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1. Matrix

In 1848, G.G. Sylvester introduces the concept of matrices as the name of a
group of numbers arranged in a rectangular in the form of rows and columns.
In 1855, Arthur Cayley studied matrices from an algebraic perspective. In
this study, he defined the process of multiplying matrices using linear
transformations.

Definition 1.0.1 A matrix is a rectangular arrangement of numbers (real
or complex) which may be represented as,

A = (ai j)m×n =

 a11 ... a1n

:
. . . :

am1 ... amn

 ,

the general form of a matrix with m rows and n columns.
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R Capital letters A,B, ... denote matrices, whereas lower case letters
a,b, ... denote elements.

� Example 1.1 Build a matrix A = (ai j)2×3, where

ai j =

 i+ j i f i < j
i i f i = j

i− j i f i > j

Solution:

A =

(
a11 a12 a13
a21 a22 a23

)
,

A =

(
1 3 4
1 2 5

)
,

�

� Example 1.2 Build a matrix B = (bi j)3×3 ;

bi j =


i+ j i f i < j
0 i f i = j
i2− j2 i f i > j

Solution:

B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 ,

b11 = 0 , b12 = 1+2 = 3 , b13 = 1+3 = 4 ,
b21 = 22−12 = 3 , b22 = 0 , b23 = 2+3 = 5,
b31 = 32−12 = 8 , b32 = 32−22 = 5 , b33 = 0,

...B =

 0 3 4
3 0 5
8 5 0

 .

�
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Definition 1.0.2 Two matrices Am×n = (ai j) and Bp×q = (bkl) are equal,
if
1- m = p and n = q.
2- ai j = bkl ∀i, j,k, l.

� Example 1.3 Given

A =

(
a b
c d

)
,

B =

(
1 2 −1
3 0 1

)
,

and

C =

(
1 0
−1 2

)
,

disuss the possibility that
1. A = B .
2. B =C.
3. A =C .

Solution
1. A = B is impossible because A and B are of different size.
2. Similarly, B =C is impossible.
3. A =C is possible.

�

Definition 1.0.3 A matrix whose elements are all zero is called a zero
matrix and denoted by 0 or O.

Definition 1.0.4 A matrix with the same number of rows as columns is
called a square matrix.
A square matrix with n rows and n columns is called a n−square matrix.

� Example 1.4 The matrix

A =

 1 −2 0
0 −4 −1
5 3 2

 ,

is a 3 square matrix. �
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Definition 1.0.5 The main diagonal or simply diagonal of a square
matrix A = (ai j) is the numbers a11,a22, ...,ann.

� Example 1.5 In the above Example 1.4, the numbers along the main
diagonal are 1,−4,2. �

Definition 1.0.6 The square matrix with 1s along the main diagonal and
0s elsewhere is called the unit matrix or the identity matrix and will be
denoted by I.
For any square matrix A, AI = IA = A.

� Example 1.6 The matrix

I3×3 =

 1 0 0
0 1 0
0 0 1

 ,

is a unit matrix of type 3×3. �

1.1 Matrix Addition
Definition 1.1.1 The sum of the two matrices A and B, written A+B,
is the matrix obtained by adding the corresponding element from A and
B i.e.,

A+B = (ai j +bi j).

R A+B have the same type as A and B.

R The sum of two matrices with different types is not defined.

� Example 1.7 Let A and B;

A =

 1 2 0
3 1 0
0 4 1

 ,
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B =

 1 2 1
3 1 0
−1 4 1

 ,

be two matrices, then

A+B =

 2 4 1
6 2 0
−1 8 2

 .

�

� Example 1.8 Let

A =

(
1 −2 3
0 4 5

)
,

B =

(
3 0 −6
2 −3 1

)
,

C =

(
1 −2
3 4

)
,

and

D =

(
0 5 −2
1 −3 −1

)
.

Find A+B and C+D.
Solution

A+B =

(
4 −2 −3
2 1 6

)
,

and the sum of C+D is not defined. �

Theorem 1.1.1 Let A, B and C be matrices with the same type, then
1. (A+B)+C = A+(B+C).
2. A+B = B+A.
3. A+O = O+A = A.

Where O is a zero matrix with the same type of A.
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Proof. Let A = (ai j)m×n, B = (bi j)m×n andC = (ci j)m×n, then
(i) (A+B)+C = [(ai j)+(bi j)]+(ci j)

= (ai j +bi j)+ ci j
= (ai j +bi j + ci j)
= (ai j)+(bi j + ci j)
= A+(B+C)

(ii) A+B = (ai j)+(bi j)
= (ai j +bi j)
= (bi j +ai j)
= (bi j)+(ai j).

(iii) Trivial. �

� Example 1.9 Solve(
3 2
−1 1

)
+X =

(
1 0
−1 2

)
,

where X is a matrix.
Solution:
To solve (

3 2
−1 1

)
+X =

(
1 0
−1 2

)
,

simply subtract the matrix (
3 2
−1 1

)
,

from both sides to get

X =

(
1 0
−1 2

)
−
(

3 2
−1 1

)
=

(
−2 −2
0 1

)
.

�



1.2 Scalar Multiplication 13

1.2 Scalar Multiplication
Definition 1.2.1 The product of a scalar k and a matrix A, written kA is
the matrix obtained by multiplying each element of A by k, i.e.,

kA = (kai j)m×n.

� Example 1.10 3
(

1 −2 0
4 3 −3

)
=

(
3 −6 0

12 9 −15

)
. �

� Example 1.11 If kA = 0, show that either k = 0 or A = 0.
Solution:
Write A = (ai j), so that kA = 0, means kai j = 0, for all i and j. If k = 0,
there is nothing to do. If k 6= 0, then kai j = 0 implies that ai j = 0, for all i
and j; that is, A = 0. �

1.3 Matrix Multiplication
Definition 1.3.1 Le Am×n = (ai j) and Bn×q =

(
b jk
)
, then

Cm×p = AB = (
n

∑
j=1

ai jb jk).

� Example 1.12 Let

A =

(
1 2
3 4

)
,

B =

(
1 −1
5 0

)
,

C =

(
1 −2 3
0 4 5

)
,

and

D =

 1 4
2 −5
3 6

 ,

then find
(1) AB.



14 Chapter 1. Matrix

(2) AC.
(3) AD.
Solution
(1) AB =

(
1 2
3 4

)(
1 −1
5 0

)
=

(
12 −1
23 −3

)
.

(2) AC =

(
1 2
3 4

)(
1 −2 3
0 4 5

)
=

(
1 −6 13
3 10 29

)
.

(3) AD =

(
1 2
3 4

) 1 4
2 −5
3 6

 is not defined. �

Theorem 1.3.1 Let A, B and C be matrices with the same type, then

(i) (AB)C = A(BC)
(ii) A(B+C) = AB+AC
(iii) (B+C)A = BA+CA
(iv) k(AB) = (kA)B = A(kB) where k is a scalar.

Proof. Let A = (ai j)m×n, B = (b jk)n×p andC = (ckl)p×q, then

(i) L.H.S = (AB)C

= (∑n
j=1 ai jb jk).(ckl)

= (∑
p
k=1[(∑

n
j=1 ai jb jk).ckl ])

= (∑
p
k=1 ∑

n
j=1 ai jb jk.ckl).

R.H.S = A(BC)

= (ai j)(∑
p
k=1 b jkckl)

= (∑n
j=1 ai j[(∑

p
k=1 b jkckl)]

= (∑n
j=1 ∑

p
k=1 ai jb jkckl).

Assuming I have written these correctly, we can make two observations:
first, the summands are equivalent, as multiplication is associative. Second,
the order of the summations doesn’t matter when we’re summing a finite
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number of entries. Thus, (AB)C = A(BC).

(ii) Let A = (ai j)m×n, B = (b jk)n×n andC = (c jk)n×n, then
L.H.S = A(B+C)

= (∑n
j=1 ai j

(
b jk + c jk

)
)

= (∑n
j=1(ai jb jk +ai jc jk))

= (∑n
j=1 ai jb jk)+(∑n

j=1 ai jc jk)

= AB+AC.

(iii) In the same way.
(iv) Trivial.

�

R The matrix product is not commutative in general i.e.,

AB 6= BA.

� Example 1.13 Simplify the expression

A(BC−CD)+A(C−B)D−AB(C−D).

Solution
A(BC−CD)+A(C−B)D−AB(C−D)=A(BC)−A(CD)+(AC−AB)D−
(AB)C+(AB)D = ABC−ACD+ACD−ABD−ABC+ABC = 0. �

� Example 1.14 Show that AB = BA if and only if

(A−B)(A+B) = A2−B2.

Solution
In general the following hold

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2.

Hence if AB = BA, then (A−B)(A+B) = A2−B2. Conversely, if this last
equation holds, then equation becomes

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2.

This gives 0 = AB−BA, and then AB = Bc. �
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1.4 Transpose
Definition 1.4.1 The transpose of a matrix

A = (ai j)m×n,

written by AT is the matrix obtained by writing the rows of A, in order,
as columns, i.e.,

AT = (a ji)n×m.

� Example 1.15 Let

A =

(
1 2 3
4 −5 6

)
,

then

AT =

 1 4
2 −5
3 6

 .

�

The transpose operation on a matrix satisfies the following properties:

Theorem 1.4.1 Let A and B be matrices with the same type, then
1. (A+B)T = AT +BT .
2. (AT )T = A.
3. (kA)T = kAT , f or k a scalar.
4. (AB)T = BT AT .

Proof. Let A = (ai j)m×n, B = (b jk)m×n , then
1. L.H.S = (A+B)T

= (ai j +bi j)
T

= (a ji +b ji)
= (a ji)+(b ji)
= AT +BT

= R.H.S.
2. L.H.S =

(
AT
)T

=
(
(ai j)

T
)T
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= (a ji)
T

= (ai j)
= A = R.H.S.

3. Exercise.
4. Exercise.

�

Definition 1.4.2 A matrix A is called symmetric if

A = AT .

Definition 1.4.3 A matrix A is called skew-symmetric if

A =−AT .

R A symmetric matrix A is necessarily square.

� Example 1.16 If A and B are symmetric n×n matrices, show that A+B
is symmetric.
Solution:
Since A = AT and BT , so, we have

(A+B)T = AT +BT = A+B.

Hence A+B is symmetric. �

� Example 1.17 Let A be a square matrix satisfies,

A = 2AT .

show that necessarily A = 0.
Solution:
If we iterate the given equation, gives

A = 2AT .

= 2(2AT )T .
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= 2((2AT )T ).

= 4A.

This lead to 3A = O and hence A = 0. �

� Example 1.18 If A and B are two skew symmetric matrices of same order,
then AB issymmetric matrix if ........
Solution
AB = BA. �
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1.5 The inverse of a matrix
The inverse of a square n×n matrix A is another n×n matrix denoted by
A−1 such that

AA−1 = A−1A = I.

where I is the n× n identity matrix. That is, multiplying a matrix by its
inverse produces an identity matrix. Not all square matrices have an inverse
matrix. If the determinant of the matrix is zero, then it will not have an
inverse, and the matrix is said to be singular. Only non-singular matrices
have inverses.

Definition 1.5.1 If A is a square matrix, a matrix B is called an inverse
of A if and only if

AB = I and BA = I.

� Example 1.19 Show that

B =

(
−1 1
1 0

)
is an inverse of

A =

(
0 1
1 1

)
.

Solution:
Compute AB and BA.

AB =

(
0 1
1 1

)(
−1 1
1 0

)
=

(
1 0
0 1

)
,

BA =

(
−1 1
1 0

)(
0 1
1 1

)
=

(
1 0
0 1

)
.

Hence AB = I = BA, so B is indeed an inverse of A. �

� Example 1.20 If

A =

(
0 −1
1 −1

)
,
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show that A3 = I and so find A−1.
Solution:

We have

A2 =

(
0 −1
1 −1

)(
0 −1
1 −1

)
=

(
−1 1
−1 0

)
,

and so

A3 =

(
−1 1
−1 0

)(
0 −1
1 −1

)
=

(
1 0
0 1

)
.

Hence A3 = I, as asserted. This can be written as

A2A = AA2 = I,

so it shows that A2 is the inverse of A. That is,

A−1 = A2 =

(
−1 1
−1 0

)
.

�

1.5.1 Adjoint of a square matrix
Let A = (ai j)n×n be a square matrix of order n and let ci j be the cofactor
of ai j in the determinant |A|, then the adjoint of A, denoted by adj (A),
is defined as the transpose of the matrix, formed by the cofactors of the
matrix.

Theorem 1.5.1 Given any non-singular matrix A, its inverse can be
found from the formula

A−1 =
ad j A
|A|

.

where ad j A is the adjoint matrix and |A| is the determinant of A.

� Example 1.21 Find A−1 where

A =

 1 2 2
2 1 −2
2 −2 1

 .
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Solution:
We calculate the value of the determinant of the matrix

|A|=

∣∣∣∣∣∣
1 2 2
2 1 −2
2 −2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 2 2
0 −3 −6
0 −6 −3

∣∣∣∣∣∣
= 1

∣∣∣∣ −3 −6
−6 −3

∣∣∣∣
=−27 6= 0 .

The cofactors of the matrix

∆11 = (−1)1+1
∣∣∣∣ 1 −2
−2 1

∣∣∣∣=−3,

∆12 = (−1)1+2
∣∣∣∣ 2 −2

2 1

∣∣∣∣=−6,

∆13 = (−1)1+3
∣∣∣∣ 2 1

2 −2

∣∣∣∣=−6,

∆21 = (−1)2+1
∣∣∣∣ 2 2
−2 1

∣∣∣∣=−6,

∆22 = (−1)2+2
∣∣∣∣ 1 2

2 1

∣∣∣∣=−3,

∆23 = (−1)2+3
∣∣∣∣ 1 2

2 −2

∣∣∣∣= 6,

∆31 = (−1)3+1
∣∣∣∣ 2 2

1 −2

∣∣∣∣=−6,

∆32 = (−1)3+2
∣∣∣∣ 1 2

2 −2

∣∣∣∣= 6,
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∆33 = (−1)3+3
∣∣∣∣ 1 2

2 1

∣∣∣∣=−3.

So,

Ã = (∆i j) =

 −3 −6 −6
−6 −3 6
−6 6 −3

=−3

 1 2 2
2 1 −2
2 −2 1

 ,

and

ad jA = (Ã)t =−3

 1 2 2
2 1 −2
2 −2 1

 ,

thus

A−1 =
ad jA
|A|

=
−3
−27

 1 2 2
2 1 −2
2 −2 1



=
1
9

 1 2 2
2 1 −2
2 −2 1

 .

�

Theorem 1.5.2 All the following matrices are square matrices of the
same size.

1. I is invertible and I−1 = I.
2. If A is invertible, so is A−1, and

(
A−1

)−1
= A.

3. If A and B are invertible, so is AB, and

(AB)−1 = B−1A−1

.
4. If A is invertible, then

(
AT
)−1

=
(
A−1

)T .
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1.6 Rank
Definition 1.6.1 A positive integer r is said to be the rank of a non-zero
matrix A, if:

1. There exists at least one minor in A of order r which is not zero.
2. Every minor in A of order greater than r is zero, the rank of a

matrix A is denoted by ρ(A) = r.
3. If A is an m×n matrix, then the rank of A is 0≤ ρ ≤ min{m,n} .

� Example 1.22 The rank of a null matrix is zero i.e, ρ(O) = 0. �

� Example 1.23 If In is an identity matrix of order n, then ρ(In) = n. �
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1.7 Exercises
1- Prove that
(i) (kA)T = kAT , f or k a scalar.
(ii) (AB)T = BT AT .
(iii) I is invertible and I−1 = I.
(iv) If A is invertible, so is A−1, and

(
A−1

)−1
= A.

(v) If A and B are invertible, so is AB, and (AB)−1 = B−1A−1.
(vi) If A is invertible, then

(
AT
)−1

=
(
A−1

)T .
2- Build matrices A = (ai j)3×2 , B = (bi j)2×3 ;

ai j =

 i+ j i f i < j
i i f i = j

i− j i f i > j
, bi j =

{
2i−1 i f i = j
i+ j−2 i f i 6= j

3- If A =

(
2 −1 0
1 0 −3

)
, B =

 1 −4 0 1
2 −1 3 −1
4 0 −2 0

. Compute

AB.

4- If A =

 1 0 2
2 −1 3
4 1 8

 , B =

 −11 −4 6
2 0 −1
2 1 −1

. Compute ABt .

6- If A =

 1 2 1
1 1 −1
1 0 −2

 , B =

 2 −1 1
−4 3 −2

3 −2 1

. Compute ABt .

7- Find the inverse of the matrices

(i)
(
−2 3
−5 −6

)
.

(ii)
(

3 5
7 9

)
.

(iii)

 1 1 3
2 2 1
3 2 1

.



2. Systems of Linear Equations

In mathematics, the theory of linear systems is the basis and a fundamental
part of linear algebra, a subject which is used in most parts of modern
mathematics. In this chapter, we introduce and study the system of linear
equation.

Definition 2.0.1 A system of linear equations is a collection of m equa-
tions in the variable quantities x1,x2, ...,xn of the form,

a11x1 +a12x2 + ...+a1nxn = b1,
a21x1 +a22x2 + ...+a2nxn = b2,
..... ..... ..... ..... .....
am1x1 +am2x2 + ...+amnxn = bm,

where ai j,bi ∈ R or C, for all i = 1,2, ...,m; j = 1,2, ...,n >

The two matrices:
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
a11 a12 ..... a1n
a21 a22 ..... a2n
..... ..... ..... .....
am1 am2 ..... amn

 ,


a11 a12 ..... a1n b1
a21 a22 ..... a2n b2
..... ..... ..... ..... .....
am1 am2 ..... amn bm

 ,

are the coefficient matrix, the augmented matrix for the system respec-
tively.

Definition 2.0.2 The solution set to a system with n unknowns x1,x2, ... ,xn
is a set of numbers t1, t2, ... , tn so that we set x1 = t1 , x2 = t2 , ... , xn = tn
then all of the equations in the system will be satisfied.

Definition 2.0.3 A system of equations

AX = B

is called a homogeneous system if B = 0 and if B 6= 0, then it is called a
non-homogeneous system of equations.

Theorem 2.0.1 Given a system of m equations and n unknowns there
will be one of three possibilities for solutions of the system:

1. There will be no solution.
2. There will be exactly one solution.
3. There will be infinitely many solutions.

Definition 2.0.4 If there is no solution to the system we call the system
inconsistent
- If there is at least one solution to the system we call the system consis-
tent.
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Linear systems in two unknowns arise in connection with intersections of
lines. For example, consider the linear system

a1x+b1y = c1
a2x+b2y = c2

in which the graphs of the equations are lines in the xy -plane. Each solution
(x,y) of this system corresponds to a point of intersection of the lines, so
there are three possibilities:
1. The lines may be parallel and distinct, in which case there is no intersec-
tion and consequently no solution.
2. The lines may intersect at only one point, in which case the system has
exactly one solution.
3. The lines may coincide, in which case there are infinitely many points
of intersection (the points on the common line) and consequently infinitely
many solutions.

� Example 2.1 The system of linear equations:

x+ y = 1
x+8y = 1

consistent; since x = 1 , y = 0. �

� Example 2.2 The system of linear equations:

x+ y+2z = 9
2x+4y−3z = 1
3x+6y−5z = 0

consistent; since x = 1 , y = 2 , z = 3. �

� Example 2.3 The system of linear equations:

3x−6y = 1
2x−4y = 5

inconsistent. �
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� Example 2.4 The system of linear equations:

x−2y+3z = 2
2x+3y−2z = 5
4x− y+4z = 1

inconsistent. �

2.1 The Row Reduction Algorithm
Elementary operation on matrices:

1. Interchange of any two rows.
2. Multiplication of a row by a scalar.
3. Addition of a multiple of one row to another row.

A matrix (any matrix) is said to be in reduced row-echelon form if it satisfies
all four of the following conditions:

1. If there are any rows of all zeros then they are at the bottom of the
matrix.

2. If the row does not consist of all zeros then its first non-zero entry is
a 1. This 1 is called a leading 1.

3. In any two successive rows, neither of which consists of all zeros,
the leading 1 of the lower row is to the right of the leading 1 of the
higher row.

4. If a column contains a leading 1 then all the other entries of that
column are zero.

� Example 2.5 The following matrices are all in the reduced row-echelon
form: 1 0 0 4

0 1 0 7
0 0 1 5

 ,

 1 −7 10
0 0 0
0 0 0

 ,


0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

 .

And the following matrices are not in the reduced row-echelon form: 1 0 5
0 1 3
0 0 1

 ,

 1 4 3 7
0 1 6 2
0 0 1 5

 ,

 0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1

 .
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�

� Example 2.6 Put the matrix

 1 1 1 2
2 1 1 3
3 2 −5 5

 in reduced row-echelon

form.
Solution:1 1 1 2

2 1 1 3
3 2 −5 5

 −2r1+r2
−3r1+r3−−−−−→

1 1 1 2
0 −1 −1 −1
0 −1 −8 −1

 −r2−−→1 1 1 2
0 1 1 1
0 −1 −8 −1

 −r2+r1
r2+r3−−−−→

1 1 1 2
0 1 1 1
0 0 −7 0

 (−1/7)r3−−−−−→1 1 1 2
0 1 1 1
0 0 1 0

 −r2+r1−−−−→

1 0 0 1
0 1 1 1
0 0 1 0

 −r3+r2−−−−→1 0 0 1
0 1 0 1
0 0 1 0

 �

2.2 The solution of system of equations
2.2.1 Non-homogeneous system of equations

Let AX = B be a system of n linear equations in n variables and the aug-
mented matrix D = (A : B).
(i) If | A |6= 0 or ρ(A) = ρ(D) = n, then the system of equations is

consistent and has a unique solution.
(ii) If | A |= 0 and (ad jA)B = O or ρ(A) = ρ(D) < n, then the system

of equations is consistent and has infinitely many solutions.
(iii) If | A |= 0 and (ad jA)B 6= O or ρ(A) 6= ρ(D), then the system of

equations is inconsistent i.e., having no solution.

2.2.2 Homogeneous system of equations
Let AX = B is a system of n linear equations in n variables.
(i) If | A |6= 0 or ρ(A) = n, then it has only solution X = 0, is called the

trivial solution.
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(ii) If | A |= 0 or ρ(A)< n, then the system has infinitely many solutions,
called a non-trivial solution.

R The rank of a matrix is the number of Ones in the principal diagonal
of the reduced matrix.

To find the solution of a system of linear equations:

Step I: Write the augmented matrix [A: B]
Step II: Reduce the augmented matrix to Echelon form using elemen-

tary row transformation.
Step III: Determine the rank of the coefficient matrix A and augmented

matrix [A: B] by counting the number of non-zero rows in A and [A: B].
And write the final reduced matrix as a system of linear equations, then

we can get the values of the unknowns (if the system is consistent), that is
called the Gauss-Jordan Elimination.

Now, we show some examples:

� Example 2.7 Use the row reduction algorithm to put the augmented
matrix in reduced row-echelon form, then find the solution set for each of
the following systems of linear equations:

(i)
x+ y+2z = 9
2x+4y−3z = 1
3x+6y−5z = 0

(ii)
x+ y− z = 0
x−4y+2z = 0
2x−3y+ z = 0

(iii)
x1 +5x2 +4x3−13x4 = 3
3x1− x2 +2x3 +5x4 = 2
2x1 +2x2 +3x3−4x4 = 1

Solution:
(i) We reduce the augmented matrix as follows:

 1 1 2 9
2 4 −3 1
3 6 −5 0

−2r1+r2→
−3r1+r3

 1 1 2 9
0 2 −7 −17
0 3 −11 −27

 (1/2)r2→
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 1 1 2 9
0 1 −7/2 −17/2
0 3 −11 −27

−3r2+r3→

 1 1 2 9
0 1 −7/2 −17/2
0 0 −1/2 −3/2

−2r3→

 1 1 2 9
0 1 −7/2 −17/2
0 0 1 3

−r2+r1→

 1 0 11/2 35/2
0 1 −7/2 −17/2
0 0 1 3

 (7/2)r3+r2→
(−11/2)r3+r1 1 0 0 1

0 1 0 2
0 0 1 3


So ρ(A) = ρ(D) = 3, then the system has a unique solution and this solution
is

x = 1
y = 2
z = 3

(ii) We reduce the augmented matrix as follows:

 1 1 −1 0
1 −4 2 0
2 −3 1 0

 −2r1+r3
−r1+r2−−−−−→

 1 1 −1 0
0 −5 3 0
0 −5 3 0

 −r2+r3−−−−→

 1 1 −1 0
0 −5 3 0
0 0 0 0

 (−1/5)r2−−−−−→

 1 1 −1 0
0 1 − 3

5 0
0 0 0 0

 −r2+r1−−−−→

 1 0 − 2
5 0

0 1 − 3
5 0

0 0 0 0

 .

Thus,

x =
2
5

z,

y =
3
5

z,

also, ρ(A) = ρ(D)< 3. Hence the system has more than one solution.
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(iii) We reduce the augmented matrix as follows: 1 5 4 −13 3
3 −1 2 5 2
2 2 3 −4 1

−3r1+r2→
−2r1+r3

 1 5 4 −13 3
0 −16 −10 44 −7
0 −8 −5 22 −5

−2r3+r2→

 1 5 4 −13 3
0 0 0 0 3
0 −8 −5 22 −5

 .

Since ρ(A) 6= ρ(D), so the system has no solution. �

� Example 2.8 Use the row reduction algorithm to put the augmented
matrix in reduced row-echelon form, then find the solution set for the
following system of linear equations:

x+2y−3z = 0
3x− y+5z = 0
4x+ y−2z = 0

Solution:
We reduce the augmented matrix as follows: 1 2 −3 0

3 −1 5 0
4 1 −2 0

−3r1+r2→
−4r1+r3

 1 2 −3 0
0 −7 14 0
0 −7 10 0

 (−1/7)r2→

 1 2 −3 0
0 1 −2 0
0 −7 10 0

 7r2+r3→

 1 2 −3 0
0 1 −2 0
0 0 −4 0

 (−1/4)r3→

 1 2 −3 0
0 1 −2 0
0 0 1 0

−2r2+r1→

 1 0 1 0
0 1 −2 0
0 0 1 0

 2r3+r2→
−r3+r1 1 0 0 0

0 1 0 0
0 0 1 0

 .

So ρ(A) = ρ(D) = 2, and the system has a unique solution i.e.,
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x = 0 ,
y = 0 ,
z = 0.

�

� Example 2.9 Use the row reduction algorithm to put the augmented
matrix in reduced row-echelon form, then find the solution set for the
following system of linear equations:

x+3y−2z = 0
x−8y+8z = 0

3x−2y+4z = 0

Solution:
We reduce the augmented matrix as follows: 1 3 −2 0

1 −8 8 0
3 −2 4 0

 −r1+r2→
−3r1+r3

 1 3 −2 0
0 −11 10 0
0 −11 10 0

−r2+r3→

 1 3 −2 0
0 −11 10 0
0 0 0 0

 (−1/11)r2→

 1 3 −2 0
0 1 −10/11 0
0 0 0 0

−3r2+r1→

 1 0 8/11 0
0 1 −10/11 0
0 0 0 0


So ρ(A) = ρ(D) = 2 < 3, then the system has more than one solution i.e.,

x+(8/11)z = 0⇒ x =−(8/11)z
y− (10/11)z = 0⇒ y = (10/11)z

�
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2.3 Exercises
Use the Row Reduction Algorithm to put the augmented matrix in reduced
row-echelon form, then find the solution set for each of the following
systems of linear equations:

(i)
−2x1 + x2− x3 = 4
x1 +2x2 +3x3 = 13
3x1 + x3 =−1

(ii)
x+3y−2z = 0
x−8y+8z = 0

3x−2y+4z = 0

(iii)
x1 +2x2 +6x3 = 4

2x1 +4x2 +4x3 =−1
−x1−2x2 +2x3 = 8

(iv)
2x− y+3z = 0
4x+5y− z = 0
x+3y−2z = 0

(v)
−2x1 + x2 + x3 = 3
−x1−2x2 +3x3 = 1
3x1 +3x2 +3x3 = 0



3. Vector Space

The notion of an “abstract vector space” evolved over many years and had
many contributors. The idea crystallized with the work of the German
mathematician H. G. Grassmann, who published a paper in 1862 in which
he considered abstract systems of unspecified elements on which he defined
formal operations of addition and scalar multiplication. In this chapter, we
introduce vector (linear) space, subspace and give some examples. Also,
the concepts of linear independence, dependence basis and dimension.

3.1 Linear space
Definition 3.1.1 Let V be an arbitrary nonempty vectors on which two
operations are defined: addition, and multiplication by numbers called
scalars. If the following axioms are satisfied by all vectors u,v,w in V
and all scalars k and m, then we call V a vector space and we call the
vectors in V vectors.
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1. If u and v are vectors in V, then u+v is in V .
2. u+v = v+u.
3. u+(v+w) = (u+v)+w.
4. There is an object 0 in V, called a zero vector for V, such that

0+u = u+0 = u for all u in V .
5. For each u in V, there is an object −u in V, called a negative of u,

such that u+(−u) = (−u)+u = 0.
6. If k is any scalar and u is any object in V , then ku is in V .
7. k(u+v) = ku+ kv.
8. (k+m)u = ku+mu.
9. k(mu) = (km)(u).

10. 1u = u.
� Example 3.1 Let V = Rn, and define the vector space operations on V to
be the usual operations of addition and scalar multiplication of n -tuples;
that is,

u+v = (u1,u2, . . . ,un)+(v1,v2, . . . ,vn) = (u1 + v1,u2 + v2, . . . ,un + vn)

ku = (ku1,ku2, . . . ,kun)

The set V = Rn is closed under addition and scalar multiplication and these
operations satisfy Axioms 2 , 3,4,5,7,8,9, and 10. �

� Example 3.2 Let V be the set of 2×2 matrices with real entries, and the
operations on V define as follows,

u+v =

[
µ11 u12
u21 u22

]
+

[
v11 v12
v21 v22

]
=

[
u11 + v11 u12 + v12
u21 + v21 u22 + v22

]
ku = k

[
u11 u12
u21 u22

]
=

[
ku11 ku12
ku21 ku22

]
Show that (V,+, .) be a vector space.
Solution:
The set V is closed under addition and scalar multiplication because the
foregoing operations produce 2× 2 matrices as the end result. Thus, it
remains to confirm that Axioms 2,3,4,5,7,8,9, and 10 hold. Axiom 2
follows since

u+v=
[

u11 u12
u21 u22

]
+

[
v11 v12
v21 v22

]
=

[
v11 v12
v21 v22

]
+

[
u11 u12
u21 u22

]
= v+u.
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Similarly, Axioms 3,7,8, and 9 are easy to verify. This leaves Axioms 4,5,
and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a 2×2 matrix 0 in
V for which u+0 = 0+u for all 2×2 matrices in V . We can do this by
taking

0 =

[
0 0
0 0

]
With this definition,

0+u =

[
0 0
0 0

]
+

[
u11 u12
u21 u22

]
=

[
u11 u12
u21 u22

]
= u

and similarly u+0 = u. To verify that Axiom 5 holds we must show that
each object u in V has a negative −u in V such that u+(−u) = 0 and
(−u)+u = 0. This can be done by defining the negative of u to be

−u =

[
−u11 −u12
−u21 −u22

]
With this definition,

u+(−u) =
[

u11 u12
u21 u22

]
+

[
−u11 −u12
−u21 −u22

]
=

[
0 0
0 0

]
= 0

and similarly (−u)+u = 0. Finally, Axiom 10 holds because

1u = 1
[

u11 u12
u21 u22

]
=

[
u11 u12
u21 u22

]
= u

�

� Example 3.3 Determine whether or not V it is a vector space? Give
reasons for your assertion.

V = {(x,y) : x,y ∈ R}
(x1,y1)+(x2,y2) = (x1 + x2,y1 + y2)
k(x,y) = (2kx,2ky).

Solution:
Since

1u = 1(x,y) = (2x,2y) 6= u,

where u = (x,y), then V is not a vector space. �
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� Example 3.4 Determine whether or not V it is a vector space? Give
reasons for your assertion.

V = {(x,y) : x,y ∈ R}
(x1,y1)+(x2,y2) = (x1 + y2,y1 + x2)
k(x,y) = (kx,ky).

Solution:
Since

(1,0)+(0,1) = (2,0),

and
(0,1)+(1,0) = (0,2),

this means u+ v 6= v+u, then V is not a vector space. �

� Example 3.5 Determine whether or not V it is a vector space? Give
reasons for your assertion.

V = {(x,y) ∈ R2 : x = 2}
(x1,y1)+(x2,y2) = (x1 + x2,y1 + y2)
k(x,y,z) = (kx,y,z).

Solution:
Since

(2,0)+(2,1) = (4,1) /∈V,

thus V is not a vector space.
�

� Example 3.6 Determine whether or not V it is a vector space? Give
reasons for your assertion.

V = {(x,y,z) : x,y,z ∈ R}
(x1,y1,z1)+(x2,y2,z2) = (x1 + x2,y1 + y2,z1 + z2)
k(x,y,z) = (kx,ky,z).

Solution: Since

(λ +µ)u = (λ +µ)(x,y,z)

= ((λ +µ)x,y,z),
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and

λu+µu = (λx,y,z)+(µx,y,z)

= ((λ +µ)x,(λ +µ)y,z)

i.e.,
(λ +µ)u 6= λu+µu.

Thus, V is not a vector space. �

� Example 3.7 Determine whether or not V it is a vector space? Give
reasons for your assertion.

V = {(x,y,z) : x,y,z ∈ R}
(x1,y1,z1)+(x2,y2,z2) = (x1 + x2,y1 + y2,z1 + z2)
k(x,y,z) = (kx,1,kz).

Solution:
Since

1u = 1(x,y,z) = (x,1,z) 6= u,

where u = (x,y,z) and thus V is not a vector space. �

� Example 3.8 Determine whether or not V it is a vector space? Give
reasons for your assertion.

V = {(x,y,z) : x,y,z ∈ R}
(x1,y1,z1)+(x2,y2,z2) = (x2,y1 + y2,z2)
k(x,y,z) = (kx,ky,kz).

Solution:
Since

(1,2,3)+(4,5,6) = (4,7,6) , (4,5,6)+(1,2,3) = (1,7,3)

i.e.,
u+ v 6= v+u.

and thus V is not a vector space. �

� Example 3.9 Determine whether or not V it is a vector space? Give
reasons for your assertion.
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V = {(0,0,z) : z ∈ R}
(0,0,z1)+(0,0,z2) = (0,0,z1 + z2)
k(0,0,z) = (0,0,kz).

Solution:
V is a vector space; all conditions and properties hold. �

Theorem 3.1.1 Let V be a vector spaces and u ∈V , k ∈ K, then
1. 0u = 0.
2. k0 = 0.
3. (−1)u =−u.
4. ku = 0⇒ u = 0 ∨ k = 0.

Proof. 1.

0u = (0+0)u
= 0u+0u

0u+(−0u) = [0u+0u]+ (−0u) (add −0u)

= 0u+[0u+(−0u)]

0 = 0u+0 = 0u.

Another prove

0 = u+(−u)

= 1u+(−1)u
= [1+(−1)]u
= 0u.

2.

k0 = k(u+(−u))

= ku+ k(−u)

= ku+(−k)u

= (k+(−k))u

= 0u.
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3.

u+(−1)u = 1u+(−1)u
= [1+(−1)]u
= 0u

= 0.

So (−1)u =−u.
4.let ku = 0 , k 6=0, then

0 = (1/k)0
= (1/k)(ku)

= [(1/k)k]u

= 1u

= u.

The second directions, let ku = 0 , u 6= 0, then

ku = 0, 0u = 0⇒ k = 0.

�
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3.2 Subspaces
Definition 3.2.1 Suppose that V is a vector space and W is a subset of V .
If under the addition and scalar multiplication that is defined on V , W is
also a vector space then we call W is a subspace of V .

Theorem 3.2.1 A nonempty subset Wof a vector space V is a subspace
of V if and only if the following two conditions:

(i) u+ v ∈W.
(ii)ku ∈W∀u,v ∈W,k ∈ K.
are satisfied.

Proof. Suppose W be a subspace of V , the two conditions (i) , (ii) are
satisfied with the definition of a subspace.

Suppose the above two conditions (i) and (ii) are satisfied, we prove
that W is a subspace of V as follow:

The properties (3),(4),(7),(8),(9),(10) are true simply based on the fact
that W is a subset of V , we only need to verify (5),(6):

From the condition (ii) put k = 0 ⇒ ou = 0 ∈ W ∀u ∈ W and put
k =−1⇒ (−1)u =−u ∈W ∀u ∈W , therefore W is a subspace of V . �

� Example 3.10 Let W = {(a,b,c) ∈ R3 : b = 2a}. Is Wa subspace of a
vector space R3?

Solution:
It is shown that W ⊂ R3

(i) let (a1,b1,c1),(a2,b2,c2) ∈W ⇒ b1 = 2a1 ,b2 = 2a2

...(a1,b1,c1)+(a2,b2,c2) = (a1 +a2,b1 +b2,c1 + c2) ∈W ;

since b1 +b2 = 2(a1 +a2).
(ii) let (a,b,c) ∈W , k scalar⇒ b = 2a

...k(a,b,c) = (ka,kb,kc) ∈W ;

since kb = k(2a).
... W is a subspace of a vector space R3. �
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� Example 3.11 Let W = {(a,b,c) ∈ R3 : ab = 0}. Is W a subspace of a
vector space R3?

Solution:
W is not a subspace of a vector space R3 for (1,0,1),(0,1,1) ∈W but

(1,0,1)+(0,1,1) = (1,1,2) /∈W.

�

Theorem 3.2.2 If W1,W2, . . . ,Wr are subspaces of a vector space V , then
the intersection of these subspaces is also a subspace of V.

Proof. Let W be the intersection of the subspaces W1,W2, . . . ,Wr. This set
is not empty because each of these subspaces contains the zero vector of
V , and hence so does their intersection. Thus, it remains to show that W
is closed under addition and scalar multiplication. Now, we assume that u
and v are vectors in W . Then

(1) u,v ∈W ⇒ u,v ∈W1∧u,v ∈W2∧ ...∧u,v ∈Wr

⇒ u+ v ∈W1∧u+ v ∈W2∧ ...∧u+ v ∈Wr

⇒ u+ v ∈W.

(2) u ∈W, k ∈K⇒ u ∈W1∧u ∈W2∧ ...∧u ∈Wr, k ∈K
⇒ ku ∈W1∧ ku ∈W2∧ ...∧ ku ∈Wr

⇒ ku ∈W.

�
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3.3 Exercises
1- Let W = {(a,b,c) ∈ R3 : b = a2}. Is W a subspace of a vector space R3?

2- Let W = {
(

0 a
b 0

)
: a,b ∈ R}. Is W a subspace of a vector space

M2×2(R)?
3- Let W = {A ∈M2×2(R) : |A|= 0}. Is W a subspace of a vector space
M2×2(R)?
4- The set of all real numbers with the standard operations of addition and
multiplication.
5- The set of all pairs of real numbers of the form (x,0) with the standard
operations on R2.
6- The set of all pairs of real numbers of the form (x,y), where x≥ 0, with
the standard operations on R2.
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3.4 Linear Combinations
Definition 3.4.1 If u is a vector in a vector space V , then u is said to be a
linear combination of the vectors v1,v2, ...,vn in V if u can be expressed
in the form

u = c1v1 + c2v2 + ...+ cnvn,

where c1,c2, ...,cn are scalars. These scalars are called the coefficients
of the linear combination.

� Example 3.12 Verify that the vector u = (9,2,7) is a linear combination
of the vectors v1 = (1,2,−1) , v2 = (6,4,2), but the vector w = (4,−1,8)
is not a linear combination of them.

Solution:
Let u = c1v1 + c2v2, then

(9,2,7) = c1(1,2,−1)+ c2(6,4,2),

this mean

9 = c1 +6c2

2 = 2c1 +4c2

7 =−c1 +2c2

We reduce the augmented matrix 1 6 9
2 4 2
−1 2 7

 ,

as follows: 1 6 9
2 4 2
−1 2 7

−2r1+r2→
r1+r3

 1 6 9
0 −8 −16
0 8 16

 (−1/8)r2→

 1 6 9
0 1 2
0 8 16

−8r2+r3→
−6r2+r1

 1 0 −3
0 1 2
0 0 0

 .
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Thus, c1 =−3 and c2 = 2, therefor u =−3v1 +2v2.
Similarly, let Let w = c1v1 + c2v2, then

(4,−1,8) = c1(1,2,−1)+ c2(6,4,2),

this mean

4 = c1 +6c2

−1 = 2c1 +4c2

8 =−c1 +2c2

We reduce the augmented matrix 1 6 4
2 4 −1
−1 2 8

 ,

as follows:  1 6 4
2 4 −1
−1 2 8

−2r1+r2→
r1+r3

 1 6 4
0 −8 −9
0 8 12

−1r2→

 1 6 4
0 8 9
0 8 12

 ,

this system inconsistent so w is not linear combination of the vectors v1, v2.
�

Theorem 3.4.1 If S = {w1,w2, . . . ,wr} is a nonempty set of vectors in
a vector space V , then:
(a) The set W of all possible linear combinations of the vectors in S is a
subspace of V .
(b) The set W in part (a) is the "smallest" subspace of V that contains
all of the vectors in S in the sense that any other subspace that contains
those vectors contains W .
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Proof. (a) Let W be the set of all possible linear combinations of the
vectors in S. We must show that W is closed under addition and scalar
multiplication. To prove closure under addition, let

u = c1w1 + c2w2 + · · ·+ crwr and v = k1w1 + k2w2 + · · ·+ krwr

be two vectors in W . It follows that their sum can be written as

u+v = (c1 + k1)w1 +(c2 + k2)w2 + · · ·+(cr + kr)wr

which is a linear combination of the vectors in S. Thus, W is closed under
addition. We leave it for you to prove that W is also closed under scalar
multiplication and hence is a subspace of V

(b) Let W ′ be any subspace of V that contains all of the vectors in S.
Since W ′ is closed under addition and scalar multiplication, it contains all
linear combinations of the vectors in S and hence contains W . �
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3.5 Exercises
1- write the vector (1,−2,5)as a linear combination of the vectors v1 =
(1,1,1) , v2 = (1,2,3), v3 = (2,−1,1)
2- Verify that the vector (0 ,−3 , 1)is a linear combination of the rows
vectors

of a matrix

 1 2 0
2 1 1
3 3 1

, but is not a linear combination of its columns

vectors.
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3.6 Spanning Sets
Definition 3.6.1 If S = {w1,w2, . . . ,wr} is a non-empty set of vectors in
a vector space V, then the subspace W of V that consists of all possible
linear combinations of the vectors in S is called the subspace of V
generated by S, and we say that the vectors w1,w2, . . . ,wr are Span W .
We denote this subspace as

W = span{w1,w2, . . . ,wr} or W = span(S),

where span{w1,w2, . . . ,wr}= {c1w1+c2w2+ ...+crwr : c1,c2, ...,cr ∈
R}.

� Example 3.13 Show that the standard unit vectors is Span Rn

Solution:
Recall that the standard unit vectors in Rn are

e1 = (1,0,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . . , en = (0,0,0, . . . ,1)

These vectors span Rn since every vector v = (v1,v2, . . . ,vn) in Rn can be
expressed as

v = v1e1 + v2e2 + · · ·+ vnen

which is a linear combination of e1,e2, . . . ,en. �

� Example 3.14 Show that the vectors

i = (1,0,0), j = (0,1,0), k = (0,0,1)

span R3?
Solution:
Since every vector v = (a,b,c) in this space can be expressed as

v = (a,b,c) = a(1,0,0)+b(0,1,0)+ c(0,0,1) = ai+bj+ ck

�

� Example 3.15 Let S = v1,v2,v3 be a set of vector in R3. Show that S
span R3 where v1 = (1,1,2), v2 = (1,0,2), v3 = (1,1,0).
Soluation:
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Let v = (x,y,z) ∈ R3, then

v = c1vl + c2v2 + c3v3,

(x,y,z) = c1(l,1,2)+ c2(l,0,2)+ c3(l, l,0).

This lead to

x = c1 + c2 + c3

y = c1 + c3

z = 2c1 +2c2

And this system has a solution

cl = x+ y+ z/2,

c2 = x− y,

c3 = x− z/2.

Thus, S span R3. �

� Example 3.16 Determent S = {vl ,v2,v3} is span R3 yeas or no, where
vl = (l, l,2),v2 = (l,0, l),v3 = (2, l,3).

Solution: Let u = (x,y,z) in R3, then

u = clvl + c2v2 + c3v3

i.e.,
(x,y,z) = cl(l, l,2)+ c2(l,0, l)+ c3(2, l,3).

x = cl + c2 +2c3

y = cl + c3

z = 2cl + c2 +3c3

Since the coefficient matrix A =

 1 1 2
1 0 1
2 1 3

 has

|A|=

∣∣∣∣∣∣
1 1 2
1 0 1
2 1 3

∣∣∣∣∣∣≡
∣∣∣∣∣∣

1 1 1
1 0 0
2 1 1

∣∣∣∣∣∣= 0.



3.6 Spanning Sets 51

So the above system has no solution and then S is not spanned R3.
�

� Example 3.17 Consider the vectors p1 = 1+x+4x2 and p2 = 1+5x+x2

in P2. Determine whether p1 and p2 lie in span
{

1+2x− x2,3+5x+2x2
}
.

Solution:
For p1, we want to determine if s and t exist such that

p1 = s
(
1+2x− x2)+ t

(
3+5x+2x2)

Equating coefficients of powers of x (where x0 = 1 ) gives

1 = s+3t, 1 = 2s+5t, and 4 =−s+2t.

These equations have the solution s =−2 and t = 1, so p1 is indeed in span{
1+2x− x2,3+5x+ 2x2

}
.

Turning to p2 = 1+5x+ x2, we are looking for s and t such that p2 =
s
(
1+2x− x2

)
+ t(3+5x+ 2x2 ). Again equating coefficients of powers of

x gives equations 1 = s+3t,5 = 2s+5t, and 1 =−s +2t. But in this case
there is no solution, so p2 is not in span

{
1+2x− x2,3+5x+2x2

}
. �

Theorem 3.6.1 If S = {v1,v2, . . . ,vr} and S′ = {w1,w2, . . . ,wk} are
nonempty sets of vectors in a vector space V , then

span{v1,v2, . . . ,vr}= span{w1,w2, . . . ,wk}

if and only if each vector in S is a linear combination of those in S′, and
each vector in S′ is a linear combination of those in S.

� Example 3.18 Let u and v be two vectors in a vector space V . Show that

span{u,v}= span{u+2v,u−v}

Solution:
We have span{u+ 2v,u− v} ⊆ span{u,v} because both u+ 2v and

u−v lie in span{u,v}. On the other hand,

u =
1
3
(u+2v)+

2
3
(u−v) and v =

1
3
(u+2v)− 1

3
(u−v)

�
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3.7 Exercise
1. Show that R3 is spanned by

{(1,0,1),(1,1,0),(0,1,1)}.

2. Show that P2 is spanned by

{1+2x2,3x,1+ x}.

3. Show that M22 is spanned by{[
1 0
0 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 1

]}
.
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3.8 Linear independence & Linear dependence
Definition 3.8.1 Let V be a vector space over a field K. The vectors
v1,v2, ...,vn ∈V are said to be linearly dependent over K if there exist
scalars c1,c2, ...,cn ∈ K , not all of them 0, such that

c1v1 + c2v2 + ...+ cnvn = 0.

Otherwise, the vectors are said to be linearly independent overK; i.e.,

c1v1 + c2v2 + ...+ cnvn = 0⇒ c1 = 0 , c2 = 0 , ... , cn = 0.

A set S = {v1,v2, ...,vn}of vectors is linearly dependent if the vectors
v1,v2, ...,vn are linearly dependent, otherwise S is linearly independent.

The trivial linear combination of the vectors v1,v2, . . . ,vn is the one with
every coefficient zero:

0v1 +0v2 + · · ·+0vn

This is obviously one way of expressing 0 as a linear combination of the
vectors v1,v2, . . . ,vn, and they are linearly independent when it is the only
way.

� Example 3.19 Show that the set S1 = {v1,v2,v3} ; v1 =(2,−1,0,3) , v2 =
(1,2,5,−1) ,v3 = (7,−1,5,8) is linearly dependent inR4.

Solution:
Let c1v1 + c2v2 + c3v3 = 0,

...c1(2,−1,0,3)+ c2(1,2,5,−1)+ c3(7,−1,5,8) = 0

...

2c1 + c2 +7c3 = 0 ,
−c1 +2c2− c3 = 0 ,
5c2 +5c3 = 0 ,
3c1− c2 +8c3 = 0.

We reduce the augmented matrix:
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
2 1 7 0
−1 2 −1 0
0 5 5 0
3 −1 8 0

 ?→


1 0 3 0
0 1 1 0
0 0 0 0
0 0 0 0

 (verify that?)

...c1 =−3c3 , c2 =−c3.

Hence the system of these equations has more than one solution; i.e.,

c3 = 1⇒ c1 =−3 , c2 =−1,

so S1 is linearly dependent. �

� Example 3.20 Show that the set S2 = {v1,v2,v3} ; v1 = (1,0,1,2) , v2 =
(0,1,1,2) ,v3 = (1,1,1,3) is linearly independent inR4.
Solution:

Let c1v1 + c2v2 + c3v3 = 0,
c1(1,0,1,2) + c2(0,1,1,2)+ c3(1,1,1,3) = 0

...

c1 + c3 = 0 ,
c2 + c3 = 0 ,
c1 + c2 + c3 = 0 ,
2c1 +2c2 +3c3 = 0.

We reduce the augmented matrix:
1 0 1 0
0 1 1 0
1 1 1 0
2 2 3 0

 ?→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (verify that?)

...c1 = c2 = c3 = 0

So S2 is linearly independent. �

� Example 3.21 Show that {sinx,cosx} is independent in the vector space
F[0,2π] of functions defined on the interval [0,2π].

Solution:
Suppose that a linear combination of these functions vanishes.

s1(sinx)+ s2(cosx) = 0
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This must hold for all values of x in [0,2π] (by the definition of equality
in F[0,2π]). Taking x = 0 yields s2 = 0 (because sin0 = 0 and cos0 = 1
). Similarly, s1 = 0 follows from taking x = π

2 (because sin π

2 = 1 and
cos π

2 = 0 ).
�

� Example 3.22 Suppose that {u,v} is an independent set in a vector space
V . Show that {u+2v,u−3v} is also independent.

Solution:
Suppose a linear combination of u+2v and u−3v vanishes:

s(u+2v)+ t(u−3v) = 0

We must deduce that s = t = 0. Collecting terms involving u and v gives

(s+ t)u+(2s−3t)v = 0

Because {u,v} is independent, this yields linear equations s+ t = 0 and
2s−3t = 0. The only solution is s = t = 0. �

� Example 3.23 Let V denote a vector space, then prove the following
1. If v 6= 0 in V , then {v} is an independent set.
2. No independent set of vectors in V can contain the zero vector.
Solution:
1. Let tv = 0, t in R. If t 6= 0, then v = 1v = 1

t (tv) =
1
t 0 = 0, contrary to

assumption. So t = 0.
2. If {v1,v2, . . . ,vk} is independent and (say) v2 = 0, then

0v1 +1v2 + . . .+0vk = 0,

is a nontrivial linear combination that vanishes, contrary to the indepen-
dence of {v1,v2, . . . ,vk}. �

Theorem 3.8.1 (a) A finite set that contains 0 is linearly dependent.
(b) A set with exactly one vector is linearly independent if and only if
that vector is not0.
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(c) A set with exactly two vectors is linearly independent if and only if
neither vector is a scalar multiple of the other.

Proof. We will prove part (a) and leave the rest as exercises.
(a) For any vectors v1,v2, . . . ,vr, the set S = {v1,v2, . . . ,vr,0} is linearly
depen- dent since the equation

0v1 +0v2 + · · ·+0vr +1(0) = 0

expresses 0 as a linear combination of the vectors in S with coefficients that
are not all zero.

�
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3.9 Exercise
(1) In each part, determine whether the vectors are linearly independent or
are linearly dependent in R3.
(a) (-3,0,4),(5,-1,2),(1,1,3).
(b) (-2,0,1),(3,2,5),(6,-1,1),(7,0,-2).
(2) In each part, determine whether the vectors are linearly independent or
are linearly dependent in R4.
(a) (3,8,7,-3),(1,5,3,-1),(2,-1,2,6),(4,2,6,4).
(b) (3,0,-3,6),(0,2,3,1),(0,-2,-2,0),(-2,1,2,1).
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3.10 Basis & Dimension
Definition 3.10.1 A set S = {v1,v2, ...,vn} of vectors is a basis of a
vector space V if the following hold:
(i) S span V , and
(ii) S is linearly independent.

Definition 3.10.2 The number of the vectors in the basis is called the
dimension of a vector space V , denoted by dimV .

� Example 3.24 Verify that the set of vectors

S1 = {(1,2,1),(2,9,0),(3,3,4)}

is a basis of R3.
Solution:
The matrix which columns are (1,2,1),(2,9,0),(3,3,4) respectively be:

A =

 1 2 3
2 9 3
1 0 4

 ,

|A|=

∣∣∣∣∣∣
1 2 3
2 9 3
1 0 4

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 2 −1
2 9 −5
1 0 0

∣∣∣∣∣∣=−1 6= 0.

Then, A is invertible, therefore, S1 is a basis of R3.
�

� Example 3.25 IsS2 = {(1,1,2),(1,0,1),(2,1,3)} it a basis of R3?
Solution:
The matrix which columns are (1,1,2),(1,0,1),(2,1,3) respectively be:

A =

 1 1 2
1 0 1
2 1 3

 ,

|A|=

∣∣∣∣∣∣
1 1 2
1 0 1
2 1 3

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 1 1
1 0 0
2 1 1

∣∣∣∣∣∣=−
∣∣∣∣ 1 1

1 1

∣∣∣∣= 0
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Then, A is not invertible, therefore, S2 is not a basis of R3. �

� Example 3.26 Determine the basis and the dimension of the column
space of a matrix

A =

 1 0 1 1
3 2 5 1
0 4 4 −4

 .

Solution:
We reduce the transpose of a matrix

A =

 1 0 1 1
3 2 5 1
0 4 4 −4

 ,

as follows:

AT =


1 3 0
0 2 4
1 5 4
1 1 −4

−r1+r3→
−r1+r4


1 3 0
0 2 4
0 2 4
0 −2 −4

 (1/2)r2→


1 3 0
0 1 2
0 2 4
0 −2 −4

−2r2+r3 , 2r2+r4→
−3r2+r1


1 0 −6
0 1 2
0 0 0
0 0 0

 .

Thus, {(1,0,−6),(0,1,2)} is a basis of C(A), and dimC(A) = 2. �

� Example 3.27 Determine a set of vectors in R3 to be a basis of the null
space of a matrix

A =

 1 0 2
2 1 3
3 1 5

 .

Solution: 1 0 2 0
2 1 3 0
3 1 5 0

−2r1+r2→
−3r1+r3

 1 0 2 0
0 1 −1 0
0 1 −1 0

 −r2+r3→
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 1 0 2 0
0 1 −1 0
0 0 0 0

 .

So

... x1 +2x3 = 0 ,
x2− x3 = 0 ⇒ x1 =−2x3 ,

x2 = x3

... thus,

N(A) = {

 x1
x2
x3

=

 −2x3
x3
x3

= x3

 −1
1
0

+ x3

 −1
0
1

},
let c1,c2 scalars

...c1

 −1
1
0

+ c2

 −1
0
1

= 0⇒ c1 = c2 = 0.

Therefore, {(−1,1,0),(−1,0,1)} be a basis of N(A). �

� Example 3.28 Show that the matrices

M1 =

[
1 0
0 0

]
, M2 =

[
0 1
0 0

]
, M3 =

[
0 0
1 0

]
, M4 =

[
0 0
0 1

]
form a basis for the vector space M22 of 2×2 matrices.
Solution:
We must show that the matrices are linearly independent and span M22. To
prove linear independence we must show that the equation

c1M1 + c2M2 + c3M3 + c4M4 = 0

has only the trivial solution, where 0 is the 2×2 zero matrix; and to prove
that the matrices span M22 we must show that every 2×2 matrix

B =

[
a b
c d

]
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can be expressed as

c1M1 + c2M2 + c3M3 + c4M4 = B

The matrix forms of Equations (4) and (5) are

c1

[
1 0
0 0

]
+ c2

[
0 1
0 0

]
+ c3

[
0 0
1 0

]
+ c4

[
0 0
0 1

]
=

[
0 0
0 0

]
and

c1

[
1 0
0 0

]
+ c2

[
0 1
0 0

]
+ c3

[
0 0
1 0

]
+ c4

[
0 0
0 1

]
=

[
a b
c d

]
�
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3.11 Exercise
1. Verify that {(1,2,1),(2,9,0),(3,3,4)} is linearly independent inR3.
2. Verify that {(1,3,−1),(2,0,1),(1,−1,1)} is linearly dependent inR3.
3. True or False (explain): If {v1,v2,v3} is linearly independent, then

so is
{v1,v1 + v2,v1 + v2 + v3}.

4. Let S= {v1,v2,v3, ...,vn} be a set of nonzero vectors such that vi ·v j =
0 ∀ i 6= j. Verify that S is linearly independent.

5. Show that the vectors v1,v2, ...,vn are linearly dependent iff one of
them is a linear combination of the others.

6. Verify that the set of vectors S = {v1,v2,v3,v4}; v1 = (1,0,1,0), v2 =
(0,1,−1,2), v3 = (0,2,2,1), v4 = (1,0,0,1) is a basis of R4.

7. Determine a basis of the space of the solution of the system of linear
equations:

2x1 +2x2− x3 + x5 = 0
−x1− x2 +2x3−3x4 + x5 = 0
x1 + x2−2x3− x5 = 0
x3 + x4 + x5 = 0

.



4. Euclidean n-Space

Euclidean space is the fundamental space of classical geometry. Originally
it was the three-dimensional space of Euclidean geometry, but in modern
mathematics, there are Euclidean spaces of any non-negative integer di-
mension, including the three-dimensional space and the Euclidean plane
(dimension two).

In this chapter, we define and study the notions norm, dot product, and
distance in Rn.

4.1 Euclidean n-Space
Definition 4.1.1 An ordered n-tuple is an ordered sequence of n real
numbers (x1,x2, ...,xn).
If n = 2 we have an ordered pair.
If n = 3 we have an ordered triple.

n-tuples can either represent points or vectors. We use the convention that
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x = (x1,x2, ...,xn), etc.
The set of all possible n-tuples for a fixed n denoted Rni.e.,

Rn = {(x1,x2, ...,xn) : xi ∈ R f or eachi} .

Definition 4.1.2 Let u,v ∈ Rn be two vectors, then the addition

u+ v = (u1,u2, ...,un)+(v1,v2, ...,vn)
= (u1 + v1,u2 + v2, ...,un + vn).

� Example 4.1 Let u = (1,2),v = (0,3) ∈ R2 be two vectors, then the
addition

u+ v = (1,2)+(0,3)
= (1,5) .

�

Scalar multiplication
Definition 4.1.3 Let u ∈ Rn be a vector and α ∈ K, then

αu = α (u1,u2, ...,un)
= (αu1,αu2, ...,αun)

Theorem 4.1.1 Given vectors u, v, w ∈ Rn and a scalars k, l∈ R, then:
1. u+ v = v+u.
2. (u+ v)+w = u+(v+w).
3. u+O = O+u = u.
4. u+(−u) = (−u)+u = O.
5. k(lu) = (kl)u.
6. k(u+ v) = ku+ kv.
7. (k+ l)u = ku+ lu.

Proof. We will prove (1), (2) and leave the remaining results to be proven
in the exercises.
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1- Let u,v ∈ Rn be two vectors, then

u+ v = (u1,u2, ...,un)+(v1,v2, ...,vn)
= (u1 + v1,u2 + v2, ...,un + vn)
= (v1 +u1,v2 +u2, ...,vn +un)
= v+u

2- Let u,v,w ∈ Rn be two vectors, then

(u+ v)+w = [(u1,u2, ...,un)+(v1,v2, ...,vn)]+(w1,w2, ...,wn)
= (u1 + v1,u2 + v2, ...,un + vn)+(w1,w2, ...,wn)
= (u1 + v1 +w1,u2 + v2 +w2, ...,un + vn +wn)
= (u1,u2, ...,un)+(v1 +w1,v2 +w2, ...,vn +wn)
= u+(v+w).

�
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4.2 Vector scalar product
Definition 4.2.1 Let u,v ∈ Rnbe two vectors, then the scalar product

u.v = (u1,u2, ...,un) .(v1,v2, ...,vn)
= u1v1 +u2v2 + ...+unvn.

� Example 4.2 Let u = (1,2),v = (0,3) ∈ R2 be two vectors, then the
addition

u.v = (1,2) .(0,3)
= 0+6 = 6.

�

Now, we show properties of dot product

Theorem 4.2.1 Given vectors u, v, w ∈ Rn and a scalars k, l∈ R, then:
1. u.v = v.u.
2. (u+ v).w = u.w+ v.w.
3. (ku).v = k(u.v).

Proof. We will prove (1), (2) and leave the remaining results to be proven
in the exercises.

1- Let u,v ∈ Rn be two vectors, then

u.v = (u1,u2, ...,un) .(v1,v2, ...,vn)
= u1v1 +u2v2 + ...+unvn
= v1u1 + v2u2 + ...+ vnun
= v.u.

2- Let u,v,w ∈ Rn be two vectors, then

(u+ v) .w = [(u1,u2, ...,un)+(v1,v2, ...,vn)].(w1,w2, ...,wn)
= (u1 + v1,u2 + v2, ...,un + vn) .(w1,w2, ...,wn)
= u1w1 + v1w1 +u2w2 + v2w2, ...+unwn + vnwn
= (u1,u2, ...,un) .(w1,w2, ...,wn)+(v1,v2, ...,vn) .(w1,w2, ...,wn)
= u.w+ v.w.

�
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Theorem 4.2.2 For any vector v ∈ Rn v.v≥ 0 and v.v = 0 if and only if
v = O.

Proof. Let v ∈ Rn be two vectors, then

v.v = (v1,v2, ...,vn) .(v1,v2, ...,vn)
= v1v1 + v2v2 + ...+ vnvn
= v2

1 + v2
2 + ...+ v2

n (i.e., v.v≥ 0).

Also if v.v = 0⇔ v = 0. �

4.2.1 Length and the Distance between two Vectors
Definition 4.2.2 The dot product of a vector u ∈ Rnwith itself is the
square of the length or magnitude or norm of u i.e.,

‖ u ‖=
√

u.u.

Theorem 4.2.3 Let u,v ∈ Rn, then

(i) ‖ u ‖≥ 0.
(ii) ‖ u ‖= 0 i f and only i f u = 0.
(iii) ‖ ku ‖= k ‖ u ‖ .
(iv) ‖ u+ v ‖≤‖ u ‖+ ‖ v ‖ .”TriangleInequality”

Proof. Let u,v ∈ Rn be two vectors, then
(i) ‖ u ‖= (u.u)

1
2 ≥ 0.

(ii) If ‖ u ‖= 0, then

‖ u ‖= (u.u)
1
2 = 0⇔ u = 0.

(iii)

‖ ku ‖= (ku.ku)
1
2

= k (u.u)
1
2

= k ‖ u ‖ .
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(iv)

‖ u+ v ‖2 = (u+ v) .(u+ v)

= u.u+u.v+ v.u+ v.v

=‖ u ‖2 +u.v+ v.u+ ‖ v ‖2

=‖ u ‖2 +2u.v+ ‖ v ‖2

≤‖ u ‖+ ‖ v ‖2 .

Thus,
‖ u+ v ‖≤‖ u ‖+ ‖ v ‖ .

�

� Example 4.3 Find the magnitude of the vector u = (1,2,3).
Solution:

u.u = (1,2,3).(1,2,3) = 14.

Thus, ‖ u ‖=
√

14. �

Definition 4.2.3 Let u,v ∈Rn be two vectors, then the distance between
u and v define as follow

d(u,v) =‖ u− v ‖ .

Theorem 4.2.4 Let u,v ∈ Rn, then
(i)d(u,v)≥ 0.
(ii)d(u,v) = 0 i f and only i f u = v.
(iii)d(u,v) = d(v,u).
(iv)d(u,w)≤ d(u,v)+d(v,w).

Proof. Let u,v ∈ Rn be two vectors, then
(i)

d(u,v)⇔‖ u− v ‖= 0

= [(u− v).(u− v)]
1
2

≥ 0.
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(ii)

d(u,v) = 0 =‖ u− v ‖⇔ [(u− v) .(u− v)]
1
2 = 0

⇔ (u− v) .(u− v) = 0
⇔ (u− v) = 0
⇔ u = v.

(iii)

d(u,v) =‖ u− v ‖
=‖ (−1)(v−u) ‖
= |(−1)| ‖ (v−u) ‖
=‖ (v−u) ‖
= d(v,u).

(iv)

d(u,w) =‖ u−w ‖
=‖ u− v+ v−w ‖
≤‖ u− v ‖+ ‖ v−w ‖
≤ d(u,v)+d(v,w).

�
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4.3 Orthogonality
Definition 4.3.1 Let u,v ∈ Rn be two vectors, then u, v are orthogonal
if and only if u.v = 0.

� Example 4.4 Show that u = (1,2,3) is orthogonal to v = (3,0,−1).
Solution:

since

u.v = (1,2,3).(3,0,−1) = 0,

so u is orthogonal to v. �

Theorem 4.3.1 Let u,v ∈ Rn be orthogonal, then

‖ u+ v ‖2=‖ u ‖2 + ‖ v ‖2 .

Proof. Let u,v ∈ Rn be orthogonal, then

‖ u+ v ‖2 = (u+ v) .(u+ v)

= u.u+u.v+ v.u+ v.v

= u.u+ v.v (sinceu.v = v.u = 0)

=‖ u ‖2 + ‖ v ‖2 .

�

4.3.1 The Angle Between Two Vectors

Theorem 4.3.2 Given two vectors u and v

u.v =‖ u ‖‖ v ‖ cosθ ,

where θ is the angle between the two vectors.

� Example 4.5 Find the angle between u = (1,0,1) and v = (1,1,0).
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Solution:

u ·v = (1,0,1) · (1,1,0) = 1+0+0 = 1.
‖u‖=

√
12 +02 +12 =

√
2.

‖v‖=
√

12 +12 +02 =
√

2.
∴ cosθ = u·v

‖u||||v|| =
1√
2
√

2
= 1

2 .

So θ = π

3 . �
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4.4 Exercises
A- In Exercises 1−6, find the length of the vector.

1. v = (4,3).
2. v = (0,1).
3. v = (1,2,2).
4. v = (2,0,6).
5. v = (2,0,−5,5).
6. v = (2,−4,5,−1,1).

B-In Exercises 7−12, find

(a)‖u‖,(b)‖v‖, and (c)‖u+v‖.

7. u =
(
−1, 1

4

)
, v =

(
4,− 1

8

)
8. u =

(
1, 1

2

)
, v =

(
2,− 1

2

)
9. u = (0,4,3), v = (1,−2,1)
10. u = (1,2,1), v = (0,2,−2)
11. u = (0,1,−1,2), v = (1,1,3,0)
12. u = (1,0,0,0), v = (0,1,0,0)
13- Prove that if u and v are vectors in Rn, then

u ·v =
1
4
‖u+v‖2− 1

4
‖u−v‖2

14- Prove that
‖u+v‖= ‖u‖+‖v‖

if and only if u and v have the same direction.



5. Row, Column, and Null Space

Definition 5.0.1 Let A be an m×n matrix define as follow

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

,


then the vectors

r1 =
[

a11 a12 · · · a1n
]

r2 =
[

a21 a22 · · · a2n
]

rm =
[

am1 am2 · · · amn
]

in Rn that are formed from the rows of A are called the row vectors of
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A, and the vectors

c1 =


a11
a21

...
am1

 , c2 =


a12
a22

...
am2

 , . . . , cn =


a1n
a2n

...
amn


in Rm formed from the columns of A are called the column vectors of A.

� Example 5.1 Row and Column Vectors of a 2×3 Matrix Let

A =

[
2 1 0
3 −1 4

]
The row vectors of A are r1 =

[
2 1 0

]
and r2 =

[
3 −1 4

]
tivate

Windol and the column vectors of A are

c1 =

[
2
3

]
, c2 =

[
1
−1

]
, and c3 =

[
0
4

]
The following definition defines three important vector spaces associated
with a matrix. �

5.1 Row and column space
Definition 5.1.1 If A is an m×n matrix, then the subspace of Rn spanned
by the row vectors of A is called the row space of A, and the subspace of
Rm spanned by the column vectors of A is called the column space of A.

Definition 5.1.2 Suppose A it is an m×n matrix. The column space A
is the set B = {(b1,b2, ...,bm)} ⊂ Rm such that AX = B.
( we denote the column space of a matrixA by C(A) )

� Example 5.2 Describe the column space of a matrix

A =

 1 1 2
2 1 3
3 2 5

 .
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Solution:
We reduce the augmented matrix 1 1 2 b1

2 1 3 b2
3 2 5 b3

 ,

as follows: 1 1 2 b1
2 1 3 b2
3 2 5 b3

 −2r1+r2→
−3r1+r3

 1 1 2 b1
0 −1 −1 b2−2b1
0 −1 −1 b3−3b1

 −r2+r3→

 1 1 2 b1
0 −1 −1 b2−2b1
0 0 0 b3−b2−b1

 .

...C(A) = {(b1,b2,b3) ∈ R3 : b3 = b1 +b2 }.

�

� Example 5.3 Describe the column space of a matrix

A =

 1 2 −1
2 4 −2
−4 −8 4

 .

Solution:

C(A) = {(b1,b2,b3) ∈ R3 : b2 = 2b1 , b3 =−4b1 }.

(verify that?) �

R The row space of A equal C(AT )

Theorem 5.1.1 A system of linear equations Ax = b is consistent if and
only if b is in the column space of A.
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5.2 Null space
Definition 5.2.1 Suppose A it is an m×n matrix. The null space A is
the set of all x in Rn such that AX = 0. ( we denote the null space of a
matrixA byN(A)

� Example 5.4 Determine the null space of a matrix

A =

 1 0 1
0 1 1
1 1 1

 .

Solution:
We reduce the augmented matrix 1 0 1 0

0 1 1 0
1 1 1 0

 ,

as follows: 1 0 1 0
0 1 1 0
1 1 1 0

−r1+r3→

 1 0 1 0
0 1 1 0
0 1 0 0

−r2+r3→

 1 0 1 0
0 1 1 0
0 0 −1 0

−r3→

 1 0 1 0
0 1 1 0
0 0 1 0

−r3+r2→
−r3+r1 1 0 0 0

0 1 0 0
0 0 1 0

 .

...
x1 = 0 ,
x2 = 0 ,
x3 = 0

...N(A) = {(0,0,0)}.

�
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� Example 5.5 Determine the null space of a matrix

A =

 1 0 1
2 1 0
3 1 1

 .

Solution:
We reduce the augmented matrix 1 0 1 0

2 1 0 0
3 1 1 0

 ,

as follows: 1 0 1 0
2 1 0 0
3 1 1 0

−2r1+r2→
−3r1+r3

 1 0 1 0
0 1 −2 0
0 1 −2 0

−r2+r3→

 1 0 1 0
0 1 −2 0
0 0 0 0


... x1 + x3 = 0 ,

x2−2x3 = 0 ⇒
x1 =−x3 ,
x2 = 2x3

...N(A) = {(x1,x2,x3) = x3(−1,2,1) : x3 ∈ R}.

�

� Example 5.6 For a matrix

A =

 1 2 0
2 1 1
3 3 1


Solution:
N(A) = {(x1,x2,x3) = x2(−2,1,3) : x2 ∈ R} (verify that?). �
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Theorem 5.2.1 Elementary row operations do not change the null space
of a matrix.
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5.3 Exercises

A- For a matrix A =

 1 −2 0 0
0 1 3 2
2 −5 −3 −2

.

(i) Determine the null space N(A).
(ii) Describe the column space C(A).
(iii) Describe the column space R(A).

B- For a matrix A =

 1 −2 3
1 0 3
3 5 −5

.

(i) Determine the null space N(A).
(ii) Describe the column space C(A).
(iii) Describe the column space R(A).
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Wish you all the best, Dr. A. Elrawy
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