

Faculty of Science Geology Department

Rock Mechanics

Prof. Dr. Eng. Geo. Hesham A.H. Ismaiel Second year students

Main Topics

- 1- Introduction, Definition
- 2- Intact rock and rock masses
- 3- Behavioral classification of rock
- 4- Stress and strain and deformation behavior of rocks
- 5- Index Properties of rock system
- 6- Ground water related rock foundation (Porosity, Permeability, Flow, Hydraulic Gradient, ...).
- 7- Engineering Classifications of rock masses
- 8- Problematic rocks

Difination:

Mechanics of materials is a branch of engineering that deal with stresses and properties of materials.

Steel & Concrete: homogeneous (same composition throughout), isotropic (same directional properties throughout), Lab. Testing.

Rocks & Soil: inhomomgeneous & anisotropic, both Lab. and field Testing.

Difination:

Rock: (single system, continium, mineral association).

Rock mass: (Multi system, discontinium, Joining "Joints", one or more type of rocks). **Rock mechanics:** a branch of engineering (geotechnology), deals with stresses and mechanical properties of rock and rock mass to understand the mechanical behavior of rocks and rock mass for foundations, tunnels, mining, etc..... (applications in engineering Geology and civil engineering.

 Geological classification of rocks: Genetic classification: (Geologist) Igneous, metamorphic, and sedimentary. * Behavioral classification: (Civil **Engineer & Engineering Geologist)** Crystalline texture II- Clastic texture III- Very fine-grained rocks **IV-** Organic rocks

I. CRYSTALLINE TEXTURE

- A. Soluble carbonates and salts
- **B.** Mica or other planar minerals in continuous bands
- C. Banded silicate minerals without continuous mica sheets
- D. Randomly oriented and distributed silicate minerals of uniform grain size
- E. Randomly oriented and distributed silicate minerals in a background of very fine grain and with vugs
- F. Highly sheared rocks

Examples

Limestone, dolomite, marble, rock salt, trona, gypsum Mica schist, chlorite schist, graphite schist Gneiss

Granite, diorite, gabbro, syenite

Basalt, rhyolite, other volcanic rocks

Serpentinite, mylonite

Figure 2.1 Photomicrographs of thin sections of rocks, viewed in polarized, transmitted light (courtesy of Professor H. R. Wenk). (a) Tightly interlocked fabric of a crystalline rock — diabase (\times 27).

Figure 2.1 Photomicrographs of thin sections of rocks, viewed in polarized, transmitted light (courtesy of Professor H. R. Wenk). (b) Highly anisotropic fabric of a quartz mylonite $(\times 20)$.

II. CLASTIC TEXTURE

- A. Stably cemented
- B. With slightly soluble cement
- C. With highly soluble cement
- D. Incompletely or weakly cemented
- E. Uncemented

Examples Silica-cemented sandstone and limonite sandstones Calcite-cemented sandstone and conglomerate Gypsum-cemented sandstones and conglomerates Friable sandstones, tuff Clay-bound sandstones

III. VERY FINE-GRAINED ROCKS

- A. Isotropic, hard rocks
- B. Anisotropic on a macro scale but microscopically isotropic hard rocks
- C. Microscopically anisotropic hard rocks
- D. Soft, soillike rocks

Hornfels, some basalts Cemented shales, flagstones

Slate, phyllite

Compaction shale, chalk, marl

IV. ORGANIC ROCKS

- A. Soft coal
- B. Hard coal
- C. "Oil shale"
- D. Bituminous shale
- E. Tar sand

Lignite and bituminous coal

 Crystalline rocks (ex. Granite, Diabase, etc....), hard, Deformation Model: elastic behavior "reversibly".

- Soluble carbonate, salts, and fissured rocks: Deformation Model: plastic behavior "irreversibly".
- Shale, Serpentine, and Mylonite: cleavage, weakness plans, reducing strength.

- The unite of force called Newton (N), is defined as the force which gives an acceleration of 1m/s² to a mass of 1 kg.
- Stress (σ) is the force per unit area that exists within a specified plane in a material.

σ= F/A where F= Force (compression or tensile) (N)

 $A \longrightarrow (m^2)$

 $\sigma = N/m^2 = also known as Pascal (1 N/m^2 = 1 Pa).$

Stress analysis:

General three dimentional states of stress Normal (direct stress) Shear stress

Three principal stresses

Major principal stress $\sigma 1$ Intermediate principal stress $\sigma 2$ Minor principal stress $\sigma 3$ ($\sigma 1 > \sigma 2 > \sigma 3$)

Figure 2.1 General three-dimensional state of stress. The faces of the cubic element shown are termed the positive faces, because the outward normals are in the positive directions of x, y and z. On the faces not shown (the negative

Strain

Strain: (E) is a measure of the deformation of a material when a load is applied. Strain is a ratio of lengths, such as meters per meter. Strain has dimentionless units. $\epsilon = \Delta L / L$ where $\Delta L = difference of$ Length & L = original Length $E = stress/strain = \sigma/\epsilon$ (Hooke; s Law) Within an elastic range, strain is proportional to stress, E= constant known as Young;s modulus or modulus of elasticity. (N/m²)

Deformation behavior of rocks (materials): 1- Elastic behavior (spring) e.g, Rocks (Granit) A-Linear **B-Convex C-Concave 2- Plastic B. (Friction Model)** e.g. Soils (sandstone) 3- Viscous B. (Flow Model): e.g. claystone

Index properties of rock systems:

- These index properties to describe the rocks quantitatively, they including:
 - 1- Porosity
 - 2- Density
 - **3-** Permeability
 - 4- Durability
 - 5- Sonic velocity
 - 6- Strength

Index properties of rock systems:

- These index properties to describe the rocks quantitatively, they including:
- 1- Porosity
- 2- Density
- **3-** Permeability
- 4- Durability
- 5- Sonic velocity
- 6- Strength

Index properties of rock systems:

• Water content (moisture content):

The ratio of the mass of water to the mass of rock solids.

$$W = m_w/m_s \cdot 100$$
 (%)

Determination of water content in lab.:

1- Porosity

 Porosity: the relative proportion of solids and voids. The porosity of the rock, indicated by the dimensionless quantity n, is a fraction expressing the proportion of void space to total space in the rock.

n= Vp/Vt . 100

Vp= the volume of pores in total volume Vt.

<u>Porosity</u>

- There are two types of the porosity:
- 1- total (absolute) porosity. (all connected and unconnected pores), larger value.
- 2- net (effective) porosity. (only connected pores), smaller value.

<u>Porosity</u>

- * Sedimentary rocks: (pores between grains), ranging from 0 to 90%.
- And it depends on both the age and the depth.
- * Crystalline rocks: (limestone, evaporites, igneous "1 or 2% and due to weathering progresses it increased to 20% or more", and metamorphic):

(planar cracks termed fissures).

Rock	Age	Depth	Porosity (
Mount Simon sandstone	Cambrian 🔶	13,000 ft	0.7
Nugget sandstone (Utah)	Jurassic		1.9
Potsdam sandstone	Cambrian <	Surface	11.0
Pottsville sandstone	Pennsylvanian		2.9
Berea sandstone	Mississippian	0-2000 ft	14.0
Keuper sandstone (England)	Triassic	Surface	22.0
Navajo sandstone	Jurassic	Surface	15.5
sandstone, Montana	Cretaceous	Surface	34.0
Beekmantown dolomite	Ordovician	10,500 ft	0.4
Black River limestone	Ordovician	Surface	0.46
Niagara dolomite	Silurian	Surface	2.9
limestone, Great Britain	Carboniferous	Surface	5.7
chalk, Great Britain	Cretaceous	Surface	28.8
Solenhofen limestone		Surface	4.8
Salem limestone	Mississippian	Surface	13.2
Bedford limestone	Mississippian	Surface	12.0
Bermuda limestone	Recent	Surface	43.0
Shale	Pre-Cambrian	Surface	1.6
Shale, Oklahoma	Pennsylvanian 🔶	1000 ft	17.0
Shale, Oklahoma	Pennsylvanian	3000 ft	7.0
Shale, Oklahoma	Pennsylvanian	5000 ft	4.0
Shale	Cretaceous	600 ft	33.5
Shale	Cretaceous	2500 ft	25.4
Shale	Cretaceous	3500 ft	21.1
Shale	Cretaceous	6100 ft	7.6
Mudstone, Japan	Upper Tertiary	Near surface	22-32
Granite, fresh		Surface	0 to 1
Granite, weathered			1-5
Decomposed granite (Saprolyte)			20.0
Marble			0.3
Marble			1.1
Bedded tuff			40.0
Welded tuff			14.0
Cedar City tonalite			7.0
Frederick diabase			. 0.1
San Marcos gabbro		×	0.2

Figure 2.2 Photomicrographs of thin sections of fissured rocks, photographed in transmitted, polarized light (courtesy of H. R. Wenk). (a) Anorthosite with many intracrystalline and some intercrystalline fractures ($\times 6.5$).

Figure 2.2 Photomicrographs of thin sections of fissured rocks, photographed in transmitted, polarized light (courtesy of H. R. Wenk). (*b*) Gabbro with regular fissures oriented across the cleavage (\times 7).

<u>Porosity</u>

2- Density

 Density (p) add information about the mineralogy or grain constituents.

Dry Density = $\rho_d = m_d/V$ (g/cm³) or (T/m³) m_d = dry mass & V = volume.

Wet Density = $\rho_w = m_w/V$ (g/cm³) or (T/m³) m_w = wet mass & V = volume.

 $\rho_{d} = \rho_{w} / 1 + W$ where W= water content

Density

- Unite weight = Density . g $\gamma = \rho . g$ (KN/m³)

g=gravity acceleration (=9.8 "10" m/S²).

Specific gravity (Gs) = ratio between unite weight of rock to the unite weight of water $Gs = \gamma / \gamma_{w}$

Bulk Density: total density of the rock in the field.

3- Permeability

 Permeability defined as the ability of a rock to allow the passage of fluids into or through it without impairing its structure.
Permeability of particular material is defined by its coefficient of permeability or hydraulic conductivity.

Permeability

- Darcy, s Law : which governs the flow of ground water through soil and rocks.
- V =Ki K=V/i where Q=VA
- Q = kiA K= coefficient of permeability or hydraulic conductivity (m/s).
- V= velocity of water filteration (m/s)
- Q= volumetric flowrate of water (m³/s)
- A= the cross-sectional area of the flow-tube
- i= hydraulic gradient (the rate of decrease of total head (potential) with distance in the direction of the flow (dh/dx).

Permeability

• 1 Darcy = 10^{-3} cm/s

Boden mit Korn und Porenraum

wahrer Fließweg mit Filtergeschwindigkeit durchflossen

Permeability

Permeabilities of Typical Rocks ^a			
	k (cm/s) for Rock With Water (20°C) as Permeant		
	Lab	Field	
Sandstone	3×10^{-3} to 8×10^{-8}	1×10^{-3} to 3×10^{-8}	
Navajo sandstone	2×10^{-3}		
Berea sandstone	4×10^{-5}		
Greywacke	3.2×10^{-8}		
Shale	10^{-9} to 5 × 10^{-13}	10^{-8} to 10^{-11}	
Pierre shale	5×10^{-12}	2×10^{-9} to 5×10^{-11}	
Limestone, dolomite	10^{-5} to 10^{-13}	10^{-3} to 10^{-7}	
Salem limestone	2×10^{-6}	a Milleline and	
Basalt	10^{-12}	10^{-2} to 10^{-7}	
Granite	10^{-7} to 10^{-11}	10^{-4} to 10^{-9}	
Schist	10^{-8}	2×10^{-7}	
Fissured schist	1×10^{-4} to 3×10^{-4}		

4- Slaking and durability

- Durability of rocks is fundamentally important for all applications.
- Changes in the properties of rocks are produced by <u>exfoliation</u>, <u>hydration</u>, <u>slaking</u>, <u>solution</u>, <u>oxidation</u>, <u>abrasion</u>, and other processes.

Slake durability test (Franklin and Chandra 1972):

Slaking and durability

- Slake durability test (Franklin and Chandra 1972):
- 1-500 g of rock is broken into 10 lumps and located inside a drum (140 mm in diameter and 100 mm long with sieve mesh "2 mm opening" forming the cylindrical walls)
- 2- the drum is turned at 20 revoltions per minute in a water bath.

Slaking and durability

- 3- After 10-minutes of this slow rotation, the percent of rock retained inside the drum, on a dry weight basis, is reported as the slake durability index (Id).
- Liquid limit method (WL): for shale and claystone.
- The rate of slaking was classified in terms of the <u>change in liquidity index (Δ IL)</u> following immersion in water for 2 hours.

Slaking and durability

$\Delta IL = \Delta w/wL-wp$

 Δ w = the change in water content of the rock or soil after soaking for 2 hours.

- WL= water content at liquid limit
- Wp= water content at plastic limit.

Amount of Slaking	Liquid Limit (%)
	< 20
Very low	20 50
Low	50-90
Medium	90-140
High Very high	> 140
Rate of Slaking	Change in Liquidity Index after Soaking 2 Hours
	< 0.75
Slow	0.75-1.25
Fast Very fast	> 1.25

* After Morgenstern and Eigenbrod (1974).

Group Name	% Retained After One 10-Minute Cycle (Dry Weight Basis)		Retained After Two 10-Minute Cycles (Dry Weight Basis)	
Very high durability	a de la come	>99	> 98	
High durability		98-99	95-98	
Medium high durability		95-98	85-95	
Medium durability		85-95	60-85	
Low Durability		60-85	30-60	
Very Low Durability		<60	< 30	

Index properties of rock systems:

- These index properties to describe the rocks quantitatively, they including:
 - 1- Porosity
 - 2- Density
 - **3-** Permeability
 - 4- Durability
 - 5- Sonic velocity
 - 6- Strength

- Measurment of the velocity of sound waves in a core specimen is relatively simple and apparatus is available for this purpose.
- The most popular method pulses one end of the rock with a piezoelectric crystal and receives the vibrations with a second crystal at the other end.
- The travel time is determined by measuring the phase difference with an oscilloscope equipped.

- Longitudinal (VI) & transverse (Vs) shear wave velocites.
- The velocity depends exclusively upon their elastic properties and their density.
- The sonic velocity (VI) can serve to index the degree of fissring within rock specimens.

Ultrasonic instrument.

Typical waveform.

The velocity of the p-waves was obtained as the quotient of the travel pass "x" (the height of the samples) and the travel time of the P-waves "ta" (Pwaves velocity "Vp" =x/ta) (Yesiller N. et al. 2001).

 Fourmaintraux (1976): $1/VL^* = \sum_i Ci/VIi$ VI*= velocity of longitudinal waves in rockforming minerals Ci= volume proportion of mineral in the rock. $IQ\% = (VI/VI^*).100$ IQ%= quality index

Longitudinal	Velocities
of Mine	erals

Mineral	$V_l \text{ m/s}$	
Quartz	6050	
Olivine	8400	
Augite	7200	
Amphibole	7200	
Muscovite	5800	
Orthoclase	5800	
Plagioclase	6250	
Calcite	6600	
Dolomite	7500	
Magnetite	7400	
Gypsum	5200	
Epidote	7450	
Pyrite	8000	
and the second sec		

^a From Fourmaintraux (1976).

Typical values of V_1 for Rocks			
V_l^* m/s			
0			
0-7000			
0-6500			
0-7000			
0			
0-6000			

Typical Values of 1/* for Rocks

^a From Fourmaintraux (1976).

Sonic velocity as an index to degree of fissuring:

6- Strength

- The most commonly measured rock strength property is the uniaxial compressive strength σ_c (unconfined compressive strength q_u)
- There are several different levels of rock strength to be considered:

i) If suitable core samples and specimen preparation facilities are available, direct measurments of the σ_c can be obtained.

6- Strength

 ii) If you are on site you may have the rocks, but no laboratory to carry out the testing. However, the site equipment may include a point load tester.

Qu = 24. Is $_{(50)}$

1- point load test

2- schmidt rebound hammer test

3- unconfined compressive test

1- point load test

- Point load test equipment consists of two types, non-portable laboratory equipment and portable equipment which can be used in the field or laboratory.
- $I_s = P/D^2$
- I_s= point load index (for specimen with 50mm diameter)
- P= applied load in N
- D= distance between points in appropriate units

1- point load test

1- point load test

 Uncorrected point load strength must be corrected to obtain correcter I_{s (50)}.

Point Load Strength Test Size Correction Chart (Redrawn after Broch and Franklin¹⁴)

- The schmidt rebound hammer was designed to standarize both the methodology of hardness testing and the force with which a hammer strikes a rock surface.
- The measured amount of rebound can be correlated with the rock strength in much the same way as with point load data.
- The amount of rebound is actually a measure of the material;s elasticity which is reflected in its hardness

Figure 6.2 Photo by D. Zavadil

Figure 6.3 Photo by D. Zavadil

Rock surface after blow	Strength, psi	Strength, MPa
No change Vao day nghe ba	i nay di ban http://hhatquang	an1.0catch.com
Shallow, rough pit	8000-15000	55-103
Dent or depression	3000-8000	21-55
Cratering with rim	1000-3000	7-21

3- unconfined compressive test

q_u= F/A
q_u= unconfined compressive strength
F= Force (load) at the failure
A= area

3-unconfined compressive test

Classification of rock masses for engineering purposes

<u>Bieniawski's geomechanics classification</u> system provides a general rock mass rating (RMR) increasing with rock quality from 0 to 100.

It is based upon <u>five universal parameters</u> including: <u>strength</u> of the rock, <u>drill core</u> <u>quality</u>, <u>ground water conditions</u>, joint and <u>fracture spacing</u>, and joint characteristics.

- * A <u>sixth parameter</u> (<u>orientation of joints</u>) is entered differently for specific application in tunneling, mining, and foundations.
- * Increments of rock mass rating corresponding to each parameter are summed to determine RMR.

1- RMR increments for compressive strength of the rock

TABLE 2.10

Rock Mass Rating Increments for Compressive Strength of the Rock

Point Load Index (MPa)	or	Unconfined Compressive Strength (MPa)	Rating
> 8		>200	15
4-8		100-200	12
2-4		50-100	7
1-2		25-50	4
Don't use		10-25	2
Don't use		3-10	1
Don't use		< 3	0

2- RMR increments for <u>drill core</u> <u>quality (RQD)</u>

TABLE 2.11

Rock Mass Rating Increments for Drill Core Quality

Rating	
20	
17	
13	
8	
3	

 Determination of RQD (rock quality designation) according to Deere (1967):

RQD = sum of length of core-pieces ≥ 10 cm / length of the core * 100 (%)

Figure 7.1

Table 7.1

RQD %	ROCK QUALITY	FRACTURE SPACING
0-25	Very poor	Very close
25-50	Poor	Close
50-75	Fair	Moderately wide
75-90	Good	Wide
90-100	Excellent	Very wide

3- RMR increments for <u>spacing</u> of joints of most influential set

TABLE 2.12

Increments of Rock Mass Rating for Spacing of Joints of Most Influential Set

Joint Spacing (meters)	Rating
> 3	30
1-3	25
0.3-1	20
0.005 to 0.3	10
< 0.005	5

4- RMR increments for joint condition

TABLE 2.13

Rock Mass Rating Increments for Joint Condition

Description	Rating
Very rough surfaces of limited extent; hard wall rock	25
Slightly rough surfaces; aperture less than 1 mm; hard wall rock	20
Slightly rough surfaces; aperture less than 1 mm; soft wall rock	12
Smooth surfaces, OR gouge filling 1-5 mm thick, OR aperture of 1-5 mm; joints extend more than several meters	6
Open joints filled with more than 5 mm of gouge, OR open more than 5 mm; joints extend more than several meters	0

5- RMR increment due to ground water condition

TABLE 2.14

Increments of Rock Mass Rating Due to Ground Water Condition

Inflow per 10 m Tunnel Length (l/min)	OR	Joint Water Pressure Divided by Major Principal Stress	OR	General Condition	Rating
None		0	(Completely dry	10
25		0.0 - 0.2	1	Moist	7
25-125		0.2-0.5		Water under moderate	
				oressure	4
125		0.5		Severe water problems	0

6- Adjustment in RMR for joint orientations

TABLE 2.15

Adjustment in RMR for Joint Orientations

Assessment of Influence of Orientation on The Work	Rating Increment For Tunnels	Rating Increment For Foundations
Very favorable	0	0
Favorable	-2	-2
Fair	- 5	-7
Unfavorable	-10	-15
Very unfavorable	-12	-25

Geomechanics classification of rock masses

TABLE 2.16

Geomechanics Classification of Rock Masses

Class	Description of Rock Mass	RMR Sum of Rating Increments from Tables 2.9–2.14
I	Very good rock	81-100
II	Good rock	61-80
III	Fair rock	41-60
IV	Poor rock	21-40
V	Very poor rock	0-20