Chapter 4 The SIMPLE HARMONIC
OSCILLATOR and the
SIMPLE PENDULUM.

THE SIMPLE HARMONIC OSCILLATOR v

In Fig. 4-1(a) the mass m lies on a friction-
less horizontal table indicated by the z axis. J
It is attached to one end of a spring of negligible
mass and unstretched length ! whose other end E 0000 =
is fixed at E. i )

If m is given a displacement along the z axis (a)
[see Fig. 4-1(b)] and released, it will vibrate or
oscillate back and forth about the equilibrium
position O. I+a

To determine the equation of motion, note t 2 ~—ed
that at any instant when the spring has length
!+ x [Fig. 4-1(b)] there is a force tending tore-  E ————"0000 * L
store m to its equilibrium position. According 0 o
to Hooke's law this force, called the restoring ®)
foree, is proportional to the streich x and is
given by Fig. 4-1

FR = —2i (1)

where the subseript R stands for “restoring force’” and where « is the constant of propor-
tionality often called the spring constant, elastic constant, stiffness factor or modulus of
elasticity and i is the unit vector in the positive x direction. By Newton’s second law we have

2 3
m% = —xxi or mI4+xx = 0 (4]

This vibrating system is called a simple harmonic oscillator or linear harmonic oscillator.
This type of motion is often called simple harmonic motion.

AMPLITUDE, PERIOD AND FREQUENCY
OF SIMPLE HARMONIC MOTION

If we solve the differential equation (2) subject to the initial conditions 2 = A and
da/dt =0 at t=0, we find that

x = A coset where o = Ve/m (2
For the case where A =20, m=2 and « =8, see Problem 4.1.

Since o8 ot varies between —1 and +1, the masa oscillates between x = —A4 and = = A.
A graph of z vs. t appears in Fig. 4.2,

4]
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Fig. 4-2 -
The amplitude of the motion is the distance A and is the greatest distance from the
equilibrium position.

The period of the motion is the time for one complete oscillation or vibration [some-
times called a eycle] such as, for example, from x=A to z=—-A4 and then back to
r=A again. If P denotes the period, then

P 2rle = Z2uxymic {4

The frequency of the motion, denoted by f, is the number of compiete oscillations or
eycles per unit time. We have

1 e _ 1 ®
f 2P =% T %\m 6)
In the general case, the solution of (2) is _
2 = Acosel + Bsinot where o = Vx/m (6)

where A and B are determined from initial conditions. As seen in Problem 4.2, we can
write (6) in the form

= Ccoslwt—¢) where o = Vi/m (7
and where C = VA + B2 and ¢ =tan"'{B/A) (®

The amplitude in this case is ¢ while the period and frequency remain the same as in
(4) and (5}, i.e. they are unaffected by change of initial conditions. The angle ¢ is called
the phase angle or epoch chosen so that 0 =S¢ == If 4 =0, (?) reduces to (3).

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

If T is the kinetic energy, V the potential energy and E =T +V the total energy of a
simple harmonic oscillator, then we have

T = mv?, V = ket (9

and E = imvy? + dax? (20)
See Problem 4.17.

THE DAMPED HARMONIC OSCILLATOR

In practice various forces may act on a harmonic oscillator, tending to reduce the
magnitude of successive oscillations about the equilibrium position. Such forces are some-
times called damping forces. A useful approximate damping force is one which is propor-
tional to the velocity and is given by

F, = —8v = -—fvi = —,e%i %))
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where the subscript D stands for “damping force” and where g is a positive constant
called the damping coefficient. Note that F, and v are in opposite directions.

If in addition to the restoring force we assume the damping force (1), the equation

of motion of the harmonie oscillator, now called a damped harmonic oscillator, is given by

d2x d*x
@z

= —xx—,ﬁ(%fz or md?+,8%+xx = 0 (12)

on applying Newton's second law. Dividing by m and calling

Bim = 2y, /m = (18)

this equation can be written

F+2yx +oz = 0 (24)

where the dots denote, as usual, differentiation with respect to £

OVER-DAMPED, CRITICALLY DAMPED AND
UNDER-DAMPED MOTION

Three cases arise in obtaining sclutions to the differential equation (14).

Case 1, Over-damped motion, 2 > %, ie. B2 > 4dem
In this case (14) has the general solution

x = e "(Aex + Be~) a = Vvt — o? (15)

and where the arbitrary constants 4 and B can be found from the initial conditions.

where

Case 2, Critically damped motion, * = «2, ie, 82=4wm

In this case (14) has the general solution

x = e (A + Bt) (16)
where A and B are found from initial conditions.
Case 3, Under-damped or damped oscillatory motion, * < % ie. B2 <4dem
In this case (14) has the general solution
x = e (A sinAt + B cosat)
= Ce " cos (At — ¢) where X = Vol — 7 F14)

and where C = VA?+ B?, called the amplitude and ¢, called the phase angle or epock,

are determined from the initial conditions.

In Cases 1 and 2 damping is so large that no
oscillation takes place and "the mass m simply
returns gradually to the equilibrium position
# =40. This is indicated in Fig. 4-3 where we
have assumed the initial conditions 2z = %,
dzfdt = 0. Note that in the critically damped
case, mass m returns to the equilibrium position
faster than in the over-damped case.

In Case 3, damping has been reduced to such
an extent that oscillations about the equilibrium
position do take place, although the magnitude
of thege oscillations tend to decrease with time
as indicated in Fig. 4-8. The difference in times

!

ted 1t 3 g ey
Cr ¥ P

P =

Over-damped motion, 3 > ot

A

Under-damped motion, y* < ot

Fig. 4-3
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between two successive maxima [or minima] in the under-damped [or damped oscillatory]
mofion of Fig. 4-3 is called the period of the motion and is given by

2~ 2 dam

P = = = il = — (13)
A Vol = 2 Vaom -
and the frequency, which is the reciprocal of the period, is given by
f_ L2 _ VISP VanoF 19)
o P a 2x - 2 - drm

Note that if g8 =10, (18) and (19) reduce to (4) and {5) respectively. The period and
frequency corresponding to 8 =0 are sometimes called the natural period and natural
frequency respectively,

The period P given by {18) is also equal to two successive values of t for which
cos{At—g¢) =1 [or cosi{At—¢) = —1] as given in equation (17). Supposge that the values
of x corresponding to the two successive values ¢, and t,., = {. + P are r, and x,.; respec-
tively. Then

xn{"frnl —_ e--?r,)!e-—ﬂt,+l"l — evP (20)

The quantity 8 = In(xafxnsy) = P (21)

which is a constant, is called the logarithmic decrement.

FORCED VIBRATIONS

Suppose that in addition to the restoring force —«xi and damping force —gvi we impress
on the mass m a force F(t}i where

F(t) = Focosal (22)
Then the differential equation of motion is
d2x dx
Mmag = K& ‘SEE + Focosat (23)
or X+ 2yx +ofx = f coset (24)
where y=pRm, JL=um, f,=F/m (25)

The general solution of {(24) is found by adding the general solution of
Z+2yx+oix = 0 (26)

[which has already been found and is given by (15), (16) or (17)] to any particular solution of
(24). A particular solution of (24) is given by {see Problem 4.18]

fo
r = 08 (ot — ¢) (27)
\/{az - 02)2 + 4‘}!21'12 *
where tang = *zgﬂg 0=¢=n ‘ (28)

& = W

Now, as we have seen, the general solution of (26) approaches zero within a short time
and we thus call this solution the {ransient solution. After this time has elapsed, the motion
of the mass m is essentially given by (27) which is often called the steady-state solution.
The vibrations or oscillations which take place, often called forced vibrations or forced
osetllations, have a frequency which is equal fo the frequency of the impressed force but
lag behind by the phase angle ¢.
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RESONANCE

The amplitude of the steady-state oscillation (27) is given by
= o (29)
Vie? — o?)? + 4y%2
assuming y = 0, i.e. 8+ 0, sothat damping is assumed to be present. The maximum value
of o4 in this case occurs where the frequency «/2r of the impressed force is such that

assuming that y* < 3* [zee Problem 4.19]. Near this frequency very large oscillations may
occur, sometimes causing damage to the system. The phenomenon is called resonance and
the frequency «,/2x is called the frequency of resonance or resonant frequency.

The value of the maximum amplitude at the resonant frequency is

f
C’/{max == —0—_"'— (81)
2o 7
The amplitude (29) can be written in terms of «, as
fy

= (32)

Vi = o) + 47 — 1)
A graph of ¢4 vs. of is shown in Fig. 4-4. Note that the graph is symmetric around the
resonant frequency and that the resonant frequency, frequency with damping and natural
frequency (without damping) are all different. In case there is no damping, i.e. y=0 or
B8 =0, all of these frequencies are identical. In such case resonance occurs where the

frequency of the impressed force equals the natural frequency of oscillation. The general
solution for this case is

¢
x = Acoset + Bsinet + %sinmt 2]

From the last term in ($3) it is seen that the oscillations build up with time until finally
the spring breaks. See Problem 4.20,

Resonant frequency

Frequency with d

MNatural frequency
{without damping)

Fig. 4-4 Fig. 45

THE SIMPLE PENDULUM

A simple pendulum consists of a mass m [Fig. 4-5] at the end of a magsless string or rod
of length ! [which always remains straight, i.e. rigid]. If the mass m, sometimes called the
pendulum bob, is pulled asidé and released, the resulting motion will be oscillatory.

Calling ¢ the instantaneous angle which the string makes with the vertical, the
differential equation of motion is {see Problem 4.23)
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%0 g .. :
d@ = ~—7sind (34)

assuming no damping forces or other external forces are present.

For small angles [e.g. less than 5° with the vertical], sin# is very nearly equal to ¢, where
§ i3 in radians, and equation (4) becomes, to a high degree of approximation,

ae _ _g
w = ~1° (38)
This equation has the general solution
8 = Acosvg/ t+Bsm\/ it (88)
where A and B are determined from initial conditions. For example, if 4 = 6, 6=0 at
t=0, then
= @ocos\g/lt (37)
In such case, the motion of the pendulum bob is that of simple harmonic motion. The period
is given b
v P = 2n/Tg (38)
and the frequency is given by
.1 _ 1
f =5 = gVl (89)

If the angles are not necessarily small, we can show [see Problems 4.29 and 4.30]
that the peried is equal to

Fo= 4\l—lfm l—c:!;mn2
2w\/_{1+(2 (23 ) 4 (322 ke } (40)

where & = gin (6o/2). For small angles this reduces to (38).

For cases where damping and other external forces are considered, see Problems 4.25
and 4.114.

THE TWQO AND THREE DIMENSIONAL HARMONIC OSCILLATOR
Suppose a particle of mass m moves in the zy plane

¥
rnder the influence of a force field F given by
F = _lei - szj ('&1) Fy = ~uxi m
where «, and «, are positive constants.
In this case the equations of motion of m are Fa =~
given by 2 j“
x d? .

mw =R, md_g = =kl (‘&2) i *

and have solutionsg Fig. 4-6

= A,cosyx/mit + B sinve/mt, y = A,cosyr/mt+ Bysinve,/mit (43}

where A, By, A2, B: are constants to be determined from the initial conditions. The mass m
subjected to the force field (41) is often called a fwo-dimensional harmonic oscillator. The
various curves which m describes in its motion are often called Ligssajous curves or figures.

These ideas are easily extended to a three dimensional harmonic oscillator of mass m
which is subject to a force field given by

F = —« :n — Ky zk (&‘6)
where «,, x,, x, are positive constants.
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Solved Problems

SIMPLE HARMONIC MOTION AND THE
SIMPLE HARMONIC OSCILLATOR

4.1.

4.2,

A particle P of mass 2 moves along the x axis attracted toward origin O by a force
whose magnitude is numerically equal to 8x [see Fig. 4-7]. If it is initially at rest
at =20, find (a) the differential equation and initial conditions describing the
motion, (b) the position of the particle at any time,
{¢) the speed and velocity of the particle at any time,

and (d) the amplitude, period and frequency of the -2
vibration. —_—— g ——-
L . x
(a) Let r= a:idgbe the position vector of P. The acceleration o) F
of P is w(:i) = %:;i‘ The net force acting on P is :
—8zi. Then by Newton's second law, Fig. 4-7
d?e ., _ . d2x _
26_91 = —Bxi or 2&-2-+4x = 0 (£))]
which is the required differential equation of motion. The initial conditions are
x=20 dzfdt =0 at =10 (%)
{d) The general solution of {I) is
x = Acos2t + B sin2t )
When t =0, x =20 sothat A4 =20, Thus
x = 20cos2t + B ain2t {4)
Then dx/dt = —40sin2t + 28 cos 2t {5)
so that on putting ¢ =0, dz/dt =0 we find B =0. Thus () becomes
z = 20 cos2t (4]

which gives the position at any time.

(¢) From (8) dx/dt = —40 sin 2t which gives the speed at any time. The velocity is given by

dx .

Fr = —40sin2ti

(d) Amplitude = 20. Period = 2»/2 = . Frequency = 1/period = 1/».

{e¢) Show that the function A coset+ Bsinet can be written as C cos{uf—¢)
where C =1VA*+B? and ¢ =tan"*(B/A). (b) Find the amplitude, period and
frequency of the function in (a).

A B .
{a) A coswt + Bainet = VAT + Bﬁ(—w cos wt + —m—m—— smut)
° ¢ VATt B? VAT t B?
= VA2 4+ B2(cos ¢ coswl + 3in ¢ sin wi)
VAZ+ B2eos(wt—¢) = Ceoslut—¢)

where c¢os¢ = A/VATF BE and sing = B/VAZ+B?, ie. tang =B/A or ¢ =tan~1B/A,
and C = VA + BE. We generally choose that value of ¢ which lies between ¢° and 180°,

ie, 0= =o.

(5) Amplitude = maximum value = ¢ = VA2 + B2, Period = 2x/w. Frequency = /2.
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43.

4.

Work Problem 4.1 if P is initially at x = 20 but is moving (a) to the right with speed
30, (b} to the left with speed 30. Find the amplitude, period and frequency in
each case,

{a) The only difference here is that the condition du/di =0 at ¢ =0 of Problem 4.1 is replaced
by dx/dt =30 at ¢ =0. Then from {5} of Problem 4.1 we find B — 15, and (%) of
Problem 4.1 becomes

r = 20c¢o0s52¢t 4 15 sin 2¢ (1)

which gives the position of P at any time. This may be written [see Problem 4.2} as
20

( 15 . }
x = V(20?2 + (15)2 - ———cos 2t + ——————5in 2/
L Vigoe + (152 Ve TR

= 258{%cos2t + ¥sin2t} = 25 cos(2t—g)

where cosgp = % sing = 3 (2}

The angle ¢ which can be found from (2) is often called the phase angle or epoch.

Since the cosine varies between —1 and +1, the amplitude = 25. The period and fre-
quency are the same as before, iLe. period = 2-/2 =+ and frequency = 2/2r = 1/7.

{4} In this case the condition dx/dt = 0 at ¢ =0 of Problem .1 is veplaced by dx/di = —30
at t =0. Then B = —15 and the position is given by

x = 20¢c082f — 15 sin 2t

which as in part {a) can be written

x = 25{)cos?2f — & sinlf}
= 25{cosy cos2t + siny sin 2¢) = 25 cos (2t — )
where cosy = ¢, siny = -1

The amplitude, period and frequency are the same as in part (u). The only difference
is in the phase angle, The relationship between ¢ and ¢ i3 ¢ = ¢ +7. We often describe
this by saying that the two motions are 1807 ont of phase with each other.

A spring of negligible mass, suspended vertically from omne end, is stretched a
distance of 20 em when a 53 g mass is attached to the other end. The spring and mass
are placed on a horizontal frictionless table as in Fig. +.-1{a}, page 86, with the suspension
point fixed at E. The mass is pulled away a distance 20 cm beyond the equilibrium
position O and released. Find (a) the differential equation and initial conditions des-
cribing the motion, (b) the position at any time {, and {c) the amplitude. period and
frequency of the vibrations.

{e} The gravitational force on o 5 g mass {i.e. the weight of a § g mass] is 5(980) dynes = 4800 dynes,
Then since 4300 dynes stretches the spring 20 em, the spring constant is « = 4800/20 = 245
dynesfein. Thus when the spring is stretched a distance x em beyond the equilibrium position, the
restoring force is —2456xi. Then by Newton's second law we have, if r = i is the position vector

of the mass,
dt) o & _
5W = 245xi  or 8 + 49x = @ {1}
The initial conditions are xr = 20, defdft =0 at t =10 (541
{d) The general solution of (1) ig x = AcosTt + BsinTt (£.5]

Using the conditions (2} we find 4 =20, B =0 so that r = 20 cosTt.

{¢) From x = 20 cos 7t we see that: amplitude = 20 cm; period = 2#{7s; frequency = 72~
s~V or 7/2x Hz.
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A particle of mass m moves along the x axis, attracted toward a fixed peoint ¢
on it by a force proportional to the distance from O. Initially the particle is at
distance x, from O and is given a velocity v, away from O. Determine (a) the
position at any time, (b) the velocity at any time, and (c¢) the amplitude, period,
frequency, and maximum speed.

(&) The force of attraction toward O is —xxi where x ia a y
positive constant of proportionality. Then by Newton™s
second law, F=—uzi
I vk _ o ; —F
gt = el oor x+o- = {H
Solving (1), we find =
- z
x = AcosVximt 4+ Bsainve/mt £ o m
We also have the initial conditions Fig. 4-8
x=xp defdt=v, at t=20 £4]
From x =z, at t =0 we find, vsing (£), that A =z, Thus
z = mgeosVu/mt + Bsinye/mt . {4)
so that defdt = —zx5Ve/m ain Va/mt + BVxfm cos Ve/mt {5
From dx/fdt=v, at ¢ =0 we find, using (5), that B = vyym/x. Thus (§) becomes
x = fgcos Ve/mt + vy Vm/e sin Ve/mt {6)
Using Problem 4.2, thia can be written
x = Va:g + mvﬁfx cos (Ve/mit — ¢} (N
where ¢ = tan—! {vg/zy} Vm/e {8

(b)) The velocity is, using (6} or (7),
v = i—ii = (—xy Vaim sin Vidmt + vy cos V/m 6 i
= —Valm Va2 + mvl/x sin (Valmt — ¢} i
=~V +zdm sin (Vafmt - ¢) | ®

{¢) The amplitude is given from (?) by v’zg + mvﬁ{x.
From (7), the period is P = 2nf+/k/m. The frequency is f = 1/P = (2= 4/mk) L.
From (9}, the speed iz a maximum when sin {y/x/m ¢ — ¢} = =1; this speed is v'vg-!-xxg/m.

An object of masgs 20 kg moves with simple harmonic motion on the » axis. Initially
(t=0) it is located at the distance 4 meters away from the origin z =10, and has
velocity 15 m/s and acceleration 100 m/s? directed toward z = 0. Find (a) the position
at any time, (b) the amplitude, period and frequency of the oscillations, and (c) the foree
on the object when ¢ = #/10 s.

{a) If z denotes the position of the object at time t, then the initial conditions are

x =4, dx/dt = =15, d¥x/de2 = —100 at t=90 (1)

Now for simple harmonic motion,
x = Acoswt + Bsinwt {2)
Differentiating, we find defdt = =—Awsinot + Bw coswt ®
BEx/dt = —Aw®copwt — Ba? sinwt 4
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41

48,

49,

Using conditions (I} in (2), (8) and (4), we find 4= A, —15 = By, -100 = —4.% Solving
simultaneously, we find A =4, w=5 B =-—8 30 that

x = dcoadt — 3sinbt %)
which can be written

z = §cos(bi—q) where cos¢ = ¢, sing = —§ ()
(6) From (6) we see that: amplitude =5wm, period = 2#/5s, frequency == 5/2» Huz.

(¢) Magnitude of acceleration = dZx/dtz = —100 cos5¢ 4+ 76 sin 5f = 76 mfs* at ¢ = ={10.
Force on object = (mass)(acceleration} = (20 kg) {756 m{s?} = 1500 newtons.

An object of 100 N weight suspended from the end of a
vertical spring of negligible mass stretches it 0.16 m.
{z) Determine the position of the object at any time if
initially it is pulled down 0,05 m and then released.
(b} Find the amplitude, period and frequency of the
motion. (Use ¢ = 10 m/s?).

{¢} Let D and E [Fig. 4-9] represent the position of the
end of the spring before and after the object is put on
the spring. Position E is the equilibrium position of
the object.

Choose a coordinate system as shown in Fig. 4.9
so that the positive z axis is downward with origin at
the equilibrium position.

By Hooke’s law, since 100 N stretches the spring

0.16 m, 200 N stretches it 0.32 m, then 200(0.16 + /032, """ __y _____
N stretches it (0.16 4 z)m. Thus when the ohject is at [ |

position F, there i3 an upward force acting on it of
magnitude 20000.16 + 2)/0.32 and a downward force

due to its weight, of magnitude 100. By Newton’s second Fig.4-9
law we thus have
d@z 25
11909 ‘;—?:k = 100k — 200(0.16 + 2)/0.32 k or gz + & =0
Solving, t z = A cos %_—}— B sin % 44
Now at £ = 0,2 = oo and djd = 0; thus 4 = o= B =0 and
z =L cosll )
20 2
(&) From (2): amplitude = 0.05 m, period = 4?‘“5, frequency =4in
™

Work Problem 4.7 if initially the object is pulled down 0.08 m (instead of 0.05 m) and then
given an initial velocity of 0.6 m/s downward.

In this case the solution (7} of Problem 4.7 still holds but the initial conditions are: at t =10,
z = (.08 and dz{dt = 0.6. From thess we find

A = 0.08 and B = (.24, go that z = 0.08 cos 5¢/2 + 0.24 sin 56/2 = 0.253 cos (gt - 1.249)

Thus amplitude = 0.258 m, period = 4x/5s, frequency = /4= Hz. Note that the period and
frequency are unaffected by changing the initial conditions.

A particle travels with uniform angular speed «» around a circle of radius 5. Prove
that its projection on a diameter oscillates with simple harmonic motion of period
2x/e about the center,

Choose the circle in the zy plane with center at the origin O as in Fig. 4-10 below. Let @ be
the projection of particle P on diameter AB chosen along the » axis.
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If the particle is initially at B, then in time ¢ we will

have BOFP = ¢ = wt. Then the position of P at time ¢ is

r = bceoswti 4+ bsinet] (1)
The projection @ of P on the x axis is at distance
¥ i = & = bceosut i)

from € at any time f. From (2) we see that the projection
oscillates with simple harmonic mation of period 2#/v about
the center O,

DAMPED HARMONIC OSCILLATOR

[CHAP. 4

Fig. 4-10

Suppose that in Problem 4.1 the particle P has also a damping force whose magnitude
is numerically equal to 8 times the instantaneous speed. Find (a) the position and
(b) the velocity of the particle at any time. (c) INustrate graphically the position of

the particle as a function of time ¢.

{¢) In this case the net force acting on P is [see

Fig. 4-117 —8«i — S%i. Then by Newton’s sec-

Y

— i - s%‘{-i

xf ——--

ond law,
dx. o . odr,
2dt2‘ = 8 Sdtl 5
dix dx _
or bl + 43 + 4 = 0

This has the solution [see Appendix, page 352, Problem C.14}

x = e A + Bt)

When
the position at any time ¢.

(b} The velocity is given by

v = %i = —B0te—24

{¢) The graph of x vs. ¢ is shown in Fig, 4-12, It is
seen that the motion is non-oscillatory. The par-

t=0, =20 and dz/df = (; thus A =20, B = 40,

x

P
Fig. 4-11

and x = 20e-2t1{1+ 2¢) gives

ticle approaches O slowly but never reaches it.
This is an example where the motion is eritically
damped.

Fig. 4-12

A particle of mass 5 g moves along the « axis under the influence of two forces: (i) a
forece of attraction to origin @ which in dynes is numerically equal to 40 times the in-
stantaneous distance from O, and (ii) a damping foree proportional to the instantaneous

speed such that when the speed is 10 em/s the damping force is 200 dynes.

Assuming

that the particle starts from rest at a distance 20 em from O, (a) set up the differential
equation and conditions describing the motion, (5) find the position of the particle at any
time, (c) determine the amplitude, period and frequency of the damped oscillations, and

(d) graph the motion,

{a) Let the position vector of the particle P be denoted by
r = 21 as indicated in Fig. 4-13. Then the force of attrac-
tion (directed toward Q) is

—40zi 1)

The magnitude of the damping force f is proportional to
the speed, so that f = g dx/dt where g8 is constant. Then
since f = 200 when dx/dt =10, we have g = 20 and
f=20dx/dt. To get f, note that when dz/dt>0 and
a > 0 the particle is on the positive 2 axis and moving to

¥

e re—
—20(dz/dt)i

i —
—40xi

xi -

P
Fig. 4-13
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the right, Thus the resistance force must be directed toward the left. This can only be accom-
! plished if dz
f = —20 ?t-i {2)
This same form for f is easily shown to be correct if = >0, da/dt <0, x <0, de/dt >0,
x <0, defdt <0 [see Problem 4.45].

Hence by Newton’s second law we have

dix, o dz. .
53‘t—2l = 20 il 40w ()
d*x di _
or JEtdg T8 = 0 {4)

Since the particle starts from rest at 20 em from (), we have

x =20, dx/dt =0 at t =0 (&
where we have assumed that the particle starts on the positive side of the x axis [we could
just as well asgsume that the particle starts on the negative side, in which case x = —20].

(b) = = et is a solution of (4) if
a®+4a+8 =0 or a = M—4=V16-83) = —2x
Then the general sclution is
¥ = e 2{A cos 2t + B sin 2{) (6)
Since x =20 at t =0, we find from (6} that A = 20, i.e,
x = e 2420 cos 2t + B sin 2t) (7
Thus by differentiation,
de/dt = (e~2)(—40 sin 2¢ + 2B coa 2¢) + (—2¢~20)(20 cos 2t + B sin 2¢) (8)
Since dx/dt =0 at t=10, we have from (8, B = 20. Thus from (7) we obtain
x == 20e~2{cos 2t + 8in2t) = 202 ¢ 2t cos (2t ~ #/4) (%)

using Problem 4.2.

i¢) From (%): amplitude 20vZ e 2 em, period = 27/2 = = s, frequency = lf» Hz

(d) The graph is shown in Fig. 4-14, Note that the amplitudes of the oscillation decrease toward
zero as { increases.

20vZ em |-— Period = 75 AI

) SN

*

Fig.4-14

. 412. Find the logarithmic decrement in Problem 4-11.
Method 1. The maxima {or minima) of x occur where dx/dt = 0. From (2 of Problem 4.11,

dxfdt = —80e-%gin2¢t = ¢

i when ¢ =0,7/2,7 37/2,2r,62/2,..... The maxima occur when {=20,+2r,...; the minima
occur when €= 7/2,3#/2,6¢/2,.... The ratio of two successive maxima is e~ 2(0)/e—2(7} or
e~ M e~ 22N ete,, Le. €%, Then the logarithmic decrement is § = In (e2%) = 24,
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Method 2.

From (9) of Problem 4.11, the difference between two successive values of ¢, denoted by ¢,
and t,,,, for which cos(2t—=/4) =1 (or —1) is =, which is the period. Then
Xy 20‘/‘2‘8“2ll

= e = el and 8 = Infeyfegq) = 2
Tn+ 20/2 e~ Ztns1 e ’

Method 3. From (13), (18) and (21}, pages 88 and 89, we have
6:7P2<£>( drm ./
2m m) Vium — g2

Then since m =5, g =20, x =40 [Problem 4.11, equation {3)], § = 2.

Determine the natural period and frequency of the particle of Problem 4.11.

The natural period is the period when there is no damping. In such case the motion is
given by removing the term involving dx/dt in equation (3) or {4) of Problem 4.1I. Thus

di/dt? + 8% = 0 or x = Acos2/2t + Bsin2y2¢
Then naiural period = 27/24/2 s = =/4/2 s; natural frequency = 1/2{» Hz.

For what range of values of the damping constant in Problem 4.11 will the motion
be (a) overdamped, (b) underdamped or damped osciilatory, (e¢) critically damped?

Denoting the damping comstant by 8, equation (2) of Problem 4.11 is replaced by

2. . _pde. : &= , A dx -
5':“2 = ﬁdtl 4024 or dt2+ dt+8 = 0

Then the motion is;

(¢} Overdamped if (8/5)% > 32, i.e. £ > 20v/2.

{(b) Underdamped if (3/6)2 < 32, ie. B < 20v2,
[Note that this is the case for Problem 4.11 where 8 = 20.]

(¢) Critically damped if (8/5)2 = 32, ie. § = 20V/2.

Solve Problem 4.7 taking into account an external damping force given numerically
in newtons by fv where v is the instantaneous speed in mjs and {(a) § = 10, (b) § = 50,
(c) B = 62.5.

The equation of motion is
100 d2z d2z g dz 25

To o7 K=100Kk — 200(0.16+2)/0.32k- ﬁ oo Gmticatgr = O

(@) If 8 = 10, then d¥z{dt? + 4 dzjdt + 26/4 2 = 0. The solution is
z=¢ " (Acosdi2t+ Bein3f2t)

1
Using the conditions z = 0.05, dz/dt = 0 at ¢ =0, we find A = 55, B = ¢ s0 that

_l_ul 3 )___~=t i_. 0‘)
z =ge (4cos—t+ sin—t e~ ¢os 23 53° 8

The motion is damped oscillatory with period 2#/4.8 = 5#f12 1.
® If B = 50, then d2zjde® -+ sdzjdt + 25{42z = 0. The solution is
z = e~ (4 4 By

Solving subject to the initial conditions gives 4 = ‘:!lf)‘ B :—é; then z = ~i—e'“ L (%— —+ %)
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The motion is eritically danmped since any decrease in § would produce oscillatory motion.

?dz;‘dt + 24—52 = 0. The solution is

z = Ae~84* 4 Be~#

{e) If B = 62.5 then dtzfde® 4

. . . . 1 _ 1. o e 1
Sclving subject to initial conditions gives 4 = i B=-— 50° then z = i5¢ 50° )

The motion is overdamped.

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

416. (@) Prove that the force F= -xxi acting on a simple harmonic oscillator is con-
servative. (b) Find the potential energy of a simple harmonie oscillator.

i i k
{a) We have VXF = |8z afdy daz| = 0 so that F is conservative,
—rx 0 0

(b) The potential or potential energy i3 given by V where F = -VV or

. _ v,  av. 8V
—xxi = —(T:E|+~a;)+azk)

Then V/ax = «x, 3V/dy =0, dV/de =D from whick V= fex?{¢c. Lssuming V=0 cor-
responding to =0, we find ¢e=0 g0 that V = B,

4.17. Express in symbols the principle of conservation of energy for a simple harmonic
oscillator,
By Problem 4.16(b), we have

Kinetic energy + Potential energy =  Total energy
or gmo? + Fxe? = E
which can also be written, since v =dz/dt, as Im(de/dt)? + Jxa? = E.
Another method. The differential equation for the motion of a simple harmonic oscillator is
mdiefdt2 = —xx

Since dx/dt = v, this can also be written as

dy dv d. .
m‘a-.t' = —xX oT m?z d—: = —kKk¥, 1.¢. m‘ug—;- = KX

Integration yields jme2?+ ixzﬁ =E.

FORCED VIBRATIONS AND RESONANCE
418, Derive the steady-state solution (27) corresponding to the differential equation (24)
on page 89, .

The differential equation is - .
eq x+ 2yx + i = fycosal {1}

Consider a particular solution having the form
x = ¢ cosat + oy Binat {£)
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where ¢, and ¢, are to be determined. Substituting (2) into (1}, we find

{—atec; + 2vacy + wley) cosal + (—aley — 2yac; + wity) sinal = fycosatl
from which —ale; + 2yac, + wley = fo, —o¥¢, — 2yae, + wle; = 0 @)
or (a2 —we; — 2yacy = —fg,  2yac; + (af —wey = O (4)

Solving these simultaneously, we find

PR fo (02 — az) _ 2f0 Yo {5)
' 7 @St dyiat 2 T (@ T Ayt

Thus (2} becomes
Joi{w? — o) cosat + 2yoa sin at)

z = @ =P T i @

Now by Problem 4.2, page 92,

(wr—a?} cosat + 2yasinat = V{u?—a2)? + 47%* cos {at — ¢} {"N

where tang = 2vaffaZ—w?), 0 =2 ¢ = 7. Using (?) in (6), we find as required
fo

xr = cos (at — ¢)

Via? — o2 + dy2a?

Prove (a) that the amplitude in Problem 4.18 is a maximum where the resonant fre-
quency is determined from « = 1/uf—2y% and (b) that the value of this maximum
amplitude is f /(2y}/w® — ¥%).
Method 1. The amplitude in Probiem 4.18 is
fo/ Vi — o)? + 4y2a2 15}
It is a maximum when the denominator lor the square of the denominater] is a minimum. To
find this minimum, write
(a2 — W22 4+ dv2a? = at — 2(w? — 2y2)a? + o
= ot — 2(u? — 2y2)a? + (wf — 2yD2 + wt — (@2 — 222
= [af — (02— 2yD)]2 + 4y2(e? — ¥?)

This is a minimum where the first term on the last line is zere, i.e. when aof = w? — 242, and the
value is then 4y%w? —y?), Thus the value of the maximum amplitude is given from {I) by

fo/ @Vt — ¥ih

Method 2. The function U = {a? — u?}? + 4y%Za? has a minimum or maximum when
%!i = 2(a?—u%2a + 8y« = 0 or afa2 — w2+ 2y = 0
£

ie. a=0, a=Ve?—2y where vy < 1e?.  Now
QW fda? = 1242 — 40? + 8y2

For o=0, UMa?=—4(2—2v) <0 For o= Vu?—2y% dtU/da? = 8{o®>—2y2 > 0. Thus
o = Vo~ 2y? gives the minimum value,

(a) Obtain the solution {33), page 90, for the case where there is no damping and the
impressed frequency is equal to the natural frequency of the oscillation. (b} Give a
physical interpretation.

{a) The case to be considered is obtained by putting vy =0 or =0 and a =« in equations
{2%) or (24}, page 8% We thus must solve the equation

¥ 4wt = focoswt Lo
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To find the general solution of this equation we add the general solution of
Z4+e2e = 0 '
to a particular solution of (I).
Now the general solution of {2) is

*r = Acoset + Bainwt

To find a particular sclution of {#) it would do no good to assume a particular solution of the fo

x = ¢ coswl + £ sinwt

since when we substitute (4) [which is identical in form to ()] into the left side of (1), we wo
get zero. We must therefore modify the form of the assumed particular solution (4). As =
in Appendix C, the assumed particular sclution has the form

r = tey coswl + ¢, sinwl)
To see that this yields the required particular solution, let us differentiate (5} to obtain

# = f—wey sinwt + wey coswl) + (¢) coswt + ¢, sin wt)

.

£ = t— vl cozwt — Wl sinwt) + 2(— we, sinwt + wey cog wl)

Substituting {5), () and (7} into (Z), we find after simplifying

— 2uwep sin wt + 2wty coswt = foeos et

from which ¢, =0 and ¢ = fp/2u. Thus the re- x <
quired particular sclution (5} is 2 = {fy/2w)t sin wt. -
The general solution of (1) i3 therefore -

x = Acosof + Biginet + (fp/2u)t gsinut  (8) Py
{6) The constants A and B in {8) are determined

from the initial conditions. Unlike the case with

damping, the terms involving A and B do not become

small with time. However, the last term involving ¢ “

increases with time to such an extent that the spring -

will finally break. A graph of the last term shown N

in Fig. 4-15 indicates how the oscillations build up ~o

in magnituade. Fig. 4-15

A vertical spring has a stiffness factor equal to 48 N per m. At ¢ = 0 a force give
newtons by F(¢) = 51 sin 44, { 20 is applied to a 30 N weight which hangs in equilib:
at the end of the spring. Neglecting damping, find the position of the weight at any
time £.

Using the method of Problem 4.7, we have by Newton’s second law,

\
39d% _ 48 + 51sin 4t
10 de=
2
or . % 167 — 17 sia 4t
di
Solving,

z = Acosdt + Bsindt — 17/8 cos 4t

When t=0, z=0 and dz/dt=0; then A =0, B =17/32 and

£ o= 1732 sin 4t — 17/81 cos 4¢
As § gets larger the term — 17/8 ¢ cos 4 increases numerically without bound, and physically the

will ultimately break. The example illustrates the phenomenon of resonance. Note that the 1
frequency of the spring (4/2= = 2/n) equals the frequency of the impressed force.,
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4,22, Work Problem 4.21 if F(¢} =120 cos 6t,£= 0.
In this case the equation (1) of Problem 4.21 becomes
dz/dez + 162 = 40 cos 6L

and the initial conditions are
z=0, dzfdt =0 at t=0

The general solution of (1) is
z = Acosd4t + Bgindt — 2cos 6t

Using conditions (2) in (8), we find 4 =2, B = 0, and

z = 2(coadt —coabt) = 2{cos(bi—1t) — cos (bt + £)}

= 4sinisin

[CHAP. 4

(1
()

&)

The graph of z vs. ¢ is shown by the heavy curve of Fig. 4-18. The dashed curves are the curves
z = +4sin ¢ obtained by placing sin 5¢ = +1. If we consider that 4 ain ¢ is the amplitude of sin 5,
we see that the amplitude varies sinusoidally. The phenomenon is khown as amplitude modulation and

is of practical importance in communications and electronics.

THE SIMPLE PENDULUM

4.23. Determine the motion of a simple pendulum of length ! and mass m assuming small

vibrations and no resisting forces,

Let the position of m at any time be determined by s,
the arclength measured from the equilibrium position O
[see Fig. 4-17]. Let ¢ be the angle made by the pendulum
string with the vertical.

If T is a unit tangent vector to the circular path of
the pendulum bob m, then by Newton’s second law

a2
md—t:'l' = —mgsineT )
or, since & = I¢,
ot
@ = ~Seine (#)

For small vibrations we can replace sin ¢ by # so that
to a high degree of accuracy equation (2) can be replaced by

s g _
dts+-lo—0 {2)

which has solution

8 = AcosVgilt + Bainvg/lt

Fig. 4-17

Taking as initial conditions 8 =14, de/dt =0 at t =0, we find 4 =9, B=0 and so

# = s coaVplit

From this we see that the period of the pendulum is 2=v/l/g.
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424,

4.25.

Show how to obtain the equation (2) for the pendulum of Problem 4.23 by using
the principle of conservation of energy.

We see from Fig. 417 that OA = O0C—~ AC =]—1cos¢ = {1 —coss). Then by the conserva-
tion of energy [taking the reference level for the potential energy as a horizontal plane through
the lowest point O] we have

Potential energy at B + Kinetic energy at B = Totalenergy = F = constant
mgl(l — cos8) + dm(ds/dt)? = E (#3)

Since 8 = ¢, this becomes
mglil — cos8) + dmi¥de/dt) = E 2

Differentiating both sides of (2} with respect to ¢, we find
mglsing e + mi2é = 0 or ¥+ ig/hsine = 0

in agreement with equation (2) of Problem 4.23.

Work Problem 4.23 if a damping force proportional to the instantaneous velocity is
taken into account.
In this case the equation of motion (1) of Problem 4.23 is replaced by
dis ds

mm'f = vmysina’l'—ﬁg’!‘ or 5 T —g sing —

Blw
&8

Using s =l¢ and replacing sing by ¢ for small vibrations, this becomes

d _Bde g, _
dt2+;‘-&?+?9—0

Three cases arise:
Case 1. B3/dm? < g/l
& = e BUIM[A cogut + B sinwt) where « = Vg/l — p%/4m?

This is the case of damped osgcillations or underdamped motion.
2 2=
Cage 2. p2ldm? = g/l o = e—8UIn(A + Ba)

This iz the case of eritically damped motion.

Case 8. B24Am?2 > g/l
§ = e~ BtZm{fert £ Be—At} where » = v p2/dm? — g/l

This is the case of overdamped motion,

In each case the constants A and B can be determined from the initial conditions. In Case 1
there are continually decreasing oscillations. In Cases 2 and 3 the pendulum bob gradually returns
to the equilibrium position without osecillation.

THE TWO AND THREE DIMENSIONAL HARMONIC OSCILLATOR

4.26,

Find the potential energy for (a) the two dimensional and (h) the three dimensional
harmonic oscillator.

{a) In this case the force is given by
F = —uzi — xoy

Since ¥V X F =0, the force field is conservative, Thus a potential does exist, i.e. there exists
a function V such that F = —VV. We thug have
— mpigl — e = — - Y. _v. W
F = —xzi— sy = vV = axi g ) 2
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from which 0V/ox = xjx, aV/0y = oy, ¢V/82 =0  or
V = it + A
choosing the arbitrary additive constant to be zero. This is the required potential energy.
(b) In this case we have F = —uxxi —xoyi —x32zk  which is also conservative since VXF =10,
We then find as in part (e), oViexr = xpx, dV/dy = woy, aV/3z = k42 from which the required

potential energy is
= i@ + Legy? + Lugal

4.27. A particle moves in the 2y plane in a force field given by F = —xxi — «¢yj. Prove that
in general it will move in an elliptical path.

If the particle has mass m, its equation of motion is

dr e
mw = F = wXi kY] (1)
. s &2 . .
or, since r = zi+ ¥j, m:i;cl + mdtg = —xxi — xyi
&2z _ dgy -
Then Moy = TkE, i ¢4}
These equations have solutions given respectively by
2 = Ajcosva/mi + A,sinvVu/mit, ¥ = B cosVe/mt + BysinVu/mt &4

Let us suppose that at ¢ =0 the particle is located at the point whose position vector is
r=ai+bdj and moving with veloecity dr/dt = vi + v,j. Using these conditions, we find 4, =g,

B, =b, A;=vVm/k, By, = vyym/c and so
x = acoswt + ¢sginot, y = beoswut + dsinet (4)
where ¢ = v, yVm/s, d = vyVm/x. Solving for sinut and coswt in (4§} we find, if ad # be,

_ dz-—ey . _ ay—bx
cog wt = ad —be' gin wt = ad — be

Squaring and adding, using the fact that cos2ef+ sinfet =1, we find
{dx —cy)2 + {ay — bx)2 = {ed — be)?
or (52 + d2)x? — 2(ed + ab)xy + (22 4 2)y?2 = (ad — be)2 {5

Now the equation
Az 4+ Bay +Cyt = D where 4 >0, C>0,D>0

is an ellipse if B2—4AC < 0, a parabela if B2~4AC =0, and a hyperbols if B2—44AC > 0.
To determine what {5} is, we see that A =5 +d2, B =—-2(ed+ab), C=a?+¢? s0 that

Bt — 4AC = d(cd+ab)? — 42+ d2) a2+ ¢?) = —dlad—be)? < 0

provided ad » be. Thus in general the path is an ellipse, and if 4 = C it is a circle, If ad = be
the ellipae reduces to the straight line ay = bax.

MISCELLANEOUS PROBLEMS

4.28, A cylinder having axis vertical floats in a liquid of density «. It is pushed down
slightly and released. Find the perlod of the oscillation if the cylinder has weight W
and cross sectional area A.
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4.29.

Let RS, the equilibrium position of the cylinder, be distant
z from the liguid surface PQ at any time ¢. By Archimedes’
principfe, the buoyant furce on the eylinder is (Az) ey, Then by
Newton's second law,

W dz
-a- T = —Azog
@z, yido
or EEz— + W zr = 0
Solving,
2 = epeosVgrdofW it + cysm Vgid oWt
and the period of the oacillation is 2z W g3 o Fig. 4-18

Show that if the assumption of small vibrations is not made, then the period of a
simple pendulum is

where k = sin (80/2)

41,_3_1’”2___@___
gvo /1 —Kk¥sinty

The equation of motion for a simple pendulum if small vibrations are not assumed is
[equation (84), page 91]

d?e .
q = —% 3in g in
Let ds¢/dt = u. Then -
@ _ duw _ dude _  du
de2 T dt de dt ~ T de
and {I) becomes i
" ﬁ = - % sin # {2)
Integrating (2} we obtain
w2 _ g
5 = TJeose + ¢ (€1]
Now when e =48, u=0 so that ¢ = —(g/l) cos#;,. Thus (3) can be written
u? = (2g/l)(cosé — cos8y) or de/dt = =V(2p/li(cond — cos 8y {4

If we restrict ourselves to that part of the motion where the bob goea from ¢ =9; t0 ¢ =0,
which represents a time equal to one fourth of the period, then we must use the minus sign in {(§)
s0 that it becomes

defdt = —/(2g/D{cos ¢ — cos 8g)

Separating the variables and integrating, we have

{ l J‘ de

ft = - _ —_—

20 ) eose — cos 9,

Since ¢ =0 at ¢ =4, and t=Pf4 at 9 =0, where P iz the periad,

,
P = 4JJ_J‘°_____‘E___ (6)
2¢ Jy +eoss — coss,

Making use of the trigonometric identity cos# = 2 sin?*4/2) —1, with a similar one replacing
# by 8,, (5) ean be written

[ % ds
P = 2 1f~ (6
g j; V8in2(9,/2) — sin(e/2)

Now let 8in (#/2) = sin (8,/2) sin ¢ (4]

L3
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Then taking the differential of both sides,
4 cos(#/2)de = s5in{94/2) cos ¢ d¢

or calling k = sin (#,/2}),
& o 2 sin (#,/2) cos ¢ do

v1-—Kk2sinZg

Also from (7) we see that when # =0, ¢ = 0; and when ¢ = ¢, ¢ = 5/2. Hence () becomes,
as required,

de =

o ]
P = ﬂfij — g )
), ik,

Note that if we have small vibrations, i.e. if k is equal to zerc yery nearly, then the period (8}

becomes
[ Ti2 i
P = 4\f—f do = 2#‘\’— )
g/, g

The integral in {8) is called an elliptic integral and cannot be evaluated exactly in terms of
elementary functions. The equation of motion of the pendulum can be solved for s in terms
of efliptic functions which are generalizations of the trigenometric functions.

as we have already seen.

Show that period given in Problem 4.29 can be written as

P = 2n\/%{1 +(%)2k2+(,1,—:%>2k*+(—21~—:%g>2k°+ }

The biromial theorem states that if |z} < 1, then

(1+2? = 1+ pzx + p‘g.l”xz + p(pg‘lzjtpl_z)xs FEN
If p= -1, this can be written
1 13 13:5
-172 = - = 179 e 3
(1+2x) 1~ 3o+ g2l — oo ad +

Letting =z = —k?sin®¢ and integrating from 0 to »/2, we find

w2 d¢
o= 4/l f =
/o o V1—EKsinZg

w2
= 4v‘-'/gf {1 + -;-kzsin%s + %—;Zak“ sinte + "‘}dqb
0

_ 1\2 1.3\, . /1-3:5\ .
= 2:'\}%{14‘(5) k-+(é-_4> k“ﬂ-(zu’l‘s)k + o

where we have made use of the integration formula

i 135 2n—1} »
T2 — -
J; sinfrg dp = T 46 - (Zn) 3

The term by term integration is possible since |[k| < 1.

A bead of mass m is constrained to move on a frictionless wire in the shape of a
cycloid [Fig. 4-19 below] whose parametric equations are
x = alp —sing), ¥y = a{l — cosd) 6]

which lies in a vertical plane. If the bead starts from rest at point O, (a) find the
speed at the bottom of the path and (b) show that the bead performs oscillations
with period equivalent to that of a simple pendulum of length 4a.
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432. A particle of mass m is placed on the inside

{a) Let P be the position of the bead at any time o

and let s be the arclength along the cycloid meas- ®
ured from point O. *
_ By the conservation of energy, measuring P 2a
potential energy relative to line AE through the m
minimum point of the cycloid, we have Al Tt T B
PE atP + KE. atP = PE.at0 4+ K.E. at @
W
mg(2a — y) + Im{ds/dt)? = mg2a)+ 0 (D) Fig. 4-19
Thus v = (de/dD)? = 2gy or v = ds/dt = 2y *

At the lowest point ¥ = 2a the speed is v = V2¢(20) = 2V ga.

(4) From part {a), (ds/dt)2 = 2gy. But
{da/dt2 = (dx/dt)® + (dy/dt)? = a¥(l ~ cos¢)2¢? + a? sin?e ¢? = Ze2(1 — cos ¢)g?
Then 2a%(1 — cos¢)¢? = 2ga{l — cos g} oF @2 =g/a. Thus
de/dt = Vgla and ¢ = Voglat+¢ “)
When ¢ =0, t=0; when ¢ =2y, ¢t = P/2 where P iz the period. Hence from the second

equation of (4),
P = 4an/alg = 2¢V4alg

and the period is the same as that of a simple pendulum of length I = 4a.
For some interesting applications see Problems 4.86-4.88,

of a smooth paraboleid of revolution having
equation ¢z = x?+ y? at a point P which is at
height H above the horizontal [assumed as the
xy plane]. Assuming that the particle starts
from rest, (a) find the speed with which it
reaches the vertex O, (b) find the time - taken,
and (¢) find the period for small vibrations.

It is convenient to choose the point P in the yz
plane 3o that z = 0 and ¢z = 2. By the principle

of conservation of energy we have if @ is any point
on the path PQO, Fig. 4-20

PE . atP + KE. atP PE.atQ + KE.atQ
mgH + 3m(0)? myz + Jm(ds/dt)?

where s is the arclength along OFQ measured from Q. Thus

]

(ds/dt)2 = 2g(H —z) )
or de/dt = —20(H — 2} (%)

using the negative sign since # is decreasing with ¢.

(a) Putting z = 0, we see that the speed is V2pH at the vertex.
(b)) We have, sincex =0 and cz =192,

ds?'_ da:2 d2 dzs d_lx ﬁg—lﬂ_ é_!ii!z
(EE) = &?)+(Eg)+(&'£) (dt tala) = Uta dt)

Thus (1) can be written (1 + 4y2/e2)dy/dt)2 = 2g(H — y*/¢). Then

dy _VeH — 2 Ve + 433
F o= Vg —— or -V2gedt = ———dy
a V& T ag Vel — 5
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Integrating, using the fact that : = H and thus ¥y = VeH at t =0 while at ¢t = T, ¥=10

we have
' Ve o L VAT a7

‘/‘ —VEgrdt = Jﬂ e Yy or r = d
¥
b Veit yeH — 4 2ge VeH — yt

Letting o = \NH cos 8. the integral can be written

_ S~ T 1 f2 - -
r = —— J Ve2 ot deH coste de = L j Vet + 4cH — 4cH sinZ 6 dé

V2ge Vage 4

and this can be written
s = -“ r V1~ k2 sin2 e ds (5
0

where k= VaHHe+4H) < 1 {4)

The integral in (3} is an elfiptic infcgral and eannot be evaluated in terms of elementary
functions. It can, however, he evaluated in terms of sevies [see Problem 4.119].

{¢} The particle oscillates back and forth on the inside of the paraboloid with period given by

e
P o= 4 = 41/5274”] Vi = sm?e dé 5
*a

For small vibrations the value of & given by {{) can be assumed so small s0o as to be zero
for practical purposes. Hence (5} hecomes

P = 2V/{c+ 4H)/2g

The length of the equivalent simple pendulum is & = {(c+ 4H).

Supplementary Problems

SIMPLE HARMONIC MOTION AND THE SIMPLE HARMONIC OSCILLATOR

4,33,

4.34.

4.35.

4.36.

1.37.

A particle of mass 12 g moves along the x axis attracted toward the point O on it by a foree in dynes
which is numerically equal 10 60 times its instantaneous distanee x ¢m from (). IT the particle start=
from rest at x = 10, find the (@) amplitude, {b) peried and (c) frequency of the motion.

Ans. (@) 10em, ) 2a{+'3s, (¢) +v5/2= Hz

{a) If the particle of Problem 4.33 starts at » = 10 with a speed toward @ of 20 cm/see, determine
its amplitude, period and freguency. (b) Determine when the particle reaches ¢ for the first time.
Ang. (a} Amplitude = 645 em, period = Zaf4/5 s, lrequency = 52 = Hz: (b)) 0.33 =

A particle moves on the x axis attracted toward the origin O on it with a force proportional
to its instantaneous distance from O, If it starts from rest at x = 5em and reaches » = 2.5 cem
for the first time after 25, find (@) the position at any time { after it starts, (b) the speed at x == 0,
{c) the amplitude, period and frequency of the vibeation, (4} the maximum acceleration, (e} the
maximum speed,

Ang. falx = 5 cos (nfj6': (B) Bwff emfs; (e} Sem, 125, 112 Hzy {d) 52236 cmfs*; (¢} =/ crofs

If a particle moves with simple harmonic motion along the x axis, prove that (a) the acceleration
is numerically greatest st the ends of the path, (4} the velocity is numerically greatest in the
middle of the path, (¢} the acceleration is zero in the middle of the path, (d) the velocity is zero
at the ends of the path,

A particle moves with simple harmonic motion in a straight line. Its maximum speed is 6 1nfs and
its maximum aceceleration is 24 mfs. Find the period and frequency of the motion.

Ans. =j2s, 2{n Hz
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438. A particle moves with simple harmonic motion. If its acceleration at distanee I} from the
equilibrium position is A, prove that the period of the motion is 2.V D/A.
439, A particle moving with simple hannome motion has speeds of 3 em/s and 4 cm/s at distances 8 cm and
6 cm respectively from the equilibrium positisn.  Find the period of the motion. Ans. dms
{40. An 8 kg weight placed on a vertical spring stretches it 20 cem. The weight is then pulled down
a distance of 40 cm and released. (a) Find the amplitude, period and frequency of the oscillations.
{b} What is the position and speed at any time? )
Ans. {(a) 40 c1n, 207 s, 72+ Hz
() x == 40 cus Tt e, ¢ = — 280 sin T vinfs
441 A mass of 200 g placed at the lower end of & vertical spring stretches it 20 em. When it is in equilibrium
the mass is hit and due to this goes up a distance of 8§ em before coming down again. Find (g) the
magnitude of the velocity imparted to the mass when it is hit and () the period of the motion.
the motion. Ans. {a) 56 em/s, (b) Ln[7 s
i 442. A 5 kg mass at the end of a spring moves with simple harmonic motion along a horizontal straight
; line with period 3 s and amplitude 2 meters. (o) Deteninine the spring constant.  (b) What is the
: maximurn force exeried on the spring?
Ans. {2} 1140 dynes/em or 1.14 newtons/meter
{b)y 2.28 » 10% dynes or 2.28 newtons
443. When a mass M hanging from the lower end of a vertical spring is set into motion, it oscillates

with period P. Prove that the period when mass m is added is PvV1 4+ m/M.

THE DAMPED HARMONIC OSCILLATOR

444,

1.86.

4.46.

447,

{448

4.49,

4.50,

451

452.

(@) Solve the equation d2x/diZ + 2dx/dt + 52 = 0 subject to the conditions x =5, dz/dt = —3
at ¢t = 0 and (b) give a physical interpretation of the results.

Ans. (a) £ = e~ t{5 cos 2t + sin 2f)

Verify that the damping force given by equation (2} of Problem 4.11 is correct regardless of the
position and velocity of the particle.

A 1.5 kg weight hung on a vertical spring stretches it (.4 m. The weight is then pulied down 1 m and
released. ({a) ¥ind the position of the weight at any time if a dainping force numerically equal to 15
times the instantancous speed is acting.  (b) Is the motion oseillatory damped, overdamped or eriticaliy
damped? (Use g = 10 m{fs?). Ans. (@) x = e~ (5t + 1), (b) eritically damped

Work Problem 4.46 if the damping force is numerically 18.76 times the instantaneous speed.
Ans. {a) x = é(&e"”*' — e 1%y (b)) overdamped

In Problem 4.46, suppose that the damping force is numerically 7.5 times the instantaneous speed.
{a) Prove that the motion is damped oscillatory. (b) Find the amplitude, pericd and frequency of
the oscillations, (¢} Find the logarithmic decrement.

Ans. (b) Amplitude = 72__.‘3""‘"111. period = 4w{5+/3 5, frequency = 5+/3/4d= Hz; (¢} 2rf+/3
3

Prove that the logarithmic decrement is the time reguired for the maximum amplitude during
an oscillation to reduce to 1/e of this value.

The natural frequency of a mass vibrating on a spring iz 20 Hz, while its frequeney with damping
ts 16 Hz. Find the logarithmic decrement. Ans. {3/4)2n

Prove that the difference in times corresponding to the successive maximum displacements of a
damped harmonic oscillator with eguation given by (12) of page 88 is constant and egual to

drm/y dem — g2,

Is the difference in times between auccessive minimum displacements of a damped harmonie
oscillator the same as in Problem 4.517 Justify your answer,
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FORCED VIBRATIONS AND RESONANCE

4.33.

41.54.

4.55.

4,56,

4,57,

4.58,

The position of a particle moving along the x axis iz determined by the equation d2x/di® + 4dx/dt +
8r = 20 cos 2¢. If the particle starts from rest at = =0, find (a) 2 as a funection of ¢, (b) the
amplitude, period and freguency of the oscillation after a long time has elapsed.

Anz. (a) 2 = cos 2t + 2 5in 2f — e~ 2t{cos 2£ + 3 sin 2¢)
(6) Amplitude = v/§, period = =, frequency = 1/#

(a) Give a physical interpretation to Problem 4.53 involving a mass at the end of a vertical spring.
(b) What is the natural frequency of such a vibrating spring? (¢) What is the frequency of the
impressed force? Ans. (B o/w, (&) It

The weight on a vertical spring undergoes forced vibrations according to the equation
d2x/di2 + 4x = 8 sinwt where x is the displacement from the equilibrium position and « > 0 is &
constant. If at ¢+ =0, =0 and dxfdt =0, find (a) x as a function of ¢, () the period of
the external force for which resonance oeceurs,

Ans. (@) x = (Bsinol —dusin28/{4— o) H 0+2; x=sin2t—2tconlt if w=2
() « =2 or period = r

A vertical spring having constant 272 N/m has & 16 kg weight suspended from it. An external force
given as a function of time ¢ by F(¢} = 240 sin 41, ¢ = 0 is applied. A damping force given numerically
in newtons by 32 v, where » is the instantaneous speed of the object in m{s, is assumed to act. Initially
the weight is at rest at the equilibrium position. (a) Determine the position of the weight at any time.
(b} Indicate the transient and steady-state solutions, giving physical interpretations of each. (s) Find
the arnplitude, period and frequency of the steady-state solution. (Useg = 10 m/s?.)

Ans, (@) # = 3¢ (Beosdt + sind) + 3 sin4t — 24 cos ¢
13 13 13

{b) Transient, 1—333—'{8 cos 4 + sin 4¢);  Steady state, % sin & — f_; cos 4f

(¢) Amplitude = 3 [ 2 m, period = n/2 s, frequency = 2/» Hz

A spring is stretched 5em by & force of 50 dynes. A mass of 10g is placed on the lower end of the
spring. After equilibrium has heen reached, the upper end of the spring is moved up and down so that
the external force acting on the mass is given by F(f} = 20 cos of, ¢ = 0. (¢} Find the position of the
mass at any time, measured from its equilibrium position. (b) Find the value of w for which resonance
oCCurs. Ans. (a) 2 = 2(cos wt — cos (1 —w2), (b)) w=1

A periodic external force acts on a 6 kg mass suspended from the lower end of a vertical spring
having constant 150 newtons/meter. The damping force is proportional to the instantaneons speed
of the mass and is 80 newtons when the speed is 2 meters/sec. Find the frequency at which
TeSONAnce QCCurs, Ans. 5f6n Hz

THE SIMPLE PENDULUM

4.59,

4.60.

4.61.

Find the length of a simple pendulum whose period is 1 second. Such a pendulum which registers
seconds is called a gseconds pendulum. Ans. 99.3 cm

Will a pendulum which registers seconds at one location lose or gain time when it is moved to
another location where the acceleration due to gravity is greater? Explain.

Ans. Gain time

A simple pendulum whose length is 2 meters has its bob drawn to one side until the string makes
an angle of 30° with the vertical. The bob is then released. (a} What iz the speed of the bob as
it passes through its lowest point? (b} What is the angular speed at the lowest point? (¢) What
is the maximum acceleration and where does it oceur?

Ans. {a) 2.93 mfz, (b) 1.46 rad/s, {¢} 2 m/s?
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162

4.63.

164,

4.6

1.66.

Prove that the tension in the string of a vertical simple pendulum of length ! and mass m is given
by mg cos ¢ where ¢ is the instantaneous angle made by the string with the vertical.

A seconds pendulum which gives correct time at a certain location is taken to another location
where it is found to lose T seconds per day. Determine the gravitational acceleration at the second
location, Ans. g(l — T/86,400)2 where g is the gravitational acceleration at the first location

What is the length of a seconds pendulum on the surface of the moon where the acceleration due
to gravity is approximately 1/6 that on the earth? Ans. 165 em

A simple pendulum of length ! and mass m hangs vertically from a fixed point &, The bob is given
an initial horizontal velocity of magnitude v, Prove that the arc through which the bob swings
in one period haz a length given by 4l cos~1(1 —vi/2¢])

Find the minimum value of v, in Problem 4.65 in order that the bob will make a complete
vertical eirele with center at O. Ang. 2y pl

THE TWO AND THREE DIMENSIONAL HARMONIC OSCILLATOR

4.67.

468,

169,

1.70.

1.

472

A particle of mass 2 moves in the zy plane attracted to the origin with a force given by
F=—18zi—50yj. At ¢ =0 the particle is placed at the point (3,4) and given a velocity
of magnitude 10 in a direction perpendicular to the x axis. (¢) Find the position and velocity of
the particle at any time. {(b) What curve does the particle describe?

Ans. (@) v =3 cos 3 i+ [ cosbt+ 2 sin5t]j, v = ~@ sin 3¢ i+ [10 cos 5t — 20 ain 54
Find the total energy of the particle of Problem 4.67. Ans. BBl

A two dimensional harmonie oscillator of mass 2 has potential energy given by V = 8(x2+ 4¢2).
If the position wector and wvelocity of the oscillator at time ¢ =10 are given respectively by
to=2i—j and v, =d4i+8j, {e) find its position and velocity at any time ¢ > 0 and () deter-
mine the period of the motion.
Ans, {0) r = (2 cos4t+sin4di+4 (sin 82 —couBt)), v = (4 cosdt — B sin 4¢)i 4 (8 cos 8¢ + 8 sin Bt}

{b) n/B

Work Problem 4.69 if V = 8{z2+ 2y2). Ia there a period defined for the motion in this case?
Explain.

A particle of mass m moves in a 3 dimensional force field whose potential is given by
V = dxl(x? + 4y + 162%). (a) Prove that if the particle is placed at an arbitrary point in space
other than the origin, then it will return to the point after some period of time. Determine this
time, (b) Is the velocity on returning to the starting point the same ag the initial velocity? Explain.

SBuppose that in Problem 4.71 the potential is V = fx(»?+ 292+ 52%). Will the particle return
to the starting point? Explain.

MISCELLANEOUS PROBLEMS

1.

404

475

A vertical spring of constant « having natural length [ is supperted at a fixed point A. A mass m
is placed at the lower end of the spring, lifted to a height & below A and dropped. Prove that

the lowest point reached will be at a distance below A given by I+ mg/c + Vm2g2/2 -+ 2mgh/c.
Work Problem 4.73 if damping proportional to the instantaneous velocity is taken into account.

Given the equation m¥ + Bz +x& = 0 for damped oscillations of a harmonic oscillator. Prove that
if E = jmz?+4cx?, then E = —pgx. Thus show that if there is damping the total emergy B
decreases with time, What happens to the energy lost? Explain.
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4.78,

4.79.

4.80.

482

4.83.

4.84.

4.85.

4,86,
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{a) Prove that Aycos{ut — ) + Agcosluwt—¢y) = A cos{wt— ¢}
Aysing; + Adgsin ¢.2)
Aycosgy + Azcosgs/’

where A = VAZ+ AZ+24,A,cos(p,—¢y). ¢ = tan*‘(

(b} Use (a) to demonstrate that the sum of two simple harmonic meotions of the same frequency
and in the same straight line is simple harmonic of the same frequency.

Give a vector interpretation to the results of Problem 4.76,

Discuss Problem 4.76 in case the frequencies of the two simple harmonic motions are not equal
Is the resultant motion simple harmonic? Justify your answer.

A particle oscillates in a plane so that its distances r and y from two mutually perpendicular
axes are given as functions of time ¢t by

x = A coslwt+ g, ¥ = Bcos(wt+ ¢}

{a) Prove that the particle moves in an ellipse inscribed in the rectangle defined by 2z = =4,
¥ = =B. (b} Prove that the period of the particle in the elliptical path is 2z/w.

Suppose that the particle of Problem 4.79 moves so that
2 = Acos{wt+g)), y = Bcoslut+et+ gy

where ¢ is assumed to be a positive constant which is assumed to be much smaller than w. Prove
that the particie oscillates in slowly rotating ellipses inscribed in the rectangle =z = *A, y = =B,

Illustrate Problem 4.80 by graphing the motion of a particle which moves in the path
2 = 3 cos (2t nfd}, ¥ = 4 cos(2.4%)

In Fig. 4-21 a mass m which is on a frictionless

table is connected to fixed points 4 and B by

two springs of equal natural length, of negli- LI ot
gible mass and spring constants «; and x; re- ——f'GU'O’O'\— ”
spectively. The mass m is displaced horizontally A B
and then released, Prove that the period of

oscillation is given by P = 2rvm/(x; + x5). Fig. 4-21

A spring having constant x and negligible mass has
one end fixed at point A on an inclined plane of
angle a and a mass m at the other end, as indicated m
in Fig. 4-22. If the mass m iz pulled down a distance
rp below the equilibrium position and released, find

the displacement from the equilibrium position at any i
time if (a) the incline is frictionless, (&) the incline
has coefficient of friction u. Fig. 4-22

A particle moves with simple harmonic motion along the x axis. At times &, 2¢{, and 3¢, it is

. . e ty
located at * = a, b and ¢ respectively. Prove that the period of oscillation is cos—T(a+0)/2b"
A seconds pendulum giving the correct time at one location is taken to another location where
it loses 5 minutes per day. By how much must the pendulum rod be lengthened or shortened in
order to give the correct time?

A vertical pendulum having a bob of mass m is sus-
pended from the fixed point . As it oscillates, the
string winds up on the constraint curves ODA [or OC]
as indicated in Fig. 4-23, Prove that if curve ABC iz a
eycloid, then the period of osecillation will be the same
regardless of the amplitude of the oscillations. The pen-
dutum in this case is called a eycloidal pendulum. The
curves ODA and OC are constructed to be evoluies of
the cycloid. [Hint. Use Problem 4.31.) Fig. 4-28
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4.87.

188,

4389

1.92.

193,

494,

4%

4.6,

4197

498,

4,99,

4.100,

4,191,

4162,

A bead slides down a frictionless wire located in a vertical plane. 1t is desired to find the
shape of the wire so that regardless of where the bead is ptaced on the wire it will slide under
the influence of gravity to the bottom of the wire in the same time. This is often ealled the
tawlochrone problem. Prove that the wire must have the shape of a cycloid.

iHint. Use Problem 4.31,]

Prove that the curves 004 and OC of Problem 4.86 are cycloids having the same shape as the
cycloid ABC.

A gimple pendulum of length ! has its peint of support moving back and forth on a horizontal line
so that its distance from a fixed point on the line is A4 sinwt, t 2 0. Find the position of the
pendulum bob at any time ¢ assuming that it is at rest at the equilibrium position at 7 = 0.

Work Problem 4.8 if the point of support moves verticaily instead of horizontally and if at
t = 0 the red of the pendulum makes an angle ¢, with the vertical.

A particle of mass m moves in a plane under the influence of forces of attraction toward fixed
points which are directly proportienal to its instantaneous distance from these points. Prove
that in general the particle will describe an ellipse.

A vertical elastic spring of negligible weight and having its upper end fixed, carries a weight
W at its lower end, The weight is lifted so that the tension in the spring is zere, and then it is
released, Prove that the tension in the spring will not exceed 2W.

A vertical spring having constant « has a pan on top of it with
a weight W on it [see Fig, 4-24]. Determine the largest fre-
quency with which the spring can vibrate so that the weight
will remain in the pan,

A spring has a natural lengih of 50 ¢m and a force of 100 dynes
is required to stretch it 25 em. Find the work done in stretching
the sprisg from 75 em to 100 em, assuming that the elastie Timit
is not exceeded so that the spring characteristics do not change,

Anz. 3750 ergs

A varticle moves in the xy plane so that its position is given by
¥ = A coswf, ¥y= B cog2wl. Prove that it describes an arc of a
parabola. Fig. 4.24

A particle moves in the xy plane so that its position is given by 2 = A cos{ut+ ¢y,
¥ = B cos {uyt + ¢5). Prove that the particle describes a closed curve or not, according as wfw, is
rational or not. In which cases is the motion periodic?

The position of a particle moving in the wxy plane is described by the equations d%x/di? = -:43;,
dyfdi? = —4x. At time # = 0 the particle is at rest at the point (6,3). Find (a) its position
and {b) its velocity at any later time f.

Find the periad of a simple pendulum of length 1 meter if the maximum angle which the rod
makes with the vertical is (a) 30°, (b 603°, {e) B0°,

A simple pendulum of length 0.9 m is suspended vertically from a fixed pomt.  A¢ £ = 0 the bob is
given o horizontal velocity of 2.4 mfs. Find (a) the maxitmuun angle which the pendulumn rod makes
with the vertical, () the peciod of the oscillations.

Ans, (a) 477 387, (5)1.98 s

Prove that the time averages over a peried of the potential energy and kinetic energy of_ a
simple harmonie oscillator are equal to 2724%/P? where A is the amplitude and P is the pericd
of the motion.

A eylinder of radius 3 m with its axis vertical oscillates vertically in water of density 10%kgm=?
with a period of 5 seconds. How much does it weigh? Ans. 1.2 x T0*N

A particle moves in the xy plane in a force field whose potential is given by V =2+ ay+ y2.
If the particle is initially at the point (3,4} and is given a velocity of magnitude 10 in a direction
parallel to the positive x axis, {a) find the position at any time and (b) determine the period of
the motion if one exists.
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4.103,

4.104.

4.105,

4,108,

4.107.

4.108,

4.109.

4.110.

£.111.

4.112.

4113

4.114.
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In Problem 4.96 suppose thai w,/w; is irrational and that at ¢ =0 the particle is at the
particular point (x4, ) inside the rectangle defined by 2z = *4, y = =B. Prove that the point
{*a, ¥g) will never be reached again but that in the course of its motion the particle will come
arbitrarily close to the point.

A particle oscillates on a wvertical frictionless cycloid with its vertex downward. Prove that the
projection of the particle on a vertical axis oscillates with simple harmonic motion.

A mass of 5 kg at the lower end of a vertical spring which has an elastic constant equal to
20 newtons/meter oscillates with a period of 10 seconds. Find (o) the damping constant, (b) the
natural period and {c) the logarithmic decrement. Ans. (a) 19 N sfm, (b) 314 s

A mass of 100 g is supported in equilibrium by two identieal

springs of negligible mass having elastic constant equal to A B
50 dynes/rmn. In the equilibrium position shewn in Fig. 4-25 a¢® 30”

the springs make an angle of 20° with the horizontal and are

100 cm in length. If the mass is pulled down a distance of

2 ¢m and released, find the period of the resulting oscillation. c

A thin hollow cireular cylinder of inner radius 10 em is fixed
so that its axis is horizontal. A particle is placed on the inner
frictionless surface of the cylinder so that ita vertical distance

ahove the lowest point of the inner surface is 2em. Find 100 gm
(o) the time for the particle to reach the lowest point and
(h) the period of the oscillations which take place. ' Fig. 4-25

A cubical box of side a and weight W vibrates vertically in water of density o. Prove that the

period of vibration is (2= /a) W
/ og?

A spring vibrates so that its equation of motion is
md2z/dt2 + 2 = F(l)
If =0, de/dt =0 at t =10, find x as a function of time &.

i
Ans, x = 7__;: j‘; F{u) sin Va/m {t —u) du

Work Problem 4.109 if damping proportional to dx/dt is taken into aceount.

A spring vibrates so that its equation of motion is
md2x/dt2 + xx = Bcoswt + 2 cosdut

If 2=0, #= vy at £=0, (a) find » at any time ¢ and (b) determine for what values of w
resonance will oceur,

A vertical spring having elastic constant « carries a mass m at its lower end. At ¢=10 the
spring is in equilibrium and its upper end is suddenly made to move vertically so that its distance
from the original point of support is given by 4 sinet, ¢ Z 0. Find (a) the position of the mass m
at any time and (b) the values of » for which resonance occurs.

{(a) Solve d¥z/dt2 + x = ¢tgint + cost where =0, dx/dt =0 at £=10, and (b} give a physical
interpretation.

Discuss the motion of a simple pendulum for the case where damping and external forces are
present.
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4115,

4,116,

4117,

4.118.

4118

Find the period of small vertical ocacillations of a cylinder of radius o and height b floating
with its axis horizontal in water of density o.

A wvertical spring having elastic constant 2 newtons per meter has a 30 g weight suspended from it.
A force in newtons which is given as a function of time ¢ by F{{) = 6 cos* £, ¢ = 0 is applied. Assuming
that the weight, initially at the equilibriunt position, is given an upward veloeity of ¢ m/s and that
damping is negligible, determine the (@) position and () velocity of the weight at any time.

In Problem 4.5, can the answer for o =2 be deduced from the answer for o = 2 by taking
the limit as « - 2?7 Justify your answer.

An oscillator has a restoring force acting on it whose magnitude is —xr — ez where ¢ is small
compared with x, Prove that the displacement of the oscillator [in this case often called an
anharmonic oscillator) from the equilibrium position is given approximately by

z = Acos(@t—¢.}+‘—46—‘3{0052(«:3—@—3}
L3

where 4 and ¢ are determined from the initial conditions.

Prove that if the oscillationa in Problem 4.32 are not necessarily small, then the period is given by

¢ + 4H 1\? 1+3\* 4 1-3-5)2::6
= — — = 2 — i e —_ e s
P 2 29 {1 (2) K (2-4) 3 (2~4-s 5




Chapter 5 CENTRAL FORCES
and PLANETARY MOTION

CENTRAL FORCES

Suppese that a force acting on a particle of
mass m is such that [see Fig. 5-1]:

() it is always directed from m toward or
away from a fixed point O,

(b) its magnitude depends only on the distance
¢ from O.

Then we call the force a centrel force or central
foree field with @ as the center of force. In sym-
hols F is a central force if and only if

= ftryr, = f(ryx/r (1) . Pig.5-1
where n = r/r i3 a unit vector in the direction of r. _

The central force is one of attraction toward O or repulsion from O accordmg as
f(ry <0 or f(r) > 0 respectively.

SOME IMPORTANT PROPERTIES OF CENTRAL FORCE FIELDS
If a particle moves in a central force field, then the following properties are valid.

1. The path or orbit of the particle must be a plane curve, i.e. the particle moves in
a plane. This plane is often taken to be the xy plane. See Problem 5.1.

2. The angular momentum of the particle is conserved, i.e. i3 constant. See Problem 5.2.

3. The particle moves in such a way that the position vector or radius vector drawn
from O to the particle sweeps out equal areas in equal times. In other words, the
time rate of change in area is constant. This is sometimes called the law of areas.
See Problem 5.6.

EQUATIONS OF MOTION FOR A PARTICLE
IN A CENTRAL FIELD

By Property 1, the motion of a particle in a cen-
tral force field takes place in a plane. Choosing this "
plane as the xy plane and the coordinates of the par- r
ticle as polar coordinates (r, 9), the equations of mo-
tion are found to be {see Problem 5.3 ¥

m(7 — r8?) = f(r) (2)
m(ré + 2r9) = 0 2)

where dots denote differentiations with respect to Fig. 5-2
time {.

(r,8)

116
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-

r?4 = constant = & (4)
This is relaied to Properties 2 and 3 above.

From equation (8) we find

IMPORTANT EQUATIONS DEDUCED FROM
THE EQUATIONS OF MOTION

The following equations deduced from the fundamental eguations (2) and (%) often
prove to be usefunl.

1. I R i

P T om )
' d2u 1
2. g te = - m_h@ﬂu“) (6)
where u = 1/r.
dir dr TN
5 det ~ (da) T ThE ”

POTENTIAL ENERGY OF A PARTICLE IN A CENTRAL FIELD

A central force field is a conservative field, hence it can be derived from a potential.
This potential which depends only on r is, apart from an arbitrary additive constani_:,

given by
ve) = - f finar ®

This is aiso the potential energy of a particle in the central force field. The arbitrary
additive constant can be obtained by assuming, for example, V=0 at r=0 or V-0
a8 1> o,

CONSERVATION OF ENERGY

By usmg (8) and the fact that in polar coordinates the kinetic energy of a particle is
{;m(rz+r2€2) the equation for conservation of energy can be written

m(r? + 7%‘2) + Viry = (8]

or ym(F2 + 7282 ~ f fydr = E (10)

where E is the total energy and is constant. Using (), equation (I0) can also be written as
mh? [/ dr\? _

L) +7) - S e = B (1)

and also as -2—< ) j firydr = E {12)

In terms of % = 1/r, we can also write equation (9) ag

(@_)2 W o AE=V)

dé = ok (19)

DETERMINATION OF THE ORBIT FROM THE CENTRAL FORCE

If the central force field is prescribed, ie. if f(r) is given, it is possible to determine
the orbit or path of the particle, This orbit can be obtained in the ferm

r = r(8) {14)

.

™~
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i.e. r as a function of 4, or in the form
r=1r{t), & =8 (15)
which are parametric equations in terms of the time parameter ¢.

To determine the orbit in the form (14) it is convenient to employ equatlons (8), (")
or (11). To obtain equations in the form (15), it is sometimes convenient to use (12) together
with (4) or to use equations (4) and (5).

DETERMINATION OF THE CENTRAL FORCE FROM THE ORBIT

Conversely if we know the orbit or path of the particle, then we can find the correspond-
ing central force. If the orbit is given by + = »(#) or u = %(¢) where u = 1/r, the central
force can be found from

fy = mELEL - (4N ) (16)
or flw) = —mh2u2{%%+ u} - {17

which are obtained from equations (6) and (?) on page 117. The law of force can also be
obtained from other equations, as for example equations (9)-(13).

It is important to note that given an orbit there may be infinitely many force fields for
which the orbit is possible. However, if a central force field exists it is unique, i.e, it is
the only one. o

CONIC SECTIONS, ELLIPSE, PARABOLA AND HYPERBOLA

Consider a fixed point O and a fixed line AB distant D from O, as shown in Fig. 5-3.
Suppose that a point P in the plane of O and AB moves so that the ratio of its distance
from peint O to its distance from line AB is always equal to the positive constant e,

Then the curve described by P ig given in ~e ¥ A

polar coordinates (r,#) by AN
» ~y@ |~ Directrix
7 = T¥eccoss (28) » \\P d |u

See Problem 5.16. Focus N\

The point O is called a focus, the line AB is N ®
called a directriz and the ratio « is called the /
eccentricity, The curve is often called a conic S
section since it can be obtained by intersecting ' e
a plane and a cone at different angles. Three ,// D
poasible types of curves exist, dependlng on the ///’ B
value of the eccentricity. . - Fig.5-3

1. Ellipse: <1 {See Fig. 5-4 below.]

If C is the center of the ellipse and CV = CU = a is the length of the semi-major

axis, then the equation of the ellipse can be written as
a(l — &)

1+ecosd (29)

r

Note that the major azis is the line joining the vertices V and U of the eilipse and has
length 2a.
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W v A
If b is the length of the semi-minor axis [ ~e }
[CW or CS in Fig. 5-4] and ¢ ig the distance b ol Do :
CO from center to focus, then we have the e % ! .
important result U\ o ¢ 0 /" |E
t
e = Va2 — b = e (20) t
A circle can be considered as a special case _ s_// F:
of an ellipse with eccentricity equal to zero. - Fig. 5-4
¥
2. Parabola: =1 [See Fig. 5-5.] ™
The equation of the parabola is
P Fad
— » .
T % {Tcosé (1 s ,
0 v
We can consider a parabola to be a
limiting case of the ellipse {(79) where «— 1,
which means that a¢- « [ie the major
axis becomes infinite] in such a way that /
o{l —¢) = p, Fig.5-5
3. Hyperbola: > 1 [See Fig, 5-6.] ¥
The hyperbola consists of two branches
as indicated in Fig. 5-6. The branch on the
left is the important one for our purposes.
The hyperbola is asymptotic to the dashed
lines of Fig. 5-6 which are called its asymp-
totes. The intersection C of the asymptotes NG
is called the center. The distance CV =a }c‘
from the center C to vertex V is callied the 0N
semi-major axis [the major axis being the
distance between vertices V and I by anal-
ogy with the ellipse]. The equation of the
hyperbola can be written as
a(;* - 1)
T I+ c¢cosd (22) Fig.5-6

Various other alternative definitions for conic sections may be given. For example, an
ellipse can be defined as the locus or path of all points the sum of whose distances from two
fixed points is a constant. Similarly, a hyperbola can be defined ag the locus of all points
the difference of whose distances from two fixed points is a constant. In both these cases
the two fixed points are the foci and the constant is equal in magnitude to the length of
the major axis.

SOME DEFINITIONS IN ASTRONOMY
A solar system is composed of a star [such as our sun] and objects called planets which

" revolve around it. The star is an object which emits its own light, while the planets do

not emit light but can reflect it. In addition there may be objects revolving about the
planets. These are called safellites.

Ta our solar system, for example, the moon is a satellite of the earth which in turn i-s a
panet revolving about our sun. In addition there are artificiel or man-made satellites

¢ which can revolve about the planets or their moons.
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The path of a planet or satellite is called its orbit. The largest and smallest distances
of a planet from the sun about which it revolves are called the aphelion and perthelion
respectively. The largest and smallest distances of a satellite around a planet about which
it revolves are called the apogee and perigee respectively,

The time for one complete revolution of a body in an orbit is called its period. This is
sometimes called a sidereal period to distinguish it from other periods such as the period
of earth’s motion about its axis, ete,

KEPLER'S LAWS OF PLANETARY MOTION

Before Newton had enunciated his famous laws Planet
of motion, Kepler, uging voluminous data accumu- ,-
lated by Tycho Brahe formulated his three laws . (A

un

concerning the motion of planets around the sun
[see Fig. 5-7.

1. Every planet moves in an orbit which is an
ellipse with the sun at one focus. Fig.5-7

2. The radius vector drawn from the sun to any planet sweeps out equal areas in
equal times {the law of areas, as on page 116).

3. The squares of the periods of revolution of the planets are proportional to the cubes
of the semi-major axes of their orbits.

NEWTON'S UNIVERSAL LAW OF GRAVITATION

By using Kepler’s first law and equations {16) or (17), Newton was able to deduce his
famous law of gravitation between the sun and planets, which he postulated as valid for any
objects in the universe {see Problem 5.21].

Newton’s Law of Gravitation. Any two particles of mass m, and m. respectively and
distance » apart are attracted toward each other with a force

F = - G’*":;mz r (23)

where G is a universal constant called the gravitational constant.

By using Newton’s law of gravitation we can, conversely, deduce Kepler's laws [see
Problems 5.13 and 5.23). The value of G is shown in the table on page 342.

ATTRACTION OF SPHERES AND OTHER OBJECTS

By using Newton’s law of gravitation, the forces of attraction between large objects
such as spheres can be determined. To do this, we use the fact that each large object is
composed of particles. We then apply the law of gravitation to find the forces between
particles and sum over these forces, usually by methods of integration, to find the resultant
force of atiraction. An important application of thig is given in the fellowing

Theorem 5.1. Two solid or hollow uniform spheres of masses m; and m. respectively
which do not intersect are attracted to each other as if they were particles of the same
mass situated at their respective geometric centers. '

Since the potential corresponding to

am
F = - T{m ) o] (2-‘)
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is v = &Gm?jm” (25)
it is also possible to find the attraction between objects by first finding the potential and

then using F = — g V. See Problems 5.26-5.33.

MOTION IN AN INVERSE SQUARE FORCE FIELD

As we have seen, the planets revolve in elliptical orbits about the sun which is at one
focus of the ellipse. In a similar manner, satellites (natural or man-made) may revolve around
planets in eiliptical orbits, However, the motion of an object in an inverse square field of
attraction need not always be elliptical but may be parabolic or hyperbolic. In such eases
the object, such az a comet or nmeteorite, would enter the golar system and then leave but
never return again.

The following simple condition in terms of the total energy F determines the path of
an object.

(i} if E < 0 the path is an ellipse
fii} if E = ( the path is a parabola
(iii) if F > 0 the path is a hyperbola
Other conditions in terms of the speed of the object are also available, See Problem 5.37.

In this chapter we assume the sun to be fixed and the planets do not affect each other.
Similarly in the motion of saiellites around a planet such as the earth, for example, we
assume the planet fixed and that the sun and all other planets have no effect,

Although such assumption is correct as a first approximation, the influence of other
planets may have to be taken into account for more accurate purposes. The problems of
dealing with the motions of two, three, etc., objects under their mutual attractions are often
called the two body problem, three body problem, ete.

Solvéd Problems

CENTRAL FORCES AND IMPORTANT PROPERTIES

51. Prove that if a particle moves in a central force field, then its path must be a plane
curve,

Let F = fir)r, be the central force field. Then

rxF = Hrijrxre = 0 (1)
since r, is a unit vector in the direction of the pesition vector r. Since F = mdv/dt, this can he
written

rxdv/dt = 0 (£)
d -
or I rxv) = 0 (£1]
Integrating, we find rxv = h {4}

where h is a constant vector. Multiplying both sides of () by r+,
rh = 0 (5)
using the fact that r+(rxv)=(rxrj*v =0. Thus r is perpendicular to the constant vector h,

and so the motion takes place in & plane, We shall assume that this plane is taken to be the
xy plane whose origin is at the center of force.
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Prove that for a particle moving in a central force field the angular momentum is
conserved.

From equation (4) of Problem 5.1, we have
rxv = h
where h is a constant vector. Then multiplying by mass m,
m(rXv) = mh )

Since the left side of (#) is the angular momentum, it follows that the angular momentum is
congerved, i.e, is always constant in magnitude and direction.

EQUATIONS OF MOTION FOR A PARTICLE IN A CENTRAL FIELD

503’

504‘

Write the equations of motion for a particle in a central field.

By Problem 5.1 the motion of the particle takes place in a plane. Choose this plane to be
the zy plane and the coordinates describing the position of the particle at any time t to be
polar coordinates (r,8). Using Problem 1.49, page 27, we have

{mass){aceeleration) = net force
mi(r — ré%r, + (8 + 2768} = flrin (8]
Thus the required equations of motion are given by
m(¥ — r6%) = f(r) (e)
m(rd +278) = 0 ®

Show that 728 = h, a constant.

Method 1. Equation (2) of Problem 5.3 can be written

. se M e e, m,i oo
mird + 2re) = r('&"20+2‘?‘r3) = S @i (r2e) = 0
d Fah
Thus It(r ) = 0 and so 2 = n 0

where & is & constant.

Method 2. By Problem 1.49, page 27, the velocity in polar coordinates is

v = ’;‘l‘l + r501

Then from equation (4} of Problem 5.1
h = rxXv = #rXr) + ré(r X8} = 12k (2)

since rxXr; =0 and rx# =k where k iz the unit vector in a direction perpendicular to the
plane of motion [the xy plane], i.e. in the direction rx v. Using h=hk in (2), we see that
ri = A,

Prove that 12 = 24 where A is the time rate
at which area is swept out by the position
vector r.

Suppose that in time At the particle moves from
M to N [see Fig. 5-8]. The area aA swept out by the
posgition vector in this time is approximately half the

area of a parallelogram with sides » and Ar or (see
Problem 1.18, page 15]

AA = }|rx 4r
Dividing by At and letting At~ 0,
. rf _ 1

. 1 A
ad _ _l
Ate0 Al ulTo 2 x X at
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5.6.

L8

ie, A= e xv] = 4}1'25
using the result in Problem 5.4. Thus »% = 2.5, a3 required. The vector quantity

A = Ak = Hexv) = ;{rza)k

is often called the areal velocity.

Prove that for a particle moving in a central force field the areal velocity is constant.
By Problem 5.4, 726 = h = a constant. Then the areal velocity is

A= &rzék = 4hk = {h, a constant vector

The result is often stated as follows: If s particle moves in a central force field with O as
center, then the radius vector drawn from O to the particle sweeps out equal areas in equal
times, This result is sometimes called the law of areas.

Show by means of the substitution r = 1/u that the differential equation for the
path of the particle in 2 central field is

d*u _ F(1/w)
gt T T
From Problem 5.4 or equation (8} of Problem 5.3, we havé '

v2%6 = h or & = h/r? = hu? (1
Substituting inte equation {2) of Problem 5.3, we find I
m(¥ — %) = f(r) (®)

Now if r = 1/u, we have

s o_ & _drde _ hdr _ _,du ‘
TS T T ma - Ad - ta @

"—d_f..-i..flﬁ—jd__d__“ig—_zzﬂ
A dt( "da) = s "do)da = M “)

From this we see that {2) ecan be written
m{—hu® d?u/de? — R2ud) = f{1/u) 5
; &Pu = . f(t/fw) :

or, a3 required, g T = it i {8

.

POTENTIAL ENERGY AND CONSERVATION OF ENERGY
FOR CENTRAL FORCE FIELDS

58.

{(a) Prove that a central force field is conservative and (b} find the corresponding
potential energy of a particle in this field.

Method 1.
If we can find the potential or potential energy, then we will have also incidentally proved
that the field is conservative. Now if the potential V exists, it muat be such that

Fedr = —dV (93]
where F = f(r)r; is the central force. We have
Fedr = firir,+dr = f(r)i-dr = f(r)dr
since r ¢+ dr = rdr.

Since we can determine V such that
—dV = fir)dr
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for example, v = — ff(r) dr (2
it follows that the fleld is conservative and that (2) represents the potential or potential energy.

Method 2.
We can show that ¥ X F =0 directly, but this method is tedious although straightforward,

Write the conservation of energy for a particle of mass m in a central force field.
Method 1. The velocity of a particle expressed in polar coordinates is [Problem 1.49, page 27)
v = 11 + roe, so that v o= yey = ¥4 422
Then the principle of conservation of energy can be expressed as
m»? + V = FE or é-m(;-f—i—r?é?) - j flrydr = E

where E is a constant.

Method 2. The equations of motion for a particle in a central field are, by Problem 5.3,

m(¥ — 6% = fir) {0
mi{rg + 2ré) = 0 &)
Muitiply equation (I} by 7, equation (2} by ré and add to obtain
mF¥ + ¥286 + rrét) = flrpr £}
. . . . d
This e¢an be written &m a‘%(r’«' + r3%) = T ‘f HGE (4}

Then integrating both sides, we obtain
Jm(r? + 252 — f frydr = E {5)

Show that the differential equation describing the motion of a particle in a central
field can be written as

mRl(G) el - e = E

From Problem 5.9 we have by the conservation of energy,

) 3m(r2 + r26%) — f fthdr = E 4]
p o= 4 _ drde _ dr,
We alse have Y= oGt T dedt deo {£)

Substituting (2) into (1), we find

2 - 2
w[(ﬁ%) +#]52—J feydr = B or 1;%53[(%) +r2]—ff(r)dr = K

since & = h/rd

(@) If u=1/r, prove that vt = 7* + r%® = h2{(du/dé)* +u?).
(b) Use (a) to prove that the conservation of energy equation becomes
{dei/de)® + v* = 2(F — V)/mh?
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{¢) From equations {7} and (3} of Problem 5.7 we have 4= hu?, r = ~hdu/ds. Thus
= P24 % = Rdw/de)? + (L/uhu?)? = R2{(du/de)? + u?}

{6} From the conservation of energy [Problem 5.9] and part (a),

jmv? = m(#2+4rél) = E—-V or (du/dey? + u® = 2(E — VY/mh?

DETERMINATION OF ORBIT FROM CENTRAL FORCE,
OR CENTRAL FORCE FROM ORBIT 7L

512, Show that the position of the particle as a function of time f can be determined
from the equations

t = _f (G2 dr, t = }%f r2de

where Giry = — + -j frydr —

mz-rz
Placing & = h/+? in the equation for conservation of energy of Problem 5.9,

ymird + h2/r?) ~ j firndr = E

o o 2E 2 o
or 2 = ;+m‘f;‘(r)dr ol fo}

Then assuming the positive square root, we have

dr/dt = V&)

and s¢ separating the variables and integrating, we find

f (G(I} 1% dr

The second equation follows by writing 8 = h/»? as dt = r2ds/h and integrating.

513. Show that if the law of central force is defined by
firy = —K/r%, K>0
i.e. an inverse square law of attraction, then the path of the particle is a conic.

Method 1.

In this case f(1/u) = ~Ku?. Substituting into the differential equation of motion in Problem 5.7,
we find
diuldet + u = Kimh? o)

This equation haz the general solution

u = Acose + Bsine + K/mh? ®
or using Problem 4.2, page 92,
u = K/mht + Ccosi(d—¢) ®
' : 9
Lo r Eimhz + C cos (8 — @)

It is always possible to choose the axes so that ¢ =0, in which case we have

1 .
¥ = EK/mh® + Ccose )
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This has the general form of the conic {see Problem 5.16)

- » = 1
T = T+ ccoss _ 1/p F (/p)coss ®
Then comparing (5) and (6} we see that
1/p = Kimhe, efp = C t4)
p = mhi/K, e = mhiC/K {8}

or

Method 2. Since fir) = —K/r?, we have

Vv = -—f firvdr = —Klr + ¢ "
where ¢; is a constant. If we assume that V>0 as r—> =, then ¢, =0 and s0
V = —K/r {10
Using Problem 5.10, page 124, we find
mh3 [ fdr\? - K
B[] - ok
from which dr = *r @+&— 1 . {12)
de - mh?  mhi

By separating varisbles and integrating [see Problem 5.66] we find the solution (5) where C is
expressed in terms of the energy E.

(@)

Obtain the constant C of Problem 5.13 in terms of the. total energy E and (b) thus

show that the conic is an ellipse, parabola or hyperbola according as E <0, E=0,
E > respectively.

Method 1.
{a) The potential energy is

®

v = —f fir)dr = f(Kfrs)dr = =Kir = —Ku 3]

where we use u = 1/r and choosge the constant of integration so that lim V = 0. Now from
equation (5} of Problem b5.13, re

u = 1r = Kimht + Ccosé (2
Thus from Problem 5.11(b} together with (1), we have
2
(Csinc)3+<£§+0coso) = %+%($+Cmo)
_ R | 2E - Kz | 2K
o C =t o C = \jautnes @

assuming C > 0.

Using the value of C in part (a), the eguation of the conic becomes

_ 1 _ K ’ 2Emh2
“_r—m{l-l- 1+K,cose}

Comparing this with (§) of Problem 5.16, we see that the eccentricity is

_ 2Emh*
« = 1+ j 7o) (8)

From this we see that the conic is an ellipse if £ < 0 [but greater than —K*/2mh?}, a parabola
if E=0 and a hyperbola if E >0, since in such cases ¢<1, e=1 and ¢>1 respectively.

Method 2. The value of € can alao be obtained as in the second method of Problem 5.13.
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515. Under the influence of a central force at point O, a particle moves in a circular orbit
which passes through O. Find the law of force.

Method 1. ¥
In polar coordinates the equation of a cirele of radius ¢
passing through Q is [see Fig. 5-8] P
r = 2acosd r
Then since # = 1/v = (sec 8)/2a, we have - s
du _ secptany 0 H Za
de 2a
4 _ (seco)(sece) + (sec # tan o){tan s}
de? 2a S
sec 9 + secd tan? e ot
2
* Fig. 55
Thus by Problem 5.7,
o sec? ¢ + gec o tan? s 1 secd
= —mizyef{ TY = — 2
f(1/w) mh2y (dsﬁ + u) mhu ( 32 )
mh2u® mhul
= - 2 2 —_ . a
Ba {sec?# + sec o (tanZ¢ + 1)} e 2 secd @
= —8mhla2y’
2q2
or 1 = -
Thus the force is one of attraction varying inversely as the fifth power of the distance from O.

Method 2, Using » = 2acosé in equation {16}, page 118, we have

_ mh? | e 2 o ain g} —

fry = s { 2a cos @ 2acoso( 2¢ sin ) 2a cosa}
— _ damk® _ 8aPmh?
T rteose 1S

CONIC SECTIONS. ELLIPSE, PARABOLA AND HYPERBOLA
8.16. Derive equation (18), page 118, for a conic section,
Referring to Fig. 5-3, page 118, by definition of a conic section we have for any point P on it,
rid = « or d = rie (D

Corresponding to the particular point @, we have

p/D = « or p = D f

But D = d+ rcoss = :—'+rcose = %(1+ecoso) *
Then from {2) and (8), we have on eliminating D,

p = r(1 + ccosd) or r = ﬁ%‘; . 14)

The equation is a circle if ¢ =0, an ellipse if 0 < ¢<1, a parabola if ¢=1 and a hyperbola
if e>1,

517. Derive equation (19), page 118, for an ellipse.

Referring te Fig., 5-4, page 118, we see that when ¢=0, »r=0V and when ¢ =7,
y = OU. Thus using equation (4) of Problem 5.15,
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5.19,

5.20.
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OV = pll+e), oU = plil—a
But since 2« is the length of the major axis,
oV + 00U = 2a or /1 4+ €} + pfil — &)
from which P = all — &)

Thus the equation of the eilipse is
a(l — 2}

T T T¥eccose

Prove that in Fig. 5-4, page 119, (a) OV =a(l —¢), () OU =a{l+).

{a) From Preblem 5.17, equation () and the first equation of (1),

.. P _ ail — &2
oV = 1+« 7 1+

all — )

{6} From Problem 5.17, equation (3) and the second equation of (I},

— e F
ov = 2 = “(11_:) = all+e

[CHAP, 5

{1

(2)
8

)

(0

@

Prove that ¢ = a« where ¢ is the distance from the center to the focus of the ellipse.

@ is the length of the semi-major axis and ¢ is the eccentricity.

From Fig. 5-4, page 119, we have ¢ = €O = CV -0V = g—a(l —¢) = de.
An analogous resuit holds for the hyperbola [see Problem B5.73{¢c}), page 139).

If @ and ¢ are as in Problem 5.19 and b is the length of the semi-minor axis, prove

that (a) ¢=va*—-b? (b) b=ayl-é
(g} From Fig. 5-4, page 119, and the definition of an ellipse, we have

_ OV _CV-CO0 _a—c¢
“VE T~ T VE T VE

or VE

€

)

Also since the eccentricity is the distance from O to W divided by the distance from W

to the directrix AB [which is equal to CE], we have

OW/CE = ¢

or, using (1) and the result of Problem 5.19,

OW = ¢CE = lCV+VE) = eatla—c)e = eata—ce

Then (OW) = (OC)2 + (CW)? or a2 = b2+ ¢2, Pe. ¢ =Val- b2

(b) From Problem 5.19 and part {a), o2 = b2+ a22 or b= aVl — &2,

KEPLER'S LAWS OF PLANETARY MOTION AND
NEWTON’S UNIVERSAL LAW OF GRAVITATION

5.21. Prove that if a planet is to revolve around the sun in an elliptical path with the sun
at a focus {Kepler’s first law], then the central force necessary varies inversely as

the square of the distance of the planet from the sun.

If the path is an ellipse with the sun at a focus, then calling r the diatance from the sun,

we have by Problem b.16,
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222

5.23.

5,24

5.25.

_ P I S S
T = [T ccoss or v = o= p+pcos& (1)

where ¢ << 1. Then the central force is given as in Problem 5.7 by
fliwy = —mhtu{dufde? + u) = —mh2ulfp (2}
on substituting the value of = in (7}, From {2) we have on replacing « by 1/r,

firy = —mhe/prt = —Kfr2 ()

Discuss the connection of Newton's universal law of gravitation with Problem 5.21.

Historically, Newton arrived at the inverse square law of forece for planets by using Kepler's
first Jaw and the method of Problem 5.21. He was then led to the idea that perbaps all objects
of the universe were attracted {o each other with a force which was inversely proportional fo the
square of the distance r between them and directly proportional to the product of their masses,
This led to the fundamental postulate

GMm
F o= - =37 6
where G is the universal gravitational constant. Eguivalently, the law of force {3) of Problem 5.21
is the same as (I) where
K = GMm (2)

Prove Kepler's third law: The squares of the periods of the various planets are
proportional to the cubes of their corresponding semi-major axes.

If @ and & are the lengths of the semt-major and semi-minor axes, then the area of the
ellipse is rab. Since the areal velocity has magnitude A/2 [Problem 5.6], the time taken to sweep
over area wab, i.e. the period, is

_ wab _  2rad
po= hig h ()

Now by Problem 5.17 equation {2}, Problem 5.20(4}, and Problein 5.13 equation (8), we have
b = avl — &, r = a(l—¢) = mh¥/K (2)
Then from (I} and {2) we find
P = 2xmliig3’2fK1/2 or P! = da¥me¥/K

Thus the squares of the periods are proportional to the cubes of the semi-major axes,

Prove that GM = gR?, e

On the earth's surface, i.e. + = B where B is the radius, the force of attraction of the earth
on an object of mass m is equal to the weight mg of the object. Thus if M is the mass of the

earth,
GMm/R? = myg or GM = gR2

Calculate the mass of the earth.

From Problem 5.24, GM = gR® or M = gR>/G. Taking the radius of the earth as
6.38 x 10fm, g = 9.80mfs? and & = 6.67 x 1011 8] units, we find M = 598 x 10% kg.

ATTRACTION OF OBJECTS

5.26.

Find the force of attraction of a thin uniform rod of length 2e¢ on a particle of
mass m placed at a distance b from itz midpoint.
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Choose the x axis along the rod and the y axis
perpendicular to the rod and passing through its
center (0, as shown in Fig, 5-10. Let ¢ be the mass
per unit length of the rod. The foree of attraction
dF between an element of mass o dx of the rod and
m is, by Newton’s universal law of gravitation,

—da
dF = Gm.: (:: {sing i— coséj)
_ Gmoxdx i Gmobdx
= EeomEnel T (g2 bhez! - Fig.5-10

since from Fig. 5-10, sine¢ = x/\Vx?+ b2, cos ¢ = b/y22 + b2, Then the total force of attraction is

_ . (" Gmex dx _Gmobde
F = i __, @b =13 (:c2+ {#2 + b2y
_ _Gmobdx Y de
= 0 -2 f @ peEa < —2Gmob j =2+ 65373
¢
Let x = btane in this integral. Then when x =0, §=0; and when x=g¢a, ¢ =tan—!{a/d).
Thus the integral becomes
tan—1 (asb)
. b secls do 2Gmea
F = ~2Gmob J‘ e = — e
) o (b2 aee? g)3/2 bVal b2

Since the mass of the rod is M = Zae, this can also be written as
_ _GMm
Wrrs

Thus we see that the force of attraction is __directed from wm to the center of the red
and of magnitude 2Gmoe/bV a2 + b2 or GMm/b/a2 + b2,

F =

A mass m lies on the perpendicular through the center of a uniform thin circular
plate of radius ¢ and at distance & from the center. Find the force of attraction
between the plate and the mass m.

Method 1.

Let m be a unit vector drawn from point P where m
is located to the center O of the plate. Subdivide the
circular plate inte cireular rings fsuch as ABC in
Fig. 5-11] of radius r and thickness dr. If ¢ is the mass
per unit arem, then the mass of the ring is o(Zxrdr).
Since all points of the ring are at the same distance
V7?2 + b2 from P, the force of attraction of the ring on
m will be

_ GelZardrim

dF 2+ b2 cos¢n
o 2y dr mb

= G Fen » @
where we have used the fact that due to symmetry the
resultant force of attraction is in the direction n. By
integrating over all rings from =10 to r=ga, we
find that the total attraction is Fig. 511
F = 2rGombn f o rdr ()

(re+ b0t

To evaluate the integral, let 72+ 3 =u? so that ¢dr=udu. Then pince ¥ =b when »r=20
and « = \fm when r = a, the result is
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¥ 27 Gomb J'"’W"d“ 2:G (1 b )
= amb n —~5— = 2rGomnmn|1l-—
T b ua va.’-!—b’

If we let « be the value of ¢ when r = a, this can be written
F = 2:Gomn{l — cosa) (4]
Thus the force is directed from m to the center @ of the plate and has magnitude 2rGomt(l — ¢05 o).

Method 2.

The method of double integration can also be used. In such caze the element of area at A ia
rdrde where ¢ is the angle measured from a line [taken as the x axis] in the plane of the
cireular plate and passing through the center . Then we have as in equation (1),

_ Golrdr ds)ymb
daF = —57 b R

and by integrating over the circular plate

2 a
_rdrde 2erdr _
F = Gombn f f Rer bt Gemb nJ::o EApE T 2pGomn (1 — cos o)

A uniform plate has its boundary con-
gisting of two concentric half circles of
inner and outer radii ¢ and b respec-
tively, as shown in Fig. 5-12. Find the
force of attraction of the plate on a
mass m located at the center O.

It is convenient to use polar coordinates
{(r,9). The element of area of the plate {shaded
in Fig. §-12} is dA = rdrds, and the mass is
ordrds, Then the force of attraction between
dA and O is Fig.5-12

IF Glor f: doym

{coge i+ sing j)

Thus the total force of atiraction is

” b
F = j G(l-%ﬁd”—m(cosai+sinoi}

T
= Gmln(!'-)f {cosei+sinefde = 2Gamln(£)j
e/ vo=g a

Bince M = o({rb?— 4va?®), we have o =2M/r(b*—a?) and the force can be written

_ _4GMm b
F = r(bz—a,ﬁ)l“(a)j

The method of single integration can also be used by dividing the region between r =a and
= b into circular rings as in Problem 5.27.

Find the force of attraction of a thin spherical shell of radius a on a particle P of
mags m at a distance r > e from its center,

Let O be the center of the sphere. Subdivide the sﬁrfa.ce of the sphere into circular elements
such as ABCDA of Fig. 5-13 below by using paralle! planes perpendicular to OP.

The area of the surface element ABCDA as seen from Fig. 5-13 is
2r{¢ sin #)a ds) = 2ra? sine ds

since the radius is asine [so that the perimeter is 2x{a sin¢)] and the thickness iz ads. Then
if o is the masa per unit area, the masa of ABCDA iz 27420 sin ¢ ds.
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5.31.

5.32.
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Since all points of ABCDA are at the same dis-
tance w = AP from P, the force of attraction of
the element ABCDA on m is

Gi27e20 sin 8 da)m
w2

dF

cos ¢ n )]

where we have used the fact that from symmetry the
net force will be in the direction of the unit vector n
from P toward . Now from Fig. 5-13,

PE _PO—-EQ _ r—acosd @)
AP~ AP - w

Cos ¢ =

Using (2) in {!) together with the fact that by the
cosine law

w? = a4+ y? — 2av cos e (647
we find
dF = G(2rate sin e de)mir — a cos &}
_, (a2 + r? — 2ar cos §)%2
Fig. 5-13
Then the total force is
i »
_ 2 (r — a cos #) sin ¢
F 27Galomn J;zo (a% T 72 = Zar cos 672 dg )
We can evaluate the integral by using the variable w given by (8) in place of ¢. When
6=0, w?=a’?—2ar+r2=(r—a)? so that w=r—a if r>a. Also when =g, w?=
a?+ 2er ++2 = (r+a)® so that w = r+ a. In addition, we have
Zwdw = 2arsingde
_ 0 = r o qfEETEIwty w? — a? 4 ¢2
r—acose = r —a Sar or
Then (4) becomes
? p - rGaomn J’"” l+r2_a2)dw _  4rGaZemn
- r? ) w? re

r-a

Work Problem 529 if r <a.

In this case the force is also given by (4) of Problem 5.29. However, in evaluating the
integral we note that orn making the substitution (8} of Problem 5.29 that ¢ = 0 yields w2 = (g ~#)2
or w=a—7r if r < a. Then the result (4) of Problem 5.29 becomes

a+r 5 _ .2
F o= wGaamnI (1_awar)d‘w - 0

P

a—r

Thus there will he no force of attraction of a spherical shell on any mass placed inside. This
means that in such case a particle will be in equilibrium inside of the shell.

Prove that the force of attraction in Problem 5.29 is the same as if all the mass of
the spherical shell were concentrated at its center.

The mass of the shell is M = 4ra%s. Thus the force ia F = (GMm/r2n, which proves the
required result.

(z) Find the force of attraction of a solid uniform sphere on a mass m placed outside
of it and (b) prove that the force is the same as if all the mass were concentrated
at its center.

(@) We can subdivide the solid sphere inte thin concentric spherical shells. If p ia the distance
of any of these shells from the center and dp is the thickneas, then by Problem 5.29 the
force of attraction of this shell on the mass m is
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=2
dF = 9_‘.’.{_‘&::2 doym )
where ¢ is the mass per unil volume. Then the total force obtained by integrating from
ro—0 te r- o is
Glzatyom n

r2

4rGom n ['“ )
——a— | #tdp

F v

(2)

h

(b Since the mass of the sphere is M = dza%, (2) can he written as F = (GMm/r?)n, which
shows that the force of attraction is the same as if all the mass were concentrated at
the center,

We can also use triple integration to obtain this resuit [see Problem 5.130}.

3.33. Derive the result of Problems 5.29 and 5.30 by first inding the potential due to the
mass distribution.

The potential 1" due to the element ABCDA s

_ Gi2-a’s sin @ dé)m - _ 7i2ras sin ¢ de}m
1

dV =

Va2 + 12 — Zar cos 8

Then the total potential is

- .
Vo = ~2xGalom f sin ¢ dé
Jo Va2~ Zar cos s

= - 2———”6,‘“” tVie + 0 — Via -n?)

2
If > a this yields Vo= - 42Gdlem - GMm
r r
If r<u it yields V = —drGaom
Then if r > a the force is
F = -VV = —v(-@—"'ﬂ) = M
r r2
and if r < a the foree is
F = —VV = —V(—4zGagm) = 0

in agreement with Problems 529 and 5.30.

MISCELLANEOUS PROBLEMS

534. An object is projected vertically upward from the earth’s surface with init
apeed vo. Neglecting air resistance, (a) find the speed at a distance H above ¢
earth’s surface and (b) the smallest velocity of projection needed in order that t
object never return,

(e} Let r denote the radial distance of the object at time ¢
from the center of the earth, which we assume is fixed
|see Fig. 5-14]. If M is the mass of the earth and R is
its radius, then by Newton's universal law of gravitation
and Problem 5.29, the force between m and M is

_GMm

F POy (1

where r, is a unit vector directed radially outward from
the earth’s center in the direction of motion of the object.

If v is the speed at time ¢, we have by Newton’s sec-
ond law, Fig.5-14
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5.35.

we have

Now since r=1rr;, ¥

CENTRAL FORCES AND PLANETARY MOTION {CHAP.5
dv _  GMm dv _ _GM @
m dt rn = —_.'Q ry or dt - 2
This can be written as
ﬂ dl = "g.’{ v.d_v. = _@. (3}
dr dt = % or dr
Then by integrating, we find v¥2 = GM/r + ¢, 4]

Since the object starts from the earth’s surface with speed v,, we have v = v, when r=~R
so that ¢, = 03/2 — GM/E. Then (4) becomes

¥ = 2GM(11:—%) + ¢ (5)

Thus when the object is at height H above the earth’s surface, ie. r = R.+ H,

vt = 2GM( 1 —l>+1ﬁ = 2GMH

R+H R C 7 RR+H)
. 0 = s __ 2GMH
ie., = " T R(E+ B
Using Problem 5.24, this can be written
RH :
Vo= A% ReA ©
(&) As H = =, the limiting speed (¢) becomes
V2 — 2GM/R or Vol — 2gR N
. . H _ . s e aur .
since ;}l.'.n., T2V 1. The minimum initial speed occurs where (7) is zero or where
vy = V2GM/R = +2gR ®

This minimum speed is called the escape speed and the corresponding velocity is called the
escape velocity from the earth’s surface.

Show that the magnitude of the escape velocity of an object from the earth’s surface
is about 11 km/s.

From equation (§) of Problem 5.34, v, = +/2gR. Taking g = .80 m/s? and R = 6.38 x 10*m,

we find v, = 11.2 kmjs

Prove, by using vector methods primarily, that the path of a planet around the sun
is an ellipse with the sun at one focus.

Since the force F between the planet and sun is

_ dv _ _GMm
F = mg = 7z T £y
& - -9 ®
Also, by Problem 5.1, equation (4), we have
rxv = h L]

_dr _ 40 dr
dt dt  de v

= _ dr[ dr _ dl'1
h = rxy = ﬂ1X(rE+Er1> = rzrlxﬁ 4

Thus from (3),
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From {2), d
dv GM r
-Exh = —WrIXh = —GM!‘IX(I'IXT;)

5.37.

5.38,

drl drl d]'l
—GM (rl . _ti?)rl — ) = GM_dT
using equation (4} abeve and equation (7), page b.

But since h is a constant vector, % Xh = -gz(v X h) so that

d _ dry
a—t(vxh) = GM 3t
Integrating, vxh = GMr, +¢
from which
r{vxh) = GMr+r, +r¢c = GMr + rryrc = GMr + recose

where ¢ is an arbitrary constant vector having magnitude ¢, and ¢ is the angle between ¢ and r;.
Since re{vXh)=(rXv)J+h=h+h =h? [see Problem 1.72{a), page 27|,

W2 = GMr + rccose
and so r = h® = h2/GM
T GM 4+ ecosd T 1+ {¢/GM)cose

which is the equation of a conic. Since the only conic which is a closed curve ia an ellipse, the
required result is proved.

Prove that the speed v of a particle moving in an elliptical path in an inverse square
field is given b
e s o= Kz

where a is the semi-major axis.
By (8) of Problem 5.13, (4) of Problem 5.14 and ($) of Problem 6.17, we have

_ mkr _ _ 2Emh2
P = T = all—&) = G(_ J 7€) ) ()
from which E = —K/2a £
Thus by the conservation of energy we have, using V = —K/»,
§mv9 = E—-V = —% + %
K/2 1
2 = =f{=2=Z
or v m (r o) @
‘We can similarly show that for a hyperbola,
_E(2.1
v (; * a) “

while for a parabola [which eorresponda to letting a — = in either (2) or {4)],

v = 2K/mr

An artificial (man-made) satellite revolves about the earth at height H above the
surface. Determine the (a) orbital speed and (b} orbital period so that a man in the
satellite will be in a state of weightlessness,

(a) Assume that the earth is spherical and has radius R. Weightlessness will result when the
centrifugal force [equal and opposite to the centripetal force, i.e. the force due to the cen-
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5.39.

5.40.
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tripetal acceleration] acting on the man due to rotation of the satellite just balances his
attraction to the earth. Then if vy is the orbital speed,

mvy GMm oR%m

_ = X BT He
REvH = ®R+HE =~ ®miHp 7 V= gygVESH9

If H is small compared with &, this is VRg approximateiy.

(&) Orbital speed distance traveled in one revolution
feal sp time for one revolution, or pericd

1

Thus v, =

2z R+ Hy _ /R + H R+H
P = s~ = 2r —
v v B g

If H is small compared with R, this is 2-VR/y approximately.

2r(E + H)
P

Then from part {a)

Calculate the (a) orbital speed and (b} period in Problem 5.38 assuming that the
height H above the earth’s surface is small compared with the earth’s radius.

Taking the earth’s radius as 6380 ki and g = 9.80mjs% we fnd {#) v, = VERg = 7.92 kmis
and (b) P = 2=/ Rlg == 1.42h = 85 minutes, approximately.

Find the force of attraction of a solid sphere of radius ¢ on a particle of mass m at
a distance b < a from its center.
By Froblem 5.20 the force of attraction of any spherical

shell containing m in its interior Isuch as the spherical shell
shown dashed in Fig. 5-15! is zero,

Thus the force of attraction on m is the force due to a
sphere of radius & < @ with center at Q. If o is the mass
per unit volume, the force of attraction is

Gli=b3oem/b2 = (InGom)b

Thus the force varies as the distance b from the mass to the
center, Fig.5-15

Supplementary Problems

CENTRAL FORCES AND EQUATIONS OF MOTION

5.41,

5.42.

343,

Indicate which of the following central force fields are attractive toward origin O and which
are repulsive from O. (a) F=—47r; (b F=Kr/Vr. K>0; (¢) F=r{r—1r/(r2+1)
{d) F = sinzrr,.

Ans. {(a) attractive: (b) repulsive; (&) attractive if 0 < v < 1, repulsive if r > 1; (d) repulsive for
2n < r<Zn+1l, attractive for 2n+1 < r <2n+2 where n=19,1,82,3....

Prove that in rectangular coordinates the magnitude of the aresal velocity is %{xﬁ — ).

Give an example of a force field directed toward a fixed point which is not a central force field.
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544. Derive equation (7}, page 117.
545, If a particle moves in a circular orbit under the influence of a central force at its center, prove that
its speed around the orbit must be constant.
546. A particle of mass m moves in a force field defined by F = —Kur;/#3. If it starts on the positive
r axis at distance ¢ away from the origin and moves with speed v, in direction making angle
o with the positive » axis, prove that the differential equation for the radial! position r of the
rticle at any ti ti
particle at any time ¢ ig & (K — ma%-g sin a)
a2 mrs
547, {a) Show that the differential equation for the orbit in Problem 5.46 is given in terms of u = 1/r by
d?u - _ K
o + {l—yw = 0 where y = ma%ﬁ s
(6) Solve the differential equation in (¢} and interpret physically.
548, A particle is to move under the influence of a central force field so that its orbital speed is

always constant and equal to v, Determine all possible orbits.

POTENTIAL ENERCGY AND CONSERVATION OF ENERGY

3.49.

3.4,

5.31.

5.52.

253,

5.54,

9,95,

Find the potential energy or potential corresponding to the central force fields defined by
() F = —Kr/rs, () F={(afr2+8/r"r;, () F=Krr,, {(d F=r,/Vr, (&) F=gingrrp.
Ans. (@) —K/2r2, (b) ofr + 8/2¢2, (e) Kr2, (d) 2V7, (&) (coswr)im

iai Find the potential energy for a particle which moves in the force field F = —Kr; /2, (b} How
much work is dore by the force field in (&) in moving the particle from a point on the circle
+ = a > Q to another point on the ecircle r = b > 07 Does the work depend on the pata? Explain.

Ans. {a) —K/r, (b)Y K{a— b)Yabd
Work Problem 5.50 for the force field F = —Kr,/r. Ans. (a) ~KInr, (5} —K In(a/b)

A particle of mass m moves in a central force field defined by F = —Kr /3. {a) Write an equation
for the conservation of energy. (b} Prove that if E is the total energy supplied to the particle,

then its speed is given by v = VE/mr?+ 2E/m.

A particle moves in a central force field defined by F = —K+2r;. Ii starts from rest at a point
ot the cirele r = a. (a) Prove that when it reaches the cirele r = b its speed will be

V2K (a3 — b3)/3m and that (&) the speed will be independent of the path,

A particle of mass m moves in a central force field F = Kr,/r» where K and n are constants.
It starts from rest at + = a and arrives at r = ¢ with finite speed v, {2} Prove that we must

have n <1 and K > 0. (&) Prove that v,.= V2Ka!'~%/min—1)., {¢} Discuss the physical sig-
nificance of the resulis in (a).

By differentiating both sides of ecuation {/8), page 117, obtain equation (8).

DETERMINATION OF ORBIT FROM CENTRAL FORCE OR
CENTRAL FORCE FROM ORBIT

5.36.

8.57.

A particle of mass m moves in a central force fleld given in magnitude by f(r) = —Kr where
K is a positive constant. If the particle starts at r = q, ¢ =0 with a apeed v, in a direction
perpendicular to the r axis, determine its orbit. What type of curve is described?

{a} Work Problem 5.56 if the speed is v, in a direction making angle « with the peositive x axis.
{b) Discuss the cages a=10, a=x and give the physical significance.
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538 A particle moving in a central force field located at r = Q0 describes the spiral r = e¢~9% Prove
that the magnitude of the force is inversely proportional to #3,

5.39. Find the central force necessary to make s particle

describe the lemniscate 72 = a2 cos 26 [see Fig. 5-16]. ¥
Ansg. A force proportional to v=7. ot = af conle

5.60. Obtain the orbit for the particle of Problem 5.46 and
describe physically.

5.61.  Prove that the orbits *r = ¢~® and r = 1/¢ are both
possible for the case of an inverse cube field of force.
Explain physically how this is possible, Fig.5-16

5.62. (a} Show that if the law of foree is given by
Axy Br,
rteos or F= 12 cosd g
then a particle can move in the circular orbit r = 2a cose. (b) What can you conclude about

the uniqueress of foreces when the orbit is specified? (¢) Answer part (b)) when the forces are
central forces.

F =

563. (a) What central force at the origin O is needed to make a particle move around O with 2 apeed
which is inversely proportional to the distance from 0. (&) What types of orbits are possible in
such case? Ans. {a) Inverse cube forece.

5.64. Discuss the motion of a particle moving in & central force field given by F = {a/r?+ g/r3)r,.
5.65. Prove that there is no central force which will enable a particle to move in a straight line,

5.66. Complete the integration of equation (72) of Problem 5.13, page 126 and thus arrive at equation
(5) of the same problem. [Hint. Let r = 1/u}

5.67. Suppose that the orbit of a particle moving in a central force field is given by ¢ = #(r). Prove
. mhz{20 + re’ -+ 129"} . .
that the law of force is — o) where primes denote differentiations with
respect to r.

5.68. {a) Use Problem 5.67 to show that if ¢ = 1/r, the cent;al force is one of attraction and varies
inversely as 3. (b) Graph the orbit in (&) and explain physically.

CONIC SECTIONS. ELLIPSE, PARABOLA AND HYPERBOLA

12 . . . .
T T cons’ Graph the conie, finding (a) the foci, {b) the vertices,

(¢) the length of the major axis, (d) the length of the minor axis, (¢) the distance from the center
to the directrix.

5.69. The equetion of a conic is »r =

24

570. Work Problem 5.69 for the conic r = ———,
3+bHcose

5.71. Show that the equation of a parabola can be written as r = p pec? (¢/2).

572. Find an equation for an ellipse which has one focus at the origin, its center at the point (—4,0),
and its major axia of length 10. Ans. r = 9/(5 + 4 cos )
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5.73.

LT,

275,

5.76.

3.

In Fig. 5-17, SR or TN is calied the minor axis of
the hyperbola and its length is generally dencted
by 2b. The length of the major aexis VU is 2a,
while the distance between the foci O and O is 2¢
[i.e. the distance from the center € to a focus O
or O ie CJ.

{a) Prove that ¢2 = a2+ b2,

(b) Prove that b = ay/e2 — 1 where ¢ is the eccen-
tricity.

{t) Prove that ¢ = a¢e. Compare with results for
the ellipse. Fig. 5-17

Derive equation (22), page 119, for a hyperbola.

In rectangular coordinates the equations for an ellipse and hyperbola in standard form are given by
x? oyt £y
.‘1?4' § = 1 and :2'—6—2' =1
respectively, where a and b are the lengths of the semi-major and semi-minor axes. Graph these
equations, lecating vertices, foct and directrices, and explain the relation of these equations to
equations {79), page 118, and (22), page 119,

Using the alternative definitions for an ellipse and hyperbola given on pages 118-119, obtain the
equations {79 and (22).

Prove that the angle between the asymptotes of a hyperbola is 2 cos—1(1/e).

KEPLER’S LAWS AND NEWTON’S LAW OF GRAVITATION

378

5.79,

5.80.

581,

582,

3.83.

584

Assuming that the planet Mars has a period about the sun equal to 687 earth days approximately,
find the mean distance of Mars from the sun, Take the distance of the earth from the sun as
150 mullion km. Ans. 225 million kmn

Work Problem 5.78 for {a) Jupiter and (b} Venus which have periods of 4333 earth days and
225 earth days respectively. Ans. {a) 778 million kim, () 108 million kmm

Suppose that a small spherical planet has a radius of 10 km and a mean density of 5 gfcms.

{e) What would be the acceleration due to pravity at its surface? (b) What would a man weigh
on this planet if he weighed 80 kgf on earth?

If the acceleration due to gravity on the surface of a spherically shaped planet P is pp while its
mean density and radins are given by ¢p and Rp respectively, prove that gp = $7GRpop where G
is the universal gravitational constant.

If L, M, T represent the dimensions of length, mass and time, find the dimensions of the universai
gravitational constant. Ans, L3M-1T-2

Calculate the mass of the sun using the fact that the earth is approximately 1B0 X 108 kilometers
from it and makes one complete revolution about it in approximately 365 days. Ans. 2x1030 kg

Calculate the force between the sun and the earth if the distance between the earth and the sun is
taken as 150 X 10% kilometers and the masses of the earth and sun are 6 X 102 kg and-2 X 10 kg
respectively. Anz. 1,16 x 10H newtons

ATTRACTION OF OBJECTS

5.85.

5.86.

Find the force of attraction of a thin uniform rod of length a on a mass m outside the rod but on
the same line as the rod and distance b from an end. Ans. GMm/bla+ b)

In Problem 5.85 determine where the mass of the rod should be concentrated so as to give the

same force of attraction. Ang. At a point in the rod a distance b{a+ b) — b from the end
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5.88.

5.89.

5.90,

5.91.

5.94.

5.95.

5.96.

5.97.

CENTRAL FORCES AND PLANETARY MOTION ICHAP. §

Find the force of attraction of an infinitely long thin uniform rod on a mass m at distance &
from it, Ans. Magnitude is 2Gme/b :

A uniform wire is in the form of an arc of a circle of radius & and central angle ¢. Prove that
the force of attraction of the wire on a mass m placed at the center of the circle i3 given in

magnitude by
2GMm sin {¢/2) or 2Goem sin {y/2)

by b
where M is the mass of the wire and ¢ is the mass per unit length. Discuss the cases ¢ = #/2
and ¢ = & .

In Fig. 5-18, AE is a thin rod of length 2a and m

is a mass located at peint C a distance b from the c
rod. Prove that the force of attraction of the rod m
on m has magnitude /n
B
gﬂ?’l’ sin 4(a+ B) D / \
i
b
in a direction making an angle with the rod \\\ b \
given by S L \G’
. . ~— E _-~"
tan---u{ smatsing) A E.--"\p
S ‘ [L 2a !
Discuss the case o= g8 and compare with Prob-
lem 5.26. Fig. 5-18

By comparing Problem 589 with Problem 5.88, prove that the rod of Problem 5.89 can be
replaced by a wire in the form of circular are DEG [shown dashed in Fig. 5-18] which has its
center at ' and is tangent to the rod at E. Prove that the direction of the attraction is toward
the midpoint of this are.

A hemisphere of mass M and radius ¢ has a particle of mass m located at its center. Find the
force of attraction if (&) the hemisphere is a thin shell, (b) the hemisphere is solid.
Ang. {a) GMm/2a2, (b} 36 Mm/2a2

Work Problem 5.91 if the hemisphere is a shell having outer radiuva & and inner radius b.

Deduce from Kepletr’s laws that if the force of attraction between sun and planets is given in
magnitude by ym/r?, then y must be independent of the particular planet.

A cone has height H and radius a. Prove that the force of attraction on a particle of mass m

GGMﬁ(l_ H )
Va®+ H?

placed at its vertex has magnitude ~aZ
Find the force of attraction between two non-intersecting spheres.

A particle of mass m is placed outside of a uniform solid hemisphere of radius ¢ at a distance a
on a line perpendicular to the base through its center. Prove that the foree of attraction is

given in magnitude by GMm(y2 — 1)/a.

Work {a) Problem 5.26, (b) Problem 5.27, and (¢) Problem 5.94 by first finding the potential.

MISCELLANEOUS PROBLEMS

5.98.

A particle is projected vertically upward from the earth’s surface with initial speed v,
(a) Prove that the maximum height H reached above the earth's surface is H = 1:§Rl(2gR - 1.%}.

(b) Discuss the significance of the case where 3 = 2¢FR.
(¢} Prove that if H is small, then it is equal to v}/2g very nearly.
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3.9%.

5100,

210t

5102,

5.103.

104,

5.105.

§.106."

S.107.

3108

5.109,

5.116.

5.111.

5112,

{a} Prove that the time taken to reach the maximum height of Probiem 5.98 is

R+H| [H  R+H 5_1’R~H_)‘i
2g E g \R¥H/|

{4} Prove that if H is very small compared with R, then the time in (a) is very nearly V2H/g,

{a) Prove that if an object is dropped to the earth's surface from a height H, then if air
resistance is negligible it will hit the earth with a speed v = V2gRH/R + H) where R is
the radius of the earth. B

(b} Caleulate the specd in part o) For the cases wheve B oo Loo ki aned A - 10060 kin respoctively.
Take the radius of the corth as 6380 k.

Find the time taken for the object of Problem 5.100 to reach the earth’s surface in each of
the two cases,

What must be the law of force if the speed of a particle in a central force field is to be
proportional to »—» where n is a constant?

What velocity must a space ship have in order to keep it in an orbit around the earth at a
distance of {«) 200 ko, () 2000 ki above the cartics surfuee?

An objeet is thrown upward from the earth’s surface with velocity v, Assuming that it returns
to earth and that air resistance is negligible, find its velocity on returning.

{¢) What ig the work done by a space ship of mass m in moving from a distance a above the
earth’s surface to a distance 57

(&) Does the work depend on the path? Explain. Ans, {a) GmM{a — b)/ab

{a) Prove that it iz possible for a particle to move in a ecircle of radius @ in any central force
field whose law of force is f(r).

{b) Suppose the particle of part (o) is dispiaced alightly from its circular orbit. Prove that
it will return to the orbit, i.e. the motion is sfable, if

afia) &+ 3fa} > 0
but is unstable otherwise.

{c) Tllustrate the result in (b) by considering f{r) = 1l/r* and deciding for which values of n
stability can occur, Ans, (¢) For n <3 there is stability,

If the moon were suddenly stopped in its orbit, how long wonld it take to fall to the earth
assuming that the earth remained at rest? Ans. About 4 days 18 hours

If the earth were suddenly stopped in its orhit, how long would it take for it to fall into the sun?
Ans. About 65 days

Work Problem 534, page 133, by using energy methods.

Find the velocity of escape for an object on the surface of the moon., Use the fact that the
acceleration due to gravity on the moon’s surface is approximately 1/6 that on the earth and
that the radius of the moon is approximately 1/4 of the earth’s radius. Ana. 2.29 km/s

An object is dropped through a hole bored through the center of the earth. Assuming that the
resistance to motion is negligible, show that the speed of the particle as it passes through the
center of the earth is slightly less than 8 km/s.

[Hint. Use Problem 5.40, page 135.]

In Problem 5.111 show that the time taken for the object to return is about 85 minutes.
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5.113.

5,114
5115
5.116.
5.117.

5.118.

5.119.

5.126,

5121

5.122.

5.123.

5.124.

5.125.

5.126.

5,127,

5.128.
5.129.
5.130.

5.131,

5.132.

5.133,

CENTRAL FORCES AND PLANETARY MOTION (CHAP. 5

Work Problems 5.111 and 5.112 if the hole is straight but dees not pass through the center of
the earth.

Discuss the relationship hetween the resuits of Problems 5111 and 5,112 and that of Problem 5.39,
How would you explain the fact that the earth has an atmosphere while the moon has none?
Prove Theorem 5.1, page 120.

Discuss Theorem 5.1 if the spheres intersect.

Explain how you could uwse the result of Problem 5.27 to find the force of attraction of a solid
sphere on a particle.

Find the force of attraction between a uniform circular ring of outer radius ¢ and inner radius b
and a mass m located on its axis at a distance b from its center.

Two space ships move about the earth on the same elliptical path of eccentricity «. If they are
separated by a small distance D) at perigee, prove that at apogee they will be separated by the
distance D{1 — ¢}/(1 + ¢).

{(z) Explain how you could calculate the velocity of escape from a planet. (b) Use your method to
calculate the velocity of escape from Mars. Ans. {b) 5 km{s

Work Problem 5.121 for {a) Jupiter, (&) Venua. Ans. {a) about 81 km/s, (b) about 10 km/s

Three infinitely long thin uniform rods having the same mass per unit length lie in the same plane
and form a triangle. Prove that force of attraction on a particle will be zero if and only if the
particle iz located at the intersection of the medians of the triangle,

Find the force of attraction between a uniform rod of length a and a sphere of radina b if they
do not intersect and the line of the rod passes through the center.

Work Problem 5.124 if the rod is situated so that a line drawn from the center perpendicular to the
line of the rod bisects the rod.

A satellite of radius ¢ revolves in a circular orbit about a planet of radius b with period P.
If the shortest distance between their surfaces is ¢, prove that the mamss of the planet is
dn¥a + b+ )/GP2,

Given that the moon is approximately 386,000 km from the earth and makes one complete revolution
about. the earth in 27{ days approximately, find the mass of the earth.

Ang, 6 x 102t kg

Discuss the relationship of Problem 5.128 with Kepler's third law.

Prove that the only central force field F whose divergence is zero is an inverse square force fleld,
Work Problem 5.82, page 132, by using triple integration,

A uniform solid right circular cylinder has radius ¢ and height H. A particle of mass m is placed

on the extended axis of the eylinder so that it is at a distance D from one end. Prove that the
force of attraction is directed along the axis and given in magnitude by

2GMm
a’H

{H + Va2 +D? — Va2 + (D+ HY?)}

Suppose that the cylinder of Problem 5,181 has a given volume. Prove that the force of attraction
when the particle is at the center of one end of the cylinder is a maximum when o/H = }9— V1T

Work {(a) Problem 5.26 and () Problem 5.27 assuming an inverse cube law of attraction.
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5134,

5.135.

5.136.

5.137.

&.138.

5.139.

5.140.

5.141.

5.142.

5.143.

2144,

5.145.

5,146,

Do the results of Problems 529 and 530 apply if there is an inverse cube law of attraction?
Explain.

What would be the velocity of escape from the small planet of Problem 5.807

A spherical shell of inner radius « and outer radius & has constant density ¢. Prove that the
gravitational potential V{r) at distance r from the center is given by

27e(b? — a?) r<a
Viry = 270(b2 — 4o%) ~ d7oa¥/Br a <r < b
lfiﬂ'a{b“ —a%)/3r r>b

If FEinstein's theory of relafivity is taken into aeccount, the differential egquation for the orbit
of a planet becomes

u

de?
where y = 8K/me?, ¢ being the speed of light. (a) Prove that if axes are suitably chosen, then
the position r of the planet can be determined approximately from

mhi{K
= ————— = 1 — vK/mht
r 1 + ecosae where  a vH/m

{5y Use {a) to show that a planet actually moves in an elliptical path but that this ellipse slowly
rotates in space, the rate of angular rotation being Z2ryX/mk®. (¢} Show that in the case of

+u = u?

K
miE T

" Mercury this rotation amounts to 43 seconds of arc per century. This was actually observed, thus

offering experimental proof of the validity of the theory of relativity.

Find the position of a planet in its orbit around the sun as a function of time ¢ measured from
where it is furthest from the sun.

At apogee of 300 kmn from the earth’s surface, two space ships in the same elliptical path are 150 nt
apart. How far apart will they be at perigee 250 km assuming that they drift without altering thei
path in any way?

A particle of mass m is located on a perpendicular line through the center of a rectangular plate

of sides 2a and 24 at a distance D from this center. Prove that the force of attraction of the plats
on the particle is given in magnitude by

GMm . _1( ab )
ab " \\fla? + Db+ DY

Find the force of attraction of a uniform infinite plate of negligible thickness and density
on a particle at distance D from it. Ang. 2zeGm

Points where = =0 are called apsides [singular, apsis]. {(a} Prove that apsides for a centr:
force field with potential V{r) and total energy X are roots of the equation V{r)+ mh2/2:2 =1
(b} Find the apsides corresponding to an inverse square field of force, showing that there ar
two, one or none according as the orbit is an ellipse, hyperbola or parabola,

A particle moving in a central force field travels in a path which is the cycloid » = a{(l —cosé
Find the law of force. Ane. Inverse fourth power of r.

Set up equations for the motion of a particle in a central force field if it takes place in a mediu
where the resistance is roportional to the instantaneous speed of the particle.

A satellite has its largest and smallest orbital speeds given by v,,, and vy, respectively. Pro
Vnax —

that the eccentricity of the orbit in which the satellite moves is equal to _max _ mia
Pmex T Pain

Prove that if the satellite of Froblem 5.145 has & period equal to r, then it moves in an elliptic
path having majqr axis whose length is -23;\?1:,““ Vol -



Chapter 6 MOVING
" COORDINATE SYSTEMS

NON-INERTIAL COORDINATE SYSTEMS

In preceding chapters the coordinate systems used to describe the motions of particles
were assumed to be inertial [see page 33]. In many instances of practical impoertance,
however, this assumption is not warranted. For example, a coordinate system fixed in
the earth is not an inertial system since the earth itself is rotating in space, Consequently
if we use this coordinate system to describe the motion of a particle relative to the earth
we obtain results which may be in error. We are led therefore to consider the motion of
particles relative to moving coordinate systems.

ROTATING COORDINATE SYSTEMS

In Fig, 6-1 let XY Z deno'e an inertial coordinate
system with origin € which we shall consider fixed
in space. Let the coordinate system xyz having the
same origin O be rotating with respect to the XYZ
syatem.

Consider a vector A which is changing with
time. To an observer fixed relative to the xyz system
the time rate of change of A = Aii+ A3+ Ak is
found to be

dA 44, dA, ., dA,
At T @it gty O

where subscript M indicates the derivative in the
moving (ryz) system.

However, the time rate of change of A relative
to the fixed XYZ system symbolized by the subscript

F' is found to be [see Problem 6.1] Fig. 6-1
dA _ dA
Qe = ath oA ®

where o is called the angular velocity of the xyz system with respect to the X¥Z system.

DERIVATIVE OPERATORS

Let D, and D,, represent time derivative operators in the fixed and moving systems.
Then we can write the operator equivalence

D,e= D, + ax (3

This result is useful in relating higher order time derivatives in the fixed and moving
systems. See Problem 6.6.
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YELOCITY IN A MOVING SYSTEM
If, in particular, vector A is the position vector r of a particle, then (2) gives

ol = & 4 ek (4)
or Dr = Dy + axr (5}
Let us write
v, = dr/dt|. = D = velocity of particle P relative to fixed system
Vo = dr/dt|, = D,r = velocity of particle P relative to moving system
Ve = @XTr = velocity of moving system relative to fixed system,

Then (4) or {5) can be written
@ %) Vop = Vo T Vyp (6)

ACCELERATION IN A MOVING SYSTEM

If D} = d¥di*), and D} = d*/dt?|, are second derivative operators with respect to ¢
in the fixed and moving systems, then application of (3) yields [see Problem 6.6]

Divr = Dir + (Dyw) Xt + 20 xDyr + o X (wxXr) 7)
Let us write
a,, = di/dt*|r
a,, = dir/dt*
8y, = (D) Xr + 20X D, xr + «X{oxr)
= acceleration of moving system relative to fixed system

D%r = acceleration of particle P relative to fixed system

ly = DZir = acceleration of particle P relative to moving system

Then (7) can be written
App = By T Ayp (8

CORIOLIS AND CENTRIPETAL ACCELERATION

The last two terms on the right of (7) are called the Coriolis acceleration and centripetal
arcceleration respectively, ie.,

Coriolis acceleration = 2uxX Dy = 2exv, (9)
Centripetal acceleration = w X (e xX1) (1)
The second term on the right of (7) is sometimes called the linear acceleration, ie.,
Linear acceleration = (D, w) Xr = (% ) Xr (11)
i M

and D, e is called the angular acceleration. For many cases of practical importance [e.g. in
the rotation of the earth] v is constant and D, =0.

The quantity —a X (e X r) is often called the centrifugal aceceleration.

MOTION OF A PARTICLE RELATIVE TO THE EARTH

Newton’s second law is strictly applicable only to inertial systems, However, by using
(7) we obtain a result valid for non-inertial systems. This has the form

me'l‘ = F — m(DMu) X~ 2mle X DMI‘) ~ Mo X (0 X r} (12)
where F is the resultant of all forces acting on the particle as seen by the observer in the
fixed or inertial system.
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In practice we are interested in expressing the equations of motion in terms of quantities
as determined by an observer fixed on the earth [or other moving system]. In such case
we may omit the subscript M and write (12) as

2
mgt_: = F — meXr} - Zmle xv) — m|o X (s Xr)| {1%)
For the case of the earth rotating with constant angular « about its axis, @« =0 and
(13) becomes &r
Moy = F — 2m{a Xv) — m[a X (o x1)] (14)

CORIOLIS AND CENTRIPETAL FORCE
Referring to equations (13) or (14) we often use the following terminology

Coriolis force = 2mla X 1) = 2nle X v)
Centripetal force = m[a X (o X 1))

Centrifugal force = —m[s X (@ X r)]

MOVING COORDINATE SYSTEMS IN GENERAL

In the above results we assumed that the coordi-
nate systems xyz and XYZ [see Fig. 6-1] have com-
mon origin 0. In case they do not have a common
origin, results are easily obtained from those already
considered.

Suppose that R is the position vector of origin @
relative to origin O {see Fig. 6-2]. Then if R and
R denote the velocity and acceleration of @ relative
to O, equations (5) and (7) are replaced respectively
by

Dx = 1.2+DMr+er
- dr . b4
= R + '&'{ + aXr (10)
Fig, §-2
and Dix = R+ Dir + (Dyo)Xr + 20X Dyr + o X (wXx1)
. 2
= R+%§+5Xr+2«XV+«X(uXr) (16)
Similarly equation (74) is replaced by
2 .
mﬁ—tz- = F — 2m{eXv) — mfe X {a Xr)] — mR (m

THE FOUCAULT PENDULUM

Consider a simple pendulum censisting of a long string and heavy bob suspended
vertically from a frictionless support. Suppose that the bob is displaced from its equilibrium
position and is free to rotate in any vertical plane. Then due to the rotafion of the earth,
the plane in which the pendulum swings will gradually precess about a vertical axis. In the
northern hemisphere this precession is in the clockwise direction if we look down at the
earth’s surface. In the southern hemisphere the precession would be in the counterclock-
wige direction.

Such a pendulum used for detecting the earth’s rotation was first employed by Foucault
in 1851 and is called Foucault's pendulum.
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Solved Problems

ROTATING COORDINATE SYSTEMS

6L

An observer stationed at a point which is fixed relative to an ryz coordinate system
with origin O [see Fig. 6-1, page 144] observes a vector A = A;i+ 4:j+A4sk and
dAq, dAz. dA;

calculates its time derivative to be P + = dt k. Later, he finds that he

and his coordinate system are actually rotatmg' w:th respect to an XYZ coordinate
system taken as fixed in space and having origin also at 0. He asks, “What would
be the time derivative of A for an observer who is fixed relative to the XYZ coordi-
nate system?"

1t dtl d‘? ln denote respectively the time derivatives of A relative to the
fixed and moving systems, show that there exists a vector quantity « such that
dA
. Gt . t |y + aX A

To the fixed observer the unit vectors i,j,k actually change with time. Hence such an
observer would compute the time derivative as

dA _  d4Ay d4, | dd, di dk

G mtt it gkt Agt A’dt t AT 1
. dA _ dA di dj dk
Lé, dtler = driw T Avg toAag T Asg (2

Since 1 ia & unit vector, di/dt is perpendicular to i and must therefore lie in the plane
of j and k. Then

difdt = af + agk (9
Similarly, difdt = agk + a4l 5
di/dt = asi + ag} (E3]

From i+j =0, differentiation yields i- g—+ T j ={. But v‘-i-j- =a, from {4} and di =
d¢ dt at
from (3). Thus &, = —ap.

Similarly from ik =0, 1+ 4 ‘rk~o and ay = oz from jok=0, 3P+ Hk=0

and ag = —ay, Then dt
difdt = oy + agk, dijdt = agk ~ a;d, dk/dt = —asi — ag)
It follows that
di df dk _ . .
A'dt + A’dt + A’-cﬁ' = (—agdy;—apdgli + (oA, — agdg)i + (apd; + aydadk (&

which can be written as
i b k
ay  —ag
Ay A, Ay

Then if we choose oy = oy, —ag = uwg, @ = w3 this determinant becomes

H j k
W Wy @ = woXA
A‘l Ag A' [

where o = o + wgj + wak.
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From (2) and {6) we find, as reguired,

da
dt

dA
= - + X A
F dt |u -

The vector quantity = is the angular velocity of the moving system relative to the fixed system,

% Let D, and D,, be symbolic time derivative operators in the fixed and moving systems
respectively. Demonstrate the operator equivalence

DF = DM + v X
. dA _ T
By definition DA = i = derivative in fixed system
F
dA L .
DuyA = T = derivative in moving system
M .
Then from Problem 6.1, v
DA = DyA + v XA = {(Dy + «x)A

which shows the equivalence of the operators Dp = Dy + o X

6)3./ Prove that the angular acceleration is the same in both XYZ and xyz coordinate

gystems.
Let A= » in Problem 6.1. Then
da de de
-— = —_ = = adng
dt Iy dbfy T 2" at |,y

Since dw/dt iz the angular acceleration, the required statement is proved.

TELOCITY AND ACCELERATION IN MOVING SYSTEMS
A" Determine the wvelocity of a moving particle as seen by the two observers in

Problem 6.1.
Replacing A by the position vector r of the particle, we have
L 3
dy _ dr
ar , = Gely + o« Xr n

If r is expressed in terms of the unit vectors i,j,k of the moving coordinate szystem, then the
velocity of the particle relative to this system is, on dropping the subscript M,

- dr  _  dx. d. dz
: T = gt EFEx (2) *
and the velocity of the particle relative to the fixed system is from (i)
dr _ dr
-JE . — dt + s xr (u’)

The velocity () is sometimes called the true velocity, while (2) i the apparent velocity.

w An zyz coordinate system is rotating with respect to an XYZ coordinate system
having the same origin and assumed to be fixed in space [i.e. it is an inertial system)].
The f‘!igular velocity of the xyz system relative to the XYZ system is given by
w = 2tj .~ i+ (2t +4)k where t is the time. The position vector of a particle at
time ¢ ag o 0served in the zyz system is given by r = (£?+1)i ~ 6¢j + 4°%k. Find
(@) the appane“t velocity and (b) the true velocity at time t=1.
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{ay The apparent velocity at any time ¢ is
dridt = 2ti — 6j + 12¢%
At time ¢ = 1 thisis 2i — 6j + 12k.

{#) The true velocity at any time ¢ is
de/dt + X1 = (2ti— 6§+ 12t%K) + [2ti — 2 + (28 + Dk) ¥ [(£2+ L} — 6§ + 415K
At time ¢t = 1 thisis

i i k[
2i —8j + 12k + 1 2 -1 & = 34i - 2j + 2k
. 64l

86, Determine the acceleration of a moving particle as seen by the two observers in
Problem 6.1.

The acceleration of the particle as seen by the observer in the fixed XVZ system is
DFr = DptDpr). Using the operator equivalence established in Problem 6.2, we have

DpiDer) = Dp(Dyr + o <1}
= (Dp+ ox WDy + wxr
= DyliDyr+exr) + o % (Dyr + & X1}
Dir + Dyle X 1) + 0¥ Dyr + o X (X 1)
or since Dylexrt = (Dye) Xr + o x (Dyr),
Dl = Dlr + (Dye)Xr + 2 X (Dyr) + o X («X1) n
if r is the position vector expressed in terms of i,j, k of the moving coordinate system, then
the acceleration of the particle relative to this system is, on dropping the subscript M,
d2p d2x a2y, i+ diz

. e = @'t gl *ogek @
The acceleration of the particle relative to the fixed system is given from {f) as
d2r _ & dr
d_tfp = dt2+dtxr+2u (dt>+w><(wxr) ()

The acceleration ($) is sometimes called the frue acceleration, while (2) is the epparent acceleration.

87 Find (@) the apparent acceleration and (b) the true acceleration of the particle in

Problem 8.5,
{g) The apparent acceleration at any time ¢ is
. &r _ d fdr _ g o . 2 _
i dt(d’t) = 3 (2ti—6j +1268k) = 2Zi + 24k

At time (=1 thisis 2i + 24k.

{(3) The true acceleration at any time ¢ is

dir dr |, de
ar t X+ 3 St ex{exr

At time ¢ =1 this equals
2i + 24k + (4i—2j + 12k} X (2i — 6j + 12k)
+ {2i — 2j + 2k) % {2i — 6} + 4k)
+ (2i —j+ 6k) x {(2i—j+ 6k) X (2i — 6j -+ 4k)}
= 2i + 24k + (48f — 24j — 20k) + (4i — 4j — 8k) + (—14i+ 212§ + 40k)
= 40i + 184§ + 36k
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CORIOLIS AND CENTRIPETAL ACCELERATION

6.8,

[

Referring to Problem 6.5, find (a) the Coriolis acceleration, (b} the centripetal
acceleration and (c) their magnitudes at time ¢t =1,

{¢} From Problem 6.5 we have,

Coriolis acceleration = 2w X dr/dt = (4i—2j + 12k) X (2i — 6 + 12k)
48t — 24j — 20k

{t) From Problem 6.5 we have,

Centripetal acceleration

Y

o X (e Xr) = (2i—j+ 6k) X (32i + 4§ — 10k)
~14i + 212j + 40k

i

{¢} From parts (a) and {b) we have

Magnitude of Coriolis acceleration = (48 + (—24)2 + (—=20)2 = 4+/205

Magnitude of centripetal acceleration V(—14)2 + (212)2 + (40)2 = 2¢/11,685

MOTION OF A PARTICLE RELATIVE TO THE EARTH

6.9,

6.10.

(a) Express Newton’s second law for the motion of a particle relative to an XYZ
coordinate system fixed in space {inertial system). (b) Use (@) to find an equation of
motion for the particle relative to an ryz system having the same origin as the XYZ
system but rotating with respect to it,

(a} If m is the mass of the particle (assumed constant}, d2r/dt? [ itz acceleration in the fixed
system and F the resultant of all forces acting on the particle as viewed in the fixed system,
then Newton’s second law states that

m d—zz
att

F=F (H

(b) Using subscript M to denote quantities as viewed in the moving system, we have from
Problem 8.6,

o
diZiF ~ did

. dr
M+¢Xr+2oXa|M+ @ X (wXT) {2)

Substituting this into (1), we find the required equation
&r . d
m-&?|M = F—m(oxr)—Zm(.x—d—:lu)-—m[»x(.xr)] €4}

We can drop the subseript M provided it is clear that all quantities except F are as
determined by an observer in the moving system. The quantity F, it must be emphasized, ig the
resultant force as observed in the fixed or inertial system. If we do remove the subscript M
and write dr/dt = v, then {§) can be written

mg-z; = F—m(;Xr}—iZm(uxv}—m[aX(-Xr)] {4

Calculate the angular speed of the earth about its axis.
Since the earth makes one revolution [2r radians] about its axis in approximately 24 hours =
86,400 s, the angular speed is
2
86,400

The actual time for one revolution is closer to 86,164 s and the angular speed 7.29 x 10~* rad/s.

= 7.27xX10-% rad/s

X —
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MOVING COORDINATE SYSTEMS IN GENERAL
6.1, Work Problem 6.4 if the originas of the XYZ

6.12.

6.13.

s]ri.

and zyz systems do not eoincide.

Iet B be the position vector of origin @ of the
zyz system relative to origin O of the fixed (or inertial}
XYZ system [see Fig. 6-3]. The velocity of the par-
ticle P relative to the moving system is, as before,

d d d dz
3§M=3§=*-+”;+dt o

Now the position vector of P relative to O is
p=R+r and thue the velocity of P as viewed in the
XYZ system is

dRi , dr

o _ 4 dr
dt(a+r}lp dtir | dtiF

dt

dr
~ R+ a + e«xr (%)
using equation {$) of Problem 8.4. Note that i% is the
velocity of @ with respect to 0. If R=0 this re-
duces to the result of Problem 6.4. Fig.6-2

Work Problem 6.6 if the origins of the XYZ and zyz systems do not coincide.
Referring to Fig. 6-3, the acceleration of the particle P relative to the moving system is,

as before, » 2 &y .
= o7 = Zi+

a‘f,‘f!u = gz = Iz a2l T gk o

Since the poaition vector of P relative to O i3 p =R +r, the acceleration of P as viewed in the
XYZ gystem is

L kol = & e
dit {p ag B+ 1) lr = deir T delr
s &r | de dr
= n+-a—t§+az><r+2oxd + »X{sXr) )

uging equation (#) of Problem 6.6, Note that R is the acceleration of Q with respect to 0. If
R =40 this reduces to the result of Prablem 6.6.

Work Problem 6.9 if the origins of the XYZ and xyz systems do not coincide.

(a8} The position vector of the particle relative to the fixed (X¥Z) aystem is p. Then th
required equation of motion is

@i _ 1
s le F {
(d) Uaing the result (2) of Problem 6.12 in (), we obtain

&r
mae

whete F is the force acting on m as viewed in the inertial system and where v = T,

= F — mR — m(eX1) — 2m{eXv) — mfe X (X ¢

Find the equation of motion of a particle relative to an observer on the eartt
asurface.
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We assume the earth to be a sphere with center
at O [Fig. 6-4] rotating about the Z axis with
angular velocity » = wK. We also use the fact that
the effect of the earth’s rotation around the sun is
negligible, so that the XY Z systern can be taken as
an inertial system.

Then we can use equation (2) of Problem 6.12.

For the case of the earth, we have
“« =0 (1)
R = «X{(eXR) (2)
GMm
F = - ) ] ()

the first equation arising from the fact that the ro-
tation of the earth about its axis proceeds with con-
stant angular velocity, the second arising from the
fact that the aceeleration of origin € relative to O
is the centripetal acceleration, and the third arising
from Newton's law of gravitation. Using these in

{2} of Problem 6.12 yields the required equation, Fig. 6-4
% = —-G%lp—ax(axn)—2(u><v)—ox(.xr) (4)

assuming that other forces acting on m [such as air resistance, etc.] are neglected.

We can define
aM

8§ = — "5 eX(eXR) _ %)

as the acceleration due to gravity, so that (4} becomes
r
Fr i £ — 2ZexXv) — eX(aXr) (6}

Near the earth’s surface the last term in (6) can be neglected, so that to a high degree of
approximation,

% = g — 2{eXxXv) *

In practice we choose g as constant in magnitude although it varies alightly over the earth’s
surface. If other external forces act, we must add them to the right side of equations (6) or (7).

Show that if the particle of Problem 6.14 moves near the earth’s surface, then the
equations of motion are given by

¥ = 2w0c08A¥
¥ = ~2wcosr 2 + osiniz)
? = —g + 2esin)r y

where the angle A is the colatitude [see Fig. 6-4] and 90° — A is the latitude,

From Fig. 6-4 we have
K

i

(K+ivi + (K+j)j + (K-kk
{(—sin2)i + 0j + (cosx)k = —sinri + cosrk

i

and so o = oK = —¢sinii+ wcosr k
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6.16.

Then aXv = wX{zi+yj+ik

i i k
= —wsink 0 wcosh
B g
= (~wcosA ¥)i + (weosh & + wsinh 2§ — (wsini ¥k
Thus from equation (7) of Problem 6.14 we have

@ _
dez ¢
= —gk + ZucosAyi — 2(wcosNE + wsinhI}j + 2usinayk

— 2(w X W)

Equating corresponding coefficients of i,j,k on both sides of thizs equation, we find, as reguired,

I = Zucoshy n
¥ = —20cosh &+ wsink ) )
¥ = —g 4+ Zosinhy ()

An object of mass m initially at rest is dropped to the earth’s surface from a height
which is small compared with the earth’s radius. Assuming that the angular speed
of the earth about its axis is a constant «, prove that after time f the object is
deflected east of the vertical by the amount 3.g¢*sin i

Method 1.

We assume that the object is located on the z axis st 2 =0, y =0, 2 = h Isee Fig. 6-4]. From
equations (7} and (2) of Problem 6.15 we have on integrating,

.

z = 2ucosdy + ¢ 1} = —2wcoshx+ wsinhz) + ey

Sinceat t=0, =0, y=0, x=0, y=0, z=h wehave ¢, =0, ¢, = 2usinx k. Thus

x = 2wcoshy, ¥ = —2vcoshz+wsinhz) + 2usinih [¥)]

Then (3} of Problem 6.156 becomes

Z = —g+ 2usinhy = —g — du?sinifcosrx + sini (z— k)]
But since the terms on the right involving «% are very smali compared with —g we can neglect them
and write 7 = —p, Integration yields z = —pg¢+¢;. Since z=0 at =0, we have ¢, =0 or
z = —gt (73]
Uzing equation (£) and the first equation of () in equation (2} of Problem 6.15 we find

¥ = {(—2ocosA){2wcosh gy} + (—2w gin M{—gl}
= —4u2cos?hy + 2uwsink gt
Then neglecting the firat term, we have § = 2w sinh gf.  Integrating,
¥ = wgsinrat? + o
Since y=0 at t =0, we have ¢, =0 and § = ugsind (2. Integrating again,
¥ = jegsink £+ e
Then since y =0 at ¢ =0, ¢; =0 so that, as required.
¥ = }egsini A (3

Method 2.
Integrating equations (1), (2) and (3) of Problem 8.16, we have

€ = Z2wcosry + ¢
¥ = —2ocosrxz+wsiniz} + o
Z = —gt+ 2usinhy + ¢
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6.18.
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Using the fact that at £=0, a—=y=z=0 and z=0; y=0, z=~h, we have ¢, =90,
¢; = 2wh sind, ¢3= 0. Thus

It

24 cOB N Y
—2(w cosh x + wsinkz} + 2uh sinr
= —gt + 2wsiniy

e e s
1l

Integrating these we find, using the above conditions,
4

% = 2mcos?\f ydu (4)
[
¢ ¢
¥y = Z2uhtsinh — 2wcos?\f xduy — 20 sin?\f zdu 5
¢ 0
t
= h— Jgt? + 2wsin}\f y du : {6)
o

Since the unknowns are under the integral sign. these equations are called infegral equations.
We shall use a method called the method of successive approximations or method of iteration to
obtain a solution to any desired accuracy. The method consists of using a first guess for =, v,z
under the integral signs in (4}, {5) and (6) to obtain a beétier guess. As a first guess we can try
=10 yw=0 2=0 under the integral signs. Then we find as a second guess

x = 0, ¥ = Zahtsink, z = h—Lgt?
Substituting these in (4}, (5) and (6} and neglecting terms involving 2, we find the third guess
*r =0, ¥ = 2uhtsink — 2osina(ht— 383 = foptd sinn, z = h— Lot?
Tsing these in {4), (5) and (6} and again neglecting terms involving 2, we find the fourth guess
xr =0 ¥ = fogtisini, z = h— gt
Since this fourth guess is tdentical with the third guess, these results are accurate up to terms

involving o?, and no further guesses need be taken. It is thus seen that the deflection is
¥ = fogt® sinh, as required.

Referring to Problem 6.16, show that an object dropped from height k above the
earth’s surface hits the earth at a point east of the vertical at a distance

foh 8in A/ 2R/g.

From (2) of Problem 6,16 we have on integrating, 7 = —}g?+¢. Bince z=h at t =0, ¢ = k
and z =h—4gt2. Then at z=10, h = }gt? or &= y2h/g. Substituting this value of ¢ into (8}
of Problem 6.16, we find the required distance.

FOUCAULT PENDULUM

Derive an equation of motion for a simple
pendulum, taking into account the earth’s
rotation about its axis.

Choose the xyz coordinate system of Fig, 6-5,
Suppose that the origin O is the equilibrium position
of the bob B, A is the point of suspension and the
length of string AB is I. If the tension in the string
is T, ther we have

T = (T-ili + (T+jYi + (T-k}k

= Tcosoi+ Teosfj+ Teosyk

—T(%)i - T(%)i + T(E‘T’:’)k (1)

Since the net force acting on B is T + mg, the equa-
tion of motion of B is given by [sece Problem 6.14]

mg—tz; = T + mg — ZmieXv) — meX{wxXr) () Fig. 6-5

N
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¥ we neglect the last term in (2), put g = —gk and use (1), then (£) can be written in componeni

form as .
mzx = —T(z/l) + 2mui con) (s
m¥ = —T(y/) — Zme(® cosh + Z sin \) 4
mz = TU—2)/l — mg + 2muy sin A 8

619. By assuming that the bob of the simple pendulum in Problem 6.18 undergoes small
oscillations about the equilibrium position so that its motion can be assumed to take
place in a horizontal plane, simplify the equations of motion.

Making the assumption that the motion of the bob takes place in a horizontal plane amounts

to assuming that ¥ and z are zero, For amall vibrationa (I — z)/[ ia very nearly equal to one.
Then equation {5) of Problem 6.18 yields

0 = T — mg + Zmoy sini
or T = mg — 2muy sin X {2)
Substituting (1) into equations (8} and {4} of Problem 618 and simplifying, we obtain
¥ = —9—;+—2‘°—z¥—fm+2mﬁcos?\ (2)
vo= -0y 2WERX _ 9k cosa (®)

These differential equations are non-linear because of the presence of the terms involving ay
and yy. However, these terms are negligible compared with the others since », x and y are
small. Upon neglecting them we obtain the linear differential equations

¥ = —gxfl + 20 cos) _ 4
¥ = —gy/l — 2oz cos (]

6.20. Solve the equations of motion of the pendulum obtained in Problem 6.19, assuming
suitable initial conditions.

Suppose that initially the bob is in the yz plane and is given a displacement from the z axis
of magnitude A > 0, after which it is released. Then the initial conditions are

2=0, =0 y=A, y=0 at t=10 (N

To find the solution of equations (4} and (5) of Problem 819, it is convenient to place

K2 = g/l, a = wcosk 2)
g0 that they become 2 = —Kx + 2ay 9
V = —K¥ — %% @

It is also convenient to use complex numbers. Multiplying equation (4} by i and adding to (),
we find
F4+iy = —Kz+it) + Zely—iz) = —Ke+iy) — Ziald + i)

Then calling u = z + iy, this can be written
% o= —Kbu—2iah or W+ 2+ Kiu = 0 (5
If © = Cevt where C and y are constants, this becomes
¥2 4 2iay + K2 = 0
#0 that y = (~%iax V—4d—4K2)/2 = —ia*iVaZ+ K2 (6)
Now since of = «? cos?x is small compared to K? = g/l, we can write
y = —iaxiK t4]



156

6.21.

MOVING COORDINATE SYSTEMS [CHAP. &

Then solutions of the equation are (allowing for complex coefficients)
(€ + iCyle—Wa-Kdt  gad  (Cg+iC,)e—ita+Kor
and the general solution is
u = {C +iCle He-Kdt 1 {Cf+iC)e o+t (8)

where C,, Cy, C;, €, are assumed real. Using Euler's formulas

e = cos# + ising, ¢°¥ = cos¢g — isine {9)
and the fact that « = x+ iy, {(8) can be written
2+ iy = (O] +iC{cos{a — K} — 1 gin(a — KM} + (Cy +iC ) {cos (o + K)t — i gin {a -+ K)#}
Equating real and imaginary parts, we find
x = Cicosla—K¥t + Cysinfa— K)t + Cgcosla+ K)t + C, sin{a+ Kt (16}
y = —C,sinfo— K} + C,cosla— KM — Cysinia+ KM + C, cosla+ Kt {11)

Using the initial condition x =0 at ¢=0, we find from (r¢) that C,+C; =90 or
Cy = —C,;. Similarly, using £ =0 at ¢t =0, we find from (I0} that

K-« g/l — wcos
o= alfs) = ol
! \K +a : g/t + wcosh

Now since w cosr is small compared with Vg/l, we have, to a high degree of approximation,
C.g = Cz‘

Thus equations (10) and {f1) become
z = Cycos(a— K}t + Cypsin{fa— Kt — C, cosla+ K}t + C,sinia+ K}t (#4:4]

y = —Csinfa—-K)t + Cycosla—K)t + C,sinle + K}t + C; cos{a+ Kt {1

Using the initial condition 3§ =0, (1$) yields ¢, = 0. Similarly using y= A at t=0, we
find C, = 4A. Thus (12} and (18} become

z = 44 sinfa— K)it + 1A sin{a+ K)t
¥ = 4Acos(a— K} + 1A cosla+ KM
or 2 = A cosKt sinat
14
¥ = A cosK¢ cosaf
i.e., *x = A cosVp/lt sin{wcosrt) 5)
15
¥ = A cosyg/lt coslwcosht)

Give a physical interpretation to the solution (15) of Problem 6.20.

In vector form, (15) can be writien

r = zi+ vy = Acosvglitn
where n = jsin{wcosrl + jcos(wcos it

is a unit vector.

The period of cos Vg/lt [namely, 27V 1/g] is very small compared with the period of n [namely,
2r/{w cos 1)), Tt follows that m is a very slowly turning vector. Thus physically the penduium
ogcillates in a plane through the z axiz which is slowly rotating (or preceszing) sbout the z axis.

Now at ¢ =0, n=3j and the bob ia at y = A. After a time ¢ = 2r/(4w cos)), for example,
n= éﬁ i+ é\ff j 8o that the rotation of the plane is proceeding in the clockwise direction as
viewed from above the earth’s surface in the northern hemisphere [where cosh > 0). In the
southern hemisphere the rotation of the plane is counterclockwise.

The rotation of the plane was observed by Foucault in 1851 and served to provide laboratory
evidence of the rotation of the earth about its axis.
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MISCELLANEOUS PROBLEMS

§.22,

6.23.

The vertical rod AB of Fig. 6-6 iz rotating with
constant angular velocity . A light inextensible
string of length ! has one end attached at point O
of the rod while the other end P of the string has a
mass m attached. Find (e) the tension in the string
and (b) the angle which string OP makes with the
vertical when equilibrium conditiors prevail.

Choose unit vectors i and k perpendicular and parallel
respectively to the rod and rotating with it. The unit vector
j can be chosen perpendicular to the plane of § and k. Let

r = laginedi — leosok
be the position vector of m with respect 1o O,

Three forces act on particle m

ity The weight, mg = —mmgk

ig. 6-6
(i) The centrifugal force, Fie. 6
—mieX (wX P} = —mifuk] X {{uk] X [fsinei—1cose ki)
= ~m{lek) X (o sing j)} = mwlsinei

{(iii) The tension, T = —Tginei + Tcose k

When the particle is in equilibrium, the resultant of all these forces is zero. Then

—mgk + moilsinei — Tsindi + Teosek = 0
ie., (mwtl ging — Tsingli + (Tcose —mpk = 0
or mitlaing — Tsing = 0 )
Teose —mg = 0 {£)

Solving (1) and (2) simultancousty, we find {8) T = mo?l, (b} & = coa~! {g/utl)

Since the string OP with masa m at P describe the surface of a cone the aystem is sometimes
called a conical pendilum.

A rod AOB [Fig. 6-7] rotates in a vertical plane [the yz plane] about a horizontal
axis through O perpendicular to this plane [the 2 axis] with constant angular
velocity ». Assuming no frictional forces, determine the motion of a particle P of
mass m which is constrained to move along the rod. An equivalent problem exists
when the rod AOB is replaced by a thin hollow tube ingide which the particle can move.

H B
NejA v
P
T 5
K o "
®
9 ¥
i
A
Fig. 6-7

At time ¢ let r be the position vector of the particle and & the angle made by the rod with
the y axis. Choose unit vectors j and k in the y and z directions respectively and unit vector
i=jxk Let r; be a unit vector in the direction r and #, a unit vector in the direction of
increaging 4.
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There are three forces acting on P;

(i) The weight, mg = —mgk = ~mg siné *, —my cos s #,

{it) The centrifugal force,

—mfe X (aX1)] = —mfeiX {wiXrr))

—mifoh(wh * 7r,) — vyl s oi)]

~m[0 —o?re,)] = malre

(iii) The reaction force N = N#, of the rod which is perpendicular to the rod since there are
no frictional or resistance forces.

Then by Newton’s second law,

1

2
mos = —mgk + mater; + NO
& . s
or Mmopg¥ = “myeinsr, — myg coz ¢ #; + mePrr; + N,

= (mw?r — mg sin &)r; + (N - mg con o)l

It follows that N = mg cos¢ and

dir/di? = o — gsine n
Since & = o, a constant, we have & = ot if we agsume # =0 at ¢=10. Then (1) becomes
d2r/dt?2 — o?r = —gsinwt (2
If we assume that at ¢ =0, r = ry, dr/dt = v, we find
= (D 208 To_ Y0 g Yoot 4 &g
r = +2m 4@2) ent | (2 2”+402 e + 2«'gasmmlb "
or in terms of hyperbolic functions,
- bl g\, g
r = rycoshet + (: - -2—02-7) sinh wt + E;gsinut {4)

(¢) Show that under suitable conditions the particle of Problem 6.23 can oscillate
along the rod with simple harmonic motion and find these conditions. (b) What
happens to the particle if the conditions of (a¢) are not satisfied?

(a} The particle will oacillate with simple harmonic motion along the rod if and only if », =0
and v, = /2w, In this case, r = (¢/2+% sinwt. Thus the amplitede and period of the simple
harmonic motion in such case are given by ¢/2.2 and 2r/w reapectively.

(b If v, = (g/20)—wr, then r = rpe—o 4+ (g/2u?) sinwt and the motion is approximately simple
harmonic after some time, Otherwise the mass will ultimately fly off the rod if it is finite.

A projectile located at colatitude x is fired with velocity ve in a southward direction
at an angle « with the horizontal. (a) Find the position of the projectile after time {.
{b) Prove that after time ¢ the projectile is deflected toward the east of the original
vertical plane of motion by the amount

tog 8in A 88 — ovecos{a—A) L2

{a) We use the equations of Problem 6.15. Assuming the projectile starts at the origin, we have
=0, y=0, 2=0 at t =10 (1)

Almo, the initial velocity is vy = vycosai + vysinak so that

x=vycosa, ¥=0, Z=1vy8ina at £=0 2
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Integrating equations (1), (2) and () of Problem 6.15, we obtain on using conditions (9,

z = Z2wcoshy + vpgosa ()
¥ —2{w cos A % + w sih X z) (4)
Z = —gt+ 2usinhy + vysina %)

Instead of attempting to solve these equations directly we shall use the method of iteration
ot successive approximations as in Method 2 of Problem 6.16. Thus by integrating and using
conditions ()}, we find

4
x = %cosxf ydu + (vg cosalt (6}
o
t [
¥ = —&acos)\f zdu — 2usinhf zdu {7
0 )
t
z = {yysina)t — 3912 + 20 sinkf ydu - {8}
0

As a firat guess we use 2 =0, y =0, z =0 under the integral signs. Then (8), (7} and (&
become, neglecting terms involving w?,

x = {vycosall (%)
z = {vgsinall — 4gt? (11

To obtain a better guess we now use (9), (i0) and (17) under the integral signs in (6), (?) and
{8), thus arriving st

2 = (vgcosal - (12)
¥ = —wvgceosla— A + Jugtd sin A un
z = (vpsina}t — Lgt? (14

where we have again neglected terms involving w2, Purther guesses again produce equations
(12), (13) and (I}), so that these equations are accurate up to terms involving o2

From equation (f8) we see that the projectile is deflected toward the east of the zz plane
by the amount Jugtdsin — avgcos(e— A} t3 If v, =0 this agrees with Problem 6.16.

Prove that when the projectile of Problem 6.25 returns to the horizontal, it will be at
the distance

o¥ 8in?

357 (8 cosacosr + sinasina)

to the west of that point where it would have landed assuming no axial rotation
of the earth.

The projectile will return to the horizontal when z =10, ie.,

(voginalt — Jgt2 = 0 or t = (2v, sinaly

Using this value of ¢ in equation (18) of Problem 6.25, we find the required result.
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Supplementary Problems

ROTATING COORDINATE SYSTEMS. VELOCITY AND ACCELERATION

52

6.33.
v

An ryz coordinate system moves with angular velocity o = 2i—3j+ 6k relative to a fixed or
inertial XYZ coordinate system having the same origin. If a vector relative to the xyz system
is given as a function of time # by A = sginti — costj + e tk, find (a) dA/dt relative to
the fixed system, (b) dA/dt relative to the moving system.
Ans. laY Bcost —3e N + Bsin? - 2e 1 + (3sint —2cost— e Yk

by costi + sintj— ¢ 'k

Find d?A/d? for the vector A of Problem 6.27 relative to (a} the fixed system and (b) the moving
system.
Ans. {a) (Bcost — 45 sint + 16e 1 + {40 cost — 6 sint — 1le79)j
+ (10 sint — 23 cost + 16e 1)k
(b) —sinti 4+ costj+ e 'k

An xyz coordinate system is rotating with angular velocity o = Bi—4j— 10k relative to a fixed
XYZ coordinate system having the same origin. Find the velocity of a particle fixed in the xyz
system at the point 13, 1, --2} as seen by an observer fixed in the XYZ system.

Ang, 181 — 205+ 17k

hscuss the physical interpretation of replacing » by —w in (a} Problem 6.4, page 148, and
(d) Problem 6.6, page 149.

Explain from a physical point of view why you would expect the resuit of Problem 6.3, page 148,
to be correct.

An ryz coordinate system rotates with angular velocity o == costi+ siné j+ k with respect to 2
fixed XYZ coordinate system having the same origin. If the pogition vector of a particle is given
by r = sinti—costj+ th, find (a) the apparent velocity and (b) the true velocity at any
time {. Ans. (o} costi + sinéj + k (b) (tsint + 2cost)i + (2sint — fcosd)j

Determine (@) the apparent acceleration and (b) the true acceleration of the particle of
Problem 86.32.

Ans. (q) —sint i+ costj by (22 cosf — Bsind)i + (Beost + 2isind)j + {1 — HHk

CORI0OLIS AND CENTRIPETAL ACCELERATIONS AND FORCES

6.34.

6.35.
6.36.

6.37.

6.38.

6.39.

6.40.

6.41,

A ball is thrown horizontally in the northern hemisphere. {a) Would the path of the ball,
if the Coriolis foree is taken into account, be to the right or o the left of the path when it is not
taken into account as viewed by the person throwing the ball? (b) What would be your answer
to (a) if the ball were thrown in the southern hemisphere? Ans. {a) to the right, (b) to the left

What would be your answer to Problem 6.34 if the ball were thrown at the north or south poles?

Explain why water running out of a vertical drain will swirl counterclockwise in the northern
hemisphere and c¢lockwise in the southern hetnisphere. What happens at the equator?

Prove that the centrifugal force acting on s particle of mass m on the earth’s surface is a
vector (a) directed away from the earth and perpendicular to the angular velocity vector « and
16y of magnitude mw?R sin x where » is the colatitude.

In Problem 6.37, whére would the centrifugal force be (@) a maximum, (¥ a minimum?
Ans. {a) at the equator, (b) at the north and south poles.

Find the centrifugal force acting on a train of mass 100,000 kg at (a) the equator (b} colatitude 30°,
Ans. {a) 343 N, (b 1TLBN

{a) A river of width D fows northward with a speed v, at colatitude A, Prove that the left bank
of the river will be higher than the right bank by an amount equal to

(2001 08 M) g2 + 4lv? cos?r) 12
where « is the angular speed of the earth about its axis.

(b) Prove that the result in part {a) is for all practical purposes equal to (2Dwvy cos M)y,

If the river of Problem 6.40 is 2 km wide and flows at a speed of 5 km/h at colatitude 45°, how much
higher will the left bank be than the right bank? Ans. 2.8 em
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6.42.

§.43,

An automebile rounds a curve whose radius of curvature is p. If the coefficient of frietion is g,
prove that the greatest speed with which it can travel so as not to slip on the road is Vipg-

Determine whether the automobile of Proldem 6.42 will slip if the speed is 100 kmth, « = .05 and
(a} p = 150 m, {b) p = 15 m. Discuss the results physically.

MOTION OF A PARTICLE RELATIVE TO THE EARTH

644

6.45.

.46

6.47.

6.48.

649.

6.30.

6.52.

An object is dropped at the equator from a height of 400 meters. If air resistance is neglected,
how far will the point where it hits the earth’s surface be from the point vertically below the
initial position? Ans. 178 em toward the east

Work Problem 6.44 if the object is dropped ({a} at colatitude 60” and (b} at the north pole.
Ans. {a) 15.2 cm toward the east

An object is thrown vertically upward at colatitude x» with speed v, Prove that when it
returns it will be at a distance westward from its starting point equal to (dwv} sin 2)/3g2.

An object at the equator 15 thrown vertically upward with a speed of 100 km/h. How far from its
inital position will it land? Ans. 2.17 em

With what speed must the object of Problem 6.47 be thrown in order that it return to a point
«m the earth which i3 6 m from its original position?y Ans. 651.6 km/h

An object is thrown downward with initial speed v,. Prove that after time { the abject is
deflected east of the vertical by the amount

wvg sin X ¢+ Leg sina &

Prove that if the object of Problem 6.49 is thrown downward from height A above the earth’s
surface, then it will hit the earth at a point east of the vertical at a distance

Q ;;'; X (VT T 2gh — vyt w2 + 2gh + 2v)

Suppose that the mass m of a conical penrdulum of length ! moves in a horizontal circle of
radius a. Prove that (a) the speed is a\/}fv‘ 2—4a2 and (b) the tension in the string is

myglfyie—al,

It an object is dropped to the earth’s surface prove that its path is a semicubical parabola,

THE FOUCAULT PENDULUM

6.53.

6.54.

6.55.

Explain physically why the plane of oscillation of a Foucault pendulum should rotate clockwise
when viewed from above the earth’s surface in the northern hemisphere but counterclockwise in
the southern hemisphere,

How long would it take the plane of oscillation of a Foucault pendulum to make one complete
revolution if the pendulum is located at {(a) the north pole, (b} colatitude 45°, {(¢) colatitude 85°?

Ans. (2) 23.84 b, (b) 33.86h, (¢) 92.50 h

Explain physically why a Foucault pendulum situated at the equator would not detect the
rotation of the earth about its axis. Is this physical result supported mathematically? Explain.

MOVING COORDINATE SYSTEMS IN GENERAL

?6’.

" An xzyz coordinate system rotates about the z axis with angular velocity o = costi-+ sint]

relative to a fixed X¥Z coordinate system where ¢ is the time. The origin of the ayz system
has position vector R = ¢i—j+ 2k " with respect to the XYZ system. If the position vector of
a particle is given by r = (8¢ + 1)i — 2tj + bk relative to the moving system, find the (a) apparent
velocity and (4) true velocity at any time.

Determine (¢} the apparent acceleration and (b} the true acceleration of the particle in
Problem 6.56.

Work (a) Problem 6.5, page 148, and (b) Problem 6.7, page 149, if the position vector of the
ayz system relative to the origin of the fixed X¥Z system is B = % — 2tj + bk
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MISCELLANEOUS PROBLEMS

6,39,

6.60.

6.61.

6.62,

6.63.

6.64,

6.65.

6.66,

6.67.

6.68.

5.69,

6.70.

6.71.

6.72.

6.73.

Prove that due to the rotation of the earth about its axis the apparent weight of an object of

mass m at colatitude X is my(g — «*R sin22)2 + (u2R sinA cos 3} where R iz the radius of
the earth.

Prove that the angle g which the apparent vertical at colatitude A makes with the true wvertical
. 2R sin A cos A
is given by t SR SRnesA
s B y tan g g — w2R sin?a
Explain physically why the true vertical and apparent vertical would coincide at the eguator
and also the north and south poles.

A stone is twirled in a vertical circle by a string of length 3 m, Prove that it must have a speed of al
least 11 m/s at the bottom of its path in order to complete the cirele.

A car C [Fig. 6-8) is to go completely around the vertical
circular loop of radius ¢ without leaving the track.
Assuming the track is frietionless, determine the height
H at which it must start. ‘IV

A particle of mass m is constrained to move on a friction- H a
less vertical circle of radius @ which rotates about a fixed
diameter with constant angular speed ». Prove that the
particle will make small oscillations about its equilibrium
position with a frequency given by 2raw/Va2ut — g2

Diseuss what happens in Problem 6.64 if o = Vg/a. Fig. 6-8

A hollow cylindrical tube AOB of length 2a [Fig. 6.9]

rotates with constant angular speed « about a vertical @
axis through the center &. A particle is initially at rest

in the tube at a distance b from 0. Assuming no frie-

tional forces, find (a} the position and (b} the speed of

the particle at any time.

(a) How long will it take the particle of Problem 6.66 to [ : - D
come out of the tube and (b} what will be its speed as

ot m) Fig. 6-9
b

it leaves? Ans. {a) 1 In (
(g

Find the force on the particle of Problem 6.66 at any position in the tube.

A mass, attached to a string which is suspended from a fixed point, moves in a horizontal eircle
having center wvertically below the fixed point with a speed of 20 revolutions per minute,
Find the distance of the center of the circle below the fixed point. Ans. 2.23 meters

A particle on a frictionless horizontal plane at colatitude ) is given an initial speed v, in a
northward direction. Prove that it describes a circle of radius vy/(2w0 cos)\) with period »/(w cosi).

The pendulum bob of a conical pendulum describes s horizontal circle of radius 4. If the length
of the pendulum is !, prove that the period is given by 4s3V/I? — a?/g.

A particle constrained to move on a circular wire of radius o and coefficient p is given an initial
velocity v, Assuming no other forces act, how long will it take for the particle to come to rest?

(a) Prove that if the earth were to rotate at an angular speed given by V2¢/R where R is its
radius and g the acceleration due to gravity, them the weight of a particle of mass m would be
the same at all latitudes. (b) What is the numerical value of this angular speed?

Ang. (b) 1.7T4 X 10-2 rad/s
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6.74.

6.75.

6.76.

6.77.

6.78.

6.79.

680,

5.81.

.52,

6.83.

6.84.

6.85.

.87,

A cylindrical tank containing wafter rotates about ita axis with constant angular speed o
so that no water spills out. Prove that the shape of the water surface is a paraboloid of revolution.

Werk {a) Problem 6.16 and (b) Problem 6.17, accurate to terms involving o2

Prove that due to the earth’s rotation about its axis, winds in the northern hemisphere traveling
from a high pressure area to a low pressure area are rotated in a counterclockwise sense when
viewed above the earth’s surface. What happens to winds in the southern hemisphere?

{a} Prove that in the northern hemisphers winds from the north,
east, south and west are deflected respectively toward the weast,
north, east and south as indicated in Fig. 6-10. (b) Use this to
explain the origin of cyclones.

Find the condition on the angular speed so that a particle will
describe a horizontal circle inside of a frictionless vertical cone
of angle a.

Work Problem 6.78 for a hemisphere. Fig. 6-10

The period of a simple pendulum is given by £. Prove that its period when it is suspended from
the ceiling of a train moving with speed v, around a circular track of radius p iz given by

4
PVog Vi + o252
Work Problem 8.25 accurate to terms involving 2.

A thin hollow cylindrical tube Q4 inclined at angle a with the
horizontal rotates about the vertical with constant angular speed o
[see Fig. 6-11]. If a particle constrained to move in this tube is
initially at rest at a distance & from the intersection O of the tube
and the vertical axis of rotation, prove that ita distance » from O
at any time t is r = g cosh (ut sine) — (g eos aH2.

Work Problem 6.82 if the rod has coefficient of friction u.

Prove that the particle of Problem 6.82 is in stable equilibrium
between the distatices from O given by

gsine{l—utana and g sina 1+pt,ana)
wk tana+ o w? tan e — g

agsuming tana < 1/g, Fig. 6-11

A train having a maximum speed equal to v, is to round a curve with radius of curvature p. Prove
that if there is to be no lateral thrust on the outer track, then this track should be at a

height above the inner track given by ev}/v/ vl + p2p? where e is the distance between tracks.

A projectile is fired at colatitude A with velocity v, directed toward the west and at angle o with
the horizontal. Prove that if terms involving ? are neglected, then the time taken to reach
the maximum height is

Vo 8in a 2,95 gin X 8in o cos &

¢ o2
Compare with the case where o = 0, ie. that the earth does not rotate about its axis.

In Problem 6.86, prove that the maximum height reached is
visin?a  20%)sin ) sin?a cosa

2g 92
Compare with the case where o =0.
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6.88.

6.89.

6.90,

6.91.

6.92.

6.93.

6.94,

6.95.
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Prove that the range of the projectile of Froblem 6.86 is

v gin 2a wvd sin « sin » (8 sinZa — )
g + 8g2

Thus show that if terms involving «»? and higher are neglected, the range will be larger, smaller
ot the same as the case where o = 0, according as a > 60°, « << 60° or « = 60° respectively.

If a projectile is fired with initial velocity v,i + v,i + vk from the origin of a coordinate system
fixed relative to the earth’s surface at colatitude A, prove that its position at any later time ¢
will be given by

x = it + wvztz cos A
¥ = vt — wt¥v; cosh + v3sind) + Jogtd sink
z = vyt — gt? + avytsink

neglecting terms involving w2,
Work Problem 6.89 so as to include terms involving w? bui exclude terms involving o2

An object of mass m initially at rest is dropped from height A to the earth's surface at colatitude A,
Assuming that air resistance proportional to the instantaneous speed of the object is taken into
account as well as the rotation of the earth about its axis, prove that after time ¢ the object is
deflected east of the vertical by the amount

E&’% [lg — 21821 — e~Bt) + p3hte~Bt — gyt + Lgp2te

neglecting terms eof order »? and higher,
Work Problem 6.91, obtaining accuracy up to and including terms of order 2.

A frictionless inclined plane of length { and angle « located at colatitude X is so situated that
a particle placed on it would slide under the influence of gravity from north to south. If the
particle starts from rest at the top, prove that it will reach the bottom in a time given by

a7 + 2wl sin X cos a
g sina 3¢

and that its speed at the bottom is

Veglsing — #ul sina cosa sin

neglecting terms of order 2.

(2) Prove that by the time the particle of Problem 6.93 reaches the bottom it will have undergone
a deflection of magnitude

2l 21

3 ¢ sine

cos (a+ M)
to the east or west respectively according as cos{a+ ) is greater than or less than zero.

(b) Discuss the case where cos{a-+r)=0. (¢} Use the result of (a) to arrive at the result
of Problem 6.17.

Work Problems 6.93 and 6.94 if the inclined plane has coefficient of friction ..




