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Calculus 111

Multiple Integrals

Introduction

In Calculus | we moved on to the subject of integrals once we had finished the discussion of
derivatives. The same is true in this course. Now that we have finished our discussion of
derivatives of functions of more than one variable we need to move on to integrals of functions of
two or three variables.

Most of the derivatives topics extended somewhat naturally from their Calculus | counterparts
and that will be the same here. However, because we are now involving functions of two or three
variables there will be some differences as well. There will be new notation and some new issues
that simply don’t arise when dealing with functions of a single variable.

Here is a list of topics covered in this chapter.

Double Integrals — We will define the double integral in this section.

Iterated Integrals — In this section we will start looking at how we actually compute double
integrals.

Double Integrals over General Regions — Here we will look at some general double integrals.

Double Integrals in Polar Coordinates — In this section we will take a look at evaluating double
integrals using polar coordinates.

Triple Integrals — Here we will define the triple integral as well as how we evaluate them.

Triple Integrals in Cylindrical Coordinates — We will evaluate triple integrals using cylindrical
coordinates in this section.

Triple Integrals in Spherical Coordinates — In this section we will evaluate triple integrals
using spherical coordinates.

Change of Variables — In this section we will look at change of variables for double and triple
integrals.

Surface Area — Here we look at the one real application of double integrals that we’re going to
look at in this material.

Area and Volume Revisited — We summarize the area and volume formulas from this chapter.
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Double Integrals

Before starting on double integrals let’s do a quick review of the definition of a definite integrals
for functions of single variables. First, when working with the integral,

b
.[a f(x)dx
we think of x’s as coming from the interval a < x <b. For these integrals we can say that we are
integrating over the interval a < x <b. Note that this does assume that a < b, however, if we

have b < a then we can just use the interval b <x<a.

Now, when we derived the definition of the definite integral we first thought of this as an area
problem. We first asked what the area under the curve was and to do this we broke up the

interval a < x <b into n subintervals of width Ax and choose a point, xi*, from each interval as
shown below,

¥

*
i

Each of the rectangles has height of f (x ) and we could then use the area of each of these

rectangles to approximate the area as follows.
A= f (xf)Ax+ f (x;)Ax+~--+ f (xi*)Ax+---+ f (x:)Ax

To get the exact area we then took the limit as n goes to infinity and this was also the definition of
the definite integral.

b L N
L f(x)dx = Lm; f(x)Ax
In this section we want to integrate a function of two variables, f (x, y). With functions of one

variable we integrated over an interval (i.e. a one-dimensional space) and so it makes some sense

then that when integrating a function of two variables we will integrate over a region of R? (two-
dimensional space).
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We will start out by assuming that the region in R? is a rectangle which we will denote as

follows,
R =[a,b]><[c,d]

This means that the ranges for xandyare a<x<b and c<y<d.

Also, we will initially assume that f (x, y) > 0 although this doesn’t really have to be the case.

Let’s start out with the graph of the surface S given by graphing f (x, y) over the rectangle R.

ey
X -.‘{“

- e \“\‘

Now, just like with functions of one variable let’s not worry about integrals quite yet. Let’s first
ask what the volume of the region under S (and above the xy-plane of course) is.

We will first approximate the volume much as we approximated the area above. We will first
divide up a < x <b into n subintervals and divide up ¢ <y <d into m subintervals. This will
divide up R into a series of smaller rectangles and from each of these we will choose a point

(xI yJ) Here is a sketch of this set up.
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X
| | | | |
a=x X & Xy b= K

Now, over each of these smaller rectangles we will construct a box whose height is given by
f (x,* y:) . Here is a sketch of that.

Each of the rectangles has a base area of AA and a height of f (x,* yj) so the volume of each of

these boxes is f (x,* y’j’)AA. The volume under the surface S is then approximately,

vzzn:zm:f(x;*,y})AA
i=1 j=1

We will have a double sum since we will need to add up volumes in both the x and y directions.

To get a better estimation of the volume we will take n and m larger and larger and to get the
exact volume we will need to take the limit as both n and m go to infinity. In other words,

© 2007 Paul Dawkins 144 http://tutorial.math.lamar.edu/terms.aspx



Calculus 111

n

V= lim Zm: f(x,y;)AA
M A

Now, this should look familiar. This looks a lot like the definition of the integral of a function of
single variable. In fact this is also the definition of a double integral, or more exactly an integral
of a function of two variables over a rectangle.

Here is the official definition of a double integral of a function of two variables over a rectangular
region R as well as the notation that we’ll use for it.

” (x,y)dA= lim IZ_:Zf(x,,y)

n, m—owo

Note the similarities and differences in the notation to single integrals. We have two integrals to
denote the fact that we are dealing with a two dimensional region and we have a differential here
as well. Note that the differential is dA instead of the dx and dy that we’re used to seeing. Note
as well that we don’t have limits on the integrals in this notation. Instead we have the R written
below the two integrals to denote the region that we are integrating over.

Note that one interpretation of the double integral of f (x, y) over the rectangle R is the volume

under the function f (x, y) (and above the xy-plane). Or,

Volume = ” f (x y)dA

We can use this double sum in the definition to estimate the value of a double integral if we need
to. We can do this by choosing (x,* yj) to be the midpoint of each rectangle. When we do this

we usually denote the point as (Yi Y ) . This leads to the Midpoint Rule,
H (x,y)dA=~ Zi f (Z,Vj)AA

i=1 j=1

In the next section we start looking at how to actually compute double integrals.
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Iterated Integrals

In the previous section we gave the definition of the double integral. However, just like with the
definition of a single integral the definition is very difficult to use in practice and so we need to
start looking into how we actually compute double integrals. We will continue to assume that we
are integrating over the rectangle

R= [a,b]x[c,d]
We will look at more general regions in the next section.

The following theorem tells us how to compute a double integral over a rectangle.

Fubini’s Theorem

If f(x,y) iscontinuous on R =[a,b]x[c,d] then,

H f (X, y)dA:f:Ld f(x, y)dydx=Ld I: f (x,y)dxdy

These integrals are called iterated integrals.

Note that there are in fact two ways of computing a double integral and also notice that the inner
differential matches up with the limits on the inner integral and similarly for the outer differential
and limits. In other words, if the inner differential is dy then the limits on the inner integral must
be y limits of integration and if the outer differential is dy then the limits on the outer integral
must be y limits of integration.

Now, on some level this is just notation and doesn’t really tell us how to compute the double
integral. Let’s just take the first possibility above and change the notation a little.

J.J.f(x,y)dA:J

R a

b

Ucd f(x, y)dy:|dx

We will compute the double integral by first computing
d
J' f (x,y)dy

and we compute this by holding x constant and integrating with respect to y as if this were a
single integral. This will give a function involving only x’s which we can in turn integrate.

We’ve done a similar process with partial derivatives. To take the derivative of a function with
respect to y we treated the x’s as constants and differentiated with respect to y as if it was a
function of a single variable.

Double integrals work in the same manner. We think of all the x’s as constants and integrate with
respect to y or we think of all y’s as constants and integrate with respect to x.

Let’s take a look at some examples.
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Example 1 Compute each of the following double integrals over the indicated rectangles.
(@) ”ny2 dA, R= [2, 4]><[1, 2] [Solution]
R

(b) HZX—4y3 dA, R=[—5,4]><[0,3] [Solution]

() _”x y? +cos(zx)+sin(zy)dA, R=[-2,-1]x[0,1] [Solution]

(d) jJ';sz, R=[0,1]x[1,2] [Solution]
(2x+3y)
(e) [[xe¥ dA, R=[-12]x[0,1] [Solution]

Solution
(@ [[6xy*dA, R=[2,4]x[12]

It doesn’t matter which variable we integrate with respect to first, we will get the same answer
regardless of the order of integration. To prove that let’s work this one with each order to make
sure that we do get the same answer.

Solution 1
In this case we will integrate with respect to y first. So, the iterated integral that we need to
compute is,

4.2
J"[nyz dA = f J. 6xy’ dy dx
R 2 !
When setting these up make sure the limits match up to the differentials. Since the dy is the inner
differential (i.e. we are integrating with respect to y first) the inner integral needs to have y limits.

To compute this we will do the inner integral first and we typically keep the outer integral around
as follows,

J;{J.Bxy2 dA = J:(nys)Lz dx
:_[2416x—2x dx

= _[2414x dx

Remember that we treat the x as a constant when doing the first integral and we don’t do any
integration with it yet. Now, we have a normal single integral so let’s finish the integral by
computing this.

_”6xy2 dA:7x22:84
R
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Solution 2
In this case we’ll integrate with respect to x first and then y. Here is the work for this solution.

J‘Rj6xy2 dA = LZJ‘:GXW dx dy

2 4

_ 2,2

—fl (3x y )|2 dy
2 2

= J.l 36y° dy

— 1932

=12y |1

=84

Sure enough the same answer as the first solution.

So, remember that we can do the integration in any order.
[Return to Problems]

(b) [[2x-4y°dA, R=[-54]x[0,3]

For this integral we’ll integrate with respect to y first.

ijx—4y3 dA:f_“5I§2x—4y3 dy dx
R

4 . 3
= 2Xxy — | dx
L-,( y-y*),
4
= |, 6x—81dx
2 4
= (3x* - 81x)
-5
=—-756
Remember that when integrating with respect to y all x’s are treated as constants and so as far as
the inner integral is concerned the 2x is a constant and we know that when we integrate constants

with respect to y we just tack on a y and so we get 2xy from the first term.
[Return to Problems]

(c) ”x y?+cos(zx)+sin(zy)dA, R=[-2-1]x[0,1]

In this case we’ll integrate with respect to x first.
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ﬂx y? +cos(zx)+sin(zy)dA= f I_lx y? +cos(zx)+sin(zy)dxdy

-1

dy

-2

- J:(% xy? +Lsin (7x)+ xsin (ﬂy)j

T

7
:f —y*+sin(zy)dy
03

1

7 .1
=—Yy°——CO0S
o) (7y)

0

=—+4—
9 =«

Don’t forget your basic Calculus I substitutions!
[Return to Problems]

(d) ﬂﬁdk R=[0,1]x[1,2]

In this case because the limits for x are kind of nice (i.e. they are zero and one which are often
nice for evaluation) let’s integrate with respect to x first. We’ll also rewrite the integrand to help
with the first integration.

”(Zx + 3y)72 dA= flz J.:(ZX + 3y)72 dx dy

2
:J (—1(2x+3y)_1j
1 2 0
2
=_lj 1 _idy
2),2+3y 3y
2
1(1 1
=2 ZInf2+3y|-=I
53l +3x1-5mh )

:—%(InS—In 2—1In5)

1

dy

[Return to Problems]

() [[xe” dA, R=[-12]x[0,1]

Now, while we can technically integrate with respect to either variable first sometimes one way is
significantly easier than the other way. In this case it will be significantly easier to integrate with
respect to y first as we will see.
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H xe® dA= Ifl.[:xexy dy dx

R

The y integration can be done with the quick substitution,
u=xy du = xdy
which gives

” xe dA = .[_zlexy |2 dx

R
= Eex —1dx
2
S
=e° —2—(e’1+1)
=e’-e'-3

So, not too bad of an integral there provided you get the substitution. Now let’s see what would
happen if we had integrated with respect to x first.

ﬂ xe® dA= Iolf_zl xe™ dx dy

R

In order to do this we would have to use integration by parts as follows,

U=x dv=e" dx
du = dx V= ie"y
y
The integral is then,
rl 2
I xe¥ dA= | | Zew —J leXy dx] dy
R Jo y y -1
rl 2
Jo y y -1
rl
_ | [2ev —%ezyj—[—le‘y —ize‘yjdy
JolY y y y

We’re not even going to continue here as these are very difficult integrals to do.
[Return to Problems]

As we saw in the previous set of examples we can do the integral in either direction. However,
sometimes one direction of integration is significantly easier than the other so make sure that you
think about which one you should do first before actually doing the integral.

The next topic of this section is a quick fact that can be used to make some iterated integrals
somewhat easier to compute on occasion.
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Fact

If f(x,y)=9(x)h(y) and we are integrating over the rectangle R =[a,b]x[c,d] then,

I f(x,y)dA:jRjg(x)h(y)dA:(I:g(x)dx)(L"h(y)dy)

R

So, if we can break up the function into a function only of x times a function of y then we can do
the two integrals individually and multiply them together.

Let’s do a quick example using this integral.

Example 2 Evaluate chosz(y)dA, R :[—2,3]{0,%}.
R

Solution
Since the integrand is a function of x times a function of y we can use the fact.

[fxeos (y)en= ° x| eos' ()
- (%XZY [%jogu cos(2y)dy]

- [gj %(er%sin(Zy)jﬂ

0

-2

5z
8

We have one more topic to discuss in this section. This topic really doesn’t have anything to do
with iterated integrals, but this is as good a place as any to put it and there are liable to be some
guestions about it at this point as well so this is as good a place as any.

What we want to do is discuss single indefinite integrals of a function of two variables. In other
words we want to look at integrals like the following.

J'xsecz(Zy)+4xydy

X
fxs—e Y dx

From Calculus I we know that these integrals are asking what function that we differentiated to
get the integrand. However, in this case we need to pay attention to the differential (dy or dx) in
the integral, because that will change things a little.

In the case of the first integral we are asking what function we differentiated with respect to y to
get the integrand while in the second integral we’re asking what function differentiated with
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respect to x to get the integrand. For the most part answering these questions isn’t that difficult.
The important issue is how we deal with the constant of integration.

Here are the integrals.

_[xsecz (2y)+4xydy :gtan(Zy)+ 2xy? +9(x)
st —e Vdx :%x4 +ye’ +h(y)

Notice that the “constants” of integration are now functions of the opposite variable. In the first
integral we are differentiating with respect to y and we know that any function involving only x’s
will differentiate to zero and so when integrating with respect to y we need to acknowledge that
there may have been a function of only x’s in the function and so the “constant” of integration is a
function of x.

Likewise, in the second integral, the “constant” of integration must be a function of y since we are

integrating with respect to x. Again, remember if we differentiate the answer with respect to x
then any function of only y’s will differentiate to zero.
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Double Integrals Over General Regions

In the previous section we looked at double integrals over rectangular regions. The problem with
this is that most of the regions are not rectangular so we need to now look at the following double

integral,
” f(x y)dA
D

where D is any region.

There are two types of regions that we need to look at. Here is a sketch of both of them.
Case 1 ¥ Case 2

o

.J”=Ez|[x:'

i B .

We will often use set builder notation to describe these regions. Here is the definition for the
region in Case 1

D={(x,y)la<x<h, g,(x)<y<g,(x)}
and here is the definition for the region in Case 2.

D={(xy)Ih(y)<x<h/(y),c<y<d}

This notation is really just a fancy way of saying we are going to use all the points, (x, y), in
which both of the coordinates satisfy the two given inequalities.

The double integral for both of these cases are defined in terms of iterated integrals as follows.

In Case 1 where D = {(x y)la<x<b, g,(x)<y<g, (x)} the integral is defined to be,

ﬂ f(x, y)dA:j:IQZ(X) f(x,y)dydx

91(x)

In Case 2 where D = {(x y)Ih(y)<x<h,(y),c<y< d} the integral is defined to be,

d
[[F(x, y)dA=L Ihl(ij) f(x,y)dxdy
D
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Here are some properties of the double integral that we should go over before we actually do
some examples. Note that all three of these properties are really just extensions of properties of
single integrals that have been extended to double integrals.

Properties

1. ” f(xy)+g(x y)dAzﬂ f(x, y)dA+Hg(x, y)dA

D

2. ”cf (x,y)dA= CH f (x,y)dA, where ¢ is any constant.
D D

3. If the region D can be split into two separate regions D; and D, then the integral can be written

” f(x, y)dA:” f(x, y)dA+” f(x y)dA

Let’s take a look at some examples of double integrals over general regions.

Example 1 Evaluate each of the following integrals over the given region D.

(@) ﬂe;dA, D={(x,y)[1<y<2 y<x<y’} [Solution]
D

(b) H4xy— y*dA, D is the region bounded by y =+/x and y = x*. [Solution]
D

(c) H6x2 —40ydA, D is the triangle with vertices (0,3), (1,1), and (5,3).
D

[Solution]
Solution

(a) ffe‘x’dA, D:{(x,y)|1£y£2, y£x£y3}

Okay, this first one is set up to just use the formula above so let’s do that.

x 28X Lo
ffeydA:Jf eYdxdy= | ye’| dy
D 1
1 y
2 2
= [ ye” —ye'dy
2
:(—eyz—lyzelj =—e*—2¢!
2° 277 ),

[Return to Problems]
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(b) ”4xy— y3dA, Dis the region bounded by y =+/x and y = x%.
D

In this case we need to determine the two inequalities for x and y that we need to do the integral.
The best way to do this is the graph the two curves. Here is a sketch.

¥
IS
08k y=Afx
06
0.4
y=x
02f
1 | | | | =
02 0.4 0.6 0.e 1.
So, from the sketch we can see that that two inequalities are,
0<x<1 x° <y <X
We can now do the integral,
Ledx
”4xy—y3 dA:J Ixsx4xy—y3 dy dx
D 0
1 NS
:J' (nyz 1 y“j dx
4 s
0 X
1
:J sz —2x’ +£x12 dx
04 4
=(1Xs_ixs L 13) _5
12 4 52 , 156

[Return to Problems]

(c) H6x2 —40ydA, D is the triangle with vertices (0,3), (1,1), and (5,3).
D

We got even less information about the region this time. Let’s start this off by sketching the
triangle.

© 2007 Paul Dawkins 155 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

Since we have two points on each edge it is easy to get the equations for each edge and so we’ll
leave it to you to verify the equations.

Now, there are two ways to describe this region. If we use functions of x, as shown in the image
we will have to break the region up into two different pieces since the lower function is different

depending upon the value of x. In this case the region would be given by D = D, U D, where,
D, ={(xy)|0<x<1, -2x+3<y<3|

D, :{(x, y)|1<x<5, %x+%Sys3}

Note the U is the “union” symbol and just means that D is the region we get by combing the two
regions. If we do this then we’ll need to do two separate integrals, one for each of the regions.

To avoid this we could turn things around and solve the two equations for x to get,

1 3
=-2X+3 = X=——Yy+—
Y 2y 2
1 1
=_X+= = x=2y-1
y 5*TS y

If we do this we can notice that the same function is always on the right and the same function is
always on the left and so the region is,

D:{(x,y)|—%y+g£x£2y—1, 1Sy33}

Writing the region in this form means doing a single integral instead of the two integrals we’d
have to do otherwise.

Either way should give the same answer and so we can get an example in the notes of splitting a
region up let’s do both integrals.
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Solution 1
ﬂGx —40ydA= ”6x 40ydA+”6x —40y dA

_f I2x+ 6X _4Oydydx+f J‘l 16X _4Oydde

f (6x*y —20y? )| dx+f1 (6x*y—20y? )|

= .[:12x3 —180+20(3- 2x)2 dx + Ils—3x3 +15x* 180+ 20(£ x +%)2 dx

11dx
22

5

- (3x4 —180x—%(3—2x)3): +(—%x4 +5x° —180x+%(%x+%)3)

1

935
3

That was a lot of work. Notice however, that after we did the first substitution that we didn’t
multiply everything out. The two quadratic terms can be easily integrated with a basic Calc |
substitution and so we didn’t bother to multiply them out. We’ll do that on occasion to make
some of these integrals a little easier.

Solution 2
This solution will be a lot less work since we are only going to do a single integral.

[[6xt ~a0yda= szly;;exz — 40y dxdy
D

J (2x —40xy)| 11 dy
1 2’

3
2
3
= [[100y-100y* +2(2y 1)~ 2(-y+$)"dy
=(50y* 2y’ +(2y 1) +(~$y+3))

935
3

So, the numbers were a little messier, but other than that there was much less work for the same
result. Also notice that again we didn’t cube out the two terms as they are easier to deal with
using a Calc I substitution.

[Return to Problems]

As the last part of the previous example has shown us we can integrate these integrals in either
order (i.e. x followed by y or y followed by x), although often one order will be easier than the
other. In fact there will be times when it will not even be possible to do the integral in one order
while it will be possible to do the integral in the other order.

Let’s see a couple of examples of these kinds of integrals.
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Example 2 Evaluate the following integrals by first reversing the order of integration.

3 3
(a) f Ig x’e” dydx [Solution]
09X

(b) J:I;y\/ x* +1dxdy [Solution]

Solution
3 9 3 ysd d
@ JO Ixzxe y dx

First, notice that if we try to integrate with respect to y we can’t do the integral because we would
need a y? in front of the exponential in order to do the y integration. We are going to hope that if
we reverse the order of integration we will get an integral that we can do.

Now, when we say that we’re going to reverse the order of integration this means that we want to
integrate with respect to x first and then y. Note as well that we can’t just interchange the
integrals, keeping the original limits, and be done with it. This would not fix our original
problem and in order to integrate with respect to x we can’t have x’s in the limits of the integrals.
Even if we ignored that the answer would not be a constant as it should be.

So, let’s see how we reverse the order of integration. The best way to reverse the order of
integration is to first sketch the region given by the original limits of integration. From the
integral we see that the inequalities that define this region are,

0<x<3

X*<y<9

These inequalities tell us that we want the region with y = x* on the lower boundary and y =9
on the upper boundary that lies between x =0 and x =3. Here is a sketch of that region.

¥
10

0 1 1 1 x
n 1 2 3

Since we want to integrate with respect to x first we will need to determine limits of x (probably
in terms of y) and then get the limits on the y’s. Here they are for this region.

0<x<.fy

0<y<9
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Any horizontal line drawn in this region will startat Xx=0 and end at X = \N and so these are
the limits on the x’s and the range of y’s for the regions is 0 to 9.

The integral, with the order reversed, is now,
349 3 K 3
f J. X% dydx:f J'ﬁx3ey dx dy
0 X 0 0

and notice that we can do the first integration with this order. We’ll also hope that this will give
us a second integral that we can do. Here is the work for this integral.

3 3 E 3
f J.92x3ey dydx:f J'ﬁx3ey dx dy
09X 090
9

Iy

14y3
= =x’ d
J04 y

9
1 zy
=| —ye'd
f(ivers
9
:iey3
12 |,
1 729
E(e —1)

[Return to Problems]

(b) J: I;y Vx* +1dxdy

As with the first integral we cannot do this integral by integrating with respect to x first so we’ll
hope that by reversing the order of integration we will get something that we can integrate. Here
are the limits for the variables that we get from this integral.

Yy <x<2

0<y<8

and here is a sketch of this region.
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So, if we reverse the order of integration we get the following limits.

0<x<?2

0o<y<x’
The integral is then,

2
JSIZ \/x4+1dxdy=J IXS\/X4+1dde
0y 0°0

=J02

=[x 1dx=2 (172 j

X3
x* +1| dx
0

[Return to Problems]

The final topic of this section is two geometric interpretations of a double integral. The first
interpretation is an extension of the idea that we used to develop the idea of a double integral in
the first section of this chapter. We did this by looking at the volume of the solid that was below

the surface of the function z = f (x, y) and over the rectangle R in the xy-plane. This idea can
be extended to more general regions.

The volume of the solid that lies below the surface given by z = f (x, y) and above the region D

in the xy-plane is given by,
Y, :H f(x y)dA
D

Example 3 Find the volume of the solid that lies below the surface given by z =16xy + 200
and lies above the region in the xy-plane bounded by y = x* and y=8-x>.

Solution

Here is the graph of the surface and we’ve tried to show the region in the xy-plane below the
surface.

350
300
250
Ilg

Here is a sketch of the region in the xy-plane by itself.
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By setting the two bounding equations equal we can see that they will intersect at X =2 and
X =-2. So, the inequalities that will define the region D in the xy-plane are,
—2<x<L2

X*<y<8-x°

The volume is then given by,
V= H 16xy + 200 dA
D

2 .g-x?
- f [, 16xy+ 200dy dx
2
8-x2
, dx

2
- J_2(8xy2 + 200y)|

_ j_z—128x3 — 400X +512X +1600 dx

2

12800

= (—32X4 —%O X% + 256x%° +1600xj

-2

Example 4 Find the volume of the solid enclosed by the planes 4x+2y+z =10, y =3X,
z=0, x=0.

Solution This example is a little different from the previous one. Here the region D is not
explicitly given so we’re going to have to find it. First, notice that the last two planes are really
telling us that we won’t go past the xy-plane and the yz-plane when we reach them.

The first plane, 4Xx+ 2y +z =10, is the top of the volume and so we are really looking for the
volume under,

z=10-4x-2y
and above the region D in the xy-plane. The second plane, y =3Xx (yes that is a plane), gives one
of the sides of the volume as shown below.
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4

2
f
4
2
n

The region D will be the region in the xy-plane (i.e. z=0) that is bounded by y =3x, x=0,
and the line where z+4x+2y =10 intersects the xy-plane. We can determine where
Z+4x+2y =10 intersects the xy-plane by plugging z =0 into it.

0+4x+2y=10 = 2X+Yy=5 =  y=-2X+5

So, here is a sketch the region D.

y=-2x+5

o . — x
0. 0.5 L.

The region D is really where this solid will sit on the xy-plane and here are the inequalities that
define the region.
0<x<1
3XLy<-2x+5
Here is the volume of this solid.
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V=”10—4x—2ydA
D

= J.Ol.[;HSlO —4x—2ydydx

—2X+5
dx

3x

1
:fo (10y—4xy—y2)

= J0125x2 —50x + 25dx

= (% X3 —25x% + 25xj

0

The second geometric interpretation of a double integral is the following.

AreaofD=”dA
D

This is easy to see why this is true in general. Let’s suppose that we want to find the area of the
region shown below.

¥

From Calculus I we know that this area can be found by the integral,
b
A= L g,(x)—g,(x)dx

Or in terms of a double integral we have,
Areaof D = J._[ dA

D
_ b 92(x)
_ja Lh(x) dydx
b 2(x) b
:J.a yzl(x) dX:J.a QZ(X)—gl(X)dx

This is exactly the same formula we had in Calculus I.
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Double Integrals in Polar Coordinates

To this point we’ve seen quite a few double integrals. However, in every case we’ve seen to this
point the region D could be easily described in terms of simple functions in Cartesian coordinates.
In this section we want to look at some regions that are much easier to describe in terms of polar
coordinates. For instance, we might have a region that is a disk, ring, or a portion of a disk or
ring. In these cases, using Cartesian coordinates could be somewhat cumbersome. For instance,
let’s suppose we wanted to do the following integral,

H f(x,y)dA, D isthe disk of radius 2
D

To this we would have to determine a set of inequalities for x and y that describe this region.
These would be,
—2<x<L2

—4-x*<y<4-x°
With these limits the integral would become,

IJ- f(x, y)dA:jZJ-_Jjg2 f (x,y)dydx
& _

Due to the limits on the inner integral this is liable to be an unpleasant integral to compute.

However, a disk of radius 2 can be defined in polar coordinates by the following inequalities,
0<6<2r

0<r<2

These are very simple limits and, in fact, are constant limits of integration which almost always
makes integrals somewhat easier.

So, if we could convert our double integral formula into one involving polar coordinates we
would be in pretty good shape. The problem is that we can’t just convert the dx and the dy into a
dranda dé@. In computing double integrals to this point we have been using the fact that

dA = dxdy and this really does require Cartesian coordinates to use. Once we’ve moved into
polar coordinates dA = dr d@ and so we’re going to need to determine just what dA is under
polar coordinates.

So, let’s step back a little bit and start off with a general region in terms of polar coordinates and
see what we can do with that. Here is a sketch of some region using polar coordinates.
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So, our general region will be defined by inequalities,
asfLp

h(0)<r <h,(0)

Now, to find dA let’s redo the figure above as follows,

LAt

i@

AN

As shown, we’ll break up the region into a mesh of radial lines and arcs. Now, if we pull one of
the pieces of the mesh out as shown we have something that is almost, but not quite a rectangle.

The area of this piece is AA. The two sides of this piece both have length Ar =1, —r, where 1,
is the radius of the outer arc and T, is the radius of the inner arc. Basic geometry then tells us that

the length of the inner edge is r; A@ while the length of the out edge is 1, A@ where A6 isthe
angle between the two radial lines that form the sides of this piece.
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Now, let’s assume that we’ve taken the mesh so small that we can assume that r, ~ 1, =r and

with this assumption we can also assume that our piece is close enough to a rectangle that we can
also then assume that,

AA=TAGATY

Also, if we assume that the mesh is small enough then we can also assume that,
dA~ AA dé~ A0 dr~Ar

With these assumptions we then get dA~ rdrdé.

In order to arrive at this we had to make the assumption that the mesh was very small. This is not
an unreasonable assumption. Recall that the definition of a double integral is in terms of two
limits and as limits go to infinity the mesh size of the region will get smaller and smaller. In fact,
as the mesh size gets smaller and smaller the formula above becomes more and more accurate and
S0 we can say that,

dA=rdrdé

We’ll see another way of deriving this once we reach the Change of Variables section later in this
chapter. This second way will not involve any assumptions either and so it maybe a little better
way of deriving this.

Before moving on it is again important to note that dA = dr d@. The actual formula for dA has

anrinit. It will be easy to forget this r on occasion, but as you’ll see without it some integrals
will not be possible to do.

Now, if we’re going to be converting an integral in Cartesian coordinates into an integral in polar
coordinates we are going to have to make sure that we’ve also converted all the x’s and y’s into
polar coordinates as well. To do this we’ll need to remember the following conversion formulas,

X =rcosé y=rsiné r’=x’+y°

We are now ready to write down a formula for the double integral in terms of polar coordinates.

P o hy(0) .
[J£(x y)dA:J -[hl(e) f (rcosd,rsing)rdrdé
D a

It is important to not forget the added r and don’t forget to convert the Cartesian coordinates in
the function over to polar coordinates.

Let’s look at a couple of examples of these kinds of integrals.
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Example 1 Evaluate the following integrals by converting them into polar coordinates.
(a) HZX ydA, D is the portion of the region between the circles of radius 2
D

and radius 5 centered at the origin that lies in the first quadrant. [Solution]

(b) Hex2+y2 dA, D is the unit circle centered at the origin. [Solution]
D

Solution
@ ”2X ydA, D is the portion of the region between the circles of radius 2 and radius 5
D

centered at the origin that lies in the first quadrant.

First let’s get D in terms of polar coordinates. The circle of radius 2 is given by r =2 and the
circle of radius 5 is given by r =5. We want the region between them so we will have the
following inequality for r.

2<r<5

Also, since we only want the portion that is in the first quadrant we get the following range of
0’s.

0<6<

NN

Now that we’ve got these we can do the integral.

L[ZxydA:fozJ'252(rcose)(rsin<9)rdrd<9

Don’t forget to do the conversions and to add in the extra r. Now, let’s simplify and make use of
the double angle formula for sine to make the integral a little easier.

J;JZXydA:ff.[:r%in(Ze)drd@

5

ISIE}

:J %r“sin(ZH)

0

déo

2

=j26%gsin(26?)d0

0

:—%003(29) ’

[Return to Problems]
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(b) ”ex2+y2 dA, D is the unit circle centered at the origin.
D

In this case we can’t do this integral in terms of Cartesian coordinates. We will however be able
to do it in polar coordinates. First, the region D is defined by,
0<0<L2x

0<r<«1

In terms of polar coordinates the integral is then,

”ex2+y2 dA= f:”J':rerz drdé
D

Notice that the addition of the r gives us an integral that we can now do. Here is the work for this

integral.
27
ﬂJWMAi[jWJdme
D 0 0
=J<27r£er2 1
0 2
27 1
J, >

Z(e
e-1)

déo

0

~1)do

[Return to Problems]

Let’s not forget that we still have the two geometric interpretations for these integrals as well.

Example 2 Determine the area of the region that lies inside r =3+ 2sin & and outside r =2.

Solution
Here is a sketch of the region, D, that we want to determine the area of.

r=34+2an#&
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To determine this area we’ll need to know that value of & for which the two curves intersect. We
can determine these points by setting the two equations equal and solving.

3+2sinf=2
sin«9:—i = 0=7—7[,£
2 6 6
Here is a sketch of the figure with these angles added.
F=34+28n8
|
._1_
_Ir
o= r=2 9:_%’1%

Note as well that we’ve acknowledged that —Z is another representation for the angle & . This

is important since we need the range of & to actually enclose the regions as we increase from the
lower limit to the upper limit. If we’d chosen to use L% then as we increase from ZZ to & we

would be tracing out the lower portion of the circle and that is not the region that we are after.

So, here are the ranges that will define the region.

Tep<Z
6 6

2<r<3+2sin@

To get the ranges for r the function that is closest to the origin is the lower bound and the function
that is farthest from the origin is the upper bound.

The area of the region D is then,
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A=j dA

D

_ Ij;fJ‘SJrZSInﬁrdrdH
~ 17/6 3+2sin6

= lr2 dé
J —x/6 2 2
r 77/6

= Z+6sin@+2sin*0do
J a6 2
r 17/6

= —+6sin0—cos(20)do

J —7/6 2
7z
6

= (10—6c050—15in (29)}
2 2

T

6

:¥+“T”:24.187

Example 3 Determine the volume of the region that lies under the sphere x> +y® +2° =9,
above the plane z =0 and inside the cylinder x* + y* =5.

Solution
We know that the formula for finding the volume of a region is,

V=ﬂf(x,y)dA

In order to make use of this formula we’re going to need to determine the function that we should
be integrating and the region D that we’re going to be integrating over.

The function isn’t too bad. It’s just the sphere, however, we do need it to be in the form
z=f (x, y). We are looking at the region that lies under the sphere and above the plane

Z =0 (just the xy-plane right?) and so all we need to do is solve the equation for z and when
taking the square root we’ll take the positive one since we are wanting the region above the xy-

plane. Here is the function.
7=4/9-x*—y?

The region D isn’t too bad in this case either. As we take points, (x, y), from the region we need

to completely graph the portion of the sphere that we are working with. Since we only want the
portion of the sphere that actually lies inside the cylinder given by x*+ y* =5 this is also the

region D. The region D is the disk x* + y* <5 in the xy-plane.

For reference purposes here is a sketch of the region that we are trying to find the volume of.
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3 2 1 0 —1-2-3
3
2 P
4 [
LT
|1
o
i )
L s
jf;i
) ]
1+
]
— 1
1] =

So, the region that we want the volume for is really a cylinder with a cap that comes from the
sphere.

We are definitely going to want to do this integral in terms of polar coordinates so here are the

limits (in polar coordinates) for the region,
0<O<L2x

0<r<+5
and we’ll need to convert the function to polar coordinates as well.

V:H 9-x*—y*dA
D

2r
=j J.fr\/Q—rz drdé
0

J5
do

The volume is then,

2z
= —5(9—r )2
0
27
o 3
38z
3

0
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Example 4 Find the volume of the region that lies inside z = x>+ y* and below the plane
z=16.

Solution
Let’s start this example off with a quick sketch of the region.

Now, in this case the standard formula is not going to work. The formula
Y :H f(x y)dA
D

finds the volume under the function f (x, y) and we’re actually after the area that is above a

function. This isn’t the problem that it might appear to be however. First, notice that
V =[[16dA
D

will be the volume under z =16 (of course we’ll need to determine D eventually) while
V= _U x> +y? dA
D

is the volume under z = x* + y?, using the same D.

The volume that we’re after is really the difference between these two or,
Vv =HlGdA—”x2 +y° dA=”16—(x2 +y?)dA
D D D

Now all that we need to do is to determine the region D and then convert everything over to polar
coordinates.

Determining the region D in this case is not too bad. If we were to look straight down the z-axis
onto the region we would see a circle of radius 4 centered at the origin. This is because the top of
the region, where the elliptic paraboloid intersects the plane, is the widest part of the region. We
know the z coordinate at the intersection so, setting z =16 in the equation of the paraboloid
gives,

16 = x* +y?
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which is the equation of a circle of radius 4 centered at the origin.

Here are the inequalities for the region and the function we’ll be integrating in terms of polar
coordinates.

0<0<2rx 0<r<4 7=16-r°

The volume is then,
Y, :J-J.lG—(x2 + yz)dA
D

:J.:”J‘:r(16—r2)drd6’

2 4
T
0 4

0
=j2”64d9
0
~1287

de

In both of the previous volume problems we would have not been able to easily compute the
volume without first converting to polar coordinates so, as these examples show, it is a good idea
to always remember polar coordinates.

There is one more type of example that we need to look at before moving on to the next section.
Sometimes we are given an iterated integral that is already in terms of x and y and we need to
convert this over to polar so that we can actually do the integral. We need to see an example of
how to do this kind of conversion.

Example 5 Evaluate the following integral by first converting to polar coordinates.
1 _y2
f I”cos(x2 +y?)dxdy
00

Solution

First, notice that we cannot do this integral in Cartesian coordinates and so converting to polar
coordinates may be the only option we have for actually doing the integral. Notice that the
function will convert to polar coordinates nicely and so shouldn’t be a problem.

Let’s first determine the region that we’re integrating over and see if it’s a region that can be
easily converted into polar coordinates. Here are the inequalities that define the region in terms
of Cartesian coordinates.

Now, the upper limit for the x’s is,

X=4/1-y?
and this looks like the right side of the circle of radius 1 centered at the origin. Since the lower

limit for the x’s is X =0 it looks like we are going to have a portion (or all) of the right side of
the disk of radius 1 centered at the origin.
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The range for the y’s however, tells us that we are only going to have positive y’s. This means
that we are only going to have the portion of the disk of radius 1 centered at the origin that is in

the first quadrant.

So, we know that the inequalities that will define this region in terms of polar coordinates are
then,

Finally, we just need to remember that,
dxdy=dA=rdrdé
and so the integral becomes,

fljfjcos(x2 + yz)dxdy:j‘o;z.[:rcos(rz)drde
0

Note that this is an integral that we can do. So, here is the rest of the work for this integral.

T

f:IOJ17cos(x2 +y?)dxdy = Jzésin(rz)

0

1

dé
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Triple Integrals

Now that we know how to integrate over a two-dimensional region we need to move on to
integrating over a three-dimensional region. We used a double integral to integrate over a two-
dimensional region and so it shouldn’t be too surprising that we’ll use a triple integral to
integrate over a three dimensional region. The notation for the general triple integrals is,

I_E[I f(xy z)dv

Let’s start simple by integrating over the box,
B= [a,b]x[c,d]x[r,s]
Note that when using this notation we list the x’s first, the y’s second and the z’s third.

The triple integral in this case is,
J'.” f(xy,z)dv :jrsjcdj: f(x,y,z)dxdydz
B

Note that we integrated with respect to x first, then y, and finally z here, but in fact there is no
reason to the integrals in this order. There are 6 different possible orders to do the integral in and
which order you do the integral in will depend upon the function and the order that you feel will
be the easiest. We will get the same answer regardless of the order however.

Let’s do a quick example of this type of triple integral.

Example 1 Evaluate the following integral.
[[[8xyzdv, B=[23]x[12]x[0,1]
B

Solution
Just to make the point that order doesn’t matter let’s use a different order from that listed above.
We’ll do the integral in the following order.

”I 8xyzdV = LZJ'; J';Sxyz dz dx dy
B
- [ [awe, oy
= Lz j; 4xy dx dy
:leZXZy|Z dy

= ["10ydy =15

Before moving on to more general regions let’s get a nice geometric interpretation about the triple
integral out of the way so we can use it in some of the examples to follow.
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Fact

The volume of the three-dimensional region E is given by the integral,

vzjg dv

Let’s now move on the more general three-dimensional regions. We have three different
possibilities for a general region. Here is a sketch of the first possibility.

z
z =u(x.y);

e al——

z=w{xy)

|

In this case we define the region E as follows,

E :{(x, y,z)[(x,y)eD, u(xy)<z<u, (X, y)}
where (X, y) € D is the notation that means that the point (X, y) lies in the region D from the
xy-plane. In this case we will evaluate the triple integral as follows,

j.EU f(x,y,z)dv :JJU:((:;;) f(x, y,z)dz}dA

where the double integral can be evaluated in any of the methods that we saw in the previous
couple of sections. In other words, we can integrate first with respect to x, we can integrate first
with respect to y, or we can use polar coordinates as needed.

Example 2 Evaluate HIZX dV where E is the region under the plane 2x+3y +z =6 that lies
E

in the first octant.

Solution

We should first define octant. Just as the two-dimensional coordinates system can be divided into

four quadrants the three-dimensional coordinate system can be divided into eight octants. The

first octant is the octant in which all three of the coordinates are positive.

Here is a sketch of the plane in the first octant.
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0 ¥

We now need to determine the region D in the xy-plane. We can get a visualization of the region
by pretending to look straight down on the object from above. What we see will be the region D

in the xy-plane. So D will be the triangle with vertices at (0,0), (3,0),and (0,2). Hereisa
sketch of D.

Now we need the limits of integration. Since we are under the plane and in the first octant (so
we’re above the plane z =0) we have the following limits for z.

0<z<6-2x-3y
We can integrate the double integral over D using either of the following two sets of inequalities.
0<x<3 5 3
) 0<x< 5 y+3
O£y£—§x+2 O<y<?

Since neither really holds an advantage over the other we’ll use the first one. The integral is then,
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”ijdV jf[ e 3y2xdz}d

_ ”2 a7 da

3.2,

= | [ 2x(6-2x-3y)dydx
0

J 0
3 2442
_ (12xy—4x2y—3xy2)| 3 dx
J 0 0
r3
—8x% +12xdx
J 0
3
:(l —x%+6x%° J
3 0
=9

Let’s now move onto the second possible three-dimensional region we may run into for triple
integrals. Here is a sketch of this region.

=u,(y.2) z
i
x=u,(yz)
xf_\

For this possibility we define the region E as follows,

E={(xy.2)|(y.2)eD, u(y,z)<x<u,(y,z)}
So, the region D will be a region in the yz-plane. Here is how we will evaluate these integrals.

J:EU f(xy,z)dv :JJU:((;ZZ)) f(x, y,z)dx}dA

As with the first possibility we will have two options for doing the double integral in the yz-plane
as well as the option of using polar coordinates if needed.
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Example 3 Determine the volume of the region that lies behind the plane X+ y+z =8 and in
front of the region in the yz-plane that is bounded by z=2 \/y and z=3y.

Solution
In this case we’ve been given D and so we won’t have to really work to find that. Here is a
sketch of the region D as well as a quick sketch of the plane and the curves defining D projected
out past the plane so we can get an idea of what the region we’re dealing with looks like.

4

3_
=3
Z‘iv’g
2_
_ 3
Z_I_}’

1_

|:| 1 | | |

0 ] 2 3 PR

i

Now, the graph of the region above is all okay, but it doesn’t really show us what the region is.
So, here is a sketch of the region itself.

The volume is then,
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Isﬁ/z

3y/4

8—y—zdzdy

v=[fov= j J{1 o fan
= (SZ—yz—%zzj2

3y
4

dy

I 3
= 12y2—%y—§y2+§yzdy

Jo 32
[y Ty By s e
16° 5° 32 ) 5

We now need to look at the third (and final) possible three-dimensional region we may run into
for triple integrals. Here is a sketch of this region.

P ymun(ne)
Yl
y=u2|[x,z:l
_—_—_—_\_‘_————_
/ .]':I

In this final case E is defined as,
E={(xy.2)[(x2)eD, u(xz)<y<u,(xz)}
and here the region D will be a region in the xz-plane. Here is how we will evaluate these

integrals.
J..EU f(x,y,z)dv ZJJU:((XX;)) f(x, y,z)dy}dA

where we will can use either of the two possible orders for integrating D in the xz-plane or we can
use polar coordinates if needed.
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Example 4 Evaluate ”IVSXZ +3z2 dV where E is the solid bounded by y = 2x? + 2z and
E
the plane y =8.

Solution
Here is a sketch of the solid E.

The region D in the xz-plane can be found by “standing” in front of this solid and we can see that
D will be a disk in the xz-plane. This disk will come from the front of the solid and we can
determine the equation of the disk by setting the elliptic paraboloid and the plane equal.

2x*+272° =8 = X2 +22=4

This region, as well as the integrand, both seems to suggest that we should use something like
polar coordinates. However we are in the xz-plane and we’ve only seen polar coordinates in the
xy-plane. This is not a problem. We can always “translate” them over to the xz-plane with the
following definition.

X =1rcosé z=rsin@

Since the region doesn’t have y’s we will let z take the place of y in all the formulas. Note that
these definitions also lead to the formula,

XZ

2 2

+2°=r

With this in hand we can arrive at the limits of the variables that we’ll need for this integral.
2x*+27°<y<8
0<r<2
0<0<L2x

The integral is then,

© 2007 Paul Dawkins 181 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

(o = [[[...

ﬂ( 3x? +3z
_”m (2x* +22°) A

Now, since we are going to do the double integral in polar coordinates let’s get everything
converted over to polar coordinates. The integrand is,

S(Xz+22)(8_(2X2+222)):\/3?(8—2r2)
-3 I’(8—2r2)
=\/§(8I’—2r3)

Iﬂmdv 2”\/5(8r—2r3)dA

:ﬁfznjz 8r—2r3)rdrd¢9
_\/—J, (Br —%r Jz

2
—\/—f §d9

 256\37
15

3x? +37° dy} dA

dA

2x +222

The integral is then,

dée

0
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Triple Integrals in Cylindrical Coordinates

In this section we want do take a look at triple integrals done completely in Cylindrical
Coordinates. Recall that cylindrical coordinates are really nothing more than an extension of
polar coordinates into three dimensions. The following are the conversion formulas for
cylindrical coordinates.

X=1rcosd y=rsing z2=1

In order to do the integral in cylindrical coordinates we will need to know what dV will become in
terms of cylindrical coordinates. We will be able to show in the Change of Variables section of
this chapter that,

| dV =rdzdrdé

The region, E, over which we are integrating becomes,
E={(x¥.2)I(xy)eD, u(xy)<z<u,(xy)|
={(r.0,2)|a<0<pB, h(0)<r<h,(8), u(rcosé,rsind)<z<u,(rcosd,rsino)}|

Note that we’ve only given this for E’s in which D is in the xy-plane. We can modify this
accordingly if D is in the yz-plane or the xz-plane as needed.

In terms of cylindrical coordinates a triple integral is,

Uy (reosd,rsing)

[[[f(xy.2)dv = J'f'[rzz((;)j%(rcow’ming) r f(rcos,rsing,z)dzdrdé
E

Don’t forget to add in the r and make sure that all the x’s and y’s also get converted over into
cylindrical coordinates.

Let’s see an example.

Example 1 Evaluate J-J.'[ ydV where E is the region that lies below the plane z = X+ 2 above
E
the xy-plane and between the cylinders X* + y* =1 and X* +y* =4.

Solution
There really isn’t too much to do with this one other than do the conversions and then evaluate
the integral.

We’ll start out by getting the range for z in terms of cylindrical coordinates.
0<z<x+2 = 0<z<rcos@d+?2
Remember that we are above the xy-plane and so we are above the plane z =0

Next, the region D is the region between the two circles x* +y* =1 and x*+ y? =4 in the xy-

plane and so the ranges for it are,
0<O0<L2rx 1<r<2
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Here is the integral.
J'J‘J‘ YdV _ J-Ozzz J-lz J-Orcose+2(rSin 9) Fdzdrdo
E

:J'Zﬁ.[zrzsin9(rcos¢9+2)drd6?

—J J.—r sin(260)+2r*singdrdo

2z 2
= (lr4sin(29)+grssin 49]
8 3

0 1

2z
:J %sm(ZHﬁ%sm 0do

0

dé

2z

( 15 (20)——4003 0]
16 3

0

0

Just as we did with double integral involving polar coordinates we can start with an iterated
integral in terms of x, y, and z and convert it to cylindrical coordinates.

Xyz dzdxdy into an integral in cylindrical coordinates.

J1-y? Julx2+y2
X

1
Example 2 Convert I JO 2y2
= +

Solution
Here are the ranges of the variables from this iterated integral.
-1<y<1

0<x<1-V?
X +y? <z xP+y°

The first two inequalities define the region D and since the upper and lower bounds for the x’s are
X =+/1-y? and x =0 we know that we’ve got at least part of the right half a circle of radius 1

centered at the origin. Since the range of y’s is —1 <y <1we know that we have the complete

right half of the disk of radius 1 centered at the origin. So, the ranges for D in cylindrical
coordinates are,

Tep<Z
2
0<r<1

All that’s left to do now is to convert the limits of the z range, but that’s not too bad.

r’<z<r
On a side note notice that the lower bound here is an elliptic paraboloid and the upper bound is a
cone. Therefore E is a portion of the region between these two surfaces.

The integral is,
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L ey
[

0 X2 +y2

xyz dz dx dy = J‘f/;f;j:z r(rcosd)(rsind)zdzdrdé

-1

:J'”/Z J';J'rrz zr® cos@sinOdz drdo

-/2
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Triple Integrals in Spherical Coordinates

In the previous section we looked at doing integrals in terms of cylindrical coordinates and we
now need to take a quick look at doing integrals in terms of spherical coordinates.

First, we need to recall just how spherical coordinates are defined. The following sketch shows
the relationship between the Cartesian and spherical coordinate systems.

£

(zy.z) = (0.6, )

Here are the conversion formulas for spherical coordinates.

X = psingcosd y = psingsing Z=pCoS¢p

X +y:+2°=p°

We also have the following restrictions on the coordinates.
p=>0 O<ep=<r

For our integrals we are going to restrict E down to a spherical wedge. This will mean that we
are going to take ranges for the variables as follows,

asp<b
a0 p
0@y

Here is a quick sketch of a spherical wedge in which the lower limit for both p and ¢ are zero
for reference purposes. Most of the wedges we’ll be working with will fit into this pattern.
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From this sketch we can see that E is really nothing more than the intersection of a sphere and a
cone.

In the next section we will show that

dV = p*sinpdpdfde

Therefore the integral will become,

”:[ f(x,y,z)dVv :j;jf.{:pzsinq) f (psingcosd, psingsing, pcosp)dpddde
E

This looks bad, but given that the limits are all constants the integrals here tend to not be too bad.

Example 1 Evaluate J‘ﬁ.le dV where E is the upper half of the sphere x* +y* + 2> =1.
E

Solution
Since we are taking the upper half of the sphere the limits for the variables are,
0<p<1
0<0<L2x
Vs
0<p<—
Y>3

The integral is then,
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J.J..[16z dv = J.Ozjjﬂﬁpz sing(16pcosp)dpdfde
E

=j£j§”[28pssin(2¢)dpd9d(ﬂ
:jfjj”zsin(zgp)ded(p

= jg4ﬂsin (2¢)de
=2 COS(Z({))L)%

=4r

x? +y® + 2% dz dx dy into spherical coordinates.

2 18— 2_\2
Example 2 Convert J.;J.OJW Ijg

Solution
Let’s first write down the limits for the variables.
0<y<3

0<Xx<4/9-V°
X +y? <7< 18-x2—y°

The range for x tells us that we have a portion of the right half of a disk of radius 3 centered at the
origin. Since we are restricting y’s to positive values it looks like we will have the quarter disk in
the first quadrant. Therefore since D is in the first quadrant the region, E, must be in the first
octant and this in turn tells us that we have the following range for @ (since this is the angle
around the z-axis).

0<o<Z
2

Now, let’s see what the range for z tells us. The lower bound, z = X2+ y2 , Is the upper half of
a cone. At this point we don’t need this quite yet, but we will later. The upper bound,

7 =+/18—x* —y? , is the upper half of the sphere,
x> +y*+2°=18
and so from this we now have the following range for p

0< p<18=3J2

Now all that we need is the range for ¢. There are two ways to get this. One is from where the
cone and the sphere intersect. Plugging in the equation for the cone into the sphere gives,

© 2007 Paul Dawkins 188 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

2?+2° =18
7* =9
z2=3

Note that we can assume z is positive here since we know that we have the upper half of the cone
and/or sphere. Finally, plug this into the conversion for z and take advantage of the fact that we

know that p = 32 since we are intersecting on the sphere. This gives,

pPCOSp =3

3J2cosp=3
1 2 V2
COSQp=—==— = ==
N Y7

So, it looks like we have the following range,

7
0<p<—
4 4

The other way to get this range is from the cone by itself. By first converting the equation into
cylindrical coordinates and then into spherical coordinates we get the following,

z=r
pPCOSQ = psing

1=tang = (p:%

So, recalling that p* = x* + y* +z°, the integral is then,

J Ig d Jlg o X +y2+22dZdXdy:Joﬂ/4jz/zjosﬁp4Sin(pdpdﬁd(p

X+y
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Change of Variables

Back in Calculus | we had the substitution rule that told us that,
b d
L f(g(x))g (x)dx:‘[C f(u)du where u=g(x)

In essence this is taking an integral in terms of x’s and changing it into terms of u’s. We want to
do something similar for double and triple integrals. In fact we’ve already done this to a certain
extent when we converted double integrals to polar coordinates and when we converted triple
integrals to cylindrical or spherical coordinates. The main difference is that we didn’t actually go
through the details of where the formulas came from. If you recall, in each of those cases we
commented that we would justify the formulas for dA and dV eventually. Now is the time to do
that justification.

While often the reason for changing variables is to get us an integral that we can do with the new
variables, another reason for changing variables is to convert the region into a nicer region to
work with. When we were converting the polar, cylindrical or spherical coordinates we didn’t
worry about this change since it was easy enough to determine the new limits based on the given
region. That is not always the case however. So, before we move into changing variables with
multiple integrals we first need to see how the region may change with a change of variables.

First we need a little notation out of the way. We call the equations that define the change of
variables a transformation. Also we will typically start out with a region, R, in xy-coordinates
and transform it into a region in uv-coordinates.

Example 1 Determine the new region that we get by applying the given transformation to the

region R.
2

(a) Ris the ellipse x? +§_6 =1 and the transformation is X = % , Y=3v. [Solution]

(b) Ris the region bounded by y=—Xx+4, y=x+1,and y :g—% and the

o 1 1 .
transformation is X = E(u +V), y= E(u —V). [Solution]

Solution
2

(a) R is the ellipse x* +y_6 =1 and the transformation is X = % , y=3v.

There really isn’t too much to do with this one other than to plug the transformation into the
equation for the ellipse and see what we get.

35

Voo
4 36
u’+v: =4
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So, we started out with an ellipse and after the transformation we had a disk of radius 2.
[Return to Problems]

(b) R is the region bounded by y=—x+4, y=x+1,and y =§—% and the
. 1 1
transformation is x=§(u +V), y:E(u—v).

As with the first part we’ll need to plug the transformation into the equation, however, in this case
we will need to do it three times, once for each equation. Before we do that let’s sketch the graph
of the region and see what we’ve got.

(-3

So, we have a triangle. Now, let’s go through the transformation. We will apply the
transformation to each edge of the triangle and see where we get.

Let’sdo y =—x+4 first. Plugging in the transformation gives,

1(u—v):—%(u +V)+4

2
u—-v=-u-v+8
2u=8
u=4

The first boundary transforms very nicely into a much simpler equation.

Now let’s take a look at y = Xx+1,
%(u -V) :%(u +v)+1

Uu—-v=u+v+2
-2v=2

v=-1
Again, a much nicer equation that what we started with.
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Finally, let’s transform y =2 —%.
1

E(u -V)= %(%(u +v)j—%

3u—-3v=u+v-8

4y=2u+8
v=_y2
2

So, again, we got a somewhat simpler equation, although not quite as nice as the first two.

Let’s take a look at the new region that we get under the transformation.
i

4 | [4’.4)
3L
=4
| | i
_74 7 .
(~6,-1) v=-1 (4,-1)

We still get a triangle, but a much nicer one.
[Return to Problems]

Note that we can’t always expect to transform a specific type of region (a triangle for example)
into the same kind of region. It is completely possible to have a triangle transform into a region
in which each of the edges are curved and in no way resembles a triangle.

Notice that in each of the above examples we took a two dimensional region that would have
been somewhat difficult to integrate over and converted it into a region that would be much nicer
in integrate over. As we noted at the start of this set of examples, that is often one of the points
behind the transformation. In addition to converting the integrand into something simpler it will
often also transform the region into one that is much easier to deal with.

Now that we’ve seen a couple of examples of transforming regions we need to now talk about
how we actually do change of variables in the integral. We will start with double integrals. In
order to change variables in a double integral we will need the Jacobian of the transformation.
Here is the definition of the Jacobian.
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Definition
The Jacobian of the transformation X = g (u,v) , y=h(u,v)is
oX 0OX
o(%Y) _|ou av
o(uv) |y o
ou ov

The Jacobian is defined as a determinant of a 2x2 matrix, if you are unfamiliar with this that is
okay. Here is how to compute the determinant.

b
a =ad -bc
c d

Therefore, another formula for the determinant is,
OX OX

a(x,y)za ov| ox oy ox oy

o(u,v) |dy oyl duov ovau

ou ov

Now that we have the Jacobian out of the way we can give the formula for change of variables for
a double integral.

Change of Variables for a Double Integral

Suppose that we want to integrate f (x, y) over the region R. Under the transformation

x=g(u,v), y=h(u,v) the region becomes S and the integral becomes,

gf(x,y)dAzﬂf(g(u,v),h(u,v))M

dudv

d(u,v)

Note that we used du dv instead of dA in the integral to make it clear that we are now integrating
with respect to u and v. Also note that we are taking the absolute value of the Jacobian.

If we look just at the differentials in the above formula we can also say that
o(xy)

d(u,v)

dA = dudv

Example 2 Show that when changing to polar coordinates we have dA=rdr dé

Solution
So, what we are doing here is justifying the formula that we used back when we were integrating
with respect to polar coordinates. All that we need to do is use the formula above for dA.

The transformation here is the standard conversion formulas,
X=rcosé y=rsing
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The Jacobian for this transformation is,

o ox
o(x.y) _|or a6
o0) ly
or 06
_0030 —-rsiné
“Isin@  rcos®@
:rcosze—(—rsinze)
:r(0032¢9+sin29)
=r
We then get,
aa=|20 I 4o rardo=rarde
a(r,0)

So, the formula we used in the section on polar integrals was correct.

Now, let’s do a couple of integrals.

Example 3 Evaluate J-J- X+ Yy dA where R is the trapezoidal region with vertices given by
R

(0,0), (5,0), (%%) and (%—%) using the transformation X =2u+3v and y = 2u —3v.

Solution
First, let’s sketch the region R and determine equations for each of the sides.
¥
0=
(3-3)
=
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Each of the equations was found by using the fact that we know two points on each line (i.e. the
two vertices that form the edge).

While we could do this integral in terms of x and y it would involve two integrals and so would be
some work.

Let’s use the transformation and see what we get. We’ll do this by plugging the transformation
into each of the equations above.

Let’s start the process off with y = X.
2u—3v=2u+3v

6v=0
v=0

Transforming y = —X is similar.
2u—3v=—(2u+3v)
4u=0
u=0

Next we’ll transform y = —x+5.
2u—-3v=—(2u+3v)+5

4u=5
5
Uu=—
4

Finally, let’s transform y = x—5.
20—3v=2u+3v-5
—6v=-5

V==
6

The region S is then a rectangle whose sides are givenby u=0, v=0, u=2 and v=2 and so
the ranges of u and v are,

OSUSE OsvgE
4 6
Next, we need the Jacobian.
o( X, 2 3
(xy)_ - 6-6=-12
o(uv) 2 -3

The integral is then,

© 2007 Paul Dawkins 195 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

”x+ ydA = p.[oi((Zu +3v) +(2u—3v))|-12dudv
R J

0

(6 o2

= 6.[04 48u du dv
J O

5

_ (06 24u2|§ dv

5

.5

= BEdv
Jo 2

5
75 |s
=—V

2

_125
4

0

Example 4 Evaluate J-J. x? —xy + y® dA where R is the ellipse given by x> —xy +y> =2 and

R
using the transformation X = J2u —\/%v Y= J2u +\/%v .

Solution
The first thing to do is to plug the transformation into the equation for the ellipse to see what the
region transforms into.

2=x>—xy+Yy?

2 2
= \/Eu—\/zv - \/Eu—\/zv \/§u+\/§v + \/§u+\/§v
3 3 3 3
:2u2—iuv+gv2—(2u2—gv2j+2u2+iuv+gv2
3 3 3

V3 V3

=2u? + 2Vv?

Or, upon dividing by 2 we see that the equation describing R transforms into
us+v® =1
or the unit circle. Again, this will be much easier to integrate over than the original region.
Note as well that we’ve shown that the function that we’re integrating is
X —xy+y® =2(u?+v*)
in terms of u and v so we won’t have to redo that work when the time to do the integral comes
around.

Finally, we need to find the Jacobian.
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The integral is then,

du dv

[ xyy:on- JJ 0 +v?)

Before proceeding a word of caution is in order. Do not make the mistake of substituting
x* —xy+y? =2 or u” +v® =1 in for the integrands. These equations are only valid on the

boundary of the region and we are looking at all the points interior to the boundary as well and
for those points neither of these equations will be true!

At this point we’ll note that this integral will be much easier in terms of polar coordinates and so
to finish the integral out will convert to polar coordinates.

[ xyy7on- H v

2
:ﬁfo J'O(r )rdrd@
2z 1
_ij 1.
\/§ 0 4 0
8 fz”l
=2 | Zdo
Gy a

B

du dv

Let’s now briefly look at triple integrals. In this case we will again start with a region R and use
the transformation x =g (u,v,w), y=h(u,v,w), and z =k (u,v,w) to transform the region

into the new region S. To do the integral we will need a Jacobian, just as we did with double
integrals. Here is the definition of the Jacobian for this kind of transformation.

OX OX OX
u v ow
oxy2) |y oy o
o(uv,w) |ou ov  ow
0z 07 o1
U voow
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In this case the Jacobian is defined in terms of the determinant of a 3x3 matrix. We saw how to
evaluate these when we looked at cross products back in Calculus 1. If you need a refresher on
how to compute them you should go back and review that section.

The integral under this transformation is,

(o= ||| (0010t k()

S

o(x,y,z)
o(u,v,w

du dvdw

As with double integrals we can look at just the differentials and note that we must have
(% y,2)

dv =
o(u,v,w)

du dvdw

We’re not going to do any integrals here, but let’s verify the formula for dV for spherical
coordinates.

Example 5 Verify that dV = p*singd pd@de when using spherical coordinates.

Solution
Here the transformation is just the standard conversion formulas.
X = psingcosé y = psingsin@ Z=pCosp
The Jacobian is,
sinpcosd —psingsind  pcosecosd
o(xy,z)

=|singsin@ psinpcosd pcosesind
o(p.0.9) :
Cos @ 0 —psing

=—p*sin’® pcos® 6 - p’sinpcos® psin® 6 +0
—p’sin® psin® —0- p®sin g cos® pcos’ 6

=—p’sin’ p(cos’ 0 +sin® 6) - p sinpcos’ p(sin” 0+ cos’ 0)

=—p’sin®p— p*singpcos’ ¢

=—p’sing(sin® p+cos’ p)

=—p’sing

Finally, dV becomes,

dv :|—p28in(p|dpd0d(p=pzsinqodpdé?dqo

Recall that we restricted ¢ to the range 0 < ¢ < 7 for spherical coordinates and so we know that
sin @ >0 and so we don’t need the absolute value bars on the sine.

We will leave it to you to check the formula for dV for cylindrical coordinates if you’d like to. It
is a much easier formula to check.
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Surface Area

In this section we will look at the lone application (aside from the area and volume
interpretations) of multiple integrals in this material. This is not the first time that we’ve looked
at surface area We first saw surface area in Calculus 11, however, in that setting we were looking
at the surface area of a solid of revolution. In other words we were looking at the surface area of
a solid obtained by rotating a function about the x or y axis. In this section we want to look at a
much more general setting although you will note that the formula here is very similar to the
formula we saw back in Calculus II.

Here we want to find the surface area of the surface given by z = f (x,y) where (X, y) isa
point from the region D in the xy-plane. In this case the surface area is given by,

S=H\/[fx]2+[fy]2+1dA

Let’s take a look at a couple of examples.

Example 1 Find the surface area of the part of the plane 3x+2y + z =6 that lies in the first
octant.

Solution
Remember that the first octant is the portion of the xyz-axis system in which all three variables

are positive. Let’s first get a sketch of the part of the plane that we are interested in.
1]

We’ll also need a sketch of the region D.
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1] L x
1] 1 2

Remember that to get the region D we can pretend that we are standing directly over the plane
and what we see is the region D. We can get the equation for the hypotenuse of the triangle by
realizing that this is nothing more than the line where the plane intersects the xy-plane and we
also know that z =0 on the xy-plane. Plugging z =0 into the equation of the plane will give us
the equation for the hypotenuse.

Notice that in order to use the surface area formula we need to have the function in the form
z=f (x, y) and so solving for z and taking the partial derivatives gives,

z=6-3x-2y f,=-3 f,=-2

The limits defining D are,

0<x<2 OSyS—gx+3

The surface area is then,

S= ﬂ\/ [ +[-2] +1dA
-[’ IO_EX+3ﬂdydx
A [7 -2 x+30x
:\/ﬂ(—%xhsxj:
=314

Example 2 Determine the surface area of the part of z = xy that lies in the cylinder given by
X2 +y?=1.

Solution
In this case we are looking for the surface area of the part of z = Xy where (x, y) comes from

the disk of radius 1 centered at the origin since that is the region that will lie inside the given

© 2007 Paul Dawkins 200 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

cylinder.

Here are the partial derivatives,

The integral for the surface area is,
S =” X2 +y2 +1dA
D

Given that D is a disk it makes sense to do this integral in polar coordinates.

S :”J X* +y* +1dA
D
= .[OZHJ':rx/1+ r2drdo

r2r 1

_ %@(1”2)3

déo
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Area and Volume Revisited

This section is here only so we can summarize the geometric interpretations of the double and
triple integrals that we saw in this chapter. Since the purpose of this section is to summarize
these formulas we aren’t going to be doing any examples in this section.

We’ll first look at the area of a region. The area of the region D is given by,

AreaofD:”dA
D

Now let’s give the two volume formulas. First the volume of the region E is given by,

Volume of E = .m dv
E

Finally, if the region E can be defined as the region under the function z = f (x, y) and above
the region D in xy-plane then,

Volume of E = ” f(xy)dA
D

Note as well that there are similar formulas for the other planes. For instance, the volume of the
region behind the function y = f (X, z) and in front of the region D in the xz-plane is given by,

Volume of E = H f(x z) dA
D

Likewise, the the volume of the region behind the function x = f (y, z) and in front of the
region D in the yz-plane is given by,

Volume of E :” f(y,z)dA
D
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Line Integrals

Introduction

In this section we are going to start looking at Calculus with vector fields (which we’ll define in
the first section). In particular we will be looking at a new type of integral, the line integral and
some of the interpretations of the line integral. We will also take a look at one of the more
important theorems involving line integrals, Green’s Theorem.

Here is a listing of the topics covered in this chapter.
Vector Fields — In this section we introduce the concept of a vector field.

Line Integrals — Part | — Here we will start looking at line integrals. In particular we will look
at line integrals with respect to arc length.

Line Integrals — Part 11 — We will continue looking at line integrals in this section. Here we will
be looking at line integrals with respect to x, y, and/or z.

Line Integrals of Vector Fields — Here we will look at a third type of line integrals, line integrals
of vector fields.

Fundamental Theorem for Line Integrals — In this section we will look at a version of the
fundamental theorem of calculus for line integrals of vector fields.

Conservative Vector Fields — Here we will take a somewhat detailed look at conservative vector
fields and how to find potential functions.

Green’s Theorem — We will give Green’s Theorem in this section as well as an interesting
application of Green’s Theorem.

Curl and Divergence — In this section we will introduce the concepts of the curl and the
divergence of a vector field. We will also give two vector forms of Green’s Theorem.
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Vector Fields

We need to start this chapter off with the definition of a vector field as they will be a major
component of both this chapter and the next. Let’s start off with the formal definition of a vector
field.

Definition

A vector field on two (or three) dimensional space is a function F that assigns to each point
(%, y) (or (X, y,2)) atwo (or three dimensional) vector given by F(x,y) (or F(X,Y,2)).

That may not make a lot of sense, but most people do know what a vector field is, or at least
they’ve seen a sketch of a vector field. If you’ve seen a current sketch giving the direction and
magnitude of a flow of a fluid or the direction and magnitude of the winds then you’ve seen a
sketch of a vector field.

The standard notation for the function F is,
F(xy)=P(x,y)i +Q(xy)]

F(xy,2)=P(xy,2)l +Q(x,v,2) T +R(x,v,2)k
depending on whether or not we’re in two or three dimensions. The function P, Q, R (if it is
present) are sometimes called scalar functions.

Let’s take a quick look at a couple of examples.

Example 1 Sketch each of the following vector fields.
@ F(x,y)=-yi+Xx] [Solution]
(b) F(x,y,z)=2xi -2y j-2xk [Solution]
Solution
@ F(xy)=-yi+x]

Okay, to graph the vector field we need to get some “values” of the function. This means
plugging in some points into the function. Here are a couple of evaluations.

=(11 1. 1.
Fl == |=—=1+—]
(2 2) 2 2

So, just what do these evaluations tell us? Well the first one tells us that at the point (%%) we

will plot the vector —£7 +4 J . Likewise, the third evaluation tells us that at the point (3,4) we

|

will plot the vector —41 +

[N][N)
—
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We can continue in this fashion plotting vectors for several points and we’ll get the following
sketch of the vector field.

If we want significantly more points plotted, then it is usually best to use a computer aided

graphing system such as Maple or Mathematica. Here is a sketch with many more vectors
included that was generated with Mathematica.

¥
f{,x‘ffﬁ_ﬁ*,g_mnx*-“\‘\‘\
//",{_’,_,__,_._-..-x..‘k“\‘\"\
’r_,z,/;_,__._._..-.-\-‘x.‘\.\\‘\
/}{_,____._-_\_"\_\\‘l_\
/4 Ir NN
f‘r;;l‘, _...-1-'!."1.
.I'i';"’"*‘ ..,i.\'-'l.".
J.Fi*" hl-'l!!t{i
'iIIJ*u_ 3 .JIF|1Tx
2 e bt 2
PR AN
LI B
A n n . A A
AN I FRV AN
,\\1\\‘.__._.-.-1}
\\\_\‘“__.____...r;ff.ff
\\\\HH___...-;.-F.:’I//
\\\\,_‘H,_‘__;_.__..L,-r.f.-'/‘f'/

[Return to Problems]

(b) F(Xy,2)=2xi -2y ]-2xk

In the case of three dimensional vector fields it is almost always better to use Maple

Mathematica, or some other such tool. Despite that let’s go ahead and do a couple of evaluations
anyway.

!

1-3,2)=2i +6] -2k
F(0,53)=-10]

Notice that z only affect the placement of the vector in this case and does not affect the direction
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or the magnitude of the vector. Sometimes this will happen so don’t get excited about it when it
does.

Here is a couple of sketches generated by Mathematica. The sketch on the left is from the “front”
and the sketch on the right is from “above”.

¥
a4 -2 0 2 4 4 5 0 -2 -4
B | S LA SRS 4 SRS Tk
R T CEN PRI,
4 ~TAE /f,‘rx’}}f ?q}"'i'{q -
ar ?%\ﬁx%rﬂ"‘k b e g Elg g
W _n} K o B A
QTR e s I\ i
zD“xﬂ: b\:;f{\"“fa_w,, : x 0ttt Ay
. . ﬁﬂ‘l {. \"\.\.
_z_ll . tﬂ.t\l\ 3 2
o o -
gl ¥ —4 7‘;;2{3_;
—4

[Return to Problems]

Now that we’ve seen a couple of vector fields let’s notice that we’ve already seen a vector field
function. In the second chapter we looked at the gradient vector. Recall that given a function
f (x,y,z) the gradient vector is defined by,

v =(f,,f,f,)

x? ty1 'z

This is a vector field and is often called a gradient vector field.

In these cases the function f (x, Y, z) is often called a scalar function to differentiate it from the
vector field.

Example 2 Find the gradient vector field of the following functions.
@ f(x,y)=x"sin(5y)
(b) f(xyz)=2

Solution
@ f(x y)=xsin(5y)

Note that we only gave the gradient vector definition for a three dimensional function, but don’t
forget that there is also a two dimension definition. All that we need to drop off the third
component of the vector.

Here is the gradient vector field for this function.
Vi = <2xsin (5y),5x? cos(5y)>
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(b) f(x,y,z)=2e"

There isn’t much to do here other than take the gradient.
Vi = <—yze‘xy,—xze‘xy,e‘xy>

Let’s do another example that will illustrate the relationship between the gradient vector field of a
function and its contours.

Example 3 Sketch the gradient vector field for f (x, y) =x* + y? as well as several contours

for this function.
Solution
Recall that the contours for a function are nothing more than curves defined by,

f(xy)=k
for various values of k. So, for our function the contours are defined by the equation,
2 2
X“+y =Kk

and so they are circles centered at the origin with radius \/E .

Here is the gradient vector field for this function.
Vi (xy)=2xi+2y]
Here is a sketch of several of the contours as well as the gradient vector field.
¥

N N N T T - A Y A A
R O O f—d A S
NN AN S S
T L N . T T [ N B S U
LT L T T T d A A A e
N Y Ry Ay A § P - N TR TR
I I I 1 I — L. ¥
AN e NRER
T LAt | A B S e
N A L T T T
e e T R i
DAV AP A S I R B T S T A LN
PP AN S S S L T
VAV B SN ot SR UL U U

Notice that the vectors of the vector field are all perpendicular (or orthogonal) to the contours.
This will always be the case when we are dealing with the contours of a function as well as its
gradient vector field.

The k’s we used for the graph above were 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, and 13.5. Now notice
that as we increased k by 1.5 the contour curves get closer together and that as the contour curves
get closer together the larger the vectors become. In other words, the closer the contour curves
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are (as k is increased by a fixed amount) the faster the function is changing at that point. Also
recall that the direction of fastest change for a function is given by the gradient vector at that
point. Therefore, it should make sense that the two ideas should match up as they do here.

The final topic of this section is that of conservative vector fields. A vector field F iscalleda
conservative vector field if there exists a function f suchthat F =Vf . If F isa conservative

vector field then the function, f, is called a potential function for F.

All this definition is saying is that a vector field is conservative if it is also a gradient vector field
for some function.

For instance the vector field F = yi+X] isaconservative vector field with a potential function
of f(x,y)=xy because Vf =(y,x).

On the other hand, F = —yi +x ] isnot a conservative vector field since there is no function f

suchthat F = Vf . If you’re not sure that you believe this at this point be patient, we will be able

to prove this in a couple of sections. In that section we will also show how to find the potential
function for a conservative vector field.
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Line Integrals - Part I

In this section we are now going to introduce a new kind of integral. However, before we do that
it is important to note that you will need to remember how to parameterize equations, or put
another way, you will need to be able to write down a set of parametric equations for a given
curve. You should have seen some of this in your Calculus Il course. If you need some review
you should go back and review some of the basics of parametric equations and curves.

Here are some of the more basic curves that we’ll need to know how to do as well as limits on the
parameter if they are required.

Curve Parametric Equations
Counter-Clockwise Clockwise
X—2+y—2—1 x =acos(t) x =acos(t)
a’ b’ y =bsin(t) y =-bsin(t)
(Ellipse)
0<t<2r 0<t<2r
Counter-Clockwise Clockwise
X2+ y2=r x=rcos(t) x=rcos(t)
(Circle) y=rsin(t) y=-rsin(t)
0<t<2r 0<t<2r
y = f (X) X=t
y="f(t)
x=g(y) x=g(t)

F(t)=(1-t)(X Yo Zo) +t (X, ¥,,2,) , 0<t<1

Line Segment From or

(%01 Y01 2) 10 (X, ¥;,2,)

(1=t) % +tx,
(I-t)y,+ty, , 0<t<1
(1-t)z,+tz,

X
y
z

With the final one we gave both the vector form of the equation as well as the parametric form
and if we need the two-dimensional version then we just drop the z components. In fact, we will
be using the two-dimensional version of this in this section.

For the ellipse and the circle we’ve given two parameterizations, one tracing out the curve
clockwise and the other counter-clockwise. As we’ll eventually see the direction that the curve is
traced out can, on occasion, change the answer. Also, both of these “start” on the positive x-axis

att=0.
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Now let’s move on to line integrals. In Calculus I we integrated f (x) , a function of a single

variable, over an interval [a, b] . In this case we were thinking of x as taking all the values in this

interval starting at a and ending at b. With line integrals we will start with integrating the
function f (x, y), a function of two variables, and the values of x and y that we’re going to use

will be the points, (x, y), that lie on a curve C. Note that this is different from the double

integrals that we were working with in the previous chapter where the points came out of some
two-dimensional region.

Let’s start with the curve C that the points come from. We will assume that the curve is smooth
(defined shortly) and is given by the parametric equations,

x=h(t) y=9(t) a<t<b

We will often want to write the parameterization of the curve as a vector function. In this case
the curve is given by,

F(t)=h(t)i+g(t)] a<t<b

The curve is called smooth if F'(t) is continuous and F'(t) =0 for all t.

The line integral of f (x, y) along C is denoted by,
I f(x y)ds

C

We use a ds here to acknowledge the fact that we are moving along the curve, C, instead of the x-
axis (denoted by dx) or the y-axis (denoted by dy). Because of the ds this is sometimes called the
line integral of f with respect to arc length.

We’ve seen the notation ds before. If you recall from Calculus Il when we looked at the arc
length of a curve given by parametric equations we found it to be,

2 2
L:J.bds, where ds=|[ %] (Y] gt
a dt dt

It is no coincidence that we use ds for both of these problems. The ds is the same for both the arc
length integral and the notation for the line integral.

So, to compute a line integral we will convert everything over to the parametric equations. The

line integral is then,
Jrx y)ds:Jbf(h(t),g(t))\/(‘;—sz{‘;—{jz it

a

Don’t forget to plug the parametric equations into the function as well.

If we use the vector form of the parameterization we can simplify the notation up somewhat by
noticing that,
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IBEGEI

F'(t)” is the magnitude or norm of F'(t). Using this notation the line integral becomes,

where

r(t)]dt

[f(xy)ds=]t(n(t).g(t))]

C

Note that as long as the parameterization of the curve C is traced out exactly once as t increases
from a to b the value of the line integral will be independent of the parameterization of the curve.

Let’s take a look at an example of a line integral.

Example 1 Evaluate IxyA ds where C is the right half of the circle, x> + y* =16 rotated in the
C

counter clockwise direction.

Solution
We first need a parameterization of the circle. This is given by,
X = 4cost y =4sint
We now need a range of t’s that will give the right half of the circle. The following range of t’s
will do this.

|
NN
IA
IA
NN

Now, we need the derivatives of the parametric equations and let’s compute ds.

%:—4sint ﬂ=4cost
dt dt

ds =+/16sin?t +16cos?t dt = 4dt

The line integral is then,
_[xy“ ds = J‘j/z24cost(4sin t)4 (4)dt
C

:4096.[j[//22cost sin® tdt

s

2

_ 809 sy
5

N

Next we need to talk about line integrals over piecewise smooth curves. A piecewise smooth
curve is any curve that can be written as the union of a finite number of smooth curves, C,,...,C,
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where the end point of C; is the starting point of C;,;. Below is an illustration of a piecewise
smooth curve.

-z
C3
W
Cﬂ
—] (:"1
X

Evaluation of line integrals over piecewise smooth curves is a relatively simple thing to do. All
we do is evaluate the line integral over each of the pieces and then add them up. The line integral
for some function over the above piecewise curve would be,

jf(x, y)ds:j f(x, y)ds+j f(x, y)ds+_[ f(x, y)ds+j f(xy)ds

o (o) C, o C,

Let’s see an example of this.

Example 2 Evaluate J-4x3 ds where C is the curve shown below.
C

¥

-

1= Chox=1
| | - | ©
-2 -1 A 2

’HC: =x'-1
iy =-1 ,/"‘r 2

. - . —

Solution
So, first we need to parameterize each of the curves.
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C, : x=t y=-1, -2<t<0
C,: x=t,y=t*-1 0<t<1
C,: x=1 y=t, 0<t<2

Now let’s do the line integral over each of these curves.

Cj4x3 ds=[" at\(1) +(0) dt=[ atdt=t =-16
cj 4x*ds = j:4t3, [(0)F +(3t2) ot

= [CatVLr ot ot
1(2 3
== = |(1+09t*)2
s3)ey
[axds=["a(1)’ ()" +(1) dt=] 4dt=8
Cs

Finally, the line integral that we were asked to compute is,
_[4x3ds: _[4x3ds+j4x3ds+f4x3ds
C C, C, C;
=-16+2.268+38
=—5.732

1

2 3
=—|102-1|=2.268
27

Notice that we put direction arrows on the curve in the above example. The direction of motion
along a curve may change the value of the line integral as we will see in the next section. Also

note that the curve can be thought of a curve that takes us from the point (—2, —1) to the point

(1, 2) . Let’s first see what happens to the line integral if we change the path between these two
points.

Example 3 Evaluate I4x3 ds where C is the line segment from (—2,-1) to (1,2).
C

Solution
From the parameterization formulas at the start of this section we know that the line segment

starting at (—2,—1) and ending at (1,2) is given by,
F(t)=(1-t)(-2,-1)+t(1,2)
=(-2+3t,-1+3t)

for 0<t<1. This means that the individual parametric equations are,
X=-2+3t y=-1+3t
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Using this path the line integral is,

J.4x3 ds = I:4(—2+3t)3 J9+9dt
=1242(%)(-2+3t)"
=12\/§(—g]

=152 =-21.213

1
0

When doing these integrals don’t forget simple Calc | substitutions to avoid having to do things
like cubing out a term. Cubing it out is not that difficult, but it is more work than a simple
substitution.

So, the previous two examples seem to suggest that if we change the path between two points
then the value of the line integral (with respect to arc length) will change. While this will happen
fairly regularly we can’t assume that it will always happen. In a later section we will investigate
this idea in more detail.

Next, let’s see what happens if we change the direction of a path.

Example 4 Evaluate J-4x3 ds where C is the line segment from (1,2) to (-2,-1).
C

Solution
This one isn’t much different, work wise, from the previous example. Here is the

parameterization of the curve.
F(t)=(1-t)(L2)+t(-2,-1)
=(1-3t,2-3t)

for 0 <t <1. Remember that we are switching the direction of the curve and this will also
change the parameterization so we can make sure that we start/end at the proper point.

Here is the line integral.

[axtds=] 4(1-3t)' Vo +9at
=12v2(-4)(1-3t)*

5

zlzﬁ(—zJ

=152 =-21.213

1
0

So, it looks like when we switch the direction of the curve the line integral (with respect to arc
length) will not change. This will always be true for these kinds of line integrals. However, there
are other kinds of line integrals in which this won’t be the case. We will see more examples of
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this in the next couple of sections so don’t get it into your head that changing the direction will
never change the value of the line integral.

Before working another example let’s formalize this idea up somewhat. Let’s suppose that the
curve C has the parameterization X = h(t) , ¥Y=0 (t) . Let’s also suppose that the initial point

on the curve is A and the final point on the curve is B. The parameterization x =h(t), y=g(t)

will then determine an orientation for the curve where the positive direction is the direction that
is traced out as t increases. Finally, let —C be the curve with the same points as C, however in
this case the curve has B as the initial point and A as the final point, again t is increasing as we
traverse this curve. In other words, given a curve C, the curve —C is the same curve as C except
the direction has been reversed.

We then have the following fact about line integrals with respect to arc length.

Fact

jf(x, y)ds = I f(x y)ds

C —-C

So, for a line integral with respect to arc length we can change the direction of the curve and not
change the value of the integral. This is a useful fact to remember as some line integrals will be
easier in one direction than the other.

Now, let’s work another example

Example 5 Evaluate jxds for each of the following curves.
C

(@ C,:y=x", —1<x<1 [Solution]
(b) C,: The line segment from (—1,1) to (1,1). [Solution]
(¢) C,: The line segment from (1,1) to (—1,1). [Solution]

Solution
Before working any of these line integrals let’s notice that all of these curves are paths that

connect the points (—1,1) and (1,1) . Also notice that C, = —C, and so by the fact above these
two should give the same answer.

Here is a sketch of the three curves and note that the curves illustrating C, and C, have been

separated a little to show that they are separate curves in some way even though they are the same
line.
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¥
= S — p
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04k
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\ 02k /”
| | ..___\____ - _.-"" | | .
-1 -05 0. 0.3 .
(@ C:y=x", -1<x<1
Here is a parameterization for this curve.
C:x=t, y=t} -1<t<1
Here is the line integral.
3 1

ixds = [ et o= é(u 42)2| =0

-1
[Return to Problems]

(b) C,: The line segment from (-1,1) to (1,1).

There are two parameterizations that we could use here for this curve. The first is to use the
formula we used in the previous couple of examples. That parameterization is,

C,:T(t)=(1-t){(-11)+t(11)
=(2t-11)
for 0<t<1.

Sometimes we have no choice but to use this parameterization. However, in this case there is a
second (probably) easier parameterization. The second one uses the fact that we are really just
graphing a portion of the line y =1. Using this the parameterization is,

C,:x=t,y=1 -1<t<1

This will be a much easier parameterization to use so we will use this. Here is the line integral
for this curve.
1

=0

1
C{xds=JlltJH_Odt:Et2

Note that this time, unlike the line integral we worked with in Examples 2, 3, and 4 we got the
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same value for the integral despite the fact that the path is different. This will happen on
occasion. We should also not expect this integral to be the same for all paths between these two
points. At this point all we know is that for these two paths the line integral will have the same
value. It is completely possible that there is another path between these two points that will give
a different value for the line integral.

[Return to Problems]

(¢) C,: The line segment from (1,1) to (-1,1).

Now, according to our fact above we really don’t need to do anything here since we know that
C, =-C,. The fact tells us that this line integral should be the same as the second part (i.e.

zero). However, let’s verify that, plus there is a point we need to make here about the
parameterization.

Here is the parameterization for this curve.
C,:F(t)=(1-t)(L1)+t(-11)
=(1-2t,1)
for 0<t<1.

Note that this time we can’t use the second parameterization that we used in part (b) since we
need to move from right to left as the parameter increases and the second parameterization used
in the previous part will move in the opposite direction.

Here is the line integral for this curve.

szds :I:(l—Zt)«/mdt = z(t_tz)E _0

Sure enough we got the same answer as the second part.
[Return to Problems]

To this point in this section we’ve only looked at line integrals over a two-dimensional curve.
However, there is no reason to restrict ourselves like that. We can do line integrals over three-
dimensional curves as well.

Let’s suppose that the three-dimensional curve C is given by the parameterization,
x=x(t), y=y(t) z=1(t) a<t<b
then the line integral is given by,

Jin y,z)ds:Jb f (x(t),y(t),z(t))\/(%jz+(%j2+(%jz it

a

Note that often when dealing with three-dimensional space the parameterization will be given as a

vector function.
F(t)=(x(1), y(t)2(1))
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Notice that we changed up the notation for the parameterization a little. Since we rarely use the
function names we simply kept the x, y, and z and added on the (t) part to denote that they may

be functions of the parameter.

Also notice that, as with two-dimensional curves, we have,

CRCRSR

and the line integral can again be written as,

F(t)

[ £y, z)ds=["f (x(t), y(t), 2(t)) [ (t)]ct

(03

So, outside of the addition of a third parametric equation line integrals in three-dimensional space
work the same as those in two-dimensional space. Let’s work a quick example.

Example 6 Evaluate jxyz ds where C is the helix given by, F(t)= <cos(t),sin (t),3t> ,
C
0<t<4r.

Solution
Note that we first saw the vector equation for a helix back in the Vector Functions section. Here

is a quick sketch of the helix.
=
C‘ i

Here is the line integral.
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J.xyz ds = .[04”3t cos(t)sin(t)\/sinzt+coszt+9 dt
C

:J4”3t(%sin(2t)j\/1+_9dt

0
310 por,
:TJ'O tsin(2t)dt

=@[%sin(2t)—%cos(2t)}

2—3\/E7[

You were able to do that integral right? It required integration by parts.

Ar

0

So, as we can see there really isn’t too much difference between two- and three-dimensional line
integrals.

© 2007 Paul Dawkins 219 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

Line Integrals - Part I1

In the previous section we looked at line integrals with respect to arc length. In this section we
want to look at line integrals with respect to x and/or y.

As with the last section we will start with a two-dimensional curve C with parameterization,
x=x(t) y=y(t) a<t<b

The line integral of f with respect to x is,

[ £ (xy)dx=]"f(x(t).y(t))x(t)dt

C

The line integral of f with respect to y is,

[ £ (xy)dy=["f(x(t),y(t)y'(t)t

C

Note that the only notational difference between these two and the line integral with respect to arc
length (from the previous section) is the differential. These have a dx or dy while the line integral
with respect to arc length has a ds. So when evaluating line integrals be careful to first note
which differential you’ve got so you don’t work the wrong kind of line integral.

These two integral often appear together and so we have the following shorthand notation for
these cases.

Ide+Qdy:IP(x, y)dx+_fQ(x, y)dy

Let’s take a quick look at an example of this kind of line integral.

Example 1 Evaluate jsin (7y)dy+ yx* dx where C is the line segment from (0,2) to (1,4).
C

Solution
Here is the parameterization of the curve.

F(t)=(1-1)(0,2)+t(1,4) =(t,2+2t) 0<t<1

The line integral is,
Jsin (y)dy+yx* dx = Isin (zy)dy +jyx2 dx
C C C

=jolsin(ﬁ(2+2t))(2)dt+J:(2+2t)(t)2 (1)t

1 1
= —£C03(27[+27Zt) +(gt3 +1t4j
, 3 2

T

0

’
6
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In the previous section we saw that changing the direction of the curve for a line integral with
respect to arc length doesn’t change the value of the integral. Let’s see what happens with line
integrals with respect to x and/or y.

Example 2 Evaluate Isin (7y)dy+ yx* dx where C is the line segment from (1,4) to (0,2).
C

Solution
So, we simply changed the direction of the curve. Here is the new parameterization.

F(t)=(1-t)(1,4)+t(0,2)=(1-t,4-2t) 0<t<1

The line integral in this case is,
Isin(ﬁy)dy+ yx? dx = _[sin(;:y)dy +I yx? dx
C C C

= [ sin(z (4-2t))(-2)dt+ [ (4-2t)(1-t)" (-D)at

1 1

1
= —=cos(4z —2xt
ﬂ_COS(ﬂ' 7t)

—(—it“ B s +4tj
2 3

0 0

So, switching the direction of the curve got us a different value or at least the opposite sign of the
value from the first example. In fact this will always happen with these kinds of line integrals.

Fact

If C is any curve then,
j f(x,y)dx:—ff(x,y)dx and J f(x,y)dy:—jf(x,y)dy
—© C -C C

With the combined form of these two integrals we get,
I Pdx+Qdy = —j Pdx+Qdy
—C ©

We can also do these integrals over three-dimensional curves as well. In this case we will pick up
a third integral (with respect to z) and the three integrals will be.

[ £ (xy.z)de= [ (x(t), y (1), 2(t) X ()t

C

[ £ (xy.2)dy=[f(x(t) y(t).2(t) y'(t)ct

C

[ f(xy.2)dz=["F (x(t), y(t), 2(t))Z(t)ct

Cc
where the curve C is parameterized by
x=x(t) y=y(t) z=1(t) a<t<b
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As with the two-dimensional version these three will often occur together so the shorthand we’ll
be using here is,

Jde+Qdy+Rdz =IP(X, y,z)dx+jQ(x, y,z)dy+IR(x, y,z)dz

Let’s work an example.

Example 3 Evaluate jydx+ xdy +zdz where C is given by X =cost, y=sint, z=t?,
C

0<t<2r.

Solution

So, we already have the curve parameterized so there really isn’t much to do other than evaluate
the integral.

jydx+xdy+zdz :Jydx+jxdy+jzdz

C C C C
:j;”sint(—sint)dt+I02”cost(cost)dt+j02”t2 (2t)dt
=—[ "sin*tdt+ [ " cos’tat+ [ "2t at
- _%joz”(l—cos(Zt))dt+%j02”(1+ cos(2t))dt+ [ "2t it

= [—%(t —%sin (2t)j+%(t +%sin (2t)j+%t4j )

=8r*

0
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Line Integrals of Vector Fields

In the previous two sections we looked at line integrals of functions. In this section we are going
to evaluate line integrals of vector fields. We’ll start with the vector field,

F(xv,2)=P(xy,2)i +Q(x,y,2) J+R(x,y,2)k
and the three-dimensional, smooth curve given by

F(t)=x(t)i +y(t)j+z(t)k ast<b

The line integral of F along C is

[Fear = [T (r (t))-F (1)t

Note the notation in the left side. That really is a dot product of the vector field and the
differential really is a vector. Also, F (F(t)) is a shorthand for,

F(7(1)=F (x(®),y(1).2(1))

We can also write line integrals of vector fields as a line integral with respect to arc length as
follows,

jﬁ-dr:jﬁ-fds
C C

where f(t) is the unit tangent vector and is given by,

P
T

If we use our knowledge on how to compute line integrals with respect to arc length we can see
that this second form is equivalent to the first form given above.

[FedP=[F.Tds
C Cc

In general we use the first form to compute these line integral as it is usually much easier to use.
Let’s take a look at a couple of examples.
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Example 1 Evaluate Iif-d I where F(X,y,2)=8x"yzi +5z ] —4xyk and C s the curve
C
givenby T (t)=ti +t* J+t°k, 0<t<1.

Solution
Okay, we first need the vector field evaluated along the curve.

F(7(t))=8t"(t")(t*)i +5t> j-4t(t*)k =8t" i +5t° - 4t°Kk

Next we need the derivative of the parameterization.
F(t)=7+2tj+3t°k

Finally, let’s get the dot product taken care of.
F(F(t))r(t)=8t" +10t* —12t°

The line integral is then,

!ﬁ d *=j018t7 +10t* —12t5 dt
:(t +2t° - )|
-1

Example 2 Evaluate I Fed T where F(x,y,z)=xzi -yzk and Cis the line segment from
(~1,2,0) and (3,0,1).

Solution

We’ll first need the parameterization of the line segment. We saw how to get the
parameterization of line segments in the first section on line integrals. We’ve been using the two
dimensional version of this over the last couple of sections. Here is the parameterization for the

" F(t)=(1-1)(-1,2,0)+t(3,0,1)
=(4t-1,2-2t,t), 0<t<1

So, let’s get the vector field evaluated along the curve.

F(F(t))=(4t-1)(t) —(2-2t)(t)k

=(4t* —t)T —(2t-2t*)k

Now we need the derivative of the parameterization.

F(t)=(4,-2,1)

The dot product is then,
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F(7(t))r(t)=4(4t* -t)—(2t—2t*) =18t* — 6t

The line integral becomes,
jlf-d j 18t? — 6t dt
C

= (6t° —3t2)|
-3

1
0

Let’s close this section out by doing one of these in general to get a nice relationship between line
integrals of vector fields and line integrals with respect to x, y, and z.

Given the vector field F(X,y,z)=P7 +Q j+RK and the curve C parameterized by

F(t)=x(t)i +y(t)J+z(t)k, a<t<b theline integral is,

'—n

I (PI +Qj +Rk) (x'T+y’T+z’IZ)dt
:J. Px"+Qy'+ Rz'dt

:J- Px dt+'|.be'dt+jsz'dt

So, we see that,

jlf-d F:dex+Qdy+ Rdz
©

C

Note that this gives us another method for evaluating line integrals of vector fields.

This also allows us to say the following about reversing the direction of the path with line
integrals of vector fields.

Fact

J’ ﬁ-dr:-jlf-dr
-C C

This should make some sense given that we know that this is true for line integrals with respect to

X, Yy, and/or z and that line integrals of vector fields can be defined in terms of line integrals with
respect to x, y, and z.
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Fundamental Theorem for Line Integrals

In Calculus | we had the Fundamental Theorem of Calculus that told us how to evaluate definite
integrals. This told us,

j:F'(x)dx:F(b)—F(a)

It turns out that there is a version of this for line integrals over certain kinds of vector fields. Here
itis.

Theorem

Suppose that C is a smooth curve given by F(t), a<t<b. Also suppose that f is a function
whose gradient vector, VT , is continuous on C. Then,

in-d F=f(r(b)-f(F(a))

Note that f(a) represents the initial point on C while F(b) represents the final point on C.

Also, we did not specify the number of variables for the function since it is really immaterial to
the theorem. The theorem will hold regardless of the number of variables in the function.

Proof

This is a fairly straight forward proof.

For the purposes of the proof we’ll assume that we’re working in three dimensions, but it can be
done in any dimension.

Let’s start by just computing the line integral.
— b — =/
lw «d 7 = [ V(7 (1)) (t)dt

b
([ ot dy ot dz)
ox dt oy dt oz dt

a

Now, at this point we can use the Chain Rule to simplify the integrand as follows,

b
[viedr= (ﬂ%+ﬂﬂ+iﬁjdt
2 ox dt oy dt oz dt

I

To finish this off we just need to use the Fundamental Theorem of Calculus for single integrals.

lVf-d r=f(F(b))-f(F(a))
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Let’s take a quick look at an example of using this theorem.

Example 1 Evaluate ij «d F where f(x,y,z)=cos(zx)+sin(zy)—xyz and C is any
C

path that starts at (1,4,2) and ends at (2,1,-1).

12
Solution
First let’s notice that we didn’t specify the path for getting from the first point to the second point.

The reason for this is simple. The theorem above tells us that all we need are the initial and final
points on the curve in order to evaluate this kind of line integral.

So, let F(t), a<t<b be any path that starts at (1,4,2) and ends at (2,1,—1). Then,

r(a) =<1,%,2> F(b)=(21-1)
The integral is then,

[viedr=f(21-1)-f (1,%,2)

= cos(2;r)+sin7z—2(1)(—1)—(c057r+sin(%j—1(%)(2)]
=4

Notice that we also didn’t need the gradient vector to actually do this line integral. However, for
the practice of finding gradient vectors here it is,

Vf =(-zsin(zx)-yz,zcos(zy)—-xz,~xy)

The most important idea to get from this example is not how to do the integral as that’s pretty
simple, all we do is plug the final point and initial point into the function and subtract the two
results. The important idea from this example (and hence about the Fundamental Theorem of
Calculus) is that, for these kinds of line integrals, we didn’t really need to know the path to get
the answer. In other words, we could use any path we want and we’ll always get the same results.

In the first section on line integrals (even though we weren’t looking at vector fields) we saw that
often when we change the path we will change the value of the line integral. We now have a type
of line integral for which we know that changing the path will NOT change the value of the line
integral.

Let’s formalize this idea up a little. Here are some definitions. The first one we’ve already seen
before, but it’s been a while and it’s important in this section so we’ll give it again. The
remaining definitions are new.

Definitions

First suppose that F is a continuous vector field in some domain D.
1. F isaconservative vector field if there is a function f such that F = Vf . The function

f is called a potential function for the vector field. We first saw this definition in the
first section of this chapter.
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2. Ilf-d I is independent of path if Ilf-d r= I Fed T forany two paths C, and C, in
Cc G G,
D with the same initial and final points.

3. Anpath Cis called closed if its initial and final points are the same point. For example a
circle is a closed path.

4. A path Cis simple if it doesn’t cross itself. A circle is a simple curve while a figure 8
type curve is not simple.

5. Arregion D is open if it doesn’t contain any of its boundary points.

6. A region D is connected if we can connect any two points in the region with a path that
lies completely in D.

7. Aregion D is simply-connected if it is connected and it contains no holes. We won’t
need this one until the next section, but it fits in with all the other definitions given here
so this was a natural place to put the definition.

With these definitions we can now give some nice facts.

Facts

1. IVf-d I is independent of path.
Cc

This is easy enough to prove since all we need to do is look at the theorem above. The
theorem tells us that in order to evaluate this integral all we need are the initial and final
points of the curve. This in turn tells us that the line integral must be independent of path.

2. If F isaconservative vector field then jlf-d r is independent of path.
C

This fact is also easy enough to prove. | F is conservative then it has a potential function, f,

f

and so the line integral becomes J.If-d r= IVf «d I. Then using the first fact we know that
© C

this line integral must be independent of path.

3. If F isacontinuous vector field on an open connected region D and ifJ- FedT is
C

independent of path (for any path in D) then F is a conservative vector field on D.

4. If Ilf-d r is independent of path then jlf-d r =0 for every closed path C.
Cc c
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5 |If Ilf-d r =0 for every closed path C then _[If-d I is independent of path.
c C

These are some nice facts to remember as we work with line integrals over vector fields. Also
notice that 2 & 3 and 4 & 5 are converses of each other.
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Conservative Vector Fields

In the previous section we saw that if we knew that the vector field F was conservative then

j Fed F was independent of path. This in turn means that we can easily evaluate this line
C

integral provided we can find a potential function for F.

In this section we want to look at two questions. First, given a vector field F is there any way of

determining if it is a conservative vector field? Secondly, if we know that F is a conservative
vector field how do we go about finding a potential function for the vector field?

The first question is easy to answer at this point if we have a two-dimensional vector field. For
higher dimensional vector fields we’ll need to wait until the final section in this chapter to answer
this question. With that being said let’s see how we do it for two-dimensional vector fields.

Theorem

Let F=Pi + Q] be a vector field on an open and simply-connected region D. Then if P and Q
have continuous first order partial derivatives in D and
ok _R

oy  ox

the vector field F is conservative.

Let’s take a look at a couple of examples.

Example 1 Determine if the following vector fields are conservative or not.

@ F(xy)= (x2 - yx)T +(y2 - xy) j [Solution]

(b) F(x, y)=(2xeXy +x2yexy)iﬁ+(x3eXy +2y)J [Solution]

Solution
Okay, there really isn’t too much to these. All we do is identify P and Q then take a couple of
derivatives and compare the results.

(@ F(xy)=(x"—yx)i +(y* = xy) ]

In this case here is P and Q and the appropriate partial derivatives.

P=x"-yx P _x
oy
0
Q=y" —xy Dy
OX

So, since the two partial derivatives are not the same this vector field is NOT conservative.
[Return to Problems]
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(b) F(x,y)= (2xeXy + xzyexy)iﬁr(x%Xy +2y) ]

Here is P and Q as well as the appropriate derivatives.

oP
P=2xe +x*ye? — =2x%"Y +x%Y + x’ye” =3x%” + x’ye¥
0
Q=x%"+2y 8_Q =3x%eY + xye”
X

The two partial derivatives are equal and so this is a conservative vector field.
[Return to Problems]

Now that we know how to identify if a two-dimensional vector field is conservative we need to
address how to find a potential function for the vector field. This is actually a fairly simple
process. First, let’s assume that the vector field is conservative and so we know that a potential

function, f (X, y) exists. We can then say that,

Or by setting components equal we have,

a P and ﬂ:Q

o oy

By integrating each of these with respect to the appropriate variable we can arrive at the
following two equations.

f(x,y)sz(x,y)dx or f(x,y):JQ(x,y)dy

We saw this kind of integral briefly at the end of the section on iterated integrals in the previous
chapter.

It is usually best to see how we use these two facts to find a potential function in an example or
two.
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Example 2 Determine if the following vector fields are conservative and find a potential
function for the vector field if it is conservative.

(@) F=(2x°y" +x)T+(2x"y*+y)] [Solution]

(b) F(xy)=(2xe” +x*ye¥ ) +(x%" +2y)] [Solution]
Solution
@ F=(20y +x)i+(20'y'+y)
Let’s first identify P and Q and then check that the vector field is conservative..

oP
P=2x%"+x — =8x%y?
oy
Q=2x'y’+y @:8x3y3
OX

So, the vector field is conservative. Now let’s find the potential function. From the first fact
above we know that,

i:2x3y“+x ﬂzzx“yuy
OX oy
From these we can see that
f(X, y>:j2x3y4+xdx or f(x’y):'[2x4y3+ydy

We can use either of these to get the process started. Recall that we are going to have to be
careful with the “constant of integration” which ever integral we choose to use. For this example
let’s work with the first integral and so that means that we are asking what function did we
differentiate with respect to x to get the integrand. This means that the “constant of integration”
is going to have to be a function of y since any function consisting only of y and/or constants will
differentiate to zero when taking the partial derivative with respect to x.

Here is the first integral.
f(x,y):J.2x3y4+xdx
1 a1
==Xy +=x"+h
XV )

where h(y) is the “constant of integration”.

We now need to determine h(y) . This is easier that it might at first appear to be. To get to this

point we’ve used the fact that we knew P, but we will also need to use the fact that we know Q to
complete the problem. Recall that Q is really the derivative of f with respect to y. So, if we
differentiate our function with respect to y we know what it should be.

So, let’s differentiate f (including the h(y)) with respect to y and set it equal to Q since that is
what the derivative is supposed to be.
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%:2x4y3+h’(y):2x4y3+ y=Q

From this we can see that,
h(y)=y
Notice that since h'(y) is a function only of y so if there are any x’s in the equation at this point

we will know that we’ve made a mistake. At this point finding h(y) is simple.
1
h(y)=|h'(y)dy=[ydy==y*+c
(y)=[n(y)dy=]ydy 5V

So, putting this all together we can see that a potential function for the vector field is,

f(x, y):%x4y4+%x2+%y2 +C

Note that we can always check our work by verifying that Vf = F . Also note that because the ¢

can be anything there are an infinite number of possible potential functions, although they will
only vary by an additive constant.
[Return to Problems]

(b) F(x,y)= (2xeXy + xzye"y)iﬁnt(x‘q’exy +ZY) ]

Okay, this one will go a lot faster since we don’t need to go through as much explanation. We’ve
already verified that this vector field is conservative in the first set of examples so we won’t
bother redoing that.

Let’s start with the following,

a_ 2xe” + x*ye" % =x%Y +2y
This means that we can do either of the following integrals,
f(x, y)=j2xe"y+x2yeXy dx or f (X, y)=Ix3exy+2ydy

While we can do either of these the first integral would be somewhat unpleasant as we would
need to do integration by parts on each portion. On the other hand the second integral is fairly
simple since the second term only involves y’s and the first term can be done with the substitution
U =Xy . So, from the second integral we get,

f(x,y)=x%"+y*+h(x)

Notice that this time the “constant of integration” will be a function of x. If we differentiate this
with respect to x and set equal to P we get,

(;i =2xe”¥ +x’ye¥ +h'(x) =2xe™ + x’ye? =P
X

So, in this case it looks like,
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So, in this case the “constant of integration” really was a constant. Sometimes this will happen
and sometimes it won’t.

Here is the potential function for this vector field.
f(x,y)=x%"+y*+c
[Return to Problems]

Now, as noted above we don’t have a way (yet) of determining if a three-dimensional vector field
is conservative or not. However, if we are given that a three-dimensional vector field is
conservative finding a potential function is similar to the above process, although the work will
be a little more involved.

In this case we will use the fact that,
Vf:ﬂiq+ﬁ]+ﬂIZ:Piq+QJ7+RIZ=IE
ox oy 0z

Let’s take a quick look at an example.

Example 3 Find a potential function for the vector field,
F=2xy°z* T +3x%y2z* j +4x2y°2°k

Solution

Okay, we’ll start off with the following equalities.
ﬁ:ZXyBZ4 i:?,xzyzz4 i:4x2y3z3
OX oy 0z

To get started we can integrate the first one with respect to x, the second one with respect to y, or
the third one with respect to z. Let’s integrate the first one with respect to x.

f(x,y,2)= I2xy3z4 dx =x*y°z* +g(y,2)

Note that this time the “constant of integration” will be a function of both y and z since
differentiating anything of that form with respect to x will differentiate to zero.

Now, we can differentiate this with respect to y and set it equal to Q. Doing this gives,

2,24 2,24

%:3x y’z*+g,(y,2)=3x"y*2" =Q

Of course we’ll need to take the partial derivative of the constant of integration since it is a
function of two variables. It looks like we’ve now got the following,

9,(y.2)=0 = 9(y.2)=h(z)
Since differentiating g (y,z) with respect to y gives zero then g('y,z) could at most be a
function of z. This means that we now know the potential function must be in the following form.
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f(x.y.2)=xy’z*+h(z)
To finish this out all we need to do is differentiate with respect to z and set the result equal to R.

%=4x2y3z3+h’(z):4x2y3z3 =R
z

So,

The potential function for this vector field is then,
f(xy,2)=x"yz"+c

Note that to keep the work to a minimum we used a fairly simple potential function for this
example. It might have been possible to guess what the potential function was based simply on
the vector field. However, we should be careful to remember that this usually won’t be the case
and often this process is required.

Also, there were several other paths that we could have taken to find the potential function. Each
would have gotten us the same result.

Let’s work one more slightly (and only slightly) more complicated example.

Example 4 Find a potential function for the vector field,
F =(2xcos(y)-22°)i +(3+2ye* - x’sin(y)) j +(y’e* -6xz” )k

Solution

Here are the equalities for this vector field.
ﬂ:2xcos(y)—223 ﬂ:3+2yez—xzsin(y) ﬂ:y2e2—6xz2
OX oy oz

For this example let’s integrate the third one with respect to z.
f(xy,2) :J‘yzeZ —6xz°dz=y%* -2x2°+9g(x,y)

The “constant of integration” for this integration will be a function of both x and y.

Now, we can differentiate this with respect to x and set it equal to P. Doing this gives,

g:—223+gx(x, y)=2xcos(y)-2z°=P
X

So, it looks like we’ve now got the following,
g, (X, y)=2xcos(y) = g(x y)=x*cos(y)+h(y)

The potential function for this problem is then,
f(x,y,2)=y%*-2xz> +x*cos(y)+h(y)
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To finish this out all we need to do is differentiate with respect to y and set the result equal to Q.

%:zyez —x2sin(y)+h'(y)=3+2ye* —x*sin(y)=Q
So,
h!(y):3 = h(y):3y+c

The potential function for this vector field is then,
f(x y,z)=y%"—2xz> +x*cos(y)+3y+c

So, a little more complicated than the others and there are again many different paths that we
could have taken to get the answer.

We need to work one final example in this section.

Example 5 Evaluate jlf-d r where F = (2x3y4 + x)iﬁ+(2x“y3 + y)] and C is given by
C

f(t)=(tcos(7rt)—1)7+sin(%t)T, 0<t<1.

Solution
Now, we could use the techniques we discussed when we first looked at line integrals of vector
fields however that would be particularly unpleasant solution.

Instead, let’s take advantage of the fact that we know from Example 2a above this vector field is
conservative and that a potential function for the vector field is,

f(x, y):%x“y“+%x2+%y2 +C

Using this we know that integral must be independent of path and so all we need to do is use the
theorem from the previous section to do the evaluation.

iﬁﬂf=£V“df=f(F@»—f(”O»

where,

r)=(-21) r(0)=(-10)

So, the integral is,
[Fed7=f(-21)-f(-10)
C

© 2007 Paul Dawkins 236 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

Green’s Theorem

In this section we are going to investigate the relationship between certain kinds of line integrals
(on closed paths) and double integrals.

Let’s start off with a simple (recall that this means that it doesn’t cross itself) closed curve C and
let D be the region enclosed by the curve. Here is a sketch of such a curve and region.

C
Y

First, notice that because the curve is simple and closed there are no holes in the region D. Also
notice that a direction has been put on the curve. We will use the convention here that the curve
C has a positive orientation if it is traced out in a counter-clockwise direction. Another way to
think of a positive orientation (that will cover much more general curves as well see later) is that
as we traverse the path following the positive orientation the region D must always be on the left.

Given curves/regions such as this we have the following theorem.

Green’s Theorem

Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region
enclosed by the curve. If P and Q have continuous first order partial derivatives on D then,

dex+Qdy:JJ(Z—S—%jdA

Before working some examples there are some alternate notations that we need to acknowledge.
When working with a line integral in which the path satisfies the condition of Green’s Theorem
we will often denote the line integral as,

cﬁde+Qdy or gSPdXJery

C C
Both of these notations do assume that C satisfies the conditions of Green’s Theorem so be
careful in using them.

Also, sometimes the curve C is not thought of as a separate curve but instead as the boundary of
some region D and in these cases you may see C denoted as oD .

Let’s work a couple of examples.
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Example 1 Use Green’s Theorem to evaluate §f>xy dx + x*y® dy where C is the triangle with
C

vertices (0,0), (1,0), (1,2) with positive orientation.

Solution
Let’s first sketch C and D for this case to make sure that the conditions of Green’s Theorem are
met for C and will need the sketch of D to evaluate the double integral.

¥
Ik
F
y=2x
1L
F 3
0 | _— 1 . 1 ¥
0. n2 0.4 0a ne 1.

So, the curve does satisfy the conditions of Green’s Theorem and we can see that the following
inequalities will define the region enclosed.

0<x<1 0<y<2x

We can identify P and Q from the line integral. Here they are.
P=xy Q=x%y*

So, using Green’s Theorem the line integral becomes,
c_[>xydx+ x2y® dy = ﬂny3 —xdA
Cc D

1.2x 3
:f I 2Xxy” — x dy dx
ov0

1 2x
Jfpw
. 2

dx
1
= IOSXS —2x? dx

0
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Example 2 Evaluate cﬁ y* dx — x*dy where C is the positively oriented circle of radius 2
Cc
centered at the origin.

Solution
Okay, a circle will satisfy the conditions of Green’s Theorem since it is closed and simple and so
there really isn’t a reason to sketch it.

Let’s first identify P and Q from the line integral.
P= y3 Q= —x®

Be careful with the minus sign on Q!

Now, using Green’s theorem on the line integral gives,
gS y dx—x3dy = '|.J.—3x2 —-3y*dA
C D

where D is a disk of radius 2 centered at the origin.

Since D is a disk it seems like the best way to do this integral is to use polar coordinates. Here is
the evaluation of the integral.

cﬁy3 dx—x°dy = —BH(X2 + yz)dA
C D

27
:-3]0 4d0
=—-24r

So, Green’s theorem, as stated, will not work on regions that have holes in them. However, many
regions do have holes in them. So, let’s see how we can deal with those kinds of regions.

Let’s start with the following region. Even though this region doesn’t have any holes in it the

arguments that we’re going to go through will be similar to those that we’d need for regions with
holes in them, except it will be a little easier to deal with and write down.

© 2007 Paul Dawkins 239 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

&

The region D will be D, U D, and recall that the symbol U is called the union and means that D
consists of both D; and D2. The boundary of Dy is C, U C, while the boundary of D2 is

C, u(—Cs) and notice that both of these boundaries are positively oriented. As we traverse

each boundary the corresponding region is always on the left. Finally, also note that we can think
of the whole boundary, C, as,

C =(C,uC,;)u(C,u(-C;))=C,uC,

since both C, and —C, will “cancel” each other out.

Now, let’s start with the following double integral and use a basic property of double integrals to
break it up.

jDJ'(QX—Py)dAz ] (QX—Py)dAzg(Qx—Py)dA+jD!(QX—Py)dA

D, VDb,

Next, use Green’s theorem on each of these and again use the fact that we can break up line
integrals into separate line integrals for each portion of the boundary.

J[(@.-p)da=[f(Q.~P)aAa+[[(Q,-R,)dA
= 4> Pdx + Qdy + SB Pdx + Qdy
GGy Cu(-C)
:c.f)de+Qdy+<J5de+Qdy+<j>de+Qdy+ <j> Pdx + Qdy
G Cs G

7C3

Next, we’ll use the fact that,
4) Pdx +Qdy = —qS Pdx + Qdy

7C3 C3

Recall that changing the orientation of a curve with line integrals with respect to x and/or y will
simply change the sign on the integral. Using this fact we get,
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jj(QX—Py)dA=gf>de+Qdy+<j>de+Qdy+gl’>de+Qdy—g'>de+Qdy

D (o) o C, Cy

:<j5 de+Qdy+<]5 Pdx + Qdy
c, c,

Finally, put the line integrals back together and we get,
”(QX - Py)dA=g|5de+Qdy+gSde+Qdy
D C C,

= (j} Pdx + Qdy

G VG,

= SB Pdx + Qdy
C

So, what did we learn from this? If you think about it this was just a lot of work and all we got
out of it was the result from Green’s Theorem which we already knew to be true. What this
exercise has shown us is that if we break a region up as we did above then the portion of the line
integral on the pieces of the curve that are in the middle of the region (each of which are in the
opposite direction) will cancel out. This idea will help us in dealing with regions that have holes
in them.

To see this let’s look at a ring.

Notice that both of the curves are oriented positively since the region D is on the left side as we
traverse the curve in the indicated direction. Note as well that the curve C, seems to violate the
original definition of positive orientation. We originally said that a curve had a positive
orientation if it was traversed in a counter-clockwise direction. However, this was only for
regions that do not have holes. For the boundary of the hole this definition won’t work and we
need to resort to the second definition that we gave above.
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Now, since this region has a hole in it we will apparently not be able to use Green’s Theorem on
any line integral with the curve C =C, UC, . However, if we cut the disk in half and rename all

the various portions of the curves we get the following sketch.

The boundary of the upper portion (D1)of the disk is C, W C, UC, U C, and the boundary on the

lower portion (D2)of the disk is C; W C, U (-C,)uU(—C,). Also notice that we can use Green’s

Theorem on each of these new regions since they don’t have any holes in them. This means that
we can do the following,

ij(QX —Py)dAszj(Qx —Py)dA+JJ(QX ~P,)dA

= <j5 Pdx +Qdy + cﬁ Pdx + Qdy

C,uC,UCsUCq C3UC,U(—Cs)u(-Cs)

Now, we can break up the line integrals into line integrals on each piece of the boundary. Also
recall from the work above that boundaries that have the same curve, but opposite direction will
cancel. Doing this gives,

_[DI(QX _Py)dA:_g(Qx—Py)dAJf_EU(QX—Py)dA

:<ﬁde+Qdy+§de+Qdy+q.>de+Qdy+35PdX+Qdy

c C, C Cs

But at this point we can add the line integrals back up as follows,

”(Q ~P,)dA= gS Pdx + Qdy

C,uC,uC3uUC,

= Pdx+ Qdy
C
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The end result of all of this is that we could have just used Green’s Theorem on the disk from the
start even though there is a hole in it. This will be true in general for regions that have holes in
them.

Let’s take a look at an example.

Example 3 Evaluate Cﬁ y* dx —x*dy where C are the two circles of radius 2 and radius 1
centered at the origin with positive orientation.

Solution

Notice that this is the same line integral as we looked at in the second example and only the curve
has changed. In this case the region D will now be the region between these two circles and that
will only change the limits in the double integral so we’ll not put in some of the details here.

Here is the work for this integral.
cﬁ yidx—x3dy = —BH(X2 +y*)dA
Cc D

27
:—3f Izr3drd9
0 1
2 2
—3J 1r dH
27
:_3j Ede
45

V4
2

We will close out this section with an interesting application of Green’s Theorem. Recall that we
can determine the area of a region D with the following double integral.

A=ijdA

Let’s think of this double integral as the result of using Green’s Theorem. In other words, let’s
assume that

Q,—-P =1
and see if we can get some functions P and Q that will satisfy this.

There are many functions that will satisfy this. Here are some of the more common functions.

p__Y

P= O P=- y' 2
x =0 X
TR e

Then, if we use Green’s Theorem in reverse we see that the area of the region D can also be
computed by evaluating any of the following line integrals.
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A=95xdy=—q‘>ydx:%igxdy—ydx

C C

where C is the boundary of the region D.

Let’s take a quick look at an example of this.

Example 4 Use Green’s Theorem to find the area of a disk of radius a.

Solution
We can use either of the integrals above, but the third one is probably the easiest. So,

1
A=—@pxdy—ydx
2965 y-y

where C is the circle of radius a. So, to do this we’ll need a parameterization of C. This is,
X =acost y =asint 0<t<2r

The area is then,

1
A:Efxdy—ydx
1 o d 2z . . d
:E( | acost(acost) t—jo asint(-asint) t)
:1_[2”a2c032t+azsin2tdt
270

= %J'OM a’dt

=ra’
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Curl and Divergence

In this section we are going to introduce a couple of new concepts, the curl and the divergence of
a vector.

Let’s start with the curl. Given the vector field F = Pi +Q j7+ RK the curl is defined to be,

curlﬁ:(Ry—Qz)n(Pz—Rx)j+(Qx—Py)|Z

There is another (potentially) easier definition of the curl of a vector field. To use it we will first
need to define the V operator. This is defined to be,

v=Ir7.2 ]+i k
OX oy 0z
We use this as if it’s a function in the following manner.
\%i _a i4+i ]+ﬂ k
OX oy 0z

So, whatever function is listed after the V is substituted into the partial derivatives. Note as well
that when we look at it in this light we simply get the gradient vector.

Using the V we can define the curl as the following cross product,

i j Kk
arlf-vxf=|2 2 2
oXx oy oz
P Q R

We have a couple of nice facts that use the curl of a vector field.

Facts

1. If f(X,Y,2) has continuous second order partial derivatives then curl(Vf )= 0. Thisis

easy enough to check by plugging into the definition of the derivative so we’ll leave it to you
to check.

2. If F isa conservative vector field then curl F =0. This is a direct result of what it means
to be a conservative vector field and the previous fact.

3. If F is defined on all of R® whose components have continuous first order partial derivative

and curl F =0 then F is a conservative vector field. This is not so easy to verify and so we
won’t try.
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Example 1 Determine if F = Xx2yi +xyz j —x2y?K is a conservative vector field.

Solution
So all that we need to do is compute the curl and see if we get the zero vector or not.
i ] k
curl F = o o 9
ox oy oz
X’y xyz —x°y?
= -2X°yi +yz IZ—(—ny2 T)—xyf—lez
:—(2x2y+xy)iq+2xy2 17+(yz—x2)lz
#0

So, the curl isn’t the zero vector and so this vector field is not conservative.

Next we should talk about a physical interpretation of the curl. Suppose that F is the velocity
field of a flowing fluid. Then curl F represents the tendency of particles at the point (x, Y, z) to

rotate about the axis that points in the direction of curl F . If curl F =0 then the fluid is called
irrotational.

Let’s now talk about the second new concept in this section. Given the vector field
F=Pi+Q]+RKk the divergence is defined to be,

div =P, R R

oXx oy oz

There is also a definition of the divergence in terms of the V operator. The divergence can be
defined in terms of the following dot product.

divF =V.F

Example 2 Compute divF for F = x2yi +xyz j — x2y2k
Solution

There really isn’t much to do here other than compute the divergence.

divE =%(x2y)+%(xyz)+§(—xzyz) = 2Xy + X2

We also have the following fact about the relationship between the curl and the divergence.
div(curl F)=0
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Example 3 Verify the above fact for the vector field F = yz2T +xy j + yzk .

Solution
Let’s first compute the curl.
i ] k
arg=| 2 2 9
ox oy oz
yz? xy yz

=zi+2yzj+yk-2%k
=z +2y2]+(y-2°)k
Now compute the divergence of this.

div(curl ﬁ):%(z)+%(2yz)+%(y_zz)= 22-22=0

We also have a physical interpretation of the divergence. If we again think of F asthe velocity
field of a flowing fluid then div F represents the net rate of change of the mass of the fluid
flowing from the point (x, Y, z) per unit volume. This can also be thought of as the tendency of

a fluid to diverge from a point. If div F =0 thenthe F is called incompressible.

The next topic that we want to briefly mention is the Laplace operator. Let’s first take a look at,
div(VE)=Vevf = f +f +f,
The Laplace operator is then defined as,
V?=V.V
The Laplace operator arises naturally in many fields including heat transfer and fluid flow.

The final topic in this section is to give two vector forms of Green’s Theorem. The first form
uses the curl of the vector field and is,

cﬁlf-d F =j (curl If)-lz dA

C D

where K is the standard unit vector in the positive z direction.

The second form uses the divergence. In this case we also need the outward unit normal to the
curve C. If the curve is parameterized by

F(t)=x(t)i +y(t)]

then the outward unit normal is given by,

A=

y'(t) i X(t) i
[FOl ol

Here is a sketch illustrating the outward unit normal for some curve C at various points.
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The vector form of Green’s Theorem that uses the divergence is given by,

cj)lf-ﬁds:”divlfdA
C D
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Surface Integrals

Introduction

In the previous chapter we looked at evaluating integrals of functions or vector fields where the
points came from a curve in two- or three-dimensional space. We now want to extend this idea
and integrate functions and vector fields where the points come from a surface in three-
dimensional space. These integrals are called surface integrals.

Here is a list of the topics covered in this chapter.

Parametric Surfaces — In this section we will take a look at the basics of representing a surface
with parametric equations. We will also take a look at a couple of applications.

Surface Integrals — Here we will introduce the topic of surface integrals. We will be working
with surface integrals of functions in this section.

Surface Integrals of Vector Fields — We will look at surface integrals of vector fields in this
section.

Stokes’ Theorem — We will look at Stokes’ Theorem in this section.

Divergence Theorem — Here we will take a look at the Divergence Theorem.
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Parametric Surfaces

Before we get into surface integrals we first need to talk about how to parameterize a surface.
When we parameterized a curve we took values of t from some interval [a, b] and plugged them
into

F(t)=x(t)i +y(t)J+z(t)k
and the resulting set of vectors will be the position vectors for the points on the curve.

With surfaces we’ll do something similar. We will take points, (u,v) , out of some two-
dimensional space D and plug them into

F(u,v)=x(uv)i +y(uv)j+z(uv)k
and the resulting set of vectors will be the position vectors for the points on the surface S that we

are trying to parameterize. This is often called the parametric representation of the parametric
surface S.

We will sometimes need to write the parametric equations for a surface. There are really
nothing more than the components of the parametric representation explicitly written down.

x=x(u,v) y=y(uv) z=1(u,v)

Example 1 Determine the surface given by the parametric representation
F(u,v)=ui+ucosvj+usinvk
Solution

Let’s first write down the parametric equations.
X=u y =ucosv z=usinv

Now if we square y and z and then add them together we get,
2 52 12 Ane?2 2 a2y, 142 2 20\ 2 2
y?+2° =u” cos’v+usin?v =u’ (cos’ v+sin®v) =u® =

So, we were able to eliminate the parameters and the equation in x, y, and z is given by,
x> =y?+7°

From the Quadric Surfaces section notes we can see that this is a cone that opens along the x-axis.

We are much more likely to need to be able to write down the parametric equations of a surface
than identify the surface from the parametric representation so let’s take a look at some examples
of this.

Example 2 Give parametric representations for each of the following surfaces.
(a) The elliptic paraboloid x =5y* +2z* —10. [Solution]

(b) The elliptic paraboloid x =5y*+2z*—10 that is in front of the yz-plane.

[Solution]
(c) The sphere x* + y?+2z>=30. [Solution]

(d) The cylinder y* + 2% =25. [Solution]
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Solution
(a) The elliptic paraboloid x =5y*+2z°-10.

This one is probably the easiest one of the four to see how to do. Since the surface is in the form
x=f (y, z) we can quickly write down a set of parametric equations as follows,

X =5y* +2z° -10 y=y z=12

The last two equations are just there to acknowledge that we can choose y and z to be anything we
want them to be. The parametric representation is then,

F(y,z)=(5y’+22°-10)i +y]+zk

[Return to Problems]

(b) The elliptic paraboloid x =5y +2z>—10 that is in front of the yz-plane.

This is really a restriction on the previous parametric representation. The parametric
representation stays the same.

F(y,z)=(5y"+22°-10)i +y]+zk

However, since we only want the surface that lies in front of the yz-plane we also need to require
that x> 0. This is equivalent to requiring,
5y*+2z°-10>0 or 5y*+2z° >10

[Return to Problems]

(c) The sphere x* +y*+2°=30.

This one can be a little tricky until you see how to do it. In spherical coordinates we know that
the equation of a sphere of radius a is given by,
p=a
and so the equation of this sphere (in spherical coordinates) is o = \/% Now, we also have the
following conversion formulas for converting Cartesian coordinates into spherical coordinates.
X = psingpcosé y = psingsin @ Z=pCosSp

However, we know what o is for our sphere and so if we plug this into these conversion

formulas we will arrive at a parametric representation for the sphere. Therefore, the parametric
representation is,

F(6,9)=/30sinpcos@i ++/30sin psin@ ] ++/30 cospk

All we need to do now is come up with some restriction on the variables. First we know that we
have the following restriction.

0<ep<rxm
This is enforced upon us by choosing to use spherical coordinates. Also, to make sure that we
only trace out the sphere once we will also have the following restriction.

0<6<L2x

[Return to Problems]
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(d) The cylinder y*+2z° =25.

As with the last one this can be tricky until you see how to do it. In this case it makes some sense
to use cylindrical coordinates since they can be easily used to write down the equation of a
cylinder.

In cylindrical coordinates the equation of a cylinder of radius a is given by
r=a
and so the equation of the cylinder in this problemis r =5.

Next, we have the following conversion formulas.

X =X y=rsiné zZ=rcosé
Notice that they are slightly different from those that we are used to seeing. We needed to change
them up here since the cylinder was centered upon the x-axis.

Finally, we know what r is so we can easily write down a parametric representation for this
cylinder.

F(X,0)=Xx0 +5sin@ j +5cos 0k

We will also need the restriction 0 <@ <27 to make sure that we don’t retrace any portion of
the cylinder. Since we haven’t put any restrictions on the “height” of the cylinder there won’t be

any restriction on x.
[Return to Problems]

In the first part of this example we used the fact that the function was in the form x = f (y, z) to

quickly write down a parametric representation. This can always be done for functions that are in
this basic form.

z=f(xy) = T(xy)=xi+yj+f(xy)k
x=f(y,z) = T(y2)=f(y2)i+yj+zk
y="f(x2) = TF(xz)=xi+f(x2)j+zk

Okay, now that we have practice writing down some parametric representations for some surfaces
let’s take a quick look at a couple of applications.

Let’s take a look at finding the tangent plane to the parametric surface S given by,
F(u,v)=x(uv)T +y(uv)j+z(uv)k
First, define
= OX -~ Oy - 0 ~
V) =—I(U, —(u, —(u,v)k
r(u,v) au(u V)i +au(u v)j+au(u v)
oy

Fv(u,v):%(u,v)f+a(u,v)]+%(u,v)l€
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Now, provided I, xT, # 0 it can be shown that the vector I, x T, will be orthogonal to the surface

S. This means that it can be used for the normal vector that we need in order to write down the
equation of a tangent plane. This is an important idea that will be used many times throughout
the next couple of sections.

Let’s take a look at an example.

Example 3 Find the equation of the tangent plane to the surface given by
F(u,v)=ui+2v? T+(u2 +V)|Z
at the point (2,2,3).

Solution
Let’s first compute I, xF,. Here are the two individual vectors.

ﬁ(u,v):f+2uE Fv(u,v):4v]+lz

Now the cross product (which will give us the normal vector i) is,

i J ok
A=FxF =1 0 2ul=-8ui-]+4vk
0 4v 1

Now, this is all fine, but in order to use it we will need to determine the value of u and v that will
give us the point in question. We can easily do this by setting the individual components of the
parametric representation equal to the coordinates of the point in question. Doing this gives,

2=u = u=2
2=2v? = v=+1
3=u’+v

Now, as shown, we have the value of u, but there are two possible values of v. To determine the
correct value of v let’s plug u into the third equation and solve for v. This should tell us what the
correct value is.

3=4+v = v=-1

Okay so we now know that we’ll be at the point in question when u=2 and v=-1. At this
point the normal vector is,

A=167 — j—4k
The tangent plane is then,
16(x-2)—(y-2)-4(z-3)=0
16x—-y-4z=18

You do remember how to write down the equation of a plane, right?

The second application that we want to take a quick look at is the surface area of the parametric
surface S given by,
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F(u,v)=x(uv)i +y(uv)j+z(uv)k
and as we will see it again comes down to needing the vector [, xT .

So, provided S is traced out exactly once as (u,v) ranges over the points in D the surface area of
S is given by,

A=IDI||ﬁ,xnlldA

Let’s take a look at an example.

Example 4 Find the surface area of the portion of the sphere of radius 4 that lies inside the
cylinder x* + y® =12 and above the xy-plane.

Solution

Okay we’ve got a couple of things to do here. First we need the parameterization of the sphere.
We parameterized a sphere earlier in this section so there isn’t too much to do at this point. Here
is the parameterization.

7(0,0)=4sinpcosdi +4sinpsin 6 ] +4cospk

Next we need to determine D. Since we are not restricting how far around the z-axis we are
rotating with the sphere we can take the following range for 6.
0<@<2r

Now, we need to determine a range for ¢ . This will take a little work, although it’s not too bad.
First, let’s start with the equation of the sphere.
X +y°+12° =16
Now, if we substitute the equation for the cylinder into this equation we can find the value of z
where the sphere and the cylinder intersect.
X*+y>+12°=16
12+7° =16

2°=4 = 7=42

Now, since we also specified that we only want the portion of the sphere that lies above the xy-
plane we know that we need z =2 . We also know that p =4 . Plugging this into the following

conversion formula we get,
Z=pCoSQ

2=4cos¢p

COS¢=% >  p=

w|y

So, it looks like the range of ¢ will be,

o
IA
S
IA

Wy
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Finally, we need to determine T, x F(p Here are the two individual vectors.
T, (0,0)=—4sinpsinOi +4sinpcoso j
7 (0,0)=4cospcosdi +4cospsing j—4sinpk

Now let’s take the cross product.
i j K
I, xT =|-4singsin® 4sinpcosd 0
4cosepcosd 4cosepsingd  —4sing
=—16sin? pcos&i —16sin pcospsin® @K —16sin? psin & j —16sin @ cos pcos? Ok
:—lGSinz(pCOSGT—168in2@Siﬂ@j—lGSin(oCOS(o(Sinz6’+C0529)|Z
=—16sin? pcos @i —16sin® psin & j —16sin pcospk

We now need the magnitude of this,
A J2565in* pcos? 0+ 2565in* psin? 6+ 256sin® ¢ cos’ ¢

= \/2565in4 ¢(cos® +sin” )+ 256sin’ pcos’ ¢

= \/2563in2 o(sin’ p+cos’ p)
=164/sin’ ¢

=16[sin ¢|

=16sin¢p

We can drop the absolute value bars in the sine because sine is positive in the range of ¢ that we
are working with.

We can finally get the surface area.
A:jjlessin o dA
D
:J2”j%16sin odpdo
0 0
2z 7/3
:J'O —16c05(p|0/ do

27
=| 8d¢#
0
=167
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Surface Integrals

It is now time to think about integrating functions over some surface, S, in three-dimensional
space. Let’s start off with a sketch of the surface S since the notation can get a little confusing
once we get into it. Here is a sketch of some surface S.

FH

t_l :';lxi

Pttt
paly

e — oo JE

The region S will lie above (in this case) some region D that lies in the xy-plane. We used a
rectangle here, but it doesn’t have to be of course. Also note that we could just as easily looked at
a surface S that was in front of some region D in the yz-plane or the xz-plane. Do not get so
locked into the xy-plane that you can’t do problems that have regions in the other two planes.

Now, how we evaluate the surface integral will depend upon how the surface is given to us.
There are essentially two separate methods here, although as we will see they are really the same.

First, let’s look at the surface integral in which the surface Sis givenby z=g (x, y). In this
case the surface integral is,

”f(x, y,2)ds = || f(xy,9(xY)) (Z—?{T+(%I+ldA

S

Now, we need to be careful here as both of these look like standard double integrals. In fact the
integral on the right is a standard double integral. The integral on the left however is a surface
integral. The way to tell them apart is by looking at the differentials. The surface integral will
have a dS while the standard double integral will have a dA.

In order to evaluate a surface integral we will substitute the equation of the surface in for z in the

integrand and then add on the often messy square root. After that the integral is a standard double
integral and by this point we should be able to deal with that.
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Note as well that there are similar formulas for surfaces given by y =g (x, z) (with D in the xz-

plane) and X =g ( Y, z) (with D in the yz-plane). We will see one of these formulas in the
examples and we’ll leave the other to you to write down.

The second method for evaluating a surface integral is for those surfaces that are given by the
parameterization,

F(u,v)=x(u,v)i+y(uv)j+ z(u,v)lz
In these cases the surface integral is,

” (x,y,2)dS = _U (u,v))[[F, £, [| dA

where D is the range of the parameters that trace out the surface S.

Before we work some examples let’s notice that since we can parameterize a surface given by
=g(xy) as
F(Xy)=xi +yj+9(x y)k
we can always use this form for these kinds of surfaces as well. In fact it can be shown that,

FXXFV||=\/(Z—§JZ+[%T+1

for these kinds of surfaces. You might want to verify this for the practice of computing these
cross products.

Let’s work some examples.

Example 1 Evaluate J-J.6xy dS where S is the portion of the plane X+ y+z =1 that lies in the
S
1% octant and is in front of the yz-plane.

Solution
Okay, since we are looking for the portion of the plane that lies in front of the yz-plane we are

going to need to write the equation of the surface in the form X =g (y, z) . This is easy enough
to do.

X=1-y-z
Next we need to determine just what D is. Here is a sketch of the surface S.
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1x

Here is a sketch of the region D.

0z
0.4
04

0z

|:|. 1 1 1 1 }'I
0. 0z 0.4 0.4 0z 1.

Notice that the axes are labeled differently than we are used to seeing in the sketch of D. This
was to keep the sketch consistent with the sketch of the surface. We arrived at the equation of the
hypotenuse by setting x equal to zero in the equation of the plane and solving for z. Here are the
ranges for y and z.

Now, because the surface is not in the form z =g (x, y) we can’t use the formula above.
However, as noted above we can modify this formula to get one that will work for us. Here it is,

oo vy 3] 2

D
The changes made to the formula should be the somewhat obvious changes. So, let’s do the

integral.

[[oxyds = [[6(1-y—2) L+ (1) +(-1)° dA

S D
Notice that we plugged in the equation of the plane for the x in the integrand. At this point we’ve
got a fairly simple double integral to do. Here is that work.
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”6xde :\/§HG(y—y2 —zy)dA

S D

1.1
:Gﬁf Il "y —y?—zydzdy
ov0

1 1 1-y
:6\@J (yz—zyz——zzyJ dy
0 2 0
"1 1
=6v3| Zy-y2+=y3d
IJoZy y 2y y
1
1, 1, 1 3
=63 Syr -yt syt | = X2
\/_(4y 3y 8y jo 4

Example 2 Evaluate ” zdS where S is the upper half of a sphere of radius 2.
S

Solution
We gave the parameterization of a sphere in the previous section. Here is the parameterization
for this sphere.

7(0,9)=2sinpcosdi +2sinsin @ j +2cospk
Since we are working on the upper half of the sphere here are the limits on the parameters.

0<0<2r 03¢g%

Next, we need to determine T, x F{p . Here are the two individual vectors.
T, (0,0)=-2sinpsin i +2singpcosd j
7 (6,9)=2c0spcosdi +2cospsind j —2sinpk

Now let’s take the cross product.

i i k
r,xT =|-2singsin® 2sinpcosd 0
2C0S@pcos@ 2cosesingd  —-2sing
=—4sin? pcos @1 —4sin pcos psin? K —4sin? psin 6 j —4sin g cos g cos? Ok
=—4sin® pcos @i —4sin® psin @ j —4sin ¢c05(p(sin29+cosza)lz

= —4sin? pcos@i —4sin® psin @ j —4sinpcospk

Finally, we need the magnitude of this,
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|, x| = y/16sin‘ pcos? 6+16sin’ psin? 0 +16sin” pcos’ ¢

= \/165in4 ¢(cos® 0+sin” 0)+16sin” pcos’ ¢

= \/16sin2 o(sin® p+cos’ )
= 4,/sin’ ¢

= 4]sin ¢

=4sin¢g

We can drop the absolute value bars in the sine because sine is positive in the range of ¢ that we
are working with. The surface integral is then,

” zdS = HZCOS§0(4Sin @) dA

Don’t forget that we need to plug in for x, y and/or z in these as well, although in this case we just
needed to plug in z. Here is the evaluation for the double integral.

jsjzds =I02”Ioz4sin(2¢)d¢d0

_I (—2cos(2¢) )|2d9

= 4d6?
0
=8r

Example 3 Evaluate H ydS where S is the portion of the cylinder x* + y* =3 that lies
S

between z=0 and z=6.

Solution

We parameterized up a cylinder in the previous section. Here is the parameterization of this
cylinder.

F(2,0)=+/3cosOT ++/3sin@ ] +zk
The ranges of the parameters are,
0<z<6 0<6<2r
Now we need I, xF,. Here are the two vectors.
T,(z,0)=k

F,(2,0)=—/3sin07 ++/3cosé j

Here is the cross product.
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i j k
r,xr, = 0 0 1
—\/§sin¢9 «/§cos¢9 0

= —/3cosOi —/3sind j

The magnitude of this vector is,
|7, <7 = \J3cos? 0 +3sin? 0 =+/3

The surface integral is then,

_Uyd8=”x@sin0(\/§)dA
zsjoz”jjsinedzde

2 .
=3j 6sin6de
0

2z
= (~18cos6)|,
=0

Example 4 Evaluate J-J- y+2dS where S is the surface whose side is the cylinder x> +y* =3,
S
whose bottom is the disk x* + y? <3 in the xy-plane and whose top is the plane z=4-y.

Solution
There is a lot of information that we need to keep track of here. First, we are using pretty much

the same surface (the integrand is different however) as the previous example. However, unlike
the previous example we are putting a top and bottom on the surface this time. Let’s first start out

with a sketch of the surface.
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rd
5% iz the bottom of the cylinder

Actually we need to be careful here. There is more to this sketch than the actual surface itself.
We’re going to let S, be the portion of the cylinder that goes from the xy-plane to the plane. In

other words, the top of the cylinder will be at an angle. We’ll call the portion of the plane that
lies inside (i.e. the cap on the cylinder) S,. Finally, the bottom of the cylinder (not shown here)

is the disk of radius \/§ in the xy-plane and is denoted by S, .
In order to do this integral we’ll need to note that just like the standard double integral, if the

surface is split up into pieces we can also split up the surface integral. So, for our example we
will have,

“y+zdS=Hy+zd8+”y+zd8+”y+zd8
S S, S, S

We’re going to need to do three integrals here. However, we’ve done most of the work for the
first one in the previous example so let’s start with that.

S, : The Cylinder

The parameterization of the cylinder and |[F, x T, is,
F(2,0)=+/3cosOT ++/3sin0 ] +zk IF, xF,||=~/3
The difference between this problem and the previous one is the limits on the parameters. Here

they are.
0<0<L2rx

03234—y:4—\@sin9
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The upper limit for the z’s is the plane so we can just plug that in. However, since we are on the
cylinder we know what y is from the parameterization so we will also need to plug that in.

Here is the integral for the cylinder.

J;;[y+zds :J'DJ-(\/§sin9+ z)(\/é)dA

- ﬁj;”[:ﬁsmgﬁsinwr zdzdo
:Jﬁjoz”@sin9(4—J§sin9)+%(4—ﬁsin9)zd¢9
:\/5'[02”8—§sin26’d6’

:J§J02”8—%(l—cos(29))d9

=\/§(27?6?+§sin(20)]

3 29\/§7r
2

0

S, : Plane on Top of the Cylinder

In this case we don’t need to do any parameterization since it is set up to use the formula that we
gave at the start of this section. Remember that the plane is givenby z=4—-y. Also note that,

for this surface, D is the disk of radius \/§ centered at the origin.

Here is the integral for the plane.

[[y+2ds =[[(y+4-y)y(0) +(-2) +1dA
=2[[adA

Don’t forget that we need to plug in for z!' Now at this point we can proceed in one of two ways.
Either we can proceed with the integral or we can recall that H dA is nothing more than the area
D

of D and we know that D is the disk of radius \/5 and so there is no reason to do the integral.

Here is the remainder of the work for this problem.
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J'J.y+zd8=4\/§j6|. dA

Sz =4\/§(7Z'(\/§)2)
=12\2x

S, : Bottom of the Cylinder

Again, this is set up to use the initial formula we gave in this section once we realize that the
equation for the bottom is given by ¢ (x, y) =0 and D is the disk of radius \/§ centered at the
origin. Also, don’t forget to plug in for z.

Here is the work for this integral.
[[y+2zds = [[(y+0)y(0)* +(0) +(1) dA
S, D
- []yos
D
:f”J’ﬁrzsianrdH
o Y0
2r 1 \/§
= (—r‘*sin@] do
0 3 0
= ["\3sinodo

= —\/§ cos 9‘2”
=0

We can now get the value of the integral that we are after.
”y+zd8 :”y+zd8+”y+zd8+ﬂy+zds
S S, S, S

2037
2

+122 740

- %(29«@+ 242
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Surface Integrals of Vector Fields

Just as we did with line integrals we now need to move on to surface integrals of vector fields.
Recall that in line integrals the orientation of the curve we were integrating along could change
the answer. The same thing will hold true with surface integrals. So, before we really get into
doing surface integrals of vector fields we first need to introduce the idea of an oriented surface.

Let’s start off with a surface that has two sides (while this may seem strange, recall that the
Moabius Strip is a surface that only has one side!) that has a tangent plane at every point (except
possibly along the boundary). Making this assumption means that every point will have two unit

normal vectors, N, and A, =—n,. This means that every surface will have two sets of normal
vectors. The set that we choose will give the surface an orientation.

There is one convention that we will make in regards to certain kinds of oriented surfaces. First
we need to define a closed surface. A surface S is closed if it is the boundary of some solid
region E. A good example of a closed surface is the surface of a sphere. We say that the closed
surface S has a positive orientation if we choose the set of unit normal vectors that point outward
from the region E while the negative orientation will be the set of unit normal vectors that point
in towards the region E.

Note that this convention is only used for closed surfaces.

In order to work with surface integrals of vector fields we will need to be able to write down a
formula for the unit normal vector corresponding to the orientation that we’ve chosen to work
with. We have two ways of doing this depending on how the surface has been given to us.

First, let’s suppose that the function is given by z =g (x, y) . In this case we first define a new
function,

f(x,y,z2)=2-9(xYy)
In terms of our new function the surface is then given by the equation f (x, Y, z) =0. Now,

recall that Vf will be orthogonal (or normal) to the surface given by f (x, Y, z) =0. This

means that we have a normal vector to the surface. The only potential problem is that it might not
be a unit normal vector. That isn’t a problem since we also know that we can turn any vector into
a unit vector by dividing the vector by its length. In our case this is,

Ao \%i

[Vt

In this case it will be convenient to actually compute the gradient vector and plug this into the
formula for the normal vector. Doing this gives,

_vf -g,i-g,j+k
n= - 2
Vel \/(gx)z +(gy) +1

Now, from a notational standpoint this might not have been so convenient, but it does allow us to
make a couple of additional comments.
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First, notice that the component of the normal vector in the z-direction (identified by the K in the
normal vector) is always positive and so this normal vector will generally point upwards. It may
not point directly up, but it will have an upwards component to it.

This will be important when we are working with a closed surface and we want the positive
orientation. If we know that we can then look at the normal vector and determine if the
“positive” orientation should point upwards or downwards. Remember that the “positive”
orientation must point out of the region and this may mean downwards in places. Of course if it
turns out that we need the downward orientation we can always take the negative of this unit
vector and we’ll get the one that we need. Again, remember that we always have that option
when choosing the unit normal vector.

Before we move onto the second method of giving the surface we should point out that we only
did this for surfaces in the form z =g (x, y) . We could just as easily done the above work for

surfaces in the form y =g(x,z) (so f(x,y,z)=y—g(x,z)) or for surfaces in the form
x=9(y,z) (so f(x,y.2)=x-9(y,2)).

Now, we need to discuss how to find the unit normal vector if the surface is given parametrically
as,

F(u,v)=x(uVv)i +y(uv)j+z(uv)k
In this case recall that the vector I, x T, will be normal to the tangent plane at a particular point.

But if the vector is normal to the tangent plane at a point then it will also be normal to the surface
at that point. So, this is a normal vector. In order to guarantee that it is a unit normal vector we
will also need to divide it by its magnitude.

So, in the case of parametric surfaces one of the unit normal vectors will be,

As with the first case we will need to look at this once it’s computed and determine if it points in
the correct direction or not. If it doesn’t then we can always take the negative of this vector and
that will point in the correct direction.

Finally, remember that we can always parameterize any surface given by z =g (x, y) (or

y=9(xz) or x=g(y,z)) easily enough and so if we want to we can always use the
parameterization formula to find the unit normal vector.

Okay, now that we’ve looked at oriented surfaces and their associated unit normal vectors we can
actually give a formula for evaluating surface integrals of vector fields.

Given a vector field F with unit normal vector fi then the surface integral of F over the surface
S is given by,

[F.dS =[[F.nds

S S
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where the right hand integral is a standard surface integral. This is sometimes called the flux of
F across S.

Before we work any examples let’s notice that we can substitute in for the unit normal vector to
get a somewhat easier formula to use. We will need to be careful with each of the following
formulas however as each will assume a certain orientation and we may have to change the
normal vector to match the given orientation.

Let’s first start by assuming that the surface is given by z =g (x, y). In this case let’s also

assume that the vector field is given by F=Pi+ Qj+R k and that the orientation that we are

after is the “upwards” orientation. Under all of these assumptions the surface integral of F over
Sis,

Fd§: FefidS
PI+QJ+Rk) —gXT—gy]erlz \/(gx)2+<gy)2+ldA
\/(gx)2+(gy) +1
D
= I j—l—Rk)( gxl—gy]+|2)dA
D
=jj .—Qg, +RdA

D

Now, remember that this assumed the “upward” orientation. If we’d needed the “downward”
orientation, then we would need to change the signs on the normal vector. This would in turn
change the signs on the integrand as well. So, we really need to be careful here when using this
formula. In general, it is best to rederive this formula as you need it.

When we’ve been given a surface that is not in parametric form there are in fact 6 possible
integrals here. Two for each form of the surface z=g(x,y), y=0(x,z) and x=g(y,z).

Given each form of the surface there will be two possible unit normal vectors and we’ll need to
choose the correct one to match the given orientation of the surface. However, the derivation of
each formula is similar to that given here and so shouldn’t be too bad to do as you need to.

Notice as well that because we are using the unit normal vector the messy square root will always
drop out. This means that when we do need to derive the formula we won’t really need to put this
in. All we’ll need to work with is the numerator of the unit vector. We will see at least one more
of these derived in the examples below. It should also be noted that the square root is nothing

more than,
V(o) +(g, ) +1=[v1]

so in the following work we will probably just use this notation in place of the square root when
we can to make things a little simpler.
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Let’s now take a quick look at the formula for the surface integral when the surface is given
parametrically by F(u,v) . In this case the surface integral is,

jsjﬁ.ds”:jsjﬁ.ﬁds

= [ T XT,

Fof —— ||IT, xT |[dA
ﬂ (llruvallJ” |
D
= [JF(RxR)d
D

Again note that we may have to change the sign on T, x I, to match the orientation of the surface

and so there is once again really two formulas here. Also note that again the magnitude cancels
in this case and so we won’t need to worry that in these problems either.

(=4

Note as well that there are even times when we will use the definition, _U «dS = I
S
directly. We will see an example of this below.

Let’s now work a couple of examples.

Example 1 Evaluate H F«dS where F =y j—zk and S is the surface given by the
S

paraboloid y = x* +2z°, 0< y <1 and the disk x>+ 2> <1 at y =1. Assume that S has positive
orientation.

Solution

Okay, first let’s notice that the disk is really nothing more than the cap on the paraboloid. This
means that we have a closed surface. This is important because we’ve been told that the surface
has a positive orientation and by convention this means that all the unit normal vectors will need
to point outwards from the region enclosed by S.

Let’s first get a sketch of S so we can get a feel for what is going on and in which direction we
will need to unit normal vectors to point.
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As noted in the sketch we will denote the paraboloid by S, and the disk by S,. Also note that in

order for unit normal vectors on the paraboloid to point away from the region they will all need to
point generally in the negative y direction. On the other hand, unit normal vectors on the disk
will need to point in the positive y direction in order to point away from the region.

Since S is composed of the two surfaces we’ll need to do the surface integral on each and then
add the results to get the overall surface integral. Let’s start with the paraboloid. In this case we

have the surface in the form y =¢ (x, z) so we will need to derive the correct formula since the

one given initially wasn’t for this kind of function. This is easy enough to do however. First
define,

f(x,y,2)=y-g(xz)=y-x*-2°

We will next need the gradient vector of this function.
v =(-2x,1,-2z)

Now, the y component of the gradient is positive and so this vector will generally point in the
positive y direction. However, as noted above we need the normal vector point in the negative y
direction to make sure that it will be pointing away from the enclosed region. This means that we
will need to use

—vi  (2x,-1,2z)

fi = -
[=vel v

Let’s note a couple of things here before we proceed. We don’t really need to divide this by the
magnitude of the gradient since this will just cancel out once we actually do the integral. So,
because of this we didn’t bother computing it. Also, the dropping of the minus sign is not a typo.
When we compute the magnitude we are going to square each of the components and so the
minus sign will drop out.

S, : The Paraboloid

Okay, here is the surface integral in this case.
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f[F-as=[](s Lﬁ){%}m [dA
= J‘J'—y—ZZ2 dA
:JJ—(XZ + 22)—222 dA

= —J-J. x* +3z2 dA
D

Don’t forget that we need to plug in the equation of the surface for y before we actually compute

the integral. In this case D is the disk of radius 1 in the xz-plane and so it makes sense to use

polar coordinates to complete this integral. Here are polar coordinates for this region.
X=rcosd z=rsind

0<0<2r 0<r<1

Note that we kept the x conversion formula the same as the one we are used to using for x and let
z be the formula that used the sine. We could have done it any order, however in this way we are
at least working with one of them as we are used to working with.

Here is the evaluation of this integral.
H FedS = —” X2 +32% dA
D

Sy

=_f2”j:(rzcosz 6’+3rzsin20)rdrd9
0

_ _f 2”I:(cosz 0 +3sin’ H)r3 drdo
0

— _J 2”(%(“ cos(20))+g(1—cos(20))j(%r“j

0

1

déo

0

1 2z
=—§j0 4-2co0s(26)d6

2z

:—%(40—sin(29))

0
=—

S, : The Cap of the Paraboloid

We can now do the surface integral on the disk (cap on the paraboloid). This one is actually
fairly easy to do and in fact we can use the definition of the surface integral directly. First let’s
notice that the disk is really just the portion of the plane y =1 that is in front of the disk of radius

1 in the xz-plane.

Now we want the unit normal vector to point away from the enclosed region and since it must
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also be orthogonal to the plane y =1 then it must point in a direction that is parallel to the y-axis,
but we already have a unit vector that does this. Namely,

A=]
the standard unit basis vector. It also points in the correct direction for us to use. Because we

have the vector field and the normal vector we can plug directly into the definition of the surface
integral to get,

[[Feas = [(y7-2R}(T)as [ ves
S, S, Sz
At this point we need to plug in for y (since S, is a portion of the plane y =1 we do know what it

is) and we’ll also need the square root this time when we convert the surface integral over to a
double integral. In this case since we are using the definition directly we won’t get the canceling
of the square root that we saw with the first portion. To get the square root well need to
acknowledge that

y=1=g(x,2)
and so the square root is,

J(@,) +1+ (g, )
[[Feds =[[yds

=£[1\/0+1+0dA=”dA

The surface integral is then,

At this point we can acknowledge that D is a disk of radius 1 and this double integral is nothing
more than the double integral that will give the area of the region D so there is no reason to
compute the integral. Here is the value of the surface integral.

” FedS =71
5,

Finally, to finish this off we just need to add the two parts up. Here is the surface integral that we
were actually asked to compute.

jjﬁ-d§=ﬂﬁ-d§+ﬂﬁ-d§=—ﬂ+7z:o
S,

s S

Example 2 Evaluate J-J. F«dS where F =xi +yj+z*Kk and S is the upper half the sphere
S

X* +y?+12°=9 and the disk X* + y* <9 inthe plane z=0. Assume that S has the positive
orientation.

Solution

So, as with the previous problem we have a closed surface and since we are also told that the
surface has a positive orientation all the unit normal vectors must point away from the enclosed
region. To help us visualize this here is a sketch of the surface.

© 2007 Paul Dawkins 271 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

S, 1z bottom of the hemi-sphere

We will call S; the hemisphere and S, will be the bottom of the hemisphere (which isn’t shown

on the sketch). Now, in order for the unit normal vectors on the sphere to point away from
enclosed region they will all need to have a positive z component. Remember that the vector
must be normal to the surface and if there is a positive z component and the vector is normal it
will have to be pointing away from the enclosed region.

On the other hand, the unit normal on the bottom of the disk must point in the negative z direction
in order to point away from the enclosed region.

S, : The Sphere

Let’s do the surface integral on S, first. In this case since the surface is a sphere we will need to
use the parametric representation of the surface. This is,

7(0,p)=3sinpcosdi +3singsind j +3cospk
Since we are working on the hemisphere here are the limits on the parameters that we’ll need to
use.
V2
0<6<L2r 0<p< >
Next, we need to determine T, x F{p . Here are the two individual vectors and the cross product.
r,(0,90)=-3singsin @i +3sinpcosd j
7 (6,0)=3cospcosdi +3cospsind j —3sinpk

i i k
r,xT, =|-3singsing 3sinpcosd 0
3cosgpcosd 3cosesingd  —3sing
=-9sin® pcos @i —9sin pcos psin® Ok —9sin? psin @ J—9sin pcospcos? Ok
=-9sin’ pcos AT —9sin® psin & ] —9sin pcos p(sin’ 6+ cos’ 0k

=-9sin? pcos @i —9sin? psin & j —9sin pcospk
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Note that we won’t need the magnitude of the cross product since that will cancel out once we
start doing the integral.

Notice that for the range of ¢ that we’ve got both sine and cosine are positive and so this vector

will have a negative z component and as we noted above in order for this to point away from the
enclosed area we will need the z component to be positive. Therefore, we will need to use the
following vector for the unit normal vector.

_ TyxT, _9sin’ pcosOi +9sin’ psing j +9sin @cos gk

I, Iro 7]
Again, we will drop the magnitude once we get to actually doing the integral since it will just
cancel in the integral.

A =

Okay, next we’ll need

F(7(60.9))=3sinpcosdi +3singpsin @ j +81cos* pk
Remember that in this evaluation we are just plugging in the x component of F(@, (p) into the
vector field etc.

We also may as well get the dot product out of the way that we know we are going to need.
F(7(0,0))(F,xT,)=27sin’ pcos® 6+ 27sin* psin® 6 + 729sin pcos® p

=27sin® @ +729sin pcos® ¢

Now we can do the integral.

I xT,
{1 F.dS JF[MJ”r T || dA

D

r2r

'[0527sin3 @ +729sin pcos® pdedo

W Wl

J 0
r2r oz
= J.227SII’I(/)(1 cos’ ) +729sin pcos® pdpdo

J O

2z T

2
- (27(005;0 —%cos3 (pj +7—29cos6 (pj

2z
[ 29,
0o 2

=2197

deo

0

S, : The Bottom of the Hemi-Sphere

Now, we need to do the integral over the bottom of the hemisphere. In this case we are looking at
the disk x*+ y® <9 that lies in the plane z = 0 and so the equation of this surface is actually
z=0. The disk is really the region D that tells us how much of the surface we are going to use.
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This also means that we can use the definition of the surface integral here with
A=-k

We need the negative since it must point away from the enclosed region.
The surface integral in this case is,
[[FedS = [[(xT+yT+2*k)s(-k)ds
S, S,

= H—z“ ds
SZ
Remember, however, that we are in the plane given by z =0 and so the surface integral

becomes,
Hﬁd§:”—fd8=“bd8:0
S, S,

S,

The last step is to then add the two pieces up. Here is surface integral that we were asked to look
at.

[ FedS = [[ FedS + [[ FedS = 2797 +0 =279z
s, S,

S

We will leave this section with a quick interpretation of a surface integral over a vector field. If
V is the velocity field of a fluid then the surface integral

gV@§

represents the volume of fluid flowing through S per time unit (i.e. per second, per minute, or
whatever time unit you are using).
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Stokes’ Theorem

In this section we are going to take a look at a theorem that is a higher dimensional version of
Green’s Theorem. In Green’s Theorem we related a line integral to a double integral over some
region. In this section we are going to relate a line integral to a surface integral. However, before
we give the theorem we first need to define the curve that we’re going to use in the line integral.

Let’s start off with the following surface with the indicated orientation.

i

'?'

‘\\"SEL

Around the edge of this surface we have a curve C. This curve is called the boundary curve.
The orientation of the surface S will induce the positive orientation of C. To get the positive
orientation of C think of yourself as walking along the curve. While you are walking along the
curve if your head is pointing in the same direction as the unit normal vectors while the surface is
on the left then you are walking in the positive direction on C.

Now that we have this curve definition out of the way we can give Stokes’ Theorem.

Stokes’ Theorem

Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary curve
C with positive orientation. Also let F be a vector field then,

jﬁ-d r :”curl F.dS

© S

In this theorem note that the surface S can actually be any surface so long as its boundary curve is
given by C. This is something that can be used to our advantage to simplify the surface integral
on occasion.

Let’s take a look at a couple of examples.
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Example 1 Use Stokes’ Theorem to evaluate ” curl F+dS where F =227 —3xy j+x°y°k
S
and S is the part of z=5—x*—y® above the plane z =1. Assume that S is oriented upwards.

Solution
Let’s start this off with a sketch of the surface.

In this case the boundary curve C will be where the surface intersects the plane z =1 and so will
be the curve
1=5-x*-y?

X*+y?=4 atz=1

So, the boundary curve will be the circle of radius 2 that is in the plane z=1. The
parameterization of this curve is,

F(t)=2costi +2sintj+k, 0<t<2z

The first two components give the circle and the third component makes sure that it is in the plane
z=1.

Using Stokes’ Theorem we can write the surface integral as the following line integral.
— — — . 2r — . —
chrl F+dS :IF-d r _IO F(F(t))-r(t)dt

S C

So, it looks like we need a couple of quantities before we do this integral. Let’s first get the
vector field evaluated on the curve. Remember that this is simply plugging the components of the
parameterization into the vector field.

F(F(t))= (1) T -3(2cost)(2sint) j +(2cost)’ (2sint)’ K

=i —12costsint j +64cos’tsin®tk
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Next, we need the derivative of the parameterization and the dot product of this and the vector
field.

F'(t)=-2sinti +2cost j
ﬁ(F(t))-f’(t): —2sint—24sintcos’t

We can now do the integral.
”curl FedS = I;ﬂ —2sint —24sintcos’ t dt
S

2z
0

= (2cost +8cos3t)|
=0

Example 2 Use Stokes’ Theorem to evaluate I FedF where F =227 +y2 j+xk and Cis
C

the triangle with vertices (1,0,0), (0,1,0) and (0,0,1) with counter-clockwise rotation.

Solution
We are going to need the curl of the vector field eventually so let’s get that out of the way first.
i J k
=~ 2 9 =22j-j=(2z-1)]
oXx oy oz
2 y? X

Now, all we have is the boundary curve for the surface that we’ll need to use in the surface
integral. However, as noted above all we need is any surface that has this as its boundary curve.
So, let’s use the following plane with upwards orientation for the surface.

Z
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Since the plane is oriented upwards this induces the positive direction on C as shown. The
equation of this plane is,

X+y+z=1 = z=9(xy)=1-x-y

Now, let’s use Stokes’ Theorem and get the surface integral set up.
_[If-d F:I curl F «dS
C S

:jj(Zz—l) j+dS

szl

5 |

| ||Vf |dA

Okay, we now need to find a couple of quantities. First let’s get the gradient. Recall that this
comes from the function of the surface.

f(xy.z2)=2-9g(xy)=2-1+x+y
V=i +]+k
Note as well that this also points upwards and so we have the correct direction.

Now, D is the region in the xy-plane shown below,

0z
0.4
0.4

0z

|:|_ 1 1 1 1 x
0. 0z 0.4 0.4 0z 1.

We get the equation of the line by plugging in z =0 into the equation of the plane. So based on
this the ranges that define D are,
0<x<1 0<y<—x+1

The integral is then,
J'J. (2z- l)]( +j+k)dA

O'—.

Don’t forget to plug in for z since we are doing the surface integral on the plane. Finishing this
out gives,

© 2007 Paul Dawkins 278 http://tutorial.math.lamar.edu/terms.aspx




Calculus 111

[F-d

C

:II 1-2x-— 2y dy dx

—x+1

=I(y 2xy — y) dx
=| x?—xdx
=( X ——xj
3
__1
6

In both of these examples we were able to take an integral that would have been somewhat
unpleasant to deal with and by the use of Stokes” Theorem we were able to convert it into an

integral that wasn’t too bad.
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Divergence Theorem

In this section we are going to relate surface integrals to triple integrals. We will do this with the
Divergence Theorem.

Divergence Theorem

Let E be a simple solid region and S is the boundary surface of E with positive orientation. Let
F be a vector field whose components have continuous first order partial derivatives. Then,

[[ FedS = [[[ div F dv

S E

Let’s see an example of how to use this theorem.

Example 1 Use the divergence theorem to evaluate J.I FedS where F =xyi —1y? j+zk
S

and the surface consists of the three surfaces, z =4 —3x*>—3y®, 1<z <4 on the top,
x*+y?=1, 0<z<1 onthesidesand z =0 on the bottom.

Solution
Let’s start this off with a sketch of the surface.

The region E for the triple integral is then the region enclosed by these surfaces. Note that
cylindrical coordinates would be a perfect coordinate system for this region. If we do that here
are the limits for the ranges.

0<z<4-3r?
0<r<«1
0<6<2rx

We’ll also need the divergence of the vector field so let’s get that.
divF=y—-y+1=1
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The integral is then,

jjﬁ.ds?:mdivﬁdv
s Ez,, o
:L JOJ.O rdzdrdé

271’ 1
:f j 4r—3rdrdé
0 0

2z
:J (Zr2 —Er“j
4
0

2z
:f 540
o 4

1
déo

0
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L Abstract Algebra Dr. Saad Shargawy

1-Sets:

Def. A collection of well-defined objects is called a set.
We used capital letters A,B,C,...to denote a set and small letters a,b,c,...
to denote the elements of a set. The symbol a € A means “a is an element
of the set A” and a ¢ A means “a is not an element of the set A” .

= Set Formulation:
(1)_The Tabulation Method:

We indicate a set by listing all its elements and enclosing them within

braces. For example,
A={1,2,34,5}.
B ={a,b,c,d}.
Z ={0,£1,%2,....}.
(2) The Rule Method:

We state the characteristic property by which we can determine whether
or not a given object is an element of the set. We write A={x: x has p}
to say that ““ A is the set of all elements x for which a certain property p
holds “. For example,

A={x:x is a solution of x> —5x+6 = 0}.
B ={x:x is an integer, x* <100}.
X ={x:x is prime number,1< x <10}.

A set A is called a subset of a set B if every element of A isan

element of B.
Symbolically we write Ac B to say that A is a subset of B.
A is called proper subset of B and is denoted by A< B if there exists

in B at least an element which is not an element of A.
A subset which is not proper is said to be improper subset.
Examples:
1- If B be the set of all English alphabets , and A the set of all vowels,
then AcB.
2-1f Z={0,£1,%2,...£n,...Jand N ={1,2,3,...n,...},then Nc Z.
Two sets A and B are said to be equal iff every element of A isan
element of B and vice versa, i.e., A=B< AcBABCA.
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Remark: The signs ” :, A, v, <> “are used to denote “ such that , and ,
or, iff .

Examples:

1- If A={1,2,345} and B ={2,4,31,5}, then A=B.

2-1f A={,2,3,4,5,6,7,89,10} and

B={I,I1L1LIV,VVLVILVIIIX, X}, then A=B.

3- If A is the set of letters in the word “ calculate “ and
B={c,a,l,u,t,e}, then A=B.

A set consisting of only one element is said to be singleton set .

A set which contains no elements is called an empty (or null or void) set.
It is generally denoted by ¢ .

A set which contains all element is said to be universal set It is generally
denoted by U .

Givenaset B and asubset A of B , we call the set of all elements of
B which are not elements of A the complement of A in B and denoted
by A" (or A°or B—A),i.e. A ={x:xeB,x¢A}.

Given two sets A and B, we define their intersection ANB as the set
of all elements which are common to both A and B . We say that A and
B are disjoint if AnB =¢. We also define the union of A and
B ,denote AUB as the set of all elements which belong to at least one of
the two sets A and B . The union of two disjoint sets A and B is denoted
by A+B and is called the sum of A and B.

Sometimes, a diagrammatical representation of sets helps in
understanding relationships between different sets. This is done by what
Is known as Venn'’s diagram. It is a diagram in which members of a set
are represented by the points of a plane enclosed by a curve drawn in the
plane.

Examples:

1- If A={0,£2,44,...Jand B ={0,£1,£3,...},

then A B ={0}is a singleton set.

2-If A={x:x*=4,xisodd}, then A=¢.

3-1f N={123,..},A={135,...2n+1,...},and B={2,4,6,...2n,...},
then AnB=¢ and AUB=A+B=N.

4- The set consisting of all students of a university forms a universal set,
whereas students of different faculties form subsets of this universal set.
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5- If B is the set of all natural numbers 1,2,3,... and A is the set of all

even natural numbers, then A’ is the set of all odd natural numbers.
The following properties of » and U for arbitrary sets A,B,C

are satisfied:

(1) AnB=BnA, AUB=BUA (commutative law).

(2 (AnB)nC=ANn(BNC), (AuB)UC=AU(BUC)
(associative law).

3) An(BuC)=(AnB)U(ANC) , Au(BNC)=(AuB)n(AUC)
(distributive law).

4 AnA=A, AUA=A (idempotent law).

(B) AnU=A, Aug=A (identity law).

6) (AnB)'=A"UB’", (AUB)=A'"nB’ (De Morgan's law).
(7) (A)' =A (involution law).

Given X aset, then the set P(X) of all subsets of X is called

a power set of X .

The collection of all mutually disjoint subsets of a set X whose union
is the whole set X is called a partition of a set X .

The number of elements in a set X is called the order of the set X , and
denoted by O(X).

Given two sets A and B we define the Cartesian product Ax Bof A
and B to be the set of all ordered pairs (a,b) of elements a € A and

beB,ie. AxB={(a,b):ac ArbeB}.

By definition, two ordered pairs (a,b) and (c,d) are equal iff a=c and
b=d.When A=B =R the set of all real numbers, then

Ax B =RxR = R*represent the real plane.

Examples:

1- If X ={1,2,3} then P(X) ={¢,{} {2} {3}.{1.2} {13} {2,3}, X}.
2-1If A={1,2,3}, B={a,b} then:

AxB={(,a),(2,a),(3 a),b),(2,b),(3b)}.

3- A set {{1,2} {3,4},{5,6},...}form a partition of a set of all natural
numbers N, also a set {{1,4,7,...}{2,5,8,...}{3,6,9,...}},

but a set {{1,2},{2,3}.{3,4}....}is not a partition of N (verify that?).
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Exercises:

1- Give some examples of collections which is not considered Set
( by its mathematical Meaning)?.

2- Give an example for:

(1) A set contains two elements.

(2) A set contains only one element.

(3) An empty set.

(4) An infinite set.
3- By using the Tabulation Method. Represent each of the following
sets:

(1) X={x: x isa factor of 6 }.

(2) Y={y:y isasolution of y?=0}.

(3) A={ a:aeZ", ais odd number,1<a<10}.

(4) B={ b: b prime number,1<b<12}.

(5) S={x:xisamultiple of 3 }.

4- By using the Rule Method. Represent each of the following sets:
(1) S={a, e i,0,u}.

(2) S={10, 100, 1000, 10000, ...}.
(3) S={1, 1/2,1/3,1/4, ...}.

5- By using the Algebraic Symbols. Rewrite the following expression:
There exist only eight subsets of a set A={3,5,8,9} contains the
element 8 .

6- Let A={a,b,c}.Show that whether of the following is true,

and whether is false (Give reasons for your assertion):
(1) {a}eA (2) {ab}= P(A) 3) {¢}=P(A)
(4) AeP(A) (5) {ab}c A (6) {a}<= P(A)
(N {d}=P(A)  (8) {{b}}=P(A)

7- For an arbitrary sets A,B,C. Verify that:

(1) An(A°UB) = AnB

(2) Au(B-A) =AuUB

(3) Au(BNC) = (AuB)N(AULC)
(4) Ax(B-C) = (AxB)-(AxC)

(5) (AxA)N(BxC) = (AnB)x(ANC)
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2-Binary Relations:

Def.1 A subset ‘R — AxB is called a binary relation between a two sets
A,B.And if (a,b) € R we say that the element a € A associates with the
element b € Bby a relation R and denoted a$ib.

Remark: When R < Ax A we say that ‘R is a relation onaset A.
Def.2: For arelation R < Ax B we define two sets:

D, ={ac A:aRb}c A, G,, ={b € B:aRb}c B ,the set D,; is called
the domain of R, and the set G, is called the range of R.

Def.3: If R, < AxBand R, c BxC we define a composite relation
R,oNR, ={(a,c):3IbeB;(a,b)eR, A(b,c) eR,}.

Examples:
1- If R isarelation on aset X ={2,3,4,6}defined by:

(a,b)eR<=a\b Va,be X.(a\b means a divide b )
~R={(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)} ,
D,, ={2,34,6}=G,, = X .
2- If R isarelation onaset X ={1,2,3,4}defined by:
(a,b)eR<=a>b Vabe X.
~R={2),31,32),4),4,2),43)}, D, ={2,34}, G, ={1,2,3}.
3-If R, R, are two relations on a set X ={1,2,3};
R, ={(1D), 1.3),(21).(2.2), B, (3.3)}, R, ={(11), 1.2). (2,2), B}
- R, o R, ={11),(12),(2.2),(31).(3.2),(21) },
R, R, ={11),(13).(1,2),(2,2),(21),(31),(33)}.

Def.4: A binary relation R onaset X is called an equivalence relation
if it satisfies the following conditions:

(El) Vae X = (a,a) eR (Reflexivity)

(E2) V(a,b) e R= (b,a) e R (Symmetry)

(E3) V(a,b),(b,c) e R = (a,c) eR (Transitivity)
Examples:

1- If R is arelation on a set of all natural numbers N ={1,2,3,...}defined
by (a,b)eR<=a=Db VabeN
Then: (E1) VaeN;a=a=(a,a)eR
(E2) V(a,b)eR=a=b=b=a=((,a)eR
(E3) V(a,b),(b,c)eR=a=b,b=c=a=c=(a,c)eR
So, R is an equivalence relation.
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2- If R is arelation on a set of all integers Z ={0,+1,+2,...}defined by:

(a,b)e‘R@a eZ VabeZ,neN,n=>2

Then: (E1) Vaecz:2=2-0cz = (a,a) e R
n

(E2) v(ab)eh=2P 702
n

eZ=>(Dba)eR

a-b b-c
"'n
a-b b-c a-c
= + =
n n

So, R is an equivalence relation. This relation is called the congruent
modulo n and denoted by a=b(mod n).
Def.5: If R is an equivalence relation on a set X we define the
equivalence class of an element a e X to be a set
C(a) ={b e X : (a,b) € R}, the equivalence class of an element

(E3) V(a,b),(b,c) e R = Vi

eZ=(ac)eR

ae X may denoted by [a] or a .
The set of all equivalence classes of the relation a =b(mod n) is called

the set of residue classes, and is denoted by Z/n={0,1,2,...,n—1}

(orby z,={0,1,2,..,n-1}).

The set of residue classes of the equivalence relation on a set X form

a partition of a set X .

Example: The equivalence classes of the relation a =b(mod 6)is:
C(0)={...-12,-6,0,6,12,...},C) ={....11,-5,1,7,13,... },
C(2)={....10,-4,2,8,14,...},C(3) ={....-9,—-3,3,9,15,...},
C4)={..-8-241016,..3} C»5) ={.-7-151117,...}.

Proposition: The defining conditions (E1),(E2),(E3) of an equivalence

relation R are logically equivalent to the following two conditions:

(i) aRa. (ii) aRb AbRc = cRa.

Proof: We prove (E1),(E2),(E3) < (i),(ii):

Let (E1),(E2),(E3) hold. Then (E1) is the same (i), and

akb AbRc = aRc = cRa i.e. (ii) hold. ( from (E3),(E2) )

Conversely, let (i),(ii) hold. Then (i)=(E1) , aRb = akb AbRb = bRa

i.e. (E2) hold. ( from (i),(ii) ) ,and

athb AbRc = cRa = aRc i.e. (E3) hold. ( from (ii),(E2) ).
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Exercises:
1- Let X ={0,1,2,3,4,5}. Define on X arelation R by:
@b ene2Pczvabex..

Write R as a set of ordered pairs ,Verify that R is an equivalence
relation, and characterize the equivalence classes.
2- Let X ={1,2,3}. Define on P(X) arelation R by:
(A,B) e R < O(A)=0(B) VA BeP(X).
Prove that R is an equivalence relation, and characterize the equivalence
classes.
3- Let X ={(a,b):a,beZ,b=0}. Defineon X arelation R by:
(a,,b)R(a,,b,) < ab, =ba, V(a,b) (a,b)eX.
Prove that R is an equivalence relation, and characterize the equivalence
classes.
Solved Problem: Let R be an equivalence relation onaset S.
Show that for all a,beS:

(i) beC(a) @acC(b)

(if) either C(a) nC(b) =¢ or C(a) =C(b)

Proof:
(i) beC(a) @be{xeS:(ax)eR}
< (a,b)eR
< (b,a)eR
< ae{xeS:(b,x)eR}
< aeC(b).

(ii) Suppose C(a) n"C(b) = ¢,
let xeC(a) nC(b) @ xeC(a)AxeC(b)
< (@x)eRADX)eR
< (@, X)eRA(Xb)eR
< (a,b) e R.
let yeC(a)=(a,y)eR, (a,b)eR
< (bh,a)eRA(a,y)eR
< ((by)eR
< yeC(b).
~.C(a)=C(b) QED.
(i.e. Two equivalence classes are either disjoint or identical ).
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3-Mappings:
Def.1: Given two non-empty sets A,B. A relation (or rule) f which

associates with each element a € A, a well-defined (or unique) element
b e B is called a mapping (or function) from A into B.

It is denoted by f : A— B (or A——B),the set A is called the domain
of f,theset B is called the co-domain of f , andthe set f(A)is called
the range of f.

= Types of mappings:
Def.2: Amapping f: A— B iscalled onto (or surjective) if each
element of the co-domain B associates with element of the domain A
(i.e,, f(A)=B).
Def.3: Amapping f: A— B iscalled 1-1 (or injective) if Va,,a, € A,
f(a)="f(a,)=>a =a,.
Def.4: A mapping f:A— B iscalled 1-1 corresponding
(or bijective) if it is both onto and 1-1.
Def.5: Amapping f:A— B iscalled invertible
(or has inverse map f *:B — A)ifitis 1-1 corresponding.

= Composition of mappings:
Def.6: Given two mappings f:A—>B,g:D—>C; f(A)cD.
The composite mapping go f : A— C is defined by:
(gof)@=9(f(a)) VacA.
If f:A—>B, g:B—C the composite mapping go f : A— C is always
defined , and f o g is defined only when g(B) c A,
so it isnot necessary fog=gof .
Examples:
1-1f f:R—>R; f(x)=x"> VxeR (R is the set of all real numbers),
then the domain of fis R, also the co-domain of f
is R, and the range of f is R"( is the set of all non-negative real

numbers ).
2-1f f:Z—>2Z; f(x)=2x-1VxeZ, then the domain of f is Z,

also the co-domain of f is Z ,and the range of f is the set of all odd
numbers, and we determine the type of f as follow:
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1) yeZ,y:f(x):>y:2x—1:>x:yT+le£Z

.. f is not onto.
(2) VX, X, €Z, T(x)="1(X,)=>2%-1=2X,-1= X =X,
S f o isl-1.
3-If f:R>R; f(X)=2x+3VxeR,then

(1) VyeR,yzf(x):>y=2x+3:>x=y;36R

. f is onto.
(2) Vx,x, eR, f(x)="f(X,)=2x,+3=2X, +3=>X, =X,
oo fis1-1.
From (1),(2) f is 1-1 corresponding, so f is invertible, and the inverse

mappingis f*:R—>R; fl(x):XT_?’ VxeR.

4-1f f,g:R—>R; f(xX)=2x-3,9(x) =x*+3x+1 VxeR, then:
(fog)(x)= f(g(x)) = f(x* +3x+1) =2(x* +3x+1) -3 =2x* +6x 1,
(go F)(X)=g(f(X))=g(2x-3) = (2x-3)? +3(2x—3) +1=4x* —6x +1.
Exercises:

1- Given the following relations R,,R,,R,;, R, onaset A={1,2,3,4}.

Explain in each case why the relation is or not a mapping,
(determine the type of a mapping):

R, ={@13),(2,4),(11),(4,3).(4.4),(31) },
R, ={(2,4),(11).(31).(4.3)},
R, ={(23),(1.2),(34),(41)},
R, ={14).(22),(3.2)}.
2-1f f:N—>N; f(n)=n+1 VneN.
(i) determine the domain, the co-domain, and the range of f .
(i) Is f onto (1-1)?
3- Determine the type of each of the following mappings:
) f:2-52Z; f(x)=2x+1VxeZ
(i) f:R>R"; f(X)=x+Vx*+1 VxeR

2

X =2 if x#0
(i) f:R>R; f(x)= X ’ VxeR.

0 otherwise.
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4- Determine each of the following mappings is invertible
(define the inverse mapping for the invertible mappings):

i) f:N>2Z";f(n)=n-1VneN
(i) f:R>R; f(xX)=2x-3 VxeR
(i) f:Z2->272; f(x)=2x Vxel.
5-f f:R>R ,g:R>R; f(x)=1-x,9(X)=x*> VxeR
compute (f 2 g)(=1), (9> f)(4)
Solved Problem: Let f : A—> B , g: B — C two mappings

prove that:
(i) go fisontoifeachof f and g is onto.

(i) gofisl-lifeachof f and g is1-1.
Proof: (i) because each of f and g is onto, then
f(A)=B,g(B)=C,
- (g° f)(A) =g(f(A)=9(B)=C.
i.e. go fisonto.
(i1) because each of f and g is 1-1, then
f(a)="f(a,)=>a=a, Va,a, €A
g(b,) =9g(b,)=Db, =b, Vb,,b, eB.
(g0 f)@) =(g° f)(a,) = g(f(a)) = 9(f(a,))
= f(a) = f(a,)
—a=a, Va,a, A

ie. gof isl-1.
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4-Binary Operations:

Def.1: Amapping b: AxA— A;b(x,y)=ze A V(X,y)e AxA

is called a binary operation on a set A.

We use symbols such as *,0,#,®,®,..etc for a binary operations.
Def.2: A binary operation * on aset A is called associative if:
(x*xy)*xz=x=(y=*z) VX Yy,ze A, and itis called commutative if:
Xky=Yy*xx VX yeA.

Def.3: If * isa binary operation on aset A, the element e € A is called
the identity element w.r.t. = if: x*e=exx=X VXeA,

and the element y € A is called the inverse of the element x € Aw.r.t. *
if: xxy=y=*x=e.

Examples:

1- If *,® defined on a set of all nature numbers N by:

a*b=a",a®b=a+b-2a’* Va,beN.
Then = is a binary operation on N, because a*b=a’eN Va,beN,
but ® is not binary operation on N because,
a®b=a+b-2a’h*¢ N Va,beN (forexample put a=1,b=2).
2- If = defined on a set of integers Z by:
X*y=X+y-3VX,yelZ.
(i) Is = binary operation on Z ?
(it) Is * commutative? Is it associative?
(iii) Does * have an identity? Is exist an inverse w.r.t. = ?
(Give reasons for your answer).
The Answer:
(i) * is binary operation on Z because,
X*y=X+y—-3e€Z VX,yeZ
(i) x*y=x+y-3=y+x-3=y*xX VX, yeZ,ie * commutative,
(x*y)*xz=(X+y-3)*z2=(X+y—-3)+z2-3=xX+Yy+2-6,
Xk(y*xz)=X*(y+z-3)=x+(y+z-3)-3=x+y+2z—-6.
S(xxy)rz=x*x(y*2z) VX VY,ZeZ,i.e. * associative.
(iii) Let x*xe=exx=x VxeZ
S.X+e—-3=e+x-3=x=>e=3e”Z
i.e. * have an identity e =3,
let xxy=y*xx=e VXx,yeZ
S X+Y-3=y+Xx-3=3=>y=6-xeZ
i.e. 3 aninverseof xeZis 6—xeZw.r.t. *



Abstract Algebra Dr. Saad Shargawy

3- If ® defined onaset X = R—{1} ;R is the set of real numbers by:
XQYy=X+y—XxyVXx,yeX.
(i) Is ® binary operation on X ?
(ii) Is ® commutative? Is it associative?
(iii) Does ® have an identity? Is exist an inverse w.r.t. ® ?
(Give reasons for your answer).
» Representation by tables:
If X ={-1,0,1} we can represent the ordinary operations “+ " and “x” on
X by the following tables:

+(-1]0]1 x [-1]0|1
-1)-2(-1|0] |-1]1]0]-1
0[-1/0]1 0(0]0|0
11012 1}1-1/0]1

As it can be seen from the tables above:

If all elements in a table belongs to a set X , the operation is a binary
operation on a set X , and if all elements in a table are symmetric around
the diameter of the table , a binary operation is commutative. Otherwise it
IS not.

So, “x” is a commutative binary operation on X , but “+ ” is not binary
operationon X.

Remark: Only an operation defined on a finite set can be represented by
table.

Exercise: If = defined on aset X ={0,1,2,3,4} by:

X+Yy if Xx+y<5,

XYy = .

(x+y)-5 if x+y>5
(i) Represent = by table.
(i) Is * binary operation on X ?
(iii) Is * commutative? Is it associative?
(iv) Does * have an identity? Is exist an inverse w.r.t. *?

(Give reasons for your answer).

VX YyeX..

w.r.t. means: with respect to
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= Addition & Multiplication mod n:

We define addition and multiplicationon Z, ={0,1,2,..,n-1}

( Z,1s a set of all equivalence classes of the equivalence relation
a=b(mod n)) as follows:

atb

a®, b is the remainder of VabeZ,,
n

a®, b is the remainder of axb Vabez, .
n

Example: we represent the two operations @, and ®, on Z, ={0,1,2,3}
by the following tables:
O 1

0
1
2
3

Exercises:
1- In each of the following * is the specified binary operation on the set
Z of integers.
Determine in each case whether the operation is commutative, whether is
associative , whether there is an identity for the operation , and whether
there is an inverse w.r.t. the operation?

(i) axb=Db

(i) axb=a+b+ab

(iif) axb=2a+2b

(iv) a*b=a+b-1

(v) a*xb=a+ab
2- Let P(X) be the power set of aset X ={1,2}.

(i) Is the binary operation » on P(X) commutative?

Is it associative? Does it have an identity?.
(if) Answer the same questions for the binary operation U
on P(X).
(iii) Answer the same questions for the binary operation A
on P(X) (where AAB=(AuB)—-(ANB) VA BeP(X)).

@4

3
0
3
2
1

W N | O]
N O N O N

2 |3 0
2 |3 0
310 0
0|1 0
1] 2 0

w| N k| O O
w| N k| O

1
2
3
0
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5-Groups:

Def.1: Let G be non-empty set, and * binary operation on G .
The couple < G,* > is said to be a group if the following conditions are
satisfied:

(Gl) a*beG VabeG (closure).
(G2) (a*xb)*c=ax(b*c) Va,b,ceG (associative).
(G3) deeG;a*e=e*a=a VaeG (existence of identity).

(G4) VvaeGda'eG;a*a ' =a *a=e (existence of inverse).
If only the condition (G1) is satisfied, < G,* > is said to be groupoid , if
only the two conditions (G1),(G2) are satisfied, < G,* > is said to be semi-
group, and if only the three conditions (G1),(G2),(G3) are
satisfied, < G,* > is said to be monoid.
Def.2: A group< G,* > is said to be commutative (or abelian) if it satisfies
the commutative law: a*b=b=*a VabeG.
Def.3: By the order of a group < G,* > we mean the number of its distinct

elements, and denoted O(G) (or [G]).

A group < G,* > is said to be finite if its order is finite, and is said to be
infinite if its order is infinite.

Remark: We write G instead of < G,*>when a binary operation * is
the usual multiplication.

Examples:
1- Each of the following sets with the usual definition of addition of
numbers is a group:

Z the set of all integers.

Q the set of all rational numbers.

R the set of all real numbers.

C the set of all complex numbers.
2- Each of the following sets with the usual definition of multiplication of
numbers is a group:

Q" the set of all positive rational numbers.

R™ the set of all positive real numbers.
Q" =Q-{0}.
R*=R-{0}.
C" =C—-{0}.
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3-<Z,®, >isabelian group ; Z, ={0,1,2,..., n—1} is the set of residue
classes, and &, the addition of residue classes.

The identity of this group is the residue class 0 and the inverse of any
class a;0<a<n-1istheclass n—a.

If n=4 we prove that <Z,,®, > is abelian group as follows:
We represent < Z,,&®, > by the following table:

@) 0| 123
oOojo0o|1,2)3
11123 ]|60
2121301
313|012

(G1) @, is a binary operation on Z, as it can be seen from the table above.
(G2) Associative law holds in general for the two operations @©,,®,
onZ,.So @,is associativeon Z, .

(G3) 0 is the identity as it can be seen from the table above.
(G4)

The element 0 112 3
The inverse 0|32 1

@, is commutative as it can be seen from the table above.
s.<Z,,®, > is abelian group.

4- < Ax>isabeliangroup; A={a:a=3",ne Z}, and x the usual
multiplication of numbers.

The identity of this group is 3° =1, and the inverse of any element 3"
is 3",

5- <M (A),c >isagroup ; M(A) is the set of all 1-1 corresponding
mappings from A to A, and o the composition of mappings.

The identity of this group is the identity mapping |1 : A— A;l(a)=a
Vae A, and the inverse of any mapping f € M (A) is the mapping
f'eMA);foft=f"of=1.

This group is not commutative, because in general fog=go f .
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Properties: Let <G,* > be a group. The following properties are
satisfied:
(1) The identity element e is unique. For, if e ,e, are two identities in

<G>, then e *e, =¢ =e,.
(2) The inverse element a*is unique. For, if b,care two inverses of a,
then bxa=e,a*c=e, b=b*e=Db=(a*c)=(b*a)*c=e*c=c.
B) (@) '=a.Fora'*a=a*a " =e.
(4) axx=a*y=x=Yy, X*a=y*a—= x=Y (cancellation laws).
Proof: For a*x=a*xy=x=Yy.
ax*x=a*y=—a *(@x*x)=a *(axy)

= (at*a)*x=(a"'*a)*y

—SexX=exy

= X=V.
Similarly, for xxa=y*a=x=Yy.
(5) The equations a*x =band y*a =b have unique solutions
x=a'*band y=b*a'in <G>,
Proof: For the equation a*x=b.
LHS.=za*x=ax(a'=*b)=(a*a')*b=exb=b=R.H.S.,
let x,,x, are two solutions of the equation a*x =Db, then
axx =b,a*x,=b, a*x =a*Xx, =X =X,
i.e. the solution is unique. Similarly, for the equation y*a=b.
Examples: The solution of the equation 2x=3 inagroup <Z,,®, >
is2®,x=3=>x=2"9,3=29,3=1,
and the solution of the equation 5x=-2 inagroup < Z,*>;
Z the set of integers, a*b=a+b-3 Va,beZ
iS5xXx=-2=>Xx=5"%(-2)=(6-5)*(-2)=1%(-2) =1+ (-2)-3=—-4
(Verify that?).
(6) (@a*b)*=b**a™ VabeG.
Proof:
(@xb)*(b™**a™)=ax(bx("*a™)

=ax((b*b7)*a”)
—ax(exa’)=a*a ' =e.

~(axb)*=b"t*at VabeG.
Similarly, we can prove that (b™" *a™)*(a*b)=e,



Abstract Algebra Dr. Saad Shargawy

~(t+*at) ' =a*b Va,beG.

(7) a" =a*ax*..*a (ntimes), a" =a*a " *..*a" (ntimes),
a"+a"=a"", (@a")" =a™.

Remark: In the additive group< G,+ >,

na=a+a+...+a (ntimes),—na=(-a)+(-a)+...+(-a) (ntimes),

(n+m)a=na+ma, n(ma) =(nm)a.

Exercises:

1- Which of the following is group? Give reasons for your assertion.
(1) <Zx>; Z the set of integers.

(if) <Z,—>; Z the set of integers.

(ilf) < Zg,+>; Z; the set of all even integers.

(iv) <Z,x>; Z the set of integers, axb=a+b+1.

(V) <Rx>; R the set of all real numbers, axb=a+b-5.

. {100 iY(-1 0Y(0 -},
o <nesiaef® Y0 N2 YO Dy
(vii)<A,><>;A={(1 O],[l 0}{_1 OJ,(O 1}}.

0 1){0 -1){0 -1/{1 -1
(viil) < Ax > ;Az{(x 0j:x,ye R,xy=1}.

0 vy
(ix)<A,><>;A:{{X yJ:x,yeR,x2+y2¢0}.

2-Let X =R—{}, a*b=a+b—ab Va,be X .Verify that < X *>
is abelian group, and determine the solution of the equation 3x =5

in this group.

3- Inagroup <G,*> what is the element (a*b™" *c™)"equal to?
4- Show that a group < G,* > is commutative if x> =e VxeG.

5- Show that a group < G,*> is commutative if:

(x*y)t=x"xy" VX, yeG.

6- Show that a group < G,*>of order 3 is abelian? .

7- Show that a group G is abelian iff (ab)> =a’b® Va,beG.

8- If G is an abelian group, Prove that: (ab)" =a"b"VabeG,neZ”
(Hint: use the mathematical induction).
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6-Special types of groups:
1- Group of Permutations:
Def.1: A 1-1 mapping of a finite set S ={1,2,3,...,n} onto itself is said to

be permutation of degree n.
If « isapermutation of aset S ={1,2,3,...,n}, we write:

1 2 K n
al) a2 a3) ... a(n)J (a(l)j
Example: If «, 3,y are permutations of a set S ={1,2,3,4},

1 2 3 4 5= 1 2 3 4 1 2 3 4
a= ,
321 4 4 1 2 3) 3 4 1 2)

a, 3,y can represented by:
1234_23413 4 1 2 3
1 4 3 21
—ﬂ$®@=ﬂ&

321 4/
(r23 A (234,
ﬁ_b 1 2 J_( )’7_& 41 J_()( )

Each of a representations (1 3),(1 4 3 2),(1 3)(2 4)is said to be a cycle

representation of a permutation.
The composition of the two permutations «, S is defined as follow:

(1234 (1234 (1234, .
@P=l3 214 \a 123 \a3217¢d

and the inverse of a permutation £ is defined as follow:

. v 1 2 1 F 2 3 ﬂ
f= = =234,

2 1 4 3

1 2 3 4 2 3 41
. 1 2 3 4). L
and the permutation | = is the identity.
1 2 3 4

We say that there is an inversion in a permutation

(1 2 3 ... nJ. .

= , if for i < j we have:
al) a2 a@B) ... a(n)

a(i)—a(j)

<0 or, in other words, when a bigger number precedes a
i—]

smaller number in o, and the total number of inversions in « is denoted

by V,.
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Def.2: A permutation is called even (odd) permutation if the number of
its inversions is even (odd).

Examples:
. L ) 1 2 3 4
1- The number of inversions in a permutation « =
321 4
iIsV,=2+1+0+0=3 (odd), so it is odd,
. L i 1 2 3 4
the number of inversions in a permutation g =

4 1 2 3
isV, =3+0+0+0=23(odd), so it is also odd, and the number of

: o . 1 2 3 4
inversions in a permutation y = 3 4 1 2

isV, =2+2+0+0=4(even), so it is even.
2- A permutation:

1 2 3 456 7 8
P [4 5283617
V,=3+3+1+4+1+1+0+0=13 (odd).
Def.3: A set of all permutations of a finite set S ={1,2,3,...,n} with the
operation of a composition form a group of order n!, it is called a group
of permutations (or substitution) of degree n, and it is denoted by P,
(or S,).
Example: A set S,of all permutations of a finite set S ={1,2,3} with the
operation of a composition form a group of order 6,
S, ={1,023),132),12),1 3),(2 3)}
(Verify that? Hint: represent < S,,o > by table).

Remarks:

(1) The identity permutation | is an even permutation.

(2) The composition of two even permutations is even permutation,
also the composition of two odd permutations is even permutation,
and the composition of two permutations one of them even and the
other odd is odd permutation,

(3) There are an equal number of even and odd permutations in a

group S, .

]:(1 4 8 7)(2 5 3)(6) is odd;
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Exercises:
1- Given a permutations:

1 2 3 456 1 23456 1 2 3 456

“:[3 1456 2J’ﬁ:[2 4136 sj’y{s 2 4 3 1 6}

(i) Write each of «, S,y by a cycle representation.

(ii) Compute o 8, @’ o B, aoyoa™
2- Determine which of the following is even (odd) permutation:

(i)[123456789}

4 6 9 7 25813

(i) @ 2 3)o(246)o(54 3 2).

3- Verify that< S; ,0 >;S; is the set of all even permutations of degree 3

is an abelian group, but< S, ;o >; S5 is the set of all odd permutations of

degree 3 is not a group?.

4- Verify that< X 0 >;
X={1,1234),13)(24),1432}cS,
is an abelian group?.

2- Cyclic Groups:

Def.1: We say that G is a cyclic group if it is generated by at least one
of itselements ,say aG, i.e. VxeG3ineZ; x=a"

(or VxeG3neZ; x=na when G is an additive group), and we denote
G=<a>.

Examples:
1- <Z,+> is cyclic group generated by 1,—1 .For,

(Gl) a+beZ VabeZ.

(G2) (a+b)+c=a+(b+c) Vab,ceZ.

(G3) 30eZ;0+a=a+0=a VaeZ.

(G4) VaeZ 3—aeZ;(-a)+a=a+(-a)=0 .
~.<Z,+> isagroup,
0®=0,10=1,-)@)=-1,2)=2,(-2)() =-2,...and so on,
0(-)=0,1-) =-1,(-1)(-) =1,2(-) =-2,(-2)(-1) = 2,...and so on.
~.<Z,+>iscyclic group generated by 1,—-1 .
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2- <G >;G={1,—1,i,—i},i=\/—_1 is cyclic group generated by i,—i
For, the table of <G, x > is:

x | 1|10 |-
11 -1 1 |-
oo N R O A I
I -1 -1 1
oL T I I R e

(G1) x is a binary operation on G as it can be seen from the table above.
(G2) Associative law holds in general for x.
(G3) 1 is the identity.

(G4)
The element 1 (-1 i -
The inverse 1| -1 - i
.G isagroup,
it=ii=-1i*=—-i,i*=1 . G=<i>

(i)t =—i,(-)? ==1,(=)* =i,(-)* =1 .G =<-i>

3- <Z,,®, > iscyclic group generated by 1, 2 (verify that?).

4- <Z, —{0},®, > is cyclic group generated by 3,5 (verify that?).

5- < Xpo>; X={1,1234),13)(24),1432}cS,

is cyclic group generated by (1 2 3 4),(1 4 3 2) (verify that?).

Remarks:

(1) The generator of a cyclic group is not unique. For example, the
additive group < Z,+ > is cyclic group generated by 1,—1 .

(2) Every cyclic group is abelian.
Proof: Let G=<a>andlet g,,0,€G;g,=a"',g,=a°,r,se”Z

..g,0,=a'a’*=a""=a"=a’a" =¢,0;,.

(3) When G =<a> is of finite order, say n, then the distinct
elements of Gare: e=a’,a,a’,a’,..,a"*,a" =e. For,

in this case, all powers of a can not be different, so we must have:
a"=a“;hkezZ,h=k.If h>kthen a"* =e.

(4) When G =<a> is of infinite order, then the elements of G are:
e=a’,a",a”,.,a",...
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Def.2: By the order (or period) of an element a of a group G,

we mean the least positive integer m such that a™ =e.
The order of all elements in a group <{1,—1,i,—i} ,x > is:

The element 1 (-1 i -
The order 1|12 |4 4

Theorem: Given G =<a > acyclic group of order n.An element a™ for
1<m<n is agenerator of G iff (m,n)=1.

Proof:
Let G=<a" >.Thena=(@")*;axeZ,
ie.a'l=a"=a""=a’=e=e/=(@")" =a™;pez
Sl-am= M =am+ =1
i.e. (mn)=1.
Conversely, let (m,n)=1. Then 3, fZ;am+ ph=1,
na=a'=a™"=a""a™ =(@m*@")” =@")“(e)’ =(@")“e=(a@")"
ie. G=<a" >.
Example: Agroup <Gx>;G={l= ws,a),a)z,a)3,a)4,a)5,a)6,a)7} of
order 8 is cyclic group; G =<w >, the other generators of this group are
o®,0°,0"such that (38)=1,(58) =1,(7,8) =1.
Exercises:
1- Give an example to prove or disprove the following statements:

(i) Every abelian group is cyclic.

(ii) If G =<a> cyclic group. Then G=<a™ > .

(iii) Every element of a cyclic group generates the group.
2- Determine the order of all elements in a group< S,,0 >.

Is < S;,0> cyclic group?.
3- Find the generators of the cyclic group G =<a > of orders 7, 10
and 21.
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7-Subgroups:

Def.1: A non-empty subset H of a group G is said to be a subgroup
of G, if H itself is a group w.r.t. the same binary operation in G .

The fact that H is a subgroup of G will be denoted by H <G.

Every group G has two improper subgroups, namely, G itself and {e},

and any subgroup other than G and {e} is called proper sub- group.
Examples:
1- The set Z_ of all even integers forms a subgroup w.r.t. addition in the
additive group Z of all integers.
2- The set Q of all rational numbers is a group w.r.t. addition, and the set
Q" of all positive rational numbers is a group w.r.t. multiplication.
Although Q™ is a subset of Q ; we can not consider Q™ as a subgroup of
Q, since the binary operations in Q and Q™ are different.
3-If <Gx>;G={-Li—i},<H, x> H, =L, <H, x> H, ={i,—i}
Then H, <G, but H, is not subgroup of a group G, since <H, x> is
not a group.
Theoreml: A non-empty subset H of a group G is a subgroup of G iff
the following two conditions are satisfied:

(i) YabeH = abeH.

(i) VaeH = a* e H.
Proof: Suppose the conditions (i) and (ii) hold in H . Then

by (i) H closed w.r.t. multiplication in G i.e. (G1).

The associative law holds in H, since it holds in G i.e. (G2).
Since H=¢,letacH ,thenby (i) a* eH i.e. (G4).

And by ()we get aa'=a'a=ecH i.e. (G3).

Thus H is a group w.r.t. multiplicationin G, i.e. H<G.
The conditions are therefore sufficient.

Conversely, let H is a subgroup of G, the conditions (i),(ii) then follow
from the group conditions in H . Hence the conditions are necessary.
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Theorem2: A non-empty subset H of a group G is a subgroup of G iff
Va,beH =ab*eH.

Proof: Let H is asubgroup of G . Then:
VabeH=a'b'eH=ab'eH.

Conversely, let Va,be H = ab™ e H. Since H# ¢, letacH , then
VaeH =aa'=eeH ie(G3),Ve,acH =ea'=a'eH ie(G4),
VabeH=ab'eH=ab"') ' =abeH ie(Gl),

and the associative law holds in H, since it holds in G i.e.(G2).

Thus H is a group w.r.t. multiplicationin G, i.e. H<G.
Theorem3: Let H, <G, H, <G. Then H, nH, <G, but is not

necessary tobe H, UH, <G.
Proof:
VabeH nH,=abeH, ArabeH,

—=ab?eH, rab™ eH,
(From Theorem2)
=ab™* eH,nH,
=H, nH, <G
For, is not necessary to be H, UH, <G we give an example:
H, ={l,@ 2)}, H, ={I,( 3)} are two subgroups of a group of
permutations S,, but H, UH, ={l,(1 2),( 3)} is not group
(verify that?).

= | attice diagram of a sub-groups:

Let H,, H,, H,are proper subgroups of a group G ,and H, is proper
subgroup of a group H, and of a group H,.

Then we can represent the set of all subgroups H,, H,, H; and the two
improper subgroups G,{e} by the following lattice diagram:
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Solved Problem: List all the subgroups of a group S, and represent it by

lattice diagram.
The Answer: The proper subgroups of S, are:

S; . {1,@ 2)}.{1,@ 3)}.{I.(2 3)}, and the two improper subgroups of S,
are: S, ,{I}. Thus the set of all subgroups of a group S, is:

{S; {1, @ 2)}.{1,@ 3)}{l1.(2 3)},S, . {I}}and it represented by the
following lattice diagram:

S3 {1.@ 2)} {.a3} A{l.@223}

= Decomposition of a group:

Def.1: Let H be asubgroup of agroup Gand aeG.
The set aH ={ah:h e H} is called a left coset of H in G generated

by a.
Similarly, the set Ha={ha:h e H}is called a right coset of H in G
generated by a.

Examples:
1- The left coset and the right coset of a subgroup H ={1,-1}

inagroup G =<{,,-1,i,—i}x > generated by i € G are:
iH={ixLix(-)}={i,—i},
Hi ={lxi,(-) xi}={i,-i}.
2- The left coset of a subgroup S, inagroup < S;,o > generated by
L 2)eS; is:
1 2)S; ={@ 2)o1,(1 2)o(1 2 3),(1 2)o(1 3 2)}
={d 2),(2 3),d 3)}.
and the right coset of a subgroup S; ina group < S,,o > generated by
(123)eS;is:
S;123)={l-123),123)(123),1320-(@123}
={@ 2 3),(1 3 2),1}.
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Propositionl: Every subgroup of an abelian group is abelian, but the
converse is not true in general

(e.0. S; £S,,S; isabelian but S, is not abelian).

Proposition2: If H <G then the identity element in H is the same
identity element in G , and the inverse of an element in H is the same
inverse in G.

Proposition3: Two left cosets of a subgroup H inagroup G are either
disjoint or identical.

Proof: Suppose aH nbH = ¢ and let

ceaH nbH = c=ah, =bh; ;h,h; eH,

a=c(h)" =(bh))(h) " =bh ;(h)() " =h eH,

-.aH =(bh,)H =b(h,H) =bH.

Lagrange's Theorem: Let H be a subgroup of a finite group G . Then
the order of H is a factor of the order of G .

Proof: Let G be a finite group of order n and H be a subgroup of G of
order m. Suppose eH,a,H,a,H,..., a, ,H be the left cosets of a subgroup

H inagroup G. Then ah,,ah,,.., ah_ are the distinct elements of aH ,

-.0(G)=0(eH)+0O(a,H) +...+O(a, ,H)
=0O(H)+O(H)+...+4O(H). (I-—times)

sn=Im.

Remark: The reverse of Lagrange's Theorem is not true in general.

For example O(S,) =12 (S, is the group of all even permutations of

degree 4), but there is no subgroup of S, of order6 .
Def.2: The number of left (or right) cosets of H in G is called the index
of H in G. Itisdenoted by (G:H) (i.e. (G:H) _0(©) ).

O(H)
Corollary.1: A finite group of prime order has no proper subgroup.
Corollary.2: The order of an element of a finite group is a factor of the
order of the group.
Corollary.3: Every finite group of prime order is cyclic.
Corollary.4: The number of all subgroups of a finite cyclic group G is
equal to the number of a positive factors of the order of G .
Example: <Z,,,®,, > is a cyclic group (verify that?), O(Z,,) =12, and
the positive factors of 12 are 1,2,3,4,6,12 Thus the number of all
subgroups of <Z,,,®,, > IS 6
(Itis <1>,<2><3><4><6><0>)
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Exercises:
1- Verify that aH =Ha=H ,bH = Hb , for H ={l,(1 2)},

a=@02),b=(@13)eS,
2- Determine all subgroups of a group <G =7, —{0,3,6},®, >,
and represent it by lattice diagram.

= Normal subgroups, Simple groups, and Factor groups:

Def.1: A subgroup H of agroup G is called a normal subgroup
(or invariant subgroup or self-conjugate subgroup) of G if:

aH =Ha VaeG.
i.e. if the left and right decompositions of G w.r.t. H are identical.
The fact that H is a normal subgroup of a group G will be denoted by
HAG
Def.2: An element aHa ™ where acGand he H is called a conjugate
of hinG.
The defining condition of a normal subgroup can be replaced by a weaker
condition:

aHa'cH VaeG.
Def.3: A group which has no proper normal subgroup is said to be
simple group.

Examples:
1- A subgroup {I,(1 2)}is simple, but it is not normal subgroup of

agroup S, (verify that?).

2- A subgroup H ={1,—1} is simple , and it is normal subgroup of

agroup G={L-Li,—i} w.r.t. x (verify that?).

3- Asubgroup S, is a normal subgroup of a group S, (verify that?)
Is it simple?.

4- <Z,,®, >is not simple group, also < Z,+ > is not simple group
(verify that?).
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Givenagroup G and HAG. Let T be the set of all cosets of H
in G . We define in T" a multiplication operation as follows:
(Ha)(Hb) =H(ab) YHa,HbeTI.

The associativity in T" is assured by the associativity in G .

The coset He =H is the identity in T".

Every coset Ha in T" has Ha™ as its inverse.

So, the set I"of all cosets of H in G forms a group w.r.t. the above
definition of multiplication of cosets. It is called the factor group

(or the quotient group), and it is denoted by G/H .

Example: Let G =<a > be a cyclic group of order 10.

To determine the factor groups of G by Lagrange's theorem, if G has
any subgroups, then it would be of order 1,2,510 .

Being cyclic, G is abelian and so every subgroup of it is normal.
The two improper subgroups are:

G ={e,a,a*a’,a*,a’a’ a’,a’ a’}, E={e}.

The two proper subgroups are:

H ={e,a’}of order 2 and K ={e,a®,a"*,a®,a’}of order 5

Therefore,

G/G ={[GI}, G/E ={[e].[a].[2*],[a’].[a*][a°].[a°],[a"],[a°],[a° T}

are factor groups of order 1 and 10 respectively. Also,

G/H ={H,aH,a’H,a’H,a*H}={[e,a’],[a,a%],[a*,a’],[a%,a’],[a*,a°]}
and G/K ={K,aK}={[e,a*,a*,a’% a’],[a,a,a%,a’,a’]}.
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8-Homomorphism and Isomorphism between groups:

Def.1: A mapping f :G, > G, where <G, ,*>,<G,,#>two groups is
said to be a homomorphism if: f(a*b)= f(a)# f(b) Va,beG, .

If G, =G, f iscalled an endomorphism, a 1-1 homomorphism is called
monomorphism, and an onto homomorphism is called an epiomorphism .

Examples:
1- Amapping f <R,+>—>< X x>; R the set of all real numbers,

X =R-{0}, f(n)=3" isahomomorphism. For:
f(m+n)=3""=3"x3"=f(m)x f(n) VvmneR.
2- Amapping f <Z+>—><Z+>; Z thesetofintegers, f(n)=n+1
is not homomorphism. For: f(m+n)= f(m)+ f(n) vmneZ
(verify that?).
3-Amapping f<Z+>—><Ax>; A={L-1i,-i},
f(n) ={ ! !f NEVEN s a homomorphism. For:
-1 if nodd.
let m,n e Z, we have the following three cases:
(1) If each of m,n even number, then m+n is even,
S fm)y=f(n)=1, f(m+n)=1=1x1=f(m)x f(n).
(2) If each of m,n odd number, then m+n is even,
f(my=f(n)=-1, f(m+n)=1=(-)x(-1) = f(m)x f(n).
(3) If one of m,n even and the other odd, then m+n is odd,
S f(m)y=1, f(n)=-1v f(m)=-1, f(n) =1,
f(m+n)=-1=1x(-1) = f(m)x f(n),
f(m+n)=-1=(-)x1= f(m)x f(n).
ie. f(m+n)=f(m)x f(n) vmneZ.So, fisahomomorphism.
4- A mapping g <Z,+>—><Ax>; Z the set of integers,

-1 ifneven, . .
A={L-1i-i}, g(n)= . is not homomorphism. For:
{ ¥, 9(n) {1 i€ 1 odd. p

2,4eZ,wehave g(2)=g(4)=-1, g(2+4)=9(6)=-1,
9(2)xg(4) =(-Dx(-) =1 .. g(2+4) = g(2)xg(4).

0 ifaeven
2 if a odd.

ae$,

5- Amapping f <S;,0>—><Z,,®, >; f(a) :JL

is @ homomorphism (verify that?).
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Theoreml: Let f <G, *>—><G,,#>beahomomorphism, and let e,,e,
are the identities in G,,G, respectively. Then:

(i) fe) =e,.
(i) f(x ) =[f(X)]" VxeG,.
Proof:

(i) letxeG, , f(x)eG,.
(X)) = f(xxe) = F(X)#He, = T(X)#T(e) = e,=1(g).
(i) =~ f(e) =,
Lf(xEx) =e, = F)#F(xT) =e,
=[FOOT#IE 0# f (x)]=[f ()] " #e,
= [LFEOI# FOOI# F () =[f ()]
= e, # f(x™) =[f ()]
= f(x)=[f(X)]™".
= The Kernel and Image of a Homomorphism:

Def.2: Let f :G, »> G, be a homomorphism.

The set: ker f ={x:xeG,, f(x)=e,} =G, is called the kernel of the
homomorphism f . And the set:

Imf ={y:yeG,,3xeG,; f(x)=y}cG, is called the image of the
homomorphism f .

See the following diagram:

(4
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Examples:
1- The kernel, and the image of a homomorphism f <Z+>—><Ax>;

A .. 1 ifneven _
={L-Li-i}, f(n):{_1 i€ 1 odd. are:
ker f ={n:neZ,n even}={0,+2,44,.} c Z,
Imf ={L-Lc A
2- The kernel, and the image of a homomorphism
f<S,0>><Z,@®,>; (@) :{0 It a even,
2 ifaodd.

ker f ={1,(123),132)}cS,,
Imf ={0,2}c Z,.
3- Let A={a,b}.Then < P(A),A > is an abelian group , and let
B={L-1i,—i}.Then < B,x > is also an abelian group (verify that?).
A mapping f :P(A) > B; f(X)=1 VX € P(A) is a homomorphism,
and ker f =P(A), Imf ={1}.
Theorem2: Let f <G, *>—><G,,#>beahomomorphism, and let e, e,
are the identities in G,,G, respectively. Then:

(i) ker f is a subgroup of a group G, .

(if) Im f is a subgroup of a group G, .
Proof: We use the fact that a subset H of a group G is a subgroup of G
iff vabeH = ab™ e H.

(i) let x;,x, eker f = f(x,) = f(x,)=e,,

w0 =T (x)]7 =[e,]7 =6,

SR X)) = F(x)#T (X)) =e,#e, =e, = X, *X," eker f.
~ker f <G,.
@i)ylety,y,elmf =3x,x,€G, ;f(x)=y,, f(X,)=Y,,

yl#yz_l = f (Xl)#[f (Xz)]_l = f (Xl)# f (Xz_l) = f (Xl * Xz_l) elmf.
~Imf <G,.
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Theorem3: Let f <G, *>—><G,,#>be ahomomorphism, and let e,,e,
are the identities in G,,G, respectively. Then f is 1-1iff ker f ={e,}.
Proof: Let f is 1-1 we prove that ker f ={e,}as follows:
xekerf = f(x)=e,, f(e)=¢e,
= f(x)="f(e)
= X=¢€,.
le. ker f ={e }.
Conversely, let ker f ={e }we prove that f is 1-1 as follows:
X, X, €G,, F(x)=f(x)= F(X)HF ()] = FOO)HF(X)]
= F()#1(x;) =e,
= f(x*x") =6,
= X, *X, eker f ={e;}
= X kX, =€
= X = X,.
ie. fisl-1.
Def.3: A homomorphism f :G, — G, is called an isomorphism if it is
1-1 corresponding (i.e. f is1-1and f is onto), in this case we say that the
two groups G,,G, are isomorphic, and denote G, =G,
Def.4: An isomorphism of a group onto itself is called an auto- morphism

of the group.
= Inorder to show G, =G, we proceed as follows:

(Stepl): Define a mapping f i.e. describe the element f(x)in G,
forevery xeG;.

(Step2): Show that f is 1-1.

(Step3): Show that f is onto.

(Step4): Show that f is.a homomorphism.
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Examples:
1- To show that < Z,+ >=<Z_,+>where Z the set of integers, and Z

the set of all even integers:
(Stepl): Define amapping f:Z —>Z_ by f(X)=2x VxeZ.
(Step2):x,, %, € Z, f(x,) = f(X,) = 2%, =2X, = X, =X, So f is1-1.

(Step3):yeZ.,y= f(x):>y:2x:>x=%ez So f isonto.

(Stepd): X, X, € Z, T (X, +X,) = 2(X, + X,) = 2%, + 2%, = T (%) + f(X,)

So f is.a homomorphism.

Consequently, <Z,+>=<Z_,+>.

2- Similarly, < R,+ >=<R",x > where R the set of real numbers, and R*
the set of positive real numbers.

(Hint: Define amapping f :R—> R by f(x)=e* VxeR).

3- Similarly, <Z,+ >=< Ax > where Z the set of integers,

and A={a:a=3",neZ}.

(Hint: Define amapping f:Z > Aby f(n)=3" VneZ).

4- Let G be a multiplicative group. The mapping f :G — G defined by
f(x)=x" ¥xeG isnotan isomorphism. For,

although f is 1-1 and onto, it does not homomorphism ;

fOy)=0y) " =y x =xTy 2 F()f(y).

However, if G be a multiplicative abelian group, f is an auto-morphism

of G.
Theorem4: Every cyclic group of infinite order is isomorphic to the
additive group <Z,+ >.

Proof: Let G=<a>={a":neZ},

(Stepl): Define a mapping f:G —>Z by f(a")=n Va" eG.
(Step2):a",a" G, f(@a")=f(@")=>n=m=a"=a" So f is1-1.
(Step3):VneZ 3a" G ;f(a")=n So f isonto.

(Stepd):a",a" €G, f(a"a")=f@""™)=n+m=f@")+ f(@")

So f is.ahomomorphism.

Consequently, <Gx>=<Z,+>.
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Theorem5: Every cyclic group of finite order n is isomorphic to the
additive group <Z,,®, >.

Proof: Let G={e=2a’ a,a*,..,a" '} and Z, ={01,2,..,n—1},
(Stepl): Define a mapping f:G—>Z by f(a")=r va' e€G.
(Step2):a",a* G, f(a")=f(a°*)=r=s(mod n) i.e. r=ng+s
Soa"=a"" =a"a’=ea’=a’ie. f isl-1.
(Step3):VreZ,3a"eG;f(a")=r So f isonto.

(Stepd):a",a* G, f(@'a’)=f(@")=r+s=f(@")+ f(a°)

So f is.a homomorphism.

Consequently, <G x>=<Z_ @, >.

Corollary: Any two cyclic groups of the same order are isomorphic.

Solved Problem(1): Verify that the two cyclic groups
<S;,0>and< Z,,®, > are isomorphic.

The Answer: We can represent < S; .o >and<Z,,®, >
by the following table:

o | (123) (132)
®3
| | (123) (132
0
(123) (123) 132) |
1
(132) (132) | (123)
2

As it can be seen from the table above: the similar elements in the two
groups are neighboring in the table. So, S; = Z, .
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Solved Problem(2): Show that there exists no isomorphism between
<R,+>and< R,x>, where R the set of real numbers.

The Answer: Suppose that f isan isomorphism from < R,+> to
<Rx>.Then f(x+0)=f(x)= f(x)x f(0)=f(x)= f(0)=1,

F (X (=) = F(0) = F(X)x f(=X) =1=> f(=X) = ———,

f(x)

because f isan isomorphism it is onto,
ie. Vye<Rx>3Ixe<R+>;y=f(x),
then for 0e< Rx> 3 xe<R,+>; 0= f(X),
but f(-x)= % = f(-x)= % ¢ R which gives contradiction.
So, there exists no isomorphism between< R,+ >and< R,x >.
Exercises:
1- Which of the following is a homomorphism?
(Give reasons for your answer)
and determine ker f,Imf for a homomorphism.
(i) f<Z+>><Z+>;f(n)=n?,Z the set of integers.
(i) f<Z4+>><Z+>;f(n)=2n
(i) f <ZA4A>><Z4+>;f(nN)=n+1
(iv) f <Rx>—><Rx>;f(n)=n*R the set of real numbers.
(v) f<P{a,b},A>—><Z+>;f(X)=0(X) VX e P{a,b}.
2- Let f <Cx>—><Rx> beamapping ,where C the set of complex
numbers, and R the set of real numbers, defined by:

f(a+ib) =[a+ib|=+va®+b? . Verify that f is a homomorphism.
Is f anisomorphism?.
3- Let f < X,®>—><Y,®> be amapping defined by f(x)=-x
where:

a®b=a+b+ab Va,be X =R-{-1},

a®b=a+b-ab Va,beY =R-{1}.
Verify that X =Y .
4- Verify that the two cyclic groups< Z, —{0},®, > and

: R the set of real numbers.




