintains a number of separate firewall chains and allows an skbuf f to be
matched against any chain. Chains are reserved for separate purposes: One is
used for forwarded packets, one for packets being input to this host, and one
for data generated at this host. Each chain is held as an ordered list of rules,
where a rule specifies one of a number of possible firewall-decision functions
plus some arbitrary data to match against.

Two other functions performed by the IP driver are disassembly and
reassembly of large packets. If an outgoing packet is too large to be queued to
a device, it is simply split up into smaller fragments, which are all queued to
the driver. At the receiving host, these fragments must be reassembled. The IP
driver maintains an ipf rag object for each fragment awaiting reassembly and
an ipq for each datagram being assembled. Incoming fragments are matched
against each known ipq. If a match is found, the fragment is added to it;
otherwise, a new ipq is created. Once the final fragment has arrived for a
ipq, a completely new skbuf f is constructed to hold the new packet, and this
packet is passed back into the IP driver.

Packets identified by the IP as destined for this host are passed on to one
of the other protocol drivers. The UDP and TCP protocols share a means of
associating packets with source and destination sockets: Each connected pair
of sockets is uniquely identified by its source and destination addresses and
by the source and destination port numbers. The socket lists are linked onto
hash tables keyed on these four address-port values for socket lookup on
incoming packets. The TCP protocol has to deal with unreliable connections, so
it maintains ordered lists of unacknowledged outgoing packets to retransmit
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after a timeout and of incoming out-of-order packets to be presented #to the
socket when the missing data have arrived.

21.11 Security

Linux's security model is closely related to typical UNIX security mechanisms.
The security concerns can be classified in two groups:

1. Authentication. Making sure that nobody can access the system without
first proving that she has entry rights

2. Access control. Providing a mechanism for checking whether a user has
the right to access a certain object and preventing access to objects as
required

21.11.1 Authentication

Authentication in UNIX has typically been performed through the use of a
publicly readable password file. A user's password is combined with a random
"salt" value, and the result is encoded with a one-way transformation function
and stored in the password file. The use of the one-way function means that
the original password cannot be deduced from the password file except by
trial and error. When a user presents a password to the system, the password is
recombined with the salt value stored in the password file and passed through
the same one-way transformation. If the result matches the contents of the
password file, then the password is accepted.

Historically, UNIX implementations of this mechanism have had several
problems. Passwords were often limited to eight characters, and the number
of possible salt values was so low that an attacker could easily combine a
dictionary of commonly used passwords with every possible salt value and
have a good chance of matching one or more passwords in the password
file, gaining unauthorized access to any accounts compromised as a result.
Extensions to the password mechanism have been introduced that keep the
encrypted password secret in a file that is not publicly readable, that allow
longer passwords, or that use more secure methods of encoding the password.
Other authentication mechanisms have been introduced that limit the times
during which a user is permitted to connect to the system or to distribute
authentication information to all the related systems in a network.

A new security mechanism has been developed by UNIX vendors to
address authentication problems. The pluggable authentication modules
(PAM) system is based on a shared library that can be used by any system
component that needs to authenticate users. An implementation of this system
is available under Linux. PAM allows authentication modules to be loaded on
demand as specified in a system-wide configuration file. If a new authentication
mechanism is added at a later date, it can be added to the configuration file,
and all system components will immediately be able to take advantage of it.
PAM modules can specify authentication methods, account restrictions, session-
setup functions, and password-changing functions (so that, when users change
their passwords, all the necessary authentication mechanisms can be updated
at once).
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21.11.2 Access Control

Access control under UNIX systems, including Linux, is performed through the
use of unique numeric identifiers. A user identifier (uid) identifies a single user
or a single set of access rights. A group identifier (gid) is an extra identifier that
can be used to identify rights belonging to more than one user.

Access control is applied to various objects in the system. Every file
available in the system is protected by the standard access-control mecha-
nism. In addition, other shared objects, such as shared-memory sections and
semaphores, employ the same access system.

Every object in a UNIX system under user and group access control has a
single uid and a single gid associated with it. User processes also have a single
uid, but they may have more than one gid. If a process's uid matches the uid
of an object, then the process has user rights or owner rights to that object.
If the uids do not match but any of the process's gids match the object's gid,
then group rights are conferred; otherwise, the process has world rights to the
object.

Linux performs access control by assigning objects a protection mask that
specifies which access modes—read, write, or execute—are to be granted to
processes with owner, group, or world access. Thus, the owner of an object
might have full read, write, and execute access to a file; other users in a certain
group might be given read access but denied write access; and everybody else
might be given no access at all.

The only exception is the privileged root uid. A process with this special uid
is granted automatic access to any object in the system, bypassing normal access
checks. Such processes are also granted permission to perform privileged
operations, such as reading any physical memory or opening reserved network
sockets. This mechanism allows the kernel to prevent normal users from
accessing these resources: Most of the kernel's key internal resources are
implicitly owned by the root uid.

Linux implements the standard UNIX se tu id mechanism described in
Section A.3.2. This mechanism allows a program to run with privileges different
from those of the user running the program. For example, the lp r program
(which submits a job onto a print queue) has access to the system's print queues
even if the user running that program does not. The UNIX implementation of
se tu id distinguishes between a process's real and effective uid: The real uid is
that of the user running the program; the effective uid is that of the file's owner.

Under Linux, this mechanism is augmented in two ways. First, Linux
implements the POSIX specification's saved use r - id mechanism, which
allows a process to drop and reacquire its effective uid repeatedly. For security
reasons, a program may want to perform most of its operations in a safe mode,
waiving the privileges granted by its se tu id status, but may wish to perform
selected operations with all its privileges. Standard UNIX implementations
achieve this capacity only by swapping the real and effective uids; the previ-
ous effective uid is remembered, but the program's real uid does not always
correspond to the uid of the user running the program. Saved uids allow a
process to set its effective uid to its real uid and then back to the previous value
of its effective uid without having to modify the real uid at any time.

The second enhancement provided by Linux is the addition of a process
characteristic that grants just a subset of the rights of the effective uid. The
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fsuid and fsgid process properties are used when access rights are granted
to files. The appropriate property is set every time the effective uid or gid is
set. However, the fsuid and fsgid can be set independently of the effective ids,
allowing a process to access files on behalf of another user without taking on
the identity of that other user in any other way. Specifically, server processes
can use this mechanism to serve files to a certain user without the process
becoming vulnerable to being killed or suspended by that user.

Finally, Linux provides a mechanism for flexible passing of rights from
one program to another—a mechanism that has become common in modern
versions of UNIX. When a local network socket has been set up between any
two processes on the system, either of those processes may send to the other
process a file descriptor for one of its open files; the other process receives a
duplicate file descriptor for the same file. This mechanism allows a client to
pass access to a single file selectively to some server process without granting
that process any other privileges. For example, it is no longer necessary for a
print server to be able to read all the files of a user who submits a new print
job; the print client could simply pass the server file descriptors for any files to
be printed, denying the server access to any of the user's other files.

21.12 Summary

Linux is a modern, free operating system based on UNIX standards. It has been
designed to run efficiently and reliably on common PC hardware; it also runs
on a variety of other platforms. It provides a programming interface and user
interface compatible with standard UNIX systems and can run a large number of
UNIX applications, including an increasing number of commercially supported
applications.

Linux has not evolved in a vacuum. A complete Linux system includes
many components that were developed independently of Linux. The core
Linux operating-system kernel is entirely original, but it allows much existing
free UNIX software to run, resulting in an entire UNIX-compatible operating
system free from proprietary code.

The Linux kernel is implemented as a traditional monolithic kernel for
performance reasons, but it is modular enough in design to allow most drivers
to be dynamically loaded and unloaded at run time.

Linux is a multiuser system, providing protection between processes and
running multiple processes according to a time-sharing scheduler. Newly
created processes can share selective parts of their execution environment
with their parent processes, allowing multithreaded programming. Interpro-
cess communication is supported by both System V mechanisms—message
queues, semaphores, and shared memory—and BSD's socket interface. Multi-
ple networking protocols can be accessed simultaneously through the socket
interface.

To the user, the file system appears as a hierarchical directory tree that obeys
UNIX semantics. Internally, Linux uses an abstraction layer to manage multiple
different file systems. Device-oriented, networked, and virtual file systems are
supported. Device-oriented file systems access disk storage through a page
cache that is unified with the virtual memory system.
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The memory-management system uses page sharing and copy-on^write
to minimize the duplication of data shared by different processes. Pages are
loaded on demand when they are first referenced and are paged back out to
backing store according to an LFU algorithm if physical memory needs to be
reclaimed.

Exercises

21.1 What are the advantages and disadvantages of writing an operating
system in a high-level language, such as C?

21.2 In what circumstances is the system-call sequence f ork () exec () most
appropriate? When is vforkO preferable?

21.3 What socket type should be used to implement an intercomputer
file-transfer program? What type should be used for a program that
periodically tests to see whether another computer is up on the
netwrork? Explain your answer.

21.4 Linux runs on a variety of hardware platforms. What steps must the
Linux developers take to ensure that the system is portable to different
processors and memory-management architectures, and to minimize
the amount of architecture-specific kernel code?

21.5 What are the advantages and disadvantages of making only some of the
symbols defined inside a kernel accessible to a loadable kernel module?

21.6 What are the primary goals of the conflict-resolution mechanism used
by the Linux kernel for loading kernel modules?

21.7 Discuss how the clone() operation supported by Linux is used to
support both processes and threads.

21.8 Would one classify Linux threads as user-level threads or as kernel-level
threads? Support your answer with the appropriate arguments.

21.9 What extra costs are incurred by the creation and scheduling of a
process, compared with the cost of a cloned thread?

21.10 The Linux scheduler implements soft real-time scheduling. What fea-
tures necessary for certain real-time programming tasks are missing?
How might they be added to the kernel?

21.11 Under what circumstances would an user process request an operation
that results in the allocation of a demand-zero memory region?

21.12 What scenarios would cause a page of memory to be mapped into an
user program's address space with the copy-on-write attribute enabled?

21.13 In Linux, shared libraries perform many operations central to the
operating system. What is the advantage of keeping this functionality
out of the kernel? Are there any drawbacks? Explain your answer.

21.14 The directory structure of a Linux operating system could comprise of
files corresponding to different file systems, including the Linux /proc
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file system. What are the implications of having to support different
file-system types on the structure of the Limix kernel?

21.15 In what ways does the Linux setuid feature differ from the setuid feature
in standard Unix?

21.16 The Linux source code is freely and widely available over the Internet or
from CD-ROM vendors. What are three implications of this availability
for the security of the Linux system?
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• Linux-HQ at http:/ /www.linuxhq.com/ hosts a large amount of informa-
tion relating to the Linux 2.x kernels. This site also includes links to the
home pages of most Linux distributions, as well as archives of the major
mailing lists.

• The Linux Documentation Project at http://sunsite.unc.edu/linux/ lists
many books on Linux that are available in source format as part of the Linux
Documentation Project. The project also hosts the Linux How-To guides,
which contain a series of hints and tips relating to aspects of Linux.

• The Kernel Hackers' Guide is an Internet-based guide to kernel
internals in general. This constantly expanding site is located at
http: / / www.redhat.com:8080 /Hyper News / get / khg.html.

• The Kernel Newbies website (http://www.kernelnewbies.org/) provides
a resource for introducing the Linux kernel to newcomers.

Many mailing lists devoted to Linux are also available. The most important
are maintained by a mailing-list manager that can be reached at the e-mail
address maj ordomoOvger. rutgers . edu. Send e-mail to this address with the
single line "help" in the mail's body for information on how to access the list
server and to subscribe to any lists.

Finally, the Linux system itself can be obtained over the Internet. Complete
Linux distributions can be obtained from the home sites of the companies
concerned, and the Linux community also maintains archives of current system
components at several places on the Internet. The most important are these:

• ftp://tsx-ll.mit.edu/pub/linux/

• ftp://sunsite.unc.edu/pub/Linux/

• ftp:// linux .kernel. org / pub / linux /

In addition to investigating Internet resources, you can read about the
internals of the Linux kernel in Bovet and Cesati [2002] and Love [2004].





CHAPTER

Mnc/ows XP

The Microsoft Windows XP operating system is a 32/64-bit preemptive
multitasking operating system for AMD K6/K7, Intel IA32/IA64, and later
microprocessors. The successor to Windows NT and Windows 2000, Windows
XP is also intended to replace the Windows 95/98 operating system. Key
goals for the system are security, reliability, ease of use, Windows and POSIX
application compatibility, high performance, extensibility, portability, and
international support. In this chapter, we discuss the key goals of Windows
XP, the layered architecture of the system that makes it so easy to use, the file
system, the networking features, and the programming interface.

CHAPTER OBJECTIVES

• To explore the principles upon which Windows XP is designed and the
specific components involved in the system.

• To understand how Windows XP can run programs designed for other
operating systems.

• To provide a detailed explanation of the Windows XP file system.

• To illustrate the networking protocols supported in Windows XP.

• To cover the interface available to system and application programmers.

22.1 History

In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating
system, which was written in assembly language for single-processor Intel
80286 systems. In 1988, Microsoft decided to make a fresh start and to develop
a "new technology" (or NT) portable operating system that supported both the
OS/2 and POSIX application-programming interfaces (APIs). In October 1988,
Dave Cutler, the architect of the DEC VAX/VMS operating system, was hired
and given the charter of building this new operating system.

Originally, the team planned for NT to use the OS/2 API as its native
environment, but during development, NT was changed to use the 32-bit
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Windows API (or Win32 API), reflecting the popularity of Windows 3.0. The first
versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced Server.
(At that time, 16-bit Windows was at version 3.1.) Windows NT version 4.0
adopted the Windows 95 user interface and incorporated Internet web-server
and web-browser software. In addition, user-interface routines and all graphics
code were moved into the kernel to improve performance, with the side effect of
decreased system reliability. Although previous versions of NT had been ported
to other microprocessor architectures, the Windows 2000 version, released in
February 2000, discontinued support for other than Intel (and compatible)
processors due to marketplace factors. Windows 2000 incorporated significant
changes over Windows NT. It added Active Directory (an X.500-based directory
service), better networking and laptop support, support for plug-and-play
devices, a distributed file system, and support for more processors and more
memory.

In October 2001, Windows XP was released as both an update to the
Windows 2000 desktop operating system and a replacement for Windows
95/98. In 2002, the server versions of Windows XP became available (called
Windows .Net Server). Windows XP updates the graphical user interface
(GUI) with a visual design that takes advantage of more recent hardware
advances and many new ease-of-use features. Numerous features have been
added to automatically repair problems in applications and the operating
system itself. Windows XP provides better networking and device experience
(including zero-configuration wireless, instant messaging, streaming media,
and digital photography/video), dramatic performance improvements both
for the desktop and large multiprocessors, and better reliability and security
than even Windows 2000.

Windows XP uses a client-server architecture (like Mach) to implement
multiple operating-system personalities, such as Win32 API and POSIX, with
user-level processes called subsystems. The subsystem architecture allows
enhancements to be made to one operating-system personality without affect-
ing the application compatibility of any others.

Windows XP is a multiuser operating system, supporting simultaneous
access through distributed services or through multiple instances of the
graphical user interface via the Windows terminal server. The server versions
of Windows XP support simultaneous terminal server sessions from Windows
desktop systems. The desktop versions of terminal server multiplex the
keyboard, mouse, and monitor between virtual terminal sessions for each
logged-on user. This feature, called fast user switching, allows users to preempt
each other at the console of a PC without having to log off and onto the system.

Windows XP is the first version of Windows to ship a 64-bit version. The
native NT file system (NTPS) and many of the Win32 APIs have always used 64-
bit integers where appropriate—so the major extension to 64-bit in Windows
XP is support for large addresses.

There are two desktop versions of Windows XP. Windows XP Professional is
the premium desktop system for power users at work and at home. For home
users migrating from Windows 95/98, Window's XP Personal provides the
reliability and ease of use of Windows XP, but lacks the more advanced features
needed to work seamlessly with Active Directory or rim POSIX applications.

The members of the Windows .Net Server family use the same core
components as the desktop versions but add a range of features needed for



22.2 Design Principles 785

uses such as webserver farms, print/file servers, clustered systems, and, large
datacenter machines. The large datacenter machines can have up to 64 GB of
memory and 32 processors on IA32 systems and 128 GB and 64 processors on
IA64 systems.

22.2 Design Principles

Microsoft's design goals for Windows XP include security, reliability, Win-
dows and POSIX application compatibility, high performance, extensibility,
portability, and international support.

22.2.1 Security

Windows XP security goals required more than just adherence to the design
standards that enabled Windows NT 4.0 to receive a C-2 security classification
from the U.S. government (which signifies a moderate level of protection from
defective software and malicious attacks). Extensive code review and testing
were combined with sophisticated automatic analysis tools to identify and
investigate potential defects that might represent security vulnerabilities.

22.2.2 Reliability

Windows 2000 was the most reliable, stable operating system Microsoft had
ever shipped to that point. Much of this reliability came from maturity in the
source code, extensive stress testing of the system, and automatic detection
of many serious errors in drivers. The reliability requirements for Windows
XP were even more stringent. Microsoft used extensive manual and automatic
code review to identify over 63,000 lines in the source files that might contain
issues not detected by testing and then set about reviewing each area to verify
that the code was indeed correct.

Windows XP extends driver verification to catch more subtle bugs,
improves the facilities for catching programming errors in user-level code,
and subjects third-party applications, drivers, and devices to a rigorous certi-
fication process. Furthermore, Windows XP adds new facilities for monitoring
the health of the PC, including downloading fixes for problems before they
are encountered by users. The perceived reliability of Windows XP was also
improved by making the graphical user interface easier to use through better
visual design, simpler menus, and measured improvements in the ease with
which users can discover how to perform common tasks.

22.2.3 Windows and POSIX Application Compatibility

Windows XP is not only an update of Windows 2000; it is a replacement
for Windows 95/98. Windows 2000 focused primarily on compatibility for
business applications. The requirements for Windows XP include a much
higher compatibility with consumer applications that run on Windows 95/98.
Application compatibility is difficult to achieve because each application
checks for a particular version of Windows, may have some dependence on the
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quirks of the implementation of APIs, may have latent application bugs that
were masked in the previous system, and so forth.

Windows XP introduces a compatibility layer that falls between appli-
cations and the Win32 APIs. This layer makes Windows XP look (almost)
bug-for-bug compatible with previous versions of Windows. Windows XP,
like earlier NT releases, maintains support for running many 16-bit applica-
tions using a thunking, or conversion, layer that translates 16-bit API calls into
equivalent 32-bit calls. Similarly, the 64-bit version of Windows XP provides
a thunking layer that translates 32-bit API calls into native 64-bit calls. POSIX
support in Windows XP is much improved. A new POSIX subsystem called
Interix is now available. Most available UNIX-compatible software compiles
and runs under Interix without modification.

22.2.4 High Performance

Windows XP is designed to provide high performance on desktop systems
(which are largely constrained by I/O performance), server systems (where
the CPU is often the bottleneck), and large multithreaded and multiprocessor
environments (where locking and cache-line management are key to scalabil-
ity). High performance has been an increasingly important goal for Windows
XP. Windows 2000 with SQL 2000 on Compaq hardware achieved top TPC-C
numbers at the time it shipped.

To satisfy performance requirements, NT uses a variety of techniques, such
as asynchronous I/O, optimized protocols for networks (for example, optimistic
locking of distributed data, batching of requests), kernel-based graphics,
and sophisticated caching of file-system data. The memory-management and
synchronization algorithms are designed with an awareness of the performance
considerations related to cache lines and multiprocessors.

Windows XP has further improved performance by reducing the code-path
length in critical functions, using better algorithms and per-processor data
structures, using memory coloring for NUMA (non-uniform memory access)
machines, and implementing more scalable locking protocols, such as queued
spinlocks. The new locking protocols help reduce system bus cycles and include
lock-free lists and queues, use of atomic read-modify-write operations (like
interlocked increment), and other advanced locking techniques.

The subsystems that constitute Windows XP communicate with one
another efficiently by a local procedure call (LPC) facility that provides high-
performance message passing. Except while executing in the kernel dispatcher,
threads in the subsystems of Windows XP can be preempted by higher-priority
threads. Thus, the system responds quickly to external events. In addition,
Windows XP is designed for symmetrical multiprocessing; on a multiprocessor
computer, several threads can run at the same time.

22.2.5 Extensibility

Extensibility refers to the capacity of an operating system to keep up with
advances in computing technology. So that changes over time are facilitated,
the developers implemented Windows XP using a layered architecture. The
Windows XP executive runs in kernel or protected mode and provides the basic
system services. On top of the executive, several server subsystems operate
in user mode. Among them are environmental subsystems that emulate
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different operating systems. Thus, programs written for MS-DOS, Microsoft
Windows, and POSIX all run on Windows XP in the appropriate environment.
(See Section 22.4 for more information on environmental subsystems.) Because
of the modular structure, additional environmental subsystems can be added
without affecting the executive. In addition, Windows XP uses loadable drivers
in the I/O system, so new file systems, new kinds of I/O devices, and new kinds
of networking can be added while the system is running. Windows XP uses a
client-server model like the Mach operating system and supports distributed
processing by remote procedure calls (RPCs) as defined by the Open Software
Foundation.

22.2.6 Portability

An operating system is portable if it can be moved from one hardware
architecture to another with relatively few changes. Windows XP is designed
to be portable. As is true of the UNIX operating system, the majority of the
system is written in C and C++. Most processor-dependent code is isolated
in a dynamic link library (DLL) called the hardware-abstraction layer (HAL).
A DLL is a file that is mapped into a process's address space such that any
functions in the DLL appear to be part of the process. The upper layers of the
Windows XP kernel depend on the HAL interfaces rather than on the underlying
hardware, bolstering Windows XP portability. The HAL manipulates hardware
directly, isolating the rest of Windows XP from hardware differences among
the platforms on which it runs.

Although for market reasons Windows 2000 shipped only on Intel IA32-
compatible platforms, it was also tested on IA32 and DEC Alpha platforms until
just prior to release to ensure portability. Windows XP runs on IA32-compatible
and IA64 processors. Microsoft recognizes the importance of multiplatform
development and testing, since, as a practical matter, maintaining portability
is a matter of use it or lose it.

22.2.7 International Support

Windows XP is also designed for international and multinational use. It pro-
vides support for different locales via the national-language-support (NLS)
API. The NLS API provides specialized routines to format dates, time, and
money in accordance with various national customs. String comparisons are
specialized to account for varying character sets. UNICODE is Windows XP's
native character code. Windows XP supports ANSI characters by converting
them to UNICODE characters before manipulating them (8-bit to 16-bit con-
version). System text strings are kept in resource files that can be replaced
to localize the system for different languages. Multiple locales can be used
concurrently, which is important to multilingual individuals and businesses.

22.3 System Components

The architecture of Windows XP is a layered system of modules, as shown in
Figure 22.1. The main layers are the HAL, the kernel, and the executive, all
of which run in protected mode, and a collection of subsystems and services
that run in user mode. The user-mode subsystems fall into two categories:
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Figure 22.1 Windows XP block diagram.

the environmental subsystems, which emulate different operating systems,
and the protection subsystems, which provide security functions. One of
the chief advantages of this type of architecture is that interactions between
modules are kept simple. The remainder of this section describes these layers
and subsystems.

22.3.1 Hardware-Abstraction Layer

The HAL is the layer of software that hides hardware differences from upper
levels of the operating system, to help make Windows XP portable. The HAL
exports a virtual machine interface that is used by the kernel dispatcher, the
executive, and the device drivers. One advantage of this approach is that only
a single version of each device driver is required—it runs on all hardware
platforms without porting the driver code. The HAL also provides support
for symmetric multiprocessing. Device drivers map devices and access them
directly, but the administrative details of mapping memory, configuring I/O
buses, setting up DMA, and coping with motherboard-specific facilities are all
provided by the HAL interfaces.

22.3.2 Kernel

The kernel of Windows XP provides the foundation for the executive and
the subsystems. The kernel remains in memory, and its execution is never
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preempted. It has four main responsibilities: thread scheduling, interrupt and
exception handling, low-level processor synchronization, and recovery after a
power failure.

The kernel is object oriented. An object type in Windows 2000 is a system-
defined data type that has a set of attributes (data values) and a set of methods
(for example, functions or operations). An object is an instance of an object type.
The kernel performs its job by using a set of kernel objects whose attributes
store the kernel data and whose methods perform the kernel activities.

22.3.2.1 Kernel Dispatcher

The kernel dispatcher provides the foundation for the executive and the sub-
systems. Most of the dispatcher is never paged out of memory, and its execution
is never preempted. Its main responsibilities are thread scheduling, implemen-
tation of synchronization primitives, timer management, software interrupts
(asynchronous and deferred procedure calls), and exception dispatching.

22.3.2.2 Threads and Scheduling

Like many other modern operating systems, Windows XP uses processes and
threads for executable code. The process has a virtual memory address space
and information used to initialize each thread, such as a base priority and
an affinity for either one or more processors. Each process has one or more
threads, each of which is an executable unit dispatched by the kernel. Each
thread has its own scheduling state, including actual priority, processor affinity,
and CPU-usage information.

The six possible thread states are ready, standby, running, waiting, tran-
sition, and terminated. Ready indicates that the thread is waiting to run. The
highest-priority ready thread is moved to the standby state, which means
it is the next thread to run. In a multiprocessor system, each process keeps
one thread in a standby state. A thread is running when it is executing on
a processor. It runs until it is preempted by a higher-priority thread, until it
terminates, until its allotted exectition time (quantum) ends, or until it blocks
on a dispatcher object, such as an event signaling I/O completion. A thread is
in the waiting state when it is waiting for a dispatcher object to be signaled. A
new thread is in the transition state while it waits for resources necessary for
execution. A thread enters the terminated state when it finishes execution.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes: variable class and
real-time class. The variable class contains threads having priorities from 0 to
15, and the real-time class contains threads with priorities ranging from 16
to 31. The dispatcher uses a queue for each scheduling priority and traverses
the set of queues from highest to lowest until it finds a thread that is ready
to run. If a thread has a particular processor affinity but that processor is not
available, the dispatcher skips past it and continues looking for a ready thread
that is willing to run on the available processor. If no ready thread is found,
the dispatcher executes a special thread called the idle thread.

When a thread's time quantum runs out, the clock interrupt queues a
quantum-end deferred procedure call (DPC) to the processor in order to
reschedule the processor. If the preempted thread is in the variable-priority
class, its priority is lowered. The priority is never lowered below the base
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priority. Lowering the thread's priority tends to limit the CPU consumption of
compute-bound threads. When a variable-priority thread is released from a
wait operation, the dispatcher boosts the priority. The amount of the boost
depends on the device for which the thread was waiting; for example, a
thread waiting for keyboard I/O would get a large priority increase, whereas
a thread waiting for a disk operation would get a moderate one. This strategy
tends to give good response times to interactive threads using a mouse and
windows. It also enables I/O-bound threads to keep the I/O devices busy while
permitting compute-bound threads to use spare CPU cycles in the background.
This strategy is used by several time-sharing operating systems, including
UNIX. In addition, the thread associated with the user's active GUI window
receives a priority boost to enhance its response time.

Scheduling occurs when a thread enters the ready or wait state, when
a thread terminates, or when an application changes a thread's priority or
processor affinity If a higher-priority real-time thread becomes ready while
a lower-priority thread is running, the lower-priority thread is preempted.
This preemption gives a real-time thread preferential access to the CPU when
the thread needs such access. Windows XP is not a hard real-time operating
system, however, because it does not guarantee that a real-time thread will
start to execute within a particular time limit.

22.3.2.3 Implementation of Synchronization Primitives

Key operating-system data structures are managed as objects using common
facilities for allocation, reference counting, and security. Dispatcher objects
control dispatching and synchronization in the system. Examples of these
objects are events, mutants, mutexes, semaphores, processes, threads, and
timers. The event object is used to record an event occurrence and to
synchronize the latter with some action. Notification events signal all waiting
threads, and synchronization events signal a single waiting thread. The mutant
provides kernel-mode or user-mode mutual exclusion with the notion of
ownership. The mutex, available only in kernel mode, provides deadlock-free
mutual exclusion. A semaphore object acts as a counter or gate to control the
number of threads that access a resource. The thread object is the entity that
is scheduled by the kernel dispatcher and is associated with a process object,
which encapsulates a virtual address space. Timer objects are used to keep
track of time and to signal timeouts when operations take too long and need
to be interrupted or when a periodic activity needs to be scheduled.

Many of the dispatcher objects are accessed from user mode via an open
operation that returns a handle. The user-mode code polls and/or waits on
handles to synchronize with other threads as well as the operating system (see
Section 22.7.1).

22.3.2.4 Software Interrupts: Asynchronous and Deferred Procedure Calls

The dispatcher implements two types of software interrupts: asynchronous
procedure calls and deferred procedure calls. Asynchronous procedure calls
(APCs) break into an executing thread and call a procedure. APCs are used to
begin execution of a new thread, terminate processes, and deliver notification
that an asynchronous (I/O) has completed. APCs are queued to specific threads
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and allow the system to execute both system and user code within a process's
context.

Deferred procedure calls (DPCs) are used to postpone interrupt processing.
After handling all blocked device-interrupt processes, the interrupt service
routine (ISR) schedules the remaining processing by queuing a DPC. The
dispatcher schedules software interrupts at a lower priority than the device
interrupts so that DPCs do not block other ISRs. In addition to deferring device-
interrupt processing, the dispatcher uses DPCs to process timer expirations and
to preempt thread execution at the end of the scheduling quantum.

Execution of DPCs prevents threads from being scheduled on the current
processor and also keeps APCs from signaling the completion of I/O. This is
done so that DPC routines do not take an extended amount of time to complete.
As an alternative, the dispatcher maintains a pool of worker threads. ISRs and
DPCs queue work items to the worker threads. DPC routines are restricted so
that they cannot take page faults, call system services, or take any other action
that might possibly result in an attempt to block execution on a dispatcher
object. Unlike APCs, DPC routines make no assumptions about what process
context the processor is executing.

22.3.2.5 Exceptions and Interrupts

The kernel dispatcher also provides trap handling for exceptions and interrupts
generated by hardware or software. Windows XP defines several architecture-
independent exceptions, including:

• Memory-access violation

• Integer overflow

• Floating-point overflow or underflow

• Integer divide by zero

• Floating-point divide by zero

• Illegal instruction

• Data misalignment

• Privileged instruction

• Page-read error

• Access violation

• Paging file quota exceeded

• Debugger breakpoint

• Debugger single step

The trap handlers deal with simple exceptions. Elaborate exception handling
is performed by the kernel's exception dispatcher. The exception dispatcher
creates an exception record containing the reason for the exception and finds
an exception handler to deal with it.

When an exception occurs in kernel mode, the exception dispatcher simply
calls a routine to locate the exception handler. If no handler is found, a fatal
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system error occurs and the user is left with the infamous "blue screen of death"
that signifies system failure.

Exception handling is more complex for user-mode processes, because
an environmental subsystem (such as the POSIX system) sets up a debugger
port and an exception port for every process it creates. If a debugger port
is registered, the exception handler sends the exception to the port. If the
debugger port is not found or does not handle that exception, the dispatcher
attempts to find an appropriate exception handler. If no handler is found, the
debugger is called again to catch the error for debugging. If no debugger
is running, a message is sent to the process's exception port to give the
environmental subsystem a chance to translate the exception. For example,
the POSIX environment translates Windows XP exception messages into POSIX
signals before sending them to the thread that caused the exception. Finally,
if nothing else works, the kernel simply terminates the process containing the
thread that caused the exception.

The interrupt dispatcher in the kernel handles interrupts by calling either
an interrupt service routine (ISR) supplied by a device driver or a kernel
trap-handler routine. The interrupt is represented by an interrupt object that
contains all the information needed to handle the interrupt. Using an interrupt
object makes it easy to associate interrupt-service routines with an interrupt
without having to access the interrupt hardware directly.

Different processor architectures, such as Intel and DEC Alpha, have
different types and numbers of interrupts. For portability, the interrupt
dispatcher maps the hardware interrupts into a standard set. The interrupts
are prioritized and are serviced in priority order. There are 32 interrupt request
levels (IRQLS) in Windows XP. Eight are reserved for use by the kernel; the
remaining 24 represent hardware interrupts via the HAL (although most IA32
systems use only 16). The Windows XP interrupts are defined in Figure 22.2.

The kernel uses an interrupt-dispatch table to bind each interrupt level to
a service routine. In a multiprocessor computer, Windows XP keeps a separate
interrupt-dispatch table for each processor, and each processor's IRQL can be set
independently to mask out interrupts. All interrupts that occur at a level equal
to or less than the IRQL of a processor are blocked until the IRQL is lowered by a
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Figure 22.2 Windows XP interrupt request levels.
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kernel-level thread or by an 1SR returning from interrupt processing. Windows
XP takes advantage of this property and uses software interrupts to deliver
APCs and DPCs, to perform system functions such as synchronizing threads
with I/O completion, to start thread dispatches, and to handle timers.

22.3.3 Executive

The Windows XP executive provides a set of services that all environmental
subsystems use. The services are grouped as follows: object manager, virtual
memory manager, process manager, local procedure call facility, I/O man-
ager, cache manager, security reference monitor, plug-and-play and security
managers, registry, and booting.

22.3.3.1 Object Manager

For managing kernel-mode entities, Windows XP uses a generic set of interfaces
that are manipulated by user-mode programs. Windows XP calls these entities
objects, and the executive component that manipulates them is the object
manager. Each process has an object table containing entries that track the
objects used by the process. User-mode code accesses these objects using an
opaque value called a handle that is returned by many APIs. Object handles can
also be created by duplicating an existing handle, either from the same process
or a different process. Examples of objects are semaphores, mutexes, events,
processes, and threads. These are all dispatcher objects. Threads can block in the
kernel dispatcher waiting for any of these objects to be signaled. The process,
thread, and virtual memory APIs use process and thread handles to identify
the process or thread to be operated on. Other examples of objects include
files, sections, ports, and various internal I/O objects. File objects are vised to
maintain the open state of files and devices. Sections are used to map files. Open
files are described in terms of file objects. Local-communication endpoints are
implemented as port objects.

The object manager maintains the Windows XP internal name space. In
contrast to UNIX, which roots the system name space in the file system,
Windows XP uses an abstract name space and connects the file systems as
devices.

The object manager provides interfaces for defining both object types and
object instances, translating names to objects, maintaining the abstract name
space (through internal directories and symbolic links), and managing object
creation and deletion. Objects are typically managed using reference counts in
protected-mode code and handles in user-mode code. However, some kernel-
mode components use the same APIs as user-mode code and thus use handles
to manipulate objects. If a handle needs to exist beyond the lifetime of the
current process, it is marked as a kernel handle and stored in the object table
for the system process. The abstract name space does not persist across reboots
but is built up from configuration information stored in the system registry,
plug-and-play device discovery, and creation of objects by system components.

The Windows XP executive allows any object to be given a name. One
process may create a named object, while a second process opens a handle to
the object and shares it with the first process. Processes can also share objects
by duplicating handles between processes, in which case the objects need not
be named.
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A name can be either permanent or temporary. A permanent 'name
represents an entity, such as a disk drive, that remains even if no process
is accessing it. A temporary name exists only while a process holds a handle
to the object.

Object names are structured like file path names in MS-DOS and UNIX. Name
space directories are represented by a directory object that contains the names
of all the objects in the directory. The object name space is extended by the
addition of device objects representing volumes containing file systems.

Objects are manipulated by a set of virtual functions with implementa-
tions provided for each object type: c r ea t e ( ) , open(), c lose ( ) , d e l e t e ( ) ,
qiieryjname(),parse(),and secur i ty (). The latter three objects need expla-
nation:

• query_name() is called when a thread has a reference to an object but
wants to know the object's name.

• parse () is used by the object manager to search for an object given the
object's name.

• secur i ty () is called to make security checks on all object operations, such
as when a process opens or closes an object, makes changes to the security
descriptor, or duplicates a handle for an object.

The parse procedure is used to extend the abstract name space to include
files. The translation of a path name to a file object begins at the root of
the abstract name space. Path-name components are separated by whack
characters ('\') rather than the slashes ('/') used in UNIX. Each component
is looked up in the current parse directory of the name space. Internal nodes
within the name space are either directories or symbolic links. If a leaf object
is found and there are no path-name components remaining, the leaf object
is returned. Otherwise, the leaf object's parse procedure is invoked with the
remaining path name.

Parse procedures are only used with a small number of objects belonging
to the Windows GUI, the configuration manager (registry), and—most notably
—device objects representing file systems.

The parse procedure for the device object type allocates a file object and
initiates an open or create I/O operation on the file system. If successful, the
file object fields are filled in to describe the file.

In summary, the path name to a file is used to traverse the object-manager
namespace, translating the original absolute path name into a (device object,
relative path name) pair. This pair is then passed to the file system via the I/O
manager, which fills in the file object. The file object itself has no name but is
referred to by a handle.

UNIX file systems have symbolic links that permit multiple nicknames —
or aliases — for the same file. The symbolic-link object implemented by the
Windows XP object manager is used within the abstract name space, not to
provide files aliases on a file system. Even so, symbolic links are very useful.
They are used to organize the name space, similar to the organization of the
/devices directory in UNIX. They are also used to map standard MS-DOS drive
letters to drive names. Drive letters are symbolic links that can be remapped
to suit the convenience of the user or administrator.
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Drive letters are one place where the abstract name space in Windows XP
is not global. Each logged-on user has his or her own set of drive letters so
that users can avoid interfering with one another. In contrast, terminal server
sessions share all processes within a session. BaseNamedObjects contain the
named objects created by most applications.

Although the name space is not directly visible across a network, the object
manager's parse () method is used to help access a named object on another
system. When a process attempts to open an object that resides on a remote
computer, the object manager calls the parse method for the device object
corresponding to a network redirector. This results in an I/O operation that
accesses the file across the network.

Objects are instances of an object type. The object type specifies how
instances are to be allocated, the definitions of the data fields, and the
implementation of the standard set of virtual functions used for all objects.
These functions implement operations such as mapping names to objects,
closing and deleting, and applying security.

The object manager keeps track of two counts for each object. The pointer
count is the number of distinct references made to an object. Protected-mode
code that refers to objects must keep a reference on the object to ensure that the
object is not deleted while in use. The handle count is the number of handle
table entries referring to an object. Each handle is also reflected in the reference
count.

When a handle for an object is closed, the object's close routine is called. In
the case of file objects, this call causes the I/O manager to do a cleanup operation
at the close of the last handle. The cleanup operation tells the file system that the
file is no longer accessed by user mode so that sharing restrictions, range locks,
and other states specific to the corresponding open routine can be removed.

Each handle close removes a reference from the pointer count, but internal
system components may retain additional references. When the final reference
is removed, the object's delete procedure is called. Again using file objects as an
example, the delete procedure causes the I/O manager to send the file system a
close operation on the file object. This causes the file system to deallocate any
internal data structures that were allocated for the file object.

After the delete procedure for a temporary object completes, the object is
deleted from memory. Objects can be made permanent (at least with respect to
the current boot of the system) by asking the object manager to take an extra
reference against the object. Thus, permanent objects are not deleted even when
the last reference outside the object manager is removed. When a permanent
object is made temporary again, the object manager removes the extra reference.
If this was the last reference, the object is deleted. Permanent objects are rare,
used mostly for devices, drive-letter mappings, and the directory and symbolic
link objects.

The job of the object manager is to supervise the use of all managed objects.
When a thread wants to use an object, it calls the object manager's open()
method to get a reference to the object. If the object is being opened from a
user-mode API, the reference is inserted into the process's object table, and a
handle is returned.

A process gets a handle by creating an object, by opening an existing
object, by receiving a duplicated handle from another process, or by inheriting
a handle from a parent process, similar to the way a UNIX process gets a file
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descriptor. These handles are all stored in the process's object table. An entry
in the object table contains the object's access rights and states whether the
handle should be inherited by child processes. When a process terminates,
Windows XP automatically closes all the process's open handles.

Handles are a standardized interface to all kinds of objects. Like a file
descriptor in UNIX, an object handle is an identifier unique to a process that
confers the ability to access and manipulate a system resource. Handles can
be duplicated within a process or between processes. The latter case is used
when child processes are created and when out-of-process execution contexts
are implemented.

Since the object manager is the only entity that generates object handles,
it is the natural place to check security. The object manager checks whether
a process has the right to access an object when the process tries to open the
object. The object manager also enforces quotas, such as the maximum amount
of memory a process may use, by charging a process for the memory occupied
by all its referenced objects and refusing to allocate more memory when the
accumulated charges exceed the process's quota.

When the login process authenticates a user, an access token is attached to
the user's process. The access token contains information such as the security
ID, group IDs, privileges, primary group, and default access-control list. The
services and objects a user can access are determined by these attributes.

The token that controls access is associated with the thread making the
access. Normally, the thread token is missing and defaults to the process token,
but services often need to execute code on behalf of their client. Windows XP
allows threads to impersonate temporarily by using a client's token. Thus, the
thread token is not necessarily the same as the process token.

In Windows XP, each object is protected by an access-control list that
contains the security IDs and access rights granted. When a thread attempts
to access an object, the system compares the security ID in the thread's access
token with the object's access-control list to determine whether access should
be permitted. The check is performed only when an object is opened, so it is not
possible to deny access after the open occurs. Operating-system components
executing in kernel mode bypass the access check, since kernel-mode code
is assumed to be trusted. Therefore, kernel-mode code must avoid security
vulnerabilities, such as leaving checks disabled while creating a user-mode-
accessible handle in an untrusted process.

Generally, the creator of the object determines the access-control list for
the object. If none is explicitly supplied, one may be set to a default by the
object type's open routine, or a default list may be obtained from the user's
access-token object.

The access token has a field that controls auditing of object accesses.
Operations that are being audited are logged to the system's security log with
an identification of the user. An administrator monitors this log to discover
attempts to break into the system or to access protected objects.

22.3.3.2 Virtual Memory Manager

The executive component that manages the virtual address space, physical
memory allocation, and paging is the virtual memory (VM) manager. The
design of the VM manager assumes that the underlying hardware supports
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virtual-to-physical mapping, a paging mechanism, and transparent ,cache
coherence on multiprocessor systems, as well as allowing multiple page-table
entries to map to the same physical page frame. The VM manager in Windows
XP uses a page-based management scheme with a page size of 4 KB on IA32-
compatible processors and 8 KB on the IA64. Pages of data allocated to a process
that are not in physical memory are either stored in the paging files on disk or
mapped directly to a regular file on a local or remote file system. Pages can also
be marked zero-fill-on-demand, which fills the page with zeros before being
allocated, thus erasing the previous contents.

On IA32 processors, each process has a 4-GB virtual address space. The
upper 2 GB are mostly identical for all processes and are used by Windows XP
in kernel mode to access the operating-system code and data structures. Key
areas of the kernel-mode region that are not identical for all processes are the
page-table self-map, hyperspace, and session space. The hardware references
a process's page tables using physical page-frame numbers. The VM manager
maps the page tables into a single 4-MB region in the process's address space
so they are accessed through virtual addresses. Hyperspace maps the current
process's working-set information into the kernel-mode address space.

Session space is used to share the Win32 and other session-specific drivers
among all the processes in the same terminal-server session rather than all the
processes in the system. The lower 2 GB are specific to each process and are
accessible by both user- and kernel-mode threads. Certain configurations of
Windows XP reserve only 1 GB for operating-system use, allowing a process to
use 3 GB of address space. Running the system in 3-GB mode drastically reduces
the amount of data caching in the kernel. However, for large applications
that manage their own I/O, such as SQL databases, the advantage of a larger
user-mode address space may be worth the loss of caching.

The Windows XP VM manager uses a two-step process to allocate user
memory. The first step reserves a portion of the process's virtual address space.
The second step commits the allocation by assigning virtual memory space
(physical memory or space in the paging files). Windows XP limits the amount
of virtual memory space a process consumes by enforcing a quota on committed
memory. A process decommits memory that it is no longer using to free up
virtual memory for use by other processes. The APIs used to reserve virtual
addresses and commit virtual memory take a handle on a process object as a
parameter. This allows one process to control the virtual memory of another.
Environmental subsystems manage the memory of their client processes in this
way.

For performance, the VM manager allows a privileged process to lock
selected pages in physical memory, thus ensuring that the pages are not paged
out to the paging file. Processes also allocate raw physical memory and then
map regions into its virtual address space. IA32 processors with the physical
address extension (PAE) feature can have up to 64 GB of physical memory on a
system. This memory cannot all be mapped in a process's address space at once,
but Windows XP makes it available using the address windowing extension
(AWE) APIs, which allocate physical memory and then map regions of virtual
addresses in the process's address space onto part of the physical memory.
The AWE facility is used primarily by very large applications such as the SQL
database.
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Windows XP implements shared memory by defining a section dbject.
After getting a handle to a section object, a process maps the memory portion
it needs into its address space. This portion is called a view. A process redefines
its view of an object to gain access to the entire object, one region at a time.

A process can control the use of a shared-memory section object in many
ways. The maximum size of a section can be bounded. The section can be
backed by disk space either in the system-paging file or in a regular file (a
memory-mapped file). A section can be based, meaning the section appears at
the same virtual address for all processes attempting to access it. Finally, the
memory protection of pages in the section can be set to read-only, read-write,
read-write-execute, execute-only, no access, or copy-on-write. The last two of
these protection settings need some explanation:

• A no-access page raises an exception if accessed; the exception is used, for
example, to check whether a faulty program iterates beyond the end of
an array. Both the user-mode memory allocator and the special kernel
allocator used by the device verifier can be configured to map each
allocation onto the end of a page followed by a no-access page in order to
detect buffer overruns.

• The copy-on-write mechanism increases the efficient use of physical memory
by the VM manager. When two processes want independent copies of an
object, the VM manager places a single shared copy into virtual memory
and activates the copy-on-write property for that region of memory. If
one of the processes tries to modify data in a copy-on-write page, the VM
manager makes a private copy of the page for the process.

The virtual address translation in Windows XP uses a multilevel page
table. For IA32 processors without the physical address extensions enabled,
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each process has a page directory that contains 1,024 page-directory entries
(PDEs) of size 4 bytes. Each PDE points to a page table that contains 1,024
page-table entries (PTEs) of size 4 bytes. Each PTE points to a 4-KB page frame
in physical memory. The total size of all page tables for a process is 4 MB, so the
VM manager pages out individual tables to disk when necessary. See Figure
22.3 for a diagram of this structure.

The page directory and page tables are referenced by the hardware via
physical addresses. To improve performance, the VM manager self-maps
the page directory and page tables into a 4-MB region of virtual addresses.
The self-map allows the VM manager to translate a virtual address into the
corresponding PDE or PTE without additional memory accesses. When a process
context is changed, a single page-directory entry needs to be changed to map
the new process's page tables. For a variety of reasons, the hardware requires
that each page directory or page table occupy a single page. Thus, the number
of PDEs or PTEs that fit in a page determine how virtual addresses are translated.

The following describes how virtual addresses are translated into physical
addresses on IA32-compatible processors (without PAE enabled). A 10-bit value
can represent all the values from 0 to 1,023. Thus, a 10-bit value can select any
entry in the page directory or in a page table. This property is used when a
virtual address pointer is translated to a byte address in physical memory. A
32-bit virtual-memory address is split into three values, as shown in Figure
22.4. The first 10 bits of the virtual address are used as an index into the page
directory. This address selects one page-directory entry (PDE), which contains
the physical page frame of a page table. The memory-management unit (MMU)
uses the next 10 bits of the virtual address to select a PTE from the page table.
The PTE specifies a page frame in physical memory. The remaining 12 bits of
the virtual address are the offset of a specific byte in the page frame. The MMU
creates a pointer to the specific byte in physical memory by concatenating the
20 bits from the PTE with the lower 12 bits from the virtual address. Thus,
the 32-bit PTE has 12 bits to describe the state of the physical page. The IA32
hardware reserves 3 bits for use by the operating system. The rest of the bits
specify whether the page has been accessed or written, the caching attributes,
the access mode, whether the page is global, and whether the PTE is valid.

1A32 processors running with PAE enabled use 64-bit PDEs and PTEs in
order to represent the larger 24-bit page-frame number field. Thus, the second-
level page directories and the page tables contain only 512 PDEs and PTEs,
respectively. To provide 4 GB of virtual address space requires an extra level of
page directory containing four PDEs. Translation of a 32-bit virtual address uses
2 bits for the top-level directory index and 9 bits for each of the second-level
page directories and the page tables.

31
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Figure 22.4 Virtual-to-physical address translation on IA32.
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To avoid the overhead of translating every virtual address by looking
up the PDE and PTE, processors use a translation-lookaside buffer (TLB),
which contains an associative memory cache for mapping virtual pages to
PTEs. Unlike the IA32 architecture, in which the TLB is maintained by the
hardware MMU, the IA64 invokes a software-trap routine to supply translations
missing from the TLB. This gives the VM manager flexibility in choosing the
data structures to use. In Windows XP, a three-level tree structure is chosen for
mapping user-mode virtual addresses on the IA64.

On IA64 processors, the page size is 8 KB, but the PTEs occupy 64 bits, so a
page still contains only 1,024 (10 bits' worth) of PDEs or PTEs. Therefore, with 10
bits of top-level PDEs, 10 bits of second-level, 10 bits of page table, and 13 bits of
page offset, the user portion of the process's virtual address space for Windows
XP on the IA64 is 8 TB (43 bits' worth). The 8-TB limitation in the current version
of Windows XP is less than the capabilities of the IA64 processor but represents
a tradeoff between the number of memory references required to handle TLB
misses and the size of the user-mode address space supported.

A physical page can be in one of six states: valid, free, zeroed, modified,
standby, bad, or in transition.

• A valid page is in use by an active process.

• A free page is a page that is not referenced in a PTE.

• A zeroed page is a free page that has been zeroed out and is ready for
immediate use to satisfy zero-on-demand faults.

• A modified page is one that has been written by a process and must be sent
to the disk before it is allocated for another process.

• A standby page is a copy of information already stored on disk. Standby
pages can be pages that were not modified, modified pages that have
already been written to the disk, or pages that were prefetched to exploit
locality.

• A bad page is unusable because a hardware error has been detected.

• Finally, a transition page is one that is on its way in from disk to a page
frame allocated in physical memory.

When the valid bit in a PTE is zero, the VM manager defines the format of
the other bits. Invalid pages can have a number of states represented by bits in
the PTE. Page-file pages that have never been faulted in are marked zero-on-
demand. Files mapped through section objects encode a pointer to that section
object. Pages that have been written to the page file contain enough information
to find the page on disk, and so forth.

The actual structure of the page-file PTE is shown in Figure 22.5. The PTE
contains 5 bits for page protection, 20 bits for page-file offset, 4 bits to select the
paging file, and 3 bits that describe the page state. A page-file PTE is marked to
be an invalid virtual address to the MMU. Since executable code and memory-
mapped files already have a copy on disk, they do not need space in a paging
file. If one of these pages is not in physical memory, the PTE structure is as
follows: The most significant bit is used to specify the page protection, the next
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28 bits are used to index into a system data structure that indicates a file and
offset within the file for the page, and the lower 3 bits specify the page state.

Invalid virtual addresses can also be in a number of temporary states that
are part of the paging algorithms. When a page is removed from a process
working set, it is moved either to the modified list (to be written to disk) or
directly to the standby list. If written to the standby list, the page is reclaimed
without being read from disk if it is needed again before it is moved to the free
list. When possible, the VM manager uses idle CPU cycles to zero pages on the
free list and move them to the zeroed list. Transition pages have been allocated
a physical page and are awaiting the completion of the paging I/O before the
PTE is marked as valid.

Windows XP uses section objects to describe pages that are sharable
between processes. Each process has its own set of virtual page tables, but
the section object also includes a set of page tables containing the master (or
prototype) PTEs. When a PTE in a process page table is marked valid, it points
to the physical page frame containing the page, as it must on IA32 processors,
where the hardware MMU reads the page tables directly from memory. But
when a shared page is made invalid, the PTE is edited to point to the prototype
PTE associated with the section object.

The page tables associated with a section object are virtual insofar as they
are created and trimmed as needed. The only prototype PTEs needed are
those that describe pages for which there is a currently mapped view. This
greatly improves performance and allows more efficient use of kernel virtual
addresses.

The prototype PTE contains the page-frame address and the protection
and state bits. Thus, the first access by a process to a shared page generates a
page fault. After the first access, further accesses are performed in the normal
manner. If a process writes to a copy-on-write page marked read-only in the
PTE, the VM manager makes a copy of the page and marks the PTE writable,
and the process effectively does not have a shared page any longer. Shared
pages never appear in the page file but are instead found in the file system.

The VM manager keeps track of all pages of physical memory in a page-
frame database. There is one entry for every page of physical memory in the
system. The entry points to the PTE, which in turn points to the page frame, so
the VM manager can maintain the state of the page. Page frames not referenced
by a valid PTE are linked to lists according to page type, such as zeroed,
modified, or free.

If a shared physical page is marked as valid for any process, the page
cannot be removed from memory. The VM manager keeps a count of valid PTEs
for each page in the page-frame database. When the count goes to zero, the
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physical page can be reused once its contents have been written back tb disk
(if it was marked dirty).

When a page fault occurs, the VM manager finds a physical page to hold
the data. For zero-on-demand pages, the first choice is to find a page that has
already been zeroed. If none is available, a page from the free list or standby
list is chosen, and the page is zeroed before proceeding. If the faulted page
has been marked as in transition, it is either already being read in from disk
or has been unmapped or trimmed and is still available on the standby or
modified list. The thread either waits for the I/O to complete or, in the latter
cases, reclaims the page from the appropriate list.

Otherwise, an I/O must be issued to read the page in from the paging file
or file system. The VM manager tries to allocate an available page from either
the free list or the standby list. Pages in the modified list cannot be used until
they have been written back to disk and transferred to the standby list. If no
pages are available, the thread blocks until the working-set manager trims
pages from memory or a page in physical memory is unmapped by a process.

Windows XP uses a per-process first-in, first-out (FIFO) replacement policy
to take pages from processes that are using more than their minimum working-
set size. Windows XP monitors the page faulting of each process that is at its
minimum working-set size and adjusts the working-set size accordingly. When
a process is started, it is assigned a default minimum working-set size of 50
pages. The VM manager replaces and trims pages in the working set of a process
according to their age. The age of a page is determined by how many trimming
cycles have occurred without the PTE. Trimmed pages are moved to the standby
or modified list, depending on whether the modified bit is set in the page's
PTE.

The VM manager does not fault in only the page immediately needed.
Research shows that the memory referencing of a thread tends to have a
locality property; when a page is used, it is likely that adjacent pages will
be referenced in the near future. (Think of iterating over an array or fetching
sequential instructions that form the executable code for a thread.) Because of
locality, when the VM manager faults in a page, it also faults in a few adjacent
pages. This prefetching tends to reduce the total number of page faults. Writes
are also clustered to reduce the number of independent I/O operations.

In addition to managing committed memory, the VM manager manages
each process's reserved memory, or virtual address space. Each process has an
associated splay tree that describes the ranges of virtual addresses in use and
what the use is. This allows the VM manager to fault in page tables as needed.
If the PTE for a faulting address does not exist, the VM manager searches for
the address in the process's tree of virtual address descriptors (VADs) and
uses this information to fill in the missing PTE and retrieve the page. In some
cases, a page-table page itself may not exist; such a page must be transparently
allocated and initialized by the VM manager.

22.3.3.3 Process Manager

The Windows XP process manager provides services for creating, deleting, and
using processes, threads, and jobs. It has no knowledge about parent-child
relationships or process hierarchies; those refinements are left to the particular
environmental subsystem that owns the process. The process manager is also
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not involved in the scheduling of processes, other than setting the priorities and
affinities in processes and threads when they are created. Thread scheduling
takes place in the kernel dispatcher.

Each process contains one or more threads. Processes themselves can be
collected together into large units called job objects; the use of job objects
allows limits on CPU usage, working-set size, and processor affinities that
control multiple processes at once. Job objects are used to manage large
datacenter machines.

An example of process creation in the Win32 API environment is as follows.
When a Win32 API application calls CreateProcess ():

1. A message is sent to the Win32 API subsystem to notify it that the process
is being created.

2. CreateProcess () in the original process then calls an API in the process
manager of the NT executive to actually create the process.

3. The process manager calls the object manager to create a process object
and returns the object handle to Win32 API.

4. Win32 API calls the process manager again to create a thread for the process
and returns handles to the new process and thread.

The Windows XP APIs for manipulating virtual memory and threads and
for duplicating handles take a process handle, so subsystems can perform
operations on behalf of a new process without having to execute directly in
the new process's context. Once a new process is created, the initial thread
is created, and an asynchronous procedure call is delivered to the thread to
prompt the start of execution at the user-mode image loader. The loader is an
ntdll.dll, which is a link library automatically mapped into every newly created
process. Windows XP also supports a UNIX fork() style of process creation in
order to support the POSIX environmental subsystem. Although the Win32 API
environment calls the process manager from the client process, POSIX uses the
cross-process nature of the Windows XP APIs to create the new process from
within the subsystem process.

The process manager also implements the queuing and delivery of asyn-
chronous procedure calls (APCs) to threads. APCs are used by the system to
initiate thread execution, complete I/O, terminate threads and processes, and
attach debuggers. User-mode code can also queue an APC to a thread for
delivery of signal-like notifications. To support POSIX, the process manager
provides APIs that send alerts to threads to unblock them from system calls.

The debugger support in the process manager includes the capability to
suspend and resume threads and to create threads that begin in a suspended
mode. There are also process-manager APIs that get and set a thread's register
context and access another process's virtual memory.

Threads can be created in the current process; they can also be injected into
another process. Within the executive, existing threads can temporarily attach
to another process. This method is used by worker threads that need to execute
in the context of the process originating a work request.

The process manager also supports impersonation. A thread running in a
process with a security token belonging to one user can set a thread-specific
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token belonging to another user. This facility is fundamental to the client-
server computing model, where services need to act on behalf of a variety of
clients with different security IDs.

22.3.3.4 Local Procedure Call Facility

The implementation of Windows XP uses a client-server model. The environ-
mental subsystems are servers that implement particular operating-system
personalities. The client-server model is used for implementing a variety
of operating-system services besides the environmental subsystems. Security
management, printer spooling, web services, network file systems, plug-and-
play, and many other features are implemented using this model. To reduce
the memory footprint, multiple services are often collected together into a few
processes, which then rely on the user-mode thread-pool facilities to share
threads and wait for messages (see Section 22.3.3.3).

The operating system uses the local procedure call (LPC) facility to pass
requests and results between client and server processes within a single
machine. In particular, LPC is used to request services from the various
Windows XP subsystems. LPC is similar in many respects to the RPC mech-
anisms used by many operating systems for distributed processing across
networks, but LPC is optimized for use within a single system. The Windows
XP implementation of Open Software Foundation (OSF) RPC often uses LPC as
a transport on the local machine.

LPC is a message-passing mechanism. The server process publishes a
globally visible connection-port object. When a client wants services from a
subsystem, it opens a handle to the subsystem's connection-port object and
sends a connection request to the port. The server creates a channel and returns
a handle to the client. The channel consists of a pair of private communication
ports: one for client-to-server messages and the other for server-to-client
messages. Communication channels support a callback mechanism, so the
client and server can accept requests when they would normally be expecting
a reply.

When an LPC channel is created, one of three message-passing techniques
must be specified.

1. The first technique is suitable for small messages (up to a couple
of hundred bytes). In this case, the port's message queue is used as
intermediate storage, and the messages are copied from one process to
the other.

2. The second technique is for larger messages. In this case, a shared-
memory section object is created for the channel. Messages sent through
the port's message queue contain a pointer and size information referring
to the section object. This avoids the need to copy large messages. The
sender places data into the shared section, and the receiver views them
directly.

3. The third technique uses the APIs that read and write directly into a
process's address space. The LPC provides functions and synchronization
so a server can access the data in a client.
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The Win32 API window manager uses its own form of message passing
that is independent of the executive LPC facilities. When a client asks for a
connection that uses window-manager messaging, the server sets up three
objects: (1) a dedicated server thread to handle requests, (2) a 64-KB section
object, and (3) an event-pair object. An event-pair object is a synchronization
object that is used by the Win32 API subsystem to provide notification when
the client thread has copied a message to the Win32 API server, or vice versa.
The section object passes the messages, and the event-pair object performs
synchronization.

Window-manager messaging has several advantages:

• The section object eliminates message copying, since it represents a region
of shared memory.

• The event-pair object eliminates the overhead of using the port object to
pass messages containing pointers and lengths.

• The dedicated server thread eliminates the overhead of determining which
client thread is calling the server, since there is one server thread per client
thread.

• The kernel gives scheduling preference to these dedicated server threads
to improve performance.

22.3.3.5 I/O Manager

The I/O manager is responsible for file systems, device drivers, and network
drivers. It keeps track of which device drivers, filter drivers, and file systems
are loaded, and it also manages buffers for I/O requests. It works with the
VM manager to provide memory-mapped file I/O and controls the Windows
XP cache manager, which handles caching for the entire I/O system. The I/O
manager is fundamentally asynchronous. Synchronous I/O is provided by
explicitly waiting for an I/O operation to complete. The I/O manager provides
several models of asynchronous I/O completion, including setting of events,
delivery of APCs to the initiating thread, and use of I/O completion ports, which
allow a single thread to process I/O completions from many other threads.

Device drivers are arranged as a list for each device (called a driver or I/O
stack because of how device drivers are added). The I/O manager converts the
requests it receives into a standard form called an I/O request packet (IRP). It
then forwards the IRP to the first driver in the stack for processing. After each
driver processes the IRP, it calls the I/O manager either to forward it to the next
driver in the stack or, if all processing is finished, to complete the operation on
theIRP.

Completions may occur in a different context from the original I/O request.
For example, if a driver is performing its part of an I/O operation and is forced
to block for an extended time, it may queue the IRP to a worker thread to
continue processing in the system context. In the original thread, the driver
returns a status indicating that the I/O request is pending so that the thread
can continue executing in parallel with the I/O operation. IRPs may also be
processed in interrupt-service routines and completed in an arbitrary context.
Because some final processing may need to happen in the context that initiated
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the I/O, the I/O manager uses an APC to do final I/O-completion processing in
the context of the originating thread.

The stack model is very flexible. As a driver stack is built, various drivers
have the opportunity to insert themselves into the stack as filter drivers.
Filter drivers can examine and potentially modify each I/O operation. Mount
management, partition management, and disk striping and mirroring are all
examples of functionality implemented using filter drivers that execute beneath
the file system in the stack. File-system filter drivers execute above the file
system and have been used to implement functionality such as hierarchical
storage management, single instancing of files for remote boot, and dynamic
format conversion. Third parties also use file-system filter drivers to implement
virus detection.

Device drivers for Windows XP are written to the Windows Driver Model
(WDM) specification. This model lays out all the requirements for device drivers,
including how to layer filter drivers, share common code for handling power
and plug-and-play requests, build correct cancellation logic, and so forth.

Because of the richness of the WDM, writing a full WDM device driver
for each new hardware device can involve an excessive amount of work.
Fortunately, the port/miniport model makes it unnecessary to do this. Within
a class of similar devices, such as audio drivers, SCSI devices, or Ethernet
controllers, each instance of a device shares a common driver for that class,
called a port driver. The port driver implements the standard operations for
the class and then calls device-specific routines in the device's miniport driver
to implement device-specific functionality.

22.3.3.6 Cache Manager

In many operating systems, caching is done by the file system. Instead,
Windows XP provides a centralized caching facility. The cache manager works
closely with the VM manager to provide cache services for all components
under the control of the I/O manager. Caching in Windows XP is based on files
rather than raw blocks.

The size of the cache changes dynamically according to how much free
memory is available in the system. Recall that the upper 2 GB of a process's
address space comprise the system area; it is available in the context of all
processes. The VM manager allocates up to one-half of this space to the system
cache. The cache manager maps files into this address space and uses the
capabilities of the VM manager to handle file I/O.

The cache is divided into blocks of 256 KB. Each cache block can hold a
view (that is, a memory-mapped region) of a file. Each cache block is described
by a virtual address control block (VACB) that stores the virtual address and
file offset for the view, as well as the number of processes using the view. The
VACBs reside in a single array maintained by the cache manager.

For each open file, the cache manager maintains a separate VACB index
array that describes the caching for the entire file. This array has an entry for
each 256-KB chunk of the file; so, for instance, a 2-MB file would have an 8-entry
VACB index array An entry in the VACB index array points to the VACB if that
portion of the file is in the cache; it is null otherwise. When the I/O manager
receives a file's user-level read request, the I/O manager sends an IRP to the
device-driver stack on which the file resides. The file system attempts to look
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up the requested data in the cache manager (unless the request specifically asks
for a noncached read). The cache manager calculates which entry of that file's
VACB index array corresponds to the byte offset of the request. The entry either
points to the view in the cache or is invalid. If it is invalid, the cache manager
allocates a cache block (and the corresponding entry in the VACB array) and
maps the view into the cache block. The cache manager then attempts to copy
data from the mapped file to the caller's buffer. If the copy succeeds, the
operation is completed.

If the copy fails, it does so because of a page fault, which causes the VM
manager to send a noncached read request to the I/O manager. The I/O manager
sends another request down the driver stack, this time requesting a paging
operation, which bypasses the cache manager and reads the data from the file
directly into the page allocated for the cache manager. Upon completion, the
VACB is set to point at the page. The data, now in the cache, are copied to the
caller's buffer, and the original I/O request is completed. Figure 22.6 shows an
overview of these operations.

When possible, for synchronous operations on cached files, I/O is handled
by the fast I/O mechanism. This mechanism parallels the normal IRP-based
I/O but calls into the driver stack directly rather than passing down an IRP.
Because no IRP is involved, the operation should not block for an extended
period of time and cannot be queued to a worker thread. Therefore, when the
operation reaches the file system and calls the cache manager, the operation
fails if the information is not already in cache. The I/O manager then attempts
the operation using the normal IRP path.

A kernel-level read operation is similar, except that the data can be accessed
directly from the cache, rather than being copied to a buffer in user space.
To use file-system metadata (data structures that describe the file system),
the kernel uses the cache manager's mapping interface to read the metadata.
To modify the metadata, the file system uses the cache manager's pinning
interface. Pinning a page locks the page into a physical-memory page frame
so that the VM manager cannot move or page out the page. After updating
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the metadata, the file system asks the cache manager to unpin the page. A
modified page is marked dirty, and so the VM manager flushes the page to
disk. The metadata is stored in a regular file.

To improve performance, the cache manager keeps a small history of read
requests and from this history attempts to predict future requests. If the cache
manager finds a pattern in the previous three requests, such as sequential access
forward or backward, it prefetches data into the cache before the next request is
submitted by the application. In this way, the application finds its data already
cached and does not need to wait for disk I/O. The Win32 API DpenFile () and
Crea teFi leO functions can be passed the FILE_FLAG_SEQUENTIAL_SCAN flag,
which is a hint to the cache manager to try to prefetch 192 KB ahead of the
thread's requests. Typically, Windows XP performs I/O operations in chunks of
64 KB or 16 pages; thus, this read-ahead is three times the normal amount.

The cache manager is also responsible for telling the VM manager to flush
the contents of the cache. The cache manager's default behavior is write-back
caching: It accumulates writes for 4 to 5 seconds and then wakes up the cache-
writer thread. When write-through caching is needed, a process can set a flag
when opening the file, or the process can call an explicit cache-flush function.

A fast-writing process could potentially fill all the free cache pages before
the cache-writer thread had a chance to wake up and flush the pages to disk.
The cache writer prevents a process from flooding the system in the following
way. When the amount of free cache memory becomes low, the cache manager
temporarily blocks processes attempting to write data and wakes the cache-
writer thread to flush pages to disk. If the fast-writing process is actually a
network redirector for a network file system, blocking it for too long could
cause network transfers to time out and be retransmitted. This retransmission
would waste network bandwidth. To prevent such waste, network redirectors
can instruct the cache manager to limit the backlog of writes in the cache.

Because a network file system needs to move data between a disk and the
network interface, the cache manager also provides a DMA interface to move
the data directly. Moving data directly avoids the need to copy data through
an intermediate buffer.

22.3.3.7 Security Reference Monitor

Centralizing management of system entities in the object manager enables
Windows XP to use a uniform mechanism to perform run-time access validation
and audit checks for every user-accessible entity in the system. Whenever a
process opens a handle to an object, the security reference monitor (SRM)
checks the process's security token and the object's access-control list to see
whether the process has the necessary rights.

The SRM is also responsible for manipulating the privileges in security
tokens. Special privileges are required for users to perform backup or restore
operations on file systems, overcome certain checks as an administrator, debug
processes, and so forth. Tokens can also be marked as being restricted in their
privileges so that they cannot access objects that are available to most users.
Restricted tokens are primarily used to restrict the damage that can be done by
execution of untrusted code.

Another responsibility of the SRM is logging security audit events. A C-2
security rating requires that the system have the ability to detect and log all
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attempts to access system resources so that it is easier to trace attempts at
unauthorized access. Because the SRM is responsible for making access checks,
it generates most of the audit records in the security-event log.

22.3.3.8 Plug-and-Play and Power Managers

The operating system uses the plug-and-play (PnP) manager to recognize
and adapt to changes in the hardware configuration. For PnP to work, both
the device and the driver must support the PnP standard. The PnP manager
automatically recognizes installed devices and detects changes in devices as the
system operates. The manager also keeps track of resources used by a device,
as well as potential resources that could be used, and takes care of loading
the appropriate drivers. This management of hardware resources—primarily
interrupts and I/O memory ranges—has the goal of determining a hardware
configuration in which all devices are able to operate.

For example, if device B can use interrupt 5 and device A can use 5 or 7,
then the PnP manager will assign 5 to B and 7 to A. In previous versions, the
user might have had to remove device A and reconfigure it to use interrupt 7
before installing device B. The user thus had to study system resources before
installing new hardware and had to determine which devices were using which
hardware resources. The proliferation of PCMCIA cards, laptop docks, and USB,
IEEE 1394, Infiniband, and other hot-pluggable devices also dictates the support
of dynamically configurable resources.

The PnP manager handles dynamic reconfiguration as follows. First, it
gets a list of devices from each bus driver (for example, PCI, USB). It loads
the installed driver (or installs one, if necessary) and sends an add-device
request to the appropriate driver for each device. The PnP manager figures out
the optimal resource assignments and sends a s t a r t - d e v i c e request to each
driver, along with the resource assignment for the device. If a device needs to
be reconfigured, the PnP manager sends a query-stop request, which asks the
driver whether the device can be temporarily disabled. If the driver can disable
the device, then all pending operations are completed, and new operations are
prevented from starting. Next, the PnP manager sends a stop request; it can
then reconfigure the device with another s t a r t -dev i ce request.

The PnP manager also supports other requests, such as query-remove.
This request, which is used when the user is getting ready to eject a PCCARD
device, operates in a fashion similar to query-stop. The surprise-remove
request is used when a device fails or, more likely, when a user removes a
PCCARD device without stopping it first. The remove request tells the driver to
stop using the device and release all resources allocated to it.

Windows XP supports sophisticated power management. Although these
facilities are useful for home systems to reduce power consumption, their
primary application is for ease of use (quicker access) and extending the battery
life of laptops. The system and individual devices can be moved to low-power
mode (called standby or sleep mode) when not in use, so the battery is primarily
directed at physical memory (RAM) data retention. The system can turn itself
back on when packets are received from the network, a phone line to a modem
rings, or a user opens a laptop or pushes a soft power button. Windows XP
can also hibernate a system by storing physical memory contents to disk and
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completely shutting down the machine, then restoring the system at a later
point before execution continues.

Further strategies for reducing power consumption are supported as well.
Rather than allowing it to spin in a processor loop when the CPU is idle,
Windows XP moves the system to a state requiring lower power consumption.
If the CPU is underutilized, Windows XP reduces the CPU clock speed, which
can save significant power.

22.3.3.9 Registry

Windows XP keeps much of its configuration information in an internal
database called the registry. A registry database is called a hive. There are
separate hives for system information, default user preferences, software
installation, and security. Because the information in the system hive is
required in order to boot the system, the registry manager is implemented
as a component of the executive.

Every time the system successfully boots, it saves the system hive as last
known good. If the user installs software, such as a device driver, that produces
a system-hive configuration that will not boot, the user can usually boot using
the last-known-good configuration.

Damage to the system hive from installing third-party applications and
drivers is so common that Windows XP has a component called system restore
that periodically saves the hives, as well as other software states like driver
executables and configuration files, so that the system can be restored to
a previously working state in cases where the system boots but no longer
operates as expected.

22.3.3.10 Booting

The booting of a Windows XP PC begins when the hardware powers on and
the BIOS begins executing from ROM. The BIOS identifies the system device
to be booted and loads and executes the bootstrap loader from the front of
the disk. This loader knows enough about the file-system format to load the
NTLDR program from the root directory of the system device. NTLDR is used to
determine which boot device contains the operating system. Next, the NTLDR
loads in the HAL library, the kernel, and the system hive from the boot device.
From the system hive, it determines what device drivers are needed to boot
the system (the boot drivers) and loads them. Finally, NTLDR begins kernel
execution.

The kernel initializes the system and creates two processes. The system
process contains all the internal worker threads and never executes in user
mode. The first user-mode process created is SMSS, which is similar to the
1NIT (initialization) process in UNIX. SMSS does further initialization of the
system, including establishing the paging files and loading device drivers, and
creates the VVINLOGON and CSRSS processes. CSRSS is the Win32 API subsystem.
WINLOGON brings up the rest of the system, including the LSASS security
subsystem and the remaining services needed to run the system.

The system optimizes the boot process by pre-loading files from disk based
on previous boots of the system. Disk access patterns at boot are also used to
lay out system files on disk to reduce the number of I/O operations required.
The processes required to start the system are reduced by grouping services
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into one process. All of these approaches contribute to a dramatic reduction in
system boot time. Of course, system boot time is less important than it once
was because of the sleep and hibernation capabilities of Windows XP, which
allow users to power down their computers and then quickly resume where
they left off.

22.4 Environmental Subsystems

Environmental subsystems are user-mode processes layered over the native
Windows XP executive services to enable Windows XP to run programs
developed for other operating systems, including 16-bit Windows, MS-DOS,
and POSIX. Each environmental subsystem provides a single application
environment.

Windows XP uses the Win32 API subsystem as the main operating envi-
ronment, and thus this subsystem starts all processes. When an application is
executed, the Win32 API subsystem calls the VM manager to load the appli-
cation's executable code. The memory manager returns a status to Win32
indicating the type of executable. If it is not a native Win32 API executable, the
Win32 API environment checks whether the appropriate environmental sub-
system is running; if the subsystem is not running, it is started as a user-mode
process. The subsystem then takes control over the application startup.

The environmental subsystems use the LPC facility to provide operating-
system services to client processes. The Windows XP subsystem architecture
keeps applications from mixing API routines from different environments. For
instance, a Win32 API application cannot make a POSIX system call, because
only one environmental subsystem can be associated with each process.

Since each subsystem is run as a separate user-mode process, a crash in one
has no effect on other processes. The exception is Win32 API, which provides
all keyboard, mouse, and graphical display capabilities. If it fails, the system is
effectively disabled and requires a reboot.

The Win32 API environment categorizes applications as either graphical or
character based, where a character-based application is one that thinks interactive
output goes to a character-based (command) window. Win32 API transforms
the output of a character-based application to a graphical representation in the
command window. This transformation is easy: Whenever an output routine
is called, the environmental subsystem calls a Win32 routine to display the
text. Since the Win32 API environment performs this function for all character-
based windows, it can transfer screen text between windows via the clipboard.
This transformation works for MS-DOS applications, as well as for POSIX
command-line applications.

22.4.1 MS-DOS Environment

The MS-DOS environment does not have the complexity of the other Windows
XP environmental subsystems. It is provided by a Win32 API application called
the virtual DOS machine (VDM). Since the VDM is a user-mode process, it is
paged and dispatched like any other Windows XP application. The VDM has
an instruction-execution unit to execute or emulate Intel 486 instructions.
The VDM also provides routines to emulate the MS-DOS ROM BIOS and
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"int 21" software-interrupt services and has virtual device drivers for the screen,
keyboard, and communication ports. The VDM is based on MS-DOS 5.0 source
code; it allocates at least 620 KB of memory to the application.

The Windows XP command shell is a program that creates a window that
looks like an MS-DOS environment. It can run both 16-bit and 32-bit executables.
When an MS-DOS application is run, the command shell starts a VDM process
to execute the program.

If Windows XP is running on a IA32-compatible processor, MS-DOS graphical
applications run in full-screen mode, and character applications can run full
screen or in a window. Not all MS-DOS applications run under the VDM. For
example, some MS-DOS applications access the disk hardware directly, so they
fail to run on Windows XP because disk access is restricted to protect the file
system. In general, MS-DOS applications that directly access hardware will fail
to operate under Windows XP.

Since MS-DOS is not a multitasking environment, some applications have
been written in such a way as to "hog" the CPU. For instance, the use of busy
loops can cause time delays or pauses in execution. The scheduler in the kernel
dispatcher detects such delays and automatically throttles the CPU usage, but
this may cause the offending application to operate incorrectly.

22.4.2 16-Bit Windows Environment

The Winl6 execution environment is provided by a VDM that incorporates
additional software called Windows on Windows (WOW32 for 16-bit applica-
tions); this software provides the Windows 3.1 kernel routines and stub routines
for window-manager and graphical-device-interface (GDI) functions. The stub
routines call the appropriate Win32 API subroutines—converting, or thunking,
16-bit addresses into 32-bit addresses. Applications that rely on the internal
structure of the 16-bit window manager or GDI may not work, because the
underlying Win32 API implementation is, of course, different from true 16-bit
Windows.

WOW32 can multitask with other processes on Windows XP, but it resembles
Windows 3.1 in many ways. Only one Winl6 application can run at a time, all
applications are single threaded and reside in the same address space, and
all share the same input queue. These features imply that an application that
stops receiving input will block all the other Winl6 applications, just as in
Windows 3.x, and one Winl6 application can crash other Winl6 applications
by corrupting the address space. Multiple Winl6 environments can coexist,
however, by using the command start /separate wml6application from the
command line.

There are relatively few 16-bit applications that users need to continue to
run on Windows XP, but some of them include common installation (setup)
programs. Thus, the WOW32 environment continues to exist primarily because
a number of 32-bit applications cannot be installed on Windows XP without it.

22.4.3 32-Bit Windows Environment on IA64

The native environment for Windows on IA64 uses 64-bit addresses and the
native IA64 instruction set. To execute IA32 programs in this environment
requires a thunking layer to translate 32-bit Win32 API calls into the correspond-
ing 64-bit calls—just as 16-bit applications require translation on IA32 systems.
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Thus, 64-bit Windows supports the WOW64 environment. The implementations
of 32-bit and 64-bit Windows are essentially identical, and the IA64 processor
provides direct execution of IA32 instructions, so WOW64 achieves a higher level
of compatibility than VVOW32.

22.4.4 Win32 Environment

The main subsystem in Windows XP is the Win32 API. It runs Win32 API
applications and manages all keyboard, mouse, and screen I/O. Since it is
the controlling environment, it is designed to be extremely robust. Several
features of the Win32 API contribute to this robustness. Unlike processes in the
Winl6 environment, each Win32 process has its own input queue. The window
manager dispatches all input on the system to the appropriate process's input
queue, so a failed process does not block input to other processes.

The Windows XP kernel also provides preemptive multitasking, which
enables the user to terminate applications that have failed or are no longer
needed. The Win32 API also validates all objects before using them, to prevent
crashes that could otherwise occur if an application tried to use an invalid or
wrong handle. The Win32 API subsystem verifies the type of the object to which
a handle points before using the object. The reference counts kept by the object
manager prevent objects from being deleted while they are still being vised and
prevent their use after they have been deleted.

To achieve a high level of compatibility with Windows 95/98 systems,
Windows XP allows users to specify that individual applications be run
using a shim layer, which modifies the Win32 API to better approximate
the behavior expected by old applications. For example, some applications
expect to see a particular version of the system and fail on new versions.
Frequently, applications have latent bugs that become exposed due to changes
in the implementation. For example, using memory after freeing it may cause
corruption only if the order of memory reuse by the heap changes; or an
application may make assumptions about which errors can be returned by a
routine or about the number of valid bits in an address. Running an application
with the Windows 95/98 shims enabled causes the system to provide behavior
much closer to Windows 95/98—though with reduced performance and
limited interoperability with other applications.

22.4.5 POSIX Subsystem

The POSIX subsystem is designed to run POSIX applications written to follow
the POSIX standard, which is based on the UNIX model. POSIX applications can
be started by the Win32 API subsystem or by another POSIX application. POSIX
applications use the POSIX subsystem server PSXSS.EXE, the POSIX dynamic
link library PSXDLL .DLL, and the POSIX console session manager POSIX .EXE.

Although the POSIX standard does not specify printing, POSIX applications
can use printers transparently via the Windows XP redirection mechanism.
POSIX applications have access to any file system on the Windows XP system;
the POSIX environment enforces UNIX-like permissions on directory trees.

Due to scheduling issues, the POSIX system in Windows XP does not ship
with the system but is available separately for professional desktop systems
and servers. It provides a much higher level of compatibility with UNIX
applications than previous versions of NT. Of the commonly available UNIX
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applications, most compile and run without change with the latest version of
Interix.

22.4.6 Logon and Security Subsystems

Before a user can access objects on Windows XP, that user must be authenticated
by the logon sendee, WINLOGON. WINLOGON is responsible for responding
to the secure attention sequence (Control-Alt-Delete). The secure attention
sequence is a required mechanism for keeping an application from acting
as a Trojan horse. Only WINLOGON can intercept this sequence in order to
put up a logon screen, change passwords, and lock the workstation. To be
authenticated, a user must have an account and provide the password for
that account. Alternatively, a user logs on by using a smart card and personal
identification number, subject to the security policies in effect for the domain.

The local security authority subsystem (LSASS) is the process that generates
access tokens to represent users on the system. It calls an authentication pack-
age to perform authentication using information from the logon subsystem
or network server. Typically, the authentication package simply looks up the
account information in a local database and checks to see that the password is
correct. The security subsystem then generates the access token for the user ID
containing the appropriate privileges, quota limits, and group IDs. Whenever
the user attempts to access an object in the system, such as by opening a handle
to the object, the access token is passed to the security reference monitor, which
checks privileges and quotas. The default authentication package for Windows
XP domains is Kerberos. LSASS also has the responsibility for implementing
security policy such as strong passwords, for authenticating users, and for
performing encryption of data and keys.

22.5 File System

Historically, MS-DOS systems have used the file-allocation table (FAT) file
system. The 16-bit FAT file system has several shortcomings, including internal
fragmentation, a size limitation of 2 GB, and a lack of access protection for files.
The 32-bit FAT file system has solved the size and fragmentation problems,
but its performance and features are still weak by comparison with modern
file systems. The NTFS file system is much better. It was designed to include
many features, including data recovery, security, fault tolerance, large files and
file systems, multiple data streams, UNICODE names, sparse files, encryption,
journaling, volume shadow copies, and file compression.

Windows XP uses NTFS as its basic file system, and we focus on it here.
Windows XP continues to use FAT16, however, to read floppies and other
removable media. And despite the advantages of NTFS, FAT32 continues to
be important for interoperability of media with Windows 95/98 systems.
Windows XP supports additional file-system types for the common formats
used for CD and DVD media.

22.5.1 NTFS Internal Layout

The fundamental entity in NTFS is a volume. A volume is created by the
Windows XP logical-disk-management utility and is based on a logical disk
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partition. A volume may occupy a portion of a disk, may occupy an entire
disk, or may span several disks.

NTFS does not deal with individual sectors of a disk but instead uses clusters
as the units of disk allocation. A cluster is a number of disk sectors that is a
power of 2. The cluster size is configured when an NTFS file system is formatted.
The default cluster size is the sector size for volumes up to 512 MB, 1 KB for
volumes up to 1 GB, 2 KB for volumes up to 2 GB, and 4 KB for larger volumes.
This cluster size is much smaller than that for the 16-bit FAT file system, and
the small size reduces the amount of internal fragmentation. As an example,
consider a 1.6-GB disk with 16,000 files. If you use a FAT-16 file system, 400 MB
may be lost to internal fragmentation because the cluster size is 32 KB. Under
NTFS, only 17 MB would be lost when storing the same files.

NTFS uses logical cluster numbers (LCNs) as disk addresses. It assigns them
by numbering clusters from the beginning of the disk to the end. Using this
scheme, the system can calculate a physical disk offset (in bytes) by multiplying
the LCN by the cluster size.

A file in NTFS is not a simple byte stream as it is m MS-DOS or UNIX; rather, it
is a structured object consisting of typed attributes. Each attribute of a file is an
independent byte stream that can be created, deleted, read, and written. Some
attribute types are standard for all files, including the file name (or names,
if the file has aliases, such as an MS-DOS shortname), the creation time, and
the security descriptor that specifies access control. User data is stored in data
attributes.

Most traditional data files have an unnamed data attribute that contains all
the file's data. However, additional data streams can be created with explicit
names. For instance, in Macintosh files stored on a Windows XP server, the
resource fork is a named data stream. The IProp interfaces of the Component
Object Model (COM) use a named data stream to store properties on ordinary
files, including thumbnails of images. In general, attributes may be added as
necessary and are accessed using a file-name:attribute syntax. NTFS returns the
size of the unnamed attribute only in response to file-query operations, such
as when running the d i r command.

Every file in NTFS is described by one or more records in an array stored in a
special file called the master file table (MFT). The size of a record is determined
when the file system is created; it ranges from 1 to 4 KB. Small attributes
are stored in the MFT record itself and are called resident attributes. Large
attributes, such as the unnamed bulk data, are called nonresident attributes
and are stored in one or more contiguous extents on the disk; a pointer to
each extent is stored in the MFT record. For a small file, even the data attribute
may fit inside the MFT record. If a file has many attributes—or if it is highly
fragmented, so that many pointers are needed to point to all the fragments
—one record in the MFT might not be large enough. In this case, the file is
described by a record called the base file record, which contains pointers to
overflow records that hold the additional pointers and attributes.

Each file in an NTFS volume has a unique ID called a file reference. The file
reference is a 64-bit quantity that consists of a 48-bit file number and a 16-bit
sequence number. The file number is the record number (that is, the array slot)
in the MFT that describes the file. The sequence number is incremented every
time an MFT entry is reused. The sequence number enables NTFS to perform
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internal consistency checks, such as catching a stale reference to a deleted file
after the MFT entry has been reused for a new file.

22.5.1.1 NTFS B+ Tree

As in MS-DOS and UNFIX, the NTFS namespace is organized as a hierarchy of
directories. Each directory uses a data structure called a B+ tree to store an
index of the file names in that directory. A B+ tree is used because it eliminates
the cost of reorganizing the tree and has the property that the length of every
path from the root of the tree to a leaf is the same. The index root of a directory
contains the top level of the B+ tree. For a large directory, this top level contains
pointers to disk extents that hold the remainder of the tree. Each entry in the
directory contains the name and file reference of the file, as well as a copy of
the update timestamp and file size taken from the file's resident attributes in
the MFT. Copies of this information are stored in the directory, so a directory
listing can be efficiently generated. Because all the file names, sizes, and update
times are available from the directory itself, there is no need to gather these
attributes from the MFT entries for each of the files.

22.5.1.2 NTFS Metadata

The NTFS volume's metadata are all stored in files. The first file is the MFT. The
second file, which is used during recovery if the MFT is damaged, contains a
copy of the first 16 entries of the MFT. The next few files are also special in
purpose. They include the log file, volume file, attribute-definition table, root
directory, bitmap file, boot file, and bad-cluster file. We describe the role of
each of these files below.

• The log file records all metadata updates to the file system.

• The volume file contains the name of the volume, the version of NTFS that
formatted the volume, and a bit that tells whether the volume may have
been corrupted and needs to be checked for consistency.

• The attribute-definition table indicates which attribute types are used in
the volume and what operations can be performed on each of them.

• The root directory is the top-level directory in the file-system hierarchy.

• The bitmap file indicates which clusters on a volume are allocated to files
and which are free.

• The boot file contains the startup code for Windows XP and must be located
at a particular disk address so that it can be found easily by a simple ROM
bootstrap loader. The boot file also contains the physical address of the
MFT.

• The bad-cluster file keeps track of any bad areas on the volume; NTFS uses
this record for error recovery.

22.5.2 Recovery

In many simple file systems, a power failure at the wrong time can damage
the file-system data structures so severely that the entire volume is scrambled.
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Many versions of UNIX store redundant metadata on the disk, and they recover
from crashes using the f sck program to check all the file-system data structures
and restore them forcibly to a consistent state. Restoring them often involves
deleting damaged files and freeing data clusters that had been written with user
data but not properly recorded in the file system's metadata structures. This
checking can be a slow process and can cause the loss of significant amounts
of data.

NTFS takes a different approach to file-system robustness. In NTFS, all file-
system data-structure updates are performed inside transactions. Before a data
structure is altered, the transaction writes a log record that contains redo and
undo information; after the data structure has been changed, the transaction
writes a commit record to the log to signify that the transaction succeeded.

After a crash, the system can restore the file-system data structures to
a consistent state by processing the log records, first redoing the operations
for committed transactions and then undoing the operations for transactions
that did not commit successfully before the crash. Periodically (usually every
5 seconds), a checkpoint record is written to the log. The system does not
need log records prior to the checkpoint to recover from a crash. They can be
discarded, so the log file does not grow without bounds. The first time after
system startup that an NTFS volume is accessed, NTFS automatically performs
file-system recovery.

This scheme does not guarantee that all the user-file contents are correct
after a crash; it ensures only that the file-system data structures (the metadata
files) are undamaged and reflect some consistent state that existed prior to the
crash. It would be possible to extend the transaction scheme to cover user files,
and Microsoft may do so in the future.

The log is stored in the third metadata file at the beginning of the volume.
It is created with a fixed maximum size when the file system is formatted. It
has two sections: the logging area, which is a circular queue of log records,
and the restart area, which holds context information, such as the position in
the logging area where NTFS should start reading during a recovery. In fact,
the restart area holds two copies of its information, so recovery is still possible
if one copy is damaged during the crash.

The logging functionality is provided by the Windows XP log-file service.
In addition to writing the log records and performing recovery actions, the
log-file service keeps track of the free space in the log file. If the free space
gets too low, the log-file service queues pending transactions, and NTFS halts
all new I/O operations. After the in-progress operations complete, NTFS calls
the cache manager to flush all data, then resets the log file and performs the
queued transactions.

22.5.3 Security

The security of an NTFS volume is derived from the Windows XP object model.
Each NTFS file references a security descriptor, which contains the access token
of the owner of the file, and an access-control list, which states the access
privileges granted to each user having access to the file.

In normal operation, NTFS does not enforce permissions on traversal
of directories in file path names. However, for compatibility with POSIX,
these checks can be enabled. Traversal checks are inherently more expensive,
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Figure 22.7 Volume set on two drives.

since modern parsing of file path names uses prefix matching rather than
component-by-component opening of directory names.

22.5.4 Volume Management and Fault Tolerance

FtDisk is the fault-tolerant disk driver for Windows XP. When installed, it
provides several ways to combine multiple disk drives into one logical volume
so as to improve performance, capacity, or reliability.

22.5.4.1 Volume Set

One way to combine multiple disks is to concatenate them logically to form
a large logical volume, as shown in Figure 22.7. In Windows XP, this logical
volume, called a volume set, can consist of up to 32 physical partitions. A
volume set that contains an NTFS volume can be extended without disturbance
of the data already stored in the file system. The bitmap metadata on the NTFS
volume are simply extended to cover the newly added space. NTFS continues
to use the same LCN mechanism that it uses for a single physical disk, and the
FtDisk driver supplies the mapping from a logical-volume offset to the offset
on one particular disk.

22.5.4.2 Stripe Set

Another way to combine multiple physical partitions is to interleave their
blocks in round-robin fashion to form what is called a stripe set, as shown in
Figure 22.8. This scheme is also called RAID level 0, or disk striping. FtDisk
uses a stripe size of 64 KB: The first 64 KB of the logical volume are stored in the
first physical partition, the second 64 KB in the second physical partition, and
so on, until each partition has contributed 64 KB of space. Then, the allocation
wraps around to the first disk, allocating the second 64-KB block. A stripe set
forms one large logical volume, but the physical layout can improve the I/O
bandwidth, because, for a large I/O, all the disks can transfer data in parallel.



disk 1 (2 GB)

22.5 File System 819

disk 2 (2 GB) ,

• : LCNs 0^15 % i ,

^-47:;: | ^

logical drive C: 4 GB
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22.5.4.3 Stripe Set with Parity

A variation of this idea is the stripe set with parity, which is shown in Figure
22.9. This scheme is also called RAID level 5. Suppose that a stripe set has eight
disks. Seven of the disks will store data stripes, with one data stripe on each
disk, and the eighth disk will store a parity stripe for each data stripe. The parity
stripe contains the byte-wise exclusive or of the data stripes. If any one of the
eight stripes is destroyed, the system can reconstrvict the data by calculating the
exclusive or of the remaining seven. This ability to reconstruct data makes
the disk array much less likely to lose data in case of a disk failure.

Notice that an update to one data stripe also requires recalculation of the
parity stripe. Seven concurrent writes to seven different data stripes thus would
also require updates to seven parity stripes. If the parity stripes were all on the
same disk, that disk could have seven times the I/O load of the data disks. To
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Figure 22.9 Stripe set with parity on three drives.
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avoid creating this bottleneck, we spread the parity stripes over all the disks by
assigning them in round-robin style. To build a stripe set with parity, we need
a minimum of three equal-sized partitions located on three separate disks.

22.5.4.4 Disk Mirroring

An even more robust scheme is called disk mirroring or RAID level 1; it is
depicted in Figure 22.10. A mirror set comprises two equal-sized partitions
on two disks. When an application writes data to a mirror set, FtDisk writes
the data to both partitions, so that the data contents of the two partitions are
identical. If one partition fails, FtDisk has another copy safely stored on the
mirror. Mirror sets can also improve performance, because read requests can
be split between the two mirrors, giving each mirror half of the workload. To
protect against the failure of a disk controller, we can attach the two disks of a
mirror set to two separate disk controllers. This arrangement is called a duplex
set.

22.5.4.5 Sector Sparing and Cluster Remapping

To deal with disk sectors that go bad, FtDisk uses a hardware technique called
sector sparing, and NTFS uses a software technique called cluster remapping.
Sector sparing is a hardware capability provided by many disk drives. When
a disk drive is formatted, it creates a map from logical block numbers to good
sectors on the disk. It also leaves extra sectors unmapped, as spares. If a sector
fails, FtDisk instructs the disk drive to substitute a spare. Cluster remapping
is a software technique performed by the file system. If a disk block goes
bad, NTFS substitutes a different, unallocated block by changing any affected
pointers in the MFT. NTFS also makes a note that the bad block should never be
allocated to any file.
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When a disk block goes bad, the usual outcome is a data loss. But sector
sparing or cluster remapping can be combined with fault-tolerant volumes to
mask the failure of a disk block. If a read fails, the system reconstructs the
missing data by reading the mirror or by calculating the exclusive or parity
in a stripe set with parity. The reconstructed data are stored into a new location
that is obtained by sector sparing or cluster remapping.

22.5.5 Compression and Encryption

NTFS can perform data compression on individual files or on all data files in
a directory. To compress a file, NTFS divides the file's data into compression
units, which are blocks of 16 contiguous clusters. When each compression
unit is written, a data-compression algorithm is applied. If the result fits into
fewer than 16 clusters, the compressed version is stored. When reading, NTFS
can determine whether data have been compressed: If they have been, the
length of the stored compression unit is less than 16 clusters. To improve
performance when reading contiguous compression units, NTFS prefetches
and decompresses ahead of the application requests.

For sparse files or files that contain mostly zeros, NTFS uses another
technique to save space. Clusters that contain only zeros because they have
never been written are not actually allocated or stored on disk. Instead, gaps
are left in the sequence of virtual-cluster numbers stored in the MFT entry for
the file. When reading a file, if it finds a gap in the virtual-cluster numbers,
NTFS just zero-fills that portion of the caller's buffer. This technique is also used
by UNIX.

NTFS supports encryption of files. Individual files or entire directories can
be specified for encryption. The security system manages the keys used, and a
key-recovery service is available to retrieve lost keys.

22.5.6 Mount Points

Mount points are a form of symbolic link specific to directories on NTFS. They
provide a mechanism for administrators to organize disk volumes that is more
flexible than the use of global names (like drive letters). Mount points are
implemented as a symbolic link with associated data that contain the true
volume name. Ultimately, mount points will supplant drive letters completely,
but there will be a long transition due to the dependence of many applications
on the drive-letter scheme.

22.5.7 Change Journal

NTFS keeps a journal describing all changes that have been made to the
file system. User-mode services can receive notifications of changes to the
journal and then identify what files have changed. The content-indexing service
uses the change journal to identify files that need to be re-indexed. The file-
replication service uses it to identify files that need to be replicated across the
network.

22.5.8 Volume Shadow Copies

Windows XP implements the capability of bringing a volume to a known state
and then creating a shadow copy that can be used to back up a consistent view
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of the volume. Making a shadow copy of a volume is a form of copy-on-A'rite,
where blocks modified after the shadow copy is created have their original
contents stashed in the copy. To achieve a consistent state for the volume
requires the cooperation of applications, since the system cannot know when
the data used by the application are in a stable state from which the application
could be safely restarted.

The server version of Windows XP uses shadow copies to efficiently
maintain old versions of files stored on file servers. This allows users to see
documents stored on file servers as they existed at earlier points in time. The
user can use this feature to recover files that were accidentally deleted or simply
to look at a previous version of the file, all without pulling out a backup tape.

22.6 Networking

Windows XP supports both peer-to-peer and client-server networking. It
also has facilities for network management. The networking components in
Windows XP provide data transport, interprocess communication, file sharing
across a network, and the ability to send print jobs to remote printers.

22.6.1 Network Interfaces

To describe networking in Windows XP, we must first mention two of the
internal networking interfaces: the network device interface specification
(NDIS) and the transport driver interface (TDI). The NDIS interface was
developed in 1989 by Microsoft and 3Com to separate network adapters from
transport protocols so that either could be changed without affecting the other.
NDIS resides at the interface between the data-link-control and media-access-
control layers in the OSI model and enables many protocols to operate over
many different network adapters. In terms of the OSI model, the TDI is the
interface between the transport layer (layer 4) and the session layer (layer
5). This interface enables any session-layer component to use any available
transport mechanism. (Similar reasoning led to the streams mechanism in
UNIX.) The TDI supports both connection-based and connectionless transport
and has functions to send any type of data.

22.6.2 Protocols

Windows XP implements transport protocols as drivers. These drivers can be
loaded and unloaded from the system dynamically, although in practice the
system typically has to be rebooted after a change. Windows XP comes with
several networking protocols. Next, we discuss a number of the protocols
supported in Windows XP to provide a variety of network functionality.

22.6.2.1 Server-Message Block

The server-message-block (SMB) protocol was first introduced in MS-DOS 3.1.
The system uses the protocol to send I/O requests over the network. The
SMB protocol has four message types. The Session control messages are
commands that start and end a redirector connection to a shared resource at the
server. A redirector uses F i l e messages to access files at the server. The system
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uses P r in t e r messages to send data to a remote print queue and to receive
back status information, and the Message message is used to communicate
with another workstation. The SMB protocol was published as the Common
Internet File System (CIF5) and is supported on a number of operating systems.

22.6.2.2 Network Basic Input/Output System

The network basic input/output system (NetBIOS) is a hardware-abstraction
interface for networks, analogous to the BIOS hardware-abstraction interface
devised for PCs running MS-DOS. NetBIOS, developed in the early 1980s,
has become a standard network-programming interface. NetBIOS is used to
establish logical names on the network, to establish logical connections, or
sessions, between two logical names on the network, and to support reliable
data transfer for a session via either NetBIOS or SMB requests.

22.6.2.3 NetBIOS Extended User Interface

The NetBIOSextended user interface (NetBEUI) was introduced by IBM in
1985 as a simple, efficient networking protocol for up to 254 machines. It is
the default protocol for Windows 95 peer networking and for Windows for
Workgroups. Windows XP uses NetBEUI when it wants to share resources with
these networks, Among the limitations of NetBEUI are that it uses the actual
name of a computer as the address and that it does not support routing.

22.6.2.4 Transmission Control Protocol/Internet Protocol

The transmission control protocol/Internet protocol (TCP/IP) suite that is used
on the Internet has become the de facto standard networking infrastructure.
Windows XP uses TCP/IP to connect to a wide variety of operating systems
and hardware platforms. The Windows XP TCP/IP package includes the simple
network-management protocol (SNM), dynamic host-configuration protocol
(DHCP), Windows Internet name service (WINS), and NetBIOS support.

22.6.2.5 Point-to-Point Tunneling Protocol

The point-to-point tunneling protocol (PPTP) is a protocol provided by
Windows XP to communicate between remote-access server modules running
on Windows XP server machines and other client systems that are connected
over the Internet. The remote-access servers can encrypt data sent over the
connection, and they support multi-protocol virtual private networks (VPNs)
over the Internet.

22.6.2.6 Novell NetWare Protocols

The Novell NetWare protocols (IPX datagram service on the SPX transport layer)
are widely used for PC LANs. The Windows XP NWLink protocol connects
the NetBIOS to NetWare networks. In combination with a redirector (such
as Microsoft's Client Service for NetWare or Novell's NetWare Client for
Windows), this protocol enables a Windows XP client to connect to a NetWare
server.
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22.6.2.7 Web Distributed Authoring and Versioning Protocol

Web distributed authoring and versioning (VVebDAV) is an http-based protocol
for collaborative authoring across the network. Windows XP builds a WebDAV
redirector into the file system. By building WebDAV support directly into the
file system, it can work with other features, such as encryption. Personal files
can now be stored securely in a public place.

22.6.2.8 AppleTalk Protocol

The AppleTalk protocol was designed as a low-cost connection by Apple to
allow Macintosh computers to share files. Windows XP systems can share files
and printers with Macintosh computers via AppleTalk if a Windows XP server
on the network is running the Windows Services for Macintosh package.

22.6.3 Distributed-Processing Mechanisms

Although Windows XP is not a distributed operating system, it does support
distributed applications. Mechanisms that support distributed processing on
Windows XP include NetBIOS, named pipes and mailslots, Windows sockets,
RPCs, the Microsoft Interface Definition Language, and finally COM.

22.6.3.1 NetBIOS

In Windows XP, NetBIOS applications can communicate over the network using
NetBEUI, NWLink, or TCP/IP.

22.6.3.2 Named Pipes

Named pipes are a connection-oriented messaging mechanism. Named pipes
were originally developed as a high-level interface to NetBIOS connections over
the network. A process can also use named pipes to communicate with other
processes on the same machine. Since named pipes are accessed through the
file-system interface, the security mechanisms used for file objects also apply
to named pipes.

The name of a named pipe has a format called the uniform naming
convention (UNC). A UNC name looks like a typical remote file name. The
format of a UNC name is \ \serverjiame\sharejna me\x\y\z, where the
server_name identifies a server on the network; a sharejname identifies any
resource that is made available to network users, such as directories, files,
named pipes, and printers; and the \x\y\z part is a normal file path name.

22.6.3.3 Mailslots

Mailslots are a connectionless messaging mechanism. They are unreliable
when accessed across the network, in that a message sent to a mailslot may be
lost before the intended recipient receives it. Mailslots are used for broadcast
applications, such as finding components on the network; they are also used
by the Windows computer browser service.
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22.6.3.4 Winsock

Winsock is the Windows XP sockets API. Winsock is a session-layer interface
that is largely compatible with UNIX sockets but has some added Windows XP
extensions. It provides a standardized interface to many transport protocols
that may have different addressing schemes, so that any Winsock application
can run on any Winsock-compliant protocol stack.

22.6.3.5 Remote Procedure Calls

A remote procedure call (RPC) is a client-server mechanism that enables an
application on one machine to make a procedure call to code on another
machine. The client calls a local procedure—a stub routine—that packs its
arguments into a message and sends them across the network to a particular
server process. The client-side stub routine then blocks. Meanwhile, the server
unpacks the message, calls the procedure, packs the return results into a
message, and sends them back to the client stub. The client stub unblocks,
receives the message, unpacks the results of the RPC, and returns them to
the caller. This packing of arguments is sometimes called marshalling. The
Windows XP RPC mechanism follows the widely used distributed-computing-
environment standard for RPC messages, so programs written to use Windows
XP RPCs are highly portable. The RPC standard is detailed. It hides many of the
architectural differences among computers, such as the sizes of binary numbers
and the order of bytes and bits in computer words, by specifying standard data
formats for RPC messages.

Windows XP can send RPC messages using NetBIOS, or Winsock on TCP/IP
networks, or named pipes on LAN Manager networks. The LPC facility,
discussed earlier, is similar to RPC, except that in the case of LPC the messages
are passed between two processes running on the same computer.

22.6.3.6 Microsoft Interface Definition Language

It is tedious and error-prone to write the code to marshal and transmit
arguments in the standard format, to unmarshal and execute the remote
procedure, to marshal and send the return results, and to unmarshal and return
them to the caller. Fortunately, however, much of this code can be generated
automatically from a simple description of the arguments and return results.

Windows XP provides the Microsoft Interface Definition Language to
describe the remote procedure names, arguments, and results. The compiler
for this language generates header files that declare the stubs for the remote
procedures, as well as the data types for the argument and return-value
messages. It also generates source code for the stub routines used at the client
side and for an unmarshaller and dispatcher at the server side. When the
application is linked, the stub routines are included. When the application
executes the RPC stub, the generated code handles the rest.

22.6.3.7 Component Object Model

The component object model (COM) is a mechanism for interprocess commu-
nication that was developed for Windows. COM objects provide a well-defined
interface to manipulate the data in the object. For instance, COM is the infras-
tructure used by Microsoft's object linking and embedding (OLE) technology
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for inserting spreadsheets into Microsoft Word documents. Windows XP*has a
distributed extension called DCOM that can be used over a network utilizing
RFC to provide a transparent method of developing distributed applications.

22.6.4 Redirectors and Servers

In Windows XP, an application can use the Windows XP I/O API to access files
from a remote computer as though they were local, provided that the remote
computer is running a CIFS server, such as is provided by Windows XP or
earlier Windows systems. A redirector is the client-side object that forwards I/O
requests to remote files, where they are satisfied by a server. For performance
and security, the redirectors and servers run in kernel mode.

In more detail, access to a remote file occurs as follows:

1. The application calls the I/O manager to request that a file be opened with
a file name in the standard UNC format.

2. The I/O manager builds an I/O request packet, as described in Section
22.3.3.5.

3. The I/O manager recognizes that the access is for a remote file and calls a
driver called a multiple universal-naming- convention provider (MUP).

4. The MUP sends the I/O request packet asynchronously to all registered
redirectors.

5. A redirector that can satisfy the request responds to the MUP. To avoid
asking all the redirectors the same question in the future, the MUP uses a
cache to remember which redirector can handle this file.

6. The redirector sends the network request to the remote system.

7. The remote-system network drivers receive the request and pass it to the
server driver.

8. The server driver hands the request to the proper local file-system driver.

9. The proper device driver is called to access the data.

10. The results are returned to the server driver, which sends the data back
to the requesting redirector. The redirector then returns the data to the
calling application via the I/O manager.

A similar process occurs for applications that use the Win32 API network
API, rather than the UNC services, except that a module called a multi-provider
router is used instead of a MUP.

For portability, redirectors and servers use the TDI API for network
transport. The requests themselves are expressed in a higher-level protocol,
which by default is the SMB protocol mentioned in Section 22.6.2. The list of
redirectors is maintained in the system registry database.

22.6.4.1 Distributed File System

The UNC names are not always convenient, because multiple file servers may
be available to serve the same content, and UNC names explicitly include the
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name of the server. Windows XP supports a distributed file systenf (DFS)
protocol that allows a network administrator to serve up files from multiple
servers using a single distributed name space.

22.6.4.2 Folder Redirection and Client-Side Caching

To improve the PC experience for business users who frequently switch among
computers, Windows XP allows administrators to give users roaming profiles,
which keep users preferences and other settings on servers. Folder redirection
is then used to automatically store a user's documents and other files on a
server. This works well until one of the computers is no longer attached to
the network, such as a laptop on an airplane. To give users off-line access to
their redirected files, Windows XP uses client-side caching (CSC). CSC is used
when the computer is online to keep copies of the server files on the local
machine for better performance. The files are pushed up to the server as they
are changed. If the computer becomes disconnected, the files are still available,
and the update of the server is deferred until the next time the computer is
online with a suitably performing network link.

22.6.5 Domains

Many networked environments have natural groups of users, such as students
in a computer laboratory at school or employees in one department in a
business. Frequently, we want all the members of the group to be able to
access shared resources on their various computers in the group. To manage
the global access rights within such groups, Windows XP uses the concept of
a domain. Previously, these domains had no relationship whatsoever to the
domain-name system (DNS) that maps Internet host names to IP addresses.
Now, however, they are closely related.

Specifically, a Windows XP domain is a group of Windows XP workstations
and servers that share a common security policy and user database. Since
Windows XP now uses the Kerberos protocol for trust and authentication, a
Windows XP domain is the same thing as a Kerberos realm. Previous versions
of NT used the idea of primary and backup domain controllers; now all servers
in a domain are domain controllers. In addition, previous versions required
the setup of one-way trusts between domains. Windows XP uses a hierarchical
approach based on DNS and allows transitive trusts that can flow up and
down the hierarchy. This approach reduces the number of trusts required for
n domains from n * (n — 1) to O(«). The workstations in the domain trust the
domain controller to give correct information about the access rights of each
user (via the user's access token). All users retain the ability to restrict access
to their own workstations, no matter what any domain controller may say.

22.6.5.1 Domain Trees and Forests

Because a business may have many departments and a school may have
many classes, it is often necessary to manage multiple domains within a
single organization. A domain tree is a contiguous DNS naming hierarchy
for managing multiple domains. For example, bell-labs.com might be the root of
the tree, with research.bell-labs.com and pez.bell-labs.com as children—domains
research and pez. A forest is a set of noncontiguous names. An example would
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be the trees bell-lahs.com and/or lucent.com. A forest may be made up of only-
one domain tree, however.

22.6.5.2 Trust Relationships

Trust relationships may be set up between domains in three ways: one-way,
transitive, and cross-link. Versions of NT through 4.0 allowed only one-way
trusts. A one-way trust is exactly what its name implies: Domain A is told it
can trust domain B. However, B will not trust A tinless another relationship is
configured. Under a transitive trust, if A trusts B and B trusts C, then A, B, and
C all trust one another, since transitive trusts are two-way by default. Transitive
trusts are enabled by default for new domains in a tree and can be configured
only among domains within a forest. The third type, a cross-link trust, is useful
to cut down on authentication traffic. Suppose that domains A and B are leaf
nodes and that users in A often use resources in B. If a standard transitive trust
is used, authentication requests must traverse up to the common ancestor of
the two leaf nodes; but if A and B have a cross-linking trust established, the
authentications are sent directly to the other node.

22.6.6 Active Directory

Active Directory is the Windows XP implementation of lightweight directory-
access protocol (LDAP) services. Active Directory stores the topology infor-
mation about the domain, keeps the domain-based user and group accounts
and passwords, and provides a domain-based store for technologies like group
policies and intellimirror.

Administrators use group policies to establish standards for desktop
preferences and software. For many corporate information-technology groups,
uniformity drastically reduces the cost of computing. Intellimirror is used in
conjunction with group policies to specify what software should be available to
each class of user, even automatically installing it on demand from a corporate
server.

22.6.7 Name Resolution in TCP/IP Networks

On an IP network, name resolution is the process of converting a computer
name to an IP address, such as resolving zuivzv.bell-Iabs.com to 135.104.1.14.
Windows XP provides several methods of name resolution, including Win-
dows Internet name service (WINS), broadcast-name resolution, domain-name
system (DNS), a hosts file, and an LMHOSTS file. Most of these methods are used
by many operating systems, so we describe only WINS here.

Under WINS, two or more WINS servers maintain a dynamic database of
name-to-IP address bindings, along with client software to query the servers.
At least two servers are used, so that the WINS service can survive a server
failure and so that the name-resolution workload can be spread over multiple
machines.

WINS uses the dynamic host-configuration protocol (DHCP). DHCP updates
address configurations automatically in the WINS database, without user
or administrator intervention, as follows. When a DHCP client starts up, it
broadcasts a discover message. Each DHCP server that receives the message
replies with an offer message that contains an IP address and configuration
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information for the client. The client chooses one of the configurations and
sends a request message to the selected DHCP server. The DHCP server
responds with the IP address and configuration information it gave previously
and with a lease for that address. The lease gives the client the right to use the
IP address for a specified period of time. When the lease time is half expired, the
client attempts to renew the lease for the address. If the lease is not renewed,
the client must obtain a new one.

22.7 Programmer Interface

The Win32 API is the fundamental interface to the capabilities of Windows
XP. This section describes five main aspects of the Win32 API: access to
kernel objects, sharing of objects between processes, process management,
interprocess communication, and memory management.

22.7.1 Access to Kernel Objects

The Windows XP kernel provides many services that application programs
can use. Application programs obtain these services by manipulating ker-
nel objects. A process gains access to a kernel object named XXX by calling
the CreateXXX function to open a handle to XXX. This handle is unique to
the process. Depending on which object is being opened, if the Create()
function fails, it may return 0, or it may return a special constant named
INVALID _HANDLE_VALUE. A process can close any handle by calling the Close-
Handle () function, and the system may delete the object if the count of
processes using the object drops to 0.

22.7.2 Sharing Objects Between Processes

Windows XP provides three ways to share objects between processes. The first
way is for a child process to inherit a handle to the object. When the parent
calls the CreateXXX function, the parent supplies a SECURITIESJVTTRIBUTES
structure with the blnheritHandle field set to TRUE. This field creates an
inheritable handle. Next, the child process is created, passing a value of TRUE
to the CreateProcessO function's blnheritHandle argument. Figure 22.11
shows a code sample that creates a semaphore handle inherited by a child
process.

Assuming the child process knows which handles are shared, the parent
and child can achieve interprocess communication through the shared objects.
In the example in Figure 22.11, the child process gets the value of the handle
from the first command-line argument and then shares the semaphore with
the parent process.

The second way to share objects is for one process to give the object a name
when the object is created and for the second process to open the name. This
method has two drawbacks: Windows XP does not provide a way to check
whether an object with the chosen name already exists, and the object name
space is global, without regard to the object type. For instance, two applications
may create an object named pipe when two distinct—and possibly different—
objects are desired.
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SECURITY-ATTRIBUTES sa; »
sa.nlength = sizeof(sa);
sa.lpSecurityDescriptor = NULL;
sa.blnheritHandle = TRUE;
Handle a_semaphore = CreateSemaphore(&sa, 1, 1, NULL);
char comand-line [132] ;
ostrstream ostring (comraandJine, sizeof (command.-], ine) ) ;
ostring << a_semaphore << ends ;
CreateProcess ("another_process . exe", command_line,

NULL, NULL, TRUE, . . . ) ;

Figure 22.11 Code enabling a child to share an object by inheriting a handle.

Named objects have the advantage that unrelated processes can readily
share them. The first process calls one of the CreateXXX functions and supplies
a name in the lpszName parameter. The second process gets a handle to share
the object by calling OpenXXX () (or CreateXXX) with the same name, as shown
in the example of Figure 22.12.

The third way to share objects is via the DuplicateHandleO function.
This method requires some other method of interprocess communication to
pass the duplicated handle. Given a handle to a process and the value of a
handle within that process, a second process can get a handle to the same
object and thus share it. An example of this method is shown in Figure 22.13.

22.7.3 Process Management

In Windows XP, a process is an executing instance of an application, and
a thread is a unit of code that can be scheduled by the operating system.
Thus, a process contains one or more threads. A process is started when
some other process calls the CreateProcess() routine. This routine loads
any dynamic link libraries used by the process and creates a primary thread.
Additional threads can be created by the CreateThreadO function. Each
thread is created with its own stack, which defaults to 1 MB unless specified
otherwise in an argument to CreateThreadO. Because some C run-time
functions maintain state in static variables, such as errno, a multithread
application needs to guard against unsynchronized access. The wrapper
function beginthreadexO provides appropriate synchronization.

/ / Process A

HANDLE a_semaphore = CreateSemaphore(NULL, 1, 1, "MySEMl");

/ / Process B

HANDLE b_semaphore = OpenSemaphore (SEMAPHOREJ^LLJICCESS,
FALSE, "MySEMl");

Figure 22.12 Code for sharing an object by name lookup.
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// Process A wants to give Process B access to a semaphore

// Process A
HANDLE a.semaphore = CreateSemaphore(NULL, 1, 1, NULL);
// send the value of the semaphore to Process B
// using a message or shared memory object

/ / Process B
HANDLE process_a = OpenProcess (PROCESS J^LLJICCESS, FALSE,

process_id_of-A) ;
HANDLE b.semaphore;
DuplicateHandle(process_a, a_semaphore,

GetCurren tProcess ( ) , &b_semaphore,
0, FALSE, DUPLICATE_SAME_ACCESS) ;

/ / use b.semaphore to access the semaphore

Figure 22.13 Code for sharing an object by passing a handle.

22.7.3.1 Instance Handles

Every dynamic link library or executable file loaded into the address space of
a process is identified by an instance handle. The value of the instance handle
is actually the virtual address where the file is loaded. An application can get
the handle to a module in its address space by passing the name of the module
to GetModuleHandleO. If NULL is passed as the name, the base address of
the process is returned. The lowest 64 KB of the address space are not used,
so a faulty program that tries to de-reference a NULL pointer gets an access
violation.

Priorities in the Win32 API environment are based on the Windows XP
scheduling model, but not all priority values may be chosen. Win32 API uses
four priority classes:

1. IDLE_PRIORITY_CLASS (priority level 4)

2. NORMAL_PRIORITY_CLASS (priority level 8)

3. HIGH_PRIQRITY_CLASS (priority level 13)

4. REALTIME_PRIORITY_CLASS (priority level 24)

Processes are typically members of the NORMALJPRIORITY_CLASS unless the
parent of the process was of the IDLE_PRIORITY_CLASS or another class was
specified when CreateProcess was called. The priority class of a process
can be changed with the Se tPr io r i tyClassO function or by passing of
an argument to the START command. For example, the command START
/REALTIME cbserver.exe would run the cbserver program in the REAL-
TIMEJPRIORITY_CLASS. Only users with the increase scheduling priority privilege
can move a process into the REALTIME-PRIORITY XLASS. Administrators and
power users have this privilege by default.
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22.7.3.2 Scheduling Rule f

When a user is running an interactive program, the system needs to provide
especially good performance for the process. For this reason, Windows XP has a
special scheduling rule for processes in the NORMAL .PRIORITY-CLASS. Windows
XP distinguishes between the foreground process that is currently selected on
the screen and the background processes that are not currently selected. When
a process moves into the foreground, Windows XP increases the scheduling
quantum by some factor—typically by 3. (This factor can be changed via the
performance option in the system section of the control panel.) This increase
gives the foreground process three times longer to run before a time-sharing
preemption occurs.

22.7.3.3 Thread Priorities

A thread starts with an initial priority determined by its class. The priority
can be altered by the S e t T h r e a d P r i o r i t y O function. This function takes an
argument that specifies a priority relative to the base priority of its class:

• THREAD_PRIORITY_LDWEST: base - 2

• THREAD PRIORITY JELOW JJORMAL: base - 1

• THREAD_PRIORITYJJORMAL: base 4- 0

• THREAD_PRIORITY_ABOVE_NORMAL: base + 1

• THREAD_PRIORITY_HIGHEST:base + 2

Two other designations are also used to adjust the priority. Recall from
Section 22.3.2.1 that the kernel has two priority classes: 16-31 for the real-
time class and 0-15 for the variable-priority class. THREADJPRIORITY_IDLE sets
the priority to 16 for real-time threads and to 1 for variable-priority threads.
THREADJPRIORITY_TIME_CRITICAL sets the priority to 31 for real-time threads
and to 15 for variable-priority threads.

As we discussed in Section 22.3.2.1, the kernel adjusts the priority of a
thread dynamically depending on whether the thread is I/O bound or CPU
bound. The Win32 API provides a method to disable this adjustment via
SetProcessPriorityBoost () and SetThreadPriorityBoostQ functions.

22.7.3.4 Thread Synchronization

A thread can be created in a suspended state; the thread does not execute
until another thread makes it eligible via the ResumeThreadO function. The
SuspendThreadO function does the opposite. These functions set a counter,
so if a thread is suspended twice, it must be resumed twice before it can run.
To synchronize the concurrent access to shared objects by threads, the kernel
provides synchronization objects, such as semaphores and mutexes.

In addition, synchronization of threads can be achieved by use of the Wait-
ForSingleObjectQ and WaitForMultipleObjectsQ functions. Another
method of synchronization in the Win32 API is the critical section. A critical
section is a synchronized region of code that can be executed by only one thread
at a time. A thread establishes a critical section by calling I n i t i a l i z e C r i t -
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icalSection(). The application must call EnterCriticalSectionQ hefore
entering the critical section and LeaveCriticalSectionO after exiting the
critical section. These two routines guarantee that, if multiple threads attempt
to enter the critical section concurrently, only one thread at a time will be permit-
ted to proceed; the others will wait in the EnterCriticalSectionO routine.
The critical-section mechanism is faster than using kernel-synchronization
objects because it does not allocate kernel objects until it first encounters
contention for the critical section.

22.7.3.5 Fibers

A fiber is user-mode code that is scheduled according to a user-defined
scheduling algorithm. A process may have multiple fibers in it, just as it may
have multiple threads. A major difference between threads and fibers is that
whereas threads can execute concurrently, only one fiber at a time is permitted
to execute, even on multiprocessor hardware. This mechanism is included in
Windows XP to facilitate the porting of those legacy UNIX applications that
were written for a fiber-execution model.

The system creates a fiber by calling either ConvertThreadToFiberQ
or CreateFiber(). The primary difference between these functions is that
CreateFiber () does not begin executing the fiber that was created. To begin
execution, the application must call SwitchToFiberO. The application can
terminate a fiber by calling DeleteFiber ().

22.7.3.6 Thread Pool

Repeated creation and deletion of threads can be expensive for applications
and services that perform small amounts of work in each. The thread pool
provides user-mode programs with three services: a queue to which work
requests may be submitted (via the QueueUserWorkltemQ API), an API that
can be used to bind callbacks to waitable handles (RegisterWaitForSin-
gleObject ()), and APIs to bind callbacks to timeouts (CreateTimerQueueO
and CreateTimerQueueTimerO).

The thread pool's goal is to increase performance. Threads are relatively
expensive, and a processor can only be executing one thing at a time no matter
how many threads are used. The thread pool attempts to reduce the number of
outstanding threads by slightly delaying work requests (reusing each thread
for many requests) while providing enough threads to effectively utilize the
machine's CPUs. The wait and timer-callback APIs allow the thread pool to
further reduce the number of threads in a process, using far fewer threads than
would be necessary if a process were to devote one thread to servicing each
waitable handle or timeout.

22.7.4 Interprocess Communication

Win32 API applications handle interprocess communication in several ways.
One way is by sharing kernel objects. Another way is by passing messages,
an approach that is particularly popular for Windows GUI applications. One
thread can send a message to another thread or to a window by calling
PostMessageO, PostThreadMessageO, SendMessageQ, SendThreadMes-
sageO, or SendMessageCallbackQ. The difference between posting a mes-
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sage and sending a message is that the post routines are asynchronous? They
return immediately, and the calling thread does not know when the message
is actually delivered. The send routines are synchronous: They block the caller
until the message has been delivered and processed.

In addition to sending a message, a thread can send data with the message.
Since processes have separate address spaces, the data must be copied. The
system copies data by calling SendMessageO to send a message of type
WM_COPYDATA with a COPYDATASTRUCT data structure that contains the length
and address of the data to be transferred. When the message is sent, Windows
XP copies the data to a new block of memory and gives the virtual address of
the new block to the receiving process.

Unlike threads in the 16-bit Windows environment, every Win32 API thread
has its own input queue from which it receives messages. (All input is received
via messages.) This structure is more reliable than the shared input queue of
16-bit Windows, because, with separate queues, it is no longer possible for
one stuck application to block input to the other applications. If a Win32 API
application does not call GetMessage () to handle events on its input queue, the
queue fills up; and after about five seconds, the system marks the application
as "Not Responding".

22.7.5 Memory Management

The Win32 API provides several ways for an application to use memory: virtual
memory, memory-mapped files, heaps, and thread-local storage.

22.7.5.1 Virtual Memory

An application calls Vir tualAlloc () to reserve or commit virtual memory and
Vir tua lFreeO to decommit or release the memory. These functions enable
the application to specify the virtual address at which the memory is allocated.
They operate on multiples of the memory page size, and the starting address of
an allocated region must be greater than 0x10000. Examples of these functions
appear in Figure 22.14.

A process may lock some of its committed pages into physical memory
by calling VirtualLockO. The maximum number of pages a process can lock

// allocate 16 MB at the top of our address space

void *buf = VirtualAlloc (0, OxlQOQCOC, MEMJIESERVE | MEM_TOP_DOWN,

PAGEJREADWRITE) ;

// commit the upper 8 MB of the a l l o c a t e d space

Vi r tua lAl loc (buf + 0x800000, 0x800000, MEM_COMMIT, PAGE_READWRITE)

/ / do something with the memory

// now decommit the memory

Vi r tua lFree (buf + 0x800000, 0x800000, MEMJ3ECOMMIT);

// release a l l of the allocated address space

VirtualFree (buf, 0, MEM-RELEASE) ,-

Figure 22.14 Code fragments for allocating virtual memory.
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is 30, unless the process first calls SetProcessWorkingSetSizeO to increase
the maximum working-set size.

22.7.5.2 Memory-Mapping Files

Another way for an application to use memory is by memory-mapping a file
into its address space. Memory mapping is also a convenient way for two
processes to share memory: Both processes map the same file into their virtual
memory Memory mapping is a multistage process, as you can see in the
example in Figure 22.15.

If a process wants to map some address space just to share a memory
region with another process, no file is needed. The process calls Create-
FileMappingO with a file handle of Oxffffffff and a particular size. The
resulting file-mapping object can be shared by inheritance, by name lookup, or
by duplication.

22.7.5.3 Heaps

Heaps provide a third way for applications to use memory. A heap in the Win32
environment is a region of reserved address space. When a Win32 API process
is initialized, it is created with a 1-MB default heap. Since many Win32 API
functions use the default heap, access to the heap is synchronized to protect
the heap's space-allocation data structures from being damaged by concurrent
updates by multiple threads.

Win32 API provides several heap-management functions so that a
process can allocate and manage a private heap. These functions are
HeapCreateQ, HeapAllocO, HeapReallocO, HeapSizeO, HeapFreeQ,
and HeapDestroyC). The Win32 API also provides the HeapLockO and
HeapUnlockO functions to enable a thread to gain exclusive access to a heap.
Unlike VirtualLockO, these functions perform only synchronization; they
do not lock pages into physical memory.

// open the file or create it if it does not exist

HANDLE hfile = CreateFile ("somef ile" , GENERICJIEAD | GENERIC.WRITE,

FILE_SHAREJREAD | FILE.SHARE.WRITE, NULL,
OPENJVLWAYS, FILE_ATTRIBUTE_NORMAL, NULL) ;

// create the file mapping 8 MB in size
HANDLE hmap = CreateFileMapping(hfile, PAGE_READWRITB,

SEC_COMMIT, 0, 0x800000, " SHM_1") ;
// new get a view of the space mapped
void *buf = MapViewOfFile(hmap, FILEJ1APJ\LL.ACCESS,

0, 0, C, 0x800000);

// do something with the mapped file

// now unmap the file

UnMapViewOfFile(buf);

CloseHandle(hmap);

CloseHandle(hfile);

Figure 22.15 Code fragments for memory mapping of a file.
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//* reserve a slot for a variable *
DWORD var_index = TlsAllocO;
// set it to the value 10
TlsSetValue (var.index, 10);
// get the value
int var TlsGetValue (var.index) ;
// release the index
TlsFree (var.index) ;

Figure 22.16 Code for dynamic thread-local storage.

22.7.5.4 Thread-Local Storage

The fourth way for applications to use memory is through a thread-local
storage mechanism. Functions that rely on global or static data typically fail
to work properly in a multithreaded environment. For instance, the C run-
time function s t r t o k O uses a static variable to keep track of its current
position while parsing a string. For two concurrent threads to execute s t r t o k ()
correctly, they need separate current position variables. The thread-local storage
mechanism allocates global storage on a per-thread basis. It provides both
dynamic and static methods of creating thread-local storage. The dynamic
method is illustrated in Figure 22.16.

To use a thread-local static variable, the application declares the variable
as follows to ensure that every thread has its own private copy:

..declspec (thread) DWORD cur _pos = 0;

22.8 Summary

Microsoft designed Windows XP to be an extensible, portable operating system
—one able to take advantage of new techniques and hardware. Windows XP
supports multiple operating environments and symmetric multiprocessing,
including both 32-bit and 64-bit processors and NUMA computers. The use of
kernel objects to provide basic services, along with support for client-server
computing, enables Windows XP to support a wide variety of application
environments. For instance, Windows XP can run programs compiled for
MS-DOS, Windowsl6, Windows 95, Windows XP, and POSIX. It provides
virtual memory, integrated caching, and preemptive scheduling. Windows XP
supports a security model stronger than those of previous Microsoft operating
systems and includes internationalization features. Windows XP runs on a
wide variety of computers, so users can choose and upgrade hardware to
match their budgets and performance requirements without needing to alter
the applications they run.

Exercises

22.1 Under what circumstances would one use the deferred procedure calls
facility in Windows XP?
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22.2 What is a handle, and how does a process obtain a handle? *

22.3 Describe the management scheme of the virtual memory manager. How
does the VM manager improve performance?

22.4 Describe a useful application of the no-access page facility provided in
Windows XP.

22.5 The IA64 processors contain registers that can be used to address a
64-bit address space. However, Windows XP limits the address space of
user programs to 8 TB, which corresponds to 43 bits' worth. Why was
this decision made?

22.6 Describe the three techniques used for communicating data in a local
procedure call. What different settings are most conducive to the
application of the different message-passing techniques?

22.7 What manages cache in Windows XP? How is cache managed?

22.8 What is the purpose of the Winl6 execution environment? What
limitations are imposed on the programs executing inside this environ-
ment? What are the protection guarantees provided between different
applications executing inside the Windows 16 environment? What are
the protection guarantees provided between an application executing
inside the Windowsl6 environment and a 32-bit application?

22.9 Describe two user-mode processes that Windows XP provides to enable
it to run programs developed for other operating systems.

22.10 How does the NTFS directory structure differ from the directory
structure used in Unix operating systems?

22.11 What is a process, and how is it managed in Windows XP?

22.12 What is the fiber abstraction provided by Windows XP? How does it
differ from the threads abstraction?
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Now that you understand the fundamental concepts of operating systems (CPU
scheduling, memory management, processes, and so on), we are in a position
to examine how these concepts have been applied in several older and highly
influential operating systems. Some of them (such as the XDS-940 and the THE
system) were one-of-a-kind systems; others (such as OS/360) are widely used.
The order of presentation highlights the similarities and differences of the
systems; it is not strictly chronological or ordered by importance. The serious
student of operating systems should be familiar with all these systems.

As we describe early systems, we include references to further reading.
The papers, written by the designers of the systems, are important both for
their technical content and for their style and flavor.

23.1 Early Systems

Early computers were physically enormous machines run from a console. The
programmer, who was also the operator of the computer system, would write
a program and then would operate the program directly from the operator's
console. First, the program would be loaded manually into memory from the
front panel switches (one instruction at a time), from paper tape, or from
punched cards. Then, the appropriate buttons would be pushed to set the
starting address and to start the execution of the program. As the program ran,
the programmer/operator could monitor its execution by the display lights on
the console. If errors were discovered, the programmer could halt the program,
examine the contents of memory and registers, and debug the program directly
from the console. Output was printed or was punched onto paper tape or cards
for later printing.

23.1.1 Dedicated Computer Systems

As time went on, additional software and hardware were developed. Card
readers, line printers, and magnetic tape became commonplace. Assemblers,
loaders, and linkers were designed to ease the programming task. Libraries
of common functions were created. Common functions could then be copied
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into a new program without having to be written again, providing software
reusability.

The routines that performed I/O were especially important. Each new I/O
device had its own characteristics, requiring careful programming. A special
subroutine—called a device driver—was written for each I/O device. A device
driver knows how the buffers, flags, registers, control bits, and status bits for
a particular device should be used. Each type of device has its own driver.
A simple task, such as reading a character from a paper-tape reader, might
involve complex sequences of device-specific operations. Rather than writing
the necessary code every time, the device driver was simply used from the
library.

Later, compilers for FORTRAN, COBOL, and other languages appeared,
making the programming task much easier but the operation of the computer
more complex. To prepare a FORTRAN program for execution, for example,
the programmer would first need to load the FORTRAN compiler into the
computer. The compiler was normally kept on magnetic tape, so the proper
tape would need to be mounted on a tape drive. The program would be read
through the card reader and written onto another tape. The FORTRAN compiler
produced assembly-language output, which then needed to be assembled. This
procedure required mounting another tape with the assembler. The output of
the assembler would need to be linked to supporting library routines. Finally,
the binary object form of the program would be ready to execute. It could be
loaded into memory and debugged from the console, as before.

A significant amount of set-up time could be involved in the running of a
job. Each job consisted of many separate steps:

1. Loading the FORTRAN compiler tape

2. Running the compiler

3. Unloading the compiler tape

4. Loading the assembler tape

5. Running the assembler

6. Unloading the assembler tape

7. Loading the object program

8. Running the object program

If an error occurred during any step, the programmer/operator might have
to start over at the beginning. Each job step might involve the loading and
unloading of magnetic tapes, paper tapes, and punch cards.

The job set-up time was a real problem. While tapes were being mounted
or the programmer was operating the console, the CPU sat idle. Remember that,
in the early days, few computers were available, and they were expensive. A
computer might have cost millions of dollars, not including the operational
costs of power, cooling, programmers, and so on. Thus, computer time was
extremely valuable, and owners wanted their computers to be used as much
as possible. They needed high utilization to get as much as they could from
their investments.
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23.1.2 Shared Computer Systems ?

The solution was two-fold. First, a professional computer operator was hired.
The programmer no longer operated the machine. As soon as one job was
finished, the operator could start the next. Since the operator had more
experience with mounting tapes than a programmer, set-up time was reduced.
The programmer provided whatever cards or tapes were needed, as well as a
short description of how the job was to be run. Of course, the operator could
not debug an incorrect program at the console, since the operator would not
understand the program. Therefore, in the case of program error, a dump of
memory and registers was taken, and the programmer had to debug from the
dump. Dumping the memory and registers allowed the operator to continue
immediately with the next job but left the programmer with the more difficult
debugging problem.

Second, jobs with similar needs were batched together and run through the
computer as a group to reduce set-up time. For instance, suppose the operator
received one FORTRAN job, one COBOL job, and another FORTRAN job. If she ran
them in that order, she would have to set up for FORTRAN (load the compiler
tapes and so on), then set up for COBOL, and then set up for FORTRAN again. If
she ran the two FORTRAN programs as a batch, however, she could set up only
once for FORTRAN, saving operator time.

But there were still problems. For example, when a job stopped, the
operator would have to notice that it had stopped (by observing the console),
determine why it stopped (normal or abnormal termination), dump memory
and register (if necessary), load the appropriate device with the next job, and
restart the computer. During this transition from one job to the next, the CPU
sat idle.

To overcome this idle time, people developed automatic job sequencing;
with this technique, the first rudimentary operating systems were created.
A small program, called a resident monitor, was created to transfer control
automatically from one job to the next (Figure 23.1). The resident monitor is
always in memory (or resident).

monitor -<

loader

job sequencing

control card
interpreter

user
program

area

Figure 23.1 Memory layout for a resident monitor.



842 Chapter 23 Influential Operating Systems

When the computer was turned on, the resident monitor was invoked,
and it would transfer control to a program. When the program terminated, it
would return control to the resident monitor, which would then go on to the
next program. Thus, the resident monitor would automatically sequence from
one program to another and from one job to another.

But how would the resident monitor know which program to execute?
Previously, the operator had been given a short description of what programs
were to be run on what data. Control cards were introduced to provide this
information directly to the monitor. The idea is simple: In addition to the
program or data for a job, the programmer included the control cards, which
contained directives to the resident monitor indicating what program to run.
For example, a normal user program might reqtiire one of three programs to
run: the FORTRAN compiler (FTN), the assembler (ASM), or the user's program
(RUN). We could use a separate control card for each of these:

$FTN—Execute the FORTRAN compiler.
$ASM—Execute the assembler.
$RUN<—Execute the user program.

These cards tell the resident monitor which programs to run.
We can use two additional control cards to define the boundaries of each

job:

$JOB—First card of a job
$END—Final card of a job

These two cards might be useful in accounting for the machine resources used
by the programmer. Parameters can be used to define the job name, account
number to be charged, and so on. Other control cards can be defined for other
functions, such as asking the operator to load or unload a tape.

One problem with control cards is how to distinguish them from data or
program cards. The usual solution is to identify them by a special character or
pattern on the card. Several systems used the dollar-sign character ($) in the
first column to identify a control card. Others used a different code. IBM's Job
Control Language (JCL) used slash marks ( / / ) in the first two columns. Figure
23.2 shows a sample card-deck setup for a simple batch system.

A resident monitor thus has several identifiable parts:

• The control-card interpreter is responsible for reading and carrying out
the instructions on the cards at the point of execution.

• The loader is invoked by the control-card interpreter to load system
programs and application programs into memory at intervals.

• The device drivers are used by both the control-card interpreter and the
loader for the system's I/O devices to perform I/O. Often, the system and
application programs are linked to these same device drivers, providing
continuity in their operation, as well as saving memory space and
programming time.
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Figure 23.2 Card deck for a simple batch system.

These batch systems work fairly well. The resident monitor provides
automatic job sequencing as indicated by the control cards. When a control
card indicates that a program is to be run, the monitor loads the program
into memory and transfers control to it. When the program completes, it
transfers control back to the monitor, which reads the next control card, loads
the appropriate program, and so on. This cycle is repeated until all control
cards are interpreted for the job. Then, the monitor automatically continues
with the next job.

The switch to batch systems with automatic job sequencing was made
to improve performance. The problem, quite simply, is that humans are
considerably slower than the computer. Consequently, it is desirable to replace
human operation with operating-system software. Automatic job sequencing
eliminates the need for human set-up time and job sequencing.

As was pointed out above, however, even with this arrangement, the CPU
is often idle. The problem is the speed of the mechanical I/O devices, which
are intrinsically slower than electronic devices. Even a slow CPU works in the
microsecond range, with thousands of instructions executed per second. A
fast card reader, in contrast, might read 1,200 cards per minute (or 20 cards per
second). Thus, the difference in speed between the CPU and its I/O devices may
be three orders of magnitude or more. Over time, of course, improvements in
technology resulted in faster I/O devices. Unfortunately, CPU speeds increased
even faster, so that the problem was not only unresolved but also exacerbated.

23.1.3 Overlapped I/O

One common solution to the I/O problem was to replace slow card readers
(input devices) and line printers (output devices) with magnetic-tape units.
The majority of computer systems in the late 1950s and early 1960s were batch
systems reading from card readers and writing to line printers or card punches.
Rather than have the CPU read directly from cards, however, the cards were
first copied onto a magnetic tape via a separate device. When the tape was
sufficiently full, it was taken down and carried over to the computer. When a
card was needed for input to a program, the equivalent record was read from
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Figure 23.3 Operation of I/O devices (a) online and (b) off-line.

the tape. Similarly, output was written to the tape, and the contents of the tape
were printed later. The card readers and line printers were operated off-line,
rather than by the main computer (Figure 23.3).

An obvious advantage of off-line operation was that the main computer
was no longer constrained by the speed of the card readers and line printers
but was limited only by the speed of the much faster magnetic tape units.
The technique of using magnetic tape for all I/O could be applied with any
similar equipment (such as card readers, card punches, plotters, paper tape,
and printers).

The real gain in off-line operation comes from the possibility of using
multiple reader-to-tape and tape-to-printer systems for one CPU. If the CPU
can process input twice as fast as the reader can read cards, then two readers
working simultaneously can produce enough tape to keep the CPU busy. There
is a disadvantage, too, however—a longer delay in getting a particular job run.
The job must first be read onto tape. Then, it must wait until enough other jobs
are read onto the tape to "fill" it. The tape must then be rewound, unloaded,
hand-carried to the CPU, and mounted on a free tape drive. This process is not
unreasonable for batch systems, of course. Many similar jobs can be batched
onto a tape before it is taken to the computer.

Although off-line preparation of jobs continued for some time, it was
quickly replaced in most systems. Disk systems became widely available and
greatly improved on off-line operation. The problem with tape systems was
that the card reader could not write onto one end of the tape while the CPU
read from the other. The entire tape had to be written before it was rewound
and read, because tapes are by nature sequential-access devices. Disk systems
eliminated this problem by being random-access devices. Because the head is
moved from one area of the disk to another, a disk can switch rapidly from
the area on the disk being used by the card reader to store new cards to the
position needed by the CPU to read the "next" card.

In a disk system, cards are read directly from the card reader onto the
disk. The location of card images is recorded in a table kept by the operating
system. When a job is executed, the operating system satisfies its requests for
card-reader input by reading from the disk. Similarly, when the job requests the
printer to output a line, that line is copied into a system buffer and is written
to the disk. When the job is completed, the output is actually printed. This
form of processing is called spooling (Figure 23.4); the name is an acronym for
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disk

card reader line printer

Figure 23.4 Spooling.

simultaneous peripheral operation on-line. Spooling, in essence, uses the disk
as a huge buffer for reading as far ahead as possible on input devices and for
storing output files until the output devices are able to accept them.

Spooling is also used for processing data at remote sites. The CPU sends
the data via communication paths to a remote printer (or accepts an entire
input job from a remote card reader). The remote processing is done at its own
speed, with no CPU intervention. The CPU just needs to be notified when the
processing is completed, so that it can spool the next batch of data.

Spooling overlaps the I/O of one job with the computation of other jobs.
Even in a simple system, the spooler may be reading the input of one job while
printing the output of a different job. During this time, still another job (or
other jobs) may be executed, reading its "cards" from disk and "printing" its
output lines onto the disk.

Spooling has a direct beneficial effect on the performance of the system.
For the cost of some disk space and a few tables, the computation of one job
can overlap with the I/O of other jobs. Thus, spooling can keep both the CPU
and the I/O devices working at much higher rates. Spooling leads naturally to
multiprogramming, which is the foundation of all modern operating systems.

23.2 Atlas

The Atlas operating system (Kilburn et al. [1961], Howarth et al. [1961]) was
designed at the University of Manchester in England in the late 1950s and
early 1960s. Many of its basic features that were novel at the time have become
standard parts of modern operating systems. Device drivers were a major
part of the system. In addition, system calls were added by a set of special
instructions called extra codes.

Atlas was a batch operating system with spooling. Spooling allowed the
system to schedule jobs according to the availability of peripheral devices, such
as magnetic tape units, paper tape readers, paper tape punches, line printers,
card readers, and card punches.
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The most remarkable feature of Atlas, however, was its memory manage-
ment. Core memory was new and expensive at the time. Many computers,
like the IBM 650, used a drum for primary memory. The Atlas system used a
drum for its main memory, but it had a small amount of core memory that was
used as a cache for the drum. Demand paging was used to transfer information
between core memory and the drum automatically.

The Atlas system used a British computer with 48-bit words. Addresses
were 24 bits but were encoded in decimal, which allowed only 1 million words
to be addressed. At that time, this was an extremely large address space. The
physical memory for Atlas was a 98-KB-word drum and 16-KB words of core.
Memory was divided into 512-word pages, providing 32 frames in physical
memory. An associative memory of 32 registers implemented the mapping
from a virtual address to a physical address.

If a page fault occurred, a page-replacement algorithm was invoked. One
memory frame was always kept empty, so that a drum transfer could start
immediately. The page-replacement algorithm attempted to predict future
memory-accessing behavior based on past behavior. A reference bit for each
frame was set whenever the frame was accessed. The reference bits were read
into memory every 1,024 instructions, and the last 32 values of these bits were
retained. This history was used to define the time since the most recent reference
(h) and the interval between the last two references (t2). Pages were chosen for
replacement in the following order:

1. Any page with t\ > t2 + 1. Such a page is considered to be no longer in
use.

2. If fi < h for all pages, then replace the page with the largest f2 — fi.

The page-replacement algorithm assumes that programs access memory in
loops. If the time between the last two references is t2, then another reference is
expected fc time units later. If a reference does not occur (t\ > t2), it is assumed
that the page is no longer being used, and the page is replaced. If all pages
are still in use, then the page that will not be needed for the longest time is
replaced. The time to the next reference is expected to be to — h.

23.3 XDS-940

The XDS-940 operating system (Lichtenberger and Pirtle [1965]) was designed
at the University of California at Berkeley. Like the Atlas system, it used paging
for memory management. Unlike the Atlas system, it was a time-shared system.

The paging was used only for relocation; it was not used for demand
paging. The virtual memory of any user process was made up of 16-KB words,
whereas the physical memory was made up of 64-KB words. Each page was
made up of 2-KB words. The page table was kept in registers. Since physical
memory was larger than virtual memory, several user processes could be in
memory at the same time. The number of users could be increased by sharing
of pages when the pages contained read-only reentrant code. Processes were
kept on a drum and were swapped in and out of memory as necessary.
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The XDS-940 system was constructed from a modified XDS-93Q. The^mod-
ifications were typical of the changes made to a basic computer to allow an
operating system to be written properly. A user-monitor mode was added.
Certain instructions, such as I/O and halt, were defined to be privileged. An
attempt to execute a privileged instruction in user mode would trap to the
operating system.

A system-call instruction was added to the user-mode instruction set.
This instruction was used to create new resources, such as files, allowing the
operating system to manage the physical resources. Files, for example, were
allocated in 256-word blocks on the drum. A bit map was used to manage
free drum blocks. Each file had an index block with pointers to the actual data
blocks. Index blocks were chained together.

The XDS-940 system also provided system calls to allow processes to create,
start, suspend, and destroy subprocesses. A programmer could construct a
system of processes. Separate processes could share memory for communica-
tion and synchronization. Process creation defined a tree structure, where a
process is the root and its subprocesses are nodes below it in the tree. Each of
the subprocesses could, in turn, create more subprocesses.

23.4 THE

The THE operating system (Dijkstra [1968], McKeag and Wilson [1976]) was
designed at the Technische Hogeschool at Eindhoven in the Netherlands. It
was a batch system running on a Dutch computer, the EL X8, with 32 KB of
27-bit words. The system was mainly noted for its clean design, particularly
its layer structure, and its use of a set of concurrent processes employing
semaphores for synchronization.

Unlike the XDS-940 system, however, the set of processes in the THE system
was static. The operating system itself was designed as a set of cooperating
processes. In addition, five user processes were created that served as the
active agents to compile, execute, and print user programs. When one job was
finished, the process would return to the input queue to select another job.

A priority CPU-scheduling algorithm was used. The priorities were recom-
puted every 2 seconds and were inversely proportional to the amount of CPU
time used recently (in the last 8 to 10 seconds). This scheme gave higher priority
to 1/O-bound processes and to new processes.

Memory management was limited by the lack of hardware support. How-
ever, since the system was limited and user programs could be written only in
Algol, a software paging scheme was used. The Algol compiler automatically
generated calls to system routines, wrhich made sure the requested information
was in memory, swapping if necessary. The backing store was a 512-KB-word
drum. A 512-word page was used, with an L.RU page-replacement strategy.

Another major concern of the THE system was deadlock control. The
banker's algorithm was used to provide deadlock avoidance.

Closely related to the THE system is the Venus system (Liskov [1972]). The
Venus system was also a layer-structured design, using semaphores to synchro-
nize processes. The lower levels of the design were implemented in microcode,
however, providing a much faster system. The memory management was
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changed to a paged-segmented memory. The system was also designed as
a time-sharing system/ rather than a batch system.

23.5 RC 4000

The RC 4000 system, like the THE system, was notable primarily for its design
concepts. It was designed for the Danish 4000 computer by Regnecentralen,
particularly by Brinch-Hansen (Brinch-Hansen [1970], BrindvHansen [1973]).
The objective was not to design a batch system, or a time-sharing system, or
any other specific system. Rather, the goal was to create an operating-system
nucleus, or kernel, on which a complete operating system could be built. Thus,
the system structure was layered, and only the lower levels—comprising the
kernel—were provided.

The kernel supported a collection of concurrent processes. A round-robin
CPU scheduler was used. Although processes could share memory, the primary
communication and synchronization mechanism was the message system
provided by the kernel. Processes could communicate with each other by
exchanging fixed-sized messages of eight words in length. All messages were
stored in buffers from a common buffer pool. When a message buffer was no
longer required, it was returned to the common pool.

A message queue was associated with each process. It contained all the
messages that had been sent to that process but had not yet been received.
Messages were removed from the queue in FIFO order. The system supported
four primitive operations, which were executed atomically:

• send-message (in receiver, in message, out buffer)

• wait-message (out sender, out message, out buffer)

• send-answer (out result, in message, in buffer)

• wait-answer (out result, out message, in buffer)

The last two operations allowed processes to exchange several messages at a
time.

These primitives required that a process service its message queue in
FIFO order and that it block itself while other processes were handling its
messages. To remove these restrictions, the developers provided two additional
communication primitives that allowed a process to wait for the arrival of the
next message or to answer and service its queue in any order:

• wait-event (in previous-buffer, out next-buffer, out result)

• get-event (out buffer)

I/O devices were also treated as processes. The device drivers were code
that converted the device interrupts and registers into messages. Thus, a
process would write to a terminal by sending that terminal a message. The
device driver would receive the message and output the character to the
terminal. An input character would interrupt the system and transfer to
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a device driver. The device driver would create a message from the^input
character and send it to a waiting process.

23.6 CTSS

The Compatible Time-Sharing System (CTSS) (Corbato et al. [1962]) was
designed at MIT as an experimental time-sharing system. It was implemented
on an IBM 7090 and eventually supported up to 32 interactive users. The
users were provided with a set of interactive commands that allowed them
to manipulate files and to compile and run programs through a terminal.

The 7090 had a 32-KB memory made up of 36-bit words. The monitor used
5-KB words, leaving 27 KB for the users. User memory images were swapped
between memory and a fast drum. CPU scheduling employed a multilevel-
feedback-queue algorithm. The time quantum for level i was 2 * i time units.
If a program did not finish its CPU burst in one time quantum, it was moved
down to the next level of the queue, giving it twice as much time. The program
at the highest level (with the shortest quantum) was run first. The initial level
of a program was determined by its size, so that the time quantum was at least
as long as the swap time.

CTSS was extremely successful and was in use as late as 1972. Although
it was limited, it succeeded in demonstrating that time sharing was a con-
venient and practical mode of computing. One result of CTSS was increased
development of time-sharing systems. Another result was the development of
MULTICS.

23.7 MULTICS

The MULTICS operating system (Corbato and Vyssotsky [1965], Organick [1972])
was designed at MIT as a natural extension of CTSS. CTSS and other early
time-sharing systems were so successful that they created an immediate
desire to proceed quickly to bigger and better systems. As larger computers
became available, the designers of CTSS set out to create a time-sharing utility.
Computing service would be provided like electrical power. Large computer
systems would be connected by telephone wires to terminals in offices and
homes throughout a city. The operating system would be a time-shared system
running continuously with a vast file system of shared programs and data.

MULTICS was designed by a team from MIT, GE (which later sold its
computer department to Honeywell), and Bell Laboratories (which dropped
out of the project in 1969). The basic GE 635 computer was modified to a
new computer system called the GE 645, mainly by the addition of paged-
segmentation memory hardware.

A virtual address was composed of an 18-bit segment number and a
16-bit word offset. The segments were then paged in 1-KB-word pages. The
second-chance page-replacement algorithm was used.

The segmented virtual address space was merged into the file system; each
segment was a file. Segments were addressed by the name of the file. The file
system itself was a multilevel tree structure, allowing users to create their own
subdirectory structures.
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Like CTSS, MULTICS used a multilevel feedback queue for CPU scheduling.
Protection was accomplished through an access list associated with each file
and a set of protection rings for executing processes. The system, which was
written almost entirely in PL/1, comprised about 300,000 lines of code. It was
extended to a multiprocessor system, allowing a CPU to be taken out of service
for maintenance while the system continued running.

23.8 IBM OS/360

The longest line of operating-system development is undoubtedly that of IBM
computers. The early IBM computers, such as the IBM 7090 and the IBM 7094, are
prime examples of the development of common I/O subroutines, followed by
development of a resident monitor, privileged instructions, memory protection,
and simple batch processing. These systems were developed separately, often
by each site independently. As a result, IBM was faced with many different
computers, with different languages and different system software.

The IBM/360 was designed to alter this situation. The IBM/360 was designed
as a family of computers spanning the complete range from small business
machines to large scientific machines. Only one set of software would be
needed for these systems, which all used the same operating system: OS/360
(Mealy et al. [1966]). This arrangement was intended to reduce maintenance
problems for IBM and to allow users to move programs and applications freely
from one IBM system to another.

Unfortunately, OS/360 tried to be all things for all people. As a result, it
did none of its tasks especially well. The file system included a type field
that defined the type of each file, and different file types were defined for
fixed-length and variable-length records and for blocked and unblocked files.
Contiguous allocation was used, so the user had to guess the size of each output
file. The Job Control Language (JCL) added parameters for every possible
option, making it incomprehensible to the average user.

The memory-management routines were hampered by the architecture.
Although a base-register addressing mode was used, the program could access
and modify the base register, so that absolute addresses were generated by the
CPU. This arrangement prevented dynamic relocation; the program was bound
to physical memory at load time. Two separate versions of the operating system
were produced: OS/MPT used fixed regions and OS/MVT used variable regions.

The system was written in assembly language by thousands of program-
mers, resulting in millions of lines of code. The operating system itself required
large amounts of memory for its code and tables. Operating-system overhead
often consumed one-half of the total CPU cycles. Over the years, new versions
were released to add new features and to fix errors. However, fixing one error
often caused another in some remote part of the system, so that the number of
known errors in the system remained fairly constant.

Virtual memory was added to OS/360 with the change to the IBM 370
architecture. The underlying hardware provided a segmented-paged virtual
memory. New versions of OS used this hardware in different ways. OS/VS1
created one large virtual address space and ran OS/MFT in that virtual memory.
Thus, the operating system itself was paged, as well as user programs. OS/VS2
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Release 1 ran OS/MVT in virtual memory. Finally, OS/VS2 Release 2, w*hich is
now called MVS, pro\rided each user with his own virtual memory.

MVS is still basically a batch operating system. The CTSS system was run on
an IBM 7094, but MIT decided that the address space of the 360, IBM's successor
to the 7094, was too small for MULTICS, so they switched vendors. IBM then
decided to create its own time-sharing system, TSS/360 (Lett and Konigsford
[1968]). Like MULTICS, TSS/360 was supposed to be a large, time-shared utility.
The basic 360 architecture was modified in the model 67 to provide virtual
memory. Several sites purchased the 360/67 in anticipation of TSS/360.

TSS/360 was delayed, however, so other time-sharing systems were devel-
oped as temporary systems until TSS/360 was available. A time-sharing option
(TSO) was added to OS/360. IBM's Cambridge Scientific Center developed CMS
as a single-user system and CP/67 to provide a virtual machine to run it on
(Meyer and Seawright [1970], Parmelee et al. [1972]).

When TSS/360 was eventually delivered, it was a failure. It was too large
and too slow. As a result, no site would switch from its temporary system to
TSS/360. Today, time sharing on IBM systems is largely provided either by TSO
under MVS or by CMS under CP/67 (renamed VM).

Both TSS/360 and MULTICS did not achieve commercial success. What went
wrong with these systems? Part of the problem was that these advanced
systems were too large and too complex to be understood. Another problem
was the assumption that computing power would be available from a large,
remote computer. It now appears that most computing will be done by small
individual machines—personal computers—not by large, remote, time-shared
systems that try to be all things to all users.

23.9 Mach

The Mach operating system traces its ancestry to the Accent operating system
developed at Carnegie Mellon University (CMU) (Rashid and Robertson [1981]).
Mach's communication system and philosophy are derived from Accent, but
many other significant portions of the system (for example, the virtual memory
system, task and thread management) were developed from scratch (Rashid
[1986], Tevanian et al. [1989], and Accetta et al. [1986]). The Mach scheduler was
described in detail by Tevanian et al. [1987a] and Black [1990]. An early version
of the Mach shared memory and memory-mapping system was presented by
Tevanian et al. [1987b].

The Mach operating system was designed with the following three critical
goals in mind:

1. Emulate 4.3BSD UNIX so that the executable files from a UNIX system can
run correctly under Mach.

2. Be a modern operating system that supports many memory models, as
well as parallel and distributed computing.

3. Have a kernel that is simpler and easier to modify than is 4.3BSD.

Mach's development followed an evolutionary path from BSD UNIX sys-
tems. Mach code was initially developed inside the 4.2BSD kernel, with BSD
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kernel components replaced by Mach components as the Mach components
were completed. The BSD components were updated to 4.3BSD when that
became available. By 1986, the virtual memory and communication subsys-
tems were running on the DEC VAX computer family, including multiprocessor
versions of the VAX. Versions for the IBM RT/PC and for SUN 3 workstations
followed shortly. Then, 1987 saw the completion of the Encore Multimax and
Sequent Balance multiprocessor versions, including task and thread support,
as well as the first official releases of the system, Release 0 and Release 1.

Through Release 2, Mach provided compatibility with the corresponding
BSD systems by including much of BSD's code in the kernel. The new features
and capabilities of Mach made the kernels in these releases larger than the
corresponding BSD kernels. Mach 3 moved the BSD code outside of the kernel,
leaving a much smaller microkernel. This system implements only basic
Mach features in the kernel; all UNIX-specific code has been evicted to run
in user-mode servers. Excluding UNIX-specific code from the kernel allows
the replacement of BSD with another operating system or the simultaneous
execution of multiple operating-system interfaces on top of the microkernel. In
addition to BSD, user-mode implementations have been developed for DOS, the
Macintosh operating system, and OSF/1. This approach has similarities to the
virtual machine concept, but here the virtual machine is defined by software
(the Mach kernel interface), rather than by hardware. With Release 3.0, Mach
became available on a wide variety of systems, including single- processor SUN,
Intel, IBM, and DEC machines and multiprocessor DEC, Sequent, and Encore
systems.

Mach was propelled into the forefront of industry attention when the Open
Software Foundation (OSF) announced in 1989 that it would use Mach 2.5 as
the basis for its new operating system, OSF/1. The initial release of OSF/1
occurred a year later, and this system competed with UNIX System V, Release
4, the operating system of choice at that time among UNIX International (UI)
members. OSF members included key technological companies such as IBM,
DEC, and HP. OSF has since changed its direction, and only DEC UNIX is based
on the Mach kernel.

Mach 2.5 is also the basis for the operating system on the NeXT workstation,
the brainchild of Steve Jobs, of Apple Computer fame.

Unlike UNIX, which was developed without regard for multiprocessing,
Mach incorporates multiprocessing support throughout. Its multiprocessing
support is also exceedingly flexible, ranging from shared-memory systems to
systems with no memory shared between processors. Mach tises lightweight
processes, in the form of multiple threads of execution within one task (or
address space), to support multiprocessing and parallel computation. Its
extensive use of messages as the only communication method ensures that
protection mechanisms are complete and efficient. By integrating messages
with the virtual memory system, Mach also ensures that messages can be
handled efficiently. Finally, by having the virtual memory system use messages
to communicate with the daemons managing the backing store, Mach provides
great flexibility in the design and implementation of these memory-object-
managing tasks. By providing low-level, or primitive, system calls from which
more complex functions can be built, Mach reduces the size of the kernel
while permitting operating-system emulation at the user level, much like IBM's
virtual-machine systems.
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Previous editions of Operating System Concepts included an entire chapter
on Mach. This chapter, as it appeared in the fourth edition, is available on the
Web (http://www.os-book.com).

23.10 Other Systems

There are, of course, other operating systems, and most of them have inter-
esting properties. The MCP operating system for the Burroughs computer
family (McKeag and Wilson [1976]) was the first to be written in a system-
programming language. It supported segmentation and multiple CPUs. The
SCOPE operating system for the CDC 6600 (McKeag and Wilson [1976]) was
also a multi-CPU system. The coordination and synchronization of the multiple
processes were surprisingly well designed. Tenex (Bobrow et al. [1972]) was
an early demand-paging system for the PDP-10 that has had a great influence
on subsequent time-sharing systems, such as TOPS-20 for the DEC-20. The VMS
operating system for the VAX is based on the RSX operating system for the
PDP-11. CP/M was the most common operating system for 8-bit microcomputer
systems, few of which exist today; MS-DOS is the most common system for 16-
bit microcomputers. Graphical user interfaces (GUIs) have become popular to
make computers easier to use; the Macintosh Operating System and Microsoft
Windows are the two leaders in this area.

Exercises

23.1 Discuss what considerations the computer operator took into account
in deciding in the sequences in which programs would be run on early
computer systems that were manually operated.

23.2 What optimizations were used to minimize the discrepancy between
CPU and I/O speeds on early computer systems?

23.3 Consider the page replacement algorithm used by Atlas. In what ways
is it different from the clock algorithm discussed in Section 9.4.5.2?

23.4 Consider the multilevel feedback queue used by CTSS and MULTICS.
Suppose a program consistently uses seven time units every time it
is scheduled before it performs an I/O operation and blocks. How
many time units are allocated to this program when it is scheduled for
execution at different points in time?

23.5 What are the implications of supporting BSD functionality in user-mode
servers within the Mach operating system?
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