

Faculty of Science Geology Department

Soil Mechanics

Prof. Dr. Eng. Geo. Hesham A.H. Ismaiel Second year students

Main Topics

- 1- Introduction, Definition
 - 2- Three phases soil system
 - 3- Soil evaluation
 - 4- Sampling
 - 5- Laboratory geotechnical testes
 - 6- In Situ geotechnical testes
 - 7- Ground water related soil foundation (Porosity, Permeability, Flow, Hydraulic Gradient, ...).
- 8- Engineering Classifications of soils
- 9- Problematic soils

Difinations

Mechanics of materials is a branch of engineering that deal with stresses and properties of materials.

Steel & Concrete: homogeneous (same composition throughout), isotropic (same directional properties throughout), Lab. Testing.

Rocks & Soil: inhomomgeneous & anisotropic, both Lab. and field Testing.

Definitions:

- Soil is composed of individual particles with differing <u>sizes</u>, <u>shapes</u>, and <u>mineral</u> <u>composition</u>.
- The engineering properties of soil depend on how these individual particles behave as a mass.
- For Engineering purposes, it is useful to anticipate the behavior of a soil mass based on ist soil classification.

Three phases soil system:

1- Solid phase 2- Liquid phase 3- Gas phase

Figure 4.5

Partly saturated soil showing particle-water-air relationships. Particle size is greatly magnified. Attraction (apparent cohesion) between the water and soil particles (surface tension) develops a stress that holds the grains together. The cohesion is destroyed if the soil dries out or becomes completely saturated. (After R. Pestrong, *Slope Stability*, American Geological Institute, 1974.)

Soil evaluation:

1- Residual soils (Weathered)2- Transformed soils (Detrital, mechanical, organic,...)

Sampling

i- undisturbed samples. ii- disturbed samples i- undisturbed samples: Undisturbed samples retain the in situ soil structure and the in situ water content, they are suitable to determine water content, density, stress history, compressibility, stress-strain and strength characteristics and flow properties.

Undisturbed samples obtained from block samples, that have been cut by hand at the bottom or from the sides of trial pits or by special devised samplers.

Disturbed samples are representative of the particle size distribution, but the structure has been destroyed and significant changes of the water content have occurred. They are suitable for classification tests and compaction tests. Samples obtained from trial pits, augers, etc. Samples are classified into five classes depending on their <u>quality</u>, according to the <u>information</u> that can obtained from them.

- 1- class 1: classification tests, water content, density, stress-strain and strength, compressibility, stress history, flow properties. (must be undisturbed sample)
- 2- class 2: limited to classification tests, water content, and density. (must be undisturbed sample)
- 3- class 3: classification and water content tests.
- 4- class 4: classification tests.
- 5- class 5: limited to soil identification.

- Engineering classification of soil are based on texture and plasticity.
- Gradation of soil is a common means for describing the particle size distribution present in soil.
- 1- Grain size analysis:
 - a- Sive analysis
 - **b-** Sedimentation analysis
- 2- Consistency (Atterberg limits) test (Plasticity)

1- Grain size analysis: Coefficient of uniformity (Cu) $C_{11} = D_{60}/D_{10}$ (must be greater than 4 for gravel, and greater than 6 for sand) D_{60} : the particle size diameter for which 60 percent of the sample was finer. D_{10} : the particle size diameter for which 10 percent of the sample was finer. Coefficient of curvature (C_c) $C_c = D_{30}^2 / D_{10} * D_{60}$ (must be between 1 and 3) D_{30} : the particle size diameter for which 30 percent of the sample was finer.

GRAIN SIZE DISTRIBUTION

Figure 11.1

2- Consistency (Atterberg limits) test (Plasticity):

Figure 11.3-From USBR, 1974

Fig. 5.4. Liquid limit plot

Plasticity Index (PI) = Liquid limit (LL) – Plastic limit (PL)

Soil compaction

Types of soil compaction:

- 1- Dynamic compaction
- 2- Kneeding compaction
- 3- Static compaction
- 4- Vibratory compaction

Dynamic compaction

Proctor tests:

- 1- Standard Proctor test
- 2- Modified Proctor test.

Standard Proctor test

جدول (۸–۱) بیـانات اختبـارات الدهک

Elements of the standard compaction tests

	Standard (ASTM D698)	Modified (ASTM D1557)
Hammer Height of hammer fall Number of layers	24.5 N (5.5 lb) 305 mm (12 in)	44.5 N (10 lb) 457 mm (18 in)
No. of blows/layer	3 25	5 - 25
Soil	0.000 942 2 (-) No	$m (1/30' ft^3)*$ 4 sieve
Compaction energy (CE	$595 \text{ kJ/m}^3 (12400)$	2698 kJ/m ³ (56 250 lb. ft/ft ³)

* Using the 102-mm (4-in) diameter mold.

Zero air voids curve (100% saturation) for a given G, value (determined from umit weight Se = wG,) Dry density gm/cc. PCF dry Water content, w, % شكل (٨–٣) منحنى الفراغ الهوائي الصفري وعلاقته بمنحني الرطوبة – الدما

Index of compaction: (I _{comp}) = Dry Density (in situ) / Maximum Dry Density (in proctor test)

Soil classifications

- 1- Particle size classification
- 2- Textural classification
- 3- Highway research board (H.R.B) classification
- 4- Unified soil classification

1- Particle size classification

3- Highway research board (H.R.B) classification

General classification	Granular materials (35 per cent or less of total sample passing						Silty-clay materials (more than 35 per cent of total sample passing no. 200)				
Group classification				4-2			186 ST	4.4	A-5	A-6	A-7
	A-1-a	<u>1</u> <u>A-1-b</u>	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	<u>A-3</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A-7-5 and A-7-6
Sieve analysis per cent passing $\neq \neq 10$ $\neq \neq 40$ $\neq \neq 200$	50 max 30 max 15 max	50 max 25 max	51 min 10 min	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
Characteristics of fraction passing $\neq \neq 40$ Liquid limit, W_L	6.	may	NP	40 max 10 max	41 min 10 max	40 max 11 min	41 min 11 min	40 max 10 max	41 min 10 max	40 max 11 min	41 min 11 min
Plastic Index, <i>I</i> _P Group Index Usual types of significant constituent materials General rating as subgrade	0 Stone I fragments, gravel s and sand		0 Fine	0 4 max silty or clayey gravel and sand Excellent to good			6 max 12 max 16 max Silty		16 max	20 max Clayey	
			sand				fegd - e	soils soi Fair to poor			SUIIS

Table 6.1 H.R.B. Aasho soil classification system (with suggested subgroups)

Classification procedure: With required test data available, proceed from left to right (Table 6.1) and the correct group will be found of elimination. The first group from the left into which the data will fit is the correct classification.

a—Plasticity index of A-7-5 subgroup is equal to or less than W_L minus 30.

b-Plasticity index of A-7-6 subgroup is greater than WL minus 30.

c-Group index should be shown in parentheses after the group symbol, As A-2-6(3), A-4(5), A-6(12), A-7-5(17).

Sieves $\neq \neq 10 = 2.00$ mm, $\neq \neq 40 = 0.420$ mm, $\neq \neq 200 = 0.074$ mm.

4- Unified soil classification

ie Manice James	UNIFIED	SOIL CLASSIFICATION SY	STEM	
	LABOR	ATORY CLASSIFICATION CRITE	RIA	9
en estadore da so	Co Less than 5	arse Grained Soils 0% passing No. 200 sieve	41-	GROUP SYMBOLS
	Less than	C_{c} between 1 and 3; C_{u} greater	GW	
GRAVELS	No. 200 sieve size*	Not meeting both C_c and C_u	GP	
Less than 1/2 of coarse fraction passes No. 4 sieve size	More than 12% passing	Above "A" line with Pl between 4 and 7 requires	Atterberg lim. below"A" line or PI <4	GM
	No. 200 sieve size*	use of dual symbols (GC-GM)	Atterberg lim. above "A"line or PI >7	GC
	Less than	C _c greater than 6; C _u betwo	SW	
SANDS More than 1/2 of coarse fraction passes No. 4 sieve size	No. 200 sieve size*	Not meeting both C_{c} and C_{u}	SP	
	More than 12% passing	Above "A" line with Pl between 4 and 7 requires use	Atterberg lim. below "A"line and PI <4	SM
	No. 200 sieve size*	of dual symbols (SC-SM)	Atterberg lim. above "A"line	SC

* Borderline cases between 5% and 12% require use of dual symbols such as SW-SC

Unified soil classification

-1 3-04 63	Fine Grained Soils More than 50% passing No. 200 sieve			
name in provin	The strength of the shear strength and a	ML		
	See adjoining plasticity chart	CL		
	("A" line)	МН		
AND	speak and appendent will be assigned	СН		
CLAYS	Below "A" line and LL (oven dry soil) / LL (air dry soil) < 0.75	OL		
tio. 100 mm	the state of the second state in the first state and the second state and the	ОН		
	Visual identification	Pt		
Figure 11.2-A	dapted from NAVFAC, 1982	1		

Group	Typical names	Share				Permeability '			
symbol	Typical names	strength ibility ability		When compacted	K cm./sec	K K /sec ft/day			
GW	Well graded gravels, gravel- sand mixtures, little or no fines	Excellent	Negligible	Exceller	t Pervious	> 10 ⁻²	> 30		
GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	Good	Negligible	Good	Very pervious	> 10 ⁻²	> 30		
GM	Silty gravels, gravel-sand-silt mixtures	Good to fair	Negligible	Good	Semi-perv.	10 ⁻³ to 10	-6 3 to 3 x 10 ⁻		
GC	Clayey gravels, gravel-sand- clay mixtures	Good	Very low	Good	Impervious	10 ⁻⁶ to 10	⁸ 3 x 10 ⁻³ 3 x 10 ⁻⁵		
SW	Well graded sands, gravelly sands, little or no fines	Excellent	Negligible	Excellen	Excellent Pervious		> 3		
SP	Poorly graded sands, gravelly sands, little or no fines	Good	Very low	Fair	Pervious	> 10 ⁻³	> 3		
SM	Silty sands, sand-silt mixtures	Good to fair	Low	Fair	Semi-perv. to imperv.	10 ⁻³ to 10 ⁻⁶	3 to 3 x 10 ⁻³		
SC	Clayey sands, sand-clay mixtures	Good to fair	Low	Good	Impervious	10 ⁻⁶ to 10 ⁻⁶	3 x 10 ⁻³ to 3 x 10 ⁻⁵		
ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Fair	Medium to high	Fair	Semi-perv. to imperv.	10 ⁻³ to 10 ⁻⁶	3 to 3 x 10 ⁻³		
CL	Inorganic clays of low to med. plasticity, gravelly clays, sandy, silty and lean clays	Fair	Medium	Good to fair	Impervious	10 ⁻⁶ to 10 ⁻⁶	3 x 10 ⁻³ to 3 x 10 ⁻⁵		
МН	Inorganic silts, micaceous or diatomaceous, fine sandy or silty soils, elastic silts	Fair to poor	High	Poor	Semi-perv. to imperv.	10 ⁻⁴ to 10 ⁻⁶	3 x 10 ⁻¹ to 3 x 10 ⁻³		
СН	Inorganic clays of high plasticity, fat clays	Poor	High to very high	Poor	Impervious	10 ⁻⁶ to 10 ⁻⁸	3 x 10 ⁻³ to 3 x 10 ⁻⁵		
OL	Organic silts and organic silt- clays of low plasticity LL < 50	Poor	Medium	Fair	Semi-perv. to imperv.	10 ⁻⁴ to 10 ⁻⁶	3 x 10 ⁻¹ to 3 x 10 ⁻³		
OH	Organic clays of med. to high plasticity LL >50	Poor	High	Poor	Impervious	10 ⁻⁶ to 10 ⁻⁸	10 ⁻³ to 10 ⁻⁵		
Pt	Peat and other highly organic	Not suitable for construction							

Problematic soils

Definition of Problematic soils (Difficult soils): Types of problematic soils:

- 1- Soft clay soil (normally consolidated Clay, Organic soil, Peat, Muck, Sabkha)
- 2- Expansive or swelling soil (shale, Mudstone, Claystone, Marl)
- 3- Collapsing soil (Loss, cohesive sands, sand dunes, loss granular soil)
- 4- Fills

Figure 1.20 Diagonal cracks in walls due to (a) foundation subsidence; (b) foundation heave.