Chapter 1

Indefinite Integration

1.1 Introduction

In the course of differential calculus, we studied the
mathematical process of finding the derivative of a function,
and we considered various applications of dananves In
this course we wﬂl study another branch: of calculLs called
integral calculus. In differential calcu!us, the tangent
problem led us to formulate, in terms of limits, the idea of a
derivative, which later turned out to be apphc.lbic throuzh
velocities and other rates of change, to a variety of applied
problems.

In integral calculus, the area problem will ‘lead us to
formulate, again in terms of limits, the idea of an integral,
which will later be used to find voiumes, lengths of curves,
work, and forces. The area problem states that: Given a

function that is continuous and nonnegative In an interval
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[a B), it is reqmred to find the area of the region bounded

b thc graph of thc cx;rve the interval [ b] on the x-axis
znd the vertical lines v = 4 and x ‘yb " The major
development of solving this area problem was made
independentiy by L New:ion and . Leibniz in 1675. They
discovered that areas couid be obtained by reversing the
process of differentiation. Their idea is that, to find the area
A(x) of the regmn bounded by the graph of a nennegative
and contmLous functxonj(x) on the interval [a, x] and the -
axis (where x is any point on the x-axis), we first find the
derivative ‘,f the area i‘{mction A(x), then we use the value of
the derivative 4 “(x) to determine A(x) ltself

Y
- [tis clear from the definition of
the derivative that

() = lim A(x +h) - A(x)
h—0 A

But, it can be seen from the opposite figure that

A(x+i',;: A(x) hf(c)~‘f()

)
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where ¢ is a poini—beéiween and X @ik -when

h — 0, c — x. This implies that

A= lim AEX "z A& - tim £(0)= 1)

The above result means that ;4(x), which we -are looking for,
is a function whose derivative is f{x).

The above discussion shows that there is a strong
connection between the two branches of calculus. Namely.
the differential and integral calculus. This connection is
shown via the Fundamental Theorems of Calculus. These
theorems greatly simplify the solution of many

mathematical problems.

1.2 Antiderivative

We already discussed methods of finding derivatives
of functions in the course of differential calculus. We will
now turn our attention towards reversing the operation of
differentiation. Given the derivative of a function, we are
looking to find the function itself. This process-is called

antidifferen*ation. For example, if the derivative of the

function is 3x2, we know that the function would be

3)
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d
£x)= x> because E(X3 ) = 3.\:?. But the fimction could

also be' F(x)=x> +4 because Z—(x:“- {,:3)*.—.» 322, 1t is
¢lear that any function of the form F(z)=x3 .. C, where C
1S a constant, will have F'(x)=3x2 as its derivative, Thus,
We say that the anmtiderivative of fx)=3x% is
Flx)y=x+C , wiere Cis an arbitrasy constany.

[t is easiiy seen that

XS

ff_f(x):x“, then F'(x)=?+C‘
and,
7 | <8
If f(x)=x’, then F(x)=-é_+c
In general,
n+1

If  f(2)=x". then F(x):f‘—_-éf+c, forn#—1
n+ |

Example (1): What are the antiderivatives of fx)= x“,

g(x)=x"3 and h(x)=x"Y29

(4)
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Solution: | Using the above formula, we get
12
X
F(x)=—+C,
D=7

G(x)=f—;i+ c=-i— PrC,
2 |
and, |
x1/2

Hix)=—+C=2x"+C.
(x)A % x5+

From the above discussion we reach the following

definition of the antiderivative of a function.

Definition 1.1  (Antiderivative): The differentiable
function F(x) is called an antiderivative of f(x)ona given

interval, if F'(x)=f(x),on that interval.

The following theorem gives the relation between

Jdifferent antiderivatives of a given‘functién.

Theorem 1.1 IfF (x) and G(x) are both antiderivatives
of f(x), then there is a constant C such that

F(x)- Gx)=C

(5
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4

(Two anndenvanves of a funcﬁon can dlffer only by a

constan' )

For example,
Fy=x’+2,  G)=x’, Hx)=x'-s

are all antiderivatives of the function S(x)=3x?

1.5 The Indefinite Integral |

The process of finding an anﬁderiifative 1s called
inregretion. The function that results when integration takes
‘place is called indefinire integral, .or more szmply, an

integral. ‘We denote the indefinite integral of a function
f(x) by f S (x)dx. The symboi . _f ~is called the integral
sign and the function f(x) is called the integrand. The dx
in the indefinite imegral means that f S (x)dx is the
integral of f(x) with respect to the variable x just as the
symbol df (x)/dgc means the derivative of f{x) with respect

to x. Thus we have the following definition

(6)
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Definition 1.2 (Indefinite integral): |
If F(x) isany antiderviative of a given function fx)" -
e S F@=r&

then,/ the indefinite integral of fix) with respect- to the

variable x is given by
[fyde = F(x) + €
The constant C is called “the constant of integration”.
For example, using this notation,
[3x% dx = >+ C

where C is the constant of integration.

1.4 Basic Integration Rules
Since integration is the inverse operation -of

differentiaticn so we have the following trivial rule.

Rule 1

(L= far =1+,

2 1 eo=1 ),

Q)
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That is to say, the two symbols “Ex—'” and « f ” are
Opposite operators, any one of them cancels the other.

Also, as shown earlier, the derivative of the product
of a constant and a'ﬁmction is the product of the coristant
and the derivative of the functon. A similar rule applies to
indefinite integral. Moreover, since derivative of sums or
differences are found term by term, indefinite fritegrzils can
also be found term By term. This is described by the

fellowing two rujeg,

Ruie 2 {Scalar Muldplication Rule) The constant factor
can be taken outside (he integral sign. That is:

For any censtant ki () dx = k (x) dx.
y :

Example (1)

4]

5 (
327 de=3 [x% =3 Lavey LNV
{6 2

Rule 3 (Sum or Difference Rule):  The indefinite integral
of the algebraic sum (or difference) of two functions equals

the sum of their integrals:

(8) .
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flrayre]ds = [feydxt [gx)dx

,NExamgie 2)
-
j(x—-x4 )11: j‘xa'x-- fx4 ¢'=3‘—2-—:§-+c

Example (3)
I(21x3/4 +8x3}ix= jZ Lo ¥4 d+ I8x3dx

7/4 4
o E s X o =121 v2xt+C
4 4 ‘

Example (4)

[(x-3)de=[(x? ~6x+9 )i
3 2 T W3
=X 6. X _+9x+C =2 _3x24+9x+C
3 3

1.5 Table of Famous Integrals

The following table summarizes the integral formulas

for some elementary functions

O S R L
T Sl
. ‘t”.’;[?ﬁ

;:'*f?n

%)
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. Tné Integrand I o  The Integrai
LN T [x dy=Z +C
. n+]
| Vx fldrzln}x[«r-c
. ‘
et [l
I
a* fa dx ==~ 4 ¢
ing
COsx ‘fcosx dx:sinx+C
.sin‘.t ' _{sinx dy=-~cosx+ C

, :
fsec“ X dx = tang + C_

joC X dx --—cotr+L

CsC” x

faec:xtan.r dr=secx+ O

SeCxtanx

cscxcotx fcsc.xcotx dx=-cscx +C

fcoshx dx = Si]lh.r +C

coshx

sinh x stmhxdx -coshx-i-C

sech®x

fsech xdx = tanhx+C

(10) - ——
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cschxcothx .

~The Integrand The Integral
| ¢sch?x b f csch?x dx =~ cothx+ C
sechxtanh x jsechxtanhx dx =-gsechx+ C

~fcschxcoth.§dx =-cschx + C

1 . -
j 5 dx=sin "' x+C =— cos™! x+C.
x .

s

dx=tan "’ x+C =-cot™ x+C

f

l+x?
! dx=sec™! x+C =—csc” x+C
X4/ x°~1
[—— dx =sinh~' x+ C
\/ 1+ x2
f : dx =cosh™ x+ C
x2 -1

(11}
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1 The ltegrand | “The Intogral |
I le<l f L dr =~sech™x+ C
e
. ‘. f L .dx ;—-cschkk"x; C I
xyf L+ x2 X‘Jl"'lxz ; I

R —

Using rules 1.7 and 3 together wﬂh the abovc table we are

able to solve the following example:

Example (1): Find each of the following integrals

(i) f(-%-&—‘iex)cix‘ (ii) ](

st r*J

(iii) f——(-)—{—\/—_;:——dx (iv) f(seczx+cosx~3x)dx

' Solution:

() 'f(—f + 4ef)a'x=~41n}x]+4e‘ +C
. X

| 'j;(u)'
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’

(1i) ,__3..... + 1. dx=sin"! x —sech™lx + ¢
LS 2 .
VI1-x? R I-x

i f zo;:/: f( 1 \(}x_ J‘]

(100 1)

5/'2 /2
= 1()“..__ - _ic
5/2 /2
=4x? 2T 4+ C
" 5 . ,3). .
(1v) Hsec2 x +cosx -3* )d:c =tani +smy ~ 3 +C
ln

1 _ i -3 L 5r4
R/_ _+x«/tJdt .’l'3x +—é-,x “ix }dx

i, L .
=3jx (l/3¢ix+-jx de+J x4 dx
2
1/2 ,9,/'4

2/3
= 32X +ix, +’)°, -+ C
- T 23 212 94

_.~9 Ay /2+4x7$/_x~+C
2 9

= ?3\/&'2 -+ \,[;+§x2‘\"/—£+f

(13)
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Rule 4 o

If
then,

[fed = Fo) + €,

@ [fle)ds=—F(an+C

(b) [f(x+b)dx=F(x+b)+C

© f(ax+b)dx=—1— F(ax+b)+C
a )

Applying Rules 1,2,3 and 4 we can solve the following

examples:

Example (2):

Ico3xdx = -31-sin Ix+C
fe“dx = %e” +C

Jsin(x + 5)dx = —cos(x + 5) + C,

Ie’ ldx=e14+C

fsin(Sx - Ddx = —é—cds(Bx -D+C, -

[e5x+2dx - é_eix-&?. + C,

a4

T B ERTRSRT ST, TR A
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....... 5 ,
J“-‘x“? --Zln]4x-7[+C.

! 2
Example (3): If %{-—_-maoszx-—smzx), find % "

b

then find y.

Solution: Since [ %dx: f(x)+C then

2
& = J' i—zdx = Jr 4n(cos2x — sin2x)dx
dx 7 dx? :
= 2x(sin2x + cos 2x)+ C,,
and,
' dy .
y= J' —dx = j ((@n(sin2x + cos2x)) + C) )dx
dx
=n(—cos2x +sin2x) + Cyx + C,,

where, () and C, are constants.

Using Rule 4 we get the following more genéral table

of basic integrals.

(15)
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. f(ax~+-b)"dx=i~———~(ax+b) +C, n#-1.
a n+l1 . :

, ] | I
e dx=—In(ax +  +
J(a.x-!-b) a H— /1

J'e(m”b)dx =_£e(ax+b)+c

a
wax+b

[ales ) gt A
a InA

| jcés(a:c +b)dx = 1 sin{ax + b)Y+ C
a 4

Y . . .
' jsin(cir +b)dr=- —lcos(ax +b)+C
a

[sec?(ax +b) dx =~ tan(ax + 8) + C

a.

jcscz(ax+b)dx=—--I—cot(ax+b)+C
a

Isec(ax + b)tan(ax + b) dx = —Lsec(ax +b)+C
a .

f csc(ax + b) cot(ax‘#b)?d:é =1 csc(ax +b)+ C
a -

(16)
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[t

ICOSﬁ(Gx + b) dx = lsmh_(ax + b) +C

- [sinifax + b) dx =~ cosh(ax +b)+C

fsechz(ax +8)dx = 1 tanh(ax + b)+C
a

jcsr*h"(ax+b)zix = —~cuth(a +b)+ C

[sect(ax +b) tmh{ ax +5)dx =

l B
- —sech{ax +5)+ C
a

[esch(ax + b)coth{ax + 5) dx = ~ L esch (ax+5)+C
: a

| CoLE— =sin“(i') +C
] aZ __x2 Q-
' 1 I ;(x -~
-"az-htzdx- z tan ka}t
1
——-—dx=— sec” (-— C
JVI'\ xz——a }+
I_T'——“l dl'lh ( ) +C
v az +Xx a.

(17)
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_ g b X
Ix\/azﬁ-xz e GCSCh (a)-&C’

Using the above table we can solve the folidwing ¢xamp1es:

Example (4): Find each of the following integrals

g 1 .
@ [e* ~4) e Q) [ ‘/"‘—Z‘—_———:;dx ,

o fle o]

1
(3x + 7)

) fsech(Zx ~3)tanh(2x — B)d,:c

(18)
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Solution
. (3.: 4) l T 4) - '
@ e Je +

(i) j <ﬁ-@m"%;)+c
i z 1
(1) f@. N 16::5 = 1——6 : /;‘;g’;—“-z— dax

(1v) «Jv w=§mh+ﬂ+c

fsech 2x ~ B)tan.x\zx ~3Mdx =~ %sech(lzx—.%) +C

(19
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1.6 Determ.natwn of the Constant of

Integratmn
In order to find the value of the constant of integration
we need an auxiliary condmon to be satisfied, as in the

followmg example:

Example (1): Find the equation of the curve whose slope at
the point (xy) is 3x” if the curve is required to pass through

the pownt (1,-1).

Solution: The slope of the curve at any point (x,p) is %
X
But,
b =3x?
dx

Integrating both sides with respect to x, we get

9 dx = [3x2a
dx A

or
y=x’+C
This, last equation is the equation of the curve passing

’

through a general point (x,y).

(20)
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Now, if the curve has to pass through the point (1 —-l) we

must have that

y=x’+C
~-1=1+C,
from which we get
C=-12.

Therefore, the equation of the required curve is

y=x>-2

(21)
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Exercise 1.1 -
| TREEER o

Integrate each of the following finctions with i'espect

“ e x

;
I (2\/}*__;__..) <720 sin{Sx - 1) -~ 3. cosh6x

x )
-2 |
4, sec2(6x -5 5 675 6. o
7. e+ 7y 8. V2xr+5 9. g~ U-3x48) 4

0. If y"=120>~6:+5, find ' and v given that

['l. Find the equation of the curve whose slope is —12x°

and passing throtgh the point (1,8). Find y when x = 3.

2. Evaluate each of the foliowing integrals:

1 ) 1
( S, b e X
Y jx\, a’+x? “ ®) f V14— x?

(c) jcsch(3x+1)com(3x+i)¢r (@) [osc?(4x-9)dx

+

(22)
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Methods of

Intearation






Chaptef 2

Methods of Integration

2.1 Introduction

In this chapter wé shall develop techniques for
obtaining indefinite integrals of more complica‘teyd functions.
" The most important_ integration techniques that will be

considefed here are the following:

Integration by Substitution (Change of Variables),
Integration of Trigonometric Functions, Integration by
Removing- Roots, Integration by Parts, Integration by
Reduction;  Integration using Partial Fractions,

Miscellaneous Method.

Before introducing these techniques we have the following

important rules: .

(23)
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2.2 Two Import:mt Ruks

Usmg the chain rule for the denvam ‘es, we' > get
{f(x)] e(n+ 1)[f(x)] f'x) &y
[ntegrate both sides of (1) with rcspcct to x, we obtain
™ =(a+ ) [[r @] £ () ax )
which implies ’ |

Ruie 1

. ]
o reoel O ey | )

Remark:  The integration of a function raised to a given
power, multiplied by the derivative of this function is
computed easily from (3).
For example,
. N I :
f(l + smx)2 cosxdx =—(1+ smx)3 +C,
3

T e o (D=L

X

(24)
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" Also, since Z-t-mg 7=

Sflx
Rule 2 -

Methods of Integration

1
- then we have:
(x)

[ f(")dx =ln| f(x)[+C

Using the above two rules we can solve the following

-examples:

'Example (1):

@ i +1fxax

(iii) J- sin 2x
1/H~5cos2x
) Ix lnx

(vii) [cothxdx

tan " x
ix dx
(%) ‘[1+x2
(xi) j(lnx+——l——)ldx
: nx/x

(xii1) J'6x~—1}\/3x -x+5dx

Evaluate each of the following integrals

(i) [xV7x? +124dx

(iv) J’ 5

x +5
(vi)  [tanxdx
(viii) [secxdx

48cschb6x coth6x
(1 + csch6x)

(x)

(xii) f«/sin-x cosx dx

(ivx) f——q{———l;—s— dx
-x

(25)
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Solution

() f(x3 .+I)9x2& _{\x +1)93x dx »-j() (x +1) ‘-

X 'Lt
then by Rule 1 f( )

fx +i)9x cix-—%-' m(’c + )‘ +C

(ii) j.r\/7.x2+12dx*—~f 757 +12- 14z dx

&

(7v +*2,z Mxde  f(x)=7x +12
S(x)=14x

|- Mm

+

~

it

TRTw

1 %(7;:3 +12

Fey

1

sin 2x ————dX = j( +5 cos 2x) 2sin2xde

SN

: 1
- :l:(_)1 [{1+5 cos2x) 2(~10 sin2x)
_2 !
=—2(1+5c0s2x)2 +C
10~

(iv) f ; -—Z—Z-Ld.‘c f(x')=xj+5
x +5 x“+35 : f’(x)=2x

then by Rule 2

szisd e=2tnfe +5)v

(26)
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1 Ix e
f = ‘ f(x)—lnx
N Inx ‘Inx 1
[(x)==
then by Rule 2 &
l -
dx=Injln

lenx In|lnx|+C

i) franrdr= [P2Edr=— [~ 24
cosx cosx

=—In|cosx|+ C=In|secx|[+C

COth dx = In| sinh.r] +C

(vii) fcothxdx f

secx + tanx
(vii1) jsecx-dx = fsecx s
: secx +tanx

2
_ ISCC X +SeCcX X 4y ~Infsecx + tan x|+ C

_secx+tanx
—i '
. X -1 1 i —~1
dx= ftan™" x - ——dx=—{tan +C
(IX) I 2 | f x l+x2‘ 2( XY
0 I4’8 cschéx coth6x
1+ csch6x)3
=8 (1 +csch6x)” - (- 6 csch6x coth6x)dx
=:¥§(I+csbh6x)’2‘§éc——~————~————' 4 +C
B  (1+csch6x)

@27
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(xi) f(lnx+—~) d_x:—'[(lnx}—-dx-tf

=§v(lnx)7 + ln{lnxf«t- c -

t ;
(x11) L«/sin; cosx dx= _{(si‘n x)2 cosx dx = Z(sin x)z +C

(x111) f(éx-—l}vllr ~x+3dx= j(?x -x+ _)2(6x—l)dx

= %(34 '_,-—x+5)2 +C

6x—1
2

IxT—-x+

(ivx) | dx =jlnl3xvz —x+ Sf +C

2.3 Integratwn by Sxmpie Substltutmn
(Change of Varnab%es) |

Consider the integral

4

[ Fx)ex A (1)
Sometimes it is difficult to evaluate this mtcgral dn‘ectly, so
~ we introduce a new variable to get an easier xntegral or we
get dxrectly one of the standard mtegralsf Cf course, dx

must also be replaced by the appropriate dlfferenfxal

(28)
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Let us replace the variable x by an bapproprviz{t'e

function of another variable ¢, say. For example, let
| | x=0(1)
then, ’. .
“ dx = ¢'(r) dt
Using these sﬁbstitutions in (1), we get
- [eode= Feptne o, @

which is assumea to be an easier integral, and so we can
evaluate it direc.t{y, The following examplés illustrate the

above idea:

Example (1):. Evaluate the followmg integrals
: %2

) [ oy [
’J-x\,l—-(lnr ’ . (&) fs - x abc.

.;(111) J\/T;T i vy J‘XZ\/I.-'I—Z(ZXV

cosx o ,
‘ (V) = — ,dx 3 3x
. j ~sin~? x=2sinx+1 , ,(Vi) jxe dx
i () i) [ gosx? ax
X

T 29)
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' Solumm T

(i) For evaluating the integral
-
g Xy | (’lnx)z

let Inx=t = —drx=dt, sothat we obtain

-J ' dt:sin“,‘lt-i:t‘ :
\/ lj—tz

=sin”'(Inx) + c

2y

(i1) Forthcintcgrralk f X 6dx=]‘ r &
5-x 5?(13')2

let, x =t =, 3x?dx=dt, so, we obtain

1,3x° 1 3x?
dx dx TZ - dx
IS——x 3 5-x8 3 5 (x3)2

S (e

(:/—g—}b

(30)
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' ex ) .ex
(iii) For the integral | e dx = |
. b I—e**

= J\/l—(e‘)z d’f

let, ¥ =t = e*dx=4dt s0, we get

=sin ! ¢+ C=sin e €
(iv) For the integral fo«/x +2ax,
let, Jx + 2 =1 Sx+2=1>= dr = 2tds,
Then,
{

[P Vx+2de= (tl ~2f 2% dr

=it -4t v ) 2% dr
[
1

=208 -4 + 4 di

) o .
:;—(x+2)7/2‘253—(x+2)5’2+§(x+2)3“+C

The above integral can be solved by using another
substitution as follows: v

let, x+2=t = drx=dt, x=t-2

€1y
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’;)Th‘en, i
f ,/x+ 7 dx= I -2

= f(z —4t+4y!'2dr
= J3'2 — 437 4 4V 2ygy
[7/2 t5/2 13/2

772 5/2 3/2

- 3(x +2)72 - §(x +2)°2 +§*<x +2)24c

(v) For the mtegral J' . COSE o a!x ‘we use the -
sin? x - 25mr+l

substitution
sinx=! = cosxdx=dlt
So we have

cOsXx ‘ 1 ‘
—3 — e (= T—-—-.—»——-dt
sin“x— 2sinx + 1 1f =2t +1

- [—

= [(1)2ar = RE 1)~

(t 1)2
-1 +C

=4 C=

(t—l)' (sinx-1) .
The above integral can. be evaluated directly as
follows:

- (32)
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COSX - goo [ COSX
i 2 . RPN
sin“x — 2sinx + 1 (smx,-‘~ )]
S . ,‘. _1 . )
f(sinx~1)’2cosxdx=£5’—l-4¥j—{—l-—9f~+C
-1 ~
52 e + 4L
(sinx-1)

f-e:”‘zdr:f—r-e‘d‘:i.e'fc—- [P ic
6 6
sinh(lnx)

(vii) For the integral f —2dx we use the substitution

X

t=lnx = dt:«l—dx then
X

jsmh(ln x)

dx = [sinht dt = cotht + C = cosh(lnx) + C)
x
(viii) For the integral fxz cosx® dx we use the substitution
1= x> => dt =3x*dx then

jr cosx’ dx= fBCostat—%smH—C-glsu‘x +C

(33)
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Evaluate cach of the foIIowmg mtcgrals ’

M [xlex?+3) %
3) f(-l—i\/{—g-idx

(5) ftanx sec? x dx

dx
@ ﬂf\/4~sx

(9 Jxcotx? escx? dx

(1) fsin x{1 + cos.g)zdr»

tanh ™! dev

(13) f

COsx

8 Ui;n ra

(17) " _ dJC.

e —25

(19) [e™* cosx dx

@ [12%/3,: T

@ [VxcosVx® ax
6) [Y2x+5dx

sin2x

8) [——==
( )‘ J‘\/l-CO,SZx «

1\ 1
(10) mn—) — dx
x, x

('2) fsiﬁ3'xcosx dx

‘ }. er .
(14) dx
1—e4X
(16) [—— ax
6
xvx -1

(20) f(%jz,—iidr

C s

G4)
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@1 f«/—4-\/—

@3 | —-——J-——

2.4 Integration of Trigonometric Functions

3

22) [iemdx

( )'[{/;2«_#41 |
) NJE»-@;

The following trigonometric identities are useful for

evaluating some integrals involving trigonometric functions:

.2
sin” x + cos’x =1

2 2
tan“x + | =sec” x

I + cotzx =csczx

L+ cos2x
COS X = e
2

.2 I - cos2x
SIN°T X = meeee—

sinx cosy = %[sm( <~ ) + sm(t +y\} |
COSXCOsy = %[cos{x - y) + cox{x +\y}}

| §in‘x siny = % [C'os(x - y)~ cog(x + )’)1

35)
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s

(a) Integration of *fsin” xdx & [cos” xdx where
. n is a positive even integer
For these types .of integrals we proceed ‘as in the

following examples: ‘ ,

Example (1): Evaluate * [sin®x dx, f[cos*xdx  and

fsin® xdx - |

" Solution:

fsinz X dx= f—;—(l —cos2x)dx = é—(x - —zl-siri ZxJ +C

feos? x dx = f—;—(l +€082x )dx = —;—(x + %sin 2x] +C

‘ | 2
fsin"- xdx=[(sin2x)zdx =](1:—C—%S—%£J dx

=% (1—2 cos 2x+cos? Zx}ix
=i- 1-2cos zxﬁﬁ%fi’f)@ -

1 x~2§1n2x: l(x%*smdfx) L
4 2 2 4

I

36) -
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==£ (-:2-3- x—sin Zx-fj%fﬁ LC '

/

Example (2): Find [(2 + 3cos I.Zx)2 dx

Solution:

[(2+3cos2x)’ dx = [ (4 + 12 cos2 x + 9 cos? 2x) dx

: S
=4x'+6smr’2xk+§ F(1+cosdx)dx .

) g 9 '
=4x + 6sin 2x+v;x+g.,m4x+C
17 . g
=-—x4 6sin 2x + =sin4x+C

Example (3): Find j z-d-f 3
SIn° xeos‘ x

Scolution:

. R 2 . S

{ dx (sm X+ cos° x !’ dx 1‘ dx

) 7.3 ; —dx = 7t

sin” xcos‘ x sin” xcos‘ x cos“x  sin‘ x

L= j(secz x +cosec? x)dx
= tanx —cotx + C

Notice that the above integral can be evaluated by another

method as follows:

(37
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f——-—-——————— kec? X cse xdx kec x(1+cot2 x)dx

sm xcos X

i

= f(sec x + sec? xcot’ x)dx
= f(sec x+ csc x)dx
= tanx — cotx + C

(b) Integration of fsin" xdx & Icos" xdx where

n is a positive odd integer |
In this case, we follow the procedure shown in the

following examples:

Example (1): Evaluate [sin’ x dx, f'cossxdx

Solution

Separate one cosx to get

fsin’ x dx = fsinz x-sinx dx= j(l - coszx)sinx dx

(put t=cosx) = dtf=-sinxdx

=“j(l —-tz)(-— dt)=—t +—;-t3 +C =~cosx +t~31~cos3x+ C

(38) s eme e e ._..‘_ Smmer . i s -



"Methodsoflntegratian |

.[coss xdx= j'cos‘4 x-cosxdx
=[(1-sin-2x) cosxdx, (p'ut t=sinx)
='f(1-:2t2+t4)dt | '.
-ipilse

3 5

. 2. 1.
=5inx ——3—sm3 x-!»—s—,sm5 x+C

(c) Imtegration of fsin"'icos”’ xdx where at least

one of n or mt is a positive odd integer
We have the following two cases: ‘

{a) Ifnisodd, use sin?x =1 — cos? x

(p) If mis odd, use costx =1~ sin? x

Example (1): Evaluate j si,n2 xcos> xdx
Solution:
[sin? xcos® xdx = | sin? xcos’ x - cos xdx
fein? ficin2
= Ism x(l-—sm x}:osxdx

; ) 1. 1.5 -
= Hsmz x-—sm4 x):os xdx =~3— sm3 x——gsm5 x+{

(39
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(d) [mtegratmn of f sin” xcos™ xdx where n-and
are posxtlve even integers .- -
We express €ach of sinx and cosx in terms of the
double angle trigoncmetric igignﬁﬁes, 50 that we reduce this
type of integrals into integralsof different powers of sin .«

and cos.x as in the following examples:

Example (1): Evaluate fsinz.t(:os‘* xdx

Sélution:“’

- 7\. 2..
J’xm XCos xaﬁr-f(l L;Sw \(I+L;S 1) dx

g . 3 N
f (I -.cos” Z.rkl +C0os 2.x \ix

I

OO | e OO f rm

(l +Cos 2x— cos 2x— cos 2x)i

1 4; :
g f(l + COs ?.x- +eostx cos? 2x €08 Zx}‘ix

/G

m]»——

cos?Z

Niv-—-

cosdx (1 ~sin” 2x) coc2x) dx

(40)
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:!- j’ (l— -1- coé Ax+sin? 2xzas Zx)dx
8\2 2

; =—1— (—1- x— 1 smEy 4x, 1 sin’ Zx)-fC
gl2” 2 4 32 ~

; =~1- (—1- x- l sindx+ —1- sin’ ?.x}rC
g\2 8 6

e) Integration of " produet of tri onometric
g p g

functions with different arguments

() _{ sin ax cosbx dx = —;— J’[si'n(a’—— b)x + sin(a + b)x)dx

1 [cbs(a - b,)x'+ cos(a + b)x] L C
2l (a-b) - (a+b)

(i1) }'cos axcos bxdx = -% ﬂcos(a -b)x + cos’(a‘n+ b)x]dx
_lrm@—by;smw+bp}+c
(q - b) (a +b)

)

(i) j'sin ax sinbxdx = % f[cos(a — b)x — cos(a + b)x]dx

B i[sin(a -b)x sin{a +-b)x} L C
2| (a-b) (a +b)

?

(41)
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Exaxvn‘glq (I):‘ Fipd each of the folla&xﬁing:integ:als )
() I = [ sindxcosSxdr,  (if) L= émzxsigmxdx',
(i) ;= cosSxcos3rds S
Solution:

1
’(’i) I = f sindxcosSxdx = E f (sin9x- sinx)dx

= %Ij ;l 0s9x+ cos:x] +C = }-:—él-c0895r+ -;:cbsﬁ- C

1
(i) Iy= [ sin7xsindxde = éf{co:ﬁx'—- cos! Lx)dx
Rl 1 P [ |
== =Si3x— —sinllx [+ C= =SiN3x— —sinl lx+ C
3 L1 6 22

(ifi) i3= [ cosSxcos3rdy = -;-I(ébsix + Cos8x)ddx

= %—[%sin,?x + %sin&r} +(C= rlé-sinSx + :i—sian +C

(42) ‘ e [EE R T ——— — <. Spyy



_ Methods of Integration

2.5 Evaluating Integrals of the Form
f R(sin' x, cos x)dx )

where, R(sinx, cosx) 1s 2 rationzl function of sin xand

cosx , which may take one of the following forms:

j dx Cdx j- dx

2+ bsine °abcosx’ a +sinx +cosx
: dx dx
asinx +b coSX’ J a + bsecx

To solve any of the above integrals we use the substitution

I ’1 2 )
mf"::t = xoren= Z}
{

1

Then, ,
dx = zzdt,
1+1¢
sin—{'- ! 'c‘:os'ic-~—-~———-——-’l
2 fie? 2 Ji+?
. . X X 2t
sin x =2sIn—COS—~="""7"»
22 1+f
|-

2 1+

s

. x
cos x= 2cos’=—1=

(43)



. Chaptafm) -
Exampie (1): Find f .,

Solutien: Pu t=tan~;:-, then,

2. 1-£2
dx = -——-—-dt COS x = 5
1+¢ +¢
tubstituting we get |
; 2dr »
J-' dx ' (1+4 ) ’ 2 ar
S+4cosi 5+4\-—J 5&1+: )+4(—J
I+

_] ———~dt=~2-mn“£+c..gtan (im£)+c
G442 3 3 3 3 2)

' d
Example (2): Jvaluate ‘ '[____:x__‘

3sinx + 4cosx-

. _ x
Solution: Pt z:tan~2—, then,

1-¢2
dx=—-—-2—dt, Sin x = 5 COS X = 3
1 1+¢ 1+¢
substituting we g.;t ‘

@



A;Metnoas o] Huegrauui

T 24t .
[— dx = 1+22 - [ 2 dt
3sirl x + 4 cosX % 1—1% “6t+4-4art
35 +4—3
e 1+¢ I+t
RS S dt
276,122 272 3,1
4 2t
2 (2__3.)2_.9,_ 2 _z_é;(t_z)
4 16 16 4

(45)
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2.6 Integranon of Hyperbohc Functxons

The hyperbolic integrals are éomputed with the aid of
the following hyperbolic identities

L o cosh2x + 1

cosh®x - sinh?x =1 cosh? x = 5
- . cosh2x - 1|
I - tanh* x =sech®x sinh® x = ———

2

»cothz,x - | =csch?x

sinhxcosh y = %—[sinh(x + y) + sinh{x — y)]

coshxcoshy = %—[cosh(x + y) + cosh(x ~ y)]

§inh xsinhy = %[cosh(x + y) — cosh(x ~ y)]

Using the above identities and following the order in which
integration of trigonometric functions are computed, we can
easily evaluate integrals involving hyperbolic functions as

illustrated in the following exarmples:

(46)



Methods of Integration

1. ]coshxdx =sinhx + C
2 jsmhxdx = coshx + C

3. ftanhxdx= j'mnhxdx:m!coshxhc
coshx
4. jcothxdx ICOthdt:lnlsinthC
hx
5. [sechxdx= | L coshx

coshx coshx

coshx . _— .
— dx, using the substitution ¢ = sinhx we get
l+sinh” x ’
dt -1 1, -
= | =tan "t +C=tan" (sinhx)+C
1+ 12

| Notice that the above integral can be evaluated by two

other methods (try to find them). Similarly, we can deal

with [eschxdx.

Example (1): Evaluate each of the following integrals

1. fcosh®xdx = f—l—j-'—f—;—sf—-——“—{dx = —;—(x +

) [sinh? x dx = f—*—'—————-—cQSh;x“l dx=—1§( smlzl?.x —-x)+ C

(47)

sinth) e
2
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"[sf:c‘}z‘zxd*c = tanhx+ C

Lw

4. feschzdr= —cothx+C 1 o -

L

ftanh? xdx = (1~ sech’x)dr =x - tamhx + C

A

feoth? xdx = {Cg.ggﬁzx + l) dx = —cothx +x+ C

.E_Q_EQP_LQ (2):
() !costhdx . (i1) jsinh3xcosh‘7‘ xdx
Solatien | |
(i) 'fco_shjxaix= fcoshz xcoshdx : -
= j (,l.+ sinh? x) coshdx
. =sinhx +é sinh® x + C
(1) fsinh3 xcosh? xdx = fsir;hz ,x..'cosh2 x-sinhxdx
= f (‘cosh2 x— l)cosh2 x - sinh xdx
= f(msh“ x — cosh? ,x)- sinhxd;c

= ic:osh5 X = -I—cosh3 x+C
5 3

(43)
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Example (3): Find [ (5- 2sinh3x)?dx

Solution: X
f(s ~ 2sinh3x)2dx = J(zs ~ 20sinh3x + 4sinh? 3x)dx
=25x- 539 cosh3x + 2 J(cosh6x - 1)dx

=25x- %9 cosh3x + -3l~sinh6x ~2x4C

'=23x - _7;39 cosh3x + %sinhéx +C

Example (4): Find - J- (2sechx — tanhx)? dx
Solution: , ‘
f (2sechx ~ tanhx)?dx =
= f(4sech«2 x — 4sechxtanhx + tanh? x)dx
= f(4sech2 x — 4sechxtanhx + | —sech 2 x)dx

= f(.’isech 2 x — 4sechxtanhx + Ddx
=3 tanhx + 4sechx + x + C

Example (5): Find
(@) 1, = JcoshBxsinh6xdx (i) I, = [sinh 6x sinh x dx

@ (49)
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wom ) Iy= feosh 3x coshbride '+ T

. Seolution:
() I,=[sinh6xcosh8xdx - ..
- .‘?: {[sinh14x + sinh(-2x)] dx
i1 10
= —| —cosh 14x ——cosh 2x |+ C
2|14 o2
= —l—cosh 14x -—l—co’sh' 2x+C
2 T4
(ii) 1= [ sinh 6xsinh 8xdx
=3 coshl4x— cosh 2x]dx
i1 ... 1.
=~| —sinhl4x— —sinh2x |+ C
2(14 2 |
= -—I—sinhl4x-— isinhZ:c +C
28 4
(iii) Z;= [cosh3xcosh6xdx

=~ {[cosh9x +cosh3x »

AN

1.

# g tamET soTmer R et

= —41-—sinh9;r+ -l—sinh3x+ c

=_[lsmh'9x+lsinh3x]+c o
219 3 . = 1;
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Exercises (3)

Evaluate each of the following integrals:

(1) fsinz 2x dx

(3) fsihs x coszi;t dx
&) _f«/s:r-;; cos’ x dx
(N | fsinVSx cos3x dx
% J’sin 5xsin3x dx

COSx

dx

(n J=

‘—SIHI

(13) [—

3+ 2cosx

dx
tanx +sinx

(15) f
(17) [sinh* xdx
(19) J'(I + sinh? x)cosh3 x dx

(21) [sinh2x cosh3x dx

2 fcos?x dx

O fsin® x cos® x dx

COS3 X

dx

© [

Vsinx

&) fcosx cosSx dx

(10) f\l + */COQJ’)Z sinxdx

(12) f

2+smx
t
I +sinx+cosx

dx
3cosx

dx

(14) |

\10) =

Sll’l X -

(18) [cosh® 2x dx

(20) J'sinh4 x cosh® x dx

(22) [sinh3xsinh7x dx

(51)
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P4

2.7 Integraﬁon by Removing Roots

;Sqmi:times the integrands of certain integrals involve

radical expressions in the forms

\[az—,xz, \[aziixz, o

Each ’of such integrals can be evaluated by using a suitable

trigonometric or hyperbolic substitution. The following

table shows some of these substitutions:

Form ' Substitution Identity
a2 — x? x = asind, 1-sin?8= cos?@
Cldx = éd .
- acos6do ‘a2-x2=qz——azsm26
5 > a* —x* =acosb
a” — X
alix x = atand, | +tan? @ =sec’ 6
dx = asec’ 6d6 a’ +x*=a® +a’tan’@

=a? sec? 0

Va? +x%=a sepB

F

(52)
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FERE) x = asecd, | sec?8 ~1=tan?6
dx = asecOtan 49| 2 :
“tan xz-az‘:-azsec,z’__e‘—-az *

=a’tan?e

x M
/ x2_q?

9

a

Vx? —-a3=a tan 9

Other substitutions can also be used in order to remove the

roots. These substitutions are listed in the following table.

Identity

Form - | Substitution
al-x x=aanh® | anh?g = sech?g
_ 2 _
dx = asech“846 a? ~x?=a? - 4  taun2 6
= a’sech’@
\[az ~x% = asechd
a’+x? x = asinhé, : ~1+sinh2€=cosh26'q
dx = acoshd@ .
f a2+x2=a2+a231nh2¢9

”
=a?cosh?9

\/ a®+x% = acoshé@

(53)
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Joiar | *=acosh?  [cosh?6-1=sinh’0

.45t TEE x?—a® =a’cosh?@ - a*

='a’sinh? @

. ' B , 1/ 2 - a? =csinhd

It timst be noticed that each of these substitutions

reduces the integral to an easier one that can te evaluated

directly. .

‘ - \/4——x2 2
Example (1): | Find [~——dx. ‘ P
. " x -

Solution: Put

x=2sin® = dx=2costdo,

and,
4-x?=A—4sin?0 =4{l-sin? 0 }4 cos* ¥
So we have
1/ 4
f - 2 coze 2cosO dG
4 sin 6

’

= | °°§_9 cosDdo = j cos’3 g
sin® g J

)
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= fcotZG dei_f(csczeal) de .
=-cotf-6+C
SR \14".&'2 if x4
= e — gin "~ (-)+C
x
Example (2): Find j—«—-——-!-—-———-—ax
. 2~\/'5_xz

X

Solution: Put x =+ 5sin@=> dx = 5 cos6db.

and,
5-x"=5-5sn8 = 5{1 - sinzb?) =5cos’ @
So we have
]~f-—~l——-dx‘= J—= i -J5cos826
xiy5 - x? 5/5sin” Bcosh
= ~I-j 1., 6 =1 fese? 045 =~ coto +C
. 57sin"A 5 5
cot(sin™" E: )+ C =2 = o
= - —COot — = - :
5 J5 5x
Example (3): Evaluate [x*v4-x2 dr ,

Solution: Put x#ZSine =  dx=2cosd db

- (55)




Chapter (2)

land‘k 4.4 x--4 4sm9~ E ‘x
-4(1 —sin 9) 40032.9 ‘ : 4—-x2
so we have ‘ '
j' 4-—x cir-szm 6V4cos?6-2cosb db
= fazlsm 0 cos 6a’9-32[sm Bcos? 0 -sind b
=32 j'(! ~cos? Gk)co_sz'e sin® do
='32'f(cos2 0 —-cos* G)SinB do

~

=3

{2

lc:os3 8- —l-cos5 6] +C
3 5

(e G5 ()

3 L(WTJ{_“_;{Z_JS “C

3

)

i

it

[\

3 2 5

L. <

- Example (4): Evéluate' Ix“‘ 1-x% dx

Solution: Put x=sinB :;> _ dx=cosb db

so we have ' _ .
ph

BV ErS dx = [sin* 9\/1 sin? 6 - cosb db k4——x2

= jsin 8 COS, 0do= f(sm 8) cos?6 dG}

(6)
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= f{%(l ~c0s 29)}2[%(1 +cos 26)] de
| = -é- [(l f—-Zcos 20 + cos? 26)(1 +¢0520)d8
- é- f(l - 0526 - cos?20 +k cos® 2e)de
= if(l - c0826 — -1—(1 +cos48) + cos® 26 cos 26} do

1
=~frl —00328—7-~—;—cos48+( —sin” 26)«.03’6:} do

i
il

i

m!r-—- GO | e

- -—sm 29— lsm 40 + —l—sm 78 - ism 29} +C
8 2 6

l
2
%sm x’——ﬁm(4sm ’x)— ésm (’Zsin“‘x‘)}kC

3 2p/2
Example (5):  Find jb—-fgi— dx

x
Solution: Put

x = sinf = dx = cosbd8,

and,

1 - x? ——l-— sin?8=cos? @

So we have ,

(57)
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e g i
"sin @

L(l xz)‘” R

Jra foot* Bcsc? 60
sin 9 '

neo

_- _l_cot 6+ C= ---—;—cot5 (sin”'x)+C

! \/

g-sn

= -5
. : l
Kxample (6): Evaluate f—————-———~—-5—dx .
o (IO + x?‘)

Sedetion: Put =/10tan® = d);=v\/1—68€(:2 6dso,

o b B { ' V10+x2 .
 10+<%=10+10an?e6 .

= 10(1+vtan‘z 6):105cc26 "‘/1-6

A0 we nave
‘ { J‘ Ji0sec?® I J10sec? 6

T /23
Ji0+x" }' ,, \][(IOsec 9)3 (10)"*sec’ @

X

. 1
1 o=t [cos0dB =—sin@+C =2
I e i 10Sln 10 10ra?

+C

(58)
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e X 2
——e -9
Example (7):. Evaluate | ‘4 *
\/ 3

‘Solution: Put  x= 3secf = dx 3secBtan 040,

and,
x%2-9=9 sec? 6-9 ==9(s<3c:2 9——1)-—-9 tan2 6

Thus we have

j L dx—fwde _fsecede
x2-9 3tan®

\/"_'-l

+C

~m\sec6+tan9\+ C =1/~ 3 +

x+vx2 -9

3

et -9+ C

+C=In

=1n

dx

Example (8): Evaluate j‘x

-Solution: Put
t=3sec® = dx= 3sec9tan6d6

then

(59
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.
j—“‘x"%x f3“mg{3s ccO tnB}O

= [3tan’0 a8 =3 flsec0 - (Ji0 *
=3(tan8~6)+ C=vVx? -9 -3 sec"-';-+C

Example (9): Evaluate f\/az + x% dx
Solution: Let x=asinh® = dr=acosh 646,
and, 1

a’+ x? r-czz'-f-azsinh2 8
(l +sinh? e) a?cosh? @

So we have

(Ja? + < de= 2{/1+smh 6-.cosh 6 a6

= g? fcosh &de

=q? f—;;(cosh 26 + 1)do

=ia2{i‘-“5‘-33 + 9]+c 1)
20173 |

. . x
Since, sinh8 ==, then,
a

(60) '
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- . - 2
cosh@=,/ 1+ (f—) .

xva? +x?

sinh20 = 2sinh Ocosh 6 = 2

Substitute in (1), we get

Notice that the above example can be solved using
trigonometric substitution. But this will be done after
introducing the method of integration by parts as we shall

see in the next section.

@0
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Exercises (4)

Evaluate each of the following integrals:

12h
() [

V4 - x?

(3) }'___‘i.rm

x40+ 2

(5) (~,--l :

S /2
X -1

3 :
) j“‘—-—f———u{,’(
9x? + 49

I3 4—.\:2
(2)  |— dx
J 2
.
h =
’Vx? =25

dx .
j(zc + a2

dx
'S) e
" jx\/fzs_x? 16

! 'zﬁ
(oM _;r—‘ﬁ’i: t

X

(12) [V25+ x%dx

\[12—4

(14) dx

X

(16) [x*V9— = g

(€2)
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e 28 T ‘tegratlon by Parts

2.8.1 St andard Formula of Integration by Parts

“ For most differentiation rules, mtroduced in the -

previous COUTSE, there are corresponding integration rules.
For instance, the chain rule for differentiation 'corres‘ponds

o the substitution rule for mtegratlon The mtegration rule
that corresponds to the. product rule for differentiation is the
rule of integration by parts. in order to see this

correspondence let u and v be continuously d1fferentmbl

functions of x; then

i—i—— (uv)=uv'+vid’
X

Integrate both sides with respect to x, we get
uy = J (uv' + vu')dx
S or ,
L?V= fuv'dx%—.jvu'd;:
. This last equation can be rearranged in the form

Iuv' dx =uv— 'Jvu' dx,

(63)
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or [udv:av Ivdu e (1)

The above formula is calied the mteg'ra:‘wn by parts

formula, whick i 1s used to evaluate the mtegml of a product

of two functions. It thows that' the integral fuv’dx is

4 reduced to another mrezral f vu' Jfx which is supposed to be

| simpler than the one we started with. .

o For a product of two functions, which iS‘«usﬁaHy
applied "for, the integration by parts formula can be
expressed in the formn: ‘

[/ (980 =( [ (e l) - ﬂ [F(ydxlg (x)ax
~{Jetoee)rl) g (e

This formula can be tabulated as foilows:

f{') \ (*) , g(‘)

) O [e()s

Example (1): Find J‘x cosxdx.

)
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Solution: . R - sl

(-—) [

4—-—-——-—‘-—‘-——- sinx

Thus, v?/e have | ;
fx cosx dx=x sinx - [(sinx) dx

=x sinx—(~cosx)+ C=x sinx +cosx+ C

Remark: The main reason for using integration by parts
is to obtain a simpler integral than the one we started with.

Thus, in Exémple 1 we started with J'xcosxdx and
expressed it in terms of the simpler integral fsin xdx. If

we had chosen f(x)=cosx and g(x)=x, then

2 ' ‘
f'(x)=—sinx and jg(x)dx =-%—« , so the integration by parts
formula gives
2 2
[x cosx dx {%—) cos x— j'-%—— sinx.dx

=—1—x2 cosx +—1~ fxz sinx dx
2 2

(65)
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But fr .§in rdr is a more dxfﬁcult mtegral than the one we

started with, Therefore, when deciding to choose the
function to be dlfferentmted and that to be integrated, we
. have to choose them in such a way that the resultirig integral
is easier than the given one. -
E;ﬁmgie (2): Evamate each ofthe- followihg integrals

() [inxae (i) fran'rde

Solution:
(1) ﬂnx dx = fl Inxde=xinx - f.r 1 dx
- ’ X

=xinx- fabc:,r Inx-x+C

or using the tabular form we. get

Then,

s as fxuxxx)_f(x( )alx =(in x)e) fax

=xlnx-x+C

(66).
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(ii) Again,.
-1 . S l
- ) x& |
1 O] T
1+ x? .
Then,

-l ={tan™' x r’ X 1.
et o o]

-1 ! 2x
=xtan XxX—— dx
* 2 J'14-:(2 '

=xtan”" x% in(l+x2 )rfC

Example (3): Evaluate j';tz tan "' x dx

Solution: : put .x =2tan9
‘ dx=sec” 6 db
j‘xz tan™' x dx . o
, \Xf’ .
1 3 -1 1 3 1 e J
=—x"tan X"'j.”x . de .
3 T+x" | T
1 3. - 1 3 put t=_c056
=3% lx—g lx 7 dx ' dt =—sin 46
1+x
3
P R s L.
3 3'sec”®

(67)
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=¥ 5= fuan® 0 0= L an~t 5 -] [S"‘ 0
3 | . 3 cos 6
‘=..x3tan“‘x-—f““3 Sinf 4o .
3 cos’ 9.

’ ‘ 2
=-!-x3tzm"1 f cos 9 9d6=1x3 tan"lx+f1“t dt

=lx3tan“x—~ J(l--!-)dt=—l-x3 tan"'x~ln]tf+——-l——+C
3 t P2 3 22

- —31-x3 tan~! x — In| cos6| + é—,sccz 0+C

=§—x3 @" x —‘lnj cos(tan'lJt)' + —;?\/I +;f2 +C

Example (4): Evaluate fx sin!x dx

Solufion: , put x=sin6
' ' ; dx =cosB db
Ix sin™ x d:c:—l-'x2 sin~! x-—l-sz 1 dx 1~ .
2z 2 1-x? x
, e | 0 |
=——x2‘sin"‘x~°l"fsin29 L -€0s0do - 1-x2
2 2 6 . ' _

cos

=2 x?sin” x-L fsin?0 a0 =L 52 sin e~ L {1 —cos20)ae
2 2770 Ty 4

=—1—xzsii1"ix—fl—[6~-l—sin26 +C
27 4l 2 |

68)
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= —I-x2 sin™! x-——l—[sin"' x=- -l—s'in(Zsin - x) +C
2 - 4 2 .
Example (5): Evaluate _[ sec” xdx
Solution:  The given integral may be written as

v
jsec3 x dx= _[sec x-sec” x dx
=secx tanx— [(tan x} (secx tan x)dx
2
=secxtmx— jsec xtan® x dx
=sec x tan x— fsec _\'(sec 2 x-1 )dx
=gec x tan x— fsc'cl xdx+ _[ sec xdx

L 3 -
=gec x tan x— jsec - xdan[sec x+tan x}+C
From which we get

2"'53‘::'3 xdx = sec x tan x + Insec x + tan x| + C

Thus,

'fsec3 xdx = %{secx tan x + Injsec x + tan x|] + C

(6%)
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PR

?;J:";;'\‘Em‘bﬁ that this last mtegral is very 1mportant bccause it

is?iﬁms qmte frequently m apphcatxo'la ;' e

Pty re

Example (6): Evaluate _Wazﬂ-xzdx

Solution: Put x = atand = dx = asec’ §d8 )

then

j\/a +x dx = j’asece asec?Bdd

-azfsec 9d9—~2—a 2[secO tan8+ln{sec6+tan9ﬂ

a* w,\:\/a'2 +x? {\/azﬁ‘xj

=— = > + In|— 1+2l+C
2 a l a .

- Example (7): Find each of the following integrals.

() [e™ sinbxdx (i) [e™ cosbxdx
Solution: T

(i) From the tabular formula of integration by paﬁs we

sobtain

70y
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o |  sinbx .
ae™ ( cos bx)
N -
) b
+ in b
. aleax ( )j ’ (‘51:2 x)

From this pattern we find the given integral as
I= Ie“x sin bx dx=(e‘“ (- C(_)be)—(ae‘“ ,(- szsz)

o st

or, .
|- a ae . a? ax .
{= ——e™ cosbx + —e smbx—-————fe sinbxdx
2 T2

or, ;
2

i ; a ) a
[= -~ —e™ cosbx + —e® sinbx - 2
b2 b2

" From which we obtain

2
1(1 + 5-2—} = — bl»e_ax cosbx + %e“x sinbx
b b

_ o )
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.- 0r, )

“‘az”+b2. ‘ Icz 1. .4
o 1(——-—-———] = —e% sinbx - —e® cosbx
= bz b2 ‘ b

Thus, we have

(IRY

(e s i €
ju sinbxdy= 5

(asiﬁ bx~bcosbx)+C
€ +h

(iny Sinularly, we can prove that

X :
[ cosipxdy=———(acosbx +bsinbx)+ C
) i S at+hc ’

Tabular Formula of Integration by Parts

C'onsider the integral

[ gy | @

W can evaluate this integral by the use of the tabular

formuia ot the integration by parts, especially if one of the

- t+o functions is a power function. In fact, the tabular

tormuia of - the integration by parts is a successive

application of the main formula. Thi§ tabular formula

(72)
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evaluates the integral of two functions as illustrated by the

followirig pattern

Repeated differentiation - Repeated integration
£ @) g
(+)
f(x) ™ [g(x)dx
~ (-) ‘
S f[ jg(.t)d.\'](i‘:
, , (+)
S (x) ~ }'[ J’[ jg(_c)iz}dxi(i{

If the function f(x) becomes zero after a finie
~erober of differentiation this table terminates and the giv:n
‘nregral is then evaluated. If the two functions do not vanis:
~ita differentiation, then we terminate the given inwzyrz
with another integral as in the case of integration of the
functions

~ fe‘”‘ cosxdx',j”.e‘”"sinJcc:(:c.j‘sec3 xdi,; ..

y

Exampole (1): Evaluate JirJ cos 2xdx
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Soh’xvt‘i"('_n'_x_:“« Using the tabular formula of integration by

parts, we get I
| x> | - cos2x
, ' sin2x

3x? : :* ( 5 )
6x ~_ " (_ f_f’;ﬁ\
6 \ ( sin 2x)
o0 ' © \ 8 .
g (=

From this pattern we fin< the given integral as

[ cos2e dee? [ T2} o7 - 22225
. 2 4 )

+(' 6x{—- Sh; Zx}( 6{ cols62x)+ c |

[x* cos2x cix:—;— X’ sin 2x+,—‘:-jr-x2 cos2x %xsin 2x

or,

——g- cos2x+C

(74)
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2.9 Integration by Successive Reduction

Integration by successive reduction is one way of
simplifying complicated integrals. The basic idea. of. this
method is to obtain a recurrence formula for the given
integral. By this we ‘mean, to obtam a formula expressing

the original mtegral I, say, in terms of a lower order
integral /,_, or I,_y, say. We explain this idea by the

tollowing examples:

Example (1): Find a reduction formula for the mtegral
= fx" e dx

where, # is a positive integer. Hence, find j x? e® .

Solution: Integrating by parts, we get

n | ax

P ey e
w\ N ;
n-1 e
nx - ————
-] N

[ xm e gx o () €] 2 ¢ ne
-,J.x”e"xdr-(x")( a} - f,x" e™ dx

(75)
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~“' f I e
I, ____._xneax___’_‘_ et )

. I - .

Substitute in the reduction formula to evaluate I5; we get

respectively, * - o
n=3 :>j“[,3=“x3e‘”f-§12
n=2 = Iz:-—le_‘n:.._z_fl

- n=1 = llz-—xe‘”“_ljo

From the given integral we can get /g by setting n=0, so
we have
. ] ‘ ) ‘ Cax
Iy= J-xo ™ dx = j- ™ dx=—
, | a
Substitute in the above equations from bottom to top to find

15, thus we obtain

| 1 e*

[} =—xe" ——-——

W a a a
T 1 2(1 AT

1'2=—~x2e‘"‘— —xe® - ———
a , a\a a a
1 5, 2 ’

=——x2e“x———2-xe‘“+-—3~e“x,

a a a

(75)



Methods bentegwaﬁon

and thus we have

| -
3(1 a 2 2
[3=—xe™ —-——( x2e™ - L ypu +—-:-e'“)
a a\a az a'}
l 3 6
= —x3e ————E—xze‘u +——3—xew‘ - —-;—e‘” +C
a a a a
a;r/X'3 x% 6 6
=g 5T '—3—"‘7 C
a a” a a

Example (Z): Find a reduction formula for the following

integrals, and hence evaluate the indicated integral

G 7, = j(sin*‘ x)”dx, Iy
i) 1, .—.j(cos“ x)mdx, I
Solution: ‘
(i) Put =sin! x,
then, we have sint=x and #x = costdr. Substitute in

the given integral we get

I, = f t" costdt.

Integrate by parts two times, we get

)



— et :

oy . b b s e

S ’t'n feigine “cost
P N
n(n—1)t"? o cost

()

From the above table‘we obtain
I, =t"sint e cost— f nin - l)t""‘2 cos! dt
which impﬁes‘ that
[,=t"sint + nt""* cost—n(n —-‘l)[,,._2
= Jc(sin_1 X,Y—* n(s.i‘n"l xy'_l Vi-x? - n(n 1),
To evaluate [,, we éubstifqte successively in the derived

reduction formula. Therefore, we get

n=4 = T4=1t* sint + 413 cost —4-31,,

n=2 = I, =72 §int + 2t cost ~ 2- g,

But

Iy = jcostdt = sin¢

Thus we have

’

I =2 sint + 2t cost — 2sint,

(78)
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and,
I —t4 .. k| 2 . . .
4=t sint+4¢° cost — 12{¢* sint + 2¢ cost — 2sin¢
=¢* sin’t+\4t3costf-l2t'2 sin? — 24tcost + 24sint + C
N | 4 2/ . 33 /. ] 2
=x(sm' x) +4 1—-x”(sm x) ——iZ.r(sm ,r)

© a1 - x? (sin" .\') s 4x+ C

(i1) We leave this part as an exercise.

Example (3): Evaluate I, = f sec” xdx

Soiution:
Case (1): n is a positive even integer

In this case the integral can be evaluated directly as follows:

Let n=2m, then

j'sec" x dx = j'secz"' x dx = jsecz'"‘zseczx dx

= I(l +tan?x)™ 'sec’ x dx

Put tanx=t = sec’ xdx =dt,then ,

,‘ j

(79)
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Jsec” x di = (14 2y,

Wethcn apply the bif‘iomial théofem._and integrate term by

term. For a numerical example, let us 'evaluate‘,
a8 .__J‘ 6 .2 o _ 2
[ sec® xdx = [sec® xsec? xdx (t=tanx = dr =sec? xdx)
= J(1 +tan? 2)? sec? xdx ‘
=f(’z’f—rz)3d1’=(1+3tz+3t4+t6)dt
ER I N A
SF I R R e T
b 7
2

s ; o] .
=tanx + tan”’ x+-—;ir--.5 x+,—7—tan7.r+ C

Case (2): n isa pq'sitive odd integer' '

In this case we get a reduction formula as follows:

Let '

I, :f'scc”rdxz .{Sec";zxseczxdx _
= (:s,cc”‘z xktanx) - f (tanx)(n — 2)sec™™> xsecxtanxds
= (tanx)sec™? x -(n-2) f sec™? xtan? xdx

. /
= (tanx)sec™ % x - (o~ 2}( J’sac n-2 x(sec? x — l)alr)

;

= (tanx)sec™? x — (n 2) fsec" xdx +(n - 2) _’.sec”‘2 xdx
= (tanx)sec”™? x ~ (n - )7 + (n - 2.,

(80)



Methods of Integration

- 1 1 [(ta.):m:)sec"“2 x+(n-2)1,, ],_
n-— ‘

which is a reduction formula for [ » namely

1

1 [(tan:c)sec"‘2 x+(n-2)1,, ]
" .

I

n
For a numerical example let us evaluate, [/, = f sec’ xdx.

I; = jsecjxdx

I = .é. :(tanx')(secs x)+(5)/s ]
I = 'Zli (tanx)(sec’ x) + BV |
I :% (tanx)(sec )+ 1]

I = fsec xax= In|tanx + secx| + C
Thus we have
1 5 5 N3 o
1= -6-(tanx)(sec x)+ —2—Z(tanx)(sec x)+

15 15 o
+ == (tanx)(secx) + —In{tanx + secx| + C
75 () (secx) + ln|tans ohi

Example (4): | Evaluate [tan"x dx.

- (8D
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Solution:

Case (1): #isan péd pasitive integer

In ihis case thc"i'ntegra! can be eva}uatedfdirécﬂy és follows:
Putn=2m+]1, N

then,

lan” xdx = ftanz"'“.ta’:c

= Itan Zm tan Xax = f(sec” v - ) tanxdx

(bCC x =07 -
—tanxsecxdy

Secy

.{(t ; ~—d‘ (tlzsec;c)

Vhen. applying the binomial theorem and integrate term by
term tc obtain the final result. For a numericaj example, let

us evaluate:

Example (5):  Evaluate j‘tanjxdx

Solution:
f seczx—l' 3
f tan’ xdx = Jian® xtanxdy = (( ) tanxsec xdx
secx
. f( 2 ])3 ‘
= - dt, where ¢ =secx

(82)
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6 - 4 2
{ 7 — + —
- —'—‘J-l-.—in—-—m’.‘....__j[gt-.'——.—..%w—-..t"‘-3.—'—-——'{ pea _.l?at

6
_seex gsec“,\: + }_SCczx — Injsecx| + C
6 4 2 N

Case (2): n isaneven positive integer

In this case we get a reduction formula as follows:

Let
I, = J-tan" xdx = j(tan"—zx)(secz x = Ddx

= Itan"”z xsec? xdx - jtan"'z xdx

tan”" ™" x
=12,
n—1
which is the required reduction formula. As a numerical

example, let us have the foliowing;:

Example (6):  Evaluate /¢ = ,J-tanﬁ xdx

Solution:
’ S
tan
[6-—J'ta.n6de = 5 x“‘14,
3
tan® x
[4= 3 "12,

(83)
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L= tan® xcdx = Jldx =x

i Thus; wé have . N
- tan 5 x tan 3 X - .
lg= ——+tanx - x+C

5 -3

\

Integrals of the form fsec™ ctan” cde

Cuse i) mois an even integer

12l

I Uvs case we separaie ooe sec” xfrom sco van, oo

procoed as in the feilowing examples:

Fxamele (7 Evaluate e {ollowing integrai

; ! \2 o
= {(sec’ v)? tan® x sec’ x dx

il

) 2 32, 6 S
[(3 +tan” x)" tan” xsec” x XL
= f(tan“x+2tan3x+ tan' x,sec . o

. 1 7 2 w9 1 1. .
=77—tan X+ —tan x+-1-—1-tan X+ o

Example (8):  Evaluate the-following integral

e
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fsec® xtan® x dx.
Solution:
[sec* xtan® x dx= fsec? qgtan3 x §_egi§ dx
= [sec’ xtan® x sec’ x dx
=1+ tan’ x)tz}m3 x sec’ x dx
= [(tan’ x + tan® x) sec’ x dx

=—1—tan4x+ltzm6x+C
4 6

Case (2): n is an odd integer ‘

In  this case we separate one  secxfanx from

sec™ ytan” xand then proceed as in the following examplc:
Example (9):  Evaluate the following integral

jsec3 x tan” x dx.

Solution:

jsec’3 x tan> x dx = jsec2 X tan?® x secx tanxdx
b

= J'sec2 x(se'c:2 x —1) sec x tan x dx

= f(sec“ x ~sec’ x) secx tan xdx

= —l-seci5 x—-lsec3+ C
5 2

-~

(85)
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Case (3;): m is an odd integer and n is an even integer
In this ‘case we express the whole mtfgra} 1 terms of

j'scck xdx and proceed as in the case of mtegr..u‘mn ot the

form ,fsec xdx.
Example (10): Evaluate the foliowing integral

yi
[secrian® ¢ dx.

Qt)lut.m‘.

: T2, T T
Asecatan® x dy = [secxisec” v~ 1) dx
= [(sec” ¥ ~sec 1) dx

. ' -~
= s(secxtane+ Infsecx + tonxl) - Infsec x + tan x|+ €
i - \
slsecxtany - Ln]st:':,r + tun xl, +

Reducrion formulas invelvirg two parameters
Example (11): Find a reduction formuia for

= fxm (Inx) "d‘c i

Solution: , Using integration by parts we directly obtain

(86)
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e X7 P
: ) m+l . m+l "
S N AT
| m+1 m+1 : x
m+l n
,(mx) - [x™(nx)"" ax
m+l] m+1
- 1 xm+l (lnx)n — n J—
m+1 m+1 ™

Hence, the required reduction formula is

[o =k g gy

m+1 m +

!

1 m.n—~1"

Example (12): Find a reduction formula for
Lym = Ix"sinmxdx.
Solution: -

= J.x"sinmxa'x

s (—cos:nx) ( cosmx) nely
s [ cosmx} ‘n‘j
n

- cosmx n —1 Sinmx sin mx -
= X"+ xm! [ (n—1)x""2dx
n m m m

/

n,m

' cos mxdx

(87)
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— cosmx n ’ nn.-l dx
= A l:;,mmb'.?c : )Il $in oo
=08 mx . a- C nﬂh!
="+ —x" ‘snnmx ( ) Le om
m m m* '
*
or,
~cosmx .. n . rin— 1)
[ = x" X" sin mx - —— n~2,m
4 m mz N

Example (13):  Find a reduction formula for

[mon = _,’cos,"'1 vsin nxdx, (m and n_are positive integrs)

Solution:

L
{m‘n = fCUS xXs5mnn xdx

/ N -
:CO‘S'"',V,L—E)E—{E\.—J}— [(«f—?—s—i{ mcos™™! x(~sinx)dx
71 It

l : i 1
= ——cos axcos™ x— — [ cos™ ! xsinxcosnxdx

n . 11
But,
sin{zn ~ 1)x = sinnxcosx — cosnxsinx.
Then, |
‘sinx cosix = sinzxcos x — sin{n ~ 1)x
Therefore,

(88)
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m-1

1. m » .
I =——cosnxcos™x—— [ cos™ ' xsin nxcos xdx

m.n ,, n | ' n
+ ﬁj' cos™ L xsin{n —1)dx
n

1 m m
=——cosnxcos”" x——1L, . +—1, |,
: n ‘ n n ’ «

or

{ .
I, ,=—-—|-cosnxcos™ x + mf i no,
m+n -

(89)



Chapter(z)

| Exer,cisie‘f (5) )

Evaiuate each of the following integrals:

(1) [*e¥ax (2) [xcosSx dx
3) _fx secx tanxdx @ f\/; Inx dx
6) fresc?xdr 0 (6) [sin(lnx)ax -

®)  [x(2x+3)" ax |

. 3
4 X ?T-
N — dx

X . 2.
9. fmdx (10) lf(lnxv)‘dx‘
(1D J'(x+4)cosh4x dx (12) jcos«]x dx
; eI . . _
S (13) J'(x:_l)zdx (14) fsec™ Vx dx

(15) jhn(x2 + 1)¢r | (16) [JZE tan™' x dr

(17) Find a reduction formula for
() [x"cosmx dx ) [x" sinh mx dx
(ili) *[sec™ xtan” x dx (iv) j—-—“ix—_ |
2

(x +a2)ﬂ

. 50
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2.10 Integrals Involving Quadratic
Polynomial Functions
We have three cases to consider

(a) Integrals of the Form
[\ ax?+bx+c dx

In this case we first take the coefficient of x2outside the
square root sign and then complete the square of the

quantity ~der the square root sign to get one of the three
standard  integrals ijLz —trdt,  [kNLP 4 dt or
'f!c\/zz =~ [*dt “which have been tréated previously. The
following example clarify this case:
Example (1): Evaluate the integrals
@ W -ax+3a (i) jmmdx
Solution ‘
@ W oaxtBdi=(r-27 —4+13dx.

= [ (x=2)" +9 dx

‘Put,

oD
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(.\1—2)1;——1-‘13t‘am‘9 = {

i e
(x- 2)2 +9 -‘:,9bsec3?:'6" L ‘
Theretore, we have | » 79

J-"\/v_fz '-— 4,‘( + 13 (i’C = I ‘(‘X - 2)2 +A9 dx | ‘ x-z

) ) 3 3
=f3 sec 3sec” Bdb =9 .fsec 0do

=9 %[scc()tanf%ln(sec@ﬂan 8)}+C’y

. . ;
= "s’cc‘h'm ~‘+ln(scc0+tan»6)}+C_

k\/'(:c = 2)2 +9  (x- ?_)

¢ 2 +9 -2
Mz\—/ . : (x )+ln . + =~ 4+ C
21 3 o3 3 3

i
1

-—'-u\ Sy (e-2)" +9 +9In

J(x- 2)}2 +9 +(x- z)i“’+ C

{1y Sinee.

6 - 4;r 2t = 2(x2 +2x - 3)

(( e —1- )=- 2[(}c+1)2;4]

l\)
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f\! 6-4x - 2.’6 ax = \/‘—L— j\!—4 (X + t) dx
S A

————

Using the substitution

(x +1)=2sin0

dx =2 cos0db
= ) n
4—(x+1)" =4cos” 8
We obtain, ‘
j[6—4t—2r dx—\/° \/4 (ﬂ—’)z
—x/”j‘Zcoqé)x”cosG 20 =42 J(ccjs 84""

= 4x/_j]—f—£0—b—:rzz£9 ‘ A _///]
'/(/r"/ T ! ek
sin 2 8 |

_2./7] 6 AT, ===
\/L + ‘)4-( | -\/:‘\ﬁ"“

=242(6 +5inB cosB)+ C

]\ € 4 -- {’
“2\/'—( - {\xa— ]F(A‘l“(s/ ‘j.“l"i",

|
g H H
\ " ~ Vi é i \ & }

P

|
|1
i

b) Integrels of the Forms

a dx

3
ax’ +bx+c \/—a—x ?tbx+c

These forms are reduced to the standard integrals b

completing the square of the expression in the denominator.

(93)
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Examp ‘_blé._l’(Z): ' Evaluate the integralsvv

: Solution:

!

(1) Since;

2x?-8x+5= 2(x2—4x4—§-)= 2((x —2) -4+ —5~)

| 2
= 2[(,: ~2) - -ﬂ

Then,

1
J'2x2~8:c+5 2 (:c—2)2

(i1)For the integral I—-~l—~—— dx, we complete the
Jx2+2x+5 |
square of the quantity in the denominator to get

xz,+2x+5=((x+1)2—1+5)=(x+1)2 +4

(54)
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Thus we ob&;in
. 1 ' 1
i dx= [
' JV/ x142x+5 . I\/ (x+1)?+4

dx =sinh”(5—2tl-}+C

(¢) Integrals of the Form

. Ax
_-_7_}.{_'.‘?_._ dx. J- ax+E
ax” +bx4c \/ ax 2 +bx+c

Each of these integrals is reduced to two integrals; in the

first integral the numerator will be the derivative of the

denominator or we shall have the integral of a function

multiplied by its derivative. The other mntegral is of the
previous form, ie. we gei a standard integration by

completing the square of the quantity in the denominator.

Example (3): Evaluate the integrals

: x-6 .. x+4

(1) s————dx (i1) j—————-—:—._—-. X
x~+4x+5 .Vz_x.{.xz

Solution: .

(i) For the first integral, we have

.

(93)
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=k 3 | 2x 24
x“+4x+5 +4x+5

- "I 2+4x+5 ‘""f X 14715
] S
2 x +4x+5 27 (x42)P 41

%}nlxzwﬁs{—l 2tan~!(x+2+C

| + 4 E l' 2x+8
(i) [—= —d
I\/2x+x I 2XV+‘IZ;
1 (2x4+2-2+8
= dx
2 j :/ 2x+x? ;
I 2x+2 dx—i—1~ 6 . dx

"2 J2x+x2 27 [t 204101

=1 ;(zx+x27‘/ (e 243 [t
; (}:-1—1) -1

Y2
ﬂzﬁ*‘ﬁl—-ﬁcosh (x+l}H~

2 12

= /2x+x2 +3cosh ™ (x+1+C

(96)
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(d) Integrals of the Form

g

J' ax+b_
Ax+ B

Vax+ b

. /
In this case, multiply the integrand by , SO we get
‘ Vax+b

ax+ b dx:f a:c'+b’ dx,
Ax+ B \/ Lx?_th +N

- which is the integral studied in the previous case.

!

Example (4): Evaluate f *+3 dx
x+2
Solution:
J- x+3 - Jt x+3 X + J- x+3:
x+2 Ju+2xx+n
x+3

e X

) J’\/x2 +5x+6

b
z;{ - 2x+S5 f_,__d_x____“J
2

x? +5x+6‘ Vx? +5x+6
w +5x +

I[~"3x+6

(97)
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L =4yt +5x+.’6‘}l+—l-.f,, ci:c W
o - 2/\/__52 1 _
(R . 2 4.
oA ] 5
X +3r+6+——cosh 2x+ +C
, 2 2
=Vx? 45046+ —;— cosh™ (2x +5) + C.

Example (S) Evaludtc f 12 3 X, ——3—<x<l
X + .

J l—\? "‘J‘, (l—-_.'C) dx

x| ]
23 V=2x" ~ ¢+ 3

The first derivative of —2x* — v +3 is —dx— I, thus we

have
| |- —4x+4 dx
IV 2””3 f\/—— r+3'
%x%/ 2 x4 34— j' > dx

©8) | B
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8

Exercises (6), . .

Evizluate each of the following integrals:

' x dx
1)
( fx ~d4x+ 8.
dx
3 3
) x“—dx+13 .
x dx
5y |-
( jx2+6x+iOA

(M [V3-2x-42 &
dx

2 >
(x +6x+13)2

cosx dx

@

(1 f

- 9 - ;
sm x—-sinx -2

sinx dx

(i3) |

2.
Scosx +cos* x

_—
J\/5~4x- 2x?

© I\/?.x x?
) e ax
Cdx? —6x 4 10

e* dx

. e
v’l +e 4%

(8

(19) [ G-n)dr

(an sin 2x dx
" Usin?x - 2sinx -8
[x+2
14) [LI=—Z ¢
() ij+3 ‘

(100)
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2.12 Using Partizl Fraction Decomgaosition
to Evaluate Integral of Rationsl
. Functions

Consider we want o evaluate integrals of the form

Case (1):  If the degree of the numerator is less than the
degree of the denominzicr we proceed as in the following

examples:

Example (5):  Evaluate fﬁg%t}—-gd\:
X —LX—-
Seclution:  we decompose the expression ~——-=— 35 in
' x°=2x-3

example (2), section (2.11) to get
Be+3 527
xt-2x-3 A(x+1) Hx-3)’

then,

(109)



”,.,.szapte}v@}) .

8x+3 S 1 27 1
—--dm——~&+--&
fx -2x-3 47l+x 4 x-3 |

= %ln,x+ 1| + gzhx’x—?l +C

Example (6): Evaluate j@f——%’fﬂfdx
X" —3x

Solution: In example (3) section (2.11), we have seen that

6xl+x+10 -5 2 4
3 = 7t AP~
X" =3x-2 (x+1]) (x+1) (x-2)
then, v
fbt +x+10!r__5 dr +2 l d
xt—3¢-2 (x+l)“ T(x+1)
+4j 1
(x~2)

' N1
= —5—(5-111—)-__+2m]x+1[+4m]x-21+c

= —~§-+zln{x+1{+41njx~zg‘+c
x+1

Example (7): Evaluate fwdx ,
-1 N

Solution: In exampie (4), section (2.1 1), we have seen that

(110)
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7x2+8__ 5 . lx=3

P-1 x-1 2t dx+d

2
I s [ 2223 g
X -'1 x*+x+1
=Sin(x=1)+ J—Z-’é’-‘“-l—:f';dx
+x+1
. =51n(x_{)+j'___.2_f_f_1__d {T—I———dr
x“ +x+1 x“+x+l
dx
—51n(x-1)+xn(x el - 4}'.—_..3.._.._3..
‘ fx +- ) +-4* '
1
X+ =
21sC

T
= lnfx- 1 +In(x? +x+ D= ton”!| 2":1J+cy

N R )

Case (2): If the degree of numerator m is greater than the.

degree of denominator n we divide using the prolongation
method of division to express the integrard as the sum of a
polynomial and a proper rational function as we have done

" in example (1), section (2.11). Then

4

(111)e



 Chapter (2)

ap +ax+ayx +...+a, x"

by ~+'b§x+b2x2 ot by x”

Cy + C1x+C'2x Fo+ Cox?
+f

by +byx+byx? +. +b x"

where p+ g =m and g <n. Then, the first part can be
‘integrated without difficulties, but for the second part we
follow the method of partial fractions mentioned above anc
then integrate each fraction separately.

. .
;Examgle (8): Evaluate J.i:::zi%:ldx

Selution: " From cxample (1), we see that

oxtesx-7 ~5x4+9
e —— =x“+4+ :
xtla o xt-4
Then,
5x+9
j’-———;—dx f&? +4)dx+j———-—~4—dx
‘But, -

(112)



Methods OfIntegrati'on

~5x+9 A4 B
- = + ‘
x2-4 x-‘-’-'2, x+2

Sx+9=A(x+2)+ Blx—2)
~5=A+B, 9=24-2B,

then,
el gt
4 4
Hence,
-5x+9 -1  -19
x4 4(:—7) 4x+2)
and '
J- ~5X~de~_ _9 i‘ 1 ;
-4 4 Je+2
- 1 1
=—+4x ——Infx-3 -—Injv+2 +C
2 4 4 ‘
Eaamp [—
Example (9): Evaluate - dx
) T e e 2et 4 et 2)

Solution: We first use the substitution

2x 2

e =u= e =u’, efdx=du

Thern,

(113)
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(ezx+2ex-§;l e?+2) (uz +2u+1)u+2)
N § du
= [—73 |
(e + 1) (u +2)

Using partial fractions decomposition we get
1 A B C
: e + +
(r12@+2) @1 (w+l) (u+2)

Then,
1= A(u +2)+ Bt + 2)(u + 1) + Clu +1)?
Putu‘=>—:l: we getA¥~l .

Putu=-2: wegetC=1 )
Put u = 0: weget1=;4'+23+c:>1=~1+23+1.:>3=%
Hence,

1 -1 Lb2
‘(‘u+1)2(u+2') (u+1)2 (x{+l) (u+2)

and,

(114)
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L ';, f( 1 y2 1 }1 |
! U= - + ,+ - du
(e +1)* (e +2) (w12 (u+1) (u+2)

=——1——+}-In§u +1]+ ln]u +2/+C
w+1 2 :
Hence,
e’ .
- i ax
(ezx +2e* + l)(ex + 2) ‘
= +Linfet & l”-&- lnge‘ +"2! +C

et +1 2

(115)
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Chapter(2) - . . . . . -

. | iExercises ()

e A e et e e
Evaluate each of the following ihte"graIS'

(1) Jv 5 ' (2) I2x+4 dx -

+x2~ s 2x

2 rx-2 ~10
3) i % 4 —————-——d\:
( {3x3~x2+3x4-1 @ x2—4x+4 ‘

3xtvadd s+ 16,\:? + ?;Ox +9
(x+ ;Z)(x2 + 3)2

4. 3_g,2 1.
I3X +3.1; IS I 4 Idx
xX+x-2

dx

x(x-1) , x> +x

2 "
o x“+x -1
x” —4x ' a0 | J(x+l)(x 3)"'

2 +32 +x+9
dx 12
(12) I(x+ 3;

c059 do
st 0+ 4sm9 5

(15) j(x +4)2dx' (16)[ 4+x9+;t,.i:

(116)
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Review Exercises on Chapter (2)

- P
Evaluate each of the following integrals:

»J-Jc‘z«/?r-i-}.rdx, f\/x~4xé dx, f.e”nsin"‘l{e“")ui;ig

34f . 2 xz +5
‘{4_1:-—[‘1-" - ;f x2 =3dx, f i,
dx 2 :
I“Z-‘T——;::: ' f 3-x dr, fxﬂnxdsc;
xTvxT -2 x :
; L |
_111; e }' 072 gin 3xdie fsm (nx)
. le - ’ X .
i . xdx
Ve /3~ 2x—x%dx
Y +4x -5 J‘V "‘\/54.-14x~—,\:2
f-—i—-—x“—&—— , jsm 3xsin 2xdx jsm 2x¢0s Sxdx
x“ +6x+13 : S
j cos 3xcos 2xdx f sin? xcos? xdx stin 2 xcos® xdx
jsin3 2xcos? 2xdx. —figglf—dt ‘ ftan > xd
cos® x } s
jtansxsecxdx Itans xsect xdx jtan“ xsec? xdx
dx : Zx+4 ’ dx
J’zrz~1-)c—-2 Iyt -2yt J‘,l-i-e"
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A e T

3x3 ~x? +3x~1
553 -3x% +7x-3
&+ 1)?

je“/; ‘dx '

cosx

2—sin’x

. &
-
1+e&* +e%*

dx
Il +sinx

s

4sinx —3cosx

J- TGosH
? sin? 0+ 4sin6 -5

bl e i

273 -
x .
—dx
x+1

'fz' ~ 4¢' +3

: Inx dx
77—

xJ4lnx -
J'x sin3x dx

4
e X

f(4-3e2‘f

_—
j(———f—-—_—/-z-dx

dx

3+’x2)>

f 1+e dx

Vx4~ ) ax

f dx

“1-sinx+cosx

(118)
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'j‘e;ag}cdx T
‘2——cosx

2. Derive a reduction formula in part (a) and use it to

evaluate the integral in (b)

() (a) [x"e*dx, (b) [xletdx
(i) (a) J.tah"xdx; (b) [tan® xdx
(iif) @ [(nx)dx, (b) j(m_c)de
(V) (2) [sin” xcos™ xdx,  (b) [sin® xcos xdx

(119)
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~~——— Chapter 3
Definite and Improper
Integrals

Definite integration is a fundamental concépt of
mathematical analysis. It is a powerful tool in mathematics.
physics, mechanics and other disciplines. It is wsed ’t‘nr
calculation of areas of regions  bounded by curves, arc

- lengths, volumes, work, velocity, and others.

3.1 Definition and Geometric
Interpretation of Definite Integrals
Let f(x) be a continuous nonnegative function de fined
on the interval [a, b)]. -Divide the inierval [a, 5] into a-

equal subintervals by the points:

sza, xl,\;_rz, ey, x" —-b,

and let

(121
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<
]
t‘s
tal
e
\I_:f:

Y\\W\\v\

A AN NSO T
RN ORI

the function f(x) in the interval {x,-,_ Kot ] Define the

- lower sums £, by:

and the upper sums U, by:
n—~1

Uy=3 M, Ax.

1=

If-we-take limits as n— o (A.x-—-)O)\ we get

U=lmU,, [= limZ,

n-»x A—pxm

a2 T



Definite and Improper Integrals

These two limits exist and they are called the upper and -

~ lower -integrals of the function f(x) over the. interval
{a, b], respecti\fely. If f(x) is continuous and nonnegative
on [a, b], then U = L. In this case we define the definite

integral of f(x) over [a, b] as follows:
j: fx)de=U =1L
We shall a}so'd'efivne/,
b a )
[ fyae== [ fix)ax
Remark: If f(x)20 on [q, b], then

[[ fvyax=4,

where 4 is the area bounded by the curve y = f(x), the x-

axis, and the two vertical linesx =g and x = b.

(123)
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. 3 2 Basxc Rules on DeﬁmL Iﬂtegmtxon

Ruie Ruie 1 (Scalar Mult:phcauon Fule) ‘
The constant factor may be taken outsxde the sign of the

definite integral. Thatis
b

24

-

< eb
() dx = kf S {(xYydx, for any constant £,

A .

forexample, [ 3sinxdr = 3§ sinxdx.

Ruie 2 (Sum and Difference Rule)

Thé definite integral of an algebraic sum (difference) of
scveral functicns is equal-to the dlg,ebmxc sumn (difference)
of thp integrals of the summands. Thus, in the case of two

terms .
J-:) Lf(x) + g{x)}cér = j:’ JF(x)dx + j: g(’,x)d.r

For example, [° [z + sinx]dr = [% xdx + [ % sinxdsx.

Rule 3

Ifthe funrijon £(x) 20 on the interval [a, b] then,

[ rxdezo

) (124)
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g If on the: mtcrval" a, b] where (a < b), the functxon f(x) |

and. g(x) satxsfy the condltlon f (x) <g(x) then

[:f(x)dxsfg(x)dx.

Rule s
If m and M are the smallest and greatest values of the
function f(x) on the interval [a, b} and (a < b) then,

b
m(p—e)< [* f(x)dx < M(b-a).
The above rule.is usualy used tc; estimate the value of the
' integral without calculating it as seen in the tollowing

example:

Example (1):  Evaluate the upper and lower values of the

mtegral j 1/10 + 6sinx

Solution: By using rule (5),

. 1 1
min =
0s252n,[10 + 6sinx 10+ 6sinx | __

i

=0.25

=

ST (125)
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e

1 i

. S =05

M = max

=S
0sxs27\[10 + 6sinx /10 + Osinx| .,

Thus we have

Zir
by
21(0.25) < | e <2n(0.5)
5 10+ 6sinx

Rule ¢
[f the two integration limirs are equal then the correspondin
g q p g

integral vanishes, i. e.

Fyde =0

[~/
dg v

Rule 7

For any three numbers 2, b and ¢ we have that
J; f@d= [ sy s [° iy
a Sa ’ c ’

- . / . .
For example, [ sinxdx = §'? sinxde + [/, sinxdx.
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Rute 3
If the functien f(x) is even (f(-H= S(x) )}, then

o ; re L
Ll Ay e ] RPN
X = 4 L3 ax,
La/()' 1o 4 Ldx,

ule 9

Rt unt o

If the function f{x) is odd { f{-x)=-~ f{x) ), then

[ itads=o,

Remark: Rules 8 and 9 can be written in the fatlowing
compact {orm

[2 f(x) dx= { 2o S(x) dxiff(x)iseven

0 i) (x) 1s0¢d
Rule 10
[0 /(xyde = [ fa—xydx
Rule 11

2[ fdx if f2a-x)= f(x)

b f<x>dx={ . ﬂ
0 if f(2a~x)=-~ f(x)

‘(12.7)
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g

Example (2): Find

2 £ ‘
(i) [x*dx, (i) fsin”x dx
-2 : )

3 ~a
Solution:
tiy  Since x° is an odd function. then
3
<
I = f X dx=0
-3
(it}

Since x* is an even function, then

F4
.

Iy = J.r'x'dxz ZfrJax =2£—[
-2 0 3
(i.1) Since sin” x is an odd function . then (by rule 9) -

T
13 = [sin” xdr=0.

-




Definite and Improper Integrals

.3.3 ThelFundamenml Theorems of

Integral Calcules

In the previous section we introduced the properties
of definite integration without showing how to calculate it.
In this section, in addition- (o giving the relation between
differentiation and definite integration and ithe relation
between definite and indefinite integration we show how to
calculate definite integration  in terrus of indefinite
integration. The following: theorems ars called the
fundamental theorem of calculus becauvsce, as early
mentioned, they establish  the relationship between

differentiation and integration.

Theorem 3.1:  if f(x) is continuous on [a, ai and F{x)

is defined on [a, 5] by

F(x)= t{' Fydt,

then F(x) is differentiable on [a, b] and

dF(x) d J'f(t) dt = f(x), a<x<bhb.

dx  dx

(129)
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~Exampie (G- - Fing ~-5x) of the Fresnel function

o x Y I . ' .
S = sin<—’%~) d:. This function appears in the study of
0 - ’

differaction of light waves and ;cceht}y in the design of

i ghways.

Solution: Applying Theorem (3.1), we get

2
S'(x) = s,in(%—) .

- The above theorem has the following generalization.

Theorem (3.2): If JS(x) is continuous function on [a, b]

and u(x) and w(x) are differentable ﬁinctions of x whose

v{x)
values lie in [a, b] and let y= | S (@)dr, then »

u(x)

‘13’ d v
e d I J®dt = fW()W'(x) - 1 (u(x))u'(x)

Example (2): Find & if:
- dx

(a0
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e

X
iy y= fsinz dt (i) y= [costdt
¢ . "Z.t

Sulution:
(i) Using Theorem (3.1), we zet

Y

fj}i_i(}sinsa‘z = $inx
dx a!x\0

(i1) The direct application of Theorem (3.2} yields

dy df*
w_2 jcostdt
dx dx 2x

= (cos(x?)).(2x) - (cos(2x)).(2) = 2 x cos x? — 2cos2x
Example (3): Find the equation of the tangent line to the
curve y = F(x) at the point on the curve, where x = land

. o sm(——t )
F(x)= f ——-Q——dz

Solution:
| sinZ?)
At x=1 y=F)=| —2—dr=0.
, 1

’

(131)
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Then, the «lope n.of the tangent Iinc to the curve y = F(x)is
given by

sinZxty
(2x) =2

» a
Y=k () _ =
ad x=1 e).' -1

x=}

Hence, the cquation of the ‘,tangent line at the point (1,0) is

Y=y =m(x~x)

or,
y=0=2(x-1)
Hence, the requirec €quation is
y=2x~1)

Example (4): Find f(4) if Jj‘f(t)dt = xcos(mx).
0 :

Solution: We have that

d(=x -
-[2;( ICEARV®
= Zc-(x cos (7)) = cos (7zx) — (7)xsin (7x),

from which we ¢t

A132)
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f(x) = cos(mx) — (m)xsin(nx)
Therefore, ; -
f(4) = cos(4m) - 41rsin(47t) =: 1
The following theorem shows how to calculate definite
integration in terms of indefinite integration
Theorem (3.3): (The First Fundamental Theorem of

Calculus). If f{x) is a continucus function on [a b] and

F(x) is any antidefvative of f{x) on [a, b], then
b
[ () dxe=F(b)~ F(a).
a
The following example is a direct application of the above
theorem.
Example (5): Find

wi2

2 ST
O [Fdn () [6oosxrTds (i) [Fidr
0 0 1 X
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Solution: ~ , R
2. 412 '

(1) Il=fx3dx=_£_ =L§___2=4 ‘
0. 41, 4 4

n/2 6 S oan/2
(i) I, = j (6cosdx +7)dx = [Zsim&x + 7.’c]
0 0

= [gsinZn + 7(5)] - [}—sinO + 7(0)] _In
2 2 2 2

(i) 1, ”“f: (”f)dx:f 2 dx f Y2 g
X

4 [I-IMI
+ ;
1 -‘—1/2 1

I

3.4 Integration by Substitution

The following theorem is analogous to rule (2) (the rule of

integration by substitution) of section 2.2

(134)
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b
Theorem (3.4): Given the integral f J(x)Mdx, where
. ‘ P
f(x) is continuous on the interval [a, b]‘ and let x = @(1).
Suppose that the function (r) satisfies the following
conditions:
(1) The value of (p(!)y varies from a to b when ¢ varies

from o to B so that o(a)=a,eB)=5b and all

1

intermediate values of @(f)are in {a, 0].
(I) The derivative ~ @'(1) of @() is a contnuous
function on the closed interval [a, B],

Then,

b B
[ reax= | sro@ie'e e

In the following examples the above conditions are

automatically satisfied, therefore we shall not verify them,
. Find fe [NoT o7

Example (1): Find /= [Va’-x*dx, (a>0)

) 0

Solution: By the substitution

X = gsins = dx=dcostdt,

(135)
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we g,ét’ the following new limits.

. When x=0 = O=asint = (=0;

=

when x=g = a=asint = l=sin/ = =
. Then,~
5 72 ‘
[= f\/a —~x dx= a J'cos tdt
0
2 712 I+cos.’21
= q? | ——==Car
0 2 ;
/2 12| ma©
= tlr + ——sm 27 = 22
2 ) 4

, i e
Example (2): Find /= [Ve* —1dx
)

Solution: Put . '
t=ve' -1 = Zoe¥_1 = ef =% 4]

Then,
2t

1+1¢? a

e*dr=2tdt =  gre

when x=0, r=,/¢% - =0,‘

(136)
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and when x=1n2, =+ e’ ~1=42-1=1.
"Hence, ' I |

ln2 1 92
I=j\/e‘—ldx=f'2t2dt’
0 B

ol+¢

L+ -1 |
oS T g =2 - —) dt
g 1412 ' c{ 1+

: 1
=2¢ | ~2tan”' ¢ {0=2-—f—2r-

(137)
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.3.5 Integration by Parts

Theorem (3.5): “Let the functions x = u(x) and v = v(x)
havc‘cont‘invupus derivatives u'(x) and v'(x) on the interval
[a, b] Then,

b o
Iuai'/:uv‘[z - f vdu

a

Example (1): Eva}géte cach of the following integrals:

1 -
n = fxe"'dx (i) 7, = [tan™" xdx

0 0

c
(i) 7, = [BE 2

2

px°

Solution:

Using integration by parts we have that

1
. 1
1 I, = fxexdx==xexo - fe"dx
0 0
1 1
-xe’lo—e‘r’f0==e-e+1=1
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(u) 12-ftan"1xdx-xtan x) —gl-f-x?‘dx
!
) 1 1
=——-~—-l I+x "‘—"“—1 2. -~
4 Zn( )l 2n
L a’x
(iii) 13———1111:1
Inxl* 1/ -lne I Inl |
aies Rt I TG B GRL L
X xl ' I
~1-2
e

Exercises (1)

Find the value of each of the following integrals:

{
(1) [re ™ dx (2) j““‘
0
2 ,r
(3) [sinT'xdx (4)  J(x+xcosx)dx
0 - 0
n/4 /2
(5) [sin*x dx (6)  [cos®x dx
[} [}

(139)
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Chapter (3) o

(?2: dx"“"“ - (8) fsecn:x tanmx dx
0 L

[x/l+x2 dx (10) f“zxx” dx
O .
3

) -

( J‘(j’m—x )S/ 1x \/x2+3

(13)[ (19 f\/:tT
: Jx

(t——l

=1 7:/4 L ,
‘ dx (16) fcosx CcosSx dx
0

I
(15)
O[xz +x+1

(17) Find the value of x if

o dr i g
) Z‘(z(4~z)“§ (i) ,jt 2t~

=]

(140)
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Cartesian & Polar Coordinates:
* The distance between two points B (x,,Y,),P,(X,,Y,) is:

V06 =X+ (Y, =)
Example: Find the lengths of the sides of the triangle whose
vertices are (5,1),(-3,7) and (8,5) ,and prove that one of the angles

is a right angle.
Solution: Let P, (5,), P,(-3,7), (8,5

PP, =+/(-3-5)% +(7—1)? = /64 +36 =+/100 =10,
PP, =(8-5)%+(5-1)? =+/9+16 =+/25 =5,
5?7=¢@—03»%45—n2:Ju1+4=¢u5=5¢§

~PP, +PP, =PP
Hence the angle at P, is a right angle.

» The coordinates of a point (x,y) which divides the straight line
joining two given points P(x,,Y,),P,(X,,Y,) internally” (externally’)
leZ * mZXl lyZ * m2 yl)

m+m, m, +m,
Examplel: Find the coordinates of the point which divide the line
joining the points (2,-8) and (-5,6) internally in the ratio 3:4.
Solution:
(m | X, + M, X, | m1y2+m2yl) (3( 5)+4(2)’3(6)+4( 8)) (-1-2).

m, +m, m, +m, 3+4 3+4

Example2: Find the coordinates of the point P, which divides the
line joining the points P,(-3,-2),P,(1,2) externally from the side of

P, such that P,P, = 2P,P, .

in the ratio m,:m, is: (x=

Solution:
P]_ “ P2 : P3
RP ﬂ_§
m, '
e Moy (30109 00
©om-m, 3-1 ' 3-1 o
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Example3: Find the coordinates of the two points P, , P, which
divides the line joining the points P,(2,-1),P,(-15) into three

equal parts.
Solution:
Pl 1 Pd 1 P4 T P2
PP _m _1
PP, m, 2 '
Cp| MX £ MpXy MY, +MyY, :(1(_1)"'2(2) 1(5)"'2(_1)):(11)
-3 ) ’ =)
m, + m, m, +m, 1+2 1+2
P, is the middle point between P;(11),P,(-15) ,
-1+1 5+1

P ,—— |=(0,3).

4( > 5 j (0.3)

H.W: In what ratio does the point (-1,—1) divide the join of
(-5,-3) and (5,2)?.
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Coordinates System in a plane

(1)- Cartesian Coordinates:

From a fixed point O at the plane is called the origin point we
draw orthogonal straight lines 0x,0Y they are called axis
coordinates If itis P at some point in the plane, P is completely
determined by two number quantities (x, y) called point coordinates
in the plane, where x represents the vertical dimension of the point
P from the Y axis, and y represents the vertical dimension of the

point P from the X (See figure).

Y,

P(x,y)

@) X

(2)- Polar Coordinates:

Let O be a fixed point on the plane. From this fixed point
we draw a straight horizontal constant that applies to the OX axis

(See figure):
P(r,0)
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if P is a point in the plane, then P must be completely defined if we
know the distance OP (i.e. the distance P from O), and if we also
know the angle that the rectal OP makes with the OX axis

A fixed point, O, is called the starting line.

The OP dimension is called the polar dimension and symbolized by
r, and the angle at which the OP straight from its original position
applied to the OX axis to the OP position is called the polar angle
of point P and is denoted by the symbol 6. The polar coordinates of
point P in this case are the arranged two (r, 6).

The polar dimension OP is considered positive if measured from
the O electrode in the straight direction that defines the polar
angle 6, and is considered negative if measured in the opposite
direction. The polar angle 6 is considered positive if measured in

an anti-clockwise direction, and is considered negative if measured

in clockwise direction, and is. (-n<6<)
(3)-The relation between Cartesian and Polar Coordinates:

Let P be a point in the plane of its polar coordinates (r, 0)
and its Cartesian coordinates (X, y).as shone:
Y,

P(x,y)
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From the figure we see that.
X =1rcos 0 (1) , y=rsin6 (2)

These two expressions X, y in terms of :(r, 0)

square the relations (1) and (2) and add them, we get.
P =x*+y? == x>y (3).

dividing (2) by (1), we get:
yix=tan6 =0 =tan’(y/x) (4)

These two relations (3), (4) express r, 0 in terms of x, y

Example:1 Find the Polar Coordinates of the point: P (+/3,1)

Set the position of this point.
Solution:

the point is given in Cartesian coordinates (x, y) = (N3, 1), so:

r=yxX2+y?> =+/34+1=+/4=2 , x=rcosd, y=rsin @
J3=2c0s8,1=2sin

(:056?:£,sin9:£,6’=z then: (r,0)=|2,%
2 2 6 6

Then the angle 6 is in the first quadrant of the plane

Example:2
(i) Transform : x*> +y* —2x+2y =0 into polar form.

(i) Transform :r =4acos @ into Cartesian form.
Solution:
() put:x=rcoséd, y=rsing

. (rcos8)® +(rsin 8)> —2(rcos @) + 2(rsin ) =0
= r?(cos® @ +sin® @) —2r(cos § —sin 6) =0

= r=2(cosé—sin 9).

(i) r=4acos@ = r>=4arcosd = x* + y* = 4ax.

Example:3
(i) Transform : r> =a’co0s26 into Cartesian form.
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(i) Transform : x° = y2(2— X) into polar form.
Solution:
(i)—r? =a?cos26 = a*(cos® @ —sin* §) =r‘=a?(r?cos?#—r>sin* g
:>(x2 + y2)2 = az(x2 — y2)

(i) put x=rcos@, y=rsiné
- (rcos@)® =(rsin 6)*(2—-rcosb)
=r’cos’ G =r’sin’G(2-rcosh)
=r’cos’@+r’sin®dcosd=2r’sin’ 6
= r*cosd(cos? 6 +sin’ )= 2r’sin* @
= r’cosé=2r*sin*6 = r5cosfd=2sin’o
r=2tandsin
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Exercises:

1- Find the coordinates of the point P, which divides the line joining
the points P,(0,-1),P,(2,3) externally from the side of P, such that
PP, =2P,P,.

2- Find the coordinates of the two points P, , P, which divides the
line joining the points B, (11),P,(—2,-5) into three equal parts.

3- Prove that the medians of a triangle with vertices

: + X, + X +Y,+
P06, )Py . o). Pyl ys) i M2 ety
4- Show that the distance between the two points
P(X.,Y,),P(X,,Y,) in polar coordinates is:

\/rlz +1,°-2rr,cos(6, - 6,).

5- Find the Polar Coordinates for each of the following points::

Pl (—\/é,l) ) Pz (_11 \/§) ) Ps (_111) ) P4 (_3,3\/5) , Ps (11_\/5)

6- Find the Cartesian Coordinates for each of the following points:

T T T T T
RE=2)RE2)RE).RA2).RE—)

7- Transform the following equations to the polar Coordinate.

@ (c+yf=2axy (2 y*=x/(2a-x)

(3) x* +y* =a’xy (4) 2x* —2y* =9
8- Transform the following equations to the Cartesian Coordinate:
(1) r=1-cosé (2) r*=9cos20

(3) r=3/(2+3sin@) (4) r(2-cosh)=2
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Analytical Geometry Of Three Dimensions
There are three ways to specification each point in R*:

1- Cartesian Coordinates.
2- Cylindrical Coordinates.
3- Spherical Coordinates.

1- Cartesian Coordinates: (X,V,z)

The Orthogonal straight lines OX ,0Y,0Z are called coordinates
axes, and XOY ,YOZ,ZOX are called coordinates planes ;

( such that 0(0,0,0) is the origin point ).

And as a result of the intersection of the coodinates axes produce
eight zones in R®:

1% zone X>0Y>0,Z>0

2 one | X>0,Y>0,Z<0

39zone | X>0,Y<0,Z>0

4" zone X>0,Y<0,Z2<0

5" zone | X<0,Y>0,Z>0

6" zone X <0Y>0,Z<0

7" zone X <0,Y<0,Z>0

8™ zone X <0,Y<0,Z2<0

Therefore, each point in R*is similar in position to seven points.
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P(x.y.2)
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In other words, each point in R® correspondes to seven points with
respect to:
1- Coordinates Axes OX,0Y ,0Z.

2- Coordinates Planes XOY ,YOZ,ZOX .
3- The origin point O.
Example: Determine the points corresponding to the point (a,b,c)

with respect to:
1- Coordinates Axes OX,0Y ,0Z.

2- Coordinates Planes XOY ,YOZ,ZOX .

3- The origin point O.

Solution:

1- (a,-b,—c),(-a,b,—c),(-a,—b,c) respectively.
2- (a,b,—c),(-a,b,c),(a,—b,c) respectively.

3- (-a,-b,—c).
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2- Cylindrical Coordinates: (r,8,2)

Z

P(r,0,z)

<
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3- Spherical Coordinates: (p,0,¢)

P(p,0,0)

P(r,0)
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The relation between Cartesian, Cylindrical, and Spherical

Coordinates:

Z
P(p,0,9)
Q z
Y
X 0
X ) y P(r,0)

From the figure above, we have the following relations:

X=rcosé@

_ 1)
y=rsind

r=psing , 2

Z=pCosg

And From (1) we have:

r=+yx>+y>,

0=tant Y
X

And From (2) we have:
p=r’+z%,

4).

.
p=tan™—
z

(3).
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And From (1),(2) we have:
X = psin pcosd

y=psingsin g, (5).

Z=pCosg

And From (3),(4) we have:

p=+xX*+y +1°,

eztan‘l% , (6).
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Examples:

1- Find the Cylindrical Coordinates, and Spherical Coordinates
of a point (1,—\/5,2) .

Solution:
r=4x’+y?>=41+3=2,
0= tan‘l(—_\/g) =z
1 3
Therefor, the Cylindrical Coordinates of a point (1,—\/5,2)
. T
is (2,——,2),
( 3 )

=X +yi 472t =\1+3+4 =242,

2 2
X"+

gpztan’l —y
z

= tanlg —tant1="
Therefor, the Spherical Coordinates of a point (1,—\/§,2)

is (2\/5 -= —)

2- Find the Cartesian Coordinates of a point corresponding to the

point (2\/5,%,%) with respect to ZOX _ plane.
Solution: (2\/5,1,5) =(p,0,0)
X = psin ¢cosf = (2\/_)(\/_)(—) 1,

y = psin gsin 6 = (27/2)( [)(i) V3,

1= peosp = (2V2)( ) =2

.. the Cartesian Coordinates of a point (2\/5,%,%) is (1, \/§,2),
therefor, the Cartesian Coordinates of a point corresponding to
the point (2\/5,%,%) with respect to ZOX _ plane is (1,—\/§,2).
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Exercises:

1- Using geometric figure, find the relation between Cartesian,

Cylindrical, and Spherical Coordinates of a point P in R®.
And verify that the Cylindrical, and Spherical Coordinates of a point

(-1,+/3,-2) are (2,2?”,—2) .and (2\/5,2?”,37”) respectively.

2- Find the Cartesian Coordinates of a point corresponding to each

of the points P(2 0) P (1 1) PG — 1) with respect to the

origin point.

3- Find the Spherical Coordinates of a point corresponding to each
of the points P,(-1,4/3, —2),P,(~/3, 1, 2) with respect to the
OX _axis.
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Direction Angles and Direction Ratios:
The angles «, #,y made by the straight Iineiﬁ with the positive
direction of the coordinate axes in R?

are called the direction angles of ET% :
as it shown in the following figure:

/P2

(cosa, cos S, cosy) are called cosines of the direction angles

of @

The direction angles of W(X _axis), oY (Y _axis), and

g . T T T T T T .

Oz (Z _axis) are (0,—,-),(—=,0,~),and (—,~=,0) respectively ,
(z_axis) are (0,7,7),(5.0,),and (-, 0) respectively

and its cosines are (1,0,0),(0,1,0),(0,0,1) respectively.

Theorem: cos® o +cos” f+cos’ y =1 if and only if «, 8,y are

direction angles for a line in R®.
We denote L=cosa , M =cos 5, N =cosy
and any three quantities a,b,c are called direction ratios for the

line PP, in R® ifand onlyif L:M:N=a:b:c
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Results:

(1) If B(x,V:,2),P(%,,Y,,2,), then the direction ratios of PP, are:
Xo =X, Yo = Y1, 2, =4 o

and the cosines of the direction angles of PP, are:

X, =% Y=Y Z, -4

,COS = ,COSy =
T TN A T

CoOSa =

(2) The cosines of the direction angles of Pl_P; whose direction
ratios a,b,c are:

L=— 2 b ¢

’ = ,N:
vJa%+b? +c? Ja? +b? +¢? Ja? +b? +¢c?

(3) The angle between two straight lines @ and ﬁ
which cosines are L,M;,N, and L,,M,, N, respectively,
(which direction ratios are a;,b,,c, and a,,b,,c, respectively) is:

0 =cos[LL, + M,;M, +N,N,]=cos [T a,a, +bb, +cc, ’
Jai +bf ol Jag +b] ]
and PP, LPP, if LL, +M,M,+N,N, =0.

(4) The direction ratios a,b,c for the vertical on two straight lines

PP, and ﬁ which direction ratios are a,,b,,c, and a,,b,,c,
respectively are:

(5) The length of the shortest distance K between two straight
lines @ and ﬁ ( not parallel in R®) determine as follows:

K =[RR(LL + MM, + N;N,)| such that:
PP, the distance between P, and P,, and
L,,M,, N, the cosines of ?P; and

L,,M,,N, the cosines of the vertical on PP, and ﬁ
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Examples:
1- determine in which case of the following «, 3,y are direction

angles for a Iine inR*?

2
| == —y=—
() o /3 7 3
.. T T 3n
I =—,p=—,y=—
(i) a 3 B 2772
Solution:

2 2 2
(i) cos>Z +cos? Z veos? 2 o[ L) (L) +[2E) o1
4 3 3 W2 2 2

Then «, B,y are direction angles for a line in R®.

) 37 (1Y (1Y (1Y _5

(ii) cos® 7 +cos? 2+ cos — |+ —=|+H—=]| =—=1
3 4 4 2 N2 \J2 4

Then «a, B,y are not direction angles for a line in R®.

2- Find cosines of the straight line joining two given points
R(L-23),P,(2-35).

Solution:

Let a,b,c are direction ratios for PP, .
sa=2-1=1,b=-3-(-2)=-1,c=5-3=2,

Therefore, cosines of PP, are:

a1
Ja?+b?+c? J6'
b 1
M= =
Ja?+b?+c? J6
Ne__ ¢ _
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3- Verify that the angle & between two diagonals of the cubic
is 0= cosl[ié] ?.

Solution:
Let a be the length of the cubic side, and three faces of the cubic
are applicable at the coordinates planes XOY ,YOZ,ZOX

as shown in the following figure:

Z
P ‘0 0,a) P4
P ‘\‘\‘ _ 7(a,ala)
’ Ps Y
P, ‘\‘ »(a,a,0)

Consequently, the diagonals of the cubic are RP,,P,P,,OF, ,R,P,,

we find the angle 6 between the two diagonals OP, and P,P,

as follow:

the direction ratios of O_P7 is "a,a,a" and the direction ratios of ﬁ

is"—a,—a,a" then:

0 — cos I+ a(-a)+a(-a)+a(a)
Ja?+a?+a? Ja?+a?+a’

—a® 1
=cos ' [+——]=cos'[F].
1 [ 3a2] [ 3]
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4- Find cosines of the vertical on the plane passing the points
R(23-2),P,(1-1-1),P,(012).

Solution:
The vertical on the plane passing the given points, is also vertical

on the two straight lines PP, and PP,

Let a,b,,c, and a,,b,,c, are the direction ratios of

ﬁ and i?Pé respectively, and a,b,c the direction ratios of the

vertical on PP, and PP, ,

s =1-2=-1,b=-1-3=-4,¢,=-1-(-2) =1,
a,=0-2=-2,b,=1-3=-2,¢,=2-(-2)=4,

Then, the direction ratios a,b,c of the vertical on P,P, and 'Fﬁ are:

b ¢| -4 1

a= = =-14,
b, c,] -2 4
c, & 1 -1

b: ' = =2,
c, a,] |4 -2
a bl |-1 -4

c= = =—6.
a, b, |-2 -2

Therefor, cosines of the vertical on the plane passing the given
points are:

L a _ -4 -4
JaZ+b?+c? 196 +4+36 /236
M b _ 2
JaZ+b?+c? 236
N c _ -6
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5- Determine the length of the shortest distance between two
straight lines; direction ratios of one of them are 3,2,1 and passes

the point (3,4,5), and direction ratios of the other are 3,6,-2 and
passes the point (4,6,3).

Solution:

Let P(3,45),P,(4,6,3),

s

3,6,-2

Py
The length of the shortest distance between two given lines is:
K =[RP(LL, + MM, + N;N,) such that
PP, the distance between P, and P,, and
L,,M,, N, the cosines of PP, , and
L,,M,,N, the cosines of the vertical on @ and P,P, .

PP, =/(4—3)* +(6—4)* +(3-5)* =1+4+4 =49 =3,
4-3 1 6-4 2 3-5 -2
L. =—=—, M =—=—, N ==,
h=rg T Mimr g =g
ai!t)l1C15312al! azabzacz E3161_21
Then, the direction ratios a,b,c of the vertical on the two given
lines are:

b, ¢ 2 1

a= = =-10,
b, c,] 6 -2
c, & |1 3

b: = :9’
C, 8, -2 3
a b| B 2

c= = =12.
a, bl 3 6

Then, the cosines of the vertical on ET%: and P,P, are:
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- a ~ ~10 _-10 -10 _ -10
2 Jal+b?+c? J100+81+144 325 [(13)(25) 5413
M- b 9 9

? Jalibiic? 325 513 °

N, = c 121

Ja?+b?4c? 325 513
Therefor, the length of the shortest distance K
between P,P, and P,P, is:

K =‘@('—1L2 + IV|1M2 + N1N2)(

[( e ) i) 5 e i F)}‘

|-16] 16
513| 5413

6- Determine the length of the shortest distance between the two
straight lines P,P, and ﬁ such that:
R(-4,-12),R,(2,-35),R,(0,3-5),P,(2,4,4) .

Solution:

Ps P,

The length of the shortest distance between the two straight lines
PP, and PP, is K =[RR(LL, + M;M, +N;N, ) such that:

PP, the distance between P, and P,, and

L,,M,, N, the cosines of bl_P; and

L,,M,,N, the cosines of the vertical on PP, and ﬁ :
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PP, =16 +16 +49 =+/81 =9, and cosines of PP, is:
0- (—4) 4 3-(-1) 4 5.2 _7
L1 = — ., Ml = =— , 1 = =
9 9 9 9 9
let al,bl,cl and a,,b,,c, are the direction ratios of
PP, and P,P, respectively, and a,b,c the direction ratios of

the vertical on ﬁ and iﬁ;
sa=2—-(4)=6,b=-3-(-)=-2,c,=5-2=3,
a,=2-0=2,b,=4-3=1,¢c,=—4—-(-H) =1,

b, ¢| -2 3
a= = :—5,
b, ¢,/ |1 1
c, & |3 6
b: ' = :O,
c, a, [1 2
a bl 6 -2
a bl 2 1
Then, the cosines of the vertical on PP, and iﬁ; are:
L, - a -5 _ -5 _-1
~Ja?+pP+c? V25404100 545 5
M2= b = O :0
Ja?+b?+c? 55
N = c _ 10 2
* Ja?+bic? 55 B

Therefor, the length of the shortest distance between P,P, and P,P,
IS:

=[PP(LL + MM, + NN, ) = H( I~ [) ()(0) (‘97)( } }‘
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Exercises:

1- Determine the value of A4 so that ﬁ L@; such that:
R(-1,-12),P,(0,2,4),R, (L 41),R,(1+10,2).

2- Determine the length of the shortest distance between two
straight lines; direction ratios of one of them are 2,-2,1 and passes

the point (2,5,1), and direction ratios of the other are 6,3,—2 and
passes the point (-2,2,6).

3- Determine the length of the shortest distance between the two
straight lines PP, and P,P, such that:
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Chapter

Analytical Solid Geometry

3.1 INTRODUCTION

In 1637, Rene Descartes” represented geometrical
figures (configurations) by equations and vice versa.
Analytical Geometry involves algebraic or analytic
methods in geometry. Analytical geometry in three
dimensions also known as Analytical solid™ geom-
etry or solid analytical geometry, studies geometrical
objects in space involving three dimensions, which
is an extension of coordinate geometry in plane (two
dimensions).

3 ﬁ

Fig. 3.1

“Rene Descartes (1596-1650) French philosopher and mathe-
matician, latinized name for Renatus Cartesius.
™ Not used in the sense of “non-hollowness”. By a sphere or
cylinder we mean a hollow sphere or cylinder.

Rectangular Cartesian Coordinates

The position (location) of a point in space can be
determined in terms of its perpendicular distances
(known as rectangular cartesian coordinates or sim-
ply rectangular coordinates) from three mutually
perpendicular planes (known as coordinate planes).
The lines of intersection of these three coordinate
planes are known as coordinate axes and their point
of intersection the origin.

The three axes called x-axis, y-axis and z-axis are
marked positive on one side of the origin. The pos-
itive sides of axes OX, OY, OZ form a right handed
system. The coordinate planes divide entire space
into eight parts called octants. Thus a point P with
coordinates x, y, z is denoted as P(x,y, z). Here
X, y, z are respectively the perpendicular distances
of P from the YZ, ZX and XY planes. Note that a line
perpendicular to a plane is perpendicular to every
line in the plane.

Distance between two points P;(xy, y1, z;) and
Py(x2, ¥2,22) is v/(xa—x1)2+(v2—y1)2+H(z2a—21)%.

Distance from origin 0(0,0,0) is \/x3 + y3 + z3.

Divisions of the line joining two points Pj, Pp:
The coordinates of Q(x, y, z), the point on PP,
dividing the line segment P;P, in the ratio

. nxp+mxp ny\+myy nzyp+mzp :
m:n are (“L L ) or putting
k for 2

k ky k .
m, <x1+ X2 yitky: zi+ zz) ;k ?é —1. Coordi-

I+k > 14+k ° 1+k

nates of mid point are (x‘;)‘z , yl;”’z , ZIJ{Q).

3.1
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Direction of a line: A line in space is said to be
directed if it is taken in a definite sense from one
extreme (end) to the other (end).

Angle between Two Lines

Two straight lines in space may or may not intersect.
If they intersect, they form a plane and are said to
be coplanar. If they do not intersect, they are called
skew lines.

Angle between two intersecting (coplanar) lines is
the angle between their positive directions.

Angle between two non-intersecting (non-
coplanar or skew) lines is the angle between two in-
tersecting lines whose directions are same as those
of given two lines.

3.2 DIRECTION COSINES AND
DIRECTION RATIOS

Direction Cosines of a Line

Let L be a directed line OP from the origin O(0, 0, 0)
to a point P(x, y, z) and of length r (Fig. 1.2). Sup-
pose OP makes angles «, 8, y with the positive di-
rections of the coordinate axes. Then «, §, y are
known as the direction angles of L. The cosines of
these angles cos «, cos 8, cos y are known as the di-
rection cosines of the line L(O P) and are in general

denoted by I, m, n respectively.
Thus

X y
l=cosa=—, m=cosf ==,
r r

r=/x24+y2 472

z
n=cosy = —.
r

where

Y
P(x, y, 2)
T
o
/ ~ >X
z
Fig. 3.2

Corollary 1:  Lagrange’s identity: [>4+m>+n* = 1
i.e., sum of the squares of the direction cosines of
any line is one, since P4+m?2+n*=cos’a+

2 2 2
cos’ fHcos’y =5 + L + 5 = 1.

Corollary 2:  Direction cosines of the coordinate
axes OX, OY, OZ are (1, 0, 0), (0, 1, 0), (0, 0, 1)
respectively.

Corollary 3:  The coordinates of P are (Ir, mr, nr)
where [, m, n are the direction cosines of OP and r
is the length of OP.

Note: Direction cosines is abbreviated as DC’s.

Direction Ratios

(abbreviated as DR’s:) of a line L are any set
of three numbers a, b, c which are proportional
to I,m,n the DC’s of the line L. DR’s are also

known as direction numbers of L. Thus f—l = % =
% = k (proportionality constant) or [ = ak, m = bk,
n = ck. Since I> + m* + n> = 1 or (ak)?> + (bk)*> +
(ck)*=1 or k = \/ﬁ Then the actual di-
rection cosines are cose = = ak = + 4

[a24b24c2°
cos f=m = bk = +——=L !

Vi cosy =m=ck =
+7 zJ:szr_z with a® + b? + ¢ # 0. Here +ve sign
a ¢

corresponds to positive direction and —ve sign to
negative direction.

Note 1:
one.

Sum of the squares of DR’s need not be

Note 2: Direction of line is [a, b, c] where a, b, ¢
are DR’s.

Direction cosines of the line joining two points
Pi(x1, y1, z1) and Pa(x2, y2, 22):
PO LM OM-0OL x;—x

[ =cosa = —
r r r r

Similarly, m = cos p = %L and n =cosy =
2
“—L. Then the DR’s of P, P, are x; — X1, y2 — y1,
22— 21
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Y
A

P,

r
Py a Q
(o] S
L THES
Z

Fig. 3.3

Projections

Projection of a point P on line L is Q, the foot of the
perpendicular from P to L.

P

Q L
Fig. 3.4

Projection of line segment

Py P, on aline L is the line segment M N where M
and N are the feet of the perpendiculars from P and
Q on to L. If 9 is the angle between P; P, and line
L, then projection of PP, on L= MN = PR =
P, P, cos 6. Projection of line segment P; P, on line
L with (whose) DC’s [, m, n is

l(xy — x1) + m(y2 — y1) +n(z2 — z1)

(%, %, 2o)

P (X1, 4, Z4)
[

Fig. 3.5
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Angle between Two Lines

Let 6 be the angle between the two lines O P; and
OP,. Let OP, =r1,0P, =r,. Let l;,m,n; be
DC’s of O Py and [, ms, ny are DC’s of O P,. Then
the coordinates of Py are [ r;, mry, nir; and of P,
and 127‘2, morp, N1,

zZ

N
B (%3, Yo, 25)

2

P (x, %, 2)

Fig. 3.6
From A O P, P», we have

PP} = OP}+ OP} —20P,- OP; -cos6
(lry = hir))* 4 (mary — myr)> + (nary — nyrp)?

= [(lm)2 + (myr)* + (n1r1)2]

+ [(lzrz)2 + (mar2)* + (n2r2)2] —2-ryrycosb.
Usingl%+m%+n% =1 andl%+m%+n% =1,
rl2 + r22 —2rira(lily + mymy + niny)

= rl2 + r22 — 2ryrpcosf.

Then C059=1112+m|m2+n1n2

Corollary 1:
sin?6=1—cos?f =1— (Wil +mymy + n]ng)2
= (I} +mi +nD{ +m3 +n3)
—(lily + mymy + nina)*
= (limy — mib)* + (miny — nymy)*
+nily — naly)?
using the Lagrange’s identity. Then
G Am3n)(B+m34n3)—(l A+mima+niny)?)

= (lima—lm)*+(mina—man)*+(n1l—naly ).
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Thus sinf = / Z(lln’Lz - m112)2
sing _ /2 Uimy—mip)?

tan 6 = cos® — ljlp+mymy+niny *

Corollary 2:

Corollary 3: If a;, by, c; and a3, b,, ¢, are DR’s
of O P, and 0P2

Then /| =
Vai +b2+cl
—a etc.
Vai +b%+cl

Then cosf =

b
mip = . nl =
‘/a|2+b%+c%

ajay+biby+cicn
a+b3 -+ Ja3 b3+

V(aiby—azb1)2+(bica—byc1)? + (craz—caap)?
Jai i a3 +b3+3

Corollary: Condition for perpendicularity:
The two lines are perpendicular if & = 90°. Then

sin =

cosf =cos90 =0

Thus ’lllz—i—mlmz—i—nlnz :0‘
or ’a1a2+b1b2+0102=0‘
Corollary: Condition for parallelism:

If the two lines are parallel then 6 = 0. So sin 6=0.

(limay — mila)* + (miny — many)? + (nily — naly)* =0

JE+mi+nt

I mp  m

or —_—— e— = — = —,
I, my na 2 2, 2 1
12—{—m2—}—n2
Thus  [li=h. mi=my m=m)]
ap by cl
or —_ ===

a b o

|
WORKED OuT EXAMPLES

Example1: Findthe angle between the lines A(—3,
2,4), B(2,5,—2)and C(1, -2, 2), D4, 2, 3).

Solution: DR’s of AB:2—(-3),5-2,-2—-4

=53 -6

DR’s of CD: 3 4,1. Then DC’s of AB are [} =
_ — 3 _

cosay = \/52+3z+6z - 25+9+36 = 7z and my =

—6

cos B = %, ny =cosyr = . Similarly, I, =
3 3 3
COSQy = = = = and m>, =
2T [ OF 1611 . 26° 2
4 |
cos B, = e =08y = Now

cos6 =cosag - cosay + cos B - cos By + cos yp - oS V2
=lilhp +mmy +niny

5 3 N 3 4 6 1
V70 26 70 /26

=0.49225
6 = cos~1(0.49225) =

cosf =

60°30.7’

Example 2: Find the DC’s of the line thatis L" to
each of the two lines whose directions are [2, —1, 2]
and [3, 0, 1].

Solution: Let [a, b, c] be the direction of the line.
Since this line is 1" to the line with direction
[2, —1, 2], by orthogonality

2a —b+2c=0

Similarly, direction [a,b,c] is 1" to direction
[3,0,1]. So

3a4+0+4+c¢=0.
Solving ¢ = —3a, b = —4a or
direction [a, b, c] = [a, —4a, —3a] = [ 4, -3].
) o 1 —4 -3
DC’s of the line: m \/7 e e

Example 3: Show that the points A(1, 0, —2),
B3, —1, 1) and C(7, —3, 7) are collinear.

Solution: DR’s of AB: [2,—1, 3], DR’s of AC:
[6, —3,9], DR’s of BC: [4, —2, 6]. Thus DR’s of
AB, AC, BC are same. Hence A, B, C are collinear.

A B c

Example 4: Find the coordinates of the foot of
the perpendicular from A(1, 1, 1) on the line joining
B(1,4,6) and C(5, 4, 4).

Suppose D divides BC in the ratiok : 1.

Solution:
: Sktl 4ktd 4kt6
Then the coordinates of D are (355, 455, 442) .

R’sof AD: 2,3, 2582 DR’s of BC: 4,0, =2 AD

1sJ_’BC 16k — 6k —10=0,0rk = 1.



B.V.Ramana August 30, 2006 10:22
A(1,1,1)
B D (e}
(1, 4, 6) (5,4, 4)

Coordinates of the foot of perpendicular are (3, 4, 5).
Example 5: Show that the points A(1,0, 2),

B3, —1,3),C(2,2,2), D(0, 3, 1) are the vertices of
a parallelogram.

e

Fig. 3.7

Solution: DR’sof ABare[3—1,—1—-0,3—-2] =
[2, —1, 1]. Similarly, DR’s of BC are [—1, 3, —1], of
CD[-2,1,—1] of DA[-1, 3, —1]. Since DR’s of
AB and CD are same, they are parallel. Similarly BC
and DA are parallel since DR’s are same. Further AB
isnot L" to AD because

2+D + (=D)(-3)+ L(+)=6#0
Similarly, AD is not L" to BC because
2D+ (=34 1(-1) = -6 £0.

Hence ABCD is a parallelogram.

EXERCISE

1. Show that the points A(7, 0, 10), B(6, —1, 6),
C(9, —4,6) form an isoscales right angled

triangle.
Hint: AB? = BC? = 18, CA? = 36,
AB*+ BC*=CA?

2. Prove that the points A(3, —1, 1), B(5,
C(11, —13, 5) are collinear.

—4,2),

Ans.

Ans.

ANALYTICAL SOLID GEOMETRY == 3.5

Hint 1: AB? = 14, BC? = 126, CA? = 224,
AB+ BC =4J14=CA

Hint2: DR’sof AB =2, —3,1;BC:6, -9, 3;
AB|'to BC

Determine the internal angles of the tri-
angle ABC where A(2,3,5), B(—1,3,2),
C@3.,5,-2).

Hint: AB> = 18, BC? = 36, AC? = 54. DC S
21 =2
AB: — 40, -1 BC: 2,1, 25 A S
=1

%f 3/6°
_1 —0; —o()° _6
cos A_ﬁ,cos B=0i.e., B=90°,cosC= 5

Show that the foot of the perpendicular from
A(0,9, 6) on the line joining B(1,2,3) and
C(7,-2,5)is D(—2,4,2).

o - Th+1  —2k+2
Hint: D divides BC ink : 1, D(m, T

S3).DR'S AD: (Tk + 1, =11k = 7, —k=3),

DR’s BC:6,—4,2. AD 1" BC: k = —3.
Find the condition that three lines with DC’s
li,my,ny; b, mp, ny; Iz, ms3, ny are concurrent.
Hint: Line with DC’s [, m, n through point of
concurrency will be L" to all three lines, I/; +
mm; +nn; =0,i =1,2,3.

L m m
Ih my npy|=0

I3 m3 n3

. Show that cos? @ + cos? 8 4 cos® y + cos? §

= ‘3—‘ where «, B, v, § are the angles which a
line makes with the four diagonals of a cube.

Hint: DC’s of four diagonals are (%, k, k),
( k,k, k), (k,—k,k), (k,k, —k) where k =
[, [, m, n are DC’s of line. cosa = [.k.
+mk +nk, cosf = (—l+m+n)k, cosy =
(Il—m+n)k,cosé =((+m—n)k.

Show that the points A(—1, 1, 3), B(1, =2, 4),
C(4, —1, 1) are vertices of a right triangle.
Hint: DR’s AB : [2, -3, 1], BC : [3,1, —3],
CA:[5 —-2,-2].ABis L" BC.
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8. Prove that A(3, 1, —2), B(3,0, 1), C(5, 3, 2),
D(5, 4, —1) form a rectangle.
Hint: DR’s: AB: [0, —1,3]; AC: [2,2,4],
CD[0,1,-3]; ADI[2,3,1]; BC[2,3,1];
AB|CD,AD||BC,AD 1 AB:0 — 3+ 3=0,
BC L DC:0+3-3=0.

A B

[ ]

9. Find the interior angles of the triangle
AG,—1,4), B(1,2,-4),C(-3,2, 1).

Hint: DCs of AB: (2,3, —8)k,

BC: (—4,0,5)k,, AC: (—6, 3, —3)k3 where
_ 1 _ _ 1

ki = o=, ky = =, k3 = —=.

_ 15 _ 3 _ 3
cosA_—462,cosB_—3157,cosC_—m.

10. Determine the DC’s of a line _L" to a triangle
formed by A(2, 3, 1), B(6, —3,2), C(4, 0, 3).
(3, 2, 0)k where k = ﬁ

Hint: DR: AB: [4,—6,1], BC: [-2, 3, 1],
CA:[2,-3,2].[a, b, c]of L" line: 4a — 6b +
c=0,-2a+3b+c=0,2a —3b+2c=0.

Ans.

Ans.

3.3 THE PLANE

Surface is the locus of a point moving in space sat-
isfying a single condition.

Example: Surface of a sphere is the locus of a point
that moves at a constant distance from a fixed point.

Surfaces are either plane or curved. Equation of
the locus of a point is the analytical expression
of the given condition(s) in terms of the coordinates
of the point.

Exceptional cases: Equations may have locus
other than a surface. Examples: (i) x> +y?=0isz-
axis (ii) x> + y? 4+ z2 = 0 is origin (iii) y> +4 =0
has no locus.

Plane is a surface such that the straight line P Q,
joining any two points P and Q on the plane, lies
completely on the plane.

General equation of first degree in x, y, z is of the
form

Ax+By+Cz+ D=0

Here A, B,C, D are given real numbers and
A, B, C are not all zero (i.e., A2 + B*> + C? #0)

Book Work:  Show that every equation of the first
degree in x, y, z represents a plane.

Proof: Let
Ax+By+Cz+ D=0 1)

be the equation of first degree in x, y, z with the con-
dition that not all A, B, C are zero (i.e., A2 + B> +
C? #0). Let P(x1, y1,21) and Q(x2, y2, 22) be any
two points on the surface represented by (1). Then

Ax1+By1 +Cz1 + D1 =0 2)
Axy + By, +Czp+ Dy =0 3
Multiplying (3) by k and adding to (2), we get
A(xy + kx2) + B(y1 + ky2) + C(z1 + kz2) + D(1 + k)
=0 )
Assuming that 1 + k # 0, divide (4) by (1 + k).
() o () e (282 o

=0

i.e., the point R <X1+k’(2 y1tkyy Z‘+kzz) which is

T+k > I+k > I+k
point dividing the line P Q in the ratio k : 1, also
lies on the surface (1). Thus any point on the line
joining P and Q lies on the surface i.e., line PQ
completely lies on the surface. Therefore the surface
by definition must be a plane.

General form of the equation of a plane is
Ax+By+Cz+ D=0
Special cases:
(i) Equation of plane passing through origin is

Ax+By+Cz=0 ()
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(i) Equations of the coordinate planes XOY,Y O Z
and ZOX are respectively z =0,x =0 and
y=0

(ili) Ax+ By+ D =0 plane 1" to xy-plane
Ax+Cz+ D =0 plane 1" to xz-plane
Ay+Cz+ D=0 plane 1" to yz-plane.

Similarly, Ax + D =0 is || to yz-plane, By +
D=0 is ||'! to zx-plane, cz+D =0 is |’ to
xy-plane.

One point form

Equation of a plane through a fixed point
Pi(x1, y1,z1) and whose normal CD has DC’s
proportional to (A, B,C): For any point
P(x,y,z) on the given plane, the DR’s of the
line P; P are (x — x1,y — y1,2 — z1)- Since a line
perpendicular to a plane is perpendicular to every
line in the plane, so M L is perpendicular to Py, P.
Thus

Ax —x)+Bly—yD+Cz—z1)=0 (6)

M

N

Fig. 3.8

Note 1: Rewriting (6), we get the general form of
plane

Ax+By+Cz+ D=0 (1)
where D = —ax| — by; — cz;

Note 2: The real numbers A, B, C which are the
coefficients of x, y, z respectively in (1) are propor-
tional to DC’s of the normal ot the plane (1).

Note 3: Equation of a plane parallel to plane (1) is
Ax+By+Cz+ D" =0 N

x-intercept of a plane is the point where the plane
cuts the x-axis. This is obtained by putting y = 0,

ANALYTICAL SOLID GEOMETRY == 3.7

z = 0. Similarly, y-, z-intercepts. Traces of a plane
are the lines of intersection of plane with coordinate
axis.

Example: xy-trace is obtained by putting z = 0 in
equation of plane.

Intercept form

Suppose P(a, 0,0), Q(0, b, 0), R(0,0,c) are the
Xx-, y-, z-intercepts of the plane. Then P, Q, R lies
on the plane. From (1)

Aa+0+04+D=0

or A=——.

P(a, 0, 0)

Fig. 3.9

similarly, 0+5B+0+D =0 or B=—% and
c=-2

Elimicnating A, B, C the equation of the plane in
the intercept form is

D D D
~Zx-=-Zi4p=
a b
or TaYi i @)
a b ¢

Normal form

Let P(x, y, z) be any point on the plane. Let ON be
the perpendicular from origin O to the given plane.
Let ON = p. (i.e., length of the perpendicular O N
is p). Suppose [, m, n are the DC’s of ON. Now ON
is perpendicular to P N. Projection of OP on ON is
ON itself i.e., p.
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z

Fig. 3.10

Also the projection O P joining origin (0, 0, 0) to
P(x,y,z)ontheline ON with DC’s [, m, n is

I(x —0)4+m(y —0)+n(z—0)
or Ix +my +nz &)
Equating the two projection values from (8) & (9)

Ix+my+nz=p (10)

Note 1: p is always positive, since p is the perpen-
dicular distance from origin to the plane.
Note 2: Reduction from general form.

Transpose constant term to R.H.S. and make it
positive (if necessary by multiplying throughout by

—1). Then divide throughout by ++/A2 + BZ + C2.
Thus the general form Ax +By+Cz+ D =0
takes the following normal form

Ax By Cz

+ +
+VA24+B24+C?  +/A24+B24+C2?
-D

= an

+vA%2+ B2+ C?
The sign before the radical is so chosen to make the
R.H.S. in (11) positive.

Three point form

Equation of a plane passing through three given

points Pi(xy, y1, z1), Pa(x2, ¥2, 22), P3(x3, y3, 23):
Since the three points P;, P,, P lie on the plane

Ax+By+Cz+ D=0 (1)

we have Ax1+ By +Cz1+ D=0 (12)
Axy+ By, +Cz+ D=0 (13)

Axz3+Bys; +Czz+ D=0 (14)

+VA2+B24C?

Eliminating A, B, C, D from (1), (12), (13), (14)
(i.e., a non trivial solution A, B, C, D for the ho-
mogeneous system of 4 equations exist if the deter-
minant coefficient is zero)

X y Z

X1y A
X2 N 22
X3 Y3 23

=0 (15)

S Y

Equation (15) is the required equation of the plane
through the 3 points Py, P, P;3.

Corollary 1:  Coplanarity of four given points:
The four points P;(xy, y1, 21), P2(x2, ¥2, 22), P3(x3,
¥3, 23), P4(x4, Y4, z4) are coplanar (lie in a plane) if

X1 oy1 <
X2 y2 22
X3 y3 23
X4 Y4 Z4

=0 (16)

[ S

Angle between Two Given Planes

The angle between two planes
Aix+Biy+Ciz+ D1 =0
Ax + Byy 4+ Crz+ Dy =0

an
(18)

is the angle 6 between their normals. Here A, By, C,
and A, B,, C; are the DR’s of the normals respec-
tively to the planes (17) and (18). Then

A1Ay + B1By + C1C

cosbh =
2 2 2 2 2 2
JA + B+ A+ B+ G

Condition for perpendicularity

If & = 0 then the two planes are L to each other.
Then

A1A>+ BB, +C1Cy, =0 (19)

Condition for parallelism

If & = 0, the two planes are || to each other. Then
A B
A_B_G 20)

Ao B; Cy

Note: Thus parallel planes differ by a constant.

Although there are four constants A, B, C, D in
the equation of plane, essentially three conditions are
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required to determine the three ratios of A, B, C, D,
for example plane passing through:

a. three non-collinear points

b. two given points and L" to a given plane

c. a given point and L" to two given planes etc.

Coordinate of the Foot of the Perpendicular
from a Point to a Given Plane

Let Ax + By 4+ Cz 4+ D = 0 be the given plane and
P(xy, y1, z1) be a given point. Let PN be the per-
pendicular from P to the plane. Let the coordinates
of the foot of the perpendicular PN be N(«, 8, y).
Then DR’s of PN(x; — «, y1 — B, 21 — y) are pro-
portional to the coefficients A, B, C i.e.,
x1—a=kA, y—B=kB,
yi=p8—kB,
P

71—y =kC

or «a=ux3 —kA, z1=y —kC

nCl—q

Fig. 3.11

Since N lies in the plane
Aa+BB+Cy+D=0

Substituting o, 8, v,

A(xy —kA)+b(y1 —kB)+c(z1 —kC)+ D =0
. Ax1+By1+CZ1+D
Solving k=

A2+ B2 4 (2

Thus the coordinates of N(«, 8, y) the foot of the
perpendicular from P(xy, y;, z1) to the plane are
A(Ax1 + By; + Cz1 + D)
B A2+ B2+ C2
B(Ax1 + By1 +Cz1 + D)
- A2+ B2+ (2
C(Ax1+ By1+Cz1+ D)
a A2+ B2+ (2

)

B=x

)

@n

=<1

Corollary 1:  Length of the perpendicular from a
given point to a given plane:
PN?=(x1 — ) + (i = B + (@1 — v’
= (kA)? + (kB)” + (kC)?

ANALYTICAL SOLID GEOMETRY == 3.9
—12(A + B+ C?)

_|Ax1+Byn+Cu+D
B A2 + B2 4 C?

2
] (A2 + B>+ C?

(Ax| + By| + Cz; + D)?
T A4 B tC?
Ax;+By1+Czi+ D

/B4

The sign before the radical is chosen as positive or
negative according as D is positive or negative. Thus

the numerical values of the length of the perpendic-
ular PN is

or PN =

_ Ax1+By1+Cz1+ D
VA% 4 B? +C?

Note: PN is obtained by substituting the coordi-
nates (xi, y1, z1) in the L.H.S. of the Equation (1)
and dividing it by ~/A2 + BZ + C2.

Equation of a plane passing through the line of
intersection of two given planes u = Ajx + By +
Ciz+ Dy =0and v=Ayx + Boby+ Coz+ D, =
01is u + kv = 0 where k is any constant.

Equations of the two planes bisecting the angles
between two planes are

A1x + B1y+ Ciz+ Dy
) 2 2
AT+ By + Cy

|
WoRKED Out EXAMPLES

PN

(22

_ iA2x+Bzy+CzZ+D2

N 2, p2 2
JA2+ B2+ 2

Example 1: Find the equation of the plane which
passes through the point (2, 1, 4) and is

a. Parallel to plane 2x +3y 4+ 5z+6 =0

b. Perpendicular to the line joining (3, 2,5) and
(1,6,4)

c¢. Perpendicular to the two planes 7x +y +2z =6
and3x + 5y — 6z =8

d. Find intercept points and traces of the plane in
case C.

Solution:

a. Any plane parallel to the plane
2x+3y+5z4+6=0
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is given by 2x + 3y + 5z + k = 0 (1) (differs by
a constant). Since the point (2, 1, 4) lies on the
plane (1),2(2) +3(1) +5(4) + k =0,k = =27.
Required equation of plane is 2x + 3y + 5z —
27 =0.

b. Any plane through the point (2, 1, 4) is (one point
form)

Ax—=2)+B(y-D+Cz-4=0 @

DC’s of the line joining M(3,2,5) and
N(1,6,4) are proportional to 2, —4, 1. Since
M N is perpendicular to (2), A, B, C are propor-
tional to 2, —4, 1. Then 2(x —2) —4(y — 1) +
1(z —4) = 0. The required equation of plane is
2x —4y+z—-4=0.

c. The plane through (2, 1, 4) is
Ax—2)+B(y—1D)+C(z—4)=0. 2)

This plane (2) is perpendicular to the two planes
Tx+y+2z=6and3x +5y — 6z =8.
Using A1 Ay + BB, + C1C, = 0, we have

Ta+b+2c=0

3a +5b—6¢c=0

b c

: « b Y .
Solving - F="5%5=373 =53~

Required equation of plane is
Ix—4) =30y -D—-2c-49H=0
or x—=3y—-2z+7=0

d. x-intercept: Put y=2z=0, .. x = =7 or (-7,
0, 0) is the x-intercept. Similarly, y-intercept is
(0, 2, 0) and z-intercept is (0,0, 2). xy-trace is
obtained by putting z =0. Itisx — 3y + 7 =
0. Similarly, yz-traceis 3y + 2z — 7 = O and zx-

traceisx — 2z +7=0.

Example 2: Find the equation of the plane con-
taining the points P(3, —1, —4), Q(-2, 2, 1), R(0,
4, -1).

Solution:  Equation of plane through the point
P@3,—1,-4)is
Ax+3)+BOy+1D+Cz+4)=0. (1)

DR’sof PQ: —5,3,5;DR’sof PR: — 3, 5, 3. Since
line PQ and PR completely lies in the plane (1),
normal to (1) is perpendicular to P Q and P R. Then

—5A+3B4+5C=0
—3A+5B+3C=0
Solving A = C =1, B=0
x=3)+0+@z+4H=0

Equation of the plane is

x+z+1=0
Aliter:  Equation of the plane by 3-point form is
X y z 1
3 -1 -4 1
2 2 1 1|7
0 4 -1 1

Expanding D1x — D,y + D3z — 1.D4 = 0 where

—1 -4 1 341
Di=| 2 11|=-16, Dy=|-2 11/0=0
4 11 0—11
311 31 —4
Dy=|-2 21|=-16, Ds=|-2 2 1|=16
0 41 0 4 —1

or required equationis x +z + 1 = 0.

Example 3: Find the perpendicular distance be-
tween (a) The Point (3,2, —1) and the plane 7x —
6y + 6z +8 =0 (b) between the parallel planes
x—2y+2z—8=0andx —2y+2z4+19=0(c)
find the foot of the perpendicular in case (a).

Solution:

A/ A24+B2+C?

a. Point (3,2, —1), plane is 7x — 6y + 6z + 8 =
0. So perpendicular distance from (3,2, —1) to
plane is

_73) -6 +6(-H+8 11 —1=1

/72 + 62 + 62 —11
b. x-intercept point of plane x — 2y +2z —8 =0
is (8, 0, 0) (obtained by putting y =0,z =0 in
the equation). Then perpendicular distance from

. . A B D
Perpendicular distance = (M>
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the point (8, 0, 0) to the second plane x — 2y +
() ie 1.8-2.042.0419 _ 27 __
21+19_01s—m =5=9
c. Let N(x, B,y) be the foot of the perpen-
dicular from P(3,2,—1). DR’s of PN: 3 —
o,2— B, —1—y. DR’s of normal to plane are

: 3—a _ 2-8
7, —6, 6. These are proportional. == = ==

—Lora=3—Tk,f=2+6k y=—1-6k
Now (e, B, y) lies on the plane. 7(3 — 7k) —
6(2+6k)+6(—1—6k)+8=00rk=1—11.

.". the coordinates of the foot of perpendicular are
(é 28 ;”)

1 110 11
Example 4: Are the points (2, 3, —5) and (3, 4, 7)
on the same side of the plane x + 2y — 2z = 9?

Solution:  Perpendicular distance of the point
(2,3, —5) from the plane x +2y — 2z —9 =0 or
—x =2y +2z+9=0is 22D 9

A 12422422 3
-3.

1" distance of (3, 4, 7) is —:=3=2442749 % =06
A/ 12422422 -

" distance from origin (0, 0, 0) is w =3

So points (2, 3, —5) and (3,4, 7) are on opposite
sides of the given plane.

Example 5: Find the angle between the planes
4x —y+8z=9andx + 3y +z =4.

Solution: DR’s of the planes are [4, —1, 8] and
[1, 3, 1]. Now

A1Ar + BBy + C1Cy
cosfh =

2 2 2 2 2 2
JA+B L+ B+
_ 4143.(-D+18
V161641 +9+1

9 1 |
= = — or 0 =cos ——.
v 814/11 V11 V11

Example 6: Find the equation of a plane passing
through the line of intersection of the planes.

a.3x+y—5+4+7=0and x —2y+4z7—-3=0
and passing through the point (-3, 2, —4)

ANALYTICAL SOLID GEOMETRY == 3.11

b. 2x — 5y +z=3and x + y + 4z = 5 and paral-
lel to the plane x 43y 4+ 6z = 1.

Solution:

a. Equation of plane is u + kv =0 i.e.,
BGx+y—5z+7) +k(x —2y+4z—3)=0.

Since point (—3, 2, —4) lies on the intersection
plane

B(=3)+ 1.(2) = 5(=4) + 7]
+E[1(=3) — 2(2) + 4(—4) — 3] = 0.
Sok = }—2 Then the required plane is
49x — Ty — 257 + 61 = 0.
b. Equation of plane is u + kv =0 i.e.,
2x—=5y4+z—-3)+k(x+y+4z—-5=0
or  (2+k)x+(=5+k)y+(1+4k)z+(—3—-5k) = 0.

Since this intersection plane is parallel to x +

3y+6z—1=0

24k  —5+k 144k 11
T3 T e YT

Required equation of plane is 7x + 21y + 42z —
49 = 0.

So

Example 7: Find the planes bisecting the angles
between the planes x 4+ 2y + 2z = 9and4x — 3y +
12z + 13 = 0. Specify the angle 6 between them.

Solution: Equations of the bisecting planes are
x+2y+2z-9 =i4x—3y+12z+13
Ji4212 | JRin+i2
xX+2y+2z-9 :i4x—3y+122+13
3 13
or 25x + 17y 4+62z =78= 0 and

x +35y — 10z — 156 = 0.

25-1+17-35-62x 10

cosf = =0
V252 + 172 + 622/1 + 352 + 102
g
9=~
2

i.e, angle between the bisecting planes is 7.
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Example 8: Show that the planes

Tx +4y—4z4+30=0 (D)
36x =51y +12z4+17=0 2)
14x +8y —8z—12=0 3)
12x =17y +4z -3 =0 4

form four faces of a rectangular parallelopiped.

Solution:

:_;‘ = % (2) and (4) are parallel since
12 = 3. Further (1) and (2) are _L" since

(1) and (3) are parallel since

36
2= T

7-36+4(—51) —4(12) =252 — 204 — 48 = 0.

EXERCISE

1. Find the equation of the plane through
P(4, 3, 6) and perpendicular to the line join-
ing P(4, 3, 6) to the point Q(2, 3, 1).

Hint: DR’s PQ: [2,0,5], DR of plane
through 4,3,6):x—4,y—-3,z—6;1":
26 —4)4+0(y —3)+5(:z—-6)=0

Ans. 2x +5z—38=0

2. Find the equation of the plane through the
point P(1,2,—1) and parallel to the plane
2x —3y+4z+6=0.

Hint: Eq. 2x —3y+4z+k=0,(1,2,-1)
lies, k = 8.

Ans. 2x —3y+4z4+8=0

3. Find the equation of the plane that con-

tains the three points P(1, —2,4), 04, 1,7),

R(—1,5,1).

Hint: Ax — 1)+ By +2)+C(z—4) =0,

DR: PQ:[3,3,3], PR:[-2,7,-3]. L"3A +

3B+3C =0, -2A+7B—-3C=0, A=
—10B, C =9B.
X y z 1
. 1 -2 4 1
Aliter: L7 11F 0,
-1 51 1

Dix — Dyy+ D3z—Dsy= 0

Ans.

Ans.

Ans.

Ans.
. Prove that the planes 5x — 3y +4z =1, 8x +

Ans.

where Dy =

10x —y—9z4+24=0

Find the equation of the plane

a. passing through (1, —1, 2) and L" to each of
the planes 2x + 3y — 2z =5and x + 2y —
3z=28

b. passing through (—1, 3, —5) and parallel to
the plane 6x —3y —2z4+9=0

c. passing through (2, 0, 1) and (—1, 2, 0) and
1" tothe plane 2x —4y —z =17.

a.5x —4y—z=17

b. 6x -3y —-2z+5=0

c. 6x+5y—-8z=4

. Find the perpendicular distance between

a. the point (-2, 8, —3) and plane 9x — y —
47 =0

b. the two planes x —2y +2z =6,3x —
6y +6z=2

c. the point (1, —2, 3) and plane 2x — 3y +
27— 14 =0.

(a) V2 (b) _Tm (c) Oi.e., lies on the plane.

Find the angle between the two planes

ax+4y—z=5y+z=2

b. x —2y+3z4+4=0,2x+y —3z4+7=0

() cosf = 1,0 = 60° (b) cost) = 7.

3y +5z=4,18x —3y + 13z = 6 contain a

common line.

Hint: 1 + kv = O substitute in w = 0, k = %

Find the coordinates of N, the foot of the per-

pendicular from the point P(—3,0, 1) on the

plane 4x — 3y 4+ 2z = 19. Find the length of

this perpendicular. Find also the image of P in
the plane.

Hint: PN = NQ i.e., N is the mid point.

N(1, -3,3), +/29, image of P is Q(5, —6, 5)
Find the equation of the plane through the
line of intersection of the two planes x — 3y +

52—7=0and2x+y—4z+1=0and L”
to the plane x +y — 2z +4 =0.
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Ans. 3x —2y+z7z—6=0

10. A variable plane passes through the fixed
point (a, b, c) and meets the coordinate axes
in P, O, R. Prove that the locus of the point
common to the planes through P, Q, R par-
allel to the coordinate plane is ¢ + % +§'
=1.

Hint: OP =x;, OQ =y, OR =z, ﬁ +
y z jeg. & 4 b 4 ¢ _
n + o= 1, (a, b, ¢) lies, a0 + o + o= 1.

3.4 THE STRAIGHT LINE

Two surfaces will in general intersect in a curve. In
particular two planes, which are not parallel, intersect
in a straight line.

Example: The coordinate planes ZO X and X OY,
whose equations are y = 0 and z = 0 respectively,
intersect in a line the x-axis.

Straight line

The locus of two simultaneous equations of first
degreein x, y, z

Aix+Biy+Ciz+ D1 =0
Ayx + Byy+Caz+ Dy =0

is a straight line, provided A; : By : C1 # Ay : By :
C; (i.e., not parallel). Equation (1) is known as the
general form of the equation of a straight line. Thus
the equation of a straight line or simply line is the
pair of equations taken together i.e., equations of
two planes together represent the equation of a line.
However this representation is not unique, because
many planes can pass through a given line. Thus a
given line can be represented by different pairs of
first degree equations.

€y

Projecting planes

Of the many planes passing through a given line,
those that are perpendicular to the coordinate planes
are known as projecting planes and their traces
give the projections of the line on the coordinate
planes.

ANALYTICAL SOLID GEOMETRY == 3.13

Symmetrical Form

The equation of line passing through a given point
Pi(x1, y1, z1) and having direction cosines [, m, n is
given by

X=X _Yy—=—)N -z

1 m n

2

since for any point P(x, y, z) on the line, the DR’s
of PP;: x —x;,y — y1,2 — z1 be proportional to
l,m,n. Equation (2) represent two independent
linear equations and are called the symmetrical (or
symmetric) form of the equation of a line.

Corollary:  Any point P on the line (2) is given by

x =x1 +Ir, y =y +mr, z=2z1+nr QB)

for different values of r, where r = P P;.

Corollary:
ordinate axes:

Lines perpendicular to one of the co-

a. x =x, =2 ==, (L7 to x-axis ie, I' to
yz-plane)

b. y =y, "7‘1 = Z:f‘, (L" to y-axis i.e., It to
xz-plane)

c. 2=z, L= (L7 to z-axis ie., | to
xy-plane)

Corollary: Lines perpendicular to two axes

a. x=x,y=y (L to x- & y-axis ie., |’ to
Z-axis):

b. x =x,z=2z (L" to x- & z-axis ie., ||' to
y-axis)

c. y=y,z=2z (L to y- & z-axis ie., |’ to
X-axis)

Corollary:  Projecting planes: (containing the
given line)

X—X1 __ y—y X—X] __ 22— yY—=y1 __ Z—
(@) = = 50 (b) = = = (o) 5 =

Note: When any of the constants /, m, n are zero,
the Equation (2) are equivalent to equations




chap-03

B.V.Ramana August 30, 2006 10:22

3.14 == ENGINEERING MATHEMATICS

. Y _z 0_2_0
Example: § = 3 = § means ; = T=z
Corollary: Ifa, b, c are the DR’s of the line, then
(2) takes the form ~—*1 = =21 = &=,

Corollary: Two point form of a line pass-
ing through two given points P;(xi, y;,z;) and
Py(x2, ¥2, 22) 1s
X=X _y—-y _ -2
Xa—X1 =y -2

“

since the DR’s of P P, are x, —x1, y» — V1,22 —21-

Transformation of General Form to
Symmetrical Form

The general form also known as unsymmetrical form
of the equation of a line can be transformed to sym-
metrical form by determining

(a) one point on the line, by putting say z = 0 and
solving the simultaneous equations in x and y.

(b) the DC’s of the line from the fact that this line is
1" to both normals of the given planes.

For example,

(a) by putting z = 0 in the general form

Aix+Biy+Ciz+D; =0
Ax + Byy + Coz+ Dy =0

@)
and solving the resulting equations
Aix+Biy+D;=0
Azx + Bay + D2 =0,
we get a point on the line as

B1Dy, — BoDy AyDy— A1 D)
A\By — A2B)" A|By — A3B;’

0) &)

(b) Using the orthogonality of the line with the two
normals of the two planes, we get

[Ay +mB; +nC; =0
[A> +mBy +nCy =0

where (I, m,n), (A, By, Cy) and (A, By, C3)
are DR’s of the line, normal to first plane, normal
to second plane respectively. Solving, we get the

DR’s [, m, n of the line as
) _ m _ n
BiC, — B,Cy CiAry— CrA1 A1By— AyBy
(6)

Using (5) and (6), thus the given general form
(2) of the line reduces to the symmetrical form

x — B2D1=B1Dy) _ (A2D1—=A1Dy)
A1By—AyBy A1By—A) B
BC2 — B2Cy CiA; — A
z—0
- ™
A1By — A2 By

Note 1: In finding a point on the line, one can
put x =0 or y = 0 instead of z = 0 and get simi-
lar results.

Note 2: General form (2) can also be reduced to the
two point form (4) (special case of symmetric form)
by determining two points on the line.

Angle between a Line and a Plane

Let r be the plane whose equation is

Ax+By+Cz+ D=0 ®)

Normal

A

i )

W
i‘I'}
P, 2 7 (Plane)

Fig. 3.12

and L be the straight line whose symmetrical form

1S
X=X _y—y1 _ -2

l m n

(@)

Let 6 be the angle between the line L and the plane
7. Let ¥ be the angle between L and the normal to
the plane . Then

[A+mB +nC
V2 +m?+n2 /A2 + B2+ C?
=c0s(90 — 0) = sin O ©)]

cosyr =

since ¥ = 90 — 6. The angle between a line L and
plane 7 is the complement of the angle between the
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line L and the normal to the plane). Thus 6 is deter-
mined from (9).

Corollary: Line is ||’ to the plane if & = 0 then

sinf = 01i.e.,

[IA+mB+nC=0 (10)

Corollary:
sinf = 11i.e.,

Line is L to the plane if 6 = %, then

l_m_n an
A B C

(i.e., DR’s of normal and the line are same).

Conditions for a Line L to Lie in a Plane

If every point of line L is a point of plane 7, then
line L lies in plane 7. Substituting any point of the
line L : (x; +Ir, y; + mr, z; + nr) in the equation
of the plane (8), we get

Ax1+Ir)+ B(yi +mr)+ C(zy +nr)+ D=0
or (Al+ Bm+Cn)r+(Ax;+ By +Cz1+D)=0
(12)

This Equation (12) is satisfied for all values of r
if the coefficient of r and constant term in (12) are
both zero i.e.,

Al+Bm+Cn=0 and

(13)
Ax1+By1+Cz1+ D=0

Thus the two conditions for a line L to lie in a
plane 7 are given by (13) which geometrically mean
that (i) line L is L" to the nomal ot the plne and (ii)
a (any one) point of line L lies on the plane.

Corollary:
line L (2) is

Ax —x)+ By —yD+Cz—z1)=0 14)

General equation of a plane containing

subject to
Al+Bm+Cn=0

Corollary: Equation of any plane through the line

of intersection of the two planes
u=Ax+By+Ciz+ D1 =0 and
v=Ax+ Byy+ Coz+ Dy =0

ANALYTICAL SOLID GEOMETRY == 3.15

is u4+kv=0 or (Aix+Byy+Ciz+ D)+
k(Ayx 4+ By +Caz+ D) =0 where k is a
constant.

Coplanar Lines

Consider two given straight lines L

x_xl:y_yl:Z_Zl (15)
I mi ni
and line L,
X—X2 _ Y-y _ zZ-2 (16)
I mo ny

From (14), equation of any plane containing line
L1 is
Ax —x1))+ By —yD+Cz—z21)=0 a7
subject to

Al + Bm; +Cny =0 (18)

If the plane (17) contains line L, also, then the
point (x7, y2, z2) of L, should also lie in the plane
(17). Then

Axo —x1))+B(y2 —yD+C(z2—z21)=0 (19

But the line L, is L" to the normal to the plane
(17). Thus

Al + Bmy +Cny =0 (20)

Therefore the two lines L and L, will lie in the same
plane if (17), (18), (20) are simultaneously satisfied.
Eliminating A, B, C from (19), (18), (20)(i.e., homo-
geneous system consistent if coefficient determinant
is zero), we have

Xp— X1 Y2—Yy1 22721
I mi ni
15 my ny

=0 1)

Thus (21) is the condition for coplanarity of the two
lines L and L,. Now the equation of the plane con-
taining lines L and L, is

X=X Yy—Jyr 22—z
I mi ni

153 my ny

=0 22)

which is obtained by eliminating A, B, C from (17),
(18), (20).
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Corollary: Condition for the two lines L

uy=A1x+B1y+Ciz+ D1 =0,
Uy =Ax + By +Caz+ Dy =0

(23)
and Line Ly, u3z=A3zx+ B3y + C3z+ D3 =0,
Uy = Aax + Bay +Caz+ Dg =0
to be coplanar is
Ay By Ci D
A2 By Gy Do|_ 0 24)

A3 By C3 D3
Ay By C4 Dy

If P(«, B, y) is the point of intersection of the two
lies, then P should satisfy the four Equations (23):
u;| at (o, B, y) =0fori =1, 2, 3, 4. Elimination of
(e, B, y) from these four equations leads to (24).

Corollary: The general form of equations of a line
Lj intersecting the lines L and L, given by (23) are

uy +kiup =0 and uz+ kyugs =0 25)
where k; and k, are any two numbers.

Foot and length of the perpendicular from a

i ; : LXTXL Y=y
point Pi(a, B, y) to a given line L: —+ = ~—=1 =
z—2]

o
Pla, B, 7)
N Line L
Fig. 3.13

Any point on the line L be (x| + Ir, y; +mr, z; +
nr). The DR’s of PN are x; +Ir —«, y; + mr —
B,z1 +nr —y.Since PN is L" to line L, then

[(x1+lr—a)+m(yr+mr—B)+n(zy+nr—y) =0.

Solving

Ha —x1)+m(B—y1)+nly —z1)
r =
12+m2+n2

(26)

The coordinates of N, the foot of the perpendicu-
lar PN is (x; +Ir — o, y1 +mr — B, z1 +nr — y)
where 1 is given by (26).

The length of the perpendicular P N is obtained by
distance formula between P (given) and N (found).

Line of greatest slope in a plane

Let ML be the line of intersection of a horizontal
plane I with slant plane II. Let P be any point on
plane II. Draw PN _L" to the line M L. Then the line
of greatest slope in plane II is the line PN, because
no other line in plane II through P is inclined to the
horizontal plane I more steeply than PN.

L Horizontal plane I

Fig. 3.14

.|
WORKED OuT EXAMPLES

Example 1: Find the points where the line x —
y+2z =2, 2x — 3y + 4z = 0 pierces the coordi-
nate planes.

Solution: Put z = 0 to find the point at which the
line pierces the xy-plane: x — y =2 and 2x — 3y =
Oorx =6,y =4...(6,4,0).

Put x =0, —y+2z=2, -3y+4z=0o0ry=4,
z=13..(0,4, 3) is piercing point.

Put y=0, x+2z=2, 2x +4z =0 no unique
solution.

Note that DR’s of the line are [2, 0, —1]. So this line
is L”" to y-axis whose DR’s are [0, 1, 0] (i.e.,2 -0 +
0-1+(—1)-0 = 0). Hence the given line does not
pierce the xz-plane.
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Example 2: Transfer the general (unsymmetrical)
form x +2y +3z=1 and x + y + 2z = 0 to the
symmetrical form.

Solution: Put x =0, 2y+3z=1, y+2z=0.
Solving z = —1, y = 2. So (0, 2, —1) is a point on
the line. Let [, m, n be the DR’s of the line. Since this
line is L" to both normals of the given two planes,
we have

1-1+42-m+3-n=0

1-l1+41-m+2-n=0
Solvi [ m n [ m n
olvin = — = of — = — = ——
§ 4 3T 23T T 21T T

Equation of the line passing through the point
(0,2, —1) and having DR’s 1, 1, —1is

x—=0 y—-2 z+1

12—

Aliter: Two point form.

Put y=0, x+3z=1, x +27 =0. Solving z =
1, x =-2 or (—2,0,1) is another point on the
line. Now DR’s of the line joining the two points
0,2,—-1) and (-2,0, 1) are —2, —2, 2. Hence the
equation of the line in the two point form is

x—0 y-2 z+41 x y—2 z+1

= or
-2 -2 2 1 1 -1

Example 3: Find the acute angle between the lines

x_y_z X _ Y 2
s=3=jand 5 =7=7.

Solution: DR’s are [2,2, 1] and [5,4, —3]. If 0 is
the angle between the two lines, then
Lilp +mumy +niny

cosf =
\/lf +m? + n§\/z§ +m3 +n3

2:542-441-(=3) 15 1

VA AF1V25+16+49 3450 42
0 = 45°

Example 4: Find the equation of the plane con-
taining the line x = y = z and passing through the
point (1, 2, 3).

Solution: General form of the given line is

x—y=0 and x—z=0.

ANALYTICAL SOLID GEOMETRY == 3.17

Equation of a plane containing this line is
x—y)+k(x—2)=0

Since point (1, 2, 3) lies on this line, it also lies on
the above plane. Then

1-=2)+k(1-3)=0 or

1
k=—-
2

Equation of required plane is

(x—y)—%(x—Z)= 0

or x—=2y+z=0.
Example 5: Show that the lines { = % =4l
and *33 = ¥ = =1 intersect. Find the point of in-
tersection.
Solution: Rewriting the equation in general form,
we have

2x —y = Ix—z=1
and x —2y=3, x+2z=5

If these four equations have a common solution,
then the given two lines intersect. Solving, y = —1,
then x = 1, z = 2. So the point of intersection is
1, -1,2).

Example 6: Find the acute angle between the lines

3 =7 = § and the plane x +2y —7 =0.

Solution: DR’softheline: [3, 1, 0]. DR’s of normal
to the plane is [1, 2, O]. If ¢ is the angle between the
line and the normal, then

3.141-240-0

cosyr =
V31240212422 4 02
> l W = 45°
== — SO = .
VIOV5 V2

Angle 6 between the line and the plane is the comple-
ment of the angle ¥ i.e., 06 =90 — ¢ =90 —45=45°.

Example 7: Show that the lines x +y — 3z =
0,2x+3y—8z=1land3x —y—z=3,x+y—
3z = 5 are parallel.

Solution: DR’s of the first line are

L mp n

1
1 1 =3 or 4T _ 0
2 3 -8
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Similarly, DR’s of the second line are

omyn2 Ih my ny Ip my np
3 -1 -1 or 18 -1 ie., T=3°-71
1 1 -3

Since the DR’s of the two lines are same, they are
parallel.

Example 8: Find the acute angle between the
lines 2x —y+3z—-4=0, 3x+2y—2z+7=0
andx +y—2z+3=0,4x—y+3z+7=0.

Solution: The line represented by the two planes is
perpendicular to both the normals of the two planes.
If Iy, my, n are the DR’s of this line, then

l

1 mp ng I
2 -1 3 or —
3 2 —1

mi ni

511 7

Similarly, DR’s of the 2nd line are

Ip my np

/
! +1 -2 or 721 - % - n?z
4 -1 -3 -

If 6 is the angle between the lines, then
lilp +mimy +nyny
\/112 +m? +n%\/1§ +m3 + n3
54121435 23

V195147~ 34/65
So 6= 180°1.4

cosf =

Example 9: Prove that the line % = % = %
lies in the plane 3x —4y +z =7.

Solution: The point of the line (4, 2, 3) should also
lie in the plane. So3 -4 —4 -2 + 1 . 3 = 7 satisfied.
The line and normal to the plane are perpendicular.
S02-3+3.(—4)+6-1=6—-12+6=0. Thus
the given line completely lies in the given plane.

Example 10: Show that the lines 52 = =2 =
e and 233 = X = =1 are coplanar. Find their

common point and determine the equation of the
plane containing the two given lines.

Solution: Here first line passes through (2, 3, —4)
and has DR’s [{, m,n; : 2, —1, 3. The second line

passes through (3, —1, 1) and has DR’s I, my, iy :
1, 3, —2. Condition for coplanarity:

X2—X1 Y2—Yy1 2221 3-2 —1-3 1+4
[y mj ni =| 2 -1 3
L my ny 1 3 2

 7428-35=0
T satisfied.

Point of intersection: Any point on the first line is
(2 +2r1,3 —r; — 4+ 3r;) and any point on the sec-
ond line is (3 +ry, —1 + 3rp, 1 — 2rp). When the
two lines intersect in a common point then co-
ordinates on line (1) and line (2) must be equal,
i.e.,2+2r1 = 3+I‘2,3 —r = -1 +3r2and—4+
3r; = 1 — 2r;. Solving r| = rp = 1. Therefore the
point of intersectionis 2 +2-1,3 —1,—4+3-1)
=4,2,-1).

Equation of plane containing the two lines:

X—=X1 Y=y, I—Z1 x=2 y=3 z+4
I mi n |=| 2 —1 31=0
13 my ny 1 )
Expanding —7(x—2) — (=7)(y—3)+7(z+4) =0

orx—y—z+3=0.

Example 11: Find the coordinates of the foot of
the perpendicular from P(1, 0, 2) to the line % =
y=2 _ z+l

—- = <. Find the length of the perpendicular and

its equation.

Solution:  Any point N on the given line is (3r —
1,2—-2r,—1—r). DR’s of PN are 3r — 2,2 —
2r, —3 — r).Now PN isnormal to line if 3(3r — 2) +
(=2)2—=2r)+ (=1)(=3—r)=0orr = 1. Sothe
coordinates of N the foot of the perpendicular from
P to the line are (3-%—1,2—2~ L —1—%) or

2
(3:1.=3).

P(1,0,2)

Line




B.V.Ramana

August 30, 2006 10:22

Length of the perpendicular

1 2 3 2
_ _ —0)2 _- _
PN = (2 1) +( o>+< . 2)
1 49 54 3
=ya Tt T =7 =3

DR’s of PM with r =} are [3-3—2,2—2.1,
—3—1]ie., DR’s of PM are §,—1,1. And PM
passes through P(1, 0, 2). Therefore the equation of

the perpendicular PM

x—1 y-0 ¢

-1

2 y z—2
or x—1=—= .
-2 7

ST |
vl |

Example 12: Find the equation of the line of the
greatest slope through the point (2, 1, 1) in the slant
plane 2x + y — 5z = 0 to the horizontal plane 4x —
3y+7z=0.

Solution: Let !y, m;, n; be the DR’s of the line of
intersection ML of the two given planes. Since ML
is L” to both normals,

2l +my; — 5n1 =0, 41y —3m1 + Tn; = 0.

mj

Solving % =17 = "5—1 Let PN be the line of greatest
slope and letl,, m,, n, be its DR’s. Since PN and ML
are perpendicular

4l + 17my + Snp, =0

Also PN is perpendicular to normal of the slant plane
2x4+y—5z=0.So

2l +my —5n, =0

Solving %2 =2 =7
Therefore the equation of the line of greatest slope
PN having DR’s 3, —1,1 and passing through

P2, 1, 1)is

EXERCISE

1. Find the points where the line x + y + 4z =
6, 2x — 3y — 2z =2 pierce the coordinate
planes.

Ans‘ (07 _27 2)7 (49 21 O)’ (2a Ov 1)

Ans.

Ans.

. Show that the line *=! = _Ll = 22 ig in the

Ans.
. Show thatthe linesx +2y —z=3,3x —y +

ANALYTICAL SOLID GEOMETRY == 3.19

Transform the general form 3x +y — 2z =7,
6x — 5y — 4z =7 to symmetrical form and
two point form.

Hint: (0, 1, —3), (2, 1, 0) are two points on the
line.
x=2

2 0

y—1 z—0

=3

. Show that the lines x = y = z + 2 and x%l =

% = 5 intersect and find the point of intersec-
tion.

Hint: Solve x —y =0, y—z=2, y=0,
2x — z = 2 simultaneously.

0,0,-2)

Find the equation plane containing the line x =
y =z and

a. Passing through thelinex + 1=y +1=¢
b. Parallel to the line % =5=75.

@x—y=0,b)3x—4y+z=0

1
plane 2x +4y +z =0.

Hint: 2(1) + 4(—1) 4+ 1(2) = 0,
2(-1)+40)+2=0
Find the equation of the plane containing line

=1 = 221 = &2 and parallel to the line x —
2y +3z=4,2x —3y+4z=>5.

2

y—1

Hint: Eq. of 2nd line 7% = %:#, con-
tains Ist line: 3A + 4B +2C = 0. Parallel
to 2nd line A+2B+C =0, A=0, B=
-ic,p=-3c.

y—2z+3=0

[S']

2z=1and 2x —2y+3z=2, x—y+z+
1 = 0 are coplanar. Find the equation of the
plane containing the two lines.

7 5
sgox=0 _ Y73 273 x—0 _ y=5_z-4
Hlnt.T_—_S_?’T_?_T
x—0 y—5 z—4
3 -5 —7 | =0, Expand.

1 1 0
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Ans.
8.

Ans.
10.

Ans.
11.

Ans.
12.

Ans.
13.

Ans.

Tx —T7y+8z4+3=0

Prove that the equation of the plane through the
origin containing the line 2! = 12— 3 g
x—=5y+3z=0.

5 4 5
Hint: Ax— 1)+ B(y—-2)+C(z—3)=0,
5A+2B+3C =0, A+2B+3C =0,
x—1 y—-2 z-3
Expand | 5 4 5
1 2 3

Find the image of the point P(1, 3, 4) in the
plane 2x —y +z+3=0.

=0

Hint: Line through P and " to plane: x_;l =

% = #. Image Q: 2r + 1, —r + 3, r+4).
Mid point L of PQ is (r + 1, —%r +3, %r n

4). L lies on plane, r = —2.
(=3,5,2)

Determine the point of intersection of the lines

x—4 y+3 z+1 x—-1 y+1 z+10
1 -4 7 2 -3 38

Hint: General points: (r; + 4, — 4r; — 3, Try
—1,Q2rn+1,—3rn —1,8r — 10), Equat-
ing r1+4=2r2+1, —47‘1—3:—37‘2—1,
solvingr; =1, = 2.

(5,-7,6)

i x43 _ y¥S =7 xtl
Sh(l)w that the lines 5= = 5= = 5, &
il

=~ = % are coplanar. Find the equation of
the plane containing them.

6x —5y—2z=0

Find the equation of the line which passes
through the point (2, —1, 1) and intersect the
lines 2x +y =4, y+2z=0,and x +3z =
4,2x + 5z =8.

x+y+z=2,x+2z=4
Find the coordinates of the foot of the per-

x—1

pendicular from P(5,9, 3) to the line 5= =

P
% = 2. Find the length of the perpendicu-

lar and its equations.
(3,5,7), Length: 6, Equation =3 = =2 —

z—3
7 -

14.

Ans.
15.

Ans.
16.

Ans.

3.5

Find the equation of the line of greatest slope in
the slant plane 2x 4+ y — 5z = 12 and passing
through the point (2, 3, —1) given that the line
X _ Y _z

7 = =5 = 3 is vertical.

Find the angle between the line % = % =
% and the plane 3x +y+2z="7.
Hint: DR’s of line: 2, 3, 6; DR’s of normal to
plane 3,1, 1

2-34+3-146-1

cos(90 — 0) = sinf = .
( ) VEF9+36/9+1+1

: 15
1n = ——
sin¢ 7v/11

Find the angle between thelinex + y — z = 1,
2x —3y+z=2and the plane 3x +y — z +
5=0.

Hint: DR’s of line 2, 3,5, DR’s of normal:
3,1, -1

2.343-14+5-(=D
VEF9F259F1+1

cos(90 — 0) = sinf =

4

sinf = NV

SHORTEST DISTANCE BETWEEN
SKEW LINES

Skew lines: Any two straight lines which do not lie
in the same plane are known as skew lines (or non-
planar lines). Such lines neither intersect nor are
parallel. Shortest distance between two skew lines:

Fig. 3.15

Let L; and L, be two skew lines; L; passing
through a given point A and L, through a given point
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B. Shortest distance between the two skew lines L
and L, is the length of the line segment CD which
is perpendicular to both L; and L,. The equation
of the shortest distance line CD can be uniquely de-
termined since it intersects both lines L and L, at
right angles. Now CD = projection of AB on CD =
AB cosf where 6 is the angle between AB and CD.
Since cos® < 1, CD < AB, thus CD is the shortest
distance between the lines L; and L».

Magnitude (length) and the equations of the
line of shortest distance between two lines L and
Lz:

Suppose the equation of given line L be

X=X Y=Yy _Z—2
7 = = (D)
1 mi ni
and of line L, be
X—=X2 Y=Y -2
7 = = 2
2 my ny

Assume the equation of shortest distance line CD as

x—a y—-B z-vy
I m  on

3

where («, 8, ) and (I, m, n) are to be determined.
Since CD is perpendicular to both L; and L,

Iy +mm; +nn; =0
Il +mmy +nny =0
Solving

1 m n

S mb—mly Limy —lhm

_ VI24+m2+n?
Vmina—mani)2 il —naly)24+-(lymy—lm
1 1

Sy —mom 2k

miny —manj

where k= \/Z(mmz — many)?

miny — mony nil —naly
or |= ————— m=——
k k
_ limy — lomy
N k
Thus the DC’s [, m, n of the shortest distance line

CD are determined by (4).

“)

ANALYTICAL SOLID GEOMETRY == 3.21

Magnitude of shortest distance CD = projection
of AB on CD where A(xy, yi, z1)is apointon L; and
B(x3, ¥2, 22) is a point on L.

.. shortest distance CD =

=1(xy —x1) + m(y2 — y1) + n(z2 — z1) (5
In the determinant form,
[2—x1 2=y 22-2u

Shortest distance CD = z N mi ni
1) my ny

5"

Note: If shortest distance is zero, then the two lines
L and L, are coplanar.

Equation of the line of shortest distance CD:
Observe that CD is coplanar with both L; and L,.
Let P; be the plane containing L and CD. Equation
of plane P; containing coplanar lines L; and CD is

A—=Xp Y=Yy Z—12
I mi n | =0 (©)

Fig. 3.16

Similarly, equation of plane P, containing L, and
CDis

X — X2 Z—22

ny | =0 (7)

y—=>»n
153 my
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Equations (6) and (7) together give the equation of
the line of shortest distance.

Points of intersection C and D with L; and L,:
Any general point C* on L is

(x1 + 14y, y1 +myry, z1 +niry)

and any general point D* on L, is

(x2 + I, Y2 + mary, 22 + nary)

DR’s of C*D*: (xo — x1 + lbrp — l1r1, y2 — ¥

+mory —myry, 22 — 21 +nary —nyry)

If C*D*is 1" to both L, and L,, we get two equa-
tions for the two unknowns r; and r,. Solving and
knowing r; and r,, the coordinates of C and D are
determined. Then the magnitude of CD is obtained
by length formula, and equation of CD by two point
formula.

Parallel planes: Shortest distance CD = perpen-
dicular distance from any point on L; to the plane
parallel to L; and containing L.

|
WOoRKED Out EXAMPLES

Example 1: Find the magnitude and equation of
the line of shortest distance between the lines
_z-3
=7

z—35
3 4 5

x—1 y-=2
2 3

Solution: Point A(xy, y1, z1) on firstline is (1, 2, 3)
and B(x3, y2, z2) on second line is (2, 4,5). Also
(I, my, ny) are (2, 3,4) and (I, mp, ny) = (3,4, 5).
Then

K2 = (miny — man1)* + (nila — noly)* + (lima — Lhmy)*
=(15—16)* + (12 — 10)*> + (8 — 9)?

=144+1=6 or k=46

So DR’s is of line of shortest of distance:
12 _ 1
NN Y
X2 —=X1 y2—Yy1 22—721
Shortest distance = % I mi ni
I my ny

1 2 2
2 3 4] —
3 4 5/ V6

_(15—16) — 2(10 — 12) + 2(8 — 9)
B NG
_—1+4-2 1

-— % 7%

Equation of shortest distance line:

1

x—1 y—-2 z-3

21 2 41 =0 or llx+2y—7z4+6=0
N3 V6

and

x—1 y—4 z-5
21 g 41 =0 or Tx+y—5z+7=0.
V6 o V6 NG

Example 2: Determine the points of intersection
of the line of shortest distance with the two lines
x=3 y—-8 z-3 x+3 y+7 z-6
37 -1 1 =3 7 2 T 4

Also find the magnitude and equation of shortest
distance.

Solution:  Any general point C* on first line is (3 +
3r1, 8 —r1, 3+ r1) and any general point D* on the
second line is (=3 — 3rp, =7 + 2rp, 6 — 4r,). DR’s
of C*D* are (6 +3r; 4+ 3ry,15—r; —2ry, =3 +
ry — 4ry). If C*D* is " to both the given lines, then

3(643r143r2)—1(15—r1 —2r)+1(=34+r;1—4r) =0
—3(64+3r1+3r2)+2(15—r1 —2r2)+4(=3+r1—4r2) =0

Solving for r; and ry, 11r; —7r, =0, 4+7r; +
29r, = 0 so r; = r, = 0. Then the points of inter-
section of shortest distance line CD with the given
two lines are C(3, 8, 3), D(—3, —7, 6).

Length of CD = \/(—6)2 +(=15)2 + (3)

= +/270 = 3+/30
x—3 y—8 z-3

E ti D: = =
quation €D 5 = Z0 g T 573

x—3 y-8 z-3
-6 =15 3

i.e.,

Example 3: Calculate the length and equation of
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line of shortest distance between the lines

S5x —y—z=0,
Tx —4y — 27 =0,

x—=2y+z4+3=0
x—y+z—-3=0

&)
2

ANALYTICAL SOLID GEOMETRY == 3.23

Solution: Any plane containing the second line (2)
is

(Tx =4y =22)+pux —y+z-3)=0
or (T4+wx+(—4—-—wy+(—2+wz-3u=0 @3

DR’s of first line (1) are (I, m,n) = (=3, —6, —9)
obtained from:

[ m n
5 -1 -1
I =2 1

The plane (3) will be parallel to the line (1) with
l=-3,m=—-6,n=-9if

7
=37+ +6(4+uw)+92—-u)=0 or MZE

Substituting w in (3), we get the equation of a plane
containing line (2) and parallel to line (1) as

Tx=5y+z—-7=0 4)
To find an arbitrary point on line (1), put x = 0. Then
—y—z=0o0ory=—zand -2y+z+3=0,z=
—1,y=1...(0,1, —1) is a point on line (1). Now
the length of the shortest distance = perpendicular
distance of (0, 1, —1) to plane (4)
0 S+ =7 '—13 1
VA9 25 41
Equation of any plane through line (1) is

®)

S5x—y—z+Aix—2y+z+3)=0
or G4+Mx+(—y =20y +(=14+Mz+31=0 (6)

DR’s of line (2) are (I, m,n) = (2,3, 1) obtained
from

plane (6) will be parallel to line (2) if
25+M)+3(=y =20+ 1(=1+1) =0 or A=2.

Thus the equation of plane containing line (1) and
parallel to line (2) is

Tx=5y+2z4+6=0 (7)

Hence equation of the line of shortest distance is
given by (6) and (7) together.
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Aliter: A point on line (2) is (0, —1, 2) obtained
by putting x = 0 and solving (2). Then the length
of shortest distance = perpendicular distance of
(0, —1, 2) to the plane (7) = &3£2+6 — 13

V75 V75
Note: By reducing (1) and (2) to symmetric forms
x—3 _y-3_z
12 3
x+4 y+7 z
1~ 3 ~1
2 2

The problem can be solved as in above worked
Example 1.

Example 4: Show that the lines
x—1 _ y=2 _ z=3.x-2 _ y3 _ z—4

> = 5 = 755" = -~ = %= are coplanar.
Solution: Shortest distance between the two lines
is

2—-13-24-3
2 3 4
3 4 5

=)= (=) +(D
=0

111
234
345

.. Lines are coplanar.

Example5: Ifa, b, c are the lengths of the edges of
a rectangular parallelopiped, show that the shortest
distance between a diagonal and an edge not meeting

bc ab

or—=— or .
\/b2+02( 2+a? a2 +b2

Solution: ~ Choose coterminus edges OA, OB,
OC along the X, Y, Z axes. Then the coordinates
are A(a,0,0), B(0,b,0), C(0,0,¢), E(a,b,0),
D, b, c), G(a,0,c)F(a,b,c) etc. so that OA =
a,OB=b,0C =c.

To find the shortest distance between a diagonal OF
and an edge GC. Here GC does not interest OF

the diagonal is

-0 -0 -0
Equation of the line OF: ol =2 ==
a—0 b—0 ¢—-0
X y z
_—= - = - 1
or a b c M
—0 —0 _
Equation of the line GC: al =2 .
a—0 b—0 c—c
x 'y z-c
_—= == 2
CIT 0T 0 @

z
M
o D
G F
c
b g
A E
X
Fig. 3.17

Equation of a plane containing line (1) and parallel
to (2) is

I
o

X
a or cy—bz=0 3)
1

[N
S O N

Shortest distance = Length of perpendicular drawn from
a point say C(0, 0, c) to the plane (3)
¢ 0=b-c bc
VR R
In a similar manner, it can be proved that the short-

est distance between the diagonal OF and non-

intersecting edges AN and AM are respectively
ca ab

[24a2’ Sa2+p?’

EXERCISE

1. Determine the magnitude and equation of the
line of shortest distance between the lines. Find
the points of intersection of the shortest dis-
tance line, with the given lines
x—8 _ y+9 _ z—10 y—29 z—5

x=8 x—15 y=29 _

3 — —16 7 3 3 -
. 14,117x+4y —412—490=0,9x —4y — z=
14, points of intersection (5, 7, 3), (9, 13, 15).

2. Calculate the length, points of intersection, the
equations of the line of shortest distance be-
tween the two lines

x+1 _ y+l _ z+41 x+l Yy
2 T 3 T 4 3 7 4

z
5-
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=3 y3 7 (3.3, )

AR T 3 ’
ver ¢ 2 s 3 3
(QQE)
2°3°%6)

Find the magnitude and equations of shortest
distance between the two lines
y=2 z—3

x—1 y=2 =3

2 3 4 > 3 4

%@,llx+2y—7z+6=0,7x+y—51+

7=0.

. Show that the shortest distance between the
i X Yz x=2 _ y=1 _ z42 . 1
lines 5 = 55 = jand 5= = 5 = %5 is 7

and its equations are 4x +y — 5z =0, 7x +
y — 8z = 31.

Determine the points on the lines )%6 % =
#, 5= # = % which are nearest to
each other. Hence find the shortest distance be-
tween the lines and find its equations.
(3,8,3), (=3,-7,6), 33/30, 32 =22 =

z=3
-1

Prove that the shortest distance between

the two lines £51 = 5% = 2= bl — ol
42 jg 120
[T

Hint: Equation of a plane passing through
the first lines nad parallel to the second line
is 6x + 7y + 16z =98. A point on second

line is (—1, 1, —2). Perpendicular distance =
6(=D+7(1)+16(=2)

A/ 62+72+162

. Find the length and equations of shortest dis-

tance between the lines x — y +z =0, 2x —
3y4+4z=0; and x +y+2z—-3=0,2x +
3y+3z—-4=0.

Hint: Equations of two lines in symmetric

x Yy _z x=5_ yt2 _ z
formarel—z—l,i}— — =i

%,3x—y—z:0,x+2y+z—l:0.

. Determine the magnitude and equations of

the line of shortest distance between the lines
43, —4x+y+37=0, 4x —5y+2z=0
(orx =y =2).

_z=9 x+1 _ y—=1
=55 and 57 = 5 = =5

ANALYTICAL SOLID GEOMETRY == 3.25

9. Obtain the coordinates of the points where
the line of shortest distance between the lines
x=23 _ y=19 =25 g4 x=12 oyl =S

6 — 4 — 3 M= =T
meets them. Hence find the shortest distance
between the two lines.

Ans. (11,11,31),(3,5,7),26

10. Find the shortest distance between any two op-
posite edges of a tetrahedron formed by the
planes x +y=0,y4+z=0,z+x=0,x +
y 4 z = a. Also find the point of intersection
of three lines of shortest distances.

Hint: Vertices are (0,0,0), (a,—a,a),
(—a,a,a),(a,a, —a).
Ans. f/—%, (—a, —a, —a).

11. Find the shortest distance between the lines
PQ and RS where P(2,1,3), O(1,2,1),
R(_17 _27 _2)5 S(_17 45 0)'

Ans. 3«/5
3.6 THE RIGHT CIRCULAR CONE
Cone

A cone is a surface generated by a straight line
(known as generating line or generator) passing
through a fixed point (known as vertex) and satisfy-
ing a condition, for example, it may intersect a given
curve (known as guiding curve) or touches a given
surface (say a sphere). Thus cone is a set of points on
its generators. Only cones with second degree equa-
tions known as quadratic cones are considered here.
In particular, quadratic cones with vertex at origin
are homogeneous equations of second degree.

Equation of cone with vertex at (¢, 8, y) and
the conic ax® 4+ 2hxy +by> +2gx +2fy+c =
0, z = 0 as the guiding curve:

The equation of any line through vertex (¢, 8, y)is

x—a y—f z-vy
I m  on

ey

(1) will be generator of the cone if (1) intersects the
given conic

ax> +2hxy + by +2gx +2fy+¢=0,z=0 (2)

Since (1) meets z = 0, put z = 0in (1), then the point
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(oz — %’, B — %, 0) will lie on the conic (2), if

(o) (e ) - s (o)

+2g<a—l—y>+2f(ﬂ—ﬂ)+c:0 3)
n n
From (1)
£:x—a’ ﬂ:y—ﬂ @
noz—vy n.z-y

Eliminate [, m, n from (3) using (4),
(-155)
ala— -y | +
b4
y) <ﬁ_y—/3
=Y

—

)+
“y)+

—|—2f<,3—%‘y>+c:0
or
a(az — xy)* + 2h(ez — xy)(Bz — yy) +
+b(Bz — yy)* +28(az — xy)(z — ¥) +
+2f(Bz = y1)z =) +cz—y)* =0
or

a(x —a)* +b(y = B)* + ez — y)* +
2fz-y)y—B)+28x —a)z—y)+
+2h(x —a)(y =) =0 (5)
Thus (5) is the equation of the quadratic cone with
vertex at (o, 8, y) and guiding curve as the conic (2).

Special case: Vertex at origin (0,0,0). Pute = g =
y = 0in (5). Then (5) reduces to

ax’ + by2 +c? + 2fzy +2gxz+2hxy =0 (6)

Equation (6) which is a homogeneous and second
degree in x, y, z is the equation of cone with vertex
at origin.

Right circular cone

A right circular cone is a surface generated by a line
(generator) through a fixed point (vertex) making a

constant angle 6 (semi-vertical angle) with the fixed
line (axis) through the fixed point (vertex). Here the
guiding curve is a circle with centre at c¢. Thus every
section of a right circular cone by a plane perpendic-
ular to its axis is a circle.

V (vertex)

centre circle
(guiding curve)

Fig. 3.18

Equation of a right circular cone: with vertex at
(o, B, y), semi vertical angle 6 and equation of axis
x—a y-B z-—vy

I~ m

ey

Let P(x, y, z) be any point on the generating line

VB. Then the DC’s of VB are proportional to

(x —a,y—pB,z—y). Then
[(x—a)+m(y—p)+n(z—y)

VP Am2n2)y (=) 4+ (y—BP+(z—y )?

Rewriting, the required equation of cone is

cosf =

2
|:l(x —a)+m(y —B)+nz— V)] =
= (12+m2+n2)[(x—a)2+(y—ﬂ)2+(z—y)2] cos6  (2)

Case 1:
(lx+my+nz)2=(12+m2+n2)(x2+y2+z2) cos? 6 3)

Case 2: If vertex is origin and axis of cone is z-axis
(with! =0, m = 0, n = 1) then (2) becomes

If vertex is origin (0, 0, 0) then (2) reduces

= (xz—l—yz—l—zz)cos2 6 or z’sec’d = x2+y2+z2
zz(l + tan® 0) = 2+ y2 + 72
ie., %2+ y2 =72 tan%6 )

Similarly, with y-axis as the axis of cone
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242 = y2 tan” 6
with x-axis as the axis of cone
y2 + 22 = x> tan? 6.

If the right circular cone admits sets of three mutu-
ally perpendicular generators then the semi-vertical
angle = tan™! V2 (since the sum of the coefficients
of x2, yz, z2 in the equation of such a cone must be
zeroie., 1+ 1 —tan?6 = 0 ortand = +/2).

WoRKED OuTt EXAMPLES

Example 1: Find the equation of cone with base
2
curve ;‘—; + Z—z =1,z = 0 and vertex («, 8, y). De-

.42 2
duce the case when base curve is 'f—6 + % =1,z=0
and vertex at (1, 1, 1).

Solution:  The equation of any generating line
through the vertex («, 8, y) is

Y- y-B _z-vy
I~ m  n

ey

This generator (1) meets z = 0 in the point

<x=a—l—y, y=p-"L, z=0> @)
n n
Point (2) lies on the generating curve
X2 2
a2t =1 3)
Substituting (2) in (3)
2
(%) -2y
a? b2 =1 @

Eliminating /, m, n from (4) using (1),

o= (=T - ()]

a? b?

2 2
b? [a(z —y) =y — a)] +a2[ﬁ(z - -yl - /3)]

=a*h’ @ ~y)

ANALYTICAL SOLID GEOMETRY == 3.27
Deduction: Whena=4,b=3,a=1,8=1,y=1,

2 2
9|:(z -D—-(x- 1)] + 16[(z -D—-G- 1)]
= 144(z — 1)
9x% 4+ 16y% — 119z% — 18xz — 32yz + 288z — 144 = 0.

Example 2: Find the equation of the cone with
vertex at (1, 0, 2) and passing through the circle x> +
Y+ =4xt+y-—z=1

Solution: Equation of generator is

x=1 y-0 z-2

)

l m n
Any general point on the line (1) is
a+Ir, mr, 2 + nr). 2)
Since generator (1) meets the plane
x+y—z=1 3)
substitute (2) in (3)

I+Iry+@mr)—24+nr)=1
2

or el Sl )
Since generator (1) meets the sphere
Xyt i=4 (5)
substitute (2) in (5)
A +1r)* + (mr) + Q+nr) = 4
or 2P +mPn®)+2r(l+20)+1=0 (6)

Eliminate r from (6) using (4), then

4 (12+m2+n2)+2#(1+2n)+1 =0
n)? (I+m—n)

(I+m—
912 4+ 5m* — 3n® + 6lm + 2In + 6nm = 0 @)

Eliminate /, m, n from (7) using (1), then
x—1\2 y\2 —2\? x—1 y
9( ; ) +(3) ‘3<T) +6<T> (7)+
—1 ) -2
2(5) (57) () 6)-
r r r r

or 9x —1?+5y2 =3z -2 +6yx—1)+
2= Dx —2)+6(z—2)y =0
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Vertex (0, 0, 0):

Example 3: Determine the equation of a cone with
vertex at origin and base curve given by

a. ax’+ by? =2z, Ix+my+nz=p

b. ax> +by?> +cz> =1, Ix+my+nz=p

e x2+y?4+z72=25 x+2y+2z=9
Solution:  'We know that the equation of a quadratic
cone with vertex at origin is a homogeneous equation
of second degree in x, y, z. By eliminating the non-
homogeneous terms in the base curve, we get the
required equation of the cone.

a. 2z is the term of degree one and is non homoge-
neous. Solving

Ix +my+nz
p

1

rewrite the equation

l
ax® + by =2 2(1) = 2 (m)
)4

apx2 + bpy2 —2nz? —2xz — 2myz =0
which is the equation of cone.

b. Except the R.H.S. term 1, all other terms are of
degree 2 (and homogeneous). Rewriting, the re-
quired equation of cone as

Ix +my+nz 2
ax>’ + by’ +cz2 =17 = (7);)

(ap® = I)x* + (bp* — m*)y* + (cp* —n)2* —
—2lmxy — 2mnyz — 2lnxz =0
¢. On similar lines

x+2y+2z>2

x2+y2+22:25=25(1)2:25< 5

56x2 —19y? —19z2 — 100xy —200yz — 100xz = 0
Right circular cone:

Example 4: Find the equation of a right circular

cone with vertex at (2, 0, 0), semi-vertical angle 6 =
30° and axis is the line 5% = 3 = .

Solution:
4, n=06

Here « =2,6=0,y =0,l=3,m =

3
— =c0s30 = cos 0

_ Ix—a)+m(y —B)+nz—y)
VE+m2+n)[(x —aP 4+ - B2 + (2 — )

V3 3(x —2)+4y + 62

2 9T 16+36y/(x —22 2 + 22

183[(x — 2)% + »? + 221 = 4[3(x — 2) + 4y + 62]

147x% 4+ 119y% + 3922 — 192yz — 144zx — 96xy —
—588x 4 192y + 288z + 588 = 0

Vertex (0, 0, 0):

Example 5: Find the equation of the right circular
cone which passes through the line 2x = 3y = —5z
and has x = y = z as its axis.

Solution: DC’s of the generator 2x = 3y = —5z
11 1 ) : 11 1 :
are 5, 3, —s. DC'’s of axis are A A A Point of

intersection of the generator and axisis (0, 0, 0). Now
1 1

1 1 1 1

N +3 - —2 . 19

2 3 5 1
cos @ \/§ \/§ \/§ 30 .

1,1,1 /1,1 1 361 3
\/§+§+§\/Z+§+ﬁ % V3

Equation of cone with vertex at origin

Sl

1
ﬁ(x +y+2)
1Vx2 +y2 4 22

xz—l—yz—l—zz=(x—|—y—|—z)2

=cosf =

Sl-

xy+yz+zx =0.

Example 6: Determine the equation of a right
circular cone with vertex at origin and the

guiding curve circle passing through the points
(19 27 2)1 (19 _27 2)(27 _19 _2)'

Solution: Let [, m,n be the DC’s of OL the axis
of the cone. Let 6 be the semi- vertical angle. Let
A(1,2,2), B(1,-2,2), C(2, —1, —2) be the three
points on the guiding circle. Then the lines OA,
OB, OC make the same angle 6 with the axis
OL. The DC’s of OA, OB, OC are proportional to
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(1,2,2)(1, =2, 2)2, —1, —2) respectively. Then

056 — I(H+m@2)+n?2) [1+2m+2n 0
T i Jiiadid 3

D
,/ﬁggﬁ//ﬂf\A
o] L
NB

Fig. 3.19
Similarly,
9 I(D+m(=2)+n?2) [—-2m+2n 2
cosf = =
VIVT+4+4 3
2l —m —2n
cosf = — 3 (3)

From (1) and (2),4m = 0 orm = 0.
From (2) and (3), [+ m —4n =0, —4n =0 or
| =4n.

l m n l m n
DC’s Z=6=T or TZBZT'
V17 V17
4 1
——+2-0+2— 2
From (1) cosf = V17 VI7 _ .
3 V17

Equation of right circular cone is

(12+m2+n2)(x2+y2+zz) cos?f = (lx—{—my—i—nz)2

<l6+0+ 1)( + +—%47 (Ai, L0 )2
17 Ty JT7 J

42 +y P+ =@x +2)°
12x2 — 4y? — 322 4 8xz =0

is the required equation of the cone.

EXERCISE

1. Find the equation of the cone whose vertex
is (3, 1, 2) and base circle is 2x2 + 3y? =1,

z=1.
Ans. 2x% +3y? 4+ 207> — 6yz — 12x7 + 12x + 6y
—38z+17=0

Ans.

. Determine the equation of the cone with ver-

Ans.

Ans.

Ans.

Ans.

Ans.

ANALYTICAL SOLID GEOMETRY == 3.29

Find the equation of the cone whose Vertex

is origin and guiding curve is - + + Z =

Lx+y+z=1
27x2 4+ 32y +72(xy + yz +2zx) =0

tex at origin and guiding curve x? + y? + 7% —
x—1=0,x>+y24+22+y—2z=0.

Hint: Guiding curve is circle in plane x + y =
1. Rewrite x>+ y?+22—x(x+y)—(x +
y)? =0.

x243xy—22=0

Show that the equation of cone with vertex at
origin and base circle x = a, y2 +72=0%is
a’(y* + z%) = b>x?. Further prove that the sec-
tion of the cone by a plane parallel to the XY -
plane is a hyperbola.

2

b*x? — a*y? = a*c?, z = c(putz = cinequa-

tion of cone)

Find the equation of a cone with vertex at
origin and guiding curve is the circle pass-
ing through the X, Y, Z intercepts of the plane
s+ i=1

ab?® + c*)yz + b(c* + a®)zx + c(@® + bH)xy
=0

Write the equation of the cone whose vertex is
(1, 1, 0) and base is y2+z2 =9,x=0.

Hint: Substitute ( 0,1-12, —T’) in base curve

T
and eliminate 7 i%l, i

Z

-1

x2 4 y +72— 2xy =0
Right circular cone (R.C.C.)
Find the equation of R.C.C. with vertex at (2,
3, 1), axis parallel to the line —x = % = zand
one of its generators having DC’s proportional
to (1, —1,1).

g _ =1=241 g _ _ _
Hint: cosf = o3 A=—=1,m=2,n=
LLa=2,=3,y=1.

x2 —8y? 4+ 72+ 12xy — 12yz + 62x — 46x +
+36y +22z —-19=0

Determine the equation of R.C.C. with vertex
at origin and passes through the point (1, 1, 2)

i< 1i X Y _zZ
andax1shne2_ T =3
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Hint: cosf = 3;6:‘;’23, DC’s of generator: 1, 1,
2,axis: 2, —4,3
Ans. 4x>4+40y>+19z2 —48xy —T72yz+36x7=0

9. Find the equation of R.C.C. whose vertex is
origin and whose axis is the line § = ’5 =3

and which has semi- vertical angle of 30°

Hint: cos 30 = 2 = _20H@+:6)
2 VeV

Ans. 19x24+13y2 43722 —8xy —24yz —12zx =0

10. Obtain the equation of R.C.C. generated when
the straight line 2y + 3z = 6, x = 0 revolves
about z-axis.

Hint: Vertex (0, 0, 2), generator = = 2 =

0= 3
2,0030——\/%.
Ans. 4x* +4y> — 972+ 367 —36 =0

11. Lines are drawn from the origin with DC’s pro-
portional to (1, 2, 2), (2, 3, 6), (3, 4, 12). Find
the equation of R.C.C.

Hint' 1+2m+2n 3l+4m+12n
* 3

13
DC’s of axis:

cosS = =21+3m+6n

l m

T=1 =50
—1, 1,1,

xy—yz+zx =0

cosa =

\[9

Ans.

12. Determine the equation of the R.C.C. gen-
erated by straight lines drawn from the ori-
gin to cut the circle through the three points

(17 27 2)7 (25 17 _2)’ and (25 _25 1)'

O _I42m+2n _ 204+m—=2n __ 21=2m+n | __
Hint: cosa= gzz_ 3 ===3 =
m __n _ 12+ 1
T= 71 cosa =

321 T

7
Ans. 8x%* —4y? — 47> 4 5xy +5zx + yz =0

3.7 THE RIGHT CIRCULAR CYLINDER

A cylinder is the surface generated by a straight line
(known as generator) which is parallel to a fixed
straight line (known as axis) and satisfies a condition;
for example, it may intersect a fixed curve (known
as the guiding curve) or touch a given surface. A
right circular cylinder is a cylinder whose surface
is generated by revolving the generator at a fixed
distance (known as the radius) from the axis; i.e.,
the guiding curve in this case is a circle. In fact, the

intersection of the right circular cylinder with any
plane perpendicular to axis of the cylinder is a circle.

Equation of a cylinder with generators parallel to
the line 7 = % = = and guiding curve conic ax® +
by? +2hxy +2gx +2fy+c =0,z =0.

Let P(xy, y1,z1) be any point on the cylinder.
The equation of the generator through P(x1, y1, z1)
which is parallel to the given line

X b4
T= 222 (1)
l m n
is Y-x_y-y_z-2 @
l m n
Since (2) meets the plane z = 0,
x—xi_y=-y_0-zu
[ m n
l m
or X=X — =2,y =Y — —2ZI (3)
n n

Since this point (3) lies on the conic
ax2+by2+2hxy+2gx+2fy+c:0 4)
substitute (3) in (4). Then

l 2 m \2
a <x1 - fm> +b<y1 - —11) +
n n
[ m l
+2h | x1 — =z (yl - —11) +2g|x1— -z )+
n n n

+2f <y| - %Zl) +c=0.
The required equation of the cylinder is
a(nx — 12)? + b(ny — mz)?> + 2h(nx — 12)(ny — mz) +
+2ng(nx — Iz) + 2nf(ny — mz) + cn® = 0 5)
where the subscript 1 is droped because (x1, yi, z1)

is any general point on the cylinder.

Corollary 1:  The equation of a cylinder with axis
parallel to z-axis is obtained from (5) by putting / =
0, m = 0, n = 1 which are the DC’s of z-axis: i.e.,

ax2+by2+2hxy+2gx+2fy+c=0

which is free from z.

Thus the equation of a cylinder whose axis is
paralle to x-axis (y-axis or z-axis) is obtained by
eliminating the variable x(y or z) from the equation
of the conic.
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Equation of a right circular cylinder:

a. Standard form: with z-axis as axis and of radius
a. Let P(x, Yy, z) be any point on the cylinder.
Then M the foot of the perpendicular P M has
(0,0, z) and PM = a (given). Then

a=PM=(x=02+(—0?+@—2?

x2+y2:a2

Z
N

S
“-._______
M
/0 >y

X | ——
N~

Fig. 3.20

Corollary 2:  Similarly, equation of right circular

cylinder with y-axis is x> + z? = a2, with x-axis is

y2+ 22 =a%

b. General form with the line *7* = % =L as
axis and of radius a.

Axis AB passes through the point (o, 8, y) and
has DR’s I, m, n. Its DC’s are é, o2 where k =

k%
V12 +m? 4 n?.

==

Fig. 3.21

A
v

From the right angled triangle APM
AP? = PM? + AM?
@ =+ =B+ )

2
=aL+Vx—m+m@—ﬂHW&—yﬂ

ANALYTICAL SOLID GEOMETRY == 3.31

which is the required equation of the cylinder (Here
AM is the projection of AP on the line AB is equal to
l(x —a)+m(y = B) +n(z —y)).

Enveloping cylinder of a sphere is the locus of
the tangent lines to the sphere which are parallel to
a given line. Suppose

4yt =ad 1)
is the sphere and suppose that the generators are par-
allel to the given line

X
7=2=2 @)
m n
Then for any point P(xi, y;, z1) on the cylinder, the
equation of the generating line is

X=X _ Y=y _z—2

3)
l m n
Any general point on (3) is
(x1 +1r, y1 + mr, z1 +nr) 4)

By substituting (4) in (1), we get the points of inter-
section of the sphere (1) and the generating line (3)
ie.,

(1 + 10+ (v +mr)? + (21 +nr)? = a*
Rewriting as a quadratic in r, we have
(l2 +m? + nz)r2 +2(Ix1 + my; +nzpr +
+(x]2 + y12 + z% —ad>=0 5)

If the roots of (5) are equal, then the generating line
(3) meets (touches) the sphere in a single point i.e.,
when the discriminant of the quadratic in r is zero.

or 4(lxy + myy + nzl)2 — 4(l2 +m? +n2) X
x(xf +yi+25 —a?) =0

Thus the required equation of the enveloping cylinder
is

(Ux+my+nz)? = +m>+nH)2+y2+722—d?)

where the subscript 1 is droped to indicate that
(x, v, z) is a general point on the cylinder.

|
WoRKED Out EXAMPLES

Example 1: Find the equation of the quadratic
cylinder whose generators intersect the curve ax? +
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by* +cz?> =k,Ix +my +nz = p and parallel to
the y-axis. Deduce the case for x> + y> + z> = l and
x + y + z = 1 and parallel to y-axis

Solution: Eliminate y between
ax’> + by’ +c? =k (D
and Ix+my+nz=p 2)

Solving (2) for y, we get

—Ilx —nz
yo P 3)

m
Substitute (3) in (1), we have

—lx — 2
ax2+b<u> +c =k
m

The required equation of the cylinder is
(am?* + lz)x2 + (bn2 + mzc)z2 — 2pblx
— 2npbz + 2blnxz + (bp? — m*k) = 0.

Deduction: Put a=1,b=1,c=1,k=1,l=
202 4222 —2x =22+ 2xz= 0
or x2+z2+xz—x—z=0.

Example 2: If [, m, n are the DC’s of the genera-
tors and the circle x?> + y? = a? in the XY-plane is
the guiding curve, find the equation of the cylinder.
Deduce the case whena =4,/ =1, m =2,n = 3.
Solution:  For any point P(xy, y;, z;) on the cylin-
der, the equation of the generating line through P is

x_lxlzy_)’l:Z_Zl 1)

m n

Since the line (1) meets the guiding curve
x*+yr=a%z=0,

x—x1 y—-y» 0-z
l m n
171 mzy
or X=x-—, y=y1—— 2
n n

This point (2) lies on the circle x> + y?> = 4 also.
Substituting (2) in the equation of circle, we have

2
Iz mz1\2
(=) b=t =
n n
or (nx —12)* + (ny — mz)2 = n%a®

is the equation of the cylinder.

Deduction: Equation of cylinder whose genera-
tors are parallel to the line § = % = 5 and pass
through the curve x? + y> = 16,z = 0. With a =
4,1 =1,m = 2, n = 3, the required equation of the

cylinder is
(Gx —2)* + By — 22)° = 9(16) = 144
or 9x2+9y2+512—6zx—12yz— 144 = 0.

Example 3: Find the equation of the right circular

cylinder of radius 3 and the line % = % = %
as axis.
Solution: Let A(1, 3, 5) be the point on the axis and

DR’sof ABare 2,2, —1 or DC’s of AB are %, %, —%.

Radius PM = 3 given. Since AM is the projection
of AP on AB, we have

AM—2 1 2 3 ! 5
—g(X— )+§(y— )—5(2— )

=50

Fig. 3.22

From the right angled triangle APM
AP = AM? + MP?
=D+ =3+ —5)?

_[La-D, y-3 -9
_|:2 3 +2 3 1 3 ]+9

Ox?+1—2x4+y>+9—6y+2z>+25—10z]
=[2x+2y—z—-3+81
9[x% + y? + 2% — 2x — 6y — 10z + 35]
=[4x? +4y> + 22+ 9+ 8xy — 4xz — 12x
—4yz — 12y 4+ 6z] + 81
is the required equation of the cylinder.
Example 4: Find the equation of the envelop-
ing cylinder of the sphere x2 4+ y? + 72 — 2y — 47 —

11 =0 having its generators parallel to the line
x =—-2y =2z

Solution:  Let P(xy, yi,z;) be any point on the
cylinder. Then the equation of the generating line
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through P and parallel to the line x = —2y = 2z or

=2 =2=Xjs

1— I =1
2 2
X=X Yy =) <—Z1
= T = T )]
2 2
Any general point on (1) is
+ ! + ! )
X r, — =7, —r
1 =3 a+s

The points of intersection of the line (1) and the
sphere

24y 42 -2y —4z—-11=0 3)

are obtained by substituting (2) in (3).
Gt (-2 2+ +122—2 1
x1+r yr—gr a+t5r Y= 5r
4 ! 11=0
— 71 + 5" - =

Rewriting this as a quadratic in r

3
§r2+(2X1 —yi+z1—Dr

+ 24y =2 —4n - 1D =0 (4

The generator touches the sphere (3 if (4) has equal
roots i.e., discriminant is zero or

e =y +z1 = 1)
3
=42 Of oyl +e] =2 — 4 — 1),
The required equation of the cylinder is

2x% + Sy2 + 572 +4xy —4xz +2yz
+4x — 14y — 22z — 67 = 0.

EXERCISE

1. Find the equation of the quadratic cylinder
whose generators intersect the curve
a.ax> +by* =2z, Ix +my+nz=p and
are parallel to z-axis.
b. ax? +by*+cP=1,Ix+my+nz=p
and are parallel to x-axis.
Hint: Eliminate z

Ans. a.n(ax® 4+ by?) +2ix +2my —2p =0

ANALYTICAL SOLID GEOMETRY == 3.33

Hint: Eliminate x.
Ans. b. (bl* + amz)y2 + (cl* + an®)* + 2amnyz
—2ampy — 2anpz + (ap*> — 1) =0
2. Ifl, m, n are the DC’s of the generating line and
the circle x> + z> = a2 in the zx-plane is the

guiding curve, find the equation of the sphere.

Ans. (mx —1y)? + (mz — ny)* = a’*m?

Find the equation of a right circular cylinder (4 to 9)

4. Whose axis is the line *=! = % = % and

2 —
radius is 2 units.
Ans. 26x° 4+ 29y? +57% + 4xy + 10yz — 20zx +
150y +30z+75=0
5. Having for its base the circle x> + y? + 7> =
9, x —y+z=3.
Ans. x>+ 4+ 22 +xy+yz—zx—9=0
6. Whose axis passes through the point (1, 2, 3)
and has DC’s proportional to (2, —3, 6) and of
radius 2.

Ans. 45x% 4 40y? + 1372 4+ 36yz — 24zx + 12xy
—42x — 280y — 1267 + 294 = 0.
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7.

Ans.

Ans.

Ans.

10.

Ans.

.. . _ —2 _
Whose axis is the line % = }T = =3 and

2
radius 2 units.

5x%2 4+ 8y% 4 572 — 4yz — 8zx — 4xy + 22x
— 16y — 14z —-10=0

The guiding curve is the circle through the three
points (1, 0, 0), (0, 1, 0)(0, 0, 1).

24y 4+ —xy—yz—zx =1

The directing curve is x% + 7> — 4x — 2z +
4 = 0, y = 0 and whose axis contains the point
(0, 3, 0). Also find the area of the section of the
cylinder by a plane parallel to xz-plane.

Hint: Centre of circle (2, 0, 1) radius: 1

9x2 4+ 5y% +9z% + 12xy + 6yz — 36x — 30y
—182436=0,n

Find the equation of the enveloping cylinder of
the sphere x? + y? + z> — 2x + 4y = 1, hav-
ing its generators parallel tothelinex = y = z.

P+t —xy—yz—zx —2x+ Ty +
z—2=0.





