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Chapter 1




Introduction:

v' Why Do We Need Quantum Mechanics?

Just over 100 years ago, in the 1890’s, physics looked in pretty good shape. The
beautiful mathematical development of Newton’s mechanics, coupled with
increasingly sophisticated technology, predicted the movements of the solar
system to incredible accuracy, apart from a tiny discrepancy in the orbit of
Mercury. It had been less than a hundred years since it was realized that an
electric current could exert a force on a magnet, but that discovery had led to
power stations, electric trains, and a network of telegraph wires across land and
under the oceans. It had also been only a hundred years since it had been
established that light was a wave, and only forty years since Maxwell’s realization
that the waves in a light signal were electric and magnetic fields, satisfying a wave
equation he was able to derive purely by considering electric and magnetic field
phenomena. In particular, he was able to predict the speed of light by measuring
the electrostatic attractive forces between charges and the magnetic forces
between currents.

At about the same time, in the 1860’s, Maxwell and Boltzmann gave a brilliant
account of the properties of gases by assuming that they were made up of weakly
interacting molecules flying about in a container, bouncing off the sides, with a
statistical distribution of energies so that the probability of a molecule having
energy EE was proportional to exp(—E /kT), kk being a universal constant known
as Boltzmann’s constant. Boltzmann generalized this result from a box of gas to
any system. For example, a solid can be envisioned classically as a lattice of balls
(the atoms) connected by springs, which can sustain oscillations in many ways,
each such mode can be thought of as a simple harmonic oscillator, with
reasonable approximations concerning the properties of the springs, etc.
Boltzmann’s work leads to the conclusion that each such mode of oscillation, or
degree of freedom, would at temperature T have average energy kT, made up
of 12kT potential energy, 12kT kinetic energy. Notice that this average energy is
independent of the strength of the springs, or the masses! All modes of vibration,
which will vibrate at very different rates, contain the same energy at the same
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temperature. This equal sharing is called the Equipartition of Energy. It is not
difficult to check this for a one-dimensional classical harmonic oscillator,
averaging the energy by integrating over all displacements and momenta
(independently) with the weighting factor exp(—E /kT), (which of course needs
to be normalized). The result doesn’t depend on the spring constant or the mass.
Boltzmann’s result gave an excellent account of the specific heats of a wide range
of materials over a wide temperature range, but there were some exceptions, for
example hydrogen gas at low temperatures, and even solids at low enough
temperatures. Still, it was generally felt these problems could be handled within
the existing framework, just as the slightly odd behavior of Mercury was likely
caused by a small planet, named Vulcan, closer to the sun, and so very hard to
observe.

v" What was Wrong with Classical Mechanics?
Basically, classical statistical mechanics wasn’t making sense...

Maxwell and Boltzmann evolved the equipartition theorem: a physical system can
have many states (gas with particles having different velocities, or springs in
different states of compression).

At nonzero temperature, energy will flow around in the system, it will constantly
move from one state to another. So, what is the probability that at any instant it
is in a particular state with energy E?

M&B proves it was proportional to exp(—E /kT). This proportionality factor is
also correct for any subsystem of the system: for example, a single molecule.

Notice this means if a system is a set of oscillators, different masses on different
strength springs, for example, then in thermal equilibrium each oscillator has on
average the same energy as all the others. For three-dimensional oscillators in
thermal equilibrium, the average energy of each oscillator is 3kT, where k is
Boltzmann’s constant.



v’ Black Body Radiation

Now put this together with Maxwell’s discovery that light is an electromagnetic
wave: inside a hot oven, Maxwell’s equations can be solved yielding standing
wave solutions, and the set of different wavelengths allowed standing waves
amount to an infinite series of oscillators, with no upper limit on the frequencies
on going far into the ultraviolet. Therefore, from the classical equipartition
theorem, an oven at thermal equilibrium at a definite temperature should contain
an infinite amount of energy—of order kT in each of an infinite number of
modes—and if you let radiation out through a tiny hole in the side, you should see
radiation of all frequencies.

This is not, of course, what is observed: as an oven is warmed, it emits infrared,
then red, then yellow light, etc. This means that the higher frequency oscillators
(blue, etc.) are in fact not excited at low temperatures: equipartition is not true.

Planck showed that the experimentally observed intensity/frequency curve was
exactly reproduced if it was assumed that the radiation was quantized: light of
frequency f could only be emitted in quanta—now photons—having
energy hf, h being Planck’s constant. This was the beginning of quantum
mechanics.

v" The Photoelectric Effect

Einstein showed the same quantization of electromagnetic radiation explained
the photoelectric effect: a photon of energy hf knocks an electron out of a metal,
it takes a certain work W to get it out, the rest of the photon energy goes to the
kinetic energy of the electron, for the fastest electrons emitted (those that come
right from the surface, so encountering no further resistance). Plotting the
maximum electron kinetic energy as a function of incident light frequency
confirms the hypothesis, giving the same value for h as that needed to explain
radiation from an oven. (It had previously been assumed that more intense light
would increase the kinetic energy—this turned out not to be the case.)



v The Bohr Atom

Bohr put together this quantization of light energy with Rutherford’s discovery
that the atom had a nucleus, with electrons somehow orbiting around it: for the
hydrogen atom, light emitted when the atom is thermally excited has a particular
pattern, the observed emitted wavelengths are given by

11 = RH(14 — 1n2)

with n = 3,4,5.. RHRH is now called the Rydberg constant.) Bohr realized these
were photons having energy equal to the energy difference between two allowed
orbits of the electron circling the nucleus (the proton), En — Em = hf, leading to
the conclusion that the allowed levels must be:

En = —hcRHn2

How could the quantum hf restricting allowed radiation energies also restrict the
allowed electron orbits? Bohr realized there must be a connection—
because h has the dimensions of angular momentum! What if the electron were
only allowed to be in circular orbits of angular momentum nKh, withn an
integer? Bohr did the math for orbits under an inverse square law and found that
the observed spectra were in fact correctly accounted for by taking K = 1/2m.

But then he realized he did not even need the experimental results to find KK:
guantum mechanics must agree with classical mechanics in the regime where we
know experimentally that classical mechanics (including Maxwell’s equations) is
correct, that is, for systems of macroscopic size. Consider a negative charge
orbiting around a fixed positive charge at a radius of 10 cm., the charges being
such that the speed is of order meters per second (we don’t want relativistic
effects making things more complicated). Then from classical E&M, the charge
will radiate at the orbital frequency. Now imagine this is a hydrogen atom, in a
perfect vacuum, in a high state of excitation. It must be radiating at this same
frequency. But Bohr’s theory can’t just be right for small orbits, so the radiation
must satisfy En — Em = hf. The spacing between adjacent levels will vary slowly
for these large orbits, so htimes the orbital frequency must be the energy
difference between adjacent levels. Now, that energy difference depends on the
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allowed angular momentum step between the adjacent levels: that is, on K.
Reconciling these two expressions for the radiation frequency gives K = 1/2m.

This classical limit argument, then, predicts the Rydberg constantin terms of
already known quantities:

RH = (1/4me0)2 - 2n2me4ch3

v" What'’s right about the Bohr atom?

e |t gives the Balmer series spectra.

e The first orbit size is close to the observed size of the atom: and remember
there are no adjustable parameters, the classical limit argument
determines the spectra and the size.

v" What’s wrong with the Bohr atom?

No explanation for why angular momentum should be quantized. (This was solved
by de Broglie a little later.)

Why don’t the circling electrons radiate, as predicted classically? Well, the fact
that radiation is quantized means the classical picture of an accelerating charge
smoothly emitting radiation cannot work if the energies involved are of
order h times the frequencies involved.

The lowest state has nonzero angular momentum. This is a defect of the model,
corrected in the truly quantum model (Schrédinger’s equation).

In an inverse square field, orbits are in general elliptical.

This was at first a puzzle: why should there be only circular orbits allowed? In fact,
the model does allow elliptical orbits, and they do not show up in the Balmer
series because, as proved by Sommerfeld, if the allowed elliptical orbits have the
same allowed angular momenta as Bohr’s orbits, they have the same set of
energies. This is a special property of the inverse square force.



v De Broglie Waves

The first explanation of why only certain angular momenta is allowed for the
circling electron was given by de Broglie: just as photons act like particles (definite
energy and momentum), but undoubtedly are wave like, being light, so particles
like electrons perhaps have wave like properties. For photons, the relationship
between wavelength and momentum is p = h/A. Assuming this is also true of
electrons, and that the allowed circular orbits are standing waves, Bohr’s angular
momentum quantization follows.

v" The Nature of Matter

By the 1890’s and early 1900’s, most scientists believed in the existence of atoms.
Not all—the distinguished German chemist Ostwald did not, for example. But
nobody had a clear picture of even a hydrogen atom. The electron had just been
discovered, and it was believed that the hydrogen atom had a single electron. It
was suggested that maybe the electron went in circles around a central charge,
but nobody believed that because Maxwell had established that accelerating
charges radiate, so it was assumed that a circling electron would rapidly loose
energy, spiral into the center, and the atom would collapse. Instead, it was
thought, the hydrogen atom (which was of course electrically neutral) was a ball
of positively charged jelly with an electron inside, which would oscillate when
heated, and emit radiation. Rough calculations, based on the accepted size of the
atom, suggested that the radiation would be in the visible range, but no-one
could remotely reproduce the known spectrum of hydrogen.

The big breakthrough came in 1909, when Rutherford tried to map the
distribution of positive charge in a heavy atom (gold) by scattering alpha particles
from it. To his amazement, he found the positive charge was all concentrated in a
tiny nucleus, with a radius of order one ten-thousandth that of the atom. This
meant that after all the electrons must be going in planetary orbits, and the
Maxwell’s equations prediction of radiation did not apply, just as it did not always
apply in blackbody radiation.



Chapter 2




2.1: The One-Dimensional Wave Equation

v’ Learning Objectives
e Tointroduce the wave equation including time and position dependence

In the most general sense, waves are particles or other media with wavelike
properties and structure (presence of crests and troughs).

Figure 2.1.1: A simple translational (transverse) wave. (CC BY-SA 4.0 International; And 1mu via
Wikimedia Commons)

The simplest wave is the (spatially) one-dimensional sine wave (Figure 2.1.1) with
a varying amplitude AA described by the equation:

A(x,t) = Aosin(kx — wt + ¢) (2.1.1)
Where,

e Ao is the maximum amplitude of the wave, maximum distance from the
highest point of the disturbance in the medium (the crest) to the
equilibrium point during one wave cycle. In Figure 2.1.1, this is the
maximum vertical distance between the baseline and the wave.

o X isthe space coordinate

o tisthetime coordinate

o kisthe wavenumber

e w isthe angular frequency

o ¢ is the phase constant.
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One can categorize “waves” into two different groups: traveling
waves and stationary waves.

v Traveling Waves

Traveling waves, such as ocean waves or electromagnetic radiation, are waves
that “move,” meaning that they have a frequency and are propagated through
time and space. Another way of describing this property of “wave movement” is
in terms of energy transmission — a wave travels, or transmits energy, over a set
distance. The most important kinds of traveling waves in everyday life are
electromagnetic waves, sound waves, and perhaps water waves, depending on
where you live. It is difficult to analyze waves spreading out in three dimensions,
reflecting off objects, etc., so we begin with the simplest interesting examples of
waves, those restricted to move along a line. Let’s start with a rope, like a
clothesline, stretched between two hooks. You take one end off the hook, holding
the rope, and, keeping it stretched fairly tight, wave your hand up and back once.
If you, do it fast enough, you’ll see a single bump travel along the rope:

s
¥ wave moving this way
—_—
s \x&
[:I x

Figure 2.1.2: A one-dimensional traveling wave at one instance of time t.

This is the simplest example of a traveling wave. You can make waves of different
shapes by moving your hand up and down in different patterns, for example an
upward bump followed by a dip, or two bumps. You'll find that the traveling
wave keeps the same shape as it moves down the rope. Taking the rope to be
stretched tightly enough that we can take it to be horizontal, we’ll use its rest
position as our x-axis (Figure 2.1.1). The y-axis is taken vertically upwards, and we
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only wave the rope in an up-and-down way, so actually y(x,t) will be how far
from the rope is from its rest position at x at time t: that is, Figure 2.1.2 shows
where the rope is at a single time t.

We can now express the observation that the wave “keeps the same shape” more
precisely. Taking for convenience time t=0 to be the moment when the peak of
the wave passes x=0, we graph here the rope’s position at t = 0 and some later
times t as a movie (Figure 2.1.3). Denoting the first function by y(x,0) = f(x),
then the second y(x,t) = f(x — vt): it is the same function with the “same
shape,” but just moved over by vt, where v is the velocity of the wave.

®@2002, Dan Pussell

Figure 2.1.3: A one-dimensional traveling wave at as a function of time. Traveling waves
propagate energy from one spot to another with a fixed velocity vv. (CC BY-NC-ND; Daniel A.
Russell).

To summarize: on sending a traveling wave down a rope by jerking the end up and
down, from observation the wave travels at constant speed and keeps its shape,
so the displacement y of the rope at any horizontal position at x at time t has the
form

y(x,t) = f(x —vt) (2.1.2)

We are neglecting frictional effects—in a real rope, the bump gradually gets
smaller as it moves along.

v’ Standing Waves

In contrast to traveling waves, standing waves, or stationary waves, remain in a
constant position with crests and troughs in fixed intervals. One way of producing
a variety of standing waves is by plucking a melody on a set of guitar or violin

strings. When placing one’s finger on a part of the string and then plucking it with
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another, one has created a standing wave. The solutions to this problem involve
the string oscillating in a sine-wave pattern (Figure 2.1.4) with no vibration at the
ends. There is also no vibration at a series of equally spaced points between the
ends; these "quiet" places are nodes. The places of maximum oscillation
are antinodes.

Figure 2.1.4: Animation of standing wave in the stationary medium with marked wave nodes
(red circles). (Public domain; Lucas VB).

v Bound vs. Free particles and Traveling vs. Stationary Waves

Traveling waves exhibit movement and propagate through time and space and
stationary wave have crests and troughs at fixed intervals separated by nodes.
"Free" particles like the photoelectron discussed in the photoelectron effect,
exhibit traveling wave like properties. In contrast, electrons that are "bound"
waves will exhibit stationary wave like properties. The latter was invoked for the
Bohr atom for quantizing angular moment of an electron bound within a
hydrogen atom.

v" The Wave Equation

The mathematical description of the one-dimensional waves (both traveling and
standing) can be expressed as

d2u(x, t)/0x2 = (1/v2) d2u(x,t)/0t2 (2.1.3)

with u is the amplitude of the wave at position x and time t, and v is the velocity
of the wave (Figure 2.1.2).

Equation 2.1.3 is called the classical wave equation in one dimension and is
a linear partial differential equation. It tells us how the displacement u can change
as a function of position and time and the function. The solutions to the wave
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equation (u(x, t)) are obtained by appropriate_integration techniques. It may not

be surprising that not all possible waves will satisfy Equation 2.1.3 and the waves
that do must satisfy both the initial conditions and the boundary conditions, i.e.
on how the wave is produced and what is happening on the ends of the string.

For example, for a standing wave of string with length L held taut at two ends
(Figure 2.1.3), the boundary conditions are

u(0,t) =0 (2.1.4)
and
u(L,t) =0 (2.1.5)

for all values of t. As expected, different system will have different boundary
conditions and hence different solutions.

v' Summary

Waves which exhibit movement and are propagated through time and space. The
two basic types of waves are traveling and stationary. Both exhibit wavelike
properties and structure (presence of crests and troughs) which can be
mathematically described by a wavefunction or amplitude function. Both wave
types display movement (up and down displacement), but in different ways.
Traveling waves have crests and troughs which are constantly moving from one
point to another as they travel over a length or distance. In this way, energy is
transmitted along the length of a traveling wave. In contrast, standing waves have
nodes at fixed positions; this means that the wave’s crests and troughs are also
located at fixed intervals. Therefore, standing waves only experience vibrational
movement (up and down displacement) on these set intervals - no movement or
energy travels along the length of a standing wave.
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The Schrodinger Equation and a Particle in a Box

The particle in a box model provides one of the very few problems in quantum
mechanics which can be solved analytically, without approximations. This means
that the observable properties of the particle (such as its energy and position) are
related to the mass of the particle and the width of the well by simple
mathematical expressions. Due to its simplicity, the model allows insight into
guantum effects without the need for complicated mathematics

3.1: The Schrodinger Equation

v’ Learning Objectives
e To beintroduced to the general properties of the Schrodinger equation and
its solutions.

De Broglie’s doctoral thesis, defended at the end of 1924, created a lot of
excitement in European physics circles. Shortly after it was published in the fall of
1925 Pieter Debye, Professor of Theoretical Physics at Zurich and Einstein's
successor, suggested to Erwin Schrodinger that he give a seminar on de Broglie’s
work. Schrodinger gave a polished presentation, but at the end Debye remarked
that he considered the whole theory rather childish: why should a wave confine
itself to a circle in space? It wasn’t as if the circle was a waving circular string, real
waves in space diffracted and diffused, in fact they obeyed three-dimensional
wave equations, and that was what was needed. This was a direct challenge to
Schrodinger, who spent some weeks in the Swiss mountains working on the
problem and constructing his equation. There is no rigorous derivation of
Schrédinger’s equation from previously established theory, but it can be made
very plausible by thinking about the connection between light waves and
photons, and construction an analogous structure for de Broglie’s waves and
electrons (and, later, other particles).

v The Schrédinger Equation: A Better Approach

While the Bohr model is able to predict the allowed energies of any single-
electron atom or cation, it by no means, a general approach. Moreover, it relies

16



heavily on classical ideas, clumsily grafting quantization onto an essentially
classical picture, and therefore, provides no real insights into the true quantum
nature of the atom. Any rule that might be capable of predicting the allowed
energies of a quantum system must also account for the wave-particle duality and
implicitly include a wave-like description for particles. Nonetheless, we will
attempt a heuristic argument to make the result at least plausible. In classical
electromagnetic theory, it follows from Maxwell's equations that each component

of the electric and magnetic fields in vacuum is a solution of the 3-D wave
equation for electromagnetic waves:

V2¥W(x,y,z,t) — (1/c2)02¥(x,y,z,t)/0t2 = 0 (3.1.1)

The wave equation in Equation 3.1.1 is the three-dimensional analog to the wave
equation presented earlier (Equation 2.1.1) with the velocity fixed to the known
speed of light:c. Instead of a partial derivative 02/0x2 in one dimension,
the Laplacian (or "del-squared") operator is introduced:

V2 = 02/0x2 + 02/0y2 + 02/0z2 (3.1.2)

Corresponding, the solution to this 3D equation wave equation is a function
of four independent  variables: x,y, z,  andtand is generally called
the wavefunction 1.

We will attempt now to create an analogous equation for de Broglie's matter
waves. Accordingly, let us consider an only 1-dimensional wave motion
propagating in the x-direction. At a given instant of time, the form of a wave
might be represented by a function such as

¥ (x) = fQ2mx/A) (3.1.3)

where f(0) represents a sinusoidal function such as sin8, cos6, e®,e~% or
some linear combination of these. The most suggestive form will turn out to be
the complex exponential, which is related to the sine and cosine by Euler's
formula
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exp(+ifB) = cosB + isinb (3.1.4)

Each of the above is a periodic function, its value repeating every time its
argument increases by 2m. This happens whenever xincreases by one
wavelength A. At a fixed point in space, the time-dependence of the wave has an
analogous structure:

T(t) = f(2mvt) (3.1.5)

where v gives the number of cycles of the wave per unit time. Taking into account
both x and t dependence, we consider a wavefunction of the form

Y(x,t) = exp[2mi(x/A — vt)] (3.1.6)

representing waves traveling from left to right. Now we make use of the Planck
formula (E = hv) and de Broglie formulas (p = hA) to replace v and A by their
particle analogs. This gives

Y(x,t) = expli(px — Et) /h] (3.1.7)
Where,
h=h/2n (3.1.8)

Since Planck's constant occurs in most formulas with the denominator 2m,
the A symbol was introduced by Paul Dirac. Equation 3.1.5 represents in some
way the wavelike nature of a particle with energy E and momentum p. The time
derivative of Equation 3.1.7 gives

0¥ /ot = —(iE /h)expli(px — Et) /h] (3.1.9)
Thus from a simple comparison of Equations 3.1.7 and 3.1.9
ih 0¥ /0t = E¥Y (3.1.10)

or analogously differentiation of Equation 3.1.9 with respect to x
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—ih 0¥ /0x = p¥W (3.1.11)
and then the second derivative
—h202¥ /0x2 = p2¥W (3.1.12)

The energy and momentum for a nonrelativistic free particle (i.e., all energy is
kinetic with no potential energy involved) are related by

E =(1/2) mv2 = p2/2m (3.1.13)

Substituting Equations 3.1.12 and 3.1.10 into Equation 3.1.13 shows
that ¥ (x, t) satisfies the following partial differential equation

ih 0¥ /0t = (—h2/2m) 02¥ /0x2 (3.1.14)

Equation 3.1.14is the applicable differential equation describing the
wavefunction of a free particle that is not bound by any external forces or
equivalently not in a region where its potential energy V (x, t) varies.

For a particle with a non-zero potential energy V(x), the total energy E is then a
sum of kinetics and potential energies

E =p22m+V(x) (3.1.15)
we postulate that Equation 3.1.3 for matter waves can be generalized to

ihd ¥(x,t)/ot = [—(h2/2m) d2/0x2 + V(x)|¥(x, t) (3.1.16)

time-dependent Schrédinger equation in 1D
For matter waves in three dimensions, Equation 3.1.6 is then expanded

ih 0¥(r,t)/0t = [—(hz/2m) V2 + V(r)|¥(r,t) (3.1.17)

time-dependent Schrodinger equation in 3D
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Here the potential energy and the wavefunctions W depend on the three space

coordinates x, y, z, which we write for brevity as r. Notice that the potential
energy is assumed to depend on position only and not time (i.e., particle motion).
This is applicable for conservative forcesthat a potential energy

function V(f) can be formulated.

v The Laplacian Operator
The three second derivatives in parentheses together are called the Laplacian

operator, or del-squared,

V2=7-V
= (82/0x2 + 02/0y2 + 02/0z2) (3.1.18)
with the del operator,
V=(xd/0x +yd/dy+z0/0z) (3.1.19)

Remember from basic calculus that when the del operator is directly operates on
afield (e.g., Vf(x,y, x), it denotes the gradient (i.e., the locally steepest slope) of
the field. The symbols with arrows in Equation 3.1.19 are unit vectors.

Equation 3.1.17 is the time-dependent Schrédinger equation describing the
wavefunction amplitude ‘P(ri t) of matter waves associated with the particle

within a specified potential V(r?. Its formulation in 1926 represents the start of
modern quantum mechanics (Heisenberg in 1925 proposed another version
known as matrix mechanics).

For conservative systems, the energy is a constant, and the time-dependent factor
from Equation 3.1.7can be separated from the space-only factor (via
the Separation of Variables technique discussed in Section 2.2)

w(r,t) = (r)exp(—iEt/h) (3.1.20)
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where ¥(r”) is a wavefunction dependent (or time-independent) wavefuction
that only depends on space coordinates. Putting Equation 3.1.20into
Equation 3.1.17 and cancelling the exponential factors, we obtain the time-
independent Schrédinger equation:

[(—h22m)V2 + V()Y@ ) = EY(r) (3.1.21)

time-independent Schrédinger equation

The overall form of the Equation 3.1.21 is not unusual or unexpected as it uses
the principle of the conservation of energy. Most of our applications of quantum
mechanics to chemistry will be based on this equation (with the exception of
spectroscopy). The terms of the time-independent Schrodinger equation can then
be interpreted as total energy of the system, equal to the system kinetic energy
plus the system potential energy. In this respect, it is just the same as in classical
physics.

v" Time Dependence to the Wavefunctions

Notice that the wavefunctions used with the time-independent Schrédinger
equation (i.e., Y(r”) do not have explicit t dependences like the wavefunctions of
time-dependent analog in Equation 3.1.17 (i.e,, ¥ (r”,t)). That doesnot
imply that there is no time dependence to the wavefunction.
Equation 3.1.20 argues that the time-dependent (i.e., full spatial and temporal)
wavefunction (¥ (r~,t)) differs from the time-independent (i.e., spatial only)
wavefunction ¥ (r”)) by a "phase factor" of constant magnitude. Using the Euler
relationship in Equation 3.1.4, the total wavefunction above can be expanded

Y(r,t) =y )(cos (Et/h) — i sin (Et/h)) (3.1.22)

This means the total wavefunction has a complex behavior with a real part and an
imaginary part. Moreover, using the trigonometry identity sin(6) = cos(8 —
m/2) Equation 3.1.22 can further simplified to

Y(r,t) =yY(@)cos(Et/h) — ip(r)cos(Et/h —m/2)  (3.1.23)
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This shows that both the real and the imaginary components of the total
wavefunction oscillate the imaginary part of the total wavefunction oscillates out
of phase by /2 with respect to the real part.

Note that while all wavefunctions have a time-dependence, that dependence may
not impact in simple quantum problems as the next sections discuss and can
often be ignored.

Before we embark on this, however, let us pause to comment on the validity of
guantum mechanics. Despite its weirdness, its abstractness, and its strange view
of the universe as a place of randomness and unpredictability, quantum theory
has been subject to intense experimental scrutiny. It has been found to agree
with experiments to better than 1071°9% for all cases studied so far. When the
Schrodinger Equation is combined with a quantum description of the
electromagnetic field, a theory known as quantum electrodynamics, the result is
one of the most accurate theories of matter that has ever been put forth. Keeping
this in mind, let us forge ahead in our discussion of the quantum universe and
how to apply quantum theory to both model and real situations.
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3.2: Linear Operators in Quantum Mechanics

v’ Learning Objectives

e C(Classical-Mechanical quantities are represented by linear operators in
Quantum Mechanics

e Understand that "algebra" of scalars and functions do not always to
operators (specifically the commutative property)

The bracketed object in the time-independent Schrodinger Equation (in 1D)
[—(A22m)V2 + V()Y () = EY(r™) (3.2.1)

is called an operator. An operator is a generalization of the concept of a function
applied to a function. Whereas a function is a rule for turning one number into
another, an operator is a rule for turning one function into another. For the time-
independent Schroédinger Equation, the operator of relevance is the Hamiltonian
operator (often just called the Hamiltonian) and is the most ubiquitous
operator in quantum mechanics.

H=—(h2m)V2+ V(@) (3.2.2)

We often (but not always) indicate that an object is an operator by placing a 'hat’
over it, e.g., H. So time-independent Schrédinger Equation can then be simplified
from Equation 3.2.1 to

Ay ) =Eyp@E) (3.2.3)

Equation 3.2.3 says that the Hamiltonian operator operates on the wavefunction
to produce the energy, which is a scalar (i.e., a number, a quantity
and observable) times the wavefunction. Such an equation, where the operator,
operating on a function, produces a constant times the function, is called an
eigenvalue equation. The function is called an eigenfunction, and the resulting
numerical value is called the eigenvalue. Eigen here is the German word meaning
self or own. We will discuss this in detail in later Sections.
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v" Fundamental Properties of Operators

Most properties of operators are straightforward, but they are summarized below
for completeness.
The sum and difference of two operators A* and B” are given by

(AN + BMf = A™Nf £ BMf (3.2.4)
The product of two operators is defined by
A"BMf = AMBMf] (3.2.5)
Two operators are equal if
ANf = B f (3.2.6)
for all functions ff. The identity operator 1* does nothing (or multiplies by 1)
1MNf=f (3.2.7)

The n-th power of an operator A*n is defined as n successive applications of
the operator, e.g.

AN2f = AMANS (3.2.8)
The associative law holds for operators
ANBMC™N) = (AMBMCH (3.2.9)

The commutative law does not generally hold for operators. In general, but not
always,
A*B™ + BM"AMN (3.2.10)

To help identify if the inequality in Equation 3.2.10 holds for any two specific
operators, we define the commutator.

v" Definition: The Commutator
It is convenient to define the commutator of A* and BA
[A®, B"] = A*B™ — BM"A" (3.2.11)

If A® and B® commute, then
[A*,B"] = 0. (3.2.12)

If the commutator is not zero, the order of operating matters and the operators
are said to "not commute." Moreover, this property applies
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[AM, BA] = —[B*, AM]. (3.2.13)
v’ Linear Operators

The action of an operator that turns the function f(x) into the function g(x) is
represented by

AN (x) = g(x) (3.2.14)
The most common kind of operator encountered are linear operators which
satisfies the following two conditions:

OMN(f(x) +g(x)) = 0" f(x) + 0" g(x) (3.2.15)
Condition A
and
O"cf(x) = cOf(x) (3.2.16)
Condition B
where

e« O"isalinear operator,
o cisaconstant that can be a complex number (¢ = a + ib), and
e f(x)and g(x) are functions of x

If an operator fails to satisfy either Equations 3.2.15 or 3.2.16 then it is not a
linear operator.

v' Example 3.2.1
Is this operator 0" = —ih d/dx linear?
v' Solution

To confirm is an operator is linear, both conditions in Equation 3.2.16 must be
demonstrated.

Condition A (Equation 3.2.15):

0" (f(x) + g(x)) = —ihd/dx(f(x) + g(x))

From basic calculus, we know that we can use the sum rule for differentiation
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0"(f(x) + g(x)) = —ih d/dx f(x) —ih d/dx g(x)
=0"f(x)+0"g(x)v
Condition A is confirmed. Does Condition B (Equation 3.2.16) hold?
O"cf(x)=—=ihd/dxc f(x)
Also from basic calculus, this can be factored out of the derivative
O™ cf(x) = —cihd/dx f(x) = cO" f(x)V
Yes. This operator is a linear operator (this is the linear momentum operator).
v’ Exercise 3.2.1
Confirm if the square root operator Vf(x) linear or not?
v' Answer

To confirm is an operator is linear, both conditions in
Equations 3.2.15 and 3.2.16 must be demonstrated. Let's look first at Condition B.
Does Condition B (Equation 3.2.16) hold?

Ocf(x) = cO"f(x)
vef(x) #cf (x)

Condition B does not hold; therefore, the square root operator is not linear.

The most operators encountered in quantum mechanics are linear operators.

v Hermitian Operators

An important property of operators is suggested by considering the Hamiltonian
for the particle in a box:
H" = —(h2/2m) d2/dx2 (3.2.17)

Let f(x) and g(x) be arbitrary functions which obey the same boundary values as
the eigenfunctions of H” (e.g., they vanish at x=0 and x=a). Consider the integral
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Jy fFEOHNg(x)dx = —(h2/2m) [ f(x)g" (x)dx (3.2.18)

Now, using integration by parts,
[y Fag" dx = — [ f'(x)g'(x)dx +
f()g' (), (3.2.19)

The boundary terms vanish by the assumed conditions on f and g. A second
integration by parts transforms Equation 3.2.19 to

Jy £ (0)g(x)dx — f'(x)g(x) | a0 (3.2.20)

It follows therefore that
Jy fFEHAg(x)dx = [ g()Hf(x)dx (3.2.21)

An obvious generalization for complex functions will read
[OF * GOHAg()dx = (f* g * (OHAf()dx) +  (3.2.22)

In mathematical terminology, an operator A” for which

[fxArgdr = ([ g*A"fdr) * (3.2.23)

for all functions f and g which obey specified boundary conditions is classified
as Hermitian or self-adjoint. Evidently, the Hamiltonian is a Hermitian operator. It
is postulated that all quantum-mechanical operators that represent dynamical
variables are Hermitian. The term is also used for specific times of matrices in
linear algebra courses.

All quantum-mechanical operators that represent dynamical variables
are Hermitian.
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3.3: The Schrodinger Equation is an Eigenvalue Problem

v’ Learning Objectives
e To recognize that each quantum mechanical observable is determined by
solve by an eigenvalue problem with different operators for
different observable
e Confirm if a specific wavefunction is an eigenfunction of a specific
operation and extract the corresponding observable (the eigenvalue)
e To recognize that the Schrodinger equation, just like all measurable, is also
an eigenvalue problem with the eigenvalue ascribed to total energy
¢ Identity and manipulate several common quantum mechanical operators
As per the definition, an operator acting on a function gives another function,
however a special case occurs when the generated function is proportional to the
original

AMp & P (3.3.1)

This case can be expressed in terms of a equality by introducing a proportionality
constant k
AMY = ky (3.3.2)

Not all functions will solve an equation like in Equation 3.3.2 If a function does,
thenpis known as aneigenfunctionand the constantkis called
its eigenvalue (these terms are hybrids with German, the purely English
equivalents being '"characteristic function" and ‘"characteristic value",
respectively). Solving eigenvalue problems are discussed in most linear algebra
courses.

In quantum mechanics, every experimental measurable aa is the eigenvalue of a
specific operator (A7):
AMp = ay (3.3.3)

The aa eigenvalues represent the possible measured values of the A" operator.
Classically, aa would be allowed to vary continuously, but in quantum
mechanics, aa typically has only a sub-set of allowed values (hence the quantum
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aspect). Both time-dependent and time-independent Schrédinger equations are
the best-known instances of an eigenvalue equations in quantum mechanics, with
its eigenvalues corresponding to the allowed energy levels of the quantum
system.

[—(h2/2m) V24+ V(@ )Y@ ) = EY(r) (3.34)

The object on the left that acts on Y (x)(x) is an example of an operator
[—(h2/2m) V2 + V()] (3.3.5)

In effect, what is says to do is "take the second derivative of Y(x), multiply the
result by —(A2/2m) and then add V(x)y(x) to the result of that." Quantum
mechanics involves many different types of operators. This one, however, plays a
special role because it appears on the left side of the Schrodinger equation. It is
called the Hamiltonian operator and is denoted as

HA = —(h2/2m) V24V () (3.3.6)

Therefore, the time-dependent Schrodinger equation can be (and it more
commonly) written as

HMp(x, t) = ik (8/9t) Y(x, t) (3.3.7)

and the time-independent Schrodinger equation

H™MY(x) = Ep(x) (3.3.8)

Note that the functional form of Equation 3.3.8 is the same as the general
eigenvalue equation in Equation 3.3.2 where the eigenvalues are the (allowed)
total energies (E).

The Hamiltonian, named after the Irish mathematician Hamilton, comes from the
formulation of Classical Mechanics that is based on the total energy, H =T + V,
rather than Newton's second law, F = ma. Equation 3.3.8says that
the Hamiltonian operator operates on the wavefunction to produce the energy E,
which is a scalar (e.g., expressed in Joules) times the wavefunction.
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v Correspondence Principle

Note that H”" is derived from the classical energy p2/2m + V(x) simply by
replacingp = —ih(d/dx). This is an example of the Correspondence
Principle initially proposed by Niels Bohr that states that the behavior of systems
described by quantum theory reproduces classical physics in the limit of
large quantum numbers.

It is a general principle of Quantum Mechanics that there is an operator for every
physical observable. A physical observable is anything that can be measured. If
the wavefunction that describes a system is an eigenfunction of an operator, then
the value of the associated observable is extracted from the eigenfunction by
operating on the eigenfunction with the appropriate operator. The value of the
observable for the system is then the eigenvalue, and the system is said to be in
an eigenstate. Equation 3.3.8 states this principle mathematically for the case of
energy as the observable. If the wavefunction is not the eigenfunction of the
operation, then the measurement will give an eigenvalue (by definition), but not
necessarily the same one for each measurement (this will be discussed in more
detail in later section).

v' Common Operators

Although we could theoretically come up with an infinite number of operators, in
practice there are a few which are much more important than any others.

e Linear Momentum:

The linear momentum operator of a particle moving in one dimension
(the x-direction) is

px = —ih 0/0x (3.3.9)
and can be generalized in three dimensions:
p’ " =—ihV (3.3.10)
» Position
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The position operator of a particle moving in one dimension (the x-
direction) is

xN=x (3.3.11)
and can be generalized in three dimensions:
rA=r" (3.3.12)
where ™ = (x,y, z).
Kinetic Energy

Classically, the kinetic energy of a particle moving in one dimension (the x-
direction), in terms of momentum, is

KEclassical = p2x/2m (3.3.13)
Quantum mechanically, the corresponding kinetic energy operator is

KE"quantum = —(h2/2m) 02/0x2 (3.3.14)
and can be generalized in three dimensions:

KE*quantum = —(h2/2m) V2 (3.3.15)
Angular Momentum:

Angular momentum requires a more complex discussion, but is the cross
product of the position operator v~ * and the momentum operator p”*

L"N=—ih(r" xV) (3.3.16)
Hamiltonian:
The Hamiltonian operator corresponds to the total energy of the system

HA = —(h2/2m) 982/0x2 + V (x) (3.3.17)
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and it represents the total energy of the particle of massmin the
potential V' (x). The Hamiltonian in three dimensions is

HN = —(h2/2m) V2 +V(r™) (3.3.18)
« Total Energy:
The energy operator from the time-dependent Schrédinger equation
ih (0/0t) ¥(x,t) = H" ¥Y(x,t) (3.3.19)

The right hand side of Equation 3.3.6is the Hamiltonian Operator. In
addition, determining system energies, the Hamiltonian operator dictates
the time evolution of the wavefunction

H"Y (x,t) = ih d¥(x,t)/0t (3.3.20)
This aspect will be discussed in more detail elsewhere.

v’ Eigenstate, Eigenvalues, Wavefunctions, Measurables and Observables

In general, the wavefunction gives the "state of the system" for the system under
discussion. It stores all the information available to the observer about the
system. Often in discussions of guantum mechanics, the
terms eigenstate and wavefunction are  used interchangeably. The term
eigenvalue is used to designate the value of measurable quantity associated with
the wavefunction.

e If you want to measure the energy of a particle, you have to operate on the
wavefunction with the Hamiltonian operator (Equation 3.3.6).

¢ |f you want to measure the momentum of a particle, you have to operate
on wavefunction with the momentum operator (Equation 3.3.9).

e If you want to measure the position of a particle, you have to operate on
wavefunction with the position operator (Equation 3.3.11).

¢ If you want to measure the kinetic energy of a particle, you have to operate
on wavefunction with the kinetic energy operator (Equation 3.3.14).
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When discussing the eigenstates of the Hamiltonian (H”), the associated
eigenvalues represent energies and within the context of the momentum
operators, the associated eigenvalues refer to the momentum of the particle.
However, not all wavefunctions () are eigenstates of an operator (¢) — and if
they are not, they can usually be written as superpositions of eigenstates.

Y = dcigpi (3.3.21)
This will be discussed in more detail in later sections.

While the wavefunction may not be the eigenstate of an observable, when that

operator operates on that wavefunction, the wavefunction becomes an
eigenstate of that observable and only eigenvalues can be observed. Another way
to say this is that the wavefunction "collapses" into an eigenstate of the

observable. Because quantum mechanical operators have different forms, their
associated eigenstates are similarly often (i.e., most of the time) different. For
example, when a wavefunction is an eigenstate of total energy, it will not be an
eigenstate of momentum.

If a wavefunction is an eigenstate of one operator, (e.g., momentum), that state is
not necessarily an eigenstate of a different operator (e.g., energy), although not
always.

The wavefunction immediately after a measurement is an eigenstate of
the operator associated with this measurement. What happens to the
wavefunction after the measurement is a different topic.

v' Example 3.3.1

Confirm that the following wavefunctions are eigenstates of linear momentum
and kinetic energy (or neither or both):

a. Y = Asin(ax)
b. y =N exp(—ix/h)
v’ Strategy
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This question is asking if the eigenvalue equation holds for the operators and
these wavefunctions. This is just asking if these wavefunctions are solutions to
Equation 3.3.2 using the operators in Equations 3.3.9 and 3.3.14, i.e., are these

equations true:
prx Y =pxyY (3.3.22)
KE* Y = KE Y (3.3.23)
where px and KE are the measurables (eigenvalues) for these operators.

v' Solution
a. Let's evaluate the left side of the linear momentum eigenvalue problem
(Equation 3.3.22)
—ih (0/0x) Asin(ax) = —ih Aa cos(ax)

and compare to the right side of Equation 3.3.22
px A sin(ax)
These are not the same so this wavefunction is not an eigenstate of momentum.

Let's look at the left side of the kinetic energy eigenvalue problem
(Equation 3.3.23)

—(h2/2m) 02/0x2 A sin(ax) = —(h2/2m) d/0dx Aa cos(ax)
= +(h2/2m) AaZ2 sin(ax)
and compare to the right side
KE A sin(ax)

These are same, so this specific wavefunction is an eigenstate of kinetic energy.
Moreover, the measured kinetic energy will be

KE = +(h2/2m) a2
b. Let's look at the left side of Equation 3.3.22 for linear momentum
—ih (0/0x) N exp(—ix/h) = —N exp(—ix/h)
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